Cosmology

Filter this page

(Note: The process can take some time.)

EXPAND ALL
COMPRESS ALL

References

1 - Books

[1-1]
Introduction to the Physics of Massive and Mixed Neutrinos, Samoil Bilenky, Springer, 2018. Lecture Notes in Physics, Volume 947. https://doi.org/10.1007/978-3-319-74802-3.
[Bilenky:2018hbz]
[1-2]
Sterile Neutrino Dark Matter, Alexander Merle, IOP, 2017.
[Merle:2017qcs]
[1-3]
Neutrinos in high energy and astroparticle physics, Jorge Romao, Jose W. F. Valle, Wiley, 2015. ISBN 978-3-527-41197-9. http://eu.wiley.com/WileyCDA/WileyTitle/productCd-3527411976.html.
[Romao-Valle-2015]
[1-4]
Neutrino Cosmology, Julien Lesgourgues, Gianpiero Mangano, Gennaro Miele, Sergio Pastor, Cambridge University Press, 2013. ISBN: 9781139012874. https://www.cambridge.org/core/books/neutrino-cosmology/44AF52C5F02A1943850F3B239B2F9588.
[Lesgourgues-Mangano-Miele-Pastor-2013]
[1-5]
Neutrinos in particle physics, astronomy and cosmology, Zhi-zhong Xing, Shun Zhou, Zhejiang University Press, Hangzhou, 2011. ISBN: 978-3-642-17560-2. https://link.springer.com/book/10.1007/978-3-642-17560-2.
[Xing:2011zza]
[1-6]
Discovering the Expanding Universe, Harry Nussbaumer, Lydia Bieri, Cambridge University Press, 2009. ISBN: 9780521514842. https://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521514842&ss=cop.
[Nussbaumer-Bieri-2009]
[1-7]
Fundamentals of Neutrino Physics and Astrophysics, C. Giunti, C. W. Kim, Oxford University Press, Oxford, UK, 2007. ISBN 978-0-19-850871-7. https://global.oup.com/academic/product/fundamentals-of-neutrino-physics-and-astrophysics-9780198508717.
[Giunti:2007ry]
[1-8]
Particle Physics and Inflationary Cosmology, A.D. Linde, arXiv:hep-th/0503203, Harwood Academic Press, 2005.
[Linde:1990nc]
[1-9]
Fundamentals in nuclear physics: From nuclear structure to cosmology, J. L. Basdevant, J. Rich, M. Spiro, Springer, 2005. http://www.springer.com/book/0-387-01672-4.
[Basdevant:2005in]
[1-10]
Cosmology and Particle Astrophysics, L. Bergstrom, A. Goobar, Springer, 2004.
[Bergstrom-Goobar:2004]
[1-11]
Newton's Principia for the Common Reader, S. Chandrasekhar, Oxford University Press, 2003. http://www.oup.com/uk/catalogue/?ci=9780198526759.
[Chandrasekhar:2003zz]
[1-12]
Modern Cosmology, S. Dodelson, Academic Press, 2003. ISBN: 9780122191411. http://books.google.it/books?id=3oPRxdXJexcC.
[Dodelson-Cosmology-2003]
[1-13]
Cosmology: The Origin and Evolution of Cosmic Structure, P. Coles, F. Lucchin, John Wiley, 2002.
[Coles-Lucchin:2002]
[1-14]
Cosmological Physics, J. A. Peacock, Cambridge University Press, 1999.
[Peacock:1999ye]
[1-15]
Galaxy Formation, M. S. Longair, Springer-Verlag, 1998.
[Longair-Galaxy-Formation-1998]
[1-16]
First Principles of Cosmology, Eric V. Linder, Addison-Wesley, 1997.
[Linder:1997]
[1-17]
Cosmology and Astrophysics Through Problems, T. Padmanabhan, Cambridge University Press, 1996.
[Padmanabhan:1996]
[1-18]
Introduction to Cosmology, M. Roos, John Wiley, 1994.
[Roos:1994fz]
[1-19]
Principles of Physical Cosmology, P. J. E. Peebles, Princeton University Press, 1993.
[Peebles-Principles-of-Physical-Cosmology-1993]
[1-20]
The Early Universe, E. W. Kolb, M. S. Turner, Front.Phys. 69 (1990) 1-547, Addison-Wesley. Frontiers in Physics, 69.
[Kolb:1990vq]
[1-21]
The Cosmological Distance Ladder: Distance and Time in the Universe, Michael Rowan-Robinson, W.H. Freeman and Company, 1985.
[RowanRobinson-Ladder-1985]
[1-22]
Gravitation and Spacetime, H.C. Ohanian, W.W. Norton and Company, 1976.
[Ohanian-Gravitation-and-Spacetime-1976]
[1-23]
Gravitation, C.W. Misner, K.S. Thorne, J.A. Wheeler, W.H. Freeman and Company, 1973.
[Misner:1973prb]
[1-24]
Gravitation and Cosmology, S. Weinberg, John Wiley, 1972.
[Weinberg-Gravitation-and-Cosmology-1972]

2 - Reviews

[2-1]
Neutrino at different epochs of the Friedmann Universe, A. V. Ivanchik, O. A. Kurichin, V. Yu. Yurchenko, Universe 10 (2024) 169, arXiv:2404.07081.
[Ivanchik:2024mqq]
[2-2]
The Tip of the Red Giant Branch Distance Ladder and the Hubble Constant, Siyang Li, Rachael L. Beaton, arXiv:2403.17048, 2024.
[Li:2024gib]
[2-3]
The Cosmological Parameters (2023), Ofer Lahav, Andrew R. Liddle, arXiv:2403.15526, 2024.
[Lahav:2024npe]
[2-4]
Strong Lensing by Galaxy Clusters, Priyamvada Natarajan, Liliya L. Williams, Marusa Bradac, Claudio Grillo, Agniva Ghosh, Keren Sharon, Jenny Wagner, arXiv:2403.06245, 2024.
[Natarajan:2024iqm]
[2-5]
On Cepheid distances in the H0H_0 measurement, Richard I. Anderson, arXiv:2403.02801, 2024.
[2403.02801]
[2-6]
An Etude on the Regularization and Renormalization of Divergences in Primordial Observables, Anna Negro, Subodh P. Patil, arXiv:2402.10008, 2024.
[Negro:2024bbf]
[2-7]
$\Lambda$CDM Tensions: Localising Missing Physics through Consistency Checks, Ozgur Akarsu, Eoin O. Colgain, Anjan A. Sen, M. M. Sheikh-Jabbari, arXiv:2402.04767, 2024.
[Akarsu:2024qiq]
[2-8]
The Mira Distance Ladder, Caroline D. Huang, arXiv:2401.09581, 2024.
[Huang:2024exg]
[2-9]
Baryogenesis: A Symmetry Breaking in the Primordial Universe Revisited, David S. Pereira, Joao Ferraz, Francisco S. N. Lobo, Jose P. Mimoso, Symmetry 16 (2024) 13, arXiv:2312.14080.
[Pereira:2023xiw]
[2-10]
Inflation (2023), John Ellis, David Wands, PTEP 2022 (2023) 083C, arXiv:2312.13238.
[Ellis:2023wic]
[2-11]
Cosmological gravitational particle production and its implications for cosmological relics, Edward W. Kolb, Andrew J. Long, arXiv:2312.09042, 2023.
[Kolb:2023ydq]
[2-12]
The Role of Type Ia Supernovae in Constraining the Hubble Constant, Daniel Scolnic, Maria Vincenzi, arXiv:2311.16830, 2023.
[Scolnic:2023sps]
[2-13]
A tale of many $H_0$, Licia Verde, Nils Schoneberg, Hector Gil-Marin, arXiv:2311.13305, 2023.
[Verde:2023lmm]
[2-14]
The Unsettled Number: Hubble's Tension, Jorge L. Cervantes-Cota, Salvador Galindo-Uribarri, George F. Smoot, Universe 9 (2023) 501, arXiv:2311.07552.
[Cervantes-Cota:2023wet]
[2-15]
Observational constraints on early dark energy, Evan McDonough, J. Colin Hill, Mikhail M. Ivanov, Adrien La Posta, Michael W. Toomey, arXiv:2310.19899, 2023.
[McDonough:2023qcu]
[2-16]
Cosmology based on entropy, Yu. L. Bolotin, V. V. Yanovsky, arXiv:2310.10144, 2023.
[Bolotin:2023wiw]
[2-17]
On the interacting dark energy scenarios $-$ the case for Hubble constant tension, Supriya Pan, Weiqiang Yang, arXiv:2310.07260, 2023.
[Pan:2023mie]
[2-18]
Review on $f(Q)$ Gravity, Lavinia Heisenberg, Phys.Rept. 1066 (2024) 2310, arXiv:2309.15958.
[Heisenberg:2023lru]
[2-19]
The Local Value of $H_0$, Adam G. Riess, Louise Breuval, IAU Symp. 376 (2022) 15-29, arXiv:2308.10954.
[Riess:2022oxy]
[2-20]
Recent Advances on Inflation, S. D. Odintsov, V. K. Oikonomou, I. Giannakoudi, F. P. Fronimos, E. C. Lymperiadou, Symmetry 15 (2023) 9, arXiv:2307.16308.
[Odintsov:2023weg]
[2-21]
On the dark radiation role in the Hubble constant tension, Stefano Gariazzo, Olga Mena, arXiv:2306.15067, 2023.
[Gariazzo:2023hch]
[2-22]
The Hubble Constant: A Historical Review, R. Brent Tully, arXiv:2305.11950, 2023.
[Tully:2023bmr]
[2-23]
A short survey of matter-antimatter evolution in the primordial universe, Johann Rafelski, Jeremiah Birrell, Andrew Steinmetz, Cheng Tao Yang, Universe 9 (2023) 309, arXiv:2305.09055.
[Rafelski:2023emw]
[2-24]
Cosmological phase transitions: from perturbative particle physics to gravitational waves, Peter Athron, Csaba Balazs, Andrew Fowlie, Lachlan Morris, Lei Wu, Prog.Part.Nucl.Phys. 135 (2024) 104094, arXiv:2305.02357.
[Athron:2023xlk]
[2-25]
Machine Learning for Observational Cosmology, Kana Moriwaki, Takahiro Nishimichi, Naoki Yoshida, Rept.Prog.Phys. 86 (2023) 076901, arXiv:2303.15794.
[Moriwaki:2023sdh]
[2-26]
Implications of Palatini gravity for inflation and beyond, Ioannis D. Gialamas, Alexandros Karam, Thomas D. Pappas, Eemeli Tomberg, Int.J.Geom.Meth.Mod.Phys. (2023), arXiv:2303.14148.
[Gialamas:2023flv]
[2-27]
Reviewing the prospect of fermion triplets as dark matter and source of baryon asymmetry in non-standard cosmology, Anirban Biswas, Mainak Chakraborty, Sarif Khan, JCAP 08 (2023) 026, arXiv:2303.13950.
[Biswas:2023azl]
[2-28]
The halo model for cosmology: a pedagogical review, Marika Asgari, Alexander J. Mead, Catherine Heymans, arXiv:2303.08752, 2023.
[Asgari:2023mej]
[2-29]
Probing the primordial Universe with 21-cm line from cosmic dawn/epoch of reionization, Teppei Minoda, Shohei Saga, Tomo Takahashi, Hiroyuki Tashiro, Daisuke Yamauchi, Shuichiro Yokoyama, Shintaro Yoshiura, arXiv:2303.07604, 2023.
[Minoda:2022nso]
[2-30]
Exploring the cosmic dawn and epoch of reionization with 21cm line, Hayato Shimabukuro, Kenji Hasegawa, Akira Kuchinomachi, Hidenobu Yajima, Shintaro Yoshiura, arXiv:2303.07594, 2023.
[Shimabukuro:2023ivh]
[2-31]
String Cosmology: from the Early Universe to Today, Michele Cicoli, Joseph P. Conlon, Anshuman Maharana, Susha Parameswaran, Fernando Quevedo, Ivonne Zavala, Phys.Rept. 1059 (2024) 2304, arXiv:2303.04819.
[Cicoli:2023opf]
[2-32]
Primordial Black Hole Formation in Non-Standard Post-Inflationary Epochs, Sukannya Bhattacharya, Galaxies 11 (2023), arXiv:2302.12690.
[Bhattacharya:2023ztw]
[2-33]
The Ups and Downs of Early Dark Energy solutions to the Hubble tension: a review of models, hints and constraints circa 2023, Vivian Poulin, Tristan L. Smith, Tanvi Karwal, Phys.Dark Univ. 42 (2023) 101348, arXiv:2302.09032.
[Poulin:2023lkg]
[2-34]
Hubble Tension: The Evidence of New Physics, Jian-Ping Hu, Fa-Yin Wang, Universe 9 (2023) 94, arXiv:2302.05709.
[Hu:2023jqc]
[2-35]
Perspectives on fundamental cosmology from Low Earth Orbit and the Moon, Gianfranco Bertone, Oliver L. Buchmueller, Philippa S. Cole, npj Microgravity 9 (2023) 10, arXiv:2302.03351.
[Bertone:2023ojo]
[2-36]
Recent developments in warm inflation, Vahid Kamali, Meysam Motaharfar, Rudnei O. Ramos, Universe 9 (2023) 124, arXiv:2302.02827.
[Kamali:2023lzq]
[2-37]
Big Bang Nucleosynthesis, Evan Grohs, George M. Fuller, arXiv:2301.12299, 2023.
[Grohs:2023voo]
[2-38]
Strong gravitational lensing and microlensing of supernovae, Sherry H. Suyu, Ariel Goobar, Thomas Collett, Anupreeta More, Giorgos Vernardos, Space Sci.Rev. 220 (2024) 13, arXiv:2301.07729.
[Suyu:2023jue]
[2-39]
Neutrino Physics and Astrophysics Overview, Floyd W. Stecker, arXiv:2301.02935, 2023.
[Stecker:2023qcg]
[2-40]
Addressing Cosmological Tensions by Non-Local Gravity, Filippo Bouche, Salvatore Capozziello, Vincenzo Salzano, Universe 9 (2023) 27, arXiv:2301.01503.
[Bouche:2023xjw]
[2-41]
Growth of Cosmic Structure, Dragan Huterer, Astron.Astrophys.Rev. 31 (2023) 2, arXiv:2212.05003.
[Huterer:2022dds]
[2-42]
The basics of primordial black hole formation and abundance estimation, Chul-Moon Yoo, Galaxies 10 (2022) 112, arXiv:2211.13512.
[Yoo:2022mzl]
[2-43]
Time-Delay Cosmography: Measuring the Hubble Constant and other cosmological parameters with strong gravitational lensing, S. Birrer, M. Millon, D. Sluse, A. J. Shajib, F. Courbin, L. V. E. Koopmans, S. H. Suyu, T. Treu, arXiv:2210.10833, 2022.
[Birrer:2022chj]
[2-44]
A review of neutrino decoupling from the early universe to the current universe, Kensuke Akita, Masahide Yamaguchi, Universe 8 (2022) 552, arXiv:2210.10307.
[Akita:2022hlx]
[2-45]
BFSS Matrix Model Cosmology: Progress and Challenges, Suddhasattwa Brahma, Robert Brandenberger, Samuel Laliberte, arXiv:2210.07288, 2022.
[Brahma:2022ikl]
[2-46]
Big Bang nucleosynthesis as a probe of new physics, Carlos A. Bertulani, Francis W. Hall, Benjami I. Santoyo, EPJ Web Conf. 275 (2023) 01003, arXiv:2210.04071.
[Bertulani:2022qly]
[2-47]
A short introduction to reionization physics, Tirthankar Roy Choudhury, Gen. Rel. Grav. 54 (2022) 102, arXiv:2209.08558.
[Choudhury:2022rlm]
[2-48]
Report of the Topical Group on Cosmic Frontier 5 Dark Energy and Cosmic Acceleration: Cosmic Dawn and Before for Snowmass 2021, Clarence L. Chang et al., arXiv:2209.08265, 2022.
[Chang:2022lrw]
[2-49]
Snowmass2021 Cosmic Frontier: Report of the CF04 Topical Group on Dark Energy and Cosmic Acceleration in the Modern Universe, James Annis, Jeffrey A. Newman, Anze Slosar, arXiv:2209.08049, 2022.
[Annis:2022xgg]
[2-50]
Snowmass Theory Frontier: Astrophysics and Cosmology, Daniel Green et al., arXiv:2209.06854, 2022.
[Green:2022hhj]
[2-51]
Snowmass 2021 topical group report: Neutrinos from Natural Sources, Yusuke Koshio, Gabriel D. Orebi Gann, Erin O'Sullivan, Irene Tamborra, arXiv:2209.04298, 2022.
[Koshio:2022zip]
[2-52]
Neutrinos in Stellar Astrophysics, G. M. Fuller, W. C. Haxton, arXiv:2208.08050, 2022.
[Fuller:2022nbn]
[2-53]
Anomalies in Physical Cosmology, Phillip James E. Peebles, Annals Phys. 447 (2022) 169159, arXiv:2208.05018.
[Peebles:2022akh]
[2-54]
Modeling Cosmic Reionization, Nickolay Y. Gnedin, Piero Madau, arXiv:2208.02260, 2022.
[Gnedin:2022eza]
[2-55]
Is the Observable Universe Consistent with the Cosmological Principle?, Pavan Kumar Aluri et al., Class.Quant.Grav. 40 (2023) 094001, arXiv:2207.05765.
[Aluri:2022hzs]
[2-56]
Baryonic solutions and challenges for cosmological models of dwarf galaxies, Laura V. Sales, Andrew Wetzel, Azadeh Fattahi, arXiv:2206.05295, 2022.
[Sales:2022ich]
[2-57]
Primordial black hole constraints with Hawking radiation - a review, Jeremy Auffinger, Prog.Part.Nucl.Phys. 131 (2023) 104040, arXiv:2206.02672.
[Auffinger:2022khh]
[2-58]
Multi-messenger constraints on the Hubble constant through combination of gravitational waves, gamma-ray bursts and kilonovae from neutron star mergers, Mattia Bulla, Michael W. Coughlin, Suhail Dhawan, Tim Dietrich, Universe 8 (2022) 289, arXiv:2205.09145.
[Bulla:2022ppy]
[2-59]
A short review on clustering dark energy, Ronaldo C. Batista, Universe 8 (2021) 22, arXiv:2204.12341.
[Batista:2021uhb]
[2-60]
How the Big Bang Ends up Inside a Black Hole, Enrique Gaztanaga, Universe 8 (2022) 257, arXiv:2204.11608.
[Gaztanaga:2022gbd]
[2-61]
Cosmology from Strong Interactions, Andrea Addazi, Torbjorn Lundberg, Antonino Marciano, Roman Pasechnik, Michal Sumbera, Universe 8 (2022) 451, arXiv:2204.02950.
[Addazi:2022whi]
[2-62]
Spectrum of Primordial Gravitational Waves in Modified Gravities: A Short Overview, S.D. Odintsov, V.K. Oikonomou, R. Myrzakulov, Symmetry 14 (2022) 729, arXiv:2204.00876.
[Odintsov:2022cbm]
[2-63]
Cosmological Neutrinos, Floyd W. Stecker, arXiv:2203.17223, 2022.
[Stecker:2022akt]
[2-64]
Snowmass White Paper: Effective Field Theories in Cosmology, Giovanni Cabass, Mikhail M. Ivanov, Matthew Lewandowski, Mehrdad Mirbabayi, Marko Simonovic, Phys.Dark Univ. 40 (2023) 101193, arXiv:2203.08232.
[Cabass:2022avo]
[2-65]
Inflation: Theory and Observations, Ana Achucarro et al., arXiv:2203.08128, 2022.
[Achucarro:2022qrl]
[2-66]
Snowmass White Paper: The Cosmological Bootstrap, Daniel Baumann, Daniel Green, Austin Joyce, Enrico Pajer, Guilherme L. Pimentel, Charlotte Sleight, Massimo Taronna, arXiv:2203.08121, 2022.
[Baumann:2022jpr]
[2-67]
Machine Learning and Cosmology, Cora Dvorkin et al., arXiv:2203.08056, 2022.
[Dvorkin:2022pwo]
[2-68]
Detection of Early-Universe Gravitational Wave Signatures and Fundamental Physics, Robert Caldwell et al., Gen.Rel.Grav. 54 (2022) 156, arXiv:2203.07972.
[Caldwell:2022qsj]
[2-69]
Snowmass2021 Theory Frontier White Paper: Data-Driven Cosmology, Mustafa A. Amin et al., arXiv:2203.07946, 2022.
[Amin:2022soj]
[2-70]
The Physics of Light Relics, Cora Dvorkin et al., arXiv:2203.07943, 2022.
[Dvorkin:2022jyg]
[2-71]
Snowmass2021 Cosmic Frontier White Paper: Cosmology and Fundamental Physics from the three-dimensional Large Scale Structure, Simone Ferraro, Noah Sailer, Anze Slosar, Martin White, arXiv:2203.07506, 2022.
[Ferraro:2022cmj]
[2-72]
Synergy between cosmological and laboratory searches in neutrino physics: a white paper, Kevork N. Abazajian et al., Phys.Dark Univ. 42 (2023) 101333, arXiv:2203.07377.
[Gerbino:2022nvz]
[2-73]
Snowmass2021 Computational Frontier White Paper: Cosmological Simulations and Modeling, Arka Banerjee, Simon Birrer, Salman Habib, Katrin Heitmann, Zarija Lukic, Julian B. Munoz, Yuuki Omori, Hyunbae Park, Annika H. G. Peter, Yi-Ming Zhong, arXiv:2203.07347, 2022.
[Alvarez:2022rbk]
[2-74]
Snowmass2021 Cosmic Frontier White Paper: High Density Galaxy Clustering in the Regime of Cosmic Acceleration, Kyle Dawson, Andrew Hearin, Katrin Heitmann, Mustapha Ishak, Johannes Ulf Lange, Martin White, Rongpu Zhou, arXiv:2203.07291, 2022.
[Dawson:2022oig]
[2-75]
Snowmass 2021 Cosmic Frontier White Paper: Cosmology with Millimeter-Wave Line Intensity Mapping, Kirit S. Karkare, Azadeh Moradinezhad Dizgah, Garrett K. Keating, Patrick Breysse, Dongwoo T. Chung, arXiv:2203.07258, 2022.
[Karkare:2022bai]
[2-76]
Theories and Experiments for Testable Baryogenesis Mechanisms: A Snowmass White Paper, J. L. Barrow et al., arXiv:2203.07059, 2022.
[Barrow:2022gsu]
[2-77]
Snowmass2021: Opportunities from Cross-survey Analyses of Static Probes, Eric J. Baxter et al., arXiv:2203.06795, 2022.
[Baxter:2022enq]
[2-78]
Early-Universe Model Building, Pouya Asadi et al., arXiv:2203.06680, 2022.
[Asadi:2022njl]
[2-79]
Cosmology Intertwined: A Review of the Particle Physics, Astrophysics, and Cosmology Associated with the Cosmological Tensions and Anomalies, Elcio Abdalla et al., JHEAp 34 (2022) 141, arXiv:2203.06142.
[Abdalla:2022yfr]
[2-80]
New physics from polarised light of the cosmic microwave background, Eiichiro Komatsu, Nature Rev.Phys. 4 (2022) 452-469, arXiv:2202.13919.
[Komatsu:2022nvu]
[2-81]
Alternative ideas in cosmology, Martin Lopez-Corredoira, Louis Marmet, Int.J.Mod.Phys.D 31 (2022) 2230014, arXiv:2202.12897.
[Lopez-Corredoira:2022dxt]
[2-82]
Neutrino Flavor Conversions in High-Density Astrophysical and Cosmological Environments, Francesco Capozzi, Ninetta Saviano, Universe 8 (2022) 94, arXiv:2202.02494.
[Capozzi:2022slf]
[2-83]
The Friedman-Lemaitre-Robertson-Walker Metric: a centennial review, Robert Barnes, arXiv:2201.13120, 2022.
[Booth:2022yov]
[2-84]
Two sides of the same coin: sterile neutrinos and dark radiation. Status and perspectives, Maria Archidiacono, Stefano Gariazzo, Universe 8 (2022) 175, arXiv:2201.10319.
[Archidiacono:2022ich]
[2-85]
The Cosmological Parameters (2021), Ofer Lahav, Andrew R Liddle, arXiv:2201.08666, 2022.
[Lahav:2022poa]
[2-86]
The Road to Precision Cosmology, Michael S. Turner, arXiv:2201.04741, 2022.
[Turner:2022gvw]
[2-87]
Numerical Relativity as a New Tool for Fundamental Cosmology, Anna Ijjas, Physics 4 (2022) 301-314, arXiv:2201.03752.
[Ijjas:2022qsv]
[2-88]
Quintessential inflation: A tale of emergent and broken symmetries, Dario Bettoni, Javier Rubio, Galaxies 10 (2022) 22, arXiv:2112.11948.
[Bettoni:2021qfs]
[2-89]
Cosmological Tests of Gravity: A Future Perspective, Matteo Martinelli, Santiago Casas, Universe 7 (2021) 506, arXiv:2112.10675.
[Martinelli:2021hir]
[2-90]
Large-scale dark matter simulations, Raul E. Angulo, Oliver Hahn, arXiv:2112.05165, 2021.
[Angulo:2021kes]
[2-91]
Cosmological Particle Production: A Review, L. H. Ford, Rept.Prog.Phys. 84 (2021) 116901, arXiv:2112.02444.
[Ford:2021syk]
[2-92]
PBH formation from spherically symmetric hydrodynamical perturbations: a review, Albert Escriva, Universe 8 (2022) 66, arXiv:2111.12693.
[Escriva:2021aeh]
[2-93]
Is 'Dark Energy' a Quantum Vacuum Energy?, Stephen L. Adler, Mod.Phys.Lett.A 36 (2021) 2130027, arXiv:2111.12576.
[Adler:2021arz]
[2-94]
The quantum de Sitter root of quasi de Sitter observables: a pedagogical review, Cesar Gomez, Raul Jimenez, Phys.Dark Univ. 36 (2022) 101035, arXiv:2111.05380.
[Gomez:2021jcl]
[2-95]
Brief Review of Recent Advances in Understanding Dark Matter and Dark Energy, Eugene Oks, New Astron.Rev. 93 (2021) 101632, arXiv:2111.00363.
[Oks:2021hef]
[2-96]
A roadmap to gamma-ray bursts: new developments and applications to cosmology, Orlando Luongo, Marco Muccino, Galaxies 9 (2021) 77, arXiv:2110.14408.
[Luongo:2021pjs]
[2-97]
From galactic bars to the Hubble tension $-$ weighing up the astrophysical evidence for Milgromian gravity, Indranil Banik, Hongsheng Zhao, Symmetry 14 (2022) 1331, arXiv:2110.06936.
[Banik:2021woo]
[2-98]
Scalar induced gravitational waves review, Guillem Domenech, Universe 7 (2021) 398, arXiv:2109.01398.
[Domenech:2021ztg]
[2-99]
A buyer's guide to the Hubble Constant, Paul Shah, Pablo Lemos, Ofer Lahav, Astron.Astrophys.Rev. 29 (2021) 9, arXiv:2109.01161.
[Shah:2021onj]
[2-100]
A Multi-messenger view of Cosmic Dawn: Conquering the Final Frontier, Hamsa Padmanabhan, Int.J.Mod.Phys.D 30 (2021) 2130009, arXiv:2109.00003.
[Padmanabhan:2021hkg]
[2-101]
Limitations of an Effective Field Theory Treatment of Early Universe Cosmology, Robert Brandenberger, Phil.Trans.Roy.Soc.Lond.A 380 (2022) 20210178, arXiv:2108.12743.
[Brandenberger:2021kjo]
[2-102]
On the origin of matter in the Universe, Pasquale Di Bari, Prog.Part.Nucl.Phys. 122 (2022) 103913, arXiv:2107.13750.
[DiBari:2021fhs]
[2-103]
Multi-fluid cosmology in Einstein gravity: analytical solutions, Valerio Faraoni, Sonia Jose, Steve Dussault, Gen.Rel.Grav. 53 (2021) 109, arXiv:2107.12488.
[Faraoni:2021opj]
[2-104]
The $H_0$ Olympics: A fair ranking of proposed models, Nils Schoneberg, Guillermo Franco Abellan, Andrea Perez Sanchez, Samuel J. Witte, c Vivian Poulin, Julien Lesgourgues, Phys.Rept. 984 (2022) 2228, arXiv:2107.10291.
[Schoneberg:2021qvd]
[2-105]
Spontaneous symmetry breaking in the late Universe as an underlying cause for dark energy, M. Sami, Radouane Gannouji, Int.J.Mod.Phys.D 30 (2021) 2130005, arXiv:2106.00843.
[Sami:2021ufn]
[2-106]
Phenomenological implications of modified loop cosmologies: an overview, Bao-Fei Li, Parampreet Singh, Anzhong Wang, Front.Astron.Space Sci. 8 (2021) 701417, arXiv:2105.14067.
[Li:2021mop]
[2-107]
Challenges for $\Lambda$CDM: An update, Leandros Perivolaropoulos, Foteini Skara, New Astron.Rev. 95 (2022) 101659, arXiv:2105.05208.
[Perivolaropoulos:2021jda]
[2-108]
Dark matter and the early Universe: a review, A. Arbey, F. Mahmoudi, Prog.Part.Nucl.Phys. 119 (2021) 103865, arXiv:2104.11488.
[Arbey:2021gdg]
[2-109]
The Higgs Portal to Cosmology, Oleg Lebedev, Prog.Part.Nucl.Phys. 120 (2021) 103881, arXiv:2104.03342.
[Lebedev:2021xey]
[2-110]
Light Elements in the Universe, Sofia Randich, Laura Magrini, Front.Astron.Space Sci. 8 (2021) 6, arXiv:2103.11000.
[Randich:2021plf]
[2-111]
In the realm of the Hubble tension $-$ a review of solutions, Eleonora Di Valentino, Olga Mena, Supriya Pan, Luca Visinelli, Weiqiang Yang, Alessandro Melchiorri, David F. Mota, Adam G. Riess, Joseph Silk, Class. Quant. Grav. 38 (2021) 153001, arXiv:2103.01183.
[DiValentino:2021izs]
[2-112]
Observations of Ly$\alpha$ Emitters at High Redshift, Masami Ouchi, arXiv:2012.11645, 2020.
[Ouchi:2020yjo]
[2-113]
Dimensional Transmutation in Gravity and Cosmology, Alberto Salvio, Int.J.Mod.Phys. A36 (2021) 2130006, arXiv:2012.11608.
[Salvio:2020axm]
[2-114]
Observations of the Lyman-$\alpha$ Universe, Masami Ouchi, Yoshiaki Ono, Takatoshi Shibuya, Ann.Rev.Astron.Astrophys. 58 (2020) 617-659, arXiv:2012.07960.
[Ouchi:2020zce]
[2-115]
Theoretical and numerical perspectives on cosmic distance averages, Michel-Andres Breton, Pierre Fleury, Astron.Astrophys. 655 (2021) A54, arXiv:2012.07802.
[Breton:2020puw]
[2-116]
Dark Energy: is it `just' Einstein's Cosmological Constant Lambda?, Ofer Lahav, Contemp.Phys. 61 (2020) 132-145, arXiv:2009.10177.
[Lahav:2020hzh]
[2-117]
Baryogenesis from the weak scale to the GUT scale, Dietrich Bodeker, Wilfried Buchmuller, Rev.Mod.Phys. 93 (2021) 035004, arXiv:2009.07294.
[Bodeker:2020ghk]
[2-118]
A brief review on cosmological analysis of galaxy surveys with multiple tracers, Yuting Wang, Gong-Bo Zhao, arXiv:2009.03862, 2020.
[Wang:2020dtd]
[2-119]
The Higgs field and early universe cosmology: a (brief) review, Bart Horn, MDPI Physics 2 (2020) 503-520, arXiv:2007.10377.
[Horn:2020wif]
[2-120]
The First Three Seconds: a Review of Possible Expansion Histories of the Early Universe, Rouzbeh Allahverdi et al., Open J.Astrophys. 4 (2021), arXiv:2006.16182.
[Allahverdi:2020bys]
[2-121]
The high-redshift Universe with Spitzer, Marusa Bradac, Nat.Astron. 4 (2020) 478-485, arXiv:2005.07248.
[Bradac:2020jmc]
[2-122]
The establishment of the Standard Cosmological Model through observations, Ricardo T. Genova-Santos, arXiv:2001.08297, 2020.
[Genova-Santos:2020tfc]
[2-123]
The Expansion of the Universe is Faster than Expected, Adam G. Riess, Nature Rev.Phys. 2 (2020) 10-12, arXiv:2001.03624.
[Riess:2019qba]
[2-124]
Second-order Gauge-invariant Cosmological Perturbation Theory: Current Status updated in 2019, Kouji Nakamura, arXiv:1912.12805, 2019.
[Nakamura:2020pre]
[2-125]
Calculation of distances in cosmological models with small-scale inhomogeneities and their use in observational cosmology: a review, Phillip Helbig, Open J.Astrophys. 3 (2020) 1, arXiv:1912.12269.
[Helbig:2019jcm]
[2-126]
Primordial backgrounds of relic gravitons, Massimo Giovannini, Prog.Part.Nucl.Phys. 112 (2020) 103774, arXiv:1912.07065.
[Giovannini:2019oii]
[2-127]
The Cosmological Parameters (2019), Ofer Lahav, Andrew R Liddle, arXiv:1912.03687, 2019. Review of Particle Physics 2020.
[Lahav:2019bbc]
[2-128]
Grand Unified Neutrino Spectrum at Earth, Edoardo Vitagliano, Irene Tamborra, Georg Raffelt, Rev.Mod.Phys. 92 (2020) 045006, arXiv:1910.11878.
[Vitagliano:2019yzm]
[2-129]
Cosmological Simulations of Galaxy Formation, Mark Vogelsberger, Federico Marinacci, Paul Torrey, Ewald Puchwein, Nature Rev.Phys. 2 (2020) 42-66, arXiv:1909.07976.
[Vogelsberger:2019ynw]
[2-130]
Theoretical Cosmology, A. A. Coley, G. F. R. Ellis, Class.Quant.Grav. 37 (2020) 013001, arXiv:1909.05346.
[Coley:2019yov]
[2-131]
Data Analysis for Precision 21 cm Cosmology, Adrian Liu, J. Richard Shaw, Publ.Astron.Soc.Pac. 132 (2020) 062001, arXiv:1907.08211.
[Liu:2019awk]
[2-132]
An Introductory Review on Cosmic Reionization, John H. Wise, Contemp.Phys. 60 (2019) 145-163, arXiv:1907.06653.
[Wise:2019qtq]
[2-133]
Effective Field Theory of Dark Energy: a Review, Noemi Frusciante, Louis Perenon, Phys.Rept. 857 (2020) 1-63, arXiv:1907.03150.
[Frusciante:2019xia]
[2-134]
The Hunt for Primordial Interactions in the Large Scale Structures of the Universe, Matteo Biagetti, Galaxies 7 (2019) 71, arXiv:1906.12244.
[Biagetti:2019bnp]
[2-135]
Modelling baryonic feedback for survey cosmology, Nora Elisa Chisari et al., Open J.Astrophys. 2 (2019) 4, arXiv:1905.06082.
[Chisari:2019tus]
[2-136]
Roles of sterile neutrinos in particle physics and cosmology, Sin Kyu Kang, Int.J.Mod.Phys. A34 (2019) 1930005, arXiv:1904.07108.
[Kang:2019xuq]
[2-137]
Extended Gravity Cosmography, Salvatore Capozziello, Rocco D'Agostino, Orlando Luongo, Int.J.Mod.Phys. D28 (2019) 1930016, arXiv:1904.01427.
[Capozziello:2019cav]
[2-138]
Extragalactic Proper Motions: Gravitational Waves and Cosmology, Jeremy Darling, Alexandra Truebenbach, Jennie Paine, arXiv:1904.00802, 2019.
[Darling:2019dat]
[2-139]
Group field theory condensate cosmology: An appetizer, A. G. A. Pithis, M. Sakellariadou, Universe 5 (2019) 147, arXiv:1904.00598.
[Pithis:2019tvp]
[2-140]
Cosmological parameter inference with Bayesian statistics, Luis E. Padilla, Luis O. Tellez, Luis A. Escamilla, J. Alberto Vazquez, Universe 7 (2021) 213, arXiv:1903.11127.
[Padilla:2019mgi]
[2-141]
Big Bang Nucleosynthesis and Neutrino Cosmology, Evan B. Grohs, J. Richard Bond, Ryan J. Cooke, George M. Fuller, Joel Meyers, Mark W. Paris, Bull.Am.Astron.Soc. 51 (2019) 412, arXiv:1903.09187.
[Grohs:2019cae]
[2-142]
Cosmic voids: a novel probe to shed light on our Universe, Alice Pisani et al., arXiv:1903.05161, 2019.
[Pisani:2019cvo]
[2-143]
The Next Generation of Cosmological Measurements with Type Ia Supernovae, Dan Scolnic et al., arXiv:1903.05128, 2019.
[Scolnic:2019apa]
[2-144]
Tracing the formation history of galaxy clusters into the epoch of reionization, Roderik Overzier, Nobunari Kashikawa, arXiv:1903.04980, 2019.
[Overzier:2019glo]
[2-145]
'SZ spectroscopy' in the coming decade: Galaxy cluster cosmology and astrophysics in the submillimeter, Kaustuv Basu et al., arXiv:1903.04944, 2019.
[Basu:2019hww]
[2-146]
Messengers from the Early Universe: Cosmic Neutrinos and Other Light Relics, Daniel Green et al., Bull.Am.Astron.Soc. 51 (2019) 159, arXiv:1903.04763.
[Green:2019glg]
[2-147]
Unveiling the Phase Transition of the Universe During the Reionization Epoch with Lyman-alpha, Steven L. Finkelstein et al., arXiv:1903.04518, 2019.
[Finkelstein:2019idd]
[2-148]
Neutrino Mass from Cosmology: Probing Physics Beyond the Standard Model, Cora Dvorkin et al., arXiv:1903.03689, 2019.
[Dvorkin:2019jgs]
[2-149]
The galaxy cluster mass scale and its impact on cosmological constraints from the cluster population, G.W. Pratt, M. Arnaud, A. Biviano, D. Eckert, S. Ettori, D. Nagai, N. Okabe, T.H. Reiprich, Space Sci.Rev. 215 (2019) 25, arXiv:1902.10837.
[Pratt:2019cnf]
[2-150]
Cosmological Tests of Gravity, Pedro G. Ferreira, Ann.Rev.Astron.Astrophys. 57 (2019) 335-374, arXiv:1902.10503.
[Ferreira:2019xrr]
[2-151]
Radiative transport of relativistic species in cosmology, Cyril Pitrou, Astropart.Phys. 125 (2021) 102494, arXiv:1902.09456.
[Pitrou:2019hqg]
[2-152]
Measuring gravity at cosmological scales, Luca Amendola, Dario Bettoni, Ana Marta Pinho, Santiago Casas, Universe 6 (2020) 20, arXiv:1902.06978.
[Amendola:2019laa]
[2-153]
Cosmic Inflation: Trick or Treat?, Jerome Martin, arXiv:1902.05286, 2019.
[Martin:2019zia]
[2-154]
The Degree of Fine-Tuning in our Universe - and Others, Fred C. Adams, Phys.Rept. 807 (2019) 1-111, arXiv:1902.03928.
[Adams:2019kby]
[2-155]
Selected topics in scalar-tensor theories and beyond, Israel Quiros, Int.J.Mod.Phys. D28 (2019) 1930012, arXiv:1901.08690.
[Quiros:2019ktw]
[2-156]
On Model Selection in Cosmology, Martin Kerscher, Jochen Weller, SciPost Phys.Lect.Notes 9 (2019) 1, arXiv:1901.07726.
[Kerscher:2019pzk]
[2-157]
Cosmic phase transitions: their applications and experimental signatures, Anupam Mazumdar, Graham White, Rept.Prog.Phys. 82 (2019) 076901, arXiv:1811.01948.
[Mazumdar:2018dfl]
[2-158]
Early galaxy formation and its large-scale effects, Pratika Dayal, Andrea Ferrara, Phys.Rept. 780-782 (2018) 1-64, arXiv:1809.09136.
[Dayal:2018hft]
[2-159]
Dark energy in Horndeski theories after GW170817: A review, Ryotaro Kase, Shinji Tsujikawa, Int.J.Mod.Phys. D28 (2019) 1942005, arXiv:1809.08735.
[Kase:2018aps]
[2-160]
Cosmological Aspects of Higgs Vacuum Metastability, Tommi Markkanen, Arttu Rajantie, Stephen Stopyra, Front.Astron.Space Sci. 5 (2018) 40, arXiv:1809.06923.
[Markkanen:2018pdo]
[2-161]
Sterile Neutrino Dark Matter, A. Boyarsky, M. Drewes, T. Lasserre, S. Mertens, O. Ruchayskiy, Prog.Part.Nucl.Phys. 104 (2019) 1-45, arXiv:1807.07938.
[Boyarsky:2018tvu]
[2-162]
High Energy Physics and Cosmology at the Unification Frontier: Opportunities and Challenges in the coming years, Pran Nath, Int.J.Mod.Phys. A33 (2018) 1830017, arXiv:1807.05302.
[Nath:2018rqn]
[2-163]
Higgs inflation, Javier Rubio, Front.Astron.Space Sci. 5 (2019) 50, arXiv:1807.02376.
[Rubio:2018ogq]
[2-164]
A systematic approach to generalisations of General Relativity and their cosmological implications, Lavinia Heisenberg, Phys.Rept. 796 (2019) 1-113, arXiv:1807.01725.
[Heisenberg:2018vsk]
[2-165]
Euclidean wormholes, baby universes, and their impact on particle physics and cosmology, Arthur Hebecker, Thomas Mikhail, Pablo Soler, Front.Astron.Space Sci. 5 (2018) 35, arXiv:1807.00824.
[Hebecker:2018ofv]
[2-166]
Neutrino Mass Ordering in 2018: Global Status, P. F. de Salas, S. Gariazzo, O. Mena, C. A. Ternes, M. Tortola, Front.Astron.Space Sci. 5 (2018) 36, arXiv:1806.11051.
[DeSalas:2018rby]
[2-167]
Testing General Relativity in Cosmology, Mustapha Ishak, Living Rev.Rel. 22 (2019) 1, arXiv:1806.10122.
[Ishak:2018his]
[2-168]
The Arecibo Legacy Fast ALFA Survey: The ALFALFA Extragalactic HI Source Catalog, Martha P. Haynes et al., arXiv:1805.11499, 2018.
[1805.11499]
[2-169]
Measuring the Universe with galaxy redshift surveys, L. Guzzo et al., arXiv:1803.10814, 2018.
[Guzzo:2018xbe]
[2-170]
Looking at cosmic near-infrared background radiation anisotropies, A. Kashlinsky et al., Rev.Mod.Phys. 90 (2018) 025006, arXiv:1802.07774.
[Kashlinsky:2018mnu]
[2-171]
Is The Universal Matter - Antimatter Asymmetry Fine Tuned?, Gary Steigman, Robert J. Scherrer, arXiv:1801.10059, 2018.
[Steigman:2018wqf]
[2-172]
Cosmological distance indicators, Sherry H. Suyu, Tzu-Ching Chang, Frederic Courbin, Teppei Okumura, Space Sci.Rev. 214 (2018) 91, arXiv:1801.07262.
[Suyu:2018vqs]
[2-173]
Status of neutrino properties and future prospects - Cosmological and astrophysical constraints, Martina Gerbino, Massimiliano Lattanzi, Front.in Phys. 5 (2018) 70, arXiv:1712.07109.
[Lattanzi:2017ubx]
[2-174]
Dynamical systems applied to cosmology: dark energy and modified gravity, Sebastian Bahamonde et al., Phys.Rept. 775-777 (2018) 1-122, arXiv:1712.03107.
[Bahamonde:2017ize]
[2-175]
One Hundred Years of the Cosmological Constant: from 'Superfluous Stunt' to Dark Energy, Cormac O'Raifeartaigh, Michael O'Keeffe, Werner Nahm, Simon Mitton, Eur.Phys.J. H43 (2018) 73-117, arXiv:1711.06890.
[ORaifeartaigh:2017yby]
[2-176]
Weak lensing for precision cosmology, Rachel Mandelbaum, Ann.Rev.Astron.Astrophys. 56 (2018) 393-433, arXiv:1710.03235.
[Mandelbaum:2017jpr]
[2-177]
Crack in the cosmological paradigm, Eleonora Di Valentino, Nat.Astron. 1 (2017) 569-570, arXiv:1709.04046.
[DiValentino:2017gzb]
[2-178]
The status of varying constants: a review of the physics, searches and implications, C. J. A. P. Martins, arXiv:1709.02923, 2017.
[Martins:2017yxk]
[2-179]
Dark energy two decades after: Observables, probes, consistency tests, Dragan Huterer, Daniel L Shafer, Rept.Prog.Phys. 81 (2018) 016901, arXiv:1709.01091.
[Huterer:2017buf]
[2-180]
The Impact of Baryons on the Large-Scale Structure of the Universe, Weiguang Cui, Youcai Zhang, arXiv:1708.02644, 2017.
[Cui:2017zjy]
[2-181]
An Introduction to the Planck Mission, David L Clements, Contemp.Phys. 58 (2017) 331, arXiv:1707.09220.
[Clements:2017nww]
[2-182]
Cosmology with the Large Synoptic Survey Telescope, Hu Zhan, J. Anthony Tyson, Rept.Prog.Phys. 81 (2018) 066901, arXiv:1707.06948.
[Zhan:2017uwu]
[2-183]
Small-Scale Challenges to the $\Lambda$CDM Paradigm, James S. Bullock, Michael Boylan-Kolchin, Ann.Rev.Astron.Astrophys. 55 (2017) 343-387, arXiv:1707.04256.
[Bullock:2017xww]
[2-184]
Review on Effects of Long-lived Negatively Charged Massive Particles on Big Bang Nucleosynthesis, Motohiko Kusakabe, Grant. J. Mathews, Toshitaka Kajino, Myung-Ki Cheoun, Int.J.Mod.Phys. E26 (2017) 1741004, arXiv:1706.03143.
[Kusakabe:2017brd]
[2-185]
Introduction to Big Bang Nucleosynthesis and Modern Cosmology, Grant J. Mathews, Motohiko Kusakabe, Toshitaka Kajino, Int.J.Mod.Phys. E26 (2017) 1741001, arXiv:1706.03138.
[Mathews:2017xht]
[2-186]
Massive and supermassive black holes in the contemporary and early universe and the new problems of cosmology and astrophysics, A.D. Dolgov, Usp.Fiz.Nauk 188 (2018) 121-142, arXiv:1705.06859.
[Dolgov:2017aec]
[2-187]
AGN feedback with the Square Kilometer Array (SKA) and implications for cluster physics and cosmology, Asif Iqbal et al., J.Astrophys.Astron. 38 (2017) 68, arXiv:1705.04444.
[Iqbal:2017wqs]
[2-188]
Sterile neutrinos in cosmology, Kevork N. Abazajian, Phys.Rept. 711-712 (2017) 1-28, arXiv:1705.01837.
[Abazajian:2017tcc]
[2-189]
Weighing neutrinos in dynamical dark energy models, Xin Zhang, Sci.China Phys.Mech.Astron. 60 (2017) 060431, arXiv:1703.00651.
[Zhang:2017rbg]
[2-190]
Interactions relevant to the decoupling of the neutrini/antineutrini in the early Universe, Evangelos Matsinos, arXiv:1702.02872, 2017.
[Matsinos:2017gqr]
[2-191]
Modified Gravity and Large Scale Flows, a Review, Jeremy Mould, Astrophys.Space Sci. 362 (2017) 25, arXiv:1701.00173.
[Mould:2016hsz]
[2-192]
Inhomogeneous cosmology and backreaction: current status and future prospects, Krzysztof Bolejko, Mikolaj Korzynski, Int.J.Mod.Phys. D26 (2017) 1730011, arXiv:1612.08222.
[Bolejko:2016qku]
[2-193]
Holographic Dark Energy, Shuang Wang, Yi Wang, Miao Li, Phys.Rept. 696 (2017) 1-57, arXiv:1612.00345.
[Wang:2016och]
[2-194]
Large-Scale Galaxy Bias, Vincent Desjacques, Donghui Jeong, Fabian Schmidt, Phys.Rept. 733 (2018) 1-193, arXiv:1611.09787.
[Desjacques:2016bnm]
[2-195]
Probing statistical isotropy of cosmological radio sources using SKA, Shamik Ghosh et al., J.Astrophys.Astron. 37 (2016) 25, arXiv:1610.08176.
[Ghosh:2016tbj]
[2-196]
CMB-S4 Science Book, First Edition, Kevork N. Abazajian et al., arXiv:1610.02743, 2016.
[CMB-S4:2016ple]
[2-197]
Bouncing cosmologies with dark matter and dark energy, Yi-Fu Cai, Antonino Marciano, Dong-Gang Wang, Edward Wilson-Ewing, Universe 3 (2017) 1, arXiv:1610.00938.
[Cai:2016hea]
[2-198]
General Relativity and Cosmology: Unsolved Questions and Future Directions, Ivan Debono, George F. Smoot, Universe 2 (2016) 23, arXiv:1609.09781.
[Debono:2016vkp]
[2-199]
Lectures on Inflation, Leonardo Senatore, arXiv:1609.00716, 2016.
[Senatore:2016aui]
[2-200]
Testing theories of Gravity and Supergravity with inflation and observations of the cosmic microwave background, Girish Kumar Chakravarty, Gaetano Lambiase, Subhendra Mohanty, Int.J.Mod.Phys. D26 (2017) 1730023, arXiv:1607.06325.
[Chakravarty:2016set]
[2-201]
Unveiling the Dynamics of the Universe, Pedro Avelino et al., Symmetry 8 (2016) 70, arXiv:1607.02979.
[Avelino:2016lpj]
[2-202]
Small scale problems of the $\Lambda$CDM model: a short review, Antonino Del Popolo, Morgan Le Delliou, Galaxies 5 (2017) 17, arXiv:1606.07790.
[DelPopolo:2016emo]
[2-203]
Multi-field inflation and cosmological perturbations, Jinn-Ouk Gong, Int.J.Mod.Phys. D26 (2016) 1740003, arXiv:1606.06971.
[Gong:2016qmq]
[2-204]
Electrodynamics of a Cosmic Dark Fluid, Alexander B. Balakin, Symmetry 8 (2016) 56, arXiv:1606.06331.
[Balakin:2016cbe]
[2-205]
Scientific Realism and Primordial Cosmology, Feraz Azhar, Jeremy Butterfield, arXiv:1606.04071, 2016.
[Azhar:2016mpg]
[2-206]
Cosmology and Fundamental Physics with the Euclid Satellite, Luca Amendola et al., Living Rev.Rel. 21 (2018) 2, arXiv:1606.00180.
[Amendola:2016saw]
[2-207]
Quantum Yang-Mills Dark Energy, Roman Pasechnik, Universe 2 (2016) 4, arXiv:1605.07610.
[Pasechnik:2016sbh]
[2-208]
A History of Dark Matter, Gianfranco Bertone, Dan Hooper, Rev.Mod.Phys. 90 (2018) 045002, arXiv:1605.04909.
[Bertone:2016nfn]
[2-209]
Symmetry Reduced Loop Quantum Gravity: A Bird's Eye View, Abhay Ashtekar, Int.J.Mod.Phys. D25 (2016) 1642010, arXiv:1605.02648.
[Ashtekar:2016ecx]
[2-210]
Gravitational waves from inflation, Maria Chiara Guzzetti, Nicola Bartolo, Michele Liguori, Sabino Matarrese, Riv.Nuovo Cim. 39 (2016) 1, arXiv:1605.01615.
[Guzzetti:2016mkm]
[2-211]
Topological Structure of the Vacuum, Cosmological Constant and Dark Energy, B.G. Sidharth, A. Das, C.R. Das, L.V. Laperashvili, H.B. Nielsen, Int.J.Mod.Phys. A31 (2016) 1630051, arXiv:1605.01169.
[Sidharth:2016gvj]
[2-212]
Cosmic Visions Dark Energy: Science, Scott Dodelson et al., arXiv:1604.07626, 2016.
[Dodelson:2016wal]
[2-213]
The Scales of Gravitational Lensing, Francesco De Paolis et al., Universe 2 (2016) 6, arXiv:1604.06601.
[DePaolis:2016bru]
[2-214]
Preferred axis in cosmology, Wen Zhao, Larissa Santos, The Universe (2015) 9-33, arXiv:1604.05484.
[Zhao:2015apu]
[2-215]
What lattice theorists can do for quantum gravity, Masanori Hanada, Int.J.Mod.Phys. A31 (2016) 1643006, arXiv:1604.05421.
[Hanada:2016jok]
[2-216]
Recent results and perspectives on cosmology and fundamental physics from microwave surveys, Carlo Burigana et al., Int.J.Mod.Phys. D25 (2016) 1630016, arXiv:1604.03819.
[Burigana:2016cqp]
[2-217]
The Carnegie-Chicago Hubble Program. I. A New Approach to the Distance Ladder Using Only Distance Indicators of Population II, Rachael L. Beaton et al., Astrophys.J. 832 (2016) 210, arXiv:1604.01788.
[Beaton:2016nsw]
[2-218]
The Atoms Of Space, Gravity and the Cosmological Constant, T. Padmanabhan, Int.J.Mod.Phys. D25 (2016) 1630020, arXiv:1603.08658.
[Padmanabhan:2016eld]
[2-219]
Dark Energy: The Shadowy Reflection of Dark Matter?, Kostas Kleidis, Nikolaos K. Spyrou, Entropy 18 (2016) 94, arXiv:1603.03879.
[Kleidis:2016mqf]
[2-220]
Cosmology with the Square Kilometre Array by SKA-Japan, Daisuke Yamauchi et al. (SKA-Japan Consortium Cosmology Science Working Group), PoS DSU2015 (2016) 004, arXiv:1603.01959.
[SKA-JapanConsortiumCosmologyScienceWorkingGroup:2016hhj]
[2-221]
Quantum cosmology from group field theory condensates: a review, Steffen Gielen, Lorenzo Sindoni, SIGMA 12 (2016) 082, arXiv:1602.08104.
[Gielen:2016dss]
[2-222]
The Holographic Universe, Jean-Pierre Luminet, Inference 2 (2016), arXiv:1602.07258.
[Luminet:2016cuw]
[2-223]
A White Paper on keV Sterile Neutrino Dark Matter, R. Adhikari et al., JCAP 1701 (2017) 025, arXiv:1602.04816.
[Drewes:2016upu]
[2-224]
Conceptual issues in loop quantum cosmology, Aurelien Barrau, Boris Bolliet, Int.J.Mod.Phys. D25 (2016) 1642008, arXiv:1602.04452.
[Barrau:2016nwy]
[2-225]
Dark Energy vs. Modified Gravity, Austin Joyce, Lucas Lombriser, Fabian Schmidt, Ann.Rev.Nucl.Part.Sci. 66 (2016) 95-122, arXiv:1601.06133.
[Joyce:2016vqv]
[2-226]
The Multiverse and Particle Physics, John F. Donoghue, Ann.Rev.Nucl.Part.Sci. 66 (2016) 1-21, arXiv:1601.05136.
[Donoghue:2016tjk]
[2-227]
Initial Conditions for Inflation - A Short Review, Robert Brandenberger, Int.J.Mod.Phys. D26 (2016) 1740002, arXiv:1601.01918.
[Brandenberger:2016uzh]
[2-228]
Implications of Planck2015 for inflationary, ekpyrotic and anamorphic bouncing cosmologies, Anna Ijjas, Paul J. Steinhardt, Class. Quant. Grav. 33 (2016) 044001, arXiv:1512.09010.
[Ijjas:2015hcc]
[2-229]
Beyond $\Lambda$CDM: Problems, solutions, and the road ahead, Philip Bull et al., Phys.Dark Univ. 12 (2016) 56-99, arXiv:1512.05356.
[Bull:2015stt]
[2-230]
Sterile Neutrino Dark Matter from Freeze-In, Bibhushan Shakya, Mod. Phys. Lett. A31 (2016) 1630005, arXiv:1512.02751.
[Shakya:2015xnx]
[2-231]
A brief history of the multiverse, Andrei Linde, Rept.Prog.Phys. 80 (2017) 022001, arXiv:1512.01203.
[Linde:2015edk]
[2-232]
Nonminimal Couplings in the Early Universe: Multifield Models of Inflation and the Latest Observations, David I. Kaiser, Fundam.Theor.Phys. 183 (2016) 41-57, arXiv:1511.09148.
[Kaiser:2015usz]
[2-233]
On the theory and applications of modern cosmography, Peter K. S. Dunsby, Orlando Luongo, Int.J.Geom.Meth.Mod.Phys. 13 (2016) 1630002, arXiv:1511.06532.
[Dunsby:2015ers]
[2-234]
CMB Anomalies after Planck, Dominik J. Schwarz, Craig J. Copi, Dragan Huterer, Glenn D. Starkman, Class.Quant.Grav. 33 (2016) 184001, arXiv:1510.07929.
[Schwarz:2015cma]
[2-235]
Axion Cosmology, David J. E. Marsh, Phys.Rept. 643 (2016) 1-79, arXiv:1510.07633.
[Marsh:2015xka]
[2-236]
A Review of WIMP Baryogenesis Mechanisms, Yanou Cui, Mod. Phys. Lett. A30 (2015) 1530028, arXiv:1510.04298.
[Cui:2015eba]
[2-237]
General relativity and cosmology, Martin Bucher, Wei-Tou Ni, Int. J. Mod. Phys. D24 (2015) 1530030, arXiv:1509.04497.
[Bucher:2015ria]
[2-238]
Primordial non-Gaussianities after Planck 2015: an introductory review, Sebastien Renaux-Petel, Comptes Rendus Physique 16 (2015) 969-985, arXiv:1508.06740.
[Renaux-Petel:2015bja]
[2-239]
Light sterile neutrinos, S. Gariazzo, C. Giunti, M. Laveder, Y. F. Li, E.M. Zavanin, J. Phys. G43 (2016) 033001, arXiv:1507.08204.
[Gariazzo:2015rra]
[2-240]
Higgs boson cosmology, Ian G. Moss, Contemp. Phys. 56 (2015) 468, arXiv:1507.05760.
[Moss:2015fma]
[2-241]
Indirect and direct search for dark matter, Michael Klasen, Martin Pohl, Gunter Sigl, Prog. Part. Nucl. Phys. 85 (2015) 1-32, arXiv:1507.03800.
[Klasen:2015uma]
[2-242]
Big Bang Nucleosynthesis: 2015, Richard H. Cyburt, Brian D. Fields, Keith A. Olive, Tsung-Han Yeh, Rev.Mod.Phys. 88 (2016) 015004, arXiv:1505.01076.
[Cyburt:2015mya]
[2-243]
Vacuum energy and the cosmological constant, Steven D. Bass, Mod.Phys.Lett. A30 (2015) 1540033, arXiv:1503.05483.
[Bass:2015yaa]
[2-244]
Big-Bang Nucleosynthesis, Brian D. Fields, Paolo Molaro, Subir Sarkar (Particle Data Group), Chin.Phys. C38 (2014) 090001, arXiv:1412.1408.
[ParticleDataGroup:2014cgo]
[2-245]
Strong Dynamics and Inflation: a review, Phongpichit Channuie, Nucl. Phys. B892 (2015) 429-448, arXiv:1410.7547.
[Channuie:2014ysa]
[2-246]
Neutrinos from the Early Universe and Physics Beyond Standard Models, Daniela Kirilova, arXiv:1407.1784, 2014.
[Kirilova:2014ipa]
[2-247]
Beyond the Cosmological Standard Model, Austin Joyce, Bhuvnesh Jain, Justin Khoury, Mark Trodden, Phys. Rept. 568 (2015) 1-98, arXiv:1407.0059.
[Joyce:2014kja]
[2-248]
A Critical Review of Classical Bouncing Cosmologies, D. Battefeld, P. Peter, Phys.Rept. 571 (2015) 1-66, arXiv:1406.2790.
[Battefeld:2014uga]
[2-249]
MOND theory, Mordehai Milgrom, Can.J. Phys. 93 (2015) 107-118, arXiv:1404.7661.
[Milgrom:2014usa]
[2-250]
A Tale of Two Paradigms: the Mutual Incommensurability of LCDM and MOND, Stacy S. McGaugh, Can.J. Phys. 93 (2015) 250-259, arXiv:1404.7525.
[McGaugh:2014nsa]
[2-251]
Neutrino cosmology and Planck, Julien Lesgourgues, Sergio Pastor, New J. Phys. 16 (2014) 065002, arXiv:1404.1740.
[Lesgourgues:2014zoa]
[2-252]
Theory and Phenomenology of Spacetime Defects, Sabine Hossenfelder, Adv.High Energy Phys. 2014 (2014) 950672, arXiv:1401.0276.
[Hossenfelder:2014hha]
[2-253]
Dark Energy: A Short Review, Michael J. Mortonson, David H. Weinberg, Martin White, arXiv:1401.0046, 2014.
[Alhamzawi:2014saa]
[2-254]
Dark Matter in the Local Universe, Gustavo Yepes, Stefan Gottloeber, Yehuda Hoffman, New Astron.Rev. 58 (2014) 1-18, arXiv:1312.0105.
[Yepes:2013wca]
[2-255]
Fundamental Particle Structure in the Cosmological Dark Matter, Maxim Yu. Khlopov, International Journal of Modern Physics A, Vol. 28 (2013) 1330042 (60 pages), arXiv:1311.2468.
[Khlopov:2013ava]
[2-256]
Neutrinos, A. de Gouvea et al. (Intensity Frontier Neutrino Working Group), arXiv:1310.4340, 2013.
[IntensityFrontierNeutrinoWorkingGroup:2013sdv]
[2-257]
Recent Progress in Cosmology and Particle Astrophysics, Pisin Chen, JPS Conf.Proc. 1 (2014) 011002, arXiv:1310.1107.
[Chen:2013kia]
[2-258]
Neutrino Physics from the Cosmic Microwave Background and Large Scale Structure, K.N. Abazajian et al. (Topical Conveners: K.N. Abazajian, J.E. Carlstrom, A.T. Lee), Astropart.Phys. 63 (2015) 66-80, arXiv:1309.5383.
[TopicalConvenersKNAbazajianJECarlstromATLee:2013bxd]
[2-259]
Measuring cosmic distances with galaxy clusters, S.W. Allen et al., arXiv:1307.8152, 2013.
[Allen:2013zia]
[2-260]
The Higgs field as an inflaton, Fedor Bezrukov, Class.Quant.Grav. 30 (2013) 214001, arXiv:1307.0708.
[Bezrukov:2013fka]
[2-261]
Cosmic dark radiation and neutrinos, Maria Archidiacono, Elena Giusarma, Steen Hannestad, Olga Mena, Adv.High Energy Phys. 2013 (2013) 191047, arXiv:1307.0637.
[Archidiacono:2013fha]
[2-262]
Quintessence: A Review, Shinji Tsujikawa, Class. Quant. Grav. 30 (2013) 214003, arXiv:1304.1961.
[Khurshudyan:2013nka]
[2-263]
News on Right Handed Neutrinos, Marco Drewes, International Journal of Modern Physics E, Vol. 22 (2013) 1330019, arXiv:1303.6912.
[Drewes:2013gca]
[2-264]
Neutrinos in Cosmology and Astrophysics, A.B. Balantekin, G. M. Fuller, Prog.Part.Nucl. Phys. 71 (2013) 162-166, arXiv:1303.3874.
[Balantekin:2013gqa]
[2-265]
Encyclopaedia Inflationaris, Jerome Martin, Christophe Ringeval, Vincent Vennin, Phys.Dark Univ. (2014), arXiv:1303.3787.
[Martin:2013tda]
[2-266]
What is half a neutrino? Reviewing cosmological constraints on neutrinos and dark radiation, Signe Riemer-Sorensen, David Parkinson, Tamara M. Davis, Publ.Astron.Soc.Austral. 30 (2013) e029, arXiv:1301.7102.
[Riemer-Sorensen:2013iql]
[2-267]
Search for GeV-scale sterile neutrinos responsible for active neutrino oscillations and baryon asymmetry of the Universe, S. N. Gninenko, D. S. Gorbunov, M. E. Shaposhnikov, Adv.High Energy Phys. 2012 (2012) 718259, arXiv:1301.5516.
[Gninenko:2012anz]
[2-268]
Neutrino mass from Cosmology, Julien Lesgourgues, Sergio Pastor, Adv. High Energy Phys. 2012 (2012) 608515, arXiv:1212.6154.
[Lesgourgues:2012uu]
[2-269]
Neutrino Astrophysics, W. C. Haxton, arXiv:1209.3743, 2012.
[Haxton:2012bk]
[2-270]
Neutrinos And Big Bang Nucleosynthesis, Gary Steigman, Adv. High Energy Phys. 2012 (2012) 268321, arXiv:1208.0032.
[Steigman:2012ve]
[2-271]
The Acceleration Scale, Modified Newtonian Dynamics, and Sterile Neutrinos, Antonaldo Diaferio, Garry W. Angus, arXiv:1206.6231, 2012.
[Diaferio:2012zh]
[2-272]
The Cosmic Spacetime, Fulvio Melia, Austral.Physics 49 (2012) 83, arXiv:1205.2713.
[Melia:2012qb]
[2-273]
Light Sterile Neutrinos: A White Paper, K. N. Abazajian et al., arXiv:1204.5379, 2012.
[Abazajian:2012ys]
[2-274]
Matter and Antimatter in the Universe, Laurent Canetti, Marco Drewes, Mikhail Shaposhnikov, New J. Phys. 14 (2012) 095012, arXiv:1204.4186.
[Canetti:2012zc]
[2-275]
Neutrino mass in cosmology: status and prospects, Yvonne Y. Y. Wong, Ann. Rev. Nucl. Part. Sci. 61 (2011) 69-98, arXiv:1111.1436.
[Wong:2011ip]
[2-276]
Extended Theories of Gravity, Salvatore Capozziello, Mariafelicia De Laurentis, Phys. Rept. 509 (2011) 167-321, arXiv:1108.6266.
[Capozziello:2011et]
[2-277]
The origin of dark matter, matter-anti-matter asymmetry, and inflation, Anupam Mazumdar, arXiv:1106.5408, 2011.
[Mazumdar:2011zd]
[2-278]
The neutron and its role in cosmology and particle physics, Dirk Dubbers, Michael G. Schmidt, Rev. Mod. Phys. 83 (2011) 1111-1171, arXiv:1105.3694.
[Dubbers:2011ns]
[2-279]
Cosmological and Astrophysical Neutrino Mass Measurements, K. N. Abazajian et al., Astropart. Phys. 35 (2011) 177-184, arXiv:1103.5083.
[Abazajian:2011dt]
[2-280]
Cosmological Parameters from Observations of Galaxy Clusters, Steven W. Allen, August E. Evrard, Adam B. Mantz, Ann.Rev.Astron.Astrophys. 49 (2011) 409-470, arXiv:1103.4829.
[Allen:2011zs]
[2-281]
Supergravity based inflation models: a review, Masahide Yamaguchi, Class. Quant. Grav. 28 (2011) 103001, arXiv:1101.2488.
[Yamaguchi:2011kg]
[2-282]
Big Bang Nucleosynthesis as a Probe of New Physics, Maxim Pospelov, Josef Pradler, Ann. Rev. Nucl. Part. Sci. 60 (2010) 539-568, arXiv:1011.1054.
[Pospelov:2010hj]
[2-283]
The Accelerating Universe, Dragan Huterer, arXiv:1010.1162, 2010.
[Huterer:2010eh]
[2-284]
Horava-Lifshitz Cosmology: A Review, Shinji Mukohyama, Class. Quant. Grav. 27 (2010) 223101, arXiv:1007.5199.
[Mukohyama:2010xz]
[2-285]
Neutrino physics from precision cosmology, Steen Hannestad, Prog. Part. Nucl. Phys. 65 (2010) 185-208, arXiv:1007.0658.
[Hannestad:2010kz]
[2-286]
Dark Matter: A Primer, Katherine Garrett, Gintaras Duda, Adv. Astron. 2011 (2011) 968283, arXiv:1006.2483.
[Garrett:2010hd]
[2-287]
A review of Quantum Gravity at the Large Hadron Collider, Xavier Calmet, Mod. Phys. Lett. A25 (2010) 1553-1579, arXiv:1005.1805.
[Calmet:2010nt]
[2-288]
Large angle anomalies in the CMB, Craig J. Copi, Dragan Huterer, Dominik J. Schwarz, Glenn D. Starkman, Adv. Astron. 2010 (2010) 847541, arXiv:1004.5602.
[Copi:2010na]
[2-289]
The Hubble Constant, Wendy L. Freedman, Barry F. Madore, Ann.Rev.Astron.Astrophys. 48 (2010) 673-710, arXiv:1004.1856.
[Freedman:2010xv]
[2-290]
Dark Matter Candidates from Particle Physics and Methods of Detection, Jonathan L. Feng, Ann. Rev. Astron. Astrophys. 48 (2010) 495, arXiv:1003.0904.
[Feng:2010gw]
[2-291]
The Temperature of the Cosmic Microwave Background, D.J. Fixsen, Astrophys.J. 707 (2009) 916-920, arXiv:0911.1955.
[Fixsen:2009ug]
[2-292]
Dark Energy and Tracker Solution- A Review, R. Rakhi, K. Indulekha, arXiv:0910.5406, 2009.
[Rakhi:2009qf]
[2-293]
Baryon Acoustic Oscillations, Bruce A. Bassett, Renee Hlozek, arXiv:0910.5224, 2009.
[Bassett:2009mm]
[2-294]
Phenomenology and Cosmology of Supersymmetric Grand Unified Theories, Achilleas Vamvasakis, arXiv:0907.4549, 2009.
[Vamvasakis:2009wg]
[2-295]
Big Bang Nucleosynthesis and Particle Dark Matter, Karsten Jedamzik, Maxim Pospelov, New J. Phys. 11 (2009) 105028, arXiv:0906.2087.
[Jedamzik:2009uy]
[2-296]
An introduction to inflation and cosmological perturbation theory, L. Sriramkumar, arXiv:0904.4584, 2009.
[Sriramkumar:2009kg]
[2-297]
Approaches to Understanding Cosmic Acceleration, Alessandra Silvestri, Mark Trodden, Rept. Prog. Phys. 72 (2009) 096901, arXiv:0904.0024.
[Silvestri:2009hh]
[2-298]
Dark Matter Candidates, Lars Bergstrom, New J. Phys. 11 (2009) 105006, arXiv:0903.4849.
[Bergstrom:2009ib]
[2-299]
Observing the Evolution of the Universe, James Aguirre et al., arXiv:0903.0902, 2009.
[Aguirre:2009jt]
[2-300]
The Physics of Cosmic Acceleration, Robert R. Caldwell, Marc Kamionkowski, Ann. Rev. Nucl. Part. Sci. 59 (2013) 397, arXiv:0903.0866.
[Capozziello:2013kla]
[2-301]
Physics, Astrophysics and Cosmology with Gravitational Waves, B. S. Sathyaprakash, B. F. Schutz, Living Rev. Rel. 12 (2009) 2, arXiv:0903.0338.
[Sathyaprakash:2009xs]
[2-302]
Astrophysical Probes of Unification, Asimina Arvanitaki et al., Phys. Rev. D79 (2009) 105022, arXiv:0812.2075.
[Arvanitaki:2008hq]
[2-303]
Six Puzzles for LCDM Cosmology, L. Perivolaropoulos, arXiv:0811.4684, 2008.
[Perivolaropoulos:2008ud]
[2-304]
Dark Energy and Modified Gravity, Ruth Durrer, Roy Maartens, arXiv:0811.4132, 2008. Dark Energy: Observational \& Theoretical Approaches, ed. P Ruiz-Lapuente (Cambridge UP, 2010), pp48 - 91.
[Durrer:2008in]
[2-305]
Cosmological Inflation: Theory and Observations, Daniel Baumann, Hiranya V. Peiris, Adv. Sci. Lett. 2 (2009) 105-120, arXiv:0810.3022.
[Baumann:2008bn]
[2-306]
Cosmological perturbations, Karim A. Malik, David Wands, Phys. Rept. 475 (2009) 1-51, arXiv:0809.4944.
[Malik:2008im]
[2-307]
Primordial Nucleosynthesis: from precision cosmology to fundamental physics, Fabio Iocco, Gianpiero Mangano, Gennaro Miele, Ofelia Pisanti, Pasquale D. Serpico, Phys.Rept. 472 (2009) 1-76, arXiv:0809.0631.
[Iocco:2008va]
[2-308]
Proton and Neutrino Extragalactic Astronomy, Paolo Lipari, Phys. Rev. D78 (2008) 083011, arXiv:0808.0344.
[Lipari:2008zf]
[2-309]
Will the LHC Look into the Fate of the Universe?, Steven A. Abel, John Ellis, Joerg Jaeckel, Valentin V. Khoze, arXiv:0807.2601, 2008.
[Abel:2008ve]
[2-310]
The dark side of gravity: Modified theories of gravity, Francisco S. N. Lobo, Gen.Rel.Grav. 45 (2013) 531-544, arXiv:0807.1640.
[Sil:2012bq]
[2-311]
The expansion field: The value of $H_0$, G.A. Tammann, A. Sandage, B. Reindl, Astron.Astrophys.Rev. 15 (2008) 289-331, arXiv:0806.3018.
[Tammann:2008xf]
[2-312]
Colliders and Cosmology, Keith A. Olive, Eur. Phys. J. C59 (2009) 269-295, arXiv:0806.1208.
[Olive:2008uf]
[2-313]
A Concise Introduction to Perturbation Theory in Cosmology, Karim A. Malik, David R. Matravers, Class. Quant. Grav. 25 (2008) 193001, arXiv:0804.3276.
[Malik:2008yp]
[2-314]
Let there be Light: the Emergence of Structure out of the Dark Ages in the Early Universe, Abraham Loeb, arXiv:0804.2258, 2008.
[Loeb:2008dp]
[2-315]
The Large Scale Structure in the Universe: From Power-Laws to Acoustic Peaks, Vicent J. Martinez, Lect.Notes Phys. 665 (2009) 269, arXiv:0804.1536.
[Martinez:2008rx]
[2-316]
Bayes in the sky: Bayesian inference and model selection in cosmology, Roberto Trotta, Contemp. Phys. 49 (2008) 71-104, arXiv:0803.4089.
[Trotta:2008qt]
[2-317]
Dark Energy and the Accelerating Universe, Joshua Frieman, Michael Turner, Dragan Huterer, Ann. Rev. Astron. Astrophys. 46 (2008) 385-432, arXiv:0803.0982.
[Frieman:2008sn]
[2-318]
The Cosmic Microwave Background for Pedestrians: A Review for Particle and Nuclear Physicists, Dorothea Samtleben, Suzanne Staggs, Bruce Winstein, Ann. Rev. Nucl. Part. Sci. 57 (2007) 245-283, arXiv:0803.0834.
[Samtleben:2007zz]
[2-319]
An introduction to the dark energy problem, Antonio Dobado, Antonio L. Maroto, Astrophys. Space Sci. 320 (2009) 167-171, arXiv:0802.1873.
[Dobado:2008xn]
[2-320]
Mapping the Cosmological Expansion, Eric V. Linder, Rept. Prog. Phys. 71 (2008) 056901, arXiv:0801.2968.
[Linder:2008pp]
[2-321]
New Frontiers in Cosmology and Galaxy Formation: Challenges for the Future, Richard Ellis, Joseph Silk, arXiv:0712.2865, 2007.
[Ellis:2007sy]
[2-322]
Primordial Nucleosynthesis in the Precision Cosmology Era, Gary Steigman, ARN ARNPS (2007) 463, arXiv:0712.1100.
[Steigman:2007xt]
[2-323]
Physics in the multiverse: an introductory review, Aurelien Barrau, CERN Courier 47N10 (2007) 13-17, arXiv:0711.4460.
[Barrau:2007ce]
[2-324]
Dark Energy and Dark Gravity, Ruth Durrer, Roy Maartens, Gen. Rel. Grav. 40 (2008) 301-328, arXiv:0711.0077.
[Durrer:2007re]
[2-325]
Is the evidence for dark energy secure?, Subir Sarkar, Gen. Rel. Grav. 40 (2008) 269-284, arXiv:0710.5307.
[Sarkar:2007cx]
[2-326]
String Cosmology: A Review, Liam McAllister, Eva Silverstein, Gen. Rel. Grav. 40 (2008) 565-605, arXiv:0710.2951.
[McAllister:2007bg]
[2-327]
The Hubble Constant, Neal Jackson, Living Reviews in Relativity 10 (2007) 4, arXiv:0709.3924.
[Jackson:2007ug]
[2-328]
Dark Energy from Structure - A Status Report, Thomas Buchert, Gen. Rel. Grav. 40 (2008) 467-527, arXiv:0707.2153.
[Buchert:2007ik]
[2-329]
Dark Matter and Dark Energy, Marc Kamionkowski, arXiv:0706.2986, 2007.
[Kamionkowski:2007wv]
[2-330]
GRB Cosmology, Volker Bromm, Abraham Loeb, arXiv:0706.2445, 2007.
[Bromm:2007dq]
[2-331]
Cosmic Acceleration, Dark Energy and Fundamental Physics, Michael S. Turner, Dragan Huterer, J. Phys. Soc. Jap. 76 (2007) 111015, arXiv:0706.2186.
[Turner:2007qg]
[2-332]
Lectures on Astronomy, Astrophysics, and Cosmology, Luis A. Anchordoqui, arXiv:0706.1988, 2007.
[Anchordoqui:2007kb]
[2-333]
Resource Letter BE-1: The Beginning and Evolution of the Universe, Bharat Ratra, Michael S. Vogeley, Publ. Astron. Soc. Pac. 120 (2008) 235-265, arXiv:0706.1565.
[Ratra:2007sa]
[2-334]
Dark Energy and Gravity, T. Padmanabhan, Gen. Rel. Grav. 40 (2008) 529-564, arXiv:0705.2533.
[Padmanabhan:2007xy]
[2-335]
Why CMB physics?, Massimo Giovannini, Int. J. Mod. Phys. A22 (2007) 2697-2894, arXiv:astro-ph/0703730.
[Giovannini:2007xh]
[2-336]
The modified Newtonian dynamics-MOND-and its implications for new physics, Jacob D. Bekenstein, Contemp.Phys. (2007), arXiv:astro-ph/0701848.
[Bekenstein:2006bya]
[2-337]
Magnetic fields, strings and cosmology, Massimo Giovannini, Lect. Notes Phys. 737 (2008) 863-939, arXiv:astro-ph/0612378.
[Giovannini:2006kg]
[2-338]
Probing Models of Quantum Decoherence in Particle Physics and Cosmology, Nikolaos E. Mavromatos, Sarben Sarkar, arXiv:hep-ph/0612193, 2006.
[Mavromatos:2006yn]
[2-339]
The Physics and Early History of the Intergalactic Medium, Rennan Barkana, Abraham Loeb, Rept. Prog. Phys. 70 (2007) 627, arXiv:astro-ph/0611541.
[Barkana:2006ep]
[2-340]
Report by the ESA-ESO Working Group on Fundamental Cosmology, John A. Peacock et al., arXiv:astro-ph/0610906, 2006.
[Peacock:2006kj]
[2-341]
Theory Challenges of the Accelerating Universe, Eric V. Linder, J. Phys. A40 (2007) 6697-6706, arXiv:astro-ph/0610173.
[Linder:2006uf]
[2-342]
Reconstructing Dark Energy, Varun Sahni, Alexei Starobinsky, Int. J. Mod. Phys. D15 (2006) 2105-2132, arXiv:astro-ph/0610026.
[Sahni:2006pa]
[2-343]
Report of the Dark Energy Task Force, Andreas Albrecht et al., arXiv:astro-ph/0609591, 2006.
[Albrecht:2006um]
[2-344]
On the cosmological mass function theory, A. Del Popolo, Astron. Rep. 51 (2007) 709-734, arXiv:astro-ph/0609166. Astronomy Reports, in print.
[DelPopolo:2006gn]
[2-345]
The First Stars in the Universe and Cosmic Reionization, Rennan Barkana, Science 313 (2006) 931=934, arXiv:astro-ph/0608450.
[Barkana:2006pj]
[2-346]
Loop Quantum Gravity: An Inside View, Thomas Thiemann, Lect. Notes Phys. 721 (2007) 185-263, arXiv:hep-th/0608210.
[Thiemann:2006cf]
[2-347]
Cosmology at Low Frequencies: The 21 cm Transition and the High-Redshift Universe, Steven Furlanetto, S. Peng Oh, Frank Briggs, Phys. Rept. 433 (2006) 181-301, arXiv:astro-ph/0608032.
[Furlanetto:2006jb]
[2-348]
Black Holes at Future Colliders and Beyond: a Topical Review, Greg Landsberg, J. Phys. G32 (2006) R337-R365, arXiv:hep-ph/0607297.
[Landsberg:2006mm]
[2-349]
Neutrino mass and baryogenesis, D. Falcone, arXiv:hep-ph/0607287, 2006.
[Falcone:2006gt]
[2-350]
Surveying the dark side, Roberto Trotta, Richard Bower, Astron. Geophys. 47 (2006) 4:20-4:27, arXiv:astro-ph/0607066.
[Trotta:2006gx]
[2-351]
Astrophysics in 2005, V. Trimble, M.J. Aschwanden, C.J. Hansen, Publ.Astron.Soc.Pac. 118 (2006) 947, arXiv:astro-ph/0606663.
[Trimble:2006gt]
[2-352]
The CMB polarization: status and prospects, Amedeo Balbi, Paolo Natoli, Nicola Vittorio, arXiv:astro-ph/0606511, 2006.
[Balbi:2006vk]
[2-353]
The large-scale structure of the Universe, Volker Springel, Carlos S. Frenk, Simon D. M. White, Nature Nature (2006) (2006), arXiv:astro-ph/0604561.
[Springel:2006vs]
[2-354]
Dark Energy: Recent Developments, Norbert Straumann, Mod. Phys. Lett. A21 (2006) 1083-1098, arXiv:hep-ph/0604231.
[Straumann:2006tv]
[2-355]
Task Force on Cosmic Microwave Background Research, James Bock et al., arXiv:astro-ph/0604101, 2006.
[Bock:2006yf]
[2-356]
The Hubble Constant: A Summary of the HST Program for the Luminosity Calibration of Type Ia Supernovae by Means of Cepheids, A. Sandage et al., Astrophys. J. 653 (2006) 843-860, arXiv:astro-ph/0603647.
[Sandage:2006cv]
[2-357]
Massive neutrinos and cosmology, Julien Lesgourgues, Sergio Pastor, Phys. Rept. 429 (2006) 307-379, arXiv:astro-ph/0603494.
[Lesgourgues:2006nd]
[2-358]
Quantum Cosmology, Martin Bojowald, arXiv:gr-qc/0603110, 2006.
[Bojowald:2006nd]
[2-359]
Dynamics of dark energy, Edmund J. Copeland, M. Sami, Shinji Tsujikawa, Int. J. Mod. Phys. D15 (2006) 1753-1936, arXiv:hep-th/0603057.
[Copeland:2006wr]
[2-360]
Cosmic Strings, Mairi Sakellariadou, Lect. Notes Phys. 718 (2007) 247-288, arXiv:hep-th/0602276.
[Sakellariadou:2006qs]
[2-361]
Primordial Neutrinos, Steen Hannestad, Ann. Rev. Nucl. Part. Sci. 56 (2006) 137-161, arXiv:hep-ph/0602058.
[Hannestad:2006zg]
[2-362]
Phase transitions in the early and the present Universe, D. Boyanovsky, H. J. de Vega, D. J. Schwarz, Ann. Rev. Nucl. Part. Sci. 56 (2006) 441-500, arXiv:hep-ph/0602002.
[Boyanovsky:2006bf]
[2-363]
Weak Gravitational Lensing of the CMB, Antony Lewis, Anthony Challinor, Phys. Rep. 429 (2006) 1, arXiv:astro-ph/0601594.
[Lewis:2006fu]
[2-364]
Cosmic Microwave Background Mini-Review, Douglas Scott, George Smoot, Rev.Part.Phys. (2006), arXiv:astro-ph/0601307. The Review of Particle Properties 2005. http://pdg.lbl.gov/2005/reviews/microwaverpp.pdf.
[Scott:2006xy]
[2-365]
The cosmological parameters 2005, Ofer Lahav, Andrew R Liddle, J. Phys. G33 (2010) 1, arXiv:astro-ph/0601168. The Review of Particle Properties 2005. http://pdg.lbl.gov/2005/reviews/hubblerpp.pdf.
[Lahav:2010mi]
[2-366]
Is Our Universe Natural?, Sean M. Carroll, Nature 440 (2006) 1132-1136, arXiv:hep-th/0512148.
[Carroll:2005ah]
[2-367]
Inflation: Homogeneous Limit, V. Mukhanov, arXiv:astro-ph/0511570, 2005.
[Mukhanov:2005bn]
[2-368]
Primordial Nucleosynthesis: Successes And Challenges, Gary Steigman, Int. J. Mod. Phys. E15 (2006) 1, arXiv:astro-ph/0511534.
[Steigman:2005uz]
[2-369]
Mapping the Large Scale Structure of the Universe, David H. Weinberg, Science 309 (2005) 564, arXiv:astro-ph/0510197.
[Weinberg:2005bc]
[2-370]
Dark Energy: The Observational Challenge, David H. Weinberg, New Astron. Rev. 49 (2005) 337, arXiv:astro-ph/0510196.
[Weinberg:2005bb]
[2-371]
The Phenomenology of Dvali-Gabadadze-Porrati Cosmologies, Arthur Lue, Phys. Rep. 423 (2006) 1, arXiv:astro-ph/0510068.
[Lue:2005ya]
[2-372]
Insights into Dark Energy: Interplay Between Theory and Observation, Rachel Bean, Sean Carroll, Mark Trodden, arXiv:astro-ph/0510059, 2005.
[Bean:2005ru]
[2-373]
The Universe from Scratch, R. Loll, J. Ambjorn, J. Jurkiewicz, Contemp. Phys. 47 (2006) 103-117, arXiv:hep-th/0509010.
[Ambjorn:2005jj]
[2-374]
Inflation Dynamics and Reheating, Bruce A. Bassett, Shinji Tsujikawa, David Wands, Rev. Mod. Phys. 78 (2006) 537-589, arXiv:astro-ph/0507632.
[Bassett:2005xm]
[2-375]
Introduction to Higher Order Spatial Statistics in Cosmology, Istvan Szapudi, arXiv:astro-ph/0505391, 2005.
[Szapudi:2005vs]
[2-376]
Alternatives to Dark Matter and Dark Energy, Philip D. Mannheim, Prog. Part. Nucl. Phys. 56 (2006) 340, arXiv:astro-ph/0505266.
[Mannheim:2005bfa]
[2-377]
The Dynamics of Brane-World Cosmological Models, A. A. Coley, Can.J. Phys. 83 (2005) 475, arXiv:astro-ph/0504226.
[Coley:2005xg]
[2-378]
Braneworld black holes in cosmology and astrophysics, A. S. Majumdar, N. Mukherjee, Int. J. Mod. Phys. D14 (2005) 1095, arXiv:astro-ph/0503473.
[Majumdar:2005ba]
[2-379]
Understanding our universe: Current status and open issues, T. Padmanabhan, 100 Years Of Relativity : space-time structure: Einstein and beyond (2005) 175-204, arXiv:gr-qc/0503107.
[Padmanabhan:2005cw]
[2-380]
Inflationary Cosmology: Exploring the Universe from the Smallest to the Largest Scales, Alan H. Guth, David I. Kaiser, Science 307 (2005) 884, arXiv:astro-ph/0502328.
[Guth:2005zr]
[2-381]
Leptogenesis as the origin of matter, W. Buchmuller, R. D. Peccei, T. Yanagida, Ann. Rev. Nucl. Part. Sci. 55 (2005) 311, arXiv:hep-ph/0502169.
[Buchmuller:2005eh]
[2-382]
Phenomenological Quantum Gravity, Dagny Kimberly, Joao Magueijo, Aip Conf. Proc. 782 (2005) 241, arXiv:gr-qc/0502110. Lectures given at XI BSCG.
[Kimberly:2005at]
[2-383]
Alternative ideas in cosmology, J. V. Narlikar, The Scientific Legacy of Fred Hoyle (2005) 127-148.
[Narlikar-2005slfh-book-127N]
[2-384]
Theoretical tools for the physics of CMB anisotropies, Massimo Giovannini, Int. J. Mod. Phys. D14 (2005) 363, arXiv:astro-ph/0412601.
[Giovannini:2004rj]
[2-385]
APS Neutrino Study: Report of the Neutrino Astrophysics and Cosmology Working Group, Steve W. Barwick et al., arXiv:astro-ph/0412544, 2004.
[Barwick:2004ep]
[2-386]
Neutrinoless double beta decay and direct searches for neutrino mass, Craig Aalseth et al., arXiv:hep-ph/0412300, 2004.
[Aalseth:2004hb]
[2-387]
Neutrino Masses from Cosmological Probes, Oystein Elgaroy, Ofer Lahav, New J. Phys. 7 (2005) 61, arXiv:hep-ph/0412075.
[Elgaroy:2004rc]
[2-388]
Quantum cosmological models, D. H. Coule, Class. Quant. Grav. 22 (2005) R125, arXiv:gr-qc/0412026.
[Coule:2004qf]
[2-389]
Dark Energy: the Cosmological Challenge of the Millennium, T. Padmanabhan, Curr. Sci. 88 (2005) 1057, arXiv:astro-ph/0411044.
[Padmanabhan:2004av]
[2-390]
Type Ia Supernovae and Cosmology, Alexei V. Filippenko, Astrophys.Space Sci.Libr. 332 (2005) 97, arXiv:astro-ph/0410609.
[Filippenko:2004ub]
[2-391]
The Formation of the First Stars in the Universe, Simon C.O. Glover, Space Sci. Rev. 117 (2005) 445, arXiv:astro-ph/0409737.
[Glover:2004yb]
[2-392]
A Beginner's Guide to the Theory of CMB Temperature and Polarization Power Spectra in the Line-of-Sight Formalism, Yen-Ting Lin, Benjamin D. Wandelt, Astropart. Phys. 25 (2006) 151, arXiv:astro-ph/0409734.
[Lin:2004xy]
[2-393]
A Conceptual Tour About the Standard Cosmological Model, Antonio L. Maroto, Juan Ramirez, arXiv:astro-ph/0409280, 2004.
[Maroto:2004pd]
[2-394]
Anthropic predictions: the case of the cosmological constant, Alexander Vilenkin, arXiv:astro-ph/0407586, 2004.
[Vilenkin:2004fj]
[2-395]
Big Bang Nucleosynthesis, Brian Fields, Subir Sarkar, Phys. Rev. D86 (2012) 066004, arXiv:astro-ph/0406663.
[Anchordoqui:2012wt]
[2-396]
Cosmic Background Radiation Mini-Review, Douglas Scott, George Smoot, Phys. Lett. B592 (2004) 221, arXiv:astro-ph/0406567. The Review of Particle Properties 2004. http://pdg.lbl.gov/2004/reviews/microwaverpp.pdf.
[Scott:2004pr]
[2-397]
Non-Gaussianity from Inflation: Theory and Observations, N. Bartolo, E. Komatsu, S. Matarrese, A. Riotto, Phys. Rep. 402 (2004) 103, arXiv:astro-ph/0406398.
[Bartolo:2004if]
[2-398]
BBN For Pedestrians, James P. Kneller, Gary Steigman, New J. Phys. 6 (2004) 117, arXiv:astro-ph/0406320.
[Kneller:2004jz]
[2-399]
Cosmic acceleration, scalar fields and observations, C. A. Terrero-Escalante, Lect. Notes Phys. 646 (2004) 109, arXiv:astro-ph/0404591.
[Terrero-Escalante:2004nro]
[2-400]
Inflation, Alan H. Guth, arXiv:astro-ph/0404546, 2004.
[Guth:2004tw]
[2-401]
Neutrinos in cosmology, Steen Hannestad, New J. Phys. 6 (2004) 108, arXiv:hep-ph/0404239. http://www.iop.org/EJ/abstract/1367-2630/6/1/108/.
[Hannestad:2004nb]
[2-402]
Particle Dark Matter: Evidence, Candidates and Constraints, Gianfranco Bertone, Dan Hooper, Joseph Silk, Phys. Rep. 405 (2013) 279, arXiv:hep-ph/0404175.
[Sadeghian:2013bga]
[2-403]
Imaging the first light: experimental challenges and future perspectives in the observation of the Cosmic Microwave Background Anisotropy, A. Mennella et al., Astron.Astrophys (2004), arXiv:astro-ph/0402528.
[Mennella:2004ph]
[2-404]
Variations of the Fine Structure Constant in Space and Time, D.F. Mota, arXiv:astro-ph/0401631, 2004.
[Mota:2004mz]
[2-405]
Dark and luminous matter connections. Towards understanding galaxy evolution, Paola Mazzei, arXiv:astro-ph/0401509, 2004.
[Mazzei:2004pf]
[2-406]
Leptogenesis for Pedestrians, W. Buchmuller, P. Di Bari, M. Plumacher, Annals Phys. 315 (2005) 305, arXiv:hep-ph/0401240.
[Buchmuller:2004nz]
[2-407]
Dark Matter, M. Drees, G. Gerbier, Phys. Lett. B592 (2004) 216. The Review of Particle Properties 2004. http://pdg.lbl.gov/2005/reviews/darkmatrpp.pdf.
[Drees:2004ak]
[2-408]
Big-Bang Cosmology, K. A. Olive, J. A. Peacock, Phys. Lett. B592 (2004) 191. The Review of Particle Properties 2004. http://pdg.lbl.gov/2005/reviews/bigbangrpp.pdf.
[Olive:2004qb]
[2-409]
Review of particle physics, S. Eidelman et al. (Particle Data Group), Phys. Lett. B592 (2004) 1. http://pdg.lbl.gov.
[ParticleDataGroup:2004fcd]
[2-410]
The magnetized universe, Massimo Giovannini, Int. J. Mod. Phys. D13 (2004) 391, arXiv:astro-ph/0312614.
[Giovannini:2003yn]
[2-411]
X-ray Cluster Large Scale Structure and Cosmology, Marguerite Pierre, ASP Conf.Ser. (2003), arXiv:astro-ph/0311451.
[Pierre:2003sd]
[2-412]
Expanding Confusion: common misconceptions of cosmological horizons and the superluminal expansion of the Universe, T. M. Davis, C. H. Lineweaver, Proc.Astron.Soc.Austral. (2003), arXiv:astro-ph/0310808.
[Davis:2003ad]
[2-413]
Measuring our universe from galaxy redshift surveys, Ofer Lahav, Yasushi Suto, Living Rev. Relativity 7 (2004) 8, arXiv:astro-ph/0310642. http://www.livingreviews.org/lrr-2004-8/.
[Lahav:2003xw]
[2-414]
A Map of the Universe, J. R. Gott III et al., Astrophys. J. 624 (2005) 463, arXiv:astro-ph/0310571.
[Gott:2003pf]
[2-415]
Why is the Universe Accelerating?, S. M. Carroll, eConf C0307282 (2003) TTH09, arXiv:astro-ph/0310342.
[Carroll:2003qq]
[2-416]
Observational Cosmology: caveats and open questions in the standard model, M. Lopez-Corredoira, Astron.Astrophys. (2003), arXiv:astro-ph/0310214.
[Lopez-Corredoira:2003fuf]
[2-417]
Cosmology calculations almost without general relativity, T. F. Jordan, Am. J. Phys. 73 (2005) 653, arXiv:astro-ph/0309756.
[Jordan:2003tt]
[2-418]
The Accelerating Universe and Dark Energy: Evidence from Type Ia Supernovae, A. V. Filippenko, Lect. Notes Phys. 646 (2004) 191, arXiv:astro-ph/0309739.
[Filippenko:2003ta]
[2-419]
Cosmoparticle Physics -the Challenge for the Millenium, M. Yu. Khlopov, arXiv:astro-ph/0309704, 2003.
[Khlopov:2003cm]
[2-420]
Physics of Primordial Universe, M. Yu. Khlopov, arXiv:astro-ph/0309703, 2003.
[Khlopov:2003ck]
[2-421]
Development of the Universe and New Cosmology, A. S. Sakharov, H. Hofer, arXiv:astro-ph/0309326, 2003.
[Sakharov:2003bs]
[2-422]
WMAPing the Universe: Supersymmetry, Dark Matter, Dark Energy, Proton Decay and Collider Physics, A. B. Lahanas, N. E. Mavromatos, D. V. Nanopoulos, Int. J. Mod. Phys. D12 (2003) 1529, arXiv:hep-ph/0308251.
[Lahanas:2003bh]
[2-423]
Big Bang Nucleosynthesis: Probing the First 20 Minutes, Gary Steigman, arXiv:astro-ph/0307244, 2003.
[Steigman:2003gc]
[2-424]
Weak Gravitational Lensing by Large-Scale Structure, Alexandre Refregier, Ann. Rev. Astron. Astrophys. 41 (2003) 645-668, arXiv:astro-ph/0307212.
[Refregier:2003ct]
[2-425]
Interferometric Observations of the Cosmic Microwave Background Radiation, A. C. S. Readhead, T. J. Pearson, arXiv:astro-ph/0306383, 2003. Carnegie Observatories Astrophysics Series, Vol. 2: Measuring and Modeling the Universe.
[Readhead:2003pq]
[2-426]
The First Nonlinear Structures and the Reionization History of the Universe, Z. Haiman, arXiv:astro-ph/0304131, 2003.
[Haiman:2003he]
[2-427]
The first second of the Universe, D. J. Schwarz, Annalen Phys. 12 (2003) 220, arXiv:astro-ph/0303574. invited review to appear in Annalen der Physik (50 pages, 16 figures).
[Schwarz:2003du]
[2-428]
The world according to the Hubble Space Telescope, M. Livio, arXiv:astro-ph/0303500, 2003.
[Livio:2003tc]
[2-429]
Measuring Cosmology with Supernovae, S. Perlmutter, B. P. Schmidt, Lect. Notes Phys. 598 (2003) 195-217, arXiv:astro-ph/0303428.
[Perlmutter:2003kf]
[2-430]
How far are we from the quantum theory of gravity?, Lee Smolin, arXiv:hep-th/0303185, 2003.
[Smolin:2003rk]
[2-431]
The origin of the matter-antimatter asymmetry, M. Dine, A. Kusenko, Rev. Mod. Phys. 76 (2003) 1, arXiv:hep-ph/0303065.
[Dine:2003ax]
[2-432]
A Preposterous Universe, A. Gangui, Science 229 (2003) 1333, arXiv:astro-ph/0303048.
[Gangui:2003tt]
[2-433]
Neutrinos from the Big Bang, Subir Sarkar, Proc. Indian Natl. Sci. Acad. 70A (2004) 163, arXiv:hep-ph/0302175.
[Sarkar:2003ch]
[2-434]
Intermediate-Mass Black Holes in the Universe? - A Review of Formation Theories and Observational Constraints, R. P. van der Marel, arXiv:astro-ph/0302101, 2003.
[vanderMarel:2003ka]
[2-435]
Particle Aspects of Cosmology and Baryogenesis, Riazuddin, arXiv:hep-ph/0302020, 2003.
[Riazuddin:2003ab]
[2-436]
Action at a distance and cosmology: A historical perspective, J. V. Narlikar, Ann. Rev. Astron. Astrophys. 41 (2003) 169-189.
[Narlikar:2003sq]
[2-437]
Classical geometry of de Sitter spacetime: An introductory review, Y. Kim, C. Y. Oh, N. Park, arXiv:hep-th/0212326, 2002.
[Kim:2002uz]
[2-438]
Cosmological Constant - the Weight of the Vacuum, T. Padmanabhan, Phys. Rep. 380 (2003) 235, arXiv:hep-th/0212290.
[Padmanabhan:2002ji]
[2-439]
Absolute values of neutrino masses: Status and prospects, S. M. Bilenky, C. Giunti, J. A. Grifols, E. Masso, Phys. Rep. 379 (2003) 69-148, arXiv:hep-ph/0211462.
[Bilenky:2002aw]
[2-440]
CMB temperature and polarization anisotropy fundamentals, Wayne Hu, Annals Phys. 303 (2003) 203-225, arXiv:astro-ph/0210696.
[Hu:2002aa]
[2-441]
Measuring the Influence of Supernovae at High Redshift, K. L. Adelberger, ASP Conf.Ser. 291 (2003) 221, arXiv:astro-ph/0210315.
[Adelberger:2002qq]
[2-442]
Galaxies and Intergalactic Matter at Redshift z~3: Overview, K.L. Adelberger, C.C. Steidel, A.E. Shapley, M. Pettini, Astrophys. J. 584 (2003) 45, arXiv:astro-ph/0210314.
[Adelberger:2002qp]
[2-443]
The Dynamical Parameters of the Universe, S. M. Harun-or-Rashid M. Roos, arXiv:astro-ph/0209611, 2002.
[Roos:2002mk]
[2-444]
The picture of our universe: A view from modern cosmology, David D. Reid, Daniel W. Kittell, Eric E. Arsznov, Gregory B. Thompson, arXiv:astro-ph/0209504, 2002.
[Reid:2002kp]
[2-445]
Cosmological consequences of MSSM flat directions, Kari Enqvist, Anupam Mazumdar, Phys. Rep. 380 (2003) 99-234, arXiv:hep-ph/0209244.
[Enqvist:2003gh]
[2-446]
The Cosmological Constant and Dark Energy, B. Ratra P. J. E. Peebles, Rev. Mod. Phys. 75 (2003) 599, arXiv:astro-ph/0207347.
[Peebles:2002gy]
[2-447]
Measuring spacetime: From big bang to black holes, M. Tegmark, Science 296 (2004) 1427-1433, arXiv:astro-ph/0207199.
[Tegmark:2002dg]
[2-448]
Halo models of large scale structure, Asantha Cooray, Ravi Sheth, Phys. Rep. 372 (2002) 1-129, arXiv:astro-ph/0206508.
[Cooray:2002dia]
[2-449]
Astrophysical and cosmological constraints on neutrino masses, Kimmo Kainulainen, Keith A. Olive, Springer Tracts Mod. Phys. 190 (2003) 53-74, arXiv:hep-ph/0206163.
[Kainulainen:2002pu]
[2-450]
The Cold Dark Matter crisis on galactic and subgalactic scales, A. Tasitsiomi, Int. J. Mod. Phys. D12 (2003) 1157, arXiv:astro-ph/0205464.
[Tasitsiomi:2002hi]
[2-451]
CP violation and baryogenesis, W. Bernreuther, Lect. Notes Phys. 591 (2002) 237-293, arXiv:hep-ph/0205279.
[Bernreuther:2002uj]
[2-452]
Neutrinos in cosmology, A. D. Dolgov, Phys. Rep. 370 (2002) 333-535, arXiv:hep-ph/0202122.
[Dolgov:2002wy]
[2-453]
Large-scale structure of the universe and cosmological perturbation theory, F. Bernardeau, S. Colombi, E. Gaztanaga, R. Scoccimarro, Phys. Rep. 367 (2002) 1-248, arXiv:astro-ph/0112551.
[Bernardeau:2001qr]
[2-454]
Cosmic Microwave Background Anisotropies, W. Hu, S. Dodelson, Ann. Rev. Astron. Astrophys. 40 (2002) 171, arXiv:astro-ph/0110414. http://background.uchicago.edu/~whu/araa/araa.html.
[Hu:2001bc]
[2-455]
Neutrino propagation in dense astrophysical systems, Madappa Prakash, James M. Lattimer, Raymond F. Sawyer, Raymond R. Volkas, Ann. Rev. Nucl. Part. Sci. 51 (2001) 295-344, arXiv:astro-ph/0103095.
[Prakash:2001rx]
[2-456]
Large-Scale Structure, Theory and Statistics, Peter Coles, arXiv:astro-ph/0103017, 2001. http://nedwww.ipac.caltech.edu/level5/March01/Coles/frames.html.
[Coles:2001cd]
[2-457]
Standard Cosmology and Alternatives: A Critical Appraisal, J. V. Narlikar, T. Padmanabhan, Annual Review of Astronomy and Astrophysics 39 (2001) 211-248.
[Narlikar-Padmanabhan-2001ARA&A-39-211N]
[2-458]
Hot dark matter in cosmology, Joel R. Primack, Michael A. K. Gross, arXiv:astro-ph/0007165, 2000.
[Primack:2000iq]
[2-459]
An exposition on inflationary cosmology, Gary Scott Watson, arXiv:astro-ph/0005003, 2000.
[Watson:2000hb]
[2-460]
The cosmological constant, Sean M. Carroll, Living Rev. Rel. 4 (2001) 1, arXiv:astro-ph/0004075. http://www.livingreviews.org/lrr-2001-1/.
[Carroll:2000fy]
[2-461]
Non-baryonic dark matter: Observational evidence and detection methods, Lars Bergstrom, Rept. Prog. Phys. 63 (2000) 793, arXiv:hep-ph/0002126.
[Bergstrom:2000pn]
[2-462]
The Cosmic Microwave Background Radiation, Eric Gawiser, Joseph Silk, Phys. Rep. 333 (2000) 245-267, arXiv:astro-ph/0002044.
[Gawiser:2000az]
[2-463]
Weak Gravitational Lensing, Matthias Bartelmann, Peter Schneider, Phys. Rep. 340 (2001) 291-472, arXiv:astro-ph/9912508.
[Bartelmann:1999yn]
[2-464]
The Cosmic Microwave Background: State of the Art, R. Belen Barreiro, New Astron. Rev. 44 (2000) 179-204, arXiv:astro-ph/9907094.
[Barreiro:1999ct]
[2-465]
The Cosmic Triangle: Revealing the State of the Universe, N. A. Bahcall, J. P. Ostriker, S. Perlmutter, P. J. Steinhardt, Science 284 (1999) 1481-1488, arXiv:astro-ph/9906463.
[Bahcall:1999xn]
[2-466]
Primordial nucleosynthesis: Theory and observations, Keith A. Olive, Gary Steigman, Terry P. Walker, Phys. Rep. 333 (2000) 389-407, arXiv:astro-ph/9905320.
[Olive:1999ij]
[2-467]
The Cosmic microwave background and particle physics, Marc Kamionkowski, Arthur Kosowsky, Ann.Rev.Nucl.Part.Sci. 49 (1999) 77-123, arXiv:astro-ph/9904108.
[Kamionkowski:1999qc]
[2-468]
Probing the Universe with Weak Lensing, Yannick Mellier, Ann. Rev. Astron. Astrophys. 37 (1999) 127, arXiv:astro-ph/9812172.
[Mellier:1998pk]
[2-469]
What have we already learned from the CMB?, Charles R. Lawrence, Douglas Scott, Martin J. White, Publ. Astron. Soc. Pac. 111 (1999) 525, arXiv:astro-ph/9810446.
[Lawrence:1998ri]
[2-470]
Why the quantum must yield to gravity, Joy Christian, arXiv:gr-qc/9810078, 1998.
[Christian:1998ep]
[2-471]
Particle physics models of inflation and the cosmological density perturbation, David H. Lyth, Antonio Riotto, Phys. Rep. 314 (1999) 1-146, arXiv:hep-ph/9807278.
[Lyth:1998xn]
[2-472]
The Lyman Alpha Forest in the Spectra of QSOs, Michael Rauch, Ann. Rev. Astron. Astrophys. 36 (1998) 267-31, arXiv:astro-ph/9806286.
[Rauch:1998xn]
[2-473]
The Cosmic microwave background, A. W. Jones, A. N. Lasenby, Living Rev. Rel. 1 (1998) 11. http://www.livingreviews.org/lrr-1998-11/.
[Jones:1998gz]
[2-474]
A CMB Polarization Primer, Wayne Hu, Martin J. White, New Astron. 2 (1997) 323, arXiv:astro-ph/9706147.
[Hu:1997hv]
[2-475]
Big-bang nucleosynthesis enters the precision era, David N. Schramm, Michael S. Turner, Rev. Mod. Phys. 70 (1998) 303-318, arXiv:astro-ph/9706069.
[Schramm:1997vs]
[2-476]
Cosmic Topology, M. Lachieze-Rey, J. P. Luminet, Phys. Rep. 254 (1995) 135, arXiv:gr-qc/9605010.
[Lachieze-Rey:1995qrb]
[2-477]
The Physics of microwave background anisotropies, Wayne Hu, Naoshi Sugiyama, Joseph Silk, Nature 386 (1997) 37-43, arXiv:astro-ph/9604166.
[Hu:1995hf]
[2-478]
Electroweak baryon number non-conservation in the early universe and in high-energy collisions, V. A. Rubakov, M. E. Shaposhnikov, Usp. Fiz. Nauk 166 (1996) 493-537, arXiv:hep-ph/9603208.
[Rubakov:1996vz]
[2-479]
Big bang nucleosynthesis and physics beyond the standard model, Subir Sarkar, Rept. Prog. Phys. 59 (1996) 1493-1610, arXiv:hep-ph/9602260.
[Sarkar:1995dd]
[2-480]
Concepts in CMB anisotropy formation, Wayne Hu, Lect. Notes Phys. 470 (1996) 207, arXiv:astro-ph/9511130.
[Hu:1995fq]
[2-481]
Wandering in the background: A Cosmic microwave background explorer, Wayne T. Hu, arXiv:astro-ph/9508126, 1995.
[Hu:1995em]
[2-482]
Anisotropies in the cosmic microwave background, M. J. White, D. Scott, J. Silk, Ann. Rev. Astron. Astrophys. 32 (1994) 319-370. http://nedwww.ipac.caltech.edu/level5/March02/White/White_contents.html.
[White:1994sx]
[2-483]
Probing the early universe: A Review of primordial nucleosynthesis beyond the standard Big Bang, R. A. Malaney, G. J. Mathews, Phys. Rep. 229 (1993) 145-219.
[Malaney:1993ah]
[2-484]
Inflation for astronomers, J. V. Narlikar, T. Padmanabhan, Ann. Rev. Astron. Astrophys. 29 (1991) 325-362.
[Narlikar:1990bu]
[2-485]
The number of neutrino species, D. Denegri, B. Sadoulet, M. Spiro, Rev. Mod. Phys. 62 (1990) 1.
[Denegri:1989if]
[2-486]
The cosmological constant problem, Steven Weinberg, Rev. Mod. Phys. 61 (1989) 1-23.
[Weinberg:1988cp]
[2-487]
Light pseudoscalars, particle physics and cosmology, Jihn E. Kim, Phys. Rep. 150 (1987) 1-177.
[Kim:1986ax]
[2-488]
Big Bang Nucleosynthesis: Theories and Observations, Ann Merchant Boesgaard, Gary Steigman, Ann. Rev. Astron. Astrophys. 23 (1985) 319.
[Boesgaard:1985km]
[2-489]
Cosmology and elementary particles, A. D. Dolgov, Ya. B. Zeldovich, Rev. Mod. Phys. 53 (1981) 1-41.
[Dolgov:1981hv]
[2-490]
Cosmology Confronts Particle Physics, G. Steigman, Ann. Rev. Nucl. Part. Sci. 29 (1979) 313-338.
[Steigman:1979kw]

3 - Reviews - Talks

[3-1]
The Cosmic Neutrino Background, Douglas Scott, arXiv:2402.16243, 2024. Varenna summer school 212 on Neutrino Physics, Astrophysics and Cosmology.
[Scott:2024rwc]
[3-2]
Neutrino masses in cosmology, S. Gariazzo, arXiv:2401.11976, 2024. 21st Lomonosov Conference on Elementary Particle Physics, Moscow, August 24-30, 2023.
[Gariazzo:2024beg]
[3-3]
Features in the Inflaton Potential and the Spectrum of Cosmological Perturbations, Ioannis Dalianis, arXiv:2310.11581, 2023. 11th Aegean Summer School.
[Dalianis:2023pur]
[3-4]
The Cepheid Extragalactic Distance Scale: Past, Present and Future, Wendy L. Freedman, Barry F. Madore, IAU Symp. 376 (2022) 1-14, arXiv:2308.02474. IAU Symposium 376.
[Freedman:2022uxj]
[3-5]
TASI Lectures on Cosmic Signals of Fundamental Physics, Daniel Green, PoS TASI2022 (2024) 005, arXiv:2212.08685.
[Green:2022bre]
[3-6]
Gauge Field Theory Vacuum and Cosmological Inflation, George Savvidy, arXiv:2204.08933, 2022.
[Savvidy:2022ies]
[3-7]
Lecture notes on inflation and primordial black holes, Christian T. Byrnes, Philippa S. Cole, arXiv:2112.05716, 2021. GGI, March 2021.
[Byrnes:2021jka]
[3-8]
Light Sterile Neutrinos, Stefano Gariazzo, J.Phys.Conf.Ser. 2156 (2021) 012003, arXiv:2110.09876. 17th International Conference on Topics in Astroparticle and Underground Physics (TAUP).
[Gariazzo:2021wsx]
[3-9]
Cosmic Expansion: A mini review of the Hubble-Lemaitre tension, Francis-Yan Cyr-Racine, arXiv:2105.09409, 2021. 2021 Electroweak session of the 55th Rencontres de Moriond.
[Cyr-Racine:2021aqp]
[3-10]
Impact of Current Results on Nucleosynthesis, Keith A. Olive, arXiv:2105.04461, 2021. 2021 EW session of the 55th Rencontres de Moriond.
[Olive:2021noj]
[3-11]
Neutrinos in Astrophysics and Cosmology: Theoretical Advanced Study Institute (TASI) 2020 Lectures, Kevork N. Abazajian, arXiv:2102.10183, 2021.
[Abazajian:2021zui]
[3-12]
A Lockdown Perspective on the Hubble Tension, G. Efstathiou, arXiv:2007.10716, 2020. Cambridge, 17th July 2020.
[Efstathiou:2020wxn]
[3-13]
Coming of Age of the Standard Model, Roger Blandford, Jo Dunkley, Carlos Frenk, Ofer Lahav, Alice Shapley, Nature Astron. 4 (2020) 122-123, arXiv:2002.12350. 10th Anniversary KICC Conference.
[Blandford:2020omc]
[3-14]
Cosmology and Dark Matter, V.A.Rubakov, arXiv:1912.04727, 2019. European School on High Energy Physics ESHEP2019, Saint-Petersburg, Russia, September 2019.
[Rubakov:2019nxp]
[3-15]
Light sterile neutrinos: oscillations and cosmology, S. Gariazzo, Acta Phys.Polon. B50 (2019) 1719, arXiv:1910.13172. Matter To The Deepest, XLIII International Conference of Theoretical Physics, Katowice/Chorzow, Poland, 1-6 September 2019.
[Gariazzo:2019vdj]
[3-16]
MOND vs. dark matter in light of historical parallels, Mordehai Milgrom, Stud.Hist.Phil.Sci.B 71 (2020) 170-195, arXiv:1910.04368. Dark Matter and Modified Gravity, Aachen, February 2019.
[Milgrom:2019cle]
[3-17]
Selected Topics in Numerical Methods for Cosmology, Sandro Dias Pinto Vitenti, Mariana Penna-Lima, Universe 5 (2019) 192, arXiv:1908.00116. 3rd Jose Plinio Baptista School on Cosmology held in 2016 in Pedra Azul, Espirito Santo, Brazil.
[DiasPintoVitenti:2019vcn]
[3-18]
Tensions between the Early and the Late Universe, L. Verde, T. Treu, A. G. Riess, Nature Astron. 3 (2019) 891, arXiv:1907.10625.
[Verde:2019ivm]
[3-19]
Primordial Non-Gaussianity, Marco Celoria, Sabino Matarrese, Proc.Int.Sch.Phys.Fermi 200 (2020) 179-215, arXiv:1812.08197. International School of Physics Enrico Fermi - Course 200, Villa Monastero, Varenna, Lake Como (Italy), July 2017.
[Celoria:2018euj]
[3-20]
The interplay between cosmology, particle physics and astrophysics, Aaron C. Vincent, PoS EDSU2018 (2018) 007, arXiv:1811.04148. 2nd World Summit on Exploring the Dark Side of the Universe (25-29 June 2018, Pointe-a-Pitre).
[Vincent:2018vng]
[3-21]
The Theory of Inflation, Jerome Martin, Proc.Int.Sch.Phys.Fermi 200 (2020) 155-178, arXiv:1807.11075. International School of Physics Enrico Fermi, Villa Monastero, Varenna, Lake of Como (Italy), July 2017.
[Martin:2018ycu]
[3-22]
TASI Lectures on Early Universe Cosmology: Inflation, Baryogenesis and Dark Matter, James M. Cline, PoS TASI2018 (2019) 001, arXiv:1807.08749.
[Cline:2018fuq]
[3-23]
Neutrino properties from cosmology, Martina Gerbino, arXiv:1803.11545, 2018. NuPhys2017 (London, 20-22 December 2017).
[Gerbino:2018jee]
[3-24]
On the problem of initial conditions for inflation, Andrei Linde, Found.Phys. 48 (2018) 1246-1260, arXiv:1710.04278. Black Holes, Gravitational Waves and Spacetime Singularities, Specola Vaticana 9-12 May 2017.
[Linde:2017pwt]
[3-25]
Neutrino properties from cosmology, Maria Archidiacono, Thejs Brinckmann, Julien Lesgourgues, Vivian Poulin, arXiv:1705.00496, 2017. NuPhys2016 (London, 12-14 December 2016).
[Archidiacono:2017tlz]
[3-26]
Status of Dark Matter in the Universe, Katherine Freese, Int.J.Mod.Phys. D26 (2017) 1730012, arXiv:1701.01840. 14th Marcel Grossman Meeting, MG14, University of Rome 'La Sapienza', Rome, July 2015.
[Freese:2017idy]
[3-27]
Primordial Nucleosynthesis, Alain Coc, J.Phys.Conf.Ser. 665 (2016) 012001, arXiv:1609.06048. 14th International Symposium on Nuclei in the Cosmos XIV (Niigata).
[Coc:2016oab]
[3-28]
Nuclear Physics and Astrophysics of Neutrino Oscillations, A.B. Balantekin, JPS Conf.Proc. 14 (2017) 010701, arXiv:1609.02207. NIC 2016.
[Balantekin:2016ndb]
[3-29]
TASI lectures on cosmological observables and string theory, Eva Silverstein, arXiv:1606.03640, 2016.
[Silverstein:2016ggb]
[3-30]
CMB foregrounds - A brief review, Clive Dickinson, arXiv:1606.03606, 2016. Rencontres de Moriond Cosmology 2016.
[Dickinson:2016xyz]
[3-31]
Cosmic Neutrinos and Other Light Relics, Joel Meyers, arXiv:1605.05575, 2016. Rencontres de Moriond Cosmology 2016.
[Meyers:2016htp]
[3-32]
Neutrino physics and precision cosmology, Steen Hannestad, arXiv:1605.03829, 2016. NuPhys2015 (London, 16-18 December 2015).
[Hannestad:2016mvv]
[3-33]
The Planck legacy - Reinforcing the case for a standard model of cosmology: $\Lambda$CDM, Nazzareno Mandolesi, Diego Molinari, Alessandro Gruppuso, Carlo Burigana, Paolo Natoli, arXiv:1605.01533, 2016. 17th Lomonosov Conference on Elementary Particle Physics. Moscow State University, Moscow, 20-26 August, 2015.
[Mandolesi:2016tow]
[3-34]
Conformal frames in cosmology, Guillem Domenech, Misao Sasaki, Int.J.Mod.Phys. D25 (2016) 1645006, arXiv:1602.06332. 2nd LeCosPA Symposium: Everything about Gravity.
[Domenech:2016yxd]
[3-35]
Running Vacuum in the Universe: current phenomenological status, Joan Sola, arXiv:1601.01668, 2016. 14th Marcel Grossmann Meeting.
[Sola:2016vis]
[3-36]
Light Sterile Neutrinos In Cosmology, Stefano Gariazzo, arXiv:1601.01475, 2016. 17th Lomonosov Conference.
[Gariazzo:2016ehl]
[3-37]
Another look to distortions of the CMB spectrum, G. De Zotti, M. Negrello, G. Castex, A. Lapi, M. Bonato, JCAP 1603 (2016) 047, arXiv:1512.04816. CMB@50, Princeton University, 10-12 June 2015.
[DeZotti:2015awh]
[3-38]
Heavy neutrinos in particle physics and cosmology, Marco Drewes, PoS EPS-HEP2015 (2015) 075, arXiv:1510.07883. EPS-HEP2015.
[Drewes:2015vma]
[3-39]
No-Scale Inflation, John Ellis, Marcos A. G. Garcia, Dimitri V. Nanopoulos, Keith A. Olive, Class.Quant.Grav. 33 (2016) 094001, arXiv:1507.02308.
[Ellis:2015xna]
[3-40]
A Taste of Cosmology, L. Verde, arXiv:1504.05945, 2015.
[Verde:2013bwd]
[3-41]
Nonequilibrium Quantum Fields: From Cold Atoms to Cosmology, J. Berges, arXiv:1503.02907, 2015. Les Houches Summer School on 'Strongly interacting quantum systems out of equilibrium'.
[Berges:2015kfa]
[3-42]
The Observational Status of Cosmic Inflation after Planck, Jerome Martin, Astrophys.Space Sci.Proc. 45 (2016) 41-134, arXiv:1502.05733. II JPBCosmo School (Brazil).
[Martin:2015dha]
[3-43]
Lectures on the Cosmological Constant Problem, Antonio Padilla, arXiv:1502.05296, 2015.
[Padilla:2015aaa]
[3-44]
An introduction to inflation after Planck: from theory to observations, Sebastien Clesse, arXiv:1501.00460, 2015. Xth Modave School in Mathematical Physics.
[Clesse:2015yka]
[3-45]
Antimatter in the universe and laboratory, A.D. Dolgov, EPJ Web Conf. 95 (2015) 03007, arXiv:1411.2280. Int. Conf. New Frontiers in Physics 2014.
[Dolgov:2014xva]
[3-46]
B-mode in CMB polarization. What's that and why it is interesting, A.D. Dolgov, arXiv:1410.6280, 2014. XXX Int. Workshop on HIgh Energy Physics 'Particle and Astroparticle Physics, Gravitation and Cosmology:Predictions, Observations and New Projects. Protvino, June, 23-27, 2014.
[Dolgov:2014nsa]
[3-47]
How many new particles do we need after the Higgs boson?, Marco Drewes, arXiv:1405.2931, 2014. 49th Rencontres de Moriond on Electroweak Interactions and Unified Theories (2014).
[Drewes:2014vaa]
[3-48]
Results from the Wilkinson Microwave Anisotropy Probe, Eiichiro Komatsu, Charles L. Bennett (WMAP Science Team), PTEP 2014 (2014) 06B102, arXiv:1404.5415.
[Komatsu:2014ioa]
[3-49]
CosPA2013: Outlook, Francis Halzen, arXiv:1402.7302, 2014. 10th International Symposium on Cosmology and Particle Astrophysics (CosPA2013).
[Halzen:2014nea]
[3-50]
Weak gravitational lensing, H. Hoekstra, Proc.Int.Sch.Phys.Fermi 186 (2014) 59-100, arXiv:1312.5981. International School of Physics Enrico Fermi 'New Horizons for Observational Cosmology', Varenna, July 1-6, 2013.
[Hoekstra:2013gua]
[3-51]
Large Scale Structure Observations, Will J. Percival, Proc.Int.Sch.Phys.Fermi 186 (2014) 101-135, arXiv:1312.5490. Post-Planck Cosmology, Ecole de Physique des Houches, Les Houches, July 8-Aug 2, 2013 and New Horizons for Observational Cosmology, International School of Physics Enrico Fermi, Varenna, July 1-6, 2013.
[Percival:2013awa]
[3-52]
Galaxy formation, Joseph Silk, Arianna Di Cintio, Irina Dvorkin, Proc.Int.Sch.Phys.Fermi 186 (2014) 137-187, arXiv:1312.0107. Post-Planck Cosmology, Ecole de Physique des Houches, Les Houches, July 8-Aug 2, 2013.
[Silk:2013xca]
[3-53]
Cosmology: theory, Mikhail Shaposhnikov, PoS EPS-HEP2013 (2014) 155, arXiv:1311.4979. European Physical Society Conference on High Energy Physics, 18-24 July, 2013, Stockholm, Sweden.
[Shaposhnikov:2013ira]
[3-54]
Particle Physics and Cosmology, P. Pralavorio, arXiv:1311.1769, 2013. 100th Les Houches Summer School on Post-Planck Cosmology, July 8th - Aug 2nd 2013.
[Pralavorio:2013qha]
[3-55]
Neutrino physics from Cosmology, Steen Hannestad, Nuovo Cim. C037 (2014) 111-116, arXiv:1311.0623. Pontecorvo100 - Symposium in honour of Bruno Pontecorvo.
[Hannestad:2013nva]
[3-56]
Snowmass Cosmic Frontiers 6 (CF6) Working Group Summary -The Bright Side of the Cosmic Frontier: Cosmic Probes of Fundamental Physics, J.J. Beatty et al. (CTA Collaboration, PINGU Collaboration, VERITAS), arXiv:1310.5662, 2013.
[Beatty:2013lza]
[3-57]
The Future of Neutrino Mass Measurements: Terrestrial, Astrophysical, and Cosmological Measurements in the Next Decade. Highlights of the NuMass 2013 Workshop. Milano, Italy, February 4 - 7, 2013, G. J. Barker et al., arXiv:1309.7810, 2013.
[Barker:2013kvg]
[3-58]
The Physics of Neutrinos, Renata Zukanovich Funchal, Benoit Schmauch, Gaelle Giesen, arXiv:1308.1029, 2013. Course given at Institut de Physique Theorique of CEA/Saclay in January/February 2013.
[ZukanovichFunchal:2013tdb]
[3-59]
Towards the Chalonge 17th Paris Cosmology Colloquium 2013: highlights and conclusions of the Chalonge 16th Paris Cosmology Colloquium 2012, H. J. de Vega, M.C. Falvella, N. G. Sanchez, arXiv:1307.1847, 2013.
[deVega:2013hpa]
[3-60]
Cosmological constant and vacuum energy: old and new ideas, Joan Sola, J. Phys. Conf. Ser. 453 (2013) 012015, arXiv:1306.1527. 15th Conference on Recent Developments in Gravity (NEB 15): Chania, Crete, Greece, June 20-23, 2012.
[Sola:2013gha]
[3-61]
Recent developments in astrophysical and cosmological exploitation of microwave surveys, Carlo Burigana et al., Int.J.Mod.Phys. D22 (2013) 1330011, arXiv:1302.3474.
[Burigana:2013fsa]
[3-62]
From Quark-Gluon Universe to Neutrino Decoupling: $200 < T < 2$ MeV, Michael J. Fromerth, Inga Kuznetsova, Lance Labun, Jean Letessier, Jan Rafelski, Acta Phys. Polon. B43 (2012) 2261, arXiv:1211.4297. 52 Krakow School of Theoretical Physics: Astroparticle Physics in the LHC Era, Zakopane, May 19-27, 2012.
[Fromerth:2012fe]
[3-63]
Neutrino 2012: Outlook - theory, A. Yu. Smirnov, Nucl. Phys. Proc. Suppl. 235-236 (2013) 431-440, arXiv:1210.4061. XXV International Conference on Neutrino Physics and Astrophysics, June 3 - 9, 2012, Kyoto, Japan.
[Smirnov:2012ei]
[3-64]
The Neutron and the Universe - History of a Relationship, Stephan Paul, PoS BORMIO2012 (2012) 025, arXiv:1205.2451. Bormio Winter Meeting 2012.
[Paul:2012kp]
[3-65]
The Hubble constant and new discoveries in cosmology, S. H. Suyu et al., arXiv:1202.4459, 2012. Workshop on the Hubble constant, KIPAC, February 6-8 2012.
[Suyu:2012ax]
[3-66]
Proceedings of the 2010 European School of High-energy Physics, Raseborg, Finland, 20 Jun - 3 Jul 2010, C. Grojean, M. Spiropulu, arXiv:1202.1629, 2012.
[Grojean:2012wp]
[3-67]
Proceedings of the first workshop on Flavor Symmetries and consequences in Accelerators and Cosmology (FLASY2011), M. Hirsch et al., arXiv:1201.5525, 2012. 1st Workshop on Flavor Symmetries and consequences in Accelerators and Cosmology 11 - 14 July 2011, Valencia (Spain).
[Hirsch:2012ym]
[3-68]
Neutrinos and the Universe, Nick E. Mavromatos, J. Phys. Conf. Ser. 408 (2013) 012003, arXiv:1110.3729. Nufact 11, CERN and U. of Geneva, 1-6 August 2011.
[Mavromatos:2011ur]
[3-69]
Round Table Discussion at the Workshop 'New Directions in Modern Cosmology', Theo M. Nieuwenhuizen, Peter D. Keefe, Vaclav Spicka, J. Cosmol. 15 (2011) 6326-6339, arXiv:1108.3485.
[Nieuwenhuizen:2011vd]
[3-70]
What do we really know about Dark Energy?, Ruth Durrer, Phil.Trans.Roy.Soc.Lond. A369 (2011) 5102-5114, arXiv:1103.5331. Cosmological Tests of General Relativity.
[Durrer:2011gq]
[3-71]
Developments in Leptogenesis, Pasquale Di Bari, Nucl. Phys.B, Proc.Suppl.229-232 2012 (2012) 305-311, arXiv:1102.3409. Neutrino 2010.
[DiBari:2011zf]
[3-72]
Neutrino matter with PLANCK, Stephane Plaszczynski, PoS IDM2010 (2011) 066, arXiv:1012.2215. Identification of Dark Matter 2010-IDM2010, July 26-30, 2010, Montpellier, France.
[Plaszczynski:2010sj]
[3-73]
Proceedings of the 2009 CERN-Latin-American School of High-Energy Physics, Recinto Quirama, Colombia, 15 - 28 March 2009, C. Grojean, M. Spiropulu, arXiv:1010.5976, 2010. CERN Yellow Report.
[Grojean:2010zza]
[3-74]
Particle cosmology, A. Riotto, arXiv:1010.2642, 2010. 5th CERN-Latin-American School of High-Energy Physics, Recinto Quirama, Colombia, 15 - 28 Mar 2009.
[Riotto:2010jd]
[3-75]
The violent Universe: the Big Bang, Keith A. Olive, arXiv:1005.3955, 2010. 2009 European School of High-Energy Physics, Bautzen, Germany, June 2009.
[Olive:2010mh]
[3-76]
Searching for the First Galaxies, Steven L. Finkelstein, ASP Conf.Ser. 432 (2010) 33, arXiv:1004.0001. Frank N. Bash Symposium 2009: New Horizons in Astronomy.
[Finkelstein:2010ip]
[3-77]
The connection between cosmology and neutrino physics, Steen Hannestad, arXiv:1003.4119, 2010. Workshop 'European Strategy for Future Neutrino Physics', CERN, oct.2009.
[Hannestad:2010qz]
[3-78]
Gif Lectures on direct detection of Dark Matter, Eric Armengaud, arXiv:1003.2380, 2010. Gif school 2009.
[Armengaud:2010zg]
[3-79]
Summary $\text{\&}$ Outlook: Particles and Cosmology, Wilfried Buchmuller, PoS EPS-HEP2009 (2009) 029, arXiv:1003.1078. EPS 2009, Kracow.
[Buchmuller:2009dil]
[3-80]
Dark Energy and Dark Matter, Keith A. Olive, Conf. Proc. C0908171 (2009) 257-270, arXiv:1001.5014. XXIV International Symposium on Lepton Photon Interactions at High Energies, Hamburg Germany, August 2009.
[Olive:2009drt]
[3-81]
Statistical methods in cosmology, Licia Verde, Lect. Notes Phys. 800 (2010) 147-177, arXiv:0911.3105. 2nd Trans-Regio Winter school in Passo del Tonale.
[Verde:2009tu]
[3-82]
Weak lensing: Dark Matter, Dark Energy and Dark Gravity, Alan Heavens, Nucl. Phys. Proc. Suppl. 194 (2009) 76-81, arXiv:0911.0350.
[Heavens:2009fi]
[3-83]
Fundamental Symmetries of the Early Universe and the Precision Frontier, Michael J. Ramsey-Musolf, AIP Conf. Proc. 1182 (2009) 635-643, arXiv:0907.3916. CIPANP 2009.
[Ramsey-Musolf:2009pza]
[3-84]
Dark Matter Astrophysics, Guido D'Amico, Marc Kamionkowski, Kris Sigurdson, arXiv:0907.1912, 2009. Villa Olmo School on 'The Dark Side of the Universe,' 14-18 May 2007 and XIX Heidelberg Physics Graduate Days, 8-12 October 2007.
[DAmico:2009tep]
[3-85]
Introduction to Cosmology, A.D. Dolgov, Phys. Atom. Nucl. 73 (2010) 815-847, arXiv:0907.0668. ITEP Winter School, 2009.
[Dolgov:2009zj]
[3-86]
Statistical techniques in cosmology, Alan Heavens, arXiv:0906.0664, 2009. Francesco Lucchin summer school, Bertinoro, Italy, May 2009.
[Heavens:2009nx]
[3-87]
Great Surveys of the Universe, Steven T. Myers, arXiv:0904.2593, 2009. Great Surveys of Astronomy Workshop, 20-22 November 2008, Santa Fe, NM.
[Myers:2009ve]
[3-88]
Cosmologists in the dark, Vicent J. Martinez, Virginia Trimble, ASP Conf.Ser. 409 (2009) 47, arXiv:0904.1126. Cosmology across Cultures, Granada, Spain, 2008.
[Martinez:2009nq]
[3-89]
TASI 2008 Lectures on Dark Matter, Dan Hooper, arXiv:0901.4090, 2009. 2008 Theoretical Advanced Study Institute (TASI).
[Hooper:2009zm]
[3-90]
Baryogenesis and cosmological antimatter, A.D. Dolgov, AIP Conf. Proc. 1116 (2009) 155-170, arXiv:0901.2100. XIII Mexican School of Particles and Fields, San Carlos, October, 2008.
[Dolgov:2009py]
[3-91]
Early Universe: inflation and cosmological perturbations, David Langlois, arXiv:0811.4329, 2008. Geometry, Topology, QFT and Cosmology, Paris (28-30 May 2008).
[Langlois:2008ng]
[3-92]
Dark matter and dark energy proposals: maintaining cosmology as a true science?, George F. R. Ellis, EAS Publ.Ser. 36 (2009) 325-336, arXiv:0811.3529. CRAL-IPNL conference 'Dark Energy and Dark Matter', Lyon 2008.
[Ellis:2008up]
[3-93]
Neutrinos as cosmic messengers, J. W. F. Valle, AIP Conf. Proc. 1115 (2009) 13-26, arXiv:0811.0707. 4th International Workshop on the Dark Side of the Universe (DSU08) Conference, Cairo.
[Valle:2008rg]
[3-94]
Neutrinos and Future Concordance Cosmologies, Peter Adshead, Richard Easther, J. Phys. Conf. Ser. 136 (2008) 022044, arXiv:0810.2591. Neutrino 2008.
[Adshead:2008ky]
[3-95]
A Cosmic Vision Beyond Einstein, Eric V. Linder, PoS IDM2008 (2008) 042, arXiv:0810.1754. IDM2008.
[Linder:2008rd]
[3-96]
Lorentz invariance, vacuum energy, and cosmology, F.R. Klinkhamer, arXiv:0810.1684, 2008. ICHEP08, Philadelphia, USA, July 2008.
[Klinkhamer:2008nr]
[3-97]
Cosmology for Particle Physicists, U. A. Yajnik, arXiv:0808.2236, 2008. SERC School on Theoretical High Energy Physics, PRL Ahmedabad, February 2006.
[Yajnik:2006kn]
[3-98]
Neutrinos and BBN (and the CMB), Gary Steigman, arXiv:0807.3004, 2008. NO-VE IV International Workshop on: Neutrino Oscillations in Venice.
[Steigman:2008eb]
[3-99]
From dark matter to MOND, R.H. Sanders, arXiv:0806.2585, 2008. XX Rencontres de Blois, Astroparticle physics.
[Sanders:2008iy]
[3-100]
The ART of Cosmological Simulations, Stefan Gottloeber, Anatoly Klypin, arXiv:0803.4343, 2008. High Performance Computing in Science and Engineering Garching/Munich 2007.
[Gottloeber:2008ac]
[3-101]
Recent Developments in Gravitational Microlensing, Andrew Gould, ASP Conf.Ser. 403 (2009) 86, arXiv:0803.4324. The Variable Universe: A Celebration of Bohdan Paczynski, 29 Sept 2007.
[Gould:2008zu]
[3-102]
Quintessence: a mini-review, Jerome Martin, Mod. Phys. Lett. A23 (2008) 1252-1265, arXiv:0803.4076. 2007 International Symposium on Cosmology and Particle Astrophysics, November 13-15, Taipei, Taiwan.
[Martin:2008qp]
[3-103]
Cosmology and Neutrino Properties, A. D. Dolgov, Phys. Atom. Nucl. 71 (2008) 2152-2164, arXiv:0803.3887. Meeting of Nuclear Physics Division of Russian Academy of Sci., November, 2007, Moscow.
[Dolgov:2008hz]
[3-104]
Cosmological Inflation: A Personal Perspective, Demosthenes Kazanas, Astrophys.Space Sci.Proc. (2009) 485-496, arXiv:0803.2080. Symposium 'Chaos in Astronomy 2007', Athens, Greece, September 2007.
[Kazanas:2008jz]
[3-105]
Lecture Notes on CMB Theory: From Nucleosynthesis to Recombination, Wayne Hu, arXiv:0802.3688, 2008. XIX Canary Island Winter School of Astrophysics.
[Hu:2008hd]
[3-106]
The evidence for unusual gravity from the large-scale structure of the Universe, A. Diaferio, arXiv:0802.2532, 2008. 1st AFI symposium.
[Diaferio:2008jy]
[3-107]
Cosmic Neutrinos, Chris Quigg, arXiv:0802.0013, 2008. 2007 SLAC Summer Institute.
[Quigg:2008ab]
[3-108]
RICAP-07: Summary comments, Thomas K. Gaisser, Nucl. Instrum. Meth. A588 (2008) 276-280, arXiv:0801.4546. Roma International Conference on Astroparticle Physics, June 2007.
[Gaisser:2008cr]
[3-109]
The MOND paradigm, Mordehai Milgrom, arXiv:0801.3133, 2008. XIX Rencontres de Blois 'Matter and energy in the Universe: from nucleosynthesis to cosmology', May 2007.
[Milgrom:2008rv]
[3-110]
Cosmological model: from initial conditions to structure formation, V. Lukash, Nuovo Cim. 122B (2007) 1411-1422, arXiv:0712.3356. A Century of Cosmology : Past, Present and Future, August 27-31 2007, Venezia, Italy.
[Lukash:2007ns]
[3-111]
The Future of Cosmology, George Efstathiou, Nuovo Cim. 122B (2007) 1423-1435, arXiv:0712.1513. A Century of Cosmology, S. Servolo, August 2007.
[Efstathiou:2007gz]
[3-112]
Observational approaches to understanding dark energy, Yun Wang, arXiv:0712.0041, 2007. 23rd International Symposium on Lepton and Photon Interactions at High Energy (LP07).
[Wang:2007sq]
[3-113]
CPT violations in Astrophysics and Cosmology, G. Auriemma, Chin.J.Astron.Astrophys.Suppl. 8 (2008) 33, arXiv:0711.0504. Frascati Workshop 2007 Vulcano (Italy), May 28 - June 2, 2007.
[Auriemma:2007bm]
[3-114]
Baryogenesis - 40 Years Later, Wilfried Buchmuller, arXiv:0710.5857, 2007. PASCOS-07, Imperial College, London.
[Buchmuller:2007fd]
[3-115]
Cosmology and the Unexpected, Edward W. Kolb, Subnucl.Ser. 45 (2009) 337-363, arXiv:0709.3102. International School of Subnuclear Physics, Searching for the 'totally unexpected' in the LHC era, Erice, Italy 2007.
[Kolb:2007gb]
[3-116]
Fundamental Constants, Frank Wilczek, arXiv:0708.4361, 2007.
[Wilczek:2007iu]
[3-117]
LHC Physics and Cosmology, Nikolaos E. Mavromatos, arXiv:0708.0134, 2007. Lake Louise Winter Institute 2007, February 19-24, 2007.
[Mavromatos:2007mv]
[3-118]
CMB from the South Pole: Past, Present, and Future, J. M. Kovac, D. Barkats, arXiv:0707.1075, 2007. 6th Rencontres du Vietnam 2006.
[Kovac:2007xx]
[3-119]
Dark Matter, Viktor Zacek, arXiv:0707.0472, 2007. 2007 Lake Louise Winter Institute, March 2007.
[Zacek:2007mi]
[3-120]
WMAPping the Inflationary Universe, Raghavan Rangarajan, arXiv:0706.4166, 2007. 17th DAE-BRNS High Energy Physics Symposium at the Indian Institute of Technology, Kharagpur, December 11-15, 2006.
[Rangarajan:2007ff]
[3-121]
TASI Lectures on Astrophysical Aspects of Neutrinos, John F. Beacom, arXiv:0706.1824, 2007. Exploring New Frontiers Using Colliders and Neutrinos (TASI 2006), Boulder, Colorado, 4-30 Jun 2006.
[Beacom:2007av]
[3-122]
Physics Beyond the Standard Model and Dark Matter, Hitoshi Murayama, arXiv:0704.2276, 2007. Les Houches Summer School, Session 86, Particle Physics and Cosmology: the Fabric of Spacetime, July 31- August 25, 2006.
[Murayama:2007ek]
[3-123]
Cosmology with type-Ia supernovae, Ramon Miquel, J. Phys. A40 (2007) 6743, arXiv:astro-ph/0703459. IRGAC 06.
[Miquel:2007zi]
[3-124]
TASI 2006 Lectures on Leptogenesis, Mu-Chun Chen, arXiv:hep-ph/0703087, 2007. TASI 2006, Boulder, Colorado, June 4-30, 2006.
[Chen:2007fv]
[3-125]
Introduction to leptogenesis, Yosef Nir, arXiv:hep-ph/0702199, 2007. 6th Recontres du Vietnam, `Challenges in Particle Astrophysics,' Hanoi, Vietnam, August 6-12, 2006.
[Nir:2007zq]
[3-126]
Dilaton cosmology and phenomenology, M. Gasperini, Lect. Notes Phys. 737 (2008) 787-844, arXiv:hep-th/0702166. String theory and fundamental interactions: celebrating Gabriele Veneziano on his 65th birthday.
[Gasperini:2007ar]
[3-127]
Physics Beyond the Standard Model and Cosmological Connections: A Summary from LCWS 06, K. Sridhar, Pramana 69 (2007) 719-726, arXiv:hep-ph/0702109. International Linear Collider Workshop in Bangalore, India in March 2006.
[Sridhar:2007vv]
[3-128]
String Gas Cosmology and Structure Formation - A Brief Review, Robert Brandenberger, Mod. Phys. Lett. A22 (2007) 1875-1885, arXiv:hep-th/0702001. CosPA 2006, Nov. 15 - 17, 2006, National Taiwan University, Taipei.
[Brandenberger:2007zza]
[3-129]
Gamow Legacy and the Primordial Abundance of Light Elements, E. Terlevich, R. Terlevich, V. Luridiana, arXiv:astro-ph/0701744, 2007. Astrophysics and Cosmology after Gamow - Theory and Observations, Odessa, August 8-14, 2004.
[Terlevich:2007ym]
[3-130]
Probing Neutrino low energy and mass scales, Oliviero Cremonesi, Alessandro Melchiorri, Nucl. Phys. Proc. Suppl. 168 (2007) 383-388, arXiv:hep-ph/0701203. Neutrino Oscillation Workshop NOW2006, Otranto, Italy, September 9-16 2006.
[Cremonesi:2007qs]
[3-131]
Upper limits on neutrino masses from cosmology, Oystein Elgaroy, arXiv:hep-ph/0612097, 2006. NOW2006.
[Elgaroy:2006iy]
[3-132]
Cosmological constraints on Neutrino - Dark Matter interactions, Gianpiero Mangano, Nucl. Phys. Proc. Suppl. 168 (2007) 34-36, arXiv:astro-ph/0611887. Neutrino Oscillation Workshop NOW2006, Otranto, Italy, September 9-16 2006.
[Mangano:2006kj]
[3-133]
BBN And The CBR Probe The Early Universe, Gary Steigman, AIP Conf. Proc. 903 (2007) 40-47, arXiv:hep-ph/0611209. SUSY06, 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions, UC Irvine, California, 12-17 June 2006'.
[Steigman:2006yn]
[3-134]
Probing The Universe With Neutrinos At 20 Minutes And 400 Thousand Years, Gary Steigman, arXiv:astro-ph/0610599, 2006. Neutrino 2006.
[Steigman:2006mv]
[3-135]
Varying 'constants' in astrophysics and cosmology, Thomas Dent, AIP Conf. Proc. 903 (2007) 665-668, arXiv:hep-ph/0610376. SUSY06, the 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions, UC Irvine, California, 12-17 June 2006.
[Dent:2006mn]
[3-136]
Precision Cosmology and the Landscape, Raphael Bousso, arXiv:hep-th/0610211, 2006.
[Bousso:2006nx]
[3-137]
Cosmic Microwave Background anisotropies: the power spectrum and beyond, Enrique Martinez-Gonzalez, Lect.Notes Phys. 665 (2009) 79, arXiv:astro-ph/0610162. Valencia Summer School 'Data Analysis in Cosmology, September 2004.
[Martinez-Gonzalez:2006src]
[3-138]
Baryogenesis, James M. Cline, arXiv:hep-ph/0609145, 2006. Les Houches Summer School, Session 86: Particle Physics and Cosmology: the Fabric of Spacetime, 7-11 Aug. 2006.
[Cline:2006ts]
[3-139]
Dark Energy and Some Alternatives: a Brief Overview, J.S. Alcaniz, Braz. J. Phys. 36 (2006) 1109, arXiv:astro-ph/0608631. XXVI Brazilian National Meeting on Particles and Fields, Sao Lourenco, Brazil.
[Alcaniz:2006ay]
[3-140]
Baryogenesis via leptogenesis, Alessandro Strumia, arXiv:hep-ph/0608347, 2006. LesHouches 2005.
[Strumia:2006qk]
[3-141]
Matter-Antimatter Asymmetry in the Universe and an Arrow for Time, R. D. Peccei, arXiv:hep-ph/0608226, 2006. World Summit on Physics Beyond the Standard Model, Galapagos Islands, Ecuador, June 22-25, 2006.
[Peccei:2006hh]
[3-142]
Probing dark energy with future surveys, Roberto Trotta, arXiv:astro-ph/0607496, 2006. 'Cosmology, galaxy formation and astroparticle physics on the pathway to the SKA', Oxford, April 10-12 2006.
[Trotta:2006pw]
[3-143]
Basics of inflationary cosmology, George Lazarides, J. Phys. Conf. Ser. 53 (2006) 528-550, arXiv:hep-ph/0607032. Corfu Summer Institute on Elementary Particle Physics (CORFU2005), Corfu, Greece, 4-26 September 2005.
[Lazarides:2006ep]
[3-144]
Cosmological science enabled by Planck, Martin White, New Astron. Rev. 50 (2006) 938-944, arXiv:astro-ph/0606643. UC Irvine conference on cosmic microwave background temperature and polarization anisotropies.
[White:2006fx]
[3-145]
Integrated Sachs-Wolfe effect in the era of precision cosmology, Levon Pogosian, New Astron. Rev. 50 (2006) 932-937, arXiv:astro-ph/0606626. Fundamental Physics With CMB workshop, UC Irvine, March 23-25, 2006.
[Pogosian:2006ay]
[3-146]
Future state of the Universe, Mariusz P. Dabrowski, Annalen Phys. 15 (2006) 352-363, arXiv:astro-ph/0606574. Pomeranian Workshop in Fundamental Cosmology (COSMOFUN'05), Pobierowo, Poland, 1-6 September 2005.
[Dabrowski:2006iv]
[3-147]
Cosmological quests in the CMB sky, Tarun Souradeep, Int. J. Mod. Phys. D15 (2006) 1725-1743, arXiv:astro-ph/0606512. International Conference on Einstein's Legacy in the New Millennium, December 15 - 22, 2005, Puri, India.
[Souradeep:2006vm]
[3-148]
Cosmology and New Physics, A.D. Dolgov, Phys. Atom. Nucl. 71 (2008) 651-670, arXiv:hep-ph/0606230. 9th International Moscow School of Physics (34th ITEP Winter School).
[Dolgov:2006xi]
[3-149]
Constraints on cosmological parameters, A. Balbi, PoS CMB2006 (2006) 009, arXiv:astro-ph/0606183. 'CMB and Physics of the Early Universe' - International Conference - Ischia, Italy, 20-22 April 2006.
[Balbi:2006mg]
[3-150]
Anthropic principle in cosmology, Brandon Carter, arXiv:gr-qc/0606117, 2006. Cosmology: Facts and problems, Paris, 2004.
[Carter:2006gy]
[3-151]
Sub-eV upper limits on neutrino masses from cosmology, Oystein Elgaroy, Ofer Lahav, Phys. Scripta T127 (2006) 105-106, arXiv:hep-ph/0606007. SNOW 2006, Stockholm, May 2-6, 2006.
[Elgaroy:2006ii]
[3-152]
Cosmology with clusters of galaxies, Stefano Borgani, Lect.Notes Phys. (2006), arXiv:astro-ph/0605575. 2005 Guillermo Haro Summer School on Clusters.
[Borgani:2006ba]
[3-153]
What is the Role of Neutrinos in Shaping the Universe?, Lawrence M. Krauss, arXiv:astro-ph/0605378, 2006. International Workshop on NO-VE, Venice, 2006.
[Krauss:2006eb]
[3-154]
The Cosmology - Particle Physics Connection, Mark Trodden, AIP Conf. Proc. 842 (2006) 945-953, arXiv:hep-ph/0605284. Particles and Nuclei International Conference (PANIC05) and CMB and Physics of the Early Universe International Conference (2006).
[Trodden:2006ed]
[3-155]
Understanding Galaxy Formation and Evolution, V. Avila-Reese, arXiv:astro-ph/0605212, 2006. IV Mexican School of Astrophysics, July 18-25, 2005.
[Avila-Reese:2006pwa]
[3-156]
Gravitons in Kaluza-Klein Theory, V H Satheesh Kumar, P K Suresh, arXiv:gr-qc/0605016, 2006.
[SatheeshKumar:2006bu]
[3-157]
Gravity, Geometry and the Quantum, Abhay Ashtekar, AIP Conf. Proc. 861 (2006) 3-14, arXiv:gr-qc/0605011. `Einstein Century' Conference, 15-22 July, Paris.
[Ashtekar:2006bp]
[3-158]
Gravitational Microlensing, Joachim Wambsganss, arXiv:astro-ph/0604278, 2006. 'Gravitational Lensing: Strong, Weak and Micro', 33rd Saas-Fee Advanced Course.
[Wambsganss:2006nj]
[3-159]
Non Thermal Features in the Cosmic Neutrino Background, G. Mangano, arXiv:astro-ph/0603603, 2006. 'Neutrino Oscillations in Venice' Conference, Venice, February 7-10 2006.
[Mangano:2006xs]
[3-160]
First Light, Abraham Loeb, arXiv:astro-ph/0603360, 2006. SAAS-Fee Winter School, April 2006.
[Loeb:2006za]
[3-161]
Dark Energy: Mystery of the Millennium, T. Padmanabhan, AIP Conf. Proc. 861 (2006) 179-196, arXiv:astro-ph/0603114. Albert Einstein Century International Conference at Palais de l'Unesco, Paris, France, 18-23 July, 2005.
[Padmanabhan:2006ag]
[3-162]
Probing the Fundamental Symmetries of the Early Universe: The Low Energy Frontier, M. J. Ramsey-Musolf, AIP Conf. Proc. 842 (2006) 661-671, arXiv:hep-ph/0603023. PANIC05 (Sante Fe, NM).
[Ramsey-Musolf:2006gxp]
[3-163]
The present and the future of cosmology with Gamma Ray Bursts, G. Ghirlanda, G. Ghisellini, arXiv:astro-ph/0602498, 2006. Science with the New Generation of High-Energy Gamma-Ray Experiments, Cividale del Friuli (Italy), 30 May - 1 June 2005.
[Ghirlanda:2006bj]
[3-164]
Advanced Topics in Cosmology: A Pedagogical Introduction, T. Padmanabhan, AIP Conf. Proc. 843 (2006) 111-166, arXiv:astro-ph/0602117. X Special Courses at Observatorio Nacional, Rio de Janeiro, Brazil during 26-30 Sept, 2005.
[Padmanabhan:2006kz]
[3-165]
Cosmological parameters from Galaxy Clusters: an Introduction, Paolo Tozzi, Lect. Notes Phys. 720 (2007) 125-156, arXiv:astro-ph/0602072. 3rd Aegean Summer School, Chios, 26 September - 1 October, 2005.
[Tozzi:2006nf]
[3-166]
Cosmic Microwave Background Polarization, James G. Bartlett, J. Phys. Conf. Ser. 39 (2006) 1-8, arXiv:astro-ph/0601576. TAUP 2005.
[Bartlett:2006xy]
[3-167]
Cosmological constraints from galaxy clustering, Will J. Percival, Lect. Notes Phys. 720 (2007) 157-186, arXiv:astro-ph/0601538. Third Aegean Summer School, The invisible universe: Dark matter and Dark energy.
[Percival:2006kh]
[3-168]
Introduction to Modified Gravity and Gravitational Alternative for Dark Energy, S. Nojiri, S.D. Odintsov, Int. J. Geom. Meth. Mod. Phys. 4 (2006) 115-146, arXiv:hep-th/0601213. 42 Karpacz Winter School on Theor Physics.
[Nojiri:2006ri]
[3-169]
Particle Physics Approach to Dark Matter, George Lazarides, Lect. Notes PHys. 720 (2007) 3-34, arXiv:hep-ph/0601016. Third Aegean Summer School 'The Invisible Universe: Dark Matter and Dark Energy', 26 September-1 October 2005, Karfas, Island of Chios, Greece.
[Lazarides:2006jw]
[3-170]
Accelerating Universe: Observational Status and Theoretical Implications, L. Perivolaropoulos, AIP Conf. Proc. 848 (2006) 698-712, arXiv:astro-ph/0601014. Third Aegean Summer School: `The Invisible Universe Dark Matter and Dark Energy'.
[Perivolaropoulos:2006ce]
[3-171]
The Ups and Downs of the Hubble Constant, G.A. Tammann, Rev. Mod. Astron. 19 (2006) 1, arXiv:astro-ph/0512584. 79th Annual Scientific Meeting of the Astronomische Gesellschaft 2005.
[Tammann:2005nx]
[3-172]
Primordial Black Holes: Do They Exist and Are They Useful?, B. J. Carr, arXiv:astro-ph/0511743, 2005. 'Inflating Horizon of Particle Astrophysics and Cosmology', Universal Academy Press Inc and Yamada Science Foundation (2005).
[Carr:2005zd]
[3-173]
First Light and Reionization: A Conference Summary, E. J. Barton, J. S. Bullock, A. Cooray, M. Kaplinghat, New Astron. Rev. 50 (2006) 1, arXiv:astro-ph/0511637. UC Irvine Workshop on 'First Light and Reionization: Theoretical Study and Experimental Detection of the First Luminous Sources'.
[Barton:2005kg]
[3-174]
Introduction to neutrino cosmology, Steen Hannestad, Prog. Part. Nucl. Phys. 57 (2006) 309, arXiv:astro-ph/0511595. Erice 2005.
[Hannestad:2005ey]
[3-175]
Universe scenarios from loop quantum cosmology, Martin Bojowald, Annalen Phys. 15 (2006) 326, arXiv:astro-ph/0511557. 'Pomeranian Workshop in Fundamental Cosmology', Pobierowo, Sep 2005.
[Bojowald:2005az]
[3-176]
Varying Constants, John D. Barrow, Phil. Trans. Roy. Soc. Lond. A363 (2005) 2139, arXiv:astro-ph/0511440. Royal Society Discussion Meeting on 'The Fundamental Constants of Physics, Precision Measurements and the Base Units of SI', London, Feb. 14-15 (2005).
[Barrow:2005hw]
[3-177]
CP violation in cosmology, A.D. Dolgov, arXiv:hep-ph/0511213, 2005. Varenna School 'CP Violation: From Quarks to Leptons', Varenna, Italy, July, 2005.
[Dolgov:2005wf]
[3-178]
Seeing Darkness: the New Cosmology, Eric V. Linder, J. Phys. Conf. Ser. 39 (2006) 56-62, arXiv:astro-ph/0511197. TAUP2005.
[Linder:2005uw]
[3-179]
Absolute Neutrino Masses, Carlo Giunti, Acta Phys. Polon. B36 (2005) 3215, arXiv:hep-ph/0511131. XXIX International Conference of Theoretical Physics 'Matter To The Deepest: Recent Developments In Physics Of Fundamental Interactions', 8-14 September 2005, Ustron, Poland.
[Giunti:2005qd]
[3-180]
Massive Neutrinos in Cosmology, Masataka Fukugita, Nucl. Phys. Proc. Suppl. 155 (2006) 10, arXiv:hep-ph/0511068. NuFact05, Frascati, 21-26 June 2005.
[Fukugita:2005sb]
[3-181]
The Influence of Evolving Dark Energy on Cosmology, Luke Barnes, Matthew J. Francis, Geraint F. Lewis, Eric V. Linder, Publ.Astron.Soc.Austral. 22 (2005) 315, arXiv:astro-ph/0510791.
[Barnes:2005bn]
[3-182]
The Standard Cosmological Model, Douglas Scott, Can. J. Phys. 84 (2006) 419-435, arXiv:astro-ph/0510731. 'Theory Canada 1', June 2005, Vancouver.
[Scott:2005uf]
[3-183]
Darker Side of the Universe, T. Padmanabhan, arXiv:astro-ph/0510492, 2005. 29th International Cosmic Ray Conference, Aug 3-10, 2005, Pune, India.
[Padmanabhan:2005ur]
[3-184]
Dark energy - dark matter - and black holes: The music of the universe, Peter L. Biermann, arXiv:astro-ph/0510024, 2005. Carpathian Summer School in Physics 2005 (CSSP2005).
[Biermann:2005qh]
[3-185]
The Cosmic Microwave Background anisotropies: open problems, E. Martinez-Gonzalez, P. Vielva, arXiv:astro-ph/0510003, 2005. The Many Scales of the Universe - JENAM 2004 Astrophysics Reviews.
[Martinez-Gonzalez:2005vtt]
[3-186]
Formation of the First Stars, Volker Bromm, IAU Symp. (2005), arXiv:astro-ph/0509354. 'From Lithium to Uranium: Elemental Tracers of Early Cosmic Evolution', IAU Symposium 228.
[Bromm:2005gs]
[3-187]
Dark energy and dark matter from cosmological observations, Steen Hannestad, Int. J. Mod. Phys. A21 (2006) 1938-1949, arXiv:astro-ph/0509320. 22nd International Symposium on Lepton-Photon Interactions at High Energy (LP 2005), Uppsala, Sweden, 30 June - 5 Jul 2005.
[Hannestad:2005fg]
[3-188]
ILC Cosmology, Jonathan L. Feng, eConf C050318 (2005) 0013, arXiv:hep-ph/0509309. 2005 International Linear Collider Workshop, Stanford, California, USA, 18-22 March 2005.
[Feng:2005nz]
[3-189]
Weak Gravitational Lensing, Peter Schneider, arXiv:astro-ph/0509252, 2005. 33rd Advanced Saas Fee Course on Gravitational Lensing: Strong, Weak, and Micro, Les Diablerets, Switzerland, 7-12 Apr 2003.
[Schneider:2005ka]
[3-190]
The Dark Side of the Universe, Katherine Freese, Nucl. Instrum. Meth. A559 (2006) 337, arXiv:astro-ph/0508279. LTD-11 WOrkshop in Tokyo, August 2005.
[Freese:2005hy]
[3-191]
Cosmic strings: progress and problems, Alexander Vilenkin, arXiv:hep-th/0508135, 2005. 'Inflating Horizons of Particle Astrophysics and Cosmology', honoring Katsuhiko Sato on his 60th birthday.
[Vilenkin:2005jg]
[3-192]
Neutrinos and Cosmology: an update, Ofelia Pisanti, P.D. Serpico, Aip Conf. Proc. 794 (2005) 232, arXiv:astro-ph/0507346. IFAE, Catania 2005.
[Pisanti:2005yz]
[3-193]
Introduction to Dark Energy and Dark Matter, Paul H. Frampton, arXiv:astro-ph/0506676, 2005. 40th Rencontre de Moriond, La Thuile, Italy. March 5-12, 2005.
[Frampton:2005za]
[3-194]
Neutrino mass and mixing parameters: A short review, G.L. Fogli et al., arXiv:hep-ph/0506307, 2005. 40th Rencontres de Moriond on Electroweak Interactions and Unified Theories, La Thuile, Aosta Valley, Italy, 5-12 Mar 2005.
[Fogli:2005gs]
[3-195]
Theory Summary of the Electroweak Session for Moriond 2005, R. D. Peccei, arXiv:hep-ph/0506016, 2005. Electroweak Session of the 2005 Moriond Meeting.
[Peccei:2005pc]
[3-196]
From Primordial Quantum Fluctuations to the Anisotropies of the Cosmic Microwave Background Radiation, Norbert Straumann, Annalen Phys. 15 (2006) 701-847, arXiv:hep-ph/0505249. Physik-Combo, in Halle, Leipzig and Jena, winter semester 2004/5.
[Straumann:2005mz]
[3-197]
Massive neutrinos and cosmology, Sergio Pastor, arXiv:hep-ph/0505148, 2005. XXXXth Moriond session on Electroweak Interactions and Unified Theories (La Thuile, 5-12 March 2005), and the XIth Int. Workshop on Neutrino Telescopes (Venice, 22-25 Feb 2005).
[Pastor:2005qd]
[3-198]
From Little Bangs to the Big Bang, John Ellis, J. Phys. Conf. Ser. 50 (2006) 8-21, arXiv:astro-ph/0504501. International Conference on the Physics and Astrophysics of the Quark-Gluon Plasma, Kolkata, Feb. 2005.
[Ellis:2005xq]
[3-199]
A brief introduction to cosmic topology, M.J. Reboucas, Aip Conf. Proc. 782 (2005) 188, arXiv:astro-ph/0504365. XIth Brazilian School of Cosmology and Gravitation.
[Reboucas:2005ix]
[3-200]
Cosmology with Gamma Ray Bursts, G. Ghisellini et al., Nuovo Cim. 28C (2005) 639, arXiv:astro-ph/0504306. 4th Workshop Gamma-Ray Bursts in the Afterglow Era, Rome,18-22 October 2004.
[Ghisellini:2005vk]
[3-201]
Relic Gravitational Waves and Cosmology, L. P. Grishchuk, Phys. Usp. 48 (2005) 1235-1247, arXiv:gr-qc/0504018. `Zeldovich-90', Moscow, December 2004.
[Grishchuk:2005qe]
[3-202]
Extracting New Physics from the CMB, B. Greene, K. Schalm, G. Shiu, J.P. van der Schaar, eConf C041213 (2004) 0001, arXiv:astro-ph/0503458. XXII Texas Symposium on Relativistic Astrophysics, Stanford University, 13-17 December 2004.
[Greene:2004fln]
[3-203]
Measuring the cosmological density perturbation, Subir Sarkar, Nucl. Phys. Proc. Suppl. 148 (2005) 1, arXiv:hep-ph/0503271. Workshop on 'The Density Perturbation in the Universe', Athens, June 2004.
[Sarkar:2005fq]
[3-204]
Cosmological neutrino bounds for non-cosmologists, Max Tegmark, Phys. Scripta T121 (2005) 153, arXiv:hep-ph/0503257. 'Neutrino Physics', Proceedings of Nobel Symposium 129.
[Tegmark:2005cy]
[3-205]
Inflation and string cosmology, Andrei Linde, eConf C040802 (1990) L024, arXiv:hep-th/0503195. SLAC Summer School 'Nature's Greatest Puzzles', Cosmo04 in Toronto, VI Mexican School on Gravitation, XXII Texas Symposium on Relativistic Astrophysics in 2004.
[Linde:1990flp]
[3-206]
Primordial Gravitational Waves and Inflation: CMB and Direct Detection With Space-Based Laser Interferometers, Asantha Cooray, Mod. Phys. Lett. (2005) (2005), arXiv:astro-ph/0503118. Daniel Chalonge International School of Astrophysics: WMAP and the Early Universe, Observatoire de Paris, December 2004.
[Cooray:2005xr]
[3-207]
TASI Lectures on AstroParticle Physics, Keith A. Olive, arXiv:astro-ph/0503065, 2005. TASI 2004.
[Olive:2005qz]
[3-208]
Summary of ICGC04 Cosmology Workshop, Tarun Souradeep, Pramana 63 (2004) 891, arXiv:astro-ph/0502249. Workshop on Cosmology, ICGC-04, Jan 5-10, 2004.
[Souradeep:2004hfy]
[3-209]
High Redshift Supernovae: Cosmological Implications, Nino Panagia, Nuovo Cim. B120 (2005) 667, arXiv:astro-ph/0502247. Vulcano Workshop 2004, Frontier Objects in Astrophysics and Particle Physics.
[Panagia:2005hr]
[3-210]
New Cosmology with Clusters of Galaxies, Peter Schuecker, Rev.Mod.Astron. (2005), arXiv:astro-ph/0502234.
[Schuecker:2005aa]
[3-211]
Cosmology and Astrophysics, Juan Garcia-Bellido, arXiv:astro-ph/0502139, 2005. CERN-JINR European School of High Energy Physics, San Feliu (Spain), 30 May - 12 June 2004.
[Capozziello:2013kla]
[3-212]
The Shape of Space after WMAP data, Jean-Pierre Luminet, Braz. J. Phys. 36 (2006) 107, arXiv:astro-ph/0501189. 25th Brazilian Meeting of Particle Physics and Fields, Caxambu, Minas Gerais, Brazil, 24-27 Aug 2004.
[Luminet:2005tn]
[3-213]
Neutrinos And Big Bang Nucleosynthesis, Gary Steigman, Phys. Scripta T121 (2005) 142, arXiv:hep-ph/0501100. Nobel Symposium 129, Neutrino Physics.
[Steigman:2005ys]
[3-214]
Dealing with dark energy, Eric V. Linder, arXiv:astro-ph/0501057, 2005. DARK 2004: 5th International Heidelberg Conference on Dark Matter in Astro and Particle Physics, College Station, Texas, 3-9 Oct 2004.
[Linder:2005qz]
[3-215]
Astrophysics, A. Ferrari, 2005. ISAPP 2005, International School on AstroParticle Physics (European Doctorate School): High Energy Cosmic Rays, 30 June - 9 July 2005, Belgirate, Lago Maggiore, Italy. http://www.isapp2005.to.infn.it/Lessons/Ferrari1.pdf. http://www.isapp2005.to.infn.it/Lessons/Ferrari2.pdf.
[Ferrari-ISAPP05]
[3-216]
Massive Neutrinos in Astrophysics and Cosmology, F. Villante, 2005. ISAPP 2005, International School on AstroParticle Physics (European Doctorate School): High Energy Cosmic Rays, 30 June - 9 July 2005, Belgirate, Lago Maggiore, Italy. http://www.isapp2005.to.infn.it/Lessons/Villante.pdf.
[Villante-ISAPP05]
[3-217]
From COBE to WMAP: A Decade of Data Under Scrutiny, Louise M. Ord, arXiv:astro-ph/0412354, 2004. 5th Rencontres du Vietnam 'New Views on the Universe', Aug 5-11, 2004.
[Ord:2004eb]
[3-218]
Dark Matter and Galaxy Formation: Challenges for the Next Decade, Joseph Silk, Aip Conf. Proc. 743 (2005) 33, arXiv:astro-ph/0412297. Mitchell Symposium on Observational Cosmology and Strings and Cosmology Conference, College Station, April 2004, and C. Pope, AIP, New York, and PASCOS04/NathFest, Boston, August 2004.
[Silk:2004uj]
[3-219]
Neutrino mass bounds from cosmology, Steen Hannestad, Nucl. Phys. Proc. Suppl. 145 (2005) 313, arXiv:hep-ph/0412181. NOW2004 workshop, Conca Specchiulla, Italy, September 11-17, 2004.
[Hannestad:2004bq]
[3-220]
Phenomenology of Absolute Neutrino Masses, Carlo Giunti, Nucl. Phys. Proc. Suppl. 145 (2005) 231, arXiv:hep-ph/0412148. NOW-2004, Neutrino Oscillation Workshop, 11-17 September 2004, Conca Specchiulla, Otranto, Italy. http://www.ba.infn.it/~now2004/talks/16_09_04/plen/GIUNTI.PDF.
[Giunti:2004vv]
[3-221]
What are the Building Blocks of Our Universe?, Kameshwar C. Wali, arXiv:astro-ph/0411321, 2004. International Conference on Cosmology, Facts and Problems (College de France, Paris, June 8-11, 2004).
[Wali:2004zk]
[3-222]
Baryogenesis and Leptogenesis, Mark Trodden, eConf C040802 (2004) L018, arXiv:hep-ph/0411301. SLAC 2004 Summer Science Institute.
[Trodden:2004mj]
[3-223]
Big Bang and Heavy Particles, A.D. Dolgov, arXiv:hep-ph/0411283, 2004. INFN Eloisatron Project, 44th Workshop, QCD at Cosmic Energies, August 29 - September 5, 2004, Erice, Italy.
[Dolgov:2004gn]
[3-224]
Weighing Neutrinos with Large-Scale Structure, Ofer Lahav, Oystein Elgaroy, Nucl. Phys. Proc. Suppl. 143 (2005) 439, arXiv:astro-ph/0411092. Neutrino 2004.
[Lahav:2004ha]
[3-225]
Dark Energy in the Universe, the Irreversibility of Time and Neutrinos, N. E. Mavromatos, Braz. J. Phys. 35 (2005) 284, arXiv:gr-qc/0411067. DICE2004 international conference, Piombino (Italy), September 1-4 2004.
[Mavromatos:2004gh]
[3-226]
Neutrino 2004: Concluding Talk, Guido Altarelli, Nucl. Phys. Proc. Suppl. 143 (2005) 470, arXiv:hep-ph/0410101. Neutrino 2004, Paris, 14-19 June 2004.
[Altarelli:2004cp]
[3-227]
An overview of Cosmology, Julien Lesgourgues, arXiv:astro-ph/0409426, 2004. Summer Students Programme of CERN (2002-2004).
[Lesgourgues:2004qt]
[3-228]
Dark energy: A pedagogic review, Paul H. Frampton, arXiv:astro-ph/0409166, 2004. 5th Rencontres du Vietnam on Particle Physics and Astrophysics: New Views in Particle Physics (Vietnam 2004), Hanoi, Vietnam, 5-11 Aug 2004.
[Frampton:2004nh]
[3-229]
The current status of observational cosmology, Jeremiah P. Ostriker, Tarun Souradeep, Pramana 63 (2004) 817, arXiv:astro-ph/0409131. ICGC-04.
[Ostriker:2004ht]
[3-230]
Lectures on astroparticle physics, Guenter Sigl, Aip Conf. Proc. 782 (2005) 1, arXiv:hep-ph/0408165. XIth Brazilian School of Cosmology and Gravitation, Rio de Janeiro, July 26 - August 4, 2004.
[Sigl:2004cq]
[3-231]
Dark energy probes in light of the CMB, Wayne Hu, ASP Conf.Ser. 339 (2005) 215, arXiv:astro-ph/0407158.
[Hu:2004kn]
[3-232]
Modern Cosmology, Juan Garcia-Bellido, arXiv:hep-ph/0407111, 2004. XXXII International Meeting on Fundamental Physics, Alicante, March 1-5, 2004.
[Garcia-Bellido:2004cvh]
[3-233]
Connecting Cosmology and Colliders, Mark Trodden, arXiv:astro-ph/0407024, 2004. LCWS2004, Paris April 2004.
[Trodden:2004sn]
[3-234]
The Standard Model, Dark Matter, and Dark Energy: From the Sublime to the Ridiculous, Lawrence M. Krauss, arXiv:astro-ph/0406673, 2004. XIV Canary Islands Winter School in Astrophysics, 2002.
[Krauss:2004iq]
[3-235]
The Cosmic Microwave Background and Its Polarization, Angelica de Oliveira-Costa, ASP Conf.Ser. 343 (2005) 485, arXiv:astro-ph/0406358. 'Astronomical Polarimetry - Current Status and Future Directions', Hawaii, USA, March 15-19, 2004.
[deOliveira-Costa:2004uph]
[3-236]
Inflationary Cosmological Perturbations of Quantum-Mechanical Origin, Jerome Martin, Lect. Notes Phys. 669 (2005) 199, arXiv:hep-th/0406011. 40th Karpacz Winter School on Theoretical Physics (Poland, Feb. 2004).
[Martin:2004um]
[3-237]
Summary of the XXXIX Rencontres de Moriond, Matts Roos, arXiv:astro-ph/0405625, 2004. XXXIX Rencontres de Moriond 'Exploring the Universe'.
[Roos:2004nd]
[3-238]
Supersymmetry and Cosmology, Jonathan L. Feng, eConf C0307282 (2003) L11, arXiv:hep-ph/0405215. 2003 SLAC Summer Institute: Cosmic Connections to Particle Physics.
[Feng:2003zu]
[3-239]
Cosmological Magnetic Fields vs. CMB, Tina Kahniashvili, New Astron. Rev. 49 (2005) 79, arXiv:astro-ph/0405184. Dark Matter 2004.
[Kahniashvili:2004gq]
[3-240]
Astroparticle Physics, I. I. Tkachev, arXiv:hep-ph/0405168, 2004. 2003 European School of High-Energy Physics, Tsakhkadzor, Armenia, 24 August - 6 September 2003.
[Tkachev:2004ee]
[3-241]
Problems of vacuum energy and dark energy, A.D. Dolgov, Frascati Phys.Ser. 34 (2004) 75-94, arXiv:hep-ph/0405089. 18th Rencontre de Physique de la Vallee d'Aosta on Results and Perspectives in Particle Physics, 29/02 - 06/03, 2004.
[Dolgov:2004xu]
[3-242]
Light Thoughts on Dark Energy, Eric V. Linder, New Astron. Rev. 49 (2005) 93, arXiv:astro-ph/0404032. Dark Matter/Dark Energy 2004.
[Linder:2004vg]
[3-243]
Theory of Cosmic Microwave Background Polarization, Paolo Cabella, Marc Kamionkowski, arXiv:astro-ph/0403392, 2004. 2003 Villa Mondragone School of Gravitation and Cosmology: 'The Polarization of the Cosmic Microwave Background,' Rome, Italy, September 6-11, 2003.
[Cabella:2004mk]
[3-244]
Anisotropies in the Cosmic Microwave Background, Anthony Challinor, arXiv:astro-ph/0403344, 2004. 2nd Aegean Summer School on the Early Universe (Springer LNP), 22-30 September 2003.
[Challinor:2004bd]
[3-245]
Dark Matter and Dark Energy, Varun Sahni, Lect. Notes Phys. 653 (2004) 141, arXiv:astro-ph/0403324. Second Aegean Summer School on the Early Universe, Syros, Greece, September 2003.
[Sahni:2004ai]
[3-246]
Maps of the Cosmos: The Cosmic Microwave Background, Lyman Page, ASP Conf.Ser. (2004), arXiv:astro-ph/0402547. IAU 2003.
[Page:2004ui]
[3-247]
Cosmic Topology: a Brief Overview, M.J. Reboucas, G.I. Gomero, Braz. J. Phys. 34 (2004) 1358, arXiv:astro-ph/0402324. 'XIV National Meeting of the Brazilian Physical Society, section Particles and Fields, Caxambu - MG, Brazil, from September 30 to October 04, 2003.
[Reboucas:2004dv]
[3-248]
Cosmological perturbation theory, Ruth Durrer, Lect. Notes Phys. 653 (2004) 31, arXiv:astro-ph/0402129. Second Aegean Summerschool on the Early Universe.
[Durrer:2004fx]
[3-249]
Alternative Dark Energy Models: An Overview, J. A. S. Lima, Braz. J. Phys. 34 (2004) 194, arXiv:astro-ph/0402109. XXIII Brazilian National Meeting on Particles and Fields, Aguas de Lindoia, Sao Paulo, Brazil.
[Lima:2004cq]
[3-250]
Observational Cosmology, R.H. Sanders, Lect. Notes Phys. 653 (2004) 105, arXiv:astro-ph/0402065. Second Aegean Summer School on the Early Universe.
[Sanders:2004xi]
[3-251]
Prospects of Inflation, Andrei Linde, Phys. Scripta T117 (2005) 40, arXiv:hep-th/0402051. Nobel Symposium 'Cosmology and String Theory,' August 2003.
[Linde:2004kg]
[3-252]
A Briefing on the Ekpyrotic/Cyclic Universe, Justin Khoury, arXiv:astro-ph/0401579, 2004. Sixth RESCEU Symposium, Nov. 2003, Tokyo, Japan.
[Khoury:2004xi]
[3-253]
TASI Lectures: Introduction to Cosmology, Mark Trodden, Sean M. Carroll, arXiv:astro-ph/0401547, 2004. TASI-02 and TASI-03 summer schools.
[Trodden:2004st]
[3-254]
What we know and what we don't know about the universe, Marcelo Gleiser, Int. J. Mod. Phys. D13 (2004) 1381, arXiv:astro-ph/0401213. 1st International Workshop on Astronomy and Relativistic Astrophysics, Olinda, Brazil, 12-17 Oct 2003.
[Gleiser:2004ny]
[3-255]
Neutrinos and astrophysics, S. Hannestad, 2004. SEESAW25,International Conference on the Seesaw Mechanism, 10-11 June 2004, Paris, France. http://seesaw25.in2p3.fr/trans/hannestad.pdf.
[Hannestad:SEESAW2004]
[3-256]
Precision Cosmology, A. Primack, 2004. Sixth UCLA Symposium on Sources and Detection of Dark Matter and Dark Energy in the Universe, February 18-20, 2004, Marina del Rey, California, US. http://www.physics.ucla.edu/hep/dm04/talks/primack.pdf.
[Primack:DM2004]
[3-257]
Inflation and Precision Cosmology, Jerome Martin, Braz. J. Phys. 34 (2004) 1307, arXiv:astro-ph/0312492. XXIV Brazilian National Meeting on Particles and Fields (Caxambu, Brazil, 30 Sep - 4 Oct 2003).
[Martin:2003bt]
[3-258]
Neutrino cosmology - an update, Steen Hannestad, arXiv:hep-ph/0312122, 2003. Thinking, observing, and mining the universe, Sorrento, Italy (22-27 September 2003).
[Hannestad:2003px]
[3-259]
Cosmological constant problem, J. W. Moffat, arXiv:gr-qc/0312115, 2003. Sixth Workshop on Quantum Field Theory under the Influence of External Conditions (QFEXT03), Norman, Oklahoma, 15-19 Sep 2003.
[Moffat:2003az]
[3-260]
Open Problems in Cosmology, P. J. E. Peebles, Nucl. Phys. Proc. Suppl. 138 (2005) 5, arXiv:astro-ph/0311435. TAUP 2003, Seattle, September, 2003.
[Peebles:2003pk]
[3-261]
Cosmological constraints from Microwave Background Anisotropy and Polarization, Alessandro Melchiorri, Bled Workshops Phys. 4 (2003) 6-15, arXiv:hep-ph/0311319. Euresco Conference, 'What comes beyond the Standard Model', 12. - 17. July 2003 Portoroz.
[Melchiorri:2003jx]
[3-262]
Neutrino Mixing and Cosmology, Nicole F. Bell, Nucl. Phys. Proc. Suppl. 138 (2005) 76, arXiv:hep-ph/0311283. TAUP 2003.
[Bell:2003bu]
[3-263]
Cosmic Connections, J. Ellis, eConf C0307282 (2003) TF07, arXiv:astro-ph/0310913. 31st SLAC Summer Institute, July 2003.
[Ellis:2003rm]
[3-264]
Connections Between Big and Small, J. Ellis, eConf C0307282 (2003) L01, arXiv:astro-ph/0310911. 31st SLAC Summer Institute, July 2003.
[Ellis:2003rj]
[3-265]
Neutrino physics from cosmology, S. Hannestad, arXiv:astro-ph/0310133, 2003. Beyond the Desert '03, Ringberg, 11-15 July 2003.
[Hannestad:2003ep]
[3-266]
Current Status and Perspectives of Cosmic Microwave Background Observations, Marco Bersanelli, Davide Maino, Aniello Mennella, Aip Conf. Proc. 703 (2004) 385, arXiv:astro-ph/0310089. International Symposium on Plasmas in the Laboratory and in the Universe: new insights and new challenges, September 16-19, 2003, Como, Italy.
[Bersanelli:2003uv]
[3-267]
Status of observational cosmology and inflation, L. Covi, eConf C030626 (2003) THBT01, arXiv:hep-ph/0309238. XXIII Physics in Collisions Conference (PIC03), Zeuthen, Germany, June 2003.
[Covi:2003ku]
[3-268]
Early Cosmology and Fundamental Physics, Hector De Vega, arXiv:astro-ph/0307477, 2003. 9th Chalonge School in Astrofundamental Physics, Palermo, September 2002.
[DeVega:2003qm]
[3-269]
Gravitational lensing as a probe of structure, Peter Schneider, arXiv:astro-ph/0306465, 2003. XIV Canary Islands Winter School of Astrophysics 'Dark Matter and Dark Energy in the Universe' Tenerife.
[Schneider:2003yb]
[3-270]
Magnetic fields in cosmology, A. D. Dolgov, arXiv:astro-ph/0306443, 2003. 17th Rencontre de Physique de la Vallee d'Aoste on Results and Perspectives in Particle Physics, March 9-15, 2003.
[Dolgov:2003xd]
[3-271]
Inflation and Cosmological Perturbations, A. H. Guth, arXiv:astro-ph/0306275, 2003. Conference on the Future of Theoretical Physics and Cosmology in Honor of Steven Hawking's 60th Birthday, Cambridge, England, 7-10 Jan 2002.
[Guth:2003rn]
[3-272]
Relic neutrinos: neutrino properties from cosmology, S. Pastor, arXiv:hep-ph/0306233, 2003. X Int. Workshop on Neutrino Telescopes, Venice, March 11-14, 2003.
[Pastor:2003jx]
[3-273]
Cosmology at the Turn of Centuries, A.D. Dolgov, arXiv:hep-ph/0306200, 2003. International Conference I.Ya. Pomeranchuk and Physics at the Turn of Centuries, January 24-28, 2003, Moscow, Russia.
[Dolgov:2003zg]
[3-274]
Cosmological Constraints on Neutrino Masses and Mixings, A.D. Dolgov, arXiv:hep-ph/0306154, 2003. NOON 2003 workshop, February 10-14, 2003, Kanazawa, Japan.
[Dolgov:2003hi]
[3-275]
Lectures on the Theory of Cosmological Perturbations, Robert H. Brandenberger, Lect. Notes Phys. 646 (2004) 127, arXiv:hep-th/0306071. Vth Mexican School, November 2002, Playa del Carmen, Mexico.
[Brandenberger:2003vk]
[3-276]
Theoretical Overview of Cosmic Microwave Background Anisotropy, E. L. Wright, arXiv:astro-ph/0305591, 2003. Carnegie Observatories Centennial Symposium II.
[Wright:2003ig]
[3-277]
Cosmology with the Ly-a forest, Martin White, arXiv:astro-ph/0305474, 2003. Davis Inflation Meeting, 2003.
[White:2003je]
[3-278]
The Polarization of the Cosmic Microwave Background, Matias Zaldarriaga, arXiv:astro-ph/0305272, 2003. Carnegie Observatories Centenial Symposium II.
[Zaldarriaga:2003bb]
[3-279]
Inflation and the Cosmic Microwave Background, Charles H. Lineweaver, arXiv:astro-ph/0305179, 2003. New Cosmology Summer School.
[Lineweaver:2003ie]
[3-280]
Gravitational Lensing by Large Scale Structures: A Review, L. Van Waerbeke, Y. Mellier, arXiv:astro-ph/0305089, 2003. Aussois winter school, january 2003.
[VanWaerbeke:2003uq]
[3-281]
Introductory Overview of Modern Cosmology, Burin Gumjudpai, arXiv:astro-ph/0305063, 2003. The Second Tah Poe School on Cosmology 'Modern Cosmology' (TPCosmo II), 17-25 April 2003, Naresuan University, Phitsanulok, Thailand.
[Gumjudpai:2003nd]
[3-282]
Particle Physics and Cosmology, John Ellis, arXiv:astro-ph/0305038, 2003. Australian National University Summer School on the New Cosmology, January 2003.
[Ellis:2003ch]
[3-283]
Physics of Structure Formation in the Universe, T. Roy Choudhury, Bull. Astron. Soc. India 31 (2003) 281, arXiv:astro-ph/0305033. 22nd meeting of Astronomical Society of India (2003).
[Choudhury:2003cc]
[3-284]
Quasar Lensing: the Observer's Point of View, F. Courbin, arXiv:astro-ph/0304497, 2003. 'Gravitational Lensing: a unique tool for cosmology', Aussois, France, January 2003.
[Courbin:2003ip]
[3-285]
Ten major challenges in cosmology, Reuven Opher, arXiv:astro-ph/0304369, 2003. Xth Brazilian School of Cosmology and Gravitation, Rio de Janeiro, July 29 - Aug. 9, 2002.
[Opher:2003gv]
[3-286]
Inflation, Large Scale Structure and Particle Physics, S. F. King, Pramana 62 (2004) 307, arXiv:hep-ph/0304264. 9th International Symposium on Particles, Strings and Cosmology (PASCOS 03), Mumbai (Bombay) India, 3-8 Jan 2003.
[King:2003jw]
[3-287]
Introductory review of cosmic inflation, Shinji Tsujikawa, arXiv:hep-ph/0304257, 2003. The Second Tah Poe School on Cosmology 'Modern Cosmology', Naresuan University, Phitsanulok, Thailand, April 17 -25, 2003.
[Tsujikawa:2003jp]
[3-288]
Proceedings of the Davis Meeting on Cosmic Inflation, Manoj Kaplinghat, N. Kaloper, L. Knox, arXiv:astro-ph/0304225, 2003.
[Kaplinghat:2003dg]
[3-289]
Dark Matter and Dark Energy: Summary and Future Directions, John Ellis, Phil. Trans. Roy. Soc. Lond. A361 (2003) 2607, arXiv:astro-ph/0304183. Royal Society Discussion Meeting on Dark Matter and Dark Energy, January 2003.
[Ellis:2003ug]
[3-290]
Cosmology with Supernovae, P. Ruiz-Lapuente, Astrophys. Space Sci. 290 (2004) 43, arXiv:astro-ph/0304108. JENAM 2002 (Porto, Portugal).
[Ruiz-Lapuente:2003skz]
[3-291]
Clusters of galaxies: a fundamental pillar of cosmology, Africa Castillo-Morales, Sabine Schindler, arXiv:astro-ph/0303609, 2003. Vulcano Workshop 2002 'Frontier Objects in Astrophysics and Particle Physics'.
[Castillo-Morales:2003pws]
[3-292]
Cosmology from Topological Defects, Alejandro Gangui, Aip Conf. Proc. 668 (2003) 226, arXiv:astro-ph/0303504. Xth Brazilian School on Cosmology and Gravitation, Mangaratiba, Rio de Janeiro, July 29 - August 9, 2002.
[Gangui:2003uu]
[3-293]
The evolution of the universe, Juan Garcia-Bellido, arXiv:hep-ph/0303153, 2003. International Colloquium on TIME AND MATTER, Venice, Italy, August 11 - 17, 2002.
[Garcia-Bellido:2003kut]
[3-294]
Neutrinos in Physics and Astrophysics, G. G. Raffelt, IAU Symp. (2003), arXiv:astro-ph/0302589. Texas in Tuscany, Dec. 2002.
[Raffelt:2003nc]
[3-295]
CIW Cosmology Symposium: Conference Summary - Observations, S. M. Faber, arXiv:astro-ph/0302495, 2003.
[Faber:2003nc]
[3-296]
Baryogenesis and the New Cosmology, Mark Trodden, Pramana 62 (2004) 451, arXiv:hep-ph/0302151. PASCOS-03, Mumbai, India; COSMO-02, Chicago; Aspen Winter 2003 Conference on Particle Physics: At the Frontiers of Particle Physics, Aspen Center for Physics.
[Trodden:2003yn]
[3-297]
Cosmology, inflation, and the physics of nothing, William H. Kinney, NATO Adv.Study Inst.Ser.II.Math.Phys.Chem. 123 (2003) 189-243, arXiv:astro-ph/0301448. NATO Advanced Study Institute on Techniques and Concepts of High Energy Physics, St. Croix, USVI (2002).
[Kinney:2003xf]
[3-298]
Time Since the Beginning, Alan H. Guth, ASP Conf.Ser. (2003), arXiv:astro-ph/0301199. 'Astrophysical Ages and Time Scales,' Hilo, Hawaii, 5-9 February 2001.
[Guth:2001dsy]
[3-299]
Cosmological Parameters: Fashion and Facts, A. Blanchard, arXiv:astro-ph/0301137, 2003. th Workshop on 'New Worlds in Astroparticle Physics' in Faro, Portugal, September 2003.
[Blanchard:2003wf]
[3-300]
Neutrino Mixing and Cosmology, N. Bell, 2003. TAUP 2003, September 5-9, 2003 University of Washington, Seattle, Washington. http://mocha.phys.washington.edu/~int_talk/WorkShops/TAUP03/Parallel/People/Bell_N/N_BellTAUP031.pdf.
[Bell:TAUP03]
[3-301]
Neutrino physics from cosmology, S. Hannestad, 2003. EPS 2003. http://eps2003.physik.rwth-aachen.de/data/talks/parallel/07Neutrino/07hannestad.ppt.
[Hannestad-EPS2003]
[3-302]
Bright stars, dark energy, R. Kirshner, 2003. XXI International Symposium on Lepton Photon 2003, 11-16 August 2003, Fermi National Accelerator Laboratory, Batavia, Illinois USA. http://conferences.fnal.gov/lp2003/program/S9/kirshner_s09_updated.pdf.
[Kirshner:LP03]
[3-303]
WMAP results, M. Limon, 2003. XXXVIII Rencontres de Moriond Electroweak Interactions and Unified Theories Les Arcs, France, 15-22 March 2003. http://moriond.in2p3.fr/EW/2003/Transparencies/3_Tuesday/3_1_morning/3_1_2_Limon/M_Limon.pdf.
[Limon:Moriond03]
[3-304]
Relic Neutrinos, S. Pastor, 2003. 10th International Workshop on Neutrino Telescopes, March 11-14, 2003, Venice, Italy. http://www.pd.infn.it/~laveder/conference2003/transparencies/Pastor.ppt.
[Pastor:Venice03]
[3-305]
Cosmological Parameters, M. Tegmark, 2003. TAUP 2003, September 5-9, 2003 University of Washington, Seattle, Washington. http://mocha.phys.washington.edu/~int_talk/WorkShops/TAUP03/Plenary/People/Tegmark_M/Cosmological_Parameters-Tegmark.pdf.
[Tegmark:TAUP03]
[3-306]
The cosmic microwave background radiation, Bruce Winstein, eConf C0307282 (2003) L04. 31st SLAC Summer Institute on Particle Physics: Cosmic Connection to Particle Physics (SSI 2003), Menlo Park, California, 28 Jul - 8 Aug 2003. http://quiet.uchicago.edu/capmap/slaclatex.pdf.
[Winstein:2003zw]
[3-307]
The role of topologigal defects in cosmology, Mairi Sakellariadou, arXiv:hep-ph/0212365, 2002.
[Sakellariadou:2002mq]
[3-308]
Could Dark Energy be Measured from Redshift Surveys ?, Ofer Lahav, arXiv:astro-ph/0212358, 2002. XVIIIth IAP meeting `On the Nature of Dark Energy', Paris 2002.
[Lahav:2002rp]
[3-309]
The New Cosmology: Mid-term Report Card for Inflation, Michael S. Turner, Annales Henri Poincare 4 (2003) S333, arXiv:astro-ph/0212281. Th2002 Congress (Paris, France, July 2002).
[Turner:2002ts]
[3-310]
Particle Physics and Cosmology, Juan Garcia-Bellido, Frascati Phys. Ser. 31 (2003) 321, arXiv:hep-ph/0211316. First International Workshop on Frontier Science, October 6-11, 2002, Frascati (Italy).
[Garcia-Bellido:2002efr]
[3-311]
Neutrinos in cosmology, with some significant digressions, R. R. Volkas, Aip Conf. Proc. 655 (2003) 220, arXiv:hep-ph/0211309. 3rd Tropical Workshop on Particle Physics and Cosmology, San Juan, Puerto Rico, Aug 19-24 2002.
[Volkas:2002vn]
[3-312]
High-Energy Astrophysics and Cosmology, John Ellis, arXiv:astro-ph/0210580, 2002. XIIth International Symposium on Very-High-Energy Cosmic-Ray Interactions, CERN, July 2002.
[Ellis:2003aa]
[3-313]
Can We See the Shape of the Universe?, G. I. Gomero, Int. J. Mod. Phys. A17 (2002) 4281-4286, arXiv:astro-ph/0210279. 5th Alexander Friedmann Seminar on Gravitation and Cosmology.
[Gomero:2002ki]
[3-314]
Inflation and the Theory of Cosmological Perturbations, Antonio Riotto, ICTP Lect.Notes Ser. 14 (2003) 317-413, arXiv:hep-ph/0210162. 'ICTP Summer School on Astroparticle Physics and Cosmology', Trieste, 17 June - 5 July 2002.
[Riotto:2002yw]
[3-315]
Cosmological Implications of Neutrino Mass, S. F. King, arXiv:hep-ph/0210089, 2002. 4th International Workshop on the Identification of Dark Matter (IDM2002), St. William's College, York Minster, York, England, September 2-6, 2002.
[King:2002js]
[3-316]
Phenomenological and Cosmological Implications of Neutrino Oscillations, S. F. King, J. Phys. G29 (2003) 1551, arXiv:hep-ph/0210081. 4th Workshop on Neutrino Factories based on Muon Storage Rings (NuFact'02), Imperial College, London, July 1-6, 2002.
[King:2002jq]
[3-317]
Cosmic Distances: Current Odds and Future Perspectives, G. Bono, ASP Conf.Ser. (2002), arXiv:astro-ph/0210068. To appear in 'Hubble's Science Legacy: Future Optical-Ultraviolet Astronomy from Space'.
[Bono:2002ze]
[3-318]
20+ years of Inflation, Juan Garcia-Bellido, Nucl. Phys. Proc. Suppl. 114 (2003) 13-26, arXiv:hep-ph/0210050.
[Garcia-Bellido:2002ana]
[3-319]
Neutrino physics from cosmological observations, S. Hannestad, Nucl. Phys. Proc. Suppl. 118 (2003) 315, arXiv:astro-ph/0208567. XXth International Conference on Neutrino Physics and Astrophysics May 25 - 30, 2002, Munich, Germany. http://neutrino2002.ph.tum.de/pages/transparencies/hannestad.
[Hannestad:2002iz]
[3-320]
Cosmological implications of neutrinos, A. D. Dolgov, Surveys High Energ. Phys. 17 (2002) 91, arXiv:hep-ph/0208222. 5th Moscow International School of Physics and 30th ITEP Winter School of Physics, Moscow, Russia, 20-28 Feb 2002.
[Dolgov:2002ad]
[3-321]
From Precision Cosmology to Accurate Cosmology, P. J. E. Peebles, arXiv:astro-ph/0208037, 2002. Moriond Conference on the Cosmological Model, Les Arcs, March 2002.
[Peebles:2002iq]
[3-322]
Astrophysical and Cosmological Neutrinos, G. G. Raffelt, Proc.Int.Sch.Phys.Fermi 152 (2003) 161-181, arXiv:hep-ph/0208024. International School of Physics 'Enrico Fermi,' CLII Course 'Neutrino Physics,' 23 July-2 August 2002, Varenna, Lake Como, Italy.
[Raffelt:2002nz]
[3-323]
GUT, Neutrinos, and Baryogenesis, H. Murayama, Nucl. Phys. Proc. Suppl. 111 (2002) 136-145, arXiv:hep-ph/0208005. 5th KEK Topical Conference: Frontiers In Flavor Physics, 20-22 Nov 2001, Tsukuba, Ibaraki, Japan.
[Murayama:2002jq]
[3-324]
A review of self-tuning solutions of cosmological constant, Jihn E. Kim, arXiv:hep-ph/0207360, 2002. '5th Int. UCLA Symposium on Sources and Detection of Dark Matter and Dark Energy in the Universe', Marina del Rey, CA, 20-22 Feb. 2002.
[Kim:2002ps]
[3-325]
Neutrino masses in astroparticle physics, G. G. Raffelt, New Astron. Rev. 46 (2002) 699-708, arXiv:astro-ph/0207220. Dennis Sciama Memorial Volume of NAR.
[Raffelt:2002ed]
[3-326]
Stars and Fundamental Physics, G. G. Raffelt, arXiv:hep-ph/0207144, 2002. ESO-CERN-ESA Symposium on Astronomy, Cosmology and Fundamental Physics (4-7 March 2002, Garching, Germany).
[Raffelt:2002vg]
[3-327]
Cosmology Rounding the Cape, Alessandro Melchiorri, arXiv:astro-ph/0204262, 2002. 4th Heidelberg International Conference on Dark Matter in Astro- and Particle Physics, Cape Town, South Africa (February 2002. Eds. H. Klapdor-Kleingrothaus and R. Viollier).
[Melchiorri:2002yya]
[3-328]
CMB and Cosmological Parameters: Current Status and Prospects, Alessandro Melchiorri, PoS AHEP2003 (2003) AHEP2003/067, arXiv:astro-ph/0204017. XIII Rencontres de Blois - Frontiers of the Universe, June 17-23, 2001.
[Melchiorri:2002ne]
[3-329]
The Cosmological Constant, U. Ellwanger, arXiv:hep-ph/0203252, 2002. XIV Workshop 'Beyond the Standard Model', Bad Honnef, 11-14 March 2002.
[Ellwanger:2002cd]
[3-330]
Big bang nucleosynthesis, implications of recent CMB data and supersymmetric dark matter, K. A. Olive, arXiv:astro-ph/0202486, 2002. 1st NCTS Workshop on Astroparticle Physics, Taiwan, China, 6-9 Dec 2001.
[Olive:2002qg]
[3-331]
New results in cosmology, Subir Sarkar, PoS HEP2001 (2001) hep2001/299, arXiv:hep-ph/0201140.
[Sarkar:2001ixg]
[3-332]
Cosmological parameters from CMB and LSS, J. Peacock, 2002. 4th International Workshop on the Identification of Dark Matter (IDM2002), St. William's College, York Minster, York, England, September 2-6, 2002. http://www.shef.ac.uk/~phys/idm2002/talks/pdfs/peacock.pdf.
[Peacock-talk:2002a]
[3-333]
Neutrino Masses in Astrophysics and Cosmology, G. Raffelt, 2002. Lecture at the International School on Astroparticle and Neutrino Physics, 10-15 June 2002, Villa Cipressi, Varenna, Italy. http://wwwth.mppmu.mpg.de/members/raffelt/mytalks/varenna.pdf.
[Raffelt:Varenna02]
[3-334]
Beyond Cosmological Parameters, M. Tegmark, 2002. Workshop on Neutrino News from the Lab and the Cosmos, Fermilab, October 17 - 19, 2002. http://www-astro-theory.fnal.gov/Conferences/NuCosmo/talks/tegmark.pdf.
[Tegmark-talk:2002a]
[3-335]
Inflationary cosmology: Theory and phenomenology, Andrew R Liddle, Class. Quant. Grav. 19 (2002) 3391-3402, arXiv:astro-ph/0109439. Meeting on the Early Universe and Cosmological Observations: A Critical Review, Cape Town, South Africa, 23-25 Jul 2001.
[Liddle:2001bk]
[3-336]
big bang nucleosynthesis and cosmological constraints on neutrino oscillation parameters, Daniela Kirilova, Mihail Chizhov, arXiv:astro-ph/0108341, 2001. BLTP Research Workshop on Hot Points in Astrophysics, Dubna, Russia, 22-26 Aug 2000.
[Kirilova:2001rs]
[3-337]
Neutrino oscillations in the early universe, D. Kirilova, M. Chizhov, Nucl. Phys. Proc. Suppl. 100 (2001) 360-362, arXiv:hep-ph/0102114. Europhysics Neutrino Oscillation Workshop (NOW 2000), Conca Specchiulla, Otranto, Lecce, Italy, 9-16 Sep 2000.
[Kirilova:2000pm]
[3-338]
Massive neutrinos in astrophysics, G. G. Raffelt, W. Rodejohann, arXiv:hep-ph/9912397, 1999. 4th National Summer School for German-speaking Graduate Students of Theoretical Physics, Saalburg, Germany, 31 Aug - 11 Sep 1998.
[Raffelt:1998qp]
[3-339]
Dynamics of the inflationary era, Edward W. Kolb, arXiv:hep-ph/9910311, 1999. Pritzker Symposium and Workshop on the Status of Inflationary Cosmology, Chicago, IL, 29 Jan - 3 Feb 1999.
[Kolb:1999ar]
[3-340]
Introduction to Microwave Background Polarization, A. Kosowsky, New Astron. Rev. 43 (1999) 157, arXiv:astro-ph/9904102. International School of Space and Science: 1998 Course on 3K Cosmology from Space, L'Aquila, Italy, 2-12 Sep 1998.
[Kosowsky:1998mb]
[3-341]
Big bang nucleosynthesis: Reprise, Subir Sarkar, arXiv:astro-ph/9903183, 1999. 2nd International Conference on Dark Matter in Astro and Particle Physics (DARK98), Heidelberg, Germany, 20-25 Jul 1998.
[Sarkar:1998gx]
[3-342]
Particle physics in the early universe, Edward W. Kolb, NATO Adv.Study Inst.Ser.C.Math.Phys.Sci. 534 (1999) 239-262, arXiv:hep-ph/9810362. 10th NATO ASI on Techniques and Concepts of High-Energy Physics, St. Croix, U.S. Virgin Islands, 18-29 June 1998.
[Kolb:1998kj]
[3-343]
Possible relics from new physics in the early universe: Inflation, the cosmic microwave background, and particle dark matter, Marc Kamionkowski, arXiv:astro-ph/9809214, 1998. Workshop on The Early and Future Universe, Beijing, China, 22-27 June 1998.
[Kamionkowski:1998is]
[3-344]
Baryogenesis, 30 years after, A. D. Dolgov, arXiv:hep-ph/9707419, 1997. 25th ITEP Winter School of Physics, Moscow, Russia, 18-27 Feb 1997.
[Dolgov:1997qr]
[3-345]
Calculations of cosmic background radiation anisotropies and implications, Emory F. Bunn, arXiv:astro-ph/9607088, 1996. 1996 NATO Advanced Study Institute on 'The Cosmic Background Radiation'.
[Bunn:1996qg]

