Astrophysical Neutrinos

Filter this page

(Note: The process can take some time.)

EXPAND ALL
COMPRESS ALL

References

1 - Books

[1-1]
Neutrinos in particle physics, astronomy and cosmology, Zhi-zhong Xing, Shun Zhou, Zhejiang University Press, Hangzhou, 2011. ISBN: 978-7308080248. http://www.zjupress.com/en/redir.php?catalog_id=64&book_id=1446.
[Xing:2011zza]
[1-2]
Stars as laboratories for fundamental physics: The astrophysics of neutrinos, axions, and other weakly interacting particles, G.G. Raffelt, University of Chicago Press, 1996. ISBN 0-226-70272-3. http://wwwth.mpp.mpg.de/members/raffelt/pages/mybook.html.
[Raffelt:1996wa]
[1-3]
Cosmic Rays and Particle Physics, T. K. Gaisser, Cambridge University Press, 1990.
[Gaisser:1990vg]
[1-4]
Astrophysics of Cosmic Rays, (ed.) Ginzburg, V. L., V. A. Dogiel, V. S. Berezinsky, S. V. Bulanov, V. S. Ptuskin, North-Holland, 1990.
[Ginzburg:1990sk]

2 - Reviews

[2-1]
Search for the Footprints of New Physics with Laboratory and Cosmic Neutrinos, Floyd W. Stecker, arXiv:1705.08485, 2017.
[Stecker:2017lty]
[2-2]
Neutrino-dominated accretion flows as the central engine of gamma-ray bursts, Tong Liu, Wei-Min Gu, Bing Zhang, arXiv:1705.05516, 2017.
[Liu:2017kga]
[2-3]
Photospheric Emission of Gamma-Ray Bursts, A. M. Beloborodov, P. Meszaros, arXiv:1701.04523, 2017.
[Beloborodov:2017use]
[2-4]
Neutrinos and Cosmic Rays Observed by IceCube, M. G. Aartsen et al. (IceCube), arXiv:1701.03731, 2017.
[Aartsen:2017von]
[2-5]
Radiowave Detection of Ultra-High Energy Neutrinos and Cosmic Rays, Tim Huege, Dave Besson, arXiv:1701.02987, 2017.
[Huege:2017khw]
[2-6]
Recent Results from the ANTARES Neutrino Telescope, P. Coyle, C. W. James, arXiv:1701.02144, 2017.
[Coyle:2017pnl]
[2-7]
Neutrino Signatures From Young Neutron Stars, Luke F. Roberts, Sanjay Reddy, arXiv:1612.03860, 2016.
[Roberts:2016rsf]
[2-8]
Radio detection of Cosmic-Ray Air Showers and High-Energy Neutrinos, Frank G. Schroder, Prog.Part.Nucl. Phys. 93 (2017) 1-68, arXiv:1607.08781.
[Schroder:2016hrv]
[2-9]
Radio Detection of High Energy Neutrinos, Amy L. Connolly, Abigail G. Vieregg, arXiv:1607.08232, 2016.
[Connolly:2016pqr]
[2-10]
The Dawn of Multi-Messenger Astronomy, Marcos Santander, arXiv:1606.09335, 2016.
[1606.09335]
[2-11]
A review of indirect searches for particle dark matter, Jennifer M. Gaskins, Contemp.Phys. 57 (2016) 496-525, arXiv:1604.00014.
[Gaskins:2016cha]
[2-12]
Observations of diffuse fluxes of cosmic neutrinos, Christopher H. Wiebusch, arXiv:1602.00239, 2016.
[Wiebusch:2016ill]
[2-13]
Quark matter nucleation in neutron stars and astrophysical implications, Ignazio Bombaci, Domenico Logoteta, Isaac Vidana, Constanca Providencia, Eur.Phys.J. A52 (2016) 58, arXiv:1601.04559.
[Bombaci:2016xuj]
[2-14]
The sensitivity of past and near-future lunar radio experiments to ultra-high-energy cosmic rays and neutrinos, Justin Bray, Astropart. Phys. (2016), arXiv:1601.02980.
[Bray:2016xrn]
[2-15]
Nonthermal particles and photons in starburst regions and superbubbles, Andrei Bykov, Astron. Astrophys. Rev. 22 (2014) 77, arXiv:1511.04608.
[Bykov:2014asa]
[2-16]
The quest for dark matter with neutrino telescopes, Carlos Perez de los Heros, arXiv:1511.03500, 2015.
[Heros:2015tng]
[2-17]
Active Galactic Nuclei as High-Energy Neutrino Sources, Kohta Murase, arXiv:1511.01590, 2015.
[Murase:2015ndr]
[2-18]
Gamma Ray Bursts as Neutrino Sources, P. Meszaros, arXiv:1511.01396, 2015.
[Meszaros:2015krr]
[2-19]
A review of the neutrino emission processes in the late stages of the stellar evolutions, Indranath Bhattacharyya, arXiv:1510.02678, 2015.
[Bhattacharyya:2015sqa]
[2-20]
Neutrino emissivity in the quark-hadron mixed phase of neutron stars, William M. Spinella, Fridolin Weber, Gustavo A. Contrera, Milva G. Orsaria, Eur.Phys.J. A52 (2016) 61, arXiv:1507.06067.
[Spinella:2015ksa]
[2-21]
Indirect and direct search for dark matter, Michael Klasen, Martin Pohl, Gunter Sigl, Prog. Part. Nucl. Phys. 85 (2015) 1-32, arXiv:1507.03800.
[Klasen:2015uma]
[2-22]
Neutrinos from Gamma Ray Bursts in the IceCube and ARA Era, Dafne Guetta, JHEAp 7 (2015) 90-94, arXiv:1503.07146.
[Guetta:2015iza]
[2-23]
The Physics of Gamma-Ray Bursts and Relativistic Jets, Pawan Kumar, Bing Zhang, Phys.Rept. 561 (2014) 1-109, arXiv:1410.0679.
[Kumar:2014upa]
[2-24]
High Energy Astrophysics, Bing Zhang, Peter Meszaros, Physics 8 (2013) 605-608, arXiv:1401.6613.
[Zhang:2014gta]
[2-25]
Gamma-Ray Bursts, P. Meszaros, M.J. Rees, arXiv:1401.3012, 2014.
[Meszaros:2014pca]
[2-26]
Cosmic Neutrino Pevatrons: A Brand New Pathway to Astronomy, Astrophysics, and Particle Physics, Luis A. Anchordoqui et al., JHEAp (2013), arXiv:1312.6587.
[Anchordoqui:2013dnh]
[2-27]
Diverse, massive-star-associated sources for elements heavier than Fe and the roles of neutrinos, Yong-Zhong Qian, J. Phys. G41 (2014) 044002, arXiv:1310.4462.
[Qian:2013fsa]
[2-28]
Recent Progress in Cosmology and Particle Astrophysics, Pisin Chen, JPS Conf.Proc. 1 (2014) 011002, arXiv:1310.1107.
[Chen:2013kia]
[2-29]
IceCube: Neutrino Physics from GeV - PeV, Francis Halzen (IceCube), arXiv:1308.3171, 2013.
[Halzen:2013uzb]
[2-30]
Light from the Cosmic Frontier: Gamma-Ray Bursts, L. Amati et al., arXiv:1306.5259, 2013.
[Amati:2013ora]
[2-31]
Review of Recent Neutrino Physics Research, Leonard S. Kisslinger, Mod.Phys.Lett. A28 (2013) 1330024, arXiv:1306.3912.
[Kisslinger:2013ipa]
[2-32]
High energy emission from galactic jets, H. R. Christiansen, arXiv:1306.1792, Cambridge University Press, 2013.
[Christiansen:2013dwa]
[2-33]
Neutrino astrophysics, Cristina Volpe, Ann.Phys.(Berlin) 525 (2013) 588-599, arXiv:1303.1681.
[Volpe:2013kxa]
[2-34]
Atmospheric leptons, the search for a prompt component, Thomas K. Gaisser, EPJ Web Conf. 52 (2013) 09004, arXiv:1303.1431.
[Gaisser:2013ira]
[2-35]
Gamma-Ray Burst Science in the Era of the Cherenkov Telescope Array, Susumu Inoue et al., Astropart.Phys. 43 (2013) 252-275, arXiv:1301.3014.
[Inoue:2013vy]
[2-36]
Neutrino Astrophysics, W. C. Haxton, arXiv:1209.3743, 2012.
[Haxton:2012bk]
[2-37]
Towards High-Energy Neutrino Astronomy. A Historical Review, Christian Spiering, Eur. Phys. J. H37 (2012) 515-565, arXiv:1207.4952.
[Spiering:2012xe]
[2-38]
Multimessenger astronomy with gravitational waves and high-energy neutrinos, S. Ando et al., Reviews of Modern Physics 85 (2013) 1401-1420, arXiv:1203.5192.
[Ando:2012hna]
[2-39]
Neutrinos and cosmic rays, Thomas K. Gaisser, Todor Stanev, Astropart. Phys. 39-40 (2012) 120-128, arXiv:1202.0310.
[Gaisser:2012ru]
[2-40]
Neutrinos from Cosmic Accelerators Including Magnetic Field and Flavor Effects, Walter Winter, Adv. High Energy Phys. 2012 (2012) 586413, arXiv:1201.5462.
[Winter:2012xq]
[2-41]
Extragalactic propagation of ultrahigh energy cosmic-rays, Denis Allard, Astropart. Phys. 39-40 (2012) 33-43, arXiv:1111.3290.
[Allard:2011aa]
[2-42]
High-Energy Neutrino Astrophysics: Status and Perspectives, Ulrich F. Katz, Christian Spiering, Prog. Part. Nucl. Phys. 67 (2012) 651-704, arXiv:1111.0507.
[Katz:2011ke]
[2-43]
Detection of elusive Radio and Optical emission from Cosmic-ray showers in the 1960s, David J. Fegan, Nucl. Instrum. Meth. A662 (2012) S2-S11, arXiv:1104.2403.
[Fegan:2011fb]
[2-44]
Observing the prompt emission of gamma-ray bursts, Jean-Luc Atteia, Michel Boer, Comptes Rendus Physique 12 (2011) 255-266, arXiv:1104.1211.
[Atteia:2011xv]
[2-45]
Ultrahigh Energy Cosmic Rays, Antoine Letessier-Selvon, Todor Stanev, Rev.Mod.Phys. 83 (2011) 907-942, arXiv:1103.0031.
[LetessierSelvon:2011dy]
[2-46]
The Astrophysics of Ultrahigh Energy Cosmic Rays, Kumiko Kotera, Angela V. Olinto, Ann. Rev. Astron. Astrophys. 49 (2011) 119-153, arXiv:1101.4256.
[Kotera:2011cp]
[2-47]
High energy cosmic ray and neutrino astronomy, E. Waxman, arXiv:1101.1155, 2011.
[Waxman:2011hr]
[2-48]
Diffuse supernova neutrinos at underground laboratories, Cecilia Lunardini, Astropart.Phys. 79 (2016) 49-77, arXiv:1007.3252.
[Lunardini:2010ab]
[2-49]
Astronomy in Antarctica, Michael G. Burton, Astron. Astrophys. Rev. 18 (2010) 417-469, arXiv:1007.2225.
[Burton:2010vr]
[2-50]
IceCube: An Instrument for Neutrino Astronomy, Francis Halzen, Spencer R. Klein, Rev. Sci. Instrum. 81 (2010) 081101, arXiv:1007.1247.
[Halzen:2010yj]
[2-51]
The Diffuse Supernova Neutrino Background, John F. Beacom, Ann. Rev. Nucl. Part. Sci. 60 (2010) 439, arXiv:1004.3311.
[Beacom:2010kk]
[2-52]
In Search for Extraterrestrial High Energy Neutrinos, Luis A. Anchordoqui, Teresa Montaruli, Ann. Rev. Nucl. Part. Sci. 60 (2010) 129-162, arXiv:0912.1035.
[Anchordoqui:2009nf]
[2-53]
The Indirect Search for Dark Matter with IceCube, Francis Halzen, Dan Hooper, New J. Phys. 11 (2009) 105019, arXiv:0910.4513.
[Halzen:2009vu]
[2-54]
Neutrino Astronomy with IceCube, Tyce DeYoung, Mod. Phys. Lett. A24 (2009) 1543-1557, arXiv:0906.4530.
[DeYoung:2009er]
[2-55]
Sterile neutrinos: the dark side of the light fermions, Alexander Kusenko, Phys. Rept. 481 (2009) 1-28, arXiv:0906.2968.
[Kusenko:2009up]
[2-56]
High-Energy Astrophysics with Neutrino Telescopes, T. Chiarusi, M. Spurio, Eur. Phys. J. C65 (2010) 649-701, arXiv:0906.2634.
[Chiarusi:2009ng]
[2-57]
The search for decaying Dark Matter, J.W. den Herder et al., arXiv:0906.1788, 2009.
[Herder:2009im]
[2-58]
The Scientific Life Of John Bahcall, W. C. Haxton, Ann. Rev. Nucl. Part. Sci. 59 (2009) 1-20, arXiv:0904.2865.
[Haxton:2009zb]
[2-59]
Origin and evolution of cosmic accelerators - the unique discovery potential of an UHE neutrino telescope: Astronomy Decadal Survey (2010-2020) Science White Paper, Pisin Chen, K. D. Hoffman (editors for interested physicists from the IceCube), arXiv:0902.3288, 2009.
[Chen:2009ra]
[2-60]
High Energy Neutrino Telescopes, K. D. Hoffman, New J. Phys. 11 (2009) 055006, arXiv:0812.3809.
[Hoffman:2008yu]
[2-61]
Astrophysical Probes of Unification, Asimina Arvanitaki et al., Phys. Rev. D79 (2009) 105022, arXiv:0812.2075.
[Arvanitaki:2008hq]
[2-62]
Propagation of ultra high energy cosmic rays, Todor Stanev, New J. Phys. 11 (2009) 065013, arXiv:0810.2501.
[Stanev:2008hu]
[2-63]
Proton and Neutrino Extragalactic Astronomy, Paolo Lipari, Phys. Rev. D78 (2008) 083011, arXiv:0808.0344.
[Lipari:2008zf]
[2-64]
High-energy neutrinos in the context of multimessenger physics, Julia K. Becker, Phys. Rept. 458 (2008) 173-246, arXiv:0710.1557.
[Becker:2007sv]
[2-65]
The Progenitors of Short Gamma-Ray Bursts, William H. Lee, Enrico Ramirez-Ruiz, New J. Phys. 9 (2007) 17, arXiv:astro-ph/0701874.
[Lee:2007js]
[2-66]
Neutrino astrophysics: A new tool for exploring the universe, E. Waxman, Science 315 (2007) 63-65, arXiv:astro-ph/0701168.
[Waxman:2007kp]
[2-67]
High-Energy Aspects of Astrophysical Jets, Amir Levinson, Int. J. Mod. Phys. A21 (2006) 6015-6054, arXiv:astro-ph/0611521.
[Levinson:2006br]
[2-68]
The role of microquasars in astroparticle physics, Sylvain Chaty, arXiv:astro-ph/0607668, 2006.
[Chaty:2006zk]
[2-69]
Ultra-high energy cosmic rays, cascade gamma-rays, and high-energy neutrinos from gamma-ray bursts, Charles D. Dermer, Armen Atoyan, New J. Phys. 8 (2006) 122, arXiv:astro-ph/0606629.
[Dermer:2006bb]
[2-70]
Astroparticle physics with high energy neutrinos: from amanda to icecube, Francis Halzen, Eur.Phys.J. C46 (2006) 669-687, arXiv:astro-ph/0602132.
[Halzen:2006mq]
[2-71]
The physics of dense hadronic matter and compact stars, Armen Sedrakian, Prog. Part. Nucl. Phys. 58 (2007) 168-246, arXiv:nucl-th/0601086.
[Sedrakian:2006mq]
[2-72]
IceHEP High Energy Physics at the South Pole, Luis Anchordoqui, Francis Halzen, Annals Phys. 321 (2006) 2660-2716, arXiv:hep-ph/0510389.
[Anchordoqui:2005is]
[2-73]
High Energy Neutrinos as a Probe for New Physics and Astrophysics, E. V. Bugaev, Int. J. Mod. Phys. A20 (2005) 6909, arXiv:astro-ph/0505412.
[Bugaev:2005wp]
[2-74]
Pulsar kicks from neutrino oscillations, Alexander Kusenko, Int. J. Mod. Phys. D13 (2004) 2065, arXiv:astro-ph/0409521.
[Kusenko:2004mm]
[2-75]
Prospects for radio detection of ultra-high energy cosmic rays and neutrinos, H. Falcke, P. Gorham, R.J. Protheroe, New Astron. Rev. 48 (2004) 1487, arXiv:astro-ph/0409229.
[Falcke:2004aw]
[2-76]
The Particle physics reach of high-energy neutrino astronomy, Tao Han, Dan Hooper, New J. Phys. 6 (2004) 150, arXiv:hep-ph/0408348.
[Han:2004kq]
[2-77]
Status of particle physics solutions to the UHECR puzzle, M. Kachelriess, Comptes Rendus Physique 5 (2004) 441, arXiv:hep-ph/0406174.
[Kachelriess:2004ax]
[2-78]
Ultra High Energy Cosmic Rays, R.J. Protheroe, R.W. Clay, Publ. Astron. Soc. Pac. 21 (2004) 1, arXiv:astro-ph/0311466.
[Protheroe:2003vc]
[2-79]
Searching For Dark Matter with Neutrino Telescopes, Dan Hooper, Joseph Silk, New J. Phys. 6 (2004) 023, arXiv:hep-ph/0311367.
[Hooper:2003ui]
[2-80]
Astrophysical Neutrino Telescopes, A. B. McDonald et al., Rev. Sci. Instrum. 75 (2004) 293, arXiv:astro-ph/0311343.
[McDonald:2003xn]
[2-81]
Ultrahigh energy neutrino physics, A.M. Stasto, Int.J.Mod.Phys. A19 (2004) 317-340, arXiv:astro-ph/0310636.
[Stasto:2003xq]
[2-82]
Cosmic Physics: The High Energy Frontier, F.W. Stecker, J. Phys. G29 (2003) R47, arXiv:astro-ph/0309027.
[Stecker:2003wm]
[2-83]
Gamma-Ray Bursts: The Underlying Model, E. Waxman, Lect. Notes Phys. 598 (2003) 393, arXiv:astro-ph/0303517.
[Waxman:2003vh]
[2-84]
Nuclear Problems in Astrophysics, W. C. Haxton, Proc.Int.Sch.Phys.Fermi 153 (2003) 93-144, arXiv:nucl-th/0301005.
[Haxton:2003bi]
[2-85]
High-energy neutrino astronomy: The Cosmic ray connection, Francis Halzen, Dan Hooper, Rept.Prog.Phys. 65 (2002) 1025-1078, arXiv:astro-ph/0204527.
[Halzen:2002pg]
[2-86]
Particle physics from stars, Georg G. Raffelt, Ann.Rev.Nucl.Part.Sci. 49 (1999) 163-216, arXiv:hep-ph/9903472.
[Raffelt:1999tx]
[2-87]
Particle astrophysics with high-energy neutrinos, Thomas K. Gaisser, Francis Halzen, Todor Stanev, Phys.Rept. 258 (1995) 173-236, arXiv:hep-ph/9410384.
[Gaisser:1994yf]

3 - Reviews - Conference Proceedings

[3-1]
Challenges for Cosmic-ray Experiments, Thomas Gaisser, arXiv:1704.00788, 2017. ISVHECRI 2016, Moscow, August 2016.
[Gaisser:2017hqg]
[3-2]
What have we learned about the sources of ultrahigh-energy cosmic rays via neutrino astronomy?, Shigeru Yoshida, arXiv:1612.04934, 2016. CRIS 2016.
[Yoshida:2016hba]
[3-3]
Neutrino Astrophysics, Cristina Volpe, Acta Phys.Polon.Supp. 9 (2016) 769, arXiv:1609.06747. 52th Winter School of Theoretical Physics, Ladek Zdroj, 14-21 February 2016.
[Volpe:2016bkp]
[3-4]
Theory of high-energy messengers, Charles D. Dermer, J. Phys. Conf. Ser. 718 (2016) 022008, arXiv:1602.08722. 14th International Congress in Topics in Astroparticle and Underground Physics, Torino, Italy, 7 - 11 September 2015.
[Dermer:2016lvc]
[3-5]
Neutrinos at extreme energies, Roberto Aloisio, J. Phys. Conf. Ser. 718 (2016) 052001, arXiv:1601.04867. TAUP 2015.
[Aloisio:2016lvb]
[3-6]
Neutrino Astronomy (Rapporteur Talk), Aya Ishihara, PoS ICRC2015 (2016) 013, arXiv:1511.03820. 34th ICRC.
[Ishihara:2015xuv]
[3-7]
Ultra high energy cosmic rays: the highest energy frontier, Joao R. T. de Mello Neto, J. Phys. Conf. Ser. 706 (2016) 042009, arXiv:1510.05629. XIII International Workshop on Hadron Physics - March, 2015 - Rio de Janeiro, Brazil.
[Neto:2015twa]
[3-8]
IceCube at the Threshold, Thomas K. Gaisser (IceCube), arXiv:1507.07871, 2015. Inauguration of HAWC, Puebla, March 19, 2015.
[Gaisser:2015rga]
[3-9]
Exploring the Dynamic X-ray Universe (Summarising report of the ISSI-BJ Forum on monitoring the transient X-ray Universe in the multi-messenger era, Beijing, May 6-7, 2014), Weimin Yuan, Julian P. Osborne, arXiv:1506.07736, 2015.
[Yuan:2015uia]
[3-10]
Neutrino astrophysics : recent advances and open issues, Cristina Volpe, J. Phys. Conf. Ser. 631 (2015) 012048, arXiv:1503.01355. DISCRETE 2014.
[Volpe:2015yya]
[3-11]
Exploring the Universe with Very High Energy Neutrinos, A. Kappes (IceCube), Nucl.Part.Phys.Proc. 273-275 (2016) 125-134, arXiv:1501.07798. ICHEP 2014.
[Kappes:2015woa]
[3-12]
Atmospheric Lepton Fluxes, Thomas K. Gaisser, EPJ Web Conf. 99 (2015) 05002, arXiv:1412.6424. ISVHECRI 2014.
[Gaisser:2014eaa]
[3-13]
Cosmic Gamma-ray Background Radiation, Yoshiyuki Inoue, arXiv:1412.3886, 2014. Fifth International Fermi Symposium.
[Inoue:2014ona]
[3-14]
Recent advances in neutrino astrophysics, Cristina Volpe, PoS FFP14 (2016) 127, arXiv:1411.6533. Frontiers of Fundamental Physics 2014, July 15-18, Marseille.
[Volpe:2014rca]
[3-15]
Status of High-Energy Neutrino Astronomy, Marek Kowalski, J. Phys. Conf. Ser. 632 (2015) 012039, arXiv:1411.4385. European Cosmic Ray Symposium 2014.
[Kowalski:2014zda]
[3-16]
CosPA2013: Outlook, Francis Halzen, arXiv:1402.7302, 2014. 10th International Symposium on Cosmology and Particle Astrophysics (CosPA2013).
[Halzen:2014nea]
[3-17]
The Birth of Neutrino Astronomy, Naoko Kurahashi (IceCube), arXiv:1402.3627, 2014. 10th International Symposium on Cosmology and Particle Astrophysics (CosPA2013).
[Kurahashi:2014xra]
[3-18]
High-Energy Neutrino Astronomy: A Glimpse of the Promised Land, Christian Spiering, Phys.Usp. 57 (2014) 470-481, arXiv:1402.2096. Session of the Russian Academy of Science dedicated to Bruno Pontecorvo, Dubna, Sept. 2013.
[Spiering:2014afa]
[3-19]
Neutrino Mixing and Oscillations in Astrophysical Environments, A.B. Balantekin, AIP Conf.Proc. 1594 (2014) 313-318, arXiv:1401.5818. OMEG12, Tsukuba, Japan.
[Balantekin:2014xia]
[3-20]
The highest energy neutrinos: first evidence for cosmic origin, Francis Halzen, Nuovo Cim. C037 (2014) 117-132, arXiv:1311.6350. Pontecorvo 2013.
[Halzen:2013dva]
[3-21]
Indirect Dark Matter search with large neutrino telescopes, Paolo Fermani (ANTARES), Frascati Phys.Ser. 56 (2012) 244-257, arXiv:1307.2402. DARK 2012, Frascati (Italy).
[Fermani:2013fga]
[3-22]
Review of the Multimessenger Working Group at UHECR-2012, J. Alvarez-Muniz, M. Risse, G.I. Rubtsov, B.T. Stokes for the Pierre Auger, Telescope Array (Yakutsks), EPJ Web Conf. 53 (2013) 01009, arXiv:1306.4199. UHECR 2012 Symposium, CERN, Feb. 2012.
[Alvarez-Muniz:2013mfa]
[3-23]
VERITAS contributions to CF6-A: Cosmic Rays, Gamma Rays and Neutrinos, VERITAS (VERITAS), arXiv:1304.6764, 2013. Snowmass Community Summer Study 2013.
[TheVERITAS:2013fza]
[3-24]
TASI 2012 Lectures on Astrophysical Probes of Dark Matter, Stefano Profumo, arXiv:1301.0952, 2013.
[Profumo:2013yn]
[3-25]
Highlights in astroparticle physics: muons, neutrinos, hadronic interactions, exotic particles, and dark matter -- Rapporteur Talk HE2 & HE3, Joerg R. Hoerandel, arXiv:1212.1013, 2012. ICRC, Beijing.
[Hoerandel:2012an]
[3-26]
Selected problems in astrophysics of compact objects, Armen Sedrakian, J. Phys. Conf. Ser. 413 (2013) 012024, arXiv:1212.0120. International Summer School for Advanced Studies 'Dynamics of open nuclear systems', July 2012, Predeal, Romania.
[Sedrakian:2012mv]
[3-27]
Review of Indirect WIMP Search Experiments, Carsten Rott, Nucl. Phys. Proc. Suppl. 235-236 (2013) 413-420, arXiv:1210.4161. XXV International Conference on Neutrino Physics and Astrophysics (Neutrino 2012), June 2012, Kyoto, Japan.
[Rott:2012gh]
[3-28]
Neutrino 2012: Outlook - theory, A. Yu. Smirnov, Nucl. Phys. Proc. Suppl. 235-236 (2013) 431-440, arXiv:1210.4061. XXV International Conference on Neutrino Physics and Astrophysics, June 3 - 9, 2012, Kyoto, Japan.
[Smirnov:2012ei]
[3-29]
Neutrino Astronomy - A Review of Future Experiments, Albrecht Karle, Nucl. Phys. Proc. Suppl. 235-236 (2013) 364-370, arXiv:1210.2058. 25th International Conference on Neutrino Physics and Astrophysics, June 2012, Kyoto, Japan.
[Karle:2012up]
[3-30]
High-Energy Neutrino Astronomy: Status and prospects for cosmic-ray physics, V. Van Elewyck, arXiv:1209.3425, 2012. 14th Workshop on Elastic and Diffractive Scattering (EDS Blois Workshop) 'Frontiers of QCD: From Puzzles to Discoveries', December 15-21, 2011, Quy Nhon, Vietnam.
[VanElewyck:2012yd]
[3-31]
