Astrophysical Neutrinos

Filter this page

(Note: The process can take some time.)

EXPAND ALL
COMPRESS ALL

References

1 - Books

[1-1]
Neutrinos in particle physics, astronomy and cosmology, Zhi-zhong Xing, Shun Zhou, Zhejiang University Press, Hangzhou, 2011. ISBN: 978-3-642-17560-2. https://link.springer.com/book/10.1007/978-3-642-17560-2.
[Xing:2011zza]
[1-2]
Stars as laboratories for fundamental physics: The astrophysics of neutrinos, axions, and other weakly interacting particles, G.G. Raffelt, University of Chicago Press, 1996. ISBN 0-226-70272-3. http://wwwth.mpp.mpg.de/members/raffelt/pages/mybook.html.
[Raffelt:1996wa]
[1-3]
Cosmic Rays and Particle Physics, T. K. Gaisser, Cambridge University Press, 1990.
[Gaisser:1990vg]
[1-4]
Astrophysics of Cosmic Rays, (ed.) Ginzburg, V. L., V. A. Dogiel, V. S. Berezinsky, S. V. Bulanov, V. S. Ptuskin, North-Holland, 1990.
[Ginzburg:1990sk]

2 - Reviews

[2-1]
The Unified Era: An understanding journey from observations to the Unified Model of Active Galactic Nuclei, Leonardo de Lima Santos, Samuel Bueno Soltau, arXiv:2403.17739, 2024.
[Santos:2024uln]
[2-2]
Neutron-star Measurements in the Multi-messenger Era, Stefano Ascenzi, Vanessa Graber, Nanda Rea, Astropart.Phys. 158 (2024) 102935, arXiv:2401.14930.
[Ascenzi:2024wws]
[2-3]
The Milky Way shines in high-energy neutrinos, Mauricio Bustamante, Nature Rev.Phys. 6 (2024) 8-10, arXiv:2312.08102.
[Bustamante:2023iyn]
[2-4]
Cosmic-Ray Physics at the South Pole, D. Soldin, P. A. Evenson, H. Kolanoski, A. A. Watson, arXiv:2311.14474, 2023.
[Soldin:2023lbr]
[2-5]
The origin of high-energy astrophysical neutrinos: new results and prospects, Sergey Troitsky, Phys.Usp. (2023), arXiv:2311.00281.
[Troitsky:2023nli]
[2-6]
Neutrinos and nucleosynthesis of elements, Tobias Fischer, Gang Guo, Karlheinz Langanke, Gabriel Martinez-Pinedo, Yong-Zhong Qian, Meng-Ru Wu, Prog.Part.Nucl.Phys. 137 (2024) 104107, arXiv:2308.03962.
[Fischer:2023ebq]
[2-7]
The LHAASO PeVatron bright sky: what we learned, Martina Cardillo, Andrea Giuliani, Appl.Sciences 13 (2023) 6433, arXiv:2305.10526.
[Cardillo:2023hbb]
[2-8]
Neutrinos from dense: flavor mechanisms, theoretical approaches, observations, new directions, Maria Cristina Volpe, arXiv:2301.11814, 2023.
[Volpe:2023met]
[2-9]
Mineral Detection of Neutrinos and Dark Matter. A Whitepaper, Sebastian Baum et al., Phys.Dark Univ. 41 (2023) 101245, arXiv:2301.07118.
[Baum:2023cct]
[2-10]
Neutrino Physics and Astrophysics Overview, Floyd W. Stecker, arXiv:2301.02935, 2023.
[Stecker:2023qcg]
[2-11]
High-Energy Neutrinos from Gamma-Ray-Faint Accretion-Powered Hypernebulae, Navin Sridhar, Brian D. Metzger, Ke Fang, Astrophys.J. 960 () 74, arXiv:2212.11236.
[Sridhar:2022uis]
[2-12]
Dynamics and Equation of State Dependencies of Relevance for Nucleosynthesis in Supernovae and Neutron Star Mergers, H. -Thomas Janka, Andreas Bauswein, arXiv:2212.07498, 2022.
[Janka:2022krt]
[2-13]
Snowmass Neutrino Frontier Report, Patrick Huber et al., arXiv:2211.08641, 2022.
[Huber:2022lpm]
[2-14]
Fermi Gamma-ray Space Telescope, David J. Thompson, Colleen A. Wilson-Hodge, arXiv:2210.12875, 2022.
[Thompson:2022ufx]
[2-15]
Blazar jets as possible sources of ultra-high energy photons: a short review, Gopal Bhatta, Universe 8 (2022) 513, arXiv:2209.13158.
[Bhatta:2022bud]
[2-16]
Report of the Topical Group on Cosmic Probes of Fundamental Physics for for Snowmass 2021, Rana X. Adhikari et al., arXiv:2209.11726, 2022.
[Adhikari:2022sve]
[2-17]
Snowmass Theory Frontier: Astrophysics and Cosmology, Daniel Green et al., arXiv:2209.06854, 2022.
[Green:2022hhj]
[2-18]
Snowmass 2021 topical group report: Neutrinos from Natural Sources, Yusuke Koshio, Gabriel D. Orebi Gann, Erin O'Sullivan, Irene Tamborra, arXiv:2209.04298, 2022.
[Koshio:2022zip]
[2-19]
Neutrinos in Stellar Astrophysics, G. M. Fuller, W. C. Haxton, arXiv:2208.08050, 2022.
[Fuller:2022nbn]
[2-20]
Radio Detection of High Energy Neutrinos in Ice, Steven Barwick, Christian Glaser, arXiv:2208.04971, 2022.
[Barwick:2022vqt]
[2-21]
X- and Gamma-ray astrophysics in the era of Multi-messenger astronomy, Giulia Stratta, Andrea Santangelo, arXiv:2205.10774, 2022.
[Stratta:2022ufl]
[2-22]
High-Energy Extragalactic Neutrino Astrophysics, Naoko Kurahashi, Kohta Murase, Marcos Santander, Ann.Rev.Nucl.Part.Sci. 72 (2022) 365, arXiv:2203.11936.
[Kurahashi:2022utm]
[2-23]
Advancing the Landscape of Multimessenger Science in the Next Decade, Kristi Engel et al., arXiv:2203.10074, 2022.
[Engel:2022yig]
[2-24]
High-Energy and Ultra-High-Energy Neutrinos, Markus Ackermann et al., JHEAp 36 (2022) 158, arXiv:2203.08096.
[Ackermann:2022rqc]
[2-25]
Snowmass2021 Cosmic Frontier: Synergies between dark matter searches and multiwavelength/multimessenger astrophysics, Shin'ichiro Ando et al., arXiv:2203.06781, 2022.
[Ando:2022kzd]
[2-26]
Neutrinos from Gamma-ray Bursts, Shigeo S. Kimura, arXiv:2202.06480, 2022.
[Kimura:2022zyg]
[2-27]
High-Energy Neutrinos from Active Galactic Nuclei, Kohta Murase, Floyd W. Stecker, arXiv:2202.03381, 2022.
[Murase:2022feu]
[2-28]
Neutrino Flavor Conversions in High-Density Astrophysical and Cosmological Environments, Francesco Capozzi, Ninetta Saviano, Universe 8 (2022) 94, arXiv:2202.02494.
[Capozzi:2022slf]
[2-29]
Testing Lorentz Invariance with Neutrinos, Floyd W. Stecker, arXiv:2202.01183, 2022.
[Stecker:2022tzd]
[2-30]
IceCube and High-Energy Cosmic Neutrinos, Francis Halzen, Ali Kheirandish, arXiv:2202.00694, 2022.
[Halzen:2022pez]
[2-31]
Lecture notes on accretion disk physics, Philip J. Armitage, arXiv:2201.07262, 2022.
[Armitage:2022six]
[2-32]
Constraints on the models of the origin of high-energy astrophysical neutrinos, Sergey Troitsky, Usp.Fiz.Nauk 191 (2021) 1333-1360, arXiv:2112.09611.
[Troitsky:2021nvu]
[2-33]
Multimessenger Astronomy with Neutrinos, Francisco Salesa Greus, Agustin Sanchez Losa, Universe 7 (2021) 397, arXiv:2110.11817.
[Greus:2021gba]
[2-34]
Coalescence of black hole-neutron star binaries, Koutarou Kyutoku, Masaru Shibata, Keisuke Taniguchi, Living Rev.Rel. 24 (2021) 5, arXiv:2110.06218.
[Kyutoku:2021icp]
[2-35]
Lorentz symmetry and high-energy neutrino astronomy, Carlos A. Arguelles, Teppei Katori, Universe 7 (2021) 490, arXiv:2109.13973.
[Arguelles:2021kjg]
[2-36]
Gamma-ray and Neutrino Signals from Accretion Disk Coronae of Active Galactic Nuclei, Yoshiyuki Inoue, Dmitry Khangulyan, Akihiro Doi, Galaxies 9 (2021) 36, arXiv:2105.08948.
[Inoue:2021tcn]
[2-37]
Advances in Machine and Deep Learning for Modeling and Real-time Detection of Multi-Messenger Sources, E. A. Huerta, Zhizhen Zhao, arXiv:2105.06479, 2021.
[Huerta:2021ybd]
[2-38]
Multi-messenger astronomy with INTEGRAL, C. Ferrigno et al., New Astron.Rev. 92 (2021) 101595, arXiv:2011.12124.
[Ferrigno:2020lli]
[2-39]
Neutrino Telescopes, Gisela Anton, arXiv:2010.06012, 2020.
[Anton:2020veo]
[2-40]
Neutrino telescopes and high-energy cosmic neutrinos, Andrea Palladino, Maurizio Spurio, Francesco Vissani, Universe 6 (2020) 30, arXiv:2009.01919.
[Palladino:2020jol]
[2-41]
Status, Challenges and Directions in Indirect Dark Matter Searches, Carlos Perez de los Heros, Symmetry 12 (2020) 1648, arXiv:2008.11561.
[PerezdelosHeros:2020qyt]
[2-42]
Identifying Galactic Sources of High-Energy Neutrinos, Ali Kheirandish, Astrophys.Space Sci. 365 (2020) 108, arXiv:2006.16087.
[Kheirandish:2020upj]
[2-43]
A brief overview of black hole-neutron star mergers, Francois Foucart, Front.Astron.Space Sci. 7 (2020) 46, arXiv:2006.10570.
[Foucart:2020ats]
[2-44]
Theoretical prediction of presupernova neutrinos and their detection, Chinami Kato, Koji Ishidoshiro, Takashi Yoshida, Ann.Rev.Nucl.Part.Sci. 70 (2020) 121-145, arXiv:2006.02519.
[Kato:2020hlc]
[2-45]
Prospects for High-Elevation Radio Detection of > 100 PeV Tau Neutrinos, Stephanie Wissel et al., JCAP 2011 (2020) 065, arXiv:2004.12718.
[Wissel:2020sec]
[2-46]
Multi-Messenger Searches in Astrophysics, Kathrin Egberts, PoS LeptonPhoton2019 (2019) 030, arXiv:2004.12460.
[Egberts:2019vwc]
[2-47]
High-energy particles and radiation in star-forming regions, A. M. Bykov, A. Marcowith, E. Amato, M. E. Kalyashova, J. M. D. Kruijssen, E. Waxman, Space Sci.Rev. 216 (2020) 42, arXiv:2003.11534.
[Bykov:2020zqf]
[2-48]
Particle acceleration in astrophysical jets, James Matthews, Anthony Bell, Katherine Blundell, New Astron.Rev. 89 (2020) 101543, arXiv:2003.06587.
[Matthews:2020lig]
[2-49]
Detectors for high-energy messengers from the Universe, Werner Hofmann, Jim Hinton, Nucl.Instrum.Meth. A907 (2018) 31-45, arXiv:1912.07473.
[Hofmann:2018zma]
[2-50]
Enabling real-time multi-messenger astrophysics discoveries with deep learning, E. A. Huerta et al., Nature Rev.Phys. 1 (2019) 600-608, arXiv:1911.11779.
[Huerta:2019rtg]
[2-51]
Neutrino astronomy with the next generation IceCube Neutrino Observatory, M. G. Aartsen et al., arXiv:1911.02561, 2019.
[IceCube:2019pna]
[2-52]
Grand Unified Neutrino Spectrum at Earth, Edoardo Vitagliano, Irene Tamborra, Georg Raffelt, Rev.Mod.Phys. 92 (2020) 045006, arXiv:1910.11878.
[Vitagliano:2019yzm]
[2-53]
Physics of radiation mediated shocks and its applications to GRBs, supernovae, and neutron star mergers, Amir Levinson, Ehud Nakar, Phys.Rept. 866 (2020) 1-46, arXiv:1909.10288.
[Levinson:2019usn]
[2-54]
The High Energy View of FR0 Radio Galaxies, Ranieri D. Baldi, Eleonora Torresi, Giulia Migliori, Barbara Balmaverde, Galaxies 7 (2019) 76, arXiv:1909.04113.
[Baldi:2019hqp]
[2-55]
High-Energy Multi-Messenger Transient Astrophysics, Kohta Murase, Imre Bartos, arXiv:1907.12506, 2019.
[Murase:2019fqk]
[2-56]
Multi-Messenger Astrophysics, Peter Meszaros, Derek B. Fox, Chad Hanna, Kohta Murase, APS Physics 1 (2019) 585, arXiv:1906.10212.
[Meszaros:2019xej]
[2-57]
An introduction to astrophysical observables in gravitational wave detections, Maurizio Spurio, arXiv:1906.03643, 2019.
[Spurio:2019xej]
[2-58]
Probing high-energy interactions of atmospheric and astrophysical neutrinos, Spencer R. Klein, arXiv:1906.02221, 2019.
[Klein:2019nbu]
[2-59]
Multi-Messenger Physics with the Pierre Auger Observatory, Alexander Aab et al. (Pierre Auger), Front.Astron.Space Sci. 6 (2019) 24, arXiv:1904.11918.
[PierreAuger:2019fdm]
[2-60]
The Yet-Unobserved Multi-Messenger Gravitational-Wave Universe, Vassiliki Kalogera et al., arXiv:1903.09224, 2019.
[Kalogera:2019bdd]
[2-61]
Open Questions in Cosmic-Ray Research at Ultrahigh Energies, Rafael Alves Batista et al., Front.Astron.Space Sci. 6 (2019) 23, arXiv:1903.06714.
[AlvesBatista:2019tlv]
[2-62]
The Sun at GeV-TeV Energies: A New Laboratory for Astroparticle Physics, M.U. Nisa, J.F. Beacom, S.Y. BenZvi, R.K. Leane, T. Linden, K.C.Y. Ng, A.H.G. Peter, B. Zhou, arXiv:1903.06349, 2019.
[Nisa:2019mpb]
[2-63]
Neutrinos, Cosmic Rays and the MeV Band, R. Ojha et al., arXiv:1903.05765, 2019.
[Ojha:2019xan]
[2-64]
Precision Analysis of Evolved Stars, Stephen Ridgway et al., arXiv:1903.05109, 2019.
[1903.05109]
[2-65]
Stellar multiplicity: an interdisciplinary nexus, Katelyn Breivik, Adrian M. Price-Whelan, Daniel J. D'Orazio, David W. Hogg, L. Clifton Johnson, Maxwell Moe, Timothy D. Morton, Jamie Tayar, arXiv:1903.05094, 2019.
[1903.05094]
[2-66]
Multimessenger TeV Dark Matter: a mini review, Viviana Gammaldi, Front.Astron.Space Sci. 6 (2019) 19, arXiv:1903.05010.
[Gammaldi:2019mel]
[2-67]
Multi-Messenger Astronomy with Extremely Large Telescopes, Ryan Chornock et al., arXiv:1903.04629, 2019.
[Chornock:2019rrt]
[2-68]
Opportunities for Multimessenger Astronomy in the 2020s, E. Burns et al., arXiv:1903.04461, 2019.
[Burns:2019zzo]
[2-69]
A Unique Messenger to Probe Active Galactic Nuclei: High-Energy Neutrinos, Sara Buson, Ke Fang, Azadeh Keivani, Thomas Maccarone, Kohta Murase, Maria Petropoulou, Marcos Santander, Ignacio Taboada, Nathan Whitehorn, Bull.Am.Astron.Soc. 51 (2019) 228, arXiv:1903.04447.
[Buson:2019dbj]
[2-70]
Astrophysics Uniquely Enabled by Observations of High-Energy Cosmic Neutrinos, Markus Ackermann et al., Bull.Am.Astron.Soc. 51 (2019) 185, arXiv:1903.04334.
[Ackermann:2019ows]
[2-71]
Fundamental Physics with High-Energy Cosmic Neutrinos, Markus Ackermann et al., Bull.Am.Astron.Soc. 51 (2019) 215, arXiv:1903.04333.
[Ackermann:2019cxh]
[2-72]
A Summary of Multimessenger Science with Neutron Star Mergers, Eric Burns et al., arXiv:1903.03582, 2019.
[Burns:2019tqz]
[2-73]
Progress in Multiwavelength and Multi-Messenger Observations of Blazars and Theoretical Challenges, Markus Boettcher, arXiv:1901.04178, 2019.
[Boettcher:2019gft]
[2-74]
Ultra-High-Energy Cosmic Rays, Luis A. Anchordoqui, Phys.Rep. 801 (2019) 1-93, arXiv:1807.09645.
[Anchordoqui:2018qom]
[2-75]
A multimessenger view of galaxies and quasars from now to mid-century, Mauro D'Onofrio, Paola Marziani, Front.Astron.Space Sci. 5 (2018) 31, arXiv:1807.07435.
[DOnofrio:2018hfu]
[2-76]
Opening a New Window onto the Universe with IceCube, Markus Ahlers, Francis Halzen, Prog.Part.Nucl.Phys. 102 (2018) 73-88, arXiv:1805.11112.
[Ahlers:2018fkn]
[2-77]
Detection techniques and investigation of different neutrino experiments, Ankur Nath, Ng. K. Francis, Int.J.Mod.Phys. A36 (2021) 2130008, arXiv:1804.08467.
[Nath:2018ywc]
[2-78]
Nuclear Equation of state for Compact Stars and Supernovae, G. Fiorella Burgio, Anthea F. Fantina, Astrophys.Space Sci.Libr. 457 (2018) 255-335, arXiv:1804.03020.
[FiorellaBurgio:2018dga]
[2-79]
Helioseismology: Observations and Space Missions, P.L. Palle, T. Appourchaux, J. Christensen-Dalsgaard, R.A. Garcia, arXiv:1802.00674, 2018.
[1802.00674]
[2-80]
Cosmic Neutrinos, Ofelia Pisanti, PoS NuFact2017 (2017) 024, arXiv:1712.05739.
[Pisanti:2017ncd]
[2-81]
Neutron Star Mergers and Nucleosynthesis of Heavy Elements, F.-K. Thielemann, M. Eichler, I.V. Panov, B. Wehmeyer, Ann.Rev.Nucl.Part.Sci. 67 (2017) 1916, arXiv:1710.02142.
[Thielemann:2017acv]
[2-82]
Astrophysical Sources of High Energy Neutrinos in the IceCube Era, P. Meszaros, Ann.Rev.Nucl.Part.Sci. 67 (2017) 1916, arXiv:1708.03577.
[Meszaros:2017fcs]
[2-83]
Acceleration and propagation of ultra high energy cosmic rays, Roberto Aloisio, PTEP 2017 (2017) 12A102, arXiv:1707.08471.
[Aloisio:2017qoo]
[2-84]
From hadrons to quarks in neutron stars, Gordon Baym et al., Rept.Prog.Phys. 81 (2018) 056902, arXiv:1707.04966.
[Baym:2017whm]
[2-85]
Search for the Footprints of New Physics with Laboratory and Cosmic Neutrinos, Floyd W. Stecker, Mod.Phys.Lett. A32 (2017) 1730014, arXiv:1705.08485.
[Stecker:2017lty]
[2-86]
Neutrino-dominated accretion flows as the central engine of gamma-ray bursts, Tong Liu, Wei-Min Gu, Bing Zhang, New Astron.Rev. 79 (2017) 1, arXiv:1705.05516.
[Liu:2017kga]
[2-87]
Photospheric Emission of Gamma-Ray Bursts, A. M. Beloborodov, P. Meszaros, Space Sci.Rev. 207 (2017) 87-110, arXiv:1701.04523.
[Beloborodov:2017use]
[2-88]
Neutrinos and Cosmic Rays Observed by IceCube, M. G. Aartsen et al. (IceCube), arXiv:1701.03731, 2017.
[Aartsen:2017von]
[2-89]
Radiowave Detection of Ultra-High Energy Neutrinos and Cosmic Rays, Tim Huege, Dave Besson, PTEP 2017 (2017) 12A106, arXiv:1701.02987.
[Huege:2017khw]
[2-90]
Recent Results from the ANTARES Neutrino Telescope, P. Coyle, C. W. James, arXiv:1701.02144, 2017.
[Coyle:2017pnl]
[2-91]
Neutrino Signatures From Young Neutron Stars, Luke F. Roberts, Sanjay Reddy, arXiv:1612.03860, 2016.
[Roberts:2016rsf]
[2-92]
Radio detection of Cosmic-Ray Air Showers and High-Energy Neutrinos, Frank G. Schroder, Prog.Part.Nucl. Phys. 93 (2017) 1-68, arXiv:1607.08781.
[Schroder:2016hrv]
[2-93]
Radio Detection of High Energy Neutrinos, Amy L. Connolly, Abigail G. Vieregg, arXiv:1607.08232, 2016.
[Connolly:2016pqr]
[2-94]
The Dawn of Multi-Messenger Astronomy, Marcos Santander, arXiv:1606.09335, 2016.
[Santander:2016bvv]
[2-95]
A review of indirect searches for particle dark matter, Jennifer M. Gaskins, Contemp.Phys. 57 (2016) 496-525, arXiv:1604.00014.
[Gaskins:2016cha]
[2-96]
Observations of diffuse fluxes of cosmic neutrinos, Christopher H. Wiebusch, arXiv:1602.00239, 2016.
[Wiebusch:2016ill]
[2-97]
Quark matter nucleation in neutron stars and astrophysical implications, Ignazio Bombaci, Domenico Logoteta, Isaac Vidana, Constanca Providencia, Eur.Phys.J. A52 (2016) 58, arXiv:1601.04559.
[Bombaci:2016xuj]
[2-98]
The sensitivity of past and near-future lunar radio experiments to ultra-high-energy cosmic rays and neutrinos, Justin Bray, Astropart. Phys. (2016), arXiv:1601.02980.
[Bray:2016xrn]
[2-99]
Nonthermal particles and photons in starburst regions and superbubbles, Andrei Bykov, Astron. Astrophys. Rev. 22 (2014) 77, arXiv:1511.04608.
[Bykov:2014asa]
[2-100]
The quest for dark matter with neutrino telescopes, Carlos Perez de los Heros, arXiv:1511.03500, 2015.
[delosHeros:2015klz]
[2-101]
Active Galactic Nuclei as High-Energy Neutrino Sources, Kohta Murase, arXiv:1511.01590, 2015.
[Murase:2015ndr]
[2-102]
Gamma Ray Bursts as Neutrino Sources, P. Meszaros, arXiv:1511.01396, 2015.
[Meszaros:2015krr]
[2-103]
A review of the neutrino emission processes in the late stages of the stellar evolutions, Indranath Bhattacharyya, arXiv:1510.02678, 2015.
[Bhattacharyya:2015sqa]
[2-104]
Neutrino emissivity in the quark-hadron mixed phase of neutron stars, William M. Spinella, Fridolin Weber, Gustavo A. Contrera, Milva G. Orsaria, Eur.Phys.J. A52 (2016) 61, arXiv:1507.06067.
[Spinella:2015ksa]
[2-105]
Indirect and direct search for dark matter, Michael Klasen, Martin Pohl, Gunter Sigl, Prog. Part. Nucl. Phys. 85 (2015) 1-32, arXiv:1507.03800.
[Klasen:2015uma]
[2-106]
Neutrinos from Gamma Ray Bursts in the IceCube and ARA Era, Dafne Guetta, JHEAp 7 (2015) 90-94, arXiv:1503.07146.
[Guetta:2015iza]
[2-107]
The Physics of Gamma-Ray Bursts and Relativistic Jets, Pawan Kumar, Bing Zhang, Phys.Rept. 561 (2014) 1-109, arXiv:1410.0679.
[Kumar:2014upa]
[2-108]
High Energy Astrophysics, Bing Zhang, Peter Meszaros, Physics 8 (2013) 605-608, arXiv:1401.6613.
[Zhang:2013hwb]
[2-109]
Gamma-Ray Bursts, P. Meszaros, M.J. Rees, arXiv:1401.3012, 2014.
[Meszaros:2014pca]
[2-110]
Cosmic Neutrino Pevatrons: A Brand New Pathway to Astronomy, Astrophysics, and Particle Physics, Luis A. Anchordoqui et al., JHEAp (2013), arXiv:1312.6587.
[Anchordoqui:2013dnh]
[2-111]
Diverse, massive-star-associated sources for elements heavier than Fe and the roles of neutrinos, Yong-Zhong Qian, J. Phys. G41 (2014) 044002, arXiv:1310.4462.
[Qian:2013fsa]
[2-112]
Recent Progress in Cosmology and Particle Astrophysics, Pisin Chen, JPS Conf.Proc. 1 (2014) 011002, arXiv:1310.1107.
[Chen:2013kia]
[2-113]
IceCube: Neutrino Physics from GeV - PeV, Francis Halzen (IceCube), arXiv:1308.3171, 2013.
[Halzen:2013uzb]
[2-114]
Light from the Cosmic Frontier: Gamma-Ray Bursts, L. Amati et al., arXiv:1306.5259, 2013.
[Amati:2013ora]
[2-115]
Review of Recent Neutrino Physics Research, Leonard S. Kisslinger, Mod.Phys.Lett. A28 (2013) 1330024, arXiv:1306.3912.
[Kisslinger:2013ipa]
[2-116]
High energy emission from galactic jets, H. R. Christiansen, arXiv:1306.1792, Cambridge University Press, 2013.
[Christiansen:2013dwa]
[2-117]
Neutrino astrophysics, Cristina Volpe, Ann.Phys.(Berlin) 525 (2013) 588-599, arXiv:1303.1681.
[Volpe:2013kxa]
[2-118]
Atmospheric leptons, the search for a prompt component, Thomas K. Gaisser, EPJ Web Conf. 52 (2013) 09004, arXiv:1303.1431.
[Gaisser:2013ira]
[2-119]
Gamma-Ray Burst Science in the Era of the Cherenkov Telescope Array, Susumu Inoue et al., Astropart.Phys. 43 (2013) 252-275, arXiv:1301.3014.
[CTAConsortium:2013cta]
[2-120]
Neutrino Astrophysics, W. C. Haxton, arXiv:1209.3743, 2012.
[Haxton:2012bk]
[2-121]
Towards High-Energy Neutrino Astronomy. A Historical Review, Christian Spiering, Eur. Phys. J. H37 (2012) 515-565, arXiv:1207.4952.
[Spiering:2012xe]
[2-122]
Multimessenger astronomy with gravitational waves and high-energy neutrinos, S. Ando et al., Reviews of Modern Physics 85 (2013) 1401-1420, arXiv:1203.5192.
[Ando:2012hna]
[2-123]
Neutrinos and cosmic rays, Thomas K. Gaisser, Todor Stanev, Astropart. Phys. 39-40 (2012) 120-128, arXiv:1202.0310.
[Gaisser:2012ru]
[2-124]
Neutrinos from Cosmic Accelerators Including Magnetic Field and Flavor Effects, Walter Winter, Adv. High Energy Phys. 2012 (2012) 586413, arXiv:1201.5462.
[Winter:2012xq]
[2-125]
Extragalactic propagation of ultrahigh energy cosmic-rays, Denis Allard, Astropart. Phys. 39-40 (2012) 33-43, arXiv:1111.3290.
[Allard:2011aa]
[2-126]
High-Energy Neutrino Astrophysics: Status and Perspectives, Ulrich F. Katz, Christian Spiering, Prog. Part. Nucl. Phys. 67 (2012) 651-704, arXiv:1111.0507.
[Katz:2011ke]
[2-127]
Detection of elusive Radio and Optical emission from Cosmic-ray showers in the 1960s, David J. Fegan, Nucl. Instrum. Meth. A662 (2012) S2-S11, arXiv:1104.2403.
[Fegan:2011fb]
[2-128]
Observing the prompt emission of gamma-ray bursts, Jean-Luc Atteia, Michel Boer, Comptes Rendus Physique 12 (2011) 255-266, arXiv:1104.1211.
[Atteia:2011xv]
[2-129]
Ultrahigh Energy Cosmic Rays, Antoine Letessier-Selvon, Todor Stanev, Rev.Mod.Phys. 83 (2011) 907-942, arXiv:1103.0031.
[Letessier-Selvon:2011sak]
[2-130]
The Astrophysics of Ultrahigh Energy Cosmic Rays, Kumiko Kotera, Angela V. Olinto, Ann. Rev. Astron. Astrophys. 49 (2011) 119-153, arXiv:1101.4256.
[Kotera:2011cp]
[2-131]
High energy cosmic ray and neutrino astronomy, E. Waxman, arXiv:1101.1155, 2011.
[Waxman:2011hr]
[2-132]
Diffuse supernova neutrinos at underground laboratories, Cecilia Lunardini, Astropart.Phys. 79 (2016) 49-77, arXiv:1007.3252.
[Lunardini:2010ab]
[2-133]
Astronomy in Antarctica, Michael G. Burton, Astron. Astrophys. Rev. 18 (2010) 417-469, arXiv:1007.2225.
[Burton:2010vr]
[2-134]
IceCube: An Instrument for Neutrino Astronomy, Francis Halzen, Spencer R. Klein, Rev. Sci. Instrum. 81 (2010) 081101, arXiv:1007.1247.
[Halzen:2010yj]
[2-135]
The Diffuse Supernova Neutrino Background, John F. Beacom, Ann. Rev. Nucl. Part. Sci. 60 (2010) 439, arXiv:1004.3311.
[Beacom:2010kk]
[2-136]
In Search for Extraterrestrial High Energy Neutrinos, Luis A. Anchordoqui, Teresa Montaruli, Ann. Rev. Nucl. Part. Sci. 60 (2010) 129-162, arXiv:0912.1035.
[Anchordoqui:2009nf]
[2-137]
The Indirect Search for Dark Matter with IceCube, Francis Halzen, Dan Hooper, New J. Phys. 11 (2009) 105019, arXiv:0910.4513.
[Halzen:2009vu]
[2-138]
Neutrino Astronomy with IceCube, Tyce DeYoung, Mod. Phys. Lett. A24 (2009) 1543-1557, arXiv:0906.4530.
[DeYoung:2009er]
[2-139]
Sterile neutrinos: the dark side of the light fermions, Alexander Kusenko, Phys. Rept. 481 (2009) 1-28, arXiv:0906.2968.
[Kusenko:2009up]
[2-140]
High-Energy Astrophysics with Neutrino Telescopes, T. Chiarusi, M. Spurio, Eur. Phys. J. C65 (2010) 649-701, arXiv:0906.2634.
[Chiarusi:2010qif]
[2-141]
The search for decaying Dark Matter, J.W. den Herder et al., arXiv:0906.1788, 2009.
[denHerder:2009sxr]
[2-142]
The Scientific Life Of John Bahcall, W. C. Haxton, Ann. Rev. Nucl. Part. Sci. 59 (2009) 1-20, arXiv:0904.2865.
[Haxton:2009zb]
[2-143]
Origin and evolution of cosmic accelerators - the unique discovery potential of an UHE neutrino telescope: Astronomy Decadal Survey (2010-2020) Science White Paper, Pisin Chen, K. D. Hoffman (editors for interested physicists from the IceCube), arXiv:0902.3288, 2009.
[Chen:2009ra]
[2-144]
High Energy Neutrino Telescopes, K. D. Hoffman, New J. Phys. 11 (2009) 055006, arXiv:0812.3809.
[Hoffman:2008yu]
[2-145]
Astrophysical Probes of Unification, Asimina Arvanitaki et al., Phys. Rev. D79 (2009) 105022, arXiv:0812.2075.
[Arvanitaki:2008hq]
[2-146]
Propagation of ultra high energy cosmic rays, Todor Stanev, New J. Phys. 11 (2009) 065013, arXiv:0810.2501.
[Stanev:2008hu]
[2-147]
Proton and Neutrino Extragalactic Astronomy, Paolo Lipari, Phys. Rev. D78 (2008) 083011, arXiv:0808.0344.
[Lipari:2008zf]
[2-148]
High-energy neutrinos in the context of multimessenger physics, Julia K. Becker, Phys. Rept. 458 (2008) 173-246, arXiv:0710.1557.
[Becker:2007sv]
[2-149]
The Progenitors of Short Gamma-Ray Bursts, William H. Lee, Enrico Ramirez-Ruiz, New J. Phys. 9 (2007) 17, arXiv:astro-ph/0701874.
[Lee:2007js]
[2-150]
Neutrino astrophysics: A new tool for exploring the universe, E. Waxman, Science 315 (2007) 63-65, arXiv:astro-ph/0701168.
[Waxman:2007kp]
[2-151]
High-Energy Aspects of Astrophysical Jets, Amir Levinson, Int. J. Mod. Phys. A21 (2006) 6015-6054, arXiv:astro-ph/0611521.
[Levinson:2006br]
[2-152]
The role of microquasars in astroparticle physics, Sylvain Chaty, arXiv:astro-ph/0607668, 2006.
[Chaty:2006zk]
[2-153]
Ultra-high energy cosmic rays, cascade gamma-rays, and high-energy neutrinos from gamma-ray bursts, Charles D. Dermer, Armen Atoyan, New J. Phys. 8 (2006) 122, arXiv:astro-ph/0606629.
[Dermer:2006bb]
[2-154]
Astroparticle physics with high energy neutrinos: from amanda to icecube, Francis Halzen, Eur.Phys.J. C46 (2006) 669-687, arXiv:astro-ph/0602132.
[Halzen:2006mq]
[2-155]
The physics of dense hadronic matter and compact stars, Armen Sedrakian, Prog. Part. Nucl. Phys. 58 (2007) 168-246, arXiv:nucl-th/0601086.
[Sedrakian:2006mq]
[2-156]
IceHEP High Energy Physics at the South Pole, Luis Anchordoqui, Francis Halzen, Annals Phys. 321 (2006) 2660-2716, arXiv:hep-ph/0510389.
[Anchordoqui:2005is]
[2-157]
High Energy Neutrinos as a Probe for New Physics and Astrophysics, E. V. Bugaev, Int. J. Mod. Phys. A20 (2005) 6909, arXiv:astro-ph/0505412.
[Bugaev:2005wp]
[2-158]
Pulsar kicks from neutrino oscillations, Alexander Kusenko, Int. J. Mod. Phys. D13 (2004) 2065, arXiv:astro-ph/0409521.
[Kusenko:2004mm]
[2-159]
Prospects for radio detection of ultra-high energy cosmic rays and neutrinos, H. Falcke, P. Gorham, R.J. Protheroe, New Astron. Rev. 48 (2004) 1487, arXiv:astro-ph/0409229.
[Falcke:2004aw]
[2-160]
The Particle physics reach of high-energy neutrino astronomy, Tao Han, Dan Hooper, New J. Phys. 6 (2004) 150, arXiv:hep-ph/0408348.
[Han:2004kq]
[2-161]
Status of particle physics solutions to the UHECR puzzle, M. Kachelriess, Comptes Rendus Physique 5 (2004) 441, arXiv:hep-ph/0406174.
[Kachelriess:2004ax]
[2-162]
Ultra High Energy Cosmic Rays, R.J. Protheroe, R.W. Clay, Publ. Astron. Soc. Pac. 21 (2004) 1, arXiv:astro-ph/0311466.
[Protheroe:2003vc]
[2-163]
Searching For Dark Matter with Neutrino Telescopes, Dan Hooper, Joseph Silk, New J. Phys. 6 (2004) 023, arXiv:hep-ph/0311367.
[Hooper:2003ui]
[2-164]
Astrophysical Neutrino Telescopes, A. B. McDonald et al., Rev. Sci. Instrum. 75 (2004) 293, arXiv:astro-ph/0311343.
[McDonald:2003xn]
[2-165]
Ultrahigh energy neutrino physics, A.M. Stasto, Int.J.Mod.Phys. A19 (2004) 317-340, arXiv:astro-ph/0310636.
[Stasto:2003xq]
[2-166]
Cosmic Physics: The High Energy Frontier, F.W. Stecker, J. Phys. G29 (2003) R47, arXiv:astro-ph/0309027.
[Stecker:2003wm]
[2-167]
Gamma-Ray Bursts: The Underlying Model, E. Waxman, Lect. Notes Phys. 598 (2003) 393, arXiv:astro-ph/0303517.
[Waxman:2003vh]
[2-168]
Nuclear Problems in Astrophysics, W. C. Haxton, Proc.Int.Sch.Phys.Fermi 153 (2003) 93-144, arXiv:nucl-th/0301005.
[Haxton:2003bi]
[2-169]
High-energy neutrino astronomy: The Cosmic ray connection, Francis Halzen, Dan Hooper, Rept.Prog.Phys. 65 (2002) 1025-1078, arXiv:astro-ph/0204527.
[Halzen:2002pg]
[2-170]
Particle physics from stars, Georg G. Raffelt, Ann.Rev.Nucl.Part.Sci. 49 (1999) 163-216, arXiv:hep-ph/9903472.
[Raffelt:1999tx]
[2-171]
Particle astrophysics with high-energy neutrinos, Thomas K. Gaisser, Francis Halzen, Todor Stanev, Phys.Rept. 258 (1995) 173-236, arXiv:hep-ph/9410384.
[Gaisser:1994yf]

3 - Reviews - Talks

[3-1]
Sources of high-energy astrophysical neutrinos, Walter Winter, arXiv:2402.19314, 2024. High Energy Phenomena in Relativistic Outflows VIII (HEPROVIII), 23-26 October, 2023, Paris, France.
[2402.19314]
[3-2]
Review of Neutrino Experiments Searching for Astrophysical Neutrinos, Valentin Decoene, PoS (2023) 026, arXiv:2309.17139. ICRC2023.
[Decoene:2023beq]
[3-3]
Multi-Messenger High-Energy Results, Teresa Montaruli, PoS Gamma2022 (2023) 007, arXiv:2301.06320.
[Montaruli:2023pee]
[3-4]
Astrophysical sources and acceleration mechanisms, Martina Adamo, Silvia Pietroni, Maurizio Spurio, PoS CORFU2021 (2022) 318, arXiv:2202.09170. (CORFU2021) 29 August - 9 October 2021 Corfu, Greece.
[Adamo:2022ksu]
[3-5]
The Observation of High-Energy Neutrinos from the Cosmos: Lessons Learned for Multimessenger Astronomy, Francis Halzen, Int.J.Mod.Phys.D 31 (2022) 2230003, arXiv:2110.01687. Sixteenth Marcel Grossmann Meeting (MG16), July 5-10, 2021.
[Halzen:2021ynx]
[3-6]
Tidal Disruption Events and High-Energy Neutrinos, Robert Stein, PoS ICRC2021 (2021) 009, arXiv:2110.01631. 37th International Cosmic Ray Conference (ICRC 2021).
[Stein:2021dqk]
[3-7]
Multi-messenger Astrophysics with the Pierre Auger Observatory, Michael Schimp (Pierre Auger), JPS Conf.Proc. 39 (2023) 011008, arXiv:2101.10505. 10th International workshop on Very High Energy Particle Astronomy (VHEPA2019).
[Schimp:2021ayk]
[3-8]
High-Energy Neutrino Astronomy: Current Status and Prospects, Gwenhael de Wasseige, PoS EPS-HEP2019 (2020) 042, arXiv:1911.01719. EPS-HEP 2019.
[deWasseige:2019pez]
[3-9]
News from Cosmic Ray Air Showers (ICRC 2019 - Cosmic Ray Indirect Rapport), Frank G. Schroder, PoS ICRC2019 (2019) 030, arXiv:1910.03721. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Schroder:2019agg]
[3-10]
Fundamental physics with high-energy cosmic neutrinos today and in the future, Carlos A. Arguelles, Mauricio Bustamante, Ali Kheirandish, Sergio Palomares-Ruiz, Jordi Salvado, Aaron C. Vincent, PoS ICRC2019 (2020) 849, arXiv:1907.08690. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Arguelles:2019rbn]
[3-11]
Introduction to multi-messenger astronomy, Andrii Neronov, J.Phys.Conf.Ser. 1263 (2019) 012001, arXiv:1907.07392. ISAPP-Baikal Summer school 2018, 'Exploring the Universe through multiple messengers'.
[Neronov:2019uht]
[3-12]
Astrophysical neutrinos: theory, Ofelia Pisanti, arXiv:1906.12258, 2019. ISAPP-Baikal Summer School 2018: Exploring the Universe through multiple messengers.
[Pisanti:2019zji]
[3-13]
Multimessenger Probes of High-energy Sources, Dafne Guetta, EPJ Web Conf. 209 (2019) 01036, arXiv:1906.01520. RICAP18, 7th Roma International Conference on Astroparticle Physics.
[Guetta:2019kfn]
[3-14]
History of high-energy neutrino astronomy, Christian Spiering, arXiv:1903.11481, 2019. History of the Neutrino, Paris, September 5-7, 2018.
[Spiering:2019qym]
[3-15]
Radio detection in the multi-messenger context, D. Kostunin, EPJ Web Conf. 207 (2019) 03005, arXiv:1902.01776. VLVNT2018.
[Kostunin:2019ahp]
[3-16]
Ultra-High Energy Neutrinos, James Madsen (IceCube), arXiv:1901.02528, 2019. PIC2018: XXXVIII International Symposium on Physics in Collision, Bogota, Colombia, 2018.
[Madsen:2019hrv]
[3-17]
Tau Neutrinos in IceCube, KM3NeT and the Pierre Auger Observatory, Daan van Eijk, SciPost Phys.Proc. 1 (2019) 030, arXiv:1812.01036.
[VanEijk:2018wps]
[3-18]
The Anisotropies and Origins of Ultrahigh Energy Cosmic Rays, Francis Halzen, arXiv:1810.02484, 2018. CIPANP 2018.
[Halzen:2018uas]
[3-19]
Multi-Messenger Astrophysics: Harnessing the Data Revolution, Gabrielle Allen et al., arXiv:1807.04780, 2018. Cyberinfrastructure for Multi-Messenger Astrophysics NSF-funded Workshop Held on 23-24 May 2018 at the University of Maryland.
[Allen:2018yvz]
[3-20]
Introduction to neutrino astronomy, Andrea Gallo Rosso, Carlo Mascaretti, Andrea Palladino, Francesco Vissani, Eur.Phys.J.Plus 133 (2018) 267, arXiv:1806.06339. 4th Azarquiel School of Astronomy, June 2017, Porto Paolo di Capo Passero, Syracuse (Italy).
[GalloRosso:2018omb]
[3-21]
Neutrino Astronomy 2017, Thomas K. Gaisser, arXiv:1801.01551, 2018. 13th Rencontres du Vietnam 'Neutrinos' 2017.
[Gaisser:2018rbs]
[3-22]
High-Energy Neutrino Astronomy: where do we stand, where do we go?, Christian Spiering, Phys.Part.Nucl. 49 (2018) 497-507, arXiv:1711.08266. 50th anniversary of the Baksan Laboratory.
[Spiering:2017gaw]
[3-23]
Open Issues in Neutrino Reactions, E. A. Paschos, arXiv:1708.05242, 2017. Corfu Summer Institute 2016, School and Workshops on Elementary Particle Physics and Gravity, 31 August - 23 September, 2016.
[Paschos:2017cbt]
[3-24]
Ultra High Energy Cosmic Rays, Photons and Neutrinos, Roberto Aloisio, Nuovo Cim. C40 (2017) 142, arXiv:1707.06188. 11th Workshop on Science with the New Generation of High Energy Gamma-ray Experiments (SciNeGHE 2016).
[Aloisio:2017waw]
[3-25]
Challenges for Cosmic-ray Experiments, Thomas Gaisser, EPJ Web Conf. 145 (2017) 18003, arXiv:1704.00788. ISVHECRI 2016, Moscow, August 2016.
[Gaisser:2017hqg]
[3-26]
What have we learned about the sources of ultrahigh-energy cosmic rays via neutrino astronomy?, Shigeru Yoshida, Nucl.Part.Phys.Proc. 291-293 (2017) 159-166, arXiv:1612.04934. CRIS 2016.
[Yoshida:2016hba]
[3-27]
Neutrino Astrophysics, Cristina Volpe, Acta Phys.Polon.Supp. 9 (2016) 769, arXiv:1609.06747. 52th Winter School of Theoretical Physics, Ladek Zdroj, 14-21 February 2016.
[Volpe:2016bkp]
[3-28]
Theory of high-energy messengers, Charles D. Dermer, J. Phys. Conf. Ser. 718 (2016) 022008, arXiv:1602.08722. 14th International Congress in Topics in Astroparticle and Underground Physics, Torino, Italy, 7 - 11 September 2015.
[Dermer:2016lvc]
[3-29]
Neutrinos at extreme energies, Roberto Aloisio, J. Phys. Conf. Ser. 718 (2016) 052001, arXiv:1601.04867. TAUP 2015.
[Aloisio:2016lvb]
[3-30]
Neutrino Astronomy (Rapporteur Talk), Aya Ishihara, PoS ICRC2015 (2016) 013, arXiv:1511.03820. 34th ICRC.
[Ishihara:2015xuv]
[3-31]
Ultra high energy cosmic rays: the highest energy frontier, Joao R. T. de Mello Neto, J. Phys. Conf. Ser. 706 (2016) 042009, arXiv:1510.05629. XIII International Workshop on Hadron Physics - March, 2015 - Rio de Janeiro, Brazil.
[deMelloNeto:2015pby]
[3-32]
IceCube at the Threshold, Thomas K. Gaisser (IceCube), arXiv:1507.07871, 2015. Inauguration of HAWC, Puebla, March 19, 2015.
[Gaisser:2015rga]
[3-33]
Exploring the Dynamic X-ray Universe (Summarising report of the ISSI-BJ Forum on monitoring the transient X-ray Universe in the multi-messenger era, Beijing, May 6-7, 2014), Weimin Yuan, Julian P. Osborne, arXiv:1506.07736, 2015.
[Yuan:2015uia]
[3-34]
Neutrino astrophysics : recent advances and open issues, Cristina Volpe, J. Phys. Conf. Ser. 631 (2015) 012048, arXiv:1503.01355. DISCRETE 2014.
[Volpe:2015yya]
[3-35]
Exploring the Universe with Very High Energy Neutrinos, A. Kappes (IceCube), Nucl.Part.Phys.Proc. 273-275 (2016) 125-134, arXiv:1501.07798. ICHEP 2014.
[Kappes:2015woa]
[3-36]
Atmospheric Lepton Fluxes, Thomas K. Gaisser, EPJ Web Conf. 99 (2015) 05002, arXiv:1412.6424. ISVHECRI 2014.
[Gaisser:2014eaa]
[3-37]
Cosmic Gamma-ray Background Radiation, Yoshiyuki Inoue, arXiv:1412.3886, 2014. Fifth International Fermi Symposium.
[Inoue:2014ona]
[3-38]
Recent advances in neutrino astrophysics, Cristina Volpe, PoS FFP14 (2016) 127, arXiv:1411.6533. Frontiers of Fundamental Physics 2014, July 15-18, Marseille.
[Volpe:2014rca]
[3-39]
Status of High-Energy Neutrino Astronomy, Marek Kowalski, J. Phys. Conf. Ser. 632 (2015) 012039, arXiv:1411.4385. European Cosmic Ray Symposium 2014.
[Kowalski:2014zda]
[3-40]
CosPA2013: Outlook, Francis Halzen, arXiv:1402.7302, 2014. 10th International Symposium on Cosmology and Particle Astrophysics (CosPA2013).
[Halzen:2014nea]
[3-41]
The Birth of Neutrino Astronomy, Naoko Kurahashi (IceCube), arXiv:1402.3627, 2014. 10th International Symposium on Cosmology and Particle Astrophysics (CosPA2013).
[Kurahashi:2014xra]
[3-42]
High-Energy Neutrino Astronomy: A Glimpse of the Promised Land, Christian Spiering, Phys.Usp. 57 (2014) 470-481, arXiv:1402.2096. Session of the Russian Academy of Science dedicated to Bruno Pontecorvo, Dubna, Sept. 2013.
[Spiering:2014afa]
[3-43]
Neutrino Mixing and Oscillations in Astrophysical Environments, A.B. Balantekin, AIP Conf.Proc. 1594 (2014) 313-318, arXiv:1401.5818. OMEG12, Tsukuba, Japan.
[Balantekin:2014xia]
[3-44]
The highest energy neutrinos: first evidence for cosmic origin, Francis Halzen, Nuovo Cim. C037 (2014) 117-132, arXiv:1311.6350. Pontecorvo 2013.
[Halzen:2013dva]
[3-45]
Indirect Dark Matter search with large neutrino telescopes, Paolo Fermani (ANTARES), Frascati Phys.Ser. 56 (2012) 244-257, arXiv:1307.2402. DARK 2012, Frascati (Italy).
[Fermani:2012ean]
[3-46]
Review of the Multimessenger Working Group at UHECR-2012, J. Alvarez-Muniz, M. Risse, G.I. Rubtsov, B.T. Stokes for the Pierre Auger, Telescope Array (Yakutsks), EPJ Web Conf. 53 (2013) 01009, arXiv:1306.4199. UHECR 2012 Symposium, CERN, Feb. 2012.
[Alvarez-Muniz:2013mfa]
[3-47]
VERITAS contributions to CF6-A: Cosmic Rays, Gamma Rays and Neutrinos, VERITAS (VERITAS), arXiv:1304.6764, 2013. Snowmass Community Summer Study 2013.
[VERITAS:2013hlc]
[3-48]
TASI 2012 Lectures on Astrophysical Probes of Dark Matter, Stefano Profumo, arXiv:1301.0952, 2013.
[Profumo:2013yn]
[3-49]
Highlights in astroparticle physics: muons, neutrinos, hadronic interactions, exotic particles, and dark matter -- Rapporteur Talk HE2 $\text{\&}$ HE3, Joerg R. Hoerandel, arXiv:1212.1013, 2012. ICRC, Beijing.
[Hoerandel:2012an]
[3-50]
Selected problems in astrophysics of compact objects, Armen Sedrakian, J. Phys. Conf. Ser. 413 (2013) 012024, arXiv:1212.0120. International Summer School for Advanced Studies 'Dynamics of open nuclear systems', July 2012, Predeal, Romania.
[Sedrakian:2012mv]
[3-51]
Review of Indirect WIMP Search Experiments, Carsten Rott, Nucl. Phys. Proc. Suppl. 235-236 (2013) 413-420, arXiv:1210.4161. XXV International Conference on Neutrino Physics and Astrophysics (Neutrino 2012), June 2012, Kyoto, Japan.
[Rott:2012gh]
[3-52]
Neutrino 2012: Outlook - theory, A. Yu. Smirnov, Nucl. Phys. Proc. Suppl. 235-236 (2013) 431-440, arXiv:1210.4061. XXV International Conference on Neutrino Physics and Astrophysics, June 3 - 9, 2012, Kyoto, Japan.
[Smirnov:2012ei]
[3-53]
Neutrino Astronomy - A Review of Future Experiments, Albrecht Karle, Nucl. Phys. Proc. Suppl. 235-236 (2013) 364-370, arXiv:1210.2058. 25th International Conference on Neutrino Physics and Astrophysics, June 2012, Kyoto, Japan.
[Karle:2012up]
[3-54]
High-Energy Neutrino Astronomy: Status and prospects for cosmic-ray physics, V. Van Elewyck, arXiv:1209.3425, 2012. 14th Workshop on Elastic and Diffractive Scattering (EDS Blois Workshop) 'Frontiers of QCD: From Puzzles to Discoveries', December 15-21, 2011, Quy Nhon, Vietnam.
[VanElewyck:2012yd]
[3-55]
Gamma Ray Bursts: recent results and connections to very high energy Cosmic Rays and Neutrinos, Peter Meszaros, Katsuaki Asano, Peter Veres, J. Phys. Conf. Ser. 485 (2014) 012001, arXiv:1209.2436. PASCOS 12 conference, Merida, Yucatan, Mexico, June 2012.
[Meszaros:2012fs]
[3-56]
Gamma Ray Bursts and their links with Supernovae and Cosmology, Peter Meszaros, Neil Gehrels, Res. Astron. Astrophys. 12 (2012) 1139, arXiv:1209.1132. XXVIIIth General Assembly Int. Ast. Union, Beijing, Aug. 2012.
[Meszaros:2012hj]
[3-57]
High Energy Neutrino Telescopes in the Northern Hemisphere, Juan Jose Hernandez-Rey, arXiv:1203.2143, 2012. VLvNT 2011.
[Hernandez-Rey:2012njr]
[3-58]
Indirect Searches for Dark Matter: a status review, Marco Cirelli, Pramana 79 (2012) 1021-1043, arXiv:1202.1454. Lepton-Photon 2011, Mumbai, India, 22-27 Aug 2011.
[Cirelli:2012tf]
[3-59]
High Energy Neutrinos and Cosmic Rays, Guenter Sigl, Proc.Int.Sch.Phys.Fermi 182 (2012) 145-184, arXiv:1202.0466. ISAPP School 'Neutrino Physics and Astrophysics', 26 July-5 August 2011, Villa Monastero, Varenna, Italy.
[Sigl:2012tu]
[3-60]
AstroParticle Physics at the Highest Energies, Angela V. Olinto, arXiv:1202.0355, 2012. 32nd International Cosmic Ray Conference, Beijing 2011.
[Olinto:2012sh]
[3-61]
High Energy Neutrinos from Space, Thomas K. Gaisser, arXiv:1201.6651, 2012. Lepton-Photon 2011, Mumbai India.
[Gaisser:2012bw]
[3-62]
Astrophysical neutrino results, Thomas K. Gaisser (IceCube), Nucl. Instrum. Meth. A692 (2012) 2-4, arXiv:1201.5637. RICAP-11.
[Gaisser:2012af]
[3-63]
Cosmic Rays at the highest energies, Angela V. Olinto, J. Phys. Conf. Ser. 375 (2012) 052001, arXiv:1201.4519. TAUP 2011.
[Olinto:2012dc]
[3-64]
Neutrinos and the stars, Georg Raffelt, Proc.Int.Sch.Phys.Fermi 182 (2012) 61-143, arXiv:1201.1637. ISAPP School 'Neutrino Physics and Astrophysics', 26 July-5 August 2011, Villa Monastero, Varenna, Italy.
[Raffelt:2012kt]
[3-65]
Status of Neutrino Astronomy - a mini-review on neutrino telescopes, Alexander Kappes, PoS EPS-HEP2011 (2011) 044, arXiv:1110.6840. EPS-HEP 2011.
[Kappes:2011vj]
[3-66]
Nuclear physics in the cosmos, C.A. Bertulani, Acta Phys.Polon. B44 (2013) 531-542, arXiv:1110.2534. XXXIV Brazilian Workshop on Nuclear Physics, 5-10 June 2011, Foz de Iguacu, Parana state, Brazil.
[Bertulani:2013dja]
[3-67]
Diffuse Neutrino Flux, Jurgen Brunner, arXiv:1107.1593, 2011. XIV International Workshop on 'Neutrino Telescopes', Venice 2011.
[Brunner:2011ji]
[3-68]
Multimessenger Astronomy, N.L. Christensen (LIGO Scientific), arXiv:1105.5843, 2011. 46th Rencontres de Moriond.
[Christensen:2011qf]
[3-69]
Ultrahigh Energy Cosmic Rays: Facts, Myths, and Legends, Luis Alfredo Anchordoqui, CERN Yellow Report CERN-2013-003 (2011) 303-391, arXiv:1104.0509. 6th CERN-Latin-American School of High-Energy Physics, Natal, Brazil, March - April, 2011.
[Anchordoqui:2011gy]
[3-70]
High Energy Neutrino Astronomy, V. Berezinsky, Nuclear Physics B (Proc. Suppl.) 229-232 (2012) 243-250, arXiv:1102.3591. Neutrino 2010, Athens, Greece.
[Berezinsky:2010fqt]
[3-71]
Neutrino Telescopes, Juan Jose Hernandez-Rey, Nucl. Phys. Proc. Suppl. 217 (2011) 255-260, arXiv:1101.0582.
[Hernandez-Rey:2011fck]
[3-72]
Radiodetection of Neutrinos, Spencer R. Klein, Nucl. Phys.B, Proc.Suppl.229-232 2012 (2012) 284-288, arXiv:1012.1407. Neutrino 2010.
[Klein:2010wf]
[3-73]
Cosmic rays: current status, historical context, Thomas K. Gaisser, arXiv:1010.5996, 2010. XVI International Symposium on Very High Energy Cosmic Ray Interactions, ISVHECRI 2010, Batavia, IL, USA (28 June - 2 July 2010).
[Gaisser:2010fb]
[3-74]
Proceedings of the 2009 CERN-Latin-American School of High-Energy Physics, Recinto Quirama, Colombia, 15 - 28 March 2009, C. Grojean, M. Spiropulu, arXiv:1010.5976, 2010. CERN Yellow Report.
[Grojean:2010zza]
[3-75]
High-energy astroparticle physics, D. Semikoz, arXiv:1010.2647, 2010. 5th CERN-Latin-American School of High-Energy Physics, Recinto Quirama, Colombia, 15 - 28 Mar 2009.
[Semikoz:2010jf]
[3-76]
Neutron rich matter, neutron stars, and their crusts, C. J. Horowitz, J. Phys. Conf. Ser. 312 (2012) 042003, arXiv:1008.0402. International Nuclear Physics Conference 2010, Vancouver, Ca.
[Horowitz:2012za]
[3-77]
Lectures on neutrino phenomenology, Walter Winter, Nucl. Phys. B, Proc. Suppl. 203-204 2010 (2010) 45-81, arXiv:1004.4160. Schladming Winter School 2010 'Masses and Constants'.
[Winter:2010hb]
[3-78]
Gamma-Ray Bursts Overview, B. McBreen, S. Foley, L. Hanlon, PoS EXTREMESKY2009 (2009) 044, arXiv:1003.4440. The Extreme sky: Sampling the Universe above 10 keV, October 13-17, 2009, Otranto (LE), Italy.
[McBreen:2009xhr]
[3-79]
High Energy Radiation from Black Holes: A Summary, Charles D. Dermer, Govind Menon, arXiv:1001.1760, 2010. 2009 Fermi Symposium.
[Dermer:2010hy]
[3-80]
Kilometer-Scale Neutrino Detectors: First Light, Francis Halzen, arXiv:0911.2676, 2009. CCAPP Symposium 2009, Columbus, OH.
[Halzen:2009kz]
[3-81]
Ultra-High Energy Cosmic Ray and Neutrino Observations, Karl-Heinz Kampert, PoS EPS-HEP2009 (2009) 011, arXiv:0911.1089. EPS-HEP 2009.
[Kampert:2009bp]
[3-82]
Rapporteur Summary of Sessions HE 2.2-2.4 and OG 2.5-2.7, Teresa Montaruli, arXiv:0910.4364, 2009.
[Montaruli:2009rr]
[3-83]
IceCube: The Rationale for Kilometer-Scale Neutrino Detectors, Francis Halzen, arXiv:0910.0436, 2009. 21st Rencontres de Blois, 'Windows on the Universe'.
[Halzen:2009xm]
[3-84]
ANTARES and other Neutrino Telescopes in the Northern Hemisphere, Antoine Kouchner, Nucl. Phys. Proc. Suppl. 196 (2009) 273-278, arXiv:0907.0319. XV International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI 2008).
[Kouchner:2009sr]
[3-85]
Joint searches between gravitational-wave interferometers and high-energy neutrino telescopes: science reach and analysis strategies, V. Van Elewyck et al., Int. J. Mod. Phys. D18 (2009) 1655-1659, arXiv:0906.4957. 2d Heidelberg Workshop: 'High-Energy Gamma-rays and Neutrinos from Extra-Galactic Sources', Heidelberg (Germany), January 13-16, 2009.
[VanElewyck:2009pf]
[3-86]
High Energy Phenomena In The Universe, Arnon Dar, arXiv:0906.0973, 2009. 44th Rencontre De Moriond on High Energy Phenomena In The Universe, La Thuile, Italy, February 1-8, 2009.
[Dar:2009tv]
[3-87]
The search for extra-terrestrial sources of high energy neutrinos, Gary C. Hill, arXiv:0906.0318, 2009. Heavy Quarks and Leptons, Melbourne, 2008.
[Hill:2009zd]
[3-88]
GRB Astrophysics in the Swift Era and Beyond, Michael Stamatikos, Int. J. Mod. Phys. D18 (2009) 1567-1570, arXiv:0904.2755. 2nd Heidelberg Workshop: High-Energy Gamma-rays and Neutrinos from Extra-Galactic Sources (Max Planck Institute for Nuclear Physics).
[Stamatikos:2009ww]
[3-89]
IceCube Science, Francis Halzen, J. Phys. Conf. Ser. 171 (2009) 012013, arXiv:0901.4722. Discrete 08, Valencia, Spain.
[Halzen:2009tz]
[3-90]
Neutrino Astronomy in the Ice, Teresa Montaruli, Nucl. Phys. Proc. Suppl. 188 (2009) 239-244, arXiv:0901.2664. NOW 2008 Conference, Conca Specchiulla, Lecce, Italy, Sept. 2008.
[Montaruli:2009ky]
[3-91]
Review on Neutrino Telescopes, Teresa Montaruli, Nucl. Phys. Proc. Suppl. 190 (2009) 101-108, arXiv:0901.2661. CRIS2008 Conference, Salina, Sept. 2008.
[Montaruli:2009kv]
[3-92]
UHE neutrino astronomy and neutrino oscillations, V. Berezinsky, arXiv:0901.1428, 2009. 4th Int. Workshop 'Neutrino oscillations in Venice', Apr. 15 - 18, 2008.
[Berezinsky:2009zw]
[3-93]
High Energy Neutrino Astronomy: Status and Perspectives, Christian Spiering, AIP Conf. Proc. 1085 (2009) 18-29, arXiv:0811.4747. International Symposium on High Energy Gamma-Ray Astronomy, Heidelberg, July 200.
[Spiering:2008ux]
[3-94]
Probing New Physics with Astrophysical Neutrinos, Nicole F. Bell, J. Phys. Conf. Ser. 136 (2008) 022043, arXiv:0811.0847. Neutrino 2008, Christchurch, New Zealand, May 2008.
[Bell:2008wr]
[3-95]
Status of neutrino astronomy, Julia K. Becker, J. Phys. Conf. Ser. 136 (2008) 022055, arXiv:0811.0696. Neutrino 2008, Christchurch (New Zealand).
[Becker:2008ra]
[3-96]
Hyper-accreting black holes, Andrei M. Beloborodov, AIP Conf.Proc. 1054 (2008) 51, arXiv:0810.2690. Cool discs, hot flows: The Varying Faces of Accreting Compact Objects, Funasdalen, Sweden, March 2008.
[Beloborodov:2008nx]
[3-97]
Ultra high energy cosmic rays and neutrinos after Auger, Todor Stanev, arXiv:0808.1045, 2008. Vulcano 2008 meeting 'Frontier objects in astrophysics and particle physics', Vulcano, Italy.
[Stanev:2008un]
[3-98]
Problems in High Energy Astrophysics, Paolo Lipari, arXiv:0808.0417, 2008. Neutrino Oscillations in Venice, April 2008.
[Lipari:2008ak]
[3-99]
Gamma-Ray Bursts and Particle Astrophysics, B. Gendre, arXiv:0807.3918, 2008. XXth rencontres de Blois, may 2008.
[Capozziello:2012fp]
[3-100]
Cosmic Neutrinos, Chris Quigg, arXiv:0802.0013, 2008. 2007 SLAC Summer Institute.
[Quigg:2008ab]
[3-101]
RICAP-07: Summary comments, Thomas K. Gaisser, Nucl. Instrum. Meth. A588 (2008) 276-280, arXiv:0801.4546. Roma International Conference on Astroparticle Physics, June 2007.
[Gaisser:2008cr]
[3-102]
Muons and Neutrinos 2007, Thomas K. Gaisser, arXiv:0801.4542, 2008. 30th International Cosmic Ray Conference, Merida, Yucatan, July, 2007.
[Gaisser:2008cp]
[3-103]
Lecture notes on high energy cosmic rays, M. Kachelriess, arXiv:0801.4376, 2008. 17th Jyvaskyla Summer School.
[Kachelriess:2008ze]
[3-104]
Gamma-Ray, Neutrino and Gravitational Wave Detection: OG 2.5,2.6,2.7 Rapporteur, G. Rowell, arXiv:0801.3886, 2008. 30th ICRC (Merida, Mexico, 2007).
[Rowell:2008nj]
[3-105]
Ultrahigh Energy Cosmic Rays and Neutrinos, Todor Stanev, Nucl. Instrum. Meth. A588 (2008) 215-220, arXiv:0711.1872. RICAP07.
[Stanev:2007ry]
[3-106]
The Highest Energy Neutrinos, Francis Halzen, J. Phys. Conf. Ser. 120 (2008) 062004, arXiv:0710.4158. 30th International Cosmic Ray Conference, Merida, Mexico, 2007.
[Halzen:2007sz]
[3-107]
TASI Lectures on Astrophysical Aspects of Neutrinos, John F. Beacom, arXiv:0706.1824, 2007. Exploring New Frontiers Using Colliders and Neutrinos (TASI 2006), Boulder, Colorado, 4-30 Jun 2006.
[Beacom:2007av]
[3-108]
Proceedings of the First Workshop on Exotic Physics with Neutrino Telescopes, EPNT06, C. de los Heros, arXiv:astro-ph/0701333, 2007.
[delosHeros:2007hy]
[3-109]
Neutrino astronomy and gamma-ray bursts, E. Waxman, Phil. Trans. Roy. Soc. Lond. A365 (2007) 1323, arXiv:astro-ph/0701170. R. Soc. Discussion Meeting on GRBs.
[Waxman:2007kr]
[3-110]
Theoretical overview on high-energy emission in microquasars, V. Bosch-Ramon, Astrophys. Space Sci. 309 (2007) 321-331, arXiv:astro-ph/0612318. The multimessenger approach to the high-energy gamma-ray sources, Barcelona, July 4-7.
[Bosch-Ramon:2006cii]
[3-111]
TeV Particle Astrophysics II: Summary comments, Thomas K. Gaisser, J. Phys. Conf. Ser. 60 (2007) 72-77, arXiv:astro-ph/0612283. TeV Particle Astrophysics II, Madison, 28-31 August 2006.
[Gaisser:2006ny]
[3-112]
High Energy Astroparticle Physics, Guenter Sigl, arXiv:astro-ph/0612240, 2006. Neutrino Oscillation Workshop (NOW 2006), Conca Specchiulla, Italy, September 9-16, 2006.
[Sigl:2006md]
[3-113]
Contributions to 2nd TeV Particle Astrophysics Conference (TeV PA II) Madison Wisconsin - 28-31 August 2006, IceCube (IceCube), J. Phys. Conf. Ser. (2006), arXiv:astro-ph/0611597.
[IceCube:2006nzk]
[3-114]
Summary: Acoustic Detection of EHE Neutrinos, Justin Vandenbroucke, J. Phys. Conf. Ser. 60 (2007) 101-106, arXiv:astro-ph/0611503. 2nd TeV Particle Astrophysics Conference, Madison, WI, August 28-31, 2006.
[Vandenbroucke:2006ax]
[3-115]
The Star Formation History of the Universe, Andrew M. Hopkins, ASP Conf.Ser. (2006), arXiv:astro-ph/0611283. At the Edge of the Universe, October 2006, Sintra, Portugal.
[Hopkins:2006pr]
[3-116]
Working Group Report on the 'TeV Particle Astrophysics and Physics Beyond the Standard Model', Ivone F.M. Albuquerque, Sergio Palomares-Ruiz, Tom Weiler, J. Phys. Conf. Ser. 60 (2007) 90-94, arXiv:astro-ph/0610962. TeV Particle Astrophysics Workshop II - Madison - Aug 2006.
[Albuquerque:2006ah]
[3-117]
Perspectives of High Energy Neutrino Astronomy, Paolo Lipari, Nucl. Instrum. Meth. A567 (2006) 405-417, arXiv:astro-ph/0605535. 'Very Large Volume neutrino Telescopes' workshop (Catania, november 2005).
[Lipari:2006uw]
[3-118]
Extremely High Energy Cosmic Neutrinos and Relic Neutrinos, Chris Quigg, arXiv:astro-ph/0603372, 2006. NO-VE 2006, Neutrino Oscillations in Venice.
[Quigg:2006bu]
[3-119]
Observations of high energy neutrinos with water/ice neutrino telescopes, Albrecht Karle, J. Phys. Conf. Ser. 39 (2006) 379-385, arXiv:astro-ph/0602025. 9th International Conference on Topics in Astroparticle and Underground Physics, TAUP 2005, Zaragoza, September 2005.
[Karle:2006as]
[3-120]
High Energy Neutrinos: Sources and Fluxes, Todor Stanev, J. Phys. Conf. Ser. 39 (2006) 386-392, arXiv:astro-ph/0511641. TAUP 2005.
[Stanev:2005kk]
[3-121]
Extremely energetic cosmic neutrinos: Opportunities for astrophysics, particle physics, and cosmology, Andreas Ringwald, Int. J. Mod. Phys. A21S1 (2006) 12-19, arXiv:hep-ph/0510341. ARENA Workshop, DESY, Zeuthen, Germany, May 17-19, 2005.
[Ringwald:2005wa]
[3-122]
Lectures on High-Energy Neutrino Astronomy, F. Halzen, arXiv:astro-ph/0506248, 2005. International WE Heraeus Summer School on Physics with Cosmic Accelerators.
[Halzen:2005qu]
[3-123]
Ultra High Energy Neutrino Astronomy, V. Berezinsky, Nucl. Phys. Proc. Suppl. 151 (2006) 260, arXiv:astro-ph/0505220. 13th Int. Symposium on VHECR Interactions, Pylos, Sept. 2004.
[Berezinsky:2005rw]
[3-124]
High energy astrophysical processes, Todor Stanev, arXiv:astro-ph/0504401, 2005. Venice 2005 Workshop on neutrino telescopes.
[Stanev:2005wy]
[3-125]
Neutrino Astrophysics in the cold: Amanda, Baikal and IceCube, Christian Spiering, Phys. Scripta T121 (2005) 112, arXiv:astro-ph/0503122. Nobel Symposium on Neutrino Physics, Haga Slott, Sweden, 2004.
[Spiering:2005xv]
[3-126]
Extra galactic sources of high energy neutrinos, Eli Waxman, Phys. Scripta T121 (2005) 147, arXiv:astro-ph/0502159. Nobel Symposium 129: Neutrino Physics, Sweden 2004.
[Waxman:2005id]
[3-127]
Cosmic Rays Astrophysics and Neutrino Astronomy beyond and beneath the Horizons, D. Fargion, arXiv:astro-ph/0502017, 2005. Vulcano Conference May-2004.
[Fargion:2005kf]
[3-128]
High-Energy Neutrino Astronomy, F. Halzen, arXiv:astro-ph/0501593, 2005. Nobel Symposium 129: Neutrino Astronomy, Enkoping, Sweden, August 2004.
[Halzen:2005wd]
[3-129]
Status of Radio and Acoustic Detection of Ultra-High Energy Cosmic Neutrinos and a Proposal on Reporting Results, David Saltzberg, Phys. Scripta T121 (2005) 119, arXiv:astro-ph/0501364. Nobel Symposium 129 (Neutrino Physics).
[Saltzberg:2005yp]
[3-130]
Ultra- and extremely high energy neutrino astronomy, I. Sokalski, arXiv:hep-ex/0501004, 2005. 16th Conference on High Energy Physics (IFAE 2004), Turin, Italy, 14-16 Apr 2004. http://www.ph.unito.it/ifae/Proceedings/Sessioni/Neutrinos.pdf.
[Sokalski:2004rj]
[3-131]
Exploring the Universe beyond the Photon Window, Luis A. Anchordoqui, Acta Phys. Polon. B36 (2005) 495, arXiv:astro-ph/0410087. XXXIV International Symposium on Multiparticle Dynamics, Sonoma County, California, July 26 - August 1, 2004.
[Anchordoqui:2004pf]
[3-132]
High-Energy Neutrino Astronomy, F. Halzen, Nucl. Phys. Proc. Suppl. 136 (2004) 93, arXiv:astro-ph/0402083. Thinking, Observing, and Mining the Universe, Sorrento, Italy, September 2003.
[Halzen:2004bn]
[3-133]
High-energy neutrino astronomy: Opportunities for particle physics, Dan Hooper, Acta Phys. Polon. B35 (2004) 1905, arXiv:hep-ph/0401153. 2004 Cracow Epiphany Conference on Astroparticle Physics.
[Hooper:2004bp]
[3-134]
Neutrinos and astrophysics, S. Hannestad, 2004. SEESAW25,International Conference on the Seesaw Mechanism, 10-11 June 2004, Paris, France. http://seesaw25.in2p3.fr/trans/hannestad.pdf.
[Hannestad:SEESAW2004]
[3-135]
High Energy Neutrino Astrophysics, Teresa Montaruli, Nucl. Phys. Proc. Suppl. 138 (2005) 502, arXiv:astro-ph/0312558. 8th International Workshop on Topics in Astroparticle and Underground Physics (TAUP2003), Sep. 5-9, 2003, Seattle.
[Montaruli:2003qi]
[3-136]
Report on the High Energy Phenomena Sessions HE 2, HE 3.2-3.4: Neutrinos and Muons. Interactions, Particle Physics Aspects, Astro-Particle Physics and Cosmology, Teresa Montaruli, arXiv:hep-ph/0311289, 2003. 28th International Cosmic Ray Conference (ICRC 2003), Tsukuba, Japan, 31 Jul.-7 Aug. 2003.
[Montaruli:2003ft]
[3-137]
Neutrinos as astrophysical probes, F. Cavanna, M. L. Costantini, O. Palamara, F. Vissani, Surveys High Energ. Phys. 19 (2004) 35, arXiv:astro-ph/0311256. ICTP Summer School on Astroparticle Physics and Cosmology, Trieste, Italy, 17 June - 5 Jul 2002.
[Cavanna:2003fx]
[3-138]
Astroparticle Theory: SOME New Insights into High Energy Cosmic Rays, Esteban Roulet, Int. J. Mod. Phys. A19 (2004) 1133, arXiv:astro-ph/0310367. International Lepton-Photon Conference, Fermilab, August 11-16 2003.
[Roulet:2003rr]
[3-139]
Physics with Cosmic Neutrinos, PeV to ZeV, Thomas J. Weiler, Int. J. Mod. Phys. A18 (2003) 4065, arXiv:astro-ph/0304180. YITP 'Neutrinos' Oct. 2002.
[Weiler:2003ud]
[3-140]
Particle Physics Explanations for Ultra High Energy Cosmic Ray Events, Manuel Drees, Pramana 62 (2004) 207, arXiv:hep-ph/0304030. PASCOS03, Mumbai, India, January 2003.
[Drees:2003ye]
[3-141]
High-energy Neutrino Astronomy: Science and First Results, F. Halzen, arXiv:astro-ph/0301143, 2003. 9th Course of Astrofundamental Physics, International School of Astrophysics D. Chalonge, Palermo, Sicily, Sept 2002.
[Halzen:2003yh]
[3-142]
Some aspects of neutrino astrophysics, H. Athar, arXiv:hep-ph/0212387, 2002. The Sixth Constantine High Energy Physics School, 6-12 April, 2002, Constantine, Algeria.
[Athar:2002uj]
[3-143]
High energy astrophysical neutrinos, H. Athar, ASP Conf.Ser. 289 (2003) 323, arXiv:hep-ph/0209130. IAU 8th Asian Pacific Regional Meeting, 2-5 July, 2002, Tokyo, Japan.
[Athar:2002im]
[3-144]
Astrophysics at the highest energy frontiers, F. W. Stecker, arXiv:astro-ph/0208507, 2002. D. Chalonge International School of Astrophysics - 9th Course of Astrofundamental Physics, Palermo, Sept. 2002.
[Stecker:2002fh]
[3-145]
Astrophysical and Cosmological Neutrinos, G. G. Raffelt, Proc.Int.Sch.Phys.Fermi 152 (2003) 161-181, arXiv:hep-ph/0208024. International School of Physics 'Enrico Fermi,' CLII Course 'Neutrino Physics,' 23 July-2 August 2002, Varenna, Lake Como, Italy.
[Raffelt:2002nz]
[3-146]
Neutrino masses in astroparticle physics, G. G. Raffelt, New Astron. Rev. 46 (2002) 699-708, arXiv:astro-ph/0207220. Dennis Sciama Memorial Volume of NAR.
[Raffelt:2002ed]
[3-147]
High Energy Cosmic-ray Neutrinos (1), F. Halzen, 2002. Topical Seminar on Frontier of Particle Physics 2002: Neutrinos and Cosmology, August 20th - 25th, 2002, Beijing, China. http://bes.ihep.ac.cn/particle/2002/presentation/F.Halzen/TALK_1.ZIP.
[Halzen-talk:2002b]
[3-148]
High Energy Cosmic-ray Neutrinos (2), F. Halzen, 2002. Topical Seminar on Frontier of Particle Physics 2002: Neutrinos and Cosmology, August 20th - 25th, 2002, Beijing, China. http://bes.ihep.ac.cn/particle/2002/presentation/F.Halzen/TALK_2.ZIP.
[Halzen-talk:2002c]
[3-149]
Neutrino Astrophysics (1), G. Raffelt, 2002. Topical Seminar on Frontier of Particle Physics 2002: Neutrinos and Cosmology, August 20th - 25th, 2002, Beijing, China. http://bes.ihep.ac.cn/particle/2002/presentation/G.Raffelt/TALK_1.ZIP.
[Raffelt-talk:2002b]
[3-150]
Neutrino Astrophysics (2), G. Raffelt, 2002. Topical Seminar on Frontier of Particle Physics 2002: Neutrinos and Cosmology, August 20th - 25th, 2002, Beijing, China. http://bes.ihep.ac.cn/particle/2002/presentation/G.Raffelt/TALK_2.ZIP.
[Raffelt-talk:2002c]
[3-151]
Massive neutrinos in astrophysics, Georg G. Raffelt, Werner Rodejohann, arXiv:hep-ph/9912397, 1999. 4th National Summer School for German-speaking Graduate Students of Theoretical Physics, Saalburg, Germany, 31 Aug - 11 Sep 1998.
[Raffelt:1998qp]

4 - Habilitation, PhD and Master Theses

[4-1]
New Physics with PeV Astrophysical Neutrino Beams, Ibrahim Safa, arXiv:2402.19393, 2024.
[2402.19393]
[4-2]
Studying Both the Universe and Neutrinos Themselves Using Cosmic and Astrophysical Neutrinos, Saul Hurwitz, arXiv:2109.01299, 2021.
[Hurwitz:2021frs]
[4-3]
Transport in neutron star mergers, Steven P. Harris, arXiv:2005.09618, 2020.
[Harris:2020rus]
[4-4]
Aspects of astrophysical particle production and beyond the Standard Model phenomenology, Matthias Vereecken, arXiv:1911.12244, 2019.
[Vereecken:2019ufv]
[4-5]
Turbulence, Gravity, and Multimessenger Asteroseismology, John Ryan Westernacher-Schneider, arXiv:1810.04594, 2018.
[Westernacher-Schneider:2018mvw]
[4-6]
Acoustic detection of astrophysical neutrinos in South Pole ice, Justin Vandenbroucke, arXiv:1201.0072, 2012.
[Vandenbroucke:2011ofc]
[4-7]
First Evidence For Atmospheric Neutrino-Induced Cascades with the IceCube Detector, Michelangelo D'Agostino, arXiv:0910.2555, 2009.
[DAgostino:2009wft]
[4-8]
Hyperaccreting Neutron-Star Disks, Magnetized Disks and Gamma-Ray Bursts, Dong Zhang, arXiv:0906.0842, 2009.
[Zhang:2009rz]
[4-9]
The Acoustic Detection of Ultra High Energy Neutrinos, J. Perkin, arXiv:0801.0991, 2008.
[Perkin:2008jw]
[4-10]
Detection of ultra high energy neutrinos with an underwater very large volume array of acoustic sensors: A simulation study, Timo Karg, arXiv:astro-ph/0608312, 2006.
[Karg:2006mv]

5 - Experiment

[5-1]
Search for Neutrino Emission from GRB 221009A using the KM3NeT ARCA and ORCA detectors, S. Aiello et al., arXiv:2404.05354, 2024.
[Aiello:2024eyp]
[5-2]
Observation of Seven Astrophysical Tau Neutrino Candidates with IceCube, R. Abbasi et al. (IceCube), Phys.Rev.Lett. 132 (2024) 151001, arXiv:2403.02516.
[IceCubeCollaborationSS:2024fmq]
[5-3]
Characterization of the Astrophysical Diffuse Neutrino Flux using Starting Track Events in IceCube, R. Abbasi et al., arXiv:2402.18026, 2024.
[Abbasi:2024jro]
[5-4]
Results of the follow-up of ANTARES neutrino alerts, A. Albert et al. (ANTARES), arXiv:2402.16498, 2024.
[ANTARES:2024ohv]
[5-5]
Search for 10-1,000 GeV neutrinos from Gamma Ray Bursts with IceCube, R. Abbasi et al. (IceCube), Astrophys.J. 964 (2024) 126, arXiv:2312.11515.
[IceCube:2023woj]
[5-6]
All-Sky Search for Transient Astrophysical Neutrino Emission with 10 Years of IceCube Cascade Events, R. Abbasi et al., arXiv:2312.05362, 2023.
[IceCube:2023myz]
[5-7]
Searches for neutrino counterparts of gravitational waves from the LIGO/Virgo third observing run with KM3NeT, S. Aiello et al. (KM3NeT), JCAP 04 (2024) 026, arXiv:2311.03804.
[KM3NeT:2023cdr]
[5-8]
Search for Continuous and Transient Neutrino Emission Associated with IceCube's Highest-Energy Tracks: An 11-Year Analysis, R. Abbasi et al., Astrophys.J. 964 (2024) 40, arXiv:2309.12130.
[IceCube:2023oqe]
[5-9]
Search for events in XENON1T associated with Gravitational Waves, E. Aprile et al. (XENON), Phys.Rev.D 108 (2023) 072015, arXiv:2306.11871.
[XENONCollaborationSS:2023zbo]
[5-10]
A stacked search for spatial coincidences between IceCube neutrinos and radio pulsars, Vibhavasu Pasumarti, Shantanu Desai, JCAP 04 (2024) 010, arXiv:2306.03427.
[Pasumarti:2023apw]
[5-11]
Search for astrophysical electron antineutrinos in Super-Kamiokande with 0.01wt% gadolinium loaded water, M. Harada et al. (Super-Kamiokande), Astrophys.J.Lett. 951 (2023) L27, arXiv:2305.05135.
[Super-Kamiokande:2023xup]
[5-12]
Search for correlations of high-energy neutrinos detected in IceCube with radio-bright AGN and gamma-ray emission from blazars, R. Abbasi et al., Astrophys.J. 954 (2023) 75, arXiv:2304.12675.
[IceCube:2023htm]
[5-13]
IceCat-1: the IceCube Event Catalog of Alert Tracks, R. Abbasi et al., Astrophys.J.Suppl. 269 (2023) 25, arXiv:2304.01174.
[IceCube:2023agq]
[5-14]
A Search for IceCube sub-TeV Neutrinos Correlated with Gravitational-Wave Events Detected By LIGO/Virgo, R. Abbasi et al., Astrophys.J. 959 (2023) 96, arXiv:2303.15970.
[IceCube:2023atb]
[5-15]
Borexino's search for low-energy neutrinos associated with gravitational wave events from GWTC-3 database, G. Bellini et al. (BOREXINO), Eur.Phys.J.C 83 (2023) 538, arXiv:2303.13876.
[BOREXINO:2023nji]
[5-16]
Search for neutrino lines from dark matter annihilation and decay with IceCube, R. Abbasi et al. (IceCube), Phys.Rev.D 108 (2023) 102004, arXiv:2303.13663.
[IceCube:2023ies]
[5-17]
Search for neutrino counterparts to the gravitational wave sources from O3 catalogues with the ANTARES detector, A. Albert et al. (ANTARES), JCAP 04 (2023) 004, arXiv:2302.07723.
[ANTARES:2023wcj]
[5-18]
Limits on Neutrino Emission from GRB 221009A from MeV to PeV using the IceCube Neutrino Observatory, R. Abbasi et al., Astrophys.J.Lett. 946 (2023) L26, arXiv:2302.05459.
[IceCube:2023rhf]
[5-19]
VLBI Scrutiny of a New Neutrino-Blazar Multiwavelength-Flare Coincidence, F. Eppel et al., IAU Symp. 375 (2022) 91-95, arXiv:2301.13859.
[Eppel:2022kha]
[5-20]
Hint for a TeV neutrino emission from the Galactic Ridge with ANTARES, A. Albert et al. (ANTARES), Phys.Lett.B 841 (2023) 137951, arXiv:2212.11876.
[ANTARES:2022izu]
[5-21]
Search for sub-TeV Neutrino Emission from Novae with IceCube-DeepCore, R. Abbasi et al., Astrophys.J. 953 (2023) 160, arXiv:2212.06810.
[IceCube:2022lnv]
[5-22]
A Search for Coincident Neutrino Emission from Fast Radio Bursts with Seven Years of IceCube Cascade Events, R. Abbasi et al., Astrophys.J. 946 (2023) 80, arXiv:2212.06702.
[IceCube:2022mjy]
[5-23]
Searches for Neutrinos from LHAASO ultra-high-energy $\gamma$-ray sources using the IceCube Neutrino Observatory, R. Abbasi et al., Astrophys.J.Lett. 945 (2023) L8, arXiv:2211.14184.
[IceCube:2022heu]
[5-24]
Diffuse neutrino flux measurements with the Baikal-GVD neutrino telescope, V. A. Allakhverdyan et al. (Baikal), Phys.Rev.D 107 (2023) 042005, arXiv:2211.09447.
[Baikal-GVD:2022fis]
[5-25]
Constraints on populations of neutrino sources from searches in the directions of IceCube neutrino alerts, R. Abbasi et al. (IceCube), Astrophys.J. 951 (2023) 45, arXiv:2210.04930.
[IceCube:2022ham]
[5-26]
Search for Gamma-Ray and Neutrino Coincidences Using HAWC and ANTARES Data, H. A. Ayala Solares et al. (AMON Team, ANTARES, HAWC), Astrophys.J. 944 (2023) 166, arXiv:2209.13462.
[AMONTeam:2022jnt]
[5-27]
IceCube search for neutrinos coincident with gravitational wave events from LIGO/Virgo run O3, Aswathi Balagopal V., Raamis Hussain, Zsuzsa Marka, Justin Vandenbroucke, Doga Veske (IceCube), Astrophys.J. 944 (2023) 80, arXiv:2208.09532.
[IceCube:2022mma]
[5-28]
Search for Astrophysical Neutrinos from 1FLE Blazars with IceCube, R. Abbasi et al., Astrophys.J. 938 (2022) 38, arXiv:2207.04946.
[IceCube:2022zbd]
[5-29]
Searching for High-Energy Neutrino Emission from Galaxy Clusters with IceCube, R. Abbasi et al. (IceCube), Astrophys.J.Lett. 938 (2022) L11, arXiv:2206.02054.
[IceCube:2022ccm]
[5-30]
Searches for Connections between Dark Matter and High-Energy Neutrinos with IceCube, R. Abbasi et al. (IceCube), arXiv:2205.12950, 2022.
[IceCube:2022vtr]
[5-31]
Searches for Neutrinos from Gamma-Ray Bursts using the IceCube Neutrino Observatory, R. Abbasi et al. (IceCube), Astrophys.J. 939 (2022) 116, arXiv:2205.11410.
[IceCube:2022rlk]
[5-32]
ASAS-SN follow-up of IceCube high-energy neutrino alerts, Jannis Necker et al., Mon.Not.Roy.Astron.Soc. 516 (2022) 2455-2469, arXiv:2204.00500.
[ASAS-SN:2022gst]
[5-33]
Neutrino follow-up with the Zwicky Transient Facility: Results from the first 24 campaigns, Robert Stein et al., Mon.Not.Roy.Astron.Soc. 521 (2023) 4, arXiv:2203.17135.
[Stein:2022rvc]
[5-34]
Search for High-Energy Neutrino Emission from Galactic X-ray Binaries with IceCube, R. Abbasi et al. (IceCube), Astrophys.J.Lett. 930 (2022) L24, arXiv:2202.11722.
[IceCube:2022jpz]
[5-35]
KamLAND's search for correlated low-energy electron antineutrinos with astrophysical neutrinos from IceCube, S. Abe et al. (KamLAND), Astropart.Phys. 143 (2022) 102758, arXiv:2202.07345.
[Abe:2022ovx]
[5-36]
A low-threshold ultrahigh-energy neutrino search with the Askaryan Radio Array, P. Allison et al., Phys.Rev.D 105 (2022) 122006, arXiv:2202.07080.
[ARA:2022rwq]
[5-37]
Search for solar atmospheric neutrinos with the ANTARES neutrino telescope, A. Albert et al. (ANTARES), JCAP 06 (2022) 018, arXiv:2201.11642.
[ANTARES:2022azv]
[5-38]
Search for Spatial Correlations of Neutrinos with Ultra-High-Energy Cosmic Rays, A. Albert et al. (ANTARES), Astrophys.J. 934 (2022) 164, arXiv:2201.07313.
[IceCube:2022osb]
[5-39]
Astrophys.J. 927 (2022) 197.
[MAGIC:2022gyf]
[5-40]
Analysis of a Tau Neutrino Origin for the Near-Horizon Air Shower Events Observed by the Fourth Flight of the Antarctic Impulsive Transient Antenna (ANITA), R. Prechelt et al. (ANITA), Phys.Rev.D 105 (2022) 042001, arXiv:2112.07069.
[ANITA:2021xxh]
[5-41]
A search for correlated low-energy electron antineutrinos in KamLAND with gamma-ray bursts, S. Abe et al. (KamLAND), Astrophys.J. 927 (2022) 69, arXiv:2112.04918.
[KamLAND:2021osm]
[5-42]
Search for Low-Energy Signals from Fast Radio Bursts with the Borexino Detector, S. Appel et al. (Borexino), Eur.Phys.J.C 82 (2022) 278, arXiv:2111.14500.
[BOREXINO:2021yxh]
[5-43]
Improved Characterization of the Astrophysical Muon-Neutrino Flux with 9.5 Years of IceCube Data, R. Abbasi et al. (IceCube), Astrophys.J. 928 (2022) 50, arXiv:2111.10299.
[IceCube:2021uhz]
[5-44]
A search for neutrino emission from cores of Active Galactic Nuclei, R. Abbasi et al. (IceCube), Phys.Rev.D 106 (2022) 022005, arXiv:2111.10169.
[IceCube:2021pgw]
[5-45]
Search for Quantum Gravity Using Astrophysical Neutrino Flavour with IceCube, R. Abbasi et al. (IceCube), Nature Phys. 18 (2022) 1287-1292, arXiv:2111.04654.
[IceCube:2021tdn]
[5-46]
Detection of a particle shower at the Glashow resonance with IceCube, M.G. Aartsen et al. (IceCube), arXiv:2110.15051, 2021.
[2110.15051]
[5-47]
Search for multi-flare neutrino emissions in 10 years of IceCube data from a catalog of sources, R. Abbasi et al. (IceCube), Astrophys.J.Lett. 920 (2021) L45, arXiv:2109.05818.
[IceCube:2021slf]
[5-48]
Limits on astrophysical antineutrinos with the KamLAND experiment, S. Abe et al. (KamLAND), Astrophys.J. 925 (2022) 14, arXiv:2108.08527.
[KamLAND:2021gvi]
[5-49]
Search for High-Energy Neutrinos from Ultra-Luminous Infrared Galaxies with IceCube, R. Abbasi et al. (IceCube), Astrophys.J. 926 (2022) 59, arXiv:2107.03149.
[IceCube:2021waz]
[5-50]
Probing neutrino emission at GeV energies from compact binary mergers with the IceCube Neutrino Observatory, R. Abbasi et al. (IceCube), arXiv:2105.13160, 2021.
[IceCube:2021ddq]
[5-51]
Observation of photons above 300 TeV associated with a high-energy neutrino from the Cygnus Cocoon region, D. D. Dzhappuev et al., Astrophys.J.Lett. 916 (2021) L22, arXiv:2105.07242.
[Carpet-3Group:2021ygp]
[5-52]
Search for neutrinos in coincidence with gravitational wave events from the LIGO-Virgo O3a Observing Run with the Super-Kamiokande detector, K. Abe et al. (Super-Kamiokande), Astrophys.J. 918 (2021) 78, arXiv:2104.09196.
[Super-Kamiokande:2021dav]
[5-53]
Search for neutrinos from the tidal disruption events AT2019dsg and AT2019fdr with the ANTARES telescope, A. Albert et al. (ANTARES), Astrophys.J. 920 (2021) 50, arXiv:2103.15526.
[ANTARES:2021jmp]
[5-54]
IceCube Data for Neutrino Point-Source Searches Years 2008-2018, R. Abbasi et al. (IceCube), arXiv:2101.09836, 2021.
[IceCube:2021xar]
[5-55]
Search for Tens of MeV Neutrinos associated with Gamma-Ray Bursts in Super-Kamiokande, A. Orii et al. (Super-Kamiokande), PTEP 2021 (2021) 103F01, arXiv:2101.03480.
[Super-Kamiokande:2021sfd]
[5-56]
ANTARES search for point-sources of neutrinos using astrophysical catalogs: a likelihood stacking analysis, A. Albert et al. (ANTARES), Astrophys.J. 911 (2021) 48, arXiv:2012.15082.
[ANTARES:2020zng]
[5-57]
Search for Low-energy Electron Antineutrinos in KamLAND Associated with Gravitational Wave Events, S. Abe et al. (KamLAND), Astrophys.J. 909 (2021) 116, arXiv:2012.12053.
[KamLAND:2020ses]
[5-58]
Follow-up of astrophysical transients in real time with the IceCube Neutrino Observatory, R. Abbasi et al. (IceCube), Astrophys.J. 910 (2021) 4, arXiv:2012.04577.
[IceCube:2020mzw]
[5-59]
A search for time-dependent astrophysical neutrino emission with IceCube data from 2012 to 2017, R. Abbasi et al. (IceCube), Astrophys.J. 911 (2021) 67, arXiv:2012.01079.
[IceCube:2020nig]
[5-60]
Medium-band observation of the neutrino emitting blazar, TXS 0506+056, Sungyong Hwang et al., Astrophys.J. 908 (2021) 113, arXiv:2011.14049.
[Hwang:2020ycs]
[5-61]
Search for correlations between neutrinos recorded by the ANTARES detector and GRBs detected by IACTs, A. Albert et al. (ANTARES), JCAP 2103 (2021) 092, arXiv:2011.11411.
[ANTARES:2020dpd]
[5-62]
Follow-up Observations for IceCube-170922A: Detection of Rapid Near-Infrared Variability and Intensive Monitoring of TXS 0506+056, Tomoki Morokuma et al., Publ.Astron.Soc.Jap. 73 (2021) Publications of the Astronomical Society of Japan, Volume 73, Issue 1, February 2021, Pages 25-43, https://doi.org/10.1093/pasj/psaa110-43, arXiv:2011.04957.
[Morokuma:2020xtl]
[5-63]
Measurement of Astrophysical Tau Neutrinos in IceCube's High-Energy Starting Events, R. Abbasi et al. (IceCube), arXiv:2011.03561, 2020.
[IceCube:2020abv]
[5-64]
Measurement of the high-energy all-flavor neutrino-nucleon cross section with IceCube, R. Abbasi et al. (IceCube), arXiv:2011.03560, 2020.
[IceCube:2020rnc]
[5-65]
The IceCube high-energy starting event sample: Description and flux characterization with 7.5 years of data, R. Abbasi et al. (IceCube), Phys.Rev.D 104 (2021) 022002, arXiv:2011.03545.
[IceCube:2020wum]
[5-66]
Swift X-ray Follow-Up Observations of Gravitational Wave and High-Energy Neutrino Coincident Signals, Azadeh Keivani et al., Astrophys.J. 909 (2021) 126, arXiv:2011.01319.
[Keivani:2020utg]
[5-67]
A search for ultra high energy neutrinos from TXS 0506+056 using the Pierre Auger Observatory, Pierre Auger Collaboration, Astrophys.J. 902 (2020) 105, arXiv:2010.10953.
[PierreAuger:2020llu]
[5-68]
A search for ultrahigh-energy neutrinos associated with astrophysical sources using the third flight of ANITA, C. Deaconu et al. (ANITA), JCAP 2104 (2021) 017, arXiv:2010.02869.
[ANITA:2020sds]
[5-69]
Multimessenger Gamma-Ray and Neutrino Coincidence Alerts using HAWC and IceCube sub-threshold Data, H.A. Ayala Solares et al. (AMON Team, HAWC, IceCube), Astrophys.J. 906 (2021) 63, arXiv:2008.10616.
[AMONTeam:2020otr]
[5-70]
Constraining the contribution of Gamma-Ray Bursts to the high-energy diffuse neutrino flux with 10 years of ANTARES data, A. Albert et al. (ANTARES), Mon.Not.Roy.Astron.Soc. 500 (2021) 5614, arXiv:2008.02127.
[ANTARES:2020vzs]
[5-71]
Search for event bursts in XMASS-I associated with gravitational-wave events, K. Abe et al. (XMASS), Astropart.Phys. 129 (2021) 102568, arXiv:2007.16046.
[XMASS:2020jdj]
[5-72]
Search For Electron-Antineutrinos Associated With Gravitational-Wave Events GW150914, GW151012, GW151226, GW170104, GW170608, GW170814, and GW170817 at Daya Bay, F. P. An et al. (Daya Bay), Chin.Phys. C45 (2021) 055001, arXiv:2006.15386.
[DayaBay:2020yvc]
[5-73]
IceCube Search for Neutrinos Coincident with Compact Binary Mergers from LIGO-Virgo's First Gravitational-Wave Transient Catalog, M.G. Aartsen et al. (IceCube), Astrophys.J. 898 (2020) L10, arXiv:2004.02910.
[IceCube:2020xks]
[5-74]
IceCube Search for High-Energy Neutrino Emission from TeV Pulsar Wind Nebulae, M. G. Aartsen et al. (IceCube), Astrophys.J. 898 (2020) 117, arXiv:2003.12071.
[IceCube:2020svz]
[5-75]
Combined search for neutrinos from dark matter self-annihilation in the Galactic Centre with ANTARES and IceCube, M. G. Aartsen et al. (ANTARES,IceCube), Phys.Rev. D102 (2020) 082002, arXiv:2003.06614.
[ANTARES:2020leh]
[5-76]
Characteristics of the diffuse astrophysical electron and tau neutrino flux with six years of IceCube high energy cascade data, M. G. Aartsen et al. (IceCube), Phys.Rev.Lett. 125 (2020) 121104, arXiv:2001.09520.
[IceCube:2020acn]
[5-77]
Search for multi-messenger signals in NOvA coincident with LIGO/Virgo detections, M. A. Acero et al. (NOvA), Phys.Rev. D101 (2020) 112006, arXiv:2001.07240.
[NOvA:2020oha]
[5-78]
ANTARES and IceCube Combined Search for Neutrino Point-like and Extended Sources in the Southern Sky, M. G. Aartsen et al. (ANTARES,IceCube), Astrophys.J. 892 (2020) 92, arXiv:2001.04412.
[ANTARES:2020srt]
[5-79]
A search for IceCube events in the direction of ANITA neutrino candidates, M. G. Aartsen et al. (IceCube), arXiv:2001.01737, 2020.
[IceCube:2020gbx]
[5-80]
Searches for neutrinos from cosmic-ray interactions in the Sun using seven years of IceCube data, M. G. Aartsen et al. (IceCube), arXiv:1912.13135, 2019.
[IceCube:2019ubb]
[5-81]
Search for dark matter towards the Galactic Centre with 11 years of ANTARES data, A. Albert et al. (ANTARES), Phys.Lett. B805 (2020) 135439, arXiv:1912.05296.
[ANTARES:2019svn]
[5-82]
Constraints on the Diffuse Flux of Ultra-High Energy Neutrinos from Four Years of Askaryan Radio Array Data in Two Stations, P. Allison et al. (ARA), Phys.Rev. D102 (2020) 043021, arXiv:1912.00987.
[ARA:2019wcf]
[5-83]
Constraints on Neutrino Emission from Nearby Galaxies Using the 2MASS Redshift Survey and IceCube, M. G. Aartsen et al. (IceCube), JCAP 2007 (2020) 042, arXiv:1911.11809.
[IceCube:2019yml]
[5-84]
Time-integrated Neutrino Source Searches with 10 years of IceCube Data, M. G. Aartsen et al. (IceCube), Phys.Rev.Lett. 124 (2020) 051103, arXiv:1910.08488.
[IceCube:2019cia]
[5-85]
Search for Astronomical Neutrinos from Blazar TXS0506+056 in Super-Kamiokande, K. Hagiwara et al., Astrophys.J. 887 (2019) L6, arXiv:1910.07680.
[Super-Kamiokande:2019utr]
[5-86]
A Search for Neutrino Point-Source Populations in 7 Years of IceCube Data with Neutrino-count Statistics, M. G. Aartsen et al. (IceCube), Astrophys.J. 893 (2020) 102, arXiv:1909.08623.
[IceCube:2019xiu]
[5-87]
Search for low-energy neutrinos from astrophysical sources with Borexino, M. Agostini et al. (Borexino), Astropart.Phys. 125 (2021) 102509, arXiv:1909.02422.
[Borexino:2019wln]
[5-88]
A search for cosmogenic neutrinoswith the ARIANNA test bed using 4.5 years of data, A. Anker et al., JCAP 2003 (2020) 053, arXiv:1909.00840.
[Anker:2019rzo]
[5-89]
A Search for MeV to TeV Neutrinos from Fast Radio Bursts with IceCube, M. G. Aartsen et al. (IceCube), Astrophys.J. 857 (2018) 117, arXiv:1908.09997.
[IceCube:2019acm]
[5-90]
A DECam Search for Explosive Optical Transients Associated with IceCube Neutrinos, R. Morgan et al., Astrophys.J. 883 (2019) 125, arXiv:1907.07193.
[DES:2019hqa]
[5-91]
Search for Sources of Astrophysical Neutrinos Using Seven Years of IceCube Cascade Events, M. G. Aartsen et al. (IceCube), Astrophys.J. 886 (2019) 12, arXiv:1907.06714.
[IceCube:2019lzm]
[5-92]
BUST Search for Muon Neutrinos from the Gravitational Wave Event GW170817, V. B. Petkov et al., arXiv:1907.05183, 2019.
[Petkov:2019bry]
[5-93]
Constraints on gamma-ray and neutrino emission from NGC 1068 with the MAGIC telescopes, V. A. Acciari et al. (MAGIC), Astrophys.J. 883 (2019) 135, arXiv:1906.10954.
[MAGIC:2019fvw]
[5-94]
Probing the origin of ultra-high-energy cosmic rays with neutrinos in the EeV energy range using the Pierre Auger Observatory, Alexander Aab et al. (Pierre Auger), JCAP 1910 (2019) 022, arXiv:1906.07422.
[PierreAuger:2019ens]
[5-95]
Limits on point-like sources of ultra-high-energy neutrinos with the Pierre Auger Observatory, Alexander Aab et al. (Pierre Auger), JCAP 1911 (2019) 004, arXiv:1906.07419.
[PierreAuger:2019azx]
[5-96]
A Search for Cosmic Neutrino and Gamma-Ray Emitting Transients in 7.3 Years of ANTARES and Fermi LAT Data, H. A. Ayala Solares et al. (ANTARES), Astrophys.J. 886 (2019) 98, arXiv:1904.06420.
[AMON:2019zxe]
[5-97]
ANTARES neutrino search for time and space correlations with IceCube high-energy neutrino events, A. Albert et al. (ANTARES), Astrophys.J. 879 (2019) 108, arXiv:1902.09462.
[ANTARES:2019itg]
[5-98]
Neutrinos below 100 TeV from the southern sky employing refined veto techniques to IceCube data, M. G. Aartsen et al. (IceCube), Astropart.Phys. 116 (2020) 102392, arXiv:1902.05792.
[IceCube:2019ndt]
[5-99]
Constraints on the ultra-high energy cosmic neutrino flux from the fourth flight of ANITA, P. W. Gorham et al. (ANITA), Phys.Rev. D99 (2019) 122001, arXiv:1902.04005.
[ANITA:2019wyx]
[5-100]
A search for transient optical counterparts to high-energy IceCube neutrinos with Pan-STARRS1, E. Kankare et al., Astron.Astrophys. 626 (2019) A117, arXiv:1901.11080.
[Pan-STARRS:2019szg]
[5-101]
Investigation of two Fermi-LAT gamma-ray blazars coincident with high-energy neutrinos detected by IceCube, S. Garrappa et al. (Fermi-LAT), Astrophys.J. 880 (2019) 880:103, arXiv:1901.10806.
[Fermi-LAT:2019hte]
[5-102]
Carpet-2 search for PeV gamma rays associated with IceCube high-energy neutrino events, D.D. Dzhappuev et al., JETP Lett. 109 (2019) 226-231, arXiv:1812.02662.
[Dzhappuev:2018qlt]
[5-103]
Search for steady point-like sources in the astrophysical muon neutrino flux with 8 years of IceCube data, M. G. Aartsen et al. (IceCube), Eur.Phys.J. C79 (2019) 234, arXiv:1811.07979.
[IceCube:2018ndw]
[5-104]
AGILE detection of gamma-ray sources coincident with cosmic neutrino events, F. Lucarelli et al., Astrophys.J. 870 (2019) 136, arXiv:1811.07689.
[AGILETeam:2018qve]
[5-105]
Search for high-energy neutrinos from GW170817 with Baikal-GVD neutrino telescope, A. D. Avrorin et al. (Baikal-GVD), Pisma Zh.Eksp.Teor.Fiz. 108 (2018) 803-804, arXiv:1810.10966.
[Baikal-GVD:2018cya]
[5-106]
Search for Multi-messenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during its first Observing Run, ANTARES and IceCube, A. Albert et al. (Virgo, IceCube, LIGO, ANTARES), Astrophys.J. 870 (2019) 134, arXiv:1810.10693.
[ANTARES:2018bmu]
[5-107]
Measurements using the inelasticity distribution of multi-TeV neutrino interactions in IceCube, M. G. Aartsen et al. (IceCube), Phys.Rev. D99 (2019) 032004, arXiv:1808.07629.
[IceCube:2018pgc]
[5-108]
Joint constraints on Galactic diffuse neutrino emission from ANTARES and IceCube, A. Albert et al. (IceCube, ANTARES), Astrophys.J. 868 (2018) L20, arXiv:1808.03531.
[ANTARES:2018nyb]
[5-109]
Constraints on minute-scale transient astrophysical neutrino sources, M. G. Aartsen et al. (IceCube), Phys.Rev.Lett. 122 (2019) 051102, arXiv:1807.11492.
[IceCube:2018omy]
[5-110]
Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A, Liverpool Telescope, MAGIC, H.E.S.S., AGILE, Kiso, VLA/17B-403, INTEGRAL, Kapteyn, Subaru, HAWC, Fermi-LAT, ASAS-SN, VERITAS, Kanata, IceCube, Swift NuSTAR, Science 361 (2018) eaat1378, arXiv:1807.08816.
[IceCube:2018dnn]
[5-111]
Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert, M. G. Aartsen et al. (IceCube), Science 361 (2018) 147-151, arXiv:1807.08794.
[IceCube:2018cha]
[5-112]
VERITAS observations of the BL Lac object TXS 0506+056, A. U. Abeysekara et al., Astrophys.J. 861 (2018) L20, arXiv:1807.04607.
[VERITAS:2018ynj]
[5-113]
Dissecting the region around IceCube-170922A: the blazar TXS 0506+056 as the first cosmic neutrino source, P. Padovani et al., Mon.Not.Roy.Astron.Soc. 480 (2018) 192, arXiv:1807.04461.
[Padovani:2018acg]
[5-114]
Search for neutrinos from TXS 0506+056 with the ANTARES telescope, A. Albert et al. (ANTARES), Astrophys.J. 863 (2018) L30, arXiv:1807.04309.
[ANTARES:2018osx]
[5-115]
Search for high-energy neutrinos in coincidence with Fast Radio Bursts with the ANTARES neutrino telescope, A. Albert et al. (ANTARES), Mon.Not.Roy.Astron.Soc. 482 (2019) 184-193, arXiv:1807.04045.
[ANTARES:2018bmf]
[5-116]
Observation of Reconstructable Radio Emission Coincident with an X-Class Solar Flare in the Askaryan Radio Array Prototype Station, P. Allison et al., arXiv:1807.03335, 2018.
[ARA:2018fkz]
[5-117]
Differential limit on the extremely-high-energy cosmic neutrino flux in the presence of astrophysical background from nine years of IceCube data, M. G. Aartsen et al. (IceCube), Phys.Rev. D98 (2018) 062003, arXiv:1807.01820.
[IceCube:2018fhm]
[5-118]
Limits on the flux of tau neutrinos from 1 PeV to 3 EeV with the MAGIC telescopes, M.L. Ahnen et al. (MAGIC), Astropart.Phys. 102 (2018) 77-88, arXiv:1805.02750.
[MAGIC:2018gza]
[5-119]
Search for neutrinos from decaying dark matter with IceCube, M. G. Aartsen et al. (IceCube), Eur.Phys.J. C78 (2018) 831, arXiv:1804.03848.
[IceCube:2018tkk]
[5-120]
Observation of an Unusual Upward-going Cosmic-ray-like Event in the Third Flight of ANITA, P. W. Gorham et al. (ANITA), Phys.Rev.Lett. 121 (2018) 161102, arXiv:1803.05088.
[ANITA:2018sgj]
[5-121]
Constraints on the diffuse high-energy neutrino flux from the third flight of ANITA, P. Allison et al. (ANITA), Phys.Rev. D98 (2018) 022001, arXiv:1803.02719.
[ANITA:2018vwl]
[5-122]
Search for Neutrinos in Super-Kamiokande associated with the GW170817 neutron-star merger, K. Abe et al. (Super-Kamiokande), Astrophys.J. 857 (2018) L4, arXiv:1802.04379.
[Super-Kamiokande:2018dbf]
[5-123]
A Search for Neutrino Emission from Fast Radio Bursts with Six Years of IceCube Data, M. G. Aartsen et al. (IceCube), Astrophys.J. 857 (2018) 117, arXiv:1712.06277.
[IceCube:2017fpg]
[5-124]
Measurement of the multi-TeV neutrino cross section with IceCube using Earth absorption, M. G. Aartsen et al. (IceCube), Nature 551 (2017) 596-600, arXiv:1711.08119.
[IceCube:2017roe]
[5-125]
The SUrvey for Pulsars and Extragalactic Radio Bursts II: New FRB discoveries and their follow-up, S. Bhandari et al. (ANTARES), Mon.Not.Roy.Astron.Soc. 475 (2018) 1427-1446, arXiv:1711.08110.
[ANTARES:2017hvn]
[5-126]
All-flavor search for a diffuse flux of cosmic neutrinos with 9 years of ANTARES data, A. Albert et al. (ANTARES), Astrophys.J. 853 (2018) L7, arXiv:1711.07212.
[ANTARES:2017srd]
[5-127]
Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory, A. Albert et al. (Virgo, IceCube, Pierre Auger, ANTARES, LIGO Scientific), Astrophys.J. 850 (2017) L35, arXiv:1710.05839.
[ANTARES:2017bia]
[5-128]
Multi-messenger Observations of a Binary Neutron Star Merger, GROND, SALT Group, OzGrav, DFN, INTEGRAL, Virgo, Insight-Hxmt, MAXI Team, Fermi-LAT, J-GEM, RATIR, ATLAS, IceCube, CAASTRO, LWA, ePESSTO, GRAWITA, RIMAS, SKA South Africa/MeerKAT, H.E.S.S., 1M2H Team, IKI-GW Follow-up, Fermi GBM, Pi of Sky, DWF (Deeper Wider Faster Program), Dark Energy Survey, MASTER, AstroSat Cadmium Zinc Telluride Imager Team, Swift, Pierre Auger, ASKAP, VINROUGE, JAGWAR, Chandra Team at McGill University, TTU-NRAO, GROWTH, AGILE Team, MWA, ATCA, AST3, TOROS, Pan-STARRS, NuSTAR, BOOTES, CaltechNRAO, LIGO Scientific, High Time Resolution Universe Survey, Nordic Optical Telescope, Las Cumbres Observatory Group, TZAC Consortium, LOFAR, IPN, DLT40, Texas Tech University, HAWC, ANTARES, KU, Dark Energy Camera GW-EM, CALET, Euro VLBI Team, ALMA, Astrophys. J. 848 (2017) L12, arXiv:1710.05833.
[LIGOScientific:2017ync]
[5-129]
All-sky Search for High-Energy Neutrinos from Gravitational Wave Event GW170104 with the ANTARES Neutrino Telescope, A. Albert et al. (ANTARES), Eur.Phys.J. C77 (2017) 911, arXiv:1710.03020.
[ANTARES:2017fqy]
[5-130]
TANAMI: Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry - II. Additional Sources, C. Muller et al., Astron.Astrophys. 610 (2018) A1, arXiv:1709.03091.
[Muller:2017awb]
[5-131]
Observation of radio galaxies with HAWC, Daniel Avila Rojas et al. (ABCD), PoS ICRC2017 (2018) 607, arXiv:1709.02025.
[AvilaRojas:2017oyn]
[5-132]
Search for an excess of events in the Super-Kamiokande detector in the directions of the astrophysical neutrinos reported by the IceCube Collaboration, K. Abe et al. (Super-Kamiokande), Astrophys.J. 850 (2017) 166, arXiv:1707.08604.
[Super-Kamiokande:2017kzv]
[5-133]
AGILE detection of a candidate gamma-ray precursor to the ICECUBE-160731 neutrino event, F. Lucarelli et al., Astrophys.J. 846 (2017) 121, arXiv:1707.08599.
[Lucarelli:2017hhh]
[5-134]
Constraints on Galactic Neutrino Emission with Seven Years of IceCube Data, M. G. Aartsen et al. (IceCube), Astrophys.J. 849 (2017) 67, arXiv:1707.03416.
[IceCube:2017trr]
[5-135]
A search for low-energy neutrinos correlated with gravitational wave events GW150914, GW151226 and GW170104 with the Borexino detector, M. Agostini et al. (Borexino), Astrophys.J. 850 (2017) 21, arXiv:1706.10176.
[BOREXINO:2017thi]
[5-136]
First all-flavour Neutrino Point-like Source Search with the ANTARES Neutrino Telescope, A. Albert et al. (ANTARES), Phys.Rev. D96 (2017) 082001, arXiv:1706.01857.
[ANTARES:2017dda]
[5-137]
Search for Neutrinos from Dark Matter Self-Annihilations in the center of the Milky Way with 3 years of IceCube/DeepCore, M. G. Aartsen et al. (IceCube), Eur.Phys.J. C77 (2017) 627, arXiv:1705.08103.
[IceCube:2017rdn]
[5-138]
A polarized fast radio burst at low Galactic latitude, E. Petroff et al. (ANTARES,HESS), Mon.Not.Roy.Astron.Soc. 469 (2017) 4465-4482, arXiv:1705.02911.
[ANTARES:2017jqa]
[5-139]
Search for astrophysical sources of neutrinos using cascade events in IceCube, M. G. Aartsen et al. (IceCube), Astrophys.J. 846 (2017) 136, arXiv:1705.02383.
[IceCube:2017der]
[5-140]
New Constraints on all flavour Galactic diffuse neutrino emission with the ANTARES telescope, A. Albert et al. (ANTARES), Phys.Rev. D96 (2017) 062001, arXiv:1705.00497.
[ANTARES:2017nlh]
[5-141]
Search for High-energy Neutrinos from Gravitational Wave Event GW151226 and Candidate LVT151012 with ANTARES and IceCube, ANTARES, IceCube, LIGO, Virgo, Phys.Rev. D96 (2017) 022005, arXiv:1703.06298.
[ANTARES:2017iky]
[5-142]
Model-independent search for neutrino sources with the ANTARES neutrino telescope, A. Albert et al. (ANTARES), Astropart.Phys. 114 (2020) 35-47, arXiv:1703.04351.
[ANTARES:2017pax]
[5-143]
Extending the search for muon neutrinos coincident with gamma-ray bursts in IceCube data, M. G. Aartsen et al. (IceCube), Astrophys.J. 843 (2017) 112, arXiv:1702.06868.
[IceCube:2017amx]
[5-144]
Multiwavelength follow-up of a rare IceCube neutrino multiplet, M. G. Aartsen et al. (IceCube), Astron.Astrophys. 607 (2017) A115, arXiv:1702.06131.
[Aartsen:2017snx]
[5-145]
Search for high-energy neutrinos from bright GRBs with ANTARES, A. Albert et al. (ANTARES), Mon.Not.Roy.Astron.Soc. 469 (2017) 906, arXiv:1612.08589.
[Albert:2016eyr]
[5-146]
Search for annihilating dark matter in the Sun with 3 years of IceCube data, M. G. Aartsen et al. (IceCube), Eur.Phys.J. C77 (2017) 146, arXiv:1612.05949.
[IceCube:2016dgk]
[5-147]
Results from the search for dark matter in the Milky Way with 9 years of data of the ANTARES neutrino telescope, A. Albert et al. (ANTARES), Phys.Lett. B769 (2017) 249-254, arXiv:1612.04595.
[Albert:2016emp]
[5-148]
Radio detection of air showers with the ARIANNA experiment on the Ross Ice Shelf, S. W. Barwick et al., Astropart.Phys. 90 (2017) 50-68, arXiv:1612.04473.
[Barwick:2016mxm]
[5-149]
Dark matter constraints from an observation of dSphs and the LMC with the Baikal NT200, A.D. Avrorin et al. (BAIKAL), J.Exp.Theor.Phys. 125 (2017) 80-90, arXiv:1612.03836.
[Avrorin:2016yhw]
[5-150]
The contribution of Fermi-2LAC blazars to the diffuse TeV-PeV neutrino flux, M. G. Aartsen et al. (IceCube), Astrophys.J. 835 (2017) 45, arXiv:1611.03874.
[IceCube:2016qvd]
[5-151]
Very High-Energy Gamma-Ray Follow-Up Program Using Neutrino Triggers from IceCube, M.G. Aartsen et al. (IceCube), JINST 11 (2016) P11009, arXiv:1610.01814.
[IceCube:2016xci]
[5-152]
Time-dependent search for neutrino emission from x-ray binaries with the ANTARES telescope, A. Albert et al., JCAP 1704 (2017) 019, arXiv:1609.07372.
[Albert:2016gtl]
[5-153]
All-sky search for time-integrated neutrino emission from astrophysical sources with 7 years of IceCube data, M. G. Aartsen et al. (IceCube), Astrophys.J. 835 (2017) 151, arXiv:1609.04981.
[IceCube:2016tpw]
[5-154]
Stacked search for time shifted high energy neutrinos from gamma ray bursts with the ANTARES neutrino telescope, S. Adrian-Martinez et al. (ANTARES), Eur.Phys.J.C 77 (2017) 20, arXiv:1608.08840.
[ANTARES:2016fmg]
[5-155]
Search for Neutrinos in Super-Kamiokande associated with Gravitational Wave Events GW150914 and GW151226, K. Abe et al. (Super-Kamiokande), Astrophys.J.Lett. 830 (2016) L11, arXiv:1608.08745.
[Super-Kamiokande:2016jsv]
[5-156]
Ultrahigh-energy neutrino follow-up of Gravitational Wave events GW150914 and GW151226 with the Pierre Auger Observatory, A. Aab et al. (Pierre Auger), Phys. Rev. D94 (2016) 122007, arXiv:1608.07378.
[PierreAuger:2016efk]
[5-157]
Observation and Characterization of a Cosmic Muon Neutrino Flux from the Northern Hemisphere using six years of IceCube data, M. G. Aartsen et al. (IceCube), Astrophys.J. 833 (2016) 3, arXiv:1607.08006.
[IceCube:2016umi]
[5-158]
Constraints on ultra-high-energy cosmic ray sources from a search for neutrinos above 10 PeV with IceCube, M. G. Aartsen et al. (IceCube), Phys. Rev. Lett. 117 (2016) 241101, arXiv:1607.05886.
[IceCube:2016uab]
[5-159]
A search for low-energy neutrino and antineutrino signals correlated with gamma-ray bursts with Borexino, M. Agostini et al., Astropart.Phys. 86 (2017) 11-17, arXiv:1607.05649.
[BOREXINO:2016ygy]
[5-160]
Search for electron antineutrinos associated with gravitational wave events GW150914 and GW151226 using KamLAND, A. Gando et al. (KamLAND), Astrophys.J. 829 (2016) L34, arXiv:1606.07155.
[KamLAND:2016wvk]
[5-161]
All-flavour Search for Neutrinos from Dark Matter Annihilations in the Milky Way with IceCube/DeepCore, M. G. Aartsen et al. (IceCube), Eur.Phys.J. C76 (2016) 531, arXiv:1606.00209.
[IceCube:2016oqp]
[5-162]
Lowering IceCube's Energy Threshold for Point Source Searches in the Southern Sky, M. G. Aartsen et al. (IceCube), Astrophys.J. 824 (2016) L28, arXiv:1605.00163.
[IceCube:2016quu]
[5-163]
Murchison Widefield Array Limits on Radio Emission from ANTARES Neutrino Events, S. Croft et al., Astrophys.J. 820 (2016) L24, arXiv:1603.02271.
[MWA:2016joj]
[5-164]
Limits on Dark Matter Annihilation in the Sun using the ANTARES Neutrino Telescope, ANTARES collaboration et al. (ANTARES), Phys.Lett. B759 (2016) 69-74, arXiv:1603.02228.
[ANTARES:2016xuh]
[5-165]
High-energy Neutrino follow-up search of Gravitational Wave Event GW150914 with ANTARES and IceCube, S. Adrian-Martinez et al. (Virgo, IceCube, ANTARES, LIGO), Phys. Rev. D93 (2016) 122010, arXiv:1602.05411.
[ANTARES:2016qdk]
[5-166]
Constraints on the neutrino emission from the Galactic Ridge with the ANTARES telescope, S. Adrian-Martinez et al. (ANTARES), Phys.Lett. B760 (2016) 143-148, arXiv:1602.03036.
[ANTARES:2016mwq]
[5-167]
An All-Sky Search for Three Flavors of Neutrinos from Gamma-Ray Bursts with the IceCube Neutrino Observatory, M. G. Aartsen et al. (IceCube), Astrophys.J. 824 (2016) 115, arXiv:1601.06484.
[IceCube:2016ipa]
[5-168]
A search for neutrino signal from dark matter annihilation in the center of the Milky Way with Baikal NT200, A.D. Avrorin et al. (BAIKAL), Astropart.Phys. 81 (2016) 12-20, arXiv:1512.01198.
[BAIKAL:2015hjt]
[5-169]
Search for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array, M. G. Aartsen et al. (IceCube), JCAP 1601 (2016) 037, arXiv:1511.09408.
[IceCube:2015afa]
[5-170]
First combined search for neutrino point-sources in the Southern Hemisphere with the ANTARES and IceCube neutrino telescopes, S. Adrian-Martinez et al. (ANTARES,IceCube), Astrophys.J. 823 (2016) 65, arXiv:1511.02149.
[ANTARES:2015moa]
[5-171]
Search for Astrophysical Tau Neutrinos in Three Years of IceCube Data, M. G. Aartsen et al. (IceCube), Phys. Rev. D93 (2016) 022001, arXiv:1509.06212.
[IceCube:2015vkp]
[5-172]
Search for Transient Astrophysical Neutrino Emission with IceCube-DeepCore, M. G. Aartsen et al. (IceCube), Astrophys. J. 816 (2016) 75, arXiv:1509.05029.
[IceCube:2015wtd]
[5-173]
Optical and X-ray early follow-up of ANTARES neutrino alerts, S. Adrian-Martinez et al. (Zadko, TAROT, ROTSE, Swift, ANTARES), JCAP 1602 (2016) 062, arXiv:1508.01180.
[ANTARES:2015fce]
[5-174]
Performance of two Askaryan Radio Array stations and first results in the search for ultra-high energy neutrinos, P. Allison et al. (ARA), Phys. Rev. D93 (2016) 082003, arXiv:1507.08991.
[ARA:2015wxq]
[5-175]
Evidence for Astrophysical Muon Neutrinos from the Northern Sky with IceCube, M. G. Aartsen et al. (IceCube), Phys. Rev. Lett. 115 (2015) 081102, arXiv:1507.04005.
[IceCube:2015qii]
[5-176]
A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with IceCube, M. G. Aartsen et al. (IceCube), Astrophys. J. 809 (2015) 98, arXiv:1507.03991.
[Aartsen:2015ita]
[5-177]
Constraints on the Ultra-High Energy Neutrino Flux from Gamma-Ray Bursts from a Prototype Station of the Askaryan Radio Array, P. Allison et al., Astropart.Phys. 88 (2017) 7-16, arXiv:1507.00100.
[ARA:2015caq]
[5-178]
Search for muon-neutrino emission from GeV and TeV gamma-ray flaring blazars using five years of data of the ANTARES telescope, S. Adrian-Martinez et al. (ANTARES), JCAP 1512 (2015) 014, arXiv:1506.07354.
[ANTARES:2015gxt]
[5-179]
Detection of a Type IIn Supernova in Optical Follow-up Observations of IceCube Neutrino Events, M. G. Aartsen et al. (IceCube), Astrophys. J. 811 (2015) 52, arXiv:1506.03115.
[IceCube:2015jsn]
[5-180]
Search for Dark Matter Annihilation in the Galactic Center with IceCube-79, M. G. Aartsen et al. (IceCube), Eur. Phys. J. C75 (2015) 492, arXiv:1505.07259.
[IceCube:2015rnn]
[5-181]
Search of Dark Matter Annihilation in the Galactic Centre using the ANTARES Neutrino Telescope, S. Adrian-Martinez et al. (ANTARES), JCAP 1510 (2015) 068, arXiv:1505.04866.
[ANTARES:2015vis]
[5-182]
An improved limit to the diffuse flux of ultra-high energy neutrinos from the Pierre Auger Observatory, Alexander Aab et al. (Pierre Auger), Phys. Rev.D (2015), arXiv:1504.05397.
[PierreAuger:2015ihf]
[5-183]
Search for neutrinos from annihilation of captured low-mass dark matter particles in the Sun by Super-Kamiokande, K. Choi et al. (Super-Kamiokande), Phys. Rev. Lett. 114 (2015) 141301, arXiv:1503.04858.
[Super-Kamiokande:2015xms]
[5-184]
Study of electron anti-neutrinos associated with gamma-ray bursts using KamLAND, K. Asakura et al. (KamLAND), Astrophys.J. 806 (2015) 87, arXiv:1503.02137.
[KamLAND:2015zyu]
[5-185]
Searches for Time Dependent Neutrino Sources with IceCube Data from 2008 to 2012, M. G. Aartsen et al. (IceCube), Astrophys.J. 796 (2015) 109, arXiv:1503.00598.
[IceCube:2015usw]
[5-186]
Flavor Ratio of Astrophysical Neutrinos above 35 TeV in IceCube, M. G. Aartsen et al. (IceCube), Phys. Rev. Lett. 114 (2015) 171102, arXiv:1502.03376.
[IceCube:2015rro]
[5-187]
A limit on the ultra-high-energy neutrino flux from lunar observations with the Parkes radio telescope, J. D. Bray et al., Phys. Rev. D91 (2015) 063002, arXiv:1502.03313.
[Bray:2015lda]
[5-188]
TANAMI counterparts to IceCube high-energy neutrino events, Felicia Kraus et al. (Fermi-LATs), arXiv:1502.02147, 2015. 2014 Fermi Symposium proceedings - eConf C141020.1.
[Fermi-LAT:2015bgw]
[5-189]
ANTARES Constrains a Blazar Origin of Two IceCube PeV Neutrino Events, S. Adrian-Martinez et al. (ANTARES), Astron.Astrophys. 576 (2015) L8, arXiv:1501.07843.
[ANTARES:2015pcr]
[5-190]
Swift follow-up of IceCube triggers, and implications for the Advanced-LIGO era, P.A. Evans et al., Mon.Not.Roy.Astron.Soc. 448 (2015) 2210, arXiv:1501.04435.
[Evans:2015qia]
[5-191]
Search for Prompt Neutrino Emission from Gamma-Ray Bursts with IceCube, M. G. Aartsen et al. (IceCube), Astrophys.J. 805 (2015) L5, arXiv:1412.6510.
[IceCube:2014jkq]
[5-192]
A First Search for Cosmogenic Neutrinos with the ARIANNA Hexagonal Radio Array, S.W. Barwick et al. (ARIANNA), Astropart.Phys. 70 (2015) 12-26, arXiv:1410.7352.
[ARIANNA:2014fsk]
[5-193]
Atmospheric and Astrophysical Neutrinos above 1 TeV Interacting in IceCube, M. G. Aartsen et al. (IceCube), Phys. Rev. D91 (2015) 022001, arXiv:1410.1749.
[IceCube:2014rwe]
[5-194]
Development of a General Analysis and Unfolding Scheme and its Application to Measure the Energy Spectrum of Atmospheric Neutrinos with IceCube, M. G. Aartsen et al. (IceCube), Eur.Phys.J. C75 (2015) 116, arXiv:1409.4535.
[IceCube:2014slq]
[5-195]
Searches for small-scale anisotropies from neutrino point sources with three years of IceCube data, M. G. Aartsen et al. (IceCube), Astropart.Phys. 66 (2015) 39-52, arXiv:1408.0634.
[IceCube:2014gax]
[5-196]
Constraining the neutrino emission of gravitationally lensed Flat-Spectrum Radio Quasars with ANTARES data, S.Adrian-Martinez et al. (ANTARES), JCAP 1411 (2014) 017, arXiv:1407.8525.
[ANTARES:2014tox]
[5-197]
Multimessenger Search for Sources of Gravitational Waves and High-Energy Neutrinos: Results for Initial LIGO-Virgo and IceCube, M. G. Aartsen et al. (IceCube-LIGO-Virgo), Phys. Rev. D90 (2014) 102002, arXiv:1407.1042.
[IceCube:2014yxu]
[5-198]
Multipole analysis of IceCube data to search for dark matter accumulated in the Galactic halo, M. G. Aartsen et al. (IceCube), Eur.Phys.J. C75 (2015) 20, arXiv:1406.6868.
[IceCube:2014rqf]
[5-199]
Searches for Extended and Point-like Neutrino Sources with Four Years of IceCube Data, M. G. Aartsen et al. (IceCube), Astrophys. J. 796 (2014) 109, arXiv:1406.6757.
[IceCube:2014vjc]
[5-200]
Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data, M. G. Aartsen et al. (IceCube), Phys. Rev. Lett. 113 (2014) 101101, arXiv:1405.5303.
[IceCube:2014stg]
[5-201]
Search for neutrino emission from relic dark matter in the Sun with the Baikal NT200 detector, A.D. Avrorin et al. (Baikal), Astropart.Phys. 62 (2014) 12-20, arXiv:1405.3551.
[Baikal:2014cpb]
[5-202]
First Constraints on the Ultra-High Energy Neutrino Flux from a Prototype Station of the Askaryan Radio Array, P. Allison et al. (ARA), Astropart.Phys. 70 (2015) 62-80, arXiv:1404.5285.
[ARA:2014fyf]
[5-203]
Searches for Point-like and extended neutrino sources close to the Galactic Centre using the ANTARES neutrino Telescope, S. Adrian-Martinez et al. (ANTARES), Astrophys.J. 786 (2014) L5, arXiv:1402.6182.
[ANTARES:2014unv]
[5-204]
Searches for clustering in the time integrated skymap of the ANTARES neutrino telescope, S. Adrian-Martinez et al. (ANTARES), JCAP 05 (2014) 001, arXiv:1402.2809.
[ANTARES:2014xka]
[5-205]
Detection of An Unidentified Emission Line in the Stacked X-ray spectrum of Galaxy Clusters, Esra Bulbul et al., Astrophys.J. 789 (2014) 13, arXiv:1402.2301.
[Bulbul:2014sua]
[5-206]
A Search for Time Dependent Neutrino Emission from Microquasars with the ANTARES Telescope, S. Adrian-Martinez et al. (ANTARES), JHEAp (2014), arXiv:1402.1600.
[ANTARES:2014gxl]
[5-207]
Search for neutrino-induced particle showers with IceCube-40, M. G. Aartsen et al. (IceCube), Phys. Rev. D89 (2014) 102001, arXiv:1312.0104.
[IceCube:2013jiu]
[5-208]
Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 59-string configuration, M. G. Aartsen et al. (IceCube), Phys. Rev. D89 (2014) 062007, arXiv:1311.7048.
[IceCube:2013gge]
[5-209]
Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector, M. G. Aartsen et al. (IceCube), Science 342, 1242856 (2013) 1242856, arXiv:1311.5238.
[IceCube:2013low]
[5-210]
Probing the origin of cosmic-rays with extremely high energy neutrinos using the IceCube Observatory, M. G. Aartsen et al. (IceCube), Phys. Rev. D88 (2013) 112008, arXiv:1310.5477.
[IceCube:2013ccs]
[5-211]
A Search for Astrophysical Burst Signals at the Sudbury Neutrino Observatory, B. Aharmim et al., Astropart.Phys. 55 (2014) 1-7, arXiv:1309.0910.
[Aharmim:2013oba]
[5-212]
A Search for Neutrino Emission from the Fermi Bubbles with the ANTARES Telescope, S. Adrian-Martinez et al. (ANTARES), Eur.Phys.J. C74 (2014) 2701, arXiv:1308.5260.
[ANTARES:2014mvh]
[5-213]
Search for time-independent neutrino emission from astrophysical sources with 3 years of IceCube data, M. G. Aartsen et al. (IceCube), Astrophys.J. 779 (2013) 132, arXiv:1307.6669.
[IceCube:2013kvf]
[5-214]
An IceCube Search for Dark Matter Annihilation in nearby Galaxies and Galaxy Clusters, M. G. Aartsen et al. (IceCube), Phys. Rev. D88 (2013) 122001, arXiv:1307.3473.
[IceCube:2013bas]
[5-215]
Search for muon neutrinos from gamma-ray bursts with the ANTARES neutrino telescope using 2008 to 2011 data, S. Adrian-Martinez et al. (ANTARES), A&A 559, A9 (2013), arXiv:1307.0304.
[ANTARES:2013ath]
[5-216]
First observation of PeV-energy neutrinos with IceCube, M. G. Aartsen et al. (IceCube), Phys. Rev. Lett. 111 (2013) 021103, arXiv:1304.5356.
[IceCube:2013cdw]
[5-217]
Ultrahigh Energy Neutrinos at the Pierre Auger Observatory, P. Abreu et al. (Pierre Auger), Adv.High Energy Phys. 2013 (2013) 708680, arXiv:1304.1630.
[PierreAuger:2013wqu]
[5-218]
First search for neutrinos in correlation with gamma-ray bursts with the ANTARES neutrino telescope, S. Adrian-Martinez et al. (ANTARES), JCAP 1303 (2013) 006, arXiv:1302.6750.
[ANTARES:2013tra]
[5-219]
Search for muon signal from dark matter annihilations in the Sun with the Baksan Underground Scintillator Telescope for 24.12 years, M.M. Boliev, S.V. Demidov, S.P. Mikheyev, O.V. Suvorova, JCAP 1309 (2013) 019, arXiv:1301.1138.
[Boliev:2013ai]
[5-220]
Search for dark matter annihilations in the Sun with the 79-string IceCube detector, R. Abbasi et al. (IceCube), Phys. Rev. Lett. 110 (2013) 131302, arXiv:1212.4097.
[IceCube:2012ugg]
[5-221]
Search for Neutrinos from Annihilating Dark Matter in the Direction of the Galactic Center with the 40-String IceCube Neutrino Observatory, R. Abbasi et al. (IceCube), arXiv:1210.3557, 2012.
[IceCube:2012khg]
[5-222]
Searches for high-energy neutrino emission in the Galaxy with the combined IceCube-AMANDA detector, R. Abbasi et al. (IceCube), Astrophys. J. 763 (2013) 33, arXiv:1210.3273.
[IceCube:2012sj]
[5-223]
Search for Point-Like Sources of Ultra-High Energy Neutrinos at the Pierre Auger Observatory and Improved Limit on the Diffuse Flux of Tau Neutrinos, P. Abreu et al. (Pierre Auger), Astrophys. J. 755 (2012) L4, arXiv:1210.3143.
[PierreAuger:2012bpb]
[5-224]
Search for Cosmic Neutrino Point Sources with Four Year Data of the ANTARES Telescope, S. Adrian-Martinez et al. (ANTARES), Astrophys. J. 760 (2012) 53, arXiv:1207.3105.
[ANTARES:2012xie]
[5-225]
A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007, S. Adrian-Martinez et al. (Antares), JCAP 1306 (2013) 008, arXiv:1205.3018.
[LIGOScientific:2012bvo]
[5-226]
Search for a correlation between ANTARES neutrinos and Pierre Auger Observatory UHECRs arrival directions, ANTARES (ANTARES), Astrophys.J. 774 (2013) 19, arXiv:1202.6661.
[ANTARES:2012uba]
[5-227]
A Search for UHE Tau Neutrinos with IceCube, R. Abbasi et al. (IceCube), Phys. Rev. D86 (2012) 022005, arXiv:1202.4564.
[IceCube:2012lak]
[5-228]
A search for ultra-high energy neutrinos in highly inclined events at the Pierre Auger Observatory, P. Abreu et al. (Pierre Auger), Phys. Rev. D84 (2011) 122005, arXiv:1202.1493.
[PierreAuger:2011cpc]
[5-229]
Coincident Searches between Gravitational Waves and High-Energy Neutrinos with the Antares and LIGO/Virgo Detectors, B. Bouhou et al. (ANTARES-LIGO-Virgo), arXiv:1201.2840, 2012.
[Bouhou:2012qf]
[5-230]
Multi-year search for dark matter annihilations in the Sun with the AMANDA-II and IceCube detectors, R. Abbasi et al. (IceCube), Phys. Rev. D85 (2012) 042002, arXiv:1112.1840.
[IceCube:2011aj]
[5-231]
Searching for soft relativistic jets in Core-collapse Supernovae with the IceCube Optical Follow-up Program, R. Abbasi et al. (IceCube), Astron. Astrophys. 539 (2012) A60, arXiv:1111.7030.
[IceCube:2011wip]
[5-232]
Supernova Relic Neutrino Search at Super-Kamiokande, K. Bays et al. (Super-Kamiokande), Phys. Rev. D85 (2012) 052007, arXiv:1111.5031.
[Super-Kamiokande:2011lwo]
[5-233]
Search for Neutrino Emission from Gamma-Ray Flaring Blazars with the ANTARES Telescope, S. Adrian-Martinez et al., Astropart.Phys. 36 (2012) 204-210, arXiv:1111.3473.
[ANTARES:2011wna]
[5-234]
An Indirect Search for WIMPs in the Sun using 3109.6 days of upward-going muons in Super-Kamiokande, T. Tanaka et al. (Kamiokande), Astrophys. J. 742 (2011) 78, arXiv:1108.3384.
[Super-Kamiokande:2011wjy]
[5-235]
Searches for periodic neutrino emission from binary systems with 22 and 40 strings of IceCube, R. Abbasi et al. (IceCube), Astrophys. J. 748 (2012) 118, arXiv:1108.3023.
[IceCube:2011nvh]
[5-236]
First Search for Point Sources of High Energy Cosmic Neutrinos with the ANTARES Neutrino Telescope, S. Adrian-Martinez et al. (Antares), Astrophys. J. 743 (2011) L14, arXiv:1108.0292.
[Antares:2011dgj]
[5-237]
IceCube Sensitivity for Low-Energy Neutrinos from Nearby Supernovae, R. Abbasi et al. (IceCube), Astron. Astrophys. 535 (2011) A109, arXiv:1108.0171.
[IceCube:2011cwc]
[5-238]
Neutrino analysis of the September 2010 Crab Nebula flare and time-integrated constraints on neutrino emission from the Crab using IceCube, J. A. Aguilar, T. Montaruli, M. Danninger (IceCube), Astrophys. J. 745 (2012) 45, arXiv:1106.3484.
[IceCube:2011aa]
[5-239]
Observational Search for PeV-EeV Tau Neutrino from GRB081203A, Y. Aita et al., Astrophys.J. 736 (2011) L12, arXiv:1106.2572.
[Aita:2011mx]
[5-240]
Updated Neutrino Flux Limits from the RICE Experiment at the South Pole, Ilya Kravchenko et al., Phys. Rev. D85 (2012) 062004, arXiv:1106.1164.
[Kravchenko:2011im]
[5-241]
A study of extraterrestrial antineutrino sources with the KamLAND detector, A. Gando et al. (KamLAND), Astrophys. J. 745 (2012) 193, arXiv:1105.3516.
[KamLAND:2011bnd]
[5-242]
A Search for a Diffuse Flux of Astrophysical Muon Neutrinos with the IceCube 40-String Detector, R. Abbasi et al. (IceCube), Phys. Rev. D84 (2011) 082001, arXiv:1104.5187.
[IceCube:2011nyf]
[5-243]
Time-Dependent Searches for Point Sources of Neutrinos with the 40-String and 22-String Configurations of IceCube, R. Abbasi (IceCube), Astrophys. J. 744 (2012) 1, arXiv:1104.0075.
[IceCube:2011ai]
[5-244]
Constraints on the Extremely-high Energy Cosmic Neutrino Flux with the IceCube 2008-2009 Data, R. Abbasi et al. (IceCube), Phys. Rev. D83 (2011) 092003, arXiv:1103.4250.
[IceCube:2011njr]
[5-245]
The First Limits on the Ultra-high Energy Neutrino Fluence from Gamma-ray Bursts, A. G. Vieregg et al., Astrophys. J. 736 (2011) 50, arXiv:1102.3206.
[Vieregg:2011ws]
[5-246]
Constraints on high-energy neutrino emission from SN 2008D, R. Abbasi et al. (IceCube), Astron. Astrophys. 527 (2011) A28, arXiv:1101.3942.
[IceCube:2011koo]
[5-247]
Search for Dark Matter from the Galactic Halo with the IceCube Neutrino Observatory, R. Abbasi et al. (IceCube), Phys. Rev. D84 (2011) 022004, arXiv:1101.3349.
[IceCube:2011kcp]
[5-248]
First search for atmospheric and extraterrestrial neutrino-induced cascades with the IceCube detector, R. Abbasi et al. (IceCube), Phys. Rev. D84 (2011) 072001, arXiv:1101.1692.
[IceCube:2011mzm]
[5-249]
Limits on Neutrino Emission from Gamma-Ray Bursts with the 40 String IceCube Detector, R. Abbasi et al. (IceCube), Phys. Rev. Lett. 106 (2011) 141101, arXiv:1101.1448.
[IceCube:2011vle]
[5-250]
Time-Integrated Searches for Point-like Sources of Neutrinos with the 40-String IceCube Detector, R. Abbasi et al. (IceCube), Astrophys. J. 732 (2011) 18, arXiv:1012.2137.
[IceCube:2010nca]
[5-251]
Low Multiplicity Burst Search at the Sudbury Neutrino Observatory, B. Aharmim et al. (SNO), Astrophys. J. 728 (2011) 83, arXiv:1011.5436.
[SNO:2010noh]
[5-252]
Erratum: Observational Constraints on the Ultra-high Energy Cosmic Neutrino Flux from the Second Flight of the ANITA Experiment, P. W. Gorham et al. (ANITA), Phys. Rev. D85 (2012) 049901, arXiv:1011.5004.
[ANITA:2010hzc]
[5-253]
Search for a diffuse flux of high-energy $\nu_\mu$ with the ANTARES neutrino telescope, J.A. Aguilar et al. (ANTARES), Phys. Lett. B696 (2011) 16-22, arXiv:1011.3772.
[ANTARES:2010qwm]
[5-254]
The first search for extremely-high energy cosmogenic neutrinos with the IceCube Neutrino Observatory, R. Abbasi et al. (IceCube), Phys. Rev. D82 (2010) 072003, arXiv:1009.1442.
[IceCube:2010hwb]
[5-255]
Search for Acoustic Signals from Ultra-High Energy Neutrinos in 1500 km^3 of Sea Water, Naoko Kurahashi, Justin Vandenbroucke, Giorgio Gratta, Phys. Rev. D82 (2010) 073006, arXiv:1007.5517.
[Kurahashi:2010ei]
[5-256]
Constraints on the flux of Ultra-High Energy neutrinos from WSRT observations, S. Buitink et al., Astron.Astrophys. 521 (2010) A47, arXiv:1004.0274.
[Buitink:2010qn]
[5-257]
LUNASKA experiments using the Australia Telescope Compact Array to search for ultra-high energy neutrinos and develop technology for the lunar Cherenkov technique, C.W. James et al., Phys. Rev. D81 (2010) 042003, arXiv:0911.3009.
[James:2009sf]
[5-258]
UHE neutrino searches using a Lunar target: First Results from the RESUN search, T. R. Jaeger, R. L. Mutel, K. G. Gayley, Astropart.Phys. 34 (2010) 293-303, arXiv:0910.5949.
[Jaeger:2009whi]
[5-259]
Improved flux limits for neutrinos with energies above 10$^{22}$ eV from observations with the Westerbork Synthesis Radio Telescope, O. Scholten et al., Phys. Rev. Lett. 103 (2009) 191301, arXiv:0910.4745.
[Scholten:2009ad]
[5-260]
Limits on a muon flux from Kaluza-Klein dark matter annihilations in the Sun from the IceCube 22-string detector, R. Abbasi et al. (IceCube), Phys. Rev. D81 (2010) 057101, arXiv:0910.4480.
[IceCube:2009jui]
[5-261]
Search for cosmic neutrino point sources with the 5-line ANTARES telescope, J. A. Aguilar et al. (Antares), arXiv:0909.1262, 2009.
[Antares:2009hoa]
[5-262]
Search for muon neutrinos from Gamma-Ray Bursts with the IceCube neutrino telescope, R. U. Abbasi et al. (IceCube), Astrophys. J. 710 (2010) 346-359, arXiv:0907.2227.
[IceCube:2009ror]
[5-263]
Search for Astrophysical Neutrino Point Sources at Super-Kamiokande, E. Thrane et al. (Super-Kamiokande), Astrophys. J. 704 (2009) 503-512, arXiv:0907.1594.
[Super-Kamiokande:2009uwx]
[5-264]
AMANDA 7-Year Multipole Analysis, Anne Schukraft, Jan-Patrick Huelss (IceCube), arXiv:0906.3942, 2009.
[Schukraft:2009tq]
[5-265]
LUNASKA Experiment Observational Limits on UHE Neutrinos from Centaurus A and the Galactic Center, C.W. James et al., Mon.Not.Roy.Astron.Soc. 410 (2011) 885, arXiv:0906.3766.
[James:2009rc]
[5-266]
First Neutrino Point-Source Results From the 22-String IceCube Detector, R. Abbasi et al. (IceCube), Astrophys. J. 701 (2009) L47-L51, arXiv:0905.2253.
[IceCube:2009hni]
[5-267]
Heavy neutrino decay at SHALON, V.G. Sinitsyna, M. Masip, S.I. Nikolsky, V.Y. Sinitsyna, arXiv:0903.4654, 2009.
[Sinitsyna:2009dn]
[5-268]
Limit on the diffuse flux of ultra-high energy tau neutrinos with the surface detector of the Pierre Auger Observatory, J. Abraham et al. (Pierre Auger), Phys. Rev. D79 (2009) 102001, arXiv:0903.3385.
[PierreAuger:2009dvq]
[5-269]
Search for high-energy muon neutrinos from the 'naked-eye' GRB 080319B with the IceCube neutrino telescope, R. Abbasi et al. (IceCube), Astrophys. J. 701 (2009) 1721-1731, arXiv:0902.0131.
[IceCube:2009xmx]
[5-270]
New Limits on the Ultra-high Energy Cosmic Neutrino Flux from the ANITA Experiment, P. Gorham et al. (ANITA), Phys. Rev. Lett. 103 (2009) 051103, arXiv:0812.2715.
[ANITA:2008wdk]
[5-271]
Search for Point Sources of High Energy Neutrinos with Final Data from AMANDA-II, R.Abbasi et al. (IceCube), Phys. Rev. D79 (2009) 062001, arXiv:0809.1646.
[IceCube:2008pnj]
[5-272]
Upper limit on the diffuse flux of UHE tau neutrinos from the Pierre Auger Observatory, J. Abraham et al. (Pierre Auger), Phys. Rev. Lett. 100 (2008) 211101, arXiv:0712.1909.
[PierreAuger:2007vvh]
[5-273]
Search for Ultra High-Energy Neutrinos with AMANDA-II, M. Ackermann et al. (IceCube), Astrophys. J. 675 (2008) 1014, arXiv:0711.3022.
[IceCube:2007vyx]
[5-274]
Study of TeV Neutrinos with Upward Showering Muons in Super-Kamiokande, S. Desai et al. (Super-Kamiokande), Astropart. Phys. 29 (2008) 42-54, arXiv:0711.0053.
[Super-Kamiokande:2007uxr]
[5-275]
Multi-year search for a diffuse flux of muon neutrinos with AMANDA-II, A. Achterberg et al. (IceCube), Phys. Rev. D76 (2007) 042008, arXiv:0705.1315.
[IceCube:2007jwc]
[5-276]
The Search for Muon Neutrinos from Northern Hemisphere Gamma-Ray Bursts with AMANDA, A. Achterberg et al. (IceCube and IPN), Astrophys. J. 674 (2008) 357-370, arXiv:0705.1186.
[IceCube:2007tsw]
[5-277]
Search for neutrino-induced cascades from gamma-ray bursts with AMANDA, A. Achterberg et al. (AMANDA), Astrophys. J. 664 (2007) 397, arXiv:astro-ph/0702265.
[IceCube:2007ayl]
[5-278]
Radio emission of highly inclined cosmic ray air showers measured with LOPES, Jelena Petrovic (LOPES), J. Phys. Conf. Ser. 39 (2006) 471-474, arXiv:astro-ph/0611225.
[LOPES:2006tip]
[5-279]
Five years of searches for point sources of astrophysical neutrinos with the AMANDA-II neutrino telescope, A. Achterberg et al. (AMANDA), Phys. Rev. D75 (2007) 102001, arXiv:astro-ph/0611063.
[IceCube:2006iit]
[5-280]
Limits on the high-energy gamma and neutrino fluxes from the SGR 1806-20 giant flare of December 27th, 2004 with the AMANDA-II detector, AMANDA (AMANDA), Phys. Rev. Lett. 97 (2006) 221101, arXiv:astro-ph/0607233.
[IceCube:2006aec]
[5-281]
High energy neutrino astronomy using upward-going muons in Super-Kamiokande-I, K. Abe et al. (Super-Kamiokande), Astrophys. J. 652 (2006) 198, arXiv:astro-ph/0606413.
[Super-Kamiokande:2006vqi]
[5-282]
Search for diffuse astrophysical neutrino flux using ultra- high energy upward-going muons in Super-Kamiokande I, M. E. C. Swanson (Super-Kamiokande), Astrophys. J. 652 (2006) 206-215, arXiv:astro-ph/0606126.
[Super-Kamiokande:2006gqz]
[5-283]
First year performance of the IceCube neutrino telescope, A. Achterberg et al. (IceCube), Astropart. Phys. 26 (2006) 155-173, arXiv:astro-ph/0604450.
[IceCube:2006tjp]
[5-284]
Constraints on cosmic neutrino fluxes from the anita experiment, S. W. Barwick et al. (ANITA), Phys. Rev. Lett. 96 (2006) 171101, arXiv:astro-ph/0512265.
[ANITA:2005gdw]
[5-285]
Search for a diffuse flux of high-energy extraterrestrial neutrinos with the NT200 neutrino telescope, V. Aynutdinov (BAIKAL), Astropart. Phys. 25 (2006) 140, arXiv:astro-ph/0508675.
[BAIKAL:2005qnn]
[5-286]
Search for extraterrestrial point sources of high energy neutrinos with AMANDA-II using data collected in 2000-2002, AMANDA (The AMANDA), Phys. Rev. D71 (2005) 077102, arXiv:astro-ph/0412347.
[AMANDA:2004heo]
[5-287]
Search for low energy neutrinos in correlation with the 8 events observed by the EXPLORER and NAUTILUS detectors in 2001, M. Aglietta et al., Astron. Astrophys. 421 (2004) 399, arXiv:astro-ph/0403207.
[Aglietta:2004ag]
[5-288]
Experimental Limit on the Cosmic Diffuse Ultra-high Energy Neutrino Flux, P. W. Gorham et al., Phys. Rev. Lett. 93 (2007) 041101, arXiv:astro-ph/0310232.
[Filonenko:2007zz]
[5-289]
FORTE satellite constraints on ultra-high energy cosmic particle fluxes, Nikolai G. Lehtinen, Peter W. Gorham, Abram R. Jacobson, Robert A. Roussel-Dupre, Phys. Rev. D69 (2004) 013008, arXiv:astro-ph/0309656.
[Lehtinen:2003xv]
[5-290]
Search for extraterrestrial point sources of neutrinos with AMANDA-II, AMANDA (AMANDA), Phys. Rev. Lett. 92 (2004) 071102, arXiv:astro-ph/0309585.
[AMANDA:2003dbe]
[5-291]
Horizontal Muons and a Search for AGN Neutrinos in Soudan 2, David Demuth et al., Astropart. Phys. 20 (2004) 533, arXiv:hep-ex/0304016.
[DeMuth:2003me]
[5-292]
Limits on diffuse fluxes of high energy extraterrestrial neutrinos with the AMANDA-B10 detector, J. Ahrens et al., Phys. Rev. Lett. 90 (2003) 251101, arXiv:astro-ph/0303218.
[Ahrens:2003ee]
[5-293]
Search for Point Sources of High Energy Neutrinos with AMANDA, J. Ahrens, X. Bai, G. Barouch, S. W. Barwick (The AMANDA), Astrophys. J. 583 (2003) 1040, arXiv:astro-ph/0208006.
[AMANDA:2002ulz]
[5-294]
Search for Neutrino-Induced Cascades with the AMANDA Detector, J. Ahrens et al. (AMANDA), Phys. Rev. D67 (2003) 012003, arXiv:astro-ph/0206487.
[AMANDA:2002usi]
[5-295]
Limits on the Ultra-High Energy Electron Neutrino Flux from the RICE Experiment, I. Kravchenko, Astropart. Phys. 20 (2003) 195, arXiv:astro-ph/0206371.
[Kravchenko:2002mm]
[5-296]
Observation of High Energy Atmospheric Neutrinos with the Antarctic Muon and Neutrino Detector Array, J. Ahrens et al. (AMANDA), Phys. Rev. D66 (2002) 012005, arXiv:astro-ph/0205109.
[AMANDA:2002pgr]
[5-297]
Search for point sources of neutrinos with KGF underground muon detectors, H. Adarkar et al., Nuovo Cim. C21 (1998) 661-666.
[Adarkar:1998px]