4 - Habilitation, PhD and Master Theses

[4-1]
The Universe at the MeV era: neutrino evolution and cosmological observables, Julien Froustey, arXiv:2209.06672, 2022.
[Froustey:2022sla]
[4-2]
Non-Gaussianity in Cosmology: from Inflation to the CMB, Bartjan van Tent, arXiv:2107.10802, 2021.
[vanTent:2020cdf]
[4-3]
Applications of Cosmological Perturbation Theory in the Late Universe, Jorge L. Fuentes, arXiv:2106.10181, 2021.
[Fuentes:2021laa]
[4-4]
Stochastic inflation and primordial black holes, Vincent Vennin, arXiv:2009.08715, 2020.
[Vennin:2020kng]
[4-5]
Testing Inflationary Cosmology, Robert J. Hardwick, arXiv:1906.03589, 2019.
[Hardwick:2019zee]
[4-6]
Cosmological Probes of Light Relics, Benjamin Wallisch, arXiv:1810.02800, 2018.
[Wallisch:2018rzj]
[4-7]
Massive Neutrinos: Phenomenological and Cosmological Consequences, Yuber F. Perez-Gonzalez, arXiv:1712.06675, 2017.
[Gonzalez:2017mxi]
[4-8]
Cosmic Topology, Jaspreet Sandhu, arXiv:1612.04157, 2016.
[Sandhu:2016gbz]
[4-9]
Cosmological constant vis-a-vis dynamical vacuum: bold challenging the $\Lambda$CDM, Joan Sola, Int.J.Mod.Phys. A31 (2016) 1630035, arXiv:1612.02449.
[Sola:2016zeg]
[4-10]
Implication of Sterile Fermions in Particle Physics and Cosmology, Michele Lucente, arXiv:1609.07081, 2016.
[Lucente:2015cjm]
[4-11]
New Developments in Cosmology, Stefano Gariazzo, arXiv:1603.09102, 2016.
[Gariazzo:2016gzm]
[4-12]
Topics in neutrino physics and cosmology, Louis Anthony Lello, 2016. PhD thesis, Pittsburgh U. http://d-scholarship.pitt.edu/29597/.
[Lello:2016zjr]
[4-13]
Constraints on the neutrino parameters by future cosmological 21cm line and precise CMB polarization observations, Yoshihiko Oyama, arXiv:1510.05161, 2015. PhD thesis, The Graduate University for Advanced Studies (SOKENDAI).
[Oyama:2014qax]
[4-14]
Studies of inflation and dark energy with coupled scalar fields, Susan Vu, arXiv:1502.00930, 2015.
[Vu:2014zim]
[4-15]
Non-Equilibrium Aspects of Relic Neutrinos: From Freeze-out to the Present Day, Jeremiah Birrell, arXiv:1409.4500, 2014.
[Birrell:2014ona]
[4-16]
The B-L Phase Transition: Implications for Cosmology and Neutrinos, Kai Schmitz, arXiv:1307.3887, 2013.
[Schmitz:2012kaa]
[4-17]
Cosmological limits on axions and axion-like particles, Davide Cadamuro, arXiv:1210.3196, 2012.
[Cadamuro:2012rm]
[4-18]
Flavour Condensate and the Dark Sector of the Universe, Walter Tarantino, arXiv:1202.3812, 2012.
[Tarantino:2011jy]
[4-19]
On Friedmann-Lemaitre-Robertson-Walker cosmologies in non-standard gravity, Diego Saez-Gomez, arXiv:1104.0813, 2011.
[Saez-Gomez:2011miu]
[4-20]
Throat Cosmology, B. v. Harling, arXiv:1002.2830, 2010.
[vonHarling:2008vlg]
[4-21]
Quantum kinetic theory with nonlocal coherence, Matti Herranen, arXiv:0906.3136, 2009.
[Herranen:2009zi]
[4-22]
Construction and Analysis of a Many-Body Neutrino model, Ivona Okuniewicz, arXiv:0903.2996, 2009.
[Okuniewicz:2006kz]
[4-23]
The Early Universe as a Probe of New Physics, Chris Bird, arXiv:0812.4494, 2008.
[Bird:2008nf]
[4-24]
Particle Physics in the Sky and Astrophysics Underground: Connecting the Universe's Largest and Smallest Scales, Molly E.C. Swanson, arXiv:0808.0002, 2008.
[Swanson:2008sg]
[4-25]
Topics in particle physics and cosmology beyond the standard model, Alejandro Jenkins, arXiv:hep-th/0607239, 2006.
[Jenkins:2006bz]
[4-26]
Alternative Approaches to Dark Matter Puzzle, Gabrijela Zaharijas, arXiv:astro-ph/0510088, 2005.
[Zaharijas:2005yw]
[4-27]
The Origin of the Large-Scale Structure in the Universe: Theoretical and Statistical Aspects, Yeinzon Rodriguez, arXiv:astro-ph/0507701, 2005.
[Rodriguez:2005ru]

5 - Fundamental Papers - Experiment

[5-1]
Structure in the COBE DMR first year maps, G. F. Smoot et al., Astrophys. J. 396 (1992) L1-L5.
[COBE:1992syq]
[5-2]
A Preliminary measurement of the cosmic microwave background spectrum by the cosmic background explorer (COBE) satellite, J. C. Mather et al., Astrophys. J. 354 (1990) L37-L40.
[Mather:1990tfx]
[5-3]
Detection of anisotropy in the cosmic black body radiation, G. F. Smoot, M. V. Gorenstein, R. A. Muller, Phys. Rev. Lett. 39 (1977) 898.
[Smoot:1977bs]
[5-4]
A Measurement of excess antenna temperature at 4080-Mc/s, Arno A. Penzias, Robert Woodrow Wilson, Astrophys. J. 142 (1965) 419-421.
[Penzias:1965wn]
[5-5]
A relation between distance and radial velocity among extra-galactic nebulae, Edwin Hubble, Proc. Nat. Acad. Sci. 15 (1929) 168-173.
[Hubble:1929ig]
[5-6]
Extragalactic nebulae, E. P. Hubble, Astrophys. J. 64 (1926) 321-369.
[Hubble:1926yw]

6 - Fundamental Papers - Phenomenology

[6-1]
Separating the Early Universe from the Late Universe: cosmological parameter estimation beyond the black box, Max Tegmark, Matias Zaldarriaga, Phys. Rev. D66 (2002) 103508, arXiv:astro-ph/0207047.
[Tegmark:2002cy]
[6-2]
Efficient Cosmological Parameter Estimation from Microwave Background Anisotropies, Arthur Kosowsky, Milos Milosavljevic, Raul Jimenez, Phys. Rev. D66 (2002) 063007, arXiv:astro-ph/0206014.
[Kosowsky:2002zt]
[6-3]
Do SNe Ia Provide Direct Evidence for Past Deceleration of the Universe?, Michael S. Turner, Adam G. Riess, Astrophys. J. 569 (2002) 18, arXiv:astro-ph/0106051.
[Turner:2001mx]
[6-4]
Angular trispectrum of the cosmic microwave background, Wayne Hu, Phys. Rev. D64 (2001) 083005, arXiv:astro-ph/0105117.
[Hu:2001fa]
[6-5]
Measuring the metric: A parametrized post-Friedmanian approach to the cosmic dark energy problem, Max Tegmark, Phys. Rev. D66 (2002) 103507, arXiv:astro-ph/0101354.
[Tegmark:2001zc]
[6-6]
Cosmic Confusion: Degeneracies among Cosmological Parameters Derived from Measurements of Microwave Background Anisotropies, G. Efstathiou, J. R. Bond, Mon. Not. Roy. Astron. Soc. 304 (1999) 75-97, arXiv:astro-ph/9807103.
[Efstathiou:1998xx]
[6-7]
Weighing neutrinos with galaxy surveys, Wayne Hu, Daniel J. Eisenstein, Max Tegmark, Phys. Rev. Lett. 80 (1998) 5255-5258, arXiv:astro-ph/9712057.
[Hu:1997mj]
[6-8]
The Cosmic Baryon Budget, M. Fukugita, C. J. Hogan, P. J. E. Peebles, Astrophys. J. 503 (1998) 518, arXiv:astro-ph/9712020.
[Fukugita:1997bi]
[6-9]
Power Spectra for Cold Dark Matter and its Variants, Daniel J. Eisenstein, Wayne Hu, Astrophys. J. 511 (1997) 5, arXiv:astro-ph/9710252.
[Eisenstein:1997jh]
[6-10]
Small scale perturbations in a general MDM cosmology, Wayne Hu, Daniel J. Eisenstein, Astrophys. J. 498 (1998) 497, arXiv:astro-ph/9710216.
[Hu:1997vi]
[6-11]
Recovery of the Power Spectrum of Mass Fluctuations from Observations of the Lyman-alpha Forest, Rupert A. C. Croft, David H. Weinberg, Neal Katz, Lars Hernquist, Astron. J. 495 (1998) 44, arXiv:astro-ph/9708018.
[Croft:1997jf]
[6-12]
The Effect of physical assumptions on the calculation of microwave background anisotropies, Wayne Hu, Douglas Scott, Naoshi Sugiyama, Martin J. White, Phys. Rev. D52 (1995) 5498-5515, arXiv:astro-ph/9505043.
[Hu:1995fqa]
[6-13]
Anisotropies in the Cosmic Microwave Background: An Analytic Approach, Wayne Hu, Naoshi Sugiyama, Astrophys. J. 444 (1995) 489-506, arXiv:astro-ph/9407093.
[Hu:1994uz]
[6-14]
Small scale cosmic microwave background anisotropies as a probe of the geometry of the universe, Marc Kamionkowski, David N. Spergel, Naoshi Sugiyama, Astrophys. J. 426 (1994) L57, arXiv:astro-ph/9401003.
[Kamionkowski:1993aw]
[6-15]
Measuring cosmological parameters with cosmic microwave background experiments, J. Richard Bond, Robert Crittenden, Richard L. Davis, George Efstathiou, Paul J. Steinhardt, Phys. Rev. Lett. 72 (1994) 13-16, arXiv:astro-ph/9309041.
[Bond:1993fb]
[6-16]
Interpretation of the CMB anisotropy detected by the COBE DMR, E. L. Wright et al., Astrophys. J. 396 (1992) L13-L18.
[Wright:1992tf]
[6-17]
Primordial nucleosynthesis without a computer, Rahim Esmailzadeh, Glenn D. Starkman, Savas Dimopoulos, Astrophys. J. 378 (1991) 504-518.
[Esmailzadeh:1990hf]
[6-18]
Cosmological Helium production simplified, Jeremy Bernstein, Lowell S. Brown, G. Feinberg, Rev. Mod. Phys. 61 (1989) 25.
[Bernstein:1988ad]
[6-19]
The statistics of cosmic background radiation fluctuations, J. R. Bond, G. Efstathiou, Mon. Not. Roy. Astron. Soc. 226 (1987) 655-687.
[Bond:1987ub]
[6-20]
Tests of cosmological models constrained by inflation, P. J. E. Peebles, Astrophys. J. 284 (1984) 439-444.
[Peebles:1984ge]
[6-21]
The collisionless damping of density fluctuations in an expanding universe, J. R. Bond, A. S. Szalay, Astrophys. J. 274 (1983) 443-468.
[Bond:1983hb]
[6-22]
Constraint on the photino mass from cosmology, H. Goldberg, Phys. Rev. Lett. 50 (1983) 1419.
[Goldberg:1983nd]
[6-23]
New constraints on 'ino' masses from cosmology. 2. neutrinos, Lawrence M. Krauss, Phys. Lett. B128 (1983) 37.
[Krauss:1983iu]
[6-24]
Primordial nucleosynthesis including radiative, coulomb, and finite temperature corrections to weak rates, Duane A. Dicus et al., Phys. Rev. D26 (1982) 2694.
[Dicus:1982bz]
[6-25]
Anisotropy of the microwave background due to the mass distribution in an open cosmological model, P. J. E. Peebles, Astrophys. J. 259 (1982) 442-448.
[Peebles-APJ259-442-1982]
[6-26]
Massive neutrinos and the large-scale structure of the universe, J. R. Bond, G. Efstathiou, J. Silk, Phys. Rev. Lett. 45 (1980) 1980-1984.
[Bond:1980ha]
[6-27]
Dynamical role of light neutral leptons in cosmology, S. Tremaine, J. E. Gunn, Phys. Rev. Lett. 42 (1979) 407-410.
[Tremaine:1979we]
[6-28]
Limits from primordial nucleosynthesis on the properties of massive neutral leptons, D. A. Dicus, E. W. Kolb, V. L. Teplitz, R. V. Wagoner, Phys. Rev. D17 (1978) 1529-1538.
[Dicus:1977av]
[6-29]
Cosmological implications of massive, unstable neutrinos: (new and improved), Duane A. Dicus, Edward W. Kolb, Vigdor L. Teplitz, Astrophys. J. 221 (1978) 327-341.
[Dicus:1977qy]
[6-30]
Cosmological upper bound on heavy neutrino lifetimes, Duane A. Dicus, Edward W. Kolb, Vigdor L. Teplitz, Phys. Rev. Lett. 39 (1977) 168.
[Dicus:1977nn]
[6-31]
Limits on masses and number of neutral weakly interacting particles, P. Hut, Phys. Lett. B69 (1977) 85.
[Hut:1977zn]
[6-32]
Cosmological lower bound on heavy-neutrino masses, Benjamin W. Lee, Steven Weinberg, Phys. Rev. Lett. 39 (1977) 165-168.
[Lee:1977ua]
[6-33]
Cosmological constraints on the mass and the number of heavy lepton neutrinos, Katsuhiko Sato, Makoto Kobayashi, Prog. Theor. Phys. 58 (1977) 1775.
[Sato:1977ye]
[6-34]
Cosmological limits to the number of massive leptons, G. Steigman, D. N. Schramm, J. E. Gunn, Phys. Lett. B66 (1977) 202-204.
[Steigman:1977kc]
[6-35]
Cosmological limits on the masses of neutral leptons, M. I. Vysotsky, A. D. Dolgov, Ya. B. Zeldovich, JETP Lett. 26 (1977) 188-190.
[Vysotsky:1977pe]
[6-36]
The origin of deuterium, R. I. Epstein, J. M. Lattimer, D. N. Schramm, Nature 263 (1976) 198-202.
[Epstein-Lattimer-Schramm-Nat263-198-1976]
[6-37]
On the Origin of Light Elements, H. Reeves, J. Audouze, W. A. Fowler, D. N. Schramm, Astrophys. J. 179 (1973) 909-930.
[Reeves-Audouze-Fowler-Schramm-APJ179-179-1973]
[6-38]
An upper limit on the neutrino rest mass, R. Cowsik, J. McClelland, Phys. Rev. Lett. 29 (1972) 669-670.
[Cowsik:1972gh]
[6-39]
Primeval adiabatic perturbation in an expanding universe, P. J. E. Peebles, J. T. Yu, Astrophys. J. 162 (1970) 815-836.
[Peebles:1970ag]
[6-40]
On the Synthesis of elements at very high temperatures, Robert V. Wagoner, William A. Fowler, Fred Hoyle, Astrophys. J. 148 (1967) 3-49.
[Wagoner:1966pv]
[6-41]
Rest mass of muonic neutrino and cosmology, S. S. Gershtein, Ya. B. Zeldovich, JETP Lett. 4 (1966) 120-122. [Pisma Zh. Eksp. Teor. Fiz. 4 (1966) 174].
[Gershtein:1966gg]
[6-42]
Primordial Helium Abundance and the Primordial Fireball. II, P. J. E. Peebles, Astrophys. J. 146 (1966) 542.
[Peebles-APJ146-542-1966]
[6-43]
Primeval Helium Abundance and the Primeval Fireball, P. J. E. Peebles, Phys. Rev. Lett. 16 (1966) 410-413.
[Peebles-PRL:1966]
[6-44]
Cosmic Black-Body Radiation, R. H. Dicke, P. J. E. Peebles, P. G. Roll, D. T. Wilkinson, Astrophys. J. 142 (1965) 414-419.
[Dicke:1965]
[6-45]
Physical Conditions in the Initial Stages of the Expanding Universe, Ralph A. Alpher, J. W. Follin, Robert C. Herman, Phys. Rev. 92 (1953) 1347-1361.
[Alpher-Follin-Herman-PR92-1347-1953]
[6-46]
Neutron-Capture Theory of Element Formation in an Expanding Universe, Ralph A. Alpher, Robert C. Herman, Phys. Rev. 84 (1951) 60-68.
[Alpher-Herman-PR84-60-1951]
[6-47]
Remarks on the Evolution of the Expanding Universe, Ralph A. Alpher, Robert C. Herman, Phys. Rev. 75 (1949) 1089-1095.
[Alpher-Herman-PR75-1089-1949]
[6-48]
The Origin of Chemical Elements, R. A. Alpher, H. Bethe, G. Gamow, Phys. Rev. 73 (1948) 803-804.
[Alpher-Bethe-Gamow-PR73-803-1948]
[6-49]
Thermonuclear Reactions in the Expanding Universe, R. A. Alpher, R. Herman, G. A. Gamow, Phys. Rev. 74 (1948) 1198-1199. Erratum: Phys. Rev. 75 (1949) 701.
[Alpher-Herman-Gamow-PR74-1198-1948]
[6-50]
On the Relative Abundance of the Elements, Ralph A. Alpher, Robert C. Herman, Phys. Rev. 74 (1948) 1737-1742.
[Alpher-Herman-PR74-1737-1948]
[6-51]
A Neutron-Capture Theory of the Formation and Relative Abundance of the Elements, Ralph A. Alpher, Phys. Rev. 74 (1948) 1577-1589.
[Alpher-PR74-1577-1948]
[6-52]
Expanding Universe and the Origin of Elements, G. Gamow, Phys. Rev. 70 (1946) 572-573.
[Gamow-PR70-572-1946]

7 - Fundamental Papers - Theory

[7-1]
On the anomalous electroweak baryon number nonconservation in the early universe, V. A. Kuzmin, V. A. Rubakov, M. E. Shaposhnikov, Phys. Lett. B155 (1985) 36.
[Kuzmin:1985mm]
[7-2]
Fluctuations in the new inflationary universe, A. H. Guth, S. Y. Pi, Phys. Rev. Lett. 49 (1982) 1110-1113.
[Guth:1982ec]
[7-3]
A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Andrei D. Linde, Phys. Lett. B108 (1982) 389-393.
[Linde:1981mu]
[7-4]
Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations, Alexei A. Starobinsky, Phys. Lett. B117 (1982) 175-178.
[Starobinsky:1982ee]
[7-5]
The inflationary universe: a possible solution to the horizon and flatness problems, Alan H. Guth, Phys. Rev. D23 (1981) 347-356.
[Guth:1980zm]
[7-6]
The behaviour of point masses in an expanding cosmological substratum, P. Meszaros, Astron. Astrophys. 37 (1974) 225-228.
[Meszaros-AA37-225-1974]
[7-7]
A Hypothesis, unifying the structure and the entropy of the universe, Y. B. Zeldovich, Mon. Not. Roy. Astron. Soc. 160 (1972) 1-3.
[Wynn-Williams:1972vqe]
[7-8]
Fluctuations at the threshold of classical cosmology, Edward R. Harrison, Phys. Rev. D1 (1970) 2726-2730.
[Harrison:1969fb]
[7-9]
Primeval adiabatic perturbation in an expanding universe, P. J. E. Peebles, J. T. Yu, Astrophys. J. 162 (1970) 815-836.
[Peebles:1970ag]
[7-10]
Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe, A. D. Sakharov, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32-35.
[Sakharov:1967dj]
[7-11]
L'univers en expansion, G. Lemaitre, Ann. Soc. Sci. de Bruxelles 47 (1927) 49.
[Lemaitre:1927]
[7-12]
On the Possibility of a world with constant negative curvature of space, A. Friedmann, Z. Phys. 21 (1924) 326-332. [Gen. Rel. Grav.31,2001(1999)].
[Friedmann:1924bb]
[7-13]
On the curvature of space, A. Friedmann, Z. Phys. 10 (1922) 377-386.
[Friedmann:1922]

8 - Experiment

[8-1]
DESI 2024 VI: Cosmological Constraints from the Measurements of Baryon Acoustic Oscillations, A. G. Adame et al. (DESI), arXiv:2404.03002, 2024.
[DESI:2024mwx]
[8-2]
DESI 2024 IV: Baryon Acoustic Oscillations from the Lyman Alpha Forest, A. G. Adame et al. (DESI), arXiv:2404.03001, 2024.
[DESI:2024lzq]
[8-3]
DESI 2024 III: Baryon Acoustic Oscillations from Galaxies and Quasars, A. G. Adame et al. (DESI), arXiv:2404.03000, 2024.
[DESI:2024uvr]
[8-4]
Dark Energy Survey Year 3 results: likelihood-free, simulation-based wwCDM inference with neural compression of weak-lensing map statistics, N. Jeffrey et al., arXiv:2403.02314, 2024.
[DES:2024xij]
[8-5]
The SRG-eROSITA All-Sky Survey : Constraints on f(R) Gravity from Cluster Abundance, E. Artis et al., arXiv:2402.08459, 2024.
[Artis:2024eco]
[8-6]
The SRG/eROSITA All-Sky Survey: Cosmology Constraints from Cluster Abundances in the Western Galactic Hemisphere, V. Ghirardini et al., arXiv:2402.08458, 2024.
[Ghirardini:2024yni]
[8-7]
A Measurement of Gravitational Lensing of the Cosmic Microwave Background Using SPT-3G 2018 Data, Z. Pan et al., Phys.Rev.D 108 (2023) 122005, arXiv:2308.11608.
[SPT:2023jql]
[8-8]
Optimal 1D Ly$\alpha$ Forest Power Spectrum Estimation - III. DESI early data, Naim Goksel Karacayli et al., Mon.Not.Roy.Astron.Soc. 528 (2024) 3941-3963, arXiv:2306.06316.
[Karacayli:2023afs]
[8-9]
The Dark Energy Spectroscopic Instrument: One-dimensional power spectrum from first Lyman-$\alpha$ forest samples with Fast Fourier Transform, Corentin Ravoux et al., Mon.Not.Roy.Astron.Soc. 526 (2023) 5118-5140, arXiv:2306.06311.
[DESI:2023xwh]
[8-10]
Reducing the uncertainty on the Hubble constant up to 35\% with an improved statistical analysis: different best-fit likelihoods for Supernovae Ia, Baryon Acoustic Oscillations, Quasars, and Gamma-Ray Bursts, Maria Giovanna Dainotti, Giada Bargiacchi, Malgorzata Bogdan, Aleksander Lukasz Lenart, Kazunari Iwasaki, Salvatore Capozziello, Bing Zhang, Nissim Fraija, Astrophys.J. 951 (2023) 63, arXiv:2305.10030.
[Dainotti:2023bwq]
[8-11]
The Atacama Cosmology Telescope: DR6 Gravitational Lensing Map and Cosmological Parameters, Mathew S. Madhavacheril et al., Astrophys.J. 962 (2024) 113, arXiv:2304.05203.
[ACT:2023kun]
[8-12]
A Measurement of the CMB Temperature Power Spectrum and Constraints on Cosmology from the SPT-3G 2018 TT/TE/EE Data Set, L. Balkenhol et al., Phys.Rev.D 108 (2023) 023510, arXiv:2212.05642.
[SPT-3G:2022hvq]
[8-13]
A $0.9\%$ Calibration of the Galactic Cepheid luminosity scale based on Gaia DR3 data of open clusters and Cepheids, Mauricio Cruz Reyes, Richard I. Anderson, Astron.Astrophys. 672 (2023) A85, arXiv:2208.09403.
[Reyes:2022boz]
[8-14]
Dark Energy Survey Year 3 Results: Constraints on extensions to $\Lambda$CDM with weak lensing and galaxy clustering, T. M. C. Abbott et al. (DES), Phys.Rev.D 107 (2023) 083504, arXiv:2207.05766.
[DES:2022ccp]
[8-15]
Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and Planck. III. Combined cosmological constraints, T. M. C. Abbott et al. (DES, SPT), Phys. Rev. D 107 (2023) 023531, arXiv:2206.10824.
[DES:2022urg]
[8-16]
Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and Planck. II. Cross-correlation measurements and cosmological constraints, C. Chang et al. (DES, SPT), Phys. Rev. D 107 (2023) 023530, arXiv:2203.12440.
[DES:2022xxr]
[8-17]
Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and Planck. I. Construction of CMB lensing maps and modeling choices, Y. Omori et al. (DES, SPT), Phys. Rev. D 107 (2023) 023529, arXiv:2203.12439.
[DES:2022qdz]
[8-18]
A $5\%$ measurement of the Hubble constant from Type II supernovae, T. de Jaeger, L. Galbany, A. G. Riess, B. E. Stahl, B. J. Shappee, A. V. Filippenko, W. Zheng, Mon.Not.Roy.Astron.Soc. 514 (2022) 4620-4628, arXiv:2203.08974.
[deJaeger:2022lit]
[8-19]
The Pantheon+ Analysis: Cosmological Constraints, Dillon Brout et al., Astrophys. J. 938 (2022) 110, arXiv:2202.04077.
[Brout:2022vxf]
[8-20]
Mon.Not.Roy.Astron.Soc. 511 (2022) 2075-2104.
[DES:2021epj]
[8-21]
Dark Energy Survey Year 3 results: cosmology with moments of weak lensing mass maps, M. Gatti et al. (DES), Phys.Rev.D 106 (2022) 083509, arXiv:2110.10141.
[DES:2021lsy]
[8-22]
The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological implications from multi-tracer BAO analysis with galaxies and voids, Cheng Zhao et al., Mon.Not.Roy.Astron.Soc. (2022), arXiv:2110.03824.
[eBOSS:2021pff]
[8-23]
Dark Energy Survey Year 3 results: Marginalisation over redshift distribution uncertainties using ranking of discrete realisations, Juan P. Cordero et al. (DES), Mon.Not.Roy.Astron.Soc. 511 (2022) 2170-2185, arXiv:2109.09636.
[DES:2021vvo]
[8-24]
The Completed Sloan Digital Sky Survey IV Extended Baryon Oscillation Spectroscopic Survey: The Damped Ly$\alpha$ Systems Catalog, Solene Chabanier et al., Astrophys. J. Supp. 258 (2022) 18, arXiv:2107.09612.
[eBOSS:2021poh]
[8-25]
Dark Energy Survey Year 3 Results: Galaxy Sample for BAO Measurement, A. Carnero Rosell et al. (DES), Mon.Not.Roy.Astron.Soc. 509 (2021) 778-799, arXiv:2107.05477.
[DES:2021jns]
[8-26]
Dark Energy Survey Year 3 Results: A $2.7\%$ measurement of Baryon Acoustic Oscillation distance scale at redshift 0.835, T. M. C. Abbott et al. (DES), Phys.Rev.D 105 (2022) 043512, arXiv:2107.04646.
[DES:2021esc]
[8-27]
Dark Energy Survey Year 3 Results: Galaxy mock catalogs for BAO analysis, I. Ferrero et al. (DES), Astron.Astrophys. 656 (2021) A106, arXiv:2107.04602.
[DES:2021fie]
[8-28]
The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: measurement of the growth rate of structure from the small-scale clustering of the luminous red galaxy sample, Michael J. Chapman et al., Mon.Not.Roy.Astron.Soc. 516 (2022) 617-635, arXiv:2106.14961.
[eBOSS:2021hod]
[8-29]
The clustering of galaxies in the completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Primordial non-Gaussianity in Fourier Space, Eva-Maria Mueller et al., arXiv:2106.13725, 2021.
[Mueller:2021tqa]
[8-30]
Primordial non-Gaussianity from the completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey - I: Catalogue preparation and systematic mitigation, Mehdi Rezaie et al., Mon. Not. Roy. Astron. Soc. 506 (2021) 3439-3454, arXiv:2106.13724.
[eBOSS:2021owp]
[8-31]
Dark Energy Survey Year 3 results: Galaxy-halo connection from galaxy-galaxy lensing, G. Zacharegkas et al. (DES), Mon.Not.Roy.Astron.Soc. 509 () 3119-3147, arXiv:2106.08438.
[DES:2021olg]
[8-32]
Dark Energy Survey Year 3 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing, T. M. C. Abbott et al. (DES), Phys.Rev.D 105 (2022) 023520, arXiv:2105.13549.
[DES:2021wwk]
[8-33]
Dark Energy Survey Year 3 Results: Multi-Probe Modeling Strategy and Validation, E. Krause et al. (DES), arXiv:2105.13548, 2021.
[DES:2021rex]
[8-34]
Dark Energy Survey Year 3 results: cosmology from combined galaxy clustering and lensing - validation on cosmological simulations, J. DeRose et al. (DES), Phys.Rev.D 105 (2022) 123520, arXiv:2105.13547.
[DES:2021bwg]
[8-35]
Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and galaxy-galaxy lensing using the MagLim lens sample, A. Porredon et al. (DES), Phys.Rev.D 106 (2022) 103530, arXiv:2105.13546.
[DES:2021bpo]
[8-36]
Dark Energy Survey Year 3 Results: Constraints on cosmological parameters and galaxy bias models from galaxy clustering and galaxy-galaxy lensing using the redMaGiC sample, S. Pandey et al. (DES), Phys.Rev.D 106 (2022) 043520, arXiv:2105.13545.
[DES:2021zxv]
[8-37]
Dark Energy Survey Year 3 Results: Cosmology from Cosmic Shear and Robustness to Modeling Uncertainty, L. F. Secco et al. (DES), Phys.Rev.D 105 (2022) 023515, arXiv:2105.13544.
[DES:2021vln]
[8-38]
Dark Energy Survey Year 3 Results: Cosmology from Cosmic Shear and Robustness to Data Calibration, A. Amon et al. (DES), Phys.Rev.D 105 (2022) 023514, arXiv:2105.13543.
[DES:2021bvc]
[8-39]
Dark Energy Survey Year 3 Results: Exploiting small-scale information with lensing shear ratios, Carles Sanchez et al. (DES), Phys.Rev.D 105 (2022) 083529, arXiv:2105.13542.
[DES:2021jzg]
[8-40]
Dark Energy Survey Year 3 Results: High-precision measurement and modeling of galaxy-galaxy lensing, J. Prat et al. (DES), Phys.Rev.D 105 (2022) 083528, arXiv:2105.13541.
[DES:2021qnp]
[8-41]
Dark Energy Survey Year 3 Results: Galaxy clustering and systematics treatment for lens galaxy samples, M. Rodriguez-Monroy et al. (DES), Mon.Not.Roy.Astron.Soc. 511 (2022) 2665, arXiv:2105.13540.
[DES:2021bat]
[8-42]
Dark Energy Survey Year 3 results: curved-sky weak lensing mass map reconstruction, N. Jeffrey et al. (DES), Mon. Not. Roy. Astron. Soc. 505 (2021) 4626-4645, arXiv:2105.13539.
[DES:2021gua]
[8-43]
The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey quasar sample: Testing observational systematics on the Baryon Acoustic Oscillation measurement, Grant Merz et al., Mon.Not.Roy.Astron.Soc. 506 (2021) 2503-2517, arXiv:2105.10463.
[eBOSS:2021rwq]
[8-44]
Dark Energy Survey Year 3 Results: Calibration of Lens Sample Redshift Distributions using Clustering Redshifts with BOSS/eBOSS, R. Cawthon et al. (DES), Mon.Not.Roy.Astron.Soc. 513 (2022) 5517, arXiv:2012.12826.
[DES:2020sjz]
[8-45]
Dark Energy Survey Year 3 Results: Measuring the Survey Transfer Function with Balrog, S. Everett et al. (DES), Astrophys.J.Supp. 258 (2022) 15, arXiv:2012.12825.
[DES:2020jnm]
[8-46]
Dark Energy Survey Year 3 Results: Deep Field Optical + Near-Infrared Images and Catalogue, W. G. Hartley et al. (DES), Mon.Not.Roy.Astron.Soc. 509 (2021) 3547-3579, arXiv:2012.12824.
[DES:2020drs]
[8-47]
Dark Energy Survey Year 3 Results: Clustering Redshifts - Calibration of the Weak Lensing Source Redshift Distributions with redMaGiC and BOSS/eBOSS, M. Gatti et al. (DES), Mon.Not.Roy.Astron.Soc. 510 (2022) 1223-1247, arXiv:2012.08569.
[DES:2020rlj]
[8-48]
Dark Energy Survey Year 3 Results: Covariance Modelling and its Impact on Parameter Estimation and Quality of Fit, O. Friedrich et al. (DES), Mon.Not.Roy.Astron.Soc. 508 (2021) 3125-3165, arXiv:2012.08568.
[DES:2020ypx]
[8-49]
Dark Energy Survey Year 3 results: redshift calibration of the weak lensing source galaxies, J. Myles et al. (DES), Mon. Not. Roy. Astron. Soc. 505 (2021) 4249-4277, arXiv:2012.08566.
[DES:2020ebm]
[8-50]
Dark Energy Survey Year 3 results: Optimizing the lens sample in a combined galaxy clustering and galaxy-galaxy lensing analysis, A. Porredon et al. (DES), Phys. Rev. D 103 (2021) 043503, arXiv:2011.03411.
[DES:2020ajx]
[8-51]
Dark Energy Survey year 3 results: point spread function modelling, M. Jarvis et al. (DES), Mon. Not. Roy. Astron. Soc. 501 (2021) 1282-1299, arXiv:2011.03409.
[DES:2020vau]
[8-52]
Dark energy survey year 3 results: weak lensing shape catalogue, M. Gatti et al. (DES), Mon. Not. Roy. Astron. Soc. 504 (2021) 4312-4336, arXiv:2011.03408.
[DES:2020ekd]
[8-53]
Dark Energy Survey Year 3 Results: Photometric Data Set for Cosmology, I. Sevilla-Noarbe et al. (DES), Astrophys. J. Suppl. 254 (2021) 24, arXiv:2011.03407.
[DES:2020aks]
[8-54]
DES Y1 results: Splitting growth and geometry to test $\Lambda$CDM, J. Muir et al. (DES), Phys.Rev. D103 (2021) 023528, arXiv:2010.05924.
[DES:2020iqt]
[8-55]
Testing the Strong Equivalence Principle: Detection of the External Field Effect in Rotationally Supported Galaxies, Kyu-Hyun Chae, Federico Lelli, Harry Desmond, Stacy S. McGaugh, Pengfei Li, James M. Schombert, Astrophys. J. 904 (2020) 51, arXiv:2009.11525.
[Chae:2020omu]
[8-56]
The completed SDSS-IV extended baryon oscillation spectroscopic survey: geometry and growth from the anisotropic void-galaxy correlation function in the luminous red galaxy sample, Seshadri Nadathur et al., Mon. Not. Roy. Astron. Soc. 499 (2020) 4140-4157, arXiv:2008.06060.
[eBOSS:2020nuf]
[8-57]
The Completed SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: Growth rate of structure measurement from cosmic voids, Marie Aubert et al., Mon.Not.Roy.Astron.Soc. 513 (2022) 186-203, arXiv:2007.09013.
[eBOSS:2020yxq]
[8-58]
The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: exploring the Halo Occupation Distribution model for Emission Line Galaxies, S. Avila et al., Mon. Not. Roy. Astron. Soc. 499 (2020) 5486-5507, arXiv:2007.09012.
[eBOSS:2020yql]
[8-59]
The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: a multitracer analysis in Fourier space for measuring the cosmic structure growth and expansion rate, Gong-Bo Zhao et al., Mon. Not. Roy. Astron. Soc. 504 (2021) 33-52, arXiv:2007.09011.
[eBOSS:2020rpt]
[8-60]
The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Growth rate of structure measurement from anisotropic clustering analysis in configuration space between redshift 0.6 and 1.1 for the Emission Line Galaxy sample, Amelie Tamone et al., Mon. Not. Roy. Astron. Soc. 499 (2020) 5527-5546, arXiv:2007.09009.
[eBOSS:2020qek]
[8-61]
The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: measurement of the BAO and growth rate of structure of the emission line galaxy sample from the anisotropic power spectrum between redshift 0.6 and 1.1, Arnaud de Mattia et al., Mon. Not. Roy. Astron. Soc. 501 (2021) 5616-5645, arXiv:2007.09008.
[eBOSS:2020fvk]
[8-62]
The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Large-scale Structure Catalogues and Measurement of the isotropic BAO between redshift 0.6 and 1.1 for the Emission Line Galaxy Sample, Anand Raichoor et al., Mon. Not. Roy. Astron. Soc. 500 (2020) 3254-3274, arXiv:2007.09007.
[eBOSS:2020abk]
[8-63]
The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: a catalogue of strong galaxy-galaxy lens candidates, Michael S. Talbot, Joel R. Brownstein, Kyle S. Dawson, Jean-Paul Kneib, Julian Bautista, Mon. Not. Roy. Astron. Soc. 502 (2021) 4617-4640, arXiv:2007.09006.
[Talbot:2020arv]
[8-64]
The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Pairwise-Inverse-Probability and Angular Correction for Fibre Collisions in Clustering Measurements, Faizan G. Mohammad et al., Mon. Not. Roy. Astron. Soc. 498 (2020) 128-143, arXiv:2007.09005.
[eBOSS:2020kxr]
[8-65]
The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: N-body Mock Challenge for the eBOSS Emission Line Galaxy Sample, Shadab Alam et al., Mon.Not.Roy.Astron.Soc. (2021), arXiv:2007.09004.
[eBOSS:2020xlj]
[8-66]
The Completed SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: N-body Mock Challenge for the Quasar Sample, Alex Smith et al., Mon. Not. Roy. Astron. Soc. 499 (2020) 269-291, arXiv:2007.09003.
[eBOSS:2020pip]
[8-67]
The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: N-body mock challenge for galaxy clustering measurements, Graziano Rossi et al., Mon. Not. Roy. Astron. Soc. 505 (2021) 377-407, arXiv:2007.09002.
[eBOSS:2020ezf]
[8-68]
The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Large-scale structure catalogues for cosmological analysis, Ashley J. Ross et al., Mon. Not. Roy. Astron. Soc. 498 (2020) 2354-2371, arXiv:2007.09000.
[eBOSS:2020mzp]
[8-69]
The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: BAO and RSD measurements from the anisotropic power spectrum of the quasar sample between redshift 0.8 and 2.2, Richard Neveux et al., Mon. Not. Roy. Astron. Soc. 499 (2020) 210-229, arXiv:2007.08999.
[eBOSS:2020uxp]
[8-70]
The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: BAO and RSD measurements from anisotropic clustering analysis of the Quasar Sample in configuration space between redshift 0.8 and 2.2, Jiamin Hou et al., Mon. Not. Roy. Astron. Soc. 500 (2020) 1201-1221, arXiv:2007.08998.
[eBOSS:2020gbb]
[8-71]
The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: 1000 multi-tracer mock catalogues with redshift evolution and systematics for galaxies and quasars of the final data release, Cheng Zhao et al., Mon. Not. Roy. Astron. Soc. 503 (2021) 1149-1173, arXiv:2007.08997.
[eBOSS:2020wwo]
[8-72]
The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: GLAM-QPM mock galaxy catalogues for the emission line galaxy sample, Sicheng Lin et al., Mon. Not. Roy. Astron. Soc. 498 (2020) 5251-5262, arXiv:2007.08996.
[eBOSS:2020muu]
[8-73]
The Completed SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations with Ly$\alpha$ Forests, Helion du Mas des Bourboux et al., Astrophys. J. 901 (2020) 153, arXiv:2007.08995.
[eBOSS:2020tmo]
[8-74]
The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: measurement of the BAO and growth rate of structure of the luminous red galaxy sample from the anisotropic power spectrum between redshifts 0.6 and 1.0, Hector Gil-Marin et al., Mon. Not. Roy. Astron. Soc. 498 (2020) 2492-2531, arXiv:2007.08994.
[eBOSS:2020hur]
[8-75]
Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological implications from two decades of spectroscopic surveys at the Apache Point Observatory, Shadab Alam et al. (eBOSS), Phys. Rev. D 103 (2021) 083533, arXiv:2007.08991.
[eBOSS:2020yzd]
[8-76]
The Atacama Cosmology Telescope: arcminute-resolution maps of 18,000 square degrees of the microwave sky from ACT 2008-2018 data combined with Planck, Sigurd Naess et al., JCAP 2012 (2020) 046, arXiv:2007.07290.
[Naess:2020wgi]
[8-77]
The Atacama Cosmology Telescope: A Measurement of the Cosmic Microwave Background Power Spectra at 98 and 150 GHz, Steve K. Choi et al., JCAP 2012 (2020) 045, arXiv:2007.07289.
[ACT:2020frw]
[8-78]
The Atacama Cosmology Telescope: DR4 Maps and Cosmological Parameters, Simone Aiola et al., JCAP 2012 (2020) 047, arXiv:2007.07288.
[ACT:2020gnv]
[8-79]
The PHLEK Survey: A New Determination of the Primordial Helium Abundance, Tiffany Hsyu, Ryan J. Cooke, J. Xavier Prochaska, Michael Bolte, Astrophys.J. 896 (2020) 77, arXiv:2005.12290.
[Hsyu:2020uqb]
[8-80]
The Atacama Cosmology Telescope: A CMB lensing mass map over 2100 square degrees of sky and its cross-correlation with BOSS-CMASS galaxies, Omar Darwish et al., Mon.Not.Roy.Astron.Soc. 500 (2020) 2250-2263, arXiv:2004.01139.
[Darwish:2020fwf]
[8-81]
Atacama Cosmology Telescope: Constraints on cosmic birefringence, Toshiya Namikawa et al., Phys. Rev. D 101 (2020) 083527, arXiv:2001.10465.
[Namikawa:2020ffr]
[8-82]
Towards precise and accurate Cepheid chemical abundances for $1\%$ $\mbox{H}_0$ measurement: temperature determination, Sara Mancino, Martino Romaniello, Richard I. Anderson, Rolf-Peter Kudritzki, arXiv:2001.05881, 2020. 5 pages, 4 figures, to appear in RRL/CEP2019 conference proceedings.
[Mancino:2020why]
[8-83]
The Sixteenth Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra, Romina Ahumada et al., Astrophys.J.Suppl. 249 (2020) 3, arXiv:1912.02905.
[eBOSS:2019dcv]
[8-84]
The Atacama Cosmology Telescope: Component-separated maps of CMB temperature and the thermal Sunyaev-Zel'dovich effect, Mathew S. Madhavacheril et al., Phys.Rev. D102 (2020) 023534, arXiv:1911.05717.
[Madhavacheril:2019nfz]
[8-85]
Dark Energy Survey Year 3 results: cosmology with moments of weak lensing mass maps - validation on simulations, M. Gatti et al. (DES), Mon. Not. Roy. Astron. Soc. 498 (2020) 4060-4087, arXiv:1911.05568.
[DES:2019ujq]
[8-86]
Constraints on Cosmological Parameters from the 500 deg$^2$ SPTpol Lensing Power Spectrum, F. Bianchini et al. (SPT), Astrophys.J. 888 (2020) 119, arXiv:1910.07157.
[SPT:2019fqo]
[8-87]
The Hubble Legacy Field GOODS-S Photometric Catalog, Katherine E. Whitaker et al., arXiv:1908.05682, 2019.
[1908.05682]
[8-88]
Large Magellanic Cloud Cepheid Standards Provide a $1\%$ Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics Beyond LambdaCDM, Adam G. Riess, Stefano Casertano, Wenlong Yuan, Lucas M. Macri, Dan Scolnic, Astrophys.J. 876 (2019) 85, arXiv:1903.07603.
[Riess:2019cxk]
[8-89]
KiDS+VIKING-450: A new combined optical $\text{\&}$ near-IR dataset for cosmology and astrophysics, Angus H. Wright et al., Astron.Astrophys. 632 (2019) A34, arXiv:1812.06077.
[Wright:2018nix]
[8-90]
KiDS+VIKING-450: Cosmic shear tomography with optical+infrared data, H. Hildebrandt et al., Astron.Astrophys. 633 (2020) A69, arXiv:1812.06076.
[Hildebrandt:2018yau]
[8-91]
The one-dimensional power spectrum from the SDSS DR14 Ly$\alpha$ forests, Solene Chabanier et al., JCAP 1907 (2019) 017, arXiv:1812.03554.
[eBOSS:2018qyj]
[8-92]
Planck 2018 results. XII. Galactic astrophysics using polarized dust emission, Planck Collaboration et al., Astron.Astrophys. 641 (2020) A12, arXiv:1807.06212.
[Planck:2018fzr]
[8-93]
Planck 2018 results. X. Constraints on inflation, Planck Collaboration et al., Astron.Astrophys. 641 (2020) A10, arXiv:1807.06211.
[Planck:2018jri]
[8-94]
Planck 2018 results. VIII. Gravitational lensing, Planck Collaboration et al., Astron.Astrophys. 641 (2020) A8, arXiv:1807.06210.
[Planck:2018lbu]
[8-95]
Planck 2018 results. VI. Cosmological parameters, Planck Collaboration et al., Astron.Astrophys. 641 (2020) A6, arXiv:1807.06209.
[Planck:2018vyg]
[8-96]
Planck 2018 results. IV. Diffuse component separation, Planck Collaboration et al., Astron.Astrophys. 641 (2020) A4, arXiv:1807.06208.
[Planck:2018yye]
[8-97]
Planck 2018 results. III. High Frequency Instrument data processing and frequency maps, Planck Collaboration et al., Astron.Astrophys. 641 (2020) A3, arXiv:1807.06207.
[Planck:2018lkk]
[8-98]
Planck 2018 results. II. Low Frequency Instrument data processing, Planck Collaboration et al., Astron.Astrophys. 641 (2020) A2, arXiv:1807.06206.
[Planck:2018bsf]
[8-99]
Planck 2018 results. I. Overview and the cosmological legacy of Planck, Planck Collaboration et al., Astron.Astrophys. 641 (2020) A1, arXiv:1807.06205.
[Planck:2018nkj]
[8-100]
Strong Dependence of Type Ia Supernova Standardization on the Local Specific Star Formation Rate, M. Rigault et al. (Nearby Supernova Factory), Astron. Astrophys. 644 (2020) A176, arXiv:1806.03849.
[NearbySupernovaFactory:2018qkd]
[8-101]
Dark Energy Survey Year 1 Results: Methodology and Projections for Joint Analysis of Galaxy Clustering, Galaxy Lensing, and CMB Lensing Two-point Functions, T. Giannantonio et al. (DES), Phys.Rev. D99 (2019) 023508, arXiv:1802.05257.
[DES:2018zzu]
[8-102]
Results from the Atacama B-mode Search (ABS) Experiment, Akito Kusaka et al., JCAP 09 (2018) 005, arXiv:1801.01218.
[Kusaka:2018yzq]
[8-103]
New Parallaxes of Galactic Cepheids from Spatially Scanning the Hubble Space Telescope: Implications for the Hubble Constant, A. G. Riess, S. Casertano, W. Yuan, L. Macri, J. Anderson, J. W. Mackenty, J. B. Bowers, K. I. Clubb, A. V. Filippenko, D. O. Jones, B. E. Tucker, arXiv:1801.01120, 2018.
[2018arXiv180101120R]
[8-104]
Dark Energy Survey Year 1 Results: Calibration of redMaGiC Redshift Distributions in DES and SDSS from Cross-Correlations, R. Cawthon et al., Mon.Not.Roy.Astron.Soc. 481 (2018) 2427, arXiv:1712.07298.
[DES:2017mbc]
[8-105]
Dark Energy Survey Year 1 Results: galaxy mock catalogues for BAO, S. Avila et al., Mon.Not.Roy.Astron.Soc. 479 (2018) 94-110, arXiv:1712.06232.
[DES:2017ngw]
[8-106]
Dark Energy Survey Year 1 Results: Galaxy Sample for BAO Measurement, M. Crocce et al., Mon.Not.Roy.Astron.Soc. 482 (2019) 2807-2822, arXiv:1712.06211.
[DES:2017odw]
[8-107]
Dark Energy Survey Year 1 Results: Measurement of the Baryon Acoustic Oscillation scale in the distribution of galaxies to redshift 1, T. M. C. Abbott et al. (DES), Mon.Not.Roy.Astron.Soc. 483 (2019) 4866-4883, arXiv:1712.06209.
[DES:2017rfo]
[8-108]
Dark Energy Survey Year 1 Results: A Precise H0 Measurement from DES Y1, BAO, and D/H Data, T. M. C. Abbott et al. (DES), Mon.Not.Roy.Astron.Soc. 480 (2018) 3879, arXiv:1711.00403.
From the abstract: We combine Dark Energy Survey Year 1 clustering and weak lensing data with Baryon Acoustic Oscillations (BAO) and Big Bang Nucleosynthesis (BBN) experiments to constrain the Hubble constant. Assuming a flat $\Lambda$CDM model with minimal neutrino mass ($\sum m_\nu = 0.06$ eV) we find $H_0=67.2^{+1.2}_{-1.0}$ km/s/Mpc (68% CL).
[DES:2017txv]
[8-109]
A gravitational-wave standard siren measurement of the Hubble constant, B. P. Abbott et al. (LIGO Scientific, VINROUGE, Las Cumbres Observatory, DLT40, Virgo, 1M2H, MASTER), Nature (2017), arXiv:1710.05835.
[LIGOScientific:2017adf]
[8-110]
The Atacama Cosmology Telescope: The Two-Season ACTPol Sunyaev-Zel'dovich Effect Selected Cluster Catalog, Matt Hilton et al. (ACT), Astrophys. J. Suppl. 235 (2018) 20, arXiv:1709.05600.
[ACT:2017dgj]
[8-111]
Dark Energy Survey Year 1 Results: Cosmological Constraints from Cosmic Shear, M. A. Troxel et al. (DES), Phys.Rev. D98 (2018) 043528, arXiv:1708.01538.
[DES:2017qwj]
[8-112]
Dark Energy Survey Year 1 Results: Galaxy-Galaxy Lensing, J. Prat et al. (DES), Phys.Rev. D98 (2018) 042005, arXiv:1708.01537.
[DES:2017gwu]
[8-113]
Dark Energy Survey Year 1 Results: Galaxy clustering for combined probes, J. Elvin-Poole et al. (DES), Phys.Rev. D98 (2018) 042006, arXiv:1708.01536.
[DES:2017hdw]
[8-114]
Dark Energy Survey Year 1 Results: Curved-Sky Weak Lensing Mass Map, C. Chang et al. (DES), Mon.Not.Roy.Astron.Soc. 475 (2018) 3165, arXiv:1708.01535.
[DES:2017stf]
[8-115]
Dark Energy Survey Year 1 Results: The Impact of Galaxy Neighbours on Weak Lensing Cosmology with im3shape, S. Samuroff et al. (DES), Mon.Not.Roy.Astron.Soc. 475 (2018) 4524, arXiv:1708.01534.
[DES:2017ewg]
[8-116]
Dark Energy Survey Year 1 Results: Weak Lensing Shape Catalogues, J. Zuntz et al., Mon.Not.Roy.Astron.Soc. 481 (2018) 1149-1182, arXiv:1708.01533.
[DES:2017ibv]
[8-117]
Dark Energy Survey Year 1 Results: Redshift distributions of the weak lensing source galaxies, B. Hoyle et al. (DES), Mon.Not.Roy.Astron.Soc. 478 (2018) 592-610, arXiv:1708.01532.
[DES:2017ndt]
[8-118]
Dark Energy Survey Year 1 Results: Photometric Data Set for Cosmology, A. Drlica-Wagner et al. (DES), Astrophys.J.Suppl. 235 (2018) 33, arXiv:1708.01531.
[DES:2017myt]
[8-119]
Dark Energy Survey Year 1 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing, T. M. C. Abbott et al. (DES), Phys.Rev. D98 (2018) 043526, arXiv:1708.01530.
[DES:2017myr]
[8-120]
Dark Energy Survey Year 1 Results: Multi-Probe Methodology and Simulated Likelihood Analyses, E. Krause et al. (DES), arXiv:1706.09359, 2017.
[DES:2017tss]
[8-121]
BICEP2 / Keck Array IX: New Bounds on Anisotropies of CMB Polarization Rotation and Implications for Axion-Like Particles and Primordial Magnetic Fields, Keck Array et al. (BICEP2s), Phys.Rev. D96 (2017) 102003, arXiv:1705.02523.
[BICEP2:2017lpa]
[8-122]
First Data Release of the Hyper Suprime-Cam Subaru Strategic Program, Hiroaki Aihara et al., Publ.Astron.Soc.Jap. 70 (2018) 8, arXiv:1702.08449.
[Aihara:2017tri]
[8-123]
The Atacama Cosmology Telescope: Two-Season ACTPol Lensing Power Spectrum, Blake D. Sherwin et al. (ACT), Phys.Rev. D95 (2017) 123529, arXiv:1611.09753.
[Sherwin:2016tyf]
[8-124]
The Atacama Cosmology Telescope: Two-Season ACTPol Spectra and Parameters, Thibaut Louis et al., JCAP 1706 (2017) 031, arXiv:1610.02360.
[ACTPol:2016kmo]
[8-125]
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample, Shadab Alam et al., Mon.Not.Roy.Astron.Soc. 470 (2017) 2617-2652, arXiv:1607.03155.
[BOSS:2016wmc]
[8-126]
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: tomographic BAO analysis of DR12 combined sample in configuration space, Yuting Wang et al., Mon.Not.Roy.Astron.Soc. 469 (2017) 3762-3774, arXiv:1607.03154.
[BOSS:2016zkm]
[8-127]
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: tomographic BAO analysis of DR12 combined sample in Fourier space, Gong-Bo Zhao et al., Mon.Not.Roy.Astron.Soc. 466 (2017) 762-779, arXiv:1607.03153.
[BOSS:2016lpe]
[8-128]
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: double-probe measurements from BOSS galaxy clustering $\text{\&}$ Planck data - towards an analysis without informative priors, Marcos Pellejero-Ibanez et al., Mon.Not.Roy.Astron.Soc. 468 (2017) 4116-4133, arXiv:1607.03152.
[BOSS:2016bir]
[8-129]
The Clustering of Galaxies in the Completed SDSS-III Baryon Oscillation Spectroscopic Survey: single-probe measurements from DR12 galaxy clustering - towards an accurate model, Chia-Hsun Chuang et al., Mon.Not.Roy.Astron.Soc. 471 (2017) 2370-2390, arXiv:1607.03151.
[BOSS:2016goe]
[8-130]
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Anisotropic galaxy clustering in Fourier-space, Florian Beutler et al., Mon.Not.Roy.Astron.Soc. 466 (2017) 2242-2260, arXiv:1607.03150.
[BOSS:2016psr]
[8-131]
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in Fourier-space, Florian Beutler et al., Mon.Not.Roy.Astron.Soc. 464 (2017) 3409-3430-3430, arXiv:1607.03149.
[BOSS:2016hvq]
[8-132]
BOSS DR12 combined galaxy sample: The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: On the measurement of growth rate using galaxy correlation functions, Siddharth Satpathy et al., Mon.Not.Roy.Astron.Soc. 469 (2017) 1369-1382, arXiv:1607.03148.
[BOSS:2016ntk]
[8-133]
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the configuration-space clustering wedges, Ariel G. Sanchez et al., Mon.Not.Roy.Astron.Soc. 464 (2017) 1640-1658, arXiv:1607.03147.
[BOSS:2016off]
[8-134]
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: combining correlated Gaussian posterior distributions, Ariel G. Sanchez et al., Mon.Not.Roy.Astron.Soc. 464 (2017) 1493-1501, arXiv:1607.03146.
[BOSS:2016chr]
[8-135]
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Observational systematics and baryon acoustic oscillations in the correlation function, Ashley J. Ross et al., Mon.Not.Roy.Astron.Soc. 464 (2017) 1168-1191, arXiv:1607.03145.
[BOSS:2016apd]
[8-136]
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Angular clustering tomography and its cosmological implications, Salvador Salazar-Albornoz et al., Mon.Not.Roy.Astron.Soc. 468 (2017) 2938-2956, arXiv:1607.03144.
[BOSS:2016lsx]
[8-137]
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological implications of the Fourier space wedges of the final sample, Jan Niklas Grieb et al., Mon.Not.Roy.Astron.Soc. 467 (2017) 2085, arXiv:1607.03143.
[BOSS:2016teh]
[8-138]
H0LiCOW V. New COSMOGRAIL time delays of HE0435-1223: $H_0$ to 3.8% precision from strong lensing in a flat $\Lambda$CDM model, V. Bonvin et al., Mon.Not.Roy.Astron.Soc. 465 (2017) 4914, arXiv:1607.01790.
[Bonvin:2016crt]
[8-139]
KiDS-450: Cosmological parameter constraints from tomographic weak gravitational lensing, H. Hildebrandt et al., Mon.Not.Roy.Astron.Soc. 465 (2017) 1454, arXiv:1606.05338.
[Hildebrandt:2016iqg]
[8-140]
Planck 2016 intermediate results. XLVII. Planck constraints on reionization history, R. Adam et al. (Planck), Astron.Astrophys. 596 (2016) A108, arXiv:1605.03507.
[Planck:2016mks]
[8-141]
A 2.4% Determination of the Local Value of the Hubble Constant, Adam G. Riess et al., Astrophys.J. 826 (2016) 56, arXiv:1604.01424.
[Riess:2016jrr]
[8-142]
Cosmological Constraints from Galaxy Clusters in the 2500 square-degree SPT-SZ Survey, T. de Haan et al., Astrophys.J. 832 (2016) 95, arXiv:1603.06522.
[SPT:2016izt]
[8-143]
The XXL Survey VII: A supercluster of galaxies at z=0.43, E. Pompei et al., Astron.Astrophys. 592 (2016) A6, arXiv:1512.04359.
[Pompei:2015rhw]
[8-144]
The XXL Survey: XII. Optical spectroscopy of X-ray-selected clusters and the frequency of AGN in superclusters, E. Koulouridis et al., Astron.Astrophys. 592 (2016) A11, arXiv:1512.04342.
[Koulouridis:2015qtt]
[8-145]
The XXL Survey XI: ATCA 2.1 GHz continuum observations, Vernesa Smolcic et al., arXiv:1512.04322, 2015.
[1512.04322]
[8-146]
The XXL Survey: I. Scientific motivations - XMM-Newton observing plan - Follow-up observations and simulation programme, M. Pierre et al., Astron.Astrophys. 592 (2016) A1, arXiv:1512.04317.
[Pierre:2015cqe]
[8-147]
The XXL Survey. II. The bright cluster sample: catalogue and luminosity function, F. Pacaud et al., Astron.Astrophys. 592 (2016) A2, arXiv:1512.04264.
[Pacaud:2015oqr]
[8-148]
The XXL Survey X: K-band luminosity - weak-lensing mass relation for groups and clusters of galaxies, F. Ziparo et al., Astron.Astrophys. 592 (2016) A9, arXiv:1512.03903.
[Ziparo:2015dcv]
[8-149]
The XXL Survey IV. Mass-temperature relation of the bright cluster sample, Maggie Lieu et al., Astron.Astrophys. 592 (2016) A4, arXiv:1512.03857.
[Lieu:2015pit]
[8-150]
The XXL Survey III. Luminosity-temperature relation of the Bright Cluster Sample, P. A. Giles et al., Astron.Astrophys. 592 (2016) A3, arXiv:1512.03833.
[Giles:2015gtd]
[8-151]
The XXL Survey. XIII. Baryon content of the bright cluster sample, D. Eckert et al., Astron.Astrophys. 592 (2016) A12, arXiv:1512.03814.
[Eckert:2015rlr]
[8-152]
BICEP2 / Keck Array VI: Improved Constraints On Cosmology and Foregrounds When Adding 95 GHz Data From Keck Array, Keck Array et al. (Keck Array, BICEP2), Phys. Rev. Lett. 116 (2016) 031302, arXiv:1510.09217.
[BICEP2:2015xme]
[8-153]
Cosmic Shear Results from the Deep Lens Survey - II: Full Cosmological Parameter Constraints from Tomography, M. James Jee et al., Astrophys.J. 824 (2016) 77, arXiv:1510.03962.
[Jee:2015jta]
[8-154]
Planck 2015 results. XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation, P. A. R. Ade et al. (Planck), Astron.Astrophys. 594 (2016) A23, arXiv:1509.06555.
[Planck:2015emq]
[8-155]
SDSS-III Baryon Oscillation Spectroscopic Survey Data Release 12: galaxy target selection and large scale structure catalogues, Beth Reid et al., Mon. Not. Roy. Astron. Soc. 455 (2016) 1553, arXiv:1509.06529.
[BOSS:2015ewx]
[8-156]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Modeling the clustering and halo occupation distribution of BOSS-CMASS galaxies in the Final Data Release, Sergio A. Rodriguez-Torres et al., Mon.Not.Roy.Astron.Soc. 460 (2016) 1173-1187, arXiv:1509.06404.
[Rodriguez-Torres:2015vqa]
[8-157]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Mock galaxy catalogues for the final BOSS Data Release, Francisco-Shu Kitaura et al., Mon. Not. Roy. Astron. Soc. 456 (2016) 4156, arXiv:1509.06400.
[Kitaura:2015uqa]
[8-158]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: RSD measurement from the LOS-dependent power spectrum of DR12 BOSS galaxies, Hector Gil-Marin et al., Mon.Not.Roy.Astron.Soc. 460 (2016) 4188-4209, arXiv:1509.06386.
[BOSS:2015npt]
[8-159]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Effect of smoothing of density field on reconstruction and anisotropic BAO analysis, M. Vargas-Magana, S.Ho, S. Fromenteau, A. J.Cuesta, Mon.Not.Roy.Astron.Soc. 467 (2017) 2331-2348, arXiv:1509.06384.
[Vargas-Magana:2015rqa]
[8-160]
Detecting Effects of Filaments on Galaxy Properties in the Sloan Digital Sky Survey III, Yen-Chi Chen et al., Mon.Not.Roy.Astron.Soc. 466 (2017) 1880, arXiv:1509.06376.
[Chen:2015oqa]
[8-161]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: BAO measurement from the LOS-dependent power spectrum of DR12 BOSS galaxies, Hector Gil-Marin et al., Mon.Not.Roy.Astron.Soc. 460 (2016) 4210-4219, arXiv:1509.06373.
[BOSS:2015fqm]
[8-162]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the correlation function of LOWZ and CMASS galaxies in Data Release 12, Antonio J. Cuesta et al., Mon. Not. Roy. Astron. Soc. 457 (2016) 1770, arXiv:1509.06371.
[BOSS:2015dhs]
[8-163]
Planck 2015 results. XII. Full Focal Plane simulations, P. A. R. Ade et al. (Planck), Astrophysics 594 (2016) A12, arXiv:1509.06348.
[Planck:2015txa]
[8-164]
POLARBEAR Constraints on Cosmic Birefringence and Primordial Magnetic Fields, Peter A.R. Ade et al. (POLARBEAR), Phys. Rev. D92 (2015) 123509, arXiv:1509.02461.
[POLARBEAR:2015ktq]
[8-165]
The SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Overview and Early Data, Kyle S. Dawson et al., Astron. J. 151 (2016) 44, arXiv:1508.04473.
[eBOSS:2015jyv]
[8-166]
Planck 2013 results. XXXI. Consistency of the Planck data, P. A. R. Ade et al. (Planck), Astron. Astrophys. 571 (2014) A31, arXiv:1508.03375.
[Planck:2014egr]
[8-167]
Planck 2015 results. III. LFI systematic uncertainties, P. A. R. Ade et al. (Planck), Astron.Astrophys. 594 (2016) A3, arXiv:1507.08853.
[Planck:2015zbi]
[8-168]
Cosmology from Cosmic Shear with DES Science Verification Data, T. Abbott et al. (DES), Phys. Rev. D94 (2016) 022001, arXiv:1507.05552.
[DES:2015gax]
[8-169]
Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of parameters, N. Aghanim et al. (Planck), Astron.Astrophys. 594 (2016) A11, arXiv:1507.02704.
[Planck:2015bpv]
[8-170]
Planck 2015 results. XXVI. The Second Planck Catalogue of Compact Sources, P. A. R. Ade et al. (Planck), Astron.Astrophys. 594 (2016) A26, arXiv:1507.02058.
[Planck:2015bin]
[8-171]
Planck 2015 results. XVI. Isotropy and statistics of the CMB, P. A. R. Ade et al. (Planck), Astron.Astrophys. 594 (2016) A16, arXiv:1506.07135.
[Planck:2015igc]
[8-172]
Planck 2015 results. XXV. Diffuse low-frequency Galactic foregrounds, P. A. R. Ade et al. (Planck), Astron.Astrophys. 594 (2016) A25, arXiv:1506.06660.
[Planck:2015ica]
[8-173]
Planck 2015 results. IX. Diffuse component separation: CMB maps, R. Adam et al. (Planck), Astron.Astrophys. 594 (2016) A9, arXiv:1502.05956.
[Planck:2015mis]
[8-174]
Planck 2015. XX. Constraints on inflation, P. A. R. Ade et al. (Planck), Astron.Astrophys. 594 (2016) A20, arXiv:1502.02114.
[Planck:2015sxf]
[8-175]
Planck 2015 results. XXVIII. The Planck Catalogue of Galactic Cold Clumps, P. A. R. Ade et al. (Planck), Astron.Astrophys. 594 (2016) A28, arXiv:1502.01599.
[Planck:2015pai]
[8-176]
Planck 2015 results. XXVII. The Second Planck Catalogue of Sunyaev-Zeldovich Sources, P. A. R. Ade et al. (Planck), Astron.Astrophys. 594 (2016) A27, arXiv:1502.01598.
[Planck:2015koh]
[8-177]
Planck 2015 results. XXIV. Cosmology from Sunyaev-Zeldovich cluster counts, P. A. R. Ade et al. (Planck), Astron.Astrophys. 594 (2016) A24, arXiv:1502.01597.
[Planck:2015lwi]
[8-178]
Planck 2015 results. XXII. A map of the thermal Sunyaev-Zeldovich effect, N. Aghanim et al. (Planck), Astron.Astrophys. 594 (2016) A22, arXiv:1502.01596.
[Planck:2015vgm]
[8-179]
Planck 2015 results. XXI. The integrated Sachs-Wolfe effect, P. A. R. Ade et al. (Planck), Astron.Astrophys. 594 (2016) A21, arXiv:1502.01595.
[Planck:2015fcm]
[8-180]
Planck 2015 results. XIX. Constraints on primordial magnetic fields, P. A. R. Ade et al. (Planck), Astron.Astrophys. 594 (2016) A19, arXiv:1502.01594.
[Planck:2015zrl]
[8-181]
Planck 2015 results. XVIII. Background geometry $\text{\&}$ topology, P. A. R. Ade et al. (Planck), Astron.Astrophys. 594 (2016) A18, arXiv:1502.01593.
[Planck:2015gmu]
[8-182]
Planck 2015 results. XVII. Constraints on primordial non-Gaussianity, P. A. R. Ade et al. (Planck), Astron.Astrophys. 594 (2016) A17, arXiv:1502.01592.
[Planck:2015zfm]
[8-183]
Planck 2015 results. XV. Gravitational lensing, P. A. R. Ade et al. (Planck), Astron.Astrophys. 594 (2016) A15, arXiv:1502.01591.
[Planck:2015mym]
[8-184]
Planck 2015 results. XIV. Dark energy and modified gravity, P. A. R. Ade et al. (Planck), Astron.Astrophys. 594 (2016) A14, arXiv:1502.01590.
[Planck:2015bue]
[8-185]
Planck 2015 results. XIII. Cosmological parameters, P. A. R. Ade et al. (Planck), Astron.Astrophys. 594 (2016) A13, arXiv:1502.01589.
[Planck:2015fie]
[8-186]
Planck 2015 results. X. Diffuse component separation: Foreground maps, R. Adam et al. (Planck), Astron.Astrophys. 594 (2016) A10, arXiv:1502.01588.
[Planck:2015mvg]
[8-187]
Planck 2015 results. VIII. High Frequency Instrument data processing: Calibration and maps, R. Adam et al. (Planck), Astron.Astrophys. 594 (2016) A8, arXiv:1502.01587.
[Planck:2015hzl]
[8-188]
Planck 2015 results. VII. HFI TOI and beam processing, R. Adam et al. (Planck), Astron.Astrophys. 594 (2016) A7, arXiv:1502.01586.
[Planck:2015aiq]
[8-189]
Planck 2015 results. VI. LFI mapmaking, P. A. R. Ade et al. (Planck), Astron.Astrophys. 594 (2016) A6, arXiv:1502.01585.
[Planck:2015zry]
[8-190]
Planck 2015 results. IV. Low Frequency Instrument beams and window functions, P. A. R. Ade et al. (Planck), Astron.Astrophys. 594 (2016) A4, arXiv:1502.01584.
[Planck:2015wtm]
[8-191]
Planck 2015 results. II. Low Frequency Instrument data processing, P. A. R. Ade et al. (Planck), Astron.Astrophys. 594 (2016) A2, arXiv:1502.01583.
[Planck:2015qep]
[8-192]
Planck 2015 results. I. Overview of products and scientific results, R. Adam et al. (Planck), Astron.Astrophys. 594 (2016) A1, arXiv:1502.01582.
[Planck:2015mrs]
[8-193]
A Joint Analysis of BICEP2/Keck Array and Planck Data, BICEP2/Keck et al. (Plancks), Phys. Rev. Lett. 114 (2015) 101301, arXiv:1502.00612.
[BICEP2:2015nss]
[8-194]
Planck 2013 results. XXIX. The Planck catalogue of Sunyaev-Zeldovich sources: Addendum, P. A. R. Ade et al. (Planck), Astron. Astrophys. 581 (2015) A14, arXiv:1502.00543.
[Planck:2015ant]
[8-195]
Confirmation of a Star Formation Bias in Type Ia Supernova Distances and its Effect on Measurement of the Hubble Constant, M. Rigault et al., Astrophys. J. 802 (2015) 20, arXiv:1412.6501.
[Rigault:2014kaa]
[8-196]
Cosmological implications of baryon acoustic oscillation (BAO) measurements, Eric Aubourg, Stephen Bailey, Julian E. Bautista, Florian Beutler, Vaishali Bhardwaj et al. (BOSS), Phys. Rev. D92 (2015) 123516, arXiv:1411.1074.
[BOSS:2014hhw]
[8-197]
Planck intermediate results. XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes, R. Adam et al. (Planck), Astron. Astrophys. 586 (2016) A133, arXiv:1409.5738.
[Planck:2014dmk]
[8-198]
CFHTLenS: Cosmological constraints from a combination of cosmic shear two-point and three-point correlations, Liping Fu, Martin Kilbinger, Thomas Erben, Catherine Heymans, Hendrik Hildebrandt et al., Mon.Not.Roy.Astron.Soc. 441 (2014) 2725-2743, arXiv:1404.5469.
[Fu:2014loa]
[8-199]
BICEP2 II: Experiment and Three-Year Data Set, P. A. R Ade et al. (BICEP2), Astrophys.J. 792 (2014) 62, arXiv:1403.4302.
[BICEP2:2014dgt]
[8-200]
Detection of B-Mode Polarization at Degree Angular Scales by BICEP2, P.A.R. Ade et al. (BICEP2), Phys. Rev. Lett. 112 (2014) 241101, arXiv:1403.3985.
[BICEP2:2014owc]
[8-201]
Evidence for a Lower Value for $H_0$ from Cosmic Chronometers Data?, Vinicius C. Busti, Chris Clarkson, Marina Seikel, Mon.Not.Roy.Astron.Soc. 441 (2014) 11, arXiv:1402.5429.
[Busti:2014dua]
[8-202]
The 400d Galaxy Cluster Survey weak lensing programme: III: Evidence for consistent WL and X-ray masses at $z\approx 0.5$, Holger Israel et al., Astron.Astrophys. 564 (2014) A129, arXiv:1402.3267.
[Israel:2014pha]
[8-203]
3D Cosmic Shear: Cosmology from CFHTLenS, T.D. Kitching et al. (CFHTLenS), Mon.Not.Roy.Astron.Soc. 442 (2014) 1326-1349, arXiv:1401.6842.
[CFHTLenS:2014rje]
[8-204]
Gravitational Lensing of Cosmic Microwave Background Polarization, P.A.R. Ade et al. (POLARBEAR), Phys. Rev. Lett. 113 (2014) 021301, arXiv:1312.6646.
[POLARBEAR:2013oat]
[8-205]
Evidence for Gravitational Lensing of the Cosmic Microwave Background Polarization from Cross-correlation with the Cosmic Infrared Background, P.A.R. Ade et al. (POLARBEAR), Phys. Rev. Lett. 112 (2014) 131302, arXiv:1312.6645.
[POLARBEAR:2013hfu]
[8-206]
The Clustering of Galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Measuring growth rate and geometry with anisotropic clustering, Lado Samushia et al., Mon.Not.Roy.Astron.Soc. 439 (2014) 3504-3519, arXiv:1312.4899.
[BOSS:2013yzh]
[8-207]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: single-probe measurements from CMASS and LOWZ anisotropic galaxy clustering, Chia-Hsun Chuang et al., Mon.Not.Roy.Astron.Soc. 461 (2016) 3781-3793, arXiv:1312.4889.
[BOSS:2013mwe]
[8-208]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the Data Release 10 and 11 galaxy samples, Lauren Anderson et al. (BOSS), Mon.Not.Roy.Astron.Soc. 441 (2014) 24-62, arXiv:1312.4877.
[BOSS:2013rlg]
[8-209]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the full shape of the clustering wedges in the data release 10 and 11 galaxy samples, Ariel G. Sanchez et al., Mon.Not.Roy.Astron.Soc. 433 (2013) 1202-1222, arXiv:1312.4854.
[BOSS:2013eso]
[8-210]
The Clustering of Galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Including covariance matrix errors, Will J. Percival et al., Mon.Not.Roy.Astron.Soc. 439 (2014) 2531, arXiv:1312.4841.
[Percival:2013sga]
[8-211]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Testing gravity with redshift-space distortions using the power spectrum multipoles, Florian Beutler et al. (BOSS), Mon.Not.Roy.Astron.Soc. 443 (2014) 1065, arXiv:1312.4611.
[BOSS:2013uda]
[8-212]
Quasar-Lyman $\alpha$ Forest Cross-Correlation from BOSS DR11 : Baryon Acoustic Oscillations, Andreu Font-Ribera et al. (BOSS), JCAP (2013), arXiv:1311.1767.
[BOSS:2013igd]
[8-213]
Degree-Scale CMB Polarization Measurements from Three Years of BICEP1 Data, D. Barkats et al. (BICEP1), Astrophys.J. 783 (2014) 67, arXiv:1310.1422.
[BICEP1:2013sbv]
[8-214]
Precision measures of the primordial abundance of deuterium, Ryan Cooke, Max Pettini, Regina A. Jorgenson, Michael T. Murphy, Charles C. Steidel, Astrophys. J. 781 (2014) 31, arXiv:1308.3240.
[Cooke:2013cba]
[8-215]
Planck intermediate results. XIII. Constraints on peculiar velocities, P. A. R. Ade et al. (Planck), Astron.Astrophys. (2013), arXiv:1303.5090.
[Planck:2013rgv]
[8-216]
Planck 2013 results. XXIX. Planck catalogue of Sunyaev-Zeldovich sources, P. A. R. Ade et al. (Planck), Astron.Astrophys. (2013), arXiv:1303.5089.
[Planck:2013shx]
[8-217]
Planck 2013 results. XXVIII. The Planck Catalogue of Compact Sources, P. A. R. Ade et al. (Planck), Astron.Astrophys. 571 (2014) A28, arXiv:1303.5088.
[Planck:2013qym]
[8-218]
Planck 2013 results. XXVII. Doppler boosting of the CMB: Eppur si muove, N. Aghanim et al. (Planck), Astron.Astrophys. 571 (2014) A27, arXiv:1303.5087.
[Planck:2013kqc]
[8-219]
Planck 2013 results. XXVI. Background geometry and topology of the Universe, P. A. R. Ade et al. (Planck), Grav.Cosmol. 20 (2014) 15-20, arXiv:1303.5086.
[Luminet:2013ama]
[8-220]
Planck 2013 results. XXV. Searches for cosmic strings and other topological defects, P. A. R. Ade et al. (Planck), Astron.Astrophys. 571 (2014) A25, arXiv:1303.5085.
[Planck:2013mgr]
[8-221]
Planck 2013 Results. XXIV. Constraints on primordial non-Gaussianity, P. A. R. Ade et al. (Planck), Astron.Astrophys. 571 (2014) A24, arXiv:1303.5084.
[Planck:2013wtn]
[8-222]
Planck 2013 results. XXIII. Isotropy and Statistics of the CMB, P. A. R. Ade et al. (Planck), Astron.Astrophys. 571 (2014) A23, arXiv:1303.5083.
[Planck:2013lks]
[8-223]
Planck 2013 results. XXII. Constraints on inflation, P. A. R. Ade et al. (Planck), Astron.Astrophys. 571 (2014) A22, arXiv:1303.5082.
[Ade:2013uln]
[8-224]
Planck 2013 results. XXI. Cosmology with the all-sky Planck Compton parameter $y$-map, Planck (Planck), Astron.Astrophys. 571 (2014) A21, arXiv:1303.5081.
[Planck:2013vvs]
[8-225]
Planck 2013 results. XX. Cosmology from Sunyaev-Zeldovich cluster counts, P. A. R. Ade et al. (Planck), Astron.Astrophys. 571 (2014) A20, arXiv:1303.5080.
[Planck:2013lkt]
[8-226]
Planck 2013 results. XIX. The integrated Sachs-Wolfe effect, P. A. R. Ade et al. (Planck), Astron.Astrophys. 571 (2014) A19, arXiv:1303.5079.
[Planck:2013owu]
[8-227]
Planck 2013 results. XVIII. Gravitational lensing-infrared background correlation, P. A. R. Ade et al. (Planck), Astron.Astrophys. 571 (2014) A18, arXiv:1303.5078.
[Planck:2013qqi]
[8-228]
Planck 2013 results. XVII. Gravitational lensing by large-scale structure, P. A. R. Ade et al. (Planck), Astron.Astrophys. 571 (2014) A17, arXiv:1303.5077.
[Planck:2013mth]
[8-229]
Planck 2013 results. XVI. Cosmological parameters, P.A.R. Ade et al. (Planck), Astron.Astrophys. 571 (2014) A16, arXiv:1303.5076.
[Planck:2013pxb]
[8-230]
Planck 2013 results. XV. CMB power spectra and likelihood, Planck (Planck), Astron.Astrophys. 571 (2014) A15, arXiv:1303.5075.
[Planck:2013win]
[8-231]
Planck 2013 results. XIV. Zodiacal emission, P. A. R. Ade et al. (Planck), Astron.Astrophys. 571 (2014) A14, arXiv:1303.5074.
[Planck:2013maj]
[8-232]
Planck 2013 results. XIII. Galactic CO emission, Planck (The Planck), Astron.Astrophys. 571 (2014) A13, arXiv:1303.5073.
[Planck:2013fzw]
[8-233]
Planck 2013 results. XII. Component separation, P. A. R. Ade et al. (Planck), Astron.Astrophys. 571 (2014) A12, arXiv:1303.5072.
[Planck:2013fzg]
[8-234]
Planck 2013 results X. Energetic particle effects: characterization, removal, and simulation, P. A. R. Ade et al. (Planck), Astron.Astrophys. 571 (2014) A10, arXiv:1303.5071.
[Planck:2013dkx]
[8-235]
Planck 2013 results. IX. HFI spectral response, P. A. R. Ade et al. (Planck), Astron.Astrophys. 571 (2014) A9, arXiv:1303.5070.
[Planck:2013wmz]
[8-236]
Planck 2013 results. VIII. HFI photometric calibration and mapmaking, P. A. R. Ade et al. (Planck), Astron.Astrophys. 571 (2014) A8, arXiv:1303.5069.
[Planck:2013psg]
[8-237]
Planck 2013 results. VII. HFI time response and beams, P. A. R. Ade et al. (Planck), Astron.Astrophys. 571 (2014) A7, arXiv:1303.5068.
[Planck:2013dwd]
[8-238]
Planck 2013 results. VI. High Frequency Instrument data processing, P. A. R. Ade et al. (Planck), Astron.Astrophys. 571 (2014) A6, arXiv:1303.5067.
[Planck:2013cta]
[8-239]
Planck 2013 results. V. LFI calibration, N. Aghanim et al. (Planck), Astron.Astrophys. 571 (2014) A5, arXiv:1303.5066.
[Planck:2013ngk]
[8-240]
Planck 2013 results. IV. Low Frequency Instrument beams and window functions, N. Aghanim et al. (Planck), Astron.Astrophys. 571 (2014) A4, arXiv:1303.5065.
[Planck:2013yht]
[8-241]
Planck 2013 results. III. LFI systematic uncertainties, N. Aghanim et al. (Planck), Astron.Astrophys. 571 (2014) A3, arXiv:1303.5064.
[Planck:2013exz]
[8-242]
Planck 2013 results. II. The Low Frequency Instrument data processing, N. Aghanim et al. (Planck), Astron.Astrophys. 571 (2014) A2, arXiv:1303.5063.
[Planck:2013msx]
[8-243]
Planck 2013 results. I. Overview of products and scientific results, P.A.R. Ade et al. (Planck), Astron.Astrophys. 571 (2014) A1, arXiv:1303.5062.
[Planck:2013oqw]
[8-244]
The Atacama Cosmology Telescope: temperature and gravitational lensing power spectrum measurements from three seasons of data, Sudeep Das, Thibaut Louis, Michael R. Nolta, Graeme E. Addison, Elia S. Battistelli et al., JCAP 1404 (2014) 014, arXiv:1301.1037.
[Das:2013zf]
[8-245]
The Atacama Cosmology Telescope: Cosmological parameters from three seasons of data, Jonathan L. Sievers et al. (Atacama Cosmology Telescope), JCAP 1310 (2013) 060, arXiv:1301.0824.
[AtacamaCosmologyTelescope:2013swu]
[8-246]
The Atacama Cosmology Telescope: Sunyaev-Zel'dovich Selected Galaxy Clusters at 148 GHz from Three Seasons of Data, Matthew Hasselfield et al., JCAP 1307 (2013) 008, arXiv:1301.0816.
[Hasselfield:2013wf]
[8-247]
The Atacama Cosmology Telescope: likelihood for small-scale CMB data, J. Dunkley, E. Calabrese, J. Sievers, G.E. Addison, N. Battaglia et al., JCAP 1307 (2013) 025, arXiv:1301.0776.
[Dunkley:2013vu]
[8-248]
Constraints on Cosmology from the Cosmic Microwave Background Power Spectrum of the 2500-square degree SPT-SZ Survey, Z. Hou, C.L. Reichardt, K.T. Story, B. Follin, R. Keisler et al., Astrophys.J. 782 (2014) 74, arXiv:1212.6267.
[Hou:2012xq]
[8-249]
Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results, G. Hinshaw et al. (WMAP), Astrophys.J.Suppl. 208 (2013) 19, arXiv:1212.5226.
[WMAP:2012nax]
[8-250]
Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results, C.L. Bennett et al. (WMAP), Astrophys.J.Suppl. 208 (2013) 20, arXiv:1212.5225.
[WMAP:2012fli]
[8-251]
CFHTLenS: Combined probe cosmological model comparison using 2D weak gravitational lensing, Martin Kilbinger, Liping Fu, Catherine Heymans, Fergus Simpson, Jonathan Benjamin et al., Monthly Notices of the Royal Astronomical Society 430 (2013) 2200-2220, arXiv:1212.3338.
[Kilbinger:2012qz]
[8-252]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: weighing the neutrino mass using the galaxy power spectrum of the CMASS sample, Gong-Bo Zhao, Shun Saito, Will J. Percival, Ashley J. Ross, Francesco Montesano et al., Mon.Not.Roy.Astron.Soc. 436 (2013) 2038-2053, arXiv:1211.3741.
[Zhao:2012xw]
[8-253]
A Measurement of the Cosmic Microwave Background Damping Tail from the 2500-square-degree SPT-SZ survey, K.T. Story, C.L. Reichardt, Z. Hou, R. Keisler, K.A. Aird et al., Astrophys.J. 779 (2013) 86, arXiv:1210.7231.
[Story:2012wx]
[8-254]
The WiggleZ Dark Energy Survey: Final data release and cosmological results, David Parkinson, Signe Riemer-Sorensen, Chris Blake, Gregory B. Poole, Tamara M. Davis et al., Phys. Rev. D86 (2012) 103518, arXiv:1210.2130.
[Parkinson:2012vd]
[8-255]
CFHTLenS: The Canada-France-Hawaii Telescope Lensing Survey, Catherine Heymans, Ludovic Van Waerbeke, Lance Miller, Thomas Erben, Hendrik Hildebrandt et al., Mon.Not.Roy.Astron.Soc. 427 (2012) 146, arXiv:1210.0032.
[Heymans:2012gg]
[8-256]
Two accurate time-delay distances from strong lensing: Implications for cosmology, S.H. Suyu, M.W. Auger, S. Hilbert, P.J. Marshall, M. Tewes et al., Astrophys.J. 766 (2013) 70, arXiv:1208.6010.
[Suyu:2012aa]
[8-257]
The luminosity of supernovae of type Ia from TRGB distances and the value of $H_0$, G.A. Tammann, B. Reindl, Astron.Astrophys. 549 (2013) A136, arXiv:1208.5054.
[Tammann:2012ut]
[8-258]
Carnegie Hubble Program: A Mid-Infrared Calibration of the Hubble Constant, Wendy L. Freedman, Barry F. Madore, Victoria Scowcroft, Chris Burns, Andy Monson et al., Astrophys.J. 758 (2012) 24, arXiv:1208.3281.
[Freedman:2012ny]
[8-259]
The Megamaser Cosmology Project: IV. A Direct Measurement of the Hubble Constant from UGC 3789, M.J. Reid, J.A. Braatz, J.J. Condon, K.Y. Lo, C.Y. Kuo et al., Astrophys.J. 767 (2013) 154, arXiv:1207.7292.
[Reid:2012hm]
[8-260]
The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey, Christopher P. Ahn et al. (SDSS), Astrophys.J.Suppl. 203 (2012) 21, arXiv:1207.7137.
[BOSS:2012bus]
[8-261]
The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey, Christopher P. Ahn et al. (SDSS), Astrophys.J.Suppl. 203 (2012) 21, arXiv:1207.7137.
[BOSS:2012ncu]
[8-262]
Competitive Crossing Check for a 3% Determination of the Hubble Constant, J.A.S. Lima, J.V. Cunha, Astrophys.J. 781 (2014) L38, arXiv:1206.0332.
[Lima:2012jm]
[8-263]
A new, precise measurement of the primordial abundance of Deuterium, Max Pettini, Ryan Cooke, Mon.Not.Roy.Astron.Soc. 425 (2012) 2477-2486, arXiv:1205.3785.
[Pettini:2012ph]
[8-264]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measurements of the growth of structure and expansion rate at z=0.57 from anisotropic clustering, Beth A. Reid, Lado Samushia, Martin White, Will J. Percival, Marc Manera et al., Mon.Not.Roy.Astron.Soc. 426 (2012) 2719, arXiv:1203.6641.
[BOSS:2012xge]
[8-265]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the large-scale two-point correlation function, Ariel G. Sanchez, C.G. Scoccola, A.J. Ross, W. Percival, M. Manera et al., Mon.Not.Roy.Astron.Soc. 425 (2012) 415, arXiv:1203.6616.
[BOSS:2012acv]
[8-266]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the Data Release 9 Spectroscopic Galaxy Sample, Lauren Anderson, Eric Aubourg, Stephen Bailey, Dmitry Bizyaev, Michael Blanton et al., Mon.Not.Roy.Astron.Soc. 428 (2013) 1036-1054, arXiv:1203.6594.
[BOSS:2012tck]
[8-267]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measuring structure growth using passive galaxies, Rita Tojeiro, W.J. Percival, J. Brinkmann, J.R. Brownstein, D. Eisenstein et al., Mon.Not.Roy.Astron.Soc. 424 (2012) 2339, arXiv:1203.6565.
[BOSS:2012grb]
[8-268]
Determining the Hubble constant using Giant extragalactic HII regions and HII galaxies, Ricardo Chavez, Elena Terlevich, Roberto Terlevich, Manolis Plionis, Fabio Bresolin et al., Mon.Not.Roy.Astron.Soc. 425 (2012) 56, arXiv:1203.6222.
[Chavez:2012km]
[8-269]
Cosmicflows-2: SNIa Calibration and H0, Helene M. Courtois, R. Brent Tully, Astrophys.J. 749 (2012) 174, arXiv:1202.3832.
[Courtois:2012kg]
[8-270]
A measurement of gravitational lensing of the microwave background using South Pole Telescope data, A. van Engelen, R. Keisler, O. Zahn, K.A. Aird, B.A. Benson et al., Astrophys. J. 756 (2012) 142, arXiv:1202.0546.
[vanEngelen:2012va]
[8-271]
Clustering of Sloan Digital Sky Survey III Photometric Luminous Galaxies: The Measurement, Systematics and Cosmological Implications, Shirley Ho et al., Astrophys. J. 761 (2012) 14, arXiv:1201.2137.
[BOSS:2012mwe]
[8-272]
The WiggleZ Dark Energy Survey: Cosmological neutrino mass constraint from blue high-redshift galaxies, Signe Riemer-Sorensen et al., Phys. Rev. D85 (2012) 081101, arXiv:1112.4940.
[Riemer-Sorensen:2011dxu]
[8-273]
A measurement of secondary cosmic microwave background anisotropies with two years of South Pole Telescope observations, C.L. Reichardt, L. Shaw, O. Zahn, K.A. Aird, B.A. Benson et al., Astrophys.J. 755 (2012) 70, arXiv:1111.0932.
[Reichardt:2011yv]
[8-274]
Cepheid Period-Luminosity Relations in the Near-Infrared and the Distance to M31 from the Hubble Space Telescope Wide Field Camera 3, Adam G. Riess, Juergen Fliri, David Valls-Gabaud, Astrophys.J. 745 (2012) 156, arXiv:1110.3769.
[Riess:2011vh]
[8-275]
The WiggleZ Dark Energy Survey: mapping the distance-redshift relation with baryon acoustic oscillations, Chris Blake, Eyal Kazin, Florian Beutler, Tamara Davis, David Parkinson et al., Mon.Not.Roy.Astron.Soc. 418 (2011) 1707-1724, arXiv:1108.2635.
[Blake:2011en]
[8-276]
The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant, Florian Beutler, Chris Blake, Matthew Colless, D. Heath Jones, Lister Staveley-Smith et al., Mon.Not.Roy.Astron.Soc. 416 (2011) 3017-3032, arXiv:1106.3366.
[Beutler:2011hx]
[8-277]
The Atacama Cosmology Telescope: a measurement of the primordial power spectrum, Renee Hlozek, Joanna Dunkley, Graeme Addison, John William Appel, J. Richard Bond et al., Astrophys.J. 749 (2012) 90, arXiv:1105.4887.
[Hlozek:2011pc]
[8-278]
A Measurement of the Damping Tail of the Cosmic Microwave Background Power Spectrum with the South Pole Telescope, R. Keisler et al., Astrophys. J. 743 (2011) 28, arXiv:1105.3182.
[Keisler:2011aw]
[8-279]
A 3% Solution: Determination of the Hubble Constant with the Hubble Space Telescope and Wide Field Camera 3, Adam G. Riess, Lucas Macri, Stefano Casertano, Hubert Lampeitl, Henry C. Ferguson et al., Astrophys.J. 730 (2011) 119, arXiv:1103.2976.
[Riess:2011yx]
[8-280]
Swift observation of Segue 1: constraints on sterile neutrino parameters in the darkest galaxy, N. Mirabal, Mon.Not.Roy.Astron.Soc. 409 (2010) 128, arXiv:1010.4706.
[Mirabal:2010an]
[8-281]
The Atacama Cosmology Telescope: Cosmological Parameters from the 2008 Power Spectra, J. Dunkley et al., Astrophys. J. 739 (2011) 52, arXiv:1009.0866.
[Dunkley:2010ge]
[8-282]
The Atacama Cosmology Telescope: A Measurement of the Cosmic Microwave Background Power Spectrum at 148 and 218 GHz from the 2008 Southern Survey, Sudeep Das, Tobias A. Marriage, Peter A.R. Ade, Paula Aguirre, Mandana Amir et al., Astrophys.J. 729 (2011) 62, arXiv:1009.0847.
[Das:2010ga]
[8-283]
A Measurement of the Rate of Type Ia Supernovae in Galaxy Clusters from the SDSS-II Supernova Survey, Benjamin Dilday et al. (SDSS), Astrophys.J. 715 (2010) 1021-1035, arXiv:1003.1521.
[SDSS:2010hxy]
[8-284]
Measurements of the Rate of Type Ia Supernovae at Redshift z < ~0.3 from the SDSS-II Supernova Survey, Benjamin Dilday et al. (SDSS), Astrophys.J. 713 (2010) 1026-1036, arXiv:1001.4995.
[SDSS:2010ays]
[8-285]
Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Are There Cosmic Microwave Background Anomalies?, C. L. Bennett et al., Astrophys. J. Suppl. 192 (2011) 17, arXiv:1001.4758.
[Bennett:2010jb]
[8-286]
Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results, N. Jarosik et al., Astrophys. J. Suppl. 192 (2011) 14, arXiv:1001.4744.
[WMAP:2010sfg]
[8-287]
Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Planets and Celestial Calibration Sources, J. L. Weiland et al., Astrophys. J. Suppl. 192 (2011) 19, arXiv:1001.4731.
[Weiland:2010ij]
[8-288]
Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Power Spectra and WMAP-Derived Parameters, D. Larson, J. Dunkley, G. Hinshaw, E. Komatsu, M.R. Nolta et al., Astrophys.J.Suppl. 192 (2011) 16, arXiv:1001.4635.
[Larson:2010gs]
[8-289]
Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Galactic Foreground Emission, B. Gold et al., Astrophys. J. Suppl. 192 (2011) 15, arXiv:1001.4555.
[Gold:2010fm]
[8-290]
Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, E. Komatsu et al. (WMAP), Astrophys. J. Suppl. 192 (2011) 18, arXiv:1001.4538.
From the abstract: Notable examples of improved parameters are the total mass of neutrinos, $\sum m_\nu < 0.58 \, \text{eV} \quad \text{(95\% CL)}$, and the effective number of neutrino species, $N_{\text{eff}} = 4.34^{+ 0.86}_{- 0.88} \quad \text{(68\%~CL)}$, which benefit from better determinations of the third peak and $H_0$.
[WMAP:2010qai]
[8-291]
Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample, Will J. Percival et al. (SDSS), Mon.Not.Roy.Astron.Soc. 401 (2010) 2148-2168, arXiv:0907.1660.
[SDSS:2009ocz]
[8-292]
Cosmological Constraints from the Clustering of the Sloan Digital Sky Survey DR7 Luminous Red Galaxies, Beth A. Reid, Will J. Percival, Daniel J. Eisenstein, Licia Verde, David N. Spergel et al., Mon.Not.Roy.Astron.Soc. 404 (2010) 60-85, arXiv:0907.1659.
[Reid:2009xm]
[8-293]
Cepheid Calibrations of Modern Type Ia Supernovae:Implications for the Hubble Constant, Adam G. Riess, Lucas Macri, Weidong Li, Hubert Lampeitl, Stefano Casertano et al., Astrophys.J.Suppl. 183 (2009) 109-141, arXiv:0905.0697.
[Riess:2009pv]
[8-294]
A Redetermination of the Hubble Constant with the Hubble Space Telescope from a Differential Distance Ladder, Adam G. Riess, Lucas Macri, Stefano Casertano, Megan Sosey, Hubert Lampeitl et al., Astrophys.J. 699 (2009) 539-563, arXiv:0905.0695.
[Riess:2009pu]
[8-295]
The 6dF Galaxy Survey: Final Redshift Release (DR3) and Southern Large-Scale Structures, D. Heath Jones, Mike A. Read, Will Saunders, Matthew Colless, Tom Jarrett et al., Mon.Not.Roy.Astron.Soc. 399 (2009) 683, arXiv:0903.5451.
[Jones:2009yz]
[8-296]
Cosmological Parameters from the QUaD CMB polarization experiment, QUaD collaboration et al. (QUaD), Astrophys. J. 701 (2009) 857-864, arXiv:0901.0810.
[QUaD:2009aub]
[8-297]
The Seventh Data Release of the Sloan Digital Sky Survey, Kevork N. Abazajian et al. (SDSS), Astrophys.J.Suppl. 182 (2009) 543-558, arXiv:0812.0649.
[SDSS:2008tqn]
[8-298]
Very-High-Energy Gamma Rays from a Distant Quasar: How Transparent Is the Universe?, J. Albert et al. (MAGIC), Science 320 (2008) 1752, arXiv:0807.2822.
[MAGIC:2008sib]
[8-299]
Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, and Basic Results, G. Hinshaw et al. (WMAP), Astrophys. J. Suppl. 180 (2009) 225-245, arXiv:0803.0732.
[WMAP:2008ydk]
[8-300]
Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Galactic Foreground Emission, B. Gold et al. (WMAP), Astrophys. J. Suppl. 180 (2009) 265-282, arXiv:0803.0715.
[WMAP:2008fkv]
[8-301]
Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Angular Power Spectra, M. R. Nolta et al. (WMAP), Astrophys. J. Suppl. 180 (2009) 296-305, arXiv:0803.0593.
[WMAP:2008ttx]
[8-302]
Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Likelihoods and Parameters from the WMAP data, J. Dunkley et al. (WMAP), Astrophys. J. Suppl. 180 (2009) 306-329, arXiv:0803.0586.
[WMAP:2008rhx]
[8-303]
Five-Year Wilkinson Microwave Anisotropy Probe (WMAP)Observations: Beam Maps and Window Functions, R. S. Hill et al. (WMAP), Astrophys. J. Suppl. 180 (2009) 246-264, arXiv:0803.0570.
[WMAP:2008fkt]
[8-304]
Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, E. Komatsu et al. (WMAP), Astrophys. J. Suppl. 180 (2009) 330-376, arXiv:0803.0547.
From the abstract: The WMAP 5-year data provide stringent limits on deviations from the minimal, 6-parameter $\Lambda\text{CDM}$ model.... We detect no convincing deviations from the minimal model....
$\Omega_\Lambda = 0.721\pm 0.015$,..., $H_0 = 70.1\pm 1.3 \, \text{km} \, \text{s}^{-1} \, \text{Mpc}^{-1}$, $\Omega_b = 0.0462\pm 0.0015$, $\Omega_c = 0.233\pm 0.013$,...
We obtain tight, simultaneous limits on the (constant) equation of state of dark energy and the spatial curvature of the universe: $-0.11<1+w<0.14\, \text{(95\% CL)}$ and $-0.0175<\Omega_k<0.0085\, \text{(95\% CL)}$....
We find the limit on the total mass of massive neutrinos of $\sum m_\nu < 0.61 \, \text{eV}\, \text{(95\% CL)}$, which is free from the uncertainty in the normalization of the large-scale structure data. The number of relativistic degrees of freedom, expressed in units of the effective number of neutrino species, is constrained as $N_{\rm eff} = 4.4\pm 1.5$ (68\%), consistent with the standard value of 3.04.

[WMAP:2008lyn]
[8-305]
High resolution CMB power spectrum from the complete ACBAR data set, C.L. Reichardt, P.A.R. Ade, J.J. Bock, J. Richard Bond, J.A. Brevik et al., Astrophys.J. 694 (2009) 1200-1219, arXiv:0801.1491.
[Reichardt:2008ay]
[8-306]
The Sixth Data Release of the Sloan Digital Sky Survey, Jennifer K. Adelman-McCarthy et al. (SDSS), Astrophys.J.Suppl. 175 (2008) 297-313, arXiv:0707.3413.
[SDSS:2007yot]
[8-307]
The Fifth Data Release of the Sloan Digital Sky Survey, Jennifer K. Adelman-McCarthy (SDSS), Astrophys. J. Suppl. 172 (2007) 634-644, arXiv:0707.3380.
[SDSS:2007aih]
[8-308]
COSMOS: 3D weak lensing and the growth of structure, Richard Massey et al., Astrophys. J. Suppl. 172 (2007) 239-253, arXiv:astro-ph/0701480.
[Massey:2007gh]
[8-309]
The shape of the SDSS DR5 galaxy power spectrum, Will J. Percival et al., Astrophys. J. 657 (2007) 645-663, arXiv:astro-ph/0608636.
[Percival:2006gt]
[8-310]
The Chemical Evolution of Helium, Dana S. Balser, Astron. J. 132 (2006) 2326-2332, arXiv:astro-ph/0608436.
[Balser:2006fv]
[8-311]
The DEEP2 Galaxy Redshift Survey: Clustering of Quasars and Galaxies at z=1, Alison L. Coil et al., Astrophys. J. 654 (2006) 115-124, arXiv:astro-ph/0607454.
[Coil:2006ji]
[8-312]
The First DIRECT Distance Determination to a Detached Eclipsing Binary in M33, Alceste Z. Bonanos et al., Astrophys. J. 652 (2006) 313, arXiv:astro-ph/0606279.
From the article: ... our LMC distance would imply a 15\% decrease in the Hubble constant to $ H_{0} = 61\; \rm km\;s^{-1}\; Mpc^{-1} $.
[Bonanos:2006jd]
[8-313]
Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Beam Profiles, Data Processing, Radiometer Characterization and Systematic Error Limits, N. Jarosik et al. (WMAP), Astrophys. J. Suppl. 170 (2007) 263, arXiv:astro-ph/0603452. http://lambda.gsfc.nasa.gov/product/map/dr2/pub_papers/threeyear/syserr/wmap_3yr_syserr.pdf.
[WMAP:2006tvo]
[8-314]
Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Temperature Results, G. Hinshaw et al. (WMAP), Astrophys. J. Suppl. 170 (2007) 288, arXiv:astro-ph/0603451. http://lambda.gsfc.nasa.gov/product/map/dr2/pub_papers/threeyear/temperature/wmap_3yr_temp.pdf.
[WMAP:2006jqi]
[8-315]
Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Polarization Analysis, L. Page et al. (WMAP), Astrophys. J. Suppl. 170 (2007) 335, arXiv:astro-ph/0603450. http://lambda.gsfc.nasa.gov/product/map/dr2/pub_papers/threeyear/polarization/wmap_3yr_pol.pdf.
[WMAP:2006rnx]
[8-316]
Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for Cosmology, D.N. Spergel et al. (WMAP), Astrophys. J. Suppl. 170 (2007) 377, arXiv:astro-ph/0603449. http://lambda.gsfc.nasa.gov/product/map/dr2/pub_papers/threeyear/parameters/wmap_3yr_param.pdf.
[WMAP:2006bqn]
[8-317]
Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Three Year Explanatory Supplement, M. Limon et al. (WMAP), 2006. http://lambda.gsfc.nasa.gov/product/map/dr2/pub_papers/threeyear/supplement/wmap_3yr_supplement.pdf.
[WMAP-2006-Limon]
[8-318]
A Lyman-alpha blob in the GOODS South field: evidence for cold accretion onto a dark matter halo, Kim Nilsson et al., Astron. Astrophys. 452 (2006) L23-L26, arXiv:astro-ph/0512396.
[Nilsson:2005rk]
[8-319]
Cosmic Shear Analysis with CFHTLS Deep data, E. Semboloni et al., Astron.Astrophys. (2005), arXiv:astro-ph/0511090.
[Semboloni:2005ct]
[8-320]
First cosmic shear results from the Canada-France-Hawaii Telescope Wide Synoptic Legacy Survey, H. Hoekstra et al., Astrophys. J. 647 (2006) 116-127, arXiv:astro-ph/0511089.
From the abstract: Assuming a Cold Dark Matter model and marginalising over the Hubble parameter $h\in[0.6,0.8]$, the source redshift distribution and systematics, we constrain $\sigma_8$, the amplitude of the matter power spectrum. At a fiducial matter density $\Omega_m=0.3$ we find $\sigma_8=0.85\pm0.06$. This estimate is in excellent agreement with previous studies. Combination of our results with those from the Deep component of the CFHTLS enables us to place a constraint on a constant equation of state for the dark energy, based on cosmic shear data alone. We find that $w_0<-0.8$ at 68\% confidence.
[Hoekstra:2005cs]
[8-321]
The DEEP2 Galaxy Redshift Survey: Discovery of Luminous, Metal-poor, Sta r-forming Galaxies at Redshifts z~0.7, Carlos Hoyos et al., Astrophys. J. 635 (2005) L21, arXiv:astro-ph/0510843.
[Hoyos:2005hc]
[8-322]
The Supernova Legacy Survey: Measurement of $\Omega_\text{M}$, $\Omega_{\Lambda}$ and $w$ from the First Year Data Set, P. Astier et al. (SNLS), Astron. Astrophys. 447 (2006) 31, arXiv:astro-ph/0510447.
From the abstract: With this data set, we have built a Hubble diagram extending to $z=1$, with all distance measurements involving at least two bands.... Cosmological fits to this first year SNLS Hubble diagram give the following results: $ \Omega_{\text{M}} = 0.263 \pm 0.042 \pm 0.032 $ for a flat $\Lambda\text{CDM}$ model; and $w = -1.023 \pm 0.090 \pm 0.054 $ for a flat cosmology with constant equation of state $w$ when combined with the constraint from the recent Sloan Digital Sky Survey measurement of baryon acoustic oscillations.
[SNLS:2005qlf]
[8-323]
Hubble Space Telescope and Ground-Based Observations of Type Ia Supernovae at Redshift 0.5: Cosmological Implications, A. Clocchiatti et al. (High Z SN Search), Astrophys. J. 642 (2006) 1-21, arXiv:astro-ph/0510155.
[HighZSNSearch:2005xhg]
[8-324]
GRB 050904 at redshift 6.3: observations of the oldest cosmic explosion after the Big Bang, G. Tagliaferri et al., Astron. Astrophys. 443 (2005) L1-L5, arXiv:astro-ph/0509766.
[Tagliaferri:2005cw]
[8-325]
Detection of a huge explosion in the early Universe, G. Cusumano et al., Nature (2005), arXiv:astro-ph/0509737.
[Cusumano:2005br]
[8-326]
RATAN-600 new zenith field survey and CMB problems, Yu.N. Parijskij et al., Grav. Cosmol. 10 (2004) 1, arXiv:astro-ph/0508065.
[Parijskij:2004bxl]
[8-327]
The Fourth Data Release of the Sloan Digital Sky Survey, J.K. Adelman-McCarthy et al. (SDSS), Astrophys. J. Suppl. 162 (2006) 38, arXiv:astro-ph/0507711.
[SDSS:2005sxd]
[8-328]
A Measurement of the CMB < EE > Spectrum from the 2003 Flight of BOOMERANG, T.E. Montroy et al., Astrophys. J. 647 (2006) 813, arXiv:astro-ph/0507514.
[Montroy:2005yx]
[8-329]
Instrument, Method, Brightness and Polarization Maps from the 2003 flight of BOOMERanG, S Masi et al., Astron.Astrophys. 458 (2006) 687, arXiv:astro-ph/0507509.
[Masi:2005ys]
[8-330]
A measurement of the polarization-temperature angular cross power spectrum of the Cosmic Microwave Background from the 2003 flight of BOOMERANG, F Piacentini et al., Astrophys. J. 647 (2006) 833, arXiv:astro-ph/0507507.
[Piacentini:2005yq]
[8-331]
A Measurement of the Angular Power Spectrum of the CMB Temperature Anisotropy from the 2003 Flight of Boomerang, W. C. Jones et al., Astrophys. J. 647 (2006) 823, arXiv:astro-ph/0507494.
[Jones:2005yb]
[8-332]
Keck Deep Fields. I. Observations, Reductions, and the Selection of Faint Star-Forming Galaxies at Redshifts z~4, 3, and 2, Marcin Sawicki, David Thompson, Astrophys. J. 635 (2005) 100, arXiv:astro-ph/0507424.
[Sawicki:2005qk]
[8-333]
First results from the Canada-France High-z Quasar Survey: Constraints on the z=6 quasar luminosity function and the quasar contribution to reionization, Chris J. Willott et al., Astrophys. J. 633 (2005) 630, arXiv:astro-ph/0507183.
[Willott:2005zr]
[8-334]
Second Data Release of the 6dF Galaxy Survey, D. Heath Jones, Will Saunders, Mike Read, Matthew Colless, Publ.Astron.Soc.Austral. (2005), arXiv:astro-ph/0505068.
[Jones:2005ya]
[8-335]
Detection of Cosmic Magnification with the Sloan Digital Sky Survey, Ryan Scranton et al. (SDSS), Astrophys. J. 633 (2005) 589, arXiv:astro-ph/0504510. SDSS News Release.
[SDSS:2005jin]
[8-336]
The 2dF QSO Redshift Survey - XV. Correlation analysis of redshift-Space distortions, J. da Angela et al., Mon. Not. Roy. Astron. Soc. 360 (2005) 1040-1054, arXiv:astro-ph/0504438.
From the abstract: $ \Omega_{\text{M}} = 0.35 {}^{+0.19}_{-0.13} $.
[daAngela:2005id]
[8-337]
The H I opacity of the intergalactic medium at redshifts 1.6 < z < 3.2, David Kirkman et al., Mon. Not. Roy. Astron. Soc. 360 (2005) 1373, arXiv:astro-ph/0504391.
[Kirkman:2005jz]
[8-338]
Restframe I-band Hubble diagram for type Ia supernovae up to redshift $z \sim 0.5$, Serena Nobili et al. (Supernova Cosmology Project), Astron.Astrophys. (2005), arXiv:astro-ph/0504139.
[SupernovaCosmologyProject:2005zcy]
[8-339]
The Sloan Digital Sky Survey Quasar Catalog III. Third Data Release, D. P. Schneider et al. (The SDSS), Astron. J. 130 (2005) 367-380, arXiv:astro-ph/0503679.
[SDSS:2005vck]
[8-340]
Cepheid Calibrations from the Hubble Space Telescope of the Luminosity of Two Recent Type Ia Supernovae and a Re-determination of the Hubble Constant, Adam G. Riess et al., Astrophys. J. 627 (2005) 579, arXiv:astro-ph/0503159.
From the abstract: $H_0 = 73 +\pm 4 \pm 5 \, \text{km} \, \text{s}^{-1} \, \text{Mps}^{-1}$.
[Riess:2005zi]
[8-341]
The Deepest Supernova Search is Realized in the Hubble Ultra Deep Field Survey, Louis-Gregory Strolger, Adam G. Riess, Astron. J. 131 (2006) 1629-1638, arXiv:astro-ph/0503093.
[Strolger:2005uk]
[8-342]
The 2dF Galaxy Redshift Survey: Power-spectrum analysis of the final dataset and cosmological implications, S. Cole et al. (The 2dFGRS), Mon. Not. Roy. Astron. Soc. 362 (2005) 505, arXiv:astro-ph/0501174.
From the abstract: Fitting to a CDM model, assuming a primordial $n_{\text{s}}=1$ spectrum, $h=0.72$ and negligible neutrino mass, the preferred parameters are $\Omega_{\text{m}} h = 0.168 \pm 0.016$ and a baryon fraction $\Omega_{\text{b}} /\Omega_{\text{m}} = 0.185\pm0.046$ (1$\sigma$ errors).... This analysis therefore implies a density significantly below the standard $\Omega_{\text{m}} =0.3$: in combination with CMB data from WMAP, we infer $\Omega_{\text{m}} =0.231\pm 0.021$.
From the article: $\Omega_{\text{m}} = 0.231 \pm 0.021$, $\Omega_{\text{b}} = 0.042 \pm 0.002$, $h = 0.766 \pm 0.032$, $n_{\text{s}} = 1.027 \pm 0.050$.
[2dFGRS:2005yhx]
[8-343]
Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies, Daniel J. Eisenstein et al. (SDSS), Astrophys. J. 633 (2005) 560, arXiv:astro-ph/0501171.
From the abstract: We find a well-detected peak in the correlation function at $100 \, h^{-1} \, \text{Mpc} $ separation that is an excellent match to the predicted shape and location of the imprint of the recombination-epoch acoustic oscillations on the low-redshift clustering of matter. This detection demonstrates the linear growth of structure by gravitational instability between $z\approx 1000$ and the present and confirms a firm prediction of the standard cosmological theory. The acoustic peak provides a standard ruler by which we can measure the ratio of the distances to $z=0.35$ and $z=1089$ to 4\% fractional accuracy and the absolute distance to $z=0.35$ to 5\% accuracy. From the overall shape of the correlation function, we measure the matter density $\Omega_mh^2$ to 8\% and find agreement with the value from cosmic microwave background (CMB) anisotropies. Independent of the constraints provided by the CMB acoustic scale, we find $\Omega_m=0.273\pm0.025+0.123(1+w_0)+0.137\Omega_K$. Including the CMB acoustic scale, we find that the spatial curvature is $\Omega_K=-0.010\pm0.009$ if the dark energy is a cosmological constant.
[SDSS:2005xqv]
[8-344]
Weak lensing measurements of dark matter halos of galaxies from COMBO-17, M. Kleinheinrich et al., Astron.Astrophys. (2004), arXiv:astro-ph/0412615.
[Kleinheinrich:2004vs]
[8-345]
The CMB temperature power spectrum from an improved analysis of the Archeops data, Matthieu Tristram et al., Astron. Astrophys. 436 (2005) 785-797, arXiv:astro-ph/0411633.
[Tristram:2004ke]
[8-346]
The Deep2 Galaxy Redshift Survey: Evolution of Close Galaxy Pairs and Major-Merger Rates Up to z ~ 1.2, Lih-Wai Lin et al., Astrophys. J. 617 (2004) L9-L12, arXiv:astro-ph/0411104.
[Lin:2004kb]
[8-347]
The DEEP2 Galaxy Redshift Survey: First results on galaxy groups, Brian F. Gerke et al., Astrophys. J. 625 (2005) 6, arXiv:astro-ph/0410721.
[Gerke:2004ra]
[8-348]
Spectroscopic confirmation of high-redshift supernovae with the ESO VLT, C. Lidman et al. (Supernova Cosmology Project), Astron.Astrophys. (2004), arXiv:astro-ph/0410506.
[SupernovaCosmologyProject:2004akn]
[8-349]
The Third Data Release of the Sloan Digital Sky Survey, K. Abazajian et al. (SDSS), Astron. J. 129 (2005) 1755, arXiv:astro-ph/0410239.
[SDSS:2004ulj]
[8-350]
The DEEP2 Galaxy Redshift Survey: Probing the Evolution of Dark Matter Halos around Isolated Galaxies at z~1, Charlie Conroy et al., Astrophys. J. 635 (2005) 982, arXiv:astro-ph/0409305.
[Conroy:2004tz]
[8-351]
Old Galaxies in the Young Universe, A. Cimatti et al., Nature 430 (2004) 184-187, arXiv:astro-ph/0407131.
[Cimatti:2004gq]
[8-352]
The Hubble Higher-Z Supernova Search: Supernovae to z=1.6 and Constraints on Type Ia Progenitor Models, L. G. Strolger et al., Astrophys. J. 613 (2004) 200-223, arXiv:astro-ph/0406546.
[Strolger:2004kk]
[8-353]
The 2dF Galaxy Redshift Survey: Spherical Harmonics analysis of fluctuations in the final catalogue, Will J. Percival et al. (The 2dFGRS), Mon. Not. Roy. Astron. Soc. 353 (2004) 1201, arXiv:astro-ph/0406513.
[2dFGRS:2004cmo]
[8-354]
Type Ia supernova rate at a redshift of ~ 0.1, Guillaume Blanc et al. (EROS), Astron. Astrophys. 423 (2004) 881, arXiv:astro-ph/0405211.
[EROS:2004reu]
[8-355]
The Lyman-alpha Forest Power Spectrum from the Sloan Digital Sky Survey, Patrick McDonald et al. (SDSS), Astrophys. J. Suppl. 163 (2006) 80, arXiv:astro-ph/0405013.
[SDSS:2004kjl]
[8-356]
Spectroscopic Observations and Analysis of the Peculiar SN 1999aa, Gabriele Garavini et al. (The Supernova Cosmology Project), Mon. Not. Roy. Astron. Soc. 356 (2004) 456, arXiv:astro-ph/0404393.
[SupernovaCosmologyProject:2004yms]
[8-357]
The Second Data Release of the Sloan Digital Sky Survey, K. Abazajian et al. (SDSS), Astron. J. 128 (2004) 502, arXiv:astro-ph/0403325.
[SDSS:2004wzw]
[8-358]
Design and Calibration of a Cryogenic Blackbody Calibrator at Centimeter Wavelengths, A. Kogut et al. (ARCADE), Rev. Sci. Instrum. 75 (2004) 5079, arXiv:astro-ph/0402580.
[Kogut:2004hq]
[8-359]
The Temperature of the CMB at 10 GHz, D.J. Fixsen et al. (ARCADE), Astrophys. J. 612 (2004) 86, arXiv:astro-ph/0402579.
[Fixsen:2004hp]
[8-360]
An Instrument to Measure the Temperature of the Cosmic Microwave Background Radiation at Centimeter Wavelengths, A. Kogut et al. (ARCADE), Astrophys.J. (2004), arXiv:astro-ph/0402578.
[Kogut:2004hn]
[8-361]
Type Ia Supernova Discoveries at z > 1 From the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution, Adam G. Riess et al. (Supernova Search Team), Astrophys. J. 607 (2004) 665, arXiv:astro-ph/0402512.
From the abstract: We have discovered 16 Type Ia supernovae (SNe Ia) with the Hubble Space Telescope (HST) and have used them to provide the first conclusive evidence for cosmic deceleration that preceded the current epoch of cosmic acceleration.
...
A purely kinematic interpretation of the SN Ia sample provides evidence at the > 99\% confidence level for a transition from deceleration to acceleration or similarly, strong evidence for a cosmic jerk. Using a simple model of the expansion history, the transition between the two epochs is constrained to be at $z=0.46 \pm 0.13$.
The data are consistent with the cosmic concordance model of $\Omega_M \approx 0.3, \Omega_\Lambda \approx 0.7$ ($\chi^2_{dof}=1.06$), and are inconsistent with a simple model of evolution or dust as an alternative to dark energy.
For a flat Universe with a cosmological constant, we measure $\Omega_M = 0.29 {}^{+0.05}_{-0.03}$ (equivalently, $\Omega_\Lambda=0.71$). When combined with external flat-Universe constraints including the cosmic microwave background and large-scale structure, we find $w = -1.02 {}^{+0.13}_{-0.19}$ (and $w<-0.76$ at the 95\% confidence level) for an assumed static equation of state of dark energy, $P = w\rho c^2$.
...
Our constraints are consistent with the static nature of and value of $w$ expected for a cosmological constant (i.e., $w_0 = -1.0$, $dw/dz = 0$), and are inconsistent with very rapid evolution of dark energy.

[Ivanov:2004qa]
[8-362]
High sensitivity measurements of the CMB power spectrum with the extended Very Small Array, Clive Dickinson et al., Mon. Not. Roy. Astron. Soc. 353 (2004) 732, arXiv:astro-ph/0402498.
[Dickinson:2004yr]
[8-363]
Extended Mosaic Observations with the Cosmic Background Imager, A. C. S. Readhead et al., Astrophys. J. 609 (2004) 498-512, arXiv:astro-ph/0402359.
[Readhead:2004gy]
[8-364]
The FORS Deep Field Spectroscopic Survey, S. Noll et al., Astron. Astrophys. 418 (2004) 885, arXiv:astro-ph/0401500.
[Noll:2004nw]
[8-365]
The 2dF Galaxy Redshift Survey: Higher order galaxy correlation functions, D. J. Croton et al. (2dFGRS Team), Mon. Not. Roy. Astron. Soc. 352 (2004) 1232, arXiv:astro-ph/0401434.
[2dFGRSTeam:2004jic]
[8-366]
The Millennium Galaxy Catalogue: The photometric accuracy, completeness and contamination of the 2dFGRS and SDSS-EDR and DR1 datasets, N. J. G. Cross et al., Mon. Not. Roy. Astron. Soc. 349 (2004) 576, arXiv:astro-ph/0312317.
[Cross:2003es]
[8-367]
The 2dF QSO Redshift Survey - XIII. A Measurement of Lambda from the QSO Power Spectrum, P.J. Outram et al., Mon. Not. Roy. Astron. Soc. 348 (2004) 745, arXiv:astro-ph/0310873.
From the abstract: Assuming a flat ($\Omega_{\rm m}+\Omega_{\Lambda}=1$) cosmology and a $\Lambda$ cosmology $r(z)$ function to convert from redshift into comoving distance, we find best fit values of $\Omega_{\Lambda}=0.71^{+0.09}_{-0.17}$ and $\beta_q(z\sim1.4)=0.45^{+0.09}_{-0.11}$.
[Outram:2003ew]
[8-368]
23 High Redshift Supernovae from the IfA Deep Survey: Doubling the SN Sample at $z > 0.7$, Brian J. Barris et al., Astrophys. J. 602 (2004) 571, arXiv:astro-ph/0310843.
From the abstract: This sample of 23 high-redshift supernovae includes 15 at $z\geq0.7$, doubling the published number of objects at these redshifts, and indicates that the evidence for acceleration of the universe is not due to a systematic effect proportional to redshift. In combination with the recent compilation of Tonry and others (2003), we calculate cosmological parameter density contours which are consistent with the flat universe indicated by the CMB [Go]. Adopting the constraint that $\Omega_{total} = 1.0$, we obtain best-fit values of ($\Omega_{m}$,$\Omega_{\Lambda}$)=(0.33, 0.67) using 22 SNe from this survey augmented by the literature compilation.
[Barris:2003dq]
[8-369]
Archeops results, J.-Ch. Hamilton, A. Benoit (Archeops), Comptes Rendus Physique 4 (2003) 853, arXiv:astro-ph/0310788.
[Hamilton:2003xb]
[8-370]
The 3D power spectrum of galaxies from the SDSS, M. Tegmark et al. (SDSS), Astrophys. J. 606 (2004) 702, arXiv:astro-ph/0310725.
[SDSS:2003tbn]
[8-371]
Systematic effects and a new determination of the primordial abundance of 4He and dY/dZ from observations of blue compact galaxies, Y. I. Izotov, T. X. Thuan, Astrophys. J. 602 (2004) 200-230, arXiv:astro-ph/0310421.
[Izotov:2003xn]
[8-372]
MAXIMA: A Balloon-Borne Cosmic Microwave Background Anisotropy Experiment, B. Rabii et al., Rev. Sci. Instrum. 77 (2006) 071101, arXiv:astro-ph/0309414.
[Rabii:2003rr]
[8-373]
New Constraints on $\Omega_M$, $\Omega_\Lambda$, and $w$ from an Independent Set of Eleven High-Redshift Supernovae Observed with HST, Robert A. Knop et al. (The Supernova Cosmology Project), Astrophys. J. 598 (2003) 102, arXiv:astro-ph/0309368.
From the abstract: We report measurements of $\Omega_{\mathrm{M}}$, $\Omega_{\Lambda}$, and $w$ from eleven supernovae at $z=0.36$-$0.86$ with high-quality lightcurves measured using WFPC2 on the HST. This is an independent set of high-redshift supernovae that confirms previous supernova evidence for an accelerating Universe. The high-quality lightcurves available from photometry on \wfpc\ make it possible for these eleven supernovae alone to provide measurements of the cosmological parameters comparable in statistical weight to the previous results. Combined with earlier Supernova Cosmology Project data, the new supernovae yield a measurement of the mass density $\Omega_{\mathrm{M}}=0.25^{+0.07}_{-0.06}$ (statistical) $\pm0.04$ (identified systematics), or equivalently, a cosmological constant of $\Omega_{\Lambda}=0.75^{+0.06}_{-0.07}$ (statistical) $\pm0.04$ (identified systematics), under the assumptions of a flat universe and that the dark energy equation of state parameter has a constant value $w=-1$. When the supernova results are combined with independent flat-universe measurements of $\Omega_{\mathrm{M}}$ from CMB and galaxy redshift distortion data, they provide a measurement of $w=-1.05^{+0.15}_{-0.20}$ (statistical) $\pm0.09$ (identified systematic), if $w$ is assumed to be constant in time.... dark energy is required with $P(\Omega_{\Lambda}>0)>0.99$.
[SupernovaCosmologyProject:2003dcn]
[8-374]
An update on Archeops: flights and data products, J. Delabrouille, Ph. Filliatre (Archeops), Astrophys. Space Sci. 290 (2004) 119, arXiv:astro-ph/0307550.
[Delabrouille:2003mr]
[8-375]
Physical Evidence for Dark Energy, R. Scranton et al. (SDSS), arXiv:astro-ph/0307335, 2003.
[SDSS:2003lnz]
[8-376]
The 2dF Galaxy Redshift Survey: Final Data Release, M. Colless et al., arXiv:astro-ph/0306581, 2003.
[Colless:2003wz]
[8-377]
The Wilkinson Microwave Anisotropy Probe, Lyman Page, arXiv:astro-ph/0306381, 2003. Carnegie Observatories Astrophysics Series, Vol. 2: Measuring and Modeling the Universe.
[Page:2003pn]
[8-378]
Measuring CMB Polarization with BOOMERANG, T. Montroy et al., New Astron. Rev. 47 (2003) 1057-1065, arXiv:astro-ph/0305593. 'The Cosmic Microwave Background and its Polarization', New Astronomy Reviews.
[Montroy:2003ii]
[8-379]
The DEEP2 Redshift Survey: Spectral classification of galaxies at z~1, D. S Madgwick et al. (The DEEP2 Survey), Astrophys. J. 599 (2003) 997-1005, arXiv:astro-ph/0305587.
[DEEP2Survey:2003skj]
[8-380]
The DEEP2 Galaxy Redshift Survey: Clustering of Galaxies in Early Data, Alison L. Coil et al. (The DEEP2 Survey), Astrophys. J. 609 (2004) 525, arXiv:astro-ph/0305586.
[DEEP2Survey:2003dxr]
[8-381]
First Results from the Arcminute Cosmology Bolometer Array Receiver, M. C. Runyan et al., New Astron.Rev. (2003), arXiv:astro-ph/0305553.
[Runyan:2003aw]
[8-382]
The First Data Release of the Sloan Digital Sky Survey, Kevork Abazajian et al. (SDSS), Astron. J. 126 (2003) 2081, arXiv:astro-ph/0305492.
[SDSS:2003rmd]
[8-383]
The XMM-LSS Survey II. First high redshift galaxy clusters: relaxed and collapsing systems, I. Valtchanov et al., Astron. Astrophys. 423 (2004) 75, arXiv:astro-ph/0305192.
[Valtchanov:2003it]
[8-384]
The XMM-LSS survey I. Scientific motivations, design and first results, M. Pierre et al., JCAP 0409 (2004) 011, arXiv:astro-ph/0305191.
[Pierre:2003is]
[8-385]
First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Dark Energy Induced Correlation with Radio Sources, M. R. Nolta et al. (WMAP), Astrophys. J. 608 (2004) 10, arXiv:astro-ph/0305097.
[WMAP:2003gmp]
[8-386]
Cosmological results from the 2dF Galaxy Redshift Survey, Matthew Colless, arXiv:astro-ph/0305051, 2003.
[Colless:2003it]
[8-387]
Cosmological Results from High-z Supernovae, John L. Tonry et al. (Supernova Search Team), Astrophys. J. 594 (2003) 1, arXiv:astro-ph/0305008.
From the abstract: The High-$ z$ Supernova Search Team has discovered and observed 8 new supernovae in the redshift interval $ z=0.3-1.2$. These independent observations, analyzed by similar but distinct methods, confirm the result of Riess and others (1998a) and Perlmutter and others (1999) that supernova luminosity distances imply an accelerating universe. More importantly, they extend the redshift range of consistently observed SN Ia to $ z\approx 1$, where the signature of cosmological effects has the opposite sign of some plausible systematic effects.... if the equation of state parameter of the dark energy is $ w=-1$, then $ H_0\,t_0 = 0.96\pm0.04$, and $ \Omega_\Lambda-1.4\Omega_M=0.35\pm0.14$. Including the constraint of a flat Universe, we find $ \Omega_M=0.28\pm0.05$, independent of any large-scale structure measurements. Adopting a prior based on the 2dF redshift survey constraint on $ \Omega_M$ and assuming a flat universe, we find that the equation of state parameter of the dark energy lies in the range $ -1.48-1$, we obtain $ w<-0.73$ at 95% confidence.
[SupernovaSearchTeam:2003cyd]
[8-388]
The 2dF Galaxy Redshift Survey: galaxy clustering per spectral type, D. S. Madgwick et al., Mon. Not. Roy. Astron. Soc. 344 (2003) 847, arXiv:astro-ph/0303668.
[Madgwick:2003bd]
[8-389]
The Asiago-ESO/RASS QSO Survey. III. Clustering analysis and its theoretical interpretation, Andrea Grazian et al., Astron. J. 127 (2004) 592, arXiv:astro-ph/0303382.
[Grazian:2003cx]
[8-390]
First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for Inflation, H. V. Peiris et al. (WMAP), Astrophys. J. Suppl. 148 (2003) 213, arXiv:astro-ph/0302225.
[WMAP:2003syu]
[8-391]
First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: On-Orbit Radiometer Characterization, N. Jarosik et al. (WMAP), Astrophys. J. Suppl. 148 (2003) 29, arXiv:astro-ph/0302224.
[WMAP:2003tll]
[8-392]
First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Tests of Gaussianity, E. Komatsu et al. (WMAP), Astrophys. J. Suppl. 148 (2003) 119, arXiv:astro-ph/0302223.
[WMAP:2003xez]
[8-393]
First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing Methods and Systematic Errors Limits, G. Hinshaw et al. (WMAP), Astrophys. J. Suppl. 148 (2003) 63, arXiv:astro-ph/0302222.
[WMAP:2003gdj]
[8-394]
First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Interpretation of the TT and TE Angular Power Spectrum Peaks, L. Page et al. (WMAP), Astrophys. J. Suppl. 148 (2003) 233, arXiv:astro-ph/0302220.
[WMAP:2003tof]
[8-395]
First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Parameter Estimation Methodology, L. Verde et al. (WMAP), Astrophys. J. Suppl. 148 (2003) 195, arXiv:astro-ph/0302218.
[WMAP:2003pyh]
[8-396]
First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Angular Power Spectrum, G. Hinshaw et al. (WMAP), Astrophys. J. Suppl. 148 (2003) 135, arXiv:astro-ph/0302217.
[WMAP:2003zzr]
[8-397]
First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Galactic Signal Contamination from Sidelobe Pickup, C. Barnes et al. (WMAP), Astrophys. J. Suppl. 148 (2003) 51, arXiv:astro-ph/0302215.
[WMAP:2003hea]
[8-398]
First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Beam Profiles and Window Functions, L. Page et al. (WMAP), Astrophys. J. Suppl. 148 (2003) 39, arXiv:astro-ph/0302214.
[WMAP:2003pvn]
[8-399]
Wilkinson Microwave Anisotropy Probe (WMAP) First Year Observations: TE Polarization, A. Kogut et al. (WMAP), Astrophys. J. Suppl. 148 (2003) 161, arXiv:astro-ph/0302213.
[WMAP:2003ggs]
[8-400]
First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Foreground Emission, C. Bennett et al. (WMAP), Astrophys. J. Suppl. 148 (2003) 97, arXiv:astro-ph/0302208.
[WMAP:2003cmr]
[8-401]
First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results, C. L. Bennett et al. (WMAP), Astrophys. J. Supp. Ser. 148 (2003) 1-27, arXiv:astro-ph/0302207.
From the abstract: A best-fit cosmological model to the CMB and other measures of large scale structure works remarkably well with only a few parameters. The age of the best-fit universe is $t_0 = 13.7 \pm 0.2 \text{ Gyr}$ old. Decoupling was $t_{dec} = 379^{+ 8}_{- 7} \text{ kyr}$ after the Big Bang at a redshift of $z_{dec} = 1089 \pm 1$. The thickness of the decoupling surface was $\Delta z_{dec} = 195 \pm 2$. The matter density of the universe is $\Omega_mh^2 = 0.135^{+ 0.008}_{- 0.009}$, the baryon density is $\Omega_bh^2 = 0.0224 \pm 0.0009$, and the total mass-energy of the universe is $\Omega_{tot} = 1.02 \pm 0.02$.... This flat universe model is composed of 4.4% baryons, 22% dark matter and 73% dark energy.... Inflation theory is supported with $n_s\approx 1$, $\Omega_{tot}\approx 1$, Gaussian random phases of the CMB anisotropy, and superhorizon fluctuations implied by the TE anticorrelations at decoupling.
[WMAP:2003ivt]
[8-402]
MAXIMA: Observations of CMB Anisotropy, Bahman Rabii, arXiv:astro-ph/0302159, 2003.
[Rabii:2003wy]
[8-403]
A Map of the Cosmic Microwave Background from the BEAST Experiment, Peter R. Meinhold et al., arXiv:astro-ph/0302034, 2003.
[Meinhold:2003vz]
[8-404]
The size distribution of galaxies in the Sloan Digital Sky Survey, Shiyin Shen et al., Mon. Not. Roy. Astron. Soc. 343 (2003) 978, arXiv:astro-ph/0301527.
[Shen:2003sda]
[8-405]
The CMB power spectrum out to l=1400 measured by the VSA, Keith Grainge et al., Mon. Not. Roy. Astron. Soc. 341 (2003) L23, arXiv:astro-ph/0212495.
[Grainge:2002da]
[8-406]
The Hubble Deep Field South Flanking Fields, Ray A. Lucas et al., Astron. J. 125 (2003) 398, arXiv:astro-ph/0212416.
[Lucas:2002ht]
[8-407]
High Resolution Observations of the CMB Power Spectrum with ACBAR, C.L. Kuo et al. (ACBAR), Astrophys. J. 600 (2004) 32, arXiv:astro-ph/0212289.
[ACBAR:2002eoj]
[8-408]
Improved Measurement of the Angular Power Spectrum of Temperature Anisotropy in the CMB from Two New Analyses of BOOMERANG Observations, J. E. Ruhl et al., Astrophys. J. 599 (2003) 786, arXiv:astro-ph/0212229.
[Ruhl:2002cz]
[8-409]
Astrometric Calibration of the Sloan Digital Sky Survey, Jeffrey R. Pier et al., Astron. J. 125 (2003) 1559, arXiv:astro-ph/0211375.
[Pier:2002iq]
[8-410]
Cosmological constraints from Archeops, A. Benoit et al. (Archeops), Astron. Astrophys. 399 (2003) L25-L30, arXiv:astro-ph/0210306.
[Archeops:2002smk]
[8-411]
The Cosmic Microwave Background Anisotropy Power Spectrum measured by Archeops, A. Benoit et al. (Archeops), Astron. Astrophys. 399 (2003) L19-L23, arXiv:astro-ph/0210305.
[Archeops:2002nyh]
[8-412]
Constraints on Cosmological Parameters from the Analysis of the Cosmic Lens All Sky Survey Radio-Selected Gravitational Lens Statistics, K. H. Chae et al. (CLASS), Phys. Rev. Lett. 89 (2002) 151301, arXiv:astro-ph/0209602.
[Chae:2002mb]
[8-413]
Detection of Polarization in the Cosmic Microwave Background using DASI, J. Kovac, E. M. Leitch, C. Pryke J. E. Carlstrom, N. W. Halverson W. L. Holzapfel, Nature 420 (2002) 772, arXiv:astro-ph/0209478.
[Kovac:2002fg]
[8-414]
Measuring Polarization with DASI, E. M. Leitch et al., NATURE 420:763-771,2002. NATURE 420 (2002) 763-771, arXiv:astro-ph/0209476.
[Leitch:2002fe]
[8-415]
The Sloan Digital Sky Survey, Jon Loveday (SDSS), Contemp. Phys. 43 (2002) 437-449, arXiv:astro-ph/0207189.
[Loveday:2002ax]
[8-416]
The distant Type Ia supernova rate, R. Pain et al. (Supernova Cosmology Project), Astrophys. J. 577 (2002) 120, arXiv:astro-ph/0205476.
[SupernovaCosmologyProject:2002nuh]
[8-417]
The Anisotropy of the Microwave Background to l = 3500: Mosaic Observations with the Cosmic Background Imager, T. J. Pearson et al. (CBI), Astrophys. J. 591 (2003) 556, arXiv:astro-ph/0205388.
[Pearson:2002tr]
[8-418]
Cosmological Parameters from Cosmic Background Imager Observations and Comparisons with BOOMERANG, DASI, and MAXIMA, J. L. Sievers et al. (CBI), Astrophys. J. 591 (2003) 599, arXiv:astro-ph/0205387.
[Sievers:2002tq]
[8-419]
The Sunyaev-Zeldovich effect in CMB-calibrated theories applied to the Cosmic Background Imager anisotropy power at l > 2000, J. R. Bond et al. (CBI), Astrophys. J. 626 (2005) 12, arXiv:astro-ph/0205386.
[Bond:2002tp]
[8-420]
A Fast Gridded Method for the Estimation of the Power Spectrum of the CMB from Interferometer Data with Application to the Cosmic Background Imager, S. T. Myers et al. (CBI), Astrophys. J. 591 (2003) 575, arXiv:astro-ph/0205385.
[Myers:2002tn]
[8-421]
The Anisotropy of the Microwave Background to l = 3500: Deep Field Observations with the Cosmic Background Imager, B. S. Mason et al. (CBI), Astrophys. J. 591 (2003) 540, arXiv:astro-ph/0205384.
[Mason:2002tm]
[8-422]
First results from the Very Small Array - II. Observations of the CMB, Angela C. Taylor et al., Mon. Not. Roy. Astron. Soc. 341 (2003) 1066, arXiv:astro-ph/0205381.
[Taylor:2002ti]
[8-423]
The 2dF Galaxy Redshift Survey: The bias of galaxies and the density of the Universe, Licia Verde et al. (2dF team), Mon. Not. Roy. Astron. Soc. 335 (2002) 432, arXiv:astro-ph/0112161.
[Verde:2001sf]
[8-424]
The 3D Power Spectrum from Angular Clustering of Galaxies in Early SDSS Data, Scott Dodelson et al. (SDSS), Astrophys. J. 572 (2001) 140-156, arXiv:astro-ph/0107421.
[SDSS:2001afu]
[8-425]
Multiple peaks in the angular power spectrum of the cosmic microwave background: Significance and consequences for cosmology, P. de Bernardis et al. (BOOMERANG), Astrophys. J. 564 (2002) 559-566, arXiv:astro-ph/0105296.
[deBernardis:2001xk]
[8-426]
The 2dF Galaxy Redshift Survey: The power spectrum and the matter content of the universe, Will J. Percival et al. (The 2dFGRS), Mon. Not. Roy. Astron. Soc. 327 (2001) 1297, arXiv:astro-ph/0105252.
[2dFGRS:2001csf]
[8-427]
Cosmological Parameter Extraction from the First Season of Observations with DASI, C. Pryke et al., Astrophys. J. 568 (2002) 46-51, arXiv:astro-ph/0104490.
[Pryke:2001yz]
[8-428]
DASI First Results: A Measurement of the Cosmic Microwave Background Angular Power Spectrum, N. W. Halverson et al., Astrophys. J. 568 (2002) 38-45, arXiv:astro-ph/0104489.
[Halverson:2001yy]
[8-429]
A High Spatial Resolution Analysis of the MAXIMA-1 Cosmic Microwave Background Anisotropy Data, A. T. Lee et al., Astrophys. J. 561 (2001) L1-L6, arXiv:astro-ph/0104459.
[Lee:2001yp]
[8-430]
The Farthest Known Supernova: Support for an Accelerating Universe and a Glimpse of the Epoch of Deceleration, Adam G. Riess et al. (Supernova Search Team), Astrophys. J. 560 (2001) 49-71, arXiv:astro-ph/0104455.
[SupernovaSearchTeam:2001qse]
[8-431]
A measurement of the cosmological mass density from clustering in the 2dF Galaxy Redshift Survey, J. A. Peacock et al., Nature 410 (2001) 169-173, arXiv:astro-ph/0103143.
[Peacock:2001gs]
[8-432]
The 2dF Galaxy Redshift Survey: spectra and redshifts, M. Colless et al., Mon. Not. Roy. Astron. Soc. 328 (2001) 1039-1063.
[Colless-2001-MNRAS328]
[8-433]
Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant, W. L. Freedman et al. (HST), Astrophys. J. 553 (2001) 47-72, arXiv:astro-ph/0012376.
[HST:2000azd]
[8-434]
Towards a Precise Measurement of Matter Clustering: Lyman-alpha Forest Data at Redshifts 2-4, Rupert A. C. Croft et al., Astrophys. J. 581 (2002) 20-52, arXiv:astro-ph/0012324.
[Croft:2000hs]
[8-435]
A Measurement of the Temperature-Density Relation in the Intergalactic Medium Using a New Lyman-alpha Absorption Line Fitting Method, Patrick McDonald et al., Astrophys. J. 562 (2001) 52-75, arXiv:astro-ph/0005553.
[McDonald:2000nn]
[8-436]
A Flat Universe from High-Resolution Maps of the Cosmic Microwave Background Radiation, P. de Bernardis et al. (Boomerang), Nature 404 (2000) 955-959, arXiv:astro-ph/0004404.
[deBernardis:2000gy]
[8-437]
The Observed Probability Distribution Function, Power Spectrum, and Correlation Function of the Transmitted Flux in the Lyman-alpha Forest, Patrick McDonald et al., Astrophys. J. 543 (2000) 1-23, arXiv:astro-ph/9911196.
[McDonald:1999dt]
[8-438]
Measurements of Omega and Lambda from 42 High-Redshift Supernovae, S. Perlmutter et al. (Supernova Cosmology Project), Astrophys. J. 517 (1999) 565-586, arXiv:astro-ph/9812133.
From the abstract: The measurement yields a joint probability distribution of the cosmological parameters that is approximated by the relation $0.8 \,\Omega_{\rm M}- 0.6\,\Omega_\Lambda \approx -0.2 \pm 0.1$ in the region of interest ($\Omega_{\rm M} \lesssim 1.5$). For a flat ($\Omega_{\rm M}+\Omega_\Lambda = 1$) cosmology we find $\Omega_{\rm M}^{\rm flat} = 0.28^{+0.09}_{-0.08}$ (1$\sigma$ statistical) $^{+0.05}_{-0.04}$ (identified systematics). The data are strongly inconsistent with a $\Lambda = 0$ flat cosmology, the simplest inflationary universe model. An open, $\Lambda = 0$ cosmology also does not fit the data well: the data indicate that the cosmological constant is non-zero and positive, with a confidence of $P(\Lambda > 0) = 99$\%, including the identified systematic uncertainties. The best-fit age of the universe relative to the Hubble time is $t_0^{\rm flat}=14.9^{+1.4}_{-1.1}\,(0.63/h)$ Gyr for a flat cosmology.
[SupernovaCosmologyProject:1998vns]
[8-439]
Calibrator Design for the COBE Far Infrared Absolute Spectrophotometer (FIRAS), J. C. Mather, D. J. Fixsen, R. A. Shafer, C. Mosier, D. T. Wilkinson, Astrophys. J. 512 (1999) 511-520, arXiv:astro-ph/9810373.
[Mather:1998gm]
[8-440]
Supernova Limits on the Cosmic Equation of State, Peter M. Garnavich et al. (Supernova Search Team), Astrophys. J. 509 (1998) 74-79, arXiv:astro-ph/9806396.
[SupernovaSearchTeam:1998cav]
[8-441]
Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant, Adam G. Riess et al. (Supernova Search Team), Astron. J. 116 (1998) 1009-1038, arXiv:astro-ph/9805201.
[SupernovaSearchTeam:1998fmf]
[8-442]
The Cosmic Microwave Background Spectrum from the Full COBE/FIRAS Data Set, D. J. Fixsen et al., Astrophys. J. 473 (1996) 576, arXiv:astro-ph/9605054.
[Fixsen:1996nj]
[8-443]
Measurement of the cosmic microwave background spectrum by the CODE FIRAS instrument, J. C. Mather et al., Astrophys. J. 420 (1994) 439-444.
[Mather:1993ij]
[8-444]
Structure in the COBE DMR first year maps, G. F. Smoot et al., Astrophys. J. 396 (1992) L1-L5.
[COBE:1992syq]
[8-445]
A Preliminary measurement of the cosmic microwave background spectrum by the cosmic background explorer (COBE) satellite, J. C. Mather et al., Astrophys. J. 354 (1990) L37-L40.
[Mather:1990tfx]
[8-446]
Detection of anisotropy in the cosmic black body radiation, G. F. Smoot, M. V. Gorenstein, R. A. Muller, Phys. Rev. Lett. 39 (1977) 898.
[Smoot:1977bs]
[8-447]
A Measurement of excess antenna temperature at 4080-Mc/s, Arno A. Penzias, Robert Woodrow Wilson, Astrophys. J. 142 (1965) 419-421.
[Penzias:1965wn]
[8-448]
A relation between distance and radial velocity among extra-galactic nebulae, Edwin Hubble, Proc. Nat. Acad. Sci. 15 (1929) 168-173.
[Hubble:1929ig]
[8-449]
Extragalactic nebulae, E. P. Hubble, Astrophys. J. 64 (1926) 321-369.
[Hubble:1926yw]

9 - Experiment - Talks

[9-1]
Year two instrument status of the SPT-3G cosmic microwave background receiver, A. N. Bender et al., Proc.SPIE Int.Soc.Opt.Eng. 10708 (2018) 1070803, arXiv:1809.00036. SPIE Astronomical Telescopes + Instrumentation 2018.
[Bender:2018dwl]
[9-2]
SPT-3G: A Next-Generation Cosmic Microwave Background Polarization Experiment on the South Pole Telescope, B. A. Benson et al. (SPT-3G), Proc.SPIE Int.Soc.Opt.Eng. 9153 (2014) 91531P, arXiv:1407.2973. SPIE Astronomical Telescopes + Instrumentation 2014.
[SPT-3G:2014dbx]
[9-3]
The First Scientific Results from the Pierre Auger Observatory, T. Yamamoto (Pierre Auger), AIP Conf. Proc. 842 (2006) 1016-1018, arXiv:astro-ph/0601035. PANIC 2005.
[Yamamoto:2006iq]
[9-4]
The 2dF Galaxy Redshift Survey as a Cosmological Laboratory, Ofer Lahav, Publ.Astron.Soc.Austral. (2004), arXiv:astro-ph/0404537. RESCEU6 (Tokyo) and 'Tully60' (Sydney).
[Lahav:2004mb]
[9-5]
Maps of the millimetre sky from the BOOMERanG experiment, P. de Bernardis et al., arXiv:astro-ph/0311396, 2003. IAU Symposium 216: Maps of the Cosmos. Sydney 14-17 July 2003 - ASP Conference Series.
[deBernardis:2003gq]
[9-6]
Recent Results from the MAXIMA Experiment, Andrew H. Jaffe et al., New Astron. Rev. 47 (2003) 727, arXiv:astro-ph/0306504. CMBNET Meeting, 20-21 February, 2003, Oxford, UK.
[Jaffe:2003it]
[9-7]
Comparing and combining Wilkinson Microwave Anisotropy (WMAP) probe results and Large Scale Structure, Licia verde, arXiv:astro-ph/0306272, 2003. Davis Inflation Meeting, 2003.
[Verde:2003rj]
[9-8]
WMAP First Year Results, E. L. Wright, New Astron.Rev. (2003), arXiv:astro-ph/0306132. The Cosmic Microwave Background and its Polarization, New Astronomy Reviews.
[Wright:2003qm]
[9-9]
COBE Observations of the Cosmic Infrared Background, E. L. Wright, New Astron. Rev. 48 (2004) 465, arXiv:astro-ph/0306058. 2nd VERITAS Symposium on TeV Astrophysics of Extragalactic Sources, April 24-26, 2003.
[Wright:2003tp]
[9-10]
WMAP Polarization Results, A. Kogut, New Astron.Rev. (2003), arXiv:astro-ph/0306048. 'The Cosmic Microwave Background and its Polarization', New Astronomy Reviews.
[Kogut:2003td]
[9-11]
Archeops' results on the Cosmic Microwave Background, S. Henrot-Versille (Archeops), arXiv:astro-ph/0306032, 2003. Moriond ElectroWeak 2003 conference.
[Henrot-Versille:2003int]
[9-12]
Search for distortions in the spectrum of the Cosmic Microwave Radiation, G.Sironi et al., arXiv:astro-ph/0301354, 2003. 3rd Sakharov Conf. - Moscow 2002.
[Sironi:2003eh]
[9-13]
WMAP results, M. Limon, 2003. XXXVIII Rencontres de Moriond Electroweak Interactions and Unified Theories Les Arcs, France, 15-22 March 2003. http://moriond.in2p3.fr/EW/2003/Transparencies/3_Tuesday/3_1_morning/3_1_2_Limon/M_Limon.pdf.
[Limon:Moriond03]
[9-14]
Large-Scale Structure in the NIR-Selected MUNICS Survey, C.S. Botzler et al., Astrophys. Space Sci. 284 (2003) 393, arXiv:astro-ph/0210329. 3rd EuroConference on the evolution of galaxies, Kiel, Germany, July 16-20, 2002.
[Botzler:2002re]
[9-15]
The SCUBA Local Universe Galaxy Survey, L. Dunne, S. A. Eales, Astrophys. Space Sci. 281 (2002) 321-322, arXiv:astro-ph/0210316. Euro-Conference on Galaxy Evolution, La Reunion, 2001.
[Dunne:2002qr]
[9-16]
CMB observations with the Cosmic Background Imager (CBI) Interferometer, C.R.Contaldi et al., arXiv:astro-ph/0210303, 2002. XVIII IAP Colloquium `On the nature of dark energy', Paris, 1-5 July 2002.
[Contaldi:2002mi]
[9-17]
The Deep Lens Survey, D. Wittman et al., Proc.SPIE Int.Soc.Opt.Eng. 4836 (2002) 73, arXiv:astro-ph/0210118. Proc. SPIE Vol. 4836.
[Wittman:2002ig]
[9-18]
The BOOMERanG experiment and the curvature of the Universe, S. Masi et al. (BOOMERANG), Prog. Part. Nucl. Phys. 48 (2002) 243-261, arXiv:astro-ph/0201137. To appear in the proceedings of International School of Physics: 23rd Course: Neutrinos in Astro, Particle and Nuclear Physics, Erice, Italy, 18-26 Sep 2001.
[Masi:2002hp]
[9-19]
Results from the Sloan Digital Sky Survey, S. Dodelson, 2002. PHENO 2002 SYMPOSIUM University of Wisconsin, Madison The Pyle Center, 702 Langdon St. April 22-24, 2002. http://pheno.physics.wisc.edu/pheno02/trasparencies/ScottDodelson.ps.gz.
[Dodelson-talk:2002a]
[9-20]
Combining LSS and CMB Power Spectra, L. Verde, 2002. Workshop on Neutrino News from the Lab and the Cosmos, Fermilab, October 17 - 19, 2002. http://www-astro-theory.fnal.gov/Conferences/NuCosmo/talks/verde.pdf.
[Verde-Fermilab2002]