Gamma Ray Bursts: recent results and connections to very high energy Cosmic Rays and Neutrinos, Peter Meszaros, Katsuaki Asano, Peter Veres, J. Phys. Conf. Ser. 485 (2014) 012001, arXiv:1209.2436. PASCOS 12 conference, Merida, Yucatan, Mexico, June 2012.
[Meszaros:2012fs]
[3-32]
Gamma Ray Bursts and their links with Supernovae and Cosmology, Peter Meszaros, Neil Gehrels, Res. Astron. Astrophys. 12 (2012) 1139, arXiv:1209.1132. XXVIIIth General Assembly Int. Ast. Union, Beijing, Aug. 2012.
[Meszaros:2012hj]
[3-33]
High Energy Neutrino Telescopes in the Northern Hemisphere, Juan Jose Hernandez-Rey, arXiv:1203.2143, 2012. VLvNT 2011.
[HernandezRey:2012mz]
[3-34]
Indirect Searches for Dark Matter: a status review, Marco Cirelli, Pramana 79 (2012) 1021-1043, arXiv:1202.1454. Lepton-Photon 2011, Mumbai, India, 22-27 Aug 2011.
[Cirelli:2012tf]
[3-35]
High Energy Neutrinos and Cosmic Rays, Guenter Sigl, Proc.Int.Sch.Phys.Fermi 182 (2012) 145-184, arXiv:1202.0466. ISAPP School 'Neutrino Physics and Astrophysics', 26 July-5 August 2011, Villa Monastero, Varenna, Italy.
[Sigl:2012tu]
[3-36]
AstroParticle Physics at the Highest Energies, Angela V. Olinto, arXiv:1202.0355, 2012. 32nd International Cosmic Ray Conference, Beijing 2011.
[Olinto:2012sh]
[3-37]
High Energy Neutrinos from Space, Thomas K. Gaisser, arXiv:1201.6651, 2012. Lepton-Photon 2011, Mumbai India.
[Gaisser:2012bw]
[3-38]
Astrophysical neutrino results, Thomas K. Gaisser (IceCube), Nucl. Instrum. Meth. A692 (2012) 2-4, arXiv:1201.5637. RICAP-11.
[Gaisser:2012af]
[3-39]
Cosmic Rays at the highest energies, Angela V. Olinto, J. Phys. Conf. Ser. 375 (2012) 052001, arXiv:1201.4519. TAUP 2011.
[Olinto:2012dc]
[3-40]
Neutrinos and the stars, Georg Raffelt, Proc.Int.Sch.Phys.Fermi 182 (2012) 61-143, arXiv:1201.1637. ISAPP School 'Neutrino Physics and Astrophysics', 26 July-5 August 2011, Villa Monastero, Varenna, Italy.
[Raffelt:2012kt]
[3-41]
Status of Neutrino Astronomy - a mini-review on neutrino telescopes, Alexander Kappes, PoS EPS-HEP2011 (2011) 044, arXiv:1110.6840. EPS-HEP 2011.
[Kappes:2011vj]
[3-42]
Nuclear physics in the cosmos, C.A. Bertulani, Acta Phys.Polon. B44 (2013) 531-542, arXiv:1110.2534. XXXIV Brazilian Workshop on Nuclear Physics, 5-10 June 2011, Foz de Iguacu, Parana state, Brazil.
[Bertulani:2013dja]
[3-43]
Diffuse Neutrino Flux, Jurgen Brunner, arXiv:1107.1593, 2011. XIV International Workshop on 'Neutrino Telescopes', Venice 2011.
[Brunner:2011ji]
[3-44]
Multimessenger Astronomy, N.L. Christensen (LIGO Scientific), arXiv:1105.5843, 2011. 46th Rencontres de Moriond.
[Christensen:2011qf]
[3-45]
Ultrahigh Energy Cosmic Rays: Facts, Myths, and Legends, Luis Alfredo Anchordoqui, CERN Yellow Report CERN-2013-003 (2011) 303-391, arXiv:1104.0509. 6th CERN-Latin-American School of High-Energy Physics, Natal, Brazil, March - April, 2011.
[Anchordoqui:2011gy]
[3-46]
High Energy Neutrino Astronomy, V. Berezinsky, Nuclear Physics B (Proc. Suppl.) 229-232 (2012) 243-250, arXiv:1102.3591. Neutrino 2010, Athens, Greece.
[Berezinsky:2011dw]
[3-47]
Neutrino Telescopes, Juan Jose Hernandez-Rey, Nucl. Phys. Proc. Suppl. 217 (2011) 255-260, arXiv:1101.0582.
[HernandezRey:2011sz]
[3-48]
Radiodetection of Neutrinos, Spencer R. Klein, Nucl. Phys.B, Proc.Suppl.229-232 2012 (2012) 284-288, arXiv:1012.1407. Neutrino 2010.
[Klein:2010wf]
[3-49]
Cosmic rays: current status, historical context, Thomas K. Gaisser, arXiv:1010.5996, 2010. XVI International Symposium on Very High Energy Cosmic Ray Interactions, ISVHECRI 2010, Batavia, IL, USA (28 June - 2 July 2010).
[Gaisser:2010fb]
[3-50]
Proceedings of the 2009 CERN-Latin-American School of High-Energy Physics, Recinto Quirama, Colombia, 15 - 28 March 2009, C. Grojean, M. Spiropulu, arXiv:1010.5976, 2010. CERN Yellow Report.
[Grojean:2010zza]
[3-51]
High-energy astroparticle physics, D. Semikoz, arXiv:1010.2647, 2010. 5th CERN-Latin-American School of High-Energy Physics, Recinto Quirama, Colombia, 15 - 28 Mar 2009.
[Semikoz:2010jf]
[3-52]
Neutron rich matter, neutron stars, and their crusts, C. J. Horowitz, J. Phys. Conf. Ser. 312 (2012) 042003, arXiv:1008.0402. International Nuclear Physics Conference 2010, Vancouver, Ca.
[Horowitz:2012za]
[3-53]
Lectures on neutrino phenomenology, Walter Winter, Nucl. Phys. B, Proc. Suppl. 203-204 2010 (2010) 45-81, arXiv:1004.4160. Schladming Winter School 2010 'Masses and Constants'.
[Winter:2010hb]
[3-54]
Gamma-Ray Bursts Overview, B. McBreen, S. Foley, L. Hanlon, PoS EXTREMESKY2009 (2009) 044, arXiv:1003.4440. The Extreme sky: Sampling the Universe above 10 keV, October 13-17, 2009, Otranto (LE), Italy.
[McBreen:2010xk]
[3-55]
High Energy Radiation from Black Holes: A Summary, Charles D. Dermer, Govind Menon, arXiv:1001.1760, 2010. 2009 Fermi Symposium.
[Dermer:2010hy]
[3-56]
Kilometer-Scale Neutrino Detectors: First Light, Francis Halzen, arXiv:0911.2676, 2009. CCAPP Symposium 2009, Columbus, OH.
[Halzen:2009kz]
[3-57]
Ultra-High Energy Cosmic Ray and Neutrino Observations, Karl-Heinz Kampert, PoS EPS-HEP2009 (2009) 011, arXiv:0911.1089. EPS-HEP 2009.
[Kampert:2009bp]
[3-58]
Rapporteur Summary of Sessions HE 2.2-2.4 and OG 2.5-2.7, Teresa Montaruli, arXiv:0910.4364, 2009.
[Montaruli:2009rr]
[3-59]
IceCube: The Rationale for Kilometer-Scale Neutrino Detectors, Francis Halzen, arXiv:0910.0436, 2009. 21st Rencontres de Blois, 'Windows on the Universe'.
[Halzen:2009xm]
[3-60]
ANTARES and other Neutrino Telescopes in the Northern Hemisphere, Antoine Kouchner, Nucl. Phys. Proc. Suppl. 196 (2009) 273-278, arXiv:0907.0319. XV International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI 2008).
[Kouchner:2009sr]
[3-61]
Joint searches between gravitational-wave interferometers and high-energy neutrino telescopes: science reach and analysis strategies, V. Van Elewyck et al., Int. J. Mod. Phys. D18 (2009) 1655-1659, arXiv:0906.4957. 2d Heidelberg Workshop: 'High-Energy Gamma-rays and Neutrinos from Extra-Galactic Sources', Heidelberg (Germany), January 13-16, 2009.
[VanElewyck:2009pf]
[3-62]
High Energy Phenomena In The Universe, Arnon Dar, arXiv:0906.0973, 2009. 44th Rencontre De Moriond on High Energy Phenomena In The Universe, La Thuile, Italy, February 1-8, 2009.
[Dar:2009tv]
[3-63]
The search for extra-terrestrial sources of high energy neutrinos, Gary C. Hill, arXiv:0906.0318, 2009. Heavy Quarks and Leptons, Melbourne, 2008.
[Hill:2009zd]
[3-64]
GRB Astrophysics in the Swift Era and Beyond, Michael Stamatikos, Int. J. Mod. Phys. D18 (2009) 1567-1570, arXiv:0904.2755. 2nd Heidelberg Workshop: High-Energy Gamma-rays and Neutrinos from Extra-Galactic Sources (Max Planck Institute for Nuclear Physics).
[Stamatikos:2009ww]
[3-65]
IceCube Science, Francis Halzen, J. Phys. Conf. Ser. 171 (2009) 012013, arXiv:0901.4722. Discrete 08, Valencia, Spain.
[Halzen:2009tz]
[3-66]
Neutrino Astronomy in the Ice, Teresa Montaruli, Nucl. Phys. Proc. Suppl. 188 (2009) 239-244, arXiv:0901.2664. NOW 2008 Conference, Conca Specchiulla, Lecce, Italy, Sept. 2008.
[Montaruli:2009ky]
[3-67]
Review on Neutrino Telescopes, Teresa Montaruli, Nucl. Phys. Proc. Suppl. 190 (2009) 101-108, arXiv:0901.2661. CRIS2008 Conference, Salina, Sept. 2008.
[Montaruli:2009kv]
[3-68]
UHE neutrino astronomy and neutrino oscillations, V. Berezinsky, arXiv:0901.1428, 2009. 4th Int. Workshop 'Neutrino oscillations in Venice', Apr. 15 - 18, 2008.
[Berezinsky:2009zw]
[3-69]
High Energy Neutrino Astronomy: Status and Perspectives, Christian Spiering, AIP Conf. Proc. 1085 (2009) 18-29, arXiv:0811.4747. International Symposium on High Energy Gamma-Ray Astronomy, Heidelberg, July 200.
[Spiering:2008ux]
[3-70]
Probing New Physics with Astrophysical Neutrinos, Nicole F. Bell, J. Phys. Conf. Ser. 136 (2008) 022043, arXiv:0811.0847. Neutrino 2008, Christchurch, New Zealand, May 2008.
[Bell:2008wr]
[3-71]
Status of neutrino astronomy, Julia K. Becker, J. Phys. Conf. Ser. 136 (2008) 022055, arXiv:0811.0696. Neutrino 2008, Christchurch (New Zealand).
[Becker:2008ra]
[3-72]
Hyper-accreting black holes, Andrei M. Beloborodov, AIP Conf.Proc. 1054 (2008) 51, arXiv:0810.2690. Cool discs, hot flows: The Varying Faces of Accreting Compact Objects, Funasdalen, Sweden, March 2008.
[Beloborodov:2008nx]
[3-73]
Ultra high energy cosmic rays and neutrinos after Auger, Todor Stanev, arXiv:0808.1045, 2008. Vulcano 2008 meeting 'Frontier objects in astrophysics and particle physics', Vulcano, Italy.
[Stanev:2008un]
[3-74]
Problems in High Energy Astrophysics, Paolo Lipari, arXiv:0808.0417, 2008. Neutrino Oscillations in Venice, April 2008.
[Lipari:2008ak]
[3-75]
Gamma-Ray Bursts and Particle Astrophysics, B. Gendre, arXiv:0807.3918, 2008. XXth rencontres de Blois, may 2008.
[Capozziello:2012fp]
[3-76]
Cosmic Neutrinos, Chris Quigg, arXiv:0802.0013, 2008. 2007 SLAC Summer Institute.
[Quigg:2008ab]
[3-77]
RICAP-07: Summary comments, Thomas K. Gaisser, Nucl. Instrum. Meth. A588 (2008) 276-280, arXiv:0801.4546. Roma International Conference on Astroparticle Physics, June 2007.
[Gaisser:2008cr]
[3-78]
Muons and Neutrinos 2007, Thomas K. Gaisser, arXiv:0801.4542, 2008. 30th International Cosmic Ray Conference, Merida, Yucatan, July, 2007.
[Gaisser:2008cp]
[3-79]
Lecture notes on high energy cosmic rays, M. Kachelriess, arXiv:0801.4376, 2008. 17th Jyvaskyla Summer School.
[Kachelriess:2008ze]
[3-80]
Gamma-Ray, Neutrino and Gravitational Wave Detection: OG 2.5,2.6,2.7 Rapporteur, G. Rowell, arXiv:0801.3886, 2008. 30th ICRC (Merida, Mexico, 2007).
[Rowell:2008nj]
[3-81]
Ultrahigh Energy Cosmic Rays and Neutrinos, Todor Stanev, Nucl. Instrum. Meth. A588 (2008) 215-220, arXiv:0711.1872. RICAP07.
[Stanev:2007ry]
[3-82]
The Highest Energy Neutrinos, Francis Halzen, J. Phys. Conf. Ser. 120 (2008) 062004, arXiv:0710.4158. 30th International Cosmic Ray Conference, Merida, Mexico, 2007.
[Halzen:2007sz]
[3-83]
TASI Lectures on Astrophysical Aspects of Neutrinos, John F. Beacom, arXiv:0706.1824, 2007. Exploring New Frontiers Using Colliders and Neutrinos (TASI 2006), Boulder, Colorado, 4-30 Jun 2006.
[Beacom:2007av]
[3-84]
Proceedings of the First Workshop on Exotic Physics with Neutrino Telescopes, EPNT06, C. de los Heros, arXiv:astro-ph/0701333, 2007.
[delosHeros:2007hy]
[3-85]
Neutrino astronomy and gamma-ray bursts, E. Waxman, Phil. Trans. Roy. Soc. Lond. A365 (2007) 1323, arXiv:astro-ph/0701170. R. Soc. Discussion Meeting on GRBs.
[Waxman:2007kr]
[3-86]
Theoretical overview on high-energy emission in microquasars, V. Bosch-Ramon, Astrophys. Space Sci. 309 (2007) 321-331, arXiv:astro-ph/0612318. The multimessenger approach to the high-energy gamma-ray sources, Barcelona, July 4-7.
[BoschRamon:2006wd]
[3-87]
TeV Particle Astrophysics II: Summary comments, Thomas K. Gaisser, J. Phys. Conf. Ser. 60 (2007) 72-77, arXiv:astro-ph/0612283. TeV Particle Astrophysics II, Madison, 28-31 August 2006.
[Gaisser:2006ny]
[3-88]
High Energy Astroparticle Physics, Guenter Sigl, arXiv:astro-ph/0612240, 2006. Neutrino Oscillation Workshop (NOW 2006), Conca Specchiulla, Italy, September 9-16, 2006.
[Sigl:2006md]
[3-89]
Contributions to 2nd TeV Particle Astrophysics Conference (TeV PA II) Madison Wisconsin - 28-31 August 2006, IceCube (IceCube), J. Phys. Conf. Ser. (2006), arXiv:astro-ph/0611597.
[Achterberg:2006pw]
[3-90]
Summary: Acoustic Detection of EHE Neutrinos, Justin Vandenbroucke, J. Phys. Conf. Ser. 60 (2007) 101-106, arXiv:astro-ph/0611503. 2nd TeV Particle Astrophysics Conference, Madison, WI, August 28-31, 2006.
[Vandenbroucke:2006ax]
[3-91]
The Star Formation History of the Universe, Andrew M. Hopkins, ASP Conf.Ser. (2006), arXiv:astro-ph/0611283. At the Edge of the Universe, October 2006, Sintra, Portugal.
[Hopkins:2006pr]
[3-92]
Working Group Report on the 'TeV Particle Astrophysics and Physics Beyond the Standard Model', Ivone F.M. Albuquerque, Sergio Palomares-Ruiz, Tom Weiler, J. Phys. Conf. Ser. 60 (2007) 90-94, arXiv:astro-ph/0610962. TeV Particle Astrophysics Workshop II - Madison - Aug 2006.
[Albuquerque:2006ah]
[3-93]
Perspectives of High Energy Neutrino Astronomy, Paolo Lipari, Nucl. Instrum. Meth. A567 (2006) 405-417, arXiv:astro-ph/0605535. 'Very Large Volume neutrino Telescopes' workshop (Catania, november 2005).
[Lipari:2006uw]
[3-94]
Extremely High Energy Cosmic Neutrinos and Relic Neutrinos, Chris Quigg, arXiv:astro-ph/0603372, 2006. NO-VE 2006, Neutrino Oscillations in Venice.
[Quigg:2006bu]
[3-95]
Observations of high energy neutrinos with water/ice neutrino telescopes, Albrecht Karle, J. Phys. Conf. Ser. 39 (2006) 379-385, arXiv:astro-ph/0602025. 9th International Conference on Topics in Astroparticle and Underground Physics, TAUP 2005, Zaragoza, September 2005.
[Karle:2006as]
[3-96]
High Energy Neutrinos: Sources and Fluxes, Todor Stanev, J. Phys. Conf. Ser. 39 (2006) 386-392, arXiv:astro-ph/0511641. TAUP 2005.
[Stanev:2005kk]
[3-97]
Extremely energetic cosmic neutrinos: Opportunities for astrophysics, particle physics, and cosmology, Andreas Ringwald, Int. J. Mod. Phys. A21S1 (2006) 12-19, arXiv:hep-ph/0510341. ARENA Workshop, DESY, Zeuthen, Germany, May 17-19, 2005.
[Ringwald:2005wa]
[3-98]
Lectures on High-Energy Neutrino Astronomy, F. Halzen, arXiv:astro-ph/0506248, 2005. International WE Heraeus Summer School on Physics with Cosmic Accelerators.
[Halzen:2005qu]
[3-99]
Ultra High Energy Neutrino Astronomy, V. Berezinsky, Nucl. Phys. Proc. Suppl. 151 (2006) 260, arXiv:astro-ph/0505220. 13th Int. Symposium on VHECR Interactions, Pylos, Sept. 2004.
[Berezinsky:2005rw]
[3-100]
High energy astrophysical processes, Todor Stanev, arXiv:astro-ph/0504401, 2005. Venice 2005 Workshop on neutrino telescopes.
[Stanev:2005wy]
[3-101]
Neutrino Astrophysics in the cold: Amanda, Baikal and IceCube, Christian Spiering, Phys. Scripta T121 (2005) 112, arXiv:astro-ph/0503122. Nobel Symposium on Neutrino Physics, Haga Slott, Sweden, 2004.
[Spiering:2005xv]
[3-102]
Extra galactic sources of high energy neutrinos, Eli Waxman, Phys. Scripta T121 (2005) 147, arXiv:astro-ph/0502159. Nobel Symposium 129: Neutrino Physics, Sweden 2004.
[Waxman:2005id]
[3-103]
Cosmic Rays Astrophysics and Neutrino Astronomy beyond and beneath the Horizons, D. Fargion, arXiv:astro-ph/0502017, 2005. Vulcano Conference May-2004.
[Fargion:2005kf]
[3-104]
High-Energy Neutrino Astronomy, F. Halzen, arXiv:astro-ph/0501593, 2005. Nobel Symposium 129: Neutrino Astronomy, Enkoping, Sweden, August 2004.
[Halzen:2005wd]
[3-105]
Status of Radio and Acoustic Detection of Ultra-High Energy Cosmic Neutrinos and a Proposal on Reporting Results, David Saltzberg, Phys. Scripta T121 (2005) 119, arXiv:astro-ph/0501364. Nobel Symposium 129 (Neutrino Physics).
[Saltzberg:2005yp]
[3-106]
Ultra- and extremely high energy neutrino astronomy, I. Sokalski, arXiv:hep-ex/0501004, 2005. 16th Conference on High Energy Physics (IFAE 2004), Turin, Italy, 14-16 Apr 2004. http://www.ph.unito.it/ifae/Proceedings/Sessioni/Neutrinos.pdf.
[Sokalski:2004rj]
[3-107]
Exploring the Universe beyond the Photon Window, Luis A. Anchordoqui, Acta Phys. Polon. B36 (2005) 495, arXiv:astro-ph/0410087. XXXIV International Symposium on Multiparticle Dynamics, Sonoma County, California, July 26 - August 1, 2004.
[Anchordoqui:2004pf]
[3-108]
High-Energy Neutrino Astronomy, F. Halzen, Nucl. Phys. Proc. Suppl. 136 (2004) 93, arXiv:astro-ph/0402083. Thinking, Observing, and Mining the Universe, Sorrento, Italy, September 2003.
[Halzen:2004bn]
[3-109]
High-energy neutrino astronomy: Opportunities for particle physics, Dan Hooper, Acta Phys. Polon. B35 (2004) 1905, arXiv:hep-ph/0401153. 2004 Cracow Epiphany Conference on Astroparticle Physics.
[Hooper:2004bp]
[3-110]
Neutrinos and astrophysics, S. Hannestad, 2004. SEESAW25,International Conference on the Seesaw Mechanism, 10-11 June 2004, Paris, France. http://seesaw25.in2p3.fr/trans/hannestad.pdf.
[Hannestad:SEESAW2004]
[3-111]
High Energy Neutrino Astrophysics, Teresa Montaruli, Nucl. Phys. Proc. Suppl. 138 (2005) 502, arXiv:astro-ph/0312558. 8th International Workshop on Topics in Astroparticle and Underground Physics (TAUP2003), Sep. 5-9, 2003, Seattle.
[Montaruli:2003qi]
[3-112]
Report on the High Energy Phenomena Sessions HE 2, HE 3.2-3.4: Neutrinos and Muons. Interactions, Particle Physics Aspects, Astro-Particle Physics and Cosmology, Teresa Montaruli, arXiv:hep-ph/0311289, 2003. 28th International Cosmic Ray Conference (ICRC 2003), Tsukuba, Japan, 31 Jul.-7 Aug. 2003.
[Montaruli:2003ft]
[3-113]
Neutrinos as astrophysical probes, F. Cavanna, M. L. Costantini, O. Palamara, F. Vissani, Surveys High Energ. Phys. 19 (2004) 35, arXiv:astro-ph/0311256. ICTP Summer School on Astroparticle Physics and Cosmology, Trieste, Italy, 17 June - 5 Jul 2002.
[Cavanna:2003fx]
[3-114]
Astroparticle Theory: SOME New Insights into High Energy Cosmic Rays, Esteban Roulet, Int. J. Mod. Phys. A19 (2004) 1133, arXiv:astro-ph/0310367. International Lepton-Photon Conference, Fermilab, August 11-16 2003.
[Roulet:2003rr]
[3-115]
Physics with Cosmic Neutrinos, PeV to ZeV, Thomas J. Weiler, Int. J. Mod. Phys. A18 (2003) 4065, arXiv:astro-ph/0304180. YITP 'Neutrinos' Oct. 2002.
[Weiler:2003ud]
[3-116]
Particle Physics Explanations for Ultra High Energy Cosmic Ray Events, Manuel Drees, Pramana 62 (2004) 207, arXiv:hep-ph/0304030. PASCOS03, Mumbai, India, January 2003.
[Drees:2003ye]
[3-117]
High-energy Neutrino Astronomy: Science and First Results, F. Halzen, arXiv:astro-ph/0301143, 2003. 9th Course of Astrofundamental Physics, International School of Astrophysics D. Chalonge, Palermo, Sicily, Sept 2002.
[Halzen:2003yh]
[3-118]
Some aspects of neutrino astrophysics, H. Athar, arXiv:hep-ph/0212387, 2002. The Sixth Constantine High Energy Physics School, 6-12 April, 2002, Constantine, Algeria.
[Athar:2002uj]
[3-119]
High energy astrophysical neutrinos, H. Athar, ASP Conf.Ser. 289 (2003) 323, arXiv:hep-ph/0209130. IAU 8th Asian Pacific Regional Meeting, 2-5 July, 2002, Tokyo, Japan.
[Athar:2002im]
[3-120]
Astrophysics at the highest energy frontiers, F. W. Stecker, arXiv:astro-ph/0208507, 2002. D. Chalonge International School of Astrophysics - 9th Course of Astrofundamental Physics, Palermo, Sept. 2002.
[Stecker:2002fh]
[3-121]
Astrophysical and Cosmological Neutrinos, G. G. Raffelt, Proc.Int.Sch.Phys.Fermi 152 (2003) 161-181, arXiv:hep-ph/0208024. International School of Physics 'Enrico Fermi,' CLII Course 'Neutrino Physics,' 23 July-2 August 2002, Varenna, Lake Como, Italy.
[Raffelt:2002nz]
[3-122]
Neutrino masses in astroparticle physics, G. G. Raffelt, New Astron. Rev. 46 (2002) 699-708, arXiv:astro-ph/0207220. Dennis Sciama Memorial Volume of NAR.
[Raffelt:2002ed]
[3-123]
High Energy Cosmic-ray Neutrinos (2), F. Halzen, 2002. Topical Seminar on Frontier of Particle Physics 2002: Neutrinos and Cosmology, August 20th - 25th, 2002, Beijing, China. http://bes.ihep.ac.cn/particle/2002/presentation/F.Halzen/TALK_2.ZIP.
[Halzen-talk:2002c]
[3-124]
Neutrino Astrophysics (1), G. Raffelt, 2002. Topical Seminar on Frontier of Particle Physics 2002: Neutrinos and Cosmology, August 20th - 25th, 2002, Beijing, China. http://bes.ihep.ac.cn/particle/2002/presentation/G.Raffelt/TALK_1.ZIP.
[Raffelt-talk:2002b]
[3-125]
High Energy Cosmic-ray Neutrinos (1), F. Halzen, 2002. Topical Seminar on Frontier of Particle Physics 2002: Neutrinos and Cosmology, August 20th - 25th, 2002, Beijing, China. http://bes.ihep.ac.cn/particle/2002/presentation/F.Halzen/TALK_1.ZIP.
[Halzen-talk:2002b]
[3-126]
Neutrino Astrophysics (2), G. Raffelt, 2002. Topical Seminar on Frontier of Particle Physics 2002: Neutrinos and Cosmology, August 20th - 25th, 2002, Beijing, China. http://bes.ihep.ac.cn/particle/2002/presentation/G.Raffelt/TALK_2.ZIP.
[Raffelt-talk:2002c]
[3-127]
Massive neutrinos in astrophysics, Georg G. Raffelt, Werner Rodejohann, arXiv:hep-ph/9912397, 1999. 4th National Summer School for German-speaking Graduate Students of Theoretical Physics, Saalburg, Germany, 31 Aug - 11 Sep 1998.
[Raffelt:1998qp]