6 - Experiment - Talks

[6-1]
Overview of the EUSO-SPB2 Target of Opportunity program using the Cherenkov Telescope, Tobias Heibges, Jonatan Posligua, Hannah Wistrand, Claire Guepin, Mary Hall Reno, Tonia M. Venters (JEM-EUSO), PoS ICRC2023 (2023) 1134, arXiv:2310.12310.
[Heibges:2023yhn]
[6-2]
Large neutrino telescope Baikal-GVD: recent status, V. M. Aynutdinov et al. (Baikal-GVD), PoS ICRC2023 (2023) 976, arXiv:2309.16310. ICRC2023.
[Baikal-GVD:2023beh]
[6-3]
The Relevance of Muon Deflections for Neutrino Telescopes, Pascal Gutjahr, Jean-Marco Alameddine, Alexander Sandrock, Jan Soedingrekso, Mirco Hunnefeld, Wolfgang Rhode, PoS ICRC2023 (2023) 1197, arXiv:2308.13454.
[Gutjahr:2023rgn]
[6-4]
Calibration and Physics with ARA Station 1: A Unique Askaryan Radio Array Detector, Mohammad Ful Hossain Seikh et al., PoS ICRC2023 (2023) 1163, arXiv:2308.07292.
[Seikh:2023sax]
[6-5]
The IceCube Collaboration - Contributions to the 38th International Cosmic Ray Conference (ICRC2023), R. Abbasi et al. (IceCube), arXiv:2307.13047, 2023. ICRC 2023.
[IceCube:2023mwx]
[6-6]
The IceCube Collaboration - Contributions to the 37th International Cosmic Ray Conference (ICRC2021), R. Abbasi et al. (IceCube), arXiv:2107.06966, 2021. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[IceCube:2021fyh]
[6-7]
Multi-Messenger studies with the Pierre Auger Observatory, Lukas Zehrer (Pierre Auger), PoS ICHEP2020 (2021) 617, arXiv:2102.00828. 40th International Conference on High Energy physics 2020 (ICHEP2020).
[Zehrer:2020jlj]
[6-8]
Baikal-GVD: status and first results, Grigory Safronov (Baikal-GVD), PoS ICHEP2020 (2021) 606, arXiv:2012.03373. ICHEP2020.
[Baikal-GVD:2020xgh]
[6-9]
High-energy neutrino astronomy and the Baikal-GVD neutrino telescope, Dmitry Zaborov (Baikal-GVD), Phys.At.Nucl. 84 (2021) 513-518, arXiv:2011.09209. 5-th International Conference on Particle Physics and Astrophysics (ICPPA-2020), October 5-9, 2020.
[Baikal-GVD:2020irv]
[6-10]
Search for correlations of high-energy neutrinos and ultra-high energy cosmic rays, A. Barbano (IceCube, Pierre Auger, Telescope Array, ANTARES), PoS ICRC2019 (2019) 842, arXiv:2001.09057. 36th International Cosmic Ray Conference (ICRC 2019).
[Barbano:2020scg]
[6-11]
IceCube Search for Galactic Neutrino Sources based on Very High Energy Gamma-ray Observations, Ali Kheirandish, J.Phys.Conf.Ser. 1468 (2020) 012081, arXiv:2001.08524. TAUP 2019.
[Kheirandish:2020zll]
[6-12]
ANTARES search for high-energy neutrinos from TeV-emitting blazars, Markarian 421 and 501, in coincidence with HAWC gamma-ray flares, Mukharbek Organokov, Thierry Pradier, PoS ICRC2019 (2020) 972, arXiv:1911.04963. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, USA.
[Organokov:2019nbs]
[6-13]
Recent IceCube Measurements Using High Energy Neutrinos, Hans Niederhausen (IceCube), arXiv:1909.12182, 2019. EDS Blois 2019 Conference, Quy Nhon, Vietnam, June 23-28, 2019.
[Niederhausen:2019nmd]
[6-14]
Highlights from the Pierre Auger Observatory (ICRC2019), Antonella Castellina (Pierre Auger), PoS ICRC2019 (2019) 004, arXiv:1909.10791. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Castellina:2019huz]
[6-15]
Cosmic Neutrinos and the Cosmic-Ray Accelerator TXS 0506+056, Francis Halzen (IceCube), PoS ICRC2019 (2020) 021, arXiv:1909.09468. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Halzen:2019lxc]
[6-16]
Recent results from the VERITAS multimessenger program, Marcos Santander (VERITAS), PoS ICRC2019 (2019) 782, arXiv:1909.05228. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Santander:2019cax]
[6-17]
Results from IceCube, Dawn R. Williams (IceCube), Int.J.Mod.Phys.Conf.Ser. 46 (2018) 1860048, arXiv:1909.05173. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Williams:2018kpe]
[6-18]
Astrophysical Tau Neutrino Identification with IceCube Waveforms, Logan Wille, Donglian Xu (IceCube), PoS ICRC2019 (2020) 1036, arXiv:1909.05162. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Wille:2019pub]
[6-19]
Search for Astrophysical Tau Neutrinos with an Improved Double Pulse Method, Maximilian Meier, Jan Soedingrekso (IceCube), PoS ICRC2019 (2020) 960, arXiv:1909.05127. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Meier:2019ypu]
[6-20]
MAGIC and MWL monitoring of the blazar TXS 0506+056 in the 2018/2019 season, Konstancja Satalecka et al., PoS ICRC2019 (2019) 783, arXiv:1909.04938. Proceedings of the ICRC 2019.
[MAGIC:2019heg]
[6-21]
Ultra-high energy neutrino searches and GW follow-up with the Pierre Auger Observatory, Michael Schimp (Pierre Auger), Nucl.Part.Phys.Proc. 306-308 (2019) 146-153, arXiv:1908.09676. 11th Cosmic Ray International Seminar (CRIS 2018) 'Entering the Era of Multi-Messenger Astronomy'.
[Schimp:2019zky]
[6-22]
Measurement of the Diffuse Astrophysical Muon-Neutrino Spectrum with Ten Years of IceCube Data, Joeran Stettner (IceCube), PoS ICRC2019 (2020) 1017, arXiv:1908.09551. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Stettner:2019tok]
[6-23]
Application of Deep Neural Networks to Event Type Classification in IceCube, Maximilian Kronmueller, Theo Glauch (IceCube), PoS ICRC2019 (2020) 937, arXiv:1908.08763. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Kronmueller:2019jzh]
[6-24]
Search for Neutrinos from Populations of Optical Transients, Robert Stein (IceCube), PoS ICRC2019 (2020) 1016, arXiv:1908.08547. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Stein:2019ivm]
[6-25]
IceCube Search for Galactic Neutrino Sources based on HAWC Observations of the Galactic Plane, Ali Kheirandish, Joshua Wood, arXiv:1908.08546, 2019. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Kheirandish:2019zev]
[6-26]
Searches for steady neutrino emission from 3FHLblazars using eight years of IceCube data from theNorthern hemisphere, Matthias Huber (IceCube), PoS ICRC2019 (2020) 916, arXiv:1908.08458. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Huber:2019lrm]
[6-27]
H.E.S.S. searches for TeV gamma rays associated to high-energy neutrinos, Fabian Schussler et al. (H.E.S.S.), PoS ICRC2019 (2020) 787, arXiv:1908.08364. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[HESS:2019eoh]
[6-28]
First search for GeV neutrinos from bright gamma-ray solar flares using the IceCube Neutrino Observatory, Gwenhael de Wasseige (IceCube), PoS ICRC2019 (2020) 1075, arXiv:1908.08300. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[deWasseige:2019int]
[6-29]
Probing neutrino emission at GeV energies from compact binary mergers with IceCube, Gwenhael de Wasseige, Imre Bartos, Krijn de Vries, Erin O'Sullivan (IceCube), PoS ICRC2019 (2020) 865, arXiv:1908.08299. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[deWasseige:2019xcl]
[6-30]
Searches for point-like sources of cosmic neutrinos with 11 years of ANTARES data, Julien Aublin, Giulia Illuminati, Sergio Navas (ANTARES), PoS ICRC2019 (2020) 920, arXiv:1908.08248. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Aublin:2019zzn]
[6-31]
A search for IceCube events in the direction of ANITA neutrino candidates, Alex Pizzuto, Anastasia Barbano, Teresa Montaruli, Justin Vandenbroucke (IceCube), PoS ICRC2019 (2020) 981, arXiv:1908.08060. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Barbano:2019yrk]
[6-32]
A Search for IceCube Neutrinos from the First 33 Detected Gravitational Wave Events, Raamis Hussain, Justin Vandenbroucke, Joshua Wood (IceCube), PoS ICRC2019 (2020) 918, arXiv:1908.07706. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Hussain:2019xzb]
[6-33]
ANTARES and IceCube combined search for neutrino point-like and extended sources in the Southern Sky, Giulia Illuminati, PoS ICRC2019 (2020) 919, arXiv:1908.07439. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Illuminati:2019oag]
[6-34]
Eleven Year Search for Supernovae with the IceCube Neutrino Observatory, Robert Cross, Alexander Fritz, Spencer Griswold (IceCube), PoS ICRC2019 (2020) 889, arXiv:1908.07249. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Cross:2019jpb]
[6-35]
IceCube search for high-energy neutrinos produced in the precursor stages of gamma-ray bursts, Paul Coppin, Nick van Eijndhoven (IceCube), PoS ICRC2019 (2020) 859, arXiv:1908.06653. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Coppin:2019tpi]
[6-36]
Measurement of the Diffuse Muon Neutrino Flux using Starting Track Events in IceCube, Manuel Silva, Sarah Mancina (IceCube), PoS ICRC2019 (2020) 1010, arXiv:1908.06586. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Silva:2019fnq]
[6-37]
Ten years of All-sky Neutrino Point-Source Searches, Tessa Carver (IceCube), PoS ICRC2019 (2020) 851, arXiv:1908.05993. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Carver:2019jcd]
[6-38]
AMON: TeV Gamma and Neutrino Coincidence Alerts from HAWC and IceCube subthreshold data, Hugo Alberto Ayala Solares (HAWC,IceCube), PoS ICRC2019 (2020) 841, arXiv:1908.05990. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[AyalaSolares:2019rqp]
[6-39]
Searching for Time-Dependent Neutrino Emission from Blazars with IceCube, Erin O'Sullivan, Chad Finley (IceCube), PoS ICRC2019 (2020) 973, arXiv:1908.05526. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[OSullivan:2019rpq]
[6-40]
First Double Cascade Tau Neutrino Candidates in IceCube and a New Measurement of the Flavor Composition, Juliana Stachurska (IceCube), PoS ICRC2019 (2020) 1015, arXiv:1908.05506. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Stachurska:2019wfb]
[6-41]
The Baikal-GVD neutrino telescope: First results of multi-messenger studies, A. D. Avrorin et al. (Baikal-GVD), PoS ICRC2019 (2020) 1013, arXiv:1908.05450. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Baikal-GVD:2019fko]
[6-42]
Search for cascade events with Baikal-GVD, A. D. Avrorin et al. (Baikal-GVD), PoS ICRC2019 (2020) 873, arXiv:1908.05430. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Baikal-GVD:2019dvn]
[6-43]
Neutrinos from Primordial Black Hole Evaporation, Pranav Dave, Ignacio Taboada (IceCube), PoS ICRC2019 (2020) 863, arXiv:1908.05403. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Dave:2019epr]
[6-44]
A Catalog of Astrophysical Neutrino Candidates for IceCube, Chujie Chen, Charles Cardot (IceCube), PoS ICRC2019 (2020) 852, arXiv:1908.05290. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Chen:2019ome]
[6-45]
Searching for High-Energy Neutrino Emission from TeV Pulsar Wind Nebulae, Qinrui Liu, Ali Kheirandish (IceCube), PoS ICRC2019 (2020) 944, arXiv:1908.05279. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Liu:2019iga]
[6-46]
Search for high-energy neutrinos from AGN cores, Federica Bradascio (IceCube), PoS ICRC2019 (2020) 845, arXiv:1908.05170. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Bradascio:2019xdd]
[6-47]
Search for neutrino emission in IceCube archival data from the direction of IceCube alert events, Martina Karl (IceCube), PoS ICRC2019 (2020) 929, arXiv:1908.05162. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Karl:2019sfa]
[6-48]
Investigation of Ultra-Luminous Infrared Galaxies as Obscured High-Energy Neutrino Source Candidates, P. Correa, K. D. de Vries, N. van Eijndhoven (IceCube), PoS ICRC2019 (2020) 860, arXiv:1908.05137. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Correa:2019ljp]
[6-49]
Multi-messenger Gravitational-Wave + High-Energy Neutrino Searches with LIGO, Virgo, and IceCube, Azadeh Keivani, Doga Veske, Stefan Countryman, Imre Bartos, K. Rainer Corley, Zsuzsa Marka, Szabolcs Marka (IceCube), PoS ICRC2019 (2020) 930, arXiv:1908.04996. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Keivani:2019smf]
[6-50]
Neutrino source searches and a realtime neutrino alert stream in the southern sky with IceCube starting tracks, Sarah Mancina, Manuel Silva (IceCube), PoS ICRC2019 (2019) 954, arXiv:1908.04869. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Mancina:2019hsp]
[6-51]
Searching for neutrino emission from hard X-ray sources with IceCube, Marcos Santander (IceCube), PoS ICRC2019 (2020) 1002, arXiv:1908.04862. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Santander:2019yeo]
[6-52]
Correlation of IceCube neutrinos with the 2MASS Redshift Survey, Stephen Sclafani, Naoko Kurahashi Neilson (IceCube), PoS ICRC2019 (2020) 1006, arXiv:1908.04857. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Sclafani:2019erv]
[6-53]
Searches for Ultra-High Energy Neutrinos with ANITA, Cosmin Deaconu (ANITA), PoS ICRC2019 (2019) 867, arXiv:1908.00923. ICRC19.
[Deaconu:2019rdx]
[6-54]
Characterization of the Astrophysical Diffuse Neutrino Flux with IceCube High-Energy Starting Events, Austin Schneider (IceCube), PoS ICRC2019 (2020) 1004, arXiv:1907.11266. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Schneider:2019ayi]
[6-55]
Recent Results from The Askaryan Radio Array, P. Allison et al. (ARA), PoS ICRC2019 (2020) 858, arXiv:1907.11125. International Cosmic Ray Conference, Madison, WI, 2019.
[ARA:2019uvt]
[6-56]
Highlights from the 7 year High Energy Starting Event sample in Icecube, Kareem Farrag (IceCube), arXiv:1906.09623, 2019. Eighth Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, May 12-16, 2019.
[Farrag:2019jlo]
[6-57]
IceCube High Energy Starting Events at 7.5 Years - New Measurements of Flux and Flavor, Juliana Stachurska (IceCube), EPJ Web Conf. 207 (2019) 02005, arXiv:1905.04237. VLVNT2018.
[Stachurska:2019srh]
[6-58]
Search for a correlation between the UHECRs measured by the Pierre AugerObservatory and the Telescope Array and the neutrino candidate events fromIceCube and ANTARES, J. Aublin et al. (ANTARES), EPJ Web Conf. 210 (2019) 03003, arXiv:1905.03997. UHECR 2018.
[ANTARES:2019ufk]
[6-59]
Search for astrophysical PeV gamma rays from point sources with Carpet-2, D.D. Dzhappuev et al., EPJ Web Conf. 207 (2019) 03004, arXiv:1812.02663. VLVNT-2018 workshop, Dubna, October 2-4, 2018.
[Dzhappuev:2018bnl]
[6-60]
The Pierre Auger Observatory: review of latest results and perspectives, Dariusz Gora et al. (Pierre Auger), Universe 4 (2018) 128, arXiv:1811.00343. 7th International Conference on New Frontiers in Physics (ICNFP 2018).
[Gora:2018xty]
[6-61]
Recent Results from ANITA, Cosmin Deaconu (ANITA), arXiv:1810.00820, 2018. CIPANP2018.
[Deaconu:2018twx]
[6-62]
Upward-Pointing Cosmic-Ray-like Events Observed with ANITA, Andres Romero-Wolf et al. (ANITA), PoS ICRC2017 (2018) 935, arXiv:1810.00439. International Cosmic Ray Conference 2017, Busan, South Korea.
[ANITA:2017qmn]
[6-63]
Astrophysical Neutrinos with IceCube, Spencer R. Klein (IceCube), arXiv:1809.07873, 2018. CIPANP 2018.
[Klein:2018fnn]
[6-64]
Search for high-energy neutrino emission from Mrk 421 and Mrk 501 with the ANTARES neutrino telescope, Mukharbek Organokov, Thierry Pradier (ANTARES), arXiv:1809.05777, 2018. NEUTRINO 2018.
[Organokov:2018tmu]
[6-65]
Analysis of vertex-contained high energy neutrino events for the KM3NeT/ARCA detector, Konstantinos Pikounis, Ekaterini Tzamariudaki (KM3NeT), arXiv:1808.08761, 2018.
[Pikounis:2018yjs]
[6-66]
The Pierre Auger Observatory: new results and prospects, L. Cazon (Pierre Auger), arXiv:1808.00745, 2018. 29th Rencontres de Blois, 2017.
[Cazon:2018uko]
[6-67]
ANNIE Phase II Reconstruction Techniques, Evangelia Drakopoulou (ANNIE), arXiv:1803.10624, 2018. NuPhys2017 (London, 20-22 December 2017).
[Drakopoulou:2018wzj]
[6-68]
Constrains on the extragalactic origin of IceCube's neutrinos using HAWC, Ignacio Taboada, Chun Fai Tung, Joshua Wood (HAWC), PoS ICRC2017 (2018) 663, arXiv:1801.09545. 35th International Cosmic Ray Conference (ICRC2017), Bexco, Busan, Korea.
[Taboada:2017ioc]
[6-69]
The IceCube Neutrino Observatory, the Pierre Auger Observatory and the Telescope Array: Joint Contribution to the 35th International Cosmic Ray Conference (ICRC 2017), IceCube, Pierre Auger, Telescope Array, arXiv:1801.01854, 2018. ICRC 2017.
[Veberic:2018kwc]
[6-70]
The ANTARES Collaboration: Contributions to ICRC 2017 Part I: Neutrino astronomy (diffuse fluxes and point sources), A. Albert et al. (ANTARES), arXiv:1711.01251, 2017.
[ANTARES:2017toy]
[6-71]
Search for tau neutrinos at PeV energies and beyond with the MAGIC telescopes, D. Gora et al. (MAGIC), PoS EPS-HEP2017 (2017) 017, arXiv:1710.04165. EPS-HEP 2017, European Physical Society conference on High Energy Physics, 5-12 July 2017, Venice, Italy.
[Gora:2017pre]
[6-72]
The IceCube Neutrino Observatory - Contributions to ICRC 2017 Part II: Properties of the Atmospheric and Astrophysical Neutrino Flux, M. G. Aartsen et al. (IceCube), arXiv:1710.01191, 2017.
[IceCube:2017zho]
[6-73]
The IceCube Neutrino Observatory - Contributions to ICRC 2017 Part I: Searches for the Sources of Astrophysical Neutrinos, M. G. Aartsen et al. (IceCube), arXiv:1710.01179, 2017.
[IceCube:2017qeh]
[6-74]
Searching for VHE gamma-ray emission associated with IceCube astrophysical neutrinos using FACT, H.E.S.S., MAGIC, and VERITAS, M. Santander et al. (H.E.S.S.s), PoS ICRC2017 (2017) 618, arXiv:1708.08945. International Cosmic Ray Conference 2017, Busan, South Korea.
[Santander:2017zkl]
[6-75]
Sensitivity for tau neutrinos at PeV energies and beyond with the MAGIC telescopes, D. Gora et al., PoS ICRC2017 (2017) 992, arXiv:1708.06147. 35th International Cosmic Ray Conference (ICRC 2017), Bexco, Busan, Korea.
[Gora:2017lsh]
[6-76]
Astrophysical Multimessenger Observatory Network (AMON): Science, Infrastructure, and Status, Azadeh Keivani, Hugo Ayala, James DeLaunay, PoS ICRC2017 (2017) 629, arXiv:1708.04724. 35th International Cosmic Ray Conference (ICRC2017), Bexco, Busan, Korea.
[Keivani:2017hif]
[6-77]
H.E.S.S. observations following multi-messenger alerts in real-time, Fabian Schussler et al., PoS ICRC2017 (2017) 653, arXiv:1708.00466. 35th International Cosmic Ray Conference (ICRC2017).
[HESS:2017vry]
[6-78]
Neutrino Astronomy with IceCube and Beyond, Kevin J. Meagher (IceCube), IAU Symp. 324 (2016) 322-329, arXiv:1705.00383. NuPhys2016 (London, 12-14 December 2016).
[Meagher:2016eeq]
[6-79]
Improved Detection of Supernovae with the IceCube Observatory, Lutz Kopke (IceCube), J.Phys.Conf.Ser. 1029 (2018) 012001, arXiv:1704.03823. 8th international symposium on large TPCs for low-energy rare event detection, Paris, Dec. 5-7, 2016.
[Kopke:2017req]
[6-80]
The Fermi Sky in a Multimessenger Context, Felicia Krauss (Fermi-LAT), PoS NOW2016 (2017) 042, arXiv:1703.01825. Neutrino Oscillation Workshop (NOW 2016): International Workshop on Neutrino and Astroparticle Physics (NOW 2016) Otranto (Lecce), Italy, September 4-11, 2016.
[Krauss:2017hgj]
[6-81]
Exploring the Universe with Neutrinos: Recent Results from IceCube, Donglian Xu (IceCube), Nucl.Part.Phys.Proc. 287-288 (2017) 139-142, arXiv:1702.05244. 14th International Workshop on Tau Lepton Physics.
[Xu:2017iku]
[6-82]
Search for Astrophysical Tau Neutrinos with IceCube, Donglian Xu (IceCube), PoS ICHEP2016 (2016) 452, arXiv:1702.05238. 38th International Conference on High Energy Physics.
[Xu:2016zxj]
[6-83]
Multimessenger studies with the VERITAS Atmospheric Cherenkov Observatory, M. Santander (VERITAS), Pos ICHEP2016 (2017), arXiv:1612.04301. ICHEP 2016.
[Santander:2016chw]
[6-84]
Results from the ANTARES Neutrino Telescope, M. Spurio (ANTARES), Nucl.Part.Phys.Proc. 291-293 (2017) 175-182, arXiv:1610.02201. CRIS2016 (10th Cosmic Ray International Seminar) - Ischia (NA) Italy, July 4-8, 2016.
[Spurio:2016ttp]
[6-85]
Recent results from the ARIANNA neutrino experiment, Anna Nelles (ARIANNA), EPJ Web Conf. 135 (2017) 05002, arXiv:1609.07193. ARENA2016, Groningen, The Netherlands.
[Nelles:2016fxe]
[6-86]
Measurement of horizontal air showers with the Auger Engineering Radio Array, Olga Kambeitz (Pierre Auger), EPJ Web Conf. 135 (2017) 01015, arXiv:1609.05456. ARENA2016, Groningen, The Netherlands.
[Kambeitz:2016rqu]
[6-87]
Search for sharp neutrino features from dark matter decay, Chaimae El Aisati (IceCube), arXiv:1606.00754, 2016. 51st Rencontres de Moriond, EW session.
[ElAisati:2016dur]
[6-88]
Neutrino Physics and Astrophysics with IceCube, Teresa Montaruli (IceCube), Nucl.Part.Phys.Proc. 279-281 (2016) 23-30, arXiv:1512.07978. CRIS2015, Gallipoli, Italy.
[Montaruli:2015six]
[6-89]
ICRC 2015 proceedings: First combined search for neutrino point-sources in the Southern Sky with the ANTARES and IceCube neutrino telescopes, ANTARES, IceCube (IceCube, ANTARES), arXiv:1511.05025, 2015. 34th International Cosmic Ray Conference, 30 July - 6 August 2015 (The Hague, The Netherlands).
[ANTARES:2015cex]
[6-90]
The IceCube Neutrino Observatory, the Pierre Auger Observatory and the Telescope Array: Joint Contribution to the 34th International Cosmic Ray Conference (ICRC 2015), M.G. Aartsen et al. (IceCube), arXiv:1511.02109, 2015. 34th International Cosmic Ray Conference, 30 July - 6 August 2015, The Hague, The Netherlands.
[IceCube:2015xib]
[6-91]
The IceCube Neutrino Observatory - Contributions to ICRC 2015 Part V: Neutrino Oscillations and Supernova Searches, M. G. Aartsen et al. (IceCube), arXiv:1510.05227, 2015. 34th International Cosmic Ray Conference, The Hague 2015.
[IceCube:2015ucz]
[6-92]
The IceCube Neutrino Observatory - Contributions to ICRC 2015 Part IV: Searches for Dark Matter and Exotic Particles, M. G. Aartsen et al. (IceCube), arXiv:1510.05226, 2015. 34th International Cosmic Ray Conference, The Hague 2015.
[IceCube:2015hle]
[6-93]
The IceCube Neutrino Observatory - Contributions to ICRC 2015 Part III: Cosmic Rays, M. G. Aartsen et al. (IceCube), arXiv:1510.05225, 2015. 34th International Cosmic Ray Conference, The Hague 2015.
[IceCube:2015qec]
[6-94]
The IceCube Neutrino Observatory - Contributions to ICRC 2015 Part II: Atmospheric and Astrophysical Diffuse Neutrino Searches of All Flavors, M. G. Aartsen et al. (IceCube), arXiv:1510.05223, 2015. 34th International Cosmic Ray Conference, The Hague 2015.
[IceCube:2015fuw]
[6-95]
The IceCube Neutrino Observatory - Contributions to ICRC 2015 Part I: Point Source Searches, M. G. Aartsen et al. (IceCube), arXiv:1510.05222, 2015. 34th International Cosmic Ray Conference, The Hague 2015.
[IceCube:2015lny]
[6-96]
The Antares Collaboration : Contributions to the 34th International Cosmic Ray Conference (ICRC 2015, The Hague), ANTARES (The ANTARES), arXiv:1510.04508, 2015. 34th ICRC 2015 in The Hague (The Netherlands), July 30 to August 6, 2015.
[ANTARES:2015rfu]
[6-97]
Report from the Multi-Messenger Working Group at UHECR-2014 Conference, Timo Karg et al. (IceCube), JPS Conf.Proc. 9 (2016) 010021, arXiv:1510.02050. UHECR 2014, Springdale, Utah, USA.
[Karg:2015gxa]
[6-98]
Searching for TeV gamma-ray emission associated with IceCube high-energy neutrinos using VERITAS, M. Santander (VERITAS and IceCube), PoS ICRC2015 (2016) 785, arXiv:1509.00517. International Cosmic Ray Conference 2015 (ICRC2015), The Hague, Netherlands.
[Santander:2015kka]
[6-99]
Livetime and sensitivity of the ARIANNA Hexagonal Radio Array, S.W.Barwick et al. (ARIANNA), arXiv:1509.00115, 2015. ICRC2015.
[ARIANNA:2015uwx]
[6-100]
Performance of the ARIANNA Hexagonal Radio Array, S.W.Barwick et al. (ARIANNA), PoS ICRC2015 (2016) 1149, arXiv:1509.00109. ICRC2015.
[ARIANNA:2015rcw]
[6-101]
Limit on an Isotropic Diffuse Gamma-Ray Population with HAWC, John Pretz (HAWC), PoS ICRC2015 (2016) 820, arXiv:1508.04091. 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands.
[Pretz:2015wma]
[6-102]
AMON Searches for Jointly-Emitting Neutrino + Gamma-Ray Transients, A. Keivani, D. B. Fox, G. Tesic, D. F. Cowen, J. Fixelle, PoS ICRC2015 (2015) 786, arXiv:1508.01315. 34th International Cosmic Ray Conference (ICRC 2015), The Hague, The Netherlands.
[Keivani:2015kna]
[6-103]
The ANTARES Neutrino Telescope, Chiara Perrina (ANTARES), arXiv:1505.00224, 2015. Prospects in Neutrino Physics Conference, 15 - 17 December, 2014, held at Queen Mary University of London, UK.
[Perrina:2015mka]
[6-104]
Analysis of the cumulative neutrino flux from Fermi-LAT blazar populations using 3 years of IceCube data, Thorsten Glusenkamp (IceCube), EPJ Web Conf. 121 (2016) 05006, arXiv:1502.03104. RICAP-14, Noto, Sicily, Sept. 30th - Oct. 3rd 2014.
[Glusenkamp:2015jca]
[6-105]
ANTARES constraints to a Galactic component of the IceCube cosmic neutrino flux, Maurizio Spurio, EPJ Web Conf. 121 (2016) 05007, arXiv:1501.01551. RICAP-14 'The Roma International Conference on Astroparticle Physics', Noto (Italy) Oct. 2014.
[Spurio:2015pma]
[6-106]
Recent results of the ANTARES Neutrino Telescope, Juan Jose Hernandez-Rey, AIP Conf. Proc. 1666 (2015) 040002, arXiv:1410.7720. Neutrino 2014.
[Hernandez-Rey:2014ssa]
[6-107]
IceCube - status and recent results, A. Karle (IceCube), arXiv:1401.4496, 2014. XVth Workshop on Neutrino Telescopes, held in Venice, March 2013.
[Karle:2014bta]
[6-108]
The Antares Collaboration : Contributions to the 33st International Cosmic Ray Conference (ICRC 2013, Rio de Janeiro), ANTARES (ANTARES), arXiv:1312.4308, 2013. 33rd ICRC 2013 in Rio de Janeiro (Brazil), July 2013.
[ANTARES:2013rzm]
[6-109]
Transient Point Source Analyses in the ANTARES Neutrino Telescope, Agustin Sanchez-Losa (ANTARES), Nucl.Instrum.Meth. A742 (2014) 195-198, arXiv:1311.7596. RICAP 2013.
[SanchezLosa:2013tny]
[6-110]
Recent results from the ANTARES neutrino telescope, V. Van Elewyck (ANTARES), Nucl.Instrum.Meth. A742 (2014) 63-70, arXiv:1311.7002. RICAP-13 Roma International Conference on Astroparticle Physics (Rome, 22-24 May 2013).
[VanElewyck:2013xja]
[6-111]
Recent Highlights from IceCube, IceCube (Spencer R. Klein), Braz. J. Phys. 44 (2014) 540-549, arXiv:1311.6519. 2013 Intl. Cosmic Ray Conf.
[Klein:2013nbr]
[6-112]
The highest energy neutrinos: first evidence for cosmic origin, Francis Halzen, Nuovo Cim. C037 (2014) 117-132, arXiv:1311.6350. Pontecorvo 2013.
[Halzen:2013dva]
[6-113]
Search for High Energy GRB Neutrino Emission with ANTARES, Julia Schmid (ANTARES), arXiv:1311.4069, 2013. 48th Rencontres de Moriond, La Thuile 2013.
[Schmid:2013hya]
[6-114]
ANTARES Deep Sea Neutrino Telescope Results, Salvatore Mangano (ANTARES), AIP Conf.Proc. 1604 (2014) 405-412, arXiv:1310.8451.
[Mangano:2013gaa]
[6-115]
The IceCube Neutrino Observatory Part VI: Ice Properties, Reconstruction and Future Developments, M. G. Aartsen et al. (IceCube), arXiv:1309.7010, 2013. 33nd International Cosmic Ray Conference, Rio de Janeiro 2013.
[IceCube:2013ntj]
[6-116]
The IceCube Neutrino Observatory Part V: Neutrino Oscillations and Supernova Searches, M. G. Aartsen et al. (IceCube), arXiv:1309.7008, 2013. 33nd International Cosmic Ray Conference, Rio de Janeiro 2013.
[IceCube:2013lje]
[6-117]
The IceCube Neutrino Observatory Part IV: Searches for Dark Matter and Exotic Particles, M. G. Aartsen et al. (IceCube), arXiv:1309.7007, 2013. 33nd International Cosmic Ray Conference, Rio de Janeiro 2013.
[IceCube:2013ydv]
[6-118]
The IceCube Neutrino Observatory Part III: Cosmic Rays, M. G. Aartsen et al. (IceCube), arXiv:1309.7006, 2013. 33nd International Cosmic Ray Conference, Rio de Janeiro 2013.
[IceCube:2013yse]
[6-119]
The IceCube Neutrino Observatory Part II: Atmospheric and Diffuse UHE Neutrino Searches of All Flavors, M. G. Aartsen et al. (IceCube), arXiv:1309.7003, 2013. 33nd International Cosmic Ray Conference, Rio de Janeiro 2013.
[IceCube:2013aef]
[6-120]
The IceCube Neutrino Observatory Part I: Point Source Searches, M. G. Aartsen et al. (IceCube), arXiv:1309.6979, 2013. 33nd International Cosmic Ray Conference, Rio de Janeiro 2013.
[IceCube:2013hck]
[6-121]
Observation of TeV-PeV cosmic ray anisotropy with IceCube, IceTop and AMANDA, Paolo Desiati (IceCube), Nucl.Instrum.Meth. A742 (2014) 199-202, arXiv:1308.0246. RICAP 2013 Conference, Roma, Italy, May 22 - 24, 2013.
[Desiati:2013lea]
[6-122]
The Pierre Auger Observatory: results on the highest energy particles, Ruben Conceicao (Pierre Auger), arXiv:1307.3956, 2013. Time and Matter 2013, Venice, Italy.
[Conceicao:2013cfa]
[6-123]
Updated limits on diffuse fluxes of cosmic neutrinos with 2008-2011 ANTARES data, Simone Biagi (ANTARES), arXiv:1305.6442, 2013. 2013 Rencontres de Moriond.
[Biagi:2013mya]
[6-124]
Fundamental Physics with Charged Particle Measurements at the Cherenkov Telescope Array, J. Vandenbroucke, B. Humensky, J. Holder, R. A. Ong, arXiv:1305.0022, 2013. 2013 Snowmass Community Summer Study. Work groups: Cosmic Frontier 2 (WIMP Dark Matter Indirect Detection), Cosmic Frontier 6 (Cosmic Particles and Fundamental Physics).
[Vandenbroucke:2013hwa]
[6-125]
Towards Determining the energy of the UHECRs observed by the ANITA detector, Konstantin Belov (ANITA), AIP Conf. Proc. 1535 (2013) 209, arXiv:1303.2172. accepted to AIP conference proceedings.
[Belov:2013gsb]
[6-126]
Search for a neutrino emission from the Fermi Bubbles with the ANTARES telescope, Simone Biagi (ANTARES), arXiv:1303.2015, 2013. 2012 Fermi Symposium proceedings - eConf C121028.
[Biagi:2013uha]
[6-127]
Neutrino searches with the IceCube telescope, Juan A. Aguilar (IceCube), Nucl. Phys. Proc. Suppl. 237-238 (2013) 250-252, arXiv:1301.6504. NOW 2012.
[Aguilar:2013tc]
[6-128]
LUNASKA neutrino search with the Parkes and ATCA telescopes, J. D. Bray et al., AIP Conf.Proc. 1535 (2013) 21, arXiv:1301.6490. ARENA 2012 (Erlangen, Germany).
[Bray:2013ta]
[6-129]
Searching for Neutrino Radio Flashes from the Moon with LOFAR, Stijn Buitink et al. (LOFAR), AIP Conf.Proc. 1535 (2013) 27, arXiv:1301.5185. ARENA 2012.
[LOFAR:2013bso]
[6-130]
Recent results from the ANTARES deep sea neutrino telescope, Paschal Coyle, Nucl. Phys. Proc. Suppl. 235-236 (2013) 339-345, arXiv:1212.2416.
[Coyle:2012wv]
[6-131]
Indirect dark matter search with the ANTARES neutrino telescope, Guillaume Lambard, PoS DSU2012 (2012) 042, arXiv:1212.1290. VIII International Workshop on the Dark Side of the Universe, June 10-15, 2012, Rio de Janeiro, Brazil.
[Lambard:2012pr]
[6-132]
Recent Results from the ANTARES Neutrino Telescope, Giorgio Giacomelli, arXiv:1211.5516, 2012.
[Giacomelli:2012cf]
[6-133]
Limits on spin-dependent WIMP-proton cross-sections from the neutrino experiment at the Baksan Underground Scintillator Telescope, Olga Suvorova, Musabi Boliev, Sergei Demidov, Stanislav Mikheyev, PoS DSU2012 (2012) 043, arXiv:1211.2545. VIII International Workshop on the Dark Side of the Universe, June 10-15, 2012, Rio de Janeiro, Brazil.
[Suvorova:2012ay]
[6-134]
IceCube Observatory: Neutrinos and the Origin of Cosmic Rays, Paolo Desiati (IceCube), arXiv:1210.7703, 2012. XIV Vulcano Workshop, Vulcano (ME), Italy, May 28 - June 2, 2012.
[Desiati:2012df]
[6-135]
Results from the IceCube Experiment - Neutrino 2012, Greg Sullivan (IceCube), Nucl. Phys. Proc. Suppl. 235-236 (2013) 346-351, arXiv:1210.4195.
[Sullivan:2012nbf]
[6-136]
Highlights from the Pierre Auger Observatory, Karl-Heinz Kampert (Pierre Auger), arXiv:1207.4823, 2012. ICRC 2011, Beijing.
[Kampert:2012vh]
[6-137]
Recent results from IceCube on neutrinos and cosmic rays, Sebastian Boser (IceCube), arXiv:1205.6405, 2012. XLVII Rencontres de Moriond, 'EW Interactions and Unified Theories'.
[Boser:2012px]
[6-138]
First results from the ANTARES neutrino telescope, Th. Eberl (ANTARES), eConf C1111101 (2011) 1, arXiv:1205.2173.
[Eberl:2011ygg]
[6-139]
Search for neutrino emission from gamma-ray sources with the Antares Telescope, Ciro Bigongiari (ANTARES), Int. J. Mod. Phys. Conf. Ser. 08 (2012) 307-310, arXiv:1204.5928. HEPROIII, Barcelona, June 27 - July 1, 2011.
[Bigongiari:2012mz]
[6-140]
Astrophysical point source search with the ANTARES neutrino telescope, Salvatore Mangano (ANTARES), Nucl. Phys.B, Proc.Suppl.229-232 2012 (2012) 548, arXiv:1204.5873.
[Collaboration:2012mda]
[6-141]
Selected results from the ANTARES neutrino telescope, Salvatore Mangano (ANTARES), arXiv:1204.5869, 2012.
[Mangano:2012mc]
[6-142]
Search for Dark Matter in the Sun with the ANTARES Neutrino Telescope in the CMSSM and mUED frameworks, J.D. Zornoza (ANTARES), Nucl.Instrum.Meth. A725 (2013) 76-79, arXiv:1204.5290. VLVNT 2011.
[Zornoza:2012ebo]
[6-143]
Dark matter search with the ANTARES neutrino telescope, J. D. Zornoza (ANTARES), Nucl.Instrum.Meth. A692 (2012) 123-126, arXiv:1204.5066. RICAP 2011.
[deDiosZornoza:2012ms]
[6-144]
Search for neutrino emission in gamma-ray flaring blazars with the ANTARES telescope, Agustin Sanchez-Losa, Nucl.Instrum.Meth. A725 (2013) 60-63, arXiv:1204.1447. VLvNT 2011.
[SanchezLosa:2012kgq]
[6-145]
Recent Results of the ANTARES Neutrino Telescope, Juan Jose Hernandez-Rey, J. Phys. Conf. Ser. 375 (2012) 052035, arXiv:1202.3283. TAUP 2011.
[Hernandez-Rey:2012dun]
[6-146]
The First Year IceCube-DeepCore Results, Chang Hyon Ha (IceCube), J. Phys. Conf. Ser. 375 (2012) 052034, arXiv:1201.0801. TAUP 2011.
[Ha:2012np]
[6-147]
Particle Physics in Ice with IceCube DeepCore, T. DeYoung (IceCube), Nucl. Instrum. Meth. A692 (2012) 180-183, arXiv:1112.1053. 3rd RICAP.
[DeYoung:2011ke]
[6-148]
Contributions to the 32nd International Cosmic Ray Conference (ICRC 2011) by the ANTARES collaboration, S. Adrian-Martinez et al. (ANTARES), Nucl. Instrum. Meth. A662 (2011) S216-S221, arXiv:1112.0478. ICRC2011.
[Bogazzi:2011zza]
[6-149]
IceCube - Astrophysics and Astroparticle Physics at the South Pole, R. Abbasi et al. (IceCube), arXiv:1111.5188, 2011. 32nd International Cosmic Ray Conference, Beijing 2011.
[IceCube:2011ab]
[6-150]
The IceCube Neutrino Observatory I: Point Source Searches, R. Abbasi et al. (IceCube), arXiv:1111.2741, 2011. 32nd International Cosmic Ray Conference, Beijing 2011.
[IceCube:2011jye]
[6-151]
The IceCube Neutrino Observatory VI: Neutrino Oscillations, Supernova Searches, Ice Properties, R. Abbasi et al. (IceCube), arXiv:1111.2731, 2011. 32nd International Cosmic Ray Conference, Beijing 2011.
[IceCube:2011vzz]
[6-152]
Searches for Point Sources of High Energy Cosmic Neutrino with the ANTARES Telescope, D. Dornic (ANTARES), PoS EPS-HEP2011 (2011) 045, arXiv:1111.0783. EPS-HEP2011.
[Dornic:2011wf]
[6-153]
Search for transient neutrino sources with IceCube, A. Franckowiak (IceCube), arXiv:1111.0335, 2011. 2011 Fermi Symposium - eConf C110509.
[Franckowiak:2011hm]
[6-154]
Search for neutrino emission of gamma-ray flaring blazars with the ANTARES telescope, D. Dornic (ANTARES), arXiv:1110.6809, 2011. 2011 Fermi Symposium proceedings - eConf C110509.
[Dornic:2011uy]
[6-155]
IceCube: Status and Results, Thomas K. Gaisser (IceCube), arXiv:1108.1838, 2011. XIV International Workshop on Neutrino Telescopes, Venice, March, 2011.
[Gaisser:2011iz]
[6-156]
IceCube as a discovery observatory for physics beyond the standard model, K. Helbing (IceCube), arXiv:1107.5227, 2011. 46th Rencontres de Moriond.
[Helbing:2011wf]
[6-157]
Supernova Neutrino Detection with IceCube, Lutz Kopke (IceCube), J. Phys. Conf. Ser. 309 (2011) 012029, arXiv:1106.6225. 5th Symposium on Large TPCs for Low Energy Rare Events and Workshop on Neutrinos from Supernovae, Paris, Dec. 16-17, 2010.
[Kopke:2011xb]
[6-158]
ANTARES: Status, first results and multi-messenger astronomy, Manuela Vecchi (ANTARES), arXiv:1105.6242, 2011. Rencontres de Moriond (EW session) La Thuile, Italy, March 2011.
[Vecchi:2011bu]
[6-159]
Results from the ANTARES neutrino telescope, Giorgio Giacomelli (ANTARES), arXiv:1105.1245, 2011. WASET International Conference, Venice April 27, 2011.
[Giacomelli:2011id]
[6-160]
Search for neutrinos from Gamma-Ray Bursts with ANTARES, Eleonora Presani, AIP Conf. Proc. 1358 (2011) 361-364, arXiv:1104.4033. GRB 2010.
[Presani:2011ng]
[6-161]
Upper Limit on the Diffuse Flux of Cosmic $\nu_\mu$ with the ANTARES Neutrino Telescope, Simone Biagi, Nucl. Phys. Proc. Suppl. 212-213 (2011) 109-114, arXiv:1101.3670. CRIS 2010, Catania, Italy.
[Biagi:2011kg]
[6-162]
Upper Limit on the Diffuse $\nu_\mu$ Flux with the ANTARES Telescope, Simone Biagi, Nuclear Physics B (Proc. Suppl. ) 229-232 (2012) 534, arXiv:1101.2974. Neutrino 2010, Athens, Greece.
[Biagi:2011wt]
[6-163]
Latest results from the Pierre Auger Observatory, Esteban Roulet, PoS HRMS2010 (2010) 034, arXiv:1101.1825. Quarks, Strings and the Cosmos, Hector Rubinstein Memorial Symposium, August 9-11 2010.
[Roulet:2010ghx]
[6-164]
Multi-Messenger Astrophysics with IceCube, M. Ribordy et al. (IceCube), Nuovo Cim. C034N3 (2011) 113-121, arXiv:1101.1187. SciNeGHE 2010, Sept. 8-10, Trieste.
[Ribordy:2011hy]
[6-165]
High Energy Neutrino Astronomy: IceCube 22 and 40 strings, E. Resconi et al. (IceCube), Nucl. Phys. Proc. Suppl. 229-232 (2012) 267-273, arXiv:1012.0415. XXIV International Conference on Neutrino Physics and Astrophysics 2010.
[Collaboration:2010yc]
[6-166]
Observation of the anisotropy in arrival direction of Cosmic Rays with IceCube, S. Toscano et al. (IceCube), Nucl.Phys.Proc.Suppl. 212-213 (2011) 201-206, arXiv:1011.5428.
[Toscano:2010gu]
[6-167]
Search for a neutrino flux from LS I +61 303 based on a time dependent model with IceCube, Levent Demirors et al. (IceCube), Nucl. Phys. Proc. Suppl. 229-232 (2012) 532, arXiv:1011.5102. Neutrino 2010.
[Demirors:2012dmk]
[6-168]
The IceCube neutrino observatory: Status and initial results, Timo Karg et al. (IceCube), Astrophys. Space Sci. Trans. 7 (2011) 157-162, arXiv:1011.5027. ECRS 2010, Turku, Finland, August 2010.
[Karg:2011yh]
[6-169]
The IceTop experiment in 2010, Todor Stanev (IceCube), Italian Phys.Soc.Proc. 103 (2011) 663-668, arXiv:1011.1879. Vulcano 2010.
[Stanev:2010zw]
[6-170]
Directional correlations between UHECRs and neutrinos observed with IceCube, Robert Lauer (IceCube), Astrophys. Space Sci. Trans. 7 (2011) 201-205, arXiv:1011.1093. ECRS 2010.
[Lauer:2010hz]
[6-171]
Search for neutrino point sources with the IceCube Neutrino Observatory, Juan A. Aguilar (IceCube), arXiv:1010.6263, 2010. Vulcano Workshop 2010.
[Aguilar:2010oii]
[6-172]
Neutrino Astrophysics and Galactic Cosmic Ray Anisotropy in IceCube, Paolo Desiati (IceCube), arXiv:1007.2621, 2010. Beyond the Standard Model of Particle Physics, Cosmology and Astrophysics (Beyond 2010), Cape Town, South Africa (2010).
[Desiati:2010cz]
[6-173]
Searching for High Energy Diffuse Astrophysical Muon Neutrinos with IceCube, Sean Grullon, arXiv:1005.4962, 2010. 2010 Lake Louise Winter Institute.
[Grullon:2010fa]
[6-174]
Antares completed: First selected results, Eleonora Presani (ANTARES), Nucl. Phys. Proc. Suppl. 188 (2009) 270-272, arXiv:1005.3734.
[Presani:2009zz]
[6-175]
The Antares Neutrino Telescope and Multi-Messenger Astronomy, Thierry Pradier (ANTARES), Class. Quant. Grav. 27 (2010) 194004, arXiv:1004.5579. 14th Gravitational Wave Data Analysis Workshop (GWDAW-14) in Roma - January 26th-29th, 2010.
[Pradier:2010mr]
[6-176]
The Pierre Auger Project and Enhancements, A. Etchegoyen, U. Frohlich, A. Lucero, I. Sidelnik, B. Wundheiler (Pierre Auger), AIP Conf. Proc. 1265 (2010) 129-138, arXiv:1004.2537. VIII Latin American Symposium on Nuclear Physics and Applications December 15-19, 2009, Santiago, Chile.
[Etchegoyen:2010uj]
[6-177]
IceCube, A. Karle (IceCube), arXiv:1003.5715, 2010. 31st ICRC, Lodz, Poland, July 2009.
[Karle:2010xx]
[6-178]
IceCube and KM3NeT: Lessons and Relations, Christian Spiering, Nucl. Instrum. Meth. A626-627 (2011) S48-S52, arXiv:1003.2590. 2009 VLVNT Meeting, Athens, Greece.
[Spiering:2010dx]
[6-179]
IceCube: physics, status, and future, Klas Hultqvist, IceCube, Nucl. Instrum. Meth. A626-627 (2011) S6-S12, arXiv:1003.2300. 4th International Workshop on Very Large Volume Neutrino Telescopes.
[Hultqvist:2010xy]
[6-180]
The ANTARES Deep-Sea Neutrino Telescope: Status and First Results, Paschal Coyle (ANTARES), arXiv:1002.0754, 2010.
[Coyle:2010zm]
[6-181]
The ANTARES Collaboration: contributions to the 31st International Cosmic Ray Conference (ICRC 2009), Lodz, Poland, July 2009, ANTARES (ANTARES), arXiv:1002.0701, 2010.
[ANTARES:2010nla]
[6-182]
Search for Dark Matter from the Galactic Halo with IceCube, Carsten Rott (IceCube), arXiv:0912.5183, 2009. CCAPP Symposium 2009, Columbus OH, USA, October 2009.
[Rott:2009hr]
[6-183]
Recent results from the Pierre Auger Observatory, James W. Cronin, arXiv:0911.4714, 2009. Blois2009.
[Cronin:2009dy]
[6-184]
Search for neutrinos from Gamma-Ray Bursts with the Baikal neutrino telescope NT200, A. Avrorin (Baikal), arXiv:0910.4327, 2009. 31th ICRC, Lodz, Poland, July 2009.
[Baikal:2009evy]
[6-185]
Recent Results from IceCube and AMANDA, T. DeYoung (IceCube), arXiv:0910.3644, 2009. DPF-2009, Detroit, MI, July 2009, eConf C090726.
[DeYoung:2009uk]
[6-186]
Acoustic search for high-energy neutrinos in Lake Baikal: status and perspectives, V. Aynutdinov et al., arXiv:0910.0678, 2009. 31st ICRC, Lodz, Poland, July 2009.
[Aynutdinov:2009bs]
[6-187]
A Search For Atmospheric Neutrino-Induced Cascades with IceCube, Michelangelo D'Agostino (IceCube), arXiv:0910.0215, 2009. 31st ICRC, Lodz 2009.
[DAgostino:2009bdj]
[6-188]
Survey of the Sun in the Lake Baikal Neutrino Experiment, Zh.-A.Dzhilkibaev (Baikal), arXiv:0909.5589, 2009. 31st ICRC, Lodz, Poland, July 2009.
[Dzhilkibaev:2009jm]
[6-189]
Search for a diffuse flux of high-energy neutrinos with the Baikal neutrino telescope NT200, Zh.-A. Dzhilkibaev (Baikal), arXiv:0909.5562, 2009. 31st ICRC, Lodz, Poland, July 2009.
[Dzhilkibaev:2009ja]
[6-190]
First search for extraterrestrial neutrino-induced cascades with IceCube, J. Kiryluk (IceCube), arXiv:0909.0989, 2009. 31st International Cosmic Ray Conference (ICRC 2009) proceedings, Lodz, Poland, 7-15 2009.
[Kiryluk:2009gp]
[6-191]
Optical follow-up of high-energy neutrinos detected by IceCube, A. Franckowiak et al. (IceCube), arXiv:0909.0631, 2009. 31st ICRC, Lodz, Poland, July 2009.
[Franckowiak:2009yt]
[6-192]
Search for neutrino flares from point sources with IceCube, J. L. Bazo Alba, E. Bernardini, R. Lauer (IceCube), arXiv:0908.4209, 2009. 31st ICRC, Lodz, Poland, July 2009.
[BazoAlba:2009ywa]
[6-193]
Search for neutrinos from transient sources with the ANTARES telescope and optical follow-up observations, D. Dornic et al. (TAROT), arXiv:0908.0804, 2009. 31st ICRC, Lodz, Polan, July 2009.
[ANTARES:2009vqd]
[6-194]
Supernova Search with the AMANDA / IceCube Detectors, Thomas Kowarik, Timo Griesel, Alexander Piegsa (Icecube), arXiv:0908.0441, 2009. 31st ICRC, Lodz, Poland, July 2009.
[Kowarik:2009qr]
[6-195]
Search for High Energetic Neutrinos from Supernova Explosions with AMANDA, Dirk Lennarz, Jan-Patrick Huls, Christopher Wiebusch (IceCube), arXiv:0907.4621, 2009. 31st ICRC, Lodz, Poland, July 2009.
[Lennarz:2009xr]
[6-196]
Results of LUNASKA lunar Cherenkov observations at the ATCA, C. W. James et al., arXiv:0907.4332, 2009. 31st International Cosmic Ray Conference, Lodz, Poland, 2009.
[James:2009qh]
[6-197]
Physics Capabilities of the IceCube DeepCore Detector, Christopher Wiebusch (IceCube), arXiv:0907.2263, 2009. 31st ICRC, Lodz, Poland, July 2009.
[Wiebusch:2009jf]
[6-198]
Search for the Kaluza-Klein Dark Matter with the AMANDA/IceCube Detectors, Matthias Danninger, Kahae Han (IceCube), arXiv:0906.3969, 2009. ICRC (2009).
[Danninger:2009uf]
[6-199]
IceCube: Neutrinos Associated with Cosmic Rays, Francis Halzen, AIP Conf. Proc. 1182 (2009) 14-21, arXiv:0906.3470. CIPANP 09, Torrey Pines, San Diego, CA.
[Halzen:2009iu]
[6-200]
Searches for WIMP Dark Matter from the Sun with AMANDA, James Braun, Daan Hubert (IceCube), arXiv:0906.1615, 2009. ICRC (2009).
[Braun:2009fr]
[6-201]
Recent Results of Point Source Searches with the IceCube Neutrino Telescope, Erik Strahler (IceCube), arXiv:0905.4705, 2009. Lake Louise Winter Institute 2009.
[Strahler:2009fb]
[6-202]
First results on the search for dark matter in the Sun with the ANTARES neutrino telescope, Gordon Lim (ANTARES), arXiv:0905.2316, 2009. ICRC09.
[Lim:2009jy]
[6-203]
Status and first results of the ANTARES neutrino telescope, G. Carminati (ANTARES), arXiv:0905.1373, 2009. Rencontres de Moriond 2009 EW.
[Carminati:2009gg]
[6-204]
ANTARES neutrino telescope: status, first results and sensitivity for the diffuse neutrino flux, M. Spurio et al. (ANTARES), Int. J. Mod. Phys. D18 (2009) 1615-1619, arXiv:0904.3836. 2nd Heidelberg Workshop on 'High-Energy Gamma-rays and Neutrinos from Extra-Galactic Sources', 13-16/01/2009.
[Spurio:2009vh]
[6-205]
Extended search for point sources of neutrinos below and above the horizon: Covering energies from TeV to EeV with IceCube, Robert Lauer et al. (IceCube), Int. J. Mod. Phys. D18 (2009) 1587-1590, arXiv:0903.5434. 2nd Heidelberg workshop 'High-Energy Gamma-rays and Neutrinos from Extra-Galactic Sources', 2009.
[Lauer:2009yv]
[6-206]
Muons in IceCube, P. Berghaus (IceCube), Nucl. Phys. Proc. Suppl. 196 (2009) 261-266, arXiv:0902.0021. XV International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI 2008), Paris, France, September 1-6, 2008.
[Berghaus:2009jb]
[6-207]
The hunt for cosmic neutrino sources with IceCube, Elisa Bernardini (IceCube), AIP Conf. Proc. 1112 (2009) 138-147, arXiv:0901.1049. Scineghe08, Padova, Italy (2008).
[Bernardini:2009pm]
[6-208]
Status and First Results of the Acoustic Detection Test System AMADEUS, Robert Lahmann (ANTARES), Nucl. Instrum. Meth. A604 (2009) S158-S163, arXiv:0901.0321. ARENA 2008.
[Lahmann:2009ub]
[6-209]
Neutrino Astronomy with the IceCube Observatory and Implications for Astroparticle Physics, Paolo Desiati et al. (IceCube), arXiv:0812.4004, 2008. Vulcano Workshop 2008, Vulcano (ME), Italy (2008).
[Desiati:2008cy]
[6-210]
Search for neutrino point sources with IceCube 22-strings, J. L. Bazo Alba (IceCube), Nucl. Phys. Proc. Suppl. 188 (2009) 267-269, arXiv:0811.4110. Neutrino Oscillation Workshop (NOW) 2008, Conca Specchiulla, Italy.
[BazoAlba:2008rdo]
[6-211]
The Pierre Auger Observatory - a new stage in the study of the ultra-high energy cosmic rays, Serguei Vorobiov (Pierre Auger), arXiv:0811.0752, 2008. 15th International Seminar QUARKS-2008 on High-Energy Physics in Sergiev Posad, Russia, 23-29 May, 2008.
[Vorobiov:2008sc]
[6-212]
Results from Seven Years of AMANDA-II, Tyce DeYoung (IceCube), J. Phys. Conf. Ser. 136 (2008) 022046, arXiv:0810.4513. Neutrino 2008, Christchurch, New Zealand.
[DeYoung:2008nc]
[6-213]
Status report of the NuMoon experiment, O. Scholten et al., arXiv:0810.3426, 2008. Arena 2008, Rome, 25-27 June 2008.
[Scholten:2008ka]
[6-214]
Recent $\nu$s from IceCube, Spencer R. Klein, for the IceCube Collaboration (IceCube), J. Phys. Conf. Ser. 136 (2008) 022050, arXiv:0810.0573. Neutrino 2008.
[Klein:2008mw]
[6-215]
The NuMoon experiment: first results, S. Buitink et al., arXiv:0808.1878, 2008. XXth rencontres de Blois, 2008.
[Buitink:2008bc]
[6-216]
The Pierre Auger Observatory: Results on Ultra-High Energy Cosmic Rays, Johannes Bluemer (Pierre Auger), J. Phys.Soc.Jap. 78 (2009) 114, arXiv:0807.4871. International Workshop on Advances in Cosmic Ray Science, Waseda University, Shinjuku, Tokyo, Japan, March 2008.
[Bluemer:2008fm]
[6-217]
Latest Results from HiRes, D. R. Bergman et al. (HiRes), arXiv:0807.2814, 2008. 20th Recontres de Blois, Blois, France, May 2008.
[Bergman:2008at]
[6-218]
Neutrino Physics with the IceCube Detector, J. Kiryluk et al. (IceCube), arXiv:0806.1717, 2008. Lake Louise Winter Institute 2008, February 18-23 2008, Alberta, Canada.
[Kiryluk:2008dm]
[6-219]
The IceCube Cosmological Connection: Status and prospects of the polar neutrino observatory, M. Ribordy et al. (IceCube), arXiv:0805.3546, 2008. Rencontres de Moriond 2008.
[Ribordy:2008hc]
[6-220]
The ANTARES Neutrino Telescope: first results, Thierry Pradier, for the ANTARES Collaboration (ANTARES), arXiv:0805.2545, 2008. 43rd.
[Pradier:2008iv]
[6-221]
Particle astrophysics from the cold: Results and perspectives of IceCube, C. de los Heros (IceCube), arXiv:0802.0147, 2008. First AFI Symposium, From the Vacuum to the Universe, Innsbruck, 19-20/10/2007.
[delosHeros:2008rbw]
[6-222]
Contributions to The 10th International Conference on Topics in Astroparticle and Underground Physics (TAUP) 2007, Sendai, Japan, Sep. 11-15, 2007, R. Abbasi et al. (IceCube), arXiv:0712.3524, 2007.
[Collaboration:2007rk]
[6-223]
The IceCube Collaboration: contributions to the 30th International Cosmic Ray Conference (ICRC 2007), M. Ackermann et al. (IceCube), arXiv:0711.0353, 2007.
[Ahrens:2007zzc]
[6-224]
A prototype device for acoustic neutrino detection in Lake Baikal, N.M. Budnev (BAIKAL), arXiv:0710.3113, 2007. 30th ICRC, Merida, Mexico, July 2007.
[BAIKAL:2007elv]
[6-225]
The Baikal Neutrino Telescope: Selected Physics Results, R. Wischnewski (BAIKAL), Conf.Proc. C070703 (2008) 1265-1268, arXiv:0710.3064. 30th ICRC, Merida, Mexico, July 2007.
[BAIKAL:2007cip]
[6-226]
The Baikal Neutrino Telescope: Status and plans, R. Wischnewski (BAILKAL), arXiv:0710.3063, 2007. 30th ICRC, Merida, Mexico, July 2007.
[Baikal:2007qfl]
[6-227]
The ANTARES detector: background sources and effects on detector performance, S. Escoffier (ANTARES), arXiv:0710.0527, 2007. 30th ICRC, Merida, Mexico, July 2007.
[Escoffier:2007pq]
[6-228]
The ANTARES neutrino telescope: a status report, A. Kouchner et al. (ANTARES), arXiv:0710.0272, 2007. ICRC 2007.
[Kouchner:2007hr]
[6-229]
Expected discovery potential and sensitivity of the ANTARES neutrino telescope to neutrino point-like sources, J.A. Aguilar (ANTARES), arXiv:0710.0252, 2007. ICRC 2007.
[AguilarSanchez:2007hh]
[6-230]
Neutrino Triggered Target of Opportunity (NToO) test run with AMANDA-II and MAGIC, M. Ackermann et al. (IceCube), arXiv:0709.2640, 2007. 30th ICRC, Merida, Mexico.
[Ackermann:2007cz]
[6-231]
Tau neutrino search with the MAGIC telescope, M. Gaug et al., arXiv:0709.1462, 2007. 30th ICRC, Merida Mexico, July 2007.
[Gaug:2007fpa]
[6-232]
HiRes Estimates and Limits for Neutrino Fluxes at the Highest Energies, K. Martens (High Resolution Fly's Eye), arXiv:0707.4417, 2007. Lepton Photon 2007.
[Martens:2007ff]
[6-233]
Limits to the diffuse flux of UHE tau neutrinos at EeV energies from the Pierre Auger Observatory, O. Blanch Bigas, for the Pierre Auger Collaboration (Pierre Auger), arXiv:0706.1658, 2007. 30th International Cosmic Ray Conference, July 3 - 11, 2007, Merida, Yucatan, Mexico.
[BlanchBigas:2007tp]
[6-234]
First Results from AMANDA using the TWR System, Andrea Silvestri et al. (IceCube), arXiv:astro-ph/0701319, 2007. International School of Cosmic Ray Astrophysics, 15th Course: 'Astrophysics at Ultra-high Energies', Erice, Italy, 20-27 June 2006.
[Silvestri:2007hi]
[6-235]
Icecube, the World's Largest Dark Matter Detector, Hagar Landsman, arXiv:astro-ph/0612239, 2006. IDM 2006.
[Landsman:2006mc]
[6-236]
Neutrino astronomy with IceCube and AMANDA, Gary C. Hill et al. (IceCube), Nucl. Phys. Proc. Suppl. 221 (2011) 103-109, arXiv:astro-ph/0611773. Neutrino 2006, Santa Fe, June 2006.
[Hill:2006mk]
[6-237]
IceCube: Performance, Status, and Future, Carsten Rott et al. (IceCube), Nucl. Phys. B, Proc. Suppl. 175-176 (2008) 409-414, arXiv:astro-ph/0611726. XIV International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI 2006) in Weihai, China, August 15-22, 2006.
[Rott:2006jm]
[6-238]
IceCube : Toward a km^3 Neutrino Telescope, Paolo Desiati, IceCube (IceCube), arXiv:astro-ph/0611603, 2006. ECRS 2006, Lisbon, Portugal (2006).
[Desiati:2006qc]
[6-239]
Radiowave Neutrino Detection, Dave Besson, J. Phys. Conf. Ser. 81 (2007) 012026, arXiv:astro-ph/0611365. ARENA06 Conference Summary Talk, Northumbria, UK (July 1, 2006).
[Besson:2006if]
[6-240]
The BAIKAL Neutrino Experiment: From NT200 to NT200+, R. Wischnewski (BAIKAL), arXiv:astro-ph/0609743, 2006. 2nd Workshop on Very Large Volume Neutrino Telescopes (VLVNT2), Catania, Italy, 8.-11. November 2005.
[BAIKAL:2006nib]
[6-241]
BAIKAL Experiment: main results obtained with the neutrino telescope NT200, Zh.-A. Dzhilkibae, Nucl. Instrum. Meth. A567 (2006) 423-427, arXiv:astro-ph/0609711. 2nd VLVNT Workshop on Very Large Volume Neutrino Telescope (VLVNT2), Catania, Italy, 8-11 Nov. 2005.
[BAIKAL:2006bvx]
[6-242]
Status of IceCube in 2005, Albrecht Karle et al. (IceCube), Nucl. Instrum. Meth. A567 (2006) 438-443, arXiv:astro-ph/0608139. VLVnT2, Oct. 2005, Catania, Italy.
[Karle:2006ef]
[6-243]
LVD highlights, Marco Selvi et al. (LVD), arXiv:hep-ex/0608061, 2006. Vulcano Workshop 2006 'Frontier Objects in Astrophysics and Particle Physics'.
[Selvi:2006bi]
[6-244]
Neutrino Astronomy at the South Pole, P.A. Toale et al. (IceCube), arXiv:astro-ph/0607003, 2006. 2006 Rencontres de Moriond, Electroweak Interactions.
[Toale:2006ti]
[6-245]
Neutrino detectors in ice: Results and perspectives, Adam Bouchta (IceCube), Frascati Phys.Ser. 42 (2006) 87-101, arXiv:astro-ph/0606235. 20th Rencontres de Physique de La Vallee d'Aoste: Results and Perspective in Particle Physics, La Thuile, Aosta Valley, Italy, 5-12 Mar 2006.
[Bouchta:2006rt]
[6-246]
From AMANDA to IceCube, Per Olof Hulth et al. (IceCube), arXiv:astro-ph/0604374, 2006. NO-VE 2006, Neutrino Oscillations in Venice, Italy, February 7-10, 2006.
[Hulth:2006ny]
[6-247]
Status report of the ANTARES experiment, Y. Becherini (ANTARES), J. Phys. Conf. Ser. 39 (2006) 444-446, arXiv:astro-ph/0603570. TAUP 2005, Zaragoza, Spain.
[Becherini:2005rv]
[6-248]
Neutrino Astronomy at the South Pole: latest Results from AMANDA-II, Paolo Desiati, IceCube (IceCube), AIP Conf. Proc. 842 (2006) 983-985, arXiv:astro-ph/0601571. PANIC05, Oct. 24-28, 2005, Santa Fe, NM.
[Desiati:2006xt]
[6-249]
First Results from IceCube, Spencer R. Klein et al. (IceCube), AIP Conf. Proc. 842 (2006) 971-976, arXiv:astro-ph/0601269. PANIC05, Oct. 24-28, 2005, Santa Fe, NM.
[Klein:2006in]
[6-250]
Neutrino-Induced Cascades From GRBs With AMANDA-II, B. Hughey, I. Taboada et al. (IceCube), arXiv:astro-ph/0509570, 2005. 29th ICRC, Pune, India.
[Hughey:2005ye]
[6-251]
A Search for High-energy Muon Neutrinos from the Galactic Plane with AMANDA-II, J. L. Kelley et al. (IceCube), arXiv:astro-ph/0509546, 2005. 29th ICRC, Pune, India.
[Kelley:2005py]
[6-252]
The IceCube collaboration: Contributions to the 29th international cosmic ray conference (ICRC 2005), Pune, India, Aug. 2005, IceCube (IceCube), arXiv:astro-ph/0509330, 2005.
[Besson:2005qs]
[6-253]
From AMANDA to IceCube, Mathieu Ribordy (IceCube), Phys. Atom. Nucl. 69 (2006) 1899-1907, arXiv:astro-ph/0509322. 5th International Conference on Non-accelerator New Physics (NANP 05), Dubna, Russia, 20-25 June 2005.
[IceCube:2005hmk]
[6-254]
Search for a diffuse flux of high-energy neutrinos with the NT200 neutrino telescope, R. Wischnewski et al. (BAIKAL), arXiv:astro-ph/0507712, 2005. 29th International Cosmic Ray Conference (ICRC) 2005, Pune, India.
[Baikal:2005sag]
[6-255]
The Baikal neutrino experiment: from NT200 to NT200+, L. Kuzmichev et al. (BAIKAL), Nucl. Instrum. Meth. A567 (2006) 433-437, arXiv:astro-ph/0507709. 29th International Cosmic Ray Conference (ICRC) 2005, Pune, India.
[Baikal:2005vlo]
[6-256]
The Baikal Neutrino Telescope - Results and Plans, R. Wischnewski et al. (BAIKAL), Int. J. Mod. Phys. A20 (2005) 6932, arXiv:astro-ph/0507698. 19th European Cosmic Ray Symposium (ECRS) 2004, Florence, Italy.
[Baikal:2005jow]
[6-257]
High-Energy Neutrino Astronomy with the Super-Kamiokande Detector, A. Habig (Super-Kamiokande), arXiv:astro-ph/0507051, 2005. 29th ICRC, Pune, India.
[Habig:2005fc]
[6-258]
Recent Results from the AMANDA-II neutrino telescope, Andreas Gross (AMANDA), arXiv:astro-ph/0505278, 2005. 40th Rencontres de Moriond on Electroweak Interactions and Unified Theories, La Thuile, Italy, 5-12 Mar 2005.
[Gross:2005ec]
[6-259]
New results from the Antarctic Muon And Neutrino Detector Array, Kurt Woschnagg et al. (AMANDA), Nucl. Phys. Proc. Suppl. 143 (2005) 343, arXiv:astro-ph/0409423. XXIst International Conference on Neutrino Physics and Astrophysics, Paris, June 14-19, 2004.
[AMANDA:2004lpc]
[6-260]
AMANDA: Status and latest Results, Mathieu Ribordy et al. (AMANDA), arXiv:hep-ex/0405035, 2004. 39th Rencontres de Moriond on Electroweak Interactions and Unified Theories, LaThuile, Italy, 21-28 Mar 2004.
[AMANDA:2004xpv]
[6-261]
The Baikal Neutrino Telescope: Results, Plans, Lessons, Christian Spiering (BAIKAL), arXiv:astro-ph/0404096, 2004. VLVNT Workshop, Oct 5-8, Amsterdam.
[BAIKAL:2004pjz]
[6-262]
Upward showering muons in Super-Kamiokande, A. Habig (Super-Kamiokande), 2004. HEAD 2004. http://neutrino.d.umn.edu/~habig/sk-showering.pdf.
[Habig-HEAD2004]
[6-263]
High-Energy Neutrino Astronomy: from AMANDA to Icecube, F. Halzen, IAU Symp. 2 (2003) 44, arXiv:astro-ph/0311004. IAU XXV General Assembly, Sydney, Australia, July 2003.
[Halzen:2003ve]
[6-264]
Neutrino Astronomy at the South Pole: Status of the AMANDA Experiment, Paolo Desiati (AMANDA), Frascati Phys.Ser. 30 (2003) 45-62, arXiv:astro-ph/0306536. Les Rencontres de Physique de la Vallee d'Aoste, March 9-15 2003, La Thuile (AO), Italy.
[Desiati:2003qj]
[6-265]
Recent Results from the RICE Experiment at the South Pole, I. Kravchenko et al. (RICE), Nucl. Instrum. Meth. A662 (2012) S42-S45, arXiv:astro-ph/0306408.
[Kravchenko:2003tc]
[6-266]
Recent Results from the AMANDA Experiment, P. Niessen (AMANDA), arXiv:astro-ph/0306209, 2003. 38th Rencontres of Moriond (Electroweak Interactions and Unified Theories) - 2003.
[AMANDA:2003thj]
[6-267]
Results from the BAIKAL neutrino telescope, R. Wischnewski (BAIKAL), arXiv:astro-ph/0305302, 2003. 28th International Cosmic Ray Conference, Tsukuda, Japan, July 31 - August 7, 2003.
[BAIKAL:2003zrl]
[6-268]
Status of the BAIKAL neutrino project, G.V. Domogatskii (BAIKAL), arXiv:astro-ph/0211571, 2002. XXth International Conference on Neutrino Physics and Astrophysics (Neutrino 2002), Munich, Germany, May 25-30, 2002.
[Baikal:2002wvt]
[6-269]
Neutrino Physics and Astrophysics with the MACRO Experiment at the Gran Sasso Lab, G. Giacomelli (MACRO), Braz. J. Phys. 33 (2003) 211, arXiv:hep-ex/0210006. 25th Meeting of the Nuclear Division of the Brasilian Physical Society, S. Pedro, Brasil, 1-4 September 2002.
[Giacomelli:2002nn]
[6-270]
Auger: A large air shower array and neutrino telescope, A. Letessier-Selvon (Auger), Nucl. Phys. Proc. Suppl. 118 (2003) 399, arXiv:astro-ph/0208526. Neutrino 2002 conference.
[Letessier-Selvon:2002qtv]
[6-271]
ANTARES sensitivity to diffuse high energy neutrino fluxes, A. Romeyer (ANTARES), arXiv:hep-ph/0205285, 2002. 37th Rencontres de Moriond on Electroweak Interactions and Unified Theories, Les Arcs, France, 9-16 Mar 2002.
[Romeyer:2002ur]
[6-272]
The AMANDA-II Neutrino-Telescope, R. Wischnewski (AMANDA), Nucl. Phys. Proc. Suppl. 110 (2002) 510-512, arXiv:astro-ph/0204268. TAUP2001, LNGS/Italy, September 2001.
[Wischnewski:2002wy]

7 - Experiment - Detector

[7-1]
Two Watts is All You Need: Enabling In-Detector Real-Time Machine Learning for Neutrino Telescopes Via Edge Computing, Miaochen Jin, Yushi Hu, Carlos A. Arguelles, arXiv:2311.04983, 2023.
[Jin:2023xts]
[7-2]
Trigger-Level Event Reconstruction for Neutrino Telescopes Using Sparse Submanifold Convolutional Neural Networks, Felix J. Yu, Jeffrey Lazar, Carlos A. Arguelles, PoS ICRC2023 (2023) 1004, arXiv:2303.08812.
[Yu:2023ehc]
[7-3]
Simulation study on the optical processes at deep-sea neutrino telescope sites, Fan Hu et al., Nucl.Instrum.Meth.A 1054 (2023) 168367, arXiv:2302.05032.
[Hu:2023ife]
[7-4]
GraphNeT: Graph neural networks for neutrino telescope event reconstruction, Andreas Sogaard, Rasmus F. Orsoe, Leon Bozianu, Morten Holm, Kaare Endrup Iversen, Tim Guggenmos, Martin Ha Minh, Philipp Eller, Troels C. Petersen, J.Open Source Softw. 8 (2023) 4971, arXiv:2210.12194.
[Sogaard:2022qgg]
[7-5]
Simulation of deflection uncertainties on directional reconstructions of muons using PROPOSAL, Pascal Gutjahr et al., Eur. Phys. J. C 82 (2022) 1143, arXiv:2208.11902. [Erratum: Eur.Phys.J.C 83, 12 (2023)].
[Gutjahr:2022quk]
[7-6]
Deep learning reconstruction of the neutrino direction and energy from in-ice radio detector data, C. Glaser, S. McAleer, S. Stjarnholm, P. Baldi, S. W. Barwick, Astropart.Phys. 145 (2023) 102781, arXiv:2205.15872.
[Glaser:2022lky]
[7-7]
First-principle calculation of birefringence effects for in-ice radio detection of neutrinos, Nils Heyer, Christian Glaser, Eur.Phys.J.C 83 (2023) 124, arXiv:2205.06169.
[Heyer:2022ttn]