10 - Experiment - BBN

[10-1]
Measurement of the $^{2}$H($p,\gamma$)$^{3}$He S-factor at 265-1094keV, S. Turkat et al., Phys.Rev. C103 (2021) 045805, arXiv:2104.06914.
[Turkat:2021qmq]
[10-2]
The baryon density of the Universe from an improved rate of deuterium burning, V. Mossa et al., Nature 587 (2020) 210-213.
[Mossa:2020gjc]
[10-3]
Underground experimental study finds no evidence of low-energy resonance in the $^{6}$Li(p,$\gamma$)$^{7}$Be reaction, D. Piatti et al., Phys. Rev. C 102 (2020) 052802.
[Piatti:2020gyp]
[10-4]
Big Bang 6 Li nucleosynthesis studied deep underground (LUNA collaboration), D. Trezzi et al., Astropart. Phys. 89 (2017) 57-65.
[Trezzi:2017omf]
[10-5]
First Direct Measurement of the $^2$H($\alpha$,$\gamma$)$^6$Li Cross Section at Big Bang Energies and the Primordial Lithium Problem, M. Anders et al. (LUNA), Phys. Rev. Lett. 113 (2014) 042501.
[LUNA:2014hrn]
[10-6]
The primordial abundance of 4He: evidence for non-standard big bang nucleosynthesis, Y. I. Izotov, T. X. Thuan, Astrophys. J. 710 (2010) L67-L71, arXiv:1001.4440.
[Izotov:2010ca]

11 - Experiment - Relic Neutrinos

[11-1]
Improved eV-scale Sterile-Neutrino Constraints from the Second KATRIN Measurement Campaign, M. Aker et al. (KATRIN), Phys.Rev.D 105 (2022) 072004, arXiv:2201.11593.
[KATRIN:2022ith]
[11-2]
Limit on anti-electron-neutrino mass from observation of the beta decay of molecular tritium, R. G. H. Robertson, T. J. Bowles, G. J. Stephenson, D. L. Wark, John F. Wilkerson, D. A. Knapp, Phys. Rev. Lett. 67 (1991) 957-960.
[Robertson:1991vn]

12 - Experiment - Relic Neutrinos - Talks

[12-1]
Direct search for mass of neutrino and anomaly in the tritium beta-spectrum, V. M. Lobashev et al., Nucl. Phys. Proc. Suppl. 87 (2000) 275-277. Neutrino 1998.
[Lobashev:1999xb]