4 - PhD Theses

[4-1]
Acoustic detection of astrophysical neutrinos in South Pole ice, Justin Vandenbroucke, arXiv:1201.0072, 2012.
[Vandenbroucke:2012nn]
[4-2]
First Evidence For Atmospheric Neutrino-Induced Cascades with the IceCube Detector, Michelangelo D'Agostino, arXiv:0910.2555, 2009.
[DAgostino:2009wft]
[4-3]
Hyperaccreting Neutron-Star Disks, Magnetized Disks and Gamma-Ray Bursts, Dong Zhang, arXiv:0906.0842, 2009.
[Zhang:2009rz]
[4-4]
The Acoustic Detection of Ultra High Energy Neutrinos, J. Perkin, arXiv:0801.0991, 2008.
[Perkin:2008jw]
[4-5]
Detection of ultra high energy neutrinos with an underwater very large volume array of acoustic sensors: A simulation study, Timo Karg, arXiv:astro-ph/0608312, 2006.
[Karg:2006mv]

5 - Experiment

[5-1]
First all-flavour Neutrino Point-like Source Search with the ANTARES Neutrino Telescope, A. Albert et al. (ANTARES), arXiv:1706.01857, 2017.
[Albert:2017ohr]
[5-2]
Search for Neutrinos from Dark Matter Self-Annihilations in the center of the Milky Way with 3 years of IceCube/DeepCore, M. G. Aartsen et al. (IceCube), arXiv:1705.08103, 2017.
[Aartsen:2017ulx]
[5-3]
A polarized fast radio burst at low Galactic latitude, E. Petroff et al. (ANTARES,HESS), arXiv:1705.02911, 2017.
[Petroff:2017pff]
[5-4]
Search for astrophysical sources of neutrinos using cascade events in IceCube, M. G. Aartsen et al. (IceCube), arXiv:1705.02383, 2017.
[Aartsen:2017eiu]
[5-5]
New Constraints on all flavour Galactic diffuse neutrino emission with the ANTARES telescope, A. Albert et al. (ANTARES), arXiv:1705.00497, 2017.
[Albert:2017oba]
[5-6]
Search for High-energy Neutrinos from Gravitational Wave Event GW151226 and Candidate LVT151012 with ANTARES and IceCube, ANTARES, IceCube, LIGO, Virgo, arXiv:1703.06298, 2017.
[ANTARES:2017iky]
[5-7]
Model-independent search for neutrino sources with the ANTARES neutrino telescope, A. Albert et al. (ANTARES), arXiv:1703.04351, 2017.
[Albert:2017fvi]
[5-8]
Extending the search for muon neutrinos coincident with gamma-ray bursts in IceCube data, M. G. Aartsen et al. (IceCube), arXiv:1702.06868, 2017.
[Aartsen:2017wea]
[5-9]
Multiwavelength follow-up of a rare IceCube neutrino multiplet, M. G. Aartsen et al. (IceCube), arXiv:1702.06131, 2017.
[Aartsen:2017snx]
[5-10]
Search for high-energy neutrinos from bright GRBs with ANTARES, A. Albert et al. (ANTARES), arXiv:1612.08589, 2016.
[Albert:2016eyr]
[5-11]
Search for annihilating dark matter in the Sun with 3 years of IceCube data, M. G. Aartsen et al. (IceCube), Eur.Phys.J. C77 (2017) 146, arXiv:1612.05949.
[Aartsen:2016zhm]
[5-12]
Results from the search for dark matter in the Milky Way with 9 years of data of the ANTARES neutrino telescope, A. Albert et al. (ANTARES), Phys.Lett. B769 (2017) 249-254, arXiv:1612.04595.
[Albert:2016emp]
[5-13]
Radio detection of air showers with the ARIANNA experiment on the Ross Ice Shelf, S. W. Barwick et al., Astropart.Phys. 90 (2017) 50-68, arXiv:1612.04473.
[Barwick:2016mxm]
[5-14]
Dark matter constraints from an observation of dSphs and the LMC with the Baikal NT200, A.D. Avrorin et al. (BAIKAL), arXiv:1612.03836, 2016.
[Avrorin:2016yhw]
[5-15]
The contribution of Fermi-2LAC blazars to the diffuse TeV-PeV neutrino flux, M. G. Aartsen et al. (IceCube), Astrophys.J. 835 (2017) 45, arXiv:1611.03874.
[Aartsen:2016lir]
[5-16]
Very High-Energy Gamma-Ray Follow-Up Program Using Neutrino Triggers from IceCube, M.G. Aartsen et al. (IceCube), JINST 11 (2016) P11009, arXiv:1610.01814.
[Aartsen:2016qbu]
[5-17]
Time-dependent search for neutrino emission from x-ray binaries with the ANTARES telescope, A. Albert et al., JCAP 1704 (2017) 019, arXiv:1609.07372.
[Albert:2016gtl]
[5-18]
All-sky search for time-integrated neutrino emission from astrophysical sources with 7 years of IceCube data, M. G. Aartsen et al. (IceCube), Astrophys.J. 835 (2017) 151, arXiv:1609.04981.
[Aartsen:2016oji]
[5-19]
Stacked search for time shifted high energy neutrinos from gamma ray bursts with the ANTARES neutrino telescope, S. Adrian-Martinez et al. (ANTARES), arXiv:1608.08840, 2016.
[1608.08840]
[5-20]
Search for Neutrinos in Super-Kamiokande associated with Gravitational Wave Events GW150914 and GW151226, K. Abe et al. (Super-Kamiokande), arXiv:1608.08745, 2016.
[1608.08745]
[5-21]
Ultrahigh-energy neutrino follow-up of Gravitational Wave events GW150914 and GW151226 with the Pierre Auger Observatory, A. Aab et al. (Pierre Auger), Phys. Rev. D94 (2016) 122007, arXiv:1608.07378.
[Aab:2016ras]
[5-22]
Observation and Characterization of a Cosmic Muon Neutrino Flux from the Northern Hemisphere using six years of IceCube data, M. G. Aartsen et al. (IceCube), Astrophys.J. 833 (2016) 3, arXiv:1607.08006.
[Aartsen:2016xlq]
[5-23]
Constraints on ultra-high-energy cosmic ray sources from a search for neutrinos above 10 PeV with IceCube, M. G. Aartsen et al. (IceCube), Phys. Rev. Lett. 117 (2016) 241101, arXiv:1607.05886.
[Aartsen:2016ngq]
[5-24]
A search for low-energy neutrino and antineutrino signals correlated with gamma-ray bursts with Borexino, M. Agostini et al., Astropart.Phys. 86 (2017) 11-17, arXiv:1607.05649.
[Agostini:2016ljp]
[5-25]
Search for electron antineutrinos associated with gravitational wave events GW150914 and GW151226 using KamLAND, A. Gando et al. (KamLAND), Astrophys.J. 829 (2016) L34, arXiv:1606.07155.
[Gando:2016zhq]
[5-26]
All-flavour Search for Neutrinos from Dark Matter Annihilations in the Milky Way with IceCube/DeepCore, M. G. Aartsen et al. (IceCube), Eur.Phys.J. C76 (2016) 531, arXiv:1606.00209.
[Aartsen:2016pfc]
[5-27]
Lowering IceCube's Energy Threshold for Point Source Searches in the Southern Sky, M. G. Aartsen et al. (IceCube), Astrophys.J. 824 (2016) L28, arXiv:1605.00163.
[Aartsen:2016tpb]
[5-28]
Murchison Widefield Array Limits on Radio Emission from ANTARES Neutrino Events, S. Croft et al., Astrophys.J. 820 (2016) L24, arXiv:1603.02271.
[Croft:2016lhf]
[5-29]
Limits on Dark Matter Annihilation in the Sun using the ANTARES Neutrino Telescope, ANTARES collaboration et al. (ANTARES), Phys.Lett. B759 (2016) 69-74, arXiv:1603.02228.
[Adrian-Martinez:2016gti]
[5-30]
High-energy Neutrino follow-up search of Gravitational Wave Event GW150914 with ANTARES and IceCube, S. Adrian-Martinez et al. (Virgo, IceCube, ANTARES, LIGO), Phys. Rev. D93 (2016) 122010, arXiv:1602.05411.
[Adrian-Martinez:2016xgn]
[5-31]
Constraints on the neutrino emission from the Galactic Ridge with the ANTARES telescope, S. Adrian-Martinez et al. (ANTARES), Phys.Lett. B760 (2016) 143-148, arXiv:1602.03036.
[Adrian-Martinez:2016fei]
[5-32]
An All-Sky Search for Three Flavors of Neutrinos from Gamma-Ray Bursts with the IceCube Neutrino Observatory, M. G. Aartsen et al. (IceCube), Astrophys.J. 824 (2016) 115, arXiv:1601.06484.
[Aartsen:2016qcr]
[5-33]
A search for neutrino signal from dark matter annihilation in the center of the Milky Way with Baikal NT200, A.D. Avrorin et al. (BAIKAL), Astropart.Phys. 81 (2016) 12-20, arXiv:1512.01198.
[Avrorin:2015bct]
[5-34]
Search for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array, M. G. Aartsen et al. (IceCube), JCAP 1601 (2016) 037, arXiv:1511.09408.
[Aartsen:2015dml]
[5-35]
First combined search for neutrino point-sources in the Southern Hemisphere with the ANTARES and IceCube neutrino telescopes, S. Adrian-Martinez et al. (ANTARES,IceCube), Astrophys.J. 823 (2016) 65, arXiv:1511.02149.
[Adrian-Martinez:2015ver]
[5-36]
Search for Astrophysical Tau Neutrinos in Three Years of IceCube Data, M. G. Aartsen et al. (IceCube), Phys. Rev. D93 (2016) 022001, arXiv:1509.06212.
[Aartsen:2015dlt]
[5-37]
Search for Transient Astrophysical Neutrino Emission with IceCube-DeepCore, M. G. Aartsen et al. (IceCube), Astrophys. J. 816 (2016) 75, arXiv:1509.05029.
[Aartsen:2015eai]
[5-38]
Optical and X-ray early follow-up of ANTARES neutrino alerts, S. Adrian-Martinez et al. (Zadko, TAROT, ROTSE, Swift, ANTARES), JCAP 1602 (2016) 062, arXiv:1508.01180.
[Adrian-Martinez:2015nin]
[5-39]
Performance of two Askaryan Radio Array stations and first results in the search for ultra-high energy neutrinos, P. Allison et al. (ARA), Phys. Rev. D93 (2016) 082003, arXiv:1507.08991.
[Allison:2015eky]
[5-40]
Evidence for Astrophysical Muon Neutrinos from the Northern Sky with IceCube, M. G. Aartsen et al. (IceCube), Phys. Rev. Lett. 115 (2015) 081102, arXiv:1507.04005.
[Aartsen:2015rwa]
[5-41]
A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with IceCube, M. G. Aartsen et al. (IceCube), Astrophys. J. 809 (2015) 98, arXiv:1507.03991.
[Aartsen:2015ita]
[5-42]
Constraints on the Ultra-High Energy Neutrino Flux from Gamma-Ray Bursts from a Prototype Station of the Askaryan Radio Array, P. Allison et al., Astropart.Phys. 88 (2017) 7-16, arXiv:1507.00100.
[Allison:2015lnj]
[5-43]
Search for muon-neutrino emission from GeV and TeV gamma-ray flaring blazars using five years of data of the ANTARES telescope, S. Adrian-Martinez et al. (ANTARES), JCAP 1512 (2015) 014, arXiv:1506.07354.
[Adrian-Martinez:2015wis]
[5-44]
Detection of a Type IIn Supernova in Optical Follow-up Observations of IceCube Neutrino Events, M. G. Aartsen et al. (IceCube), Astrophys. J. 811 (2015) 52, arXiv:1506.03115.
[Aartsen:2015trq]
[5-45]
Search for Dark Matter Annihilation in the Galactic Center with IceCube-79, M. G. Aartsen et al. (IceCube), Eur. Phys. J. C75 (2015) 492, arXiv:1505.07259.
[Aartsen:2015xej]
[5-46]
Search of Dark Matter Annihilation in the Galactic Centre using the ANTARES Neutrino Telescope, S. Adrian-Martinez et al. (ANTARES), JCAP 1510 (2015) 068, arXiv:1505.04866.
[Adrian-Martinez:2015wey]
[5-47]
An improved limit to the diffuse flux of ultra-high energy neutrinos from the Pierre Auger Observatory, Alexander Aab et al. (Pierre Auger), Phys. Rev.D (2015), arXiv:1504.05397.
[Aab:2015kma]
[5-48]
Search for neutrinos from annihilation of captured low-mass dark matter particles in the Sun by Super-Kamiokande, K. Choi et al. (Super-Kamiokande), Phys. Rev. Lett. 114 (2015) 141301, arXiv:1503.04858.
[Choi:2015ara]
[5-49]
Study of electron anti-neutrinos associated with gamma-ray bursts using KamLAND, K. Asakura et al., Astrophys.J. 806 (2015) 87, arXiv:1503.02137.
[Asakura:2015fua]
[5-50]
Searches for Time Dependent Neutrino Sources with IceCube Data from 2008 to 2012, M. G. Aartsen et al. (IceCube), Astrophys.J. 796 (2015) 109, arXiv:1503.00598.
[Aartsen:2015wto]
[5-51]
Flavor Ratio of Astrophysical Neutrinos above 35 TeV in IceCube, M. G. Aartsen et al. (IceCube), Phys. Rev. Lett. 114 (2015) 171102, arXiv:1502.03376.
[Aartsen:2015ivb]
[5-52]
A limit on the ultra-high-energy neutrino flux from lunar observations with the Parkes radio telescope, J. D. Bray et al., Phys. Rev. D91 (2015) 063002, arXiv:1502.03313.
[Bray:2015lda]
[5-53]
TANAMI counterparts to IceCube high-energy neutrino events, Felicia Kraus et al. (Fermi-LATs), arXiv:1502.02147, 2015. 2014 Fermi Symposium proceedings - eConf C141020.1.
[Krauss:2015pja]
[5-54]
ANTARES Constrains a Blazar Origin of Two IceCube PeV Neutrino Events, S. Adrian-Martinez et al. (ANTARES), Astron.Astrophys. 576 (2015) L8, arXiv:1501.07843.
[Adrian-Martinez:2015jlj]
[5-55]
Swift follow-up of IceCube triggers, and implications for the Advanced-LIGO era, P.A. Evans et al., Mon.Not.Roy.Astron.Soc. 448 (2015) 2210, arXiv:1501.04435.
[Evans:2015qia]
[5-56]
Search for Prompt Neutrino Emission from Gamma-Ray Bursts with IceCube, M. G. Aartsen et al. (IceCube), Astrophys.J. 805 (2015) L5, arXiv:1412.6510.
[Aartsen:2014aqy]
[5-57]
A First Search for Cosmogenic Neutrinos with the ARIANNA Hexagonal Radio Array, S.W. Barwick et al. (ARIANNA), Astropart.Phys. 70 (2015) 12-26, arXiv:1410.7352.
[Barwick:2014pca]
[5-58]
Atmospheric and Astrophysical Neutrinos above 1 TeV Interacting in IceCube, M. G. Aartsen et al. (IceCube), Phys. Rev. D91 (2015) 022001, arXiv:1410.1749.
[Aartsen:2014muf]
[5-59]
Development of a General Analysis and Unfolding Scheme and its Application to Measure the Energy Spectrum of Atmospheric Neutrinos with IceCube, M. G. Aartsen et al. (IceCube), Eur.Phys.J. C75 (2015) 116, arXiv:1409.4535.
[Aartsen:2014qna]
[5-60]
Searches for small-scale anisotropies from neutrino point sources with three years of IceCube data, M. G. Aartsen et al. (IceCube), Astropart.Phys. 66 (2015) 39-52, arXiv:1408.0634.
[Aartsen:2014ivk]
[5-61]
Constraining the neutrino emission of gravitationally lensed Flat-Spectrum Radio Quasars with ANTARES data, S.Adrian-Martinez et al. (ANTARES), JCAP 1411 (2014) 017, arXiv:1407.8525.
[Adrian-Martinez:2014coa]
[5-62]
Multimessenger Search for Sources of Gravitational Waves and High-Energy Neutrinos: Results for Initial LIGO-Virgo and IceCube, M. G. Aartsen et al. (IceCube-LIGO-Virgo), Phys. Rev. D90 (2014) 102002, arXiv:1407.1042.
[Aartsen:2014mfp]
[5-63]
Multipole analysis of IceCube data to search for dark matter accumulated in the Galactic halo, M. G. Aartsen et al. (IceCube), Eur.Phys.J. C75 (2015) 20, arXiv:1406.6868.
[Aartsen:2014hva]
[5-64]
Searches for Extended and Point-like Neutrino Sources with Four Years of IceCube Data, M. G. Aartsen et al. (IceCube), Astrophys. J. 796 (2014) 109, arXiv:1406.6757.
[Aartsen:2014cva]
[5-65]
Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data, M. G. Aartsen et al. (IceCube), Phys. Rev. Lett. 113 (2014) 101101, arXiv:1405.5303.
[Aartsen:2014gkd]
[5-66]
Search for neutrino emission from relic dark matter in the Sun with the Baikal NT200 detector, A.D. Avrorin et al. (Baikal), Astropart.Phys. 62 (2014) 12-20, arXiv:1405.3551.
[Avrorin:2014swy]
[5-67]
First Constraints on the Ultra-High Energy Neutrino Flux from a Prototype Station of the Askaryan Radio Array, P. Allison et al. (ARA), Astropart.Phys. 70 (2015) 62-80, arXiv:1404.5285.
[Allison:2014kha]
[5-68]
Searches for Point-like and extended neutrino sources close to the Galactic Centre using the ANTARES neutrino Telescope, S. Adrian-Martinez et al. (ANTARES), Astrophys.J. 786 (2014) L5, arXiv:1402.6182.
[Adrian-Martinez:2014wzf]
[5-69]
Searches for clustering in the time integrated skymap of the ANTARES neutrino telescope, S. Adrian-Martinez et al. (ANTARES), JCAP 05 (2014) 001, arXiv:1402.2809.
[Adrian-Martinez:2014hmp]
[5-70]
Detection of An Unidentified Emission Line in the Stacked X-ray spectrum of Galaxy Clusters, Esra Bulbul et al., Astrophys.J. 789 (2014) 13, arXiv:1402.2301.
[Bulbul:2014sua]
[5-71]
A Search for Time Dependent Neutrino Emission from Microquasars with the ANTARES Telescope, S. Adrian-Martinez et al. (ANTARES), JHEAp (2014), arXiv:1402.1600.
[Adrian-Martinez:2014ito]
[5-72]
Search for neutrino-induced particle showers with IceCube-40, M. G. Aartsen et al. (IceCube), Phys. Rev. D89 (2014) 102001, arXiv:1312.0104.
[Aartsen:2013vca]
[5-73]
Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 59-string configuration, M. G. Aartsen et al. (IceCube), Phys. Rev. D89 (2014) 062007, arXiv:1311.7048.
[Aartsen:2013eka]
[5-74]
Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector, M. G. Aartsen et al. (IceCube), Science 342, 1242856 (2013) 1242856, arXiv:1311.5238.
[Aartsen:2013jdh]
[5-75]
Probing the origin of cosmic-rays with extremely high energy neutrinos using the IceCube Observatory, M. G. Aartsen et al. (IceCube), Phys. Rev. D88 (2013) 112008, arXiv:1310.5477.
[Aartsen:2013dsm]
[5-76]
A Search for Astrophysical Burst Signals at the Sudbury Neutrino Observatory, B. Aharmim et al., Astropart.Phys. 55 (2014) 1-7, arXiv:1309.0910.
[Aharmim:2013oba]
[5-77]
A Search for Neutrino Emission from the Fermi Bubbles with the ANTARES Telescope, S. Adrian-Martinez et al. (ANTARES), Eur.Phys.J. C74 (2014) 2701, arXiv:1308.5260.
[Adrian-Martinez:2013xda]
[5-78]
Search for time-independent neutrino emission from astrophysical sources with 3 years of IceCube data, M. G. Aartsen et al. (IceCube), Astrophys.J. 779 (2013) 132, arXiv:1307.6669.
[Aartsen:2013uuv]
[5-79]
An IceCube Search for Dark Matter Annihilation in nearby Galaxies and Galaxy Clusters, M. G. Aartsen et al. (IceCube), Phys. Rev. D88 (2013) 122001, arXiv:1307.3473.
[Aartsen:2013dxa]
[5-80]
Search for muon neutrinos from gamma-ray bursts with the ANTARES neutrino telescope using 2008 to 2011 data, S. Adrian-Martinez et al. (ANTARES), A&A 559, A9 (2013), arXiv:1307.0304.
[Adrian-Martinez:2013dsk]
[5-81]
First observation of PeV-energy neutrinos with IceCube, M. G. Aartsen et al. (IceCube), Phys. Rev. Lett. 111 (2013) 021103, arXiv:1304.5356.
[Aartsen:2013bka]
[5-82]
Ultrahigh Energy Neutrinos at the Pierre Auger Observatory, P. Abreu et al. (Pierre Auger), Adv.High Energy Phys. 2013 (2013) 708680, arXiv:1304.1630.
[Abreu:2013zbq]
[5-83]
First search for neutrinos in correlation with gamma-ray bursts with the ANTARES neutrino telescope, S. Adrian-Martinez et al. (ANTARES), JCAP 1303 (2013) 006, arXiv:1302.6750.
[Adrian-Martinez:2013gel]
[5-84]
Search for muon signal from dark matter annihilations in the Sun with the Baksan Underground Scintillator Telescope for 24.12 years, M.M. Boliev, S.V. Demidov, S.P. Mikheyev, O.V. Suvorova, JCAP 1309 (2013) 019, arXiv:1301.1138.
[Boliev:2013ai]
[5-85]
Search for dark matter annihilations in the Sun with the 79-string IceCube detector, R. Abbasi et al. (IceCube), Phys. Rev. Lett. 110 (2013) 131302, arXiv:1212.4097.
[Aartsen:2012kia]
[5-86]
Search for Neutrinos from Annihilating Dark Matter in the Direction of the Galactic Center with the 40-String IceCube Neutrino Observatory, R. Abbasi et al. (IceCube), arXiv:1210.3557, 2012.
[Abbasi:2012ws]
[5-87]
Searches for high-energy neutrino emission in the Galaxy with the combined IceCube-AMANDA detector, R. Abbasi et al. (IceCube), Astrophys. J. 763 (2013) 33, arXiv:1210.3273.
[IceCube:2012sj]
[5-88]
Search for Point-Like Sources of Ultra-High Energy Neutrinos at the Pierre Auger Observatory and Improved Limit on the Diffuse Flux of Tau Neutrinos, P. Abreu et al. (Pierre Auger), Astrophys. J. 755 (2012) L4, arXiv:1210.3143.
[Abreu:2012zz]
[5-89]
Search for Cosmic Neutrino Point Sources with Four Year Data of the ANTARES Telescope, S. Adrian-Martinez et al. (ANTARES), Astrophys. J. 760 (2012) 53, arXiv:1207.3105.
[AdrianMartinez:2012rp]
[5-90]
A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007, S. Adrian-Martinez et al. (Antares), JCAP 1306 (2013) 008, arXiv:1205.3018.
[AdrianMartinez:2012tf]
[5-91]
Search for a correlation between ANTARES neutrinos and Pierre Auger Observatory UHECRs arrival directions, ANTARES (ANTARES), Astrophys.J. 774 (2013) 19, arXiv:1202.6661.
[ANTARES:2012uba]
[5-92]
A Search for UHE Tau Neutrinos with IceCube, R. Abbasi et al. (IceCube), Phys. Rev. D86 (2012) 022005, arXiv:1202.4564.
[Abbasi:2012cu]
[5-93]
A search for ultra-high energy neutrinos in highly inclined events at the Pierre Auger Observatory, P. Abreu et al. (Pierre Auger), Phys. Rev. D84 (2011) 122005, arXiv:1202.1493.
[Abreu:2011zze]
[5-94]
Coincident Searches between Gravitational Waves and High-Energy Neutrinos with the Antares and LIGO/Virgo Detectors, B. Bouhou et al. (ANTARES-LIGO-Virgo), arXiv:1201.2840, 2012.
[Bouhou:2012qf]
[5-95]
Multi-year search for dark matter annihilations in the Sun with the AMANDA-II and IceCube detectors, R. Abbasi et al. (IceCube), Phys. Rev. D85 (2012) 042002, arXiv:1112.1840.
[IceCube:2011aj]
[5-96]
Searching for soft relativistic jets in Core-collapse Supernovae with the IceCube Optical Follow-up Program, R. Abbasi et al. (IceCube), Astron. Astrophys. 539 (2012) A60, arXiv:1111.7030.
[Abbasi:2011ja]
[5-97]
Supernova Relic Neutrino Search at Super-Kamiokande, K. Bays et al. (Super-Kamiokande), Phys. Rev. D85 (2012) 052007, arXiv:1111.5031.
[Bays:2011si]
[5-98]
Search for Neutrino Emission from Gamma-Ray Flaring Blazars with the ANTARES Telescope, S. Adrian-Martinez et al., Astropart.Phys. 36 (2012) 204-210, arXiv:1111.3473.
[AdrianMartinez:2011jz]
[5-99]
An Indirect Search for WIMPs in the Sun using 3109.6 days of upward-going muons in Super-Kamiokande, T. Tanaka et al. (Kamiokande), Astrophys. J. 742 (2011) 78, arXiv:1108.3384.
[Tanaka:2011uf]
[5-100]
Searches for periodic neutrino emission from binary systems with 22 and 40 strings of IceCube, R. Abbasi et al. (IceCube), Astrophys. J. 748 (2012) 118, arXiv:1108.3023.
[Abbasi:2011ke]
[5-101]
First Search for Point Sources of High Energy Cosmic Neutrinos with the ANTARES Neutrino Telescope, S. Adrian-Martinez et al. (Antares), Astrophys. J. 743 (2011) L14, arXiv:1108.0292.
[AdrianMartinez:2011uh]
[5-102]
IceCube Sensitivity for Low-Energy Neutrinos from Nearby Supernovae, R. Abbasi et al. (IceCube), Astron. Astrophys. 535 (2011) A109, arXiv:1108.0171.
[Abbasi:2011ss]
[5-103]
Neutrino analysis of the September 2010 Crab Nebula flare and time-integrated constraints on neutrino emission from the Crab using IceCube, J. A. Aguilar, T. Montaruli, M. Danninger (IceCube), Astrophys. J. 745 (2012) 45, arXiv:1106.3484.
[IceCube:2011aa]
[5-104]
Observational Search for PeV-EeV Tau Neutrino from GRB081203A, Y. Aita et al., Astrophys.J. 736 (2011) L12, arXiv:1106.2572.
[Aita:2011mx]
[5-105]
Updated Neutrino Flux Limits from the RICE Experiment at the South Pole, Ilya Kravchenko et al., Phys. Rev. D85 (2012) 062004, arXiv:1106.1164.
[Kravchenko:2011im]
[5-106]
A study of extraterrestrial antineutrino sources with the KamLAND detector, A. Gando et al. (KamLAND), Astrophys. J. 745 (2012) 193, arXiv:1105.3516.
[Collaboration:2011jza]
[5-107]
A Search for a Diffuse Flux of Astrophysical Muon Neutrinos with the IceCube 40-String Detector, R. Abbasi et al. (IceCube), Phys. Rev. D84 (2011) 082001, arXiv:1104.5187.
[Abbasi:2011jx]
[5-108]
Time-Dependent Searches for Point Sources of Neutrinos with the 40-String and 22-String Configurations of IceCube, R. Abbasi (IceCube), Astrophys. J. 744 (2012) 1, arXiv:1104.0075.
[IceCube:2011ai]
[5-109]
Constraints on the Extremely-high Energy Cosmic Neutrino Flux with the IceCube 2008-2009 Data, R. Abbasi et al. (IceCube), Phys. Rev. D83 (2011) 092003, arXiv:1103.4250.
[Abbasi:2011ji]
[5-110]
The First Limits on the Ultra-high Energy Neutrino Fluence from Gamma-ray Bursts, A. G. Vieregg et al., Astrophys. J. 736 (2011) 50, arXiv:1102.3206.
[Vieregg:2011ws]
[5-111]
Constraints on high-energy neutrino emission from SN 2008D, R. Abbasi et al. (IceCube), Astron. Astrophys. 527 (2011) A28, arXiv:1101.3942.
[Abbasi:2011wh]
[5-112]
Search for Dark Matter from the Galactic Halo with the IceCube Neutrino Observatory, R. Abbasi et al. (IceCube), Phys. Rev. D84 (2011) 022004, arXiv:1101.3349.
[Abbasi:2011eq]
[5-113]
First search for atmospheric and extraterrestrial neutrino-induced cascades with the IceCube detector, R. Abbasi et al. (IceCube), Phys. Rev. D84 (2011) 072001, arXiv:1101.1692.
[Abbasi:2011ui]
[5-114]
Limits on Neutrino Emission from Gamma-Ray Bursts with the 40 String IceCube Detector, R. Abbasi et al. (IceCube), Phys. Rev. Lett. 106 (2011) 141101, arXiv:1101.1448.
[Abbasi:2011qc]
[5-115]
Time-Integrated Searches for Point-like Sources of Neutrinos with the 40-String IceCube Detector, R. Abbasi et al. (IceCube), Astrophys. J. 732 (2011) 18, arXiv:1012.2137.
[Abbasi:2010rd]
[5-116]
Low Multiplicity Burst Search at the Sudbury Neutrino Observatory, B. Aharmim et al. (SNO), Astrophys. J. 728 (2011) 83, arXiv:1011.5436.
[Collaboration:2010gx]
[5-117]
Erratum: Observational Constraints on the Ultra-high Energy Cosmic Neutrino Flux from the Second Flight of the ANITA Experiment, P. W. Gorham et al. (The ANITA), Phys. Rev. D85 (2012) 049901, arXiv:1011.5004.
[Gorham:2010kv]
[5-118]
Search for a diffuse flux of high-energy $\nu_\mu$ with the ANTARES neutrino telescope, J.A. Aguilar et al. (ANTARES), Phys. Lett. B696 (2011) 16-22, arXiv:1011.3772.
[Aguilar:2010ab]
[5-119]
The first search for extremely-high energy cosmogenic neutrinos with the IceCube Neutrino Observatory, R. Abbasi et al. (IceCube), Phys. Rev. D82 (2010) 072003, arXiv:1009.1442.
[Abbasi:2010ak]
[5-120]
Search for Acoustic Signals from Ultra-High Energy Neutrinos in 1500 km^3 of Sea Water, Naoko Kurahashi, Justin Vandenbroucke, Giorgio Gratta, Phys. Rev. D82 (2010) 073006, arXiv:1007.5517.
[Kurahashi:2010ei]
[5-121]
Constraints on the flux of Ultra-High Energy neutrinos from WSRT observations, S. Buitink et al., Astron.Astrophys. 521 (2010) A47, arXiv:1004.0274.
[Buitink:2010qn]
[5-122]
LUNASKA experiments using the Australia Telescope Compact Array to search for ultra-high energy neutrinos and develop technology for the lunar Cherenkov technique, C.W. James et al., Phys. Rev. D81 (2010) 042003, arXiv:0911.3009.
[James:2009sf]
[5-123]
UHE neutrino searches using a Lunar target: First Results from the RESUN search, T. R. Jaeger, R. L. Mutel, K. G. Gayley, Astropart.Phys. 34 (2010) 293-303, arXiv:0910.5949.
[Jaeger:2010zz]
[5-124]
Improved flux limits for neutrinos with energies above 10$^{22}$ eV from observations with the Westerbork Synthesis Radio Telescope, O. Scholten et al., Phys. Rev. Lett. 103 (2009) 191301, arXiv:0910.4745.
[Scholten:2009ad]
[5-125]
Limits on a muon flux from Kaluza-Klein dark matter annihilations in the Sun from the IceCube 22-string detector, R. Abbasi et al. (IceCube), Phys. Rev. D81 (2010) 057101, arXiv:0910.4480.
[Abbasi:2009vg]
[5-126]
Search for cosmic neutrino point sources with the 5-line ANTARES telescope, J. A. Aguilar et al. (Antares), arXiv:0909.1262, 2009.
[Antares:2009hoa]
[5-127]
Search for muon neutrinos from Gamma-Ray Bursts with the IceCube neutrino telescope, R. U. Abbasi et al. (IceCube), Astrophys. J. 710 (2010) 346-359, arXiv:0907.2227.
[Abbasi:2009ig]
[5-128]
Search for Astrophysical Neutrino Point Sources at Super-Kamiokande, E. Thrane et al. (Super-Kamiokande), Astrophys. J. 704 (2009) 503-512, arXiv:0907.1594.
[Thrane:2009tw]
[5-129]
AMANDA 7-Year Multipole Analysis, Anne Schukraft, Jan-Patrick Huelss (IceCube), arXiv:0906.3942, 2009.
[Schukraft:2009tq]
[5-130]
LUNASKA Experiment Observational Limits on UHE Neutrinos from Centaurus A and the Galactic Center, C.W. James et al., Mon.Not.Roy.Astron.Soc. 410 (2011) 885, arXiv:0906.3766.
[James:2009rc]
[5-131]
First Neutrino Point-Source Results From the 22-String IceCube Detector, R. Abbasi et al. (IceCube), Astrophys. J. 701 (2009) L47-L51, arXiv:0905.2253.
[Abbasi:2009iv]
[5-132]
Heavy neutrino decay at SHALON, V.G. Sinitsyna, M. Masip, S.I. Nikolsky, V.Y. Sinitsyna, arXiv:0903.4654, 2009.
[Sinitsyna:2009dn]
[5-133]
Limit on the diffuse flux of ultra-high energy tau neutrinos with the surface detector of the Pierre Auger Observatory, J. Abraham et al. (Pierre Auger), Phys. Rev. D79 (2009) 102001, arXiv:0903.3385.
[Abraham:2009uy]
[5-134]
Search for high-energy muon neutrinos from the 'naked-eye' GRB 080319B with the IceCube neutrino telescope, R. Abbasi et al. (IceCube), Astrophys. J. 701 (2009) 1721-1731, arXiv:0902.0131.
[Abbasi:2009kq]
[5-135]
New Limits on the Ultra-high Energy Cosmic Neutrino Flux from the ANITA Experiment, P. Gorham et al. (ANITA), Phys. Rev. Lett. 103 (2009) 051103, arXiv:0812.2715.
[Gorham:2008yk]
[5-136]
Search for Point Sources of High Energy Neutrinos with Final Data from AMANDA-II, R.Abbasi et al. (IceCube), Phys. Rev. D79 (2009) 062001, arXiv:0809.1646.
[Abbasi:2008ih]
[5-137]
Upper limit on the diffuse flux of UHE tau neutrinos from the Pierre Auger Observatory, J. Abraham et al. (Pierre Auger), Phys. Rev. Lett. 100 (2008) 211101, arXiv:0712.1909.
[Abraham:2007rj]
[5-138]
Search for Ultra High-Energy Neutrinos with AMANDA-II, M. Ackermann et al. (IceCube), Astrophys. J. 675 (2008) 1014, arXiv:0711.3022.
[Ackermann:2007km]
[5-139]
Study of TeV Neutrinos with Upward Showering Muons in Super-Kamiokande, S. Desai et al. (Super-Kamiokande), Astropart. Phys. 29 (2008) 42-54, arXiv:0711.0053.
[Desai:2007ra]
[5-140]
Multi-year search for a diffuse flux of muon neutrinos with AMANDA-II, A. Achterberg et al. (IceCube), Phys. Rev. D76 (2007) 042008, arXiv:0705.1315.
[Achterberg:2007qp]
[5-141]
The Search for Muon Neutrinos from Northern Hemisphere Gamma-Ray Bursts with AMANDA, A. Achterberg et al. (IceCube and IPN), Astrophys. J. 674 (2008) 357-370, arXiv:0705.1186.
[Achterberg:2007nx]
[5-142]
Search for neutrino-induced cascades from gamma-ray bursts with AMANDA, A. Achterberg et al. (AMANDA), Astrophys. J. 664 (2007) 397, arXiv:astro-ph/0702265.
[Achterberg:2007qy]
[5-143]
Radio emission of highly inclined cosmic ray air showers measured with LOPES, Jelena Petrovic (LOPES), J. Phys. Conf. Ser. 39 (2006) 471-474, arXiv:astro-ph/0611225.
[Petrovic:2006sg]
[5-144]
Five years of searches for point sources of astrophysical neutrinos with the AMANDA-II neutrino telescope, A. Achterberg et al. (AMANDA), Phys. Rev. D75 (2007) 102001, arXiv:astro-ph/0611063.
[Achterberg:2006vc]
[5-145]
Limits on the high-energy gamma and neutrino fluxes from the SGR 1806-20 giant flare of December 27th, 2004 with the AMANDA-II detector, AMANDA (AMANDA), Phys. Rev. Lett. 97 (2006) 221101, arXiv:astro-ph/0607233.
[Achterberg:2006az]
[5-146]
High energy neutrino astronomy using upward-going muons in Super-Kamiokande-I, K. Abe et al. (Super-Kamiokande), Astrophys. J. 652 (2006) 198, arXiv:astro-ph/0606413.
[Abe:2006at]
[5-147]
Search for diffuse astrophysical neutrino flux using ultra- high energy upward-going muons in Super-Kamiokande I, M. E. C. Swanson (Super-Kamiokande), Astrophys. J. 652 (2006) 206-215, arXiv:astro-ph/0606126.
[Swanson:2006gm]
[5-148]
First year performance of the IceCube neutrino telescope, A. Achterberg et al. (IceCube), Astropart. Phys. 26 (2006) 155-173, arXiv:astro-ph/0604450.
[Achterberg:2006md]
[5-149]
Constraints on Cosmic Neutrino Fluxes from the ANITA Experiment, ANITA (ANITA), Phys. Rev. Lett. 96 (2006) 171101, arXiv:astro-ph/0512265.
[Barwick:2005hn]
[5-150]
Search for a diffuse flux of high-energy extraterrestrial neutrinos with the NT200 neutrino telescope, V. Aynutdinov (BAIKAL), Astropart. Phys. 25 (2006) 140, arXiv:astro-ph/0508675.
[Aynutdinov:2005dq]
[5-151]
Search for extraterrestrial point sources of high energy neutrinos with AMANDA-II using data collected in 2000-2002, AMANDA (The AMANDA), Phys. Rev. D71 (2005) 077102, arXiv:astro-ph/0412347.
[Ackermann:2004aga]
[5-152]
Search for low energy neutrinos in correlation with the 8 events observed by the EXPLORER and NAUTILUS detectors in 2001, M. Aglietta et al., Astron. Astrophys. 421 (2004) 399, arXiv:astro-ph/0403207.
[Aglietta:2004ag]
[5-153]
Experimental Limit on the Cosmic Diffuse Ultra-high Energy Neutrino Flux, P. W. Gorham et al., Phys. Rev. Lett. 93 (2007) 041101, arXiv:astro-ph/0310232.
[Filonenko:2007zz]
[5-154]
FORTE satellite constraints on ultra-high energy cosmic particle fluxes, Nikolai G. Lehtinen, Peter W. Gorham, Abram R. Jacobson, Robert A. Roussel-Dupre, Phys. Rev. D69 (2004) 013008, arXiv:astro-ph/0309656.
[Lehtinen:2003xv]
[5-155]
Search for extraterrestrial point sources of neutrinos with AMANDA-II, AMANDA (AMANDA), Phys. Rev. Lett. 92 (2004) 071102, arXiv:astro-ph/0309585.
[Ahrens:2003pv]
[5-156]
Horizontal Muons and a Search for AGN Neutrinos in Soudan 2, David Demuth et al., Astropart. Phys. 20 (2004) 533, arXiv:hep-ex/0304016.
[DeMuth:2003me]
[5-157]
Limits on diffuse fluxes of high energy extraterrestrial neutrinos with the AMANDA-B10 detector, J. Ahrens et al., Phys. Rev. Lett. 90 (2003) 251101, arXiv:astro-ph/0303218.
[Ahrens:2003ee]
[5-158]
Search for Point Sources of High Energy Neutrinos with AMANDA, J. Ahrens, X. Bai, G. Barouch, S. W. Barwick (The AMANDA), Astrophys. J. 583 (2003) 1040, arXiv:astro-ph/0208006.
[Ahrens:2002hh]
[5-159]
Search for Neutrino-Induced Cascades with the AMANDA Detector, J. Ahrens et al. (AMANDA), Phys. Rev. D67 (2003) 012003, arXiv:astro-ph/0206487.
[Ahrens:2002wz]
[5-160]
Limits on the Ultra-High Energy Electron Neutrino Flux from the RICE Experiment, I. Kravchenko, Astropart. Phys. 20 (2003) 195, arXiv:astro-ph/0206371.
[Kravchenko:2002mm]
[5-161]
Observation of High Energy Atmospheric Neutrinos with the Antarctic Muon and Neutrino Detector Array, J. Ahrens et al. (AMANDA), Phys. Rev. D66 (2002) 012005, arXiv:astro-ph/0205109.
[Ahrens:2002gq]
[5-162]
Search for point sources of neutrinos with KGF underground muon detectors, H. Adarkar et al., Nuovo Cim. C21 (1998) 661-666.
[Adarkar:1998px]