8 - Phenomenology

[8-1]
Ultra-light Dark Matter Limits from Astrophysical Neutrino Flavor, Carlos A. Arguelles, Kareem Farrag, Teppei Katori, arXiv:2404.10926, 2024.
[Arguelles:2024cjj]
[8-2]
Neutrino and Gamma-Ray Signatures of Inelastic Dark Matter Annihilating outside Neutron Stars, Javier F. Acevedo, Joseph Bramante, Qinrui Liu, Narayani Tyagi, arXiv:2404.10039, 2024.
[Acevedo:2024ttq]
[8-3]
A correlation between hard X-rays and neutrinos in radio-loud and radio-quiet AGN, Emma Kun, Imre Bartos, Julia Becker Tjus, Peter L. Biermann, Anna Franckowiak, Francis Halzen, Santiago del Palacio, Jooyun Woo, arXiv:2404.06867, 2024.
[Kun:2024meq]
[8-4]
First Search for High-Energy Neutrino Emission from Galaxy Mergers, Subhadip Bouri, Priyank Parashari, Mousumi Das, Ranjan Laha, arXiv:2404.06539, 2024.
[Bouri:2024ctc]
[8-5]
The neutrino background from non-jetted active galactic nuclei, P. Padovani, R. Gilli, E. Resconi, C. Bellenghi, F. Henningsen, arXiv:2404.05690, 2024.
[Padovani:2024tgx]
[8-6]
High-energy neutrinos flavour composition as a probe of neutrino magnetic moments, Artem Popov, Alexander Studenikin, arXiv:2404.02027, 2024.
[Popov:2024spe]
[8-7]
Late-forming black holes and the antiproton, gamma-ray, and anti-helium excesses, Mrunal Korwar, Stefano Profumo, arXiv:2403.18656, 2024.
[Korwar:2024ofe]
[8-8]
Contribution of neutrino-dominated accretion flows to cosmic MeV neutrino background, Yun-Feng Wei, Tong Liu, Cui-Ying Song, arXiv:2403.16856, 2024.
[Wei:2024qgy]
[8-9]
Probing Stellar Clusters from Gaia DR2 as Galactic PeVatrons: I - Expected Gamma-ray and Neutrino Emission, Alison M.W. Mitchell, Giovanni Morlino, Silvia Celli, Stefano Menchiari, Andreas Specovius, arXiv:2403.16650, 2024.
[Mitchell:2024yuy]
[8-10]
Investigating the impact of the modeling of Earth structure on the neutrino propagation at ultra-high-energies, Reinaldo Francener, Victor P. Goncalves, Diego R. Gratieri, arXiv:2403.16611, 2024.
[Francener:2024rjw]
[8-11]
Final state radiation from high and ultrahigh energy neutrino interactions, Ryan Plestid, Bei Zhou, arXiv:2403.07984, 2024.
[Plestid:2024bva]
[8-12]
Neutrino fluxes from different classes of galactic sources, Silvia Gagliardini, Aurora Langella, Dafne Guetta, Antonio Capone, arXiv:2403.05288, 2024.
[Gagliardini:2024een]
[8-13]
Two 100 TeV neutrinos coincident with the Seyfert galaxy NGC 7469, Giacomo Sommani, Anna Franckowiak, Massimiliano Lincetto, Ralf-Jurgen Dettmar, arXiv:2403.03752, 2024.
[Sommani:2024sbp]
[8-14]
New Pathways in Neutrino Physics via Quantum-Encoded Data Analysis, Jeffrey Lazar, Santiago Giner Olavarrieta, Giancarlo Gatti, Carlos A. Arguelles, Mikel Sanz, arXiv:2402.19306, 2024.
[2402.19306]
[8-15]
Constraining the hadronic properties of star-forming galaxies above $1\, \rm GeV$ with 15-years Fermi-LAT data, Antonio Ambrosone, Marco Chianese, Antonio Marinelli, arXiv:2402.18638, 2024.
[Ambrosone:2024xzk]
[8-16]
Search for neutrino emission from the Cygnus Bubble based on LHAASO $\gamma$-ray observations, Wenlian Li, Tian-Qi Huang, Donglian Xu, Huihai He, arXiv:2402.17352, 2024.
[Li:2024gnb]
[8-17]
Floor of cosmogenic neutrino fluxes above $10^{17}~$eV, Corinne Berat, Antonio Condorelli, Olivier Deligny, Francois Montanet, Zoe Torres, arXiv:2402.04759, 2024.
[Berat:2024rvf]
[8-18]
VLBI Analysis of a Potential High-Energy Neutrino Emitter Blazar, Janka Komives, Krisztina Eva Gabanyi, Sandor Frey, Emma Kun, Universe 10 (2024) 78, arXiv:2402.04011.
[Komives:2024vlb]
[8-19]
The flavor composition of ultra-high-energy cosmic neutrinos: measurement forecasts for in-ice radio-based EeV neutrino telescopes, Alan Coleman, Oscar Ericsson, Mauricio Bustamante, Christian Glaser, arXiv:2402.02432, 2024.
[Coleman:2024scd]
[8-20]
Multi-wavelength spectral modelling of the candidate neutrino blazar PKS 0735+178, Athira M. Bharathan, C. S. Stalin, S. Sahayanathan, Subir Bhattacharyya, Blesson Mathew, arXiv:2401.12680, 2024.
[Bharathan:2024ryq]
[8-21]
Awakening of A Blazar at Redshift 2.7 Temporally Coincident with Arrival of Cospatial Neutrino Event IceCube-201221A, Xiong Jiang, Neng-Hui Liao, Yi-Bo Wang, Rui Xue, Ning Jiang, Ting-Gui Wang, Astrophys.J.Lett. 965 (2024) L2, arXiv:2401.12122.
[Jiang:2024nwa]
[8-22]
AT2021lwx: Another Neutrino-Coincident Tidal Disruption Event with a Strong Dust Echo?, Chengchao Yuan, Walter Winter, Cecilia Lunardini, arXiv:2401.09320, 2024.
[Yuan:2024foi]
[8-23]
Upper Limit on the Coronal Cosmic Ray Energy Budget in Seyfert Galaxies, Yoshiyuki Inoue, Shinsuke Takasao, Dmitry Khangulyan, arXiv:2401.07580, 2024.
[Inoue:2024nap]
[8-24]
$Fermi$-LAT follow-up observations in seven years of realtime high-energy neutrino alerts, S. Garrappa, S. Buson, J. Sinapius, A. Franckowiak, I. Liodakis, C. Bartolini, M. Giroletti, C. Nanci, G. Principe, T. M. Venters, arXiv:2401.06666, 2024.
[Garrappa:2024zsm]
[8-25]
Dark matter search in dwarf irregular galaxies with ten years of data from the IceCube neutrino observatory, Yi-Fei Lu, Ben-Yang Zhu, Rong-Lan Li, Xue-Kang Guo, Tian-Ci Liu, Yong-Bo Huang, Yun-Feng Liang, Res.Astron.Astrophys. 24 (2024) 035008, arXiv:2401.06571.
[Lu:2024jbq]
[8-26]
A Unified Model for Multi-epoch Neutrino Events and Broadband Spectral Energy Distribution of $\rm TXS~0506+056$, Zhen-Jie Wang, Ruo-Yu Liu, Ze-Rui Wang, Junfeng Wang, Astrophys.J. 962 (2024) 142, arXiv:2401.06304.
[Wang:2024tsd]
[8-27]
Gamma-rays and Neutrinos from Giant Molecular Cloud Populations in the Galactic Plane, Abhijit Roy, Jagdish C. Joshi, Martina Cardillo, Prantik Sarmah, Ritabrata Sarkar, Sovan Chakraborty, arXiv:2401.05863, 2024.
[Roy:2024ouv]
[8-28]
Neutrinos and gamma-rays from Galaxy Clusters constrained by the upper limits of IceCube, Astrophys.J. 960 (2024) 124.
[Hussain:2023yii]
[8-29]
Gravitational wave triggered searches for high-energy neutrinos from binary neutron star mergers: prospects for next generation detectors, Phys.Rev.D 109 (2024) 043053.
[Mukhopadhyay:2023niv]
[8-30]
Sub-GeV Gamma Rays from Nearby Seyfert Galaxies and Implications for Coronal Neutrino Emission, Kohta Murase, Christopher M. Karwin, Shigeo S. Kimura, Marco Ajello, Sara Buson, Astrophys.J. 961 (2024) L34, arXiv:2312.16089.
[Murase:2023ccp]
[8-31]
Fitting neutrino flares: Applying expectation maximization on neutrino data, Martina Karl, Philipp Eller, arXiv:2312.15196, 2023.
[Karl:2023zuy]
[8-32]
Are There Correlations in the HAWC and IceCube High Energy Skymaps Outside the Galactic Plane?, Jason Kumar, Carsten Rott, Pearl Sandick, Natalia Tapia-Arellano, arXiv:2312.15125, 2023.
[Kumar:2023yaz]
[8-33]
Magnetar-powered Neutrinos and Magnetic Moment Signatures at IceCube, Ting Cheng, Hao-Jui Kuan, Ying-Ying Li, Vedran Brdar, arXiv:2312.14113, 2023.
[Cheng:2023ldc]
[8-34]
AM$^3$: An Open-Source Tool for Time-Dependent Lepto-Hadronic Modeling of Astrophysical Sources, Marc Klinger, Annika Rudolph, Xavier Rodrigues, Chengchao Yuan, Gaetan Fichet de Clairfontaine, Anatoli Fedynitch, Walter Winter, Martin Pohl, Shan Gao, arXiv:2312.13371, 2023.
[Klinger:2023zzv]
[8-35]
Tidal Disruption Events and Dark Matter Scatterings with Neutrinos and Photons, Motoko Fujiwara, Gonzalo Herrera, Phys.Lett.B 851 (2024) 138573, arXiv:2312.11670.
[Fujiwara:2023lsv]
[8-36]
Identifying Energy-Dependent Flavor Transitions in High-Energy Astrophysical Neutrino Measurements, Qinrui Liu, Damiano F. G. Fiorillo, Carlos A. Arguelles, Mauricio Bustamante, Ningqiang Song, Aaron C. Vincent, arXiv:2312.07649, 2023.
[Liu:2023flr]
[8-37]
Multi-messenger particles as a probe for UHECR luminosity, Rodrigo Sasse, Adriel G. B. Mocellin, Rita C. dos Anjos, Carlos H. Coimbra-Araujo, arXiv:2312.02389, 2023.
[Sasse:2023tsr]
[8-38]
Probing the dark matter capture rate in Brown Dwarfs with IceCube, Pooja Bhattacharjee, Francesca Calore, arXiv:2311.18455, 2023.
[Bhattacharjee:2023qfi]
[8-39]
Sagittarius $\mathrm{A}^{\star}$ as a plausible source candidate for PeV neutrinos, Sabyasachi Ray, Rajat K. Dey, Braz. J. Phys. 54 (2024) 18, arXiv:2311.17642.
[Ray:2023awr]
[8-40]
Neutron stars in accreting systems - signatures of the QCD phase transition, Noshad Khosravi Largani, Tobias Fischer, Shota Shibagaki, Pablo Cerda-Duran, Alejandro Torres-Forne, arXiv:2311.15992, 2023.
[Largani:2023kjx]
[8-41]
Bounds on ALP-Mediated Dark Matter Models from Celestial Objects, Tanech Klangburam, Chakrit Pongkitivanichkul, arXiv:2311.15681, 2023.
[Klangburam:2023icw]
[8-42]
Constraining axion-like particles with invisible neutrino decay using the IceCube observations of NGC 1068, Bhanu Prakash Pant, Phys.Rev.D 109 (2024) 063002, arXiv:2311.14597.
[Pant:2023lnz]
[8-43]
Neutrino signal from Cygnus region of the Milky Way, A. Neronov, D. Semikoz, D. Savchenko, arXiv:2311.13711, 2023.
[Neronov:2023hzu]
[8-44]
Synthetic Neutrino Imaging of a Microquasar, Theodoros Smponias, Galaxies 9 (2021) 80, arXiv:2311.08509.
[Smponias:2021pwx]
[8-45]
Simulated Radio and Neutrino Imaging of a Microquasar, Theodoros Smponias, Galaxies 11 (2023) 110, arXiv:2311.07694.
[Smponias:2023nlz]
[8-46]
Secondary Lepton Production, Propagation, and Interactions with NuLeptonSim, Austin Cummings, Ryan Krebs, Stephanie Wissel, Jaime Alvarez-Muniz, Washington R. Carvalho, Andres Romero-Wolf, Harm Schoorlemmer, Enrique Zas, arXiv:2311.03646, 2023.
[Cummings:2023iuw]
[8-47]
The Potential of Water-Cherenkov Air Shower Arrays for detecting transient sources of high-energy astrophysical neutrinos, J. Alvarez-Muniz, R. Conceicao, P. J. Costa, B. S. Gonzalez, M. Pimenta, B. Tome, arXiv:2311.03577, 2023.
[Alvarez-Muniz:2023hiu]
[8-48]
Multi-band optical variability on diverse timescales of the TeV blazar TXS 0506+56, the first cosmic neutrino source, Vinit Dhiman et al., Mon.Not.Roy.Astron.Soc. 527 (2023) 1344-1356, arXiv:2311.02352.
[Dhiman:2023mld]
[8-49]
On the possible jet contribution to the ${\gamma}$-ray luminosity in NGC 1068, S. Salvatore, B. Eichmann, X. Rodrigues, R. -J. Dettmar, J. Becker Tjus, arXiv:2310.20629, 2023.
[Salvatore:2023zmf]
[8-50]
The unprecedented flaring activities around Mrk 421 in 2012 and 2013: The test for neutrino and UHECR event connection, Nissim Fraija, Edilberto Aguilar-Ruiz, Antonio Galvan, Jose Antonio de Diego Onsurbe, Maria G. Dainotti, JHEAp 40 (2023) 194, arXiv:2310.19227.
[Fraija:2023yil]
[8-51]
TeV neutrinos and hard X-rays from relativistic reconnection in the corona of NGC 1068, Damiano F. G. Fiorillo, Maria Petropoulou, Luca Comisso, Enrico Peretti, Lorenzo Sironi, Astrophys.J.Lett. 961 (2024) L14, arXiv:2310.18254.
[Fiorillo:2023dts]
[8-52]
Flavor Anisotropy in the High-Energy Astrophysical Neutrino Sky, Bernanda Telalovic, Mauricio Bustamante, arXiv:2310.15224, 2023.
[Telalovic:2023tcb]
[8-53]
Prospects for detecting proto-neutron star rotation and spindown using supernova neutrinos, Tejas Prasanna, Todd A. Thompson, Christopher Hirata, Mon.Not.Roy.Astron.Soc. 528 (2024) 5649-5666, arXiv:2310.13763.
[Prasanna:2023fat]
[8-54]
Two-detector flavor sensitivity to ultra-high-energy cosmic neutrinos, Federico Testagrossa, Damiano F. G. Fiorillo, Mauricio Bustamante, arXiv:2310.12215, 2023.
[Testagrossa:2023ukh]
[8-55]
Determine the Origin of Very-high-energy Gamma Rays from Galactic Sources by the Prospect of Observing Neutrinos, Bo-Heng Song, Tian-Qi Huang, Kai Wang, Astrophys.J. 961 (2024) 254, arXiv:2310.11813.
[Song:2023nht]
[8-56]
Determination of the Equation of State from Nuclear Experiments and Neutron Star Observations, Chun Yuen Tsang, ManYee Betty Tsang, William G. Lynch, Rohit Kumar, Charles J. Horowitz, Nature Astron. 8 (2024) 328-336, arXiv:2310.11588.
[Tsang:2023vhh]
[8-57]
Implications of ALP-photon conversion for the diffuse gamma-ray background associated with high-energy neutrinos, Kirill Riabtsev, arXiv:2310.09610, 2023.
[Riabtsev:2023zni]
[8-58]
MARES: A macroscopic approach to the radar echo scatter from high-energy particle cascades, E. Huesca Santiago et al., Phys.Rev.D 109 (2024) 083012, arXiv:2310.06731.
[RadarEchoTelescope:2023oxh]
[8-59]
CONGRuENTS (COsmic-ray, Neutrino, Gamma-ray and Radio Non-Thermal Spectra). II. Population-level correlations between galactic infrared, radio, and g-ray emission, Matt A. Roth, Mark R. Krumholz, Roland M. Crocker, Todd A. Thompson, arXiv:2310.05693, 2023.
[Roth:2023ewc]
[8-60]
Hadronic processes at work in 5BZB J0630-2406, Gaetan Fichet de Clairfontaine, Sara Buson, Leonard Pfeiffer, Stefano Marchesi, Alessandra Azzollini, Vardan Baghmanyan, Andrea Tramacere, Eleonora Barbano, Lenz Oswald, Astrophys.J.Lett. 958 (2023) L2, arXiv:2310.03698.
[deClairfontaine:2023pgo]
[8-61]
Evolutionary tracks of massive stars with different rotation and metallicity in neutrino H-R diagram, Hao Wang, Chunhua Zhu, Helei Liu, Sufen Guo, Guoliang Lu, Mon.Not.Roy.Astron.Soc. 526 (2023) 4335-4344, arXiv:2310.02824.
[Wang:2023yqw]
[8-62]
Possible explanation of not observing ultra-high energy cosmic neutrinos, Jakub Rembielinski, Jacek Ciborowski, arXiv:2310.02763, 2023.
[Rembielinski:2023dar]
[8-63]
Neutrinos from muon-rich ultra high energy electromagnetic cascades: The MUNHECA code, AmirFarzan Esmaeili, Arman Esmaili, Pasquale Dario Serpico, Comput.Phys.Commun. 299 (2024) 109154, arXiv:2310.01510.
[Esmaeili:2023vyk]
[8-64]
Constraints on neutrino natal kicks from black-hole binary VFTS 243, Alejandro Vigna-Gomez et al., arXiv:2310.01509, 2023.
[Vigna-Gomez:2023euq]
[8-65]
Kaniadakis entropy-based characterization of IceCube PeV neutrino signals, Massimo Blasone, Gaetano Lambiase, Giuseppe Gaetano Luciano, Phys.Dark Univ. 42 (2023) 101342, arXiv:2309.16732.
[Blasone:2023yke]
[8-66]
Multimessenger astronomy driven by high-energy neutrinos, Shigeru Yoshida, PoS ICRC2023 (2024) 015, arXiv:2309.12519.
[Yoshida:2023xfm]
[8-67]
GRB221009A gamma-ray events from non-standard neutrino self-interactions, Mansi Dhuria, Phys.Rev.D 109 (2024) 063007, arXiv:2309.12264.
[Dhuria:2023itq]
[8-68]
Neutrino imaging of the Galactic Centre and Millisecond Pulsar Population, Paul C. W. Lai, Matteo Agostini, Foteini Oikonomou, Beatrice Crudele, Ellis R. Owen, Kinwah Wu, PoS ICRC2023 (2023) 1069, arXiv:2309.10493.
[Lai:2023kws]
[8-69]
Energy-dependent flavour ratios in neutrino telescopes from charm, Atri Bhattacharya, Rikard Enberg, Mary Hall Reno, Ina Sarcevic, JCAP 03 (2024) 057, arXiv:2309.09139.
[Bhattacharya:2023mmp]
[8-70]
Modified temperature redshift relation and UHECR propagation, Janning Meinert, Leonel Morejon, Alexander Sandrock, Bjorn Eichmann, Jonas Kreidelmeyer, Karl-Heinz Kampert, arXiv:2309.08451, 2023.
[Meinert:2023zhk]
[8-71]
XENONnT and LUX-ZEPLIN constraints on DSNB-boosted dark matter, Valentina De Romeri, Anirban Majumdar, Dimitrios K. Papoulias, Rahul Srivastava, JCAP 03 (2024) 028, arXiv:2309.04117.
[DeRomeri:2023ytt]
[8-72]
The Spectra of IceCube Neutrino (SIN) candidate sources - IV. Spectral energy distributions and multi-wavelength variability, Martina Karl, Paolo Padovani, Paolo Giommi, Mon.Not.Roy.Astron.Soc. 526 (2023) 661-681, arXiv:2309.03119.
[Karl:2023huw]
[8-73]
Correlating high-energy IceCube neutrinos with 5BZCAT blazars and RFC sources, Chiara Bellenghi, Paolo Padovani, Elisa Resconi, Paolo Giommi, Astrophys.J.Lett. 955 (2023) L32, arXiv:2309.03115.
[Bellenghi:2023yza]
[8-74]
Neutrino anisotropy as a probe of extreme astrophysical accelerators, Marco Stein Muzio, Noemie Globus, arXiv:2308.16225, 2023.
[Muzio:2023gjx]
[8-75]
Study of blazars detected by Fermi-LAT as high-energy neutrino sources, Antonio Galvan, Nissim Fraija, Edilberto Aguilar Ruiz, Jose Antonio de Diego Onsurbe, Maria G. Dainotti, PoS ICRC2023 (2023) 1552, arXiv:2308.14655.
[Galvan:2023okb]
[8-76]
Neutrinos and Asteroseismology of Stars over the Helium Flash, Diogo Capelo, Ilidio Lopes, Astrophys.J. 953 (2023) 165, arXiv:2308.08282.
[Capelo:2023pbf]
[8-77]
Probing extreme astrophysical accelerators through neutrino anisotropy, Marco Stein Muzio, Noemie Globus, PoS ICRC2023 (2023) 1049, arXiv:2308.07211.
[Muzio:2023wyq]
[8-78]
Transients stemming from collapsing massive stars: The missing pieces to advance joint observations of photons and high-energy neutrinos, Ersilia Guarini, Irene Tamborra, Raffaella Margutti, Enrico Ramirez-Ruiz, Phys.Rev.D 108 (2023) 083035, arXiv:2308.03840.
[Guarini:2023rnd]
[8-79]
Beaming patterns of neutrino emission from photo-pion production in relativistic jets, Markus Boettcher, arXiv:2308.01083, 2023.
[Bottcher:2023swh]
[8-80]
Black Holes as Neutrino Factories, Yifan Chen, Xiao Xue, Vitor Cardoso, arXiv:2308.00741, 2023.
[Chen:2023vkq]
[8-81]
Two Candidate Obscured Tidal Disruption Events Coincident with High-Energy Neutrinos, Ning Jiang, Ziying Zhou, Jiazheng Zhu, Yibo Wang, Tinggui Wang, Astrophys.J.Lett. 953 (2023) L12, arXiv:2307.16667.
[Jiang:2023kbb]
[8-82]
On the 'Loose' Constraint from IceCube Neutrino Non-Detection of GRB 230307A, Xin-Ying Song, Astrophys.J. 958 () 133, arXiv:2307.16547.
[Song:2023tdb]
[8-83]
Prometheus: An Open-Source Neutrino Telescope Simulation, David Kim, arXiv:2307.16432, 2023.
[Kim:2023bnt]
[8-84]
Flavor composition of neutrinos from choked gamma-ray bursts, Matias M. Reynoso, Florencia A. Deus, Astron.Astrophys. 677 (2023) A53, arXiv:2307.16088.
[Reynoso:2023qoh]
[8-85]
High-Energy Neutrino and Gamma Ray Production in Clusters of Galaxies, Saqib Hussain, Giulia Pagliaroli, Elisabete M. de Gouveia Dal Pino, PoS ICRC2023 (2023) 1454, arXiv:2307.15851.
[Hussain:2023jgt]
[8-86]
A relook at the GZK Neutrino-Photon Connection: Impact of Extra-galactic Radio Background \& UHECR properties, Sovan Chakraborty, Poonam Mehta, Prantik Sarmah, JCAP 01 (2024) 058, arXiv:2307.15667.
[Chakraborty:2023hxp]
[8-87]
Detection of astrophysical neutrinos at prospective locations of dark matter detectors, Yi Zhuang, Louis E. Strigari, Lei Jin, Samiran Sinha, Phys.Rev.D 109 (2024) 043055, arXiv:2307.13792.
[Zhuang:2023dzd]
[8-88]
High-energy neutrino constraints on cosmic-ray re-acceleration in radio halos of massive galaxy clusters, Kosuke Nishiwaki, Katsuaki Asano, Kohta Murase, Astrophys.J. 954 (2023) 188, arXiv:2307.13273.
[Nishiwaki:2023vev]
[8-89]
Leptohadronic Multimessenger Modeling of 324 Gamma-Ray Blazars, Xavier Rodrigues, Vaidehi S. Paliya, Simone Garrappa, Anastasiia Omeliukh, Anna Franckowiak, Walter Winter, Astron.Astrophys. 681 (2024) A119, arXiv:2307.13024.
[Rodrigues:2023vbv]
[8-90]
On the Origin of Galactic Diffuse TeV-PeV Emission: Insight from LHAASO and IceCube, Kai Yan, Ruo-Yu Liu, Rui Zhang, Chao-Ming Li, Qiang Yuan, Xiang-Yu Wang, arXiv:2307.12363, 2023.
[Yan:2023hpt]
[8-91]
Discovery potential of the Glashow resonance in an air shower neutrino telescope, Guo-yuan Huang, arXiv:2307.12153, 2023.
[Huang:2023mgt]
[8-92]
RDSim, a fast and comprehensive simulation of radio detection of air showers, Washington R. de Carvalho, Abha Khakurdikar, PoS ARENA2022 (2023) 055, arXiv:2307.10395.
[Carvalho:2023nom]
[8-93]
Neutrinos from GRB 221009A: producing ALPs and explaining LHAASO anomalous $\gamma$ event, Nicolas Bernal, Yasaman Farzan, Alexei Yu. Smirnov, JCAP 11 (2023) 098, arXiv:2307.10382.
[Bernal:2023rdz]
[8-94]
Colliding red giants in galactic nuclei: Shocks, jets, impact on the ISM, X- and gamma-rays, neutrinos, fusion ignition and afterglow, Pau Amaro Seoane, arXiv:2307.10330, 2023.
[Seoane:2023jyw]
[8-95]
Hadronic nature of high-energy emission from the Galactic Ridge, A. Neronov, D. Semikoz, J. Aublin, M. Lamoureux, A. Kouchner, Phys.Rev.D 108 (2023) 103044, arXiv:2307.07978.
[Neronov:2023dgm]
[8-96]
Unveiling the nature of galactic TeV sources with IceCube results, Vittoria Vecchiotti, Francesco L. Villante, Giulia Pagliaroli, Astrophys.J.Lett. 956 (2023) L44, arXiv:2307.07451.
[Vecchiotti:2023ill]
[8-97]
High-energy Neutrinos from the Inner Circumnuclear Region of NGC 1068, Ke Fang, Enrique Lopez Rodriguez, Francis Halzen, John S. Gallagher, Astrophys.J. 956 (2023) 8, arXiv:2307.07121.
[Fang:2023vdg]
[8-98]
A Search for AGN sources of the IceCube Diffuse Neutrino Flux, K. McDonough, K. Hughes, D. Smith, A. G. Vieregg, arXiv:2307.04194, 2023.
[McDonough:2023ngk]
[8-99]
On the Neutrino and Gamma-Ray Emission from NGC 1068, Carlos Blanco, Dan Hooper, Tim Linden, Elena Pinetti, arXiv:2307.03259, 2023.
[Blanco:2023dfp]
[8-100]
Decomposing the Origin of TeV-PeV Emission from the Galactic Plane: Implications of Multi-messenger Observations, Ke Fang, Kohta Murase, Astrophys.J. 957 (2023) L6, arXiv:2307.02905.
[Fang:2023ffx]
[8-101]
Multi-messenger observations support cosmic ray interactions surrounding acceleration sources, Dong-Xu Sun, Pei-Pei Zhang, Yi-Qing Guo, Wei Liu, Qiang Yuan, arXiv:2307.02372, 2023.
[Sun:2023ibg]
[8-102]
Constraints on Neutrino Self-Interactions from IceCube Observation of NGC 1068, Jeffrey M. Hyde, arXiv:2307.02361, 2023.
[Hyde:2023eph]
[8-103]
Analytical Constraints on the Radius and Bulk Lorentz Factor in the Lepto-Hadronic One-Zone Model of BL Lacs, ZhiPeng Ma, Kai Wang, Universe 9 (2023) 314, arXiv:2307.00737.
[Ma:2023ztu]
[8-104]
Constraints on the origins of the Galactic neutrino flux, Abhishek Desai, Justin Vandenbroucke, Samalka Anandagoda, Jessie Thwaites, M. J. Romfoe, arXiv:2306.17305, 2023.
[Desai:2023cmq]
[8-105]
Galactic Diffuse Neutrino Emission from Sources beyond the Discovery Horizon, Antonio Ambrosone, Kathrine M\orch Groth, Enrico Peretti, Markus Ahlers, Phys.Rev.D 109 (2024) 043007, arXiv:2306.17285.
[Ambrosone:2023hsz]
[8-106]
Milky Way as a Neutrino Desert: Implications of the IceCube Galactic Diffuse Neutrino Emission, Ke Fang, John S. Gallagher, Francis Halzen, Nature Astron. 8 (2024) 241-246, arXiv:2306.17275.
[Fang:2023azx]
[8-107]
Setting an upper limit for the total TeV neutrino flux from the disk of our Galaxy, Vittoria Vecchiotti, Francesco L. Villante, Giulia Pagliaroli, JCAP 09 (2023) 027, arXiv:2306.16305.
[Vecchiotti:2023nqy]
[8-108]
Low and High Energy Neutrinos from SN 2023ixf in M101, Dafne Guetta, Aurora Langella, Silvia Gagliardini, Massimo Della Valle, Astrophys.J.Lett. 955 (2023) L9, arXiv:2306.14717.
[Guetta:2023mls]
[8-109]
Studying the mass sensitivity of air-shower observables using simulated cosmic rays, Benjamin Flaggs, Alan Coleman, Frank G. Schroder, Phys.Rev.D 109 (2024) 042002, arXiv:2306.13246.
[Flaggs:2023exc]
[8-110]
Possible contribution of X-ray binary jets to the Galactic cosmic ray and neutrino flux, Dimitrios Kantzas, Sera Markoff, Alex J. Cooper, Daniele Gaggero, Maria Petropoulou, Pedro De La Torre Luque, Mon.Not.Roy.Astron.Soc. (2023), arXiv:2306.12715.
[Kantzas:2023oww]
[8-111]
Best-case scenarios for neutrino capture experiments, Kyrylo Bondarenko, Alexey Boyarsky, Josef Pradler, Anastasia Sokolenko, JCAP 10 (2023) 026, arXiv:2306.12366.
[Bondarenko:2023ukx]
[8-112]
Microquasar Cyg X-3 - a unique jet-wind neutrino factory?, Karri I. I. Koljonen, Konstancja Satalecka, Elina J. Lindfors, Ioannis Liodakis, Mon.Not.Roy.Astron.Soc. 524 (2023) L89-L93, arXiv:2306.11804.
[Koljonen:2023xfn]
[8-113]
Neutrino signal from Seyfert galaxies, A. Neronov, D. Savchenko, D. V. Semikoz, Phys.Rev.Lett. 132 (2024) 101002, arXiv:2306.09018.
[Neronov:2023aks]
[8-114]
Evolution of Tau-Neutrino Lepton Number in Protoneutron Stars due to Active-Sterile Neutrino Mixing, Anupam Ray, Yong-Zhong Qian, Phys.Rev.D 108 (2023) 063025, arXiv:2306.08209.
[Ray:2023gtu]
[8-115]
Optically Informed Searches of High-Energy Neutrinos from Interaction-Powered Supernovae, Tetyana Pitik, Irene Tamborra, Massimiliano Lincetto, Anna Franckowiak, Mon.Not.Roy.Astron.Soc. 524 (2023) 3, arXiv:2306.01833.
[Pitik:2023vcg]
[8-116]
Exploring the dark sectors via the cooling of white dwarfs, Jaime Hoefken Zink, Maura E. Ramirez-Quezada, Phys.Rev.D 108 (2023) 043014, arXiv:2306.00517.
[Zink:2023szx]
[8-117]
Extragalactic neutrino factories, Sara Buson, Andrea Tramacere, Lenz Oswald, Eleonora Barbano, Gaetan Fichet de Clairfontaine, Leonard Pfeiffer, Alessandra Azzollini, Vardan Baghmanyan, Marco Ajello, arXiv:2305.11263, 2023.
[Buson:2023irp]
[8-118]
Lepto-hadronic interpretation of 2021 RS Ophiuchi nova outburst, Agnibha De Sarkar, Nayana A. J., Nirupam Roy, Soebur Razzaque, G. C. Anupama, Astrophys.J. 951 (2023) 62, arXiv:2305.10735.
[DeSarkar:2023nhp]
[8-119]
Identifying Extended PeVatron Sources via Neutrino Shower Detection, Takahiro Sudoh, John F. Beacom, Phys.Rev.D 108 (2023) 043016, arXiv:2305.07043.
[Sudoh:2023qrz]
[8-120]
Searching for temporary gamma-ray dark blazars associated with IceCube neutrinos, Emma Kun, Imre Bartos, Julia Becker Tjus, Peter L. Biermann, Anna Franckowiak, Francis Halzen, Gyorgy Mezo, Astron.Astrophys. 679 (2023) A46, arXiv:2305.06729.
[Kun:2023uld]
[8-121]
Interpreting the GeV-TeV Gamma-Ray Spectra of Local Giant Molecular Clouds using GEANT4 Simulation, Abhijit Roy, Jagdish C. Joshi, Martina Cardillo, Ritabrata Sarkar, JCAP 08 (2023) 047, arXiv:2305.06693.
[Roy:2023vul]
[8-122]
A Leptonic Model for Neutrino Emission From Active Galactic Nuclei, Dan Hooper, Kathryn Plant, Phys.Rev.Lett. 131 (2023) 231001, arXiv:2305.06375.
[Hooper:2023ssc]
[8-123]
IceCube and the origin of ANITA-IV events, Toni Bertolez-Martinez, Carlos A. Arguelles, Ivan Esteban, Jacobo Lopez-Pavon, Ivan Martinez-Soler, Jordi Salvado, JHEP 07 (2023) 005, arXiv:2305.03746.
[Bertolez-Martinez:2023scp]
[8-124]
Cosmic rays from heavy particle decays, E. V. Arbuzova, A. D. Dolgov, A. A. Nikitenko, arXiv:2305.03313, 2023.
[Arbuzova:2023dif]
[8-125]
Prometheus: An Open-Source Neutrino Telescope Simulation, Jeffrey Lazar, Stephan Meighen-Berger, Christian Haack, David Kim, Santiago Giner, Carlos A. Arguelles, arXiv:2304.14526, 2023.
[Lazar:2023rol]
[8-126]
Repeated patterns of gamma-ray flares reveal structured jets of blazars as likely neutrino sources, Polina Novikova, Ekaterina Shishkina, Dmitry Blinov, Mon.Not.Roy.Astron.Soc. 526 () 1, arXiv:2304.13044.
[Novikova:2023jtw]
[8-127]
A Cross-correlation Study between IceCube Neutrino Events and the Fermi Unresolved Gamma-ray Sky, Michela Negro, Milena Crnogorcevic, Eric Burns, Eric Charles, Lea Marcotulli, Regina Caputo, Astrophys.J. 951 (2023) 83, arXiv:2304.10934.
[Negro:2023kwv]
[8-128]
Constraints on the proton fraction of cosmic rays at the highest energies and the consequences for cosmogenic neutrinos and photons, Domenik Ehlert, Arjen van Vliet, Foteini Oikonomou, Walter Winter, JCAP 02 (2024) 022, arXiv:2304.07321.
[Ehlert:2023btz]
[8-129]
Neutrino signals from Neutron Star implosions to Black Holes, Yossef Zenati, C. Albertus, M. Angeles Perez-Garcia, Joseph Silk, Phys.Rev.D 109 (2024) 063015, arXiv:2304.06746.
[Zenati:2023ckz]
[8-130]
Probing neutrino production in high-energy astrophysical neutrino sources with the Glashow Resonance, Qinrui Liu, Ningqiang Song, Aaron C. Vincent, Phys.Rev.D 108 (2023) 043022, arXiv:2304.06068.
[Liu:2023lxz]
[8-131]
Bright X-ray pulsars as sources of MeV neutrinos in the sky, Aman Asthana, Alexander A. Mushtukov, Alexandra A. Dobrynina, Igor S. Ognev, Mon.Not.Roy.Astron.Soc. 522 (2023) 3405-3411, arXiv:2304.04520.
[Asthana:2023vvk]
[8-132]
Investigating starburst-driven neutrino emission from galaxies in the Great Observatories All-Sky LIRG Survey, Yarno Merckx, Pablo Correa, Krijn D. de Vries, Kumiko Kotera, George C. Privon, Nick van Eijndhoven, Phys.Rev.D 108 (2023) 023015, arXiv:2304.01020.
[Merckx:2023kvn]
[8-133]
Constraints on the localization volume of High Energy Neutrinos for galaxy-targetted electromagnetic followups, Thierry Pradier, Astron.Astrophys. 674 (2023) L11, arXiv:2304.00831.
[Pradier:2023nhe]
[8-134]
Inferring astrophysical neutrino sources from the Glashow resonance, Guo-yuan Huang, Manfred Lindner, Nele Volmer, JHEP 11 (2023) 164, arXiv:2303.13706.
[Huang:2023yqz]
[8-135]
High-Energy Neutrino Fluxes from Hard-TeV BL Lacs, E. Aguilar-Ruiz, N. Fraija, A. Galvan-Gamez, JHEAp 38 (2023) 172, arXiv:2303.13025.
[Aguilar-Ruiz:2023ufy]
[8-136]
Prospects for joint cosmic ray and neutrino constraints on the evolution of trans-GZK proton sources, Marco Stein Muzio, M. Unger, Stephanie Wissel, Phys.Rev.D 107 (2023) 103030, arXiv:2303.04170.
[Muzio:2023skc]
[8-137]
Gamma-ray emission from the Seyfert galaxy NGC 4151 and multimessenger implications for ultra-fast outflows, Enrico Peretti, Giada Peron, Francesco Tombesi, Alessandra Lamastra, Markus Ahlers, Francesco Gabriele Saturni, arXiv:2303.03298, 2023.
[Peretti:2023crf]
[8-138]
Probing the Origin of Cosmic Rays in Cygnus Cocoon Using Ultrahigh-energy Gamma-Ray and Neutrino Observations, Prabir Banik, Sanjay K. Ghosh, Astrophys. J. Lett. 931 (2022) L30, arXiv:2303.03021.
[Banik:2022ksx]
[8-139]
Investigating the impact of spin effects at the high-energy neutrino-nucleon interactions while it crosses the Earth's core, R. Francener, D. R. Gratieri, G. Torrieri, arXiv:2303.01915, 2023.
[Francener:2023wpr]
[8-140]
Searching for Dark Matter Annihilation with IceCube and P-ONE, Kruteesh Desai, Rouhan Li, Stephan Meighen-Berger, JCAP 02 (2024) 049, arXiv:2302.10542.
[Desai:2023zsb]
[8-141]
The spectra of IceCube Neutrino (SIN) candidate sources - III. Optical spectroscopy and source characterization of the full sample, Simona Paiano, Renato Falomo, Aldo Treves, Paolo Padovani, Paolo Giommi, Riccardo Scarpa, Susanna Bisogni, Ester Marini, Mon.Not.Roy.Astron.Soc. 521 (2023) 2270-2289, arXiv:2302.10080.
[Paiano:2023nsw]
[8-142]
High-energy neutrino emission associated with gravitational-wave signals: effects of cocoon photons and constraints on late-time emission, Riki Matsui, Shigeo S. Kimura, Kenji Toma, Kohta Murase, Astrophys.J. 950 (2023) 190, arXiv:2302.04130.
[Matsui:2023ohr]
[8-143]
Signals of a New Gauge Boson from IceCube and Muon $g-2$, Dan Hooper, Joaquim Iguaz Juan, Pasquale D. Serpico, Phys.Rev.D 108 (2023) 023007, arXiv:2302.03571.
[Hooper:2023fqn]
[8-144]
Reconstructing the arrival direction of neutrinos in deep in-ice radio detectors, Ilse Plaisier, Sjoerd Bouma, Anna Nelles, Eur.Phys.J.C 83 (2023) 443, arXiv:2302.00054.
[Plaisier:2023cxz]
[8-145]
Diffusive shock acceleration at EeV and associated multimessenger flux from ultra-fast outflows driven by Active Galactic Nuclei, Enrico Peretti, Alessandra Lamastra, Francesco Gabriele Saturni, Markus Ahlers, Pasquale Blasi, Giovanni Morlino, Pierre Cristofari, Mon.Not.Roy.Astron.Soc. 526 (2023) 181-192, arXiv:2301.13689.
[Peretti:2023xqk]
[8-146]
Cosmic Background Neutrinos Deflected by Gravity: DEMNUni Simulation Analysis, Beatriz Hernandez-Molinero, Carmelita Carbone, Raul Jimenez, Carlos Pena Garay, JCAP 01 (2024) 006, arXiv:2301.12430.
[Hernandez-Molinero:2023jes]
[8-147]
Detection of Ultra High Energy Cosmic Rays and Neutrinos with Lunar Orbital Radio Telescope, Linjie Chen, Marc Klein Wolt, Amin Aminaei, Stijn Buitink, Heino Falcke, Eur.Phys.J.C 83 (2023) 102, arXiv:2301.11830.
[Chen:2023mau]
[8-148]
Probing gamma-ray bursts observed at very high energies through their afterglow, Ersilia Guarini, Irene Tamborra, Damien Begue, Annika Rudolph, Mon.Not.Roy.Astron.Soc. 253 (2023) 149-162, arXiv:2301.10256.
[Guarini:2023gvf]
[8-149]
Thermal Neutrinos from the Explosion of a Minimum-Mass Neutron Star, A. V. Yudin, N. V. Dunina-Barkovskaya, S. I. Blinnikov, Astron.Lett. 48 (2022) 497-502, arXiv:2301.10003.
[Yudin:2022nkm]
[8-150]
NGC 1068 constraints on neutrino-dark matter scattering, James M. Cline, Matteo Puel, JCAP 06 (2023) 004, arXiv:2301.08756.
[Cline:2023tkp]
[8-151]
Dissecting the broadband emission from $\gamma$-ray blazar PKS 0735+178 in search of neutrinos, Raj Prince, Saikat Das, Nayantara Gupta, Pratik Majumdar, Bozena Czerny, Mon.Not.Roy.Astron.Soc. 527 (2024) 8746-8754, arXiv:2301.06565.
[Prince:2023bhj]
[8-152]
Probing LHAASO Galactic PeVatrons through gamma-ray and neutrino correspondence, Prantik Sarmah, Sovan Chakraborty, Jagdish C. Joshi, Mon.Not.Roy.Astron.Soc. 521 (2023) 1144-1151, arXiv:2301.04161.
[Sarmah:2023pld]
[8-153]
Bump-hunting in the diffuse flux of high-energy cosmic neutrinos, Damano F. G. Fiorillo, Mauricio Bustamante, Phys.Rev.D 107 (2023) 083008, arXiv:2301.00024.
[Fiorillo:2022rft]
[8-154]
, 2023.
[Doring:2023vmk]
[8-155]
The Interplay between accelerated Protons, X-rays and Neutrinos in the Corona of NGC 1068: Constraints from Kinetic Plasma Simulations, 2023.
[Mbarek:2023yeq]
[8-156]
High-energy Neutrino Emission Associated with GWs from Binary Black Hole Mergers in AGN Accretion Discs, Astrophys.J.Lett. 958 (2023) L12.
[Zhou:2023rtr]
[8-157]
Bounds on Long-lived Dark Matter Mediators from Neutron Stars, Thong T. Q. Nguyen, Tim M. P. Tait, Phys.Rev.D 107 (2023) 115016, arXiv:2212.12547.
[Nguyen:2022zwb]
[8-158]
Magnetic Moments of Astrophysical Neutrinos, Joachim Kopp, Toby Opferkuch, Edward Wang, JCAP 03 (2024) 043, arXiv:2212.11287.
[Kopp:2022cug]
[8-159]
CONGRuENTS (COsmic-ray, Neutrino, Gamma-ray and Radio Non-Thermal Spectra). I. A predictive model for galactic non-thermal emission, Matt A. Roth, Mark R. Krumholz, Roland M. Crocker, Todd A. Thompson, Mon.Not.Roy.Astron.Soc. 523 (2023) 2608-2629, arXiv:2212.09428.
[Roth:2022hxc]
[8-160]
Strong Lensing of High-Energy Neutrinos, Yoon Chan Taak, Tommaso Treu, Yoshiyuki Inoue, Alexander Kusenko, Phys.Rev.D 107 (2023) 023011, arXiv:2212.08793.
[Taak:2022xdp]
[8-161]
Signature of Collapsars as Sources for High-energy Neutrinos and $r$-process Nuclei, Gang Guo, Yong-zhong Qian, Meng-Ru Wu, Phys.Rev.D 108 (2023) L021303, arXiv:2212.08266.
[Guo:2022zyl]
[8-162]
Invisible Neutrino Decays as Origin of TeV Gamma Rays from GRB221009A, Jihong Huang, Yilin Wang, Bingrong Yu, Shun Zhou, JCAP 04 (2023) 056, arXiv:2212.03477.
[Huang:2022udc]
[8-163]
Neutrino production in blazar radio cores, O. E. Kalashev, P. Kivokurtseva, S. Troitsky, JCAP 12 (2023) 007, arXiv:2212.03151.
[Kalashev:2022scs]
[8-164]
Multi-messenger model for the prompt emission from GRB 221009A, Annika Rudolph, Maria Petropoulou, Walter Winter, Zeljka Bosnjak, Astrophys.J.Lett. 944 (2023) L34, arXiv:2212.00766.
[Rudolph:2022dky]
[8-165]
Multi-collision internal shock lepto-hadronic models for energetic GRBs, Annika Rudolph, Maria Petropoulou, Zeljka Bosnjak, Walter Winter, Astrophys.J. 950 (2023) 28, arXiv:2212.00765.
[Rudolph:2022ppp]
[8-166]
Studying Cosmic Ray Sources Using Intergalactic Electromagnetic Cascades, Anna Uryson, Universe 7 (2021) 287, arXiv:2211.16556.
[Uryson:2021ejy]
[8-167]
Diffuse Emission of Galactic High-Energy Neutrinos from a Global Fit of Cosmic Rays, Georg Schwefer, Philipp Mertsch, Christopher Wiebusch, Astrophys.J. 949 (2023) 16, arXiv:2211.15607.
[Schwefer:2022zly]
[8-168]
Constraints on the Model of Gamma-ray Bursts and Implications from GRB 221009A: GeV gamma rays v.s. High-energy Neutrinos, Ruo-Yu Liu, Hai-Ming Zhang, Xiang-Yu Wang, Astrophys.J.Lett. 943 (2023) L2, arXiv:2211.14200.
[Liu:2022mqe]
[8-169]
High-energy Neutrino Productions from AGN Disk Transients Impacted by Circum-disk Medium, Zi-Hang Zhou, Jin-Ping Zhu, Kai Wang, Astrophys.J. 951 (2023) 74, arXiv:2211.13953.
[Zhou:2022jle]
[8-170]
Growing evidence for high-energy neutrinos originating in radio blazars, A. V. Plavin, Y. Y. Kovalev, Y. A. Kovalev, S. V. Troitsky, Mon.Not.Roy.Astron.Soc. 523 (2023) 1799, arXiv:2211.09631.
[Plavin:2022oyy]
[8-171]
Hidden Hearts of Neutrino Active Galaxies, Kohta Murase, Astrophys.J. 941 (2022) L17, arXiv:2211.04460.
[Murase:2022dog]
[8-172]
$\gamma$-ray and ultra-high energy neutrino background suppression due to solar radiation, Shyam Balaji, Phys.Lett.B 845 (2023) 138157, arXiv:2211.03807.
[Balaji:2022wqn]
[8-173]
Neutrino Origin of LHAASO's 18 TeV GRB221009A Photon, Vedran Brdar, Ying-Ying Li, Phys.Lett.B 839 (2023) 137763, arXiv:2211.02028.
[Brdar:2022rhc]
[8-174]
Ultra-high energy cosmic neutrinos from gamma-ray bursts, Yanqi Huang, Bo-Qiang Ma, Fund.Res. 4 (2024) 51-56, arXiv:2211.00231.
[Huang:2022xto]
[8-175]
Neutrinos from the Brightest Gamma-Ray Burst?, Kohta Murase, Mainak Mukhopadhyay, Ali Kheirandish, Shigeo S. Kimura, Ke Fang, Astrophys.J.Lett. 941 (2022) L10, arXiv:2210.15625.
[Murase:2022vqf]
[8-176]
The Role of a Heavy Neutrino in the Gamma-Ray Burst GRB-221009A, Kingman Cheung, arXiv:2210.14178, 2022.
[Cheung:2022luv]
[8-177]
Model constraints based on the IceCube neutrino non-detection of GRB 221009A, Shunke Ai, He Gao, Astrophys.J. 944 (2023) 115, arXiv:2210.14116.
[Ai:2022kvd]
[8-178]
Search for spatial coincidence between IceCube neutrinos and radio pulsars, Vibhavasu Pasumarti, Shantanu Desai, JCAP 12 (2022) 002, arXiv:2210.12804.
[Pasumarti:2022yba]
[8-179]
Implication of photon-ALP interactions in sub-PeV neutrino source TXS 0506+056, Bhanu Prakash Pant, Sunanda, Sarathykanan S., Reetanjali Moharana, arXiv:2210.12652, 2022.
[Pant:2022ead]
[8-180]
Revealing ultra-high-energy cosmic ray acceleration with multi-messenger observations of the nearby GRB 980425/SN 1998bw, Nestor Mirabal, JCAP 02 (2023) 060, arXiv:2210.10822.
[Mirabal:2022uml]
[8-181]
Effects of new physics in neutrino propagation, J. M. Carmona, J. L. Cortes, J. J. Relancio, M. A. Reyes, PoS CORFU2021 (2022) 329, arXiv:2210.10111.
[ReyesHung:2022xut]
[8-182]
Flare Duty Cycle of Gamma-Ray Blazars and Implications for High-Energy Neutrino Emission, Kenji Yoshida, Maria Petropoulou, Kohta Murase, Foteini Oikonomou, Astrophys.J. 954 (2023) 194, arXiv:2210.10011.
[Yoshida:2022wac]
[8-183]
High-energy neutrino emission from magnetised jets of rapidly rotating protomagnetars, Mukul Bhattacharya, Jose Alonso Carpio, Kohta Murase, Shunsaku Horiuchi, Mon.Not.Roy.Astron.Soc. 521 (2023) 2391, arXiv:2210.08029.
[Bhattacharya:2022btx]
[8-184]
Directional Neutrino Searches for Galactic Center Dark Matter at Large Underground LArTPCs, Matthew R. Buckley, Andrew Mastbaum, Gopolang Mohlabeng, Phys.Rev.D 107 (2023) 092006, arXiv:2210.04920.
[Buckley:2022btu]
[8-185]
Monoenergetic Neutrinos from WIMP Annihilation in Jupiter, George M. French, Marc Sher, Phys.Rev.D 106 (2022) 115037, arXiv:2210.04761.
[French:2022ccb]
[8-186]
State-of-the-Art Collapsar Jet Simulations Imply Undetectable Subphotospheric Neutrinos, Ersilia Guarini, Irene Tamborra, Ore Gottlieb, Phys.Rev.D 107 (2023) 023001, arXiv:2210.03757.
[Guarini:2022hry]
[8-187]
Near-future discovery of the diffuse flux of ultra-high-energy cosmic neutrinos, Victor Branco Valera, Mauricio Bustamante, Christian Glaser, Phys.Rev.D 107 (2023) 043019, arXiv:2210.03756.
[Valera:2022wmu]
[8-188]
High-energy neutrinos from choked-jet supernovae: searches and implications, Po-Wen Chang, Bei Zhou, Kohta Murase, Marc Kamionkowski, arXiv:2210.03088, 2022.
[Chang:2022hqj]
[8-189]
Neutrino propagation in the Earth and emerging charged leptons with $\texttt{nuPyProp}$, Diksha Garg et al., JCAP 01 (2023) 041, arXiv:2209.15581.
[Garg:2022ugd]
[8-190]
Choked jet model for the neutrino emission associated with Tidal Disruption Events, Jian-He Zheng, Xiang-Yu Wang, Ruo-Yu Liu, PoS ICRC2023 (2023) 971, arXiv:2209.11005.
[Zheng:2022kam]
[8-191]
Prospects for detection of a Galactic diffuse neutrino flux, Pedro De la Torre Luque, Daniele Gaggero, Dario Grasso, Front.Astron.Space Sci. 9 (2022) 1041838, arXiv:2209.10011.
[DelaTorreLuque:2022ats]
[8-192]
BASS XXXIII: Swift-BAT blazars and their jets through cosmic time, L. Marcotulli et al. (BASS), Astrophys.J. 940 (2022) 77, arXiv:2209.09929.
[BASS:2022gdj]
[8-193]
Testing hadronic and photo-hadronic interactions as responsible for UHECR and neutrino fluxes from Starburst Galaxies, Antonio Condorelli, Denise Boncioli, Enrico Peretti, Sergio Petrera, Phys.Rev.D 107 (2023) 083009, arXiv:2209.08593.
[Condorelli:2022vfa]
[8-194]
Constraints on the hosts of UHECR accelerators, Marco Stein Muzio, Glennys R. Farrar, Astrophys.J.Lett. 942 (2023) L39, arXiv:2209.08068.
[Muzio:2022bak]
[8-195]
Probing Quantum Gravity with Elastic Interactions of Ultra-High-Energy Neutrinos, Alfonso Garcia Soto, Diksha Garg, Mary Hall Reno, Carlos A. Arguelles, Phys.Rev.D 107 (2023) 033009, arXiv:2209.06282.
[GarciaSoto:2022vlw]
[8-196]
Neutrino Flux Deduced from $\gamma$-rays Emitted by Novae, Dafne Guetta, Yael Hillman, Massimo Della Valle, JCAP 03 (2023) 015, arXiv:2209.04873.
[Guetta:2022ims]
[8-197]
Where are Milky Way's Hadronic PeVatrons?, Takahiro Sudoh, John F. Beacom, Phys.Rev.D 107 (2023) 043002, arXiv:2209.03970.
[Sudoh:2022sdk]
[8-198]
Blazar constraints on neutrino-dark matter scattering, James M. Cline, Shan Gao, Fangyi Guo, Zhongan Lin, Shiyan Liu, Matteo Puel, Phillip Todd, Tianzhuo Xiao, Phys.Rev.Lett. 130 (2023) 091402, arXiv:2209.02713.
[Cline:2022qld]
[8-199]
On the hadronic origin of the TeV radiation from GRB 190114C, S. Gagliardini, S. Celli, D. Guetta, A. Zegarelli, A. Capone, S. Campion, I. Di Palma, JCAP 12 (2023) 013, arXiv:2209.01940.
[Gagliardini:2022rrq]
[8-200]
Lepto-hadronic jet-disc model for the multi-wavelength SED of M87, Margot Boughelilba, Anita Reimer, Lukas Merten, Astrophys.J. 938 (2022) 79, arXiv:2208.14756.
[Boughelilba:2022xuy]
[8-201]
Impact of Neutrino Cooling on Type-I X-ray Bursts and X-ray Superbursts, Akira Dohi, Nobuya Nishimura, Hajime Sotani, Tsuneo Noda, Helei Liu, Shigehiro Nagataki, Masa-aki Hashimoto, Astrophys.J. 937 (2022) 124, arXiv:2208.14622.
[Dohi:2022gmm]
[8-202]
Addition of tabulated equation of state and neutrino leakage support to IllinoisGRMHD, Leonardo R. Werneck et al., Phys.Rev.D 107 (2023) 044037, arXiv:2208.14487.
[Werneck:2022exo]
[8-203]
Exploiting stellar explosion induced by the QCD phase transition in large-scale neutrino detectors, Tetyana Pitik, Daniel Heimsoth, Anna M. Suliga, A. B. Balantekin, Phys.Rev.D 106 (2022) 103007, arXiv:2208.14469.
[Pitik:2022jjh]
[8-204]
Neutrino propagation in the neutron star with uncertainties from nuclear, hadron, and particle physics, Parada T. P. Hutauruk, Hana Gil, Seung-il Nam, Chang Ho Hyun, PTEP 2023 (2023) 063D01, arXiv:2208.13971.
[Hutauruk:2022bso]
[8-205]
Neutrino search from $\gamma$-ray bursts during the prompt and X-ray afterglow phases using 10 years of IceCube public data, Francesco Lucarelli, Gor Oganesyan, Teresa Montaruli, Marica Branchesi, Alessio Mei, Samuele Ronchini, Francesco Brighenti, Biswajit Banerjee, Astron.Astrophys. 672 (2023) A102, arXiv:2208.13792.
[Lucarelli:2022ush]
[8-206]
Evaluation of the potential of a gamma-ray observatory to detect astrophysical neutrinos through inclined showers, Jaime Alvarez-Muniz, Ruben Conceicao, Pedro J. Costa, Mario Pimenta, Bernardo Tome, Phys.Rev.D 106 (2022) 102001, arXiv:2208.11072.
[Alvarez-Muniz:2022cdw]
[8-207]
Galactic contribution to the high-energy neutrino flux found in track-like IceCube events, Yu. Kovalev, A. Plavin, S. Troitsky, Astrophys.J.Lett. 940 (2022) L41, arXiv:2208.08423.
[Kovalev:2022izi]
[8-208]
The hunt for extraterrestrial high-energy neutrino counterparts, I. Liodakis, T. Hovatta, V. Pavlidou, A. C. S. Readhead, R. D. Blandford, S. Kiehlmann, E. Lindfors, W. Max-Moerbeck, T. J. Pearson, M. Petropoulou, Astron.Astrophys. 666 (2022) A36, arXiv:2208.07381.
[Liodakis:2022ccz]
[8-209]
UHE neutrinos encountering decaying and non-decaying magnetic fields of compact stars, Neetu Raj Singh Chundawat, Arindam Mandal, Trisha Sarkar, arXiv:2208.06644, 2022.
[SinghChundawat:2022mll]
[8-210]
Into the darkness: Ultra-high energy neutrinos from high-redshift electromagnetic cascades, AmirFarzan Esmaeili, Antonio Capanema, Arman Esmaili, Pasquale Dario Serpico, Phys.Rev.D 106 (2022) 123016, arXiv:2208.06440.
[Esmaeili:2022cpz]
[8-211]
Implications of the QCD dynamics and a Super-Glashow astrophysical neutrino flux on the description of ultrahigh energy neutrino data, Victor P. Goncalves, Diego R. Gratieri, Alex S. C. Quadros, Eur.Phys.J.C 82 (2022) 1011, arXiv:2208.04597.
[Goncalves:2022uwy]
[8-212]
Diffuse non-thermal emission in the disks of the Magellanic Clouds, Massimo Persic, Yoel Rephaeli, Astron.Astrophys. 666 (2022) A167, arXiv:2208.02059.
[Persic:2022ilh]
[8-213]
Implications of multiwavelength spectrum on cosmic-ray acceleration in blazar TXS 0506+056, Saikat Das, Nayantara Gupta, Soebur Razzaque, Astron.Astrophys. 668 (2022) A146, arXiv:2208.00838.
[Das:2022nyp]
[8-214]
CRPropa 3.2 - an advanced framework for high-energy particle propagation in extragalactic and galactic spaces, Rafael Alves Batista et al., arXiv:2208.00107, 2022.
[AlvesBatista:2022ani]
[8-215]
Constraining the $\gamma$-ray Emission Region for Fermi-Detected FSRQs by the Seed Photon Approach, Danyi Huang, Ziyan Li, Jiru Liao, Xiulin Huang, Chengfeng Li, Yanjun Qian, Zhiyuan Pei, Junhui Fan, Publ.Astron.Soc.Pac. 134 (2022) 084102, arXiv:2207.13058.
[Huang:2022pys]
[8-216]
On the contribution of cosmic-ray interactions in the circumgalactic gas to the observed high-energy neutrino flux, Oleg Kalashev, Nickolay Martynenko, Sergey Troitsky, JCAP 03 (2023) 053, arXiv:2207.12458.
[Kalashev:2022rqg]
[8-217]
High-energy neutrino transients and the future of multi-messenger astronomy, Claire Guepin, Kumiko Kotera, Foteini Oikonomou, Nature Rev.Phys. 4 (2022) 697-712, arXiv:2207.12205.
[Guepin:2022qpl]
[8-218]
High-Energy Neutrino Emission from Espresso-Reaccelerated Ions in Jets of Active Galactic Nuclei, Rostom Mbarek, Damiano Caprioli, Kohta Murase, Astrophys.J. 942 (2023) 37, arXiv:2207.07130.
[Mbarek:2022nat]
[8-219]
Beginning a journey across the universe: the discovery of extragalactic neutrino factories, Sara Buson, Andrea Tramacere, Leonard Pfeiffer, Lenz Oswald, Raniere de Menezes, Alessandra Azzollini, Marco Ajello, Astrophys.J.Lett. 933 (2022) L43, arXiv:2207.06314.
[Buson:2022fyf]
[8-220]
High-energy neutrinos and gamma rays from winds and tori in active galactic nuclei, Susumu Inoue, Matteo Cerruti, Kohta Murase, Ruo-Yu Liu, PoS ICRC2023 (2023) 1161, arXiv:2207.02097.
[Inoue:2022yak]
[8-221]
Non-Standard Neutrino Spectra From Annihilating Neutralino Dark Matter, Melissa van Beekveld, Wim Beenakker, Sascha Caron, Jochem Kip, Roberto Ruiz de Austri, Zhongyi Zhang, SciPost Phys.Core 6 (2023) 006, arXiv:2207.00599.
[vanBeekveld:2022rnz]
[8-222]
Solving the multi-messenger puzzle of the AGN-starburst composite galaxy NGC 1068, Bjorn Eichmann, Foteini Oikonomou, Silvia Salvatore, Ralf-Jurgen Dettmar, Julia Becker Tjus, Astrophys.J. 939 (2022) 43, arXiv:2207.00102.
[Eichmann:2022lxh]
[8-223]
Cosmic Neutrinos as a Window to Departures from Special Relativity, J. M. Carmona, J. L. Cortes, J. J. Relancio, M. A. Reyes, Symmetry 14 (2022) 1326, arXiv:2206.14257.
[Carmona:2022lyg]
[8-224]
Identifying High Energy Neutrino Transients by Neutrino Multiplet-Triggered Followups, Shigeru Yoshida, Kohta Murase, Masaomi Tanaka, Nobuhiro Shimizu, Aya Ishihara, Astrophys.J. 937 (2022) 108, arXiv:2206.13719.
[Yoshida:2022idr]
[8-225]
Nucleosynthesis Contribution of Neutrino-dominated Accretion Flows to the Chemical Evolution of Active Galactic Nuclei, Yan-Qing Qi, Tong Liu, Zhen-Yi Cai, Mouyuan Sun, arXiv:2206.08613, 2022.
[Qi:2022sjh]
[8-226]
High-Energy Astrophysical Neutrinos from Cosmic Strings, Cyril Creque-Sarbinowski, Jeffrey Hyde, Marc Kamionkowski, Phys.Rev.D 107 (2023) 123019, arXiv:2206.06377.
[Creque-Sarbinowski:2022mex]
[8-227]
Using Neutrino Oscillations to Measure $H_0$?, Luis A. Anchordoqui, Universe 8 (2022) 377, arXiv:2206.06115.
[Anchordoqui:2022ebw]
[8-228]
Magnetar Hard X-Ray Emission from Axion-like Particle Conversion, Jean-Francois Fortin, Marianne Gratton, JCAP 10 (2022) 009, arXiv:2206.01560.
[Fortin:2022skl]
[8-229]
Near-future discovery of point sources of ultra-high-energy neutrinos, Damiano F. G. Fiorillo, Mauricio Bustamante, Victor B. Valera, JCAP 03 (2023) 026, arXiv:2205.15985.
[Fiorillo:2022ijt]
[8-230]
Investigating the correlations between IceCube high-energy neutrinos and Fermi-LAT gamma-ray observations, RongLan-Li, BenYang-Zhu, YunFeng-Liang, arXiv:2205.15963, 2022.
[Li:2022vsb]
[8-231]
Looking at Luminous Fast Blue Optical Transients through Neutrino Glasses, Ersilia Guarini, Irene Tamborra, Raffaella Margutti, arXiv:2205.12282, 2022.
[Guarini:2022uyp]
[8-232]
Time-dependent interpretation of the neutrino emission from Tidal Disruption Events, Walter Winter, Cecilia Lunardini, arXiv:2205.11538, 2022.
[2205.11538]
[8-233]
Detector Requirements for Model-Independent Measurements of Ultrahigh Energy Neutrino Cross Sections, Ivan Esteban, Steven Prohira, John F. Beacom, Phys.Rev.D 106 (2022) 023021, arXiv:2205.09763.
[Esteban:2022uuw]
[8-234]
On LGRB progenitors: an approach from thermally-produced neutrinos, Gibran Morales, Nissim Fraija, JHEAp 34 (2022) 145, arXiv:2205.06967.
[Morales:2022cqr]
[8-235]
Tau depolarization at very high energies for neutrino telescopes, Carlos A. Arguelles, Diksha Garg, Sameer Patel, Mary Hall Reno, Ibrahim Safa, Phys.Rev.D 106 (2022) 043008, arXiv:2205.05629.
[Arguelles:2022bma]
[8-236]
The TeV Diffuse Cosmic Neutrino Spectrum and the Nature of Astrophysical Neutrino Sources, Ke Fang, John S. Gallagher, Francis Halzen, Astrophys.J. 933 (2022) 190, arXiv:2205.03740.
[Fang:2022trf]
[8-237]
Multi-messenger High-Energy Signatures of Decaying Dark Matter and the Effect of Background Light, Barbara Skrzypek, Marco Chianese, Carlos Arguelles Delgado, JCAP 01 (2023) 037, arXiv:2205.03416.
[Skrzypek:2022hpy]
[8-238]
Exploring the hadronic origin of LHAASO J1908+0621, Agnibha De Sarkar, Nayantara Gupta, arXiv:2205.01923, 2022.
[DeSarkar:2022bnl]
[8-239]
Energy-dependent flavor ratios, cascade/track spectrum tension and high-energy neutrinos from magnetospheres of supermassive black holes, Kirill Riabtsev, Sergey Troitsky, Phys.Lett.B 839 (2023) 137758, arXiv:2204.09339.
[Riabtsev:2022ynm]
[8-240]
Simulating neutrino echoes induced by secret neutrino interactions, Jose Alonso Carpio, Kohta Murase, JCAP 02 (2023) 042, arXiv:2204.09029.
[Carpio:2022lqk]
[8-241]
Light curves of BSM-induced neutrino echoes in the optically-thin limit, Ryan Eskenasy, Ali Kheirandish, Kohta Murase, Phys.Rev.D 107 (2023) 103038, arXiv:2204.08924.
[Eskenasy:2022aup]
[8-242]
A multi-messenger study of the blazar PKS 0735+178: a new major neutrino source candidate, N. Sahakyan, P. Giommi, P. Padovani, M. Petropoulou, D. Begue, B. Boccardi, S. Gasparyan, Mon.Not.Roy.Astron.Soc. 519 (2022) 1396-1408, arXiv:2204.05060.
[Sahakyan:2022nbz]
[8-243]
The ultra-high-energy neutrino-nucleon cross section: measurement forecasts for an era of cosmic EeV-neutrino discovery, Victor Branco Valera, Mauricio Bustamante, Christian Glaser, JHEP 06 (2022) 105, arXiv:2204.04237.
[Valera:2022ylt]
[8-244]
High energy particles from young supernovae: gamma-ray and neutrino connections, Prantik Sarmah, Sovan Chakraborty, Irene Tamborra, Katie Auchettl, JCAP 08 (2022) 011, arXiv:2204.03663.
[Sarmah:2022vra]
[8-245]
Searching for neutrino emissions from multi-frequency sources, Yu-Ling Chang, Bruno Arsioli, Wenlian Li, Donglian Xu, Liang Chen, Astrophys.J. 939 (2022) 123, arXiv:2203.16740.
[Chang:2022bro]
[8-246]
Current and future neutrino limits on the abundance of primordial black holes, Nicolas Bernal, Victor Munoz-Albornoz, Sergio Palomares-Ruiz, Pablo Villanueva-Domingo, JCAP 10 (2022) 068, arXiv:2203.14979.
[Bernal:2022swt]
[8-247]
Multiwavelength search for the origin of IceCube's neutrinos, Emma Kun, Imre Bartos, Julia Becker Tjus, Peter L. Biermann, Anna Franckowiak, Francis Halzen, Astrophys.J. 934 (2022) 180, arXiv:2203.14780.
[Kun:2022khf]
[8-248]
PeV Tau Neutrinos to Unveil Ultra-High-Energy Sources, Carlos A. Arguelles, Francis Halzen, Ali Kheirandish, Ibrahim Safa, arXiv:2203.13827, 2022.
[Arguelles:2022aum]
[8-249]
Observing the inner parsec-scale region of candidate neutrino-emitting blazars, Cristina Nanci et al., Astron.Astrophys. 663 (2022) A129, arXiv:2203.13268.
[Nanci:2022clk]
[8-250]
Neutrino interactions with ultralight axion-like dark matter, Matias M. Reynoso, Oscar A. Sampayo, Agustin M. Carulli, Eur.Phys.J.C 82 (2022) 274, arXiv:2203.11642.
[Reynoso:2022vrn]
[8-251]
Observable Signatures of Cosmic Rays Transport in Starburst Galaxies on Gamma-ray and Neutrino Observations, A. Ambrosone, M. Chianese, D.F.G. Fiorillo, A. Marinelli, G. Miele, arXiv:2203.03642, 2022.
[Ambrosone:2022fip]
[8-252]
Combined significance of spatial coincidence of high energy neutrinos from PSR B1509-58 by Super-Kamiokande and MACRO, Shantanu Desai, JCAP 08 (2022) 001, arXiv:2202.12493.
[Desai:2022uhl]
[8-253]
toise: a framework to describe the performance of high-energy neutrino detectors, Jakob van Santen, Brian A. Clark, Rob Halliday, Stefan Hallman, Anna Nelles, JINST 17 (2022) T08009, arXiv:2202.11120.
[vanSanten:2022wss]
[8-254]
Polarisation signatures in radio for inclined cosmic-ray induced air-shower identification, Simon Chiche, Kumiko Kotera, Olivier Martineau-Huynh, Matias Tueros, Krijn D. de Vries, Astropart.Phys. 139 (2022) 102696, arXiv:2202.06846.
[Chiche:2022ppi]
[8-255]
Quantum spin-flavour memory of ultrahigh-energy neutrino, P. Kurashvili, L. Chotorlishvili, K. A. Kouzakov, A. I. Studenikin, Eur.Phys.J.Plus 137 (2022) 234, arXiv:2202.06735.
[Kurashvili:2022voz]
[8-256]
PKS 1424+240: yet another masquerading BL Lac object as a possible IceCube neutrino source, P. Padovani, B. Boccardi, R. Falomo, P. Giommi, Mon.Not.Roy.Astron.Soc. 511 (2022) 4697-4701, arXiv:2202.04363.
[Padovani:2022wjk]
[8-257]
GB6 J2113+1121: A multi-wavelength flaring gamma-ray blazar temporally and spatially coincident with the neutrino event IceCube-191001A, Neng-Hui Liao, Zhen-Feng Sheng, Ning Jiang, Yu-Ling Chang, Yi-Bo Wang, Dong-Lian Xu, Xin-Wen Shu, Yi-Zhong Fan, Ting-Gui Wang, Astrophys.J.Lett. 932 (2022) L25, arXiv:2202.03788.
[Liao:2022csg]
[8-258]
Propagation of cosmic rays in plasmoids of AGN jets - implications for multimessenger predictions, J. Becker Tjus, M. Horbe, I. Jaroschewski, P. Reichherzer, W. Rhode, M. Schroller, F. Schussler, MDPI Physics 4 (2022) 473-490, arXiv:2202.01818.
[BeckerTjus:2022wwh]
[8-259]
Neutrino point source searches for dark matter spikes, Katherine Freese, Irina Galstyan, Pearl Sandick, Patrick Stengel, JCAP 08 (2022) 065, arXiv:2202.01126.
[Freese:2022ouh]
[8-260]
Contribution to the extragalactic neutrino background from dense environment of GRB jets, W. Bednarek, A. Smialkowski, JHEAp 33 (2022) 134, arXiv:2201.12061.
[Bednarek:2022rgh]
[8-261]
High energy neutrinos from fast winds in Novae, W. Bednarek, A. Smialkowski, Mon.Not.Roy.Astron.Soc. 511 (2022) 3339-3345, arXiv:2201.10810.
[Bednarek:2022vey]
[8-262]
Prospects for gamma-ray observations of Hercules cluster, Vadym Voitsekhovskyi, arXiv:2201.09606, 2022.
[Voitsekhovskyi:2022uxw]
[8-263]
Boosted tau lepton as a microscope and macroscope, Sitian Qian et al., Adv.High Energy Phys. 2022 (2022) 4931241, arXiv:2201.07808.
[Qian:2022owu]
[8-264]
Assessing coincident neutrino detections using population models, F. Capel, J. M. Burgess, D. J. Mortlock, P. Padovani, Astron.Astrophys. 668 (2022) A190, arXiv:2201.05633.
[Capel:2022cnm]
[8-265]
Galactic gamma-ray and neutrino emission from interacting cosmic-ray nuclei, M. Breuhaus, J. A. Hinton, V. Joshi, B. Reville, H. Schoorlemmer, Astron.Astrophys. 661 (2022) A72, arXiv:2201.03984.
[Breuhaus:2022epo]
[8-266]
Exploring neutrinos from proton decays catalyzed by GUT monopoles in the Sun, Hang Hu, Jie Cheng, Wan-Lei Guo, Wei Wang, JCAP 06 (2022) 003, arXiv:2201.02386.
[Hu:2022wcd]
[8-267]
Diffuse flux of PeV neutrinos from centrifugally accelerated protons in active galactic nuclei, Rajat K. Dey, Animesh Basak, Sabyasachi Ray, EPL 136 (2021) 69001, arXiv:2201.00586.
[Dey:2021apq]
[8-268]
Detection prospects for multi-GeV neutrinos from collisionally heated GRBs, A. Zegarelli, S. Celli, A. Capone, S. Gagliardini, S. Campion, I. Di Palma, Phys.Rev.D 105 (2022) 083023, arXiv:2112.14188.
[Zegarelli:2021vuf]
[8-269]
Neutrino Observations of LHAASO Sources: Present and Prospect, Tian-Qi Huang, Zhuo Li, Mon.Not.Roy.Astron.Soc. 514 (2022) 852-862, arXiv:2112.14062.
[Huang:2021hjc]
[8-270]
A test of spatial coincidence between CHIME FRBs and IceCube TeV energy neutrinos, Shantanu Desai, J.Phys.G 50 (2023) 015201, arXiv:2112.13820.
[Desai:2021dpm]
[8-271]
A Significant Association Between CHIME Fast Radio Bursts and Low-Energy IceCube Neutrinos, Jia-Wei Luo, Bing Zhang, arXiv:2112.11375, 2021.
[Luo:2021rpq]
[8-272]
Probing New Physics at Future Tau Neutrino Telescopes, Guo-yuan Huang, Sudip Jana, Manfred Lindner, Werner Rodejohann, JCAP 02 (2022) 038, arXiv:2112.09476.
[Huang:2021mki]
[8-273]
The relativistic parsec-scale jets of the blazars TXS 0506+056 and PKS 0502+049 and their possible association with gamma-ray flares and neutrino production, Viktor Y. D. Sumida, Andre de A. Schutzer, Anderson Caproni, Zulema Abraham, Mon.Not.Roy.Astron.Soc. 509 (2022) 1646, arXiv:2112.08858.
[Sumida:2021uov]
[8-274]
Multi-messenger detection prospects of gamma-ray burst afterglows with optical jumps, Ersilia Guarini, Irene Tamborra, Damien Begue, Tetyana Pitik, Jochen Greiner, JCAP 06 (2022) 034, arXiv:2112.07690.
[Guarini:2021gwh]
[8-275]
Home on the (HEALPix) Range: Fast All-Sky Geometry and Image Arithmetic in a Relational Database for Multi-Messenger Astronomy Brokers, Leo P. Singer, B. Parazin, Michael W. Coughlin, Joshua S. Bloom, Arien Crellin-Quick, Daniel A. Goldstein, Stefan van der Walt, Astron.J. 163 (2022) 209, arXiv:2112.06947.
[Singer:2021rdr]
[8-276]
Tau Appearance from High-Energy Neutrino Interactions, Alfonso Garcia Soto, Pavel Zhelnin, Ibrahim Safa, Carlos A. Arguelles, Phys.Rev.Lett. 128 (2022) 171101, arXiv:2112.06937.
[Soto:2021vdc]
[8-277]
Astrophysical Neutrinos and Blazars, Paolo Giommi, Paolo Padovani, Universe 7 (2021) 492, arXiv:2112.06232.
[Giommi:2021bar]
[8-278]
The Spectra of IceCube Neutrino (SIN) candidate sources - II. Source Characterisation, P. Padovani, P. Giommi, R. Falomo, F. Oikonomou, M. Petropoulou, T. Glauch, E. Resconi, A. Treves, S. Paiano, Mon.Not.Roy.Astron.Soc. 510 (2022) 2671-2688, arXiv:2112.05394.
[Padovani:2021kjr]
[8-279]
The supernova of the MAGIC GRB190114C, A. Melandri et al., Astron.Astrophys. 659 (2022) A39, arXiv:2112.04759.
[Melandri:2021rwu]
[8-280]
Could TDE outflows produce the PeV neutrino events?, Han-Ji Wu, Guo-Bin Mou, Kai Wang, Wei Wang, Zhuo Li, arXiv:2112.01748, 2021.
[Wu:2021vaw]
[8-281]
$r$-process Nucleosynthesis and Kilonovae from Hypermassive Neutron Star Remnants, Sanjana Curtis, Philipp Mosta, Zhenyu Wu, David Radice, Luke Roberts, Giacomo Ricigliano, Albino Perego, Mon.Not.Roy.Astron.Soc. 518 (2022) 5313-5322, arXiv:2112.00772.
[Curtis:2021guz]
[8-282]
Using Neutrino Oscillations to Measure $H_0$, Ali Rida Khalifeh, Raul Jimenez, Phys.Dark Univ. 37 (2022) 101063, arXiv:2111.15249.
[Khalifeh:2021jfl]
[8-283]
Modeling and Simulations of TXS 0506+056 Neutrino Events in the MeV Band, Tiffany R. Lewis, Christopher M. Karwin, Tonia M. Venters, Henrike Fleischhack, Yong Sheng, Carolyn A. Kierans, Regina Caputo, Julie McEnery, arXiv:2111.10600, 2021.
[Lewis:2021roc]
[8-284]
Establishing accretion flares from massive black holes as a major source of high-energy neutrinos, S. van Velzen et al., Mon.Not.Roy.Astron.Soc. 529 (2024) 2559-2576, arXiv:2111.09391.
[vanVelzen:2021zsm]
[8-285]
The candidate tidal disruption event AT2019fdr coincident with a high-energy neutrino, Simeon Reusch et al., Phys.Rev.Lett. 128 (2022) 221101, arXiv:2111.09390.
[Reusch:2021ztx]
[8-286]
High-energy neutrinos from X-rays flares of blazars frequently observed by the Swift X-Ray Telescope, S. I. Stathopoulos, M. Petropoulou, P. Giommi, G. Vasilopoulos, P. Padovani, A. Mastichiadis, Mon.Not.Roy.Astron.Soc. 510 (2022) 4063-4079, arXiv:2111.09320.
[Stathopoulos:2021mli]
[8-287]
Cascade Appearance Signatures of Sterile Neutrinos at 1-100 TeV, Benjamin R. Smithers, Benjamin J. P. Jones, Carlos A. Arguelles, Janet M. Conrad, Alejandro Diaz, Phys.Rev.D 105 (2022) 052001, arXiv:2111.08722.
[Smithers:2021orb]
[8-288]
Seeking Neutrino Emission from AGN through Temporal and Spatial Cross Correlation, Cyril Creque-Sarbinowski, Marc Kamionkowski, Bei Zhou, Phys.Rev.D 105 (2022) 123035, arXiv:2111.08012.
[Creque-Sarbinowski:2021nil]
[8-289]
Studying the influence of external photon fields on blazar spectra using a one-zone hadro-leptonic time-dependent model, Michael Zacharias, Physics 3 (2021) 1098-1111, arXiv:2111.05596.
[Zacharias:2021kfe]
[8-290]
Newly born extragalactic millisecond pulsars as efficient emitters of PeV neutrinos, Rajat K. Dey, Animesh Basak, Sabyasachi Ray, Tamal Sarkar, Braz.J.Phys. 51 (2021) 1406, arXiv:2111.04656.
[Dey:2021mwb]
[8-291]
Neutrino emission from FRB-emitting magnetars, Yuanhong Qu, Bing Zhang, Mon.Not.Roy.Astron.Soc. 511 (2022) 972-979, arXiv:2111.04121.
[Qu:2021qli]
[8-292]
The Nonsymmetric Flavor Transition Matrix and the Apparent P violation, Shu-Jun Rong, Ding-Hui Xu, Adv.High Energy Phys. 2022 (2022) 6949022, arXiv:2110.15597.
[Rong:2021dca]
[8-293]
TauRunner: A Public Python Program to Propagate Neutral and Charged Leptons, Ibrahim Safa, Jeffrey Lazar, Alex Pizzuto, Oswaldo Vasquez, Carlos A. Arguelles, Justin Vandenbroucke, Comput.Phys.Commun. 278 (2022) 108422, arXiv:2110.14662.
[Safa:2021ghs]
[8-294]
PeV photon and neutrino flares from galactic gamma-ray binaries, A. M. Bykov, A. E. Petrov, M. E. Kalyashova, S. V. Troitsky, Astrophys.J.Lett. 921 (2021) L10, arXiv:2110.11189.
[Bykov:2021maf]
[8-295]
Is the high-energy neutrino event IceCube-200530A associated with a hydrogen rich superluminous supernova?, Tetyana Pitik, Irene Tamborra, Charlotte R. Angus, Katie Auchettl, Astrophys.J. 929 (2022) 163, arXiv:2110.06944.
[Pitik:2021dyf]
[8-296]
Evaporating Primordial Black Holes in Gamma Ray and Neutrino Telescopes, Antonio Capanema, AmirFarzan Esmaeili, Arman Esmaili, JCAP 12 (2021) 051, arXiv:2110.05637.
[Capanema:2021hnm]
[8-297]
Dimuons in Neutrino Telescopes: New Predictions and First Candidates in IceCube, Bei Zhou, John F. Beacom, Phys.Rev.D 105 (2022) 093005, arXiv:2110.02974.
[Zhou:2021xuh]
[8-298]
Triangulating Black Hole Forming Stellar Collapses through Neutrinos, Lila Sarfati, Rasmus S. L. Hansen, Irene Tamborra, Phys.Rev.D 105 (2022) 023011, arXiv:2110.02347.
[Sarfati:2021vym]
[8-299]
Time-dependent lepto-hadronic modeling of the emission from blazar jets with SOPRANO: the case of TXS 0506+056, 3HSP J095507.9+355101 and 3C 279, Sargis Gasparyan, Damien Begue, Narek Sahakyan, Mon.Not.Roy.Astron.Soc. 509 (2021) 2102-2121, arXiv:2110.01549.
[Gasparyan:2021oad]
[8-300]
Energy spectra of secondaries in proton-proton interactions, S. Koldobskiy, M. Kachelries, A. Lskavyan, A. Neronov, S. Ostapchenko, D. V. Semikoz, Phys.Rev.D 104 (2021) 123027, arXiv:2110.00496.
[Koldobskiy:2021nld]
[8-301]
Dark Matter Hot Spots and Neutrino Telescopes, Stephan Meighen-Berger, Martina Karl, arXiv:2109.07885, 2021.
[Meighen-Berger:2021hka]
[8-302]
Neutrino Cooling Bounds on the Internal Magnetic Fields of White Dwarfs, Marco Drewes, Jamie McDonald, Loic Sablon, Edoardo Vitagliano, Astrophys.J. 934 (2022) 99, arXiv:2109.06158.
[Drewes:2021fjx]
[8-303]
Distinctive signals of boosted dark matter from semi-annihilations, Takashi Toma, Phys.Rev.D 105 (2022) 043007, arXiv:2109.05911.
[Toma:2021vlw]
[8-304]
What powers the radio emission in TDE AT2019dsg: a long-lived jet or the disruption itself?, Tatsuya Matsumoto, Tsvi Piran, Julian H. Krolik, Mon.Not.Roy.Astron.Soc. 511 (2022) 5085-5092, arXiv:2109.02648.
[Matsumoto:2021qqo]
[8-305]
Neutrinos from captured dark matter annihilation in a galactic population of neutron stars, Debajit Bose, Tarak Nath Maity, Tirtha Sankar Ray, JCAP 05 (2022) 001, arXiv:2108.12420.
[Bose:2021yhz]
[8-306]
Cosmogenic gamma-ray and neutrino fluxes from blazars associated with IceCube events, Saikat Das, Soebur Razzaque, Nayantara Gupta, Astron.Astrophys. 658 (2022) L6, arXiv:2108.12120.
[Das:2021cdf]
[8-307]
A New Gamma-ray Emitting Population of FR0 Radio Galaxies, Vaidehi S. Paliya, Astrophys.J.Lett. 918 (2021) L39, arXiv:2108.11701.
[Paliya:2021sbv]
[8-308]
An AGN-starburst composite multi-messenger model of NGC 1068, Bjorn Eichmann, Ralf-Jurgen Dettmar, Julia Becker-Tjus, PoS ICRC2021 (2021) 1006, arXiv:2108.06990.
[Eichmann:2021igs]
[8-309]
Ultrahigh energy cosmic rays and high energy astrophysical neutrinos, Marco Stein Muzio, Glennys R. Farrar, Michael Unger, Phys.Rev.D 105 (2022) 023022, arXiv:2108.05512.
[Muzio:2021zud]
[8-310]
An interacting molecular cloud scenario for production of gamma-rays and neutrinos from MAGIC J1835-069, and MAGIC J1837-073, Prabir Banik, Arunava Bhadra, Eur.Phys.J.C 81 (2021) 478, arXiv:2108.01863.
[Banik:2021dvz]
[8-311]
Searching for a Galactic component in the IceCube track-like neutrino events, Gregory S. Vance, Kimberly L. Emig, Cecilia Lunardini, Rogier A. Windhorst, arXiv:2108.01805, 2021.
[Vance:2021yky]
[8-312]
Probing Secret Interactions of Astrophysical Neutrinos in the High-Statistics Era, Ivan Esteban, Sujata Pandey, Vedran Brdar, John F. Beacom, Phys.Rev.D 104 (2021) 123014, arXiv:2107.13568.
[Esteban:2021tub]
[8-313]
Multi-messenger emission from the parsec-scale jet of the flat-spectrum radio quasar PKS 1502+106 coincident with high-energy neutrino IceCube-190730A, Foteini Oikonomou, Maria Petropoulou, Kohta Murase, Aaron Tohuvavohu, Georgios Vasilopoulos, Sara Buson, Marcos Santander, JCAP 10 (2021) 082, arXiv:2107.11437.
[Oikonomou:2021akf]
[8-314]
High-energy Neutrinos from Stellar Explosions in Active Galactic Nuclei Accretion Disks, Jin-Ping Zhu, Kai Wang, Bing Zhang, Astrophys.J.Lett. 917 (2021) L28, arXiv:2107.06070.
[Zhu:2021fhd]
[8-315]
Could nearby star-forming galaxies light up the point-like neutrino sky?, Antonio Ambrosone, Marco Chianese, Damiano F. G. Fiorillo, Antonio Marinelli, Gennaro Miele, Astrophys.J.Lett. 919 (2021) L32, arXiv:2106.13248.
[Ambrosone:2021aaw]
[8-316]
On a new statistical technique for the real-time recognition of ultra-low multiplicity astrophysical neutrino burst, Marco Mattiazzi, Mathieu Lamoureux, Gianmaria Collazuol, arXiv:2106.12345, 2021.
[1869992]
[8-317]
Model-independent constraints on superfluidity from the cooling neutron star in Cassiopeia A, Peter S. Shternin, Dmitry D. Ofengeim, Wynn C. G. Ho, Craig O. Heinke, M. J. P. Wijngaarden, Daniel J. Patnaude, arXiv:2106.05692, 2021.
[1868019]
[8-318]
From Neutrino- to Photon-Cooled in Three Years: Can Fallback Accretion Explain the X-ray Excess in GW170817?, Brian D. Metzger, Rodrigo Fernandez, Astrophys.J.Lett. 916 (2021) L3, arXiv:2106.02052.
[Metzger:2021grk]
[8-319]
Complex Analysis of Askaryan Radiation: A Fully Analytic Model in the Time-Domain, Jordan C. Hanson, Raymond Hartig, Phys.Rev.D 105 (2022) 123019, arXiv:2106.00804.
[Hanson:2021krr]
[8-320]
Exploring multimessenger signals from heavy dark matter decay with EDGES 21-cm result and IceCube, Ashadul Halder, Madhurima Pandey, Debasish Majumdar, Rupa Basu, JCAP 21 (2020) 033, arXiv:2105.14356.
[Halder:2021uoa]
[8-321]
A test of the hadronic origin of $\gamma$-rays from blazars with up to month-later follow-up of IceCube Alerts with Imaging Air Cherenkov Telescopes, Damiano F. G. Fiorillo, Konstancja Satalecka, Ignacio Taboada, Chun Fai Tung, Astrophys.J. 917 (2021) 70, arXiv:2105.14043.
[Fiorillo:2021ksl]
[8-322]
Neutrino propagation in winds around the central engine of sGRB, G. Morales, N. Fraija, Mon.Not.Roy.Astron.Soc. 505 (2021) 4968-4980, arXiv:2105.13895.
[Morales:2021deo]
[8-323]
A hot spot in the neutrino flux created by cosmic rays from the Cygnus Loop, M. Bouyahiaoui, M. Kachelriess, D.V. Semikoz, PoS ICRC2021 (2021) 999, arXiv:2105.13378.
[Bouyahiaoui:2021rhm]
[8-324]
Simulating the Galactic Multi-messenger Emissions with HERMES, Andrej Dundovic, Carmelo Evoli, Daniele Gaggero, Dario Grasso, Astron.Astrophys. 653 (2021) A18, arXiv:2105.13165.
[Dundovic:2021ryb]
[8-325]
On the relation between the astrophysical neutrino fluxes and the cosmic ray fluxes, Esteban Roulet, JCAP 08 (2021) 009, arXiv:2105.12506.
[Roulet:2021nsd]
[8-326]
Constraints on Hadronic Contribution to LHAASO Sources with Neutrino Observations, Tian-Qi Huang, Zhuo Li, Astrophys.J. 925 (2022) 85, arXiv:2105.09851.
[Huang:2021quh]
[8-327]
Particle Reacceleration by Turbulence and Radio Constraints on Multi-Messenger High-Energy Emission from the Coma Cluster, Kosuke Nishiwaki, Katsuaki Asano, Kohta Murase, Astrophys.J. 922 (2021) 190, arXiv:2105.04541.
[Nishiwaki:2021axb]
[8-328]
The IceCube Pie Chart: Relative Source Contributions to the Cosmic Neutrino Flux, I. Bartos, D. Veske, M. Kowalski, Z. Marka, S. Marka, Astrophys.J. 921 (2021) 45, arXiv:2105.03792.
[Bartos:2021tok]
[8-329]
On the Tau flavor of the cosmic neutrino flux, Yasaman Farzan, JHEP 07 (2021) 174, arXiv:2105.03272.
[Farzan:2021gbx]
[8-330]
The role of jet-cocoon mixing, magnetization and shock breakout in neutrino and cosmic-ray emission from short GRBs, Ore Gottlieb, Noemie Globus, Astrophys.J.Lett. 915 (2021) L4, arXiv:2105.01076.
[Gottlieb:2021pzr]
[8-331]
Particle acceleration and multi-messenger emission from starburst-driven galactic winds, Enrico Peretti, Giovanni Morlino, Pasquale Blasi, Pierre Cristofari, Mon.Not.Roy.Astron.Soc. 511 (2022) 1336, arXiv:2104.10978.
[Peretti:2021yhc]
[8-332]
Multi-messenger Implications of Sub-PeV Diffuse Galactic Gamma-Ray Emission, Ke Fang, Kohta Murase, Astrophys.J. 919 (2021) 93, arXiv:2104.09491.
[Fang:2021ylv]
[8-333]
Katu: a fast open-source full lepto-hadronic kinetic code suitable for Bayesian inference modelling of blazars, Bruno Jimenez Fernandez, Hendrik van Eerten, arXiv:2104.08207, 2021.
[Jimenez-Fernandez:2021pdx]
[8-334]
Origin of Galactic sub-PeV diffuse gamma-ray emission: Constraints from high-energy neutrino observations, Ruo-Yu Liu, Xiang-Yu Wang, Astrophys.J. 914 (2021) L7, arXiv:2104.05609.
[Liu:2021lxk]
[8-335]
The spectra of IceCube neutrino candidate sources - I. Optical spectroscopy of blazars, Simona Paiano, Renato Falomo, Aldo Treves, Paolo Padovani, Paolo Giommi, Riccardo Scarpa, Mon.Not.Roy.Astron.Soc. 504 (2021) 3338-3353, arXiv:2104.05290.
[Paiano:2021zpc]
[8-336]
Galactic cosmic ray propagation: sub-PeV diffuse gamma-ray and neutrino emission, Bing-Qiang Qiao, Wei Liu, Meng-Jie Zhao, Xiao-Jun Bi, Yi-Qing Guo, Front.Phys.(Beijing) 17 (2022) 44501, arXiv:2104.03729.
[Qiao:2021iua]
[8-337]
Implications of the detection of sub-PeV diffuse $\gamma$ rays from the Galactic disk apart from discrete sources, Timur Dzhatdoev, arXiv:2104.02838, 2021.
[Dzhatdoev:2021xjh]
[8-338]
Unified thermal model for photohadronic neutrino production in astrophysical sources, Damiano F. G. Fiorillo, Arjen Van Vliet, Stefano Morisi, Walter Winter, JCAP 07 (2021) 028, arXiv:2103.16577.
[Fiorillo:2021hty]
[8-339]
Search for High-Energy Neutrino Emission from Radio-Bright AGN, Bei Zhou, Marc Kamionkowski, Yun-feng Liang, Phys.Rev. D103 (2021) 123018, arXiv:2103.12813.
[Zhou:2021rhl]
[8-340]
The neutrino emission from thermal processes in very massive stars in the local universe, N. Yusof, H.A. Kassim, L.G.Garba, N.S. Ahmad, Mon.Not.Roy.Astron.Soc. 503 (2021) 5965-5975, arXiv:2103.07069.
[Yusof:2021fhu]
[8-341]
Earth-skimming Ultra-high Energy Tau Neutrinos simulated with MonteCarlo method and CONEX code, Bouzid Boussaha, Tarek Bitam, Adv.High Energy Phys. 2021 (2021) 9987060, arXiv:2103.03303.
[Boussaha:2021ueb]
[8-342]
Heavy decaying dark matter at future neutrino radio telescopes, Marco Chianese, Damiano F.G. Fiorillo, Rasmi Hajjar, Gennaro Miele, Stefano Morisi, Ninetta Saviano, JCAP 2105 (2021) 074, arXiv:2103.03254.
[Chianese:2021htv]
[8-343]
High Energy Neutrinos from Choked Gamma-Ray Bursts in AGN Accretion Disks, Jin-Ping Zhu, Kai Wang, Bing Zhang, Yuan-Pei Yang, Yun-Wei Yu, He Gao, Astrophys.J.Lett. 911 (2021) L19, arXiv:2103.00789.
[Zhu:2021mqc]
[8-344]
A ring accelerator? Unusual jet dynamics in the IceCube candidate PKS 1502+106, Silke Britzen et al., Mon.Not.Roy.Astron.Soc. 503 (2021) 3145-3178, arXiv:2103.00292.
[Britzen:2021hfb]
[8-345]
High-Energy Neutrinos from NGC 1068, Luis A. Anchordoqui, John F. Krizmanic, Floyd W. Stecker, PoS ICRC2021 (2021) 993, arXiv:2102.12409.
[Anchordoqui:2021vms]
[8-346]
Neutrinos from tidal disruption events, Kimitake Hayasaki, arXiv:2102.11879, 2021.
[Hayasaki:2021jem]
[8-347]
Investigating the nature of MGRO J1908+06 with multiwavelength observations, Jian Li, Ruo-Yu Liu, Emma de Ona Wilhelmi, Diego F. Torres, Qian-Cheng Liu, Matthew Kerr, Rolf Buehler, Yang Su, Hao-Ning He, Meng-Yuan Xiao, Astrophys.J.Lett. 913 (2021) L33, arXiv:2102.05615.
[Li:2021wzt]
[8-348]
High-Energy Neutrinos from Magnetized Coronae of Active Galactic Nuclei and Prospects for Identification of Seyfert Galaxies and Quasars in Neutrino Telescopes, Ali Kheirandish, Kohta Murase, Shigeo S. Kimura, Astrophys.J. 922 (2021) 45, arXiv:2102.04475.
[Kheirandish:2021wkm]
[8-349]
A marginally fast-cooling proton-synchrotron model for prompt GRBs, Ioulia Florou, Maria Petropoulou, Apostolos Mastichiadis, Mon.Not.Roy.Astron.Soc. 505 (2021) 1367-1381, arXiv:2102.02501.
[Florou:2021grp]
[8-350]
Neutrino signal dependence on gamma-ray burst emission mechanism, Tetyana Pitik, Irene Tamborra, Maria Petropoulou, JCAP 2105 (2021) 034, arXiv:2102.02223.
[Pitik:2021xhb]
[8-351]
Exploring the Origin of Supermassive Black Holes with Coherent Neutrino Scattering, Victor Munoz, Volodymyr Takhistov, Samuel J. Witte, George M. Fuller, JCAP 11 (2021) 020, arXiv:2102.00885.
[Munoz:2021sad]
[8-352]
Reconstructing non-repeating radio pulses with Information Field Theory, Christoph Welling, Philipp Frank, Torsten A. Enslin, Anna Nelles, JCAP 2104 (2021) 071, arXiv:2102.00258.
[Welling:2021cgl]
[8-353]
Interpreting correlated observations of cosmic rays and gamma-rays from Centaurus A with a proton blazar inspired model, Prabir Banik, Arunava Bhadra, Abhijit Bhattacharyya, Mon.Not.Roy.Astron.Soc. 500 (2020) 1087-1094, arXiv:2102.00213.
[Banik:2020ffo]
[8-354]
Oscillations of sterile neutrinos from dark matter decay eliminates the IceCube-Fermi tension, Luis A. Anchordoqui, Vernon Barger, Danny Marfatia, Mary Hall Reno, Thomas J. Weiler, Phys.Rev. D103 (2021) 075022, arXiv:2101.09559.
[Anchordoqui:2021dls]
[8-355]
High-Energy Neutrino Production in Clusters of Galaxies, Saqib Hussain, Rafael Alves Batista, Elisabete M. de Gouveia Dal Pino, Klaus Dolag, Mon.Not.Roy.Astron.Soc. 507 (2021) 1762-1774, arXiv:2101.07702.
[Hussain:2021dqp]
[8-356]
Common envelope jets supernovae with a black hole companion as possible high energy neutrino sources, Aldana Grichener, Noam Soker, Mon.Not.Roy.Astron.Soc. 507 (2021) 1651-1661, arXiv:2101.05118.
[Grichener:2021xeg]
[8-357]
Giant cosmic ray halos around M31 and the Milky Way, S. Recchia, S. Gabici, F. A. Aharonian, V. Niro, Astrophys.J. 914 (2021) 135, arXiv:2101.05016.
[Gabici:2021rhl]
[8-358]
Estimating the Neutrino Flux from Choked Gamma-Ray Bursts, Michela Fasano, Silvia Celli, Dafne Guetta, Antonio Capone, Angela Zegarelli, Irene Di Palma, JCAP 09 (2021) 044, arXiv:2101.03502.
[Fasano:2021bwq]
[8-359]
Neutrino production in Population III microquasars, Agustin M. Carulli, Matias M. Reynoso, Gustavo E. Romero, Astropart.Phys. 128 (2021) 102557, arXiv:2101.02999.
[Carulli:2021knq]
[8-360]
Modeling particle transport in astrophysical outflows and simulations of associated emissions, D. A. Papadopoulos, O. T. Kosmas, S. Ganatsios, arXiv:2101.02964, 2021.
[Papadopoulos:2021qqc]
[8-361]
Deep Learning Blazar Classification based on Multi-frequency Spectral Energy Distribution Data, Bernardo M.O. Fraga, Ulisses Barres de Almeida, Clecio R. Bom, Carlos H. Brandt, Paolo Giommi, Patrick Schubert, Marcio P. de Albuquerque, Mon.Not.Roy.Astron.Soc. 505 (2021) 1268-1279, arXiv:2012.15340.
[Fraga:2020zqp]
[8-362]
PeV-EeV neutrinos from gamma-ray blazars due to ultrahigh-energy cosmic-ray propagation, Saikat Das, Nayantara Gupta, Soebur Razzaque, Astrophys.J. 910 (2021) 100, arXiv:2012.13877.
[Das:2020hev]
[8-363]
The Future of High-Energy Astrophysical Neutrino Flavor Measurements, Ningqiang Song, Shirley Weishi Li, Carlos A. Arguelles, Mauricio Bustamante, Mauricio Bustamante, Aaron C. Vincent, JCAP 2104 (2021) 054, arXiv:2012.12893.
[Song:2020nfh]
[8-364]
Lunar neutrinos, S. Demidov, D. Gorbunov, Phys.Rev.D 104 (2021) 043023, arXiv:2012.12870.
[Demidov:2020bff]
[8-365]
IceCube constraints on Violation of Equivalence Principle, Damiano F. G. Fiorillo, Gianpiero Mangano, Stefano Morisi, Ofelia Pisanti, JCAP 2104 (2021) 079, arXiv:2012.07867.
[Fiorillo:2020gsb]
[8-366]
Contribution of Secondary Neutrinos from Line-of-sight Cosmic Ray Interactions to the IceCube Diffuse Astrophysical Flux, Alina Kochocki, Volodymyr Takhistov, Alexander Kusenko, Nathan Whitehorn, Astrophys.J. 914 (2021) 91, arXiv:2012.05955.
[Kochocki:2020iie]
[8-367]
Radio-to-gamma-ray synchrotron and neutrino emission from proton-proton interactions in active galactic nuclei, Andrii Neronov, Dmitry Semikoz, JETP Lett. 113 (2021) 69-74, arXiv:2012.04425.
[Neronov:2020fww]
[8-368]
Detecting the brightest HAWC sources with IceCube in the upcoming years, Viviana Niro, Phys.Rev. D103 (2021) 103020, arXiv:2012.02599.
[Niro:2020ovc]
[8-369]
Probing UHECR production in Centaurus A using secondary neutrinos and gamma-rays, Caina de Oliveira, Vitor de Souza, Eur.Phys.J. C81 (2021) 517, arXiv:2011.13984.
[deOliveira:2020cte]
[8-370]
Flavour specific neutrino self-interaction: $H_0$ tension and IceCube, Arindam Mazumdar, Subhendra Mohanty, Priyank Parashari, JCAP 10 (2022) 011, arXiv:2011.13685.
[Mazumdar:2020ibx]
[8-371]
Study of Blazar activity in 10 year Fermi-LAT data and implications for TeV neutrino expectations, J. R. Sacahui, A. V. Penacchioni, A. Marinelli, A. Sharma, M. Castro, J. M. Osorio, M. A. Morales, Rev.Mex.Astron.Astrofis. 57 (2021) 251-268, arXiv:2011.13043.
[Sacahui:2020pic]
[8-372]
Simulations of neutrino and gamma-ray production from relativistic black-hole microquasar jets, Th. V. Papavasileiou, O. T. Kosmas, J. Sinatkas, Galaxies 9 (2021) 67, arXiv:2011.12939.
[Papavasileiou:2020lgf]
[8-373]
On the energy of the protons producing the very high-energy astrophysical neutrinos, Esteban Roulet, Francesco Vissani, JCAP 2103 (2021) 050, arXiv:2011.12769.
[Roulet:2020yye]
[8-374]
Modeling of the Tau and Muon Neutrino-induced Optical Cherenkov Signals from Upward-moving Extensive Air Showers, A. L. Cummings, R. Aloisio, J. F. Krizmanic, Phys.Rev. D103 (2021) 043017, arXiv:2011.09869.
[Cummings:2020ycz]
[8-375]
Modeling in-ice radio propagation with parabolic equation methods, S. Prohira et al., Phys.Rev. D103 (2021) 103007, arXiv:2011.05997.
[RadarEchoTelescope:2020nhe]
[8-376]
Neutrino Emission from an Off-Axis Jet Driven by the Tidal Disruption Event AT2019dsg, Ruo-Yu Liu, Shao-Qiang Xi, Xiang-Yu Wang, Phys.Rev. D102 (2020) 083028, arXiv:2011.03773.
[Liu:2020isi]
[8-377]
A two-zone blazar radiation model for 'orphan' neutrino flares, Rui Xue, Ruo-Yu Liu, Ze-Rui Wang, Nan Ding, Xiang-Yu Wang, Astrophys.J. 906 (2021) 51, arXiv:2011.03681.
[Xue:2020kuw]
[8-378]
Starburst galaxies strike back: a multi-messenger analysis, Antonio Ambrosone, Marco Chianese, Damiano F.G. Fiorillo, Antonio Marinelli, Gennaro Miele, Ofelia Pisanti, Mon.Not.Roy.Astron.Soc. 503 (2021) 4032, arXiv:2011.02483.
[Ambrosone:2020evo]
[8-379]
Cosmic rays, neutrinos and GeV-TeV gamma rays from Starburst Galaxy NGC 4945, E. Aguilar-Ruiz, N. Fraija, Jagdish C. Joshi, A. Galvan-Gamez, J.A. de Diego, Phys.Rev.D 104 (2021) 083013, arXiv:2011.01847.
[Aguilar-Ruiz:2020bzq]
[8-380]
Astronomy with energy dependent flavour ratios of extragalactic neutrinos, Siddhartha Karmakar, Sujata Pandey, Subhendu Rakshit, JHEP 10 (2021) 004, arXiv:2010.07336.
[Karmakar:2020yzn]
[8-381]
How to search for multiple messengers - a general framework beyond two messengers, Doga Veske, Zsuzsa Marka, Imre Bartos, Szabolcs Marka, Astrophys.J. 908 (2021) 216, arXiv:2010.04162.
[Veske:2020rxf]
[8-382]
Experimental tests of sub-surface reflectors as an explanation for the ANITA anomalous events, D. Smith et al., JCAP 2104 (2021) 016, arXiv:2009.13010.
[Smith:2020ecb]
[8-383]
Astrophysical Evidence of Wakefield Acceleration in Galactic and Extragalactic Jets via Gamma Rays and UHECRs, Gregory B. Huxtable, Noor Eltawil, Wei-Xiang Feng, Wenhao Wang, Gabriel Player, Toshiki Tajima, Toshikazu Ebisuzaki, arXiv:2009.12333, 2020.
[Huxtable:2020lxb]
[8-384]
Multimessenger Constraints on Intergalactic Magnetic Fields from the Flare of TXS 0506+056, Rafael Alves Batista, Andrey Saveliev, Astrophys.J.Lett. 902 (2020) L11, arXiv:2009.12161.
[AlvesBatista:2020oio]
[8-385]
Hadronic X-ray Flares from Blazars, Apostolos Mastichiadis, Maria Petropoulou, Astrophys.J. 906 (2021) 131, arXiv:2009.12158.
[Mastichiadis:2020xzi]
[8-386]
Association of IceCube neutrinos with radio sources observed at Owens Valley and Metsahovi Radio Observatories, T. Hovatta et al., Astron.Astrophys. 650 (2021) A83, arXiv:2009.10523.
[Hovatta:2020lor]
[8-387]
Neutrino emission during the $\gamma$-suppressed state of blazars, Emma Kun, Imre Bartos, Julia Becker Tjus, Peter L. Biermann, Francis Halzen, Gyorgy Mezo, Astrophys.J.Lett. 911 (2021) L18, arXiv:2009.09792.
[Kun:2020njy]
[8-388]
The Intrinsic Gamma-Ray Spectrum of TXS 0506+056: Intergalactic Propagation Effects, Andrey Saveliev, Rafael Alves Batista, Mon.Not.Roy.Astron.Soc. 500 (2020) 2188-2195, arXiv:2009.09772.
[Saveliev:2020ynu]
[8-389]
Directional association of TeV to PeV astrophysical neutrinos with active galaxies hosting compact radio jets, A.V. Plavin, Y.Y. Kovalev, Y.A. Kovalev, S.V. Troitsky, Astrophys.J. 908 (2021) 157, arXiv:2009.08914.
[Plavin:2020mkf]
[8-390]
Spectral signatures of PeVatrons, Silvia Celli, Felix Aharonian, Stefano Gabici, Astrophys.J. 903 (2020) 61, arXiv:2009.05999.
[Celli:2020rav]
[8-391]
Limiting Superluminal Neutrino Velocity and Lorentz Invariance Violation by Neutrino Emission from the Blazar TXS 0506+056, Kai Wang, Shao-Qiang Xi, Lijing Shao, Ruo-Yu Liu, Zhuo Li, Zhong-Kai Zhang, Phys.Rev. D102 (2020) 063027, arXiv:2009.05201.
[Wang:2020tej]
[8-392]
Multi-wavelength and neutrino emission from blazar PKS 1502+106, Xavier Rodrigues, Simone Garrappa, Shan Gao, Vaidehi S. Paliya, Anna Franckowiak, Walter Winter, Astrophys.J. 912 (2021) 54, arXiv:2009.04026.
[Rodrigues:2020fbu]
[8-393]
Flavor ratios of astrophysical neutrinos interacting with stochastic gravitational waves having arbitrary spectrum, Maxim Dvornikov, JCAP 2012 (2020) 022, arXiv:2009.02195.
[Dvornikov:2020dst]
[8-394]
Using High-Energy Neutrinos As Cosmic Magnetometers, Mauricio Bustamante, Irene Tamborra, Phys.Rev. D102 (2020) 12, arXiv:2009.01306.
[Bustamante:2020bxp]
[8-395]
Flavors of Astrophysical Neutrinos with Active-Sterile Mixing, Markus Ahlers, Mauricio Bustamante, Niels Gustav Nortvig Willesen, JCAP 07 (2021) 029, arXiv:2009.01253.
[Ahlers:2020miq]
[8-396]
Beyond the Standard Model Explanations of GW190521, Jeremy Sakstein, Djuna Croon, Samuel D. McDermott, Maria C. Straight, Eric J. Baxter, Phys.Rev.Lett. 125 (2020) 261105, arXiv:2009.01213.
[Sakstein:2020axg]
[8-397]
Enhancement of Lithium in Red Clump Stars by the Neutrino Magnetic Moment, Kanji Mori, Motohiko Kusakabe, A. Baha Balantekin, Toshitaka Kajino, Michael A. Famiano, Mon.Not.Roy.Astron.Soc. 503 (2021) 2746-2753, arXiv:2009.00293.
[Mori:2020qqd]
[8-398]
On the Detection Potential of Blazar Flares for Current Neutrino Telescopes, M. Kreter, M. Kadler, F. Kraus, K. Mannheim, S. Buson, R. Ojha, J. Wilms, M. Bottcher, Astrophys.J. 902 (2020) 133, arXiv:2009.00125.
[Kreter:2020kpm]
[8-399]
Neutrino Counterparts of Fast Radio Bursts, Brian D. Metzger, Ke Fang, Ben Maraglit, Astrophys.J. 902 (2020) L22, arXiv:2008.12318.
[Metzger:2020byf]
[8-400]
Elastic and Inelastic Scattering of Cosmic-Rays on Sub-GeV Dark Matter, Gang Guo, Yue-Lin Sming Tsai, Meng-Ru Wu, Qiang Yuan, Phys.Rev. D102 (2020) 103004, arXiv:2008.12137.
[Guo:2020oum]
[8-401]
Modeling of Cosmic-Ray Production and Transport and Estimation of Gamma-Ray and Neutrino Emissions in Starburst Galaxies, Ji-Hoon Ha, Dongsu Ryu, Hyesung Kang, Astrophys.J. 907 (2021) 26, arXiv:2008.06650.
[Ha:2020nty]
[8-402]
Quantum witness and invasiveness of cosmic neutrino measurements, P. Kurashvili, L. Chotorlishvili, K. A. Kouzakov, A. G. Tevzadze, A. I. Studenikin, Phys.Rev. D103 (2021) 036011, arXiv:2008.00732.
[Kurashvili:2020tuj]
[8-403]
High-Energy Neutrinos and Gamma-Rays from Non-Relativistic Shock-Powered Transients, Ke Fang, Brian D. Metzger, Indrek Vurm, Elias Aydi, Laura Chomiuk, Astrophys.J. 904 (2020) 4, arXiv:2007.15742.
[Fang:2020bkm]
[8-404]
$\chi$aro$\nu$: a tool for neutrino flux generation from WIMPs, Qinrui Liu, Jeffrey Lazar, Carlos A. Arguelles, Ali Kheirandish, JCAP 2010 (2020) 043, arXiv:2007.15010.
[Liu:2020ckq]
[8-405]
Tau Neutrinos with Cherenkov Telescope Array, Damiano F. G. Fiorillo, Gennaro Miele, Ofelia Pisanti, arXiv:2007.13423, 2020.
[Fiorillo:2020xst]
[8-406]
Revisiting AGN as the Source of IceCube's Diffuse Neutrino Flux, Daniel Smith, Dan Hooper, Abby Vieregg, JCAP 2103 (2021) 031, arXiv:2007.12706.
[Smith:2020oac]
[8-407]
Multi-Frequency General Relativistic Radiation-Hydrodynamics with $\bf{M}_1$ Closure, Peter Anninos, P. Chris Fragile, Astrophys.J. 900 (2020) 71, arXiv:2007.12195.
[Anninos:2020bpo]
[8-408]
Ultra-High-Energy Tau Neutrino Cross Sections with GRAND and POEMMA, Peter B. Denton, Yves Kini, Phys.Rev. D102 (2020) 123019, arXiv:2007.10334.
[Denton:2020jft]
[8-409]
Multimessenger observations of counterparts to IceCube-190331A, Felicia Kraus et al., Mon.Not.Roy.Astron.Soc. 497 (2020) 2553-2561, arXiv:2007.10193.
[Krauss:2020cdk]
[8-410]
Constraining photohadronic scenarios for the unified origin of IceCube neutrinos and ultrahigh-energy cosmic rays, Shigeru Yoshida, Kohta Murase, Phys.Rev. D102 (2020) 083023, arXiv:2007.09276.
[Yoshida:2020div]
[8-411]
Charm contribution to ultrahigh-energy neutrinos from newborn magnetars, Jose Alonso Carpio, Kohta Murase, Mary Hall Reno, Anna Stasto, Phys.Rev. D102 (2020) 103001, arXiv:2007.07945.
[Carpio:2020wzg]
[8-412]
Where do IceCube neutrinos come from? Hints from the diffuse gamma-ray flux, Antonio Capanema, Arman Esmaili, Pasquale Dario Serpico, JCAP 2102 (2021) 037, arXiv:2007.07911.
[Capanema:2020oet]
[8-413]
Observable features in (ultra)high energy neutrinos due to active-sterile secret interactions, Damiano F. G. Fiorillo, Stefano Morisi, Gennaro Miele, Ninetta Saviano, Phys.Rev. D102 (2020) 083014, arXiv:2007.07866.
[Fiorillo:2020zzj]
[8-414]
Synchronized neutrino communications over intergalactic distances, A. D. Santos, E. Fischbach, J. T. Gruenwald, arXiv:2007.05736, 2020.
[Santos:2020xcn]
[8-415]
Sensitivities of KM3NeT on decaying dark matter, Kenny C. Y. Ng et al., arXiv:2007.03692, 2020.
[Ng:2020ghe]
[8-416]
Intrinsic charm in the nucleon and charm production at large rapidities in collinear, hybrid and $k_T$-factorization approaches, Rafal Maciula, Antoni Szczurek, JHEP 2010 (2020) 135, arXiv:2006.16021.
[Maciula:2020dxv]
[8-417]
Systematic parameter space study for the UHECR origin from GRBs in models with multiple internal shocks, Jonas Heinze, Daniel Biehl, Anatoli Fedynitch, Denise Boncioli, Annika Rudolph, Walter Winter, Mon.Not.Roy.Astron.Soc. 498 (2020) 5990-6004, arXiv:2006.14301.
[Heinze:2020zqb]
[8-418]
Signatures of secondary acceleration in neutrino flares, Claire Guepin, Astron.Astrophys. 641 (2020) A29, arXiv:2006.08660.
[Guepin:2020lex]
[8-419]
A New Multi-Wavelength Census of Blazars, A. Paggi, M. Bonato, C. M. Raiteri, M. Villata, G. De Zotti, M. I. Carnerero, Astron.Astrophys. 641 (2020) A62, arXiv:2006.08627.
[Paggi:2020aqa]
[8-420]
Cosmic Flavor Hexagon for Ultrahigh-energy Neutrinos and Antineutrinos at Neutrino Telescopes, Shun Zhou, arXiv:2006.06181, 2020.
[Zhou:2020oym]
[8-421]
On the relative importance of hadronic emission processes along the jet axis of Active Galactic Nuclei, Mario R. Hoerbe, Paul J. Morris, Garret Cotter, Julia Becker Tjus, Mon.Not.Roy.Astron.Soc. 496 (2020) 2885-2901, arXiv:2006.05140.
[Hoerbe:2020ike]
[8-422]
Optical Observations Reveal Strong Evidence for High Energy Neutrino Progenitor, V. M. Lipunov et al., arXiv:2006.04918, 2020.
[Lipunov:2020ptp]
[8-423]
Photohadronic model for the neutrino and $\gamma$-ray emission from TXS 0506+056, Sarira Sahu, Carlos Eduardo Lopez Fortin, Shigehiro Nagataki, Astrophys.J. 898 (2020) 103, arXiv:2006.04009.
[Sahu:2020eep]
[8-424]
A Bayesian Approach to Modelling Multi-Messenger Emission from Blazars using Lepto-Hadronic Kinetic Equations, Bruno Jimenez-Fernandez, H. J. van Eerten, Mon.Not.Roy.Astron.Soc. 500 (2020) 3613-3630, arXiv:2006.01543.
[Jimenez-Fernandez:2020ucz]
[8-425]
Comprehensive Multimessenger Modeling of the Extreme Blazar 3HSP J095507.9+355101 and Predictions for IceCube, Maria Petropoulou, Foteini Oikonomou, Apostolos Mastichiadis, Kohta Murase, Paolo Padovani, Georgios Vasilopoulos, Paolo Giommi, Astrophys.J. 899 (2020) 113, arXiv:2005.07218.
[Petropoulou:2020pqh]
[8-426]
Visible Decay of Astrophysical Neutrinos at IceCube, Asli Abdullahi, Peter B. Denton, Phys.Rev. D102 (2020) 023018, arXiv:2005.07200.
[Abdullahi:2020rge]
[8-427]
Data-driven detection of multi-messenger transients, Iftach Sadeh, Astrophys.J.Lett. 894 (2020) L25, arXiv:2005.06406.
[Sadeh:2020txb]
[8-428]
A concordance scenario for the observation of a neutrino from the Tidal Disruption Event AT2019dsg, Walter Winter, Cecilia Lunardini, Nature Astron. 5 (2021) 472-477, arXiv:2005.06097.
[Winter:2020ptf]
[8-429]
Explaining the Variations in Isotopic Ratios in Meteoritic Amino Acids, Michael A. Famiano, Richard N. Boyd, Toshitaka Kajino, Satoshi Chiba, Yirong Mo, Takashi Onaka, Toshi Suzuki, arXiv:2005.05540, 2020.
[2005.05540]
[8-430]
A high-energy neutrino coincident with a tidal disruption event, Robert Stein et al., Nature Astron. 5 (2021) 510-518, arXiv:2005.05340.
[Stein:2020xhk]
[8-431]
Bayesian constraints on the astrophysical neutrino source population from IceCube data, Francesca Capel, Daniel J. Mortlock, Chad Finley, Phys.Rev. D101 (2020) 123017, arXiv:2005.02395.
[Capel:2020txc]
[8-432]
Soft MeV Gamma-Ray Background from Low-Luminosity Active Galactic Nuclei and Connection to the Origin of IceCube PeV Neutrinos, Shigeo S. Kimura, Kohta Murase, Peter Meszaros, Nature Commun. 12 (2021) 5615, arXiv:2005.01934.
[Kimura:2020thg]
[8-433]
The parsec-scale jet of the neutrino-emitting blazar TXS~0506+056, Xiaofeng Li, Tao An, Prashanth Mohan, Marcello Giroletti, Astrophys.J. 896 (2020) 63, arXiv:2005.00300.
[Li:2020wby]
[8-434]
Electron-positron pair plasma in TXS 0506+056 and the 'neutrino flare' in 2014 - 2015, Nissim Fraija, Edilberto Aguilar-Ruiz, Antonio Galvan-Gamez, Mon.Not.Roy.Astron.Soc. 497 (2020) 5318-5325, arXiv:2004.09772.
[Fraija:2020zjk]
[8-435]
Blazar - IceCube neutrino association revisited, Jia-Wei Luo, Bing Zhang, Phys.Rev. D101 (2020) 103015, arXiv:2004.09686.
[Luo:2020dxa]
[8-436]
Modeling the spectrum and composition of ultrahigh-energy cosmic rays with two populations of extragalactic sources, Saikat Das, Soebur Razzaque, Nayantara Gupta, Eur.Phys.J. C81 (2021) 59, arXiv:2004.07621.
[Das:2020nvx]
[8-437]
New limits on neutrino decay from the Glashow resonance of high-energy cosmic neutrinos, Mauricio Bustamante, arXiv:2004.06844, 2020.
[Bustamante:2020niz]
[8-438]
Complete predictions for high-energy neutrino propagation in matter, Alfonso Garcia, Rhorry Gauld, Aart Heijboer, Juan Rojo, JCAP 2009 (2020) 025, arXiv:2004.04756.
[Garcia:2020jwr]
[8-439]
Obscured $pp$-channel neutrino sources, Matthias Vereecken, Krijn D. de Vries, arXiv:2004.03435, 2020.
[Vereecken:2020sqy]
[8-440]
Neutrinos and gravitational waves from magnetized neutrino-dominated accretion discs with magnetic coupling, Cui-Ying Song, Tong Liu, Yun-Feng Wei, Mon.Not.Roy.Astron.Soc. 494 (2020) 3962-3970, arXiv:2004.00043.
[Song:2020crp]
[8-441]
gSeaGen: the KM3NeT GENIE-based code for neutrino telescopes, Sebastiano Aiello et al., Comput.Phys.Commun. 256 (2020) 107477, arXiv:2003.14040.
[KM3NeT:2020tvi]
[8-442]
The signatures of secondary leptons in radio-neutrino detectors in ice, Daniel Garcia-Fernandez, Christian Glaser, Anna Nelles, Phys.Rev. D102 (2020) 083011, arXiv:2003.13442.
[Garcia-Fernandez:2020dhb]
[8-443]
Proton Synchrotron $\gamma$-rays and the Energy Crisis in Blazars, I. Liodakis, M. Petropoulou, Astrophys.J. 893 (2020) L20, arXiv:2003.10460.
[Liodakis:2020dvd]
[8-444]
Askaryan radiation from neutrino-induced showers in ice, Jaime Alvarez-Muniz, P. M. Hansen, Andres Romero-Wolf, Enrique Zas, Phys.Rev. D101 (2020) 083005, arXiv:2003.09705.
[Alvarez-Muniz:2020ary]
[8-445]
EeV Astrophysical neutrinos from FSRQs?, C. Righi, A. Palladino, F. Tavecchio, F. Vissani, Astron.Astrophys. 642 (2020) A92, arXiv:2003.08701.
[Righi:2020ufi]
[8-446]
Blazar origin of the UHECRs and perspectives for the detection of astrophysical source neutrinos at EeV energies, Xavier Rodrigues, Jonas Heinze, Andrea Palladino, Arjen van Vliet, Walter Winter, Phys.Rev.Lett. 126 (2021) 191101, arXiv:2003.08392.
[Rodrigues:2020pli]
[8-447]
3HSP J095507.9+355101: a flaring extreme blazar coincident in space and time with IceCube-200107A, P. Giommi, P. Padovani, F. Oikonomou, T. Glauch, S. Paiano, E. Resconi, Astron.Astrophys. 640 (2020) L4, arXiv:2003.06405.
[Giommi:2020viy]
[8-448]
Multi-Frequency Observations of the Candidate Neutrino Emitting Blazar BZB J0955+3551, Vaidehi S. Paliya, M. Bottcher, A. Maria Del Olmo Garcia, A. Dominguez, A. Gil de Paz, A. Franckowiak, S. Garrappa, R. Stein, Astrophys.J. 902 (2020) 29, arXiv:2003.06012.
[Paliya:2020mqm]
[8-449]
The $\gamma$-ray Emission of Star-Forming Galaxies, M. Ajello, M. Di Mauro, V. S. Paliya, S. Garrappa, Astrophys.J. 894 (2020) 88, arXiv:2003.05493.
[Ajello:2020zna]
[8-450]
Dark matter as a heavy thermal hot relic, Thomas Hambye, Matteo Lucca, Laurent Vanderheyden, Phys.Lett. B807 (2020) 135553, arXiv:2003.04936.
[Hambye:2020lvy]
[8-451]
The redshift and the host galaxy of the neutrino candidate 4FGL J0955.1+3551 (3HSP J095507.9+355101), Simona Paiano, Renato Falomo, Paolo Padovani, Paolo Giommi, Adriana Gargiulo, Michela Uslenghi, Andrea Rossi, Aldo Treves, Mon.Not.Roy.Astron.Soc. 495 (2020) L108-L111, arXiv:2003.03634.
[Paiano:2020cst]
[8-452]
Cosmogenic neutrino fluxes under the effect of active-sterile secret interactions, Damiano F. G. Fiorillo, Gennaro Miele, Stefano Morisi, Ninetta Saviano, Phys.Rev. D101 (2020) 083024, arXiv:2002.10125.
[Fiorillo:2020jvy]
[8-453]
New Constraints on the Origin of Medium-Energy Neutrinos Observed by IceCube, Antonio Capanema, Arman Esmaili, Kohta Murase, Phys.Rev. D101 (2020) 103012, arXiv:2002.07192.
[Capanema:2020rjj]
[8-454]
A Cross-Correlation Study of High-energy Neutrinos and Tracers of Large-Scale Structure, Ke Fang, Arka Banerjee, Eric Charles, Yuuki Omori, Astrophys.J. 894 (2020) 112, arXiv:2002.06234.
[Fang:2020rvq]
[8-455]
Correlation of highly variable blazars with TeV IceCube track events, R. Moharana, P. Majumdar, P. P. Basumallick, D. Bose, R. Prince, N. Gupta, arXiv:2002.01661, 2020.
[Moharana:2020jmj]
[8-456]
LHAASO sensitivity for diffuse gamma-ray signals from the Galaxy, A. Neronov, D. Semikoz, Phys.Rev.D 102 (2020) 043025, arXiv:2001.11881.
[Neronov:2020wir]
[8-457]
Patterns in the multi-wavelength behavior of candidate neutrino blazars, A. Franckowiak et al., Astrophys.J. 893 (2020) 162, arXiv:2001.10232.
[Franckowiak:2020qrq]
[8-458]
Dissecting the regions around IceCube high-energy neutrinos: growing evidence for the blazar connection, P. Giommi, T. Glauch, P. Padovani, E. Resconi, A. Turcati, Y.L. Chang, Mon.Not.Roy.Astron.Soc. 497 (2020) 865-878, arXiv:2001.09355.
[Giommi:2020hbx]
[8-459]
Bounds on secret neutrino interactions from high-energy astrophysical neutrinos, Mauricio Bustamante, Charlotte Amalie Rosenstroem, Shashank Shalgar, Irene Tamborra, Phys.Rev. D101 (2020) 123024, arXiv:2001.04994.
[Bustamante:2020mep]
[8-460]
Nuclear effects in high-energy neutrino interactions, Spencer R. Klein, Sally A. Robertson, Ramona Vogt, Phys.Rev. C102 (2020) 015808, arXiv:2001.03677.
[Klein:2020nuk]
[8-461]
High-energy astrophysical neutrinos are produced in central parsec-scale regions of radio-bright active galaxies, A.V. Plavin, Y.Y. Kovalev, Y.A. Kovalev, S.V. Troitsky, Astrophys.J. 894 (2020) 101, arXiv:2001.00930.
[Plavin:2020emb]
[8-462]
Mapping large-scale diffuse gamma-ray emission in 10-100 TeV band with Cherenkov telescopes, A. Neronov, D. Semikoz, Astron.Astrophys. 637 (2020) A44, arXiv:2001.00922.
[Neronov:2020zhd]
[8-463]
High-energy neutrinos from cosmic ray interactions in the Local Bubble, M. Bouyahiaoui, M. Kachelriess, D.V. Semikoz, Phys.Rev. D101 (2020) 123023, arXiv:2001.00768.
[Bouyahiaoui:2020rkf]
[8-464]
Neutrino emission upper limits with maximum likelihood estimators for joint astrophysical neutrino searches with large sky localizations, Doga Veske, Zsuzsa Marka, Imre Bartos, Szabolcs Marka, JCAP 2005 (2020) 016, arXiv:2001.00566.
[Veske:2020yjt]
[8-465]
Testing cosmic ray composition models with very large volume neutrino telescopes, L.A. Fusco, F. Versari, Eur.Phys.J.Plus 135 (2020) 624, arXiv:1912.10778.
[Fusco:2019hti]
[8-466]
Dark Matter Annihilation to Neutrinos: An Updated, Consistent & Compelling Compendium of Constraints, Carlos A. Arguelles, Alejandro Diaz, Ali Kheirandish, Andres Olivares-Del-Campo, Ibrahim Safa, Aaron C. Vincent, Rev.Mod.Phys. 93 (2021) 035007, arXiv:1912.09486.
[Arguelles:2019ouk]
[8-467]
A self-consistent leptonic-hadronic interpretation of the electromagnetic and neutrino emissions from blazar TXS 0506+056, Gang Cao, Chuyuan Yang, Jianping Yang, Jiancheng Wang, Publ.Astron.Soc.Jap. 72 (2020) Publications of the Astronomical Society of Japan, Volume 72, Issue 2, April 2020, 20, https://doi.org/10.1093/pasj/psz142, arXiv:1912.07448.
[Cao:2019fnn]
[8-468]
Signatures of microscopic black holes and extra dimensions at future neutrino telescopes, Katherine J. Mack, Ningqiang Song, Aaron C. Vincent, JHEP 2004 (2020) 187, arXiv:1912.06656.
[Mack:2019bps]
[8-469]
Spritz: a new fully general-relativistic magnetohydrodynamic code, Federico Cipolletta, Jay Vijay Kalinani, Bruno Giacomazzo, Riccardo Ciolfi, arXiv:1912.04794, 2019.
[Cipolletta:2019sac]
[8-470]
Bounds on non-standard interactions of neutrinos from IceCube DeepCore data, S.V. Demidov, JHEP 2003 (2020) 105, arXiv:1912.04149.
[Demidov:2019okm]
[8-471]
Hunting the Glashow Resonance with PeV Neutrino Telescopes, Guo-yuan Huang, Qinrui Liu, JCAP 2003 (2020) 005, arXiv:1912.02976.
[Huang:2019hgs]
[8-472]
Apparent superluminal core expansion and limb brightening in the candidate neutrino blazar TXS 0506+056, E. Ros, M. Kadler, M. Perucho, B. Boccardi, H.-M. Cao, M. Giroletti, F. Kraus, R. Ojha, Astron.Astrophys. 633 (2020) L1, arXiv:1912.01743.
[Ros:2019bgo]
[8-473]
Lorentz violation footprints in the spectrum of high-energy cosmic neutrinos: Deformation of the spectrum of superluminal neutrinos from electron-positron pair production in vacuum, J.M. Carmona, J.L. Cortes, J.J. Relancio, M.A. Reyes, Symmetry 11 (2019) 1419, arXiv:1911.12710.
[Carmona:2019xxp]
[8-474]
Estimation of Baryon Asymmetry from Dark Matter Decaying into IceCube Neutrinos, Tista Mukherjee, Madhurima Pandey, Ashadul Halder, Debasish Majumdar, Int.J.Mod.Phys. A36 (2021) 2150078, arXiv:1911.10148.
[Mukherjee:2019seu]
[8-475]
Potential Connection Between IceCube Neutrinos and Late Bumps in Gamma-Ray Bursts, Gang Guo, Yong-Zhong Qian, Meng-Ru Wu, Astrophys.J. 890 (2020) 83, arXiv:1911.07568.
[Guo:2019ljp]
[8-476]
The Sun at TeV energies: gammas, neutrons, neutrinos and a cosmic ray shadow, Miguel Gutierrez, Manuel Masip, Astropart.Phys. 119 (2020) 102440, arXiv:1911.07530.
[Gutierrez:2019fna]
[8-477]
A charming ICECUBE discover?, D. Fargion, P.G. De Sanctis Lucentini, M.Yu. Khlopov, P. Oliva, F. La Monaca, P. Paggi, PoS FRAPWS2018 (2019) 007, arXiv:1911.07240.
[Fargion:2019gop]
[8-478]
Contribution of starburst nuclei to the diffuse gamma-ray and neutrino flux, Enrico Peretti, Pasquale Blasi, Felix Aharonian, Giovanni Morlino, Pierre Cristofari, Mon.Not.Roy.Astron.Soc. 493 (2020) 5880-5891, arXiv:1911.06163.
[Peretti:2019vsj]
[8-479]
Can astrophysical neutrinos trace the origin of the detected ultra-high energy cosmic rays?, Andrea Palladino, Arjen van Vliet, Walter Winter, Anna Franckowiak, Mon.Not.Roy.Astron.Soc. 494 (2020) 4255-4265, arXiv:1911.05756.
[Palladino:2019hsk]
[8-480]
Multi-Epoch Modeling of TXS 0506+056 and Implications for Long-Term High-Energy Neutrino Emission, Maria Petropoulou et al., Astrophys.J. 891 (2020) 115, arXiv:1911.04010.
[Petropoulou:2019zqp]
[8-481]
Probing dark matter signals in neutrino telescopes through angular power spectrum, Ariane Dekker, Marco Chianese, Shin'ichiro Ando, JCAP 2009 (2020) 007, arXiv:1910.12917.
[Dekker:2019gpe]
[8-482]
A Neutral Beam Model for High-Energy Neutrino Emission from the Blazar TXS 0506+056, B. Theodore Zhang, Maria Petropoulou, Kohta Murase, Foteini Oikonomou, Astrophys.J. 889 (2020) 118, arXiv:1910.11464.
[Zhang:2019htg]
[8-483]
W-boson and trident production in TeV-PeV neutrino observatories, Bei Zhou, John F. Beacom, Phys.Rev. D101 (2020) 036010, arXiv:1910.10720.
[Zhou:2019frk]
[8-484]
Neutrinos from the gamma-ray source eHWC J1825-134: predictions for Km$^3$ detectors, V. Niro, A. Neronov, L. Fusco, S. Gabici, D. Semikoz, Phys.Rev.D 104 (2021) 023017, arXiv:1910.09065.
[Niro:2019mzw]
[8-485]
Dirac and Majorana neutrino signatures of primordial black holes, Cecilia Lunardini, Yuber F. Perez-Gonzalez, JCAP 2008 (2020) 014, arXiv:1910.07864.
[Lunardini:2019zob]
[8-486]
Gamma-ray and Neutrino Emissions due to Cosmic-Ray Protons Accelerated at Intracluster Shocks in Galaxy Clusters, Ji-Hoon Ha, Dongsu Ryu, Hyesung Kang, arXiv:1910.02429, 2019.
[Ha:2019ubf]
[8-487]
Analyzing the activity of neutrino emitter candidates: comparing TXS 0506+056 with other blazars, Antonio Marinelli, J.Rodrigo Sacahui, Ankur Sharma, Mabel Osorio-Archila, Mon.Not.Roy.Astron.Soc. 506 (2021) 3760-3772, arXiv:1909.13198.
[Marinelli:2019eaw]
[8-488]
Observing EeV neutrinos through the Earth: GZK and the anomalous ANITA events, Ibrahim Safa, Alex Pizzuto, Carlos Arguelles, Francis Halzen, Raamis Hussain, Ali Kheirandish, Justin Vandenbroucke, JCAP 2001 (2020) 012, arXiv:1909.10487.
[Safa:2019ege]
[8-489]
The 3HSP catalogue of Extreme & High Synchrotron Peaked Blazars, Yu-Ling Chang, Bruno Arsioli, Paolo Giommi, Paolo Padovani, Carlos Brandt, Astron.Astrophys. 632 (2019) A77, arXiv:1909.08279.
[Chang:2019vfd]
[8-490]
IceCube PeV Neutrino Events from the Decay of Superheavy Dark Matter; an Analysis, Madhurima Pandey, Debasish Majumdar, Ashadul Halder, arXiv:1909.06839, 2019.
[Pandey:2019wfk]
[8-491]
Probe Of Sterile Neutrinos Using Astrophysical Neutrino Flavor, Carlos A. Arguelles, Kareem Farrag, Teppei Katori, Rishabh Khandelwal, Shivesh Mandalia, Jordi Salvado, JCAP 2002 (2020) 015, arXiv:1909.05341.
[Arguelles:2019tum]
[8-492]
Neutrino vertex reconstruction with in-ice radio detectors using surface reflections and implications for the neutrino energy resolution, A. Anker et al., JCAP 1911 (2019) 030, arXiv:1909.02677.
[Anker:2019zcx]
[8-493]
Coronal Synchrotron and Neutrino Emission from the Core of NGC 1068, Yoshiyuki Inoue, Dmitry Khangulyan, Akihiro Doi, Astrophys.J. 891 (2020) L33, arXiv:1909.02239.
[Inoue:2019yfs]
[8-494]
Implications of a proton blazar inspired model on correlated observations of neutrinos with gamma-ray flaring blazars, Prabir Banik, Arunava Bhadra, Madhurima Pandey, Debasish Majumdar, Phys.Rev. D101 (2020) 063024, arXiv:1909.01993.
[Banik:2019twt]
[8-495]
MAGIC as a high-energy $\nu_\tau$ detector: performance study to follow-up IceCube transient events, Manuela Mallamaci, Dariusz Gora, Elisa Bernardini, PoS ICRC2019 (2020) 953, arXiv:1909.01314. Proceedings of the ICRC 2019.
[Mallamaci:2019mmo]
[8-496]
Describing correlated observations of neutrino and gamma ray flares from the blazar TXS 0506+056 with proton blazar model, Prabir Banik, Arunava Bhadra, Phys.Rev.D 99 (2019) 103006, arXiv:1908.11849.
[Banik:2019jlm]
[8-497]
A two-zone model for blazar emission: implications for TXS 0506+056 and the neutrino event IceCube-170922A, Rui Xue, Ruo-Yu Liu, Maria Petropoulou, Foteini Oikonomou, Ze-Rui Wang, Kai Wang, Xiang-Yu Wang, arXiv:1908.10190, 2019.
[Xue:2019txw]
[8-498]
Multi-messenger tests of cosmic-ray acceleration in radiatively inefficient accretion flows, Shigeo S. Kimura, Kohta Murase, Peter Meszaros, Phys.Rev. D100 (2019) 083014, arXiv:1908.08421.
[Kimura:2019yjo]
[8-499]
Neutrino Fluence from Gamma-Ray Bursts: Off-Axis View of Structured Jets, Markus Ahlers, Lea Halser, Mon.Not.Roy.Astron.Soc. 490 (2019) 4935-4943, arXiv:1908.06953.
[Ahlers:2019fwz]
[8-500]
The determination capability of potential neutrinos from gravitational wave sources and contributions of extra detector at the future reactor neutrino experiment, Zhaokan Cheng, Jingbo Zhang, Chan Fai Wong, Wei Wang, arXiv:1908.05958, 2019.
[Cheng:2019lfi]
[8-501]
Differentiating short gamma-ray bursts progenitors through multi-MeV neutrinos, G. Morales, N. Fraija, arXiv:1908.04747, 2019.
[Morales:2019myq]
[8-502]
Constraining $\nu$-Process Production of Fluorine through Cosmic Ray Nucleosynthesis, Keith A. Olive, Elisabeth Vangioni, Mon.Not.Roy.Astron.Soc. 490 (2019) 4307-4316, arXiv:1908.01723.
[Olive:2019zgv]
[8-503]
The IceCube coincident neutrino event is unlikely physically associated with LIGO/Virgo S190728q, Bing Zhang, Res.Notes AAS 3 (2019) 114, arXiv:1907.13464.
[Zhang:2019ira]
[8-504]
Decaying dark matter at IceCube and its signature on High Energy gamma experiments, Marco Chianese, Damiano F. G. Fiorillo, Gennaro Miele, Stefano Morisi, Ofelia Pisanti, JCAP 1911 (2019) 046, arXiv:1907.11222.
[Chianese:2019kyl]
[8-505]
Collision of ultra-relativistic proton with strong magnetic field: production of ultra-high energy photons and neutrinos, Ye-Fei Yuan, Xin-Yue Shi, Phys.Lett. B795 (2019) 452-456, arXiv:1907.06807.
[Yuan:2019lwd]
[8-506]
UHECRs with POEMMA, Luis A. Anchordoqui et al., Phys.Rev. D101 (2020) 023012, arXiv:1907.03694.
[Anchordoqui:2019omw]
[8-507]
Connecting ANITA Anomalous Events to a Non-thermal Dark Matter Scenario, Debasish Borah, Arnab Dasgupta, Ujjal Kumar Dey, Gaurav Tomar, Phys.Rev. D101 (2020) 075039, arXiv:1907.02740.
[Borah:2019ciw]
[8-508]
Anomalous ANITA air shower events and tau decays, Shoshana Chipman, Rebecca Diesing, Mary Hall Reno, Ina Sarcevic, Phys.Rev. D100 (2019) 063011, arXiv:1906.11736.
[Chipman:2019vjm]
[8-509]
Consistent Lorentz violation features from near-TeV IceCube neutrinos, Yanqi Huang, Hao Li, Bo-Qiang Ma, Phys.Rev. D99 (2019) 123018, arXiv:1906.07329.
[Huang:2019etr]
[8-510]
Progress towards characterizing ultrahigh energy cosmic ray sources, Marco Stein Muzio, Michael Unger, Glennys R. Farrar, Phys.Rev. D100 (2019) 103008, arXiv:1906.06233.
[Muzio:2019leu]
[8-511]
High energy neutrino flux from individual blazar flares, Foteini Oikonomou, Kohta Murase, Paolo Padovani, Elisa Resconi, Peter Meszaros, Mon.Not.Roy.Astron.Soc. 489 (2019) 4347, arXiv:1906.05302.
[Oikonomou:2019djc]
[8-512]
Extragalactic cosmic ray sources with very small contribution in the particle flux on the Earth and their study, A. Uryson, Phys.Rev. D100 (2019) 083019, arXiv:1906.01014.
[Uryson:2019hux]
[8-513]
Reconstructing the cosmic-ray energy from the radio signal measured in one single station, Christoph Welling, Christian Glaser, Anna Nelles, JCAP 1910 (2019) 075, arXiv:1905.11185.
[Welling:2019scz]
[8-514]
Sensitivity of top-of-the-mountain fluorescence telescope system for astrophysical neutrino flux above 10 PeV, A.Neronov, Astropart.Phys. 128 (2021) 102549, arXiv:1905.10606.
[Neronov:2019htv]
[8-515]
Mass and Life Time of Heavy Dark Matter Decaying into IceCube PeV Neutrinos, Madhurima Pandey, Debasish Majumdar, Ashadul Halder, Shibaji Banerjee, Phys.Lett. B797 (2019) 134910, arXiv:1905.08662.
[Pandey:2019cre]
[8-516]
Probing maximum energy of cosmic rays in SNR through gamma rays and neutrinos from the molecular clouds around SNR W28, Prabir Banik, Arunava Bhadra, Astropart.Phys. 103 (2018) 7-15, arXiv:1905.07571.
[Banik:2018gzn]
[8-517]
A Neutrino Beacon, A. A. Jackson, arXiv:1905.05184, 2019.
[Jackson:2019hqx]
[8-518]
Dark matter component decaying after recombination: constraints from diffuse gamma-ray and neutrino flux measurements, Oleg E. Kalashev, Mikhail Yu. Kuznetsov, Yana V. Zhezher, JCAP 1910 (2019) 039, arXiv:1905.05170.
[Kalashev:2019xkw]
[8-519]
Precise predictions for multi-${\rm TeV}$ and ${\rm PeV}$ energy neutrino scattering rates, Rhorry Gauld, Phys.Rev. D100 (2019) 091301, arXiv:1905.03792.
[Gauld:2019pgt]
[8-520]
Search for Ultra-High-Energy Neutrinos with the Telescope Array Surface Detector, R. U. Abbasi et al., J.Exp.Theor.Phys. 131 (2020) 255-264, arXiv:1905.03738.
[TelescopeArray:2019mzl]
[8-521]
Reflections On the Anomalous ANITA Events: The Antarctic Subsurface as a Possible Explanation, Ian M. Shoemaker, Alexander Kusenko, Peter Kuipers Munneke, Andrew Romero-Wolf, Dustin M. Schroeder, Martin J. Siegert, Annals Glaciol. 61 (2020) 92-98, arXiv:1905.02846.
[Shoemaker:2019xlt]
[8-522]
Can the ANITA anomalous events be due to new physics?, James M. Cline, Christian Gross, Wei Xue, Phys.Rev. D100 (2019) 015031, arXiv:1904.13396.
[Cline:2019snp]
[8-523]
Superheavy Dark Matter and ANITA's Anomalous Events, Dan Hooper, Shalma Wegsman, Cosmin Deaconu, Abigail Vieregg, Phys.Rev. D100 (2019) 043019, arXiv:1904.12865.
[Hooper:2019ytr]
[8-524]
On the relevance of prompt neutrinos for the interpretation of the IceCube signals, Carlo Mascaretti, Francesco Vissani, JCAP 1908 (2019) 004, arXiv:1904.11938.
[Mascaretti:2019uqn]
[8-525]
Improved photomeson model for interactions of cosmic ray nuclei, Leonel Morejon, Anatoli Fedynitch, Denise Boncioli, Daniel Biehl, Walter Winter, JCAP 1911 (2019) 007, arXiv:1904.07999.
[Morejon:2019pfu]
[8-526]
Time-delay between neutrinos and gamma-rays in short GRBs, A. V. Penacchioni, O. Civitarese, Astrophys.J. 871 (2019) L30, arXiv:1904.07212.
[Penacchioni:2019czg]
[8-527]
Constraints on the Blazar Contribution to the Cumulative High-Energy Neutrino Intensity, Chengchao Yuan, Kohta Murase, Peter Meszaros, Astrophys.J. 890 (2020) 25, arXiv:1904.06371.
[Yuan:2019ucv]
[8-528]
Extragalactic neutrinos as tracers of Dark Matter?, Ana V. Penacchioni, Osvaldo Civitarese, Int.J.Mod.Phys. D29 (2020) 2050031, arXiv:1904.04355.
[Penacchioni:2019gvz]
[8-529]
Hidden Cores of Active Galactic Nuclei as the Origin of Medium-Energy Neutrinos: Critical Tests with the MeV Gamma-Ray Connection, Kohta Murase, Shigeo S. Kimura, Peter Meszaros, Phys.Rev.Lett. 125 (2020) 011101, arXiv:1904.04226.
[Murase:2019vdl]
[8-530]
On high-energy particles in accretion disk coronae of supermassive black holes: implications for MeV gamma rays and high-energy neutrinos from AGN cores, Yoshiyuki Inoue, Dmitry Khangulyan, Susumu Inoue, Akihiro Doi, arXiv:1904.00554, 2019.
[Inoue:2019fil]
[8-531]
Update on decaying and annihilating heavy dark matter with the 6-year IceCube HESE data, Atri Bhattacharya, Arman Esmaili, Sergio Palomares-Ruiz, Ina Sarcevic, JCAP 05 (2019) 051, arXiv:1903.12623.
[Bhattacharya:2019ucd]
[8-532]
Neutrinos and gamma rays from long-lived mediator decays in the Sun, Carl Niblaeus, Ankit Beniwal, Joakim Edsjo, JCAP 1911 (2019) 011, arXiv:1903.11363.
[Niblaeus:2019gjk]
[8-533]
Radio-detection of neutrino-induced air showers: influence of topography, Valentin Decoene, Nicolas Renault-Tinacci, Olivier Martineau-Huynh, Didier Charrier, Kumiko Kotera, Sandra Le Coz, Valentin Niess, Matias Tueros, Anne Zilles, Nucl.Instrum.Meth. A986 (2021) 164803, arXiv:1903.10466.
[Decoene:2019izl]
[8-534]
A Model of Neutrino Anomalies and IceCube data, Y. H. Ahn, Sin Kyu Kang, JHEP 1912 (2019) 133, arXiv:1903.09008.
[Ahn:2019jbm]
[8-535]
Neutrino Echoes from Multimessenger Transient Sources, Kohta Murase, Ian M. Shoemaker, Phys.Rev.Lett. 123 (2019) 241102, arXiv:1903.08607.
[Murase:2019xqi]
[8-536]
Studying low-$x$ structure function models from astrophysical tau neutrinos events: double bang, lollipop and sugardaddy topologies, D. A. Fagundes, R. R. Francisco, E. G. de Oliveira, Phys.Rev. D100 (2019) 083020, arXiv:1903.05607.
[Fagundes:2019wzy]
[8-537]
Neutrino - Dark Matter Scattering and Coincident Detections of UHE Neutrinos with EM Sources, Seth Koren, JCAP 2019 (2019) 013, arXiv:1903.05096.
[Koren:2019wwi]
[8-538]
Cyberinfrastructure Requirements to Enhance Multi-messenger Astrophysics, Philip Chang et al., arXiv:1903.04590, 2019.
[Chang:2019edd]
[8-539]
Multi-Physics of AGN Jets in the Multi-Messenger Era, B. Rani et al., arXiv:1903.04504, 2019.
[Rani:2019cba]
[8-540]
Neutrino Topology Reconstruction at DUNE and Applications to Searches for Dark Matter Annihilation in the Sun, Carsten Rott, DongYoung Jeong, Jason Kumar, David Yaylali, JCAP 1907 (2019) 006, arXiv:1903.04175.
[Rott:2019stu]
[8-541]
Constraining dark matter-neutrino interactions with IceCube-170922A, Ki-Young Choi, Jongkuk Kim, Carsten Rott, Phys.Rev. D99 (2019) 083018, arXiv:1903.03302.
[Choi:2019ixb]
[8-542]
Detection of Ultra-High Energy neutrinos skimming the Earth due to decay of superheavy dark matter at JEM-EUSO, Ye Xu, Phys.Dark Univ. 24 (2019) 100299, arXiv:1903.02420.
[Xu:2019hqt]
[8-543]
Probing the Emission Mechanism and Magnetic Field of Neutrino Blazars with Multi-Wavelength Polarization Signatures, Haocheng Zhang, Ke Fang, Hui Li, Dimitrios Giannios, Markus Bottcher, Sara Buson, Astrophys.J. 876 (2019) 109, arXiv:1903.01956.
[Zhang:2019dob]
[8-544]
Cosmic tau neutrino detection via Cherenkov signals from air showers from Earth-emerging taus, Mary Hall Reno, John F. Krizmanic, Tonia M. Venters, Phys.Rev. D100 (2019) 063010, arXiv:1902.11287.
[Reno:2019jtr]
[8-545]
Probing strong dynamics with cosmic neutrinos, Luis A. Anchordoqui, Carlos Garcia Canal, Jorge F. Soriano, Phys.Rev. D100 (2019) 103001, arXiv:1902.10134.
[Anchordoqui:2019ufu]
[8-546]
Are starburst galaxies a common source of high energy neutrinos and cosmic rays?, Cecilia Lunardini, Gregory S. Vance, Kimberly L. Emig, Rogier A. Windhorst, JCAP 1910 (2019) 073, arXiv:1902.09663.
[Lunardini:2019zcf]
[8-547]
The flavor composition of astrophysical neutrinos after 8 years of IceCube: an indication of neutron decay scenario?, Andrea Palladino, Eur.Phys.J. C79 (2019) 500, arXiv:1902.08630.
[Palladino:2019pid]
[8-548]
A Dark Matter Interpretation of the ANITA Anomalous Events, Lucien Heurtier, Yann Mambrini, Mathias Pierre, Phys.Rev. D99 (2019) 095014, arXiv:1902.04584.
[Heurtier:2019git]
[8-549]
On the possibilities of high-energy neutrino production in the jets of microquasar SS433 in light of new observational data, Matias M. Reynoso, Agustin M. Carulli, Astropart.Phys. 109 (2019) 25-32, arXiv:1902.03861.
[Reynoso:2019vrp]
[8-550]
Inferring the flavor of high-energy astrophysical neutrinos at their sources, Mauricio Bustamante, Markus Ahlers, Phys.Rev.Lett. 122 (2019) 241101, arXiv:1901.10087.
[Bustamante:2019sdb]
[8-551]
Erratum: A Comprehensive Approach to Tau-Lepton Production by High-Energy Tau Neutrinos Propagating Through Earth [Phys. Rev. D 97, 023021 (2018)], Jaime Alvarez-Muniz, Washington R. Carvalho Jr., Austin L. Cummings, Kevin Payet, Andres Romero-Wolf, Harm Schoorlemmer, Enrique Zas, Phys.Rev. D97 (2018) 023021, arXiv:1901.08498.
[Alvarez-Muniz:2018owm]
[8-552]
TXS 0506+056, the first cosmic neutrino source, is not a BL Lac, P. Padovani, F. Oikonomou, M. Petropoulou, P. Giommi, E. Resconi, Mon.Not.Roy.Astron.Soc. 484 (2019) L104, arXiv:1901.06998.
[Padovani:2019xcv]
[8-553]
Low-Latency Algorithm for Multi-messenger Astrophysics (LLAMA) with Gravitational-Wave and High-Energy Neutrino Candidates, Stefan Countryman, Azadeh Keivani, Imre Bartos, Zsuzsa Marka, Thomas Kintscher, Rainer Corley, Erik Blaufuss, Chad Finley, Szabolcs Marka, arXiv:1901.05486, 2019.
[Countryman:2019pqq]
[8-554]
Escape of cosmic rays from the Galaxy and effects on the circumgalactic medium, P. Blasi, E. Amato, Phys.Rev.Lett. 122 (2019) 051101, arXiv:1901.03609.
[Blasi:2019obb]
[8-555]
A new view on Auger data and cosmogenic neutrinos in light of different nuclear disintegration and air-shower models, Jonas Heinze, Anatoli Fedynitch, Denise Boncioli, Walter Winter, Astrophys.J. 873 (2019) 88, arXiv:1901.03338.
[Heinze:2019jou]
[8-556]
Determining the fraction of cosmic-ray protons at ultra-high energies with cosmogenic neutrinos, Arjen van Vliet, Rafael Alves Batista, Jorg R. Horandel, Phys.Rev. D100 (2019) 021302, arXiv:1901.01899.
[vanVliet:2019nse]
[8-557]
Secondary neutrino and gamma-ray fluxes from SimProp and CRPropa, Rafael Alves Batista, Denise Boncioli, Armando di Matteo, Arjen van Vliet, JCAP 2019 (2019) 006, arXiv:1901.01244. 1+23 pages, 11 figures, 1 table; prepared for submission to JCAP.
[AlvesBatista:2019rhs]
[8-558]
Multimessenger Implications of AT2018cow: High-Energy Cosmic Ray and Neutrino Emissions from Magnetar-Powered Super-Luminous Transients, Ke Fang, Brian D. Metzger, Kohta Murase, Imre Bartos, Kumiko Kotera, Astrophys.J. 878 (2019) 34, arXiv:1812.11673.
[Fang:2018hjp]
[8-559]
Effects of Violation of Equivalence Principle on UHE Neutrinos at IceCube in 4 Flavour Scenario, Madhurima Pandey, arXiv:1812.11570, 2018.
[Pandey:2018znw]
[8-560]
Ultrahigh-energy cosmic-ray nuclei and neutrinos from engine-driven supernovae, B. Theodore Zhang, Kohta Murase, Phys.Rev. D100 (2019) 103004, arXiv:1812.10289.
[Zhang:2018agl]
[8-561]
Geometrical Constraints of Observing Very High Energy Earth-Skimming Neutrinos from Space, Claire Guepin, Frederic Sarazin, John Krizmanic, Jacqueline Loerincs, Angela Olinto, Ashley Piccone, JCAP 2019 (2019) 021, arXiv:1812.07596.
[Guepin:2018yuf]
[8-562]
The Origin of the Multiwavelength Emission of PKS 0502+049, N. Sahakyan, Astron.Astrophys. 622 (2019) A144, arXiv:1812.06338.
[Sahakyan:2018nyl]
[8-563]
Models for the historical flare of TXS 0506+056, Xavier Rodrigues, Shan Gao, Anatoli Fedynitch, Andrea Palladino, Walter Winter, Astrophys.J. 874 (2019) L29, arXiv:1812.05939.
[Rodrigues:2018tku]
[8-564]
Cascading Constraints from Neutrino Emitting Blazars: The case of TXS 0506+056, Anita Reimer, Markus Boettcher, Sara Buson, Astrophys.J. 881 (2019) 46, arXiv:1812.05654.
[Reimer:2018vvw]
[8-565]
IceCube Flavor Ratios with Identified Astrophysical Sources: Towards Improving New Physics Testability, Vedran Brdar, Rasmus S. L. Hansen, JCAP 1902 (2019) 023, arXiv:1812.05541.
[Brdar:2018tce]
[8-566]
Monochromatic dark neutrinos and boosted dark matter in noble liquid direct detection, David McKeen, Nirmal Raj, Phys.Rev. D99 (2019) 103003, arXiv:1812.05102.
[McKeen:2018pbb]
[8-567]
IceCube Neutrinos from Hadronically Powered Gamma-Ray Galaxies, Andrea Palladino, Anatoli Fedynitch, Rasmus W. Rasmussen, Andrew M. Taylor, JCAP 2019 (2019) 004, arXiv:1812.04685.
[Palladino:2018bqf]
[8-568]
Ultra-high energy cosmic rays from supermassive black holes: particle flux on the Earth and extragalactic diffuse emission, A. Uryson, J.Phys.Conf.Ser. 1390 (2019) 012065, arXiv:1811.11216.
[Uryson:2018pus]