13 - Phenomenology

[13-1]
Dark Radiation with Baryon Acoustic Oscillations from DESI 2024 and the $H_0$ tension, Itamar J. Allali, Alessio Notari, Fabrizio Rompineve, arXiv:2404.15220, 2024.
[Allali:2024cji]
[13-2]
Comparing Compressed and Full-modeling Analyses with FOLPS: Implications for DESI 2024 and beyond, H. E. Noriega et al., arXiv:2404.07269, 2024.
[Noriega:2024eyu]
[13-3]
A Semi-blind Reconstruction of the History of Effective Number of Neutrinos Using CMB Data, Sarah Safi, Marzieh Farhang, Olga Mena, Eleonora Di Valentino, arXiv:2404.01457, 2024.
[Safi:2024bta]
[13-4]
Beyond-LLCDM Cosmologies with Bayesian Neural Networks II: Massive Neutrinos, Baryonic Feedback, and the Theoretical Error, L. Thummel, B. Bose, A. Pourtsidou, L. Lombriser, arXiv:2403.16949, 2024.
[Thummel:2024nhv]
[13-5]
Resolving the $H_0$ and $S_8$ tensions with neutrino mass and chemical potential, Shek Yeung, Wangzheng Zhang, Ming-chung Chu, arXiv:2403.11499, 2024.
[Yeung:2024krv]
[13-6]
Absence of concordance in a simple self-interacting neutrino cosmology, David Camarena, Francis-Yan Cyr-Racine, arXiv:2403.05496, 2024.
[Camarena:2024zck]
[13-7]
On the (non-)degeneracy of massive neutrinos and elastic interactions in the dark sector, Jose Beltran Jimenez, David Figueruelo, Florencia Anabella Teppa Pannia, arXiv:2403.03216, 2024.
[Jimenez:2024bhv]
[13-8]
Evaluating extensions to LCDM: an application of Bayesian model averaging, S. Paradiso, G. McGee, W. J. Percival, arXiv:2403.02120, 2024.
[Paradiso:2024pcb]
[13-9]
Perturbed $f(R)$ gravity coupled with neutrinos: exploring cosmological implications, Muhammad Yarahmadi, Amin Salehi, Kazuharu Bamba, arXiv:2402.18841, 2024.
[Yarahmadi:2024acm]
[13-10]
Towards a precision calculation of $N_{\rm eff}$ in the Standard Model III: Improved estimate of NLO corrections to the collision integral, Marco Drewes, Yannis Georis, Michael Klasen, Luca Paolo Wiggering, Yvonne Y. Y. Wong, arXiv:2402.18481, 2024.
[Drewes:2024wbw]
[13-11]
Neutrino-Dark Sector Equilibration and Primordial Element Abundances, Cara Giovanetti, Martin Schmaltz, Neal Weiner, arXiv:2402.10264, 2024.
[Giovanetti:2024orj]
[13-12]
Constraints on an Anisotropic Universe, Mark P. Hertzberg, Abraham Loeb, arXiv:2401.15782, 2024.
[Hertzberg:2024uqy]
[13-13]
Limits on Non-Relativistic Matter During Big-Bang Nucleosynthesis, Tsung-Han Yeh, Keith A. Olive, Brian D. Fields, arXiv:2401.08795, 2024.
[Yeh:2024ors]
[13-14]
SPT Clusters with DES and HST Weak Lensing. II. Cosmological Constraints from the Abundance of Massive Halos, S. Bocquet et al., arXiv:2401.02075, 2024.
[DES:2024zpp]
[13-15]
Neutrino Mass Measurement with Cosmic Gravitational Focusing, Shao-Feng Ge, Pedro Pasquini, Liang Tan, arXiv:2312.16972, 2023.
[Ge:2023nnh]
[13-16]
Constraints on sterile neutrinos and the cosmological tensions, Supriya Pan, Osamu Seto, Tomo Takahashi, Yo Toda, arXiv:2312.15435, 2023.
[Pan:2023frx]
[13-17]
Clustering of dark matter in the cosmic web as a probe of massive neutrinos, Mohadese Khoshtinat, Mohammad Ansarifard, Farbod Hassani, Shant Baghram, arXiv:2312.14117, 2023.
[Khoshtinat:2023zck]
[13-18]
fkPT: Constraining scale-dependent modified gravity with the full-shape galaxy power spectrum, Mario A. Rodriguez-Meza, Alejandro Aviles, Hernan E. Noriega, Cheng-Zong Ruan, Baojiu Li, Mariana Vargas-Magana, Jorge L. Cervantes-Cota, JCAP 03 (2024) 049, arXiv:2312.10510.
[Rodriguez-Meza:2023rga]
[13-19]
Review of Hubble tension solutions with new SH0ES and SPT-3G data, Ali Rida Khalife, Maryam Bahrami Zanjani, Silvia Galli, Sven Gunther, Julien Lesgourgues, Karim Benabed, JCAP 04 (2024) 059, arXiv:2312.09814.
[Khalife:2023qbu]
[13-20]
Cosmological Constraints on Neutrino Mass within Consistent Cosmological Models, Ye-Huang Pang, Xue Zhang, Qing-Guo Huang, arXiv:2312.07188, 2023.
[Pang:2023joc]
[13-21]
Weighing neutrinos with Lyman-$\alpha$ observations, Anjan K. Sarkar, Shiv K. Sethi, arXiv:2311.18499, 2023.
[Sarkar:2023pap]
[13-22]
Constraining Neutrino Cosmologies with Nonlinear Reconstruction, Shi-Hui Zang, Hong-Ming Zhu, Astrophys.J. 961 (2024) 160, arXiv:2311.16439.
[Zang:2023rpx]
[13-23]
The Uchuu-GLAM BOSS and eBOSS LRG lightcones: Exploring clustering and covariance errors, Julia Ereza, Francisco Prada, Anatoly Klypin, Tomoaki Ishiyama, Alex Smith, Carlton M. Baugh, Baojiu Li, Cesar Hernandez-Aguayo, Jose Ruedas, arXiv:2311.14456, 2023.
[Ereza:2023zmz]
[13-24]
Imprint of massive neutrinos on Persistent Homology of large-scale structure, M. H. Jalali Kanafi, S. Ansarifard, S. M. S. Movahed, arXiv:2311.13520, 2023.
[Kanafi:2023twi]
[13-25]
Cosmological constraints on neutrino masses in light of JWST red and massive candidate galaxies, Jianqi Liu, Zhiqi Huang, Yan Su, Res.Astron.Astrophys. 24 (2024) 045002, arXiv:2311.09703.
[Liu:2023qkf]
[13-26]
Hints of Neutrino Dark Matter scattering in the CMB? Constraints from the Marginalized and Profile Distributions, William Giare, Adria Gomez-Valent, Eleonora Di Valentino, Carsten van de Bruck, Phys.Rev.D 109 (2024) 063516, arXiv:2311.09116.
[Giare:2023qqn]
[13-27]
The Cosmology of Dark Energy Radiation, Kim V. Berghaus, Tanvi Karwal, Vivian Miranda, Thejs Brinckmann, arXiv:2311.08638, 2023.
[Berghaus:2023ypi]
[13-28]
Updated Big Bang Nucleosynthesis Bounds on Long-lived Particles from Dark Sectors, J. R. Alves, L. Angel, L. Guedes, R. M. P. Neves, F. S. Queiroz, D. R. da Silva, R. Silva, Y. Villamizar, arXiv:2311.07688, 2023.
[Alves:2023jlo]
[13-29]
A cross-bispectrum estimator for CMB-HI intensity mapping correlations, Kavilan Moodley, Warren Naidoo, Heather Prince, Aurelie Penin, arXiv:2311.05904, 2023.
[Moodley:2023lmu]
[13-30]
A Possible Impact of Non-Gaussianities on Cosmological Constraints in Neutrino Physics, Matteo Forconi, Eleonora Di Valentino, Alessandro Melchiorri, Supriya Pan, arXiv:2311.04038, 2023.
[Forconi:2023akg]
[13-31]
Relaxing cosmological constraints on current neutrino masses, Vitor da Fonseca, Tiago Barreiro, Nelson J. Nunes, Phys.Rev.D 109 (2024) 063517, arXiv:2311.01803.
[daFonseca:2023ury]
[13-32]
A Cosmic Window on the Dark Axion Portal, Heejoung Hong, Ui Min, Minho Son, Tevong You, JHEP 03 (2024) 155, arXiv:2310.19544.
[Hong:2023fcy]
[13-33]
$N_{\rm eff}$ as a new physics probe in the precision era of cosmology, Yong Du, arXiv:2310.10034, 2023.
[Du:2023upj]
[13-34]
Can we explain cosmic birefringence without a new light field beyond Standard Model?, Yuichiro Nakai, Ryo Namba, Ippei Obata, Yu-Cheng Qiu, Ryo Saito, JHEP 01 (2024) 057, arXiv:2310.09152.
[Nakai:2023zdr]
[13-35]
Cosmological constraints from abundance, weak-lensing and clustering of galaxy clusters: application to the SDSS, Alessandra Fumagalli, Matteo Costanzi, Alexandro Saro, Tiago Castro, Stefano Borgani, Astron.Astrophys. 682 (2024) A148, arXiv:2310.09146.
[Fumagalli:2023yym]
[13-36]
Modeling Neutrino-Induced Scale-Dependent Galaxy Clustering for Photometric Galaxy Surveys, P. Rogozenski, E. Krause, V. Miranda, arXiv:2310.07933, 2023.
[Rogozenski:2023tse]
[13-37]
Forecast Cosmological Constraints with the 1D Wavelet Scattering Transform and the Lyman-aa forest, Hurum Tohfa, Simeon Bird, Ming-Feng Ho, Mahdi Quezlou, Martin Ferandez, arXiv:2310.06010, 2023.
[Tohfa:2023cwm]
[13-38]
First constraints on Non-minimally coupled Natural and Coleman-Weinberg inflation in the light of massive neutrino self-interactions and Planck+BICEP/Keck, Nilay Bostan, Shouvik Roy Choudhury, arXiv:2310.01491, 2023.
[Bostan:2023ped]
[13-39]
Cosmological constraints from density-split clustering in the BOSS CMASS galaxy sample, Enrique Paillas et al., arXiv:2309.16541, 2023.
[Paillas:2023cpk]
[13-40]
Cosmological parameters derived from the final (PR4) Planck data release, M. Tristram et al., Astron.Astrophys. (2024), arXiv:2309.10034.
[Tristram:2023haj]
[13-41]
Calibrating baryonic feedback with weak lensing and fast radio bursts, Robert Reischke, Dennis Neumann, Klara Antonia Bertmann, Steffen Hagstotz, Hendrik Hildebrandt, arXiv:2309.09766, 2023.
[Reischke:2023tqh]
[13-42]
The FLAMINGO project: revisiting the $S_8$ tension and the role of baryonic physics, Ian G. McCarthy et al., Mon.Not.Roy.Astron.Soc. 526 (2023) 5494-5519, arXiv:2309.07959.
[McCarthy:2023ism]
[13-43]
How Effective is $N_{eff}$ at Discovering Dark Radiation in a Cosmology with Heavy Particle Decay?, Katarina Bleau, Joseph Bramante, Christopher Cappiello, JCAP 01 (2024) 021, arXiv:2309.06482.
[Bleau:2023fsj]
[13-44]
Self-Interacting Neutrinos in Light of Large-Scale Structure Data, Adam He, Rui An, Mikhail M. Ivanov, Vera Gluscevic, arXiv:2309.03956, 2023.
[He:2023oke]
[13-45]
The two-mode puzzle: Confronting self-interacting neutrinos with the full shape of the galaxy power spectrum, David Camarena, Francis-Yan Cyr-Racine, John Houghteling, Phys.Rev.D 108 (2023) 103535, arXiv:2309.03941.
[Camarena:2023cku]
[13-46]
Non-standard cosmic expansion histories: Neutrino decoupling and primordial nucleosynthesis signatures, D. Aristizabal Sierra, S. Gariazzo, A. Villanueva, JCAP 12 (2023) 020, arXiv:2308.15531.
[AristizabalSierra:2023bah]
[13-47]
Cosmological Implications of Gauged $U(1)_{B-L}$ on $\Delta N_{m eff}$ in the CMB and BBN, Haidar Esseili, Graham D. Kribs, arXiv:2308.07955, 2023.
[Esseili:2023ldf]
[13-48]
How Many Dark Neutrino Sectors Does Cosmology Allow?, Alan Zander, Manuel Ettengruber, Philipp Eller, Eur.Phys.J.C 84 (2024) 331, arXiv:2308.00798.
[Zander:2023jcu]
[13-49]
Crowded No More: The Accuracy of the Hubble Constant Tested with High Resolution Observations of Cepheids by JWST, Adam G. Riess, Gagandeep S. Anand, Wenlong Yuan, Stefano Casertano, Andrew Dolphin, Lucas M. Macri, Louise Breuval, Dan Scolnic, Marshall Perrin, Richard I. Anderson, Astrophys.J.Lett. 956 (2023) L18, arXiv:2307.15806.
[Riess:2023bfx]
[13-50]
On the lensing impact on cosmic relics $\&$ tensions, William Giare, Olga Mena, Eleonora Di Valentino, Phys.Rev.D 108 (2023) 103539, arXiv:2307.14204.
[Giare:2023aix]
[13-51]
$N_{{\rm eff}}$ constraints on light mediators coupled to neutrinos: the dilution-resistant effect, Shao-Ping Li, Xun-Jie Xu, JHEP 10 (2023) 012, arXiv:2307.13967.
[Li:2023puz]
[13-52]
Light Sterile Neutrinos in the Early Universe: Effects of Altered Dispersion Relations and a coupling to Axion-Like Dark Matter, Dominik Hellmann, Heinrich Pas, JCAP 11 (2023) 056, arXiv:2307.12118.
[Hellmann:2023ymj]
[13-53]
Testing the coupling of dark radiations in light of the Hubble tension, Zhiyu Lu, Batool Imtiaz, Dongdong Zhang, Yi-Fu Cai, arXiv:2307.09863, 2023.
[Lu:2023uhc]
[13-54]
Neutrino mass constraint from an Implicit Likelihood Analysis of BOSS voids, Leander Thiele, Elena Massara, Alice Pisani, ChangHoon Hahn, David N. Spergel, Shirley Ho, Benjamin Wandelt, arXiv:2307.07555, 2023.
[Thiele:2023oqf]
[13-55]
Observational Constraints on generalized dark matter properties in the presence of neutrinos with final Plank release, Santosh Kumar Yadav, Anil Kumar Yadav, Phys.Dark Univ. 42 (2023) 101363, arXiv:2307.05155.
[Yadav:2023qfj]
[13-56]
Peeking into the next decade in Large-Scale Structure Cosmology with its Effective Field Theory, Diogo Braganca, Yaniv Donath, Leonardo Senatore, Henry Zheng, arXiv:2307.04992, 2023.
[Braganca:2023pcp]
[13-57]
Imprints of dark matter-massive neutrino interaction in upcoming post-reionization and galaxy surveys, Antara Dey, Arnab Paul, Supratik Pal, Mon.Not.Roy.Astron.Soc. 527 (2023) 790-802, arXiv:2307.00606.
[Dey:2023sxx]
[13-58]
Saving CNB assisted EDE model at the expense of quantum corrections?, Michael Maziashvili, JCAP 08 (2023) 061, arXiv:2306.10876.
[Maziashvili:2023eps]
[13-59]
Modified gravity and massive neutrinos: constraints from the full shape analysis of BOSS galaxies and forecasts for Stage IV surveys, Chiara Moretti, Maria Tsedrik, Pedro Carrilho, Alkistis Pourtsidou, JCAP 12 (2023) 025, arXiv:2306.09275.
[Moretti:2023drg]
[13-60]
Cosmological inference including massive neutrinos from the matter power spectrum: biases induced by uncertainties in the covariance matrix, S. Gouyou Beauchamps, P. Baratta, S. Escoffier, W. Gillard, J. Bel, J. Bautista, C. Carbone, arXiv:2306.05988, 2023.
[GouyouBeauchamps:2023bmv]
[13-61]
Neff in the Standard Model at NLO is 3.043, Mattia Cielo, Miguel Escudero, Gianpiero Mangano, Ofelia Pisanti, Phys.Rev.D 108 (2023) L121301, arXiv:2306.05460.
[Cielo:2023bqp]
[13-62]
Thermalised dark radiation in the presence of PBH: ${\rm \Delta N_{\rm eff}}$ and gravitational waves complementarity, Nayan Das, Suruj Jyoti Das, Debasish Borah, Phys.Rev.D 108 (2023), arXiv:2306.00067.
[Das:2023oph]
[13-63]
A neural network emulator for the Lyman-$\alpha$ 1D flux power spectrum, Laura Cabayol-Garcia, Jonas Chaves-Montero, Andreu Font-Ribera, Christian Pedersen, Mon.Not.Roy.Astron.Soc. 525 (2023) 3499-3515, arXiv:2305.19064.
[Cabayol-Garcia:2023ygj]
[13-64]
Variation of the fine structure constant in the light of recent helium abundance measurement, Osamu Seto, Tomo Takahashi, Yo Toda, Phys.Rev.D 108 (2023) 023525, arXiv:2305.16624.
[Seto:2023yal]
[13-65]
The electromagnetic fine-structure constant in primordial nucleosynthesis revisited, Ulf-G. Meissner, Bernard Ch. Metsch, Helen Meyer, Eur.Phys.J.A 59 (2023) 223, arXiv:2305.15849.
[Meissner:2023voo]
[13-66]
Dark Sectors with Mass Thresholds Face Cosmological Datasets, Itamar J. Allali, Fabrizio Rompineve, Mark P. Hertzberg, Phys.Rev.D 108 (2023) 023527, arXiv:2305.14166.
[Allali:2023zbi]
[13-67]
Weighing neutrinos at the damping tail, Eleonora Di Valentino, Stefano Gariazzo, William Giare, Olga Mena, Phys.Rev.D 108 (2023) 083509, arXiv:2305.12989.
[DiValentino:2023fei]
[13-68]
A non-linear solution to the $S_8$ tension II: Analysis of DES Year 3 cosmic shear, Calvin Preston, Alexandra Amon, George Efstathiou, Mon.Not.Roy.Astron.Soc. 525 (2023) 5554-5564, arXiv:2305.09827.
[Preston:2023uup]
[13-69]
On the degeneracies between baryons, massive neutrinos and f(R) gravity in Stage IV cosmic shear analyses, A. Spurio Mancini, B. Bose, arXiv:2305.06350, 2023.
[SpurioMancini:2023mpt]
[13-70]
Hydrodynamical structure formation in Milgromian cosmology, Nils Wittenburg, Pavel Kroupa, Indranil Banik, Graeme Candlish, Nick Samaras, Mon.Not.Roy.Astron.Soc. 523 (2023) 453-473, arXiv:2305.05696.
[Wittenburg:2023rhb]
[13-71]
Precision CMB constraints on eV-scale bosons coupled to neutrinos, Stefan Sandner, Miguel Escudero, Samuel J. Witte, Eur.Phys.J.C 83 (2023) 709, arXiv:2305.01692.
[Sandner:2023ptm]
[13-72]
Extended Analysis of Neutrino-Dark Matter Interactions with Small-Scale CMB Experiments, Philippe Brax, Carsten van de Bruck, Eleonora Di Valentino, William Giare, Sebastian Trojanowski, Phys.Dark Univ. 42 (2023) 101321, arXiv:2305.01383.
[Brax:2023tvn]
[13-73]
Quasars as high-redshift standard candles, Guido Risaliti, Elisabeta Lusso, Emanuele Nardini, Giada Bargiacchi, Susanna Bisogni, Andrea Sacchi, Matilde Signorini, Bartolomeo Trefoloni, Astron.Nachr. 344 (2023) e230054, arXiv:2304.13752.
[Risaliti:2023uiy]
[13-74]
Big Bang initial conditions and self-interacting hidden dark matter, Jinzheng Li, Pran Nath, Phys.Rev.D 108 (2023) 115008, arXiv:2304.08454.
[Li:2023nez]
[13-75]
Revisiting the Lithium abundance problem in Big-Bang nucleosynthesis, Vinay Singh, Debasis Bhowmick, D. N. Basu, arXiv:2304.08032, 2023.
[Singh:2023ugh]
[13-76]
Constraining low-scale dark phase transitions with cosmological observations, Shihao Deng, Ligong Bian, Phys.Rev.D 108 (2023) 063516, arXiv:2304.06576.
[Deng:2023twb]
[13-77]
Robust and efficient CMB lensing power spectrum from polarization surveys, Louis Legrand, Julien Carron, Phys.Rev.D 108 (2023) 103516, arXiv:2304.02584.
[Legrand:2023jne]
[13-78]
New Insight on Neutrino Dark Matter Interactions from Small-Scale CMB Observations, Philippe Brax, Carsten van de Bruck, Eleonora Di Valentino, William Giare, Sebastian Trojanowski, Mon.Not.Roy.Astron.Soc. 527 (2023) L122-L126, arXiv:2303.16895.
[Brax:2023rrf]
[13-79]
Revisiting $f(R,T)$ cosmologies, Ana Paula Jeakel, Jonas Silva, Hermano Velten, Phys.Dark Univ. 43 (2024) 101401, arXiv:2303.15208.
[Jeakel:2023hss]
[13-80]
Resonant neutrino self-interactions and the $H_0$ tension, Jorge Venzor, Gabriela Garcia-Arroyo, Abdel Perez-Lorenzana, Josue De-Santiago, Phys.Rev.D 108 (2023) 043536, arXiv:2303.12792.
[Venzor:2023aka]
[13-81]
Cosmological constraints with the linear point from the BOSS survey, Mengfan He, Cheng Zhao, Huanyuan Shan, Mon.Not.Roy.Astron.Soc. 525 (2023) 1746-1757, arXiv:2303.10661.
[He:2023xof]
[13-82]
An accurate fluid approximation for massive neutrinos in cosmology, Caio Nascimento, Phys.Rev.D 108 (2023) 023505, arXiv:2303.09580.
[Nascimento:2023psl]
[13-83]
The magnificent ACT of flavor-specific neutrino self-interaction, Anirban Das, Subhajit Ghosh, JCAP 09 (2023) 042, arXiv:2303.08843.
[Das:2023npl]
[13-84]
A Consistent View of Interacting Dark Energy from Multiple CMB Probes, Yuejia Zhai, William Giare, Carsten van de Bruck, Eleonora Di Valentino, Olga Mena, Rafael C. Nunes, JCAP 07 (2023) 032, arXiv:2303.08201.
[Zhai:2023yny]
[13-85]
Primordial black hole formation during the QCD phase transition: threshold, mass distribution and abundance, Ilia Musco, Karsten Jedamzik, Sam Young, Phys.Rev.D 109 (2024) 083506, arXiv:2303.07980.
[Musco:2023dak]
[13-86]
Implications on Cosmology from Dirac Neutrino Magnetic Moments, E. Grohs, A. B. Balantekin, Phys.Rev.D 107 (2023) 123502, arXiv:2303.06576.
[Grohs:2023xwa]
[13-87]
The void-galaxy cross-correlation function with massive neutrinos and modified gravity, Renate Mauland, Oystein Elgaroy, David Fonseca Mota, Hans Arnold Winther, Astron.Astrophys. 674 (2023) A185, arXiv:2303.05820.
[Mauland:2023eax]
[13-88]
Quantifying the tension between cosmological and terrestrial constraints on neutrino masses, Stefano Gariazzo, Olga Mena, Thomas Schwetz, Phys.Dark Univ. 40 (2023) 101226, arXiv:2302.14159.
[Gariazzo:2023joe]
[13-89]
Small Correlated Against Large Estimator (SCALE) for Cosmic Microwave Background Lensing, Victor C. Chan, Renee Hlozek, Joel Meyers, Alexander van Engelen, Phys.Rev.D 109 (2024) 043527, arXiv:2302.13350.
[Chan:2023vye]
[13-90]
Cosmic Birefringence from Neutrino and Dark Matter Asymmetries, Ren-Peng Zhou, Da Huang, Chao-Qiang Geng, JCAP 07 (2023) 053, arXiv:2302.11140.
[Zhou:2023aqz]
[13-91]
Improving initialization and evolution accuracy of cosmological neutrino simulations, James M. Sullivan, J. D. Emberson, Salman Habib, Nicholas Frontiere, JCAP 06 (2023) 003, arXiv:2302.09134.
[Sullivan:2023ntz]
[13-92]
Neutrino-Assisted Early Dark Energy is a Natural Resolution of the Hubble Tension, Mariana Carrillo Gonzalez, Qiuyue Liang, Jeremy Sakstein, Mark Trodden, arXiv:2302.09091, 2023.
[CarrilloGonzalez:2023lma]
[13-93]
Probing massive neutrinos with the Minkowski functionals of the galaxy distribution, Wei Liu, Aoxiang Jiang, Wenjuan Fang, JCAP 09 (2023) 037, arXiv:2302.08162.
[Liu:2023qrj]
[13-94]
Observational Evidence for Cosmological Coupling of Black Holes and its Implications for an Astrophysical Source of Dark Energy, Duncan Farrah et al., Astrophys. J. Lett. 944 (2023) L31, arXiv:2302.07878.
[Farrah:2023opk]
[13-95]
A hidden gauged $U(1)$ addressing radiative neutrino mass, dark matter, $(g-2)_{\mu}$, and $H_0$ tension, Ujjal Kumar Dey, Hiroshi Okada, arXiv:2302.07008, 2023.
[Dey:2023xfb]
[13-96]
Cosmological forecast of the 21-cm power spectrum using the halo model of reionization, Aurel Schneider, Timothee Schaeffer, Sambit K. Giri, Phys.Rev.D 108 (2023) 043030, arXiv:2302.06626.
[Schneider:2023ciq]
[13-97]
The influence of the effective number of active and sterile neutrinos on the determination of the values of cosmological parameters, P. A. Chernikov, A. V. Ivanchik, Astron.Lett. 48 (2022) 689-701, arXiv:2302.05251.
[Chernikov:2022mdn]
[13-98]
Can neutrino-assisted early dark energy models ameliorate the $H_0$ tension in a natural way?, Diogo H. F. de Souza, Rogerio Rosenfeld, Phys.Rev.D 108 (2023) 083512, arXiv:2302.04644.
[deSouza:2023sqp]
[13-99]
Signature of Massive Neutrinos from the Clustering of Critical Points. I. Density-threshold-based Analysis in Configuration Space, Jeongin Moon, Graziano Rossi, Hogyun Yu, Astrophys. J. Suppl. 264 (2023) 26, arXiv:2302.03171.
[Moon:2023oep]
[13-100]
CMB signature of non-thermal Dark Matter produced from self-interacting dark sector, Dilip Kumar Ghosh, Purusottam Ghosh, Sk Jeesun, JCAP 07 (2023) 012, arXiv:2301.13754.
[Ghosh:2023ocl]
[13-101]
Dark Radiation from Neutrino Mixing after Big Bang Nucleosynthesis, Daniel Aloni, Melissa Joseph, Martin Schmaltz, Neal Weiner, Phys.Rev.Lett. 131 (2023) 221001, arXiv:2301.10792.
[Aloni:2023tff]
[13-102]
Model independent variance cancellation in CMB lensing cross-correlations, Anton Baleato Lizancos, Simone Ferraro, Phys.Rev.D 107 (2023) 123532, arXiv:2301.10242.
[Lizancos:2023jpo]
[13-103]
Synergy Between Hubble Tension Motivated Self-Interacting Neutrino and KeV-Sterile Neutrino Dark Matter, Mansi Dhuria, Abinas Pradhan, Phys.Rev.D 107 (2023) 123030, arXiv:2301.09552.
[Dhuria:2023yrw]
[13-104]
NSC++: Non-Standard Cosmologies in C++, Dimitrios Karamitros, Comput.Phys.Commun. 288 (2023) 108743, arXiv:2301.08253.
[Karamitros:2023uak]
[13-105]
$H_0$ Tension in Torsion-based Modified Gravity, Sanjay Mandal, Sai Swagat Mishra, P. K. Sahoo, Nucl.Phys.B 993 (2023) 116285, arXiv:2301.06328.
[Mandal:2023bzo]
[13-106]
Cosmological Fisher forecasts for next-generation spectroscopic surveys, William d'Assignies D., Cheng Zhao, Jiaxi Yu, Jean-Paul Kneib, Mon.Not.Roy.Astron.Soc. 521 (2023) 3648-3662, arXiv:2301.02289.
[D:2023oxn]
[13-107]
Joint reconstructions of growth and expansion histories from stage-IV surveys with minimal assumptions II: Modified gravity and massive neutrinos, Rodrigo Calderon, Benjamin L'Huillier, David Polarski, Arman Shafieloo, Alexei A. Starobinsky, Phys.Rev.D 108 (2023) 023504, arXiv:2301.00640.
[Calderon:2023msm]
[13-108]
A novel model-marginalized cosmological bound on the QCD axion mass, Eleonora Di Valentino, Stefano Gariazzo, William Giare, Alessandro Melchiorri, Olga Mena, Fabrizio Renzi, Phys.Rev.D 107 (2023) 103528, arXiv:2212.11926.
[DiValentino:2022edq]
[13-109]
Thermal Production of Massless Dark Photons, Alberto Salvio, JCAP 07 (2023) 035, arXiv:2212.09755.
[Salvio:2022hfa]
[13-110]
DEMNUni: disentangling dark energy from massive neutrinos with the void size function, Giovanni Verza, Carmelita Carbone, Alice Pisani, Alessandro Renzi, JCAP 12 (2023) 044, arXiv:2212.09740.
[Verza:2022qsh]
[13-111]
Cosmology with cosmic web environments II. Redshift-space auto and cross power spectra, Tony Bonnaire, Joseph Kuruvilla, Nabila Aghanim, Aurelien Decelle, Astron.Astrophys. 674 (2023) A150, arXiv:2212.06838.
[Bonnaire:2022ocm]
[13-112]
A new approach to constrain the Hubble expansion rate at high redshifts by gravitational waves, Mohammadtaher Safarzadeh, Karan Jani, Nianyi Chen, Tiziana DiMatteo, Abraham Loeb, arXiv:2212.06707, 2022.
[Safarzadeh:2022qyf]
[13-113]
COVMOS: a new Monte Carlo approach for galaxy clustering analysis, Philippe Baratta, Julien Bel, Sylvain Gouyou Beauchamps, Carmelita Carbone, Astron.Astrophys. 673 (2023) A1, arXiv:2211.13590.
[Baratta:2022gqd]
[13-114]
Euclid: Modelling massive neutrinos in cosmology - a code comparison, J. Adamek et al. (Euclid), JCAP 06 (2023) 035, arXiv:2211.12457.
[Euclid:2022qde]
[13-115]
Non-unitary three-neutrino mixing in the early Universe, Stefano Gariazzo, Pablo Martinez-Mirave, Olga Mena, Sergio Pastor, Mariam Tortola, JCAP 03 (2023) 046, arXiv:2211.10522.
[Gariazzo:2022evs]
[13-116]
Strong cosmological constraints on the neutrino magnetic moment, Pierluca Carenza, Giuseppe Lucente, Martina Gerbino, Maurizio Giannotti, Massimiliano Lattanzi, arXiv:2211.10432, 2022.
[Carenza:2022ngg]
[13-117]
Using machine learning to compress the matter transfer function $T(k)$, J. Bayron Orjuela-Quintana, Savvas Nesseris, Wilmar Cardona, Phys.Rev.D 107 (2023) 08, arXiv:2211.06393.
[Orjuela-Quintana:2022nnq]
[13-118]
Weighing neutrinos in dynamical dark energy cosmology with the logarithm parametrization and the oscillating parametrization, Rui-Yun Guo, Tian-Ying Yao, Xin-Yue Zhao, Yun-He Li, arXiv:2211.05956, 2022.
[Yao:2022jrw]
[13-119]
Big bang nucleosynthesis and early dark energy in light of the EMPRESS $Y_p$ results and the $H_0$ tension, Tomo Takahashi, Sora Yamashita, Phys.Rev.D 107 (2023) 103520, arXiv:2211.04087.
[Takahashi:2022cpn]
[13-120]
Revealing the effects of curvature on the cosmological models, Weiqiang Yang, William Giare, Supriya Pan, Eleonora Di Valentino, Alessandro Melchiorri, Joseph Silk, Phys.Rev.D 107 (2023) 063509, arXiv:2210.09865.
[Yang:2022kho]
[13-121]
Beyond $\Lambda$CDM constraints from the full shape clustering measurements from BOSS and eBOSS, Agne Semenaite, Ariel G. Sanchez, Andrea Pezzotta, Jiamin Hou, Alexander Eggemeier, Martin Crocce, Cheng Zhao, Joel R. Brownstein, Graziano Rossi, Donald P. Schneider, Mon.Not.Roy.Astron.Soc. 521 (2023) 5013-5025, arXiv:2210.07304.
[Semenaite:2022unt]
[13-122]
Momentum transfer in the dark sector and lensing convergence in upcoming galaxy surveys, Wilmar Cardona, David Figueruelo, JCAP 12 (2022) 010, arXiv:2209.12583.
[Cardona:2022mdq]
[13-123]
Combined Effects of $f(R)$ Gravity and Massive Neutrinos on the Turn-Around Radii of Dark Matter Halos, Jounghun Lee, Marco Baldi, Astrophys.J. 938 (2022) 137, arXiv:2209.11609.
[Lee:2022rin]
[13-124]
Impact of Anisotropic Birefringence on Measuring Cosmic Microwave Background Lensing, Hongbo Cai, Yilun Guan, Toshiya Namikawa, Arthur Kosowsky, Phys.Rev.D 107 (2023) 043513, arXiv:2209.08749.
[Cai:2022zad]
[13-125]
The Sigma-8 Tension is a Drag, Vivian Poulin, Jose Luis Bernal, Ely Kovetz, Marc Kamionkowski, Phys.Rev.D 107 (2023) 123538, arXiv:2209.06217.
[Poulin:2022sgp]
[13-126]
CosmoGridV1: a simulated $w$CDM theory prediction for map-level cosmological inference, Tomasz Kacprzak, Janis Fluri, Aurel Schneider, Alexandre Refregier, Joachim Stadel, JCAP 02 (2023) 050, arXiv:2209.04662.
[Kacprzak:2022pww]
[13-127]
Constraining $\nu \Lambda$CDM with density-split clustering, Enrique Paillas, Carolina Cuesta-Lazaro, Pauline Zarrouk, Yan-Chuan Cai, Will J. Percival, Seshadri Nadathur, Mathilde Pinon, Arnaud de Mattia, Florian Beutler, Mon.Not.Roy.Astron.Soc. 522 (2023) 606-625, arXiv:2209.04310.
[Paillas:2022wob]
[13-128]
Early versus Phantom Dark Energy, Self-Interacting, Extra, or Massive Neutrinos, Primordial Magnetic Fields, or a Curved Universe: An Exploration of Possible Solutions to the $H_0$ and $\sigma_8$ Problems, Helena Garcia Escudero, Jui-Lin Kuo, Ryan E. Keeley, Kevork N. Abazajian, Phys.Rev.D 106 (2022) 103517, arXiv:2208.14435.
[Escudero:2022rbq]
[13-129]
Assessing the robustness of sound horizon-free determinations of the Hubble constant, Tristan L. Smith, Vivian Poulin, Theo Simon, Phys.Rev.D 108 (2023) 103525, arXiv:2208.12992.
[Smith:2022iax]
[13-130]
Impact of the free-streaming neutrinos to the second order induced gravitational waves, Xukun Zhang, Jing-Zhi Zhou, Zhe Chang, Eur.Phys.J.C 82 (2022) 781, arXiv:2208.12948.
[Zhang:2022dgx]
[13-131]
Probing neutrino interactions and dark radiation with gravitational waves, Marilena Loverde, Zachary J. Weiner, JCAP 02 (2023) 064, arXiv:2208.11714.
[Loverde:2022wih]
[13-132]
A reanalysis of the latest SH0ES data for $H_0$: Effects of new degrees of freedom on the Hubble tension, Leandros Perivolaropoulos, Foteini Skara, Universe 8 (2022) 502, arXiv:2208.11169.
[Perivolaropoulos:2022khd]
[13-133]
Constraining effective neutrino species with bispectrum of large scale structures, Yanlong Shi, Chen Heinrich, Olivier Dore, Phys.Rev.D 108 (2023) 023522, arXiv:2208.10560.
[Shi:2022drq]
[13-134]
Future prospects on testing extensions to $\Lambda$CDM through the weak lensing of gravitational waves, Charlie T. Mpetha, Giuseppe Congedo, Andy Taylor, Phys.Rev.D 107 (2023) 103518, arXiv:2208.05959.
[Mpetha:2022xqo]
[13-135]
Probing early structure and model-independent neutrino mass with high-redshift CMB lensing mass maps, Frank J. Qu, Blake D. Sherwin, Omar Darwish, Toshiya Namikawa, Mathew S. Madhavacheril, Phys.Rev.D 107 (2023) 123540, arXiv:2208.04253.
[Qu:2022xow]
[13-136]
Baryon asymmetry and lower bound on right handed neutrino mass in fast expanding Universe: an analytical approach, Mainak Chakraborty, Sourov Roy, JCAP 11 (2022) 053, arXiv:2208.04046.
[Chakraborty:2022gob]
[13-137]
Dark Energy and Neutrino Superfluids, Andrea Addazi, Salvatore Capozziello, Qingyu Gan, Antonino Marciano, Phys.Dark Univ. 37 (2022) 101102, arXiv:2208.03591.
[Addazi:2022kjt]
[13-138]
A new constraint on primordial lepton flavour asymmetries, Valerie Domcke, Kohei Kamada, Kyohei Mukaida, Kai Schmitz, Masaki Yamada, Phys.Rev.Lett. 130 (2023) 261803, arXiv:2208.03237.
[Domcke:2022uue]
[13-139]
Fast computation of non-linear power spectrum in cosmologies with massive neutrinos, Hernan E. Noriega, Alejandro Aviles, Sebastien Fromenteau, Mariana Vargas-Magana, JCAP 11 (2022) 038, arXiv:2208.02791.
[Noriega:2022nhf]
[13-140]
Coupled and uncoupled early dark energy, massive neutrinos and the cosmological tensions, Adria Gomez-Valent, Ziyang Zheng, Luca Amendola, Christof Wetterich, Valeria Pettorino, Phys.Rev.D 106 (2022) 103522, arXiv:2207.14487.
[Gomez-Valent:2022bku]
[13-141]
DEMNUni: comparing nonlinear power spectra prescriptions in the presence of massive neutrinos and dynamical dark energy, G. Parimbelli, C. Carbone, J. Bel, B. Bose, M. Calabrese, E. Carella, M. Zennaro, JCAP 11 (2022) 041, arXiv:2207.13677.
[Parimbelli:2022pmr]
[13-142]
Probing Physics Beyond the Standard Model: Limits from BBN and the CMB Independently and Combined, Tsung-Han Yeh, Jessie Shelton, Keith A. Olive, Brian D. Fields, JCAP 10 (2022) 046, arXiv:2207.13133.
[Yeh:2022heq]
[13-143]
Model marginalized constraints on neutrino properties from cosmology, Eleonora di Valentino, Stefano Gariazzo, Olga Mena, Phys.Rev.D 106 (2022) 043540, arXiv:2207.05167.
[diValentino:2022njd]
[13-144]
Global view of neutrino interactions in cosmology: The freestreaming window as seen by Planck, Petter Taule, Miguel Escudero, Mathias Garny, Phys.Rev.D 106 (2022) 063539, arXiv:2207.04062.
[Taule:2022jrz]
[13-145]
Dark Energy Black Holes with Intermediate Masses at High Redshifts: an earlier generation of Quasars and observations, Anupam Singh, arXiv:2207.02143, 2022.
[Singh:2022aoi]
[13-146]
Updated neutrino mass constraints from galaxy clustering and CMB lensing-galaxy cross-correlation measurements, Isabelle Tanseri, Steffen Hagstotz, Sunny Vagnozzi, Elena Giusarma, Katherine Freese, JHEAp 36 (2022) 1-26, arXiv:2207.01913.
[Tanseri:2022zfe]
[13-147]
Restoring cosmological concordance with early dark energy and massive neutrinos?, Alexander Reeves, Laura Herold, Sunny Vagnozzi, Blake D. Sherwin, Elisa G. M. Ferreira, Mon.Not.Roy.Astron.Soc. 520 (2023) 3688, arXiv:2207.01501.
[Reeves:2022aoi]
[13-148]
Identifying High Energy Neutrino Transients by Neutrino Multiplet-Triggered Followups, Shigeru Yoshida, Kohta Murase, Masaomi Tanaka, Nobuhiro Shimizu, Aya Ishihara, Astrophys.J. 937 (2022) 108, arXiv:2206.13719.
[Yoshida:2022idr]
[13-149]
Concealing Dirac neutrinos from cosmic microwave background, Anirban Biswas, Dilip Kumar Ghosh, Dibyendu Nanda, JCAP 10 (2022) 006, arXiv:2206.13710.
[Biswas:2022fga]
[13-150]
Cosmological Perturbations Engendered by Discrete Relativistic Species, Maksym Brilenkov, Ezgi Canay, Maxim Eingorn, Eur.Phys.J.C 83 (2023) 601, arXiv:2206.13495.
[Brilenkov:2022gcu]
[13-151]
Tsallis cosmology and its applications in dark matter physics with focus on IceCube high-energy neutrino data, Petr Jizba, Gaetano Lambiase, Eur.Phys.J.C 82 (2022) 1123, arXiv:2206.12910.
[Jizba:2022bfz]
[13-152]
Cosmic nucleosynthesis: a multi-messenger challenge, Roland Diehl, Andreas Korn, Bruno Leibundgut, Maria Lugaro, Anton Wallner, Prog.Part.Nucl.Phys. 127 (2022) 103983, arXiv:2206.12246.
[Diehl:2022jnq]
[13-153]
Using Neutrino Oscillations to Measure $H_0$?, Luis A. Anchordoqui, Universe 8 (2022) 377, arXiv:2206.06115.
[Anchordoqui:2022ebw]
[13-154]
A Challenge to the Standard Cosmological Model, Nathan J. Secrest, Sebastian von Hausegger, Mohamed Rameez, Roya Mohayaee, Subir Sarkar, Astrophys. J. Lett. 937 (2022) L31, arXiv:2206.05624.
[Secrest:2022uvx]
[13-155]
Long lived inert Higgs in fast expanding universe and its imprint on cosmic microwave background, Dilip Kumar Ghosh, Sk Jeesun, Dibyendu Nanda, Phys.Rev.D 106 (2022) 115001, arXiv:2206.04940.
[Ghosh:2022fws]
[13-156]
PeV IceCube signals and $H_0$ tension in the framework of Non-Local Gravity, Salvatore Capozziello, Gaetano Lambiase, Eur.Phys.J.Plus 137 (2022) 735, arXiv:2206.03690.
[Capozziello:2022mal]
[13-157]
Disentangling Modified Gravity and Massive Neutrinos with Intrinsic Shape Alignments of Massive Halos, Jounghun Lee, Suho Ryu, Marco Baldi, Astrophys.J. 945 (2023) 15, arXiv:2206.03406.
[Lee:2022lbu]
[13-158]
Two-loop power spectrum with full time- and scale-dependence and EFT corrections: impact of massive neutrinos and going beyond EdS, Mathias Garny, Petter Taule, arXiv:2205.11533, 2022.
[2205.11533]
[13-159]
Chiral gravitational waves from thermalized neutrinos in the early Universe, Philipp Gubler, Naoki Yamamoto, Di-Lun Yang, JCAP 09 (2022) 025, arXiv:2205.10516.
[Gubler:2022zmf]
[13-160]
Cosmology-friendly time-varying neutrino masses via the sterile neutrino portal, Guo-yuan Huang, Manfred Lindner, Pablo Martinez-Mirave, Manibrata Sen, Phys.Rev.D 106 (2022) 033004, arXiv:2205.08431.
[Huang:2022wmz]
[13-161]
Neutrino mass and kinetic gravity braiding degeneracies, Gabriela Garcia-Arroyo, Jorge L. Cervantes-Cota, Ulises Nucamendi, JCAP 08 (2022) 009, arXiv:2205.05755.
[Garcia-Arroyo:2022vvy]
[13-162]
Towards a full description of MeV dark matter decoupling: a self-consistent determination of relic abundance and $N_{\rm eff}$, Xiaoyong Chu, Jui-Lin Kuo, Josef Pradler, Phys.Rev.D 106 (2022) 055022, arXiv:2205.05714.
[Chu:2022xuh]
[13-163]
Updating non-standard neutrinos properties with Planck-CMB data and full-shape analysis of BOSS and eBOSS galaxies, Suresh Kumar, Rafael C. Nunes, Priya Yadav, JCAP 09 (2022) 060, arXiv:2205.04292.
[Kumar:2022vee]
[13-164]
Neutrino mass and mass ordering: No conclusive evidence for normal ordering, Stefano Gariazzo et al., JCAP 10 (2022) 010, arXiv:2205.02195.
[Gariazzo:2022ahe]
[13-165]
Freeze-in Dark Matter and $\Delta{\rm N}_{\rm eff}$ via Light Dirac Neutrino Portal, Anirban Biswas, Debasish Borah, Nayan Das, Dibyendu Nanda, Phys.Rev.D 107 (2023) 015015, arXiv:2205.01144.
[Biswas:2022vkq]
[13-166]
Model-agnostic interpretation of 10 billion years of cosmic evolution traced by BOSS and eBOSS data, Samuel Brieden, Hector Gil-Marin, Licia Verde, JCAP 08 (2022) 024, arXiv:2204.11868.
[Brieden:2022lsd]
[13-167]
Wavelet Moments for Cosmological Parameter Estimation, Michael Eickenberg et al., arXiv:2204.07646, 2022.
[Eickenberg:2022qvy]
[13-168]
Impacts of gravitational-wave standard siren observations from Einstein Telescope and Cosmic Explorer on weighing neutrinos in interacting dark energy models, Shang-Jie Jin, Rui-Qi Zhu, Ling-Feng Wang, Hai-Li Li, Jing-Fei Zhang, Xin Zhang, Commun.Theor.Phys. 74 (2022) 105404, arXiv:2204.04689.
[Jin:2022tdf]
[13-169]
Determining the Hubble Constant without the Sound Horizon: A $3.6\%$ Constraint on $H_0$ from Galaxy Surveys, CMB Lensing and Supernovae, Oliver H. E. Philcox, Gerrit S. Farren, Blake D. Sherwin, Eric J. Baxter, Dillon J. Brout, Phys.Rev.D 106 (2022) 063530, arXiv:2204.02984.
[Philcox:2022sgj]
[13-170]
Probing massive neutrinos with the Minkowski functionals of large-scale structure, Wei Liu, Aoxiang Jiang, Wenjuan Fang, JCAP 07 (2022) 045, arXiv:2204.02945.
[Liu:2022vtr]
[13-171]
A Cosmological Lithium Solution from Discrete Gauged Baryon Minus Lepton Number, Seth Koren, arXiv:2204.01750, 2022.
[Koren:2022ezi]
[13-172]
Neutrino Masses and Mass Hierarchy: Evidence for the Normal Hierarchy, Raul Jimenez, Carlos Pena-Garay, Kathleen Short, Fergus Simpson, Licia Verde, JCAP 09 (2022) 006, arXiv:2203.14247.
[Jimenez:2022dkn]
[13-173]
Precision Early Universe Cosmology from Stochastic Gravitational Waves, Dawid Brzeminski, Anson Hook, Gustavo Marques-Tavares, JHEP 11 (2022) 061, arXiv:2203.13842.
[Brzeminski:2022haa]
[13-174]
A Two-Fluid Treatment of the Effect of Neutrinos on the Matter Density, Farshad Kamalinejad, Zachary Slepian, arXiv:2203.13103, 2022.
[Kamalinejad:2022yyl]
[13-175]
Forecast of Neutrino Cosmology from the CSST Photometric Galaxy Clustering and Cosmic Shear Surveys, Hengjie Lin, Yan Gong, Xuelei Chen, Kwan Chuen Chan, Zuhui Fan, Hu Zhan, arXiv:2203.11429, 2022.
[Lin:2022aro]
[13-176]
EMPRESS. VIII. A New Determination of Primordial He Abundance with Extremely Metal-Poor Galaxies: A Suggestion of the Lepton Asymmetry and Implications for the Hubble Tension, Akinori Matsumoto et al., Astrophys.J. 941 (2022) 167, arXiv:2203.09617.
[Matsumoto:2022tlr]
[13-177]
Weaker yet again: mass spectrum-consistent cosmological constraints on the neutrino lifetime, Joe Zhiyu Chen, Isabel M. Oldengott, Giovanni Pierobon, Yvonne Y. Y. Wong, Eur.Phys.J.C 82 (2022) 640, arXiv:2203.09075.
[Chen:2022idm]
[13-178]
Exploring $\Lambda$CDM extensions with SPT-3G and Planck data: 4$\sigma$ evidence for neutrino masses, full resolution of the Hubble crisis by dark energy with phantom crossing, and all that, Anton Chudaykin, Dmitry Gorbunov, Nikita Nedelko, arXiv:2203.03666, 2022.
[Chudaykin:2022rnl]
[13-179]
Discordances in cosmology and the violation of slow-roll inflationary dynamics, Akhil Antony, Fabio Finelli, Dhiraj Kumar Hazra, Arman Shafieloo, Phys.Rev.Lett. 130 (2023) 111001, arXiv:2202.14028.
[Antony:2022ert]
[13-180]
$\mathbf{{N}_{eff}}$ from Excited DM state, Wei Chao, Jing-Jing Feng, Ming-Jie Jin, arXiv:2202.12673, 2022.
[Chao:2022gdb]
[13-181]
Massive neutrino self-interactions with a light mediator in cosmology, Jorge Venzor, Gabriela Garcia-Arroyo, Abdel Perez-Lorenzana, Josue De-Santiago, Phys.Rev.D 105 (2022) 123539, arXiv:2202.09310.
[Venzor:2022hql]
[13-182]
The halo bispectrum as a sensitive probe of massive neutrinos and baryon physics, Victoria Yankelevich, Ian G. McCarthy, Juliana Kwan, Sam G. Stafford, Jia Liu, Mon.Not.Roy.Astron.Soc. 521 (2023) 1448-1461, arXiv:2202.07680.
[Yankelevich:2022mus]
[13-183]
Non-standard neutrino cosmology dilutes the lensing anomaly, Ivan Esteban, Olga Mena, Jordi Salvado, Phys.Rev.D 106 (2022) 083516, arXiv:2202.04656.
[Esteban:2022rjk]
[13-184]
What does cosmology tell us about the mass of thermal-relic dark matter?, Rui An, Vera Gluscevic, Erminia Calabrese, J. Colin Hill, JCAP 07 (2022) 002, arXiv:2202.03515.
[An:2022sva]
[13-185]
Multi-parameter Dynamical Dark Energy Equation of State and Present Cosmological Tensions, Ravi Kumar Sharma, Kanhaiya Lal Pandey, Subinoy Das, Astrophys.J. 934 (2022) 113, arXiv:2202.01749.
[Sharma:2022ifr]
[13-186]
Cosmological perturbations: non-cold relics without the Boltzmann hierarchy, Lingyuan Ji, Marc Kamionkowski, Jose Luis Bernal, Phys.Rev.D 106 (2022) 103531, arXiv:2201.11129.
[Ji:2022iji]
[13-187]
Environment Dependent Electron Mass and the H$_0$-Tension, Rance Solomon, Garvita Agarwal, Dejan Stojkovic, Phys.Rev.D 105 (2022) 103536, arXiv:2201.03127.
[Solomon:2022qqf]
[13-188]
Cosmological constant problem on the horizon, Hassan Firouzjahi, Phys.Rev.D 106 (2022) 083510, arXiv:2201.02016.
[Firouzjahi:2022xxb]
[13-189]
JCAP 11 (2022) 035.
[Gunther:2022pto]
[13-190]
Can varying the gravitational constant alleviate the tensions?, Ziad Sakr, Domenico Sapone, JCAP 03 (2022) 034, arXiv:2112.14173.
[Sakr:2021nja]
[13-191]
Cluster counts III. $\Lambda$CDM extensions and the cluster tension, Ziad Sakr, Stephane Ilic, Alain Blanchard, Astron.Astrophys. 666 (2022) A34, arXiv:2112.14171.
[Sakr:2021jya]
[13-192]
Improved cosmological constraints on the neutrino mass and lifetime, Guillermo F. Abellan, Zackaria Chacko, Abhish Dev, Peizhi Du, Vivian Poulin, Yuhsin Tsai, JHEP 08 (2022) 076, arXiv:2112.13862.
[FrancoAbellan:2021hdb]
[13-193]
Future prospects on constraining neutrino cosmology with the Ali CMB Polarization Telescope, Dongdong Zhang, Jiarui Li, Jiaqi Yang, Yufei Zhang, Yi-Fu Cai, Wenjuan Fang, Chang Feng, Astrophys.J. 946 (2023) 32, arXiv:2112.10539.
[Zhang:2021ecp]
[13-194]
Using peculiar velocity surveys to constrain neutrino masses, Abbe M. Whitford, Cullan Howlett, Tamara M. Davis, Mon.Not.Roy.Astron.Soc. 513 (2022) 345-362, arXiv:2112.10302.
[Whitford:2021xqk]
[13-195]
Cosmological constraints on the decay of heavy relics into neutrinos, Thomas Hambye, Marco Hufnagel, Matteo Lucca, JCAP 05 (2022) 033, arXiv:2112.09137.
[Hambye:2021moy]
[13-196]
Symbolic Implementation of Extensions of the $\texttt{PyCosmo}$ Boltzmann Solver, Beatrice Moser, Christiane S. Lorenz, Uwe Schmitt, Alexandre Refregier, Janis Fluri, Raphael Sgier, Federica Tarsitano, Lavinia Heisenberg, Astron.Comput. 40 (2022) 100603, arXiv:2112.08395.
[Moser:2021rej]
[13-197]
The resilience of the Etherington-Hubble relation, Fabrizio Renzi, Natalie B. Hogg, William Giare, Mon.Not.Roy.Astron.Soc. 513 (2022) 4004, arXiv:2112.05701.
[Renzi:2021xii]
[13-198]
The BOSS DR12 Full-Shape Cosmology: $\Lambda$CDM Constraints from the Large-Scale Galaxy Power Spectrum and Bispectrum Monopole, Oliver H. E. Philcox, Mikhail M. Ivanov, Phys.Rev.D 105 (2022) 043517, arXiv:2112.04515.
[Philcox:2021kcw]
[13-199]
Cosmology with cosmic web environments I. Real-space power spectra, Tony Bonnaire, Nabila Aghanim, Joseph Kuruvilla, Aurelien Decelle, Astron.Astrophys. 661 (2022) A146, arXiv:2112.03926.
[Bonnaire:2021sie]
[13-200]
Neutrino Mass Bounds in the era of Tension Cosmology, Eleonora Di Valentino, Alessandro Melchiorri, Astrophys.J.Lett. 931 (2022) L18, arXiv:2112.02993.
[DiValentino:2021imh]
[13-201]
The cosmological simulation code $\scriptstyle{\rm CO}N{\rm CEPT}\, 1.0$, Jeppe Dakin, Steen Hannestad, Thomas Tram, Mon.Not.Roy.Astron.Soc. 513 (2022) 991-1014, arXiv:2112.01508.
[Dakin:2021ivb]
[13-202]
The Pantheon+ Analysis: Improving the Redshifts and Peculiar Velocities of Type Ia Supernovae Used in Cosmological Analyses, Anthony Carr, Tamara M. Davis, Daniel Scolnic, Khaled Said, Dillon Brout, Erik R. Peterson, Richard Kessler, Publ.Astron.Soc.Austral. 39 (2022) e046, arXiv:2112.01471.
[Carr:2021lcj]
[13-203]
Hot New Early Dark Energy, Florian Niedermann, Martin S. Sloth, Phys.Rev.D 105 (2022) 063509, arXiv:2112.00770.
[Niedermann:2021vgd]
[13-204]
Hot New Early Dark Energy: Towards a Unified Dark Sector of Neutrinos, Dark Energy and Dark Matter, Florian Niedermann, Martin S. Sloth, Phys.Lett.B 835 (2022) 137555, arXiv:2112.00759.
[Niedermann:2021ijp]
[13-205]
Pseudoscalar sterile neutrino self-interactions in light of Planck, SPT and ACT data, Mattia Atzori Corona, Riccardo Murgia, Matteo Cadeddu, Maria Archidiacono, Stefano Gariazzo, Carlo Giunti, Steen Hannestad, JCAP 06 (2022) 010, arXiv:2112.00037.
[Corona:2021qxl]
[13-206]
Using Neutrino Oscillations to Measure $H_0$, Ali Rida Khalifeh, Raul Jimenez, Phys.Dark Univ. 37 (2022) 101063, arXiv:2111.15249.
[Khalifeh:2021jfl]
[13-207]
On the road to percent accuracy VI: the nonlinear power spectrum for interacting dark energy with baryonic feedback and massive neutrinos, Pedro Carrilho, Karim Carrion, Benjamin Bose, Alkistis Pourtsidou, Juan Carlos Hidalgo, Lucas Lombriser, Marco Baldi, Mon.Not.Roy.Astron.Soc. 512 (2022) 3691-3702, arXiv:2111.13598.
[Carrilho:2021rqo]
[13-208]
What can CMB observations tell us about the neutrino distribution function?, James Alvey, Miguel Escudero, Nashwan Sabti, JCAP 02 (2022) 037, arXiv:2111.12726.
[Alvey:2021sji]
[13-209]
Cosmology and neutrino mass with the Minimum Spanning Tree, Krishna Naidoo, Elena Massara, Ofer Lahav, Mon.Not.Roy.Astron.Soc. 513 (2022) 3596-3609, arXiv:2111.12088.
[Naidoo:2021dxz]
[13-210]
BOSS full-shape analysis from the EFTofLSS with exact time dependence, Pierre Zhang, Yifu Cai, JCAP 01 (2022) 031, arXiv:2111.05739.
[Zhang:2021uyp]
[13-211]
Cosmological Dependence of Sterile Neutrino Dark Matter With Self-Interacting Neutrinos, Carlos Chichiri, Graciela B. Gelmini, Philip Lu, Volodymyr Takhistov, JCAP 09 (2022) 036, arXiv:2111.04087.
[Chichiri:2021wvw]
[13-212]
Superhorizon Perturbations: A Possible Explanation of the Hubble-Lemaitre Tension and the Large-scale Anisotropy of the Universe, Prabhakar Tiwari, Rahul Kothari, Pankaj Jain, Astrophys. J. Lett. 924 (2022) L36, arXiv:2111.02685.
[Tiwari:2021ikr]
[13-213]
The Bias to Cosmic Microwave Background Lensing Reconstruction from the Kinematic Sunyaev-Zel'dovich Effect at Reionization, Hongbo Cai, Mathew S. Madhavacheril, J. Colin Hill, Arthur Kosowsky, Phys.Rev.D 105 (2022) 043516, arXiv:2111.01944.
[Cai:2021hnb]
[13-214]
Cosmological Implications of a Neutrino Mass Detection, Daniel Green, Joel Meyers, arXiv:2111.01096, 2021.
[Green:2021xzn]
[13-215]
A $\nu$ scalar in the early universe and $(g-2)_\mu$, Jia Liu, Navin McGinnis, Carlos E.M. Wagner, Xiao-Ping Wang, Phys.Rev.D 105 (2022), arXiv:2110.14665.
[Liu:2021kug]
[13-216]
BOSS Correlation Function Analysis from the Effective Field Theory of Large-Scale Structure, Pierre Zhang, Guido D'Amico, Leonardo Senatore, Cheng Zhao, Yifu Cai, JCAP 02 (2022) 036, arXiv:2110.07539.
[Zhang:2021yna]
[13-217]
The Epoch of Reionization in Warm Dark Matter Scenarios, Massimiliano Romanello, Nicola Menci, Marco Castellano, Universe 7 (2021) 365, arXiv:2110.05262.
[Romanello:2021gnp]
[13-218]
Late-transition vs smooth $H(z)$ deformation models for the resolution of the Hubble crisis, George Alestas, David Camarena, Eleonora Di Valentino, Lavrentios Kazantzidis, Valerio Marra, Savvas Nesseris, Leandros Perivolaropoulos, Phys.Rev.D 105 (2022) 063538, arXiv:2110.04336.
[Alestas:2021luu]
[13-219]
Towards a Better Understanding of Cosmic Chronometers: A new measurement of $H(z)$ at $z\sim0.7$, Nicola Borghi, Michele Moresco, Andrea Cimatti, Astrophys.J.Lett. 928 (2022) L4, arXiv:2110.04304.
[Borghi:2021rft]
[13-220]
Minimal dark energy: key to sterile neutrino and Hubble constant tensions?, Eleonora Di Valentino, Stefano Gariazzo, Carlo Giunti, Olga Mena, Supriya Pan, Weiqiang Yang, Phys.Rev.D 105 (2022) 103511, arXiv:2110.03990.
[DiValentino:2021rjj]
[13-221]
Combined $13\times2$-point analysis of the Cosmic Microwave Background and Large-Scale Structure: implications for the $S_8$-tension and neutrino mass constraints, Raphael Sgier, Christiane Lorenz, Alexandre Refregier, Janis Fluri, Dominik Zurcher, Federica Tarsitano, arXiv:2110.03815, 2021.
[Sgier:2021bzf]
[13-222]
Exploration of interacting dynamical dark energy model with interaction term including the equation-of-state parameter: alleviation of the $H_0$ tension, Rui-Yun Guo, Lu Feng, Tian-Ying Yao, Xing-Yu Chen, JCAP 12 (2021) 036, arXiv:2110.02536.
[Guo:2021rrz]
[13-223]
Cosmological forecasts on thermal axions, relic neutrinos and light elements, William Giare, Fabrizio Renzi, Alessandro Melchiorri, Olga Mena, Eleonora Di Valentino, Mon.Not.Roy.Astron.Soc. 511 (2022) 1373-1382, arXiv:2110.00340.
[Giare:2021cqr]
[13-224]
Neutrino Properties with Ground-Based Millimeter-Wavelength Line Intensity Mapping, Azadeh Moradinezhad Dizgah, Garrett K. Keating, Kirit S. Karkare, Abigail Crites, Shouvik Roy Choudhury, Astrophys.J. 926 (2022) 137, arXiv:2110.00014.
[MoradinezhadDizgah:2021upg]
[13-225]
Cosmology with the kinetic Sunyaev-Zeldovich effect: Independent of the optical depth and $\sigma_8$, Joseph Kuruvilla, Astron.Astrophys. 660 (2022) A113, arXiv:2109.13938.
[Kuruvilla:2021zgg]
[13-226]
Effects of an Intermediate Mass Sterile Neutrino Population on the Early Universe, Hannah Rasmussen, Alex McNichol, George M. Fuller, Chad T. Kishimoto, Phys.Rev.D 105 (2022) 083513, arXiv:2109.11176.
[Rasmussen:2021kbf]
[13-227]
Cosmology of an Axion-Like Majoron, Antonio J. Cuesta, Mario E. Gomez, Jose I. Illana, Manuel Masip, JCAP 04 (2022) 009, arXiv:2109.07336.
[Cuesta:2021kca]
[13-228]
Cosmological search for sterile neutrinos after Planck 2018, Lu Feng, Rui-Yun Guo, Jing-Fei Zhang, Xin Zhang, Phys.Lett.B 827 (2022) 136940, arXiv:2109.06111.
[Feng:2021ipq]
[13-229]
Constraining the neutrino mass using a multi-tracer combination of two galaxy surveys and CMB lensing, Mario Ballardini, Roy Maartens, Mon.Not.Roy.Astron.Soc. 510 (2022) 4295, arXiv:2109.03763.
[Ballardini:2021frp]
[13-230]
Joint CMB and BBN Constraints on Light Dark Sectors with Dark Radiation, Cara Giovanetti, Mariangela Lisanti, Hongwan Liu, Joshua T. Ruderman, Phys.Rev.Lett. 129 (2022) 021302, arXiv:2109.03246.
[Giovanetti:2021izc]
[13-231]
Effects of Neutrino Masses and Asymmetries on Dark Matter Halo Assembly, Hiu Wing Wong, Ming-chung Chu, JCAP 03 (2022) 066, arXiv:2109.00303.
[Wong:2021ats]
[13-232]
Bayesian Estimation of the D(p,$\gamma$)$^3$He Thermonuclear Reaction Rate, Joseph Moscoso, Rafael S. de Souza, Alain Coc, Christian Iliadis, Astrophys.J. 923 (2021) 49, arXiv:2109.00049.
[Moscoso:2021xog]
[13-233]
Sensitivity Tests of Cosmic Velocity Fields To Massive Neutrinos, Shuren Zhou, Zhenjie Liu, Qinglin Ma, Yu Liu, Le Zhang, Xiao-Dong Li, Yang Wang, Yu Yu, Xin Wang, Haoran Yu, Mon.Not.Roy.Astron.Soc. 512 (2022) 3319-3330, arXiv:2108.12568.
[Zhou:2021sgl]
[13-234]
Observational constraints on the massive neutrinos induced late-time cosmic acceleration, Mohit K. Sharma, Shibesh Kumar Jas Pacif, Shynaray Myrzakul, Zamzagul Shanina, Phys.Scripta 97 (2022) 085010, arXiv:2108.08913.
[Sharma:2021mcq]
[13-235]
Towards an Optimal Estimation of Cosmological Parameters with the Wavelet Scattering Transform, Georgios Valogiannis, Cora Dvorkin, Phys.Rev.D 105 (2022) 103534, arXiv:2108.07821.
[Valogiannis:2021chp]
[13-236]
Beware of Fake $\nu$s: The Effect of Massive Neutrinos on the Non-Linear Evolution of Cosmic Structure, Adrian E. Bayer, Arka Banerjee, Uros Seljak, Phys.Rev.D 105 (2022) 123510, arXiv:2108.04215.
[Bayer:2021kwg]
[13-237]
Self-Interacting Dark Matter in Cosmology: accurate numerical implementation and observational constraints, Rafael Yunis, Carlos R. Arguelles, Claudia G. Scoccola, Diana Lopez Nacir, Gaston Giordano, JCAP 02 (2022) 024, arXiv:2108.02657.
[Yunis:2021fgz]
[13-238]
Clarifying transfer function approximations for the large-scale gravitational wave background in $\Lambda$CDM, Thomas Kite, Jens Chluba, Andrea Ravenni, Subodh P. Patil, Mon.Not.Roy.Astron.Soc. 509 (2021) 1366-1376, arXiv:2107.13351.
[Kite:2021yoe]
[13-239]
Cosmological Constraints on Light (but Massive) Relics, Weishuang Linda Xu, Julian B. Munoz, Cora Dvorkin, Phys.Rev.D 105 (2022) 095029, arXiv:2107.09664.
[Xu:2021rwg]
[13-240]
Free-streaming and Coupled Dark Radiation Isocurvature Perturbations: Constraints and Application to the Hubble Tension, Subhajit Ghosh, Soubhik Kumar, Yuhsin Tsai, JCAP 05 (2022) 014, arXiv:2107.09076.
[Ghosh:2021axu]
[13-241]
The GIGANTES dataset: precision cosmology from voids in the machine learning era, Christina D. Kreisch, Alice Pisani, Francisco Villaescusa-Navarro, David N. Spergel, Benjamin D. Wandelt, Nico Hamaus, Adrian E. Bayer, Astrophys.J. 935 (2022) 100, arXiv:2107.02304.
[Kreisch:2021xzq]
[13-242]
The unfinished fabric of the three neutrino paradigm, Francesco Capozzi, Eleonora Di Valentino, Eligio Lisi, Antonio Marrone, Alessandro Melchiorri, Antonio Palazzo, Phys.Rev.D 104 (2021) 083031, arXiv:2107.00532.
[Capozzi:2021fjo]
[13-243]
On the most constraining cosmological neutrino mass bounds, Eleonora Di Valentino, Stefano Gariazzo, Olga Mena, Phys.Rev.D 104 (2021) 083504, arXiv:2106.15267.
[DiValentino:2021hoh]
[13-244]
Towards a Better Understanding of Cosmic Chronometers: Stellar Population Properties of Passive Galaxies at Intermediate Redshift, Nicola Borghi, Michele Moresco, Andrea Cimatti, Alexandre Huchet, Salvatore Quai, Lucia Pozzetti, Astrophys.J. 927 (2022) 164, arXiv:2106.14894.
[Borghi:2021zsr]
[13-245]
Clustering in Massive Neutrino Cosmologies via Eulerian Perturbation Theory, Alejandro Aviles, Arka Banerjee, Gustavo Niz, Zachary Slepian, JCAP 11 (2021) 028, arXiv:2106.13771.
[Aviles:2021que]
[13-246]
Cosmological constraints from the power spectrum of eBOSS emission line galaxies, Mikhail M. Ivanov, Phys.Rev.D 104 (2021) 103514, arXiv:2106.12580.
[Ivanov:2021zmi]
[13-247]
Cosmology at high redshift - a probe of fundamental physics, Noah Sailer, Emanuele Castorina, Simone Ferraro, Martin White, JCAP 12 (2021) 049, arXiv:2106.09713.
[Sailer:2021yzm]
[13-248]
Neutrino As The Dark Force, Nicholas Orlofsky, Yue Zhang, Phys.Rev.D 104 (2021) 075010, arXiv:2106.08339.
[Orlofsky:2021mmy]
[13-249]
Einstein-Cartan cosmology and the high-redshift Universe, Davor Palle, arXiv:2106.08136, 2021.
[Palle:2021fhi]
[13-250]
Inverse Seesaw, dark matter and the Hubble tension, Enrique Fernandez-Martinez, Mathias Pierre, Emanuelle Pinsard, Salvador Rosauro-Alcaraz, Eur.Phys.J.C 81 (2021) 954, arXiv:2106.05298.
[Fernandez-Martinez:2021ypo]
[13-251]
CMB anisotropies and linear matter power spectrum in models with non-thermal neutrinos and primordial magnetic fields, Kerstin E. Kunze, arXiv:2106.00648, 2021.
[Kunze:2021ksp]
[13-252]
Machine Learning improved fits of the sound horizon at the baryon drag epoch, Andoni Aizpuru, Ruben Arjona, Savvas Nesseris, arXiv:2106.00428, 2021.
[Aizpuru:2021uwc]
[13-253]
Gravitational waves from first-order phase transitions in Majoron models of neutrino mass, Pasquale Di Bari, Danny Marfatia, Ye-Ling Zhou, arXiv:2106.00025, 2021.
[DiBari:2021fey]
[13-254]
On the road to percent accuracy V: the non-linear power spectrum beyond $\Lambda$CDM with massive neutrinos and baryonic feedback, Benjamin Bose, Bill S. Wright, Matteo Cataneo, Alkistis Pourtsidou, Carlo Giocoli, Lucas Lombriser, Ian G. McCarthy, Marco Baldi, Simon Pfeifer, Qianli Xia, Mon.Not.Roy.Astron.Soc. 508 (2021) 2479-2491, arXiv:2105.12114.
[Bose:2021mkz]
[13-255]
Cosmological radiation density with non-standard neutrino-electron interactions, Pablo F. de Salas, Stefano Gariazzo, Pablo Martinez-Mirave, Sergio Pastor, Mariam Tortola, Phys.Lett.B 820 (2021) 136508, arXiv:2105.08168.
[deSalas:2021aeh]
[13-256]
Distinguishing Dark Energy Models with Neutrino Oscillations, Ali Rida Khalifeh, Raul Jimenez, Phys.Dark Univ. 34 (2021) 100897, arXiv:2105.07973.
[Khalifeh:2021ree]
[13-257]
Symmetry origin of Baryon Asymmetry, Dark Matter and Neutrino Mass, Subhaditya Bhattacharya, Rishav Roshan, Arunansu Sil, Drona Vatsyayan, Phys.Rev.D 106 (2022) 075005, arXiv:2105.06189.
[Bhattacharya:2021jli]
[13-258]
Massive sterile neutrinos in the early universe: From thermal decoupling to cosmological constraints, Leonardo Mastrototaro, Pasquale Dario Serpico, Alessandro Mirizzi, Ninetta Saviano, Phys.Rev.D 104 (2021) 016026, arXiv:2104.11752.
[Mastrototaro:2021wzl]
[13-259]
Shedding Light on Dark Matter and Neutrino Interactions from Cosmology, Arnab Paul, Arindam Chatterjee, Anish Ghoshal, Supratik Pal, JCAP 10 (2021) 017, arXiv:2104.04760.
[Paul:2021ewd]
[13-260]
Hubble tension in lepton asymmetric cosmology with an extra radiation, Osamu Seto, Yo Toda, Phys.Rev.D 104 (2021) 063019, arXiv:2104.04381.
[Seto:2021tad]
[13-261]
Generalized Boltzmann hierarchy for massive neutrinos in cosmology, Caio Bastos de Senna Nascimento, Phys.Rev.D 104 (2021) 083535, arXiv:2104.00703.
[BastosdeSennaNascimento:2021cej]
[13-262]
Constraints on $\Lambda$CDM Extensions from the SPT-3G 2018 $EE$ and $TE$ Power Spectra, L. Balkenhol et al., Phys.Rev.D 104 (2021) 083509, arXiv:2103.13618.
[SPT-3G:2021wgf]
[13-263]
When FIMPs Decay into Neutrinos: The $N_\mathrm{eff}$ Story, Alexey Boyarsky, Maksym Ovchynnikov, Nashwan Sabti, Vsevolod Syvolap, Phys.Rev.D 104 (2021) 035006, arXiv:2103.09831.
[Boyarsky:2021yoh]
[13-264]
Weak lensing scattering transform: dark energy and neutrino mass sensitivity, Sihao Cheng, Brice Menard, Mon.Not.Roy.Astron.Soc. 507 (2021) 1012-1020, arXiv:2103.09247.
[ChengChengSiHao:2021hja]
[13-265]
Resolving the Hubble tension in a U(1)$_{L_\mu-L_\tau}$ model with Majoron, Takeshi Araki, Kento Asai, Kei Honda, Ryuta Kasuya, Joe Sato, Takashi Shimomura, Masaki J.S. Yang, PTEP 2021 () 103, arXiv:2103.07167.
[Araki:2021xdk]
[13-266]
The Hubble Tension as a Hint of Leptogenesis and Neutrino Mass Generation, Miguel Escudero, Samuel J. Witte, Eur.Phys.J. C81 (2021) 515, arXiv:2103.03249.
[Escudero:2021rfi]
[13-267]
Precise and Accurate Cosmology with CMBxLSS Power Spectra and Bispectra, Shu-Fan Chen, Hayden Lee, Cora Dvorkin, JCAP 2105 (2021) 030, arXiv:2103.01229.
[Chen:2021vba]
[13-268]
Reconstruction of the neutrino mass as a function of redshift, Christiane S. Lorenz, Lena Funcke, Matthias Loffler, Erminia Calabrese, Phys.Rev.D 104 (2021) 123518, arXiv:2102.13618.
[Lorenz:2021alz]
[13-269]
Remedy of some cosmological tensions via effective phantom-like behavior of interacting vacuum energy, Suresh Kumar, Phys.Dark Univ. 33 (2021) 100862, arXiv:2102.12902.
[Kumar:2021eev]
[13-270]
Bayesian evidence for the tensor-to-scalar ratio $r$ and neutrino masses $m_\nu$: Effects of uniform vs logarithmic priors, Lukas T. Hergt, Will J. Handley, Michael P. Hobson, Anthony N. Lasenby, Phys.Rev. D103 (2021) 123511, arXiv:2102.11511.
[Hergt:2021qlh]
[13-271]
Information content in mean pairwise velocity and mean relative velocity between pairs in a triplet, Joseph Kuruvilla, Nabila Aghanim, Astron.Astrophys. 653 (2021) A130, arXiv:2102.06709.
[Kuruvilla:2021gae]
[13-272]
Early dark energy in $k$-essence, S. X. Tian, Zong-Hong Zhu, Phys.Rev. D103 (2021) 043518, arXiv:2102.06399.
[Tian:2021omz]
[13-273]
The touch of Neutrinos on the Vacuum Metamorphosis: is the $H_0$ Solution Back?, Eleonora Di Valentino, Supriya Pan, Weiqiang Yang, Luis A. Anchordoqui, Phys.Rev. D103 (2021) 123527, arXiv:2102.05641.
[DiValentino:2021zxy]
[13-274]
Detecting neutrino mass by combining matter clustering, halos, and voids, Adrian E. Bayer, Francisco Villaescusa-Navarro, Elena Massara, Jia Liu, David N. Spergel, Licia Verde, Benjamin Wandelt, Matteo Viel, Shirley Ho, Astrophys.J. 919 () 1, arXiv:2102.05049.
[Bayer:2021iyb]
[13-275]
Solving the Hubble tension without spoiling Big Bang Nucleosynthesis, Guo-yuan Huang, Werner Rodejohann, Phys.Rev. D103 (2021) 123007, arXiv:2102.04280.
[Huang:2021dba]
[13-276]
Reconstructing a non-linear interaction in the dark sector with cosmological observations, Jiangang Kang, Phys.Dark Univ. 31 (2021) 100784, arXiv:2102.04232.
[Kang:2021osc]
[13-277]
Breaking the degeneracy between polarization efficiency and cosmological parameters in CMB experiments, Silvia Galli, W.L. Kimmy Wu, Karim Benabed, Francois Bouchet, Thomas M. Crawford, Eric Hivon, Phys.Rev.D 104 (2021) 023518, arXiv:2102.03661.
[Galli:2021iyr]
[13-278]
Quadratic estimators for CMB weak lensing, Abhishek S. Maniyar, Yacine Ali-Haimoud, Julien Carron, Antony Lewis, Mathew S. Madhavacheril, Phys.Rev. D103 (2021) 083524, arXiv:2101.12193.
[Maniyar:2021msb]
[13-279]
Neutrino non-standard interactions meet precision measurements of $N_{\rm eff}$, Yong Du, Jiang-Hao Yu, JHEP 2105 (2021) 058, arXiv:2101.10475.
[Du:2021idh]
[13-280]
Long Range Interactions in Cosmology: Implications for Neutrinos, Ivan Esteban, Jordi Salvado, JCAP 2105 (2021) 036, arXiv:2101.05804.
[Esteban:2021ozz]
[13-281]
Starlet l1-norm for weak lensing cosmology, Virginia Ajani, Jean-Luc Starck, Valeria Pettorino, Astron.Astrophys. 645 (2021) L11, arXiv:2101.01542.
[Ajani:2021pgp]
[13-282]
Constraints on the mass of Majorana neutrinos from Cosmology, M. Agostini, G. Benato, S. Dell'Oro, S. Pirro, F. Vissani, Phys.Rev. D103 (2021) 033008, arXiv:2012.13938.
[Agostini:2020oiv]
[13-283]
Self-interacting neutrinos, the Hubble parameter tension, and the Cosmic Microwave Background, Thejs Brinckmann, Jae Hyeok Chang, Marilena LoVerde, Phys.Rev.D 104 (2021) 063523, arXiv:2012.11830.
[Brinckmann:2020bcn]
[13-284]
Primordial nucleosynthesis with varying fundamental constants: Degeneracies with cosmological parameters, C. J. A. P. Martins, Astron.Astrophys. 646 (2021) A47, arXiv:2012.10505.
[Martins:2020syb]
[13-285]
Nuw CDM cosmology from the weak lensing convergence PDF, Aoife Boyle, Cora Uhlemann, Oliver Friedrich, Alexandre Barthelemy, Sandrine Codis, Francis Bernardeau, Carlo Giocoli, Marco Baldi, Mon.Not.Roy.Astron.Soc. (2021), arXiv:2012.07771.
[Boyle:2020bqn]
[13-286]
Updated constraints on massive neutrino self-interactions from cosmology in light of the $H_0$ tension, Shouvik Roy Choudhury, Steen Hannestad, Thomas Tram, JCAP 2103 (2021) 084, arXiv:2012.07519.
[RoyChoudhury:2020dmd]
[13-287]
Cosmological constraints with the Effective Fluid approach for Modified Gravity, Wilmar Cardona, Ruben Arjona, Alejandro Estrada, Savvas Nesseris, JCAP 2105 (2021) 064, arXiv:2012.05282.
[Cardona:2020ama]
[13-288]
A massive blow for $\Lambda$CDM $-$ the high redshift, mass, and collision velocity of the interacting galaxy cluster El Gordo contradicts concordance cosmology, E. Asencio, I. Banik, P. Kroupa, Mon.Not.Roy.Astron.Soc. 500 (2021) 5249-5267, arXiv:2012.03950.
[Asencio:2020mqh]
[13-289]
Towards a precision calculation of $N_{\rm eff}$ in the Standard Model II: Neutrino decoupling in the presence of flavour oscillations and finite-temperature QED, Jack J. Bennett, Gilles Buldgen, Pablo F. de Salas, Marco Drewes, Stefano Gariazzo, Sergio Pastor, Yvonne Y. Y. Wong, JCAP 2104 (2021) 073, arXiv:2012.02726.
[Bennett:2020zkv]
[13-290]
Constraining $M_\nu$ with the Bispectrum II: The Total Information Content of the Galaxy Bispectrum, ChangHoon Hahn, Francisco Villaescusa-Navarro, JCAP 2104 (2021) 029, arXiv:2012.02200.
[Hahn:2020lou]
[13-291]
An emulator for the Lyman-$\alpha$ forest in beyond-$\Lambda$CDM cosmologies, Christian Pedersen, Andreu Font-Ribera, Keir K. Rogers, Patrick McDonald, Hiranya V. Peiris, Andrew Pontzen, Anze Slosar, JCAP 05 (2021) 033, arXiv:2011.15127.
[Pedersen:2020kaw]
[13-292]
New cosmological bounds on hot relics: Axions $\&$ Neutrinos, William Giare, Eleonora Di Valentino, Alessandro Melchiorri, Olga Mena, Mon.Not.Roy.Astron.Soc. 505 (2021) 2703-2711, arXiv:2011.14704.
[Giare:2020vzo]
[13-293]
Cosmological bound on neutrino masses in the light of $H_0$ tension, Toyokazu Sekiguchi, Tomo Takahashi, Phys.Rev. D103 (2021) 083516, arXiv:2011.14481.
[Sekiguchi:2020igz]
[13-294]
The Impact of New d(p,\gamma)He3 Rates on Big Bang Nucleosynthesis, Tsung-Han Yeh, Keith A. Olive, Brian D. Fields, JCAP 2103 (2021) 046, arXiv:2011.13874.
[Yeh:2020mgl]
[13-295]
Flavour specific neutrino self-interaction: $H_0$ tension and IceCube, Arindam Mazumdar, Subhendra Mohanty, Priyank Parashari, JCAP 10 (2022) 011, arXiv:2011.13685.
[Mazumdar:2020ibx]
[13-296]
Dirac neutrinos and $N_{\rm eff}$ II: the freeze-in case, Xuheng Luo, Werner Rodejohann, Xun-Jie Xu, JCAP 2103 (2021) 082, arXiv:2011.13059.
[Luo:2020fdt]
[13-297]
Freeze-in generation of lepton asymmetries after baryogenesis in the $\nu$MSM, Shintaro Eijima, Mikhail Shaposhnikov, Inar Timiryasov, JCAP 04 (2022) 049, arXiv:2011.12637.
[Eijima:2020shs]
[13-298]
Flavor-specific Interaction Favours Strong Neutrino Self-coupling, Anirban Das, Subhajit Ghosh, JCAP 07 (2021) 038, arXiv:2011.12315.
[Das:2020xke]
[13-299]
Primordial Deuterium after LUNA: concordances and error budget, Ofelia Pisanti, Gianpiero Mangano, Gennaro Miele, Pierpaolo Mazzella, JCAP 2104 (2021) 020, arXiv:2011.11537.
[Pisanti:2020efz]
[13-300]
Neutrino mass constraints beyond linear order: cosmology dependence and systematic biases, Aoife Boyle, Fabian Schmidt, JCAP 2104 (2021) 022, arXiv:2011.10594.
[Boyle:2020rxq]
[13-301]
Neutrino-Assisted Early Dark Energy: Theory and Cosmology, Mariana Carrillo Gonzalez, Qiuyue Liang, Jeremy Sakstein, Mark Trodden, JCAP 2104 (2021) 063, arXiv:2011.09895.
[CarrilloGonzalez:2020oac]
[13-302]
Avoiding baryonic feedback effects on neutrino mass measurements from CMB lensing, Fiona McCarthy, Simon Foreman, Alexander van Engelen, Phys.Rev. D103 (2021) 103538, arXiv:2011.06582.
[McCarthy:2020dgq]
[13-303]
Gravitational Waves as a Big Bang Thermometer, Andreas Ringwald, Jan Schutte-Engel, Carlos Tamarit, JCAP 2103 (2021) 054, arXiv:2011.04731.
[Ringwald:2020ist]
[13-304]
The full Boltzmann hierarchy for dark matter-massive neutrino interactions, Markus R. Mosbech, Celine Boehm, Steen Hannestad, Olga Mena, Julia Stadler, Yvonne Y. Y. Wong, JCAP 2103 (2021) 066, arXiv:2011.04206.
[Mosbech:2020ahp]
[13-305]
Neutrino mass bounds from confronting an effective model with BOSS Lyman-alpha data, Mathias Garny, Thomas Konstandin, Laura Sagunski, Matteo Viel, JCAP 2103 (2021) 049, arXiv:2011.03050.
[Garny:2020rom]
[13-306]
When Freeze-out occurs due to a non-Boltzmann suppression: A study of degenerate dark sector, Anirban Biswas, Sougata Ganguly, Sourov Roy, JHEP 06 (2021) 108, arXiv:2011.02499.
[Biswas:2020ubd]
[13-307]
Gravitational origin of dark matter and Majorana neutrino mass with non-minimal quartic inflation, Debasish Borah, Suruj Jyoti Das, Abhijit Kumar Saha, Phys.Dark Univ. 33 (2021) 100858, arXiv:2011.02489.
[Borah:2020ljr]
[13-308]
Invisible neutrino decay in precision cosmology, Gabriela Barenboim, Joe Zhiyu Chen, Steen Hannestad, Isabel M. Oldengott, Thomas Tram, Yvonne Y. Y. Wong, JCAP 2103 (2021) 087, arXiv:2011.01502.
[Barenboim:2020vrr]
[13-309]
A Non-Degenerate Neutrino Mass Signature in the Galaxy Bispectrum, Farshad Kamalinejad, Zachary Slepian, arXiv:2011.00899, 2020.
[Kamalinejad:2020izi]
[13-310]
KiDS-1000 Cosmology: constraints beyond flat $\Lambda$CDM, Tilman Troster et al., Astron.Astrophys. 649 (2021) A88, arXiv:2010.16416.
[KiDS:2020ghu]
[13-311]
Testing Gravity on Cosmic Scales: A Case Study of Jordan-Brans-Dicke Theory, Shahab Joudaki, Pedro G. Ferreira, Nelson A. Lima, Hans A. Winther, Phys.Rev.D 105 (2022) 043522, arXiv:2010.15278.
[Joudaki:2020shz]
[13-312]
Decaying dark matter, the $H_0$ tension, and the lithium problem, Luis A. Anchordoqui, Phys.Rev. D103 (2021) 035025, arXiv:2010.09715.
[Anchordoqui:2020djl]
[13-313]
Why reducing the cosmic sound horizon can not fully resolve the Hubble tension, Karsten Jedamzik, Levon Pogosian, Gong-Bo Zhao, Commun.in Phys. 4 (2021) 123, arXiv:2010.04158.
[Jedamzik:2020zmd]
[13-314]
Relic Neutrino Degeneracies and Their Impact on Cosmological Parameters, Shek Yeung, King Lau, M.-C. Chu, JCAP 2104 (2021) 024, arXiv:2010.01696.
[Yeung:2020zde]
[13-315]
Cosmological Vlasov-Poisson Simulations of Structure Formation with Relic Neutrinos: Nonlinear Clustering and the Neutrino Mass, Kohji Yoshikawa, Satoshi Tanaka, Naoki Yoshida, Shun Saito, Astrophys.J. 904 (2020) 159, arXiv:2010.00248.
[Yoshikawa:2020ehd]
[13-316]
Probing dark photons in the early universe with big bang nucleosynthesis, Jung-Tsung Li, George M. Fuller, Evan Grohs, JCAP 2012 (2020) 049, arXiv:2009.14325.
[Li:2020roy]
[13-317]
The KBC void and Hubble tension contradict $\Lambda$CDM on a Gpc scale $-$ Milgromian dynamics as a possible solution, Moritz Haslbauer, Indranil Banik, Pavel Kroupa, Mon.Not.Roy.Astron.Soc. 499 (2020) 2845-2883, arXiv:2009.11292.
[Haslbauer:2020xaa]
[13-318]
Bounds on neutrino-scalar non-standard interactions from big bang nucleosynthesis, Jorge Venzor, Abdel Perez-Lorenzana, Josue De-Santiago, Phys.Rev. D103 (2021) 043534, arXiv:2009.08104.
[Venzor:2020ova]
[13-319]
Unraveling the Dirac Neutrino with Cosmological and Terrestrial Detectors, Peter Adshead, Yanou Cui, Andrew J. Long, Michael Shamma, Phys.Lett.B 823 (2021) 136736, arXiv:2009.07852.
[Adshead:2020ekg]
[13-320]
Accurate Analytic Model for the Weak Lensing Convergence One-Point Probability Distribution Function and its Auto-Covariance, Leander Thiele, J. Colin Hill, Kendrick M. Smith, Phys.Rev. D102 (2020) 123545, arXiv:2009.06547.
[Thiele:2020rig]
[13-321]
Developing a unified pipeline for large-scale structure data analysis with angular power spectra - III. Implementing the multi-tracer technique to constrain neutrino masses, Konstantinos Tanidis, Stefano Camera, Mon.Not.Roy.Astron.Soc. 502 (2021) 2952-2960, arXiv:2009.05584.
[Tanidis:2020byi]
[13-322]
Strengthening the bound on the mass of the lightest neutrino with terrestrial and cosmological experiments, Patrick Stocker et al. (GAMBIT Cosmology Workgroup), Phys.Rev. D103 (2021) 123508, arXiv:2009.03287.
[GAMBITCosmologyWorkgroup:2020rmf]
[13-323]
CosmoBit: A GAMBIT module for computing cosmological observables and likelihoods, Janina J. Renk et al. (GAMBIT Cosmology Workgroup), JCAP 2102 (2021) 022, arXiv:2009.03286.
[GAMBITCosmologyWorkgroup:2020htv]
[13-324]
HMcode-2020: Improved modelling of non-linear cosmological power spectra with baryonic feedback, Alexander Mead, Samuel Brieden, Tilman Troster, Catherine Heymans, arXiv:2009.01858, 2020.
[Mead:2020vgs]
[13-325]
Neutrino Masses and Hubble Tension via a Majoron in MFV, Fernando Arias-Aragon, Enrique Fernandez-Martinez, Manuel Gonzalez-Lopez, Luca Merlo, Eur.Phys.J. C81 (2021) 28, arXiv:2009.01848.
[Arias-Aragon:2020qip]
[13-326]
The impact of massive neutrinos on halo assembly bias, Titouan Lazeyras, Francisco Villaescusa-Navarro, Matteo Viel, JCAP 2103 (2021) 022, arXiv:2008.12265.
[Lazeyras:2020suj]
[13-327]
Breaking the Dark Degeneracy with the Drifting Coefficient of the Field Cluster Mass Function, Suho Ryu, Jounghun Lee, Marco Baldi, Astrophys.J. 904 (2020) 93, arXiv:2008.12212.
[Ryu:2020ccj]
[13-328]
Thermonuclear reaction rates and primordial nucleosynthesis, Christian Iliadis, Alain Coc, Astrophys.J. 901 (2020) 127, arXiv:2008.12200.
[Iliadis:2020jtc]
[13-329]
Measuring the Hubble Constant with a sample of kilonovae, Michael W. Coughlin, Sarah Antier, Tim Dietrich, Ryan J. Foley, Jack Heinzel, Mattia Bulla, Nelson Christensen, David A. Coulter, Lina Issa, Nandita Khetan, Nature Commun. 11 (2020) 4129, arXiv:2008.07420.
[Coughlin:2020ozl]
[13-330]
The Phase of the BAO on Observable Scales, Daniel Green, Alexander K. Ridgway, JCAP 2012 (2020) 050, arXiv:2008.05026.
[Green:2020fjb]
[13-331]
Neutrino decoupling including flavour oscillations and primordial nucleosynthesis, Julien Froustey, Cyril Pitrou, Maria Cristina Volpe, JCAP 2012 (2020) 015, arXiv:2008.01074.
[Froustey:2020mcq]
[13-332]
Standard candles and sirens rescue $H_0$, Aniket Agrawal, Teppei Okumura, Toshifumi Futamase, Astrophys.J. 904 (2020) 169, arXiv:2008.00869.
[Agrawal:2020lrj]
[13-333]
Improved BBN constraints on Heavy Neutral Leptons, Alexey Boyarsky, Maksym Ovchynnikov, Oleg Ruchayskiy, Vsevolod Syvolap, Phys.Rev.D 104 (2021) 023517, arXiv:2008.00749.
[Boyarsky:2020dzc]
[13-334]
Loop corrections to the power spectrum for massive neutrino cosmologies with full time- and scale-dependence, Mathias Garny, Petter Taule, JCAP 2101 (2021) 020, arXiv:2008.00013.
[Garny:2020ilv]
[13-335]
Cosmological Constraint on Vector Mediator of Neutrino-Electron Interaction in light of XENON1T Excess, Masahiro Ibe, Shin Kobayashi, Yuhei Nakayama, Satoshi Shirai, JHEP 12 (2020) 004, arXiv:2007.16105.
[Ibe:2020dly]
[13-336]
The Neutrino Magnetic Moment Portal: Cosmology, Astrophysics, and Direct Detection, Vedran Brdar, Admir Greljo, Joachim Kopp, Toby Opferkuch, arXiv:2007.15563, 2020.
[Brdar:2020quo]
[13-337]
A fast particle-mesh simulation of non-linear cosmological structure formation with massive neutrinos, Adrian E. Bayer, Arka Banerjee, Yu Feng, JCAP 2101 (2021) 016, arXiv:2007.13394.
[Bayer:2020tko]
[13-338]
Quantum breaks in a model for the evolution of neutrinos during their decoupling era in the big bang, R. F. Sawyer, arXiv:2007.12693, 2020.
[Sawyer:2020oii]
[13-339]
The effects of massive neutrinos on the linear point of the correlation function, G. Parimbelli, S. Anselmi, M. Viel, C. Carbone, F. Villaescusa-Navarro, P.S. Corasaniti, Y. Rasera, R. Sheth, G.D. Starkman, I. Zehavi, JCAP 2101 (2021) 009, arXiv:2007.10345.
[Parimbelli:2020wyw]
[13-340]
Constraints on $N_{\rm{eff}}$ of high energy non-thermal neutrino injections upto $z\sim 10^8$ from CMB spectral distortions and abundance of light elements, Sandeep Kumar Acharya, Rishi Khatri, JCAP 2011 (2020) 011, arXiv:2007.06596.
[Acharya:2020gfh]
[13-341]
Cosmic Imprints of XENON1T Axions, Fernando Arias-Aragon, Francesco D'Eramo, Ricardo Z. Ferreira, Luca Merlo, Alessio Notari, JCAP 2011 (2020) 025, arXiv:2007.06579.
[Arias-Aragon:2020qtn]
[13-342]
A Lagrangian Perturbation Theory in the presence of massive neutrinos, Alejandro Aviles, Arka Banerjee, JCAP 2010 (2020) 034, arXiv:2007.06508.
[Aviles:2020cax]
[13-343]
Isocurvature modes: joint analysis of the CMB power spectrum and bispectrum, Thomas Montandon, Guillaume Patanchon, Bartjan van Tent, JCAP 2101 (2021) 004, arXiv:2007.05457.
[Montandon:2020kuk]
[13-344]
Relaxing Cosmological Neutrino Mass Bounds with Unstable Neutrinos, Miguel Escudero, Jacobo Lopez-Pavon, Nuria Rius, Stefan Sandner, JHEP 2012 (2020) 119, arXiv:2007.04994.
[Escudero:2020ped]
[13-345]
A complete model of Phenomenologically Emergent Dark Energy, Weiqiang Yang, Eleonora Di Valentino, Supriya Pan, Olga Mena, Phys.Dark Univ. 31 (2021) 100762, arXiv:2007.02927.
[Yang:2020ope]
[13-346]
Cornering (quasi) degenerate neutrinos with cosmology, Massimiliano Lattanzi, Martina Gerbino, Katherine Freese, Gordon Kane, Jose W. F. Valle, JHEP 2010 (2020) 213, arXiv:2007.01650.
[Lattanzi:2020iik]
[13-347]
Disformal couplings in a $\Lambda$CDM background cosmology, Avishek Dusoye, Alvaro de la Cruz-Dombriz, Peter Dunsby, Nelson J. Nunes, JCAP 2103 (2021) 002, arXiv:2006.16962.
[Dusoye:2020wom]
[13-348]
Weighing the Neutrinos with the Galaxy Shape-Shape Correlations, Jounghun Lee, Suho Ryu, arXiv:2006.14477, 2020.
[Lee:2020uag]
[13-349]
Novel mechanism for CMB modulation in the Standard Model, Alexandros Karam, Tommi Markkanen, Luca Marzola, Sami Nurmi, Martti Raidal, Arttu Rajantie, JHEP 2011 (2020) 153, arXiv:2006.14404.
[Karam:2020skk]
[13-350]
Sterile neutrino self-interactions: $H_0$ tension and short-baseline anomalies, Maria Archidiacono, Stefano Gariazzo, Carlo Giunti, Steen Hannestad, Thomas Tram, JCAP 2012 (2020) 029, arXiv:2006.12885.
[Archidiacono:2020yey]
[13-351]
2020 Global reassessment of the neutrino oscillation picture, P. F. de Salas, D. V. Forero, S. Gariazzo, P. Martinez-Mirave, O. Mena, C. A. Ternes, M. Tortola, J. W. F. Valle, JHEP 2021 (2020) 071, arXiv:2006.11237.
[deSalas:2020pgw]
[13-352]
Relativistic Corrections to the Growth of Structure in Modified Gravity, Guilherme Brando, Kazuya Koyama, David Wands, JCAP 2101 (2021) 013, arXiv:2006.11019.
[Brando:2020ouk]
[13-353]
What does the Marked Power Spectrum Measure? Insights from Perturbation Theory, Oliver H.E. Philcox, Elena Massara, David N. Spergel, Phys.Rev. D102 (2020) 043516, arXiv:2006.10055.
[Philcox:2020fqx]
[13-354]
Note on Thermalization of Non-resonantly Produced Sterile Neutrinos, Graciela B. Gelmini, Philip Lu, Volodymyr Takhistov, JCAP 2010 (2020) A01, arXiv:2006.09553.
[Gelmini:2020duq]
[13-355]
Accurately Weighing Neutrinos with Cosmological Surveys, Weishuang Linda Xu, Nicholas DePorzio, Julian B. Munoz, Cora Dvorkin, Phys.Rev. D103 (2021) 023503, arXiv:2006.09395.
[Xu:2020fyg]
[13-356]
Finding eV-scale Light Relics with Cosmological Observables, Nicholas DePorzio, Weishuang Linda Xu, Julian B. Munoz, Cora Dvorkin, Phys.Rev. D103 (2021) 023504, arXiv:2006.09380.
[DePorzio:2020wcz]
[13-357]
Using The Baryonic Tully-Fisher Relation to Measure $H_o$, James Schombert, Stacy McGaugh, Federico Lelli, Astron. J. 160 (2020) 71, arXiv:2006.08615.
[Schombert:2020pxm]
[13-358]
An Extended Analysis of Heavy Neutral Leptons during Big Bang Nucleosynthesis, Nashwan Sabti, Andrii Magalich, Anastasiia Filimonova, JCAP 2011 (2020) 056, arXiv:2006.07387.
[Sabti:2020yrt]
[13-359]
Mitigating the optical depth degeneracy using the kinematic Sunyaev-Zel'dovich effect with CMB-S4, Marcelo A. Alvarez, Simone Ferraro, J. Colin Hill, Renee Hlozek, Margaret Ikape, Phys.Rev. D103 (2021) 063518, arXiv:2006.06594.
[Alvarez:2020gvl]
[13-360]
Spoon or slide? The non-linear matter power spectrum in the presence of massive neutrinos, Steen Hannestad, Amol Upadhye, Yvonne Y. Y. Wong, JCAP 2011 (2020) 062, arXiv:2006.04995.
[Hannestad:2020rzl]
[13-361]
Sensitivity forecasts for the cosmological recombination radiation in the presence of foregrounds, Luke Hart, Aditya Rotti, Jens Chluba, Mon.Not.Roy.Astron.Soc. 497 (2020) 4535-4548, arXiv:2006.04826.
[Hart:2020voa]
[13-362]
Cosmological constraints on Horava gravity revised in light of GW170817 and GRB170817A and the degeneracy with massive neutrinos, Noemi Frusciante, Micol Benetti, Phys.Rev.D 103 (2021) 104060, arXiv:2005.14705.
[Frusciante:2020gkx]
[13-363]
Extended reionization in models beyond $\Lambda$CDM with Planck 2018 data, Daniela Paoletti, Dhiraj Kumar Hazra, Fabio Finelli, George F. Smoot, JCAP 2009 (2020) 005, arXiv:2005.12222.
[Paoletti:2020ndu]
[13-364]
Constraints on neutrino mass in the scenario of vacuum energy interacting with cold dark matter after Planck 2018, Hai-Li Li, Jing-Fei Zhang, Xin Zhang, Commun.Theor.Phys. 72 (2020) 125401, arXiv:2005.12041.
[Li:2020gtk]
[13-365]
Degenerate dark matter micro-nuggets from $\rm{eV}$ sterile states and the Hubble tension, Subinoy Das, Prolay Chanda, Astrophys.J. 915 (2021) 132, arXiv:2005.11889.
[Gogoi:2020qif]
[13-366]
ECoPANN: A Framework for Estimating Cosmological Parameters using Artificial Neural Networks, Guo-Jian Wang, Si-Yao Li, Jun-Qing Xia, Astrophys. J. Suppl. 249 (2020) 25, arXiv:2005.07089.
[Wang:2020hmn]
[13-367]
Big Bang Nucleosynthesis constraints on sterile neutrino and lepton asymmetry of the Universe, Graciela B. Gelmini, Masahiro Kawasaki, Alexander Kusenko, Kai Murai, Volodymyr Takhistov, JCAP 2009 (2020) 051, arXiv:2005.06721.
[Gelmini:2020ekg]
[13-368]
Impacts of dark energy on constraining neutrino mass after Planck 2018, Ming Zhang, Jing-Fei Zhang, Xin Zhang, Commun.Theor.Phys. 72 (2020) 125402, arXiv:2005.04647.
[Zhang:2020mox]
[13-369]
Quantifying the $\sigma_8$ tension with model independent approach, David Benisty, Phys.Dark Univ. 1 (2021) 100766, arXiv:2005.03751.
[Benisty:2020kdt]
[13-370]
Observing Left-Right Symmetry in the Cosmic Microwave Background, Debasish Borah, Arnab Dasgupta, Chayan Majumdar, Dibyendu Nanda, Phys.Rev. D102 (2020) 035025, arXiv:2005.02343.
[Borah:2020boy]
[13-371]
Dirac neutrinos and $N_{\rm eff}$, Xuheng Luo, Werner Rodejohann, Xun-Jie Xu, JCAP 2006 (2020) 058, arXiv:2005.01629.
[Luo:2020sho]
[13-372]
Improvements in cosmological constraints from breaking growth degeneracy, Louis Perenon, Stephane Ilic, Roy Maartens, Alvaro de la Cruz-Dombriz, Astron.Astrophys. 642 (2020) A116, arXiv:2005.00418.
[Perenon:2020jav]
[13-373]
Scalar-tensor theories of gravity, neutrino physics, and the $H_0$ tension, Mario Ballardini, Matteo Braglia, Fabio Finelli, Daniela Paoletti, Alexei A. Starobinsky, Caterina Umilta, JCAP 10 (2020) 044, arXiv:2004.14349.
[Ballardini:2020iws]
[13-374]
The Hubble tension and a renormalizable model of gauged neutrino self-interactions, Maximilian Berbig, Sudip Jana, Andreas Trautner, Phys.Rev. D102 (2020) 115008, arXiv:2004.13039.
[Berbig:2020wve]
[13-375]
Constraints on primordial gravitational waves from the Cosmic Microwave Background, Thomas J. Clarke, Edmund J. Copeland, Adam Moss, JCAP 2010 (2020) 002, arXiv:2004.11396.
[Clarke:2020bil]
[13-376]
Self-interacting neutrinos: solution to Hubble tension versus experimental constraints, Kun-Feng Lyu, Emmanuel Stamou, Lian-Tao Wang, Phys.Rev. D103 (2021) 015004, arXiv:2004.10868.
[Lyu:2020lps]
[13-377]
Robustness of baryon acoustic oscillations constraints to beyond-$\Lambda$CDM cosmologies, Jose Luis Bernal, Tristan L. Smith, Kimberly K. Boddy, Marc Kamionkowski, Phys.Rev. D102 (2020) 123515, arXiv:2004.07263.
[Bernal:2020vbb]
[13-378]
The $H_0$ tension: $\DeltaG_N$ vs. $\DeltaN_{\rm eff}$, Guillermo Ballesteros, Alessio Notari, Fabrizio Rompineve, JCAP 2011 (2020) 024, arXiv:2004.05049.
[Ballesteros:2020sik]
[13-379]
MeV-scale reheating temperature and cosmological production of light sterile neutrinos, Takuya Hasegawa, Nagisa Hiroshima, Kazunori Kohri, Rasmus S. L. Hansen, Thomas Tram, Steen Hannestad, JCAP 2008 (2020) 015, arXiv:2003.13302.
[Hasegawa:2020ctq]
[13-380]
Dynamical Dark sectors and Neutrino masses and abundances, Weiqiang Yang, Eleonora Di Valentino, Olga Mena, Supriya Pan, Phys.Rev. D102 (2020) 023535, arXiv:2003.12552.
[Yang:2020tax]
[13-381]
Resolving Hubble Tension by Self-Interacting Neutrinos with Dirac Seesaw, Hong-Jian He, Yin-Zhe Ma, Jiaming Zheng, JCAP 2011 (2020) 003, arXiv:2003.12057.
[He:2020zns]
[13-382]
Can $f(T)$ gravity resolve the $H_0$ tension?, Deng Wang, David Mota, Phys.Rev. D102 (2020) 063530, arXiv:2003.10095.
[Wang:2020zfv]
[13-383]
Addendum to: Global constraints on absolute neutrino masses and their ordering, Francesco Capozzi, Eleonora Di Valentino, Eligio Lisi, Antonio Marrone, Alessandro Melchiorri, Antonio Palazzo, Phys.Rev. D101 (2020) 116013, arXiv:2003.08511.
[Capozzi:2017ipn]
[13-384]
Interacting radiation after Planck and its implications for the Hubble Tension, Nikita Blinov, Gustavo Marques-Tavares, JCAP 2009 (2020) 029, arXiv:2003.08387.
[Blinov:2020hmc]
[13-385]
Cosmic Discordance: Planck and luminosity distance data exclude LCDM, Eleonora Di Valentino, Alessandro Melchiorri, Joseph Silk, Astrophys.J.Lett. 908 (2021) L9, arXiv:2003.04935.
[DiValentino:2020hov]
[13-386]
What will it take to measure individual neutrino mass states using cosmology?, Maria Archidiacono, Steen Hannestad, Julien Lesgourgues, JCAP 2009 (2020) 021, arXiv:2003.03354.
[Archidiacono:2020dvx]
[13-387]
Bounds on light sterile neutrino mass and mixing from cosmology and laboratory searches, Steffen Hagstotz, Pablo F. de Salas, Stefano Gariazzo, Martina Gerbino, Massimiliano Lattanzi, Sunny Vagnozzi, Katherine Freese, Sergio Pastor, Phys.Rev.D 104 (2021) 123524, arXiv:2003.02289.
[Hagstotz:2020ukm]
[13-388]
Multimessenger constraints on the neutron-star equation of state and the Hubble constant, Tim Dietrich, Michael W. Coughlin, Peter T.H. Pang, Mattia Bulla, Jack Heinzel, Lina Issa, Ingo Tews, Sarah Antier, Science 370 (2020) 1450-1453, arXiv:2002.11355.
[Dietrich:2020efo]
[13-389]
Local Group star formation in warm and self-interacting dark matter cosmologies, Mark R. Lovell, Wojciech Hellwing, Aaron Ludlow, Jesus Zavala, Andrew Robertson, Azadeh Fattahi, Carlos S. Frenk, Jennifer Hardwick, Mon.Not.Roy.Astron.Soc. 498 (2020) 702-717, arXiv:2002.11129.
[Lovell:2020vlf]
[13-390]
Cosmological parameter analyses using transversal BAO data, Rafael C. Nunes, Santosh K. Yadav, J. F. Jesus, Armando Bernui, Mon.Not.Roy.Astron.Soc. 497 (2020) 2, arXiv:2002.09293.
[Nunes:2020hzy]
[13-391]
Neutrino effects on the morphology of cosmic large-scale structure, Yu Liu, Yu Yu, Hao-Ran Yu, Pengjie Zhang, Phys.Rev. D101 (2020) 063515, arXiv:2002.08846.
[Liu:2020mzl]
[13-392]
Consequences of neutrino self interactions for weak decoupling and big bang nucleosynthesis, E. Grohs, George M. Fuller, Manibrata Sen, JCAP 2007 (2020) 001, arXiv:2002.08557.
[Grohs:2020xxd]
[13-393]
Determining the Neutrino Lifetime from Cosmology, Zackaria Chacko, Abhish Dev, Peizhi Du, Vivian Poulin, Yuhsin Tsai, Phys.Rev. D103 (2021) 043519, arXiv:2002.08401.
[Chacko:2020hmh]
[13-394]
Direct comparison of sterile neutrino constraints from cosmological data, $\nu_{e}$ disappearance data and $\nu_\mu\rightarrow\nu_{e}$ appearance data in a $3+1$ model, Matthew Adams, Fedor Bezrukov, Jack Elvin-Poole, Justin J. Evans, Pawel Guzowski, Brian O Fearraigh, Stefan Soldner-Rembold, Eur.Phys.J. C80 (2020) 758, arXiv:2002.07762.
[Adams:2020nue]
[13-395]
Neutrino mass and mass hierarchy in various dark energy, Zhenjie Liu, Haitao Miao, Int.J.Mod.Phys. D29 (2020) 2050088, arXiv:2002.05563.
[Liu:2020vgn]
[13-396]
Probing the Seesaw Mechanism with Cosmological data, J. G. Rodrigues, Micol Benetti, Marcela Campista, Jailson Alcaniz, JCAP 2007 (2020) 007, arXiv:2002.05154.
[Rodrigues:2020dod]
[13-397]
Combining Full-Shape and BAO Analyses of Galaxy Power Spectra: A 1.6% CMB-independent constraint on H0, Oliver H.E. Philcox, Mikhail M. Ivanov, Marko Simonovic, Matias Zaldarriaga, JCAP 2005 (2020) 032, arXiv:2002.04035.
[Philcox:2020vvt]
[13-398]
Using the Marked Power Spectrum to Detect the Signature of Neutrinos in Large-Scale Structure, Elena Massara, Francisco Villaescusa-Navarro, Shirley Ho, Neal Dalal, David N. Spergel, Phys.Rev.Lett. 126 (2021) 011301, arXiv:2001.11024.
[Massara:2020pli]
[13-399]
Constraining neutrino masses with weak-lensing starlet peak counts, Virginia Ajani, Austin Peel, Valeria Pettorino, Jean-Luc Starck, Zack Li, Jia Liu, Phys.Rev. D102 (2020) 103531, arXiv:2001.10993.
[Ajani:2020dvu]
[13-400]
All-inclusive interacting dark sector cosmologies, W. Yang, E. Di Valentino, O. Mena, S. Pan, R. C. Nunes, Phys.Rev. D101 (2020) 083509, arXiv:2001.10852.
[Yang:2020uga]
[13-401]
Cosmological constraints from line intensity mapping with interlopers, Yan Gong, Xuelei Chen, Asantha Cooray, Astrophys.J. 894 (2020) 152, arXiv:2001.10792.
[Gong:2020lim]
[13-402]
Constraints on the Spacetime Dynamics of an Early Dark Energy Component, Hasti Khoraminezhad, Matteo Viel, Carlo Baccigalupi, Maria Archidiacono, JCAP 2007 (2020) 039, arXiv:2001.10252.
[Khoraminezhad:2020cer]
[13-403]
Exploring Early and Late Cosmology with Next Generation Surveys, Guilherme Brando, Eric V. Linder, Phys.Rev. D101 (2020) 103510, arXiv:2001.07738.
[Brando:2020yvo]
[13-404]
Precision Early Universe Thermodynamics made simple: $N_{\rm eff}$ and Neutrino Decoupling in the Standard Model and beyond, Miguel Escudero, JCAP 2005 (2020) 048, arXiv:2001.04466.
[EscuderoAbenza:2020cmq]
[13-405]
Cosmological Constraint on Dark Photon from $N_{\rm eff}$, Masahiro Ibe, Shin Kobayashi, Yuhei Nakayama, Satoshi Shirai, JHEP 2004 (2020) 009, arXiv:1912.12152.
[Ibe:2019gpv]
[13-406]
How warm is too warm? Towards robust Lyman-$\alpha$ forest bounds on warm dark matter, A. Garzilli, O. Ruchayskiy, A. Magalich, A. Boyarsky, arXiv:1912.09397, 2019.
[Garzilli:2019qki]
[13-407]
Cosmic flows in the nearby Universe: new peculiar velocities from SNe and cosmological constraints, Supranta S. Boruah, Michael J. Hudson, Guilhem Lavaux, Mon.Not.Roy.Astron.Soc. 498 (2020) 2703, arXiv:1912.09383.
[Boruah:2019icj]
[13-408]
Incomplete neutrino decoupling effect on big bang nucleosynthesis, Julien Froustey, Cyril Pitrou, Phys.Rev. D101 (2020) 043524, arXiv:1912.09378.
[Froustey:2019owm]
[13-409]
Cosmological Parameters and Neutrino Masses from the Final Planck and Full-Shape BOSS Data, Mikhail M. Ivanov, Marko Simonovic, Matias Zaldarriaga, Phys.Rev. D101 (2020) 083504, arXiv:1912.08208.
[Ivanov:2019hqk]
[13-410]
Phenomenology of the generalized cubic covariant Galileon model and cosmological bounds, Noemi Frusciante, Simone Peirone, Luis Atayde, Antonio De Felice, Phys.Rev. D101 (2020) 064001, arXiv:1912.07586.
[Frusciante:2019puu]
[13-411]
CMB distance priors revisited: effects of dark energy dynamics, spatial curvature, primordial power spectrum, and neutrino parameters, Zhongxu Zhai, Chan-Gyung Park, Yun Wang, Bharat Ratra, JCAP 2007 (2020) 009, arXiv:1912.04921.
[Zhai:2019nad]
[13-412]
Big-Bang Nucleosynthesis After Planck, Brian D. Fields, Keith A. Olive, Tsung-Han Yeh, Charles Young, JCAP 2003 (2020) 010, arXiv:1912.01132.
[Fields:2019pfx]
[13-413]
How much primordial tensor mode is allowed?, Moumita Aich, Yin-Zhe Ma, Wei-Ming Dai, Jun-Qing Xia, Phys.Rev. D101 (2020) 063536, arXiv:1912.00995.
[Aich:2019obd]
[13-414]
High accuracy on $H_0$ constraints from gravitational wave lensing events, Paolo Cremonese, Vincenzo Salzano, Phys.Dark Univ. 28 (2020) 100517, arXiv:1911.11786.
[Cremonese:2019tgb]
[13-415]
Early dark energy from massive neutrinos - a natural resolution of the Hubble tension, Jeremy Sakstein, Mark Trodden, Phys.Rev.Lett. 124 (2020) 161301, arXiv:1911.11760.
[Sakstein:2019fmf]
[13-416]
Fisher for complements: Extracting cosmology and neutrino mass from the counts-in-cells PDF, Cora Uhlemann, Oliver Friedrich, Francisco Villaescusa-Navarro, Arka Banerjee, Sandrine Codis, Mon.Not.Roy.Astron.Soc. 495 (2020) 4006-4027, arXiv:1911.11158.
[Uhlemann:2019gni]
[13-417]
Massive neutrinos and degeneracies in Lyman-alpha forest simulations, Christian Pedersen, Andreu Font-Ribera, Thomas D. Kitching, Patrick McDonald, Simeon Bird, Anze Slosar, Keir K. Rogers, Andrew Pontzen, JCAP 2004 (2020) 025, arXiv:1911.09596.
[Pedersen:2019ieb]
[13-418]
Constraints on neutrinos and WDM Hints, neutrino bounds and WDM constraints from SDSS DR14 Lyman-$\alpha$ and Planck full-survey data, Nathalie Palanque-Delabrouille, Christophe Yeche, Nils Schoneberg, Julien Lesgourgues, Michael Walther, Solene Chabanier, Eric Armengaud, JCAP 2004 (2020) 038, arXiv:1911.09073.
[Palanque-Delabrouille:2019iyz]
[13-419]
Inflation models in the light of self-interacting sterile neutrinos, Arindam Mazumdar, Subhendra Mohanty, Priyank Parashari, Phys.Rev. D101 (2020) 083521, arXiv:1911.08512.
[Mazumdar:2019tbm]
[13-420]
Baryonic effects for weak lensing: II. Combination with X-ray data and extended cosmologies, Aurel Schneider, Alexandre Refregier, Sebastian Grandis, Dominique Eckert, Nicola Stoira, Tomasz Kacprzak, Mischa Knabenhans, Joachim Stadel, Romain Teyssier, JCAP 2004 (2020) 020, arXiv:1911.08494.
[Schneider:2019xpf]
[13-421]
Modified Cosmology Models from Thermodynamical Approach, Chao-Qiang Geng, Yan-Ting Hsu, Jhih-Rong Lu, Lu Yin, Eur.Phys.J. C80 (2020) 21, arXiv:1911.06046.
[Geng:2019shx]
[13-422]
Towards a precision calculation of the effective number of neutrinos $N_{\rm eff}$ in the Standard Model I: The QED equation of state, Jack J. Bennett, Gilles Buldgen, Marco Drewes, Yvonne Y. Y. Wong, JCAP 2003 (2020) 003, arXiv:1911.04504.
[Bennett:2019ewm]
[13-423]
Cosmological Dependence of Resonantly Produced Sterile Neutrinos, Graciela B. Gelmini, Philip Lu, Volodymyr Takhistov, JCAP 2006 (2020) 008, arXiv:1911.03398.
[Gelmini:2019clw]
[13-424]
Matter-antimatter asymmetry without loops, Arnab Dasgupta, P. S. Bhupal Dev, Yongchao Zhang, Phys.Rev. D102 (2020) 055009, arXiv:1911.03013.
[Dasgupta:2019lha]
[13-425]
Electron-Positron Annihilation Freeze-Out in the Early Universe, Luke C. Thomas, Ted Dezen, Evan B. Grohs, Chad T. Kishimoto, Phys.Rev.D 101 (2020) 063507, arXiv:1910.14050.
[Thomas:2019ran]
[13-426]
Baryonic effects on CMB lensing and neutrino mass constraints, Eegene Chung, Simon Foreman, Alexander van Engelen, Phys.Rev. D101 (2020) 063534, arXiv:1910.09565.
[Chung:2019bsk]
[13-427]
Dark calling Dark: Interaction in the dark sector in presence of neutrinos properties after Planck CMB final release, Weiqiang Yang, Supriya Pan, Rafael C. Nunes, David F. Mota, JCAP 2004 (2020) 008, arXiv:1910.08821.
[Yang:2019uog]
[13-428]
The impact of the locally measured Hubble parameter on the mass of Sterile neutrino, M. Ebadinejad, Mon.Not.Roy.Astron.Soc. 488 (2019) 5763-5770, arXiv:1910.08046.
[Ebadinejad:2019acq]
[13-429]
The void halo mass function: a promising probe of neutrino mass, Gemma Zhang, Zack Li, Jia Liu, David N. Spergel, Christina D. Kreisch, Alice Pisani, Benjamin D. Wandelt, Phys.Rev. D102 (2020) 083537, arXiv:1910.07553.
[Zhang:2019wtu]
[13-430]
Constraining power of open likelihoods, made prior-independent, S. Gariazzo, Eur.Phys.J. C80 (2020) 552, arXiv:1910.06646.
[Gariazzo:2019xhx]
[13-431]
The Dodelson-Widrow Mechanism In the Presence of Self-Interacting Neutrinos, Andre de Gouvea, Manibrata Sen, Walter Tangarife, Yue Zhang, Phys.Rev.Lett. 124 (2020) 081802, arXiv:1910.04901.
[DeGouvea:2019wpf]
[13-432]
Learning neutrino effects in Cosmology with Convolutional Neural Networks, Elena Giusarma, Mauricio Reyes Hurtado, Francisco Villaescusa-Navarro, Siyu He, Shirley Ho, ChangHoon Hahn, Astrophys.J. 950 (2023) 70, arXiv:1910.04255.
[Giusarma:2019feb]
[13-433]
Weak Lensing Minima and Peaks: Cosmological Constraints and the Impact of Baryons, William R. Coulton, Jia Liu, Ian G. McCarthy, Ken Osato, Mon.Not.Roy.Astron.Soc. 495 (2020) 2531-2542, arXiv:1910.04171.
[Coulton:2019enn]
[13-434]
Constraints on active and sterile neutrinos in an interacting dark energy cosmology, Lu Feng, Dong-Ze He, Hai-Li Li, Jing-Fei Zhang, Xin Zhang, Sci.China Phys.Mech.Astron. 63 (2020) 290404, arXiv:1910.03872.
[Feng:2019jqa]
[13-435]
A Detailed Description of the CamSpec Likelihood Pipeline and a Reanalysis of the Planck High Frequency Maps, George Efstathiou, Steven Gratton, arXiv:1910.00483, 2019.
[Efstathiou:2019mdh]
[13-436]
Cosmological Dependence of Non-resonantly Produced Sterile Neutrinos, Graciela B. Gelmini, Philip Lu, Volodymyr Takhistov, JCAP 12 (2019) 047, arXiv:1909.13328.
[Gelmini:2019wfp]
[13-437]
Constraining $M_\nu$ with the Bispectrum I: Breaking Parameter Degeneracies, ChangHoon Hahn, Villaescusa-Navarro Francisco, Castorina Emanuele, Scoccimarro Roman, JCAP 2003 (2020) 040, arXiv:1909.11107.
[Hahn:2019zob]
[13-438]
Gravitational footprints of massive neutrinos and lepton number breaking, Andrea Addazi, Antonino Marciano, Antonio P. Morais, Roman Pasechnik, Rahul Srivastava, Jose W. F. Valle, Phys.Lett. B807 (2020) 135577, arXiv:1909.09740.
[Addazi:2019dqt]
[13-439]
Efficient Cosmological Analysis of the SDSS/BOSS data from the Effective Field Theory of Large-Scale Structure, Thomas Colas, Guido D'Amico, Leonardo Senatore, Pierre Zhang, Florian Beutler, JCAP 2006 (2020) 001, arXiv:1909.07951.
[Colas:2019ret]
[13-440]
Empirical inference on the Majorana mass of the ordinary neutrinos, Stefano Dell'Oro, Simone Marcocci, Francesco Vissani, Phys.Rev. D100 (2019) 073003, arXiv:1909.05381.
[DellOro:2019pqi]
[13-441]
Cosmological Parameters from the BOSS Galaxy Power Spectrum, Mikhail M. Ivanov, Marko Simonovic, Matias Zaldarriaga, JCAP 2005 (2020) 042, arXiv:1909.05277.
[Ivanov:2019pdj]
[13-442]
Cosmological Limits on the Neutrino Mass and Lifetime, Zackaria Chacko, Abhish Dev, Peizhi Du, Vivian Poulin, Yuhsin Tsai, JHEP 2004 (2020) 020, arXiv:1909.05275.
[Chacko:2019nej]
[13-443]
Visible Sterile Neutrinos as the Earliest Relic Probes of Cosmology, Graciela B. Gelmini, Philip Lu, Volodymyr Takhistov, Phys.Lett. B800 (2019) 135113, arXiv:1909.04168.
[Gelmini:2019esj]
[13-444]
A CMB Search for the Neutrino Mass Mechanism and its Relation to the $H_0$ Tension, Miguel Escudero, Samuel J. Witte, Eur.Phys.J. C80 (2020) 294, arXiv:1909.04044.
[Escudero:2019gvw]
[13-445]
On the road to percent accuracy III: non-linear reaction of the matter power spectrum to massive neutrinos, Matteo Cataneo, J. D. Emberson, Derek Inman, Joachim Harnois-Deraps, Catherine Heymans, Mon.Not.Roy.Astron.Soc. 491 (2020) 3101-3107, arXiv:1909.02561.
[Cataneo:2019fjp]
[13-446]
Throwing away antimatter via neutrino oscillations during the reheating era, Shintaro Eijima, Ryuichiro Kitano, Wen Yin, JCAP 03 (2020) 048, arXiv:1908.11864.
[Eijima:2019hey]
[13-447]
MeV-scale reheating temperature and thermalization of oscillating neutrinos by radiative and hadronic decays of massive particles, Takuya Hasegawa, Nagisa Hiroshima, Kazunori Kohri, Rasmus S. L. Hansen, Thomas Tram, Steen Hannestad, JCAP 1912 (2019) 012, arXiv:1908.10189.
[Hasegawa:2019jsa]
[13-448]
Dark Neutrino interactions phase out the Hubble tension, Subhajit Ghosh, Rishi Khatri, Tuhin S. Roy, Phys.Rev. D102 (2020) 123544, arXiv:1908.09843.
[Ghosh:2019tab]
[13-449]
A cosmologically viable eV sterile neutrino model, C. A. de S. Pires, Phys.Lett. B800 (2020) 135135, arXiv:1908.09313.
[Pires:2019elj]
[13-450]
A model-independent determination of the Hubble constant from lensed quasars and supernovae using Gaussian process, Kai Liao, Arman Shafieloo, Ryan E. Keeley, Eric V. Linder, Astrophys.J. 886 (2019) L23, arXiv:1908.04967.
[Liao:2019qoc]
[13-451]
Observing Dirac neutrinos in the cosmic microwave background, Kevork N. Abazajian, Julian Heeck, Phys.Rev. D100 (2019) 075027, arXiv:1908.03286.
[Abazajian:2019oqj]
[13-452]
Viable secret neutrino interactions with ultralight dark matter, James M. Cline, Phys.Lett. B802 (2020) 135182, arXiv:1908.02278.
[Cline:2019seo]
[13-453]
Cosmological constraints in extended parameter space from the Planck 2018 Legacy release, Eleonora Di Valentino, Alessandro Melchiorri, Joseph Silk, JCAP 2001 (2020) 013, arXiv:1908.01391.
[DiValentino:2019dzu]
[13-454]
ISiTGR: Testing deviations from GR at cosmological scales including dynamical dark energy, massive neutrinos, functional or binned parametrizations, and spatial curvature, Cristhian Garcia-Quintero, Mustapha Ishak, Logan Fox, Jason Dossett, Phys.Rev. D100 (2019) 103530, arXiv:1908.00290.
[Garcia-Quintero:2019xal]
[13-455]
Cluster counts: Tensions, massive neutrinos, and modified gravity. III, Stephane Ilic, Ziad Sakr, Alain Blanchard, Astron.Astrophys. 631 (2019) A96, arXiv:1908.00163.
[Ilic:2019pwq]
[13-456]
Updated results on neutrino mass and mass hierarchy from cosmology, Shouvik Roy Choudhury, Steen Hannestad, JCAP 2007 (2020) 037, arXiv:1907.12598.
[RoyChoudhury:2019hls]
[13-457]
A User's Guide to Extracting Cosmological Information from Line-Intensity Maps, Jose Luis Bernal, Patrick C. Breysse, Hector Gil-Marin, Ely D. Kovetz, Phys.Rev. D100 (2019) 123522, arXiv:1907.10067.
[Bernal:2019jdo]
[13-458]
Measuring neutrino masses with large-scale structure: Euclid forecast with controlled theoretical error, Anton Chudaykin, Mikhail M. Ivanov, JCAP 1911 (2019) 034, arXiv:1907.06666.
[Chudaykin:2019ock]
[13-459]
The lensing properties of subhaloes in massive elliptical galaxies in sterile neutrino cosmologies, Giulia Despali, Mark Lovell, Simona Vegetti, Robert A. Crain, Benjamin D. Oppenheimer, Mon.Not.Roy.Astron.Soc. 491 (2020) 1295-1310, arXiv:1907.06649.
[Despali:2019bhl]
[13-460]
Weighing neutrinos with the halo environment, Arka Banerjee, Emanuele Castorina, Francisco Villaescusa-Navarro, Travis Court, Matteo Viel, JCAP 2006 (2020) 032, arXiv:1907.06598.
[Banerjee:2019omr]
[13-461]
Cosmological Constraints on Invisible Neutrino Decays Revisited, Miguel Escudero, Malcolm Fairbairn, Phys.Rev. D100 (2019) 103531, arXiv:1907.05425.
[Escudero:2019gfk]
[13-462]
Target Neutrino Mass Precision for Determining the Neutrino Hierarchy, Constance Mahony, Boris Leistedt, Hiranya V. Peiris, Jonathan Braden, Benjamin Joachimi, Andreas Korn, Linda Cremonesi, Ryan Nichol, Phys.Rev. D101 (2020) 083513, arXiv:1907.04331.
[Mahony:2019fyb]
[13-463]
The impact of baryonic physics and massive neutrinos on weak lensing peak statistics, Matthew Fong, Miyoung Choi, Victoria Catlett, Brandyn Lee, Austin Peel, Rachel Bowyer, Lindsay J. King, Ian G. McCarthy, Mon.Not.Roy.Astron.Soc. 488 (2019) 3340-3357, arXiv:1907.03161.
[Fong:2019ixg]
[13-464]
Beyond two-point statistics: using the Minimum Spanning Tree as a tool for cosmology, Krishna Naidoo, Lorne Whiteway, Elena Massara, Davide Gualdi, Ofer Lahav, Matteo Viel, Hector Gil-Marin, Andreu Font-Ribera, Mon.Not.Roy.Astron.Soc. 491 (2020) 1709-1726, arXiv:1907.00989.
[Naidoo:2019imw]
[13-465]
Forecast for weighing neutrinos in cosmology with SKA, Jing-Fei Zhang, Bo Wang, Xin Zhang, Sci.China Phys.Mech.Astron. 63 (2020) 280411, arXiv:1907.00179.
[Zhang:2019ipd]
[13-466]
Including massive neutrinos in thermal Sunyaev Zeldovich power spectrum and cluster counts analyses, Boris Bolliet, Thejs Brinckmann, Jens Chluba, Julien Lesgourgues, Mon.Not.Roy.Astron.Soc. 497 (2020) 1332-1347, arXiv:1906.10359.
[Bolliet:2019zuz]
[13-467]
Hints of Sterile Neutrinos in Recent Measurements of the Hubble Parameter, Graciela B. Gelmini, Alexander Kusenko, Volodymyr Takhistov, JCAP 2106 (2021) 002, arXiv:1906.10136.
[Gelmini:2019deq]
[13-468]
The biasing phenomenon, J. Einasto, L. J. Liivamagi, I. Suhhonenko, M. Einasto, Astron.Astrophys. 630 (2019) A62, arXiv:1906.03617.
[Einasto:2019mwi]
[13-469]
Analytic expressions for the background evolution of massive neutrinos and dark matter particles, Ruben Arjona, Wilmar Cardona, Savvas Nesseris, JCAP 1910 (2019) 060, arXiv:1906.03160.
[Arjona:2019zqg]
[13-470]
On the road to per cent level accuracy II: calibration of the non-linear matter power spectrum for arbitrary cosmologies, Benjamin Giblin, Matteo Cataneo, Ben Moews, Catherine Heymans, Mon.Not.Roy.Astron.Soc. 490 (2019) 4826-4840, arXiv:1906.02742.
[Giblin:2019iit]
[13-471]
A null test to probe the scale-dependence of the growth of structure as a test of General Relativity, Felipe Oliveira Franco, Camille Bonvin, Chris Clarkson, Mon.Not.Roy.Astron.Soc. 492 (2020) L34-L39, arXiv:1906.02217.
[Franco:2019wbj]
[13-472]
Exploring the effects of galaxy formation on matter clustering through a library of simulation power spectra, Marcel P. van Daalen, Ian G. McCarthy, Joop Schaye, Mon.Not.Roy.Astron.Soc. 491 (2020) 2424-2446, arXiv:1906.00968.
[vanDaalen:2019pst]
[13-473]
Towards determining the neutrino mass hierarchy: weak lensing and galaxy clustering forecasts with baryons and intrinsic alignments, David Copeland, Andy Taylor, Alex Hall, arXiv:1905.08754, 2019.
[Copeland:2019eqm]
[13-474]
How to add massive neutrinos to your $\Lambda$CDM simulation - extending cosmology rescaling algorithms, Matteo Zennaro, Raul E. Angulo, Giovanni Arico, Sergio Contreras, Marcos Pellejero-Ibanez, Mon.Not.Roy.Astron.Soc. 489 (2019) 5938-5951, arXiv:1905.08696.
[Zennaro:2019aoi]
[13-475]
An Informational Approach to Cosmological Parameter Estimation, Michelle Stephens, Marcelo Gleiser, Phys.Rev. D102 (2020) 123514, arXiv:1905.07472.
[Stephens:2019tav]
[13-476]
Cosmological Constraints on Chiral Tensor Particles, D.P. Kirilova, E.M. Chizhov, Int.J.Mod.Phys. A34 (2019) 1950065, arXiv:1905.06806.
[Kirilova:2019bwg]
[13-477]
Constraining Sterile Neutrino Cosmology with Terrestrial Oscillation Experiments, Jeffrey M. Berryman, Phys.Rev. D100 (2019) 023540, arXiv:1905.03254.
[Berryman:2019nvr]
[13-478]
Constraining the Self-Interacting Neutrino Interpretation of the Hubble Tension, Nikita Blinov, Kevin J. Kelly, Gordan Krnjaic, Samuel D. McDermott, Phys.Rev.Lett. 123 (2019) 191102, arXiv:1905.02727.
[Blinov:2019gcj]
[13-479]
The bias of cosmic voids in the presence of massive neutrinos, Nico Schuster, Nico Hamaus, Alice Pisani, Carmelita Carbone, Christina D. Kreisch, Giorgia Pollina, Jochen Weller, JCAP 1912 (2019) 055, arXiv:1905.00436.
[Schuster:2019hyl]
[13-480]
Measuring dark matter-neutrino relative velocity on cosmological scales, Hong-Ming Zhu, Emanuele Castorina, Phys.Rev. D101 (2020) 023525, arXiv:1905.00361.
[Zhu:2019kzb]
[13-481]
Cosmology with dropout selection: Straw-man surveys and CMB lensing, Michael J. Wilson, Martin White, JCAP 1910 (2019) 015, arXiv:1904.13378.
[Wilson:2019brt]
[13-482]
Anthropic Bound on Dark Radiation and its Implications for Reheating, Fuminobu Takahashi, Masaki Yamada, JCAP 1907 (2019) 001, arXiv:1904.12864.
[Takahashi:2019ypv]
[13-483]
Detecting the neutrino mass and mass hierarchy from global data, Wenxue Zhang, En-Kun li, Minghui Du, Yuhao Mu, Shouli Ning, Baorong Chang, Lixin Xu, arXiv:1904.09698, 2019.
[Zhang:2019xnx]
[13-484]
Cosmological constraints on neutrino self-interactions with a light mediator, F. Forastieri, M. Lattanzi, P. Natoli, Phys.Rev. D100 (2019) 103526, arXiv:1904.07810.
[Forastieri:2019cuf]
[13-485]
Dark Sector Equilibration During Nucleosynthesis, Asher Berlin, Nikita Blinov, Shirley Weishi Li, Phys.Rev. D100 (2019) 015038, arXiv:1904.04256.
[Berlin:2019pbq]
[13-486]
$\Lambda$CDM or self-interacting neutrinos? - how CMB data can tell the two models apart, Minsu Park, Christina D. Kreisch, Jo Dunkley, Boryana Hadzhiyska, Francis-Yan Cyr-Racine, Phys.Rev. D100 (2019) 063524, arXiv:1904.02625.
[Park:2019ibn]
[13-487]
Determination of the primordial helium abundance based on NGC 346 an HII region of the Small Magellanic Cloud, Mabel Valerdi, Antonio Peimbert, Manuel Peimbert, Andres Sixtos, Astrophys.J. 876 (2019) 98, arXiv:1904.01594.
[Valerdi:2019beb]
[13-488]
Early dark energy constraints on growing neutrino quintessence cosmologies, Finlay Noble Chamings, Anastasios Avgoustidis, Edmund J. Copeland, Anne M. Green, Baojiu Li, Phys.Rev. D100 (2019) 043525, arXiv:1904.00884.
[NobleChamings:2019ody]
[13-489]
Cosmological constraints on sterile neutrino Dark Matter production mechanisms, Lucia A. Popa, arXiv:1903.10712, 2019.
[Popa:2019ruk]
[13-490]
Exploring neutrino mass and mass hierarchy in interacting dark energy models, Lu Feng, Hai-Li Li, Jing-Fei Zhang, Xin Zhang, Sci.China Phys.Mech.Astron. 63 (2020) 220401, arXiv:1903.08848.
[Feng:2019mym]
[13-491]
Self-interacting sterile neutrino dark matter: the heavy-mediator case, Lucas Johns, George M. Fuller, Phys.Rev. D100 (2019) 023533, arXiv:1903.08296.
[Johns:2019cwc]
[13-492]
Observable Predictions for Massive-Neutrino Cosmologies with Model-Independent Dark Energy, Ana Diaz Rivero, V. Miranda, Cora Dvorkin, Phys.Rev. D100 (2019) 063504, arXiv:1903.03125.
[DiazRivero:2019ukx]
[13-493]
Inflation meets neutrinos, Gabriela Barenboim, Peter B. Denton, Isabel M. Oldengott, Phys.Rev. D99 (2019) 083515, arXiv:1903.02036.
[Barenboim:2019tux]
[13-494]
Improving Constraints on Fundamental Physics Parameters with the Clustering of Sunyaev-Zeldovich Selected Galaxy Clusters, Dylan Cromer, Nicholas Battaglia, Mathew S. Madhavacheril, Phys.Rev. D100 (2019) 063529, arXiv:1903.00976.
[Cromer:2019umx]
[13-495]
First numerical study of Neutrino-Dark Matter Mixed Damping, Julia Stadler, Celine Boehm, Olga Mena, JCAP 2019 (2019) 014, arXiv:1903.00540.
[Stadler:2019dii]
[13-496]
Clustering and redshift-space distortions in modified gravity models with massive neutrinos, Jorge Enrique Garcia-Farieta, Federico Marulli, Alfonso Veropalumbo, Lauro Moscardini, Rigoberto Casas, Carlo Giocoli, Marco Baldi, Mon.Not.Roy.Astron.Soc. 488 (2019) 1987-2000, arXiv:1903.00154.
[Garcia-Farieta:2019hal]
[13-497]
Investigating the degeneracy between modified gravity and massive neutrinos with redshift-space distortions, Bill S. Wright, Kazuya Koyama, Hans A. Winther, Gong-Bo Zhao, JCAP 1906 (2019) 040, arXiv:1902.10692.
[Wright:2019qhf]
[13-498]
Breaking cosmic degeneracies: Disentangling neutrinos and modified gravity with kinematic information, Steffen Hagstotz, Max Gronke, David Mota, Marco Baldi, Astron.Astrophys. 629 (2019) A46, arXiv:1902.01868.
[Hagstotz:2019gsv]
[13-499]
The Neutrino Puzzle: Anomalies, Interactions, and Cosmological Tensions, Christina D. Kreisch, Francis-Yan Cyr-Racine, Olivier Dore, Phys.Rev. D101 (2020) 123505, arXiv:1902.00534.
[Kreisch:2019yzn]
[13-500]
Effects of Massive Neutrinos and Dynamical Dark Energy on the Cluster Mass Function, Rahul Biswas, Katrin Heitmann, Salman Habib, Amol Upadhye, Adrian Pope, Nicholas Frontiere, arXiv:1901.10690, 2019.
[Biswas:2019uhy]
[13-501]
Matter Power Spectra in Viable $f(R)$ Gravity Models with Dynamical Background, Yow-Chun Chen, Chao-Qiang Geng, Chung-Chi Lee, Hongwei Yu, Eur.Phys.J. C79 (2019) 93, arXiv:1901.06747.
[Chen:2019uci]
[13-502]
BE-HaPPY: Bias Emulator for Halo Power Spectrum including massive neutrinos, David Valcin, Francisco Villaescusa-Navarro, Licia Verde, Alvise Raccanelli, JCAP 1912 (2019) 057, arXiv:1901.06045.
[Valcin:2019fxe]
[13-503]
MGCAMB with massive neutrinos and dynamical dark energy, Alex Zucca, Levon Pogosian, Alessandra Silvestri, Gong-Bo Zhao, JCAP 2019 (2019) 001, arXiv:1901.05956.
[Zucca:2019xhg]
[13-504]
How to relax the cosmological neutrino mass bound, Isabel M. Oldengott, Gabriela Barenboim, Sarah Kahlen, Jordi Salvado, Dominik J. Schwarz, JCAP 2019 (2019) 049, arXiv:1901.04352.
[Oldengott:2019lke]
[13-505]
Impact of Neutrino Properties and Dark Matter on the Primordial Lithium Production, Tahani R. Makki, Mounib F. El Eid, Grant J. Mathews, Int.J.Mod.Phys. E28 (2019) 1950065, arXiv:1901.03726.
[Makki:2019zem]
[13-506]
Cosmology With a Very Light $L_\mu- L_\tau$ Gauge Boson, Miguel Escudero, Dan Hooper, Gordan Krnjaic, Mathias Pierre, JHEP 1903 (2019) 071, arXiv:1901.02010.
[Escudero:2019gzq]
[13-507]
Relativistic bias in neutrino cosmologies, Christian Fidler, Nils Sujata, Maria Archidiacono, JCAP 1906 (2019) 035, arXiv:1812.09266.
[Fidler:2018dcy]
[13-508]
Constraining neutrino mass with weak lensing Minkowski Functionals, Gabriela A. Marques, Jia Liu, Jose Manuel Zorrilla Matilla, Zoltan Haiman, Armando Bernui, Camila P. Novaes, JCAP 1906 (2019) 019, arXiv:1812.08206.
[Marques:2018ctl]
[13-509]
Is the $H_0$ tension suggesting a 4th neutrino's generation?, S. Carneiro, P. C. de Holanda, C. Pigozzo, F. Sobreira, Phys.Rev. D100 (2019) 023505, arXiv:1812.06064.
[Carneiro:2018xwq]
[13-510]
Neutrino Decoupling Beyond the Standard Model: CMB constraints on the Dark Matter mass with a fast and precise $N_{\rm eff}$ evaluation, Miguel Escudero, JCAP 1902 (2019) 007, arXiv:1812.05605.
[Escudero:2018mvt]
[13-511]
Cosmology-marginalized approaches in Bayesian model comparison: the neutrino mass as a case study, S. Gariazzo, O. Mena, Phys.Rev. D99 (2019) 021301, arXiv:1812.05449.
[Gariazzo:2018meg]
[13-512]
Lepton Number and Expansion of the Universe, Cheng Tao Yang, Jeremiah Birrell, Johann Rafelski, arXiv:1812.05157, 2018.
[Yang:2018oqg]
[13-513]
A new scale in the bias expansion, Giovanni Cabass, Fabian Schmidt, JCAP 2019 (2019) 031, arXiv:1812.02731.
[Cabass:2018hum]
[13-514]
Cosmological constraints on sterile neutrino oscillations from Planck, Alan M. Knee, Dagoberto Contreras, Douglas Scott, JCAP 2019 (2019) 039, arXiv:1812.02102.
[Knee:2018rvj]
[13-515]
Cluster Cosmology Constraints from the 2500 deg$^2$ SPT-SZ Survey: Inclusion of Weak Gravitational Lensing Data from Magellan and the Hubble Space Telescope, S. Bocquet et al., Astrophys.J. 878 (2019) 55, arXiv:1812.01679.
[SPT:2018njh]
[13-516]
Prior dependence of cosmological constraints on dark matter-radiation interactions, James A. D. Diacoumis, Yvonne. Y. Y. Wong, JCAP 2019 (2019) 025, arXiv:1811.11408.
[Diacoumis:2018ezi]
[13-517]
Finding cosmic voids and filament loops using topological data analysis, Xin Xu, Jessi Cisewski-Kehe, Sheridan B. Green, Daisuke Nagai, Astron.Comput. 27 (2019) 34-52, arXiv:1811.08450.
[Xu:2018xnz]
[13-518]
Measurements of the cosmological parameters $\Omega_m$, $\Omega_k$, $\Omega_\textrm{de}(a)$, $H_0$, and $\sum m_\nu$, B. Hoeneisen, arXiv:1811.07894, 2018.
[Hoeneisen:2018uhm]
[13-519]
Understanding the neutrino mass constraints achievable by combining CMB lensing and spectroscopic galaxy surveys, Aoife Boyle, JCAP 2019 (2019) 038, arXiv:1811.07636.
[Boyle:2018rva]
[13-520]
Trading kinetic energy: How late kinetic decoupling of dark matter changes $N_{\textrm{eff}}$, James A. D. Diacoumis, Yvonne Y. Y. Wong, JCAP 1901 (2019) 001, arXiv:1811.05601.
[Diacoumis:2018nbq]
[13-521]
On The Upper Bound of Neutrino Masses from Combined Cosmological Observations and Particle Physics Experiments, Arthur Loureiro et al., Phys.Rev.Lett. 123 (2019) 081301, arXiv:1811.02578.
[Loureiro:2018pdz]
[13-522]
Time-varying neutrino mass from a supercooled phase transition: current cosmological constraints and impact on the $\boldsymbol{\Omega_m}$-$\boldsymbol{\sigma_8}$ plane, Christiane S. Lorenz, Lena Funcke, Erminia Calabrese, Steen Hannestad, Phys.Rev. D99 (2019) 023501, arXiv:1811.01991.
[Lorenz:2018fzb]
[13-523]
Suitable Initial Conditions for Newtonian Simulations with Massive Neutrinos, Christian Fidler, Alexander Kleinjohann, JCAP 1906 (2019) 018, arXiv:1810.12019.
[Fidler:2018stc]
[13-524]
Parity-odd Neutrino Torque Detection, Hao-Ran Yu, Ue-Li Pen, Xin Wang, Phys.Rev. D99 (2019) 123532, arXiv:1810.11784.
[Yu:2018llx]
[13-525]
Dark energy versus modified gravity: Impacts on measuring neutrino mass, Ming-Ming Zhao, Rui-Yun Guo, Jing-Fei Zhang, Xin Zhang, Sci.China Phys.Mech.Astron. 63 (2020) 230412, arXiv:1810.11658.
[Zhao:2018fjj]
[13-526]
Distinguishing standard and modified gravity cosmologies with machine learning, Austin Peel, Florian Lalande, Jean-Luc Starck, Valeria Pettorino, Julian Merten, Carlo Giocoli, Massimo Meneghetti, Marco Baldi, Phys.Rev. D100 (2019) 023508, arXiv:1810.11030.
[Peel:2018aei]
[13-527]
On the dissection of degenerate cosmologies with machine learning, Julian Merten, Carlo Giocoli, Marco Baldi, Massimo Meneghetti, Austin Peel, Florian Lalande, Jean-Luc Starck, Valeria Pettorino, Mon.Not.Roy.Astron.Soc. 487 (2019) 104-122, arXiv:1810.11027.
[Merten:2018bgr]
[13-528]
Impact of Weak Lensing Mass Calibration on eROSITA Galaxy Cluster Cosmological Studies - a Forecast, Sebastian Grandis, Joseph J. Mohr, Joerg P. Dietrich, Sebastian Bocquet, Alexandro Saro, Matthias Klein, Maria Paulus, Raffaella Capasso, Mon.Not.Roy.Astron.Soc. 488 (2019) 2041-2067, arXiv:1810.10553.
[Grandis:2018mle]
[13-529]
Forecast on lepton asymmetry from future CMB experiments, Alexander Bonilla, Rafael C. Nunes, Everton M. C. Abreu, Mon.Not.Roy.Astron.Soc. 485 (2019) 2486-2491, arXiv:1810.06356.
[Bonilla:2018nau]
[13-530]
Forecasts of cosmological constraints from Type Ia supernovae including the weak-lensing convergence, Ryuichiro Hada, Toshifumi Futamase, JCAP 1906 (2019) 033, arXiv:1810.04955.
[Hada:2018ybu]
[13-531]
Constraining Neutrino Mass with the Tomographic Weak Lensing Bispectrum, William R. Coulton, Jia Liu, Mathew S. Madhavacheril, Vanessa Bohm, David N. Spergel, JCAP 2019 (2019) 043, arXiv:1810.02374.
[Coulton:2018ebd]
[13-532]
Constraining neutrino mass with tomographic weak lensing peak counts, Zack Li, Jia Liu, Jose Manuel Zorrilla Matilla, William R. Coulton, Phys.Rev. D99 (2019) 063527, arXiv:1810.01781.
[Li:2018owg]
[13-533]
Constraining neutrino mass with tomographic weak lensing one-point probability distribution function and power spectrum, Jia Liu, Mathew S. Madhavacheril, Phys.Rev. D99 (2019) 083508, arXiv:1809.10747.
[Liu:2018dsw]
[13-534]
Derivation of the Hubble constant using Planck and XMM-Newton observations of galaxy clusters, Arpine Kozmanyan, Herve Bourdin, Pasquale Mazzotta, Elena Rasia, Mauro Sereno, Astron.Astrophys. 621 (2019) A34, arXiv:1809.09560.
[Kozmanyan:2018oao]
[13-535]
Accurate fitting functions for peculiar velocity spectra in standard and massive-neutrino cosmologies, Julien Bel, Andrea Pezzotta, Carmelita Carbone, Emiliano Sefusatti, Luigi Guzzo, Astron.Astrophys. 622 (2019) A109, arXiv:1809.09338.
[Bel:2018awq]
[13-536]
ZXCorr: Cosmological Measurements from Angular Power Spectra Analysis of BOSS DR12 Tomography, Arthur Loureiro et al., Mon.Not.Roy.Astron.Soc. 485 (2019) 326-355, arXiv:1809.07204.
[Loureiro:2018qva]
[13-537]
On the degeneracy between baryon feedback and massive neutrinos as probed by matter clustering and weak lensing, Gabriele Parimbelli, Matteo Viel, Emiliano Sefusatti, JCAP 1901 (2019) 010, arXiv:1809.06634.
[Parimbelli:2018yzv]
[13-538]
Can the $H_0$ tension be resolved in extensions to $\Lambda$CDM cosmology?, Rui-Yun Guo, Jing-Fei Zhang, Xin Zhang, JCAP 1902 (2019) 054, arXiv:1809.02340.
[Guo:2018ans]
[13-539]
Towards Neutrino Mass from Cosmology without Optical Depth Information, Byeonghee Yu et al., Phys.Rev.D 107 (2023) 123522, arXiv:1809.02120.
[Yu:2018tem]
[13-540]
Inflation, (P)reheating and Neutrino Anomalies: Production of Sterile Neutrinos with Secret Interactions, Arnab Paul, Anish Ghoshal, Arindam Chatterjee, Supratik Pal, Eur.Phys.J. C79 (2019) 818, arXiv:1808.09706.
[Paul:2018njm]
[13-541]
Bayesian Evidence against Harrison-Zel'dovich spectrum in tension cosmology, Eleonora Di Valentino, Alessandro Melchiorri, Yabebal Fantaye, Alan Heavens, Phys.Rev. D98 (2018) 063508, arXiv:1808.09201.
[DiValentino:2018zjj]
[13-542]
Massive Neutrinos Leave Fingerprints on Cosmic Voids, C. D. Kreisch et al., Mon.Not.Roy.Astron.Soc. 488 (2019) 4413-4426, arXiv:1808.07464.
[Kreisch:2018var]
[13-543]
Hot Axions and the $H_0$ tension, Francesco D'Eramo, Ricardo Z. Ferreira, Alessio Notari, Jose Luis Bernal, JCAP 1811 (2018) 014, arXiv:1808.07430.
[DEramo:2018vss]
[13-544]
The promising future of a robust cosmological neutrino mass measurement, Thejs Brinckmann, Deanna C. Hooper, Maria Archidiacono, Julien Lesgourgues, Tim Sprenger, JCAP 1901 (2019) 059, arXiv:1808.05955.
[Brinckmann:2018owf]
[13-545]
Cosmic acceleration and de Sitter expansion in hybrid mass varying neutrino model, H. Mohseni Sadjadi, V. Anari, JCAP 1810 (2018) 036, arXiv:1808.01903.
[Sadjadi:2018xqo]
[13-546]
Effects of neutrino mass and asymmetry on cosmological structure formation, Zhichao Zeng, Shek Yeung, Ming-Chung Chu, JCAP 2019 (2019) 015, arXiv:1808.00357.
[Zeng:2018pcv]
[13-547]
Constraining light sterile neutrino mass with the BICEP2/Keck Array 2014 B-mode polarization data, Shouvik Roy Choudhury, Sandhya Choubey, Eur.Phys.J. C79 (2019) 557, arXiv:1807.10294.
[RoyChoudhury:2018bsd]
[13-548]
Is it Mixed dark matter or neutrino masses?, Julia Stadler, Celine Boehm, JCAP 2001 (2020) 039, arXiv:1807.10034.
[Stadler:2018dsa]
[13-549]
Constraints on Cosmology and Baryonic Feedback with the Deep Lens Survey Using Galaxy-Galaxy and Galaxy-Mass Power Spectra, Mijin Yoon et al., arXiv:1807.09195, 2018.
[Yoon:2018esn]
[13-550]
Reionization in the dark and the light from Cosmic Microwave Background, Dhiraj Kumar Hazra, Daniela Paoletti, Fabio Finelli, George F. Smoot, JCAP 1809 (2018) 016, arXiv:1807.05435.
[Hazra:2018eib]
[13-551]
Bias due to neutrinos must not uncorrect'd go, Sunny Vagnozzi et al., JCAP 1809 (2018) 001, arXiv:1807.04672.
[Vagnozzi:2018pwo]
[13-552]
Bounds on Sum of Neutrino Masses in a 12 Parameter Extended Scenario with Non-Phantom Dynamical Dark Energy ($w(z)\geq -1$), Shouvik Roy Choudhury, Abhishek Naskar, Eur.Phys.J. C79 (2019) 262, arXiv:1807.02860.
[RoyChoudhury:2018vnm]
[13-553]
Cluster-Void Degeneracy Breaking: Neutrino Properties and Dark Energy, Martin Sahlen, Phys.Rev. D99 (2019) 063525, arXiv:1807.02470.
[Sahlen:2018cku]
[13-554]
Cosmological implications of scale-independent energy-momentum squared gravity: Pseudo non-minimal interactions in dark matter and relativistic relics, Ozgur Akarsu, Nihan Katirci, Suresh Kumar, Rafael C. Nunes, M. Sami, Phys.Rev. D98 (2018) 063522, arXiv:1807.01588.
[Akarsu:2018aro]
[13-555]
Updated Bounds on Sum of Neutrino Masses in Various Cosmological Scenarios, Shouvik Roy Choudhury, Sandhya Choubey, JCAP 1809 (2018) 017, arXiv:1806.10832.
[RoyChoudhury:2018gay]
[13-556]
Sterile Neutrinos with Secret Interactions - Cosmological Discord?, Xiaoyong Chu, Basudeb Dasgupta, Mona Dentler, Joachim Kopp, Ninetta Saviano, JCAP 1811 (2018) 049, arXiv:1806.10629.
[Chu:2018gxk]
[13-557]
Disentangling Dark Physics with Cosmic Microwave Background Experiments, Zack Li, Vera Gluscevic, Kimberly K. Boddy, Mathew S. Madhavacheril, Phys.Rev. D98 (2018) 123524, arXiv:1806.10165.
[Li:2018zdm]
[13-558]
Joint halo mass function for modified gravity and massive neutrinos I: simulations and cosmological forecasts, Steffen Hagstotz, Matteo Costanzi, Marco Baldi, Jochen Weller, Mon.Not.Roy.Astron.Soc. 486 (2019) 3927-3941, arXiv:1806.07400.
[Hagstotz:2018onp]
[13-559]
Weak Lensing Light-Cones in Modified Gravity simulations with and without Massive Neutrinos, Carlo Giocoli, Marco Baldi, Lauro Moscardini, Mon.Not.Roy.Astron.Soc. 481 (2018) 2813, arXiv:1806.04681.
[Giocoli:2018gqh]
[13-560]
The measurements of matter density perturbations amplitude from cosmological data, R. A. Burenin, Astron.Lett. 44 (2018) 653-663, arXiv:1806.03261.
[Burenin:2018nuf]
[13-561]
Study of galaxy distributions with SDSS DR14 data and measurement of neutrino masses, Bruce Hoeneisen, arXiv:1806.01227, 2018.
[Hoeneisen:2018vno]
[13-562]
Lensing Reconstruction in Post-Born Cosmic Microwave Background Weak Lensing, Dominic Beck, Giulio Fabbian, Josquin Errard, Phys.Rev. D98 (2018) 043512, arXiv:1806.01216.
[Beck:2018wud]
[13-563]
Efficient Computation of Galaxy Bias with Neutrinos and Other Relics, Julian B. Munoz, Cora Dvorkin, Phys.Rev. D98 (2018) 043503, arXiv:1805.11623.
[Munoz:2018ajr]
[13-564]
Cosmological constraints with self-interacting sterile neutrinos, Ningqiang Song, M.C. Gonzalez-Garcia, Jordi Salvado, JCAP 1810 (2018) 055, arXiv:1805.08218.
[Song:2018zyl]
[13-565]
Temperature Dependence of the Neutron Lifespan, Cheng Tao Yang, Jeremiah Birrell, Johann Rafelski, arXiv:1805.06543, 2018.
[Yang:2018qrr]
[13-566]
Visualizing Invisible Dark Matter Annihilation with the CMB and Matter Power Spectrum, Yanou Cui, Ran Huo, Phys.Rev. D100 (2019) 023004, arXiv:1805.06451.
[Cui:2018imi]
[13-567]
Breaking degeneracies in modified gravity with higher (than 2nd) order weak-lensing statistics, Austin Peel, Valeria Pettorino, Carlo Giocoli, Jean-Luc Starck, Marco Baldi, Astron.Astrophys. 619 (2018) A38, arXiv:1805.05146.
[Peel:2018aly]
[13-568]
The EDGES signal: An imprint from the mirror world?, D. Aristizabal Sierra, Chee Sheng Fong, Phys.Lett. B784 (2018) 130-136, arXiv:1805.02685.
[AristizabalSierra:2018emu]
[13-569]
Neutrino Signatures in Primordial Non-Gaussianities, Xingang Chen, Yi Wang, Zhong-Zhi Xianyu, JHEP 1809 (2018) 022, arXiv:1805.02656.
[Chen:2018xck]
[13-570]
Probing Decoupling in Dark Sectors with the Cosmic Microwave Background, Gongjun Choi, Chi-Ting Chiang, Marilena LoVerde, JCAP 1806 (2018) 044, arXiv:1804.10180.
[Choi:2018gho]
[13-571]
Cosmic Microwave Background Constraints in Light of Priors Over Reionization Histories, Marius Millea, Francois Bouchet, Astron.Astrophys. 617 (2018) A96, arXiv:1804.08476.
[Millea:2018bko]
[13-572]
Testing Dark energy models in the light of $\sigma_8$ tension, Gaetano Lambiase, Subhendra Mohanty, Ashish Narang, Priyank Parashari, Eur.Phys.J. C79 (2019) 141, arXiv:1804.07154.
[Lambiase:2018ows]
[13-573]
Tree-Level Bispectrum in the Effective Field Theory of Large-Scale Structure extended to Massive Neutrinos, Roger de Belsunce, Leonardo Senatore, JCAP 2019 (2019) 038, arXiv:1804.06849.
[deBelsunce:2018xtd]
[13-574]
MOND from a brane-world picture, Mordehai Milgrom, arXiv:1804.05840, 2018.
[Milgrom:2018bit]
[13-575]
Preparing for the Cosmic Shear Data Flood: Optimal Data Extraction and Simulation Requirements for Stage IV Dark Energy Experiments, Peter L. Taylor, Thomas D. Kitching, Jason D. McEwen, Phys.Rev. D98 (2018) 043532, arXiv:1804.03667.
[Taylor:2018nrc]
[13-576]
Cluster counts : calibration issue or new physics ? I, Ziad Sakr, Stephane Ilic, Alain Blanchard, Astron.Astrophys. 620 (2018) A78, arXiv:1803.11170.
[Sakr:2018new]
[13-577]
First Measurement of Neutrinos in the BAO Spectrum, Daniel Baumann et al., Nature Phys. 15 (2019) 465-469, arXiv:1803.10741.
[Baumann:2019keh]
[13-578]
Cosmological bounds on dark matter-photon coupling, Suresh Kumar, Rafael C. Nunes, Santosh Kumar Yadav, Phys.Rev. D98 (2018) 043521, arXiv:1803.10229.
[Kumar:2018yhh]
[13-579]
An Efficient and Accurate Hybrid Method for Simulating Non-Linear Neutrino Structure, Simeon Bird, Yacine Ali-Haimoud, Yu Feng, Jia Liu, Mon.Not.Roy.Astron.Soc. 481 (2018) 1486-1500, arXiv:1803.09854.
[Bird:2018all]
[13-580]
The Big Bang, CPT, and neutrino dark matter, Latham Boyle, Kieran Finn, Neil Turok, Annals Phys. 438 (2022) 168767, arXiv:1803.08930.
[Boyle:2018rgh]
[13-581]
CPT symmetric universe, Latham Boyle, Kieran Finn, Neil Turok, Phys.Rev.Lett. 121 (2018) 251301, arXiv:1803.08928.
[Boyle:2018tzc]
[13-582]
Neutrino masses and beyond-$\Lambda$CDM cosmology with LSST and future CMB experiments, Siddharth Mishra-Sharma, David Alonso, Joanna Dunkley, Phys.Rev. D97 (2018) 123544, arXiv:1803.07561.
[Mishra-Sharma:2018ykh]
[13-583]
The $H_0$ Tension in Non-flat QCDM Cosmology, Haitao Miao, Zhiqi Huang, Astrophys.J. 868 (2018) 20, arXiv:1803.07320.
[Miao:2018zpw]
[13-584]
Characterizing the Epoch of Reionization with the small-scale CMB: constraints on the optical depth and physical parameters, Simone Ferraro, Kendrick M. Smith, Phys.Rev. D98 (2018) 123519, arXiv:1803.07036.
[Ferraro:2018izc]
[13-585]
Exploring neutrino mass and mass hierarchy in the scenario of vacuum energy interacting with cold dark matter, Rui-Yun Guo, Jing-Fei Zhang, Xin Zhang, Chin.Phys. C42 (2018) 095103, arXiv:1803.06910.
[Guo:2018gyo]
[13-586]
Cosmological Signatures of a Mirror Twin Higgs, Zackaria Chacko, David Curtin, Michael Geller, Yuhsin Tsai, JHEP 1809 (2018) 163, arXiv:1803.03263.
[Chacko:2018vss]
[13-587]
The implications of an extended dark energy cosmology with massive neutrinos for cosmological tensions, Vivian Poulin, Kimberly K. Boddy, Simeon Bird, Marc Kamionkowski, Phys.Rev. D97 (2018) 123504, arXiv:1803.02474.
[Poulin:2018zxs]
[13-588]
The CMB neutrino mass / vacuum energy degeneracy: a simple derivation of the degeneracy slopes, Will Sutherland, Mon.Not.Roy.Astron.Soc. 477 (2018) 1913-1920, arXiv:1803.02298.
[Sutherland:2018ghu]
[13-589]
Precision constraints on radiative neutrino decay with CMB spectral distortion, Jelle L. Aalberts et al., Phys.Rev. D98 (2018) 023001, arXiv:1803.00588.
[Aalberts:2018obr]
[13-590]
Objective Bayesian analysis of neutrino masses and hierarchy, Alan F. Heavens, Elena Sellentin, JCAP 1804 (2018) 047, arXiv:1802.09450.
[Heavens:2018adv]
[13-591]
Scale-dependent galaxy bias, CMB lensing-galaxy cross-correlation, and neutrino masses, Elena Giusarma et al., Phys.Rev. D98 (2018) 123526, arXiv:1802.08694.
[Giusarma:2018jei]
[13-592]
Impacts of gravitational-wave standard siren observation of the Einstein Telescope on weighing neutrinos in cosmology, Ling-Feng Wang, Xuan-Neng Zhang, Jing-Fei Zhang, Xin Zhang, Phys.Lett. B782 (2018) 87-93, arXiv:1802.04720.
[Wang:2018lun]
[13-593]
Cosmological bounds on neutrino statistics, P.F. de Salas et al., JCAP 1803 (2018) 050, arXiv:1802.04639.
[deSalas:2018idd]
[13-594]
Cosmologically Viable Low-energy Supersymmetry Breaking, Anson Hook, Robert McGehee, Hitoshi Murayama, Phys.Rev. D98 (2018) 115036, arXiv:1801.10160.
[Hook:2018sai]
[13-595]
Updated observational constraints on quintessence dark energy models, Jean-Baptiste Durrive, Junpei Ooba, Kiyotomo Ichiki, Naoshi Sugiyama, Phys.Rev. D97 (2018) 043503, arXiv:1801.09446.
[Durrive:2018quo]
[13-596]
Constraints on the sum of the neutrino masses in dynamical dark energy models with $w(z) \geq -1$ are tighter than those obtained in $\Lambda$CDM, Sunny Vagnozzi et al., Phys.Rev. D98 (2018) 083501, arXiv:1801.08553.
[Vagnozzi:2018jhn]
[13-597]
Cosmology in the era of Euclid and the Square Kilometre Array, Tim Sprenger, Maria Archidiacono, Thejs Brinckmann, Sebastien Clesse, Julien Lesgourgues, JCAP 1902 (2019) 047, arXiv:1801.08331.
[Sprenger:2018tdb]
[13-598]
Precision big bang nucleosynthesis with improved Helium-4 predictions, Cyril Pitrou, Alain Coc, Jean-Philippe Uzan, Elisabeth Vangioni, Phys.Rept. 04 (2018) 005, arXiv:1801.08023.
[Pitrou:2018cgg]
[13-599]
Neutrino masses and their ordering: Global Data, Priors and Models, S. Gariazzo et al., JCAP 1803 (2018) 011, arXiv:1801.04946.
[Gariazzo:2018pei]
[13-600]
Dark Energy Constraints in light of the Pantheon Type Ia Supernovae Sample, Deng Wang, D. M. Scolnic, Phys.Rev. D97 (2018) 123507, arXiv:1801.02371.
[Wang:2018ahw]
[13-601]
Constraining sterile neutrino cosmologies with strong gravitational lensing observations at redshift z~0.2, S. Vegetti, G. Despali, M. R. Lovell, W. Enzi, Mon.Not.Roy.Astron.Soc. 481 (2018) 3661-3669, arXiv:1801.01505.
[Vegetti:2018dly]
[13-602]
A Projected Estimate of the Reionization Optical Depth Using the CLASS Experiment's Sample-Variance Limited E-Mode Measurement, Duncan J. Watts et al., Astrophys.J. 863 (2018) 121, arXiv:1801.01481.
[Watts:2018etg]
[13-603]
Searching for Light Relics with Large-Scale Structure, Daniel Baumann, Daniel Green, Benjamin Wallisch, JCAP 1808 (2018) 029, arXiv:1712.08067.
[Baumann:2017gkg]
[13-604]
Nonlocal gravity. Conceptual aspects and cosmological predictions, Enis Belgacem, Yves Dirian, Stefano Foffa, Michele Maggiore, arXiv:1712.07066, 2017.
[Belgacem:2017kev]
[13-605]
The impact of theoretical assumptions in the determination of the neutrino effective number from future CMB measurements, Ludovico Capparelli, Eleonora Di Valentino, Alessandro Melchiorri, Jens Chluba, Phys.Rev. D97 (2018) 063519, arXiv:1712.06965.
[Capparelli:2017tyx]
[13-606]
Observational Constraints on Secret Neutrino Interactions from Big Bang Nucleosynthesis, Guo-yuan Huang, Tommy Ohlsson, Shun Zhou, Phys.Rev. D97 (2018) 075009, arXiv:1712.04792.
[Huang:2017egl]
[13-607]
On dark matter - dark radiation interaction and cosmic reionization, Subinoy Das, Rajesh Mondal, Vikram Rentala, Srikanth Suresh, JCAP 1808 (2018) 045, arXiv:1712.03976.
[Das:2017nub]
[13-608]
$\nu$CO$N$CEPT: Cosmological neutrino simulations from the non-linear Boltzmann hierarchy, Jeppe Dakin, Jacob Brandbyge, Steen Hannestad, Troels Haugbolle, Thomas Tram, JCAP 1902 (2019) 052, arXiv:1712.03944.
[Dakin:2017idt]
[13-609]
Constraints on neutrino masses from Baryon Acoustic Oscillation measurements, B. Hoeneisen, arXiv:1712.03533, 2017.
[Hoeneisen:2017sxz]
[13-610]
Search for sterile neutrinos in a universe of vacuum energy interacting with cold dark matter, Lu Feng, Jing-Fei Zhang, Xin Zhang, Phys.Dark Univ. 23 (2019) 100261, arXiv:1712.03148.
[Feng:2017usu]
[13-611]
Cosmological constraints from galaxy clustering in the presence of massive neutrinos, Matteo Zennaro, Julien Bel, Jason Dossett, Carmelita Carbone, Luigi Guzzo, Mon.Not.Roy.Astron.Soc. 477 (2018) 491-506, arXiv:1712.02886.
[Zennaro:2017qnp]
[13-612]
The BAHAMAS project: the CMB-large-scale structure tension and the roles of massive neutrinos and galaxy formation, Ian G. McCarthy et al., Mon.Not.Roy.Astron.Soc. 476 (2018) 2999, arXiv:1712.02411.
[Mccarthy:2017yqf]
[13-613]
DEMNUni: Massive neutrinos and the bispectrum of large scale structures, Rossana Ruggeri, Emanuele Castorina, Carmelita Carbone, Emiliano Sefusatti, JCAP 1803 (2018) 003, arXiv:1712.02334.
[Ruggeri:2017dda]
[13-614]
Deconstructing the neutrino mass constraint from galaxy redshift surveys, Aoife Boyle, Eiichiro Komatsu, JCAP 1803 (2018) 035, arXiv:1712.01857.
[Boyle:2017lzt]
[13-615]
Bounds on Neutrino Mass in Viscous Cosmology, Sampurn Anand, Prakrut Chaubal, Arindam Mazumdar, Subhendra Mohanty, Priyank Parashari, JCAP 1805 (2018) 031, arXiv:1712.01254.
[Anand:2017ktp]
[13-616]
Impact of Massive Neutrinos and Dark Radiation on the High-redshift Cosmic Web. I. Lyman-Alpha Forest Observables, Graziano Rossi, Astrophys.J.Suppl. 233 (2017) 12, arXiv:1712.00230.
[Rossi:2017vmw]
[13-617]
MassiveNuS: Cosmological Massive Neutrino Simulations, Jia Liu et al., JCAP 1803 (2018) 049, arXiv:1711.10524.
[Liu:2017now]
[13-618]
Neutrinoless Double Beta Decay and the Baryon Asymmetry of the Universe, Frank F. Deppisch, Lukas Graf, Julia Harz, Wei-Chih Huang, Phys.Rev. D98 (2018) 055029, arXiv:1711.10432.
[Deppisch:2017ecm]
[13-619]
Dark neutrino interactions make gravitational waves blue, Subhajit Ghosh, Rishi Khatri, Tuhin S. Roy, Phys.Rev. D97 (2018) 063529, arXiv:1711.09929.
[Ghosh:2017jdy]
[13-620]
Neutrino Mass Priors for Cosmology from Random Matrices, Andrew J. Long, Marco Raveri, Wayne Hu, Scott Dodelson, Phys.Rev. D97 (2018) 043510, arXiv:1711.08434.
[Long:2017dru]
[13-621]
Lensing convergence in galaxy clustering in LambdaCDM and beyond, Eleonora Villa, Enea Di Dio, Francesca Lepori, JCAP 1804 (2018) 033, arXiv:1711.07466.
[Villa:2017yfg]
[13-622]
Dark matter-neutrino interactions through the lens of their cosmological implications, Andres Olivares-Del Campo, Celine Boehm, Sergio Palomares-Ruiz, Silvia Pascoli, Phys.Rev. D97 (2018) 075039, arXiv:1711.05283.
[Olivares-DelCampo:2017feq]
[13-623]
Evidence of Neutrino Enhanced Clustering in a Complete Sample of Sloan Survey Clusters, Implying $\sum m_\nu=0.11\pm0.03eV$, Raizeh Emami et al., arXiv:1711.05210, 2017.
[Emami:2017wqa]
[13-624]
Do current cosmological observations rule out all Covariant Galileons?, Simone Peirone, Noemi Frusciante, Bin Hu, Marco Raveri, Alessandra Silvestri, Phys.Rev. D97 (2018) 063518, arXiv:1711.04760.
[Peirone:2017vcq]
[13-625]
Effect of Massive Neutrinos on the Position of Cold Dark Matter Halo: Revealed via Delaunay Triangulation Void, Jian Qin et al., Astrophys.J. 862 (2018) 60, arXiv:1711.01379.
[Qin:2017qnc]
[13-626]
Probing the relic neutrinos properties with CMB, HST and galaxy clusters, Rafael C. Nunes, Alexander Bonilla, Mon.Not.Roy.Astron.Soc. 473 (2018) 4404-4409, arXiv:1710.10264.
[Nunes:2017xon]
[13-627]
Optimal prior for Bayesian inference in a constrained parameter space, Steen Hannestad, Thomas Tram, arXiv:1710.08899, 2017.
[Hannestad:2017ypp]
[13-628]
Big-Bang nucleosynthyesis: constraints on nuclear reaction rates, neutrino degeneracy, inhomogeneous and Brans-Dicke models, Riou Nakamura, Masa-aki Hasahimoto, Ryotaro Ichimasa, Kenzo Arai, Int.J.Mod.Phys. E26 (2017) 1741003, arXiv:1710.08153.
[Nakamura:2017qtu]
[13-629]
Improved constraints on H0 from a combined analysis of gravitational-wave and electromagnetic emission from GW170817, C. Guidorzi et al., Astrophys.J. 851 (2017) L36, arXiv:1710.06426.
[Guidorzi:2017ogy]
[13-630]
Cosmological constraints combining Planck with the recent gravitational-wave standard siren measurement of the Hubble constant, Eleonora Di Valentino, Alessandro Melchiorri, Phys.Rev. D97 (2018) 041301, arXiv:1710.06370.
[DiValentino:2017clw]
[13-631]
Reducing the $H_0$ and $\sigma_8$ tensions with Dark Matter-neutrino interactions, Eleonora Di Valentino, Celine Boe hm, Eric Hivon, Francois R. Bouchet, Phys.Rev. D97 (2018) 043513, arXiv:1710.02559.
[DiValentino:2017oaw]
[13-632]
The impact of relativistic effects on cosmological parameter estimation, Christiane S. Lorenz, David Alonso, Pedro G. Ferreira, Phys.Rev. D97 (2018) 023537, arXiv:1710.02477.
[Lorenz:2017iez]
[13-633]
Measuring growth index in a universe with massive neutrinos: A revisit of the general relativity test with the latest observations, Ming-Ming Zhao, Jing-Fei Zhang, Xin Zhang, Phys.Lett. B779 (2018) 473-478, arXiv:1710.02391.
[Zhao:2017jma]
[13-634]
A Vacuum Phase Transition Solves $H_0$ Tension, Eleonora Di Valentino, Eric Linder, Alessandro Melchiorri, Phys.Rev. D97 (2018) 043528, arXiv:1710.02153.
[DiValentino:2017rcr]
[13-635]
Cluster mislocation in kinematic Sunyaev-Zel'dovich (kSZ) effect extraction, Victoria Calafut, Rachel Bean, Byeonghee Yu, Phys.Rev. D96 (2017) 123529, arXiv:1710.01755.
[Calafut:2017mzp]
[13-636]
High-redshift post-reionisation cosmology with 21cm intensity mapping, Andrej Obuljen, Emanuele Castorina, Francisco Villaescusa-Navarro, Matteo Viel, JCAP 1805 (2018) 004, arXiv:1709.07893.
[Obuljen:2017jiy]
[13-637]
Partially Acoustic Dark Matter Cosmology and Cosmological Constraints, Marco Raveri, Wayne Hu, Timothy Hoffman, Lian-Tao Wang, Phys.Rev. D96 (2017) 103501, arXiv:1709.04877.
[Raveri:2017jto]
[13-638]
Finslerian Universe May Reconcile Tensions between High and Low Redshift Probes, Deng Wang, Xin-He Meng, Int.J.Theor.Phys. 62 (2023) 184, arXiv:1709.04141.
[Wang:2017shp]
[13-639]
Lens covariance effects on likelihood analyses of CMB power spectra, Pavel Motloch, Wayne Hu, Phys.Rev. D96 (2017) 103517, arXiv:1709.03599.
[Motloch:2017rlk]
[13-640]
Understanding disk galaxy rotation velocities without dark matter contribution-a physical process for MOND?, K. Wilhelm, B.N. Dwivedi, Mon.Not.Roy.Astron.Soc. 474 (2018) 4723-4729, arXiv:1709.02387.
[Wilhelm:2017jdz]
[13-641]
Universal subhalo accretion in cold and warm dark matter cosmologies, Bogna Kubik et al., Mon.Not.Roy.Astron.Soc. 472 (2017) 4099, arXiv:1709.00884.
[Kubik:2017sxp]
[13-642]
Warm Dark Matter and Cosmic Reionization, Pablo Villanueva-Domingo, Nickolay Y. Gnedin, Olga Mena, Astrophys.J. 852 (2018) 139, arXiv:1708.08277.
[Villanueva-Domingo:2017lae]
[13-643]
Fundamental Physics from Future Weak-Lensing Calibrated Sunyaev-Zel'dovich Galaxy Cluster Counts, Mathew Madhavacheril, Nicholas Battaglia, Hironao Miyatake, Phys.Rev. D96 (2017) 103525, arXiv:1708.07502.
[Madhavacheril:2017onh]
[13-644]
Primordial lithium abundance problem of BBN and baryonic density in the universe, Vinay Singh, Joydev Lahiri, Debasis Bhowmick, D. N. Basu, J.Exp.Theor.Phys. 155 (2019) 832, arXiv:1708.05567.
[Singh:2017dyq]
[13-645]
The extended ROSAT-ESO Flux-Limited X-ray Galaxy Cluster Survey (REFLEX II) VII The Mass Function of Galaxy Clusters, Hans Boehringer, Gayoung Chon, Masataka Fukugita, Astron.Astrophys. 608 (2017) A65, arXiv:1708.02449.
[Bohringer:2017dro]
[13-646]
The imprint of neutrinos on clustering in redshift-space, Francisco Villaescusa-Navarro, Arka Banerjee, Neal Dalal, Emanuele Castorina, Roman Scoccimarro, Raul Angulo, David N. Spergel, Astrophys.J. 861 (2018) 53, arXiv:1708.01154.
[Villaescusa-Navarro:2017mfx]
[13-647]
The impact of galaxy formation on satellite kinematics and redshift-space distortions, Alvaro A. Orsi, Raul E. Angulo, Mon.Not.Roy.Astron.Soc. 475 (2018) 2530, arXiv:1708.00956.
[Orsi:2017ggf]
[13-648]
Constraints from joint analysis of CMB, and tSZ cluster counts and power spectrum, Laura Salvati, Marian Douspis, Nabila Aghanim, Astron.Astrophys. 614 (2018) A13, arXiv:1708.00697.
[Salvati:2017rsn]
[13-649]
Neutrino mass and dark energy constraints from redshift-space distortions, Amol Upadhye, JCAP 2019 (2019) 041, arXiv:1707.09354.
[Upadhye:2017hdl]
[13-650]
Cosmology and CPT violating neutrinos, Gabriela Barenboim, Jordi Salvado, Eur.Phys.J. C77 (2017) 766, arXiv:1707.08155.
[Barenboim:2017vlc]
[13-651]
Parameter constraints from weak lensing tomography of galaxy shapes and cosmic microwave background fluctuations, Philipp M. Merkel, Bjoern Malte Schaefer, Mon.Not.Roy.Astron.Soc. 469 (2017) 2760-2770, arXiv:1707.08153.
[Merkel:2017amt]
[13-652]
Cosmological parameter forecasts for HI intensity mapping experiments using the angular power spectrum, L. C. Olivari et al., Mon.Not.Roy.Astron.Soc. 473 (2018) 4242-4256, arXiv:1707.07647.
[Olivari:2017bfv]
[13-653]
Using CMB spectral distortions to distinguish between dark matter solutions to the small-scale crisis, James A.D. Diacoumis, Yvonne Y.Y. Wong, JCAP 1709 (2017) 011, arXiv:1707.07050.
[Diacoumis:2017hff]
[13-654]
KiDS-450 + 2dFLenS: Cosmological parameter constraints from weak gravitational lensing tomography and overlapping redshift-space galaxy clustering, Shahab Joudaki et al., Mon.Not.Roy.Astron.Soc. 474 (2018) 4894, arXiv:1707.06627.
[Joudaki:2017zdt]
[13-655]
The Effective Field Theory of Large-Scale Structure in the presence of Massive Neutrinos, Leonardo Senatore, Matias Zaldarriaga, arXiv:1707.04698, 2017.
[Senatore:2017hyk]
[13-656]
Extra-galactic distances with massive stars: the role of stellar variability in the case of M33, Chien-Hsiu Lee, arXiv:1707.03594, 2017.
[1707.03594]
[13-657]
Is there another coincidence problem at the reionization epoch?, Lucas Lombriser, Vanessa Smer-Barreto, Phys.Rev. D96 (2017) 123505, arXiv:1707.03388.
[Lombriser:2017cjy]
[13-658]
New cosmological constraints with extended-Baryon Oscillation Spectroscopic Survey DR14 quasar sample, Lu Chen, Qing-Guo Huang, Ke Wang, Eur.Phys.J. C77 (2017) 762, arXiv:1707.02742.
[Chen:2017ayg]
[13-659]
Constraining dynamical neutrino mass generation with cosmological data, S.M. Koksbang, S. Hannestad, JCAP 1709 (2017) 014, arXiv:1707.02579.
[Koksbang:2017rux]
[13-660]
Galileon Gravity in Light of ISW, CMB, BAO and $H_0$ data, Janina Renk, Miguel Zumalacarregui, Francesco Montanari, Alexandre Barreira, JCAP 1710 (2017) 020, arXiv:1707.02263.
[Renk:2017rzu]
[13-661]
Constraints on the sum of neutrino masses from Bayesian analysis of the latest cosmological data, Sai Wang, Dong-Mei Xia, Chin.Phys. C42 (2018) 065103, arXiv:1707.00588.
[Wang:2017htc]
[13-662]
Constraining sterile neutrino and dark energy with the latest cosmological observations, Lu Feng, Jing-Fei Zhang, Xin Zhang, Sci.China Phys.Mech.Astron. 61 (2018) 050411, arXiv:1706.06913.
[Feng:2017mfs]
[13-663]
Integrated cosmological probes: Concordance quantified, Andrina Nicola, Adam Amara, Alexandre Refregier, JCAP 1710 (2017) 045, arXiv:1706.06593.
[Nicola:2017ryw]
[13-664]
Cosmological constraints from a joint analysis of cosmic microwave background and large-scale structure, Cyrille Doux et al., Mon.Not.Roy.Astron.Soc. 480 (2018) 5386-5411, arXiv:1706.04583.
[Doux:2017tsv]
[13-665]
Diffuse neutrino supernova background as a cosmological test, J. Barranco, Argelia Bernal, D. Delepine, J.Phys. G45 (2018) 055201, arXiv:1706.03834.
[Barranco:2017lug]
[13-666]
Limits on Brane-World and Particle Dark Radiation from Big Bang Nucleosynthesis and the CMB, Nishanth Sasankan, Mayukh. R. Gangopadhyay, Grant. J. Mathews, Motohiko Kusakabe, Int.J.Mod.Phys. E26 (2017) 1741007, arXiv:1706.03630.
[Sasankan:2017eqr]
[13-667]
Insights into neutrino decoupling gleaned from considerations of the role of electron mass, E. Grohs, George M. Fuller, Nucl.Phys. B923 (2017) 222-244, arXiv:1706.03391.
[Grohs:2017iit]
[13-668]
Constraints from Ly-$\alpha$ forests on non-thermal dark matter including resonantly-produced sterile neutrinos, Julien Baur et al., JCAP 1712 (2017) 013, arXiv:1706.03118.
[Baur:2017stq]
[13-669]
KiDS-450: The tomographic weak lensing power spectrum and constraints on cosmological parameters, F. Kohlinger et al., Mon.Not.Roy.Astron.Soc. 471 (2017) 4412-4435, arXiv:1706.02892.
[Kohlinger:2017sxk]
[13-670]
Revised Uncertainties in Big Bang Nucleosynthesis, Michael Foley, Nishanth Sasankan, Motohiko Kusakabe, Grant. J. Mathews, Int.J.Mod.Phys. E26 (2017) 1741008, arXiv:1706.02834.
[Foley:2017xex]
[13-671]
Thermalizing sterile neutrino dark matter, Rasmus S. L. Hansen, Stefan Vogl, Phys.Rev.Lett. 119 (2017) 251305, arXiv:1706.02707.
[Hansen:2017rxr]
[13-672]
Interacting neutrinos in cosmology: exact description and constraints, Isabel M. Oldengott, Thomas Tram, Cornelius Rampf, Yvonne Y. Y. Wong, JCAP 1711 (2017) 027, arXiv:1706.02123.
[Oldengott:2017fhy]
[13-673]
Improved constraints on lepton asymmetry from the cosmic microwave background, Isabel M. Oldengott, Dominik J. Schwarz, Europhys.Lett. 119 (2017) 29001, arXiv:1706.01705.
[Oldengott:2017tzj]
[13-674]
$\DeltaN_{\text{eff}}$ and entropy production from early-decaying gravitinos, Emanuela Dimastrogiovanni, Lawrence M. Krauss, Phys.Rev. D98 (2018) 023006, arXiv:1706.01495.
[Dimastrogiovanni:2017tvd]
[13-675]
Distinguishing between Neutrinos and time-varying Dark Energy through Cosmic Time, Christiane S. Lorenz, Erminia Calabrese, David Alonso, Phys.Rev. D96 (2017) 043510, arXiv:1706.00730.
[Lorenz:2017fgo]
[13-676]
Observational Constraints on the Primordial Curvature Power Spectrum, Razieh Emami, George Smoot, JCAP 1801 (2018) 007, arXiv:1705.09924.
[Emami:2017fiy]
[13-677]
COLA with massive neutrinos, Bill S. Wright, Hans A. Winther, Kazuya Koyama, JCAP 1710 (2017) 054, arXiv:1705.08165.
[Wright:2017dkw]
[13-678]
Cosmological constraints from a joint analysis of cosmic growth and expansion, Michele Moresco, Federico Marulli, Mon.Not.Roy.Astron.Soc. 471 (2017) L82-L86, arXiv:1705.07903.
[Moresco:2017hwt]
[13-679]
Bias to CMB Lensing Reconstruction from Temperature Anisotropies due to Large-Scale Galaxy Motions, Simone Ferraro, J. Colin Hill, Phys.Rev. D97 (2018) 023512, arXiv:1705.06751.
[Ferraro:2017fac]
[13-680]
Narrowing down the possible explanations of cosmic acceleration with geometric probes, Suhail Dhawan, Ariel Goobar, Edvard Mortsell, Rahman Amanullah, Ulrich Feindt, JCAP 1707 (2017) 040, arXiv:1705.05768.
[Dhawan:2017leu]
[13-681]
Phenomenology of a Neutrino-DM Coupling: The Scalar Case, Celine Boehm, Andres Olivares-Del Campo, Sergio Palomares-Ruiz, Silvia Pascoli, arXiv:1705.03692, 2017. NuPhys2016 (London, 12-14 December 2016).
[Boehm:2017dze]
[13-682]
The Mira-Titan Universe II: Matter Power Spectrum Emulation, Earl Lawrence et al., Astrophys.J. 847 (2017) 50, arXiv:1705.03388.
[Lawrence:2017ost]
[13-683]
A Global Bayesian Analysis of Neutrino Mass Data, Allen Caldwell, Alexander Merle, Oliver Schulz, Maximilian Totzauer, Phys.Rev. D96 (2017) 073001, arXiv:1705.01945.
[Caldwell:2017mqu]
[13-684]
Effect of the Early Reionization on the Cosmic Microwave Background and Cosmological Parameter Estimates, Qing-Guo Huang, Ke Wang, JCAP 1707 (2017) 042, arXiv:1704.08495.
[Huang:2017huh]
[13-685]
Biases from neutrino bias: to worry or not to worry?, Alvise Raccanelli, Licia Verde, Francisco Villaescusa-Navarro, Mon.Not.Roy.Astron.Soc. 483 (2018) 734-743, arXiv:1704.07837.
[Raccanelli:2017kht]
[13-686]
A tale of two modes: Neutrino free-streaming in the early universe, Lachlan Lancaster, Francis-Yan Cyr-Racine, Lloyd Knox, Zhen Pan, JCAP 1707 (2017) 033, arXiv:1704.06657.
[Lancaster:2017ksf]
[13-687]
Easing Tensions with Quartessence, Stefano Camera, Matteo Martinelli, Daniele Bertacca, Phys.Dark Univ. 23 (2019) 100247, arXiv:1704.06277.
[Camera:2017tws]
[13-688]
Flavour composition and entropy increase of cosmological neutrinos after decoherence, Daniel Boriero, Dominik J. Schwarz, Hermano Velten, Universe 5 (2019) 203, arXiv:1704.06139.
[Boriero:2017tkh]
[13-689]
Changing the prior: absolute neutrino mass constraints in nonlocal gravity, Yves Dirian, Phys.Rev. D96 (2017) 083513, arXiv:1704.04075.
[Dirian:2017pwp]
[13-690]
No evidence for extensions to the standard cosmological model, Alan Heavens et al., Phys.Rev.Lett. 119 (2017) 101301, arXiv:1704.03467.
[Heavens:2017hkr]
[13-691]
Cosmological searches for a non-cold dark matter component, Stefano Gariazzo, Miguel Escudero, Roberta Diamanti, Olga Mena, Phys.Rev. D96 (2017) 043501, arXiv:1704.02991.
[Gariazzo:2017pzb]
[13-692]
POLOCALC: a Novel Method to Measure the Absolute Polarization Orientation of the Cosmic Microwave Background, Federico Nati et al., J.Astron.Inst. 6 (2017) 1740008, arXiv:1704.02704.
[Nati:2017lnn]
[13-693]
Cosmic microwave background constraints on secret interactions among sterile neutrinos, Francesco Forastieri et al., JCAP 1707 (2017) 038, arXiv:1704.00626.
[Forastieri:2017oma]
[13-694]
Cosmological constraints on the neutrino mass including systematic uncertainties, F. Couchot et al., Astron.Astrophys. 606 (2017) A104, arXiv:1703.10829.
[Couchot:2017pvz]
[13-695]
Cosmological Constraints on Interacting Light Particles, Christopher Brust, Yanou Cui, Kris Sigurdson, JCAP 08 (2017) 020, arXiv:1703.10732.
[Brust:2017nmv]
[13-696]
Reconstructing the metric of the local Universe from number counts observations, Sergio Andres Vallejo, Antonio Enea Romano, JCAP 1710 (2017) 023, arXiv:1703.08895.
[Vallejo:2017rga]
[13-697]
A search for sterile neutrinos in holographic dark energy cosmology: Reconciling Planck observation with the local measurement of Hubble constant, Ming-Ming Zhao, Dong-Ze He, Jing-Fei Zhang, Xin Zhang, Phys.Rev. D96 (2017) 043520, arXiv:1703.08456.
[Zhao:2017urm]
[13-698]
Viable Twin Cosmology from Neutrino Mixing, Csaba Csaki, Eric Kuflik, Salvator Lombardo, Phys.Rev. D96 (2017) 055013, arXiv:1703.06884.
[Csaki:2017spo]
[13-699]
A search for sterile neutrinos with the latest cosmological observations, Lu Feng, Jing-Fei Zhang, Xin Zhang, Eur.Phys.J. C77 (2017) 418, arXiv:1703.04884.
[Feng:2017nss]
[13-700]
Spacetime Deformation Effect on the Early Universe and the PTOLEMY Experiment, Raul Horvat, Josip Trampetic, Jiangyang You, Phys.Lett. B772 (2017) 130-135, arXiv:1703.04800.
[Horvat:2017gfm]
[13-701]
Comment on 'Strong Evidence for the Normal Neutrino Hierarchy', T. Schwetz et al., arXiv:1703.04585, 2017.
[Schwetz:2017fey]
[13-702]
Strong Evidence for the Normal Neutrino Hierarchy, Fergus Simpson, Raul Jimenez, Carlos Pena-Garay, Licia Verde, JCAP 1706 (2017) 029, arXiv:1703.03425.
[Simpson:2017qvj]
[13-703]
Effects of neutrino mass hierarchies on dynamical dark energy models, Weiqiang Yang, Rafael C. Nunes, Supriya Pan, David F. Mota, Phys.Rev. D95 (2017) 103522, arXiv:1703.02556.
[Yang:2017amu]
[13-704]
Constraints on warm dark matter from the ionization history of the Universe, Laura Lopez-Honorez, Olga Mena, Sergio Palomares-Ruiz, Pablo Villanueva Domingo, Phys.Rev. D96 (2017) 103539, arXiv:1703.02302.
[Lopez-Honorez:2017csg]
[13-705]
Probing the Neutrino Mass Hierarchy with Dynamical Dark Energy Model, En-Kun Li, Hongchao Zhang, Minghui Du, Zhi-Huan Zhou, Lixin Xu, JCAP 1808 (2018) 042, arXiv:1703.01554.
[Li:2017iur]
[13-706]
Weighing neutrinos in the scenario of vacuum energy interacting with cold dark matter: application of the parameterized post-Friedmann approach, Rui-Yun Guo, Yun-He Li, Jing-Fei Zhang, Xin Zhang, JCAP 1705 (2017) 040, arXiv:1702.04189.
[Guo:2017hea]
[13-707]
Constraints on neutrino masses from Lyman-alpha forest power spectrum with BOSS and XQ-100, Ch. Yeche, N. Palanque-Delabrouille, J. Baur, H. du Mas des BourBoux, JCAP 1706 (2017) 047, arXiv:1702.03314.
[Yeche:2017upn]
[13-708]
Cosmological Parameters from pre-Planck CMB Measurements: a 2017 Update, Erminia Calabrese et al., Phys.Rev. D95 (2017) 063525, arXiv:1702.03272.
[Calabrese:2017ypx]
[13-709]
Echo for interaction in the dark sector, Suresh Kumar, Rafael C. Nunes, Phys.Rev. D96 (2017) 103511, arXiv:1702.02143.
[Kumar:2017dnp]
[13-710]
The separate and combined effects of baryon physics and neutrino free-streaming on large-scale structure, Benjamin O. Mummery, Ian G. McCarthy, Simeon Bird, Joop Schaye, Mon.Not.Roy.Astron.Soc. 471 (2017) 227, arXiv:1702.02064.
[Mummery:2017lcn]
[13-711]
The kinematic Sunyaev-Zel'dovich effect of the large-scale structure (I): dependence on neutrino mass, Mauro Roncarelli, Francisco Villaescusa-Navarro, Marco Baldi, Mon.Not.Roy.Astron.Soc. 467 (2017) 985, arXiv:1702.00676.
[Roncarelli:2017cwe]
[13-712]
The Cosmology of Sub-MeV Dark Matter, Daniel Green, Surjeet Rajendran, JHEP 1710 (2017) 013, arXiv:1701.08750.
[Green:2017ybv]
[13-713]
Unveiling $\nu$ secrets with cosmological data: neutrino masses and mass hierarchy, Sunny Vagnozzi, Elena Giusarma, Olga Mena, Katherine Freese, Martina Gerbino, Shirley Ho, Massimiliano Lattanzi, Phys.Rev. D96 (2017) 123503, arXiv:1701.08172.
[Vagnozzi:2017ovm]
[13-714]
Reconstructing CMB fluctuations and the mean reionization optical depth, P. Daniel Meerburg, Joel Meyers, Kendrick M. Smith, Alexander van Engelen, Phys.Rev. D95 (2017) 123538, arXiv:1701.06992.
[Meerburg:2017lfh]
[13-715]
Generalizing MOND to explain the missing mass in galaxy clusters, Alistair Hodson, Hongsheng Zhao, Astron.Astrophys. 598 (2017) A127, arXiv:1701.03369.
[Hodson:2017dxw]
[13-716]
Cosmology and time dependent parameters induced by misaligned light scalar, Yue Zhao, Phys.Rev. D95 (2017) 115002, arXiv:1701.02735.
[Zhao:2017wmo]
[13-717]
Lorentz invariance violation in the neutrino sector: a joint analysis from big bang nucleosynthesis and the cosmic microwave background, Wei-Ming Dai, Zong-Kuan Guo, Rong-Gen Cai, Yuan-Zhong Zhang, Eur.Phys.J. C77 (2017) 386, arXiv:1701.02553.
[Dai:2017sst]
[13-718]
Median statistics estimates of Hubble and Newton's Constant, Suryarao Bethapudi, Shantanu Desai, Eur.Phys.J.Plus 132 (2017) 78, arXiv:1701.01789.
[Bethapudi:2017swc]
[13-719]
Fundamental physics with the Hubble Frontier Fields: constraining Dark Matter models with the abundance of extremely faint and distant galaxies, Nicola Menci et al., Astrophys.J. 836 (2017) 61, arXiv:1701.01339.
[Menci:2017nsr]
[13-720]
Fuzzy Dark Matter from Infrared Confining Dynamics, Hooman Davoudiasl, Christopher W. Murphy, Phys.Rev.Lett. 118 (2017) 141801, arXiv:1701.01136.
[Davoudiasl:2017jke]
[13-721]
Tests of Neutrino and Dark Radiation Models from Galaxy and CMB surveys, Arka Banerjee, Bhuvnesh Jain, Neal Dalal, Jessie Shelton, JCAP 1801 (2018) 022, arXiv:1612.07126.
[Banerjee:2016suz]
[13-722]
Projection effects in the strong lensing study of subhaloes, Ran Li, Carlos S. Frenk, Shaun Cole, Qiao Wang, Liang Gao, Mon.Not.Roy.Astron.Soc. 468 (2017) 1426, arXiv:1612.06227.
[Li:2016afu]
[13-723]
CMB Lens Sample Covariance and Consistency Relations, Pavel Motloch, Wayne Hu, Aurelien Benoit-Levy, Phys.Rev. D95 (2017) 043518, arXiv:1612.05637.
[Motloch:2016zsl]
[13-724]
Hiding neutrino mass in modified gravity cosmologies, Nicola Bellomo et al., JCAP 1702 (2017) 043, arXiv:1612.02598.
[Bellomo:2016xhl]
[13-725]
Lepton asymmetry, neutrino spectral distortions, and big bang nucleosynthesis, E. Grohs, George M. Fuller, C. T. Kishimoto, Mark W. Paris, Phys.Rev. D95 (2017) 063503, arXiv:1612.01986.
[Grohs:2016cuu]
[13-726]
Exploring Cosmic Origins with CORE: Cosmological Parameters, Eleonora Di Valentino et al., JCAP 1804 (2018) 017, arXiv:1612.00021.
[CORE:2016npo]
[13-727]
Complementing the ground-based CMB Stage-4 experiment on large scales with the PIXIE satellite, Erminia Calabrese, David Alonso, Jo Dunkley, Phys.Rev.D 95 (2017) 063504, arXiv:1611.10269.
[Calabrese:2016eii]
[13-728]
Lensing is Low: Cosmology, Galaxy Formation, or New Physics?, Alexie Leauthaud et al., Mon.Not.Roy.Astron.Soc. 467 (2017) 3024, arXiv:1611.08606.
[Leauthaud:2016jdb]
[13-729]
Cosmology in Mirror Twin Higgs and Neutrino Masses, Zackaria Chacko, Nathaniel Craig, Patrick J. Fox, Roni Harnik, JHEP 1707 (2017) 023, arXiv:1611.07975.
[Chacko:2016hvu]
[13-730]
A novel approach to quantifying the sensitivity of current and future cosmological datasets to the neutrino mass ordering through Bayesian hierarchical modeling, Martina Gerbino, Massimiliano Lattanzi, Olga Mena, Katherine Freese, Phys.Lett. B775 (2017) 239-250, arXiv:1611.07847.
[Gerbino:2016ehw]
[13-731]
Reconciling Large And Small-Scale Structure In Twin Higgs Models, Valentina Prilepina, Yuhsin Tsai, JHEP 1709 (2017) 033, arXiv:1611.05879.
[Prilepina:2016rlq]
[13-732]
Detecting the Neutrinos Mass Hierarchy from Cosmological Data, Lixin Xu, Qing-Guo Huang, Sci.China Phys.Mech.Astron. 61 (2018) 039521, arXiv:1611.05178.
[Xu:2016ddc]
[13-733]
A sensitive search for unknown spectral emission lines in the diffuse X-ray background with XMM-Newton, A. Gewering-Peine, D. Horns, J.H.M.M. Schmitt, JCAP 1706 (2017) 036, arXiv:1611.01733.
[Gewering-Peine:2016yoj]
[13-734]
Early Cosmology Constrained, Licia Verde, Emilio Bellini, Cassio Pigozzo, Alan F. Heavens, Raul Jimenez, JCAP 1704 (2017) 023, arXiv:1611.00376.
[Verde:2016wmz]
[13-735]
Properties of Local Group galaxies in hydrodynamical simulations of sterile neutrino dark matter cosmologies, Mark R. Lovell et al., Mon.Not.Roy.Astron.Soc. 468 (2017) 4285, arXiv:1611.00010.
[Lovell:2016fec]
[13-736]
Addressing the too big to fail problem with baryon physics and sterile neutrino dark matter, Mark R. Lovell, Violeta Gonzalez-Perez, Sownak Bose, Alexey Boyarsky, Shaun Cole, Carlos S. Frenk, Oleg Ruchayskiy, Mon.Not.Roy.Astron.Soc. 468 (2017) 2836-2849, arXiv:1611.00005.
[Lovell:2016nkp]
[13-737]
Cosmological constraints on exotic injection of electromagnetic energy, Vivian Poulin, Julien Lesgourgues, Pasquale D. Serpico, JCAP 1703 (2017) 043, arXiv:1610.10051.
[Poulin:2016anj]
[13-738]
Physical effects involved in the measurements of neutrino masses with future cosmological data, Maria Archidiacono, Thejs Brinckmann, Julien Lesgourgues, Vivian Poulin, JCAP 1702 (2017) 052, arXiv:1610.09852.
[Archidiacono:2016lnv]
[13-739]
Establishing the origin of CMB B-mode polarization, Connor Sheere, Alexander van Engelen, P. Daniel Meerburg, Joel Meyers, Phys.Rev. D96 (2017) 063508, arXiv:1610.09365.
[Sheere:2016yqu]
[13-740]
Impact of neutrino properties on the estimation of inflationary parameters from current and future observations, Martina Gerbino et al., Phys.Rev. D95 (2017) 043512, arXiv:1610.08830.
[Gerbino:2016sgw]
[13-741]
Constraints on the optical depth of galaxy groups and clusters, Samuel Flender, Daisuke Nagai, Michael McDonald, Astrophys.J. 837 (2017) 124, arXiv:1610.08029.
[Flender:2016cjy]
[13-742]
Effects of active-sterile neutrino mixing during primordial nucleosynthesis, Osvaldo Civitarese, Mercedes Elisa Mosquera, Maria Manuela Saez, Int.J.Mod.Phys. E23 (2014) 1450080, arXiv:1610.05696.
[Civitarese:2014bra]
[13-743]
KiDS-450: Testing extensions to the standard cosmological model, Shahab Joudaki et al., Mon.Not.Roy.Astron.Soc. 471 (2017) 1259, arXiv:1610.04606.
[Joudaki:2016kym]
[13-744]
Comparing Production Cross Sections for QCD Matter, Higgs Boson, Neutrino with Dark Energy in Accelerating Universe, Tooraj Ghaffary, Int.J.Geom.Meth.Mod.Phys. 14 (2017) 1750139, arXiv:1610.04410.
[Ghaffary:2016uvc]
[13-745]
Constraints on neutrino masses from the study of the nearby large-scale structure and galaxy cluster counts, Hans Boehringer, Gayoung Chon, Mod.Phys.Lett. 31 (2016) 1640008, arXiv:1610.02855.
[Bohringer:2016fcq]
[13-746]
Impact of CP-violation on neutrino lepton number asymmetries revisited, Gabriela Barenboim, Wan-Il Park, Phys.Lett. B765 (2017) 371-376, arXiv:1610.02335.
[Barenboim:2016jxn]
[13-747]
How Zwicky already ruled out modified gravity theories without dark matter, Theodorus Maria Nieuwenhuizen, Fortsch.Phys. 65 (2017) 1600050, arXiv:1610.01543.
[Nieuwenhuizen:2016uxv]
[13-748]
Model-independent determination on $H_0$ using the latest $H(z)$ data, Deng Wang, Xin-He Meng, Sci.China Phys.Mech.Astron. 60 (2017) 110411, arXiv:1610.01202.
[Wang:2016iij]
[13-749]
CMB Delensing Beyond the B Modes, Daniel Green, Joel Meyers, Alexander van Engelen, JCAP 1712 (2017) 005, arXiv:1609.08143.
[Green:2016cjr]
[13-750]
Dark Matter Relic Abundance and Light Sterile Neutrinos, Yi-Lei Tang, Shou-hua Zhu, JHEP 1701 (2017) 025, arXiv:1609.07841.
[Tang:2016sib]
[13-751]
Cosmological Imprints of Frozen-In Light Sterile Neutrinos, Samuel B. Roland, Bibhushan Shakya, JCAP 1705 (2017) 027, arXiv:1609.06739.
[Roland:2016gli]
[13-752]
Cosmology with Independently Varying Neutrino Temperature and Number, Richard Galvez, Robert J. Scherrer, Phys.Rev. D95 (2017) 063507, arXiv:1609.06351.
[Galvez:2016sza]
[13-753]
Probing nonstandard neutrino cosmology with terrestrial neutrino experiments, Akshay Ghalsasi, David McKeen, Ann E. Nelson, Phys.Rev. D95 (2017) 115039, arXiv:1609.06326.
[Ghalsasi:2016pcj]
[13-754]
Complete Reionization Constraints from Planck 2015 Polarization, Chen He Heinrich, Vinicius Miranda, Wayne Hu, Phys. Rev. D95 (2017) 023513, arXiv:1609.04788.
[Heinrich:2016ojb]
[13-755]
Hubble trouble or Hubble bubble?, Antonio Enea Romano, Int.J.Mod.Phys. D27 (2018) 1850102, arXiv:1609.04081.
[Romano:2016utn]
[13-756]
Calibrating Cluster Number Counts with CMB lensing, Thibaut Louis, David Alonso, Phys.Rev. D95 (2017) 043517, arXiv:1609.03997.
[Louis:2016gvv]
[13-757]
Flavor versus mass eigenstates in neutrino asymmetries: implications for cosmology, Gabriela Barenboim, William H. Kinney, Wan-Il Park, Eur.Phys.J. C77 (2017) 590, arXiv:1609.03200.
[Barenboim:2016lxv]
[13-758]
Resurrection of large lepton number asymmetries from neutrino flavor oscillations, Gabriela Barenboim, William H. Kinney, Wan-Il Park, Phys.Rev. D95 (2017) 043506, arXiv:1609.01584.
[Barenboim:2016shh]
[13-759]
Neutrino Masses, Scale-Dependent Growth, and Redshift-Space Distortions, Oscar F. Hernandez, JCAP 1706 (2017) 018, arXiv:1608.08298.
[Hernandez:2016xci]
[13-760]
Cosmic Degeneracies II: Structure formation in joint simulations of Warm Dark Matter and $f(R)$ gravity, Marco Baldi, Francisco Villaescusa-Navarro, Mon.Not.Roy.Astron.Soc. 473 (2018) 3226-3240, arXiv:1608.08057.
[Baldi:2016oce]
[13-761]
Bayesian Estimation of Thermonuclear Reaction Rates, Christian Iliadis, Kevin Anderson, Alain Coc, Frank Timmes, Sumner Starrfield, Astrophys.J. 831 (2016) 107, arXiv:1608.05853.
[Iliadis:2016vkw]
[13-762]
Neutrino assisted GUT baryogenesis - revisited, Wei-Chih Huang, Heinrich Pas, Sinan Zeissner, Phys.Rev. D97 (2018) 055040, arXiv:1608.04354.
[Huang:2016wwj]
[13-763]
Reviving Quintessence with an Exponential Potential, Hui-Yiing Chang, Robert J. Scherrer, arXiv:1608.03291, 2016.
[Chang:2016aex]
[13-764]
Tensor Modes Damping in Matter and Vacuum Dominated Era, Jafar Khodagholizadeh, Amir H. Abbassi, Ali A. Asgari, arXiv:1608.01472, 2016.
[Khodagholizadeh:2016oyv]
[13-765]
Constraining neutrino mass and extra relativistic degrees of freedom in dynamical dark energy models using Planck 2015 data in combination with low-redshift cosmological probes: basic extensions to $\Lambda$CDM cosmology, Ming-Ming Zhao, Yun-He Li, Xin Zhang, Mon.Not.Roy.Astron.Soc. 469 (2017) 1713, arXiv:1608.01219.
[Zhao:2016ecj]
[13-766]
Light dark photon and fermionic dark radiation for the Hubble constant and the structure formation, P. Ko, Yong Tang, Phys.Lett. B762 (2016) 462-466, arXiv:1608.01083.
[Ko:2016uft]
[13-767]
Impacts of dark energy on weighing neutrinos: mass hierarchies considered, Sai Wang, Yi-Fan Wang, Dong-Mei Xia, Xin Zhang, Phys. Rev. D94 (2016) 083519, arXiv:1608.00672.
[Wang:2016tsz]
[13-768]
Sneutrino Inflation with $\alpha$-attractors, Renata Kallosh, Andrei Linde, Diederik Roest, Timm Wrase, JHEP 1609 (2016) 063, arXiv:1607.08854.
[Kallosh:2016sej]
[13-769]
Accurate covariance estimation of galaxy-galaxy weak lensing: limitations of jackknife covariance, Masato Shirasaki et al., Mon.Not.Roy.Astron.Soc. 470 (2017) 3476, arXiv:1607.08679.
[Shirasaki:2016fuf]
[13-770]
Future CMB tests of dark matter: ultra-light axions and massive neutrinos, Renee Hlozek et al., Phys.Rev. D95 (2017) 123511, arXiv:1607.08208.
[Hlozek:2016lzm]
[13-771]
Is there a concordance value for $H_0$?, Vladimir V. Lukovic, Rocco D'Agostino, Nicola Vittorio, Astron.Astrophys. 595 (2016) A109, arXiv:1607.05677.
[Lukovic:2016ldd]
[13-772]
Measuring neutrino mass imprinted on the anisotropic galaxy clustering, Minji Oh, Yong-Seon Song, JCAP 1704 (2017) 020, arXiv:1607.01074.
[Oh:2016wls]
[13-773]
A Combined View of Sterile-Neutrino Constraints from CMB and Neutrino Oscillation Measurements, Sarah Bridle et al., Phys.Lett. B764 (2017) 322-327, arXiv:1607.00032.
[Bridle:2016isd]
[13-774]
Cosmological parameters, shear maps and power spectra from CFHTLenS using Bayesian hierarchical inference, Justin Alsing, Alan F. Heavens, Andrew H. Jaffe, Mon.Not.Roy.Astron.Soc. 466 (2017) 3272, arXiv:1607.00008.
[Alsing:2016hkh]
[13-775]
Constraints on neutrino masses from the lensing dispersion of Type Ia supernovae, Ryuichiro Hada, Toshifumi Futamase, Astrophys.J. 828 (2016) 112, arXiv:1606.09091.
[Hada:2016dje]
[13-776]
Pseudoscalar - sterile neutrino interactions: reconciling the cosmos with neutrino oscillations, Maria Archidiacono et al., JCAP 1608 (2016) 067, arXiv:1606.07673.
[Archidiacono:2016kkh]
[13-777]
Relic neutrino decoupling with flavour oscillations revisited, Pablo F. de Salas, Sergio Pastor, JCAP 1607 (2016) 051, arXiv:1606.06986.
[deSalas:2016ztq]
[13-778]
Breaking Be: a sterile neutrino solution to the cosmological lithium problem, Laura Salvati, Luca Pagano, Massimiliano Lattanzi, Martina Gerbino, Alessandro Melchiorri, JCAP 1608 (2016) 022, arXiv:1606.06968.
[Salvati:2016jng]
[13-779]
Testable Baryogenesis in Seesaw Models, P. Hernandez, M. Kekic, J. Lopez-Pavon, J. Racker, J. Salvado, JHEP 1608 (2016) 157, arXiv:1606.06719.
[Hernandez:2016kel]
[13-780]
Big Bang Nucleosynthesis in the presence of sterile neutrinos with altered dispersion relations, Elke Aeikens, Heinrich Pas, Sandip Pakvasa, Thomas J. Weiler, Phys. Rev. D94 (2016) 113010, arXiv:1606.06695.
[Aeikens:2016rep]
[13-781]
Simulating nonlinear cosmological structure formation with massive neutrinos, Arka Banerjee, Neal Dalal, JCAP 1611 (2016) 015, arXiv:1606.06167.
[Banerjee:2016zaa]
[13-782]
Constraint on Matter Power Spectrum on $10^6-10^9M_\odot$ Scales from ${\large\tau_e}$, Renyue Cen, Astrophys.J. 836 (2017) 217, arXiv:1606.05930.
[Cen:2016htm]
[13-783]
Cosmology and the neutrino mass ordering, Steen Hannestad, Thomas Schwetz, JCAP 1611 (2016) 035, arXiv:1606.04691.
[Hannestad:2016fog]
[13-784]
Testing for New Physics: Neutrinos and the Primordial Power Spectrum, Nicolas Canac, Grigor Aslanyan, Kevork N. Abazajian, Richard Easther, Layne C. Price, JCAP 1609 (2016) 022, arXiv:1606.03057.
[Canac:2016smv]
[13-785]
Cosmic constraint on massive neutrinos in viable f(R) gravity with producing LCDM background expansion, Jianbo Lu, Molin Liu, Yabo Wu, Yan Wang, Weiqiang Yang, Eur.Phys.J. C76 (2016) 679, arXiv:1606.02987.
[Lu:2016hsd]
[13-786]
A fresh look at linear cosmological constraints on a decaying dark matter component, Vivian Poulin, Pasquale D. Serpico, Julien Lesgourgues, JCAP 1608 (2016) 036, arXiv:1606.02073.
[Poulin:2016nat]
[13-787]
Cosmological signatures of time-asymmetric gravity, Marina Cortes, Andrew R. Liddle, Lee Smolin, Phys. Rev. D94 (2016) 123514, arXiv:1606.01256.
[Cortes:2016mfg]
[13-788]
Reconciling Planck with the local value of $H_0$ in extended parameter space, Eleonora Di Valentino, Alessandro Melchiorri, Joseph Silk, Phys.Lett. B761 (2016) 242-246, arXiv:1606.00634.
[DiValentino:2016hlg]
[13-789]
Massive neutrinos in nonlinear large scale structure: A consistent perturbation theory, Michele Levi, Zvonimir Vlah, arXiv:1605.09417, 2016.
[Levi:2016tlf]
[13-790]
Constraining light gravitino mass with 21 cm line observation, Yoshihiko Oyama, Masahiro Kawasaki, arXiv:1605.09191, 2016.
[Oyama:2016lor]
[13-791]
Neutrino dynamics below the electroweak crossover, J. Ghiglieri, M. Laine, JCAP 1607 (2016) 015, arXiv:1605.07720.
[Ghiglieri:2016xye]
[13-792]
How isotropic is the Universe?, Daniela Saadeh, Stephen M. Feeney, Andrew Pontzen, Hiranya V. Peiris, Jason D. McEwen, Phys. Rev. Lett. 117 (2016) 131302, arXiv:1605.07178.
[Saadeh:2016sak]
[13-793]
Red, Straight, no bends: primordial power spectrum reconstruction from CMB and large-scale structure, Andrea Ravenni, Licia Verde, Antonio J. Cuesta, JCAP 1608 (2016) 028, arXiv:1605.06637.
[Ravenni:2016vjd]
[13-794]
Short-baseline neutrino oscillations, Planck, and IceCube, John F. Cherry, Alexander Friedland, Ian M. Shoemaker, arXiv:1605.06506, 2016.
[Cherry:2016jol]
[13-795]
Running vacuum in the Universe and the time variation of the fundamental constants of Nature, Harald Fritzsch, Rafael C. Nunes, Joan Sola, Eur.Phys.J. C77 (2017) 193, arXiv:1605.06104.
[Fritzsch:2016ewd]
[13-796]
Initial Conditions for Accurate N-Body Simulations of Massive Neutrino Cosmologies, Matteo Zennaro et al., Mon.Not.Roy.Astron.Soc. 466 (2017) 3244, arXiv:1605.05283.
[Zennaro:2016nqo]
[13-797]
Revisiting constraints on small scale perturbations from big-bang nucleosynthesis, Keisuke Inomata, Masahiro Kawasaki, Yuichiro Tada, Phys. Rev. D94 (2016) 043527, arXiv:1605.04646.
[Inomata:2016uip]
[13-798]
On the improvement of cosmological neutrino mass bounds, Elena Giusarma et al., Phys. Rev. D94 (2016) 083522, arXiv:1605.04320.
[Giusarma:2016phn]
[13-799]
Reionization and dark matter decay, Isabel M. Oldengott, Daniel Boriero, Dominik J. Schwarz, JCAP 1608 (2016) 054, arXiv:1605.03928.
[Oldengott:2016yjc]
[13-800]
Reionisation in sterile neutrino cosmologies, Sownak Bose, Carlos S. Frenk, Hou Jun, Cedric G. Lacey, Mark R. Lovell, Mon.Not.Roy.Astron.Soc. 463 (2016) 3848-3859, arXiv:1605.03179.
[Bose:2016hlz]
[13-801]
Probing the Neutrino Mass through the Cross Correlation between the Rees-Sciama Effect and Weak Lensing, Lixin Xu, JCAP 1608 (2016) 059, arXiv:1605.02403.
[Xu:2016jns]
[13-802]
DEMNUni: ISW, Rees-Sciama, and weak-lensing in the presence of massive neutrinos, Carmelita Carbone, Margarita Petkova, Klaus Dolag, JCAP 1607 (2016) 034, arXiv:1605.02024.
[Carbone:2016nzj]
[13-803]
Separating the Universe into the Real and Fake, Wayne Hu, Chi-Ting Chiang, Yin Li, Marilena LoVerde, Phys. Rev. D94 (2016) 023002, arXiv:1605.01412.
[Hu:2016ssz]
[13-804]
Running the running, Giovanni Cabass, Eleonora Di Valentino, Alessandro Melchiorri, Enrico Pajer, Joseph Silk, Phys. Rev. D94 (2016) 023523, arXiv:1605.00209.
[Cabass:2016ldu]
[13-805]
CMB Lensing Bispectrum from Nonlinear Growth of the Large Scale Structure, Toshiya Namikawa, Phys. Rev. D93 (2016) 121301, arXiv:1604.08578.
[Namikawa:2016jff]
[13-806]
gevolution: a cosmological N-body code based on General Relativity, Julian Adamek, David Daverio, Ruth Durrer, Martin Kunz, JCAP 1607 (2016) 053, arXiv:1604.06065.
[Adamek:2016zes]
[13-807]
Constraints on dark-matter properties from large-scale structure, Martin Kunz, Savvas Nesseris, Ignacy Sawicki, Phys. Rev. D94 (2016) 023510, arXiv:1604.05701.
[Kunz:2016yqy]
[13-808]
Constraining the time evolution of dark energy, curvature and neutrino properties with cosmic chronometers, Michele Moresco et al., JCAP 1612 (2016) 039, arXiv:1604.00183.
[Moresco:2016nqq]
[13-809]
CFHTLenS and RCSLenS Cross-Correlation with Planck Lensing Detected in Fourier and Configuration Space, Joachim Harnois-Deraps et al., Mon.Not.Roy.Astron.Soc. 460 (2016) 434-457, arXiv:1603.07723.
[Harnois-Deraps:2016huu]
[13-810]
Constraints on non-flat cosmologies with massive neutrinos after Planck 2015, Yun Chen, Bharat Ratra, Marek Biesiada, Song Li, Zong-Hong Zhu, Astrophys.J. 829 (2016) 61, arXiv:1603.07115.
[Chen:2016eyp]
[13-811]
Lensing convergence in galaxy redshift surveys, Wilmar Cardona, Ruth Durrer, Martin Kunz, Francesco Montanari, Phys. Rev. D94 (2016) 043007, arXiv:1603.06481.
[Cardona:2016qxn]
[13-812]
The information content of cosmic microwave background anisotropies, Douglas Scott, Dagoberto Contreras, Ali Narimani, Yin-Zhe Ma, JCAP 1606 (2016) 046, arXiv:1603.03550.
[Scott:2016fad]
[13-813]
Cosmic Microwave Background Acoustic Peak Locations, Zhen Pan, Lloyd Knox, Brigid Mulroe, Ali Narimani, Mon.Not.Roy.Astron.Soc. 459 (2016) 2513-2524, arXiv:1603.03091.
[Pan:2016zla]
[13-814]
Interacting Scalar Radiation and Dark Matter in Cosmology, Yong Tang, Phys.Lett. B757 (2016) 387-392, arXiv:1603.00165.
[Tang:2016mot]
[13-815]
Neutrino footprint in Large Scale Structure, Raul Jimenez, Carlos Pena-Garay, Licia Verde, Phys.Dark Univ. 15 (2017) 31-34, arXiv:1602.08430.
[Jimenez:2016ckl]
[13-816]
Neutrino mass without cosmic variance, Marilena LoVerde, Phys. Rev. D93 (2016) 103526, arXiv:1602.08108.
[LoVerde:2016ahu]
[13-817]
Constraining Neutrino mass using the large scale HI distribution in the Post-reionization epoch, Ashis Kumar Pal, Tapomoy Guha Sarkar, Mon.Not.Roy.Astron.Soc. 459 (2016) 3505-3511, arXiv:1602.07893.
[Pal:2016icc]
[13-818]
Electromagnetic instability induced by Neutrino interaction, Jitesh R. Bhatt, Manu George, Int.J.Mod.Phys. D26 (2016) 1750052, arXiv:1602.06884.
[Bhatt:2016hyi]
[13-819]
$\mu$-Distortions or Running: A Guaranteed Discovery from CMB Spectrometry, Giovanni Cabass, Alessandro Melchiorri, Enrico Pajer, Phys. Rev. D93 (2016) 083515, arXiv:1602.05578.
[Cabass:2016giw]
[13-820]
Discrepancies between CFHTLenS cosmic shear \& Planck: new physics or systematic effects?, Thomas D. Kitching, Licia Verde, Alan F. Heavens, Raul Jimenez, Mon.Not.Roy.Astron.Soc. 459 (2016) 971, arXiv:1602.02960.
[Kitching:2016hvn]
[13-821]
Accurate halo-model matter power spectra with dark energy, massive neutrinos and modified gravitational forces, Alexander Mead et al., Mon.Not.Roy.Astron.Soc. 459 (2016) 1468-1488, arXiv:1602.02154.
[Mead:2016zqy]
[13-822]
First evidence of running cosmic vacuum: challenging the concordance model, Joan Sola, Adria Gomez-Valent, Javier de Cruz Perez, Astrophys.J. 836 (2017) 43, arXiv:1602.02103.
[Sola:2016jky]
[13-823]
Constraints on the Coupling between Dark Energy and Dark Matter from CMB data, Riccardo Murgia, Stefano Gariazzo, Nicolao Fornengo, JCAP 1604 (2016) 014, arXiv:1602.01765.
[Murgia:2016ccp]
[13-824]
Excess B-modes extracted from the Planck polarization maps, H. U. Norgaard-Nielsen, Astron.Nachr. 337 (2016) 662-671, arXiv:1602.01284.
[Norgaard-Nielsen:2016edm]
[13-825]
Using the Crab Nebula as a high precision calibrator for Cosmic Microwave Background polarimeters, Jonathan Kaufman, Brian Keating, David Leon, Int.J.Mod.Phys. D25 (2016) 1640008, arXiv:1602.01153.
[Kaufman:2016mcp]
[13-826]
LSS constraints with controlled theoretical uncertainties, Tobias Baldauf, Mehrdad Mirbabayi, Marko Simonovic, Matias Zaldarriaga, arXiv:1602.00674, 2016.
[Baldauf:2016sjb]
[13-827]
The B-mode polarization of CMB and Cosmic Neutrino Background, Rohoollah Mohammadi, Jafar Khodagholizadeh, Mahdi Sadegh, She-Sheng Xue, Phys. Rev. D93 (2016) 125029, arXiv:1602.00237.
[Mohammadi:2016bxl]
[13-828]
Dark Radiation and Inflationary Freedom after Planck 2015, Eleonora Di Valentino, Stefano Gariazzo, Martina Gerbino, Elena Giusarma, Olga Mena, Phys. Rev. D93 (2016) 083523, arXiv:1601.07557.
[DiValentino:2016ikp]
[13-829]
A cross-check for H0 from Lyman-alpha Forest and Baryon Acoustic Oscillations, V. C. Busti, R. N. Guimaraes, J. A. S. Lima, Rev. Mex. Astron. Astrofis. 52 (2016) 3-10.
[Busti:2016dwg]
[13-830]
Massive Structures of Galaxies at High Redshifts in the Great Observatories Origins Deep Survey Fields, Eugene Kang, Myungshin Im, J. Korean Astron. Soc. 48 (2015) 21-55, arXiv:1512.09282.
[Kang:2015xhf]
[13-831]
Thermal relics as hot, warm and cold dark matter in power-law $f(R)$ gravity, David Wenjie Tian, arXiv:1512.09117, 2015.
[Tian:2015hmm]
[13-832]
Is a symmetric matter-antimatter universe excluded?, Julien Baur, Alain Blanchard, Peter Von Ballmoos, arXiv:1512.08482, 2015.
[Baur:2015xtw]
[13-833]
Can Dark Matter be an artifact of extended theories of gravity?, Sayantan Choudhury, Manibrata Sen, Soumya Sadhukhan, Eur.Phys.J. C76 (2016) 494, arXiv:1512.08176.
[Choudhury:2015zlc]
[13-834]
Constraints on the identity of the dark matter from strong gravitational lenses, Ran Li et al., Mon.Not.Roy.Astron.Soc. 460 (2016) 363-372, arXiv:1512.06507.
[Li:2015xpc]
[13-835]
Forecasts on neutrino mass constraints from the redshift-space two-point correlation function, Fernanda Petracca et al., Mon.Not.Roy.Astron.Soc. 462 (2016) 4208-4219, arXiv:1512.06139.
[Petracca:2015alr]
[13-836]
Constraints on the neutrino mass and mass hierarchy from cosmological observations, Qing-Guo Huang, Ke Wang, Sai Wang, Eur.Phys.J. C76 (2016) 489, arXiv:1512.05899.
[Huang:2015wrx]
[13-837]
Classically Scale Invariant Inflation, WIMPzilla, and (A)gravity, Arsham Farzinnia, Seyen Kouwn, Phys. Rev. D93 (2016) 063528, arXiv:1512.05890.
[Farzinnia:2015fka]
[13-838]
Dodelson-Widrow Production of Sterile Neutrino Dark Matter with Non-Trivial Initial Abundance, Alexander Merle, Aurel Schneider, Maximilian Totzauer, JCAP 1604 (2016) 003, arXiv:1512.05369.
[Merle:2015vzu]
[13-839]
RCSLenS: Cosmic Distances from Weak Lensing, T. D. Kitching et al., arXiv:1512.03627, 2015.
[Kitching:2015pfi]
[13-840]
External priors for the next generation of CMB experiments, Alessandro Manzotti, Scott Dodelson, Youngsoo Park, Phys. Rev. D93 (2016) 063009, arXiv:1512.02654.
[Manzotti:2015ozr]
[13-841]
Neutrino energy transport in weak decoupling and big bang nucleosynthesis, E. Grohs, G. M. Fuller, C. T. Kishimoto, M. W. Paris, A. Vlasenko, Phys. Rev. D93 (2016) 083522, arXiv:1512.02205.
[Grohs:2015tfy]
[13-842]
Lyman-alpha Forests cool Warm Dark Matter, Julien Baur, Nathalie Palanque-Delabrouille, Christophe Yeche, Christophe Magneville, Matteo Viel, JCAP 1608 (2016) 012, arXiv:1512.01981.
[Baur:2015jsy]
[13-843]
Neutrino mass limits: robust information from the power spectrum of galaxy surveys, Antonio J. Cuesta, Viviana Niro, Licia Verde, Phys.Dark Univ. 13 (2016) 77-86, arXiv:1511.05983.
[Cuesta:2015iho]
[13-844]
Big Bang nucleosynthesis and baryogenesis in power-law $f(R)$ gravity: Revised constraints from the semianalytical approach, David Wenjie Tian, arXiv:1511.03258, 2015.
[Tian:2015jjw]
[13-845]
Impacts of dark energy on weighing neutrinos after Planck 2015, Xin Zhang, Phys. Rev. D93 (2016) 083011, arXiv:1511.02651.
[Zhang:2015uhk]
[13-846]
Cosmological limits on neutrino unknowns versus low redshift priors, Eleonora Di Valentino, Elena Giusarma, Olga Mena, Alessandro Melchiorri, Joseph Silk, Phys. Rev. D93 (2016) 083527, arXiv:1511.00975.
[DiValentino:2015sam]
[13-847]
Bounds on very low reheating scenarios after Planck, P.F. de Salas et al., Phys. Rev. D92 (2015) 123534, arXiv:1511.00672.
[deSalas:2015glj]
[13-848]
Quantifying discordance in the 2015 Planck CMB spectrum, G. E. Addison et al., Astrophys. J. 818 (2016) 132, arXiv:1511.00055.
[Addison:2015wyg]
[13-849]
Quantifying Concordance, Sebastian Seehars, Sebastian Grandis, Adam Amara, Alexandre Refregier, Phys. Rev. D93 (2016) 103507, arXiv:1510.08483.
[Seehars:2015qza]
[13-850]
The extended Baryon Oscillation Spectroscopic Survey (eBOSS): a cosmological forecast, Gong-Bo Zhao et al., Mon. Not. Roy. Astron. Soc. 457 (2016) 2377, arXiv:1510.08216.
[eBOSS:2015lwq]
[13-851]
Cosmological Evidence for Modified Gravity (MOG), J. W. Moffat, arXiv:1510.07037, 2015.
[Moffat:2015bda]
[13-852]
Neutrino mass and signature from the dark matter in A1689, Theodorus M. Nieuwenhuizen, J. Phys. Conf. Ser. 701 (2016) 012022, arXiv:1510.06958.
[Nieuwenhuizen:2015ewa]
[13-853]
BAHAMAS: new SNIa analysis reveals inconsistencies with standard cosmology, H. Shariff, X. Jiao, R. Trotta, D.A. van Dyk, Astrophys.J. 827 (2016) 1, arXiv:1510.05954.
[Shariff:2015yoa]
[13-854]
Model-Independent Dark Energy Equation of State from Baryon Acoustic Oscillations, Jarah Evslin, Phys.Dark Univ. 13 (2016) 126-131, arXiv:1510.05630.
[Evslin:2015uwa]
[13-855]
Constraining the local variance of $H_0$ from directional analyses, C. A. P. Bengaly, Jr., JCAP 1604 (2016) 036, arXiv:1510.05545.
[Bengaly:2015nwa]
[13-856]
Tachyon field non-minimally coupled to massive neutrino matter, Safia Ahmad, Nurgissa Myrzakulov, R. Myrzakulov, JCAP 1607 (2016) 032, arXiv:1510.04795.
[Ahmad:2015sna]
[13-857]
Constraints on the neutrino parameters by future cosmological 21cm line and precise CMB polarization observations, Yoshihiko Oyama, Kazunori Kohri, Masashi Hazumi, JCAP 1602 (2016) 008, arXiv:1510.03806.
[Oyama:2015gma]
[13-858]
Search for features in the spectrum of primordial perturbations using Planck and other datasets, Paul Hunt, Subir Sarkar, JCAP 1512 (2015) 052, arXiv:1510.03338.
[Hunt:2015iua]
[13-859]
Efficient calculation of cosmological neutrino clustering with both linear and non-linear gravity, Maria Archidiacono, Steen Hannestad, JCAP 1606 (2016) 018, arXiv:1510.02907.
[Archidiacono:2015ota]
[13-860]
Big Bang Nucleosynthesis and the Helium Isotope Ratio, Ryan Cooke, Astrophys. J. 812 (2015) L12, arXiv:1510.02801.
[Cooke:2015yra]
[13-861]
Neutrinos secretly converting to lighter particles to please both KATRIN and the cosmos, Yasaman Farzan, Steen Hannestad, JCAP 1602 (2016) 058, arXiv:1510.02201.
[Farzan:2015pca]
[13-862]
Influence of Planck foreground masks in the large angular scale quadrant CMB asymmetry, L. Santos, P. Cabella, T. Villela, W. Zhao, Astron. Astrophys. 584 (2015) A115, arXiv:1510.01009.
[Santos:2015tfa]
[13-863]
Is there concordance within the concordance $\Lambda$CDM model?, Marco Raveri, Phys. Rev. D93 (2016) 043522, arXiv:1510.00688.
[Raveri:2015maa]
[13-864]
Majorana Neutrino Magnetic Moment and Neutrino Decoupling in Big Bang Nucleosynthesis, N. Vassh, E. Grohs, A.B. Balantekin, G.M. Fuller, Phys. Rev. D92 (2015) 125020, arXiv:1510.00428.
[Vassh:2015yza]
[13-865]
Eliminating the optical depth nuisance from the CMB with 21 cm cosmology, Adrian Liu et al., Phys. Rev. D93 (2016) 043013, arXiv:1509.08463.
[Liu:2015txa]
[13-866]
Cosmological Hints of Modified Gravity?, Eleonora Di Valentino, Alessandro Melchiorri, Joseph Silk, Phys. Rev. D93 (2016) 023513, arXiv:1509.07501.
[DiValentino:2015bja]
[13-867]
Towards a cosmological neutrino mass detection, Rupert Allison, Paul Caucal, Erminia Calabrese, Joanna Dunkley, Thibaut Louis, Phys. Rev. D92 (2015) 123535, arXiv:1509.07471.
[Allison:2015qca]
[13-868]
Robust forecasts on fundamental physics from the foreground-obscured, gravitationally-lensed CMB polarization, Josquin Errard, Stephen M. Feeney, Hiranya V. Peiris, Andrew H. Jaffe, JCAP 1603 (2016) 052, arXiv:1509.06770.
[Errard:2015cxa]
[13-869]
Asymmetric dark matter and effective number of neutrinos, Teruyuki Kitabayashi, Yoshihiro Kurosawa, Phys. Rev. D93 (2016) 033002, arXiv:1509.05564.
[Kitabayashi:2015oda]
[13-870]
A direct measurement of tomographic lensing power spectra from CFHTLenS, Fabian Kohlinger et al., Mon.Not.Roy.Astron.Soc. 456 (2016) 1508-1527, arXiv:1509.04071.
[Kohlinger:2015tza]
[13-871]
Detecting Relic Gravitational Waves by Pulsar Timing Arrays: Effects of Cosmic Phase Transitions and Relativistic Free-Streaming Gases, Xiao-Jin Liu, Wen Zhao, Yang Zhang, Zong-Hong Zhu, Phys. Rev. D93 (2016) 024031, arXiv:1509.03524.
[Liu:2015psa]
[13-872]
Cosmological bounds of sterile neutrinos in a $SU(3)_C\otimes SU(3)_L\otimes SU(3)_R\otimes U(1)_N$ model as dark matter candidates, Cesar P. Ferreira, Marcelo M. Guzzo, Pedro C. de Holanda, Braz. J. Phys. 46 (2016) 453-461, arXiv:1509.02977.
[Ferreira:2015wja]
[13-873]
Detection of a new large angular CMB anomaly and its alignment with cosmic structure, Antonio Enea Romano, Daniel Cornejo, Luis E. Campusano, arXiv:1509.01879, 2015.
[Romano:2015pda]
[13-874]
Principal component analysis of the reionization history from Planck 2015 data, Wei-Ming Dai, Zong-Kuan Guo, Rong-Gen Cai, Phys. Rev. D92 (2015) 123521, arXiv:1509.01501.
[Dai:2015dwa]
[13-875]
Dark Matter and Global Symmetries, Yann Mambrini, Stefano Profumo, Farinaldo S. Queiroz, Phys.Lett. B760 (2016) 807-815, arXiv:1508.06635.
[Mambrini:2015sia]
[13-876]
Phases of New Physics in the CMB, Daniel Baumann, Daniel Green, Joel Meyers, Benjamin Wallisch, JCAP 1601 (2016) 007, arXiv:1508.06342.
[Baumann:2015rya]
[13-877]
The Mira-Titan Universe: Precision Predictions for Dark Energy Surveys, Katrin Heitmann et al., Astrophys.J. 820 (2016) 108, arXiv:1508.02654.
[Heitmann:2015xma]
[13-878]
Sterile neutrinos with pseudoscalar self-interactions and cosmology, Maria Archidiacono, Steen Hannestad, Rasmus Sloth Hansen, Thomas Tram, Phys. Rev. D93 (2016) 045004, arXiv:1508.02504.
[Archidiacono:2015oma]
[13-879]
New constraints on primordial gravitational waves from Planck 2015, Luca Pagano, Laura Salvati, Alessandro Melchiorri, Phys.Lett. B760 (2016) 823-825, arXiv:1508.02393.
[Pagano:2015hma]
[13-880]
Dark Matter annihilations in halos and the reionization of the universe, Vivian Poulin, Pasquale D. Serpico, Julien Lesgourgues, JCAP 1512 (2015) 041, arXiv:1508.01370.
[Poulin:2015pna]
[13-881]
Pecci-Quinn field for inflation, baryogenesis, dark matter, and much more, Gabriela Barenboim, Wan-Il Park, Phys.Lett. B756 (2016) 317-322, arXiv:1508.00011.
[Barenboim:2015cqa]
[13-882]
Fate of the Universe: Gauge Independence and Advanced Precision, A.V. Bednyakov, B.A. Kniehl, A.F. Pikelner, O.L. Veretin, Phys. Rev. Lett. 115 (2015) 201802, arXiv:1507.08833.
[Bednyakov:2015sca]
[13-883]
Cosmological Axion and neutrino mass constraints from Planck 2015 temperature and polarization data, Eleonora Di Valentino et al., Phys. Lett. B752 (2016) 182-185, arXiv:1507.08665.
[DiValentino:2015wba]
[13-884]
The $\nu$ generation: present and future constraints on neutrino masses from cosmology and laboratory experiments, Martina Gerbino, Massimiliano Lattanzi, Alessandro Melchiorri, Phys. Rev. D93 (2016) 033001, arXiv:1507.08614.
[Gerbino:2015ixa]
[13-885]
CMB Lensing and Scale Dependent New Physics, Alireza Hojjati, Eric V. Linder, Phys. Rev. D93 (2016) 023528, arXiv:1507.08292.
[Hojjati:2015qwa]
[13-886]
HeCS-SZ: The Hectospec Survey of Sunyaev-Zeldovich Selected Clusters, Kenneth J. Rines, Margaret J. Geller, Antonaldo Diaferio, Ho Seong Hwang, Astrophys. J. 819 (2016) 63, arXiv:1507.08289.
[Rines:2015pwa]
[13-887]
Constraints on the Early and Late Integrated Sachs-Wolfe effects from Planck 2015 Cosmic Microwave Background Anisotropies angular power spectra, Giovanni Cabass et al., Phys. Rev. D92 (2015) 063534, arXiv:1507.07586.
[Cabass:2015xfa]
[13-888]
On the Impact of Cepheid Outliers on the Distance Ladder, M. R. Becker, H. Desmond, E. Rozo, P. Marshall, E. S. Rykoff, arXiv:1507.07523, 2015.
[Becker:2015nya]
[13-889]
Cosmological constraints on the neutron lifetime, Laura Salvati, Luca Pagano, Rossella Consiglio, Alessandro Melchiorri, JCAP 1603 (2016) 055, arXiv:1507.07243.
[Salvati:2015wxa]
[13-890]
Cosmological evolution of thermal relic particles in $f(R)$ gravity, S. Capozziello, V. Galluzzi, G. Lambiase, L. Pizza, Phys. Rev. D92 (2015) 084006, arXiv:1507.06835.
[Capozziello:2015ama]
[13-891]
Lepton number asymmetry via inflaton decay in a modified radiative seesaw model, Shoichi Kashiwase, Daijiro Suematsu, Phys. Lett. B749 (2015) 603-612, arXiv:1507.06782.
[Kashiwase:2015yla]
[13-892]
Beyond six parameters: extending $\Lambda$CDM, Eleonora Di Valentino, Alessandro Melchiorri, Joseph Silk, Phys. Rev. D92 (2015) 121302, arXiv:1507.06646.
[DiValentino:2015ola]
[13-893]
Weighing neutrinos with cosmic neutral hydrogen, Francisco Villaescusa-Navarro, Philip Bull, Matteo Viel, Astrophys. J. 814 (2015) 146, arXiv:1507.05102.
[Villaescusa-Navarro:2015cca]
[13-894]
Evidence for dark matter interactions in cosmological precision data?, Julien Lesgourgues, Gustavo Marques-Tavares, Martin Schmaltz, JCAP 1602 (2016) 037, arXiv:1507.04351.
[Lesgourgues:2015wza]
[13-895]
The Integrated Sachs-Wolfe Signal from BOSS Super-Structures, Benjamin R. Granett, Andras Kovacs, Adam J. Hawken, Mon. Not. Roy. Astron. Soc. 454 (2015) 2804, arXiv:1507.03914.
[Granett:2015dna]
[13-896]
Galaxy clustering, CMB and supernova data constraints on $\phi$CDM model with massive neutrinos, Yun Chen, Phys. Lett. B752 (2016) 66-75, arXiv:1507.02008.
[Chen:2015oga]
[13-897]
The Kullback-Leibler Divergence as an Estimator of the Statistical Properties of CMB Maps, Assaf Ben-David, Hao Liu, Andrew D. Jackson, JCAP 1506 (2015) 051, arXiv:1506.07724.
[Ben-David:2015sia]
[13-898]
Redshift-space distortions in massive neutrino and evolving dark energy cosmologies, Amol Upadhye et al., Phys. Rev. D93 (2016) 063515, arXiv:1506.07526.
[Upadhye:2015lia]
[13-899]
Constraints on neutrino mass from Cosmic Microwave Background and Large Scale Structure, Pan Zhen, Knox Lloyd, Mon. Not. Roy. Astron. Soc. 454 (2015) 3200-3206, arXiv:1506.07493.
[Pan:2015bgi]
[13-900]
Improved determination of sterile neutrino dark matter spectrum, J. Ghiglieri, M. Laine, JHEP 11 (2015) 171, arXiv:1506.06752.
[Ghiglieri:2015jua]
[13-901]
Testing Modified Gravity with Cosmic Shear, Joachim Harnois-Deraps et al., Mon. Not. Roy. Astron. Soc. 454 (2015) 2722, arXiv:1506.06313.
[Harnois-Deraps:2015ula]
[13-902]
Cosmology with Lyman-alpha forest power spectrum, Nathalie Palanque-Delabrouille et al., JCAP 1511 (2015) 011, arXiv:1506.05976.
[Palanque-Delabrouille:2015pga]
[13-903]
Fundamental scalar fields and the dark side of the universe, Eduard G. Mychelkin, Maxim A. Makukov, Int. J. Mod. Phys. D24 (2015) 1544025, arXiv:1506.04221.
[Mychelkin:2015jqa]
[13-904]
Structure formation in warm dark matter cosmologies: Top-Bottom Upside-Down, Sinziana Paduroiu, Yves Revaz, Daniel Pfenniger, arXiv:1506.03789, 2015.
[Paduroiu:2015jfa]
[13-905]
Voids in massive neutrino cosmologies, Elena Massara, Francisco Villaescusa-Navarro, Matteo Viel, P. M. Sutter, JCAP 1511 (2015) 018, arXiv:1506.03088.
[Massara:2015msa]
[13-906]
Constraining Big Bang lithium production with recent solar neutrino data, Marcell P. Takacs, Daniel Bemmerer, Tamas Szucs, Kai Zuber, Phys. Rev. D91 (2015) 123526, arXiv:1505.07620.
[Takacs:2015yua]
[13-907]
The effect of massive neutrinos on the BAO peak, Marco Peloso, Massimo Pietroni, Matteo Viel, Francisco Villaescusa-Navarro, JCAP 1507 (2015) 001, arXiv:1505.07477.
[Peloso:2015jua]
[13-908]
DEMNUni: The clustering of large-scale structures in the presence of massive neutrinos, Emanuele Castorina, Carmelita Carbone, Julien Bel, Emiliano Sefusatti, Klaus Dolag, JCAP 1507 (2015) 043, arXiv:1505.07148.
[Castorina:2015bma]
[13-909]
Exploring dark matter microphysics with galaxy surveys, Miguel Escudero, Olga Mena, Aaron C. Vincent, Ryan J. Wilkinson, Celine Boehm, JCAP 1509 (2015) 034, arXiv:1505.06735.
[Escudero:2015yka]
[13-910]
What do the cosmological supernova data really tell us?, Ibrahim Semiz, A. Kazim Camlibel, JCAP 1512 (2015) 038, arXiv:1505.04043.
[Semiz:2015gga]
[13-911]
Constraining cosmic deceleration-acceleration transition with type Ia supernova, BAO/CMB and H(z) data, Marcelo Vargas dos Santos, Ribamar R. R. Reis, Ioav Waga, JCAP 1602 (2016) 066, arXiv:1505.03814.
[VargasdosSantos:2015kfv]
[13-912]
Reconciling Planck results with low redshift astronomical measurements, Z. Berezhiani, A.D. Dolgov, I.I. Tkachev, Phys. Rev. D92 (2015) 061303, arXiv:1505.03644.
[Berezhiani:2015yta]
[13-913]
The consistency test on the cosmic evolution, Yan Gong, Yin-Zhe Ma, Shuang-Nan Zhang, Xuelei Chen, Phys. Rev. D92 (2015) 063523, arXiv:1505.03584.
[Gong:2015tta]
[13-914]
How CMB and large-scale structure constrain chameleon interacting dark energy, Daniel Boriero, Subinoy Das, Yvonne Y. Y. Wong, JCAP 1507 (2015) 033, arXiv:1505.03154.
[Boriero:2015loa]
[13-915]
Sterile Neutrinos with Secret Interactions - Lasting Friendship with Cosmology, Xiaoyong Chu, Basudeb Dasgupta, Joachim Kopp, JCAP 1510 (2015) 011, arXiv:1505.02795.
[Chu:2015ipa]
[13-916]
The contribution of light Majorana neutrinos to neutrinoless double beta decay and cosmology, Stefano Dell'Oro, Simone Marcocci, Matteo Viel, Francesco Vissani, JCAP 2015 (2015) 023, arXiv:1505.02722.
[DellOro:2015kys]
[13-917]
Next Generation Cosmology: Constraints from the Euclid Galaxy Cluster Survey, B. Sartoris et al., Mon.Not.Roy.Astron.Soc. 459 (2016) 1764-1780, arXiv:1505.02165.
[Sartoris:2015aga]
[13-918]
Observational constraints on varying neutrino-mass cosmology, Chao-Qiang Geng, Chung-Chi Lee, R. Myrzakulov, M. Sami, Emmanuel N. Saridakis, JCAP 1601 (2016) 049, arXiv:1504.08141.
[Geng:2015haa]
[13-919]
Constraints on secret neutrino interactions after Planck, Francesco Forastieri, Massimiliano Lattanzi, Paolo Natoli, JCAP 1507 (2015) 014, arXiv:1504.04999.
[Forastieri:2015paa]
[13-920]
$A_4$ symmetry at colliders and in the universe, Ivo de Medeiros Varzielas, Oliver Fischer, Vinzenz Maurer, JHEP 08 (2015) 080, arXiv:1504.03955.
[deMedeirosVarzielas:2015ybd]
[13-921]
Low reheating temperatures in monomial and binomial inflationary potentials, Thomas Rehagen, Graciela B. Gelmini, JCAP 1506 (2015) 039, arXiv:1504.03768.
[Rehagen:2015zma]
[13-922]
Implications of a Primordial Magnetic Field for Magnetic Monopoles, Axions, and Dirac Neutrinos, Andrew J. Long, Tanmay Vachaspati, Phys. Rev. D91 (2015) 103522, arXiv:1504.03319.
[Long:2015cza]
[13-923]
Constructing a cosmological model-independent Hubble diagram of type Ia supernovae with cosmic chronometers, Zhengxiang Li, J. E. Gonzalez, Hongwei Yu, Zong-Hong Zhu, J. S. Alcaniz, Phys. Rev. D93 (2016) 043014, arXiv:1504.03269.
[Li:2015nta]
[13-924]
Reaching agreement between cosmological parameters inferred from galaxy clusters and Planck, Christian Angrick, Francesco Pace, Matthias Bartelmann, Mauro Roncarelli, Mon. Not. Roy. Astron. Soc. 454 (2015) 1687-1696, arXiv:1504.03187.
[Angrick:2015gta]
[13-925]
Light Dark Matter and Dark Radiation, Jae Ho Heo, C.S. Kim, J.Korean Phys.Soc. 68 (2016) 715-721, arXiv:1504.00773.
[Heo:2015kra]
[13-926]
Improving constraints on the neutrino mass using sufficient statistics, M. Wolk, I. Szapudi, J. Bel, C. Carbone, J. Carron, arXiv:1504.00069, 2015.
[Wolk:2015oza]
[13-927]
The effects of He I 10830 on helium abundance determinations, Erik Aver, Keith A. Olive, Evan D. Skillman, JCAP 1507 (2015) 011, arXiv:1503.08146.
[Aver:2015iza]
[13-928]
Cosmological Collider Physics, Nima Arkani-Hamed, Juan Maldacena, arXiv:1503.08043, 2015.
[Arkani-Hamed:2015bza]
[13-929]
Backreaction in Growing Neutrino Quintessence, Florian Fuhrer, Christof Wetterich, Phys. Rev. D91 (2015) 123542, arXiv:1503.07995.
[Fuhrer:2015xya]
[13-930]
A First Detection of the Acoustic Oscillation Phase Shift Expected from the Cosmic Neutrino Background, Brent Follin, Lloyd Knox, Marius Millea, Zhen Pan, Phys. Rev. Lett. 115 (2015) 091301, arXiv:1503.07863.
[Follin:2015hya]
[13-931]
Precision reconstruction of the dark matter-neutrino relative velocity from N-body simulations, Derek Inman et al., Phys. Rev. D92 (2015) 023502, arXiv:1503.07480.
[Inman:2015pfa]
[13-932]
Falsifying High-Scale Baryogenesis with Neutrinoless Double Beta Decay and Lepton Flavor Violation, Frank F. Deppisch, Julia Harz, Martin Hirsch, Wei-Chih Huang, Heinrich Pas, Phys. Rev. D92 (2015) 036005, arXiv:1503.04825.
[Deppisch:2015yqa]
[13-933]
The supernova cosmology cookbook: Bayesian numerical recipes, N. V. Karpenka, arXiv:1503.03844, 2015.
[Karpenka:2014uae]
[13-934]
Higgs sector extension of the neutrino minimal standard model with thermal freeze-in production mechanism, Hiroki Matsui, Mihoko Nojiri, Phys. Rev. D92 (2015) 025045, arXiv:1503.01293.
[Matsui:2015maa]
[13-935]
On the robustness of cosmological axion mass limits, Eleonora Di Valentino, Stefano Gariazzo, Elena Giusarma, Olga Mena, Phys. Rev. D91 (2015) 123505, arXiv:1503.00911.
[DiValentino:2015zta]
[13-936]
Constraining the redshift evolution of the Cosmic Microwave Background black-body temperature with PLANCK data, I. de Martino et al., Astrophys. J. 808 (2015) 128, arXiv:1502.06707.
[deMartino:2015ema]
[13-937]
Can modified gravity models reconcile the tension between CMB anisotropy and lensing maps in Planck-like observations?, Bin Hu, Marco Raveri, Phys. Rev. D91 (2015) 123515, arXiv:1502.06599.
[Hu:2015rva]
[13-938]
The extragalactic background light, the Hubble constant, and anomalies: conclusions from 20 years of TeV gamma-ray observations, Jonathan Biteau, David A. Williams, Astrophys. J. 812 (2015) 60, arXiv:1502.04166.
[Biteau:2015xpa]
[13-939]
Neutrinos in the holographic dark energy model: constraints from latest measurements of expansion history and growth of structure, Jing-Fei Zhang, Ming-Ming Zhao, Yun-He Li, Xin Zhang, JCAP 04 (2015) 038, arXiv:1502.04028.
[Zhang:2015rha]
[13-940]
Future cosmological sensitivity for hot dark matter axions, Maria Archidiacono et al., JCAP 1505 (2015) 050, arXiv:1502.03325.
[Archidiacono:2015mda]
[13-941]
Measuring Hubble constant like a frequentist and bayesianist, Jiaxin Wang, Xinhe Meng, arXiv:1502.02828, 2015.
[Wang:2015pua]
[13-942]
Probing neutrino physics with a self-consistent treatment of the weak decoupling, nucleosynthesis, and photon decoupling epochs, E. Grohs, G. M. Fuller, C. T. Kishimoto, M. W. Paris, JCAP 1505 (2015) 017, arXiv:1502.02718.
[Grohs:2015eua]
[13-943]
No evidence for the blue-tilted power spectrum of relic gravitational waves, Qing-Guo Huang, Sai Wang, JCAP 06 (2015) 021, arXiv:1502.02541.
[Huang:2015gka]
[13-944]
Cosmic Reionization and Early Star-Forming Galaxies: A Joint Analysis of New Constraints from Planck and Hubble Space Telescope, Brant E. Robertson, Richard S. Ellis, Steven R. Furlanetto, James S. Dunlop, Astrophys.J. 802 (2015) L19, arXiv:1502.02024.
[Robertson:2015uda]
[13-945]
Detecting Primordial $B$-Modes after Planck, Paolo Creminelli, Diana Lopez Nacir, Marko Simonovic, Gabriele Trevisan, Matias Zaldarriaga, JCAP 1511 (2015) 031, arXiv:1502.01983.
[Creminelli:2015oda]
[13-946]
Probing $f(R)$ cosmology with sterile neutrinos via measurements of scale-dependent growth rate of structure, Yun-He Li, Jing-Fei Zhang, Xin Zhang, Phys.Lett. B744 (2015) 213-217, arXiv:1502.01136.
[Li:2015poa]
[13-947]
keV Sterile Neutrino Dark Matter from Singlet Scalar Decays: Basic Concepts and Subtle Features, Alexander Merle, Maximilian Totzauer, JCAP 1506 (2015) 011, arXiv:1502.01011.
[Merle:2015oja]
[13-948]
Nonparametric test of consistency between cosmological models and multiband CMB measurements, Amir Aghamousa, Arman Shafieloo, JCAP 1506 (2015) 003, arXiv:1502.00851.
[Aghamousa:2015fja]
[13-949]
A Strategy to Minimize Dust Foregrounds in B-mode Searches, Ely D. Kovetz, Marc Kamionkowski, Phys. Rev. D91 (2015) 081303, arXiv:1502.00625.
[Kovetz:2015pia]
[13-950]
Experimental and cosmological constraints on heavy neutrinos, Marco Drewes, Bjorn Garbrecht, Nucl.Phys. B921 (2017) 250-315, arXiv:1502.00477.
[Drewes:2015iva]
[13-951]
The role of self-interacting right-handed neutrinos in galactic structure, C. R. Arguelles, N. E. Mavromatos, J. A. Rueda, R. Ruffini, JCAP 1604 (2016) 038, arXiv:1502.00136.
[Arguelles:2015baa]
[13-952]
Constrains on Dark Matter sterile neutrino resonant production in the light of Planck, L. A. Popa, A. Caramete, D. Tonoiu, JCAP 1509 (2015) 066, arXiv:1501.06355.
[Popa:2015eta]
[13-953]
The extended ROSAT-ESO Flux-Limited X-ray Galaxy Cluster Survey (REFLEX II) VI. Effect of massive neutrinos on the cosmological constraints from clusters, Hans Boehringer, Gayoung Chon, Astron.Astrophys. 574 (2015) L8, arXiv:1501.04953.
[Bohringer:2015efu]
[13-954]
New Bounds for Axions and Axion-Like Particles with keV-GeV Masses, Marius Millea, Lloyd Knox, Brian Fields, Phys. Rev. D92 (2015) 023010, arXiv:1501.04097.
[Millea:2015qra]
[13-955]
Constraints and tensions in testing general relativity from Planck and CFHTLenS including intrinsic alignment systematics, Jason N. Dossett, Mustapha Ishak, David Parkinson, Tamara Davis, Phys. Rev. D92 (2015) 023003, arXiv:1501.03119.
[Dossett:2015nda]
[13-956]
Joint Planck and WMAP Assessment of Low CMB Multipoles, Asif Iqbal, Jayanti Prasad, Tarun Souradeep, Manzoor A. Malik, JCAP 06 (2015) 014, arXiv:1501.02647.
[Iqbal:2015tta]
[13-957]
Determining $H_0$ with a model-independent method, Puxun Wu, Zhengxiang Li, Hongwei Yu, Front.Phys.(Beijing) 12 (2017) 129801, arXiv:1501.01818.
[Wu:2015sya]
[13-958]
Constraints on the primordial power spectrum of small scales using the neutrino signals from the dark matter decay, Yupeng Yang, Int.J.Mod.Phys. A29 (2014) 1450194, arXiv:1501.00789.
[Yang:2014lsg]
[13-959]
More Is Different: Reconciling eV Sterile Neutrinos and Cosmological Mass Bounds, Yong Tang, Phys. Lett. B750 (2015) 201-208, arXiv:1501.00059.
[Tang:2014yla]
[13-960]
Light Sterile Neutrinos and Inflationary Freedom, S. Gariazzo, C. Giunti, M. Laveder, JCAP 1504 (2015) 023, arXiv:1412.7405.
[Gariazzo:2014dla]
[13-961]
Effects of neutrino rest mass on $N_\text{eff}$ and ionization equilibrium freeze-out, E. Grohs, G. M. Fuller, C. T. Kishimoto, M. W. Paris, Phys. Rev. D92 (2015) 125027, arXiv:1412.6875.
[Grohs:2014rea]
[13-962]
Constraints on dark radiation from cosmological probes, Graziano Rossi, Christophe Yeche, Nathalie Palanque-Delabrouille, Julien Lesgourgues, Phys. Rev. D92 (2015) 063505, arXiv:1412.6763.
[Rossi:2014nea]
[13-963]
Robustness of cosmic neutrino background detection in the cosmic microwave background, Benjamin Audren et al., JCAP 1503 (2015) 036, arXiv:1412.5948.
[Audren:2014lsa]
[13-964]
Cosmology based on $f(R)$ gravity with ${\cal O}(1)$ eV sterile neutrino, A. S. Chudaykin, D. S. Gorbunov, A. A. Starobinsky, R. A. Burenin, JCAP 1505 (2015) 004, arXiv:1412.5239.
[Chudaykin:2014oia]
[13-965]
Dark matter-radiation interactions: the impact on dark matter haloes, J. A. Schewtschenko, R. J. Wilkinson, C. M. Baugh, C. Boehm, S. Pascoli, Mon.Not.Roy.Astron.Soc. 449 (2015) 3587-3596, arXiv:1412.4905.
[Schewtschenko:2014fca]
[13-966]
Anisotropic CMB distortions from non-Gaussian isocurvature perturbations, Atsuhisa Ota, Toyokazu Sekiguchi, Yuichiro Tada, Shuichiro Yokoyama, JCAP 1503 (2015) 013, arXiv:1412.4517.
[Ota:2014iva]
[13-967]
Testing Tensor-Vector-Scalar Theory with latest cosmological observations, Xiao-dong Xu, Bin Wang, Pengjie Zhang, Phys. Rev. D92 (2015) 083505, arXiv:1412.4073.
[Xu:2014doa]
[13-968]
Cosmological Constraints From Weak Lensing Peak Statistics With CFHT Stripe-82 Survey, Xiangkun Liu et al., Mon. Not. Roy. Astron. Soc. 450 (2015) 2888-2902, arXiv:1412.3683.
[Liu:2014wca]
[13-969]
Reducing cosmological small scale structure via a large dark matter-neutrino interaction: constraints and consequences, Bridget Bertoni, Seyda Ipek, David McKeen, Ann E. Nelson, JHEP 1504 (2015) 170, arXiv:1412.3113.
[Bertoni:2014mva]
[13-970]
Higher-order massive neutrino perturbations in large-scale structure, Florian Fuhrer, Yvonne Y. Y. Wong, JCAP 1503 (2015) 046, arXiv:1412.2764.
[Fuhrer:2014zka]
[13-971]
Probing Neutrino Hierarchy and Chirality via Wakes, Hong-Ming Zhu, Ue-Li Pen, Xuelei Chen, Derek Inman, Phys. Rev. Lett. 116 (2016) 141301, arXiv:1412.1660.
[Zhu:2014qma]
[13-972]
Structure formation in a mixed dark matter model with decaying sterile neutrino: the 3.5 keV X-ray line and the Galactic substructure, Akira Harada, Ayuki Kamada, Naoki Yoshida, JCAP 1601 (2016) 031, arXiv:1412.1592.
[Harada:2014lma]
[13-973]
Big-Bang Nucleosynthesis, Brian D. Fields, Paolo Molaro, Subir Sarkar, Chin.Phys. C38 (2014), arXiv:1412.1408.
[Fields:2014uja]
[13-974]
Impact of anisotropic stress of free-streaming particles on gravitational waves induced by cosmological density perturbations, Shohei Saga, Kiyotomo Ichiki, Naoshi Sugiyama, Phys. Rev. D91 (2015) 024030, arXiv:1412.1081.
[Saga:2014jca]
[13-975]
Constraints on massive neutrinos from the pairwise kinematic Sunyaev-Zel'dovich effect, Eva-Maria Mueller, Francesco de Bernardis, Rachel Bean, Michael D. Niemack, Phys. Rev. D92 (2015) 063501, arXiv:1412.0592.
[Mueller:2014dba]
[13-976]
Constraining Neutrinos and Dark Energy with Galaxy Clustering in the Dark Energy Survey, Alan Zablocki, Phys. Rev. D94 (2016) 043525, arXiv:1411.7387.
[Zablocki:2014ela]
[13-977]
BBN And The CMB Constrain Neutrino Coupled Light WIMPs, Kenneth M. Nollett, Gary Steigman, Phys. Rev. D91 (2015) 083505, arXiv:1411.6005.
[Nollett:2014lwa]
[13-978]
Linear perturbations in K-mouflage cosmologies with massive neutrinos, Alexandre Barreira, Philippe Brax, Sebastien Clesse, Baojiu Li, Patrick Valageas, Phys. Rev. D91 (2015) 063528, arXiv:1411.5965.
[Barreira:2014gwa]
[13-979]
The Cosmic Equation of State, Fulvio Melia, Astrophys. Space Sci. 356 (2015) 393-398, arXiv:1411.5771.
[Melia:2014vva]
[13-980]
The Cosmological Effect of CMB/BAO Measurements, Yi Zhang, arXiv:1411.5522, 2014.
[Zhang:2014qzr]
[13-981]
Calculation of primordial abundances of light nuclei including a heavy sterile neutrino, M. Mosquera, O. Civitarese, JCAP 1508 (2015) 038, arXiv:1411.4030.
[Mosquera:2014lpa]
[13-982]
Matter Power Spectra in Viable $f(R)$ Gravity Models with Massive Neutrinos, Chao-Qiang Geng, Chung-Chi Lee, Jia-Liang Shen, Phys.Lett. B740 (2015) 285-290, arXiv:1411.3813.
[Geng:2014yoa]
[13-983]
Cosmological Leverage from the Matter Power Spectrum in the Presence of Baryon and Nonlinear Effects, Jannis Bielefeld, Dragan Huterer, Eric V. Linder, JCAP 1505 (2015) 023, arXiv:1411.3725.
[Bielefeld:2014soa]
[13-984]
Cosmological Implications of Light Sterile Neutrinos produced after the QCD Phase Transition, Louis Lello, Daniel Boyanovsky, Phys. Rev. D91 (2015) 063502, arXiv:1411.2690.
[Lello:2014yha]
[13-985]
Cosmic Neutrino Secret Interactions, Enhancement and Total Cross Section, Dante Carcamo, Ashok K. Das, Jorge Gamboa, Fernando Mendez, Alexios P. Polychronakos, Phys. Rev. D 91 (2015) 065028, arXiv:1410.8089.
[Carcamo:2014sya]
[13-986]
Constraint on neutrino masses from SDSS-III/BOSS Ly$\alpha$ forest and other cosmological probes, Nathalie Palanque-Delabrouille et al., JCAP 1502 (2015) 045, arXiv:1410.7244.
[Palanque-Delabrouille:2014jca]
[13-987]
The halo model in a massive neutrino cosmology, Elena Massara, Francisco Villaescusa-Navarro, Matteo Viel, JCAP 1412 (2014) 053, arXiv:1410.6813.
[Massara:2014kba]
[13-988]
Banana Split: Testing the Dark Energy Consistency with Geometry and Growth, Eduardo J. Ruiz, Dragan Huterer, Phys. Rev. D91 (2015) 063009, arXiv:1410.5832.
[Ruiz:2014hma]
[13-989]
EFTCAMB/EFTCosmoMC: massive neutrinos in dark cosmologies, Bin Hu, Marco Raveri, Alessandra Silvestri, Noemi Frusciante, Phys. Rev. D91 (2015) 063524, arXiv:1410.5807.
[Hu:2014sea]
[13-990]
Constraints on the Nambu-Goto cosmic string contribution to the CMB power spectrum in light of new temperature and polarisation data, Andrei Lazanu, Paul Shellard, JCAP 1502 (2015) 024, arXiv:1410.5046.
[Lazanu:2014eya]
[13-991]
Tension between secret sterile neutrino interactions and cosmological neutrino mass bounds, Alessandro Mirizzi, Gianpiero Mangano, Ofelia Pisanti, Ninetta Saviano, Phys. Rev. D91 (2015) 025019, arXiv:1410.1385.
[Mirizzi:2014ama]
[13-992]
Probing Dark Energy with Neutrino Number, Seokcheon Lee, arXiv:1410.1260, 2014.
[Lee:2014wla]
[13-993]
Neutrino-antineutrino mass splitting in the Standard Model and baryogenesis, Kazuo Fujikawa, Anca Tureanu, Phys.Lett. B743 (2015) 39-45, arXiv:1409.8023.
[Fujikawa:2014qra]
[13-994]
Very Weak Primordial Gravitational Waves Signal from BICEP2 and Planck HFI 353GHz Dust Polarization, Lixin Xu, arXiv:1409.7870, 2014.
[Xu:2014yoa]
[13-995]
Damping of tensor mode in spatially closed cosmology, Jafar Khodagholizadeh, Amir H.Abbassi, Ali A. Asgari, Phys. Rev. D90 (2014) 063520, arXiv:1409.6958.
[Khodagholizadeh:2014ixa]
[13-996]
Tensors, BICEP2, prior dependence, and dust, Marina Cortes, Andrew R Liddle, David Parkinson, Phys. Rev. D92 (2015) 063511, arXiv:1409.6530.
[Cortes:2014nqa]
[13-997]
Semi-Analytic Galaxy Formation in Massive Neutrinos Cosmologies, Fabio Fontanot, Francisco Villaescusa-Navarro, Davide Bianchi, Matteo Viel, Mon.Not.Roy.Astron.Soc. 447 (2015) 3361, arXiv:1409.6309.
[Fontanot:2014wpa]
[13-998]
Accuracy of cosmological parameters using the baryon acoustic scale, Kiattisak Thepsuriya, Antony Lewis, JCAP 1501 (2015) 034, arXiv:1409.5066.
[Thepsuriya:2014zda]
[13-999]
Genus Topology and Cross-Correlation of BICEP2 and Planck 353 GHz B-Modes: Further Evidence Favoring Gravity Wave Detection, Wesley N. Colley, J. Richard Gott III, Mon.Not.Roy.Astron.Soc. 447 (2015) 2034-2045, arXiv:1409.4491.
[Colley:2014nna]
[13-1000]
The effect of massive neutrinos on the SZ and X-ray observables of galaxy clusters, M. Roncarelli, C. Carbone, L. Moscardini, Mon.Not.Roy.Astron.Soc. 447 (2015) 1761-1773, arXiv:1409.4285.
[Roncarelli:2014jla]
[13-1001]
The Clustering of the SDSS DR7 Main Galaxy Sample I: A 4 per cent Distance Measure at z=0.15, Ashley J. Ross, Lado Samushia, Cullan Howlett, Will J. Percival, Angela Burden et al., Mon.Not.Roy.Astron.Soc. 449 (2015) 835-847, arXiv:1409.3242.
[Ross:2014qpa]
[13-1002]
Fermi-Boltzmann statistics of neutrinos and relativistic effective degrees of freedom, Jun Iizuka, Teruyuki Kitabayashi, Mod.Phys.Lett. A30 (2015) 1550003, arXiv:1409.2964.
[Iizuka:2014wma]
[13-1003]
Tension between the power spectrum of density perturbations measured on large and small scales, Richard A. Battye, Tom Charnock, Adam Moss, Phys. Rev. D91 (2015) 103508, arXiv:1409.2769.
[Battye:2014qga]
[13-1004]
Unveiling secret interactions among sterile neutrinos with big-bang nucleosynthesis, Ninetta Saviano, Ofelia Pisanti, Gianpiero Mangano, Alessandro Mirizzi, Phys. Rev. D90 (2014) 113009, arXiv:1409.1680.
[Saviano:2014esa]
[13-1005]
Reducing the Tension Between the BICEP2 and the Planck Measurements: A Complete Exploration of the Parameter Space, Yi-Chao Li, Feng-Quan Wu, You-Jun Lu, Xue-Lei Chen, Phys.Lett. B738 (2014) 206-212, arXiv:1409.0294.
[Li:2014kla]
[13-1006]
3D Weak Gravitational Lensing of the CMB and Galaxies, T. D. Kitching, A. F. Heavens, S. Das, Mon.Not.Roy.Astron.Soc. 449 (2015) 2205, arXiv:1408.7052.
[Kitching:2014lga]
[13-1007]
A new determination of the primordial He abundance using the HeI 10830A emission line: cosmological implications, Y. I. Izotov, T. X. Thuan, N. G. Guseva, Mon.Not.Roy.Astron.Soc. 445 (2014) 778, arXiv:1408.6953.
[Izotov:2014fga]
[13-1008]
Cosmic Discordance: Are Planck CMB and CFHTLenS weak lensing measurements out of tune?, Niall MacCrann, Joe Zuntz, Sarah Bridle, Bhuvnesh Jain, Matthew R. Becker, Mon.Not.Roy.Astron.Soc. 451 (2015) 2877, arXiv:1408.4742.
[MacCrann:2014wfa]
[13-1009]
Measuring growth index in a universe with sterile neutrinos, Jing-Fei Zhang, Yun-He Li, Xin Zhang, Phys.Lett. B739 (2014) 102-105, arXiv:1408.4603.
[Zhang:2014lfa]
[13-1010]
Structure formation with massive neutrinos: going beyond linear theory, Diego Blas, Mathias Garny, Thomas Konstandin, Julien Lesgourgues, JCAP 1411 (2014) 039, arXiv:1408.2995.
[Blas:2014hya]
[13-1011]
Cosmological Implications of High-Energy Neutrino Emission from the Decay of Long-Lived Particle, Yohei Ema, Ryusuke Jinno, Takeo Moroi, JHEP 1410 (2014) 150, arXiv:1408.1745.
[Ema:2014ufa]
[13-1012]
Neutrinos and dark energy after Planck and BICEP2: data consistency tests and cosmological parameter constraints, Jing-Fei Zhang, Jia-Jia Geng, Xin Zhang, JCAP 1410 (2014) 044, arXiv:1408.0481.
[Zhang:2014ifa]
[13-1013]
Inflation, quintessence, and the origin of mass, C. Wetterich, Nucl. Phys. B897 (2015) 111-178, arXiv:1408.0156.
[Wetterich:2014gaa]
[13-1014]
The power spectrum and bispectrum of SDSS DR11 BOSS galaxies II: cosmological interpretation, Hector Gil-Marin et al., Mon. Not. Roy. Astron. Soc. 452 (2015) 1914-1921, arXiv:1408.0027.
[Gil-Marin:2014baa]
[13-1015]
Nonlinear growing neutrino cosmology, Youness Ayaita, Marco Baldi, Florian Fuhrer, Ewald Puchwein, Christof Wetterich, Phys. Rev. D93 (2016) 063511, arXiv:1407.8414.
[Ayaita:2014una]
[13-1016]
Neutrino constraints: what large-scale structure and CMB data are telling us?, M. Costanzi, B. Sartoris, M. Viel, S. Borgani, JCAP 1410 (2014) 081, arXiv:1407.8338.
[Costanzi:2014tna]
[13-1017]
On the local variation of the Hubble constant, Io Odderskov, Steen Hannestad, Troels Haugbolle, JCAP 1410 (2014) 028, arXiv:1407.7364.
[Odderskov:2014hqa]
[13-1018]
The power spectrum and bispectrum of SDSS DR11 BOSS galaxies I: bias and gravity, Hector Gil-Marin et al., Mon.Not.Roy.Astron.Soc. 451 (2015) 5058, arXiv:1407.5668.
[Gil-Marin:2014sta]
[13-1019]
Phase Locked Inflation - Effectively Trans-Planckian Natural Inflation, Keisuke Harigaya, Masahiro Ibe, JHEP 1411 (2014) 147, arXiv:1407.4893.
[Harigaya:2014rga]
[13-1020]
Weighing the Giants IV: Cosmology and Neutrino Mass, Adam B. Mantz et al., Mon.Not.Roy.Astron.Soc. 446 (2014) 2205-2225, arXiv:1407.4516.
[Mantz:2014paa]
[13-1021]
Baryons, Neutrinos, Feedback and Weak Gravitational Lensing, Joachim Harnois-Deraps, Ludovic van Waerbeke, Massimo Viola, Catherine Heymans, Mon.Not.Roy.Astron.Soc. 450 (2015) 1212, arXiv:1407.4301.
[Harnois-Deraps:2014sva]
[13-1022]
C$\nu$B damping of primordial gravitational waves and the fine-tuning of the C$\gamma$B temperature anisotropy, Alex E. Bernardini, Jonas F. G. Santos, Adv.High Energy Phys. 2014 (2014) 807857, arXiv:1407.4058.
[Bernardini:2014wqa]
[13-1023]
Statistical tests of sterile neutrinos using cosmology and short-baseline data, Johannes Bergstrom, M. C. Gonzalez-Garcia, V. Niro, J. Salvado, JHEP 1410 (2014) 104, arXiv:1407.3806.
[Bergstrom:2014fqa]
[13-1024]
Spectral distortions from the dissipation of tensor perturbations, Jens Chluba, Liang Dai, Daniel Grin, Mustafa Amin, Marc Kamionkowski, Mon.Not.Roy.Astron.Soc. 446 (2015) 2871-2886, arXiv:1407.3653.
[Chluba:2014qia]
[13-1025]
Mass Calibration and Cosmological Analysis of the SPT-SZ Galaxy Cluster Sample Using Velocity Dispersion $\sigma_v$ and X-ray $Y_\textrm{X}$ Measurements, S. Bocquet et al. (SPT), Astrophys.J. 799 (2015) 214, arXiv:1407.2942.
[SPT:2014wkb]
[13-1026]
Cosmological Tests using Redshift Space Clustering in BOSS DR11, Yong-Seon Song, Cristiano G. Sabiu, Teppei Okumura, Minji Oh, Eric V. Linder, JCAP 1412 (2014) 005, arXiv:1407.2257.
[Song:2014nba]
[13-1027]
Relic photon temperature versus redshift and the cosmic neutrino background, Ralf Hofmann, Annalen Phys. 527 (2015) 254-264, arXiv:1407.1266.
[Hofmann:2014lka]
[13-1028]
Modified Baryonic Dynamics: two-component cosmological simulations with light sterile neutrinos, Garry W. Angus, Antonaldo Diaferio, Benoit Famaey, Kurt J. van der Heyden, JCAP 1410 (2014) 079, arXiv:1407.1207.
[Angus:2014kja]
[13-1029]
Cosmological Constraints on Very Dark Photons, Anthony Fradette, Maxim Pospelov, Josef Pradler, Adam Ritz, Phys. Rev. D90 (2014) 035022, arXiv:1407.0993.
[Fradette:2014sza]
[13-1030]
Foreground removal requirements for measuring large-scale CMB $B$-modes in light of BICEP2, A. Bonaldi, S. Ricciardi, M. L. Brown, Mon.Not.Roy.Astron.Soc. 444 (2014) 1034, arXiv:1407.0968.
[Bonaldi:2014qza]
[13-1031]
The Gigaparsec WiggleZ Simulations: Characterising scale dependant bias and associated systematics in growth of structure measurements, Gregory B. Poole et al., Mon.Not.Roy.Astron.Soc. 449 (2015) 1454-1469, arXiv:1407.0390.
[Poole:2014nqa]
[13-1032]
A new mechanism for dark energy: the adaptive screening, Andi Hektor, Luca Marzola, Martti Raidal, Hardi Veermae, JHEP 1501 (2015) 101, arXiv:1407.0389.
[Hektor:2014mqa]
[13-1033]
Analytic model for the matter power spectrum, its covariance matrix, and baryonic effects, Irshad Mohammed, Uros Seljak, Mon.Not.Roy.Astron.Soc. 445 (2014) 3382-3400, arXiv:1407.0060.
[Mohammed:2014lja]
[13-1034]
Weighing neutrinos in $f(R)$ gravity in light of BICEP2, Xiao-ying Zhou, Jian-hua He, Commun.Theor.Phys. 62 (2014) 102-108, arXiv:1406.6822.
[Zhou:2014fva]
[13-1035]
Photon-neutrino scattering and the B-mode spectrum of CMB photons, Jafar Khodagholizadeh, Rohoollah Mohammadi, She-Sheng Xue, Phys. Rev. D90 (2014) 091301, arXiv:1406.6213.
[Khodagholizadeh:2014nfa]
[13-1036]
On Recent Claims Concerning the R_h=ct Universe, Fulvio Melia, Mon. Not. Roy. Astron. Soc. 446 (2015) 1191-1194, arXiv:1406.4918.
[Melia:2014aja]
[13-1037]
Can weak lensing surveys confirm BICEP2 ?, Nora Elisa Chisari, Cora Dvorkin, Fabian Schmidt, Phys. Rev. D90 (2014) 043527, arXiv:1406.4871.
[Chisari:2014xia]
[13-1038]
Primordial power spectrum from Planck, Dhiraj Kumar Hazra, Arman Shafieloo, Tarun Souradeep, JCAP 1411 (2014) 011, arXiv:1406.4827.
[Hazra:2014jwa]
[13-1039]
Our Universe from the cosmological constant, Aurelien Barrau, Linda Linsefors, JCAP 1412 (2014) 037, arXiv:1406.3706.
[Barrau:2014kza]
[13-1040]
$N_{\rm eff}$ in low-scale seesaw models versus the lightest neutrino mass, P. Hernandez, M. Kekic, J. Lopez-Pavon, Phys. Rev. D90 (2014) 065033, arXiv:1406.2961.
[Hernandez:2014fha]
[13-1041]
The 1% Concordance Hubble Constant, C.L. Bennett, D. Larson, J.L. Weiland, G. Hinshaw, Astrophys.J. 794 (2014) 135, arXiv:1406.1718.
[Bennett:2014tka]
[13-1042]
Precision of future experiments measuring primordial tensor fluctuation, Yi Wang, Yin-Zhe Ma, Sci.China Phys.Mech.Astron. 57 (2014) 1466-1470, arXiv:1406.1615.
[Wang:2014oka]
[13-1043]
Revised cosmological parameters after BICEP 2 and BOSS, Santanu Das, Suvodip Mukherjee, Tarun Souradeep, JCAP 1502 (2015) 016, arXiv:1406.0857.
[Das:2014uta]
[13-1044]
The observational status of Galileon gravity after Planck, Alexandre Barreira, Baojiu Li, Carlton Baugh, Silvia Pascoli, JCAP 1408 (2014) 059, arXiv:1406.0485.
[Barreira:2014jha]
[13-1045]
Daughters mimic sterile neutrinos (almost!) perfectly, Jasper Hasenkamp, JCAP 1409 (2014) 048, arXiv:1405.6736.
[Hasenkamp:2014hma]
[13-1046]
Systematic errors in the measurement of neutrino masses due to baryonic feedback processes: Prospects for stage IV lensing surveys, Aravind Natarajan, Andrew R. Zentner, Nicholas Battaglia, Hy Trac, Phys. Rev. D90 (2014) 063516, arXiv:1405.6205.
[Natarajan:2014xba]
[13-1047]
A joint analysis of Planck and BICEP2 B modes including dust polarization uncertainty, Michael J. Mortonson, Uros Seljak, JCAP 1410 (2014) 035, arXiv:1405.5857.
[Mortonson:2014bja]
[13-1048]
Higgs inflation and Higgs portal dark matter with right-handed neutrinos, Naoyuki Haba, Hiroyuki Ishida, Ryo Takahashi, PTEP 2015 (2014) 053B01, arXiv:1405.5738.
[Haba:2014zja]
[13-1049]
Planck constraints on neutrino isocurvature density perturbations, Eleonora Di Valentino, Alessandro Melchiorri, Phys. Rev. D90 (2014) 083531, arXiv:1405.5418.
[DiValentino:2014eea]
[13-1050]
Constraining primordial vector mode from B-mode polarization, Shohei Saga, Maresuke Shiraishi, Kiyotomo Ichiki, JCAP 1410 (2014) 004, arXiv:1405.4810.
[Saga:2014zra]
[13-1051]
On the Einstein-Cartan cosmology vs. Planck data, Davor Palle, J.Exp.Theor.Phys. 118 (2014) 587-592, arXiv:1405.3435.
[Palle:2014goa]
[13-1052]
Axion cold dark matter: status after Planck and BICEP2, E. Di Valentino, E. Giusarma, M. Lattanzi, A. Melchiorri, O. Mena, Phys. Rev. D90 (2014) 043534, arXiv:1405.1860.
[DiValentino:2014zna]
[13-1053]
Planck CMB Anomalies: Astrophysical and Cosmological Secondary Effects and the Curse of Masking, A. Rassat, J. -L. Starck, P. Paykari, F. Sureau, J. Bobin, JCAP 08 (2014) 006, arXiv:1405.1844.
[Rassat:2014yna]
[13-1054]
Modified big bang nucleosynthesis with non-standard neutron sources, Alain Coc, Maxim Pospelov, Jean-Philippe Uzan, Elisabeth Vangioni, Phys. Rev. D90 (2014) 085018, arXiv:1405.1718.
[Coc:2014gia]
[13-1055]
Non-local halo bias with and without massive neutrinos, Matteo Biagetti, Vincent Desjacques, Alex Kehagias, Antonio Riotto, Phys. Rev. D90 (2014) 045022, arXiv:1405.1435.
[Biagetti:2014pha]
[13-1056]
A note of clarification: BICEP2 and Planck are not in tension, Benjamin Audren, Daniel G. Figueroa, Thomas Tram, arXiv:1405.1390, 2014.
[Audren:2014cea]
[13-1057]
Effects of Mass Varying Neutrinos on Cosmological Parameters as determined from the Cosmic Microwave Background, Akshay Ghalsasi, Ann E. Nelson, Phys. Rev. D90 (2014) 045002, arXiv:1405.0711.
[Ghalsasi:2014mja]
[13-1058]
Tilt of primordial gravitational wave spectrum in a universe with sterile neutrinos, Yun-He Li, Jing-Fei Zhang, Xin Zhang, Sci.China Phys.Mech.Astron. 57 (2014) 1455-1459, arXiv:1405.0570.
[Li:2014dja]
[13-1059]
Neutrino Mass Anarchy and the Universe, Xiaochuan Lu, Hitoshi Murayama, JHEP 1408 (2014) 101, arXiv:1405.0547.
[Lu:2014cla]
[13-1060]
Neutrinoful Universe, Tetsutaro Higaki, Ryuichiro Kitano, Ryosuke Sato, JHEP 1407 (2014) 044, arXiv:1405.0013.
[Higaki:2014dwa]
[13-1061]
Probing nuclear rates with Planck and BICEP2, Eleonora Di Valentino, Carlo Gustavino, Julien Lesgourgues, Gianpiero Mangano, Alessandro Melchiorri et al., Phys. Rev. D90 (2014) 023543, arXiv:1404.7848.
[DiValentino:2014cta]
[13-1062]
Cosmological Invisible Decay of Light Sterile Neutrinos, S. Gariazzo, C. Giunti, M. Laveder, arXiv:1404.6160, 2014.
[Gariazzo:2014pja]
[13-1063]
A 'Pas de Deux' - Dark Radiation Fattens and Puffs-up Dark Matter Halos, Xiaoyong Chu, Basudeb Dasgupta, Phys. Rev. Lett. 113 (2014) 161301, arXiv:1404.6127.
[Chu:2014lja]
[13-1064]
Connection of Cosmic Microwave Background Fluctuations to the Quark-Gluon Hadronization Temperature, Jeremiah Birrell, Johann Rafelski, Phys.Lett. B741 (2015) 77-81, arXiv:1404.6005.
[Birrell:2014cja]
[13-1065]
No new cosmological concordance with massive sterile neutrinos, Boris Leistedt, Hiranya V. Peiris, Licia Verde, Phys. Rev. Lett. 113 (2014) 041301, arXiv:1404.5950.
[Leistedt:2014sia]
[13-1066]
Cosmology with self-interacting sterile neutrinos and dark matter - A pseudoscalar model, Maria Archidiacono, Steen Hannestad, Rasmus Sloth Hansen, Thomas Tram, Phys. Rev. D91 (2015) 065021, arXiv:1404.5915.
[Archidiacono:2014nda]
[13-1067]
Variable Speed of Light Cosmology, Primordial Fluctuations and BICEP2, J. W. Moffat, Eur.Phys.J. C76 (2016) 130, arXiv:1404.5567.
[Moffat:2014poa]
[13-1068]
Big-Bang Nucleosynthesis in comparison with observed helium and deuterium abundances - possibility of a non-standard model, R. Ichimasa, R. Nakamura, M. Hashimoto, K. Arai, Phys. Rev. D90 (2014) 023527, arXiv:1404.4831.
[Ichimasa:2014fea]
[13-1069]
Robustness of $H_0$ determination at intermediate redshifts, R.F.L. Holanda, V.C. Busti, G. Pordeus da Silva, Mon.Not.Roy.Astron.Soc. 443 (2014) 74, arXiv:1404.4418.
[Holanda:2014zxa]
[13-1070]
Faraday scaling and the Bicep2 observations, Massimo Giovannini, Phys. Rev. D90 (2014) 041301, arXiv:1404.3974.
[Giovannini:2014bba]
[13-1071]
String theoretic QCD axions in the light of PLANCK and BICEP2, Kiwoon Choi, Kwang Sik Jeong, Min-Seok Seo, JHEP 1407 (2014) 092, arXiv:1404.3880.
[Choi:2014uaa]
[13-1072]
Can Self-Ordering Scalar Fields explain the BICEP2 B-mode signal?, Ruth Durrer, Daniel G. Figueroa, Martin Kunz, JCAP 1408 (2014) 029, arXiv:1404.3855.
[Durrer:2014raa]
[13-1073]
Reconciling the Tension Between Planck and BICEP2 Through Early Dark Energy, Lixin Xu, Baorong Chang, Weiqiang Yang, arXiv:1404.3804, 2014.
[Xu:2014laa]
[13-1074]
Tensor-induced B modes with no temperature fluctuations, Marc Kamionkowski, Liang Dai, Donghui Jeong, Phys. Rev. D89 (2014) 107302, arXiv:1404.3730.
[Kamionkowski:2014faa]
[13-1075]
Reconstruction of the primordial power spectra with Planck and BICEP2, Bin Hu, Jian-Wei Hu, Zong-Kuan Guo, Rong-Gen Cai, Phys. Rev. D90 (2014) 023544, arXiv:1404.3690.
[Hu:2014aua]
[13-1076]
Breaking the Cosmic Degeneracy between Modified Gravity and Massive Neutrinos with the Cosmic Web, Junsup Shim, Jounghun Lee, Marco Baldi, arXiv:1404.3639, 2014.
[Shim:2014uta]
[13-1077]
Cosmological constraints on neutrinos after BICEP2, Jing-Fei Zhang, Yun-He Li, Xin Zhang, Eur.Phys.J. C74 (2014) 2954, arXiv:1404.3598.
[Zhang:2014nta]
[13-1078]
Constraints on the extensions to the base $\Lambda$CDM model from BICEP2, Planck and WMAP, Cheng Cheng, Qing-Guo Huang, Wen Zhao, Sci.China Phys.Mech.Astron. 57 (2014) 1460, arXiv:1404.3467.
[Cheng:2014bta]
[13-1079]
Domain wall signatures in BICEP2, Planck, VLT/UVES and Keck/HIRES data?, P. P. Avelino, L. Sousa, Universe 1 (2015) 6-16, arXiv:1404.3419.
[Avelino:2014xsa]
[13-1080]
Linking the BICEP2 result and the hemispherical power asymmetry through spatial variation of $r$, Jens Chluba, Liang Dai, Donghui Jeong, Marc Kamionkowski, Amanda Yoho, Mon.Not.Roy.Astron.Soc. 442 (2014) 670, arXiv:1404.2798.
[Chluba:2014uba]
[13-1081]
Observational Consequences of a Landscape: Epilogue, Ben Freivogel, Matthew Kleban, Maria Rodriguez Martinez, Leonard Susskind, arXiv:1404.2274, 2014.
[Freivogel:2014hca]
[13-1082]
Fingerprints of Galactic Loop I on the Cosmic Microwave Background, Hao Liu, Philipp Mertsch, Subir Sarkar, Astrophys.J. 789 (2014) L29, arXiv:1404.1899.
[Liu:2014mpa]
[13-1083]
Average Thermal Evolution of the Universe, Natacha Leite, Alex H. Blin, arXiv:1404.1833, 2014.
[Leite:2014fpa]
[13-1084]
Light sterile neutrinos after BICEP-2, Maria Archidiacono, Nicolao Fornengo, Stefano Gariazzo, Carlo Giunti, Steen Hannestad, Marco Laveder, JCAP 1406 (2014) 031, arXiv:1404.1794.
[Archidiacono:2014apa]
[13-1085]
New Constraints on Cosmic Polarization Rotation from SPTpol and BICEP2 Detections OF B-Mode Polarization in CMB, Sperello di Serego Alighieri, Wei-Tou Ni, Wei-Ping Pan, Astrophys.J. 792 (2014) 35, arXiv:1404.1701.
[diSeregoAlighieri:2014tvt]
[13-1086]
Topological Inflation with Large Tensor-to-scalar Ratio, Yu-Chieh Chung, Chunshan Lin, JCAP 1407 (2014) 020, arXiv:1404.1680.
[Chung:2014woa]
[13-1087]
Pursuing the Amplitude of Tensor Mode Power Spectrum in Light of BICEP2, Baorong Chang, Lixin Xu, arXiv:1404.1558, 2014.
[Chang:2014loa]
[13-1088]
$\nu$Galileon: modified gravity with massive neutrinos as a testable alternative to $\Lambda$CDM, Alexandre Barreira, Baojiu Li, Carlton Baugh, Silvia Pascoli, Phys. Rev. D90 (2014) 023528, arXiv:1404.1365.
[Barreira:2014ija]
[13-1089]
On quantifying and resolving the BICEP2/Planck tension over gravitational waves, Kendrick M. Smith et al., Phys. Rev. Lett. 113 (2014) 031301, arXiv:1404.0373.
[Smith:2014kka]
[13-1090]
Global fitting analysis on cosmological models after BICEP2, Hong Li, Jun-Qing Xia, Xinmin Zhang, arXiv:1404.0238, 2014.
[Li:2014cka]
[13-1091]
$\nu\Lambda$MDM: A Model for Sterile Neutrino and Dark Matter Reconciles Cosmological and Neutrino Oscillation Data after BICEP2, P. Ko, Yong Tang, Phys.Lett. B739 (2014) 62-67, arXiv:1404.0236.
[Ko:2014bka]
[13-1092]
The CMB flexes its BICEPs while walking the Planck, Douglas Scott, Ali Frolop, arXiv:1403.8145, 2014.
[Scott:2014qea]
[13-1093]
Neutrinos help reconcile Planck measurements with both Early and Local Universe, Cora Dvorkin, Mark Wyman, Douglas H. Rudd, Wayne Hu, Phys. Rev. D90 (2014) 083503, arXiv:1403.8049.
[Dvorkin:2014lea]
[13-1094]
Ruling out the power-law form of the scalar primordial spectrum, Dhiraj Kumar Hazra, Arman Shafieloo, George F. Smoot, Alexei A. Starobinsky, JCAP 1406 (2014) 061, arXiv:1403.7786.
[Hazra:2014aea]
[13-1095]
Constraints on the cosmological parameters from BICEP2, Planck and WMAP, Cheng Cheng, Qing-Guo Huang, Eur.Phys.J. C74 (2014) 3139, arXiv:1403.7173.
[Cheng:2014ota]
[13-1096]
Sterile neutrinos help reconcile the observational results of primordial gravitational waves from Planck and BICEP2, Jing-Fei Zhang, Yun-He Li, Xin Zhang, Phys.Lett. B740 (2015) 359-363, arXiv:1403.7028.
[Zhang:2014dxk]
[13-1097]
Can primordial magnetic fields be the origin of the BICEP2 data?, Camille Bonvin, Ruth Durrer, Roy Maartens, Phys. Rev. Lett. 112 (2014) 191303, arXiv:1403.6768.
[Bonvin:2014xia]
[13-1098]
Negative Running of the Spectral Index, Hemispherical Asymmetry and Consistency of Planck with BICEP2, John McDonald, JCAP 1411 (2014) 012, arXiv:1403.6650.
[McDonald:2014kia]
[13-1099]
Cosmological parameter fittings with the BICEP2 data, Fengquan Wu, Yichao Li, Youjun Lu, Xuelei Chen, Sci.China Phys.Mech.Astron. 57 (2014) 1449-1454, arXiv:1403.6462.
[Wu:2014qxa]
[13-1100]
Did BICEP2 see vector modes? First B-mode constraints on cosmic defects, Adam Moss, Levon Pogosian, Phys. Rev. Lett. 112 (2014) 171302, arXiv:1403.6105.
[Moss:2014cra]
[13-1101]
Non-Bunch-Davis Initial State Reconciles Chaotic Models with BICEP and Planck, Amjad Ashoorioon, Konstantinos Dimopoulos, M.M. Sheikh-Jabbari, Gary Shiu, Phys.Lett. B737 (2014) 98-102, arXiv:1403.6099.
[Ashoorioon:2014nta]
[13-1102]
Primordial Li Reduction Induced by a Long-lived MeV Sterile Neutrino, Hiroyuki Ishida, Motohiko Kusakabe, Hiroshi Okada, Phys. Rev. D90 (2014) 083519, arXiv:1403.5995.
[Ishida:2014wqa]
[13-1103]
The Knotted Sky II: Does BICEP2 require a nontrivial primordial power spectrum?, Kevork N. Abazajian, Grigor Aslanyan, Richard Easther, Layne C. Price, JCAP 1408 (2014) 053, arXiv:1403.5922.
[Abazajian:2014tqa]
[13-1104]
Compensation for large tensor modes with iso-curvature perturbations in CMB anisotropies, Masahiro Kawasaki, Shuichiro Yokoyama, JCAP 1405 (2014) 046, arXiv:1403.5823.
[Kawasaki:2014lqa]
[13-1105]
Blue Gravity Waves from BICEP2 ?, Martina Gerbino et al., Phys. Rev. D90 (2014) 047301, arXiv:1403.5732.
[Gerbino:2014eqa]
[13-1106]
Cosmic Birefringence Fluctuations and Cosmic Microwave Background $B$-mode Polarization, Seokcheon Lee, Guo-Chin Liu, Kin-Wang Ng, Phys.Lett. B746 (2015) 406-409, arXiv:1403.5585.
[Lee:2014rpa]
[13-1107]
Complementarity of Neutrinoless Double Beta Decay and Cosmology, Scott Dodelson, Joseph Lykken, arXiv:1403.5173, 2014.
[Dodelson:2014tga]
[13-1108]
Can topological defects mimic the BICEP2 B-mode signal?, Joanes Lizarraga et al., Phys. Rev. Lett. 112 (2014) 171301, arXiv:1403.4924.
[Lizarraga:2014eaa]
[13-1109]
Relic Neutrinos, thermal axions and cosmology in early 2014, Elena Giusarma, Eleonora Di Valentino, Massimiliano Lattanzi, Alessandro Melchiorri, Olga Mena, Phys. Rev. D90 (2014) 043507, arXiv:1403.4852.
[Giusarma:2014zza]
[13-1110]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Signs of neutrino mass in current cosmological datasets, Florian Beutler et al. (BOSS), Mon.Not.Roy.Astron.Soc. 444 (2014) 3501, arXiv:1403.4599.
[BOSS:2014etx]
[13-1111]
Suppressing the impact of a high tensor-to-scalar ratio on the temperature anisotropies, Carlo R. Contaldi, Marco Peloso, Lorenzo Sorbo, JCAP 1407 (2014) 014, arXiv:1403.4596.
[Contaldi:2014zua]
[13-1112]
Hint of relic gravitational waves in the Planck and WMAP data, Wen Zhao, Cheng Cheng, Qing-Guo Huang, arXiv:1403.3919, 2014.
[Zhao:2014rna]
[13-1113]
Silk damping at a redshift of a billion: a new limit on small-scale adiabatic perturbations, Donghui Jeong, Josef Pradler, Jens Chluba, Marc Kamionkowski, Phys. Rev. Lett. 113 (2014) 061301, arXiv:1403.3697.
[Jeong:2014gna]
[13-1114]
Constraints on Cosmological Models from Hubble Parameters Measurements, Wei Zheng et al., Int.J.Mod.Phys. D23 (2014) 1450051, arXiv:1403.2571.
[Zheng:2014dka]
[13-1115]
The expansion rate of the intermediate Universe in light of Planck, Licia Verde, Pavlos Protopapas, Raul Jimenez, Phys.Dark Univ. 5-6 (2014) 307-314, arXiv:1403.2181.
[Verde:2014qea]
[13-1116]
Directional dependence of the local estimation of $H_0$ and the nonperturbative effects of primordial curvature perturbations, Antonio Enea Romano, Sergio Andres Vallejo, Europhys. Lett. 109 (2015) 39002, arXiv:1403.2034.
[Romano:2014iea]
[13-1117]
Probing small-scale cosmological fluctuations with the 21 cm forest: effects of neutrino mass, running spectral index and warm dark matter, Hayato Shimabukuro, Kiyotomo Ichiki, Susumu Inoue, Shuichiro Yokoyama, Phys. Rev. D90 (2014) 083003, arXiv:1403.1605.
[Shimabukuro:2014ava]
[13-1118]
PQ-symmetry for a small Dirac neutrino mass, dark radiation and cosmic neutrinos, Wan-Il Park, JCAP 1406 (2014) 049, arXiv:1402.6523.
[Park:2014qha]
[13-1119]
Cosmology and Astrophysics from Relaxed Galaxy Clusters II: Cosmological Constraints, Adam B. Mantz, Steven W. Allen, R. Glenn Morris, David A. Rapetti, Douglas E. Applegate et al., Mon.Not.Roy.Astron.Soc. 440 (2014) 2077-2098, arXiv:1402.6212.
[Mantz:2014xba]
[13-1120]
A neutrino model fit to the CMB power spectrum, T. Shanks, R.W.F. Johnson, J.A. Schewtschenko, J.R. Whitbourn, Mon.Not.Roy.Astron.Soc. 445 (2014) 2836, arXiv:1402.5502.
[Shanks:2014jua]
[13-1121]
Modified gravity and coupled quintessence, C. Wetterich, Lect.Notes Phys. 892 (2015) 57, arXiv:1402.5031.
[Wetterich:2014bma]
[13-1122]
A Guide to Designing Future Ground-based CMB Experiments, W. L. K. Wu et al., Astrophys.J. 788 (2014) 138, arXiv:1402.4108.
[Wu:2014hta]
[13-1123]
Effects of kination and scalar-tensor cosmologies on sterile neutrinos, Thomas Rehagen, Graciela B. Gelmini, JCAP 1406 (2014) 044, arXiv:1402.0607.
[Rehagen:2014vna]
[13-1124]
Constraining Dark Matter-Neutrino Interactions using the CMB and Large-Scale Structure, Ryan J. Wilkinson, Celine Boehm, Julien Lesgourgues, JCAP 05 (2014) 011, arXiv:1401.7597.
[Wilkinson:2014ksa]
[13-1125]
Inflationary Freedom and Cosmological Neutrino Constraints, Roland de Putter, Eric V. Linder, Abhilash Mishra, Phys. Rev. D89 (2014) 103502, arXiv:1401.7022.
[dePutter:2014hza]
[13-1126]
A Suite of Hydrodynamical Simulations for the Lyman-Alpha Forest with Massive Neutrinos, Graziano Rossi, Nathalie Palanque-Delabrouille, Arnaud Borde, Matteo Viel, Christophe Yeche et al., Astron.Astrophys. 567 (2014) A79, arXiv:1401.6464.
[Rossi:2014wsa]
[13-1127]
Joint Planck and WMAP CMB Map Reconstruction, J. Bobin, F. Sureau, J.-L. Starck, A. Rassat, P. Paykari, Astron.Astrophys. 563 (2014) A105, arXiv:1401.6016.
[Bobin:2014mja]
[13-1128]
The Zeldovich approximation, Martin White, Mon.Not.Roy.Astron.Soc. 439 (2014) 3630, arXiv:1401.5466.
[White:2014gfa]
[13-1129]
A cosmological bound on $e^+ e^-$ mass difference, A.D. Dolgov, V.A. Novikov, Phys.Lett. B732 (2014) 244-246, arXiv:1401.5217.
[Dolgov:2014xza]
[13-1130]
Correlation between Dark Matter and Dark Radiation in String Compactifications, Rouzbeh Allahverdi, Michele Cicoli, Bhaskar Dutta, Kuver Sinha, JCAP 1410 (2014) 002, arXiv:1401.4364.
[Allahverdi:2014ppa]
[13-1131]
Cosmological Parameter Uncertainties from SALT-II Type Ia Supernova Light Curve Models, J. Mosher et al., Astrophys.J. 793 (2014) 16, arXiv:1401.4065.
[Mosher:2014gyd]
[13-1132]
Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples, M. Betoule et al. (SDSS), Astron.Astrophys. (2014), arXiv:1401.4064.
[SDSS:2014iwm]
[13-1133]
Constraining models of $f(R)$ gravity with Planck and WiggleZ power spectrum data, Jason Dossett, Bin Hu, David Parkinson, JCAP 1403 (2014) 046, arXiv:1401.3980.
[Dossett:2014oia]
[13-1134]
The High-$z$ Universe Confronts Warm Dark Matter: Galaxy Counts, Reionization and the Nature of Dark Matter, Christian Schultz, Jose Onorbe, Kevork N. Abazajian, James S. Bullock, Mon.Not.Roy.Astron.Soc. 442 (2014) 1597-1609, arXiv:1401.3769.
[Schultz:2014eia]
[13-1135]
Late-time vacuum phase transitions: connecting sub-eV scale physics with cosmological structure formation, Amol V. Patwardhan, George M. Fuller, Phys. Rev. D90 (2014) 063009, arXiv:1401.1923.
[Patwardhan:2014iha]
[13-1136]
Physical alternative to the dark energy paradigm, Arved Sapar, Baltic Astron. 22 (2013) 315-328, arXiv:1401.1107.
[Sapar:2013owu]
[13-1137]
Cosmological parameter estimation from CMB and X-ray clusters after Planck, Jian-Wei Hu, Rong-Gen Cai, Zong-Kuan Guo, Bin Hu, JCAP 1405 (2014) 020, arXiv:1401.0717.
[Hu:2014qma]
[13-1138]
Confronting the concordance model of cosmology with Planck data, Dhiraj Kumar Hazra, Arman Shafieloo, JCAP 01 (2014) 043, arXiv:1401.0595.
[Hazra:2014hma]
[13-1139]
Neutrino masses from CMB B-mode polarization and cosmic growth rate, Koichi Hirano, Int.J.Mod.Phys. A30 (2015) 1550001, arXiv:1312.7814.
[Hirano:2013cza]
[13-1140]
Constraints on Lepton Asymmetry from Nucleosynthesis in a Linearly Coasting Cosmology, Parminder Singh, Daksh Lohiya, JCAP 1505 (2015) 061, arXiv:1312.7706.
[Singh:2013uya]
[13-1141]
Constraining the dynamical dark energy parameters: Planck-2013 vs WMAP9, B. Novosyadlyj, O. Sergijenko, R. Durrer, V. Pelykh, JCAP 1405 (2014) 030, arXiv:1312.6579.
[Novosyadlyj:2013nya]
[13-1142]
BBN And The CMB Constrain Light, Electromagnetically Coupled WIMPs, Kenneth M. Nollett, Gary Steigman, Phys. Rev. D89 (2014) 083508, arXiv:1312.5725.
[Nollett:2013pwa]
[13-1143]
Cosmo++: An Object-Oriented C++ Library for Cosmology, Grigor Aslanyan, Comput.Phys.Commun. 185 (2014) 3215-3227, arXiv:1312.4961.
[Aslanyan:2013opa]
[13-1144]
Describing massive neutrinos in cosmology as a collection of independent flows, Helene Dupuy, Francis Bernardeau, JCAP 1401 (2014) 030, arXiv:1311.5487.
[Dupuy:2013jaa]
[13-1145]
Updated constraints on non-standard neutrino interactions from Planck, Maria Archidiacono, Steen Hannestad, JCAP 1407 (2014) 046, arXiv:1311.3873.
[Archidiacono:2013dua]
[13-1146]
Cosmological evidence for leptonic asymmetry after Planck, A. Caramete, L. A. Popa, JCAP 1402 (2014) 012, arXiv:1311.3856.
[Caramete:2013bua]
[13-1147]
H0 Revisited, George Efstathiou, Mon.Not.Roy.Astron.Soc. 440 (2014) 1138-1152, arXiv:1311.3461.
[Efstathiou:2013via]
[13-1148]
Low-scale seesaw models versus $N_{\rm eff}$, P. Hernandez, M. Kekic, J. Lopez-Pavon, Phys. Rev. D89 (2014) 073009, arXiv:1311.2614.
[Hernandez:2013lza]
[13-1149]
Dark Radiation constraints on minicharged particles in models with a hidden photon, Hendrik Vogel, Javier Redondo, JCAP 1402 (2014) 029, arXiv:1311.2600.
[Vogel:2013raa]
[13-1150]
Cosmic Degeneracies I: Joint N-body Simulations of Modified Gravity and Massive Neutrinos, Marco Baldi et al., Mon.Not.Roy.Astron.Soc. 440 (2014) 75, arXiv:1311.2588.
[Baldi:2013iza]
[13-1151]
Can CMB Lensing Help Cosmic Shear Surveys?, Sudeep Das, Josquin Errard, David Spergel, arXiv:1311.2338, 2013.
[Das:2013aia]
[13-1152]
Cosmology with massive neutrinos III: the halo mass function and an application to galaxy clusters, Matteo Costanzi et al., JCAP 1312 (2013) 012, arXiv:1311.1514.
[Costanzi:2013bha]
[13-1153]
Cosmology with massive neutrinos II: on the universality of the halo mass function and bias, E. Castorina, E. Sefusatti, R.K. Sheth, F. Villaescusa-Navarro, M. Viel, JCAP 1402 (2014) 049, arXiv:1311.1212.
[Castorina:2013wga]
[13-1154]
Hidden sector monopole, vector dark matter and dark radiation with Higgs portal, S. Baek, P. Ko, Wan-Il Park, JCAP 1410 (2014) 067, arXiv:1311.1035.
[Baek:2013dwa]
[13-1155]
Cosmology from cross correlation of CMB lensing and galaxy surveys, Ruth Pearson, Oliver Zahn, Chin.Phys. C33 (2014) 1307-1311, arXiv:1311.0905.
[Pearson:2013iha]
[13-1156]
Cosmology with massive neutrinos I: towards a realistic modeling of the relation between matter, haloes and galaxies, Francisco Villaescusa-Navarro et al., JCAP 1403 (2014) 011, arXiv:1311.0866.
[Villaescusa-Navarro:2013pva]
[13-1157]
Constraining the WDM Particle Mass with Milky Way Satellites, Rachel Kennedy, Carlos Frenk, Shaun Cole, Andrew Benson, Mon.Not.Roy.Astron.Soc. 442 (2014) 2487, arXiv:1310.7739.
[Kennedy:2013uta]
[13-1158]
CMB Lensing Power Spectrum Biases from Galaxies and Clusters using High-angular Resolution Temperature Maps, A. van Engelen et al., Astrophys.J. 786 (2014) 13, arXiv:1310.7023.
[vanEngelen:2013rla]
[13-1159]
Some consequences of the Majoron being the dark radiation, We-Fu Chang, John N. Ng, Jackson M. S. Wu, Phys.Lett. B730 (2014) 347-352, arXiv:1310.6513.
[Chang:2013yva]
[13-1160]
A menage a trois of eV-scale sterile neutrinos, cosmology, and structure formation, Basudeb Dasgupta, Joachim Kopp, Phys. Rev. Lett. 112 (2014) 031803, arXiv:1310.6337.
[Dasgupta:2013zpn]
[13-1161]
Cosmological Constraints on Bose-Einstein-Condensed Scalar Field Dark Matter, Bohua Li, Tanja Rindler-Daller, Paul R. Shapiro, Phys. Rev. D89 (2014) 083536, arXiv:1310.6061.
[Li:2013nal]
[13-1162]
How secret interactions can reconcile sterile neutrinos with cosmology, Steen Hannestad, Rasmus Sloth Hansen, Thomas Tram, Phys. Rev. Lett. 112 (2014) 031802, arXiv:1310.5926.
[Hannestad:2013ana]
[13-1163]
Nonlocal Gravity and Structure in the Universe, Scott Dodelson, Sohyun Park, Phys. Rev. D90 (2014) 043535, arXiv:1310.4329.
[Dodelson:2013sma]
[13-1164]
Lack of large-angle TT correlations persists in WMAP and Planck, Craig J. Copi, Dragan Huterer, Dominik J. Schwarz, Glenn D. Starkman, Mon. Not. Roy. Astron. Soc. 451 (2015) 2978-2985, arXiv:1310.3831.
[Copi:2013cya]
[13-1165]
Current Dark Matter Annihilation Constraints from CMB and Low-Redshift Data, Mathew S. Madhavacheril, Neelima Sehgal, Tracy R. Slatyer, Phys. Rev. D89 (2014) 103508, arXiv:1310.3815.
[Madhavacheril:2013cna]
[13-1166]
Nucleosynthesis in Hot and Dense Media, Samina S Masood, Physics 5 (2014) 296-308, arXiv:1310.3608.
[Masood:2014vda]
[13-1167]
Constraints on millicharged particles from Planck, A.D. Dolgov, S.L. Dubovsky, G.I. Rubtsov, I.I. Tkachev, Phys. Rev. D88 (2013) 117701, arXiv:1310.2376.
[Dolgov:2013una]
[13-1168]
Probing Neutrinos from Planck and Forthcoming Galaxy Redshift Surveys, Yoshitaka Takeuchi, Kenji Kadota, JCAP 1401 (2014) 046, arXiv:1310.0037.
[Takeuchi:2013gpa]
[13-1169]
A Minimal Supersymmetric Model of Particle Physics and the Early Universe, W. Buchmuller, V. Domcke, K. Kamada, K. Schmitz, 47-77 (2013) 47-77, arXiv:1309.7788.
[Buchmuller:2013dja]
[13-1170]
Cosmological simulations in MOND: the cluster scale halo mass function with light sterile neutrinos, Garry W. Angus, Antonaldo Diaferio, Benoit Famaey, Kurt J. van der Heyden, Mon.Not.Roy.Astron.Soc. 436 (2013) 202, arXiv:1309.6094.
[Angus:2013sxa]
[13-1171]
Large-Scale Structure Formation with Massive Neutrinos and Dynamical Dark Energy, Amol Upadhye et al., Phys. Rev. D89 (2014) 103515, arXiv:1309.5872.
[Upadhye:2013ndm]
[13-1172]
Measuring the Thermal Sunyaev-Zel'dovich Effect Through the Cross Correlation of Planck and WMAP Maps with ROSAT Galaxy Cluster Catalogs, Amir Hajian et al., JCAP 1311 (2013) 064, arXiv:1309.3282.
[Hajian:2013rhm]
[13-1173]
A UV complete model for radiative seesaw and electroweak baryogenesis based on the SUSY gauge theory, Shinya Kanemura, Naoki Machida, Tetsuo Shindou, Toshifumi Yamada, Phys. Rev. D89 (2014) 013005, arXiv:1309.3207.
[Kanemura:2013uva]
[13-1174]
Light Sterile Neutrinos in Cosmology and Short-Baseline Oscillation Experiments, S. Gariazzo, C. Giunti, M. Laveder, JHEP 1311 (2013) 211, arXiv:1309.3192.
[Gariazzo:2013gua]
[13-1175]
Cosmic Mnemonics, Douglas Scott, Ali Narimani, Don N. Page, arXiv:1309.2381, 2013.
[Scott:2013oib]
[13-1176]
Evidence for massive neutrinos from CMB and lensing observations, Richard A. Battye, Adam Moss, Phys. Rev. Lett. 112 (2014) 051303, arXiv:1308.5870.
[Battye:2013xqa]
[13-1177]
Bayesian model selection for dark energy using weak lensing forecasts, Ivan Debono, Mon.Not.Roy.Astron.Soc. 442 (2014) 1619-1627, arXiv:1308.5636.
[Debono:2014mia]
[13-1178]
DESI and other dark energy experiments in the era of neutrino mass measurements, Andreu Font-Ribera et al., JCAP 1405 (2014) 023, arXiv:1308.4164.
[Font-Ribera:2013rwa]
[13-1179]
Damn You, Little h! (or, Real-World Applications Of The Hubble Constant Using Observed And Simulated Data), Darren Croton, Publ.Astron.Soc.Austral. 30 (2013) 52, arXiv:1308.4150.
[Croton:2013mwa]
[13-1180]
Direct Search for Right-handed Neutrinos and Neutrinoless Double Beta Decay, Takehiko Asaka, Shintaro Eijima, PTEP 2013 (2013) 113B02, arXiv:1308.3550.
[Asaka:2013jfa]
[13-1181]
A new life for sterile neutrinos: resolving inconsistencies using hot dark matter, Jan Hamann, Jasper Hasenkamp, JCAP 1310 (2013) 044, arXiv:1308.3255.
[Hamann:2013iba]
[13-1182]
Variable gravity Universe, C. Wetterich, Phys. Rev. D89 (2014) 024005, arXiv:1308.1019.
[Wetterich:2013jsa]
[13-1183]
Weighing the Local Group in the Presence of Dark Energy, Candace Partridge, Ofer Lahav, Yehuda Hoffman, Mon.Not.Roy.Astron.Soc. 436 (2013) 45, arXiv:1308.0970.
[Partridge:2013dsa]
[13-1184]
Dark Energy Constraints after Planck, Jun-Qing Xia, Hong Li, Xinmin Zhang, Phys. Rev. D 88, 063501 (2013) 022, arXiv:1308.0188.
[Xia:2013nua]
[13-1185]
Rayleigh scattering: blue sky thinking for future CMB observations, Antony Lewis, JCAP 08 (2013) 053, arXiv:1307.8148.
[Lewis:2013yia]
[13-1186]
$\nu\Lambda$CDM: Neutrinos reconcile Planck with the Local Universe, Mark Wyman, Douglas H. Rudd, R. Ali Vanderveld, Wayne Hu, Phys. Rev. Lett. 112 (2014) 051302, arXiv:1307.7715.
[Wyman:2013lza]
[13-1187]
Damping of Primordial Gravitational Waves from Generalized Sources, James B. Dent, Lawrence M. Krauss, Subir Sabharwal, Tanmay Vachaspati, Phys. Rev. D88 (2013) 084008, arXiv:1307.7571.
[Dent:2013asa]
[13-1188]
Phenomenology of an Extended Higgs Portal Inflation Model after Planck 2013, Fa Peng Huang, Chong Sheng Li, Ding Yu Shao, Jian Wang, Eur.Phys.J. C74 (2014) 2990, arXiv:1307.7458.
[Huang:2013oua]
[13-1189]
Standard Big-Bang Nucleosynthesis after Planck, Alain Coc, Jean-Philippe Uzan, Elisabeth Vangioni, arXiv:1307.6955, 2013.
[Coc:2013eea]
[13-1190]
On baryogenesis from dark matter annihilation, Nicolas Bernal, Stefano Colucci, Francois-Xavier Josse-Michaux, J. Racker, Lorenzo Ubaldi, JCAP 1310 (2013) 035, arXiv:1307.6878.
[Bernal:2013bga]
[13-1191]
Weighting Neutrinos in $f(R)$ gravity, Jian-hua He, Phys. Rev. D 88, 103523 (2013) 103523, arXiv:1307.4876.
[He:2013qha]
[13-1192]
Constraints on neutrino density and velocity isocurvature modes from WMAP-9 data, Matti Savelainen, Jussi Valiviita, Parampreet Walia, Stanislav Rusak, Hannu Kurki-Suonio, Phys. Rev. D88 (2013) 063010, arXiv:1307.4398.
[Savelainen:2013iwa]
[13-1193]
Neutrinos and dark energy constraints from future galaxy surveys and CMB lensing information, Larissa Santos, Paolo Cabella, Amedeo Balbi, Nicola Vittorio, Phys. Rev. D88 (2013) 043505, arXiv:1307.2919.
[Santos:2013gqa]
[13-1194]
(Lack of) Cosmological evidence for dark radiation after Planck, Licia Verde, Stephen M. Feeney, Daniel J. Mortlock, Hiranya V. Peiris, JCAP 1309 (2013) 013, arXiv:1307.2904.
[Verde:2013cqa]
[13-1195]
Axion hot dark matter bounds after Planck, Maria Archidiacono, Steen Hannestad, Alessandro Mirizzi, Georg Raffelt, Yvonne Y.Y. Wong, JCAP 1310 (2013) 020, arXiv:1307.0615.
[Archidiacono:2013cha]
[13-1196]
Planck and the local Universe: quantifying the tension, Licia Verde, Pavlos Protopapas, Raul Jimenez, Phys.Dark Univ. 2 (2013) 166-175, arXiv:1306.6766.
[Verde:2013wza]
[13-1197]
Cepheid theoretical models and observations in HST/WFC3 filters: the effect on the Hubble constant Ho, G. Fiorentino, I. Musella, M. Marconi, Mon.Not.Roy.Astron.Soc. 434 (2013) 2866, arXiv:1306.6276.
[Fiorentino:2013bga]
[13-1198]
Constraints on neutrino masses from Planck and Galaxy Clustering data, Elena Giusarma, Roland de Putter, Shirley Ho, Olga Mena, Phys. Rev. D88 (2013) 063515, arXiv:1306.5544.
[Giusarma:2013pmn]
[13-1199]
Cosmology from gravitational lens time delays and Planck data, S.H. Suyu, T. Treu, S. Hilbert, A. Sonnenfeld, M.W. Auger et al., Astrophys.J. 788 (2014) L35, arXiv:1306.4732.
[Suyu:2013kha]
[13-1200]
Baryons do trace dark matter 380,000 years after the big bang: Search for compensated isocurvature perturbations with WMAP 9-year data, Daniel Grin, Duncan Hanson, Gilbert Holder, Olivier Dore, Marc Kamionkowski, Phys. Rev. D89 (2014) 023006, arXiv:1306.4319.
[Grin:2013uya]
[13-1201]
Galaxy redshift surveys with sparse sampling, Chi-Ting Chiang et al., JCAP 1312 (2013) 030, arXiv:1306.4157.
[Chiang:2013ksa]
[13-1202]
Combining Planck with Large Scale Structure gives strong neutrino mass constraint, Signe Riemer-Sorensen, David Parkinson, Tamara M. Davis, Phys. Rev. D89 (2014) 103505, arXiv:1306.4153.
[Riemer-Sorensen:2013jsa]
[13-1203]
Matter inflation with $A_4$ flavour symmetry breaking, Stefan Antusch, David Nolde, JCAP JCAP10 (2013) 028, arXiv:1306.3501.
[Antusch:2013toa]
[13-1204]
A Higgs-Saw Mechanism as a Source for Dark Energy, Lawrence M. Krauss, James B. Dent, Phys. Rev. Lett. 111 (2013) 061802, arXiv:1306.3239.
[Krauss:2013oea]
[13-1205]
The Lambda CDM-model in quantum field theory on curved spacetime and Dark Radiation, Thomas-Paul Hack, Lect.Notes Phys. 899 (2015) 113-129, arXiv:1306.3074.
[Fredenhagen:2013vxa]
[13-1206]
The Sterile Neutrino Field and Late Time Acceleration, Stephon H.S. Alexander, arXiv:1306.2964, 2013.
[Alexander:2013baa]
[13-1207]
Limits on Neutrino-Neutrino Scattering in the Early Universe, Francis-Yan Cyr-Racine, Kris Sigurdson, Phys. Rev. D90 (2014) 123533, arXiv:1306.1536.
[Cyr-Racine:2013jua]
[13-1208]
Testing modified gravity with Planck: the case of coupled dark energy, Valeria Pettorino, Phys. Rev. D 88, 063519 (2013), arXiv:1305.7457.
[Pettorino:2013oxa]
[13-1209]
Self-interacting Dark Radiation, Kwang Sik Jeong, Fuminobu Takahashi, Phys. \ Lett. \ B {\bf 725}, 134 (2013), arXiv:1305.6521.
[Jeong:2013eza]
[13-1210]
A testable scenario of WIMPZILLA with Dark Radiation, Jong-Chul Park, Seong Chan Park, Phys.Lett. B728 (2014) 41-44, arXiv:1305.5013.
[Park:2013bza]
[13-1211]
Neutrino signals from ultracompact minihalos and constraints on the primordial curvature perturbation, Yupeng Yang, Guilin Yang, Hongshi Zong, Phys. Rev. D87 (2013) 103525, arXiv:1305.4213.
[Yang:2013dsa]
[13-1212]
Loop corrections to $\Delta N_{\text{eff}}$ in large volume models, Stephen Angus, Joseph P. Conlon, Ulrich Haisch, Andrew J. Powell, JHEP 1312 (2013) 061, arXiv:1305.4128.
[Angus:2013zfa]
[13-1213]
Galaxy Cluster Bulk Flows and Collision Velocities in QUMOND, Harley Katz, Stacy McGaugh, Peter Teuben, G. W. Angus, 2013 772 (2013) 10, arXiv:1305.3651.
[Katz:2013kya]
[13-1214]
The Gravitational Wave Spectrum from Cosmological B-L Breaking, Wilfried Buchmuller, Valerie Domcke, Kohei Kamada, Kai Schmitz, JCAP JCAP10 (2013) 003, arXiv:1305.3392.
[Buchmuller:2013lra]
[13-1215]
Goldstone Bosons as Fractional Cosmic Neutrinos, Steven Weinberg, Phys. Rev. Lett. 110 (2013) 241301, arXiv:1305.1971.
[Weinberg:2013kea]
[13-1216]
Neutrino Anisotropies after Planck, Martina Gerbino, Eleonora Di Valentino, Najla Said, Phys. Rev. D88 (2013) 063538, arXiv:1304.7400.
[Gerbino:2013ova]
[13-1217]
New constraints on Coupled Dark Energy from Planck, Valentina Salvatelli, Andrea Marchini, Phys. Rev. D88 (2013) 023531, arXiv:1304.7119.
[Salvatelli:2013wra]
[13-1218]
Dark Radiation after Planck, Najla Said, Eleonora Di Valentino, Martina Gerbino, Phys. Rev. D88 (2013) 023513, arXiv:1304.6217.
[Said:2013hta]
[13-1219]
Dark Radiation candidates after Planck, Eleonora Di Valentino, Alessandro Melchiorri, Olga Mena, JCAP 1311 (2013) 018, arXiv:1304.5981.
[Valentino:2013wha]
[13-1220]
Environmental CPT Violation in an Expanding Universe in String Theory, John Ellis, Nick E. Mavromatos, Sarben Sarkar, Phys.Lett. B725 (2013) 407-411, arXiv:1304.5433.
[Ellis:2013gca]
[13-1221]
Non-thermal WIMPs as 'Dark Radiation' in Light of ATACAMA, SPT, WMAP9 and Planck, Chris Kelso, Stefano Profumo, Farinaldo S. Queiroz, Phys. Rev. D88 (2013) 023511, arXiv:1304.5243.
[Kelso:2013paa]
[13-1222]
CMB spectral distortions from small-scale isocurvature fluctuations, Jens Chluba, Daniel Grin, Mon.Not.Roy.Astron.Soc. 434 (2013) 1619, arXiv:1304.4596.
[Chluba:2013dna]
[13-1223]
New Constraints on the Early Expansion History, Alireza Hojjati, Eric V. Linder, Johan Samsing, Phys. Rev. Lett. 111, 041301 (2013) 041301, arXiv:1304.3724.
[Hojjati:2013oya]
[13-1224]
Evidence for a $\sim300$ Megaparsec Scale Under-density in the Local Galaxy Distribution, Ryan C. Keenan, Amy J. Barger, Lennox L. Cowie, Astrophys.J. 775 (2013) 62, arXiv:1304.2884.
[Keenan:2013mfa]
[13-1225]
Dark energy and neutrino constraints from a future EUCLID-like survey, Tobias Basse, Ole Eggers Bjaelde, Jan Hamann, Steen Hannestad, Yvonne Y.Y. Wong, JCAP 1405 (2014) 021, arXiv:1304.2321.
[Basse:2013zua]
[13-1226]
The Cosmophenomenology of Axionic Dark Radiation, Joseph P. Conlon, M.C. David Marsh, JHEP 1310 (2013) 214, arXiv:1304.1804.
[Conlon:2013isa]
[13-1227]
A Lower Bound on the Mass of Cold Thermal Dark Matter from Planck, Celine Boehm, Matthew J. Dolan, Christopher McCabe, JCAP 1308 (2013) 041, arXiv:1303.6270.
[Boehm:2013jpa]
[13-1228]
Dark Radiation or Warm Dark Matter from long lived particle decays in the light of Planck, Pasquale Di Bari, Stephen F. King, Alexander Merle, Phys.Lett. B724 (2013) 77-83, arXiv:1303.6267.
[DiBari:2013dna]
[13-1229]
Paper-and-pencil cosmological calculator, Sergey V. Pilipenko, arXiv:1303.5961, 2013.
[Pilipenko:2013ola]
[13-1230]
New Light Species and the CMB, Christopher Brust, David E. Kaplan, Matthew T. Walters, JHEP 1312 (2013) 058, arXiv:1303.5379.
[Brust:2013ova]
[13-1231]
Implications of Planck results for models with local type non-Gaussianity, Teruaki Suyama, Tomo Takahashi, Masahide Yamaguchi, Shuichiro Yokoyama, JCAP 1306 (2013) 012, arXiv:1303.5374.
[Suyama:2013nva]
[13-1232]
The strongest bounds on active-sterile neutrino mixing after Planck data, Alessandro Mirizzi, Gianpiero Mangano, Ninetta Saviano, Enrico Borriello, Carlo Giunti, Gennaro Miele, Ofelia Pisanti, Phys. Lett. B726 (2013) 8-14, arXiv:1303.5368. http://www.sciencedirect.com/science/article/pii/S0370269313006412.
[Mirizzi:2013kva]
[13-1233]
The importance of local measurements for cosmology, Licia Verde, Raul Jimenez, Stephen Feeney, Phys.Dark Univ. 2 (2013) 65-71, arXiv:1303.5341.
[Verde:2013fva]
[13-1234]
Cosmology from the Thermal Sunyaev-Zel'dovich Power Spectrum: Primordial non-Gaussianity and Massive Neutrinos, J. Colin Hill, Enrico Pajer, Phys. Rev. D88 (2013) 063526, arXiv:1303.4726.
[Hill:2013baa]
[13-1235]
Cosmology with sterile neutrino masses from oscillation experiments, Jostein R. Kristiansen, Oystein Elgaroy, Carlo Giunti, Marco Laveder, arXiv:1303.4654, 2013.
[Kristiansen:2013mza]
[13-1236]
Constraining neutrino properties with a Euclid-like galaxy cluster survey, M. Costanzi Alunno Cerbolini et al., JCAP 1306 (2013) 020, arXiv:1303.4550.
[Cerbolini:2013uya]
[13-1237]
Light inflaton after LHC8 and WMAP9 results, F. Bezrukov, D. Gorbunov, JHEP 1307 (2013) 140, arXiv:1303.4395.
[Bezrukov:2013fca]
[13-1238]
Cosmological data and indications for new physics, Micol Benetti et al., JCAP 1310 (2013) 030, arXiv:1303.4317.
[Benetti:2013wla]
[13-1239]
Cosmic variance and the measurement of the local Hubble parameter, Valerio Marra, Luca Amendola, Ignacy Sawicki, Wessel Valkenburg, Phys. Rev. Lett. 110 (2013) 241305, arXiv:1303.3121.
[Marra:2013rba]
[13-1240]
Nucleosynthesis constraint on Lorentz invariance violation in the neutrino sector, Zong-Kuan Guo, Jian-Wei Hu, Phys. Rev. D 87, 123519 (2013) 123519, arXiv:1303.2813.
[Guo:2013zwa]
[13-1241]
Fugacity and Reheating of Primordial Neutrinos, Jeremiah Birrell, Cheng-Tao Yang, Pisin Chen, Johann Rafelski, Mod.Phys.Lett. A28 (2013) 1350188, arXiv:1303.2583.
[Birrell:2013gpa]
[13-1242]
A Critical Look at the Standard Cosmological Picture, Daryl Janzen, arXiv:1303.2549, 2013.
[Janzen:2013zya]
[13-1243]
A Big-Bang Nucleosynthesis Limit on the Neutral Fermion Decays into Neutrinos, Motohiko Kusakabe, A.B. Balantekin, Toshitaka Kajino, Y. Pehlivan, Phys.Rev D87 (2013) 085045, arXiv:1303.2291.
[Kusakabe:2013sna]
[13-1244]
Constraints on Neutrino Mass from Sunyaev-Zeldovich Cluster Surveys, Daisy S. Y. Mak, Elena Pierpaoli, Phys. Rev. D87 (2013) 103518, arXiv:1303.2081.
[Mak:2013jia]
[13-1245]
Neutrino and Dark Radiation properties in light of latest CMB observations, Maria Archidiacono, Elena Giusarma, Alessandro Melchiorri, Olga Mena, Phys. Rev. D87 (2013) 103519, arXiv:1303.0143.
[Archidiacono:2013lva]
[13-1246]
Equivalent Neutrinos, Light WIMPs, and the Chimera of Dark Radiation, Gary Steigman, Phys. Rev. D87 (2013) 103517, arXiv:1303.0049.
[Steigman:2013yua]
[13-1247]
Sterile Neutrinos: Cosmology vs Short-BaseLine Experiments, Maria Archidiacono, Nicolao Fornengo, Carlo Giunti, Steen Hannestad, Alessandro Melchiorri, Phys. Rev. D87 (2013) 125034, arXiv:1302.6720. http://link.aps.org/doi/10.1103/PhysRevD.87.125034.
[Archidiacono:2013xxa]
[13-1248]
Cosmological Parameters from Pre-Planck CMB Measurements, Erminia Calabrese et al., Phys. Rev. D87 (2013) 103012, arXiv:1302.1841.
[Calabrese:2013jyk]
[13-1249]
Is there evidence for additional neutrino species from cosmology?, Stephen M. Feeney, Hiranya V. Peiris, Licia Verde, JCAP 1304 (2013) 036, arXiv:1302.0014.
[Feeney:2013wp]
[13-1250]
Tickling the CMB damping tail: scrutinizing the tension between the ACT and SPT experiments, Eleonora Di Valentino et al., Phys. Rev. D88 (2013) 023501, arXiv:1301.7343.
[DiValentino:2013mt]
[13-1251]
Possible indication for non-zero neutrino mass and additional neutrino species from cosmological observations, R. A. Burenin, Astron.Lett. 39 (2013) 357-366, arXiv:1301.4791.
[Burenin:2013wg]
[13-1252]
Additional Light Sterile Neutrinos and Cosmology, Thomas D. Jacques, Lawrence M. Krauss, Cecilia Lunardini, Phys. Rev. D87 (2013) 083515, arXiv:1301.3119.
[Jacques:2013xr]
[13-1253]
Higgs-lepton inflation in the supersymmetric minimal seesaw model, Masato Arai, Shinsuke Kawai, Nobuchika Okada, Phys. Rev. D87 (2013) 065009, arXiv:1212.6828.
[Arai:2012em]
[13-1254]
Dark Radiation and interacting scenarios, Roberta Diamanti, Elena Giusarma, Olga Mena, Maria Archidiacono, Alessandro Melchiorri, Phys. Rev. D87 (2013) 063509, arXiv:1212.6007.
[Diamanti:2012tg]
[13-1255]
Extended analysis of CMB constraints on non-Gaussianity in isocurvature perturbations, Chiaki Hikage, Masahiro Kawasaki, Toyokazu Sekiguchi, Tomo Takahashi, JCAP 1303 (2013) 020, arXiv:1212.6001.
[Hikage:2012tf]
[13-1256]
Non-linear evolution of the cosmic neutrino background, Francisco Villaescusa-Navarro, Simeon Bird, Carlos Pena-Garay, Matteo Viel, JCAP 1303 (2013) 019, arXiv:1212.4855.
[Villaescusa-Navarro:2012ilf]
[13-1257]
Dark radiation from particle decay: cosmological constraints and opportunities, Jasper Hasenkamp, Jorn Kersten, JCAP 1308 (2013) 024, arXiv:1212.4160.
[Hasenkamp:2012ii]
[13-1258]
Limits in late time conversion of cold dark matter into hot dark matter, M. Motta, D. Boriero, P. C. de Holanda, JCAP 1306 (2013) 006, arXiv:1212.3792.
[Motta:2012ax]
[13-1259]
Neutrino physics from future weak lensing surveys, R. Ali Vanderveld, Wayne Hu, Phys. Rev. D87 (2013) 063510, arXiv:1212.3608.
[Vanderveld:2012yp]
[13-1260]
Sterile Neutrinos and Light Dark Matter Save Each Other, Chiu Man Ho, Robert J. Scherrer, Phys. Rev. D87 (2013) 065016, arXiv:1212.1689.
[Ho:2012br]
[13-1261]
Dark Radiation and Decaying Matter, M. C. Gonzalez-Garcia, V. Niro, Jordi Salvado, JHEP 1304 (2013) 052, arXiv:1212.1472.
[Gonzalez-Garcia:2012djt]
[13-1262]
Constraints on Dark Energy state equation with varying pivoting redshift, Dario Scovacricchi, Silvio A. Bonometto, Marino Mezzetti, Giuseppe La Vacca, New Astron. 26 (2014) 106, arXiv:1211.7315.
[Scovacricchi:2012fre]
[13-1263]
Does the CMB prefer a leptonic Universe?, Dominik J. Schwarz, Maik Stuke, New J. Phys. 15 (2013) 033021, arXiv:1211.6721.
[Schwarz:2012yw]
[13-1264]
Neutrino Lump Fluid in Growing Neutrino Quintessence, Youness Ayaita, Maik Weber, Christof Wetterich, Phys. Rev. D87 (2013) 043519, arXiv:1211.6589.
[Ayaita:2012xm]
[13-1265]
CMB Maximum temperature asymmetry Axis: Alignment with other cosmic asymmetries, Antonio Mariano, Leandros Perivolaropoulos, Phys. Rev. D 87 (2013) 043511, arXiv:1211.5915.
[Mariano:2012ia]
[13-1266]
BBN with light dark matter, Zurab Berezhiani, Aleksander Dolgov, Igor Tkachev, JCAP 1302 (2013) 010, arXiv:1211.4937.
[Berezhiani:2012ru]
[13-1267]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: weighing the neutrino mass using the galaxy power spectrum of the CMASS sample, Gong-Bo Zhao et al., Mon.Not.Roy.Astron.Soc. 436 (2013) 2038-2053, arXiv:1211.3741.
[Zhao:2012xw]
[13-1268]
Testing standard and non-standard neutrino physics with cosmological data, Elena Giusarma, Roland de Putter, Olga Mena, Phys. Rev. D87 (2013) 043515, arXiv:1211.2154.
[Giusarma:2012ph]
[13-1269]
Right-Handed Neutrinos as the Dark Radiation: Status and Forecasts for the LHC, Luis A. Anchordoqui, Haim Goldberg, Gary Steigman, Phys. Lett. B718 (2013) 1162-1165, arXiv:1211.0186.
[Anchordoqui:2012qu]
[13-1270]
EITHER keV sterile neutrinos OR quasi-degenerate active neutrinos, Alexander Merle, Phys. Rev. D86 (2012) 121701, arXiv:1210.6036.
[Merle:2012xq]
[13-1271]
Degeneracies in parametrized modified gravity models, Alireza Hojjati, JCAP 1301 (2013) 009, arXiv:1210.3903.
[Hojjati:2012ci]
[13-1272]
Neutrino masses and cosmological parameters from a Euclid-like survey: Markov Chain Monte Carlo forecasts including theoretical errors, Benjamin Audren, Julien Lesgourgues, Simeon Bird, Martin G. Haehnelt, Matteo Viel, JCAP 1301 (2013) 026, arXiv:1210.2194.
[Audren:2012vy]
[13-1273]
Observational constraints on cosmic neutrinos and dark energy revisited, Xin Wang et al., JCAP 1211 (2012) 018, arXiv:1210.2136.
[Wang:2012vh]
[13-1274]
Simultaneous constraints on the number and mass of relativistic species, Signe Riemer-Sorensen, David Parkinson, Tamara Davis, Chris Blake, Astrophys. J. 763 (2013) 89, arXiv:1210.2131.
[Riemer-Sorensen:2012pet]
[13-1275]
Impacts on Cosmological Constraints from Degeneracies, Hong Li, Jun-Qing Xia, JCAP 1211 (2012) 039, arXiv:1210.2037.
[Li:2012ug]
[13-1276]
Cosmic Dark Energy Emerging from Gravitationally Effective Vacuum Fluctuations, Bruno M. Deiss, arXiv:1209.5386, 2012.
[Deiss:2012ac]
[13-1277]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: constraints on the time variation of fundamental constants from the large-scale two-point correlation function, Claudia G. Scoccola et al., Mon.Not.Roy.Astron.Soc. 434 (2013) 1792, arXiv:1209.1394.
[Scoccola:2012ny]
[13-1278]
An efficient implementation of massive neutrinos in non-linear structure formation simulations, Yacine Ali-Haimoud, Simeon Bird, Mon.Not.Roy.Astron.Soc. 428 (2012) 3375-3389, arXiv:1209.0461.
[Ali-Haimoud:2012fzp]
[13-1279]
Dark Matter, Baryogenesis and Neutrino Oscillations from Right Handed Neutrinos, Laurent Canetti, Marco Drewes, Tibor Frossard, Mikhail Shaposhnikov, Phys. Rev. D87 (2013) 093006, arXiv:1208.4607.
[Canetti:2012kh]
[13-1280]
Are Light Sterile Neutrinos Preferred or Disfavored by Cosmology?, Shahab Joudaki, Kevork N. Abazajian, Manoj Kaplinghat, Phys. Rev. D87 (2013) 065003, arXiv:1208.4354.
[Joudaki:2012uk]
[13-1281]
Limits on MeV Dark Matter from the Effective Number of Neutrinos, Chiu Man Ho, Robert J. Scherrer, Phys. Rev. D87 (2013) 023505, arXiv:1208.4347.
[Ho:2012ug]
[13-1282]
Dark radiation and small-scale structure problems with decaying particles, Kiwoon Choi, Ki-Young Choi, Chang Sub Shin, Phys. Rev. D86 (2012) 083529, arXiv:1208.2496.
[Choi:2012zna]
[13-1283]
Neutrino generated dynamical dark energy with no dark energy field, E.I. Guendelman, A.B. Kaganovich, Phys. Rev. D87 (2013) 044021, arXiv:1208.2132.
[Guendelman:2012vc]
[13-1284]
Holographic dark energy in a Universe with spatial curvature and massive neutrinos: a full Markov Chain Monte Carlo exploration, Shuang Wang, Yun-He Li, Xiao-Dong Li, Xin Zhang, JCAP 1302 (2013) 033, arXiv:1207.6679.
[Li:2012spm]
[13-1285]
Testing 3+1 and 3+2 neutrino mass models with cosmology and short baseline experiments, Maria Archidiacono, Nicolao Fornengo, Carlo Giunti, Alessandro Melchiorri, Phys. Rev. D86 (2012) 065028, arXiv:1207.6515.
[Archidiacono:2012ri]
[13-1286]
Correlations between cosmic strings and extra relativistic species, Joanes Lizarraga, Irene Sendra, Jon Urrestilla, Phys. Rev. D86 (2012) 123014, arXiv:1207.6266.
[Lizarraga:2012mq]
[13-1287]
Constraints on coupled dark energy using CMB data from WMAP and SPT, Valeria Pettorino, Luca Amendola, Carlo Baccigalupi, Claudia Quercellini, Phys. Rev. D86 (2012) 103507, arXiv:1207.3293.
[Pettorino:2012ts]
[13-1288]
Cosmological Implications of the CMB Large-scale Structure, Fulvio Melia, Astron.J. 149 (2015) 6, arXiv:1207.0734.
[Melia:2012kc]
[13-1289]
Increasing Neff with particles in thermal equilibrium with neutrinos, Celine Boehm, Matthew J. Dolan, Christopher McCabe, JCAP 1212 (2012) 027, arXiv:1207.0497.
[Boehm:2012gr]
[13-1290]
Angular Correlation of the CMB in the R_h=ct Universe, Fulvio Melia, Astron.Astrophys. 561 (2014) A80, arXiv:1207.0015.
[Melia:2012xj]
[13-1291]
Cosmological Constraints from a Combination of Galaxy Clustering $\text{\&}$ Lensing - II. Fisher Matrix Analysis, Surhud More et al., Mon.Not.Roy.Astron.Soc. 430 (2013) 747-766, arXiv:1207.0004.
[More:2012xa]
[13-1292]
Gamma Ray Bursts Scaling Relations to test cosmological models, S. Capozziello et al., arXiv:1206.6700, 2012.
[Capozziello:2012fp]
[13-1293]
Cosmological constraints on Lorentz invariance violation in the neutrino sector, Zong-Kuan Guo, Qing-Guo Huang, Rong-Gen Cai, Yuan-Zhong Zhang, Phys. Rev. D86 (2012) 065004, arXiv:1206.5588.
[Guo:2012mv]
[13-1294]
Cosmic Microwave Background constraints of decaying dark matter particle properties, S. Yeung, M. H. Chan, M.-C. Chu, Astrophys. J. 755 (2012) 108, arXiv:1206.4114.
[Yeung:2012ya]
[13-1295]
The impact of a new median statistics $H_0$ prior on the evidence for dark radiation, Erminia Calabrese, Maria Archidiacono, Alessandro Melchiorri, Bharat Ratra, Phys. Rev. D86 (2012) 043520, arXiv:1205.6753.
[Calabrese:2012vf]
[13-1296]
Probing the neutrino mass hierarchy with CMB weak lensing, Alex C. Hall, Anthony Challinor, Mon.Not.Roy.Astron.Soc. 425 (2012) 1170-1184, arXiv:1205.6172.
[Hall:2012kg]
[13-1297]
Mass-Varying Neutrino Cosmologies in light of CMB and Weak Lensing measurements, Giuseppe La Vacca, David F. Mota, Astron.Astrophys. 560 (2013) A53, arXiv:1205.6059.
[LaVacca:2012ir]
[13-1298]
Cosmological Constraints from Moments of the Thermal Sunyaev-Zel'dovich Effect, J. Colin Hill, Blake D. Sherwin, Phys. Rev. D87 (2013) 023527, arXiv:1205.5794.
[Hill:2012ec]
[13-1299]
Determination of neutrino mass hierarchy by 21 cm line and CMB B-mode polarization observations, Yoshihiko Oyama, Akie Shimizu, Kazunori Kohri, Phys. Lett. B718 (2013) 1186-1193, arXiv:1205.5223.
[Oyama:2012tq]
[13-1300]
Confronting MOND and TeVeS with strong gravitational lensing over galactic scales: an extended survey, Ignacio Ferreras, Nick Mavromatos, Mairi Sakellariadou, Muhammad Furqaan Yusaf, Phys. Rev. D86 (2012) 083507, arXiv:1205.4880.
[Ferreras:2012fg]
[13-1301]
On the Validity of Cosmological Fisher Matrix Forecasts, Laura Wolz, Martin Kilbinger, Jochen Weller, Tommaso Giannantonio, JCAP 1209 (2012) 009, arXiv:1205.3984.
[Wolz:2012sr]
[13-1302]
Origin of Delta $N_{eff}$ as a Result of an Interaction between Dark Radiation and Dark Matter, Ole Eggers Bjaelde, Subinoy Das, Adam Moss, JCAP 1210 (2012) 017, arXiv:1205.0553.
[Bjaelde:2012wi]
[13-1303]
Non-Gaussian structure of the lensed CMB power spectra covariance matrix, Aurelien Benoit-Levy, Kendrick M. Smith, Wayne Hu, Phys. Rev. D86 (2012) 123008, arXiv:1205.0474.
[Benoit-Levy:2012dqi]
[13-1304]
Isocurvature modes in the CMB bispectrum, David Langlois, Bartjan van Tent, JCAP 1207 (2012) 040, arXiv:1204.5042.
[Langlois:2012tm]
[13-1305]
Cosmology based on f(R) Gravity admits 1 eV Sterile Neutrinos, Hayato Motohashi, Alexei A. Starobinsky, Jun'ichi Yokoyama, Phys. Rev. Lett. 110 (2013) 121302, arXiv:1203.6828.
[Motohashi:2012wc]
[13-1306]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the large-scale two-point correlation function, Ariel G. Sanchez et al., Mon.Not.Roy.Astron.Soc. 425 (2012) 415, arXiv:1203.6616.
[BOSS:2012acv]
[13-1307]
Galaxy clusters discovered via the Sunyaev-Zel'dovich effect in the first 720 square degrees of the South Pole Telescope survey, C. L. Reichardt et al., Astrophys. J. 763 (2013) 127, arXiv:1203.5775.
[Reichardt:2012yj]
[13-1308]
Effects of the neutrino mass splitting on the non-linear matter power spectrum, Christian Wagner, Licia Verde, Raul Jimenez, Astrophys. J. Lett. 752 (2012) L31, arXiv:1203.5342.
[Wagner:2012sw]
[13-1309]
Constraints on Massive Neutrinos from the CFHTLS Angular Power Spectrum, Jun-Qing Xia et al., JCAP 1206 (2012) 010, arXiv:1203.5105.
[Xia:2012na]
[13-1310]
Improved limits on short-wavelength gravitational waves from the cosmic microwave background, Irene Sendra, Tristan L. Smith, Phys. Rev. D85 (2012) 123002, arXiv:1203.4232.
[Sendra:2012wh]
[13-1311]
The Sloan Digital Sky Survey Quasar Lens Search. VI. Constraints on Dark Energy and the Evolution of Massive Galaxies, Masamune Oguri, Naohisa Inada, Michael A. Strauss, Christopher S. Kochanek, Issha Kayo et al. (SDSS), Astron. J. 143 (2012) 120, arXiv:1203.1088.
[SDSS:2012eft]
[13-1312]
Spontaneous B-L Breaking as the Origin of the Hot Early Universe, Wilfried Buchmuller, Valerie Domcke, Kai Schmitz, Nucl. Phys. B862 (2012) 587-632, arXiv:1202.6679.
[Buchmuller:2012wn]
[13-1313]
Electroweak baryogenesis window in non standard cosmologies, Gabriela Barenboim, Javier Rasero, JHEP 07 (2012) 028, arXiv:1202.6070.
[Barenboim:2012nh]
[13-1314]
Cosmic Tides, Ue-Li Pen, Ravi Sheth, J. Harnois-Deraps, Xuelei Chen, Zhigang Li, arXiv:1202.5804, 2012.
[Pen:2012ft]
[13-1315]
Non-Gaussian isocurvature perturbations in dark radiation, Etsuko Kawakami, Masahiro Kawasaki, Koichi Miyamoto, Kazunori Nakayama, Toyokazu Sekiguchi, JCAP 1207 (2012) 037, arXiv:1202.4890.
[Kawakami:2012ke]
[13-1316]
Constraining dynamical dark energy with a divergence-free parametrization in the presence of spatial curvature and massive neutrinos, Hong Li, Xin Zhang, Phys. Lett. B713 (2012) 160-164, arXiv:1202.4071.
[Li:2012vn]
[13-1317]
Cosmological parameters constraints from galaxy cluster mass function measurements in combination with other cosmological data, R.A. Burenin, A.A. Vikhlinin, Astron.Lett. 38 (2012) 347, arXiv:1202.2889.
[Burenin:2012uy]
[13-1318]
Restrictions on the lifetime of sterile neutrinos from primordial nucleosynthesis, Oleg Ruchayskiy, Artem Ivashko, JCAP 1210 (2012) 014, arXiv:1202.2841.
[Ruchayskiy:2012si]
[13-1319]
A 2 per cent distance to $z$=0.35 by reconstructing baryon acoustic oscillations - I. Methods and application to the Sloan Digital Sky Survey, Nikhil Padmanabhan, Xiaoying Xu, Daniel J. Eisenstein, Richard Scalzo, Antonio J. Cuesta et al., Mon.Not.Roy.Astron.Soc. 427 (2012) 2132-2145, arXiv:1202.0090.
[Padmanabhan:2012hf]
[13-1320]
Constraints on Neutrino Mass and Light Degrees of Freedom in Extended Cosmological Parameter Spaces, Shahab Joudaki, Phys. Rev. D87 (2013) 083523, arXiv:1202.0005.
[Joudaki:2012fx]
[13-1321]
New constraints on cosmological parameters and neutrino properties using the expansion rate of the Universe to z~1.75, Michele Moresco, Licia Verde, Lucia Pozzetti, Raul Jimenez, Andrea Cimatti, JCAP 1207 (2012) 053, arXiv:1201.6658.
[Moresco:2012by]
[13-1322]
CMB power spectrum parameter degeneracies in the era of precision cosmology, Cullan Howlett, Antony Lewis, Alex Hall, Anthony Challinor, JCAP JCAP04 (2012) 027, arXiv:1201.3654.
[Howlett:2012mh]
[13-1323]
New Neutrino Mass Bounds from Sloan Digital Sky Survey III Data Release 8 Photometric Luminous Galaxies, Roland de Putter et al., Astrophys. J. 761 (2012) 12, arXiv:1201.1909.
[dePutter:2012sh]
[13-1324]
Constraints on the Neutrino Mass from SZ Surveys, M. Shimon, Y. Rephaeli, N. Itzhaki, Mon.Not.Roy.Astron.Soc. 427 (2012) 828, arXiv:1201.1803.
[Shimon:2012pc]
[13-1325]
Primordial power spectrum versus extension parameters beyond the standard model, Zong-Kuan Guo, Yuan-Zhong Zhang, Phys. Rev. D85 (2012) 103519, arXiv:1201.1538.
[Guo:2012jn]
[13-1326]
Effect of Massive Neutrino on Large Scale Structures, P. R. Dhungel, S. K. Sharma, U. Khanal, arXiv:1201.0151, 2012.
[Dhungel:2012pj]
[13-1327]
Leptonic asymmetry of the sterile neutrino hadronic decays in the nuMSM, Volodymyr M. Gorkavenko, Igor Rudenok, Stanislav I. Vilchynskiy, Ukr. J. Phys., Vol. 58, No. 9 (2013) 811-826, arXiv:1201.0003.
[Gorkavenko:2012ksy]
[13-1328]
Kinetic Equations for Baryogenesis via Sterile Neutrino Oscillation, Takehiko Asaka, Shintaro Eijima, Hiroyuki Ishida, JCAP 1202 (2012) 021, arXiv:1112.5565.
[Asaka:2011wq]
[13-1329]
Measuring the neutrino mass from future wide galaxy cluster catalogues, Carmelita Carbone, Cosimo Fedeli, Lauro Moscardini, Andrea Cimatti, JCAP 1203 (2012) 023, arXiv:1112.4810.
[Carbone:2011by]
[13-1330]
Structure Formation and Backreaction in Growing Neutrino Quintessence, Youness Ayaita, Maik Weber, Christof Wetterich, Phys. Rev. D85 (2012) 123010, arXiv:1112.4762.
[Ayaita:2011ay]
[13-1331]
Constraints on massive sterile plus active neutrino species in non minimal cosmologies, Elena Giusarma, Maria Archidiacono, Roland de Putter, Alessandro Melchiorri, Olga Mena, Phys. Rev. D85 (2012) 083522, arXiv:1112.4661.
[Giusarma:2011zq]
[13-1332]
The Impact of Assuming Flatness in the Determination of Neutrino Properties from Cosmological Data, Aaron Smith et al., Phys. Rev. D85 (2012) 123521, arXiv:1112.3006.
[Smith:2011ab]
[13-1333]
The Real Problem with MOND, Scott Dodelson, Int. J. Mod. Phys. D20 (2011) 2749-2753, arXiv:1112.1320.
[Moffat:2011sh]
[13-1334]
Electroweak scale invariant models with small cosmological constant, Robert Foot, Archil Kobakhidze, Int.J.Mod.Phys. A30 (2015) 1550126, arXiv:1112.0607.
[Foot:2011et]
[13-1335]
Neutrino Cosmology after WMAP and LHC7, Luis Alfredo Anchordoqui, Haim Goldberg, Phys. Rev. Lett. 108 (2012) 081805, arXiv:1111.7264.
[Anchordoqui:2011nh]
[13-1336]
Non-Thermal Dark Matter Mimicing An Additional Neutrino Species In The Early Universe, Dan Hooper, Farinaldo S. Queiroz, Nickolay Y. Gnedin, Phys. Rev. D85 (2012) 063513, arXiv:1111.6599.
[Hooper:2011aj]
[13-1337]
Future constraints on neutrino isocurvature perturbations in the curvaton scenario, Eleonora Di Valentino, Massimiliano Lattanzi, Gianpiero Mangano, Alessandro Melchiorri, Pasquale D. Serpico, Phys. Rev. D85 (2012) 043511, arXiv:1111.3810.
[DiValentino:2011sv]
[13-1338]
Electron-positron Annihilation Lines and Decaying Sterile Neutrinos, M. H. Chan, M.-C. Chu, Astrophys. Space Sci. 338 (2012) 313-317, arXiv:1111.3216.
[Chan:2011yz]
[13-1339]
Dark Radiation from Particle Decays during Big Bang Nucleosynthesis, Justin L. Menestrina, Robert J. Scherrer, Phys. Rev. D85 (2012) 047301, arXiv:1111.0605.
[Menestrina:2011mz]
[13-1340]
The Minimal Dimensionless Standard Model (MDSM) and its Cosmology, Latham Boyle, Shane Farnsworth, Joseph Fitzgerald, Maitagorri Schade, arXiv:1111.0273, 2011.
[Boyle:2011fq]
[13-1341]
Heavy sterile neutrinos, entropy and relativistic energy production, and the relic neutrino background, George M. Fuller, Chad T. Kishimoto, Alexander Kusenko, arXiv:1110.6479, 2011.
[Fuller:2011qy]
[13-1342]
Sterile Neutrinos for Warm Dark Matter and the Reactor Anomaly in Flavor Symmetry Models, James Barry, Werner Rodejohann, He Zhang, JCAP 1201 (2012) 052, arXiv:1110.6382.
[Barry:2011fp]
[13-1343]
The dark-matter world: Are there dark-matter galaxies?, W-Y. Pauchy Hwang, Int. J. Mod. Phys. Conf. Ser. 10 (2012) 1-12, arXiv:1110.5718.
[Hwang:2012xp]
[13-1344]
Updated BBN bounds on the cosmological lepton asymmetry for non-zero theta13, Gianpiero Mangano, Gennaro Miele, Sergio Pastor, Ofelia Pisanti, Srdjan Sarikas, Phys. Lett. B708 (2012) 1-5, arXiv:1110.4335.
[Mangano:2011ip]
[13-1345]
Evidence for extra radiation? Profile likelihood versus Bayesian posterior, Jan Hamann, JCAP 1203 (2012) 021, arXiv:1110.4271.
[Hamann:2011hu]
[13-1346]
BAMBI: blind accelerated multimodal Bayesian inference, Philip Graff, Farhan Feroz, Michael P. Hobson, Anthony Lasenby, Mon. Not. Roy. Astron. Soc. 421 (2012) 169-180, arXiv:1110.2997.
[Graff:2011gv]
[13-1347]
Probing the fourth generation Majorana neutrino dark matter, Yu-Feng Zhou, Phys. Rev. D85 (2014) 053005, arXiv:1110.2930.
[Bao:2013zua]
[13-1348]
Neutrinos in Non-linear Structure Formation - a Simple SPH Approach, Steen Hannestad, Troels Haugbolle, Christian Schultz, JCAP 1202 (2012) 045, arXiv:1110.1257.
[Hannestad:2011td]
[13-1349]
Baryon asymmetry of the universe and new neutrino states, Sebastian Hollenberg, Heinrich Pas, Dario Schalla, arXiv:1110.0948, 2011.
[Hollenberg:2011kq]
[13-1350]
Ultra-light Axions: Degeneracies with Massive Neutrinos and Forecasts for Future Cosmological Observations, David J. E. Marsh, Edward Macaulay, Maxime Trebitsch, Pedro G. Ferreira, Phys. Rev. D85 (2012) 103514, arXiv:1110.0502.
[Marsh:2011bf]
[13-1351]
The CoDECS project: a publicly available suite of cosmological N-body simulations for interacting dark energy models, Marco Baldi, Mon. Not. Roy. Astron. Soc. 422 (2013) 1028-1044, arXiv:1109.5695.
[Bolotin:2013jpa]
[13-1352]
The R_h = ct Universe, Fulvio Melia, Andrew Shevchuk, Mon. Not. Roy. Astron. Soc. 419 (2012) 2579-2586, arXiv:1109.5189.
[Melia:2011fj]
[13-1353]
A new cosmological distance measure using AGN, D. Watson, K. D. Denney, M. Vestergaard, T. M. Davis, Astrophys. J. 740 (2011) L49, arXiv:1109.4632.
[Watson:2011um]
[13-1354]
Massive Neutrinos and the Non-linear Matter Power Spectrum, Simeon Bird, Matteo Viel, Martin G. Haehnelt, Mon. Not. Roy. Astron. Soc. 420 (2012) 2551-2561, arXiv:1109.4416.
[Bird:2011rb]
[13-1355]
CosmoTransitions: Computing Cosmological Phase Transition Temperatures and Bubble Profiles with Multiple Fields, Carroll L. Wainwright, Comput. Phys. Commun. 183 (2012) 2006-2013, arXiv:1109.4189.
[Wainwright:2011kj]
[13-1356]
The Case for Dark Radiation, Maria Archidiacono, Erminia Calabrese, Alessandro Melchiorri, Phys. Rev. D84 (2011) 123008, arXiv:1109.2767.
[Archidiacono:2011gq]
[13-1357]
Non-Gaussianity in the Cosmic Microwave Background Anisotropies at Recombination in the Squeezed limit, N. Bartolo, S. Matarrese, A. Riotto, JCAP 1202 (2012) 017, arXiv:1109.2043.
[Bartolo:2011wb]
[13-1358]
The impact of massive neutrinos on the abundance of massive clusters, Kiyotomo Ichiki, Masahiro Takada, Phys. Rev. D85 (2012) 063521, arXiv:1108.4688.
[Ichiki:2011ue]
[13-1359]
Sterile neutrinos with eV masses in cosmology - how disfavoured exactly?, Jan Hamann, Steen Hannestad, Georg G. Raffelt, Yvonne Y.Y. Wong, JCAP 1109 (2011) 034, arXiv:1108.4136.
[Hamann:2011ge]
[13-1360]
Inference of the cosmological parameters from gravitational waves: application to second generation interferometers, Walter Del Pozzo, Phys. Rev. D86 (2012) 043011, arXiv:1108.1317.
[DelPozzo:2011yh]
[13-1361]
Isocurvature perturbations in extra radiation, Masahiro Kawasaki, Koichi Miyamoto, Kazunori Nakayama, Toyokazu Sekiguchi, JCAP 1202 (2012) 022, arXiv:1107.4962.
[Kawasaki:2011rc]
[13-1362]
Cancelling out systematic uncertainties, Jorge Norena, Licia Verde, Raul Jimenez, Carlos Pena-Garay, Cesar Gomez, Mon. Not. Roy. Astron. Soc. 419 (2012) 1040, arXiv:1107.0729.
[Norena:2011sh]
[13-1363]
Are priors responsible for cosmology favoring additional neutrino species?, Alma X. Gonzalez-Morales, Robert Poltis, Blake D. Sherwin, Licia Verde, arXiv:1106.5052, 2011.
[Gonzalez-Morales:2011tyq]
[13-1364]
Testing gravity with CAMB and CosmoMC, Alireza Hojjati, Levon Pogosian, Gong-Bo Zhao, JCAP 1108 (2011) 005, arXiv:1106.4543.
[Hojjati:2011ix]
[13-1365]
Cosmic Mach Number as A Sensitive Test of the Growth of Structure, Yin-Zhe Ma, Jeremiah P. Ostriker, Gong-Bo Zhao, JCAP 1206 (2012) 026, arXiv:1106.3327.
[Ma:2011hf]
[13-1366]
Neutrino Signatures on the High Transmission Regions of the Lyman-alpha Forest, Francisco Villaescusa-Navarro, Mark Vogelsberger, Matteo Viel, Abraham Loeb, Mon.Not.Roy.Astron.Soc. 431 (2013) 3670, arXiv:1106.2543.
[Villaescusa-Navarro:2011vut]
[13-1367]
Oscillating nonlinear large scale structure in growing neutrino quintessence, Marco Baldi, Valeria Pettorino, Luca Amendola, Christof Wetterich, Mon.Not.Roy.Astron.Soc. 418 (2011) 214, arXiv:1106.2161.
[Baldi:2011es]
[13-1368]
Using galaxy-galaxy weak lensing measurements to correct the Finger-of-God, Chiaki Hikage, Masahiro Takada, David N. Spergel, Mon. Not. Roy. Astron. Soc. 419 (2012) 3457-3481, arXiv:1106.1640.
[Hikage:2011ut]
[13-1369]
AlterBBN: A program for calculating the BBN abundances of the elements in alternative cosmologies, Alexandre Arbey, Comput. Phys. Commun. 183 (2012) 1822-1831, arXiv:1106.1363.
[Arbey:2011nf]
[13-1370]
Resonant Flavor Oscillations in Electroweak Baryogenesis, Vincenzo Cirigliano, Christopher Lee, Sean Tulin, Phys. Rev. D84 (2011) 056006, arXiv:1106.0747.
[Cirigliano:2011di]
[13-1371]
Dark Energy and Neutrino Masses from Future Measurements of the Expansion History and Growth of Structure, Shahab Joudaki, Manoj Kaplinghat, Phys. Rev. D86 (2012) 023526, arXiv:1106.0299.
[Joudaki:2011nw]
[13-1372]
Median statistics and the Hubble constant, Gang Chen, Bharat Ratra, Publ.Astron.Soc.Pac. 123 (2011) 1127-1132, arXiv:1105.5206.
[Chen:2011ab]
[13-1373]
Big-bang nucleosynthesis with a long-lived charged massive particle including $^4$He spallation processes, Toshifumi Jittoh et al., Phys. Rev. D84 (2011) 035008, arXiv:1105.1431.
[Jittoh:2011ni]
[13-1374]
The abundance of galaxy clusters in MOND: Cosmological simulations with massive neutrinos, Garry W. Angus, Antonaldo Diaferio, Mon.Not.Roy.Astron.Soc. 417 (2011) 941, arXiv:1104.5040.
[Angus:2011hx]
[13-1375]
Neutrino Halos in Clusters of Galaxies and their Weak Lensing Signature, Francisco Villaescusa-Navarro, Jordi Miralda-Escude, Carlos Pena-Garay, Vicent Quilis, JCAP 1106 (2011) 027, arXiv:1104.4770.
[Villaescusa-Navarro:2011loy]
[13-1376]
Weighing neutrinos using high redshift galaxy luminosity functions, Charles Jose, Saumyadip Samui, Kandaswamy Subramanian, Raghunathan Srianand, Phys. Rev. D83 (2011) 123518, arXiv:1104.3714.
[Jose:2011gp]
[13-1377]
Cosmological extrapolation of MOND, V.V.Kiselev, S.A.Timofeev, Class. Quant. Grav. 29 (2012) 065015, arXiv:1104.3654.
[Kiselev:2011fs]
[13-1378]
The Cosmic Linear Anisotropy Solving System (CLASS) IV: efficient implementation of non-cold relics, Julien Lesgourgues, Thomas Tram, JCAP 1109 (2011) 032, arXiv:1104.2935.
[Lesgourgues:2011rh]
[13-1379]
How Additional Massless Neutrinos Affect the Cosmic Microwave Background Damping Tail, Zhen Hou, Ryan Keisler, Lloyd Knox, Marius Millea, Christian Reichardt, Phys. Rev. D87 (2013) 083008, arXiv:1104.2333.
[Hou:2011ec]
[13-1380]
Bino Dark Matter and Big Bang Nucleosynthesis in the Constrained E6SSM with Massless Inert Singlinos, Jonathan P. Hall, Stephen F. King, JHEP 06 (2011) 006, arXiv:1104.2259.
[Hall:2011zq]
[13-1381]
Cosmon as the Modulon: Non-Gaussianity from Dark Energy, Chian-Shu Chen, Chia-Min Lin, Phys. Lett. B705 (2011) 161-164, arXiv:1104.0982.
[Chen:2011sja]
[13-1382]
Reactor sterile neutrinos, dark energy and the age of the universe, Jostein R. Kristiansen, Oystein Elgaroy, Astron.Astrophys. 532 (2011) A67, arXiv:1104.0704.
[Kristiansen:2011mp]
[13-1383]
Prediction for the neutrino mass in the KATRIN experiment from lensing by the galaxy cluster A1689, Theo M. Nieuwenhuizen, Andrea Morandi, J.Cosmol. 15 (2011) 6005, arXiv:1103.6270.
[Nieuwenhuizen:2011yg]
[13-1384]
Precision cosmology and 7Li data, G. La Vacca, A. Valotti, S. A. Bonometto, arXiv:1103.5401, 2011.
[LaVacca:2011hu]
[13-1385]
Limits on Dark Radiation, Early Dark Energy, and Relativistic Degrees of Freedom, Erminia Calabrese, Dragan Huterer, Eric V. Linder, Alessandro Melchiorri, Luca Pagano, Phys. Rev. D83 (2011) 123504, arXiv:1103.4132.
[Calabrese:2011hg]
[13-1386]
Cosmic microwave background bispectrum of tensor passive modes induced from primordial magnetic fields, Maresuke Shiraishi, Daisuke Nitta, Shuichiro Yokoyama, Kiyotomo Ichiki, Keitaro Takahashi, Phys. Rev. D83 (2011) 123003, arXiv:1103.4103.
[Shiraishi:2011dh]
[13-1387]
A robust upper limit on $N_{\rm eff}$ from BBN, circa 2011, Gianpiero Mangano, Pasquale D. Serpico, Phys. Lett. B701 (2011) 296-299, arXiv:1103.1261.
[Mangano:2011ar]
[13-1388]
Neutrino masses, cosmological bound and four zero Yukawa textures, Biswajit Adhikary, Ambar Ghosal, Probir Roy, Mod. Phys. Lett. A,2 A (2011) 2427, arXiv:1103.0665.
[Adhikary:2011pv]
[13-1389]
Constraints on massive sterile neutrino species from current and future cosmological data, Elena Giusarma et al., Phys. Rev. D83 (2011) 115023, arXiv:1102.4774.
[Giusarma:2011ex]
[13-1390]
Non-Minimal B-L Inflation with Observable Gravity Waves, Nobuchika Okada, Mansoor Ur Rehman, Qaisar Shafi, Phys. Lett. B701 (2011) 520-525, arXiv:1102.4747.
[Okada:2011en]
[13-1391]
Reproducing neutrino effects on the matter power spectrum through a degenerate Fermi gas approach, Eder L. D. Perico, Alex E. Bernardini, JCAP JCAP06 (2011) 001, arXiv:1102.3996.
[Perico:2011qh]
[13-1392]
Precise cosmological parameter estimation using CosmoRec, J. R. Shaw, J. Chluba, Mon.Not.Roy.Astron.Soc. 415 (2011) 1343, arXiv:1102.3683.
[Shaw:2011ez]
[13-1393]
Mass freezing in growing neutrino quintessence, Nelson Nunes, Lily Schrempp, Christof Wetterich, Phys. Rev. D83 (2011) 083523, arXiv:1102.1664.
[Nunes:2011mw]
[13-1394]
Neutrino Oscillations form Cosmic Sources: a Nu Window to Cosmology, D.J. Wagner, T.J. Weiler, Mod. Phys. Lett. A12 (1997) 2497, arXiv:1101.5677.
[Wagner:1997vn]
[13-1395]
Anomaly Mediation and Cosmology, A. Basboll, M. Hindmarsh, D.R.T. Jones, JHEP 06 (2011) 115, arXiv:1101.5622.
[Basboll:2011mh]
[13-1396]
BBN with Late Electron-Sterile Neutrino Oscillations - The Finest Leptometer, D. Kirilova, JCAP 1206 (2012) 007, arXiv:1101.4177.
[Kirilova:2011an]
[13-1397]
Evolution Strategies for Cosmology: A Comparison of Nested Sampling Methods, M. Axiak, T. D. Kitching, J. I. van Hemert, arXiv:1101.0717, 2011.
[Axiak:2011wp]
[13-1398]
Solar neutrino spectrum, sterile neutrinos and additional radiation in the Universe, P. C. de Holanda, A. Yu. Smirnov, Phys. Rev. D83 (2011) 113011, arXiv:1012.5627.
[deHolanda:2010am]
[13-1399]
Neutrino constraints from future nearly all-sky spectroscopic galaxy surveys, Carmelita Carbone, Licia Verde, Yun Wang, Andrea Cimatti, JCAP 1103 (2011) 030, arXiv:1012.2868.
[Carbone:2010ik]
[13-1400]
Baryon Asymmetry of the Universe without Boltzmann or Kadanoff-Baym, J. -S. Gagnon, M. Shaposhnikov, Phys. Rev. D83 (2011) 065021, arXiv:1012.1126.
[Gagnon:2010kt]
[13-1401]
Destruction of $^7\text{Be}$ in big bang nucleosynthesis via long-lived sub-strongly interacting massive particles as a solution to the Li problem, Masahiro Kawasaki, Motohiko Kusakabe, Phys. Rev. D83 (2011) 055011, arXiv:1012.0435.
[Kawasaki:2010yh]
[13-1402]
Instabilities in neutrino systems induced by interactions with scalars, R. F. Sawyer, Phys. Rev. D83 (2011) 065023, arXiv:1011.4585.
[Sawyer:2010jk]
[13-1403]
Cosmological bounds on sub-MeV mass axions, Davide Cadamuro, Steen Hannestad, Georg Raffelt, Javier Redondo, JCAP 1102 (2011) 003, arXiv:1011.3694.
[Cadamuro:2010cz]
[13-1404]
Dark Energy as Double N-Flation-Observational Predictions, III J. Richard Gott, Zachary Slepian, Mon. Not. Roy. Astron. Soc. 416 (2011) 907-916, arXiv:1011.2528.
[Gott:2010xw]
[13-1405]
The Measurement of the Hubble Constant $H_0$ in the Solar System, Allen Joel Anderson, arXiv:1011.1944, 2010.
[Anderson:2010cn]
[13-1406]
A refined constrain on lepton number from Big Bang Nucleosynthesis, G. Mangano, G. Miele, S. Pastor, O. Pisanti, S. Sarikas, JCAP JCAP03 (2011) 035, arXiv:1011.0916.
[Mangano:2010ei]
[13-1407]
A geometric solution to the coincidence problem, and the size of the landscape as the origin of hierarchy, Raphael Bousso, Ben Freivogel, Stefan Leichenauer, Vladimir Rosenhaus, Phys. Rev. Lett. 106 (2011) 101301, arXiv:1011.0714.
[Bousso:2010zi]
[13-1408]
ISW-LSS cross-correlation in coupled Dark Energy models with massive neutrinos, Roberto Mainini, David F. Mota, Astrophys. J. 744 (2012) 3, arXiv:1011.0083.
[Mainini:2010ng]
[13-1409]
CMB Neutrino Mass Bounds and Reionization, Maria Archidiacono, Asantha Cooray, Alessandro Melchiorri, Stefania Pandolfi, Phys. Rev. D82 (2010) 087302, arXiv:1010.5757.
[Archidiacono:2010wp]
[13-1410]
Future CMB Constraints on Early, Cold, or Stressed Dark Energy, Erminia Calabrese, Roland de Putter, Dragan Huterer, Eric V. Linder, Alessandro Melchiorri, Phys. Rev. D83 (2011) 023011, arXiv:1010.5612.
[Calabrese:2010uf]
[13-1411]
A possible signature of cosmic neutrino decoupling in the nHz region of the spectrum of primordial gravitational waves, Massimiliano Lattanzi, Riccardo Benini, Giovanni Montani, Class. Quant. Grav. 27 (2010) 194008, arXiv:1010.3849.
[Lattanzi:2010gn]
[13-1412]
Origins of Hidden Sector Dark Matter I: Cosmology, Clifford Cheung, Gilly Elor, Lawrence J. Hall, Piyush Kumar, JHEP 03 (2011) 042, arXiv:1010.0022.
[Cheung:2010gj]
[13-1413]
Signatures of the neutrino thermal history in the spectrum of primordial gravitational waves, Riccardo Benini, Massimiliano Lattanzi, Giovanni Montani, Gen.Rel.Grav. 43 (2011) 945-958, arXiv:1009.6110. 14 pages, 2 figures. To appear in Gen. Rel. Grav.
[Benini:2010zz]
[13-1414]
Neutrinos, WMAP, and BBN, Lawrence M. Krauss, Cecilia Lunardini, Christel Smith, Phys. Rev.D (2010), arXiv:1009.4666.
[Krauss:2010xg]
[13-1415]
Time of primordial Be-7 conversion into Li-7, energy release and doublet of narrow cosmological neutrino lines, Rishi Khatri, Rashid A. Sunyaev, Astron.Lett. 37 (2011) 367, arXiv:1009.3932.
[Khatri:2010ed]
[13-1416]
Probing dark energy and neutrino mass from upcoming lensing experiments of CMB and galaxies, Toshiya Namikawa, Shun Saito, Taruya Atsushi, JCAP 1012 (2010) 027, arXiv:1009.3204.
[Namikawa:2010re]
[13-1417]
Rotation Curve of a Dark Matter Filament, Brian A. Slovick, arXiv:1009.1113, 2010.
[Slovick:2010kb]
[13-1418]
Observational evidence favours a static universe, David F. Crawford, J.Cosmol. 13 (2011) 3875, arXiv:1009.0953.
[Crawford:2010hn]
[13-1419]
Natural Neutrino Dark Energy, Ilya Gurwich, AIP Conf.Proc. 1241 (2010) 905-911, arXiv:1009.0850.
[Gurwich:2010gb]
[13-1420]
Nuclear weak interaction rates in primordial nucleosynthesis, George M. Fuller, Christel J. Smith, Phys. Rev. D82 (2010) 125017, arXiv:1009.0277.
[Fuller:2010un]
[13-1421]
Experimental signatures of cosmological neutrino condensation, Mofazzal Azam, Jitesh R. Bhatt, Utpal Sarkar, Phys. Lett. B697 (2011) 7-10, arXiv:1008.5214.
[Azam:2010kw]
[13-1422]
Limits on the Time Variation of the Fermi Constant G_F Based on Type Ia Supernova Observations, Alejandro Ferrero, Brett Altschul, Phys. Rev. D82 (2010) 123002, arXiv:1008.4769.
[Ferrero:2010ab]
[13-1423]
Equilibrium and stability of neutrino lumps as TOV solutions, Alex E. Bernardini, Gen.Rel.Grav. 43 (2011) 245-260, arXiv:1008.3559.
[Bernardini:2010yg]
[13-1424]
Substructure lensing in galaxy clusters as a constraint on low-mass sterile neutrinos in tensor-vector-scalar theory: The straight arc of Abell 2390, Martin Feix, HongSheng Zhao, Cosimo Fedeli, Jose Luis Garrido Pestana, Henk Hoekstra, Phys. Rev. D82 (2010) 124003, arXiv:1008.1963.
[Feix:2010pn]
[13-1425]
Modified gravity a la Galileon: Late time cosmic acceleration and observational constraints, Amna Ali, Radouane Gannouji, M. Sami, Phys. Rev. D82 (2010) 103015, arXiv:1008.1588.
[Ali:2010gr]
[13-1426]
On variations of the brightness of type Ia supernovae with the age of the host stellar population, Brendan K. Krueger et al., Astrophys. J. 719 (2010) L5-L9, arXiv:1007.0910.
[Krueger:2010sm]
[13-1427]
Cosmology Favoring Extra Radiation and Sub-eV Mass Sterile Neutrinos as an Option, Jan Hamann, Steen Hannestad, Georg G. Raffelt, Irene Tamborra, Yvonne Y.Y. Wong, Phys. Rev. Lett. 105 (2010) 181301, arXiv:1006.5276.
[Hamann:2010bk]
[13-1428]
Neutrino mass constraint with SDSS LRG power spectrum and perturbation theory, Shun Saito, Masahiro Takada, Atsushi Taruya, Phys. Rev. D83 (2011) 043529, arXiv:1006.4845.
[Saito:2010pw]
[13-1429]
Dark energy from Neutrinos and Standard Model Higgs potential, Gaetano Lambiase, Hiranmaya Mishra, Subhendra Mohanty, Astropart. Phys. 35 (2012) 629-633, arXiv:1006.4461.
[Lambiase:2010ic]
[13-1430]
Metastable GeV-scale particles as a solution to the cosmological lithium problem, Maxim Pospelov, Josef Pradler, Phys. Rev. D82 (2010) 103514, arXiv:1006.4172.
[Pospelov:2010cw]
[13-1431]
Merging Rates of the First Objects and the Formation of First Mini-Filaments in Models with Massive Neutrinos, Hyunmi Song, Jounghun Lee, Astrophys. J. 736 (2011) 27, arXiv:1006.4101.
[Song:2010za]
[13-1432]
Dynamically avoiding fine-tuning the cosmological constant: the 'Relaxed Universe', Florian Bauer, Joan Sola, Hrvoje Stefancic, JCAP 1012 (2010) 029, arXiv:1006.3944.
[Bauer:2010wj]
[13-1433]
Robust Cosmological Bounds on Neutrinos and their Combination with Oscillation Results, M. C. Gonzalez-Garcia, Michele Maltoni, Jordi Salvado, JHEP 08 (2010) 117, arXiv:1006.3795.
[Gonzalez-Garcia:2010keg]
[13-1434]
Neutrino masses from clustering of red and blue galaxies: a test of astrophysical uncertainties, Molly E.C. Swanson, Will J. Percival, Ofer Lahav, Mon. Not. Roy. Astron. Soc. 409 (2010) 1100-1112, arXiv:1006.2825.
[Swanson:2010sk]
[13-1435]
The Effect of Massive Neutrinos on Matter Power Spectrum, Shankar Agarwal, Hume A. Feldman, Mon.Not.Roy.Astron.Soc. 410 (2011) 1647, arXiv:1006.0689.
[Agarwal:2010mt]
[13-1436]
Probing thermonuclear supernova explosions with neutrinos, A. Odrzywolek, T. Plewa, Astron.Astrophys. 529 (2011) A156, arXiv:1006.0490.
[Odrzywolek:2010je]
[13-1437]
Baryon Asymmetry of the Universe in the NuMSM, Laurent Canetti, Mikhail Shaposhnikov, JCAP 1009 (2010) 001, arXiv:1006.0133.
[Canetti:2010aw]
[13-1438]
Constraining Fundamental Physics with Future CMB Experiments, Silvia Galli et al., Phys. Rev. D82 (2010) 123504, arXiv:1005.3808.
[Galli:2010it]
[13-1439]
Constraints on the neutrino mass and the primordial magnetic field from the matter density fluctuation parameter $\sigma_8$, Dai G. Yamazaki, Kiyotomo Ichiki, Toshitaka Kajino, Grant. J. Mathews, Phys. Rev. D81 (2010) 103519, arXiv:1005.1638.
[Yamazaki:2010jw]
[13-1440]
Clarifying spherical collapse in coupled dark energy cosmologies, Nico Wintergerst, Valeria Pettorino, Phys. Rev. D82 (2010) 103516, arXiv:1005.1278.
[Wintergerst:2010ui]
[13-1441]
Matter power spectrum in f(R) gravity with massive neutrinos, Hayato Motohashi, Alexei A. Starobinsky, Jun'ichi Yokoyama, Prog. Theor. Phys. 124 (2010) 541-546, arXiv:1005.1171.
[Motohashi:2010sj]
[13-1442]
Flavour Mixing of Neutrinos and Baryon Asymmetry of the Universe, Takehiko Asaka, Hiroyuki Ishida, Phys. Lett. B692 (2010) 105-113, arXiv:1004.5491.
[Asaka:2010kk]
[13-1443]
Integrated Nucleosynthesis in Neutrino Driven Winds, L. F. Roberts, S. E. Woosley, R. D. Hoffman, Astrophys. J. 722 (2010) 954-967, arXiv:1004.4916.
[Roberts:2010wh]
[13-1444]
Neutrinos in Non-linear Structure Formation - The Effect on Halo Properties, Jacob Brandbyge, Steen Hannestad, Troels Haugboelle, Yvonne Y. Y. Wong, JCAP 1009 (2010) 014, arXiv:1004.4105.
[Brandbyge:2010ge]
[13-1445]
CMB temperature anisotropy at large scales induced by a causal primordial magnetic field, Camille Bonvin, Chiara Caprini, JCAP 1005 (2010) 022, arXiv:1004.1405.
[Bonvin:2010nr]
[13-1446]
Solution to the Dark Energy Problem, Paul Howard Frampton, arXiv:1004.1285, 2010.
[Frampton:2010kw]
[13-1447]
Neutrino and axion hot dark matter bounds after WMAP-7, Steen Hannestad, Alessandro Mirizzi, Georg G. Raffelt, Yvonne Y. Y. Wong, JCAP 1008 (2010) 001, arXiv:1004.0695.
[Hannestad:2010yi]
[13-1448]
Can we measure the neutrino mass hierarchy in the sky?, Raul Jimenez, Thomas Kitching, Carlos Pena-Garay, Licia Verde, JCAP 1005 (2010) 035, arXiv:1003.5918.
[Jimenez:2010ev]
[13-1449]
Cosmological parameters from large scale structure - geometric versus shape information, Jan Hamann, Steen Hannestad, Julien Lesgourgues, Cornelius Rampf, Yvonne Y. Y. Wong, JCAP 1007 (2010) 022, arXiv:1003.3999.
[Hamann:2010pw]
[13-1450]
The effect of neutrinos on the matter distribution as probed by the Intergalactic Medium, Matteo Viel, Martin G. Haehnelt, Volker Springel, JCAP 1006 (2010) 015, arXiv:1003.2422.
[Viel:2010bn]
[13-1451]
Massive Neutrinos in Cosmology: Analytic Solutions and Fluid Approximation, Masatoshi Shoji, Eiichiro Komatsu, Phys. Rev. D81 (2010) 123516, arXiv:1003.0942.
[Shoji:2010hm]
[13-1452]
Model-independent cosmological constraints from the CMB, Marc Vonlanthen, Syksy Rasanen, Ruth Durrer, JCAP 1008 (2010) 023, arXiv:1003.0810.
[Vonlanthen:2010cd]
[13-1453]
The cosmic microwave background bispectrum from the non-linear evolution of the cosmological perturbations, Cyril Pitrou, Jean-Philippe Uzan, Francis Bernardeau, JCAP 1007 (2010) 003, arXiv:1003.0481.
[Pitrou:2010sn]
[13-1454]
Cosmological Parameters Degeneracies and Non-Gaussian Halo Bias, Carmelita Carbone, Olga Mena, Licia Verde, JCAP 1007 (2010) 020, arXiv:1003.0456.
[Carbone:2010sb]
[13-1455]
Probing modifications of General Relativity using current cosmological observations, Gong-Bo Zhao et al., Phys. Rev. D81 (2010) 103510, arXiv:1003.0001.
[Zhao:2010dz]
[13-1456]
Testing Parity-Violating Mechanisms with Cosmic Microwave Background Experiments, Vera Gluscevic, Marc Kamionkowski, Phys. Rev. D81 (2010) 123529, arXiv:1002.1308.
[Gluscevic:2010vv]
[13-1457]
CP violation effects on the neutrino degeneracy parameters in the Early Universe, J.Gava, C.Volpe, Nucl. Phys. B837 (2010) 50-60, arXiv:1002.0981.
[Gava:2010kz]
[13-1458]
Using Big Bang Nucleosynthesis to Extend CMB Probes of Neutrino Physics, M. Shimon et al., JCAP 1005 (2010) 037, arXiv:1001.5088.
[Shimon:2010ug]
[13-1459]
Spectator stresses and CMB observables, Massimo Giovannini, Phys. Rev. D81 (2010) 127302, arXiv:0912.4427.
[Giovannini:2009tq]
[13-1460]
Testable dark energy predictions from current data, Michael J. Mortonson, Wayne Hu, Dragan Huterer, Phys. Rev. D81 (2010) 063007, arXiv:0912.3816.
[Mortonson:2009hk]
[13-1461]
On Non-Unitary Lepton Mixing and Neutrino Mass Observables, Werner Rodejohann, Phys. Lett. B684 (2010) 40-47, arXiv:0912.3388.
[Rodejohann:2009ve]
[13-1462]
Upper Bound of 0.28 eV on the Neutrino Masses from the Largest Photometric Redshift Survey, Shaun A. Thomas, Filipe B. Abdalla, Ofer Lahav, Phys. Rev. Lett. 105 (2010) 031301, arXiv:0911.5291.
[Thomas:2009ae]
[13-1463]
A Theory of Neutrino Oscillations and Late Time Acceleration, Stephon H.S. Alexander, arXiv:0911.5156, 2009.
[Alexander:2009yb]
[13-1464]
Running Standard Model Inflation And Type I Seesaw, Nobuchika Okada, Mansoor Ur Rehman, Qaisar Shafi, arXiv:0911.5073, 2009.
[Okada:2009wz]
[13-1465]
Neutrino Condensate as Origin of Dark Energy, Jitesh R. Bhatt, Bipin R. Desai, Ernest Ma, G. Rajasekaran, Utpal Sarkar, Phys. Lett. B687 (2010) 75-78, arXiv:0911.5012.
[Bhatt:2009wb]
[13-1466]
Constraints on neutrino - dark matter interactions from cosmic microwave background and large scale structure data, P. Serra, F. Zalamea, A. Cooray, G. Mangano, A. Melchiorri, Phys. Rev. D81 (2010) 043507, arXiv:0911.4411.
[Serra:2009uu]
[13-1467]
Massive Neutrinos and Magnetic Fields in the Early Universe, J. Richard Shaw, Antony Lewis, Phys. Rev. D81 (2010) 043517, arXiv:0911.2714.
[Shaw:2009nf]
[13-1468]
The Observed Growth of Massive Galaxy Clusters IV: Robust Constraints on Neutrino Properties, Adam Mantz, Steven W. Allen, David Rapetti, Mon. Not. Roy. Astron. Soc. 406 (2010) 1805-1814, arXiv:0911.1788.
[Mantz:2009rj]
[13-1469]
On the Mass Varying Neutrino Scenario, G.Y. Chitov, T. August, T. Kahniashvili, Phys. Rev. D83 (2011) 045033, arXiv:0911.1728.
[Chitov:2009ph]
[13-1470]
Neutrino mass from cosmology: Impact of high-accuracy measurement of the Hubble constant, Toyokazu Sekiguchi, Kazuhide Ichikawa, Tomo Takahashi, Lincoln Greenhill, JCAP 1003 (2010) 015, arXiv:0911.0976.
[Sekiguchi:2009zs]
[13-1471]
Neutrino Mixing and Cosmological Constant above GUT Scale, Bipin Singh Koranga, Electron. J. Theor. Phys. 6 (2009) 175-186, arXiv:0911.0489.
[SinghKoranga:2009rpl]
[13-1472]
Very large scale structures in growing neutrino quintessence, Nico Wintergerst, Valeria Pettorino, David F. Mota, Christof Wetterich, Phys. Rev. D81 (2010) 063525, arXiv:0910.4985.
[Wintergerst:2009fh]
[13-1473]
Forecasting neutrino masses from galaxy clustering in the Dark Energy Survey combined with the Planck Measurements, Ofer Lahav, Angeliki Kiakotou, Filipe B. Abdalla, Chris Blake, Mon.Not.Roy.Astron.Soc. 405 (2010) 168, arXiv:0910.4714.
[Lahav:2009zr]
[13-1474]
The Cosmic Neutrino Background Anisotropy - Linear Theory, Steen Hannestad, Jacob Brandbyge, JCAP 1003 (2010) 020, arXiv:0910.4578.
[Hannestad:2009xu]
[13-1475]
Neutrino Oscillations, Lorentz/CPT Violation, and Dark Energy, Shin'ichiro Ando, Marc Kamionkowski, Irina Mocioiu, Phys. Rev. D80 (2009) 123522, arXiv:0910.4391.
[Ando:2009ts]
[13-1476]
Cross-correlations of the Lyman-alpha forest with weak lensing convergence I: Analytical Estimates of S/N and Implications for Neutrino Mass and Dark Energy, Alberto Vallinotto, Matteo Viel, Sudeep Das, David N. Spergel, Astrophys. J. 735 (2011) 38, arXiv:0910.4125.
[Vallinotto:2009jx]
[13-1477]
Generation of Curvature Perturbations with Extra Anisotropic Stress, Kazuhiko Kojima, Toshitaka Kajino, Grant J. Mathews, JCAP 1002 (2010) 018, arXiv:0910.1976.
[Kojima:2009gw]
[13-1478]
Testing Standard Cosmology with Large Scale Structure, Arthur Stril, Robert N. Cahn, Eric V. Linder, Mon. Not. Roy. Astron. Soc. 404 (2010) 239, arXiv:0910.1833.
[Stril:2009ey]
[13-1479]
Peaks in the cosmological density field: parameter constraints from 2dF Galaxy Redshift Survey data, S. De, R.A.C. Croft, Mon.Not.Roy.Astron.Soc. 401 (2010) 1989, arXiv:0910.1310.
[De:2009uz]
[13-1480]
Robust Neutrino Constraints by Combining Low Redshift Observations with the CMB, Beth A. Reid, Licia Verde, Raul Jimenez, Olga Mena, JCAP 1001 (2010) 003, arXiv:0910.0008.
[Reid:2009nq]
[13-1481]
Cosmology with Long-Lived Charged Massive Particles, Kazunori Kohri, Tomo Takahashi, Phys. Lett. B682 (2010) 337-341, arXiv:0909.4610.
[Kohri:2009mi]
[13-1482]
Lorentz Violation on The Primordial Baryogenesis, Jorge Alfaro, Pablo Gonzalez, arXiv:0909.3883, 2009.
[Alfaro:2009xc]
[13-1483]
Self-interacting scalar field cosmologies: unified exact solutions and symmetries, T. Charters, J. P. Mimoso, JCAP 1008 (2010) 022, arXiv:0909.2282.
[Charters:2009ku]
[13-1484]
Reconstructing baryon oscillations, Yookyung Noh, Martin White, Nikhil Padmanabhan, Phys. Rev. D80 (2009) 123501, arXiv:0909.1802.
[Noh:2009bb]
[13-1485]
Constraints on the Cosmological Constant due to Scale Invariance, Pavan K. Aluri, Pankaj Jain, Subhadip Mitra, Sukanta Panda, Naveen K. Singh, Mod. Phys. Lett. A25 (2010) 1349-1364, arXiv:0909.1070.
[Aluri:2009hs]
[13-1486]
Early Universe models from Noncommutative Geometry, Matilde Marcolli, Elena Pierpaoli, Adv. Theor. Math. Phys. 14 (2010) 1373-1432, arXiv:0908.3683.
[Marcolli:2009in]
[13-1487]
No Evidence for Dark Energy Dynamics from a Global Analysis of Cosmological Data, Paolo Serra et al., Phys. Rev. D80 (2009) 121302, arXiv:0908.3186.
[Serra:2009yp]
[13-1488]
Comparison of Recent SnIa datasets, J. C. Bueno Sanchez, S. Nesseris, L. Perivolaropoulos, JCAP 0911 (2009) 029, arXiv:0908.2636.
[Sanchez:2009ka]
[13-1489]
Resolving Cosmic Neutrino Structure: A Hybrid Neutrino N- body Scheme, Jacob Brandbyge, Steen Hannestad, JCAP 1001 (2010) 021, arXiv:0908.1969.
[Brandbyge:2009ce]
[13-1490]
Model independent constraints on mass-varying neutrino scenarios, Urbano Franca, Massimiliano Lattanzi, Julien Lesgourgues, Sergio Pastor, Phys. Rev. D80 (2009) 083506, arXiv:0908.0534.
[Franca:2009xp]
[13-1491]
Testing flatness of the universe with probes of cosmic distances and growth, Michael J. Mortonson, Phys. Rev. D80 (2009) 123504, arXiv:0908.0346.
[Mortonson:2009nw]
[13-1492]
Adiabatic initial conditions for perturbations in interacting dark energy models, Elisabetta Majerotto, Jussi Valiviita, Roy Maartens, Mon.Not.Roy.Astron.Soc. 402 (2010) 2344-2354, arXiv:0907.4981.
[Majerotto:2009np]
[13-1493]
Nonlinear power spectrum in the presence of massive neutrinos: perturbation theory approach, galaxy bias and parameter forecasts, Shun Saito, Masahiro Takada, Atsushi Taruya, Phys. Rev. D80 (2009) 083528, arXiv:0907.2922.
[Saito:2009ah]
[13-1494]
Determining the Neutrino Mass Hierarchy with Cosmology, Francesco De Bernardis, Thomas D.Kitching, Alan Heavens, Alessandro Melchiorri, Phys. Rev. D80 (2009) 123509, arXiv:0907.1917.
[DeBernardis:2009di]
[13-1495]
Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample, Will J. Percival et al. (SDSS), Mon. Not. Roy. Astron. Soc. 401 (2010) 2148-2168, arXiv:0907.1660.
[SDSS:2009ocz]
[13-1496]
Cosmological Constraints from the Clustering of the Sloan Digital Sky Survey DR7 Luminous Red Galaxies, Beth A. Reid et al., Mon. Not. Roy. Astron. Soc. 404 (2010) 60-85, arXiv:0907.1659.
[Reid:2009xm]
[13-1497]
Gravitational hydrodynamics of large scale structure formation, Theo M. Nieuwenhuizen, Carl H. Gibson, Rudy E. Schild, Europhys. Lett. 88 (2009) 49001, arXiv:0906.5087.
[Nieuwenhuizen:2009tz]
[13-1498]
Dynamical Dark Energy model parameters with or without massive neutrinos, G. La Vacca, J.R. Kristiansen, JCAP 0907 (2009) 036, arXiv:0906.4501.
[LaVacca:2009ee]
[13-1499]
Effect of Long-lived Strongly Interacting Relic Particles on Big Bang Nucleosynthesis, Motohiko Kusakabe, Toshitaka Kajino, Takashi Yoshida, Grant J. Mathews, Phys. Rev. D80 (2009) 103501, arXiv:0906.3516.
[Kusakabe:2009jt]
[13-1500]
Equilibrium configurations of 11eV sterile neutrinos in MONDian galaxy clusters, Garry W. Angus, Benoit Famaey, Antonaldo Diaferio, Mon.Not.Roy.Astron.Soc. 402 (2010) 395, arXiv:0906.3322.
[Angus:2009gx]
[13-1501]
A TeV scale model for neutrino mass, dark matter and baryon asymmetry, Mayumi Aoki, Shinya Kanemura, Osamu Seto, arXiv:0905.3958, 2009.
[Aoki:2009jk]
[13-1502]
Weak Interaction Rate Coulomb Corrections in Big Bang Nucleosynthesis, Christel J. Smith, George M. Fuller, Phys. Rev. D81 (2010) 065027, arXiv:0905.2781.
[Smith:2009bt]
[13-1503]
Cosmological tests of GR - a look at the principals, Gong-Bo Zhao, Levon Pogosian, Alessandra Silvestri, Joel Zylberberg, Phys. Rev. Lett. 103 (2009) 241301, arXiv:0905.1326.
[Zhao:2009fn]
[13-1504]
Constraints on neutrino masses from WMAP5 and BBN in the lepton asymmetric universe, M. Shiraishi, K. Ichikawa, K. Ichiki, N. Sugiyama, M. Yamaguchi, JCAP 0907 (2009) 005, arXiv:0904.4396.
[Shiraishi:2009fu]
[13-1505]
On Some Properties of the Neutrino in The Early Universe, S Mani, A Sagari, B Chakrabarti, A Bhattacharya, Turk. J. Phy PHYS (2009) 271, arXiv:0904.4333.
[Mani:2009ey]
[13-1506]
The Thermal Abundance of Semi-Relativistic Relics, Manuel Drees, Mitsuru Kakizaki, Suchita Kulkarni, Phys. Rev. D80 (2009) 043505, arXiv:0904.3046.
[Drees:2009bi]
[13-1507]
Collider constraints on interactions of dark energy with the Standard Model, Philippe Brax, Clare Burrage, Anne-Christine Davis, David Seery, Amanda Weltman, JHEP 09 (2009) 128, arXiv:0904.3002.
[Brax:2009aw]
[13-1508]
How Dark Matter Reionized The Universe, Alexander V. Belikov, Dan Hooper, Phys. Rev. D80 (2009) 035007, arXiv:0904.1210.
[Belikov:2009qx]
[13-1509]
Mass Varying Neutrinos With More Than One Species Of Neutrinos, Ole Eggers Bjaelde, AIP Conf. Proc. 1115 (2009) 260-265, arXiv:0903.4333. 4th International Workshop on the Dark Side of the Universe 2008, Cairo.
[Bjaelde:2009yt]
[13-1510]
CPT violation and particle-antiparticle asymmetry in cosmology, A. D. Dolgov, Phys. Atom. Nucl. 73 (2010) 588-592, arXiv:0903.4318.
[Dolgov:2009yk]
[13-1511]
Discrete Matter, Far Fields, and Dark Matter, A. Carati, S.L. Cacciatori, L. Galgani, Europhys. Lett. 83 (2008) 59002, arXiv:0903.1355.
[Carati:2008bmr]
[13-1512]
Chemical Evolution of the Juvenile Universe, G. J. Wasserburg, Y.-Z. Qian, Publ.Astron.Soc.Austral. 26 (2009) 184, arXiv:0903.1264.
[Wasserburg:2009sf]
[13-1513]
Coupling between cold dark matter and dark energy from neutrino mass experiments, J. R. Kristiansen, G. La Vacca, L. P. L. Colombo, S. A. Bonometto, New Astron. 15 (2010) 609-613, arXiv:0902.2737.
[Kristiansen:2009yx]
[13-1514]
Do WMAP data favor neutrino mass and a coupling between Cold Dark Matter and Dark Energy?, G. La Vacca, J. R. Kristiansen, L. P. L. Colombo, R. Mainini, S. A. Bonometto, JCAP 0904 (2009) 007, arXiv:0902.2711.
[LaVacca:2009yp]
[13-1515]
Non-linear Power Spectrum including Massive Neutrinos: the Time-RG Flow Approach, J. Lesgourgues, S. Matarrese, M. Pietroni, A. Riotto, JCAP 0906 (2009) 017, arXiv:0901.4550.
[Lesgourgues:2009am]
[13-1516]
Constraining spacetime noncommutativity with primordial nucleosynthesis, Raul Horvat, Josip Trampetic, Phys. Rev. D79 (2009) 087701, arXiv:0901.4253.
[Horvat:2009cm]
[13-1517]
WMAP Dark Matter Constraints on Yukawa Unification with Massive Neutrinos, M.E. Gomez, S. Lola, P. Naranjo, J. Rodriguez-Quintero, JHEP 04 (2009) 043, arXiv:0901.4013.
[Gomez:2009yc]
[13-1518]
Dark coupling, M.B. Gavela, D. Hernandez, L. Lopez Honorez, O. Mena, S. Rigolin, JCAP 0907 (2009) 034, arXiv:0901.1611.
[Gavela:2009cy]
[13-1519]
CMB Lensing Constraints on Neutrinos and Dark Energy, Roland de Putter, Oliver Zahn, Eric V. Linder, Phys. Rev. D79 (2009) 065033, arXiv:0901.0916.
[dePutter:2009kn]
[13-1520]
Neutrino Masses, Dark Energy and the Gravitational Lensing of Pregalactic HI, R. Benton Metcalf, Mon.Not.Roy.Astron.Soc. 401 (2010) 1999, arXiv:0901.0245.
[Metcalf:2009mz]
[13-1521]
Microwave Background Constraints on Mixing of Photons with Hidden Photons, Alessandro Mirizzi, Javier Redondo, Guenter Sigl, JCAP 0903 (2009) 026, arXiv:0901.0014.
[Mirizzi:2009iz]
[13-1522]
Cold Dark Matter from heavy Right-Handed neutrino mixing, Alexey Anisimov, Pasquale Di Bari, Phys. Rev. D80 (2009) 073017, arXiv:0812.5085.
[Anisimov:2008gg]
[13-1523]
Do non-relativistic neutrinos constitute the dark matter?, Th. M. Nieuwenhuizen, Europhys. Lett. 86 (2009) 59001, arXiv:0812.4552.
From the abstract: A fit of Abell 1689 galaxy yields a relic neutrino mass of $1.445 \pm 0.030 \, \text{eV}$.
[Nieuwenhuizen:2008pf]
[13-1524]
On initial conditions for the Hot Big Bang, F. Bezrukov, D. Gorbunov, M. Shaposhnikov, JCAP 0906 (2009) 029, arXiv:0812.3622.
[Bezrukov:2008ut]
[13-1525]
Bayesian optimal reconstruction of the primordial power spectrum, M. Bridges, F. Feroz, M.P. Hobson, A.N. Lasenby, Mon.Not.Roy.Astron.Soc. 400 (2009) 1075-1084, arXiv:0812.3541.
[Bridges:2008ta]
[13-1526]
Does the Universe Have a Handedness?, Michael J. Longo, arXiv:0812.3437, 2008.
[Longo:2008rj]
[13-1527]
The shape of primordial non-Gaussianity and the CMB bispectrum, J.R. Fergusson, E.P.S. Shellard, Phys. Rev. D80 (2009) 043510, arXiv:0812.3413.
[Fergusson:2008ra]
[13-1528]
Grid Based Linear Neutrino Perturbations in Cosmological N-body Simulations, Jacob Brandbyge, Steen Hannestad, JCAP 0905 (2009) 002, arXiv:0812.3149.
[Brandbyge:2008js]
[13-1529]
Chandra Cluster Cosmology Project III: Cosmological Parameter Constraints, A. Vikhlinin et al., Astrophys. J. 692 (2009) 1060-1074, arXiv:0812.2720.
[Vikhlinin:2008ym]
[13-1530]
Cosmological constraints on a light non-thermal sterile neutrino, Mario A. Acero, Julien Lesgourgues, Phys. Rev. D79 (2009) 045026, arXiv:0812.2249.
[Acero:2008rh]
[13-1531]
Reliability of the detection of the Baryonic Acoustic Peak, Vicent J. Martinez et al., Astrophys. J. 696 (2009) L93-L97, arXiv:0812.2154.
[Martinez:2008iu]
[13-1532]
Neutrino Dark Energy in Grand Unified Theories, Jitesh R. Bhatt, Pei-Hong Gu, Utpal Sarkar, Santosh K. Singh, Phys. Rev. D80 (2009) 073013, arXiv:0812.1895.
[Bhatt:2008dg]
[13-1533]
Constraining Cosmological Parameters with Observational Data Including Weak Lensing Effects, Hong Li et al., Phys. Lett. B675 (2009) 164-169, arXiv:0812.1672.
[Li:2008vf]
[13-1534]
Big Bang Nucleosynthesis with Independent Neutrino Distribution Functions, Christel J. Smith, George M. Fuller, Michael S. Smith, Phys. Rev. D79 (2009) 105001, arXiv:0812.1253.
[Smith:2008ic]
[13-1535]
Signatures of the Baryon Acoustic Oscillations on the Convergence Power Spectrum of Weak lensing by Large Scale Structure, Tong-Jie Zhang, Qiang Yuan, Tian Lan, New Astron. 14 (2009) 507-512, arXiv:0812.0521.
[Zhang:2008ta]
[13-1536]
Statistical Analysis of future Neutrino Mass Experiments including Neutrino-less Double Beta Decay, Werner Maneschg, Alexander Merle, Werner Rodejohann, Europhys. Lett. 85 (2009) 51002, arXiv:0812.0479.
[Maneschg:2008sf]
[13-1537]
Measuring dark energy spatial inhomogeneity with supernova data, Asantha Cooray, Daniel E. Holz, Robert Caldwell, JCAP 1011 (2010) 015, arXiv:0812.0376.
[Cooray:2008qn]
[13-1538]
Like vs. Like: Strategy and Improvements in Supernova Cosmology Systematics, Eric V. Linder, Phys. Rev. D79 (2009) 023509, arXiv:0812.0370.
[Linder:2008qj]
[13-1539]
Lyman-alpha constraints on warm and on warm-plus-cold dark matter models, Alexey Boyarsky, Julien Lesgourgues, Oleg Ruchayskiy, Matteo Viel, JCAP 0905 (2009) 012, arXiv:0812.0010.
[Boyarsky:2008xj]
[13-1540]
Averaging Robertson-Walker Cosmologies, Iain A. Brown, Georg Robbers, Juliane Behrend, JCAP 0904 (2009) 016, arXiv:0811.4495.
[Brown:2008ra]
[13-1541]
Analytic Spectra of CMB Anisotropies and Polarization Generated by Relic Gravitational Waves with Modification due to Neutrino Free-Streaming, T.Y. Xia, Y. Zhang, Phys. Rev. D78 (2008) 123005, arXiv:0811.4008.
[Xia:2008gm]
[13-1542]
Sterile Neutrinos in Light of Recent Cosmological and Oscillation Data: a Multi-Flavor Scheme Approach, Alessandro Melchiorri et al., JCAP 0901 (2009) 036, arXiv:0810.5133.
[Melchiorri:2008gq]
[13-1543]
Constraints on Neutrino Masses from Weak Lensing, Kiyotomo Ichiki, Masahiro Takada, Tomo Takahashi, Phys. Rev. D79 (2009) 023520, arXiv:0810.4921.
[Ichiki:2008ye]
[13-1544]
Dark Energy and Dark Matter in General Relativity with local scale invariance, Pavan Kumar Aluri, Pankaj Jain, Naveen K. Singh, Mod. Phys. Lett. A24 (2009) 1583-1595, arXiv:0810.4421.
[Aluri:2008ks]
[13-1545]
Dark energy and neutrino mass constraints from weak lensing, supernova, and relative galaxy ages, Yan Gong, Tong-Jie Zhang, Tian Lan, Xue-Lei Chen, arXiv:0810.3572, 2008.
[Gong:2008pg]
[13-1546]
The relation between stellar mass and weak lensing signal around galaxies: Implications for MOND, Lanlan Tian, Henk Hoekstra, Hongsheng Zhao, Mon.Not.Roy.Astron.Soc. 393 (2009) 885, arXiv:0810.2826.
[Tian:2008sg]
[13-1547]
Falsifying Paradigms for Cosmic Acceleration, Michael J. Mortonson, Wayne Hu, Dragan Huterer, Phys. Rev. D79 (2009) 023004, arXiv:0810.1744.
[Mortonson:2008qy]
[13-1548]
iCosmo: an Interactive Cosmology Package, Alexandre Refregier, Adam Amara, Thomas Kitching, Anais Rassat, Astron. Astrophys. 528 (2011) A33, arXiv:0810.1285.
[Refregier:2008fn]
[13-1549]
CFHTLS weak-lensing constraints on the neutrino masses, Ismael Tereno et al., Astron. Astrophys. 500 (2009) 657-665, arXiv:0810.0555.
[Tereno:2008mm]
[13-1550]
Higher neutrino mass allowed if DM and DE are coupled, G. La Vacca, S. A. Bonometto, L. P. L. Colombo, New Astron. 14 (2009) 435-442, arXiv:0810.0127.
[LaVacca:2008mh]
[13-1551]
Can we avoid dark energy?, J. P. Zibin, A. Moss, D. Scott, Phys. Rev. Lett. 101 (2008) 251303, arXiv:0809.3761.
[Zibin:2008vk]
[13-1552]
Can the Copernican principle be tested by cosmic neutrino background?, Junji Jia, Hongbao Zhang, JCAP 0812 (2008) 002, arXiv:0809.2597.
[Jia:2008ti]
[13-1553]
Non-Gaussianity from Baryon Asymmetry, Masahiro Kawasaki, Kazunori Nakayama, Fuminobu Takahashi, JCAP 0901 (2009) 002, arXiv:0809.2242.
[Kawasaki:2008jy]
[13-1554]
An improved limit on the neutrino mass with CMB and redshift-dependent halo bias-mass relations from SDSS, DEEP2, and Lyman-Break Galaxies, Francesco De Bernardis, Paolo Serra, Asantha Cooray, Alessandro Melchiorri, Phys. Rev. D78 (2008) 083535, arXiv:0809.1095.
[DeBernardis:2008qq]
[13-1555]
Higher order corrections to the large scale matter power spectrum in the presence of massive neutrinos, Yvonne Y. Y. Wong, JCAP 0810 (2008) 035, arXiv:0809.0693.
[Wong:2008ws]
[13-1556]
Thermodynamics of the early Universe with mirror dark matter, Paolo Ciarcelluti, Angela Lepidi, Phys. Rev. D78 (2008) 123003, arXiv:0809.0677.
[Ciarcelluti:2008vs]
[13-1557]
Dark consequences from light neutrino condensations, Raul Horvat, Peter Minkowski, Josip Trampetic, Phys. Lett. B671 (2009) 51-54, arXiv:0809.0582.
[Horvat:2008uc]
[13-1558]
Cosmological Models and Latest Observational Data, Hao Wei, Eur. Phys. J. C60 (2009) 449-455, arXiv:0809.0057.
[Wei:2008rv]
[13-1559]
Changes in Dark Matter Properties After Freeze-Out, Timothy Cohen, David E. Morrissey, Aaron Pierce, Phys. Rev. D78 (2008) 111701, arXiv:0808.3994.
[Cohen:2008nb]
[13-1560]
Relic density of neutrinos with primordial asymmetries, Sergio Pastor, Teguayco Pinto, Georg Raffelt, Phys. Rev. Lett. 102 (2009) 241302, arXiv:0808.3137.
[Pastor:2008ti]
[13-1561]
From inflation to late acceleration: a new cosmological paradigm, Supratik Pal, arXiv:0808.1630, 2008.
[Pal:2008kp]
[13-1562]
Superhorizon Perturbations and the Cosmic Microwave Background, Adrienne L. Erickcek, Sean M. Carroll, Marc Kamionkowski, Phys. Rev. D78 (2008) 083012, arXiv:0808.1570.
[Erickcek:2008jp]
[13-1563]
Neutralino Dark Matter as the Source of the WMAP Haze, Gabriel Caceres, Dan Hooper, Phys. Rev. D78 (2008) 123512, arXiv:0808.0508.
[Caceres:2008dr]
[13-1564]
Phenomenology of Hybrid Scenarios of Neutrino Dark Energy, Stefan Antusch, Subinoy Das, Koushik Dutta, JCAP 0810 (2008) 016, arXiv:0807.4930.
[Antusch:2008hj]
[13-1565]
Constraints on large scale voids from WMAP-5 and SDSS, Paul Hunt, Subir Sarkar, Mon. Not. Roy. Astron. Soc. 401 (2010) 547, arXiv:0807.4508.
[Hunt:2008wp]
[13-1566]
Determining Cosmological Parameters with Latest Observational Data, Jun-Qing Xia, Hong Li, Gong-Bo Zhao, Xinmin Zhang, Phys. Rev. D78 (2008) 083524, arXiv:0807.3878.
[Xia:2008ex]
[13-1567]
Two new diagnostics of dark energy, Varun Sahni, Arman Shafieloo, Alexei A. Starobinsky, Phys. Rev. D78 (2008) 103502, arXiv:0807.3548.
[Sahni:2008xx]
[13-1568]
Is a step in the primordial spectral index favored by CMB data?, Minu Joy, Arman Shafieloo, Varun Sahni, Alexei A. Starobinsky, JCAP 0906 (2009) 028, arXiv:0807.3334.
[Joy:2008qd]
[13-1569]
Bayesian analysis of sparse anisotropic universe models and application to the 5-yr WMAP data, Nicolaas E. Groeneboom, Hans Kristian Eriksen, Astrophys. J. 690 (2009) 1807-1819, arXiv:0807.2242.
[Groeneboom:2008fz]
[13-1570]
Dark energy: myths and reality, V. N. Lukash, V. A. Rubakov, Phys.Usp. 51 (2008) 283-289, arXiv:0807.1635.
[Lukash:2008sf]
[13-1571]
How the Scalar Field of Unified Dark Matter Models Can Cluster, Daniele Bertacca, Nicola Bartolo, Antonaldo Diaferio, Sabino Matarrese, JCAP 0810 (2008) 023, arXiv:0807.1020.
[Bertacca:2008uf]
[13-1572]
Measuring Baryon Acoustic Oscillations along the line of sight with photometric redshifs: the PAU survey, N. Benitez et al., Astrophys. J. 691 (2009) 241-260, arXiv:0807.0535.
[Benitez:2008fs]
[13-1573]
The improvement on cosmological parameters with H(z) measurements, Daniel G. Figueroa, Licia Verde, Raul Jimenez, JCAP 0810 (2008) 038, arXiv:0807.0039.
[Figueroa:2008py]
[13-1574]
About a (standard model) universe dominated by the right matter, G. Barenboim, O. Vives, Phys. Rev. D79 (2009) 033007, arXiv:0806.4389.
[Barenboim:2008zk]
[13-1575]
Implications of Two Type Ia Supernova Populations for Cosmological Measurements, Devdeep Sarkar, Alexandre Amblard, Asantha Cooray, Daniel E. Holz, Astrophys.J. 684 (2008) L13-L16, arXiv:0806.3267.
[Sarkar:2008es]
[13-1576]
Neutrino Dark Energy With More Than One Neutrino Species, Ole Eggers Bjaelde, Steen Hannestad, Phys. Rev. D81 (2010) 063001, arXiv:0806.2146.
[Bjaelde:2008yd]
[13-1577]
Prospects in Constraining the Dark Energy Potential, Enrique Fernandez-Martinez, Licia Verde, JCAP 0808 (2008) 023, arXiv:0806.1871.
[Fernandez-Martinez:2008qfj]
[13-1578]
Are cosmological neutrinos free-streaming?, Anders Basboll, Ole Eggers Bjaelde, Steen Hannestad, Georg G. Raffelt, Phys. Rev. D79 (2009) 043512, arXiv:0806.1735.
[Basboll:2008fx]
[13-1579]
Simulations and cosmological inference: A statistical model for power spectra means and covariances, Michael D. Schneider et al., Phys. Rev. D78 (2008) 063529, arXiv:0806.1487.
[Schneider:2008zf]
[13-1580]
A new coupled quintessence cosmology, J. F. Jesus, R. C. Santos, J. S. Alcaniz, J. A. S. Lima, Phys. Rev. D78 (2008) 063514, arXiv:0806.1366.
[Jesus:2008xi]
[13-1581]
Global Fits of the Large Volume String Scenario to WMAP5 and Other Indirect Constraints Using Markov Chain Monte Carlo, B. C. Allanach, M. J. Dolan, A. M. Weber, JHEP 08 (2008) 105, arXiv:0806.1184.
[Allanach:2008tu]
[13-1582]
Radiative neutrino mass generation and dark energy, K. Bamba, C. Q. Geng, S. H. Ho, JCAP 0809 (2008) 001, arXiv:0806.0952.
[Bamba:2008jq]
[13-1583]
Dark Matter, Modified Gravity and the Mass of the Neutrino, P.G. Ferreira, C. Skordis, C. Zunckel, Phys. Rev. D78 (2008) 044043, arXiv:0806.0116.
[Ferreira:2008ma]
[13-1584]
Reinterpreting MOND: coupling of Einsteinian gravity and spin of cosmic neutrinos?, HongSheng Zhao, arXiv:0805.4046, 2008.
[Zhao:2008rq]
[13-1585]
Are sterile neutrinos consistent with clusters, the CMB and MOND?, Garry W. Angus, Mon.Not.Roy.Astron.Soc. 394 (2009) 527, arXiv:0805.4014.
[Angus:2008qz]
[13-1586]
Observables sensitive to absolute neutrino masses (Addendum), G. L. Fogli et al., Phys. Rev. D78 (2008) 033010, arXiv:0805.2517.
[Fogli:2008ig]
[13-1587]
Majorana Neutrino Superfluidity and Stability of Neutrino Dark Energy, Jitesh R. Bhatt, Utpal Sarkar, Phys. Rev. D80 (2009) 045016, arXiv:0805.2482.
[Bhatt:2008hr]
[13-1588]
Constraining massive neutrinos using cosmological 21 cm observations, Jonathan R. Pritchard, Elena Pierpaoli, Phys. Rev. D78 (2008) 065009, arXiv:0805.1920.
[Pritchard:2008wy]
[13-1589]
Improved Cosmological Constraints from New, Old and Combined Supernova Datasets, M. Kowalski et al. (Supernova Cosmology Project), Astrophys. J. 686 (2008) 749-778, arXiv:0804.4142.
[SupernovaCosmologyProject:2008ojh]
[13-1590]
Large Number, Dark Matter, Dark Energy, and the Superstructures in the Universe, Wuliang Huang, Xiaodong Huang, Commun. Theor. Phys. 51 (2010) 575-576, arXiv:0804.2680.
[Huang:2010nq]
[13-1591]
Big bang nucleosynthesis constrains the total annihilation cross section of neutralino dark matter, Xiao-Jun Bi, arXiv:0804.2514, 2008.
[Bi:2008qj]
[13-1592]
Triple unification of inflation, dark matter, and dark energy using a single field, Andrew R. Liddle, Cedric Pahud, L. Arturo Urena-Lopez, Phys. Rev. D77 (2008) 121301, arXiv:0804.0869.
[Liddle:2008bm]
[13-1593]
Constraining The Early-Universe Baryon Density And Expansion Rate, Vimal Simha, Gary Steigman, JCAP 0806 (2008) 016, arXiv:0803.3465.
[Simha:2008zj]
[13-1594]
How to Distinguish Dark Energy and Modified Gravity?, Hao Wei, Shuang Nan Zhang, Phys. Rev. D78 (2008) 023011, arXiv:0803.3292.
[Wei:2008vw]
[13-1595]
Cosmological Signatures of the Interaction between Dark-Energy and Massive Neutrinos, Kiyotomo Ichiki, Yong-Yeon Keum, arXiv:0803.3142, 2008.
[Ichiki:2008st]
[13-1596]
Shifting the Universe: Early Dark Energy and Standard Rulers, Eric V. Linder, Georg Robbers, JCAP 0806 (2008) 004, arXiv:0803.2877.
[Linder:2008nq]
[13-1597]
MeV sterile neutrinos in low reheating temperature cosmological scenarios, Graciela Gelmini, Efunwande Osoba, Sergio Palomares-Ruiz, Silvia Pascoli, JCAP 0810 (2008) 029, arXiv:0803.2735.
[Gelmini:2008fq]
[13-1598]
Standard-Model Condensates and the Cosmological Constant, Stanley J. Brodsky, Robert Shrock, Proc.Nat.Acad.Sci. 108 (2011) 45-50, arXiv:0803.2554.
[Brodsky:2008xu]
[13-1599]
Neutrino Mass Bounds from from $0\nu\beta\beta$ Decays and Large Scale Structures, Y.-Y. Keum, K. Ichiki, T. Kajino, AIP Conf. Proc. 1016 (2008) 343-349, arXiv:0803.2393.
[Keum:2008st]
[13-1600]
Testing CPT Symmetry with CMB Measurements: Update after WMAP5, Jun-Qing Xia, Hong Li, Gong-Bo Zhao, Xinmin Zhang, Astrophys. J. 679 (2008) L61, arXiv:0803.2350.
[Xia:2008si]
[13-1601]
Cosmic Microwave Weak lensing data as a test for the dark universe, Erminia Calabrese, Anze Slosar, Alessandro Melchiorri, George F. Smoot, Oliver Zahn, Phys. Rev. D77 (2008) 123531, arXiv:0803.2309.
[Calabrese:2008rt]
[13-1602]
Neutrino Masses from Cosmological Probes in Interacting Neutrino Dark-Energy Models, Kiyotomo Ichiki, Yong-Yeon Keum, JHEP 06 (2008) 058, arXiv:0803.2274.
[Ichiki:2008rh]
[13-1603]
Next Generation Redshift Surveys and the Origin of Cosmic Acceleration, Viviana Acquaviva, Amir Hajian, David N. Spergel, Sudeep Das, Phys. Rev. D78 (2008) 043514, arXiv:0803.2236.
[Acquaviva:2008qp]
[13-1604]
Constraints on the decay of dark matter to dark energy from weak lensing bispectrum tomography, Bjoern Malte Schaefer, Gabriela Alejandra Caldera-Cabral, Roy Maartens, arXiv:0803.2154, 2008.
[Schaefer:2008ku]
[13-1605]
Late universe dynamics with scale-independent linear couplings in the dark sector, Claudia Quercellini, Marco Bruni, Amedeo Balbi, Davide Pietrobon, Phys. Rev. D78 (2008) 063527, arXiv:0803.1976.
[Quercellini:2008vh]
[13-1606]
Clustering, Angular Size and Dark Energy, R. C. Santos, J. A. S. Lima, Phys. Rev. D77 (2008) 083505, arXiv:0803.1865.
[Santos:2008tz]
[13-1607]
Gravitational Lensing Constraints on Dynamical and Coupled Dark Energy, G. La Vacca, L. P. L. Colombo, JCAP 0804 (2008) 007, arXiv:0803.1640.
[LaVacca:2008kq]
[13-1608]
Planck priors for dark energy surveys, Pia Mukherjee, Martin Kunz, David Parkinson, Yun Wang, Phys. Rev. D78 (2008) 083529, arXiv:0803.1616.
[Mukherjee:2008kd]
[13-1609]
Cosmological constraints on neutrino plus axion hot dark matter: Update after WMAP-5, Steen Hannestad, Alessandro Mirizzi, Georg G. Raffelt, Yvonne Y. Y. Wong, JCAP 0804 (2008) 019, arXiv:0803.1585.
[Hannestad:2008js]
[13-1610]
Luminosity Indicators in the UV Spectra of Type Ia Supernovae, Ryan J. Foley, Alexei V. Filippenko, Saurabh W. Jha, Astrophys.J. 686 (2008) 117, arXiv:0803.1181.
[Foley:2008wm]
[13-1611]
Probing the Effective Number of Neutrino Species with Cosmic Microwave Background, Kazuhide Ichikawa, Toyokazu Sekiguchi, Tomo Takahashi, Phys. Rev. D78 (2008) 083526, arXiv:0803.0889.
[Ichikawa:2008pz]
[13-1612]
Equilibrium boundary conditions, dynamic vacuum energy, and the Big Bang, F.R. Klinkhamer, Phys. Rev. D78 (2008) 083533, arXiv:0803.0281.
[Klinkhamer:2008yz]
[13-1613]
Stationary condition in a perturbative approach for mass varying neutrinos, Alex E. Bernardini, O. Bertolami, Phys. Lett. B662 (2008) 97-101, arXiv:0802.4449.
[Bernardini:2008pn]
[13-1614]
Supernovae and Cosmology, Bruno Leibundgut, Gen. Relativ. Gravit. 40 (2008) 221, arXiv:0802.4154.
[Leibundgut:2008ja]
[13-1615]
WMAP Haze: Directly Observing Dark Matter?, Michael McNeil Forbes, Ariel R. Zhitnitsky, Phys. Rev. D78 (2008) 083505, arXiv:0802.3830.
[Forbes:2008uf]
[13-1616]
The Effect of Thermal Neutrino Motion on the Non-linear Cosmological Matter Power Spectrum, Jacob Brandbyge, Steen Hannestad, Troels Haugboelle, Bjarne Thomsen, JCAP 0808 (2008) 020, arXiv:0802.3700.
[Brandbyge:2008rv]
[13-1617]
Is it possible to estimate the Higgs Mass from the CMB Power Spectrum?, A.B. Arbuzov, B.M. Barbashov, V.N. Pervushin, S.A. Shuvalov, A.F. Zakharov, Phys. Atom. Nucl. 72 (2009) 744-751, arXiv:0802.3427.
[Arbuzov:2008dp]
[13-1618]
Limitations of Bayesian Evidence Applied to Cosmology, G. Efstathiou, Mon.Not.Roy.Astron.Soc. 388 (2008) 1314, arXiv:0802.3185.
[Efstathiou:2008ed]
[13-1619]
Could dark matter or neutrinos discriminate between the enantiomers of a chiral molecule?, Pedro Bargueno, Antonio Dobado, Isabel Gonzalo, Europhys. Lett. 82 (2008) 13002, arXiv:0802.2164.
[Bargueno:2008dq]
[13-1620]
Evolution of the 21 cm signal throughout cosmic history, Jonathan R. Pritchard, Abraham Loeb, Phys. Rev. D78 (2008) 103511, arXiv:0802.2102.
[Pritchard:2008da]
[13-1621]
Emergent gravity and Dark Energy, T. Padmanabhan, arXiv:0802.1798, 2008.
[Padmanabhan:2008wi]
[13-1622]
Cosmology With A Dark Refraction Index, B. Chen, R. Kantowski, Phys. Rev. D78 (2008) 044040, arXiv:0802.1728.
[Chen:2008uv]
[13-1623]
How accurately can 21 cm tomography constrain cosmology?, Yi Mao, Max Tegmark, Matthew McQuinn, Matias Zaldarriaga, Oliver Zahn, Phys. Rev. D78 (2008) 023529, arXiv:0802.1710.
[Mao:2008ug]
[13-1624]
Newton's second law versus modified-inertia MOND: a test using the high-latitude effect, A. Yu. Ignatiev, Phys. Rev. D77 (2008) 102001, arXiv:0802.1599.
[Ignatiev:2008qi]
[13-1625]
Neutrino clustering in growing neutrino quintessence, D. F. Mota, V. Pettorino, G. Robbers, C. Wetterich, Phys. Lett. B663 (2008) 160-164, arXiv:0802.1515.
[Mota:2008nj]
[13-1626]
WMAP2006: Cosmological Parameters and Large-scale Structure of the Universe, S. Apunevych, B. Venhlovska, Yu. Kulinich, B. Novosyadlyj, arXiv:0802.0599, 2008.
[Apunevych:2008qn]
[13-1627]
The Fundamental Constants in Physics and their Time Dependence, Harald Fritzsch, Prog. Part. Nucl. Phys. 61 2008 (2008) 329-342, arXiv:0802.0099.
[Fritzsch:2008bj]
[13-1628]
Finding Evidence for Massive Neutrinos using 3D Weak Lensing, T. D. Kitching, A. F. Heavens, L. Verde, P. Serra, A. Melchiorri, Phys. Rev. D77 (2008) 103008, arXiv:0801.4565.
[Kitching:2008dp]
[13-1629]
Combined analysis of the integrated Sachs-Wolfe effect and cosmological implications, Tommaso Giannantonio et al., Phys. Rev. D77 (2008) 123520, arXiv:0801.4380.
[Giannantonio:2008zi]
[13-1630]
Constraints on the lepton asymmetry and radiation energy density: Implications for PLANCK, Lucia Aurelia Popa, Ana Vasile, Rom. Rep. Phys. 61 (2009) 531-545, arXiv:0801.3928.
[Popa:2008nz]
[13-1631]
The trispectrum of 21-cm background anisotropies as a probe of primordial non-Gaussianity, Asantha Cooray, Chao Li, Alessandro Melchiorri, Phys. Rev. D77 (2008) 103506, arXiv:0801.3463.
[Cooray:2008eb]
[13-1632]
A Decisive test to confirm or rule out existence of dark matter using gravitational wave observations, E. O. Kahya, Class. Quant. Grav. 25 (2008) 184008, arXiv:0801.1984.
[Kahya:2008pp]
[13-1633]
Precise Measurement of the Cosmological Power Spectrum With a Dedicated 21cm Survey After Reionization, Abraham Loeb, Stuart Wyithe, Phys. Rev. Lett. 100 (2008) 161301, arXiv:0801.1677.
[Loeb:2008hg]
[13-1634]
Impact of massive neutrinos on nonlinear matter power spectrum, Shun Saito, Masahiro Takada, Atsushi Taruya, Phys. Rev. Lett. 100 (2008) 191301, arXiv:0801.0607.
[Saito:2008bp]
[13-1635]
Likelihood Analysis of CMB Temperature and Polarization Power Spectra, Samira Hamimeche, Antony Lewis, Phys. Rev. D77 (2008) 103013, arXiv:0801.0554.
[Hamimeche:2008ai]
[13-1636]
Dark matter from stable charged particles?, M. Yu. Khlopov, arXiv:0801.0167, 2008.
[Khlopov:2008rp]
[13-1637]
Primordial Black Holes, M. Yu. Khlopov, Res. Astron. Astrophys. 10 (2010) 495-528, arXiv:0801.0116.
[Khlopov:2008qy]
[13-1638]
Dark-Energy Dynamics Required to Solve the Cosmic Coincidence, Chas A. Egan, Charles H. Lineweaver, Phys. Rev. D78 (2008) 083528, arXiv:0712.3099.
[Egan:2007ht]
[13-1639]
A practical guide to Basic Statistical Techniques for Data Analysis in Cosmology, Licia Verde, arXiv:0712.3028, 2007.
[Verde:2007wf]
[13-1640]
Using BBN in cosmological parameter extraction from CMB: a forecast for Planck, Jan Hamann, Julien Lesgourgues, Gianpiero Mangano, JCAP 0803 (2008) 004, arXiv:0712.2826.
[Hamann:2007sb]
[13-1641]
Galaxies as a cosmological test, P. J. E. Peebles, Nuovo Cim. 122B (2007) 1035-1042, arXiv:0712.2757.
[Peebles:2007qe]
[13-1642]
Forming Galaxies with MOND, R. H. Sanders, Mon.Not.Roy.Astron.Soc. 386 (2008) 1588, arXiv:0712.2576.
[Sanders:2007mg]
[13-1643]
Neutrinos as galactic dark matter in the Ursa Major galaxy group?, G. Gentile, H. S. Zhao, B. Famaey, Mon.Not.Roy.Astron.Soc. 385 (2008) 68, arXiv:0712.1816.
[Gentile:2007pt]
[13-1644]
Mirror World with Broken Mirror Parity, E(6) Unification and Cosmology, C.R. Das, L.V. Laperashvili, Int. J. Mod. Phys. A23 (2008) 1863-1890, arXiv:0712.1326.
[Das:2007dm]
[13-1645]
Velocity and Distribution of Primordial Neutrinos, Jorge Alfaro, Pablo Gonzalez, Int. J. Mod. Phys. D17 (2008) 2171-2187, arXiv:0712.1210.
[Alfaro:2007am]
[13-1646]
Dark Energy Constraints from Galaxy Cluster Peculiar Velocities, Suman Bhattacharya, Arthur Kosowsky, Phys. Rev. D77 (2008) 083004, arXiv:0712.0034.
[Bhattacharya:2007sk]
[13-1647]
General relativistic velocity: the alternative to dark matter, F. I. Cooperstock S. Tieu, Mod. Phys. Lett. A23 (2008) 1745-1755, arXiv:0712.0019.
[Cooperstock:2007sc]
[13-1648]
The Local Hubble Flow: Is it a Manifestation of Dark Energy?, Yehuda Hoffman, Luis A. Martinez-Vaquero, Gustavo Yepes, Stefan Gottlober, Mon.Not.Roy.Astron.Soc. 386 (2008) 390, arXiv:0711.4989.
[Hoffman:2007qe]
[13-1649]
Phase transition in the fine structure constant, L. Anchordoqui, V. Barger, H. Goldberg, D. Marfatia, Phys. Lett. B660 (2008) 529-533, arXiv:0711.4055.
[Anchordoqui:2007iw]
[13-1650]
A Test of the Copernican Principle, R. R. Caldwell, A. Stebbins, Phys. Rev. Lett. 100 (2008) 191302, arXiv:0711.3459.
[Caldwell:2007yu]
[13-1651]
Left-Right Symmetric Model of Neutrino Dark Energy, Jitesh R. Bhatt, Pei-Hong Gu, Utpal Sarkar, Santosh K. Singh, Phys. Lett. B663 (2008) 83-85, arXiv:0711.2728.
[Bhatt:2007ah]
[13-1652]
SO(10) GUT Baryogenesis, Pei-Hong Gu, Utpal Sarkar, Phys. Lett. B663 (2008) 80-82, arXiv:0711.2727.
[Gu:2007bw]
[13-1653]
Testing Primordial Abundances With Sterile Neutrinos, O. Civitarese, M. E. Mosquera, Phys. Rev. C77 (2008) 045806, arXiv:0711.2450.
[Civitarese:2007mn]
[13-1654]
Neutrino Lumps in Quintessence Cosmology, N. Brouzakis, N. Tetradis, C. Wetterich, Phys. Lett. B665 (2008) 131-134, arXiv:0711.2226.
[Brouzakis:2007aq]
[13-1655]
Cosmic Covariance and the Low Quadrupole Anisotropy of the Wilkinson Microwave Anisotropy Probe (WMAP) Data, Lung-Yih Chiang, Pavel D. Naselsky, Peter Coles, Mod. Phys. Lett. A23 (2008) 1489-1497, arXiv:0711.1860.
[Chiang:2007rp]
[13-1656]
How well do we understand cosmological recombination?, Wan Yan Wong, Adam Moss, Douglas Scott, Mon.Not.Roy.Astron.Soc. 386 (2008) 1023-1028, arXiv:0711.1357.
[Wong:2007ym]
[13-1657]
Cosmological parameters from strong gravitational lensing and stellar dynamics in elliptical galaxies, C. Grillo, M. Lombardi, G. Bertin, Astron.Astrophys. (2007), arXiv:0711.0882.
[Grillo:2007iv]
[13-1658]
Relaxing neutrino mass bounds by a running cosmological constant, Florian Bauer, Lily Schrempp, JCAP 0804 (2008) 006, arXiv:0711.0744.
[Bauer:2007gf]
[13-1659]
Constraining neutrino masses with the ISW-galaxy correlation function, Julien Lesgourgues, Wessel Valkenburg, Enrique Gaztanaga, Phys. Rev. D77 (2008) 063505, arXiv:0710.5525.
[Lesgourgues:2007ix]
[13-1660]
Improved Constraints on the Acceleration History of the Universe and the Properties of the Dark Energy, Ruth A. Daly et al., Astrophys. J. 677 (2008) 1-11, arXiv:0710.5345.
[Daly:2007dn]
[13-1661]
Bounds on long-lived charged massive particles from Big Bang nucleosynthesis, Karsten Jedamzik, JCAP 0803 (2008) 008, arXiv:0710.5153.
[Jedamzik:2007qk]
[13-1662]
A New Independent Limit on the Cosmological Constant/Dark Energy from the Relativistic Bending of Light by Galaxies and Clusters of Galaxies, Mustapha Ishak, Wolfgang Rindler, Jason Dossett, Jacob Moldenhauer, Chris Allison, Mon.Not.Roy.Astron.Soc. 388 (2008) 1279-1283, arXiv:0710.4726.
[Ishak:2007ea]
[13-1663]
Cosmological and Astrophysical Constraints on Tensor Unparticles, Ian Lewis, arXiv:0710.4147, 2007.
[Lewis:2007ss]
[13-1664]
Analysis of heavy neutrinos as a dark matter candidate, Erik Elfgren, Sverker Fredriksson, Astron.Astrophys. (2007), arXiv:0710.3893.
[Elfgren:2007hv]
[13-1665]
Baryon oscillations in galaxy and matter power-spectrum covariance matrices, Mark C. Neyrinck, Istvan Szapudi, Mon.Not.Roy.Astron.Soc. (2007), arXiv:0710.3586.
[Neyrinck:2007bp]
[13-1666]
Testing CPT Symmetry with CMB Measurements, Jun-Qing Xia, Hong Li, Xiulian Wang, Xinmin Zhang, Astron. Astrophys. 483 (2008) 715-718, arXiv:0710.3325.
[Xia:2007qs]
[13-1667]
Global neutrino parameter estimation using Markov Chain Monte Carlo, Steen Hannestad, arXiv:0710.1952, 2007.
[Hannestad:2007tu]
[13-1668]
The scalar perturbation spectral index n_s: WMAP sensitivity to unresolved point sources, K. M. Huffenberger, H. K. Eriksen, F. K. Hansen, A. J. Banday, K. M. Gorski, Astrophys.J. 688 (2008) 1, arXiv:0710.1873.
[Huffenberger:2007sc]
[13-1669]
Analysis of cosmic microwave background radiation in the presence of Lorentz violation, Matthew Mewes, arXiv:0710.1110, 2007. 2006 Wisconsin Space Conference, Milwaukee, Wisconsin, August 10-11, 2006.
[Mewes:2007pm]
[13-1670]
Precision of diffuse 21-cm lensing, Tingting Lu, Ue-Li Pen, Mon.Not.Roy.Astron.Soc. (2007), arXiv:0710.1108.
[Lu:2007pk]
[13-1671]
Multiplicative Conservation of Baryon Number and Baryogenesis, Ernest Ma, Phys. Lett. B661 (2008) 273-275, arXiv:0710.1102.
[Ma:2007pi]
[13-1672]
Modified Gravity: Cosmology without dark matter or a cosmological constant, J. W. Moffat, V. T. Toth, Galaxies 20 1 (2013) , 65-82, arXiv:0710.0364.
[Moffat:2011rp]
[13-1673]
Detecting a Lorentz-Violating Field in Cosmology, Baojiu Li, David F. Mota, John D. Barrow, Phys. Rev. D77 (2008) 024032, arXiv:0709.4581.
[Li:2007vz]
[13-1674]
Determining the Type, Redshift, and Age of a Supernova Spectrum, Stephane Blondin, John L. Tonry, Astrophys. J. 666 (2007) 1024-1047, arXiv:0709.4488.
[Blondin:2007ua]
[13-1675]
Effects of CMB temperature uncertainties on cosmological parameter estimation, Jan Hamann, Yvonne Y. Y. Wong, JCAP 0803 (2008) 025, arXiv:0709.4423.
[Hamann:2007sk]
[13-1676]
Consequences of the Production of Very Massive Magnetically Charged Leptons Early in the Universe and Their Decays to a New Set of Extremely Massive Neutrinos, Sherman Frankel, arXiv:0709.4201, 2007.
[Frankel:2007eg]
[13-1677]
Cosmological implications of the KATRIN experiment, Jostein R. Kristiansen, Oystein Elgaroy, JCAP 0801 (2008) 007, arXiv:0709.4152.
[Kristiansen:2007di]
[13-1678]
The necessity of dark matter in MOND within galactic scales, Ignacio Ferreras, Mairi Sakellariadou, Muhammad Furqaan Yusaf, Phys. Rev. Lett. 100 (2008) 031302, arXiv:0709.3189.
[Ferreras:2007kw]
[13-1679]
Constraints on decaying Dark Matter from XMM-Newton observations of M31, Alexey Boyarsky, Dmytro Iakubovskyi, Oleg Ruchayskiy, Vladimir Savchenko, Mon. Not. Roy. Astron. Soc. 387 (2008) 1361, arXiv:0709.2301.
[Boyarsky:2007ay]
[13-1680]
Forecasting neutrino masses from combining KATRIN and the CMB: Frequentist and Bayesian analyses, Ole Host, Ofer Lahav, Filipe B. Abdalla, Klaus Eitel, Phys. Rev. D76 (2007) 113005, arXiv:0709.1317.
[Host:2007wh]
[13-1681]
Cosmic Microwave Background Statistics for a Direction-Dependent Primordial Power Spectrum, Anthony R. Pullen, Marc Kamionkowski, Phys. Rev. D76 (2007) 103529, arXiv:0709.1144.
[Pullen:2007tu]
[13-1682]
Adiabatic instability in coupled dark energy-dark matter models, Rachel Bean, Eanna E. Flanagan, Mark Trodden, Phys. Rev. D78 (2008) 023009, arXiv:0709.1128.
[Bean:2007ny]
[13-1683]
Neutrino Mass, Dark Energy, and the Linear Growth Factor, Angeliki Kiakotou, Oystein Elgaroy, Ofer Lahav, Phys. Rev. D77 (2008) 063005, arXiv:0709.0253.
[Kiakotou:2007pz]
[13-1684]
How cold is cold dark matter? Small scales constraints from the flux power spectrum of the high-redshift Lyman-alpha forest, M. Viel et al., Phys. Rev. Lett. 100 (2008) 041304, arXiv:0709.0131.
[Viel:2007mv]
[13-1685]
Cosmology, Thermodynamics and Matter Creation, J. A. S. Lima, M. O. Calvao, I. Waga, arXiv:0708.3397, 2007.
[Lima:2007kk]
[13-1686]
Fluctuations in 21cm Emission After Reionization, Stuart Wyithe, Abraham Loeb, Mon.Not.Roy.Astron.Soc. 383 (2008) 606, arXiv:0708.3392.
[Wyithe:2007gz]
[13-1687]
Astrophysical Configurations with Background Cosmology: Probing Dark Energy at Astrophysical Scales, Andres Balaguera-Antolinez, David F. Mota, Marek Nowakowski, Mon. Not. Roy. Astron. Soc. 382 (2007) 621, arXiv:0708.2980.
[Balaguera-Antolinez:2007pbr]
[13-1688]
Probing for the Cosmological Parameters with PLANCK Measurement, Jun-Qing Xia, Hong Li, Gong-Bo Zhao, Xinmin Zhang, Int. J. Mod. Phys. D17 (2009) 2025-2048, arXiv:0708.1111.
[Xia:2007gz]
[13-1689]
Constraining Dark Energy Anisotropic Stress, D. F. Mota, J. R. Kristiansen, T. Koivisto, N. E. Groeneboom, Mon. Not. Roy. Astron. Soc. 382 (2007) 793-800, arXiv:0708.0830.
[Mota:2007sz]
[13-1690]
ISW effect in Unified Dark Matter Scalar Field Cosmologies: an analytical approach, Daniele Bertacca, Nicola Bartolo, JCAP 0711 (2007) 026, arXiv:0707.4247.
[Bertacca:2007cv]
[13-1691]
The Cosmic Neutrino Background and the Age of the Universe, Francesco de Bernardis, Alessandro Melchiorri, Licia Verde, Raul Jimenez, JCAP 0803 (2008) 020, arXiv:0707.4170.
From the abstract: ...the effective number of relativistic particles $N_{\rm eff}$, is constrained to be $N_{\rm eff}=3.7_{-1.2}^{+1.1}$ at $95 \%$ confidence level.
[deBernardis:2007bu]
[13-1692]
Lyman-alpha radiative transfer during the Epoch of Reionization: contribution to 21-cm signal fluctuations, B. Semelin, F. Combes, S. Baek, Astron.Astrophys. 474 (2007) 365, arXiv:0707.2483.
[Semelin:2007rk]
[13-1693]
Can Strong Gravitational Lensing Constrain Dark Energy?, Seokcheon Lee, Kin-Wang Ng, Phys. Rev. D76 (2007) 043518, arXiv:0707.1730.
[Lee:2007tg]
[13-1694]
Sterile neutrinos as subdominant warm dark matter, A. Palazzo, D. Cumberbatch, A. Slosar, J. Silk, Phys. Rev. D76 (2007) 103511, arXiv:0707.1495.
[Palazzo:2007gz]
[13-1695]
Evidence for short-lived SN Ia progenitors, Eric Aubourg et al., PoS SUPERNOVA (2008) 017, arXiv:0707.1328.
[Aubourg:2007ee]
[13-1696]
A model of accelerating dark energy in decelerating gravity, M. Roos, arXiv:0707.1086, 2007.
[Roos:2007yd]
[13-1697]
The multiverse and the origin of our universe, Tom Gehrels, arXiv:0707.1030, 2007.
[Gehrels:2007sj]
[13-1698]
Mapping Cosmological Observables to the Dark Kinetics, Sergei Bashinsky, Astrophys.J. (2007), arXiv:0707.0692.
[Bashinsky:2007yc]
[13-1699]
Growing neutrinos and cosmological selection, C. Wetterich, Phys. Lett. B655 (2007) 201-208, arXiv:0706.4427.
[Wetterich:2007kr]
[13-1700]
Cosmological constraints on neutrino plus axion hot dark matter, Steen Hannestad, Alessandro Mirizzi, Georg G. Raffelt, Yvonne Y. Y. Wong, JCAP 0708 (2007) 015, arXiv:0706.4198.
[Hannestad:2007dd]
[13-1701]
Strong Upper Limits on Sterile Neutrino Warm Dark Matter, Hasan Yuksel, John F. Beacom, Casey R. Watson, Phys. Rev. Lett. 101 (2008) 121301, arXiv:0706.4084.
[Yuksel:2007xh]
[13-1702]
Testing the $k^3$ Component in the Primordial Perturbation Power Spectrum, Loison Hoi, James M. Cline, Gilbert P. Holder, Int.J.Mod.Phys. D18 (2009) 1863-1888, arXiv:0706.3887.
[Hoi:2007sf]
[13-1703]
The Imprint of Cosmic Reionization on Galaxy Clustering, Stuart Wyithe, Avi Loeb, Mon.Not.Roy.Astron.Soc. (2007), arXiv:0706.3744.
[Wyithe:2007pi]
[13-1704]
Narrowing Constraints with Type Ia Supernovae: Converging on a Cosmological Constant, Scott Sullivan, Asantha Cooray, Daniel E. Holz, JCAP 0709 (2007) 004, arXiv:0706.3730.
[Sullivan:2007pd]
[13-1705]
A coverage independent method to analyze large scale anisotropies, Pierre Billoir, Antoine Letessier-Selvon, Astropart. Phys. 29 (2008) 14-19, arXiv:0706.3705.
[Billoir:2007nu]
[13-1706]
Growing Matter, Luca Amendola, Marco Baldi, Christof Wetterich, Phys. Rev. D78 (2008) 023015, arXiv:0706.3064.
[Amendola:2007yx]
[13-1707]
Multiple inflation and the WMAP 'glitches' II. Data analysis and cosmological parameter extraction, Paul Hunt, Subir Sarkar, Phys. Rev. D76 (2007) 123504, arXiv:0706.2443.
[Hunt:2007dn]
[13-1708]
Cosmological Constraints on f(R) Acceleration Models, Yong-Seon Song, Hiranya Peiris, Wayne Hu, Phys. Rev. D76 (2007) 063517, arXiv:0706.2399.
[Song:2007da]
[13-1709]
Combining Weak Lensing Tomography with Halo Clustering to Probe Dark Energy, Charles Shapiro, Scott Dodelson, Phys. Rev. D76 (2007) 083515, arXiv:0706.2395.
[Shapiro:2007cy]
[13-1710]
Challenging the Cosmological Constant, Nemanja Kaloper, Phys. Lett. B653 (2007) 109-115, arXiv:0706.1977.
[Kaloper:2007gq]
[13-1711]
MiniBooNE Results and Neutrino Schemes with 2 sterile Neutrinos: Possible Mass Orderings and Observables related to Neutrino Masses, Srubabati Goswami, Werner Rodejohann, JHEP 10 (2007) 073, arXiv:0706.1462.
[Goswami:2007kv]
[13-1712]
When Did Cosmic Acceleration Start ?, Alessandro Melchiorri, Luca Pagano, Stefania Pandolfi, Phys. Rev. D76 (2007) 041301, arXiv:0706.1314.
[Melchiorri:2007in]
[13-1713]
Measuring Dark Energy with Gamma-Ray Bursts and Other Cosmological Probes, F. Y. Wang, Z. G. Dai, Zong-Hong Zhu, Astrophys. J. 667 (2007) 1-10, arXiv:0706.0938.
[Wang:2007rz]
[13-1714]
Dirac Neutrino Dark Matter, Genevieve Belanger, Alexander Pukhov, Geraldine Servant, JCAP 0801 (2008) 009, arXiv:0706.0526.
[Belanger:2007dx]
[13-1715]
Sterile neutrino production in models with low reheating temperatures, Carlos E. Yaguna, JHEP 06 (2007) 002, arXiv:0706.0178.
[Yaguna:2007wi]
[13-1716]
Improved constraints on dark energy from Chandra X-ray observations of the largest relaxed galaxy clusters, S.W. Allen, D.A. Rapetti, R.W. Schmidt, H. Ebeling, G. Morris et al., Mon.Not.Roy.Astron.Soc. 383 (2008) 879-896, arXiv:0706.0033.
[Allen:2007ue]
[13-1717]
Higgs Particle Mass in Cosmology, A.B. Arbuzov, L.A. Glinka, R. Lednicky, V.N. Pervushin, arXiv:0705.4672, 2007.
[Arbuzov:2007jg]
[13-1718]
Revisiting cosmological bounds on radiative neutrino lifetime, A. Mirizzi, D. Montanino, P.D. Serpico, Phys. Rev. D76 (2007) 053007, arXiv:0705.4667.
[Mirizzi:2007jd]
[13-1719]
SN 2005hj: Evidence for Two Classes of Normal-Bright SNe Ia and Implications for Cosmology, Robert Quimby, Peter Hoflich, J. Craig Wheeler, Astrophys. J. 666 (2007) 1083-1092, arXiv:0705.4467.
[Quimby:2007fp]
[13-1720]
Brane Cosmology and KK Gravitinos, C. Bambi, F.R. Urban, JCAP 0709 (2008) 018, arXiv:0705.4227.
[Urban:2008ad]
[13-1721]
Can the Baryon Number Density and the Cosmological Constant be interrelated?, Azusa Minamizaki, Akio Sugamoto, Phys. Lett. B659 (2008) 656-660, arXiv:0705.3682.
[Minamizaki:2007kj]
[13-1722]
Bayesian analysis of the low-resolution polarized 3-year WMAP sky maps, H. K. Eriksen et al., Astrophys. J. 665 (2007) L1, arXiv:0705.3643.
[Eriksen:2007jw]
[13-1723]
Measuring the Baryon Acoustic Oscillation scale using the SDSS and 2dFGRS, Will J. Percival et al., Mon. Not. Roy. Astron. Soc. 381 (2012) 1053-1066, arXiv:0705.3323.
[Roos:2012cc]
[13-1724]
Prospects for Constraining Neutrino Mass Using Planck and Lyman-Alpha Forest Data, Steven Gratton, Antony Lewis, George Efstathiou, Phys. Rev. D77 (2008) 083507, arXiv:0705.3100.
[Gratton:2007tb]
[13-1725]
An improved cosmological bound on the thermal axion mass, Alessandro Melchiorri, Olga Mena, Anze Slosar, Phys. Rev. D76 (2007) 041303, arXiv:0705.2695.
[Melchiorri:2007cd]
[13-1726]
Neutrino Dark Energy - Revisiting the Stability Issue, Ole Eggers Bjaelde et al., JCAP 0801 (2008) 026, arXiv:0705.2018.
[Bjaelde:2007ki]
[13-1727]
Cosmological Constraints from Type Ia Supernovae Peculiar Velocity Measurements, Christopher Gordon, Kate Land, Anze Slosar, Phys. Rev. Lett. 99 (2007) 081301, arXiv:0705.1718.
[Gordon:2007zw]
[13-1728]
Is There a Universal Mass Function?, Bruno Binggeli, Tatjana Hascher, Publ. Astron. Soc. Pac. 119 (2007) 592, arXiv:0705.1599.
[Binggeli:2007xz]
[13-1729]
Cosmological Constraints on Neutrino Injection, Toru Kanzaki, Masahiro Kawasaki, Kazunori Kohri, Takeo Moroi, Phys. Rev. D76 (2007) 105017, arXiv:0705.1200.
[Kanzaki:2007pd]
[13-1730]
Models of f(R) Cosmic Acceleration that Evade Solar-System Tests, Wayne Hu, Ignacy Sawicki, Phys. Rev. D76 (2007) 064004, arXiv:0705.1158.
[Hu:2007nk]
[13-1731]
Model-independent constraints on reionization from large- scale CMB polarization, Michael J. Mortonson, Wayne Hu, Astrophys. J. 672 (2008) 737, arXiv:0705.1132.
[Mortonson:2007hq]
[13-1732]
Matter density perturbations and effective gravitational constant in modified gravity models of dark energy, Shinji Tsujikawa, Phys. Rev. D76 (2007) 023514, arXiv:0705.1032.
[Tsujikawa:2007gd]
[13-1733]
Precision measurements of large scale structure with future type Ia supernova surveys, Steen Hannestad, Troels Haugboelle, Bjarne Thomsen, JCAP 0802 (2008) 022, arXiv:0705.0979.
[Hannestad:2007fb]
[13-1734]
Relic abundance of dark matter in universal extra dimension models with right-handed neutrinos, Shigeki Matsumoto, Joe Sato, Masato Senami, Masato Yamanaka, Phys. Rev. D76 (2007) 043528, arXiv:0705.0934.
[Matsumoto:2007dp]
[13-1735]
Testing anthropic predictions for Lambda and the CMB temperature, J.A. Peacock, Mon.Not.Roy.Astron.Soc. 379 (2007) 1067-1074, arXiv:0705.0898.
[Peacock:2007cw]
[13-1736]
Primordial nucleosynthesis as a probe of fundamental physics parameters, Thomas Dent, Steffen Stern, Christof Wetterich, Phys. Rev. D76 (2007) 063513, arXiv:0705.0696.
[Dent:2007zu]
[13-1737]
Modeling Repulsive Gravity with Creation, R. G. Vishwakarma, J. V. Narlikar, J. Astrophys. Astron. 28 (2007) 17-27, arXiv:0705.0544.
[Vishwakarma:2007tn]
[13-1738]
Observational bounds on the cosmic radiation density, Jan Hamann, Steen Hannestad, Georg G. Raffelt, Yvonne Y. Y. Wong, JCAP 0708 (2007) 021, arXiv:0705.0440.
[Hamann:2007pi]
[13-1739]
Bayesian reconstruction of the cosmological large-scale structure: methodology, inverse algorithms and numerical optimization, F.S. Kitaura, T.A. Ensslin, Mon.Not.Roy.Astron.Soc. 389 (2008) 497, arXiv:0705.0429.
[Kitaura:2007pe]
[13-1740]
Dark energy, cosmological constant and neutrino mixing, A. Capolupo, S. Capozziello, G. Vitiello, Int. J. Mod. Phys. A23 (2008) 4979-4990, arXiv:0705.0319.
[Capolupo:2007hy]
[13-1741]
PArthENoPE: Public Algorithm Evaluating the Nucleosynthesis of Primordial Elements, O. Pisanti et al., Comp. Phys. Commun. 178 (2008) 956, arXiv:0705.0290.
[Pisanti:2007hk]
[13-1742]
Is Modified Gravity Required by Observations? An Empirical Consistency Test of Dark Energy Models, Sheng Wang, Lam Hui, Morgan May, Zoltan Haiman, Phys. Rev. D76 (2007) 063503, arXiv:0705.0165.
[Wang:2007fsa]
[13-1743]
Inflation by a spontaneous parity breaking field and consequences for nu-masses and B-asymmetry, Jinn-Ouk Gong, Narendra Sahu, Phys. Rev. D77 (2008) 023517, arXiv:0705.0068.
[Gong:2007yv]
[13-1744]
PVLAS experiment, star cooling and BBN constraints: Possible interpretation with temperature dependent gauge symmetry breaking, Jihn E. Kim, Phys. Rev. D76 (2007) 051701, arXiv:0704.3310.
[Kim:2007wj]
[13-1745]
Constraining Models of Neutrino Mass and Neutrino Interactions with the Planck Satellite, Alexander Friedland, Kathryn M. Zurek, Sergei Bashinsky, arXiv:0704.3271, 2007.
[Friedland:2007vv]
[13-1746]
Possible solution to the $^{7}\text{Li}$ problem by the long lived stau, Toshifumi Jittoh et al., Phys. Rev. D76 (2007) 125023, arXiv:0704.2914.
[Jittoh:2007fr]
[13-1747]
Extremely Long-Lived Charged Massive Particles as A Probe for Reheating of the Universe, Fumihiro Takayama, Phys. Rev. D77 (2008) 116003, arXiv:0704.2785.
[Takayama:2007du]
[13-1748]
Measuring the dark side (with weak lensing), Luca Amendola, Martin Kunz, Domenico Sapone, JCAP 0804 (2008) 013, arXiv:0704.2421.
[Amendola:2007rr]
[13-1749]
A Way to Dynamically Overcome the Cosmological Constant Problem, Denis Comelli, Int. J. Mod. Phys. A23 (2008) 4133-4143, arXiv:0704.1802.
[Comelli:2007id]
[13-1750]
The Peculiar Velocities of Local Type Ia Supernovae and their Impact on Cosmology, James D. Neill, Michael J. Hudson, Alex Conley (SNLS), Astrophys. J. 661 (2007) L123, arXiv:0704.1654.
[Neill:2007fh]
[13-1751]
Symmetries and the cosmological constant puzzle, A. A. Andrianov, F. Cannata, P. Giacconi, A. Yu. Kamenshchik, R. Soldati, Phys. Lett. B651 (2007) 306-312, arXiv:0704.1436.
[Andrianov:2007db]
[13-1752]
Dark energy interacting with neutrinos and dark matter: a phenomenological theory, G. M. Kremer, Gen. Rel. Grav. 39 (2007) 965-972, arXiv:0704.0371.
[Kremer:2007tu]
[13-1753]
Natural Dark Energy, Douglas Scott, Ali Frolop, Prog.Phys. (2007), arXiv:astro-ph/0703783.
[Scott:2007nc]
[13-1754]
Observational Constraints on Dark Energy and Cosmic Curvature, Yun Wang, Pia Mukherjee, Phys. Rev. D76 (2007) 103533, arXiv:astro-ph/0703780.
[Wang:2007mza]
[13-1755]
A New Test for Dark Energy Models, R. Opher, A. Pelinson, arXiv:astro-ph/0703779, 2007.
[Opher:2007my]
[13-1756]
Note on Varying Speed of Light Cosmologies, George F. R. Ellis, Gen. Rel. Grav. 39 (2007) 511-520, arXiv:astro-ph/0703751.
[Ellis:2007ah]
[13-1757]
Effects of Baryons and Dissipation on the Matter Power Spectrum, Douglas H. Rudd, Andrew R. Zentner, Andrey V. Kravtsov, Astrophys. J. 672 (2008) 19-32, arXiv:astro-ph/0703741.
[Rudd:2007zx]
[13-1758]
The Opposite of Dark Energy: Limits on w = 2/3 Ultralight Energy in the Early Universe, Robert J. Nemiroff, arXiv:astro-ph/0703737, 2007.
[Nemiroff:2007xq]
[13-1759]
Interacting dark energy: generic cosmological evolution for two scalar fields, A. de la Macorra, JCAP 0801 (2008) 030, arXiv:astro-ph/0703702.
[delaMacorra:2007wd]
[13-1760]
`Eppur Si Muove': On The Motion of the Acoustic Peak in the Correlation Function, Robert E. Smith, Roman Scoccimarro, Ravi K. Sheth, Phys. Rev. D77 (2008) 043525, arXiv:astro-ph/0703620.
[Smith:2007gi]
[13-1761]
Analytic spectrum of relic gravitational waves modified by neutrino free streaming and dark energy, H.X.Miao, Y. Zhang, Phys. Rev. D75 (2007) 104009, arXiv:astro-ph/0703602.
[Miao:2007cw]
[13-1762]
Optically-Selected Cluster Catalogs as a Precision Cosmology Tool, Eduardo Rozo et al., Astrophys.J. (2007), arXiv:astro-ph/0703574.
[Rozo:2007yw]
[13-1763]
Cosmological Constraints from SDSS maxBCG Cluster Abundances, Eduardo Rozo et al., Astrophys.J. (2007), arXiv:astro-ph/0703571.
[Rozo:2007yt]
[13-1764]
Cosmological Constraints From the 100 Square Degree Weak Lensing Survey, Jonathan Benjamin et al., Mon. Not. Roy. Astron. Soc. 381 (2007) 702-712, arXiv:astro-ph/0703570.
[Benjamin:2007ys]
[13-1765]
Constraints on Generalized Dark Energy from Recent Observations, Kiyotomo Ichiki, Tomo Takahashi, Phys. Rev. D75 (2007) 123002, arXiv:astro-ph/0703549.
[Ichiki:2007vn]
[13-1766]
Comparison of Supernovae datasets Constraints on Dark Energy, Zhang Chengwu, Xu Lixin, Chang Baorong, Liu Hongya, Chin. Phys. Lett. 24 (2007) 1425-1428, arXiv:astro-ph/0703515.
[Chengwu:2007pf]
[13-1767]
CosmoNet: fast cosmological parameter estimation in non-flat models using neural networks, T. Auld, M. Bridges, M.P. Hobson, Mon.Not.Roy.Astron.Soc. 387 (2008) 1575, arXiv:astro-ph/0703445.
[Auld:2007qz]
[13-1768]
Confrontation of MOND with the rotation curves of early-type disc galaxies, R.H. Sanders, E. Noordermeer, Mon. Not. Roy. Astron. Soc. 379 (2007) 702-710, arXiv:astro-ph/0703352.
[Sanders:2007rg]
[13-1769]
On model selection forecasting, Dark Energy and modified gravity, A. F. Heavens, T.D. Kitching, L. Verde, Mon. Not. Roy. Astron. Soc. 380 (2007) 1029-1035, arXiv:astro-ph/0703191.
[Heavens:2007ka]
[13-1770]
New bounds on millicharged particles from cosmology, Alessandro Melchiorri, Antonello Polosa, Alessandro Strumia, Phys. Lett. B650 (2007) 416-420, arXiv:hep-ph/0703144.
[Melchiorri:2007sq]
[13-1771]
Cosmography: Extracting the Hubble series from the supernova data, Celine Cattoen, Matt Visser, arXiv:gr-qc/0703122, 2007.
[Cattoen:2007id]
[13-1772]
A robust lower limit on the amplitude of matter fluctuations in the universe from cluster abundance and weak lensing, Rachel Mandelbaum, Uros Seljak, JCAP 0706 (2007) 024, arXiv:astro-ph/0703114.
[Mandelbaum:2007tk]
[13-1773]
Increasing Effective Number of Neutrinos by Decaying Particles, Kazuhide Ichikawa et al., JCAP 0705 (2007) 008, arXiv:hep-ph/0703034.
[Ichikawa:2007jv]
[13-1774]
Neutrino mass from future high redshift galaxy surveys: sensitivity and detection threshold, Steen Hannestad, Yvonne Y. Y. Wong, JCAP 0707 (2007) 004, arXiv:astro-ph/0703031.
[Hannestad:2007cp]
[13-1775]
Can f(R) Modified Gravity Theories Mimic a LCDM Cosmology?, S. Fay, S. Nesseris, L. Perivolaropoulos, Phys. Rev. D76 (2007) 063504, arXiv:gr-qc/0703006.
[Fay:2007uy]
[13-1776]
Reconstructing the history of dark energy using maximum entropy, Caroline Zunckel, R. Trotta, Mon. Not. Roy. Astron. Soc. 380 (2007) 865, arXiv:astro-ph/0702695.
[Zunckel:2007jm]
[13-1777]
Baryonic Acoustic Oscillations via the Renormalization Group, Sabino Matarrese, Massimo Pietroni, Mod. Phys. Lett. A23 (2008) 25-32, arXiv:astro-ph/0702653.
[Rosten:2007iq]
[13-1778]
Weak Lensing of Baryon Acoustic Oscillations, Alberto Vallinotto, Scott Dodelson, Carlo Schimd, Jean-Philippe Uzan, Phys. Rev. D75 (2007) 103509, arXiv:astro-ph/0702606.
[Vallinotto:2007mf]
[13-1779]
'Swiss-Cheese' Inhomogeneous Cosmology and the Dark Energy Problem, Tirthabir Biswas, Alessio Notari, JCAP 0806 (2008) 021, arXiv:astro-ph/0702555.
[Biswas:2007gi]
[13-1780]
The detectability of baryonic acoustic oscillations in future galaxy surveys, R. Angulo, C. M. Baugh, C. S. Frenk, C. G. Lacey, Mon. Not. Roy. Astron. Soc. 383 (2008) 755, arXiv:astro-ph/0702543.
[Angulo:2007fw]
[13-1781]
Tainted Evidence: Cosmological Model Selection vs. Fitting, Eric V. Linder, Ramon Miquel, Int. J. Mod. Phys. D17 (2008) 2315, arXiv:astro-ph/0702542.
[Linder:2007fv]
[13-1782]
$\Lambda\alpha\text{DM}$: Observational constraints on a simple unified dark matter cosmological model, Amedeo Balbi, Marco Bruni, Claudia Quercellini, Phys. Rev. D76 (2007) 103519, arXiv:astro-ph/0702423.
[Balbi:2007mz]
[13-1783]
Determining neutrino properties using future galaxy redshift surveys, F. B. Abdalla, S. Rawlings, Mon.Not.Roy.Astron.Soc. (2007), arXiv:astro-ph/0702314.
[Abdalla:2007ut]
[13-1784]
Ellipsoidal Universe Induces Large Scale CMB Polarization, Paolo Cea, arXiv:astro-ph/0702293, 2007.
[Cea:2007tw]
[13-1785]
Stau-catalyzed ^6Li Production in Big-Bang Nucleosynthesis, K. Hamaguchi et al., Phys. Lett. B650 (2007) 268-274, arXiv:hep-ph/0702274.
[Hamaguchi:2007mp]
[13-1786]
The Matrix Reloaded - on the Dark Energy Seesaw, Kari Enqvist, Steen Hannestad, Martin S. Sloth, Phys. Rev. Lett. 99 (2007) 031301, arXiv:hep-ph/0702236.
[Enqvist:2007tb]
[13-1787]
Evolution of polarization orientations in a flat universe with vector perturbations: CMB and quasistellar objects, Juan Antonio Morales, Diego Saez, Phys. Rev. D75 (2007) 043011, arXiv:astro-ph/0701914.
[Morales:2007rd]
[13-1788]
Cosmological neutrino mass detection: The best probe of neutrino lifetime, Pasquale D. Serpico, Phys. Rev. Lett. 98 (2007) 171301, arXiv:astro-ph/0701699.
[Serpico:2007pt]
[13-1789]
Dark Energy, A Cosmological Constant, and Type Ia Supernovae, Lawrence M. Krauss, Katherine Jones-Smith, Dragan Huterer, New J. Phys. 9 (2007) 141, arXiv:astro-ph/0701692.
[Krauss:2007pka]
[13-1790]
The Fate of the Universe: Dark Energy Dilution?, A. de la Macorra, Phys. Rev. D76 (2007) 027301, arXiv:astro-ph/0701635.
[delaMacorra:2007hw]
[13-1791]
Revised Primordial Helium Abundance Based on New Atomic Data, M. Peimbert, V. Luridiana, A. Peimbert, Astrophys. J. 666 (2007) 636-646, arXiv:astro-ph/0701580.
[Peimbert:2007vm]
[13-1792]
Weak Lensing of Galaxy Clusters in MOND, Ryuichi Takahashi, Takeshi Chiba, Astrophys. J. 671 (2007) 45-52, arXiv:astro-ph/0701365.
[Takahashi:2007nj]
[13-1793]
Constraining DM through 21 cm observations, M. Valdes, A. Ferrara, M. Mapelli, E. Ripamonti, Mon. Not. Roy. Astron. Soc. 377 (2007) 245-252, arXiv:astro-ph/0701301.
[Valdes:2007cu]
[13-1794]
Non-thermal right-handed sneutrino dark matter and the $\Omega_{DM}/\Omega_b$ problem, Veronique Page, JHEP 04 (2007) 021, arXiv:hep-ph/0701266.
[Page:2007sh]
[13-1795]
Cosmological constraints in the presence of ionizing and resonance radiation at recombination, Rachel Bean, Alessandro Melchiorri, Joe Silk, Phys. Rev. D75 (2007) 063505, arXiv:astro-ph/0701224.
[Bean:2007rv]
[13-1796]
Dark energy from cosmological neutrino condensation, H. J. de Vega, Universe 9 (2023) 167, arXiv:astro-ph/0701212.
[deVega:2007rh]
[13-1797]
Information criteria for astrophysical model selection, Andrew R Liddle, Mon. Not. Roy. Astron. Soc. Lett. 377 (2007) L74-L78, arXiv:astro-ph/0701113.
[Liddle:2007fy]
[13-1798]
Cosmologies with variable parameters and dynamical cosmon: implications on the cosmic coincidence problem, Javier Grande, Joan Sola, Hrvoje Stefancic, J. Phys. A40 (2007) 6787-6799, arXiv:gr-qc/0701090.
[Grande:2007dk]
[13-1799]
Dark Energy versus Modified Gravity, Martin Kunz, Domenico Sapone, Phys. Rev. Lett. 98 (2007) 121301, arXiv:astro-ph/0612452.
[Kunz:2006ca]
[13-1800]
Thermal decoupling of WIMPs from first principles, Torsten Bringmann, Stefan Hofmann, JCAP 0407 (2007) 016, arXiv:hep-ph/0612238.
[Bringmann:2006mu]
[13-1801]
Reconstruction of the deceleration parameter and the equation of state of dark energy, Yungui Gong, Anzhong Wang, Phys. Rev. D75 (2007) 043520, arXiv:astro-ph/0612196.
[Gong:2006gs]
[13-1802]
Lightest sterile neutrino abundance within the nuMSM, Takehiko Asaka, Mikko Laine, Mikhail Shaposhnikov, JHEP 01 (2007) 091, arXiv:hep-ph/0612182.
[Asaka:2006nq]
[13-1803]
Present bounds on the relativistic energy density in the Universe from cosmological observables, Gianpiero Mangano, Alessandro Melchiorri, Olga Mena, Gennaro Miele, Anze Slosar, JCAP 0703 (2007) 006, arXiv:astro-ph/0612150.
From the abstract: We find for the effective number of neutrinos $N_\nu^{\rm \it eff}$ the constraint $N_\nu^{\rm \it eff}= 5.2^{+2.7}_{-2.2}$ from CMB and Large Scale Structure data, while adding Ly-$\alpha$ and BAO we obtain $N_\nu^{\rm \it eff}= 4.6^{+1.6}_{-1.5}$ at 95 \% c.l.. These results show some tension with the standard value $N_\nu^{\rm \it eff}=3.046$ as well as with the BBN range $N_\nu^{\rm \it eff}= 3.1^{+1.4}_{-1.2}$ at 95 \% c.l., though the discrepancy is slightly below the 2-$\sigma$ level.
[Mangano:2006ur]
[13-1804]
The Velocity Field of the Local Universe from Measurements of Type Ia Supernovae, Troels Haugboelle et al., Astrophys. J. 661 (2007) 650-659, arXiv:astro-ph/0612137.
[Haugboelle:2006uc]
[13-1805]
Precision cosmological measurements: independent evidence for dark energy, Greg Bothun, Stephen D.H. Hsu, Brian Murray, Phys. Lett. B660 (2008) 133-137, arXiv:astro-ph/0612106.
[Bothun:2006nf]
[13-1806]
Dark Energy with a Fine-toothed Comb, Eric V. Linder, Phys. Rev. D75 (2007) 063502, arXiv:astro-ph/0612102.
[Linder:2006nb]
[13-1807]
Majorana Dark Matter, Alexey Anisimov, arXiv:hep-ph/0612024, 2006.
[Anisimov:2006hv]
[13-1808]
Constraining H_0 from Sunyaev-Zel'dovich effect, Galaxy Clusters X-ray data, and Baryon Oscillations, J. V. Cunha, L. Marassi, J. A. S. Lima, Mon. Not. Roy. Astron. Soc. Lett. 379 (2007) L1-L5, arXiv:astro-ph/0611934.
[Cunha:2006rn]
[13-1809]
Hints of Isocurvature Perturbations in the Cosmic Microwave Background, Reijo Keskitalo, Hannu Kurki-Suonio, Vesa Muhonen, Jussi Valiviita, JCAP 0709 (2007) 008, arXiv:astro-ph/0611917.
[Keskitalo:2006qv]
[13-1810]
CosmoMHD: A Cosmological Magnetohydrodynamics Code, Shengtai Li, Hui Li, Renyue Cen, Astrophys.J.Suppl. (2006), arXiv:astro-ph/0611863.
[Li:2006jj]
[13-1811]
Constraint on the Effective Number of Neutrino Species from the WMAP and SDSS LRG Power Spectra, Kazuhide Ichikawa, Masahiro Kawasaki, Fuminobu Takahashi, JCAP 0705 (2007) 007, arXiv:astro-ph/0611784.
[Ichikawa:2006vm]
[13-1812]
Accelerating cosmologies tested by distance measures, V. Barger, Y. Gao, D. Marfatia, Phys. Lett. B648 (2007) 127-132, arXiv:astro-ph/0611775.
[Barger:2006vc]
[13-1813]
Cosmological neutrino mass limits: variations with choice of data sets and a new, bias-free limit, Jostein R. Kristiansen, Oystein Elgaroy, Hakon Dahle, Phys. Rev. D75 (2007) 083510, arXiv:astro-ph/0611761.
[Kristiansen:2006ky]
[13-1814]
Observing CMB polarisation through ice, Luca Pietranera et al., Mon. Not. Roy. Astron. Soc. 376 (2007) 645-650, arXiv:astro-ph/0611678.
[Pietranera:2006yu]
[13-1815]
Conformal Cosmological Model Test with Distant SNIa Data, A.F. Zakharov, A. A. Zakharova, V.N. Pervushin, arXiv:astro-ph/0611657, 2006.
[Zakharov:2006xx]
[13-1816]
How robust are inflation model and dark matter constraints from cosmological data?, Jan Hamann, Steen Hannestad, Martin S. Sloth, Yvonne Y.Y. Wong, Phys. Rev. D75 (2007) 023522, arXiv:astro-ph/0611582.
[Hamann:2006pf]
[13-1817]
Anthropic predictions for vacuum energy and neutrino masses in the light of WMAP-3, Levon Pogosian, Alexander Vilenkin, JCAP 0701 (2007) 025, arXiv:astro-ph/0611573.
[Pogosian:2006fx]
[13-1818]
Constraints on a variable dark energy model with recent observations, Puxun Wu, Hongwei Yu, Phys. Lett. B643 (2006) 315-318, arXiv:astro-ph/0611507.
[Wu:2006bb]
[13-1819]
On the Influence of Resonant Scattering on Cosmic Microwave Background Polarisation Anisotropies, C.Hernandez-Monteagudo, J.A.Rubino-Martin, R.A.Sunyaev, Mon.Not.Roy.Astron.Soc. (2006), arXiv:astro-ph/0611497.
[Hernandez-Monteagudo:2006kxr]
[13-1820]
MOND rotation curves of very low mass spiral galaxies, Mordehai Milgrom, Robert H. Sanders, Astrophys. J. Lett. 658 (2007) L17, arXiv:astro-ph/0611494.
[Milgrom:2006xn]
[13-1821]
Late Forming Dark Matter in Theories of Neutrino Dark Energy, Subinoy Das, Neal Weiner, Phys. Rev. D84 (2011) 123511, arXiv:astro-ph/0611353.
[Das:2006ht]
[13-1822]
Features in the Primordial Spectrum from WMAP: A Wavelet Analysis, Arman Shafieloo et al., Phys. Rev. D75 (2007) 123502, arXiv:astro-ph/0611352.
[Shafieloo:2006hs]
[13-1823]
Probing for variation of neutrino mass with current observations, Gong-Bo Zhao, Jun-Qing Xia, Xinmin Zhang, JCAP 0707 (2007) 010, arXiv:astro-ph/0611227.
[Zhao:2006zf]
[13-1824]
Deep Mixing of He-3: Reconciling Big Bang and Stellar Nucleosynthesis, Peter P. Eggleton, David S. P. Dearborn, John C. Lattanzio, Science (2006), arXiv:astro-ph/0611039.
[Eggleton:2006uc]
[13-1825]
Neutron beta-decay, standard model and cosmology, A. P. Serebrov, Phys. Lett. B650 (2007) 321-324, arXiv:nucl-ex/0611038.
[Serebrov:2006im]
[13-1826]
Simplified Quartessence Cosmology, J. A. S. Lima, J. V. Cunha, J. S. Alcaniz, Astropart. Phys. 31 (2009) 233-236, arXiv:astro-ph/0611007.
[Lima:2006ip]
[13-1827]
Bayesian Estimation Applied to Multiple Species: Towards cosmology with a million supernovae, Martin Kunz, Bruce A. Bassett, Renee Hlozek, Phys. Rev. D75 (2007) 103508, arXiv:astro-ph/0611004.
[Kunz:2006ik]
[13-1828]
Search for Gravitational Waves in the CMB After WMAP3: Foreground Confusion and The Optimal Frequency Coverage for Foreground Minimization, Alexandre Amblard, Asantha Cooray, Manoj Kaplinghat, Phys. Rev. D75 (2007) 083508, arXiv:astro-ph/0610829.
[Amblard:2006ef]
[13-1829]
Consequences of dark matter-dark energy interaction on cosmological parameters derived from SNIa data, L. Amendola, G. C. Campos, R. Rosenfeld, Phys. Rev. D75 (2007) 083506, arXiv:astro-ph/0610806.
[Amendola:2006dg]
[13-1830]
Genus Topology of the Cosmic Microwave Background from the WMAP 3-Year Data, J. Richard Gott III et al., Mon.Not.Roy.Astron.Soc. (2006), arXiv:astro-ph/0610764.
[Gott:2006za]
[13-1831]
Nonparametric determination of the equation of state of Dark Energy, Houri Ziaeepour, arXiv:astro-ph/0610750, 2006.
[Ziaeepour:2006tq]
[13-1832]
Coupled Variations of Fundamental Couplings and Primordial Nucleosynthesis, Alain Coc et al., Phys. Rev. D76 (2007) 023511, arXiv:astro-ph/0610733.
[Coc:2006sx]
[13-1833]
Limits on $f_{NL}$ parameters from WMAP 3yr data, Paolo Creminelli, Leonardo Senatore, Matias Zaldarriaga, Max Tegmark, JCAP 0703 (2007) 005, arXiv:astro-ph/0610600.
[Creminelli:2006rz]
[13-1834]
Conservative Estimates of the Mass of the Neutrino from Cosmology, C.Zunckel, P.G Ferreira, JCAP 0708 (2007) 004, arXiv:astro-ph/0610597.
[Zunckel:2006mt]
[13-1835]
SNLS data are consistent with acceleration at z=3, Luca Amendola, Maurizio Gasperini, Federico Piazza, Phys. Rev. D74 (2006) 127302, arXiv:astro-ph/0610574.
[Amendola:2006ku]
[13-1836]
Classifying Polarization Observables of the Cosmic Microwave Background, John P. Ralston, Pankaj Jain, arXiv:astro-ph/0610403, 2006.
[Ralston:2006if]
[13-1837]
Systematic errors in cosmic microwave background polarization measurements, Daniel O'Dea, Anthony Challinor, B.R. Johnson, Mon. Not. Roy. Astron. Soc. 376 (2007) 1767-1783, arXiv:astro-ph/0610361.
[ODea:2006tvb]
[13-1838]
Can Lambda be determined from nearby Type Ia Supernovae?, P. Erni, G.A. Tammann, Astron.Astrophys. (2006), arXiv:astro-ph/0610291.
[Erni:2006mx]
[13-1839]
Cosmological constraints from COMBO-17 using 3D weak lensing, T. D. Kitching et al., Mon. Not. Roy. Astron. Soc. 376 (2007) 771-778, arXiv:astro-ph/0610284.
[Kitching:2006mq]
[13-1840]
Exact solutions of tachyon scalar field: dark energy and supernovae constraints, Jie Ren, Xin-He Meng, Int. J. Mod. Phys. D17 (2008) 2325-2335, arXiv:astro-ph/0610266.
[Ren:2006kw]
[13-1841]
Cosmological zoo - accelerating models with dark energy, Marek Szydlowski, JCAP 0709 (2007) 007, arXiv:astro-ph/0610250.
[Szydlowski:2006az]
[13-1842]
Comments on an alternative theory for the accelerating universe, Duane A. Dicus, Wayne W. Repko, arXiv:astro-ph/0610232, 2006.
[Dicus:2006af]
[13-1843]
Does string theory predict an open universe?, R. Buniy, S. Hsu, A. Zee, Phys. Lett. B660 (2008) 382-385, arXiv:hep-th/0610231.
[Buniy:2006ed]
[13-1844]
Information content in the halo-model dark-matter power spectrum II: Multiple cosmological parameters, Mark C. Neyrinck, Istvan Szapudi, Mon. Not. Roy. Astron. Soc. 375 (2007) L51-L55, arXiv:astro-ph/0610211.
[Neyrinck:2006zi]
[13-1845]
A non inflationary model with scale invariant cosmological perturbations, Patrick Peter, E. J. C. Pinho, Nelson Pinto-Neto, Phys. Rev. D75 (2007) 023516, arXiv:hep-th/0610205.
[Peter:2006hx]
[13-1846]
Dynamics of perturbations in Gurzadyan-Xue cosmological models, G.V. Vereshchagin, G. Yegorian, Int. J. Mod. Phys. D17 (2008) 203-223, arXiv:astro-ph/0610197.
[Vereshchagin:2006vf]
[13-1847]
Present and future evidence for evolving dark energy, Andrew R Liddle, Pia Mukherjee, David Parkinson, Yun Wang, Phys. Rev. D74 (2006) 123506, arXiv:astro-ph/0610126.
[Liddle:2006kn]
[13-1848]
New Interpretation of the Observational Matter Asymmetry, Rong-Gen Cai, Tong Li, Xue-Qian Li, Xun Wang, Phys. Rev. D76 (2007) 103513, arXiv:hep-ph/0610119.
[Cai:2006vp]
[13-1849]
Crossing the Phantom Divide: Theoretical Implications and Observational Status, S. Nesseris, L. Perivolaropoulos, JCAP 0701 (2012) 018, arXiv:astro-ph/0610092.
[Banijamali:2012zzb]
[13-1850]
Astrophysical and Cosmological Tests of Quantum Theory, Antony Valentini, J. Phys. A40 (2007) 3285-3303, arXiv:hep-th/0610032.
[Valentini:2006yj]
[13-1851]
Separating the Weak Lensing and Kinetic SZ Effects from CMB Temperature Maps, Mario A. Riquelme, David N. Spergel, Astrophys. J. 661 (2007) 672-677, arXiv:astro-ph/0610007.
[Riquelme:2006nf]
[13-1852]
Dynamical Dark Energy after WMAP 3-year, Michael Doran, Georg Robbers, Christof Wetterich, Phys. Rev. D75 (2007) 023003, arXiv:astro-ph/0609814.
[Doran:2006tcv]
[13-1853]
Low-scale inflation in a model of dark energy and dark matter, P.Q. Hung, Eduard Masso, Gabriel Zsembinszki, JCAP 0612 (2006) 004, arXiv:astro-ph/0609777.
[Hung:2006ah]
[13-1854]
Gravitational Lens Time Delays: A Statistical Assessment of Lens Model Dependences and Implications for the Global Hubble Constant, Masamune Oguri, Astrophys. J. 660 (2007) 1-15, arXiv:astro-ph/0609694.
[Oguri:2006qp]
[13-1855]
Bulk Viscosity, Decaying Dark Matter, and the Cosmic Acceleration, James R. Wilson, Grant J. Mathews, George M. Fuller, Phys. Rev. D75 (2007) 043521, arXiv:astro-ph/0609687.
[Wilson:2006gf]
[13-1856]
A Model-Independent Photometric Redshift Estimator for Type Ia Supernovae, Yun Wang, Astrophys. J. 654 (2007) L123, arXiv:astro-ph/0609639.
[Wang:2006ef]
[13-1857]
Observational $H(z)$ Data and Cosmological Models, Hao Wei, Shuang Nan Zhang, Phys. Lett. B644 (2007) 7-15, arXiv:astro-ph/0609597.
[Wei:2006ut]
[13-1858]
A Cosmology Calculator for the World Wide Web, Edward L. Wright, Publ. Astron. Soc. Pac. 118 (2006) 1711-1715, arXiv:astro-ph/0609593.
[Wright:2006up]
[13-1859]
Cosmological neutrino mass limit and the dynamics of dark energy, Jun-Qing Xia, Gong-Bo Zhao, Xinmin Zhang, Phys. Rev. D75 (2007) 103505, arXiv:astro-ph/0609463.
[Xia:2006wd]
[13-1860]
Statistical analysis of undetected point sources in cosmic microwave background maps, Francisco Argueso, J. L. Sanz, R. B. Barreiro, D. Herranz, J. Gonzalez-Nuevo, Mon. Not. Roy. Astron. Soc. 373 (2006) 311-320, arXiv:astro-ph/0609348.
[Argueso:2006gu]
[13-1861]
Cosmological Constraints on Gravitino LSP Scenario with Sneutrino NLSP, Toru Kanzaki, Masahiro Kawasaki, Kazunori Kohri, Takeo Moroi, Phys. Rev. D75 (2007) 025011, arXiv:hep-ph/0609246.
[Kanzaki:2006hm]
[13-1862]
Gauss-Bonnet Quintessence: Background Evolution, Large Scale Structure and Cosmological Constraints, Tomi Koivisto, David F. Mota, Phys. Rev. D75 (2007) 023518, arXiv:hep-th/0609155.
[Koivisto:2006ai]
[13-1863]
On the Law of Gravity, the Mass of Neutrinos and the Proof of Dark Matter, Garry W. Angus, HuanYuan Shan, HongSheng Zhao, Benoit Famaey, Astrophys. J. 654 (2007) L13-L16, arXiv:astro-ph/0609125.
[Angus:2006ev]
[13-1864]
Primordial non-Gaussianity and Dark Energy constraints from Cluster Surveys, Emiliano Sefusatti, Chris Vale, Kenji Kadota, Joshua Frieman, Astrophys. J. 658 (2007) 669, arXiv:astro-ph/0609124.
[Sefusatti:2006eu]
[13-1865]
The effect of inhomogeneous expansion on the supernova observations, Kari Enqvist, Teppo Mattsson, JCAP 0702 (2007) 019, arXiv:astro-ph/0609120.
[Enqvist:2006cg]
[13-1866]
Measuring Omega_m using clusters evolution, A. Del Popolo, Astron. Astrophys. 408 (2003) 43-49, arXiv:astro-ph/0609085.
[DelPopolo:2003lcl]
[13-1867]
Baryon Acoustic Oscillations and Dynamical Dark Energy, Michael Doran, Steffen Stern, Eduard Thommes, JCAP 0704 (2007) 015, arXiv:astro-ph/0609075.
[Doran:2006xp]
[13-1868]
Crossing the Phantom Divide, Martin Kunz, Domenico Sapone, Phys. Rev. D74 (2006) 123503, arXiv:astro-ph/0609040.
[Kunz:2006wc]
[13-1869]
Slow Roll Reconstruction: Constraints on Inflation from the 3 Year WMAP Dataset, Hiranya Peiris, Richard Easther, JCAP 0610 (2006) 017, arXiv:astro-ph/0609003.
[Peiris:2006sj]
[13-1870]
Separating Dark Physics from Physical Darkness: Minimalist Modified Gravity vs. Dark Energy, Dragan Huterer, Eric V. Linder, Phys. Rev. D75 (2007) 023519, arXiv:astro-ph/0608681.
[Huterer:2006mva]
[13-1871]
Lightcurves of Type Ia Supernovae from Near the Time of Explosion, Arti Garg et al., Astron. J. 133 (2007) 403-419, arXiv:astro-ph/0608639.
[Garg:2006gw]
[13-1872]
Measuring the matter density using baryon oscillations in the SDSS, Will J. Percival et al., Astrophys. J. 657 (2007) 51-55, arXiv:astro-ph/0608635.
[Percival:2006gs]
[13-1873]
Cosmological Constraints from the SDSS Luminous Red Galaxies, M Tegmark et al. (SDSS), Phys. Rev. D74 (2006) 123507, arXiv:astro-ph/0608632.
[SDSS:2006lmn]
[13-1874]
Can Cosmic Structure form without Dark Matter?, Scott Dodelson, Michele Liguori, Phys. Rev. Lett. 97 (2006) 231301, arXiv:astro-ph/0608602.
[Dodelson:2006zt]
[13-1875]
Bound-State Effects on Light-Element Abundances in Gravitino Dark Matter Scenarios, Richard H. Cyburt et al., JCAP 0611 (2006) 014, arXiv:astro-ph/0608562.
[Cyburt:2006uv]
[13-1876]
CMB Anomalies from Relic Anisotropy, A. E. Gumrukcuoglu, Carlo R. Contaldi, Marco Peloso, arXiv:astro-ph/0608405, 2006.
[Gumrukcuoglu:2006xj]
[13-1877]
On the Absence of Cosmic Acceleration, John Middleditch, Astrophys.J.Lett. (2006), arXiv:astro-ph/0608386.
[Middleditch:2006wq]
[13-1878]
The impact of neutrino masses on the determination of dark energy properties, Axel De La Macorra, Alessandro Melchiorri, Paolo Serra, Rachel Bean, Astropart. Phys. 27 (2007) 406-410, arXiv:astro-ph/0608351.
[DeLaMacorra:2006tu]
[13-1879]
Cosmological Implications of the Second Parameter of Type Ia Supernovae, Philipp Podsiadlowski et al., Mon.Not.Roy.Astron.Soc. (2006), arXiv:astro-ph/0608324.
[Podsiadlowski:2006qk]
[13-1880]
A probable stellar solution to the cosmological lithium discrepancy, A. J. Korn et al., Nature 442 (2006) 657-659, arXiv:astro-ph/0608201.
[Korn:2006tv]
[13-1881]
Requirements for Cosmological 21-cm Masers, Mark Dijkstra, Abraham Loeb, New Astron. 13 (2008) 395-404, arXiv:astro-ph/0608185.
[Dijkstra:2006td]
[13-1882]
Cosmological model selection, Andrew R. Liddle, Pia Mukherjee, David Parkinson, Astron. Geophys. 47 (2006) 4.30-4.33, arXiv:astro-ph/0608184.
[Liddle:2006tc]
[13-1883]
A-term inflation and the smallness of neutrino masses, Rouzbeh Allahverdi, Alexander Kusenko, Anupam Mazumdar, JCAP 0707 (2006) 018, arXiv:hep-ph/0608138.
[Allahverdi:2006wt]
[13-1884]
Deflation at Turnaround for Oscillatory Cosmology, Lauris Baum, Paul H. Frampton, Phys. Rev. Lett. 98 (2007) 071301, arXiv:astro-ph/0608138.
[Baum:2006nz]
[13-1885]
Cleaned Three-Year WMAP CMB Map: Magnitude of the Quadrupole and Alignment of Large Scale Modes, Chan-Gyung Park, Changbom Park, J. Richard Gott III, Astrophys. J. 660 (2007) 959-975, arXiv:astro-ph/0608129.
[Park:2006dv]
[13-1886]
Free-bound emission from cosmological hydrogen recombination, J. Chluba, R.A. Sunyaev, Astron.Astrophys. (2006), arXiv:astro-ph/0608120.
[Chluba:2006xa]
[13-1887]
The isocurvature fraction after WMAP 3-year data, Roberto Trotta, Mon. Not. Roy. Astron. Soc. Lett. 375 (2007) L26-L30, arXiv:astro-ph/0608116.
[Trotta:2006ww]
[13-1888]
If Gauss-Bonnet interaction plays the role of dark energy, Abhik Kumar Sanyal, Phys. Lett. B645 (2007) 1-5, arXiv:astro-ph/0608104.
[Sanyal:2006wi]
[13-1889]
Observables sensitive to absolute neutrino masses: A reappraisal after WMAP-3y and first MINOS results, G.L. Fogli et al., Phys. Rev. D75 (2007) 053001, arXiv:hep-ph/0608060.
[Fogli:2006yq]
[13-1890]
The Accelerating Universe and a Limiting Curvature Proposal, Damien A. Easson, JCAP 0702 (2007) 004, arXiv:astro-ph/0608034.
[Easson:2006jd]
[13-1891]
Energy Conditions and Supernovae Observations, J. Santos, J.S. Alcaniz, M.J. Reboucas, Phys. Rev. D74 (2006) 067301, arXiv:astro-ph/0608031.
[Santos:2006ja]
[13-1892]
Revised WMAP constraints on neutrino masses and other extensions of the minimal $\Lambda\text{CDM}$ model, Jostein R. Kristiansen, Hans Kristian Eriksen, Oystein Elgaroy, Phys. Rev.D (2006), arXiv:astro-ph/0608017.
[Kristiansen:2006ec]
[13-1893]
Violation of CPT and Lorentz Invariance, Neutrino Oscillation and the Early Universe, P. Arias et al., Phys. Lett. B650 (2007) 401-406, arXiv:hep-ph/0608007.
[Arias:2006vgq]
[13-1894]
The Maximum B-mode Polarization of the Cosmic Microwave Background from Inhomogeneous Reionization, Michael J. Mortonson, Wayne Hu, Astrophys. J. 657 (2007) 1-14, arXiv:astro-ph/0607652.
[Mortonson:2006re]
[13-1895]
Is cosmic expansion of the universe accelerating?, D. C. Choudhury, arXiv:astro-ph/0607646, 2006.
[Choudhury:2006qy]
[13-1896]
Accurate Extra-Galactic Distances and Dark Energy: Anchoring the Distance Scale with Rotational Parallaxes, Rob P. Olling, Mon. Not. Roy. Astron. Soc. 378 (2007) 1385-1399, arXiv:astro-ph/0607607.
[Olling:2006ju]
[13-1897]
Matter density perturbations in interacting quintessence models, G. Olivares, F. Atrio-Barandela, D. Pavon, Phys. Rev. D74 (2006) 043521, arXiv:astro-ph/0607604.
[Olivares:2006jr]
[13-1898]
Sensitivity and figures of merit for dark energy supernovae surveys, J.-M. Virey, A. Ealet, Astron.Astrophys. (2006), arXiv:astro-ph/0607589.
[Virey:2006em]
[13-1899]
On the origin of the diffuse gamma-ray background radiation, Arnon Dar, Shlomo Dado, A De Rujula, arXiv:astro-ph/0607479, 2006.
[Dar:2006kj]
[13-1900]
WMAP 3-year primordial power spectrum, M. Bridges, A.N. Lasenby, M.P. Hobson, Mon.Not.Roy.Astron.Soc. (2006), arXiv:astro-ph/0607404.
[Bridges:2006zm]
[13-1901]
Solving the Problem of Time in General Relativity and Cosmology with Phantoms and k - Essence, Thomas Thiemann, arXiv:astro-ph/0607380, 2006.
[Thiemann:2006up]
[13-1902]
Lines in the Cosmic Microwave Background Spectrum from the Epoch of Cosmological Hydrogen Recombination, J.A. Rubino-Martin, J. Chluba, R.A. Sunyaev, Mon. Not. Roy. Astron. Soc. 371 (2006) 1939-1952, arXiv:astro-ph/0607373.
[Rubino-Martin:2006hng]
[13-1903]
Isotherms clustering in cosmic microwave background, A. Bershadskii, Phys. Lett. A360 (2006) 210-216, arXiv:astro-ph/0607370.
[Bershadskii:2006ud]
[13-1904]
A possible interrelation between the estimated luminosity distances and internal extinctions of type Ia supernovae, L.G. Balazs et al., Astron. J. 327 (2006) 917, arXiv:astro-ph/0607369.
[Balazs:2006uc]
[13-1905]
Critical point corresponding to Big Rip in SO(1,1) dark energy model, Yi-Huan Wei, arXiv:astro-ph/0607359, 2006.
[Wei:2006ts]
[13-1906]
Solving cosmological problem in universal extra dimension models by introducing Dirac neutrino, Shigeki Matsumoto, Joe Sato, Masato Senami, Masato Yamanaka, Phys. Lett. B647 (2007) 466-471, arXiv:hep-ph/0607331.
[Matsumoto:2006bf]
[13-1907]
The Effects of Cold Dark Matter Decoupling and Pair Annihilation on Cosmological Perturbations, Edmund Bertschinger, Phys. Rev. D74 (2006) 063509, arXiv:astro-ph/0607319.
[Bertschinger:2006nq]
[13-1908]
Supernovae, Lensed CMB and Dark Energy, Wayne Hu, Dragan Huterer, Kendrick M. Smith, Astrophys. J. 650 (2006) L13-L16, arXiv:astro-ph/0607316.
[Hu:2006nm]
[13-1909]
Cosmological Information from Lensed CMB Power Spectra, Kendrick M. Smith, Wayne Hu, Manoj Kaplinghat, Phys. Rev. D74 (2006) 123002, arXiv:astro-ph/0607315.
[Smith:2006nk]
[13-1910]
Systematic Errors in Cosmic Microwave Background Interferometry, Emory F. Bunn, Phys. Rev. D75 (2007) 083517, arXiv:astro-ph/0607312.
[Bunn:2006nh]
[13-1911]
Cosmological Constraints from Hubble Parameter versus Redshift Data, Lado Samushia, Bharat Ratra, Astrophys. J. 650 (2006) L5-L8, arXiv:astro-ph/0607301.
[Samushia:2006fx]
[13-1912]
The WMAP normalization of inflationary cosmologies, Andrew R Liddle, David Parkinson, Samuel M Leach, Pia Mukherjee, Phys. Rev. D74 (2006) 083512, arXiv:astro-ph/0607275.
[Liddle:2006ev]
[13-1913]
Effects of non-standard neutrino-electron interactions on relic neutrino decoupling, Gianpiero Mangano et al., Nucl. Phys. B756 (2006) 100-116, arXiv:hep-ph/0607267.
[Mangano:2006ar]
[13-1914]
Constraints on Quintessence From Using Cosmological Data, L.P.L. Colombo, M. Gervasi, JCAP 0610 (2006) 001, arXiv:astro-ph/0607262.
[Colombo:2006tu]
[13-1915]
Noncommutative Black-Body Radiation: Implications On Cosmic Microwave Background, Amir H. Fatollahi, Maryam Hajirahimi, Europhys. Lett. 75 (2006) 542-547, arXiv:astro-ph/0607257.
[Fatollahi:2006tp]
[13-1916]
Can a vector field be responsible for the curvature perturbation in the Universe?, Konstantinos Dimopoulos, Phys. Rev. D74 (2006) 083502, arXiv:hep-ph/0607229.
[Dimopoulos:2006ms]
[13-1917]
The Polarization of the Cosmic Microwave Background Due to Primordial Gravitational Waves, Brian G. Keating, Alexander G. Polnarev, Nathan J. Miller, Deepak Baskaran, Int. J. Mod. Phys. A21 (2006) 2459-2479, arXiv:astro-ph/0607208.
[Keating:2006zy]
[13-1918]
Ellipticity in Cosmic Microwave Background as a Tracer of Large-Scale Universe, V.G. Gurzadyan et al., Phys. Lett. A363 (2007) 121-124, arXiv:astro-ph/0607160.
[Gurzadyan:2006uk]
[13-1919]
Testing Global Isotropy of Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Data: Temperature Analysis, Amir Hajian, Tarun Souradeep, Phys. Rev. D74 (2006) 123521, arXiv:astro-ph/0607153.
[Hajian:2006ud]
[13-1920]
Observable Effects of Scalar Fields and Varying Constants, John D. Barrow, Douglas J. Shaw, Gen. Rel. Grav. 39 (2007) 1235-1257, arXiv:gr-qc/0607132.
[Barrow:2006rr]
[13-1921]
Interacting Dark Energy and Dark Matter: observational Constraints from Cosmological Parameters, Bin Wang et al., Nucl. Phys. B778 (2007) 69-84, arXiv:astro-ph/0607126.
[Wang:2006qw]
[13-1922]
Dark energy and curvature from a future baryonic acoustic oscillation survey using the Lyman-alpha forest, Patrick McDonald, Daniel Eisenstein, Phys. Rev. D76 (2007) 063009, arXiv:astro-ph/0607122.
[McDonald:2006qs]
[13-1923]
Probing Dark Energy via Neutrino and Supernova Observatories, Lawrence J. Hall, Hitoshi Murayama, Michele Papucci, Gilad Perez, arXiv:hep-ph/0607109, 2006.
[Hall:2006br]
[13-1924]
Gravitational Waves from Phase Transitions at the Electroweak Scale and Beyond, Christophe Grojean, Geraldine Servant, Phys. Rev. D75 (2007) 043507, arXiv:hep-ph/0607107.
[Grojean:2006bp]
[13-1925]
Neutrino masses and cosmic radiation density: Combined analysis, Steen Hannestad, Georg G.Raffelt, JCAP 0611 (2006) 016, arXiv:astro-ph/0607101.
[Hannestad:2006mi]
[13-1926]
Vacuum energy reduction through destabilization: a unification of quintessence and a dynamical approach?, Tomohiro Matsuda, arXiv:hep-ph/0607092, 2006.
[Matsuda:2006xb]
[13-1927]
Cosmology of neutrinos and extra light particles after WMAP3, Marco Cirelli, Alessandro Strumia, JCAP 0612 (2006) 013, arXiv:astro-ph/0607086.
[Cirelli:2006kt]
[13-1928]
A No-Truncation Approach to Cosmic Microwave Background Anisotropies, Steven Weinberg, Phys. Rev. D74 (2006) 063517, arXiv:astro-ph/0607076.
[Weinberg:2006hh]
[13-1929]
Effects of early dark energy on strong cluster lensing, Cosimo Fedeli, Matthias Bartelmann, Astron. Astrophys. 461 (2007) 49-57, arXiv:astro-ph/0607069.
[Fedeli:2006ha]
[13-1930]
Constraining the CDM spectrum normalization in flat dark energy cosmologies, Spyros Basilakos, Manolis Plionis, Astrophys. J. 650 (2006) L1-L4, arXiv:astro-ph/0607065.
[Basilakos:2006gw]
[13-1931]
Cheng-Weyl Vector Field and its Cosmological Application, Hao Wei, Rong-Gen Cai, JCAP 0709 (2007) 015, arXiv:astro-ph/0607064.
[Wei:2006gv]
[13-1932]
Simulations of Baryon Oscillations, Eric Huff et al., Astropart. Phys. 26 (2007) 351-366, arXiv:astro-ph/0607061.
[Huff:2006gs]
[13-1933]
Dark Energy Constraints from Gemini Deep Deep Survey, M.A. Dantas, J.S. Alcaniz, D. Jain, A. Dev, Astron. Astrophys. 467 (2007) 421, arXiv:astro-ph/0607060.
[Dantas:2006dy]
[13-1934]
Enhanced polarization of CMB from thermal gravitational waves, Kaushik Bhattacharya, Subhendra Mohanty, Akhilesh Nautiyal, Phys. Rev. Lett. 97 (2006) 251301, arXiv:astro-ph/0607049.
[Bhattacharya:2006dm]
[13-1935]
Detection regimes of the cosmological gravitational wave background from astrophysical sources, David Coward, Tania Regimbau, New Astron. Rev. 50 (2006) 461-467, arXiv:astro-ph/0607043.
[Coward:2006df]
[13-1936]
Snapping Supernovae at z > 1.7, Greg Aldering et al., Astropart. Phys. 27 (2007) 213-225, arXiv:astro-ph/0607030.
[Aldering:2006cs]
[13-1937]
Pico: Parameters for the Impatient Cosmologist, William A. Fendt, Benjamin D. Wandelt, Astrophys. J. 654 (2006) 2-11, arXiv:astro-ph/0606709.
[Fendt:2006uh]
[13-1938]
Lookback time as a test for brane cosmology, N. Pires, Zong-Hong Zhu, J.S. Alcaniz, Phys. Rev. D73 (2006) 123530, arXiv:astro-ph/0606689.
[Pires:2006rd]
[13-1939]
Constraining Isocurvature Initial Conditions with WMAP 3-year data, Rachel Bean, Joanna Dunkley, Elena Pierpaoli, Phys. Rev. D74 (2006) 063503, arXiv:astro-ph/0606685.
[Bean:2006qz]
[13-1940]
How to calculate the CMB spectrum, Petter Callin, arXiv:astro-ph/0606683, 2006.
[Callin:2006qx]
[13-1941]
A no-go theorem for k-essence dark energy, Camille Bonvin, Chiara Caprini, Ruth Durrer, Phys. Rev. Lett. 97 (2006) 081303, arXiv:astro-ph/0606584.
[Bonvin:2006vc]
[13-1942]
Can A Galaxy Redshift Survey Measure Dark Energy Clustering?, Masahiro Takada, Phys. Rev. D74 (2006) 043505, arXiv:astro-ph/0606533.
[Takada:2006xs]
[13-1943]
Integrated Sachs-Wolfe effect from the cross-correlation of WMAP 3 year and NVSS: new results and constraints on dark energy, Davide Pietrobon, Amedeo Balbi, Domenico Marinucci, Phys. Rev. D74 (2006) 043524, arXiv:astro-ph/0606475.
[Pietrobon:2006gh]
[13-1944]
Inflation and WMAP three year data: Features have a Future!, Laura Covi et al., Phys. Rev. D74 (2006) 083509, arXiv:astro-ph/0606452.
[Covi:2006ci]
[13-1945]
A model-independent dark energy reconstruction scheme using the geometrical form of the luminosity-distance relation, Stephane Fay, Reza Tavakol, Phys. Rev. D74 (2006) 083513, arXiv:astro-ph/0606431.
[Fay:2006bm]
[13-1946]
Probing dark energy with the shear-ratio geometric test, A.N. Taylor, T.D. Kitching, D.J. Bacon, A.F. Heavens, Mon. Not. Roy. Astron. Soc. 374 (2007) 1377-1403, arXiv:astro-ph/0606416.
[Taylor:2006aw]
[13-1947]
An Interacting Dark Energy Model for the Expansion History of the Universe, Micheal S. Berger, Hamed Shojaei, Phys. Rev. D74 (2006) 043530, arXiv:astro-ph/0606408.
[Berger:2006fk]
[13-1948]
Probing Neutrino Dark Energy with Extremely High-Energy Cosmic Neutrinos, Andreas Ringwald, Lily Schrempp, JCAP 0610 (2006) 012, arXiv:astro-ph/0606316.
[Ringwald:2006ks]
[13-1949]
Proto-clusters in the Lambda CDM Universe, Tamon Suwa, Asao Habe, Kohji Yoshikawa, Astrophys. J. 646 (2006) L5-L8, arXiv:astro-ph/0606292.
[Suwa:2006js]
[13-1950]
Scalar-Tensor Models of Normal and Phantom Dark Energy, Radouane Gannouji, David Polarski, Andre Ranquet, Alexei A. Starobinsky, JCAP 0609 (2006) 016, arXiv:astro-ph/0606287.
[Gannouji:2006jm]
[13-1951]
Implications of cosmic strings with time-varying tension on CMB and large scale structure, Kazuhide Ichikawa, Tomo Takahashi, Masahide Yamaguchi, Phys. Rev. D74 (2006) 063526, arXiv:hep-ph/0606287.
[Ichikawa:2006rw]
[13-1952]
Conformal symmetry of gravity and the cosmological constant problem, Mariano Cadoni, Phys. Lett. B642 (2006) 525-529, arXiv:hep-th/0606274.
[Cadoni:2006ww]
[13-1953]
Probing cosmological parameters with the CMB: Forecasts from full Monte Carlo simulations, Laurence Perotto et al., JCAP 0610 (2006) 013, arXiv:astro-ph/0606227.
[Perotto:2006rj]
[13-1954]
Can MOND take a bullet? Analytical comparisons of three versions of MOND beyond spherical symmetry, Garry W. Angus, Benoit Famaey, HongSheng Zhao, Mon. Not. Roy. Astron. Soc. 371 (2006) 138, arXiv:astro-ph/0606216.
[Angus:2006qy]
[13-1955]
The Cosmological Evolution of the Average Mass Per Baryon, Gary Steigman, JCAP 0610 (2006) 016, arXiv:astro-ph/0606206.
[Steigman:2006nf]
[13-1956]
Cosmological bounds on dark matter-neutrino interactions, Gianpiero Mangano et al., Phys. Rev. D74 (2006) 043517, arXiv:astro-ph/0606190.
[Mangano:2006mp]
[13-1957]
The Price of WMAP Inflation in Supergravity, J. Ellis, Z. Lalak, S. Pokorski, K. Turzynski, JCAP 0610 (2006) 005, arXiv:hep-th/0606133.
[Ellis:2006ara]
[13-1958]
Starting the Universe: Stable Violation of the Null Energy Condition and Non-standard Cosmologies, Paolo Creminelli, Markus A. Luty, Alberto Nicolis, Leonardo Senatore, JHEP 12 (2006) 080, arXiv:hep-th/0606090.
[Creminelli:2006xe]
[13-1959]
Cosmology and Astrophysical Constraints of Gauss-Bonnet Dark Energy, Tomi Koivisto, David F. Mota, Phys. Lett. B644 (2007) 104-108, arXiv:astro-ph/0606078.
[Koivisto:2006xf]
[13-1960]
New type scalar fields for cosmic acceleration, Alex Kehagias, J.Phys.Conf.Ser. 68 (2007) 012017, arXiv:hep-th/0606051.
[Kehagias:2007zz]
[13-1961]
Stability in MaVaN Models, Christopher Spitzer, arXiv:astro-ph/0606034, 2006.
[Spitzer:2006hm]
[13-1962]
The new form of the equation of state for dark energy fluid and accelerating universe, Shin'ichi Nojiri, Sergei D. Odintsov, Phys. Lett. B639 (2006) 144-150, arXiv:hep-th/0606025.
[Nojiri:2006zh]
[13-1963]
Estimators for local non-Gaussianities, Paolo Creminelli, Leonardo Senatore, Matias Zaldarriaga, JCAP 0703 (2007) 019, arXiv:astro-ph/0606001.
[Creminelli:2006gc]
[13-1964]
Dark energy constraints from lensing-detected galaxy clusters, Laura Marian, Gary M. Bernstein, Phys. Rev. D73 (2006) 123525, arXiv:astro-ph/0605746.
[Marian:2006zp]
[13-1965]
Weighing neutrinos in the presence of a running primordial spectral index, Bo Feng et al., JCAP 0612 (2006) 011, arXiv:astro-ph/0605742.
[Feng:2006zj]
[13-1966]
What measurable zero point fluctuations can(not) tell us about dark energy, Michael Doran, Joerg Jaeckel, JCAP 0608 (2006) 010, arXiv:astro-ph/0605711.
[Doran:2006ki]
[13-1967]
On the Rees-Sciama effect: maps and statistics, N. Puchades, M.J. Fullana, J.V. Arnau, D. Sáez, Mon. Not. Roy. Astron. Soc. 370 (2006) 1849-1858, arXiv:astro-ph/0605704.
[Puchades:2006gs]
[13-1968]
Observational constraints on phantom-like braneworld cosmologies, Ruth Lazkoz, Roy Maartens, Elisabetta Majerotto, Phys. Rev. D74 (2006) 083510, arXiv:astro-ph/0605701.
[Lazkoz:2006gp]
[13-1969]
Cosmic tomographies: baryon acoustic oscillations and weak lensing, Hu Zhan, JCAP 0608 (2006) 008, arXiv:astro-ph/0605696.
[Zhan:2006gi]
[13-1970]
Reconstructing the dark energy equation of state with varying couplings, P. P. Avelino, C. J. A. P. Martins, N. J. Nunes, K. A. Olive, Phys. Rev. D74 (2006) 083508, arXiv:astro-ph/0605690.
[Avelino:2006gc]
[13-1971]
Gauss-Bonnet braneworld and WMAP three year results, Brian M. Murray, Yun Soo Myung, Phys. Lett. B642 (2006) 426-431, arXiv:astro-ph/0605684.
[Murray:2006fw]
[13-1972]
A kinematical approach to dark energy studies, David Rapetti, Steven W. Allen, Mustafa A. Amin, Roger D. Blandford, Mon. Not. Roy. Astron. Soc. 375 (2007) 1510-1520, arXiv:astro-ph/0605683.
[Rapetti:2006fv]
[13-1973]
A Universe Dominated by Dilaton Field, C.J. Gao, S.N. Zhang, arXiv:astro-ph/0605682, 2006.
[Gao:2006fu]
[13-1974]
Cosmological and Astrophysical Parameter Measurement with 21-cm Anisotropies During the Era of Reionization, Mario G. Santos, Asantha Cooray, Phys. Rev. D74 (2006) 083517, arXiv:astro-ph/0605677.
[Santos:2006fp]
[13-1975]
Gravitational polarization and the MOND phenomenology, Luc Blanchet, Class. Quant. Grav. 24 (2007) 3529-3540, arXiv:astro-ph/0605637.
[Blanchet:2006yt]
[13-1976]
Mass functions in coupled Dark Energy models, Roberto Mainini, Silvio Bonometto, Phys. Rev. D74 (2006) 043504, arXiv:astro-ph/0605621.
[Mainini:2006zj]
[13-1977]
Supernova constraints on decaying vacuum cosmology, S. Carneiro, C. Pigozzo, H. A. Borges, J. S. Alcaniz, Phys. Rev. D74 (2006) 023532, arXiv:astro-ph/0605607.
[Carneiro:2006yv]
[13-1978]
Constraints on holographic dark energy models using the differential ages of passively evolving galaxies, Ze-Long Yi, Tong-Jie Zhang, Mod. Phys. Lett. A22 (2007) 41-54, arXiv:astro-ph/0605596.
[Yi:2006bw]
[13-1979]
Systematic effects in the sound horizon scale measurements, Jacek Guzik, Gary Bernstein, Mon. Not. Roy. Astron. Soc. 375 (2007) 1329-1337, arXiv:astro-ph/0605594.
[Guzik:2006bu]
[13-1980]
Modeling dark energy with a top-down approach, Duane A. Dicus, Wayne W. Repko, arXiv:astro-ph/0605537, 2006.
[Dicus:2006uy]
[13-1981]
Weighing the Universe with Photometric Redshift Surveys and the Impact on Dark Energy Forecasts, Lloyd Knox, Yong-Seon Song, Hu Zhan, Astrophys. J. 652 (2006) 857-863, arXiv:astro-ph/0605536.
[Knox:2006ux]
[13-1982]
Challenges for scaling cosmologies, Luca Amendola, Miguel Quartin, Shinji Tsujikawa, Ioav Waga, Phys. Rev. D74 (2006) 023525, arXiv:astro-ph/0605488.
[Amendola:2006qi]
[13-1983]
Implication of Dark Energy Parametrizations on the Determination of the Curvature of the Universe, Kazuhide Ichikawa, Masahiro Kawasaki, Toyokazu Sekiguchi, Tomo Takahashi, JCAP 0612 (2006) 005, arXiv:astro-ph/0605481.
[Ichikawa:2006qb]
[13-1984]
Limit on the Neutrino Mass from the WMAP Three Year Data, Masataka Fukugita, Kazuhide Ichikawa, Masahiro Kawasaki, Ofer Lahav, Phys. Rev. D74 (2006) 027302, arXiv:astro-ph/0605362.
[Fukugita:2006rm]
[13-1985]
Statistical Analysis of Quasar Data and Hubble Law, Sisir Roy, Dhrubajit Datta, Malabika Roy, Menas Kafatos, arXiv:astro-ph/0605356, 2006.
[Roy:2006rf]
[13-1986]
The acceleration of the universe and the physics behind it, Jean-Philippe Uzan, Gen. Rel. Grav. 39 (2007) 307-342, arXiv:astro-ph/0605313.
[Uzan:2006mf]
[13-1987]
The Clustering of Luminous Red Galaxies in the Sloan Digital Sky Survey Imaging Data, N. Padmanabhan et al. (SDSS), Mon. Not. Roy. Astron. Soc. 378 (2007) 852-872, arXiv:astro-ph/0605302.
[SDSS:2006egz]
[13-1988]
Constraining pre Big-Bang-Nucleosynthesis Expansion using Cosmic Antiprotons, M. Schelke et al., Phys. Rev. D74 (2006) 083505, arXiv:hep-ph/0605287.
[Schelke:2006eg]
[13-1989]
Searching for modified gravity with baryon oscillations: from SDSS to WFMOS, Kazuhiro Yamamoto et al., Phys. Rev. D74 (2006) 063525, arXiv:astro-ph/0605278.
[Yamamoto:2006yv]
[13-1990]
Constraints on Sterile Neutrino Dark Matter, Kevork Abazajian, Savvas M. Koushiappas, Phys. Rev. D74 (2006) 023527, arXiv:astro-ph/0605271.
[Abazajian:2006yn]
[13-1991]
Anomalies in the low CMB multipoles and extended foregrounds, L. Raul Abramo, Laerte Sodre Jr., Carlos Alexandre Wuensche, Phys. Rev. D74 (2006) 083515, arXiv:astro-ph/0605269.
[Abramo:2006hs]
[13-1992]
Cluster Strong Lensing Constraints on Dark Energy, James Gilmore, Priyamvada Natarajan, Mon.Not.Roy.Astron.Soc. (2006), arXiv:astro-ph/0605245.
[Gilmore:2006gs]
[13-1993]
Big Bang Nucleosynthesis with Long Lived Charged Massive Particles, Kazunori Kohri, Fumihiro Takayama, Phys. Rev. D76 (2007) 063507, arXiv:hep-ph/0605243.
[Kohri:2006cn]
[13-1994]
The vacuum energy crisis, Alexander Vilenkin, Science 312 (2006) 1148-1149, arXiv:astro-ph/0605242.
[Vilenkin:2006gp]
[13-1995]
Quantum phantom cosmology, Mariusz P. Dabrowski, Claus Kiefer, Barbara Sandhoefer, Phys. Rev. D74 (2006) 044022, arXiv:hep-th/0605229.
[Dabrowski:2006dd]
[13-1996]
Dark Energy and the MSSM, Philippe Brax, Jerome Martin, Phys. Rev. D75 (2007) 083507, arXiv:hep-th/0605228.
[Brax:2006dc]
[13-1997]
Inflation, dark matter and dark energy in the string landscape, Andrew R Liddle, L Arturo Urena-Lopez, Phys. Rev. Lett. 97 (2006) 161301, arXiv:astro-ph/0605205.
[Liddle:2006qz]
[13-1998]
Cosmological Acceleration: Dark Energy or Modified Gravity?, Sidney Bludman, arXiv:astro-ph/0605198, 2006.
[Bludman:2006cg]
[13-1999]
The Possibility of Cosmic Acceleration via Spatial Averaging in Lemaitre-Tolman-Bondi Models, Aseem Paranjape, T. P. Singh, Class. Quant. Grav. 23 (2006) 6955-6969, arXiv:astro-ph/0605195.
[Paranjape:2006cd]
[13-2000]
Why the cosmological constant is small and positive, Paul J. Steinhardt, Neil Turok, Science 312 (2006) 1180-1182, arXiv:astro-ph/0605173.
[Steinhardt:2006bf]
[13-2001]
Transition from quintessence to phantom phase in quintom model, H. Mohseni Sadjadi, M. Alimohammadi, Phys. Rev. D74 (2006) 043506, arXiv:gr-qc/0605143.
[MohseniSadjadi:2006hb]
[13-2002]
The Uncorrelated Universe: Statistical Anisotropy and the Vanishing Angular Correlation Function in WMAP Years 1-3, Craig Copi, Dragan Huterer, Dominik Schwarz, Glenn Starkman, Phys. Rev. D 75 (2007) 023507, arXiv:astro-ph/0605135.
[Copi:2006tu]
[13-2003]
Can inhomogeneties accelerate the cosmic volume expansion?, Tomohiro Kai, Hiroshi Kozaki, Ken-ichi nakao, Yasusada Nambu, Chul-Moon Yoo, Prog. Theor. Phys. 117 (2007) 229-240, arXiv:gr-qc/0605120.
[Kai:2006ws]
[13-2004]
A late time acceleration of the universe with two scalar fields : many possibilities, Narayan Banerjee, Sudipta Das, Mod. Phys. Lett. A21 (2006) 2663-2670, arXiv:gr-qc/0605110.
[Banerjee:2006rp]
[13-2005]
Deceleration without dark matter, J C Jackson, Marina Dodgson, Mon. Not. Roy. Astron. Soc. 285 (1997) 806, arXiv:astro-ph/0605102.
[Jackson:1997csf]
[13-2006]
Cosmological Consequences of Anti-gravitation, S. Hossenfelder, arXiv:gr-qc/0605083, 2006.
[Hossenfelder:2006rw]
[13-2007]
Possible solution of the cosmological constant problem in the framework of lattice quantum gravity, S.N. Vergeles, arXiv:hep-th/0605019, 2006.
[Vergeles:2006ch]
[13-2008]
Compactification and signature transition in Kaluza-Klein spinor cosmology, B. Vakili, S. Jalalzadeh, H. R. Sepangi, Annals Phys. 321 (2006) 2491-2503, arXiv:gr-qc/0605015.
[Vakili:2006bt]
[13-2009]
Dimensionality and the Cosmological Constant, Z.C.Wu, Gen. Rel. Grav. 38 (2006) 381, arXiv:gr-qc/0605012.
[Wu:2004yy]
[13-2010]
Extending the WMAP Bound on the Size of the Universe, Joey Shapiro Key, Neil J. Cornish, David N. Spergel, Glenn D. Starkman, Phys. Rev. D75 (2007) 084034, arXiv:astro-ph/0604616.
[ShapiroKey:2006hm]
[13-2011]
Minimal Noncanonical Cosmologies, Gabriela Barenboim, Joseph D. Lykken, JHEP 07 (2006) 016, arXiv:astro-ph/0604528.
[Barenboim:2006rx]
[13-2012]
Josephson junctions and dark energy, Philippe Jetzer, Norbert Straumann, Phys. Lett. B639 (2006) 57-58, arXiv:astro-ph/0604522.
[Jetzer:2006pt]
[13-2013]
Composite Dark Matter and its Charged Constituents, K.M. Belotsky, M.Yu. Khlopov, K.I.Shibaev, Grav. Cosmol. 12 (2006) 93-99, arXiv:astro-ph/0604518.
[Belotsky:2006pp]
[13-2014]
Dark Energy as a Born-Infeld Gauge Interaction Violating the Equivalence Principle, A. Fuzfa, J.-M. Alimi, Phys. Rev. Lett. 97 (2006) 061301, arXiv:astro-ph/0604517.
[Fuzfa:2006pn]
[13-2015]
Cosmology and the Bispectrum, Emiliano Sefusatti, Martin Crocce, Sebastian Pueblas, Roman Scoccimarro, Phys. Rev. D74 (2006) 023522, arXiv:astro-ph/0604505.
[Sefusatti:2006pa]
[13-2016]
Astronomy: Trouble at first light, Piero Madau, Nature 440 (2006) 1002-1003, arXiv:astro-ph/0604448.
[Madau:2006mb]
[13-2017]
Cosmological parameters from combining the Lyman-alpha forest with CMB, galaxy clustering and SN constraints, Uros Seljak, Anze Slosar, Patrick McDonald, JCAP 0610 (2006) 014, arXiv:astro-ph/0604335.
[Seljak:2006bg]
[13-2018]
Top ten accelerating cosmological models, Marek Szydlowski, Aleksandra Kurek, Adam Krawiec, Phys. Lett. B642 (2006) 171-178, arXiv:astro-ph/0604327.
[Szydlowski:2006ay]
[13-2019]
The Lyman-alpha forest and WMAP year three, Matteo Viel, Martin G. Haehnelt, Antony Lewis, Mon. Not. Roy. Astron. Soc. Lett. 370 (2006) L51-L55, arXiv:astro-ph/0604310.
[Viel:2006yh]
[13-2020]
Confronting Dark Energy Models with Astrophysical Data, John Ellis, N.E. Mavromatos, V.A. Mitsou, D.V. Nanopoulos, Astropart. Phys. 27 (2007) 185-198, arXiv:astro-ph/0604272.
[Ellis:2006nd]
[13-2021]
An Observational Test for the Anthropic Origin of the Cosmological Constant, Abraham Loeb, JCAP 0605 (2006) 009, arXiv:astro-ph/0604242.
[Loeb:2006en]
[13-2022]
The $\nu\text{MSM}$, Inflation, and Dark Matter, Mikhail Shaposhnikov, Igor Tkachev, Phys. Lett. B639 (2006) 414-417, arXiv:hep-ph/0604236.
[Shaposhnikov:2006xi]
[13-2023]
Implications of a Running Spectral Index for Slow Roll Inflation, Richard Easther, Hiranya Peiris, JCAP 0609 (2006) 010, arXiv:astro-ph/0604214.
[Easther:2006tv]
[13-2024]
Power-law Parameterized Quintessence Model, Sohrab Rahvar, M. Sadegh Movahed, Phys. Rev. D75 (2007) 023512, arXiv:astro-ph/0604206.
[Rahvar:2006tm]
[13-2025]
Weak Lensing of the Cosmic Microwave Background by Foreground Gravitational Waves, Chao Li, Asantha Cooray, Phys. Rev. D74 (2006) 023521, arXiv:astro-ph/0604179.
[Li:2006si]
[13-2026]
Single Field Inflation models allowed and ruled out by the three years WMAP data, H. J. de Vega, N. G. Sanchez, arXiv:astro-ph/0604136, 2006.
[deVega:2006hb]
[13-2027]
Power spectrum of the SDSS luminous red galaxies: constraints on cosmological parameters, Gert Huetsi, Astron. Astrophys. 459 (2006) 375-389, arXiv:astro-ph/0604129.
[Huetsi:2006gu]
[13-2028]
Non-Gaussianity in the Very Small Array CMB maps with Smooth-Goodness-of-fit tests, Jose Alberto Rubino-Martin et al., Mon. Not. Roy. Astron. Soc. 369 (2006) 909-920, arXiv:astro-ph/0604070.
[Rubino-Martin:2006eml]
[13-2029]
Cosmologies with Energy Exchange, John D. Barrow, T. Clifton, Phys. Rev. D73 (2006) 103520, arXiv:gr-qc/0604063.
[Barrow:2006hia]
[13-2030]
Cosmic Conspiracies, Douglas Scott, Ali Frolop, Can. J. Phys. 84 (2006) 419-435, arXiv:astro-ph/0604011.
[Scott:2006pe]
[13-2031]
Cross-correlation of WMAP 3rd year and the SDSS DR4 galaxy survey: new evidence for Dark Energy, A.Cabre et al., Mon. Not. Roy. Astron. Soc. Lett. 372 (2006) L23-L27, arXiv:astro-ph/0603690.
[Cabre:2006qm]
[13-2032]
The Hubble Constant from Type Ia Supernova Calibrated with the Linear and Non-Linear Cepheid Period-Luminosity Relation, C. Ngeow, S. Kanbur, Astrophys. J. 642 (2006) L29-L32, arXiv:astro-ph/0603643.
[Ngeow:2006cr]
[13-2033]
Constraints on the DGP Model from Recent Supernova Observations and Baryon Acoustic Oscillations, Zong-Kuan Guo, Zong-Hong Zhu, J.S. Alcaniz, Yuan-Zhong Zhang, Astrophys. J. 646 (2006) 1, arXiv:astro-ph/0603632.
[Guo:2006ce]
[13-2034]
Probing Dynamics of Dark Energy with Supernova, Galaxy Clustering and the Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations, Gong-Bo Zhao, June-Qing Xia, Bo Feng, Xinmin Zhang, Int. J. Mod. Phys. D16 (2007) 1229-1242, arXiv:astro-ph/0603621.
[Zhao:2006bt]
[13-2035]
Updating reionization scenarios after recent data, T. Roy Choudhury, A. Ferrara, Mon. Not. Roy. Astron. Soc. 371 (2006) L55-L59, arXiv:astro-ph/0603617.
[Choudhury:2006bp]
[13-2036]
Early and Late Transient Cosmic Acceleration due to Curvature Inspired Dark Energy, S.K. Srivastava, Phys. Lett. B648 (2007) 119-126, arXiv:astro-ph/0603601.
[Srivastava:2006xq]
[13-2037]
CMB statistical anisotropy, multipole vectors and the influence of the dipole, Robert C. Helling, Peter Schupp, Tiberiu Tesileanu, Phys. Rev. D74 (2006) 063004, arXiv:astro-ph/0603594.
[Helling:2006xh]
[13-2038]
Limits on SUSY GUTs and Defects Formation in Hybrid Inflationary Models with Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations, Aurelien A. Fraisse, JCAP 0703 (2007) 008, arXiv:astro-ph/0603589.
[Fraisse:2006xc]
[13-2039]
Recovering the Inflationary Potential and Primordial Power Spectrum With a Slow Roll Prior, Hiranya Peiris, Richard Easther, JCAP 0607 (2006) 002, arXiv:astro-ph/0603587.
[Peiris:2006ug]
[13-2040]
Dark Energy in the Dark Ages, Eric V. Linder, Astropart. Phys. 26 (2006) 16-21, arXiv:astro-ph/0603584.
[Linder:2006ud]
[13-2041]
Inflation models after WMAP year three, Laila Alabidi, David H. Lyth, JCAP 0608 (2006) 013, arXiv:astro-ph/0603539.
[Alabidi:2006qa]
[13-2042]
Towards a Cosmological Hubble Diagram for Type II-P Supernovae, Peter Nugent et al. (SNLS), Astrophys. J. 645 (2006) 841-850, arXiv:astro-ph/0603535.
[SNLS:2006mwe]
[13-2043]
Bursts from the very early universe, J. Silk, L. Stodolsky, Phys. Lett. B639 (2006) 14, arXiv:astro-ph/0603526.
[Silk:2006pm]
[13-2044]
Carmeli's cosmology fits data for an accelerating and decelerating universe without dark matter nor dark energy, Firmin J. Oliveira, John G. Hartnett, Found. Phys. Lett. 19 (2006) 519-535, arXiv:astro-ph/0603500.
[Oliveira:2006nj]
[13-2045]
The impacts of dark matter particle annihilation on recombination and the anisotropies of the cosmic microwave background, Le Zhang, Xuelei Chen, Yi-An Lei, Zongguo Si, Phys. Rev. D74 (2006) 103519, arXiv:astro-ph/0603425.
[Zhang:2006fr]
[13-2046]
A New Method to Calibrate the Magnitudes of Type Ia Supernovae at Maximum Light, Jose Luis Prieto, Armin Rest, Nicholas B. Suntzeff, Astrophys. J. 647 (2006) 501-512, arXiv:astro-ph/0603407.
[Prieto:2006ex]
[13-2047]
Statistical Isotropy of CMB Polarization Maps, Soumen Basak, Amir Hajian, Tarun Souradeep, Phys. Rev. D74 (2006) 021301, arXiv:astro-ph/0603406.
[Basak:2006ew]
[13-2048]
Rebuttal to: Has dark energy really been discovered in the Lab?, Christian Beck, Michael C. Mackey, Fluct. Noise Lett. 7 (2007) C31, arXiv:astro-ph/0603397.
[Beck:2006cv]
[13-2049]
Probing Inflation and Dark Energy with Current Cosmological Observations, June-Qing Xia, Gong-Bo Zhao, Bo Feng, Xinmin Zhang, JCAP 0609 (2006) 015, arXiv:astro-ph/0603393.
[Xia:2006cr]
[13-2050]
Determination of the Hubble constant, the intrinsic scatter of luminosities of Type Ia SNe, and evidence for non-standard dust in other galaxies, Xiaofeng Wang et al., Astrophys. J. 645 (2006) 488-505, arXiv:astro-ph/0603392.
[Wang:2006cq]
[13-2051]
CMB multipole measurements in the presence of foregrounds, Angelica de Oliveira-Costa, Max Tegmark, Phys. Rev. D74 (2006) 023005, arXiv:astro-ph/0603369.
[deOliveira-Costa:2006sst]
[13-2052]
Restrictions on parameters of sterile neutrino dark matter from observations of galaxy clusters, Alexey Boyarsky, Andrey Neronov, Oleg Ruchayskiy, Mikhail Shaposhnikov, Phys. Rev. D74 (2006) 103506, arXiv:astro-ph/0603368.
[Boyarsky:2006zi]
[13-2053]
Global universe anisotropy probed by the alignment of structures in the cosmic microwave background, Y. Wiaux, P. Vielva, E. Martinez-Gonzalez, P. Vandergheynst, Phys. Rev. Lett. 96 (2006) 151303, arXiv:astro-ph/0603367.
[Wiaux:2006zh]
[13-2054]
Primordial Helium Abundance: A Reanalysis of the Izotov-Thuan Spectroscopic Sample, Masataka Fukugita, Masahiro Kawasaki, Astrophys. J. 646 (2006) 691-695, arXiv:astro-ph/0603334.
[Fukugita:2006xy]
[13-2055]
Probing the Universe on Gigaparsec Scales with Remote Cosmic Microwave Background Quadrupole Measurements, Emory F. Bunn, Phys. Rev. D73 (2006) 123517, arXiv:astro-ph/0603271.
[Bunn:2006mp]
[13-2056]
Naturalness of the Vacuum Energy in Holographic Theories, Csaba Balazs, Istvan Szapudi, arXiv:hep-th/0603133, 2006.
[Balazs:2006kc]
[13-2057]
Decaying Gravity, T. Clifton, John D. Barrow, Phys. Rev. D73 (2006) 104022, arXiv:gr-qc/0603116.
[Clifton:2006vm]
[13-2058]
A solution to the cosmological constant problem, Tomislav Prokopec, arXiv:gr-qc/0603088, 2006.
[Prokopec:2006yh]
[13-2059]
A symmetry for vanishing cosmological constant: Another realization, Recai Erdem, Phys. Lett. B639 (2006) 348-353, arXiv:gr-qc/0603080.
[Erdem:2006qk]
[13-2060]
Exotic Low Density Fermion States in the Two Measures Field Theory: Neutrino Dark Energy, E. I. Guendelman, A. B. Kaganovich, Int. J. Mod. Phys. A21 (2006) 4373, arXiv:gr-qc/0603070.
[Guendelman:2006ji]
[13-2061]
The oscillating dark energy: future singularity and coincidence problem, Shin'ichi Nojiri, Sergei D. Odintsov, Phys. Lett. B637 (2006) 139-148, arXiv:hep-th/0603062.
[Nojiri:2006ww]
[13-2062]
The Shape, Multiplicity, and Evolution of Superclusters in LambdaCDM Cosmology, James J. Wray et al., Astrophys. J. 652 (2006) 907-916, arXiv:astro-ph/0603060.
[Wray:2006tw]
[13-2063]
Bayesian analysis of Friedmannless cosmologies, Oystein Elgaroy, Tuomas Multamaki, JCAP 0609 (2006) 002, arXiv:astro-ph/0603053.
[Elgaroy:2006tp]
[13-2064]
Measuring neutrino masses and dark energy with weak lensing tomography, Steen Hannestad, Huitzu Tu, Yvonne Y. Y. Wong, JCAP 0606 (2006) 025, arXiv:astro-ph/0603019.
[Hannestad:2006as]
[13-2065]
Tachyonic Quintessential Inflation, Victor H. Cardenas, Phys. Rev. D73 (2006) 103512, arXiv:gr-qc/0603013.
[Cardenas:2006py]
[13-2066]
Spectrum of Cosmic Microwave Fluctuations and the Formation of Galaxies in a Modified Gravity Theory, J. W. Moffat, arXiv:astro-ph/0602607, 2006.
[Moffat:2006sj]
[13-2067]
A Cosmological Test of Standard Gravity by Weak Lensing, Yong-Seon Song, arXiv:astro-ph/0602598, 2006.
[Song:2006sa]
[13-2068]
Prospects for direct detection of primordial gravitational waves, Sirichai Chongchitnan, George Efstathiou, Phys. Rev. D73 (2006) 083511, arXiv:astro-ph/0602594.
[Chongchitnan:2006pe]
[13-2069]
CMB constraints on the fine structure constant, Kazuhide Ichikawa, Toru Kanzaki, Masahiro Kawasaki, Phys. Rev. D74 (2006) 023515, arXiv:astro-ph/0602577.
[Ichikawa:2006nm]
[13-2070]
The Effect of Large-Scale Structure on the SDSS Galaxy Three-Point Correlation Function, R. C. Nichol et al., Mon. Not. Roy. Astron. Soc. 368 (2006) 1507-1514, arXiv:astro-ph/0602548.
[Nichol:2006mg]
[13-2071]
CMB Polarization due to Scattering in Clusters, M. Shimon, Y. Rephaeli, B. W. O'Shea, M. L. Norman, Mon. Not. Roy. Astron. Soc. 368 (2006) 511, arXiv:astro-ph/0602528.
[Shimon:2006hn]
[13-2072]
Accelerated Cosmological Models in Modified Gravity tested by distant Supernovae SNIa data, Andrzej Borowiec, Wlodzimierz Godlowski, Marek Szydlowski, Phys. Rev. D74 (2006) 043502, arXiv:astro-ph/0602526.
[Borowiec:2006hk]
[13-2073]
'Soft bang' instead of 'big bang': model of an inflationary universe without singularities and with eternal physical past time, E. Rebhan, Astron. Astrophys. 353 (2000) 1, arXiv:astro-ph/0602515.
[Rebhan:2000dx]
[13-2074]
What can we learn about dark energy evolution?, Marian Douspis, Yves Zolnierowski, Alain Blanchard, Alain Riazuelo, Astron.Astrophys. (2006), arXiv:astro-ph/0602491.
[Douspis:2008mxi]
[13-2075]
Local Voids as the Origin of Large-angle Cosmic Microwave Background Anomalies, Kaiki Taro Inoue, Joseph Silk, Astrophys. J. 648 (2006) 23-30, arXiv:astro-ph/0602478.
[Inoue:2006rd]
[13-2076]
HD molecule and search for early structure-formation signatures in the Universe, R. Nunez-Lopez, A. Lipovka, V. Avila-Reese, Mon. Not. Roy. Astron. Soc. 369 (2006) 2005-2012, arXiv:astro-ph/0602474.
[Nunez-Lopez:2006wbr]
[13-2077]
Dark energy explained by the mixing of neutrinos, A. Capolupo, S. Capozziello, G. Vitiello, Phys. Lett. A363 (2007) 53-56, arXiv:astro-ph/0602467.
[Capolupo:2006et]
[13-2078]
Solar and stellar system tests of the cosmological constant, M. Sereno, Ph. Jetzer, Phys. Rev. D73 (2006) 063004, arXiv:astro-ph/0602438.
[Sereno:2006re]
[13-2079]
Can sterile neutrinos be the dark matter?, Uros Seljak, Alexey Makarov, Patrick McDonald, Hy Trac, Phys. Rev. Lett. 97 (2006) 191303, arXiv:astro-ph/0602430.
[Seljak:2006qw]
[13-2080]
Measurement of $\Omega_m$, $\Omega_{\Lambda}$ from a blind analysis of Type Ia supernovae with CMAGIC: Using color information to verify the acceleration of the Universe, A. Conley et al. (Supernova Cosmology Project), Astrophys. J. 644 (2006) 1, arXiv:astro-ph/0602411.
[SupernovaCosmologyProject:2006vub]
[13-2081]
Measuring the effective complexity of cosmological models, Martin Kunz, Roberto Trotta, David Parkinson, Phys. Rev. D74 (2006) 023503, arXiv:astro-ph/0602378.
[Kunz:2006mc]
[13-2082]
Observational constraints on Cosmic Reionization, Xiaohui Fan, C.L. Carilli, B. Keating, Ann. Rev. Astron. Astrophys. 44 (2006) 415-462, arXiv:astro-ph/0602375.
[Fan:2006dp]
[13-2083]
Supernova Ia and Galaxy Cluster Gas Mass Fraction Constraints on Dark Energy, Kyle M. Wilson, Gang Chen, Bharat Ratra, Mod. Phys. Lett. A21 (2006) 2197-2204, arXiv:astro-ph/0602321.
[Wilson:2006tr]
[13-2084]
A weak cosmological constant due to residual gravity in a multiply connected universe, Boudewijn F. Roukema et al., Astron. Astrophys. 463 (2007) 861, arXiv:astro-ph/0602159.
[Roukema:2006yd]
[13-2085]
A new bound on the neutrino mass from the SDSS baryon acoustic peak, Ariel Goobar, Steen Hannestad, Edvard Mortsell, Huitzu Tu, JCAP 0606 (2006) 019, arXiv:astro-ph/0602155.
[Goobar:2006xz]
[13-2086]
Likelihood Methods for Cluster Dark Energy Surveys, Wayne Hu, J.D. Cohn, Phys. Rev. D73 (2006) 067301, arXiv:astro-ph/0602147.
[Hu:2006xr]
[13-2087]
Deciphering Inflation with Gravitational Waves: Cosmic Microwave Background Polarization vs. Direct Detection with Laser Interferometers, Tristan L. Smith, Hiranya V. Peiris, Asantha Cooray, Phys. Rev. D73 (2006) 123503, arXiv:astro-ph/0602137.
[Smith:2006xf]
[13-2088]
Detecting neutrino mass difference with cosmology, Anze Slosar, Phys. Rev. D73 (2006) 123501, arXiv:astro-ph/0602133.
[Slosar:2006xb]
[13-2089]
Dissipative or Conservative cosmology with dark energy?, Marek Szydlowski, Orest Hrycyna, Annals Phys. 322 (2007) 2745-2775, arXiv:astro-ph/0602118.
[Szydlowski:2006ma]
[13-2090]
Connecting Dark Energy to Neutrinos with an Observable Higgs Triplet, Ernest Ma, Utpal Sarkar, Phys. Lett. B638 (2006) 356-358, arXiv:hep-ph/0602116.
[Ma:2006mr]
[13-2091]
Finite cosmology and a CMB cold spot, R.J. Adler, J.D. Bjorken, J.M. Overduin, arXiv:gr-qc/0602102, 2006.
[Adler:2006ir]
[13-2092]
Angular Trispectrum of CMB Temperature Anisotropy from Primordial Non-Gaussianity with the Full Radiation Transfer Function, Noriyuki Kogo, Eiichiro Komatsu, Phys. Rev. D73 (2006) 083007, arXiv:astro-ph/0602099.
[Kogo:2006kh]
[13-2093]
Populating the landscape: A top down approach, S. W. Hawking, Thomas Hertog, Phys. Rev. D73 (2006) 123527, arXiv:hep-th/0602091.
[Hawking:2006ur]
[13-2094]
The universe out of a monopole in the laboratory?, Nobuyuki Sakai, Ken-ichi Nakao, Hideki Ishihara, Makoto Kobayashi, Phys. Rev. D74 (2006) 024026, arXiv:gr-qc/0602084.
[Sakai:2006fg]
[13-2095]
Physics of dark energy particles, C. G. Boehmer, T. Harko, Found. Phys. 38 (2008) 216, arXiv:gr-qc/0602081.
[Boehmer:2006fd]
[13-2096]
Right-handed neutrinos as the source of density perturbations, Lotfi Boubekeur, Paolo Creminelli, Phys. Rev. D73 (2006) 103516, arXiv:hep-ph/0602052.
[Boubekeur:2006nj]
[13-2097]
No Higher Criticism of the Bianchi Corrected WMAP Data, L. Cayon et al., Mon. Not. Roy. Astron. Soc. 369 (2006) 598, arXiv:astro-ph/0602023.
[Cayon:2006aq]
[13-2098]
Illuminating the dark ages of the universe: the exact backreaction in the SFRW model and the acceleration of the universe, Reza Mansouri, arXiv:astro-ph/0601699, 2006.
[Mansouri:2006ua]
[13-2099]
Two-body problem with the cosmological constant and observational constraints, Ph. Jetzer, M. Sereno, Phys. Rev. D73 (2006) 044015, arXiv:astro-ph/0601612.
[Jetzer:2006gn]
[13-2100]
Holographic dark energy with a constant vacuum energy density, B. Guberina, R. Horvat, H. Nikolic, Phys. Lett. B636 (2006) 80, arXiv:astro-ph/0601598.
[Guberina:2006fy]
[13-2101]
Small scale contributions to CMB: A coherent analysis, Marian Douspis, Nabila Aghanim, Mathieu Langer, Astron. Astrophys. 456 (2006) 819, arXiv:astro-ph/0601597.
[Douspis:2006fx]
[13-2102]
On the CMB large-scales angular correlations, Armando Bernui et al., Astron. Astrophys. 454 (2006) 409-414, arXiv:astro-ph/0601593.
[Bernui:2006ft]
[13-2103]
Aberration of the Cosmic Microwave Background, Scott Burles, Saul Rappaport, Astrophys.J. 641 (2006) L1, arXiv:astro-ph/0601559.
[Burles:2006xf]
[13-2104]
Early Dark Energy Cosmologies, Michael Doran, Georg Robbers, JCAP 0606 (2006) 026, arXiv:astro-ph/0601544.
[Doran:2006kp]
[13-2105]
A Universe with both acceleration and deceleration, Nalin de Silva, arXiv:astro-ph/0601536, 2006.
[deSilva:2006kf]
[13-2106]
Bulk viscosity of a gas of neutrinos and coupled scalar particles, in the era of recombination, R. F. Sawyer, Phys. Rev. D74 (2006) 043527, arXiv:astro-ph/0601525.
[Sawyer:2006ju]
[13-2107]
Stable Models of Super-acceleration, Manoj Kaplinghat, Arvind Rajaraman, Phys. Rev. D75 (2007) 103504, arXiv:astro-ph/0601517.
[Kaplinghat:2006jk]
[13-2108]
On the normalisation of the cosmic star formation history, Andrew M. Hopkins, John F. Beacom, Astrophys. J. 651 (2006) 142, arXiv:astro-ph/0601463.
[Hopkins:2006bw]
[13-2109]
Observational constraints on the acceleration of the Universe, Yungui Gong, Anzhong Wang, Phys. Rev. D73 (2006) 083506, arXiv:astro-ph/0601453.
[Gong:2006tx]
[13-2110]
Constraining Cosmic Topology with CMB Polarization, Alain Riazuelo et al., Phys. Rev.D (2006), arXiv:astro-ph/0601433.
[Riazuelo:2006tb]
[13-2111]
The non-Gaussian Cold Spot in WMAP: significance, morphology and foreground contribution, M. Cruz, M. Tucci, E. Martinez-Gonzalez, P. Vielva, Mon. Not. Roy. Astron. Soc. 369 (2006) 57-67, arXiv:astro-ph/0601427.
[Cruz:2006sv]
[13-2112]
The Contribution of the Intergalactic Medium to Cosmic Microwave Background Anisotropies, F. Atrio-Barandela, J.P. Muecket, Astrophys. J. 643 (2006) 1-7, arXiv:astro-ph/0601424.
[Atrio-Barandela:2006czv]
[13-2113]
The vanishing phantom menace, H. K. Jassal, J. S. Bagla, T. Padmanabhan, Mon. Not. Roy. Astron. Soc. 405 (2010) 2639-2650, arXiv:astro-ph/0601389.
[Jassal:2006gf]
[13-2114]
Constraints on the coupled quintessence from cosmic microwave background anisotropy and matter power spectrum, Seokcheon Lee, Guo-Chin Liu, Kin-Wang Ng, Phys. Rev. D73 (2006) 083516, arXiv:astro-ph/0601333.
[Lee:2006za]
[13-2115]
The First Type Ia Supernovae: An Empirical Approach to Taming Evolutionary Effects In Dark Energy Surveys from SNe Ia at z > 2, Adam G Riess, Mario Livio, Astrophys. J. 648 (2006) 884-889, arXiv:astro-ph/0601319.
[Riess:2006yk]
[13-2116]
Big bang nucleosynthesis constraints on scalar-tensor theories of gravity, Alain Coc, Keith A. Olive, Jean-Philippe Uzan, Elisabeth Vangioni, Phys. Rev. D73 (2006) 083525, arXiv:astro-ph/0601299.
[Coc:2006rt]
[13-2117]
Short GRB and binary black hole standard sirens as a probe of dark energy, Neal Dalal, Daniel E. Holz, Scott A. Hughes, Bhuvnesh Jain, Phys. Rev. D74 (2006) 063006, arXiv:astro-ph/0601275.
[Dalal:2006qt]
[13-2118]
Dark Fluid: a complex scalar field to unify dark energy and dark matter, Alexandre Arbey, Phys. Rev. D74 (2006) 043516, arXiv:astro-ph/0601274.
[Arbey:2006it]
[13-2119]
A fluid os strings as a viable candidate to the dark side of the universe, S. Capozziello, V.F. Cardone, G. Lambiase, A. Troisi, Int. J. Mod. Phys. D15 (2006) 69, arXiv:astro-ph/0601266.
[Capozziello:2006ij]
[13-2120]
Structure formation in modified gravity models alternative to dark energy, Kazuya Koyama, JCAP 0603 (2006) 017, arXiv:astro-ph/0601220.
[Koyama:2006ef]
[13-2121]
Speed of Sound in the Mass Varying Neutrinos Scenario, Ryo Takahashi, Morimitsu Tanimoto, JHEP 05 (2006) 021, arXiv:astro-ph/0601119.
[Takahashi:2006jt]
[13-2122]
Hybrid Estimation of CMB Polarization Power Spectra, G. Efstathiou, Mon. Not. Roy. Astron. Soc. 370 (2006) 343-362, arXiv:astro-ph/0601107.
[Efstathiou:2006eb]
[13-2123]
Searching For CPT Violation With WMAP And BOOMERANG, Bo Feng et al., Phys. Rev. Lett. 96 (2006) 221302, arXiv:astro-ph/0601095.
[Feng:2006dp]
[13-2124]
Cosmological models with Gurzadyan-Xue dark energy, G. V. Vereshchagin, G. Yegorian, Class. Quant. Grav. 23 (2006) 5049, arXiv:astro-ph/0601073.
[Vereshchagin:2006ts]
[13-2125]
The Paths of Quintessence, Eric V. Linder, Phys. Rev. D73 (2006) 063010, arXiv:astro-ph/0601052.
[Linder:2006sv]
[13-2126]
Conformal Transformations and Accelerated Cosmologies, James L. Crooks, Paul H. Frampton, Phys. Rev. D73 (2006) 123512, arXiv:astro-ph/0601051.
[Crooks:2006jg]
[13-2127]
Light Bending as a Probe of the Nature of Dark Energy, Fabio Finelli, Matteo Galaverni, Alessandro Gruppuso, Phys. Rev. D75 (2007) 043003, arXiv:astro-ph/0601044.
[Finelli:2006iz]
[13-2128]
Precision Measurements of d(d,p)t and d(d,n)^3He Total Cross Sections at Big-Bang Nucleosynthesis Energies, D. S. Leonard et al., Phys. Rev.C (2006), arXiv:nucl-ex/0601035.
[Leonard:2006zm]
[13-2129]
Is Cosmic Parity Violation Responsible for the Anomalies in the WMAP Data?, Stephon H.S. Alexander, Phys. Lett. B660 (2008) 444-448, arXiv:hep-th/0601034.
[Alexander:2006mt]
[13-2130]
Neutrino Condensation as Dark Energy, Fei Wang, Wenyu Wang, Jin Min Yang, Europhys. Lett. 76 (2006) 388-394, arXiv:hep-ph/0601018.
[Wang:2006jy]
[13-2131]
Relic keV sterile neutrinos and reionization, Peter L. Biermann, Alexander Kusenko, Phys. Rev. Lett. 96 (2006) 091301, arXiv:astro-ph/0601004.
[Biermann:2006bu]
[13-2132]
What Do We Really Know About Cosmic Acceleration?, Charles Shapiro, Michael S. Turner, Astrophys. J. 649 (2006) 563-569, arXiv:astro-ph/0512586.
[Shapiro:2005nz]
[13-2133]
Constraints on the Physical Parameters of the Dark Energy Using a Model-Independent Approach, Ruth A. Daly, S. G. Djorgovski, arXiv:astro-ph/0512576, 2005.
[Daly:2005iu]
[13-2134]
The 21 Centimeter Background from the Cosmic Dark Ages: Minihalos and the Intergalactic Medium before Reionization, Paul R. Shapiro et al., New Astron. Rev. 50 (2005) 179, arXiv:astro-ph/0512516.
[Shapiro:2005cx]
[13-2135]
Reconstructing K-essence, A. A. Sen, JCAP 0603 (2006) 010, arXiv:astro-ph/0512406.
[Sen:2005ra]
[13-2136]
Lyman-alpha forest-CMB cross-correlation and the search for the ionized baryons at high redshift, Rupert A.C. Croft, A.J. Banday, Lars Hernquist, Mon. Not. Roy. Astron. Soc. 369 (2006) 1090-1102, arXiv:astro-ph/0512380.
[Croft:2005sc]
[13-2137]
Cosmology with wide-field SZ cluster surveys: Selection and Systematic Effects, J.B. Juin, D. Yvon, A. Refregier, C. Yeche, Astron.Astrophys. (2005), arXiv:astro-ph/0512378.
[Juin:2005se]
[13-2138]
Cosmology with High-redshift Galaxy Survey: Neutrino Mass and Inflation, Masahiro Takada, Eiichiro Komatsu, Toshifumi Futamase, Phys. Rev. D73 (2006) 083520, arXiv:astro-ph/0512374.
[Takada:2005si]
[13-2139]
Do measurements of the one-point distribution of aperture-mass improve constraints on cosmology?, Dipak Munshi, Patrick Valageas, Mon.Not.Roy.Astron.Soc. (2005), arXiv:astro-ph/0512369.
[Munshi:2005bx]
[13-2140]
Cosmology of Mass-Varying Neutrinos Driven by Quintessence: Theory and Observations, A. W. Brookfield, C. van de Bruck, D. F. Mota, D. Tocchini-Valentini, Phys. Rev. D73 (2006) 083515, arXiv:astro-ph/0512367.
[Brookfield:2005bz]
[13-2141]
The Epoch of Reionization, A. J. Benson, Naoshi Sugiyama, Adi Nusser, C. G. Lacey, Mon. Not. Roy. Astron. Soc. 369 (2006) 1055-1080, arXiv:astro-ph/0512364.
[Benson:2005cc]
[13-2142]
Unification of Dark Energy and Dark Matter, Fuminobu Takahashi, T. T. Yanagida, Phys. Lett. B635 (2006) 57, arXiv:hep-ph/0512296.
[Takahashi:2005kp]
[13-2143]
A Model of Dark Energy and Dark Matter, P.Q. Hung, Nucl. Phys. B747 (2006) 55, arXiv:hep-ph/0512282.
[Hung:2005ft]
[13-2144]
Constraining the Cosmological Parameters and Transition Redshift with Gamma-Ray Bursts and Supernovae, F. Y. Wang, Z. G. Dai, Mon. Not. Roy. Astron. Soc. 368 (2006) 371, arXiv:astro-ph/0512279.
[Wang:2005ic]
[13-2145]
The Big Bang Problems: Anisotropy of z < = 6 Redshifts, A.V. Glushkov, arXiv:astro-ph/0512276, 2005.
[Glushkov:2005hz]
[13-2146]
Temperature Fluctuations of the Cosmic Microwave Background Radiation: A Case of Nonextensivity?, Armando Bernui, Constantino Tsallis, Thyrso Villela, Phys. Lett. A356 (2006) 426-430, arXiv:astro-ph/0512267.
[Bernui:2005hq]
[13-2147]
Cosmological Parameter Estimation Using 21 cm Radiation from the Epoch of Reionization, Matthew McQuinn et al., Astrophys. J. 653 (2006) 815-830, arXiv:astro-ph/0512263.
[McQuinn:2005hk]
[13-2148]
Constraining Mass Spectra with Sterile Neutrinos from Neutrinoless Double Beta Decay, Tritium Beta Decay and Cosmology, Srubabati Goswami, Werner Rodejohann, Phys. Rev. D73 (2006) 113003, arXiv:hep-ph/0512234.
[Goswami:2005ng]
[13-2149]
What Can Gamma Ray Bursts Teach Us About Dark Energy?, Dan Hooper, Scott Dodelson, Astropart. Phys. 27 (2007) 113-118, arXiv:astro-ph/0512232.
[Hooper:2005xx]
[13-2150]
Improved Limit on $\theta_{13}$ and Implications for Neutrino Masses in Neutrino-less Double Beta Decay and Cosmology, M. Lindner, A. Merle, W. Rodejohann, Phys. Rev. D73 (2006) 053005, arXiv:hep-ph/0512143.
[Lindner:2005kr]
[13-2151]
Dark energy anisotropic stress and large scale structure formation, Tomi Koivisto, David F. Mota, Phys. Rev. D73 (2006) 083502, arXiv:astro-ph/0512135.
[Koivisto:2005mm]
[13-2152]
Local Experiments See Cosmologically Varying Constants, Douglas J. Shaw, John D. Barrow, Phys. Lett. B639 (2006) 596-599, arXiv:gr-qc/0512117.
[Shaw:2005vf]
[13-2153]
Non-singular, vacuum, stationary space-times with a negative cosmological constant, P. T. Chrusciel, E. Delay, Annales Henri Poincare 8 (2007) 219-239, arXiv:gr-qc/0512110.
[Chrusciel:2005uy]
[13-2154]
Large-scale galaxy correlations as a test for dark energy, Alain Blanchard, Marian Douspis, Michael Rowan-Robinson, Subir Sarkar, Astron. Astrophys. 449 (2006) 925, arXiv:astro-ph/0512085.
[Blanchard:2005ev]
[13-2155]
Tilt and phantom cosmology, A. A. Coley, S. Hervik, W.C. Lim, Phys. Lett. B638 (2006) 310-313, arXiv:gr-qc/0512085.
[Coley:2005bn]
[13-2156]
Detecting dark energy in long baseline neutrino oscillations, Pei-Hong Gu, Xiao-June Bi, Bo Feng, Bing-Lin Young, Xinmin Zhang, Chin. Phys. C32 (2008) 530-535, arXiv:hep-ph/0512076.
[Gu:2005pq]
[13-2157]
Possible evidence for 'dark radiation' from big bang nucleosynthesis data, V. V. Flambaum, E. V. Shuryak, Europhys. Lett. 74 (2006) 813-816, arXiv:hep-th/0512038.
[Flambaum:2005it]
[13-2158]
Effects of neutrino-driven kicks on the supernova explosion mechanism, Chris L. Fryer, Alexander Kusenko, Astrophys. J. Suppl. 163 (2006) 335, arXiv:astro-ph/0512033.
[Fryer:2005sz]
[13-2159]
Dark Energy Evolution and the Curvature of the Universe from Recent Observations, Kazuhide Ichikawa, Tomo Takahashi, Phys. Rev. D73 (2006) 083526, arXiv:astro-ph/0511821.
[Ichikawa:2005nb]
[13-2160]
Multivariate Non-Normality in the WMAP 1st Year Data, Patrick Dineen, Peter Coles, Mon.Not.Roy.Astron.Soc. (2005), arXiv:astro-ph/0511802.
[Dineen:2005fc]
[13-2161]
Dimensionless constants, cosmology and other dark matters, Max Tegmark, Anthony Aguirre, Martin Rees, Frank Wilczek, Phys. Rev. D73 (2006) 023505, arXiv:astro-ph/0511774.
[Tegmark:2005dy]
[13-2162]
Do Type-Ia Supernovae Constrain the Total Equation of State?, William Komp, arXiv:astro-ph/0511763, 2005.
[Komp:2005zz]
[13-2163]
Dark Energy: relating the evolution of the universe from the past to the future, Zhuo-Yi Huang, Bin Wang, Rong-Gen Cai, Ru-Keng Su, Chin. Phys. Lett. 23 (2006) 2621, arXiv:astro-ph/0511745.
[Huang:2005zf]
[13-2164]
Probing neutrino masses with CMB lensing extraction, Julien Lesgourgues, Laurence Perotto, Sergio Pastor, Michel Piat, Phys. Rev. D73 (2006) 045021, arXiv:astro-ph/0511735.
[Lesgourgues:2005yv]
[13-2165]
Principal Component Analysis of Weak Lensing Surveys, Dipak Munshi, Martin Kilbinger, Astron. Astrophys. 452 (2006) 63, arXiv:astro-ph/0511705.
[Munshi:2005ug]
[13-2166]
What can be learned from the lensed cosmic microwave background B-mode polarization power spectrum?, Sarah Smith, Anthony Challinor, Graca Rocha, Phys. Rev. D73 (2006) 023517, arXiv:astro-ph/0511703.
[Smith:2005ue]
[13-2167]
Baryon density of the Universe : an imprint of a scalar field ?, Julien Larena, Jean-Michel Alimi, Arturo Serna, Astrophys. J. 658 (2007) 1-10, arXiv:astro-ph/0511693.
[Larena:2005tu]
[13-2168]
Non-Gaussianity of the density distribution in accelerating universes, Takayuki Tatekawa, Shuntaro Mizuno, JCAP 0602 (2006) 006, arXiv:astro-ph/0511688.
[Tatekawa:2005tp]
[13-2169]
Mapping large-scale anisotropy in the WMAP data, A. Bernui, B. Mota, M.J. Reboucas, R. Tavakol, Astron. Astrophys. 464 (2007) 479-485, arXiv:astro-ph/0511666.
[Bernui:2005pz]
[13-2170]
Towards testing interacting cosmology by distant type Ia supernovae, Marek Szydlowski, Tomasz Stachowiak, Radoslaw Wojtak, Phys. Rev. D73 (2006) 063516, arXiv:astro-ph/0511650.
[Szydlowski:2005kv]
[13-2171]
Nonthermal Production and Perturbation Evolution of Sterile Neutrino Dark Matter, Kevork Abazajian, Phys. Rev. D73 (2006) 063506, arXiv:astro-ph/0511630.
[Abazajian:2005gj]
[13-2172]
Recent Supernovae Ia observations tend to rule out all the cosmologies, R. G. Vishwakarma, Int. J. Mod. Phys. D16 (2007) 1641-1651, arXiv:astro-ph/0511628.
[Vishwakarma:2005gh]
[13-2173]
Observing Dark Energy Dynamics with Supernova, Microwave Background and Galaxy Clustering, June-Qing Xia et al., Phys. Rev. D73 (2006) 063521, arXiv:astro-ph/0511625.
[Xia:2005ge]
[13-2174]
The large-scale angular correlations in CMB temperature maps, Armando Bernui, Braz. J. Phys. 35 (2005) 1185, arXiv:astro-ph/0511592.
[Bernui:2005ev]
[13-2175]
From Galaxy-Galaxy Lensing to Cosmological Parameters, Jaiyul Yoo et al., Astrophys. J. 652 (2006) 26-42, arXiv:astro-ph/0511580.
[Yoo:2005eh]
[13-2176]
A Bayesian analysis of the primordial power spectrum, M. Bridges, A.N. Lasenby, M.P. Hobson, Mon. Not. Roy. Astron. Soc. 369 (2006) 1123-1130, arXiv:astro-ph/0511573.
[Bridges:2005br]
[13-2177]
Cosmological constraints with GRBs: homogeneous medium vs wind density profile, G. Ghirlanda et al., Astron.Astrophys. (2005), arXiv:astro-ph/0511559.
[Ghirlanda:2005bb]
[13-2178]
Is cosmology compatible with sterile neutrinos?, Scott Dodelson, Alessandro Melchiorri, Anze Slosar, Phys. Rev. Lett. 97 (2006) 04301, arXiv:astro-ph/0511500.
[Dodelson:2005tp]
[13-2179]
On Oscillating Dark Energy, Eric V. Linder, Astropart. Phys. 25 (2006) 167, arXiv:astro-ph/0511415.
[Linder:2005dw]
[13-2180]
Cosmological Signatures of Interacting Neutrinos, Nicole F. Bell, Elena Pierpaoli, Kris Sigurdson, Phys. Rev. D73 (2006) 063523, arXiv:astro-ph/0511410.
[Bell:2005dr]
[13-2181]
An excursion set model of the cosmic web: The abundance of sheets, filaments and halos, Jiajian Shen, Tom Abel, Houjun Mo, Ravi Sheth, Astrophys. J. 645 (2006) 783-791, arXiv:astro-ph/0511365.
[Shen:2005wd]
[13-2182]
Scalar statistics on the sphere: application to the CMB, C. Monteserin, R.B. Barreiro, J.L. Sanz, E. Martinez-Gonzalez, Mon. Not. Roy. Astron. Soc. 360 (2005) 9, arXiv:astro-ph/0511308.
[Monteserin:2005nk]
[13-2183]
On the smallness of the cosmological constant in SUGRA models, C. Froggatt, R. Nevzorov, H.B. Nielsen, Nucl. Phys. B743 (2006) 133, arXiv:hep-ph/0511259.
[Froggatt:2005nb]
[13-2184]
More General BBN Constraints on Neutrino Oscillations Parameters - Relaxed or Strengthened, Daniela P. Kirilova, Int. J. Mod. Phys. D16 (2007) 1197-1210, arXiv:astro-ph/0511231.
[Kirilova:2005wg]
[13-2185]
Deviations From Newton's Law in Supersymmetric Large Extra Dimensions, P. Callin, C.P. Burgess, Nucl. Phys. B752 (2006) 60-79, arXiv:hep-ph/0511216.
[Callin:2005wi]
[13-2186]
Can Solar System observations tell us something about the cosmological constant?, Lorenzo Iorio, Int. J. Mod. Phys. D15 (2006) 473-476, arXiv:gr-qc/0511137.
[Iorio:2005vw]
[13-2187]
Physical constants and the Gurzadyan-Xue formula for the dark energy, Gregory V. Vereshchagin, Mod. Phys. Lett. A21 (2006) 729, arXiv:astro-ph/0511131.
[Vereshchagin:2005is]
[13-2188]
Anisotropically Inflating Universes, John D. Barrow, Sigbjorn Hervik, Phys. Rev. D73 (2006) 023007, arXiv:gr-qc/0511127.
[Barrow:2005qv]
[13-2189]
Learning from the Scatter in Type Ia Supernovae, Scott Dodelson, Alberto Vallinotto, Phys. Rev. D74 (2006) 063515, arXiv:astro-ph/0511086.
[Dodelson:2005zt]
[13-2190]
Correlation properties of the kinematic Sunyaev-Zel'dovich effect and implications for Dark Energy, C. Hernandez-Monteagudo, L. Verde, Raul Jimenez, D.N. Spergel, Astrophys. J. 643 (2006) 598-615, arXiv:astro-ph/0511061.
[Hernandez-Monteagudo:2005xtx]
[13-2191]
The kinetic Sunyaev-Zel'dovitch effect as a dark energy probe, Simon DeDeo, David N. Spergel, Hy Trac, arXiv:astro-ph/0511060, 2005.
[DeDeo:2005yr]
[13-2192]
Searching For Integrated Sachs-Wolfe Effect Beyond Temperature Anisotropies: CMB E-mode Polarization-Galaxy Cross Correlation, Asantha Cooray, Alessandro Melchiorri, JCAP 0601 (2006) 018, arXiv:astro-ph/0511054.
[Cooray:2005yj]
[13-2193]
Comparison of the Legacy and Gold SnIa Dataset Constraints on Dark Energy Models, S. Nesseris, L. Perivolaropoulos, Phys. Rev. D72 (2005) 123519, arXiv:astro-ph/0511040.
[Nesseris:2005ur]
[13-2194]
Supernova limits on brane world cosmology, Malcolm Fairbairn, Ariel Goobar, Phys. Lett. B642 (2006) 432-435, arXiv:astro-ph/0511029.
[Fairbairn:2005ue]
[13-2195]
How do galactic winds affect the Lyalpha forest?, Serena Bertone, Simon D.M. White, Mon. Not. Roy. Astron. Soc. 367 (2006) 247, arXiv:astro-ph/0511028.
[Bertone:2005ud]
[13-2196]
Dark Energy and Neutrino CPT Violation, Pei-Hong Gu, Xiao-June Bi, Xinmin Zhang, Eur. Phys. J. C50 (2007) 655-659, arXiv:hep-ph/0511027.
[Gu:2005eq]
[13-2197]
Big Bang Nucleosynthesis Constraints on Universal Extra Dimensions and Varying Fundamental Constants, B. Li M.-C. Chu, Phys. Rev. D73 (2006) 025004, arXiv:hep-ph/0511013.
[Li:2005aia]
[13-2198]
On the Determination of Neutrino Masses and Dark Energy Evolution, Kazuhide Ichikawa, Tomo Takahashi, JCAP 0802 (2008) 017, arXiv:astro-ph/0510849.
[Ichikawa:2005hi]
[13-2199]
The circles-in-the-sky signature for three spherical universes, R. Aurich, S. Lustig, F. Steiner, Mon. Not. Roy. Astron. Soc. 369 (2006) 240-248, arXiv:astro-ph/0510847.
[Aurich:2005hg]
[13-2200]
The Impact of Temperature Fluctuations on the Lyman-alpha Forest Power Spectrum, Kamson Lai, Adam Lidz, Lars Hernquist, Matias Zaldarriaga, Astrophys. J. 644 (2006) 61-70, arXiv:astro-ph/0510841.
[Lai:2005ha]
[13-2201]
Non-Gaussian Foreground Residuals of the WMAP First Year Maps, J. Medeiros, C. R. Contaldi, Mon. Not. Roy. Astron. Soc. 367 (2006) 39, arXiv:astro-ph/0510816.
[Medeiros:2005fz]
[13-2202]
Bounds on Extended Godel-Type Metrics from Type Ia Supernova Data, Pankaj Jain, Moninder S. Modgil, John P. Ralston, Mod. Phys. Lett. A22 (2007) 1153-1165, arXiv:astro-ph/0510803.
[Jain:2005koj]
[13-2203]
Ruling the Universe: An Improved Method for Measuring H_0 with Galaxy Clusters, Eric J. Hallman, Jack O. Burns, Patrick M. Motl, Michael L. Norman, Astrophys.J.Lett. (2005), arXiv:astro-ph/0510745.
[Hallman:2005uv]
[13-2204]
Comment on 'On curvature coupling and quintessence fine-tuning', Urbano Franca, arXiv:astro-ph/0510692, 2005.
[Franca:2005ea]
[13-2205]
Spectral distortions to the Cosmic Microwave Background from the recombination of hydrogen and helium, Wan Yan Wong, Sara Seager, Douglas Scott, Mon. Not. Roy. Astron. Soc. 367 (2006) 1666, arXiv:astro-ph/0510634.
[Wong:2005yr]
[13-2206]
Super-acceleration as Signature of Dark Sector Interaction, Subinoy Das, Pier Stefano Corasaniti, Justin Khoury, Phys. Rev. D73 (2006) 083509, arXiv:astro-ph/0510628.
[Das:2005yj]
[13-2207]
w and w' of Scalar Field Models of Dark Energy in the Large, Takeshi Chiba, Phys. Rev. D73 (2006) 063501, arXiv:astro-ph/0510598.
[Chiba:2005tj]
[13-2208]
New constraint on the cosmological background of relativistic particles, Steen Hannestad, JCAP 0601 (2006) 001, arXiv:astro-ph/0510582.
From the abstract: In terms of the effective number of neutrino species a bound of $N_\nu = 4.2^{+1.2}_{-1.7}$ is derived at 95\% confidence.... The absence of a cosmological neutrino background ($N_\nu = 0$) is now excluded at $5.4 \sigma$.
[Hannestad:2005jj]
[13-2209]
The dynamic cosmological term Lambda: Some aspects of phenomenological models, Utpal Mukhopadhyay, Saibal Ray, N. B. U. Math. J. II (2005) 51, arXiv:astro-ph/0510554.
[Mukhopadhyay:2005if]
[13-2210]
Dark energy with polytropic equation of state, Utpal Mukhopadhyay, Saibal Ray, Mod. Phys. Lett. A23 (2008) 3187-3198, arXiv:astro-ph/0510550.
[Mukhopadhyay:2005ib]
[13-2211]
Dark energy models with time-dependent gravitational constant, Saibal Ray, Utpal Mukhopadhyay, Int. J. Mod. Phys. D16 (2007) 1791-1802, arXiv:astro-ph/0510549.
[Ray:2005ia]
[13-2212]
Constraining inverse curvature gravity with supernovae, Olga Mena, Jose Santiago, Jochen Weller, Phys. Rev. Lett. 96 (2006) 041103, arXiv:astro-ph/0510453.
[Mena:2005ta]
[13-2213]
Relaxing Nucleosynthesis Constraints on Brans-Dicke Theories, Antonio De Felice, Gianpiero Mangano, Mark Trodden, Phys. Rev. D74 (2006) 103005, arXiv:astro-ph/0510359.
[DeFelice:2005bx]
[13-2214]
Leptonic Dark Energy and Baryogenesis, Florian Bauer, Marc-Thomas Eisele, Mathias Garny, Phys. Rev. D74 (2006) 023509, arXiv:hep-ph/0510340.
[Bauer:2005vz]
[13-2215]
Investigating dark energy experiments with principal components, Robert G. Crittenden, Levon Pogosian, JCAP 0912 (2009) 025, arXiv:astro-ph/0510293.
[Crittenden:2005wj]
[13-2216]
Cosmological Constraints from Weak Lensing Surveys, Dipak Munshi, Patrick Valageas, Mon.Not.Roy.Astron.Soc. (2005), arXiv:astro-ph/0510266.
[Munshi:2005kg]
[13-2217]
Observational Consequences of Quantum Cosmology, Qing-Guo Huang, Nucl. Phys. B777 (2007) 253-261, arXiv:hep-th/0510219.
[Huang:2005wq]
[13-2218]
Large scale correlations in galaxy clustering from the Two degree Field Galaxy Redshift Survey, N. L. Vasilyev, Yu. V. Baryshev, F. Sylos Labini, Astron. Astrophys. 447 (2006) 431-440, arXiv:astro-ph/0510210.
[Vasilyev:2005br]
[13-2219]
Testing for w < -1 in the Solar System, Jerome Martin, Carlo Schimd, Jean-Philippe Uzan, Phys. Rev. Lett. 96 (2006) 061303, arXiv:astro-ph/0510208.
[Martin:2005bp]
[13-2220]
Dark energy in hybrid inflation, Jinn-Ouk Gong, Seongcheol Kim, Phys. Rev. D75 (2007) 063520, arXiv:astro-ph/0510207.
[Gong:2005bn]
[13-2221]
Constraining Dark Energy with the Dark Energy Survey: Theoretical Challenges, James Annis et al., arXiv:astro-ph/0510195, 2005.
[Annis:2005ba]
[13-2222]
Observational Constraints on Undulant Cosmologies, Gabriela Barenboim, Olga Mena Requejo, Chris Quigg, JCAP 0604 (2006) 008, arXiv:astro-ph/0510178.
[Barenboim:2005wx]
[13-2223]
Strong lensing, cosmology and lensing halos, Edvard Mortsell, Christoffer Sunesson, JCAP 0601 (2006) 012, arXiv:astro-ph/0510120.
[Mortsell:2005mf]
[13-2224]
Decaying cosmological parameter in the early universe from NKK theory of gravity, Mauricio Bellini, Phys. Lett. B632 (2006) 610, arXiv:gr-qc/0510110.
[Bellini:2005jc]
[13-2225]
Scale-dependent bias and the halo model, A.E. Schulz, Martin White, Astropart. Phys. 25 (2006) 172, arXiv:astro-ph/0510100.
[Schulz:2005kj]
[13-2226]
Devaluation: a dynamical mechanism for a naturally small cosmological constant, Katherine Freese, James T. Liu, Douglas Spolyar, Phys. Lett. B634 (2006) 119, arXiv:hep-ph/0510065.
[Freese:2005pu]
[13-2227]
Dark Energy Models in the w - w' Plane, Robert J. Scherrer, Phys. Rev. D73 (2006) 043502, arXiv:astro-ph/0509890.
[Scherrer:2005je]
[13-2228]
Static Configurations of Dark Energy and Dark Matter, N. Brouzakis, N. Tetradis, JCAP 0601 (2006) 004, arXiv:astro-ph/0509755.
[Brouzakis:2005cj]
[13-2229]
Direct evidence for an early reionization of the Universe?, N. Panagia et al., Astrophys. J. 633 (2005) L1, arXiv:astro-ph/0509605.
[Panagia:2005bs]
[13-2230]
Testing Bekenstein's Relativistic MOND gravity with Gravitational Lensing, HongSheng Zhao, David J. Bacon, Andy N. Taylor, Keith Horne, Mon. Not. Roy. Astron. Soc. 368 (2006) 171, arXiv:astro-ph/0509590.
[Zhao:2005za]
[13-2231]
Constraints on holographic dark energy from X-ray gas mass fraction of galaxy clusters, Zhe Chang, Feng-Quan Wu, Xin Zhang, Phys. Lett. B633 (2006) 14, arXiv:astro-ph/0509531.
[Chang:2005ph]
[13-2232]
Limitations on Precision Cosmology using Mass Measurements of Galaxy Clusters, Eric J. Hallman, Patrick M. Motl, Jack O. Burns, Michael L. Norman, Astrophys.J. (2005), arXiv:astro-ph/0509460.
[Hallman:2005zs]
[13-2233]
Renormalized Cosmological Perturbation Theory, M. Crocce, R. Scoccimarro, Phys. Rev. D73 (2006) 063519, arXiv:astro-ph/0509418.
[Crocce:2005xy]
[13-2234]
Neutrino Signatures from the First Stars, Frederic Daigne, Keith A. Olive, Pearl Sandick, Elisabesth Vangioni, Phys. Rev. D72 (2005) 103007, arXiv:astro-ph/0509404.
[Daigne:2005xi]
[13-2235]
Dark energy from coexistence of phases, Ariel Megevand, Phys. Lett. B642 (2006) 287-293, arXiv:astro-ph/0509291.
[Megevand:2005zy]
[13-2236]
Supernova constraints on models of neutrino dark energy, Hong Li, Bo Feng, Jun-Qing Xia, Xinmin Zhang, Phys. Rev. D73 (2006) 103503, arXiv:astro-ph/0509272.
[Li:2005zd]
[13-2237]
Cosmology with weak lensing surveys, Dipak Munshi, Patrick Valageas, Phil. Trans. Roy. Soc. Lond. A363 (2005) 2675, arXiv:astro-ph/0509216.
[Munshi:2005gy]
[13-2238]
Age of High Redshift Objects - a Litmus Test for the Dark Energy Models, Deepak Jain, Abha Dev, Phys. Lett. B633 (2006) 436, arXiv:astro-ph/0509212.
[Jain:2005gu]
[13-2239]
Implications of the Cosmic Background Imager Polarization Data, Jonathan L. Sievers et al., Astrophys. J. 660 (2007) 976-987, arXiv:astro-ph/0509203.
[Sievers:2005gj]
[13-2240]
New Matter Effects and BBN Constraints for Mass Varying Neutrinos, Neal Weiner, Kathryn Zurek, Phys. Rev. D74 (2006) 023517, arXiv:hep-ph/0509201.
[Weiner:2005ac]
[13-2241]
Dark energy, curvature and cosmic coincidence, Urbano Franca, Phys. Lett. B641 (2006) 351-356, arXiv:astro-ph/0509177.
[Gong:2005wi]
[13-2242]
Confronting mass-varying neutrinos with MiniBooNE, V. Barger, D. Marfatia, K. Whisnant, Phys. Rev. D73 (2006) 013005, arXiv:hep-ph/0509163.
[Barger:2005mh]
[13-2243]
Lorentz-violating brane worlds and cosmological perturbations, M.V. Libanov, V.A. Rubakov, Phys. Rev. D72 (2005) 123503, arXiv:hep-ph/0509148.
[Libanov:2005nv]
[13-2244]
Accelerating Universe from Extra Spatial Dimension, S.Chatterjee, A. Banerjee, Y.Z. Zhang, Int. J. Mod. Phys. A21 (2006) 4035-4044, arXiv:gr-qc/0509112.
[Chatterjee:2005sp]
[13-2245]
Testing Primordial Non-Gaussianity in CMB Anisotropies, M. Liguori, F. K. Hansen, E. Komatsu, S. Matarrese, A. Riotto, Phys. Rev. D73 (2006) 043505, arXiv:astro-ph/0509098.
[Liguori:2005rj]
[13-2246]
The dark gravity model and the formation of large scale structures, Frederic Henry-Couannier, Int.J.Mod.Phys.A (2005), arXiv:astro-ph/0509093.
[Henry-Couannier:2005uhc]
[13-2247]
Dark gravity and cosmology, F. Henry-Couannier, A. Tilquin, C. Tao, A. Ealet, Phys. Rev. Lett. (2005), arXiv:astro-ph/0509092.
[Henry-Couannier:2005rtk]
[13-2248]
Consensus values for cosmological parameters, Matts Roos, arXiv:astro-ph/0509089, 2005.
[Roos:2005ra]
[13-2249]
Joint constraints on the lepton asymmetry of the Universe and neutrino mass from the Wilkinson Microwave Anisotropy Probe, Massimiliano Lattanzi, Remo Ruffini, Gregory V. Vereshchagin, Phys. Rev. D72 (2005) 063003, arXiv:astro-ph/0509079.
[Lattanzi:2005qq]
[13-2250]
The Most Probable Size of the Universe, Brett McInnes, Nucl. Phys. B730 (2005) 50, arXiv:hep-th/0509035.
[McInnes:2005su]
[13-2251]
Limits on non-Gaussianities from WMAP data, Paolo Creminelli, Alberto Nicolis, Leonardo Senatore, Max Tegmark, Matias Zaldarriaga, JCAP 0605 (2006) 004, arXiv:astro-ph/0509029.
[Creminelli:2005hu]
[13-2252]
The 7Be(d,p)2alpha cross section at Big Bang energies and the primordial 7Li abundance, C. Angulo et al., Astrophys. J. 630 (2005) L105, arXiv:astro-ph/0508454.
[Angulo:2005mi]
[13-2253]
Through the Looking-Glass: Alice's Adventures in Mirror World, Zurab Berezhiani, arXiv:hep-ph/0508233, 2005.
[Berezhiani:2005ek]
[13-2254]
Properties of a future susy universe, L. Clavelli, Int. J. Mod. Phys. E15 (2006) 1157-1174, arXiv:hep-th/0508207.
[Clavelli:2005vm]
[13-2255]
Observational constraints on the dark energy density evolution, Michael Doran, Khamphee Karwan, Christof Wetterich, JCAP 0511 (2005) 007, arXiv:astro-ph/0508132.
[Doran:2005sn]
[13-2256]
Exploring Large-scale Structure with Billions of Galaxies, Hu Zhan, Lloyd Knox, Anthony Tyson, Vera Margoniner, Astrophys. J. 640 (2006) 8-17, arXiv:astro-ph/0508119.
[Zhan:2005rz]
[13-2257]
Temperature of the inflaton and duration of inflation from WMAP data, Kaushik Bhattacharya, Subhendra Mohanty, Raghavan Rangarajan, Phys. Rev. Lett. 96 (2006) 121302, arXiv:hep-ph/0508070.
[Bhattacharya:2005wn]
[13-2258]
Dark energy and the future fate of the Universe, Yungui Gong, Yuan-Zhong Zhang, Mod. Phys. Lett. A22 (2007) 2689, arXiv:gr-qc/0508053.
[Gong:2005iw]
[13-2259]
Robustness of Discrete Flows and Caustics in Cold Dark Matter Cosmology, Aravind Natarajan, Pierre Sikivie, Phys. Rev. D72 (2005) 083513, arXiv:astro-ph/0508049.
[Natarajan:2005fh]
[13-2260]
Did Boomerang hit MOND?, Anze Slosar, Alessandro Melchiorri, Joseph Silk, Phys. Rev. D72 (2005) 101301, arXiv:astro-ph/0508048.
[Slosar:2005fg]
[13-2261]
On the large-angle anomalies of the microwave sky, C. J. Copi, D. Huterer, D. J. Schwarz, G. D. Starkman, Mon. Not. Roy. Astron. Soc. 367 (2006) 79, arXiv:astro-ph/0508047.
[Copi:2005ff]
[13-2262]
The Largest Scale We Can Detect in the Universe and the Inflation, Wen Zhao, Yang Zhang, arXiv:astro-ph/0508008, 2005.
[Zhao:2005am]
[13-2263]
Anthropic reasoning in multiverse cosmology and string theory, Steven Weinstein, Class. Quant. Grav. 23 (2006) 4231-4236, arXiv:hep-th/0508006.
[Weinstein:2005ef]
[13-2264]
Anthropic prediction for Lambda and the Q catastrophe, Jaume Garriga, Alexander Vilenkin, Prog. Theor. Phys. Suppl. 163 (2006) 245-257, arXiv:hep-th/0508005.
[Garriga:2005ee]
[13-2265]
The Accelerated expansion of the Universe as a crossover phenomenon, A. Bonanno, G. Esposito, C. Rubano, P. Scudellaro, Class. Quant. Grav. 23 (2006) 3103, arXiv:astro-ph/0507670.
[Bonanno:2005mt]
[13-2266]
Dark energy records in lensed cosmic microwave background, Viviana Acquaviva, Carlo Baccigalupi, Phys. Rev. D74 (2006) 103510, arXiv:astro-ph/0507644.
[Acquaviva:2005xz]
[13-2267]
A Sudden Gravitational Transition, Robert R. Caldwell, William Komp, Leonard Parker, Daniel A. T. Vanzella, Phys. Rev. D73 (2006) 023513, arXiv:astro-ph/0507622.
[Caldwell:2005xb]
[13-2268]
Cosmological parameters from CMB measurements and the final 2dFGRS power spectrum, Ariel G. Sanchez et al., Mon. Not. Roy. Astron. Soc. 366 (2006) 189, arXiv:astro-ph/0507583.
From the abstract: If we assume a flat universe, we find a matter density parameter of $\Omega_{\rm m}=0.237 \pm 0.020$, a baryon density parameter of $\Omega_{\rm b} = 0.041 \pm 0.002$, a Hubble constant of $H_{0}=74\pm2 \; {\rm kms}^{-1}{\rm Mpc}^{-1}$, a linear theory matter fluctuation amplitude of $\sigma_{8}=0.77\pm0.05$ and a scalar spectral index of $n_{\rm s}=0.954 \pm 0.023$ (all errors show the 68\% interval). The scale invariant spectrum, $n_{\rm s}=1$, is only marginally consistent with our estimate of $n_{\rm s}$ at the $95\%$ level. However, the detection of a tilt in the spectrum is sensitive to the choice of model. If we allow the equation of state of the dark energy to float, we find $w_{\rm DE}= -0.85_{-0.17}^{+0.18}$, consistent with a cosmological constant. We also place new limits on the mass fraction of massive neutrinos: $f_{\nu} < 0.105$ at the 95\% level, corresponding to $\sum m_{\nu} < 1.2$ eV.
[Sanchez:2005pi]
[13-2269]
Power Spectrum and Intermittency of $\text{Ly}\alpha$ Transmitted Flux of QSO He2347-4342, Priya Jamkhedkar, Long-Long Feng, Wei Zheng, Li-Zhi Fang, Astrophys. J. 633 (2005) 52, arXiv:astro-ph/0507561.
[Jamkhedkar:2005iu]
[13-2270]
Cosmological parameters from the 2003 flight of BOOMERANG, C. J. MacTavish et al., Astrophys. J. 647 (2006) 799, arXiv:astro-ph/0507503.
From the article: We also do not include information on the Lyman alpha forest, even though it probes the power spectrum to smaller scales. Although adding this data does result in some more stringent constraints than those we derive here [Go], the forest information is more susceptible to scale dependent biasing effects associated with gasdynamical and radiation processes.
...
We find from CMB data alone (CMBall+B03) an upper limit (95\% confidence) on the neutrino mass of $m_{\nu} < 1.0 \, \text{eV}$. Adding the LSS data reduces this limit to $m_{\nu} < 0.40 \, \text{eV}$, without any $b_g$ constraint, and to $m_{\nu} < 0.16 \, \text{eV}$, when $b_g = 1.0 \pm 0.10$ is used.