6 - Experiment - Conference Proceedings

[6-1]
Neutrino Astronomy with IceCube and Beyond, Kevin J. Meagher (IceCube), arXiv:1705.00383, 2017. NuPhys2016 (London, 12-14 December 2016).
[Meagher:2017zvi]
[6-2]
Improved Detection of Supernovae with the IceCube Observatory, Lutz Kopke (IceCube), arXiv:1704.03823, 2017. 8th international symposium on large TPCs for low-energy rare event detection, Paris, Dec. 5-7, 2016.
[Kopke:2017req]
[6-3]
The Fermi Sky in a Multimessenger Context, Felicia Krauss (Fermi-LAT), PoS NOW2016 (2017) 042, arXiv:1703.01825. Neutrino Oscillation Workshop (NOW 2016): International Workshop on Neutrino and Astroparticle Physics (NOW 2016) Otranto (Lecce), Italy, September 4-11, 2016.
[Krauss:2017hgj]
[6-4]
Exploring the Universe with Neutrinos: Recent Results from IceCube, Donglian Xu (IceCube), arXiv:1702.05244, 2017. 14th International Workshop on Tau Lepton Physics.
[Xu:2017iku]
[6-5]
Search for Astrophysical Tau Neutrinos with IceCube, Donglian Xu (IceCube), PoS ICHEP2016 (2016) 452, arXiv:1702.05238. 38th International Conference on High Energy Physics.
[Xu:2017yxo]
[6-6]
Multimessenger studies with the VERITAS Atmospheric Cherenkov Observatory, M. Santander (VERITAS), arXiv:1612.04301, 2016. ICHEP 2016.
[Santander:2016chw]
[6-7]
Results from the ANTARES Neutrino Telescope, M. Spurio (ANTARES), arXiv:1610.02201, 2016. CRIS2016 (10th Cosmic Ray International Seminar) - Ischia (NA) Italy, July 4-8, 2016.
[Spurio:2016ttp]
[6-8]
Recent results from the ARIANNA neutrino experiment, Anna Nelles (ARIANNA), EPJ Web Conf. 135 (2017) 05002, arXiv:1609.07193. ARENA2016, Groningen, The Netherlands.
[Nelles:2016fxe]
[6-9]
Measurement of horizontal air showers with the Auger Engineering Radio Array, Olga Kambeitz (Pierre Auger), EPJ Web Conf. 135 (2017) 01015, arXiv:1609.05456. ARENA2016, Groningen, The Netherlands.
[Kambeitz:2016rqu]
[6-10]
Search for sharp neutrino features from dark matter decay, Chaimae El Aisati (IceCube), arXiv:1606.00754, 2016. 51st Rencontres de Moriond, EW session.
[Aisati:2016yve]
[6-11]
Neutrino Physics and Astrophysics with IceCube, Teresa Montaruli (IceCube), Nucl.Part.Phys.Proc. 279-281 (2016) 23-30, arXiv:1512.07978. CRIS2015, Gallipoli, Italy.
[Montaruli:2015six]
[6-12]
ICRC 2015 proceedings: First combined search for neutrino point-sources in the Southern Sky with the ANTARES and IceCube neutrino telescopes, ANTARES, IceCube (IceCube, ANTARES), arXiv:1511.05025, 2015. 34th International Cosmic Ray Conference, 30 July - 6 August 2015 (The Hague, The Netherlands).
[ANTARES:2015cex]
[6-13]
The IceCube Neutrino Observatory, the Pierre Auger Observatory and the Telescope Array: Joint Contribution to the 34th International Cosmic Ray Conference (ICRC 2015), M.G. Aartsen et al. (IceCube), arXiv:1511.02109, 2015. 34th International Cosmic Ray Conference, 30 July - 6 August 2015, The Hague, The Netherlands.
[Aartsen:2015siv]
[6-14]
The IceCube Neutrino Observatory - Contributions to ICRC 2015 Part V: Neutrino Oscillations and Supernova Searches, M. G. Aartsen et al. (IceCube), arXiv:1510.05227, 2015. 34th International Cosmic Ray Conference, The Hague 2015.
[Aartsen:2015cwa]
[6-15]
The IceCube Neutrino Observatory - Contributions to ICRC 2015 Part IV: Searches for Dark Matter and Exotic Particles, M. G. Aartsen et al. (IceCube), arXiv:1510.05226, 2015. 34th International Cosmic Ray Conference, The Hague 2015.
[Aartsen:2015bwa]
[6-16]
The IceCube Neutrino Observatory - Contributions to ICRC 2015 Part III: Cosmic Rays, M. G. Aartsen et al. (IceCube), arXiv:1510.05225, 2015. 34th International Cosmic Ray Conference, The Hague 2015.
[Aartsen:2015awa]
[6-17]
The IceCube Neutrino Observatory - Contributions to ICRC 2015 Part II: Atmospheric and Astrophysical Diffuse Neutrino Searches of All Flavors, M. G. Aartsen et al. (IceCube), arXiv:1510.05223, 2015. 34th International Cosmic Ray Conference, The Hague 2015.
[Aartsen:2015zva]
[6-18]
The IceCube Neutrino Observatory - Contributions to ICRC 2015 Part I: Point Source Searches, M. G. Aartsen et al. (IceCube), arXiv:1510.05222, 2015. 34th International Cosmic Ray Conference, The Hague 2015.
[Aartsen:2015yva]
[6-19]
The Antares Collaboration : Contributions to the 34th International Cosmic Ray Conference (ICRC 2015, The Hague), ANTARES (The ANTARES), arXiv:1510.04508, 2015. 34th ICRC 2015 in The Hague (The Netherlands), July 30 to August 6, 2015.
[ANTARES:2015rfu]
[6-20]
Report from the Multi-Messenger Working Group at UHECR-2014 Conference, Timo Karg et al. (IceCube), JPS Conf.Proc. 9 (2016) 010021, arXiv:1510.02050. UHECR 2014, Springdale, Utah, USA.
[Karg:2015gxa]
[6-21]
Searching for TeV gamma-ray emission associated with IceCube high-energy neutrinos using VERITAS, M. Santander (VERITAS and IceCube), PoS ICRC2015 (2016) 785, arXiv:1509.00517. International Cosmic Ray Conference 2015 (ICRC2015), The Hague, Netherlands.
[Santander:2015kka]
[6-22]
Livetime and sensitivity of the ARIANNA Hexagonal Radio Array, S.W.Barwick et al. (ARIANNA), arXiv:1509.00115, 2015. ICRC2015.
[Barwick:2015jca]
[6-23]
Performance of the ARIANNA Hexagonal Radio Array, S.W.Barwick et al. (ARIANNA), PoS ICRC2015 (2016) 1149, arXiv:1509.00109. ICRC2015.
[Barwick:2015ica]
[6-24]
Limit on an Isotropic Diffuse Gamma-Ray Population with HAWC, John Pretz (HAWC), PoS ICRC2015 (2016) 820, arXiv:1508.04091. 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands.
[Pretz:2015wma]
[6-25]
AMON Searches for Jointly-Emitting Neutrino + Gamma-Ray Transients, A. Keivani, D. B. Fox, G. Tesic, D. F. Cowen, J. Fixelle, PoS ICRC2015 (2015) 786, arXiv:1508.01315. 34th International Cosmic Ray Conference (ICRC 2015), The Hague, The Netherlands.
[Keivani:2015kna]
[6-26]
The ANTARES Neutrino Telescope, Chiara Perrina (ANTARES), arXiv:1505.00224, 2015. Prospects in Neutrino Physics Conference, 15 - 17 December, 2014, held at Queen Mary University of London, UK.
[Perrina:2015mka]
[6-27]
Analysis of the cumulative neutrino flux from Fermi-LAT blazar populations using 3 years of IceCube data, Thorsten Glusenkamp (IceCube), EPJ Web Conf. 121 (2016) 05006, arXiv:1502.03104. RICAP-14, Noto, Sicily, Sept. 30th - Oct. 3rd 2014.
[Glusenkamp:2015jca]
[6-28]
ANTARES constraints to a Galactic component of the IceCube cosmic neutrino flux, Maurizio Spurio, EPJ Web Conf. 121 (2016) 05007, arXiv:1501.01551. RICAP-14 'The Roma International Conference on Astroparticle Physics', Noto (Italy) Oct. 2014.
[Spurio:2015pma]
[6-29]
Recent results of the ANTARES Neutrino Telescope, Juan Jose Hernandez-Rey, AIP Conf. Proc. 1666 (2015) 040002, arXiv:1410.7720. Neutrino 2014.
[Hernandez-Rey:2014ssa]
[6-30]
IceCube - status and recent results, A. Karle (IceCube), arXiv:1401.4496, 2014. XVth Workshop on Neutrino Telescopes, held in Venice, March 2013.
[Karle:2014bta]
[6-31]
The Antares Collaboration : Contributions to the 33st International Cosmic Ray Conference (ICRC 2013, Rio de Janeiro), ANTARES (ANTARES), arXiv:1312.4308, 2013. 33rd ICRC 2013 in Rio de Janeiro (Brazil), July 2013.
[TheANTARES:2013iwa]
[6-32]
Transient Point Source Analyses in the ANTARES Neutrino Telescope, Agustin Sanchez-Losa (on behalf of the ANTARES), Nucl.Instrum.Meth. A742 (2014) 195-198, arXiv:1311.7596. RICAP 2013.
[Sanchez-Losa:2013gwa]
[6-33]
Recent results from the ANTARES neutrino telescope, V. Van Elewyck (ANTARES), Nucl.Instrum.Meth. A742 (2014) 63-70, arXiv:1311.7002. RICAP-13 Roma International Conference on Astroparticle Physics (Rome, 22-24 May 2013).
[VanElewyck:2013xja]
[6-34]
Recent Highlights from IceCube, IceCube (Spencer R. Klein), Braz. J. Phys. 44 (2014) 540-549, arXiv:1311.6519. 2013 Intl. Cosmic Ray Conf.
[Klein:2013nbr]
[6-35]
The highest energy neutrinos: first evidence for cosmic origin, Francis Halzen, Nuovo Cim. C037 (2014) 117-132, arXiv:1311.6350. Pontecorvo 2013.
[Halzen:2013dva]
[6-36]
Search for High Energy GRB Neutrino Emission with ANTARES, Julia Schmid (ANTARES), arXiv:1311.4069, 2013. 48th Rencontres de Moriond, La Thuile 2013.
[Schmid:2013hya]
[6-37]
ANTARES Deep Sea Neutrino Telescope Results, Salvatore Mangano (ANTARES), AIP Conf.Proc. 1604 (2014) 405-412, arXiv:1310.8451.
[Mangano:2013gaa]
[6-38]
The IceCube Neutrino Observatory Part VI: Ice Properties, Reconstruction and Future Developments, M. G. Aartsen et al. (IceCube), arXiv:1309.7010, 2013. 33nd International Cosmic Ray Conference, Rio de Janeiro 2013.
[Aartsen:2013ola]
[6-39]
The IceCube Neutrino Observatory Part V: Neutrino Oscillations and Supernova Searches, M. G. Aartsen et al. (IceCube), arXiv:1309.7008, 2013. 33nd International Cosmic Ray Conference, Rio de Janeiro 2013.
[Aartsen:2013nla]
[6-40]
The IceCube Neutrino Observatory Part IV: Searches for Dark Matter and Exotic Particles, M. G. Aartsen et al. (IceCube), arXiv:1309.7007, 2013. 33nd International Cosmic Ray Conference, Rio de Janeiro 2013.
[Aartsen:2013mla]
[6-41]
The IceCube Neutrino Observatory Part III: Cosmic Rays, M. G. Aartsen et al. (IceCube), arXiv:1309.7006, 2013. 33nd International Cosmic Ray Conference, Rio de Janeiro 2013.
[Aartsen:2013lla]
[6-42]
The IceCube Neutrino Observatory Part II: Atmospheric and Diffuse UHE Neutrino Searches of All Flavors, M. G. Aartsen et al. (IceCube), arXiv:1309.7003, 2013. 33nd International Cosmic Ray Conference, Rio de Janeiro 2013.
[Aartsen:2013jla]
[6-43]
The IceCube Neutrino Observatory Part I: Point Source Searches, M. G. Aartsen et al. (IceCube), arXiv:1309.6979, 2013. 33nd International Cosmic Ray Conference, Rio de Janeiro 2013.
[Aartsen:2013dla]
[6-44]
Observation of TeV-PeV cosmic ray anisotropy with IceCube, IceTop and AMANDA, Paolo Desiati (IceCube), Nucl.Instrum.Meth. A742 (2014) 199-202, arXiv:1308.0246. RICAP 2013 Conference, Roma, Italy, May 22 - 24, 2013.
[Desiati:2013lea]
[6-45]
The Pierre Auger Observatory: results on the highest energy particles, Ruben Conceicao (Pierre Auger), arXiv:1307.3956, 2013. Time and Matter 2013, Venice, Italy.
[Conceicao:2013cfa]
[6-46]
Updated limits on diffuse fluxes of cosmic neutrinos with 2008-2011 ANTARES data, Simone Biagi (ANTARES), arXiv:1305.6442, 2013. 2013 Rencontres de Moriond.
[Biagi:2013mya]
[6-47]
Fundamental Physics with Charged Particle Measurements at the Cherenkov Telescope Array, J. Vandenbroucke, B. Humensky, J. Holder, R. A. Ong, arXiv:1305.0022, 2013. 2013 Snowmass Community Summer Study. Work groups: Cosmic Frontier 2 (WIMP Dark Matter Indirect Detection), Cosmic Frontier 6 (Cosmic Particles and Fundamental Physics).
[Vandenbroucke:2013hwa]
[6-48]
Towards Determining the energy of the UHECRs observed by the ANITA detector, Konstantin Belov (ANITA), AIP Conf. Proc. 1535 (2013) 209, arXiv:1303.2172. accepted to AIP conference proceedings.
[KonstantinBelovfortheANITA:2013hna]
[6-49]
Search for a neutrino emission from the Fermi Bubbles with the ANTARES telescope, Simone Biagi (ANTARES), arXiv:1303.2015, 2013. 2012 Fermi Symposium proceedings - eConf C121028.
[Biagi:2013uha]
[6-50]
Neutrino searches with the IceCube telescope, Juan A. Aguilar (IceCube), Nucl. Phys. Proc. Suppl. 237-238 (2013) 250-252, arXiv:1301.6504. NOW 2012.
[Aguilar:2013tc]
[6-51]
LUNASKA neutrino search with the Parkes and ATCA telescopes, J. D. Bray et al., AIP Conf.Proc. 1535 (2013) 21, arXiv:1301.6490. ARENA 2012 (Erlangen, Germany).
[Bray:2013ta]
[6-52]
Searching for Neutrino Radio Flashes from the Moon with LOFAR, Stijn Buitink et al. (LOFAR), AIP Conf.Proc. 1535 (2013) 27, arXiv:1301.5185. ARENA 2012.
[Buitink:2013gk]
[6-53]
Recent results from the ANTARES deep sea neutrino telescope, Paschal Coyle, Nucl. Phys. Proc. Suppl. 235-236 (2013) 339-345, arXiv:1212.2416.
[Coyle:2012wv]
[6-54]
Indirect dark matter search with the ANTARES neutrino telescope, Guillaume Lambard, PoS DSU2012 (2012) 042, arXiv:1212.1290. VIII International Workshop on the Dark Side of the Universe, June 10-15, 2012, Rio de Janeiro, Brazil.
[Lambard:2012pr]
[6-55]
Recent Results from the ANTARES Neutrino Telescope, Giorgio Giacomelli, arXiv:1211.5516, 2012.
[Giacomelli:2012cf]
[6-56]
Limits on spin-dependent WIMP-proton cross-sections from the neutrino experiment at the Baksan Underground Scintillator Telescope, Olga Suvorova, Musabi Boliev, Sergei Demidov, Stanislav Mikheyev, PoS DSU2012 (2012) 043, arXiv:1211.2545. VIII International Workshop on the Dark Side of the Universe, June 10-15, 2012, Rio de Janeiro, Brazil.
[Suvorova:2012ay]
[6-57]
IceCube Observatory: Neutrinos and the Origin of Cosmic Rays, Paolo Desiati (IceCube), arXiv:1210.7703, 2012. XIV Vulcano Workshop, Vulcano (ME), Italy, May 28 - June 2, 2012.
[Desiati:2012df]
[6-58]
Results from the IceCube Experiment - Neutrino 2012, Greg Sullivan (IceCube), Nucl. Phys. Proc. Suppl. 235-236 (2013) 346-351, arXiv:1210.4195.
[Sullivan:2013zaa]
[6-59]
Highlights from the Pierre Auger Observatory, Karl-Heinz Kampert (Pierre Auger), arXiv:1207.4823, 2012. ICRC 2011, Beijing.
[Kampert:2012vh]
[6-60]
Recent results from IceCube on neutrinos and cosmic rays, Sebastian Boser (IceCube), arXiv:1205.6405, 2012. XLVII Rencontres de Moriond, 'EW Interactions and Unified Theories'.
[Boser:2012px]
[6-61]
First results from the ANTARES neutrino telescope, Th. Eberl (ANTARES), eConf C1111101 (2011) 1, arXiv:1205.2173.
[Eberl:2012bp]
[6-62]
Search for neutrino emission from gamma-ray sources with the Antares Telescope, Ciro Bigongiari (ANTARES), Int. J. Mod. Phys. Conf. Ser. 08 (2012) 307-310, arXiv:1204.5928. HEPROIII, Barcelona, June 27 - July 1, 2011.
[Bigongiari:2012mz]
[6-63]
Astrophysical point source search with the ANTARES neutrino telescope, Salvatore Mangano (ANTARES), Nucl. Phys.B, Proc.Suppl.229-232 2012 (2012) 548, arXiv:1204.5873.
[Collaboration:2012mda]
[6-64]
Selected results from the ANTARES neutrino telescope, Salvatore Mangano (ANTARES), arXiv:1204.5869, 2012.
[Mangano:2012mc]
[6-65]
Search for Dark Matter in the Sun with the ANTARES Neutrino Telescope in the CMSSM and mUED frameworks, J.D. Zornoza (ANTARES), Nucl.Instrum.Meth. A725 (2013) 76-79, arXiv:1204.5290. VLVNT 2011.
[Zornoza:2013ema]
[6-66]
Dark matter search with the ANTARES neutrino telescope, J. D. Zornoza (ANTARES), Nucl.Instrum.Meth. A692 (2012) 123-126, arXiv:1204.5066. RICAP 2011.
[deDiosZornoza:2012ms]
[6-67]
Search for neutrino emission in gamma-ray flaring blazars with the ANTARES telescope, Agustin Sanchez-Losa, arXiv:1204.1447, 2012. VLvNT 2011.
[SanchezLosa:2013ama]
[6-68]
Recent Results of the ANTARES Neutrino Telescope, Juan Jose Hernandez-Rey, J. Phys. Conf. Ser. 375 (2012) 052035, arXiv:1202.3283. TAUP 2011.
[HernandezRey:2012ag]
[6-69]
The First Year IceCube-DeepCore Results, Chang Hyon Ha (IceCube), J. Phys. Conf. Ser. 375 (2012) 052034, arXiv:1201.0801. TAUP 2011.
[Ha:2012np]
[6-70]
Particle Physics in Ice with IceCube DeepCore, T. DeYoung (IceCube), Nucl. Instrum. Meth. A692 (2012) 180-183, arXiv:1112.1053. 3rd RICAP.
[DeYoung:2011ke]
[6-71]
Contributions to the 32nd International Cosmic Ray Conference (ICRC 2011) by the ANTARES collaboration, S. Adrian-Martinez et al. (ANTARES), Nucl. Instrum. Meth. A662 (2011) S216-S221, arXiv:1112.0478. ICRC2011.
[Bogazzi:2011zza]
[6-72]
IceCube - Astrophysics and Astroparticle Physics at the South Pole, R. Abbasi et al. (IceCube), arXiv:1111.5188, 2011. 32nd International Cosmic Ray Conference, Beijing 2011.
[IceCube:2011ab]
[6-73]
The IceCube Neutrino Observatory I: Point Source Searches, R. Abbasi et al. (IceCube), arXiv:1111.2741, 2011. 32nd International Cosmic Ray Conference, Beijing 2011.
[Abbasi:2011zm]
[6-74]
The IceCube Neutrino Observatory VI: Neutrino Oscillations, Supernova Searches, Ice Properties, R. Abbasi et al. (IceCube), arXiv:1111.2731, 2011. 32nd International Cosmic Ray Conference, Beijing 2011.
[Abbasi:2011eva]
[6-75]
Searches for Point Sources of High Energy Cosmic Neutrino with the ANTARES Telescope, D. Dornic (ANTARES), PoS EPS-HEP2011 (2011) 045, arXiv:1111.0783. EPS-HEP2011.
[Dornic:2011wf]
[6-76]
Search for transient neutrino sources with IceCube, A. Franckowiak (IceCube), arXiv:1111.0335, 2011. 2011 Fermi Symposium - eConf C110509.
[Franckowiak:2011hm]
[6-77]
Search for neutrino emission of gamma-ray flaring blazars with the ANTARES telescope, D. Dornic (ANTARES), arXiv:1110.6809, 2011. 2011 Fermi Symposium proceedings - eConf C110509.
[Dornic:2011uy]
[6-78]
IceCube: Status and Results, Thomas K. Gaisser (IceCube), arXiv:1108.1838, 2011. XIV International Workshop on Neutrino Telescopes, Venice, March, 2011.
[Gaisser:2011iz]
[6-79]
IceCube as a discovery observatory for physics beyond the standard model, K. Helbing (IceCube), arXiv:1107.5227, 2011. 46th Rencontres de Moriond.
[Helbing:2011wf]
[6-80]
Supernova Neutrino Detection with IceCube, Lutz Kopke (IceCube), J. Phys. Conf. Ser. 309 (2011) 012029, arXiv:1106.6225. 5th Symposium on Large TPCs for Low Energy Rare Events and Workshop on Neutrinos from Supernovae, Paris, Dec. 16-17, 2010.
[Kopke:2011xb]
[6-81]
ANTARES: Status, first results and multi-messenger astronomy, Manuela Vecchi (ANTARES), arXiv:1105.6242, 2011. Rencontres de Moriond (EW session) La Thuile, Italy, March 2011.
[Vecchi:2011bu]
[6-82]
Results from the ANTARES neutrino telescope, Giorgio Giacomelli (ANTARES), arXiv:1105.1245, 2011. WASET International Conference, Venice April 27, 2011.
[Giacomelli:2011id]
[6-83]
Search for neutrinos from Gamma-Ray Bursts with ANTARES, Eleonora Presani, AIP Conf. Proc. 1358 (2011) 361-364, arXiv:1104.4033. GRB 2010.
[Presani:2011ng]
[6-84]
Upper Limit on the Diffuse Flux of Cosmic $\nu_\mu$ with the ANTARES Neutrino Telescope, Simone Biagi, Nucl. Phys. Proc. Suppl. 212-213 (2011) 109-114, arXiv:1101.3670. CRIS 2010, Catania, Italy.
[Biagi:2011kg]
[6-85]
Upper Limit on the Diffuse $\nu_\mu$ Flux with the ANTARES Telescope, Simone Biagi, Nuclear Physics B (Proc. Suppl. ) 229-232 (2012) 534, arXiv:1101.2974. Neutrino 2010, Athens, Greece.
[Biagi:2011wt]
[6-86]
Latest results from the Pierre Auger Observatory, Esteban Roulet, PoS HRMS2010 (2010) 034, arXiv:1101.1825. Quarks, Strings and the Cosmos, Hector Rubinstein Memorial Symposium, August 9-11 2010.
[Roulet:2011wj]
[6-87]
Multi-Messenger Astrophysics with IceCube, M. Ribordy et al. (IceCube), Nuovo Cim. C034N3 (2011) 113-121, arXiv:1101.1187. SciNeGHE 2010, Sept. 8-10, Trieste.
[Ribordy:2011hy]
[6-88]
High Energy Neutrino Astronomy: IceCube 22 and 40 strings, E. Resconi et al. (IceCube), Nucl. Phys. Proc. Suppl. 229-232 (2012) 267-273, arXiv:1012.0415. XXIV International Conference on Neutrino Physics and Astrophysics 2010.
[Collaboration:2010yc]
[6-89]
Observation of the anisotropy in arrival direction of Cosmic Rays with IceCube, S. Toscano et al. (IceCube), arXiv:1011.5428, 2010.
[Toscano:2010gu]
[6-90]
Search for a neutrino flux from LS I +61 303 based on a time dependent model with IceCube, Levent Demirors et al. (IceCube), Nucl. Phys. Proc. Suppl. 229-232 (2012) 532, arXiv:1011.5102. Neutrino 2010.
[Demirors:2010zf]
[6-91]
The IceCube neutrino observatory: Status and initial results, Timo Karg et al. (IceCube), Astrophys. Space Sci. Trans. 7 (2011) 157-162, arXiv:1011.5027. ECRS 2010, Turku, Finland, August 2010.
[Karg:2011yh]
[6-92]
The IceTop experiment in 2010, Todor Stanev (IceCube), arXiv:1011.1879, 2010. Vulcano 2010.
[Stanev:2010zw]
[6-93]
Directional correlations between UHECRs and neutrinos observed with IceCube, Robert Lauer (IceCube), Astrophys. Space Sci. Trans. 7 (2011) 201-205, arXiv:1011.1093. ECRS 2010.
[Lauer:2010hz]
[6-94]
Search for neutrino point sources with the IceCube Neutrino Observatory, Juan A. Aguilar (IceCube), arXiv:1010.6263, 2010. Vulcano Workshop 2010.
[Collaboration:2010jy]
[6-95]
Neutrino Astrophysics and Galactic Cosmic Ray Anisotropy in IceCube, Paolo Desiati (IceCube), arXiv:1007.2621, 2010. Beyond the Standard Model of Particle Physics, Cosmology and Astrophysics (Beyond 2010), Cape Town, South Africa (2010).
[Desiati:2010cz]
[6-96]
Searching for High Energy Diffuse Astrophysical Muon Neutrinos with IceCube, Sean Grullon, arXiv:1005.4962, 2010. 2010 Lake Louise Winter Institute.
[Grullon:2010fa]
[6-97]
Antares completed: First selected results, Eleonora Presani (ANTARES), Nucl. Phys. Proc. Suppl. 188 (2009) 270-272, arXiv:1005.3734.
[Presani:2009zz]
[6-98]
The Antares Neutrino Telescope and Multi-Messenger Astronomy, Thierry Pradier (ANTARES), Class. Quant. Grav. 27 (2010) 194004, arXiv:1004.5579. 14th Gravitational Wave Data Analysis Workshop (GWDAW-14) in Roma - January 26th-29th, 2010.
[Pradier:2010mr]
[6-99]
The Pierre Auger Project and Enhancements, A. Etchegoyen, U. Frohlich, A. Lucero, I. Sidelnik, B. Wundheiler (Pierre Auger), AIP Conf. Proc. 1265 (2010) 129-138, arXiv:1004.2537. VIII Latin American Symposium on Nuclear Physics and Applications December 15-19, 2009, Santiago, Chile.
[Etchegoyen:2010uj]
[6-100]
IceCube, A. Karle (IceCube), arXiv:1003.5715, 2010. 31st ICRC, Lodz, Poland, July 2009.
[Karle:2010xx]
[6-101]
IceCube and KM3NeT: Lessons and Relations, Christian Spiering, Nucl. Instrum. Meth. A626-627 (2011) S48-S52, arXiv:1003.2590. 2009 VLVNT Meeting, Athens, Greece.
[Spiering:2010dx]
[6-102]
IceCube: physics, status, and future, Klas Hultqvist, IceCube, Nucl. Instrum. Meth. A626-627 (2011) S6-S12, arXiv:1003.2300. 4th International Workshop on Very Large Volume Neutrino Telescopes.
[Hultqvist:2010xy]
[6-103]
The ANTARES Deep-Sea Neutrino Telescope: Status and First Results, Paschal Coyle (ANTARES), arXiv:1002.0754, 2010.
[Coyle:2010zm]
[6-104]
The ANTARES Collaboration: contributions to the 31st International Cosmic Ray Conference (ICRC 2009), Lodz, Poland, July 2009, ANTARES (ANTARES), arXiv:1002.0701, 2010.
[ANTARES:2010nla]
[6-105]
Search for Dark Matter from the Galactic Halo with IceCube, Carsten Rott (IceCube), arXiv:0912.5183, 2009. CCAPP Symposium 2009, Columbus OH, USA, October 2009.
[Rott:2009hr]
[6-106]
Recent results from the Pierre Auger Observatory, James W. Cronin, arXiv:0911.4714, 2009. Blois2009.
[Cronin:2009dy]
[6-107]
Search for neutrinos from Gamma-Ray Bursts with the Baikal neutrino telescope NT200, A. Avrorin (Baikal), arXiv:0910.4327, 2009. 31th ICRC, Lodz, Poland, July 2009.
[Avrorin:2009qu]
[6-108]
Recent Results from IceCube and AMANDA, T. DeYoung (IceCube), arXiv:0910.3644, 2009. DPF-2009, Detroit, MI, July 2009, eConf C090726.
[DeYoung:2009uk]
[6-109]
Acoustic search for high-energy neutrinos in Lake Baikal: status and perspectives, V. Aynutdinov et al., arXiv:0910.0678, 2009. 31st ICRC, Lodz, Poland, July 2009.
[Aynutdinov:2009bs]
[6-110]
A Search For Atmospheric Neutrino-Induced Cascades with IceCube, Michelangelo D'Agostino (IceCube), arXiv:0910.0215, 2009. 31st ICRC, Lodz 2009.
[DAgostino:2009bdj]
[6-111]
Survey of the Sun in the Lake Baikal Neutrino Experiment, Zh.-A.Dzhilkibaev (Baikal), arXiv:0909.5589, 2009. 31st ICRC, Lodz, Poland, July 2009.
[Dzhilkibaev:2009jm]
[6-112]
Search for a diffuse flux of high-energy neutrinos with the Baikal neutrino telescope NT200, Zh.-A. Dzhilkibaev (Baikal), arXiv:0909.5562, 2009. 31st ICRC, Lodz, Poland, July 2009.
[Dzhilkibaev:2009ja]
[6-113]
First search for extraterrestrial neutrino-induced cascades with IceCube, J. Kiryluk (IceCube), arXiv:0909.0989, 2009. 31st International Cosmic Ray Conference (ICRC 2009) proceedings, Lodz, Poland, 7-15 2009.
[Kiryluk:2009gp]
[6-114]
Optical follow-up of high-energy neutrinos detected by IceCube, A. Franckowiak et al. (IceCube), arXiv:0909.0631, 2009. 31st ICRC, Lodz, Poland, July 2009.
[Franckowiak:2009yt]
[6-115]
Search for neutrino flares from point sources with IceCube, J. L. Bazo Alba, E. Bernardini, R. Lauer (IceCube), arXiv:0908.4209, 2009. 31st ICRC, Lodz, Poland, July 2009.
[Alba:2009we]
[6-116]
Search for neutrinos from transient sources with the ANTARES telescope and optical follow-up observations, D. Dornic et al. (TAROT), arXiv:0908.0804, 2009. 31st ICRC, Lodz, Polan, July 2009.
[Dornic:2009dg]
[6-117]
Supernova Search with the AMANDA / IceCube Detectors, Thomas Kowarik, Timo Griesel, Alexander Piegsa (Icecube), arXiv:0908.0441, 2009. 31st ICRC, Lodz, Poland, July 2009.
[Kowarik:2009qr]
[6-118]
Search for High Energetic Neutrinos from Supernova Explosions with AMANDA, Dirk Lennarz, Jan-Patrick Huls, Christopher Wiebusch (IceCube), arXiv:0907.4621, 2009. 31st ICRC, Lodz, Poland, July 2009.
[Lennarz:2009xr]
[6-119]
Results of LUNASKA lunar Cherenkov observations at the ATCA, C. W. James et al., arXiv:0907.4332, 2009. 31st International Cosmic Ray Conference, Lodz, Poland, 2009.
[James:2009qh]
[6-120]
Physics Capabilities of the IceCube DeepCore Detector, Christopher Wiebusch (IceCube), arXiv:0907.2263, 2009. 31st ICRC, Lodz, Poland, July 2009.
[Wiebusch:2009jf]
[6-121]
Search for the Kaluza-Klein Dark Matter with the AMANDA/IceCube Detectors, Matthias Danninger, Kahae Han (IceCube), arXiv:0906.3969, 2009. ICRC (2009).
[Danninger:2009uf]
[6-122]
IceCube: Neutrinos Associated with Cosmic Rays, Francis Halzen, AIP Conf. Proc. 1182 (2009) 14-21, arXiv:0906.3470. CIPANP 09, Torrey Pines, San Diego, CA.
[Halzen:2009iu]
[6-123]
Searches for WIMP Dark Matter from the Sun with AMANDA, James Braun, Daan Hubert (IceCube), arXiv:0906.1615, 2009. ICRC (2009).
[Braun:2009fr]
[6-124]
Recent Results of Point Source Searches with the IceCube Neutrino Telescope, Erik Strahler (IceCube), arXiv:0905.4705, 2009. Lake Louise Winter Institute 2009.
[Strahler:2009fb]
[6-125]
First results on the search for dark matter in the Sun with the ANTARES neutrino telescope, Gordon Lim (ANTARES), arXiv:0905.2316, 2009. ICRC09.
[Lim:2009jy]
[6-126]
Status and first results of the ANTARES neutrino telescope, G. Carminati (ANTARES), arXiv:0905.1373, 2009. Rencontres de Moriond 2009 EW.
[Carminati:2009gg]
[6-127]
ANTARES neutrino telescope: status, first results and sensitivity for the diffuse neutrino flux, M. Spurio et al. (ANTARES), Int. J. Mod. Phys. D18 (2009) 1615-1619, arXiv:0904.3836. 2nd Heidelberg Workshop on 'High-Energy Gamma-rays and Neutrinos from Extra-Galactic Sources', 13-16/01/2009.
[Spurio:2009vh]
[6-128]
Extended search for point sources of neutrinos below and above the horizon: Covering energies from TeV to EeV with IceCube, Robert Lauer et al. (IceCube), Int. J. Mod. Phys. D18 (2009) 1587-1590, arXiv:0903.5434. 2nd Heidelberg workshop 'High-Energy Gamma-rays and Neutrinos from Extra-Galactic Sources', 2009.
[Lauer:2009yv]
[6-129]
Muons in IceCube, P. Berghaus (IceCube), Nucl. Phys. Proc. Suppl. 196 (2009) 261-266, arXiv:0902.0021. XV International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI 2008), Paris, France, September 1-6, 2008.
[Berghaus:2009jb]
[6-130]
The hunt for cosmic neutrino sources with IceCube, Elisa Bernardini (IceCube), AIP Conf. Proc. 1112 (2009) 138-147, arXiv:0901.1049. Scineghe08, Padova, Italy (2008).
[Bernardini:2009pm]
[6-131]
Status and First Results of the Acoustic Detection Test System AMADEUS, Robert Lahmann (ANTARES), Nucl. Instrum. Meth. A604 (2009) S158-S163, arXiv:0901.0321. ARENA 2008.
[Lahmann:2009ub]
[6-132]
Neutrino Astronomy with the IceCube Observatory and Implications for Astroparticle Physics, Paolo Desiati et al. (IceCube), arXiv:0812.4004, 2008. Vulcano Workshop 2008, Vulcano (ME), Italy (2008).
[Desiati:2008cy]
[6-133]
Search for neutrino point sources with IceCube 22-strings, J. L. Bazo Alba (IceCube), Nucl. Phys. Proc. Suppl. 188 (2009) 267-269, arXiv:0811.4110. Neutrino Oscillation Workshop (NOW) 2008, Conca Specchiulla, Italy.
[Alba:2008if]
[6-134]
The Pierre Auger Observatory - a new stage in the study of the ultra-high energy cosmic rays, Serguei Vorobiov (Pierre Auger), arXiv:0811.0752, 2008. 15th International Seminar QUARKS-2008 on High-Energy Physics in Sergiev Posad, Russia, 23-29 May, 2008.
[Vorobiov:2008sc]
[6-135]
Results from Seven Years of AMANDA-II, Tyce DeYoung (IceCube), J. Phys. Conf. Ser. 136 (2008) 022046, arXiv:0810.4513. Neutrino 2008, Christchurch, New Zealand.
[DeYoung:2008nc]
[6-136]
Status report of the NuMoon experiment, O. Scholten et al., arXiv:0810.3426, 2008. Arena 2008, Rome, 25-27 June 2008.
[Scholten:2008ka]
[6-137]
Recent $\nu$s from IceCube, Spencer R. Klein, for the IceCube Collaboration (IceCube), J. Phys. Conf. Ser. 136 (2008) 022050, arXiv:0810.0573. Neutrino 2008.
[Klein:2008mw]
[6-138]
The NuMoon experiment: first results, S. Buitink et al., arXiv:0808.1878, 2008. XXth rencontres de Blois, 2008.
[Buitink:2008bc]
[6-139]
The Pierre Auger Observatory: Results on Ultra-High Energy Cosmic Rays, Johannes Bluemer (Pierre Auger), J. Phys.Soc.Jap. 78 (2009) 114, arXiv:0807.4871. International Workshop on Advances in Cosmic Ray Science, Waseda University, Shinjuku, Tokyo, Japan, March 2008.
[Bluemer:2008fm]
[6-140]
Latest Results from HiRes, D. R. Bergman et al. (HiRes), arXiv:0807.2814, 2008. 20th Recontres de Blois, Blois, France, May 2008.
[Bergman:2008at]
[6-141]
Neutrino Physics with the IceCube Detector, J. Kiryluk et al. (IceCube), arXiv:0806.1717, 2008. Lake Louise Winter Institute 2008, February 18-23 2008, Alberta, Canada.
[Kiryluk:2008dm]
[6-142]
The IceCube Cosmological Connection: Status and prospects of the polar neutrino observatory, M. Ribordy et al. (IceCube), arXiv:0805.3546, 2008. Rencontres de Moriond 2008.
[Ribordy:2008hc]
[6-143]
The ANTARES Neutrino Telescope: first results, Thierry Pradier, for the ANTARES Collaboration (ANTARES), arXiv:0805.2545, 2008. 43rd.
[Pradier:2008iv]
[6-144]
Particle astrophysics from the cold: Results and perspectives of IceCube, C. de los Heros (IceCube), arXiv:0802.0147, 2008. First AFI Symposium, From the Vacuum to the Universe, Innsbruck, 19-20/10/2007.
[Heros:2008ce]
[6-145]
Contributions to The 10th International Conference on Topics in Astroparticle and Underground Physics (TAUP) 2007, Sendai, Japan, Sep. 11-15, 2007, R. Abbasi et al. (IceCube), arXiv:0712.3524, 2007.
[Collaboration:2007rk]
[6-146]
The IceCube Collaboration: contributions to the 30th International Cosmic Ray Conference (ICRC 2007), M. Ackermann et al. (IceCube), arXiv:0711.0353, 2007.
[Ahrens:2007zzc]
[6-147]
A prototype device for acoustic neutrino detection in Lake Baikal, N.M. Budnev (BAIKAL), arXiv:0710.3113, 2007. 30th ICRC, Merida, Mexico, July 2007.
[Budnev:2007et]
[6-148]
The Baikal Neutrino Telescope: Selected Physics Results, R. Wischnewski (BAIKAL), Conf.Proc. C070703 (2008) 1265-1268, arXiv:0710.3064. 30th ICRC, Merida, Mexico, July 2007.
[Wischnewski:2007dq]
[6-149]
The Baikal Neutrino Telescope: Status and plans, R. Wischnewski (BAILKAL), arXiv:0710.3063, 2007. 30th ICRC, Merida, Mexico, July 2007.
[Wischnewski:2007dp]
[6-150]
The ANTARES detector: background sources and effects on detector performance, S. Escoffier (ANTARES), arXiv:0710.0527, 2007. 30th ICRC, Merida, Mexico, July 2007.
[Escoffier:2007pq]
[6-151]
The ANTARES neutrino telescope: a status report, A. Kouchner et al. (ANTARES), arXiv:0710.0272, 2007. ICRC 2007.
[Kouchner:2007hr]
[6-152]
Expected discovery potential and sensitivity of the ANTARES neutrino telescope to neutrino point-like sources, J.A. Aguilar (ANTARES), arXiv:0710.0252, 2007. ICRC 2007.
[AguilarSanchez:2007hh]
[6-153]
Neutrino Triggered Target of Opportunity (NToO) test run with AMANDA-II and MAGIC, M. Ackermann et al. (IceCube), arXiv:0709.2640, 2007. 30th ICRC, Merida, Mexico.
[Ackermann:2007cz]
[6-154]
Tau neutrino search with the MAGIC telescope, M. Gaug et al., arXiv:0709.1462, 2007. 30th ICRC, Merida Mexico, July 2007.
[Gaug:2007yv]
[6-155]
HiRes Estimates and Limits for Neutrino Fluxes at the Highest Energies, K. Martens (High Resolution Fly's Eye), arXiv:0707.4417, 2007. Lepton Photon 2007.
[Martens:2007ff]
[6-156]
Limits to the diffuse flux of UHE tau neutrinos at EeV energies from the Pierre Auger Observatory, O. Blanch Bigas, for the Pierre Auger Collaboration (Pierre Auger), arXiv:0706.1658, 2007. 30th International Cosmic Ray Conference, July 3 - 11, 2007, Merida, Yucatan, Mexico.
[BlanchBigas:2007tp]
[6-157]
First Results from AMANDA using the TWR System, Andrea Silvestri et al. (IceCube), arXiv:astro-ph/0701319, 2007. International School of Cosmic Ray Astrophysics, 15th Course: 'Astrophysics at Ultra-high Energies', Erice, Italy, 20-27 June 2006.
[Silvestri:2007hi]
[6-158]
Icecube, the World's Largest Dark Matter Detector, Hagar Landsman, arXiv:astro-ph/0612239, 2006. IDM 2006.
[Landsman:2006mc]
[6-159]
Neutrino astronomy with IceCube and AMANDA, Gary C. Hill et al. (IceCube), Nucl. Phys. Proc. Suppl. 221 (2011) 103-109, arXiv:astro-ph/0611773. Neutrino 2006, Santa Fe, June 2006.
[Hill:2006mk]
[6-160]
IceCube: Performance, Status, and Future, Carsten Rott et al. (IceCube), Nucl. Phys. B, Proc. Suppl. 175-176 (2008) 409-414, arXiv:astro-ph/0611726. XIV International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI 2006) in Weihai, China, August 15-22, 2006.
[Rott:2006jm]
[6-161]
IceCube : Toward a km^3 Neutrino Telescope, Paolo Desiati, IceCube (IceCube), arXiv:astro-ph/0611603, 2006. ECRS 2006, Lisbon, Portugal (2006).
[Desiati:2006qc]
[6-162]
Radiowave Neutrino Detection, Dave Besson, J. Phys. Conf. Ser. 81 (2007) 012026, arXiv:astro-ph/0611365. ARENA06 Conference Summary Talk, Northumbria, UK (July 1, 2006).
[Besson:2006if]
[6-163]
The BAIKAL Neutrino Experiment: From NT200 to NT200+, R. Wischnewski (BAIKAL), arXiv:astro-ph/0609743, 2006. 2nd Workshop on Very Large Volume Neutrino Telescopes (VLVNT2), Catania, Italy, 8.-11. November 2005.
[Wischnewski:2006vr]
[6-164]
BAIKAL Experiment: main results obtained with the neutrino telescope NT200, Zh.-A. Dzhilkibae, Nucl. Instrum. Meth. A567 (2006) 423-427, arXiv:astro-ph/0609711. 2nd VLVNT Workshop on Very Large Volume Neutrino Telescope (VLVNT2), Catania, Italy, 8-11 Nov. 2005.
[Aynutdinova:2006rg]
[6-165]
Status of IceCube in 2005, Albrecht Karle et al. (IceCube), Nucl. Instrum. Meth. A567 (2006) 438-443, arXiv:astro-ph/0608139. VLVnT2, Oct. 2005, Catania, Italy.
[Karle:2006ef]
[6-166]
LVD highlights, Marco Selvi et al. (LVD), arXiv:hep-ex/0608061, 2006. Vulcano Workshop 2006 'Frontier Objects in Astrophysics and Particle Physics'.
[Selvi:2006bi]
[6-167]
Neutrino Astronomy at the South Pole, P.A. Toale et al. (IceCube), arXiv:astro-ph/0607003, 2006. 2006 Rencontres de Moriond, Electroweak Interactions.
[Toale:2006ti]
[6-168]
Neutrino detectors in ice: Results and perspectives, Adam Bouchta (IceCube), arXiv:astro-ph/0606235, 2006. 20th Rencontres de Physique de La Vallee d'Aoste: Results and Perspective in Particle Physics, La Thuile, Aosta Valley, Italy, 5-12 Mar 2006.
[Bouchta:2006rt]
[6-169]
From AMANDA to IceCube, Per Olof Hulth et al. (IceCube), arXiv:astro-ph/0604374, 2006. NO-VE 2006, Neutrino Oscillations in Venice, Italy, February 7-10, 2006.
[Hulth:2006ny]
[6-170]
Status report of the ANTARES experiment, Y. Becherini (ANTARES), J. Phys. Conf. Ser. 39 (2006) 444-446, arXiv:astro-ph/0603570. TAUP 2005, Zaragoza, Spain.
[Becherini:2005rv]
[6-171]
Neutrino Astronomy at the South Pole: latest Results from AMANDA-II, Paolo Desiati, IceCube (IceCube), AIP Conf. Proc. 842 (2006) 983-985, arXiv:astro-ph/0601571. PANIC05, Oct. 24-28, 2005, Santa Fe, NM.
[Desiati:2006xt]
[6-172]
First Results from IceCube, Spencer R. Klein et al. (IceCube), AIP Conf. Proc. 842 (2006) 971-976, arXiv:astro-ph/0601269. PANIC05, Oct. 24-28, 2005, Santa Fe, NM.
[Klein:2006in]
[6-173]
Neutrino-Induced Cascades From GRBs With AMANDA-II, B. Hughey, I. Taboada et al. (IceCube), arXiv:astro-ph/0509570, 2005. 29th ICRC, Pune, India.
[Hughey:2005ye]
[6-174]
A Search for High-energy Muon Neutrinos from the Galactic Plane with AMANDA-II, J. L. Kelley et al. (IceCube), arXiv:astro-ph/0509546, 2005. 29th ICRC, Pune, India.
[Kelley:2005py]
[6-175]
The IceCube collaboration: Contributions to the 29th international cosmic ray conference (ICRC 2005), Pune, India, Aug. 2005, IceCube (IceCube), arXiv:astro-ph/0509330, 2005.
[Besson:2005qs]
[6-176]
From AMANDA to IceCube, Mathieu Ribordy (IceCube), Phys. Atom. Nucl. 69 (2006) 1899-1907, arXiv:astro-ph/0509322. 5th International Conference on Non-accelerator New Physics (NANP 05), Dubna, Russia, 20-25 June 2005.
[Ribordy:2005fi]
[6-177]
Search for a diffuse flux of high-energy neutrinos with the NT200 neutrino telescope, R. Wischnewski et al. (BAIKAL), arXiv:astro-ph/0507712, 2005. 29th International Cosmic Ray Conference (ICRC) 2005, Pune, India.
[Aynutdinov:2005sf]
[6-178]
The Baikal neutrino experiment: from NT200 to NT200+, L. Kuzmichev et al. (BAIKAL), Nucl. Instrum. Meth. A567 (2006) 433-437, arXiv:astro-ph/0507709. 29th International Cosmic Ray Conference (ICRC) 2005, Pune, India.
[Aynutdinov:2005sc]
[6-179]
The Baikal Neutrino Telescope - Results and Plans, R. Wischnewski et al. (BAIKAL), Int. J. Mod. Phys. A20 (2005) 6932, arXiv:astro-ph/0507698. 19th European Cosmic Ray Symposium (ECRS) 2004, Florence, Italy.
[Wischnewski:2005rr]
[6-180]
High-Energy Neutrino Astronomy with the Super-Kamiokande Detector, A. Habig (Super-Kamiokande), arXiv:astro-ph/0507051, 2005. 29th ICRC, Pune, India.
[Habig:2005fc]
[6-181]
Recent Results from the AMANDA-II neutrino telescope, Andreas Gross (AMANDA), arXiv:astro-ph/0505278, 2005. 40th Rencontres de Moriond on Electroweak Interactions and Unified Theories, La Thuile, Italy, 5-12 Mar 2005.
[Gross:2005ec]
[6-182]
New results from the Antarctic Muon And Neutrino Detector Array, Kurt Woschnagg et al. (AMANDA), Nucl. Phys. Proc. Suppl. 143 (2005) 343, arXiv:astro-ph/0409423. XXIst International Conference on Neutrino Physics and Astrophysics, Paris, June 14-19, 2004.
[Ahrens:2004qq]
[6-183]
AMANDA: Status and latest Results, Mathieu Ribordy et al. (AMANDA), arXiv:hep-ex/0405035, 2004. 39th Rencontres de Moriond on Electroweak Interactions and Unified Theories, LaThuile, Italy, 21-28 Mar 2004.
[Ribordy:2004um]
[6-184]
The Baikal Neutrino Telescope: Results, Plans, Lessons, Christian Spiering (BAIKAL), arXiv:astro-ph/0404096, 2004. VLVNT Workshop, Oct 5-8, Amsterdam.
[Spiering:2004dt]
[6-185]
Upward showering muons in Super-Kamiokande, A. Habig (Super-Kamiokande), 2004. HEAD 2004. http://neutrino.d.umn.edu/~habig/sk-showering.pdf.
[Habig-HEAD2004]
[6-186]
High-Energy Neutrino Astronomy: from AMANDA to Icecube, F. Halzen, IAU Symp. 2 (2003) 44, arXiv:astro-ph/0311004. IAU XXV General Assembly, Sydney, Australia, July 2003.
[Halzen:2003ve]
[6-187]
Neutrino Astronomy at the South Pole: Status of the AMANDA Experiment, Paolo Desiati (AMANDA), arXiv:astro-ph/0306536, 2003. Les Rencontres de Physique de la Vallee d'Aoste, March 9-15 2003, La Thuile (AO), Italy.
[Desiati:2003qj]
[6-188]
Recent Results from the RICE Experiment at the South Pole, I. Kravchenko et al. (RICE), Nucl. Instrum. Meth. A662 (2012) S42-S45, arXiv:astro-ph/0306408.
[Kravchenko:2003tc]
[6-189]
Recent Results from the AMANDA Experiment, P. Niessen (AMANDA), arXiv:astro-ph/0306209, 2003. 38th Rencontres of Moriond (Electroweak Interactions and Unified Theories) - 2003.
[Niessen:2003xi]
[6-190]
Results from the BAIKAL neutrino telescope, R. Wischnewski (BAIKAL), arXiv:astro-ph/0305302, 2003. 28th International Cosmic Ray Conference, Tsukuda, Japan, July 31 - August 7, 2003.
[Ayutdinov:2003eh]
[6-191]
Status of the BAIKAL neutrino project, G.V. Domogatskii (BAIKAL), arXiv:astro-ph/0211571, 2002. XXth International Conference on Neutrino Physics and Astrophysics (Neutrino 2002), Munich, Germany, May 25-30, 2002.
[Balkanov:2002fe]
[6-192]
Neutrino Physics and Astrophysics with the MACRO Experiment at the Gran Sasso Lab, G. Giacomelli (MACRO), Braz. J. Phys. 33 (2003) 211, arXiv:hep-ex/0210006. 25th Meeting of the Nuclear Division of the Brasilian Physical Society, S. Pedro, Brasil, 1-4 September 2002.
[Giacomelli:2002nn]
[6-193]
Auger: A large air shower array and neutrino telescope, A. Letessier-Selvon (Auger), Nucl. Phys. Proc. Suppl. 118 (2003) 399, arXiv:astro-ph/0208526. Neutrino 2002 conference.
[LetessierSelvon:2002fh]
[6-194]
ANTARES sensitivity to diffuse high energy neutrino fluxes, A. Romeyer (ANTARES), arXiv:hep-ph/0205285, 2002. 37th Rencontres de Moriond on Electroweak Interactions and Unified Theories, Les Arcs, France, 9-16 Mar 2002.
[Romeyer:2002ur]
[6-195]
The AMANDA-II Neutrino-Telescope, R. Wischnewski (AMANDA), Nucl. Phys. Proc. Suppl. 110 (2002) 510-512, arXiv:astro-ph/0204268. TAUP2001, LNGS/Italy, September 2001.
[Wischnewski:2002wy]

7 - Experiment - Slides

[7-1]
Workshop Summary, A. Bettini, 2009. International Workshop on Very Large Volume Neutrino Telescopes,13-15 October, Athens, Greece. http://www.pd.infn.it/~bettini/Summary.ppt.
[Bettini:VLVNT09]