[8-569]
On the Neutrino Flares from the Direction of TXS 0506+056, Francis Halzen, Ali Kheirandish, Thomas Weisgarber, Scott P. Wakely, Astrophys.J. 874 (2019) L9, arXiv:1811.07439.
[Halzen:2018iak]
[8-570]
A comprehensive analysis of anomalous ANITA events disfavors a diffuse tau-neutrino flux origin, A. Romero-Wolf et al., Phys.Rev. D99 (2019) 063011, arXiv:1811.07261.
[Romero-Wolf:2018zxt]
[8-571]
Self-consistent model of extragalactic neutrino flux from evolving blazar population, A. Neronov, D.V. Semikoz, Sov.Phys.JETP 158 (2020) 295, arXiv:1811.06356.
[Neronov:2018wuo]
[8-572]
Decays of Long-Lived Relics and Their Signatures at IceCube, Kim V. Berghaus, Melissa D. Diamond, D. E. Kaplan, JHEP 1905 (2019) 145, arXiv:1811.04939.
[Berghaus:2018zso]
[8-573]
Neutrino and $\gamma$-ray Emission from the Core of NGC1275 by Magnetic Reconnection: GRMHD Simulations and Radiative Transfer/Particle Calculations, J. C. Rodriguez-Ramirez, E. M. de Gouveia Dal Pino, R. Alves Batista, IAU Symp. 342 (2018) 184-188, arXiv:1811.02812. Conference proceeding.
[Rodriguez-Ramirez:2018jlm]
[8-574]
Angular power spectrum analysis on current and future high-energy neutrino data, Ariane Dekker, Shin'ichiro Ando, JCAP 1902 (2019) 002, arXiv:1811.02576.
[Dekker:2018cqu]
[8-575]
Analysis of Fermi-LAT observations, UHECRs and neutrinos from the radio galaxy Centaurus B, N. Fraija, M. Araya, A. Galvan-Gamez, J. A. de Diego, JCAP 2019 (2019) 023, arXiv:1811.01108.
[Fraija:2018qqc]
[8-576]
Bayesian Multi-Messenger Search Method for Common Sources of Gravitational Waves and High-Energy Neutrinos, Imre Bartos, Doga Veske, Azadeh Keivani, Zsuzsa Marka, Stefan Countryman, Erik Blaufuss, Chad Finley, Szabolcs Marka, Phys.Rev. D100 (2019) 083017, arXiv:1810.11467.
[Bartos:2018jco]
[8-577]
Fermi-LAT counterparts of IceCube neutrinos above 100 TeV, F. Kraus, K. Deoskar, C. Baxter, M. Kadler, M. Kreter, M. Langejahn, K. Mannheim, P. Polko, B. Wang, J. Wilms, Astron.Astrophys. 620 (2018) A174, arXiv:1810.08482.
[Krauss:2018tpa]
[8-578]
Are We Looking at Neutrino Absorption Spectra at IceCube?, Siddhartha Karmakar, Sujata Pandey, Subhendu Rakshit, arXiv:1810.04192, 2018.
[Karmakar:2018fno]
[8-579]
Secondary Radio and X-ray Emissions from Galaxy Mergers, Chengchao Yuan, Kohta Murase, Peter Meszaros, Astrophys.J. 878 (2019) 76, arXiv:1810.04155.
[Yuan:2018erh]
[8-580]
Predictions for the flux of high-energy cosmogenic neutrinos and the influence of the extragalactic magnetic field, David Wittkowski, Karl-Heinz Kampert, Mon.Not.Roy.Astron.Soc. 488 (2019) L119-L122, arXiv:1810.03769.
[Wittkowski:2018giy]
[8-581]
Testing Lorentz invariance and CPT symmetry using gamma-ray burst neutrinos, Xinyi Zhang, Bo-Qiang Ma, Phys.Rev. D99 (2019) 043013, arXiv:1810.03571.
[Zhang:2018otj]
[8-582]
Active Galactic Nuclei and the Origin of IceCube's Diffuse Neutrino Flux, Dan Hooper, Tim Linden, Abby Vieregg, JCAP 1902 (2019) 012, arXiv:1810.02823.
[Hooper:2018wyk]
[8-583]
Prospects of testing a minimal model for extragalactic cosmic rays and neutrinos with the K-EUSO orbital telescope, O. Kalashev, M. Pshirkov, M. Zotov, JCAP 1909 (2019) 034, arXiv:1810.02284.
[Kalashev:2018smf]
[8-584]
Lorentz violation from gamma-ray burst neutrinos, Yanqi Huang, Bo-Qiang Ma, APS Physics 1 (2018) 62, arXiv:1810.01652.
[Huang:2018ham]
[8-585]
Unitarity Bounds of Astrophysical Neutrinos, Markus Ahlers, Mauricio Bustamante, Siqiao Mu, Phys.Rev. D98 (2018) 123023, arXiv:1810.00893.
[Ahlers:2018yom]
[8-586]
Flavor of cosmic neutrinos preserved by ultralight dark matter, Yasaman Farzan, Sergio Palomares-Ruiz, Phys.Rev. D99 (2019) 051702, arXiv:1810.00892.
[Farzan:2018pnk]
[8-587]
The ANITA Anomalous Events as Signatures of a Beyond Standard Model Particle, and Supporting Observations from IceCube, Derek B. Fox et al., arXiv:1809.09615, 2018.
[Fox:2018syq]
[8-588]
Constraining high-energy neutrinos from choked-jet supernovae with IceCube high-energy starting events, Arman Esmaili, Kohta Murase, JCAP 1812 (2018) 008, arXiv:1809.09610.
[Esmaili:2018wnv]
[8-589]
Could an hypercritical accretion be associated with the atypical magnetic-field behavior in RX J0822-4300?, N. Fraija, C. G. Bernal, G. Morales, R. Negreiros, Publ.Astron.Soc.Pac. 130 (2018) 124201, arXiv:1809.08953.
[Fraija:2018ouq]
[8-590]
A hypercritical accretion scenario in Central Compact Objects accompanied with an expected neutrino burst, N. Fraija, C. G. Bernal, G. Morales, R. Negreiros, Phys.Rev. D98 (2018) 083012, arXiv:1809.07057.
[Fraija:2018sqd]
[8-591]
Eddington Bias for Cosmic Neutrino Sources, Nora Linn Strotjohann, Marek Kowalski, Anna Franckowiak, Astron.Astrophys. 622 (2019) L9, arXiv:1809.06865.
[Strotjohann:2018ufz]
[8-592]
Ultra-high energy cosmic rays and neutrinos from light nuclei composition, Saikat Das, Soebur Razzaque, Nayantara Gupta, Phys.Rev. D99 (2019) 083015, arXiv:1809.05321.
[Das:2018ymz]
[8-593]
Cosmogenic Neutrinos Through the GRAND Lens Unveil the Nature of Cosmic Accelerators, Klaes Moller, Peter B. Denton, Irene Tamborra, JCAP 1905 (2019) 047, arXiv:1809.04866.
[Moller:2018isk]
[8-594]
Jet-cloud/star interaction as an interpretation of neutrino outburst from the blazar TXS 0506+056, Kai Wang, Ruo-Yu Liu, Zhuo Li, Xiang-Yu Wang, Zi-Gao Dai, arXiv:1809.00601, 2018.
[Wang:2018zln]
[8-595]
No guaranteed neutrino astronomy without (enough) taus, D. Fargion et al., arXiv:1808.10493, 2018.
[Fargion:2018yoq]
[8-596]
Towards the next generation of CORSIKA: A framework for the simulation of particle cascades in astroparticle physics, Ralph Engel et al., Comput.Softw.Big Sci. 3 (2019) 2, arXiv:1808.08226.
[Engel:2018akg]
[8-597]
On the common origin of cosmic rays across the ankle and diffuse neutrinos at the highest energies from low-luminosity Gamma-Ray Bursts, Denise Boncioli, Daniel Biehl, Walter Winter, Astrophys.J. 872 (2019) 110, arXiv:1808.07481.
[Boncioli:2018lrv]
[8-598]
Lepto-hadronic $\gamma$-ray and neutrino emission from the jet of TXS 0506+056, N. Sahakyan, Astrophys.J. 866 (2018) 109, arXiv:1808.05651.
[Sahakyan:2018voh]
[8-599]
Cosmic infrared background excess from axion-like particles, and implications for multi-messenger observations of blazars, Oleg E. Kalashev, Alexander Kusenko, Edoardo Vitagliano, Phys.Rev. D99 (2019) 023002, arXiv:1808.05613.
[Kalashev:2018bra]
[8-600]
Signature of Light Sterile Neutrinos at IceCube, Bhavesh Chauhan, Subhendra Mohanty, Phys.Rev. D98 (2018) 083021, arXiv:1808.04774.
[Chauhan:2018dkd]
[8-601]
High-energy neutrino flare from cloud-jet interaction in the blazar PKS 0502+049, Hao-Ning He, Yoshiyuki Inoue, Susumu Inoue, Yun-Feng Liang, arXiv:1808.04330, 2018.
[He:2018snd]
[8-602]
Probing New Physics From TXS 0506+056 Blazar Neutrinos, Adil Belhaj, Salah Eddine Ennadifi, Eur.Phys.J.Plus 137 (2022) 568, arXiv:1808.04147.
[Belhaj:2018zlr]
[8-603]
Meaningful Details: The value of adding baseline dependence to the Neutrino-Dark Matter Effect, William S. Marks, Fu-Guang Cao, Int.J.Theor.Phys. 59 (2020) 3951-3966, arXiv:1808.04051.
[Marks:2018vyv]
[8-604]
Black Hole Accretion Disk Diffuse Neutrino Background, T. S. H. Schilbach, O. L. Caballero, G. C. McLaughlin, Phys.Rev. D100 (2019) 043008, arXiv:1808.03627.
[Schilbach:2018bsg]
[8-605]
Multimessenger Astronomy and New Neutrino Physics, Kevin J. Kelly, Pedro A. N. Machado, JCAP 1810 (2018) 048, arXiv:1808.02889.
[Kelly:2018tyg]
[8-606]
A Universe's Worth of Electrons to Probe Long-Range Interactions of High-Energy Astrophysical Neutrinos, Mauricio Bustamante, Sanjib Kumar Agarwalla, Phys.Rev.Lett. 122 (2019) 061103, arXiv:1808.02042.
[Bustamante:2018mzu]
[8-607]
Neutrino Telescopes as QCD Microscopes, Valerio Bertone, Rhorry Gauld, Juan Rojo, JHEP 1901 (2019) 217, arXiv:1808.02034.
[Bertone:2018dse]
[8-608]
Forward charm-production models and prompt neutrinos at IceCube, Atri Bhattacharya, J. R. Cudell, JHEP 1811 (2018) 150, arXiv:1808.00293.
[Bhattacharya:2018tbc]
[8-609]
Variability and Optical Polarization Can Probe the Neutrino and Electromagnetic Emission Mechanisms of TXS~0506+056, Haocheng Zhang, Ke Fang, Hui Li, arXiv:1807.11069, 2018.
[Zhang:2018xrr]
[8-610]
Neutrino emission from BL Lac objects: the role of radiatively inefficient accretion flows, C. Righi, F. Tavecchio, S. Inoue, Mon.Not.Roy.Astron.Soc. 483 (2019) L127-L131, arXiv:1807.10506.
[Righi:2018xjr]
[8-611]
Can we expect an excess of cosmological neutrinos during detection of gravitational waves?, Zijian Song, Xue-Qian Li, arXiv:1807.10012, 2018.
[Song:2018alf]
[8-612]
On ANITA's sensitivity to long-lived, charged massive particles, Amy Connolly, Patrick Allison, Oindree Banerjee, arXiv:1807.08892, 2018.
[Connolly:2018kyx]
[8-613]
VLBI radio structure and core-brightening of the high-energy neutrino emitter TXS 0506+056, E. Kun, P. L. Biermann, L. A. Gergely, Mon.Not.Roy.Astron.Soc. 483 (2019) L42, arXiv:1807.07942.
[Kun:2018zin]
[8-614]
Mid-infrared variability of the neutrino source blazar TXS 0506$+$056, K. E. Gabanyi, A. Moor, S. Frey, Res.Notes AAS 2 (2018) 130, arXiv:1807.07462.
[Gabanyi:2018vby]
[8-615]
Multimessenger Tests of Einstein's Weak Equivalence Principle and Lorentz Invariance with a High-energy Neutrino from a Flaring Blazar, Jun-Jie Wei, Bin-Bin Zhang, Lang Shao, He Gao, Ye Li, Qian-Qing Yin, Xue-Feng Wu, Xiang-Yu Wang, Bing Zhang, Zi-Gao Dai, JHEAp 22 (2019) 1-4, arXiv:1807.06504.
[Wei:2018ajw]
[8-616]
Constraints on neutrino speed, weak equivalence principle violation, Lorentz invariance violation, and dual lensing from the first high-energy astrophysical neutrino source TXS 0506+056, Ranjan Laha, Phys.Rev. D100 (2019) 103002, arXiv:1807.05621.
[Laha:2018hsh]
[8-617]
Limits on Neutrino Lorentz Violation from Multimessenger Observations of TXS 0506+056, John Ellis, Nikolaos E. Mavromatos, Alexander S. Sakharov, Edward K. Sarkisyan-Grinbaum, Phys.Lett. B789 (2019) 352-355, arXiv:1807.05155.
[Ellis:2018ogq]
[8-618]
A hadronuclear interpretation of a high-energy neutrino event coincident with a blazar flare, Ruo-Yu Liu, Kai Wang, Rui Xue, Andrew M. Taylor, Xiang-Yu Wang, Zhuo Li, Huirong Yan, Phys.Rev. D99 (2019) 063008, arXiv:1807.05113.
[Liu:2018utd]
[8-619]
Search for GeV flare coincident with the IceCube neutrino outburst, Yun-Feng Liang, Hao-Ning He, Neng-Hui Liao, Yu-Liang Xin, Qiang Yuan, Yi-Zhong Fan, arXiv:1807.05057, 2018.
[Liang:2018siw]
[8-620]
Blazar Flares as an Origin of High-Energy Cosmic Neutrinos?, Kohta Murase, Foteini Oikonomou, Maria Petropoulou, Astrophys.J. 865 (2018) 124, arXiv:1807.04748.
[Murase:2018iyl]
[8-621]
A Multimessenger Picture of the Flaring Blazar TXS 0506+056: implications for High-Energy Neutrino Emission and Cosmic Ray Acceleration, A. Keivani et al., Astrophys.J. 864 (2018) 84, arXiv:1807.04537.
[Keivani:2018rnh]
[8-622]
Lepto-hadronic single-zone models for the electromagnetic and neutrino emission of TXS 0506+056, M. Cerruti et al., Mon.Not.Roy.Astron.Soc. 483 (2019) L12, arXiv:1807.04335.
[Cerruti:2018tmc]
[8-623]
The blazar TXS 0506+056 associated with a high-energy neutrino: insights into extragalactic jets and cosmic ray acceleration, Max Ludwig Ahnen et al., Astrophys.J. 863 (2018) L10, arXiv:1807.04300.
[MAGIC:2018sak]
[8-624]
A multiwavelength view of BL Lacs neutrino candidates, C. Righi, F. Tavecchio, L. Pacciani, Mon.Not.Roy.Astron.Soc. 484 (2019) 2067-2077, arXiv:1807.04299.
[Righi:2018hhu]
[8-625]
Interpretation of the coincident observation of a high energy neutrino and a bright flare, Shan Gao, Anatoli Fedynitch, Walter Winter, Martin Pohl, Nat.Astron. 3 (2019) 88-92, arXiv:1807.04275.
[Gao:2018mnu]
[8-626]
On The Feasibility Of Using Neutrino Intensity Interferometry To Measure Proto-Neutron Star Radii, Warren P. Wright, James P. Kneller, Phys.Rev. D98 (2018) 043016, arXiv:1807.00510.
[Wright:2018ihp]
[8-627]
Cosmogenic photon and neutrino fluxes in the Auger era, Rafael Alves Batista, Rogerio M. de Almeida, Bruno Lago, Kumiko Kotera, JCAP 1901 (2019) 002, arXiv:1806.10879.
[AlvesBatista:2018zui]
[8-628]
CLUMPY v3: $\gamma$-ray and $\nu$ signals from dark matter at all scales, Moritz Hutten, Celine Combet, David Maurin, Comput.Phys.Commun. 235 (2019) 336-345, arXiv:1806.08639.
[Hutten:2018aix]
[8-629]
Probing Particle Physics with IceCube, Markus Ahlers, Klaus Helbing, Carlos Perez de los Heros, Eur.Phys.J. C78 (2018) 924, arXiv:1806.05696.
[Ahlers:2018mkf]
[8-630]
Interpretation of the diffuse astrophysical neutrino flux in terms of the blazar sequence, Andrea Palladino, Xavier Rodrigues, Walter Winter, Astrophys.J. 871 (2019) 41, arXiv:1806.04769.
[Palladino:2018lov]
[8-631]
Energetics of High-Energy Cosmic Radiations, Kohta Murase, Masataka Fukugita, Phys.Rev. D99 (2019) 063012, arXiv:1806.04194.
[Murase:2018utn]
[8-632]
Invisible Neutrino Decay Resolves IceCube's Track and Cascade Tension, Peter B. Denton, Irene Tamborra, Phys.Rev.Lett. 121 (2018) 121802, arXiv:1805.05950.
[Denton:2018aml]
[8-633]
Heavy decaying dark matter and IceCube high energy neutrinos, M. Kachelriess, O. E. Kalashev, M. \relax Yu. Kuznetsov, Phys.Rev. D98 (2018) 083016, arXiv:1805.04500.
[Kachelriess:2018rty]
[8-634]
Gamma-ray Production in the Extended Halo of the Galaxy and Possible Implications for the Origin of Galactic Cosmic Rays, Ruo-Yu Liu, Huirong Yan, Xiang-Yu Wang, Shi Shao, Hui Li, Astrophys.J. 871 (2019) 40, arXiv:1805.03406.
[Liu:2018gyj]
[8-635]
Where are UHECR originated ?, D. Fargion, PoS MULTIF2017 (2018) 006, arXiv:1805.01572.
[Fargion:2018exo]
[8-636]
Neutrino signal from proto-neutron star evolution: effects of opacities from charged current neutrino interactions and inverse neutron decay, Tobias Fischer, Gabriel Martinez-Pinedo, Meng-Ru Wu, Andreas Lohs, Yong-Zhong Qian, Phys.Rev.C 101 (2020) 025804, arXiv:1804.10890.
[Fischer:2018kdt]
[8-637]
Observation of classically `forbidden' electromagnetic wave propagation and implications for neutrino detection, S. W. Barwick et al., JCAP 1807 (2018) 055, arXiv:1804.10430.
[Barwick:2018rsp]
[8-638]
Ultrahigh energy cosmic rays from nearby starburst galaxies, Reda Attallah, Dallel Bouchachi, Mon.Not.Roy.Astron.Soc. 478 (2018) 800-806, arXiv:1804.06603.
[Attallah:2018euc]
[8-639]
Sterile neutrinos as a possible explanation for the upward air shower events at ANITA, Guo-yuan Huang, Phys.Rev. D98 (2018) 043019, arXiv:1804.05362.
[Huang:2018als]
[8-640]
The importance of observing astrophysical tau neutrinos, Andrea Palladino, Carlo Mascaretti, Francesco Vissani, JCAP 1808 (2018) 004, arXiv:1804.04965.
[Palladino:2018qgi]
[8-641]
A Combined Astrophysical and Dark Matter Interpretation of the IceCube HESE and Throughgoing Muon Events, Yicong Sui, P. S. Bhupal Dev, JCAP 1807 (2018) 020, arXiv:1804.04919.
[Sui:2018bbh]
[8-642]
AGN outflows as neutrino sources: an observational test, P. Padovani, A. Turcati, E. Resconi, Mon.Not.Roy.Astron.Soc. 477 (2018) 3469, arXiv:1804.01386.
[Padovani:2018hfm]
[8-643]
The Propagation of Cosmic Rays from the Galactic Wind Termination Shock: Back to the Galaxy?, Lukas Merten, Chad Bustard, Ellen G. Zweibel, Julia Becker Tjus, Astrophys.J. 859 (2018) 63, arXiv:1803.08376.
[Merten:2018qoa]
[8-644]
Neutrinos from Choked Jets Accompanied by Type-II Supernovae, Hao-Ning He, Alexander Kusenko, Shigehiro Nagataki, Yi-Zhong Fan, Da-Ming Wei, Astrophys.J. 856 (2018) 119, arXiv:1803.07478.
[He:2018lwb]
[8-645]
On the potential of Cherenkov Telescope Arrays and KM3 Neutrino Telescopes for the detection of extended sources, Lucia Ambrogi, Silvia Celli, Felix Aharonian, Astropart.Phys. 100 (2018) 69-79, arXiv:1803.03565.
[Ambrogi:2018skq]
[8-646]
Novel matter effects on the flavor conversions of solar neutrinos and high-energy astrophysical neutrinos, Guo-yuan Huang, Jun-Hao Liu, Shun Zhou, Nucl.Phys. B931 (2018) 324, arXiv:1803.02037.
[Huang:2018ufu]
[8-647]
The Bright and Choked Gamma-Ray Burst Contribution to the IceCube and ANTARES Low-Energy Excess, Peter B. Denton, Irene Tamborra, JCAP 04 (2018) 058, arXiv:1802.10098.
[Denton:2018tdj]
[8-648]
Discovery of the multi-messenger gamma-ray counterpart of the IceCube neutrino signal, A. Neronov, M. Kachelriess, D.V. Semikoz, Phys.Rev. D98 (2018) 023004, arXiv:1802.09983.
[Neronov:2018ibl]
[8-649]
AGN Neutrino flux estimates for a realistic hybrid model, S. Richter, F. Spanier, Astropart.Phys. 100 (2018) 61-68, arXiv:1802.08820.
[Richter:2018ceo]
[8-650]
A Coincidence Search for Cosmic Neutrino and Gamma-Ray Emitting Sources Using IceCube and Fermi LAT Public Data, C. F. Turley et al., Astrophys.J. 863 (2018) 64, arXiv:1802.08165.
[Turley:2018biv]
[8-651]
Hadronic models of the Fermi bubbles: Future perspectives, Soebur Razzaque, Lili Yang, Galaxies 6 (2018) 47, arXiv:1802.05636.
[Razzaque:2018fzs]
[8-652]
On the Radar detection of high-energy neutrino-induced cascades in ice; From Radar scattering cross-section to sensitivity, Krijn D. de Vries et al., arXiv:1802.05543, 2018.
[deVries:2018dun]
[8-653]
Efficiency of Centrifugal Mechanism in Producing PeV Neutrinos From Active Galactic Nuclei, Z. Osmanov, S. Mahajan, G. Machabeli, N. Chkheidze, Astropart.Phys. 99 (2018) 30-33, arXiv:1802.05414.
[Osmanov:2018knx]
[8-654]
The redshift of the BL Lac object TXS 0506+056, Simona Paiano, Renato Falomo, Aldo Treves, Riccardo Scarpa, Astrophys.J. 854 (2018) L32, arXiv:1802.01939.
[Paiano:2018qeq]
[8-655]
A Sterile Neutrino Origin for the Upward Directed Cosmic Ray Shower Detected by ANITA, John F. Cherry, Ian Shoemaker, Phys.Rev. D99 (2019) 063016, arXiv:1802.01611.
[Cherry:2018rxj]
[8-656]
High-energy gamma-ray and neutrino production in star-forming galaxies across cosmic time: Difficulties in explaining the IceCube data, Takahiro Sudoh, Tomonori Totani, Norita Kawanaka, Publ.Astron.Soc.Jap. 70 (2018) 49, arXiv:1801.09683.
[Sudoh:2018ana]
[8-657]
Pinpointing astrophysical bursts of low-energy neutrinos embedded into the noise, C. Casentini, G. Pagliaroli, C. Vigorito, V. Fafone, JCAP 1808 (2018) 010, arXiv:1801.09062.
[Casentini:2018bdf]
[8-658]
High energy leptonic originated neutrinos from astrophysical objects, Arunava Bhadra, Prabir Banik, arXiv:1801.07677, 2018.
[Bhadra:2018ydk]
[8-659]
A Multi-Component Model for the Observed Astrophysical Neutrinos, Andrea Palladino, Walter Winter, Astron.Astrophys. 615 (2018) A168, arXiv:1801.07277.
[Palladino:2018evm]
[8-660]
Kicks of magnetized strange quark stars induced by anisotropic emission of neutrinos, Alejandro Ayala et al., Phys.Rev. D97 (2018) 103008, arXiv:1801.06246.
[Ayala:2018kie]
[8-661]
Ultraluminous X-ray sources as neutrino pulsars, Alexander A. Mushtukov, Sergey S. Tsygankov, Valery F. Suleimanov, Juri Poutanen, Mon.Not.Roy.Astron.Soc. 476 (2018) 2867, arXiv:1801.04810.
[Mushtukov:2018pvq]
[8-662]
PeV neutrinos from wind breakouts of type II supernovae, Zhuo Li, Sci.China Phys.Mech.Astron. 62 (2019) 959511, arXiv:1801.04389.
[Li:2018tfh]
[8-663]
Indications of an unexpected signal associated with the GW170817 binary neutron star inspiral, E. Fischbach et al., Astropart.Phys. 103 (2018) 1-6, arXiv:1801.03585.
[Fischbach:2018dnd]
[8-664]
Rapid neutrino cooling in the neutron star MXB 1659-29, Edward F. Brown et al., Phys.Rev.Lett. 120 (2018) 182701, arXiv:1801.00041.
[Brown:2017gxd]
[8-665]
Can winds driven by active galactic nuclei account for the extragalactic gamma-ray and neutrino backgrounds?, Ruo-Yu Liu, Kohta Murase, Susumu Inoue, Chong Ge, Xiang-Yu Wang, Astrophys.J. 858 (2018) 9, arXiv:1712.10168.
[Liu:2017bjr]
[8-666]
Cumulative Neutrino and Gamma-Ray Backgrounds from Halo and Galaxy Mergers, Chengchao Yuan, Peter Meszaros, Kohta Murase, Donghui Jeong, Astrophys.J. 857 (2018) 50, arXiv:1712.09754.
[Yuan:2017dle]
[8-667]
Bayesian Inference Constraints on Astrophysical Production of Ultra-high Energy Cosmic Rays and Cosmogenic Neutrino Flux Predictions, Andres Romero-Wolf, Maximo Ave, JCAP 1807 (2018) 025, arXiv:1712.07290.
[Romero-Wolf:2017xqe]
[8-668]
Effects of a neutrino-dark energy coupling on oscillations of high-energy neutrinos, Niki Klop, Shin'ichiro Ando, Phys.Rev. D97 (2018) 063006, arXiv:1712.05413.
[Klop:2017dim]
[8-669]
Coincident detection significance in multimessenger astronomy, Gregory Ashton et al., Astrophys.J. 860 (2018) 6, arXiv:1712.05392.
[Ashton:2017ykh]
[8-670]
Flavor and energy inference for the high-energy IceCube neutrinos, Giacomo D'Amico, Astropart.Phys. 101 (2018) 8-16, arXiv:1712.04979.
[DAmico:2017dwq]
[8-671]
A Strong Test of the Dark Matter Origin of the 1.4 TeV DAMPE Signal Using IceCube Neutrinos, Yue Zhao, Ke Fang, Meng Su, M. Coleman Miller, JCAP 1806 (2018) 030, arXiv:1712.03210.
[Zhao:2017nrt]
[8-672]
High-energy neutrinos from Galactic superbubbles, K.J. Andersen, M. Kachelriess, D.V. Semikoz, Astrophys.J. 861 (2018) L19, arXiv:1712.03153.
[Andersen:2017yyg]
[8-673]
Expected neutrino fluence from short Gamma-Ray Burst 170817A and off-axis angle constraints, Daniel Biehl, Jonas Heinze, Walter Winter, Mon.Not.Roy.Astron.Soc. 476 (2018) 1191, arXiv:1712.00449.
[Biehl:2017qen]
[8-674]
Ultra-High Energy Cosmic Rays and Neutrinos from Tidal Disruptions by Massive Black Holes, Claire Guepin, Kumiko Kotera, Enrico Barausse, Ke Fang, Kohta Murase, Astron.Astrophys. 616 (2018) A179, arXiv:1711.11274.
[Guepin:2017abw]
[8-675]
Measurement of the Energy-Dependent Neutrino-Nucleon Cross Section Above 10 TeV Using IceCube Showers, Mauricio Bustamante, Amy Connolly, Phys.Rev.Lett. 122 (2019) 041101, arXiv:1711.11043.
[Bustamante:2017xuy]
[8-676]
IceCube's astrophysical neutrino energy spectrum from CPT violation, Jiajun Liao, Danny Marfatia, Phys.Rev. D97 (2018) 041302, arXiv:1711.09266.
[Liao:2017yuy]
[8-677]
Interstellar communication. IV. Benchmarking information carriers, Michael Hippke, arXiv:1711.07962, 2017.
[Hippke:2017rqi]
[8-678]
Probing a Four Flavour vis-a-vis Three Flavour Neutrino Mixing for UHE Neutrino Signals at a 1 ${\rm Km}^2$ Detector, Madhurima Pandey, Debasish Majumdar, Amit Dutta Banik, Phys.Rev. D97 (2018) 103015, arXiv:1711.05018.
[Pandey:2017zyz]
[8-679]
High-energy neutrinos from FR0 radio-galaxies?, F. Tavecchio, C. Righi, A. Capetti, P. Grandi, G. Ghisellini, Mon.Not.Roy.Astron.Soc. 475 (2018) 5529, arXiv:1711.03757.
[Tavecchio:2017utw]
[8-680]
Tidally disrupted stars as a possible origin of both cosmic rays and neutrinos at the highest energies, Daniel Biehl, Denise Boncioli, Cecilia Lunardini, Walter Winter, Sci.Rep. 8 (2018) 10828, arXiv:1711.03555.
[Biehl:2017hnb]
[8-681]
Neutrinos and Ultra-High-Energy Cosmic-Ray Nuclei from Blazars, Xavier Rodrigues, Anatoli Fedynitch, Shan Gao, Denise Boncioli, Walter Winter, Astrophys.J. 854 (2018) 54, arXiv:1711.02091.
[Rodrigues:2017fmu]
[8-682]
Probing Velocity Dependent Self-Interacting Dark Matter with Neutrino Telescopes, Denis S. Robertson, Ivone F.M. Albuquerque, JCAP 1802 (2018) 056, arXiv:1711.02052.
[Robertson:2017hdw]
[8-683]
Tau neutrinos from ultracompact dark matter minihalos and constraints on the primordial curvature perturbations, Yupeng Yang, Yan Qin, Phys.Rev. D96 (2017) 103509, arXiv:1711.00993.
[Yang:2017yjp]
[8-684]
Exploring the Properties of Choked Gamma-Ray Bursts with IceCube's High Energy Neutrinos, Peter B. Denton, Irene Tamborra, Astrophys.J. 855 (2018) 37, arXiv:1711.00470.
[Denton:2017jwk]
[8-685]
GW170817: Modeling based on numerical relativity and its implications, Masaru Shibata et al., Phys.Rev. D96 (2017) 123012, arXiv:1710.07579.
[Shibata:2017xdx]
[8-686]
Multimessenger tests of the weak equivalence principle from GW170817 and its electromagnetic counterparts, Jun-Jie Wei et al., JCAP 1711 (2017) 035, arXiv:1710.05860.
[Wei:2017nyl]
[8-687]
Ultra-High Energy Neutrino Afterglows of nearby Long Duration Gamma-Ray Bursts, Jessymol K. Thomas, Reetanjali Moharana, Soebur Razzaque, Phys.Rev. D96 (2017) 103004, arXiv:1710.04024.
[Thomas:2017dft]
[8-688]
Could Bert, Ernie and Big Bird be 13 billion years old?, Guido Barbiellini, arXiv:1710.02446, 2017.
[Barbiellini:2017kkp]
[8-689]
On the Role of Neutrinos Telescopes in the Search for Dark Matter Annihilations in the Sun, Nicolao Fornengo, Antonio Masiero, Farinaldo S. Queiroz, Carlos E. Yaguna, JCAP 1712 (2017) 012, arXiv:1710.02155.
[Fornengo:2017lax]
[8-690]
Equation of State Dependent Dynamics and Multimessenger Signals from Stellar-mass Black Hole Formation, Kuo-Chuan Pan, Matthias Liebendorfer, Sean M. Couch, Friedrich-Karl Thielemann, Astrophys.J. 857 (2018) 13, arXiv:1710.01690.
[Pan:2017tpk]
[8-691]
A multi-messenger study of the total galactic high-energy neutrino emission, G. Pagliaroli, F.L. Villante, JCAP 1808 (2018) 035, arXiv:1710.01040.
[Pagliaroli:2017fse]
[8-692]
Comparison of gravitational waves from central engines of gamma-ray bursts: neutrino-dominated accretion flows, Blandford-Znajek mechanisms, and millisecond magnetars, Tong Liu, Chao-Yang Lin, Cui-Ying Song, Ang Li, Astrophys.J. 850 (2017) 30, arXiv:1709.09810.
[Liu:2017nec]
[8-693]
Diffuse Supernova Neutrino Background from extensive core-collapse simulations of $8$-$100 {\rm M}_\odot$ progenitors, Shunsaku Horiuchi et al., Mon.Not.Roy.Astron.Soc. 475 (2018) 1363, arXiv:1709.06567.
[Horiuchi:2017qja]
[8-694]
Study of the PeV Neutrino, $\gamma$-rays and UHECRs around The Lobes of Centaurus A, N. Fraija, E. Aguilar-Ruiz, A. Galvan-Gamez, A. Marinelli, J. A. de Diego, Mon.Not.Roy.Astron.Soc. 481 (2018) 4461, arXiv:1709.05766.
[Fraija:2017jok]
[8-695]
Extragalactic gamma-ray background from AGN winds and star-forming galaxies in cosmological galaxy formation models, A. Lamastra et al., Astron.Astrophys. 607 (2017) A18, arXiv:1709.03497.
[Lamastra:2017iyo]
[8-696]
Cosmic Rays and Non-thermal Emission Induced by Accretion of Cool Gas onto the Galactic Disk, Susumu Inoue, Yasunobu Uchiyama, Masanori Arakawa, Matthieu Renaud, Keiichi Wada, Astrophys.J. 849 (2017) 22, arXiv:1708.08574.
[Inoue:2017msv]
[8-697]
High-Energy Neutrino Emission from Short Gamma-Ray Bursts: Prospects for Coincident Detection with Gravitational Waves, Shigeo S. Kimura, Kohta Murase, Peter Meszaros, Kenta Kiuchi, Astrophys.J. 848 (2017) L4, arXiv:1708.07075.
[Kimura:2017kan]
[8-698]
Testing Lorentz Symmetry using High Energy Astrophysics Observations, Floyd W. Stecker, Symmetry 9 (2017) 201, arXiv:1708.05672.
[Stecker:2017gdy]
[8-699]
Double Bangs from New Physics in IceCube, Pilar Coloma, Pedro A. N. Machado, Ivan Martinez-Soler, Ian M. Shoemaker, Phys.Rev.Lett. 119 (2017) 201804, arXiv:1707.08573.
[Coloma:2017ppo]
[8-700]
Astrophysical neutrinos flavored with Beyond the Standard Model physics, Rasmus W. Rasmussen, Lukas Lechner, Markus Ackermann, Marek Kowalski, Walter Winter, Phys.Rev. D96 (2017) 083018, arXiv:1707.07684.
[Rasmussen:2017ert]
[8-701]
Interpreting IceCube 6-year HESE data as an evidence for hundred TeV decaying Dark Matter, Marco Chianese, Gennaro Miele, Stefano Morisi, Phys.Lett. B773 (2017) 591, arXiv:1707.05241.
[Chianese:2017nwe]
[8-702]
Use of ANTARES and IceCube data to constrain single power-law neutrino flux, Marco Chianese, Rosa Mele, Gennaro Miele, Pasquale Migliozzi, Stefano Morisi, Astrophys.J. 851 (2017) 36, arXiv:1707.05168.
[Chianese:2017jfa]
[8-703]
A lepto-hadronic model of gamma rays from the Eta Carinae and prospects for neutrino telescopes, Nayantara Gupta, Soebur Razzaque, Phys.Rev.D 96 (2017) 123017, arXiv:1706.10051.
[Gupta:2017qfk]
[8-704]
High-energy neutrino attenuation in the Earth and its associated uncertainties, Aaron C. Vincent, Carlos A. Arguelles, Ali Kheirandish, JCAP 11 (2017) 012, arXiv:1706.09895.
[Vincent:2017svp]
[8-705]
Traces of highest energy astrophysical muon and tau neutrinos in the Moon shadow, Daniele Fargion, Pietro Oliva, Int.J.Mod.Phys. D27 (2018) 1841002, arXiv:1706.09352.
[Fargion:2017lok]
[8-706]
High-Energy Gamma Rays and Neutrinos from Nearby Radio Galaxies, Carlos Blanco, Dan Hooper, JCAP 1712 (2017) 017, arXiv:1706.07047.
[Blanco:2017bgl]
[8-707]
Prospects for discovering a neutrino line induced by dark matter annihilation, Chaimae El Aisati, Camilo Garcia-Cely, Thomas Hambye, Laurent Vanderheyden, JCAP 1710 (2017) 021, arXiv:1706.06600.
[ElAisati:2017ppn]
[8-708]
Neutrino emission from magnetized micro-quasar jets, Theodoros Smponias, Odysseas Kosmas, Adv.High Energy Phys. 2017 (2017) 4962741, arXiv:1706.03087.
[Smponias:2017tyl]
[8-709]
Prediction and detection potential of fusion neutrinos from nearby stars, S. Arceo Diaz, K. Zuber, arXiv:1706.02102, 2017.
[Zuber:2017flk]
[8-710]
Prompt Neutrino Emission of Gamma-Ray Bursts in the Dissipative Photospheric Scenario Revisited: Possible Contributions from Cocoons, Di Xiao, Zi-Gao Dai, Peter Meszaros, Astrophys.J. 843 (2017) 17, arXiv:1706.01293.
[Xiao:2017blv]
[8-711]
Supernovae in compact star clusters as sources of high-energy cosmic rays and neutrinos, A. M. Bykov, D. C. Ellison, P. E. Gladilin, S. M. Osipov, Adv.Space Res. 62 (2018) 2764-2772, arXiv:1706.01135.
[Bykov:2017fik]
[8-712]
High-energy cosmic ray nuclei from tidal disruption events: origin, survival, and implications, B. Theodore Zhang, Kohta Murase, Foteini Oikonomou, Zhuo Li, Phys.Rev. D96 (2017) 063007, arXiv:1706.00391.
[Zhang:2017hom]
[8-713]
Cosmic-Ray and Neutrino Emission from Gamma-Ray Bursts with a Nuclear Cascade, Daniel Biehl, Denise Boncioli, Anatoli Fedynitch, Walter Winter, Astron.Astrophys. 611 (2018) A101, arXiv:1705.08909.
[Biehl:2017zlw]
[8-714]
Identification of Gamma-Rays and Neutrinos from the Cygnus-X Complex Considering Radio Gamma Correlation, Mehmet Guenduez, Julia Becker Tjus, Bjorn Eichmann, Francis Halzen, arXiv:1705.08337, 2017.
[Guenduez:2017qrw]
[8-715]
IceCube constraints on the Fermi Bubbles, Nimrod Sherf, Uri Keshet, Ilya Gurwich, Astrophys.J. 847 (2017) 95, arXiv:1705.06665.
[Sherf:2017vmr]
[8-716]
Detecting High-Energy Neutrinos from the Next Galactic Supernova, Kohta Murase, Phys.Rev. D97 (2018) 081301, arXiv:1705.04750.
[Murase:2017pfe]
[8-717]
High-energy Neutrinos from Multi-body Decaying Dark Matter, Nagisa Hiroshima, Ryuichiro Kitano, Kazunori Kohri, Kohta Murase, Phys.Rev. D97 (2018) 023006, arXiv:1705.04419.
[Hiroshima:2017hmy]
[8-718]
Enhanced stellar neutrino emissivities in annihilating Coy Dark Matter, M. Cermeno, M. A. Perez-Garcia, R. A. Lineros, Astrophys.J. 863 (2018) 157, arXiv:1705.03012.
[Cermeno:2017ejm]
[8-719]
Diffuse neutrinos from luminous and dark supernovae: prospects for upcoming detectors at the O(10) kt scale, Alankrita Priya, Cecilia Lunardini, JCAP 1711 (2017) 031, arXiv:1705.02122.
[Priya:2017bmm]
[8-720]
A minimal model for extragalactic cosmic rays and neutrinos, M. Kachelriess, O. Kalashev, S. Ostapchenko, D.V. Semikoz, Phys.Rev. D96 (2017) 083006, arXiv:1704.06893.
[Kachelriess:2017tvs]
[8-721]
Constraining the Flavor Structure of Lorentz Violation Hamiltonian with the Measurement of Astrophysical Neutrino Flavor Compositions, Kwang-Chang Lai, Wei-Hao Lai, Guey-Lin Lin, Phys.Rev. D96 (2017) 115026, arXiv:1704.04027.
[Lai:2017bbl]
[8-722]
IceCube and HAWC constraints on very-high-energy emission from the Fermi bubbles, Ke Fang, Meng Su, Tim Linden, Kohta Murase, Phys.Rev. D96 (2017) 123007, arXiv:1704.03869.
[Fang:2017vlg]
[8-723]
Peeking into the Origins of IceCube Neutrinos: I. Buried Transient TeV Miniburst Rates, Matthew D. Kistler, Hasan Yuksel, arXiv:1704.00072, 2017.
[Kistler:2017lep]
[8-724]
Tau energy loss and ultrahigh energy skimming tau neutrinos, Yu Seon Jeong, Minh Vu Luu, Mary Hall Reno, Ina Sarcevic, Phys.Rev. D96 (2017) 043003, arXiv:1704.00050.
[Jeong:2017mzv]
[8-725]
Linking High-Energy Cosmic Particles by Black-Hole Jets Embedded in Large-Scale Structures, Ke Fang, Kohta Murase, Nature Phys. 14 (2018) 396-398, arXiv:1704.00015.
[Fang:2017zjf]
[8-726]
Origin of the high-energy neutrino flux at IceCube, J.M. Carceller, J.I. Illana, M. Masip, D. Meloni, Astrophys.J. 852 (2018) 59, arXiv:1703.10786.
[Carceller:2017tvc]
[8-727]
Indirect searches of Galactic diffuse dark matter in INO-MagICAL detector, Amina Khatun, Ranjan Laha, Sanjib Kumar Agarwalla, JHEP 1706 (2017) 057, arXiv:1703.10221.
[Khatun:2017adx]
[8-728]
The Galactic Contribution to IceCube's Astrophysical Neutrino Flux, Peter B. Denton, Danny Marfatia, Thomas J. Weiler, JCAP 1708 (2017) 033, arXiv:1703.09721.
[Denton:2017csz]
[8-729]
Probing the cosmic ray mass composition in the knee region through TeV secondary particle fluxes from solar surroundings, Prabir Banik, Biplab Bijay, Samir K. Sarkar, Arunava Bhadra, Phys.Rev. D95 (2017) 063014, arXiv:1703.05083.
[Banik:2017hms]
[8-730]
Probing the Extragalactic Cosmic Rays origin with gamma-ray and neutrino backgrounds, Noemie Globus, Denis Allard, Etienne Parizot, Tsvi Piran, Astrophys.J. 839 (2017) L22, arXiv:1703.04158.
[Globus:2017ehu]
[8-731]
The Gamma-Ray Puzzle in Cygnus X: Implications for High-Energy Neutrinos, Tova M. Yoast-Hull, John S. Gallagher, Francis Halzen, Ali Kheirandish, Ellen G. Zweibel, Phys.Rev. D96 (2017) 043011, arXiv:1703.02590.
[Yoast-Hull:2017gaj]
[8-732]
Imaging Galactic Dark Matter with High-Energy Cosmic Neutrinos, Carlos A. Arguelles, Ali Kheirandish, Aaron C. Vincent, Phys.Rev.Lett. 119 (2017) 201801, arXiv:1703.00451.
[Arguelles:2017atb]
[8-733]
Can BL Lac emission explain the neutrinos above 0.2 PeV?, Andrea Palladino, Francesco Vissani, Astron.Astrophys. 604 (2017) A18, arXiv:1702.08779.
[Palladino:2017aew]
[8-734]
Neutrino Production in Electromagnetic Cascades: An extra component of cosmogenic neutrino at ultrahigh energies, Kai Wang, Ruo-Yu Liu, Zhuo Li, Zi-Gao Dai, Phys.Rev. D95 (2017) 063010, arXiv:1702.07566.
[Wang:2017phf]
[8-735]
NU-SETI: A Proposal to Detect Extra-Terrestrial Signals Carried by Neutrinos, Ephraim Fischbach, John T. Gruenwald, arXiv:1702.03341, 2017.
[1702.03341]
[8-736]
Dark matter in the Sun: scattering off electrons vs nucleons, Raghuveer Garani, Sergio Palomares-Ruiz, JCAP 1705 (2017) 007, arXiv:1702.02768.
[Garani:2017jcj]
[8-737]
Hellenic Open University Reconstruction \& Simulation (HOURS) software package: User Guide \& short reference of Event Generation, Cherenkov photon production and Optical Module simulation, A. G. Tsirigotis, G. Bourlis, A. Leisos, S. E. Tzamarias, arXiv:1702.00945, 2017.
[Tsirigotis:2017dnq]
[8-738]
Can we observe neutrino flares in coincidence with explosive transients?, Claire Guepin, Kumiko Kotera, Astron.Astrophys. 603 (2017) A76, arXiv:1701.07038.
[Guepin:2017dfi]
[8-739]
Modeling the Spectral Energy Distribution of the radio galaxy IC310, N. Fraija, A. Marinelli, A. Galvan-Gamez, E. Aguilar-Ruiz, Astropart.Phys. 89 (2017) 14-22, arXiv:1701.06173.
[Fraija:2017dpo]
[8-740]
How bright can the brightest neutrino source be?, Shin'ichiro Ando, Michael R. Feyereisen, Mattia Fornasa, Phys.Rev. D95 (2017) 103003, arXiv:1701.02165.
[Ando:2017xcb]
[8-741]
On the non-detection of Glashow resonance in IceCube, Sarira Sahu, Bing Zhang, JHEAp 18 (2018) 1-4, arXiv:1612.09043.
[Sahu:2016qet]
[8-742]
Constraining Dark Matter Neutrino Interaction with High Energy Neutrinos, Carlos Arguelles, Ali Kheirandish, Aaron C. Vincent, PoS ICHEP2016 (2016) 512, arXiv:1612.08472.
[Arguelles:2016zvm]
[8-743]
Search for Neutrino Generated Air Shower Candidates with Energy More than 5$\cdot$10$^{18}$ eV and Zenith Angle $\theta$ $\geq$ 50$^\circ$, S. Knurenko, I. Petrov, A. Sabourov, Z. Petrov, arXiv:1612.07892, 2016.
[Knurenko:2016kft]
[8-744]
Detection prospects for high energy neutrino sources from the anisotropic matter distribution in the local universe, Philipp Mertsch, Mohamed Rameez, Irene Tamborra, JCAP 1703 (2017) 011, arXiv:1612.07311.
[Mertsch:2016hcd]
[8-745]
Dark Matter 'Collider' from Inelastic Boosted Dark Matter, Doojin Kim, Jong-Chul Park, Seodong Shin, Phys.Rev.Lett. 119 (2017) 161801, arXiv:1612.06867.
[Kim:2016zjx]
[8-746]
Gamma-ray Constraints on Decaying Dark Matter and Implications for IceCube, Timothy Cohen, Kohta Murase, Nicholas L. Rodd, Benjamin R. Safdi, Yotam Soreq, Phys.Rev.Lett. 119 (2017) 021102, arXiv:1612.05638.
[Cohen:2016uyg]
[8-747]
Using Galaxy Formation Simulations to optimise LIGO Follow-Up Observations, Elisa Antolini, Ilaria Caiazzo, Romeel Dave, Jeremy S. Heyl, Mon.Not.Roy.Astron.Soc. 466 (2017) 2212, arXiv:1612.04412.
[Antolini:2016die]
[8-748]
Star-Forming Galaxies Significantly Contribute to the Isotropic Gamma-Ray Background, Tim Linden, Phys.Rev. D96 (2017) 083001, arXiv:1612.03175.
[Linden:2016fdd]
[8-749]
High Energy Neutrinos from the Tidal Disruption of Stars, Cecilia Lunardini, Walter Winter, Phys.Rev. D95 (2017) 123001, arXiv:1612.03160.
[Lunardini:2016xwi]
[8-750]
Indirect Signals from Solar Dark Matter Annihilation to Long-lived Right-handed Neutrinos, Rouzbeh Allahverdi, Yu Gao, Bradley Knockel, Shashank Shalgar, Phys.Rev. D95 (2017) 075001, arXiv:1612.03110.
[Allahverdi:2016fvl]
[8-751]
Boosted Dark Matter and its implications for the features in IceCube HESE data, Atri Bhattacharya, Raj Gandhi, Aritra Gupta, Satyanarayan Mukhopadhyay, JCAP 1705 (2017) 002, arXiv:1612.02834.
[Bhattacharya:2016tma]
[8-752]
Constraints and prospects on GW and neutrino emissions using GW150914, Krijn D. de Vries, Gwenhael de Wasseige, Jean-Marie Frere, Matthias Vereecken, Phys.Rev. D96 (2017) 083003, arXiv:1612.02648.
[deVries:2016ljw]
[8-753]
Unblind the Dark Matter Blind Spots, Tao Han, Felix Kling, Shufang Su, Yongcheng Wu, JHEP 1702 (2017) 057, arXiv:1612.02387.
[Han:2016qtc]
[8-754]
Multi-Messenger Time Delays from Lensed Gravitational Waves, Tessa Baker, Mark Trodden, Phys.Rev. D95 (2017) 063512, arXiv:1612.02004.
[Baker:2016reh]
[8-755]
High-energy neutrino flashes from x-ray bright and dark tidal disruptions events, Nicholas Senno, Kohta Murase, Peter Meszaros, Astrophys.J. 838 (2017) 3, arXiv:1612.00918.
[Senno:2016bso]
[8-756]
Can tidal disruption events produce the IceCube neutrinos?, Lixin Dai, Ke Fang, Mon.Not.Roy.Astron.Soc. 469 (2017) 1354, arXiv:1612.00011.
[Dai:2016gtz]
[8-757]
Boosted Dark Matter at the Deep Underground Neutrino Experiment, Haider Alhazmi, Kyoungchul Kong, Gopolang Mohlabeng, Jong-Chul Park, JHEP 04 (2017) 158, arXiv:1611.09866.
[Alhazmi:2016qcs]
[8-758]
A tale of dark matter capture, sub-dominant WIMPs, and neutrino observatories, Sebastian Baum, Luca Visinelli, Katherine Freese, Patrick Stengel, Phys.Rev. D95 (2017) 043007, arXiv:1611.09665.
[Baum:2016oow]
[8-759]
Hadronically decaying heavy dark matter and high-energy neutrino limits, M.Yu. Kuznetsov, JETP Lett. 105 (2017) 561-567, arXiv:1611.08684.
[Kuznetsov:2016fjt]
[8-760]
Astrophysical Neutrino Production Diagnostics with the Glashow Resonance, Daniel Biehl, Anatoli Fedynitch, Andrea Palladino, Tom J. Weiler, Walter Winter, JCAP 1701 (2017) 033, arXiv:1611.07983.
[Biehl:2016psj]
[8-761]
Evidence for a break in the spectrum of astrophysical neutrinos, Luis A. Anchordoqui et al., Phys.Rev. D95 (2017) 083009, arXiv:1611.07905.
[Anchordoqui:2016ewn]
[8-762]
Ultra high energy cosmic rays from non-relativistic quasar outflows, Xiawei Wang, Abraham Loeb, Phys.Rev. D95 (2017) 063007, arXiv:1611.07616.
[Wang:2016oid]
[8-763]
Strong constraint on hadronic models of blazar activity from Fermi and IceCube stacking analysis, A. Neronov, D.V. Semikoz, K. Ptitsyna, Astron.Astrophys. 603 (2017) A135, arXiv:1611.06338.
[Neronov:2016ksj]
[8-764]
Connecting blazars with ultra high energy cosmic rays and astrophysical neutrinos, Elisa Resconi, Stefan Coenders, Paolo Padovani, Paolo Giommi, Lorenzo Caccianiga, Mon.Not.Roy.Astron.Soc. 468 (2017) 597, arXiv:1611.06022.
[Resconi:2016ggj]
[8-765]
Sterile Neutrinos and Flavor Ratios in IceCube, Vedran Brdar, Joachim Kopp, Xiao-Ping Wang, JCAP 1701 (2017) 026, arXiv:1611.04598.
[Brdar:2016thq]
[8-766]
Prospects of Establishing the Origin of Cosmic Neutrinos using Source Catalogs, I. Bartos, M. Ahrens, C. Finley, S. Marka, Phys.Rev. D96 (2017) 023003, arXiv:1611.03861.
[Bartos:2016wud]
[8-767]
Search for GeV gamma-ray flares associated with IceCube track-like neutrinos with Fermi Large Area Telescope, Fang-Kun Peng, Xiang-Yu Wang, Astrophys.J. 835 (2017) 269, arXiv:1611.03182.
[Peng:2016tfi]
[8-768]
A search for neutrinos from fast radio bursts with IceCube, Samuel Fahey, Ali Kheirandish, Justin Vandenbroucke, Donglian Xu, Astrophys.J. 845 (2017) 14, arXiv:1611.03062.
[Fahey:2016czk]
[8-769]
PeV Neutrino Events at IceCube from Single Top-Quark Production, Vernon Barge, Edward Basso, Yu Gao, Wai-Yee Keung, Phys.Rev. D95 (2017) 093002, arXiv:1611.00773.
[Barger:2016deu]
[8-770]
UHECR narrow clustering correlating IceCube through-going muons, Daniele Fargion, Pietro Oliva, Pier Giorgio De Sanctis Lucentini, Daniele D Armiento, Paolo Paggi, Nucl.Part.Phys.Proc. 291-293 (2017) 195-200, arXiv:1611.00079.
[Fargion:2016cep]
[8-771]
Isospin-violating dark matter in the light of recent data, Carlos E. Yaguna, Phys.Rev. D95 (2017) 055015, arXiv:1610.08683.
[Yaguna:2016bga]
[8-772]
High energy neutrinos produced in the accretion disks by neutrons from nuclei disintegrated in the AGN jets, W. Bednarek, Astrophys.J. 833 (2016) 279, arXiv:1610.08635.
[Bednarek:2016pbf]
[8-773]
On the IceCube spectral anomaly, Andrea Palladino, Maurizio Spurio, Francesco Vissani, JCAP 1612 (2016) 045, arXiv:1610.07015.
[Palladino:2016xsy]
[8-774]
R-modes and neutron star recycling scenario, Mikhail E. Gusakov, Andrey I. Chugunov, Elena M. Kantor, Mon.Not.Roy.Astron.Soc. 468 (2017) 291-304, arXiv:1610.06380.
[Chugunov:2016nsc]
[8-775]
On the direct correlation between gamma-rays and PeV neutrinos from blazars, Shan Gao, Martin Pohl, Walter Winter, Astrophys.J. 843 (2017) 109, arXiv:1610.05306.
[Gao:2016uld]
[8-776]
Capability of the HAWC gamma-ray observatory for the indirect detection of ultra-high energy neutrinos, Hermes Leon Vargas, Andres Sandoval, Ernesto Belmont, Ruben Alfaro, Adv.Astron. 2017 (2017) 1932413, arXiv:1610.04820.
[LeonVargas:2016aoj]
[8-777]
Dark Matter interpretation of low energy IceCube MESE excess, M. Chianese, G. Miele, S. Morisi, JCAP 1701 (2017) 007, arXiv:1610.04612.
[Chianese:2016kpu]
[8-778]
Boosted Dark Matter at Neutrino Experiments, Lina Necib, Jarrett Moon, Taritree Wongjirad, Janet M. Conrad, Phys.Rev. D95 (2017) 075018, arXiv:1610.03486.
[Necib:2016aez]
[8-779]
Diffuse flux of galactic neutrinos and gamma rays, J.M. Carceller, M. Masip, JCAP 1703 (2017) 013, arXiv:1610.02552.
[Carceller:2016upo]
[8-780]
Testing decay of astrophysical neutrinos with incomplete information, Mauricio Bustamante, John F. Beacom, Kohta Murase, Phys.Rev. D95 (2017) 063013, arXiv:1610.02096.
[Bustamante:2016ciw]
[8-781]
One-point fluctuation analysis of the high-energy neutrino sky, Michael R. Feyereisen, Irene Tamborra, Shin'ichiro Ando, JCAP 1703 (2017) 057, arXiv:1610.01607.
[Feyereisen:2016fzb]
[8-782]
Galactic outflow driven by the active nucleus and the origin of the gamma-ray emission in NGC 1068, A. Lamastra et al., Astron.Astrophys. 596 (2016) A68, arXiv:1609.09664.
[Lamastra:2016axo]
[8-783]
Identifying Ultrahigh-Energy Cosmic-Ray Accelerators with Future Ultrahigh-Energy Neutrino Detectors, Ke Fang, Kumiko Kotera, M. Coleman Miller, Kohta Murase, Foteini Oikonomou, JCAP 1612 (2016) 017, arXiv:1609.08027.
[Fang:2016hop]
[8-784]
Effects of Majorana Physics on the UHE $\nu_{\tau}$ Flux Traversing the Earth, Lucia Duarte, Ismael Romero, Gabriel Zapata, Oscar A. Sampayo, Eur.Phys.J. C77 (2017) 68, arXiv:1609.07661.
[Duarte:2016smd]
[8-785]
Neutrinos from Type Ia Supernovae: The Gravitationally Confined Detonation Scenario, Warren P. Wright et al., Phys.Rev. D95 (2017) 043006, arXiv:1609.07403.
[Wright:2016gar]
[8-786]
2WHSP: A catalog of HE and VHE gamma-ray blazars and blazar candidates, Yu-Ling Chang, Bruno Arsioli, Paolo Giommi, Paolo Padovani, Astron.Astrophys. 598 (2017) A17, arXiv:1609.05808.
[Chang:2016mqv]
[8-787]
Directional Searches at DUNE for Sub-GeV Monoenergetic Neutrinos Arising from Dark Matter Annihilation in the Sun, Carsten Rott, Seongjin In, Jason Kumar, David Yaylali, JCAP 1701 (2017) 016, arXiv:1609.04876.
[Rott:2016mzs]
[8-788]
WIMP capture by the Sun in the effective theory of dark matter self-interactions, Riccardo Catena, Axel Widmark, JCAP 1612 (2016) 016, arXiv:1609.04825.
[Catena:2016ckl]
[8-789]
Prospects for Detecting Galactic Sources of Cosmic Neutrinos with IceCube: An Update, Francis Halzen, Ali Kheirandish, Viviana Niro, Astropart.Phys. 86 (2017) 46-56, arXiv:1609.03072.
[Halzen:2016seh]
[8-790]
Search for Blazar Flux-Correlated TeV Neutrinos in IceCube 40-String Data, C. F. Turley et al., Astrophys.J. 833 (2016) 117, arXiv:1608.08983.
[AstrophysicalMultimessengerObservatoryNetwork:2016gxs]
[8-791]
Fluxes of diffuse gamma rays and neutrinos from cosmic-ray interactions with circumgalactic gas, Oleg Kalashev, Sergey Troitsky, Phys. Rev. D94 (2016) 063013, arXiv:1608.07421.
[Kalashev:2016euk]
[8-792]
A roadmap for searching cosmic rays correlated with the extraterrestrial neutrinos seen at IceCube, J.A. Carpio, A.M. Gago, Phys.Rev. D95 (2017) 123009, arXiv:1608.05099.
[Carpio:2016wec]
[8-793]
Spectra and rates of bremsstrahlung neutrino emission in stars, Gang Guo, Yong-Zhong Qian, Phys. Rev. D94 (2016) 043005, arXiv:1608.02852.
[Guo:2016vls]
[8-794]
Obscured flat spectrum radio AGN as sources of high-energy neutrinos, G. Maggi et al., Phys. Rev. D94 (2016) 103007, arXiv:1608.00028.
[Maggi:2016bbi]
[8-795]
New Limits on Thermally annihilating Dark Matter from Neutrino Telescopes, Jose Lopes, Ilidio Lopes, Astrophys.J. 827 (2016) 130, arXiv:1607.08672.
[Lopes:2016ezf]
[8-796]
The radiative efficiency of relativistic jet and wind: A case study of GRB 070110, Shuang Du, Hou-Jun Lu, Shu-Qing Zhong, En-Wei Liang, Mon.Not.Roy.Astron.Soc. 462 (2016) 2990-2994, arXiv:1607.08324.
[Du:2016ocx]
[8-797]
High-energy emitting BL Lacs and high-energy neutrinos - Prospects for the direct association with IceCube and KM3NeT, Chiara Righi, Fabrizio Tavecchio, Dafne Guetta, Astron.Astrophys. 598 (2017) A36, arXiv:1607.08061.
[Righi:2016kio]
[8-798]
Cumulative neutrino background from quasar-driven outflows, Xiawei Wang, Abraham Loeb, JCAP 1612 (2016) 012, arXiv:1607.06476.
[Wang:2016vbf]
[8-799]
A Central Compact Object in Kes 79: The hypercritical regime and neutrino expectation, Cristian G. Bernal, Nissim Fraija, Mon.Not.Roy.Astron.Soc. 462 (2016) 3646-3659, arXiv:1607.05652.
[Bernal:2016dsy]
[8-800]
Neutrino, $\gamma$-ray and cosmic ray fluxes from the core of the closest radio galaxies, Nissim Fraija, Antonio Marinelli, Astrophys.J. 830 (2016) 81, arXiv:1607.04633.
[Fraija:2016yeh]
[8-801]
A flat spectrum candidate for a track-type high energy neutrino emission event, the case of blazar PKS 0723-008, E. Kun, P. L. Biermann, L. A. Gergely, arXiv:1607.04041, 2016.
[Kun:2016bnk]
[8-802]
Star-forming galaxies as the origin of IceCube neutrinos: Reconciliation with Fermi-LAT gamma rays, Sovan Chakraborty, Ignacio Izaguirre, arXiv:1607.03361, 2016.
[Chakraborty:2016mvc]
[8-803]
Cosmic ray loading and PeV neutrino production in blazars, B. Theodore Zhang, Zhuo Li, JCAP 1703 (2017) 024, arXiv:1607.02211.
[Zhang:2016vbb]
[8-804]
Constraining High-Energy Cosmic Neutrino Sources: Implications and Prospects, Kohta Murase, Eli Waxman, Phys. Rev. D94 (2016) 103006, arXiv:1607.01601.
[Murase:2016gly]
[8-805]
Ultra High-Energy Cosmic Ray Production by Turbulence in Gamma-Ray Burst Jets and Cosmogenic Neutrinos, Katsuaki Asano, Peter Meszaros, Phys. Rev. D94 (2016) 023005, arXiv:1607.00732.
[Asano:2016scy]
[8-806]
High-energy neutrinos from sources in clusters of galaxies, Ke Fang, Angela V. Olinto, Astrophys.J. 828 (2016) 37, arXiv:1607.00380.
[Fang:2016amf]
[8-807]
Implications of gamma-ray observations on proton models of UHECR, A.D. Supanitsky, Phys. Rev. D94 (2016) 063002, arXiv:1607.00290.
[Supanitsky:2016gke]
[8-808]
Cascade photons as test of protons in UHECR, V. Berezinsky, A. Gazizov, O. Kalashev, Astropart.Phys. 84 (2016) 52-61, arXiv:1606.09293.
[Berezinsky:2016jys]
[8-809]
Can transition radiation explain the ANITA event 3985267?, Pavel Motloch, Jaime Alvarez-Muniz, Paolo Privitera, Enrique Zas, Phys.Rev. D95 (2017) 043004, arXiv:1606.07059.
[Motloch:2016yic]
[8-810]
Echo Technique to Distinguish Flavors of Astrophysical Neutrinos, Shirley Weishi Li, Mauricio Bustamante, John F. Beacom, Phys.Rev.Lett. 122 (2019) 151101, arXiv:1606.06290.
[Li:2016kra]
[8-811]
Expectations for high energy diffuse galactic neutrinos for different cosmic ray distributions, G. Pagliaroli, C. Evoli, F.L. Villante, JCAP 1611 (2016) 004, arXiv:1606.04489.
[Pagliaroli:2016lgg]
[8-812]
Angular correlation between IceCube high-energy starting events and starburst sources, Reetanjali Moharana, Soebur Razzaque, JCAP 1612 (2016) 021, arXiv:1606.04420.
[Moharana:2016mkl]
[8-813]
Deciphering Contributions to the Extragalactic Gamma-Ray Background from 2 GeV to 2 TeV, Mariangela Lisanti, Siddharth Mishra-Sharma, Lina Necib, Benjamin R. Safdi, Astrophys.J. 832 (2016) 117, arXiv:1606.04101.
[Lisanti:2016jub]
[8-814]
Sensitivity of the space-based CHerenkov from Astrophysical Neutrinos Telescope (CHANT), A. Neronov, D.V. Semikoz, L.A. Anchordoqui, J. Adams, A.V. Olinto, Phys. Rev. D95 (2017) 023004, arXiv:1606.03629.
[Neronov:2016zou]
[8-815]
Detecting Asymmetric Dark Matter in the Sun with Neutrinos, Kohta Murase, Ian M. Shoemaker, Phys. Rev. D94 (2016) 063512, arXiv:1606.03087.
[Murase:2016nwx]
[8-816]
Multi-messenger light curves from gamma-ray bursts in the internal shock model, Mauricio Bustamante, Kohta Murase, Walter Winter, Astrophys.J. 837 (2017) 33, arXiv:1606.02325.
[Bustamante:2016wpu]
[8-817]
Neutrino lighthouse powered by Sagittarius A* disk dynamo, Luis A. Anchordoqui, Phys. Rev. D94 (2016) 023010, arXiv:1606.01816.
[Anchordoqui:2016dcp]
[8-818]
Detection of tau neutrinos by Imaging Air Cherenkov Telescopes, Dariusz Gora, Elisa Bernardini, Astropart.Phys. 82 (2016) 77-85, arXiv:1606.01676.
[Gora:2016mmy]
[8-819]
Minimal prospects for radio detection of extensive air showers in the atmosphere of Jupiter, J. D. Bray, A. Nelles, Astrophys.J. 825 (2016) 129, arXiv:1606.01291.
[Bray:2016gbr]
[8-820]
Propagation of high-energy neutrinos in a background of ultralight scalar dark matter, Matias M. Reynoso, Oscar A. Sampayo, Astropart.Phys. 82 (2016) 10-20, arXiv:1605.09671.
[Reynoso:2016hjr]
[8-821]
Multi-PeV Signals from a New Astrophysical Neutrino Flux Beyond the Glashow Resonance, Matthew D. Kistler, Ranjan Laha, Phys.Rev.Lett. 120 (2018) 241105, arXiv:1605.08781.
[Kistler:2016ask]
[8-822]
A Case for Radio Galaxies as the Sources of IceCube's Astrophysical Neutrino Flux, Dan Hooper, JCAP 1609 (2016) 002, arXiv:1605.06504.
[Hooper:2016jls]
[8-823]
High Energy Neutrinos from Recent Blazar Flares, Francis Halzen, Ali Kheirandish, Astrophys.J. 831 (2016) 12, arXiv:1605.06119.
[Halzen:2016uaj]
[8-824]
Complex Analysis of Askaryan Radiation: A Fully Analytic Treatment including the LPM effect and Cascade Form Factor, Jordan C. Hanson, Amy L. Connolly, Astropart.Phys. 91 (2017) 75-89, arXiv:1605.04975.
[Hanson:2016bts]
[8-825]
Accessing low energy tau neutrinos through the decay $\tau\rightarrow \mu\nu_\tau\bar\nu_\mu$ in neutrino telescopes, I. Alikhanov, E. A. Paschos, Phys.Lett. B765 (2017) 272-275, arXiv:1605.04864.
[Alikhanov:2016qcj]
[8-826]
Analysis of the 4-year IceCube HESE data, Aaron C. Vincent, Sergio Palomares-Ruiz, Olga Mena, Phys. Rev. D94 (2016) 023009, arXiv:1605.01556.
[Vincent:2016nut]
[8-827]
On the Charm Contribution to the Atmospheric Neutrino Flux, Francis Halzen, Logan Wille, Phys. Rev. D94 (2016) 014014, arXiv:1605.01409.
[Halzen:2016thi]
[8-828]
Revised predictions of neutrino fluxes from Pulsar Wind Nebulae, Irene Di Palma, Dafne Guetta, Elena Amato, Astrophys.J. 836 (2017) 159, arXiv:1605.01205.
[Palma:2016umc]
[8-829]
Solving the missing GRB neutrinos and the GRB-SN puzzles, Daniele Fargion, Pietro Oliva, Nucl.Part.Phys.Proc. 297-299 (2018) 249-258, arXiv:1605.00177.
[Fargion:2016bsd]
[8-830]
Multi-TeV gamma-rays and neutrinos from the Galactic Center region, Silvia Celli, Andrea Palladino, Francesco Vissani, Eur.Phys.J.C 77 (2017) 66, arXiv:1604.08791.
[Celli:2016uon]
[8-831]
How Unequal Fluxes of High Energy Astrophysical Neutrinos and Antineutrinos can Fake New Physics, Hiroshi Nunokawa, Boris Panes, Renata Zukanovich Funchal, JCAP 10 (2016) 036, arXiv:1604.08595.
[Nunokawa:2016pop]
[8-832]
Radio Galaxies Dominate the High-Energy Diffuse Gamma-Ray Background, Dan Hooper, Tim Linden, Alejandro Lopez, JCAP 1608 (2016) 019, arXiv:1604.08505.
[Hooper:2016gjy]
[8-833]
The Galactic Center: A PeV Cosmic Ray Acceleration Factory, Yi-Qing Guo, Zhen Tian, Zhen Wang, Hai-Jin Li, Tian-Lu Chen, Astrophys.J. 836 (2017) 233, arXiv:1604.08301.
[Guo:2016zjl]
[8-834]
Revisiting the Contributions of Supernova and Hypernova Remnants to the Diffuse High-Energy Backgrounds: Constraints on Very-High-Redshift Injections, Di Xiao, Peter Meszaros, Kohta Murase, Zi-gao Dai, Astrophys.J. 826 (2016) 133, arXiv:1604.08131.
[Xiao:2016rvd]
[8-835]
Dark matter astrophysical uncertainties and the neutrino floor, Ciaran A. J. O'Hare, Phys. Rev. D94 (2016) 063527, arXiv:1604.03858.
[OHare:2016pjy]
[8-836]
The neutrino floor at ultra-low threshold, Louis E. Strigari, Phys. Rev. D93 (2016) 103534, arXiv:1604.00729.
[Strigari:2016ztv]
[8-837]
Sagittarius A* as an Origin of the Galactic TeV-PeV Cosmic Rays?, Yutaka Fujita, Kohta Murase, Shigeo S. Kimura, JCAP 1704 (2017) 037, arXiv:1604.00003.
[Fujita:2016yvk]
[8-838]
A New Method for Finding Point Sources in High-energy Neutrino Data, Ke Fang, M. Coleman Miller, Astrophys.J. 826 (2016) 102, arXiv:1603.09306.
[Fang:2016hyv]
[8-839]
Searching PeV neutrinos from photomeson interactions in magnetars, Rajat K Dey, Sandip Dam, Sabyasachi Ray, Europhys.Lett. 115 (2016) 69002, arXiv:1603.07833.
[Dey:2016psn]
[8-840]
Limits on the Neutrino Velocity, Lorentz Invariance, and the Equivalence Principle with TeV neutrinos from Gamma-Ray Bursts, Jun-Jie Wei, Xue-Feng Wu, He Gao, Peter Meszaros, JCAP 1608 (2016) 031, arXiv:1603.07568.
[Wei:2016ygk]
[8-841]
CRPropa 3 - a Public Astrophysical Simulation Framework for Propagating Extraterrestrial Ultra-High Energy Particles, Rafael Alves Batista et al., JCAP 1605 (2016) 038, arXiv:1603.07142.
[AlvesBatista:2016vpy]
[8-842]
Time-dependent neutrino emission from Mrk 421 during flares and predictions for IceCube, Maria Petropoulou, Stefan Coenders, Stavros Dimitrakoudis, Astropart.Phys. 80 (2016) 115-130, arXiv:1603.06954.
[Petropoulou:2016ujj]
[8-843]
Galactic and extragalactic contributions to the astrophysical muon neutrino signal, A. Neronov, D. V. Semikoz, Phys. Rev. D93 (2016) 123002, arXiv:1603.06733.
[Neronov:2016bnp]
[8-844]
Search for Sphalerons: IceCube vs. LHC, John Ellis, Kazuki Sakurai, Michael Spannowsky, JHEP 1605 (2016) 085, arXiv:1603.06573.
[Ellis:2016dgb]
[8-845]
A large light-mass component of cosmic rays at $10^{17} - 10^{17.5}$ eV from radio observations, S. Buitink et al., Nature 531 (2016) 70, arXiv:1603.01594.
[Buitink:2016nkf]
[8-846]
Astrophysical interpretation of small-scale neutrino angular correlation searches with IceCube, Martin Leuermann, Michael Schimp, Christopher Wiebusch, Astropart.Phys. 83 (2016) 21-29, arXiv:1603.01385.
[Leuermann:2016oxu]
[8-847]
Neutrino masses and ordering via gravitational waves, photon and neutrino detections, Kasper Langaeble, Aurora Meroni, Francesco Sannino, Phys. Rev. D94 (2016) 053013, arXiv:1603.00230.
[Langaeble:2016han]
[8-848]
High Energy Neutrinos from the Gravitational Wave event GW150914 possibly associated with a short Gamma-Ray Burst, Reetanjali Moharana, Soebur Razzaque, Nayantara Gupta, Peter Meszaros, Phys. Rev. D93 (2016) 123011, arXiv:1602.08436.
[Moharana:2016xkz]
[8-849]
Isotropic extragalactic flux from dark matter annihilations: lessons from interacting dark matter scenarios, Angeles Moline, Jascha A. Schewtschenko, Sergio Palomares-Ruiz, Celine Boehm, Carlton M. Baugh, JCAP 1608 (2016) 069, arXiv:1602.07282.
[Moline:2016fdo]
[8-850]
Testing the equivalence principle and Lorentz invariance with the PeV neutrino from blazar PKS B1424-418, Zi-Yi Wang, Ruo-Yu Liu, Xiang-Yu Wang, Phys. Rev. Lett. 116 (2016) 151101, arXiv:1602.06805.
[Wang:2016lne]
[8-851]
Testing black hole neutrino-dominated accretion discs for long-duration gamma-ray bursts, Cui-Ying Song, Tong Liu, Wei-Min Gu, Jian-Xiang Tian, Mon.Not.Roy.Astron.Soc. 458 (2016) 1921, arXiv:1602.06691.
[Song:2016zbr]
[8-852]
How far are the sources of IceCube neutrinos? Constraints from the diffuse TeV gamma-ray background, Xiao-Chuan Chang, Ruo-Yu Liu, Xiang-Yu Wang, Astrophys.J. 825 (2016) 148, arXiv:1602.06625.
[Chang:2016ljk]
[8-853]
Gamma-ray Limits on Neutrino Lines, Farinaldo S. Queiroz, Carlos E. Yaguna, Christoph Weniger, JCAP 1605 (2016) 050, arXiv:1602.05966.
[Queiroz:2016zwd]
[8-854]
Tau Now, Daniele Fargion, Pietro Oliva, Nucl.Part.Phys.Proc. 279-281 (2016) 198-205, arXiv:1602.03497.
[Fargion:2016tne]
[8-855]
Coincidence of a high-fluence blazar outburst with a PeV-energy neutrino event, M. Kadler et al., Nature Phys. 12 (2016) 807-814, arXiv:1602.02012.
[Kadler:2016ygj]
[8-856]
Extragalactic plus Galactic model for IceCube neutrino events, Andrea Palladino, Francesco Vissani, Astrophys.J. 826 (2016) 185, arXiv:1601.06678.
[Palladino:2016zoe]
[8-857]
Limits to dark matter annihilation cross-section from a combined analysis of MAGIC and Fermi-LAT observations of dwarf satellite galaxies, M. L. Ahnen et al. (Fermi-LAT, MAGIC), JCAP 1602 (2016) 039, arXiv:1601.06590.
[MAGIC:2016xys]
[8-858]
Extreme blazars as counterparts of IceCube astrophysical neutrinos, P. Padovani, E. Resconi, P. Giommi, B. Arsioli, Y. L. Chang, Mon. Not. Roy. Astron. Soc. 457 (2016) 3582, arXiv:1601.06550.
[Padovani:2016wwn]
[8-859]
Neutrino propagation in the galactic dark matter halo, P. F. de Salas, R. A. Lineros, M. Tortola, Phys. Rev. D94 (2016) 123001, arXiv:1601.05798.
[deSalas:2016svi]
[8-860]
On the anomalous mass defect of strange stars in the Field Correlator Method, F. I. M. Pereira, Nucl. Phys. A953 (2016) 65-79, arXiv:1601.04284.
[Pereira:2016oma]
[8-861]
Prompt Neutrino Flux from Forward Charm Production, Francis Halzen, Logan Wille, arXiv:1601.03044, 2016.
[Halzen:2016pwl]
[8-862]
Low energy IceCube data and a possible Dark Matter related excess, Marco Chianese, Gennaro Miele, Stefano Morisi, Edoardo Vitagliano, Phys.Lett. B757 (2016) 251-256, arXiv:1601.02934.
[Chianese:2016opp]
[8-863]
Ultrahigh-Energy Cosmic Rays from the 'En Caul' Birth of Magnetars, Anthony L. Piro, Juna A. Kollmeier, Astrophys.J. 826 (2016) 97, arXiv:1601.02625.
[Piro:2016jaq]
[8-864]
Why not a double bang tau in Ice km detector yet?, D.Fargion, P.Oliva, G. Ucci, PoS FRAPWS2014 (2016) 028, arXiv:1512.08794.
[Fargion:2015lmv]
[8-865]
Tidal disruption jets of supermassive black holes as hidden sources of cosmic rays: explaining the IceCube TeV-PeV neutrinos, Xiang-Yu Wang, Ruo-Yu Liu, Phys. Rev. D93 (2016) 083005, arXiv:1512.08596.
[Wang:2015mmh]
[8-866]
Choked Jets and Low-Luminosity Gamma-Ray Bursts as Hidden Neutrino Sources, Nicholas Senno, Kohta Murase, Peter Meszaros, Phys. Rev. D93 (2016) 083003, arXiv:1512.08513.
[Senno:2015tsn]
[8-867]
Cool WISPs for stellar cooling excesses, Maurizio Giannotti, Igor Irastorza, Javier Redondo, Andreas Ringwald, JCAP 1605 (2016) 057, arXiv:1512.08108.
[Giannotti:2015kwo]
[8-868]
Simulation of cascades caused by UHE and EHE neutrinos in dense media, Igor Zheleznykh, Leonid Dedenko, Grigorii Dedenko, Anna Mironovich, arXiv:1512.07300, 2015.
[Zheleznykh:2015uvm]
[8-869]
Probing BSM Neutrino Physics with Flavor and Spectral Distortions: Prospects for Future High-Energy Neutrino Telescopes, Ian M. Shoemaker, Kohta Murase, Phys. Rev. D93 (2016) 085004, arXiv:1512.07228.
[Shoemaker:2015qul]
[8-870]
Detectable MeV neutrinos from black hole neutrino-dominated accretion flows, Tong Liu, Bing Zhang, Ren-Yi Ma, Li Xue, Phys. Rev. D93 (2016) 123004, arXiv:1512.07203.
[Liu:2015prx]
[8-871]
Cosmogenic Neutrinos Challenge the Cosmic Ray Proton Dip Model, Jonas Heinze, Denise Boncioli, Mauricio Bustamante, Walter Winter, Astrophys.J. 825 (2016) 122, arXiv:1512.05988.
[Heinze:2015hhp]
[8-872]
Pinning down inelastic dark matter in the Sun and in direct detection, Mattias Blennow, Stefan Clementz, Juan Herrero-Garcia, JCAP 1604 (2016) 004, arXiv:1512.03317.
[Blennow:2015hzp]
[8-873]
Novel Features of Gamma Ray from Dark Matter, Yong Tang, Int.J.Mod.Phys. A32 (2017) 1745001, arXiv:1512.03159.
[Tang:2015meg]
[8-874]
Photodisintegrated gamma rays and neutrinos from heavy nuclei in the gamma-ray burst jet of GRB 130427A, Jagdish C. Joshi, Soebur Razzaque, Reetanjali Moharana, Mon.Not.Roy.Astron.Soc. 458 (2016) L79, arXiv:1512.02434.
[Joshi:2015gfn]
[8-875]
Inspecting the supernova gamma-ray burst connection with high-energy neutrinos, Irene Tamborra, Shin'ichiro Ando, Phys. Rev. D93 (2016) 053010, arXiv:1512.01559.
[Tamborra:2015fzv]
[8-876]
Sensitivity of the JEM-EUSO telescope to gravity effects in neutrino-induced air showers, Stefan Mladenov, Galina Vankova, Roumen Tsenov, Mario Bertaina, Andrea Santangelo (JEM-EUSO), arXiv:1511.07196, 2015.
[Mladenov:2015oix]
[8-877]
Ultra High Energy Neutrinos from Gamma-Ray Burst Afterglows Using the Swift-UVOT Data, Guy Nir, Dafne Guetta, Hagar Landsman, Ehud Behar, Astrophys. J. 817 (2016) 142, arXiv:1511.07010.
[Nir:2015teo]
[8-878]
The prompt atmospheric neutrino flux in the light of LHCb, Rhorry Gauld, Juan Rojo, Luca Rottoli, Subir Sarkar, Jim Talbert, JHEP 02 (2016) 130, arXiv:1511.06346.
[Gauld:2015kvh]
[8-879]
On TeV Gamma Rays and the Search for Galactic Neutrinos, Matthew D. Kistler, arXiv:1511.05199, 2015.
[Kistler:2015oae]
[8-880]
Detecting electron neutrinos from solar dark matter annihilation by JUNO, Wan-Lei Guo, JCAP 1601 (2016) 039, arXiv:1511.04888.
[Guo:2015hsy]
[8-881]
A method to constrain mass and spin of GRB black hole central engine within the NDAF $\nu\bar\nu$-annihilation model and application to GRB 101219B, Tong Liu, Li Xue, Xiao-Hong Zhao, Fu-Wen Zhang, Bing Zhang, Astrophys.J. 821 (2016) 132, arXiv:1511.02800.
[Liu:2015ult]
[8-882]
Search for Galactic disk and halo components in the arrival directions of high-energy astrophysical neutrinos, Sergey Troitsky, JETP Lett. 102 (2015) 785, arXiv:1511.01708.
[Troitsky:2015cnk]
[8-883]
Problems and Prospects from a Flood of Extragalactic TeV Neutrinos in IceCube, Matthew D. Kistler, arXiv:1511.01530, 2015.
[Kistler:2015ywn]
[8-884]
A Tale of Two Pulsars and the Origin of TeV Gamma Rays from the Galactic Center, Matthew D. Kistler, arXiv:1511.01159, 2015.
[Kistler:2015toa]
[8-885]
The origin of IceCube's neutrinos: Cosmic ray accelerators embedded in star forming calorimeters, E. Waxman, arXiv:1511.00815, 2015.
[Waxman:2015ues]
[8-886]
Gamma Rays, Electrons, Hard X-Rays, and the Central Parsec of the Milky Way, Matthew D. Kistler, arXiv:1511.00723, 2015.
[Kistler:2015yrf]
[8-887]
Evidence against star-forming galaxies as the dominant source of IceCube neutrinos, Keith Bechtol, Markus Ahlers, Mattia Di Mauro, Marco Ajello, Justin Vandenbroucke, Astrophys.J. 836 (2017) 47, arXiv:1511.00688.
[Bechtol:2015uqb]
[8-888]
Type IIn supernovae as sources of high energy astrophysical neutrinos, V.N. Zirakashvili, V.S. Ptuskin, Astropart. Phys. (2016), arXiv:1510.08387.
[Zirakashvili:2015mua]
[8-889]
Novae as Tevatrons: Prospects for CTA and IceCube, Brian D. Metzger et al., Mon. Not. Roy. Astron. Soc. 457 (2016) 1786, arXiv:1510.07639.
[Metzger:2015zka]
[8-890]
The black hole spin influence on accretion disk neutrino detection, O. L. Caballero, T. Zielinski, G. C. McLaughlin, R. Surman, Phys. Rev. D93 (2016) 123015, arXiv:1510.06011.
[Caballero:2015cpa]
[8-891]
Double pulses and cascades above 2 PeV in IceCube, Andrea Palladino, Giulia Pagliaroli, Francesco L. Villante, Francesco Vissani, Eur. Phys. J. C76 (2016) 52, arXiv:1510.05921.
[Palladino:2015uoa]
[8-892]
Investigating the effects of the QCD dynamics in the neutrino absorption by the Earth's interior at ultra high energies, V. P. Goncalves, D. R. Gratieri, Phys. Rev. D92 (2015) 113007, arXiv:1510.03186.
[Goncalves:2015fua]
[8-893]
Implication of the non-detection of neutrinos above 2PeV, Lee Yacobi, Dafne Guetta, Ehud Behar, Astrophys.J. 823 (2016) 89, arXiv:1510.01244.
[Yacobi:2015kga]
[8-894]
A new version of the event generator Sibyll, Felix Riehn, Ralph Engel, Anatoli Fedynitch, Thomas K. Gaisser, Todor Stanev, PoS ICRC2015 (2016) 558, arXiv:1510.00568. Contribution to ICRC 2015.
[Riehn:2015oba]
[8-895]
Dark Matter Searches for Monoenergetic Neutrinos Arising from Stopped Meson Decay in the Sun, Carsten Rott, Seongjin In, Jason Kumar, David Yaylali, JCAP 1511 (2015) 039, arXiv:1510.00170.
[Rott:2015nma]
[8-896]
Blazar origin of some IceCube events, Luis Salvador Miranda, Alberto Rosales de Leon, Sarira Sahu, Eur.Phys.J. C76 (2016) 402, arXiv:1510.00048.
[Miranda:2015ema]
[8-897]
Detection of Earth-skimming UHE tau neutrino with the JEM-EUSO detector, Galina Vankova et al., arXiv:1509.05995, 2015.
[Vankova:2015zha]
[8-898]
Evidence for the Galactic contribution to the IceCube astrophysical neutrino flux, A. Neronov, D. V. Semikoz, Astropart. Phys. 75 (2016) 60-63, arXiv:1509.03522.
[Neronov:2015osa]
[8-899]
Astrophysical interpretation of small-scale neutrino angular correlation searches with IceCube, Michael Schimp, Martin Leuermann, Christopher Wiebusch, PoS ICRC2015 (2016) 1085, arXiv:1509.02980. 8 pages, 4 figures, ICRC 2015 Proceedings.
[Schimp:2015xha]
[8-900]
Tomographic Constraints on High-Energy Neutrinos of Hadronuclear Origin, Shin'ichiro Ando, Irene Tamborra, Fabio Zandanel, Phys. Rev. Lett. 115 (2015) 221101, arXiv:1509.02444.
[Ando:2015bva]
[8-901]
Transition radiation at radio frequencies from ultra-high energy neutrino-induced showers, Pavel Motloch, Jaime Alvarez-Muniz, Paolo Privitera, Enrique Zas, Phys. Rev. D93 (2016) 043010, arXiv:1509.01584.
[Motloch:2015wca]
[8-902]
Spectral Decline of PeV Neutrinos from Starburst Galaxies, I. Bartos, S. Marka, arXiv:1509.00983, 2015.
[Bartos:2015xpa]
[8-903]
Hidden Cosmic-Ray Accelerators as an Origin of TeV-PeV Cosmic Neutrinos, Kohta Murase, Dafne Guetta, Markus Ahlers, Phys. Rev. Lett. 116 (2016) 071101, arXiv:1509.00805.
[Murase:2015xka]
[8-904]
MeV scale leptonic force for cosmic neutrino spectrum and muon anomalous magnetic moment, Takeshi Araki, Fumihiro Kaneko, Toshihiko Ota, Joe Sato, Takashi Shimomura, Phys. Rev. D93 (2016) 013014, arXiv:1508.07471.
[Araki:2015mya]
[8-905]
Dark matter and IceCube neutrinos, Riccardo Biondi, Nuovo Cim. C038 (2015) 31, arXiv:1508.06089.
[Biondi:2015yia]
[8-906]
Supernova Neutrino Background Bound on the SFR History, Jafar Khodagholizadeh, Sepehr Arbabi Bidgoli, arXiv:1508.04303, 2015.
[Khodagholizadeh:2015yta]
[8-907]
Could a multi-PeV neutrino event have as origin the internal shocks inside the GRB progenitor star?, Nissim Fraija, JHEAp 9-10 (2015) 25-34, arXiv:1508.03009.
[Fraija:2015nsa]
[8-908]
Neutrino properties from ultra-high energy cosmic neutrinos, Yanqi Huang, Bo-Qiang Ma, The Universe 3 (2015) 15-21, arXiv:1508.01698.
[Huang:2015flc]
[8-909]
On the angular distribution of IceCube high-energy events, R. de la Fuente Marcos, C. de la Fuente Marcos, Astron. Nachr. 336 (2015) 657-664, arXiv:1508.01493.
[delaFuenteMarcos:2015uhd]
[8-910]
Limits on dark matter proton scattering from neutrino telescopes using micrOMEGAs, G. Belanger, J. Da Silva, T. Perrillat-Bottonet, A. Pukhov, JCAP 1512 (2015) 036, arXiv:1507.07987.
[Belanger:2015hra]
[8-911]
Unified model for cosmic rays above $10^{17}$ eV and the diffuse gamma-ray and neutrino backgrounds, G. Giacinti, M. Kachelriess, O. Kalashev, A. Neronov. D.V. Semikoz, Phys. Rev. D92 (2015) 083016, arXiv:1507.07534.
[Giacinti:2015pya]
[8-912]
Nucleosynthesis in neutrino-driven winds in hypernovae, Sho Fujibayashi, Takashi Yoshida, Yuichiro Sekiguchi, Astrophys. J. 810 (2015) 115, arXiv:1507.05945.
[Fujibayashi:2015rma]
[8-913]
Do high energy astrophysical neutrinos trace star formation?, Kimberly Emig, Cecilia Lunardini, Rogier Windhorst, JCAP 1512 (2015) 029, arXiv:1507.05711.
[Emig:2015dma]
[8-914]
Constraining Neutrino Cooling using the Hot White Dwarf Luminosity Function in the Globular Cluster 47 Tucanae, Bradley Hansen et al., Astrophys. J. 809 (2015) 141, arXiv:1507.05665.
[Hansen:2015lqa]
[8-915]
Ultra-hard spectra of PeV neutrinos from supernovae in compact star clusters, A.M. Bykov, D.C. Ellison, P.E. Gladilin, S.M. Osipov, Mon. Not. Roy. Astron. Soc. 453 (2015) 113, arXiv:1507.04018.
[Bykov:2015nta]
[8-916]
Lorentz Invariance Violation and IceCube Neutrino Events, Gaurav Tomar, Subhendra Mohanty, Sandip Pakvasa, JHEP 11 (2015) 022, arXiv:1507.03193.
[Tomar:2015fha]
[8-917]
Impact of Galactic magnetic field modelling on searches of point sources via UHECR-Neutrino correlations, J.A. Carpio, A.M. Gago, Phys. Rev. D93 (2016) 023004, arXiv:1507.02781.
[Carpio:2015ewa]
[8-918]
MeV-Scale Dark Matter Deep Underground, Eder Izaguirre, Gordan Krnjaic, Maxim Pospelov, Phys. Rev. D92 (2015) 095014, arXiv:1507.02681.
[Izaguirre:2015pva]
[8-919]
Lepton fluxes from atmospheric charm revisited, M.V. Garzelli, S. Moch, G. Sigl, JHEP 10 (2015) 115, arXiv:1507.01570.
[Garzelli:2015psa]
[8-920]
The Abundance of Fluorine in Normal G and K Stars of the Galactic Thin Disk, Catherine A. Pilachowski, Cameron Pace, arXiv:1507.01550, 2015.
[1507.01550]
[8-921]
A simplified view of blazars: the neutrino background, P. Padovani, M. Petropoulou, P. Giommi, E. Resconi, Mon. Not. Roy. Astron. Soc. 452 (2015) 1877-1887, arXiv:1506.09135.
[Padovani:2015mba]
[8-922]
IceCube neutrinos, decaying dark matter, and the Hubble constant, Luis A. Anchordoqui et al., Phys. Rev. D92 (2015) 061301, arXiv:1506.08788.
[Anchordoqui:2015lqa]
[8-923]
PeV Neutrinos and a 3.5 keV X-Ray Line from a PeV Scale Supersymmetric Neutrino Sector, Samuel B. Roland, Bibhushan Shakya, James D. Wells, Phys. Rev. D92 (2015) 095018, arXiv:1506.08195.
[Roland:2015yoa]
[8-924]
Charm production in the forward region: constraints on the small-x gluon and backgrounds for neutrino astronomy, Rhorry Gauld, Juan Rojo, Luca Rottoli, Jim Talbert, JHEP 11 (2015) 009, arXiv:1506.08025.
[Gauld:2015yia]
[8-925]
CLUMPY: Jeans analysis, $\gamma$-ray and neutrino fluxes from dark matter (sub-)structures, Vincent Bonnivard et al., Comput. Phys. Commun. 200 (2016) 336-349, arXiv:1506.07628.
[Bonnivard:2015pia]
[8-926]
High-energy neutrino fluxes from AGN populations inferred from X-ray surveys, Idunn B. Jacobsen, Kinwah Wu, Alvina Y. L. On, Curtis J. Saxton, Mon.Not.Roy.Astron.Soc. 451 (2015) 3649, arXiv:1506.05916.
[Jacobsen:2015mga]
[8-927]
The hadronic origin of multi-TeV gamma rays from low-luminosity active galactic nuclei: implications of past activities of the Galactic center, Yutaka Fujita, Shigeo S. Kimura, Kohta Murase, Phys. Rev. D92 (2015) 023001, arXiv:1506.05461.
[Fujita:2015xva]
[8-928]
Cosmic Rays, Gamma-Rays, $\text{\&}$ Neutrinos in the Starburst Nuclei of Arp 220, Tova M. Yoast-Hull, John S. Gallagher III, Ellen G. Zweibel, Mon. Not. Roy. Astron. Soc. 453 (2015) 222, arXiv:1506.05133.
[Yoast-Hull:2015iea]
[8-929]
New Search for Monochromatic Neutrinos from Dark Matter Decay, Chaimae El Aisati, Michael Gustafsson, Thomas Hambye, Phys. Rev. D92 (2015) 123515, arXiv:1506.02657.
[ElAisati:2015ugc]
[8-930]
Theoretically palatable flavor combinations of astrophysical neutrinos, Mauricio Bustamante, John F. Beacom, Walter Winter, Phys. Rev. Lett. 115 (2015) 161302, arXiv:1506.02645.
[Bustamante:2015waa]
[8-931]
Testing neutrino decay scenarios with IceCube data, G. Pagliaroli, A. Palladino, F. Vissani, F.L. Villante, Phys. Rev. D92 (2015) 113008, arXiv:1506.02624.
[Pagliaroli:2015rca]
[8-932]
Pre-supernova neutrino emissions from ONe cores in the progenitors of core-collapse supernovae: are they distinguishable from those of Fe cores?, Chinami Kato, Milad Delfan Azari, Shoichi Yamada, Koh Takahashi, Hideyuki Umeda et al., Astrophys. J. 808 (2015) 168, arXiv:1506.02358.
[Kato:2015faa]
[8-933]
New Physics in Astrophysical Neutrino Flavor, Carlos A. Arguelles, Teppei Katori, Jordi Salvado, Phys. Rev. Lett. 115 (2015) 161303, arXiv:1506.02043.
[Arguelles:2015dca]
[8-934]
KamLAND Sensitivity to Neutrinos from Pre-Supernova Stars, K. Asakura et al., Astrophys. J. 818 (2016) 91, arXiv:1506.01175.
[KamLAND:2015dbn]
[8-935]
Very high energy neutrino emission from the core of low luminosity AGNs triggered by magnetic reconnection acceleration, Behrouz Khiali, Elisabete M. de Gouveia Dal Pino, Mon. Not. Roy. Astron. Soc. 455 (2016) 838, arXiv:1506.01063.
[Khiali:2015tfa]
[8-936]
The neutrino-nucleon cross section at UHE and its astrophysical implications, Javier L. Albacete, Jose I. Illana, Alba Soto-Ontoso, Phys. Rev. D92 (2015) 014027, arXiv:1505.06583.
[Albacete:2015zra]
[8-937]
Gamma-ray bounds from EAS detectors and heavy decaying dark matter constraints, Arman Esmaili, Pasquale Dario Serpico, JCAP 1510 (2015) 014, arXiv:1505.06486.
[Esmaili:2015xpa]
[8-938]
Common Solution Of Three Cosmic Puzzles, Shlomo Dado, Arnon Dar, JHEAp 9-10 (2015) 9-15, arXiv:1505.04988.
[Dado:2015eda]
[8-939]
Can FSRQs produce the IceCube detected diffuse neutrino emission?, Bin Wang, Zhuo Li, Sci. China Phys. Mech. Astron. 59 (2016) 619502, arXiv:1505.04418.
[Wang:2015woa]
[8-940]
Cosmogenic neutrinos and ultra-high energy cosmic ray models, R. Aloisio et al., JCAP 1510 (2015) 006, arXiv:1505.04020.
[Aloisio:2015ega]
[8-941]
Complementary Test of the Dark Matter Self-Interaction by Direct and Indirect Detections, Chian-Shu Chen, Guey-Lin Lin, Yen-Hsun Lin, JCAP 1601 (2016) 013, arXiv:1505.03781.
[Chen:2015bwa]
[8-942]
Galactic TeV-PeV Neutrinos, Markus Ahlers, Yang Bai, Vernon Barger, Ran Lu, Phys. Rev. D93 (2016) 013009, arXiv:1505.03156.
[Ahlers:2015moa]
[8-943]
Origin of the ankle in the ultra-high energy cosmic ray spectrum and of the extragalactic protons below it, Michael Unger, Glennys R. Farrar, Luis A. Anchordoqui, Phys. Rev. D92 (2015) 123001, arXiv:1505.02153.
[Unger:2015laa]
[8-944]
Spectral and Spatial Distortions of PeV Neutrinos from Scattering with Dark Matter, Jonathan H. Davis, Joseph Silk, arXiv:1505.01843, 2015.
[Davis:2015rza]
[8-945]
SimProp v2r2: a Monte Carlo simulation to compute cosmogenic neutrino fluxes, R. Aloisio et al., arXiv:1505.01347, 2015.
[Aloisio:2015sga]
[8-946]
Hypercritical accretion phase and neutrino expectation in the evolution of Cassiopeia A, Nissim Fraija, C. Giovanny Bernal, Mon.Not.Roy.Astron.Soc. 451 (2015) 4974, arXiv:1505.01062.
[Fraija:2015lya]
[8-947]
$\gamma$-ray observations of extraterrestrial neutrino track event positions, Anthony M. Brown, Jenni Adams, Paula M. Chadwick, Mon.Not.Roy.Astron.Soc. 451 (2015) 4842, arXiv:1505.00935.
[Brown:2015zxa]
[8-948]
A multi-messenger study of the Fermi Bubbles: very high energy gamma rays and neutrinos, Cecilia Lunardini, Soebur Razzaque, Lili Yang, Phys. Rev. D92 (2015) 021301, arXiv:1504.07033.
[Lunardini:2015laa]
[8-949]
Generalised form factor dark matter in the Sun, Aaron C. Vincent, Aldo Serenelli, Pat Scott, JCAP 1508 (2015) 040, arXiv:1504.04378.
[Vincent:2015gqa]
[8-950]
Jet Luminosity of Gamma-ray Bursts: Blandford-Znajek Mechanism v.s. Neutrino Annihilation Process, Tong Liu, Shu-Jin Hou, Li Xue, Wei-Min Gu, Astrophys.J.Suppl. 218 (2015) 12, arXiv:1504.04067.
[Liu:2015lfa]
[8-951]
TeV-PeV Neutrino Oscillation of Low-luminosity Gamma-ray Bursts, D. Xiao, Z. G. Dai, Astrophys.J. 805 (2015) 137, arXiv:1504.01603.
[Xiao:2015gea]
[8-952]
Coherent Propagation of PeV Neutrinos and the Dip in the Neutrino Spectrum at IceCube, Ayuki Kamada, Hai-Bo Yu, Phys. Rev. D92 (2015) 113004, arXiv:1504.00711.
[Kamada:2015era]
[8-953]
The gamma-ray and neutrino sky: a consistent picture of Fermi-LAT, H.E.S.S., Milagro, and IceCube results, Daniele Gaggero, Dario Grasso, Antonio Marinelli, Alfredo Urbano, Mauro Valli, Astrophys. J. 815 (2015) L25, arXiv:1504.00227.
[Gaggero:2015xza]
[8-954]
Diffuse emission of high-energy neutrinos from gamma-ray burst fireballs, Irene Tamborra, Shin'ichiro Ando, JCAP 1509 (2015) 036, arXiv:1504.00107.
[Tamborra:2015qza]
[8-955]
Hidden Glashow resonance in neutrino-nucleus collisions, I. Alikhanov, Phys.Lett. B756 (2016) 247-253, arXiv:1503.08817.
[Alikhanov:2015kla]
[8-956]
Cosmic absorption of ultra high energy particles, R. Ruffini, G.V. Vereshchagin, S.-S. Xue, Astrophys. Space Sci. 361 (2016) 82, arXiv:1503.07749.
[Ruffini:2015oha]
[8-957]
Neutrinos from gamma-ray bursts: propagation of cosmic rays in their host galaxies, Zi-Yi Wang, Xiang-Yu Wang, Jun-Feng Wang, Astrophys.J. 803 (2015) L5, arXiv:1503.04932.
[Wang:2015xpa]
[8-958]
Spallation Backgrounds in Super-Kamiokande Are Made in Muon-Induced Showers, Shirley Weishi Li, John F. Beacom, Phys. Rev. D91 (2015) 105005, arXiv:1503.04823.
[Li:2015kpa]
[8-959]
Testing the Dark Matter Scenario for PeV Neutrinos Observed in IceCube, Kohta Murase, Ranjan Laha, Shin'ichiro Ando, Markus Ahlers, Phys. Rev. Lett. 115 (2015) 071301, arXiv:1503.04663.
[Murase:2015gea]
[8-960]
Constraint on the Flux of Cosmic Ray Heavy Nuclei from IceCube Results, Nayantara Gupta, Astropart. Phys. 74 (2016) 1-5, arXiv:1503.04328.
[Gupta:2015oda]
[8-961]
Coherent Transition Radiation in Askaryan radio detectors, Krijn D. de Vries et al., Astropart. Phys. 74 (2016) 96-104, arXiv:1503.02808.
[deVries:2015oda]
[8-962]
Boosted Dark Matter in IceCube and at the Galactic Center, Joachim Kopp, Jia Liu, Xiao-Ping Wang, JHEP 1504 (2015) 105, arXiv:1503.02669.
[Kopp:2015bfa]
[8-963]
New physics with ultra-high-energy neutrinos, D. Marfatia, D. W. McKay, T. J. Weiler, Phys. Lett. B748 (2015) 113-116, arXiv:1502.06337.
[Marfatia:2015hva]
[8-964]
A halo-independent lower bound on the dark matter capture rate in the Sun from a direct detection signal, Mattias Blennow, Juan Herrero-Garcia, Thomas Schwetz, JCAP 1505 (2015) 036, arXiv:1502.03342.
[Blennow:2015oea]
[8-965]
Which is the flavor of cosmic neutrinos seen by IceCube?, A. Palladino, G. Pagliaroli, F.L. Villante, F. Vissani, Phys. Rev. Lett. 114 (2015) 171101, arXiv:1502.02923.
[Palladino:2015zua]
[8-966]
Spectral analysis of the high-energy IceCube neutrinos, Sergio Palomares-Ruiz, Aaron C. Vincent, Olga Mena, Phys. Rev. D91 (2015) 103008, arXiv:1502.02649.
[Palomares-Ruiz:2015mka]
[8-967]
Firewall Phenomenology with Astrophysical Neutrinos, Niayesh Afshordi, Yasaman K. Yazdi, Class.Quant.Grav. 33 (2016) 235017, arXiv:1502.01023.
[Afshordi:2015foa]
[8-968]
Photohadronic origin of $\gamma$-ray BL Lac emission: implications for IceCube neutrinos, Maria Petropoulou, Stavros Dimitrakoudis, Paolo Padovani, Apostolos Mastichiadis, Elisa Resconi, Mon.Not.Roy.Astron.Soc. 448 (2015) 2412, arXiv:1501.07115.
[Petropoulou:2015upa]
[8-969]
Angular correlation of cosmic neutrinos with ultrahigh-energy cosmic rays and implications for their sources, Reetanjali Moharana, Soebur Razzaque, JCAP 1508 (2015) 014, arXiv:1501.05158.
[Moharana:2015nxa]
[8-970]
Extragalactic star-forming galaxies with hypernovae and supernovae as high-energy neutrino and gamma-ray sources: the case of the 10 TeV neutrino data, Nicholas Senno, Peter Meszaros, Kohta Murase, Philipp Baerwald, Martin J. Rees, Astrophys.J. 806 (2015) 24, arXiv:1501.04934.
[Senno:2015tra]
[8-971]
Could the Wein fireball be associated to the 'orphan' TeV flares ?, Nissim Fraija, Astropart.Phys. 71 (2015) 1-20, arXiv:1501.04165.
[Fraija:2015xha]
[8-972]
Diffuse neutrinos from extragalactic supernova remnants: Dominating the 100 TeV IceCube flux, Sovan Chakraborty, Ignacio Izaguirre, Phys.Lett. B745 (2015) 35-39, arXiv:1501.02615.
[Chakraborty:2015sta]
[8-973]
On the Contribution of 'Fresh' Cosmic Rays to the Excesses of Secondary Particles, Y. Q. Guo, H. B. Hu, Z. Tian, Chin.Phys. C40 (2016) 115001, arXiv:1412.8590.
[Guo:2014laa]
[8-974]
Star-forming galaxies as the origin of the IceCube PeV neutrinos, Xiao-Chuan Chang, Ruo-Yu Liu, Xiang-Yu Wang, Astrophys.J. 805 (2015) 95, arXiv:1412.8361.
[Chang:2014sua]
[8-975]
A flavored model of astrophysical neutrinos in IceCube, Atsushi Watanabe, JCAP 08 (2015) 030, arXiv:1412.8264.
[Watanabe:2014qua]
[8-976]
Enhancement of the sterile neutrinos yield at high matter density and at increasing the medium neutronization, V. V. Khruschov, A. V. Yudin, D. K. Nadyozhin, S. V. Fomichev, Astron. Lett. 41 (2015) 260-266, arXiv:1412.6262.
[Khruschov:2014xza]
[8-977]
Neutrino Constrains to the Diffuse Gamma-Ray Emission from Accretion Shocks, Aleksandra Dobardzic, Tijana Prodanovic, Astrophys.J. 806 (2015) 184, arXiv:1412.5678.
[Dobardzic:2014nra]
[8-978]
Future sensitivity of neutrino telescopes to dark matter annihilations from the cosmic diffuse neutrino signal, Angeles Moline, Alejandro Ibarra, Sergio Palomares-Ruiz, JCAP 1506 (2015) 005, arXiv:1412.4308.
[Moline:2014xua]
[8-979]
Neutrinos from Extra-Large Hadron Collider in the Milky Way, Andrii Neronov, Dmitry Semikoz, Astropart. Phys. 72 (2016) 32-37, arXiv:1412.1690.
[Neronov:2014uma]
[8-980]
Dark Matter vs. Neutrinos: The effect of astrophysical uncertainties and timing information on the neutrino floor, Jonathan H. Davis, JCAP 03 (2015) 012, arXiv:1412.1475.
[Davis:2014ama]
[8-981]
High energy neutrinos from choked GRBs and their flavor ratio measurement by the IceCube, Karla Varela, Sarira Sahu, Andres Felipe Osorio Oliveros, Juan Carlos Sanabria, Eur.Phys.J. C75 (2015) 289, arXiv:1411.7992.
[Varela:2014mma]
[8-982]
PeV-EeV neutrinos from GRB blastwave in IceCube and future neutrino telescopes, Soebur Razzaque, Lili Yang, Phys. Rev. D91 (2015) 043003, arXiv:1411.7491.
[Razzaque:2014ola]
[8-983]
TeV $\gamma$-ray fluxes from the longer campaigns on Mrk421 as constraints on the emission of TeV-PeV Neutrinos and UHECRs, Nissim Fraija, Antonio Marinelli, Astropart.Phys. 70 (2015) 54-61, arXiv:1411.7354.
[Fraija:2014iwa]
[8-984]
A possible indication of momentum-dependent asymmetric dark matter in the Sun, Aaron C. Vincent, Pat Scott, Aldo Serenelli, Phys. Rev. Lett. 114 (2015) 081302, arXiv:1411.6626.
[Vincent:2014jia]
[8-985]
Neutron $\beta$-decay as the origin of IceCube's PeV (anti)neutrinos, Luis A. Anchordoqui, Phys. Rev. D91 (2015) 027301, arXiv:1411.6457.
[Anchordoqui:2014pca]
[8-986]
Searching for Traces of Planck-Scale Physics with High Energy Neutrinos, Floyd W. Stecker, Sean T. Scully, Stefano Liberati, David Mattingly, Phys. Rev. D91 (2015) 045009, arXiv:1411.5889.
[Stecker:2014oxa]
[8-987]
A Possible Two-component Flux for the High Energy Neutrino Events at IceCube, Chien-Yi Chen, P. S. Bhupal Dev, Amarjit Soni, Phys. Rev. D92 (2015) 073001, arXiv:1411.5658.
[Chen:2014gxa]
[8-988]
Possible Interpretations of IceCube High-Energy Neutrino Events, Chee Sheng Fong, Hisakazu Minakata, Boris Panes, Renata Zukanovich Funchal, JHEP 1502 (2015) 189, arXiv:1411.5318.
[Fong:2014bsa]
[8-989]
Angular Power Spectra with Finite Counts, Sheldon S. Campbell, Mon.Not.Roy.Astron.Soc. 448 (2015) 2854, arXiv:1411.4031.
[Campbell:2014mpa]
[8-990]
Does asymmetric dark matter always lead to an anti-neutrino signal?, Hajime Fukuda, Shigeki Matsumoto, Satyanarayan Mukhopadhyay, Phys. Rev. D92 (2015) 013008, arXiv:1411.4014.
[Fukuda:2014xqa]
[8-991]
Neutrino and Cosmic-Ray Emission and Cumulative Background from Radiatively Inefficient Accretion Flows in Low-Luminosity Active Galactic Nuclei, Shigeo S. Kimura, Kohta Murase, Kenji Toma, Astrophys.J. 806 (2015) 159, arXiv:1411.3588.
[Kimura:2014jba]
[8-992]
High-energy cosmic neutrinos from spine-sheath BL Lac jets, F. Tavecchio, G. Ghisellini, Mon.Not.Roy.Astron.Soc. 451 (2015) 1502, arXiv:1411.2783.
[Tavecchio:2014eia]
[8-993]
A Common Solution of Two Cosmic Puzzles, Shlomo Dado, Arnon Dar, J. Phys. Conf. Ser. 718 (2016) 062010, arXiv:1411.2533.
[Dado:2014jwa]
[8-994]
High-Energy Neutrino Signatures of Newborn Pulsars In the Local Universe, Ke Fang, JCAP 1506 (2015) 004, arXiv:1411.2174.
[Fang:2014qva]
[8-995]
Bethe-Heitler emission in BL Lacs: filling the gap between X-rays and $\gamma$-rays, M. Petropoulou, A. Mastichiadis, Mon.Not.Roy.Astron.Soc. 447 (2015) 36-48, arXiv:1411.1908.
[Petropoulou:2014rla]
[8-996]
High-energy gamma-ray and neutrino backgrounds from clusters of galaxies and radio constraints, Fabio Zandanel, Irene Tamborra, Stefano Gabici, Shin'ichiro Ando, Astron.Astrophys. 578 (2015) A32, arXiv:1410.8697.
[Zandanel:2014pva]
[8-997]
Neutrinos in IceCube from AGN's, Oleg Kalashev, Dmitri Semikoz, Igor Tkachev, J.Exp.Theor.Phys. 120 (2015) 541-548, arXiv:1410.8124.
[Kalashev:2014vya]
[8-998]
Probing WIMP particle physics and astrophysics with direct detection and neutrino telescope data, Bradley J. Kavanagh, Mattia Fornasa, Anne M. Green, Phys. Rev. D91 (2015) 103533, arXiv:1410.8051.
[Kavanagh:2014rya]
[8-999]
Gamma-rays and neutrinos from dense environment of massive binary systems in open clusters, W. Bednarek, J. Pabich, T. Sobczak, Phys. Rev. D90 (2014) 103008, arXiv:1410.7553.
[Bednarek:2014esa]
[8-1000]
IceCube events and decaying dark matter: hints and constraints, Arman Esmaili, Sin Kyu Kang, Pasquale Dario Serpico, JCAP 1412 (2014) 054, arXiv:1410.5979.
[Esmaili:2014rma]
[8-1001]
A new physics interpretation of the IceCube data, Jose Ignacio Illana, Manuel Masip, Davide Meloni, Astropart.Phys. 65 (2014) 64-68, arXiv:1410.3208.
[Illana:2014bda]
[8-1002]
IceCube astrophysical neutrinos without a spectral cutoff and (10^15-10^17) eV cosmic gamma radiation, O.E. Kalashev, S.V. Troitsky, JETP Lett. 100 (2015) 761-765, arXiv:1410.2600.
[Kalashev:2014vra]
[8-1003]
Estimating the contribution of Galactic sources to the diffuse neutrino flux, Luis A. Anchordoqui, Haim Goldberg, Thomas C. Paul, Luiz H. M. da Silva, Brian J. Vlcek, Phys. Rev. D90 (2014) 123010, arXiv:1410.0348.
[Anchordoqui:2014rca]
[8-1004]
Constraints to a Galactic Component of the Ice Cube cosmic neutrino flux from ANTARES, M. Spurio, Phys. Rev. D90 (2014) 103004, arXiv:1409.4552.
[Spurio:2014una]
[8-1005]
Probing Large Extra Dimensions With IceCube, Arman Esmaili, O. L. G. Peres, Zahra Tabrizi, JCAP 1412 (2014) 002, arXiv:1409.3502.
[Esmaili:2014esa]
[8-1006]
Bounds on the origin of extragalactic ultrahigh energy cosmic rays from the IceCube neutrino observations, Shigeru Yoshida, Hajime Takami, Phys. Rev. D90 (2014) 123012, arXiv:1409.2950.
[Yoshida:2014uka]
[8-1007]
Neutrino and cosmic-ray emission from multiple internal shocks in gamma-ray bursts, Mauricio Bustamante, Philipp Baerwald, Kohta Murase, Walter Winter, arXiv:1409.2874, 2014.
[Bustamante:2014oka]
[8-1008]
UHECR acceleration at GRB internal shocks, Noemie Globus, Denis Allard, Robert Mochkovitch, Etienne Parizot, Mon.Not.Roy.Astron.Soc. 451 (2015) 5270, arXiv:1409.1271.
[Globus:2014fka]
[8-1009]
Pulsation period variations in the RRc Lyrae star KIC 5520878, Michael Hippke et al., arXiv:1409.1265, 2014.
[1409.1265]
[8-1010]
Can a Single High-energy Neutrino from Gamma-ray Bursts be a Discovery?, Imre Bartos, Szabolcs Marka, Phys. Rev. D90 (2014) 101301, arXiv:1409.1217.
[Bartos:2014sja]
[8-1011]
On ultra-high energy cosmic ray acceleration at the termination shock of young pulsar winds, Martin Lemoine, Kumiko Kotera, Jerome Petri, JCAP 1507 (2015) 016, arXiv:1409.0159.
[Lemoine:2014ala]
[8-1012]
Probing Dark Matter Self-Interaction in the Sun with IceCube-PINGU, Chian-Shu Chen, Fei-Fan Lee, Guey-Lin Lin, Yen-Hsun Lin, JCAP 1410 (2014) 049, arXiv:1408.5471.
[Chen:2014oaa]
[8-1013]
Superheavy dark matter and IceCube neutrino signals:bounds on decaying dark matter, Carsten Rott, Kazunori Kohri, Seong Chan Park, Phys. Rev. D92 (2015) 023529, arXiv:1408.4575.
[Rott:2014kfa]
[8-1014]
Testing the neutrino annihilation model for launching GRB jets, Mingbin Leng, Dimitrios Giannios, Mon.Not.Roy.Astron.Soc. 445 (2014) 1, arXiv:1408.4509.
[Leng:2014dfa]
[8-1015]
High energy neutrino telescopes as a probe of the neutrino mass mechanism, Kfir Blum, Anson Hook, Kohta Murase, arXiv:1408.3799, 2014.
[Blum:2014ewa]
[8-1016]
Some possible sources of IceCube TeV-PeV neutrino events, Sarira Sahu, Luis Salvador Miranda, Eur.Phys.J. C75 (2015) 273, arXiv:1408.3664.
[Sahu:2014fua]
[8-1017]
Cosmological Implications of High-Energy Neutrino Emission from the Decay of Long-Lived Particle, Yohei Ema, Ryusuke Jinno, Takeo Moroi, JHEP 1410 (2014) 150, arXiv:1408.1745.
[Ema:2014ufa]
[8-1018]
UHECR and GRB neutrinos: an incomplete revolution?, Daniele Fargion, Frascati Phys.Ser. 58 (2014) 263, arXiv:1408.0227.
[Fargion:2014jaa]
[8-1019]
Describing the Observed Cosmic Neutrinos by Interactions of Nuclei with Matter, Walter Winter, Phys. Rev. D90 (2014) 103003, arXiv:1407.7536.
[Winter:2014pya]
[8-1020]
Anisotropic neutrino effect on magnetar spin: constraint on inner toroidal field, Yudai Suwa, Teruaki Enoto, Mon.Not.Roy.Astron.Soc. 443 (2014) 3586-3593, arXiv:1407.4653.
[Suwa:2014zaa]
[8-1021]
The Effect of Doppler Broadening on the $6.3 \ PeV$ $W^-$ Resonance in $\bar\nu_e e^-$ Collisions, Amit Loewy, Shmuel Nussinov, Sheldon L. Glashow, arXiv:1407.4415, 2014.
[Loewy:2014zva]
[8-1022]
Constraining Astrophysical Neutrino Flavor Composition from Leptonic Unitarity, Xun-Jie Xu, Hong-Jian He, Werner Rodejohann, JCAP 1412 (2014) 039, arXiv:1407.3736.
[Xu:2014via]
[8-1023]
Astrophysical neutrinos, PeV events at IceCube, and the Direct Detection of Dark Matter, Atri Bhattacharya, Raj Gandhi, Aritra Gupta, JCAP 1503 (2015) 027, arXiv:1407.3280.
[Bhattacharya:2014yha]
[8-1024]
Glashow resonance as a window into cosmic neutrino sources, V. Barger et al., Phys. Rev. D90 (2014) 121301, arXiv:1407.3255.
[Barger:2014iua]
[8-1025]
Charm decay in slow-jet supernovae as the origin of the IceCube ultra-high energy neutrino events, Atri Bhattacharya, Rikard Enberg, Mary Hall Reno, Ina Sarcevic, JCAP 1506 (2015) 034, arXiv:1407.2985.
[Bhattacharya:2014sta]
[8-1026]
C$\nu$B absorption line in the neutrino spectrum at IceCube, Masahiro Ibe, Kunio Kaneta, Phys. Rev. D90 (2014) 053011, arXiv:1407.2848.
[Ibe:2014pja]
[8-1027]
Implications of Fermi-LAT observations on the origin of IceCube neutrinos, Bin Wang, Xiao-Hong Zhao, Zhuo Li, JCAP 1411 (2014) 028, arXiv:1407.2536.
[Wang:2014jca]
[8-1028]
Neutrino Lighthouse at Sagittarius A*, Y. Bai et al., Phys. Rev. D90 (2014) 063012, arXiv:1407.2243.
[Bai:2014kba]
[8-1029]
Flavor Ratios and Mass Hierarchy at Neutrino Telescopes, Lingjun Fu, Chiu Man Ho, arXiv:1407.1090, 2014.
[Fu:2014gja]
[8-1030]
Structured jets in BL Lac objects: efficient PeV neutrino factories?, F. Tavecchio, G. Ghisellini, D. Guetta, Astrophys. J. 793 (2014) L18, arXiv:1407.0907.
[Tavecchio:2014iza]
[8-1031]
Self-gravity in neutrino-dominated accretion disks, Tong Liu, Xiao-Fei Yu, Wei-Min Gu, Ju-Fu Lu, Astrophys.J. 791 (2014) 69, arXiv:1407.0790.
[Liu:2014xya]
[8-1032]
A Relational Argument for a $\sim$PeV Neutrino Energy Cutoff, John G. Learned, Thomas J. Weiler, arXiv:1407.0739, 2014.
[Learned:2014vya]
[8-1033]
Hybrid C-O-Ne white dwarfs as progenitors of type Ia supernovae: dependence on Urca process and mixing assumptions, P. Denissenkov et al., arXiv:1407.0248, 2014.
[1407.0248]
[8-1034]
On the possible observational signatures of white dwarf dynamical interactions, G. Aznar-Siguan, E. Garcia-Berro, M. Magnien, P. Loren-Aguilar, Mon.Not.Roy.Astron.Soc. 443 (2014) 2372, arXiv:1407.0200.
[Aznar-Siguan:2014zja]
[8-1035]
Constraints on The Hadronic Content of Gamma Ray Bursts, Lee Yacobi, Dafne Guetta, Ehud Behar, Astrophys.J. 793 (2014) 48, arXiv:1407.0155.
[Yacobi:2014vja]
[8-1036]
Estimating non-linear QCD effects in ultrahigh energy neutrino events at IceCube, V.P. Goncalves, D. R. Gratieri, Phys. Rev. D90 (2014) 057502, arXiv:1406.5890.
[Goncalves:2014woa]
[8-1037]
Neutrino Emission in Jet Propagation Process, D. Xiao, Z. G. Dai, Astrophys.J. 790 (2014) 59, arXiv:1406.2792.
[Xiao:2014vga]
[8-1038]
Photopion Production in Black-Hole Jets and Flat-Spectrum Radio Quasars as PeV Neutrino Sources, Charles D. Dermer, Kohta Murase, Yoshiyuki Inoue, JHEAp 3-4 (2014) 29-40, arXiv:1406.2633.
[Dermer:2014vaa]
[8-1039]
Statistical approaches in search for astrophysical neutrino sources with Baikal deep underwater telescopes, O.V. Suvorova, T.A. Ovsiannikova (Baikal), arXiv:1406.2478, 2014.
[Suvorova:2014laa]
[8-1040]
Pinpointing Extragalactic Neutrino Sources in Light of Recent IceCube Observations, Markus Ahlers, Francis Halzen, Phys. Rev. D90 (2014) 043005, arXiv:1406.2160.
[Ahlers:2014ioa]
[8-1041]
The diffuse gamma-ray flux associated with sub-PeV/PeV neutrinos from starburst galaxies, Xiao-Chuan Chang, Xiang-Yu Wang, Astrophys.J. 793 (2014) 131, arXiv:1406.1099.
[Chang:2014hua]
[8-1042]
TANAMI Blazars in the IceCube PeV Neutrino Fields, F. Kraus et al., Astron.Astrophys. 566 (2014) L7, arXiv:1406.0645.
[Krauss:2014tna]
[8-1043]
High-energy neutrinos from radio galaxies, J. Becker Tjus, B. Eichmann, F. Halzen, A. Kheirandish, S.M. Saba, Phys. Rev. D89 (2014) 123005, arXiv:1406.0506.
[BeckerTjus:2014uyv]
[8-1044]
Are both BL Lacs and pulsar wind nebulae the astrophysical counterparts of IceCube neutrino events?, P. Padovani, E. Resconi, Mon.Not.Roy.Astron.Soc. 443 (2014) 474-484, arXiv:1406.0376.
[Padovani:2014bha]
[8-1045]
What IceCube data tell us about neutrino emission from star-forming galaxies (so far), Luis A. Anchordoqui, Thomas C. Paul, Luiz H. M. da Silva, Diego F. Torres, Brian J. Vlcek, Phys. Rev. D89 (2014) 127304, arXiv:1405.7648.
[Anchordoqui:2014yva]
[8-1046]
(In)direct Detection of Boosted Dark Matter, Kaustubh Agashe, Yanou Cui, Lina Necib, Jesse Thaler, JCAP 1410 (2014) 062, arXiv:1405.7370.
[Agashe:2014yua]
[8-1047]
Origin Of The High Energy Cosmic Neutrino Background, Shlomo Dado, Arnon Dar, Phys. Rev. Lett. 113 (2014) 191102, arXiv:1405.5487.
[Dado:2014mea]
[8-1048]
Neutrino yield from Galactic cosmic rays, M. Kachelriess, S. Ostapchenko, Phys. Rev. D90 (2014) 083002, arXiv:1405.3797.
[Kachelriess:2014oma]
[8-1049]
Galaxy Mergers as a Source of Cosmic Rays, Neutrinos, and Gamma Rays, Kazumi Kashiyama, Peter Meszaros, Astrophys.J. 790 (2014) L14, arXiv:1405.3262.
[Kashiyama:2014rza]
[8-1050]
What IceCube neutrinos teach us about the GRB location, Maria Petropoulou, Dimitrios Giannios, Stavros Dimitrakoudis, Mon.Not.Roy.Astron.Soc. 445 (2014) 570-580, arXiv:1405.2091.
[Petropoulou:2014lja]
[8-1051]
A generalized self-veto probability for atmospheric neutrinos, Thomas K. Gaisser, Kyle Jero, Albrecht Karle, Jakob van Santen, Phys. Rev. D90 (2014) 023009, arXiv:1405.0525.
[Gaisser:2014bja]
[8-1052]
Supernova Relic Neutrinos and the Supernova Rate Problem: Analysis of Uncertainties and Detectability of ONeMg and Failed Supernovae, Grant J. Mathews, Jun Hidaka, Toshitaka Kajino, Jyutaro Suzuki, Astrophys.J. 790 (2014) 115, arXiv:1405.0458.
[Mathews:2014qba]
[8-1053]
Propagation of Superluminal PeV IceCube Neutrinos: A High Energy Spectral Cutoff or New Constraints on Lorentz Invariance Violation, Floyd W. Stecker, Sean T. Scully, Phys. Rev. D90 (2014) 043012, arXiv:1404.7025.
[Stecker:2014xja]
[8-1054]
Is the Ultra-High Energy Cosmic-Ray Excess Observed by the Telescope Array Correlated with IceCube Neutrinos?, Ke Fang, Toshihiro Fujii, Tim Linden, Angela V. Olinto, Astrophys.J. 794 (2014) 126, arXiv:1404.6237.
[Fang:2014uja]
[8-1055]
Crossing muons in Icecube at highest energy: Cornerstone to neutrino astronomy, D. Fargion, Nucl. Phys. Proc. Suppl. 256-257 (2014) 213-217, arXiv:1404.5914.
[Fargion:2014mda]
[8-1056]
Galactic PeV neutrinos from dark matter annihilation, Jesus Zavala, Phys. Rev. D89 (2014) 123516, arXiv:1404.2932.
[Zavala:2014dla]
[8-1057]
Cosmic neutrino cascades from secret neutrino interactions, Kenny C. Y. Ng, John F. Beacom, Phys. Rev. D90 (2014) 065035, arXiv:1404.2288.
[Ng:2014pca]
[8-1058]
IceCube PeV-EeV Neutrinos and Secret Interactions of Neutrinos, Kunihto Ioka, Kohta Murase, PTEP 2014 (2014) 061E01, arXiv:1404.2279.
[Ioka:2014kca]
[8-1059]
Star-forming galaxies as the origin of diffuse high-energy backgrounds: Gamma-ray and neutrino connections, and implications for starburst history, Irene Tamborra, Shin'ichiro Ando, Kohta Murase, JCAP 1409 (2014) 043, arXiv:1404.1189.
[Tamborra:2014xia]
[8-1060]
End of the cosmic neutrino energy spectrum, L. A. Anchordoqui et al., Phys.Lett. B739 (2014) 99-101, arXiv:1404.0622.
[Anchordoqui:2014hua]
[8-1061]
On the flavor composition of the high energy neutrino events in IceCube, Olga Mena, Sergio Palomares-Ruiz, Aaron C. Vincent, Phys. Rev. Lett. 113 (2014) 091103, arXiv:1404.0017.
[Mena:2014sja]
[8-1062]
Large Scale Anisotropy of Cosmic Rays and Directional Neutrino Signals from Galactic Sources, Luis A. Anchordoqui et al., J. Phys. Conf. Ser. 531 (2014) 012009, arXiv:1403.6628. Proceedings of the 2nd Cosmic Ray Anisotropy Workshop, 26-28 September 2013, Madison, Wisconsin. To appear in IOP Conference Series.
[Anchordoqui:2014hia]
[8-1063]
Neutrino fluxes from Dark Matter in the HESS J1745-290 source at the Galactic Center, J. A. R. Cembranos, V. Gammaldi, A. L. Maroto, Phys. Rev. D90 (2014) 043004, arXiv:1403.6018.
[Cembranos:2014yqa]
[8-1064]
Diffuse Neutrino Intensity from the Inner Jets of Active Galactic Nuclei: Impacts of External Photon Fields and the Blazar Sequence, Kohta Murase, Yoshiyuki Inoue, Charles D. Dermer, Phys. Rev. D90 (2014) 023007, arXiv:1403.4089.
[Murase:2014foa]
[8-1065]
Cosmic backgrounds due to the formation of the first generation of supermassive black holes, Peter L. Biermann et al., Mon.Not.Roy.Astron.Soc. 441 (2014) 1147, arXiv:1403.3804.
[Biermann:2014lna]
[8-1066]
A Galactic Halo Origin of the Neutrinos Detected by IceCube, Andrew M. Taylor, Stefano Gabici, Felix Aharonian, Phys. Rev. D89 (2014) 103003, arXiv:1403.3206.
[Taylor:2014hya]
[8-1067]
A two-zone approach to neutrino production in gamma-ray bursts, Matias M. Reynoso, Astron.Astrophys. 564 (2014) A74, arXiv:1403.3020.
[Reynoso:2014yoa]
[8-1068]
Reconciling neutrino flux from heavy dark matter decay and recent events at IceCube, Atri Bhattacharya, Mary Hall Reno, Ina Sarcevic, JHEP 1406 (2014) 110, arXiv:1403.1862.
[Bhattacharya:2014vwa]
[8-1069]
Impact of Secondary Acceleration in Gamma-Ray Bursts, Walter Winter, Julia Becker Tjus, Spencer R. Klein, Astron.Astrophys. 569 (2014) A58, arXiv:1403.0574.
[Winter:2014tta]
[8-1070]
Neutrino and Cosmic-Ray Release from Gamma-Ray Bursts: Time-Dependent Simulations, Katsuaki Asano, Peter Meszaros, Astrophys.J. 785 (2014) 54, arXiv:1402.6057.
[Asano:2014nba]
[8-1071]
First calculation of cosmic-ray muon spallation backgrounds for MeV astrophysical neutrino signals in Super-Kamiokande, Shirley Weishi Li, John F. Beacom, Phys. Rev. C89 (2014) 045801, arXiv:1402.4687.
[Li:2014sea]
[8-1072]
Gamma-ray fluxes from the core emission of Centaurus A: A puzzle solved, Nissim Fraija, Mon.Not.Roy.Astron.Soc. 441 (2014) 1209, arXiv:1402.4558.
[Fraija:2014jea]
[8-1073]
Higher order dark matter annihilations in the Sun and implications for IceCube, Alejandro Ibarra, Maximilian Totzauer, Sebastian Wild, JCAP 1404 (2014) 012, arXiv:1402.4375.
[Ibarra:2014vya]
[8-1074]
Searching for tau neutrinos with Cherenkov telescopes, D. Gora, E. Bernardini, A. Kappes, Astropart.Phys. 61 (2014) 12-16, arXiv:1402.4243.
[Gora:2014lya]
[8-1075]
Heavy Quark Production in Ultra High Energy Cosmic Rays Interactions, V.P. Goncalves, D. R. Gratieri, Astropart.Phys. 61 (2014) 41-46, arXiv:1402.0418.
[Goncalves:2014qia]
[8-1076]
Cloaked Gamma Ray Bursts, David Eichler, Astrophys.J. 787 (2014) L32, arXiv:1402.0245.
[Eichler:2014eia]
[8-1077]
Precision Measurement of Low-Energy Antiprotons with GAPS for Dark Matter and Primordial Black Hole Physics, T. Aramaki et al., Astropart.Phys. 59 (2014) 12-17, arXiv:1401.8245.
[Aramaki:2014oda]
[8-1078]
Indirect Detection Analysis: Wino Dark Matter Case Study, Andrzej Hryczuk, Ilias Cholis, Roberto Iengo, Maryam Tavakoli, Piero Ullio, JCAP 1407 (2014) 031, arXiv:1401.6212.
[Hryczuk:2014hpa]
[8-1079]
Can new heavy gauge bosons be observed in ultra-high energy cosmic neutrino events?, T. Jezo et al., Phys. Rev. D89 (2014) 077702, arXiv:1401.6012.
[Jezo:2014kla]
[8-1080]
Are gamma-ray bursts the sources of ultra-high energy cosmic rays?, Philipp Baerwald, Mauricio Bustamante, Walter Winter, Astropart.Phys. 62 (2015) 66-91, arXiv:1401.1820.
[Baerwald:2014zga]
[8-1081]
Propogation and Neutrino Oscillations in the base of a highly magnetized gamma-ray burst fireball flow, Nissim Fraija, Astrophys.J. 787 (2014) 140, arXiv:1401.1581.
[Fraija:2014pda]
[8-1082]
Pinpointing the knee of cosmic rays with diffuse PeV gamma-rays and neutrinos, Y. Q. Guo, H. B. Hu, Q. Yuan, Z. Tian, X. J. Gao, Astrophys.J. 795 (2014) 100, arXiv:1312.7616.
[Guo:2013rya]
[8-1083]
Gamma rays and neutrinos from a cosmic ray source in the Galactic Center region, A.D. Supanitsky, Phys. Rev. D89 (2014) 023501, arXiv:1312.7304.
[Supanitsky:2013ooa]
[8-1084]
Correlation of $\gamma$-ray and high-energy cosmic ray fluxes from the giant lobes of Centaurus A, Nissim Fraija, Astrophys.J. 783 (2014) 44, arXiv:1312.6944.
[Fraija:2013goa]
[8-1085]
Probing CP violation with the first ultra-high energy neutrinos from IceCube, Animesh Chatterjee, Moon Moon Devi, Monojit Ghosh, Reetanjali Moharana, Sushant K. Raut, Phys. Rev. D90 (2014) 073003, arXiv:1312.6593.
[Chatterjee:2013tza]
[8-1086]
PPPC 4 DM$\nu$: A Poor Particle Physicist Cookbook for Neutrinos from DM annihilations in the Sun, Pietro Baratella et al., JCAP 1403 (2014) 053, arXiv:1312.6408.
[Baratella:2013fya]
[8-1087]
IceCube, DeepCore, PINGU and the indirect search for supersymmetric dark matter, Paul Bergeron, Stefano Profumo, JCAP 1401 (2014) 026, arXiv:1312.4445.
[Bergeron:2013lya]
[8-1088]
On the feasibility of RADAR detection of high-energy neutrino-induced showers in ice, Krijn D. de Vries, Kael Hanson, Thomas Meures, Astropart.Phys. 60 (2014) 25-31, arXiv:1312.4331.
[deVries:2013qwa]
[8-1089]
Cosmic-Ray Neutrinos from the Decay of Long-Lived Particle and the Recent IceCube Result, Yohei Ema, Ryusuke Jinno, Takeo Moroi, Phys.Lett. B733 (2014) 120-125, arXiv:1312.3501.
[Ema:2013nda]
[8-1090]
Strong neutrino cooling by cycles of electron capture and $\beta^-$ decay in neutron star crusts, Hendrik Schatz et al., Nature 505 (2014) 62-65, arXiv:1312.2513.
[Schatz:2013xea]
[8-1091]
Constraints on Self Interacting Dark Matter from IceCube Results, Ivone F.M. Albuquerque, Carlos P. de Los Heros, Denis S. Robertson, JCAP 1402 (2014) 047, arXiv:1312.0797.
[Albuquerque:2013xna]
[8-1092]
Imprint of Multi-component Dark Matter on AMS-02, Chao-Qiang Geng, Da Huang, Lu-Hsing Tsai, Phys. Rev. D89 (2014) 055021, arXiv:1312.0366.
[Geng:2013nda]
[8-1093]
Impact of Dark Matter Velocity Distributions on Capture Rates in the Sun, Koun Choi, Carsten Rott, Yoshitaka Itow, JCAP 1405 (2014) 049, arXiv:1312.0273.
[Choi:2013eda]
[8-1094]
Neutrino Events at IceCube and the Fermi Bubbles, Cecilia Lunardini, Soebur Razzaque, Kristopher T. Theodoseau, Lili Yang, Phys. Rev. D90 (2014) 023016, arXiv:1311.7188.
[Lunardini:2013gva]
[8-1095]
Probing Cosmic-Ray Ion Acceleration with Radio-Submm and Gamma-Ray Emission from Interaction-Powered Supernovae, Kohta Murase, Todd A. Thompson, Eran O. Ofek, Mon.Not.Roy.Astron.Soc. 440 (2014) 2528, arXiv:1311.6778.
[Murase:2013kda]
[8-1096]
Geometric Compatibility of IceCube TeV-PeV Neutrino Excess and its Galactic Dark Matter Origin, Yang Bai, Ran Lu, Jordi Salvado, JHEP 01 (2016) 161, arXiv:1311.5864.
[Bai:2013nga]
[8-1097]
Active Galactic Nuclei, Neutrinos, and Interacting Cosmic Rays in NGC 253 $\text{\&}$ NGC 1068, Tova M. Yoast-Hull, J. S. Gallagher III, Ellen G. Zweibel, John E. Everett, Astrophys.J. 780 (2014) 137, arXiv:1311.5586.
[Yoast-Hull:2013qfa]
[8-1098]
The neutron star in Cassiopeia A: equation of state, superfluidity, and Joule heating, A. Bonanno, M. Baldo, G. F. Burgio, V. Urpin, Astron.Astrophys. 561 (2014) L5, arXiv:1311.2153.
[Bonanno:2013oua]
[8-1099]
A decisive test for the young pulsar origin of ultrahigh energy cosmic rays with IceCube, Ke Fang, Kumiko Kotera, Kohta Murase, Angela V. Olinto, Phys. Rev. D90 (2014) 103005, arXiv:1311.2044.
[Fang:2013vla]
[8-1100]
Neutrino and axion bounds from the globular cluster M5 (NGC 5904), Nicolas Viaux et al., Phys. Rev. Lett. 111 (2013) 231301, arXiv:1311.1669.
[Viaux:2013lha]
[8-1101]
High-energy neutrino signals from the Sun in dark matter scenarios with internal bremsstrahlung, Alejandro Ibarra, Maximilian Totzauer, Sebastian Wild, JCAP 1312 (2013) 043, arXiv:1311.1418.
[Ibarra:2013eba]
[8-1102]
One-zone SSC model for the core emission of Centaurus A revisited, Maria Petropoulou, Eva Lefa, Stavros Dimitrakoudis, Apostolos Mastichiadis, Astron.Astrophys. 562 (2014) A12, arXiv:1311.1119.
[Petropoulou:2013lwa]
[8-1103]
The energy production rate density of cosmic rays in the local universe is $\sim10^{44-45}\rm erg~Mpc^{-3}~yr^{-1}$ at all particle energies, Boaz Katz, Eli Waxman, Todd Thompson, Abraham Loeb, arXiv:1311.0287, 2013.
[Katz:2013ooa]
[8-1104]
Cosmic Ray Sampling of a Clumpy Interstellar Medium, Erin Boettcher, Ellen G. Zweibel, Tova M. Yoast-Hull, J. S. Gallagher III, ApJ, 779, 12 (2013) 12, arXiv:1311.0006.
[Boettcher:2013ika]
[8-1105]
Self-consistent neutrino and UHE cosmic ray spectra from Mrk 421, Stavros Dimitrakoudis, Maria Petropoulou, Apostolos Mastichiadis, Astropart.Phys. 54 (2014) 61-66, arXiv:1310.7923.
[Dimitrakoudis:2013tpa]
[8-1106]
Hadronic Gamma-Ray and Neutrino Emission from Cygnus X-3, N. Sahakyan, G. Piano, M. Tavani, Astrophys.J. 780 (2014) 29, arXiv:1310.7805.
[Sahakyan:2013opa]
[8-1107]
Reevaluation of the Prospect of Observing Neutrinos from Galactic Sources in the Light of Recent Results in Gamma Ray and Neutrino Astronomy, M.C. Gonzalez-Garcia, F. Halzen, V. Niro, Astropart.Phys. 57-58 (2014) 39-48, arXiv:1310.7194.
[Gonzalez-Garcia:2013iha]
[8-1108]
Detection of ultra high energy neutrinos by IceCube: Sterile neutrino scenario, Subhash Rajpoot, Sarira Sahu, Hsi Ching Wang, Eur.Phys.J. C74 (2014) 2936, arXiv:1310.7075.
[Rajpoot:2013dha]
[8-1109]
Diffuse Neutrino Flux from Cosmic Ray Interactions in the Milky Way, Jagdish C. Joshi, Walter Winter, Nayantara Gupta, Mon.Not.Roy.Astron.Soc. 3414 (2014) 3419, arXiv:1310.5123.
[Joshi:2013aua]
[8-1110]
Revolution at ICECUBE horizons, Daniele Fargion, Paolo Paggi, Nucl.Instrum.Meth. A753 (2014) 9-13, arXiv:1310.3543.
[Fargion:2013rma]
[8-1111]
Diffuse PeV neutrinos from hypernova remnants in star-forming galaxies, Ruo-Yu Liu, Xiang-Yu Wang, Susumu Inoue, Roland Crocker, Felix Aharonian, Phys. Rev. D89 (2014) 083004, arXiv:1310.1263.
[Liu:2013wia]
[8-1112]
Neutrino production from photo-hadronic interactions of the gamma flux from Active Galactic Nuclei with their gas content, J.C. Arteaga-Velazquez, Astroparticle Physics 37, (2012) 40-50, arXiv:1309.7080.
[Arteaga-Velazquez:2012kcx]
[8-1113]
Neutrinos from collapsars, Florencia L. Vieyro, Gustavo E. Romero, Orlando L. G. Peres, Astron. Astrophys. 558 (2013) A142, arXiv:1309.6043.
[Vieyro:2013lxa]
[8-1114]
Probing the Galactic Origin of the IceCube Excess with Gamma-Rays, Markus Ahlers, Kohta Murase, Phys. Rev. D90 (2014) 023010, arXiv:1309.4077.
[Ahlers:2013xia]
[8-1115]
The Galactic Center Origin of a Subset of IceCube Neutrino Events, Soebur Razzaque, Phys. Rev. D88 (2013) 081302, arXiv:1309.2756.
[Razzaque:2013uoa]
[8-1116]
How to see an antistar, A.D. Dolgov, V.A. Novikov, M.I. Vysotsky, JETP Lett. 98 (2013) 519-522, arXiv:1309.2746.
[Dolgov:2013soa]
[8-1117]
A Simple Explanation of the Ultra-high Energy Neutrino Events at IceCube, Chien-Yi Chen, P. S. Bhupal Dev, Amarjit Soni, Phys. Rev. D89 (2014) 033012, arXiv:1309.1764.
[Chen:2013dza]
[8-1118]
Testing Relativity with High-Energy Astrophysical Neutrinos, Jorge S. Diaz, Alan Kostelecky, Matthew Mewes, Phys. Rev. D89 (2014) 043005, arXiv:1308.6344.
[Diaz:2013wia]
[8-1119]
Direct detection and solar capture of spin-dependent dark matter, Zheng-Liang Liang, Yue-Liang Wu, Phys. Rev. D89 (2014) 013010, arXiv:1308.5897.
[Liang:2013dsa]
[8-1120]
Improvement in Fast Particle Track Reconstruction with Robust Statistics, M. G. Aartsen et al., Nucl.Instrum.Meth. A736 (2014) 143-149, arXiv:1308.5501.
[Aartsen:2013bfa]
[8-1121]
The Fermi Bubbles as a Scaled-up Version of Supernova Remnants, Yutaka Fujita, Yutaka Ohira, Ryo Yamazaki, Astrophys.J. 775 (2013) L20, arXiv:1308.5228.
[Fujita:2013jda]
[8-1122]
Accretion and outflow from a magnetized, neutrino cooled torus around the gamma ray burst central engine, Agnieszka Janiuk, Patryk Mioduszewski, Monika Moscibrodzka, Astrophys.J. 776 (2013) 105, arXiv:1308.4823.
[Janiuk:2013lna]
[8-1123]
Photon and Neutrino Spectra of Time-Dependent Photospheric Models of Gamma-Ray Bursts, K. Asano, P. Meszaros, JCAP 1309 (2013) 008, arXiv:1308.3563.
[Asano:2013jea]
[8-1124]
Discovery of New Instability in a Hyperaccretion Flow and its Implication to Gamma-ray Bursts, Norita Kawanaka, Shin Mineshige, Tsvi Piran, Astrophys.J. 777 (2013) L15, arXiv:1308.3235.
[Kawanaka:2013zaa]
[8-1125]
High-energy neutrino production from photo-hadronic interactions of gamma rays from Active Galactic Nuclei at source, J.C. Arteaga-Velazquez, Angelo Martinez, arXiv:1308.3209, 2013.
[Arteaga-Velazquez:2013yva]
[8-1126]
The cooling of the Cassiopeia A neutron star as a probe of the nuclear symmetry energy and nuclear pasta, William G. Newton, Kyleah Murphy, Joshua Hooker, Bao-An Li, Astrophys.J. 779 (2013) L4, arXiv:1308.2137.
[Newton:2013zaa]
[8-1127]
Establishing the astrophysical origin of a signal in a neutrino telescope, Paolo Lipari, arXiv:1308.2086, 2013.
[Lipari:2013taa]
[8-1128]
Are IceCube neutrinos unveiling PeV-scale decaying dark matter?, Arman Esmaili, Pasquale Dario Serpico, JCAP 1311 (2013) 054, arXiv:1308.1105.
[Esmaili:2013gha]
[8-1129]
Long-lived PeV-EeV Neutrinos from GRB Blastwave, Soebur Razzaque, Phys. Rev. D88 (2013) 103003, arXiv:1307.7596.
[Razzaque:2013dsa]
[8-1130]
Indirect Searches for Decaying Dark Matter, Alejandro Ibarra, David Tran, Christoph Weniger, Int.J.Mod.Phys. A28 (2013) 1330040, arXiv:1307.6434.
[Ibarra:2013cra]
[8-1131]
Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, J. Billard, L. Strigari, E. Figueroa-Feliciano, Phys. Rev. D89 (2014) 023524, arXiv:1307.5458.
[Billard:2013qya]
[8-1132]
Establishing a relation between mass and spin of stellar mass black holes, Indrani Banerjee, Banibrata Mukhopadhyay, Phys. Rev. Lett. 111 (2013) 061101, arXiv:1307.4075.
[Banerjee:2013vla]
[8-1133]
A peak in the cosmic ray spectrum at 4.5 PeV?, Robert Ehrlich, arXiv:1307.3944, 2013.
[Ehrlich:2013zea]
[8-1134]
Photohadronic Origin of the TeV-PeV Neutrinos Observed in IceCube, Walter Winter, Phys. Rev. D88 (2013) 083007, arXiv:1307.2793.
[Winter:2013cla]
[8-1135]
The Galactic Pevatron, A. Neronov, D.V. Semikoz, C. Tchernin, Phys. Rev. D89 (2014) 103002, arXiv:1307.2158.
[Neronov:2013lza]
[8-1136]
TeV-PeV neutrinos over the atmospheric background: originating from two groups of sources?, Hao-Ning He, Rui-Zhi Yang, Yi-Zhong Fan, Da-Ming Wei, arXiv:1307.1450, 2013.
[He:2013zpa]
[8-1137]
Neutrino-cooled Accretion Model with Magnetic Coupling for X-ray Flares in GRBs, Yang Luo, Wei-Min Gu, Tong Liu, Ju-Fu Lu, Astrophys.J. 773 (2013) 142, arXiv:1306.6690.
[Luo:2013kza]
[8-1138]
Constraining Neutrino Velocities and Lorentz Invariance Violation in the Neutrino Sector using the IceCube PeV Neutrino Events, Floyd W. Stecker, Astropart.Phys. 56 (2014) 16, arXiv:1306.6095.
[Stecker:2013jfa]
[8-1139]
Pinning down the cosmic ray source mechanism with new IceCube data, Luis A. Anchordoqui et al., Phys. Rev. D89 (2014) 083003, arXiv:1306.5021.
[Anchordoqui:2013qsi]
[8-1140]
Imprint of Explosion Mechanism on Supernova Relic Neutrinos, Ken'ichiro Nakazato, Phys. Rev. D88 (2013) 083012, arXiv:1306.4526.
[Nakazato:2013maa]
[8-1141]
On the Hadronuclear Origin of PeV Neutrinos Observed with IceCube, Kohta Murase, Markus Ahlers, Brian C. Lacki, Phys. Rev. D88 (2013) 121301, arXiv:1306.3417.
[Murase:2013rfa]
[8-1142]
Measuring the Cooling of the Neutron Star in Cassiopeia A with all Chandra X-ray Observatory Detectors, K. G. Elshamouty et al., Astrophys.J. 777 (2013) 22, arXiv:1306.3387.
[Elshamouty:2013nfa]
[8-1143]
Demystifying the PeV Cascades in IceCube: Less (Energy) is More (Events), Ranjan Laha, John F Beacom, Basudeb Dasgupta, Shunsaku Horiuchi, Kohta Murase, Phys. Rev. D 88, 043009 (2013) 043009, arXiv:1306.2309.
[Laha:2013lka]
[8-1144]
TeV-PeV Neutrinos from Low-Power Gamma-Ray Burst Jets inside Stars, Kohta Murase, Kunihito Ioka, Phys. Rev. Lett. 111 (2013) 121102, arXiv:1306.2274.
[Murase:2013ffa]
[8-1145]
Ultra High Energy Neutrinos: Absorption, Thermal Effects and Signatures, Cecilia Lunardini, Eray Sabancilar, Lili Yang, JCAP 08 (2013) 014, arXiv:1306.1808.
[Lunardini:2013iwa]
[8-1146]
The fraction of muon tracks in cosmic neutrinos, Francesco Vissani, Giulia Pagliaroli, Francesco L. Villante, JCAP 1309 (2013) 017, arXiv:1306.0211.
[Vissani:2013iga]
[8-1147]
A panchromatic view of the restless SN2009ip reveals the explosive ejection of a massive star envelope, R. Margutti et al., Astrophys.J. 780 (2014) 21, arXiv:1306.0038.
[Margutti:2013pfa]
[8-1148]
Ice Cube Observed PeV Neutrinos from AGN Cores, Floyd W. Stecker, Phys. Rev. D 88, 047301 (2013) 047301, arXiv:1305.7404.
[Stecker:2013fxa]
[8-1149]
Superheavy Particle Origin of IceCube PeV Neutrino Events, Vernon Barger, Wai-Yee Keung, Phys.Lett. B (2013) 190-193, arXiv:1305.6907.
[Barger:2013pla]
[8-1150]
On the neutrino non-detection of GRB 130427A, Shan Gao, Kazumi Kashiyama, Peter Meszaros, Astrophys.J. 772 (2013) L4, arXiv:1305.6055.
[Gao:2013fra]
[8-1151]
Double Neutrino Production and Detection in Neutrino Detectors, Don van der Drift, Spencer R. Klein, Phys. Rev. D88 (2013) 033013, arXiv:1305.5277.
[vanderDrift:2013zga]
[8-1152]
Hadronic-Origin orphan TeV flare from the 1ES 1959+650, Sarira Sahu, Andres Felipe Osorio Oliveros, Juan Carlos Sanabria, Phys. Rev. D87 (2013) 103015, arXiv:1305.4985.
[Sahu:2013ixa]
[8-1153]
Neutrino signals from ultracompact minihalos and constraints on the primordial curvature perturbation, Yupeng Yang, Guilin Yang, Hongshi Zong, Phys. Rev. D87 (2013) 103525, arXiv:1305.4213.
[Yang:2013dsa]
[8-1154]
Galactic PeV Neutrinos, Nayantara Gupta, Astropart. Phys. 48 (2013) 75, arXiv:1305.4123.
[Gupta:2013xfa]
[8-1155]
Neutrino signal from extended Galactic sources in IceCube, C. Tchernin, J.A. Aguilar, A. Neronov, T. Montaruli, Astron.Astrophys. 560 (2013) A67, arXiv:1305.4113.
[Tchernin:2013wfa]
[8-1156]
An exploration of hadronic interactions in blazars using IceCube, C. Tchernin, J.A. Aguilar, A. Neronov, T. Montaruli, Astron.Astrophys. 555 (2013) A70, arXiv:1305.3524.
[Tchernin:2013bsa]
[8-1157]
Revisiting the hot matter in the center of gamma-ray bursts and supernova, A. Li, T. Liu, Astron.Astrophys. 555 (2013) A129, arXiv:1305.2530.
[Li:2013daa]
[8-1158]
On the Minimum Dark Matter Mass Testable by Neutrinos from the Sun, Giorgio Busoni, Andrea De Simone, Wei-Chih Huang, JCAP 1307 (2013) 010, arXiv:1305.1817.
[Busoni:2013kaa]
[8-1159]
High energy emission of GRB 130427A: evidence for inverse Compton radiation, Yi-Zhong Fan et al., ApJ 776 (2013) 95, arXiv:1305.1261.
[Fan:2013zoa]
[8-1160]
Combustion of a neutron star into a strange quark star: the neutrino signal, G. Pagliara, M. Herzog, F.K. Ropke, Phys. Rev. D 87, 103007 (2013) 103007, arXiv:1304.6884.
[Pagliara:2013tza]
[8-1161]
Complementarity of direct and indirect Dark Matter detection experiments, Chiara Arina, Gianfranco Bertone, Hamish Silverwood, Phys. Rev. D88 (2013) 013002, arXiv:1304.5119.
[Arina:2013jya]
[8-1162]
Diffuse emission of TeV Neutrinos and Gamma-rays from young pulsars by Photo-meson interaction in the galaxy, Zhi-Xiong Li, Gui-Fang Lin, Wei-Wei Na, Res. Astron. Astrophys. 13 (2013) 1097, arXiv:1304.3895.
[Li:2013kza]
[8-1163]
Neutron-Proton-Conversion Acceleration at Subphotospheres of Relativistic Outflows, Kazumi Kashiyama, Kohta Murase, Peter Meszaros, Phys. Rev. Lett. 111, 131103 (2013), arXiv:1304.1945.
[Kashiyama:2013ata]
[8-1164]
Neutrinos at IceCube from Heavy Decaying Dark Matter, Brian Feldstein, Alexander Kusenko, Shigeki Matsumoto, Tsutomu T. Yanagida, Phys. Rev. D88 (2013) 015004, arXiv:1303.7320.
[Feldstein:2013kka]
[8-1165]
Rapid cooling of Cas A as a phase transition in dense QCD, Armen Sedrakian, Astron. $\text{\&}$ Astrophys. 555, L10 (2013) L10, arXiv:1303.5380.
[Sedrakian:2013pva]
[8-1166]
Invisible decays of ultra-high energy neutrinos, L. Dorame, O.G. Miranda, J.W.F. Valle, Front. Phys. 1 (2013) 25, arXiv:1303.4891.
[Dorame:2013lka]
[8-1167]
Back-to-Back Black Holes decay Signature at Neutrino Observatories, Nicusor Arsene, Xavier Calmet, Lauretiu Ioan Caramete, Octavian Micu, Astropart.Phys. 54 (2014) 132-138, arXiv:1303.4603.
[Arsene:2013nca]
[8-1168]
Probing the Dark Matter mass and nature with neutrinos, Mattias Blennow, Marcus Carrigan, Enrique Fernandez Martinez, JCAP 1306 (2013) 038, arXiv:1303.4530.
[Blennow:2013pya]
[8-1169]
Ultra-relativistic, neutrino driven flows in GRBs: A double transonic flow solution in Schwarzschild spacetime, Amir Levinson, Noemie Globus, Astrophys.J. 770 (2013) 159, arXiv:1303.4261.
[Levinson:2013mwa]
[8-1170]
Quasi-Thermal Neutrinos from Rotating Proto-Neutron Stars, Kohta Murase, Basudeb Dasgupta, Todd A. Thompson, Phys. Rev. D89 (2014) 043012, arXiv:1303.2612.
[Murase:2013mpa]
[8-1171]
The Strategy of Discrimination between Flavors for Detection of Cosmogenic Neutrinos, Kwang-Chang Lai, Chih-Ching Chen, Pisin Chen, Nucl. Phys. Proc. Suppl. 246-247 (2014) 95-98, arXiv:1303.1949.
[Lai:2013kja]
[8-1172]
Possible relevance of quantum spacetime for neutrino-telescope data analyses, Giovanni Amelino-Camelia, Dafne Guetta, Tsvi Piran, arXiv:1303.1826, 2013.
[Amelino-Camelia:2013jga]
[8-1173]
Diffuse PeV neutrino emission from Ultra-Luminous Infrared Galaxies, Hao-Ning He, Tao Wang, Yi-Zhong Fan, Si-Ming Liu, Da-Ming Wei, Phys. Rev. D87 (2013) 063011, arXiv:1303.1253.
[He:2013cqa]
[8-1174]
PeV neutrinos from intergalactic interactions of cosmic rays emitted by active galactic nuclei, Oleg E. Kalashev, Alexander Kusenko, Warren Essey, Phys. Rev. Lett. 111, 041103 (2013) 041103, arXiv:1303.0300.
[Kalashev:2013vba]
[8-1175]
Constraining GRB as Source for UHE Cosmic Rays through Neutrino Observations, Pisin Chen, EAS Publ.Ser. 61 (2013) 647-655, arXiv:1302.5319.
[Chen:2013vna]
[8-1176]
Is the Galactic Cosmic Ray Spectrum Constant in Time?, David Eichler, Rahul Kumar, Martin Pohl, Astrophys.J. 769 (2013) 138, arXiv:1302.5112.
[Eichler:2013sma]
[8-1177]
Upper bounds on r-mode amplitudes from observations of LMXB neutron stars, Simin Mahmoodifar, Tod Strohmayer, Astrophys.J. 773 (2013) 140, arXiv:1302.1204.
[Mahmoodifar:2013quw]
[8-1178]
Limits on the source properties of FR-I galaxies from high-energy neutrino and gamma observations, Isaac Saba, Julia Becker Tjus, Francis Halzen, Astropart.Phys. 48 (2013) 30-36, arXiv:1302.1015.
[Saba:2013ke]
[8-1179]
Rapid Spin Deceleration of Magnetized Proto-Neutron Stars via Asymmetric Neutrino Emission, T. Maruyama et al., Phys. Rev. C89 (2014) 035801, arXiv:1301.7495.