[MacTavish:2005yk]
[13-2271]
Perturbations of the Quintom Models of Dark Energy and the Effects on Observations, Gong-Bo Zhao et al., Phys. Rev. D72 (2005) 123515, arXiv:astro-ph/0507482.
[Zhao:2005vj]
[13-2272]
Measuring the geometry of the Universe in the presence of isocurvature modes, J. Dunkley et al., Phys. Rev. Lett. 95 (2005) 261303, arXiv:astro-ph/0507473.
[Dunkley:2005va]
[13-2273]
Heavy Element Production in Inhomogeneous Big Bang Nucleosynthesis, S. Matsuura et al., Phys. Rev. D72 (2007) 123505, arXiv:astro-ph/0507439.
[Matsuura:2007fv]
[13-2274]
Dark energy exponential potential models as curvature quintessence, S. Capozziello, V.F. Cardone, E. Piedipalumbo, C. Rubano, Class. Quant. Grav. 23 (2006) 1205, arXiv:astro-ph/0507438.
[Capozziello:2005ra]
[13-2275]
Baryonic acoustic oscillations in simulated galaxy redshift surveys, Hee-Jong Seo, Daniel J. Eisenstein, Astrophys. J. 633 (2005) 575, arXiv:astro-ph/0507338.
[Seo:2005ys]
[13-2276]
Which cosmological model with dark energy - phantom or LambdaCDM, Wlodzimierz Godlowski Marek Szydlowski, Phys. Lett. B623 (2005) 10, arXiv:astro-ph/0507322.
[Godlowski:2005tw]
[13-2277]
SnIa Constraints on the event-horizon Thermodynamical model of Dark Energy, Jérome Gariel, Gérard Le Denmat, Cécile Barbachoux, Phys. Lett. B629 (2005) 1, arXiv:astro-ph/0507318.
[Gariel:2005ts]
[13-2278]
The Ups and Downs of Baryon Oscillations, Eric V. Linder, arXiv:astro-ph/0507308, 2005.
[Linder:2005tg]
[13-2279]
Baryon oscillations, Martin White, Astropart. Phys. 24 (2005) 334, arXiv:astro-ph/0507307.
[White:2005tf]
[13-2280]
Observing Baryon Oscillations with Cosmic Shear, Fergus Simpson, Astrophys. J. 647 (2006) L91-L94, arXiv:astro-ph/0507301.
[Simpson:2005sz]
[13-2281]
The zero-crossing scale and the problem of galaxy bias, Francesco Sylos Labini, Astron.Astrophys. (2005), arXiv:astro-ph/0507277.
[Labini:2005jc]
[13-2282]
The Effects of Reionization on Lyman-alpha Galaxy Surveys, Steven R. Furlanetto, Matias Zaldarriaga, Lars Hernquist, Mon. Not. Roy. Astron. Soc. 365 (2006) 1012, arXiv:astro-ph/0507266.
[Furlanetto:2005ir]
[13-2283]
Cosmic Growth History and Expansion History, Eric V. Linder, Phys. Rev. D72 (2005) 043529, arXiv:astro-ph/0507263.
[Linder:2005in]
[13-2284]
Hierarchy from Baryogenesis, Leonardo Senatore, Phys. Rev. D73 (2006) 043513, arXiv:hep-ph/0507257.
[Senatore:2005ch]
[13-2285]
Higher Criticism Statistic: Detecting and Identifying Non-Gaussianity in the WMAP First Year Data, L. Cayon, J. Jin, A. Treaster, Mon. Not. Roy. Astron. Soc. 362 (2005) 826, arXiv:astro-ph/0507246.
[Cayon:2005er]
[13-2286]
Big-Bang Nucleosynthesis with Unstable Gravitino and Upper Bound on the Reheating Temperature, Kazunori Kohri, Takeo Moroi, Akira Yotsuyanagi, Phys. Rev. D73 (2006) 123511, arXiv:hep-ph/0507245.
[Kohri:2005wn]
[13-2287]
Supersymmetric Theories of Neutrino Dark Energy, Rob Fardon, Ann E. Nelson, Neal Weiner, JHEP 0603 (2006) 042, arXiv:hep-ph/0507235.
[Fardon:2005wc]
[13-2288]
Parameterizing the Power Spectrum: Beyond the Truncated Taylor Expansion, Kevork Abazajian, Kenji Kadota, Ewan D. Stewart, JCAP 0508 (2005) 008, arXiv:astro-ph/0507224.
[Abazajian:2005dt]
[13-2289]
Gamma-ray bursts as dark energy-matter probes in the context of the generalized Chaplygin gas model, O. Bertolami, P.T. Silva, Mon. Not. Roy. Astron. Soc. 365 (2006) 1149, arXiv:astro-ph/0507192.
[Bertolami:2005aa]
[13-2290]
Is Cosmic Acceleration a Symptom of the Breakdown of General Relativity?, Mustapha Ishak, Amol Upadhye, David N. Spergel, Phys. Rev. D74 (2006) 043513, arXiv:astro-ph/0507184.
[Ishak:2005zs]
[13-2291]
Prospects for Dark Energy Evolution: a Frequentist Multi-Probe Approach, Ch. Yeche et al., Astron.Astrophys. (2005), arXiv:astro-ph/0507170.
[Yeche:2005wn]
[13-2292]
The Accelerated Acceleration of the Universe, Csaba Csaki, Nemanja Kaloper, John Terning, JCAP 0606 (2006) 022, arXiv:astro-ph/0507148.
[Csaki:2005vq]
[13-2293]
Model of Mass Varying Neutrinos in SUSY, Ryo Takahashi, Morimitsu Tanimoto, Phys. Lett. B633 (2006) 675, arXiv:hep-ph/0507142.
[Takahashi:2005kw]
[13-2294]
Dynamical dark energy versus variable cosmological constant, Joan Sola, Hrvoje Stefancic, Mod. Phys. Lett. A21 (2006) 479, arXiv:astro-ph/0507110.
[Sola:2005nh]
[13-2295]
Tera-Leptons Shadows over Sinister Universe, D. Fargion, M. Khlopov, Grav.Cosmol. 19 (2013) 219-231, arXiv:hep-ph/0507087.
[Fargion:2005xz]
[13-2296]
Mass limits for fourth generation sequential neutrinos from dark matter experiments, Gray Rybka, Peter Fisher, arXiv:hep-ex/0507086, 2005.
[Rybka:2005vv]
[13-2297]
Unified Dark Energy models: a real alternative to Quintessence?, L. M. G. Beca, P. P. Avelino, Mon. Not. Roy. Astron. Soc. 376 (2007) 1169-1172, arXiv:astro-ph/0507075.
[Beca:2005gc]
[13-2298]
Crossing of the w=-1 Barrier by D3-brane Dark Energy Model, I.Ya. Aref'eva, A.S. Koshelev, S.Yu. Vernov, Phys. Rev. D72 (2005) 064017, arXiv:astro-ph/0507067.
[Arefeva:2005mka]
[13-2299]
The Cosmological Constant Emerging From Local Poincare Invariance, Paul von der Heyde, arXiv:gr-qc/0507058, 2005.
[vonderHeyde:2005zp]
[13-2300]
Accelerating Universe via Spatial Averaging, Yasusada Nambu, Masayuki Tanimoto, arXiv:gr-qc/0507057, 2005.
[Nambu:2005zn]
[13-2301]
Probing the cosmic microwave background temperature using the Sunyaev-Zeldovich effect, Cathy Horellou, Martin Nord, Daniel Johansson, Anna Levy, Astron.Astrophys. (2005), arXiv:astro-ph/0507032.
[Horellou:2005br]
[13-2302]
Non-Oscillation Probes of the Neutrino Mass Hierarchy and Vanishing $U_{e3}$, Andre de Gouvea, James Jenkins, arXiv:hep-ph/0507021, 2005.
[deGouvea:2005hj]
[13-2303]
Interaction between Physics and Cosmology, N. Panchapakesan, arXiv:astro-ph/0506749, 2005.
[Panchapakesan:2005qd]
[13-2304]
Is it possible to consider Dark Energy and Dark Matter as a same and unique Dark Fluid?, Alexandre Arbey, arXiv:astro-ph/0506732, 2005.
[Arbey:2005fn]
[13-2305]
On the stability of Dark Energy with Mass-Varying Neutrinos, Niayesh Afshordi, Matias Zaldarriaga, Kazunori Kohri, Phys. Rev. D72 (2005) 065024, arXiv:astro-ph/0506663.
[Afshordi:2005ym]
[13-2306]
A very extended reionization epoch?, A. Melchiorri, T. Roy Choudhury, P. Serra, A. Ferrara, Mon. Not. Roy. Astron. Soc. 364 (2005) 873, arXiv:astro-ph/0506486.
[Melchiorri:2005tv]
[13-2307]
Evidence for Evolution or Bias in Host Extinctions of High Redshift Supernovae, Pankaj Jain, John P. Ralston, Astrophys. J. 637 (2006) 91, arXiv:astro-ph/0506478.
[Jain:2005tm]
[13-2308]
From Hubble diagrams to scale factors, Thomas Schucker, Andre Tilquin, Astron.Astrophys. 447 (2006) 413, arXiv:astro-ph/0506457.
[Schucker:2005ny]
[13-2309]
Direct detection of the inflationary gravitational wave background, Tristan L. Smith, Marc Kamionkowski, Asantha Cooray, Phys. Rev. D73 (2006) 023504, arXiv:astro-ph/0506422.
[Smith:2005mm]
[13-2310]
The $\Omega_{DE}-\Omega_{M}$ Plane in Dark Energy Cosmology, Yuan Qiang, Tong-Jie Zhang, Mod. Phys. Lett. A21 (2006) 75, arXiv:astro-ph/0506404.
[Qiang:2005fh]
[13-2311]
Measuring the primordial power spectrum: Principal component analysis of the cosmic microwave background, Samuel Leach, Mon. Not. Roy. Astron. Soc. 372 (2006) 646-654, arXiv:astro-ph/0506390.
[Leach:2005av]
[13-2312]
Neutron Diffusion and Nucleosynthesis in an Inhomogeneous Big Bang Model, Juan F. Lara, Phys. Rev. D72 (2005) 023509, arXiv:astro-ph/0506364.
[Lara:2005zt]
[13-2313]
Cosmography, Decelerating Past, and Cosmological Models: Learning the Bayesian Way, Moncy V. John, Astrophys. J. 630 (2005) 667, arXiv:astro-ph/0506284.
[John:2005bz]
[13-2314]
Cosmological Constraints on a Power Law Universe, Geetanjali Sethi, Abha Dev, Deepak Jain, Phys. Lett. B624 (2005) 135, arXiv:astro-ph/0506255.
[Sethi:2005au]
[13-2315]
Statistical Analysis of Galaxy Surveys-II. The 3-point galaxy correlation function measured from the 2dFGRS, E. Gaztanaga, P. Norberg, C.M. Baugh, D.J. Croton, Mon. Not. Roy. Astron. Soc. 364 (2005) 620, arXiv:astro-ph/0506249.
[Gaztanaga:2005an]
[13-2316]
On the stellar luminosity of the universe, Ralph A.M.J. Wijers, Mon.Not.Roy.Astron.Soc. (2005), arXiv:astro-ph/0506218.
[Wijers:2005pn]
[13-2317]
Einstein-de Sitter model re-examined for the newly discovered SNe Ia, R. G. Vishwakarma, Mon. Not. Roy. Astron. Soc. 361 (2005) 1382, arXiv:astro-ph/0506217.
[Vishwakarma:2005pm]
[13-2318]
Neutrino Constraints on Spontaneous Lorentz Violation, Yuval Grossman, Can Kilic, Jesse Thaler, Devin G. E. Walker, Phys. Rev. D72 (2005) 125001, arXiv:hep-ph/0506216.
[Grossman:2005ej]
[13-2319]
Relic neutrino decoupling including flavour oscillations, Gianpiero Mangano et al., Nucl. Phys. B729 (2005) 221, arXiv:hep-ph/0506164.
[Mangano:2005cc]
[13-2320]
Lepton asymmetry and primordial nucleosynthesis in the era of precision cosmology, Pasquale D. Serpico, Georg G. Raffelt, Phys. Rev. D71 (2005) 127301, arXiv:astro-ph/0506162.
[Serpico:2005bc]
[13-2321]
Is Dark Matter Heavy Because of Electroweak Symmetry Breaking? Revisiting Heavy Neutrinos, Philip C. Schuster, Natalia Toro, arXiv:hep-ph/0506079, 2005.
[Schuster:2005ck]
[13-2322]
Gravity and Anti-gravity of Fermions: the Unification of Dark Matter and Dark Energy, Xiang-Song Chen, arXiv:astro-ph/0506070, 2005.
[Chen:2005my]
[13-2323]
Numeric Spectrum of Relic Gravitational Waves in Accelerating Universe, Yang Zhang, Wen Zhao, Yefei Yuan, Tianyang Xia, Chin. Phys. Lett. 20 (2005) 1817, arXiv:astro-ph/0505589.
[Zhang:2005kg]
[13-2324]
Neutrino masses and the dark energy equation of state - relaxing the cosmological neutrino mass bound, Steen Hannestad, Phys. Rev. Lett. 95 (2005) 221301, arXiv:astro-ph/0505551.
From the abstract: When the dark energy equation of state parameter is taken as a free (but constant) parameter, the neutrino mass bound is $\sum m_\nu \leq 1.48 \, \text{eV} $ (95\% C.L.), compared with $\sum m_\nu \leq 0.65 \, \text{eV} $ (95\% C.L.) in the standard model where the dark energy is in the form of a cosmological constant.
From the article: While for low neutrino masses a cosmological constant ($w=-1$) is allowed, for high neutrino masses only dark energy models in the phantom regime ($w < -1$) are allowed.
[Hannestad:2005gj]
[13-2325]
Cosmology with decaying tachyon matter, A. Das, Shashikant Gupta, Tarun Deep Saini, Sayan Kar, Phys. Rev. D72 (2005) 043528, arXiv:astro-ph/0505509.
[Das:2005uc]
[13-2326]
Mass-Varying Neutrinos from a Variable Cosmological Constant, R. Horvat, JCAP 0601 (2006) 015, arXiv:astro-ph/0505507.
[Horvat:2005ua]
[13-2327]
Constraints on dark energy from the observed density fluctuations spectrum and supernova data, Reuven Opher, Ana Pelinson, arXiv:astro-ph/0505476, 2005.
[Opher:2005gt]
[13-2328]
The oscillation effects on thermalization of the neutrinos in the universe with low reheating temperature, Kazuhide Ichikawa, Masahiro Kawasaki, Fuminobu Takahashi, Phys. Rev. D72 (2005) 043522, arXiv:astro-ph/0505395.
[Ichikawa:2005vw]
[13-2329]
Weighing Neutrinos with Galaxy Cluster Surveys, Sheng Wang et al., Phys. Rev. Lett. 95 (2005) 011302, arXiv:astro-ph/0505390.
From the abstract: We show that a weak lensing selected sample of $\gtrsim 100,000$ clusters could tighten the current upper bound on the sum of masses of neutrino species by an order of magnitude, to a level of 0.03 eV.
[Wang:2005vr]
[13-2330]
How many dark energy parameters?, Eric V. Linder, Dragan Huterer, Phys. Rev. D72 (2005) 043509, arXiv:astro-ph/0505330.
[Linder:2005ne]
[13-2331]
Smoothing Supernova Data to Reconstruct the Expansion History of the Universe, Arman Shafieloo, Ujjaini Alam, Varun Sahni, Alexei A. Starobinsky, Mon. Not. Roy. Astron. Soc. 366 (2006) 1081, arXiv:astro-ph/0505329.
[Shafieloo:2005nd]
[13-2332]
Simultaneous Flavor Transformation of Neutrinos and Antineutrinos with Dominant Potentials from Neutrino- Neutrino Forward Scattering, George M. Fuller, Yong-Zhong Qian, Phys. Rev. D73 (2006) 023004, arXiv:astro-ph/0505240.
[Fuller:2005ae]
[13-2333]
Measuring the Primordial Deuterium Abundance During the Cosmic Dark Ages, Kris Sigurdson, Steven R. Furlanetto, Phys. Rev. Lett. 97 (2006) 091301, arXiv:astro-ph/0505173.
[Sigurdson:2005mp]
[13-2334]
Dark Energy and Right-Handed Neutrinos, Riccardo Barbieri, Lawrence J. Hall, Steven J. Oliver, Alessandro Strumia, Phys. Lett. B625 (2005) 189, arXiv:hep-ph/0505124.
[Barbieri:2005gj]
[13-2335]
A Measurement of the Quadrupole Power Spectrum in the Clustering of the 2dF QSO Survey, Kazuhiro Yamamoto et al., Publ. Astron. Soc. Jap. 58 (2006) 93, arXiv:astro-ph/0505115.
[Yamamoto:2005dz]
[13-2336]
Probing Reionization with the Redshift Distribution of Distant Supernovae, Andrei Mesinger, Benjamin Johnson, Zoltan Haiman, Astrophys.J. (2005), arXiv:astro-ph/0505110.
[Mesinger:2005du]
[13-2337]
The Holographic Principle and the Early Universe, F. Canfora, G. Vilasi, Phys. Lett. B625 (2005) 171, arXiv:gr-qc/0505091.
[Canfora:2005tr]
[13-2338]
The $\nu$MSM, Dark Matter and Baryon Asymmetry of the Universe, Takehiko Asaka, Mikhail Shaposhnikov, Phys. Lett. B620 (2005) 17, arXiv:hep-ph/0505013.
[Asaka:2005pn]
[13-2339]
CMB Anisotropy of Spherical Spaces, R. Aurich, S. Lustig, F. Steiner, Class. Quant. Grav. 22 (2005) 3443, arXiv:astro-ph/0504656.
[Aurich:2005ij]
[13-2340]
Constraints on the dark energy equation of state from the separation of CMB peaks and the evolution of alpha, Seokcheon Lee, Phys. Rev. D71 (2005) 123528, arXiv:astro-ph/0504650.
[Lee:2005id]
[13-2341]
Impact of Dark Matter Substructure on the Matter and Weak Lensing Power Spectra, Bradley Hagan, Chung-Pei Ma, Andrey V. Kravtsov, Astrophys. J. 633 (2005) 537, arXiv:astro-ph/0504557.
[Hagan:2005nb]
[13-2342]
Cluster number counts dependence on dark energy inhomogeneities and coupling to dark matter, M. Manera, D. Mota, Mon. Not. Roy. Astron. Soc. 371 (2006) 1373, arXiv:astro-ph/0504519.
[Manera:2005ct]
[13-2343]
Constraining Cosmological Parameters by the Cosmic Inversion Method, Noriyuki Kogo, Misao Sasaki, June'ichi Yokoyama, Prog. Theor. Phys. 114 (2005) 555, arXiv:astro-ph/0504471.
[Kogo:2005qi]
[13-2344]
Dark energy and the evolution of spherical overdensities, Cathy Horellou, Joel Berge, Mon. Not. Roy. Astron. Soc. 360 (2005) 1393, arXiv:astro-ph/0504465.
[Horellou:2005qc]
[13-2345]
Can the initial singularity be detected by cosmological tests?, Marek Szydlowski, Wlodzimierz Godlowski, Adam Krawiec, Jacek Golbiak, Phys. Rev. D72 (2005) 063504, arXiv:astro-ph/0504464.
[Szydlowski:2005qb]
[13-2346]
Constraints on the dark energy equation of state from acoustic oscillations in the power spectrum of clusters, R. Angulo et al., Mon. Not. Roy. Astron. Soc. Lett. 362 (2005) L25-L29, arXiv:astro-ph/0504456.
[Angulo:2005pt]
[13-2347]
Effects of Inhomogeneities on Cosmic Expansion, E. R. Siegel, J. N. Fry, Astrophys. J. 628 (2005) L1, arXiv:astro-ph/0504421.
[Siegel:2005xu]
[13-2348]
Constraints on the Variation of G from Primordial Nucleosynthesis, T. Clifton, R. J. Scherrer, J. D. Barrow, Phys. Rev. D71 (2005) 123526, arXiv:astro-ph/0504418.
[Clifton:2005xr]
[13-2349]
Can hidden correlations mimic a variable fine structure constant?, Rino Bandiera, Edvige Corbelli, Astron. Astrophys. 434 (2005) 543, arXiv:astro-ph/0504340.
[Bandiera:2005fm]
[13-2350]
Inflation from Geometrical Tachyons, Steven Thomas, John Ward, Phys. Rev. D72 (2005) 083519, arXiv:hep-th/0504226.
[Thomas:2005fu]
[13-2351]
A Simple Model for Quintessential Inflation, R. Rosenfeld, J. A. Frieman, JCAP 0509 (2005) 003, arXiv:astro-ph/0504191.
[Rosenfeld:2005mt]
[13-2352]
Double Field Inflation, Fred C. Adams, Katherine Freese, Phys. Rev. D43 (1991) 353, arXiv:hep-ph/0504135.
[Adams:1990ds]
[13-2353]
The Amplitude of Dark Energy Perturbations, Christopher Gordon, David Wands, Phys. Rev. D71 (2005) 123505, arXiv:astro-ph/0504132.
[Gordon:2005ti]
[13-2354]
Cosmological Solutions in Macroscopic Gravity, A. A. Coley, N. Pelavas, R.M. Zalaletdinov, Phys. Rev. Lett. 95 (2005) 151102, arXiv:gr-qc/0504115. Tp appear in Physical Review.
[Coley:2005ei]
[13-2355]
Constraining dark energy with cross-correlated CMB and Large Scale Structure data, P.S. Corasaniti, T. Giannantonio, A. Melchiorri, Phys. Rev. D71 (2005) 123521, arXiv:astro-ph/0504115.
[Corasaniti:2005pq]
[13-2356]
The Unified Equation of State for Dark Matter and Dark Energy, Wei Wang et al., Mod. Phys. Lett. A20 (2005) 1443, arXiv:astro-ph/0504094.
[Wang:2005nt]
[13-2357]
Slinky Inflation, Gabriela Barenboim, Joseph Lykken, Phys. Lett. B633 (2006) 453, arXiv:astro-ph/0504090.
[Barenboim:2005np]
[13-2358]
Chaplygin-Kalb-Ramond Quartessence, Neven Bilic, Gary B. Tupper, Raoul D. Viollier, arXiv:hep-th/0504082, 2005.
[Bilic:2005zk]
[13-2359]
A New Strong Interaction Sector as the origin for the Dark Energy and Dark Matter, P. Q. Hung, arXiv:hep-ph/0504060, 2005.
[Hung:2005dg]
[13-2360]
New cosmological mass limit on thermal relic axions, Steen Hannestad, Alessandro Mirizzi, Georg Raffelt, JCAP 0507 (2005) 002, arXiv:hep-ph/0504059.
[Hannestad:2005df]
[13-2361]
Dark Energy Dominance and Cosmic Acceleration in First Order Formalism, Gianluca Allemandi, Andrzej Borowiec, Mauro Francaviglia, Sergei D. Odintsov, Phys. Rev. D72 (2005) 063505, arXiv:gr-qc/0504057.
[Allemandi:2005qs]
[13-2362]
The One-Loop Effective Action in phi^4 Theory Coupled Non-Linearly with Curvature Power and Dynamical Origin of Cosmological Constant, T. Inagaki, S. Nojiri, S. D. Odintsov, JCAP 0506 (2005) 010, arXiv:gr-qc/0504054.
[Inagaki:2005qp]
[13-2363]
Detecting a small perturbation through its non-Gaussianity, Lotfi Boubekeur, David. H. Lyth, Phys. Rev. D73 (2006) 021301, arXiv:astro-ph/0504046.
[Boubekeur:2005fj]
[13-2364]
Applications of Bayesian Model Selection to Cosmological Parameters, Roberto Trotta, Mon. Not. Roy. Astron. Soc. 378 (2007) 72-82, arXiv:astro-ph/0504022.
[Trotta:2005ar]
[13-2365]
Constraints on the sound speed of dark energy, Steen Hannestad, Phys. Rev. D71 (2005) 103519, arXiv:astro-ph/0504017.
[Hannestad:2005ak]
[13-2366]
Evolving Dark Energy with w Deviating from -1, Lawrence J. Hall, Yasunori Nomura, Steven J. Oliver, Phys. Rev. Lett. 95 (2005) 141302, arXiv:astro-ph/0503706.
[Hall:2005xb]
[13-2367]
A Separate Universe Approach to Quintessence Perturbations, Christopher Gordon, Nucl. Phys. Proc. Suppl. 148 (2005) 51, arXiv:astro-ph/0503680.
[Gordon:2005vz]
[13-2368]
Two windows on acceleration and gravitation: Dark energy or new gravity?, L. Knox, Y. -S. Song, J. A. Tyson, Phys. Rev. D74 (2006) 023512, arXiv:astro-ph/0503644.
[Knox:2005rg]
[13-2369]
Neutrino statistics and big bang nucleosynthesis, A. D. Dolgov, S. H. Hansen, A. Yu. Smirnov, JCAP 0506 (2005) 004, arXiv:astro-ph/0503612.
[Dolgov:2005mi]
[13-2370]
Cosmological Constraints on Newton's Constant, K. Umezu, K. Ichiki, M. Yahiro, Phys. Rev. D72 (2005) 044010, arXiv:astro-ph/0503578.
[Umezu:2005ee]
[13-2371]
Cosmological Bounds on Spatial Variations of Physical Constants, John D. Barrow, Phys. Rev. D71 (2005) 083520, arXiv:astro-ph/0503434.
[Barrow:2005sv]
[13-2372]
Bounds on Cosmic Strings from WMAP and SDSS, Mark Wyman, Levon Pogosian, Ira Wasserman, Phys. Rev. D72 (2005) 023513, arXiv:astro-ph/0503364.
[Wyman:2005tu]
[13-2373]
Neutrino Mass Limit from Galaxy Cluster Number Density Evolution, Tina Kahniashvili, Eckhard von Toerne, Natalia A. Arhipova, Bharat Ratra, Phys. Rev. D71 (2005) 125009, arXiv:astro-ph/0503328.
From the abstract: $\sum m_\nu$ $<$ 2.4 eV (95\% C.L.).
[Kahniashvili:2005sg]
[13-2374]
A single scalar field model of dark energy with equation of state crossing -1, Mingzhe Li, Bo Feng, Xinmin Zhang, JCAP 0512 (2005) 002, arXiv:hep-ph/0503268.
[Li:2005fm]
[13-2375]
Observational constraints on interacting quintessence models, German Olivares, Fernando Atrio-Barandela, Diego Pavon, Phys. Rev. D71 (2005) 063523, arXiv:astro-ph/0503242.
[Olivares:2005tb]
[13-2376]
Evidence for Cosmological Oscillations in the Gold SnIa Dataset, R. Lazkoz, S. Nesseris, L. Perivolaropoulos, JCAP 0511 (2005) 010, arXiv:astro-ph/0503230.
[Lazkoz:2005sp]
[13-2377]
Dark Energy as an Inverse Problem, Cristina Espana-Bonet, Pilar Ruiz-Lapuente, Phys. Rev.D (2005), arXiv:hep-ph/0503210.
[Espana-Bonet:2005wkl]
[13-2378]
Grand Unification, Dark Matter, Baryon Asymmetry, and the Small Scale Structure of the Universe, Ryuichiro Kitano, Ian Low, arXiv:hep-ph/0503112, 2005.
[Kitano:2005ge]
[13-2379]
Elliptic CMB Sky, V. G. Gurzadyan et al., Mod. Phys. Lett. A20 (2005) 813-820, arXiv:astro-ph/0503103.
[Gurzadyan:2005uw]
[13-2380]
Little Black Holes as Dark Matter Candidates with Feasible Cosmic and Terrestrial Interactions, Mario Rabinowitz, arXiv:physics/0503079, 2005.
[Rabinowitz:2005ii]
[13-2381]
The nuMSM, Dark Matter and Neutrino Masses, Takehiko Asaka, Steve Blanchet, Mikhail Shaposhnikov, Phys. Lett. B631 (2005) 151, arXiv:hep-ph/0503065.
[Asaka:2005an]
[13-2382]
Dark Matter and Dark Energy from a single scalar field and CMB data, Roberto Mainini, Loris P. L. Colombo, Silvio A. Bonometto, Astrophys. J. 632 (2005) 691, arXiv:astro-ph/0503036.
[Mainini:2005mq]
[13-2383]
Effects of Unstable Particles on Light-Element Abundances: Lithium versus Deuterium and He3, John R. Ellis, Keith A. Olive, Elisabeth Vangioni, Phys. Lett. B619 (2005) 30, arXiv:astro-ph/0503023.
[Ellis:2005ii]
[13-2384]
Do observations prove that cosmological neutrinos are thermally distributed?, A. Cuoco, J. Lesgourgues, G. Mangano, S. Pastor, Phys. Rev. D71 (2005) 123501, arXiv:astro-ph/0502465.
[Cuoco:2005qr]
[13-2385]
An inhomogeneously expanding Universe - further difficulties with the standard cosmological model and exclusion of the neutrino as a dark matter candidate, Richard Lieu, Astrophys.J.Lett. (2005), arXiv:astro-ph/0502430.
[Lieu:2005kd]
[13-2386]
Complementary constraints on non-standard cosmological models from CMB and BBN, Adam Krawiec, Marek Szydlowski, Wlodzimierz Godlowski, Phys. Lett. B619 (2005) 219, arXiv:astro-ph/0502412.
[Krawiec:2005jj]
[13-2387]
Quintessence models of Dark Energy with non-minimal coupling, Tame Gonzalez, Genly Leon, Israel Quiros, arXiv:astro-ph/0502383, 2005.
[Gonzalez:2005ie]
[13-2388]
CMB observations from the CBI and VSA: A comparison of coincident maps and parameter estimation methods, N. Rajguru et al., Mon. Not. Roy. Astron. Soc. 363 (2005) 1125, arXiv:astro-ph/0502330.
[Rajguru:2005zt]
[13-2389]
Probe the curvature and dark energy, Yungui Gong, Yuan-Zhong Zhang, Phys. Rev. D72 (2005) 043518, arXiv:astro-ph/0502262.
[Gong:2005de]
[13-2390]
Indirect Detection of Dirac Right-Handed Neutrino Dark Matter, Dan Hooper, Geraldine Servant, Astropart. Phys. 24 (2005) 231, arXiv:hep-ph/0502247.
[Hooper:2005fj]
[13-2391]
The Axis of evil, Kate Land, Joao Magueijo, Phys. Rev. Lett. 95 (2005) 071301, arXiv:astro-ph/0502237.
[Land:2005ad]
[13-2392]
On the determination of the deceleration parameter from Supernovae data, J.-M. Virey et al., Phys. Rev. D72 (2005) 061302, arXiv:astro-ph/0502163.
[Virey:2005ih]
[13-2393]
Primordial Power Spectrum Reconstruction, Pia Mukherjee, Yun Wang, JCAP 0512 (2005) 007, arXiv:astro-ph/0502136.
[Mukherjee:2005dc]
[13-2394]
Cosmic Microwave Background, Accelerating Universe and Inhomogeneous Cosmology, J. W. Moffat, JCAP 0510 (2005) 012, arXiv:astro-ph/0502110.
[Moffat:2005yx]
[13-2395]
Bayesian model selection and isocurvature perturbations, Maria Beltran et al., Phys. Rev. D71 (2005) 063532, arXiv:astro-ph/0501477.
[Beltran:2005xd]
[13-2396]
Dark Energy as a Signature of Extra Dimensions, B. Li, M.-C. Chu, K. C. Cheung, A. Tang, arXiv:astro-ph/0501367, 2005.
[Li:2005ys]
[13-2397]
Constraining deviations from Newton's law of gravity on cosmological scales: confrontation to power spectrum of SDSS galaxies, Akihito Shirata, Tetsuya Shiromizu, Naoki Yoshida, Yasushi Suto, Phys. Rev. D71 (2005) 064030, arXiv:astro-ph/0501366.
[Shirata:2005yr]
[13-2398]
Uncorrelated Measurements of the Cosmic Expansion History and Dark Energy from Supernovae, Yun Wang, Max Tegmark, Phys. Rev. D71 (2005) 103513, arXiv:astro-ph/0501351.
[Wang:2005yaa]
[13-2399]
Relic Gravitational Waves in the Accelerating Universe, Yang Zhang, Yefei Yuan, Wen Zhao, Ying-Tian Chen, Class. Quant. Grav. 22 (2012) 1383, arXiv:astro-ph/0501329.
[Ghayour:2012nf]
[13-2400]
Inflationary Perturbations and Precision Cosmology, Salman Habib, Andreas Heinen, Katrin Heitmann, Gerard Jungman, Phys. Rev. D71 (2005) 043518, arXiv:astro-ph/0501130.
[Habib:2005mh]
[13-2401]
Possible violation of the spin-statistics relation for neutrinos: cosmological and astrophysical consequences, A.D. Dolgov, A.Yu. Smirnov, Phys. Lett. B621 (2005) 1, arXiv:hep-ph/0501066.
[Dolgov:2005qi]
[13-2402]
The Weak Lensing Bispectrum, Scott Dodelson, Pengjie Zhang, Phys. Rev. D72 (2005) 083001, arXiv:astro-ph/0501063.
[Dodelson:2005rf]
[13-2403]
Supernovae constraints on models of dark energy revisited, M. C. Bento, O. Bertolami, N. M. C. Santos, A. A. Sen, Phys. Rev. D71 (2005) 063501, arXiv:astro-ph/0412638.
[Bento:2004ym]
[13-2404]
Large Scale Clustering of Sloan Digital Sky Survey Quasars: Impact of the Baryon Density and the Cosmological Constant, Kazuhiro Yahata et al. (SDSS), Publ. Astron. Soc. Jap. 57 (2005) 529, arXiv:astro-ph/0412631.
[SDSS:2004vxk]
[13-2405]
Dark Energy from Large Extra Dimensions, Kimmo Kainulainen, Daniel Sunhede, Phys. Rev. D73 (2006) 083510, arXiv:astro-ph/0412609.
[Kainulainen:2004vk]
[13-2406]
Structure Formation With a Long-Range Scalar Dark Matter Interaction, Adi Nusser, S. S. Gubser, P. J. E. Peebles, Phys. Rev. D71 (2005) 083505, arXiv:astro-ph/0412586.
[Nusser:2004qu]
[13-2407]
The signature of dark energy on the local Hubble flow, Andrea Maccio, Fabio Governato, Cathy Horellou, Mon. Not. Roy. Astron. Soc. 359 (2005) 941, arXiv:astro-ph/0412583.
[Maccio:2004qr]
[13-2408]
Cosmic Microwave Background Fluctuations from Gravitational Waves: An Analytic Approach, Jonathan R. Pritchard, Marc Kamionkowski, Annals Phys. 318 (2005) 2, arXiv:astro-ph/0412581.
[Pritchard:2004qp]
[13-2409]
A Concordance Model of the Lyman-alpha Forest at z = 1.95, T. Jena et al., Mon. Not. Roy. Astron. Soc. 361 (2005) 70, arXiv:astro-ph/0412557.
[Jena:2004fc]
[13-2410]
CMB lensing extraction and primordial non-Gaussianity, Julien Lesgourgues, Michele Liguori, Sabino Matarrese, Antonio Riotto, Phys. Rev. D71 (2005) 103514, arXiv:astro-ph/0412551.
[Lesgourgues:2004ew]
[13-2411]
Indication for Primordial Anisotropies in the Neutrino Background from WMAP and SDSS, Roberto Trotta, Alessandro Melchiorri, Phys. Rev. Lett. 95 (2005) 011305, arXiv:astro-ph/0412066.
[Trotta:2004ty]
[13-2412]
The Nature of Dark Energy from deep Cluster Abundance, P. Solevi, R. Mainini, S.A. Bonometto, Astrophys.J. (2004), arXiv:astro-ph/0412054.
[Solevi:2004tk]
[13-2413]
Undulant Universe, Gabriela Barenboim, Olga Mena, Chris Quigg, Phys. Rev. D71 (2005) 063533, arXiv:astro-ph/0412010.
[Barenboim:2004kz]
[13-2414]
Dynamical dark energy: Current constraints and forecasts, Amol Upadhye, Mustapha Ishak, Paul J. Steinhardt, Phys. Rev. D72 (2005) 063501, arXiv:astro-ph/0411803.
[Upadhye:2004hh]
[13-2415]
Cosmological Parameter Constraints as Derived from the Wilkinson Microwave Anisotropy Probe Data via Gibbs Sampling and the Blackwell-Rao Estimator, M. Chu et al., Phys. Rev. D71 (2005) 103002, arXiv:astro-ph/0411737.
[Chu:2004zp]
[13-2416]
Light Curves of Microlensed Type Ia Supernovae, Hamed Bagherpour, R. Kantowski, David Branch, Dean Richardson, arXiv:astro-ph/0411622, 2004.
[Bagherpour:2004jt]
[13-2417]
The Nonlinear Cosmological Matter Power Spectrum with Massive Neutrinos I: The Halo Model, Kevork Abazajian, Eric R. Switzer, Scott Dodelson, Katrin Heitmann, Salman Habib, Phys. Rev. D71 (2005) 043507, arXiv:astro-ph/0411552.
[Abazajian:2004zh]
[13-2418]
Structure formation with strongly interacting neutrinos - implications for the cosmological neutrino mass bound, Steen Hannestad, JCAP 0502 (2005) 011, arXiv:astro-ph/0411475.
[Hannestad:2004qu]
[13-2419]
A Time Dependence of QCD, Harald Fritzsch, eConf C0409272 (2004) 005, arXiv:hep-ph/0411391.
[Fritzsch:2004ii]
[13-2420]
Limits of dark energy measurements from CMB lensing-ISW- galaxy count correlations, Benjamin Gold, Phys. Rev. D71 (2005) 063522, arXiv:astro-ph/0411376.
[Gold:2004ee]
[13-2421]
Particle Dark Energy, Simon DeDeo, Phys. Rev. D73 (2006) 043520, arXiv:astro-ph/0411283.
[DeDeo:2004vi]
[13-2422]
The Ultimate Energy Density of Observable Cold Matter, James M. Lattimer Madappa Prakash, Phys. Rev. Lett. 94 (2005) 111101, arXiv:astro-ph/0411280.
[Lattimer:2004sa]
[13-2423]
On the Effects due to a Decaying Cosmological Fluctuation, Luca Amendola, Fabio Finelli, Phys. Rev. Lett. 94 (2005) 221303, arXiv:astro-ph/0411273.
[Amendola:2004rt]
[13-2424]
Searching for a Solution to the Age Problem of the Universe, Saibal Ray, Utpal Mukhopadhyay, Grav. Cosmol. 13 (2007) 46-50, arXiv:astro-ph/0411257.
[Ray:2004rb]
[13-2425]
Neutrino Models of Dark Energy, R. D. Peccei, Phys. Rev. D71 (2005) 023527, arXiv:hep-ph/0411137.
[Peccei:2004sz]
[13-2426]
Matrix Cosmology, Daniel Z. Freedman, Gary W. Gibbons, Martin Schnabl, Aip Conf. Proc. 743 (2005) 286, arXiv:hep-th/0411119.
[Freedman:2004xg]
[13-2427]
A Comprehensive Approach to Resolving the Nature of the Dark Energy, Greg Huey, arXiv:astro-ph/0411102, 2004.
[Huey:2004jz]
[13-2428]
Has Dark Energy really been discovered in the Lab?, Philippe Jetzer, Norbert Straumann, Phys. Lett. B606 (2005) 77, arXiv:astro-ph/0411034.
[Jetzer:2004vz]
[13-2429]
Lower limits on the Hubble Constant from models of Type Ia Supernovae, M. Stritzinger, B. Leibundgut, Astron.Astrophys. (2004), arXiv:astro-ph/0410686.
[Stritzinger:2004kp]
[13-2430]
Cosmological bounds on the equation of state of dark matter, Christian M. Mueller, Phys. Rev. D71 (2005) 047302, arXiv:astro-ph/0410621.
[Muller:2004yb]
[13-2431]
Phantom Dark Energy, Cosmic Doomsday, and the Coincidence Problem, Robert J. Scherrer, Phys. Rev. D71 (2005) 063519, arXiv:astro-ph/0410508.
[Scherrer:2004eq]
[13-2432]
CP noninvariance and an effective cosmological constant: the energy density in a pseudoscalar field which arises from a cosmological, spontaneously-broken chiral symmetry, Saul Barshay, Georg Kreyerhoff, Mod. Phys. Lett. A19 (2004) 2899, arXiv:astro-ph/0410478.
[Barshay:2004as]
[13-2433]
Two viable quintessence models of the Universe: confrontation of theoretical predictions with observational data, M. Demianski, E. Piedipalumbo, C. Rubano, C.Tortora, Astron. Astrophys. 431 (2005) 27, arXiv:astro-ph/0410445.
[Demianski:2004qt]
[13-2434]
Constraints on a quintessence model from gravitational lensing statistics, M. Sereno, Mon. Not. Roy. Astron. Soc. 356 (2005) 937, arXiv:astro-ph/0410441.
[Sereno:2004qp]
[13-2435]
What does inflation really predict?, Max Tegmark, JCAP 0504 (2005) 001, arXiv:astro-ph/0410281.
[Tegmark:2004qd]
[13-2436]
Are black holes over-produced during preheating?, Teruaki Suyama, Takahiro Tanaka, Bruce Bassett, Hideaki Kudoh, Phys. Rev. D71 (2005) 063507, arXiv:hep-ph/0410247.
[Suyama:2004mz]
[13-2437]
Cosmological Lepton Asymmetry, Primordial Nucleosynthesis, and Sterile Neutrinos, Kevork Abazajian, Nicole F. Bell, George M. Fuller, Yvonne Y. Y. Wong, Phys. Rev. D72 (2005) 063004, arXiv:astro-ph/0410175.
[Abazajian:2004aj]
[13-2438]
Nonparametric Inference for the Cosmic Microwave Background, Christopher R. Genovese et al., Statist.Sci. (2004), arXiv:astro-ph/0410140.
[Genovese:2004vn]
[13-2439]
Cosmic Microwave Background Anisotropies: Beyond Standard Parameters, Roberto Trotta, arXiv:astro-ph/0410115, 2004.
[Trotta:2004qj]
[13-2440]
Constraining Neutrino Masses by CMB Experiments Alone, Kazuhide Ichikawa, Masataka Fukugita, Masahiro Kawasaki, Phys. Rev. D71 (2005) 043001, arXiv:astro-ph/0409768.
From the abstract: Assuming the flatness of the universe, the constraint we can derive from the current WMAP observations is $\sum m_{\nu} < 2.0$ eV at the 95\% confidence level for the sum over three species of neutrinos ($m_\nu<0.66$ eV for the degenerate neutrinos) by maximising the likelihood over 6 other cosmological parameters.
[Ichikawa:2004zi]
[13-2441]
Changing universe model with applications, John C. Hodge, arXiv:astro-ph/0409765, 2004.
[Hodge:2004zf]
[13-2442]
Lyman-alpha Emission from Structure Formation, Steven Furlanetto, Joop Schaye, Volker Springel, Lars Hernquist, Astrophys. J. 622 (2005) 7, arXiv:astro-ph/0409736.
[Furlanetto:2004ya]
[13-2443]
A Physical Bias in Cosmological Simulations, Weike Xiao, Zhengfan Sun, Heng Hao, Astrophys. J. 617 (2004) L103, arXiv:astro-ph/0409524.
[Xiao:2004mq]
[13-2444]
Covariance of Weak Lensing Observables, Dipak Munshi, Patrick Valageas, Mon. Not. Roy. Astron. Soc. 360 (2005) 1401, arXiv:astro-ph/0409478.
[Munshi:2004wj]
[13-2445]
Baryon Oscillations and Dark-Energy Constraints from Imaging Surveys, Derek Dolney, Bhuvnesh Jain, Masahiro Takada, Mon. Not. Roy. Astron. Soc. 366 (2006) 884, arXiv:astro-ph/0409445.
[Dolney:2004va]
[13-2446]
Measuring Time-Dependence of Dark Energy from Gravitational Lensing and Supernova Data, Deepak Jain, J. S. Alcaniz, Abha Dev, Nucl. Phys. B732 (2006) 379, arXiv:astro-ph/0409431.
[Jain:2004qy]
[13-2447]
Bounds on CDM and neutrino isocurvature perturbations from CMB and LSS data, Maria Beltran, Juan Garcia-Bellido, Julien Lesgourgues, Alain Riazuelo, Phys. Rev. D70 (2004) 103530, arXiv:astro-ph/0409326.
[Beltran:2004uv]
[13-2448]
Double beta decay versus cosmology: Majorana CP phases and nuclear matrix elements, Frank Deppisch, Heinrich Paes, Jouni Suhonen, Phys. Rev. D72 (2005) 033012, arXiv:hep-ph/0409306.
[Deppisch:2004kn]
[13-2449]
The effect of inhomogeneities on the expansion rate of the Universe, Edward W. Kolb, Sabino Matarrese, Alessio Notari, Antonio Riotto, Phys. Rev. D71 (2005) 023524, arXiv:hep-ph/0409038.
[Kolb:2004am]
[13-2450]
A model of anthropic reasoning, addressing the dark to ordinary matter coincidence, Frank Wilczek, arXiv:hep-ph/0408167, 2004.
[Wilczek:2004cr]
[13-2451]
Heavy particles from inflation, G. F. Giudice, A. Riotto, A. Zaffaroni, Nucl. Phys. B710 (2005) 511, arXiv:hep-ph/0408155.
[Giudice:2004ce]
[13-2452]
Can we be tricked into thinking that w is less than -1?, Sean M. Carroll, Antonio De Felice, Mark Trodden, Phys. Rev. D71 (2005) 023525, arXiv:astro-ph/0408081.
[Carroll:2004hc]
[13-2453]
Observables sensitive to absolute neutrino masses: Constraints and correlations from world neutrino data, G. L. Fogli et al., Phys. Rev. D70 (2004) 113003, arXiv:hep-ph/0408045.
From the article: ... our joint analysis of CMB+SN-Ia+HST+LSS data,... provide the $2\sigma$ bound $\Sigma \lesssim 1.4$ eV.... a joint analysis of CMB+SN-Ia+HST+2dF+Ly$\alpha$.... we find a $2\sigma$ bound $\Sigma < 0.47$ eV.
[Fogli:2004as]
[13-2454]
New BBN limits on physics beyond the standard model from He-4, Richard H. Cyburt, Brian D. Fields, Keith A. Olive, Evan Skillman, Astropart. Phys. 23 (2005) 313-323, arXiv:astro-ph/0408033.
[Cyburt:2004yc]
[13-2455]
A unified treatment of cosmological perturbations from super-horizon to small scales, Carmelita Carbone, Sabino Matarrese, Phys. Rev. D71 (2005) 043508, arXiv:astro-ph/0407611.
[Carbone:2004iv]
[13-2456]
Fitting Type Ia supernovae with coupled dark energy, Luca Amendola, Maurizio Gasperini, Federico Piazza, JCAP 0409 (2004) 014, arXiv:astro-ph/0407573.
[Amendola:2004ew]
[13-2457]
Theoretical uncertainty in baryon oscillations, Daniel J. Eisenstein, Martin White, Phys. Rev. D70 (2004) 103523, arXiv:astro-ph/0407539.
[Eisenstein:2004an]
[13-2458]
Bose-Einstein Condensation, Dark Matter and Acoustic Peaks, F. Ferrer, J. A. Grifols, JCAP 0412 (2004) 012, arXiv:astro-ph/0407532.
[Ferrer:2004xj]
[13-2459]
Gauge-Invariant Temperature Anisotropies and Primordial Non-Gaussianity, N. Bartolo, S. Matarrese, A. Riotto, Phys. Rev. Lett. 93 (2004) 231301, arXiv:astro-ph/0407505.
[Bartolo:2004ty]
[13-2460]
The type Ia supernovae and the Hubble's constant, Ari Brynjolfsson, arXiv:astro-ph/0407430, 2004.
[Brynjolfsson:2004fd]
[13-2461]
Cosmological parameter analysis including SDSS Ly-alpha forest and galaxy bias: Constraints on the primordial spectrum of fluctuations, neutrino mass, and dark energy, Uros Seljak et al. (SDSS), Phys. Rev. D71 (2005) 103515, arXiv:astro-ph/0407372.
From the abstract: We find no evidence of neutrino mass: for the case of 3 massive neutrino families with an inflationary prior, $\sum m_{\nu}<0.42$eV and the mass of lightest neutrino is $m_1<0.13$eV at 95\% c.l. For the 3 massless + 1 massive neutrino case we find $m_{\nu}<0.79$eV for the massive neutrino, excluding at 95\% c.l. all neutrino mass solutions compatible with the LSND results.
[SDSS:2004kqt]
[13-2462]
Cosmological constraints on the dark energy equation of state and its evolution, Steen Hannestad, Edvard Mortsell, JCAP 0409 (2004) 001, arXiv:astro-ph/0407259.
[Hannestad:2004cb]
[13-2463]
Avoiding BBN Constraints on Mirror Models for Sterile Neutrinos, R. N. Mohapatra, S. Nasri, Phys. Rev. D71 (2005) 053001, arXiv:hep-ph/0407194.
[Mohapatra:2004uy]
[13-2464]
Constraints on the dark energy equation of state from recent supernova data, Duane A. Dicus, Wayne W.Repko, Phys. Rev. D70 (2004) 083527, arXiv:astro-ph/0407094.
[Dicus:2004cp]
[13-2465]
Bayesian Power Spectrum Analysis of the First-Year WMAP data, I.J. O'Dwyer et al., Astrophys. J. 617 (2004) L99, arXiv:astro-ph/0407027.
[ODwyer:2004vgx]
[13-2466]
Rejoinder to 'No Evidence of Dark Energy Metamorphosis', astro-ph/0404468, Ujjaini Alam, Varun Sahni, Tarun Deep Saini, A. A. Starobinsky, arXiv:astro-ph/0406672, 2004.
[Alam:2004ip]
[13-2467]
On the Gravitational Field of Antimatter, Eduard Masso Francesc Rota, Phys. Lett. B600 (2004) 197, arXiv:astro-ph/0406660.
[Masso:2004by]
[13-2468]
Nucleosynthesis in Fast Expansions of High-Entropy, Proton Rich Matter, G. C. Jordan IV, B. S. Meyer, Astrophys. J. 617 (2004) L131, arXiv:astro-ph/0406659.
[Jordan:2004bx]
[13-2469]
The foundations of observing dark energy dynamics with the Wilkinson Microwave Anisotropy Probe, P.S. Corasaniti et al., Phys. Rev. D70 (2004) 083006, arXiv:astro-ph/0406608.
[Corasaniti:2004sz]
[13-2470]
A 6 sigma detection of non-Gaussianity in the WMAP 1-year data using directional spherical wavelets, J. D. McEwen, M. P. Hobson, A. N. Lasenby, D. J. Mortlock, Mon. Not. Roy. Astron. Soc. 359 (2005) 1583, arXiv:astro-ph/0406604.
[McEwen:2004sv]
[13-2471]
SDSS galaxy bias from halo mass-bias relation and its cosmological implications, U. Seljak et al. (SDSS), Phys. Rev. D71 (2005) 043511, arXiv:astro-ph/0406594.
From the abstract: In the context of spatially flat models we improve the limit on the neutrino mass for the case of 3 degenerate families from $m_{\nu}<0.6$eV without bias to $m_{\nu}<0.18$eV with bias (95\% c.l.), which is weakened to $m_{\nu}<0.24$eV if running is allowed. The corresponding limit for 3 massless + 1 massive neutrino is 1.37eV.
[SDSS:2004exf]
[13-2472]
Dark Matter and the Baryon Asymmetry of the Universe, Glennys R. Farrar, Gabrijela Zaharijas, arXiv:hep-ph/0406281, 2004.
[Farrar:2004qy]
[13-2473]
Cosmological parameters and the WMAP data revisited, F. K. Hansen, A. Balbi, A. J. Banday, K. M. Gorski, Mon.Not.Roy.Astron.Soc. (2004), arXiv:astro-ph/0406232.
[Hansen:2004zv]
[13-2474]
Characterizing Inflationary Perturbations: The Uniform Approximation, Salman Habib et al., Phys. Rev. D70 (2004) 083507, arXiv:astro-ph/0406134.
[Habib:2004kc]
[13-2475]
Constraints on Resonant Particle Production during Inflation from the Matter and CMB Power Spectra, G. J. Mathews et al., Phys. Rev. D70 (2004) 083505, arXiv:astro-ph/0406046.
[Mathews:2004vu]
[13-2476]
The Angular Power Spectrum of the First-Year WMAP Data Reanalysed, Pablo Fosalba, Istvan Szapudi, Astrophys. J. 617 (2004) L95, arXiv:astro-ph/0405589.
[Fosalba:2004kr]
[13-2477]
A Realistic Determination of the Error on the Primordial Helium Abundance: Steps Toward Non-Parametric Nebular Helium Abundances, Keith A. Olive, Evan D. Skillman, Astrophys. J. 617 (2004) 29, arXiv:astro-ph/0405588.
[Olive:2004kq]
[13-2478]
Neutralinos and Big Bang Nucleosynthesis, Karsten Jedamzik, Phys. Rev. D70 (2004) 083510, arXiv:astro-ph/0405583.
[Jedamzik:2004ip]
[13-2479]
Evidence for a new dark matter component in the Universe ?, Alain Blanchard, Marian Douspis, Astron.Astrophys. (2004), arXiv:astro-ph/0405489.
[Blanchard:2004xi]
[13-2480]
Dark matter and dark energy production in quantum model of the universe, V. E. Kuzmichev, V. V. Kuzmichev, arXiv:astro-ph/0405455, 2004.
[Kuzmichev:2004sn]
[13-2481]
Model independent analysis of dark energy I: Supernova fitting result, Yungui Gong, Class. Quant. Grav. 22 (2005) 2121, arXiv:astro-ph/0405446.
[Gong:2004sd]
[13-2482]
Nucleosynthesis and the variation of fundamental couplings, Christian M. Mueller, Gregor Schaefer, Christof Wetterich, Phys. Rev. D70 (2004) 083504, arXiv:astro-ph/0405373.
[Muller:2004gu]
[13-2483]
Constraints on dark energy from Chandra observations of the largest relaxed galaxy clusters, S.W. Allen, R.W. Schmidt, H. Ebeling, A.C. Fabian, L. van Speybroeck, Mon.Not.Roy.Astron.Soc. 353 (2004) 457, arXiv:astro-ph/0405340.
[Allen:2004cd]
[13-2484]
A First Glimpse of String Theory in the Sky?, Steen Hannestad, Laura Mersini-Houghton, Phys. Rev. D71 (2005) 123504, arXiv:hep-ph/0405218.
[Hannestad:2004ts]
[13-2485]
Non-linear inflationary perturbations, G.I. Rigopoulos, E.P.S. Shellard, JCAP 0510 (2005) 006, arXiv:astro-ph/0405185.
[Rigopoulos:2004gr]
[13-2486]
Impact of the Gravity of Cosmic Fluctuations on CMB and Matter Clustering, Sergei Bashinsky, Phys. Rev. D74 (2006) 043007, arXiv:astro-ph/0405157.
[Bashinsky:2004fm]
[13-2487]
Cosmological parameter estimation with large scale structure and supernovae data, Carolina Odman, Mike Hobson, Anthony Lasenby, Alessandro Melchiorri, Int. J. Mod. Phys. D13 (2004) 1661, arXiv:astro-ph/0405118.
[Odman:2004yc]
[13-2488]
Searching for Composite Neutrinos in the Cosmic Microwave Background, Takemichi Okui, JHEP 0509 (2005) 017, arXiv:hep-ph/0405083.
[Okui:2004xn]
[13-2489]
Late Time Neutrino Masses, the LSND Experiment and the Cosmic Microwave Background, Z. Chacko, Lawrence J. Hall, Steven J. Oliver, Maxim Perelstein, Phys. Rev. Lett. 94 (2005) 111801, arXiv:hep-ph/0405067.
[Chacko:2004cz]
[13-2490]
Direct Determinations of the Redshift Behavior of the Pressure, Energy Density, and Equation of State of the Dark Energy and the Acceleration of the Universe, Ruth A. Daly, S. G. Djorgovski, Int. J. Mod. Phys. A20 (2005) 1113, arXiv:astro-ph/0405063.
[Daly:2004kg]
[13-2491]
Low order multipole maps of CMB anisotropy derived from WMAP, P. Bielewicz, K. M. Gorski, A. J. Banday, Mon. Not. Roy. Astron. Soc. 355 (2004) 1283, arXiv:astro-ph/0405007.
[Bielewicz:2004en]
[13-2492]
Neutrinoless Universe, John F. Beacom, Nicole F. Bell, Scott Dodelson, Phys. Rev. Lett. 93 (2004) 121302, arXiv:astro-ph/0404585.
[Beacom:2004yd]
[13-2493]
Escaping the Big Rip?, Mariam Bouhmadi-Lopez, Jose A. Jimenez Madrid, JCAP 0505 (2005) 005, arXiv:astro-ph/0404540.
[Bouhmadi-Lopez:2004mpi]
[13-2494]
Anthropic predictions for vacuum energy and neutrino masses, Levon Pogosian, Alexander Vilenkin, Max Tegmark, JCAP 0407 (2004) 005, arXiv:astro-ph/0404497.
[Pogosian:2004hd]
[13-2495]
Constraints On The Topology Of The Universe From The WMAP First-Year Sky Maps, N. G. Phillips, A. Kogut, Astrophys. J. 645 (2006) 820-825, arXiv:astro-ph/0404400.
[Phillips:2004nc]
[13-2496]
Joint cosmological parameters forecast from CFHTLS-cosmic shear and CMB data, I. Tereno, O. Dore, L. van Waerbeke, Y. Mellier, Astron. Astrophys. 429 (2005) 383-398, arXiv:astro-ph/0404317.
[Tereno:2004xe]
[13-2497]
Planck-Scale Effects on Global Symmetries: Cosmology of Pseudo-Goldstone Bosons, Eduard Masso, Francesc Rota, Gabriel Zsembinszki, Phys. Rev. D70 (2004) 115009, arXiv:hep-ph/0404289.
[Masso:2004cv]
[13-2498]
Bounds on Relic Neutrino Masses in the Z-burst Model, Graciela Gelmini, Gabriele Varieschi, Thomas Weiler, Phys. Rev. D70 (2004) 113005, arXiv:hep-ph/0404272.
[Gelmini:2004zb]
[13-2499]
Dark Energy Constraints from the Cosmic Age and Supernova, Bo Feng, Xiulian Wang, Xinmin Zhang, Phys. Lett. B607 (2005) 35, arXiv:astro-ph/0404224.
[Feng:2004ad]
[13-2500]
Testing the cosmological principle of isotropy: local power spectrum estimates of the WMAP data, F. K. Hansen, A. J. Banday, K. M. Gorski, Mon. Not. Roy. Astron. Soc. 354 (2004) 641-665, arXiv:astro-ph/0404206.
[Hansen:2004vq]
[13-2501]
Holography and Variable Cosmological Constant, R. Horvat, Phys. Rev. D70 (2004) 087301, arXiv:astro-ph/0404204.
[Horvat:2004vn]
[13-2502]
A new alternative model to dark energy, Yungui Gong, Xi-Ming Chen, Chang-Kui Duan, Mod. Phys. Lett. A19 (2004) 1933, arXiv:astro-ph/0404202.
[Gong:2004vk]
[13-2503]
$\delta T/T$ and Neutrino Masses in SU(5), Bumseok Kyae, Qaisar Shafi, Phys. Lett. B597 (2004) 321, arXiv:hep-ph/0404168.
[Kyae:2004ft]
[13-2504]
Exact solutions for the interacting tachyonic-dark matter system, Ramon Herrera, Diego Pavon, Winfried Zimdahl, Gen. Rel. Grav. 36 (2004) 2161, arXiv:astro-ph/0404086.
[Herrera:2004dh]
[13-2505]
The Inflationary Paradigm: Predictions for CMB, Parentani Renaud, Comptes Rendus Physique 4 (2003) 935-943, arXiv:astro-ph/0404022.
[Parentani:2003gkj]
[13-2506]
On: Natural Inflation, Katherine Freese, William H. Kinney, Phys. Rev. D70 (2004) 083512, arXiv:hep-ph/0404012.
[Freese:2004un]
[13-2507]
Reionization, SLOAN, and WMAP: is the Picture Consistent?, Nickolay Y. Gnedin, Astrophys. J. 610 (2004) 9, arXiv:astro-ph/0403699.
[Gnedin:2004nj]
[13-2508]
The Growth of HII Regions During Reionization, Steven Furlanetto, Matias Zaldarriaga, Lars Hernquist, Astrophys. J. 613 (2004) 1, arXiv:astro-ph/0403697.
[Furlanetto:2004nh]
[13-2509]
Looking for Cosmological Alfven Waves in WMAP Data, Gang Chen et al., Astrophys. J. 611 (2004) 655, arXiv:astro-ph/0403695.
[Chen:2004nf]
[13-2510]
Cosmological parameters $\sigma_8$, the baryon density, and the UV background intensity from a calibrated measurement of H I Lyman-alpha absorption at z = 1.9, David Tytler et al., Astrophys. J. 617 (2004) 1, arXiv:astro-ph/0403688.
[Tytler:2004jz]
[13-2511]
Gravity assisted dark energy dominance and cosmic acceleration, Shin'ichi Nojiri, Sergei D. Odintsov, Phys. Lett. B599 (2004) 137, arXiv:astro-ph/0403622.
[Nojiri:2004bi]
[13-2512]
MeV-mass dark matter and primordial nucleosynthesis, Pasquale D. Serpico, Georg G. Raffelt, Phys. Rev. D70 (2004) 043526, arXiv:astro-ph/0403417.
[Serpico:2004nm]
[13-2513]
Is the low-l microwave background cosmic?, Dominik J. Schwarz, Glenn D. Starkman, Dragan Huterer, Craig J. Copi, Phys. Rev. Lett. 93 (2004) 221301, arXiv:astro-ph/0403353.
[Schwarz:2004gk]
[13-2514]
Low reheating temperature and the visible sterile neutrino, G. Gelmini, S. Palomares-Ruiz, S. Pascoli, Phys. Rev. Lett. 93 (2004) 081302, arXiv:astro-ph/0403323.
[Gelmini:2004ah]
[13-2515]
Probing neutrino masses with future galaxy redshift surveys, Julien Lesgourgues, Sergio Pastor, Laurence Perotto, Phys. Rev. D70 (2004) 045016, arXiv:hep-ph/0403296.
From the abstract: Within the present decade, the combination of the Sloan Digital Sky Survey (SDSS) and CMB data from the PLANCK experiment will have a 2$\sigma$ detection threshold on the total neutrino mass close to $0.2$ eV. This estimate is robust against the inclusion of extra free parameters in the reference cosmological model. On a longer term, the next generation of experiments may reach values of order $\sum m_{\nu} = 0.1$ eV at 2$\sigma$, or better if a galaxy redshift survey significantly larger than SDSS is completed.
[Lesgourgues:2004ps]
[13-2516]
The Complete Star Formation History of the Universe, Alan Heavens, Benjamin Panter, Raul Jimenez, James Dunlop, Nature 428 (2004) 625, arXiv:astro-ph/0403293.
[Heavens:2004sr]
[13-2517]
New dark energy constraints from supernovae, microwave background and galaxy clustering, Yun Wang, Max Tegmark, Phys. Rev. Lett. 92 (2004) 241302, arXiv:astro-ph/0403292.
[Wang:2004py]
[13-2518]
What is the lowest possible reheating temperature?, Steen Hannestad, Phys. Rev. D70 (2004) 043506, arXiv:astro-ph/0403291.
[Hannestad:2004px]
[13-2519]
Neutrino mass, dark matter and inflation, D. Kazanas, R. N. Mohapatra, S. Nasri, V. L. Teplitz, Phys. Rev. D70 (2004) 033015, arXiv:hep-ph/0403291.
[Kazanas:2004kv]
[13-2520]
Phenomenological parameterization of quintessence, C. Wetterich, Phys. Lett. B594 (2004) 17, arXiv:astro-ph/0403289.
[Wetterich:2004pv]
[13-2521]
Probing Dark Energy with Supernovae : Bias from the time evolution of the equation of state, J.-M. Virey et al., Phys. Rev. D70 (2004) 043514, arXiv:astro-ph/0403285.
[Virey:2004pr]
[13-2522]
Modified Gravitational Theory as an Alternative to Dark Energy and Dark Matter, J. W. Moffat, arXiv:astro-ph/0403266, 2004.
[Moffat:2004nw]
[13-2523]
Observational constraints on cosmology from modified Friedmann equation, Zong-Hong Zhu, Masa-Katsu Fujimoto, Xiang-Tao He, Astrophys. J. 603 (2004) 365, arXiv:astro-ph/0403228.
[Zhu:2004ij]
[13-2524]
Does the Low CMB Quadrupole Provide a New Cosmic Coincidence Problem?, Alessandro Melchiorri, Laura Mersini-Houghton, Matters Grav. (2004), arXiv:hep-ph/0403222.
[Melchiorri:2004bs]
[13-2525]
On the time variation of c, G, and h and the dynamics of the cosmic expansion, A. Buchalter, arXiv:astro-ph/0403202, 2004.
[Buchalter:2004ab]
[13-2526]
Age of the Universe in the Cardassian Model, Christopher Savage, Noriyuki Sugiyama, Katherine Freese, JCAP 0510 (2005) 007, arXiv:astro-ph/0403196.
[Savage:2004zv]
[13-2527]
Was the Universe Reionized at Redshift 10?, Abraham Loeb, Rennan Barkana, Lars Hernquist, Astrophys. J. 620 (2005) 553, arXiv:astro-ph/0403193.
[Loeb:2004zs]
[13-2528]
WMAP Constraints on Decaying Cold Dark Matter, Kiyotomo Ichiki, Masamune Oguri, Keitaro Takahashi, Phys. Rev. Lett. 93 (2004) 071302, arXiv:astro-ph/0403164.
[Ichiki:2004vi]
[13-2529]
Probing oscillations into sterile neutrinos with cosmology, astrophysics and experiments, Marco Cirelli, Guido Marandella, Alessandro Strumia, Francesco Vissani, Nucl. Phys. B708 (2005) 215, arXiv:hep-ph/0403158.
[Cirelli:2004cz]
[13-2530]
Primordial fluctuations and cosmological inflation after WMAP 1.0, Dominik J. Schwarz, Cesar A. Terrero-Escalante, JCAP 0408 (2004) 003, arXiv:hep-ph/0403129.
[Schwarz:2004tz]
[13-2531]
Problems with Circles in the Sky, Evelise Gausmann, Reuven Opher, arXiv:astro-ph/0403111, 2004.
[Gausmann:2004pf]
[13-2532]
Neutrino inflation of baryon inhomogeneities in strong magnetic fields, Soma Sanyal, arXiv:hep-ph/0403013, 2004.
[Sanyal:2004xx]
[13-2533]
Expansion, Geometry, and Gravity, Robert R. Caldwell, Marc Kamionkowski, JCAP 0409 (2004) 009, arXiv:astro-ph/0403003.
[Caldwell:2004vi]
[13-2534]
Addendum to 'Superimposed Oscillations in the WMAP Data?', Jerome Martin, Christophe Ringeval, Phys. Rev. D69 (2004) 127303, arXiv:astro-ph/0402609.
[Martin:2004iv]
[13-2535]
A Hint of Poincare Dodecahedral Topology in the WMAP First Year Sky Map, Boudewijn F. Roukema et al., Astron. Astrophys. 423 (2004) 821, arXiv:astro-ph/0402608.
[Roukema:2004iu]
[13-2536]
Wavelets and WMAP non-Gaussianity, Pia Mukherjee, Yun Wang, Astrophys. J. 613 (2004) 51, arXiv:astro-ph/0402602.
[Mukherjee:2004in]
[13-2537]
Are there features in the primordial power spectrum?, Domenico Tocchini-Valentini, Marian Douspis, Joseph Silk, Mon. Not. Roy. Astron. Soc. 359 (2005) 31, arXiv:astro-ph/0402583.
[Tocchini-Valentini:2004kwg]
[13-2538]
Are Domain Walls ruled out ?, Luca Conversi, Alessandro Melchiorri, Laura Mersini, Joseph Silk, Astropart. Phys. 21 (2004) 443, arXiv:astro-ph/0402529.
[Conversi:2004pi]
[13-2539]
Solving the discrepancy among the light elements abundances and WMAP, Kazuhide Ichikawa, Masahiro Kawasaki, Fuminobu Takahashi, Phys. Lett. B597 (2004) 1, arXiv:astro-ph/0402522.
[Ichikawa:2004pb]
[13-2540]
Probing Gravitation, Dark Energy, and Acceleration, Eric V. Linder, Phys. Rev. D70 (2004) 023511, arXiv:astro-ph/0402503.
[Linder:2004ng]
[13-2541]
Hadronic Decay of Late-Decaying Particles and Big-Bang Nucleosynthesis, Masahiro Kawasaki, Kazunori Kohri, Takeo Moroi, Phys. Lett. B625 (2005) 7, arXiv:astro-ph/0402490.
[Kawasaki:2004yh]
[13-2542]
A new method for measuring the CMB temperature quadrupole with an accuracy better than cosmic variance, Constantinos Skordis, Joseph Silk, arXiv:astro-ph/0402474, 2004.
[Skordis:2004xr]
[13-2543]
WMAP confirming the ellipticity in BOOMERanG and COBE CMB maps, V. G. Gurzadyan et al., Nuovo Cim. 118B (2003) 1101, arXiv:astro-ph/0402399.
[Gurzadyan:2003aoq]
[13-2544]
Asymmetries in the local curvature of the WMAP data, Frode K. Hansen, Paolo Cabella, Domenico Marinucci, Nicola Vittorio, Astrophys. J. 607 (2004) L67, arXiv:astro-ph/0402396.
[Hansen:2004mj]
[13-2545]
Did Something Decay, Evaporate, or Annihilate during Big Bang Nucleosynthesis?, Karsten Jedamzik, Phys. Rev. D70 (2004) 063524, arXiv:astro-ph/0402344.
[Jedamzik:2004er]
[13-2546]
Constraining Warm Inflation with the Cosmic Microwave Background, Lisa M. H. Hall, Ian G. Moss, Arjun Berera, Phys. Lett. B589 (2004) 1, arXiv:astro-ph/0402299.
[Hall:2004ab]
[13-2547]
Cosmological implications from the observed properties of CMB, Alain Blanchard, James G. Bartlett, Marian Douspis, Comptes Rendus Physique 4 (2003) 909, arXiv:astro-ph/0402297.
[Blanchard:2003zz]
[13-2548]
Cosmological Parameter Estimation: Method, Marian Douspis, Comptes Rendus Physique 4 (2003) 881, arXiv:astro-ph/0402296.
[Douspis:2003zy]
[13-2549]
Explaining $\Omega_{\mathrm{Baryon}} \approx 0.2 \, \Omega_{\mathrm{Dark}}$ through the synthesis of ordinary matter from mirror matter: a more general analysis, R. Foot, R. R. Volkas, Phys. Rev. D69 (2004) 123510, arXiv:hep-ph/0402267.
[Foot:2004pq]
[13-2550]
Could the next generation of cosmology experiments exclude supergravity?, A. Barrau, N. Ponthieu, Phys. Rev. D69 (2004) 105021, arXiv:hep-ph/0402187.
[Barrau:2004ry]
[13-2551]
Limits on the time variation of the electromagnetic fine-structure constant in the low energy limit from absorption lines in the spectra of distant quasars, Raghunathan Srianand, Hum Chand, Patrick Petitjean, Bastien Aracil, Phys. Rev. Lett. 92 (2007) 121302, arXiv:astro-ph/0402177.
[Murphy:2007qs]
[13-2552]
Beating cosmic variance with CMB polarization, Jamie Portsmouth, Phys. Rev. D70 (2004) 063504, arXiv:astro-ph/0402173.
[Portsmouth:2004mk]
[13-2553]
Deuterium and Li7 Concordance in Inhomogeneous Big Bang Nucleosynthesis Models, J. F. Lara, arXiv:astro-ph/0402112, 2004.
[Lara:2004ct]
[13-2554]
Probing the Evolution of the Dark Energy Density with Future Supernova Surveys, Yun Wang et al., JCAP 0412 (2004) 003, arXiv:astro-ph/0402080.
[Wang:2004xz]
[13-2555]
Do neutrino flavor oscillations forbid large lepton asymmetry of the universe ?, A.D. Dolgov, Fuminobu Takahashi, Nucl. Phys. B688 (2004) 189, arXiv:hep-ph/0402066.
[Dolgov:2004jw]
[13-2556]
Current cosmological bounds on neutrino masses and relativistic relics, Patrick Crotty, Julien Lesgourgues, Sergio Pastor, Phys. Rev. D69 (2004) 123007, arXiv:hep-ph/0402049.
From the abstract: For the standard case of three thermalized neutrinos, we find $\sum m_{\nu} < 1.0$ (resp. $0.6$) eV (at 2$\sigma$), using only CMB and LSS data (resp. including priors from supernovae data and the HST Key Project), a bound that is quite insensitive to the splitting of the total mass between the three species. When the total number of neutrinos or relativistic relics $N_{\rm eff}$ is left free, the upper bound on $\sum m_{\nu}$ (at 2$\sigma$, including all priors) ranges from $1.0$ to $1.5$ eV depending on the mass splitting.
[Crotty:2004gm]
[13-2557]
Neutrino mixing contribution to the cosmological constant, M. Blasone, A. Capolupo, S. Capozziello, S. Carloni, Giuseppe Vitiello, Phys. Lett. A323 (2004) 182-189, arXiv:gr-qc/0402013.
[Blasone:2004yh]
[13-2558]
A comparison of cosmological models using recent supernova data, S. Nesseris, L. Perivolaropoulos, Phys. Rev. D70 (2004) 043531, arXiv:astro-ph/0401556.
[Nesseris:2004wj]
[13-2559]
Phenomenological aspects of dark energy dominated cosmologies, Pier Stefano Corasaniti, arXiv:astro-ph/0401517, 2004.
[Corasaniti:2004rm]
[13-2560]
Strong Gravitational Lensing and Dark Energy Complementarity, Eric V. Linder, Phys. Rev. D70 (2004) 043534, arXiv:astro-ph/0401433.
[Linder:2004hx]
[13-2561]
Numerical coincidences and 'tuning' in cosmology, Martin J. Rees, arXiv:astro-ph/0401424, 2004.
[Rees:2004av]
[13-2562]
Problems with the current cosmological paradigm, T. Shanks, ASP Conf.Ser. (2004), arXiv:astro-ph/0401409.
[Shanks:2004af]
[13-2563]
On the amount of gravitational waves from inflation, L. Pilo, A. Riotto, A. Zaffaroni, Phys. Rev. Lett. 92 (2004) 201303, arXiv:astro-ph/0401302.
[Pilo:2004ke]
[13-2564]
WMAP constraints on a quintessence model, T. Barreiro, M. C. Bento, N. M. C. Santos, A. A. Sen, arXiv:astro-ph/0401296, 2004.
[Barreiro:2004jy]
[13-2565]
Cosmological Parameters from Eigenmode Analysis of Sloan Digital Sky Survey Galaxy Redshifts, Adrian C. Pope et al. (The SDSS), Astrophys. J. 607 (2004) 655, arXiv:astro-ph/0401249.
[SDSS:2004edp]
[13-2566]
A Note on the Robustness of the Neutrino Mass Bounds from Cosmology, Robert H. Brandenberger, Anupam Mazumdar, Masahide Yamaguchi, Phys. Rev. D69 (2004) 081301, arXiv:hep-ph/0401239.
[Brandenberger:2004kc]
[13-2567]
Big bang nucleosynthesis with a varying fine structure constant and non-standard expansion rate, Kazuhide Ichikawa, Masahiro Kawasaki, Phys. Rev. D69 (2004) 123506, arXiv:hep-ph/0401231.
[Ichikawa:2004ju]
[13-2568]
How many cosmological parameters?, Andrew R. Liddle, Mon. Not. Roy. Astron. Soc. 351 (2004) L49, arXiv:astro-ph/0401198.
[Liddle:2004nh]
[13-2569]
Neutrino oscillations as a probe of dark energy, David B. Kaplan, Ann E. Nelson, Neal Weiner, Phys. Rev. Lett. 93 (2004) 091801, arXiv:hep-ph/0401099.
[Kaplan:2004dq]
[13-2570]
Solar Neutrino Constraints on the BBN Production of Li, Richard H. Cyburt, Brian D. Fields, Keith A. Olive, Phys. Rev. D69 (2004) 123519, arXiv:astro-ph/0312629.
[Cyburt:2003ae]
[13-2571]
Structure Formation with Mirror Dark Matter: CMB and LSS, Zurab Berezhiani, Paolo Ciarcelluti, Denis Comelli, Francesco L. Villante, Int. J. Mod. Phys. D14 (2005) 107, arXiv:astro-ph/0312605.
[Berezhiani:2003wj]
[13-2572]
Confrontation of MOND Predictions with WMAP First Year Data, Stacy McGaugh, Astrophys. J. 611 (2004) 26, arXiv:astro-ph/0312570.
[McGaugh:2003qw]
[13-2573]
Large-scale magnetic field generation by alpha-effect driven by collective neutrino-plasma interaction, V. B. Semikoz, D. D. Sokoloff, Phys. Rev. Lett. 92 (2004) 131301, arXiv:astro-ph/0312567.
[Semikoz:2003qt]
[13-2574]
The Integrated Sachs-Wolfe effect as a probe of non-standard cosmological evolution, T. Multamaki, O. Elgaroy, Astron. Astrophys. 423 (2004) 811, arXiv:astro-ph/0312534.
[Multamaki:2003hd]
[13-2575]
What We Already Know About Quintessence, Sidney Bludman, arXiv:astro-ph/0312450, 2003.
[Bludman:2003rv]
[13-2576]
Testing for a Super-Acceleration Phase of the Universe, Manoj Kaplinghat, Sarah Bridle, Phys. Rev. D71 (2005) 123003, arXiv:astro-ph/0312430.
[Kaplinghat:2003vf]
[13-2577]
Joint galaxy - lensing observables and the dark energy, Wayne Hu, Bhuvnesh Jain, Phys. Rev. D70 (2004) 043009, arXiv:astro-ph/0312395.
[Hu:2003pt]
[13-2578]
The Effect of Bound Dineutrons upon BBN, James P. Kneller, Gail C. McLaughlin, Phys. Rev. D70 (2004) 043512, arXiv:astro-ph/0312388.
[Kneller:2003ka]
[13-2579]
Is there a common origin for the WMAP low multipole and for the ellipticity in BOOMERanG CMB maps?, V. G. Gurzadyan et al., Mod. Phys. Lett. A20 (2005) 491-498, arXiv:astro-ph/0312305.
[Gurzadyan:2003xh]
[13-2580]
CMB Signals of Neutrino Mass Generation, Z.Chacko, Lawrence J. Hall, Takemichi Okui, Steven J. Oliver, Phys. Rev. D70 (2004) 085008, arXiv:hep-ph/0312267.
[Chacko:2003dt]
[13-2581]
The Cellular Burning Regime in Type Ia Supernova Explosions - II. Flame Propagation into Vortical Fuel, F. K. Roepke, W. Hillebrandt, J. C. Niemeyer, Astron. Astrophys. 421 (2004) 783, arXiv:astro-ph/0312203.
[Ropke:2003hk]
[13-2582]
Model-Independent Constraints on Dark Energy Density from Flux-averaging Analysis of Type Ia Supernova Data, Yun Wang, Pia Mukherjee, Astrophys. J. 606 (2004) 654, arXiv:astro-ph/0312192.
[Wang:2003gz]
[13-2583]
Testing the Cosmological Constant as a Candidate for Dark Energy, Jan Kratochvil, Andrei Linde, Eric V. Linder, Marina Shmakova, JCAP 0407 (2004) 001, arXiv:astro-ph/0312183.
[Kratochvil:2004gq]
[13-2584]
Dark Energy Tomography, Yong-Seon Song, Lloyd Knox, Phys. Rev. D70 (2004) 063510, arXiv:astro-ph/0312175.
[Song:2004tg]
[13-2585]
Primordial power spectrum from WMAP, Arman Shafieloo, Tarun Souradeep, Phys. Rev. D70 (2004) 043523, arXiv:astro-ph/0312174.
[Shafieloo:2003gf]
[13-2586]
Cosmological mass limits on neutrinos, axions, and other light particles, Steen Hannestad, Georg Raffelt, JCAP 0404 (2004) 008, arXiv:hep-ph/0312154.
From the abstract: For three degenerate massive neutrinos, we reproduce the well-known limit of $ m_\nu < 0.34 \, \text{eV} $. In a 3+1 scenario of 3 massless and 1 fully thermalized sterile neutrino we find $ m_\nu < 1.0 \, \text{eV} $.
From the article: In our paper we have deliberately avoided the Lyman-$\alpha$ data since the conversion of the measured flux power spectrum into a matter power spectrum is fraught with difficulties and the result is at present highly controversial.
[Hannestad:2003ye]
[13-2587]
Neutrino mass limits from SDSS, 2dFGRS and WMAP, V. Barger, Danny Marfatia, Adam Tregre, Phys. Lett. B595 (2004) 55, arXiv:hep-ph/0312065.
From the abstract: We find the sum of the neutrino masses to be smaller than 0.75 eV at 2$\sigma$ (1.1 eV at 3$\sigma$).
From the article: We do not include Ly-$\alpha$ forest data [8-434], [8-437] in our analysis because an inversion from the flux power spectrum to the linear power spectrum is nonlinear and model-dependent [13-2756].
[Barger:2003vs]
[13-2588]
Leptogenesis through direct inflaton decay to light particles, Thomas Dent, George Lazarides, Roberto Ruiz de Austri, Phys. Rev. D69 (2004) 075012, arXiv:hep-ph/0312033.
[Dent:2003dn]
[13-2589]
A theoretician's analysis of the supernova data and the limitations in determining the nature of dark energy II: Results for latest data, T. Roy Choudhury, T. Padmanabhan, Astron. Astrophys. 429 (2012) 807, arXiv:astro-ph/0311622.
[Chakraborty:2012mj]
[13-2590]
CMBfit: Rapid WMAP likelihood calculations with normal parameters, Havard B. Sandvik, Max Tegmark, Xiaomin Wang, Matias Zaldarriaga, Phys. Rev. D69 (2004) 063005, arXiv:astro-ph/0311544.
[Sandvik:2003ii]
[13-2591]
Reconstructing the primordial power spectrum - a new algorithm, Steen Hannestad, JCAP 0404 (2004) 002, arXiv:astro-ph/0311491.
[Hannestad:2003zs]
[13-2592]
Forecasting Cosmic Doomsday from CMB/LSS Cross-Correlations, J. Garriga, L. Pogosian, T. Vachaspati, Phys. Rev. D69 (2004) 063511, arXiv:astro-ph/0311412.
[Garriga:2003nm]
[13-2593]
Testing the CMB Data for Systematic Effects, L. M. Griffiths, C. H. Lineweaver, Astrophys. J. 603 (2004) 371, arXiv:astro-ph/0311373.
[Griffiths:2003fr]
[13-2594]
A New Nucleosynthesis Constraint on the Variation of G, Craig J. Copi, Adam N. Davis, Lawrence M. Krauss, Phys. Rev. Lett. 92 (2004) 171301, arXiv:astro-ph/0311334.
[Copi:2003xd]
[13-2595]
Analyze This! A Cosmological Constraint Package for CMBEASY, Michael Doran, Christian M. Mueller, JCAP 0409 (2004) 003, arXiv:astro-ph/0311311.
[Doran:2003ua]
[13-2596]
Is There a Missing Galaxy Problem?, K. Nagamine, R. Cen, L. Hernquist, J. P. Ostriker, V. Springel, Astrophys. J. 610 (2004) 45, arXiv:astro-ph/0311294.
[Nagamine:2003th]
[13-2597]
Linear and non-linear perturbations in dark energy models, L. Amendola, Phys. Rev. D69 (2004) 103524, arXiv:astro-ph/0311175.
[Amendola:2003wa]
[13-2598]
Testing the running of the cosmological constant with Type Ia Supernovae at high z, C. Espana-Bonet, P. Ruiz-Lapuente, I. L. Shapiro, J. Sola, JCAP 0402 (2004) 006, arXiv:hep-ph/0311171.
[Espana-Bonet:2003qjh]
[13-2599]
Cosmological perturbations from varying masses and couplings, F. Vernizzi, Phys. Rev. D69 (2004) 083526, arXiv:astro-ph/0311167.
[Vernizzi:2003vs]
[13-2600]
Cosmo MSW effect for mass varying neutrinos, P. Q. Hung, Heinrich Pas, Mod. Phys. Lett. A20 (2005) 1209, arXiv:astro-ph/0311131.
[Hung:2003jb]
[13-2601]
WMAP, neutrino degeneracy and non-Gaussianity constraints on isocurvature perturbations in the curvaton model of inflation, C. Gordon, K. A. Malik, Phys. Rev. D69 (2004) 063508, arXiv:astro-ph/0311102.
[Gordon:2003hw]
[13-2602]
Could There Be A Hole In Type Ia Supernovae?, D. Kasen, P. Nugent, R. C. Thomas, L. Wang, Astrophys. J. 610 (2004) 876, arXiv:astro-ph/0311009.
[Kasen:2003vj]
[13-2603]
Spectroscopic detection of Type Ia Supernovae in the Sloan Digital Sky Survey, D. S. Madgwick, P. Hewett, D. Mortlock, L. Wang, Astrophys. J. 599 (2003) L33, arXiv:astro-ph/0310887.
[Madgwick:2003qj]
[13-2604]
Cosmological parameters from SDSS and WMAP, M. Tegmark et al. (SDSS), Phys. Rev. D69 (2004) 103501, arXiv:astro-ph/0310723.
From the abstract: We measure cosmological parameters using the three-dimensional power spectrum $P(k)$ from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in combination with WMAP and other data. Our results are consistent with a 'vanilla' flat adiabatic $\Lambda\text{CDM}$ model without tilt ($n_s=1$), running tilt, tensor modes or massive neutrinos. Adding SDSS information more than halves the WMAP-only error bars on some parameters, tightening $1\sigma$ constraints on the Hubble parameter from $h\approx 0.74^{+0.18}_{-0.07}$ to $h\approx 0.70^{+0.04}_{-0.03}$, on the matter density from $\Omega_m\approx 0.25\pm 0.10$ to $\Omega_m\approx 0.30\pm 0.04$ $(1\sigma)$ and on neutrino masses from $<11\,\text{eV}$ to $<0.6\,\text{eV}$ (95\%).
From the article: The most favored value is $\sum_k m_{\nu_k}=0$, and obtain a 95\% upper limit $\sum_k m_{\nu_k}<1.7\,\text{eV}$.
...
The WMAP team obtains the constraint $\sum_k m_{\nu_k}<0.7\,\text{eV}$ [Go] by combining WMAP with the 2dFGRS. This limit is a factor of three lower than ours because of their stronger priors, most importantly that on galaxy bias $b$ determined using a bispectrum analysis of the 2dF galaxy clustering data [astro-ph/0112161].... Since the bias is marginalized over, our SDSS neutrino constraints come not from the amplitude of the power spectrum, only from its shape.