8 - Phenomenology

[8-1]
Neutrino emission from magnetized micro-quasar jets, Theodoros Smponias, Odysseas Kosmas, arXiv:1706.03087, 2017.
[Smponias:2017tyl]
[8-2]
Prediction and detection potential of fusion neutrinos from nearby stars, S. Arceo Diaz, K. Zuber, arXiv:1706.02102, 2017.
[ArceoDiaz:2017ukr]
[8-3]
Prompt Neutrino Emission of Gamma-Ray Bursts in the Dissipative Photospheric Scenario Revisited: Possible Contributions from Cocoons, Di Xiao, Zi-Gao Dai, Peter Meszaros, arXiv:1706.01293, 2017.
[Xiao:2017blv]
[8-4]
Supernovae in compact star clusters as sources of high-energy cosmic rays and neutrinos, A. M. Bykov, D. C. Ellison, P. E. Gladilin, S. M. Osipov, arXiv:1706.01135, 2017.
[Bykov:2017fik]
[8-5]
High-energy cosmic ray nuclei from tidal disruption events: origin, survival, and implications, B. Theodore Zhang, Kohta Murase, Foteini Oikonomou, Zhuo Li, arXiv:1706.00391, 2017.
[Zhang:2017hom]
[8-6]
Cosmic-Ray and Neutrino Emission from Gamma-Ray Bursts with a Nuclear Cascade, Daniel Biehl, Denise Boncioli, Anatoli Fedynitch, Walter Winter, arXiv:1705.08909, 2017.
[Biehl:2017zlw]
[8-7]
Identification of Gamma-Rays and Neutrinos from the Cygnus-X Complex Considering Radio Gamma Correlation, Mehmet Guenduez, Julia Becker Tjus, Bjorn Eichmann, Francis Halzen, arXiv:1705.08337, 2017.
[Guenduez:2017qrw]
[8-8]
IceCube constraints on the Fermi Bubbles, Nimrod Sherf, Uri Keshet, Ilya Gurwich, arXiv:1705.06665, 2017.
[Sherf:2017vmr]
[8-9]
Detecting High-Energy Neutrinos from the Next Galactic Supernova, Kohta Murase, arXiv:1705.04750, 2017.
[Murase:2017pfe]
[8-10]
High-energy Neutrinos from Multi-body Decaying Dark Matter, Nagisa Hiroshima, Ryuichiro Kitano, Kazunori Kohri, Kohta Murase, arXiv:1705.04419, 2017.
[Hiroshima:2017hmy]
[8-11]
Enhanced stellar neutrino emissivities in annihilating Coy Dark Matter, M. Cermeno, M. A. Perez-Garcia, R. A. Lineros, arXiv:1705.03012, 2017.
[Cermeno:2017ejm]
[8-12]
Diffuse neutrinos from luminous and dark supernovae: prospects for upcoming detectors at the O(10) kt scale, Alankrita Priya, Cecilia Lunardini, arXiv:1705.02122, 2017.
[Priya:2017bmm]
[8-13]
A minimal model for extragalactic cosmic rays and neutrinos, M. Kachelriess, O. Kalashev, S. Ostapchenko, D.V. Semikoz, arXiv:1704.06893, 2017.
[Kachelriess:2017tvs]
[8-14]
A 'nu' look at gravitational waves: The black hole birth rate from neutrinos combined with the merger rate from LIGO, Jonathan H. Davis, Malcolm Fairbairn, arXiv:1704.05073, 2017.
[Davis:2017mbq]
[8-15]
Constraining the Flavor Structure of Lorentz Violation Hamiltonian with the Measurement of Astrophysical Neutrino Flavor Compositions, Kwang-Chang Lai, Wei-Hao Lai, Guey-Lin Lin, arXiv:1704.04027, 2017.
[Lai:2017bbl]
[8-16]
IceCube and HAWC constraints on very-high-energy emission from the Fermi bubbles, Ke Fang, Meng Su, Tim Linden, Kohta Murase, arXiv:1704.03869, 2017.
[Fang:2017vlg]
[8-17]
Peeking into the Origins of IceCube Neutrinos: I. Buried Transient TeV Miniburst Rates, Matthew D. Kistler, Hasan Yuksel, arXiv:1704.00072, 2017.
[Kistler:2017lep]
[8-18]
Tau energy loss and ultrahigh energy skimming tau neutrinos, Yu Seon Jeong, Minh Vu Luu, Mary Hall Reno, Ina Sarcevic, arXiv:1704.00050, 2017.
[Jeong:2017mzv]
[8-19]
Linking High-Energy Cosmic Particles by Black-Hole Jets Embedded in Large-Scale Structures, Ke Fang, Kohta Murase, arXiv:1704.00015, 2017.
[Fang:2017zjf]
[8-20]
Origin of the high-energy neutrino flux at IceCube, J.M. Carceller, J.I. Illana, M. Masip, D. Meloni, arXiv:1703.10786, 2017.
[1703.10786]
[8-21]
Indirect searches of Galactic diffuse dark matter in INO-MagICAL detector, Amina Khatun, Ranjan Laha, Sanjib Kumar Agarwalla, arXiv:1703.10221, 2017.
[Khatun:2017adx]
[8-22]
The Galactic Contribution to IceCube's Astrophysical Neutrino Flux, Peter B. Denton, Danny Marfatia, Thomas J. Weiler, arXiv:1703.09721, 2017.
[Denton:2017csz]
[8-23]
Probing the cosmic ray mass composition in the knee region through TeV secondary particle fluxes from solar surroundings, Prabir Banik, Biplab Bijay, Samir K. Sarkar, Arunava Bhadra, Phys.Rev. D95 (2017) 063014, arXiv:1703.05083.
[Banik:2017hms]
[8-24]
Probing the Extragalactic Cosmic Rays origin with gamma-ray and neutrino backgrounds, Noemie Globus, Denis Allard, Etienne Parizot, Tsvi Piran, Astrophys.J. 839 (2017) L22, arXiv:1703.04158.
[Globus:2017ehu]
[8-25]
The Gamma-Ray Puzzle in Cygnus X: Implications for High-Energy Neutrinos, Tova M. Yoast-Hull, John S. Gallagher, Francis Halzen, Ali Kheirandish, Ellen G. Zweibel, arXiv:1703.02590, 2017.
[Yoast-Hull:2017gaj]
[8-26]
Imaging Galactic Dark Matter with High-Energy Cosmic Neutrinos, Carlos A. Arguelles, Ali Kheirandish, Aaron C. Vincent, arXiv:1703.00451, 2017.
[Arguelles:2017atb]
[8-27]
Can BL Lac emission explain the neutrinos above 0.2 PeV?, Andrea Palladino, Francesco Vissani, arXiv:1702.08779, 2017.
[Palladino:2017aew]
[8-28]
Neutrino Production in Electromagnetic Cascades: An extra component of cosmogenic neutrino at ultrahigh energies, Kai Wang, Ruo-Yu Liu, Zhuo Li, Zi-Gao Dai, Phys.Rev. D95 (2017) 063010, arXiv:1702.07566.
[Wang:2017phf]
[8-29]
NU-SETI: A Proposal to Detect Extra-Terrestrial Signals Carried by Neutrinos, Ephraim Fischbach, John T. Gruenwald, arXiv:1702.03341, 2017.
[1702.03341]
[8-30]
Dark matter in the Sun: scattering off electrons vs nucleons, Raghuveer Garani, Sergio Palomares-Ruiz, JCAP 1705 (2017) 007, arXiv:1702.02768.
[Garani:2017jcj]
[8-31]
Hellenic Open University Reconstruction \& Simulation (HOURS) software package: User Guide \& short reference of Event Generation, Cherenkov photon production and Optical Module simulation, A. G. Tsirigotis, G. Bourlis, A. Leisos, S. E. Tzamarias, arXiv:1702.00945, 2017.
[Tsirigotis:2017dnq]
[8-32]
Can we observe neutrino flares in coincidence with explosive transients?, Claire Guepin, Kumiko Kotera, arXiv:1701.07038, 2017.
[Guepin:2017dfi]
[8-33]
Modeling the Spectral Energy Distribution of the radio galaxy IC310, N. Fraija, A. Marinelli, A. Galvan-Gamez, E. Aguilar-Ruiz, Astropart.Phys. 89 (2017) 14-22, arXiv:1701.06173.
[Fraija:2017dpo]
[8-34]
How bright can the brightest neutrino source be?, Shin'ichiro Ando, Michael R. Feyereisen, Mattia Fornasa, Phys.Rev. D95 (2017) 103003, arXiv:1701.02165.
[Ando:2017xcb]
[8-35]
On the non-detection of Glashow resonance in IceCube, Sarira Sahu, Bing Zhang, arXiv:1612.09043, 2016.
[Sahu:2016qet]
[8-36]
Constraining Dark Matter Neutrino Interaction with High Energy Neutrinos, Carlos Arguelles, Ali Kheirandish, Aaron C. Vincent, PoS ICHEP2016 (2016) 512, arXiv:1612.08472.
[Arguelles:2016zvm]
[8-37]
Search for Neutrino Generated Air Shower Candidates with Energy More than 5$\cdot$10$^{18}$ eV and Zenith Angle $\theta$ $\geq$ 50$^\circ$, S. Knurenko, I. Petrov, A. Sabourov, Z. Petrov, arXiv:1612.07892, 2016.
[Knurenko:2016kft]
[8-38]
Detection prospects for high energy neutrino sources from the anisotropic matter distribution in the local universe, Philipp Mertsch, Mohamed Rameez, Irene Tamborra, JCAP 1703 (2017) 011, arXiv:1612.07311.
[Mertsch:2016hcd]
[8-39]
Dark Matter 'Collider' from Inelastic Boosted Dark Matter, Doojin Kim, Jong-Chul Park, Seodong Shin, arXiv:1612.06867, 2016.
[Kim:2016zjx]
[8-40]
Gamma-ray Constraints on Decaying Dark Matter and Implications for IceCube, Timothy Cohen, Kohta Murase, Nicholas L. Rodd, Benjamin R. Safdi, Yotam Soreq, arXiv:1612.05638, 2016.
[Cohen:2016uyg]
[8-41]
Using Galaxy Formation Simulations to optimise LIGO Follow-Up Observations, Elisa Antolini, Ilaria Caiazzo, Romeel Dave, Jeremy S. Heyl, Mon.Not.Roy.Astron.Soc. 466 (2017) 2212, arXiv:1612.04412.
[Antolini:2016die]
[8-42]
Star-Forming Galaxies Significantly Contribute to the Isotropic Gamma-Ray Background, Tim Linden, arXiv:1612.03175, 2016.
[Linden:2016fdd]
[8-43]
High Energy Neutrinos from the Tidal Disruption of Stars, Cecilia Lunardini, Walter Winter, Phys.Rev. D95 (2017) 123001, arXiv:1612.03160.
[Lunardini:2016xwi]
[8-44]
Indirect Signals from Solar Dark Matter Annihilation to Long-lived Right-handed Neutrinos, Rouzbeh Allahverdi, Yu Gao, Bradley Knockel, Shashank Shalgar, Phys.Rev. D95 (2017) 075001, arXiv:1612.03110.
[Allahverdi:2016fvl]
[8-45]
Boosted Dark Matter and its implications for the features in IceCube HESE data, Atri Bhattacharya, Raj Gandhi, Aritra Gupta, Satyanarayan Mukhopadhyay, JCAP 1705 (2017) 002, arXiv:1612.02834.
[Bhattacharya:2016tma]
[8-46]
Constraints and prospects on GW and neutrino emissions using GW150914, Krijn D. de Vries, Gwenhael de Wasseige, Jean-Marie Frere, Matthias Vereecken, arXiv:1612.02648, 2016.
[deVries:2016ljw]
[8-47]
Unblind the Dark Matter Blind Spots, Tao Han, Felix Kling, Shufang Su, Yongcheng Wu, JHEP 1702 (2017) 057, arXiv:1612.02387.
[Han:2016qtc]
[8-48]
Multi-Messenger Time Delays from Lensed Gravitational Waves, Tessa Baker, Mark Trodden, Phys.Rev. D95 (2017) 063512, arXiv:1612.02004.
[Baker:2016reh]
[8-49]
High-energy neutrino flashes from x-ray bright and dark tidal disruptions events, Nicholas Senno, Kohta Murase, Peter Meszaros, Astrophys.J. 838 (2017) 3, arXiv:1612.00918.
[Senno:2016bso]
[8-50]
Can tidal disruption events produce the IceCube neutrinos?, Lixin Dai, Ke Fang, Mon.Not.Roy.Astron.Soc. 469 (2017) 1354, arXiv:1612.00011.
[Dai:2016gtz]
[8-51]
Boosted Dark Matter at the Deep Underground Neutrino Experiment, Haider Alhazmi, Kyoungchul Kong, Gopolang Mohlabeng, Jong-Chul Park, arXiv:1611.09866, 2016.
[1611.09866]
[8-52]
A tale of dark matter capture, sub-dominant WIMPs, and neutrino observatories, Sebastian Baum, Luca Visinelli, Katherine Freese, Patrick Stengel, Phys.Rev. D95 (2017) 043007, arXiv:1611.09665.
[Baum:2016oow]
[8-53]
Hadronically decaying heavy dark matter and high-energy neutrino limits, M.Yu. Kuznetsov, arXiv:1611.08684, 2016.
[Kuznetsov:2016fjt]
[8-54]
Astrophysical Neutrino Production Diagnostics with the Glashow Resonance, Daniel Biehl, Anatoli Fedynitch, Andrea Palladino, Tom J. Weiler, Walter Winter, JCAP 1701 (2017) 033, arXiv:1611.07983.
[Biehl:2016psj]
[8-55]
Evidence for a break in the spectrum of astrophysical neutrinos, Luis A. Anchordoqui et al., Phys.Rev. D95 (2017) 083009, arXiv:1611.07905.
[Anchordoqui:2016ewn]
[8-56]
Ultra high energy cosmic rays from non-relativistic quasar outflows, Xiawei Wang, Abraham Loeb, Phys.Rev. D95 (2017) 063007, arXiv:1611.07616.
[Wang:2016oid]
[8-57]
Strong constraint on hadronic models of blazar activity from Fermi and IceCube stacking analysis, A. Neronov, D.V. Semikoz, K. Ptitsyna, arXiv:1611.06338, 2016.
[Neronov:2016ksj]
[8-58]
Connecting blazars with ultra high energy cosmic rays and astrophysical neutrinos, Elisa Resconi, Stefan Coenders, Paolo Padovani, Paolo Giommi, Lorenzo Caccianiga, Mon.Not.Roy.Astron.Soc. 468 (2017) 597, arXiv:1611.06022.
[Resconi:2016ggj]
[8-59]
Sterile Neutrinos and Flavor Ratios in IceCube, Vedran Brdar, Joachim Kopp, Xiao-Ping Wang, JCAP 1701 (2017) 026, arXiv:1611.04598.
[Brdar:2016thq]
[8-60]
Prospects of Establishing the Origin of Cosmic Neutrinos using Source Catalogs, I. Bartos, M. Ahrens, C. Finley, S. Marka, arXiv:1611.03861, 2016.
[Bartos:2016wud]
[8-61]
Search for GeV gamma-ray flares associated with IceCube track-like neutrinos with Fermi Large Area Telescope, Fang-Kun Peng, Xiang-Yu Wang, Astrophys.J. 835 (2017) 269, arXiv:1611.03182.
[Peng:2016tfi]
[8-62]
A search for neutrinos from fast radio bursts with IceCube, Samuel Fahey, Ali Kheirandish, Justin Vandenbroucke, Donglian Xu, arXiv:1611.03062, 2016.
[Fahey:2016czk]
[8-63]
PeV Neutrino Events at IceCube from Single Top-Quark Production, Vernon Barge, Edward Basso, Yu Gao, Wai-Yee Keung, Phys.Rev. D95 (2017) 093002, arXiv:1611.00773.
[Barge:2016uzn]
[8-64]
UHECR narrow clustering correlating IceCube through-going muons, Daniele Fargion, Pietro Oliva, Pier Giorgio De Sanctis Lucentini, Daniele D Armiento, Paolo Paggi, arXiv:1611.00079, 2016.
[Fargion:2016cep]
[8-65]
Isospin-violating dark matter in the light of recent data, Carlos E. Yaguna, Phys.Rev. D95 (2017) 055015, arXiv:1610.08683.
[Yaguna:2016bga]
[8-66]
High energy neutrinos produced in the accretion disks by neutrons from nuclei disintegrated in the AGN jets, W. Bednarek, Astrophys.J. 833 (2016) 279, arXiv:1610.08635.
[Bednarek:2016pbf]
[8-67]
On the IceCube spectral anomaly, Andrea Palladino, Maurizio Spurio, Francesco Vissani, JCAP 1612 (2016) 045, arXiv:1610.07015.
[Palladino:2016xsy]
[8-68]
R-modes and neutron star recycling scenario, Mikhail E. Gusakov, Andrey I. Chugunov, Elena M. Kantor, arXiv:1610.06380, 2016.
[Gusakov:2016drh]
[8-69]
On the direct correlation between gamma-rays and PeV neutrinos from blazars, Shan Gao, Martin Pohl, Walter Winter, arXiv:1610.05306, 2016.
[Gao:2016uld]
[8-70]
Capability of the HAWC gamma-ray observatory for the indirect detection of ultra-high energy neutrinos, Hermes Leon Vargas, Andres Sandoval, Ernesto Belmont, Ruben Alfaro, arXiv:1610.04820, 2016.
[Vargas:2016hcp]
[8-71]
Dark Matter interpretation of low energy IceCube MESE excess, M. Chianese, G. Miele, S. Morisi, JCAP 1701 (2017) 007, arXiv:1610.04612.
[Chianese:2016kpu]
[8-72]
Boosted Dark Matter at Neutrino Experiments, Lina Necib, Jarrett Moon, Taritree Wongjirad, Janet M. Conrad, Phys.Rev. D95 (2017) 075018, arXiv:1610.03486.
[Necib:2016aez]
[8-73]
Diffuse flux of galactic neutrinos and gamma rays, J.M. Carceller, M. Masip, JCAP 1703 (2017) 013, arXiv:1610.02552.
[Carceller:2016upo]
[8-74]
Testing decay of astrophysical neutrinos with incomplete information, Mauricio Bustamante, John F. Beacom, Kohta Murase, Phys.Rev. D95 (2017) 063013, arXiv:1610.02096.
[Bustamante:2016ciw]
[8-75]
One-point fluctuation analysis of the high-energy neutrino sky, Michael R. Feyereisen, Irene Tamborra, Shin'ichiro Ando, JCAP 1703 (2017) 057, arXiv:1610.01607.
[Feyereisen:2016fzb]
[8-76]
Galactic outflow driven by the active nucleus and the origin of the gamma-ray emission in NGC 1068, A. Lamastra et al., arXiv:1609.09664, 2016.
[1609.09664]
[8-77]
Identifying Ultrahigh-Energy Cosmic-Ray Accelerators with Future Ultrahigh-Energy Neutrino Detectors, Ke Fang, Kumiko Kotera, M. Coleman Miller, Kohta Murase, Foteini Oikonomou, JCAP 1612 (2016) 017, arXiv:1609.08027.
[Fang:2016hop]
[8-78]
Effects of Majorana Physics on the UHE $\nu_{\tau}$ Flux Traversing the Earth, Lucia Duarte, Ismael Romero, Gabriel Zapata, Oscar A. Sampayo, Eur.Phys.J. C77 (2017) 68, arXiv:1609.07661.
[Duarte:2016smd]
[8-79]
Neutrinos from Type Ia Supernovae: The Gravitationally Confined Detonation Scenario, Warren P. Wright et al., Phys.Rev. D95 (2017) 043006, arXiv:1609.07403.
[Wright:2016gar]
[8-80]
2WHSP: A catalog of HE and VHE gamma-ray blazars and blazar candidates, Yu-Ling Chang, Bruno Arsioli, Paolo Giommi, Paolo Padovani, Astron.Astrophys. 598 (2017) A17, arXiv:1609.05808.
[Chang:2016mqv]
[8-81]
Directional Searches at DUNE for Sub-GeV Monoenergetic Neutrinos Arising from Dark Matter Annihilation in the Sun, Carsten Rott, Seongjin In, Jason Kumar, David Yaylali, JCAP 1701 (2017) 016, arXiv:1609.04876.
[Rott:2016mzs]
[8-82]
WIMP capture by the Sun in the effective theory of dark matter self-interactions, Riccardo Catena, Axel Widmark, JCAP 1612 (2016) 016, arXiv:1609.04825.
[Catena:2016ckl]
[8-83]
Prospects for Detecting Galactic Sources of Cosmic Neutrinos with IceCube: An Update, Francis Halzen, Ali Kheirandish, Viviana Niro, Astropart.Phys. 86 (2017) 46-56, arXiv:1609.03072.
[Halzen:2016seh]
[8-84]
Search for Blazar Flux-Correlated TeV Neutrinos in IceCube 40-String Data, C. F. Turley et al., arXiv:1608.08983, 2016.
[1608.08983]
[8-85]
High-Energy Neutrino Emission from White Dwarf Mergers, Di Xiao, Peter Meszaros, Kohta Murase, Zi-gao Dai, Astrophys.J. 832 (2016) 20, arXiv:1608.08150.
[Xiao:2016man]
[8-86]
Fluxes of diffuse gamma rays and neutrinos from cosmic-ray interactions with circumgalactic gas, Oleg Kalashev, Sergey Troitsky, Phys. Rev. D94 (2016) 063013, arXiv:1608.07421.
[Kalashev:2016euk]
[8-87]
A roadmap for searching cosmic rays correlated with the extraterrestrial neutrinos seen at IceCube, J.A. Carpio, A.M. Gago, arXiv:1608.05099, 2016.
[Carpio:2016wec]
[8-88]
Spectra and rates of bremsstrahlung neutrino emission in stars, Gang Guo, Yong-Zhong Qian, Phys. Rev. D94 (2016) 043005, arXiv:1608.02852.
[Guo:2016vls]
[8-89]
Obscured flat spectrum radio AGN as sources of high-energy neutrinos, G. Maggi et al., Phys. Rev. D94 (2016) 103007, arXiv:1608.00028.
[Maggi:2016bbi]
[8-90]
New Limits on Thermally annihilating Dark Matter from Neutrino Telescopes, Jose Lopes, Ilidio Lopes, Astrophys.J. 827 (2016) 130, arXiv:1607.08672.
[Lopes:2016ezf]
[8-91]
The radiative efficiency of relativistic jet and wind: A case study of GRB 070110, Shuang Du, Hou-Jun Lu, Shu-Qing Zhong, En-Wei Liang, Mon.Not.Roy.Astron.Soc. 462 (2016) 2990-2994, arXiv:1607.08324.
[Du:2016ocx]
[8-92]
High-energy emitting BL Lacs and high-energy neutrinos - Prospects for the direct association with IceCube and KM3NeT, Chiara Righi, Fabrizio Tavecchio, Dafne Guetta, Astron.Astrophys. 598 (2017) A36, arXiv:1607.08061.
[Righi:2016kio]
[8-93]
Cumulative neutrino background from quasar-driven outflows, Xiawei Wang, Abraham Loeb, JCAP 1612 (2016) 012, arXiv:1607.06476.
[Wang:2016vbf]
[8-94]
A Central Compact Object in Kes 79: The hypercritical regime and neutrino expectation, Cristian G. Bernal, Nissim Fraija, Mon.Not.Roy.Astron.Soc. 462 (2016) 3646-3659, arXiv:1607.05652.
[Bernal:2016dsy]
[8-95]
Neutrino, $\gamma$-ray and cosmic ray fluxes from the core of the closest radio galaxies, Nissim Fraija, Antonio Marinelli, Astrophys.J. 830 (2016) 81, arXiv:1607.04633.
[Fraija:2016yeh]
[8-96]
A flat spectrum candidate for a track-type high energy neutrino emission event, the case of blazar PKS 0723-008, E. Kun, P. L. Biermann, L. A. Gergely, arXiv:1607.04041, 2016.
[Kun:2016bnk]
[8-97]
Star-forming galaxies as the origin of IceCube neutrinos: Reconciliation with Fermi-LAT gamma rays, Sovan Chakraborty, Ignacio Izaguirre, arXiv:1607.03361, 2016.
[Chakraborty:2016mvc]
[8-98]
Cosmic ray loading and PeV neutrino production in blazars, B. Theodore Zhang, Zhuo Li, JCAP 1703 (2017) 024, arXiv:1607.02211.
[Zhang:2016vbb]
[8-99]
Constraining High-Energy Cosmic Neutrino Sources: Implications and Prospects, Kohta Murase, Eli Waxman, Phys. Rev. D94 (2016) 103006, arXiv:1607.01601.
[Murase:2016gly]
[8-100]
Ultra High-Energy Cosmic Ray Production by Turbulence in Gamma-Ray Burst Jets and Cosmogenic Neutrinos, Katsuaki Asano, Peter Meszaros, Phys. Rev. D94 (2016) 023005, arXiv:1607.00732.
[Asano:2016scy]
[8-101]
High-energy neutrinos from sources in clusters of galaxies, Ke Fang, Angela V. Olinto, Astrophys.J. 828 (2016) 37, arXiv:1607.00380.
[Fang:2016amf]
[8-102]
Implications of gamma-ray observations on proton models of UHECR, A.D. Supanitsky, Phys. Rev. D94 (2016) 063002, arXiv:1607.00290.
[Supanitsky:2016gke]
[8-103]
Cascade photons as test of protons in UHECR, V. Berezinsky, A. Gazizov, O. Kalashev, Astropart.Phys. 84 (2016) 52-61, arXiv:1606.09293.
[Berezinsky:2016jys]
[8-104]
Can transition radiation explain the ANITA event 3985267?, Pavel Motloch, Jaime Alvarez-Muniz, Paolo Privitera, Enrique Zas, Phys.Rev. D95 (2017) 043004, arXiv:1606.07059.
[Motloch:2016yic]
[8-105]
Echo Technique to Distinguish Flavors of Astrophysical Neutrinos, Shirley Weishi Li, Mauricio Bustamante, John F. Beacom, arXiv:1606.06290, 2016.
[Li:2016kra]
[8-106]
Expectations for high energy diffuse galactic neutrinos for different cosmic ray distributions, G. Pagliaroli, C. Evoli, F.L. Villante, JCAP 1611 (2016) 004, arXiv:1606.04489.
[Pagliaroli:2016lgg]
[8-107]
Angular correlation between IceCube high-energy starting events and starburst sources, Reetanjali Moharana, Soebur Razzaque, JCAP 1612 (2016) 021, arXiv:1606.04420.
[Moharana:2016mkl]
[8-108]
Deciphering Contributions to the Extragalactic Gamma-Ray Background from 2 GeV to 2 TeV, Mariangela Lisanti, Siddharth Mishra-Sharma, Lina Necib, Benjamin R. Safdi, Astrophys.J. 832 (2016) 117, arXiv:1606.04101.
[Lisanti:2016jub]
[8-109]
Sensitivity of the space-based CHerenkov from Astrophysical Neutrinos Telescope (CHANT), A. Neronov, D.V. Semikoz, L.A. Anchordoqui, J. Adams, A.V. Olinto, Phys. Rev. D95 (2017) 023004, arXiv:1606.03629.
[Neronov:2016zou]
[8-110]
Detecting Asymmetric Dark Matter in the Sun with Neutrinos, Kohta Murase, Ian M. Shoemaker, Phys. Rev. D94 (2016) 063512, arXiv:1606.03087.
[Murase:2016nwx]
[8-111]
Multi-messenger light curves from gamma-ray bursts in the internal shock model, Mauricio Bustamante, Kohta Murase, Walter Winter, Astrophys.J. 837 (2017) 33, arXiv:1606.02325.
[Bustamante:2016wpu]
[8-112]
Neutrino lighthouse powered by Sagittarius A* disk dynamo, Luis A. Anchordoqui, Phys. Rev. D94 (2016) 023010, arXiv:1606.01816.
[Anchordoqui:2016dcp]
[8-113]
Detection of tau neutrinos by Imaging Air Cherenkov Telescopes, Dariusz Gora, Elisa Bernardini, Astropart.Phys. 82 (2016) 77-85, arXiv:1606.01676.
[Gora:2016mmy]
[8-114]
Minimal prospects for radio detection of extensive air showers in the atmosphere of Jupiter, J. D. Bray, A. Nelles, Astrophys.J. 825 (2016) 129, arXiv:1606.01291.
[Bray:2016gbr]
[8-115]
Propagation of high-energy neutrinos in a background of ultralight scalar dark matter, Matias M. Reynoso, Oscar A. Sampayo, Astropart.Phys. 82 (2016) 10-20, arXiv:1605.09671.
[Reynoso:2016hjr]
[8-116]
Multi-PeV Signals from a New Astrophysical Neutrino Flux Beyond the Glashow Resonance, Matthew D. Kistler, Ranjan Laha, arXiv:1605.08781, 2016.
[Kistler:2016ask]
[8-117]
A Case for Radio Galaxies as the Sources of IceCube's Astrophysical Neutrino Flux, Dan Hooper, JCAP 1609 (2016) 002, arXiv:1605.06504.
[Hooper:2016jls]
[8-118]
High Energy Neutrinos from Recent Blazar Flares, Francis Halzen, Ali Kheirandish, Astrophys.J. 831 (2016) 12, arXiv:1605.06119.
[Halzen:2016uaj]
[8-119]
Complex Analysis of Askaryan Radiation: A Fully Analytic Treatment including the LPM effect and Cascade Form Factor, Jordan C. Hanson, Amy L. Connolly, Astropart.Phys. 91 (2017) 75-89, arXiv:1605.04975.
[Hanson:2016bts]
[8-120]
Accessing low energy tau neutrinos through the decay $\tau\rightarrow \mu\nu_\tau\bar\nu_\mu$ in neutrino telescopes, I. Alikhanov, E. A. Paschos, Phys.Lett. B765 (2017) 272-275, arXiv:1605.04864.
[Alikhanov:2016qcj]
[8-121]
Analysis of the 4-year IceCube HESE data, Aaron C. Vincent, Sergio Palomares-Ruiz, Olga Mena, Phys. Rev. D94 (2016) 023009, arXiv:1605.01556.
[Vincent:2016nut]
[8-122]
On the Charm Contribution to the Atmospheric Neutrino Flux, Francis Halzen, Logan Wille, Phys. Rev. D94 (2016) 014014, arXiv:1605.01409.
[Halzen:2016thi]
[8-123]
Revised predictions of neutrino fluxes from Pulsar Wind Nebulae, Irene Di Palma, Dafne Guetta, Elena Amato, Astrophys.J. 836 (2017) 159, arXiv:1605.01205.
[DiPalma:2016yfy]
[8-124]
Solving the missing GRB neutrinos and the GRB-SN puzzles, Daniele Fargion, Pietro Oliva, arXiv:1605.00177, 2016.
[Fargion:2016bsd]
[8-125]
Multi-TeV gamma-rays and neutrinos from the Galactic Center region, Silvia Celli, Andrea Palladino, Francesco Vissani, arXiv:1604.08791, 2016.
[1604.08791]
[8-126]
How Unequal Fluxes of High Energy Astrophysical Neutrinos and Antineutrinos can Fake New Physics, Hiroshi Nunokawa, Boris Panes, Renata Zukanovich Funchal, arXiv:1604.08595, 2016.
[1604.08595]
[8-127]
Radio Galaxies Dominate the High-Energy Diffuse Gamma-Ray Background, Dan Hooper, Tim Linden, Alejandro Lopez, JCAP 1608 (2016) 019, arXiv:1604.08505.
[Hooper:2016gjy]
[8-128]
The Galactic Center: A PeV Cosmic Ray Acceleration Factory, Yi-Qing Guo, Zhen Tian, Zhen Wang, Hai-Jin Li, Tian-Lu Chen, Astrophys.J. 836 (2017) 233, arXiv:1604.08301.
[Guo:2016zjl]
[8-129]
Revisiting the Contributions of Supernova and Hypernova Remnants to the Diffuse High-Energy Backgrounds: Constraints on Very-High-Redshift Injections, Di Xiao, Peter Meszaros, Kohta Murase, Zi-gao Dai, Astrophys.J. 826 (2016) 133, arXiv:1604.08131.
[Xiao:2016rvd]
[8-130]
Dark matter astrophysical uncertainties and the neutrino floor, Ciaran A. J. O'Hare, Phys. Rev. D94 (2016) 063527, arXiv:1604.03858.
[OHare:2016pjy]
[8-131]
The neutrino floor at ultra-low threshold, Louis E. Strigari, Phys. Rev. D93 (2016) 103534, arXiv:1604.00729.
[Strigari:2016ztv]
[8-132]
Sagittarius A* as an Origin of the Galactic TeV-PeV Cosmic Rays?, Yutaka Fujita, Kohta Murase, Shigeo S. Kimura, JCAP 1704 (2017) 037, arXiv:1604.00003.
[Fujita:2016yvk]
[8-133]
A New Method for Finding Point Sources in High-energy Neutrino Data, Ke Fang, M. Coleman Miller, Astrophys.J. 826 (2016) 102, arXiv:1603.09306.
[Fang:2016hyv]
[8-134]
Searching PeV neutrinos from photomeson interactions in magnetars, Rajat K Dey, Sandip Dam, Sabyasachi Ray, Europhys.Lett. 115 (2016) 69002, arXiv:1603.07833.
[Dey:2016psn]
[8-135]
Limits on the Neutrino Velocity, Lorentz Invariance, and the Equivalence Principle with TeV neutrinos from Gamma-Ray Bursts, Jun-Jie Wei, Xue-Feng Wu, He Gao, Peter Meszaros, JCAP 1608 (2016) 031, arXiv:1603.07568.
[Wei:2016ygk]
[8-136]
CRPropa 3 - a Public Astrophysical Simulation Framework for Propagating Extraterrestrial Ultra-High Energy Particles, Rafael Alves Batista et al., JCAP 1605 (2016) 038, arXiv:1603.07142.
[Batista:2016yrx]
[8-137]
Time-dependent neutrino emission from Mrk 421 during flares and predictions for IceCube, Maria Petropoulou, Stefan Coenders, Stavros Dimitrakoudis, Astropart.Phys. 80 (2016) 115-130, arXiv:1603.06954.
[Petropoulou:2016ujj]
[8-138]
Galactic and extragalactic contributions to the astrophysical muon neutrino signal, A. Neronov, D. V. Semikoz, Phys. Rev. D93 (2016) 123002, arXiv:1603.06733.
[Neronov:2016bnp]
[8-139]
Search for Sphalerons: IceCube vs. LHC, John Ellis, Kazuki Sakurai, Michael Spannowsky, JHEP 1605 (2016) 085, arXiv:1603.06573.
[Ellis:2016dgb]
[8-140]
A large light-mass component of cosmic rays at $10^{17} - 10^{17.5}$ eV from radio observations, S. Buitink et al., Nature 531 (2016) 70, arXiv:1603.01594.
[Buitink:2016nkf]
[8-141]
Astrophysical interpretation of small-scale neutrino angular correlation searches with IceCube, Martin Leuermann, Michael Schimp, Christopher Wiebusch, Astropart.Phys. 83 (2016) 21-29, arXiv:1603.01385.
[Leuermann:2016oxu]
[8-142]
Neutrino masses and ordering via gravitational waves, photon and neutrino detections, Kasper Langaeble, Aurora Meroni, Francesco Sannino, Phys. Rev. D94 (2016) 053013, arXiv:1603.00230.
[Langaeble:2016han]
[8-143]
High Energy Neutrinos from the Gravitational Wave event GW150914 possibly associated with a short Gamma-Ray Burst, Reetanjali Moharana, Soebur Razzaque, Nayantara Gupta, Peter Meszaros, Phys. Rev. D93 (2016) 123011, arXiv:1602.08436.
[Moharana:2016xkz]
[8-144]
Isotropic extragalactic flux from dark matter annihilations: lessons from interacting dark matter scenarios, Angeles Moline, Jascha A. Schewtschenko, Sergio Palomares-Ruiz, Celine Boehm, Carlton M. Baugh, JCAP 1608 (2016) 069, arXiv:1602.07282.
[Moline:2016fdo]
[8-145]
Testing the equivalence principle and Lorentz invariance with the PeV neutrino from blazar PKS B1424-418, Zi-Yi Wang, Ruo-Yu Liu, Xiang-Yu Wang, Phys. Rev. Lett. 116 (2016) 151101, arXiv:1602.06805.
[Wang:2016lne]
[8-146]
Testing black hole neutrino-dominated accretion discs for long-duration gamma-ray bursts, Cui-Ying Song, Tong Liu, Wei-Min Gu, Jian-Xiang Tian, Mon.Not.Roy.Astron.Soc. 458 (2016) 1921, arXiv:1602.06691.
[Song:2016zbr]
[8-147]
How far are the sources of IceCube neutrinos? Constraints from the diffuse TeV gamma-ray background, Xiao-Chuan Chang, Ruo-Yu Liu, Xiang-Yu Wang, Astrophys.J. 825 (2016) 148, arXiv:1602.06625.