[Maruyama:2013rt]
[8-1180]
UHECR escape mechanisms for protons and neutrons from GRBs, and the cosmic ray-neutrino connection, Philipp Baerwald, Mauricio Bustamante, Walter Winter, Astrophys.J. 768 (2013) 186, arXiv:1301.6163.
[Baerwald:2013pu]
[8-1181]
Astrophysical neutrino flavor ratios in the presence of sterile neutrinos, D. Hollander, arXiv:1301.5313, 2013.
[Hollander:2013im]
[8-1182]
Subphotospheric Neutrinos from Gamma-Ray Bursts: The Role of Neutrons, Kohta Murase, Kazumi Kashiyama, Peter Meszaros, Phys. Rev. Lett. 111 (2013) 131102, arXiv:1301.4236.
[Murase:2013hh]
[8-1183]
Detection Prospects for GeV Neutrinos from Collisionally Heated Gamma-ray Bursts with IceCube/DeepCore, Imre Bartos, Andrei Beloborodov, Kevin Hurley, Szabolcs Marka, Phys. Rev. Lett. 110 (2013) 241101, arXiv:1301.4232.
[Bartos:2013hf]
[8-1184]
Effects of Beyond Standard Model Physics on GRB Neutrinos, Reetanjali Moharana, Debasish Borah, arXiv:1301.4097, 2013.
[Moharana:2013an]
[8-1185]
Cosmic PeV Neutrinos and the Sources of Ultrahigh Energy Protons, Matthew D. Kistler, Todor Stanev, Hasan Yuksel, Phys. Rev. D90 (2014) 123006, arXiv:1301.1703.
[Kistler:2013my]
[8-1186]
Uncovering neutrinos from cosmic ray factories: the Multi Point Source method, Yolanda Sestayo, Elisa Resconi, Astropart.Phys. 44 (2013) 15-23, arXiv:1301.1529.
[Sestayo:2013hb]
[8-1187]
The Cosmic MeV Neutrino Background as a Laboratory for Black Hole Formation, Hasan Yuksel, Matthew D. Kistler, Phys. Lett. B751 (2015) 413-417, arXiv:1212.4844.
[Yuksel:2012zy]
[8-1188]
The propagation of neutrino-driven jets in Wolf-Rayet stars, Hiroki Nagakura, Astrophys.J. 764 (2013) 139, arXiv:1212.4407.
[Nagakura:2012mt]
[8-1189]
How Gravitational-wave Observations Can Shape the Gamma-ray Burst Paradigm, Imre Bartos, Patrick Brady, Szabolcs Marka, Class.Quant.Grav. 30 (2013) 123001, arXiv:1212.2289.
[Bartos:2012vd]
[8-1190]
Bayesian Approach for a Neutrino Point Source Analysis, Debanjan Bose, Lionel Brayeur, Martin Casier, Geraldina Golup, Nick van Eijndhoven, Astroparticle Physics 50-52C (2013) , pp. 57-64, arXiv:1212.2008.
[Bose:2012qh]
[8-1191]
Estimation of the neutrino flux and resulting constraints on hadronic emission models for Cyg X-3 using AGILE data, Philipp Baerwald, Dafne Guetta, ApJ 773, 159 (2013) 159, arXiv:1212.1457.
[Baerwald:2012yd]
[8-1192]
Diffuse PeV neutrinos from gamma-ray bursts, Ruo-Yu Liu, Xiang-Yu Wang, Astrophys.J. 766 (2013) 73, arXiv:1212.1260.
[Liu:2012pf]
[8-1193]
Influence of the photonuclear effect on electron-neutrino-induced electromagnetic cascades under the Landau-Pomeranchuk-Migdal regime in standard rock, Mathieu Tartare, Didier Lebrun, Francois Montanet, Phys. Rev. D86 (2012) 033005, arXiv:1211.6992.
[Tartare:2012zz]
[8-1194]
Jet Luminosity From Neutrino-Dominated Accretion Flows in Gamma-Ray Bursts, Norita Kawanaka, Tsvi Piran, Julian H. Krolik, Astrophys.J. 766 (2013) 31, arXiv:1211.5110.
[Kawanaka:2012ub]
[8-1195]
The vertical composition of neutrino-dominated accretion disks in gamma-ray bursts, Tong Liu, Li Xue, Wei-Min Gu, Ju-Fu Lu, Astrophys. J. 762 (2013) 102, arXiv:1211.2206.
[Liu:2012qca]
[8-1196]
On The Origin of IceCube's PeV Neutrinos, Ilias Cholis, Dan Hooper, JCAP 06 (2013) 030, arXiv:1211.1974.
[Cholis:2012kq]
[8-1197]
Gamma-ray bursts and the relevance of rotation-induced neutrino sterilization, D. V. Ahluwalia, Cheng-Yang Lee, Phys. Lett. B719 (2013) 218-219, arXiv:1210.8435.
[Ahluwalia:2012dj]
[8-1198]
High energy neutrino and gamma ray transients from relativistic supernova shock breakouts, Kazumi Kashiyama, Kohta Murase, Shunsaku Horiuchi, Shan Gao, Peter Meszaros, Astrophys.J. 769 (2013) L6, arXiv:1210.8147.
[Kashiyama:2013qet]
[8-1199]
Hadronic Models for LAT Prompt Emission Observed in Fermi Gamma-Ray Bursts, Patrick Crumley, Pawan Kumar, Mon.Not.Roy.Astron.Soc. 429 (2013) 3238, arXiv:1210.7802.
[Crumley:2012ra]
[8-1200]
Fermi Limit of the Neutrino Flux from Gamma-ray Bursts, Zhuo Li, Astrophys.J. 770 (2013) L40, arXiv:1210.6594.
[Li:2012gf]
[8-1201]
Neutrino Acceleration by Bulk Matter Motion and Explosion Mechanism of Gamma-Ray Bursts, Yudai Suwa, Mon.Not.Roy.Astron.Soc. 428 (2013) 2443, arXiv:1210.4162.
[Suwa:2012gi]
[8-1202]
High Energy Neutrinos from Dissipative Photospheric Models of Gamma Ray Bursts, Shan Gao, Katsuaki Asano, Peter Meszaros, JCAP 1211 (2012) 058, arXiv:1210.1186.
[Gao:2012ay]
[8-1203]
High-energy neutrino emission in gravitational collapses, Ehsan Bavarsad, She-Sheng Xue, arXiv:1210.0817, 2012.
[Bavarsad:2012ta]
[8-1204]
Model-dependent high-energy neutrino flux from Gamma-Ray Bursts, Bing Zhang, Pawan Kumar, Physical Review Letters, vol. 110, Issue 12, id. 121101 (2013) 121101, arXiv:1210.0647.
[Zhang:2012qy]
[8-1205]
Sensitivities of IceCube DeepCore Detector to Signatures of Low-Mass Dark Matter in the Galactic Halo, Fei-Fan Lee, Guey-Lin Lin, Yue-Lin Sming Tsai, Phys. Rev. D87 (2013) 025003, arXiv:1209.6226.
[Lee:2012pz]
[8-1206]
Radioactive UHECR Astronomy: Correlating gamma anisotropy and neutrino PeV events, Daniele Fargion, Acta Polytech. 53 (2013) 718-723, arXiv:1209.6090.
[Fargion:2012mw]
[8-1207]
Cosmic Neutrino Flavor Ratios with Broken $\nu_\mu-\nu_\tau$ Symmetry, Lingjun Fu, Chiu Man Ho, Thomas J. Weiler, Phys. Lett. B718 (2012) 558-565, arXiv:1209.5382.
[Fu:2012zr]
[8-1208]
Indirect Probes of Supersymmetry Breaking in the JEM-EUSO Observatory, Ivone F. M. Albuquerque, Jairo Cavalcante de Souza, Phys. Rev. D87 (2013) 015018, arXiv:1209.4866.
[Albuquerque:2012qz]
[8-1209]
PeV neutrinos from the propagation of ultra-high energy cosmic rays, Esteban Roulet, Guenter Sigl, Arjen van Vliet, Silvia Mollerach, JCAP 1301 (2013) 028, arXiv:1209.4033.
[Roulet:2012rv]
[8-1210]
On the interpretation of IceCube cascade events in terms of the Glashow resonance, Atri Bhattacharya, Raj Gandhi, Werner Rodejohann, Atsushi Watanabe, arXiv:1209.2422, 2012.
[Bhattacharya:2012fh]
[8-1211]
Galaxy Clusters as Reservoirs of Heavy Dark Matter and High-Energy Cosmic Rays: Constraints from Neutrino Observations, Kohta Murase, John F. Beacom, JCAP 1302 (2013) 028, arXiv:1209.0225.
[Murase:2012rd]
[8-1212]
GeV-TeV gamma-rays and neutrinos from the Nova V407 Cygni, Julian Sitarek, Wlodek Bednarek, Phys. Rev. D86 (2012) 063011, arXiv:1208.6200.
[Sitarek:2012cp]
[8-1213]
A two-component model for the high-energy variability of blazars. Application to PKS 2155-304, Matias M. Reynoso, Gustavo E. Romero, Maria C. Medina, Astron.Astrophys. 545 (2012) A125, arXiv:1208.5284.
[Reynoso:2012wx]
[8-1214]
Neutrino Decays over Cosmological Distances and the Implications for Neutrino Telescopes, Philipp Baerwald, Mauricio Bustamante, Walter Winter, JCAP 1210 (2012) 020, arXiv:1208.4600.
[Baerwald:2012kc]
[8-1215]
Minimal Cosmogenic Neutrinos, Markus Ahlers, Francis Halzen, Phys. Rev. D86 (2012) 083010, arXiv:1208.4181.
[Ahlers:2012rz]
[8-1216]
Bremsstrahlung signatures of dark matter annihilation in the Sun, Keita Fukushima, Yu Gao, Jason Kumar, Danny Marfatia, Phys. Rev. D86 (2012) 076014, arXiv:1208.1010.
[Fukushima:2012sp]
[8-1217]
A novel way of constraining WIMPs annihilations in the Sun: MeV neutrinos, Nicolas Bernal, Justo Martin-Albo, Sergio Palomares-Ruiz, JCAP 1308 (2013) 011, arXiv:1208.0834.
[Bernal:2012qh]
[8-1218]
New Sensitivity to Solar WIMP Annihilation using Low-Energy Neutrinos, Carsten Rott, Jennifer Siegal-Gaskins, John F. Beacom, Physical Review D 88, 055005 (2013) 055005, arXiv:1208.0827.
[Rott:2012qb]
[8-1219]
Fast time variations of supernova neutrino signals from 3-dimensional models, Tina Lund, Annop Wongwathanarat, Hans-Thomas Janka, Ewald Muller, Georg Raffelt, Phys. Rev. D86 (2012) 105031, arXiv:1208.0043.
[Lund:2012vm]
[8-1220]
Implications of ultra-high energy neutrino flux constraints for Lorentz-invariance violating cosmogenic neutrinos, P. W. Gorham et al., Phys. Rev. D86 (2012) 103006, arXiv:1207.6425.
[Gorham:2012qs]
[8-1221]
Potential of a Neutrino Detector in the ANDES Underground Laboratory for Geophysics and Astrophysics of Neutrinos, P. A. N. Machado, T. Muhlbeier, H. Nunokawa, R. Zukanovich Funchal, Phys. Rev. D86 (2012) 125001, arXiv:1207.5454.
[Machado:2012ee]
[8-1222]
IceCube Neutrino Initiated Cascade Events: PeV Electron-antineutrinos at Glashow Resonance, V. Barger, J. Learned, S. Pakvasa, Phys. Rev. D87 (2013) 037302, arXiv:1207.4571.
[Barger:2012mz]
[8-1223]
Multi-Component Dark Matter Systems and Their Observation Prospects, Mayumi Aoki, Michael Duerr, Jisuke Kubo, Hiroshi Takano, Phys. Rev. D86 (2012) 076015, arXiv:1207.3318.
[Aoki:2012ub]
[8-1224]
Search for a dark matter particle family, Yukio Tomozawa, arXiv:1207.2465, 2012.
[Tomozawa:2012vf]
[8-1225]
Use of event-level neutrino telescope data in global fits for theories of new physics, P. Scott et al. (IceCube), JCAP JCAP11 (2012) 057, arXiv:1207.0810.
[IceCube:2012fvn]
[8-1226]
Leptonic CP violation and mixing patterns at neutrino telescopes, Davide Meloni, Tommy Ohlsson, Phys. Rev. D86 (2012) 067701, arXiv:1206.6886.
[Meloni:2012nk]
[8-1227]
Gamma Ray Bursts Scaling Relations to test cosmological models, S. Capozziello et al., arXiv:1206.6700, 2012.
[Capozziello:2012fp]
[8-1228]
CRPropa 2.0 - a Public Framework for Propagating High Energy Nuclei, Secondary Gamma Rays and Neutrinos, Karl-Heinz Kampert et al., Astropart. Phys. 42 (2013) 41-51, arXiv:1206.3132.
[Kampert:2012fi]
[8-1229]
Neutrino signals from electroweak bremsstrahlung in solar WIMP annihilation, Nicole F. Bell, Amelia J. Brennan, Thomas D. Jacques, JCAP 1210 (2012) 045, arXiv:1206.2977.
[Bell:2012dk]
[8-1230]
Cosmic Strings as Emitters of Extremely High Energy Neutrinos, Cecilia Lunardini, Eray Sabancilar, Phys. Rev. D86 (2012) 085008, arXiv:1206.2924.
[Lunardini:2012ct]
[8-1231]
Constraining Very Heavy Dark Matter Using Diffuse Backgrounds of Neutrinos and Cascaded Gamma Rays, Kohta Murase, John F. Beacom, JCAP 1210 (2012) 043, arXiv:1206.2595.
[Murase:2012xs]
[8-1232]
Searching for the High Energy Neutrino counterpart of the Fermi Bubbles signal or from Dark Matter annihilation, Ilias Cholis, Phys. Rev. D 88, 063524 (2013) 063524, arXiv:1206.1607.
[Cholis:2012fr]
[8-1233]
Neutrinos in IceCube/KM3NeT as probes of Dark Matter Substructures in Galaxy Clusters, Basudeb Dasgupta, Ranjan Laha, Phys. Rev. D86 (2012) 093001, arXiv:1206.1322.
[Dasgupta:2012bd]
[8-1234]
Probing the Structure of Jet Driven Core-Collapse Supernova and Long Gamma Ray Burst Progenitors with High Energy Neutrinos, Imre Bartos, Basudeb Dasgupta, Szabolcs Marka, Phys. Rev. D86 (2012) 083007, arXiv:1206.0764.
[Bartos:2012sg]
[8-1235]
Gravitational Wave Signatures of Hyperaccreting Collapsar Disks, Kei Kotake, Tomoya Takiwaki, Seiji Harikae, Astrophys. J. 755 (2012) 84, arXiv:1205.6061.
[Kotake:2012it]
[8-1236]
Gamma-Ray and Neutrino Backgrounds as Probes of the High-Energy Universe: Hints of Cascades, General Constraints, and Implications for TeV Searches, Kohta Murase, John F. Beacom, Hajime Takami, JCAP 1208 (2012) 030, arXiv:1205.5755.
[Murase:2012df]
[8-1237]
Probing the stability of superheavy dark matter particles with high-energy neutrinos, Arman Esmaili, Alejandro Ibarra, Orlando L. G. Peres, JCAP 1211 (2012) 034, arXiv:1205.5281.
[Esmaili:2012us]
[8-1238]
A reduction in the UHE neutrino flux due to neutrino spin precession, J. Barranco, O. G. Miranda, C. A. Moura, A. Parada, Phys. Lett. B718 (2012) 26-29, arXiv:1205.4285.
[Barranco:2012xj]
[8-1239]
Neutrinos And Cosmic Rays From Gamma Ray Bursts, Arnon Dar, Astrophys.J. 775 (2012) 16, arXiv:1205.3479.
[Dar:2012di]
[8-1240]
Gamma Ray and Neutrino Flux from Annihilation of Neutralino Dark Matter at Galactic Halo Region in mAMSB Model, Kamakshya Prasad Modak, Debasish Majumdar, J. Phys. G: Nucl. Part. Phys. 40 (2013) 075201, arXiv:1205.1996.
[Modak:2012wk]
[8-1241]
Tools for Studying Low-Mass Dark Matter at Neutrino Detectors, Jason Kumar, John G. Learned, Katherine Richardson, Stefanie Smith, Phys. Rev. D86 (2012) 073002, arXiv:1204.5120.
[Kumar:2012uh]
[8-1242]
How many Ultra High Energy Cosmic Rays could we expect from Centaurus A?, Nissim Fraija, M. M. Gonzalez, M. Perez, A. Marinelli, Astrophys. J. 753 (2012) 40, arXiv:1204.4500.
[Fraija:2012nli]
[8-1243]
Gravitational Waves of Jet Precession in Gamma-ray Bursts, Mou-Yuan Sun, Tong Liu, Wei-Min Gu, Ju-Fu Lu, Astrophys. J. 752 (2012) 31, arXiv:1204.2028.
[Sun:2012bf]
[8-1244]
Icecube non-detection of GRBs: Constraints on the fireball properties, Hao-Ning He et al., Astrophys. J. 752 (2012) 29, arXiv:1204.0857.
[He:2012tq]
[8-1245]
The impact of excited neutrinos on $\nu \bar\nu \to \gamma \gamma$ process, S. C. Inan, M. Koksal, Adv. High Energy Phys. 2012 (2012) 571874, arXiv:1203.5881.
[Inan:2012eh]
[8-1246]
Earthly measurements of the smallest dark matter halos, Jonathan M. Cornell, Stefano Profumo, JCAP 1206 (2012) 011, arXiv:1203.1100.
[Cornell:2012tb]
[8-1247]
Neutrino Emission from Helium White Dwarfs with Condensed Cores, Paulo F. Bedaque, Evan Berkowitz, Aleksey Cherman, arXiv:1203.0969, 2012.
[Bedaque:2012mr]
[8-1248]
Cherenkov Tau Shower Earth-Skimming Method for PeV-EeV Tau Neutrino Observation, Yoichi Asaoka, Makoto Sasaki, Astropart.Phys. 41 (2013) 7-16, arXiv:1202.5656.
[Asaoka:2012em]
[8-1249]
Constraints on the origin of the ultra-high energy cosmic-rays using cosmic diffuse neutrino flux limits: An analytical approach, Shigeru Yoshida, Aya Ishihara, Phys. Rev. D85 (2012) 063002, arXiv:1202.3522.
[Yoshida:2012gf]
[8-1250]
Neutrinos from Off-Shell Final States and the Indirect Detection of Dark Matter, John Kearney, Aaron Pierce, Phys. Rev. D86 (2012) 043527, arXiv:1202.0284.
[Kearney:2012rf]
[8-1251]
Distinguishing among dark matter annihilation channels with neutrino telescopes, Rouzbeh Allahverdi, Katherine Richardson, Phys. Rev. D85 (2012) 113012, arXiv:1201.6603.
[Allahverdi:2012bi]
[8-1252]
Hadronic-Origin TeV gamma-Rays and Ultra-High Energy Cosmic Rays from Centaurus A, Sarira Sahu, Bing Zhang, Nissim Fraija, Phys. Rev. D85 (2012) 043012, arXiv:1201.4191.
[Sahu:2012wv]
[8-1253]
WIMP diffusion in the solar system including solar WIMP-nucleon scattering, Sofia Sivertsson, Joakim Edsjo, Phys. Rev. D85 (2012) 123514, arXiv:1201.1895.
[Sivertsson:2012qj]
[8-1254]
Multi-GeV Neutrino Emission from Magnetized Gamma Ray Bursts, Shan Gao, Peter Meszaros, Phys. Rev. D85 (2012) 103009, arXiv:1112.5664.
[Gao:2011xu]
[8-1255]
High Energy Neutrinos from the Fermi Bubbles, Cecilia Lunardini, Soebur Razzaque, Phys. Rev. Lett. 108 (2012) 221102, arXiv:1112.4799.
[Lunardini:2011br]
[8-1256]
Search for Radiative Decays of Cosmic Background Neutrino using Cosmic Infrared Background Energy Spectrum, Shin-Hong Kim, Ken-ichi Takemasa, Yuji Takeuchi, Shuji Matsuura, J. Phys. Soc Jap. 81 (2012) 024101, arXiv:1112.4568.
[Kim:2011ye]
[8-1257]
Galactic Sources of High-Energy Neutrinos: Highlights, Francesco Vissani, Felix Aharonian, Nucl. Instrum. Meth. A692 (2012) 5-12, arXiv:1112.3911.
[Vissani:2011ea]
[8-1258]
Nucleosynthesis of Nickel-56 from Gamma-Ray Burst Accretion Disks, R. Surman, G. C. McLaughlin, N. Sabbatino, Astrophys. J. 743 (2011) 155, arXiv:1112.2673.
[Surman:2011aa]
[8-1259]
Note on the Normalization of Predicted GRB Neutrino Flux, Zhuo Li, Phys. Rev. D85 (2012) 027301, arXiv:1112.2240.
[Li:2011ah]
[8-1260]
Cooling curves for neutron stars with hadronic matter and quark matter, Shaoyu Yin et al., arXiv:1112.1880, 2011.
[Yin:2011aa]
[8-1261]
Multimessenger Science Reach and Analysis Method for Common Sources of Gravitational Waves and High-energy Neutrinos, Bruny Baret et al., Phys. Rev. D85 (2012) 103004, arXiv:1112.1140.
[Baret:2011nu]
[8-1262]
Neutrino Emission from Gamma-Ray Burst Fireballs, Revised, Svenja Hummer, Philipp Baerwald, Walter Winter, Phys. Rev. Lett. 108 (2012) 231101, arXiv:1112.1076.
[Hummer:2011ms]
[8-1263]
UHE neutrinos from Pop III stars: concept and constraints, V. Berezinsky, P. Blasi, Phys. Rev. D85 (2012) 123003, arXiv:1111.5461.
[Berezinsky:2011bb]
[8-1264]
Flavoring Monochromatic Neutrino Flux from Dark Matter Annihilation, Yasaman Farzan, JHEP 02 (2012) 091, arXiv:1111.1063.
[Farzan:2011ck]
[8-1265]
Extragalactic and galactic gamma-rays and neutrinos from annihilating dark matter, Rouzbeh Allahverdi, Sheldon Campbell, Bhaskar Dutta, Phys. Rev. D85 (2012) 035004, arXiv:1110.6660.
[Allahverdi:2011sx]
[8-1266]
Determining the dark matter mass with DeepCore, Chitta R. Das, Olga Mena, Sergio Palomares-Ruiz, Silvia Pascoli, Phys.Lett. B725 (2013) 297-301, arXiv:1110.5095.
[Das:2011yr]
[8-1267]
The neutrino velocity anomaly as an explanation of the missing observation of neutrinos in coincidence with GRB, D. Autiero, P. Migliozzi, A. Russo, JCAP 1111 (2011) 026, arXiv:1109.5378.
[Autiero:2011hh]
[8-1268]
Lorentz Factor-Isotropic Luminosity/Energy Correlations of GRBS and Their Interpretation, Jing Lv et al., Astrophys. J. 751 (2012) 49, arXiv:1109.3757.
[Lu:2011ajn]
[8-1269]
The Glashow resonance at IceCube: signatures, event rates and $pp$ vs. $pgamma$ interactions, Atri Bhattacharya, Raj Gandhi, Werner Rodejohann, Atsushi Watanabe, JCAP 1110 (2011) 017, arXiv:1108.3163.
[Bhattacharya:2011qu]
[8-1270]
Observational Constraints on Multi-messenger Sources of Gravitational Waves and High-energy Neutrinos, Imre Bartos, Chad Finley, Szabolcs Marka, Phys. Rev. Lett. 107 (2011) 251101, arXiv:1108.3001.
[Bartos:2011aa]
[8-1271]
Downward-going tau neutrinos as a new prospect of detecting dark matter, Nicolao Fornengo, Viviana Niro, JHEP 11 (2011) 133, arXiv:1108.2630.
[Fornengo:2011em]
[8-1272]
Extremely High Energy Neutrinos from Cosmic Strings, Veniamin Berezinsky, Eray Sabancilar, Alexander Vilenkin, Phys. Rev. D84 (2011) 085006, arXiv:1108.2509.
[Berezinsky:2011cp]
[8-1273]
Radio Cherenkov signals from the Moon: neutrinos and cosmic rays, Yu Seon Jeong, Mary Hall Reno, Ina Sarcevic, Astropart. Phys. 35 (2012) 383-395, arXiv:1108.2459.
[Jeong:2011am]
[8-1274]
On the detection of TeV gamma-rays from GRB with km-cube neutrino telescopes -- I. Muon event rate from single GRBs, Tri L. Astraatmadja, Mon. Not. Roy. Astron. Soc. 418 (2011) 1774-1786, arXiv:1108.1720.
[Astraatmadja:2011fn]
[8-1275]
Nearby low-luminosity GRBs as the sources of ultra-high energy cosmic rays revisited, Ruo-Yu Liu, Xiang-Yu Wang, Zi-Gao Dai, Mon.Not.Roy.Astron.Soc. 418 (2011) 1382, arXiv:1108.1551.
[Liu:2011cua]
[8-1276]
Simulations of Accretion Powered Supernovae in the Progenitors of Gamma Ray Bursts, Christopher C. Lindner, Milos Milosavljevic, Rongfeng Shen, Pawan Kumar, Astrophys. J. 750 (2012) 163, arXiv:1108.1415.
[Lindner:2011be]
[8-1277]
GRBs by thin persistent precessing lepton Jets: the role of the unobserved Neutrino signal, Daniele Fargion, Mem. Soc. Ast. It. 83 (2011) 312-318, arXiv:1108.0638.
[Fargion:2011dm]
[8-1278]
Systematics in Aggregated Neutrino Fluxes and Flavor Ratios from Gamma-Ray Bursts, Philipp Baerwald, Svenja Hummer, Walter Winter, Astropart. Phys. 35 (2012) 508-529, arXiv:1107.5583.
[Baerwald:2011ee]
[8-1279]
Blazars as Ultra-High-Energy Cosmic-Ray Sources: Implications for TeV Gamma-Ray Observations, Kohta Murase, Charles D. Dermer, Hajime Takami, Giulia Migliori, Astrophys. J. 749 (2012) 63, arXiv:1107.5576.
[Murase:2011cy]
[8-1280]
High Energy Neutrinos from Gamma Ray Bursts, Reetanjali Moharana, Nayantara Gupta, Astropart. Phys. 36 (2012) 195, arXiv:1107.4483.
[Moharana:2011hh]
[8-1281]
Left and Right in Ultra-High Energy Neutrino Interactions, R. Fiore, V.R. Zoller, JETP Lett. 95 (2012) 55-60, arXiv:1107.4456.
[Fiore:2011gx]
[8-1282]
Constraints on the origin of ultrahigh energy cosmic rays from cosmogenic neutrinos and photons, Guillaume Decerprit, Denis Allard, Astron.Astrophys. 535 (2011) A66, arXiv:1107.3722.
[Decerprit:2011qe]
[8-1283]
Enhanced Sensitivity to Dark Matter Self-annihilations in the Sun using Neutrino Spectral Information, Carsten Rott, Takayuki Tanaka, Yoshitaka Itow, JCAP 1109 (2011) 029, arXiv:1107.3182.
[Rott:2011fh]
[8-1284]
Short Gamma-ray Bursts: the mass of the accretion disk and the initial radius of the outflow, Yi-Zhong Fan, Da-Ming Wei, Astrophys. J. 739 (2011) 47, arXiv:1107.2656.
[Fan:2011vb]
[8-1285]
Constraints on Enhanced Dark Matter Annihilation from IceCube Results, Ivone F.M. Albuquerque, Leandro J. Beraldo e Silva, Carlos Perez de los Heros, Phys. Rev. D85 (2012) 123539, arXiv:1107.2408.
[Albuquerque:2011ma]
[8-1286]
Gamma-Ray Constraints on Maximum Cosmogenic Neutrino Fluxes and UHECR Source Evolution Models, Graciela B. Gelmini, Oleg Kalashev, Dmitri V. Semikoz, JCAP 1201 (2012) 044, arXiv:1107.1672.
[Gelmini:2011kg]
[8-1287]
Neutrinos from WIMP annihilation in the Sun : Implications of a self-consistent model of the Milky Way's dark matter halo, Susmita Kundu, Pijushpani Bhattacharjee, Phys. Rev. D85 (2012) 123533, arXiv:1106.5711.
[Kundu:2011ek]
[8-1288]
Probing the tidal disruption flares of massive black holes with high-energy neutrinos, Xiang-Yu Wang, Ruo-Yu Liu, Zi-Gao Dai, K. S. Cheng, Phys. Rev. D84 (2011) 081301, arXiv:1106.2426.
[Wang:2011ip]
[8-1289]
Novel technique for supernova detection with IceCube, L. Demiroers, M. Ribordy, M. Salathe, Astropart. Phys. 35 (2012) 485-494, arXiv:1106.1937.
[Salathe:2011msx]
[8-1290]
Multi-messenger observations of neutron rich matter, C. J. Horowitz, Int.J.Mod.Phys. E20 (2011) 1, arXiv:1106.1661.
[Horowitz:2011vi]
[8-1291]
Probing annihilations and decays of low-mass galactic dark matter in IceCube DeepCore array- Part I : track events, Fei-Fan Lee, Guey-Lin Lin, Phys. Rev. D85 (2012) 023529, arXiv:1105.5719.
[Lee:2011nt]
[8-1292]
Cosmogenic gamma-rays and the composition of cosmic rays, Markus Ahlers, Jordi Salvado, Phys. Rev. D84 (2011) 085019, arXiv:1105.5113.
[Ahlers:2011sd]
[8-1293]
Estimating the significance of a signal in a multi-dimensional search, Ofer Vitells, Eilam Gross, Astropart. Phys. 35 (2011) 230-234, arXiv:1105.4355.
[Vitells:2011da]
[8-1294]
The Glashow resonance as a discriminator of UHE cosmic neutrinos originating from p-gamma and p-p collisions, Zhi-zhong Xing, Shun Zhou, Phys. Rev. D84 (2011) 033006, arXiv:1105.4114.
[Xing:2011zm]
[8-1295]
Neutrino Probes of the Nature of Light Dark Matter, Sanjib K. Agarwalla, Mattias Blennow, Enrique Fernandez Martinez, Olga Mena, JCAP 1109 (2011) 004, arXiv:1105.4077.
[Agarwalla:2011yy]
[8-1296]
Disappointing model for ultrahigh-energy cosmic rays, R. Aloisio, V. Berezinsky, A. Gazizov, J. Phys. Conf. Ser. 337 (2012) 012042, arXiv:1105.1111.
[Aloisio:2011fv]
[8-1297]
GeV Emission from Collisional Magnetized Gamma Ray Bursts, P. Meszaros, M.J. Rees, Astrophys.J. 733 (2011) L40, arXiv:1104.5025.
[Meszaros:2011hr]
[8-1298]
Neutrino flares from black hole coronae, Florencia L. Vieyro, Gustavo E. Romero, Adv. Space Res. 48 (2011) 979-984, arXiv:1104.3747.
[Vieyro:2011hd]
[8-1299]
Searching for sterile neutrinos in ice, Soebur Razzaque, A. Yu. Smirnov, JHEP 1107 (2011) 084, arXiv:1104.1390.
[Razzaque:2011ab]
[8-1300]
High-energy radiation from the massive binary system Eta Carinae, W. Bednarek, J. Pabich, Astron.Astrophys. 530 (2011) A49, arXiv:1104.1275.
[Bednarek:2011yn]
[8-1301]
New Limits on Dark Matter from Super-Kamiokande, Rolf Kappl, Martin Wolfgang Winkler, Nucl. Phys. B850 (2011) 505-521, arXiv:1104.0679.
[Kappl:2011kz]
[8-1302]
Gamma-Ray Burst without Baryonic and Magnetic Load?, Kunihito Ioka, Yutaka Ohira, Norita Kawakana, Akira Mizuta, Prog. Theor. Phys. 126 (2011) 555-564, arXiv:1103.5746.
[Ioka:2011qg]
[8-1303]
Exploring the singlet scalar dark matter from direct detections and neutrino signals via its annihilation in the Sun, Wan-Lei Guo, Yue-Liang Wu, Nucl. Phys. B867 (2013) 149-164, arXiv:1103.5606.
[Guo:2011mi]
[8-1304]
High Energy Neutrino Emission from the Earliest Gamma-Ray Bursts, Shan Gao, Kenji Toma, Peter Meszaros, Phys. Rev. D83 (2011) 103004, arXiv:1103.5477.
[Gao:2011jt]
[8-1305]
High energy cosmic-ray interactions with particles from the Sun, Kristoffer K. Andersen, Spencer R. Klein, Phys. Rev. D83 (2011) 103519, arXiv:1103.5090.
[Andersen:2011dz]
[8-1306]
Possible Origin of Rapid Variability of Gamma-Ray Bursts due to Convective Energy Transfer in Hyperaccretion Disks, Norita Kawanaka, Kazunori Kohri, Mon.Not.Roy.Astron.Soc. 419 (2012) 713, arXiv:1103.4713.
[Kawanaka:2011yb]
[8-1307]
Revealing local failed supernovae with neutrino telescopes, Lili Yang, Cecilia Lunardini, Phys. Rev. D84 (2011) 063002, arXiv:1103.4628.
[Yang:2011xd]
[8-1308]
Interpretation of neutrino flux limits from neutrino telescopes on the Hillas plot, Walter Winter, Phys. Rev. D85 (2012) 023013, arXiv:1103.4266.
[Winter:2011jr]
[8-1309]
Neutrino initiated cascades at mid and high altitudes in the atmosphere, A.D. Supanitsky, G. Medina-Tanco, Astropart. Phys. 35 (2011) 8-16, arXiv:1103.4264. To appear in Astroparticle Physics.
[Supanitsky:2011jp]
[8-1310]
Constraining emissivity of ultrahigh energy cosmic rays in the distant universe with the diffuse gamma-ray emission, Xiang-Yu Wang, Ruo-Yu Liu, Felix Aharnonian, Astrophys. J. 736 (2011) 112, arXiv:1103.3574.
[Wang:2011qc]
[8-1311]
GRBs on probation: testing the UHE CR paradigm with IceCube, M. Ahlers, M.C. Gonzalez-Garcia, F. Halzen, Astropart. Phys. 35 (2011) 87-94, arXiv:1103.3421.
[Ahlers:2011jj]
[8-1312]
Dark Matter Detection With Electron Neutrinos in Liquid Scintillation Detectors, Jason Kumar, John G. Learned, Michinari Sakai, Stefanie Smith, Phys. Rev. D84 (2011) 036007, arXiv:1103.3270.
[Kumar:2011hi]
[8-1313]
A method for untriggered time-dependent searches for multiple flares from neutrino point sources, D. Gora, E. Bernardini, A.H Cruz Silva, Astropart.Phys. 35 (2011) 201-210, arXiv:1103.2644.
[Gora:2011ty]
[8-1314]
Heavy-neutrino decays at neutrino telescopes, Manuel Masip, Pere Masjuan, Phys. Rev. D83 (2011) 091301, arXiv:1103.0689.
[Masip:2011qb]
[8-1315]
Enhanced neutrino signals from dark matter annihilation in the Sun via metastable mediators, Nicole F. Bell, Kalliopi Petraki, JCAP 1104 (2011) 003, arXiv:1102.2958.
[Bell:2011sn]
[8-1316]
Neutrino Fluxes from NUHM LSP Annihilations in the Sun, John Ellis, Keith A. Olive, Christopher Savage, Vassilis C. Spanos, Phys. Rev. D83 (2011) 085023, arXiv:1102.1988.
[Ellis:2011af]
[8-1317]
Calculation of High Energy Neutrino-Nucleon Cross Sections and Uncertainties Using the MSTW Parton Distribution Functions and Implications for Future Experiments, Amy Connolly, Robert S. Thorne, David Waters, Phys. Rev. D83 (2011) 113009, arXiv:1102.0691.
[Connolly:2011vc]
[8-1318]
The diffuse supernova neutrino background: Expectations and uncertainties derived from SN1987A, Francesco Vissani, Giulia Pagliaroli, Astronomy $\text{\&}$ Astrophy OPHYSICS (2011) L1, arXiv:1102.0447.
[Vissani:2011kx]
[8-1319]
On the Detectability of High-Energy Galactic Neutrino Sources, Francesco Vissani, Felix Aharonian, Narek Sahakyan, Astropart. Phys. 34 (2011) 778-783, arXiv:1101.4842.
[Vissani:2011vg]
[8-1320]
Bounding the Time Delay between High-energy Neutrinos and Gravitational-wave Transients from Gamma-ray Bursts, Bruny Baret et al., Astropart. Phys. 35 (2011) 1-7, arXiv:1101.4669.
[Baret:2011tk]
[8-1321]
Dark matter at DeepCore and IceCube, V. Barger, Y. Gao, D. Marfatia, Phys. Rev. D81 (2011) 055012, arXiv:1101.4410.
[Barger:2011em]
[8-1322]
Interplay of energy dependent astrophysical neutrino flavor ratios and new physics effects, Poonam Mehta, Walter Winter, JCAP 1103 (2011) 041, arXiv:1101.2673.
[Mehta:2011qb]
[8-1323]
A 20 GeVs transparent neutrino astronomy from the North Pole?, Daniele Fargion, Daniele D'Armiento, Nucl. Phys. B, Proc. Suppl. 212-213 2011 (2011) 146-153, arXiv:1101.1991.
[Fargion:2011zx]
[8-1324]
Cen A persistence and Virgo absence versus updated maps to understand UHECR nature, D. Fargion, D. D'Armiento, arXiv:1101.0273, 2011.
[Fargion:2011pc]
[8-1325]
Confusing extragalactic neutrino flux limit at the source with absorption by ultra-light scalar field dark matter, J. Barranco, O. G. Miranda, C. A. Moura, T. I. Rashba, F. Rossi-Torres, JCAP 1010 (2011) 007, arXiv:1012.2476.
[Barranco:2010xt]
[8-1326]
Role of line-of-sight cosmic ray interactions in forming the spectra of distant blazars in TeV gamma rays and high-energy neutrinos, Warren Essey, Oleg Kalashev, Alexander Kusenko, John F. Beacom, Astrophys. J. 731 (2011) 51, arXiv:1011.6340.
[Essey:2010er]
[8-1327]
Characterizing the time variability in magnetized neutrino-cooled accretion disks: signatures of the gamma-ray burst central engine, Augusto Carballido, William H. Lee, Astrophys.J. 727 (2011) L41, arXiv:1011.5515.
[Carballido:2010nc]
[8-1328]
Search for astrophysical high energy neutrino point sources with a False Discovery Rate controlling procedure, Bruny Baret, Mathieu Labare, Daniel Bertrand, arXiv:1011.5128, 2010.
[Baret:2010zr]
[8-1329]
A comparative study of the neutrino-nucleon cross section at ultra high energies, V. P. Goncalves, P. Hepp, Phys. Rev. D83 (2011) 014014, arXiv:1011.2718.
[Machado:2011cj]
[8-1330]
A new limit on the Ultra-High-Energy Cosmic-Ray flux with the Westerbork Synthesis Radio Telescope, S. ter Veen et al., Phys. Rev. D82 (2010) 103014, arXiv:1010.6061.
[terVeen:2010gb]
[8-1331]
Long-term lightcurves from combined unified very high energy $\gamma$-ray data, M. Tluczykont et al., Astron.Astrophys. 524 (2010) A48, arXiv:1010.5659.
[Tluczykont:2010vc]
[8-1332]
A Detailed Study on the Range Fluctuations of $10^{11}$eV to $10^{18}$eV Muons in Water and the Fluctuations of the Cherenkov Lights due to the Accompanied Cascade Showers initiated by Muons, Y. Okumura, N. Takahashi, A. Misaki, arXiv:1010.5054, 2010.
[Okumura:2010fx]
[8-1333]
Diffuse Hard X-ray Emission in Starburst Galaxies as Synchrotron from Very High Energy Electrons, Brian C. Lacki, Todd A. Thompson, Astrophys. J. 762 (2013) 29, arXiv:1010.3030.
[Lacki:2010ue]
[8-1334]
Current non-conservation effects in ultra-high energy neutrino interactions, R. Fiore, V. R. Zoller, JETP Lett. 92 (2010) 654-657, arXiv:1010.2633.
[Fiore:2010ja]
[8-1335]
Neutrino emission of Fermi supernova remnants, Qiang Yuan, Peng-Fei Yin, Xiao-Jun Bi, Astropart.Phys. APH35 (2011) 33, arXiv:1010.1901.
[Yuan:2010vi]
[8-1336]
Magnetic Field and Flavor Effects on the Gamma-Ray Burst Neutrino Flux, Philipp Baerwald, Svenja Hummer, Walter Winter, Phys. Rev. D83 (2011) 067303, arXiv:1009.4010.
[Baerwald:2010fk]
[8-1337]
Gravitational radiation from precessing accretion disks in gamma-ray bursts, Gustavo E. Romero, Matias M. Reynoso, Hugo R. Christiansen, Astron. Astrophys. 524 (2010) A4, arXiv:1009.3679.
[Romero:2010ze]
[8-1338]
Probing dark matter models with neutrinos from the Galactic center, Arif Emre Erkoca, Mary Hall Reno, Ina Sarcevic, Phys. Rev. D82 (2010) 113006, arXiv:1009.2068.
[Erkoca:2010vk]
[8-1339]
Constraints on Neutrino-Nucleon Interactions at energies of 1 EeV with the IceCube Neutrino Observatory, Shigeru Yoshida, Phys. Rev. D82 (2010) 103012, arXiv:1009.1679.
[Yoshida:2010kp]
[8-1340]
Hyperaccreting Disks around Neutrons Stars and Magnetars for GRBs: Neutrino Annihilation and Strong Magnetic Fields, Dong Zhang, Z. G. Dai, AIP Conf. Proc. 1279 (2010) 271-274, arXiv:1009.1634.
[Zhang:2010jta]
[8-1341]
Cosmogenic Neutrinos: parameter space and detectabilty from PeV to ZeV, Kumiko Kotera, Denis Allard, Angela V. Olinto, JCAP 1010 (2010) 013, arXiv:1009.1382.
[Kotera:2010yn]
[8-1342]
High Energy Neutrinos from Novae in Symbiotic Binaries: The Case of V407 Cygni, Soebur Razzaque, Pierre Jean, Olga Mena, Phys. Rev. D82 (2010) 123012, arXiv:1008.5193.
[Razzaque:2010kp]
[8-1343]
Ultrahigh energy neutrino scattering: an update, Martin M. Block, Phuoc Ha, Douglas W. McKay, Phys. Rev. D82 (2010) 077302, arXiv:1008.4555.
[Block:2010ud]
[8-1344]
Testing Lorentz Invariance with Neutrinos from Ultrahigh Energy Cosmic Ray Interactions, Sean T. Scully, Floyd W. Stecker, Astropart. Phys. 34 (2011) 575-580, arXiv:1008.4034.
[Scully:2010iv]
[8-1345]
IceCube expectations for two high-energy neutrino production models at active galactic nuclei, C.A. Arguelles, M. Bustamante, A.M. Gago, JCAP 1012 (2010) 005, arXiv:1008.1396.
[Arguelles:2010yj]
[8-1346]
Indirect Dark Matter Detection Limits from the Ultra-Faint Milky Way Satellite Segue 1, Rouven Essig, Neelima Sehgal, Louis E. Strigari, Marla Geha, Joshua D. Simon, Phys. Rev. D82 (2010) 123503, arXiv:1007.4199.
[Essig:2010em]
[8-1347]
Tau neutrino and antineutrino cross sections, Yu Seon Jeong, Mary Hall Reno, Phys. Rev. D82 (2010) 033010, arXiv:1007.1966.
[Jeong:2010nt]
[8-1348]
Electron and Photon Interactions in the Regime of Strong LPM Suppression, Lisa Gerhardt, Spencer R. Klein, Phys. Rev. D82 (2010) 074017, arXiv:1007.0039.
[Gerhardt:2010bj]
[8-1349]
Energy dependent neutrino flavor ratios from generic cosmic accelerators on the HILLAS plot, Svenja Hummer, Michele Maltoni, Walter Winter, Carlos Yaguna, Astropart. Phys. 34 (2010) 205-224, arXiv:1007.0006.
[Hummer:2010ai]
[8-1350]
Astrophysical limitations to the identification of dark matter: indirect neutrino signals vis-a-vis direct detection recoil rates, Pasquale D. Serpico, Gianfranco Bertone, Phys. Rev. D82 (2010) 063505, arXiv:1006.3268.
[Serpico:2010ae]
[8-1351]
Ultra-high neutrino fluxes as a probe for non-standard physics, Atri Bhattacharya, Sandhya Choubey, Raj Gandhi, Atsushi Watanabe, JCAP 1009 (2010) 009, arXiv:1006.3082.
[Bhattacharya:2010xj]
[8-1352]
Very High Lorentz Factor Fireballs and Gamma-Ray Burst Spectra, Kunihito Ioka, Prog. Theor. Phys. 124 (2010) 667-710, arXiv:1006.3073.
[Ioka:2010xc]
[8-1353]
Angular, spectral, and time distributions of highest energy protons and associated secondary gamma-rays and neutrinos propagating through extragalactic magnetic and radiation fields, F.A. Aharonian, S.R. Kelner, A.Y. Prosekin, Phys. Rev. D82 (2010) 043002, arXiv:1006.1045.
[Aharonian:2010va]
[8-1354]
Annihilation of NMSSM neutralinos in the Sun and neutrino telescope limits, Sergei Demidov, Olga Suvorova, JCAP 1006 (2010) 018, arXiv:1006.0872.
[Demidov:2010rq]
[8-1355]
Tracing Cosmic accelerators with Decaying Neutrons, Reetanjali Moharana, Nayantara Gupta, Phys. Rev. D82 (2010) 023003, arXiv:1005.0250.
[Moharana:2010su]
[8-1356]
New Parameters for Determining the Neutrino Flavor Ratio at the Astrophysical Source, T. C. Liu, M. A. Huang, Guey-Lin Lin, arXiv:1004.5154, 2010.
[Liu:2010ae]
[8-1357]
Using cosmic neutrinos to search for non-perturbative physics at the Pierre Auger Observatory, Luis A. Anchordoqui et al., Phys. Rev. D82 (2010) 043001, arXiv:1004.3190.
[Anchordoqui:2010hq]
[8-1358]
Afterglow Observations of Fermi-LAT Gamma-Ray Bursts and the Emerging Class of Hyper-Energetic Events, S. B. Cenko et al., Astrophys. J. 732 (2011) 29, arXiv:1004.2900.
[Cenko:2010cg]
[8-1359]
Exploring Hadron Physics in Black Hole Formations: a New Promising Target of Neutrino Astronomy, Ken'ichiro Nakazato, Kohsuke Sumiyoshi, Hideyuki Suzuki, Shoichi Yamada, Phys. Rev. D81 (2010) 083009, arXiv:1004.0291.
[Nakazato:2010qy]
[8-1360]
Direct Detection Constraints on Dark Matter Event Rates in Neutrino Telescopes, and Collider Implications, Prateek Agrawal, Zackaria Chacko, Can Kilic, Rashmish K. Mishra, arXiv:1003.5905, 2010.
[Agrawal:2010ax]
[8-1361]
Neutrino Background Flux from Sources of Ultrahigh-Energy Cosmic-Ray Nuclei, Kohta Murase, John F. Beacom, Phys. Rev. D81 (2010) 123001, arXiv:1003.4959.
[Murase:2010gj]
[8-1362]
Neutrino emission from high-energy component gamma-ray bursts, Julia K. Becker, Francis Halzen, Aongus O'Murchadha, Martino Olivo, arXiv:1003.4710, 2010.
[Becker:2010cj]
[8-1363]
Indirect Dark Matter Detection with Cosmic Antimatter, P. Salati, F. Donato, N. Fornengo, arXiv:1003.4124, 2010.
[Salati:2010rc]
[8-1364]
Primordial Black Holes as Dark Matter: All or Nothing, Brian C. Lacki, John F. Beacom, Astrophys. J. 720 (2010) L67-L71, arXiv:1003.3466.
[Lacki:2010zf]
[8-1365]
Fermi-LAT restrictions on UHECRs and cosmogenic neutrinos, V.Berezinsky, A.Gazizov, M.Kachelriess, S.Ostapchenko, Phys. Lett. B695 (2011) 13-18, arXiv:1003.1496.
[Berezinsky:2010xa]
[8-1366]
Neutrino heating near hyper-accreting black holes, Ivan Zalamea, Andrei M. Beloborodov, Mon.Not.Roy.Astron.Soc. 410 (2011) 2302, arXiv:1003.0710.
[Zalamea:2010ax]
[8-1367]
Very-High-Energy Gamma-Ray Signal from Nuclear Photodisintegration as a Probe of Extragalactic Sources of Ultrahigh-Energy Nuclei, Kohta Murase, John F. Beacom, Phys. Rev. D82 (2010) 043008, arXiv:1002.3980.
[Murase:2010va]
[8-1368]
Muon Fluxes and Showers from Dark Matter Annihilation in the Galactic Center, Arif Emre Erkoca, Graciela Gelmini, Mary Hall Reno, Ina Sarcevic, Phys. Rev. D81 (2010) 096007, arXiv:1002.2220.
[Erkoca:2010qx]
[8-1369]
Simplified models for photohadronic interactions in cosmic accelerators, Svenja Hummer, Michael Ruger, Felix Spanier, Walter Winter, Astrophys. J. 721 (2010) 630-652, arXiv:1002.1310.
[Hummer:2010vx]
[8-1370]
Wide Angle X-ray Sky Monitoring for Corroborating non-Electromagnetic Cosmic Transients, Dafne Guetta, David Eichler, Astrophys. J. 712 (2010) 392-396, arXiv:1002.1082.
[Guetta:2010sc]
[8-1371]
Gamma rays and neutrinos from dark matter annihilation in galaxy clusters, Qiang Yuan, Peng-Fei Yin, Xiao-Jun Bi, Xin-Min Zhang, Shou-Hua Zhu, Phys. Rev. D82 (2010) 023506, arXiv:1002.0197.
[Yuan:2010gn]
[8-1372]
Energy-independent new physics in the flavour ratios of high-energy astrophysical neutrinos, M. Bustamante, A.M. Gago, C. Pena-Garay, JHEP 04 (2010) 066, arXiv:1001.4878.
[Bustamante:2010nq]
[8-1373]
Synoptic Sky Surveys and the Diffuse Supernova Neutrino Background: Removing Astrophysical Uncertainties and Revealing Invisible Supernovae, Amy Lien, Brian D. Fields, John F. Beacom, Phys. Rev. D81 (2010) 083001, arXiv:1001.3678.
[Lien:2010yb]
[8-1374]
UHECR Maps: mysteries and surprises, D. Fargion, AIP Conf. Proc. 1223 (2010) 149-158, arXiv:1001.1547.
[Fargion:2010ef]
[8-1375]
Neutrino Constraints on Inelastic Dark Matter after CDMS II, Jing Shu, Peng-fei Yin, Shou-hua Zhu, Phys. Rev. D81 (2010) 123519, arXiv:1001.1076.
[Shu:2010ta]
[8-1376]
Can the excess in the FeXXVI Ly gamma line from the Galactic Center provide evidence for 17 keV sterile neutrinos?, D. A. Prokhorov, Joseph Silk, Astrophys.J. 725 (2010) L131, arXiv:1001.0215.
[Prokhorov:2010us]
[8-1377]
Secondary photons and neutrinos from cosmic rays produced by distant blazars, Warren Essey, Oleg E. Kalashev, Alexander Kusenko, John F. Beacom, Phys. Rev. Lett. 104 (2010) 141102, arXiv:0912.3976.
[Essey:2009ju]
[8-1378]
Neutrino Signals from Dark Matter Decay, Laura Covi, Michael Grefe, Alejandro Ibarra, David Tran, JCAP 1004 (2010) 017, arXiv:0912.3521.
[Covi:2009xn]
[8-1379]
Neutrino Pair Annihilation in Collapsars; Ray-Tracing Method in Special Relativity, Seiji Harikae, Kei Kotake, Tomoya Takiwaki, Astrophys. J. 713 (2010) 304-317, arXiv:0912.2590.
[Harikae:2009yt]
[8-1380]
Rotochemical heating in millisecond pulsars: modified Urca reactions with uniform Cooper pairing gaps, Cristobal Petrovich, Andreas Reisenegger, Astron. Astrophys. 521 (2010) 77, arXiv:0912.2564.
[Petrovich:2009yh]
[8-1381]
Neutrino emission from triplet pairing of neutrons in neutron stars, L. B. Leinson, Phys. Rev. C81 (2010) 025501, arXiv:0912.2164.
[Leinson:2009nu]
[8-1382]
Energetic neutrinos from the Sun and Earth and dark matter substructure, Savvas M. Koushiappas, Marc Kamionkowski, arXiv:0912.1573, 2009. To appear in the AIP Proceedings of the CCAPP Symposium 2009.
[Koushiappas:2009wq]
[8-1383]
Time-Dependent Point Source Search Methods in High Energy Neutrino Astronomy, Jim Braun et al., Astropart. Phys. 33 (2010) 175-181, arXiv:0912.1572.
[Braun:2009wp]
[8-1384]
High energy leptons from muons in transit, Alexander Bulmahn, Mary Hall Reno, Phys. Rev. D81 (2010) 053003, arXiv:0912.1385.
[Bulmahn:2009ub]
[8-1385]
The Sensitivity of the IceCube Neutrino Detector to Dark Matter Annihilating in Dwarf Galaxies, Pearl Sandick, Douglas Spolyar, Matthew Buckley, Katherine Freese, Dan Hooper, Phys. Rev. D81 (2010) 083506, arXiv:0912.0513.
[Sandick:2009bi]
[8-1386]
Cascade Events at IceCube+DeepCore as a Definitive Constraint on the Dark Matter Interpretation of the PAMELA and Fermi Anomalies, Sourav K. Mandal, Matthew R. Buckley, Katherine Freese, Douglas Spolyar, Hitoshi Murayama, Phys. Rev. D81 (2010) 043508, arXiv:0911.5188.
[Mandal:2009yk]
[8-1387]
UHECR besides CenA: hints of galactic sources, Daniele Fargion, Prog. Part. Nucl. Phys. 64 (2010) 363-365, arXiv:0911.4176.
[Fargion:2009rj]
[8-1388]
Gammaless GRBs?, C Sivaram, Kenath Arun, arXiv:0911.2747, 2009.
[Sivaram:2009nr]
[8-1389]
Radio Quiet AGNs as Possible Sources of Ultra-high Energy Cosmic Rays, Asaf Pe'er, Kohta Murase, Peter Meszaros, Phys. Rev. D80 (2009) 123018, arXiv:0911.1776.
[Peer:2009vnw]
[8-1390]
Neutrino emission from dark matter annihilation/decay in light of cosmic $e^{\pm}$ and $\bar{p}$ data, Jie Liu, Qiang Yuan, Xiaojun Bi, Hong Li, Xinmin Zhang, Int. J. Mod. Phys. A27 (2012) 1250024, arXiv:0911.1002.
[Liu:2009ac]
[8-1391]
Ultra-High Energy Cosmic-Ray Acceleration in the Jet of Centaurus A, Mitsuru Honda, Astrophys. J. 706 (2009) 1517-1526, arXiv:0911.0921.
[Honda:2009xd]
[8-1392]
Possible cosmogenic neutrino constraints on Planck-scale Lorentz violation, David M. Mattingly, Luca Maccione, Matteo Galaverni, Stefano Liberati, Guenter Sigl, JCAP 1002 (2010) 007, arXiv:0911.0521.
[Mattingly:2009jf]
[8-1393]
Collapsar Accretion and the Gamma-Ray Burst X-Ray Light Curve, Christopher C. Lindner, Milos Milosavljevic, Sean M. Couch, Pawan Kumar, Astrophys. J. 713 (2010) 800-815, arXiv:0910.4989.
[Lindner:2009fj]
[8-1394]
Diffuse Ultra-High Energy Neutrino Fluxes and Physics Beyond the Standard Model, Atri Bhattacharya, Sandhya Choubey, Raj Gandhi, Atsushi Watanabe, Phys. Lett. B690 (2010) 42-47, arXiv:0910.4396.
[Bhattacharya:2009tx]
[8-1395]
Searches for Long Lived Neutral Particles, Patrick Meade, Shmuel Nussinov, Michele Papucci, Tomer Volansky, JHEP 06 (2010) 029, arXiv:0910.4160.
[Meade:2009mu]
[8-1396]
Vertical Array in Space for Horizontal Air-Showers, D. Fargion, PoS EPS-HEP2009 (2009) 104, arXiv:0910.2976.
[Fargion:2009fr]
[8-1397]
Pseudo-Dirac Neutrino Scenario: Cosmic Neutrinos at Neutrino Telescopes, Arman Esmaili, Phys. Rev. D81 (2010) 013006, arXiv:0909.5410.
[Esmaili:2009fk]
[8-1398]
On cosmic ray acceleration in supernova remnants and the FERMI/PAMELA data, Markus Ahlers, Philipp Mertsch, Subir Sarkar, Phys. Rev. D80 (2009) 123017, arXiv:0909.4060.
[Ahlers:2009ae]
[8-1399]
Propagation of Neutrinos through Magnetized Gamma-Ray Burst Fireball, Sarira Sahu, Nissim Fraija, Yong-Yeon Keum, JCAP 0911 (2009) 024, arXiv:0909.3003.
[Sahu:2009ds]
[8-1400]
Flavor Composition of UHE Neutrinos at Source and at Neutrino Telescopes, Sandhya Choubey, Werner Rodejohann, Phys. Rev. D80 (2009) 113006, arXiv:0909.1219.
[Choubey:2009jq]
[8-1401]
Diffuse high energy neutrinos and cosmic rays from hyperflares of soft-gamma repeaters, Xue-Wen Liu, Xue-Feng Wu, Tan Lu, New Astron. 15 (2010) 292-296, arXiv:0908.4371.
[Liu:2009aj]
[8-1402]
Constraints on Extragalactic Point Source Flux from Diffuse Neutrino Limits, Andrea Silvestri, Steven W. Barwick, Phys. Rev. D81 (2010) 023001, arXiv:0908.4266.
[Silvestri:2009xb]
[8-1403]
Coherent and random UHECR Spectroscopy of Lightest Nuclei along CenA: Shadows on GZK Tau Neutrinos spread in a near sky and time, D. Fargion, Nucl. Instrum. Meth. A630 (2011) 111-114, arXiv:0908.2650.
[Fargion:2009ki]
[8-1404]
Dark Matter Through the Neutrino Portal, Adam Falkowski, Jose Juknevich, Jessie Shelton, arXiv:0908.1790, 2009.
[Falkowski:2009yz]
[8-1405]
Multimessenger search for point sources: ultra-high energy cosmic rays and neutrinos, Jelena Petrovic, arXiv:0908.1235, 2009.
[Petrovic:2009kn]
[8-1406]
Sensitivity of JEM-EUSO to GRB Neutrinos, Katsuaki Asano, Kenji Shinozaki, Masahiro Teshima (for the JEM-EUSO), arXiv:0908.0392, 2009. Proc 31st ICRC, Lodz, Poland, 2009.
[Asano:2009pt]
[8-1407]
Ultra High Energy Cosmic Rays: The disappointing model, R. Aloisio, V. Berezinsky, A. Gazizov, Astropart. Phys. 34 (2011) 620626, arXiv:0907.5194.
[Aloisio:2009sj]
[8-1408]
Galactic Substructure and Energetic Neutrinos from the Sun and the Earth, Savvas M. Koushiappas, Marc Kamionkowski, Phys. Rev. Lett. 103 (2009) 121301, arXiv:0907.4778.
[Koushiappas:2009ee]
[8-1409]
High-Energy Neutrinos From Dark Matter Particle Self-Capture Within the Sun, Andrew R. Zentner, Phys. Rev. D80 (2009) 063501, arXiv:0907.3448.
[Zentner:2009is]
[8-1410]
High-Energy Neutrino Signatures of Dark Matter Decaying into Leptons, Matthew R. Buckley, Katherine Freese, Dan Hooper, Douglas Spolyar, Hitoshi Murayama, Phys. Rev. D81 (2010) 016006, arXiv:0907.2385.
[Buckley:2009kw]
[8-1411]
High energy astrophysical neutrino flux and modified dispersion relations, J. L. Bazo Alba, M. Bustamante, A. M. Gago, O. G. Miranda, Int. J. Mod. Phys. A24 (2009) 5819-5829, arXiv:0907.1979.
[Bazo:2009en]
[8-1412]
Limit on Neutrino Emission from Neutron Stars, Itzhak Goldman, Shmuel Nussinov, JHEP 08 (2010) 091, arXiv:0907.1555.
[Goldman:2009th]
[8-1413]
Atmospheric lepton fluxes at ultrahigh energies, J.I. Illana, M. Masip, D. Meloni, JCAP 0909 (2009) 008, arXiv:0907.1412.
[Illana:2009qv]
[8-1414]
Present and Future Gamma-Ray Probes of the Cygnus OB2 Environment, Luis A. Anchordoqui et al., Phys. Rev. D80 (2009) 103004, arXiv:0907.0395.
[Anchordoqui:2009tya]
[8-1415]
Shockwaves in Supernovae: New Implications on the Diffuse Supernova Neutrino Background, Sebastien Galais, James Kneller, Cristina Volpe, Jerome Gava, Phys. Rev. D81 (2010) 053002, arXiv:0906.5294.
[Galais:2009wi]
[8-1416]
Leptoquarks signals in KM$^3$ neutrino telescopes, Ismael Romero, O.A. Sampayo, JHEP 05 (2009) 111, arXiv:0906.5245.
[Romero:2009vu]
[8-1417]
Muon Fluxes From Dark Matter Annihilation, Arif Emre Erkoca, Mary Hall Reno, Ina Sarcevic, Phys. Rev. D80 (2009) 043514, arXiv:0906.4364.
[Erkoca:2009by]
[8-1418]
Probing the central engine of long gamma-ray bursts and hypernovae with gravitational waves, Yudai Suwa, Kohta Murase, Phys. Rev. D80 (2009) 123008, arXiv:0906.3833.
[Suwa:2009si]
[8-1419]
TeV neutrinos from accreting X-ray pulsars, Wlodek Bednarek, Phys. Rev. D79 (2009) 123010, arXiv:0906.0084.
[Bednarek:2009vp]
[8-1420]
Determination of the Neutrino Flavor Ratio at the Astrophysical Source, Kwang-Chang Lai, Guey-Lin Lin, T. C. Liu, Phys. Rev. D80 (2009) 103005, arXiv:0905.4003.
[Lai:2009ke]
[8-1421]
Neutrinos from the terrestrial passage of supersymmetric dark matter Q-balls, Alexander Kusenko, Ian M. Shoemaker, Phys. Rev. D80 (2009) 027701, arXiv:0905.3929.
[Kusenko:2009iz]
[8-1422]
The Role and Detectability of the Charm Contribution to Ultra High Energy Neutrino Fluxes, Raj Gandhi, Abhijit Samanta, Atsushi Watanabe, JCAP 0909 (2009) 015, arXiv:0905.2483.
[Gandhi:2009qx]
[8-1423]
Upward muon signals at neutrino detectors as a probe of dark matter properties, Junji Hisano, Kazunori Nakayama, Masaki J.S. Yang, Phys. Lett. B678 (2009) 101-106, arXiv:0905.2075.
[Hisano:2009fb]
[8-1424]
Long-Term Evolution of Slowly Rotating Collapsar in Special Relativistic Magnetohydrodynamics, Seiji. Harikae, Tomoya. Takiwaki, Kei. Kotake, Astrophys. J. 704 (2009) 354-371, arXiv:0905.2006.
[Harikae:2009dz]
[8-1425]
Capture and Indirect Detection of Inelastic Dark Matter, Arjun Menon, Rob Morris, Aaron Pierce, Neal Weiner, Phys. Rev. D82 (2010) 015011, arXiv:0905.1847.
[Menon:2009qj]
[8-1426]
Simulation of the cosmic ray tau neutrino telescope (CRTNT) experiment, J. L. Liu et al., J. Phys. G 36 (2009) 075201, arXiv:0905.1784.
[Liu:2009ph]
[8-1427]
Interpretation and implication of the non-detection of GeV spectrum excess by Fermi gamma-ray Space Telescope in most GRBs, Yi-Zhong Fan, Mon.Not.Roy.Astron.Soc. 397 (2009) 1539, arXiv:0905.0908.
[Fan:2009ua]
[8-1428]
ICECUBE Sensitivity for Neutrino Flux from Fermi Blazars in Quiescent States, M. Ribordy, A. Neronov, Phys. Rev. D80 (2009) 083008, arXiv:0905.0509.
[Neronov:2009fuv]
[8-1429]
Analytic Aperture Calculation and Scaling Laws for Radio Detection of Lunar-Target UHE Neutrinos, K. G. Gayley, R. L. Mutel, T. R. Jaeger, Astrophys. J. 706 (2009) 1556-1570, arXiv:0904.3389.
[Gayley:2009ix]
[8-1430]
Probing the birth of fast rotating magnetars through high-energy neutrinos, Kohta Murase, Peter Meszaros, Bing Zhang, Phys. Rev. D79 (2009) 103001, arXiv:0904.2509.
[Murase:2009pg]
[8-1431]
Cosmic ray knee and new physics at the TeV scale, Roberto Barcelo, Manuel Masip, Iacopo Mastromatteo, JCAP 0906 (2009) 027, arXiv:0903.5247.
[Barcelo:2009uy]
[8-1432]
Gamma Rays and Neutrinos from SNR RX J1713.7-3946, G. Morlino, P. Blasi, E. Amato, Astropart. Phys. 31 (2009) 376-382, arXiv:0903.4565.
[Morlino:2009ci]
[8-1433]
High Energy Neutrino Physics with Liquid Scintillation Detectors, John G. Learned, arXiv:0902.4009, 2009.
[Learned:2009rv]
[8-1434]
Dark Matter Disc Enhanced Neutrino Fluxes from the Sun and Earth, Tobias Bruch, Annika H. G. Peter, Justin Read, Laura Baudis, George Lake, Phys. Lett. B674 (2009) 250-256, arXiv:0902.4001.
[Bruch:2009rp]
[8-1435]
Neutrino diagnostics of ultra-high energy cosmic ray protons, Markus Ahlers, Luis A. Anchordoqui, Subir Sarkar, Phys. Rev. D79 (2009) 083009, arXiv:0902.3993.
[Ahlers:2009rf]
[8-1436]
Identifying Galactic PeVatrons with Neutrinos, M.C. Gonzalez-Garcia, Francis Halzen, Soumya Mohapatra, Astropart. Phys. 31 (2009) 437-444, arXiv:0902.1176.
[Gonzalez-Garcia:2009bev]
[8-1437]
GEMINI 3D spectroscopy of BAL+IR+Fe II QSOs: II. IRAS 04505-2958 an explosive QSO with hypershell and a new scenario for galaxy formation and galaxy end, S. Lipari et al., Mon.Not.Roy.Astron.Soc. 398 (2009) 658-700, arXiv:0901.3292.
[Lipari:2009nf]
[8-1438]
Dark Matter Signals from Cascade Annihilations, Jeremy Mardon, Yasunori Nomura, Daniel Stolarski, Jesse Thaler, JCAP 0905 (2009) 016, arXiv:0901.2926.
[Mardon:2009rc]
[8-1439]
Multi-messenger model for the starburst galaxy M82, Elsa de Cea del Pozo, Diego F. Torres, Ana Y. Rodriguez Marrero, Astrophys. J. 698 (2009) 1054-1060, arXiv:0901.2688.
[deCeadelPozo:2009bwv]
[8-1440]
Non-standard interaction effects on astrophysical neutrino fluxes, Mattias Blennow, Davide Meloni, Phys. Rev. D80 (2009) 065009, arXiv:0901.2110.
[Blennow:2009rp]
[8-1441]
Cosmic Rays VI - Starburst galaxies at multiwavelengths, Julia K. Becker, Peter L. Biermann, Jens Dreyer, Tanja M. Kneiske, arXiv:0901.1775, 2009.
[Becker:2009hw]
[8-1442]
UHE neutrinos from superconducting cosmic strings, Veniamin Berezinsky, Ken D. Olum, Eray Sabancilar, Alexander Vilenkin, Phys. Rev. D80 (2009) 023014, arXiv:0901.0527.
[Berezinsky:2009xf]
[8-1443]
Detecting Solar Neutrino Flare in Megaton and km^3 detectors, Daniele Fargion, Paola Di Giacomo, Nucl. Phys. Proc. Suppl. 188 (2009) 142-145, arXiv:0812.4592.
[Fargion:2008zn]
[8-1444]
Vetoing atmospheric neutrinos in a high energy neutrino telescope, Stefan Schonert, Thomas K. Gaisser, Elisa Resconi, Olaf Schulz, Phys. Rev. D79 (2009) 043009, arXiv:0812.4308.
[Schonert:2008is]
[8-1445]
Probing Dark Matter Dynamics via Earthborn Neutrinos at IceCube, Cedric Delaunay, Patrick J. Fox, Gilad Perez, JHEP 05 (2009) 099, arXiv:0812.3331.
[Delaunay:2008pc]
[8-1446]
Prospects for Detecting Neutrino Signals from Annihilating/Decaying Dark Matter to Account for the PAMELA and ATIC results, Jia Liu, Peng-fei Yin, Shou-hua Zhu, Phys. Rev. D79 (2009) 063522, arXiv:0812.0964.
[Liu:2008ci]
[8-1447]
Neutrino signal from gamma-ray loud binaries powered by high energy protons, A. Neronov, M. Ribordy, Phys. Rev. D79 (2009) 043013, arXiv:0812.0306.
[Neronov:2008bw]
[8-1448]
Neutrino Signals from Annihilating/Decaying Dark Matter in the Light of Recent Measurements of Cosmic Ray Electron/Positron Fluxes, Junji Hisano, Masahiro Kawasaki, Kazunori Kohri, Kazunori Nakayama, Phys. Rev. D79 (2009) 043516, arXiv:0812.0219.
[Hisano:2008ah]
[8-1449]
Magnetic field effects on neutrino production in microquasars, Matias M. Reynoso, Gustavo E. Romero, Astron.Astrophys. 493 (2009) 1, arXiv:0811.1383.
[Reynoso:2008gs]
[8-1450]
Cosmic rays from Leptonic Dark Matter, Chuan-Ren Chen, Fuminobu Takahashi, JCAP 0902 (2009) 004, arXiv:0810.4110.
[Chen:2008dh]
[8-1451]
TeV Gamma Rays from Geminga and the Origin of the GeV Positron Excess, Hasan Yuksel, Matthew D. Kistler, Todor Stanev, Phys. Rev. Lett. 103 (2009) 051101, arXiv:0810.2784.
[Yuksel:2008rf]
[8-1452]
Unstable Gravitino Dark Matter and Neutrino Flux, Laura Covi, Michael Grefe, Alejandro Ibarra, David Tran, JCAP 0901 (2009) 029, arXiv:0809.5030.
[Covi:2008jy]
[8-1453]
High energy neutrinos from charm in astrophysical sources, Rikard Enberg, Mary Hall Reno, Ina Sarcevic, Phys. Rev. D79 (2009) 053006, arXiv:0808.2807.
[Enberg:2008jm]
[8-1454]
The New DAMA Dark-Matter Window and Energetic-Neutrino Searches, Dan Hooper, Frank Petriello, Kathryn M. Zurek, Marc Kamionkowski, Phys. Rev. D79 (2009) 015010, arXiv:0808.2464.
[Hooper:2008cf]
[8-1455]
Unparticle signals in neutrino telescopes, G. Gonzalez-Sprinberg, R. Martinez, Oscar A. Sampayo, Phys. Rev. D79 (2009) 053005, arXiv:0808.1747.
[Gonzalez-Sprinberg:2008unk]
[8-1456]
High Energy Neutrinos and Photons from Curvature Pions in Magnetars, T. Herpay, S. Razzaque, A. Patkos, P. Meszaros, JCAP 0808 (2008) 025, arXiv:0807.4914.
[Herpay:2008gd]
[8-1457]
How precisely neutrino emission from supernova remnants can be constrained by gamma ray observations?, F.L. Villante, F. Vissani, Phys. Rev. D78 (2008) 103007, arXiv:0807.4151.
[Villante:2008qg]
[8-1458]
Polarization of $\tau$ leptons produced in ultra-high energy neutrino-nucleon scattering, Kevin Payet, arXiv:0807.1236, 2008.
[Payet:2008yu]
[8-1459]
On Prompt High-Energy Neutrino Emission from Gamma-Ray Bursts, Kohta Murase, Phys. Rev. D78 (2008) 101302, arXiv:0807.0919.
[Murase:2008sp]
[8-1460]
Neutrinos and Gamma Rays from Galaxy Clusters, Brandon Wolfe, Fulvio Melia, Roland M. Crocker, Raymond R. Volkas, Astrophys.J. 687 (2008) 193-201, arXiv:0807.0794.
[Wolfe:2008qm]
[8-1461]
Prompt TeV neutrinos from dissipative photospheres of gamma-ray bursts, Xiang-Yu Wang, Zi-Gao Dai, Astrophys. J. Lett. 691 (2009) L67-L71, arXiv:0807.0290.
[Wang:2008zm]
[8-1462]
Nonthermal neutrinos from supernovae leaving a magnetar, Shunsaku Horiuchi, Yudai Suwa, Hajime Takami, Shin'ichiro Ando, Katsuhiko Sato, Mon.Not.Roy.Astron.Soc. 391 (2008) 1893, arXiv:0807.0267.
[Horiuchi:2008zc]
[8-1463]
Constraints on the Dark Matter Annihilations by Neutrinos with Substructure Effects Included, Peng-fei Yin, Jia Liu, Qiang Yuan, Xiao-jun Bi, Shou-hua Zhu, Phys. Rev. D78 (2008) 065027, arXiv:0806.3689.
[Yin:2008mv]
[8-1464]
Gamma-ray spectrum of RX J1713.7-3946 in the Fermi era and future detection of neutrinos, Ryo Yamazaki, Kazunori Kohri, Hideaki Katagiri, Astron. Astrophys. 495 (2009) 9-13, arXiv:0806.3303.
[Yamazaki:2008fj]
[8-1465]
The diffuse neutrino flux from the inner Galaxy: constraints from very high energy gamma-ray observations, S. Gabici, A. M. Taylor, R. J. White, S. Casanova, F. A. Aharonian, Astropart. Phys. 30 (2008) 180-185, arXiv:0806.2459.
[Gabici:2008gw]
[8-1466]
Impact of Rotation on Neutrino Emission and Relic Neutrino Background from Population III Stars, Yudai Suwa, Tomoya Takiwaki, Kei Kotake, Katsuhiko Sato, Astrophys. J. 690 (2009) 913-922, arXiv:0806.1072.
[Suwa:2008sf]
[8-1467]
Toward a Minimum Branching Fraction for Dark Matter Annihilation into Electromagnetic Final States, James B. Dent, Robert J. Scherrer, Thomas J. Weiler, Phys. Rev. D78 (2008) 063509, arXiv:0806.0370.
[Dent:2008qy]
[8-1468]
Prospects for detection of the lunar Cerenkov emission by the UHE Cosmic Rays and Neutrinos using the GMRT and the Ooty Radio Telescope, Govind Swarup, Sukanta Panda, arXiv:0805.4304, 2008.
[Swarup:2008yq]
[8-1469]
Galactic Neutrino Communication, John G. Learned, Sandip Pakvasa, A. Zee, Phys. Lett. B671 (2009) 15-19, arXiv:0805.2429.
[Learned:2008gr]
[8-1470]
Neutrinos from active black holes, sources of ultra high energy cosmic rays, Julia K. Becker, Peter L. Biermann, Astropart. Phys. 31 (2009) 138-148, arXiv:0805.1498.
[Becker:2008nf]
[8-1471]
X-ray flares, neutrino cooled disks, and the dynamics of late accretion in GRB engines, Davide Lazzati, Rosalba Perna, Mitchell C. Begelman, Mon.Not.Roy.Astron.Soc. 388 (2008) 15, arXiv:0805.0138.
[Lazzati:2008da]
[8-1472]
Very high energy cosmic rays and neutrinos from clusters of galaxies, Kohta Murase, Susumu Inoue, Shigehiro Nagataki, Astrophys. J. 689 (2008) L105, arXiv:0805.0104.
[Murase:2008yt]
[8-1473]
Searching for Neutrinos from WIMP Annihilations in the Galactic Stellar Disk, Zacharia Myers, Adi Nusser, Mon.Not.Roy.Astron.Soc. 387 (2008) 1712, arXiv:0804.0554.
[Myers:2008qq]
[8-1474]
Energy spectra of gamma-rays, electrons and neutrinos produced at interactions of relativistic protons with low energy radiation, S.R. Kelner, F.A. Aharonian, Phys. Rev. D78 (2008) 034013, arXiv:0803.0688.
[Kelner:2008ke]
[8-1475]
An upper limit on the electron-neutrino flux from the HiRes detector, D. Tupa et al., Astrophys.J. 684 (2008) 790-793, arXiv:0803.0554.
[Abbasi:2008hr]
[8-1476]
On Probing $\theta_{23}$ in Neutrino Telescopes, Sandhya Choubey, Viviana Niro, Werner Rodejohann, Phys. Rev. D77 (2008) 113006, arXiv:0803.0423.
[Choubey:2008di]
[8-1477]
SETI and muon collider, Z.K. Silagadze, Acta Phys. Polon. B39 (2008) 2943-2948, arXiv:0803.0409.
[Silagadze:2008dc]
[8-1478]
Identifying the Sources of the Galactic Cosmic Rays with IceCube, Francis Halzen, Alexander Kappes, Aongus O'Murchadha, Phys. Rev. D78 (2008) 063004, arXiv:0803.0314.
[Halzen:2008zj]
[8-1479]
Gravitational lensing of transient neutrino sources by black holes, Ernesto F. Eiroa, Gustavo E. Romero, Phys. Lett. B663 (2008) 377-381, arXiv:0802.4251.
[Eiroa:2008ks]
[8-1480]
The sensitivity of the next generation of lunar Cherenkov observations to UHE neutrinos and cosmic rays, C.W. James, R.J. Protheroe, Astropart. Phys. 30 (2009) 318-332, arXiv:0802.3562.
[James:2008ff]
[8-1481]
On the detection prospects of the neutrino flux from Centaurus A and the associated diffuse neutrino flux, Hylke B. J. Koers, Peter Tinyakov, Phys. Rev. D78 (2008) 083009, arXiv:0802.2403.
[Koers:2008hv]
[8-1482]
Neutrinos from Auger Sources, Francis Halzen, Aongus O'Murchadha, arXiv:0802.0887, 2008.
[Halzen:2008vz]
[8-1483]
Determining neutrino absorption spectra at Ultra-High Energies, Olaf Scholten, Arjen van Vliet, JCAP 0806 (2008) 015, arXiv:0801.3342.
[Scholten:2008xg]
[8-1484]
Galactic Substructure and Direct Detection of Dark Matter, Marc Kamionkowski, Savvas M. Koushiappas, Phys. Rev. D77 (2008) 103509, arXiv:0801.3269.
[Kamionkowski:2008vw]
[8-1485]
Formation of hard VHE gamma-ray spectra of blazars due to internal photon-photon absorption, F. Aharonian, D. Khangulyan, L. Costamante, Mon.Not.Roy.Astron.Soc. 387 (2008) 1206-1214, arXiv:0801.3198.
[Aharonian:2008su]
[8-1486]
Production of gamma rays and neutrinos in the dark jets of the microquasar SS433, Matias M. Reynoso, Gustavo E. Romero, Hugo R. Christiansen, Mon. Not. Roy. Astron. Soc. 387 (2008) 1745-1754, arXiv:0801.2903.
[Reynoso:2008nk]
[8-1487]
High-energy cosmic-ray nuclei from high- and low-luminosity gamma-ray bursts and implications for multi-messenger astronomy, Kohta Murase, Kunihito Ioka, Shigehiro Nagataki, Takashi Nakamura, Phys. Rev. D78 (2008) 023005, arXiv:0801.2861.
[Murase:2008mr]
[8-1488]
Primordial black holes and the observed Galactic 511 keV line, Cosimo Bambi, Alexander D. Dolgov, Alexey A. Petrov, Phys. Lett. B670 (2008) 174-178, arXiv:0801.2786.
[Bambi:2008kx]
[8-1489]
Neutrino emission from a GRB afterglow shock during an inner supernova shock breakout, Yun-Wei Yu, Zi-Gao Dai, Xiao-Ping Zheng, Mon.Not.Roy.Astron.Soc. 385 (2008) 1461, arXiv:0801.2076.
[Yu:2008rj]
[8-1490]
Methods for point source analysis in high energy neutrino telescopes, Jim Braun et al., Astropart. Phys. 29 (2008) 299-305, arXiv:0801.1604.
[Braun:2008bg]
[8-1491]
Light Nuclei solving Auger puzzles ?, D. Fargion, Phys. Scripta 78 (2008) 045901, arXiv:0801.0227.
[Fargion:2008sp]
[8-1492]
Model-Independent Bound on the Dark Matter Lifetime, Sergio Palomares-Ruiz, Phys. Lett. B665 (2008) 50-53, arXiv:0712.1937.
[Palomares-Ruiz:2007egs]
[8-1493]
Ultra-high energy Neutrinos from Centaurus A and the Auger hot spot, Alessandro Cuoco, Steen Hannestad, Phys. Rev. D78 (2008) 023007, arXiv:0712.1830.
[Cuoco:2007aa]
[8-1494]
GRB neutrinos, Lorenz Invariance Violation and the influence of background cosmology, Marek Biesiada, Aleksandra Piorkowska, JCAP 0705 (2007) 011, arXiv:0712.0937.
[Biesiada:2007zzb]
[8-1495]
EeV neutrinos associated with UHECR sources, Zhuo Li, Eli Waxman, arXiv:0711.4969, 2007.
[Li:2007ps]
[8-1496]
Enhanced high-energy neutrino emission from choked gamma-ray bursts due to meson and muon acceleration, Hylke B. J. Koers, Ralph A. M. J. Wijers, arXiv:0711.4791, 2007.
[Koers:2007je]
[8-1497]
Upward shower rates at neutrino telescopes directly determine the neutrino flux, S. Hussain, D. Marfatia, D. W. McKay, Phys. Rev. D77 (2008) 107304, arXiv:0711.4374.
[Hussain:2007ba]
[8-1498]
Neutrino telescopes and the degeneracy problem, Ggyoung-Riun Hwang, Kim Siyeon, Phys. Rev. D78 (2008) 093008, arXiv:0711.3122.
[Hwang:2007na]
[8-1499]
Probing new physics with long-lived charged particles produced by atmospheric and astrophysical neutrinos, Shin'ichiro Ando, John F. Beacom, Stefano Profumo, David Rainwater, JCAP 0804 (2008) 029, arXiv:0711.2908.
[Ando:2007ds]
[8-1500]
High-energy neutrinos from reverse shocks in gamma-ray burst progenitors, Shunsaku Horiuchi, Shin'ichiro Ando, Phys. Rev. D77 (2008) 063007, arXiv:0711.2580.
[Horiuchi:2007xi]
[8-1501]
Production of Neutrinos and Secondary Electrons in Cosmic Sources, C.-Y. Huang, M. Pohl, Astropart. Phys. 29 (2008) 282-289, arXiv:0711.2528.
[Huang:2007wk]
[8-1502]
Reflecting on Cherenkov reflections, D. Fargion, M. Gaug, P. Oliva, J. Phys. Conf. Ser. 110 (2008) 062008, arXiv:0711.2326.
[Fargion:2007jr]
[8-1503]
Correlating prompt GRB photons with neutrinos, Ignacio Taboada, Michelangelo V. D'Agostino, arXiv:0711.2277, 2007.
[Taboada:2007bk]
[8-1504]
Disentangling neutrino-nucleon cross section and high energy neutrino flux with a km^3 neutrino telescope, E. Borriello et al., Phys. Rev. D77 (2008) 045019, arXiv:0711.0152.
[Borriello:2007cs]
[8-1505]
Search method for coincident events from LIGO and IceCube detectors, Yoichi Aso et al., Class. Quant. Grav. 25 (2008) 114039, arXiv:0711.0107.
[Aso:2007wg]
[8-1506]
Upper Limit on the Cosmic Gamma-Ray Burst Rate from High Energy Diffuse Neutrino Background, Pijushpani Bhattacharjee, Sovan Chakraborty, Srirupa Das Gupta, Kamales Kar, Phys. Rev. D77 (2008) 043008, arXiv:0710.5922.
[Bhattacharjee:2007gc]
[8-1507]
Testing MeV dark matter with neutrino detectors, Sergio Palomares-Ruiz, Silvia Pascoli, Phys. Rev. D77 (2008) 025025, arXiv:0710.5420.
[Palomares-Ruiz:2007trf]
[8-1508]
Can the new Neutrino Telescopes reveal the gravitational properties of antimatter?, Dragan Slavkov Hajdukovic, Adv. Astron. 2011 (2011) 196852, arXiv:0710.4316.
[Hajdukovic:2007vx]
[8-1509]
Cherenkov Flashes and Fluorescence Flares on Telescopes: New lights on UHECR Spectroscopy while unveiling Neutrinos Astronomy, D. Fargion, P. Oliva, F. Massa, G. Moreno, Nucl. Instrum. Meth. A588 (2008) 146-150, arXiv:0710.3805.
[Fargion:2007gi]
[8-1510]
Neutrinos from WIMP Annihilations Using a Full Three-Flavor Monte Carlo, Mattias Blennow, Joakim Edsjo, Tommy Ohlsson, JCAP 0801 (2008) 021, arXiv:0709.3898.
[Blennow:2007tw]
[8-1511]
Monochromatic Neutrino Signals from Dark Matter Annihilation, Vernon Barger, Wai-Yee Keung, Gabe Shaughnessy, Phys. Lett. B664 (2008) 190, arXiv:0709.3301.
[Barger:2007hj]
[8-1512]
Predictions for the Cosmogenic Neutrino Flux in Light of New Data from the Pierre Auger Observatory, Luis A. Anchordoqui, Haim Goldberg, Dan Hooper, Subir Sarkar, Andrew M. Taylor, Phys. Rev. D76 (2007) 123008, arXiv:0709.0734.
[Anchordoqui:2007fi]
[8-1513]
Why Tau First?, D. Fargion, D. D'Armiento, P. G. Lucentini De Sanctis, Frascati Phys.Ser. 45 (2007) 289-296, arXiv:0708.3645.
[Fargion:2007pu]
[8-1514]
High energy neutrino yields from astrophysical sources II: Magnetized sources, M. Kachelriess, S. Ostapchenko, R. Tomas, Phys. Rev. D77 (2008) 023007, arXiv:0708.3047.
[Kachelriess:2007tr]
[8-1515]
Structure and Nuclear Composition of General Relativistic, Magnetohydrodynamic Outflows from Neutrino-Cooled Disks, Yudith Barzilay, Amir Levinson, New Astron. 13 (2008) 386-394, arXiv:0708.2996.
[Barzilay:2007sm]
[8-1516]
Coronal Neutrino Emission in Hypercritical Accretion Flows, R. Kawabata, S. Mineshige, N. Kawanaka, Astrophys.J. (2007), arXiv:0708.2954.
[Kawabata:2007rw]
[8-1517]
Prospects for GMRT to Observe Radio Waves from UHE Particles Interacting with the Moon, Sukanta Panda, Subhendra Mohanty, Padmanabhan Janardhan, Oscar Stal, JCAP 0711 (2007) 022, arXiv:0708.1683.
[Panda:2007sr]
[8-1518]
High energy neutrino early afterglows gamma-ray bursts revisited, Kohta Murase, Phys. Rev. D76 (2007) 123001, arXiv:0707.1140.
[Murase:2007yt]
[8-1519]
High Energy neutrino signals from the Epoch of Reionization, F. Iocco, K. Murase, S. Nagataki, P.D. Serpico, Astrophys. J. 675 (2008) 937, arXiv:0707.0515.
[Iocco:2007td]
[8-1520]
Neutrino Constraints on the Dark Matter Total Annihilation Cross Section, Hasan Yuksel, Shunsaku Horiuchi, John F. Beacom, Shin'ichiro Ando, Phys. Rev. D76 (2007) 123506, arXiv:0707.0196.
[Yuksel:2007ac]
[8-1521]
Reconstructing WIMP properties with neutrino detectors, Olga Mena, Sergio Palomares-Ruiz, Silvia Pascoli, Phys. Lett. B664 (2008) 92-96, arXiv:0706.3909.
[Mena:2007ty]
[8-1522]
In which shell-type SNRs should we look for gamma-rays and neutrinos from p-p collisions?, Boaz Katz, Eli Waxman, JCAP 0801 (2008) 018, arXiv:0706.3485.
[Katz:2007ds]
[8-1523]
GZK Photons Above 10 EeV, Graciela B Gelmini, Oleg Kalashev, Dmitry V. Semikoz, JCAP 0711 (2007) 002, arXiv:0706.2181.
[Gelmini:2007jy]
[8-1524]
Confusing Sterile Neutrinos with Deviation from Tribimaximal Mixing at Neutrino Telescopes, Ram Lal Awasthi, Sandhya Choubey, Phys. Rev. D76 (2007) 113002, arXiv:0706.0399.
[Awasthi:2007az]
[8-1525]
Simulation of Cosmogenic Neutrino Spectra with the GZKFast Event Generator, John A. Cairns, arXiv:0705.1989, 2007.
[Cairns:2007es]
[8-1526]
High-energy Cosmic Rays and Neutrinos from Semi-relativistic Hypernovae, Xiang-Yu Wang, Soebur Razzaque, Peter Meszaros, Zi-Gao Dai, Phys. Rev. D76 (2007) 083009, arXiv:0705.0027.
[Wang:2007ya]
[8-1527]
Neutrino-cooled accretion and GRB variability, Dimitrios Giannios, arXiv:0704.1659, 2007.
[Giannios:2007fk]
[8-1528]
Simulation of Ultra High Energy Neutrino Interactions in Ice and Water, S Bevan. et al., Astropart. Phys. 28 (2007) 366-379, arXiv:0704.1025.
[Bevan:2007qbv]
[8-1529]
Cosmogenic neutrinos as a probe of the transition from Galactic to extragalactic cosmic rays, Hajime Takami, Kohta Murase, Shigehiro Nagataki, Katsuhiko Sato, Astropart. Phys. 31 (2009) 201-211, arXiv:0704.0979.
[Takami:2007pp]
[8-1530]
Flavor Composition and Energy Spectrum of Astrophysical Neutrinos, Paolo Lipari, Maurizio Lusignoli, Davide Meloni, Phys. Rev. D75 (2007) 123005, arXiv:0704.0718.
[Lipari:2007su]
[8-1531]
Neutron-rich gamma-ray burst flows: dynamics and particle creation in neutron - proton collisions, Hylke B. J. Koers, Dimitrios Giannios, Astron. Astrophys. 471 (2007) 395-408, arXiv:astro-ph/0703719.
[Koers:2007ww]
[8-1532]
Non-Universal Spectra of Ultra-High Energy Cosmic Ray Primaries and Secondaries in a Structured Universe, Guenter Sigl, Phys. Rev. D75 (2007) 103001, arXiv:astro-ph/0703403.
[Sigl:2007ea]
[8-1533]
Correlation of Photon and Neutrino Fluxes in Blazars and Gamma Ray Bursts, C. Dermer, E. Ramirez-Ruiz, T. Le, Phys. Rev. Lett. (2007), arXiv:astro-ph/0703219.
[Dermer:2007me]
[8-1534]
Simulation of Double-Bang Event in the Atmosphere, Celio A. Moura, Marcelo M. Guzzo, Braz. J. Phys. 38 (2008) 219, arXiv:hep-ph/0703145.
[Moura:2007sr]
[8-1535]
New Physics with IceCube, Matias M. Reynoso, Oscar A. Sampayo, Phys. Rev. D76 (2007) 033003, arXiv:hep-ph/0703076.
[Reynoso:2007zb]
[8-1536]
High-energy neutrinos from astrophysical accelerators of cosmic ray nuclei, Luis A. Anchordoqui, Dan Hooper, Subir Sarkar, Andrew M. Taylor, Astropart. Phys. 29 (2008) 1-13, arXiv:astro-ph/0703001.
[Anchordoqui:2007tn]
[8-1537]
Limit on UHE Neutrino Flux from the Parkes Lunar Radio Cherenkov Experiment, C. W. James et al., Mon. Not. Roy. Astron. Soc. 379 (2007) 1037-1041, arXiv:astro-ph/0702619.
[James:2007rq]
[8-1538]
Multi-GeV neutrinos due to neutron-antineutron oscillation in Gamma-Ray Burst Fireballs, Sarira Sahu, Mod.Phys.Lett. A22 (2008) 3065-3072, arXiv:hep-ph/0702277.
[Sahu:2008zzb]
[8-1539]
On the observability of high-energy neutrinos from gamma ray bursts, Nick van Eijndhoven, Astropart. Phys. 28 (2008) 540-546, arXiv:astro-ph/0702029.
[vanEijndhoven:2007aa]
[8-1540]
Diffuse Neutrino and Gamma-ray Emissions of the Galaxy above the TeV, Carmelo Evoli, Dario Grasso, Luca Maccione, JCAP 0706 (2007) 003, arXiv:astro-ph/0701856.
[Evoli:2007iy]
[8-1541]
Dissecting the Cygnus Region with TeV Gamma Rays and Neutrinos, John F. Beacom, Matthew D. Kistler, Phys. Rev. D75 (2007) 083001, arXiv:astro-ph/0701751.
[Beacom:2007yu]
[8-1542]
Detecting neutrino-transients with optical follow-up observations, Marek Kowalski, Anna Mohr, Astropart. Phys. 27 (2007) 533-538, arXiv:astro-ph/0701618.
[Kowalski:2007xb]
[8-1543]
Detecting MeV Gauge Bosons With High-Energy Neutrino Telescopes, Dan Hooper, Phys. Rev. D75 (2007) 123001, arXiv:hep-ph/0701194.
[Hooper:2007jr]
[8-1544]
Constraints on Thermal X-ray Radiation from SAX J1808.4-3658 and Implications for Neutron Star Neutrino Emission, C. O. Heinke, P. G. Jonker, R. Wijnands, R. E. Taam, Astrophys. J. 660 (2007) 1424-1427, arXiv:astro-ph/0612232.
[Heinke:2006ie]
[8-1545]
Cosmic Neutrinos from the Sources of Galactic and Extragalactic Cosmic Rays, Francis Halzen, Astrophys. Space Sci. 309 (2007) 407-414, arXiv:astro-ph/0611915.
[Halzen:2006mp]
[8-1546]
TeV gamma-rays and neutrinos from photo-disintegration of nuclei in Cygnus OB2, Luis A. Anchordoqui et al., Phys. Rev. D75 (2007) 063001, arXiv:astro-ph/0611581.
[Anchordoqui:2006pe]
[8-1547]
Gamma Ray Burst Neutrinos Probing Quantum Gravity, M.C. Gonzalez-Garcia, F. Halzen, JCAP 0702 (2007) 008, arXiv:hep-ph/0611359.
[Gonzalez-Garcia:2006koj]
[8-1548]
Parameterization of the energy and rapidity distributions of secondary pions and kaons produced in energetic proton-proton collisions, Hylke B. J. Koers, Asaf Pe'er, Ralph A. M. J. Wijers, Phys. Rev.D (2006), arXiv:hep-ph/0611219.
[Koers:2006dd]
[8-1549]
Constraining Galactic Neutrino Production in $p\gamma$ Interactions with Cosmic Ray Electron and Positron Spectra, Nayantara Gupta, Bing Zhang, Chin. J. Astron. Astrophys. 8 (2008) 153-158, arXiv:astro-ph/0610770.
[Gupta:2006zg]
[8-1550]
Implications of a GRB-Metallicity Anti-Correlation for Cosmogenic Neutrinos, Hasan Yuksel, Matthew D. Kistler, Phys. Rev. D75 (2007) 083004, arXiv:astro-ph/0610481.
[Yuksel:2006qb]
[8-1551]
The Relevance of Mediterranean Neutrino Telescope Sites on Earth-skimming tau neutrino detection, Gennaro Miele, Nucl. Phys. Proc. Suppl. 165 (2007) 215-222, arXiv:astro-ph/0610393. CRIS 2006: Cosmic Ray International Seminar: Ultra-High Energy Cosmic Rays: Status and Perspectives, Catania, Italy, 29 May - 2 June 2006.
[Miele:2006hv]
[8-1552]
Black Holes at IceCube, Luis A. Anchordoqui, Matthew M. Glenz, Leonard Parker, Phys. Rev. D75 (2007) 024011, arXiv:hep-ph/0610359.
[Anchordoqui:2006fn]
[8-1553]
Effects of charged Higgs bosons in the deep inelastic process $\nu_{\tau} {\cal N} \to \tau^- X$ and the possibility of detecting tau-neutrinos at cosmic neutrino detectors, A. Rosado, Pramana 70 (2008) 603-615, arXiv:hep-ph/0610220.
[Rosado:2006gt]
[8-1554]
Ultra high energy neutrinos in the Mediterranean: Detecting nu/tau and nu/mu with a km**3 telescope, Alessandro Cuoco et al., JCAP 0702 (2007) 007, arXiv:astro-ph/0609241.
[Cuoco:2006qd]
[8-1555]
Assessing The Starburst Contribution to the Gamma-Ray and Neutrino Backgrounds, Todd A. Thompson, Eliot Quataert, Eli Waxman, Abraham Loeb, arXiv:astro-ph/0608699, 2006.
[Thompson:2006np]
[8-1556]
Neutrino signals from the formation of black hole: a probe of equation of state of dense matter, K. Sumiyoshi, S. Yamada, H. Suzuki, S. Chiba, Phys. Rev. Lett. 97 (2006) 091101, arXiv:astro-ph/0608509.
[Sumiyoshi:2006id]
[8-1557]
Astrophysical tau neutrino detection in kilometer-scale Cherenkov detectors via muonic tau decay, T. DeYoung, S. Razzaque, D. F. Cowen, Astropart. Phys. 27 (2007) 238-243, arXiv:astro-ph/0608486.
[DeYoung:2006fg]
[8-1558]
Inverse Compton scattering on solar photons, heliospheric modulation, and neutrino astrophysics, Igor V. Moskalenko, Troy A. Porter, Seth W. Digel, Astrophys. J. 652 (2006) L65-L68, arXiv:astro-ph/0607521.
[Moskalenko:2006ta]
[8-1559]
Astrophysical implications of high energy neutrino limits I. Overall diffuse limits, Julia K. Becker, Wolfgang Rhode, Peter L. Biermann, Kirsten Muenich, Astropart. Phys. 28 (2008) 98-118, arXiv:astro-ph/0607427.
[Becker:2006gi]
[8-1560]
Probing Pseudo-Dirac Neutrino through Detection of Neutrino Induced Muons from GRB Neutrinos, Debasish Majumdar, Pramana 70 (2008) 51-60, arXiv:hep-ph/0607344.
[Majumdar:2006bu]
[8-1561]
Potential Neutrino Signals from Galactic Gamma-Ray Sources, Alexander Kappes, Jim Hinton, Christian Stegmann, Felix A. Aharonian, Astrophys. J. 656 (2007) 870-896, arXiv:astro-ph/0607286.
[Kappes:2006fg]
[8-1562]
Neutrinos from galactic sources of cosmic rays with known gamma-ray spectra, Francesco Vissani, Astropart. Phys. 26 (2006) 310-313, arXiv:astro-ph/0607249.
[Vissani:2006tf]
[8-1563]
Are Diffuse High Energy Neutrinos from Starburst Galaxies Observable?, F.W. Stecker, Astropart. Phys. 26 (2007) 398-401, arXiv:astro-ph/0607197.
[Stecker:2006vz]
[8-1564]
GRBs Neutrinos as a Tool to Explore Quantum Gravity induced Lorentz Violation, Uri Jacob, Tsvi Piran, Nature Phys. 3 (2007) 87-90, arXiv:hep-ph/0607145.
[Jacob:2006gn]
[8-1565]
High Energy Neutrinos and Cosmic-Rays from Low-Luminosity Gamma-Ray Bursts?, Kohta Murase, Kunihito Ioka, Shigehiro Nagataki, Takashi Nakamura, Astrophys. J. 651 (2006) L5, arXiv:astro-ph/0607104.
[Murase:2006mm]
[8-1566]
Guaranteed and Prospective Galactic TeV Neutrino Sources, Matthew D. Kistler, John F. Beacom, Phys. Rev. D74 (2006) 063007, arXiv:astro-ph/0607082.
[Kistler:2006hp]
[8-1567]
Neutrino Spectra from Low and High Luminosity Populations of Gamma Ray Bursts, Nayantara Gupta, Bing Zhang, Astropart. Phys. 27 (2007) 386-391, arXiv:astro-ph/0606744.
[Gupta:2006jm]
[8-1568]
High energy neutrino yields from astrophysical sources I: Weakly magnetized sources, M. Kachelriess, R. Tomas, Phys. Rev. D74 (2006) 063009, arXiv:astro-ph/0606406.
[Kachelriess:2006fi]
[8-1569]
Probing Neutrino Dark Energy with Extremely High-Energy Cosmic Neutrinos, Andreas Ringwald, Lily Schrempp, JCAP 0610 (2006) 012, arXiv:astro-ph/0606316.
[Ringwald:2006ks]
[8-1570]
Ultra high energy neutrino-nucleon cross section from cosmic ray experiments and neutrino telescopes, V. Barger, Patrick Huber, Danny Marfatia, Phys. Lett. B642 (2006) 333-341, arXiv:hep-ph/0606311.
[Barger:2006ky]
[8-1571]
Cross section dependence of event rates at neutrino telescopes, S. Hussain, D. Marfatia, D. W. McKay, D. Seckel, Phys. Rev. Lett. 97 (2006) 161101, arXiv:hep-ph/0606246.
[Hussain:2006wg]
[8-1572]
Energy spectra of gamma-rays, electrons and neutrinos produced at proton-proton interactions in the very high energy regime, S.R. Kelner, F.A. Aharonian, V.V. Bugayov, Phys. Rev. D74 (2006) 034018, arXiv:astro-ph/0606058.
[Kelner:2006tc]
[8-1573]
Limits on the Transient Ultra-High Energy Neutrino Flux from Gamma-Ray Bursts (GRB) Derived from RICE Data, S. Hussain et al., Astropart. Phys. 26 (2007) 367-377, arXiv:astro-ph/0605480.
[Razzaque:2006qa]
[8-1574]
Cosmogenic Neutrinos from the propagation of Ultra High Energy Nuclei, D. Allard et al., JCAP 0609 (2006) 005, arXiv:astro-ph/0605327.
[Allard:2006mv]
[8-1575]
Direct Detection of Supersymmetric Particles in Neutrino Telescopes, Ivone F. M. Albuquerque, Gustavo Burdman, Z. Chacko, Phys. Rev. D75 (2007) 035006, arXiv:hep-ph/0605120.
[Albuquerque:2006am]
[8-1576]
AMANDA Observations Constrain the Ultra-High Energy Neutrino Flux, Francis Halzen, Dan Hooper, Phys. Rev. Lett. 97 (2006) 099901, arXiv:astro-ph/0605103.
[Halzen:2006ic]
[8-1577]
Probing low-x QCD with ultra-high energy cosmic neutrinos at Auger, Luis A. Anchordoqui, Amanda M. Cooper-Sarkar, Dan Hooper, Subir Sarkar, Phys. Rev. D74 (2006) 043008, arXiv:hep-ph/0605086.
[Anchordoqui:2006ta]
[8-1578]
Canonical Constraints on Leptonic CP Violation using UHCR neutrino fluxes, K. R. S. Balaji, G. Couture, C. Hamzaoui, Phys. Rev. D74 (2006) 033013, arXiv:hep-ph/0605066.
[Balaji:2006wi]
[8-1579]
High Energy Neutrino Flash from Far-UV/X-ray Flares of Gamma-Ray Bursts, Kohta Murase, Shigehiro Nagataki, Phys. Rev. Lett. 97 (2006) 051101, arXiv:astro-ph/0604437.
[Murase:2006dr]
[8-1581]
Neutrino-Dominated Accretion Models for Gamma-Ray Bursts: Effects of General Relativity and Neutrino Opacity, Wei-Min Gu, Tong Liu, Ju-Fu Lu, Astrophys. J. 643 (2006) L87-L90, arXiv:astro-ph/0604370.
[Gu:2006nu]
[8-1582]
Neutrino Coannihilation on Dark-Matter Relics?, Gabriela Barenboim, Olga Mena Requejo, Chris Quigg, Phys. Rev. D74 (2006) 023006, arXiv:astro-ph/0604215.
[Barenboim:2006dj]
[8-1583]
Satellite Detection of Radio Pulses from Ultrahigh Energy Neutrinos Interacting with the Moon, O. Stal et al., Phys. Rev. Lett. 98 (2007) 071103, arXiv:astro-ph/0604199.
[Stal:2006te]
[8-1584]
Long-Lived Staus at Neutrino Telescopes, Markus Ahlers, Joern Kersten, Andreas Ringwald, JCAP 0607 (2006) 005, arXiv:hep-ph/0604188.
[Ahlers:2006pf]
[8-1585]
TeV Neutrinos from SuperNova Remnants embedded in Giant Molecular Clouds, Vincenzo Cavasinni, Dario Grasso, Luca Maccione, Astropart. Phys. 26 (2006) 41-49, arXiv:astro-ph/0604004.
[Cavasinni:2006nx]
[8-1586]
CRPropa: A Numerical Tool for the Propagation of UHE Cosmic Rays, Gamma-rays and Neutrinos, E. Armengaud, G. Sigl, T. Beau, F. Miniati, Astropart. Phys. 28 (2007) 463-471, arXiv:astro-ph/0603675.
[Armengaud:2006fx]
[8-1587]
Prospects for detecting Dark Matter with neutrino telescopes in Intermediate Mass Black Holes scenarios, Gianfranco Bertone, Phys. Rev. D73 (2006) 103519, arXiv:astro-ph/0603148.
[Bertone:2006nq]
[8-1588]
Very High Energy Neutrinos Originating from Kaons in Gamma-Ray Bursts, K. Asano, S. Nagataki, Astrophys. J. 640 (2006) L9-L12, arXiv:astro-ph/0603107.
[Asano:2006zzb]
[8-1589]
General Relativistic, Neutrino-Assisted MHD winds - Theory and Application to GRBs. I. Schwarzschild Geometry, Amir Levinson, Astrophys. J. 648 (2006) 510-522, arXiv:astro-ph/0602358.
[Levinson:2006cw]
[8-1590]
Cosmological Gravitational Wave Background from Phase Transitions in Neutron Stars, Guenter Sigl, JCAP 0604 (2006) 002, arXiv:astro-ph/0602345.
[Sigl:2006ur]
[8-1591]
A Guaranteed Flux of Extra-Galactic High-Energy Neutrinos, Abraham Loeb, Eli Waxman, JCAP 0605 (2006) 003, arXiv:astro-ph/0601695.
[Loeb:2006tw]
[8-1592]
MeV-GeV emission from neutron-loaded short gamma-ray burst jets, Soebur Razzaque, Peter Meszaros, Astrophys. J. 650 (2006) 998-1003, arXiv:astro-ph/0601652.
[Razzaque:2006ju]
[8-1593]
No Black Holes at IceCube, Ulrich Harbach, Marcus Bleicher, JCAP (2006), arXiv:hep-ph/0601121.
[Harbach:2006aj]
[8-1594]
Cosmogenic Neutrinos from Cosmic Ray Interactions with Extragalactic Infrared Photons, Daniel De Marco, Todor Stanev, F. W. Stecker, Phys. Rev. D73 (2006) 043003, arXiv:astro-ph/0512479.
[DeMarco:2005kt]
[8-1595]
High Energy Neutrino Emission and Neutrino Background from Gamma-Ray Bursts in the Internal Shock Model, Kohta Murase, Shigehiro Nagataki, Phys. Rev. D73 (2006) 063002, arXiv:astro-ph/0512275.
[Murase:2005hy]
[8-1596]
Acceptances for Space-Based and Ground-Based Fluorescence Detectors, and Inference of the Neutrino-Nucleon Cross-Section above 10^19 eV, Sergio Palomares-Ruiz, Andrei Irimia, Thomas J. Weiler, Phys. Rev. D73 (2006) 083003, arXiv:astro-ph/0512231.
[Palomares-Ruiz:2005npx]
[8-1597]
Probing the Cosmic Ray 'Knee' and Very High Energy Prompt Muon and Neutrino fluxes via Underground Muons, Raj Gandhi, Sukanta Panda, JCAP 0607 (2006) 011, arXiv:hep-ph/0512179.
[Gandhi:2005at]
[8-1598]
Coincident GRB neutrino flux predictions: Implications for experimental UHE neutrino physics, Julia K. Becker, Michael Stamatikos, Francis Halzen, Wolfgang Rhode, Astropart. Phys. 25 (2006) 118, arXiv:astro-ph/0511785.
[Becker:2005ej]
[8-1599]
Precession of neutrino-cooled accretion disks in gamma-ray burst engines, Matias M. Reynoso, Gustavo E. Romero, Oscar A. Sampayo, Astron. Astrophys. 454 (2006) 11-16, arXiv:astro-ph/0511639.
[Reynoso:2005ki]
[8-1600]
Air-Shower Spectroscopy at horizons, D. Fargion, Prog. Part. Nucl. Phys. 57 (2006) 384, arXiv:astro-ph/0511597.
[Fargion:2005fa]
[8-1601]
Neutrino spectrum from the pair-annihilation process in the hot stellar plasma, M. Misiaszek, A. Odrzywolek, M. Kutschera, Phys. Rev. D74 (2006) 043006, arXiv:astro-ph/0511555.
[Misiaszek:2005ax]
[8-1602]
High Energy Neutrinos from Cosmic Ray Interactions in Clusters of Galaxies, Daniel De Marco, Pasquale Blasi, Patricia Hansen, Todor Stanev, Phys. Rev. D73 (2006) 043004, arXiv:astro-ph/0511535.
[DeMarco:2005va]
[8-1603]
A Note on High Energy Neutrinos from AGN Cores, F.W. Stecker, Phys. Rev. D72 (2005) 107301, arXiv:astro-ph/0510537.
[Stecker:2005hn]
[8-1604]
Bounds on Low Scale Gravity from RICE data and Cosmogenic Neutrino Flux Models, Shahid Hussain, Douglas W. McKay, Phys. Lett. B634 (2006) 130, arXiv:hep-ph/0510083.
[Hussain:2005dm]
[8-1605]
Prospects For Detecting Dark Matter With Neutrino Telescopes In Light Of Recent Results From Direct Detection Experiments, Francis Halzen, Dan Hooper, Phys. Rev. D73 (2006) 123507, arXiv:hep-ph/0510048.
[Halzen:2005ar]
[8-1606]
Gravitational Wave Background from Neutrino-Driven Gamma-Ray Bursts, Takashi Hiramatsu, Kei Kotake, Hideaki Kudoh, Atsushi Taruya, Mon. Not. Roy. Astron. Soc. 364 (2005) 1063, arXiv:astro-ph/0509787.
[Hiramatsu:2005jn]
[8-1607]
High energy neutrinos from a slow jet model of core collapse supernovae, Soebur Razzaque, Peter Meszaros, Eli Waxman, Mod. Phys. Lett. A20 (2005) 2351, arXiv:astro-ph/0509729.
[Razzaque:2005bh]
[8-1608]
High-energy neutrino emission from X-ray binaries, Hugo R. Christiansen, Mariana Orellana, Gustavo E. Romero, Phys. Rev. D73 (2006) 063012, arXiv:astro-ph/0509214.
[Christiansen:2005gw]
[8-1609]
Enhancement of the anti-nu/e flux from astrophysical sources by two photon annihilation interactions, Soebur Razzaque, Peter Meszaros, Eli Waxman, Phys. Rev. D73 (2006) 103005, arXiv:astro-ph/0509186.
[Razzaque:2005ds]
[8-1610]
LS 5039 as a potential TeV neutrino source, Felix A. Aharonian, Luis A. Anchordoqui, Dmitry Khangulyan, Teresa Montaruli, J. Phys. Conf. Ser. 39 (2006) 408-415, arXiv:astro-ph/0508658.
[Aharonian:2005cx]
[8-1611]
Optimal Radio Window for the Detection of Ultra-High-Energy Cosmic Rays and Neutrinos off the Moon, O. Scholten et al., Astropart. Phys. 26 (2006) 219, arXiv:astro-ph/0508580.
[Scholten:2005pp]
[8-1612]
Exotic neutrino interactions at the Pierre Auger observatory, Luis Anchordoqui, Tao Han, Dan Hooper, Subir Sarkar, Astropart. Phys. 25 (2006) 14, arXiv:hep-ph/0508312.
[Anchordoqui:2005ey]
[8-1613]
The aperture for UHE tau neutrinos of the Auger fluorescence detector using a Digital Elevation Map, Gennaro Miele, Sergio Pastor, Ofelia Pisanti, Phys. Lett. B634 (2006) 137, arXiv:astro-ph/0508038.
[Miele:2005bt]
[8-1614]
Flavoring Astrophysical Neutrinos: Flavor Ratios Depend on Energy, Tamar Kashti, Eli Waxman, Phys. Rev. Lett. 95 (2005) 181101, arXiv:astro-ph/0507599.
[Kashti:2005qa]
[8-1615]
The Maximal Neutrino Flux from Neutralino Annihilation in the Galactic Center, J. Orloff, arXiv:astro-ph/0507597, 2005.
[Orloff:2005py]
[8-1616]
High energy neutrinos from fast spinning magnetars, Qinghuan Luo, Astropart. Phys. 24 (2005) 301, arXiv:astro-ph/0507395.
[Luo:2005hb]
[8-1617]
Neutrino from extragalactic cosmic ray interactions in far infrared background, E. V. Bugaev, P. A. Klimai, arXiv:astro-ph/0507366, 2005.
[Bugaev:2005da]
[8-1618]
Spectra of neutrinos from dark matter annihilations, Marco Cirelli et al., Nucl. Phys. B727 (2005) 99, arXiv:hep-ph/0506298.
[Cirelli:2005gh]
[8-1619]
Probing Planck scale physics with IceCube, Luis A. Anchordoqui et al., Phys. Rev. D72 (2005) 065019, arXiv:hep-ph/0506168.
[Anchordoqui:2005gj]
[8-1620]
Lorentz and CPT Invariance Violation In High-Energy Neutrinos, Dan Hooper, Dean Morgan, Elizabeth Winstanley, Phys. Rev. D72 (2005) 065009, arXiv:hep-ph/0506091.
[Hooper:2005jp]
[8-1621]
TeV neutrinos from microquasars in compact massive binaries, W. Bednarek, Astrophys. J. 631 (2005) 466, arXiv:astro-ph/0505547.
[Bednarek:2005gf]
[8-1622]
The effect of neutrinos on the initial fireballs in gamma-ray bursts, Hylke B. J. Koers, Ralph A. M. J. Wijers, Mon. Not. Roy. Astron. Soc. 364 (2005) 934, arXiv:astro-ph/0505533.
[Koers:2005ya]
[8-1623]
Measuring diffuse neutrino fluxes with IceCube, Marek Kowalski, JCAP 0505 (2005) 010, arXiv:astro-ph/0505506.
[Kowalski:2005tz]
[8-1624]
Detectable neutrino fluxes due to enhanced cosmic ray densities in the Galactic Center region, Julian Candia, JCAP 0511 (2005) 002, arXiv:astro-ph/0505346.
[Candia:2005nw]
[8-1625]
Burst Neutrinos from Nitrogen Flash, A. M. Serenelli, M. Fukugita, Astrophys. J. 632 (2005) L33, arXiv:astro-ph/0505333.
[Serenelli:2005nh]
[8-1626]
Gamma-ray and neutrino emission from misaligned microquasars, Gustavo E. Romero, Mariana Orellana, Astron. Astrophys. 439 (2005) 237, arXiv:astro-ph/0505287.
[Romero:2005em]
[8-1627]
Neutrino emission rates in highly magnetized neutron stars revisited, Mario Riquelme, Andreas Reisenegger, Olivier Espinosa, Claudio Dib, Astrophys. J. 439 (2005) 427, arXiv:astro-ph/0505238.
[Riquelme:2005ac]
[8-1628]
Neutrino emission in the hadronic Synchrotron Mirror Model: the orphan TeV flare from 1ES 1959+650, A. Reimer, M. Boettcher, S. Postnikov, Astrophys. J. 630 (2005) 186, arXiv:astro-ph/0505233.
[Reimer:2005sj]
[8-1629]
Signatures of cosmic tau-neutrinos, E. Reya, J. Roediger, Phys. Rev. D72 (2005) 053004, arXiv:hep-ph/0505218.
[Reya:2005vh]
[8-1630]
Why black hole production in scattering of cosmic ray neutrinos is generically suppressed, Dejan Stojkovic Glenn D. Starkman, Phys. Rev. Lett. 96 (2006) 041303, arXiv:hep-ph/0505112.
[Stojkovic:2005fx]
[8-1631]
Neutrino Detection with Inclined Air Showers, Enrique Zas, New J. Phys. 7 (2005) 130, arXiv:astro-ph/0504610.
[Zas:2005zz]
[8-1632]
On the Parameters determining the Neutrino Flux from observed Active Galactic Nuclei, J. L. Bazo, A. M. Gago, arXiv:astro-ph/0504554, 2005.
[Bazo:2005ee]
[8-1633]
Sgr A East as a possible high energy neutron factory in the Galactic Centre, Dario Grasso, Luca Maccione, Astropart. Phys. 24 (2005) 273, arXiv:astro-ph/0504323.
[Grasso:2005wd]
[8-1634]
Ultra High Energy Tau Neutrinos and Fluorescence Detectors: A Phenomenological Approch, M. Guzzo, C. Moura Jr, Astropart. Phys. 25 (2006) 277, arXiv:hep-ph/0504270.
[Guzzo:2005fi]
[8-1635]
TeV gravity at neutrino telescopes, J.I. Illana, M. Masip, D. Meloni, Phys. Rev. D72 (2005) 024003, arXiv:hep-ph/0504234.
[Illana:2005pu]
[8-1636]
Particle Physics on Ice: Constraints on Neutrino Interactions Far Above the Weak Scale, Luis A. Anchordoqui, Jonathan L. Feng, Haim Goldberg, Phys. Rev. Lett. 96 (2006) 021101, arXiv:hep-ph/0504228.
[Anchordoqui:2005pn]
[8-1637]
Tau neutrino propagation and tau energy loss, Sharada Iyer Dutta, Yiwen Huang, Mary Hall Reno, Phys. Rev. D72 (2005) 013005, arXiv:hep-ph/0504208.
[Dutta:2005yt]
[8-1638]
Early photon-shock interaction in stellar wind: sub-GeV photon flash and high energy neutrino emission from long GRBs, Y. Z. Fan, Bing Zhang, D. M. Wei, Astrophys. J. 629 (2005) 334, arXiv:astro-ph/0504039.
[Fan:2005fc]
[8-1639]
TeV photons and Neutrinos from giant soft-gamma repeaters flares, Francis Halzen, Hagar Landsman, Teresa Montaruli, arXiv:astro-ph/0503348, 2005.
[Halzen:2005tc]
[8-1640]
TeV-PeV Neutrinos from Giant Flares of Magnetars and the Case of SGR 1806-20, Kunihito Ioka, Soebur Razzaque, Shiho Kobayashi, Peter Meszaros, Astrophys. J. 633 (2005) 1013, arXiv:astro-ph/0503279.
[Ioka:2005er]
[8-1641]
Cooling of Accelerated Nucleons and Neutrino Emission in Gamma-Ray Bursts, Katsuaki Asano, Astrophys. J. 623 (2005) 967, arXiv:astro-ph/0503262.
[Asano:2005wb]
[8-1642]
Neutrinos as a diagnostic of cosmic ray Galactic/extra-galactic transition, Markus Ahlers et al., Phys. Rev. D72 (2005) 023001, arXiv:astro-ph/0503229.
[Ahlers:2005sn]
[8-1643]
Testing Gravity-Driven Collapse of the Wavefunction via Cosmogenic Neutrinos, Joy Christian, Phys. Rev. Lett. 95 (2005) 160403, arXiv:quant-ph/0503001.
[Christian:2005qa]
[8-1644]
High Energy Neutrinos from the TeV Blazar 1ES 1959+650, Francis Halzen, Dan Hooper, Astropart. Phys. 23 (2005) 537, arXiv:astro-ph/0502449.
[Halzen:2005pz]
[8-1645]
Neutrinos: the Key to UHE Cosmic Rays, David Seckel, Todor Stanev, Phys. Rev. Lett. 95 (2005) 141101, arXiv:astro-ph/0502244.
[Seckel:2005cm]
[8-1646]
The diffuse neutrino flux from FR-II radio galaxies and blazars: A source property based estimate, Julia K. Becker, Peter L. Biermann, Wolfgang Rhode, Astropart. Phys. 23 (2005) 355, arXiv:astro-ph/0502089.
[Becker:2005ya]
[8-1647]
Measuring the 13-mixing angle and the CP phase with neutrino telescopes, P.D. Serpico, M. Kachelriess, Phys. Rev. Lett. 94 (2005) 211102, arXiv:hep-ph/0502088.
[Serpico:2005sz]
[8-1648]
Possible violation of the spin-statistics relation for neutrinos: cosmological and astrophysical consequences, A.D. Dolgov, A.Yu. Smirnov, Phys. Lett. B621 (2005) 1, arXiv:hep-ph/0501066.
[Dolgov:2005qi]
[8-1649]
Search for solar antineutrinos and constraints on the neutrino background from PBHs, E. V. Bugaev, K. V. Konishchev, arXiv:astro-ph/0412640, 2004.
[Bugaev:2004yp]
[8-1651]
The Neutrino Emissivity of Strange Stars with Ultra Strong Magnetic Field, Liu Xuewen, Zheng Xiaoping, Hou Defu, Astropart. Phys. 24 (2005) 92, arXiv:astro-ph/0412515.
[Liu:2004yh]
[8-1652]
Interactions of cosmic neutrinos with nucleons in the RS model, A.V. Kisselev, Eur. Phys. J. C42 (2005) 217, arXiv:hep-ph/0412376.
[Kisselev:2004ze]
[8-1653]
Diagnostic Potential of Cosmic-Neutrino Absorption Spectroscopy, Gabriela Barenboim, Olga Mena Requejo, Chris Quigg, Phys. Rev. D71 (2005) 083002, arXiv:hep-ph/0412122.
[Barenboim:2004di]
[8-1654]
Ultra High Energy $\nu_\tau$ Detection Using Cosmic Ray Tau Neutrino Telescope Used in Fluorescence/Cerenkov Light Detection, Z. Cao, M. A. Huang, P. Sokolsky, Y. Hu, J. Phys. G31 (2005) 571, arXiv:astro-ph/0411677.
[Cao:2004sd]
[8-1655]
Diffuse Cosmic Neutrino Background from Population III Stars, F. Iocco, G. Mangano, G. Miele, G. G. Raffelt, P. D. Serpico, Astropart. Phys. 23 (2005) 303, arXiv:astro-ph/0411545.
[Iocco:2004wd]
[8-1656]
Neutrinos from the Galactic Center in the Light of HESS, Roland M. Crocker, Fulvio Melia, Raymond R. Volkas, Astrophys. J. 622 (2005) L37, arXiv:astro-ph/0411471.
[Crocker:2004nk]
[8-1657]
May Heavy neutrinos solve underground and cosmic ray puzzles?, K. Belotsky, D. Fargion, M. Khlopov, R.V. Konoplich, Phys. Atom. Nucl. 71 (2008) 147-161, arXiv:hep-ph/0411093.
[Belotsky:2004st]
[8-1658]
Neutrino Scattering, Absorption and Annihilation above the accretion disks of Gamma Ray Bursts, J.P. Kneller, G. C. McLaughlin, R. Surman, J. Phys. G32 (2006) 443, arXiv:astro-ph/0410397.
[Kneller:2004jr]
[8-1659]
Upper Bounds on the Neutrino-Nucleon Inelastic Cross Section, L. A. Anchordoqui et al., JCAP 0506 (2005) 013, arXiv:hep-ph/0410136.
[Anchordoqui:2004ma]
[8-1660]
Probing Quantum Decoherence with High-Energy Neutrinos, Dan Hooper, Dean Morgan, Elizabeth Winstanley, Phys. Lett. B609 (2005) 206, arXiv:hep-ph/0410094.
[Hooper:2004xr]
[8-1661]
Neutrinos as a Diagnostic of High Energy Astrophysical Processes, Luis A. Anchordoqui, Haim Goldberg, Francis Halzen, Thomas J. Weiler, Phys. Lett. B621 (2005) 18, arXiv:hep-ph/0410003.
[Anchordoqui:2004eb]
[8-1662]
Cosmogenic neutrinos from ultra-high energy nuclei, Maximo Ave, N. Busca, A. V. Olinto, A. A. Watson, T. Yamamoto, Astropart. Phys. 23 (2005) 19, arXiv:astro-ph/0409316.
[Ave:2004uj]
[8-1663]
North-south neutrino heating asymmetry in strongly magnetized and rotating stellar cores, Kei Kotake, Shoichi Yamada, Katsuhiko Sato, Astrophys. J. 618 (2004) 474, arXiv:astro-ph/0409244.
[Kotake:2004fu]
[8-1664]
Extremely energetic cosmic neutrinos and their impact on particle physics and cosmology, A. Ringwald, Nucl. Phys. Proc. Suppl. 136 (2004) 111, arXiv:hep-ph/0409151.
[Ringwald:2004xj]
[8-1665]
High energy neutrinos from radio-quiet AGNs, Jaime Alvarez-Muñiz, Peter Meszaros, Phys. Rev. D70 (2004) 123001, arXiv:astro-ph/0409034.
[Alvarez-Muniz:2004xlu]
[8-1666]
Tracing very high energy tau neutrinos from cosmological sources in ice, J. Jones, I. Mocioiu, I. Sarcevic, M. H. Reno, Int. J. Mod. Phys. A20 (2005) 1204, arXiv:hep-ph/0408060.
[Jones:2004ir]
[8-1667]
Earth-skimming UHE tau neutrinos at the fluorescence detector of Pierre Auger Observatory, C. Aramo et al., Astropart. Phys. 23 (2005) 65, arXiv:astro-ph/0407638.
[Aramo:2004pr]
[8-1668]
The Impact of Heavy Nuclei on the Cosmogenic Neutrino Flux, Dan Hooper, Andrew Taylor, Subir Sarkar, Astropart. Phys. 23 (2005) 11, arXiv:astro-ph/0407618.
[Hooper:2004jc]
[8-1669]
Neutrinos from microquasars, Diego F. Torres, Gustavo E. Romero, Felix Mirabel, Chin. J. Astron. Astrophys. 5 (2005) S133, arXiv:astro-ph/0407494.
[Torres:2004tm]
[8-1670]
Neutrino Interactions in the Outflow from Gamma-Ray Burst Accretion Disks, R. Surman, G. C. McLaughlin, Astrophys. J. 618 (2004) 397, arXiv:astro-ph/0407206.
[Surman:2004sy]
[8-1671]
Tau Neutrino Astronomy in GeV Energies, H. Athar, F. F. Lee, G. L. Lin, Phys. Rev. D71 (2005) 103008, arXiv:hep-ph/0407183.
[Athar:2004um]
[8-1672]
GeV to TeV astrophysical tau neutrinos, H. Athar, C. S. Kim, Phys. Lett. B598 (2004) 1, arXiv:hep-ph/0407182.
[Athar:2004uk]
[8-1673]
TeV neutrinos from core collapse supernovae and hypernovae, Soebur Razzaque, Peter Meszaros, Eli Waxman, Phys. Rev. Lett. 93 (2004) 181101, arXiv:astro-ph/0407064.
[Razzaque:2004yv]
[8-1674]
Neutrino Emission and Mass Ejection in Quark Novae, Petteri Keranen, Rachid Ouyed, Prashanth Jaikumar, Astrophys. J. 618 (2004) 485, arXiv:astro-ph/0406448.
[Keranen:2004vj]
[8-1675]
ANIS: High Energy Neutrino Generator for Neutrino Telescopes, Askhat Gazizov, Marek P. Kowalski, Comput. Phys. Commun. 172 (2005) 203, arXiv:astro-ph/0406439.
[Gazizov:2004va]
[8-1676]
Evolution of a neutrino-cooled disc in Gamma-Ray Bursts, Agnieszka Janiuk, Rosalba Perna, Tiziana Di Matteo, Bozena Czerny, Mon.Not.Roy.Astron.Soc. (2004), arXiv:astro-ph/0406362.
[Janiuk:2004zw]
[8-1677]
Comparative study of radio pulses from simulated hadron-, electron-, and neutrino-initiated showers in ice in the GeV-PeV range, Shahid Hussain, Douglas W. McKay, Phys. Rev. D70 (2004) 103003, arXiv:hep-ph/0406295.
[Hussain:2004uu]
[8-1678]
Effect of neutral current interactions on high energy muon and electron neutrino propagation through the Earth, Annalisa Labbate, Teresa Montaruli, Igor Sokalski, Astropart. Phys. 23 (2005) 57, arXiv:hep-ph/0406133.
[LAbbate:2004cdw]
[8-1679]
Cosmological gamma ray and neutrino backgrounds due to neutralino dark matter annihilation, Dominik Elsaesser, Karl Mannheim, Astropart. Phys. 22 (2004) 65, arXiv:astro-ph/0405347.
[Elsasser:2004paa]
[8-1680]
Search for Neutrino-Induced Cascades with AMANDA, AMANDA (AMANDA), Astropart. Phys. 22 (2004) 127-138, arXiv:astro-ph/0405218.
[AMANDA:2004eoa]
[8-1681]
Neutrinos from extragalactic cosmic ray interactions in the far infrared background, E. V. Bugaev, A. Misaki, K. Mitsui, Astropart. Phys. 24 (2005) 345, arXiv:astro-ph/0405109.
[Bugaev:2004xt]
[8-1682]
Opaque or transparent? A link between neutrino optical depths and the characteristic duration of short gamma-ray bursts, William H. Lee, Enrico Ramirez-Ruiz, Dany Page, Astrophys. J. 608 (2004) L5, arXiv:astro-ph/0404566.
[Lee:2004xi]
[8-1683]
Neutrino production in UHECR proton interactions in the infrared background, Todor Stanev, Phys. Lett. B595 (2004) 50, arXiv:astro-ph/0404535.
[Stanev:2004kz]
[8-1684]
Galactic discrete sources of high energy neutrinos, W. Bednarek, G.F. Burgio, T. Montaruli, New Astron. Rev. 49 (2005) 1, arXiv:astro-ph/0404534.
[Bednarek:2004ky]
[8-1685]
Neutrino Bursts from Fanaroff-Riley I Radio Galaxies, Luis A. Anchordoqui, Haim Goldberg, Francis Halzen, Thomas J. Weiler, Phys. Lett. B600 (2004) 202, arXiv:astro-ph/0404387.
[Anchordoqui:2004eu]
[8-1686]
On the prospect of determining the Dirac/Majorana state of neutrino by Multi-OWL experiment, Nayantara Gupta, H. S. Mani, J. Phys. G31 (2005) 599, arXiv:astro-ph/0404218.
[Gupta:2004zx]
[8-1687]
Cosmic Ray Spectrum and Tachyonic Neutrino, Guang-Jiong Ni, arXiv:hep-ph/0404030, 2004.
[Ni:2004er]
[8-1688]
Heterogeneity of solid neutron-star matter: transport coefficients and neutrino emissivity, P. B. Jones, Mon. Not. Roy. Astron. Soc. 351 (2004) 956, arXiv:astro-ph/0403400.
[Jones:2004mu]
[8-1689]
Neutrinos from Dark Matter annihilations at the Galactic Centre, Gianfranco Bertone, Emmanuel Nezri, Jean Orloff, Joseph Silk, Phys. Rev. D70 (2004) 063503, arXiv:astro-ph/0403322.
[Bertone:2004ag]
[8-1690]
Non-stationary hyperaccretion of stellar-mass black holes in three dimensions: Torus evolution and neutrino emission, S. Setiawan, M. Ruffert, H.-Th. Janka, Mon. Not. Roy. Astron. Soc. 352 (2004) 753, arXiv:astro-ph/0402481.
[Setiawan:2004xy]
[8-1691]
Neutrino emission in neutron matter from magnetic moment interactions, Prashanth Jaikumar, K. R. S. Balaji, Charles Gale, Phys. Rev. C69 (2004) 055804, arXiv:astro-ph/0402315.
[Jaikumar:2004at]
[8-1692]
Cosmogenic neutrinos and signals of TeV gravity in air showers and neutrino telescopes, J.I. Illana, M. Masip, D. Meloni, Phys. Rev. Lett. 93 (2004) 151102, arXiv:hep-ph/0402279.
[Illana:2004qc]
[8-1693]
Energy release due to antineutrino untrapping from hot quark stars, D. N. Aguilera, D. Blaschke, H. Grigorian, arXiv:astro-ph/0402073, 2004. KIAS-APCTP International Symposium in Astro-Hadron Physics Compact Stars: Quest for New States of Dense Matter, Nov. 10-14, 2003 in Seoul, Korea.
[Aguilera:2004xs]
[8-1694]
Neutrino star as galactic cluster dark halo, M. H. Chan, M. C. Chu, arXiv:astro-ph/0401329, 2004.
[Chan:2004qt]
[8-1695]
High-energy neutrinos as observational signature of massive black hole formation, Veniamin S. Berezinsky, Vyacheslav I. Dokuchaev, Astron. Astrophys. 454 (2006) 401-407, arXiv:astro-ph/0401310.
[Berezinsky:2004kn]
[8-1696]
Relic Neutrino Absorption Spectroscopy, Birgit Eberle, Andreas Ringwald, Liguo Song, Thomas J. Weiler, Phys. Rev. D70 (2004) 023007, arXiv:hep-ph/0401203.
[Eberle:2004ua]
[8-1697]
On neutrino absorption tomography of the earth, Matias M. Reynoso, Oscar A. Sampayo, Astropart. Phys. 21 (2004) 315, arXiv:hep-ph/0401102.
[Reynoso:2004dt]
[8-1698]
Propagation of Tau Neutrinos and Tau Leptons through the Earth and their Detection in Underwater/Ice Neutrino Telescopes, Edgar Bugaev, Teresa Montaruli, Yuri Shlepin, Igor Sokalski, Astropart. Phys. 21 (2004) 491, arXiv:hep-ph/0312295.
[Bugaev:2003sw]
[8-1699]
Uncertainties in limits on TeV-gravity from neutrino-induced air showers, Eun-Joo Ahn, Marco Cavaglia, Angela V. Olinto, Astropart. Phys. 22 (2005) 377, arXiv:hep-ph/0312249.
[Ahn:2003cza]
[8-1700]
Neutrino Telescopes as a Direct Probe of Supersymmetry Breaking, I. Albuquerque, G. Burdman, Z. Chacko, Phys. Rev. Lett. 92 (2004) 221802, arXiv:hep-ph/0312197.
[Albuquerque:2003mi]
[8-1701]
Double Extensive Air Shower Induced by Cosmic Ultra-High Energy Tau-Neutrino, M. M. Guzzo, C. A. Moura, arXiv:hep-ph/0312119, 2003.
[Guzzo:2003pu]
[8-1702]
Propagation of Extremely-high Energy Leptons in the Earth: Implications to their detection by the IceCube Neutrino Telescope, Shigeru Yoshida, Rie Ishibashi, Hiroko Miyamoto, Phys. Rev. D69 (2004) 103004, arXiv:astro-ph/0312078.
[Yoshida:2003js]
[8-1703]
Detecting Solar Neutrino Flares and Flavors, D. Fargion, JHEP 0406 (2004) 045, arXiv:hep-ph/0312011.
[Fargion:2003yq]
[8-1704]
Cosmic and Galactic Neutrino Backgrounds from Thermonuclear Sources, Cristiano Porciani, Silvia Petroni, Giovanni Fiorentini, Astropart. Phys. 20 (2004) 683, arXiv:astro-ph/0311489.
[Porciani:2003zq]
[8-1705]
Gravireggeons in Extra Dimensions and Interaction of Ultra-high Energy Cosmic Neutrinos with Nucleons, A. V. Kisselev, V. A. Petrov, Eur. Phys. J. C36 (2004) 103, arXiv:hep-ph/0311356.
[Kisselev:2003rz]
[8-1706]
Ultrahigh energy neutrinos and non-linear QCD dynamics, M. V. T. Machado, Phys. Rev. D70 (2004) 053008, arXiv:hep-ph/0311281.
[Machado:2003bs]
[8-1707]
Galactic Point Sources of TeV Antineutrinos, L. A. Anchordoqui, H. Goldberg, F. Halzen, T. J. Weiler, Phys. Lett. B593 (2004) 42, arXiv:astro-ph/0311002.
[Anchordoqui:2003vc]
[8-1708]
Expected properties of radio pulses from lunar EeV neutrino showers, A. R. Beresnyak, arXiv:astro-ph/0310295, 2003.
[Beresnyak:2003if]
[8-1709]
Production of W-+ with an anomalous magnetic moment via the collision of an ultrahigh-energy (anti)neutrino on a target nucleon, A. Rosado, Rev. Mex. Fis. 51 (2005) 203, arXiv:hep-ph/0310243.
[Garcia-Hidalgo:2003lef]
[8-1710]
High-Energy Neutrinos Produced by Interactions of Relativistic Protons in Shocked Pulsar Winds, S. Nagataki, Astrophys. J. 600 (2004) 883, arXiv:astro-ph/0309715.
[Nagataki:2003kq]
[8-1711]
Ultra-High Energy Neutrino Fluxes: New Constraints and Implications, D. Semikoz, G. Sigl, JCAP 0404 (2004) 003, arXiv:hep-ph/0309328.
[Semikoz:2003wv]
[8-1712]
Sensitivity to $\theta_{13}$ and $\delta$ in the Decaying Astrophysical Neutrino Scenario, J. F. Beacom et al., Phys. Rev. D69 (2004) 017303, arXiv:hep-ph/0309267.
[Beacom:2003zg]
[8-1713]
Bounds on the cosmogenic neutrino flux, Z. Fodor, S. D. Katz, A. Ringwald, H. Tu, JCAP 0311 (2003) 015, arXiv:hep-ph/0309171.
[Fodor:2003ph]
[8-1714]
Mixed high energy neutrinos from cosmos, H. Athar, Chin. J. Phys. 42 (2004) 1, arXiv:hep-ph/0308188.
[Athar:2003gw]
[8-1715]
Muon energy reconstruction in ANTARES and its application to the diffuse neutrino flux, A. Romeyer, J. De Dios Zornoza Gomez, R. Bruijn (ANTARES), arXiv:hep-ex/0308074, 2003.
[ANTARES:2003zrk]
[8-1716]
Tracing very high energy neutrinos from cosmological distances in ice, J. Jones, I. Mocioiu, M. H. Reno, I. Sarcevic, Phys. Rev. D69 (2004) 033004, arXiv:hep-ph/0308042.
[Jones:2003zy]
[8-1717]
Tau neutrinos at EeV energies, S. Iyer Dutta, I. Mocioiu, M. H. Reno, I. Sarcevic, arXiv:hep-ph/0307210, 2003.
[Dutta:2003wk]
[8-1718]
Pseudo-Dirac Neutrinos, a Challenge for Neutrino Telescopes, J. F. Beacom et al., Phys. Rev. Lett. 92 (2004) 011101, arXiv:hep-ph/0307151.
[Beacom:2003eu]
[8-1719]
Effects of Electroweak Instantons In High-Energy Neutrino Telescopes, T. Han, D. Hooper, Phys. Lett. B582 (2004) 21, arXiv:hep-ph/0307120.
[Han:2003ru]
[8-1720]
Effects of sterile neutrinos on the ultrahigh-energy cosmic neutrino flux, P. Keranen, J. Maalampi, M. Myyrylainen, J. Riittinen, Phys. Lett. B574 (2003) 162, arXiv:hep-ph/0307041.
[Keranen:2003xd]
[8-1721]
Measuring Flavor Ratios of High-Energy Astrophysical Neutrinos, J. F. Beacom et al., Phys. Rev. D68 (2003) 093005, arXiv:hep-ph/0307025.
[Beacom:2003nh]
[8-1722]
Rigidity dependent knee and cosmic ray induced high energy neutrino fluxes, Julin Candia, Esteban Roulet, JCAP 0309 (2003) 005, arXiv:astro-ph/0306632.
[Candia:2003ay]
[8-1723]
Splitting and focusing of neutrino collective states, Mattias Marklund, Padma K. Shukla, Lennart Stenflo, Phys. Scripta 70 (2004) 166, arXiv:astro-ph/0306276.
[Marklund:2003rp]
[8-1724]
A study on the appearance of tau neutrinos from a gamma ray burst by detecting their horizontal electromagnetic showers, N. Gupta, Phys. Rev. D68 (2003) 063006, arXiv:astro-ph/0306007.
[Gupta:2003mz]
[8-1725]
The energy spectrum of tau leptons induced by the high energy Earth-skimming neutrinos, J. J. Tseng et al., Phys. Rev. D68 (2003) 063003, arXiv:astro-ph/0305507.
[Tseng:2003pn]
[8-1726]
Of Neutrinos and Magnetars, Sushan Konar, Bull. Astron. Soc. India 31 (2003) 365, arXiv:astro-ph/0304545.
[Konar:2003ur]
[8-1727]
Neutrinos from the Propagation of a Relativistic Jet Through a Star, Jason Pruet, Astrophys. J. 591 (2003) 1104, arXiv:astro-ph/0304448.
[Pruet:2003yj]
[8-1728]
Neutrino condensates at center of galaxies as background for the MSW mechanism, S. Capozziello, G. Iovane, G. Lambiase, Mod. Phys. Lett. A18 (2003) 905, arXiv:astro-ph/0304013.
[Capozziello:2003eq]
[8-1729]
Neutrino Tomography of Gamma Ray Bursts and Massive Stellar Collapses, Soebur Razzaque, Peter Meszaros, Eli Waxman, Phys. Rev. D68 (2003) 083001, arXiv:astro-ph/0303505.
[Razzaque:2003uv]
[8-1730]
Differential Neutrino Rates and Emissivities from the Plasma Process in Astrophysical Systems, Sasa Ratkovic, Sharada Iyer Dutta, Madappa Prakash, Phys. Rev. C67 (2003) 123002, arXiv:astro-ph/0303501.
[Ratkovic:2003td]
[8-1731]
Cosmic UHE Neutrino Signatures, K. Giesel, J.-H. Jureit, E. Reya, Astropart. Phys. 20 (2003) 335, arXiv:astro-ph/0303252.
[Giesel:2003hj]
[8-1732]
Ultra High Energy Particle Astronomy, Neutrino Masses and Tau Airshowers, D. Fargion et al., arXiv:astro-ph/0303233, 2003.
[Fargion:2003ev]
[8-1733]
Detecting the Neutrino Mass Hierarchy with a Supernova at IceCube, A.S.Dighe, M.T.Keil, G.G.Raffelt, JCAP 0306 (2003) 005, arXiv:hep-ph/0303210.
[Dighe:2003be]
[8-1734]
Screening effects in the ultrahigh energy neutrino interactions, Krzysztof Kutak, Jan Kwiecinski, Eur. Phys. J. C29 (2003) 521, arXiv:hep-ph/0303209.
[Kutak:2003bd]
[8-1735]
Neutrino transport in accretion disks, R. F. Sawyer, Phys. Rev. D68 (2003) 063001, arXiv:astro-ph/0303204.
[Sawyer:2003zz]
[8-1736]
Neutrino emission in neutron stars, E. N. E. van Dalen, A. E. L. Dieperink, J. A. Tjon, Phys. Rev. C67 (2003) 065807, arXiv:nucl-th/0303037.
[vanDalen:2003zw]
[8-1737]
Corsika+Herwig Monte Carlo Simulation of Neutrino Induced Atmospheric Air Showers, M. Ambrosio et al., arXiv:astro-ph/0302602, 2003.
[Ambrosio:2003nr]
[8-1738]
Cosmic Rays and Neutrinos from GRBs: Predictions versus Acceleration Modeling, D. Gialis, G. Pelletier, Astropart. Phys. 20 (2003) 323, arXiv:astro-ph/0302231.
[Gialis:2003fm]
[8-1739]
Signatures of hadronic cosmic rays in starbursts? High-energy photons and neutrinos from NGC253, Gustavo E. Romero, Diego F. Torres, Astrophys. J. 586 (2003) L33, arXiv:astro-ph/0302149.
[Romero:2003tj]
[8-1740]
Neutrino Observatories Can Characterize Cosmic Sources and Neutrino Properties, Gabriela Barenboim, Chris Quigg, Phys. Rev. D67 (2003) 073024, arXiv:hep-ph/0301220.
[Barenboim:2003jm]
[8-1741]
Neutrino Opacities in Neutron Stars with Kaon Condensates, Takumi Muto, Masatomi Yasuhira, Toshitaka Tatsumi, Naoki Iwamoto, Phys. Rev. D67 (2003) 103002, arXiv:nucl-th/0301045.
[Muto:2003sn]
[8-1742]
High energy neutrinos from gamma-ray bursts with precursor supernovae, Soebur Razzaque, Peter Meszaros, Eli Waxman, Phys. Rev. Lett. 90 (2003) 241103, arXiv:astro-ph/0212536.
[Razzaque:2002kb]
[8-1743]
Energy release due to antineutrino untrapping and diquark condensation in hot quark star evolution, D.N. Aguilera, D. Blaschke, H. Grigorian, Astron. Astrophys. 416 (2004) 991, arXiv:astro-ph/0212237.
[Aguilera:2002dh]
[8-1744]
The flavor distribution of Cosmic Neutrinos, G.J. Gounaris, G. Moultaka, arXiv:hep-ph/0212110, 2002.
[Gounaris:2002ab]
[8-1745]
Neutrinos from Gamma-Ray Bursts in Pulsar Wind Bubbles: $\sim 10^{16}$ eV, Dafne Guetta, Jonathan Granot, Phys. Rev. Lett. 90 (2003) 201103, arXiv:astro-ph/0212045.
[Guetta:2002du]
[8-1746]
High temperature matter and neutrino spectra from microscopic black holes, R. G. Daghigh, J. I. Kapusta, Phys. Rev. D67 (2003) 044006, arXiv:astro-ph/0211579.
[Daghigh:2002fn]
[8-1747]
Neutrinos from Pulsar Wind Bubbles as Precursors to Gamma-Ray Bursts: $\sim 10$ TeV, Jonathan Granot, Dafne Guetta, Phys. Rev. Lett. 90 (2003) 191102, arXiv:astro-ph/0211433.
[Granot:2002qz]
[8-1748]
Decay of High-Energy Astrophysical Neutrinos, J. F. Beacom et al., Phys. Rev. Lett. 90 (2003) 181301, arXiv:hep-ph/0211305.
[Beacom:2002vi]
[8-1749]
Neutrinos from Accreting Neutron Stars, Luis A. Anchordoqui et al., Astrophys. J. 589 (2003) 481, arXiv:hep-ph/0211231.
[Anchordoqui:2002xu]
[8-1750]
The proton synchrotron model of TeV gamma ray emission from gamma ray bursts and their detectability in AMANDA / ICECUBE type detectors, Pijushpani Bhattacharjee, Nayantara Gupta, Astropart. Phys. 20 (2003) 169, arXiv:astro-ph/0211165.
[Bhattacharjee:2002it]
[8-1751]
TeV Neutrinos from Magnetars, Bing Zhang, Zi Gao Dai, Peter Meszaros, Eli Waxman, Astrophys. J. 595 (2003) 346, arXiv:astro-ph/0210382.
[Zhang:2002xv]
[8-1752]
Neutrino flux predictions for Galactic plerions, Dafne Guetta, Elena Amato, Astropart. Phys. 19 (2003) 403, arXiv:astro-ph/0209537.
[Guetta:2002hv]
[8-1753]
Neutral Beams from Blazar Jets, C. D. Dermer A. M. Atoyan, Astrophys. J. 586 (2003) 79, arXiv:astro-ph/0209231.
[Atoyan:2002gu]
[8-1754]
Factors Determining Variability Time in Active Galactic Nucleus Jets, R. J. Protheroe, Publ.Astron.Soc.Austral. (2002), arXiv:astro-ph/0209111.
[Protheroe:2002xk]
[8-1755]
Measuring the Spectra of High Energy Neutrinos with a Kilometer-Scale Neutrino Telescope, D. Hooper, H. Nunokawa, O. L. G. Peres, R. Zukanovich Funchal, Phys. Rev. D67 (2003) 013001, arXiv:hep-ph/0209062.
[Hooper:2002qq]
[8-1756]
Which blazars are neutrino loud?, A. Yu. Neronov, D. V. Semikoz, Phys. Rev. D66 (2002) 123003, arXiv:hep-ph/0208248.
[Neronov:2002xv]
[8-1757]
Secondary Neutrinos from Tau Neutrino Interactions in Earth, Sharada Iyer Dutta, Mary Hall Reno, Ina Sarcevic, Phys. Rev. D66 (2002) 077302, arXiv:hep-ph/0207344.
[Dutta:2002zc]
[8-1758]
Neutrino trapping and accretion models for Gamma-Ray Bursts, Ramesh Narayan Tiziana Di Matteo, Rosalba Perna, Astrophys. J. 579 (2002) 706, arXiv:astro-ph/0207319.
[DiMatteo:2002iex]
[8-1759]
Gamma ray bursts as probes of neutrino mass, quantum gravity and dark energy, S.F. King Sandhya Choubey, Phys. Rev. D67 (2003) 073005, arXiv:hep-ph/0207260.
[Choubey:2002bh]
[8-1760]
Neutrino Bounds on Astrophysical Sources and New Physics, Luis A. Anchordoqui, Jonathan L. Feng, Haim Goldberg, Alfred D. Shapere, Phys. Rev. D66 (2002) 103002, arXiv:hep-ph/0207139.
[Anchordoqui:2002vb]
[8-1761]
Constraints on ultra-high energy neutrinos from optically thick astrophysical accelerators, D. S. Gorbunov, P. G. Tinyakov, S. V. Troitsky, Astropart. Phys. 18 (2003) 463, arXiv:astro-ph/0206385.
[Gorbunov:2002nb]
[8-1762]
Very high-energy neutrinos from slowly decaying, massive dark matter, as a source of explosive energy for gamma-ray bursts, Georg Kreyerhoff Saul Barshay, Mod. Phys. Lett. A18 (2003) 477, arXiv:astro-ph/0206345.
[Barshay:2002hp]
[8-1763]
Antineutrino-neutrino and antineutrino-electron resonant annihilation through rho and other vector mesons, Olga Lalakulich Emmanuel A. Paschos, arXiv:hep-ph/0206273, 2002.
[Paschos:2002sj]
[8-1764]
Upward and Horizontal Tau Air-showers from Earth Crust Coronas: Traces of Highest Energy Neutrinos Beam Dump in Widest Volumes, D. Fargion, arXiv:hep-ph/0206010, 2002.
[Fargion:2002nr]
[8-1765]
The appearance of tau neutrinos from a gamma ray burst, Nayantara Gupta, Phys. Lett. B541 (2002) 16-21, arXiv:astro-ph/0205451.
[Gupta:2002ze]
[8-1766]
High-energy neutrinos from the cosmic accelerator RX J1713.7-3946, Jaime Alvarez-Muniz, Francis Halzen, Astrophys. J. 576 (2002) L33-L36, arXiv:astro-ph/0205408.
[Alvarez-Muniz:2002con]
[8-1767]
UHE and EHE neutrino induced taus inside the Earth, S. Bottai, S. Giurgola, Astropart.Phys. 18 (2003) 539-549, arXiv:astro-ph/0205325.
[Bottai:2002nn]
[8-1768]
Neutrinos associated with cosmic rays of top-down origin, C. Barbot, M. Drees, F. Halzen, D. Hooper, Phys. Lett. B555 (2003) 22, arXiv:hep-ph/0205230.
[Barbot:2002kh]
[8-1769]
Off-Axis Neutrino Scattering in GRB Central Engines, Warner A. Miller Nathan D. George, Arkady Kheyfets, J. M. McGhee, Astrophys. J. 583 (2003) 833, arXiv:astro-ph/0205213.
[Miller:2002hqu]
[8-1770]
Neutrino-induced Collapse of Bare Strange Stars Via TeV-scale Black Hole Seeding, Nikolai Lehtinen Peter Gorham, J. Learned, arXiv:astro-ph/0205170, 2002.
[Gorham:2002kq]
[8-1771]
High-energy neutrino fluxes from supermassive dark matter, Patrick Crotty, Phys. Rev. D66 (2002) 063504, arXiv:hep-ph/0205116.
[Crotty:2002mv]
[8-1772]
Angular Dependence of Neutrino Flux in KM3 Detectors in Low Scale Gravity Models, Pankaj Jain, Supriya Kar, Douglas W. McKay, Sukanta Panda, J. P. Ralston, Phys. Rev. D66 (2002) 065018, arXiv:hep-ph/0205052.
[Jain:2002kz]
[8-1773]
Ultra-High Energy Neutrino Fluxes and Their Constraints, Oleg E. Kalashev, Vadim A. Kuzmin, Dmitry V. Semikoz, Gunter Sigl, Phys. Rev. D66 (2002) 063004, arXiv:hep-ph/0205050.
[Kalashev:2002kx]
[8-1774]
Neutrino Telescopes' Sensitivity to Dark Matter, Ivone F. M. Albuquerque, Jodi Lamoureux, George F. Smoot, Phys. Rev. D66 (2002) 125006, arXiv:hep-ph/0204301.
[Albuquerque:2002bj]
[8-1775]
Detecting Very High Energy Neutrinos by the Telescope Array, Masashi Jobashi Makoto Sasaki, Astropart. Phys. 19 (2003) 37, arXiv:astro-ph/0204167.
[Sasaki:2002eg]
[8-1776]
Neutrino Indirect Detection of Neutralino Dark Matter in the CMSSM, V. Bertin, E. Nezri, J. Orloff, Eur. Phys. J. C26 (2002) 111-124, arXiv:hep-ph/0204135.
[Bertin:2002ky]
[8-1777]
TeV String State Excitation via High Energy Cosmic Neutrinos, Joshua J. Friess, Tao Han, Dan Hooper, Phys. Lett. B547 (2002) 31-36, arXiv:hep-ph/0204112.
[Friess:2002cc]
[8-1778]
On non hadronic origin of high energy neutrinos, H. Athar, Guey-Lin Lin, arXiv:hep-ph/0203265, 2002.
[Athar:2002ib]
[8-1779]
Measuring high energy neutrino nucleon cross sections with future neutrino telescopes, Dan Hooper, Phys. Rev. D65 (2002) 097303, arXiv:hep-ph/0203239.
[Hooper:2002yq]
[8-1780]
Neutrino Emission from Goldstone Modes in Dense Quark Matter, Prashanth Jaikumar, Madappa Prakash, Thomas Schafer, Phys. Rev. D66 (2002) 063003, arXiv:astro-ph/0203088.
[Jaikumar:2002vg]
[8-1781]
Neutrino Rates in Color Flavor Locked Quark Matter, Motoi Tachibana Sanjay Reddy, Mariusz Sadzikowski, Nucl. Phys. A714 (2003) 337, arXiv:nucl-th/0203011.
[Reddy:2002xc]
[8-1782]
TeV Neutrinos from Companion Stars of Rapid-Rotating Neutron Stars, S. Nagataki, arXiv:hep-ph/0202243, 2002.
[Nagataki:2002qz]
[8-1783]
Neutrino Induced Upward Going Muons from a Gamma Ray Burst in a Neutrino Telescope of Km^2 Area, Nayantara Gupta, Phys. Rev. D65 (2002) 113005, arXiv:astro-ph/0201509.
[Gupta:2002zd]
[8-1784]
Comparison of high-energy galactic and atmospheric tau neutrino flux, Jie-June Tseng H. Athar, Kingman Cheung, Guey-Lin Lin, Astropart. Phys. 18 (2003) 581, arXiv:hep-ph/0112222.
[Athar:2001jw]
[8-1785]
Astrophysical Neutrino Event Rates and Sensitivity for Neutrino Telescopes, George F. Smoot Ivone F.M. Albuquerque, Jodi Lamoureux, Astrophys. J. Supp. 141 (2002) 195-209, arXiv:hep-ph/0109177.
[Albuquerque:2001jh]
[8-1786]
On the formation of degenerate heavy neutrino stars, Neven Bilic, Robert J. Lindebaum, Gary B. Tupper, Raoul D. Viollier, Phys. Lett. B515 (2001) 105-110, arXiv:astro-ph/0106209.
[Bilic:2001iv]
[8-1787]
Observability of earth-skimming ultra-high energy neutrinos, Jonathan L. Feng, Peter Fisher, Frank Wilczek, Terri M. Yu, Phys. Rev. Lett. 88 (2002) 161102, arXiv:hep-ph/0105067.
[Feng:2001ue]
[8-1788]
Propagation of muons and taus at high-energies, S. Iyer Dutta, M.H. Reno, I. Sarcevic, D. Seckel, Phys. Rev. D63 (2001) 094020, arXiv:hep-ph/0012350.
[Dutta:2000hh]
[8-1789]
Neutrino, Neutron, and Cosmic Ray Production in the External Shock Model of Gamma Ray Bursts, Charles D. Dermer, Astrophys. J. 574 (2002) 65-87, arXiv:astro-ph/0005440.
[Dermer:2000yd]
[8-1790]
Effects of neutrino mixing on high-energy cosmic neutrino flux, H. Athar, M. Jezabek, O. Yasuda, Phys. Rev. D62 (2000) 103007, arXiv:hep-ph/0005104.
[Athar:2000yw]
[8-1791]
Extreme energy $\nu_{\tau}$ propagation through the Earth, F. Becattini, S. Bottai, Astropart.Phys. 15 (2001) 323-328, arXiv:astro-ph/0003179.
[Becattini:2000fj]
[8-1792]
Discovering ultra high energy neutrinos by horizontal and upward tau air-showers: First evidences in terrestrial gamma flashes, D. Fargion, Astrophys. J. 570 (2002) 909-925, arXiv:astro-ph/0002453.
[Fargion:2000iz]
[8-1793]
Neutrino gravitational lensing, R. Escribano, J. M. Frere, D. Monderen, V. Van Elewyck, arXiv:hep-ph/9910510, 1999.
[Escribano:1999gy]
[8-1794]
Neutrino interactions at ultrahigh-energies, Raj Gandhi, Chris Quigg, Mary Hall Reno, Ina Sarcevic, Phys. Rev. D58 (1998) 093009, arXiv:hep-ph/9807264.
[Gandhi:1998ri]
[8-1795]
Tau-neutrino appearance with a 1000 megaparsec baseline, F. Halzen, D. Saltzberg, Phys. Rev. Lett. 81 (1998) 4305-4308, arXiv:hep-ph/9804354.
[Halzen:1998be]
[8-1796]
Neutrino transitions $\nu \to \nu \gamma$, $\nu \to \nu e^{+} e^{-}$ in a strong magnetic field as a possible origin of cosmological gamma burst, A.A. Gvozdev, A.V. Kuznetsov, N.V. Mikheev, L.A. Vassilevskaya, Phys.Atom.Nucl. 61 (1998) 1031-1034, arXiv:hep-ph/9710219.
[Gvozdev:1997bs]
[8-1797]
The role of $\nu_{\tau}$ ultrahigh energy astrophysics in $\text{Km}^3$ detectors, D. Fargion, arXiv:astro-ph/9704205, 1997.
[Fargion:1997eg]
[8-1798]
Sensitivity of high-energy neutrino telescopes, M. Laveder, Nuovo Cim. A109 (1996) 1495-1504.
[Laveder:1996tq]
[8-1799]
Ultrahigh-energy neutrino interactions, Raj Gandhi, Chris Quigg, Mary Hall Reno, Ina Sarcevic, Astropart.Phys. 5 (1996) 81-110, arXiv:hep-ph/9512364.
[Gandhi:1995tf]
[8-1800]
Detecting tau-neutrino oscillations at PeV energies, John G. Learned, Sandip Pakvasa, Astropart. Phys. 3 (1995) 267-274, arXiv:hep-ph/9405296.
[Learned:1994wg]
[8-1801]
On the Detection of Ultrahigh-Energy Neutrinos, M.H. Reno, C. Quigg, Phys. Rev. D37 (1988) 657.
[Reno:1987zf]
[8-1802]
Energy spectra of neutrino induced upward muons in underground experiments, T.K. Gaisser, A.F. Grillo, Phys. Rev. D36 (1987) 2752-2756.
[Gaisser:1987sy]
[8-1803]
Small x QCD and the ultrahigh-energy neutrino N total cross-section, Douglas W. McKay, John P. Ralston, Phys.Lett. B167 (1986) 103.
[McKay:1985nz]
[8-1804]
Interactions of Ultrahigh-Energy Neutrinos, C. Quigg, M.H. Reno, T.P. Walker, Phys. Rev. Lett. 57 (1986) 774.
[Quigg:1986mb]
[8-1805]
Galactic Neutrinos and UV Astronomy, A. De Rujula, S.L. Glashow, Phys. Rev. Lett. 45 (1980) 942.
[DeRujula:1980qd]
[8-1806]
QCD effects in neutrino N scattering above the threshold of W boson production, Yu.M. Andreev, V.S. Berezinsky, A. Yu. Smirnov, Phys.Lett. B84 (1979) 247-249.
[Andreev:1979cp]