[SDSS:2003eyi]
[13-2605]
The Uncertainty in Newton's Constant and Precision Predictions of the Primordial Helium Abundance, R. J. Scherrer, Phys. Rev. D69 (2004) 107302, arXiv:astro-ph/0310699.
[Scherrer:2003nc]
[13-2606]
Multipole Vectors-a new representation of the CMB sky and evidence for statistical anisotropy or non-Gaussianity at 2 < =l < =8, C. J. Copi, D. Huterer, G. D. Starkman, Phys. Rev. D70 (2004) 043515, arXiv:astro-ph/0310511.
[Copi:2003kt]
[13-2607]
Future Evolution of the Intergalactic Medium in a Universe Dominated by a Cosmological Constant, K. Nagamine, A. Loeb, New Astron. 9 (2004) 573, arXiv:astro-ph/0310505.
[Nagamine:2003ih]
[13-2608]
Particle decays during the cosmic dark ages, X. Chen, M. Kamionkowski, Phys. Rev. D70 (2004) 043502, arXiv:astro-ph/0310473.
[Chen:2003gz]
[13-2609]
Cross-correlating the Microwave Sky with Galaxy Surveys, P. Fosalba, E. Gaztanaga, F. J. Castander, arXiv:astro-ph/0310450, 2003.
[Fosalba:2003ai]
[13-2610]
Recent Constraints on Models of Quintessence, M. Doran, arXiv:astro-ph/0310400, 2003.
[Doran:2003wr]
[13-2611]
Superimposed Oscillations in the WMAP Data?, J. Martin, C. Ringeval, Phys. Rev. D69 (2004) 083515, arXiv:astro-ph/0310382.
[Martin:2003sg]
[13-2612]
Decaying particles and the reionization history of the Universe, E. Pierpaoli, Phys. Rev. Lett. 92 (2004) 031301, arXiv:astro-ph/0310375.
[Pierpaoli:2003rz]
[13-2613]
Spectral Dependence of CMB Polarization and Parity, K. R. S. Balaji, R. H. Brandenberger, D. A. Easson, JCAP 0312 (2003) 008, arXiv:hep-ph/0310368.
[Balaji:2003sw]
[13-2614]
Dodecahedral space topology as an explanation for weak wide-angle temperature correlations in the cosmic microwave background, J.-P. Luminet et al., Nature 425 (2003) 593, arXiv:astro-ph/0310253.
[Luminet:2003dx]
[13-2615]
Constraining the Topology of the Universe, N. J. Cornish, D. N. Spergel, G. D. Starkman, E. Komatsu, Phys. Rev. Lett. 92 (2004) 201302, arXiv:astro-ph/0310233.
[Cornish:2003db]
[13-2616]
A Maximum Likelihood Analysis of the Low CMB Multipoles from WMAP, G. Efstathiou, Mon. Not. Roy. Astron. Soc. 348 (2004) 885, arXiv:astro-ph/0310207.
[Efstathiou:2003tv]
[13-2617]
Neutrino Perturbations in CMB Anisotropy and Matter Clustering, S. Bashinsky, U. Seljak, Phys. Rev. D69 (2004) 083002, arXiv:astro-ph/0310198.
[Bashinsky:2003tk]
[13-2618]
Gravitational lensing as a contaminant of the gravity wave signal in CMB, Uros Seljak, Christopher M. Hirata, Phys. Rev. D69 (2004) 043005, arXiv:astro-ph/0310163.
[Seljak:2003pn]
[13-2619]
Constraints on the electrical charge asymmetry of the universe, C. Caprini, P. G. Ferreira, JCAP 02 (2005) 006, arXiv:hep-ph/0310066.
[Caprini:2003gz]
[13-2620]
Squeezing MOND into a Cosmological Scenario, Arthur Lue, Glenn D. Starkman, Phys. Rev. Lett. 92 (2004) 131102, arXiv:astro-ph/0310005.
[Lue:2003if]
[13-2621]
Constraints on inflation in closed universe, S. A. Pavluchenko, Phys. Rev. D69 (2004) 021301, arXiv:astro-ph/0309834.
[Pavluchenko:2003ft]
[13-2622]
Dark Energy from Mass Varying Neutrinos, Rob Fardon, Ann E. Nelson, Neal Weiner, JCAP 0410 (2004) 005, arXiv:astro-ph/0309800.
[Fardon:2003eh]
[13-2623]
Cold Dark Matter's Small Scale Crisis Grows Up, Elena D'Onghia, George Lake, Astrophys. J. 612 (2004) 628, arXiv:astro-ph/0309735.
[DOnghia:2003nza]
[13-2624]
Evolution of Second-Order Cosmological Perturbations and Non-Gaussianity, N. Bartolo, S. Matarrese, A. Riotto, JCAP 0401 (2004) 003, arXiv:astro-ph/0309692.
[Bartolo:2003bz]
[13-2625]
Reconstructing the primordial spectrum from WMAP data by the cosmic inversion method, Noriyuki Kogo, Makoto Matsumiya, Misao Sasaki, June'ichi Yokoyama, Astrophys. J. 607 (2004) 32, arXiv:astro-ph/0309662.
[Kogo:2003yb]
[13-2626]
WIMP matter power spectra and small scale power generation, C. Boehm, H. Mathis, J. Devriendt, J. Silk, Mon.Not.Roy.Astron.Soc. 360(1) (2005) 282-287, arXiv:astro-ph/0309652.
[Boehm:2003xr]
[13-2627]
The power spectrum of SUSY-CDM on sub-galactic scales, Anne M. Green, Stefan Hofmann, Dominik J. Schwarz, Mon. Not. Roy. Astron. Soc. 353 (2004) L23, arXiv:astro-ph/0309621.
[Green:2003un]
[13-2628]
Updated Big Bang Nucleosynthesis confronted to WMAP observations and to the Abundance of Light Elements, A.Coc et al., Astrophys. J. 600 (2004) 544, arXiv:astro-ph/0309480.
[Coc:2003ce]
[13-2629]
Late-time Entropy Production from Scalar Decay and Relic Neutrino Temperature, Paramita Adhya, D. Rai Chaudhuri, Steen Hannestad, Phys. Rev. D68 (2003) 083519, arXiv:astro-ph/0309135.
[Adhya:2003tr]
[13-2630]
Can Non-Gaussian Cosmological Models Explain the WMAP's High Optical Depth for Reionization?, Xuelei Chen, Asantha Cooray, Naoki Yoshida, Naoshi Sugiyama, Mon. Not. Roy. Astron. Soc. 346 (2003) L31, arXiv:astro-ph/0309116.
[Chen:2003sw]
[13-2631]
Baryon Asymmetry, Dark Matter and Quantum Chromodynamics, David H. Oaknin, Ariel Zhitnitsky, Phys. Rev. D71 (2005) 023519, arXiv:hep-ph/0309086.
[Oaknin:2003uv]
[13-2632]
BBN bounds on active-sterile neutrino mixing, A.D. Dolgov, F.L. Villante, Nucl. Phys. B679 (2004) 261, arXiv:hep-ph/0308083.
[Dolgov:2003sg]
[13-2633]
On the origin of the large scale structures of the universe, David H. Oaknin, Phys. Rev. D70 (2004) 103513, arXiv:hep-ph/0308078.
[Oaknin:2003sb]
[13-2634]
Myths and Truths Concerning Estimation of Power Spectra, G. Efstathiou, Mon. Not. Roy. Astron. Soc. 349 (2004) 603, arXiv:astro-ph/0307515.
[Efstathiou:2003dj]
[13-2635]
Cosmological constraints on a dark matter - dark energy interaction, Mark B. Hoffman, arXiv:astro-ph/0307350, 2003.
[Hoffman:2003ru]
[13-2636]
Interacting dark matter and dark energy, Glennys R. Farrar, P. J. E. Peebles, Astrophys. J. 604 (2004) 1, arXiv:astro-ph/0307316.
[Farrar:2003uw]
[13-2637]
Closed universes, de Sitter space and inflation, Anthony Lasenby, Chris Doran, Phys. Rev. D71 (2005) 063502, arXiv:astro-ph/0307311.
[Lasenby:2003ur]
[13-2638]
Can modified gravity explain accelerated cosmic expansion?, A. D. Dolgov, M. Kawasaki, Phys. Lett. B573 (2003) 1, arXiv:astro-ph/0307285.
[Dolgov:2003px]
[13-2639]
On the reheating stage after inflation, Edward W. Kolb, Alessio Notari, Antonio Riotto, Phys. Rev. D68 (2003) 123505, arXiv:hep-ph/0307241.
[Kolb:2003ke]
[13-2640]
Present status of primordial nucleosynthesis after WMAP: results from a new BBN code, A. Cuoco et al., Int. J. Mod. Phys. A19 (2004) 4431, arXiv:astro-ph/0307213.
[Cuoco:2003cu]
[13-2641]
Dark Energy and Neutrino Mass Limits from Baryogenesis, P. Gu, X. Wang, X. Zhang, Phys. Rev. D68 (2003) 087301, arXiv:hep-ph/0307148.
[Gu:2003er]
[13-2642]
Large Scale Cosmic Microwave Background Anisotropies and Dark Energy, J. Weller, A.M. Lewis, Mon. Not. Roy. Astron. Soc. 346 (2003) 987, arXiv:astro-ph/0307104.
[Weller:2003hw]
[13-2643]
Scale Invariance without Inflation?, C. Armendariz-Picon, Eugene A. Lim, JCAP 0312 (2003) 002, arXiv:astro-ph/0307101.
[Armendariz-Picon:2003jjq]
[13-2644]
Precision Primordial $^4$He Measurement with CMB Experiments, Greg Huey, Richard H. Cyburt, Benjamin D. Wandelt, Phys. Rev. D69 (2004) 103503, arXiv:astro-ph/0307080.
[Huey:2003ef]
[13-2645]
Can Planck-scale physics be seen in the cosmic microwave background ?, Oystein Elgaroy, Steen Hannestad, Phys. Rev. D68 (2003) 123513, arXiv:astro-ph/0307011.
[Elgaroy:2003gq]
[13-2646]
Can Cosmic Shear Shed Light on Low Cosmic Microwave Background Multipoles?, Michael Kesden, Marc Kamionkowski, Asantha Cooray, Phys. Rev. Lett. 91 (2003) 221302, arXiv:astro-ph/0306597.
[Kesden:2003zm]
[13-2647]
Observing the helium abundance with CMB, Roberto Trotta, Steen H. Hansen, Phys. Rev. D69 (2013) 023509, arXiv:astro-ph/0306588.
[Rusov:2013uaa]
[13-2648]
Is cosmic speed-up due to new gravitational physics?, Sean M. Carroll, Vikram Duvvuri, Mark Trodden, Michael S. Turner, Phys. Rev. D70 (2004) 043528, arXiv:astro-ph/0306438.
[Carroll:2003wy]
[13-2649]
Large-scale curvature perturbations with spatial and time variations of the inflaton decay rate, Sabino Matarrese, Antonio Riotto, JCAP 0308 (2003) 007, arXiv:astro-ph/0306416.
[Matarrese:2003tk]
[13-2650]
A preference for a non-zero neutrino mass from cosmological data, S.W. Allen, R.W. Schmidt, S.L. Bridle, Mon. Not. Roy. Astron. Soc. 346 (2003) 593, arXiv:astro-ph/0306386.
[Allen:2003pta]
[13-2651]
Spatial Variation of the Fine-Structure Parameter and the Cosmic Microwave Background, Kris Sigurdson, Andriy Kurylov, Marc Kamionkowski, Phys. Rev. D68 (2003) 103509, arXiv:astro-ph/0306372.
[Sigurdson:2003pd]
[13-2652]
Recombining WMAP: Beyond standard recombination, Rachel Bean, Alessandro Melchiorri, Joe Silk, Phys. Rev. D68 (2003) 083501, arXiv:astro-ph/0306357.
[Bean:2003kd]
[13-2653]
Reconstruction of lensing from the cosmic microwave background polarization, Christopher M. Hirata, Uros Seljak, Phys. Rev. D68 (2003) 083002, arXiv:astro-ph/0306354.
[Hirata:2003ka]
[13-2654]
Constraining slow-roll inflation with WMAP and 2dF, Samuel M Leach, Andrew R Liddle, Phys. Rev. D68 (2003) 123508, arXiv:astro-ph/0306305.
[Leach:2003us]
[13-2655]
What Can WMAP Tell Us About The Very Early Universe? New Physics as an Explanation of Suppressed Large Scale Power and Running Spectral Index, Mar Bastero-Gil, Katherine Freese, Laura Mersini-Houghton, Phys. Rev. D68 (2003) 123514, arXiv:hep-ph/0306289.
[Bastero-Gil:2003hfz]
[13-2656]
Bounds on isocurvature perturbations from CMB and LSS data, P. Crotty, J. Garcia-Bellido, J. Lesgourgues, A. Riazuelo, Phys. Rev. Lett. 91 (2003) 171301, arXiv:astro-ph/0306286.
[Crotty:2003rz]
[13-2657]
High-Resolution Simulations of Cosmic Microwave Background non-Gaussian Maps in Spherical Coordinates, Michele Liguori, Sabino Matarrese, Lauro Moscardini, Astrophys. J. 597 (2003) 57, arXiv:astro-ph/0306248.
[Liguori:2003mb]
[13-2658]
New Dimensions in Cosmic Lensing, Andy Taylor, arXiv:astro-ph/0306239, 2003. Davis Inflation Meeting, 2003.
[Taylor:2003hz]
[13-2659]
Decoupling, Trans-Planckia and Inflation, C.P. Burgess, J. Cline, F. Lemieux, R. Holman, arXiv:astro-ph/0306236, 2003. Davis Inflation Meeting, 2003 (astro-ph/0304225).
[Burgess:2003hw]
[13-2660]
Observational constraints on particle production during inflation, Oystein Elgaroy, Steen Hannestad, Troels Haugboelle, JCAP 0309 (2003) 008, arXiv:astro-ph/0306229.
[Elgaroy:2003hp]
[13-2661]
Updated Post-WMAP Benchmarks for Supersymmetry, M. Battaglia et al., Eur. Phys. J. C33 (2004) 273, arXiv:hep-ph/0306219.
[Battaglia:2003ab]
[13-2662]
Multidimensional cosmological models: cosmological and astrophysical implications, U. Guenther, A. Starobinsky, A. Zhuk, Phys. Rev. D69 (2004) 044003, arXiv:hep-ph/0306191.
[Gunther:2003yx]
[13-2663]
Role of the cosmological constant in the holographic description of the early universe, Yun Soo Myung, Phys. Lett. B578 (2004) 7-15, arXiv:hep-th/0306180.
[Myung:2003rj]
[13-2664]
The Radionactive Universe, Edward W. Kolb, Geraldine Servant, Tim M. P. Tait, JCAP 0307 (2003) 008, arXiv:hep-ph/0306159.
[Kolb:2003mm]
[13-2665]
Time Variation of the Fine Structure Constant Driven by Quintessence, Luis Anchordoqui, Haim Goldberg, Phys. Rev. D68 (2003) 083513, arXiv:hep-ph/0306084.
[Anchordoqui:2003ij]
[13-2666]
Hiding relativistic degrees of freedom in the early universe, V. Barger, James P. Kneller, Paul Langacker, Danny Marfatia, Gary Steigman, Phys. Lett. B569 (2003) 123, arXiv:hep-ph/0306061.
[Barger:2003rt]
[13-2667]
Redshifting Rings of Power, Wayne Hu, Zoltan Haiman, Phys. Rev. D68 (2003) 063004, arXiv:astro-ph/0306053.
[Hu:2003ti]
[13-2668]
A comparison of cosmological Boltzmann codes: are we ready for high precision cosmology?, U. Seljak, N. Sugiyama, M. White, M. Zaldarriaga, Phys. Rev. D68 (2003) 083507, arXiv:astro-ph/0306052.
[Seljak:2003th]
[13-2669]
The Hubble Constant from Gravitational Lens Time Delays, C.S. Kochanek, P.L. Schechter, arXiv:astro-ph/0306040, 2003.
[Kochanek:2003pi]
[13-2670]
Constraining Dark Energy Evolution with Gravitational Lensing by Large Scale Structures, Karim Benabed, Ludovic Van Waerbeke, Phys. Rev. D70 (2004) 123515, arXiv:astro-ph/0306033.
[Benabed:2003pb]
[13-2671]
Non-Gaussianities in models with a varying inflaton decay rate, Matias Zaldarriaga, Phys. Rev. D69 (2004) 043508, arXiv:astro-ph/0306006.
[Zaldarriaga:2003my]
[13-2672]
Angular Clustering with Photometric Redshifts in the Sloan Digital Sky Survey: Bimodality in the Clustering Properties of Galaxies, Tamas Budavari et al. (SDSS), Astrophys. J. 595 (2003) 59, arXiv:astro-ph/0305603.
[SDSS:2003rvx]
[13-2673]
CMB Signatures of Extended Reionization, Lloyd Knox, New Astron.Rev. (2003), arXiv:astro-ph/0305588.
[Knox:2003ch]
[13-2674]
You need not be afraid of phantom energy, Pedro F. Gonzalez-Diaz, Phys. Rev. D68 (2003) 021303, arXiv:astro-ph/0305559.
[Gonzalez-Diaz:2003xmx]
[13-2675]
Implications of the WMAP Age Measurement for Stellar Evolution and Dark Energy, Lawrence M. Krauss, Astrophys. J. 596 (2003) L1, arXiv:astro-ph/0305556.
[Krauss:2003az]
[13-2676]
Revealing the Nature of Dark Energy Using Bayesian Evidence, T. D. Saini, J. Weller, S. L. Bridle, Mon. Not. Roy. Astron. Soc. 348 (2004) 603, arXiv:astro-ph/0305526.
[Saini:2003wq]
[13-2677]
Can We Observe Galaxies that Recede Faster than Light ? - A More Clear-Cut Answer, T. Kiang, Chin. Astron. Astrophys. 27 (2003) 247, arXiv:astro-ph/0305518.
[Kiang:2003wg]
[13-2678]
Beyond Lyman-alpha: Constraints and Consistency Tests from the Lyman-beta Forest, Mark Dijkstra, Adam Lidz, Lam Hui, Astrophys. J. 605 (2004) 7, arXiv:astro-ph/0305498.
[Dijkstra:2003pd]
[13-2679]
Measurement of the gravitational potential evolution from the cross-correlation between WMAP and the APM Galaxy survey, Pablo Fosalba, Enrique Gaztanaga, Mon. Not. Roy. Astron. Soc. 350 (2004) L37, arXiv:astro-ph/0305468.
[Fosalba:2003iy]
[13-2680]
Goodness-of-fit Statistics and CMB Data Sets, M. Douspis, J.G. Bartlett, A. Blanchard, Astron. Astrophys. 410 (2003) 11, arXiv:astro-ph/0305428.
[Douspis:2003ct]
[13-2681]
Cosmic Microwave Background and Supernova Constraints on Quintessence: Concordance Regions and Target Models, Robert R. Caldwell, Michael Doran, Phys. Rev. D69 (2004) 103517, arXiv:astro-ph/0305334.
[Caldwell:2003hz]
[13-2682]
Inflation model with lower multipoles of the CMB suppressed, Masahiro Kawasaki, Fuminobu Takahashi, Phys. Lett. B570 (2003) 151, arXiv:hep-ph/0305319.
[Kawasaki:2003dd]
[13-2683]
Cosmic Structure and Dark Energy, Eric V. Linder, Adrian Jenkins, Mon. Not. Roy. Astron. Soc. 346 (2003) 573, arXiv:astro-ph/0305286.
[Linder:2003dr]
[13-2684]
How long before the end of inflation were observable perturbations produced?, Andrew R Liddle, Samuel M Leach, Phys. Rev. D68 (2003) 103503, arXiv:astro-ph/0305263.
[Liddle:2003as]
[13-2685]
Comments on the Evolution of Strongly Degenerate Neutrinos in the Early Universe, K. Ichikawa, M. Kawasaki, Phys. Lett. B570 (2003) 154, arXiv:astro-ph/0305255.
[Ichikawa:2003ai]
[13-2686]
Analysing large scale structure: II. Testing for primordial non-Gaussianity in CMB maps using surrogates, C. Raeth, P. Schuecker, Mon.Not.Roy.Astron.Soc. (2003), arXiv:astro-ph/0305248.
[Raeth:2003xp]
[13-2687]
Future Evolution of Structure in an Accelerating Universe, Michael T. Busha, Fred C. Adams, Risa H. Wechsler, August E. Evrard, Astrophys. J. 596 (2003) 713, arXiv:astro-ph/0305211.
[Busha:2003sz]
[13-2688]
The Probability Distribution Function of Light in the Universe: Results from Hydrodynamic Simulations, Jeremiah P. Ostriker, Kentaro Nagamine, Renyue Cen, Masataka Fukugita, Astrophys. J. 597 (2003) 1, arXiv:astro-ph/0305203.
[Ostriker:2003sr]
[13-2689]
A Model-Independent Determination of the Expansion and Acceleration Rates of the Universe as a Function of Redshift and Constraints on Dark Energy, Ruth A. Daly, S. G. Djorgovski, Astrophys. J. 597 (2003) 9, arXiv:astro-ph/0305197.
[Daly:2003iy]
[13-2690]
Measuring primordial non-Gaussianity in the cosmic microwave background, Eiichiro Komatsu, David N. Spergel, Benjamin D. Wandelt, Astrophys. J. 634 (2005) 14, arXiv:astro-ph/0305189.
[Komatsu:2003iq]
[13-2691]
Cosmological Shock Waves and Their Role in the Large Scale Structure of the Universe, Dongsu Ryu, Hyesung Kang, Eric Hallman, T. W. Jones, Astrophys. J. 593 (2003) 599, arXiv:astro-ph/0305164.
[Ryu:2003cd]
[13-2692]
WMAPping inflationary physics, William H. Kinney, Edward W. Kolb, Alessandro Melchiorri, Antonio Riotto, Phys. Rev. D69 (2004) 103516, arXiv:hep-ph/0305130.
[Kinney:2003uw]
[13-2693]
Do We Need Stars to Reionize the Universe at High Redshifts? Early Reionization by Decaying Heavy Sterile Neutrinos, Steen H. Hansen, Zoltan Haiman, Astrophys. J. 600 (2004) 26, arXiv:astro-ph/0305126.
[Hansen:2003yj]
[13-2694]
Graviton Mass, Quintessence and Oscillatory Character of the Universe Evolution, S.S. Gershtein, A. A. Logunov, M.A. Mestvirishvili, N.P. Tkachenko, Phys. Atom. Nucl. 67 (2004) 1596, arXiv:astro-ph/0305125.
[Gershtein:2003yi]
[13-2695]
On Variations in the Peak Luminosity of Type Ia Supernovae, F. X. Timmes, Edward F. Brown, J. W. Truran, Astrophys. J. 590 (2003) L83, arXiv:astro-ph/0305114. 4 pages, 1 figure, to appear in ApJL. Uses emulateapj.cls (included).
[Timmes:2003xx]
[13-2696]
`c' is the speed of light, isn't it?, George F.R. Ellis, Jean-Philippe Uzan, Am. J. Phys. 73 (2005) 240, arXiv:gr-qc/0305099.
[Ellis:2003pw]
[13-2697]
Cosmology of Nonlinear Oscillations, Stephen D.H. Hsu, Phys. Lett. B567 (2003) 9, arXiv:astro-ph/0305096.
[Hsu:2003ux]
[13-2698]
Probing the equation of state of the early universe with a space laser interferometer, Naoki Seto, June'Ichi Yokoyama, J. Phys. Soc. Jap. 72 (2003) 3082, arXiv:gr-qc/0305096.
[Seto:2003kc]
[13-2699]
Testing Supersymmetric Grand Unified Models of Inflation, V. N. Senoguz, Q. Shafi, Phys. Lett. B567 (2003) 79, arXiv:hep-ph/0305089.
[Senoguz:2003zw]
[13-2700]
An estimate of \Omega_m without priors, Hume A. Feldman et al., Astrophys. J. 596 (2003) L131, arXiv:astro-ph/0305078.
[Feldman:2003nu]
[13-2701]
Effective number of neutrinos and baryon asymmetry from BBN and WMAP, V. Barger et al., Phys. Lett. B566 (2012) 8, arXiv:hep-ph/0305075.
From the abstract: From the combination of CBR and BBN data, we find the $2\sigma$ ranges for the effective number of neutrinos $N_\nu$ and for the baryon asymmetry (baryon to photon number ratio $\eta$) to be 1.7-3.0 and 5.53-6.76 $\times 10^{-10}$, respectively.
[Anchordoqui:2012wt]
[13-2702]
Gravitational lensing constraints on dark energy from modified Friedmann equations, Abha Dev, J. S. Alcaniz, Deepak Jain, arXiv:astro-ph/0305068, 2003.
[Dev:2003ni]
[13-2703]
BBN and Lambda_QCD, J. P. Kneller, G. C. McLaughlin, Phys. Rev. D68 (2003) 103508, arXiv:nucl-th/0305017.
[Kneller:2003xf]
[13-2704]
A correlation of the cosmic microwave sky with large scale structure, Stephen Boughn, Robert Crittenden, Nature 427 (2004) 45, arXiv:astro-ph/0305001.
[Boughn:2003yz]
[13-2705]
Does the small CMB quadrupole moment suggest new physics?, James M. Cline, Patrick Crotty, Julien Lesgourgues, JCAP 0309 (2003) 010, arXiv:astro-ph/0304558.
[Cline:2003ve]
[13-2706]
Anthropic predictions for neutrino masses, M. Tegmark, A. Vilenkin, Phys. Rev. D71 (2005) 103523, arXiv:astro-ph/0304536.
[Tegmark:2003ug]
[13-2707]
Precision era of the kinetic Sunyaev-Zeldovich effect: simulations, analytical models and observations and the power to constrain reionization, Pengjie Zhang, Ue-Li Pen, Hy Trac, Mon. Not. Roy. Astron. Soc. 347 (2004) 1224, arXiv:astro-ph/0304534.
[Zhang:2003nr]
[13-2708]
Fast Power Spectrum Estimation, Ue-Li Pen, Mon. Not. Roy. Astron. Soc. 346 (2003) 619, arXiv:astro-ph/0304513.
[Pen:2003mu]
[13-2709]
Effects of Systematic Uncertainties on the Supernova Determination of Cosmologial Parameters, Alex G. Kim, Eric V. Linder, Ramon Miquel, Nick Mostek, Mon. Not. Roy. Astron. Soc. 347 (2004) 909, arXiv:astro-ph/0304509.
[Kim:2003mq]
[13-2710]
Observational estimates of the initial power spectrum at small scale from Lyman-$\alpha$ absorbers, M. Demianski, A.G. Doroshkevich, Astrophys. J. 597 (2003) 81, arXiv:astro-ph/0304484.
[Demianski:2003ia]
[13-2711]
Telling the tale of the first stars, Timothy C. Beers, Nature 422 (2003) 825, arXiv:astro-ph/0304468.
[Beers:2003hi]
[13-2712]
Late-time Entropy Production from Scalar Decay and Neutrino Decoupling, Paramita Adhya, D. Rai Chaudhuri, arXiv:hep-ph/0304291, 2003.
[Adhya:2003wj]
[13-2713]
Effective degrees of freedom during the radiation era, Thomas S. Coleman, Matts Roos, Phys. Rev. D68 (2003) 027702, arXiv:astro-ph/0304281.
[Coleman:2003hs]
[13-2714]
K-essence and the coincidence problem, Michael Malquarti, Edmund J. Copeland, Andrew R. Liddle, Phys. Rev. D68 (2003) 023512, arXiv:astro-ph/0304277.
[Malquarti:2003hn]
[13-2715]
Growth Rate of Large Scale Structure as a Powerful Probe of Dark Energy, Asantha Cooray, Dragan Huterer, Daniel Baumann, Phys. Rev. D69 (2004) 027301, arXiv:astro-ph/0304268.
[Cooray:2003hd]
[13-2716]
Was ordinary matter synthesised from mirror matter? An attempt to explain why $\Omega_{Baryon} \approx 0.2\Omega_{Dark}$, R. Foot, R. R. Volkas, Phys. Rev. D68 (2003) 021304, arXiv:hep-ph/0304261.
[Foot:2003jt]
[13-2717]
Mirror dark matter and large scale structure, A. Yu. Ignatiev, R. R. Volkas, Phys. Rev. D68 (2003) 023518, arXiv:hep-ph/0304260.
[Ignatiev:2003js]
[13-2718]
The Hubble Flow Why Does the Cosmological Expansion Preserve its Kinematical Identity from a Few MPC Distance to the Observation Horizon?, Igor D. Karachentsev, Arthur D. Chernin, Pekka Teerikorpi, Astrofiz. (2003), arXiv:astro-ph/0304250.
[Karachentsev:2003eh]
[13-2719]
The intrinsic colour dispersion in Type Ia supernovae, S.Nobili, A.Goobar, R.Knop, P.Nugent, Astron. Astrophys. 404 (2003) 901, arXiv:astro-ph/0304240.
[Nobili:2003dx]
[13-2720]
An alternative to the cosmological 'concordance model', Alain Blanchard, Marian Douspis, Michael Rowan-Robinson, Subir Sarkar, Astron. Astrophys. 412 (2003) 35, arXiv:astro-ph/0304237.
[Blanchard:2003du]
[13-2721]
Combining WMAP and SDSS Quasar Data on Reionization Constrains Cosmological Parameters and the Star Formation Efficiency, Weihsueh A. Chiu, Xiaohui Fan, Jeremiah P. Ostriker, Astrophys. J. 599 (2003) 759, arXiv:astro-ph/0304234.
[Chiu:2003dr]
[13-2722]
Gauge-Invariant Initial Conditions and Early Time Perturbations in Quintessence Universes, Michael Doran, Christian M. Mueller, Gregor Schaefer, Christof Wetterich, Phys. Rev. D68 (2003) 063505, arXiv:astro-ph/0304212.
[Doran:2003xq]
[13-2723]
2-point anisotropies in WMAP and the Cosmic Quadrupole, E.Gaztanaga et al., Mon. Not. Roy. Astron. Soc. 346 (2003) 47, arXiv:astro-ph/0304178.
[Gaztanaga:2003ub]
[13-2724]
Correlated adiabatic and isocurvature CMB fluctuations in the wake of WMAP, Jussi Valiviita, Vesa Muhonen, Phys. Rev. Lett. 91 (2003) 131302, arXiv:astro-ph/0304175.
[Valiviita:2003ty]
[13-2725]
Inflation with a running spectral index in supergravity, M. Kawasaki, Masahide Yamaguchi, June'ichi Yokoyama, Phys. Rev. D68 (2003) 023508, arXiv:hep-ph/0304161.
[Kawasaki:2003zv]
[13-2726]
The effect of collisional enhancement of Balmer lines on the determination of the primordial helium abundance, V. Luridiana, A. Peimbert, M. Peimbert, M. Cervino, Astrophys. J. 592 (2003) 846-865, arXiv:astro-ph/0304152.
[Luridiana:2003jy]
[13-2727]
Running of the Scalar Spectral Index and Observational Signatures of Inflation, James E. Lidsey, Reza Tavakol, Phys. Lett. B575 (2003) 157, arXiv:astro-ph/0304113.
[Lidsey:2003cq]
[13-2728]
The effect of signal digitisation in CMB experiments, M. Maris et al., Astron. Astrophys. 414 (2004) 777, arXiv:astro-ph/0304089.
[Maris:2003zp]
[13-2729]
Baryon Oscillations as a Cosmological Probe, Eric V. Linder, Phys. Rev. D68 (2003) 083504, arXiv:astro-ph/0304001.
[Linder:2003ec]
[13-2730]
Non-Gaussianity of the derived maps from the first-year WMAP data, Lung-Yih Chiang, Pavel D. Naselsky, Oleg V. Verkhodanov, Michael J. Way, Astrophys. J. 590 (2003) L65, arXiv:astro-ph/0303643.
[Chiang:2003ac]
[13-2731]
Suppressing the lower Multipoles in the CMB Anisotropies, Carlo R. Contaldi, Marco Peloso, Lev Kofman, Andrei Linde, JCAP 0307 (2003) 002, arXiv:astro-ph/0303636.
[Contaldi:2003zv]
[13-2732]
Early Structure Formation and Reionization in a Warm Dark Matter Cosmology, Naoki Yoshida, Aaron Sokasian, Lars Hernquist, Volker Springel, Astrophys. J. 591 (2003) L1, arXiv:astro-ph/0303622.
[Yoshida:2003rm]
[13-2733]
Cosmic microwave background constraints on multi-connected spherical spaces, Jean-Philippe Uzan, Alain Riazuelo, Roland Lehoucq, Jeffrey Weeks, Phys. Rev. D69 (2004) 043003, arXiv:astro-ph/0303580.
[Uzan:2003ea]
[13-2734]
Large scale structure in non-standard cosmologies, T. Multamaki, E. Gaztanaga, M. Manera, Mon. Not. Roy. Astron. Soc. 344 (2003) 761, arXiv:astro-ph/0303526.
[Multamaki:2003vs]
[13-2735]
Model-Independent Reionization Observables in the CMB, Wayne Hu, Gilbert P. Holder, Phys. Rev. D68 (2003) 023001, arXiv:astro-ph/0303400.
[Hu:2003gh]
[13-2736]
Determining neutrino mass from the CMB alone, Manoj Kaplinghat, Lloyd Knox, Yong-Seon Song, Phys. Rev. Lett. 91 (2003) 241301, arXiv:astro-ph/0303344.
[Kaplinghat:2003bh]
[13-2737]
A post-WMAP perspective on inflation, Arthur Lue, Glenn D. Starkman, Tanmay Vachaspati, arXiv:astro-ph/0303268, 2003.
[Lue:2003su]
[13-2738]
Dark energy and global rotation of the Universe, Wlodzimierz Godlowski, Marek Szydlowski, Gen. Rel. Grav. 35 (2003) 2171, arXiv:astro-ph/0303248.
[Godlowski:2003hf]
[13-2739]
Can we have inflation with Omega > 1?, Andrei Linde, JCAP 0305 (2003) 002, arXiv:astro-ph/0303245.
[Linde:2003hc]
[13-2740]
Sneutrino Inflation in the Light of WMAP: Reheating, Leptogenesis and Flavour-Violating Lepton Decays, John Ellis, Martti Raidal, T. Yanagida, Phys. Lett. B581 (2004) 9, arXiv:hep-ph/0303242.
[Ellis:2003sq]
[13-2741]
Implications of WMAP Observations On the Population III Star Formation Processes, Renyue Cen, Astrophys. J. 591 (2003) L5, arXiv:astro-ph/0303236.
[Cen:2003ey]
[13-2742]
Tracking and coupled dark energy as seen by WMAP, Luca Amendola, Claudia Quercellini, Phys. Rev. D68 (2003) 023514, arXiv:astro-ph/0303228.
[Amendola:2003eq]
[13-2743]
Model-Independent Reconstruction of the Primordial Power Spectrum from WMAP Data, Pia Mukherjee, Yun Wang, Astrophys. J. 599 (2003) 1, arXiv:astro-ph/0303211.
[Mukherjee:2003ag]
[13-2744]
Precision Cosmology? Not Just Yet, Sarah L. Bridle, Ofer Lahav, Jeremiah P. Ostriker, Paul J. Steinhardt, Science 299 (2003) 1532, arXiv:astro-ph/0303180.
[Bridle:2003yz]
[13-2745]
Large Scale Structure in the Sloan Digital Sky Survey, M. Bernardi, arXiv:astro-ph/0303175, 2003.
[Bernardi:2003yu]
[13-2746]
The Earliest Epoch of Reionisation in the Standard $\Lambda\text{CDM}$ Model, M. Fukugita, M. Kawasaki, Mon. Not. Roy. Astron. Soc. 343 (2003) L25, arXiv:astro-ph/0303129.
[Fukugita:2003hn]
[13-2747]
Is the Low CMB Quadrupole a Signature of Spatial Curvature?, G. Efstathiou, Mon. Not. Roy. Astron. Soc. 343 (2003) L95, arXiv:astro-ph/0303127.
[Efstathiou:2003hk]
[13-2748]
The role of priors in deriving upper limits on neutrino masses from the 2dFGRS and WMAP, O. Elgaroy, O. Lahav, JCAP 04 (2003) 004, arXiv:astro-ph/0303089.
From the abstract: We also comment on the improved limit by the WMAP team, and point out that the main neutrino signature comes from the 2dFGRS and the Lyman alpha forest.
From the article: In this simple analysis we get a 95 \% confidence limit of $m_{\nu,\rm tot} < 1.1 \;{\rm eV}$. This is still some way from the WMAP limit of 0.71 eV, even with our very restricted parameter space, but consistent with the analysis in [13-2750]. The WMAP analysis also used data from ACBAR and CBI, and included the Lyman $\alpha$ forest power spectrum. The linear matter power spectrum inferred from the Lyman $\alpha$ forest probes smaller scales than the 2dFGRS and therefore has considerable power in constraining neutrino masses....
We have seen that one can derive fairly tight constraints on neutrino masses from the 2dFGRS power spectrum, provided that one has good constraints on $\omega_{\rm m}$, $n$, $h$, and $\omega_{\rm b}$ from independent data sets....
However, in our restricted analysis we did not get as good a neutrino mass constraint with 2dFGRS + WMAP priors as in the full analysis in [Go] which suggests that the Lyman $\alpha$ forest power spectrum plays a role in pushing the constraint on $m_{\nu,\rm tot}$ below 1 eV.