[Chang:2016ljk]
[8-148]
Gamma-ray Limits on Neutrino Lines, Farinaldo S. Queiroz, Carlos E. Yaguna, Christoph Weniger, JCAP 1605 (2016) 050, arXiv:1602.05966.
[Queiroz:2016zwd]
[8-149]
Tau Now, Daniele Fargion, Pietro Oliva, Nucl.Part.Phys.Proc. 279-281 (2016) 198-205, arXiv:1602.03497.
[Fargion:2016tne]
[8-150]
Coincidence of a high-fluence blazar outburst with a PeV-energy neutrino event, M. Kadler et al., Nature Phys. 12 (2016) 807-814, arXiv:1602.02012.
[Kadler:2016ygj]
[8-151]
Extragalactic plus Galactic model for IceCube neutrino events, Andrea Palladino, Francesco Vissani, Astrophys.J. 826 (2016) 185, arXiv:1601.06678.
[Palladino:2016zoe]
[8-152]
Limits to dark matter annihilation cross-section from a combined analysis of MAGIC and Fermi-LAT observations of dwarf satellite galaxies, M. L. Ahnen et al. (Fermi-LAT, MAGIC), JCAP 1602 (2016) 039, arXiv:1601.06590.
[Ahnen:2016qkx]
[8-153]
Extreme blazars as counterparts of IceCube astrophysical neutrinos, P. Padovani, E. Resconi, P. Giommi, B. Arsioli, Y. L. Chang, Mon. Not. Roy. Astron. Soc. 457 (2016) 3582, arXiv:1601.06550.
[Padovani:2016wwn]
[8-154]
Neutrino propagation in the galactic dark matter halo, P. F. de Salas, R. A. Lineros, M. Tortola, Phys. Rev. D94 (2016) 123001, arXiv:1601.05798.
[deSalas:2016svi]
[8-155]
On the anomalous mass defect of strange stars in the Field Correlator Method, F. I. M. Pereira, Nucl. Phys. A953 (2016) 65-79, arXiv:1601.04284.
[Pereira:2016oma]
[8-156]
Prompt Neutrino Flux from Forward Charm Production, Francis Halzen, Logan Wille, arXiv:1601.03044, 2016.
[Halzen:2016pwl]
[8-157]
Low energy IceCube data and a possible Dark Matter related excess, Marco Chianese, Gennaro Miele, Stefano Morisi, Edoardo Vitagliano, Phys.Lett. B757 (2016) 251-256, arXiv:1601.02934.
[Chianese:2016opp]
[8-158]
Ultrahigh-Energy Cosmic Rays from the 'En Caul' Birth of Magnetars, Anthony L. Piro, Juna A. Kollmeier, Astrophys.J. 826 (2016) 97, arXiv:1601.02625.
[Piro:2016jaq]
[8-159]
Why not a double bang tau in Ice km detector yet?, D.Fargion, P.Oliva, G. Ucci, PoS FRAPWS2014 (2016) 028, arXiv:1512.08794.
[Fargion:2015lmv]
[8-160]
Tidal disruption jets of supermassive black holes as hidden sources of cosmic rays: explaining the IceCube TeV-PeV neutrinos, Xiang-Yu Wang, Ruo-Yu Liu, Phys. Rev. D93 (2016) 083005, arXiv:1512.08596.
[Wang:2015mmh]
[8-161]
Choked Jets and Low-Luminosity Gamma-Ray Bursts as Hidden Neutrino Sources, Nicholas Senno, Kohta Murase, Peter Meszaros, Phys. Rev. D93 (2016) 083003, arXiv:1512.08513.
[Senno:2015tsn]
[8-162]
Cool WISPs for stellar cooling excesses, Maurizio Giannotti, Igor Irastorza, Javier Redondo, Andreas Ringwald, JCAP 1605 (2016) 057, arXiv:1512.08108.
[Giannotti:2015kwo]
[8-163]
Simulation of cascades caused by UHE and EHE neutrinos in dense media, Igor Zheleznykh, Leonid Dedenko, Grigorii Dedenko, Anna Mironovich, arXiv:1512.07300, 2015.
[Zheleznykh:2015uvm]
[8-164]
Probing BSM Neutrino Physics with Flavor and Spectral Distortions: Prospects for Future High-Energy Neutrino Telescopes, Ian M. Shoemaker, Kohta Murase, Phys. Rev. D93 (2016) 085004, arXiv:1512.07228.
[Shoemaker:2015qul]
[8-165]
Detectable MeV neutrinos from black hole neutrino-dominated accretion flows, Tong Liu, Bing Zhang, Ren-Yi Ma, Li Xue, Phys. Rev. D93 (2016) 123004, arXiv:1512.07203.
[Liu:2015prx]
[8-166]
Cosmogenic Neutrinos Challenge the Cosmic Ray Proton Dip Model, Jonas Heinze, Denise Boncioli, Mauricio Bustamante, Walter Winter, Astrophys.J. 825 (2016) 122, arXiv:1512.05988.
[Heinze:2015hhp]
[8-167]
Pinning down inelastic dark matter in the Sun and in direct detection, Mattias Blennow, Stefan Clementz, Juan Herrero-Garcia, JCAP 1604 (2016) 004, arXiv:1512.03317.
[Blennow:2015hzp]
[8-168]
Novel Features of Gamma Ray from Dark Matter, Yong Tang, arXiv:1512.03159, 2015.
[Tang:2015meg]
[8-169]
Photodisintegrated gamma rays and neutrinos from heavy nuclei in the gamma-ray burst jet of GRB 130427A, Jagdish C. Joshi, Soebur Razzaque, Reetanjali Moharana, Mon.Not.Roy.Astron.Soc. 458 (2016) L79, arXiv:1512.02434.
[Joshi:2015gfn]
[8-170]
Inspecting the supernova gamma-ray burst connection with high-energy neutrinos, Irene Tamborra, Shin'ichiro Ando, Phys. Rev. D93 (2016) 053010, arXiv:1512.01559.
[Tamborra:2015fzv]
[8-171]
Sensitivity of the JEM-EUSO telescope to gravity effects in neutrino-induced air showers, Stefan Mladenov, Galina Vankova, Roumen Tsenov, Mario Bertaina, Andrea Santangelo (JEM-EUSO), arXiv:1511.07196, 2015.
[Mladenov:2015oix]
[8-172]
Ultra High Energy Neutrinos from Gamma-Ray Burst Afterglows Using the Swift-UVOT Data, Guy Nir, Dafne Guetta, Hagar Landsman, Ehud Behar, Astrophys. J. 817 (2016) 142, arXiv:1511.07010.
[Nir:2015teo]
[8-173]
The prompt atmospheric neutrino flux in the light of LHCb, Rhorry Gauld, Juan Rojo, Luca Rottoli, Subir Sarkar, Jim Talbert, JHEP 02 (2016) 130, arXiv:1511.06346.
[Gauld:2015kvh]
[8-174]
On TeV Gamma Rays and the Search for Galactic Neutrinos, Matthew D. Kistler, arXiv:1511.05199, 2015.
[Kistler:2015oae]
[8-175]
Detecting electron neutrinos from solar dark matter annihilation by JUNO, Wan-Lei Guo, JCAP 1601 (2016) 039, arXiv:1511.04888.
[Guo:2015hsy]
[8-176]
A method to constrain mass and spin of GRB black hole central engine within the NDAF $\nu\bar\nu$-annihilation model and application to GRB 101219B, Tong Liu, Li Xue, Xiao-Hong Zhao, Fu-Wen Zhang, Bing Zhang, Astrophys.J. 821 (2016) 132, arXiv:1511.02800.
[Liu:2015ult]
[8-177]
Search for Galactic disk and halo components in the arrival directions of high-energy astrophysical neutrinos, Sergey Troitsky, JETP Lett. 102 (2015) 785, arXiv:1511.01708.
[Troitsky:2015cnk]
[8-178]
Problems and Prospects from a Flood of Extragalactic TeV Neutrinos in IceCube, Matthew D. Kistler, arXiv:1511.01530, 2015.
[Kistler:2015ywn]
[8-179]
A Tale of Two Pulsars and the Origin of TeV Gamma Rays from the Galactic Center, Matthew D. Kistler, arXiv:1511.01159, 2015.
[Kistler:2015toa]
[8-180]
The origin of IceCube's neutrinos: Cosmic ray accelerators embedded in star forming calorimeters, E. Waxman, arXiv:1511.00815, 2015.
[Waxman:2015ues]
[8-181]
Gamma Rays, Electrons, Hard X-Rays, and the Central Parsec of the Milky Way, Matthew D. Kistler, arXiv:1511.00723, 2015.
[Kistler:2015yrf]
[8-182]
Evidence against star-forming galaxies as the dominant source of IceCube neutrinos, Keith Bechtol, Markus Ahlers, Mattia Di Mauro, Marco Ajello, Justin Vandenbroucke, Astrophys.J. 836 (2017) 47, arXiv:1511.00688.
[Bechtol:2015uqb]
[8-183]
Type IIn supernovae as sources of high energy astrophysical neutrinos, V.N. Zirakashvili, V.S. Ptuskin, Astropart. Phys. (2016), arXiv:1510.08387.
[Zirakashvili:2015mua]
[8-184]
Novae as Tevatrons: Prospects for CTA and IceCube, Brian D. Metzger et al., Mon. Not. Roy. Astron. Soc. 457 (2016) 1786, arXiv:1510.07639.
[Metzger:2015zka]
[8-185]
The black hole spin influence on accretion disk neutrino detection, O. L. Caballero, T. Zielinski, G. C. McLaughlin, R. Surman, Phys. Rev. D93 (2016) 123015, arXiv:1510.06011.
[Caballero:2015cpa]
[8-186]
Double pulses and cascades above 2 PeV in IceCube, Andrea Palladino, Giulia Pagliaroli, Francesco L. Villante, Francesco Vissani, Eur. Phys. J. C76 (2016) 52, arXiv:1510.05921.
[Palladino:2015uoa]
[8-187]
Investigating the effects of the QCD dynamics in the neutrino absorption by the Earth's interior at ultra high energies, V. P. Goncalves, D. R. Gratieri, Phys. Rev. D92 (2015) 113007, arXiv:1510.03186.
[Goncalves:2015fua]
[8-188]
Implication of the non-detection of neutrinos above 2PeV, Lee Yacobi, Dafne Guetta, Ehud Behar, Astrophys.J. 823 (2016) 89, arXiv:1510.01244.
[Yacobi:2015kga]
[8-189]
A new version of the event generator Sibyll, Felix Riehn, Ralph Engel, Anatoli Fedynitch, Thomas K. Gaisser, Todor Stanev, PoS ICRC2015 (2016) 558, arXiv:1510.00568. Contribution to ICRC 2015.
[Riehn:2015oba]
[8-190]
Dark Matter Searches for Monoenergetic Neutrinos Arising from Stopped Meson Decay in the Sun, Carsten Rott, Seongjin In, Jason Kumar, David Yaylali, JCAP 1511 (2015) 039, arXiv:1510.00170.
[Rott:2015nma]
[8-191]
Blazar origin of some IceCube events, Luis Salvador Miranda, Alberto Rosales de Leon, Sarira Sahu, Eur.Phys.J. C76 (2016) 402, arXiv:1510.00048.
[Miranda:2015ema]
[8-192]
Detection of Earth-skimming UHE tau neutrino with the JEM-EUSO detector, Galina Vankova et al., arXiv:1509.05995, 2015.
[Vankova:2015zha]
[8-193]
Evidence for the Galactic contribution to the IceCube astrophysical neutrino flux, A. Neronov, D. V. Semikoz, Astropart. Phys. 75 (2016) 60-63, arXiv:1509.03522.
[Neronov:2015osa]
[8-194]
Astrophysical interpretation of small-scale neutrino angular correlation searches with IceCube, Michael Schimp, Martin Leuermann, Christopher Wiebusch, PoS ICRC2015 (2016) 1085, arXiv:1509.02980. 8 pages, 4 figures, ICRC 2015 Proceedings.
[Schimp:2015xha]
[8-195]
Tomographic Constraints on High-Energy Neutrinos of Hadronuclear Origin, Shin'ichiro Ando, Irene Tamborra, Fabio Zandanel, Phys. Rev. Lett. 115 (2015) 221101, arXiv:1509.02444.
[Ando:2015bva]
[8-196]
Transition radiation at radio frequencies from ultra-high energy neutrino-induced showers, Pavel Motloch, Jaime Alvarez-Muniz, Paolo Privitera, Enrique Zas, Phys. Rev. D93 (2016) 043010, arXiv:1509.01584.
[Motloch:2015wca]
[8-197]
Spectral Decline of PeV Neutrinos from Starburst Galaxies, I. Bartos, S. Marka, arXiv:1509.00983, 2015.
[Bartos:2015xpa]
[8-198]
Hidden Cosmic-Ray Accelerators as an Origin of TeV-PeV Cosmic Neutrinos, Kohta Murase, Dafne Guetta, Markus Ahlers, Phys. Rev. Lett. 116 (2016) 071101, arXiv:1509.00805.
[Murase:2015xka]
[8-199]
MeV scale leptonic force for cosmic neutrino spectrum and muon anomalous magnetic moment, Takeshi Araki, Fumihiro Kaneko, Toshihiko Ota, Joe Sato, Takashi Shimomura, Phys. Rev. D93 (2016) 013014, arXiv:1508.07471.
[Araki:2015mya]
[8-200]
Dark matter and IceCube neutrinos, Riccardo Biondi, Nuovo Cim. C038 (2015) 31, arXiv:1508.06089.
[Biondi:2015yia]
[8-201]
Supernova Neutrino Background Bound on the SFR History, Jafar Khodagholizadeh, Sepehr Arbabi Bidgoli, arXiv:1508.04303, 2015.
[Khodagholizadeh:2015yta]
[8-202]
Could a multi-PeV neutrino event have as origin the internal shocks inside the GRB progenitor star?, Nissim Fraija, JHEAp 9-10 (2015) 25-34, arXiv:1508.03009.
[Fraija:2015nsa]
[8-203]
Neutrino properties from ultra-high energy cosmic neutrinos, Yanqi Huang, Bo-Qiang Ma, The Universe 3 (2015) 15-21, arXiv:1508.01698.
[Huang:2015flc]
[8-204]
On the angular distribution of IceCube high-energy events, R. de la Fuente Marcos, C. de la Fuente Marcos, Astron. Nachr. 336 (2015) 657-664, arXiv:1508.01493.
[Marcos:2015aoa]
[8-205]
Limits on dark matter proton scattering from neutrino telescopes using micrOMEGAs, G. Belanger, J. Da Silva, T. Perrillat-Bottonet, A. Pukhov, JCAP 1512 (2015) 036, arXiv:1507.07987.
[Belanger:2015hra]
[8-206]
Unified model for cosmic rays above $10^{17}$ eV and the diffuse gamma-ray and neutrino backgrounds, G. Giacinti, M. Kachelriess, O. Kalashev, A. Neronov. D.V. Semikoz, Phys. Rev. D92 (2015) 083016, arXiv:1507.07534.
[Giacinti:2015pya]
[8-207]
Nucleosynthesis in neutrino-driven winds in hypernovae, Sho Fujibayashi, Takashi Yoshida, Yuichiro Sekiguchi, Astrophys. J. 810 (2015) 115, arXiv:1507.05945.
[Fujibayashi:2015rma]
[8-208]
Do high energy astrophysical neutrinos trace star formation?, Kimberly Emig, Cecilia Lunardini, Rogier Windhorst, JCAP 1512 (2015) 029, arXiv:1507.05711.
[Emig:2015dma]
[8-209]
Constraining Neutrino Cooling using the Hot White Dwarf Luminosity Function in the Globular Cluster 47 Tucanae, Bradley Hansen et al., Astrophys. J. 809 (2015) 141, arXiv:1507.05665.
[Hansen:2015lqa]
[8-210]
Ultra-hard spectra of PeV neutrinos from supernovae in compact star clusters, A.M. Bykov, D.C. Ellison, P.E. Gladilin, S.M. Osipov, Mon. Not. Roy. Astron. Soc. 453 (2015) 113, arXiv:1507.04018.
[Bykov:2015nta]
[8-211]
Lorentz Invariance Violation and IceCube Neutrino Events, Gaurav Tomar, Subhendra Mohanty, Sandip Pakvasa, JHEP 11 (2015) 022, arXiv:1507.03193.
[Tomar:2015fha]
[8-212]
Impact of Galactic magnetic field modelling on searches of point sources via UHECR-Neutrino correlations, J.A. Carpio, A.M. Gago, Phys. Rev. D93 (2016) 023004, arXiv:1507.02781.
[Carpio:2015ewa]
[8-213]
MeV-Scale Dark Matter Deep Underground, Eder Izaguirre, Gordan Krnjaic, Maxim Pospelov, Phys. Rev. D92 (2015) 095014, arXiv:1507.02681.
[Izaguirre:2015pva]
[8-214]
Lepton fluxes from atmospheric charm revisited, M.V. Garzelli, S. Moch, G. Sigl, JHEP 10 (2015) 115, arXiv:1507.01570.
[Garzelli:2015psa]
[8-215]
The Abundance of Fluorine in Normal G and K Stars of the Galactic Thin Disk, Catherine A. Pilachowski, Cameron Pace, arXiv:1507.01550, 2015.
[1507.01550]
[8-216]
A simplified view of blazars: the neutrino background, P. Padovani, M. Petropoulou, P. Giommi, E. Resconi, Mon. Not. Roy. Astron. Soc. 452 (2015) 1877-1887, arXiv:1506.09135.
[Padovani:2015mba]
[8-217]
IceCube neutrinos, decaying dark matter, and the Hubble constant, Luis A. Anchordoqui et al., Phys. Rev. D92 (2015) 061301, arXiv:1506.08788.
[Anchordoqui:2015lqa]
[8-218]
PeV Neutrinos and a 3.5 keV X-Ray Line from a PeV Scale Supersymmetric Neutrino Sector, Samuel B. Roland, Bibhushan Shakya, James D. Wells, Phys. Rev. D92 (2015) 095018, arXiv:1506.08195.
[Roland:2015yoa]
[8-219]
Charm production in the forward region: constraints on the small-x gluon and backgrounds for neutrino astronomy, Rhorry Gauld, Juan Rojo, Luca Rottoli, Jim Talbert, JHEP 11 (2015) 009, arXiv:1506.08025.
[Gauld:2015yia]
[8-220]
CLUMPY: Jeans analysis, $\gamma$-ray and neutrino fluxes from dark matter (sub-)structures, Vincent Bonnivard et al., Comput. Phys. Commun. 200 (2016) 336-349, arXiv:1506.07628.
[Bonnivard:2015pia]
[8-221]
High-energy neutrino fluxes from AGN populations inferred from X-ray surveys, Idunn B. Jacobsen, Kinwah Wu, Alvina Y. L. On, Curtis J. Saxton, Mon.Not.Roy.Astron.Soc. 451 (2015) 3649, arXiv:1506.05916.
[Jacobsen:2015mga]
[8-222]
The hadronic origin of multi-TeV gamma rays from low-luminosity active galactic nuclei: implications of past activities of the Galactic center, Yutaka Fujita, Shigeo S. Kimura, Kohta Murase, Phys. Rev. D92 (2015) 023001, arXiv:1506.05461.
[Fujita:2015xva]
[8-223]
Cosmic Rays, Gamma-Rays, & Neutrinos in the Starburst Nuclei of Arp 220, Tova M. Yoast-Hull, John S. Gallagher III, Ellen G. Zweibel, Mon. Not. Roy. Astron. Soc. 453 (2015) 222, arXiv:1506.05133.
[Yoast-Hull:2015iea]
[8-224]
New Search for Monochromatic Neutrinos from Dark Matter Decay, Chaimae El Aisati, Michael Gustafsson, Thomas Hambye, Phys. Rev. D92 (2015) 123515, arXiv:1506.02657.
[Aisati:2015vma]
[8-225]
Theoretically palatable flavor combinations of astrophysical neutrinos, Mauricio Bustamante, John F. Beacom, Walter Winter, Phys. Rev. Lett. 115 (2015) 161302, arXiv:1506.02645.
[Bustamante:2015waa]
[8-226]
Testing neutrino decay scenarios with IceCube data, G. Pagliaroli, A. Palladino, F. Vissani, F.L. Villante, Phys. Rev. D92 (2015) 113008, arXiv:1506.02624.
[Pagliaroli:2015rca]
[8-227]
Pre-supernova neutrino emissions from ONe cores in the progenitors of core-collapse supernovae: are they distinguishable from those of Fe cores?, Chinami Kato, Milad Delfan Azari, Shoichi Yamada, Koh Takahashi, Hideyuki Umeda et al., Astrophys. J. 808 (2015) 168, arXiv:1506.02358.
[Kato:2015faa]
[8-228]
New Physics in Astrophysical Neutrino Flavor, Carlos A. Arguelles, Teppei Katori, Jordi Salvado, Phys. Rev. Lett. 115 (2015) 161303, arXiv:1506.02043.
[Arguelles:2015dca]
[8-229]
KamLAND Sensitivity to Neutrinos from Pre-Supernova Stars, K. Asakura et al., Astrophys. J. 818 (2016) 91, arXiv:1506.01175.
[Asakura:2015bga]
[8-230]
Very high energy neutrino emission from the core of low luminosity AGNs triggered by magnetic reconnection acceleration, Behrouz Khiali, Elisabete M. de Gouveia Dal Pino, Mon. Not. Roy. Astron. Soc. 455 (2016) 838, arXiv:1506.01063.
[Khiali:2015tfa]
[8-231]
The neutrino-nucleon cross section at UHE and its astrophysical implications, Javier L. Albacete, Jose I. Illana, Alba Soto-Ontoso, Phys. Rev. D92 (2015) 014027, arXiv:1505.06583.
[Albacete:2015zra]
[8-232]
Gamma-ray bounds from EAS detectors and heavy decaying dark matter constraints, Arman Esmaili, Pasquale Dario Serpico, JCAP 1510 (2015) 014, arXiv:1505.06486.
[Esmaili:2015xpa]
[8-233]
Common Solution Of Three Cosmic Puzzles, Shlomo Dado, Arnon Dar, JHEAp 9-10 (2015) 9-15, arXiv:1505.04988.
[Dado:2015eda]
[8-234]
Can FSRQs produce the IceCube detected diffuse neutrino emission?, Bin Wang, Zhuo Li, Sci. China Phys. Mech. Astron. 59 (2016) 619502, arXiv:1505.04418.
[Wang:2015woa]
[8-235]
Cosmogenic neutrinos and ultra-high energy cosmic ray models, R. Aloisio et al., JCAP 1510 (2015) 006, arXiv:1505.04020.
[Aloisio:2015ega]
[8-236]
Complementary Test of the Dark Matter Self-Interaction by Direct and Indirect Detections, Chian-Shu Chen, Guey-Lin Lin, Yen-Hsun Lin, JCAP 1601 (2016) 013, arXiv:1505.03781.
[Chen:2015bwa]
[8-237]
Galactic TeV-PeV Neutrinos, Markus Ahlers, Yang Bai, Vernon Barger, Ran Lu, Phys. Rev. D93 (2016) 013009, arXiv:1505.03156.
[Ahlers:2015moa]
[8-238]
Origin of the ankle in the ultra-high energy cosmic ray spectrum and of the extragalactic protons below it, Michael Unger, Glennys R. Farrar, Luis A. Anchordoqui, Phys. Rev. D92 (2015) 123001, arXiv:1505.02153.
[Unger:2015laa]
[8-239]
Spectral and Spatial Distortions of PeV Neutrinos from Scattering with Dark Matter, Jonathan H. Davis, Joseph Silk, arXiv:1505.01843, 2015.
[Davis:2015rza]
[8-240]
SimProp v2r2: a Monte Carlo simulation to compute cosmogenic neutrino fluxes, R. Aloisio et al., arXiv:1505.01347, 2015.
[Aloisio:2015sga]
[8-241]
Hypercritical accretion phase and neutrino expectation in the evolution of Cassiopeia A, Nissim Fraija, C. Giovanny Bernal, Mon.Not.Roy.Astron.Soc. 451 (2015) 4974, arXiv:1505.01062.
[Fraija:2015lya]
[8-242]
$\gamma$-ray observations of extraterrestrial neutrino track event positions, Anthony M. Brown, Jenni Adams, Paula M. Chadwick, Mon.Not.Roy.Astron.Soc. 451 (2015) 4842, arXiv:1505.00935.
[Brown:2015zxa]
[8-243]
A multi-messenger study of the Fermi Bubbles: very high energy gamma rays and neutrinos, Cecilia Lunardini, Soebur Razzaque, Lili Yang, Phys. Rev. D92 (2015) 021301, arXiv:1504.07033.
[Lunardini:2015laa]
[8-244]
Generalised form factor dark matter in the Sun, Aaron C. Vincent, Aldo Serenelli, Pat Scott, JCAP 1508 (2015) 040, arXiv:1504.04378.
[Vincent:2015gqa]
[8-245]
Jet Luminosity of Gamma-ray Bursts: Blandford-Znajek Mechanism v.s. Neutrino Annihilation Process, Tong Liu, Shu-Jin Hou, Li Xue, Wei-Min Gu, Astrophys.J.Suppl. 218 (2015) 12, arXiv:1504.04067.
[Liu:2015lfa]
[8-246]
TeV-PeV Neutrino Oscillation of Low-luminosity Gamma-ray Bursts, D. Xiao, Z. G. Dai, Astrophys.J. 805 (2015) 137, arXiv:1504.01603.
[Xiao:2015gea]
[8-247]
Coherent Propagation of PeV Neutrinos and the Dip in the Neutrino Spectrum at IceCube, Ayuki Kamada, Hai-Bo Yu, Phys. Rev. D92 (2015) 113004, arXiv:1504.00711.
[Kamada:2015era]
[8-248]
The gamma-ray and neutrino sky: a consistent picture of Fermi-LAT, H.E.S.S., Milagro, and IceCube results, Daniele Gaggero, Dario Grasso, Antonio Marinelli, Alfredo Urbano, Mauro Valli, Astrophys. J. 815 (2015) L25, arXiv:1504.00227.
[Gaggero:2015xza]
[8-249]
Diffuse emission of high-energy neutrinos from gamma-ray burst fireballs, Irene Tamborra, Shin'ichiro Ando, JCAP 1509 (2015) 036, arXiv:1504.00107.
[Tamborra:2015qza]
[8-250]
Hidden Glashow resonance in neutrino-nucleus collisions, I. Alikhanov, Phys.Lett. B756 (2016) 247-253, arXiv:1503.08817.
[Alikhanov:2015kla]
[8-251]
Cosmic absorption of ultra high energy particles, R. Ruffini, G.V. Vereshchagin, S.-S. Xue, Astrophys. Space Sci. 361 (2016) 82, arXiv:1503.07749.
[Ruffini:2015oha]
[8-252]
Neutrinos from gamma-ray bursts: propagation of cosmic rays in their host galaxies, Zi-Yi Wang, Xiang-Yu Wang, Jun-Feng Wang, Astrophys.J. 803 (2015) L5, arXiv:1503.04932.
[Wang:2015xpa]
[8-253]
Spallation Backgrounds in Super-Kamiokande Are Made in Muon-Induced Showers, Shirley Weishi Li, John F. Beacom, Phys. Rev. D91 (2015) 105005, arXiv:1503.04823.
[Li:2015kpa]
[8-254]
Testing the Dark Matter Scenario for PeV Neutrinos Observed in IceCube, Kohta Murase, Ranjan Laha, Shin'ichiro Ando, Markus Ahlers, Phys. Rev. Lett. 115 (2015) 071301, arXiv:1503.04663.
[Murase:2015gea]
[8-255]
Constraint on the Flux of Cosmic Ray Heavy Nuclei from IceCube Results, Nayantara Gupta, Astropart. Phys. 74 (2016) 1-5, arXiv:1503.04328.
[Gupta:2015oda]
[8-256]
Coherent Transition Radiation in Askaryan radio detectors, Krijn D. de Vries et al., Astropart. Phys. 74 (2016) 96-104, arXiv:1503.02808.
[deVries:2015oda]
[8-257]
Boosted Dark Matter in IceCube and at the Galactic Center, Joachim Kopp, Jia Liu, Xiao-Ping Wang, JHEP 1504 (2015) 105, arXiv:1503.02669.
[Kopp:2015bfa]
[8-258]
New physics with ultra-high-energy neutrinos, D. Marfatia, D. W. McKay, T. J. Weiler, Phys. Lett. B748 (2015) 113-116, arXiv:1502.06337.
[Marfatia:2015hva]
[8-259]
A halo-independent lower bound on the dark matter capture rate in the Sun from a direct detection signal, Mattias Blennow, Juan Herrero-Garcia, Thomas Schwetz, JCAP 1505 (2015) 036, arXiv:1502.03342.
[Blennow:2015oea]
[8-260]
Which is the flavor of cosmic neutrinos seen by IceCube?, A. Palladino, G. Pagliaroli, F.L. Villante, F. Vissani, Phys. Rev. Lett. 114 (2015) 171101, arXiv:1502.02923.
[Palladino:2015zua]
[8-261]
Spectral analysis of the high-energy IceCube neutrinos, Sergio Palomares-Ruiz, Aaron C. Vincent, Olga Mena, Phys. Rev. D91 (2015) 103008, arXiv:1502.02649.
[Palomares-Ruiz:2015mka]
[8-262]
Firewall Phenomenology with Astrophysical Neutrinos, Niayesh Afshordi, Yasaman K. Yazdi, Class.Quant.Grav. 33 (2016) 235017, arXiv:1502.01023.
[Afshordi:2015foa]
[8-263]
Photohadronic origin of $\gamma$-ray BL Lac emission: implications for IceCube neutrinos, Maria Petropoulou, Stavros Dimitrakoudis, Paolo Padovani, Apostolos Mastichiadis, Elisa Resconi, Mon.Not.Roy.Astron.Soc. 448 (2015) 2412, arXiv:1501.07115.
[Petropoulou:2015upa]
[8-264]
Angular correlation of cosmic neutrinos with ultrahigh-energy cosmic rays and implications for their sources, Reetanjali Moharana, Soebur Razzaque, JCAP 1508 (2015) 014, arXiv:1501.05158.
[Moharana:2015nxa]
[8-265]
Extragalactic star-forming galaxies with hypernovae and supernovae as high-energy neutrino and gamma-ray sources: the case of the 10 TeV neutrino data, Nicholas Senno, Peter Meszaros, Kohta Murase, Philipp Baerwald, Martin J. Rees, Astrophys.J. 806 (2015) 24, arXiv:1501.04934.
[Senno:2015tra]
[8-266]
Could the Wein fireball be associated to the 'orphan' TeV flares ?, Nissim Fraija, Astropart.Phys. 71 (2015) 1-20, arXiv:1501.04165.
[Fraija:2015xha]
[8-267]
Diffuse neutrinos from extragalactic supernova remnants: Dominating the 100 TeV IceCube flux, Sovan Chakraborty, Ignacio Izaguirre, Phys.Lett. B745 (2015) 35-39, arXiv:1501.02615.
[Chakraborty:2015sta]
[8-268]
Mass ejection from neutron star mergers: different components and expected radio signals, Kenta Hotokezaka, Tsvi Piran, Mon.Not.Roy.Astron.Soc. 450 (2015) 1430, arXiv:1501.01986.
[Hotokezaka:2015eja]
[8-269]
On the Contribution of 'Fresh' Cosmic Rays to the Excesses of Secondary Particles, Y. Q. Guo, H. B. Hu, Z. Tian, Chin.Phys. C40 (2016) 115001, arXiv:1412.8590.
[Guo:2014laa]
[8-270]
Star-forming galaxies as the origin of the IceCube PeV neutrinos, Xiao-Chuan Chang, Ruo-Yu Liu, Xiang-Yu Wang, Astrophys.J. 805 (2015) 95, arXiv:1412.8361.
[Chang:2014sua]
[8-271]
A flavored model of astrophysical neutrinos in IceCube, Atsushi Watanabe, JCAP 08 (2015) 030, arXiv:1412.8264.
[Watanabe:2014qua]
[8-272]
Enhancement of the sterile neutrinos yield at high matter density and at increasing the medium neutronization, V. V. Khruschov, A. V. Yudin, D. K. Nadyozhin, S. V. Fomichev, Astron. Lett. 41 (2015) 260-266, arXiv:1412.6262.
[Khruschov:2014xza]
[8-273]
Neutrino Constrains to the Diffuse Gamma-Ray Emission from Accretion Shocks, Aleksandra Dobardzic, Tijana Prodanovic, Astrophys.J. 806 (2015) 184, arXiv:1412.5678.
[Dobardzic:2014nra]
[8-274]
Future sensitivity of neutrino telescopes to dark matter annihilations from the cosmic diffuse neutrino signal, Angeles Moline, Alejandro Ibarra, Sergio Palomares-Ruiz, JCAP 1506 (2015) 005, arXiv:1412.4308.
[Moline:2014xua]
[8-275]
Neutrinos from Extra-Large Hadron Collider in the Milky Way, Andrii Neronov, Dmitry Semikoz, Astropart. Phys. 72 (2016) 32-37, arXiv:1412.1690.
[Neronov:2014uma]
[8-276]
Dark Matter vs. Neutrinos: The effect of astrophysical uncertainties and timing information on the neutrino floor, Jonathan H. Davis, JCAP 03 (2015) 012, arXiv:1412.1475.
[Davis:2014ama]
[8-277]
High energy neutrinos from choked GRBs and their flavor ratio measurement by the IceCube, Karla Varela, Sarira Sahu, Andres Felipe Osorio Oliveros, Juan Carlos Sanabria, Eur.Phys.J. C75 (2015) 289, arXiv:1411.7992.
[Varela:2014mma]
[8-278]
PeV-EeV neutrinos from GRB blastwave in IceCube and future neutrino telescopes, Soebur Razzaque, Lili Yang, Phys. Rev. D91 (2015) 043003, arXiv:1411.7491.
[Razzaque:2014ola]
[8-279]
TeV $\gamma$-ray fluxes from the longer campaigns on Mrk421 as constraints on the emission of TeV-PeV Neutrinos and UHECRs, Nissim Fraija, Antonio Marinelli, Astropart.Phys. 70 (2015) 54-61, arXiv:1411.7354.
[Fraija:2014iwa]
[8-280]
A possible indication of momentum-dependent asymmetric dark matter in the Sun, Aaron C. Vincent, Pat Scott, Aldo Serenelli, Phys. Rev. Lett. 114 (2015) 081302, arXiv:1411.6626.
[Vincent:2014jia]
[8-281]
Neutron $\beta$-decay as the origin of IceCube's PeV (anti)neutrinos, Luis A. Anchordoqui, Phys. Rev. D91 (2015) 027301, arXiv:1411.6457.
[Anchordoqui:2014pca]
[8-282]
Searching for Traces of Planck-Scale Physics with High Energy Neutrinos, Floyd W. Stecker, Sean T. Scully, Stefano Liberati, David Mattingly, Phys. Rev. D91 (2015) 045009, arXiv:1411.5889.
[Stecker:2014oxa]
[8-283]
A Possible Two-component Flux for the High Energy Neutrino Events at IceCube, Chien-Yi Chen, P. S. Bhupal Dev, Amarjit Soni, Phys. Rev. D92 (2015) 073001, arXiv:1411.5658.
[Chen:2014gxa]
[8-284]
Possible Interpretations of IceCube High-Energy Neutrino Events, Chee Sheng Fong, Hisakazu Minakata, Boris Panes, Renata Zukanovich Funchal, JHEP 1502 (2015) 189, arXiv:1411.5318.
[Fong:2014bsa]
[8-285]
Angular Power Spectra with Finite Counts, Sheldon S. Campbell, Mon.Not.Roy.Astron.Soc. 448 (2015) 2854, arXiv:1411.4031.
[Campbell:2014mpa]
[8-286]
Does asymmetric dark matter always lead to an anti-neutrino signal?, Hajime Fukuda, Shigeki Matsumoto, Satyanarayan Mukhopadhyay, Phys. Rev. D92 (2015) 013008, arXiv:1411.4014.
[Fukuda:2014xqa]
[8-287]
Kilonova Light Curves from the Disk Wind Outflows of Compact Object Mergers, Daniel Kasen, Rodrigo Fernandez, Brian Metzger, Mon.Not.Roy.Astron.Soc. 450 (2015) 1777-1786, arXiv:1411.3726.
[Kasen:2014toa]
[8-288]
Neutrino and Cosmic-Ray Emission and Cumulative Background from Radiatively Inefficient Accretion Flows in Low-Luminosity Active Galactic Nuclei, Shigeo S. Kimura, Kohta Murase, Kenji Toma, Astrophys.J. 806 (2015) 159, arXiv:1411.3588.
[Kimura:2014jba]
[8-289]
High-energy cosmic neutrinos from spine-sheath BL Lac jets, F. Tavecchio, G. Ghisellini, Mon.Not.Roy.Astron.Soc. 451 (2015) 1502, arXiv:1411.2783.
[Tavecchio:2014eia]
[8-290]
A Common Solution of Two Cosmic Puzzles, Shlomo Dado, Arnon Dar, J. Phys. Conf. Ser. 718 (2016) 062010, arXiv:1411.2533.
[Dado:2014jwa]
[8-291]