9 - Phenomenology - Talks

[9-1]
Ultra-light Dark Matter Limits from Astrophysical Neutrino Flavour, Carlos A. Arguelles, Kareem Farrag, Teppei Katori, PoS ICRC2023 (2023) 1415, arXiv:2402.18126.
[Arguelles:2023wvf]
[9-2]
New-Physics Constraints Derived From SME-Coefficient Limits Using IceCube Astrophysical Neutrino-Flavor Data, Carlos A. Arguelles, Kareem Farrag, Teppei Katori, arXiv:2401.15716, 2024. 9th Meeting on CPT and Lorentz Symmetry.
[Arguelles:2023jkh]
[9-3]
Neutrino Emissions of TXS 0506+056 caused by a Supermassive Binary Black Hole Inspiral?, Ilja Jaroschewski, Julia Becker Tjus, Armin Ghorbanietemad, Imre Bartos, Emma Kun, Peter L. Biermann, PoS ICRC2023 (2023) 1130, arXiv:2310.02212.
[Jaroschewski:2023kpv]
[9-4]
Identifying multiwavelength counterparts to astrophysical neutrino events using Fermi-LAT analysis, Atreya Acharyya, Marcos Santander, PoS ICRC2023 (2023) 1473, arXiv:2309.06164.
[Acharyya:2023etm]
[9-5]
Identification of time-correlated neutrino clusters in populations of astrophysical transient sources, Mathieu Lamoureux, Gwenhael de Wasseige, PoS ICRC2023 (2023) 1507, arXiv:2308.11313.
[Lamoureux:2023lgq]
[9-6]
Neutrinos from interactions between the relativistic jet and large-scale structures of BL Lac objects, Luca Foffano, Matteo Cerruti, Valerio Vittorini, PoS ICRC2023 (2023) 969, arXiv:2308.05492.
[Foffano:2023lsa]
[9-7]
Estimating at Earth the Ultra-High Energy Neutrino Flux from the Accretion Disks in the Galactic Core, Ayshea Bains, Trent English, Nickolas Solomey, arXiv:2307.16698, 2023. 241st AAS meeting, 8-12 Jan. 2023, Seattle, Wa.
[Bains:2023wpj]
[9-8]
Discovery Forecasts of the Diffuse Ultra-High-Energy Neutrino Flux with IceCube-Gen2, Victor B. Valera, Mauricio Bustamante, Christian Glaser, PoS ICRC2023 (2023) 1065, arXiv:2307.11055. ICRC 2023.
[Valera:2023ckv]
[9-9]
Hunting for bumps in the diffuse high-energy neutrino flux, Damiano F. G. Fiorillo, Mauricio Bustamante, arXiv:2307.09170, 2023. ICRC 2023.
[Fiorillo:2023vil]
[9-10]
Multi-messenger observations of Tidal Disruption Events, Simeon Reusch, PoS ECRS (2023) 020, arXiv:2307.00902.
[Reusch:2023vgq]
[9-11]
Model independent search for transient multimessenger events with AMON using outlier detection methods, T. Gregoire et al., PoS ICRC2021 (2021) 934, arXiv:2111.05905.
[AMONgroup:2021wxu]
[9-12]
Hide-and-seek with cosmic tau neutrinos, Yasaman Farzan, PoS EPS-HEP2021 (2022) 261, arXiv:2110.07222. European Physical Society Conference on HEP (EPS-HEP 2021).
[Farzan:2021slf]
[9-13]
Probing Neutrino Emission from X-ray Blazar Flares observed with Swift-XRT, Stamatios I. Stathopoulos, Maria Petropoulou, Paolo Giommi, Georgios Vasilopoulos, Paolo Padovani, Apostolos Mastichiadis, arXiv:2107.14632, 2021. 37th International Cosmic Ray Conference (ICRC 2021).
[2107.14632]
[9-14]
Theoretical interpretation of the observed neutrino emission from Tidal Disruption Events, Walter Winter, Cecilia Lunardini, arXiv:2107.14381, 2021. 37th International Cosmic Ray Conference (ICRC 2021).
[2107.14381]
[9-15]
Unified thermal model for photohadronic neutrino production in astrophysical sources, Damiano F. G. Fiorillo, PoS ICRC2021 (2021) 1199, arXiv:2107.14006. 37th International Cosmic Ray Conference (ICRC 2021).
[Fiorillo:2021anr]
[9-16]
Cosmic-ray transport in blazars: diffusive or ballistic propagation?, P. Reichherzer, J. Becker Tjus, M. Horbe, I. Jaroschewski, W. Rhode, M. Schroller, F. Schussler, PoS ICRC2021 (2021) 468, arXiv:2107.11386. 37th International Cosmic Ray Conference (ICRC2021).
[Reichherzer:2021grx]
[9-17]
The Blazar Hadronic Code Comparison Project, Matteo Cerruti et al., PoS ICRC2021 (2021) 979, arXiv:2107.06377. 37th International Cosmic Ray Conference (ICRC 2021).
[Cerruti:2021hah]
[9-18]
Astro-COLIBRI: a new platform for real-time multi-messenger astrophysics, Fabian Schussler, Atilla Kaan Alkan, Valentin Lefranc, Patrick Reichherzer, PoS ICRC2021 (2021) 935, arXiv:2107.05335. 37th International Cosmic Ray Conference (ICRC 2021).
[Schussler:2021cnq]
[9-19]
CRPropa 3.2: a framework for high-energy astroparticle propagation, Rafael Alves Batista et al., PoS ICRC2021 (2021) 978, arXiv:2107.01631. 37th International Cosmic Ray Conference (ICRC 2021).
[AlvesBatista:2021mne]
[9-20]
High energy neutrino and gamma-ray emission in the jets of the microquasar M33 X-7, D.A. Papadopoulos, Th.V. Papavasileiou, T.S. Kosmas, J.Phys.Conf.Ser. 1730 (2021) 012137, arXiv:2010.00396.
[Papadopoulos:2020ian]
[9-21]
Multi-Messenger Connections among High-Energy Cosmic Particles, Kohta Murase, PoS ICRC2019 (2019) 965, arXiv:1912.05764. 36th International Cosmic Ray Conference (ICRC 2019), July 24-August 1, 2019, Madison, USA.
[Murase:2019pef]
[9-22]
Neutrinos from blazars, Matteo Cerruti, J.Phys.Conf.Ser. 1468 (2020) 012094, arXiv:1912.03666. TAUP 2019 (Toyama, September 9-13, 2019).
[Cerruti:2019wzq]
[9-23]
Probing dark matter via neutrino-gamma-ray correlations, Geoff Beck, PoS HEASA2019 (2021) 042, arXiv:1912.03117. HEASA 2019.
[Beck:2019sxe]
[9-24]
Extra-galactic jets: a hard X-ray view, Gabriele Ghisellini, Mem.Soc.Ast.It. 90 (2019) 154, arXiv:1911.11777. 12th INTEGRAL conference, Geneve, Feb. 2019.
[Ghisellini:2019uxc]
[9-25]
A More Complete Phenomenology of Tau Lepton Induced Air Showers, Austin Cummings, Roberto Aloisio, Mario Bertaina, Francesca Bisconti, Francesco Fenu, Francesco Salamida, PoS ICRC2019 (2019) 862, arXiv:1910.01021. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Cummings:2019rlt]
[9-26]
Sensitivity to Atypical Tau Initiated Air Showers For a High-Altitude Optical Cherenkov Detector, Austin Cummings, Roberto Aloisio, Mario Bertaina, Francesca Bisconti, Francesco Fenu, Francesco Salamida, PoS ICRC2019 (2019) 861, arXiv:1910.00992. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Cummings:2019pkx]
[9-27]
Multi-messenger interpretation of the neutrinos from TXS 0506+056, Walter Winter, Shan Gao, Xavier Rodrigues, Anatoli Fedynitch, Andrea Palladino, Martin Pohl, PoS ICRC2019 (2019) 1032, arXiv:1909.06289. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Winter:2019hee]
[9-28]
Current constraints from cosmogenic neutrinos on the fraction of protons in UHECRs, Arjen van Vliet, Rafael Alves Batista, Jorg R. Horandel, PoS ICRC2019 (2019) 1025, arXiv:1909.01932. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[vanVliet:2019cpl]
[9-29]
High-energy neutrino event simulation at NLO in Genie for KM3NeT and other observatories, Alfonso Garcia, Aart Heijboer (KM3NeT), PoS ICRC2019 (2020) 895, arXiv:1908.10077. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Garcia:2019hze]
[9-30]
Correlation of high energy neutrinos and gamma rays on the direction of Fermi Bubbles, Alvarez-Hurtado Paola, Fraija Nissim, Galvan Antonio, Marinelli Antonio, PoS ICRC2019 (2020) 836, arXiv:1908.03613. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Alvarez-Hurtado:2019fyv]
[9-31]
A new calculation of Earth-skimming very- and ultra-high energy tau neutrinos, Mary Hall Reno, Tonia M. Venters, John F. Krizmanic, Luis A. Anchordoqui, Claire Guepin, Angela V. Olinto (POEMMA), PoS ICRC2019 (2019) 989, arXiv:1908.03603. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Reno:2019qmk]
[9-32]
Potential Dark Matter Signals at Neutrino Telescopes, Marco Chianese, arXiv:1907.11926, 2019. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Chianese:2019buc]
[9-33]
Searches for Connections Between Dark Matter and Neutrinos with the IceCube High-Energy Starting Event Sample, Carlos A. Arguelles, Hrvoje Dujmovic, PoS ICRC2019 (2020) 839, arXiv:1907.11193. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Arguelles:2019boy]
[9-34]
The pros and cons of beyond standard model interpretations of ANITA events, L. A. Anchordoqui et al., PoS ICRC2019 (2020) 884, arXiv:1907.06308. 36th International Cosmic Ray Conference.
[Anchordoqui:2019utb]
[9-35]
Search for Lorentz Violation Using High-Energy Atmospheric Neutrinos In IceCube, Carlos A. Arguelles, arXiv:1907.04244, 2019. 8th Meeting on CPT and Lorentz Symmetry (CPT'19) Bloomington, Indiana, USA, May 12-16, 2019.
[Arguelles:2019ifw]
[9-36]
Test of Lorentz Violation with Astrophysical Neutrino Flavor in IceCube, Teppei Katori, Carlos A. Arguelles, Kareem Farrag, Shivesh Mandalia, arXiv:1906.09240, 2019. Eighth Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, May 12-16, 2019.
[Katori:2019xpc]
[9-37]
Study of PeV neutrinos around dwarf galaxies near giant lobes of Centaurus A, E. Aguilar-Ruiz, N. Fraija, A. Galvan-Gamez, J. A. De Diego, A. Marinelli, J.Phys.Conf.Ser. 1342 (2020) 012104, arXiv:1906.05935. XV International Conference on Topics in Astroparticle and Underground Physics (TAUP2017).
[Aguilar-Ruiz:2019icu]
[9-38]
Search for correlations of high-energy neutrinos and ultra-high-energy cosmic rays, Lisa Schumacher, EPJ Web Conf. 207 (2019) 02010, arXiv:1905.10111. VLVnT-2018.
[Schumacher:2019qdx]
[9-39]
Implications of gamma-ray and neutrino observations on source models of ultrahigh energy cosmic rays, A. D. Supanitsky, PoS BHCB2018 (2019) 006, arXiv:1905.08679. International Conference on Black Holes as Cosmic Batteries: UHECRs and Multimessenger Astronomy (BHCB) 2018, Foz do Iguacu, Brasil.
[Supanitsky:2019zhl]
[9-40]
Pushing the Energy and Cosmic Frontiers with High-Energy Astrophysical Neutrinos, Mauricio Bustamante, J.Phys.Conf.Ser. 1586 (2020) 012041, arXiv:1904.01595. 6th Symposium on Prospects in the Physics of Discrete Symmetries (DISCRETE 2018), Vienna, 26-30 November 2018.
[Bustamante:2019cwz]
[9-41]
Consequences of Modified Cosmologies in DM abundance and PeV IceCube signals, G. Lambiase, arXiv:1903.10038, 2019. NuPhys2018 (London, 19-21 December 2018).
[Lambiase:2019tuc]
[9-42]
Search for high-energy neutrinos from binary neutron star mergers, Nora Linn Strotjohann, arXiv:1903.09648, 2019. 15th Marcel Grossmann Meeting - Rome, July 1-7, 2018.
[Strotjohann:2019hre]
[9-43]
Magnetic Reconnection, Cosmic Ray Acceleration, and Gamma-Ray emission around Black Holes and Relativistic Jets, Elisabete M. de Gouveia Dal Pino, Rafael Alves Batista, Grzergorz Kowal, Tania Medina-Torrejon, Juan Carlos Ramirez-Rodriguez, PoS BHCB2018 (2018) 008, arXiv:1903.08982. International Conference on Black Holes as Cosmic Batteries: UHECRs and Multimessenger Astronomy - BHCB2018, 12-15 September, 2018, Foz du Iguazu, Brasil.
[deGouveiaDalPino:2018zdf]
[9-44]
High-energy emissions from neutron star mergers, Shigeo S. Kimura, EPJ Web Conf. 210 (2019) 03001, arXiv:1903.06221. UHECR 2018.
[Kimura:2019ipr]
[9-45]
High-Energy Neutrinos from Blazar Flares and Implications of TXS 0506+056, Foteini Oikonomou, Kohta Murase, Maria Petropoulou, EPJ Web Conf. 210 (2019) 03006, arXiv:1903.02006.
[Oikonomou:2019pmg]
[9-46]
Towards an anagraphical picture of high-energy Galactic neutrinos, Antonio Marinelli, Dario Grasso, Sofia Ventura, EPJ Web Conf. 209 (2019) 01003, arXiv:1901.00223. 7th Roma International Conference on Astroparticle Physics.
[Marinelli:2019tbu]
[9-47]
Neutrino Sources from a Multi-Messenger Perspective, Markus Ahlers, EPJ Web Conf. 209 (2019) 01013, arXiv:1811.07633. 7th Roma International Conference on Astroparticle Physics.
[Ahlers:2018dtq]
[9-48]
Cosmic-ray propagation in the turbulent intergalactic medium, R. Alves Batista, E. M. de Gouveia Dal Pino, K. Dolag, S. Hussain, arXiv:1811.03062, 2018. IAU Focus Meeting 8: New Insights in Extragalactic Magnetic Fields.
[AlvesBatista:2018kup]
[9-49]
Gammas and neutrinos from TXS 0506+056, M. Cerruti, A. Zech, C. Boisson, G. Emery, S. Inoue, J.-P. Lenain, arXiv:1810.08825, 2018. SF2A 2018.
[Cerruti:2018zxo]
[9-50]
Astrophysical neutrino production and impact of associated uncertainties in photo-hadronic interactions of UHECRs, Daniel Biehl, Denise Boncioli, Anatoli Fedynitch, Leonel Morejon, Walter Winter, EPJ Web Conf. 208 (2019) 04002, arXiv:1809.10259. ISVHECRI 2018.
[Biehl:2018xjv]
[9-51]
Particle acceleration and the origin of the very high energy emission around black holes and relativistic jets, Elisabete de Gouveia Dal Pino et al., IAU Symp. 342 (2020) 13-18, arXiv:1809.06742. IAU Symposium No. 342, Perseus in Sicily: from black hole to cluster outskirts, Noto, Sicily, May 2018.
[deGouveiaDalPino:2018ltj]
[9-52]
Decomposing blazar spectra into lepto-hadronic emission components, A. Gokus et al., Astron.Nachr. 339 (2018) 331-335, arXiv:1808.05540. IBWS.
[Gokus:2018lgx]
[9-53]
Gravitational Waves and Neutrinos, Riccardo Sturani, arXiv:1804.03001, 2018. NuPhys2017 (London, 20-22 December 2017).
[Sturani:2018axq]
[9-54]
High energy neutrinos, M. Masip, arXiv:1803.07944, 2018. NuPhys2017 (London, 20-22 December 2017).
[Masip:2018xom]
[9-55]
Neutrino telescope searches for dark matter in the Sun, Pat Scott, arXiv:1710.05190, 2017. Rencontres du Vietnam: Exploring the Dark Universe, Quy Nhon, Vietnam, July 23-28.
[Scott:2017dki]
[9-56]
Implications of GW related searches for IceCube, Krijn D. de Vries, Gwenhael de Wasseige, Jean-Marie Frere, Matthias Vereecken, arXiv:1709.07430, 2017. 52nd Rencontres de Moriond, EW session, 2017.
[deVries:2017pme]
[9-57]
Constraints and prospects on gravitational wave and neutrino emission using GW150914, Krijn D. de Vries, Gwenhael de Wasseige, Jean-Marie Frere, Matthias Vereecken, PoS ICRC2017 (2017) 959, arXiv:1709.04880. 35th International Cosmic Ray Conference (ICRC2017), Busan, Korea.
[deWasseige:2017dxe]
[9-58]
On the detectability of BL Lac objects by IceCube, C. Righi, F. Tavecchio, arXiv:1708.01540, 2017. Moriond 2017 (VHE Phenomena in the Universe).
[Righi:2017xka]
[9-59]
A multi-component model for the IceCube neutrino events, Andrea Palladino, Nuovo Cim. C41 (2018) 65, arXiv:1707.06082. IFAE 2017.
[Palladino:2017yku]
[9-60]
The IceCube low-energy excess: a Dark Matter interpretation, Marco Chianese, Nuovo Cim. C41 (2018) 56, arXiv:1707.05244. IFAE 2017.
[Chianese:2017lvv]
[9-61]
The UHECR source evolution and high-energy neutrinos and \gamma-rays, Roberto Aloisio, Denise Boncioli, Armando di Matteo, Sergio Petrera, Francesco Salamida, PoS ICRC2017 (2017) 560, arXiv:1707.04836. 35th International Cosmic Ray Conference, 10-20 July 2017, Busan, South Korea.
[Aloisio:2017eqv]
[9-62]
Cosmogenic gamma-rays and neutrinos constrain UHECR source models, Arjen van Vliet, Jorg R. Horandel, Rafael Alves Batista, PoS ICRC2017 (2018) 562, arXiv:1707.04511. ICRC 2017.
[vanVliet:2017obm]
[9-63]
Cosmic Rays, Gamma rays, Neutrinos and Gravitational Waves, Paolo Lipari, Nuovo Cim. C40 (2017) 144, arXiv:1707.02732. SCINEGHE 2016.
[Lipari:2017qpu]
[9-64]
No Tau? No Astronomy!, Daniele Fargion, Pietro Oliva, arXiv:1707.01982, 2017. ICRC 2017.
[Fargion:2017rkg]
[9-65]
Probing the Extragalactic Cosmic Rays origin with gamma-ray and neutrino backgrounds, Noemie Globus, Denis Allard, Etienne Parizot, Tsvi Piran, PoS ICRC2017 (2018) 516, arXiv:1707.01186. 35th International Cosmic Ray Conference 10-20 July, 2017 Bexco, Busan, Korea.
[Globus:2017zsq]
[9-66]
Gamma-ray, Particle and Exotic Physics at TeV energies with the MAGIC telescopes, Michele Doro, Nuovo Cim. C40 (2017) 115, arXiv:1706.04718. 11th SciNeGHE workshops, 18-21 October 2016, Pisa, Italy.
[Doro:2017xsp]
[9-67]
Multi-Messenger Signatures of PeV-ZeV Cosmic Ray Sources, Peter Meszaros, Kohta Murase, Katsuaki Asano, Nicholas Senno, Di Xiao, Nucl.Part.Phys.Proc. 297-299 (2018) 217-225, arXiv:1703.00890. Origin of Cosmic Rays: Beyond the Standard Model 2016 conference in San Vito di Cadore, Dolomites.
[Meszaros:2017nhc]
[9-68]
PeV neutrinos from local magnetars, Rajat K. Dey, Springer Proc.Phys. 203 (2018) 147-149, arXiv:1702.01928. XXII DAE-BRNS Symposium 2016.
[Dey:2017kly]
[9-69]
Dark Matter scenarios at IceCube, Marco Chianese, PoS NOW2016 (2017) 090, arXiv:1702.01485. NOW 2016.
[Chianese:2017lxm]
[9-70]
2013-2016 review: HE Neutrino and UHECR Astronomy?, D. Fargion, P. Oliva, arXiv:1702.00021, 2017.
[Fargion:2017ecu]
[9-71]
Cosmogenic neutrinos and gamma-rays and the redshift evolution of UHECR sources, Roberto Aloisio et al., PoS NOW2016 (2017) 048, arXiv:1612.02578. Neutrino Oscillation Workshop, 4-11 September 2016, Otranto, Italy.
[Aloisio:2016tcy]
[9-72]
On the Color Dipole Picture, Dieter Schildknecht, AIP Conf.Proc. 1819 (2017) 030007, arXiv:1611.09043. Diffraction 2016, Acireale (Catania, Sicily) September 2-8, 2016.
[Schildknecht:2016fpi]
[9-73]
New Physics in Astrophysical Neutrino Flavor, Jordi Salvado, Carlos Arguelles, Teppei Katori, arXiv:1611.05710, 2016. NuFact 2016.
[Salvado:2016bwl]
[9-74]
Monitoring the Variable Gamma-Ray Sky with HAWC, Robert J. Lauer (HAWC), AIP Conf.Proc. 1792 (2017) 070013, arXiv:1610.05172. 6th International Symposium on High Energy Gamma-Ray Astronomy (Gamma2016), Heidelberg, Germany.
[Lauer:2016saq]
[9-75]
The Nature and Origin of Ultra-High Energy Cosmic Ray Particles, Peter L. Biermann et al., Frascati Phys.Ser. 64 (2017) 103-121, arXiv:1610.00944. Vulcano Workshop 2016 'Frontier Objects in Astrophysics and Particle Physics' 22nd - 28th, May 2016.
[Biermann:2016xzl]
[9-76]
Hadronic modeling of TeV AGN: gammas and neutrinos, M. Cerruti, A. Zech, G. Emery, D. Guarin, AIP Conf.Proc. 1792 (2017) 050027, arXiv:1610.00255. 6th International Symposium on High-Energy Gamma-Ray Astronomy (Gamma2016), Heidelberg, Germany, July 11-15, 2016.
[Cerruti:2016all]
[9-77]
Cosmogenic photons strongly constrain UHECR source models, Arjen van Vliet, EPJ Web Conf. 135 (2017) 03001, arXiv:1609.03336. ARENA-2016 (Groningen, the Netherlands, June 7 - 10th 2016).
[vanVliet:2016dyx]
[9-78]
The effects of surface roughness on lunar Askaryan pulses, C.W. James, arXiv:1608.07074, 2016. ARENA 2014: Acoustic and Radio EeV Neutrino Detection Activities, Annapolis, U.S.A 2014.
[James:2016qzc]
[9-79]
Identifying the nature of high energy Astroparticles, Karen Salome Caballero Mora, J. Phys. Conf. Ser. 761 (2016) 012077, arXiv:1608.03263. XV Mexican Workshop on Particles and Fields and the XXX Annual Meeting of the Division of Particles and Fields of the Mexican Physical Society.
[Mora:2016yhv]
[9-80]
Search for Lorentz Violation in km$^3$-Scale Neutrino Telescopes, C. A. Arguelles, G. H. Collin, J. M. Conrad, T. Katori, A. Kheirandish, arXiv:1608.02946, 2016. Seventh Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, June 20-24, 2016.
[Arguelles:2016rkg]
[9-81]
Test of Lorentz Violation with Astrophysical Neutrino Flavor, Teppei Katori, Carlos A. Arguelles, Jordi Salvado, arXiv:1607.08448, 2016. Seventh Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, June 20-24, 2016.
[Katori:2016eni]
[9-82]
Ultra-High Energy Astrophysical Neutrino Detection, and the Search for Lorentz Invariance Violations, J.C. Hanson, arXiv:1607.05745, 2016. Seventh Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, June 20-24, 2016.
[Hanson:2016map]
[9-83]
Interpretation of astrophysical neutrinos observed by IceCube experiment by setting Galactic and extra-Galactic spectral components, Daniele Gaggero, Dario Grasso, Antonio Marinelli, Alfredo Urbano, Mauro Valli, EPJ Web Conf. 116 (2016) 04009, arXiv:1604.05776. VLVnT-2015.
[Marinelli:2016mjo]
[9-84]
Ultra High Energy Cosmic Rays and Neutrinos, Roberto Aloisio, Nucl.Part.Phys.Proc. 279-281 (2016) 95-102, arXiv:1603.05886. CRIS 2015, 14-16 September 2015, Gallipoli, Italy.
[Aloisio:2016hng]
[9-85]
Search for extragalactic astrophysical counterparts of IceCube neutrino events, Reetanjali Moharana, Richard J.G. Britto, Soebur Razzaque, PoS ICRC2015 (2016) 1122, arXiv:1602.03694. 34th International Cosmic Ray Conference Proceedings (ICRC 2015, The Hague, The Netherlands).
[Moharana:2015mig]
[9-86]
gSeaGen: a GENIE-based code for neutrino telescopes, Carla Distefano, ANTARES (KM3NeTs), EPJ Web Conf. 116 (2016) 08001, arXiv:1602.00501. VLVnT - 2015: Very Large Volume Neutrino Telescope.
[Distefano:2016bcw]
[9-87]
The many faces of blazar emission in the context of hadronic models, Maria Petropoulou et al., arXiv:1601.06010, 2016. Marcel Grossmann meeting (MG14).
[Petropoulou:2016sll]
[9-88]
Galactic sources of high energy neutrinos: Expectation from gamma-ray data, N. Sahakyan, EPJ Web Conf. 121 (2016) 05005, arXiv:1512.02333. RICAP-14 'The Roma International Conference on Astroparticle Physics', Noto (Italy) Oct. 2014.
[Sahakyan:2015bgg]
[9-89]
SMWDs as SGRs/AXPs and the lepton number violation, J. Adam Jr., V.B. Belyaev, P. Ricci, F. Simkovic, E. Truhlik, AIP Conf. Proc. 1686 (2015) 020028, arXiv:1512.01564. Workshop on calculation of double-beta-decay matrix elements (MEDEX'15), Prague, 9-12 June 2015.
[Jr:2015oxy]
[9-90]
Origin of the ankle in the ultra-high energy cosmic ray spectrum and of the extragalactic protons below it, Glennys R. Farrar, Michael Unger, Luis A. Anchordoqui, PoS ICRC2015 (2016) 513, arXiv:1512.00484. ICRC 2015.
[Farrar:2015ikt]
[9-91]
Evaluation of expected solar flare neutrino events in the IceCube observatory, G. de Wasseige, P. Evenson, K. Hanson, N. van Eijndhoven, K.-L. Klein, arXiv:1512.00204, 2015. 34th International Cosmic Ray Conference, The Hague 2015.
[deWasseige:2015mlk]
[9-92]
Search for high-energy neutrinos from dust obscured Blazars, G. Maggi et al., PoS ICRC2015 (2016) 1050, arXiv:1511.02661. 34th International Cosmic Ray Conference, 30 July- 6 August, 2015, The Hague, The Netherlands.
[Maggi:2015abw]
[9-93]
Monoenergetic Neutrinos From Dark Matter Annihilation: Issues of Exposure, Jason Kumar, AIP Conf.Proc. 1743 (2016) 050008, arXiv:1510.01847. CETUP'/PPC 2015.
[Kumar:2015uwa]
[9-94]
A Hadronic Scenario for the Galactic Ridge, Daniele Gaggero, Dario Grasso, Antonio Marinelli, Alfredo Urbano, Mauro Valli, arXiv:1508.03681, 2015. 34th International Cosmic Ray Conference, July 30 - August 6, The Hague, Netherlands.
[Gaggero:2015jma]
[9-95]
Detection of tau neutrinos by Imaging Air Cherenkov Telescopes, Dariusz Gora, Elisa Bernardini, arXiv:1508.02863, 2015. 34th International Cosmic Ray Conference, 30 July- 6 August, 2015, The Hague, The Netherlands.
[Gora:2015dva]
[9-96]
Gamma-ray and neutrino diffuse emissions of the Galaxy above the TeV, Daniele Gaggero, Dario Grasso, Antonio Marinelli, Alfredo Urbano, Mauro Valli, PoS ICRC2015 (2016) 489, arXiv:1507.07796. 34th International Cosmic Ray Conference, July 30 to August 6, The Hague, Netherlands.
[Grasso:2015yxd]
[9-97]
Shadow dark matter, sterile neutrinos and neutrino events at IceCube, Zurab Berezhiani, Nucl.Part.Phys.Proc. 265-266 (2015) 303-306, arXiv:1506.09040. NOW 2014, 7-14 Sept. 2014, Conca Specchiula, Italy.
[Berezhiani:2015fba]
[9-98]
Gamma Ray Bursts in the HAWC Era, Peter Meszaros et al., arXiv:1506.02707, 2015. HAWC inauguration conference, Puebla, Mexico, March 19, 2015.
[Meszaros:2015zka]
[9-99]
Type IIn supernovae as sources of high energy neutrinos, V.N. Zirakashvili, V.S. Ptuskin, PoS ICRC2015 (2016) 472, arXiv:1505.08144. 34th ICRC, Hague, Netherlands 30July-06Aug 2015.
[Zarikashvili:2015wpw]
[9-100]
Propagation of Ultra High Energy Cosmic Rays and the Production of Cosmogenic Neutrinos, R. Aloisio et al., Nucl. Part. Phys. Proc. 265-266 (2015) 251-254, arXiv:1505.04742. Neutrino Oscillation Workshop (NOW 2014), Otranto, Italy, September 7-14 2014.
[Aloisio:2015mpa]
[9-101]
The Flavour Composition of the High-Energy IceCube Neutrinos, Aaron C. Vincent, Sergio Palomares Ruiz, Olga Mena, arXiv:1505.03355, 2015. 50th Rencontres de Moriond, Electroweak Interactions and Unified Theories.
[Vincent:2015woa]
[9-102]
Lepto-hadronic processes and high-energy neutrinos in NGC 1275, N. Fraija, A. Marinelli, U. Luviano-Valenzuela, A. Galvan-Gamez, C. Peterson-Borquez, IAU Symp. 313 (2015) 175-176, arXiv:1505.03174. IAU Symposium No. 313: 'Extragalactic jets from every angle,' Galapagos, Ecuador, 15-19 September 2014.
[Fraija:2015tua]
[9-103]
Hadronic flares and associated neutrinos for Markarian 421, A. Marinelli, B. Patricelli, N. Fraija, IAU Symp. 313 (2015) 177-178, arXiv:1505.03165. IAU Symposium No. 313: 'Extragalactic jets from every angle,' Galapagos, Ecuador, 15-19 September 2014.
[Marinelli:2015uua]
[9-104]
Comprehensive nucleosynthesis analysis for ejecta of compact binary mergers, Oliver Just, Andreas Bauswein, Ricard Ardevol Pulpillo, Stephane Goriely, H.-Thomas Janka, PoS NICXIII (2015) 103, arXiv:1504.05448. Science, Nuclei in the Cosmos XIII, Debrecen.
[Just:2015ypa]
[9-105]
Nucleosynthesis of heavy elements in gamma ray bursts, Agnieszka Janiuk, Bartlomiej Kaminski (Center for Theoretical Physics, PAS), PoS SWIFT10 (2015) 080, arXiv:1504.00145. Swift: 10 years of Discovery, Rome (2-5 Dec. 2014).
[Janiuk:2015tza]
[9-106]
High-Energy Neutrinos in Light of Fermi-LAT, Markus Ahlers, arXiv:1503.00437, 2015. 2014 Fermi Symposium.
[Ahlers:2015sma]
[9-107]
Charm production in SIBYLL, Ralph Engel, Anatoli Fedynitch, Thomas K. Gaisser, Felix Riehn, Todor Stanev, EPJ Web Conf. 99 (2015) 12001, arXiv:1502.06353. ISVHECRI 2014.
[Riehn:2015aqb]
[9-108]
Highlights on gamma rays, neutrinos and antiprotons from TeV Dark Matter, Viviana Gammaldi, EPJ Web Conf. 121 (2016) 06003, arXiv:1412.7639. RICAP-14 'The Roma International Conference on Astroparticle Physics'.
[Gammaldi:2014noa]
[9-109]
The dark matter self-interaction and its impact on the critical mass for dark matter evaporations inside the sun, Chian-Shu Chen, Fei-Fan Lee, Guey-Lin Lin, Yen-Hsun Lin, Nucl.Part.Phys.Proc. 273-275 (2016) 347-352, arXiv:1412.6739. International Conference on High Energy Physics 2014 (ICHEP 2014).
[Chen:2014hha]
[9-110]
IceCube Neutrino Events from Fermi Bubbles, Cecilia Lunardini, Soebur Razzaque, Lili Yang, arXiv:1412.6240, 2014. 59th annual conference of the South African Institute of Physics, 7-11 July 2014.
[Lunardini:2014wza]
[9-111]
On the flavor composition of the high-energy neutrinos in IceCube, Sergio Palomares-Ruiz, Olga Mena, Aaron C. Vincent, Nucl.Part.Phys.Proc. 273-275 (2016) 433-439, arXiv:1411.2998. 37th International High Energy Conference (ICHEP14), Valencia, June 2-9, 2014.
[Palomares-Ruiz:2014zra]
[9-112]
Very high energy neutrino expectation from Fanaroff-Riley I sources, A. Marinelli, N. Fraija, IAU Symp. 313 (2015) 169-174, arXiv:1411.2695. IAU Symposium No. 313: 'Extragalactic jets from every angle,' Galapagos, Ecuador, 15-19 September 2014.
[Marinelli:2014zha]
[9-113]
CRPropa: a public framework to propagate UHECRs in the universe, R. Alves Batista et al., EPJ Web Conf. 99 (2015) 13004, arXiv:1411.2259. International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI 2014).
[AlvesBatista:2014yqp]
[9-114]
Problems with Ultrahigh-energy Neutrino Interactions, Dieter Schildknecht, Subnucl.Ser. 52 (2017) 147-165, arXiv:1411.0498. International School of Subnuclear Physics, 52nd Course, Erice, Sicily, 24 June - 3 July 2014.
[Schildknecht:2014wha]
[9-115]
Cosmic ray propagation with CRPropa 3, Rafael Alves Batista et al., J. Phys. Conf. Ser. 608 (2015) 012076, arXiv:1410.5323. ACAT 2014.
[AlvesBatista:2014lzo]
[9-116]
On the Origin of High-Energy Cosmic Neutrinos, Kohta Murase, AIP Conf. Proc. 1666 (2015) 040006, arXiv:1410.3680. XXVI International Conference on Neutrino Physics and Astrophysics (Neutrino 2014), June 2-7, 2014, Boston, USA.
[Murase:2014tsa]
[9-117]
Cosmic-ray acceleration and gamma-ray signals from radio supernovae, A. Marcowith, M. Renaud, V. Dwarkadas, V. Tatischeff, Nucl. Phys. Proc. Suppl. B256-257 (2014) 94-100, arXiv:1409.3670. Cosmic Ray Origin beyond the standard models, San Vito (2014).
[Marcowith:2014kfa]
[9-118]
Neutrino Telescope Array (NTA) - Towards Survey of Astronomical $\nu_\tau$ Sources, George W.-S. Hou, JPS Conf.Proc. 15 (2017) 011012, arXiv:1409.0477. VHEPA2014, Kashiwa, Tokyo, March 2014.
[Hou:2014jqa]
[9-119]
The blazar paradigm and its discontents, C.D. Dermer, Mem. Soc. Ast. It. 86 (2015) 13, arXiv:1408.6453. High Energy Astrophysics in Southern Africa, Bloemfontein, New Free State, South Africa, 23-25 April, 2014.
[Dermer:2014ata]
[9-120]
PeV Neutrinos from Ultra-High-Energy Cosmic Rays, Guenter Sigl, Arjen van Vliet, arXiv:1407.6577, 2014. Rencontres de Moriond EW 2014.
[Sigl:2014jna]
[9-121]
Ultra-high Energy Cosmic Rays and Neutrinos from Gamma-Ray Bursts, Hypernovae and Galactic Shocks, P. Meszaros, Nucl. Phys. Proc. Suppl. 256-257 (2014) 241-251, arXiv:1407.5671. Cosmic Ray Origins: Beyond the Standard Models, San Vito di Cadore, Dolomites, Italy, 16-22 March 2014.
[Meszaros:2014tta]
[9-122]
Ultra-high energy neutrinos and $W^{\prime}$, $Z^{\prime}$ gauge bosons at the Pierre Auger Observatory, Florian Lyonnet, arXiv:1405.3756, 2014. 49th Rencontres de Moriond, Electroweak Interactions and Unified Theories session, March 15th-22nd, 2014, La Thuile, Italy.
[Lyonnet:2014toa]
[9-123]
Neutrinos from Colliding Wind Binaries: Future Prospects for PINGU and ORCA, J. Becker Tjus, arXiv:1405.0471, 2014. Wind Bubbles, Astrospheres and the Heliosphere: Environments and Cosmic Rays, Bochum, Germany.
[BeckerTjus:2014lnp]
[9-124]
Gamma-ray and neutrino fluxes form Heavy Dark Matter in the Galactic Center, V. Gammaldi, J. A. R. Cembranos, A. de la Cruz-Dombriz, R. A. Lineros, A. L. Maroto, Phys.Procedia 61 (2015) 694-703, arXiv:1404.2067. TAUP2013.
[Gammaldi:2014yva]
[9-125]
UHE neutrino and cosmic ray emission from GRBs: revising the models and clarifying the cosmic ray-neutrino connection, Mauricio Bustamante, Philipp Baerwald, Walter Winter, AIP Conf.Proc. 1630 (2014) 78-81, arXiv:1402.1497. 6th Very Large Volume Neutrino Telescope Workshop (VLVnT13), Stockholm, Sweden, 5-7 August, 2013.
[Bustamante:2014dga]
[9-126]
The surface and inner temperatures of magnetars, Z. F. Gao, N. Wang, Q. H. Peng, IAU Symp. 291 (2013) 386-388, arXiv:1312.1774. IAU Symposium, 2013.
[Gao:2013aya]
[9-127]
IceCube's Neutrinos: The beginning of extra-Galactic neutrino astrophysics?, E. Waxman, arXiv:1312.0558, 2013. 9th Rencontres du Vietnam : Windows on the Universe.
[Waxman:2013zda]
[9-128]
nu production in Centaurus A and M87 from gamma ray interactions with the gas and dust at the sources, J.C. Arteaga-Velazquez, J. Phys. Conf. Ser. 378 (2012) 012005, arXiv:1308.3253. XIII Mexican Workshop on Particles and Fields, Leon, Guanajuato, Mexico, 20-26 October, 2011.
[Arteaga-Velazquez:2012shf]
[9-129]
Jet Luminosity from Neutrino-Dominated Accretion Flows in GRBs, Norita Kawanaka, arXiv:1308.3236, 2013. 7th Huntsville Gamma-Ray Burst Symposium, GRB 2013.
[Kawanaka:2013aba]
[9-130]
Tau neutrino search with Cherenkov telescopes, Dariusz Gora, Elisa Bernardini, arXiv:1308.0194, 2013. 33nd International Cosmic Ray Conference - 2013 - Rio de Janeiro, Brazil.
[Gora:2013fea]
[9-131]
Multiwavelength study of the region around the ANTARES neutrino excess, F. Schussler et al. (Stolarczyk D. Wouters for the H. E. S. S. collaboration. T.), arXiv:1307.6074, 2013. 33rd International Cosmic Ray Conference (ICRC2013), Rio de Janeiro (Brazil).
[HESS:2013vtk]
[9-132]
Tests of Lorentz Invariance Using High Energy Astrophysics Observations, Floyd W. Stecker, arXiv:1307.5212, 2013. Sixth Meeting on CPT and Lorentz Symmetry (CPT'13).
[Stecker:2013rpa]
[9-133]
Escape and propagation of UHECR protons and neutrons from GRBs, and the cosmic ray-neutrino connection, Mauricio Bustamante, Philipp Baerwald, Walter Winter, arXiv:1306.2755, 2013. 33rd International Cosmic Ray Conference (ICRC2013), Rio de Janeiro, Brazil, 2-9 July, 2013.
[Bustamante:2013ata]
[9-134]
Interpreting signals from astrophysical transient experiments, P. T. O'Brien, S. J. Smartt, Philosophical Transactions of the Royal Society A 371 (2012) 20120498, arXiv:1306.0792. Discussion Meeting 'New windows on transients across the Universe'.
[OBrien:2013rkt]
[9-135]
Explosive Combustion of a Neutron Star into a Quark Star: the non-premixed scenario, Rachid Ouyed, Brian Niebergal, Prashanth Jaikumar, arXiv:1304.8048, 2013. Compact Stars in the QCD Phase Diagram III (CSQCD III) December 12-15, 2012, Guaruja, SP, Brazil.
[Ouyed:2013sra]
[9-136]
Gravitational Lensing of Neutrino from Collapsars, Florencia L. Vieyro, Gustavo E. Romero, arXiv:1302.0257, 2013. First Argentine-Brazilian Meeting on Gravitation, Astrophysics and Cosmology, held in Foz do Iguacu, October, 2011.
[Vieyro:2013aj]
[9-137]
Episodic gamma-ray and neutrino emission from the low mass X-ray binary GRO J0422+32, Florencia L. Vieyro, Yolanda Sestayo, Gustavo E. Romero, Josep M. Paredes, AIP Conf.Proc. 1505 (2012) 410, arXiv:1302.0247. 5th International Meeting on High Energy Gamma-Ray Astronomy.
[Vieyro:2012hwg]
[9-138]
High energy emission from transients, J. A. Hinton, R. L. C. Starling, Phil.Trans.Roy.Soc.Lond. A371 (2013) 0279, arXiv:1301.3724. Royal Society meeting 'New windows on transients across the Universe', 23-24 April 2012.
[Hinton:2013pj]
[9-139]
Explanation for the low flux of high energy astrophysical muon-neutrinos, Sandip Pakvasa, Anjan Joshipura, Subhendra Mohanty, Nucl. Phys. Proc. Suppl. 246-247 (2014) 85-89, arXiv:1209.5630.
[Pakvasa:2012db]
[9-140]
Methods and problems in neutrino observatories, M. Ribordy, Proc.Int.Sch.Phys.Fermi 182 (2012) 207-255, arXiv:1205.4965. ISAPP School 'Neutrino Physics and Astrophysics,' 26 July - 5 August 2011, Villa Monastero, Varenna, Lake Como, Italy.
[Ribordy:2012gk]
[9-141]
Multi-messenger probes of neutron rich matter, C. J. Horowitz, Prog. Theor. Phys. Suppl. 196 (2012) 451, arXiv:1202.5701. YKIS2011 Symposium Frontier Issues in Physics of Exotic Nuclei.
[Horowitz:2012za]
[9-142]
Testing fundamental principles with high-energy cosmic rays, Luis Gonzalez-Mestres, PoS EPS-HEP2011 (2011) 390, arXiv:1202.1277. XXIst International Europhysics Conference on High Energy Physics, Grenoble, France, July 2011.
[Gonzalez-Mestres:2011fdu]
[9-143]
Geometric scaling in ultrahigh energy neutrinos and nonlinear perturbative QCD, M.V.T. Machado, Int. J. Mod. Phys. Proc. Suppl. E20 (2013) 189-194, arXiv:1112.0555. First Caribbean Symposium on Nuclear and Astroparticle Physics - STARS2011, La Habana, Cuba, 2011.
[Goncalves:2013kva]
[9-144]
Indirect searches for gravitino dark matter, Michael Grefe, J. Phys. Conf. Ser. 375 (2012) 012035, arXiv:1111.7117. 12th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2011), Munich, Germany, 5-9 September 2011.
[Grefe:2011kh]
[9-145]
Accretion and outflow from a magnetized, neutrino cooled torus in the gamma ray burst central engine, Agnieszka Janiuk, Monika Moscibrodzka, Int. J. Mod. Phys. Conf. Ser. 08 (2012) 352, arXiv:1111.5470. High Energy Phenomena in Relativistic Outflows III Barcelona, (June 27 - July 1, 2011).
[Janiuk:2012dyg]
[9-146]
Pionic Photons and Neutrinos from Cosmic Ray Accelerators, Francis Halzen, Acta Phys. Polon. B42 (2011) 2525-2546, arXiv:1111.1131. Crakow School of Theoretical Physics, 11-19 June 2011.
[Halzen:2011dk]
[9-147]
Online Gamma-Ray Burst catalog for neutrino telescopes, Juan A. Aguilar, arXiv:1110.5946, 2011. 32nd ICRC Beijing 2011.
[Aguilar:2011xm]
[9-148]
The Potential of Spaced-based High-Energy Neutrino Measurements via the Airshower Cherenkov Signal, John F. Krizmanic, John W. Mitchell, arXiv:1109.6544, 2011. 32nd ICRC, Beijing, China, August 2011.
[Krizmanic:2011hs]
[9-149]
Quantifying uncertainties in the high energy neutrino cross-section, Amanda Cooper-Sarkar, Philipp Mertsch, Subir Sarkar, Pramana 79 (2012) 1301, arXiv:1108.1755. 32nd International Cosmic Ray Conference, Beijing, China, 11-18 August 2011.
[Cooper-Sarkar:2011dym]
[9-150]
Neutrino Solar Flare detection for a saving alert system of satellites and astronauts, Daniele Fargion, arXiv:1106.3750, 2011. ICRC2011.
[Fargion:2011pj]
[9-151]
UHECR by lightest nuclei in Nearby Universe and its parasite neutrino trace, Daniele Fargion, arXiv:1106.3749, 2011. ICRC2011.
[Fargion:2011pi]
[9-152]
DGLAP Evolutions and cross-sections of Neutrino-Nucleon interaction at Ultra High energy, D K Choudhury, Pijush Kanti Dhar, arXiv:1103.3788, 2011. XIX DAE-BRNS High Energy Physics Symposium, December 13-18, 2010, Jaipur, India.
[Choudhury:2011zj]
[9-153]
Sibyll with charm, Eun-Joo Ahn, Ralph Engel, Thomas K. Gaisser, Paolo Lipari, Todor Stanev, arXiv:1102.5705, 2011. ISVHECRI 2010.
[Ahn:2011wt]
[9-154]
Photon and neutrino emission from active galactic nuclei, P.L. Biermann et al., Nucl. Phys. Proc. Suppl. 217 (2011) 284-286, arXiv:1012.0204. NOW 2010.
[Biermann:2010td]
[9-155]
UHE neutrinos: higher twists, scales, saturation, R. Fiore, V.R. Zoller, AIP Conf. Proc. 1350 (2011) 81-84, arXiv:1011.2611. Diffraction 2010, Otranto (Lecce), Italy, September 10-15, 2010.
[Fiore:2010yy]
[9-156]
(Ultra-)High Energy Muon Neutrino Propagation through the Earth and Induced Muon Energy Distribution near the One Cubic Kilometer Detector, N. Takahashi, Y. Okumura, A. Misaki, arXiv:1010.1729, 2010. XVI International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI 2010), Batavia, IL, USA, 28 June - 2 July 2010.
[Takahashi:2010sr]
[9-157]
Instabilities in the Gamma Ray Burst central engine. What makes the jet variable?, Agnieszka Janiuk, Ye-Fei Yuan, Rosalba Perna, Tiziana Di Matteo, IAU Symp. 275 (2011) 349, arXiv:1010.0903. 275 IAU Symposium 'Jets at all scales', Buenos Aires, 13-17.09.2010.
[Janiuk:2010xs]
[9-158]
Neutrino and Electron-positron Pair Emission from Phase-induced Collapse of Neutron Stars to Quark Stars, K. S. Cheng, T. Harko, arXiv:1005.4326, 2010. Compact stars in the QCD phase diagram II (CSQCD II), May 20-24, 2009, KIAA at Peking University, Beijing - P. R. China.
[Cheng:2010sm]
[9-159]
Neutrino Flavor Detection at Neutrino Telescopes and Its Uses, Sandip Pakvasa, arXiv:1004.5413, 2010. CTP International Conference on Neutrino Physics in the LHC Era, 15-19 Nov., 2009, Luxor, Egypt.
[Pakvasa:2010jj]
[9-160]
High-energy neutrinos from Galactic sources, A. Kappes, arXiv:1004.4341, 2010. XIV LCEPP conference (2009), Moscow.
[Kappes:2010js]
[9-161]
Neutrino Flavor Ratio on Earth and at Astrophysical Sources, Kwang-Chang Lai, Guey-Lin Lin, T.C. Liu, Prog. Part. Nucl. Phys. 64 (2010) 420-422, arXiv:1004.1030. ERICE 2009, Sicily.
[Lai:2010fq]
[9-162]
Rotochemical heating in millisecond pulsars with Cooper pairing, Cristobal Petrovich, Andreas Reisenegger, AIP Conf. Proc. 1265 (2010) 166-169, arXiv:1002.5043. VIII Symposium in Nuclear Physics and Applications: Nuclear and Particle Astrophysics.
[Petrovich:2010cb]
[9-163]
Simulation of the Event Reconstruction of Ultra High Energy Cosmic Neutrinos with Askaryan Radio Array, Shang-Yu Sun, Pisin Chen, Melin Huang, arXiv:1002.0023, 2010. 7 pages, 12 figures, presented at the CosPA Symposium, Melbourne, Australia, November 2009.
[Sun:2010fc]
[9-164]
Quiescence and late time activity in collapsars due to critical angular momentum distributions, D. Lopez-Camara, arXiv:1001.4770, 2010. The shocking Universe: Gamma-Ray Bursts and High Energy Shock Phenomena in the Universe, Venice 2009.
[Lopez-Camara:2010mia]
[9-165]
Cosmic neutrinos at IceCube: $\theta_{13}$, $\delta$ and initial flavor composition, Arman Esmaili, J. Phys. Conf. Ser. 203 (2010) 012114, arXiv:0910.3651. TAUP 2009.
[Esmaili:2009uq]
[9-166]
GeoSynchrotron Radiation from Earth Skimming Tau Neutrino Shower, Kwang-Chang Lai, Guey-Lin Lin, Tsung-Che Liu, Jiwoo Nam, Chi-Chin Chen, PoS EPS-HEP2009 (2009) 105, arXiv:0909.1504. EPS-HEP 2009.
[Lai:2009qh]
[9-167]
Development of neutrino initiated cascades at mid and high altitudes in the atmosphere, A.D. Supanitsky et al. (JEM-EUSO), arXiv:0909.1311, 2009. 31st ICRC, Lodz, Poland, July 2009.
[JEM-EUSO:2009kch]
[9-168]
The starburst-GRB connection, Jens Dreyer, Julia K. Becker, Wolfgang Rhode, arXiv:0909.0158, 2009. 31st ICRC, Lodz, Poland, 2009.
[Dreyer:2009pj]
[9-169]
Massive stars and high-energy neutrinos, Gustavo E. Romero, ASP Conf.Ser. 422 (2010) 213, arXiv:0908.3649. High Energy Phenomena in Massive Stars, Jaen (Spain), 2-5 February 2009.
[Romero:2009ga]
[9-170]
MUPAGE: a fast atmospheric MUon GEnerator for neutrino telescopes based on PArametric formulas, G. Carminati et al., arXiv:0907.5563, 2009. 31st ICRC, Lodz, Poland, 2009.
[Carminati:2009fj]
[9-171]
Neutrino probe of cosmic ray astrophysics and new physics at sub-fermi distances, Luis A. Anchordoqui (Pierre Auger), AIP Conf. Proc. 1200 (2010) 981-984, arXiv:0907.5208. SUSY09, the 17th International Conference on Supersymmetry and the Unification of Fundamental Interactions, Boston 2009.
[Anchordoqui:2009ty]
[9-172]
Muon Production in Relativistic Cosmic-Ray Interactions, Spencer R. Klein, Nucl. Phys. A830 (2009) 869c-872c, arXiv:0907.4799. Quark Matter 2009, March 30 - April 4, Knoxville, Tennessee.
[Klein:2009ew]
[9-173]
Neutrinos from photo-hadronic interactions in Pks2155-304, Julia K. Becker, Athina Meli, Peter L. Biermann, Nucl. Instrum. Meth. A630 (2011) 269-272, arXiv:0907.4284. RICAP 2009 and ICRC 2009.
[Becker:2009pn]
[9-174]
Understanding of GRB-SN Connection by General Relativistic MHD Simulations, S. Nagataki, arXiv:0907.0561, 2009. Neutron Stars and Gamma Ray Bursts 2009, March 30 - April 4, 2009.
[Nagataki:2009xk]
[9-175]
Extreme scenarios of new physics in the UHE astrophysical neutrino flavour ratios, M. Bustamante, A.M. Gago, C. Pena-Garay, J. Phys. Conf. Ser. 171 (2009) 012048, arXiv:0906.5329. DISCRETE'08: Symposium on Prospects in the Physics of Discrete Symmetries, Valencia, Spain, 11-16 Dec 2008.
[Bustamante:2009wz]
[9-176]
Dark matter bound to the Solar System: consequences for annihilation searches, Annika H. G. Peter, arXiv:0905.2456, 2009. XLIV Rencontres de Moriond: Electroweak Interactions and Unified Theories, La Thuile, March 7-14, 2009.
[Peter:2009qj]
[9-177]
Achievements and Mirages in Uhecr and Neutrino Astronomy, D.Fargion, D. D'Armiento, arXiv:0905.1517, 2009. Venice Neutrino Telescope March 2009.
[Fargion:2009ie]
[9-178]
The propagation of ultra-high energy tau leptons and neutrinos while skimming the Earth, O. Blanch Bigas, O. Deligny, K. Payet, V. Van Elewyck, Nucl. Phys. Proc. Suppl. 190 (2009) 144-149, arXiv:0904.3489. CRIS 2008 - Cosmic Ray International Seminar, Malfa Island, Italy, September 15-19, 2008.
[Bigas:2009kk]
[9-179]
Lightest Nuclei in UHECR versus Tau Neutrino Astronomy, D. Fargion, D. D'Armiento, P. Paggi, S. Patri', Nucl. Phys. Proc. Suppl. 190 (2009) 162-166, arXiv:0902.3290. CRIS 2008.
[Fargion:2009rb]
[9-180]
Simulation of a hybrid optical-radio-acoustic neutrino detector at the South Pole, D. Besson et al., Nucl. Instrum. Meth. A604 (2009) S179-S181, arXiv:0811.2100. Acoustic and Radio EeV Neutrino detection Activities (ARENA) 2008.
[Besson:2008hf]
[9-181]
Implications of cosmic ray results for UHE neutrinos, Subir Sarkar, J. Phys. Conf. Ser. 136 (2008) 022054, arXiv:0811.0375. XXIII International Conference on Neutrino Physics and Astrophysics, Christchurch, NZ, 25-31 May 2008.
[Sarkar:2008ew]
[9-182]
Individual GRB sensitivity of a cubic-kilometer deep-sea neutrino telescope KM3NeT, D. Dornic, G. Lelaizant, Nucl. Instrum. Meth. A602 (2009) 123-125, arXiv:0810.1452. Very Large Volume Neutrino Telescopes VLVNT 08.
[Dornic:2008ik]
[9-183]
High-energy emission from microqusars, Gustavo E. Romero, arXiv:0810.0202, 2008. 7th. Microquasar Workshop, Foca 2008.
[Romero:2008nw]
[9-184]
The Passage of Ultrarelativistic Neutralinos through the Matter of the Moon, Sascha Bornhauser, AIP Conf. Proc. 1078 (2009) 512-514, arXiv:0809.5014. 16th International Conference on Supersymmetry and the Unification of Fundamental Interactions (SUSY08), Seoul, Korea, June 16-21 2008.
[Bornhauser:2008jq]
[9-185]
Antares/Virgo Coincidences : a feasibility study, Thierry Pradier, arXiv:0807.2567, 2008. XXth RENCONTRES DE BLOIS - Challenges in Particle Astrophysics, 18th - 23rd May 2008, Blois (France).
[Pradier:2008um]
[9-186]
Coincidences between Gravitational Wave Interferometers and High Energy Neutrino Telescopes, Thierry Pradier, Nucl. Instrum. Meth. A602 (2009) 268-274, arXiv:0807.2562. International Workshop on a Very Large Volume Neutrino Telescope for the Mediterranean Sea, VLVnT08 - Toulon, Var, France, 22-24 April 2008.
[Pradier:2008uj]
[9-187]
Testing Dark Matter with Neutrino Detectors, Sergio Palomares-Ruiz, arXiv:0805.3367, 2008. 43rd Rencontres de Moriond EW 2008, La Thuile, Italy, 1-8 March 2008.
[Palomares-Ruiz:2008npq]
[9-188]
Neutrino production in nucleonic interactions in gamma-ray bursters, Hylke B. J. Koers, arXiv:0805.2514, 2008. Rencontres de Moriond 2008 (Electroweak session), La Thuile, Italy, 1-8 March 2008.
[Koers:2008ie]
[9-189]
Small-x Physics and the Detection of UHE Neutrinos, N. Armesto, C. Merino, G. Parente, E. Zas, arXiv:0805.2247, 2008. XLIII Rencontres de Moriond: QCD and High Energy Interactions, La Thulile, Italy, 8-15 March 2008.
[Armesto:2008cw]
[9-190]
Neutrino Flavor Goniometry by High Energy Astrophysical Beams, Sandip Pakvasa, Mod. Phys. Lett. A23 (2008) 1313-1324, arXiv:0803.1701. COSPA 2007, Taipei, November 2007.
[Pakvasa:2008nx]
[9-191]
GRB neutrino detection via time profile stacking, Nick van Eijndhoven, arXiv:0712.0924, 2007. ICRC07, Merida, Mexico.
[vanEijndhoven:2007rg]
[9-192]
Neutrino telescopes as a probe of active and sterile neutrino mixings, Zhi-zhong Xing, Nucl. Phys. B, Proc. Suppl. 175-176 (2008) 421-426, arXiv:0711.4163. XIV International Symposium on Very High Energy Cosmic Ray Interactions, Weihai, China, August 15-22, 2006.
[Xing:2007rz]
[9-193]
On Gamma Ray Burst and Blazar AGN Origins of the Ultra-High Energy Cosmic Rays in Light of First Results from Auger, Charles D. Dermer, arXiv:0711.2804, 2007. Merida Yucatan ICRC.
[Dermer:2007au]
[9-194]
Neutrino emissivity and bulk viscosity of iso-CSL quark matter in neutron stars, David B. Blaschke, Jens Berdermann, AIP Conf. Proc. 964 (2007) 290-295, arXiv:0710.5243. QCD@Work 2007.
[Blaschke:2007bv]
[9-195]
Reflection of microwave from energy deposit by X-ray irradiation in rock salt: Implication of an ultra high energy salt neutrino detector to act like a radio bubble chamber, Masami Chiba et al., arXiv:0710.4186, 2007. SUSY07.
[Chiba:2007tk]
[9-196]
Neutrinos from WIMP annihilations, Mattias Blennow, arXiv:0710.1493, 2007. SUSY07.
[Blennow:2007rf]
[9-197]
Exotic physics with ultrahigh energy cosmic rays, M. Ahlers, J.I. Illana, M. Masip, D. Meloni, Acta Phys. Polon. B38 (2007) 3357-3364, arXiv:0710.0584. XXXI International Conference of Theoretical Physics 'Matter To The Deepest: Recent Developments In Physics of Fundamental Interactions', Ustron, 5-11 September 2007, Poland.
[Illana:2007ra]
[9-198]
Ultrahigh energy neutrinos with a mediterranean neutrino telescope, E. Borriello, G. Miele, O. Pisanti, arXiv:0709.3760, 2007. XII International Workshop on Neutrino Telescopes, Venezia 2007.
[Borriello:2007zf]
[9-199]
Phenomenology of Gamma-Ray Jets, Amir Levinson, AIP Conf. Proc. 968 (2008) 281-287, arXiv:0709.1337. Huangshan meeting on 'Astrophysics of Compact Objects'.
[Levinson:2007wr]
[9-200]
Galactic neutrino background from cosmic ray interaction with the ISM content, C. De Donato, G. A. Medina-Tanco, J. C. D'Olivo, arXiv:0709.0278, 2007. 30th International Cosmic Ray Conference, Merida (2007), Yucatan, Mexico.
[DeDonato:2007qp]
[9-201]
The Lunar Cherenkov Technique: From Parkes Onwards, C. W. James, R. D. Ekers, R. A. McFadden, R. J. Protheroe, arXiv:0709.0160, 2007. 30th ICRC, Merida, Mexico, 2007.
[James:2007nf]
[9-202]
Radio Detection of Neutrinos from Behind a Mountain, O. Brusova, L. Anchordoqui, T. Huege, K. Martens, arXiv:0708.3824, 2007. ICRC 07.
[Brusova:2007ti]
[9-203]
Gamma-ray and neutrino diffuse emissions of the Galaxy above the TeV, C. Evoli, D. Grasso, L. Maccione, arXiv:0708.0100, 2007. 30th International Cosmic Ray Conference (ICRC 2007), Merida, Yucatan, Mexico, 3-11 Jul 2007.
[Grasso:2007gzd]
[9-204]
Gamma Ray and Neutrino Emission as a Probe of Relativistic Jets, Amir Levinson, ASP Conf.Ser. 386 (2008) 227, arXiv:0707.2269. Extragalactic Jets: Theory and Observation from Radio to Gamma Ray.
[Levinson:2007ke]
[9-205]
Sensitivity of the NEMO detector to galactic microquasars, C. Distefano (NEMO), arXiv:0706.2993, 2007. WNNA 2007.
[Distefano:2007xb]
[9-206]
Neutrinos from Cosmic Ray Accelerators in the Cygnus Region of the Galaxy, Francis Halzen, Aongus O'Murchada, Phys. Rev. D76 (2007) 123003, arXiv:0705.1723. XII International Workshop on Neutrino Telescopes, Venice, Italy, March 6-9, 2007.
[Halzen:2007ah]
[9-207]
Non-photonic emission from gamma-ray bursts, E. Waxman, AIP Conf. Proc. 836 (2006) 589, arXiv:astro-ph/0703434. Sixteenth Maryland Astrophysics Conference.
[Waxman:2006knz]
[9-208]
What is the optimum stellar rotation rate for a collapsar?, William H. Lee, Nuovo Cim. 121B (2006) 1157-1161, arXiv:astro-ph/0703032. SWIFT and GRBs: Unveiling the relativistic universe.
[Lee:2006wrq]
[9-209]
Galactic Sources of High Energy Neutrinos, Felix Aharonian, Nucl. Phys. Proc. Suppl. 221 (2011) 5-12, arXiv:astro-ph/0702680. Neutrino 06, Santa Fe, New Mexico, June 13-19, 2006.
[Aharonian:2007bn]
[9-210]
Astrophysical Origins of the Highest Energy Cosmic Rays, Susumu Inoue, arXiv:astro-ph/0701835, 2007. International Workshop on Energy Budget in the High Energy Universe, Kashiwa, Japan, 2006.
[Inoue:2007ib]
[9-211]
Discovery and Upper Limits in Search for Exotic Physics with Neutrino Telescopes, Jan Conrad, arXiv:astro-ph/0612082, 2006. Workshop on Exotic Physics with Neutrino Telescope, Uppsala, Sweden, Sept. 2006.
[Conrad:2006ft]
[9-212]
Inferring neutrino cross sections above 10^19 eV, Sergio Palomares-Ruiz, arXiv:hep-ph/0612051, 2006. Workshop on Exotic Physics with Neutrino Telescopes, Uppsala, Sweden, 20-22 Sep 2006.
[Palomares-Ruiz:2006nsp]
[9-213]
Exotic Neutrino Interactions in Cosmic Rays, Markus Ahlers, arXiv:astro-ph/0611890, 2006. EPNT, Uppsala.
[Ahlers:2006kn]
[9-214]
The EHE Neutrino Search Capability of the IceCube Observatory, Aya Ishihara (IceCube), Nucl. Phys. Proc. Suppl. 165 (2007) 200-206, arXiv:astro-ph/0611794. Cosmic Ray International Seminar (CRIS 2006) on UHECR: Status and Perspectives.
[Ishihara:2006vx]
[9-215]
Best-Bet Astrophysical Neutrino Sources, Charles D. Dermer, J. Phys. Conf. Ser. 60 (2007) 8-13, arXiv:astro-ph/0611191. TeV-Particle Astrophysics II, Madison, WI, 28-31 Aug, 2006.
[Dermer:2006xt]
[9-216]
Cosmic Neutrino Bound on the Dark Matter Annihilation Rate in the Late Universe, John F. Beacom, J. Phys. Conf. Ser. 60 (2007) 183-186, arXiv:astro-ph/0610922. TeV Particle Astrophysics II Workshop, Madison, Wisconsin, 28-31 Aug 2006.
[Beacom:2006yr]
[9-217]
UHE Cosmic Rays and Neutrinos Showering on Planet Edges, D. Fargion, P. Oliva, O. Lanciano, Nucl. Phys. Proc. Suppl. 165 (2007) 207-214, arXiv:astro-ph/0610725. CRIS 2006.
[Fargion:2006sp]
[9-218]
Simulation of up- and down-going neutrino induced showers at the site of the Pierre Auger Observatory, Dariusz Gora, Markus Roth, Alessio Tamburro, Nucl. Phys. B, Proc. Suppl. 175-176 (2008) 468-471, arXiv:astro-ph/0610504. European Cosmic Ray Symposium, Lisbon, September 2006.
[Gora:2006wc]
[9-219]
Event rates vs. cross sections at neutrino telescopes, Shahid Hussain, J. Phys. Conf. Ser. 60 (2007) 207-210, arXiv:hep-ph/0610417. 'TeV Particle Astrophysics II', Madison, Wisconsin.
[Hussain:2006ay]
[9-220]
Propagation of ultra-high energy neutrinos in the cosmic neutrino background, V. Van Elewyck, Nucl. Phys. Proc. Suppl. 165 (2007) 223-230, arXiv:astro-ph/0610226. CRIS 2006, Catania, Italy, May 29 - June 2, 2006.
[VanElewyck:2006zz]
[9-221]
Upper Limits to Fluxes of Neutrinos and Gamma-Rays from Starburst Galaxies, F. W. Stecker, J. Phys. Conf. Ser. 60 (2007) 215-218, arXiv:astro-ph/0610208. TeV2, Madison, WI.
[Stecker:2006vs]
[9-222]
High-Energy Cosmology: gamma rays and neutrinos from beyond the galaxy, Charles D. Dermer, Astrophys. Space Sci. 309 (2007) 127-137, arXiv:astro-ph/0610195. The Multi-Messenger Approach to High-Energy Gamma-ray Sources, Barcelona, Spain (2006).
[Dermer:2006vd]
[9-223]
Simulation of Cosmic Ray neutrinos Interactions in Water, T. Sloan, J. Phys. Conf. Ser. 81 (2007) 012001, arXiv:astro-ph/0609617. ARENA Workshop 2006.
[Sloan:2006vp]
[9-224]
Production of high-energy mu neutrinos from young neutron stars, G. F. Burgio, B. Link, Nucl. Phys. Proc. Suppl. 165 (2007) 231-236, arXiv:astro-ph/0609561. CRIS 2006.
[Burgio:2006nu]
[9-225]
Optimal Radio Window for the Detection of Ultra-High-Energy Cosmic Rays and Neutrinos off the Moon, O. Scholten et al., Astropart. Phys. 26 (2006) 219-229, arXiv:astro-ph/0609179. ARENA 2006.
[Scholten:2006ja]
[9-226]
Air-Showers in Space and Z-Showers in Universe for Neutrino Astronomy and Spectroscopy, D. Fargion, Frascati Phys. Ser. 42 (2006) 119-137, arXiv:astro-ph/0607526. La Thuile, 6 March 2006.
[Fargion:2006tf]
[9-227]
Ultra high energy neutrinos: the key to ultra high energy cosmic rays, Todor Stanev, arXiv:astro-ph/0607515, 2006. Vulcano06.
[Stanev:2006su]
[9-228]
Anti-neutrino imprint in solar neutrino flare, Daniele Fargion, Phys. Scripta T127 (2006) 1-3, arXiv:astro-ph/0606226. 2nd Scandanavian Neutrino Workshop (SNOW 2006), Stockholm, Sweden, 2-6 May 2006.
[Fargion:2006ri]
[9-229]
Cosmic Neutrinos and the Energy Budget of Galactic and Extragalactic Cosmic Rays, Francis Halzen, arXiv:astro-ph/0604441, 2006. International Workshop on Energy Budget in the High Energy Universe, Kashiwa, Japan, February 2006.
[Halzen:2006ku]
[9-230]
Neutrino Astronomy and Cosmic Rays Spectroscopy at Horizons, D. Fargion, arXiv:astro-ph/0604430, 2006. NO-VE, Venice, 09-02-2006.
[Fargion:2006di]
[9-231]
Strongly Interacting Neutrinos as the Highest Energy Cosmic Rays: A Quantitative Analysis, Markus Ahlers, Andreas Ringwald, Huitzu Tu, PoS JHW2005 (2006) 014, arXiv:astro-ph/0512439. 29th Johns Hopkins Workshop on Current Problems in Particle Theory, 1-3 August 2005, Budapest, Hungary.
[Ahlers:2005ha]
[9-232]
Interaction of ultra-energetic cosmic neutrinos with a thermal gas of relic neutrinos, J. C. D'Olivo, L. Nellen, S. Sahu, Veronique Van Elewyck, PoS HEP2005 (2006) 014, arXiv:astro-ph/0512316. HEP2005 International Europhysics Conference on High Energy Physics, Lisbon (Portugal), 21 - 27/07/2005.
[VanElewyck:2005pe]
[9-233]
Strongly Interacting Astrophysical Neutrinos, Markus Ahlers, Prog. Part. Nucl. Phys. 57 (2006) 353, arXiv:astro-ph/0511483. Erice School/Workshop on Neutrinos, 2005.
[Ahlers:2005pm]
[9-234]
Thermal neutrinos from hot GRB fireballs, Hylke B.J. Koers, Ralph A.M.J. Wijers, PoS HEP2005 (2006) 016, arXiv:astro-ph/0511071. International Europhysics Conference on High Energy Physics 2005.
[Koers:2005zc]
[9-235]
Probing Exotic Physics With Cosmic Neutrinos, Dan Hooper, Czech. J. Phys. 56 (2006) A337-A347, arXiv:hep-ph/0510097. From Colliders To Cosmic Rays, Prague, Czech Republic, September 7-13, 2005.
[Hooper:2005ea]
[9-236]
Ultrahigh Energy Tau Neutrinos, J. Jones, I. Mocioiu, M.H. Reno, I Sarcevic, Int. J. Mod. Phys. A20 (2005) 4656, arXiv:hep-ph/0508003. '8th Workshop on Non-Perturbative Quantum Chromodynamics", June 7-11, 2004, Paris, France.
[Jones:2005da]
[9-237]
High Energy Neutrino Interactions, I. Sarcevic, arXiv:hep-ph/0508002, 2005. 'Recontres de Moriond, Very High Energy Phenomena in the Universe', March 12-19, 2005, La Thuile, Italy.
[Sarcevic:2005cz]
[9-238]
Neutrino Cooled disk in GRB central engine, A. Janiuk, Y. Yuan, R. Perna, T. DiMatteo, Aip Conf. Proc. 801 (2006) 119, arXiv:astro-ph/0507205. Astrophysical Sources of High Energy Particles and Radiation, Torun, Poland, 20-24 June 2005.
[Janiuk:2005ap]
[9-239]
High-Energy Cosmic Rays and Neutrinos from Gamma-Ray Bursts, C. Dermer, Nuovo Cim. 28C (2005) 789, arXiv:astro-ph/0506385. 4th Workshop Gamma-Ray Bursts in the Afterglow Era, Rome,18-22 October 2004.
[Dermer:2005aq]
[9-240]
On the detection of relativistic magnetic monopoles by deep underwater and underice neutrino telescopes, B.K. Lubsandorzhiev, Nucl. Instrum. Meth. A553 (2005) 308, arXiv:astro-ph/0506277. 5th International Workshop RICH2004.
[Lubsandorzhiev:2005bs]
[9-241]
Neutrino Astronomy beyond and beneath the Horizons, D. Fargion, arXiv:astro-ph/0505459, 2005. La Thuile -Moriond Conference 2005.
[Fargion:2005ga]
[9-242]
On the Prospects of Tau Neutrino Astronomy in Gev Energies and Beyond, H. Athar, Fei-Fan Lee, Guey-Lin Lin, arXiv:hep-ph/0505248, 2005. Moriond Conference: Very High Energy Phenomena in the Universe, La Thulie, Italy, March 12-19, 2005.
[Lin:2005qjx]
[9-243]
Shower spectrum and detection of tau from Earth-skimming neutrinos, Ming-Huey A. Huang, Nucl. Phys.B (2004), arXiv:astro-ph/0412642. Neutrino-2004.
[Huang:2004bq]
[9-244]
Blazing Cerenkov Flashes at the Horizons by Cosmic Rays and Neutrinos Induced Air-Showers, D. Fargion, Frascati Phys.Ser. 37 (2004) 419-428, arXiv:astro-ph/0412582. International Conference on Frontier Science, Phys. and Astrophysics in Space, June 2004.
[Fargion:2004qq]
[9-245]
Cascades from $\nu_e$ above $10^{20}$ eV, Spencer R. Klein, arXiv:astro-ph/0412546, 2004. 'QCD at Cosmic Energies,' Erice, Italy, Sept. 29-Oct. 5, 2004.
[Klein:2004er]
[9-246]
Neutrino Properties from High Energy Astrophysical Neutrinos, Sandip Pakvasa, Nucl. Phys. Proc. Suppl. 137 (2004) 295, arXiv:hep-ph/0412371. PASCOS'04 and Nath-Fest, august 16-22, 2004, Boston.
[Pakvasa:2004yz]
[9-247]
Ultra High Energy $\nu_\tau$ detection at Pierre Auger Observatory, G. Miele, L. Perrone, O. Pisanti, Nucl. Phys. Proc. Suppl. 145 (2005) 347, arXiv:astro-ph/0412321. NOW 2004.
[Miele:2004ze]
[9-248]
Planet-sized Detectors for Ultra-high Energy Neutrinos and Cosmic Rays, Peter W. Gorham, arXiv:astro-ph/0411510, 2004. NASA Advanced Planning Office's Capability Roadmap Public Workshop, Nov. 30, 2004.
[Gorham:2004sf]
[9-249]
High energy neutrino cross sections, M. H. Reno, Nucl. Phys. Proc. Suppl. 143 (2005) 407, arXiv:hep-ph/0410109. 21st International Conference on Neutrino Physics and Astrophysics (Neutrino 2004), Paris, France, 14-19 June 2004.
[Reno:2004cx]
[9-250]
Muon and Gamma Bundles tracing Up-going Tau Neutrino Astronomy, D. Fargion, M. De Santis, P.G. De Sanctis Lucentini, M. Grossi, Nucl. Phys. Proc. Suppl. 136 (2004) 119, arXiv:astro-ph/0409460. Catania GZK meeting.
[Fargion:2004vr]
[9-251]
Neutrino properties from high energy astrophysical neutrinos, Sandip Pakvasa, Mod. Phys. Lett. A19 (2004) 1163, arXiv:hep-ph/0405179. Fujihara Seminar 'Neutrino Mass and See-Saw Mechanism', KEK 23-25 February 2004.
[Pakvasa:2004hu]
[9-252]
Constraining low scale gravity with ultrahigh energy neutrinos, Shahid Hussain, Douglas W. McKay, arXiv:hep-ph/0404257, 2004. Lake Louise Winter Institute 2004.
[Hussain:2004vi]
[9-253]
Simulation of the radio signal from ultrahigh energy neutrino-initiated showers, Shahid Hussain, Douglas W. McKay, arXiv:hep-ph/0404256, 2004. Lake Louise Winter Institute 2004.
[Hussain:2004vh]
[9-254]
Cooling delay for protoquark stars due to neutrino trapping, J. Berdermann, D. Blaschke, H. Grigorian, arXiv:astro-ph/0404079, 2004. KIAS-APCTP International Symposium in Astro-Hadron Physics, Seoul, Korea, November 11-14, 2003.
[Berdermann:2004da]
[9-255]
Neutrinos and gamma-rays of hadronic origin from AGN jets, A. Atoyan, C. D. Dermer, New Astron. Rev. 48 (2004) 381, arXiv:astro-ph/0402646. 2nd VERITAS Symposium on TeV Astrophysics.
[Atoyan:2004pb]
[9-256]
Atmospheric and galactic tau neutrinos, H. Athar, Mod. Phys. Lett. A19 (2004) 1171, arXiv:hep-ph/0401242. CosPA 2003, 13-15 Nov, 2003, Taipei, Taiwan.
[Athar:2004pb]
[9-257]
Neutrino induced showering from the earth, Daniele Fargion, PoS AHEP2003 (2003) AHEP2003/042, arXiv:astro-ph/0312627. International Workshop on Astroparticle and High-Energy Physics (AHEP-2003), Valencia, Spain, 14-18 Oct 2003.
[Fargion:2003ac]
[9-258]
Cosmic Rays and High-Energy Neutrinos from Gamma-Ray Bursts, C.D. Dermer, A. Atoyan, New Astron. Rev. 48 (2004) 453, arXiv:astro-ph/0312591. 2nd VERITAS Symposium on TeV Astrophysics.
[Dermer:2003rt]
[9-259]
Neutrinos and Gamma Rays from Photomeson Processes in Gamma Ray Bursts, A. Atoyan, C. D. Dermer, Aip Conf. Proc. 727 (2004) 170, arXiv:astro-ph/0312249. 2003 Santa Fe Conference on GRBs.
[Atoyan:2003sk]
[9-260]
High Energy Neutrino Generator for Neutrino Telescopes, Marek Kowalski, Askhat Gazizov, arXiv:astro-ph/0312202, 2003. ICRC2003.
[Kowalski:2003hj]
[9-261]
The high-energy galactic tau neutrino flux and its atmospheric background, H. Athar, K. Cheung, G.-L. Lin, J.-J. Tseng, Eur. Phys. J. C33 (2004) S959, arXiv:astro-ph/0311586. EPS03, Aachen, Germany.
[Athar:2003nc]
[9-262]
Astrophysical tau neutrinos and their detection by large neutrino telescopes, E. V. Bugaev, T. Montaruli, I. A. Sokalski, Phys. Atom. Nucl. 67 (2004) 1177, arXiv:astro-ph/0311086. NANP'03 conference, June 2003.
[Bugaev:2003ed]
[9-263]
Status of the ANTARES Project, U. F. Katz et al. (ANTARES), Eur. Phys. J. C33 (2004) S971, arXiv:astro-ph/0310736. HEP2003 Europhysics Conf., Aachen, Germany, 17-23 July 2003.
[ANTARES:2003bhh]
[9-264]
Strongly interacting neutrinos as the highest energy cosmic rays, Z. Fodor, S.D. Katz, A. Ringwald, H. Tu, arXiv:hep-ph/0310112, 2003. Beyond the Desert '03, Castle Ringberg, 9-14 June, 2003.
[Fodor:2003fm]
[9-265]
High energy cosmic-rays: puzzles, models, and giga-ton neutrino telescopes, E. Waxman, Pramana 62 (2004) 483, arXiv:astro-ph/0310079. PASCOS 03 (Mumbai, India).
[Waxman:2003uj]
[9-266]
High energy tau neutrinos: production, propagation and prospects of observations, H. Athar, Jie-June Tseng, Guey-Lin Lin, arXiv:hep-ph/0308270, 2003. 28th International Cosmic Ray Conference (ICRC 2003), Tsukuba, Japan, 31 July-7 Aug, 2003.
[Athar:2003mt]
[9-267]
The Rise of High Energy Neutrino Astronomy at Horizon, Daniele Fargion, J. Phys. Soc. Jap. 77 (2008) 1-8, arXiv:astro-ph/0307485. 3rd International Workshop for Comprehensive Study of High-Energy Universe: Toward Very High Energy Particle Astronomy (VHEPA-3), Tokyo, Japan, 20-22 Mar 2003.
[Fargion:2003qv]
[9-268]
Neutrino Decays and Neutrino Telescopes, S. Pakvasa, arXiv:hep-ph/0305317, 2003. Tenth International Conference on Neutrino Telescopes, Mar 11-14, 2003; Venice, Italy.
[Pakvasa:2003db]
[9-269]
High energy photons, neutrinos and gravitational waves from gamma-ray bursts, P. Meszaros, S. Kobayashi, S. Razzaque, B. Zhang, eConf C0208122 (2012) 30, arXiv:astro-ph/0305066. Niels Bohr Summer Institute, 'Beaming and Jets in Gamma Ray Bursts'.
[Capozziello:2012fp]
[9-270]
Ultrahigh Energy Neutrinos, Sharada Iyer Dutta, Mary Hall Reno, Ina Sarcevic, Int. J. Mod. Phys. A18 (2003) 4085, arXiv:hep-ph/0302178. Neutrinos and Implications for Physics Beyond the Standard Model, Stony Brook, NY, October 11-13, 2002.
[Dutta:2003fv]
[9-271]
Constraining the dark energy with Ly-alpha forest, Uros Seljak, Rachel Mandelbaum, Patrick McDonald, arXiv:astro-ph/0212343, 2002. XVIII'th IAP Colloquium `On the Nature of Dark Energy', IAP Paris.
[Seljak:2002kf]
[9-272]
Highest Energy Neutrino Showers in EUSO, D.Fargion, arXiv:astro-ph/0212342, 2002. 18November EUSO -Rome Meeting.
[Fargion:2002ke]
[9-273]
Interactions of ultrahigh-energy neutrinos, Alexander Kusenko, arXiv:hep-ph/0212232, 2002. XXXII International Symposium on Multiparticle Dynamics, September 7-13, 2002, Ukraine.
[Kusenko:2002ti]
[9-274]
Astrophysical sources of high energy neutrinos, E. Waxman, Nucl. Phys. Proc. Suppl. 118 (2003) 353, arXiv:astro-ph/0211358. Neutrino 2002 (Munich).
[Waxman:2002wp]
[9-275]
Mini black holes from ultrahigh energy cosmic neutrinos, Huitzu Tu, arXiv:hep-ph/0211159, 2002. 10th International Conference on Supersymmetry and Unification of Fundamental Interactions (SUSY02), Hamburg, Germany, 17-23 June 2002.
[Tu:2002rt]
[9-276]
High energy neutrino and tau airshowers in standard and new physics, D. Fargion, arXiv:hep-ph/0211153, 2002. Beyond the Standard Model, Oulu,2-7 June 2002.
[Fargion:2002rm]
[9-277]
High Energy Astrophysical Tau Neutrinos: The Expectations, H. Athar, Nucl. Phys. Proc. Suppl. 122C (2003) 305, arXiv:hep-ph/0210244. 12th International Symposium on Very High Energy Cosmic Ray Interactions (XII ISVHERCI), 15-20 July, 2002, Geneva, Switzerland.
[Athar:2002rr]
[9-278]
TeV Neutrinos from Galactic Microquasar Jets, E. Waxman D. Guetta, C. Distefano, A. Levinson, arXiv:astro-ph/0207359, 2002. 4th Microquasar Workshop, 2002.
[Guetta:2002hk]
[9-279]
High-Energy Neutrinos from Cosmic Rays, F. Halzen, arXiv:astro-ph/0206268, 2002.
[Halzen:2002hc]
[9-280]
Hard Pomeron Enhanced Cascade Production and Flux Shadowing in High-Energy Neutrino Astrophysics, A. Z. Gazizov, S. I. Yanush, arXiv:astro-ph/0201528, 2002. Sixth International School-Seminar 'Actual Problems of Particle Physics', (Gomel, Belarus, August 7-16, 2001).
[Gazizov:2002ci]

10 - Phenomenology - Neutrino Oscillations

[10-1]
Subgrid modeling of neutrino oscillations in astrophysics, Lucas Johns, arXiv:2401.15247, 2024.
[Johns:2024dbe]
[10-2]
Flavor Matters, but Matter Flavors: Matter Effects on Flavor Composition of Astrophysical Neutrinos, P. S. Bhupal Dev, Sudip Jana, Yago Porto, arXiv:2312.17315, 2023.
[Dev:2023znd]
[10-3]
Neutrino fast flavor oscillations with moments: linear stability analysis and application to neutron star mergers, Julien Froustey, Sherwood Richers, Evan Grohs, Samuel Flynn, Francois Foucart, James P. Kneller, Gail C. McLaughlin, Phys.Rev.D 109 (2024) 043046, arXiv:2311.11968.
[Froustey:2023skf]
[10-4]
Astrophysical neutrino oscillations after pulsar timing array analyses, Gaetano Lambiase, Leonardo Mastrototaro, Luca Visinelli, Phys.Rev.D 108 (2023) 123028, arXiv:2306.16977.
[Lambiase:2023pxd]
[10-5]
Thermodynamics of oscillating neutrinos, Lucas Johns, arXiv:2306.14982, 2023.
[Johns:2023jjt]
[10-6]
Applications of Machine Learning to Detecting Fast Neutrino Flavor Instabilities in Core-Collapse Supernova and Neutron Star Merger Models, Sajad Abbar, Phys.Rev.D 107 (2023) 103006, arXiv:2303.05560.
[Abbar:2023kta]
[10-7]
Cosmic neutrino flux and spin flavor oscillations in intergalactic medium, Ashutosh Kumar Alok, Neetu Raj Singh Chundawat, Arindam Mandal, Phys.Lett.B 839 (2023) 137791, arXiv:2207.13034.
[Alok:2022pdn]
[10-8]
Oscillations of High-Energy Cosmic Neutrinos in the Copious MeV Neutrino Background, Sajad Abbar, Jose Alonso Carpio, Kohta Murase, Phys.Rev.D 109 (2024) 023025, arXiv:2205.10384.
[Abbar:2022hgh]
[10-9]
Matter effects on flavor transitions of high-energy astrophysical neutrinos based on different decoherence schemes, Ding-Hui Xu, Shu-Jun Rong, arXiv:2205.03164, 2022.
[Xu:2022wzh]
[10-10]
Distinguishing Dark Energy Models with Neutrino Oscillations, Ali Rida Khalifeh, Raul Jimenez, Phys.Dark Univ. 34 (2021) 100897, arXiv:2105.07973.
[Khalifeh:2021ree]
[10-11]
Fast Flavor Oscillations of Astrophysical Neutrinos with $1,\,2,\,\ldots,\,\infty$ Crossings, Soumya Bhattacharyya, Basudeb Dasgupta, JCAP 07 (2021) 023, arXiv:2101.01226.
[Bhattacharyya:2021klg]
[10-12]
Some Recent Results on Neutrino Oscillations in Hypercritical Accretion, Juan David Uribe Suarez, Jorge Armando Rueda, arXiv:2012.14046, 2020.
[Suarez:2019kxs]
[10-13]
Inference offers a metric to constrain dynamical models of neutrino flavor transformation, Eve Armstrong, Amol V. Patwardhan, Ermal Rrapaj, Sina Fallah Ardizi, George M. Fuller, Phys.Rev. D102 (2020) 043013, arXiv:2006.07725.
[Armstrong:2020gxk]
[10-14]
Neutrino oscillations in a neutrino-dominated accretion disk around a Kerr BH, Juan David Uribe Suarez, Jorge Armando Rueda Hernandez, Universe 7 (2021) 7, arXiv:1909.01841.
[Uribe:2019cpq]
[10-15]
Nonlinear flavor development of a two-dimensional neutrino gas, Joshua D. Martin, Sajad Abbar, Huaiyu Duan, Phys.Rev. D100 (2019) 023016, arXiv:1904.08877.
[Martin:2019kgi]
[10-16]
Neutrino Oscillations and Decoherence in Short-GRB Progenitors, A. V. Penacchioni, O. Civitarese, Astrophys. J. 872 (2019) 73, arXiv:1904.07202.
[Penacchioni:2019kix]
[10-17]
Neutrino Quantum Kinetics in Compact Objects, Sherwood A. Richers, Gail C. McLaughlin, James P. Kneller, Alexey Vlasenko, Phys.Rev. D99 (2019) 123014, arXiv:1903.00022.
[Richers:2019grc]
[10-18]
Spin-flavor oscillations of ultrahigh-energy cosmic neutrinos in interstellar space: The role of neutrino magnetic moments, Podist Kurashvili, Konstantin A. Kouzakov, Levan Chotorlishvili, Alexander I. Studenikin, Phys.Rev. D96 (2017) 103017, arXiv:1711.04303.
[Kurashvili:2017zab]
[10-19]
Strange mechanics of the neutrino flavor pendulum, Lucas Johns, George M. Fuller, Phys.Rev. D97 (2018) 023020, arXiv:1709.00518.
[Johns:2017oky]
[10-20]
Decoherence effect in neutrinos produced in micro-quasar jets, M. E. Mosquera, O. Civitarese, JCAP 1804 (2018) 036, arXiv:1708.09714.
[Mosquera:2017vir]
[10-21]
Neutrino Flavor Evolution in Neutron Star Mergers, James Y. Tian, Amol V. Patwardhan, George M. Fuller, Phys.Rev. D96 (2017) 043001, arXiv:1703.03039.
[Tian:2017xbr]
[10-22]
Fast neutrino conversions: Ubiquitous in compact binary merger remnants, Meng-Ru Wu, Irene Tamborra, Phys.Rev. D95 (2017) 103007, arXiv:1701.06580.
[Wu:2017qpc]
[10-23]
Coupling between Ion-Acoustic Waves and Neutrino Oscillations, Fernando Haas, Kellen Alves Pascoal, Jose Tito Mendonca, Phys. Rev. E95 (2017) 013207, arXiv:1701.01681.
[Haas:2017qtj]
[10-24]
Neutrino Flavor Evolution in Binary Neutron Star Merger Remnants, Maik Frensel, Meng-Ru Wu, Cristina Volpe, Albino Perego, Phys. Rev. D95 (2017) 023011, arXiv:1607.05938.
[Frensel:2016fge]
[10-25]
Matter Neutrino Resonance Transitions above a Neutron Star Merger Remnant, Yong-Lin Zhu, Albino Perego, Gail C. McLaughlin, Phys. Rev. D94 (2016) 105006, arXiv:1607.04671.
[Zhu:2016mwa]
[10-26]
Non-standard neutrino interactions in the Earth and the flavor of astrophysical neutrinos, M.C. Gonzalez-Garcia, Michele Maltoni, Ivan Martinez-Soler, Ningqiang Song, Astropart.Phys. 84 (2016) 15-22, arXiv:1605.08055.
[Gonzalez-Garcia:2016gpq]
[10-27]
Symmetric and Standard Matter-Neutrino Resonances Above Merging Compact Objects, A. Malkus, G. C. McLaughlin, R. Surman, Phys. Rev. D93 (2016) 045021, arXiv:1507.00946.
[Malkus:2015mda]
[10-28]
New parametrization of cosmic neutrino oscillations, Andrea Palladino, Francesco Vissani, Eur. Phys. J. C75 (2015) 433, arXiv:1504.05238.
[Palladino:2015vna]
[10-29]
Neutrino Flavor Ratios Modified by Cosmic Ray Re-acceleration, Norita Kawanaka, Kunihito Ioka, Phys. Rev. D92 (2015) 085047, arXiv:1504.03417.
[Kawanaka:2015qza]
[10-30]
Resonant oscillations of GeV - TeV neutrinos in internal shocks from gamma-ray burst jets inside the stars, Nissim Fraija, Mon.Not.Roy.Astron.Soc. 450 (2015) 2784, arXiv:1504.00328.
[Fraija:2015gaa]
[10-31]
Matter-Neutrino Resonance Above Merging Compact Objects, A. Malkus, A. Friedland, G. C. McGlaughlin, arXiv:1403.5797, 2014.
[Malkus:2014iqa]
[10-32]
Neutrino Oscillation from Hidden GRB Jets, Nissim Fraija, Enrique Moreno Mendez, arXiv:1401.4615, 2014.
[Fraija:2014kta]
[10-33]
GeV - PeV Neutrino Production and Oscillation in hidden jets from GRBs, Nissim Fraija, Mon.Not.Roy.Astron.Soc. 437 (2014) 2187-2200, arXiv:1310.7061.
[Fraija:2013cha]
[10-34]
Probing Neutrino Flavor Transition Mechanism with Ultra High Energy Astrophysical Neutrinos, Kwang-Chang Lai, Guey-Lin Lin, Tsung-Che Liu, Phys. Rev. D89 (2014) 033002, arXiv:1308.1828.
[Lai:2013isa]
[10-35]
Sterile neutrinos, dark matter, and resonant effects in ultra high energy regimes, O. G. Miranda, C. A. Moura, A. Parada, Phys.Lett. B744 (2015) 55, arXiv:1308.1408.
[Miranda:2013wla]
[10-36]
Oscillation of high energy neutrinos in Choked GRBs, Andres Felipe Osorio Oliveros, Sarira Sahu, Juan Carlos Sanabria, Eur.Phys.J. 73 (2013) 2574, arXiv:1304.4906.
[OsorioOliveros:2013azu]
[10-37]
Diffuse supernova neutrinos: oscillation effects, stellar cooling and progenitor mass dependence, Cecilia Lunardini, Irene Tamborra, JCAP 1207 (2012) 012, arXiv:1205.6292.
[Lunardini:2012ne]
[10-38]
Determinations of flavor ratios and flavor transitions of astrophysical neutrinos, G.-L. Lin, T. C. Liu, K.-C. Lai, M. A. Huang, PoS ICHEP2010 (2010) 456, arXiv:1103.3774. 4 pages; presented at ICHEP 2010, July 22-28, 2010, Paris, France.
[Lin:2010goc]
[10-39]
Neutrino Oscillations form Cosmic Sources: a Nu Window to Cosmology, D.J. Wagner, T.J. Weiler, Mod. Phys. Lett. A12 (1997) 2497, arXiv:1101.5677.
[Wagner:1997vn]
[10-40]
Effect of Resonant Neutrino Oscillation on TeV Neutrino Flavor Ratio from Choked GRBs, Sarira Sahu, Bing Zhang, Res. Astron. Astrophys. 10 (2010) 943-949, arXiv:1007.4582.
[Sahu:2010ap]
[10-41]
Atmospheric neutrino oscillations and tau neutrinos in ice, Gerardo Giordano, Olga Mena, Irina Mocioiu, Phys. Rev. D81 (2010) 113008, arXiv:1004.3519.
[Giordano:2010pr]
[10-42]
Flavor Transition Mechanisms of Propagating Astrophysical Neutrinos -a Model Independent Parametrization, Kwang-Chang Lai, Guey-Lin Lin, T. C. Liu, Phys. Rev. D82 (2010) 103003, arXiv:1004.1583.
[Lai:2010tj]
[10-43]
On the Oscillation of Neutrinos Produced by the Annihilation of Dark Matter inside the Sun, Arman Esmaili, Yasaman Farzan, Phys. Rev. D81 (2010) 113010, arXiv:0912.4033.
[Esmaili:2009ks]
[10-44]
Flavor conversion of cosmic neutrinos from hidden jets, Soebur Razzaque, A. Yu. Smirnov, JHEP 03 (2010) 031, arXiv:0912.4028.
[Razzaque:2009kq]
[10-45]
An Analysis of Cosmic Neutrinos: Flavor Composition at Source and Neutrino Mixing Parameters, Arman Esmaili, Yasaman Farzan, Nucl. Phys. B821 (2009) 197-214, arXiv:0905.0259.
[Esmaili:2009dz]
[10-46]
Neutrino Oscillation in Magnetized Gamma-Ray Burst Fireball, Sarira Sahu, Nissim Fraija, Yong-Yeon Keum, Phys. Rev. D80 (2009) 033009, arXiv:0904.0138.
[Sahu:2009iy]
[10-47]
Signatures of sterile neutrino mixing in high-energy cosmic neutrino flux, Andrea Donini, Osamu Yasuda, arXiv:0806.3029, 2008.
[Donini:2008xn]
[10-48]
Neutrino mass hierarchy extraction using atmospheric neutrinos in ice, Olga Mena, Irina Mocioiu, Soebur Razzaque, Phys. Rev. D78 (2008) 093003, arXiv:0803.3044.
[Mena:2008rh]
[10-49]
Testing neutrino oscillations plus decay with neutrino telescopes, Michele Maltoni, Walter Winter, JHEP 07 (2008) 064, arXiv:0803.2050.
[Maltoni:2008jr]
[10-50]
Flavor Ratios of Astrophysical Neutrinos: Implications for Precision Measurements, Sandip Pakvasa, Werner Rodejohann, Thomas J. Weiler, JHEP 02 (2008) 005, arXiv:0711.4517.
[Pakvasa:2007dc]
[10-51]
Probing CP violation in neutrino oscillations with neutrino telescopes, Kfir Blum, Yosef Nir, Eli Waxman, arXiv:0706.2070, 2007.
[Blum:2007ie]
[10-52]
Higher order correction to the neutrino self-energy in a medium and its astrophysical applications, Alberto Bravo Garcia, Sarira Sahu, Mod.Phys.Lett. A22 (2007) 213-225, arXiv:hep-ph/0702280.
[BravoGarcia:2007aqu]
[10-53]
Oscillation effects on high-energy neutrino fluxes from astrophysical hidden sources, Olga Mena, Irina Mocioiu, Soebur Razzaque, Phys. Rev. D75 (2007) 063003, arXiv:astro-ph/0612325.
[Mena:2006eq]
[10-54]
Neutrino Mixing and Neutrino Telescopes, Werner Rodejohann, JCAP 0701 (2007) 029, arXiv:hep-ph/0612047.
[Rodejohann:2006qq]
[10-55]
Oscillations of solar atmosphere neutrinos, G.L. Fogli et al., Phys. Rev. D74 (2006) 093004, arXiv:hep-ph/0608321.
[Fogli:2006jk]
[10-56]
How astrophysical neutrino sources could be used for early measurements of neutrino mass hierarchy and leptonic CP phase, Walter Winter, Phys. Rev. D74 (2006) 033015, arXiv:hep-ph/0604191.
[Winter:2006ce]
[10-57]
Probing the 2-3 leptonic mixing at high-energy neutrino telescopes, Pasquale D. Serpico, Phys. Rev. D73 (2006) 047301, arXiv:hep-ph/0511313.
[Serpico:2005bs]
[10-58]
Oscillations of high energy neutrinos in matter: Precise formalism and parametric resonance, E. Kh. Akhmedov, M. Maltoni, A. Yu. Smirnov, Phys. Rev. Lett. 95 (2005) 211801, arXiv:hep-ph/0506064.
[Akhmedov:2005yj]
[10-59]
The intrinsic and oscillated astrophysical neutrino flavor ratios, H. Athar, C. S. Kim, Jake Lee, Mod. Phys. Lett. A21 (2006) 1049, arXiv:hep-ph/0505017.
[Athar:2005wg]
[10-60]
Can there be neutrino oscillation in Gamma-Ray Bursts fireball ?, Sarira Sahu, J. C. D'Olivo, Phys. Rev. D71 (2005) 047303, arXiv:hep-ph/0502043.
[Sahu:2005zh]
[10-61]
Probing running neutrino mixing angles with ultrahigh energy neutrino telescopes, Pijushpani Bhattacharjee, Nayantara Gupta, Phys. Rev. Lett. (2005), arXiv:hep-ph/0501191.
[Bhattacharjee:2005nh]
[10-62]
Expected neutrino signal from supernova remnant RX J1713.7-3946 and flavor oscillations, Maria Laura Costantini, Francesco Vissani, Astropart. Phys. 23 (2005) 477, arXiv:astro-ph/0411761.
[Costantini:2004ap]
[10-63]
Tau neutrinos underground: Signals of $\nu_{\mu}\to\nu_{\tau}$ oscillations with extragalactic neutrinos, Sharada Iyer Dutta, Mary Hall Reno, Ina Sarcevic, Phys. Rev. D62 (2000) 123001, arXiv:hep-ph/0005310.
[Dutta:2000jv]