[Elgaroy:2003yh]
[13-2749]
CMB, Quantum Fluctuations and the Predictive Power of Inflation, V. Mukhanov, arXiv:astro-ph/0303077, 2003.
[Mukhanov:2003xw]
[13-2750]
Neutrino masses and the number of neutrino species from WMAP and 2dFGRS, S. Hannestad, JCAP 0305 (2003) 004, arXiv:astro-ph/0303076.
From the abstract: We have performed a thorough analysis of the constraints which can be put on neutrino parameters from cosmological observations, most notably those from the WMAP satellite and the 2dF galaxy survey. For this data we find an upper limit on the sum of active neutrino mass eigenstates of $\sum m_\nu \leq 1.0$ eV (95\% conf.), but this limit is dependent on priors....
In terms of the relativistic energy density in neutrinos or other weakly interacting species we find, in units of the equivalent number of neutrino species, $N_\nu$, that $N_\nu = 4.0^{+3.0}_{-2.1}$ (95 \% conf.). When BBN constraints are added, the bound on $N_\nu$ is $2.6^{+0.4}_{-0.3}$ (95 \% conf.), suggesting that $N_\nu$ could possibly be lower than the standard model value of 3....
Conversely, if $N_\nu$ is fixed to 3 then the data from WMAP and 2dFGRS predicts that $0.2458 \leq Y_P \leq 0.2471$ (95\% conf.), which is significantly higher than the observationally measured value....
Finally, we find that a non-zero $\sum m_\nu$ can be compensated by an increase in $N_\nu$. One result of this is that the LSND result is not yet ruled out by cosmological observations.

From the article: $ \begin{array}{lll} \sum m_\nu < 1.01 \, \mathrm{eV} \quad $\text{\&}$ \text{for} \quad $\text{\&}$ \text{WMAP+2dFGRS+Wang+HST+SN-Ia} \\ \sum m_\nu < 1.20 \, \mathrm{eV} \quad $\text{\&}$ \text{for} \quad $\text{\&}$ \text{WMAP+2dFGRS+Wang} \\ \sum m_\nu < 2.12 \, \mathrm{eV} \quad $\text{\&}$ \text{for} \quad $\text{\&}$ \text{WMAP+2dFGRS} \end{array} $
However, it is somewhat higher than the upper limit of $\sum m_\nu \leq 0.7$ eV found in the WMAP analysis [Go]. There are several reasons for this: First, we do not use Ly-$\alpha$ forest data in our analysis.... The second reason is that we use a completely free bias parameter.... Also, for accurate CMB and LSS data sets, the main degeneracy is not with the bias parameter, but rather with the Hubble parameter.... an increasing value of $\sum m_\nu$ can be compensated by a decrease in $H_0$....
$ \begin{array}{lll} N_\nu = 4.0 {}^{+3.0}_{-2.1} \quad $\text{\&}$ \text{for} \quad $\text{\&}$ \text{WMAP+2dFGRS+Wang+HST+SN-Ia} \\ N_\nu = 3.1 {}^{+3.9}_{-2.8} \quad $\text{\&}$ \text{for} \quad $\text{\&}$ \text{WMAP+2dFGRS} \\ N_\nu = 2.1 {}^{+6.7}_{-2.2} \quad $\text{\&}$ \text{for} \quad $\text{\&}$ \text{WMAP} \end{array} $
...
(a) An increasing $\sum m_\nu$ can be compensated by a decreasing $H_0$ and (b) An increasing $N_\nu$ can be compensated by an increasing $H_0$. One might therefore wonder whether a model with non-zero $\sum m_\nu$, combined with $N_\nu > 3$ can provide a good fit to the data.... the best fit actually is actually shifted to higher $\sum m_\nu$ when $N_\nu$ increases, and the conclusion is that a model with high neutrino mass and additional relativistic energy density can provide acceptable fits to the data. As a function of $N_\nu$ the upper bound on $\sum m_\nu$ is (at 95\% confidence)
$ \begin{array}{lll} \sum m_\nu < 1.01 \, \mathrm{eV} \quad $\text{\&}$ \text{for} \quad $\text{\&}$ N_\nu = 3 \\ \sum m_\nu < 1.38 \, \mathrm{eV} \quad $\text{\&}$ \text{for} \quad $\text{\&}$ N_\nu = 4 \\ \sum m_\nu < 2.12 \, \mathrm{eV} \quad $\text{\&}$ \text{for} \quad $\text{\&}$ N_\nu = 5 \end{array} $.

[Hannestad:2003xv]
[13-2751]
Nucleosynthesis Without a Computer, V. Mukhanov, Int. J. Theor. Phys. 43 (2004) 669, arXiv:astro-ph/0303073.
[Mukhanov:2003xs]
[13-2752]
CMB-slow, or How to Estimate Cosmological Parameters by Hand, V. Mukhanov, Int. J. Theor. Phys. 43 (2004) 623, arXiv:astro-ph/0303072.
[Mukhanov:2003xr]
[13-2753]
Constraints on Cardassian Expansion from Distant type Ia Supernovae, Zong-Hong Zhu, Masa-Katsu Fujimoto, Astrophys. J. 585 (2003) 52, arXiv:astro-ph/0303021.
[Zhu:2003sq]
[13-2754]
Genus Topology of the Cosmic Microwave Background from WMAP, Wesley N. Colley, J. Richard Gott III, Mon. Not. Roy. Astron. Soc. 344 (2003) 686, arXiv:astro-ph/0303020.
[Colley:2003sp]
[13-2755]
WMAP data and the curvature of space, Jean-Philippe Uzan, Ulrich Kirchner, George F.R. Ellis, Mon. Not. Roy. Astron. Soc. 344 (2003) L65, arXiv:astro-ph/0302597.
[Uzan:2003nk]
[13-2756]
Cosmological constraints from the CMB and Ly-alpha forest revisited, Uros Seljak, Patrick McDonald, Alexey Makarov, Mon. Not. Roy. Astron. Soc. 342 (2003) L79, arXiv:astro-ph/0302571.
[Seljak:2003jg]
[13-2757]
Constraints on the equation of state of dark energy and the Hubble constant from stellar ages and the CMB, Raul Jimenez, Licia Verde, Tommaso Treu, Daniel Stern, Astrophys. J. 593 (2003) 622, arXiv:astro-ph/0302560.
[Jimenez:2003iv]
[13-2758]
Primordial Nucleosynthesis as a Test of the Friedmann Equation in the Early Universe, Eduard Masso, Francesc Rota, Phys. Rev. D68 (2003) 123504, arXiv:astro-ph/0302554.
[Masso:2003cw]
[13-2759]
Galaxy Clustering and Dark Energy, Dipak Munshi, Cristiano Porciani, Yun Wang, Mon. Not. Roy. Astron. Soc. 349 (2004) 281-290, arXiv:astro-ph/0302510.
[Munshi:2003vu]
[13-2760]
Phantom Energy and Cosmic Doomsday, Robert R. Caldwell, Marc Kamionkowski, Nevin N. Weinberg, Phys. Rev. Lett. 91 (2003) 071301, arXiv:astro-ph/0302506.
From the abstract: Here, we explore the consequences that follow if the dark energy is phantom energy, in which the sum of the pressure and energy density is negative. The positive phantom-energy density becomes infinite in finite time, overcoming all other forms of matter, such that the gravitational repulsion rapidly brings our brief epoch of cosmic structure to a close. The phantom energy rips apart the Milky Way, solar system, Earth, and ultimately the molecules, atoms, nuclei, and nucleons of which we are composed, before the death of the Universe in a 'Big Rip'.
[Caldwell:2003vq]
[13-2761]
Early Quintessence in Light of WMAP, Robert R. Caldwell et al., Astrophys. J. 591 (2003) L75, arXiv:astro-ph/0302505.
[Caldwell:2003vp]
[13-2762]
Grand Unified Inflation Confronts WMAP, Bumseok Kyae, Qaisar Shafi, JHEP 0311 (2003) 036, arXiv:astro-ph/0302504.
[Kyae:2003vn]
[13-2763]
A high resolution foreground cleaned CMB map from WMAP, Max Tegmark, Angelica de Oliveira-Costa, Andrew Hamilton, Phys. Rev. D68 (2003) 123523, arXiv:astro-ph/0302496.
[Tegmark:2003ve]
[13-2764]
Constraints on the cosmic neutrino background, Elena Pierpaoli, Mon. Not. Roy. Astron. Soc. 342 (2003) L63, arXiv:astro-ph/0302465.
From the abstract: We find that $N_{eff}=4.31$ with a 95 per cent C.L. $1.6 \le N_{eff} \le 7.1$. If we include the $H_0$ prior from the HST project we find the best fit $N_{eff}=4.08$ and $1.90 \le N_{eff} \le 6.58$ for 95 per cent C.L. The curvature we derive is still consistent with flat, but assuming a flat Universe from the beginning implies a bias toward lower $N_{eff}$, as well as artificially smaller error bars.
[Pierpaoli:2003kw]
[13-2765]
Addendum to: Update on neutrino mixing in the early Universe, P. Di Bari, Phys. Rev. D67 (2003) 127301, arXiv:astro-ph/0302433.
From the abstract: Different non standard scenarios can be distinguished by a measurement of the difference $\Delta N_{\nu}^{f_{\nu}}=\Delta N_{\nu}^{\rm tot}-\Delta N_{\nu}^{\rho}$. From the current data we estimate $\Delta N_{\nu}^{f_{\nu}}\simeq -1.4^{+0.9}_{-1.4}$, slightly disfavouring solutions with a low expansion rate, characterized by $\Delta N_{\nu}^{f_{\nu}}=0$ and negative $\Delta N_{\nu}^{\rho}$. From the new WMAP upper bound on the abolute neutrino mass scale we show how active-sterile neutrino mixing could be still a viable explanation only for high values of $Y_p\gtrsim 0.24$, while it would be ruled out by low values $Y_p\lesssim 0.24$. The existence of large positive neutrino chemical potentials $\xi_i\sim 0.05$, implying $\Delta N_{\nu}^{\rho}\simeq 0$, would be a possible explanation of the data within the analyzed class of non standard BBN models. Interestingly it would also provide a way to evade the cosmological bounds for `class A 3+1' four neutrino mixing models to be tested by the MiniBoone experiment.
[DiBari:2003fg]
[13-2766]
Primordial Nucleosynthesis in Light of WMAP, Richard H. Cyburt, Brian D. Fields, Keith A. Olive, Phys. Lett. B567 (2003) 227, arXiv:astro-ph/0302431.
[Cyburt:2003fe]
[13-2767]
Current constraints on Cosmological Parameters from Microwave Background Anisotropies, Alessandro Melchiorri, Carolina Odman, Phys. Rev. D67 (2003) 081302, arXiv:astro-ph/0302361.
[Melchiorri:2003xx]
[13-2768]
Measuring the cosmological background of relativistic particles with WMAP, Patrick Crotty, Julien Lesgourgues, Sergio Pastor, Phys. Rev. D67 (2003) 123005, arXiv:astro-ph/0302337.
From the abstract: We derive new bounds on additional relativistic degrees of freedom expressed in terms of an excess in the effective number of light neutrinos $\Delta N_{\rm eff}$. Within the flat $\Lambda\mathrm{CDM}$ scenario, the allowed range is $\Delta N_{\rm eff} < 6$ (95\% confidence level) using WMAP data only, or $ -2.6 < \Delta N_{\rm eff} < 4$ with the prior $H_0= 72 \pm 8 \, \mathrm{km \, s^{-1} \, Mpc^{-1}}$. When other cosmic microwave background and large scale structure experiments are taken into account, the window shrinks to $ -1.6 < \Delta N_{\rm eff} < 3.8$.
[Crotty:2003th]
[13-2769]
Reconstructing the primordial power spectrum, S. L. Bridle, A. M. Lewis, J. Weller, G. Efstathiou, Mon. Not. Roy. Astron. Soc. 342 (2003) L72, arXiv:astro-ph/0302306.
[Bridle:2003sa]
[13-2770]
Is dark energy decaying?, Ujjaini Alam, Varun Sahni, A. A. Starobinsky, JCAP 0304 (2003) 002, arXiv:astro-ph/0302302.
[Alam:2003rw]
[13-2771]
Was the Universe Reionized by Massive Population-III Stars?, Stuart Wyithe, Abraham Loeb, Astrophys.J. (2003), arXiv:astro-ph/0302297.
[Wyithe:2003rr]
[13-2772]
WMAP Constraints on varying $\alpha$ and the Promise of Reionization, C.J.A.P.Martins et al., Phys. Lett. B585 (2004) 29, arXiv:astro-ph/0302295.
[Martins:2003pe]
[13-2773]
Is Primordial He Truly from Big Bang ?, R. Salvaterra, A. Ferrara, Mon. Not. Roy. Astron. Soc. 340 (2003) L17, arXiv:astro-ph/0302285.
[Salvaterra:2003nu]
[13-2774]
Quintessence and the Curvature of the Universe after WMAP, R.Aurich, F.Steiner, Int. J. Mod. Phys. D13 (2004) 123, arXiv:astro-ph/0302264.
[Aurich:2003it]
[13-2775]
Chemical Composition of the Early Universe, Martin Harwit, Marco Spaans, Astrophys. J. 589 (2003) 53, arXiv:astro-ph/0302259.
[Harwit:2003in]
[13-2776]
Can the Majorana Neutrino CP-Violating Phases be Restricted?, K. Matsuda, T. Fukuyama, H. Nishiura, Mod. Phys. Lett. A18 (2003) 1803, arXiv:hep-ph/0302254.
[Matsuda:2003kf]
[13-2777]
Right-Handed Sneutrinos as Curvatons, John McDonald, Phys. Rev. D68 (2003) 043505, arXiv:hep-ph/0302222.
[McDonald:2003xq]
[13-2778]
First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters, D. N. Spergel et al. (WMAP), Astrophys. J. Supp. Ser. 148 (2003) 175-194, arXiv:astro-ph/0302209.
From the abstract: By combining WMAP data with other astronomical data sets, we constrain the geometry of the universe: $\Omega_{tot} = 1.02 \pm 0.02$, the equation of state of the dark energy, $w < -0.78$ (95% confidence limit), and the energy density in neutrinos, $\Omega_\nu h^2 < 0.0076$ (95% confidence limit). For 3 degenerate neutrino species, this limit implies that their mass is less than 0.23 eV (95% confidence limit). The WMAP detection of early reionization rules out warm dark matter.
[WMAP:2003elm]
[13-2779]
Curvature force and dark energy, Alexander B. Balakin, Diego Pavon, Dominik J. Schwarz, Winfried Zimdahl, New J. Phys. 5 (2003) 085, arXiv:astro-ph/0302150.
[Balakin:2003tk]
[13-2780]
WMAP and Inflation, V. Barger, Hye-Sung Lee, Danny Marfatia, Phys. Lett. B565 (2003) 33, arXiv:hep-ph/0302150.
[Barger:2003ym]
[13-2781]
Inflation in Flat Universe, Koray Karaca, Selcuk Bayin, Turk. J. Phys. 27 (2003) 19, arXiv:astro-ph/0302148.
[Karaca:2003pn]
[13-2782]
CMBEASY:: an Object Oriented Code for the Cosmic Microwave Background, Michael Doran, JCAP 0510 (2005) 011, arXiv:astro-ph/0302138.
[Doran:2003sy]
[13-2783]
Cosmology with varying scales and couplings, C. Wetterich, arXiv:hep-ph/0302116, 2003.
[Wetterich:2003qb]
[13-2784]
Precision Cosmology from the Lyman-alpha Forest: Power Spectrum and Bispectrum, R. Mandelbaum, P. McDonald, U. Seljak, R. Cen, Mon. Not. Roy. Astron. Soc. 344 (2003) 776, arXiv:astro-ph/0302112.
[Mandelbaum:2003km]
[13-2785]
The derivation of the coupling constant in the new Self Creation Cosmology, Garth A Barber, arXiv:gr-qc/0302088, 2003.
[Barber:2003ik]
[13-2786]
Dark Energy and Dark Matter, D. Comelli, M. Pietroni, A. Riotto, Phys. Lett. B571 (2003) 115, arXiv:hep-ph/0302080.
[Comelli:2003cv]
[13-2787]
Cosmological constraints from the cluster contribution to the power spectrum of the soft X-ray background. New evidence for a low sigma_8, J.M. Diego et al., Mon. Not. Roy. Astron. Soc. 344 (2003) 951, arXiv:astro-ph/0302067.
[Diego:2003cv]
[13-2788]
Primordial Nucleosynthesis Constraints on Z' Properties, Vernon Barger, Paul Langacker, Hye-Sung Lee, Phys. Rev. D67 (2003) 075009, arXiv:hep-ph/0302066.
[Barger:2003zh]
[13-2789]
Tree-Particle-Mesh: an adaptive, efficient, and parallel code for collisionless cosmological simulation, Paul Bode, Jeremiah P. Ostriker, Astrophys. J. Supp. 145 (2003) 1, arXiv:astro-ph/0302065.
[Bode:2003ct]
[13-2790]
Future Type Ia Supernova Data as Tests of Dark Energy from Modified Friedmann Equations, Yun Wang, Katherine Freese, Paolo Gondolo, Matthew Lewis, Astrophys. J. 594 (2003) 25, arXiv:astro-ph/0302064.
[Wang:2003cs]
[13-2791]
The angular size - redshift relation in power-law cosmologies, Deepak Jain, Abha Dev, J. S. Alcaniz, Class. Quant. Grav. 20 (2003) 4163, arXiv:astro-ph/0302025.
[Jain:2003vq]
[13-2792]
Measuring Cosmological Parameters with the SDSS QSO Spatial Power Spectrum Analysis to Test the Cosmological Principle, Kazuhiro Yamamoto, Mon. Not. Roy. Astron. Soc. 341 (2003) 1199, arXiv:astro-ph/0302018.
[Yamamoto:2003vh]
[13-2793]
Little Inflatons and Gauge Inflation, David E. Kaplan, Neal Weiner, JCAP 0402 (2004) 005, arXiv:hep-ph/0302014.
[Kaplan:2003aj]
[13-2794]
Great Expectations: Inflation versus Cyclic Predictions for Spectral Tilt, Justin Khoury, Paul J. Steinhardt, Neil Turok, Phys. Rev. Lett. 91 (2003) 161301, arXiv:astro-ph/0302012.
[Khoury:2003vb]
[13-2795]
Median Statistics and the Mass Density of the Universe, Gang Chen, Bharat Ratra, Publ. Astron. Soc. Pac. 115 (2003) 1143, arXiv:astro-ph/0302002.
[Chen:2003ur]
[13-2796]
Statistical Isotropy of CMB and Cosmic Topology, Amir Hajian, Tarun Souradeep, Phys. Rev. Lett. (2003), arXiv:astro-ph/0301590.
[Hajian:2003ic]
[13-2797]
Point sources in the MAP sky maps, Elena Pierpaoli, Astrophys. J. 589 (2003) 58, arXiv:astro-ph/0301563.
[Pierpaoli:2003yy]
[13-2798]
Direct Wavelet Expansion of the Primordial Power Spectrum: Results from Pre-MAP CMB Data, Pia Mukherjee, Yun Wang, Astrophys. J. 598 (2003) 779, arXiv:astro-ph/0301562.
[Mukherjee:2003yx]
[13-2799]
Dark Energy as a Modification of the Friedmann Equation, Gia Dvali, Michael S. Turner, arXiv:astro-ph/0301510, 2003.
[Dvali:2003rk]
[13-2800]
Does the fine-structure constant vary with cosmological epoch?, J. N. Bahcall, Charles L. Steinhardt, David Schlegel, Astrophys. J. 600 (2004) 520, arXiv:astro-ph/0301507.
[Bahcall:2003rh]
[13-2801]
The initial Helium content of Galactic Globular Cluster stars from the R-parameter: comparison with the CMB constraint, S. Cassisi, M. Salaris, A.W. Irwin, Astrophys.J. 588 (2003) 862, arXiv:astro-ph/0301378.
[Cassisi:2003nm]
[13-2802]
The trispectrum of the Cosmic Microwave Background on sub-degree angular scales: an analysis of the BOOMERanG data, G.De Troia et al., Mon. Not. Roy. Astron. Soc. 343 (2003) 284, arXiv:astro-ph/0301294.
[DeTroia:2003tq]
[13-2803]
Can the dark energy equation-of-state parameter w be less than -1?, Sean M. Carroll, Mark Hoffman, Mark Trodden, Phys. Rev. D68 (2003) 023509, arXiv:astro-ph/0301273.
[Carroll:2003st]
[13-2804]
Low-scale Quintessential Inflation, Massimo Giovannini, Phys. Rev. D67 (2003) 123512, arXiv:hep-ph/0301264.
[Giovannini:2003jw]
[13-2805]
Crossover quintessence and cosmological history of fundamental 'constants', C.Wetterich, Phys. Lett. B561 (2003) 10, arXiv:hep-ph/0301261.
[Wetterich:2003jt]
[13-2806]
Cosmological implications of the APM 08279+5255, an old quasar at z = 3.91, J. S. Alcaniz, J. A. S. Lima, J. V. Cunha, Mon. Not. Roy. Astron. Soc. 340 (2003) L39, arXiv:astro-ph/0301226.
[Alcaniz:2003fy]
[13-2807]
Out of Equilibrium Dynamics of the Inflaton Re-examined, Raghavan Rangarajan, Jitesh Bhatt, arXiv:hep-ph/0301217, 2003.
[Rangarajan:2003ji]
[13-2808]
Nature of Dark Energy and Polarization Measurements, R. Mainini, L.P.L. Colombo, S.A. Bonometto, New Astron. 8 (2003) 751, arXiv:astro-ph/0301215.
[Mainini:2003fm]
[13-2809]
Probing dark energy with the CMB: projected constraints from MAP and Planck, A. Balbi et al., Astrophys. J. 588 (2003) L5, arXiv:astro-ph/0301192.
[Balbi:2003en]
[13-2810]
Primordial Gravity Waves and Weak Lensing, Scott Dodelson, Eduardo Rozo, Albert Stebbins, Phys. Rev. Lett. 91 (2003) 021301, arXiv:astro-ph/0301177.
[Dodelson:2003bv]
[13-2811]
What can we learn on the thermal history of the Universe from future CMB spectrum measures at long wavelengths?, C. Burigana, R. Salvaterra, Mon. Not. Roy. Astron. Soc. 342 (2003) 543, arXiv:astro-ph/0301133.
[Burigana:2003wb]
[13-2812]
Towards Cosmological Concordance on Galactic Scales, Frank C. van den Bosch, H.J. Mo, Xiaohu Yang, Mon. Not. Roy. Astron. Soc. 345 (2003) 923, arXiv:astro-ph/0301104.
[vandenBosch:2003nk]
[13-2813]
Dark Energy and the Fate of the Universe, Renata Kallosh, Andrei Linde, JCAP 0302 (2003) 002, arXiv:astro-ph/0301087.
[Kallosh:2003mt]
[13-2814]
Space-time correlations within pairs produced during inflation, a wave-packet analysis, David Campo, Renaud Parentani, Phys. Rev. D67 (2003) 103522, arXiv:gr-qc/0301044.
[Campo:2003gb]
[13-2815]
Eternal expansion of closed universe, O.B. Karpov, Grav. Cosmol. 9 (2003) 211, arXiv:gr-qc/0301039.
[Karpov:2003ch]
[13-2816]
CMB lensing reconstruction on the full sky, Takemi Okamoto, Wayne Hu, Phys. Rev. D67 (2003) 083002, arXiv:astro-ph/0301031.
[Okamoto:2003zw]
[13-2817]
A theoretician's analysis of the supernova data and the limitations in determining the nature of dark energy, T. Padmanabhan, T. Roy Choudhury, Mon. Not. Roy. Astron. Soc. 344 (2003) 823, arXiv:astro-ph/0212573.
[Padmanabhan:2002vv]
[13-2818]
Coupled quintessence and the coincidence problem, G. Mangano, G. Miele, V. Pettorino, Mod. Phys. Lett. A18 (2003) 831, arXiv:astro-ph/0212518.
[Mangano:2002gg]
[13-2819]
Current and future supernova constraints on decaying $\Lambda$ cosmologies, J. S. Alcaniz, J. M. F. Maia, Phys. Rev. D67 (2003) 043502, arXiv:astro-ph/0212510.
[Alcaniz:2002fy]
[13-2820]
Cosmological parameter estimation and Bayesian model comparison using VSA data, Anze Slosar et al., Mon. Not. Roy. Astron. Soc. 341 (2003) L29, arXiv:astro-ph/0212497.
[Slosar:2002dc]
[13-2821]
The last stand before MAP: cosmological parameters from lensing, CMB and galaxy clustering, Xiaomin Wang, Max Tegmark, Bhuvnesh Jain, Matias Zaldarriaga, Phys. Rev. D68 (2003) 123001, arXiv:astro-ph/0212417.
[Wang:2002rta]
[13-2822]
Unified Model for Dark Energy, Pedro F. Gonzalez-Diaz, Phys. Lett. B562 (2003) 1, arXiv:astro-ph/0212414.
[Gonzalez-Diaz:2002por]
[13-2823]
Dark Energy and the Hubble Age, Lawrence M. Krauss, Astrophys. J. 604 (2004) 481, arXiv:astro-ph/0212369.
[Krauss:2002sa]
[13-2824]
Luminosity function and density field of the Sloan and Las Campanas Redshift Survey, G. Hutsi et al., Astron.Astrophys. (2002), arXiv:astro-ph/0212327.
[Hutsi:2002ev]
[13-2825]
Clusters and Superclusters in the Sloan Digital Sky Survey, J. Einasto et al., Astron. Astrophys. 405 (2003) 425, arXiv:astro-ph/0212312.
[Einasto:2002ee]
[13-2826]
Clusters of galaxies with modified Newtonian dynamics (MOND), R. H. Sanders, Mon.Not.Roy.Soc.Astron. (2002), arXiv:astro-ph/0212293.
[Sanders:2002ue]
[13-2827]
Cosmology With Interacting Dark Energy, Manasse R. Mbonye, Mod. Phys. Lett. A19 (2004) 117, arXiv:astro-ph/0212280.
[Mbonye:2002tr]
[13-2828]
Cosmological Constraints from a Combined Analysis of the Cluster Mass Function and Microwave Background Anisotropies, Alessandro Melchiorri, Paul Bode, Neta A. Bahcall, Joseph Silk, Astrophys. J. 586 (2003) L1, arXiv:astro-ph/0212276.
[Melchiorri:2002tm]
[13-2829]
Dark Group: Dark Energy and Dark Matter, Axel de la Macorra, Phys. Lett. B585 (2004) 17, arXiv:astro-ph/0212275.
[delaMacorra:2002tk]
[13-2830]
A simplified model of the formation of structures in the dark matter, and a background of very long gravitational waves, G.S. Bisnovatyi-Kogan, Mon. Not. Roy. Astron. Soc. 347 (2004) 163, arXiv:astro-ph/0212268.
[Bisnovatyi-Kogan:2002lqr]
[13-2831]
Dark energy effects on the Lyman-alpha forest, M. Viel et al., Mon. Not. Roy. Astron. Soc. 340 (2003) L47, arXiv:astro-ph/0212241.
[Viel:2002gn]
[13-2832]
Neutrino Mass and Dark Energy from Weak Lensing, Kevork Abazajian, Scott Dodelson, Phys. Rev. Lett. 91 (2003) 041301, arXiv:astro-ph/0212216.
[Abazajian:2002ck]
[13-2833]
Cosmology with tachyon field as dark energy, J.S.Bagla, H.K.Jassal, T.Padmanabhan, Phys. Rev. D67 (2003) 063504, arXiv:astro-ph/0212198.
[Bagla:2002yn]
[13-2834]
Prospects for the Determination of H_0 through Observation of Multiply-Imaged Supernovae in Rich Galaxy Cluster Fields, Adam S. Bolton, Scott Burles, Astrophys. J. 592 (2003) 17, arXiv:astro-ph/0212181.
[Bolton:2002xv]
[13-2835]
The end of unified dark matter?, Havard Sandvik, Max Tegmark, Matias Zaldarriaga, Ioav Waga, Phys. Rev. D69 (2004) 123524, arXiv:astro-ph/0212114.
[Sandvik:2002jz]
[13-2836]
Constraints on pre-big bang parameter space from CMBR anisotropies, V. Bozza, M. Gasperini, M. Giovannini, G. Veneziano, Phys. Rev. D67 (2003) 063514, arXiv:hep-ph/0212112.
[Bozza:2002ad]
[13-2837]
Cosmological parameters estimation in the quintessence paradigm, M. Douspis, A. Riazuelo, Y. Zolnierowski, A. Blanchard, Astron. Astrophys. 405 (2003) 409, arXiv:astro-ph/0212097.
[Douspis:2002tk]
[13-2838]
Gauge-Invariant Perturbations of Varying-Alpha Cosmologies, John D. Barrow, D. F. Mota, Class. Quant. Grav. 20 (2003) 2045, arXiv:gr-qc/0212032.
[Barrow:2002zh]
[13-2839]
Cosmological Effects of a Class of Fluid Dark Energy Models, Daniela Carturan, Fabio Finelli, Phys. Rev. D68 (2003) 103501, arXiv:astro-ph/0211626.
[Carturan:2002si]
[13-2840]
The cosmological constant and general isocurvature initial conditions, R. Trotta, A. Riazuelo, R. Durrer, Phys. Rev. D67 (2003) 063520, arXiv:astro-ph/0211600.
[Trotta:2002iz]
[13-2841]
Opening A New Window to the Early Universe, Eric Hivon, Marc Kamionkowski, Science 298 (2002) 1349, arXiv:astro-ph/0211553.
[Hivon:2002ek]
[13-2842]
The Fate of Dark Energy, Paul H. Frampton, Tomo Takahashi, Phys. Lett. B557 (2003) 135, arXiv:astro-ph/0211544.
[Frampton:2002vv]
[13-2843]
The State of the Dark Energy Equation of State, Alessandro Melchiorri, Laura Mersini, Carolina J. Odman, Mark Trodden, Phys. Rev. D68 (2003) 043509, arXiv:astro-ph/0211522.
[Melchiorri:2002ux]
[13-2844]
The Hubble Diagram of Type Ia Supernovae as a Function of Host Galaxy Morphology, M. Sullivan et al. (Supernova Cosmology Project), Mon. Not. Roy. Astron. Soc. 340 (2003) 1057, arXiv:astro-ph/0211444.
[SupernovaCosmologyProject:2002eym]
[13-2845]
An Accelerating Universe from Dark Matter Interactions with Negative Pressure, Paolo Gondolo, Katherine Freese, arXiv:hep-ph/0211397, 2002.
[Gondolo:2002gi]
[13-2846]
Constraining the cosmological parameters with the gas mass fraction in local and z > 0.7 Galaxy Clusters, S. Ettori, P. Tozzi, P. Rosati, Astron. Astrophys. 398 (2003) 879, arXiv:astro-ph/0211335.
[Ettori:2002pe]
[13-2847]
Condensate cosmology - dark energy from dark matter, Bruce A. Bassett, Martin Kunz, David Parkinson, Carlo Ungarelli, Phys. Rev. D68 (2003) 043504, arXiv:astro-ph/0211303.
[Bassett:2002fe]
[13-2848]
Can brane cosmology with a vanishing Lambda explain the observations?, R. G. Vishwakarma, Parampreet Singh, Class. Quant. Grav. 20 (2003) 2033, arXiv:astro-ph/0211285.
[Vishwakarma:2002ek]
[13-2849]
Discriminating between models for the dark energy, Duane A. Dicus, Wayne W. Repko, Phys. Rev. D67 (2003) 083520, arXiv:hep-ph/0211109.
[Dicus:2002gi]
[13-2850]
The cosmological dependence of weak interactions, M. Novello, P Rotelli, J. Phys. A5 (1972) 1488-1494, arXiv:astro-ph/0211107.
[Novello:1972pa]
[13-2851]
Can cosmology detect hierarchical neutrino masses?, Steen Hannestad, Phys. Rev. D67 (2003) 085017, arXiv:astro-ph/0211106.
[Hannestad:2002cn]
[13-2852]
Missing Mass and the Acceleration of the Universe. Is Quintessence the only Explanation?, Selcuk Bayin, Int. J. Mod. Phys. D11 (2002) 1523, arXiv:astro-ph/0211097.
[Bayin:2002cd]
[13-2853]
Linear wave spectrum associated with collective neutrino-plasma interactions in the early universe, Alain J. Brizard, Sarah L. McGregor, New J. Phys. 4 (2002) (2002) 1, arXiv:astro-ph/0211087.
[Brizard:2002yt]
[13-2854]
Cosmological Perturbation Theory Using the Schrodinger Equation, Istvan Szapudi, Nick Kaiser, Astrophys. J. 583 (2003) L1, arXiv:astro-ph/0211065.
[Szapudi:2002cr]
[13-2855]
Inhomogeneous Big Bang Cosmology, Sanjay M. Wagh, arXiv:astro-ph/0211034, 2002.
[Wagh:2002bi]
[13-2856]
CMB Anisotropy from Baryogenesis by a Scalar Field, Takeo Moroi, Hitoshi Murayama, Phys. Lett. B553 (2003) 126, arXiv:hep-ph/0211019.
[Moroi:2002vx]
[13-2857]
Can MAP and Planck map Planck physics?, Lars Bergstrom, Ulf H. Danielsson, JHEP 12 (2002) 038, arXiv:hep-th/0211006.
[Bergstrom:2002yd]
[13-2858]
The Inflationary Gravity Waves in light of recent Cosmic Microwave Background Anisotropies data, Alessandro Melchiorri, Carolina J. Odman, Phys. Rev. D67 (2003) 021501, arXiv:astro-ph/0210606.
[Melchiorri:2002rh]
[13-2859]
Remarks on the Cosmic Density of Degenerate Neutrinos, Kazuhide Ichikawa, M. Kawasaki, Phys. Rev. D67 (2003) 063510, arXiv:astro-ph/0210600.
[Ichikawa:2002vn]
[13-2860]
Quintessence and the accelerating universe, Philippe Brax, Jerome Martin, arXiv:astro-ph/0210533, 2002.
[Brax:2002vf]
[13-2861]
Cosmic Inflation and the Arrow of Time, Andreas Albrecht, arXiv:astro-ph/0210527, 2002.
[Albrecht:2002uz]
[13-2862]
What future does the universe have?, B. Hoeneisen, arXiv:astro-ph/0210526, 2002.
[Hoeneisen:2002uy]
[13-2863]
BBN And CMB Constraints On Dark Energy, James P. Kneller, Gary Steigman, Phys. Rev. D67 (2003) 063501, arXiv:astro-ph/0210500.
[Kneller:2002zh]
[13-2864]
Quintessence and the Underlying Particle Physics Theory, D.J.H. Chung, L. L. Everett, A. Riotto, Phys. Lett. B556 (2003) 61, arXiv:hep-ph/0210427.
[Chung:2002xj]
[13-2865]
New Constraints on the running-mass inflation model, Laura Covi, David H. Lyth, Alessandro Melchiorri, Phys. Rev. D67 (2003) 043507, arXiv:hep-ph/0210395.
[Covi:2002th]
[13-2866]
Testable anthropic predictions for dark energy, J. Garriga, A. Vilenkin, Phys. Rev. D67 (2003) 043503, arXiv:astro-ph/0210358.
[Garriga:2002tq]
[13-2867]
Accelerating universe without event horizon, Pedro F. Gonzalez-Diaz, arXiv:astro-ph/0210177, 2002.
[Gonzalez-Diaz:2002gfg]
[13-2868]
Casimir effect and vacuum energy, Cyriaque Genet, Astrid Lambrecht, Serge Reynaud, arXiv:quant-ph/0210173, 2002. IAP Colloquium 'On the nature of dark energy'.
[Genet:2002rc]
[13-2869]
Aspects of the Cosmic Microwave Background Dipole, M. Kamionkowski, Lloyd Knox, Phys. Rev. D67 (2003) 063001, arXiv:astro-ph/0210165.
[Kamionkowski:2002nd]
[13-2870]
Constraining dark energy from the abundance of weak gravitational lenses, Nevin N. Weinberg, Marc Kamionkowski, Mon. Not. Roy. Astron. Soc. 341 (2003) 251, arXiv:astro-ph/0210134.
[Weinberg:2002rd]
[13-2871]
Inflation with blowing-up solution of cosmological constant problem, Jihn E. Kim, JHEP 0301 (2003) 042, arXiv:hep-th/0210117.
[Kim:2002fd]
[13-2872]
Systematic effects in the measurement of polarization by the PLANCK telescope, G.Franco, P.Fosalba, J.A.Tauber, Astron. Astrophys. 405 (2003) 349, arXiv:astro-ph/0210109.
[Franco:2002hx]
[13-2873]
WKB approximation for inflationary cosmological perturbations, Jerome Martin, Dominik J. Schwarz, Phys. Rev. D67 (2003) 083512, arXiv:astro-ph/0210090.
[Martin:2002vn]
[13-2874]
Generation of Primordial Cosmological Perturbations from Statistical Mechanical Models, F. Sylos Labini A. Gabrielli, B. Jancovici, M. Joyce, J. L. Lebowitz, L. Pietronero, Phys. Rev. D67 (2003) 043506, arXiv:astro-ph/0210033.
[Gabrielli:2002di]
[13-2875]
Application of Monte Carlo Algorithms to the Bayesian Analysis of the Cosmic Microwave Background, C.H. Anderson J. Jewell, S. Levin, Astrophys. J. 609 (2004) 1, arXiv:astro-ph/0209560.
[Jewell:2002dz]
[13-2876]
Acceleration at $z > 1$?, Luca Amendola, Mon. Not. Roy. Astron. Soc. 342 (2003) 221, arXiv:astro-ph/0209494.
[Amendola:2002kd]
[13-2877]
Clustering statistics in cosmology, Vicent J. Martinez, Enn Saar, Proc.SPIE Int.Soc.Opt.Eng. (2002), arXiv:astro-ph/0209208.
[Martinez:2002mi]
[13-2878]
Neutrino Spectrum Distortion Due to Oscillations and its BBN Effect, Daniela Kirilova, Int. J. Mod. Phys. D13 (2004) 831, arXiv:hep-ph/0209104.
[Kirilova:2002ss]
[13-2879]
Cosmological sign of neutrino CP violation, P. H. Frampton, S. L. Glashow, T. Yanagida, Phys. Lett. B548 (2002) 119-121, arXiv:hep-ph/0208157.
[Frampton:2002qc]
[13-2880]
Cosmic Microwave Background Temperature at Galaxy Clusters, E. S. Battistelli et al., Astrophys. J. 580 (2002) L101, arXiv:astro-ph/0208027.
[Battistelli:2002ie]
[13-2881]
Cosmological implications of low scale quark-lepton unification, T. L. Yoon, R. Foot, Acta Phys. Polon. B34 (2003) 2815, arXiv:hep-ph/0208018.
[Yoon:2002nt]
[13-2882]
Cosmological fluctuations of short wavelength, Steven Weinberg, Astrophys. J. 581 (2002) 810, arXiv:astro-ph/0207375.
[Weinberg:2002kg]
[13-2883]
Constraining the shape of the CMB: a Peak-by-Peak analysis, Carolina J. Odman et al., Phys. Rev. D67 (2003) 083511, arXiv:astro-ph/0207286.
[Odman:2002wj]
[13-2884]
The mass function, Martin White, Astrophys. J. Supp. 143 (2002) 241, arXiv:astro-ph/0207185.
[White:2002at]
[13-2885]
On heavy Majorana neutrinos as a source of the highest energy cosmic rays, D. Palle, Nuovo Cim. 118B (2003) 747, arXiv:hep-ph/0207075.
[Palle:2002mz]
[13-2886]
Separating the Early Universe from the Late Universe: cosmological parameter estimation beyond the black box, Max Tegmark, Matias Zaldarriaga, Phys. Rev. D66 (2002) 103508, arXiv:astro-ph/0207047.
[Tegmark:2002cy]
[13-2887]
D-term inflation and neutrino mass, Daijiro Suematsu, JHEP 10 (2002) 014, arXiv:hep-ph/0207041.
[Suematsu:2002hj]
[13-2888]
Parameter constraints for flat cosmologies from CMB and 2dFGRS power spectra, Will J. Percival et al. (The 2dFGRS Team), Mon. Not. Roy. Astron. Soc. 337 (2002) 1068, arXiv:astro-ph/0206256.
[2dFGRSTeam:2002tzq]
[13-2889]
Big bang nucleosynthesis with Gaussian inhomogeneous neutrino degeneracy, Spencer D. Stirling, Robert J. Scherrer, Phys. Rev. D66 (2002) 043531, arXiv:astro-ph/0206173.
[Stirling:2002bj]
[13-2890]
Efficient Cosmological Parameter Estimation from Microwave Background Anisotropies, Arthur Kosowsky, Milos Milosavljevic, Raul Jimenez, Phys. Rev. D66 (2002) 063007, arXiv:astro-ph/0206014.
[Kosowsky:2002zt]
[13-2891]
First results from the Very Small Array. IV: The CMB power spectrum, P. F. Scott et al., Mon. Not. Roy. Astron. Soc. 341 (2003) 1076, arXiv:astro-ph/0205380.
[Scott:2002th]
[13-2892]
First results from the Very Small Array. IV: Cosmological parameter estimation, J. A. Rubino-Martin et al., Mon. Not. Roy. Astron. Soc. 341 (2003) 1084, arXiv:astro-ph/0205367.
[Rubino-Martin:2002cox]
[13-2893]
PeV cosmic rays: A window on the leptonic era?, Richard Wigmans, Astropart. Phys. 19 (2003) 379, arXiv:astro-ph/0205360.
[Wigmans:2002rb]
[13-2894]
Telling Three from Four Neutrinos with Cosmology, Kevork N. Abazajian, Astropart. Phys. 19 (2003) 303, arXiv:astro-ph/0205238.
[Abazajian:2002bj]
[13-2895]
Cosmological limit on the neutrino mass, S. Hannestad, Phys. Rev. D66 (2002) 125011, arXiv:astro-ph/0205223.
From the abstract: Combining data from the cosmic microwave background and the 2dF galaxy survey yields an upper limit on the sum of the three neutrino mass eigenstates of $\sum m_\nu < 3 \, \mathrm{eV}$ (95% CL), without including additional priors. Including data from SNIa observations, Big Bang nucleosynthesis, and HST Hubble key project data on $H_0$ tightens the limit to $\sum m_\nu < 2.5 \, \mathrm{eV}$ (95% CL).
[Hannestad:2002xv]
[13-2896]
Is the Cosmic Microwave Background Circularly Polarized?, Joseph Silk Asantha Cooray, Alessandro Melchiorri, Phys. Lett. B554 (2003) 1, arXiv:astro-ph/0205214.
[Cooray:2002nm]
[13-2897]
Can the clustered dark matter and the smooth dark energy arise from the same scalar field?, T. Padmanabhan, T. Roy Choudhury, Phys. Rev. D66 (2002) 081301, arXiv:hep-th/0205055.
[Padmanabhan:2002sh]
[13-2898]
Cosmological constraints from the x-ray gas mass fraction in relaxed lensing clusters observed with Chandra, S.W. Allen, R.W. Schmidt, A.C. Fabian, Mon.Not.Roy.Astron.Soc. 334 (2002) L11, arXiv:astro-ph/0205007.
[Allen:2002sr]
[13-2899]
Bulk QCD Thermodynamics and Sterile Neutrino Dark Matter, Kevork N. Abazajian, George M. Fuller, Phys. Rev. D66 (2002) 023526, arXiv:astro-ph/0204293.
[Abazajian:2002yz]
[13-2900]
A new limit on the total neutrino mass from the 2dF Galaxy Redshift Survey, O. Elgaroy et al. (2dF team), Phys. Rev. Lett. 89 (2002) 061301, arXiv:astro-ph/0204152. See also Nature News.
From the abstract: we find $f_\nu < 0.13$ (at 95% confidence) for a prior of $0.1< \Omega_m <0.5$, and assuming the scalar spectral index $n=1$. This translates to an upper limit on the total neutrino mass and $m_{\nu,\mathrm{tot}} < 1.8 \, \mathrm{eV}$ for 'concordance' values of $\Omega_m$ and the Hubble constant. The corresponding results for $n=1.1$ are $f_\nu < 0.16$, $m_{\nu,\mathrm{tot}}< 2.2 \, \mathrm{eV}$.
[Elgaroy:2002bi]
[13-2901]
Big bang nucleosynthesis, matter-antimatter regions, extra relativistic species, and relic gravitational waves, Massimo Giovannini, Hannu Kurki-Suonio, Elina Sihvola, Phys. Rev. D66 (2002) 043504, arXiv:astro-ph/0203430.
[Giovannini:2002qw]
[13-2902]
Relic neutrino masses and the highest energy cosmic rays, Z. Fodor, S. D. Katz, A. Ringwald, JHEP 06 (2002) 046, arXiv:hep-ph/0203198.
[Fodor:2002hy]
[13-2903]
Neutrinoless double beta decay can constrain neutrino dark matter, V. Barger, S.L. Glashow, D. Marfatia, K. Whisnant, Phys.Lett. B532 (2002) 15-18, arXiv:hep-ph/0201262.
[Barger:2002xm]
[13-2904]
The 2dF Galaxy Redshift Survey: The bias of galaxies and the density of the Universe, Licia Verde et al., Mon. Not. Roy. Astron. Soc. 335 (2002) 432, arXiv:astro-ph/0112161.
[Verde:2001sf]
[13-2905]
Mass reconstruction with cmb polarization, Wayne Hu, Takemi Okamoto, Astrophys.J. 574 (2002) 566-574, arXiv:astro-ph/0111606.
[Hu:2001kj]
[13-2906]
New Globular Cluster Age Estimates and Constraints on the Cosmic Equation of State and The Matter Density of the Universe, Lawrence M. Krauss, Brian Chaboyer, arXiv:astro-ph/0111597, 2001.
[Krauss:2001ip]
[13-2907]
The power spectrum of galaxies in the 2dF 100k redshift survey, Yongzhong Xu Max Tegmark, Andrew J. S. Hamilton, Mon. Not. Roy. Astron. Soc. 335 (2002) 887, arXiv:astro-ph/0111575.
[Tegmark:2001jh]
[13-2908]
A precision calculation of the effective number of cosmological neutrinos, G. Mangano, G. Miele, S. Pastor, M. Peloso, Phys. Lett. B534 (2002) 8-16, arXiv:astro-ph/0111408.
[Mangano:2001iu]
[13-2909]
Matter power spectrum from the Lyman-alpha forest: myth or reality?, N. Y. Gnedin, A. J. S. Hamilton, Mon. Not. Roy. Astron. Soc. 334 (2002) 107-116, arXiv:astro-ph/0111194.
[Gnedin:2001wg]
[13-2910]
The Impact of an extra background of relativistic particles on the cosmological parameters derived from microwave background anisotropies, Rebecca Bowen, Steen H. Hansen, Alessandro Melchiorri, Joseph Silk, Roberto Trotta, Mon.Not.Roy.Astron.Soc. 334 (2002) 760, arXiv:astro-ph/0110636.
[Bowen:2001in]
[13-2911]
Big bang nucleosynthesis constraints on bulk neutrinos, H. S. Goh, R. N. Mohapatra, Phys. Rev. D65 (2002) 085018, arXiv:hep-ph/0110161.
[Goh:2001uc]
[13-2912]
Overproduction of primordial helium-4 in the presence of neutrino oscillations, D. P. Kirilova, Astropart. Phys. 19 (2003) 409-417, arXiv:astro-ph/0109105.
[Kirilova:2001ab]
[13-2913]
Update on neutrino mixing in the early universe, P. Di Bari, Phys. Rev. D65 (2002) 043509, arXiv:hep-ph/0108182.
[DiBari:2001ua]
[13-2914]
Blocking active-sterile neutrino oscillations in the early universe with a Majoron field, Luis Bento, Zurab Berezhiani, Phys. Rev. D64 (2001) 115015, arXiv:hep-ph/0108064.
[Bento:2001xi]
[13-2915]
Do SNe Ia Provide Direct Evidence for Past Deceleration of the Universe?, Michael S. Turner, Adam G. Riess, Astrophys. J. 569 (2002) 18, arXiv:astro-ph/0106051.
[Turner:2001mx]
[13-2916]
Primordial Nucleosynthesis with CMB Inputs: Probing the Early Universe and Light Element Astrophysics, Richard H. Cyburt, Brian D. Fields, Keith A. Olive, Astropart. Phys. 17 (2002) 87-100, arXiv:astro-ph/0105397.
[Cyburt:2001pq]
[13-2917]
Constraining neutrino physics with BBN and CMBR, S. H. Hansen, G. Mangano, A. Melchiorri, G. Miele, O. Pisanti, Phys. Rev. D65 (2002) 023511, arXiv:astro-ph/0105385.
From the abstract: ... we find, at $2\sigma$, $N_\nu \leq 7$ and $-0.01 \leq \xi_e \leq 0.22$, $|\xi_{\mu,\tau}|\leq 2.6$.
[Hansen:2001hi]
[13-2918]
On the estimation of the current value of the cosmological constant, V. G. Gurzadyan, She-Sheng Xue, Mod. Phys. Lett. A18 (2005) 561-568, arXiv:astro-ph/0105245.
[Gurzadyan:2005tg]
[13-2919]
New CMBR data and the cosmic neutrino background, Steen Hannestad, Phys. Rev. D64 (2001) 083002, arXiv:astro-ph/0105220.
From the abstract: Analyzing only CMBR data yields an upper bound of $N_\nu < 17$ (95% confidence).... the addition of LSS data gives a non-trivial lower bound of $N_\nu > 1.5/2.5$ (95% confidence).
[Hannestad:2001hn]
[13-2920]
Angular trispectrum of the cosmic microwave background, Wayne Hu, Phys. Rev. D64 (2001) 083005, arXiv:astro-ph/0105117.
[Hu:2001fa]
[13-2921]
Is cosmology consistent?, Xiao-min Wang, Max Tegmark, Matias Zaldarriaga, Phys. Rev. D65 (2002) 123001, arXiv:astro-ph/0105091.
[Wang:2001gy]
[13-2922]
Accelerated universe from gravity leaking to extra dimensions, Cedric Deffayet, G. R. Dvali, Gregory Gabadadze, Phys. Rev. D65 (2002) 044023, arXiv:astro-ph/0105068.
[Deffayet:2001pu]
[13-2923]
II. Bayesian methods for cosmological parameter estimation from cosmic microwave background measurements, Nelson Christensen, Renate Meyer, Lloyd Knox, Ben Luey, Class.Quant.Grav. 18 (2001) 2677, arXiv:astro-ph/0103134.
[Christensen:2001gj]
[13-2924]
Measuring the metric: A parametrized post-Friedmanian approach to the cosmic dark energy problem, Max Tegmark, Phys. Rev. D66 (2002) 103507, arXiv:astro-ph/0101354.
[Tegmark:2001zc]
[13-2925]
Massive sterile neutrinos as warm dark matter, A. D. Dolgov, S. H. Hansen, Astropart. Phys. 16 (2001) 339-344, arXiv:hep-ph/0009083.
[Dolgov:2001nz]
[13-2926]
Non equilibrium spectra of degenerate relic neutrinos, S. Esposito, G. Miele, S. Pastor, M. Peloso, O. Pisanti, Nucl. Phys. B590 (2000) 539-561, arXiv:astro-ph/0005573.
[Esposito:2000hi]
[13-2927]
The standard and degenerate primordial nucleosynthesis versus recent experimental data, S. Esposito, G. Mangano, G. Miele, O. Pisanti, JHEP 09 (2000) 038, arXiv:astro-ph/0005571.
[Esposito:2000hh]
[13-2928]
Lyman-alpha Forest Constraints on the Mass of Warm Dark Matter and the Shape of the Linear Power Spectrum, Vijay K. Narayanan, David N. Spergel, Romeel Dave, Chung-Pei Ma, Astrophys.J. 543 (2000) L103-L106, arXiv:astro-ph/0005095.
[Narayanan:2000tp]
[13-2929]
New constraints on neutrino physics from Boomerang data, Steen Hannestad, Phys. Rev. Lett. 85 (2000) 4203-4206, arXiv:astro-ph/0005018.
[Hannestad:2000hc]
[13-2930]
CMBFAST for spatially closed universes, Matias Zaldarriaga, Uros Seljak, Astrophys. J. Suppl. 129 (2000) 431-434, arXiv:astro-ph/9911219.
[Zaldarriaga:1999ep]
[13-2931]
Amplification of isocurvature perturbations induced by active-sterile neutrino oscillations, P. Di Bari, Phys. Lett. B482 (2000) 150-160, arXiv:hep-ph/9911214.
[DiBari:1999fz]
[13-2932]
Efficient computation of CMB anisotropies in closed FRW models, Antony Lewis, Anthony Challinor, Anthony Lasenby, Astrophys.J. 538 (2000) 473-476, arXiv:astro-ph/9911177.
[Lewis:1999bs]
[13-2933]
Cosmological nucleosynthesis and active-sterile neutrino oscillations with small mass differences: The resonant case, D. P. Kirilova, M. V. Chizhov, Nucl. Phys. B591 (2000) 457-468, arXiv:hep-ph/9909408.
[Kirilova:1999xj]
[13-2934]
The small observed baryon asymmetry from a large lepton asymmetry, John March-Russell, Hitoshi Murayama, Antonio Riotto, JHEP 11 (1999) 015, arXiv:hep-ph/9908396.
[March-Russell:1999hpw]
[13-2935]
Infinitely large new dimensions, Nima Arkani-Hamed, Savas Dimopoulos, G. R. Dvali, Nemanja Kaloper, Phys. Rev. Lett. 84 (2000) 586-589, arXiv:hep-th/9907209.
[Arkani-Hamed:1999wga]
[13-2936]
Neutrino-mixing-generated lepton asymmetry and the primordial He-4 abundance, X. Shi, G. M. Fuller, K. Abazajian, Phys. Rev. D60 (1999) 063002, arXiv:astro-ph/9905259.
[Shi:1999kg]
[13-2937]
Majorana neutrino masses from neutrinoless double beta decay and cosmology, Vernon D. Barger, K. Whisnant, Phys.Lett. B456 (1999) 194-200, arXiv:hep-ph/9904281.
[Barger:1999na]
[13-2938]
Probing large extra dimensions with neutrinos, G. R. Dvali, Alexei Yu. Smirnov, Nucl. Phys. B563 (1999) 63-81, arXiv:hep-ph/9904211.
[Dvali:1999cn]
[13-2939]
The big bang nucleosynthesis limit on $N_{\nu}$, E. Lisi, Subir Sarkar, F. L. Villante, Phys. Rev. D59 (1999) 123520, arXiv:hep-ph/9901404.
[Lisi:1999ng]
[13-2940]
Neutrino masses from large extra dimensions, Nima Arkani-Hamed, Savas Dimopoulos, G. R. Dvali, John March-Russell, Phys. Rev. D65 (2002) 024032, arXiv:hep-ph/9811448.
[Arkani-Hamed:1998wuz]
[13-2941]
Phenomenology, astrophysics and cosmology of theories with sub-millimeter dimensions and TeV scale quantum gravity, Nima Arkani-Hamed, Savas Dimopoulos, G. R. Dvali, Phys. Rev. D59 (1999) 086004, arXiv:hep-ph/9807344.
[Arkani-Hamed:1998sfv]
[13-2942]
An accurate calculation of the big-bang prediction for the abundance of primordial helium, Robert E. Lopez, Michael S. Turner, Phys. Rev. D59 (1999) 103502, arXiv:astro-ph/9807279.
[Lopez:1998vk]
[13-2943]
Cosmic Confusion: Degeneracies among Cosmological Parameters Derived from Measurements of Microwave Background Anisotropies, G. Efstathiou, J. R. Bond, Mon. Not. Roy. Astron. Soc. 304 (1999) 75-97, arXiv:astro-ph/9807103.
[Efstathiou:1998xx]
[13-2944]
Observationally Determining the Properties of Dark Matter, Wayne Hu, Daniel J. Eisenstein, Max Tegmark, Martin J. White, Phys. Rev. D59 (1999) 023512, arXiv:astro-ph/9806362.
[Hu:1998tk]
[13-2945]
Nonequilibrium corrections to the spectra of massless neutrinos in the early universe. (Addendum), A. D. Dolgov, S. H. Hansen, D. V. Semikoz, Nucl. Phys. B543 (1999) 269-274, arXiv:hep-ph/9805467.
[Dolgov:1998sf]
[13-2946]
Relic neutrino asymmetries and big bang nucleosynthesis in a four neutrino model, N. F. Bell, R. Foot, R. R. Volkas, Phys. Rev. D58 (1998) 105010, arXiv:hep-ph/9805259.
[Bell:1998sr]
[13-2947]
Imprint of sterile neutrinos in the cosmic microwave background radiation, Steen Hannestad, Georg Raffelt, Phys. Rev. D59 (1999) 043001, arXiv:astro-ph/9805223.
[Hannestad:1998zg]
[13-2948]
Four-neutrino mixing and big-bang nucleosynthesis, Samoil M. Bilenky, C. Giunti, W. Grimus, T. Schwetz, Astropart. Phys. 11 (1999) 413-428, arXiv:hep-ph/9804421.
[Bilenky:1998ne]
[13-2949]
New dimensions at a millimeter to a Fermi and superstrings at a TeV, Ignatios Antoniadis, Nima Arkani-Hamed, Savas Dimopoulos, G. R. Dvali, Phys. Lett. B436 (1998) 257-263, arXiv:hep-ph/9804398.
[Antoniadis:1998ig]
[13-2950]
The hierarchy problem and new dimensions at a millimeter, Nima Arkani-Hamed, Savas Dimopoulos, G. R. Dvali, Phys. Lett. B429 (1998) 263-272, arXiv:hep-ph/9803315.
[Arkani-Hamed:1998jmv]
[13-2951]
On the Evolution of Helium in Blue Compact Galaxies, Brian D. Fields, Keith A. Olive, Astrophys. J. 506 (1998) 177, arXiv:astro-ph/9803297.
[Fields:1998gv]
[13-2952]
Quantifying uncertainties in primordial nucleosynthesis without Monte Carlo simulations, G. Fiorentini, E. Lisi, Subir Sarkar, F. L. Villante, Phys. Rev. D58 (1998) 063506, arXiv:astro-ph/9803177.
[Fiorentini:1998fv]
[13-2953]
Gravitational lensing effect on cosmic microwave background polarization, Matias Zaldarriaga, Uros Seljak, Phys. Rev. D58 (1998) 023003, arXiv:astro-ph/9803150.
[Zaldarriaga:1998ar]
[13-2954]
Precision detection of the cosmic neutrino background, Robert E. Lopez, Scott Dodelson, Andrew Heckler, Michael S. Turner, Phys. Rev. Lett. 82 (1999) 3952-3955, arXiv:astro-ph/9803095.
[Lopez:1998aq]
[13-2955]
Structure Formation with Generalized Dark Matter, Wayne Hu, Astrophys. J. 506 (1998) 485-494, arXiv:astro-ph/9801234.
[Hu:1998kj]
[13-2956]
Markov chain Monte Carlo methods for Bayesian gravitational radiation data analysis, Nelson Christensen, Renate Meyer, Phys. Rev. D58 (1998) 082001.
[Christensen:1998gf]
[13-2957]
Weighing neutrinos with galaxy surveys, Wayne Hu, Daniel J. Eisenstein, Max Tegmark, Phys. Rev. Lett. 80 (1998) 5255-5258, arXiv:astro-ph/9712057.
[Hu:1997mj]
[13-2958]
The Cosmic Baryon Budget, M. Fukugita, C. J. Hogan, P. J. E. Peebles, Astrophys. J. 503 (1998) 518, arXiv:astro-ph/9712020.
[Fukugita:1997bi]
[13-2959]
Power Spectra for Cold Dark Matter and its Variants, Daniel J. Eisenstein, Wayne Hu, Astrophys. J. 511 (1997) 5, arXiv:astro-ph/9710252.
[Eisenstein:1997jh]
[13-2960]
Small scale perturbations in a general MDM cosmology, Wayne Hu, Daniel J. Eisenstein, Astrophys. J. 498 (1998) 497, arXiv:astro-ph/9710216.
[Hu:1997vi]
[13-2961]
Cosmological Imprint of an Energy Component with General Equation-of-State, R. R. Caldwell, Rahul Dave, Paul J. Steinhardt, Phys. Rev. Lett. 80 (1998) 1582-1585, arXiv:astro-ph/9708069.
[Caldwell:1997ii]
[13-2962]
Recovery of the Power Spectrum of Mass Fluctuations from Observations of the Lyman-alpha Forest, Rupert A. C. Croft, David H. Weinberg, Neal Katz, Lars Hernquist, Astron. J. 495 (1998) 44, arXiv:astro-ph/9708018.
[Croft:1997jf]
[13-2963]
Cosmological nucleosynthesis and active-sterile neutrino oscillations with small mass differences: The nonresonant case, D. P. Kirilova, M. V. Chizhov, Phys. Rev. D58 (1998) 073004, arXiv:hep-ph/9707282.
[Kirilova:1998jx]
[13-2964]
Integral Solution for the Microwave Background Anisotropies in Non-flat Universes, Matias Zaldarriaga, Uros Seljak, Edmund Bertschinger, Astrophys. J. 494 (1998) 491-502, arXiv:astro-ph/9704265.
[Zaldarriaga:1997va]
[13-2965]
Nonequilibrium corrections to the spectra of massless neutrinos in the early universe, A.D. Dolgov, S.H. Hansen, D.V. Semikoz, Nucl. Phys. B503 (1997) 426-444, arXiv:hep-ph/9703315.
[Dolgov:1997mb]
[13-2966]
Deuteronomy and Numbers, David N. Schramm, Michael S. Turner, Nature 381 (1996) 193, arXiv:astro-ph/9703160.
[Schramm:1996zog]
[13-2967]
Big bang nucleosynthesis and lepton number asymmetry in the universe, K. Kohri, M. Kawasaki, Katsuhiko Sato, Astrophys. J. 490 (1997) 72-75, arXiv:astro-ph/9612237.
[Kohri:1996ke]
[13-2968]
Statistics of cosmic microwave background polarization, Marc Kamionkowski, Arthur Kosowsky, Albert Stebbins, Phys. Rev. D55 (1997) 7368-7388, arXiv:astro-ph/9611125.
[Kamionkowski:1996ks]
[13-2969]
Weak lensing detection in CMB maps, F. Bernardeau, Astron.Astrophys. 324 (1997) 15-26, arXiv:astro-ph/9611012.
[Bernardeau:1996aa]
[13-2970]
Studies of neutrino asymmetries generated by ordinary sterile neutrino oscillations in the early universe and implications for big bang nucleosynthesis bounds, R. Foot, R. R. Volkas, Phys. Rev. D55 (1997) 5147-5176, arXiv:hep-ph/9610229.
[Foot:1996qc]
[13-2971]
An all sky analysis of polarization in the microwave background, Matias Zaldarriaga, Uros Seljak, Phys. Rev. D55 (1997) 1830-1840, arXiv:astro-ph/9609170.
[Zaldarriaga:1996xe]
[13-2972]
Signature of gravity waves in polarization of the microwave background, Uros Seljak, Matias Zaldarriaga, Phys. Rev. Lett. 78 (1997) 2054-2057, arXiv:astro-ph/9609169.
[Seljak:1996gy]
[13-2973]
Nucleosynthesis and the mass of the tau-neutrino, Steen Hannestad, Jes Madsen, Phys. Rev. Lett. 76 (1996) 2848-2851, arXiv:hep-ph/9606452. [Erratum: Phys. Rev. Lett. 77, 5148 (1996)].
[Hannestad:1996xk]
[13-2974]
A sterile neutrino scenario constrained by experiments and cosmology, Nobuchika Okada, Osamu Yasuda, Int. J. Mod. Phys. A12 (1997) 3669-3694, arXiv:hep-ph/9606411.
[Okada:1996kw]
[13-2975]
The big-bang nucleosynthesis limit to the number of neutrino species, Craig J. Copi, David N. Schramm, Michael S. Turner, Phys. Rev. D55 (1997) 3389-3393, arXiv:astro-ph/9606059.
[Copi:1996pi]
[13-2976]
Metal Enrichment and Ionization Balance in the Lyman $\alpha$ Forest at $z = 3$, Antoinette Songaila, Lennox L. Cowie, Astron. J. 112 (1996) 335-351, arXiv:astro-ph/9605102.
[Songaila:1996ps]
[13-2977]
A Precise distance indicator: Type Ia supernova multicolor light curve shapes, Adam G. Riess, William H. Press, Robert P. Kirshner, Astrophys. J. 473 (1996) 88, arXiv:astro-ph/9604143.
[Riess:1996pa]
[13-2978]
Limits on Active-Sterile Neutrino Mixing and the Primordial Deuterium Abundance, Christian Y. Cardall, George M. Fuller, Phys. Rev. D54 (1996) 1260-1263, arXiv:astro-ph/9603105.
[Cardall:1996ka]
[13-2979]
A Line of Sight Approach to Cosmic Microwave Background Anisotropies, Uros Seljak, Matias Zaldarriaga, Astrophys. J. 469 (1996) 437-444, arXiv:astro-ph/9603033.
[Seljak:1996is]
[13-2980]
Nucleosynthesis and the mass of tau-neutrino revisited, Steen Hannestad, Jes Madsen, Phys. Rev. D54 (1996) 7894-7897.
[Hannestad:1996ui]
[13-2981]
Reconciling sterile neutrinos with big bang nucleosynthesis, Robert Foot, R. R. Volkas, Phys. Rev. Lett. 75 (1995) 4350, arXiv:hep-ph/9508275.
[Foot:1995bm]
[13-2982]
Gravitational lensing effect on cosmic microwave background anisotropies: A Power spectrum approach, Uros Seljak, Astrophys.J. 463 (1996) 1, arXiv:astro-ph/9505109.
[Seljak:1995ve]
[13-2983]
The Effect of physical assumptions on the calculation of microwave background anisotropies, Wayne Hu, Douglas Scott, Naoshi Sugiyama, Martin J. White, Phys. Rev. D52 (1995) 5498-5515, arXiv:astro-ph/9505043.
[Hu:1995fqa]
[13-2984]
Cosmic microwave background polarization, Arthur Kosowsky, Annals Phys. 246 (1996) 49-85, arXiv:astro-ph/9501045.
[Kosowsky:1994cy]
[13-2985]
Predicting big bang deuterium, N. Hata, R. J. Scherrer, G. Steigman, D. Thomas, T. P. Walker, Astrophys. J. 458 (1996) 637, arXiv:astro-ph/9412087.
[Hata:1994fa]
[13-2986]
Anisotropies in the Cosmic Microwave Background: An Analytic Approach, Wayne Hu, Naoshi Sugiyama, Astrophys. J. 444 (1995) 489-506, arXiv:astro-ph/9407093.
[Hu:1994uz]
[13-2987]
On the abundance of primordial helium, Keith A. Olive, Gary Steigman, Astrophys. J. Suppl. 97 (1995) 49-58, arXiv:astro-ph/9405022.
[Olive:1994fe]
[13-2988]
Small scale cosmic microwave background anisotropies as a probe of the geometry of the universe, Marc Kamionkowski, David N. Spergel, Naoshi Sugiyama, Astrophys. J. 426 (1994) L57, arXiv:astro-ph/9401003.
[Kamionkowski:1993aw]
[13-2989]
Reconstructing the linear power spectrum of cosmological mass fluctuations, J. A. Peacock, S. J. Dodds, Mon. Not. Roy. Astron. Soc. 267 (1994) 1020-1034, arXiv:astro-ph/9311057.
[Peacock:1993xg]
[13-2990]
Measuring cosmological parameters with cosmic microwave background experiments, J. Richard Bond, Robert Crittenden, Richard L. Davis, George Efstathiou, Paul J. Steinhardt, Phys. Rev. Lett. 72 (1994) 13-16, arXiv:astro-ph/9309041.
[Bond:1993fb]
[13-2991]
Constraints on neutrino oscillations from big bang nucleosynthesis, X. Shi, D. N. Schramm, B. D. Fields, Phys. Rev. D48 (1993) 2563-2572, arXiv:astro-ph/9307027.
[Shi:1993hm]
[13-2992]
Constraints on majoron models, neutrino masses and baryogenesis, James M. Cline, Kimmo Kainulainen, Keith A. Olive, Astropart. Phys. 1 (1993) 387-398, arXiv:hep-ph/9304229.
[Cline:1993ht]
[13-2993]
Constraints from nucleosynthesis and SN1987A on majoron emitting double beta decay, Sanghyeon Chang, Kiwoon Choi, Phys. Rev. D49 (1994) 12-15, arXiv:hep-ph/9303243.
[Chang:1993yp]
[13-2994]
Relaxing nucleosynthesis bounds on sterile-neutrinos, K. S. Babu, I. Z. Rothstein, Phys. Lett. B275 (1992) 112-118.
[Babu:1991at]
[13-2995]
Constraints on almost Dirac neutrinos from neutrino - anti- neutrino oscillations, James M. Cline, Phys. Rev. Lett. 68 (1992) 3137-3140.
[Cline:1991zb]
[13-2996]
COBE Background radiation anisotropies and large scale structure in the universe, G. Efstathiou, J. R. Bond, Simon D. M. White, Mon. Not. Roy. Astron. Soc. 258 (1992) 1-6.
[Efstathiou:1992sy]
[13-2997]
Cosmological bounds on Dirac-Majorana neutrinos, Kari Enqvist, Kimmo Kainulainen, Mark J. Thomson, Phys. Lett. B280 (1992) 245-250.
[Enqvist:1992ux]
[13-2998]
Cosmological constraints on neutrino degeneracy, Ho-Shik Kang, Gary Steigman, Nucl. Phys. B372 (1992) 494-520.
[Kang:1991xa]
[13-2999]
Interpretation of the CMB anisotropy detected by the COBE DMR, E. L. Wright et al., Astrophys. J. 396 (1992) L13-L18.
[Wright:1992tf]
[13-3000]
Neutrino oscillations in the early universe, Riccardo Barbieri, A. Dolgov, Nucl. Phys. B349 (1991) 743-753.
[Barbieri:1990vx]
[13-3001]
Cosmological and astrophysical constraints on a pseudo-Dirac tau-neutrino, Lance J. Dixon, Yosef Nir, Phys. Lett. B266 (1991) 425-430.
[Dixon:1991ss]
[13-3002]
Refraction and oscillations of neutrinos in the early Universe, K. Enqvist, K. Kainulainen, J. Maalampi, Nucl. Phys. B349 (1991) 754-790.
[Enqvist:1990ad]
[13-3003]
Limits on heavy WIMP masses and interactions, K. Enqvist, K. Kainulainen, Phys. Lett. B264 (1991) 367-372.
[Enqvist:1990yz]
[13-3004]
Primordial nucleosynthesis without a computer, Rahim Esmailzadeh, Glenn D. Starkman, Savas Dimopoulos, Astrophys. J. 378 (1991) 504-518.
[Esmailzadeh:1990hf]
[13-3005]
Constraints from primordial nucleosynthesis to the mass of the tau-neutrino, Edward W. Kolb, Michael S. Turner, A. Chakravorty, David N. Schramm, Phys. Rev. Lett. 67 (1991) 533-536.
[Kolb:1991sn]
[13-3006]
Neutrino degeneracy and cosmological nucleosynthesis, revisited, Keith A. Olive, David N. Schramm, David Thomas, Terry P. Walker, Phys. Lett. B265 (1991) 239-244.
[Olive:1991ru]
[13-3007]
Primordial nucleosynthesis redux, Terry P. Walker, Gary Steigman, David N. Schramm, Keith A. Olive, Ho-Shik Kang, Astrophys. J. 376 (1991) 51-69.
[Walker:1991ap]
[13-3008]
Bounds on sterile-neutrinos from nucleosynthesis, Riccardo Barbieri, A. Dolgov, Phys. Lett. B237 (1990) 440.
[Barbieri:1989ti]
[13-3009]
Neutrino asymmetry and oscillations in the early universe, K. Enqvist, K. Kainulainen, J. Maalampi, Phys. Lett. B244 (1990) 186-190.
[Enqvist:1990dq]
[13-3010]
Resonant neutrino transitions and nucleosynthesis, K. Enqvist, K. Kainulainen, J. Maalampi, Phys. Lett. B249 (1990) 531-534.
[Enqvist:1990ek]
[13-3011]
Unitarity limits on the mass and radius of dark matter particles, Kim Griest, Marc Kamionkowski, Phys. Rev. Lett. 64 (1990) 615.
[Griest:1989wd]
[13-3012]
Light singlet neutrinos and the primordial nucleosynthesis, Kimmo Kainulainen, Phys. Lett. B244 (1990) 191-195.
[Kainulainen:1990ds]
[13-3013]
Cosmological Helium production simplified, Jeremy Bernstein, Lowell S. Brown, G. Feinberg, Rev. Mod. Phys. 61 (1989) 25.
[Bernstein:1988ad]
[13-3014]
Cosmic abundances of very heavy neutrinos, K. Enqvist, K. Kainulainen, J. Maalampi, Nucl. Phys. B317 (1989) 647-664.
[Enqvist:1988we]
[13-3015]
Calculations of relic densities in the early universe, Mark Srednicki, Richard Watkins, Keith A. Olive, Nucl. Phys. B310 (1988) 693.
[Srednicki:1988ce]
[13-3016]
Lepton and baryon number asymmetry of the universe and primordial nucleosynthesis, Nobuo Terasawa, Katsuhiko Sato, Prog. Theor. Phys. 80 (1988) 468.
[Terasawa:1987nc]
[13-3017]
Radiative Decay of Neutrino and Primordial Nucleosynthesis, N. Terasawa, M. Kawasaki, K. Sato, Nucl. Phys. B302 (1988) 697-738.
[Terasawa:1988my]
[13-3018]
The statistics of cosmic background radiation fluctuations, J. R. Bond, G. Efstathiou, Mon. Not. Roy. Astron. Soc. 226 (1987) 655-687.
[Bond:1987ub]
[13-3019]
Bound on the neutrino charge radius from primordial nucleosynthesis, J.A. Grifols, E. Masso, Mod.Phys.Lett. A2 (1987) 205.
[Grifols:1986ed]
[13-3020]
The Lee-Weinberg bound revisited, Edward W. Kolb, Keith A. Olive, Phys. Rev. D33 (1986) 1202. Erratum: Phys. Rev. D34 (1986) 2531.
[Kolb:1985nn]
[13-3021]
Determining the Hubble Constant from Gravitational Wave Observations, Bernard F. Schutz, Nature 323 (1986) 310-311.
[Schutz:1986gp]
[13-3022]
Big Bang Photosynthesis and Pregalactic Nucleon Synthesis of Light Elements, J. Audouze, D. Lindley, J. Silk, Astrophys.J. 293 (1985) L53-L57.
[Audouze:1985be]
[13-3023]
A Difficulty With Evasion of a Cosmological Limit on Massive Neutrinos, Michael Gronau, Ram Yahalom, Phys. Rev. D30 (1984) 2422.
[Gronau:1984rs]
[13-3024]
Tests of cosmological models constrained by inflation, P. J. E. Peebles, Astrophys. J. 284 (1984) 439-444.
[Peebles:1984ge]
[13-3025]
Constraints on baryon and lepton number asymmetries of the early universe from primordial nucleosynthesis, N. Terasawa, K. Sato, Prog. Theor. Phys. 72 (1984) 1262-1265.
[Terasawa:1984rbe]
[13-3026]
The collisionless damping of density fluctuations in an expanding universe, J. R. Bond, A. S. Szalay, Astrophys. J. 274 (1983) 443-468.
[Bond:1983hb]
[13-3027]
Constraint on the photino mass from cosmology, H. Goldberg, Phys. Rev. Lett. 50 (1983) 1419.
[Goldberg:1983nd]
[13-3028]
New constraints on 'ino' masses from cosmology. 2. neutrinos, Lawrence M. Krauss, Phys. Lett. B128 (1983) 37.
[Krauss:1983iu]
[13-3029]
Primordial nucleosynthesis including radiative, coulomb, and finite temperature corrections to weak rates, Duane A. Dicus et al., Phys. Rev. D26 (1982) 2694.
[Dicus:1982bz]
[13-3030]
Anisotropy of the microwave background due to the mass distribution in an open cosmological model, P. J. E. Peebles, Astrophys. J. 259 (1982) 442-448.
[Peebles-APJ259-442-1982]
[13-3031]
Cosmological constraints on the scale of supersymmetry breaking, Steven Weinberg, Phys. Rev. Lett. 48 (1982) 1303.
[Weinberg:1982zq]
[13-3032]
Neutrinos in the early universe, A. D. Dolgov, Sov. J. Nucl. Phys. 33 (1981) 700-706.
[Dolgov:1980cq]
[13-3033]
Magnetic moment of massive neutrinos and the cosmic helium abundances, B. W. Lynn, Phys. Rev. D23 (1981) 2151.
[Lynn:1980gh]
[13-3034]
Cosmological upper limit to neutrino magnetic moments, J. A. Morgan, Phys. Lett. B102 (1981) 247-250.
[Morgan:1981zy]
[13-3035]
Massive Neutrinos, Helium Production and the Primordial Magnetic Field, S.L. Shapiro, I. Wasserman, Nature 289 (1981) 657.
[Shapiro-Wasserman-1981]
[13-3036]
Massive neutrinos and the large-scale structure of the universe, J. R. Bond, G. Efstathiou, J. Silk, Phys. Rev. Lett. 45 (1980) 1980-1984.
[Bond:1980ha]
[13-3037]
Have massive cosmological neutrinos already been detected?, F.W. Stecker, Phys. Rev. Lett. 45 (1980) 1460.
[Stecker:1980bu]
[13-3038]
A cosmological upper limit on the mass of heavy neutrinos, P. Hut, Keith A. Olive, Phys. Lett. B87 (1979) 144-146.
[Hut:1979xw]
[13-3039]
Dynamical role of light neutral leptons in cosmology, S. Tremaine, J. E. Gunn, Phys. Rev. Lett. 42 (1979) 407-410.
[Tremaine:1979we]
[13-3040]
Limits from primordial nucleosynthesis on the properties of massive neutral leptons, D. A. Dicus, E. W. Kolb, V. L. Teplitz, R. V. Wagoner, Phys. Rev. D17 (1978) 1529-1538.
[Dicus:1977av]
[13-3041]
Cosmological implications of massive, unstable neutrinos: (new and improved), Duane A. Dicus, Edward W. Kolb, Vigdor L. Teplitz, Astrophys. J. 221 (1978) 327-341.
[Dicus:1977qy]
[13-3042]
Cosmological Constraints on the Lifetime and the Mass of the Heavy Lepton Neutrino: Constraints From the Big Bang Nucleosynthesis, Shoken Miyama, Katsuhiko Sato, Prog.Theor.Phys. 60 (1978) 1703.
[Miyama:1978mn]
[13-3043]
More on big-bang nucleosynthesis with nonzero lepton numbers, G. Beaudet, A. Yahil, Astrophys. J. 218 (1977) 253-262.
[Beaudet-Yahil-APJ218-253-1977]
[13-3044]
Cosmological upper bound on heavy neutrino lifetimes, Duane A. Dicus, Edward W. Kolb, Vigdor L. Teplitz, Phys. Rev. Lett. 39 (1977) 168.
[Dicus:1977nn]
[13-3045]
Limits on masses and number of neutral weakly interacting particles, P. Hut, Phys. Lett. B69 (1977) 85.
[Hut:1977zn]
[13-3046]
Cosmological lower bound on heavy-neutrino masses, Benjamin W. Lee, Steven Weinberg, Phys. Rev. Lett. 39 (1977) 165-168.
[Lee:1977ua]
[13-3047]
Cosmological constraints on the mass and the number of heavy lepton neutrinos, Katsuhiko Sato, Makoto Kobayashi, Prog. Theor. Phys. 58 (1977) 1775.
[Sato:1977ye]
[13-3048]
Cosmological limits to the number of massive leptons, G. Steigman, D. N. Schramm, J. E. Gunn, Phys. Lett. B66 (1977) 202-204.
[Steigman:1977kc]
[13-3049]
Cosmological limits on the masses of neutral leptons, M. I. Vysotsky, A. D. Dolgov, Ya. B. Zeldovich, JETP Lett. 26 (1977) 188-190.
[Vysotsky:1977pe]
[13-3050]
Leptonic numbers and the neutron to proton ratio in the hot big bang model, G. Beaudet, P. Goret, Astron. Astrophys. 49 (1976) 415-419.
[Beaudet-Goret-AA49-415-1976]
[13-3051]
The origin of deuterium, R. I. Epstein, J. M. Lattimer, D. N. Schramm, Nature 263 (1976) 198-202.
[Epstein-Lattimer-Schramm-Nat263-198-1976]
[13-3052]
The Origin of deuterium, R. I. Epstein, J. M. Lattimer, D. N. Schramm, Nature 263 (1976) 198-202.
[Epstein:1976hq]
[13-3053]
Big-Bang Nucleosynthesis with nonzero lepton numbers, A. Yahil, G. Beaudet, Astrophys. J. 206 (1976) 26-29.
[Yahil:1976va]
[13-3054]
On the Origin of Light Elements, H. Reeves, J. Audouze, W. A. Fowler, D. N. Schramm, Astrophys. J. 179 (1973) 909-930.
[Reeves-Audouze-Fowler-Schramm-APJ179-179-1973]
[13-3055]
An upper limit on the neutrino rest mass, R. Cowsik, J. McClelland, Phys. Rev. Lett. 29 (1972) 669-670.
[Cowsik:1972gh]
[13-3056]
Densities of baryons and neutrinos in the universe from an analysis of big-bang nucleosynthesis, H. Reeves, Phys. Rev. D6 (1972) 3363-3368.
[Reeves:1972mrn]
[13-3057]
Primeval adiabatic perturbation in an expanding universe, P. J. E. Peebles, J. T. Yu, Astrophys. J. 162 (1970) 815-836.
[Peebles:1970ag]
[13-3058]
Primordial Helium Production in 'Magnetic' Cosmologies, G. Greenstein, Nature 223 (1969) 938-939.
[Greenstein:1969xx]
[13-3059]
On the Synthesis of elements at very high temperatures, Robert V. Wagoner, William A. Fowler, Fred Hoyle, Astrophys. J. 148 (1967) 3-49.
[Wagoner:1966pv]
[13-3060]
Rest mass of muonic neutrino and cosmology, S. S. Gershtein, Ya. B. Zeldovich, JETP Lett. 4 (1966) 120-122. [Pisma Zh. Eksp. Teor. Fiz. 4 (1966) 174].
[Gershtein:1966gg]
[13-3061]
Primordial Helium Abundance and the Primordial Fireball. II, P. J. E. Peebles, Astrophys. J. 146 (1966) 542.
[Peebles-APJ146-542-1966]
[13-3062]
Primeval Helium Abundance and the Primeval Fireball, P. J. E. Peebles, Phys. Rev. Lett. 16 (1966) 410-413.
[Peebles-PRL:1966]
[13-3063]
Cosmic Black-Body Radiation, R. H. Dicke, P. J. E. Peebles, P. G. Roll, D. T. Wilkinson, Astrophys. J. 142 (1965) 414-419.
[Dicke:1965]
[13-3064]
Physical Conditions in the Initial Stages of the Expanding Universe, Ralph A. Alpher, J. W. Follin, Robert C. Herman, Phys. Rev. 92 (1953) 1347-1361.
[Alpher-Follin-Herman-PR92-1347-1953]
[13-3065]
Neutron-Capture Theory of Element Formation in an Expanding Universe, Ralph A. Alpher, Robert C. Herman, Phys. Rev. 84 (1951) 60-68.
[Alpher-Herman-PR84-60-1951]
[13-3066]
Remarks on the Evolution of the Expanding Universe, Ralph A. Alpher, Robert C. Herman, Phys. Rev. 75 (1949) 1089-1095.
[Alpher-Herman-PR75-1089-1949]
[13-3067]
The Origin of Chemical Elements, R. A. Alpher, H. Bethe, G. Gamow, Phys. Rev. 73 (1948) 803-804.
[Alpher-Bethe-Gamow-PR73-803-1948]
[13-3068]
Thermonuclear Reactions in the Expanding Universe, R. A. Alpher, R. Herman, G. A. Gamow, Phys. Rev. 74 (1948) 1198-1199. Erratum: Phys. Rev. 75 (1949) 701.
[Alpher-Herman-Gamow-PR74-1198-1948]
[13-3069]
On the Relative Abundance of the Elements, Ralph A. Alpher, Robert C. Herman, Phys. Rev. 74 (1948) 1737-1742.
[Alpher-Herman-PR74-1737-1948]
[13-3070]
A Neutron-Capture Theory of the Formation and Relative Abundance of the Elements, Ralph A. Alpher, Phys. Rev. 74 (1948) 1577-1589.
[Alpher-PR74-1577-1948]
[13-3071]
Expanding Universe and the Origin of Elements, G. Gamow, Phys. Rev. 70 (1946) 572-573.
[Gamow-PR70-572-1946]

14 - Phenomenology - Talks

[14-1]
The Atacama Cosmology Telescope: The Persistence of Neutrino Self-Interaction in Cosmological Measurements, Christina D. Kreisch et al., Phys.Rev.D 109 (2024) 043501, arXiv:2207.03164.
[Kreisch:2022zxp]
[14-2]
Massive Neutrinos, Dark Sector, and Hydrodynamics: The Sejong Suite, Graziano Rossi, arXiv:2204.05368, 2022. 2022 Cosmology session of the 56th Rencontres de Moriond.
[Rossi:2022sul]
[14-3]
Cosmological constraints on heavy sterile neutrinos, L. Mastrototaro, J.Phys.Conf.Ser. 2156 (2021) 012009, arXiv:2202.11390. 17th International Conference on Topics in Astroparticle and Underground Physics.
[Mastrototaro:2021kzm]
[14-4]
Precision calculation of neutrino evolution in the early Universe, Julien Froustey, J.Phys.Conf.Ser. 2156 (2021) 012013, arXiv:2110.11296. 17th International Conference on Topics in Astroparticle and Underground Physics (TAUP2021).
[Froustey:2021qqq]
[14-5]
Self-interacting neutrinos as a solution to the Hubble tension?, Anirban Das, PoS EPS-HEP2021 (2022) 124, arXiv:2109.03263. EPS-HEP 2021.
[Das:2021guu]
[14-6]
Neutrino cooling effect of primordial hot areas in dependence on its size, K. M. Belotsky, M. M. El Kasmi, S. G. Rubin, arXiv:2011.14221, 2020. 23rd Bled Workshop 'What Comes Beyond the Standard Models'.
[Belotsky:2020jac]
[14-7]
Robust posterior inference when statistically emulating forward simulations, Grigor Aslanyan, Richard Easther, Nathan Musoke, Layne C. Price, arXiv:2004.11929, 2020. ICLR 2020.
[Aslanyan:2020oge]
[14-8]
The cosmological constant and Higgs mass with emergent gauge symmetries, Steven D. Bass, Janina Krzysiak, Acta Phys.Polon. B51 (2020) 1251, arXiv:2004.05489. XXVI Cracow Epiphany Conference on LHC Physics: Standard Model and Beyond, January 7-10 2020.
[Bass:2020nrg]
[14-9]
Could the Hubble Tension be Pointing Towards the Neutrino Mass Mechanism?, Miguel Escudero, Samuel J. Witte, arXiv:2004.01470, 2020. NuPhys2019.
[EscuderoAbenza:2020egd]
[14-10]
The $a_0$ - cosmology connection in MOND, Mordehai Milgrom, arXiv:2001.09729, 2020. BonnGravity2019 - The functioning of galaxies: challenges for Newtonian and Milgromian dynamics, Bonn, September 2019.
[Milgrom:2020cch]
[14-11]
Cosmological Solutions to the Lithium Problem, Grant J. Mathews, Atul Kedia, Nishanth Sasankan, Motohiko Kusakabe, Y. Luo, Toshitaka Kajino, Dai G. Yamazaki, T. Makki, M. El Eid, JPS Conf.Proc. 31 (2020) 011033, arXiv:1909.01245.
[Mathews:2019hbi]
[14-12]
Thermalisation of sterile neutrinos in the early Universe in the 3+1 scheme with full mixing matrix, S. Gariazzo, P. F. de Salas, S. Pastor Carpi, JCAP 1907 (2019) 014, arXiv:1905.11290.
[Gariazzo:2019gyi]
[14-13]
Probing 21cm cosmology and radiative neutrino decays, Kareem R. H. A. M. Farrag, arXiv:1904.08217, 2019. Nuphys 2018, Prospects in Neutrino Physics, December 19-21, 2018.
[Farrag:2019ovs]
[14-14]
Consequences of Modified Cosmologies in DM abundance and PeV IceCube signals, G. Lambiase, arXiv:1903.10038, 2019. NuPhys2018 (London, 19-21 December 2018).
[Lambiase:2019tuc]
[14-15]
On the tension between Large Scale Structures and Cosmic Microwave Background, Marian Douspis, Laura Salvati, Nabila Aghanim, arXiv:1901.05289, 2019. 2nd World Summit: Exploring the Dark Side of the Universe 25-29 June, 2018 University of Antilles, Pointe-a-Pitre, Guadeloupe, France.
[Douspis:2019pwi]
[14-16]
Dark radiation: 21cm signals and laboratory tests, Josef Pradler, PoS NOW2018 (2018) 085, arXiv:1812.09122. NOW2018, 9-16 September 2018, Rosa Marina (Ostuni, Brindisi, Italy).
[Pradler:2018tic]
[14-17]
Neutrino Properties and the Cosmological Tensions in the $\Lambda$CDM Model, Stefano Gariazzo, arXiv:1812.00638, 2018. 15th Marcel Grossmann Meeting.
[Gariazzo:2018zho]
[14-18]
Neutrino mass eigenstates and their ordering: a Bayesian approach, S. Gariazzo, Nuovo Cim.C 42 (2019) 176, arXiv:1806.11344. Incontri di Fisica delle Alte Energie (IFAE) 2018.
[Gariazzo:2018tft]
[14-19]
Cosmological cluster tension, A. Blanchard, Z. Sakr, S. IliC, arXiv:1805.06976, 2018. 53rd Rencontres de Moriond: Cosmology (2018).
[Blanchard:2018klb]
[14-20]
Collective Neutrino Oscillations and Nucleosynthesis, A.B. Balantekin, AIP Conf.Proc. 1947 (2018) 020012, arXiv:1710.04108. OMEG17.
[Balantekin:2017bau]
[14-21]
Measuring Reionization, Neutrino Mass, and Cosmic Inflation with BFORE, Sean Bryan et al., J.Low.Temp.Phys. 193 (2018) 1033-1040, arXiv:1707.01488. Low Temperature Detectors 17.
[BFORE:2017taq]
[14-22]
Testing the sterile neutrino dark matter paradigm with astrophysical observations, Aurel Schneider, PoS NOW2016 (2017) 093, arXiv:1704.01832. NOW 2016.
[Schneider:2017qdf]
[14-23]
Light sterile neutrinos and pseudoscalar interactions in cosmology, Stefano Gariazzo, PoS NOW2016 (2017) 083, arXiv:1610.01330. Neutrino Oscillation Workshop (NOW) 2016.
[Gariazzo:2016lsd]
[14-24]
Beasts in Lambda-CDM Zoo, A.D. Dolgov, Phys.Atom.Nucl. 80 (2017) 987-994, arXiv:1605.06749. 19th International Moscow School of Physics (44th ITEP Winter School) and International Conference: 'The spacetime odyssey continues NORDITA, Stockholm, June 2 - 5, 2015.
[Dolgov:2016qsm]
[14-25]
Falsifying Baryogenesis with Neutrinoless Double Beta Decay, Lukas Graf, arXiv:1605.01099, 2016. NuPhys2015 (London, 16-18 December 2015).
[Graf:2016fir]
[14-26]
Dark Radiation and Inflationary Freedom, Stefano Gariazzo, J. Phys. Conf. Ser. 718 (2016) 032006, arXiv:1510.05980. TAUP 2015.
[Gariazzo:2015apa]
[14-27]
Early formed astrophysical objects and cosmological antimatter, A.D. Dolgov, arXiv:1508.07398, 2015.
[Dolgov:2015uva]
[14-28]
Small scales structures and neutrino masses, Francisco Villaescusa-Navarro, Nucl. Part. Phys. Proc. 265-266 (2015) 56-59, arXiv:1501.04546. NOW 2014, Conca Specchiulla, Otranto, Italy, 7-14 September 2014.
[Villaescusa-Navarro:2015xia]
[14-29]
Strongly Coupled Cosmologies, S.A. Bonometto, M. Mezzetti, I. Musco, R. Mainini, A.V. Maccio', arXiv:1411.6825, 2014. NOW 2014, Conca Specchiulla, Otranto, Italy, 7-14 September 2014.
[Bonometto:2014bja]
[14-30]
Dark energy, QCD axion, BICEP2, and trans-Planckian decay constant, Jihn E. Kim, Nucl.Part.Phys.Proc. 273-275 (2016) 389-394, arXiv:1410.5045. ICHEP2014.
[Kim:2014dya]
[14-31]
The Value of $H_0$ from Gaussian Processes, Vinicius C. Busti, Chris Clarkson, Marina Seikel, IAU Symp. 306 (2015) 25-27, arXiv:1407.5227. IAU Symposium 306: Statistical Challenges in 21st Century Cosmology: Lisbon, Portugal, May 25-29, 2014.
[Busti:2014aoa]
[14-32]
Neutrino mass from the Lyman-Alpha forest, Graziano Rossi, arXiv:1406.5411, 2014. 49th Rencontres de Moriond 2014, Cosmology Session.
[Rossi:2014uua]
[14-33]
Neutrino Mass from SZ Surveys, Yoel Rephaeli, Meir Shimon, arXiv:1406.2026, 2014. 13th Marcel Grossmann Meeting.
[Rephaeli:2014eoa]
[14-34]
Pseudoscalar Fields in Torsionful Geometries of the Early Universe, the Baryon Asymmetry and Majorana Neutrino Mass Generation, Nick E. Mavromatos, J. Phys. Conf. Ser. 651 (2015) 012015, arXiv:1403.7684. XIV Mexican Workshop on Particles and Fields, November 25-29 2013, Oaxaca (Mexico).
[Mavromatos:2014vea]
[14-35]
Light WIMPs And Equivalent Neutrinos, Gary Steigman, Kenneth M. Nollett, Phys.Procedia 61 (2015) 179-187, arXiv:1402.5399. TAUP 2013.
[Steigman:2014uqa]
[14-36]
Spontaneous parity breaking with broken supersymmetry : cosmological constraint, Urjit A. Yajnik, Sasmita Mishra, Debasish Borah, AIP Conf.Proc. 1560 (2013) 284-288, arXiv:1401.8063. 10th International Symposium on Cosmology and Particle Astrophysics (CosPA2013).
[Yajnik:2013haj]
[14-37]
Neutrinos in the Early Universe, Kalb-Ramond Torsion and Matter-Antimatter Asymmetry, Nick E. Mavromatos, Sarben Sarkar, EPJ Web Conf. 71 (2014) 00085, arXiv:1312.5230. 2nd International Conference on New Frontiers in Physics 2013, Kolymbari Greece.
[Mavromatos:2013osa]
[14-38]
Scalar fields with barotropic equation of state: quintessence versus phantom, Olga Sergijenko, Bohdan Novosyadlyj, arXiv:1311.2455, 2013. 13th Marcel Grossmann Meeting (MG13), Stockholm, Sweden, 1-7 July 2012.
[Sergijenko:2013cia]
[14-39]
Non-thermal WIMPs as Dark Radiation, Farinaldo S. Queiroz, AIP Conf.Proc. 1604 (2014) 83-90, arXiv:1310.3026. PPC 2013.
[Queiroz:2013lca]
[14-40]
Constraints on Neutrino Physics from Cosmology, A. Melchiorri, 2013. The Future of Neutrino Mass Measurements: Terrestrial, Astrophysical, and Cosmological Measurements in the Next Decade, 4-7 February 2013, Milano, Italy. http://artico.mib.infn.it/numass2013/images/slides/workshop_melk.pdf.
[Melchiotti-numass-2012]
[14-41]
The cosmological constant puzzle: Vacuum energies from QCD to dark energy, Steven D. Bass, Acta Phys.Polon. B45 (2014) 1269-1279, arXiv:1210.3297. Symposium 'Quantum Chromodynamics: History and Prospects', Oberwoelz, Austria, September 3-8, 2012.
[Bass:2012sr]
[14-42]
Modifying Gravity: You Can't Always Get What You Want, Glenn D. Starkman, Phil. Trans. Roy. Soc. Lond. A369 (2011) 5018-5041, arXiv:1201.1697. Royal Society Discussion Session 'Gravity,' Chicheley Hall, UK Feb. 2011.
[Starkman:2011gpu]
[14-43]
Active sterile neutrino oscillations in the Early Universe with dynamical lepton asymmetries, N. Saviano, 2012. NOW 2012, Neutrino Oscillation Workshop, 9-16 September 2012, Conca Specchiulla, Otranto, Italy. http://www.ba.infn.it/~now/now2012/web-content/TALKS/Friday14/parallel1/saviano.pdf.
[Saviano-NOW2012]
[14-44]
Sterile nu's in early universe, I. Tamborra, 2012. NOW 2012, Neutrino Oscillation Workshop, 9-16 September 2012, Conca Specchiulla, Otranto, Italy. http://www.ba.infn.it/~now/now2012/web-content/TALKS/Friday14/parallel1/Tamborra.pdf.
[Tamborra-NOW2012]
[14-45]
First second of leptons, Dominik J. Schwarz, Glenn D. Starkman, Maik Stuke, J. Phys. Conf. Ser. 375 (2012) 032005, arXiv:1111.5147. 12th international conference on Topics in Astroparticle and Underground Physics, TAUP2011.
[Schwarz:2011uc]
[14-46]
The nonlinear evolution of large scale structures in Growing Neutrino cosmologies, Marco Baldi, ASP Conf.Ser. 453 (2012) 155, arXiv:1110.2173. Advances in computational astrophysics, Cefalu' (Italy), 13-17 June 2011.
[Baldi:2011mt]
[14-47]
Dynamics of the quantum vacuum: Cosmology as relaxation to the equilibrium state, F. R. Klinkhamer, G. E. Volovik, J. Phys. Conf. Ser. 314 (2011) 012004, arXiv:1102.3152. Spanish Relativity Meeting (ERE2010).
[Klinkhamer:2011uu]
[14-48]
Mildly mixed coupled models vs. WMAP7 data, Giuseppe La Vacca, Silvio A. Bonometto, Nucl. Phys. Proc. Suppl. 217 (2011) 68-71, arXiv:1101.2155. NOW2010, Conca Specchiulla, Italy, September 4-11, 2010.
[LaVacca:2011dc]
[14-49]
f(R) Gravity and its Cosmological Implications, Hayato Motohashi, Alexei A. Starobinsky, Jun'ichi Yokoyama, Int. J. Mod. Phys. D20 (2011) 1347-1355, arXiv:1101.0716. 2nd International Workshop on Dark Matter, Dark Energy and Matter-Antimatter Asymmetry.
[Motohashi:2010zz]
[14-50]
Impact of a causal primordial magnetic field on the Sachs Wolfe Effect, Camille Bonvin, arXiv:1005.3332, 2010. 45th Rencontres de Moriond, La Thuile, Italy, March 2010.
[Bonvin:2010ys]
[14-51]
The case of 1.5 eV neutrino hot dark matter, Theo M. Nieuwenhuizen, arXiv:1003.0459, 2010. Marcel Grossmann XII, Paris, 2009.
[Nieuwenhuizen:2010se]
[14-52]
Gravitational hydrodynamics vs observations of voids, Jeans clusters and MACHO dark matter, Theo M. Nieuwenhuizen, Carl H. Gibson, Rudolph E. Schild, arXiv:1003.0453, 2010. Marcel Grossmann XII, Paris 2009.
[Nieuwenhuizen:2010rz]
[14-53]
Dark Matter and Dark Energy from Gravitational Symmetry Breaking, A. Fuzfa, J.-M. Alimi, AIP Conf. Proc. 1241 (2010) 854-865, arXiv:1002.4715. Invisible Universe International Conference, UNESCO-Paris, June 29-July 3, 2009.
[Fuzfa:2010we]
[14-54]
Do WMAP5 data favor neutrino mass and a coupling between Cold Dark Matter and Dark Energy?, S. A. Bonometto, G. La Vacca, J. R. Kristiansen, R. Mainini, L. P. L. Colombo, AIP Conf.Proc. 1241 (2010) 735-740, arXiv:0911.3486. Invisible Universe International Conference, Paris, June 29- July 3, 2009.
[Bonometto:2009bn]
[14-55]
Weak lensing forecasts for dark energy, neutrinos and initial conditions, Ivan Debono, Anais Rassat, Alexandre Refregier, Adam Amara, Thomas Kitching, Mon. Not. Roy. Astron. Soc. 404 (2010) 110-119, arXiv:0911.3448. Grassmannian Conference in Fundamental Cosmology 09.
[Debono:2009bd]
[14-56]
Relic density and future colliders: inverse problem(s), A. Arbey, F. Mahmoudi, AIP Conf. Proc. 1241 (2010) 327-334, arXiv:0909.0266. Invisible Universe, Paris, June 29 - July 3, 2009, France.
[Arbey:2009sa]
[14-57]
Experimental signatures of non-standard pre-BBN cosmologies, Graciela B. Gelmini, Nucl. Phys. Proc. Suppl. 194 (2009) 63-68, arXiv:0907.1694. Dark Matter Conference, Galileo Galilei Institute, Feb. 9-11, 2009, Florence, Italy.
[Gelmini:2009yh]
[14-58]
Do data favor neutrino mass and a coupling between Cold Dark Matter and Dark Energy?, G. La Vacca, J.R. Kristiansen, L.P.L. Colombo, R. Mainini, S. A. Bonometto, arXiv:0906.3369, 2009. GGI-Dark Matter and Dark Energy 2009 Workshop.
[LaVacca:2009hm]
[14-59]
Growing neutrino cosmology, Christof Wetterich, Valeria Pettorino, arXiv:0905.0715, 2009. XIII International Workshop on Neutrino Telescopes, Venice 2009.
[Wetterich:2009qf]
[14-60]
The Second Law and Cosmology, Max Tegmark, AIP Conf.Proc. 1033 (2008) 80, arXiv:0904.3931. MIT Keenan Symposium.
[Tegmark:2008eyv]
[14-61]
Particle astrophysics in nonlinear supersymmetric general relativity, Kazunari Shima, Motomu Tsuda, Fortsch. Phys. 57 (2009) 698-704, arXiv:0902.3358. 4th EU RTN Workshop, Constituents, Fundamental Forces and Symmetries of the Universe, 11-17 September 2008, Varna, Bulgaria.
[Shima:2009rx]
[14-62]
Clustering in growing neutrino cosmologies, Valeria Pettorino, David F. Mota, Georg Robbers, Christof Wetterich, AIP Conf. Proc. 1115 (2009) 291-296, arXiv:0901.1239. DSU 2008 - 4th International Workshop on the Dark Side of the Universe, Cairo.
[Pettorino:2009vn]
[14-63]
Primordial Nucleosynthesis: an updated comparison of observational light nuclei abundances with theoretical predictions, G. Miele, O. Pisanti, Nucl. Phys. Proc. Suppl. 188 (2009) 15-19, arXiv:0811.4479. NOW 2008.
[Miele:2008qt]
[14-64]
An ecological approach to problems of Dark Energy, Dark Matter, MOND and Neutrinos, HongSheng Zhao, J. Phys. Conf. Ser. 140 (2008) 012002, arXiv:0811.3465. 6-th Int. Conf. of Gravitation and Cosmology.
[Zhao:2008tn]
[14-65]
Bounds on Very Weakly Interacting Sub-eV Particles (WISPs) from Cosmology and Astrophysics, Javier Redondo, arXiv:0810.3200, 2008. 4th Patras Workshop on Axions, WIMPs and WISPs - Training Workshop, Hamburg, Germany, 18-21 Jun 2008.
[Redondo:2008en]
[14-66]
Cosmic antimatter: models and observational bounds, A.D. Dolgov, Frascati Phys.Ser. 47 (2008) 69-88, arXiv:0806.4554. Rencontre de Physique de la Vallee d'Aoste, La Thuile, February 24 - March 1, 2008.
[Dolgov:2008br]
[14-67]
Dark Energy Phenomenology, Martin Kunz, Luca Amendola, Domenico Sapone, arXiv:0806.1323, 2008. XLIII Rencontres de Moriond 'Cosmology 2008'.
[Kunz:2008wt]
[14-68]
Lorentz Violation, Electrodynamics, and the Cosmic Microwave Background, Matthew Mewes, arXiv:0804.0269, 2008. 4th Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, 8-11 Aug 2007.
[Mewes:2008jn]
[14-69]
Chaos in Galaxies, Daniel Pfenniger, Astrophys.Space Sci.Proc. (2009) 63-76, arXiv:0802.3268. Chaos in Astronomy, Athens, sept. 2007.
[Pfenniger:2008gm]
[14-70]
Nonlinear Supersymmetric General Relativity and Unity of Nature, Kazunari Shima, Motomu Tsuda, arXiv:0802.2785, 2008. Conference in Honor of C.N. Yang's 85th Birthday, October 30 - November 2, 2007, Singapore.
[Shima:2008tp]
[14-71]
Primordial heavy elements in composite dark matter models, M. Yu. Khlopov, arXiv:0801.0169, 2008. Blois 2007.
[Khlopov:2008rq]
[14-72]
From Equivalence Principles to Cosmology: Cosmic Polarization Rotation, CMB Observation, Neutrino Number Asymmetry, Lorentz Invariance and CPT, Wei-Tou Ni, Prog. Theor. Phys. Suppl. 172 (2008) 49-60, arXiv:0712.4082. VIII Asia-Pacific International Conference on Gravitation and Astophysics (ICGA8), August 29 - September 1, 2007.
[Ni:2007ar]
[14-73]
Dark Energy and Dark Matter, Mirror World and E_6 Unification, C.R. Das, L.V. Laperashvili, arXiv:0712.0253, 2007. Conference of Russian Academy of Sciences: Fundamental Interactions Physics, ITEP, Moscow, Russia, Nov 26-30, 2007.
[Das:2007vt]
[14-74]
Cosmological birefringence induced by neutrino current, C.Q. Geng, S.H. Ho, J.N. Ng, Can. J. Phys. 86 (2008) 587-590, arXiv:0711.4617. Theory CANADA 3, Edmonton, June 13 - 16, 2007.
[Geng:2007ga]
[14-75]
Neutrino mass constraint from CMB and its degeneracy with other cosmological parameters, Kazuhide Ichikawa, J. Phys. Conf. Ser. 120 (2008) 022004, arXiv:0711.2622. TAUP2007.
[Ichikawa:2007yb]
[14-76]
The neutrino masses and the change of allowed parameter region in universal extra dimension models, Shigeki Matsumoto, Joe Sato, Masato Senami, Masato Yamanaka, J. Phys. Conf. Ser. 120 (2008) 042007, arXiv:0711.2600. TAUP 2007.
[Matsumoto:2007xt]
[14-77]
Neutrino mixing, flavor states and dark energy, M. Blasone, A. Capolupo, S. Capozziello, G. Vitiello, Nucl. Instrum. Meth. A588 (2008) 272-275, arXiv:0711.0939. Roma International Conference on Astro-Particle physics (RICAP'07), Roma, Italy, 20 - 22 June 2007.
[Blasone:2007jm]
[14-78]
Why we need to see the dark matter to understand the dark energy, Martin Kunz, J. Phys. Conf. Ser. 110 (2008) 062014, arXiv:0710.5712. 2007 Europhysics Conference on High Energy Physics.
[Kunz:2007nn]
[14-79]
The Acceleration History of the Universe and the Properties of the Dark Energy, Ruth A. Daly, S. G. Djorgovski, AIP Conf. Proc. 937 (2007) 298-302, arXiv:0710.5690. Supernova 1987A: 20 Years After: Supernovae and Gamma-Ray Bursters.
[Daly:2007na]
[14-80]
Cosmological effects of neutrino mixing, M. Blasone, A. Capolupo, S. Capozziello, G. Vitiello, AIP Conf. Proc. 957 (2007) 185-188, arXiv:0709.0924. 13th International Symposium on Particles, Strings and Cosmology, Pascos 07, 2-7 Jul 2007, Imperial College, London.
[Blasone:2007iq]
[14-81]
Accounting for the Unresolved X-ray Background with Sterile Neutrino Dark Matter, Daniel Cumberbatch, Joseph Silk, AIP Conf. Proc. 957 (2007) 375-378, arXiv:0709.0279. 13th International Symposium on Particles, Strings and Cosmology (PASCOS-07).
[Cumberbatch:2007qq]
[14-82]
Smallness of the cosmological constant and the multiple point principle, C.D. Froggatt, R. Nevzorov, H.B. Nielsen, J. Phys. Conf. Ser. 110 (2008) 072012, arXiv:0708.2907. 2007 Europhysics Conference on High Energy Physics, Manchester, England, 19-25 July 2007.
[Froggatt:2007qs]
[14-83]
Primordial antimatter in the contemporary universe, Cosimo Bambi, Frascati Phys.Ser. 45 (2007) 129-136, arXiv:0707.0721. SciNeGHE07, 18 - 20 June 2007, Frascati, Rome, Italy.
[Bambi:2007yr]
[14-84]
Dark energy models toward observational tests and data, S. Capozziello, Int. J. Geom. Meth. Mod. Phys. 4 (2006) 53-78, arXiv:0706.3587. 42nd Karpacz Winter School of Theoretical Physics: Current Mathematical Topics in Gravitation and Cosmology, Ladek, Poland, 6-11 Feb 2006.
[Capozziello:2006jzz]
[14-85]
Cosmological Constraint on the Effective Number of Neutrino Species, Kazuhide Ichikawa, arXiv:0706.3465, 2007. 8 pages, 3 figures. Proceedings for the XIXth Rencontres de Blois, May 2007.
[Ichikawa:2007fa]
[14-86]
Probing for Dynamics of Dark-Energy in Mass Varying Neutrinos: Cosmic Microwave Background Radiation and Large Scale Structure, Yong-Yeon Keum, Mod. Phys. Lett. A22 (2007) 2131-2142, arXiv:0705.2204. COSPA-2006, NEPSE-2007 and Yong-Pyung APCTP-2007.
[Keum:2007pq]
[14-87]
Primordial Neutrinos, Cosmological Perturbations in Interacting Dark-Energy Model: CMB and LSS, Kiyotomo Ichiki, Yong-Yeon Keum, JCAP 0806 (2008) 005, arXiv:0705.2134. VII Asia-Pacific Internatinal Conference on Gravitation and Astrophysics, Nov 23-26, 2005, Chungli, Taiwan.
[Ichiki:2007ng]
[14-88]
Geometry and Topology in Relativistic Cosmology, Jean-Pierre Luminet, arXiv:0704.3374, 2007. More Geometrico, 3-4 May 2005, Milano, Italy.
[Luminet:2007xm]
[14-89]
Restrictions on sterile neutrino parameters from astrophysical observations, Oleg Ruchayskiy, arXiv:0704.3215, 2007. 11th Marcel Grossmann meeting on general relativity, 23-29 July 2006, Berlin, Germany.
[Ruchayskiy:2007pq]
[14-90]
Dark energy and neutrino model in SUSY - Remarks on active and sterile neutrinos mixing -, Ryo Takahashi, Morimitsu Tanimoto, Int. J. Mod. Phys. E16 (2007) 1529-1540, arXiv:0704.0186. International Workshop on Neutrino Masses and Mixings - Toward Unified Understanding of Quark and Lepton Mass Matrices -, Shizuoka, Japan, 17-19 Dec 2006.
[Takahashi:2007xp]
[14-91]
Type Ia supernova diversity: Standardizing the candles, T. M. Davis, J. B. James, B. P. Schmidt, A. G. Kim, AIP Conf. Proc. 924 (2007) 330-335, arXiv:astro-ph/0701904. Cefalu 2006, The multicoloured landscape of compact objects and their explosive origins.
[Davis:2007qt]
[14-92]
Massive neutrinos and dark energy, Paolo Serra, Rachel Bean, Axel De La Macorra, Alessandro Melchiorri, Nucl. Phys. Proc. Suppl. 168 (2007) 31-33, arXiv:astro-ph/0701690. Neutrino Oscillation Workshop NOW2006, Otranto, Italy, September 9-16 2006.
[Serra:2007pi]
[14-93]
Scalar-Tensor Dark Energy Models, R. Gannouji, D. Polarski, A. Ranquet, A. A. Starobinsky, arXiv:astro-ph/0701650, 2007. Marcel Grossmann Conference MG11, July 2006, Berlin.
[Gannouji:2007im]
[14-94]
Sterile Neutrino as Dark Matter candidate from CMB alone, L.A. Popa, A. Vasile, arXiv:astro-ph/0701331, 2007. Eleventh Marcel Grossmann Meeting on General Relativity.
[Popa:2007hw]
[14-95]
Right-handed neutrinos in cosmology: light versus heavy, Pasquale Di Bari, Nucl. Phys. Proc. Suppl. 168 (2007) 41-43.
[DiBari:2007zz]
[14-96]
Neutrinos and the Lyman-alpha forest: Myth or reality?, Matteo Viel, Nucl. Phys. Proc. Suppl. 168 (2007) 54-56.
[Viel:2007zz]
[14-97]
B-L-symmetric Baryogenesis with Leptonic Quintessence, Mathias Garny, J. Phys. A40 (2007) 7005-7010, arXiv:hep-ph/0612145. IRGAC 2006 (Barcelona, July 11-15 2006).
[Garny:2006xn]
[14-98]
Cosmic coincidences and relic neutrinos, R. Horvat, J. Phys. A40 (2007) 7011-7016, arXiv:astro-ph/0612079. IRGAC-2006 (Barcelona, July 11-15, 2006).
[Horvat:2006fq]
[14-99]
Dark energy induced by neutrino mixing, Antonio Capolupo, Salvatore Capozziello, Giuseppe Vitiello, J. Phys. Conf. Ser. 67 (2007) 012032, arXiv:hep-th/0612035. 3nd International Workshop DICE 2006: Quantum Mechanics between Decoherence and Determinism: new aspects from particle physics to cosmology, September 11-15, 2006.
[Capolupo:2006re]
[14-100]
Probing the variation of relic neutrino masses with extremely high-energy cosmic neutrinos, Lily Schrempp, arXiv:astro-ph/0611912, 2006. Workshop on Exotic Physics with Neutrino Telescopes, Uppsala, Sweden, 20-22 Sep 2006.
[Schrempp:2006mk]
[14-101]
CDM Abundance in non-Standard Cosmologies, C. Pallis, arXiv:hep-ph/0610433, 2006. Sixth International Workshop on 'The Identification of Dark Matter', 11-16 September 2006, Rhodes, Greece.
[Pallis:2006bq]
[14-102]
Primordial magnetic field constrained from CMB anisotropies,and its generation and evolution before, during and after the BBN, Dai G. Yamazaki, Kiyotomo Ichiki, Toshitaka Kajino, Grant J. Mathews, PoS NIC-IX (2006) 194, arXiv:astro-ph/0610234. International Symposium on Nuclear Astrophysics 'Nuclei in the Cosmos - IX', CERN, Geneva, June 25-30, 2006.
[Yamazaki:2006ah]
[14-103]
Dark Energy From Vacuum Fluctuations, S.G. Djorgovski, V.G. Gurzadyan, Nucl. Phys. Proc. Suppl. 173 (2007) 6-10, arXiv:astro-ph/0610204. Dark Matter 2006.
[Djorgovski:2006vn]
[14-104]
Constraining TeVeS Gravity as Effective Dark Matter and Dark Energy, HongSheng Zhao, Int. J. Mod. Phys. D16 (2008) 2055-2063, arXiv:astro-ph/0610056. Quantum to Cosmology: Fundamental Physics in Space.
[Zhao:2006vm]
[14-105]
LXCDM cosmologies: solving the cosmological coincidence problem?, Javier Grande, Joan Sola, Hrvoje Stefancic, AIP Conf. Proc. 878 (2006) 220-226, arXiv:astro-ph/0609683. DSU2006, International Workshop on the Dark Side of the Universe, Madrid, Spain, 20-24 June 2006.
[Grande:2006gb]
[14-106]
Gamma-ray bursts as dark energy probes, O. Bertolami P. T. Silva, AIP Conf. Proc. 878 (2006) 415-421, arXiv:astro-ph/0609578. The Dark Side of The Universe, Madrid, 20-24 June 2006.
[Bertolami:2006pm]
[14-107]
Dark matter, dark energy and the solution of the strong CP problem, Roberto Mainini, Loris Colombo, Silvio Bonometto, AIP Conf. Proc. 878 (2006) 254-260, arXiv:astro-ph/0609572. The Dark Side of the Universe, Madrid, June 20-24, 2006.
[Mainini:2006pf]
[14-108]
The Dark Side and its Nature, S. A. Bonometto, R. Mainini, L. P. L. Colombo, AIP Conf. Proc. 878 (2006) 205-212, arXiv:astro-ph/0609570. The dark side of the Universe, Madrid, June 20-24, 2006.
[Bonometto:2006pd]
[14-109]
Accelerated-like expansion: inhomogeneities versus dark energy, Marie-Noelle Celerier, arXiv:astro-ph/0609352, 2006. SF2A 2006.
[Celerier:2006gy]
[14-110]
Is Dark Energy Abnormally Weighting?, A. Fuzfa, J.-M. Alimi, Int. J. Mod. Phys. D16 (2008) 2587-2592, arXiv:astro-ph/0609099. SF2A 2006, Paris.
[Fuzfa:2006bj]
[14-111]
Sneutrino Hybrid Inflation, Stefan Antusch, AIP Conf. Proc. 878 (2006) 284-290, arXiv:hep-ph/0608261. International Workshop on The Dark Side of the Universe (DSU2006), Madrid, Spain, June 20-24, 2006.
[Antusch:2006gh]
[14-112]
Angular power spectrum of CMB anisotropy from WMAP, Tarun Souradeep, Rajib Saha, Pankaj Jain, New Astron. Rev. 50 (2006) 854-860, arXiv:astro-ph/0608199. Fundamental Physics With CMB workshop, UC Irvine, March 23-25, 2006.
[Souradeep:2006tt]
[14-113]
Measuring Statistical Isotropy of CMB Anisotropy, Tarun Souradeep, Amir Hajian, Soumen Basak, New Astron. Rev. 50 (2006) 889-895, arXiv:astro-ph/0607577. Fundamental Physics With CMB workshop, UC Irvine, March 23-25, 2006.
[Souradeep:2006dz]
[14-114]
Cosmology with CMB anisotropy, Tarun Souradeep, Pramana 67 (2006) 699-710, arXiv:astro-ph/0607255. IX International Workshop on High Energy Physics Phenomenology (WHEPP-9), Institute of Physics, Bhubaneshwar, India. Jan 3-14, 2006.
[Souradeep:2006tm]
[14-115]
Neighboring Valley in the String Landscape, L. Clavelli, arXiv:hep-ph/0607029, 2006. Susy06, Irvine CA, June 2006.
[Clavelli:2006ek]
[14-116]
The issue of Dark Energy in String Theory, Nick E. Mavromatos, Lect. Notes Phys. 720 (2007) 333-374, arXiv:hep-th/0607006. Third Aegean Summer School on: The Invisible Universe: Dark matter and Dark energy, Karfas, Chios Island (Greece) September 26-October 1 2005.
[Mavromatos:2006wh]
[14-117]
Standard and non-standard primordial neutrinos, P. D. Serpico, Phys. Scripta T127 (2006) 95-96, arXiv:astro-ph/0606044. SNOW 2006, Stockholm, May 2-6, 2006.
[Serpico:2006sn]
[14-118]
Dark energy, MOND and sub-millimeter tests of gravity, I. Navarro, K. Van Acoleyen, arXiv:astro-ph/0605322, 2006. XLIrst Rencontres de Moriond.
[Navarro:2006mq]
[14-119]
Towards Inflation and Accelerating Cosmologies in String-Generated Gravity Models, Ishwaree P Neupane, arXiv:hep-th/0605265, 2006. XL Rencontre de Moriond.
[Neupane:2006ip]
[14-120]
Constraints on the cosmological density parameters and cosmic topology, M.J. Reboucas, Int. J. Mod. Phys. D16 (2007) 207-217, arXiv:astro-ph/0605214. 2nd International Workshop on Astronomy and Relativistic Astrophysics.
[Reboucas:2006ri]
[14-121]
The Running Spectral Index as a Probe of Physics at High Energies, J.R. Espinosa, arXiv:hep-ph/0605150, 2006. Moriond 2006, Electroweak Session. 11-18 March, La Thuile (Italy).
[Espinosa:2006pb]
[14-122]
Bayesian foreground analysis with CMB data, H. K. Eriksen et al., New Astron. Rev. 50 (2006) 861-867, arXiv:astro-ph/0604160. CMB workshop at Irvine, March 2006.
[Eriksen:2006pn]
[14-123]
A note on cosmological parameters and the topology of the universe, M.J. Reboucas, J.S. Alcaniz, Braz. J. Phys. 35 (2005) 1062, arXiv:astro-ph/0604087. 100 Years of Relativity: International Conference on Classical and Quantum Aspects of Gravity and Cosmology, Sao Paulo, Brazil, 22-24 Aug 2005.
[Reboucas:2005hf]
[14-124]
Dark Energy in an Astrophysical Context, Marek Nowakowski, Andres Balaguera-Antolinez, AIP Conf. Proc. 861 (2006) 1001-1008, arXiv:astro-ph/0603624. Albert Einstein International Conference, Paris, France, 18-23 July 2005.
[Nowakowski:2006bw]
[14-125]
Testing and selection cosmological models with dark energy, Marek Szydlowski, Aleksandra Kurek, AIP Conf. Proc. 861 (2006) 1031-1036, arXiv:astro-ph/0603538. Albert Einstein Century International Conference at Palais de l'Unesco, Paris, France, 18-23 July 2005.
[Szydlowski:2006pz]
[14-126]
Progenitors of Type Ia Supernovae: Circumstellar Interaction, Rotation, and Steady Hydrogen Burning, Ken'ichi Nomoto et al., Asp Conf. Ser. 342 (2005) 105, arXiv:astro-ph/0603432. 1604-2004: Supernovae as Cosmological Lighthouses.
[Nomoto:2005qus]
[14-127]
Constraining SUSY GUTs and Inflation with Cosmology, Jonathan Rocher, AIP Conf. Proc. 861 (2006) 464-471, arXiv:hep-ph/0603169.
[Rocher:2006yu]
[14-128]
Spherical collapse with dark energy, Irit Maor, Int. J. Theor. Phys. 46 (2007) 2274-2282, arXiv:astro-ph/0602441. Peyresq Physics 10 Workshop, 19 - 24 June 2005, Peyresq, France.
[Maor:2006rh]
[14-129]
Dark Energy from Brane-world Gravity, Roy Maartens, J. Phys. Conf. Ser. 68 (2007) 012046, arXiv:astro-ph/0602415. 3rd Aegean Summer School, Chios, September 2005.
[Maartens:2006qf]
[14-130]
WMAP First Year Sky Map: Hints of Poincare Dodecahedral Topology, Boudewijn F. Roukema, AIP Conf. Proc. 861 (2006) 1019-1022, arXiv:astro-ph/0602401. Albert Einstein Century International Conference, Paris, France, July 18-22, 2005.
[Roukema:2006nb]
[14-131]
The Quintom Model of Dark Energy, Bo Feng, arXiv:astro-ph/0602156, 2006. The 15th Workshop on General Relativity and Gravitation (Japan, November 2005).
[Feng:2006ya]
[14-132]
Deuterium at High Redshifts: Recent Advances and Open Issues, Max Pettini, ASP Conf.Ser. (2006), arXiv:astro-ph/0601428. Astrophysics in the Far Ultraviolet.
[Pettini:2006sw]
[14-133]
Strong limits on the possible decay of the vacuum energy into CDM or CMB photons, Reuven Opher, Ana Pelinson, Braz. J. Phys. 35 (2005) 1206, arXiv:astro-ph/0512333. 100 Years of Relativity, International Conference on Classical and Quantum Aspects of Gravity and Cosmology, Sao Paulo, August 22-24, 2005.
[Opher:2005px]
[14-134]
Laboratory tests on dark energy, Christian Beck, J. Phys. Conf. Ser. 31 (2006) 123, arXiv:astro-ph/0512327. 21 COE symposium 'Astrophysics as Interdisciplinary Science', Waseda University, Tokyo, 1-3 September 2005.
[Beck:2005pr]
[14-135]
Light Dark Matter, Michel Casse, Pierre Fayet, EAS Publ.Ser. 20 (2006) 201, arXiv:astro-ph/0510490. 21st IAP Colloquium 'Mass Profiles and Shapes of Cosmological Structures', Paris 4-9 July 2005.
[Casse:2005up]
[14-136]
Charting the New Frontier of the Cosmic Microwave Background Polarization, F. R. Bouchet et al., arXiv:astro-ph/0510423, 2005. SF2A 2005.
[Bouchet:2005pq]
[14-137]
Inflation With A Realistic SO(10) Model, Bumseok Kyae, Qaisar Shafi, Aip Conf. Proc. 805 (2006) 439, arXiv:hep-ph/0510300.
[Kyae:2005fi]
[14-138]
Exact solutions of Brans-Dicke cosmology and the cosmic coincidence problem, S. Carneiro, A. E. Montenegro Jr, Braz. J. Phys. 35 (2005) 1052, arXiv:gr-qc/0510117. 100 Years of Relativity, Sao Paulo, August 2005.
[Carneiro:2005cq]
[14-139]
Dark Energy and Its Interactions with Neutrinos, Xinmin Zhang, Aip Conf. Proc. 805 (2006) 3, arXiv:hep-ph/0510072. PASCOS 2005, May 30 - June 4, Gyeongju, Korea.
[Zhang:2005ywa]
[14-140]
The Lifetime of the Universe, Don N. Page, J. Korean Phys. Soc. 49 (2006) 711-714, arXiv:hep-th/0510003. 9th Italian-Korean Symposium on Relativistic Astrophysics, Seoul, South Korea, and Mt. Kumgang, North Korea, 2005 July 19-24.
[Page:2005ur]
[14-141]
A cosmological test for general relativity, Vincent Boucher, Grav. Cosmol. 11 (2005) 71, arXiv:astro-ph/0509774. International Conference on Cosmoparticle Physics 'Cosmion-2004', 20-24 September 2004, Paris.
[Boucher:2005iz]
[14-142]
Unifying dark energy and dark matter with a scalar field, A. Arbey, EAS Publ. Ser. 20 (2006) 257-260, arXiv:astro-ph/0509592. XXIst IAP Colloquium 'Mass Profiles and Shapes of Cosmological Structures', Paris 4-9 July 2005.
[Arbey:2005zc]
[14-143]
Was There a Decelerating Past for the Universe?, Moncy V. John, Aip Conf. Proc. 822 (2006) 34, arXiv:astro-ph/0509509. 1st Crisis in Cosmology Conference (CCC-1), June 23-25, 2005 at Moncao, Portugal.
[John:2005kh]
[14-144]
Do we observe quantum gravity effects at galactic scales?, M. Reuter, Holger Weyer, EAS Publ. Ser. 20 (2006) 251, arXiv:astro-ph/0509163. 21st IAP Colloquium on Mass Profiles and Shapes of Cosmological Structures, Paris, France, 4-9 Jul 2005.
[Reuter:2005ct]
[14-145]
Gravitino production in the early universe and its implications to particle cosmology, Takeo Moroi, Aip Conf. Proc. 805 (2006) 37, arXiv:hep-ph/0509121. PASCOS05, Gyeongju, Korea (June 2005).
[Moroi:2005hq]
[14-146]
Looking beyond inflationary cosmology, Robert H. Brandenberger, Can.J. Phys. 84 (2006) 437, arXiv:hep-th/0509076. Theory Canada 1, Univ. of British Columbia, Vancouver, Canada, June 2 - 4, 2005.
[Brandenberger:2005cn]
[14-147]
Electroweak baryogenesis and the triple Higgs boson coupling, Shinya Kanemura, Yasuhiro Okada, Eibun Senaha, eConf C050318 (2005) 0704, arXiv:hep-ph/0507259. 2005 International Linear Collider Workshop (LCWS 2005), Stanford, California, 18-22 Mar. 2005.
[Kanemura:2005cj]
[14-148]
The Lyman-alpha forest as a probe of fundamental physics, Matteo Viel, IAU Symp. (2005), arXiv:astro-ph/0504645. TIAU 199 conf. proc.: "Probing Galaxies through Quasar Absorption Lines,".
[Viel:2005ek]
[14-149]
Effects of new long-range interaction: Recombination of relic Heavy neutrinos and antineutrinos, K.M. Belotsky, M.Yu. Khlopov, S.V. Legonkov, K.I. Shibaev, Grav. Cosmol. 11 (2005) 27, arXiv:astro-ph/0504621. 6 International Conference on Cosmoparticle physics "Cosmion 2004".
[Belotsky:2005dk]
[14-150]
Testing the Friedmannian magnitude-redshift relation with SNIa data, Marie-Noelle Celerier, eConf C041213 (2004) 1403, arXiv:astro-ph/0504476. 22nd Texas Symposium on Relativistic Astrophysics, December 13-17, Stanford University.
[Celerier:2004jte]
[14-151]
Gravitational waves, inflation and the cosmic microwave background: towards testing the slow-roll paradigm, Carlo Ungarelli, Pierstefano Corasaniti, R.A. Mercer, Alberto Vecchio, Class. Quant. Grav. 22 (2005) S955, arXiv:astro-ph/0504294. 19th Gravitational Wave Data Analysis Workshop.
[Ungarelli:2005qb]
[14-152]
Dark Energy - Dark Matter Unification: Generalized Chaplygin Gas Model, Orfeu Bertolami, arXiv:astro-ph/0504275, 2005. V New Worlds in Astroparticle Physics, Faro, Portugal, 8-10 January 2005.
[Bertolami:2005cz]
[14-153]
Statistical isotropy of CMB anisotropy from WMAP, Tarun Souradeep, Amir Hajian, arXiv:astro-ph/0502248, 2005. 14th international workshop on General relativity and Gravitation (JGRG-14), Nov 29-Dec 3, 2004, Kyoto, Japan.
[Souradeep:2005cq]
[14-154]
Dark energy, chaotic fields, and fundamental constants, Christian Beck, arXiv:astro-ph/0502211, 2005. Sixth International Symposium on Frontiers of Fundamental and Computational Physics, Udine, 2004.
[Beck:2005us]
[14-155]
Observational Gamma-ray Cosmology, Joel R. Primack, James S. Bullock, Rachel S. Somerville, Aip Conf. Proc. 745 (2005) 23, arXiv:astro-ph/0502177. Gamma 2004 Symposium on High Energy Gamma Ray Astronomy, Heidelberg, July 2004.
[Primack:2005rf]
[14-156]
The interplay between high energy physics and cosmology: an example, Mairi Sakellariadou, Nucl. Phys. Proc. Suppl. 148 (2005) 141, arXiv:hep-ph/0502085. DPU workshop: The density fluctuations in the Universe: Beyond the inflationary paradigm (Dimokritos, Athens 2004).
[Sakellariadou:2005sw]
[14-157]
BBN and the Primordial Abundances, Gary Steigman, arXiv:astro-ph/0501591, 2005. ESO/Arcetri Workshop on 'Chemical Abundances and Mixing in Stars in the Milky Way and its Satellites'.
[Steigman:2005wb]
[14-158]
Constraints on the Sum of Neutrino Masses from Cosmology and their impact on world neutrino data, A. Melchiorri et al., Nucl. Phys. Proc. Suppl. 145 (2005) 290, arXiv:astro-ph/0501531. NOW2004, Conca Specchiulla, Otranto Italy, September 2004.
[Melchiorri:2005gw]
[14-159]
Probing the origins of voids with the CMB, L. M. Ord, M. Kunz, H. Mathis, J. Silk, arXiv:astro-ph/0501268, 2005. 5th Rencontres du Vietnam 'New Views on the Universe', Aug 5-11, 2004.
[Ord:2005ia]
[14-160]
Neutrinos and Primordial Nucleosynthesis, G. Mangano, P.D. Serpico, Nucl. Phys. Proc. Suppl. 145 (2005) 351, arXiv:astro-ph/0412255. NOW2004, Conca Specchiulla, Otranto Italy, september 2004.
[Mangano:2004kp]
[14-161]
Neutrino mixing as a source for cosmological constant, Massimo Blasone, Antonio Capolupo, Salvatore Capozziello, Sante Carloni, Giuseppe Vitiello, Braz. J. Phys. 35 (2005) 455-461, arXiv:hep-th/0412165. 2nd International Workshop DICE2004: From Decoherence and Emergent Classicality to Emergent Quantum Mechanics, Castello di Piombino, Tuscany, Italy, 1-4 Sep 2004.
[Blasone:2004hr]
[14-162]
Robust Signatures of the Relic Neutrinos in CMB, Sergei Bashinsky, arXiv:astro-ph/0411013, 2004. 10th International Symposium on Particles, Strings and Cosmology (PASCOS 04), Boston, August 2004.
[Bashinsky:2004vc]
[14-163]
Lithium in Very Metal-poor Dwarf Stars - Problems for Standard Big Bang Nucleosynthesis?, David L. Lambert, Aip Conf. Proc. 743 (2005) 206, arXiv:astro-ph/0410418. Mitchell Symposium on Observational Cosmology and Strings and Cosmology Conference.
[Lambert:2004kn]
[14-164]
Interacting Dark Energy, Xinmin Zhang, arXiv:hep-ph/0410292, 2004. 'SUSY2004', Tsukuba, Japan, June 2004.
[Zhang:2004gb]
[14-165]
Testing General Relativity on the Scales of Cosmology, P. J. E. Peebles, arXiv:astro-ph/0410284, 2004. GR17, Dublin, July, 2004.
[Peebles:2004qg]
[14-166]
Sterile Neutrinos in astrophysical and cosmological sauce, Marco Cirelli, arXiv:astro-ph/0410122, 2004. 10th International Symposium on Particles, Strings and Cosmology (PASCOS '04), August 2004, Boston, USA, and XVI Incontri sulla Fisica delle Alte Energie (IFAE), April 2004, Torino, Italy.
[Cirelli:2004qs]
[14-167]
Cosmic strings reborn?, T.W.B. Kibble, arXiv:astro-ph/0410073, 2004. COSLAB 2004, held at Ambleside, Cumbria, United Kingdom, from 10 to 17 September 2004.
[Kibble:2004hq]
[14-168]
Working Group Report: Neutrino and Astroparticle Physics, Srubabati Goswami et al., Pramana 63 (2004) 1391, arXiv:hep-ph/0409225. 8th Workshop on High-Energy Physics Phenomenology (WHEPP-8), IIT Mumbai, India, 5-16 Jan 2004.
[Goswami:2004yb]
[14-169]
Cosmological bounds on masses of neutrinos and other thermal relics, Steen Hannestad, arXiv:hep-ph/0409108, 2004. SeeSaw '25.
[Hannestad:2004bu]
[14-170]
Superluminal Particles, Cosmology and Cosmic-Ray Physics, Luis Gonzalez-Mestres, arXiv:astro-ph/0407603, 2004. 28th International Cosmic Ray Conference, Tsukuba July - August 2003.
[Gonzalez-Mestres:2003gdp]
[14-171]
Thermal Production of Axinos in the Early Universe, Arnd Brandenburg, Frank Daniel Steffen, arXiv:hep-ph/0407324, 2004. Strong and Electroweak Matter 2004, Helsinki, Finland, June 16-19, 2004.
[Brandenburg:2004jr]
[14-172]
Inflation After WMAP, William H. Kinney, arXiv:astro-ph/0406670, 2004. XXXIXth Rencontres de Moriond 'Exploring the Universe'.
[Kinney:2004im]
[14-173]
New Constraints on Dark Energy, Alessandro Melchiorri, Frascati Phys.Ser. 37 (2004) 193-198, arXiv:astro-ph/0406652. Exploring the Universe (Moriond 2004), La Thuile, March 28 - April 4, 2004.
[Melchiorri:2004bq]
[14-174]
Cosmographic evaluation of deceleration parameter using SNe Ia data, Moncy V. John, Astrophys. J. 614 (2004) 1, arXiv:astro-ph/0406444.
[John:2004vf]
[14-175]
Cosmological Markov Chain Monte Carlo simulation with Cmbeasy, Christian M. Mueller, arXiv:astro-ph/0406206, 2004. XXXIX Rencontres de Moriond 'Exploring the Universe'.
[Mueller:2004se]
[14-176]
The Cosmic Microwave Background and Inflation Parameters, J.R. Bond, C.R. Contaldi, A.M. Lewis, D. Pogosyan, Int. J. Theor. Phys. 43 (2004) 599, arXiv:astro-ph/0406195. 'Peyresq Physics 8', 'The Early Universe: Confronting theory with observations' (June 21-27, 2003).
[Bond:2004rt]
[14-177]
The Lyman-alpha forest according to LUQAS, M. Viel et al., arXiv:astro-ph/0405584, 2004. XXXIXth Rencontres de Moriond on 'Exploring the Universe', La Thuile, Italy, March 28 - April 4, 2004.
[Viel:2004iq]
[14-178]
Direct Constraints on the Properties and Evolution of Dark Energy, Ruth A. Daly, S. G. Djorgovski, ASP Conf.Ser. 339 (2005) 117, arXiv:astro-ph/0405550. Observing Dark Energy NOAO Workshop in Tucson.
[Daly:2004fg]
[14-179]
Sterile neutrinos: from cosmology to experiments, Guido Marandella, arXiv:hep-ph/0405090, 2004. 39th Rencontres de Moriond on Electroweak Interactions and Unified Theories, La Thuile, Aosta Valley, Italy, 21-28 March 2004.
[Marandella:2004xv]
[14-180]
Formation and Evolution of Structures in the Universe, C. M. Gutierrez, R. Juncosa, Rev.Mex.Astron.Astrofis. (2004), arXiv:astro-ph/0405060. II International Workshop on Science with GTC, February 15-17, 2004.
[Gutierrez:2004kd]
[14-181]
Evolution of dark-matter haloes in a variety of dark-energy cosmologies, M. Bartelmann et al., New Astron. Rev. 49 (2005) 199, arXiv:astro-ph/0404489. 'Dark Matter/Dark Energy 2004'.
[Bartelmann:2004gv]
[14-182]
Dark Energy Search with Supernovae, Yun Wang, New Astron. Rev. 49 (2005) 97, arXiv:astro-ph/0404484. Sixth UCLA Symposium on 'Sources and Detection of Dark Matter and Dark Energy in the Universe'.
[Wang:2004gq]
[14-183]
Interacting quintessence and the coincidence problem, W. Zimdahl, D. Pavon, L.P. Chimento, A.S. Jakubi, arXiv:astro-ph/0404122, 2004. Tenth Marcel Grossmann Meeting, Rio de Janeiro, 20-26 July 2003.
[Zimdahl:2004hk]
[14-184]
Sneutrino Inflation, John Ellis, Nucl. Phys. Proc. Suppl. 137 (2004) 190, arXiv:hep-ph/0403247. Fujihara Seminar on Neutrino Mass and Seesaw Mechanism, KEK, Feb. 23-25, 2004.
[Ellis:2004hy]
[14-185]
Probing Dark Matter and Dark Energy with Space-Based Weak Lensing, Richard Massey, Alexandre Refregier, Jason Rhodes, ASP Conf.Ser. (2004), arXiv:astro-ph/0403229. 'Gravitational lensing : a unique tool for cosmology', Aussois, France, January 2003.
[Massey:2004ik]
[14-186]
Effect of neutrino asymmetry on the estimation of cosmological parameters, Massimiliano Lattanzi, Nuovo Cim. B120 (2005) 1123, arXiv:astro-ph/0402429. 8th Italian-Korean Symposium for Relativistic Astrophysics.
[Lattanzi:2004qt]
[14-187]
Supersymmetric Large Extra Dimensions and the Cosmological Constant: An Update, C.P. Burgess, Annals Phys. 313 (2004) 283, arXiv:hep-th/0402200. SUSY 2003, University of Arizona, Tucson AZ, June 2003.
[Burgess:2004kd]
[14-188]
Big Bang Nucleosynthesis Constraints on Z' Properties, Vernon Barger, Paul Langacker, Hye-Sung Lee, arXiv:hep-ph/0402048, 2004. SUSY 2003, University of Arizona, Tucson, AZ, 5-10 June 2003.
[Barger:2004dy]
[14-189]
Astrophysical Observations of Early Universe Phase Transitions, Leonard S. Kisslinger, Mod. Phys. Lett. A19 (2004) 1179, arXiv:hep-ph/0402001. CosPA 2003 Cosmology and Particle Astrophysics Symposium.
[Kisslinger:2004uc]
[14-190]
Statistical Challenges of Cosmic Microwave Background Analysis, Benjamin D. Wandelt, ECONF C030908 (2003) THAT004, arXiv:astro-ph/0401622. PHYSTAT2003, SLAC, Stanford, Ca, USA, 8-11 Sep 2003. http://www.slac.stanford.edu/econf/C030908/papers/THAT004.pdf.
[Wandelt:2003oll]
[14-191]
Neutrino Oscillations and the Early Universe, D. P. Kirilova, Central Eur. J. Phys. 2 (2004) 467, arXiv:astro-ph/0312569. NCYA Conference and CAPP2003.
[Kirilova:2003qv]
[14-192]
Velocity Fields as Probes of Cosmology, Hume A. Feldman, arXiv:astro-ph/0312537, 2003. 15th Rencontres De Blois: Physical Cosmology: New Results In Cosmology And The Coherence Of The Standard Model (Blois 2003).
[Feldman:2003hg]
[14-193]
Cosmic Matter Distribution: Cosmic Baryon Budget Revisited, Masataka Fukugita, ASP Conf.Ser. (2003), arXiv:astro-ph/0312517. IAU Symposium 220, 'Dark Matter in Galaxies', Sydney, 21-25 July, 2003.
[Fukugita:2003gk]
[14-194]
Mapping the Dark Energy Equation of State, Eric V. Linder, ASP Conf.Ser. (2003), arXiv:astro-ph/0311403. Maps of the Cosmos, ASP conference series, IAU Symposium 216.
[Linder:2003nc]
[14-195]
Cosmic microwave background snapshots: pre-WMAP and post-WMAP, J. R. Bond, C. R. Contaldi, D. Pogosyan, Phil. Trans. Roy. Soc. Lond. A361 (2003) 2435, arXiv:astro-ph/0310735. Roy Soc Discussion Meeting on `The search for dark matter and dark energy in the Universe' (Oct 15 2003).
[Bond:2003ur]
[14-196]
Tests of Gaussianity, A. M. Aliaga et al., New Astron.Rev. (2003), arXiv:astro-ph/0310706. 'The Cosmic Microwave Background and its Polarization'.
[Aliaga:2003nj]
[14-197]
Cosmology with the lyman-alpha forest in the WMAP era, M. Viel, arXiv:astro-ph/0310413, 2003.
[Viel:2003xe]
[14-198]
Early Quintessence and the CMB, C. M. Mueller, arXiv:astro-ph/0310412, 2003. XVieme Rencontres de Blois, June 2003.
[Mueller:2003xd]
[14-199]
Dark Matter at the Center and in the Halo of the Galaxy, N. Bilic, G. B. Tupper, R. D. Viollier, arXiv:astro-ph/0310294, 2003. Beyond 2003.
[Bilic:2003ie]
[14-200]
Holographic Cosmology 3.0, T. Banks, W. Fischler, Phys. Scripta T117 (2005) 56, arXiv:hep-th/0310288. Nobel Symposium, Sigtuna Stiftelsen, Sweden, June 14 -19, 2003 and Conference on String Theory and Cosmology, KITP, UCSB, Santa Barbara, CA, October 20-24, 2003.
[Banks:2003ta]
[14-201]
Cosmology and neutrino masses - an update, Steen Hannestad, Eur. Phys. J. C33 (2004) S800, arXiv:hep-ph/0310220. EPS 2003.
From the article: According to Ref.[14-215], the 3+1 scheme with a single massive state, $m_4$, which makes up the LSND mass gap, is still marginally allowed in a few small windows in the $(\Delta m^2,\sin^2 2 \theta)$ plane. These gaps are at $ (0.8 \, {\rm eV}^2, 2 \times 10^{-3})$, $ (1.8 \, {\rm eV}^2, 8 \times 10^{-4})$, $ (6 \, {\rm eV}^2, 1.5 \times 10^{-3})$ and $(10 \, {\rm eV}^2, 1.5 \times 10^{-3})$. These four windows corresponds to masses of $0.9, 1.4, 2.5$ and $3.2 \, {\rm eV}$ respectively.
[Hannestad:2003jt]
[14-202]
Cosmological parameters and the WMAP data, A. Lewis, arXiv:astro-ph/0310186, 2003. Thinking, Observing and Mining the Universe (Thinking2003) 22-27 Sep 2003, Sorrento, Italy.
[Lewis:2003qm]
[14-203]
Big Bang Nucleosynthesis and neutrinos, F. L. Villante, A. D. Dolgov, arXiv:hep-ph/0310138, 2003. Beyond the Desert '03, Ringberg, 11-15 July 2003.
[Villante:2003jy]
[14-204]
Astrophysical constraints on hypothetical variability of fundamental constants, S. A. Levshakov, Lect. Notes Phys. 648 (2004) 151, arXiv:astro-ph/0309817. 302 WE-Heraeus-Seminar on Astrophysics, Clocks and Fundamental Constants (16-18 June 2003: Bad Honnef, Germany).
[Levshakov:2003fa]
[14-205]
Forensic Cosmology: Probing Baryons and Neutrinos With BBN and the CMB, G. Steigman, arXiv:hep-ph/0309347, 2003. IVth Marseille International Cosmology Conference, 'Where Cosmology and Fundamental Physics Meet'.
[Steigman:2003gy]
[14-206]
The Baryon Budget from BBN and the CBR, G. Steigman, arXiv:astro-ph/0309338, 2003. XVth Rencontres de Blois, Physical Cosmology: New Results in Cosmology and the Coherence of the Standard Model.
[Steigman:2003ey]
[14-207]
The Standard Candle Method for Type II Supernovae and the Hubble Constant, M. Hamuy, Springer Proc.Phys. 99 (2005) 535-541, arXiv:astro-ph/0309122. IAU Colloquium 192, 'Supernovae (10 years of SN1993J)', 22-26 April 2003, Valencia, Spain.
[Hamuy:2003tc]
[14-208]
Dark Energy Present and Future, P. H. Frampton, Aip Conf. Proc. 689 (2003) 197, arXiv:astro-ph/0307071. Fourth Tropical Workshop, Cairns, Australia, June 2003.
[Frampton:2003wb]
[14-209]
CMB Likelihood Functions for Beginners and Experts, A. H. Jaffe, J. R. Bond, P. G. Ferreira, L. E. Knox, AIP Conf. Proc. 476 (1999) 249-365, arXiv:astro-ph/0306506. 3K Cosmology, Rome, Oct 5-10, 1998.
[Jaffe:1999mgj]
[14-210]
Is the Pre-WMAP CMB Data Self-consistent?, C. H. Lineweaver, L. M. Griffiths, New Astron.Rev. (2003), arXiv:astro-ph/0306011. 'The Cosmic Microwave Background and its Polarization'.
[Lineweaver:2003nd]
[14-211]
The Large-Scale Polarization of the Microwave Foreground, A. de Oliveira-Costa et al., New Astron.Rev. (2003), arXiv:astro-ph/0305590. 'The Cosmic Microwave Background and its Polarization'.
[deOliveira-Costa:2003ibc]
[14-212]
Weighting CMB and Galactic synchrotron polarisation, C. Baccigalupi, New Astron. Rev. 47 (2003) 833, arXiv:astro-ph/0305415. CMBnet workshop, 20-21 Feb. 2003, Oxford, UK.
[Baccigalupi:2003ce]
[14-213]
Cosmological constraints in Lambda-CDM and Quintessence paradigms with Archeops, M. Douspis et al. (Archeops), New Astron. Rev. 47 (2003) 755, arXiv:astro-ph/0305392. CMBNET Meeting, 20-21 February 2003, Oxford, UK.
[Douspis:2003za]
[14-214]
The value of the equation of state of dark energy, R. Jimenez, New Astron. Rev. 47 (2003) 761, arXiv:astro-ph/0305368. 2nd CMBNET Meeting, 20-21 February 2003, Oxford, UK.
[Jimenez:2003nz]
[14-215]
Can four neutrinos explain global oscillation data including LSND and cosmology?, M. Maltoni, T. Schwetz, M. A. Tortola, J. W. F. Valle, arXiv:hep-ph/0305312, 2003. NOON 2003 workshop, February 10-14, 2003, Kanazawa, Japan.
[Maltoni:2003yr]
[14-216]
The shape of the CMB power spectrum, C. J. Odman, New Astron. Rev. 47 (2003) 741, arXiv:astro-ph/0305254. CMBNET Meeting, 20-21 February 2003, Oxford, UK.
[Odman:2003ah]
[14-217]
On the possible role of massive neutrinos in cosmological structure formation, M. Lattanzi, R. Ruffini, G. Vereshchagin, Aip Conf. Proc. 668 (2003) 263, arXiv:astro-ph/0305035. Xth Brazilian School of Cosmology and Gravitation.
[Lattanzi:2003ce]
[14-218]
The cosmological constant and the paradigm of adiabaticity, R. Trotta, New Astron. Rev. 47 (2003) 769, arXiv:astro-ph/0304525. 2nd CMBNET Meeting, 20-21 February 2003, Oxford, UK.
[Trotta:2003ng]
[14-219]
The Dawn of Galaxies, P. Madau, M. Kuhlen, arXiv:astro-ph/0303584, 2003. XXI Texas Symposium on Relativistic Astrophysics held on December 9-13 2002.
[Madau:2003ee]
[14-220]
Can we have inflation with $\Omega > 1$?, Andrei Linde, JCAP 0305 (2003) 002, arXiv:astro-ph/0303245. COSMO-01, September 4, 2001, Rovaniemi, Finland.
[Linde:2003hc]
[14-221]
Primordial Nucleosynthesis in the New Cosmology, Richard H. Cyburt, Nucl. Phys. A718 (2003) 380, arXiv:astro-ph/0302453. Cosmos VII.
[Cyburt:2003ic]
[14-222]
Options for cosmology at redshifts above one, Philip D. Mannheim, Aip Conf. Proc. 672 (2003) 47, arXiv:astro-ph/0302362. 'Short distance behavior of fundamental interactions', Coral Gables Conference, December 2002.
[Mannheim:2003xy]
[14-223]
Is the present expansion of the universe really accelerating?, R. G. Vishwakarma, Mon. Not. Roy. Astron. Soc. 345 (2003) 545, arXiv:astro-ph/0302357. IFA-IUCAA workshop.
[Vishwakarma:2003xt]
[14-224]
Kinetic approach to electroweak baryogenesis, Tomislav Prokopec, Kimmo Kainulainen, Michael G. Schmidt, Steffen Weinstock, arXiv:hep-ph/0302192, 2003. International Workshop.
[Prokopec:2003is]
[14-225]
Dark Energy, Expansion History of the Universe, and SNAP, Eric V. Linder, Aip Conf. Proc. 655 (2003) 193, arXiv:astro-ph/0302038. 3rd Tropical Workshop on Particle Physics and Cosmology, August 2002.
[Linder:2003ze]
[14-226]
Cosmological Uses of Gamma-Ray Bursts, S.G. Djorgovski et al., ASP Conf.Ser. (2003), arXiv:astro-ph/0302004. Gamma-Ray Bursts in the Afterglow Era: 3rd Workshop.
[Djorgovski:2003ut]
[14-227]
Relative Standard of Measurement and Supernova Data, David Blaschke, Danilo Behnke, Victor Pervushin, Denis Proskurin, arXiv:astro-ph/0302001, 2003. XVIIIth IAP Colloquium 'On the Nature of Dark Energy', Paris, July 1-5, 2002.
[Blaschke:2003uq]
[14-228]
Cosmology and Life, Mario Livio, arXiv:astro-ph/0301615, 2003. Carnegie Observatories Centennial Symposium II, 'Measuring and Modeling the Universe,' held 12-22 November 2002, Carnegie Observatories, Pasadena, CA, USA.
[Livio:2003jd]
[14-229]
Preheating and Thermalization after Inflation, R. Micha, I. Tkachev, arXiv:hep-ph/0301249, 2003. Workshop on Strong and Electroweak Matter (SEWM 2002), October 2-5, 2002, Heidelberg, Germany.
[Micha:2003ws]
[14-230]
The Lyman-alpha Forest as a Cosmological Tool, David H. Weinberg, Romeel Dav'e, Neal Katz, Juna A. Kollmeier, Aip Conf. Proc. 666 (2003) 157, arXiv:astro-ph/0301186. 'The Emergence of Cosmic Structure,' 13th Annual Astrophysics Conference in Maryland.
[Weinberg:2003eg]
[14-231]
Cosmology in a brane-universe, David Langlois, Astrophys. Space Sci. 283 (2003) 469, arXiv:astro-ph/0301022. JENAM 2002 workshop on 'The cosmology of extra dimensions and varying fundamental constants', Porto, Portugal, September 2002.
[Langlois:2003yy]
[14-232]
Cosmology with an extra-dimension, David Langlois, arXiv:astro-ph/0301021, 2003. XXXVIIth Rencontres de Moriond, 'The Cosmological Model', Les Arcs, France, March 2002.
[Langlois:2003yx]
[14-233]
Halo Substructure and the Power Spectrum, Andrew R. Zentner, James S. Bullock, Aip Conf. Proc. 666 (2003) 151, arXiv:astro-ph/0212339. 13th Annual Astrophysics Conference in Maryland, The Emergence of Cosmic Structure.
[Zentner:2002kb]
[14-234]
The bias of galaxies and the density of the universe from the 2dF galaxy redshift survey, Licia Verde, Alan F. Heavens, Will J. Percival, Sabino Matarrese, arXiv:astro-ph/0212311, 2002. XXXVIIth Rencontres de Moriond, March 16-23, 2002.
[Verde:2002ed]
[14-235]
The Cosmic Microwave Background, Joseph Silk, Annales Henri Poincare 4 (2003) S275, arXiv:astro-ph/0212305. TH-2002, UNESCO, Paris, July 22-26, 2002.
[Silk:2002dx]
[14-236]
Constraints on dark energy and quintessence with a comoving standard ruler applied to 2dF quasars, Gary A. Mamon, Boud F. Roukema, arXiv:astro-ph/0212169, 2002.
[Mamon:2002rt]
[14-237]
Inflationary cosmology, a dissipative quantum field theory process, Arjun Berera, Nucl. Phys. Proc. Suppl. 117 (2003) 135-138, arXiv:hep-ph/0212144. ICHEP2002.
[Berera:2002ek]
[14-238]
Seven problems related to the determination of the primordial helium abundance, Manuel Peimbert, Antonio Peimbert, Valentina Luridiana, Maria Teresa Ruiz, ASP Conf.Ser. 297 (2003) 81, arXiv:astro-ph/0211497. Star Formation through Time (ASP Conference Series).
[Peimbert:2002ks]
[14-239]
Cosmological Matter-Antimatter Asymmetry and Antimatter in the Universe, A.D. Dolgov, arXiv:hep-ph/0211260, 2002. XIVth Rencontres de Blois 2002 on Matter-Antimatter Asymmetry, Blois, France, June, 2002.
[Dolgov:2002kw]
[14-240]
Exploring dark energy using the Statefinder, Varun Sahni, arXiv:astro-ph/0211084, 2002. XVIII'th IAP Colloquium `On the Nature of Dark Energy', IAP Paris, July 1 - 5.
[Sahni:2002yq]
[14-241]
Inflation, quantum cosmology and the anthropic principle, Andrei Linde, arXiv:hep-th/0211048, 2002. 'Science and Ultimate Reality: From Quantum to Cosmos', honoring John Wheeler's 90th birthday.
[Linde:2002gj]
[14-242]
Synchronised neutrino oscillations from self interaction and associated applications, Y. Y. Y. Wong, Aip Conf. Proc. 655 (2003) 240, arXiv:hep-ph/0211045. 3rd Topical Workshop on Particle Physics and Cosmology: Neutrinos, Branes and Cosmology, San Juan, Puerto Rico, 19-24 Aug 2002.
[Wong:2002sc]
[14-243]
The Line Elements in the Hubble Expansion, Moshe Carmeli, arXiv:astro-ph/0211043, 2002. ERE2002, Menorca, Spain, 22-24 September 2002.
[Carmeli:2002bt]
[14-244]
Scalar fields and cosmological attractor solutions, F. Rosati, arXiv:astro-ph/0210445, 2002. XVIII IAP Colloquium `On the nature of dark energy', Paris, 1-5 July 2002.
[Rosati:2002xy]
[14-245]
Gamma-Ray Bursts as a Probe of Cosmology, Donald Q. Lamb, Aip Conf. Proc. 662 (2003) 433, arXiv:astro-ph/0210434. AIP proc. 'Gamma-Ray Burst and Afterglow Astronomy 2001' Woods Hole, Massachusetts.
[Lamb:2002vq]
[14-246]
Formation and Evolution of Disk Galaxies, Joseph Silk, Astrophys. Space Sci. 284 (2003) 663, arXiv:astro-ph/0210371. The Evolution of Galaxies. III: From simple approaches to self-consistent models (Kiel, Gemany, July 2002).
[Silk:2002ud]
[14-247]
New Views of Cosmology and the Microworld, Marc Kamionkowski, eConf C020805 (2002) TF04, arXiv:hep-ph/0210370. Secrets of the B meson, XXX SLAC Summer Institute, August 2002 (SSI02); ICHEP02, 31st International Conference on High Energy Physics, Amsterdam, July 2002.
[Kamionkowski:2002pc]
[14-248]
What If w < -1 ?, Brett McInnes, arXiv:astro-ph/0210321, 2002. XVIIIth IAP Colloquium 'On the Nature of Dark Energy', Paris, July 2002.
[McInnes:2002qw]
[14-249]
First Light and the Reionization of the Universe, Piero Madau, arXiv:astro-ph/0210268, 2002. ESO-CERN-ESA Symposium on Astronomy, Cosmology, and Fundamental Physics, March 4-7 2002, Garching, Germany.
[Madau:2002jx]
[14-250]
Dark energy effects in the Cosmic Microwave Background Radiation, P.S. Corasaniti, arXiv:astro-ph/0210257, 2002. XVIII IAP Colloquium `On the nature of dark energy', Paris, 1-5 July 2002.
[Corasaniti:2002hd]
[14-251]
Back Reaction of Cosmological Perturbations and the Cosmological Constant Problem, Robert H. Brandenberger, arXiv:hep-th/0210165, 2002. XVIII'th IAP Colloquium `On the Nature of Dark Energy', IAP Paris, July 1 - 5, 2002.
[Brandenberger:2002sk]
[14-252]
Cosmic Magnification, Brice Menard, arXiv:astro-ph/0210142, 2002. SF2A-2002, Paris.
[Menard:2002rm]
[14-253]
Antimatter regions in the baryon-dominated Universe, Alexander S. Sakharov Maxim Yu. Khlopov, Sergei G. Rubin, arXiv:hep-ph/0210012, 2002. XIVth Rencontres de Blois 2002 on Matter-Antimatter Asymmetry, Blois, France, June, 2002.
[Khlopov:2002ww]
[14-254]
Accelerated expansion without dark energy, Dominik J. Schwarz, arXiv:astro-ph/0209584, 2002. 'On the nature of dark energy: Observational and theoretical results on the accelerating universe', Institut d'Astrophysique de Paris, France, July 1 - 5, 2002.
[Schwarz:2002ba]
[14-255]
The primordial Helium abundance, V. Luridiana, arXiv:astro-ph/0209177, 2002. 37th Rencontres de Moriond on the Cosmological Model, Les Arcs, France, 16-23 Mar 2002.
[Luridiana:2002ra]
[14-256]
Large-Scale Structure from Galaxy and Cluster Surveys, L. Guzzo, arXiv:astro-ph/0207285, 2002. DARK2002, 4th Heidelberg Int. Conference on Dark Matter in Astro- and Particle Physics, (Cape Town, February 2002).
[Guzzo:2002wi]
[14-257]
CP violation and cosmology, Alexander Kusenko, arXiv:hep-ph/0207028, 2002. Flavor Physics and CP violation (FPCP), Philadelphia, May 2002.
[Kusenko:2002ep]
[14-258]
Globular Clusters and Galaxy Formation, Duncan A. Forbes, Rev.Mex.Astron.Astrof.Ser.Conf. 17 (2003) 136, arXiv:astro-ph/0206347. Galaxy Evolution: Theory and Observations, ed. V. Avila-Reese, C. Firmani, C. Frenk, C. Allen, RevMexAA.
[Forbes:2002hr]
[14-259]
Status of cold dark matter cosmology, Joel R. Primack, Nucl. Phys. Proc. Suppl. 124 (2003) 3, arXiv:astro-ph/0205391. 5th International UCLA Symposium on Sources and Detection of Dark Matter, Marina del Rey, February 2002.
[Primack:2002th]
[14-260]
Absolute neutrino masses: physics beyond SM, double beta decay and cosmic rays, T. J. Weiler H. Pas, arXiv:hep-ph/0205191, 2002. Talk given by H. Paes at the NOON2001 workshop, ICRR, University of Tokyo, Kashiwa, Japan.
[Pas:2002ff]
[14-261]
Measuring the baryon content of the universe: BBN vs CMB, Subir Sarkar, Phys. Rev. D86 (2012) 066004, arXiv:astro-ph/0205116. XIII Recontres de Blois 'Frontiers of the Universe', 17-23 June 2001.
[Anchordoqui:2012wt]
[14-262]
Leptogenesis and Low Energy CP Violation, M. N. Rebelo G. C. Branco, T. Morozumi, B. M. Nobre, arXiv:hep-ph/0204189, 2002. Talk given at the RTN meeting : 'Across the Present Energy Frontier : Probing the Origin of Mass', Corfu, Greece, 10 September- 13 September 2001.
[Branco:2002ws]
[14-263]
Leptogenesis with Majorana neutrinos, E. A. Paschos, Nucl. Phys. Proc. Suppl. 112 (2002) 36-41, arXiv:hep-ph/0204137. Contributed to 1st Workshop on Neutrino - Nucleus Interactions in the Few GeV Region (NuInt01), Tsukuba, Japan, 13-16 Dec 2001.
[Paschos:2002ma]
[14-264]
Dark 2002 and Beyond, John Ellis, arXiv:astro-ph/0204059, 2002. DARK 2002: 4th International Heidelberg Conference on Dark Matter in Astro and Particle Physics, 4-9 Feb 2002, Cape Town, South Africa.
[Ellis:2002qd]
[14-265]
Neutrinos and big bang nucleosynthesis, A. D. Dolgov, Nuovo Cim. 117B (2003) 1081, arXiv:hep-ph/0203164.
[Dolgov:2002bp]
[14-266]
Neutrino properties from the 2dF Galaxy Redshift Survey, O. Elgaroy, 2002. Workshop on Neutrino News from the Lab and the Cosmos, Fermilab, October 17 - 19, 2002. http://www-astro-theory.fnal.gov/Conferences/NuCosmo/talks/Elgaroy.pdf.
[Elgaroy-talk:2002a]
[14-267]
The cosmological information on neutrino mixing, Pasquale Di Bari, PoS HEP2001 (2001) hep2001/214, arXiv:hep-ph/0111056. Talk given at International Europhysics Conference on High-Energy Physics (HEP 2001), Budapest, Hungary, 12-18 Jul 2001.
[DiBari:2001qd]
[14-268]
Primordial Nucleosynthesis, Cosmic Microwave Background and Neutrinos, G. Mangano, A. Melchiorri, O. Pisanti, Nucl. Phys. Proc. Suppl. 100 (2001) 369-371, arXiv:astro-ph/0012291.
[Mangano:2000mc]
[14-269]
Particle physics, astrophysics and cosmology with forbidden neutrinos, R. J. Lindebaum, G. B. Tupper, R. D. Viollier, arXiv:astro-ph/9906004, 1999. 17th International Workshop on Weak Interactions and Neutrinos (WIN'99), Cape Town, South Africa, 24-30 Jan 1999.
[Lindebaum:1999gk]
[14-270]
Cosmological implications of neutrinos, Subir Sarkar, Nucl. Phys. Proc. Suppl. 66 (1998) 168-180, arXiv:hep-ph/9710273.
[Sarkar:1997ki]
[14-271]
Neutrino mass and galaxy formation, A. S. Szalay, J. R.Bond, 1983. IAU Symp. 104: Early Evolution of the Universe and its Present Structure. http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1983IAUS..104..307S&db_key=AST.
[1983IAUS-104-307S]