High-Energy Neutrino Signatures of Newborn Pulsars In the Local Universe, Ke Fang, JCAP 1506 (2015) 004, arXiv:1411.2174.
[Fang:2014qva]
[8-292]
Bethe-Heitler emission in BL Lacs: filling the gap between X-rays and $\gamma$-rays, M. Petropoulou, A. Mastichiadis, Mon.Not.Roy.Astron.Soc. 447 (2015) 36-48, arXiv:1411.1908.
[Petropoulou:2014rla]
[8-293]
High-energy gamma-ray and neutrino backgrounds from clusters of galaxies and radio constraints, Fabio Zandanel, Irene Tamborra, Stefano Gabici, Shin'ichiro Ando, Astron.Astrophys. 578 (2015) A32, arXiv:1410.8697.
[Zandanel:2014pva]
[8-294]
Neutrinos in IceCube from AGN's, Oleg Kalashev, Dmitri Semikoz, Igor Tkachev, J.Exp.Theor.Phys. 120 (2015) 541-548, arXiv:1410.8124.
[Kalashev:2014vya]
[8-295]
Probing WIMP particle physics and astrophysics with direct detection and neutrino telescope data, Bradley J. Kavanagh, Mattia Fornasa, Anne M. Green, Phys. Rev. D91 (2015) 103533, arXiv:1410.8051.
[Kavanagh:2014rya]
[8-296]
Gamma-rays and neutrinos from dense environment of massive binary systems in open clusters, W. Bednarek, J. Pabich, T. Sobczak, Phys. Rev. D90 (2014) 103008, arXiv:1410.7553.
[Bednarek:2014esa]
[8-297]
IceCube events and decaying dark matter: hints and constraints, Arman Esmaili, Sin Kyu Kang, Pasquale Dario Serpico, JCAP 1412 (2014) 054, arXiv:1410.5979.
[Esmaili:2014rma]
[8-298]
A new physics interpretation of the IceCube data, Jose Ignacio Illana, Manuel Masip, Davide Meloni, Astropart.Phys. 65 (2014) 64-68, arXiv:1410.3208.
[Illana:2014bda]
[8-299]
IceCube astrophysical neutrinos without a spectral cutoff and (10^15-10^17) eV cosmic gamma radiation, O.E. Kalashev, S.V. Troitsky, JETP Lett. 100 (2015) 761-765, arXiv:1410.2600.
[Kalashev:2014vra]
[8-300]
Estimating the contribution of Galactic sources to the diffuse neutrino flux, Luis A. Anchordoqui, Haim Goldberg, Thomas C. Paul, Luiz H. M. da Silva, Brian J. Vlcek, Phys. Rev. D90 (2014) 123010, arXiv:1410.0348.
[Anchordoqui:2014rca]
[8-301]
Constraints to a Galactic Component of the Ice Cube cosmic neutrino flux from ANTARES, M. Spurio, Phys. Rev. D90 (2014) 103004, arXiv:1409.4552.
[Spurio:2014una]
[8-302]
Probing Large Extra Dimensions With IceCube, Arman Esmaili, O. L. G. Peres, Zahra Tabrizi, JCAP 1412 (2014) 002, arXiv:1409.3502.
[Esmaili:2014esa]
[8-303]
Bounds on the origin of extragalactic ultrahigh energy cosmic rays from the IceCube neutrino observations, Shigeru Yoshida, Hajime Takami, Phys. Rev. D90 (2014) 123012, arXiv:1409.2950.
[Yoshida:2014uka]
[8-304]
Neutrino and cosmic-ray emission from multiple internal shocks in gamma-ray bursts, Mauricio Bustamante, Philipp Baerwald, Kohta Murase, Walter Winter, arXiv:1409.2874, 2014.
[Bustamante:2014oka]
[8-305]
UHECR acceleration at GRB internal shocks, Noemie Globus, Denis Allard, Robert Mochkovitch, Etienne Parizot, Mon.Not.Roy.Astron.Soc. 451 (2015) 5270, arXiv:1409.1271.
[Globus:2014fka]
[8-306]
Pulsation period variations in the RRc Lyrae star KIC 5520878, Michael Hippke et al., arXiv:1409.1265, 2014.
[1409.1265]
[8-307]
Can a Single High-energy Neutrino from Gamma-ray Bursts be a Discovery?, Imre Bartos, Szabolcs Marka, Phys. Rev. D90 (2014) 101301, arXiv:1409.1217.
[Bartos:2014sja]
[8-308]
On ultra-high energy cosmic ray acceleration at the termination shock of young pulsar winds, Martin Lemoine, Kumiko Kotera, Jerome Petri, JCAP 1507 (2015) 016, arXiv:1409.0159.
[Lemoine:2014ala]
[8-309]
Probing Dark Matter Self-Interaction in the Sun with IceCube-PINGU, Chian-Shu Chen, Fei-Fan Lee, Guey-Lin Lin, Yen-Hsun Lin, JCAP 1410 (2014) 049, arXiv:1408.5471.
[Chen:2014oaa]
[8-310]
Superheavy dark matter and IceCube neutrino signals:bounds on decaying dark matter, Carsten Rott, Kazunori Kohri, Seong Chan Park, Phys. Rev. D92 (2015) 023529, arXiv:1408.4575.
[Rott:2014kfa]
[8-311]
Testing the neutrino annihilation model for launching GRB jets, Mingbin Leng, Dimitrios Giannios, Mon.Not.Roy.Astron.Soc. 445 (2014) 1, arXiv:1408.4509.
[Leng:2014dfa]
[8-312]
High energy neutrino telescopes as a probe of the neutrino mass mechanism, Kfir Blum, Anson Hook, Kohta Murase, arXiv:1408.3799, 2014.
[Blum:2014ewa]
[8-313]
Some possible sources of IceCube TeV-PeV neutrino events, Sarira Sahu, Luis Salvador Miranda, Eur.Phys.J. C75 (2015) 273, arXiv:1408.3664.
[Sahu:2014fua]
[8-314]
Cosmological Implications of High-Energy Neutrino Emission from the Decay of Long-Lived Particle, Yohei Ema, Ryusuke Jinno, Takeo Moroi, JHEP 1410 (2014) 150, arXiv:1408.1745.
[Ema:2014ufa]
[8-315]
UHECR and GRB neutrinos: an incomplete revolution?, Daniele Fargion, Frascati Phys.Ser. 58 (2014) 263, arXiv:1408.0227.
[Fargion:2014jaa]
[8-316]
Describing the Observed Cosmic Neutrinos by Interactions of Nuclei with Matter, Walter Winter, Phys. Rev. D90 (2014) 103003, arXiv:1407.7536.
[Winter:2014pya]
[8-317]
Anisotropic neutrino effect on magnetar spin: constraint on inner toroidal field, Yudai Suwa, Teruaki Enoto, Mon.Not.Roy.Astron.Soc. 443 (2014) 3586-3593, arXiv:1407.4653.
[Suwa:2014zaa]
[8-318]
The Effect of Doppler Broadening on the $6.3 \ PeV$ $W^-$ Resonance in $\bar\nu_e e^-$ Collisions, Amit Loewy, Shmuel Nussinov, Sheldon L. Glashow, arXiv:1407.4415, 2014.
[Loewy:2014zva]
[8-319]
Constraining Astrophysical Neutrino Flavor Composition from Leptonic Unitarity, Xun-Jie Xu, Hong-Jian He, Werner Rodejohann, JCAP 1412 (2014) 039, arXiv:1407.3736.
[Xu:2014via]
[8-320]
Astrophysical neutrinos, PeV events at IceCube, and the Direct Detection of Dark Matter, Atri Bhattacharya, Raj Gandhi, Aritra Gupta, JCAP 1503 (2015) 027, arXiv:1407.3280.
[Bhattacharya:2014yha]
[8-321]
Glashow resonance as a window into cosmic neutrino sources, V. Barger et al., Phys. Rev. D90 (2014) 121301, arXiv:1407.3255.
[Barger:2014iua]
[8-322]
Charm decay in slow-jet supernovae as the origin of the IceCube ultra-high energy neutrino events, Atri Bhattacharya, Rikard Enberg, Mary Hall Reno, Ina Sarcevic, JCAP 1506 (2015) 034, arXiv:1407.2985.
[Bhattacharya:2014sta]
[8-323]
C$\nu$B absorption line in the neutrino spectrum at IceCube, Masahiro Ibe, Kunio Kaneta, Phys. Rev. D90 (2014) 053011, arXiv:1407.2848.
[Ibe:2014pja]
[8-324]
Implications of Fermi-LAT observations on the origin of IceCube neutrinos, Bin Wang, Xiao-Hong Zhao, Zhuo Li, JCAP 1411 (2014) 028, arXiv:1407.2536.
[Wang:2014jca]
[8-325]
Neutrino Lighthouse at Sagittarius A*, Y. Bai et al., Phys. Rev. D90 (2014) 063012, arXiv:1407.2243.
[Bai:2014kba]
[8-326]
Flavor Ratios and Mass Hierarchy at Neutrino Telescopes, Lingjun Fu, Chiu Man Ho, arXiv:1407.1090, 2014.
[Fu:2014gja]
[8-327]
Structured jets in BL Lac objects: efficient PeV neutrino factories?, F. Tavecchio, G. Ghisellini, D. Guetta, Astrophys. J. 793 (2014) L18, arXiv:1407.0907.
[Tavecchio:2014iza]
[8-328]
Self-gravity in neutrino-dominated accretion disks, Tong Liu, Xiao-Fei Yu, Wei-Min Gu, Ju-Fu Lu, Astrophys.J. 791 (2014) 69, arXiv:1407.0790.
[Liu:2014xya]
[8-329]
A Relational Argument for a $\sim$PeV Neutrino Energy Cutoff, John G. Learned, Thomas J. Weiler, arXiv:1407.0739, 2014.
[Learned:2014vya]
[8-330]
Hybrid C-O-Ne white dwarfs as progenitors of type Ia supernovae: dependence on Urca process and mixing assumptions, P. Denissenkov et al., arXiv:1407.0248, 2014.
[1407.0248]
[8-331]
On the possible observational signatures of white dwarf dynamical interactions, G. Aznar-Siguan, E. Garcia-Berro, M. Magnien, P. Loren-Aguilar, Mon.Not.Roy.Astron.Soc. 443 (2014) 2372, arXiv:1407.0200.
[Aznar-Siguan:2014zja]
[8-332]
Constraints on The Hadronic Content of Gamma Ray Bursts, Lee Yacobi, Dafne Guetta, Ehud Behar, Astrophys.J. 793 (2014) 48, arXiv:1407.0155.
[Yacobi:2014vja]
[8-333]
Estimating non-linear QCD effects in ultrahigh energy neutrino events at IceCube, V.P. Goncalves, D. R. Gratieri, Phys. Rev. D90 (2014) 057502, arXiv:1406.5890.
[Goncalves:2014woa]
[8-334]
Measuring Speed of Gravitational Waves by Observations of Photons and Neutrinos from Compact Binary Mergers and Supernovae, Atsushi Nishizawa, Takashi Nakamura, Phys. Rev. D90 (2014) 044048, arXiv:1406.5544.
[Nishizawa:2014zna]
[8-335]
Neutrino Emission in Jet Propagation Process, D. Xiao, Z. G. Dai, Astrophys.J. 790 (2014) 59, arXiv:1406.2792.
[Xiao:2014vga]
[8-336]
Photopion Production in Black-Hole Jets and Flat-Spectrum Radio Quasars as PeV Neutrino Sources, Charles D. Dermer, Kohta Murase, Yoshiyuki Inoue, JHEAp 3-4 (2014) 29-40, arXiv:1406.2633.
[Dermer:2014vaa]
[8-337]
Statistical approaches in search for astrophysical neutrino sources with Baikal deep underwater telescopes, O.V. Suvorova, T.A. Ovsiannikova (Baikal), arXiv:1406.2478, 2014.
[Suvorova:2014laa]
[8-338]
Pinpointing Extragalactic Neutrino Sources in Light of Recent IceCube Observations, Markus Ahlers, Francis Halzen, Phys. Rev. D90 (2014) 043005, arXiv:1406.2160.
[Ahlers:2014ioa]
[8-339]
The diffuse gamma-ray flux associated with sub-PeV/PeV neutrinos from starburst galaxies, Xiao-Chuan Chang, Xiang-Yu Wang, Astrophys.J. 793 (2014) 131, arXiv:1406.1099.
[Chang:2014hua]
[8-340]
TANAMI Blazars in the IceCube PeV Neutrino Fields, F. Kraus et al., Astron.Astrophys. 566 (2014) L7, arXiv:1406.0645.
[Krauss:2014tna]
[8-341]
High-energy neutrinos from radio galaxies, J. Becker Tjus, B. Eichmann, F. Halzen, A. Kheirandish, S.M. Saba, Phys. Rev. D89 (2014) 123005, arXiv:1406.0506.
[Tjus:2014dna]
[8-342]
Are both BL Lacs and pulsar wind nebulae the astrophysical counterparts of IceCube neutrino events?, P. Padovani, E. Resconi, Mon.Not.Roy.Astron.Soc. 443 (2014) 474-484, arXiv:1406.0376.
[Padovani:2014bha]
[8-343]
What IceCube data tell us about neutrino emission from star-forming galaxies (so far), Luis A. Anchordoqui, Thomas C. Paul, Luiz H. M. da Silva, Diego F. Torres, Brian J. Vlcek, Phys. Rev. D89 (2014) 127304, arXiv:1405.7648.
[Anchordoqui:2014yva]
[8-344]
(In)direct Detection of Boosted Dark Matter, Kaustubh Agashe, Yanou Cui, Lina Necib, Jesse Thaler, JCAP 1410 (2014) 062, arXiv:1405.7370.
[Agashe:2014yua]
[8-345]
Origin Of The High Energy Cosmic Neutrino Background, Shlomo Dado, Arnon Dar, Phys. Rev. Lett. 113 (2014) 191102, arXiv:1405.5487.
[Dado:2014mea]
[8-346]
Neutrino yield from Galactic cosmic rays, M. Kachelriess, S. Ostapchenko, Phys. Rev. D90 (2014) 083002, arXiv:1405.3797.
[Kachelriess:2014oma]
[8-347]
Galaxy Mergers as a Source of Cosmic Rays, Neutrinos, and Gamma Rays, Kazumi Kashiyama, Peter Meszaros, Astrophys.J. 790 (2014) L14, arXiv:1405.3262.
[Kashiyama:2014rza]
[8-348]
What IceCube neutrinos teach us about the GRB location, Maria Petropoulou, Dimitrios Giannios, Stavros Dimitrakoudis, Mon.Not.Roy.Astron.Soc. 445 (2014) 570-580, arXiv:1405.2091.
[Petropoulou:2014lja]
[8-349]
A generalized self-veto probability for atmospheric neutrinos, Thomas K. Gaisser, Kyle Jero, Albrecht Karle, Jakob van Santen, Phys. Rev. D90 (2014) 023009, arXiv:1405.0525.
[Gaisser:2014bja]
[8-350]
Supernova Relic Neutrinos and the Supernova Rate Problem: Analysis of Uncertainties and Detectability of ONeMg and Failed Supernovae, Grant J. Mathews, Jun Hidaka, Toshitaka Kajino, Jyutaro Suzuki, Astrophys.J. 790 (2014) 115, arXiv:1405.0458.
[Mathews:2014qba]
[8-351]
Propagation of Superluminal PeV IceCube Neutrinos: A High Energy Spectral Cutoff or New Constraints on Lorentz Invariance Violation, Floyd W. Stecker, Sean T. Scully, Phys. Rev. D90 (2014) 043012, arXiv:1404.7025.
[Stecker:2014xja]
[8-352]
Is the Ultra-High Energy Cosmic-Ray Excess Observed by the Telescope Array Correlated with IceCube Neutrinos?, Ke Fang, Toshihiro Fujii, Tim Linden, Angela V. Olinto, Astrophys.J. 794 (2014) 126, arXiv:1404.6237.
[Fang:2014uja]
[8-353]
Crossing muons in Icecube at highest energy: Cornerstone to neutrino astronomy, D. Fargion, Nucl. Phys. Proc. Suppl. 256-257 (2014) 213-217, arXiv:1404.5914.
[Fargion:2014mda]
[8-354]
Galactic PeV neutrinos from dark matter annihilation, Jesus Zavala, Phys. Rev. D89 (2014) 123516, arXiv:1404.2932.
[Zavala:2014dla]
[8-355]
Cosmic neutrino cascades from secret neutrino interactions, Kenny C. Y. Ng, John F. Beacom, Phys. Rev. D90 (2014) 065035, arXiv:1404.2288.
[Ng:2014pca]
[8-356]
IceCube PeV-EeV Neutrinos and Secret Interactions of Neutrinos, Kunihto Ioka, Kohta Murase, PTEP 2014 (2014) 061E01, arXiv:1404.2279.
[Ioka:2014kca]
[8-357]
Gamma-ray and neutrino fluxes form Heavy Dark Matter in the Galactic Center, V. Gammaldi, J. A. R. Cembranos, A. de la Cruz-Dombriz, R. A. Lineros, A. L. Maroto, Phys.Procedia 61 (2015) 694-703, arXiv:1404.2067. TAUP2013.
[Gammaldi:2014yva]
[8-358]
Star-forming galaxies as the origin of diffuse high-energy backgrounds: Gamma-ray and neutrino connections, and implications for starburst history, Irene Tamborra, Shin'ichiro Ando, Kohta Murase, JCAP 1409 (2014) 043, arXiv:1404.1189.
[Tamborra:2014xia]
[8-359]
End of the cosmic neutrino energy spectrum, L. A. Anchordoqui et al., Phys.Lett. B739 (2014) 99-101, arXiv:1404.0622.
[Anchordoqui:2014hua]
[8-360]
On the flavor composition of the high energy neutrino events in IceCube, Olga Mena, Sergio Palomares-Ruiz, Aaron C. Vincent, Phys. Rev. Lett. 113 (2014) 091103, arXiv:1404.0017.
[Mena:2014sja]
[8-361]
Large Scale Anisotropy of Cosmic Rays and Directional Neutrino Signals from Galactic Sources, Luis A. Anchordoqui et al., J. Phys. Conf. Ser. 531 (2014) 012009, arXiv:1403.6628. Proceedings of the 2nd Cosmic Ray Anisotropy Workshop, 26-28 September 2013, Madison, Wisconsin. To appear in IOP Conference Series.
[Anchordoqui:2014hia]
[8-362]
Neutrino fluxes from Dark Matter in the HESS J1745-290 source at the Galactic Center, J. A. R. Cembranos, V. Gammaldi, A. L. Maroto, Phys. Rev. D90 (2014) 043004, arXiv:1403.6018.
[Cembranos:2014yqa]
[8-363]
Diffuse Neutrino Intensity from the Inner Jets of Active Galactic Nuclei: Impacts of External Photon Fields and the Blazar Sequence, Kohta Murase, Yoshiyuki Inoue, Charles D. Dermer, Phys. Rev. D90 (2014) 023007, arXiv:1403.4089.
[Murase:2014foa]
[8-364]
Cosmic backgrounds due to the formation of the first generation of supermassive black holes, Peter L. Biermann et al., Mon.Not.Roy.Astron.Soc. 441 (2014) 1147, arXiv:1403.3804.
[Biermann:2014lna]
[8-365]
A Galactic Halo Origin of the Neutrinos Detected by IceCube, Andrew M. Taylor, Stefano Gabici, Felix Aharonian, Phys. Rev. D89 (2014) 103003, arXiv:1403.3206.
[Taylor:2014hya]
[8-366]
A two-zone approach to neutrino production in gamma-ray bursts, Matias M. Reynoso, Astron.Astrophys. 564 (2014) A74, arXiv:1403.3020.
[Reynoso:2014yoa]
[8-367]
Reconciling neutrino flux from heavy dark matter decay and recent events at IceCube, Atri Bhattacharya, Mary Hall Reno, Ina Sarcevic, JHEP 1406 (2014) 110, arXiv:1403.1862.
[Bhattacharya:2014vwa]
[8-368]
Impact of Secondary Acceleration in Gamma-Ray Bursts, Walter Winter, Julia Becker Tjus, Spencer R. Klein, Astron.Astrophys. 569 (2014) A58, arXiv:1403.0574.
[Winter:2014tta]
[8-369]
Neutrino and Cosmic-Ray Release from Gamma-Ray Bursts: Time-Dependent Simulations, Katsuaki Asano, Peter Meszaros, Astrophys.J. 785 (2014) 54, arXiv:1402.6057.
[Asano:2014nba]
[8-370]
First calculation of cosmic-ray muon spallation backgrounds for MeV astrophysical neutrino signals in Super-Kamiokande, Shirley Weishi Li, John F. Beacom, Phys. Rev. C89 (2014) 045801, arXiv:1402.4687.
[Li:2014sea]
[8-371]
Gamma-ray fluxes from the core emission of Centaurus A: A puzzle solved, Nissim Fraija, Mon.Not.Roy.Astron.Soc. 441 (2014) 1209, arXiv:1402.4558.
[Fraija:2014jea]
[8-372]
Higher order dark matter annihilations in the Sun and implications for IceCube, Alejandro Ibarra, Maximilian Totzauer, Sebastian Wild, JCAP 1404 (2014) 012, arXiv:1402.4375.
[Ibarra:2014vya]
[8-373]
Searching for tau neutrinos with Cherenkov telescopes, D. Gora, E. Bernardini, A. Kappes, Astropart.Phys. 61 (2014) 12-16, arXiv:1402.4243.
[Gora:2014lya]
[8-374]
Heavy Quark Production in Ultra High Energy Cosmic Rays Interactions, V.P. Goncalves, D. R. Gratieri, Astropart.Phys. 61 (2014) 41-46, arXiv:1402.0418.
[Goncalves:2014qia]
[8-375]
Cloaked Gamma Ray Bursts, David Eichler, Astrophys.J. 787 (2014) L32, arXiv:1402.0245.
[Eichler:2014eia]
[8-376]
Precision Measurement of Low-Energy Antiprotons with GAPS for Dark Matter and Primordial Black Hole Physics, T. Aramaki et al., Astropart.Phys. 59 (2014) 12-17, arXiv:1401.8245.
[Aramaki:2014oda]
[8-377]
Indirect Detection Analysis: Wino Dark Matter Case Study, Andrzej Hryczuk, Ilias Cholis, Roberto Iengo, Maryam Tavakoli, Piero Ullio, JCAP 1407 (2014) 031, arXiv:1401.6212.
[Hryczuk:2014hpa]
[8-378]
Can new heavy gauge bosons be observed in ultra-high energy cosmic neutrino events?, T. Jezo et al., Phys. Rev. D89 (2014) 077702, arXiv:1401.6012.
[Jezo:2014kla]
[8-379]
Are gamma-ray bursts the sources of ultra-high energy cosmic rays?, Philipp Baerwald, Mauricio Bustamante, Walter Winter, Astropart.Phys. 62 (2015) 66-91, arXiv:1401.1820.
[Baerwald:2014zga]
[8-380]
Propogation and Neutrino Oscillations in the base of a highly magnetized gamma-ray burst fireball flow, Nissim Fraija, Astrophys.J. 787 (2014) 140, arXiv:1401.1581.
[Fraija:2014pda]
[8-381]
Pinpointing the knee of cosmic rays with diffuse PeV gamma-rays and neutrinos, Y. Q. Guo, H. B. Hu, Q. Yuan, Z. Tian, X. J. Gao, Astrophys.J. 795 (2014) 100, arXiv:1312.7616.
[Guo:2013rya]
[8-382]
Gamma rays and neutrinos from a cosmic ray source in the Galactic Center region, A.D. Supanitsky, Phys. Rev. D89 (2014) 023501, arXiv:1312.7304.
[Supanitsky:2013ooa]
[8-383]
Correlation of $\gamma$-ray and high-energy cosmic ray fluxes from the giant lobes of Centaurus A, Nissim Fraija, Astrophys.J. 783 (2014) 44, arXiv:1312.6944.
[Fraija:2013goa]
[8-384]
Probing CP violation with the first ultra-high energy neutrinos from IceCube, Animesh Chatterjee, Moon Moon Devi, Monojit Ghosh, Reetanjali Moharana, Sushant K. Raut, Phys. Rev. D90 (2014) 073003, arXiv:1312.6593.
[Chatterjee:2013tza]
[8-385]
PPPC 4 DM$\nu$: A Poor Particle Physicist Cookbook for Neutrinos from DM annihilations in the Sun, Pietro Baratella et al., JCAP 1403 (2014) 053, arXiv:1312.6408.
[Baratella:2013fya]
[8-386]
IceCube, DeepCore, PINGU and the indirect search for supersymmetric dark matter, Paul Bergeron, Stefano Profumo, JCAP 1401 (2014) 026, arXiv:1312.4445.
[Bergeron:2013lya]
[8-387]
On the feasibility of RADAR detection of high-energy neutrino-induced showers in ice, Krijn D. de Vries, Kael Hanson, Thomas Meures, Astropart.Phys. 60 (2014) 25-31, arXiv:1312.4331.
[deVries:2013qwa]
[8-388]
Cosmic-Ray Neutrinos from the Decay of Long-Lived Particle and the Recent IceCube Result, Yohei Ema, Ryusuke Jinno, Takeo Moroi, Phys.Lett. B733 (2014) 120-125, arXiv:1312.3501.
[Ema:2013nda]
[8-389]
Strong neutrino cooling by cycles of electron capture and $\beta^-$ decay in neutron star crusts, Hendrik Schatz et al., Nature 505 (2014) 62-65, arXiv:1312.2513.
[Schatz:2013xea]
[8-390]
Production of Nickel-56 in black hole-neutron star merger accretion disk outflows, R. Surman, O.L. Caballero, G.C. McLaughlin, O. Just, H.-Th. Janka, J. Phys. G41 (2014) 044006, arXiv:1312.1199.
[Surman:2013sya]
[8-391]
Constraints on Self Interacting Dark Matter from IceCube Results, Ivone F.M. Albuquerque, Carlos P. de Los Heros, Denis S. Robertson, JCAP 1402 (2014) 047, arXiv:1312.0797.
[Albuquerque:2013xna]
[8-392]
Imprint of Multi-component Dark Matter on AMS-02, Chao-Qiang Geng, Da Huang, Lu-Hsing Tsai, Phys. Rev. D89 (2014) 055021, arXiv:1312.0366.
[Geng:2013nda]
[8-393]
Impact of Dark Matter Velocity Distributions on Capture Rates in the Sun, Koun Choi, Carsten Rott, Yoshitaka Itow, JCAP 1405 (2014) 049, arXiv:1312.0273.
[Choi:2013eda]
[8-394]
Neutrino Events at IceCube and the Fermi Bubbles, Cecilia Lunardini, Soebur Razzaque, Kristopher T. Theodoseau, Lili Yang, Phys. Rev. D90 (2014) 023016, arXiv:1311.7188.
[Lunardini:2013gva]
[8-395]
Probing Cosmic-Ray Ion Acceleration with Radio-Submm and Gamma-Ray Emission from Interaction-Powered Supernovae, Kohta Murase, Todd A. Thompson, Eran O. Ofek, Mon.Not.Roy.Astron.Soc. 440 (2014) 2528, arXiv:1311.6778.
[Murase:2013kda]
[8-396]
Geometric Compatibility of IceCube TeV-PeV Neutrino Excess and its Galactic Dark Matter Origin, Yang Bai, Ran Lu, Jordi Salvado, JHEP 01 (2016) 161, arXiv:1311.5864.
[Bai:2013nga]
[8-397]
Active Galactic Nuclei, Neutrinos, and Interacting Cosmic Rays in NGC 253 & NGC 1068, Tova M. Yoast-Hull, J. S. Gallagher III, Ellen G. Zweibel, John E. Everett, Astrophys.J. 780 (2014) 137, arXiv:1311.5586.
[Yoast-Hull:2013qfa]
[8-398]
The neutron star in Cassiopeia A: equation of state, superfluidity, and Joule heating, A. Bonanno, M. Baldo, G. F. Burgio, V. Urpin, Astron.Astrophys. 561 (2014) L5, arXiv:1311.2153.
[Bonanno:2013oua]
[8-399]
A decisive test for the young pulsar origin of ultrahigh energy cosmic rays with IceCube, Ke Fang, Kumiko Kotera, Kohta Murase, Angela V. Olinto, Phys. Rev. D90 (2014) 103005, arXiv:1311.2044.
[Fang:2013vla]
[8-400]
Neutrino and axion bounds from the globular cluster M5 (NGC 5904), Nicolas Viaux et al., Phys. Rev. Lett. 111 (2013) 231301, arXiv:1311.1669.
[Viaux:2013lha]
[8-401]
High-energy neutrino signals from the Sun in dark matter scenarios with internal bremsstrahlung, Alejandro Ibarra, Maximilian Totzauer, Sebastian Wild, JCAP 1312 (2013) 043, arXiv:1311.1418.
[Ibarra:2013eba]
[8-402]
One-zone SSC model for the core emission of Centaurus A revisited, Maria Petropoulou, Eva Lefa, Stavros Dimitrakoudis, Apostolos Mastichiadis, Astron.Astrophys. 562 (2014) A12, arXiv:1311.1119.
[Petropoulou:2013lwa]
[8-403]
The energy production rate density of cosmic rays in the local universe is $\sim10^{44-45}\rm erg~Mpc^{-3}~yr^{-1}$ at all particle energies, Boaz Katz, Eli Waxman, Todd Thompson, Abraham Loeb, arXiv:1311.0287, 2013.
[Katz:2013ooa]
[8-404]
Cosmic Ray Sampling of a Clumpy Interstellar Medium, Erin Boettcher, Ellen G. Zweibel, Tova M. Yoast-Hull, J. S. Gallagher III, ApJ, 779, 12 (2013) 12, arXiv:1311.0006.
[Boettcher:2013ika]
[8-405]
Self-consistent neutrino and UHE cosmic ray spectra from Mrk 421, Stavros Dimitrakoudis, Maria Petropoulou, Apostolos Mastichiadis, Astropart.Phys. 54 (2014) 61-66, arXiv:1310.7923.
[Dimitrakoudis:2013tpa]
[8-406]
Hadronic Gamma-Ray and Neutrino Emission from Cygnus X-3, N. Sahakyan, G. Piano, M. Tavani, Astrophys.J. 780 (2014) 29, arXiv:1310.7805.
[Sahakyan:2013opa]
[8-407]
Reevaluation of the Prospect of Observing Neutrinos from Galactic Sources in the Light of Recent Results in Gamma Ray and Neutrino Astronomy, M.C. Gonzalez-Garcia, F. Halzen, V. Niro, Astropart.Phys. 57-58 (2014) 39-48, arXiv:1310.7194.
[Gonzalez-Garcia:2013iha]
[8-408]
Detection of ultra high energy neutrinos by IceCube: Sterile neutrino scenario, Subhash Rajpoot, Sarira Sahu, Hsi Ching Wang, Eur.Phys.J. C74 (2014) 2936, arXiv:1310.7075.
[Rajpoot:2013dha]
[8-409]
Diffuse Neutrino Flux from Cosmic Ray Interactions in the Milky Way, Jagdish C. Joshi, Walter Winter, Nayantara Gupta, Mon.Not.Roy.Astron.Soc. 3414 (2014) 3419, arXiv:1310.5123.
[Joshi:2013aua]
[8-410]
Revolution at ICECUBE horizons, Daniele Fargion, Paolo Paggi, Nucl.Instrum.Meth. A753 (2014) 9-13, arXiv:1310.3543.
[Fargion:2013rma]
[8-411]
Diffuse PeV neutrinos from hypernova remnants in star-forming galaxies, Ruo-Yu Liu, Xiang-Yu Wang, Susumu Inoue, Roland Crocker, Felix Aharonian, Phys. Rev. D89 (2014) 083004, arXiv:1310.1263.
[Liu:2013wia]
[8-412]
Neutrino production from photo-hadronic interactions of the gamma flux from Active Galactic Nuclei with their gas content, J.C. Arteaga-Velazquez, Astroparticle Physics 37, (2012) 40-50, arXiv:1309.7080.
[Arteaga-Velazquez:2013jra]
[8-413]
Neutrinos from collapsars, Florencia L. Vieyro, Gustavo E. Romero, Orlando L. G. Peres, Astron. Astrophys. 558 (2013) A142, arXiv:1309.6043.
[Vieyro:2013lxa]
[8-414]
Probing the Galactic Origin of the IceCube Excess with Gamma-Rays, Markus Ahlers, Kohta Murase, Phys. Rev. D90 (2014) 023010, arXiv:1309.4077.
[Ahlers:2013xia]
[8-415]
The Galactic Center Origin of a Subset of IceCube Neutrino Events, Soebur Razzaque, Phys. Rev. D88 (2013) 081302, arXiv:1309.2756.
[Razzaque:2013uoa]
[8-416]
How to see an antistar, A.D. Dolgov, V.A. Novikov, M.I. Vysotsky, JETP Lett. 98 (2013) 519-522, arXiv:1309.2746.
[Dolgov:2013soa]
[8-417]
A Simple Explanation of the Ultra-high Energy Neutrino Events at IceCube, Chien-Yi Chen, P. S. Bhupal Dev, Amarjit Soni, Phys. Rev. D89 (2014) 033012, arXiv:1309.1764.
[Chen:2013dza]
[8-418]
Testing Relativity with High-Energy Astrophysical Neutrinos, Jorge S. Diaz, Alan Kostelecky, Matthew Mewes, Phys. Rev. D89 (2014) 043005, arXiv:1308.6344.
[Diaz:2013wia]
[8-419]
Direct detection and solar capture of spin-dependent dark matter, Zheng-Liang Liang, Yue-Liang Wu, Phys. Rev. D89 (2014) 013010, arXiv:1308.5897.
[Liang:2013dsa]
[8-420]
Improvement in Fast Particle Track Reconstruction with Robust Statistics, M. G. Aartsen et al., Nucl.Instrum.Meth. A736 (2014) 143-149, arXiv:1308.5501.
[Aartsen:2013bfa]
[8-421]
The Fermi Bubbles as a Scaled-up Version of Supernova Remnants, Yutaka Fujita, Yutaka Ohira, Ryo Yamazaki, Astrophys.J. 775 (2013) L20, arXiv:1308.5228.
[Fujita:2013jda]
[8-422]
Accretion and outflow from a magnetized, neutrino cooled torus around the gamma ray burst central engine, Agnieszka Janiuk, Patryk Mioduszewski, Monika Moscibrodzka, Astrophys.J. 776 (2013) 105, arXiv:1308.4823.
[Janiuk:2013lna]
[8-423]
Photon and Neutrino Spectra of Time-Dependent Photospheric Models of Gamma-Ray Bursts, K. Asano, P. Meszaros, JCAP 1309 (2013) 008, arXiv:1308.3563.
[Asano:2013jea]
[8-424]
Discovery of New Instability in a Hyperaccretion Flow and its Implication to Gamma-ray Bursts, Norita Kawanaka, Shin Mineshige, Tsvi Piran, Astrophys.J. 777 (2013) L15, arXiv:1308.3235.
[Kawanaka:2013zaa]
[8-425]
High-energy neutrino production from photo-hadronic interactions of gamma rays from Active Galactic Nuclei at source, J.C. Arteaga-Velazquez, Angelo Martinez, arXiv:1308.3209, 2013.
[Arteaga-Velazquez:2013yva]
[8-426]
The cooling of the Cassiopeia A neutron star as a probe of the nuclear symmetry energy and nuclear pasta, William G. Newton, Kyleah Murphy, Joshua Hooker, Bao-An Li, Astrophys.J. 779 (2013) L4, arXiv:1308.2137.
[Newton:2013zaa]
[8-427]
Establishing the astrophysical origin of a signal in a neutrino telescope, Paolo Lipari, arXiv:1308.2086, 2013.
[Lipari:2013taa]
[8-428]
Are IceCube neutrinos unveiling PeV-scale decaying dark matter?, Arman Esmaili, Pasquale Dario Serpico, JCAP 1311 (2013) 054, arXiv:1308.1105.
[Esmaili:2013gha]
[8-429]
Long-lived PeV-EeV Neutrinos from GRB Blastwave, Soebur Razzaque, Phys. Rev. D88 (2013) 103003, arXiv:1307.7596.
[Razzaque:2013dsa]
[8-430]
Indirect Searches for Decaying Dark Matter, Alejandro Ibarra, David Tran, Christoph Weniger, Int.J.Mod.Phys. A28 (2013) 1330040, arXiv:1307.6434.
[Ibarra:2013cra]
[8-431]
Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, J. Billard, L. Strigari, E. Figueroa-Feliciano, Phys. Rev. D89 (2014) 023524, arXiv:1307.5458.
[Billard:2013qya]
[8-432]
Establishing a relation between mass and spin of stellar mass black holes, Indrani Banerjee, Banibrata Mukhopadhyay, Phys. Rev. Lett. 111 (2013) 061101, arXiv:1307.4075.
[Banerjee:2013vla]
[8-433]
A peak in the cosmic ray spectrum at 4.5 PeV?, Robert Ehrlich, arXiv:1307.3944, 2013.
[Ehrlich:2013zea]
[8-434]
Photohadronic Origin of the TeV-PeV Neutrinos Observed in IceCube, Walter Winter, Phys. Rev. D88 (2013) 083007, arXiv:1307.2793.
[Winter:2013cla]
[8-435]
The Galactic Pevatron, A. Neronov, D.V. Semikoz, C. Tchernin, Phys. Rev. D89 (2014) 103002, arXiv:1307.2158.
[Neronov:2013lza]
[8-436]