11 - Phenomenology - Neutrino Oscillations - Talks

[11-1]
Neutrino oscillations in the galactic dark matter halo, R. A. Lineros, arXiv:1707.08972, 2017. RICAP 16, 21-24 June 2016 Villa Tuscolana, Frascati, Italy.
[Lineros:2017msj]
[11-2]
Neutrino Oscillation from Magnetized Strange Stars, Nissim Fraija, Enrique Moreno Mendez, arXiv:1401.3787, 2014. Magnetic Fields in the Universe IV (2013).
[Fraija:2014kta]
[11-3]
Neutrino Oscillation as a constraint in the dynamics of Pop III Gamma Ray Bursts, Nissim Fraija, Enrique Moreno Mendez, arXiv:1401.1908, 2014. 7th Huntsville Gamma-Ray Burst Symposium, GRB 2013.
[Fraija:2014gha]
[11-4]
Flavor oscillations of low energy neutrinos in the rotating neutron star, Maxim Dvornikov, Conf.Proc. C090819 (2009) 185-187, arXiv:1001.2690. 14th Lomonosov Conference on Elementary Particle Physics.
[Dvornikov:2009qyz]
[11-5]
Signatures of sterile neutrino oscillations in high-energy cosmic neutrino flux, Osamu Yasuda, Andrea Donini, PoS NUFACT08 (2008) 146. Proceedings, 10th International Workshop on Neutrino factories, super beams and beta beams (NuFact08).
[Yasuda:2008zz]
[11-6]
Neutrino Mixing and Neutrino Telescopes, Werner Rodejohann, JCAP 0701 (2007) 029, arXiv:hep-ph/0612047.
[Rodejohann:2006qq]

12 - Phenomenology - Binary Star Mergers

[12-1]
Three-flavor, Full Momentum Space Neutrino Spin Oscillations in Neutron Star Mergers, Henry Purcell, Sherwood Richers, Amol V. Patwardhan, Francois Foucart, arXiv:2404.08159, 2024.
[Purcell:2024bim]
[12-2]
Symmetry breaking due to multi-angle matter-neutrino resonance in neutron star merger remnants, Ian Padilla-Gay, Shashank Shalgar, Irene Tamborra, arXiv:2403.15532, 2024.
[Padilla-Gay:2024wyo]
[12-3]
High-energy Neutrinos from Outflows Powered by Kicked Remnants of Binary Black Hole Mergers in AGN Accretion Disks, Zhi-Peng Ma, Kai Wang, arXiv:2403.09387, 2024.
[Ma:2024bek]
[12-4]
Collisional flavor pendula and neutrino quantum thermodynamics, Lucas Johns, Santiago Rodriguez, arXiv:2312.10340, 2023.
[Johns:2023xae]
[12-5]
The Guided Moments formalism: a new efficient full-neutrino treatment for astrophysical simulations, Manuel R. Izquierdo, J. Fernando Abalos, Carlos Palenzuela, Phys.Rev.D 109 (2024) 043044, arXiv:2312.09275.
[Izquierdo:2023fub]
[12-6]
Fast Explicit Solutions for Neutrino-Electron Scattering: Explicit Asymptotic Methods, Aaron Lackey-Stewart, Raghav Chari, Adam Cole, Nick Brey, Kyle Gregory, Ryan Crowley, Mike Guidry, Eirik Endeve, arXiv:2312.09090, 2023.
[Lackey-Stewart:2023itn]
[12-7]
Physics-Informed Neural Networks for Predicting the Asymptotic Outcome of Fast Neutrino Flavor Conversions, Sajad Abbar, Meng-Ru Wu, Zewei Xiong, Phys.Rev.D 109 (2024) 043024, arXiv:2311.15656.
[Abbar:2023ltx]
[12-8]
Fast neutrino-flavor swap in high-energy astrophysical environments, Masamichi Zaizen, Hiroki Nagakura, arXiv:2311.13842, 2023.
[Zaizen:2023wht]
[12-9]
Impact of moment-based, energy integrated neutrino transport on microphysics and ejecta in binary neutron star mergers, Pedro Luis Espino, David Radice, Francesco Zappa, Rossella Gamba, Sebastiano Bernuzzi, arXiv:2311.12923, 2023.
[Espino:2023mda]
[12-10]
Neutrino trapping and out-of-equilibrium effects in binary neutron star merger remnants, Pedro Luis Espino, Peter Hammond, David Radice, Sebastiano Bernuzzi, Rossella Gamba, Francesco Zappa, Luis Felipe Longo Micchi, Albino Perego, arXiv:2311.00031, 2023.
[Espino:2023dei]
[12-11]
Detectable MeV Neutrino Signals from Neutron-Star Common-Envelope Systems, Ivan Esteban, John F. Beacom, Joachim Kopp, arXiv:2310.19868, 2023.
[Esteban:2023uvh]
[12-12]
Effects of Annihilation with Low-Energy Neutrinos on High-Energy Neutrinos from Binary Neutron Star Mergers and Rare Core-Collapse Supernovae, Gang Guo, Yong-Zhong Qian, Meng-Ru Wu, Phys.Rev.D 109 (2024) 083020, arXiv:2310.05137.
[Guo:2023sbt]
[12-13]
Far-from-equilibrium bulk-viscous transport coefficients in neutron star mergers, Yumu Yang, Mauricio Hippert, Enrico Speranza, Jorge Noronha, Phys.Rev.C 109 (2024) 015805, arXiv:2309.01864.
[Yang:2023ogo]
[12-14]
Ab-Initio General-Relativistic Neutrino-Radiation Hydrodynamics Simulations of Long-Lived Neutron Star Merger Remnants to Neutrino Cooling Timescales, David Radice, Sebastiano Bernuzzi, Astrophys.J. 959 (2023) 46, arXiv:2306.13709.
[Radice:2023zlw]
[12-15]
Global features of fast neutrino-flavor conversion in binary neutron star merger, Hiroki Nagakura, Phys.Rev.D 108 (2023) 103014, arXiv:2306.10108.
[Nagakura:2023wbf]
[12-16]
R-process beta-decay neutrino flux from binary neutron star merger and collapsar, Yu An, Meng-Ru Wu, Gang Guo, Yue-Lin Sming Tsai, Shih-Jie Huang, Yi-Zhong Fan, Phys.Rev.D 108 (2023) 123038, arXiv:2306.07659.
[An:2023edd]
[12-17]
Isospin Equilibration in Neutron Star Mergers, Mark G. Alford, Alexander Haber, Ziyuan Zhang, arXiv:2306.06180, 2023.
[Alford:2023gxq]
[12-18]
Bimodal black-hole mass distribution and chirp masses of binary black-hole mergers, Fabian R. N. Schneider, Philipp Podsiadlowski, Eva Laplace, Astrophys.J.Lett. 950 (2023) L9, arXiv:2305.02380.
[Schneider:2023mxe]
[12-19]
Jets from neutron-star merger remnants and massive blue kilonovae, Luciano Combi, Daniel M. Siegel, Phys.Rev.Lett. 131 (2023) 231402, arXiv:2303.12284.
[Combi:2023yav]
[12-20]
A pure hadronic model description of the observed neutrino emission from the tidal disruption event AT2019dsg, Prabir Banik, Arunava Bhadra, Eur. Phys. J. C 82 (2022) 517, arXiv:2303.02955.
[Banik:2022nrc]
[12-21]
Thermal Effects in Binary Neutron Star Mergers, Jacob Fields, Aviral Prakash, Matteo Breschi, David Radice, Sebastiano Bernuzzi, Andre da Silva Schneider, Astrophys.J.Lett. 952 (2023) L36, arXiv:2302.11359.
[Fields:2023bhs]
[12-22]
End-to-end kilonova models of neutron-star mergers with delayed black-hole formation, Oliver Just, Vimal Vijayan, Zewei Xiong, Andreas Bauswein, Stephane Goriely, Jerome Guilet, Hans-Thomas Janka, Gabriel Martinez-Pinedo, Astrophys.J.Lett. 951 (2023) L12, arXiv:2302.10928.
[Just:2023wtj]
[12-23]
Mon.Not.Roy.Astron.Soc. 527 (2023) 2240-2250.
[deHaas:2022ytm]
[12-24]
Striped Jets in Post Neutron Star Merger Systems, Emma Kaufman, I. M. Christie, A. Lalakos, A. Tchekhovskoy, D. Giannios, Astrophys.J. 954 (2023) 40, arXiv:2212.06058.
[Kaufman:2022ymi]
[12-25]
Studying Postmerger Outflows from Magnetized Neutrino-cooled Accretion Disks, Fatemeh Hossein Nouri, Agnieszka Janiuk, Malgorzata Przerwa, Astrophys.J. 944 (2023) 220, arXiv:2212.05628.
[Nouri:2022zlj]
[12-26]
The collimation of relativistic jets in post-neutron star binary merger simulations, Matteo Pais, Tsvi Piran, Yuri Lyubarsky, Kenta Kiuchi, Masaru Shibata, Astrophys.J.Lett. 946 (2023) L9, arXiv:2211.09135.
[Pais:2022ynf]
[12-27]
Effects of vertical advection on multimessenger signatures of black hole neutrino-dominated accretion flows in compact binary coalescences, Bing-Guang Chen, Tong Liu, Yan-Qing Qi, Bao-Quan Huang, Yun-Feng Wei, Tuan Yi, Wei-Min Gu, Li Xue, Astrophys.J. 941 (2022) 156, arXiv:2211.08899.
[Chen:2022wnf]
[12-28]
Self-consistent picture of the mass ejection from a one second-long binary neutron star merger leaving a short-lived remnant in general-relativistic neutrino-radiation magnetohydrodynamic simulation, Kenta Kiuchi, Sho Fujibayashi, Kota Hayashi, Koutarou Kyutoku, Yuichiro Sekiguchi, Masaru Shibata, Phys.Rev.Lett. 131 (2023) 011401, arXiv:2211.07637.
[Kiuchi:2022nin]
[12-29]
General-relativistic neutrino-radiation magnetohydrodynamics simulation of seconds-long black hole-neutron star mergers: Dependence on initial magnetic field strength, configuration, and neutron-star equation of state, Kota Hayashi, Kenta Kiuchi, Koutarou Kyutoku, Yuichiro Sekiguchi, Masaru Shibata, Phys.Rev.D 107 (2023) 123001, arXiv:2211.07158.
[Hayashi:2022cdq]
[12-30]
Connecting small-scale to large-scale structures of fast neutrino-flavor conversion, Hiroki Nagakura, Masamichi Zaizen, Phys.Rev.D 107 (2023) 063033, arXiv:2211.01398.
[Nagakura:2022xwe]
[12-31]
Binary neutron star merger simulations with neutrino transport and turbulent viscosity: impact of different schemes and grid resolution, Francesco Zappa, Sebastiano Bernuzzi, David Radice, Albino Perego, arXiv:2210.11491, 2022.
[Zappa:2022rpd]
[12-32]
Extragalactic neutrino emission induced by Supermassive and Stellar Mass Black Hole mergers, Ilja Jaroschewski, Julia Becker Tjus, Peter L. Biermann, Mon.Not.Roy.Astron.Soc. 518 (2022) 6158-6182, arXiv:2210.11337.
[Jaroschewski:2022gdy]
[12-33]
General relativistic simulations of collapsing binary neutron star mergers with Monte-Carlo neutrino transport, Francois Foucart, Matthew D. Duez, Roland Haas, Lawrence E. Kidder, Harald P. Pfeiffer, Mark A. Scheel, Elizabeth Spira-Savett, Phys.Rev.D 107 (2023) 103055, arXiv:2210.05670.
[Foucart:2022kon]
[12-34]
Abundances and Transients from Neutron Star-White Dwarf Mergers, Mark Alexander Kaltenborn, Chris L. Fryer, Ryan T. Wollaeger, Krzysztof Belczynski, Wesley Even, Chryssa Kouveliotou, Astrophys.J. 956 (2023) 71, arXiv:2209.13061.
[Kaltenborn:2022vxf]
[12-35]
Resonant Production of Light Sterile Neutrinos in Compact Binary Merger Remnants, Gardar Sigurdarson, Irene Tamborra, Meng-Ru Wu, Phys.Rev.D 106 (2022) 123030, arXiv:2209.07544.
[Sigurdarson:2022mcm]
[12-36]
3D radiative transfer kilonova modelling for binary neutron star merger simulations, Christine E. Collins, Andreas Bauswein, Stuart A. Sim, Vimal Vijayan, Gabriel Martinez-Pinedo, Oliver Just, Luke J. Shingles, Markus Kromer, Mon.Not.Roy.Astron.Soc. 521 (2023) 1858-1870, arXiv:2209.05246.
[Collins:2022ocl]
[12-37]
Bulk Viscosity of Relativistic $npe\mu$ Matter in Neutron-Star Mergers, Mark Alford, Arus Harutyunyan, Armen Sedrakian, Particles 5 (2022) 361-376, arXiv:2209.04717.
[Alford:2022ufz]
[12-38]
Muons in the aftermath of Neutron Star Mergers and their impact on Trapped Neutrinos, Eleonora Loffredo, Albino Perego, Domenico Logoteta, Marica Branchesi, Astron.Astrophys. 672 (2023) A124, arXiv:2209.04458.
[Loffredo:2022prq]
[12-39]
Neutrino transport in general relativistic neutron star merger simulations, Francois Foucart, Liv.Rev.Comput.Astrophys. 9 (2023) 1, arXiv:2209.02538.
[Foucart:2022bth]
[12-40]
Direct collapse of exceptionally heavy black holes in the merger-driven scenario, Lorenz Zwick, Lucio Mayer, Lionel Haemmerle, Ralf S. Klessen, arXiv:2209.02358, 2022.
[Zwick:2022mcu]
[12-41]
Revealing Double White Dwarf Mergers with Multi-messenger Signals, He-Wen Yang, Pak-Hin Thomas Tam, Lili Yang, Res.Astron.Astrophys. 22 (2022) 105014, arXiv:2208.14138.
[Yang:2022roq]
[12-42]
Collisional instabilities of neutrinos and their interplay with fast flavor conversion in compact objects, Lucas Johns, Zewei Xiong, Phys.Rev.D 106 (2022) 103029, arXiv:2208.11059.
[Johns:2022yqy]
[12-43]
Fast neutrino cooling in the accreting neutron star MXB 1659-29, Melissa Mendes, Farrukh J. Fattoyev, Andrew Cumming, Charles Gale, Astrophys.J. 938 (2022) 119, arXiv:2208.04262.
[Mendes:2022gbq]
[12-44]
Evaluating Approximate Flavor Instability Metrics in Neutron Star Mergers, Sherwood Richers, Phys.Rev.D 106 (2022) 083005, arXiv:2206.08444.
[Richers:2022dqa]
[12-45]
Comprehensive study on the mass ejection and nucleosynthesis in the binary neutron star mergers leaving short-lived massive neutron stars, Sho Fujibayashi, Kenta Kiuchi, Shinya Wanajo, Koutarou Kyutoku, Yuichiro Sekiguchi, Masaru Shibata, Astrophys.J. 942 (2023) 39, arXiv:2205.05557.
[Fujibayashi:2022ftg]
[12-46]
Implementation of advanced Riemann solvers in a neutrino-radiation magnetohydrodynamics code in numerical relativity and its application to a binary neutron star merger, Kenta Kiuchi, Loren E. Held, Yuichiro Sekiguchi, Masaru Shibata, Phys.Rev.D 106 (2022) 124041, arXiv:2205.04487.
[Kiuchi:2022ubj]
[12-47]
Numerical relativity simulations of the neutron star merger GW190425: microphysics and mass ratio effects, A. Camilletti, L. Chiesa, G. Ricigliano, A. Perego, L. C. Lippold, S. Padamata, S. Bernuzzi, D. Radice, D. Logoteta, F. M. Guercilena, arXiv:2204.05336, 2022.
[Camilletti:2022jms]
[12-48]
Formation of black holes in the pair-instability mass gap: Hydrodynamical simulation of a massive star collision, Alessandro Ballone, Guglielmo Costa, Michela Mapelli, Morgan MacLeod, Mon.Not.Roy.Astron.Soc. 519 (2023) 5191-5201, arXiv:2204.03493.
[Ballone:2022ugp]
[12-49]
Formation of black holes in the pair-instability mass gap: evolution of a post-collision star, Guglielmo Costa, Alessandro Ballone, Michela Mapelli, Alessandro Bressan, Mon.Not.Roy.Astron.Soc. 516 (2022) 1072-1080, arXiv:2204.03492.
[Costa:2022aka]
[12-50]
Long-term 3D-MHD Simulations of Black Hole Accretion Disks formed in Neutron Star Mergers, Steven Fahlman, Rodrigo Fernandez, Mon.Not.Roy.Astron.Soc. 513 (2022) 2689-2707, arXiv:2204.03005.
[Fahlman:2022jkh]
[12-51]
Large Eddy Simulations of Magnetized Mergers of Neutron Stars with Neutrinos, C. Palenzuela, S.L. Liebling, B. Minano, Phys.Rev.D 105 (2022) 103020, arXiv:2204.02721.
[Palenzuela:2022kqk]
[12-52]
Hubble constant and nuclear equation of state from kilonova spectro-photometric light curves, M. A. Perez-Garcia et al., Astron.Astrophys. 666 (2022) A67, arXiv:2204.00022.
[Perez-Garcia:2022gcg]
[12-53]
Three-Dimensional General-Relativistic Simulations of Neutrino-Driven Winds from Rotating Proto-Neutron Stars, Dhruv K. Desai, Daniel M. Siegel, Brian D. Metzger, Astrophys.J. 931 (2022) 104, arXiv:2203.16560.
[Desai:2022lyi]
[12-54]
Fast Neutrino Conversion in Hydrodynamic Simulations of Neutrino-Cooled Accretion Disks, Oliver Just, Sajad Abbar, Meng-Ru Wu, Irene Tamborra, Hans-Thomas Janka, Francesco Capozzi, Phys.Rev.D 105 (2022) 083024, arXiv:2203.16559.
[Just:2022flt]
[12-55]
Astrophysical Source Classification and Distance Estimation for PyCBC Live, Veronica Villa-Ortega, Thomas Dent, Andres Curiel Barroso, Mon.Not.Roy.Astron.Soc. 515 (2022) 5718-5729, arXiv:2203.10080.
[Villa-Ortega:2022qdo]
[12-56]
Electromagnetic counterparts of binary neutron star mergers leading to a strongly magnetized long-lived remnant neutron star, Kyohei Kawaguchi, Sho Fujibayashi, Kenta Hotokezaka, Masaru Shibata, Shinya Wanajo, Astrophys.J. 933 (2022) 22, arXiv:2202.13149.
[Kawaguchi:2022bub]
[12-57]
Jet Launching from Binary Neutron Star Mergers: Incorporating Neutrino Transport and Magnetic Fields, Lunan Sun, Milton Ruiz, Stuart L. Shapiro, Antonios Tsokaros, Phys.Rev.D 105 (2022) 104028, arXiv:2202.12901.
[Sun:2022vri]
[12-58]
Handing-Off the Outcome of Binary Neutron Star Mergers for Accurate and Long-Term Post-Merger Simulations, Federico G. Lopez Armengol et al., Phys.Rev.D 106 (2022) 083015, arXiv:2112.09817.
[Armengol:2021mbt]
[12-59]
A New Moment-Based General-Relativistic Neutrino-Radiation Transport Code: Methods and First Applications to Neutron Star Mergers, David Radice, Sebastiano Bernuzzi, Albino Perego, Roland Haas, Mon.Not.Roy.Astron.Soc. 512 (2022) 1499-1521, arXiv:2111.14858.
[Radice:2021jtw]
[12-60]
Neutrino emission from binary neutron star mergers: characterizing light curves and mean energies, Marco Cusinato, Federico Maria Guercilena, Albino Perego, Domenico Logoteta, David Radice, Sebastiano Bernuzzi, Stefano Ansoldi, arXiv:2111.13005, 2021.
[Cusinato:2021zin]
[12-61]
Light scalars in neutron star mergers, P. S. Bhupal Dev, Jean-Francois Fortin, Steven P. Harris, Kuver Sinha, Yongchao Zhang, JCAP 01 (2022) 006, arXiv:2111.05852.
[Dev:2021kje]
[12-62]
General-relativistic neutrino-radiation magnetohydrodynamics simulation of black hole-neutron star mergers for seconds, Kota Hayashi, Sho Fujibayashi, Kenta Kiuchi, Koutarou Kyutoku, Yuichiro Sekiguchi, Masaru Shibata, Phys.Rev.D 106 (2022) 023008, arXiv:2111.04621.
[Hayashi:2021oxy]
[12-63]
Anisotropic multimessenger signals from black hole neutrino-dominated accretion flows with outflows in binary compact object mergers, Yan-Qing Qi, Tong Liu, Bao-Quan Huang, Yun-Feng Wei, De-Fu Bu, Astrophys.J. 925 (2022) 43, arXiv:2111.03812.
[Qi:2021xgl]
[12-64]
Long-term evolution of neutron-star merger remnants in general relativistic resistive-magnetohydrodynamics with a mean-field dynamo term, Masaru Shibata, Sho Fujibayashi, Yuichiro Sekiguchi, Phys.Rev.D 104 (2021) 063026, arXiv:2109.08732.
[Shibata:2021xmo]
[12-65]
Dynamical ejecta of neutron star mergers with nucleonic weak processes I: Nucleosynthesis, I. Kullmann, S. Goriely, O. Just, R. Ardevol-Pulpillo, A. Bauswein, H.-T. Janka, Mon.Not.Roy.Astron.Soc. 510 (2022) 2804-2819, arXiv:2109.02509.
[Kullmann:2021gvo]
[12-66]
Equation of state and composition of proto-neutron stars and merger remnants with hyperons, Armen Sedrakian, Arus Harutyunyan, Universe 7 (2021) 382, arXiv:2109.01919.
[Sedrakian:2021qjw]
[12-67]
Are Interactions with Neutron Star Merger Winds Shaping the Jets?, Lorenzo Nativi, Gavin P. Lamb, Stephan Rosswog, Christoffer Lundman, Grzegorz Kowal, Mon.Not.Roy.Astron.Soc. 509 (2021) 903-913, arXiv:2109.00814.
[Nativi:2021qzr]
[12-68]
Estimating outflow masses and velocities in merger simulations: impact of r-process heating and neutrino cooling, Francois Foucart, Philipp Moesta, Teresita Ramirez, Alex James Wright, Siva Darbha, Daniel Kasen, Phys.Rev.D 104 (2021) 123010, arXiv:2109.00565.
[Foucart:2021ikp]
[12-69]
Decelerated non-relativistic expansion in a tidal disruption event with a potential neutrino association, Prashanth Mohan, Tao An, Yingkang Zhang, Jun Yang, Xiaolong Yang, Ailing Wang, Astrophys.J. 927 (2022) 74, arXiv:2106.15799.
[Mohan:2021flu]
[12-70]
On accretion disks formed in MHD simulations of black hole-neutron star mergers with accurate microphysics, Elias R. Most, L. Jens Papenfort, Samuel D. Tootle, Luciano Rezzolla, Mon.Not.Roy.Astron.Soc. 506 (2021) 3511-3526, arXiv:2106.06391.
[Most:2021ytn]
[12-71]
HARM3D+NUC: A new method for simulating the post-merger phase of binary neutron star mergers with GRMHD, tabulated EOS and neutrino leakage, Ariadna Murguia-Berthier et al., Astrophys.J. 919 (2021) 95, arXiv:2106.05356.
[Murguia-Berthier:2021tnt]
[12-72]
An Archival Search for Neutron-Star Mergers in Gravitational Waves and Very-High-Energy Gamma Rays, C. B. Adams et al., Astrophys.J. 918 (2021) 66, arXiv:2106.01386.
[VERITAS:2021xaa]
[12-73]
Neutrino Fast Flavor Conversions in Neutron-star Post-Merger Accretion Disks, Xinyu Li, Daniel M. Siegel, Phys.Rev.Lett. 126 (2021) 251101, arXiv:2103.02616.
[Li:2021vqj]
[12-74]
Extension of the Advanced Spectral Leakage scheme for neutron star merger simulations, Davide Gizzi, Christoffer Lundman, Evan O'Connor, Stephan Rosswog, Albino Perego, Mon.Not.Roy.Astron.Soc. 505 (2021) 2575-2593, arXiv:2102.08882.
[Gizzi:2021ssk]
[12-75]
Long-term evolution of a merger-remnant neutron star in general relativistic magnetohydrodynamics I: Effect of magnetic winding, Masaru Shibata, Sho Fujibayashi, Yuichiro Sekiguchi, Phys.Rev. D103 (2021) 043022, arXiv:2102.01346.
[Shibata:2021bbj]
[12-76]
Spritz: General Relativistic Magnetohydrodynamics with Neutrinos, Federico Cipolletta, Jay Vijay Kalinani, Edoardo Giangrandi, Bruno Giacomazzo, Riccardo Ciolfi, Lorenzo Sala, Beatrice Giudici, Class.Quant.Grav. 38 (2021) 085021, arXiv:2012.10174.
[Cipolletta:2020kgq]
[12-77]
Mapping dynamical ejecta and disk masses from numerical relativity simulations of neutron star mergers, Vsevolod Nedora, Federico Schianchi, Sebastiano Bernuzzi, David Radice, Boris Daszuta, Andrea Endrizzi, Albino Perego, Aviral Prakash, Francesco Zappa, Class.Quant.Grav. 39 (2022) 015008, arXiv:2011.11110.
[Nedora:2020qtd]
[12-78]
Igniting weak interactions in neutron-star post-merger accretion disks, Soumi De, Daniel Siegel, Astrophys.J. 921 (2021) 94, arXiv:2011.07176.
[De:2020jdt]
[12-79]
Properties of neutrino transfer in a deformed remnant of neutron star merger, Kohsuke Sumiyoshi, Sho Fujibayashi, Yuichiro Sekiguchi, Masaru Shibata, Astrophys.J. 907 (2021) 92, arXiv:2010.10865.
[Sumiyoshi:2020bdh]
[12-80]
The Stellar Merger Scenario for Black Holes in the Pair-instability Gap, M. Renzo, M. Cantiello, B. D. Metzger, Y.-F. Jiang, Astrophys.J.Lett. 904 (2020) L13, arXiv:2010.00705.
[Renzo:2020smh]
[12-81]
Fast neutrino flavor conversion, ejecta properties, and nucleosynthesis in newly-formed hypermassive remnants of neutron-star mergers, Manu George, Meng-Ru Wu, Irene Tamborra, Ricard Ardevol-Pulpillo, Hans-Thomas Janka, Phys.Rev. D102 (2020) 103015, arXiv:2009.04046.
[George:2020veu]
[12-82]
Multi-Dimensional Solution of Fast Neutrino Conversions in Binary Neutron Star Merger Remnants, Ian Padilla-Gay, Shashank Shalgar, Irene Tamborra, JCAP 2101 (2021) 017, arXiv:2009.01843.
[Padilla-Gay:2020uxa]
[12-83]
Monte-Carlo neutrino transport in neutron star merger simulations, Francois Foucart, Matthew D. Duez, Francois Hebert, Lawrence E. Kidder, Harald P. Pfeiffer, Mark A. Scheel, Astrophys.J.Lett. 902 (2020) L27, arXiv:2008.08089.
[Foucart:2020qjb]
[12-84]
High-energy neutrino emission subsequent to gravitational wave radiation from supermassive black hole mergers, Chengchao Yuan, Kohta Murase, Shigeo S. Kimura, Peter Meszaros, Phys.Rev. D102 (2020) 083013, arXiv:2008.05616.
[Yuan:2020oqg]
[12-85]
Numerical Relativity Simulations of the Neutron Star Merger GW170817: Long-Term Remnant Evolutions, Winds, Remnant Disks, and Nucleosynthesis, Nedora Vsevolod, Bernuzzi Sebastiano, Radice David, Daszuta Boris, Endrizzi Andrea, Perego Albino, Prakash Aviral, Safarzadeh Mohammadtaher, Schianchi Federico, Logoteta Domenico, Astrophys.J. 906 (2021) 98, arXiv:2008.04333.
[Nedora:2020hxc]
[12-86]
Recurrent Neutrino Emission from Supermassive Black Hole Mergers, O. de Bruijn, I. Bartos, P.L. Biermann, J. Becker Tjus, Astrophys.J.Lett. 905 (2020) L13, arXiv:2006.11288.
[deBruijn:2020pky]
[12-87]
Bulk Viscous Damping of Density Oscillations in Neutron Star Mergers, Mark Alford, Arus Harutyunyan, Armen Sedrakian, Particles 3 (2020) 500-517, arXiv:2006.07975.
[Alford:2020lla]
[12-88]
The landscape of disk outflows from black hole - neutron star mergers, Rodrigo Fernandez, Francois Foucart, Jonas Lippuner, Mon.Not.Roy.Astron.Soc. 497 (2020) 3221-3233, arXiv:2005.14208.
[Fernandez:2020oow]
[12-89]
Oscillation of high-energy neutrinos from choked jets in stellar and merger ejecta, Jose Carpio, Kohta Murase, Phys.Rev. D101 (2020) 123002, arXiv:2002.10575.
[Carpio:2020app]
[12-90]
High-energy neutrinos from fallback accretion of binary neutron star merger remnants, Valentin Decoene, Claire Guepin, Ke Fang, Kumiko Kotera, Brian David Metzger, JCAP 2004 (2020) 045, arXiv:1910.06578.
[Decoene:2019eux]
[12-91]
Neutron Star Mergers and How to Study Them, Eric Burns, Living Rev.Rel. 23 (2020) 4, arXiv:1909.06085.
[Burns:2019byj]
[12-92]
Observing cosmological binary mergers with next generation neutrino and gravitational wave detectors, Zidu Lin, Cecilia Lunardini, Phys.Rev. D101 (2020) 023016, arXiv:1907.00034.
[Lin:2019piz]
[12-93]
Neutrino Signal from Compact Objects during their Formation, their Mergers, or as a Signature of Electric-Charge Phase Transition, Nissim Fraija, Enrique Moreno Mendez, Gibran Morales, Alfredo Saracho, New Astron. 97 (2022) 101883, arXiv:1905.00575.
[Fraija:2019qpp]
[12-94]
Trans-Ejecta High-Energy Neutrino Emission from Binary Neutron Star Mergers, Shigeo S. Kimura et al., Phys.Rev. D98 (2018) 043020, arXiv:1805.11613.
[Kimura:2018vvz]
[12-95]
A global analysis for searching neutrinos associated with the black holes merging gravitational wave events, Yu-Zi Yang, Jia-Jie Ling, Wei Wang, Zhao-Kan Cheng, Res.Astron.Astrophys. 18 (2018) 132, arXiv:1805.09704.
[Yang:2018ild]
[12-96]
Mass Ejection from the Remnant of Binary Neutron Star Merger: Viscous-Radiation Hydrodynamics Study, Sho Fujibayashi, Kenta Kiuchi, Nobuya Nishimura, Yuichiro Sekiguchi, Masaru Shibata, Astrophys.J. 860 (2018) 64, arXiv:1711.02093.
[Fujibayashi:2017puw]
[12-97]
Three-dimensional GRMHD simulations of neutrino-cooled accretion disks from neutron star mergers, Daniel M. Siegel, Brian D. Metzger, Astrophys.J. 858 (2018) 52, arXiv:1711.00868.
[Siegel:2017jug]
[12-98]
Imprints of neutrino-pair flavor conversions on nucleosynthesis in ejecta from neutron-star merger remnants, Meng-Ru Wu, Irene Tamborra, Oliver Just, Hans-Thomas Janka, Phys.Rev. D96 (2017) 123015, arXiv:1711.00477.
[Wu:2017drk]
[12-99]
Evolution of the Magnetized, Neutrino-Cooled Accretion Disk in the Aftermath of a Black Hole Neutron Star Binary Merger, Fatemeh Hossein Nouri et al., Phys.Rev. D97 (2018) 083014, arXiv:1710.07423.
[Nouri:2017fvh]
[12-100]
Detectability of thermal neutrinos from binary-neutron-star mergers and implication to neutrino physics, Koutarou Kyutoku, Kazumi Kashiyama, Phys.Rev. D97 (2018) 103001, arXiv:1710.05922.
[Kyutoku:2017wnb]
[12-101]
High-Energy Neutrinos from Millisecond Magnetars formed from the Merger of Binary Neutron Stars, Ke Fang, Brian D. Metzger, Astrophys.J. 849 (2017) 153, arXiv:1707.04263.
[Fang:2017tla]
[12-102]
A 'nu' look at gravitational waves: The black hole birth rate from neutrinos combined with the merger rate from LIGO, Jonathan H. Davis, Malcolm Fairbairn, JCAP 1707 (2017) 052, arXiv:1704.05073.
[Davis:2017mbq]
[12-103]
High-Energy Neutrino Emission from White Dwarf Mergers, Di Xiao, Peter Meszaros, Kohta Murase, Zi-gao Dai, Astrophys.J. 832 (2016) 20, arXiv:1608.08150.
[Xiao:2016man]
[12-104]
Mass ejection from neutron star mergers: different components and expected radio signals, Kenta Hotokezaka, Tsvi Piran, Mon.Not.Roy.Astron.Soc. 450 (2015) 1430, arXiv:1501.01986.
[Hotokezaka:2015eja]
[12-105]
Kilonova Light Curves from the Disk Wind Outflows of Compact Object Mergers, Daniel Kasen, Rodrigo Fernandez, Brian Metzger, Mon.Not.Roy.Astron.Soc. 450 (2015) 1777-1786, arXiv:1411.3726.
[Kasen:2014toa]
[12-106]
Measuring Speed of Gravitational Waves by Observations of Photons and Neutrinos from Compact Binary Mergers and Supernovae, Atsushi Nishizawa, Takashi Nakamura, Phys. Rev. D90 (2014) 044048, arXiv:1406.5544.
[Nishizawa:2014zna]
[12-107]
Production of Nickel-56 in black hole-neutron star merger accretion disk outflows, R. Surman, O.L. Caballero, G.C. McLaughlin, O. Just, H.-Th. Janka, J. Phys. G41 (2014) 044006, arXiv:1312.1199.
[Surman:2013sya]
[12-108]
Possible High-Energy Neutrino and Photon Signals from Gravitational Wave Bursts due to Double Neutron Star Mergers, He Gao, Bing Zhang, Xue-Feng Wu, Zi-Gao Dai, Phys. Rev. D88 (2013) 043010, arXiv:1306.3006.
[Gao:2013rxa]
[12-109]
Black Hole-Neutron Star Mergers with a Hot Nuclear Equation of State: Outflow and Neutrino-Cooled Disk for a Low-Mass, High-Spin Case, M. Brett Deaton et al., Astrophys.J. 776 (2013) 47, arXiv:1304.3384.
[Deaton:2013sla]
[12-110]
The multi-messenger picture of compact object encounters: binary mergers versus dynamical collisions, S. Rosswog, T. Piran, E. Nakar, Mon.Not.Roy.Astron.Soc. 430 (2013) 2585, arXiv:1204.6240.
[Rosswog:2012wb]
[12-111]
Gravitational waves and neutrino emission from the merger of binary neutron stars, Yuichiro Sekiguchi, Kenta Kiuchi, Koutarou Kyutoku, Masaru Shibata, Phys. Rev. Lett. 107 (2011) 051102, arXiv:1105.2125.
[Sekiguchi:2011zd]
[12-112]
Detecting neutrinos from black hole neutron stars mergers, O. L. Caballero, G. C. McLaughlin, R. Surman, Phys. Rev. D80 (2009) 123004, arXiv:0910.1385.
[Caballero:2009ww]
[12-113]
Neutron-Rich Freeze-Out in Viscously Spreading Accretion Disks Formed from Compact Object Mergers, B. D. Metzger, A. L. Piro, E. Quataert, Mon.Not.Roy.Astron.Soc. 396 (2009) 304, arXiv:0810.2535.
[Metzger:2008jt]
[12-114]
Neutrino signatures and the neutrino-driven wind in Binary Neutron Star Mergers, Luc Dessart, Christian Ott, Adam Burrows, Stefan Rosswog, Eli Livne, Astrophys.J. 690 (2009) 1681, arXiv:0806.4380.
[Dessart:2008zd]
[12-115]
High Resolution Calculations of Merging Neutron Stars II: Neutrino Emission, S. Rosswog, M. Liebendoerfer, Mon. Not. Roy. Astron. Soc. 342 (2003) 673, arXiv:astro-ph/0302301.
[Rosswog:2003rv]

13 - Phenomenology - Binary Star Mergers - Talks

[13-1]
Neutrino flavor transformation with moments: application to fast flavor instabilities in neutron star mergers, Julien Froustey, Sherwood Richers, Evan Grohs, Samuel D. Flynn, Francois Foucart, James P. Kneller, Gail C. McLaughlin, PoS TAUP2023 (2024) 341, arXiv:2402.09274. TAUP 2023.
[Froustey:2024uez]
[13-2]
Accretion of the magnetized neutrino-cooled torus, Fatemeh Hossein Nouri, Agnieszka Janiuk, arXiv:2203.04344, 2022. PTA Meeting 2021.
[Nouri:2022owm]
[13-3]
Neutrinos: from the r-process to the diffuse supernova neutrino background, Volpe Maria Cristina, J.Phys.Conf.Ser. 2156 (2021) 012126, arXiv:2110.09027. 17th International Conference on Topics in Astroparticle and Underground Physics.
[Volpe:2021afs]

14 - Phenomenology - GZK Cutoff

[14-1]
GZK Neutrinos after the Fermi-LAT Diffuse Photon Flux, M. Ahlers, L.A. Anchordoqui, M.C. Gonzalez-Garcia, F. Halzen, S. Sarkar, Astropart. Phys. 34 (2010) 106-115, arXiv:1005.2620.
[Ahlers:2010fw]
[14-2]
SuperGZK Events as Deep Exotic Showers, Aaron S. Chou, Phys. Rev. D74 (2006) 103001, arXiv:astro-ph/0606742.
[Chou:2006jj]
[14-3]
Two knees and the Evasion of Greisen-Zatsepin-Kuz'min Cutoff in Cosmic Ray Spectrum - Are Neutrinos the Tachyons?, Guang-Jiong Ni, Zhi-Qiang Shi, arXiv:hep-ph/0605058, 2006.
[Ni:2006wa]
[14-4]
SuperGZK neutrinos, V. Berezinsky, arXiv:astro-ph/0509675, 2005.
[Berezinsky:2005ng]
[14-5]
Cosmic rays at ultra high energies (Neutrinos!), Markus Ahlers, Andreas Ringwald, Huitzu Tu, Astropart. Phys. 24 (2006) 438, arXiv:astro-ph/0506698.
[Ahlers:2005zy]
[14-6]
No 'cut off' in the High Energy Cosmic Ray Energy Spectrum, Tadeusz Wibig, Arnold W. Wolfendale, arXiv:astro-ph/0406511, 2004.
[Wibig:2004fq]
[14-7]
Implications of Spacetime Quantization for the Bahcall-Waxman Neutrino Bound, Giovanni Amelino-Camelia et al., JCAP 0402 (2004) 009, arXiv:hep-ph/0307027.
[Amelino-Camelia:2003dju]
[14-8]
Cosmic ray neutrino annihilation on relic neutrinos revisited: A mechanism for generating air showers above the Greisen-Zatsepin-Kuzmin cut-off, Thomas J. Weiler, Astropart. Phys. 11 (1999) 303-316, arXiv:hep-ph/9710431.
[Weiler:1997sh]
[14-9]
Ultrahigh energy neutrino scattering onto relic light neutrinos in galactic halo as a possible source of highest energy extragalactic cosmic rays, D. Fargion, B. Mele, A. Salis, Astrophys. J. 517 (1999) 725-733, arXiv:astro-ph/9710029.
[Fargion:1997ft]

15 - Phenomenology - GZK Cutoff - Talks

[15-1]
trans-GZK Cosmic Rays: Strings, Black Holes, Neutrinos, or All Three?, William S. Burgett, Gabor Domokos, Susan Kovesi-Domokos, Nucl. Phys. Proc. Suppl. 136 (2004) 327, arXiv:hep-ph/0409029. Cosmic Ray International Seminar (CRIS), Catania, Sicily, 2004.
[Burgett:2004ac]
[15-2]
Strong Neutrino-Nucleon Interactions at Ultrahigh Energies as a Solution to the GZK Puzzle, Z. Fodor, S.D. Katz, A. Ringwald, H. Tu, arXiv:hep-ph/0402102, 2004. 10th Marcel Grossmann Meeting, 20-26 July 2003, Rio de Janeiro, Brazil.
[Fodor:2004tr]
[15-3]
New physics from ultrahigh energy cosmic rays, Subir Sarkar, Acta Phys. Polon. B35 (2004) 351, arXiv:hep-ph/0312223. XXXIII International Symposium on Multiparticle Dynamics, Krakow, 2003.
[Sarkar:2003sp]
[15-4]
Ultra High Energy Cosmic Rays, Z-Shower and Neutrino Astronomy by Horizontal-Upward Tau Air-Showers, D. Fargion, arXiv:hep-ph/0306238, 2003. X International Workshop on Neutrino Telescopes, Venice, Italy, March 11-14, 2003.
[Fargion:2003kc]
[15-5]
SuperGZK neutrinos: Testing physics beyond the standard model, Veniamin Berezinsky, arXiv:hep-ph/0303091, 2003. 21st Texas Symposium on Relativistic Astrophysics (Texas in Tuscany), Florence, Italy, 9-13 Dec 2002.
[Berezinsky:2003iv]
[15-6]
Clustering, GUT scale and neutrino masses from ultrahigh energy cosmic rays, Z. Fodor, PoS jhw2002 (2014) jhw2002/021, arXiv:hep-ph/0302036. 26th Johns Hopkins Workshop on Particle Physics, August 2003, Heidelberg, Germany.
[Fodor:2002wmd]
[15-7]
Shadows of relic neutrino masses and spectra on highest energy GZK cosmic rays, D. Fargion, M. Grossi, P. G. De Sanctis Lucentini, C. Di Troia, R. V. Konoplich, arXiv:astro-ph/0102426, 2001. 3rd International Conference on Dark Matter in Astro and Particle Physics (Dark 2000), Heidelberg, Germany, 10-16 Jul 2000.
[Fargion:2000pv]

16 - Phenomenology - Z bursts

[16-1]
Updated Z-Burst Neutrinos at Horizons, D. Fargion, P. Oliva, Nucl. Phys. Proc. Suppl. 165 (2007) 116-121, arXiv:astro-ph/0610954.
[Fargion:2006zz]
[16-2]
A Lower Bound on Neutrino Mass and Its Implication on The Z-burst Scenario, Kwang-Chang Lai, Pisin Chen, arXiv:astro-ph/0511340, 2005.
[Lai:2005vd]
[16-3]
Bounds on Relic Neutrino Masses in the Z-burst Model, Graciela Gelmini, Gabriele Varieschi, Thomas Weiler, Phys. Rev. D70 (2004) 113005, arXiv:hep-ph/0404272.
[Gelmini:2004zb]
[16-4]
Relic Neutrino Absorption Spectroscopy, Birgit Eberle, Andreas Ringwald, Liguo Song, Thomas J. Weiler, Phys. Rev. D70 (2004) 023007, arXiv:hep-ph/0401203.
[Eberle:2004ua]
[16-5]
Neutrino clustering in cold dark matter halos: Implications for ultra high energy cosmic rays, Shwetabh Singh, Chung-Pei Ma, Phys. Rev. D67 (2003) 023506, arXiv:astro-ph/0208419.
[Singh:2002de]
[16-6]
Cosmic ray neutrino annihilation on relic neutrinos revisited: A mechanism for generating air showers above the Greisen-Zatsepin-Kuzmin cut-off, Thomas J. Weiler, Astropart. Phys. 11 (1999) 303-316, arXiv:hep-ph/9710431.
[Weiler:1997sh]
[16-7]
Ultrahigh energy neutrino scattering onto relic light neutrinos in galactic halo as a possible source of highest energy extragalactic cosmic rays, D. Fargion, B. Mele, A. Salis, Astrophys. J. 517 (1999) 725-733, arXiv:astro-ph/9710029.
[Fargion:1997ft]

17 - Phenomenology - Z bursts - Talks

[17-1]
Gamma rays precursors and afterglows surrounding UHECR events: Z-burst model is still alive, D. Fargion, A. Colaiuda, Nucl. Phys. Proc. Suppl. 136 (2004) 256, arXiv:astro-ph/0409022. Cris Conference 2004.
[Fargion:2004ry]

18 - Phenomenology - Pulsar Kicks

[18-1]
Neutron star kick driven by asymmetric fast-neutrino flavor conversion, Hiroki Nagakura, Kohsuke Sumiyoshi, arXiv:2401.15180, 2024.
[Nagakura:2024trv]
[18-2]
Interplay Between Neutrino Kicks and Hydrodynamic Kicks of Neutron Stars and Black Holes, H. -Thomas Janka, Daniel Kresse, arXiv:2401.13817, 2024.
[Janka:2024xbp]
[18-3]
Pulsar Kick by the Chiral Anisotropy Conversion, Kenji Fukushima, Chengpeng Yu, arXiv:2401.04568, 2024.
[Fukushima:2024cpg]
[18-4]
Kicks and Induced Spins of Neutron Stars at Birth, Matthew S. B. Coleman, Adam Burrows, Mon.Not.Roy.Astron.Soc. 517 (2022) 3938-3961, arXiv:2209.02711.
[Coleman:2022lwr]
[18-5]
Neutrino Rocket Jet Model: An Explanation of High-velocity Pulsars and their Spin-down Evolution, Zheng Li, Qiu-He Peng, Miao Kang, Xiang Liu, Ming Zhang, Yong-Feng Huang, Chih-Kang Chou, Astrophys.J. 931 (2022) 123, arXiv:2206.02569.
[Li:2022rzf]
[18-6]
Pulsar kick velocity induced by natal neutrino chirality flip: lower bound for the neutrino mangetic moment, Alejandro Ayala, Santiago Bernal Langarica, S. Hernandez-Ortiz, L. A. Hernandez, D. Manreza-Paret, Int.J.Mod.Phys.E 30 (2021) 2150031, arXiv:1912.10294.
[Ayala:2019sbt]
[18-7]
Comparing Neutron Star Kicks to Supernova Remnant Asymmetries, Tyler Holland-Ashford, Laura A. Lopez, Katie Auchettl, Tea Temim, Enrico Ramirez-Ruiz, Astrophys.J. 844 (2017) 84, arXiv:1705.08454.
[Holland-Ashford:2017tqz]
[18-8]
Estimates of black-hole natal kick velocities from observations of low-mass X-ray binaries, Ilya Mandel, Mon. Not. Roy. Astron. Soc. 456 (2016) 578, arXiv:1510.03871.
[Mandel:2015eta]
[18-9]
Sterile Neutrinos and Pulsar Velocities Revisited,, Leonard S. Kisslinger, Mikkel B. Johnson, Mod. Phys. Lett. A27 (2012) 1250215, arXiv:1207.2798.
[Kisslinger:2012br]
[18-10]
Pulsar Kicks from Active-Sterile Neutrino Transformation in Supernovae, Chad T. Kishimoto, arXiv:1101.1304, 2011.
[Kishimoto:2011mw]
[18-11]
Theoretical Support for the Hydrodynamic Mechanism of Pulsar Kicks, J. Nordhaus, T. D. Brandt, A. Burrows, E. Livne, C. D. Ott, Phys. Rev. D82 (2010) 103016, arXiv:1010.0674.
[Nordhaus:2010ub]
[18-12]
Large Pulsar Kicks from Topological Currents, James Charbonneau, Kelsey Hoffman, Jeremy Heyl, Mon. Not. Roy. Astron. Soc. Lett. 404 (2010) L119-L123, arXiv:0912.3822.
[Charbonneau:2009hq]
[18-13]
Active and Sterile Neutrino Emission and SN1987A Pulsar Velocity, Leonard S Kisslinger, Sandip Pakvasa, arXiv:0906.4117, 2009.
[Kisslinger:2009xb]
[18-14]
Large Mixing Angle Sterile Neutrinos and Pulsar Velocities, Leonard S. Kisslinger, Ernest M. Henley, Mikkel B. Johnson, Mod. Phys. Lett. A24 (2009) 2507-2516, arXiv:0906.2802.
[Kisslinger:2009rv]
[18-15]
Delayed pulsar kicks from the emission of sterile neutrinos, Alexander Kusenko, Bhabani Prasad Mandal, Alok Mukherjee, Phys. Rev. D77 (2008) 123009, arXiv:0801.4734.
[Kusenko:2008gh]
[18-16]
Pulsar Kicks With Sterile Neutrinos and Landau Levels, Leonard S. Kisslinger, Ernest M. Henley, Mikkel B. Johnson, arXiv:0712.0197, 2007.
[Kisslinger:2007uw]
[18-17]
Pulsar kicks by anisotropic neutrino emission from quark matter in strong magnetic fields, I. Sagert, J. Schaffner-Bielich, Astron.Astrophys. (2007), arXiv:0708.2352.
[Sagert:2007as]
[18-18]
Birth Kick Distributions and the Spin-Kick Correlation of Young Pulsars, C.-Y. Ng, Roger W. Romani, Astrophys. J. 660 (2007) 1357-1374, arXiv:astro-ph/0702180.
[Ng:2007aw]
[18-19]
Multidimensional Supernova Simulations with Approximative Neutrino Transport I. Neutron Star Kicks and the Anisotropy of Neutrino-Driven Explosions in Two Spatial Dimensions, L. Scheck, K. Kifonidis, H.-Th. Janka, E. Mueller, Astron.Astrophys. (2006), arXiv:astro-ph/0601302.
[Scheck:2006rw]
[18-20]
Effects of neutrino-driven kicks on the supernova explosion mechanism, Chris L. Fryer, Alexander Kusenko, Astrophys. J. Suppl. 163 (2006) 335, arXiv:astro-ph/0512033.
[Fryer:2005sz]
[18-21]
Comment on 'Pulsar kicks via spin-1 color superconductivity', Alexander Kusenko, arXiv:hep-ph/0508124, 2005.
[Kusenko:2005va]
[18-22]
Neutrinospheres, resonant neutrino oscillations, and pulsar kicks, M. Barkovich, J. C. D'Olivo, R. Montemayor, arXiv:hep-ph/0503113, 2005.
[Barkovich:2005gf]
[18-23]
Pulsar kicks via spin-1 color superconductivity, Andreas Schmitt, Igor A. Shovkovy, Qun Wang, Phys. Rev. Lett. 94 (2005) 211101, arXiv:hep-ph/0502166.
[Schmitt:2005ee]
[18-24]
Pulsar Kicks from Majoron Emission, Y. Farzan, G. Gelmini, A. Kusenko, Phys. Lett. B621 (2005) 22, arXiv:hep-ph/0502150.
[Farzan:2005yp]
[18-25]
The Neutrino Bubble Instability: A Mechanism for Generating Pulsar Kicks, Aristotle Socrates, Omer Blaes, Aimee Hungerford, Chris L. Fryer, Astrophys. J. 632 (2005) 531, arXiv:astro-ph/0412144.
[Socrates:2004tt]
[18-26]
Pulsar Kicks Induced by Spin Flavor Oscillations of Neutrinos in Gravitational Fields, G. Lambiase, Mon. Not. Roy. Astron. Soc. 362 (2005) 867, arXiv:astro-ph/0411242.
[Lambiase:2004qk]
[18-27]
Active-sterile neutrino oscillations and pulsar kicks, M. Barkovich, J. C. D'Olivo, R. Montemayor, Phys. Rev. D70 (2004) 043005, arXiv:hep-ph/0402259.
[Barkovich:2004jp]
[18-28]
Long and short gamma-ray bursts, and the pulsar kicks, Alexander Kusenko, Dmitry V. Semikoz, arXiv:astro-ph/0312399, 2003.
[Kusenko:2003px]
[18-29]
Pulsar Recoil by Large-Scale Anisotropies in Supernova Explosions, L. Scheck, T. Plewa, Hans-Thomas Janka, K. Kifonidis, E. Mueller, Phys. Rev. Lett. 92 (2004) 011103, arXiv:astro-ph/0307352.
[Scheck:2003rw]
[18-30]
Pulsar kicks from a dark-matter sterile neutrino, G. M. Fuller, A. Kusenko, I. Mocioiu, S. Pascoli, Phys. Rev. D68 (2003) 103002, arXiv:astro-ph/0307267.
[Fuller:2003gy]

19 - Phenomenology - Pulsar Kicks - Talks

[19-1]
Neutrino-triggered asymmetric magnetorotational mechanism for pulsar natal kick, A.V. Kuznetsov, N.V. Mikheev, arXiv:1110.1041, 2011. XV-th International School 'Particles and Cosmology', Troitsk, Moscow Region, May 26 - June 2, 2011, and XV-th Lomonosov Conference on Elementary Particle Physics, August 18-24, 2011, Moscow State University, Moscow.
[Kuznetsov:2011ne]
[19-2]
Pulsar kicks by anisotropic neutrino emission from quark matter, I. Sagert, J. Schaffner-Bielich, J. Phys. G35 (2008) 014062, arXiv:0707.0577. Nuclear Physics in Astrophysics III, Dresden, March 26-31, 2007.
[Sagert:2007ug]
[19-3]
Sterile neutrinos, Alexander Kusenko, AIP Conf. Proc. 917 (2007) 58-68, arXiv:hep-ph/0703116. '12th Mexican School on particles and fields' and the '6th Latin American Symposium on high energy physics' (VI-Silafae/XII-MSPF).
[Kusenko:2007wv]
[19-4]
Spin Flavor Oscillation of Neutrinos in Rotating Gravitational Fields and Their Effects on Pulsar Kicks, G. Lambiase, Braz. J. Phys. 35 (2005) 462, arXiv:astro-ph/0412408. Second International Workshop DICE2004, From Decoherence and Emergent Classicality to Emergent Quantum Mechanics Piombino (Tuscany), September 1-4, 2004.
[Lambiase:2004kf]
[19-5]
Neutrino oscillations, and the origin of pulsar velocities and dark matter, Alexander Kusenko, arXiv:astro-ph/0405476, 2004. 5th Workshop on 'Neutrino Oscillations and their Origin' (NOON-2004), Tokyo, Japan, February 11-15, 2004.
[Kusenko:2004wv]
[19-6]
Global Anisotropies in Supernova Explosions and Pulsar Recoil, L. Scheck et al., arXiv:astro-ph/0405311, 2004. 12th Workshop on Nuclear Astrophysics, Ringberg Castle, March 22-27, 2004.
[Scheck:2004wq]
[19-7]
Possible astrophysical clues of dark matter, Alexander Kusenko, New Astron. Rev. 49 (2005) 115, arXiv:astro-ph/0404568. Sixth UCLA Symposium on Sources and Detection of Dark Matter and Dark Energy in the Universe (Dark Matter 2004), Marina del Rey, California, February 18-20, 2004.
[Kusenko:2004xk]
[19-8]
Pulsar kicks and dark matter from a sterile neutrino, Alexander Kusenko, Int. J. Mod. Phys. A20 (2005) 1148, arXiv:astro-ph/0404483. Coral Gables Conference (CG2003), Ft. Lauderdale, Florida, December 17-21, 2003.
[Kusenko:2004gp]
[19-9]
Pulsar Kicks: Spin and Kinematic Constraints, Roger W. Romani, ASP Conf.Ser. (2004), arXiv:astro-ph/0404100. 2004 Apsen Winter Conf. on Astrophysics.
[Romani:2004dx]
[19-10]
Pulsar velocities and dark matter hint at a singlet neutrino, Alexander Kusenko, arXiv:astro-ph/0311240, 2003. Sixth RESCEU International Symposium 'Frontier in Astroparticle Physics and Cosmology', Tokyo, Japan, November 4 - 7, 2003.
[Kusenko:2003ff]

20 - Phenomenology - Models

[20-1]
Holographic phenomenology via overlapping degrees of freedom, Oliver Friedrich, ChunJun Cao, Sean Carroll, Gong Cheng, Ashmeet Singh, arXiv:2402.11016, 2024.
[Friedrich:2024wps]
[20-2]
Effects on neutrino propagation in space-time foam of D-branes revisited, Chengyi Li, Bo-Qiang Ma, arXiv:2401.05867, 2024.
[Li:2024crc]
[20-3]
Searching for DM induced neutrino signals in dSphs using 10 years of IceCube public data, Xue-Kang Guo, Yi-Fei Lu, Yong-Bo Huang, Rong-Lan Li, Ben-Yang Zhu, Yun-Feng Liang, Phys.Rev.D 108 (2023) 043001, arXiv:2306.02675.
[Guo:2023axz]
[20-4]
Present and future constraints on flavor-dependent long-range interactions of high-energy astrophysical neutrinos, Sanjib Kumar Agarwalla, Mauricio Bustamante, Sudipta Das, Ashish Narang, JHEP 08 (2023) 113, arXiv:2305.03675.
[Agarwalla:2023sng]
[20-5]
Probing Pseudo-Dirac Neutrinos with Astrophysical Sources at IceCube, Kiara Carloni, Ivan Martinez-Soler, Carlos A. Arguelles, K. S. Babu, P. S. Bhupal Dev, PoS ICRC2023 (2023) 1040, arXiv:2212.00737.
[Carloni:2022cqz]
[20-6]
Constraints on pseudo-Dirac neutrinos using high-energy neutrinos from NGC 1068, Thomas Rink, Manibrata Sen, Phys.Lett.B 851 (2024) 138558, arXiv:2211.16520.
[Rink:2022nvw]
[20-7]
Completing RHINO, Pasquale Di Bari, Adam Murphy, JHEP 03 (2023) 063, arXiv:2210.10801.
[DiBari:2022dtx]
[20-8]
Quantum Gravitational Decoherence in the 3 Neutrino Flavor Scheme, Dominik Hellmann, Heinrich Pas, Erika Rani, Phys.Rev.D 106 (2022) 083013, arXiv:2208.11754.
[Hellmann:2022cgt]
[20-9]
PeV IceCube signals and $H_0$ tension in the framework of Non-Local Gravity, Salvatore Capozziello, Gaetano Lambiase, Eur.Phys.J.Plus 137 (2022) 735, arXiv:2206.03690.
[Capozziello:2022mal]
[20-10]
Probing Neutrino Mass Models through Resonances at Neutrino Telescopes, K.S. Babu, P.S. Bhupal Dev, Sudip Jana, Int.J.Mod.Phys.A 37 (2022) 2230003, arXiv:2202.06975.
[Babu:2022fje]
[20-11]
Ultra-high-energy neutrino scattering in an anomalous U(1) effective field theory, Chuan-Hung Chen, Cheng-Wei Chiang, Chun-Wei Su, Phys.Lett.B 827 (2022) 136988, arXiv:2110.07517.
[Chen:2021qaf]
[20-12]
Gamma rays and neutrinos from RX J1713.7-3946 in a lepto-hadronic scenario, Pierre Cristofari, Viviana Niro, Stefano Gabici, Mon.Not.Roy.Astron.Soc. 508 (2021) 2204-2209, arXiv:2105.12494.
[Cristofari:2021gvn]
[20-13]
Distinguishing Dark Energy Models with Neutrino Oscillations, Ali Rida Khalifeh, Raul Jimenez, Phys.Dark Univ. 34 (2021) 100897, arXiv:2105.07973.
[Khalifeh:2021ree]
[20-14]
High-energy cosmic neutrinos as a probe of the vector mediator scenario in light of the muon $g-2$ anomaly and Hubble tension, Jose Alonso Carpio, Kohta Murase, Ian M. Shoemaker, Zahra Tabrizi, Phys.Rev.D 107 (2023) 103057, arXiv:2104.15136.
[Carpio:2021jhu]
[20-15]
New constraints on radiative seesaw models from IceCube and other neutrino detectors, T. de Boer, R. Busse, A. Kappes, M. Klasen, S. Zeinstra, Phys.Rev. D103 (2021) 123006, arXiv:2103.06881.
[deBoer:2021xjs]
[20-16]
Charged Higgs effects in IceCube: PeV events and NSIs, Ujjal Kumar Dey, Newton Nath, Soumya Sadhukhan, JHEP 09 (2021) 113, arXiv:2010.05797.
[Dey:2020fbx]
[20-17]
Unified explanation of flavor anomalies, radiative neutrino mass and ANITA anomalous events in a vector leptoquark model, P. S. Bhupal Dev, Rukmani Mohanta, Sudhanwa Patra, Suchismita Sahoo, Phys.Rev. D102 (2020) 095012, arXiv:2004.09464.
[BhupalDev:2020zcy]
[20-18]
TeV gravity searches, Jose I. Illana, Manuel Masip, arXiv:2001.05195, 2020.
[Illana:2020jpi]
[20-19]
Limits on Kaluza-Klein dark matter annihilation in the Sun from recent IceCube results, M. Colom i Bernadich, C. Perez de los Heros, arXiv:1912.04585, 2019.
[Bernadich:2019ofa]
[20-20]
Explaining the ANITA events by a $L_e-L_\tau$ gauge model, Arman Esmaili, Yasaman Farzan, JCAP 1912 (2019) 017, arXiv:1909.07995.
[Esmaili:2019pcy]
[20-21]
Zee-Burst: A New Probe of Neutrino Non-Standard Interactions at IceCube, K. S. Babu, P. S. Bhupal Dev, Sudip Jana, Yicong Sui, Phys.Rev.Lett. 124 (2020) 041805, arXiv:1908.02779.
[Babu:2019vff]
[20-22]
Linking Scalar Dark Matter and Neutrino Masses with IceCube 170922A, J.B.G. Alvey, M. Fairbairn, JCAP 2019 (2019) 041, arXiv:1902.01450.
[Alvey:2019jzx]
[20-23]
Supersymmetric sphaleron configurations as the origin of the perplexing ANITA events, Luis A. Anchordoqui, Ignatios Antoniadis, Phys.Lett. B790 (2019) 578-582, arXiv:1812.01520.
[Anchordoqui:2018ssd]
[20-24]
A leptoquark resolution to flavor and ANITA anomalies, Bhavesh Chauhan, Subhendra Mohanty, Phys.Rev. D99 (2019) 095018, arXiv:1812.00919.
[Chauhan:2018lnq]
[20-25]
R-parity Violating Supersymmetric Explanation of the Anomalous Events at ANITA, Jack H. Collins, P. S. Bhupal Dev, Yicong Sui, Phys.Rev. D99 (2019) 043009, arXiv:1810.08479.
[Collins:2018jpg]
[20-26]
Interactions of Ultrahigh Energy Neutrinos with Dark Matter: A model building perspective, Sujata Pandey, Siddhartha Karmakar, Subhendu Rakshit, JHEP 1901 (2019) 095, arXiv:1810.04203.
[Pandey:2018wvh]
[20-27]
Cutoff of IceCube Neutrino Spectrum due to t-channel Resonant Absorption by C$\nu$B, Subhendra Mohanty, Ashish Narang, Soumya Sadhukhan, JCAP 1903 (2019) 041, arXiv:1808.01272.
[Mohanty:2018cmq]
[20-28]
PeV IceCube signals and Dark Matter relic abundance in modified cosmologies, G. Lambiase, S. Mohanty, A. Stabile, Eur.Phys.J. C78 (2018) 350, arXiv:1804.07369.
[Lambiase:2018yql]
[20-29]
Unparticle Decay of Neutrinos and its Possible Signatures at a ${\rm Km}^2$ Detector for (3+1) Flavour Framework, Madhurima Pandey, JHEP 1901 (2019) 066, arXiv:1804.07241.
[Pandey:2018sul]
[20-30]
Bound on a diffuse flux of ultra-high energy neutrinos in the ADD model, M.O. Astashenkov, A.V. Kisselev, Phys.Rev. D98 (2018) 123009, arXiv:1804.02351.
[Astashenkov:2018gdm]
[20-31]
Upgoing ANITA events as evidence of the CPT symmetric universe, Luis A. Anchordoqui, Vernon Barger, John G. Learned, Danny Marfatia, Thomas J. Weiler, LHEP 1 (2018) 13-16, arXiv:1803.11554.
[Anchordoqui:2018ucj]
[20-32]
Seeking leptoquarks in IceCube, Damir Becirevic, Boris Panes, Olcyr Sumensari, Renata Zukanovich Funchal, JHEP 1806 (2018) 032, arXiv:1803.10112.
[Becirevic:2018uab]
[20-33]
Explanation of IceCube spectrum with $\nu\rightarrow 3 \nu$ neutrino splitting in a $\nu$2HDM model, Soumya Sadhukhan, Subhendra Mohanty, JHEP 1810 (2018) 111, arXiv:1802.09498.
[Mohanty:2018iop]
[20-34]
Neutrino Mass and Dark Matter in Light of the Fermi-LAT and IceCube Observations, Ran Ding, Zhi-Long Han, Li Huang, Yi Liao, Chin.Phys. C42 (2018) 103101, arXiv:1802.05248.
[Ding:2018jdk]
[20-35]
PeV scale Supersymmetry breaking and the IceCube neutrino flux, Mansi Dhuria, Vikram Rentala, JHEP 1809 (2018) 004, arXiv:1712.07138.
[Dhuria:2017ihq]
[20-36]
The Dark Sequential Z' Portal: Collider and Direct Detection Experiments, Giorgio Arcadi, Miguel D. Campos, Manfred Lindner, Antonio Masiero, Farinaldo S. Queiroz, Phys.Rev. D97 (2018) 043009, arXiv:1708.00890.
[Arcadi:2017hfi]
[20-37]
Dark matter and Inflation in PeV scale SUSY, Girish Kumar Chakravarty, Najimuddin Khan, Subhendra Mohanty, Adv.High Energy Phys. 2020 (2020) 2478190, arXiv:1707.03853.
[Chakravarty:2017hcy]
[20-38]
Status of the scalar singlet dark matter model, Peter Athron et al. (GAMBIT), Eur.Phys.J. C77 (2017) 568, arXiv:1705.07931.
[GAMBIT:2017gge]
[20-39]
Multi-component Fermionic Dark Matter and IceCube PeV scale Neutrinos in Left-Right Model with Gauge Unification, Debasish Borah, Arnab Dasgupta, Ujjal Kumar Dey, Sudhanwa Patra, Gaurav Tomar, JHEP 1709 (2017) 005, arXiv:1704.04138.
[Borah:2017xgm]
[20-40]
Powerful Solar Signatures of Long-Lived Dark Mediators, Rebecca K. Leane, Kenny C. Y. Ng, John F. Beacom, Phys.Rev. D95 (2017) 123016, arXiv:1703.04629.
[Leane:2017vag]
[20-41]
Stellar energy loss rates in the pair-annihilation process beyond the standard model, M. A. Hernandez-Ruiz, A. Gutierrez-Rodriguez, A. Gonzalez-Sanchez, Eur.Phys.J. A53 (2017) 16, arXiv:1612.06046.
[Hernandez-Ruiz:2016vez]
[20-42]
Quantum-gravity-induced dual lensing and IceCube neutrinos, Giovanni Amelino-Camelia, Leonardo Barcaroli, Giacomo D'Amico, Niccolo Loret, Giacomo Rosati, Int.J.Mod.Phys. D26 (2017) 1750076, arXiv:1609.03982.
[Amelino-Camelia:2016wpo]
[20-43]
Leptoquarks: 750 GeV Diphoton Resonance and IceCube Events, Ujjal Kumar Dey, Subhendra Mohanty, Gaurav Tomar, arXiv:1606.07903, 2016.
[Dey:2016sht]
[20-44]
Heavy right-handed neutrino dark matter and PeV neutrinos at IceCube, P. S. Bhupal Dev, D. Kazanas, R. N. Mohapatra, V. L. Teplitz, Yongchao Zhang, JCAP 1608 (2016) 034, arXiv:1606.04517.
[Dev:2016qbd]
[20-45]
A consistent model for leptogenesis, dark matter and the IceCube signal, M. Re Fiorentin, V. Niro, N. Fornengo, JHEP 1611 (2016) 022, arXiv:1606.04445.
[ReFiorentin:2016rzn]
[20-46]
Early Decay of Peccei-Quinn Fermion and the IceCube Neutrino Events, Yohei Ema, Takeo Moroi, Phys.Lett. B762 (2016) 353-361, arXiv:1606.04186.
[Ema:2016zzu]
[20-47]
R-parity Violating Supersymmetry at IceCube, P. S. Bhupal Dev, Dilip Kumar Ghosh, Werner Rodejohann, Phys.Lett. B762 (2016) 116-123, arXiv:1605.09743.
[Dev:2016uxj]
[20-48]
IceCube and GRB neutrinos propagating in quantum spacetime, Giovanni Amelino-Camelia, Leonardo Barcaroli, Giacomo D'Amico, Niccolo Loret, Giacomo Rosati, Phys.Lett. B761 (2016) 318-325, arXiv:1605.00496.
[Amelino-Camelia:2016fuh]
[20-49]
Pure Gravitational Dark Matter, Its Mass and Signatures, Yong Tang, Yue-Liang Wu, Phys.Lett. B758 (2016) 402-406, arXiv:1604.04701.
[Tang:2016vch]
[20-50]
The 750 GeV Diphoton excess, Dark Matter and Constraints from the IceCube experiment, Enrico Morgante, Davide Racco, Mohamed Rameez, Antonio Riotto, JHEP 1607 (2016) 141, arXiv:1603.05592.
[Morgante:2016cfv]
[20-51]
Quark Nugget Dark Matter: No contradictions with neutrino flux constraints, Kyle Lawson, Ariel R. Zhitnitsky, Phys.Rev. D95 (2017) 063521, arXiv:1510.07646.
[Lawson:2015cla]
[20-52]
Production of unstable heavy neutrinos in proto-neutron stars, C. Albertus, M. Masip, M. A. Perez-Garcia, Phys. Lett. B751 (2015) 209-214, arXiv:1509.03306.
[Albertus:2015xra]
[20-53]
IceCube Events from Heavy DM decays through the Right-handed Neutrino Portal, P. Ko, Yong Tang, Phys. Lett. B751 (2015) 81-89, arXiv:1508.02500.
[Ko:2015nma]
[20-54]
Stringent neutrino flux constraints on anti-quark nugget dark matter, P. W. Gorham, B.J. Rotter, Phys.Rev. D95 (2017) 103002, arXiv:1507.03545.
[Gorham:2015rfa]
[20-55]
Searching for MeV-Scale Gauge Bosons with IceCube, Anthony DiFranzo, Dan Hooper, Phys. Rev. D92 (2015) 095007, arXiv:1507.03015.
[DiFranzo:2015qea]
[20-56]
Decaying Leptophilic Dark Matter at IceCube, Sofiane M. Boucenna et al., JCAP 1512 (2015) 055, arXiv:1507.01000.
[Boucenna:2015tra]
[20-57]
Distinguishing Neutrino Mass Hierarchies using Dark Matter Annihilation Signals at IceCube, Rouzbeh Allahverdi, Bhaskar Dutta, Dilip Kumar Ghosh, Bradley Knockel, Ipsita Saha, JCAP 1512 (2015) 003, arXiv:1506.08285.
[Allahverdi:2015ssa]
[20-58]
Monochromatic neutrino lines from sneutrino dark matter, Chiara Arina, Suchita Kulkarni, Joseph Silk, Phys. Rev. D92 (2015) 083519, arXiv:1506.08202.
[Arina:2015zoa]
[20-59]
Prospects for higgsino-singlino dark matter detection at IceCube and PINGU, Rikard Enberg, Shoaib Munir, Carlos Perez de los Heros, Dominik Werder, arXiv:1506.05714, 2015.
[Enberg:2015qwa]
[20-60]
Constraints on Leptoquark Models from IceCube Data, Ujjal Kumar Dey, Subhendra Mohanty, JHEP 1604 (2016) 187, arXiv:1505.01037.
[Dey:2015eaa]
[20-61]
The Leptoquark Implication from the CMS and IceCube Experiments, Bhaskar Dutta, Yu Gao, Tianjun Li, Carsten Rott, Louis E. Strigari, Phys. Rev. D91 (2015) 125015, arXiv:1505.00028.
[Dutta:2015dka]
[20-62]
The Propagation Matrix and Flavor Triangle for Cosmic Neutrinos, Lingjun Fu, Chiu Man Ho, Thomas J. Weiler, Phys. Rev. D91 (2015) 053001, arXiv:1411.1174.
[Fu:2014isa]
[20-63]
Flavor ratios of extragalactical neutrinos and neutrino shortcuts in extra dimensions, Elke Aeikens, Heinrich Pas, Sandip Pakvasa, Philipp Sicking, JCAP 1510 (2015) 005, arXiv:1410.0408.
[Aeikens:2014yga]
[20-64]
Color octet neutrino as the source of the PeV energy events, A.N. Akay et al., Int. J. Mod. Phys. A30 (2015) 1550163, arXiv:1409.5896.
[Akay:2014qka]
[20-65]
Mind the gap on Icecube: Cosmic neutrino spectrum and muon anomalous magnetic moment in the gauged $L_\mu - L_\tau$ model, Takeshi Araki et al., Phys. Rev. D91 (2015) 037301, arXiv:1409.4180.
[Araki:2014ona]
[20-66]
Dark matter indirect detection signals and the nature of neutrinos in the supersymmetric $U(1)_{B-L}$ extension of the standard model, Rouzbeh Allahverdi, Sheldon S. Campbell, Bhaskar Dutta, Yu Gao, Phys. Rev. D90 (2014) 073002, arXiv:1405.6253.
[Allahverdi:2014eca]
[20-67]
Constraints on the ultracompact minihalos using neutrino signals from the gravitino dark matter decay, Yun-Long Zheng, Yu-Peng Yang, Ming-Zhe Li, Hong-Shi Zong, Res.Astron.Astrophys. 14 (2014) 1215-1220, arXiv:1404.0433.
[Zheng:2014tta]
[20-68]
Color octet neutrino as the source of the IceCube PeV energy neutrino events, A. N. Akay, U. Kaya, S. Sultansoy, arXiv:1402.1681, 2014.
[Akay:2014tga]
[20-69]
Dark Matter Induced Nucleon Decay: Model and Signatures, Junwu Huang, Yue Zhao, JHEP 1402 (2014) 077, arXiv:1312.0011.
[Huang:2013xfa]
[20-70]
Detection prospects of singlet fermionic dark matter, Sonja Esch, Michael Klasen, Carlos E. Yaguna, Phys. Rev. D88 (2013) 075017, arXiv:1308.0951.
[Esch:2013rta]
[20-71]
Pseudo-Dirac neutrinos via mirror-world and depletion of UHE neutrinos, Anjan S. Joshipura, Subhendra Mohanty, Sandip Pakvasa, Phys. Rev. D89 (2014) 033003, arXiv:1307.5712.
[Joshipura:2013yba]
[20-72]
Electroweak bremsstrahlung in bino-like dark matter annihilations, Kenta Shudo, Takeshi Nihei, Phys. Rev. D88 (2013) 055019, arXiv:1306.5901.
[Shudo:2013lca]
[20-73]
Dark matter and collider signatures of the MSSM, Andrew Fowlie, Kamila Kowalska, Leszek Roszkowski, Enrico Maria Sessolo, Yue-Lin Sming Tsai, Phys. Rev. D88 (2013) 055012, arXiv:1306.1567.
[Fowlie:2013oua]
[20-74]
Dark Matter Detection in Focus Point Supersymmetry, Patrick Draper, Jonathan Feng, Philipp Kant, Stefano Profumo, David Sanford, Phys. Rev. D88 (2013) 015025, arXiv:1304.1159.
[Draper:2013cka]
[20-75]
Indirect Probes of Supersymmetry Breaking in Multi-Km3 Neutrino Telescopes, Ivone Freire M. Albuquerque, Jairo Cavalcante de Souza, arXiv:1210.5141, 2012.
[Albuquerque:2012ik]
[20-76]
Implications of the Pseudo-Dirac Scenario for Ultra High Energy Neutrinos from GRBs, Arman Esmaili, Yasaman Farzan, JCAP 1212 (2012) 014, arXiv:1208.6012.
[Esmaili:2012ac]
[20-77]
Isospin-Violating Dark Matter in the Sun, Yu Gao, Jason Kumar, Danny Marfatia, Phys. Lett. B704 (2011) 534-540, arXiv:1108.0518.
[Gao:2011bq]
[20-78]
Warped Radion Dark Matter, Anibal D. Medina, Eduardo Ponton, JHEP 09 (2011) 016, arXiv:1104.4124.
[Medina:2011qc]
[20-79]
Leptoquark models and the energy spectrum of cosmic rays, I. Alikhanov, J.Phys.Conf.Ser. 1787 (2021) 012035, arXiv:1101.4010.
[Alikhanov:2011wsf]
[20-80]
Muons from Neutralino Annihilations in the Sun: Flipped SU(5), Muhammad Adeel Ajaib, Ilia Gogoladze, Qaisar Shafi, Phys. Rev. D83 (2011) 075017, arXiv:1101.0835.
[Ajaib:2011ab]
[20-81]
SUSY Renormalization Group Effects in Ultra High Energy Neutrinos, M. Bustamante, A.M. Gago, J. Jones-Perez, JHEP 05 (2011) 133, arXiv:1012.2728.
[Bustamante:2010bf]
[20-82]
Testing the Bimodal/Schizophrenic Neutrino Hypothesis in Neutrino-less Double Beta Decay and Neutrino Telescopes, James Barry, Rabindra N. Mohapatra, Werner Rodejohann, Phys. Rev. D83 (2011) 113012, arXiv:1012.1761.
[Barry:2010en]
[20-83]
Fermion WIMPless Dark Matter at DeepCore and IceCube, Vernon Barger, Jason Kumar, Danny Marfatia, Enrico Maria Sessolo, Phys. Rev. D81 (2010) 115010, arXiv:1004.4573.
[Barger:2010ng]
[20-84]
Discovering Asymmetric Dark Matter with Anti-Neutrinos, Brian Feldstein, A. Liam Fitzpatrick, JCAP 1009 (2010) 005, arXiv:1003.5662.
[Feldstein:2010xe]
[20-85]
Neutrino Fluxes from CMSSM LSP Annihilations in the Sun, John Ellis, Keith A. Olive, Christopher Savage, Vassilis C. Spanos, Phys. Rev. D81 (2010) 085004, arXiv:0912.3137.
[Ellis:2009ka]
[20-86]
Neutrino Oscillations, Lorentz/CPT Violation, and Dark Energy, Shin'ichiro Ando, Marc Kamionkowski, Irina Mocioiu, Phys. Rev. D80 (2009) 123522, arXiv:0910.4391.
[Ando:2009ts]
[20-87]
Neutrinos from Kaluza-Klein dark matter in the Sun, Mattias Blennow, Henrik Melbeus, Tommy Ohlsson, JCAP 1001 (2010) 018, arXiv:0910.1588.
[Blennow:2009ag]
[20-88]
Cosmic e^\pm, \bar p, \gamma and neutrino rays in leptocentric dark matter models, Xiao-Jun Bi, Xiao-Gang He, Ernest Ma, Juan Zhang, Phys. Rev. D81 (2010) 063522, arXiv:0910.0771.
[Bi:2009de]
[20-89]
Investigating light neutralinos at neutrino telescopes, V. Niro, A. Bottino, N. Fornengo, S. Scopel, Phys. Rev. D80 (2009) 095019, arXiv:0909.2348.
[Niro:2009mw]
[20-90]
Kaluza-Klein Dark Matter And Neutrinos From Annihilation In The Sun, Thomas Flacke, Arjun Menon, Dan Hooper, Katherine Freese, arXiv:0908.0899, 2009.
[Flacke:2009eu]
[20-91]
Prospects for constraining quantum gravity dispersion with near term observations, Giovanni Amelino-Camelia, Lee Smolin, Phys. Rev. D80 (2009) 084017, arXiv:0906.3731.
[Amelino-Camelia:2009imt]
[20-92]
Prospects for dark matter detection with IceCube in the context of the CMSSM, R. Trotta, R. Ruiz de Austri, C. Perez de los Heros, JCAP 0908 (2009) 034, arXiv:0906.0366.
[Trotta:2009gr]
[20-93]
High Energy Neutrinos As A Test of Leptophilic Dark Matter, Douglas Spolyar, Matthew Buckley, Katherine Freese, Dan Hooper, Hitoshi Murayama, arXiv:0905.4764, 2009.
[Spolyar:2009kx]
[20-94]
Mixed Neutralino Dark Matter in Nonuniversal Gaugino Mass Models, Utpal Chattopadhyay, Debottam Das, D. P. Roy, Phys. Rev. D79 (2009) 095013, arXiv:0902.4568.
[Chattopadhyay:2009fr]
[20-95]
Neutrino oscillations in a Robertson-Walker Universe with space time foam, J. Alexandre, K. Farakos, N. E. Mavromatos, P. Pasipoularides, Phys. Rev. D79 (2009) 107701, arXiv:0902.3386.
[Alexandre:2009si]
[20-96]
Dark Matter Sees The Light, Patrick Meade, Michele Papucci, Tomer Volansky, JHEP 12 (2009) 052, arXiv:0901.2925.
[Meade:2009rb]
[20-97]
Neutrinos from Inert Doublet Dark Matter, Sarah Andreas, Michel H.G. Tytgat, Quentin Swillens, JCAP 0904 (2009) 004, arXiv:0901.1750.
[Andreas:2009hj]
[20-98]
Gravity effects in inclined air showers induced by cosmic neutrino, A.V. Kisselev, Open Astron. J. 2 (2009) 12-15, arXiv:0807.3307.
[Kisselev:2008jw]
[20-99]
Kaluza-Klein Contamination in Fermi Accelerated Environments, Cong-Xin Qiu, arXiv:0806.3597, 2008.
[Qiu:2008kn]
[20-100]
Cosmic Neutrino Flavor Democracy and Unitarity Violation at Neutrino Telescopes, Zhi-zhong Xing, Shun Zhou, Phys. Lett. B666 (2008) 166-172, arXiv:0804.3512.
[Xing:2008fg]
[20-101]
Direct Detection of Kaluza-Klein Particles in Neutrino Telescopes, Ivone F. M. Albuquerque, Gustavo Burdman, Christopher A. Krenke, Baran Nosratpour, Phys. Rev. D78 (2008) 015010, arXiv:0803.3479.
[Albuquerque:2008zs]
[20-102]
Neutrino Signals from Solar Neutralino Annihilations in Anomaly Mediated Supersymmetry Breaking Model, Jia Liu, Peng-fei Yin, Shou-hua Zhu, Phys. Rev. D77 (2008) 115014, arXiv:0803.2164.
[Liu:2008kz]
[20-103]
High energy cosmic rays, gamma rays and neutrinos from AGN, Yukio Tomozawa, Mod. Phys. Lett. A23 (2008) 1991-1997, arXiv:0802.0301.
[Tomozawa:2008jf]
[20-104]
Neutrino, Photon Interaction in Unparticle Physics, Sukanta Dutta, Ashok Goyal, Phys. Lett. B664 (2008) 25-30, arXiv:0801.2143.
[Dutta:2008sm]
[20-105]
Neutrino oscillations in a stochastic model for space-time foam, J. Alexandre, K. Farakos, N. E. Mavromatos, P. Pasipoularides, Phys. Rev. D77 (2008) 105001, arXiv:0712.1779.
[Alexandre:2007na]
[20-106]
Probing a Supersymmetric Model for Neutrino Masses at Ultrahigh Energy Neutrino Telescopes, M. Hirsch, D. P. Roy, J. W. F. Valle, Phys. Lett. B662 (2008) 185-189, arXiv:0712.1711.
[Hirsch:2007kx]
[20-107]
Cosmogenic neutrinos and quasi-stable supersymmetric particle production, M. H. Reno, I. Sarcevic, J. Uscinski, Phys. Rev. D76 (2007) 125030, arXiv:0710.4954.
[Reno:2007kz]
[20-108]
Unparticle decay of neutrinos and it's effect on ultra high energy neutrinos, Debasish Majumdar, arXiv:0708.3485, 2007.
[Majumdar:2007mp]
[20-109]
High energy neutrinos from neutralino annihilations in the Sun, Vernon Barger, Wai-Yee Keung, Gabe Shaughnessy, Adam Tregre, Phys. Rev. D76 (2007) 095008, arXiv:0708.1325.
[Barger:2007xf]
[20-110]
Spinless photon dark matter from two universal extra dimensions, Bogdan A. Dobrescu, Dan Hooper, Kyoungchul Kong, Rakhi Mahbubani, JCAP 0710 (2007) 012, arXiv:0706.3409.
[Dobrescu:2007ec]
[20-111]
Effects of Magnetic Fields on Neutrino-dominated Accretion Model for Gamma-ray Bursts, Yi Xie, Chang-Yin Huang, Wei-Hua Lei, Chin.J.Astron.Astrophys. (2007), arXiv:0706.2527.
[Xie:2007ep]
[20-112]
Ultrahigh-energy neutrino flux as a probe of large extra-dimensions, Joseph Lykken, Olga Mena, Soebur Razzaque, JCAP 0712 (2007) 015, arXiv:0705.2029.
[Lykken:2007kp]
[20-113]
Dark matter and the first stars: a new phase of stellar evolution, Douglas Spolyar, Katherine Freese, Paolo Gondolo, Phys. Rev. Lett. 100 (2008) 051101, arXiv:0705.0521.
[Spolyar:2007qv]
[20-114]
Probing deviations from tri-bimaximal mixing through ultra high energy neutrino signals, Debasish Majumdar, Ambar Ghosal, Phys. Rev. D75 (2007) 113004, arXiv:hep-ph/0608334.
[Majumdar:2006px]
[20-115]
Charged Higgs boson contribution to $ \nu_{\tau} {\cal N} \to \tau^- X $ for large $ \tan\beta $ in the 2HDM(II) with UHE-neutrinos, A. Rosado, Phys. Rev. D74 (2006) 057301, arXiv:hep-ph/0608160.
[Rosado:2006hn]
[20-116]
Neutrino Telescopes as a Probe of Broken $\mu$-$\tau$ Symmetry, Zhi-zhong Xing, Phys. Rev. D74 (2006) 013009, arXiv:hep-ph/0605219.
[Xing:2006xd]
[20-117]
Scale dependence of the UHECR neutrino flux in extra-dimension models, K.R.S. Balaji, Jukka Maalampi, arXiv:hep-ph/0502192, 2005.
[Balaji:2005mi]
[20-118]
Counting extra dimensions: Magnetic Cherenkov radiation from high-energy neutrinos, Gabor Domokos, Andrea Erdas, S. Kovesi-Domokos, Astropart.Phys. 20 (2003) 215-219, arXiv:hep-ph/0212394.
[Domokos:2002us]

21 - Phenomenology - Models - Talks

[21-1]
Highly-boosted dark matter and cutoff for cosmic-ray neutrino through neutrino portal, Wen Yin, EPJ Web Conf. 208 (2019) 04003, arXiv:1809.08610. 20th International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI 2018).
[Yin:2018yjn]
[21-2]
Bound on a flux of ultra-high energy neutrinos in a scenario with extra dimensions, M.O. Astashenkov, A.V. Kisselev, EPJ Web Conf. 191 (2018) 08010, arXiv:1807.03504. XXth International Seminar 'Quarks-2018'.
[Astashenkov:2018yjq]
[21-3]
Warped extra dimension and inclined events at Pierre Auger Observatory, A.V. Kisselev, L.A. Shkalina, EPJ Web Conf. 125 (2016) 02014, arXiv:1607.01917. 19th International Seminar on High Energy Physics (QUARKS-2016).
[Kisselev:2016wah]
[21-4]
IceCube PeV Neutrinos and Leptophilic Dark Matter, Marco Chianese, J. Phys. Conf. Ser. 718 (2016) 042014, arXiv:1605.05749. TAUP 2015.
[Chianese:2016tmd]
[21-5]
Mind the Gap on IceCube: Cosmic neutrino spectrum and muon anomalous magnetic moment, T. Araki et al., arXiv:1505.01284, 2015. Prospects in Neutrino Physics Conference, 15 - 17 December, 2014, held at Queen Mary University of London, UK.
[Araki:2015dia]
[21-6]
High energy cosmic rays experiments inspired by noncommutative quantum field theory, Josip Trampetic, arXiv:1210.5427, 2012. 5th Petrov International Symposium: 'High Energy Physics, Cosmology and Gravity', BITP, Kyiv, Ukraine 2012.
[Trampetic:2012pp]
[21-7]
$U(1)_{B-L}$ Sneutrino Dark Matter Detection with the IceCube Neutrino Telescope, Katherine Richardson-McDaniel, arXiv:0912.1324, 2009. CCAPP Symposium 2009, Columbus, OH.
[Richardson-McDaniel:2009ivi]
[21-8]
Neutrino signature of Inert Doublet Dark Matter, Sarah Andreas, AIP Conf. Proc. 1241 (2010) 317-326, arXiv:0911.0540. Invisible Universe International Conference (Paris, Palais de l'UNESCO, June 29 - July 3 2009).
[Andreas:2009jp]
[21-9]
The Leptonic Higgs and Dark Matter, Piyush Kumar, AIP Conf. Proc. 1200 (2010) 1047-1051, arXiv:0910.0891. SUSY09.
[Kumar:2009gb]
[21-10]
SUSY at the Pole, Joern Kersten, Nucl. Phys. Proc. Suppl. 168 (2007) 277-279, arXiv:hep-ph/0612195. NOW 2006, Conca Specchiulla, Italy, September 9-16, 2006.
[Kersten:2006yq]
[21-11]
Direct Detection of Physics Beyond the Standard Model, Ivone F. M. Albuquerque, arXiv:hep-ph/0612090, 2006. Exotic Physics with Neutrino Telescopes Workshop.
[Albuquerque:2006fd]
[21-12]
Probing the variation of relic neutrino masses with extremely high-energy cosmic neutrinos, Lily Schrempp, arXiv:astro-ph/0611912, 2006. Workshop on Exotic Physics with Neutrino Telescopes, Uppsala, Sweden, 20-22 Sep 2006.
[Schrempp:2006mk]

22 - Theory

[22-1]
Neutrino mean free path in neutron stars in the presence of hyperons, Jesper Leong, Parada T. P. Hutauruk, Anthony W. Thomas, arXiv:2404.03213, 2024.
[Leong:2024mbt]
[22-2]
On the Nucleosynthesis in Accretion-Induced Collapse of White Dwarfs, Chun-Ming Yip, Ming-Chung Chu, Shing-Chi Leung, Lap-Ming Lin, arXiv:2401.03798, 2024.
[Yip:2024akb]
[22-3]
Neutrino-Driven Outflows and the Elemental Abundance Patterns of Very Metal-Poor Stars, A. Psaltis, M. Jacobi, F. Montes, A. Arcones, C. J. Hansen, H. Schatz, arXiv:2312.12306, 2023.
[Psaltis:2023jvk]
[22-4]
No space-time singularity in black-hole physics, Jose Bernabeu, arXiv:2312.09419, 2023.
[Bernabeu:2023uuc]
[22-5]
Electron and Muon Dynamics in Neutron Stars Beyond Chemical Equilibrium, Joachim Kopp, Toby Opferkuch, arXiv:2312.08457, 2023.
[Kopp:2023sev]
[22-6]
Neutrino emission of neutron-star superbursts, A. D. Kaminker, A. Y. Potekhin, D. G. Yakovlev, Astron.Lett. 49 (2023) 824-832, arXiv:2312.02022.
[Kaminker:2023woe]
[22-7]
Constraining baryon loading efficiency of AGNs with diffuse neutrino flux from galaxy clusters, Xin-Yue Shi, Ruo-Yu Liu, Chong Ge, Xiang-Yu Wang, Astrophys.J. 957 (2023) 101, arXiv:2309.09244.
[Shi:2023xap]
[22-8]
Joint measurement of the ultra-high-energy neutrino spectrum and cross section, Victor B. Valera, Mauricio Bustamante, Olga Mena, arXiv:2308.07709, 2023.
[Valera:2023ayh]
[22-9]
Identifying Spin Properties of Evaporating Black Holes through Asymmetric Neutrino and Photon Emission, Yuber F. Perez-Gonzalez, Phys.Rev.D 108 (2023) 083014, arXiv:2307.14408.
[Perez-Gonzalez:2023uoi]
[22-10]
High-energy electromagnetic, neutrino, and cosmic-ray emission by stellar-mass black holes in disks of active galactic nuclei, Hiromichi Tagawa, Shigeo S. Kimura, Zoltan Haiman, Astrophys.J. 955 (2023) 23, arXiv:2307.06353.
[Tagawa:2023hli]
[22-11]
M1 neutrino transport within the numerical-relativistic code BAM with application to low mass binary neutron star mergers, Federico Schianchi, Henrique Gieg, Vsevolod Nedora, Anna Neuweiler, Maximiliano Ujevic, Mattia Bulla, Tim Dietrich, Phys.Rev.D 109 (2024) 044012, arXiv:2307.04572.
[Schianchi:2023uky]
[22-12]
Neutrino flares of radio blazars observed from TeV to PeV, Alisa Suray, Sergey Troitsky, Mon.Not.Roy.Astron.Soc. 527 (2024) L26, arXiv:2306.16797.
[Suray:2023lsa]
[22-13]
Electromagnetic Cascade Emission from Neutrino-Coincident Tidal Disruption Events, Chengchao Yuan, Walter Winter, Astrophys.J. 956 (2023) 30, arXiv:2306.15659.
[Yuan:2023cmd]
[22-14]
Bulk viscosity from Urca processes: $npe\mu$ matter in the neutrino-transparent regime, Mark Alford, Arus Harutyunyan, Armen Sedrakian, Phys.Rev.D 108 (2023) 083019, arXiv:2306.13591.
[Alford:2023uih]
[22-15]
Chiral EFT calculation of neutrino reactions in warm neutron-rich matter, Eunkyoung Shin, Ermal Rrapaj, Jeremy W. Holt, Sanjay K. Reddy, Phys.Rev.C 109 (2024) 015804, arXiv:2306.05280.
[Shin:2023sei]
[22-16]
Multimessenger Emission from the Accretion Induced Collapse of White Dwarfs, Luis Felipe Longo Micchi, David Radice, Cecilia Chirenti, Mon.Not.Roy.Astron.Soc. 525 (2023) 6359-6376, arXiv:2306.04711.
[LongoMicchi:2023khv]
[22-17]
Three-Dimensional General-Relativistic Simulations of Neutrino-Driven Winds from Magnetized Proto-Neutron Stars, Dhruv K. Desai, Daniel M. Siegel, Brian D. Metzger, Astrophys.J. 954 (2023) 192, arXiv:2306.03973.
[Desai:2023ewz]
[22-18]
Hard X-ray emission from blazars associated with high-energy neutrinos, A. V. Plavin, R. A. Burenin, Y. Y. Kovalev, A. A. Lutovinov, A. A. Starobinsky, S. V. Troitsky, E. I. Zakharov, arXiv:2306.00960, 2023.
[Plavin:2023wsb]
[22-19]
Production of $p$-nuclei from $r$-process seeds: the $\nu r$-process, Zewei Xiong, Gabriel Martinez-Pinedo, Oliver Just, Andre Sieverding, arXiv:2305.11050, 2023.
[Xiong:2023uyb]
[22-20]
Assisted neutrino pair production in combined external fields, Naser Ahmadiniaz, Rashid Shaisultanov, Ralf Schutzhold, Phys.Rev.D 108 (2023) 036003, arXiv:2304.05711.
[Ahmadiniaz:2023udn]
[22-21]
Pion stars embedded in neutrino clouds, O. S. Stashko, O. V. Savchuk, L. M. Satarov, I. N. Mishustin, M. I. Gorenstein, V. I. Zhdanov, Phys.Rev.D 107 (2023) 114025, arXiv:2303.06190.
[Stashko:2023gnn]
[22-22]
Minimally implicit methods for the numerical integration of the neutrino transport equations, Samuel Santos-Perez, Martin Obergaulinger, Isabel Cordero-Carrion, arXiv:2302.12089, 2023.
[Santos-Perez:2023twm]
[22-23]
Multi-messenger signatures of delayed choked jets in tidal disruption events, 2023.
[Mukhopadhyay:2023mld]
[22-24]
Modified Urca neutrino emissivity at finite temperature, Phys.Rev.C 108 (2023) 035803.
[Suleiman:2023bdf]
[22-25]
Relativistic global solutions of neutrino-dominated accretion flows with magnetic coupling, Jiao-Zhen She, Tong Liu, Li Xue, Mon.Not.Roy.Astron.Soc. 513 (2022) 3960-3970, arXiv:2204.09771.
[She:2022nsr]
[22-26]
Role of nucleon effective mass and symmetry energy on the neutrino mean free path in neutron star, Parada T. P. Hutauruk, Hana Gil, Seung-il Nam, Chang Ho Hyun, Phys.Rev.C 106 (2022) 035802, arXiv:2204.02061.
[Hutauruk:2022bii]
[22-27]
On the high-energy protons regular acceleration in the Fermi Bubbles, Istomin Ya. N., Gunya A. A, Mon.Not.Roy.Astron.Soc. 513 (2022) 2194-2200, arXiv:2204.01069.
[N:2022ogb]
[22-28]
An accurate treatment of scattering and diffusion in piecewise power-law models for cosmic ray and radiation/neutrino transport, Philip F. Hopkins, Mon.Not.Roy.Astron.Soc. 518 (2022) 5882-5892, arXiv:2202.05283.
[Hopkins:2022vlu]
[22-29]
Gravitational wave signals in the deci-Hz range from neutrinos during the proto-neutron star cooling phase, Lei Fu, Shoichi Yamada, Phys.Rev.D 105 (2022) 123028, arXiv:2201.12774.
[Fu:2022bht]
[22-30]
Wakefield Acceleration in a Jet from a Neutrino Driven Accretion Flow around a Black Hole, Yoshiaki Kato, Toshikazu Ebisuzaki, Toshiki Tajima, Astrophys.J. 929 (2022) 42, arXiv:2201.11755.
[Kato:2022cur]
[22-31]
Systematic exploration of heavy element nucleosynthesis in protomagnetar outflows, Nick Ekanger, Mukul Bhattacharya, Shunsaku Horiuchi, Mon.Not.Roy.Astron.Soc. 513 (2022) 405, arXiv:2201.03576.
[Ekanger:2022tia]
[22-32]
Proto-neutron star evolution with improved charged-current neutrino-nucleon interactions, A Pascal, J Novak, M Oertel, Mon.Not.Roy.Astron.Soc. 511 (2022) 356, arXiv:2201.01955.
[Pascal:2022qeg]
[22-33]
Cooling of Isolated Neutron Stars with Pion Condensation: Possible Fast Cooling in a Low-Symmetry-Energy Model, Akira Dohi, Helei Liu, Tsuneo Noda, Masa-aki Hashimoto, Int.J.Mod.Phys.E 31 (2022) 2250006, arXiv:2112.13302.
[Dohi:2021lbu]
[22-34]
Quiescent luminosities of transiently accreting neutron stars with neutrino heating due to charged pion decay, He-Lei Liu, Zi-Gao Dai, Guo-Liang Lv, Akira Dohi, Gao-Chan Yong, Masa-aki Hashimoto, arXiv:2110.09729, 2021.
[2110.09729]
[22-35]
Bulk viscosity from Urca processes: $npe\mu$-neutrino-trapped matter, Mark Alford, Arus Harutyunyan, Armen Sedrakian, Phys.Rev.D 104 (2021) 103027, arXiv:2108.07523.
[Alford:2021lpp]
[22-36]
Neutrino transport with Monte Carlo method: II. Quantum Kinetic Equations, Chinami Kato, Hiroki Nagakura, Taiki Morinaga, Astrophys.J.Supp. 257 (2021) 55, arXiv:2108.06356.
[Kato:2021cjf]
[22-37]
Implementation of Monte-Carlo transport in the general relativistic SpEC code, Francois Foucart, Matthew D. Duez, Francois Hebert, Lawrence E. Kidder, Harald P. Pfeiffer, Mark A. Scheel, Astrophys.J. 920 (2021) 82, arXiv:2103.16588.
[Foucart:2021mcb]
[22-38]
A Relativistic Quantum Approach to Neutrino and Antineutrino Emissions via the Direct Urca Process in Strongly Magnetized Neutron-Star Matter, Tomoyuki Maruyama, A. Baha Balantekind, Myung-Ki Cheoung, Toshitaka Kajino, Motohiko Kusakabef, Grant J. Mathewsh, Phys.Lett.B 824 (2022) 136813, arXiv:2103.01703.
[Maruyama:2021ghf]
[22-39]
Neutrino absorption and other physics dependencies in neutrino-cooled black-hole accretion disks, Oliver Just, Stephane Goriely, Hans-Thomas Janka, Shigehiro Nagataki, Andreas Bauswein, Mon.Not.Roy.Astron.Soc. 509 (2021) 1377-1412, arXiv:2102.08387.
[Just:2021cls]
[22-40]
Urca Cooling in Neutron Star Crusts and Oceans: Effects of Nuclear Excitations, Long-Jun Wang, Liang Tan, Zhipan Li, G. Wendell Misch, Yang Sun, arXiv:2102.06010, 2021.
[Wang:2021dlm]
[22-41]
What can be learned from a proto-neutron star's mass and radius?, Edwan Preau, Aurelien Pascal, Jerome Novak, Micaela Oertel, Mon.Not.Roy.Astron.Soc. (2021), arXiv:2102.05923.
[Preau:2021bpf]
[22-42]
Phenomenological QCD equations of state for neutron star dynamics: nuclear-2SC continuity and evolving effective couplings, Toru Kojo, Defu Hou, Jude Okafor, Hajime Togashi, Phys.Rev.D 104 (2021) 063036, arXiv:2012.01650.
[Kojo:2020ztt]
[22-43]
Surface tension of charged strangelets in compact objects, G. Lugones, A. G. Grunfeld, Phys.Rev. C103 (2021) 035813, arXiv:2010.06098.
[Lugones:2020qll]
[22-44]
Electroweak decay of quark matter within dense astrophysical combustion flames, J. A. Rosero-Gil, G. Lugones, Phys.Rev. C103 (2021) 055816, arXiv:2010.04861.
[Rosero-Gil:2020caj]
[22-45]
Rank-3 Moment Closures in General Relativistic Neutrino Transport, Sherwood Richers, Phys.Rev. D102 (2020) 083017, arXiv:2009.09046.
[Richers:2020ntq]
[22-46]
3D modelling of magneto-thermal evolution of neutron stars: method and test cases, Davide De Grandis, Roberto Turolla, Toby S. Wood, Silvia Zane, Roberto Taverna, Konstantinos N. Gourgouliatos, Astrophys.J. 903 (2020) 40, arXiv:2009.04331.
[DeGrandis:2020slm]
[22-47]
Viscous evolution of a massive disk surrounding stellar-mass black holes in full general relativity, Sho Fujibayashi, Masaru Shibata, Shinya Wanajo, Kenta Kiuchi, Koutarou Kyutoku, Yuichiro Sekiguchi, Phys.Rev. D102 (2020) 123014, arXiv:2009.03895.
[Fujibayashi:2020jfr]
[22-48]
Dispelling a myth on dense neutrino media: fast pairwise conversions depend on energy, Shashank Shalgar, Irene Tamborra, JCAP 2101 (2021) 014, arXiv:2007.07926.
[Shalgar:2020xns]
[22-49]
Stellar Basins of Gravitationally Bound Particles, Ken Van Tilburg, Phys.Rev.D 104 (2021) 023019, arXiv:2006.12431.
[VanTilburg:2020jvl]
[22-50]
Investigation of the thermal effects on the nuclear matter, Ankit Kumar, H.C. Das, S.K. Biswal, Bharat Kumar, S.K. Patra, Eur.Phys.J. C80 (2020) 775, arXiv:2005.08320.
[Kumar:2020gws]
[22-51]
The Effect of Massive Neutrinos on the Galaxy Spin Flip Phenomenon, Jounghun Lee, Noam I Libeskind, Suho Ryu, Astrophys.J. 898 (2020) L27, arXiv:2004.02638.
[Lee:2020tqs]
[22-52]
Superfluidity in Disordered Neutron Stars Crusts, J. A. Sauls, N. Chamel, M. A. Alpar, arXiv:2001.09959, 2020.
[Sauls:2020kcw]
[22-53]
$\nu\bar\nu$-Pair Emission in Neutron-Star Matter based on a Relativistic Quantum Approach, Tomoyuki Maruyamaa A. Baha Balantekinc, Myung-Ki Cheounf, Toshitaka Kajinoe, Grant J. Mathews, Phys.Lett. B805 (2020) 135413, arXiv:2001.09020.
[Maruyama:2020oen]
[22-54]
Mass ejection from disks surrounding a low-mass black hole: Viscous neutrino-radiation hydrodynamics simulation in full general relativity, Sho Fujibayashi, Masaru Shibata, Shinya Wanajo, Kenta Kiuchi, Koutarou Kyutoku, Yuichiro Sekiguchi, Phys.Rev. D101 (2020) 083029, arXiv:2001.04467.
[Fujibayashi:2020qda]
[22-55]
Accretion-induced collapse to third family compact stars as trigger for eccentric orbits of millisecond pulsars in binaries, David Edwin Alvarez-Castillo, John Antoniadis, Alexander Ayriyan, David Blaschke, Victor Danchev, Hovik Grigorian, Noshad Khosravi Largani, Fridolin Weber, Astron.Nachr. 340 (2019) 878-884, arXiv:1912.08782.
[Alvarez-Castillo:2019apz]
[22-56]
Full Transport General Relativistic Radiation Magnetohydrodynamics for Nucleosynthesis in Collapsars, Jonah M. Miller, Trevor M. Sprouse, Christopher L. Fryer, Benjamin R. Ryan, Joshua C. Dolence, Matthew R. Mumpower, Rebecca Surman, Astrophys.J. 902 (2020) 66, arXiv:1912.03378.
[Miller:2019mfl]
[22-57]
Neutrino production from proton-proton interactions in binary-driven hypernovae, Campion Stefano, Melon Fuksman, Julio David, Rueda Hernandez, Jorge Armando, Symmetry 15 (2023) 412, arXiv:1910.10439.
[Campion:2019xgy]
[22-58]
Neutrino Emissions from Tidal Disruption Remnants, Kimitake Hayasaki, Ryo Yamazaki, arXiv:1908.10882, 2019.
[Hayasaki:2019kjy]
[22-59]
Thermodynamics conditions of matter in the neutrino decoupling region during neutron star mergers, Andrea Endrizzi, Albino Perego, Francesco M. Fabbri, Lorenzo Branca, David Radice, Sebastiano Bernuzzi, Bruno Giacomazzo, Francesco Pederiva, Alessandro Lovato, Eur.Phys.J. A56 (2020) 15, arXiv:1908.04952.
[Endrizzi:2019trv]
[22-60]
Thermal evolution of neo-neutron stars. I: envelopes, Eddington luminosity phase and implications for GW170817, Mikhail V. Beznogov, Dany Page, Enrico Ramirez-Ruiz, arXiv:1908.04888, 2019.
[Beznogov:2019xad]
[22-61]
Uncertainties in $\nu$p-process nucleosynthesis from Monte Carlo variation of reaction rates, N. Nishimura, T. Rauscher, R. Hirschi, G. Cescutti, A. St. J. Murphy, C. Frohlich, Mon.Not.Roy.Astron.Soc. 489 (2019) 1379, arXiv:1907.13129.
[Nishimura:2019jlh]
[22-62]
Beyond second-order convergence in simulations of magnetised binary neutron stars with realistic microphysics, Elias R. Most, L. Jens Papenfort, Luciano Rezzolla, Mon.Not.Roy.Astron.Soc. 490 (2019) 3588-3600, arXiv:1907.10328.
[Most:2019kfe]
[22-63]
Bulk viscosity of baryonic matter with trapped neutrinos, Mark Alford, Arus Harutyunyan, Armen Sedrakian, Phys.Rev. D100 (2019) 103021, arXiv:1907.04192.
[Alford:2019kdw]
[22-64]
Damping of density oscillations in neutrino-transparent nuclear matter, Mark G. Alford, Steven P. Harris, Phys.Rev. C100 (2019) 035803, arXiv:1907.03795.
[Alford:2019qtm]
[22-65]
A multi-dimensional implementation of the Advanced Spectral neutrino Leakage scheme, Davide Gizzi, Evan O'Connor, Stephan Rosswog, Albino Perego, Mon.Not.Roy.Astron.Soc. 490 (2019) 4211-4229, arXiv:1906.11494.
[Gizzi:2019awu]
[22-66]
Equation of State of Hot Dense Hyperonic Matter in the Quark-Meson-Coupling (QMC-A) model, J.R.Stone, V.Dexheimer, P.A.M.Guichon, A.W.Thomas, Mon.Not.Roy.Astron.Soc. 502 (2021) 3476-3490, arXiv:1906.11100.
[Stone:2019blq]
[22-67]
Neutrino currents in wakes of cosmic strings, Sovan Sau, Soma Sanyal, Eur.Phys.J. C80 (2020) 152, arXiv:1906.09733.
[Sau:2019xfo]
[22-68]
Full Transport Model of GW170817-Like Disk Produces a Blue Kilonova, Jonah M. Miller, Benjamin R. Ryan, Joshua C. Dolence, Adam Burrows, Christopher J. Fontes, Christopher L. Fryer, Oleg Korobkin, Jonas Lippuner, Matthew R. Mumpower, Ryan T. Wollaeger, Phys.Rev. D100 (2019) 023008, arXiv:1905.07477.
[Miller:2019dpt]
[22-69]
Black hole hyperaccretion in collapsars. I. MeV neutrinos, Yun-Feng Wei, Tong Liu, Cui-Ying Song, Astrophys.J. 878 (2019) 142, arXiv:1905.04850.
[Wei:2019hpd]
[22-70]
Cooling timescale for protoneutron stars and properties of nuclear matter: Effective mass and symmetry energy at high densities, Ken'ichiro Nakazato, Hideyuki Suzuki, Astrophys.J. 878 (2019) 25, arXiv:1905.00014.
[Nakazato:2019ojk]
[22-71]
Generation of strong magnetic fields in old neutron stars driven by the chiral magnetic effect, Maxim Dvornikov, Victor B. Semikoz, JCAP 1906 (2019) 053, arXiv:1904.05768.
[Dvornikov:2019uav]
[22-72]
$\nu\texttt{bhlight}$: Radiation GRMHD for Neutrino-Driven Accretion Flows, Jonah M. Miller, Ben R. Ryan, Joshua C. Dolence, Astrophys.J.Suppl. 241 (2019) 30, arXiv:1903.09273.
[Miller:2019gig]
[22-73]
Numerical simulations of neutron star-black hole binaries in the near-equal-mass regime, F. Foucart, M.D. Duez, L.E. Kidder, S. Nissanke, H.P. Pfeiffer, M.A. Scheel, Phys.Rev. D99 (2019) 103025, arXiv:1903.09166.
[Foucart:2019bxj]
[22-74]
Thermodynamics conditions of matter in neutron star mergers, Albino Perego, Sebastiano Bernuzzi, David Radice, Eur.Phys.J. A55 (2019) 124, arXiv:1903.07898.
[Perego:2019adq]
[22-75]
Neutrino-Dominated Accretion Flows with Magnetic Prandtl Number-Dependent MRI-driven Turbulence, Norita Kawanaka, Youhei Masada, arXiv:1902.08624, 2019.
[Kawanaka:2019oqm]
[22-76]
The APR equation of state for simulations of supernovae, neutron stars and binary mergers, A. S. Schneider, C. Constantinou, B. Muccioli, M. Prakash, Phys.Rev. C100 (2019) 025803, arXiv:1901.09652.
[Schneider:2019vdm]
[22-77]
Surface tension of hot and dense quark matter under strong magnetic fields, G. Lugones, A. G. Grunfeld, Phys.Rev. C99 (2019) 035804, arXiv:1811.09954.
[Lugones:2018qgu]
[22-78]
Hypermassive Neutron Star Disk Outflows and Blue Kilonovae, Steven Fahlman, Rodrigo Fernandez, Astrophys.J. 869 (2018) L3, arXiv:1811.08906.
[Fahlman:2018llv]
[22-79]
Magnetic field creation by solar mass neutrino jets, Dharam Vir Ahluwalia, Cheng-Yang Lee, Europhys.Lett. 125 (2019) 11002, arXiv:1811.00790.
[Ahluwalia:2018epu]
[22-80]
Hyperonic stars and the symmetry energy, Constanca Providencia, Morgan Fortin, Helena Pais, Aziz Rabhi, arXiv:1811.00786, 2018.
[Providencia:2018ywl]
[22-81]
Spin response and neutrino mean free path in neutron matter, Luca Riz, Francesco Pederiva, Stefano Gandolfi, J.Phys. G47 (2020) 045106, arXiv:1810.07110.
[Riz:2018xmk]
[22-82]
Binary Neutron Star Mergers: Mass Ejection, Electromagnetic Counterparts and Nucleosynthesis, David Radice et al., Astrophys.J. 869 (2018) 130, arXiv:1809.11161.
[Radice:2018pdn]
[22-83]
Bulk viscosity in a neutron star mantle, D. G. Yakovlev, M. E. Gusakov, P. Haensel, Mon.Not.Roy.Astron.Soc. 481 (2018) 4924, arXiv:1809.08609.
[Yakovlev:2018jia]
[22-84]
Dense matter equation of state for neutron star mergers, S. Lalit, M. A. A. Mamun, C. Constantinou, M. Prakash, Eur.Phys.J. A55 (2019) 10, arXiv:1809.08126.
[Lalit:2018dps]
[22-85]
Realizability-Preserving DG-IMEX Method for the Two-Moment Model of Fermion Transport, Ran Chu, Eirik Endeve, Cory Hauck, Anthony Mezzacappa, arXiv:1809.06949, 2018.
[1809.06949]
[22-86]
On the minimum mass of neutron stars, Yudai Suwa, Takashi Yoshida, Masaru Shibata, Hideyuki Umeda, Koh Takahashi, Mon.Not.Roy.Astron.Soc. 481 (2018) 3305-3312, arXiv:1808.02328.
[Suwa:2018uni]
[22-87]
Neutrino Losses in Type I Thermonuclear X-ray Bursts: An Improved Nuclear Energy Generation Approximation, Adelle J. Goodwin, Duncan K. Galloway, Alexander Heger, Astrophys.J. 870 (2019) 64, arXiv:1808.02225.
[Goodwin:2018aco]
[22-88]
Long-term GRMHD Simulations of Neutron Star Merger Accretion Disks: Implications for Electromagnetic Counterparts, Rodrigo Fernandez, Alexander Tchekhovskoy, Eliot Quataert, Francois Foucart, Daniel Kasen, Mon.Not.Roy.Astron.Soc. 482 (2019) 3373, arXiv:1808.00461.
[Fernandez:2018kax]
[22-89]
Improved Leakage-Equilibration-Absorption Scheme (ILEAS) for Neutrino Physics in Compact Object Mergers, Ricard Ardevol-Pulpillo, H.-Thomas Janka, Oliver Just, Andreas Bauswein, Mon.Not.Roy.Astron.Soc. 485 (2019) 4754-4789, arXiv:1808.00006.
[Ardevol-Pulpillo:2018btx]
[22-90]
In-medium enhancement of the modified Urca neutrino reaction rates, P. S. Shternin, M. Baldo, P. Haensel, Phys.Lett. B786 (2018) 28-34, arXiv:1807.06569.
[Shternin:2018dcn]
[22-91]
Elastic Scattering in General Relativistic Ray Tracing for Neutrinos, M. Brett Deaton et al., Phys.Rev. D98 (2018) 103014, arXiv:1806.10255.
[Deaton:2018ser]
[22-92]
Urca reactions during neutron star inspiral, Phil Arras, Nevin N. Weinberg, Mon.Not.Roy.Astron.Soc. 486 (2019) 1424-1436, arXiv:1806.04163.
[Arras:2018fxj]
[22-93]
Evaluating radiation transport errors in merger simulations using a Monte-Carlo algorithm, Francois Foucart et al., Phys.Rev. D98 (2018) 063007, arXiv:1806.02349.
[Foucart:2018gis]
[22-94]
Neutrino Emissivity in the Quark-Hadron Mixed Phase, William M. Spinella, Fridolin Weber, Milva G. Orsaria, Gustavo A. Contrera, Universe 4 (2018) 64, arXiv:1805.05772.
[Spinella:2018bdq]
[22-95]
Long-lived Remnants from Binary Neutron Star Mergers, David Radice, Albino Perego, Sebastiano Bernuzzi, Bing Zhang, Mon.Not.Roy.Astron.Soc. 481 (2018) 3670-3682, arXiv:1803.10865.
[Radice:2018xqa]
[22-96]
Beta equilibrium in neutron star mergers, Mark G. Alford, Steven P. Harris, Phys.Rev. C98 (2018) 065806, arXiv:1803.00662.
[Alford:2018lhf]
[22-97]
Neutron Star Cooling via Axion Emission by Nucleon-Nucleon Axion Bremsstrahlung, Avik Paul, Debasish Majumdar, Kamakshya Prasad Modak, Pramana 92 (2019) 44, arXiv:1801.07928.
[Paul:2018msp]
[22-98]
Dynamical phase transition in neutron stars, R Prasad, Ritam Mallick, Astrophys.J. 859 (2018) 57, arXiv:1801.01836.
[Prasad:2017msy]
[22-99]
Neutrino Annihilation Efficiency of Hyperaccreting Disk Around a Rotating Magnetars, Shuang Du, Fang-Kun Peng, Miao Li, Guang-Bo Long, Mon.Not.Roy.Astron.Soc. 482 (2019) 2973-2977, arXiv:1712.05964.
[Du:2017lzq]
[22-100]
Collisional Effects, Ion-Acoustic Waves and Neutrino Oscillations, Fernando Haas, Kellen Alves Pascoal, Jose Tito Mendonca, Phys.Plasmas 24 (2017) 052115, arXiv:1712.05345.
[Haas:2017dwr]
[22-101]
Instabilities and propagation of neutrino magnetohydrodynamic waves in arbitrary direction, Fernando Haas, Kellen Alves Pascoal, Phys.Plasmas 24 (2017) 092109, arXiv:1712.05328.
[Haas:2017ysk]
[22-102]
Cooling of hypernuclear compact stars, Adriana R. Raduta, Armen Sedrakian, Fridolin Weber, Mon.Not.Roy.Astron.Soc. 475 (2018) 4347, arXiv:1712.00584.
[Raduta:2017wpp]
[22-103]
Neutrino propagation in binary neutron star mergers in presence of nonstandard interactions, Amelie Chatelain, Maria Cristina Volpe, Phys.Rev.D 97 (2018) 023014, arXiv:1710.11518.
[Chatelain:2017yxx]
[22-104]
Deep Crustal Heating by Neutrinos from the Surface of Accreting Neutron Stars, F. J. Fattoyev et al., Phys.Rev. C98 (2018) 025801, arXiv:1710.10367.
[Fattoyev:2017ybi]
[22-105]
The role of weak interactions in dynamic ejecta from binary neutron star mergers, D. Martin, A. Perego, W. Kastaun, A. Arcones, Class.Quant.Grav. 35 (2018) 034001, arXiv:1710.04900.
[Martin:2017dhc]
[22-106]
Neutrino transport in black hole-neutron star binaries: neutrino emission and dynamical mass ejection, Koutarou Kyutoku, Kenta Kiuchi, Yuichiro Sekiguchi, Masaru Shibata, Keisuke Taniguchi, Phys.Rev. D97 (2018) 023009, arXiv:1710.00827.
[Kyutoku:2017voj]
[22-107]
Neutrino Spectra from Nuclear Weak Interactions in $sd$-Shell Nuclei Under Astrophysical Conditions, G. Wendell Misch, Yang Sun, George M. Fuller, Astrophys.J. 852 (2018) 43, arXiv:1708.08792.
[Misch:2017sgh]
[22-108]
Neutrino luminosities and heat capacities of neutron stars in analytic form, D. D. Ofengeim, M. Fortin, P. Haensel, D. G. Yakovlev, J. L. Zdunik, Phys.Rev. D96 (2017) 043002, arXiv:1708.08272.
[Ofengeim:2017xxr]
[22-109]
Neutrino Burst-Generated Gravitational Radiation From Collapsing Supermassive Stars, Jung-Tsung Li, George M. Fuller, Chad T. Kishimoto, Phys.Rev. D98 (2018) 023002, arXiv:1708.05292.
[Li:2017mfz]
[22-110]
Multi-angle calculation of the matter-neutrino resonance near an accretion disk, Shashank Shalgar, JCAP 1802 (2018) 010, arXiv:1707.07692.
[Shalgar:2017pzd]
[22-111]
Self-Gravity in Magnetized Neutrino-Dominated Accretion Discs, Narjes Shahamati, Shahram Abbassi, Astrophys.J. 845 (2017) 64, arXiv:1707.04296.
[Shahamat:2017yjg]
[22-112]
Net reaction rate and neutrino emissivity for the Urca process in departure from chemical equilibrium, Wei-Hua Wang, Xi Huang, Xiao-Ping Zheng, Phys.Rev. C95 (2017) 065802, arXiv:1706.04498.
[Wang:2017bea]
[22-113]
A Monte Carlo Approach to Magnetar-powered Transients: I. Hydrogen-deficient Superluminous Supernovae, Liang-Duan Liu et al., Astrophys.J. 842 (2017) 26, arXiv:1705.06047.
[Liu:2017upq]
[22-114]
Three-dimensional GRMHD simulations of the remnant accretion disks from neutron star mergers: outflows and r-process nucleosynthesis, Daniel M. Siegel, Brian D. Metzger, Phys.Rev.Lett. 119 (2017) 231102, arXiv:1705.05473.
[Siegel:2017nub]
[22-115]
Evolution of a proto-neutron star with a nuclear many-body equation of state: neutrino luminosity and gravitational wave frequencies, Giovanni Camelio et al., Phys.Rev. D96 (2017) 043015, arXiv:1704.01923.
[Camelio:2017nka]
[22-116]
Properties of Neutrino-driven Ejecta from the Remnant of Binary Neutron Star Merger : Purely Radiation Hydrodynamics Case, Sho Fujibayashi, Yuichiro Sekiguchi, Kenta Kiuchi, Masaru Shibata, Astrophys.J. 846 (2017) 114, arXiv:1703.10191.
[Fujibayashi:2017xsz]
[22-117]
Signatures of hypermassive neutron star lifetimes on r-process nucleosynthesis in the disk ejecta from neutron star mergers, Jonas Lippuner et al., Mon.Not.Roy.Astron.Soc. 472 (2017) 904, arXiv:1703.06216.
[Lippuner:2017bfm]
[22-118]
Cooling of neutron stars in soft X-ray transients, Sophia Han, Andrew W. Steiner, Phys.Rev. C96 (2017) 035802, arXiv:1702.08452.
[Han:2017jaj]
[22-119]
Analytic Closures for M1 Neutrino Transport, Lena Murchikova, Ernazar Abdikamalov, Todd Urbatsch, Mon.Not.Roy.Astron.Soc. 469 (2017) 1725-1737, arXiv:1701.07027.
[Murchikova:2017zsy]
[22-120]
Neutrino-heated winds from millisecond proto-magnetars as sources of the weak r-process, Andrey D. Vlasov, Brian D. Metzger, Jonas Lippuner, Luke F. Roberts, Todd A. Thompson, Mon.Not.Roy.Astron.Soc. 468 (2017) 1522, arXiv:1701.03123.
[Vlasov:2017nou]
[22-121]
Constraints on Bygone Nucleosynthesis of Accreting Neutron Stars, Zach Meisel, Alex Deibel, Astrophys.J. 837 (2017) 73, arXiv:1701.02730.
[Meisel:2017knt]
[22-122]
Neutrino pair annihilation above merger remnants: implications of a long-lived massive neutron star, Albino Perego, Hannah Yasin, Almudena Arcones, J.Phys. G44 (2017) 084007, arXiv:1701.02017.
[Perego:2017fho]
[22-123]
Analytic approximations of neutrino luminosities and heat capacities of neutron stars with nucleon cores, D. D. Ofengeim, M. Fortin, P. Haensel, D. G. Yakovlev, J. L. Zdunik, arXiv:1612.04672, 2016.
[Ofengeim:2016rkq]
[22-124]
On the PBF neutrino losses in superfluid cores of neutron stars, Lev B Leinson, arXiv:1611.03794, 2016.
[Leinson:2016dat]
[22-125]
Helicity coherence in binary neutron star mergers and non-linear feedback, Amelie Chatelain, Cristina Volpe, Phys.Rev. D95 (2017) 043005, arXiv:1611.01862.
[Chatelain:2016xva]
[22-126]
Thermal structures of accreting neutron stars with neutrino losses due to strong pion condensations, Yasuhide Matsuo et al., arXiv:1610.09100, 2016.
[Matsuo:2016sro]
[22-127]
Gap bridging enhancement of modified Urca process in nuclear matter, Mark G. Alford, Kamal Pangeni, Phys. Rev. C95 (2017) 015802, arXiv:1610.08617.
[Alford:2016cee]
[22-128]
Magnetorotational instability in neutron star mergers: impact of neutrinos, Jerome Guilet, Andreas Bauswein, Oliver Just, Hans-Thomas Janka, Mon.Not.Roy.Astron.Soc. 471 (2017) 1879-1887, arXiv:1610.08532.
[Guilet:2016sqd]
[22-129]
Metastable Pions in Dense Media, Marcelo Loewe, Alfredo Raya, Cristian Villavicencio, Phys.Rev. D95 (2017) 096013, arXiv:1610.05751.
[Loewe:2016wsk]
[22-130]
Microphysics in the gamma ray burst central engine, Agnieszka Janiuk, Astrophys.J. 837 (2017) 39, arXiv:1609.09361.
[Janiuk:2016zvw]
[22-131]
Numerical and analytical solutions of Neutrino-Dominated Accretion Flows with a Non-Zero Torque Boundary Condition and its applications in Gamma-ray Bursts, Wei Xie, Wei-Hua Lei, Ding-Xiong Wang, Astrophys.J. 833 (2016) 129, arXiv:1609.09183.
[Xie:2016iof]
[22-132]
Central Engine of Late-Time X-ray Flares with Internal Origin, Hui-Jun Mu et al., Astrophys.J. 832 (2016) 161, arXiv:1609.08290.
[Mu:2016lmv]
[22-133]
Neutrino emissivities and bulk viscosity in neutral two-flavor quark matter, J. Berdermann, D. Blaschke, T. Fischer, A. Kachanovich, Phys. Rev. D94 (2016) 123010, arXiv:1609.05201.
[Berdermann:2016mwt]
[22-134]
Fireballs from Superconducting Cosmic Strings, Andrei Gruzinov, Alexander Vilenkin, JCAP 1701 (2017) 029, arXiv:1608.05396.
[Gruzinov:2016hqs]
[22-135]
Role of medium modifications for neutrino-pair processes from nucleon-nucleon bremsstrahlung - Impact on the protoneutron star deleptonization, Tobias Fischer, Astron.Astrophys. 593 (2016) A103, arXiv:1608.05004.
[Fischer:2016boc]
[22-136]
Astrophysical aspects of neutrino dynamics in ultra-degenerate quark gluon plasma, Souvik Priyam Adhya, Adv.High Energy Phys. 2017 (2017) 1273931, arXiv:1608.01089.
[Adhya:2016wql]
[22-137]
The relevance of ambipolar diffusion for neutron star evolution, Andrea Passamonti, Taner Akgun, Jose A. Pons, Juan A. Miralles, Mon.Not.Roy.Astron.Soc. 465 (2017) 3416, arXiv:1608.00001.
[Passamonti:2016nmf]
[22-138]
Impact of an improved neutrino energy estimate on outflows in neutron star merger simulations, Francois Foucart et al., Phys. Rev. D94 (2016) 123016, arXiv:1607.07450.
[Foucart:2016rxm]
[22-139]
Theory of neutrino emission from nucleon-hyperon matter in neutron stars: Angular integrals, A. D. Kaminker, D. G. Yakovlev, P. Haensel, Astrophys.Space Sci. 361 (2016) 267, arXiv:1607.05265.
[Kaminker:2016ayg]
[22-140]
Nuclear neutrino energy spectra in high temperature astrophysical environments, G. Wendell Misch, George M. Fuller, Phys. Rev. C94 (2016) 055808, arXiv:1607.01448.
[Misch:2016iwm]
[22-141]
Magnetar Outbursts from Avalanches of Hall Waves and Crustal Failures, Xinyu Li, Yuri Levin, Andrei M. Belovorodov, Astrophys.J. 833 (2016) 189, arXiv:1606.04895.
[Li:2016xgt]
[22-142]
Rotating proto-neutron stars under strong magnetic fields, B. Franzon, V. Dexheimer, S. Schramm, Phys. Rev. D94 (2016) 044018, arXiv:1606.04843.
[Franzon:2016iai]
[22-143]
The Evolution and Fate of Super-Chandrasekhar Mass White Dwarf Merger Remnants, Josiah Schwab, Eliot Quataert, Daniel Kasen, Mon.Not.Roy.Astron.Soc. 463 (2016) 3461-3475, arXiv:1606.02300.
[Schwab:2016lep]
[22-144]
Magnetar heating, Andrei M. Beloborodov, Xinyu Li, Astrophys.J. 833 (2016) 261, arXiv:1605.09077.
[Beloborodov:2016mmx]
[22-145]
Sub-photospheric shocks in relativistic explosions, Andrei M. Beloborodov, Astrophys.J. 838 (2017) 125, arXiv:1604.02794.
[Beloborodov:2016jmz]
[22-146]
Mean-field study of hot beta-stable protoneutron star matter: Impact of the symmetry energy and nucleon effective mass, Ngo Hai Tan, Doan Thi Loan, Dao T. Khoa, Jerome Margueron, Phys. Rev. C93 (2016) 035806, arXiv:1603.02774.
[Tan:2016ypx]
[22-147]
Dynamical mass ejection from the merger of asymmetric binary neutron stars: Radiation-hydrodynamics study in general relativity, Yuichiro Sekiguchi, Kenta Kiuchi, Koutarou Kyutoku, Masaru Shibata, Keisuke Taniguchi, Phys. Rev. D93 (2016) 124046, arXiv:1603.01918.
[Sekiguchi:2016bjd]
[22-148]
A new insight into neutrino energy loss by electron capture of iron group nuclei in magnetars surface, Jing-Jing Liu, Wei-Min Gu, Astrophys.J.Suppl. 224 (2016) 29, arXiv:1603.01898.
[Liu:2016jrb]
[22-149]
Urca cooling pairs in the neutron star ocean and their effect on superbursts, Alex Deibel, Zach Meisel, Hendrik Schatz, Edward F. Brown, Andrew Cumming, Astrophys.J. 831 (2016) 13, arXiv:1603.01281.
[Deibel:2016lwm]
[22-150]
Unequal mass binary neutron star mergers and multimessenger signals, Luis Lehner et al., Class.Quant.Grav. 33 (2016) 184002, arXiv:1603.00501.
[Lehner:2016lxy]
[22-151]
Constraining white dwarf structure and neutrino physics in 47 Tucanae, Ryan Goldsbury, Jeremy Heyl, Harvey Richer, Jason Kalirai, Pier-Emmanuel Tremblay, Astrophys.J. 821 (2016) 27, arXiv:1602.06286.
[Goldsbury:2016ndn]
[22-152]
The Influence of Neutrinos on r-Process Nucleosynthesis in the Ejecta of Black Hole-Neutron Star Mergers, Luke F. Roberts et al., Mon.Not.Roy.Astron.Soc. 464 (2017) 3907-3919-3919, arXiv:1601.07942.
[Roberts:2016igt]
[22-153]
Effects of the tensor couplings on the nucleonic direct URCA processes in neutron star matter, Xu Yan, Huang Xiu-Lin, Liu Cheng-Zhi, Liu Guang-Zhou, arXiv:1601.07607, 2016.
[Yan:2016jxh]
[22-154]
Alpha-constrained QSE Nucleosynthesis in High-entropy and Fast-expanding Material, Sho Fujibayashi, Takashi Yoshida, Yuichiro Sekiguchi, Astrophys. J. 818 (2016) 96, arXiv:1601.03398.
[Fujibayashi:2016xbv]
[22-155]
On the spin evolution of a proto-neutron star, G. Camelio, L. Gualtieri, J.A. Pons, V. Ferrari, Phys. Rev. D94 (2016) 024008, arXiv:1601.02945.
[Camelio:2016fan]
[22-156]
Dynamical Mass Ejection from Binary Neutron Star Mergers, David Radice et al., Mon.Not.Roy.Astron.Soc. 460 (2016) 3255-3271, arXiv:1601.02426.
[Radice:2016dwd]
[22-157]
Evolutions of stellar-mass black hole hyperaccretion systems in the center of gamma-ray bursts, Cui-Ying Song et al., Astrophys. J. 815 (2015) 54, arXiv:1512.08028.
[Song:2015dar]
[22-158]
How Loud Are Neutron Star Mergers?, Sebastiano Bernuzzi et al., Phys. Rev. D94 (2016) 024023, arXiv:1512.06397.
[Bernuzzi:2015opx]
[22-159]
Infinite efficiency of collisional Penrose process: Can over-spinning Kerr geometry be the source of ultra-high-energy cosmic rays and neutrinos ?, Mandar Patil, Tomohiro Harada, Phys. Rev. D93 (2016) 104015, arXiv:1510.08205.
[Patil:2015fua]
[22-160]
Neutron-star merger ejecta as obstacles to neutrino-powered jets of gamma-ray bursts, Oliver Just, Martin Obergaulinger, H.-Thomas Janka, Andreas Bauswein, Nicole Schwarz, Astrophys. J. 816 (2016) L30, arXiv:1510.04288.
[Just:2015dba]
[22-161]
Nucleosynthesis in the Ejecta of Neutron Star Mergers, Dirk Martin, Albino Perego, Almudena Arcones, Oleg Korobkin, Friedrich-Karl Thielemann, PoS NICXIII (2014) 120, arXiv:1509.07628.
[Martin:2014ybv]
[22-162]
Cooling compact stars and phase transitions in dense QCD, Armen Sedrakian, Eur.Phys.J. A52 (2016) 44, arXiv:1509.06986.
[Sedrakian:2015qxa]
[22-163]
Inhomogeneous chiral symmetry breaking in dense neutron-star matter, Michael Buballa, Stefano Carignano, Eur.Phys.J. A52 (2016) 57, arXiv:1508.04361.
[Buballa:2015awa]
[22-164]
Statistical theory of thermal evolution of neutron stars - II. Limitations on direct Urca threshold, M. V. Beznogov, D. G. Yakovlev, Mon. Not. Roy. Astron. Soc. 452 (2015) 540, arXiv:1507.04206.
[Beznogov:2015ewa]
[22-165]
Monte Carlo Neutrino Transport Through Remnant Disks from Neutron Star Mergers, S. Richers, D. Kasen, Evan O'Connor, Rodrigo Fernandez, Christian Ott, Astrophys. J. 813 (2015) 38, arXiv:1507.03606.
[Richers:2015lma]
[22-166]
How does a Secular Instability Grow in a Hyperaccretion Flow?, Mariko Kimura, Shin Mineshige, Norita Kawanaka, Publ. Astron. Soc. Jap. 67 (2015) 101, arXiv:1507.01808.
[Kimura:2015zza]
[22-167]
Combustion of a hadronic star into a quark star: the turbulent and the diffusive regimes, Alessandro Drago, Giuseppe Pagliara, Phys. Rev. C92 (2015) 045801, arXiv:1506.08337.
[Drago:2015fpa]
[22-168]
Nucleosynthesis in neutrino-driven winds after neutron star mergers, Dirk Martin et al., Astrophys. J. 813 (2015) 2, arXiv:1506.05048.
[Martin:2015hxa]
[22-169]
Plastic damping of Alfven waves in magnetar flares and delayed afterglow emission, Xinyu Li, Andrei M. Beloborodov, Astrophys. J. 815 (2015) 25, arXiv:1505.03465.
[Li:2015epa]
[22-170]
The High-Energy Behavior of Photon, Neutrino and Proton Cross Sections, Carlos A. Arguelles, Francis Halzen, Logan Will, Mike Kroll, Mary Hall Reno, Phys. Rev. D92 (2015) 074040, arXiv:1504.06639.
[Arguelles:2015wba]
[22-171]
Impact of weak interactions of free nucleons on the r-process in dynamical ejecta from neutron-star mergers, Stephane Goriely, Andreas Bauswein, Oliver Just, Else Pllumbi, Hans-Thomas Janka, Mon. Not. Roy. Astron. Soc. 452 (2015) 3894, arXiv:1504.04377.
[Goriely:2015fqa]
[22-172]
Can black-hole neutrino-cooled disks power short gamma-ray bursts?, Tong Liu, Yi-Qing Lin, Shu-Jin Hou, Wei-Min Gu, Astrophys.J. 806 (2015) 58, arXiv:1504.02156.
[Liu:2015zta]
[22-173]
Collisionless Shocks and TeV Neutrinos before Supernova Shock Breakout from an Optically Thick Wind, G. Giacinti, A. R. Bell, Mon.Not.Roy.Astron.Soc. 449 (2015) 3693, arXiv:1503.04170.
[Giacinti:2015mea]
[22-174]
Vertical convection in neutrino-dominated accretion flows, Tong Liu, Wei-Min Gu, Norita Kawanaka, Ang Li, Astrophys.J. 805 (2015) 37, arXiv:1503.04054.
[Liu:2015eea]
[22-175]
Beyond Mixing-length Theory: a step toward 321D, W. David Arnett et al., arXiv:1503.00342, 2015.
[1503.00342]
[22-176]
The dynamical mass ejection from binary neutron star mergers: Radiation-hydrodynamics study in general relativity, Yuichiro Sekiguchi, Kenta Kiuchi, Koutarou Kyutoku, Masaru Shibata, Phys. Rev. D91 (2015) 064059, arXiv:1502.06660.
[Sekiguchi:2015dma]
[22-177]
Post-merger evolution of a neutron star-black hole binary with neutrino transport, Francois Foucart et al., Phys. Rev. D91 (2015) 124021, arXiv:1502.04146.
[Foucart:2015vpa]
[22-178]
Time Dependent Hadronic Modeling of Flat Spectrum Radio Quasars, Christopher Diltz, Markus Boettcher, Giovanni Fossati, Astrophys.J. 802 (2015) 133, arXiv:1502.03950.
[Diltz:2015kha]
[22-179]
Magnetar superconductivity versus magnetism: neutrino cooling processes, Monika Sinha, Armen Sedrakian, Phys. Rev. C91 (2015) 035805, arXiv:1502.02979.
[Sinha:2015bva]
[22-180]
The effects of delta mesons on the baryonic direct Urca processes in neutron star matter, Xiu-Lin Huang, Hai-Jun Wang, Guang-Zhou Liu, Yan Xu, Chin. Phys. C39 (2015) 105102, arXiv:1502.01460.
[Huang:2015nua]
[22-181]
Nuclear Equation of State and Neutron Star Cooling, Yeunhwan Lim, Chang Ho Hyun, Chang-Hwan Lee, Int.J.Mod.Phys. E26 (2017) 1750015, arXiv:1501.04397.
[Lim:2015lia]
[22-182]
Statistical theory of thermal evolution of neutron stars, M. V. Beznogov, D. G. Yakovlev, Mon.Not.Roy.Astron.Soc. 447 (2015) 1598-1609, arXiv:1411.6803.
[Beznogov:2014yia]
[22-183]
Neutrino-pair bremsstrahlung from nucleon-$\alpha$ versus nucleon-nucleon scattering, Rishi Sharma, Sonia Bacca, Achim Schwenk, Phys. Rev. C91 (2015) 042801, arXiv:1411.3266.
[Sharma:2014isa]
[22-184]
Selfsimilarity relations for cooling superfluid neutron stars, P.S. Shternin, D.G. Yakovlev, Mon.Not.Roy.Astron.Soc. 446 (2015) 3621-3630, arXiv:1411.0150.
[Shternin:2014fea]
[22-185]
Neutrino-pair bremsstrahlung in a neutron star crust, D. D. Ofengeim, A. D. Kaminker, D. G. Yakovlev, Europhys.Lett. 108 (2014) 31002, arXiv:1410.7301.
[Ofengeim:2014nca]
[22-186]
SHM of Galaxies Embedded within Condensed Neutrino Matter, Peter D. Morley, Douglas J. Buettner, Int.J.Mod.Phys. D24 (2014) 1550004, arXiv:1410.6788.
[Morley:2014dda]
[22-187]
Outflows from accretion disks formed in neutron star mergers: effect of black hole spin, Rodrigo Fernandez, Daniel Kasen, Brian D. Metzger, Eliot Quataert, Mon.Not.Roy.Astron.Soc. 446 (2015) 750-758, arXiv:1409.4426.
[Fernandez:2014cna]
[22-188]
Study of Gamow-Teller transitions in isotopes of titanium within the quasi particle random phase approximation, Sadiye Cakmak, Jameel-Un Nabi, Tahsin Babacan, Cevad Selam, Astrophys.Space Sci. 352 (2014) 645-663, arXiv:1408.4886.
[Cakmak:2014yna]
[22-189]
Expanded calculation of weak-interaction mediated neutrino cooling rates due to $^{56}$Ni in stellar matter, Jameel-Un Nabi, Phys.Scripta 81 (2010) 025901, arXiv:1408.3489.
[Nabi:2010ppr]
[22-190]
Jet formation in GRBs: A semi-analytic model of MHD flow in Kerr geometry with realistic plasma injection, Noemie Globus, Amir Levinson, Astrophys.J. 796 (2014) 26, arXiv:1408.0126.
[Globus:2014eaa]
[22-191]
Comprehensive nucleosynthesis analysis for ejecta of compact binary mergers, Oliver Just, Andreas Bauswein, Ricard Ardevol Pulpillo, Stephane Goriely, H.-Thomas Janka, Mon.Not.Roy.Astron.Soc. 448 (2015) 541, arXiv:1406.2687.
[Just:2014fka]
[22-192]
Thermal emission of neutron stars with internal heaters, A. D. Kaminker, A. A. Kaurov, A. Y. Potekhin, D. G. Yakovlev, Mon.Not.Roy.Astron.Soc. 442 (2014) 3484, arXiv:1406.0723.
[Kaminker:2014wna]
[22-193]
The role of hadronic cascades in GRB models of efficient neutrino production, Maria Petropoulou, Mon.Not.Roy.Astron.Soc. 442 (2014) 3026-3036, arXiv:1405.7669.
[Petropoulou:2014awa]
[22-194]
Episodic jet power extracted from a spinning black hole surrounded by a neutrino-dominated accretion flow in gamma-ray bursts, Xinwu Cao, En-Wei Liang, Ye-Fei Yuan, Astrophys.J. 789 (2014) 129, arXiv:1405.7097.
[Cao:2014fra]
[22-195]
Neutrino-heated winds from rotating proto-magnetars, Andrey D. Vlasov, Brian D. Metzger, Todd A. Thompson, Mon.Not.Roy.Astron.Soc. 444 (2014) 3537, arXiv:1405.7043.
[Vlasov:2014ara]
[22-196]
Neutrino-driven winds from neutron star merger remnants, Albino Perego et al., Mon.Not.Roy.Astron.Soc. 443 (2014) 3134, arXiv:1405.6730.
[Perego:2014fma]
[22-197]
Neutrino diffusive transport in hot quark matter: a detailed analysis, Gustavo C. Colvero, German Lugones, Phys. Rev. C89 (2014) 055803, arXiv:1405.3294.
[Colvero:2014zfa]
[22-198]
Neutron star-black hole mergers with a nuclear equation of state and neutrino cooling: Dependence in the binary parameters, Francois Foucart et al., Phys. Rev. D90 (2014) 024026, arXiv:1405.1121.
[Foucart:2014nda]
[22-199]
Nucleon effective masses within the Brueckner-Hartree-Fock theory: Impact on stellar neutrino emission, M. Baldo, G. F. Burgio, H.-J. Schulze, G. Taranto, Phys. Rev. C89 (2014) 048801, arXiv:1404.7031.
[Baldo:2014yja]
[22-200]
Magnetized Neutron Stars With Realistic Equations of State and Neutrino Cooling, David Neilsen et al., Phys. Rev. D89 (2014) 104029, arXiv:1403.3680.
[Neilsen:2014hha]
[22-201]
Mass loss of massive stars near the Eddington luminosity by core neutrino emission shortly before their explosion, Takashi J. Moriya, Astron.Astrophys. 564 (2014) A83, arXiv:1403.2731.
[Moriya:2014aua]
[22-202]
Quark beta decay in the inhomogeneous chiral phase and cooling of compact stars, Toshitaka Tatsumi, Takumi Muto, Phys. Rev. D89 (2014) 103005, arXiv:1403.1927.
[Tatsumi:2014cea]
[22-203]
Production of all the r-process nuclides in the dynamical ejecta of neutron star mergers, Shinya Wanajo et al., Astrophys.J. 789 (2014) L39, arXiv:1402.7317.
[Wanajo:2014wha]
[22-204]
Red or blue? A potential kilonova imprint of the delay until black hole formation following a neutron star merger, Brian D. Metzger, Rodrigo Fernandez, Mon.Not.Roy.Astron.Soc. 441 (2014) 3444, arXiv:1402.4803.
[Metzger:2014ila]
[22-205]
Neutrino emissivity from Goldstone boson decay in magnetized neutron matter, Paulo Bedaque, Srimoyee Sen, Phys. Rev. C89 (2014) 035808, arXiv:1312.6632.
[Bedaque:2013rya]
[22-206]
Neutrino scattering from hydrodynamic modes in hot and dense neutron matter, Gang Shen, Sanjay Reddy, Phys. Rev. C89 (2014) 032802, arXiv:1311.6096.
[Shen:2013kxa]
[22-207]
Neutral current interactions of low-energy neutrinos in dense neutron matter, Alessandro Lovato, Omar Benhar, Stefano Gandolfi, Cristina Losa, Phys. Rev. C89 (2014) 025804, arXiv:1310.0510.
[Lovato:2013dva]
[22-208]
Quark deconfinement in protoneutron star cores: effect of color superconductivity within the MIT bag model, Taiza A. S. do Carmo, German Lugones, Physica A392 (2013) 6536-6544, arXiv:1308.4461.
[doCarmo:2013btr]
[22-209]
Three-body force effect on neutrino emissivities of neutron stars within the framework of the Brueckner-Hartree-Fock approach, Peng Yin, Wei Zuo, Phys. Rev. C 88, 015804 (2013) 015804, arXiv:1307.3145.
[Yin:2013vra]
[22-210]
The longterm evolution of neutron star merger remnants II: radioactively powered transients, Doron Grossman, Oleg Korobkin, Stephan Rosswog, Tsvi Piran, Mon.Not.Roy.Astron.Soc. 439 (2014) 757-770, arXiv:1307.2943.
[Grossman:2013lqa]
[22-211]
The longterm evolution of neutron star merger remnants I: the impact of r-process nucleosynthesis, S. Rosswog, O. Korobkin, A. Arcones, F.-K. Thielemann, Mon.Not.Roy.Astron.Soc. 439 (2014) 744-756, arXiv:1307.2939.
[Rosswog:2013kqa]
[22-212]
Cooling-induced structure formation and evolution in collapsars, Aldo Batta, William H. Lee, Mon.Not.Roy.Astron.Soc. 437 (2014) 2412, arXiv:1307.2339.
[Batta:2013tfa]
[22-213]
Implementation of a simplified approach to radiative transfer in general relativity, Filippo Galeazzi, Wolfgang Kastaun, Luciano Rezzolla, Jose A. Font, PRD 88, 064009 (2013) 064009, arXiv:1306.4953.
[Galeazzi:2013mia]
[22-214]
The Influence of Thermal Pressure on Hypermassive Neutron Star Merger Remnants, J. D. Kaplan et al., Phys. Rev. D88 (2013) 064009, arXiv:1306.4034.
[Kaplan:2013wra]
[22-215]
Collective baryon decay and gravitational collapse, George Chapline, James Barbieri, Int.J.Mod.Phys. D23 (2014) 1450025, arXiv:1306.1067.
[Chapline:2013gza]
[22-216]
Relativistic global solutions of neutrino-dominated accretion flows, Li Xue, Tong Liu, Wei-Min Gu, Ju-Fu Lu, Astrophys.J.Suppl. 207 (2013) 23, arXiv:1306.0655.
[Xue:2013boa]
[22-217]
On Ultrahigh-energy Neutrino Scattering, Masaaki Kuroda, Dieter Schildknecht, Phys. Rev. D88 (2013) 053007, arXiv:1305.0400.
[Kuroda:2013zca]
[22-218]
Conservative 3+1 General Relativistic Boltzmann Equation, Christian Y. Cardall, Eirik Endeve, Anthony Mezzacappa, Phys. Rev. D88 (2013) 023011, arXiv:1305.0037.
[Cardall:2013kwa]
[22-219]
Cumulative physical uncertainty in modern stellar models. II. The dependence on the chemical composition, G. Valle, M. Dell'Omodarme, P.G. Prada Moroni, S. Degl'Innocenti, A&A, 554, A68 (2013), arXiv:1304.7658.
[Valle:2013nwa]
[22-220]
Delayed outflows from black hole accretion tori following neutron star binary coalescence, Rodrigo Fernandez, Brian D. Metzger, Mon.Not.Roy.Astron.Soc. 435 (2013) 502, arXiv:1304.6720.
[Fernandez:2013tya]
[22-221]
Thermal 2-loop master spectral function at finite momentum, M. Laine, JHEP 1305 (2013) 083, arXiv:1304.0202.
[Laine:2013vpa]
[22-222]
Stellar Superfluids, Dany Page, James M. Lattimer, Madappa Prakash, Andrew W. Seiner, arXiv:1302.6626, 2013.
[Page:2013hxa]
[22-223]
Global Neutrino Heating in Hyperaccretion Flows, Shu Luo, Feng Yuan, Mon.Not.Roy.Astron.Soc. 431 (2013) 2362, arXiv:1301.1102.
[Luo:2013zx]
[22-224]
The consequence of total lepton number violation in strongly magnetized white dwarfs, V.B. Belyaev, P. Ricci, F. Simkovic, E. Truhlik, Nucl. Phys. A937 (2015) 17-43, arXiv:1212.3155.
[Belyaev:2012mp]
[22-225]
Neutrino Masses in a Neutrinosphere, Leonard S. Kisslinger, Mod. Phys. Lett. A, Vol. 28, No. 34 (2013) 1350153, arXiv:1211.3348.
[Kisslinger:2012rt]
[22-226]
Dynamics of neutrino-driven winds: inclusion of accurate weak interaction rates in strong magnetic fields, Men-Quan Liu, Zhong-Xiang Wang, Res. Astron. Astrophys. 13 (2013) 207-214, arXiv:1210.3452.
[Liu:2012vf]
[22-227]
Radial Angular Momentum Transfer and Magnetic Barrier for Short-Type Gamma-Ray Burst Central Engine Activity, Tong Liu et al., Astrophys. J. 760 (2012) 63, arXiv:1209.4522.
[Liu:2012ek]
[22-228]
Hyper-accreting black hole as GRB central engine. I: Baryon loading in GRB jets, Wei-Hua Lei, Bing Zhang, En-Wei Liang, Astrophys.J. 765 (2013) 125, arXiv:1209.4427.
[Lei:2012df]
[22-229]
Vertical Structure of Neutrino Dominated Accretion Disks and Neutrino Transport in the disks, Zhen Pan, Ye-Fei Yuan, Astrophys. J. 759 (2012) 82, arXiv:1209.1163.
[Pan:2012hx]
[22-230]
The time-dependent one-zone hadronic model - First principles, S. Dimitrakoudis, A. Mastichiadis, R. J. Protheroe, A. Reimer, Astron.Astrophys. 546 (2012) A120, arXiv:1209.0413.
[Dimitrakoudis:2012uf]
[22-231]
On the Transport Properties of a Quark-Hadron Coulomb Lattice in the Cores of Neutron Stars, Xuesen Na, Renxin Xu, Fridolin Weber, Rodrigo Negreiros, Phys. Rev. D86 (2012) 123016, arXiv:1208.5022.
[Na:2012td]
[22-232]
Radiation Magnetohydrodynamics for Black Hole-Torus System in Full General Relativity: A Step toward Physical Simulation, Masaru Shibata, Yuichiro Sekiguchi, Prog. Theor. Phys. 127 (2012) 535, arXiv:1206.5911.
[Shibata:2012zz]
[22-233]
Spin Response and Neutrino Emissivity of Dense Neutron Matter, G. Shen, S. Gandolfi, S. Reddy, J. Carlson, Phys. Rev. C87 (2013) 025802, arXiv:1205.6499.
[Shen:2012sa]
[22-234]
Hadron-Quark Crossover and Massive Hybrid Stars with Strangeness, Kota Masuda, Tetsuo Hatsuda, Tatsuyuki Takatsuka, Astrophys. J. 764 (2013) 12, arXiv:1205.3621.
[Masuda:2012kf]
[22-235]
Particle transport in magnetized media around black holes and associated radiation, Florencia L. Vieyro, Gustavo E. Romero, Astron.Astrophys. 542 (2012) A7, arXiv:1204.4469.
[Vieyro:2012fq]
[22-236]
Next to leading order non Fermi liquid corrections to the neutrino emissivity and cooling of the neutron star, Souvik Priyam Adhya, Pradip K. Roy, Abhee K. Dutt-Mazumder, Phys. Rev. D86 (2012) 034012, arXiv:1204.2684.
[Adhya:2012sq]
[22-237]
Neutrino and anti-neutrino transport in accretion disks, Zhen Pan, Ye-Fei Yuan, Phys. Rev. D85 (2012) 064004, arXiv:1202.1901.
[Pan:2012bw]
[22-238]
Amorphous state in the mixed phase of quark-hadron phase transition in protoneutron stars, Nobutoshi Yasutake, Toshiki Maruyama, Toshitaka Tatsumi, Phys. Rev. D86 (2012) 101302, arXiv:1202.0143.
[Yasutake:2012hy]
[22-239]
Neutrino Emission from Magnetized Proto-Neutron Stars in Relativistic Mean Field Theory, Tomoyuki Maruyama et al., Phys. Rev. D86 (2012) 123003, arXiv:1201.3455.
[Maruyama:2012hf]
[22-240]
Vertex renormalization of weak interactions in compact stars: beyond leading order, Armen Sedrakian, Phys. Rev. C86 (2012) 025803, arXiv:1201.1394.
[Sedrakian:2012ha]
[22-241]
Neutrino processes in partially degenerate neutron matter, S. Bacca et al., Astrophys. J. 758 (2012) 34, arXiv:1112.5185.
[Bacca:2011qd]
[22-242]
The influence of outflows on the 1/f-like luminosity fluctuations, Da-Bin Lin, Wei-Min Gu, Tong Liu, Ju-Fu Lu, Mon. Not. Roy. Astron. Soc. 421 (2012) 308-313, arXiv:1112.0355.
[Lin:2011zb]
[22-243]
Proto-Neutron Star Cooling with Convection: The Effect of the Symmetry Energy, Luke F. Roberts et al., Phys. Rev. Lett. 108 (2012) 061103, arXiv:1112.0335.
[Roberts:2011yw]
[22-244]
Comment on 'Ultrahigh-Energy Neutrino-Nucleon Deep-Inelastic Scattering and the Froissart Bound': Phys. Rev. Lett. 106, 231802 (2011), Martin M. Block, Phuoc Ha, Douglas W. McKay, arXiv:1110.6665, 2011.
[Block:2011sz]
[22-245]
Neutrino emissivity of $^{3}P_{2}$-$^{3}F_{2}$ superfluid cores in neutron stars, L. B. Leinson, Phys. Rev. C84 (2011) 045501, arXiv:1110.2145.
[Leinson:2011jr]
[22-246]
Revisiting vertical structure of neutrino-dominated accretion disks: Bernoulli parameter, neutrino trapping and other distributions, Tong Liu, Wei-Min Gu, Li Xue, Ju-Fu Lu, Astrophys. Space Sci. 337 (2012) 23, arXiv:1110.1719.
[Liu:2011ct]
[22-247]
Spin excitonic and diffusive modes in superfluid Fermi liquids, E.E. Kolomeitsev, D.N. Voskresensky, Phys. Rev. C84 (2011) 068801, arXiv:1108.5899.
[Kolomeitsev:2011wz]
[22-248]
$\beta$-decay of key titanium isotopes in stellar environment, Jameel-Un Nabi, Irgaziev Bakhadir, Int. J Mod. Phys. E20 (2011) 705-719, arXiv:1108.1026.
[Nabi:2011rp]
[22-249]
Neutrino and antineutrino energy loss rates in massive stars due to isotopes of titanium, Jameel-Un Nabi, Int. J. Mod. Phys. E19 (2010) 63-77, arXiv:1108.1010.
[Nabi:2010zz]
[22-250]
New eigen-mode of spin oscillations in the triplet superfluid condensate in neutron stars, L. B. Leinson, Phys. Lett. B702 (2011) 422-428, arXiv:1107.4025.
[Leinson:2011wf]
[22-251]
Pion stability in a hot dense media, M. Loewe, C. Villavicencio, arXiv:1107.3859, 2011.
[Loewe:2011tm]
[22-252]
High energy neutrino-photon interactions in the standard model revisited, I. Alikhanov, Phys.Lett. B710 (2012) 149-153, arXiv:1106.5414.
[Alikhanov:2011zf]
[22-253]
Oscillations of hot, young neutron stars: Gravitational wave frequencies and damping times, G.F. Burgio, V. Ferrari, L. Gualtieri, H.J. Schulze, Phys. Rev. D84 (2011) 044017, arXiv:1106.2736.
[Burgio:2011qe]
[22-254]
Ultrahigh-energy neutrino-nucleon deep-inelastic scattering and the Froissart bound, Alexey Yu. Illarionov, Bernd A. Kniehl, Anatoly V. Kotikov, Phys. Rev. Lett. 106 (2011) 231802, arXiv:1105.2829. 5 pages, 2 figures, to appear in Physical Review Letters.
[Illarionov:2011wc]
[22-255]
Non-Fermi liquid corrections to the neutrino mean free path in dense quark matter, Kausik Pal, Abhee K. Dutt-Mazumder, Phys. Rev. D84 (2011) 034004, arXiv:1101.3870.
[Pal:2011ve]
[22-256]
Nucleon-Nucleon Scattering in a Strong External Magnetic Field and the Neutrino Emissivity, E. Bavarsad, M. Haghighat, R. Mohammadi, Phys. Rev. D82 (2010) 105015, arXiv:1010.3906.
[Bavarsad:2010he]
[22-257]
Electron-positron energy deposition rate from neutrino pair annihilation on the rotation axis of neutron and quark stars, Z. Kovacs, K. S. Cheng, T. Harko, Mon. Not. Roy. Astron. Soc. 411 (2011) 1503-1524, arXiv:1009.6029.
[Kovacs:2010zp]
[22-258]
Numerical Simulation of the Hydrodynamical Combustion to Strange Quark Matter, Brian Niebergal, Rachid Ouyed, Prashanth Jaikumar, Phys. Rev. C82 (2010) 062801, arXiv:1008.4806.
[Niebergal:2010ds]
[22-259]
General Relativistic Ray-Tracing Method for Estimating the Energy and Momentum Deposition by Neutrino Pair Annihilation in Collapsars, Seiji Harikae, Kei Kotake, Tomoya Takiwaki, Yu-ichiro Sekiguchi, Astrophys. J. 720 (2010) 614-625, arXiv:1007.3165.
[Harikae:2010yt]
[22-260]
Additional Acceleration of Protons and Energetic Neutrino Production in a Filamentary Jet of the Blazar Markarian 501, Y. S. Honda, M. Honda, Publ.Astron.Soc.Jap. 62 (2010) 735-742, arXiv:1007.0901.
[Honda:2010sj]
[22-261]
Jet Precession Driven by Neutrino-Cooled Disc for Gamma-Ray Bursts, Tong Liu et al., Astron.Astrophys. 516 (2010) A16, arXiv:1003.4883.
[Liu:2010fn]
[22-262]
Transition density and pressure in hot neutron stars, Jun Xu, Lie-Wen Chen, Che Ming Ko, Bao-An Li, Phys. Rev. C81 (2010) 055805, arXiv:1003.3695.
[Xu:2010iv]
[22-263]
Protoneutron stars in the Brueckner-Hartree-Fock approach and finite-temperature kaon condensation, A. Li, X. R. Zhou, G. F. Burgio, H.-J. Schulze, Phys. Rev. C81 (2010) 025806, arXiv:1002.0642.
[Li:2010yc]
[22-264]
Quark mass effects in high energy neutrino nucleon scattering, Yu Seon Jeong, M. H. Reno, Phys. Rev. D81 (2010) 114012, arXiv:1001.4175.
[Jeong:2010za]
[22-265]
Neutrino emission from spin waves in neutron spin-triplet superfluid, L. B. Leinson, Phys.Lett. B689 (2010) 60-65, arXiv:1001.2617.
[Leinson:2010yf]
[22-266]
Neutrino flavor oscillations in rotating matter, Maxim Dvornikov, Azerbaijan Astron.J. 6 (2011) 5-17, arXiv:1001.2516.
[Dvornikov:2010wc]
[22-267]
On Stimulated Radiation of Black Holes, J. Ridky, AIP Conf.Proc. 1178 (2009) 142-146, arXiv:0912.5387.
[Ridky:2009zz]
[22-268]
Vertical Structure of Neutrino-Dominated Accretion Disk and Applications to Gamma-Ray Bursts, Tong Liu, Wei-Min Gu, Zi-Gao Dai, Ju-Fu Lu, Astrophys. J. 709 (2010) 851-855, arXiv:0912.3596.
[Liu:2009zy]
[22-269]
Radiative viscosity of neutron stars, Shu-Hua Yang, Xiao-Ping Zheng, Chun-Mei Pi, Phys. Lett. B683 (2010) 255-258, arXiv:0912.3055.
[Yang:2009iw]
[22-270]
Neutrino Emissivity of Non-equilibrium beta processes With Nucleon Superfluidity, Chun-Mei Pi, Xiao-Ping Zheng, Shu-Hua Yang, Phys. Rev. C81 (2010) 045802, arXiv:0912.2884.
[Pi:2009eq]
[22-271]
Electroweak stars: how nature may capitalize on the standard model's ultimate fuel, De-Chang Dai, Arthur Lue, Glenn Starkman, Dejan Stojkovic, JCAP 1012 (2010) 004, arXiv:0912.0520.
[Dai:2009br]
[22-272]
Hyperaccreting Disks around Magnetars for Gamma-Ray Bursts: Effects of Strong Magnetic Fields, Dong Zhang, Z. G. Dai, Astrophys. J. 718 (2010) 841-866, arXiv:0911.5528.
[Zhang:2009ew]
[22-273]
Electron-positron energy deposition rate from neutrino pair annihilation in the equatorial plane of rapidly rotating neutron and quark stars, Z. Kovacs, K. S. Cheng, T. Harko, Mon.Not.Roy.Astron.Soc. 402 (2010) 1714, arXiv:0911.1188.
[Kovacs:2009dv]
[22-274]
The role of black hole spin and magnetic field threading the unstable neutrino disk in Gamma Ray Bursts, Agnieszka Janiuk, Ye-Fei Yuan, Astron.Astrophys. 509 (2010) 55, arXiv:0911.0395.
[Janiuk:2009gc]
[22-275]
Cooling of Hybrid Stars with Spin Down Compression, Kang Miao, Wang Xiao-Dong, Pan Na-Na, Res. Astron. Astrophys. 9 (2009) 1351-1358, arXiv:0909.3671.
[Kang:2009eti]
[22-276]
Neutrino self-energy in external magnetic field, Andrea Erdas, Phys. Rev. D80 (2009) 113004, arXiv:0908.4297.
[Erdas:2009zh]
[22-277]
Dissipation of radial oscillations in compact stars, Basil A. Sa'd, Jurgen Schaffner-Bielich, arXiv:0908.4190, 2009.
[Sad:2009hba]
[22-278]
Propagation of ultrahigh energy nuclei in clusters of galaxies: resulting composition and secondary emissions, K. Kotera et al., Astrophys. J. 707 (2009) 370-386, arXiv:0907.2433.
[Kotera:2009ms]
[22-279]
Spin-down of neutron stars by neutrino emission, Maxim Dvornikov, Claudio O. Dib, Phys. Rev. D82 (2010) 043006, arXiv:0907.1445.
[Dvornikov:2009rk]
[22-280]
Flux calculations in an inhomogeneous Universe: weighting a flux-limited galaxy sample, Hylke B. J. Koers, Peter Tinyakov, Mon.Not.Roy.Astron.Soc. 399 (2009) 1005, arXiv:0907.0121.
[Koers:2009pd]
[22-281]
Magnetically Torqued Neutrino-Dominated Accretion Flows for Gamma-ray Bursts, W. H. Lei et al., Astrophys. J. 700 (2009) 1970-1976, arXiv:0906.1635.
[Lei:2009fx]
[22-282]
Neutrino Emission from Cooper Pairs and Minimal Cooling of Neutron Stars, Dany Page, James M. Lattimer, Madappa Prakash, Andrew W. Steiner, Astrophys. J. 707 (2009) 1131-1140, arXiv:0906.1621.
[Page:2009fu]
[22-283]
Accretion of a massive magnetized torus on a rotating black hole, Maxim V. Barkov, Anton N. Baushev, New Astron. 16 (2011) 46-56, arXiv:0905.4440.
[Barkov:2009zb]
[22-284]
General Relativistic effect on the energy deposition rate for neutrino pair annihilation above the equatorial plane along the symmetry axis near a rotating neutron star, Abhijit Bhattacharyya, Sanjay K. Ghosh, Ritam Mallick, Sibaji Raha, Int.J.Mod.Phys. E22 (2013) 1350008, arXiv:0905.3605.
[Mallick:2009nvq]
[22-285]
Phase transitions and He-synthesis driven winds in neutrino cooled accretion disks: prospects for late flares in short gamma-ray bursts, William H. Lee, Enrico Ramirez-Ruiz, Diego-Lopez-Camara, Astrophys. J. 699 (2009) L93-L96, arXiv:0904.3752.
[Lee:2009uc]
[22-286]
Superfluid response and the neutrino emissivity of baryon matter. Fermi-liquid effects, L. B. Leinson, Phys. Rev. C79 (2009) 045502, arXiv:0904.0320.
[Leinson:2009mq]
[22-287]
NSE neutrino spectrum, Andrzej Odrzywolek, Phys. Rev. C80 (2009) 045801, arXiv:0903.2311.
[Odrzywolek:2009wa]
[22-288]
Pion condensation in a dense neutrino gas, Hiroaki Abuki, Tomas Brauner, Harmen J. Warringa, Eur. Phys. J. C64 (2009) 123-131, arXiv:0901.2477.
[Abuki:2009hx]
[22-289]
Hyperaccreting Neutron-Star Disks and Neutrino Annihilation, Dong Zhang, Z. G. Dai, Astrophys. J. 703 (2009) 461-478, arXiv:0901.0431.
[Zhang:2009vn]
[22-290]
Constraints on amplitudes of curvature perturbations from PBHs, Edgar Bugaev, Peter Klimai, Phys. Rev. D79 (2009) 103511, arXiv:0812.4247.
[Bugaev:2008gw]
[22-291]
Short-range nucleon correlations and neutrino emission by neutron stars at low temperatures, Leonid Frankfurt, Mark Strikman, AIP Conf. Proc. 1056 (2008) 241-247, arXiv:0806.0997.
[Frankfurt:2008ke]
[22-292]
Neutrino orbital angular momentum in a plasma vortex, J. T. Mendonca, B. Thide, Europhys. Lett. 84 (2008) 41001, arXiv:0804.3213.
[Mendonca:2008ag]
[22-293]
Superfluid Response and the Neutrino Emissivity of Neutron Matter, Andrew W. Steiner, Sanjay Reddy, Phys. Rev. C79 (2009) 015802, arXiv:0804.0593.
[Steiner:2008qz]
[22-294]
r-Process Nucleosynthesis in Hot Accretion Disk Flows from Black Hole - Neutron Star Mergers, R. Surman, G.C. McLaughlin, M. Ruffert, H.-Th. Janka, W.R. Hix, Astrophys. J. 679 (2008) L117, arXiv:0803.1785.
[Surman:2008qf]
[22-295]
Coherence and oscillations of cosmic neutrinos, Yasaman Farzan, Alexei Yu Smirnov, Nucl. Phys. B805 (2008) 356-376, arXiv:0803.0495.
[Farzan:2008eg]
[22-296]
Neutrino emission due to Cooper-pair recombination in neutron stars revisited, E.E. Kolomeitsev, D.N. Voskresensky, Phys. Rev. C77 (2008) 065808, arXiv:0802.1404.
[Kolomeitsev:2008mc]
[22-297]
Neutrino Emission From Inhomogeneous Pion Condensed Quark Matter, Xuguang Huang, Qun Wang, Pengfei Zhuang, Int. J. Mod. Phys. E17 (2008) 1906-1916, arXiv:0710.3634.
[Huang:2007cr]
[22-298]
2D Cooling of Magnetized Neutron Stars, Deborah N. Aguilera, Jose A. Pons, Juan A. Miralles, Astron. Astrophys. 486 (2008) 255-271, arXiv:0710.0854.
[Aguilera:2007xk]
[22-299]
Charged Current Neutrino Cross Section and Tau Energy Loss at Ultra-High Energies, N. Armesto, C. Merino, G. Parente, E. Zas, Phys. Rev. D77 (2008) 013001, arXiv:0709.4461.
[Armesto:2007tg]
[22-300]
Semiclassical theory of charged pion radiation by nucleons in a strong homogeneous magnetic field, T. Herpay, A. Patkos, J. Phys. G35 (2008) 025201, arXiv:0707.4105.
[Herpay:2007vu]
[22-301]
Effect of General Relativity and rotation on the energy deposition rate for \nu + \bar{\nu} \to e^+ + e^- inside a compact star, Abhijit Bhattacharyya, Sanjay K. Ghosh, Ritam Mallick, Sibaji Raha, arXiv:0707.2475, 2007.
[Bhattacharyya:2007rg]
[22-302]
Neutrino Emission From Direct Urca Processes in Pion Condensed Quark Matter, Xuguang Huang, Qun Wang, Pengfei Zhuang, Phys. Rev. D76 (2007) 094008, arXiv:0706.4381.
[Huang:2007jw]
[22-303]
Phase Space Constraints on Neutrino Luminosities, C. Sivaram, Kenath Arun, Samartha C A, Mod. Phys. Lett. A23 (2008) 1470-1477, arXiv:0706.4355.
[Sivaram:2007jg]
[22-304]
Neutrino Cooled Disk and Its Stability, Norita Kawanaka, Shin Mineshige, Astrophys. J. 662 (2007) 1156-1166, arXiv:astro-ph/0702630.
[Kawanaka:2007sb]
[22-305]
Structure and Luminosity of Neutrino-cooled Accretion Disks, Tong Liu, Wei-Min Gu, Li Xue, Ju-Fu Lu, Astrophys. J. 661 (2007) 1025-1033, arXiv:astro-ph/0702186.
[Liu:2007bca]
[22-306]
Neutrino emissivities in 2SC color-superconducting quark matter, J. Berdermann, Phys. Part. Nucl. 39 (2008) 1163-1166, arXiv:astro-ph/0702124.
[Berdermann:2007mx]
[22-307]
The quark core of protoneutron stars in the phase diagram of quark matter, F. Sandin, D. Blaschke, Phys. Rev. D75 (2007) 125013, arXiv:astro-ph/0701772.
[Sandin:2007zr]
[22-308]
Trapping of neutrinos in extremely compact stars, Zdenek Stuchlik et al., arXiv:astro-ph/0701309, 2007.
[Stuchlik:2007dc]
[22-309]
Isospin-dependent clusterization of Neutron-Star Matter, Camille Ducoin, Philippe Chomaz, Francesca Gulminelli, Nucl. Phys. A789 (2007) 403-425, arXiv:nucl-th/0612044.
[Ducoin:2006td]
[22-310]
Neutrino Oscillations Induced by Chiral Phase Transition in a Compact Star, Chengfu Mu, Gaofeng Sun, Pengfei Zhuang, Chin. Phys. Lett. 26 (2009) 031402, arXiv:astro-ph/0611146.
[Mu:2006je]
[22-311]
Neutrino-Driven Mass Loading of GRMHD Outflows, Amir Levinson, AIP Conf. Proc. 924 (2007) 26-31, arXiv:astro-ph/0610447.
[Levinson:2006nr]
[22-312]
Neutrino pair annihilation near accreting, stellar-mass black holes, R. Birkl, M.-A. Aloy, H.-Th. Janka, E. Mueller, Astron.Astrophys. (2006), arXiv:astro-ph/0608543.
[Birkl:2006mu]
[22-313]
On the transport equations of cosmic neutrinos passing through Earth and secondary $\nu_\mu$ fluxes, S. Rakshit, E. Reya, Phys. Rev. D74 (2006) 103006, arXiv:hep-ph/0608054.
[Rakshit:2006yi]
[22-314]
Neutrino emission from compact stars and inhomogeneous color superconductivity, R. Anglani, M. Mannarelli, G. Nardulli, M. Ruggieri, Phys. Rev. D74 (2006) 074005, arXiv:hep-ph/0607341.
[Anglani:2006br]
[22-315]
Neutrino-Cooled Accretion Disks around Spinning Black Hole, Wen-Xin Chen, Andrei M. Beloborodov, Astrophys. J. 657 (2007) 383-399, arXiv:astro-ph/0607145.
[Chen:2006rra]
[22-316]
Neutrino emission due to Cooper pairing in neutron stars, L.B. Leinson, A. Perez, arXiv:astro-ph/0606653, 2006.
[Leinson:2006gh]
[22-317]
Vector current conservation and neutrino emission from singlet-paired baryons in neutron stars, L.B. Leinson, A. Perez, Phys. Lett. B638 (2006) 114, arXiv:astro-ph/0606651.
[Leinson:2006gf]
[22-318]
Non-Equilibrium Beta Processes in Neutron Stars: A Relationship between the Net Reaction Rate and the Total Emissivity of Neutrinos, Sergio Flores-Tulian, Andreas Reisenegger, Mon. Not. Roy. Astron. Soc. 372 (2006) 276-278, arXiv:astro-ph/0606412.
[Flores-Tulian:2006svb]
[22-319]
Phase space and quark mass effects in neutrino emissions in a color superconductor, Qun Wang, Zhi-gang Wang, Jian Wu, Phys. Rev. D74 (2006) 014021, arXiv:hep-ph/0605092.
[Wang:2006tg]
[22-320]
Effects of spin-orbit interaction on nuclear response and neutrino mean free path, Jerome Margueron, Jesus Navarro, Nguyen Van Giai, Phys. Rev. C74 (2006) 015805, arXiv:nucl-th/0604019.
[Margueron:2006wh]
[22-321]
Construction and analysis of a simplified many-body neutrino model, Alexander Friedland, Bruce H.J. McKellar, Ivona Okuniewicz, Phys. Rev. D73 (2006) 093002, arXiv:hep-ph/0602016.
[Friedland:2006ke]
[22-322]
Ultra-High Energy Neutrino-Nucleon Scattering and Parton Distributions at Small $x$, Ernest M. Henley, Jamal Jalilian-Marian, Phys. Rev. D73 (2006) 094004, arXiv:hep-ph/0512220.
[Henley:2005ms]
[22-323]
Neutrino Emission from the Magneto-Plasma, Indranath Bhattacharyya, AIP Conf. Proc. 939 (2007) 269-272, arXiv:hep-ph/0512116.
[Bhattacharyya:2005ck]
[22-324]
Electron-Neutrino Bremsstrahlung in Electro-Weak Theory, Indranath Bhattacharyya, J. Phys. G32 (2006) 2167-2180, arXiv:hep-ph/0512107.
[Bhattacharyya:2005zb]
[22-325]
Effect of neutrino trapping on the three flavor FFLO phase of QCD, V. Laporta, M. Ruggieri, Phys. Lett. B633 (2006) 734, arXiv:hep-ph/0511155.
[Laporta:2005be]
[22-326]
Neutrino emission and cooling rates of spin-one color superconductors, Andreas Schmitt, Igor A. Shovkovy, Qun Wang, Phys. Rev. D73 (2006) 034012, arXiv:hep-ph/0510347.
[Schmitt:2005wg]
[22-327]
Direct Urca neutrino rate in colour superconducting quark matter, Prashanth Jaikumar, Craig D. Roberts, Armen Sedrakian, Phys. Rev. C73 (2006) 042801, arXiv:nucl-th/0509093.
[Jaikumar:2005hy]
[22-328]
QCD phase transition in rotaing neutron star, Neutrino beaming and Gamma-ray bursters, Abhijit Bhattacharyya, Sanjay K. Ghosh, Sibaji Raha, Phys. Lett. B635 (2006) 195, arXiv:astro-ph/0508372.
[Bhattacharyya:2005xj]
[22-329]
UHE neutrino damping in a thermal gas of relic neutrinos, J. C. D'Olivo, L. Nellen, S. Sahu, V. Van Elewyck, Astropart. Phys. 25 (2006) 47, arXiv:astro-ph/0507333.
[DOlivo:2005edp]
[22-330]
Dynamical evolution of neutrino-cooled accretion disks: detailed microphysics, lepton-driven convection, and global energetics, William H. Lee, Enrico Ramirez-Ruiz, Dany Page, Astrophys. J. 632 (2005) 421, arXiv:astro-ph/0506121.
[Lee:2005se]
[22-331]
Neutrino emissivity under neutral kaon condensation, Sebastian Kubis, Phys. Rev. C73 (2006) 015805, arXiv:astro-ph/0503659.
[Kubis:2005rx]
[22-332]
Geometric scaling in ultrahigh energy neutrinos and nonlinear perturbative QCD, Magno V. T. Machado, Phys. Rev. D71 (2005) 114009, arXiv:hep-ph/0503058.
[Machado:2005af]
[22-333]
Neutrino Absorption: In the magnetic field of GRB In the Fireball Model, Avijit K. Ganguly, arXiv:astro-ph/0503012, 2005.
[Ganguly:2005hx]
[22-334]
Direct Urca neutrino radiation from superfluid baryonic matter, Armen Sedrakian, Phys. Lett. B607 (2005) 27, arXiv:nucl-th/0411061.
[Sedrakian:2004qd]
[22-335]
Neutron Fraction and Neutrino Mean Free Path Predictions in Relativistic Mean Field Models, P.T.P. Hutauruk, C.K. Williams, A. Sulaksono, T. Mart, Phys. Rev. C70 (2004) 068801, arXiv:nucl-th/0411034.
[Hutauruk:2004uf]
[22-336]
Neutrino Emission from Ungapped Quark Matter, Thomas Schafer, Kai Schwenzer, Phys. Rev. D70 (2004) 114037, arXiv:astro-ph/0410395.
[Schafer:2004jp]
[22-337]
Perturbative neutrino pair creation by an external source, Hylke Koers, Phys. Lett. B605 (2005) 384, arXiv:hep-ph/0409259.
[Koers:2004pj]
[22-338]
Equilibrium properties of self-interacting neutrinos in the quasi-particle approach, M Sirera, A. Perez, J. Phys. G30 (2004) 1173, arXiv:astro-ph/0409019.
[Sirera:2004rv]
[22-339]
'Classical' instabilities and 'quantum' speed-up in the evolution of neutrino clouds, R. F. Sawyer, arXiv:hep-ph/0408265, 2004.
[Sawyer:2004ai]
[22-340]
Interaction of Dirac and Majorana fermions with domain walls: Scattering and zero modes, Leonardo Campanelli, Phys. Rev. D70 (2004) 116008, arXiv:hep-ph/0408078.
[Campanelli:2004si]
[22-341]
Neutrino superfluidity, Joseph I. Kapusta, Phys. Rev. Lett. 93 (2004) 251801, arXiv:hep-th/0407164.
[Kapusta:2004gi]
[22-342]
Modulational instabilities in neutrino-anti-neutrino interactions, Mattias Marklund et al., J. Exp. Theor. Phys. 99 (2004) 9, arXiv:astro-ph/0306013.
[Marklund:2003nf]
[22-343]
Neutrino energy loss rate in a stellar plasma, S. Esposito et al., Nucl. Phys. B658 (2003) 217, arXiv:astro-ph/0301438.
[Esposito:2003wv]
[22-344]
High-energy neutrino oscillations in absorbing matter, Vadim A. Naumov, Phys. Lett. B529 (2002) 199-211, arXiv:hep-ph/0112249.
[Naumov:2001ci]
[22-345]
Neutrino propagation through matter, Vadim A. Naumov, Lorenzo Perrone, Astropart. Phys. 10 (1999) 239-252, arXiv:hep-ph/9804301.
[Naumov:1998sf]
[22-346]
Neutrino production through hadronic cascades in AGN accretion disks, Lukas Nellen, Karl Mannheim, Peter L. Biermann, Phys. Rev. D47 (1993) 5270-5274, arXiv:hep-ph/9211257.
[Nellen:1992dw]
[22-347]
Neutrino pair emission from finite-temperature neutron superfluid and the cooling of young neutron stars, E. Flowers, M. Ruderman, P. Sutherland, Astrophys.J. 205 (1976) 541.
[Flowers:1976ux]

23 - Theory - Talks

[23-1]
Numerical models of neutrino and gamma-ray emission from magnetic reconnection in the core of radio-galaxies, Juan Carlos Rodriguez-Ramirez, Elisabete Maria de Gouveia Dal Pino, Rafael Alves Batista, PoS BHCB2018 (2019) 014, arXiv:1903.05249. International Conference on Black Holes as Cosmic Batteries: UHECRs and Multimessenger Astronomy - BHCB2018 12-15 September, 2018, Foz du Iguazu, Brasil.
[Rodriguez-Ramirez:2019tsj]
[23-2]
Neutrino emission, Equation of State and the role of strong gravity, O. L. Caballero, AIP Conf.Proc. 1753 (2016) 040002, arXiv:1603.02755. XI LASNPA.
[Caballero:2016lof]
[23-3]
Neutrinos and the synthesis of heavy elements: the role of gravity, O. L. Caballero, R. Surman, G. C. McLaughlin, EPJ Web Conf. 93 (2015) 03002, arXiv:1410.7663. 15th International Symposium on Capture Gamma-Ray Spectroscopy and Related Topics (CGS15).
[Caballero:2014msa]
[23-4]
Neutrino production of electron-positron pairs at excited Landau levels in a strong magnetic field, A.V. Kuznetsov, D.A. Rumyantsev, V.N. Savin, arXiv:1408.6985, 2014. XVIII International Seminar Quarks'2014, Suzdal, Russia, June 2-8, 2014.
[Kuznetsov:2014iga]
[23-5]
Equation of state of hypernuclear matter: tuning hyperon-scalar-meson couplings, Giuseppe Colucci, Armen Sedrakian, J. Phys. Conf. Ser. 496 (2014) 012003, arXiv:1401.1653. International Conference on 'The Modern Physics of Compact Stars and Relativistic Gravity', 18-21 September 2013, Yerevan, Armenia.
[Colucci:2014wda]
[23-6]
On the conversion of neutron stars into quark stars, Giuseppe Pagliara, EPJ Web Conf. 66 (2014) 07018, arXiv:1312.1083. INPC 2013.
[Pagliara:2013gya]
[23-7]
The Evolution of Proto-Strange Stars, Omar G. Benvenuto, J. E. Horvath, arXiv:1309.1532, 2013. Compact Stars in the QCD Phase Diagram III (CSQCD III), December 12-15, 2012, Guaruja, Brazil.
[Benvenuto:2013vqa]
[23-8]
Propagation of UHECRs in cosmological backgrounds: some results from SimProp, R. Aloisio et al., arXiv:1307.3895, 2013. 33rd International Cosmic Ray Conference, Rio De Janeiro (Brasil) July 2-9 2013.
[Aloisio:2013kea]
[23-9]
Non-Fermi liquid correction to the neutrino mean free path and emissivity in neutron star beyond the leading order, Souvik Priyam Adhya, Pradip K. Roy, Abhee K. Dutt-Mazumder, AIP Conf. Proc. 1524 (2013) 263-266, arXiv:1304.2546. International Conference on Recent Trends in Nuclear Physics-2012, India.
[Adhya:2013maa]
[23-10]
Quark beta decay in an inhomogeneous chiral phase and cooling of hybrid stars, T. Tatsumi, T. Muto, PoS NICXII (2012) 237, arXiv:1209.6426. XII Int.Sympo. on Nuclei in the Cosmos.
[Tatsumi:2012cp]
[23-11]
Neutrino emission from a strongly magnetized degenerate electron gas: the Compton mechanism via a neutrino magnetic moment, A. V. Borisov, B. K. Kerimov, P. E. Sizin, arXiv:1112.1635, 2011. 15th Lomonosov Conference on Elementary Particle Physics (Moscow State University, Moscow, 18 - 24 August 2011).
[Borisov:2011ab]
[23-12]
UHE Neutrinos: Fusing gluons within diffraction cone, R. Fiore, V. R. Zoller, arXiv:1111.0516, 2011. Low-x, 2-7 June 2011 Santiago de Compostela.
[Fiore:2011ki]
[23-13]
Pasta Structures of Quark-Hadron Phase Transition in Proto-Neutron Stars, Nobutoshi Yasutake, Toshiki Maruyama, Toshitaka Tatsumi, J. Phys. Conf. Ser. 312 (2011) 042027, arXiv:1010.5631. INPC 2010.
[Yasutake:2010ur]
[23-14]
Long-Term Evolution of Collapsar: Mechanism of Outflow Production, Seiji Harikae, Tomoya Takiwaki, Kei Kotake, arXiv:0912.3577, 2009. 2009 Fermi Symposium, November 2-5.
[Harikae:2009zq]
[23-15]
Neutrinos in dense quark matter and cooling of compact stars, D. Blaschke, J. Berdermann, Prog. Part. Nucl. Phys. 64 (2010) 432-434, arXiv:0912.3075. International School of Nuclear Physics on 'Neutrinos in Cosmology, in Astro-, Particle- and Nuclear Physics, Erice-Sicily, September 16-24, 2009.
[Blaschke:2009je]
[23-16]
Astrophysics of dense quark matter in compact stars, Armen Sedrakian, Acta Physica Polonica B3 (2010) 669-678, arXiv:0910.4451. XXVI Max Born Symposium 'Three days of strong interactions', Wroclaw, Poland, 9-11 July, 2009.
[Sedrakian:2009uu]
[23-17]
Efficiency of Neutrino Annihilation around Spinning Black Holes, Ivan Zalamea, Andrei M. Beloborodov, AIP Conf. Proc. 1133 (2009) 121-123, arXiv:0812.4041. 6th Huntsville Gamma-Ray Burst Symposium 2008.
[Zalamea:2008dq]
[23-18]
Influence of the photon - neutrino processes on magnetar cooling, M. V. Chistyakov, D. A. Rumyantsev, J. Exp. Theor. Phys. 107 (2008) 533-541, arXiv:0811.4526. XV International Seminar Quarks'2008, Sergiev Posad, Moscow Region, May 23-29, 2008.
[Rumyantsev:2008iad]
[23-19]
Theory of cooling neutron stars versus observations, D. G. Yakovlev, O. Y. Gnedin, A. D. Kaminker, A. Y. Potekhin, AIP Conf. Proc. 983 (2008) 379-387, arXiv:0710.2047. 40 Years of Pulsars, Montreal, Canada, August 12-17, 2007.
[Yakovlev:2007vs]
[23-20]
Nucleon superfluidity versus thermal states of isolated and transiently accreting neutron stars, K. P. Levenfish, P. Haensel, Astrophys. Space Sci. 308 (2007) 457, arXiv:astro-ph/0611115. Isolated Neutron Stars: From the Interior to the Surface.
[Levenfish:2006ey]
[23-21]
Internal heating and thermal emission from old neutron stars: Constraints on dense-matter and gravitational physics, Andreas Reisenegger, Rodrigo Fernandez, Paula Jofre, Astrophys. Space Sci. 308 (2007) 413-418, arXiv:astro-ph/0610955. Isolated Neutron Stars: from the Interior to the Surface, London, April 2006.
[Reisenegger:2006aa]
[23-22]
Cooling of a Compact Star with a LOFF Matter Core, Roberto Anglani, Phys. Part. Nucl. 39 (2008) 1167-1169, arXiv:hep-ph/0610404. Helmoltz International Summer School of Theoretical Physics on Dense Matter in Heavy Ion Collisions and Astrophysics, JINR, Dubna, Russia, 21 Aug - 1 Sep 2006.
[Anglani:2006ns]
[23-23]
Some issues about neutrino processes in color superconducting quark matter, Qun Wang, AIP Conf. Proc. 865 (2006) 248-255, arXiv:hep-ph/0607096. Sixth China-Japan Joint Nuclear Physics Symposium, May 16-20, Shanghai China.
[Wang:2006xfa]
[23-24]
Thermal effects on the absorption of ultra-high energy neutrinos by the cosmic neutrino background, J. C. D'Olivo, L. Nellen, S. Sahu, V. Van Elewyck, J. Phys. Conf. Ser. 39 (2006) 422-425, arXiv:astro-ph/0511740. 9th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2005), Zaragoza (Spain), September 10-14, 2005.
[DOlivo:2005hgk]

24 - Theory - Models

[24-1]
Proto-strange quark stars from density-dependent quark mass model, Adamu Issifu, Franciele M. da Silva, Debora P. Menezes, arXiv:2311.12511, 2023.
[Issifu:2023qoo]
[24-2]
GRBs from neutrino pair annihilation in the presence of quintessence surrounding a black hole, G. Lambiase, L. Mastrototaro, Eur.Phys.J.C 81 (2021) 932, arXiv:2012.09100.
[Lambiase:2020pkc]
[24-3]
Effects of modified theories of gravity on neutrino pair annihilation energy deposition near neutron stars, Gaetano Lambiase, Leonardo Mastrototaro, Astrophys.J. 904 (2020) 19, arXiv:2009.08722.
[Lambiase:2020iul]
[24-4]
In-vacuo-dispersion features for GRB neutrinos and photons, Giovanni Amelino-Camelia, Giacomo D'Amico, Giacomo Rosati, Niccolo Loret, Nat.Astron. 1 (2017) 0139, arXiv:1612.02765.
[Amelino-Camelia:2016ohi]
[24-5]
Neutrino emissivity from Goldstone boson decay in magnetized neutron matter, Paulo Bedaque, Srimoyee Sen, Phys. Rev. C89 (2014) 035808, arXiv:1312.6632.
[Bedaque:2013rya]
[24-6]
Neutrino trapping in braneworld extremely compact stars, Zdenek Stuchlik, Jan Hladik, Martin Urbanec, Gen. Rel. Grav. 43 (2011) 3163-3190, arXiv:1108.5767.
[Stuchlik:2011zzb]
[24-7]
Photon and neutrino redshift in the field of braneworld compact stars, Jan Hladik, Zdenek Stuchlik, JCAP 1107 (2011) 012, arXiv:1108.5760.
[Hladik:2011zz]
[24-8]
Neutrino-Majoron gas: The long way to isotropy, Anders Basboll, Ole Eggers Bjaelde, Phys. Rev. D81 (2010) 123503, arXiv:0911.1771.
[Basboll:2009qz]
[24-9]
On the stability of mass varying particle lumps, Alex E. Bernardini, O. Bertolami, Phys. Rev. D80 (2009) 123011, arXiv:0909.1541.
[Bernardini:2009rc]
[24-10]
A Toy Model for Magnetized Neutrino-Dominated Accretion Flows, Lei WeiHua, Wang DingXiong, Zhang Lei, Gan ZhaoMing, Zou YuanChuan, Sci. China Phys. Mech. Astron. 53 (2010) S98, arXiv:0906.4967.
[Lei:2009siu]
[24-11]
Kaon condensate with trapped neutrinos and high-density symmetry energy behavior, A. Odrzywolek, M. Kutschera, Acta Phys. Polon. B40 (2009) 195, arXiv:astro-ph/0703686.
[Odrzywolek:2007nu]
[24-12]
Absolute Being vs Relative Becoming, Joy Christian, Fundam.Theor.Phys. 153 (2007) 163-195, arXiv:gr-qc/0610049.
[Christian:2006rzu]

25 - Theory - Models - Talks

[25-1]
Deconfinement transition in protoneutron star cores: Analysis within the MIT Bag model, Taiza A. S. do Carmo, German Lugones, arXiv:1307.7668, 2013. Compact Stars in the QCD Phase Diagram III (CSQCD III), December 12-15, 2012, Guaruja, Brazil.
[Carmo:2013nsa]
[25-2]
Noncommutative geometry in quantum field theory and the cosmogenic neutrino physics at the extreme energies, Josip Trampetic, arXiv:1302.0656, 2013. Croatian Academy of Science Symposium: 'Nuclear and Subnuclear Physics', December 13, 2012, Zagreb, Croatia.
[Trampetic:2013ey]

26 - Detector

[26-1]
Calculations of electric fields for radio detection of Ultra-High Energy particles, Daniel Garcia-Fernandez, Jaime Alvarez-Muniz, Washington R. Carvalho Jr, Andres Romero-Wolf, Enrique Zas, Phys. Rev. D87 (2013) 023003, arXiv:1210.1052.
[Garcia-Fernandez:2012urf]
[26-2]
Development of a compact transmitter array for the acoustic neutrino detection calibration, S. Adrian-Martinez et al., arXiv:1112.2535, 2011.
[Adrian-Martinez:2011fnz]
[26-3]
Design and performance of the South Pole Acoustic Test Setup, Yasser Abdou et al., Nucl. Instrum. Meth. A683 (2012) 78-90, arXiv:1105.4339.
[Abdou:2011cy]
[26-4]
Ross Ice Shelf in situ radio-frequency ice attenuation, Taylor Barrella, Steven Barwick, David Saltzberg, J. Glaciol. 57 (2011) 61-66, arXiv:1011.0477.
[Barrella:2010vs]
[26-5]
Radio Frequency Birefringence in South Polar Ice and Implications for Neutrino Reconstruction, Dave Besson, Ilya Kravchenko, Andres Ramos, Juliet Remmers, Astropart. Phys. 34 (2011) 755-768, arXiv:1005.4589.
[Besson:2010ww]
[26-6]
Cherenkov radio pulses from electromagnetic showers in the time-domain, Jaime Alvarez-Muniz, Andres Romero-Wolf, Enrique Zas, Phys. Rev. D81 (2010) 123009, arXiv:1002.3873.
[Alvarez-Muniz:2010wjm]
[26-7]
Light tracking for glaciers and oceans - Scattering and absorption in heterogeneous media with Photonics, J. Lundberg et al., Nucl. Instrum. Meth. A581 (2007) 619-631, arXiv:astro-ph/0702108.
[Lundberg:2007mf]
[26-8]
Reconstruction of Composite Events in Neutrino Telescopes, Mathieu Ribordy, Nucl. Instrum. Meth. A574 (2007) 137-143, arXiv:astro-ph/0611604.
[Ribordy:2006qd]
[26-9]
Observations of the Askaryan Effect in Ice, ANITA (ANITA), Phys. Rev. Lett. 99 (2007) 171101, arXiv:hep-ex/0611008.
[ANITA:2006nif]
[26-10]
Study of a detector array for Upward Tau Air-Showers, M. Iori et al., arXiv:astro-ph/0602108, 2006.
[Iori:2006kq]
[26-11]
Attenuation of acoustic waves in glacial ice and salt domes, P. B. Price, J.Geophys.Res. (2005), arXiv:astro-ph/0506648.
[Price:2005sn]
[26-12]
Estimating the angular resolution of tracks in neutrino telescopes based on a likelihood analysis, Till Neunhoffer, Astropart. Phys. 25 (2006) 220, arXiv:astro-ph/0403367.
[Neunhoffer:2004ha]

27 - Detector - Talks

[27-1]
Signal Classification for Acoustic Neutrino Detection, M. Neff et al., Nucl. Instrum. Meth. A662 (2012) S242-S245, arXiv:1104.3248. ARENA 2010.
[Neff:2011xh]
[27-2]
Development of Combined Opto-Acoustical Sensor Modules, A. Enzenhofer et al., Nucl. Instrum. Meth. A662 (2012) S203-S205, arXiv:1104.3061. ARENA2010.
[Enzenhofer:2011sy]
[27-3]
Acoustic particle detection - from early ideas to future benefits, Rolf Nahnhauer, Nucl. Instrum. Meth. A662 (2012) S20-S23, arXiv:1010.3082. ARENA 2010.
[Nahnhauer:2010uv]
[27-4]
Status and recent results of the South Pole Acoustic Test Setup, Timo Karg (IceCube), Nucl. Instrum. Meth. A662 (2012) S36-S41, arXiv:1010.2025. 4th International workshop on Acoustic and Radio EeV Neutrino detection Activities - ARENA 2010.
[Karg:2010wy]
[27-5]
Status and Strategies of Current LUNASKA Lunar Cherenkov Observations with the Parkes Radio Telescope, J.D. Bray et al., Nucl. Instrum. Meth. A662 (2012) S95-S98, arXiv:1010.1997. ARENA 2010, Nantes, France.
[Bray:2010wr]
[27-6]
A GPU-based Calculation Method for Near Field Effects of Cherenkov Radiation Induced by Ultra High Energy Cosmic Neutrinos, Chia-Yu Hu, Chih-Ching Chen, Pisin Chen, arXiv:1001.5341, 2010. CosPA Symposium, Melbourne, Australia, November 2009.
[Hu:2010zf]
[27-7]
Acoustic sensor development for ultra high energy neutrino detection, M. Podgorski, M. Ribordy, arXiv:1001.3963, 2010. ICRC, Lodz, Poland 2009.
[Podgorski:2010qy]
[27-8]
Feasibility of acoustic neutrino detection in ice: Design and performance of the South Pole Acoustic Test Setup (SPATS), S. Boeser et al., arXiv:0807.4676, 2008. International Cosmic Ray Conference, 2007.
[Descamps:2007opj]

28 - Future Experiments

[28-1]
Simulation of radio signals from cosmic-ray cascades in air and ice as observed by in-ice Askaryan radio detectors, Simon De Kockere, Dieder Van den Broeck, Uzair Abdul Latif, Krijn D. de Vries, Nick van Eijndhoven, Tim Huege, Stijn Buitink, arXiv:2403.15358, 2024.
[DeKockere:2024qmc]
[28-2]
Differential Sensitivity of the KM3NeT/ARCA detector to a diffuse neutrino flux and to point-like source emission: exploring the case of the Starburst Galaxies, S. Aiello et al. (KM3NeT), arXiv:2402.09088, 2024.
[KM3NeT:2024uhg]
[28-3]
Astronomy potential of KM3NeT/ARCA, S. Aiello et al. (KM3NeT), arXiv:2402.08363, 2024.
[Aiello:2024jbp]
[28-4]
STRAW-b (STRings for Absorption length in Water-b): the second pathfinder mission for the Pacific Ocean Neutrino Experiment, Kilian Holzapfel et al., arXiv:2310.16714, 2023.
[Holzapfel:2023wzv]
[28-5]
EUSO-SPB2 Fluorescence Telescope Calibration and Field Tests, Viktoria Kungel et al. (JEM-EUSO), PoS ICRC2023 (2023) 468, arXiv:2310.06209.
[JEM-EUSO:2023wvu]
[28-6]
Tandem-ABALONETM Photosensors with $2\times2\pi$ Acceptance for Neutrino Astronomy, Ivan Ferenc Segedin, Marija Segedin Ferenc, Daniel Ferenc, Nucl.Instrum.Meth.A 1063 (2024) 169292, arXiv:2308.02592.
[Segedin:2023myk]
[28-7]
Probing neutrino production in blazars by millimeter VLBI, Y. Y. Kovalev, A. V. Plavin, A. B. Pushkarev, S. V. Troitsky, Galaxies 11 (2023) 84, arXiv:2307.02267.
[Kovalev:2023crn]
[28-8]
A fast tunable driver of light source for the TRIDENT Pathfinder experiment, Jiannan Tang, Weihao Wu, Liang Li, Peng Miao, Zhengyang Sun, Mingxin Wang, Donglian Xu, JINST 18 (2023) T08001, arXiv:2305.01967.
[Tang:2023jmn]
[28-9]
The Light Source of the TRIDENT Pathfinder Experiment, Wenlian Li et al., Nucl.Instrum.Meth.A 1056 (2023) 168588, arXiv:2304.14608.
[Li:2023wqk]
[28-10]
Precision measurement of the index of refraction of deep glacial ice at radio frequencies at Summit Station, Greenland, J.A. Aguilar et al., arXiv:2304.06181, 2023.
[Aguilar:2023udv]
[28-11]
Design of the Readout Electronics for the TRIDENT Pathfinder Experiment, M. X. Wang, G. H. Gong, P. Miao, Z. Y. Sun, J. N. Tang, W. H. Wu, D. L. Xu, IEEE Trans.Nucl.Sci. 70 (2023) 2240-2247, arXiv:2303.02911.
[Wang:2023rvb]
[28-12]
Letter of Interest: Ocean science with the Pacific Ocean Neutrino Experiment, Felix Henningsen, Lisa Schumacher (P-ONE), arXiv:2209.14710, 2022.
[Henningsen:2022unk]
[28-13]
TAROGE-M: Radio Antenna Array on Antarctic High Mountain for Detecting Near-Horizontal Ultra-High Energy Air Showers, Astrid Anker et al. (TAROGE, Arianna, Shih-Hao Wang, Jiwoo Nam, Pisin Chen, Yaocheng Chen, Taejin Choi, Young-bae Ham, Shih-Ying Hsu, Jian-Jung Huang, Ming-Huey A. Huang, Geonhwa Jee, Jongil Jung, Jieun Kim, Chung-Yun Kuo, Hyuck-Jin Kwon, Changsup Lee, Chung-Hei Leung, Tsung-Che Liu, Yu-Shao J. Shiao, Bok-Kyun Shin, Min-Zu Wang, Yu-Hsin Wang), JCAP 11 (2022) 022, arXiv:2207.10616.
[TAROGE:2022soh]
[28-14]
Proposal for a neutrino telescope in South China Sea, Z. P. Ye et al., arXiv:2207.04519, 2022.
[Ye:2022vbk]
[28-15]
Design and Initial Performance of the Prototype for the BEACON Instrument for Detection of Ultrahigh Energy Particles, D. Southall et al., Nucl.Instrum.Meth.A 1048 (2023) 167889, arXiv:2206.09660.
[Southall:2022yil]
[28-16]
In-situ calibration system for the measurement of the snow accumulation and the index-of-refraction profile for radio neutrino detectors, Jakob Beise, Christian Glaser, JINST 18 (2023) P01036, arXiv:2205.00726.
[Beise:2022stx]
[28-17]
Radiopurity of a kg-scale PbWO$_4$ cryogenic detector produced from archaeological Pb for the RES-NOVA experiment, J.W. Beeman et al., arXiv:2203.07441, 2022.
[RES-NOVAgroupofinterest:2022pvc]
[28-18]
In situ, broadband measurement of the radio frequency attenuation length at Summit Station, Greenland, J. A. Aguilar et al., arXiv:2201.07846, 2022.
[Aguilar:2022kgi]
[28-19]
Using Evolutionary Algorithms to Design Antennas with Greater Sensitivity to Ultra High Energy Neutrinos, J. Rolla et al., Phys.Rev.D 108 (2023) 102002, arXiv:2112.03246.
[GENETIS:2021jrv]
[28-20]
Multi-messenger-Athena Synergy White Paper, L. Piro et al., Exper.Astron. 54 (2022) 23-117, arXiv:2110.15677.
[Piro:2021oaa]
[28-21]
Angular Dependence of Vertically Propagating Radio-Frequency Signals in South Polar Ice, DaveZ Besson, Ilya Kravchenko, Krishna Nivedita, Astropart.Phys. 144 (2023) 102766, arXiv:2110.13353.
[Besson:2021wmj]
[28-22]
Impact of biaxial birefringence on signal polarization in radio detection of neutrinos in polar ice, Amy Connolly, Phys.Rev.D 105 (2022) 123012, arXiv:2110.09015.
[Connolly:2021cum]
[28-23]
Acoustic Neutrino Detection In a Adriatic Multidisciplinary Observatory (ANDIAMO), Antonio Marinelli, Pasquale Migliozzi, Andreino Simonelli, arXiv:2109.15199, 2021.
[2109.15199]
[28-24]
Characterization of the background for a neutrino search with the HAWC observatory, A. Albert et al. (HAWC), Astropart.Phys. 137 (2022) 102670, arXiv:2108.07767.
[HAWC:2021dhc]
[28-25]
Two-Year Optical Site Characterization for the Pacific Ocean Neutrino Experiment P-ONE in the Cascadia Basin, Nicolai Bailly et al., Eur.Phys.J.C 81 (2021) 1071, arXiv:2108.04961.
[Bailly:2021dxn]
[28-26]
Reconstructing the neutrino energy for in-ice radio detectors, J. A. Aguilar et al., Eur.Phys.J.C 82 (2022) 147, arXiv:2107.02604. 21 pages, prepared for submission to EPJ-C.
[Aguilar:2021uzt]
[28-27]
Study of a large array to detect ultra high energy tau-neutrino, S. Atik Yilmaz, A.Yilmaz, M. Iori, K. Y. Oyulmaz, H. Denizli, Acta Phys.Polon. B52 (2021) 377, arXiv:2105.06874.
[AtikYilmaz:2021cmk]
[28-28]
Modeling the Optical Cherenkov Signals by Cosmic Ray Extensive Air Showers Directly Observed from Sub-Orbital and Orbital Altitudes, Austin Cummings, Roberto Aloisio, Johannes Eser, John Krizmanic, Phys.Rev.D 104 (2021) 063029, arXiv:2105.03255.
[Cummings:2021bhg]
[28-29]
Synergies of THESEUS with the large facilities of the '30s and GO opportunities, P. Rosati et al., Exper.Astron. 52 (2021) 407-437, arXiv:2104.09535.
[Rosati:2021yjd]
[28-30]
The Radar Echo Telescope for Cosmic Rays: Pathfinder Experiment for a Next-Generation Neutrino Observatory, S. Prohira et al., Phys.Rev.D 104 (2021) 102006, arXiv:2104.00459.
[RadarEchoTelescope:2021rca]
[28-31]
Triboelectric Backgrounds to radio-based UHE Neutrino Exeperiments, M. Mikhailova, E. Bondarev, A. Nozdrina, H. Landsman, D. Z. Besson, arXiv:2103.06079, 2021.
[Aguilar:2021voo]
[28-32]
Broadband RF Phased Array Design with MEEP: Comparisons to Array Theory in Two and Three Dimensions, Jordan C. Hanson, Electronics 10 (2021) 415, arXiv:2102.04585.
[Hanson:2021scp]
[28-33]
Carbon Footprint Study for the GRAND Project, Clarisse Aujoux, Kumiko Kotera, Odile Blanchard (GRAND), Astropart.Phys. 2021 (2021) 102587, arXiv:2101.02049.
[Aujoux:2021kub]
[28-34]
The POEMMA (Probe of Extreme Multi-Messenger Astrophysics) Observatory, A. V. Olinto et al., JCAP 2106 (2021) 007, arXiv:2012.07945.
[POEMMA:2020ykm]
[28-35]
An improved trigger for Askaryan radio detectors, Christian Glaser, Steven W. Barwick, JINST 16 (2021) T05001, arXiv:2011.12997.
[Glaser:2020pot]
[28-36]
Design and Sensitivity of the Radio Neutrino Observatory in Greenland (RNO-G), J. A. Aguilar et al., JINST 16 (2021) P03025, arXiv:2010.12279.
[RNO-G:2020rmc]
[28-37]
The Payload for Ultrahigh Energy Observations (PUEO): A White Paper, P. Allison et al., JINST 16 (2021) P08035, arXiv:2010.02892.
[PUEO:2020bnn]
[28-38]
Snowmass 2021 Letter of Interest: The Probe Of Multi-Messenger Astrophysics (POEMMA), A.V. Olinto et al., arXiv:2008.13047, 2020.
[Olinto:2020vid]
[28-39]
CYGNUS: Feasibility of a nuclear recoil observatory with directional sensitivity to dark matter and neutrinos, S. E. Vahsen et al., arXiv:2008.12587, 2020.
[Vahsen:2020pzb]
[28-40]
IceCube-Gen2: The Window to the Extreme Universe, M.G. Aartsen et al. (IceCube-Gen2), J.Phys. G48 (2021) 060501, arXiv:2008.04323.
[IceCube-Gen2:2020qha]
[28-41]
Background identification algorithm for futureself-triggered air-shower radio arrays, S. Malakhov, P. Bezyazeekov, O. Fedorov, Y. Kazarina, D. Kostunin, V. Lenok, JINST 15 (2020) C09026, arXiv:2006.03304.
[Malakhov:2020fho]
[28-42]
The Pacific Ocean Neutrino Experiment, M. Agostini et al., Nature Astron. 4 (2020) 913-915, arXiv:2005.09493.
[P-ONE:2020ljt]
[28-43]
A self-monitoring precision calibration light source for large-volume neutrino telescopes, F. Henningsen et al., JINST 15 (2020) P07031, arXiv:2005.00778.
[Henningsen:2020zsj]
[28-44]
White Paper: ARIANNA-200 high energy neutrino telescope, A. Anker et al., arXiv:2004.09841, 2020.
[Anker:2020lre]
[28-45]
An Andean Deep-Valley Detector for High-Energy Tau Neutrinos, Andres Romero-Wolf et al., arXiv:2002.06475, 2020.
[Romero-Wolf:2020pzh]
[28-46]
Combined sensitivity to the neutrino mass ordering with JUNO, the IceCube Upgrade, and PINGU, M. G. Aartsen et al. (IceCube), Phys.Rev. D101 (2020) 032006, arXiv:1911.06745.
[IceCube-Gen2:2019fet]
[28-47]
Physics Briefing Book, Richard Keith Ellis et al., arXiv:1910.11775, 2019.
[EuropeanStrategyforParticlePhysicsPreparatoryGroup:2019qin]
[28-48]
Design and Performance of the first IceAct Demonstrator at the South Pole, M. G. Aartsen et al. (IceCube), JINST 15 (2020) T02002, arXiv:1910.06945.
[IceCube:2019yev]
[28-49]
Feasibility of an Atmospheric Cherenkov Telescope Array to Veto Air Showers for Neutrino Astronomy, D. Rysewyk, D. Lennarz, T. DeYoung, J. Auffenberg, M. Schaufel, T. Bretz, C. Wiebusch, M. U. Nisa, Astropart.Phys. 117 (2020) 102417, arXiv:1908.10865.
[Rysewyk:2019fdi]
[28-50]
The Next-Generation Radio Neutrino Observatory - Multi-Messenger Neutrino Astrophysics at Extreme Energies, J. A. Aguilar et al., arXiv:1907.12526, 2019.
[Aguilar:2019mef]
[28-51]
Self-triggered radio detection and identification of cosmic air showers with the OVRO-LWA, Ryan Monroe et al., Nucl.Instrum.Meth. A953 (2020) 163086, arXiv:1907.10193.
[Monroe:2019zkp]
[28-52]
Trinity: An Air-Shower Imaging Instrument to detect Ultrahigh Energy Neutrinos, A. Nepomuk Otte, Anthony M. Brown, Michele Doro, Abe Falcone, Jamie Holder, Eleanor Judd, Philip Kaaret, Mose Mariotti, Kohta Murase, Ignacio Taboada, arXiv:1907.08727, 2019.
[Otte:2019aaf]
[28-53]
POEMMA (Probe of Extreme Multi-Messenger Astrophysics) design, A. V. Olinto et al., arXiv:1907.06217, 2019.
[Olinto:2019mjh]
[28-54]
Towards the Baikal Open Laboratory in Astroparticle Physics, Pavel Bezyazeekov, Igor Bychkov, Nikolay Budnev, Daria Chernykh, Yulia Kazarina, Dmitriy Kostunin, Alexander Kryukov, Roman Monkhoev, Alexey Shigarov, Dmitriy Shipilov, arXiv:1906.10594, 2019.
[Bezyazeekov:2019pii]
[28-55]
POEMMA's Target of Opportunity Sensitivity to Cosmic Neutrino Transient Sources, Tonia M. Venters, Mary Hall Reno, John F. Krizmanic, Luis A. Anchordoqui, Claire Guepin, Angela V. Olinto, Phys.Rev. D102 (2020) 123013, arXiv:1906.07209.
[Venters:2019xwi]
[28-56]
NuRadioReco: A reconstruction framework for radio neutrino detectors, Christian Glaser, Anna Nelles, Ilse Plaisier, Christoph Welling, Steven W. Barwick, Daniel Garcia-Fernandez, Geoffrey Gaswint, Robert Lahmann, Christopher Persichilli, Eur.Phys.J. C79 (2019) 464, arXiv:1903.07023.
[Glaser:2019rxw]
[28-57]
Targeting cosmogenic neutrinos with the ARIANNA experiment, A. Anker et al. (ARIANNA), Adv.Space Res. 64 (2019) 2595-2609, arXiv:1903.01609.
[ARIANNA:2019scz]
[28-58]
Coherent radio emission from the electron beam sudden appearance, Krijn D. de Vries et al., Phys.Rev. D98 (2018) 123020, arXiv:1902.02737.
[deVries:2018gmf]
[28-59]
Blazars and Fast Radio Bursts with LSST, C.M. Raiteri et al. (LSST Transient and Variable Stars), arXiv:1812.03151, 2018.
[LSSTTransient:2018ymt]
[28-60]
Influence of a planar boundary on the electric field emitted by a particle shower, Daniel Garcia-Fernandez, Benoit Revenu, Antony Escudie, Lilian Martin, Phys.Rev. D99 (2019) 063009, arXiv:1811.11003.
[Garcia-Fernandez:2018bvr]
[28-61]
Trinity: An Air-Shower Imaging System for the Detection of Cosmogenic Neutrinos, Adam Nepomuk Otte, Phys.Rev. D99 (2019) 083012, arXiv:1811.09287.
[Otte:2018uxj]
[28-62]
Radio Morphing: towards a fast computation of the radio signal from air showers, Anne Zilles, Olivier Martineau-Huynh, Kumiko Kotera, Matias Tueros, Krijn de Vries, Washington Carvalho Jr., Valentin Niess, Nicolas Renault-Tinacci, Valentin Decoene, Astropart.Phys. 114 (2020) 10-21, arXiv:1811.01750.
[Zilles:2018kwq]
[28-63]
STRAW (STRings for Absorption length in Water): pathfinder for a neutrino telescope in the deep Pacific Ocean, J. Bedard et al. (STRAW), JINST 14 (2019) P02013, arXiv:1810.13265.
[STRAW:2018osc]
[28-64]
Sensitivity of the KM3NeT/ARCA neutrino telescope to point-like neutrino sources, S. Aiello et al. (KM3NeT), Astropart.Phys. 111 (2019) 100-110, arXiv:1810.08499.
[KM3NeT:2018wnd]
[28-65]
Fundamental Physics with the Square Kilometer Array, P. Bull et al., Publ.Astron.Soc.Austral. 37 (2020) e002, arXiv:1810.02680.
[Weltman:2018zrl]
[28-66]
Design and Performance of an Interferometric Trigger Array for Radio Detection of High-Energy Neutrinos, P. Allison et al., Nucl.Instrum.Meth. A930 (2019) 112-125, arXiv:1809.04573.
[Allison:2018ynt]
[28-67]
Prospects of Probing the Radio Emission of Lunar UHECRv Events, Amin Aminaei et al., Adv.Space Res. 62 (2018) 2708-2728, arXiv:1808.02288.
[Aminaei:2018mrj]
[28-68]
THESEUS: a key space mission for Multi-Messenger Astrophysics, G. Stratta et al., Adv.Space Res. 62 (2018) 662-682, arXiv:1712.08153.
[THESEUS:2017wvz]
[28-69]
The Zadko Telescope: Exploring the transient Universe, D.M. Coward et al., Publ.Astron.Soc.Austral. 34 (2017) 5, arXiv:1609.06445.
[Coward:2016jja]
[28-70]
Development Toward a Ground-Based Interferometric Phased Array for Radio Detection of High Energy Neutrinos, J. Avva et al., Nucl.Instrum.Meth. A869 (2017) 46-55, arXiv:1605.03525.
[Avva:2016ggs]
[28-71]
Letter of Intent for KM3NeT2.0, S. Adrian-Martinez et al. (KM3Net), J. Phys. G43 (2016) 084001, arXiv:1601.07459.
[KM3Net:2016zxf]
[28-72]
Design study of an air-Cherenkov telescope for harsh environments with efficient air-shower detection at 100 TeV, Jan Auffenberg et al., PoS ICRC2015 (2015) 1156, arXiv:1511.01680.
[Auffenberg:2015upl]
[28-73]
Detector Optimization Figures-of-merit for IceCube's High-energy Extension, I. Bartos, Astropart. Phys. 75 (2016) 55-59, arXiv:1511.01151.
[Bartos:2015csq]
[28-74]
Experimental Probes of Radio Wave Propagation near Dielectric Boundaries and Implications for Neutrino Detection, R. Alvarez et al., arXiv:1509.04997, 2015.
[Alvarez:2015hsa]
[28-75]
TANAMI - Multiwavelength and Multimessenger Observations of Active Galaxies, M. Kadler, R. Ojha (TANAMI), Astron. Nachr. 336 (2015) 499-504, arXiv:1506.03947.
[Kadler:2015yla]
[28-76]
IceCube-Gen2: A Vision for the Future of Neutrino Astronomy in Antarctica, M. G. Aartsen et al. (IceCube), PoS FRAPWS2016 (2017) 004, arXiv:1412.5106.
[IceCube:2014gqr]
[28-77]
Sensitivity of Baikal-GVD neutrino telescope to neutrino emission toward the center of Galactic dark matter halo, A.D. Avrorin et al., JETP Lett. 101 (2015) 289-294, arXiv:1412.3672.
[Avrorin:2014vca]
[28-78]
Neutrino Telescope Array Letter of Intent: A Large Array of High Resolution Imaging Atmospheric Cherenkov and Fluorescence Detectors for Survey of Air Showers from Cosmic Tau Neutrinos in the PeV-EeV Energy Range, Makoto Sasaki, George Wei-Shu Hou, arXiv:1408.6244, 2014.
[Sasaki:2014mwa]
[28-79]
Time Domain Response of the ARIANNA Detector, S.W. Barwick et al., Astropart.Phys. 62 (2014) 139-151, arXiv:1406.0820.
[Barwick:2014boa]
[28-80]
Letter of Intent: The Precision IceCube Next Generation Upgrade (PINGU), M. G. Aartsen et al. (IceCube-PINGU), arXiv:1401.2046, 2014.
[IceCube-PINGU:2014okk]
[28-81]
Status and New Ideas Regarding Liquid Argon Detectors, Alberto Marchionni, Ann.Rev.Nucl.Part.Sci. 63 (2013) 269-290, arXiv:1307.6918.
[Marchionni:2013tfa]
[28-82]
Simulation and Analysis Chain for Acoustic Ultra-high Energy Neutrino Detectors in Water, M. Neff et al., AIP Conf.Proc. 1535 (2013) 204, arXiv:1304.0758.
[Neff:2013xsa]
[28-83]
Feasibility of Determining Diffuse Ultra-High Energy Cosmic Neutrino Flavor Ratio through ARA Neutrino Observatory, Shi-Hao Wang, Pisin Chen, Melin Huang, Jiwoo Nam, JCAP 11 (2013) 062, arXiv:1302.1586.
[Wang:2013njo]
[28-84]
A compact acoustic calibrator for ultra-high energy neutrino detection, S. Adrian-Martinez et al., Nucl.Instrum.Meth. A725 (2013) 219-222, arXiv:1210.7761.
[Adrian-Martinez:2012ddt]
[28-85]
Detection Potential of the KM3NeT Detector for High-Energy Neutrinos from the Fermi Bubbles, S. Adrian-Martinez et al. (KM3NeT), Astropart.Phys. 42 (2013) 7-14, arXiv:1208.1226.
[KM3NeT:2013dmm]
[28-86]
Development of an acoustic transceiver for positioning systems in Underwater Neutrino Telescopes, Giuseppina Larosa et al., arXiv:1204.0900, 2012.
[Larosa:2012ub]
[28-87]
Acoustic Transmitters for Underwater Neutrino Telescopes, Miguel Ardid et al., arXiv:1204.0809, 2012.
[Ardid:2012tc]
[28-88]
A Feasibility Study for the Detection of Supernova Explosions with an Undersea Neutrino Telescope, A. Leisos, A.G. Tsirigotis, S.E. Tzamarias (KM3NeT), Nucl.Instrum.Meth. A725 (2013) 89-93, arXiv:1201.5726.
[Leisos:2012lms]
[28-89]
Evaluation of the discovery potential of an underwater Mediterranean neutrino telescope taking into account the estimated directional resolution and energy of the reconstructed tracks, A. Leisos, A.G. Tsirigotis, S.E. Tzamarias (KM3NeT), Nucl.Instrum.Meth. A725 (2013) 55-59, arXiv:1201.5584.
[Leisos:2012lwi]
[28-90]
The Sound Emission Board of the KM3NeT Acoustic Positioning System, C. D. Llorens et al., JINST 7 (2012) C01001, arXiv:1201.1184.
[Llorens:2012dc]
[28-91]
Letter of Intent: The Hyper-Kamiokande Experiment - Detector Design and Physics Potential, K. Abe et al., arXiv:1109.3262, 2011.
[Abe:2011ts]
[28-92]
Calibration and Optimization of a Very Large Volume Neutrino Telescope using Extensive Air Showers, A. Leisos et al. (KM3NeT), Nucl. Instrum. Meth. A626-627 (2011) S231-S233, arXiv:1109.1713.
[Leisos:2011zza]
[28-93]
Use of floating surface detector stations for the calibration of a deep-sea neutrino telescope, A.G. Tsirigotis, G. Bourlis, N.A.B. Gizani, A. Leisos, S.E. Tzamarias, Nucl.Instrum.Meth. A595 (2008) 80-83, arXiv:1109.1698.
[Tsirigotis:2008zz]
[28-94]
Optimized Trigger for Ultra-High-Energy Cosmic-Ray and Neutrino Observations with the Low Frequency Radio Array, K. Singh et al., Nucl. Instrum. Meth. A664 (2012) 171-185, arXiv:1108.5745.
[Singh:2011un]
[28-95]
Studies of a three-stage dark matter and neutrino observatory based on multi-ton combinations of liquid xenon and liquid argon detectors, K. Arisaka et al., Astropart. Phys. 36 (2012) 93-122, arXiv:1107.1295.
[Arisaka:2011eu]
[28-96]
Design and Initial Performance of the Askaryan Radio Array Prototype EeV Neutrino Detector at the South Pole, P. Allison et al., Astropart. Phys. 35 (2012) 457-477, arXiv:1105.2854.
[Allison:2011wk]
[28-97]
The ExaVolt Antenna: A Large-Aperture, Balloon-embedded Antenna for Ultra-high Energy Particle Detection, P. W. Gorham et al., Astropart. Phys. 35 (2011) 242-256, arXiv:1102.3883.
[Gorham:2011mt]
[28-98]
R&D studies for the development of a compact transmitter able to mimic the acoustic signature of a UHE neutrino interaction, M. Ardid et al., Nucl. Instrum. Meth. A662 (2012) S206-S209, arXiv:1101.3195.
[Ardid:2011zt]
[28-99]
A Radio Air-Shower Test Array (RASTA) for IceCube, Sebastian Boser (IceCube), Nucl. Instrum. Meth. A662 (2012) S66-S68, arXiv:1010.1737.
[Boser:2010sw]
[28-100]
The TIANSHAN Radio Experiment for Neutrino Detection, D. Ardouin et al., Astropart. Phys. 34 (2011) 717-731, arXiv:1007.4359.
[Ardouin:2010gz]
[28-101]
A prototype station for ARIANNA: a detector for cosmic neutrinos, Lisa Gerhardt et al., Nucl. Instrum. Meth. A624 (2010) 85-91, arXiv:1005.5193.
[Gerhardt:2010js]
[28-102]
Liquid scintillator as tracking detector for high-energy events, Juha Peltoniemi, arXiv:0909.4974, 2009.
[Peltoniemi:2009xx]
[28-103]
ESAF: Full Simulation of Space-Based Extensive Air Showers Detectors, C. Berat et al., Astropart. Phys. 33 (2010) 221-247, arXiv:0907.5275.
[Berat:2009va]
[28-104]
Reconstruction methods for acoustic particle detection in the deep sea using clusters of hydrophones, C. Richardt et al., Astropart. Phys. 31 (2009) 19-23, arXiv:0906.1718.
[Richardt:2009hb]
[28-105]
The Next Generation of Photo-Detectors for Particle Astrophysics, Robert G. Wagner et al., arXiv:0904.3565, 2009.
[Wagner:2009mw]
[28-106]
DUSEL Theory White Paper, S. Raby et al., arXiv:0810.4551, 2008.
[Raby:2008pd]
[28-107]
The first version Buffered Large Analog Bandwidth (BLAB1) ASIC for high luminosity collider and extensive radio neutrino detectors, Gary S. Varner, Larry L. Ruckman, Andrew Wong, Nucl. Instrum. Meth. A591 (2008) 534-545, arXiv:0802.2278.
[Ruckman:2008fx]
[28-108]
Large underground, liquid based detectors for astro-particle physics in Europe: scientific case and prospects, J. Aysto et al., JCAP 0711 (2007) 011, arXiv:0705.0116.
[Autiero:2007zj]
[28-109]
In situ radioglaciological measurements near Taylor Dome, Antarctica and implications for UHE neutrino astronomy, D Besson, J. Jenkins, S. Matsuno, J. Nam, M. Smith, Astropart. Phys. 29 (2008) 130-157, arXiv:astro-ph/0703413.
[Besson:2007ek]
[28-110]
Sensitivity of an underwater Cerenkov km3 telescope to TeV neutrinos from Galactic Microquasars, C. Distefano et al. (NEMO), Astropart. Phys. 28 (2007) 1-9, arXiv:astro-ph/0608053.
[NEMO:2006nsb]
[28-111]
Accelerator Measurements of the Askaryan effect in Rock Salt: A Roadmap Toward Teraton Underground Neutrino Detectors, P. W. Gorham et al., Phys. Rev. D72 (2005) 023002, arXiv:astro-ph/0412128.
[Gorham:2004ny]
[28-112]
Transmission of light in deep sea water at the site of the Antares neutrino telescope, ANTARES (The ANTARES), Astropart. Phys. 23 (2005) 131, arXiv:astro-ph/0412126.
[ANTARES:2004kfl]
[28-113]
Experimental Study of Acoustic Ultra-High-Energy Neutrino Detection, J. Vandenbroucke, G. Gratta, N. Lehtinen, Astrophys. J. 621 (2005) 301, arXiv:astro-ph/0406105.
[Vandenbroucke:2004gv]
[28-114]
IceCube-Plus: An Ultra-High Energy Neutrino Telescope, Francis Halzen, Dan Hooper, JCAP 0401 (2004) 002, arXiv:astro-ph/0310152.
[Halzen:2003fi]
[28-115]
Megaton Modular Multi-Purpose Neutrino Detector for a Program of Physics in the Homestake DUSEL, M. V. Diwan et al., arXiv:hep-ex/0306053, 2003.
[Diwan:2003uw]
[28-116]
Sensitivity of the IceCube Detector to Astrophysical Sources of High Energy Muon Neutrinos, J. Ahrens et al. (IceCube), Astropart. Phys. 20 (2004) 507, arXiv:astro-ph/0305196.
[IceCube:2003llu]
[28-117]
Detecting Radio Emission from Cosmic Ray Air Showers and Neutrinos with a Digital Radio Telescope, Heino Falcke, Peter Gorham, Astropart. Phys. 19 (2003) 477, arXiv:astro-ph/0207226.
[Falcke:2002tp]
[28-118]
Sedimentation and Fouling of Optical Surfaces at the ANTARES Site, P. Amram et al. (ANTARES), Astropart. Phys. 19 (2003) 253, arXiv:astro-ph/0206454.
[ANTARES:2002opx]
[28-119]
Sensitivity of an underwater acoustic array to ultra-high energy neutrinos, Nikolai G. Lehtinen, Shaffique Adam, Giorgio Gratta, Thomas K. Berger, Michael J. Buckingham, Astropart. Phys. 17 (2002) 279-292, arXiv:astro-ph/0104033. http://hep.stanford.edu/neutrino/SAUND.
[Lehtinen:2001km]

29 - Future Experiments - Talks

[29-1]
The Giant Radio Array for Neutrino Detection (GRAND) Collaboration - Contributions to the 38th International Cosmic Ray Conference (ICRC 2023), Rafael Alves Batista et al. (GRAND), arXiv:2308.00120, 2023. ICRC 2023.
[GRAND:2023mco]
[29-2]
The IceCube-Gen2 Collaboration - Contributions to the 38th International Cosmic Ray Conference (ICRC2023), R. Abbasi et al. (IceCube-Gen2), arXiv:2307.13048, 2023. ICRC 2023.
[IceCube-Gen2:2023qad]
[29-3]
TAMBO: Searching for Tau Neutrinos in the Peruvian Andes, 2023.
[Thompson:2023pnl]
[29-4]
Development of a neutrino detector capable of operating in space, Nickolas Solomey, Nucl.Instrum.Meth.A 1047 (2023) 167840, arXiv:2206.12479. 15 Pisa Conference on Advanced Detector.
[Solomey:2022smr]
[29-5]
The Pacific Ocean Neutrino Experiment, Elisa Resconi (P-ONE), PoS ICRC2021 (2022) 024, arXiv:2111.13133. ICRC2021.
[Resconi:2021ezb]
[29-6]
Trinity's Sensitivity to Isotropic and Point-Source Neutrinos, Andrew Wang, Chaoxian Lin, Nepomuk Otte, Michele Doro, Eliza Gazda, Ignacio Taboada, Anthony Brown, Mahdi Bagheri, PoS ICRC2021 (2021) 1234, arXiv:2108.02751. 37th International Cosmic Ray Conference (ICRC2021).
[Wang:2021zkm]
[29-7]
TELAMON: Effelsberg Monitoring of AGN Jets with Very-High-Energy Astroparticle Emissions, M. Kadler et al., arXiv:2108.00383, 2021. 37th International Cosmic Ray Conference (ICRC2021).
[Kadler:2021eqg]
[29-8]
The Giant Radio Array for Neutrino Detection (GRAND) Project, Kumiko Kotera (GRAND), PoS ICRC2021 (2021) 1181, arXiv:2108.00032. 37th International Cosmic Ray Conference (ICRC 2021).
[Kotera:2021hbp]
[29-9]
PLE$\nu$M: A global and distributed monitoring system of high-energy astrophysical neutrinos, Lisa Johanna Schumacher, Matthias Huber, Matteo Agostini, Mauricio Bustamante, Foteini Oikonomou, Elisa Resconi, PoS ICRC2021 (2021) 1185, arXiv:2107.13534. 37th International Cosmic Ray Conference (ICRC 2021).
[Schumacher:2021hhm]
[29-10]
The IceCube-Gen2 Collaboration - Contributions to the 37th International Cosmic Ray Conference (ICRC2021), R. Abbasi et al. (IceCube-Gen2), arXiv:2107.06968, 2021. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[IceCube-Gen2:2021yep]
[29-11]
Giant Radio Array for Neutrino Detection (GRAND), Sijbrand de Jong, PoS ICHEP2020 (2021) 830, arXiv:2012.05580. ICHEP2020.
[DeJong:2020hpe]
[29-12]
Space-based Extensive Air Shower Optical Cherenkov and Fluorescence Measurements using SiPM Detectors in context of POEMMA, John F. Krizmanic, Nucl.Instrum.Meth. A985 (2021) 164614, arXiv:2008.04984. SiPM Workshop Bari 2019.
[Krizmanic:2020shl]
[29-13]
High-Energy Neutrino and Gamma-Ray Emission from Tidal Disruption Events and Implications for AT2019dsg, Kohta Murase, Shigeo S. Kimura, B. Theodore Zhang, Foteini Oikonomou, Maria Petropoulou, Astrophys.J. 902 (2020) 108, arXiv:2005.08937.
[Murase:2020lnu]
[29-14]
Evolving Antennas for Ultra-High Energy Neutrino Detection, Julie Rolla et al., PoS ICRC2019 (2020) 992, arXiv:2005.07772. 36th International Cosmic Ray Conference (ICRC 2019).
[GENETIS:2020lbv]
[29-15]
Neutrino direction and energy resolution of Askaryan detectors, Christian Glaser, PoS ICRC2019 (2019) 899, arXiv:1911.02093. 36th International Cosmic Ray Conference (ICRC2019), Madison, Wisconsin, USA.
[Glaser:2019kjh]
[29-16]
Weak signal extraction using matrix decomposition, with application to ultra high energy neutrino detection, S. Prohira, J.Phys.Conf.Ser. 1525 (2020) 012119, arXiv:1910.11314. ACAT2019.
[Prohira:2019ygs]
[29-17]
GRANDProto300: a pathfinder with richastroparticle and radio-astronomy science case, Valentin Decoene, PoS ICRC2019 (2020) 233, arXiv:1909.04893. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Decoene:2019sgx]
[29-18]
Acoustic detection of neutrinos in bedrock, Wladyslaw Henryk Trzaska, Kai Loo, Timo Enqvist, Jari Joutsenvaara, Pasi Kuusiniemi, Maciej Slupecki, EPJ Web Conf. 216 (2019) 04009, arXiv:1909.00417. ARENA 2018 - Acoustic and Radio EeV Neutrino Detection Activities.
[Trzaska:2019cfu]
[29-19]
Hybrid detection of high-energy cosmic neutrinos with the next-generation neutrino detectors at the South Pole, S. Toscano, P. Coppin, K. D. de Vries, N. van Eijndhoven, J. A. Aguilar, arXiv:1908.09563, 2019. 36th International Cosmic Ray Conference (ICRC 2019).
[Toscano:2019efo]
[29-20]
Prospects of Earth-skimming neutrino detection with HAWC, Hermes Leon Vargas (HAWC), arXiv:1908.07622, 2019. 36th International Cosmic Ray Conference (ICRC 2019).
[Vargas:2019kbb]
[29-21]
Discovering the Sky at the Longest Wavelengths with Small Satellite Constellations, Xuelei Chen et al., arXiv:1907.10853, 2019. ISSI-BJ forum on 'Discovering the Sky at the Longest Wavelengths with Small Satellite Constellations', January 23-25, 2019.
[Chen:2019xvd]
[29-22]
Trinity: An Air-Shower Imaging System for the Detection of Ultrahigh Energy Neutrinos, A. Nepomuk Otte, Anthony M. Brown, Abraham D. Falcone, Mose Mariotti, Ignacio Taboada, PoS ICRC2019 (2020) 976, arXiv:1907.08732. 36th International Cosmic Ray Conference.
[Otte:2019knb]
[29-23]
Development of a Cherenkov Telescope for the Detection of Ultrahigh Energy Neutrinos with EUSO-SPB2 and POEMMA, A. Nepomuk Otte, Eliza Gazda, Eleanor Judd, John F. Krizmanic, Evgeny Kutzenzov, Oscar Romero Matamala, Patrick J. Reardon, Lawrence Wiencke, PoS ICRC2019 (2020) 977, arXiv:1907.08728. 36th International Cosmic Ray Conference.
[Otte:2019lbq]
[29-24]
The GRAND project and GRANDProto300 experiment, Olivier Martineau-Huynh, EPJ Web Conf. 210 (2019) 06007, arXiv:1903.04803. UHECR2018 (Paris).
[Martineau-Huynh:2019bgk]
[29-25]
Acoustic detection of high energy neutrinos in sea water: status and prospects, Robert Lahmann, EPJ Web Conf. 135 (2017) 06001, arXiv:1811.11871. ARENA 2016, Groningen (The Netherlands), June 7-10, 2016.
[Lahmann:2017hsh]
[29-26]
ARIANNA: Measurement of cosmic rays with a radio neutrino detector in Antarctica, Christian Glaser (ARIANNA), EPJ Web Conf. 216 (2019) 02008, arXiv:1811.10661. 8th International Conference on Acoustic and Radio EeV Neutrino Detection Activities, ARENA 2018.
[Glaser:2018ifj]
[29-27]
ARIANNA: Current developments and understanding the ice for neutrino detection, Anna Nelles (ARIANNA), EPJ Web Conf. 216 (2019) 01008, arXiv:1811.10660. 8th International Conference on Acoustic and Radio EeV Neutrino Detection Activities, ARENA 2018.
[Nelles:2018gqq]
[29-28]
Air Shower Detection by Arrays of Radio Antennas (ISVHECRI 2018), Frank G. Schroder, EPJ Web Conf. 208 (2019) 15001, arXiv:1811.01496. 20th ISVHECRI 2018, Nagoya, Japan.
[Schroder:2018tco]
[29-29]
Baikal-GVD: status and prospects, A. D. Avrorin et al. (Baikal-GVD), EPJ Web Conf. 191 (2018) 01006, arXiv:1808.10353. QUARKS2018.
[Baikal-GVD:2018isr]
[29-30]
POEMMA: Probe Of Extreme Multi-Messenger Astrophysics, A. V. Olinto et al., PoS ICRC2017 (2017) 542, arXiv:1708.07599. 35th International Cosmic Ray Conference, ICRC217, Busan, Korea.
[Olinto:2017xbi]
[29-31]
The Giant Radio Array for Neutrino Detection (GRAND): Present and Perspectives, Ke Fang et al., PoS ICRC2017 (2017) 996, arXiv:1708.05128. 35th International Cosmic Ray Conference (ICRC2017), Bexco, Busan, Korea.
[Fang:2017mhl]
[29-32]
Simulation chain and signal classification for acoustic neutrino detection in seawater, D. Kiesling et al., arXiv:1706.08104, 2017. ARENA 2014.
[Kiessling:2017xla]
[29-33]
Overview of lunar detection of ultra-high energy particles and new plans for the SKA, Clancy W. James et al., EPJ Web Conf. 135 (2017) 04001, arXiv:1704.05336. 7th International Conference on Acoustic and Radio EeV Neutrino Detection Activities (ARENA 2016), Groningen, The Netherlands.
[James:2017pvr]
[29-34]
The Giant Radio Array for Neutrino Detection, Olivier Martineau-Huynh et al., EPJ Web Conf. 135 (2017) 02001, arXiv:1702.01395. ARENA2016.
[GRAND:2017pux]
[29-35]
High-energy neutrino astronomy with KM3NeT-ARCA, R. Coniglione, arXiv:1701.05849, 2017. XXV ECRS 2016.
[Coniglione:2017cwr]
[29-36]
Realtime processing of LOFAR data for the detection of nano-second pulses from the Moon, T. Winchen et al., J.Phys.Conf.Ser. 898 (2017) 032004, arXiv:1612.06592. 22nd International Conference on Computing in High Energy and Nuclear Physics (CHEP2016), USA.
[LOFARCosmicRayKSP:2016srx]
[29-37]
Sensitivity of lunar particle-detection experiments, Justin D. Bray, EPJ Web Conf. 135 (2017) 04002, arXiv:1612.00329. ARENA2016, Groningen, The Netherlands.
[Bray:2016kyk]
[29-38]
Search for Cosmic Particles with the Moon and LOFAR, T. Winchen et al., EPJ Web Conf. 135 (2017) 04003, arXiv:1609.06590. ARENA2016, Groningen, The Netherlands.
[LOFARCosmicRayKSP:2016bdk]
[29-39]
Acoustic properties of glacial ice for neutrino detection and the Enceladus Explorer, K. Helbing, R. Hoffmann, U. Naumann, D. Eliseev, D. Heinen, F. Scholz, C. Wiebusch, S. Zierke, arXiv:1608.04971, 2016. ICRC 2015.
[Helbing:2016qyq]
[29-40]
The e-ASTROGAM gamma-ray space mission, V. Tatischeff et al., Proc.SPIE Int.Soc.Opt.Eng. 9905 (2016) 99052N, arXiv:1608.03739. SPIE Astronomical Telescopes and Instrumentation: Ultraviolet to Gamma Ray conference, Edinburgh 2016.
[Tatischeff:2016ykb]
[29-41]
On the feasibility of RADAR detection of high-energy cosmic neutrinos, Krijn D. de Vries, Kael Hanson, Thomas Meures, Aongus O'Murchadha, PoS ICRC2015 (2015) 1168, arXiv:1511.08796. 34th International Cosmic Ray Conference, The Hague 2015.
[deVries:2015tug]
[29-42]
Design of the Second-Generation ARIANNA Ultra-High-Energy Neutrino Detector Systems, Stuart A. Kleinfelder (ARIANNA), arXiv:1511.07525, 2015. 2015 IEEE Nuclear Science Symposium.
[Kleinfelder:2015ens]
[29-43]
IceCube-Gen2 - The Next Generation Neutrino Observatory at the South Pole: Contributions to ICRC 2015, M. G. Aartsen et al. (IceCube-Gen2), arXiv:1510.05228, 2015. 34th International Cosmic Ray Conference, The Hague 2015.
[IceCube:2015uxl]
[29-44]
The H.E.S.S. multi-messenger program, F. Schussler et al. (H.E.S.S.), PoS ICRC2015 (2016) 726, arXiv:1509.03035. 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands.
[HESS:2015ojm]
[29-45]
The Giant Radio Array for Neutrino Detection, Olivier Martineau-Huynh et al. (GRAND), EPJ Web Conf. 116 (2016) 03005, arXiv:1508.01919. 34th ICRC.
[GRAND:2015uko]
[29-46]
Lunar detection of ultra-high-energy cosmic rays and neutrinos, J. D. Bray et al., arXiv:1408.6069, 2014. Advancing Astrophysics with the Square Kilometre Array.
[Bray:2014loa]
[29-47]
The KM3NeT deep-sea neutrino telescope, Annarita Margiotta (KM3NeT), Nucl. Instrum. Meth. A766 (2014) 83-87, arXiv:1408.1392. 8th International Workshop on Ring Imaging Cherenkov Detectors (RICH2013) - Hayama, Kanagawa, Japan, 2-6 Dec 2013.
[Margiotta:2014gza]
[29-48]
The ORCA Option for KM3NeT, Ulrich F. Katz (KM3NeT), PoS (2014), arXiv:1402.1022. 15th International Workshop on Neutrino Telescopes, 11-15 Mar 2013, Venice, Italy (C13-03-11.5).
[Katz:2013svu]
[29-49]
Fibre laser hydrophones for cosmic ray particle detection, E. J. Buis, E. J. J. Doppenberg, R. A. Nieuwland, P. M. Toet, JINST 9 (2014) C03051, arXiv:1311.7588. 13th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD13).
[Buis:2013ewa]
[29-50]
Optimization of the Orbiting Wide-angle Light Collectors (OWL) Mission for Charged-Particle and Neutrino Astronomy, John F. Krizmanic, John W. Mitchell, Robert E. Streitmatter (OWL), arXiv:1307.3907, 2013. 33rd ICRC, Rio de Janeiro, Brazil, July 2013.
[Krizmanic:2013pea]
[29-51]
Measurement of a Phase of a Radio Wave Reflected from Rock Salt and Ice Irradiated by an Electron Beam for Detection of Ultra-High-Energy Neutrinos, Masami Chiba et al., AIP Conf.Proc. 1535 (2013) 45-50, arXiv:1307.1767. 5th International Workshop on Acoustic and Radio EeV Neutrino Detection Activities.
[Chiba:2013nxa]
[29-52]
Lunar Imaging and Ionospheric Calibration for the Lunar Cherenkov Technique, Rebecca McFadden, Olaf Scholten, Maaijke Mevius, AIP Conf.Proc. 1535 (2013) 32, arXiv:1306.0350. ARENA 2012 (Erlangen, Germany).
[McFadden:2013yga]
[29-53]
Ionospheric propagation effects for UHE neutrino detection with the lunar Cherenkov technique, Rebecca McFadden, Ron Ekers, Justin Bray, arXiv:1306.0348, 2013. 32nd International Cosmic Ray Conference (ICRC2011), 11-18 August, 2011, Beijing, China.
[McFadden:2013xga]
[29-54]
Neutrino Detection, Position Calibration and Marine Science with Acoustic Arrays in the Deep Sea, Robert Lahmann, Nucl.Instrum.Meth. A725 (2013) 32-37, arXiv:1304.0697. 5th workshop on very large volume neutrino telescopes (VLVnT 11) in Erlangen, Germany, 12 -14 October 2011.
[Lahmann:2013hya]
[29-55]
Simulation Chain for Acoustic Ultra-high Energy Neutrino Detectors, M. Neff et al., AIP Conf.Proc. 1535 (2013) 204, arXiv:1304.0578. VLVnT 2011.
[Neff:2013xsa]
[29-56]
Acoustic Calibration for the KM3NeT Pre-Production Module, Alexander Enzenhofer (KM3NeT), Nucl.Instrum.Meth. A725 (2013) 211-214, arXiv:1303.6877. VLVnT11 - Very Large Volume Neutrino Telescope Workshop (2011).
[Enzenhofer:2013zba]
[29-57]
Prospects for a radio air-shower detector at South Pole, Sebastian Boser (ARA and IceCube), AIP Conf.Proc. 1535 (2013) 116, arXiv:1211.0026. ARENA 2012.
[Boser:2012ns]
[29-58]
ARIANNA: A radio detector array for cosmic neutrinos on the Ross Ice Shelf, Spencer R. Klein, ARIANNA (ARIANNA), IEEE Trans.Nucl.Sci. 60 (2013) 637-643, arXiv:1207.3846. SORMA12.
[Klein:2013zud]
[29-59]
Status of the TREND project, Olivier Martineau-Huynh for the TREND (TREND), arXiv:1204.1599, 2012. 10th ICGAC conference, Quy Nhon, Vietnam, 17-22 December 2011.
[Martineau-Huynh:2012clg]
[29-60]
Acoustic detection of ultra-high energetic neutrinos - a snap shot, Rolf Nahnhauer, Nucl. Instrum. Meth. A692 (2012) 58-64, arXiv:1201.0908. RICAP11, Rome 2011.
[Nahnhauer:2012yi]
[29-61]
LUNASKA simultaneous neutrino searches with multiple telescopes, J. D. Bray et al., arXiv:1110.5370, 2011. 32nd International Cosmic Ray Conference (Beijing 2011).
[Bray:2011gu]
[29-62]
An air shower array for LOFAR: LORA, S. Thoudam et al., Astrophys. Space Sci. Trans. 7 (2011) 195-199, arXiv:1102.0946. 22nd European Cosmic Ray Symposium, 3-6 August 2010, Finland.
[Thoudam:2011zs]
[29-63]
The JEM-EUSO Mission, Toshikazu Ebisuzaki (JEM-EUSO), AIP Conf. Proc. 1367 (2011) 120-125, arXiv:1101.1909. XVI International Symposium on Very High Energy Cosmic Ray Interactions, ISVHECRI 2010, Batavia, IL, USA (28 June - 2 July 2010).
[Ebisuzaki:2011xm]
[29-64]
Status of SalSA, A. Connolly (SalSA), arXiv:1010.4347, 2010. 4th International Workshop on Acoustic and Radio EeV Neutrino Detection Activities in Nantes, France, June 29-July 2, 2010.
[Connolly:2010rv]
[29-65]
Studies of Acoustic Neutrino Detection Methods with ANTARES, K. Graf (ANTARES), Nucl. Instrum. Meth. A626-627 (2011) S217-S220, arXiv:1005.3951. VLVnT Workshop 2009, Athens.
[Graf:2010me]
[29-66]
The LAGUNA design study- towards giant liquid based underground detectors for neutrino physics and astrophysics and proton decay searches, D. Angus et al. (LAGUNA), arXiv:1001.0077, 2010. Workshop 'European Strategy for Future Neutrino Physics', CERN, Oct. 2009.
[LAGUNA:2010zms]
[29-67]
Giant Liquid Argon Observatory for Proton Decay, Neutrino Astrophysics and CP-violation in the Lepton Sector (GLACIER), A. Badertscher et al., arXiv:1001.0076, 2010. Workshop 'European Strategy for Future Neutrino Physics', CERN, Oct. 2009.
[Badertscher:2010sy]
[29-68]
R&D for Future 100 kton Scale Liquid Argon Detectors, A. Marchionni, arXiv:0912.4417, 2009. European Strategy for Future Neutrino Physics, CERN, Oct. 2009.
[Marchionni:2009tj]
[29-69]
JEM-EUSO Science Objectives, Gustavo Medina-Tanco et al. (JEM-EUSO), arXiv:0909.3766, 2009. 31st Intl. Cosmic Ray Conference, Lodz, Poland, 2009.
[JEM-EUSO:2009dvm]
[29-70]
Underground Neutrino Detectors for Particle and Astroparticle Science: the Giant Liquid Argon Charge Imaging ExpeRiment (GLACIER), A. Rubbia, J. Phys. Conf. Ser. 171 (2009) 012020, arXiv:0908.1286.
[Rubbia:2009md]
[29-71]
Neutrino Telescopes in the Mediterranean Sea, Juan Jose Hernandez-Rey et al. (ANTARES), J. Phys. Conf. Ser. 171 (2009) 012047, arXiv:0904.4011.
[Hernandez-Rey:2009ygn]
[29-72]
IceRay: An IceCube-centered Radio-Cherenkov GZK Neutrino Detector, P. Allison et al., Nucl. Instrum. Meth. A604 (2009) S64-S69, arXiv:0904.1309. ARENA 2008.
[Allison:2009rz]
[29-73]
Development of a radio-detection method array for the observation of ultra-high energy neutrino induced showers, Daniel Ardouin et al., Nucl. Instrum. Meth. A604 (2009) S85-S87, arXiv:0902.0730. ARENA 2008.
[Ardouin:2009ny]
[29-74]
Position reconstruction of acoustic sources with the AMADEUS Detector, C. Richardt et al., Nucl. Instrum. Meth. A604 (2009) S189-S192, arXiv:0901.4416. 3rd International Workshop on the Acoustic and Radio EeV Neutrino detection Activities, Rome, Italy.
[Richardt:2009ye]
[29-75]
Status of NEMO: results from the NEMO Phase-1 detector, Carla Distefano (NEMO), Nucl. Phys. Proc. Suppl. 190 (2009) 109-114, arXiv:0901.1252. CRIS 2008.
[Distefano:2009vs]
[29-76]
Deep-Sea Acoustic Neutrino Detection and the AMADEUS System as a Multi-Purpose Acoustic Array, Robert Lahmann (ANTARES), Nucl. Instrum. Meth. A602 (2009) 255-261, arXiv:0901.0239. VLVnT08, April 2008.
[Lahmann:2009mx]
[29-77]
HADES - Hydrophone for Acoustic Detection at South Pole, Benjamin Semburg, for the IceCube Collaboration (IceCube), Nucl. Instrum. Meth. A604 (2009) S215-S218, arXiv:0811.1114. ARENA 2008.
[Semburg:2008ce]
[29-78]
Acoustic noise in deep ice and environmental conditions at the South Pole, Timo Karg, for the IceCube Collaboration (IceCube), Nucl. Instrum. Meth. A604 (2009) S171-S174, arXiv:0811.1099. 3rd International Workshop on the Acoustic and Radio EeV Neutrino detection Activities (ARENA 2008).
[Karg:2008bw]
[29-79]
Measurement of acoustic properties of South Pole ice for neutrino astronomy, Justin Vandenbroucke, for the IceCube Collaboration (IceCube), Nucl. Instrum. Meth. A604 (2009) S164-S170, arXiv:0811.1087. Acoustic and Radio EeV Neutrino detection Activities (ARENA) 2008.
[Vandenbroucke:2008bs]
[29-80]
Status Report and Future Prospects on LUNASKA Lunar Observations with ATCA, C. W. James et al., Nucl. Instrum. Meth. A604 (2009) S112-S115, arXiv:0811.1072. ARENA 2008, Rome, Italy.
[James:2008bm]
[29-81]
The Directional Dependence of the Lunar Cherenkov Technique for UHE Neutrino Detection, C. W. James, R. J. Protheroe, Nucl. Instrum. Meth. A604 (2009) S222-S224, arXiv:0811.1070. ARENA 2008, Rome, Italy.
[James:2008bk]
[29-82]
Neutrino alert systems for Gamma Ray Bursts and Transient astronomical Sources, Stephane Basa et al., Nucl. Instrum. Meth. A602 (2009) 275-278, arXiv:0810.1394. International Workshop on a Very Large Volume Neutrino Telescope for the Mediterranean Sea, 2008.
[Basa:2008hh]
[29-83]
The Radio Cerenkov Technique for Ultra-High Energy Neutrino Detection, Amy Connolly, Nucl. Instrum. Meth. A595 (2008) 260-263, arXiv:0809.3669. 6th International Workshop on Ring Imaging Cherenkov Counters (RICH2007), Trieste, Italy 15 - 20 October 2007.
[Connolly:2008tu]
[29-84]
Antares: Towards a Large Underwater Neutrino Experiment, M. Spurio, for the ANTARES collaboration (ANTARES), Frascati Phys.Ser. 47 (2008) 159-174, arXiv:0805.1191. Rencontres de Physique, La Thuile, 24/2-1/3 2008.
[Spurio:2008eb]
[29-85]
KM3NeT:a large underwater neutrino telescope in the Mediterranean Sea, P. A. Rapidis et al., J. Phys. Conf. Ser. 120 (2008) 062011, arXiv:0803.2478. 10th International Conference on Astroparticle and Underground Physics (TAUP 2007), Sendai, Japan, 11-15 Sep 2007.
[Rapidis:2008tw]
[29-86]
Developments in Nanosecond Pulse Detection Methods and Technology, R. A. McFadden et al., arXiv:0801.3304, 2008. 30th ICRC, Merida, Mexico, 2007.
[McFadden:2008wt]
[29-87]
Configuration studies for a cubic-kilometre deep-sea neutrino telescope - KM3NeT - with NESSY, a fast and flexible approach, J. Carr, D. Dornic, F. Jouvenot, G. Maurin, for the KM3NeT consortium, arXiv:0711.2139, 2007. 30th International Cosmic Ray Conference.
[Carr:2007za]
[29-88]
KM3NeT: A Next Generation Neutrino Telescope in the Mediterranean Sea, A. Kappes, for the KM3NeT Consortium, arXiv:0711.0563, 2007. Sixth International Workshop on New Worlds in Astroparticle Physics, Sep. 2007, Faro, Portugal.
[Kappes:2007ci]
[29-89]
NEMO: A Project for a km^3 Underwater Detector for Astrophysical Neutrinos in the Mediterranean Sea, I. Amore (NEMO), IJMPA, Vol. 22, No. 21 (2008) 2007, arXiv:0709.3991. ISCRA 2006, Erice 20-27 June 2006.
[Bersani:2008zz]
[29-90]
High Energy Neutrinos with a Mediterranean Neutrino Telescope, E. Borriello et al., arXiv:0709.3438, 2007. 30th ICRC 2007.
[Borriello:2007zz]
[29-91]
Dark Matter Searches with GLAST, Lawrence Wai et al. (GLAST LAT), AIP Conf. Proc. 903 (2007) 599-602, arXiv:astro-ph/0701884. SUSY06.
[Wai:2007px]
[29-92]
Status of the NEMO Project, Piera Sapienza (NEMO), arXiv:astro-ph/0611105, 2006. ECRS2006.
[Sapienza:2006en]
[29-93]
Status report (2006) of the ANTARES project, Maurizio Spurio (ANTARES), arXiv:hep-ph/0611032, 2006. 20thEuropean Cosmic Ray Symposium (5-8 September 2006) Lisbon, Portugal.
[Spurio:2006xc]
[29-94]
ARIANNA: A New Concept for UHE Neutrino Detection, Steven W. Barwick, J. Phys. Conf. Ser. 60 (2007) 276-283, arXiv:astro-ph/0610631. 2nd Workshop on TeV Astrophysics, Aug 28-31, 2006, Madison, WI.
[Barwick:2006tg]
[29-95]
Sensitivity of the NEMO telescope to neutrinos from microquasars, C. Distefano (NEMO), Nucl. Phys. Proc. Suppl. 165 (2007) 181-187, arXiv:astro-ph/0608515. CRIS06 proceedings (Catania, Italy, May 29 - June 2, 2006).
[Distefano:2006ij]
[29-96]
Detection of point-like neutrino sources with the NEMO-km3 telescope, C. Distefano (NEMO), Astrophys. Space Sci. 309 (2007) 415-420, arXiv:astro-ph/0608514. BCN06 proceedings (Barcelona, July 4-7, 2006).
[Distefano:2006ii]
[29-97]
KM3NeT: Towards a km3 Mediterranean Neutrino Telescope, Ulrich F. Katz, Nucl. Instrum. Meth. A567 (2006) 457-461, arXiv:astro-ph/0606068. VLVnT2 Workshop, Catania, Siciliy, Italy, 8-11 Nov 2005.
[Katz:2006wv]
[29-98]
Effects of architectural issues on a km3 scale detector, R. Coniglione et al. (NEMO), Nucl. Instrum. Meth. A567 (2006) 489-491, arXiv:astro-ph/0605068. VVVNT2 proceedings (Catania, Italy, November 8-11, 2005).
[Coniglione:2006bj]
[29-99]
Sensitivity and pointing accuracy of the NEMO km^3 telescope, C. Distefano et al. (NEMO), Nucl. Instrum. Meth. A567 (2006) 495-497, arXiv:astro-ph/0605067. VLVNT2 (Catania, Italy, November 8-11, 2005).
[Distefano:2006bi]
[29-100]
Neutrino Telescopy in the Mediterranean Sea, Ulrich F. Katz, Prog. Part. Nucl. Phys. 57 (2006) 273, arXiv:astro-ph/0601012. 27th Int. School on Nucl. Phys. (Neutrinos in Cosmology, in Astro, Particle and Nuclear Physics), Erice/Italy, Sept. 2005.
[Katz:2006cc]
[29-101]
Development of acoustic devices for ultra-high energy neutrino detectors, Timo Karg et al. (ANTARES), arXiv:astro-ph/0509455, 2005. 29th International Cosmic Ray Conference, August 3-10, 2005, Pune, India.
[ANTARES:2005ovp]
[29-102]
Design considerations and sensitivity estimates for an acoustic neutrino detector, Timo Karg et al., Int. J. Mod. Phys. A21S1 (2006) 212-216, arXiv:astro-ph/0509445. 1st International ARENA Workshop, May 17-19, 2005, DESY Zeuthen.
[Karg:2005zb]
[29-103]
Lunar satellite detection of ultra-high energy neutrinos with the use of radio methods, Oscar Stal, Jan Bergman, Bo Thide, Lennart Ahlen, Gunnar Ingelman, arXiv:astro-ph/0509210, 2005. To Moon and Beyond Conf., Bremen, Germany, 2005.
[Stal:2005gs]
[29-104]
Tuning into UHE Neutrinos in Antarctica - The ANITA Experiment, P. Miocinovic et al. (The ANITA), eConf C041213 (2004) 2516, arXiv:astro-ph/0503304. 22nd Texas Symposium on Relativistic Astrophysics at Stanford, Palo Alto, 13-17 December 2004.
[ANITA:2004sje]
[29-105]
Megaton Water Cerenkov Detectors and Astrophysical Neutrinos, Maury Goodman, Nucl. Phys. Proc. Suppl. 145 (2005) 335, arXiv:astro-ph/0501480. 2004 Neutrino Oscillation Workshop, Otranto Italy.
[Goodman:2005xg]
[29-106]
IceTop status in 2004, Todor Stanev, Ralf Ulrich (IceCube), Nucl. Phys. Proc. Suppl. 145 (2005) 327, arXiv:astro-ph/0501046. NOW 2004: Neutrino Oscillation Workshop, Conca Specchiulla, Otranto, Italy, 11-17 Sep 2004.
[Stanev:2005nt]
[29-107]
The ANTARES experiment: Past, present and future, I. Sokalski (ANTARES), arXiv:hep-ex/0501003, 2005. INFN Eloisatron Project 44th Workshop on QCD at Cosmic Energies: The Highest Energy Cosmic Rays and QCD, Erice, Italy, 29 Aug - 5 Sep 2004.
[Sokalski:2005sf]
[29-108]
Alternative Detection Methods for Highest Energy Neutrinos, Rolf Nahnhauer, Nucl. Phys. Proc. Suppl. 143 (2005) 387, arXiv:astro-ph/0411715. XXIst International Conference on Neutrino Physics and Astrophysics, Paris, June 14-19, 2004.
[Nahnhauer:2004tt]
[29-109]
ANTARES Status and Milestones : News from Deep-Sea, Thierry Pradier (ANTARES), Frascati Phys. Ser. 555 (2004) 1, arXiv:astro-ph/0410542. 3rd International Conference on Frontier Science - Physics and Astrophysics in Space, Frascati, Italy, 14-19 June 2004.
[Pradier:2004jh]
[29-110]
Neutrino Astronomy with ANTARES, Teresa Montaruli et al. (ANTARES), Acta Phys. Polon. B36 (2005) 509, arXiv:hep-ex/0410079. XXXIV Int. Symposium on Multiparticle Dynamics, ISMD 2004, Sonoma County, CA, July 30, 2004.
[Montaruli:2004ze]
[29-111]
Detecting high-energy neutrinos from microquasars with the ANTARES telescope, G. Fiorella Burgio (ANTARES), Chin.J.Astron.Astrophys. (2004), arXiv:astro-ph/0407339. 5th Microquasar Workshop: Microquasars and Related Astrophysics, Beijing, China, 7-13 June 2004.
[Burgio:2004sy]
[29-112]
IceCube: The Cubic Kilometer Neutrino Telescope at the South Pole, A.R. Fazely (The IceCube), arXiv:astro-ph/0406125, 2004. Coral Gables Conference 2003.
[Fazely:2004jt]
[29-113]
Exploring the Universe with the ANTARES neutrino telescope, V. A. Kudryavtsev (The ANTARES), Eur. Phys. J. C33 (2004) S971, arXiv:astro-ph/0310736. Rencontres de Moriond - Cosmology: Exploring the Universe (La Thuile, 28 March - 4 April, 2004).
[ANTARES:2003bhh]
[29-114]
The ANTARES neutrino project: status report, I. Sokalski et al. (ANTARES), Phys. Atom. Nucl. 67 (2004) 1172, arXiv:astro-ph/0310130. 4th International Conference on Non-Accelerator New Physics, Dubna, Russia, June 23-28, 2003.
[ANTARES:2003wff]
[29-115]
ANTARES Status Report, Teresa Montaruli (ANTARES), arXiv:physics/0306057, 2003. 28th International Cosmic Ray Conference (ICRC 2003), Tsukuba, Japan, 31 Jul. - 7 Aug. 2003.
[ANTARES:2003wfx]
[29-116]
Detection of tau neutrinos in underwater neutrino telescopes, E. Bugaev, T. Montaruli, I. Sokalski, arXiv:astro-ph/0305284, 2003. 28th International Cosmic Ray Conference, Tsukuba, Japan, July 31 - August 7, 2003.
[Bugaev:2003bp]
[29-117]
High Energy Neutrino Astronomy: The Experimental Road, C. Spiering, J. Phys. G29 (2003) 843, arXiv:astro-ph/0303068. 18th European Cosmic Ray Conference, Moscow 2002, and the 8th Topical Seminar on Innovative Particle and Radiation Detectors, Siena 2002.
[Spiering:2003xm]
[29-118]
IceCube - the next generation neutrino telescope at the South Pole, A. Karle (IceCube), Nucl. Phys. Proc. Suppl. 118 (2003) 388, arXiv:astro-ph/0209556. Proceedings of the XXth International Conference on Neutrino Physics and Astrophysics, Munich 2002.
[IceCube:2002eys]
[29-119]
Simulation of a KM3-scale deep-sea neutrino detector, D. Zaborov (ANTARES), arXiv:hep-ex/0207039, 2002. Proceedings of Rencontres de Moriond 2002 Electroweak Interactions and Unified Theories.
[Zaborov:2002dz]
[29-120]
UNO: Underground Nucleon Decay and Neutrino Observatory, C. McGrew, 2002. Talk given at the International Workshop on Neutrinos and Subterranean Science - NeSS 02, Washington, DC, September 19-21, 2002. http://mocha.phys.washington.edu/~int_talk/WorkShops/Neutrino02/Working_Groups/People/McGrew_C/mcgrew_thurs_protondecaywg.pdf.
[McGrew-talk:2002b]

Search Neutrino Unbound

Cross search NU

It is possible to perform a cross search between the various pages of Neutrino Unbound.
This is useful if you want to show the common elements that appear in the listings of two (or more) different topics or experiments.

Go to the search form.

[Go to ...]

Neutrino Unbound Home

Authors:
Stefano Gariazzo / gariazzo@to.infn.it
Carlo Giunti / giunti@to.infn.it
Marco Laveder / marco.laveder@pd.infn.it
Last Update: Fri 19 Apr 2024, 14:42:07 CET