TeV-PeV neutrinos over the atmospheric background: originating from two groups of sources?, Hao-Ning He, Rui-Zhi Yang, Yi-Zhong Fan, Da-Ming Wei, arXiv:1307.1450, 2013.
[He:2013zpa]
[8-437]
Neutrino-cooled Accretion Model with Magnetic Coupling for X-ray Flares in GRBs, Yang Luo, Wei-Min Gu, Tong Liu, Ju-Fu Lu, Astrophys.J. 773 (2013) 142, arXiv:1306.6690.
[Luo:2013kza]
[8-438]
Constraining Neutrino Velocities and Lorentz Invariance Violation in the Neutrino Sector using the IceCube PeV Neutrino Events, Floyd W. Stecker, Astropart.Phys. 56 (2014) 16, arXiv:1306.6095.
[Stecker:2013jfa]
[8-439]
Pinning down the cosmic ray source mechanism with new IceCube data, Luis A. Anchordoqui et al., Phys. Rev. D89 (2014) 083003, arXiv:1306.5021.
[Anchordoqui:2013qsi]
[8-440]
Imprint of Explosion Mechanism on Supernova Relic Neutrinos, Ken'ichiro Nakazato, Phys. Rev. D88 (2013) 083012, arXiv:1306.4526.
[Nakazato:2013maa]
[8-441]
On the Hadronuclear Origin of PeV Neutrinos Observed with IceCube, Kohta Murase, Markus Ahlers, Brian C. Lacki, Phys. Rev. D88 (2013) 121301, arXiv:1306.3417.
[Murase:2013rfa]
[8-442]
Measuring the Cooling of the Neutron Star in Cassiopeia A with all Chandra X-ray Observatory Detectors, K. G. Elshamouty et al., Astrophys.J. 777 (2013) 22, arXiv:1306.3387.
[Elshamouty:2013nfa]
[8-443]
Possible High-Energy Neutrino and Photon Signals from Gravitational Wave Bursts due to Double Neutron Star Mergers, He Gao, Bing Zhang, Xue-Feng Wu, Zi-Gao Dai, Phys. Rev. D88 (2013) 043010, arXiv:1306.3006.
[Gao:2013rxa]
[8-444]
Demystifying the PeV Cascades in IceCube: Less (Energy) is More (Events), Ranjan Laha, John F Beacom, Basudeb Dasgupta, Shunsaku Horiuchi, Kohta Murase, Phys. Rev. D 88, 043009 (2013) 043009, arXiv:1306.2309.
[Laha:2013lka]
[8-445]
TeV-PeV Neutrinos from Low-Power Gamma-Ray Burst Jets inside Stars, Kohta Murase, Kunihito Ioka, Phys. Rev. Lett. 111 (2013) 121102, arXiv:1306.2274.
[Murase:2013ffa]
[8-446]
Ultra High Energy Neutrinos: Absorption, Thermal Effects and Signatures, Cecilia Lunardini, Eray Sabancilar, Lili Yang, JCAP 08 (2013) 014, arXiv:1306.1808.
[Lunardini:2013iwa]
[8-447]
The fraction of muon tracks in cosmic neutrinos, Francesco Vissani, Giulia Pagliaroli, Francesco L. Villante, JCAP 1309 (2013) 017, arXiv:1306.0211.
[Vissani:2013iga]
[8-448]
A panchromatic view of the restless SN2009ip reveals the explosive ejection of a massive star envelope, R. Margutti et al., Astrophys.J. 780 (2014) 21, arXiv:1306.0038.
[Margutti:2013pfa]
[8-449]
Ice Cube Observed PeV Neutrinos from AGN Cores, Floyd W. Stecker, Phys. Rev. D 88, 047301 (2013) 047301, arXiv:1305.7404.
[Stecker:2013fxa]
[8-450]
Superheavy Particle Origin of IceCube PeV Neutrino Events, Vernon Barger, Wai-Yee Keung, Phys.Lett. B (2013) 190-193, arXiv:1305.6907.
[Barger:2013pla]
[8-451]
On the neutrino non-detection of GRB 130427A, Shan Gao, Kazumi Kashiyama, Peter Meszaros, Astrophys.J. 772 (2013) L4, arXiv:1305.6055.
[Gao:2013fra]
[8-452]
Double Neutrino Production and Detection in Neutrino Detectors, Don van der Drift, Spencer R. Klein, Phys. Rev. D88 (2013) 033013, arXiv:1305.5277.
[vanderDrift:2013zga]
[8-453]
Hadronic-Origin orphan TeV flare from the 1ES 1959+650, Sarira Sahu, Andres Felipe Osorio Oliveros, Juan Carlos Sanabria, Phys. Rev. D87 (2013) 103015, arXiv:1305.4985.
[Sahu:2013ixa]
[8-454]
Neutrino signals from ultracompact minihalos and constraints on the primordial curvature perturbation, Yupeng Yang, Guilin Yang, Hongshi Zong, Phys. Rev. D87 (2013) 103525, arXiv:1305.4213.
[Yang:2013dsa]
[8-455]
Galactic PeV Neutrinos, Nayantara Gupta, Astropart. Phys. 48 (2013) 75, arXiv:1305.4123.
[Gupta:2013xfa]
[8-456]
Neutrino signal from extended Galactic sources in IceCube, C. Tchernin, J.A. Aguilar, A. Neronov, T. Montaruli, Astron.Astrophys. 560 (2013) A67, arXiv:1305.4113.
[Tchernin:2013wfa]
[8-457]
An exploration of hadronic interactions in blazars using IceCube, C. Tchernin, J.A. Aguilar, A. Neronov, T. Montaruli, Astron.Astrophys. 555 (2013) A70, arXiv:1305.3524.
[Tchernin:2013bsa]
[8-458]
Revisiting the hot matter in the center of gamma-ray bursts and supernova, A. Li, T. Liu, Astron.Astrophys. 555 (2013) A129, arXiv:1305.2530.
[Li:2013daa]
[8-459]
On the Minimum Dark Matter Mass Testable by Neutrinos from the Sun, Giorgio Busoni, Andrea De Simone, Wei-Chih Huang, JCAP 1307 (2013) 010, arXiv:1305.1817.
[Busoni:2013kaa]
[8-460]
High energy emission of GRB 130427A: evidence for inverse Compton radiation, Yi-Zhong Fan et al., ApJ 776 (2013) 95, arXiv:1305.1261.
[Fan:2013zoa]
[8-461]
Combustion of a neutron star into a strange quark star: the neutrino signal, G. Pagliara, M. Herzog, F.K. Ropke, Phys. Rev. D 87, 103007 (2013) 103007, arXiv:1304.6884.
[Pagliara:2013tza]
[8-462]
Complementarity of direct and indirect Dark Matter detection experiments, Chiara Arina, Gianfranco Bertone, Hamish Silverwood, Phys. Rev. D88 (2013) 013002, arXiv:1304.5119.
[Arina:2013jya]
[8-463]
Diffuse emission of TeV Neutrinos and Gamma-rays from young pulsars by Photo-meson interaction in the galaxy, Zhi-Xiong Li, Gui-Fang Lin, Wei-Wei Na, Res. Astron. Astrophys. 13 (2013) 1097, arXiv:1304.3895.
[Li:2013kza]
[8-464]
Black Hole-Neutron Star Mergers with a Hot Nuclear Equation of State: Outflow and Neutrino-Cooled Disk for a Low-Mass, High-Spin Case, M. Brett Deaton et al., Astrophys.J. 776 (2013) 47, arXiv:1304.3384.
[Deaton:2013sla]
[8-465]
Neutron-Proton-Conversion Acceleration at Subphotospheres of Relativistic Outflows, Kazumi Kashiyama, Kohta Murase, Peter Meszaros, Phys. Rev. Lett. 111, 131103 (2013), arXiv:1304.1945.
[Kashiyama:2013ata]
[8-466]
Neutrinos at IceCube from Heavy Decaying Dark Matter, Brian Feldstein, Alexander Kusenko, Shigeki Matsumoto, Tsutomu T. Yanagida, Phys. Rev. D88 (2013) 015004, arXiv:1303.7320.
[Feldstein:2013kka]
[8-467]
Rapid cooling of Cas A as a phase transition in dense QCD, Armen Sedrakian, Astron. & Astrophys. 555, L10 (2013) L10, arXiv:1303.5380.
[Sedrakian:2013pva]
[8-468]
Invisible decays of ultra-high energy neutrinos, L. Dorame, O.G. Miranda, J.W.F. Valle, Front. Phys. 1 (2013) 25, arXiv:1303.4891.
[Dorame:2013lka]
[8-469]
Back-to-Back Black Holes decay Signature at Neutrino Observatories, Nicusor Arsene, Xavier Calmet, Lauretiu Ioan Caramete, Octavian Micu, Astropart.Phys. 54 (2014) 132-138, arXiv:1303.4603.
[Arsene:2013nca]
[8-470]
Probing the Dark Matter mass and nature with neutrinos, Mattias Blennow, Marcus Carrigan, Enrique Fernandez Martinez, JCAP 1306 (2013) 038, arXiv:1303.4530.
[Blennow:2013pya]
[8-471]
Ultra-relativistic, neutrino driven flows in GRBs: A double transonic flow solution in Schwarzschild spacetime, Amir Levinson, Noemie Globus, Astrophys.J. 770 (2013) 159, arXiv:1303.4261.
[Levinson:2013mwa]
[8-472]
Quasi-Thermal Neutrinos from Rotating Proto-Neutron Stars, Kohta Murase, Basudeb Dasgupta, Todd A. Thompson, Phys. Rev. D89 (2014) 043012, arXiv:1303.2612.
[Murase:2013mpa]
[8-473]
The Strategy of Discrimination between Flavors for Detection of Cosmogenic Neutrinos, Kwang-Chang Lai, Chih-Ching Chen, Pisin Chen, Nucl. Phys. Proc. Suppl. 246-247 (2014) 95-98, arXiv:1303.1949.
[Lai:2013kja]
[8-474]
Possible relevance of quantum spacetime for neutrino-telescope data analyses, Giovanni Amelino-Camelia, Dafne Guetta, Tsvi Piran, arXiv:1303.1826, 2013.
[Amelino-Camelia:2013jga]
[8-475]
Diffuse PeV neutrino emission from Ultra-Luminous Infrared Galaxies, Hao-Ning He, Tao Wang, Yi-Zhong Fan, Si-Ming Liu, Da-Ming Wei, Phys. Rev. D87 (2013) 063011, arXiv:1303.1253.
[He:2013cqa]
[8-476]
PeV neutrinos from intergalactic interactions of cosmic rays emitted by active galactic nuclei, Oleg E. Kalashev, Alexander Kusenko, Warren Essey, Phys. Rev. Lett. 111, 041103 (2013) 041103, arXiv:1303.0300.
[Kalashev:2013vba]
[8-477]
Constraining GRB as Source for UHE Cosmic Rays through Neutrino Observations, Pisin Chen, EAS Publ.Ser. 61 (2013) 647-655, arXiv:1302.5319.
[Chen:2013vna]
[8-478]
Is the Galactic Cosmic Ray Spectrum Constant in Time?, David Eichler, Rahul Kumar, Martin Pohl, Astrophys.J. 769 (2013) 138, arXiv:1302.5112.
[Eichler:2013sma]
[8-479]
Upper bounds on r-mode amplitudes from observations of LMXB neutron stars, Simin Mahmoodifar, Tod Strohmayer, Astrophys.J. 773 (2013) 140, arXiv:1302.1204.
[Mahmoodifar:2013quw]
[8-480]
Limits on the source properties of FR-I galaxies from high-energy neutrino and gamma observations, Isaac Saba, Julia Becker Tjus, Francis Halzen, Astropart.Phys. 48 (2013) 30-36, arXiv:1302.1015.
[Saba:2013ke]
[8-481]
Rapid Spin Deceleration of Magnetized Proto-Neutron Stars via Asymmetric Neutrino Emission, T. Maruyama et al., Phys. Rev. C89 (2014) 035801, arXiv:1301.7495.
[Maruyama:2013rt]
[8-482]
UHECR escape mechanisms for protons and neutrons from GRBs, and the cosmic ray-neutrino connection, Philipp Baerwald, Mauricio Bustamante, Walter Winter, Astrophys.J. 768 (2013) 186, arXiv:1301.6163.
[Baerwald:2013pu]
[8-483]
Astrophysical neutrino flavor ratios in the presence of sterile neutrinos, D. Hollander, arXiv:1301.5313, 2013.
[Hollander:2013im]
[8-484]
Subphotospheric Neutrinos from Gamma-Ray Bursts: The Role of Neutrons, Kohta Murase, Kazumi Kashiyama, Peter Meszaros, Phys. Rev. Lett. 111 (2013) 131102, arXiv:1301.4236.
[Murase:2013hh]
[8-485]
Detection Prospects for GeV Neutrinos from Collisionally Heated Gamma-ray Bursts with IceCube/DeepCore, Imre Bartos, Andrei Beloborodov, Kevin Hurley, Szabolcs Marka, Phys. Rev. Lett. 110 (2013) 241101, arXiv:1301.4232.
[Bartos:2013hf]
[8-486]
Effects of Beyond Standard Model Physics on GRB Neutrinos, Reetanjali Moharana, Debasish Borah, arXiv:1301.4097, 2013.
[Moharana:2013an]
[8-487]
Cosmic PeV Neutrinos and the Sources of Ultrahigh Energy Protons, Matthew D. Kistler, Todor Stanev, Hasan Yuksel, Phys. Rev. D90 (2014) 123006, arXiv:1301.1703.
[Kistler:2013my]
[8-488]
Uncovering neutrinos from cosmic ray factories: the Multi Point Source method, Yolanda Sestayo, Elisa Resconi, Astropart.Phys. 44 (2013) 15-23, arXiv:1301.1529.
[Sestayo:2013hb]
[8-489]
The Cosmic MeV Neutrino Background as a Laboratory for Black Hole Formation, Hasan Yuksel, Matthew D. Kistler, Phys. Lett. B751 (2015) 413-417, arXiv:1212.4844.
[Yuksel:2012zy]
[8-490]
The propagation of neutrino-driven jets in Wolf-Rayet stars, Hiroki Nagakura, Astrophys.J. 764 (2013) 139, arXiv:1212.4407.
[Nagakura:2012mt]
[8-491]
How Gravitational-wave Observations Can Shape the Gamma-ray Burst Paradigm, Imre Bartos, Patrick Brady, Szabolcs Marka, Class.Quant.Grav. 30 (2013) 123001, arXiv:1212.2289.
[Bartos:2012vd]
[8-492]
Bayesian Approach for a Neutrino Point Source Analysis, Debanjan Bose, Lionel Brayeur, Martin Casier, Geraldina Golup, Nick van Eijndhoven, Astroparticle Physics 50-52C (2013) , pp. 57-64, arXiv:1212.2008.
[Bose:2012qh]
[8-493]
Estimation of the neutrino flux and resulting constraints on hadronic emission models for Cyg X-3 using AGILE data, Philipp Baerwald, Dafne Guetta, ApJ 773, 159 (2013) 159, arXiv:1212.1457.
[Baerwald:2012yd]
[8-494]
Diffuse PeV neutrinos from gamma-ray bursts, Ruo-Yu Liu, Xiang-Yu Wang, Astrophys.J. 766 (2013) 73, arXiv:1212.1260.
[Liu:2012pf]
[8-495]
Influence of the photonuclear effect on electron-neutrino-induced electromagnetic cascades under the Landau-Pomeranchuk-Migdal regime in standard rock, Mathieu Tartare, Didier Lebrun, Francois Montanet, Phys. Rev. D86 (2012) 033005, arXiv:1211.6992.
[Tartare:2012zz]
[8-496]
Jet Luminosity From Neutrino-Dominated Accretion Flows in Gamma-Ray Bursts, Norita Kawanaka, Tsvi Piran, Julian H. Krolik, Astrophys.J. 766 (2013) 31, arXiv:1211.5110.
[Kawanaka:2012ub]
[8-497]
The vertical composition of neutrino-dominated accretion disks in gamma-ray bursts, Tong Liu, Li Xue, Wei-Min Gu, Ju-Fu Lu, Astrophys. J. 762 (2013) 102, arXiv:1211.2206.
[Liu:2012qca]
[8-498]
On The Origin of IceCube's PeV Neutrinos, Ilias Cholis, Dan Hooper, JCAP 06 (2013) 030, arXiv:1211.1974.
[Cholis:2012kq]
[8-499]
Gamma-ray bursts and the relevance of rotation-induced neutrino sterilization, D. V. Ahluwalia, Cheng-Yang Lee, Phys. Lett. B719 (2013) 218-219, arXiv:1210.8435.
[Ahluwalia:2012dj]
[8-500]
High energy neutrino and gamma ray transients from relativistic supernova shock breakouts, Kazumi Kashiyama, Kohta Murase, Shunsaku Horiuchi, Shan Gao, Peter Meszaros, Astrophys.J. 769 (2013) L6, arXiv:1210.8147.
[Kashiyama:2012zn]
[8-501]
Hadronic Models for LAT Prompt Emission Observed in Fermi Gamma-Ray Bursts, Patrick Crumley, Pawan Kumar, Mon.Not.Roy.Astron.Soc. 429 (2013) 3238, arXiv:1210.7802.
[Crumley:2012ra]
[8-502]
Fermi Limit of the Neutrino Flux from Gamma-ray Bursts, Zhuo Li, Astrophys.J. 770 (2013) L40, arXiv:1210.6594.
[Li:2012gf]
[8-503]
Neutrino Acceleration by Bulk Matter Motion and Explosion Mechanism of Gamma-Ray Bursts, Yudai Suwa, Mon.Not.Roy.Astron.Soc. 428 (2013) 2443, arXiv:1210.4162.
[Suwa:2012gi]
[8-504]
High Energy Neutrinos from Dissipative Photospheric Models of Gamma Ray Bursts, Shan Gao, Katsuaki Asano, Peter Meszaros, JCAP 1211 (2012) 058, arXiv:1210.1186.
[Gao:2012ay]
[8-505]
High-energy neutrino emission in gravitational collapses, Ehsan Bavarsad, She-Sheng Xue, arXiv:1210.0817, 2012.
[Bavarsad:2012ta]
[8-506]
Model-dependent high-energy neutrino flux from Gamma-Ray Bursts, Bing Zhang, Pawan Kumar, Physical Review Letters, vol. 110, Issue 12, id. 121101 (2013) 121101, arXiv:1210.0647.
[Zhang:2012qy]
[8-507]
Sensitivities of IceCube DeepCore Detector to Signatures of Low-Mass Dark Matter in the Galactic Halo, Fei-Fan Lee, Guey-Lin Lin, Yue-Lin Sming Tsai, Phys. Rev. D87 (2013) 025003, arXiv:1209.6226.
[Lee:2012pz]
[8-508]
Radioactive UHECR Astronomy: Correlating gamma anisotropy and neutrino PeV events, Daniele Fargion, Acta Polytech. 53 (2013) 718-723, arXiv:1209.6090.
[Fargion:2012mw]
[8-509]
Explanation for the low flux of high energy astrophysical muon-neutrinos, Sandip Pakvasa, Anjan Joshipura, Subhendra Mohanty, Nucl. Phys. Proc. Suppl. 246-247 (2014) 85-89, arXiv:1209.5630.
[Pakvasa:2012db]
[8-510]
Cosmic Neutrino Flavor Ratios with Broken $\nu_\mu-\nu_\tau$ Symmetry, Lingjun Fu, Chiu Man Ho, Thomas J. Weiler, Phys. Lett. B718 (2012) 558-565, arXiv:1209.5382.
[Fu:2012zr]
[8-511]
Indirect Probes of Supersymmetry Breaking in the JEM-EUSO Observatory, Ivone F. M. Albuquerque, Jairo Cavalcante de Souza, Phys. Rev. D87 (2013) 015018, arXiv:1209.4866.
[Albuquerque:2012qz]
[8-512]
PeV neutrinos from the propagation of ultra-high energy cosmic rays, Esteban Roulet, Guenter Sigl, Arjen van Vliet, Silvia Mollerach, JCAP 1301 (2013) 028, arXiv:1209.4033.
[Roulet:2012rv]
[8-513]
On the interpretation of IceCube cascade events in terms of the Glashow resonance, Atri Bhattacharya, Raj Gandhi, Werner Rodejohann, Atsushi Watanabe, arXiv:1209.2422, 2012.
[Bhattacharya:2012fh]
[8-514]
Galaxy Clusters as Reservoirs of Heavy Dark Matter and High-Energy Cosmic Rays: Constraints from Neutrino Observations, Kohta Murase, John F. Beacom, JCAP 1302 (2013) 028, arXiv:1209.0225.
[Murase:2012rd]
[8-515]
GeV-TeV gamma-rays and neutrinos from the Nova V407 Cygni, Julian Sitarek, Wlodek Bednarek, Phys. Rev. D86 (2012) 063011, arXiv:1208.6200.
[Sitarek:2012cp]
[8-516]
A two-component model for the high-energy variability of blazars. Application to PKS 2155-304, Matias M. Reynoso, Gustavo E. Romero, Maria C. Medina, Astron.Astrophys. 545 (2012) A125, arXiv:1208.5284.
[Reynoso:2012wx]
[8-517]
Neutrino Decays over Cosmological Distances and the Implications for Neutrino Telescopes, Philipp Baerwald, Mauricio Bustamante, Walter Winter, JCAP 1210 (2012) 020, arXiv:1208.4600.
[Baerwald:2012kc]
[8-518]
Minimal Cosmogenic Neutrinos, Markus Ahlers, Francis Halzen, Phys. Rev. D86 (2012) 083010, arXiv:1208.4181.
[Ahlers:2012rz]
[8-519]
Bremsstrahlung signatures of dark matter annihilation in the Sun, Keita Fukushima, Yu Gao, Jason Kumar, Danny Marfatia, Phys. Rev. D86 (2012) 076014, arXiv:1208.1010.
[Fukushima:2012sp]
[8-520]
A novel way of constraining WIMPs annihilations in the Sun: MeV neutrinos, Nicolas Bernal, Justo Martin-Albo, Sergio Palomares-Ruiz, JCAP 1308 (2013) 011, arXiv:1208.0834.
[Bernal:2012qh]
[8-521]
New Sensitivity to Solar WIMP Annihilation using Low-Energy Neutrinos, Carsten Rott, Jennifer Siegal-Gaskins, John F. Beacom, Physical Review D 88, 055005 (2013) 055005, arXiv:1208.0827.
[Rott:2012qb]
[8-522]
Fast time variations of supernova neutrino signals from 3-dimensional models, Tina Lund, Annop Wongwathanarat, Hans-Thomas Janka, Ewald Muller, Georg Raffelt, Phys. Rev. D86 (2012) 105031, arXiv:1208.0043.
[Lund:2012vm]
[8-523]
Implications of ultra-high energy neutrino flux constraints for Lorentz-invariance violating cosmogenic neutrinos, P. W. Gorham et al., Phys. Rev. D86 (2012) 103006, arXiv:1207.6425.
[Gorham:2012qs]
[8-524]
Potential of a Neutrino Detector in the ANDES Underground Laboratory for Geophysics and Astrophysics of Neutrinos, P. A. N. Machado, T. Muhlbeier, H. Nunokawa, R. Zukanovich Funchal, Phys. Rev. D86 (2012) 125001, arXiv:1207.5454.
[Machado:2012ee]
[8-525]
IceCube Neutrino Initiated Cascade Events: PeV Electron-antineutrinos at Glashow Resonance, V. Barger, J. Learned, S. Pakvasa, Phys. Rev. D87 (2013) 037302, arXiv:1207.4571.
[Barger:2012mz]
[8-526]
Multi-Component Dark Matter Systems and Their Observation Prospects, Mayumi Aoki, Michael Duerr, Jisuke Kubo, Hiroshi Takano, Phys. Rev. D86 (2012) 076015, arXiv:1207.3318.
[Aoki:2012ub]
[8-527]
Search for a dark matter particle family, Yukio Tomozawa, arXiv:1207.2465, 2012.
[Tomozawa:2012vf]
[8-528]
Use of event-level neutrino telescope data in global fits for theories of new physics, P. Scott et al. (IceCube), JCAP JCAP11 (2012) 057, arXiv:1207.0810.
[Scott:2012mq]
[8-529]
Leptonic CP violation and mixing patterns at neutrino telescopes, Davide Meloni, Tommy Ohlsson, Phys. Rev. D86 (2012) 067701, arXiv:1206.6886.
[Meloni:2012nk]
[8-530]
Gamma Ray Bursts Scaling Relations to test cosmological models, S. Capozziello et al., arXiv:1206.6700, 2012.
[Capozziello:2012fp]
[8-531]
CRPropa 2.0 - a Public Framework for Propagating High Energy Nuclei, Secondary Gamma Rays and Neutrinos, Karl-Heinz Kampert et al., Astropart. Phys. 42 (2013) 41-51, arXiv:1206.3132.
[Kampert:2012fi]
[8-532]
Neutrino signals from electroweak bremsstrahlung in solar WIMP annihilation, Nicole F. Bell, Amelia J. Brennan, Thomas D. Jacques, JCAP 1210 (2012) 045, arXiv:1206.2977.
[Bell:2012dk]
[8-533]
Cosmic Strings as Emitters of Extremely High Energy Neutrinos, Cecilia Lunardini, Eray Sabancilar, Phys. Rev. D86 (2012) 085008, arXiv:1206.2924.
[Lunardini:2012ct]
[8-534]
Constraining Very Heavy Dark Matter Using Diffuse Backgrounds of Neutrinos and Cascaded Gamma Rays, Kohta Murase, John F. Beacom, JCAP 1210 (2012) 043, arXiv:1206.2595.
[Murase:2012xs]
[8-535]
Searching for the High Energy Neutrino counterpart of the Fermi Bubbles signal or from Dark Matter annihilation, Ilias Cholis, Phys. Rev. D 88, 063524 (2013) 063524, arXiv:1206.1607.
[Cholis:2012fr]
[8-536]
Neutrinos in IceCube/KM3NeT as probes of Dark Matter Substructures in Galaxy Clusters, Basudeb Dasgupta, Ranjan Laha, Phys. Rev. D86 (2012) 093001, arXiv:1206.1322.
[Dasgupta:2012bd]
[8-537]
Probing the Structure of Jet Driven Core-Collapse Supernova and Long Gamma Ray Burst Progenitors with High Energy Neutrinos, Imre Bartos, Basudeb Dasgupta, Szabolcs Marka, Phys. Rev. D86 (2012) 083007, arXiv:1206.0764.
[Bartos:2012sg]
[8-538]
Gravitational Wave Signatures of Hyperaccreting Collapsar Disks, Kei Kotake, Tomoya Takiwaki, Seiji Harikae, Astrophys. J. 755 (2012) 84, arXiv:1205.6061.
[Kotake:2012it]
[8-539]
Gamma-Ray and Neutrino Backgrounds as Probes of the High-Energy Universe: Hints of Cascades, General Constraints, and Implications for TeV Searches, Kohta Murase, John F. Beacom, Hajime Takami, JCAP 1208 (2012) 030, arXiv:1205.5755.
[Murase:2012df]
[8-540]
Probing the stability of superheavy dark matter particles with high-energy neutrinos, Arman Esmaili, Alejandro Ibarra, Orlando L. G. Peres, JCAP 1211 (2012) 034, arXiv:1205.5281.
[Esmaili:2012us]
[8-541]
A reduction in the UHE neutrino flux due to neutrino spin precession, J. Barranco, O. G. Miranda, C. A. Moura, A. Parada, Phys. Lett. B718 (2012) 26-29, arXiv:1205.4285.
[Barranco:2012xj]
[8-542]
Neutrinos And Cosmic Rays From Gamma Ray Bursts, Arnon Dar, Astrophys.J. 775 (2012) 16, arXiv:1205.3479.
[Dar:2012di]
[8-543]
Gamma Ray and Neutrino Flux from Annihilation of Neutralino Dark Matter at Galactic Halo Region in mAMSB Model, Kamakshya Prasad Modak, Debasish Majumdar, J. Phys. G: Nucl. Part. Phys. 40 (2013) 075201, arXiv:1205.1996.
[Modak:2012wk]
[8-544]
The multi-messenger picture of compact object encounters: binary mergers versus dynamical collisions, S. Rosswog, T. Piran, E. Nakar, Mon.Not.Roy.Astron.Soc. 430 (2013) 2585, arXiv:1204.6240.
[Rosswog:2012wb]
[8-545]
Tools for Studying Low-Mass Dark Matter at Neutrino Detectors, Jason Kumar, John G. Learned, Katherine Richardson, Stefanie Smith, Phys. Rev. D86 (2012) 073002, arXiv:1204.5120.
[Kumar:2012uh]
[8-546]
How many Ultra High Energy Cosmic Rays could we expect from Centaurus A?, Nissim Fraija, M. M. Gonzalez, M. Perez, A. Marinelli, Astrophys. J. 753 (2012) 40, arXiv:1204.4500.
[fraija:2012gd]
[8-547]
Gravitational Waves of Jet Precession in Gamma-ray Bursts, Mou-Yuan Sun, Tong Liu, Wei-Min Gu, Ju-Fu Lu, Astrophys. J. 752 (2012) 31, arXiv:1204.2028.
[Sun:2012bf]
[8-548]
Icecube non-detection of GRBs: Constraints on the fireball properties, Hao-Ning He et al., Astrophys. J. 752 (2012) 29, arXiv:1204.0857.
[He:2012tq]
[8-549]
The impact of excited neutrinos on $\nu \bar\nu \to \gamma \gamma$ process, S. C. Inan, M. Koksal, Adv. High Energy Phys. 2012 (2012) 571874, arXiv:1203.5881.
[Inan:2012eh]
[8-550]
Earthly measurements of the smallest dark matter halos, Jonathan M. Cornell, Stefano Profumo, JCAP 1206 (2012) 011, arXiv:1203.1100.
[Cornell:2012tb]
[8-551]
Neutrino Emission from Helium White Dwarfs with Condensed Cores, Paulo F. Bedaque, Evan Berkowitz, Aleksey Cherman, arXiv:1203.0969, 2012.
[Bedaque:2012mr]
[8-552]
Cherenkov Tau Shower Earth-Skimming Method for PeV-EeV Tau Neutrino Observation, Yoichi Asaoka, Makoto Sasaki, Astropart.Phys. 41 (2013) 7-16, arXiv:1202.5656.
[Asaoka:2012em]
[8-553]
Constraints on the origin of the ultra-high energy cosmic-rays using cosmic diffuse neutrino flux limits: An analytical approach, Shigeru Yoshida, Aya Ishihara, Phys. Rev. D85 (2012) 063002, arXiv:1202.3522.
[Yoshida:2012gf]
[8-554]
Neutrinos from Off-Shell Final States and the Indirect Detection of Dark Matter, John Kearney, Aaron Pierce, Phys. Rev. D86 (2012) 043527, arXiv:1202.0284.
[Kearney:2012rf]
[8-555]
Distinguishing among dark matter annihilation channels with neutrino telescopes, Rouzbeh Allahverdi, Katherine Richardson, Phys. Rev. D85 (2012) 113012, arXiv:1201.6603.
[Allahverdi:2012bi]
[8-556]
Hadronic-Origin TeV gamma-Rays and Ultra-High Energy Cosmic Rays from Centaurus A, Sarira Sahu, Bing Zhang, Nissim Fraija, Phys. Rev. D85 (2012) 043012, arXiv:1201.4191.
[Sahu:2012wv]
[8-557]
WIMP diffusion in the solar system including solar WIMP-nucleon scattering, Sofia Sivertsson, Joakim Edsjo, Phys. Rev. D85 (2012) 123514, arXiv:1201.1895.
[Sivertsson:2012qj]
[8-558]
Multi-GeV Neutrino Emission from Magnetized Gamma Ray Bursts, Shan Gao, Peter Meszaros, Phys. Rev. D85 (2012) 103009, arXiv:1112.5664.
[Gao:2011xu]
[8-559]
High Energy Neutrinos from the Fermi Bubbles, Cecilia Lunardini, Soebur Razzaque, Phys. Rev. Lett. 108 (2012) 221102, arXiv:1112.4799.
[Lunardini:2011br]
[8-560]
Search for Radiative Decays of Cosmic Background Neutrino using Cosmic Infrared Background Energy Spectrum, Shin-Hong Kim, Ken-ichi Takemasa, Yuji Takeuchi, Shuji Matsuura, J. Phys. Soc Jap. 81 (2012) 024101, arXiv:1112.4568.
[Kim:2011ye]
[8-561]
Galactic Sources of High-Energy Neutrinos: Highlights, Francesco Vissani, Felix Aharonian, Nucl. Instrum. Meth. A692 (2012) 5-12, arXiv:1112.3911.
[Vissani:2011ea]
[8-562]
Nucleosynthesis of Nickel-56 from Gamma-Ray Burst Accretion Disks, R. Surman, G. C. McLaughlin, N. Sabbatino, Astrophys. J. 743 (2011) 155, arXiv:1112.2673.
[Surman:2011aa]
[8-563]
Note on the Normalization of Predicted GRB Neutrino Flux, Zhuo Li, Phys. Rev. D85 (2012) 027301, arXiv:1112.2240.
[Li:2011ah]
[8-564]
Cooling curves for neutron stars with hadronic matter and quark matter, Shaoyu Yin et al., arXiv:1112.1880, 2011.
[Yin:2011aa]
[8-565]
Multimessenger Science Reach and Analysis Method for Common Sources of Gravitational Waves and High-energy Neutrinos, Bruny Baret et al., Phys. Rev. D85 (2012) 103004, arXiv:1112.1140.
[Baret:2011nu]
[8-566]
Neutrino Emission from Gamma-Ray Burst Fireballs, Revised, Svenja Hummer, Philipp Baerwald, Walter Winter, Phys. Rev. Lett. 108 (2012) 231101, arXiv:1112.1076.
[Hummer:2011ms]
[8-567]
UHE neutrinos from Pop III stars: concept and constraints, V. Berezinsky, P. Blasi, Phys. Rev. D85 (2012) 123003, arXiv:1111.5461.
[Berezinsky:2011bb]
[8-568]
Flavoring Monochromatic Neutrino Flux from Dark Matter Annihilation, Yasaman Farzan, JHEP 02 (2012) 091, arXiv:1111.1063.
[Farzan:2011ck]
[8-569]
Extragalactic and galactic gamma-rays and neutrinos from annihilating dark matter, Rouzbeh Allahverdi, Sheldon Campbell, Bhaskar Dutta, Phys. Rev. D85 (2012) 035004, arXiv:1110.6660.
[Allahverdi:2011sx]
[8-570]
Determining the dark matter mass with DeepCore, Chitta R. Das, Olga Mena, Sergio Palomares-Ruiz, Silvia Pascoli, Phys.Lett. B725 (2013) 297-301, arXiv:1110.5095.
[Das:2011yr]
[8-571]
The neutrino velocity anomaly as an explanation of the missing observation of neutrinos in coincidence with GRB, D. Autiero, P. Migliozzi, A. Russo, JCAP 1111 (2011) 026, arXiv:1109.5378.
[Autiero:2011hh]
[8-572]
Lorentz Factor-Isotropic Luminosity/Energy Correlations of GRBS and Their Interpretation, Jing Lv et al., Astrophys. J. 751 (2012) 49, arXiv:1109.3757.
[Lu:2012zzc]
[8-573]
The Glashow resonance at IceCube: signatures, event rates and $pp$ vs. $pgamma$ interactions, Atri Bhattacharya, Raj Gandhi, Werner Rodejohann, Atsushi Watanabe, JCAP 1110 (2011) 017, arXiv:1108.3163.
[Bhattacharya:2011qu]
[8-574]
Observational Constraints on Multi-messenger Sources of Gravitational Waves and High-energy Neutrinos, Imre Bartos, Chad Finley, Szabolcs Marka, Phys. Rev. Lett. 107 (2011) 251101, arXiv:1108.3001.
[Bartos:2011aa]
[8-575]
Downward-going tau neutrinos as a new prospect of detecting dark matter, Nicolao Fornengo, Viviana Niro, JHEP 11 (2011) 133, arXiv:1108.2630.
[Fornengo:2011em]
[8-576]
Extremely High Energy Neutrinos from Cosmic Strings, Veniamin Berezinsky, Eray Sabancilar, Alexander Vilenkin, Phys. Rev. D84 (2011) 085006, arXiv:1108.2509.
[Berezinsky:2011cp]
[8-577]
Radio Cherenkov signals from the Moon: neutrinos and cosmic rays, Yu Seon Jeong, Mary Hall Reno, Ina Sarcevic, Astropart. Phys. 35 (2012) 383-395, arXiv:1108.2459.
[Jeong:2011am]
[8-578]
On the detection of TeV gamma-rays from GRB with km-cube neutrino telescopes -- I. Muon event rate from single GRBs, Tri L. Astraatmadja, Mon. Not. Roy. Astron. Soc. 418 (2011) 1774-1786, arXiv:1108.1720.
[Astraatmadja:2011fn]
[8-579]
Nearby low-luminosity GRBs as the sources of ultra-high energy cosmic rays revisited, Ruo-Yu Liu, Xiang-Yu Wang, Zi-Gao Dai, Mon.Not.Roy.Astron.Soc. 418 (2011) 1382, arXiv:1108.1551.
[Liu:2011cua]
[8-580]
Simulations of Accretion Powered Supernovae in the Progenitors of Gamma Ray Bursts, Christopher C. Lindner, Milos Milosavljevic, Rongfeng Shen, Pawan Kumar, Astrophys. J. 750 (2012) 163, arXiv:1108.1415.
[Lindner:2011be]