15 - Phenomenology - Neutrino Mixing

[15-1]
Neutrino-anti-neutrino instability in dense neutrino systems, with applications to the early universe and to supernovae, R. F. Sawyer, arXiv:2206.09290, 2022.
[Sawyer:2022ugt]
[15-2]
Neutrino collective effects during their decoupling era in the early universe, Raymond F. Sawyer, arXiv:2104.02771, 2021.
[Sawyer:2021elz]
[15-3]
Neutrino flavor mixing breaks isotropy in the early universe, Rasmus S. L. Hansen, Shashank Shalgar, Irene Tamborra, JCAP 07 (2021) 017, arXiv:2012.03948.
[Hansen:2020vgm]
[15-4]
Quantum Kinetic Equilibrium, Chad T. Kishimoto, Heather Hodlin, Olexiy Dvornikov, arXiv:2011.11237, 2020.
[Kishimoto:2020qka]
[15-5]
Neutrino refractive effects during their decoupling era in the early universe, R. F. Sawyer, arXiv:2011.05456, 2020.
[Sawyer:2020goq]
[15-6]
Strange mechanics of the neutrino flavor pendulum, Lucas Johns, George M. Fuller, Phys.Rev. D97 (2018) 023020, arXiv:1709.00518.
[Johns:2017oky]
[15-7]
Effect of collisions on neutrino flavor inhomogeneity in the early universe, Vincenzo Cirigliano, Mark W. Paris, Shashank Shalgar, Phys.Lett. B774 (2017) 258-267, arXiv:1706.07052.
[Cirigliano:2017hmk]
[15-8]
GeV-scale hot sterile neutrino oscillations: a derivation of evolution equations, J. Ghiglieri, M. Laine, JHEP 1705 (2017) 132, arXiv:1703.06087.
[Ghiglieri:2017gjz]
[15-9]
Neutrino flavor transformation in the lepton-asymmetric universe, Lucas Johns, Mattia Mina, Vincenzo Cirigliano, Mark W. Paris, George M. Fuller, Phys. Rev. D94 (2016) 083505, arXiv:1608.01336.
[Johns:2016enc]
[15-10]
Active-sterile neutrino oscillations in the early Universe with full collision terms, Steen Hannestad, Rasmus Sloth Hansen, Thomas Tram, Yvonne Y. Y. Wong, JCAP 1508 (2015) 019, arXiv:1506.05266.
[Hannestad:2015tea]
[15-11]
Revisiting cosmological bounds on sterile neutrinos, Aaron C. Vincent, Enrique Fernandez Martinez, Pilar Hernandez, Massimiliano Lattanzi, Olga Mena, JCAP 1504 (2015) 006, arXiv:1408.1956.
[Vincent:2014rja]
[15-12]
Kinetic theory and evolution of cosmological fluctuations with neutrino number asymmetry, Manuel Valle, Phys. Rev. D88 (2013) 041304, arXiv:1307.0392.
[Valle:2013aia]
[15-13]
Can active-sterile neutrino oscillations lead to chaotic behavior of the cosmological lepton asymmetry?, Steen Hannestad, Rasmus Sloth Hansen, Thomas Tram, JCAP 1304 (2013) 032, arXiv:1302.7279.
[Hannestad:2013pha]
[15-14]
Multi-momentum and multi-flavour active-sterile neutrino oscillations in the early universe: role of neutrino asymmetries and effects on nucleosynthesis, Ninetta Saviano et al., Phys. Rev. D87 (2013) 073006, arXiv:1302.1200.
[Saviano:2013ktj]
[15-15]
Light sterile neutrino production in the early universe with dynamical neutrino asymmetries, Alessandro Mirizzi, Ninetta Saviano, Gennaro Miele, Pasquale Dario Serpico, Phys. Rev. D86 (2012) 053009, arXiv:1206.1046.
[Mirizzi:2012we]
[15-16]
Thermalisation of light sterile neutrinos in the early universe, Steen Hannestad, Irene Tamborra, Thomas Tram, JCAP 1207 (2012) 025, arXiv:1204.5861.
[Hannestad:2012ky]
[15-17]
Cosmological neutrino entropy changes due to flavor statistical mixing, Alex E. Bernardini, Europhys.Lett. 103 (2013) 30005, arXiv:1204.1504.
[Bernardini:2012uc]
[15-18]
Resonant Flavor Oscillations in Electroweak Baryogenesis, Vincenzo Cirigliano, Christopher Lee, Sean Tulin, Phys. Rev. D84 (2011) 056006, arXiv:1106.0747.
[Cirigliano:2011di]
[15-19]
Chaos, Determinacy and Fractals in Active-Sterile Neutrino Oscillations in the Early Universe, Kevork N. Abazajian, Prateek Agrawal, JCAP 0810 (2008) 006, arXiv:0807.0456.
[Abazajian:2008dz]
[15-20]
Lepton Number-Driven Sterile Neutrino Production in the Early Universe, Chad T. Kishimoto, George M. Fuller, Phys. Rev. D78 (2008) 023524, arXiv:0802.3377.
[Kishimoto:2008ic]
[15-21]
The effect of primordial fluctuations on neutrino oscillations, N. P. Harries, arXiv:0801.3742, 2008.
[Harries:2008je]
[15-22]
Non equilibrium dynamics of mixing, oscillations and equilibration: a model study, D. Boyanovsky, C. M. Ho, Phys. Rev. D75 (2007) 085004, arXiv:hep-ph/0610036.
[Boyanovsky:2006yg]
[15-23]
Self-induced conversion in dense neutrino gases: Pendulum in flavour space, S. Hannestad, G.G. Raffelt, G. Sigl, Y.Y.Y. Wong, Phys. Rev. D74 (2006) 105010, arXiv:astro-ph/0608695.
[Hannestad:2006nj]
[15-24]
Sterile neutrinos, lepton asymmetries, primordial elements: how much of each?, Yi-Zen Chu, Marco Cirelli, Phys. Rev. D74 (2006) 085015, arXiv:astro-ph/0608206.
[Chu:2006ua]
[15-25]
Relaxed constraints on neutrino oscillation parameters, Daniela P. Kirilova, Mariana P. Panayotova, JCAP 0612 (2006) 014, arXiv:astro-ph/0608103.
[Kirilova:2006wh]
[15-26]
Coherent Active-Sterile Neutrino Flavor Transformation in the Early Universe, Chad T. Kishimoto, George M. Fuller, Christel J. Smith, Phys. Rev. Lett. 97 (2006) 141301, arXiv:astro-ph/0607403.
[Kishimoto:2006zk]
[15-27]
Relic neutrino asymmetry evolution from first principles, Nicole F. Bell, Raymond R. Volkas, Yvonne Y.Y. Wong, Phys. Rev. D59 (1999) 113001, arXiv:hep-ph/9809363.
[Bell:1998ds]

16 - Phenomenology - Neutrino Mixing - Talks

[16-1]
Lepton Asymmetry and Neutrino Oscillations Interplay, Daniela Kirilova, Hyperfine Interact. 215 (2013) 111-118, arXiv:1302.2923. 5th International Symposium on Symmetries in Subatomic Physics, Groningen, The Netherlands, 2012.
[Kirilova:2013aja]

17 - Phenomenology - Neutrino Decay

[17-1]
Constraining invisible neutrino decays with the cosmic microwave background, Steen Hannestad, Georg Raffelt, Phys. Rev. D72 (2005) 103514, arXiv:hep-ph/0509278.
[Hannestad:2005ex]
[17-2]
Probing neutrino properties with the cosmic microwave background, Robert E. Lopez, Phys. Rev.D (1999), arXiv:astro-ph/9909414.
[Lopez:1999ur]
[17-3]
Improved treatment of cosmic microwave background fluctuations induced by a late decaying massive neutrino, Manoj Kaplinghat, Robert E. Lopez, Scott Dodelson, Robert J. Scherrer, Phys. Rev. D60 (1999) 123508, arXiv:astro-ph/9907388.
[Kaplinghat:1999xy]
[17-4]
Probing neutrino decays with the cosmic microwave background, Steen Hannestad, Phys. Rev. D59 (1999) 125020, arXiv:astro-ph/9903475.
[Hannestad:1999xy]
[17-5]
Probing unstable massive neutrinos with current cosmic microwave background observations, Robert E. Lopez, Scott Dodelson, Robert J. Scherrer, Michael S. Turner, Phys. Rev. Lett. 81 (1998) 3075-3078, arXiv:astro-ph/9806116.
[Lopez:1998jt]
[17-6]
Constraining neutrino decays with CMBR data, Steen Hannestad, Phys.Lett. B431 (1998) 363-367, arXiv:astro-ph/9804075.
[Hannestad:1998cv]
[17-7]
An updated precision estimate of the Hubble constant and the age and density of the universe in the decaying neutrino theory, D. W. Sciama, Mon.Not.Roy.Astron.Soc. (1997), arXiv:astro-ph/9703068.
[Sciama:1997kg]
[17-8]
Theoretical possibilities and observational constraints for radiatively decaying neutrinos with mass near 30-eV, S. Bowyer, M. Lampton, J. T. Peltoniemi, M. Roos, Phys. Rev. D52 (1995) 3214-3225.
[Bowyer:1994by]
[17-9]
Structure formation with decaying neutrinos, Martin J. White, G. Gelmini, J. Silk, Phys. Rev. D51 (1995) 2669-2676, arXiv:astro-ph/9411098.
[White:1994as]
[17-10]
Dark matter and structure formation with late decaying particles, Hang Bae Kim, Jihn E. Kim, Nucl. Phys. B433 (1995) 421-434, arXiv:hep-ph/9405385.
[Kim:1994ub]
[17-11]
Is a massive tau-neutrino just what cold dark matter needs?, Scott Dodelson, Geza Gyuk, Michael S. Turner, Phys. Rev. Lett. 72 (1994) 3754-3757, arXiv:astro-ph/9402028.
[Dodelson:1994it]
[17-12]
Primordial nucleosynthesis with a decaying tau-neutrino, Scott Dodelson, Geza Gyuk, Michael S. Turner, Phys. Rev. D49 (1994) 5068-5079, arXiv:astro-ph/9312062.
[Dodelson:1993ms]
[17-13]
The Formation of cosmic structure with a 17-KeV neutrino, J.R. Bond, G. Efstathiou, Phys.Lett. B265 (1991) 245-250.
[Bond:1991jj]
[17-14]
Precision estimate of cosmological and particle parameters in the decaying dark matter hypothesis, D. W. Sciama, Phys. Rev. Lett. 65 (1990) 2839-2841.
[Sciama:1990as]

18 - Phenomenology - Lepton Asymmetry

[18-1]
Cosmological lepton asymmetry with a nonzero mixing angle $\theta_{13}$, Emanuele Castorina et al., Phys. Rev. D86 (2012) 023517, arXiv:1204.2510.
[Castorina:2012md]
[18-2]
Constraining The Universal Lepton Asymmetry, Vimal Simha, Gary Steigman, JCAP 0808 (2008) 011, arXiv:0806.0179.
[Simha:2008mt]
[18-3]
Lepton asymmetry in the primordial gravitational wave spectrum, Kiyotomo Ichiki, Masahide Yamaguchi, Jun'Ichi Yokoyama, Phys. Rev. D75 (2007) 084017, arXiv:hep-ph/0611121.
[Ichiki:2006rn]
[18-4]
Light Element Signatures of Sterile Neutrinos and Cosmological Lepton Numbers, Christel J. Smith, George M. Fuller, Chad T. Kishimoto, Kevork N. Abazajian, Phys. Rev. D74 (2006) 085008, arXiv:astro-ph/0608377.
[Smith:2006uw]
[18-5]
Lepton asymmetry and primordial nucleosynthesis in the era of precision cosmology, Pasquale D. Serpico, Georg G. Raffelt, Phys. Rev. D71 (2005) 127301, arXiv:astro-ph/0506162.
[Serpico:2005bc]
[18-6]
Neutrino asymmetry around black holes: Neutrinos interact with gravity, Banibrata Mukhopadhyay, Mod. Phys. Lett. A20 (2005) 2145, arXiv:astro-ph/0505460.
[Mukhopadhyay:2005gb]
[18-7]
The small mixing angle $\theta_{13}$ and the lepton asymmetry, Song-Haeng Lee, Kim Siyeon, Phys. Rev. D71 (2005) 096006, arXiv:hep-ph/0503217.
[Lee:2005cda]
[18-8]
Cosmological Lepton Asymmetry, Primordial Nucleosynthesis, and Sterile Neutrinos, Kevork Abazajian, Nicole F. Bell, George M. Fuller, Yvonne Y. Y. Wong, Phys. Rev. D72 (2005) 063004, arXiv:astro-ph/0410175.
[Abazajian:2004aj]
[18-9]
Do neutrino flavor oscillations forbid large lepton asymmetry of the universe ?, A.D. Dolgov, Fuminobu Takahashi, Nucl. Phys. B688 (2004) 189, arXiv:hep-ph/0402066.
[Dolgov:2004jw]
[18-10]
Neutrino asymmetry in presence of gravitational interaction, Banibrata Mukhopadhyay, arXiv:gr-qc/0401095, 2004.
[Mukhopadhyay:2004jv]
[18-11]
Hiding relativistic degrees of freedom in the early universe, V. Barger, James P. Kneller, Paul Langacker, Danny Marfatia, Gary Steigman, Phys. Lett. B569 (2003) 123, arXiv:hep-ph/0306061.
[Barger:2003rt]
[18-12]
Stringent constraints on cosmological neutrino antineutrino asymmetries from synchronized flavor transformation, Kevork N. Abazajian, J. F. Beacom, Nicole F. Bell, Phys. Rev. D66 (2002) 013008, arXiv:astro-ph/0203442.
[Abazajian:2002qx]
[18-13]
Analytical treatment of neutrino asymmetry equilibration from flavour oscillations in the early universe, Yvonne Y. Y. Wong, Phys. Rev. D66 (2002) 025015, arXiv:hep-ph/0203180.
[Wong:2002fa]
[18-14]
Cosmological bounds on neutrino degeneracy improved by flavor oscillations, A. D. Dolgov et al., Nucl. Phys. B632 (2002) 363-382, arXiv:hep-ph/0201287.
[Dolgov:2002ab]
[18-15]
Active-sterile neutrino oscillations in the early universe: Asymmetry generation at low $|\delta{m}^2|$ and the Landau-Zener approximation, P. Di Bari, R. Foot, Phys. Rev. D65 (2002) 045003, arXiv:hep-ph/0103192.
[DiBari:2001jk]
[18-16]
Creation of large spatial fluctuations in neutrino asymmetry by neutrino oscillations, Kari Enqvist, Kimmo Kainulainen, Antti Sorri, JHEP 04 (2001) 012, arXiv:hep-ph/0012291.
[Enqvist:2000rd]
[18-17]
High-energy neutrino conversion and the lepton asymmetry in the universe, C. Lunardini, A. Yu. Smirnov, Phys. Rev. D64 (2001) 073006, arXiv:hep-ph/0012056.
[Lunardini:2000fy]
[18-18]
Active-sterile neutrino oscillations and BBN + CMBR constraints, P. Di Bari, R. Foot, Phys. Rev. D63 (2001) 043008, arXiv:hep-ph/0008258.
[DiBari:2000wd]
[18-19]
Comment on 'Neutrino oscillations in the early universe: How can large lepton asymmetry be generated?', P. Di Bari, R. Foot, R. R. Volkas, Y. Y. Y. Wong, Astropart. Phys. 15 (2001) 391-412, arXiv:hep-ph/0008245.
[DiBari:2000tj]
[18-20]
On the sign of the neutrino asymmetry induced by active- sterile neutrino oscillations in the early universe, P. Di Bari, R. Foot, Phys. Rev. D61 (2000) 105012, arXiv:hep-ph/9912215.
[DiBari:1999vg]
[18-21]
Neutrino oscillations in the early universe: How large lepton asymmetry can be generated?, A. D. Dolgov, S. H. Hansen, S. Pastor, D. V. Semikoz, Astropart. Phys. 14 (2000) 79-90, arXiv:hep-ph/9910444.
[Dolgov:1999wv]
[18-22]
Comments regarding 'On neutrino-mixing-generated lepton asymmetry and the primordial helium-4 abundance', Xiang-dong Shi, George M. Fuller, Kevork Abazajian, arXiv:astro-ph/9909221, 1999.
[Shi:1999bc]
[18-23]
Detailed study of BBN implications of neutrino oscillation generated neutrino asymmetries in some four neutrino models, R. Foot, Phys. Rev. D61 (2000) 023516, arXiv:hep-ph/9906311.
[Foot:1999fc]
[18-24]
Neutrino-mixing-generated lepton asymmetry and the primordial He-4 abundance, X. Shi, G. M. Fuller, K. Abazajian, Phys. Rev. D60 (1999) 063002, arXiv:astro-ph/9905259.
[Shi:1999kg]
[18-25]
Relic neutrino asymmetries and big bang nucleosynthesis in a four neutrino model, N. F. Bell, R. Foot, R. R. Volkas, Phys. Rev. D58 (1998) 105010, arXiv:hep-ph/9805259.
[Bell:1998sr]
[18-26]
Big bang nucleosynthesis and lepton number asymmetry in the universe, K. Kohri, M. Kawasaki, Katsuhiko Sato, Astrophys. J. 490 (1997) 72-75, arXiv:astro-ph/9612237.
[Kohri:1996ke]
[18-27]
Studies of neutrino asymmetries generated by ordinary sterile neutrino oscillations in the early universe and implications for big bang nucleosynthesis bounds, R. Foot, R. R. Volkas, Phys. Rev. D55 (1997) 5147-5176, arXiv:hep-ph/9610229.
[Foot:1996qc]
[18-28]
Large neutrino asymmetries from neutrino oscillations, R. Foot, Mark J. Thomson, R. R. Volkas, Phys. Rev. D53 (1996) 5349-5353, arXiv:hep-ph/9509327.
[Foot:1995qk]
[18-29]
Reconciling sterile neutrinos with big bang nucleosynthesis, Robert Foot, R. R. Volkas, Phys. Rev. Lett. 75 (1995) 4350, arXiv:hep-ph/9508275.
[Foot:1995bm]
[18-30]
Cosmological constraints on neutrino degeneracy, Ho-Shik Kang, Gary Steigman, Nucl. Phys. B372 (1992) 494-520.
[Kang:1991xa]
[18-31]
Neutrino degeneracy and cosmological nucleosynthesis, revisited, Keith A. Olive, David N. Schramm, David Thomas, Terry P. Walker, Phys. Lett. B265 (1991) 239-244.
[Olive:1991ru]
[18-32]
Neutrino oscillations and the leptonic charge of the universe, Martin J. Savage, Robert A. Malaney, George M. Fuller, Astrophys. J. 368 (1991) 1-11.
[Savage:1990by]
[18-33]
Lepton and baryon number asymmetry of the universe and primordial nucleosynthesis, Nobuo Terasawa, Katsuhiko Sato, Prog. Theor. Phys. 80 (1988) 468.
[Terasawa:1987nc]
[18-34]
Constraints on baryon and lepton number asymmetries of the early universe from primordial nucleosynthesis, N. Terasawa, K. Sato, Prog. Theor. Phys. 72 (1984) 1262-1265.
[Terasawa:1984rbe]
[18-35]
More on big-bang nucleosynthesis with nonzero lepton numbers, G. Beaudet, A. Yahil, Astrophys. J. 218 (1977) 253-262.
[Beaudet-Yahil-APJ218-253-1977]
[18-36]
Leptonic numbers and the neutron to proton ratio in the hot big bang model, G. Beaudet, P. Goret, Astron. Astrophys. 49 (1976) 415-419.
[Beaudet-Goret-1976]
[18-37]
Big-Bang Nucleosynthesis with nonzero lepton numbers, A. Yahil, G. Beaudet, Astrophys. J. 206 (1976) 26-29.
[Yahil:1976va]
[18-38]
Densities of baryons and neutrinos in the universe from an analysis of big-bang nucleosynthesis, H. Reeves, Phys. Rev. D6 (1972) 3363-3368.
[Reeves:1972mrn]

19 - Phenomenology - Lepton Asymmetry - Talks

[19-1]
Generation of the relic neutrino asymmetry in a hot plasma of the early Universe, Victor B. Semikoz, Maxim Dvornikov, Int.J.Mod.Phys. D27 (2018) 1841008, arXiv:1712.06565. 3rd International Conference on Particle Physics and Astrophysics ICPPA-2017 (October 2-5, 2017, Moscow, Russia).
[Semikoz:2017yyd]
[19-2]
Suppressed neutrino oscillations and large lepton asymmetries, A.D. Dolgov, Fuminobu Takahashi, arXiv:hep-ph/0409299, 2004. 12th International Conference on Supersymmetry and Unification of Fundamental Interactions (SUSY 2004), Tsukuba, Japan, June 17-23, 2004.
[Dolgov:2004kf]
[19-3]
Effect of neutrino asymmetry on the estimation of cosmological parameters, Massimiliano Lattanzi, Nuovo Cim. B120 (2005) 1123, arXiv:astro-ph/0402429. 8th Italian-Korean Symposium for Relativistic Astrophysics.
[Lattanzi:2004qt]
[19-4]
The Cosmological Energy Density of Neutrinos from Oscillation Measurements, Kevork Abazajian, Aip Conf. Proc. 721 (2004) 256, arXiv:hep-ph/0312163. NuFact 03, 5th International Workshop on Neutrino Factories and Superbeams, 5-11 June 2003, Columbia University, New York.
[Abazajian:2003gi]

20 - Phenomenology - Relic Neutrinos

[20-1]
Tunneling away the relic neutrino asymmetry, Saarik Kalia, arXiv:2404.11664, 2024.
[Kalia:2024xeq]
[20-2]
Local clustering of relic neutrinos: Comparison of kinetic field theory and the Vlasov equation, Emil Brinch Holm, Stefan Zentarra, Isabel M. Oldengott, arXiv:2404.11295, 2024.
[Holm:2024zpr]
[20-3]
Constraints on the Cosmic Neutrino Background from NGC 1068, Jack Franklin, Ivan Martinez-Soler, Yuber F. Perez-Gonzalez, Jessica Turner, arXiv:2404.02202, 2024.
[Franklin:2024enc]
[20-4]
Cosmic Neutrino Decoupling and its Observable Imprints: Insights from Entropic-Dual Transport, J. Richard Bond, George M. Fuller, Evan Grohs, Joel Meyers, Matthew James Wilson, arXiv:2403.19038, 2024.
[Bond:2024ivb]
[20-5]
Impact of the cosmic neutrino background on long-range force searches, Garv Chauhan, Xun-Jie Xu, arXiv:2403.09783, 2024.
[Chauhan:2024qew]
[20-6]
The Density of Relic Neutrinos Near the Surface of Earth, Andrei Gruzinov, Mehrdad Mirbabayi, arXiv:2403.03152, 2024.
[Gruzinov:2024ciz]
[20-7]
Towards a precision calculation of $N_{\rm eff}$ in the Standard Model III: Improved estimate of NLO corrections to the collision integral, Marco Drewes, Yannis Georis, Michael Klasen, Luca Paolo Wiggering, Yvonne Y. Y. Wong, arXiv:2402.18481, 2024.
[Drewes:2024wbw]
[20-8]
Upper Limits on the Cosmic Neutrino Background from Cosmic Rays, Mar Ciscar-Monsalvatje, Gonzalo Herrera, Ian M. Shoemaker, arXiv:2402.00985, 2024.
[Ciscar-Monsalvatje:2024tvm]
[20-9]
Wake Forces, Ken Van Tilburg, arXiv:2401.08745, 2024.
[VanTilburg:2024tst]
[20-10]
Neutrino-antineutrino Asymmetry of C$\nu$B on the Surface of the Round Earth, Guo-yuan Huang, arXiv:2401.07347, 2024.
[Huang:2024tog]
[20-11]
Imprints of light dark matter on the evolution of cosmic neutrinos, Isaac R. Wang, Xun-Jie Xu, arXiv:2312.17151, 2023.
[Wang:2023csv]
[20-12]
Measuring neutrino mass and asymmetry with matter pairwise velocities, Wangzheng Zhang, Ming-chung Chu, Rui Hu, Shihong Liao, Shek Yeung, Mon.Not.Roy.Astron.Soc. 529 (2024) 360, arXiv:2312.04278.
[Zhang:2023otn]
[20-13]
Relic neutrino decay solution to the excess radio background, P. S. Bhupal Dev, Pasquale Di Bari, Ivan Martinez-Soler, Rishav Roshan, JCAP 04 (2024) 046, arXiv:2312.03082.
[Dev:2023wel]
[20-14]
Cosmic-Enu: An emulator for the non-linear neutrino power spectrum, Amol Upadhye, Juliana Kwan, Ian G. McCarthy, Jaime Salcido, Kelly R. Moran, Earl Lawrence, Yvonne Y. Y. Wong, Mon.Not.Roy.Astron.Soc. 530 (2024) 743-760, arXiv:2311.11240.
[Upadhye:2023bgx]
[20-15]
Elucidating the impact of massive neutrinos on halo assembly bias, Yunjia Song, Ying Zu, arXiv:2311.07650, 2023.
[Song:2023aue]
[20-16]
Spin-Flavor Oscillations of Relic Neutrinos in Primordial Magnetic Field, Ashutosh Kumar Alok, Trambak Jyoti Chall, Neetu Raj Singh Chundawat, Arindam Mandal, Phys.Rev.D 109 (2024) 055011, arXiv:2311.04087.
[Alok:2023sfr]
[20-17]
Cosmological Implications of Gauged $U(1)_{B-L}$ on $\Delta N_{m eff}$ in the CMB and BBN, Haidar Esseili, Graham D. Kribs, arXiv:2308.07955, 2023.
[Esseili:2023ldf]
[20-18]
From Dirac to Majorana: the Cosmic Neutrino Background capture rate in the minimally extended Standard Model, Yuber F. Perez-Gonzalez, Manibrata Sen, Phys.Rev.D 109 (2024) 023022, arXiv:2308.05147.
[Perez-Gonzalez:2023llw]
[20-19]
Neutrino winds on the sky, Caio Nascimento, Marilena Loverde, JCAP 11 (2023) 036, arXiv:2307.00049.
[Nascimento:2023ezc]
[20-20]
Influence of local structure on relic neutrino abundances and anisotropies, Fabian Zimmer, Camila A. Correa, Shin'ichiro Ando, JCAP 11 (2023) 038, arXiv:2306.16444.
[Zimmer:2023jbb]
[20-21]
Unveiling Neutrino Halos with CMB Lensing, Selim C. Hotinli, Nashwan Sabti, Jaxon North, Marc Kamionkowski, Phys.Rev.D 108 (2023) 103504, arXiv:2306.15715.
[Hotinli:2023scz]
[20-22]
Best-case scenarios for neutrino capture experiments, Kyrylo Bondarenko, Alexey Boyarsky, Josef Pradler, Anastasia Sokolenko, JCAP 10 (2023) 026, arXiv:2306.12366.
[Bondarenko:2023ukx]
[20-23]
Neff in the Standard Model at NLO is 3.043, Mattia Cielo, Miguel Escudero, Gianpiero Mangano, Ofelia Pisanti, Phys.Rev.D 108 (2023) L121301, arXiv:2306.05460.
[Cielo:2023bqp]
[20-24]
Local clustering of relic neutrinos with kinetic field theory, Emil Brinch Holm, Isabel M. Oldengott, Stefan Zentarra, Phys.Lett.B 844 (2023) 138073, arXiv:2305.13379.
[Holm:2023rml]
[20-25]
Testing generalized neutrino interactions with PTOLEMY, Indra Kumar Banerjee, Ujjal Kumar Dey, Newton Nath, Saadat Salman Shariff, JCAP 04 (2024) 002, arXiv:2304.02505.
[Banerjee:2023lrk]
[20-26]
Relic Neutrino Helicity Evolution in Galactic Magnetic Field and Its Implications, Kuo K. Liao, Glennys R. Farrar, arXiv:2303.15562, 2023.
[Liao:2023zem]
[20-27]
A Diffraction Grating for the Cosmic Neutrino Background and Dark Matter, Asimina Arvanitaki, Savas Dimopoulos, arXiv:2303.04814, 2023.
[Arvanitaki:2023fij]
[20-28]
Probing Cosmic Neutrino Background Charge via Unconventional Interferometer, Chrisna Setyo Nugroho, arXiv:2302.08246, 2023.
[Nugroho:2023cun]
[20-29]
Neutrino decoupling and the transition to cold dark matter, 2023.
[2307.08427]
[20-30]
Probing sterile neutrino dark matter in the PTOLEMY-like experiment, Ki-Young Choi, Erdenebulgan Lkhagvadorj, Seong Moon Yoo, JCAP 06 (2023) 021, arXiv:2212.14192.
[Choi:2022gbs]
[20-31]
lepton number survival in the cosmic neutrino background, Oleg Ruchayskiy, Vsevolod Syvolap, Robin Wursch, Phys.Rev.D 108 (2023) 123503, arXiv:2212.01038.
[Ruchayskiy:2022eog]
[20-32]
The Cosmic Neutrino Background Distribution on the Surface of the Earth, Asimina Arvanitaki, Savas Dimopoulos, Phys.Rev.D 108 (2023) 043517, arXiv:2212.00036.
[Arvanitaki:2022oby]
[20-33]
Flows For The Masses: A multi-fluid non-linear perturbation theory for massive neutrinos, Joe Zhiyu Chen, Amol Upadhye, Yvonne Y. Y. Wong, JCAP 05 (2023) 046, arXiv:2210.16020.
[Chen:2022cgw]
[20-34]
Hybrid multi-fluid-particle simulations of the cosmic neutrino background, Joe Zhiyu Chen, Markus R. Mosbech, Amol Upadhye, Yvonne Y. Y. Wong, JCAP 03 (2023) 012, arXiv:2210.16012.
[Chen:2022dsv]
[20-35]
New Constraints on Dark Matter and Cosmic Neutrino Profiles through Gravity, Yu-Dai Tsai, Joshua Eby, Jason Arakawa, Davide Farnocchia, Marianna S. Safronova, JCAP 02 (2024) 029, arXiv:2210.03749.
[Tsai:2022jnv]
[20-36]
Bremsstrahlung from the Cosmic Neutrino Background, Konstantin Asteriadis, Alejandro Quiroga Trivino, Martin Spinrath, Int.J.Mod.Phys.A 38 (2023) 2350139, arXiv:2208.01207.
[Asteriadis:2022zmo]
[20-37]
Geodesic motion and phase-space evolution of massive neutrinos, Willem Elbers, JCAP 11 (2022) 058, arXiv:2207.14256.
[Elbers:2022xid]
[20-38]
Limits on the cosmic neutrino background, Martin Bauer, Jack D. Shergold, JCAP 01 (2023) 003, arXiv:2207.12413.
[Bauer:2022lri]
[20-39]
A New Probe of Relic Neutrino Clustering using Cosmogenic Neutrinos, Vedran Brdar, P. S. Bhupal Dev, Ryan Plestid, Amarjit Soni, Phys.Lett.B 833 (2022) 137358, arXiv:2207.02860.
[Brdar:2022kpu]
[20-40]
Inverse Tritium Beta Decay with Relic Neutrinos, Solar Neutrinos, and a 51Cr Source, Jen-Chieh Peng, Gordon Baym, Phys.Rev.D 106 (2022) 063018, arXiv:2205.02363.
[Peng:2022nvi]
[20-41]
Distinguishing Dirac vs. Majorana Neutrinos: a Cosmological Probe, Beatriz Hernandez-Molinero, Raul Jimenez, Carlos Pena-Garay, JCAP 08 (2022) 038, arXiv:2205.00808.
[Hernandez-Molinero:2022zoo]
[20-42]
Neutrino secret self-interactions: a booster shot for the cosmic neutrino background, Anirban Das, Yuber F. Perez-Gonzalez, Manibrata Sen, Phys.Rev.D 106 (2022) 095042, arXiv:2204.11885.
[Das:2022xsz]
[20-43]
Cored Dark Matter halos in the Cosmic Neutrino Background, Wonsub Cho, Ki-Young Choi, Hee Jung Kim, JCAP 07 (2023) 013, arXiv:2204.01431.
[Cho:2022axv]
[20-44]
Impact of the X ray edge singularity on detection of relic neutrinos in the PTOLEMY project, Zhiyang Tan, Vadim Cheianov, arXiv:2202.07406, 2022.
[Tan:2022eke]
[20-45]
Empirical capture cross sections for cosmic neutrino detection with $^{151}{\rm \bf Sm}$ and $^{171}{\rm \bf Tm}$, Vedran Brdar, Ryan Plestid, Noemi Rocco, Phys.Rev.C 105 (2022) 045501, arXiv:2201.07251.
[Brdar:2022wuv]
[20-46]
Momentum distributions of cosmic relics: Improved analysis, Kalle Ala-Mattinen, Matti Heikinheimo, Kimmo Kainulainen, Kimmo Tuominen, Phys.Rev.D 105 (2022) 123005, arXiv:2201.06456.
[Ala-Mattinen:2022nuj]
[20-47]
Impact of Warm Dark Matter on the Cosmic Neutrino Background Anisotropies, Christopher G. Tully, Gemma Zhang, Universe 8 (2022) 118, arXiv:2201.01888.
[Tully:2022erg]
[20-48]
Neutrino bound states and bound systems, Alexei Yu. Smirnov, Xun-Jie Xu, arXiv:2201.00939, 2022.
[Smirnov:2022sfo]
[20-49]
A new Direct Detection Strategy for the Cosmic Neutrino Background, Wei Chao, Jing-jing Feng, Mingjie Jin, Tong Li, arXiv:2112.13777, 2021.
[Chao:2021ahl]
[20-50]
Cosmic Neutrino Background Detection in Large-Neutrino-Mass Cosmologies, James Alvey, Miguel Escudero, Nashwan Sabti, Thomas Schwetz, Phys.Rev.D 105 (2022) 063501, arXiv:2111.14870.
[Alvey:2021xmq]
[20-51]
Can we use heavy nuclei to detect relic neutrinos?, Oleksii Mikulenko, Yevheniia Cheipesh, Vadim Cheianov, Alexey Boyarsky, Eur.Phys.J.A 59 (2023) 216, arXiv:2111.09292.
[Mikulenko:2021ydo]
[20-52]
Primordial neutrino asymmetry evolution with full mean-field effects and collisions, Julien Froustey, Cyril Pitrou, JCAP 03 (2022) 065, arXiv:2110.11889.
[Froustey:2021azz]
[20-53]
Updated detection prospects for relic neutrinos using coherent scattering, Jack D. Shergold, JCAP 11 (2021) 052, arXiv:2109.07482.
[Shergold:2021evs]
[20-54]
Cross-correlation Power Spectra and Cosmic Birefringence of the CMB via Photon-neutrino Interaction, J. Khodagholizadeh, R. Mohammadi, M. Sadegh, A. Vahedi, JCAP 06 (2023) 044, arXiv:2109.00152.
[Mohammadi:2021xoh]
[20-55]
Neutrino Interactions in the Late Universe, Daniel Green, David E. Kaplan, Surjeet Rajendran, JHEP 11 (2021) 162, arXiv:2108.06928.
[Green:2021gdc]
[20-56]
Quantum Induced Broadening- A Challenge For Cosmic Neutrino Background Discovery, Shmuel Nussinov, Zohar Nussinov, Phys.Rev.D 105 (2022) 043502, arXiv:2108.03695.
[Nussinov:2021zrj]
[20-57]
Observing relic neutrinos with an accelerator experiment, Martin Bauer, Jack D. Shergold, Phys.Rev.D 104 (2021) 083039, arXiv:2104.12784.
[Bauer:2021uyj]
[20-58]
Evolution of Primordial Neutrino Helicities in Cosmic Gravitational Inhomogeneities, Gordon Baym, Jen-Chieh Peng, Phys.Rev. D103 (2021) 123019, arXiv:2103.11209.
[Baym:2021ksj]
[20-59]
Multi-Messenger Astrophysics with the Cosmic Neutrino Background, Christopher G. Tully, Gemma Zhang, JCAP 06 (2021) 053, arXiv:2103.01274.
[Tully:2021key]
[20-60]
The relic neutrino composition as seen from Earth, Anton N. Baushev, Astron.Rep. 64 (2020) 1005-1011, arXiv:2101.11405.
[Baushev:2020wok]
[20-61]
Heisenberg's uncertainty as a limiting factor for neutrino mass detection in $\beta$-decay, Yevheniia Cheipesh, Vadim Cheianov, Alexey Boyarsky, Phys.Rev.D 104 (2021) 116004, arXiv:2101.10069.
[Cheipesh:2021fmg]
[20-62]
An optimal nonlinear method for simulating relic neutrinos, Willem Elbers, Carlos S. Frenk, Adrian Jenkins, Baojiu Li, Silvia Pascoli, Mon.Not.Roy.Astron.Soc. 507 (2021) 2614-2631, arXiv:2010.07321.
[Elbers:2020lbn]
[20-63]
Precise Capture Rates of Cosmic Neutrinos and Their Implications on Cosmology, Kensuke Akita, Saul Hurwitz, Masahide Yamaguchi, Eur.Phys.J. C81 (2021) 344, arXiv:2010.04454.
[Akita:2020jbo]
[20-64]
Estimation of an Upper Limit on the Density of Relic Neutrinos in the Sun via the Solar $^8$B Neutrino Flux, Tim Ruhe, Alexander Sandrock, arXiv:2009.11051, 2020.
[Ruhe:2020ldj]
[20-65]
Parity Violation and Chiral Oscillation of Cosmological Relic Neutrinos, Shao-Feng Ge, Pedro Pasquini, Phys.Lett. B811 (2020) 135961, arXiv:2009.01684.
[Ge:2020aen]
[20-66]
A precision calculation of relic neutrino decoupling, Kensuke Akita, Masahide Yamaguchi, JCAP 2008 (2020) 012, arXiv:2005.07047.
[Akita:2020szl]
[20-67]
Simulating the Cosmic Neutrino Background using Collisionless Hydrodynamics, Derek Inman, Hao-ran Yu, Astrophys.J.Suppl. 250 (2020) 21, arXiv:2002.04601.
[Inman:2020oda]
[20-68]
Non-equilibrium antineutrinos of primordial nucleosynthesis, Vlad Yu. Yurchenko, Alexandre V. Ivanchik, Astropart.Phys. 127 (2021) 102537, arXiv:1911.03473.
[Yurchenko:2019uxu]
[20-69]
Neutrino clustering in the Milky Way and beyond, P. Mertsch, G. Parimbelli, P.F. de Salas, S. Gariazzo, J. Lesgourgues, S. Pastor, JCAP 2001 (2020) 015, arXiv:1910.13388.
[Mertsch:2019qjv]
[20-70]
Gravitational Lensing of the Cosmic Neutrino Background, Joshua Yao-Yu Lin, Gilbert Holder, JCAP 2004 (2020) 054, arXiv:1910.03550.
[Lin:2019lko]
[20-71]
C$\nu$B detection through angular correlations in inverse $\beta$-decay, Evgeny Akhmedov, JCAP 1909 (2019) 031, arXiv:1905.10207.
[Akhmedov:2019oxm]
[20-72]
New targets for relic antineutrino capture, Jeong-Yeon Lee, Yeongduk Kim, Satoshi Chiba, Nucl.Phys.A 1031 (2023) 122594, arXiv:1811.05183.
[Lee:2018boo]
[20-73]
On the capture rates of big bang neutrinos by nuclei within the Dirac and Majorana hypotheses, Esteban Roulet, Francesco Vissani, arXiv:1810.00505, 2018.
[Roulet:2018fyh]
[20-74]
Relic neutrinos: Antineutrinos of Primordial Nucleosynthesis, Alexandre V. Ivanchik, Vlad Yu. Yurchenko, Phys.Rev. D98 (2018) 081301, arXiv:1809.03349.
[Ivanchik:2018fxy]
[20-75]
Probing relic neutrino decays with 21 cm cosmology, Marco Chianese, Pasquale Di Bari, Kareem Farrag, Rome Samanta, Phys.Lett. B790 (2019) 64-70, arXiv:1805.11717.
[Chianese:2018luo]
[20-76]
Gravitational Clustering of Cosmic Relic Neutrinos in the Milky Way, Jue Zhang, Xin Zhang, Nature Commun. 9 (2018) 1833, arXiv:1712.01153.
[Zhang:2017ljh]
[20-77]
Impact of Beyond the Standard Model Physics in the Detection of the Cosmic Neutrino Background, Martin Arteaga, Enrico Bertuzzo, Yuber F. Perez-Gonzalez, Renata Zukanovich Funchal, JHEP 1709 (2017) 124, arXiv:1708.07841.
[Arteaga:2017zxg]
[20-78]
Calculation of the local density of relic neutrinos, P.F. de Salas, S. Gariazzo, J. Lesgourgues, S. Pastor, JCAP 1709 (2017) 034, arXiv:1706.09850.
[deSalas:2017wtt]
[20-79]
Detection prospects for the Cosmic Neutrino Background using laser interferometers, Valerie Domcke, Martin Spinrath, JCAP 1706 (2017) 055, arXiv:1703.08629.
[Domcke:2017aqj]
[20-80]
Gravitational Instabilities of the Cosmic Neutrino Background with Non-zero Lepton Number, Neil D. Barrie, Archil Kobakhidze, Phys.Lett. B772 (2017) 459-463, arXiv:1701.00603.
[Barrie:2017mmr]
[20-81]
Dynamical friction in the primordial neutrino sea, Chiamaka Okoli, Morag I. Scrimgeour, Niayesh Afshordi, Michael J. Hudson, Mon.Not.Roy.Astron.Soc. 468 (2017) 2164, arXiv:1611.04589.
[Okoli:2016vmd]
[20-82]
Discriminating between Thermal and Nonthermal Cosmic Relic Neutrinos through Annual Modulation at PTOLEMY, Guo-yuan Huang, Shun Zhou, Phys. Rev. D94 (2016) 116009, arXiv:1610.01347.
[Huang:2016qmh]
[20-83]
Cosmic neutrinos: dispersive and non-linear, Derek Inman, Ue-Li Pen, Phys.Rev. D95 (2017) 063535, arXiv:1609.09469.
[Inman:2016qmg]
[20-84]
Differential Neutrino Condensation onto Cosmic Structure, Hao-Ran Yu et al., arXiv:1609.08968, 2016.
[Yu:2016yfe]
[20-85]
Discovery potential for supernova relic neutrinos with slow liquid scintillator detectors, Hanyu Wei, Zhe Wang, Shaomin Chen, Phys.Lett. B769 (2017) 255-261, arXiv:1607.01671.
[Wei:2016vjd]
[20-86]
Relic neutrino decoupling with flavour oscillations revisited, Pablo F. de Salas, Sergio Pastor, JCAP 1607 (2016) 051, arXiv:1606.06986.
[deSalas:2016ztq]
[20-87]
Sound Speed and Viscosity of Semi-Relativistic Relic Neutrinos, Lawrence M. Krauss, Andrew J. Long, JCAP 1607 (2016) 002, arXiv:1604.00886.
[Krauss:2016dce]
[20-88]
Can one measure the Cosmic Neutrino Background?, Amand Faessler, Rastislav Hodak, Sergey Kovalenko, Fedor Simkovic, Int.J.Mod.Phys. E26 (2017) 1740008, arXiv:1602.03347.
[Faessler:2016tjf]
[20-89]
Neutrino refraction by the cosmic neutrino background, J.S. Diaz, F.R. Klinkhamer, Phys. Rev. D93 (2016) 053004, arXiv:1512.00817.
[Diaz:2015aua]
[20-90]
Efficient calculation of cosmological neutrino clustering with both linear and non-linear gravity, Maria Archidiacono, Steen Hannestad, JCAP 1606 (2016) 018, arXiv:1510.02907.
[Archidiacono:2015ota]
[20-91]
Relic Right-handed Dirac Neutrinos and Implications for Detection of Cosmic Neutrino Background, Jue Zhang, Shun Zhou, Nucl. Phys. B903 (2016) 211-225, arXiv:1509.02274.
[Zhang:2015wua]
[20-92]
Non-thermal cosmic neutrino background, Mu-Chun Chen, Michael Ratz, Andreas Trautner, Phys. Rev. D92 (2015) 123006, arXiv:1509.00481.
[Chen:2015dka]
[20-93]
Detecting the cosmological neutrino background, Elena Sellentin, Ruth Durrer, Phys. Rev. D92 (2015) 063012, arXiv:1412.6427.
[Sellentin:2014gaa]
[20-94]
Robustness of cosmic neutrino background detection in the cosmic microwave background, Benjamin Audren et al., JCAP 1503 (2015) 036, arXiv:1412.5948.
[Audren:2014lsa]
[20-95]
Experimental method of detecting relic neutrino by atomic de-excitation, M. Yoshimura, N. Sasao, M. Tanaka, Phys. Rev. D91 (2015) 063516, arXiv:1409.3648.
[Yoshimura:2014hfa]
[20-96]
Measuring Anisotropies in the Cosmic Neutrino Background, Mariangela Lisanti, Benjamin R. Safdi, Christopher G. Tully, Phys. Rev. D90 (2014) 073006, arXiv:1407.0393.
[Lisanti:2014pqa]
[20-97]
Relic Neutrino Freeze-out: Dependence on Natural Constants, Jeremiah Birrell, Cheng-Tao Yang, Johann Rafelski, Nucl. Phys. B890 (2014) 481-517, arXiv:1406.1759.
[Birrell:2014uka]
[20-98]
Detecting non-relativistic cosmic neutrinos by capture on tritium: phenomenology and physics potential, Andrew J. Long, Cecilia Lunardini, Eray Sabancilar, JCAP 1408 (2014) 038, arXiv:1405.7654.
[Long:2014zva]
[20-99]
Annual Modulation of Cosmic Relic Neutrinos, Benjamin R. Safdi, Mariangela Lisanti, Joshua Spitz, Joseph A. Formaggio, Phys. Rev. D90 (2014) 043001, arXiv:1404.0680.
[Safdi:2014rza]
[20-100]
Spectra and Drag Force of Free-Streaming Massive Neutrinos, Jeremiah Birrell, Johann Rafelski, Eur.Phys.J. C75 (2015) 91, arXiv:1402.3409.
[Birrell:2014qna]
[20-101]
Evidence for cosmic neutrino background form CMB circular polarization, Rohoollah Mohammadi, Eur.Phys.J. C74 (2014) 3102, arXiv:1312.2199.
[Mohammadi:2013dea]
[20-102]
Prospects of detection of relic antineutrinos by resonant absorption in electron capturing nuclei, J.D. Vergados, Yu. N. Novikov, J. Phys. G41 (2014) 125001, arXiv:1312.0879.
[Vergados:2013qpa]
[20-103]
Measurement of Neutrino Masses from Relative Velocities, Hong-Ming Zhu, Ue-Li Pen, Xuelei Chen, Derek Inman, Yu Yu, Phys. Rev. Lett. 113 (2014) 131301, arXiv:1311.3422.
[Zhu:2013tma]
[20-104]
Neutrino clustering around spherical dark matter halos, Marilena LoVerde, Matias Zaldarriaga, Phys. Rev. D89 (2014) 063502, arXiv:1310.6459.
[LoVerde:2013lta]
[20-105]
Cosmic Neutrino Background as a Ferromagnet, Paola Arias, Jorge Gamboa, Justo Lopez-Sarrion, Phys.Lett. B735 (2014) 173-175, arXiv:1309.3244.
[Arias:2013jua]
[20-106]
Efficiently Extracting Energy from Cosmological Neutrinos, M.M. Hedman, JCAP JCAP09 (2013) 029, arXiv:1307.0652.
[Hedman:2013hha]
[20-107]
Ultra High Energy Neutrinos: Absorption, Thermal Effects and Signatures, Cecilia Lunardini, Eray Sabancilar, Lili Yang, JCAP 08 (2013) 014, arXiv:1306.1808.
[Lunardini:2013iwa]
[20-108]
Optical activity of relic neutrino-antineutrino gas, V.B. Semikoz, arXiv:1305.5709, 2013.
[Semikoz:2013ona]
[20-109]
Search for the Cosmic Neutrino Background and KATRIN, Amand Faessler, Rastislav Hodak, Sergey Kovalenko, Fedor Simkovic, Rom.J. Phys. 58 (2013) 1221-1231, arXiv:1304.5632.
[Faessler:2013jla]
[20-110]
The C$\nu$B energy density through the quantum measurement theory, A. E. Bernardini, V. A. S. V. Bittencourt, Astropart. Phys. 41 (2013) 31-37, arXiv:1210.7987.
[Bernardini:2012uf]
[20-111]
Interaction of cosmic background neutrinos with matter of periodic structure, Wei Liao, Phys. Rev. D86 (2012) 073011, arXiv:1207.6847.
[Liao:2012wb]
[20-112]
Particle decays in the presence of a neutrino background, I. Alikhanov, Europhys.Lett. 107 (2014) 41001, arXiv:1204.4396.
[Alikhanov:2012cn]
[20-113]
The effect of electromagnetic properties of neutrinos on the photon-neutrino decoupling temperature, S. C. Inan, M. Koksal, Int. J. Mod. Phys. A27 (2012) 1250187, arXiv:1204.3593.
[Inan:2012eu]
[20-114]
The impact of excited neutrinos on $\nu \bar\nu \to \gamma \gamma$ process, S. C. Inan, M. Koksal, Adv. High Energy Phys. 2012 (2012) 571874, arXiv:1203.5881.
[Inan:2012eh]
[20-115]
Relic neutrinos and cosmic background radiation: a new way of comparison, P. R. Silva, arXiv:1203.5246, 2012.
[1203.5246]
[20-116]
Galactic abundances as a relic neutrino detection scheme, Anna Sejersen Riis, Nikolaj Thomas Zinner, Steen Hannestad, JCAP 1109 (2011) 019, arXiv:1107.3721.
[Riis:2011qd]
[20-117]
Neutrino Halos in Clusters of Galaxies and their Weak Lensing Signature, Francisco Villaescusa-Navarro, Jordi Miralda-Escude, Carlos Pena-Garay, Vicent Quilis, JCAP 1106 (2011) 027, arXiv:1104.4770.
[Villaescusa-Navarro:2011loy]
[20-118]
Captures of Hot and Warm Sterile Antineutrino Dark Matter on EC-decaying Ho-163 Nuclei, Y. F. Li, Zhi-zhong Xing, JCAP 1108 (2011) 006, arXiv:1104.4000.
[Li:2011mw]
[20-119]
A Possible Detection of the Cosmic Antineutrino Background in the Presence of Flavor Effects, Y. F. Li, Zhi-zhong Xing, Phys. Lett. B698 (2011) 430-437, arXiv:1102.2686.
[Li:2011ne]
[20-120]
Beta Decaying Nuclei as a Probe of Cosmic Neutrino Background, Rastislav Hodak, Sergey Kovalenko, Fedor Simkovic, Amand Faessler, arXiv:1102.1799, 2011.
[Faessler:2011qj]
[20-121]
Relic Antineutrino Capture on 163-Ho decaying Nuclei, Maurizio Lusignoli, Marco Vignati, Phys. Lett. B697 (2011) 11-14, arXiv:1012.0760.
[Lusignoli:2010eq]
[20-122]
Direct Detection of the Cosmic Neutrino Background Including Light Sterile Neutrinos, Y. F. Li, Shu Luo, Zhi-zhong Xing, Phys.Lett. B692 (2010) 261-267, arXiv:1007.0914.
[Li:2010sn]
[20-123]
Sensitivity of Neutrino Mass Experiments to the Cosmic Neutrino Background, A. Kaboth, J. A. Formaggio, B. Monreal, Phys. Rev. D82 (2010) 062001, arXiv:1006.1886.
[Kaboth:2010kf]
[20-124]
The Cosmic Neutrino Background Anisotropy - Linear Theory, Steen Hannestad, Jacob Brandbyge, JCAP 1003 (2010) 020, arXiv:0910.4578.
[Hannestad:2009xu]
[20-125]
Low Energy Antineutrino Detection Using Neutrino Capture on EC Decaying Nuclei, Alfredo G. Cocco, Gianpiero Mangano, Marcello Messina, Phys. Rev. D79 (2009) 053009, arXiv:0903.1217.
[Cocco:2009rh]
[20-126]
The Quantum Mechanics of Relic Neutrinos, George M. Fuller, Chad T. Kishimoto, Phys. Rev. Lett. 102 (2009) 201303, arXiv:0811.4370.
[Fuller:2008nt]
[20-127]
Can the Copernican principle be tested by cosmic neutrino background?, Junji Jia, Hongbao Zhang, JCAP 0812 (2008) 002, arXiv:0809.2597.
[Jia:2008ti]
[20-128]
Relic density of neutrinos with primordial asymmetries, Sergio Pastor, Teguayco Pinto, Georg Raffelt, Phys. Rev. Lett. 102 (2009) 241302, arXiv:0808.3137.
[Pastor:2008ti]
[20-129]
Velocity and Distribution of Primordial Neutrinos, Jorge Alfaro, Pablo Gonzalez, Int. J. Mod. Phys. D17 (2008) 2171-2187, arXiv:0712.1210.
[Alfaro:2007am]
[20-130]
Charged current cross section for massive cosmological neutrinos impinging on radioactive nuclei, R. Lazauskas, P. Vogel, C. Volpe, J. Phys. G35 (2008) 025001, arXiv:0710.5312.
[Lazauskas:2007da]
[20-131]
Probing Low Energy Neutrino Backgrounds with Neutrino Capture on Beta Decaying Nuclei, Alfredo G. Cocco, Gianpiero Mangano, Marcello Messina, JCAP 0706 (2007) 015, arXiv:hep-ph/0703075.
[Cocco:2007za]
[20-132]
Zero Threshold Reactions for Detecting Ultra Low Energy Cosmic Relic Neutrinos, R. S. Raghavan, arXiv:hep-ph/0703028, 2007.
[Raghavan:2007em]
[20-133]
Effect of Relic Neutrino on Neutrino Pair Emission from Metastable Atoms, Toru Takahashi, M. Yoshimura, arXiv:hep-ph/0703019, 2007.
[Takahashi:2007ec]
[20-134]
Formation of neutrino stars from cosmological background neutrinos, M. H. Chan, M. -C. Chu, arXiv:astro-ph/0609564, 2006.
[Chan:2006nx]
[20-135]
Anisotropy of the Cosmic Neutrino Background, R. J. Michney, R. R. Caldwell, JCAP 0701 (2007) 014, arXiv:astro-ph/0608303.
[Michney:2006mk]
[20-136]
Relic neutrino decoupling including flavour oscillations, Gianpiero Mangano et al., Nucl. Phys. B729 (2005) 221, arXiv:hep-ph/0506164.
[Mangano:2005cc]
[20-137]
Detection of cosmic neutrino clustering by cosmic ray spectra, W-Y. P. Hwang, Bo-Qiang Ma, New J. Phys. 7 (2005) 41, arXiv:astro-ph/0502377.
[Hwang:2005dq]
[20-138]
Gravitational clustering of relic neutrinos and implications for their detection, Andreas Ringwald, Yvonne Y. Y. Wong, JCAP 0412 (2004) 005, arXiv:hep-ph/0408241.
[Ringwald:2004np]
[20-139]
Non equilibrium spectra of degenerate relic neutrinos, S. Esposito, G. Miele, S. Pastor, M. Peloso, O. Pisanti, Nucl. Phys. B590 (2000) 539-561, arXiv:astro-ph/0005573.
[Esposito:2000hi]
[20-140]
Nonequilibrium corrections to the spectra of massless neutrinos in the early universe. (Addendum), A. D. Dolgov, S. H. Hansen, D. V. Semikoz, Nucl. Phys. B543 (1999) 269-274, arXiv:hep-ph/9805467.
[Dolgov:1998sf]
[20-141]
Cosmological neutrino background revisited, Nickolay Y. Gnedin, Oleg Y. Gnedin, Astrophys. J. 509 (1998) 11-15, arXiv:astro-ph/9712199.
[Gnedin:1997vn]
[20-142]
Nonequilibrium corrections to the spectra of massless neutrinos in the early universe, A.D. Dolgov, S.H. Hansen, D.V. Semikoz, Nucl. Phys. B503 (1997) 426-444, arXiv:hep-ph/9703315.
[Dolgov:1997mb]
[20-143]
Neutrino decoupling in the early universe, Steen Hannestad, Jes Madsen, Phys. Rev. D52 (1995) 1764-1769, arXiv:astro-ph/9506015.
[Hannestad:1995rs]
[20-144]
On the detection of cosmological neutrinos by coherent scattering, Paul Langacker, Jacques P. Leveille, Jon Sheiman, Phys. Rev. D27 (1983) 1228.
[Langacker:1982ih]
[20-145]
The vanishing of order g mechanical effects of cosmic massive neutrinos on bulk matter, N. Cabibbo, L. Maiani, Phys. Lett. B114 (1982) 115.
[Cabibbo:1982bb]
[20-146]
On the propagation of electromagnetic waves in a cosmological neutrino sea, V. De Sabbata, M. Gasperini, Lett. Nuovo Cim. 28 (1980) 181-185.
[DeSabbata:1980dx]
[20-147]
Coherent detector for low-energy neutrinos, R. R. Lewis, Phys. Rev. D21 (1980) 663.
Comment: Wrong sign of matter potential. [C.G.].
[Lewis:1980mu]
[20-148]
Speculations on detection of the 'neutrino sea', L. Stodolsky, Phys. Rev. Lett. 34 (1975) 110.
[Stodolsky:1974aq]
[20-149]
Coherent scattering of cosmic neutrinos, R. Opher, Astron. Astrophys. 37 (1974) 135-137.
[Opher-AA37-135O-1974]

21 - Phenomenology - Relic Neutrinos - Talks

[21-1]
Lepton family numbers and non-relativistic Majorana neutrinos, Apriadi Salim Adam, Nicholas J.Benoit, Yuta Kawamura, Yamato Matsuo, Takuya Morozumi, Yusuke Shimizu, Yuya Tokunaga, Naoya Toyota, arXiv:2105.04306, 2021. BSM-2021.
[Adam:2021vbl]
[21-2]
Relic neutrino clustering in the Milky Way, Pablo F. de Salas, J.Phys.Conf.Ser. 1468 (2020) 012172, arXiv:1911.09603. TAUP2019.
[deSalas:2019kpa]
[21-3]
Relic neutrinos: local clustering and consequences for direct detection, S. Gariazzo, PoS EPS-HEP2019 (2020) 072, arXiv:1910.13716. European Physical Society Conference on High Energy Physics (EPS-HEP 2019), Ghent, Belgium, 10-17 July, 2019.
[Gariazzo:2019nsf]
[21-4]
Neutrino clustering in the Milky Way, Stefano Gariazzo, arXiv:1710.06782, 2017. 18th Lomonosov Conference.
[Gariazzo:2017hxc]
[21-5]
Relic Right-handed Dirac Neutrinos and Cosmic Neutrino Background, Shun Zhou, PoS NOW2016 (2016) 088, arXiv:1612.08320. Neutrino Oscillation Workshop, Otranto (Lecce), September 4-11, 2016.
[Zhou:2016lru]
[21-6]
Direct detection of relic active and sterile neutrinos, Yu-Feng Li, J. Phys. Conf. Ser. 718 (2016) 062038, arXiv:1606.04734. 14th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2015).
[Li:2016qsu]
[21-7]
Detection Prospects of the Cosmic Neutrino Background, Yu-Feng Li, Int.J.Mod.Phys. A30 (2015) 1530031, arXiv:1504.03966. International Conference on Massive Neutrinos, Singapore, February 9-13, 2015.
[Li:2015koa]
[21-8]
Time-Varying Nuclear Decay Parameters and Dark Matter, Jonathan Nistor et al., arXiv:1307.7620, 2013. Sixth Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, June 17-21, 2013.
[Nistor:2013gsa]
[21-9]
Neutrinos as Hot or Warm Dark Matter, Y. F. Li, Zhi-zhong Xing, Acta Phys. Polon. B42 (2011) 2193, arXiv:1110.2293. Matter to the Deepest 2011.
[Li:2011px]
[21-10]
Laboratory tests for the cosmic neutrino background using beta-decaying nuclei, Bob McElrath, arXiv:0901.3491, 2009. PANIC 2008.
[McElrath:2009ig]
[21-11]
Prospects for the direct detection of the cosmic neutrino background, Andreas Ringwald, Nucl. Phys. A827 (2009) 501c-506c, arXiv:0901.1529. PANIC 2008, 9-14 November 2008, Eilat, Israel.
[Ringwald:2009bg]
[21-12]
Capturing Relic Neutrinos with beta-decaying nuclei, Alfredo G. Cocco, Gianpiero Mangano, Marcello Messina, J. Phys. Conf. Ser. 120 (2008) 022005, arXiv:0711.1762. TAUP2007.
[Cocco:2007qv]
[21-13]
How to Detect Big Bang Relic Neutrinos?, Andreas Ringwald, arXiv:hep-ph/0505024, 2005. XI International Workshop on 'Neutrino Telescopes', Feb 22-25, 2005, Venice, Italy.
[Ringwald:2005zf]
[21-14]
Prospect for relic neutrino searches, Graciela B. Gelmini, Phys. Scripta T121 (2005) 131, arXiv:hep-ph/0412305. Nobel Symposium on Neutrino Physics, Enkoping, Sweden, Augus 19-24, 2004.
[Gelmini:2004hg]
[21-15]
Relic neutrino clustering and implications for their detection, Andreas Ringwald, Yvonne Y. Y. Wong, arXiv:hep-ph/0412256, 2004. DARK2004, College Station TX, Oct 2004.
[Ringwald:2004te]
[21-16]
How to detect the cosmic neutrino background?, A. Ringwald, arXiv:hep-ph/0301157, 2003. Workshop on Strong and Electroweak Matter (SEWM 2002), October 2-5, 2002, Heidelberg, Germany.
[Ringwald:2003qa]
[21-17]
Cosmic neutrinos and their detection, C. Hagmann, arXiv:astro-ph/9905258, 1999. American Physical Society (APS) Meeting of the Division of Particles and Fields (DPF 99), Los Angeles, CA, 5-9 Jan 1999.
[Hagmann:1999kf]

22 - Phenomenology - Quantum Gravity and Cosmology

[22-1]
Neutrinos as possible probes for quantum gravity, Marco Danilo Claudio Torri, Lino Miramonti, arXiv:2404.04076, 2024.
[Torri:2024jwc]
[22-2]
An entanglement-based test of quantum gravity using two massive particles, Chiara Marletto, Vlatko Vedral, Phys.Rev.Lett. 119 (2017) 240402, arXiv:1707.06036.
[Marletto:2017kzi]
[22-3]
Prospects for constraining quantum gravity dispersion with near term observations, Giovanni Amelino-Camelia, Lee Smolin, Phys. Rev. D80 (2009) 084017, arXiv:0906.3731.
[Amelino-Camelia:2009imt]
[22-4]
Gamma Ray Burst Neutrinos Probing Quantum Gravity, M.C. Gonzalez-Garcia, F. Halzen, JCAP 0702 (2007) 008, arXiv:hep-ph/0611359.
[Gonzalez-Garcia:2006koj]

23 - Phenomenology - Quantum Gravity and Cosmology - Talks

[23-1]
Exploration of Possible Quantum Gravity Effects with Neutrinos I: Decoherence in Neutrino Oscillations Experiments, Alexander Sakharov, Nick Mavromatos, Anselmo Meregaglia, Andre Rubbia, Sarben Sarkar, J. Phys. Conf. Ser. 171 (2009) 012038, arXiv:0903.4985. DISCRETE'08, Valencia, Spain; December 2008.
[Sakharov:2009rn]

24 - Phenomenology - Computing

[24-1]
DISCO-DJ I: a differentiable Einstein-Boltzmann solver for cosmology, Oliver Hahn, Florian List, Natalia Porqueres, arXiv:2311.03291, 2023.
[Hahn:2023nvb]
[24-2]
Sesame: A power spectrum emulator pipeline for beyond-$\Lambda$CDM models, Renate Mauland, Hans A. Winther, Cheng-Zong Ruan, arXiv:2309.13295, 2023.
[Mauland:2023pjt]
[24-3]
Swift: A modern highly-parallel gravity and smoothed particle hydrodynamics solver for astrophysical and cosmological applications, Matthieu Schaller et al., arXiv:2305.13380, 2023.
[SWIFT:2023dix]
[24-4]
PolyChord: nested sampling for cosmology, W. J. Handley, M. P. Hobson, A. N. Lasenby, Mon. Not. Roy. Astron. Soc. 453 (2015) 4384-4398, arXiv:1506.00171.
[Handley:2015vkr]
[24-5]
PolyChord: nested sampling for cosmology, W. J. Handley, M. P. Hobson, A. N. Lasenby, Mon. Not. Roy. Astron. Soc. 450 (2015) L61-L65, arXiv:1502.01856.
[Handley:2015fda]
[24-6]
Conservative Constraints on Early Cosmology: an illustration of the Monte Python cosmological parameter inference code, Benjamin Audren, Julien Lesgourgues, Karim Benabed, Simon Prunet, JCAP 1302 (2013) 001, arXiv:1210.7183.
[Audren:2012wb]
[24-7]
Cosmological parameters from CMB and other data: a Monte-Carlo approach, A. Lewis, S. Bridle, Phys. Rev. D66 (2002) 103511, arXiv:astro-ph/0205436.
From the abstract: m_nu < 0.3 eV.
[Lewis:2002ah]

25 - Phenomenology - Simulations

[25-1]
Deep Learning for Cosmological Parameter Inference from Dark Matter Halo Density Field, Zhiwei Min et al., arXiv:2404.09483, 2024.
[Min:2024dgd]
[25-2]
The FLAMINGO project: the coupling between baryonic feedback and cosmology in light of the $S_8$ tension, Willem Elbers et al., arXiv:2403.12967, 2024.
[Elbers:2024dad]
[25-3]
$\mathbf{12\times2}$pt combined probes: pipeline, neutrino mass, and data compression, JCAP 01 (2024) 042.
[Reeves:2023kjx]
[25-4]
DEMNUni: cross-correlating the nonlinear ISWRS effect with CMB-lensing and galaxies in the presence of massive neutrinos, Viviana Cuozzo, Carmelita Carbone, Matteo Calabrese, Elisabetta Carella, Marina Migliaccio, arXiv:2307.15711, 2023.
[Cuozzo:2023ofy]
[25-5]
Cosmological Neutrino N-Body Simulations of Dark Matter Halo, Yu Chen, Chang-Zhi Lu, Juan Li, Siqi Liu, Tong-Jie Zhang, Tingting Zhang, Universe 9 (2023) 237, arXiv:2307.14621.
[Chen:2023vsv]
[25-6]
Effect of Neutrinos on Angular Momentum of Dark Matter Halo, Yu Chen, Chang-Zhi Lu, Yu Lu, Tingting Zhang, Tong-Jie Zhang, Res. Astron. Astrophys. 23 (2023) 085025, arXiv:2307.08961.
[Chen:2023lyo]
[25-7]
The FLAMINGO project: cosmological hydrodynamical simulations for large-scale structure and galaxy cluster surveys, Joop Schaye et al., Mon.Not.Roy.Astron.Soc. 526 (2023) 4978, arXiv:2306.04024.
[Schaye:2023jqv]
[25-8]
The MillenniumTNG Project: The impact of baryons and massive neutrinos on high-resolution weak gravitational lensing convergence maps, Fulvio Ferlito et al., Mon.Not.Roy.Astron.Soc. 524 (2023) 5591-5606, arXiv:2304.12338.
[Ferlito:2023gum]
[25-9]
DEMNUni: The imprint of massive neutrinos on the cross-correlation between cosmic voids and CMB lensing, Pauline Vielzeuf, Matteo Calabrese, Carmelita Carbone, Giulio Fabbian, Carlo Baccigalupi, JCAP 08 (2023) 010, arXiv:2303.10048.
[Vielzeuf:2023fqw]
[25-10]
Aemulus $\nu$: Precise Predictions for Matter and Biased Tracer Power Spectra in the Presence of Neutrinos, Joseph DeRose, Nickolas Kokron, Arka Banerjee, Shi-Fan Chen, Martin White, Risa Wechlser, Kate Storey-Fisher, Jeremy Tinker, Zhongxu Zhai, JCAP 07 (2023) 054, arXiv:2303.09762.
[DeRose:2023dmk]
[25-11]
Galaxy Clustering in the Mira-Titan Universe I: Emulators for the redshift space galaxy correlation function and galaxy-galaxy lensing, Juliana Kwan, Shun Saito, Alexie Leauthaud, Katrin Heitmann, Salman Habib, Nicholas Frontiere, Hong Guo, Song Huang, Adrian Pope, Sergio Rodriguez-Torres, Astrophys.J. 952 (2023) 80, arXiv:2302.12379.
[Kwan:2023yph]
[25-12]
The Concentration-Mass relation of massive, dynamically relaxed galaxy clusters: agreement between observations and $\Lambda$CDM simulations, Elise Darragh-Ford, Adam B. Mantz, Elena Rasia, Steven W. Allen, R. Glenn Morris, Jack Foster, Robert W. Schmidt, Guillermo Wenrich, Mon. Not. Roy. Astron. Soc. 521 (2023) 790-799, arXiv:2302.10931.
[Darragh-Ford:2023qxc]
[25-13]
The Mira-Titan Universe IV. High Precision Power Spectrum Emulation, Kelly R. Moran, Katrin Heitmann, Earl Lawrence, Salman Habib, Derek Bingham, Amol Upadhye, Juliana Kwan, David Higdon, Richard Payne, Mon.Not.Roy.Astron.Soc. 520 (2023) 3443-3458, arXiv:2207.12345.
[Moran:2022iwe]
[25-14]
The Splashback Mass Function in the Presence of Massive Neutrinos, Suho Ryu, Jounghun Lee, Astrophys.J. 933 (2022) 189, arXiv:2206.10068.
[Ryu:2022npy]
[25-15]
Higher-order initial conditions with massive neutrinos, Willem Elbers, Carlos S. Frenk, Adrian Jenkins, Baojiu Li, Silvia Pascoli, Mon.Not.Roy.Astron.Soc. 516 (2022) 3821-3836, arXiv:2202.00670.
[Elbers:2022tvb]
[25-16]
A Minimal Model for Massive Neutrinos in Newtonian N-body Simulations, Pol Heuschling, Christian Partmann, Christian Fidler, JCAP 09 (2022) 068, arXiv:2201.13186.
[Heuschling:2022rae]
[25-17]
A 400 Trillion-Grid Vlasov Simulation on Fugaku Supercomputer: Large-Scale Distribution of Cosmic Relic Neutrinos in a Six-dimensional Phase Space, Kohji Yoshikawa, Satoshi Tanaka, Naoki Yoshida, arXiv:2110.15867, 2021.
[Yoshikawa:2021qbw]
[25-18]
Simulating the complexity of the dark matter sheet II: halo and subhalo mass functions for non-cold dark matter models, Jens Stucker, Raul E. Angulo, Oliver Hahn, Simon D.M. White, Mon.Not.Roy.Astron.Soc. 509 (2021) 1703-1719, arXiv:2109.09760.
[Stucker:2021vyx]
[25-19]
Modelling galaxy clustering in redshift space with a Lagrangian bias formalism and $N$-body simulations, Marcos Pellejero-Ibanez, Jens Stuecker, Raul E. Angulo, Matteo Zennaro, Sergio Contreras, Giovanni Arico, Mon.Not.Roy.Astron.Soc. 514 (2022) 3993-4007, arXiv:2109.08699.
[Pellejero-Ibanez:2021tbe]
[25-20]
Accelerating Large-Scale-Structure data analyses by emulating Boltzmann solvers and Lagrangian Perturbation Theory, Giovanni Arico, Raul E. Angulo, Matteo Zennaro, arXiv:2104.14568, 2021.
[Arico:2021izc]
[25-21]
Neutrinos in N-body simulations, Caio Bastos de Senna Nascimento, Marilena Loverde, Phys.Rev.D 104 (2021) 043512, arXiv:2102.05690.
[Nascimento:2021wwz]
[25-22]
The BACCO simulation project: biased tracers in real space, Matteo Zennaro, Raul E. Angulo, Marcos Pellejero-Ibanez, Jens Stucker, Sergio Contreras, Giovanni Arico, Mon.Not.Roy.Astron.Soc. 524 (2023) 2407-2419, arXiv:2101.12187.
[Zennaro:2021bwy]
[25-23]
The BACCO Simulation Project: A baryonification emulator with Neural Networks, Giovanni Arico, Raul E. Angulo, Sergio Contreras, Lurdes Ondaro-Mallea, Marcos Pellejero-Ibanez, Matteo Zennaro, Mon.Not.Roy.Astron.Soc. 506 (2021) 4070-4082, arXiv:2011.15018.
[Arico:2020lhq]
[25-24]
Observing relativistic features in large-scale structure surveys - II: Doppler magnification in an ensemble of relativistic simulations, Louis Coates, Julian Adamek, Philip Bull, Caroline Guandalin, Chris Clarkson, Mon.Not.Roy.Astron.Soc. 504 (2021) 3534-3543, arXiv:2011.12936.
[Coates:2020jzw]
[25-25]
One line to run them all: SuperEasy massive neutrino linear response in $N$-body simulations, Joe Zhiyu Chen, Amol Upadhye, Yvonne Y. Y. Wong, JCAP 04 (2021) 078, arXiv:2011.12504.
[Chen:2020kxi]
[25-26]
The cosmic neutrino background as a collection of fluids in large-scale structure simulations, Joe Zhiyu Chen, Amol Upadhye, Yvonne Y. Y. Wong, JCAP 2103 (2021) 065, arXiv:2011.12503.
[Chen:2020bdf]
[25-27]
Imprint of baryons and massive neutrinos on velocity statistics, Joseph Kuruvilla, Nabila Aghanim, Ian G. McCarthy, Astron.Astrophys. 644 (2020) A170, arXiv:2010.05911.
[Kuruvilla:2020gcm]
[25-28]
Cosmic voids in modified gravity models with massive neutrinos, Sofia Contarini, Federico Marulli, Lauro Moscardini, Alfonso Veropalumbo, Carlo Giocoli, Marco Baldi, Mon.Not.Roy.Astron.Soc. 504 (2021) 5021-5038, arXiv:2009.03309.
[Contarini:2020fdu]
[25-29]
The Sejong Suite: Cosmological Hydrodynamical Simulations with Massive Neutrinos, Dark Radiation, and Warm Dark Matter, Graziano Rossi, Astrophys.J.Suppl. 249 (2020) 19, arXiv:2007.15279.
[Rossi:2020lvd]
[25-30]
The BACCO Simulation Project: Exploiting the full power of large-scale structure for cosmology, Raul E. Angulo, Matteo Zennaro, Sergio Contreras, Giovanni Arico, Marcos Pellejero-Ibanez, Jens Stucker, Mon.Not.Roy.Astron.Soc. 507 (2021) 5869-5881, arXiv:2004.06245.
[Angulo:2020vky]
[25-31]
Fast simulations of cosmic large-scale structure with massive neutrinos, Christian Partmann, Christian Fidler, Cornelius Rampf, Oliver Hahn, JCAP 2009 (2020) 018, arXiv:2003.07387.
[Partmann:2020qzb]
[25-32]
3\%-accurate predictions for the clustering of dark matter, haloes and subhaloes, over a wide range of cosmologies and scales, S. Contreras, R. E. Angulo M. Zennaro, G. Arico, M. Pellejero-Ibanez, Mon.Not.Roy.Astron.Soc. 499 (2020) 4905-4917, arXiv:2001.03176.
[Contreras:2020kbv]
[25-33]
Modelling the large scale structure of the Universe as a function of cosmology and baryonic physics, Giovanni Arico, Raul E. Angulo, Carlos Hernandez-Monteagudo, Sergio Contreras, Matteo Zennaro, Marcos Pellejero-Ibanez, Yetli Rosas-Guevara, arXiv:1911.08471, 2019.
[Arico:2019ykw]
[25-34]
First detection of scale-dependent linear halo bias in $N$-body simulations with massive neutrinos, Chi-Ting Chiang, Marilena LoVerde, Francisco Villaescusa-Navarro, Phys. Rev. Lett. 122 (2019) 041302, arXiv:1811.12412.
[Chiang:2018laa]
[25-35]
Fully relativistic treatment of light neutrinos in $N$-body simulations, Thomas Tram, Jacob Brandbyge, Jeppe Dakin, Steen Hannestad, JCAP 2019 (2019) 022, arXiv:1811.00904.
[Tram:2018znz]
[25-36]
A new approach to cosmological structure formation with massive neutrinos, Christian Fidler, Alexander Kleinjohann, Thomas Tram, Cornelius Rampf, Kazuya Koyama, JCAP 1901 (2019) 025, arXiv:1807.03701.
[Fidler:2018bkg]
[25-37]
Momentum space sampling of neutrinos in $N$-body simulations, Jacob Brandbyge, Steen Hannestad, Thomas Tram, JCAP 1903 (2019) 047, arXiv:1806.05874.
[Brandbyge:2018tvk]
[25-38]
Reducing Noise in Cosmological N-body Simulations with Neutrinos, Arka Banerjee, Devon Powell, Tom Abel, Francisco Villaescusa-Navarro, JCAP 1809 (2018) 028, arXiv:1801.03906.
[Banerjee:2018bxy]
[25-39]
Scale-dependent bias and bispectrum in neutrino separate universe simulations, Chi-Ting Chiang, Wayne Hu, Yin Li, Marilena LoVerde, Phys.Rev. D97 (2018) 123526, arXiv:1710.01310.
[Chiang:2017vuk]
[25-40]
Relativistic N-body simulations with massive neutrinos, Julian Adamek, Ruth Durrer, Martin Kunz, JCAP 2017 (2017) 004, arXiv:1707.06938.
[Adamek:2017uiq]
[25-41]
Cosmological N-body simulations with generic hot dark matter, Jacob Brandbyge, Steen Hannestad, JCAP 1710 (2017) 015, arXiv:1706.00025.
[Brandbyge:2017tdc]
[25-42]
Cosmological neutrino simulations at extreme scale, J.D. Emberson et al., Res.Astron.Astrophys. 17 (2017) 8, arXiv:1611.01545.
[Emberson:2016ecv]
[25-43]
Measurement of the Cold Dark Matter-Neutrino Dipole in the TianNu Simulation, Derek Inman et al., Phys.Rev. D95 (2017) 083518, arXiv:1610.09354.
[Inman:2016prk]
[25-44]
Simulating cosmologies beyond $\Lambda$CDM with PINOCCHIO, Luca Alberto Rizzo et al., JCAP 1701 (2017) 008, arXiv:1610.07624.
[Rizzo:2016mdr]
[25-45]
Cosmological $N$-body simulations including radiation perturbations, Jacob Brandbyge et al., Mon.Not.Roy.Astron.Soc. 466 (2017) L68-L72, arXiv:1610.04236.
[Brandbyge:2016raj]
[25-46]
The Mira-Titan Universe: Precision Predictions for Dark Energy Surveys, Katrin Heitmann et al., Astrophys.J. 820 (2016) 108, arXiv:1508.02654.
[Heitmann:2015xma]
[25-47]
Precision reconstruction of the dark matter-neutrino relative velocity from N-body simulations, Derek Inman et al., Phys. Rev. D92 (2015) 023502, arXiv:1503.07480.
[Inman:2015pfa]
[25-48]
The Coyote Universe III: Simulation Suite and Precision Emulator for the Nonlinear Matter Power Spectrum, Earl Lawrence et al., Astrophys. J. 713 (2010) 1322-1331, arXiv:0912.4490.
[Lawrence:2009uk]
[25-49]
The Coyote Universe II: Cosmological Models and Precision Emulation of the Nonlinear Matter Power Spectrum, Katrin Heitmann et al., Astrophys. J. 705 (2009) 156-174, arXiv:0902.0429.
[Heitmann:2009cu]
[25-50]
The Coyote Universe I: Precision Determination of the Nonlinear Matter Power Spectrum, Katrin Heitmann, Martin White, Christian Wagner, Salman Habib, David Higdon, Astrophys. J. 715 (2010) 104-121, arXiv:0812.1052.
[Heitmann:2008eq]
[25-51]
The baryon fraction of LambdaCDM haloes, Robert A. Crain et al., Mon. Not. Roy. Astron. Soc. 377 (2007) 41-49, arXiv:astro-ph/0610602.
[Crain:2006sb]
[25-52]
The first generation of stars in LCDM cosmology, L. Gao et al., Mon. Not. Roy. Astron. Soc. 378 (2007) 449, arXiv:astro-ph/0610174.
[Gao:2006ug]
[25-53]
Non-Gaussianity of the density distribution in accelerating universes II: N-body simulations, Takayuki Tatekawa, Shuntaro Mizuno, JCAP 0702 (2007) 015, arXiv:astro-ph/0608691.
[Tatekawa:2006nf]
[25-54]
The Kinetic Sunyaev-Zel'dovich Effect from Patchy Reionization: the View from the Simulations, Ilian T. Iliev et al., New Astron. Rev. 50 (2006) 909-917, arXiv:astro-ph/0607209. 9 pages, most figures should be viewed in color, to appear in New Astronomy Reviews.
[Iliev:2006zz]
[25-55]
Simulations of Cosmic Chemical Enrichment, Chiaki Kobayashi, Volker Springel, Simon D. M. White, Mon. Not. Roy. Astron. Soc. 376 (2007) 1465-1479, arXiv:astro-ph/0604107.
[Kobayashi:2006ym]
[25-56]
Large-Scale Simulations of Reionization, Katharina Kohler, Nickolay Y. Gnedin, Andrew J.S. Hamilton, Astrophys. J. 657 (2007) 15-29, arXiv:astro-ph/0511627.
[Kohler:2005gg]
[25-57]
Dark Energy Studies: Challenges to Computational Cosmology, James Annis et al. (DES), arXiv:astro-ph/0510194, 2005.
[DES:2005ile]
[25-58]
Simulations in Early Universe Theory, Jan Smit, PoS LAT2005 (2006) 022, arXiv:hep-lat/0510106.
[Smit:2005vp]

26 - Phenomenology - Simulations - Talks

[26-1]
Dark and baryonic matter in the MareNostrum Universe, S. Gottloeber et al., AIP Conf. Proc. 878 (2006) 3-9, arXiv:astro-ph/0610622. The Dark Side of the Universe 2006, Madrid.
[Gottlober:2006sx]
[26-2]
The Mass-Metallicity Relation in Cosmological Hydrodynamic Simulations, Romeel Daveé, Kristian Finlator, Benjamin D. Oppenheimer, arXiv:astro-ph/0608537, 2006. Chemodynamics 2006: From First Stars to Local Galaxies.
[Davee:2006mn]
[26-3]
The MareNostrum Universe, Stefan Gottloeber, G. Yepes, C. Wagner, R. Sevilla, arXiv:astro-ph/0608289, 2006. XLIst Rencontres de Moriond, XXVIth Astrophysics Moriond Meeting: 'From Dark Halos to Light', La Thuile, 12-18 March 2006.
[Gottloeber:2006fw]

27 - Phenomenology - Inflation

[27-1]
Primordial Black Holes and Scalar-induced Gravitational Waves in Radiative Hybrid Inflation, Adeela Afzal, Anish Ghoshal, arXiv:2402.06613, 2024.
[Afzal:2024xci]
[27-2]
$\nu$GRe: Gravitational Neutrino Reheating, Md Riajul Haque, Debaprasad Maity, Rajesh Mondal, Phys.Rev.D 109 (2024) 063543, arXiv:2311.07684.
[Haque:2023zhb]
[27-3]
Inflationary Potential as seen from Different Angles: Model Compatibility from Multiple CMB Missions, William Giare, Supriya Pan, Eleonora Di Valentino, Weiqiang Yang, Jaume de Haro, Alessandro Melchiorri, JCAP 09 (2023) 019, arXiv:2305.15378.
[Giare:2023wzl]
[27-4]
Reheating process in the $R^2$ inflationary model with the baryogenesis scenario, Hyun Jeong, Kohei Kamada, Alexei A. Starobinsky, Jun'ichi Yokoyama, JCAP 11 (2023) 023, arXiv:2305.14273.
[Jeong:2023zrv]
[27-5]
Post-inflationary Contamination of Local Primordial Non-Gaussianity in Galaxy Power Spectra, Phys.Rev.D 108 (2023) 103538.
[Shiveshwarkar:2023xjv]
[27-6]
Massive neutrino self-interactions and Inflation, Shouvik Roy Choudhury, Steen Hannestad, Thomas Tram, JCAP 10 (2022) 018, arXiv:2207.07142.
[RoyChoudhury:2022rva]
[27-7]
eV Hubble Scale Inflation with Radiative Plateau: Very light Inflaton, Reheating & Dark Matter in B-L Extensions, Anish Ghoshal, Nobuchika Okada, Arnab Paul, Phys.Rev.D 106 (2022) 095021, arXiv:2203.03670.
[Ghoshal:2022zwu]
[27-8]
Breaking the Single Clock Symmetry: measuring single-field inflation non-Gaussian features, Daniele Bertacca, Raul Jimenez, Sabino Matarrese, Licia Verde, arXiv:2110.09549, 2021.
[2110.09549]
[27-9]
A new take on the inflationary quintessence, Zurab Kepuladze, Michael Maziashvili, Phys.Rev. D103 (2021) 063540, arXiv:2102.09203.
[Kepuladze:2021tsb]
[27-10]
Warm Inflation, Neutrinos and Dark matter: a minimal extension of the Standard Model, Miguel Levy, Joao G. Rosa, Luis B. Ventura, JHEP 12 (2021) 176, arXiv:2012.03988.
[Levy:2020zfo]
[27-11]
Dark Radiation from Inflationary Fluctuations, Gordan Krnjaic, Phys.Rev. D103 (2021) 123507, arXiv:2006.13224.
[Krnjaic:2020znf]
[27-12]
Observational constraints on successful model of quintessential Inflation, Chao-Qiang Geng, Chung-Chi Lee, M. Sami, Emmanuel N. Saridakis, Alexei A. Starobinsky, JCAP 1706 (2017) 011, arXiv:1705.01329.
[Geng:2017mic]
[27-13]
Starobinsky-like Inflation, Supercosmology and Neutrino Masses in No-Scale Flipped SU(5), John Ellis, Marcos A. G. Garcia, Natsumi Nagata, Dimitri V. Nanopoulos, Keith A. Olive, JCAP 1707 (2017) 006, arXiv:1704.07331.
[Ellis:2017jcp]
[27-14]
Bose-Einstein-condensed scalar field dark matter and the gravitational wave background from inflation: new cosmological constraints and its detectability by LIGO, Bohua Li, Paul R. Shapiro, Tanja Rindler-Daller, Phys.Rev. D96 (2017) 063505, arXiv:1611.07961.
[Li:2016mmc]
[27-15]
The inflation models 2015, Qing-Guo Huang, Ke Wang, Sai Wang, Phys. Rev. D93 (2016) 103516, arXiv:1512.07769.
[Huang:2015cke]
[27-16]
Anisotropic Inflation and Cosmological Observations, Razieh Emami, arXiv:1511.01683, 2015.
[Emami:2015qjl]
[27-17]
The present and future of the most favoured inflationary models after $Planck$ 2015, Miguel Escudero, Hector Ramirez, Lotfi Boubekeur, Elena Giusarma, Olga Mena, JCAP 1602 (2016) 020, arXiv:1509.05419.
[Escudero:2015wba]
[27-18]
Low reheating temperatures in monomial and binomial inflationary potentials, Thomas Rehagen, Graciela B. Gelmini, JCAP 1506 (2015) 039, arXiv:1504.03768.
[Rehagen:2015zma]
[27-19]
Planck, LHC, and $\alpha$-attractors, Renata Kallosh, Andrei Linde, Phys. Rev. D91 (2015) 083528, arXiv:1502.07733.
[Kallosh:2015lwa]
[27-20]
What We Can Learn from the Running of the Spectral Index if no Tensors are Detected in the Cosmic Microwave Background Anisotropy, Matteo Biagetti, Alex Kehagias, Antonio Riotto, Phys. Rev. D91 (2015) 103527, arXiv:1502.02289.
[Biagetti:2015tja]
[27-21]
Affleck-Dine Sneutrino Inflation, Jason L. Evans, Tony Gherghetta, Marco Peloso, Phys. Rev. D92 (2015) 021303, arXiv:1501.06560.
[Evans:2015mta]
[27-22]
Does the first chaotic inflation model in supergravity provide the best fit to the Planck data?, Andrei Linde, JCAP 1502 (2015) 030, arXiv:1412.7111.
[Linde:2014hfa]
[27-23]
Early inflation induced gravity waves can restrict Astro-Particle physics, Shmuel Nussinov, arXiv:1408.1157, 2014.
[Nussinov:2014qva]
[27-24]
Bayesian evidence of non-standard inflation: isocurvature perturbations and running spectral index, Tommaso Giannantonio, Eiichiro Komatsu, Phys. Rev. D91 (2015) 023506, arXiv:1407.4291.
[Giannantonio:2014rva]
[27-25]
Updated Constraints on Large Field Hybrid Inflation, Sebastien Clesse, Jeremy Rekier, Phys. Rev. D90 (2014) 083527, arXiv:1407.1984.
[Clesse:2014fwa]
[27-26]
Compatibility of Planck and BICEP2 in the Light of Inflation, Jerome Martin, Christophe Ringeval, Roberto Trotta, Vincent Vennin, Phys. Rev. D90 (2014) 063501, arXiv:1405.7272.
[Martin:2014lra]
[27-27]
On the Lyth bound and single field slow-roll inflation, Gabriel German, arXiv:1405.3246, 2014.
[German:2014qza]
[27-28]
Single field inflation with modulated potential in light of the Planck and BICEP2, Youping Wan et al., Phys. Rev. D90 (2014) 023537, arXiv:1405.2784.
[Wan:2014fra]
[27-29]
See Saw Inflation / Dark Energy, George F. Smoot, arXiv:1405.2776, 2014.
[Smoot:2014era]
[27-30]
Generalized Slow Roll for Tensors, Wayne Hu, Phys. Rev. D89 (2014) 123503, arXiv:1405.2020.
[Hu:2014hoa]
[27-31]
Wiggly Whipped Inflation, Dhiraj Kumar Hazra, Arman Shafieloo, George F. Smoot, Alexei A. Starobinsky, JCAP 1408 (2014) 048, arXiv:1405.2012.
[Hazra:2014goa]
[27-32]
Higgs-portal assisted Higgs inflation in light of BICEP2, P. Ko, Wan-Il Park, JCAP 1702 (2017) 003, arXiv:1405.1635.
[Kim:2014kok]
[27-33]
Pre-inflationary genesis with CMB B-mode polarization, Zhi-Guo Liu, Hong Li, Yun-Song Piao, Phys. Rev. D90 (2014) 083521, arXiv:1405.1188.
[Liu:2014tda]
[27-34]
Distinguishing between Extra Natural Inflation and Natural Inflation after BICEP2, Kazunori Kohri, C. S. Lim, Chia-Min Lin, JCAP 1408 (2014) 001, arXiv:1405.0772.
[Kohri:2014rja]
[27-35]
Take up the challenge for a single field inflation after BICEP2, Chao-Jun Feng, Xin-Zhou Li, Mod.Phys.Lett. A29 (2014) 1450197, arXiv:1405.0656.
[Feng:2014jja]
[27-36]
A No-Scale Inflationary Model to Fit Them All, John Ellis, Marcos A. G. Garcia, Dimitri V. Nanopoulos, Keith A. Olive, JCAP 1408 (2014) 044, arXiv:1405.0271.
[Ellis:2014gxa]
[27-37]
Non-Gaussianity after BICEP2, Guido D'Amico, Matthew Kleban, Phys. Rev. Lett. 113 (2014) 081301, arXiv:1404.6478.
[DAmico:2014ptm]
[27-38]
Probable or Improbable Universe? Correlating Electroweak Vacuum Instability with the Scale of Inflation, Anson Hook, John Kearney, Bibhushan Shakya, Kathryn M. Zurek, JHEP 1501 (2015) 061, arXiv:1404.5953.
[Hook:2014uia]
[27-39]
Large tensor-to-scalar ratio from Composite Inflation, Phongpichit Channuie, Khamphee Karwan, Phys. Rev. D90 (2014) 047303, arXiv:1404.5879.
[Channuie:2014kda]
[27-40]
Classicalization of inflationary perturbations by collapse models in the light of BICEP2, Suratna Das, Satyabrata Sahu, Shreya Banerjee, T. P. Singh, Phys. Rev. D90 (2014) 043503, arXiv:1404.5740.
[Das:2014ada]
[27-41]
Fractional chaotic inflation in the lights of PLANCK and BICEP2, Xin Gao, Tianjun Li, Pramod Shukla, Phys.Lett. B738 (2014) 412-417, arXiv:1404.5230.
[Gao:2014fha]
[27-42]
Higgs inflation with singlet scalar dark matter and right-handed neutrino in the light of BICEP2, Naoyuki Haba, Ryo Takahashi, Phys. Rev. D89 (2014) 115009, arXiv:1404.4737.
[Haba:2014zda]
[27-43]
Negative running prevents eternal inflation, William H. Kinney, Katherine Freese, JCAP 1501 (2015) 040, arXiv:1404.4614.
[Kinney:2014jya]
[27-44]
The TT, TB, EB and BB correlations in anisotropic inflation, Xingang Chen, Razieh Emami, Hassan Firouzjahi, Yi Wang, JCAP 1408 (2014) 027, arXiv:1404.4083.
[Chen:2014eua]
[27-45]
The inflation point in U(1)$_{de}$ hilltop potential assisted by chaoton, BICEP2 data, and trans-Planckian decay constant, Jihn E. Kim, Phys.Lett. B737 (2014) 1-5, arXiv:1404.4022.
[Kim:2014dba]
[27-46]
Sneutrino Chaotic Inflation and Landscape, Hitoshi Murayama, Kazunori Nakayama, Fuminobu Takahashi, Tsutomu T. Yanagida, Phys.Lett. B738 (2014) 196-200, arXiv:1404.3857.
[Murayama:2014saa]
[27-47]
Is Cosmological Constant Needed in Higgs Inflation?, Chao-Jun Feng, Xin-Zhou Li, Phys. Rev. D90 (2014) 103009, arXiv:1404.3817.
[Feng:2014iza]
[27-48]
Primordial gravitational wave of BICEP2 from dynamical double hybrid inflation, Ki-Young Choi, Bumseok Kyae, Phys.Lett. B735 (2014) 391, arXiv:1404.3756.
[Choi:2014aca]
[27-49]
GCG Inflation in the light of Planck and BICEP2, Bikas R Dinda, Sumit Kumar, Anjan A Sen, Phys. Rev. D90 (2014) 083515, arXiv:1404.3683.
[Dinda:2014zta]
[27-50]
K-Inflation in Noncommutative Space-Time, Chao-Jun Feng, Xin-Zhou Li, Dao-Jun Liu, Eur.Phys.J. C75 (2015) 42, arXiv:1404.3612.
[Feng:2014pta]
[27-51]
Jump in fluid properties of inflationary universe to reconcile scalar and tensor spectra, Hassan Firouzjahi, Mohammad Hossein Namjoo, Phys. Rev. D90 (2014) 063525, arXiv:1404.2589.
[Firouzjahi:2014fda]
[27-52]
Inflation After False Vacuum Decay: New Evidence from BICEP2, Raphael Bousso, Daniel Harlow, Leonardo Senatore, JCAP 1412 (2014) 019, arXiv:1404.2278.
[Bousso:2014jca]
[27-53]
Dark Matter Chaotic Inflation in Light of BICEP2, Kyohei Mukaida, Kazunori Nakayama, JCAP 1408 (2014) 062, arXiv:1404.1880.
[Mukaida:2014kpa]
[27-54]
Reconciling BICEP2 and Planck results with right-handed Dirac neutrinos in the fundamental representation of grand unified $E_6$, Luis A. Anchordoqui, Haim Goldberg, Xing Huang, Brian J. Vlcek, JCAP 1406 (2014) 042, arXiv:1404.1825.
[Anchordoqui:2014dpa]
[27-55]
BICEP2 implications for single-field slow-roll inflation revisited, Stefan Antusch, David Nolde, JCAP 1405 (2014) 035, arXiv:1404.1821.
[Antusch:2014cpa]
[27-56]
Intermediate inflation under the scrutiny of recent data, Sergio del Campo, arXiv:1404.1649, 2014.
[delCampo:2014toa]
[27-57]
TeV scale seesaw from supersymmetric Higgs-lepton inflation and BICEP2, Shinsuke Kawai, Nobuchika Okada, Phys.Lett. B735 (2014) 186-190, arXiv:1404.1450.
[Kawai:2014doa]
[27-58]
Testing the slow-roll approximation, Hybrid Natural Inflation and the tensor index with BICEP2, Mariana Carrillo-Gonzalez, Gabriel German-Velarde, Alfredo Herrera-Aguilar, Juan Carlos Hidalgo, Roberto Sussman, Phys.Lett. B734 (2014) 345, arXiv:1404.1122.
[Carrillo-Gonzalez:2014tia]
[27-59]
$\phi^2$ or not $\phi^2$: Checking the Simplest Universe, Paolo Creminelli, Diana Lopez Nacir, Marko Simonovi\u0107, Gabriele Trevisan, Matias Zaldarriaga, Phys. Rev. Lett. 112 (2014) 241303, arXiv:1404.1065.
[Creminelli:2014oaa]
[27-60]
Does the BICEP2 Observation of Cosmological Tensor Modes Imply an Era of Nearly Planckian Energy Densities?, Chiu Man Ho, Stephen D. H. Hsu, JHEP 1407 (2014) 060, arXiv:1404.0745.
[Ho:2014xza]
[27-61]
Whipped inflation, Dhiraj Kumar Hazra, Arman Shafieloo, George F. Smoot, Phys. Rev. Lett. 113 (2014) 071301, arXiv:1404.0360.
[Hazra:2014jka]
[27-62]
Radiative Inflation and Dark Energy RIDEs Again after BICEP2, Pasquale Di Bari, Stephen F. King, Christoph Luhn, Alexander Merle, Angnis Schmidt-May, JCAP 1408 (2014) 040, arXiv:1404.0009.
[DiBari:2014oja]
[27-63]
Gravitational quantum effects in the light of BICEP2 results, Tao Zhu, Anzhong Wang, Phys. Rev. D90 (2014) 027304, arXiv:1403.7696.
[Zhu:2014wda]
[27-64]
Evidence for bouncing evolution before inflation after BICEP2, Jun-Qing Xia, Yi-Fu Cai, Hong Li, Xinmin Zhang, Phys. Rev. Lett. 112 (2014) 251301, arXiv:1403.7623.
[Xia:2014tda]
[27-65]
Complexified Starobinsky Inflation in Supergravity in the Light of Recent BICEP2 Result, Koichi Hamaguchi, Takeo Moroi, Takahiro Terada, Phys.Lett. B733 (2014) 305-308, arXiv:1403.7521.
[Hamaguchi:2014mza]
[27-66]
Resurrecting Quadratic Inflation in No-Scale Supergravity in Light of BICEP2, John Ellis, Marcos A. G. Garcia, Dimitri V. Nanopoulos, Keith A. Olive, JCAP 1405 (2014) 037, arXiv:1403.7518.
[Ellis:2014rxa]
[27-67]
BICEP2, the curvature perturbation and supersymmetry, David H. Lyth, JCAP 1411 (2014) 003, arXiv:1403.7323.
[Lyth:2014yya]
[27-68]
BICEP2 in Corpuscular Description of Inflation, Gia Dvali, Cesar Gomez, J.Exp.Theor.Phys. 120 (2015) 525-527, arXiv:1403.6850.
[Dvali:2014ssa]
[27-69]
How well do we understand the thermal history of the Universe? Implications of the recent BICEP2 data, Mairi Sakellariadou, Phys. Rev. D90 (2014) 087301, arXiv:1403.6688.
[Sakellariadou:2014nia]
[27-70]
U(1)$_{B-L}$ Symmetry Restoration and Effective Neutrino Species, Hiroyuki Ishida, Fuminobu Takahashi, Phys.Lett. B734 (2014) 183-187, arXiv:1403.6460.
[Ishida:2014zya]
[27-71]
How much can we learn about the physics of inflation?, Scott Dodelson, Phys. Rev. Lett. 112 (2014) 191301, arXiv:1403.6310.
[Dodelson:2014exa]
[27-72]
BICEP2, the Higgs Mass and the SUSY-breaking Scale, Luis E. Ibanez, Irene Valenzuela, Phys.Lett. B734 (2014) 354, arXiv:1403.6081.
[Ibanez:2014zsa]
[27-73]
Multi-Natural Inflation in Supergravity and BICEP2, Michael Czerny, Tetsutaro Higaki, Fuminobu Takahashi, Phys.Lett. B734 (2014) 167-172, arXiv:1403.5883.
[Czerny:2014qqa]
[27-74]
Inflation and Alternatives with Blue Tensor Spectra, Yi Wang, Wei Xue, JCAP 1410 (2014) 075, arXiv:1403.5817.
[Wang:2014kqa]
[27-75]
The Tilt of Primordial Gravitational Waves Spectra from BICEP2, Cheng Cheng, Qing-Guo Huang, Mod.Phys.Lett. A29 (2014) 1450185, arXiv:1403.5463.
[Cheng:2014bma]
[27-76]
Inflationary Tensor Perturbations After BICEP, Jerod Caligiuri, Arthur Kosowsky, Phys. Rev. Lett. 112 (2014) 191302, arXiv:1403.5324.
[Caligiuri:2014sla]
[27-77]
Natural Inflation: Consistency with Cosmic Microwave Background Observations of Planck and BICEP2, Katherine Freese, William H. Kinney, JCAP 1503 (2015) 044, arXiv:1403.5277.
[Freese:2014nla]
[27-78]
The Gravitational Wave Background and Higgs False Vacuum Inflation, Isabella Masina, Phys. Rev. D89 (2014) 123505, arXiv:1403.5244.
[Masina:2014yga]
[27-79]
Steps to Reconcile Inflationary Tensor and Scalar Spectra, Vinicius Miranda, Wayne Hu, Peter Adshead, Phys. Rev. D89 (2014) 101302, arXiv:1403.5231.
[Miranda:2014wga]
[27-80]
Killing the Straw Man: Does BICEP Prove Inflation?, James B. Dent, Lawrence M. Krauss, Harsh Mathur, Phys.Lett. B736 (2014) 305, arXiv:1403.5166.
[Dent:2014rga]
[27-81]
Polynomial inflation models after BICEP2, Tatsuo Kobayashi, Osamu Seto, Phys. Rev. D89 (2014) 103524, arXiv:1403.5055.
[Kobayashi:2014jga]
[27-82]
Is Higgs Inflation Dead?, Jessica L. Cook, Lawrence M. Krauss, Andrew J. Long, Subir Sabharwal, Phys. Rev. D89 (2014) 103525, arXiv:1403.4971.
[Cook:2014dga]
[27-83]
Closed String Thermodynamics and a Blue Tensor Spectrum, Robert H. Brandenberger, Ali Nayeri, Subodh P. Patil, Phys. Rev. D90 (2014) 067301, arXiv:1403.4927.
[Brandenberger:2014faa]
[27-84]
Remarks about the Tensor Mode Detection by the BICEP2 Collaboration and the Super-Planckian Excursions of the Inflaton Field, Alex Kehagias, Antonio Riotto, Phys. Rev. D89 (2014) 101301, arXiv:1403.4811.
[Kehagias:2014wza]
[27-85]
Running Spectral Index from Large-field Inflation with Modulations Revisited, Michael Czerny, Takeshi Kobayashi, Fuminobu Takahashi, Phys.Lett. B735 (2014) 176-180, arXiv:1403.4589.
[Czerny:2014wua]
[27-86]
Local Reconstruction of the Inflationary Potential with BICEP2 data, Yin-Zhe Ma, Yi Wang, JCAP 1409 (2014) 041, arXiv:1403.4585.
[Ma:2014vua]
[27-87]
Inflationary paradigm after Planck 2013, Alan H. Guth, David I. Kaiser, Yasunori Nomura, Phys.Lett. B733 (2014) 112-119, arXiv:1312.7619.
[Guth:2013sya]
[27-88]
Reconstruction of broad features in the primordial spectrum and inflaton potential from Planck, Dhiraj Kumar Hazra, Arman Shafieloo, George F. Smoot, JCAP 1312 (2013) 035, arXiv:1310.3038.
[Hazra:2013nca]
[27-89]
Standard Big-Bang Nucleosynthesis after Planck, Alain Coc, Jean-Philippe Uzan, Elisabeth Vangioni, arXiv:1307.6955, 2013.
[Coc:2013eea]
[27-90]
Wess-Zumino Inflation in Light of Planck, Djuna Croon, John Ellis, Nick E. Mavromatos, Physics Letters B 724 (2013) , 165, arXiv:1303.6253.
[Croon:2013ana]
[27-91]
Inflation and primordial power spectra at anisotropic spacetime inspired by Planck's constraints on isotropy of CMB, Zhe Chang, Sai Wang, Eur. Phys. J. C (2013) 73:2516, arXiv:1303.6058.
[Chang:2013vla]
[27-92]
Visible sector inflation and the right thermal history in light of Planck data, Lingfei Wang, Ernestas Pukartas, Anupam Mazumdar, JCAP 1307 (2013) 019, arXiv:1303.5351.
[Wang:2013hva]
[27-93]
Light inflaton after LHC8 and WMAP9 results, F. Bezrukov, D. Gorbunov, JHEP 1307 (2013) 140, arXiv:1303.4395.
[Bezrukov:2013fca]
[27-94]
Running Standard Model Inflation And Type I Seesaw, Nobuchika Okada, Mansoor Ur Rehman, Qaisar Shafi, arXiv:0911.5073, 2009.
[Okada:2009wz]
[27-95]
Hybrid Inflation Revisited in Light of WMAP5, Mansoor Ur Rehman, Qaisar Shafi, Joshua R. Wickman, Phys. Rev. D79 (2009) 103503, arXiv:0901.4345.
[Rehman:2009wv]
[27-96]
Single-Field Inflation After WMAP5, Laila Alabidi, James E. Lidsey, Phys. Rev. D78 (2008) 103519, arXiv:0807.2181.
[Alabidi:2008ej]
[27-97]
Chaotic inflation meets precision cosmology, V. Nefer Senoguz, Qaisar Shafi, Phys. Lett. B668 (2008) 6, arXiv:0806.2798.
[Senoguz:2008nok]
[27-98]
Constraining Inflation, Peter Adshead, Richard Easther, JCAP 0810 (2008) 047, arXiv:0802.3898.
[Adshead:2008vn]
[27-99]
What do WMAP and SDSS really tell about inflation?, Julien Lesgourgues, Alexei A. Starobinsky, Wessel Valkenburg, JCAP 0801 (2008) 010, arXiv:0710.1630.
[Lesgourgues:2007aa]
[27-100]
Inflationary perturbations in anisotropic backgrounds and their imprint on the CMB, A.E. Gumrukcuoglu, Carlo R. Contaldi, Marco Peloso, JCAP 0711 (2007) 005, arXiv:0707.4179.
[Gumrukcuoglu:2007bx]
[27-101]
New constraints on the observable inflaton potential from WMAP and SDSS, Julien Lesgourgues, Wessel Valkenburg, Phys. Rev. D75 (2007) 123519, arXiv:astro-ph/0703625.
[Lesgourgues:2007gp]
[27-102]
Supersymmetric And Smooth Hybrid Inflation In The Light Of WMAP3, Mansoor ur Rehman, V. N. Senoguz, Qaisar Shafi, Phys. Rev. D75 (2007) 043522, arXiv:hep-ph/0612023.
[urRehman:2006hu]
[27-103]
Intermediate inflation in light of the three-year WMAP observations, John D. Barrow, Andrew R. Liddle, Cedric Pahud, Phys. Rev. D74 (2006) 127305, arXiv:astro-ph/0610807.
[Barrow:2006dh]
[27-104]
21-cm Background Anisotropies Can Discern Primordial Non-Gaussianity from Slow-Roll Inflation, Asantha Cooray, Phys. Rev. Lett. 97 (2006) 261301, arXiv:astro-ph/0610257.
[Cooray:2006km]
[27-105]
WMAP-normalized Inflationary Model Predictions and the Search for Primordial Gravitational Waves with Direct Detection Experiments, Brett C. Friedman, Asantha Cooray, Alessandro Melchiorri, Phys. Rev. D74 (2006) 123509, arXiv:astro-ph/0610220.
[Friedman:2006zt]
[27-106]
Inflation model constraints from the Wilkinson Microwave Anisotropy Probe three-year data, William H. Kinney, Edward W. Kolb, Alessandro Melchiorri, Antonio Riotto, Phys. Rev. D74 (2006) 023502, arXiv:astro-ph/0605338.
[Kinney:2006qm]
[27-107]
Inflationary Potential Reconstruction for a WMAP Running Power Spectrum, James M. Cline, Loison Hoi, JCAP 0606 (2006) 007, arXiv:astro-ph/0603403.
[Cline:2006db]
[27-108]
Cosmological parameter estimation and the inflationary cosmology, Samuel M. Leach, Andrew R. Liddle, Jerome Martin, Dominik J Schwarz, Phys. Rev. D66 (2002) 023515, arXiv:astro-ph/0202094.
[Leach:2002ar]
[27-109]
Determination of inflationary observables by cosmic microwave background anisotropy experiments, LLoyd Knox, Phys. Rev. D52 (1995) 4307-4318, arXiv:astro-ph/9504054.
[Knox:1995dq]
[27-110]
Detectability of tensor perturbations through CBR anisotropy, Lloyd Knox, Michael S. Turner, Phys. Rev. Lett. 73 (1994) 3347-3350, arXiv:astro-ph/9407037.
[Knox:1994qj]

28 - Phenomenology - Inflation - Talks

[28-1]
Inflation after Planck and BICEP2, Raghavan Rangarajan, Springer Proc. Phys. 174 (2016) 453-461, arXiv:1506.07433. XXI DAE-BRNS High Energy Physics Symposium at IIT Guwahati, Dec.8-12, 2014.
[Rangarajan:2015vba]
[28-2]
Inflation after WMAP3, William H. Kinney, AIP Conf. Proc. 928 (2007) 3-10, arXiv:0706.3699. Colliders to Cosmic Rays 2007.
[Kinney:2007np]
[28-3]
The exact numerical treatment of inflationary models, Christophe Ringeval, Lect. Notes Phys. 738 (2008) 243-273, arXiv:astro-ph/0703486. 22nd IAP Colloquium 'Inflation +25', Paris.
[Ringeval:2007am]

29 - Theory

[29-1]
The minimal cosmological standard model, Gabriela Barenboim, P. Ko, Wan-il Park, arXiv:2403.05390, 2024.
[Barenboim:2024akt]
[29-2]
Appearance of neutrino asymmetries in the process of expansion of the Universe, hierarchy of neutrino masses and CP violation, A. P. Serebrov, O. M. Zherebtsov, R. M. Samoilov, N. S. Budanov, arXiv:2402.02974, 2024.
[Serebrov:2024rya]
[29-3]
Elementary Particles and Plasma in the First Hour of the Early Universe, Cheng Tao Yang, arXiv:2401.09653, 2024.
[Yang:2024ret]
[29-4]
Non-linear CMB lensing with neutrinos and baryons: FLAMINGO simulations vs. fast approximations, Mon.Not.Roy.Astron.Soc. 529 (2024) 1862-1876.
[Upadhye:2023zgr]
[29-5]
QED corrections to the thermal neutrino interaction rate, G. Jackson, M. Laine, arXiv:2312.07015, 2023.
[Jackson:2023zkl]
[29-6]
Superfluidity in neutrino clusters, Maxim Dvornikov, arXiv:2310.04806, 2023.
[Dvornikov:2023nmf]
[29-7]
Quantum algorithm for the Vlasov simulation of the large-scale structure formation with massive neutrinos, Koichi Miyamoto, Soichiro Yamazaki, Fumio Uchida, Kotaro Fujisawa, Naoki Yoshida, Phys.Rev.Res. 6 (2024) 013200, arXiv:2310.01832.
[Miyamoto:2023iwk]
[29-8]
PRyMordial: The First Three Minutes, Within and Beyond the Standard Model, Anne-Katherine Burns, Tim M. P. Tait, Mauro Valli, Eur.Phys.J.C 84 (2024) 86, arXiv:2307.07061.
[Burns:2023sgx]
[29-9]
Revisiting coupled CDM-massive neutrino perturbations in diverse cosmological backgrounds, Sourav Pal, Rickmoy Samanta, Supratik Pal, JCAP 12 (2023) 004, arXiv:2305.12830.
[Pal:2023dcs]
[29-10]
Avoiding parameter fine-tuning in mass varying neutrino models of DE?, Michael Maziashvili, Vakhtang Tsintsabadze, Astropart.Phys. 154 (2024) 102901, arXiv:2302.00380.
[Maziashvili:2023rjr]
[29-11]
A Minimal Explanation of the Primordial Cosmological Perturbations, Neil Turok, Latham Boyle, arXiv:2302.00344, 2023.
[Turok:2023amx]
[29-12]
Elucidation of 'Cosmic Coincidence', Meir Shimon, arXiv:2204.02211, 2022.
[Shimon:2022ehj]
[29-13]
Neutrinos as a probe of curvature, Jafar Khodagholizadeh, JHEAp 32 (2021) 123, arXiv:2108.11423.
[Khodagholizadeh:2021zeu]
[29-14]
Cosmology meets functional QCD: First-order cosmic QCD transition induced by large lepton asymmetries, Fei Gao, Isabel M. Oldengott, arXiv:2106.11991, 2021.
[1869949]
[29-15]
Horndessence: $\Lambda$CDM Cosmology from Modified Gravity, Eric V. Linder, arXiv:2104.14560, 2021.
[Linder:2021est]
[29-16]
The Trouble with 'Puddle Thinking': A User's Guide to the Anthropic Principle, Geraint F. Lewis, Luke A. Barnes, arXiv:2104.03381, 2021.
[Lewis:2021upp]
[29-17]
Modeling the Marked Spectrum of Matter and Biased Tracers in Real- and Redshift-Space, Oliver H. E. Philcox, Alejandro Aviles, Elena Massara, JCAP 2103 (2021) 038, arXiv:2010.05914.
[Philcox:2020srd]
[29-18]
New Relativistic Theory for Modified Newtonian Dynamics, Constantinos Skordis, Tom Zlosnik, Phys. Rev. Lett. 127 (2021) 161302, arXiv:2007.00082.
[Skordis:2020eui]
[29-19]
Neutrino Cooling of Primordial Hot Regions, K.M. Belotsky, S.G. Rubin, M.M. Elkasemy, Symmetry 12 (2020) 1442, arXiv:2006.08359.
[Belotsky:2020vax]
[29-20]
Scalar induced resonant sterile neutrino production in the early Universe, F. Bezrukov, A. Chudaykin, D. Gorbunov, Phys.Rev. D101 (2020) 103516, arXiv:1911.08502.
[Bezrukov:2019mak]
[29-21]
Derivation of the sterile neutrino Boltzmann equation from quantum kinetics, Lucas Johns, Phys.Rev. D100 (2019) 083536, arXiv:1908.04244.
[Johns:2019hjl]
[29-22]
Is the Big Rip unreachable?, Konstantinos Dimopoulos, Phys.Lett. B785 (2018) 132-135, arXiv:1807.01587.
[Dimopoulos:2018kgl]
[29-23]
Diffusion coefficients and constraints on hadronic inhomogeneities in the early universe, Sovan Sau, Sayantan Bhattacharya, Soma Sanyal, Eur.Phys.J. C79 (2019) 439, arXiv:1805.06241.
[Sau:2018hii]
[29-24]
Isocurvature initial conditions for second order Boltzmann solvers, Pedro Carrilho, Karim A. Malik, JCAP 1808 (2018) 020, arXiv:1803.08939.
[Carrilho:2018mqy]
[29-25]
Perturbed spherical collapse of matter: exact analytical description, Cornelius Rampf, Mon.Not.Roy.Astron.Soc. 484 (2019) 5223-5235, arXiv:1712.01878.
[Rampf:2017tne]
[29-26]
A Cosmological Signature of the Standard Model Higgs Vacuum Instability: Primordial Black Holes as Dark Matter, J. R. Espinosa, D. Racco, A. Riotto, Phys.Rev.Lett. 120 (2018) 121301, arXiv:1710.11196.
[Espinosa:2017sgp]
[29-27]
Too hot to handle? Analytic solutions for massive neutrino or warm dark matter cosmologies, Zachary Slepian, Stephen KN Portillo, Mon.Not.Roy.Astron.Soc. 478 (2018) 516-529, arXiv:1710.01785.
[Slepian:2017dld]
[29-28]
Lepton number asymmetries and the lower bound on the reheating temperature, Gabriela Barenboim, Wan-Il Park, JCAP 1712 (2017) 037, arXiv:1708.04899.
[Barenboim:2017ynv]
[29-29]
Relativistic effective degrees of freedom and quantum statistics of neutrinos, Jun Iizuka, Teruyuki Kitabayashi, Mod.Phys.Lett. A32 (2017) 1750069, arXiv:1703.03120.
[Iizuka:2017zff]
[29-30]
Massive Fermi Gas in the Expanding Universe, Andreas Trautner, JCAP 1703 (2017) 019, arXiv:1612.07249.
[Trautner:2016ias]
[29-31]
Do We Really Understand the Cosmos?, T. Padmanabhan, Comptes Rendus Physique 18 (2017) 275-291, arXiv:1611.03505.
[Padmanabhan:2016lul]
[29-32]
Neutrino induced vorticity, Alfven waves and the normal modes, Jitesh R. Bhatt, Manu George, Eur.Phys.J. C77 (2017) 539, arXiv:1608.05558.
[Bhatt:2016irk]
[29-33]
No repulsive force in General Relativity, M. A. Abramowicz, J. -P. Lasota, arXiv:1608.02882, 2016.
[Abramowicz:2016ksa]
[29-34]
Dark energy from the motions of neutrinos, Fergus Simpson, Raul Jimenez, Carlos Pena-Garay, Licia Verde, Phys.Dark Univ. 20 (2018) 72-77, arXiv:1607.02515.
[Simpson:2016gph]
[29-35]
Thermal condensate structure and cosmological energy density of the Universe, Antonio Capolupo, Gaetano Lambiase, Giuseppe Vitiello, Adv.High Energy Phys. 2016 (2016) 3127597, arXiv:1602.07684.
[Capolupo:2016cxm]
[29-36]
Analytic solution of the Boltzmann equation in the early universe, D. Bazow, G. S. Denicol, U. Heinz, M. Martinez, J. Noronha, Phys. Rev. Lett. 116 (2016) 022301, arXiv:1507.07834.
[Bazow:2015dha]
[29-37]
The road to MOND-a novel perspective, Mordehai Milgrom, Phys. Rev. D92 (2015) 044014, arXiv:1507.05741.
[Milgrom:2015ema]
[29-38]
Riding Gravity Away from Doomsday, Ashoke Sen, Int. J. Mod. Phys. D24 (2015) 1544004, arXiv:1503.08130.
[Sen:2015hza]
[29-39]
On the importance of nonlinear couplings in large-scale neutrino streams, Helene Dupuy, Francis Bernardeau, JCAP 1508 (2015) 053, arXiv:1503.05707.
[Dupuy:2015ega]
[29-40]
The hierarchy problem and the cosmological constant problem in the Standard Model, Fred Jegerlehner, arXiv:1503.00809, 2015.
[Jegerlehner:2015cva]
[29-41]
Boltzmann hierarchy for interacting neutrinos I: formalism, Isabel M. Oldengott, Cornelius Rampf, Yvonne Y. Y. Wong, JCAP 1504 (2015) 016, arXiv:1409.1577.
[Oldengott:2014qra]
[29-42]
N-body methods for relativistic cosmology, Julian Adamek, Ruth Durrer, Martin Kunz, Class.Quant.Grav. 31 (2014) 234006, arXiv:1408.3352.
[Adamek:2014xba]
[29-43]
Exact theory of freeze out, Mirco Cannoni, Eur.Phys.J. C75 (2015) 106, arXiv:1407.4108.
[Cannoni:2014zqa]
[29-44]
Evidence of the Big Fix, Yuta Hamada, Hikaru Kawai, Kiyoharu Kawana, Int.J.Mod.Phys. A29 (2014) 1450099, arXiv:1405.1310.
[Hamada:2014ofa]
[29-45]
Nucleosynthesis in Hot and Dense Media, Samina S. Masood, Physics 5 (2014) 296-308, arXiv:1405.1239.
[Masood:2014vda]
[29-46]
Connection of Cosmic Microwave Background Fluctuations to the Quark-Gluon Hadronization Temperature, Jeremiah Birrell, Johann Rafelski, Phys.Lett. B741 (2015) 77-81, arXiv:1404.6005.
[Birrell:2014cja]
[29-47]
Boltzmann Equation Solver Adapted to Emergent Chemical Non-equilibrium, Jeremiah Birrell, Johann Rafelski, J.Comput.Phys. 281 (2014) 896-916, arXiv:1403.2019.
[Birrell:2014gea]
[29-48]
The effective gravitational decoupling between dark matter and the CMB, Luc Voruz, Julien Lesgourgues, Thomas Tram, JCAP 1403 (2014) 004, arXiv:1312.5301.
[Voruz:2013vqa]
[29-49]
Einstein's equivalence principle in cosmology, Sergei M. Kopeikin, arXiv:1311.4912, 2013.
[Kopeikin:2013kpa]
[29-50]
A Curious Explanation of Some Cosmological Phenomena, Ram Gopal Vishwakarma, Phys.Scripta 05 (2013) 055901, arXiv:1306.1809.
[Vishwakarma:2013fwa]
[29-51]
An analytic model for redshift-space distortions, Lile Wang, Beth Reid, Martin White, Mon. Not. R. Astron. Soc. (2013), arXiv:1306.1804.
[Wang:2013hwa]
[29-52]
The Kinematics of Cosmic Reheating, Marco Drewes, Jin U Kang, Nucl. Phys. B875 (2013) 315-350, arXiv:1305.0267.
[Drewes:2013iaa]
[29-53]
Felinic principle and measurement of the Hubble parameter, Yodovina Piskur, Bumbarija Medolin, arXiv:1303.7382, 2013.
[Piskur:2013qka]
[29-54]
A Universe without expansion, C. Wetterich, Phys.Dark Univ. 2 (2013) 184-187, arXiv:1303.6878.
[Wetterich:2013aca]
[29-55]
A Brief History of Curvature, Robert R. Caldwell, Steven S. Gubser, Phys. Rev. D87 (2013) 063523, arXiv:1302.1201.
[Caldwell:2013mox]
[29-56]
Lepton asymmetry growth in symmetric phase of electroweak plasma with hypermagnetic fields versus its washing out by sphalerons, Maxim Dvornikov, Victor B. Semikoz, Phys. Rev. D87 (2013) 025023, arXiv:1212.1416.
[Dvornikov:2012rk]
[29-57]
An analytic description of the damping of gravitational waves by free streaming neutrinos, Ben A. Stefanek, Wayne W. Repko, Phys. Rev. D88 (2013) 083536, arXiv:1207.7285.
[Stefanek:2012hj]
[29-58]
The R_h=ct Universe Without Inflation, Fulvio Melia, Astron. Astrophys. 553 (2013) A76, arXiv:1206.6527.
[Melia:2012df]
[29-59]
The Gravitational Horizon for a Universe with Phantom Energy, Fulvio Melia, JCAP 09 (2012) 029, arXiv:1206.6192.
[Melia:2012yx]
[29-60]
Cosmic Rulers, Fabian Schmidt, Donghui Jeong, Phys. Rev. D86 (2013) 083527, arXiv:1204.3625.
[Schmidt:2013gwa]
[29-61]
Cosmological redshift in Friedmann-Robertson-Walker metrics with constant space-time curvature, Fulvio Melia, Mon. Not. Roy. Astron. Soc. 422 (2012) 1418-1424, arXiv:1202.0775.
[Melia:2012ic]
[29-62]
Conceptual Problems in Cosmology, F. J. Amaral Vieira, arXiv:1110.5634, 2011.
[AmaralVieira:2011qp]
[29-63]
Spacetime torsion as a possible remedy to major problems in gravity and cosmology, Nikodem J. Poplawski, Astron. Rev. 8, 108 (2013), arXiv:1106.4859.
[Poplawski:2011qr]
[29-64]
MONDian Dark Matter, Chiu Man Ho, Djordje Minic, Y. Jack Ng, Phys. Lett. B693 (2010) 567-570, arXiv:1005.3537.
[Ho:2010ca]
[29-65]
Why all these prejudices against a constant?, Eugenio Bianchi, Carlo Rovelli, arXiv:1002.3966, 2010.
[Bianchi:2010uw]
[29-66]
Prelude to Compressed Baryonic Matter, Frank Wilczek, Lect. Notes Phys. 814 (2011) 1-10, arXiv:1001.2729.
[Wilczek:2010ae]
[29-67]
The Cosmological Spacetime, Fulvio Melia, Majd Abdelqader, Int. J. Mod. Phys. D18 (2009) 1889-1901, arXiv:0907.5394.
[Melia:2009ww]
[29-68]
Cosmic Neutrino Last Scattering Surface, Scott Dodelson, Mika Vesterinen, Phys. Rev. Lett. 103 (2009) 171301, arXiv:0907.2887.
[Dodelson:2009ze]
[29-69]
Lepton asymmetry and the cosmic QCD transition, Dominik J Schwarz, Maik Stuke, JCAP 0911 (2009) 025, arXiv:0906.3434.
[Schwarz:2009ii]
[29-70]
On the Nature of the Cosmological Constant Problem, M. D. Maia, A. J. S.Capistrano, Int. J. Mod. Phys. A24 (2009) 1545-1548, arXiv:0905.3655.
[Maia:2009pi]
[29-71]
Proof Of The Invalidity Of The Boltzmann Property In The FMO Many-Body Neutrino Model, James Quach, arXiv:0903.1410, 2009.
[Quach:2009vh]
[29-72]
The halo mass function from the excursion set method. III. First principle derivation for non-Gaussian theories, Michele Maggiore, Antonio Riotto, Astrophys. J. 717 (2010) 526-541, arXiv:0903.1251.
[Maggiore:2009rx]
[29-73]
Cosmological background solutions and cosmological backreactions, Edward W. Kolb, Valerio Marra, Sabino Matarrese, Gen. Rel. Grav. 42 (2010) 1399-1412, arXiv:0901.4566.
[Kolb:2009rp]
[29-74]
Can inhomogeneities solve the horizon problem ?, Antonio Enea Romano, arXiv:0811.3921, 2008.
[Romano:2008as]
[29-75]
What if Time Really Exists?, Sean M. Carroll, arXiv:0811.3772, 2008.
[Carroll:2008yd]
[29-76]
Non-Gaussian Correlations Outside the Horizon II: The General Case, Steven Weinberg, Phys. Rev. D79 (2012) 043504, arXiv:0810.2831.
[Meyers:2012ni]
[29-77]
Gauging the cosmic microwave background, J. P. Zibin, Douglas Scott, Phys. Rev. D78 (2008) 123529, arXiv:0808.2047.
[Zibin:2008fe]
[29-78]
The kinematic origin of the cosmological redshift, Emory F. Bunn, David W. Hogg, Am. J. Phys. 77 (2009) 688-694, arXiv:0808.1081.
[Bunn:2008vj]
[29-79]
Cosmological Expansion Started from the Big Bounce on Local Rotation, I. S. Nurgaliev, arXiv:0807.4837, 2008.
[0807.4837]
[29-80]
Accelerating Cold Dark Matter Cosmology $(\Omega_{\Lambda}\equiv 0)$, J. A. S. Lima, F. E. Silva, R. C. Santos, Class. Quant. Grav. 25 (2008) 205006, arXiv:0807.3379.
[Lima:2008qy]
[29-81]
Can neutrino viscosity drive the late time cosmic acceleration?, Sudipta Das, Narayan Banerjee, Int. J. Theor. Phys. 51 (2012) 2771-2778, arXiv:0806.3666.
[Das:2008mj]
[29-82]
Flowing with Time: a New Approach to Nonlinear Cosmological Perturbations, Massimo Pietroni, JCAP 0810 (2008) 036, arXiv:0806.0971.
[Pietroni:2008jx]
[29-83]
The impact of cosmic neutrinos on the gravitational-wave background, A. Mangilli, N. Bartolo, S. Matarrese, A. Riotto, Phys. Rev. D78 (2008) 083517, arXiv:0805.3234.
[Mangilli:2008bw]
[29-84]
Structure Formation independent of Cold Dark Matter, P. G. Miedema, W. A. van Leeuwen, arXiv:0805.0421, 2008.
[Miedema:2008ih]
[29-85]
Dark Energy Accretion onto black holes in a cosmic scenario, Prado Martin-Moruno, Az-Eddine L. Marrakchi, Salvador Robles-Perez, Pedro F. Gonzalez-Diaz, Gen. Rel. Grav. 41 (2009) 2797-2811, arXiv:0803.2005.
[Martin-Moruno:2009cmc]
[29-86]
Is dark energy from cosmic Hawking radiation?, Jae-Weon Lee, Hyeong-Chan Kim, Jungjai Lee, Mod. Phys. Lett. A25 (2010) 257-267, arXiv:0803.1987.
[Lee:2008vn]
[29-87]
An Alternative Approach to Vacuum Energy, Dark Matter and Gravitational Lensing, HongSheng Zhao, Mod. Phys. Lett. A23 (2008) 555-568, arXiv:0802.1775.
[Zhao:2008vua]
[29-88]
Generalized CMB initial conditions with pre-equality magnetic fields, Massimo Giovannini, Kerstin E. Kunze, Phys. Rev. D77 (2008) 123001, arXiv:0802.1053.
[Giovannini:2008yz]
[29-89]
Mimicking general relativity in the solar system, Luca Amendola, Christos Charmousis, Stephen C. Davis, Phys. Rev. D78 (2008) 084009, arXiv:0801.4339.
[Amendola:2008vd]
[29-90]
Acceleration of the Universe in Presence of Tachyonic field, Surajit Chattopadhyay, Ujjal Debnath, Goutami Chattopadhyay, Astrophys. Space Sci. 314 (2008) 41-44, arXiv:0712.3107.
[Chattopadhyay:2007hw]
[29-91]
Does the cosmological constant run?, Robert Foot, Archil Kobakhidze, Kristian L. McDonald, Raymond R. Volkas, Phys. Lett. B664 (2009) 199-200, arXiv:0712.3040.
[Shapiro:2009dh]
[29-92]
A perturbative approach for mass varying neutrinos coupled to the dark sector in the generalized Chaplygin gas scenario, Alex E. Bernardini, O. Bertolami, Phys. Rev. D77 (2008) 083506, arXiv:0712.1534.
[Bernardini:2007hm]
[29-93]
The Cosmic Horizon, Fulvio Melia, Mon. Not. Roy. Astron. Soc. 382 (2007) 1917-1921, arXiv:0711.4181.
[Melia:2007sd]
[29-94]
Harmonic cosmology: How much can we know about a universe before the big bang?, Martin Bojowald, Proc. Roy. Soc. Lond. A464 (2008) 2135-2150, arXiv:0710.4919.
[Bojowald:2007gc]
[29-95]
Coincidences of Dark Energy with Dark Matter - Clues for a Simple Alternative?, HongSheng Zhao, Astrophys. J. 671 (2007) L1-L4, arXiv:0710.3616.
[Zhao:2007ce]
[29-96]
Anthropic arguments and the cosmological constant, with and without the assumption of typicality, Irit Maor, Lawrence Krauss, Glenn Starkman, Phys. Rev. Lett. 100 (2008) 041301, arXiv:0709.0502.
[Maor:2007ygp]
[29-97]
Cosmological expansion and local physics, Valerio Faraoni, Audrey Jacques, Phys. Rev. D76 (2007) 063510, arXiv:0707.1350.
[Faraoni:2007es]
[29-98]
Regular accelerating Universe without dark energy, A. V. Minkevich, A. S. Garkun, V. I. Kudin, Class. Quant. Grav. 24 (2007) 5835-5848, arXiv:0706.1157.
[Minkevich:2007eh]
[29-99]
The Maximal Amount of Gravitational Waves in the Curvaton Scenario, N. Bartolo, S. Matarrese, A. Riotto, A. Vaihkonen, Phys. Rev. D76 (2007) 061302, arXiv:0705.4240.
[Bartolo:2007vp]
[29-100]
Cyclic Universe and Infinite Past, Paul H. Frampton, Mod. Phys. Lett. A22 (2007) 2587-2592, arXiv:0705.2730.
[Frampton:2007cv]
[29-101]
Time evolution of $T_{\mu\nu}$ and the cosmological constant problem, V. Branchina, D. Zappala, Gen. Rel. Grav. 42 (2010) 141-154, arXiv:0705.2299.
[Branchina:2009hin]
[29-102]
Energy conditions and current acceleration of the universe, Yungui Gong, Anzhong Wang, Phys. Lett. B652 (2007) 63-68, arXiv:0705.0996.
[Gong:2007fm]
[29-103]
Nonlinear Evolution of Baryon Acoustic Oscillations, M. Crocce, R. Scoccimarro, Phys. Rev. D77 (2008) 023533, arXiv:0704.2783.
[Crocce:2007dt]
[29-104]
Are We Typical?, James B. Hartle, Mark Srednicki, Phys. Rev. D75 (2007) 123523, arXiv:0704.2630.
[Hartle:2007zv]
[29-105]
The Return of a Static Universe and the End of Cosmology, Lawrence M. Krauss, Robert J. Scherrer, Gen. Rel. Grav. 39 (2007) 1545-1550, arXiv:0704.0221.
[Krauss:2007nt]
[29-106]
Cosmological Perturbations in Elastic Dark Energy Models, Richard A. Battye, Adam Moss, Phys. Rev. D76 (2007) 023005, arXiv:astro-ph/0703744.
[Battye:2007aa]
[29-107]
Adventures in Friedmann Cosmology: An Educationally Detailed Expansion of the Cosmological Friedmann Equations, Robert J. Nemiroff, Bijunath Patla, Am. J. Phys. 76 (2008) 265-276, arXiv:astro-ph/0703739.
[Nemiroff:2007xs]
[29-108]
Neutrinos as cluster dark matter, R.H. Sanders, Mon. Not Roy. Astron. Soc. 380 (2007) 331-338, arXiv:astro-ph/0703590.
[Sanders:2007zn]
[29-109]
Resumming Cosmic Perturbations, Sabino Matarrese, Massimo Pietroni, JCAP 0706 (2008) 026, arXiv:astro-ph/0703563.
[Rosten:2007iq]
[29-110]
A Consistency Relation in Cosmology, Takeshi Chiba, Ryuichi Takahashi, Phys. Rev. D75 (2007) 101301, arXiv:astro-ph/0703347.
[Chiba:2007rb]
[29-111]
Cosmic Deconstructionism, Lawrence M. Krauss, Glenn D. Starkman, arXiv:astro-ph/0702333, 2007.
[Krauss:2007bj]
[29-112]
Cosmic clocks, cosmic variance and cosmic averages, David L. Wiltshire, New J. Phys. 9 (2007) 377, arXiv:gr-qc/0702082.
[Wiltshire:2007jk]
[29-113]
Eppur si espande, Marek A. Abramowicz, Stanislaw Bajtlik, Jean-Pierre Lasota, Audrey Moudens, Acta Astron. 57 (2007) 139-148, arXiv:astro-ph/0612155.
[Abramowicz:2006uw]
[29-114]
The Phase Transition of Dark Energy, Wei Wang, Yuanxing Gui, Ying Shao, arXiv:astro-ph/0612113, 2006.
[Wang:2006nn]
[29-115]
Cosmology with inhomogeneous magnetic fields, J.D. Barrow, R. Maartens, C.G. Tsagas, Phys. Rept. 449 (2007) 131-171, arXiv:astro-ph/0611537.
[Aktas:2007nj]
[29-116]
How well can (renormalized) perturbation theory predict dark matter clustering properties?, Niayesh Afshordi, Phys. Rev. D75 (2007) 021302, arXiv:astro-ph/0610336.
[Afshordi:2006ch]
[29-117]
On the relation between tensor and scalar perturbation modes in Friedmann cosmology, V. N. Lukash, Usp. Fiz. Nauk. 176 (2006) 113, arXiv:astro-ph/0610312.
[Lukash:2006tr]
[29-118]
The Cosmology of a Universe with Spontaneously-Broken Lorentz Symmetry, P. G. Ferreira, B. M. Gripaios, R. Saffari, T. G. Zlosnik, Phys. Rev. D75 (2007) 044014, arXiv:astro-ph/0610125.
[Ferreira:2006ga]
[29-119]
CMB Anisotropies at Second-Order II: Analytical Approach, Nicola Bartolo, Sabino Matarrese, Antonio Riotto, JCAP 0701 (2007) 019, arXiv:astro-ph/0610110.
[Bartolo:2006fj]
[29-120]
Are Dark Matter and Dark Energy the Residue of the Expansion-Reaction to the Big Bang ?, Harry I. Ringermacher, Lawrence R. Mead, arXiv:gr-qc/0610083, 2006.
[Ringermacher:2006wy]
[29-121]
Photon gas dynamics in the early universe, Chris Clarkson, Mattias Marklund, Phys. Lett. B659 (2008) 54-57, arXiv:hep-ph/0609310.
[Clarkson:2006ge]
[29-122]
A measure of the multiverse, Alexander Vilenkin, J. Phys. A40 (2007) 6777, arXiv:hep-th/0609193.
[Vilenkin:2006xv]
[29-123]
Cosmological matching conditions, Edmund J. Copeland, David Wands, JCAP 0706 (2007) 014, arXiv:hep-th/0609183.
[Copeland:2006tn]
[29-124]
Problems in a weakless universe, L. Clavelli, R. E. White III, arXiv:hep-ph/0609050, 2006.
[Clavelli:2006di]
[29-125]
Why Does Gravity Ignore the Vacuum Energy?, T. Padmanabhan, Int. J. Mod. Phys. D15 (2006) 2029-2058, arXiv:gr-qc/0609012.
[Padmanabhan:2006cj]
[29-126]
The Arrow of Time Forbids a Positive Cosmological Constant $\Lambda$, Laura Mersini-Houghton, arXiv:gr-qc/0609006, 2006.
[Mersini-Houghton:2006jcu]
[29-127]
General Relativistic Self-Similar Solutions in Cosmology, Adi Nusser, Mon. Not. Roy. Astron. Soc. 375 (2007) 1106-1110, arXiv:astro-ph/0608415.
[Nusser:2006ey]
[29-128]
On the way from matter-dominated era to dark energy universe, Shin'ichi Nojiri, Sergei D. Odintsov, Hrvoje Stefancic, Phys. Rev. D74 (2006) 086009, arXiv:hep-th/0608168.
[Nojiri:2006jy]
[29-129]
Classicality of the primordial perturbations, David H. Lyth, David Seery, Phys. Lett. B662 (2008) 309-313, arXiv:astro-ph/0607647.
[Lyth:2006qz]
[29-130]
Modifying gravity with the Aether: an alternative to Dark Matter, T.G Zlosnik, P.G Ferreira, G.D Starkman, Phys. Rev. D75 (2007) 044017, arXiv:astro-ph/0607411.
[Zlosnik:2006zu]
[29-131]
Primordial Non-Gaussianity and Analytical Formula for Minkowski Functionals of the Cosmic Microwave Background and Large-scale Structure, Chiaki Hikage, Eiichiro Komatsu, Takahiko Matsubara, Astrophys. J. 653 (2006) 11-26, arXiv:astro-ph/0607284.
[Hikage:2006fe]
[29-132]
Why anthropic reasoning cannot predict Lambda, Glenn D. Starkman, Roberto Trotta, Phys. Rev. Lett. 97 (2006) 201301, arXiv:astro-ph/0607227.
[Starkman:2006at]
[29-133]
The Origin of Primordial Magnetic Fields, Rafael S. de Souza, Reuven Opher, Phys. Rev. D77 (2008) 043529, arXiv:astro-ph/0607181.
[deSouza:2006vh]
[29-134]
Perturbations of Self-Accelerated Universe, Cedric Deffayet, Gregory Gabadadze, Alberto Iglesias, JCAP 0608 (2007) 012, arXiv:hep-th/0607099.
[Padilla:2006eh]
[29-135]
New 'Bigs' in cosmology, Artyom V. Yurov, Prado Martin Moruno, Pedro F. Gonzalez-Diaz, Nucl. Phys. B759 (2006) 320-341, arXiv:astro-ph/0606529.
[Yurov:2006we]
[29-136]
Conformal symmetry of gravity and the cosmological constant problem, Mariano Cadoni, Phys. Lett. B642 (2006) 525-529, arXiv:hep-th/0606274.
[Cadoni:2006ww]
[29-137]
Inhomogeneous Cosmology, Inflation and Late-Time Accelerating Universe, J. W. Moffat, arXiv:astro-ph/0606124, 2006.
[Moffat:2006ct]
[29-138]
Cosmology with an Action Principle, Christian Fronsdal, arXiv:gr-qc/0606010, 2006.
[Fronsdal:2006tj]
[29-139]
How Many Universes Do There Need To Be?, Douglas Scott, J.P. Zibin, Int. J. Mod. Phys. D15 (2006) 2229-2234, arXiv:astro-ph/0605709.
[Scott:2006kga]
[29-140]
Cosmological acceleration from structure formation, Syksy Rasanen, Int. J. Mod. Phys. D15 (2006) 2141-2146, arXiv:astro-ph/0605632.
[Rasanen:2006zw]
[29-141]
Measurability of vacuum fluctuations and dark energy, Christian Beck, Michael C. Mackey, Physica A379 (2007) 101-110, arXiv:astro-ph/0605418.
[Beck:2006pv]
[29-142]
Dark energy in motion, Antonio L. Maroto, Int. J. Mod. Phys. D15 (2006) 2165-2170, arXiv:astro-ph/0605381.
[Maroto:2006ee]
[29-143]
Cosmological Neutrino Entanglement and Quantum Pressure, Daniel Pfenniger, Veruska Muccione Geneva Observatory, Astron.Astrophys. (2006), arXiv:astro-ph/0605354.
[Pfenniger:2006rd]
[29-144]
Quantum Contributions to Cosmological Correlations II: Can These Corrections Become Large?, Steven Weinberg, Phys. Rev. D74 (2006) 023508, arXiv:hep-th/0605244.
[Weinberg:2006ac]
[29-145]
The Faulty Assumptions of the Expanding-Universe Model vs. the Simple and Consistent Principles of a Flat-Universe Model, Jin He, Astrophys.Space Sci. (2006), arXiv:astro-ph/0605213.
[He:2006rh]
[29-146]
Mimicking Lambda with a spin-two ghost condensate, Claudia de Rham, Andrew J. Tolley, JCAP 0607 (2006) 004, arXiv:hep-th/0605122.
[deRham:2006pe]
[29-147]
Second-order Gauge Invariant Cosmological Perturbation Theory; - Einstein equations in terms of gauge invariant variables -, Kouji Nakamura, Prog. Theor. Phys. 117 (2007) 17-74, arXiv:gr-qc/0605108.
[Nakamura:2004rm]
[29-148]
Cosmology: a bird's eye view, Alan A. Coley, Sigbjorn Hervik, Woei Chet Lim, Int. J. Mod. Phys. D15 (2006) 2187-2190, arXiv:gr-qc/0605089.
[Coley:2006ew]
[29-149]
CMB Anisotropies at Second Order I, N. Bartolo, S. Matarrese, A. Riotto, JCAP 0606 (2006) 024, arXiv:astro-ph/0604416.
[Bartolo:2006cu]
[29-150]
A comment on technical naturalness and the cosmological constant, Nissan Itzhaki, JHEP 08 (2006) 020, arXiv:hep-th/0604190.
[Itzhaki:2006re]
[29-151]
Improved Calculation of the Primordial Gravitational Wave Spectrum in the Standard Model, Yuki Watanabe, Eiichiro Komatsu, Phys. Rev. D73 (2006) 123515, arXiv:astro-ph/0604176.
[Watanabe:2006qe]
[29-152]
Entropy perturbations and large-scale magnetic fields, Massimo Giovannini, Class. Quant. Grav. 23 (2006) 4991-5026, arXiv:astro-ph/0604134.
[Giovannini:2006gz]
[29-153]
Vacuum Energy: Myths and Reality, G.E. Volovik, Int. J. Mod. Phys. D15 (2006) 1987-2010, arXiv:gr-qc/0604062.
[Volovik:2006bh]
[29-154]
A Universe Without Weak Interactions, Roni Harnik, Graham D. Kribs, Gilad Perez, Phys. Rev. D74 (2006) 035006, arXiv:hep-ph/0604027.
[Harnik:2006vj]
[29-155]
The Mass of the Cosmos, Charles Hellaby, Mon. Not. Roy. Astron. Soc. 370 (2006) 239-244, arXiv:astro-ph/0603637.
[Hellaby:2006cj]
[29-156]
Dark matter, and its darkness, D. V. Ahluwalia-Khalilova, Int. J. Mod. Phys. D15 (2006) 2267-2278, arXiv:astro-ph/0603545.
[Ahluwalia:2006tbv]
[29-157]
On horizons and the cosmic landscape, George F. R. Ellis, Gen. Rel. Grav. 38 (2006) 1209-1213, arXiv:astro-ph/0603266.
[Ellis:2006mi]
[29-158]
Cooling in the Universe, Sohrab Rahvar, arXiv:physics/0603087, 2006.
[Rahvar:2006bf]
[29-159]
Toward a No-go Theorem for Accelerating Universe by Nonlinear Backreaction, Masumi Kasai, Hideki Asada, Toshifumi Futamase, Prog. Theor. Phys. 115 (2006) 827, arXiv:astro-ph/0602506.
[Kasai:2006bt]
[29-160]
Anisotropic perturbations due to dark energy, Richard A. Battye, Adam Moss, Phys. Rev. D74 (2006) 041301, arXiv:astro-ph/0602377.
[Battye:2006mb]
[29-161]
Dark energy and dark matter as curvature effects, S. Capozziello, V.F. Cardone, A. Troisi, JCAP 0608 (2006) 001, arXiv:astro-ph/0602349.
[Capozziello:2006uv]
[29-162]
Invariance under complex transformations, and its relevance to the cosmological constant problem, Gerard 't Hooft, Stefan Nobbenhuis, Class. Quant. Grav. 23 (2006) 3819-3832, arXiv:gr-qc/0602076.
[tHooft:2006uhw]
[29-163]
Construction and analysis of a simplified many-body neutrino model, Alexander Friedland, Bruce H.J. McKellar, Ivona Okuniewicz, Phys. Rev. D73 (2006) 093002, arXiv:hep-ph/0602016.
[Friedland:2006ke]
[29-164]
Alternative proposal to modified Newton dynamics (MOND), Juan M. Romero, Adolfo Zamora, Phys. Rev. D73 (2006) 027301, arXiv:astro-ph/0601247.
[Romero:2006fi]
[29-165]
Sourced Friedmann Equations and the Cosmic Coincidence Problem, Micheal S. Berger, Hamed Shojaei, Phys. Rev. D73 (2006) 083528, arXiv:gr-qc/0601086.
[Berger:2006db]
[29-166]
'Expansion' around the vacuum: how far can we go from Lambda?, J.S. Alcaniz, H. Stefancic, Astron. Astrophys. 462 (2007) 443-448, arXiv:astro-ph/0512622.
[Alcaniz:2005tw]
[29-167]
The Full Second-Order Radiation Transfer Function for Large-Scale CMB Anisotropies, Nicola Bartolo, Sabino Matarrese, Antonio Riotto, JCAP 0605 (2006) 010, arXiv:astro-ph/0512481.
[Bartolo:2005kv]
[29-168]
Very Large Primordial Non-Gaussianity from multi-field: Application to Massless Preheating, Asko Jokinen, Anupam Mazumdar, JCAP 0604 (2006) 003, arXiv:astro-ph/0512368.
[Jokinen:2005by]
[29-169]
Classification of dark energy models in the (w_0,w_a) plane, V. Barger, E. Guarnaccia, D. Marfatia, Phys. Lett. B635 (2006) 61, arXiv:hep-ph/0512320.
[Barger:2005sb]
[29-170]
Comments on an Expanding Universe, Stuart Samuel, Am.J. Phys. (2005), arXiv:astro-ph/0512282.
[Samuel:2005if]
[29-171]
Pressure of the Standard Model Near the Electroweak Phase Transition, A. Gynther, M. Vepsalainen, JHEP 0603 (2007) 011, arXiv:hep-ph/0512177.
[Vepsalainen:2007ji]
[29-172]
Cosmic Acceleration from Elementary Interactions, R. Aldrovandi, R. R. Cuzinatto, L. G. Medeiros, arXiv:gr-qc/0512135, 2005.
[Aldrovandi:2005jm]
[29-173]
Modified gravity, Dark Energy and MOND, Ignacio Navarro, Karel Van Acoleyen, JCAP 0609 (2006) 006, arXiv:gr-qc/0512109.
[Navarro:2005ux]
[29-174]
Thermodynamic behavior of a perfect fluid with negative energy density, Walter Christensen Jr, arXiv:gr-qc/0512018, 2005.
[Christensen:2005gp]
[29-175]
Apparent Hubble acceleration from large-scale electroweak domain structure, Tommy Anderberg, arXiv:astro-ph/0511647, 2005.
[Anderberg:2005ks]
[29-176]
TeVeS Cosmology : Covariant formalism for the background evolution and linear perturbation theory, Constantinos Skordis, Phys. Rev. D74 (2006) 103513, arXiv:astro-ph/0511591.
[Skordis:2005eu]
[29-177]
Non-Gaussianity from Broken Symmetries, Edward W. Kolb, Antonio Riotto, Alberto Vallinotto, Phys. Rev. D73 (2006) 023522, arXiv:astro-ph/0511198.
[Kolb:2005ux]
[29-178]
Comments on Long-Wavelength Backreaction and Dark Energy, E.W. Kolb, S. Matarrese, A. Riotto, arXiv:astro-ph/0511124, 2005.
[Kolb:2005ij]
[29-179]
Why the Universe Started from a Low Entropy State, R. Holman, L. Mersini-Houghton, Phys. Rev. D74 (2006) 123510, arXiv:hep-th/0511102.
[Holman:2005ei]
[29-180]
The Existence of Godel, Einstein and de Sitter Universes, T. Clifton, John D. Barrow, Phys. Rev. D72 (2005) 123003, arXiv:gr-qc/0511076.
[Clifton:2005at]
[29-181]
Comments on Backreaction and Cosmic Acceleration, E.W. Kolb, S. Matarrese, A. Riotto, arXiv:astro-ph/0511073, 2005.
[Kolb:2005ze]
[29-182]
Scales Set by the Cosmological Constant, Andres Balaguera-Antolinez, Christian G. Boehmer, Marek Nowakowski, Class. Quant. Grav. 23 (2006) 485, arXiv:gr-qc/0511057.
[Balaguera-Antolinez:2005ngl]
[29-183]
Back-Reaction: A Cosmological Panacea, P. Martineau, R. Brandenberger, arXiv:astro-ph/0510523, 2005.
[Martineau:2005zu]
[29-184]
Dynamical Relaxation of Dark Energy: Solution to Both the Inflation and the Cosmological Constant, B.M.N. Carter, Ishwaree P. Neupane, Phys. Lett. B638 (2006) 94-99, arXiv:hep-th/0510109.
[Carter:2005sd]
[29-185]
The complex symmetry gravitational theory as a new alternative of dark energy, Ying Shao, Yuan-Xing Gui, Wei Wang, Int. J. Theor. Phys. 45 (2006) 835-842, arXiv:astro-ph/0509158.
[Shao:2005cn]
[29-186]
Does the cosmological constant imply the existence of a minimum mass?, C. G. Boehmer, T. Harko, Phys. Lett. B630 (2005) 73, arXiv:gr-qc/0509110.
[Boehmer:2005sm]
[29-187]
Can the Acceleration of Our Universe Be Explained by the Effects of Inhomogeneities?, Akihiro Ishibashi, Robert M. Wald, Class. Quant. Grav. 23 (2006) 235, arXiv:gr-qc/0509108.
[Ishibashi:2005sj]
[29-188]
Can the cosmological constant undergo abrupt changes?, Alejandro Cabo, Alejandro Garcia-Chung, Alejandro Rosabal, arXiv:gr-qc/0509104, 2005.
[Cabo:2005mc]
[29-189]
Conserved non-linear quantities in cosmology, David Langlois, Filippo Vernizzi, Phys. Rev. D72 (2005) 103501, arXiv:astro-ph/0509078.
[Langlois:2005qp]
[29-190]
On the interaction between thermalized neutrinos and cosmological gravitational waves above the electroweak unification scale, Massimiliano Lattanzi, Giovanni Montani, Mod. Phys. Lett. A20 (2005) 2607, arXiv:astro-ph/0508364.
[Lattanzi:2005xb]
[29-191]
Neutrino oscillations in the early universe: A real-time formulation, C. M. Ho, D. Boyanovsky, H. J. de Vega, Phys. Rev. D72 (2005) 085016, arXiv:hep-ph/0508294.
[Ho:2005vj]
[29-192]
Excess Baggage, James B. Hartle, arXiv:gr-qc/0508001, 2005.
[Hartle:1989dp]
[29-193]
Post-inflation increase of the cosmological tensor-to-scalar perturbation ratio, N. Bartolo, Edward W. Kolb, A. Riotto, Mod. Phys. Lett. A20 (2005) 3077, arXiv:astro-ph/0507573.
[Bartolo:2005jg]
[29-194]
Homogeneous and isotropic big rips?, Massimo Giovannini, Phys. Rev. D72 (2005) 083508, arXiv:astro-ph/0507369.
[Giovannini:2005dd]
[29-195]
On the equation of state of Dark Energy, D. Polarski, A. Ranquet, Phys. Lett. B627 (2005) 1, arXiv:astro-ph/0507290.
[Polarski:2005jr]
[29-196]
Virialization in Dark Energy Cosmology, Peng Wang, Astrophys. J. 640 (2006) 18-21, arXiv:astro-ph/0507195.
[Wang:2005ad]
[29-197]
Why Newton's gravity is practically reliable in the large-scale cosmological simulations, J. Hwang, H. Noh, Mon.Not.Roy.Astron.Soc. 367 (2006) 1515, arXiv:astro-ph/0507159.
[Hwang:2005wb]
[29-198]
Equation of state and Beginning of Thermalization After Preheating, Dmitry I. Podolsky, Gary N. Felder, Lev Kofman, Marco Peloso, Phys. Rev. D73 (2006) 023501, arXiv:hep-ph/0507096.
[Podolsky:2005bw]
[29-199]
A cosmic equation of state for the inhomogeneous Universe: can a global far-from-equilibrium state explain Dark Energy?, T. Buchert, Class. Quant. Grav. 22 (2005) L113, arXiv:gr-qc/0507028.
[Buchert:2005xf]
[29-200]
Charge Conjugation Invariance of the Vacuum and the Cosmological Constant Problem, J. W. Moffat, Phys. Lett. B627 (2005) 9, arXiv:hep-th/0507020.
[Moffat:2005ip]
[29-201]
Gradient expansion(s) and dark energy, Massimo Giovannini, JCAP 0509 (2005) 009, arXiv:astro-ph/0506715.
[Giovannini:2005ev]
[29-202]
On the stability of Dark Energy with Mass-Varying Neutrinos, Niayesh Afshordi, Matias Zaldarriaga, Kazunori Kohri, Phys. Rev. D72 (2005) 065024, arXiv:astro-ph/0506663.
[Afshordi:2005ym]
[29-203]
On cosmic acceleration without dark energy, E.W. Kolb, S. Matarrese, A. Riotto, New J. Phys. 8 (2006) 322, arXiv:astro-ph/0506534.
[Kolb:2005da]
[29-204]
Can a dust dominated universe have accelerated expansion?, H. Alnes, M. Amarzguioui, O. Gron, JCAP 0701 (2007) 007, arXiv:astro-ph/0506449.
[Alnes:2005nq]
[29-205]
Non-Gaussianity of Large-Scale CMB Anisotropies beyond Perturbation Theory, N. Bartolo, S. Matarrese, A. Riotto, JCAP 0508 (2005) 010, arXiv:astro-ph/0506410.
[Bartolo:2005fp]
[29-206]
Quantum Contributions to Cosmological Correlations, Steven Weinberg, Phys. Rev. D72 (2005) 043514, arXiv:hep-th/0506236.
[Weinberg:2005vy]
[29-207]
Unification of dark matter and dark energy via quantum wave function collapse, A. S. Majumdar, D. Home, Phys. Lett. B679 (2009) 167, arXiv:gr-qc/0506108.
[Majumdar:2005dq]
[29-208]
The universe seen at different scales, G.F.R. Ellis, T. Buchert, Phys. Lett. A347 (2005) 38, arXiv:gr-qc/0506106.
[Ellis:2005uz]
[29-209]
Phantom cosmology with general potentials, Valerio Faraoni, Class. Quant. Grav. 22 (2005) 3235, arXiv:gr-qc/0506095.
[Faraoni:2005gg]
[29-210]
A Measure of Cosmological Acceleration, N. C. Tsamis, R. P. Woodard, Class. Quant. Grav. 22 (2005) 4171, arXiv:gr-qc/0506089.
[Tsamis:2005bh]
[29-211]
Dark Energy Condensation, Massimo Pietroni, Phys. Rev. D72 (2005) 043535, arXiv:astro-ph/0505615.
[Pietroni:2005pv]
[29-212]
Relic Gravitational Waves and the Evolution of the Universe, W Zhao, arXiv:astro-ph/0505588, 2005.
[Zhao:2005kf]
[29-213]
Coupled Evolution of Primordial Gravity Waves and Relic Neutrinos, Sergei Bashinsky, Phys. Rev.D (2005), arXiv:astro-ph/0505502.
[Bashinsky:2005tv]
[29-214]
A Symmetry for the Cosmological Constant, David E. Kaplan, Raman Sundrum, JHEP 07 (2006) 042, arXiv:hep-th/0505265.
[Kaplan:2005rr]
[29-215]
Evaporation of charged bosonic condensate in cosmology, A. D. Dolgov, F. R. Urban, Astropart. Phys. 24 (2005) 289, arXiv:hep-ph/0505255.
[Dolgov:2005nf]
[29-216]
Duality extended Chaplygin cosmologies with a big rip, Luis P. Chimento, Ruth Lazkoz, Class. Quant. Grav. 23 (2006) 3195, arXiv:astro-ph/0505254.
[Chimento:2005au]
[29-217]
Parametrization of Quintessence and Its Potential, Zong-Kuan Guo, Nobuyoshi Ohta, Yuan-Zhong Zhang, Phys. Rev. D72 (2005) 023504, arXiv:astro-ph/0505253.
[Guo:2005ata]
[29-218]
The Effects of Gravitational Back-Reaction on Cosmological Perturbations, Patrick Martineau, Robert Brandenberger, Phys. Rev. D72 (2005) 023507, arXiv:astro-ph/0505236.
[Martineau:2005aa]
[29-219]
Inhomogeneous dusty Universes and their deceleration, Massimo Giovannini, Phys. Lett. B634 (2006) 1, arXiv:hep-th/0505222.
[Giovannini:2005sy]
[29-220]
Neutrino collective excitations in the Standard Model at high temperature, D. Boyanovsky, Phys. Rev. D72 (2005) 033004, arXiv:hep-ph/0505186.
[Boyanovsky:2005hk]
[29-221]
Effective equation of state for dark energy: mimicking quintessence and phantom energy through a variable Lambda, Joan Sola, Hrvoje Stefancic, Phys. Lett. B624 (2005) 147, arXiv:astro-ph/0505133.
[Sola:2005et]
[29-222]
The Nature of Dark Matter, A. A. Kirillov, Phys. Lett. B632 (2006) 453, arXiv:astro-ph/0505131.
[Kirillov:2005er]
[29-223]
Accelerating Universes from Short-Range Interactions, Alberto Diez-Tejedor, Alexander Feinstein, Phys. Lett. A350 (2006) 315, arXiv:gr-qc/0505105.
[Diez-Tejedor:2005mbt]
[29-224]
Imperfect cosmological perturbations, Massimo Giovannini, Class. Quant. Grav. 22 (2005) 5243, arXiv:astro-ph/0504655.
[Giovannini:2005ii]
[29-225]
Dark energy transition between quintessence and phantom regimes - an equation of state analysis, Hrvoje Stefancic, Phys. Rev. D71 (2005) 124036, arXiv:astro-ph/0504518.
[Stefancic:2005cs]
[29-226]
The mass of the graviton and the cosmological constant puzzle, M. Novello, PoS IC2006 (2006) 009, arXiv:astro-ph/0504505.
[Novello:2005xu]
[29-227]
Remarks on the formulation of the cosmological constant/dark energy problems, Mustapha Ishak, Found. Phys. 37 (2007) 1470-1498, arXiv:astro-ph/0504416.
[Ishak:2005xp]
[29-228]
Electroweak Baryogenesis from Late Neutrino Masses, Lawrence J. Hall, Hitoshi Murayama, Gilad Perez, Phys. Rev. Lett. 95 (2005) 111301, arXiv:hep-ph/0504248.
[Hall:2005aq]
[29-229]
Cosmological Production of Vector Bosons and Cosmic Microwave Background Radiation, D.B. Blaschke et al., Phys. Atom. Nucl. 67 (2004) 1050, arXiv:hep-ph/0504225.
[Blaschke:2004by]
[29-230]
A High-z Correction to the Hubble Line, Charles S. Campbell, arXiv:astro-ph/0504220, 2005.
[astro-ph/0504220]
[29-231]
Exact model universe fits type IA supernovae data with no cosmic acceleration, B.M.N. Carter et al., arXiv:astro-ph/0504192, 2005.
[Carter:2005mu]
[29-232]
The fate of (phantom) dark energy universe with string curvature corrections, M. Sami, Alexey Toporensky, Peter V. Tretjakov, Shinji Tsujikawa, Phys. Lett. B619 (2005) 193, arXiv:hep-th/0504154.
[Sami:2005zc]
[29-233]
Can Relativistic MOND Theory Resolve Both the Dark Matter and Dark Energy Paradigms?, J. G. Hao, R. Akhoury, Int. J. Mod. Phys. D18 (2009) 1039, arXiv:astro-ph/0504130.
[Hao:2005tg]
[29-234]
Quantum Cosmological Origin of Universes, V.N. Pervushin, V.A. Zinchuk, arXiv:gr-qc/0504123, 2005. XXXIX PNPI Winter School on Nuclear Particle Physics and XI St. Petersburg School on Theoretical Physics (St. Petersburg, Repino, February 14 - 20, 2005).
[Pervushin:2005es]
[29-235]
The Huygens principle and cosmological gravitational waves in the Regge-Wheeler gauge, Edward Malec, Grzegorz Wylezek, Class. Quant. Grav. 22 (2005) 3549, arXiv:gr-qc/0504110.
[Malec:2005yc]
[29-236]
Some studies on dark energy related problems, Fei Wang, Jin Min Yang, Eur. Phys. J. C45 (2006) 815, arXiv:hep-ph/0504046.
[Wang:2005vi]
[29-237]
Backreaction and spatial curvature in a dust universe, Syksy Rasanen, Class. Quant. Grav. 23 (2006) 1823, arXiv:astro-ph/0504005.
[Rasanen:2005zy]
[29-238]
Late time failure of Friedmann equation, Alessio Notari, Mod. Phys. Lett. A21 (2006) 2997-3001, arXiv:astro-ph/0503715.
[Notari:2005xk]
[29-239]
Can superhorizon cosmological perturbations explain the acceleration of the universe?, Christopher M. Hirata, Uros Seljak, Phys. Rev. D72 (2005) 083501, arXiv:astro-ph/0503582.
[Hirata:2005ei]
[29-240]
Do large-scale inhomogeneities explain away dark energy?, Ghazal Geshnizjani, Daniel J. H. Chung, Niayesh Afshordi, Phys. Rev. D72 (2005) 023517, arXiv:astro-ph/0503553.
[Geshnizjani:2005ce]
[29-241]
Can we escape from the big rip in the achronal cosmic future?, A.V. Yurov, V.A. Yurov, S. D. Vereshchagin, arXiv:astro-ph/0503433, 2005.
[Yurov:2005su]
[29-242]
Cosmology with massive neutrinos coupled to dark energy, A.W. Brookfield, C. van de Bruck, D.F. Mota, D. Tocchini-Valentini, Phys. Rev. Lett. 96 (2006) 061301, arXiv:astro-ph/0503349.
[Brookfield:2005td]
[29-243]
Naturalness in Cosmological Initial Conditions, F. Nitti, M. Porrati, J.-W. Rombouts, Phys. Rev. D72 (2005) 063503, arXiv:hep-th/0503247.
[Nitti:2005ym]
[29-244]
Can superhorizon perturbations drive the acceleration of the universe?, Eanna E. Flanagan, Phys. Rev. D71 (2005) 103521, arXiv:hep-th/0503202.
[Flanagan:2005dk]
[29-245]
The dark energy-dominated Universe, J. C. N. de Araujo, Astropart. Phys. 23 (2005) 279-286, arXiv:astro-ph/0503099.
[deAraujo:2005us]
[29-246]
Classifying the Future of Universes with Dark Energy, Takeshi Chiba, Ryuichi Takahashi, Naoshi Sugiyama, Class. Quant. Grav. 22 (2005) 3745, arXiv:astro-ph/0501661.
[Chiba:2005er]
[29-247]
Reconciling dark energy models with f(R) theories, S. Capozziello, V.F. Cardone, A. Troisi, Phys. Rev. D71 (2005) 043503, arXiv:astro-ph/0501426.
[Capozziello:2005ku]
[29-248]
Kinetic Unified Dark Matter, Dimitrios Giannakis, Wayne Hu, Phys. Rev. D72 (2005) 063502, arXiv:astro-ph/0501423.
[Giannakis:2005kr]
[29-249]
Scalar Field Oscillations Contributing to Dark Energy, Eduard Masso, Francesc Rota, Gabriel Zsembinszki, Phys. Rev. D72 (2005) 084007, arXiv:astro-ph/0501381.
[Masso:2005zg]
[29-250]
Magnetic domain walls of relic neutrinos as Dark Energy, Urjit A. Yajnik, Aip Conf. Proc. 805 (2006) 459, arXiv:astro-ph/0501348.
[Yajnik:2005pr]
[29-251]
Hessence: A New View of Quintom Dark Energy, Hao Wei, Rong-Gen Cai, Class. Quant. Grav. 22 (2005) 3189, arXiv:hep-th/0501160.
[Wei:2005nw]
[29-252]
The Effect of Inhomogeneities on the Luminosity Distance- Redshift Relation: is Dark Energy Necessary in a Perturbed Universe?, Enrico Barausse, Sabino Matarrese, Antonio Riotto, Phys. Rev. D71 (2005) 063537, arXiv:astro-ph/0501152.
[Barausse:2005nf]
[29-253]
Cosmological Evolution of Interacting Phantom Energy with Dark Matter, Zong-Kuan Guo, Rong-Gen Cai, Yuan-Zhong Zhang, JCAP 0505 (2005) 002, arXiv:astro-ph/0412624.
[Guo:2004xx]
[29-254]
The end of the Dark Ages in MOND, Slawomir Stachniewicz, Marek Kutschera, Mon. Not. Roy. Astron. Soc. 362 (2005) 89, arXiv:astro-ph/0412614.
[Stachniewicz:2004vr]
[29-255]
Extended quintessence with an exponential coupling, Valeria Pettorino, Carlo Baccigalupi, Gianpiero Mangano, JCAP 0501 (2005) 014, arXiv:astro-ph/0412334.
[Pettorino:2004zt]
[29-256]
Single Field Baryogenesis and the Scale of Inflation, K.R.S. Balaji, R. H. Brandenberger, Alessio Notari, arXiv:hep-ph/0412197, 2004.
[Balaji:2004cg]
[29-257]
Cosmological Evolution of Interacting Dark Energy Models with Mass Varying Neutrinos, Xiao-June Bi, Bo Feng, Hong Li, Xinmin Zhang, Phys. Rev. D72 (2005) 123523, arXiv:hep-ph/0412002.
[Bi:2004ns]
[29-258]
Quintessence as k-essence, Juan M. Aguirregabiria, Luis P. Chimento, Ruth Lazkoz, Phys. Lett. B631 (2005) 93, arXiv:astro-ph/0411258.
[Aguirregabiria:2004rc]
[29-259]
The Mysterious Dark Energy, Burra G. Sidharth, arXiv:physics/0411224, 2004.
[Sidharth:2004rv]
[29-260]
What is needed of a tachyon if it is to be the dark energy?, Edmund J. Copeland, Mohammad R. Garousi, M. Sami, Shinji Tsujikawa, Phys. Rev. D71 (2005) 043003, arXiv:hep-th/0411192.
[Copeland:2004hq]
[29-261]
Neutrino Dark Energy, E. I. Guendelman, A. B. Kaganovich, arXiv:hep-th/0411188, 2004.
[Guendelman:2004hk]
[29-262]
Tachyon driven solution to Cosmic Coincidence Problrm, S. K. Srivastaca, arXiv:gr-qc/0411088, 2004.
[Srivastava:2004ss]
[29-263]
On lambda and omega measurements and acceleration of universe expansion, O. G. Semyonov, arXiv:astro-ph/0410712, 2004.
[Semyonov:2004mr]
[29-264]
Missing Mass, Dark Energy and the Acceleration of the Universe. Is Acceleration Here to Stay?, Selcuk Bayin, arXiv:astro-ph/0410710, 2004.
[Bayin:2004mp]
[29-265]
Crossing the Phantom Divide: Dark Energy Internal Degrees of Freedom, Wayne Hu, Phys. Rev. D71 (2005) 047301, arXiv:astro-ph/0410680.
[Hu:2004kh]
[29-266]
Curvature perturbations from broken symmetries, Edward W. Kolb, Antonio Riotto, Alberto Vallinotto, Phys. Rev. D71 (2005) 043513, arXiv:astro-ph/0410546.
[Kolb:2004jm]
[29-267]
Towards Resolution of Hierarchy Problems in a Cosmological Context, M. Yoshimura, Phys. Lett. B608 (2005) 183, arXiv:hep-ph/0410183.
[Yoshimura:2004wj]
[29-268]
Rotational inhomogeneities from pre-big bang?, Massimo Giovannini, Class. Quant. Grav. 22 (2005) 363, arXiv:hep-th/0410094.
[Giovannini:2004hp]
[29-269]
The Cosmology of Generalized Modified Gravity Models, Sean M. Carroll et al., Phys. Rev. D71 (2005) 063513, arXiv:astro-ph/0410031.
[Carroll:2004de]
[29-270]
Dark Entropy: Holographic Cosmic Acceleration, Eric V. Linder, arXiv:hep-th/0410017, 2004.
[Linder:2004kk]
[29-271]
Exorcising w < -1, Csaba Csaki, Nemanja Kaloper, John Terning, Annals Phys. 317 (2005) 410, arXiv:astro-ph/0409596.
[Csaki:2004ha]
[29-272]
Magnetized initial conditions for CMB anisotropies, Massimo Giovannini, Phys. Rev. D70 (2004) 123507, arXiv:astro-ph/0409594.
[Giovannini:2004aw]
[29-273]
A Realistic Particle Physics Dark Energy Model, A. de la Macorra, Phys. Rev. D72 (2005) 043508, arXiv:astro-ph/0409523.
[delaMacorra:2004mp]
[29-274]
Is Dark Energy Dynamical? Prospects for an Answer, Eric V. Linder, Ramon Miquel, Phys. Rev. D70 (2004) 123516, arXiv:astro-ph/0409411.
[Linder:2004qc]
[29-275]
Cosmological Phase Transitions, Norbert Straumann, arXiv:astro-ph/0409042, 2004.
[Straumann:2004vh]
[29-276]
On the accelerated expansion of the universe, Richard Wigmans, Phys. Rev. Lett. (2004), arXiv:astro-ph/0409033.
[Wigmans:2004uy]
[29-277]
Entropy of gravitationally collapsing matter in FRW universe models, Morad Amarzguioui, Oyvind Gron, arXiv:gr-qc/0408065, 2004.
[Amarzguioui:2004gg]
[29-278]
Quintessence and the Transition to an Accelerating Universe, Carl L. Gardner, Nucl. Phys. B707 (2005) 278, arXiv:astro-ph/0407604.
[Gardner:2004in]
[29-279]
Enhanced reheating via Bose condensates, Rouzbeh Allahverdi, Robert Brandenberger, Anupam Mazumdar, Phys. Rev. D70 (2004) 083535, arXiv:hep-ph/0407230.
[Allahverdi:2004ge]
[29-280]
Scientific alternatives to the anthropic principle, Lee Smolin, arXiv:hep-th/0407213, 2004.
[Smolin:2004yv]
[29-281]
Neutrino superfluidity, Joseph I. Kapusta, Phys. Rev. Lett. 93 (2004) 251801, arXiv:hep-th/0407164.
[Kapusta:2004gi]
[29-282]
Lorentz-Violating Vector Fields Slow the Universe Down, Sean M. Carroll, Eugene A. Lim, Phys. Rev. D70 (2004) 123525, arXiv:hep-th/0407149.
[Carroll:2004ai]
[29-283]
About the varying-c cosmology, Hossein Shojaie, Mehrdad Farhoudi, Can. J. Phys. 84 (2006) 933-944, arXiv:gr-qc/0407096.
[Shojaie:2004xw]
[29-284]
Redshift and Energy Conservation, Alasdair Macleod, arXiv:physics/0407077, 2004.
[Macleod:2004rd]
[29-285]
Bouncing Universes with Varying Constants, John D. Barrow, Dagny Kimberly, Joao Magueijo, Class. Quant. Grav. 21 (2004) 4289, arXiv:astro-ph/0406369.
[Barrow:2004ad]
[29-286]
Observational Implications of Cosmological Event Horizons, Nemanja Kaloper, Matthew Kleban, Lorenzo Sorbo, Phys. Lett. B600 (2004) 7, arXiv:astro-ph/0406099.
[Kleban:2004vv]
[29-287]
Quantum effects can render w < -1 on cosmological scales, V. K. Onemli, R. P. Woodard, Phys. Rev. D70 (2004) 107301, arXiv:gr-qc/0406098.
[Onemli:2004mb]
[29-288]
A varying-c cosmology, Hossein Shojaie, Mehrdad Farhoudi, Can. J. Phys. 85 (2007) 1395-1408, arXiv:gr-qc/0406027.
[Shojaie:2004sq]
[29-289]
A CMB/Dark Energy Cosmic Duality, Kari Enqvist, Martin S. Sloth, Phys. Rev. Lett. 93 (2005) 221302, arXiv:hep-th/0406019.
[Finelli:2005zc]
[29-290]
Modification of the field theory and the dark matter problem, A. A. Kirillov, arXiv:astro-ph/0405623, 2004.
[Kirillov:2004nb]
[29-291]
Acceleressence: Dark Energy from a Phase Transition at the Seesaw Scale, Z. Chacko, Lawrence J. Hall, Yasunori Nomura, JCAP 0410 (2004) 011, arXiv:astro-ph/0405596.
[Chacko:2004ky]
[29-292]
The Phantom Bounce: A New Oscillating Cosmology, Matthew G. Brown, Katherine Freese, William H. Kinney, JCAP 0803 (2008) 002, arXiv:astro-ph/0405353.
[Brown:2004cs]
[29-293]
Bigger Rip with No Dark Energy, Paul H. Frampton, Tomo Takahashi, Astropart. Phys. 22 (2004) 307, arXiv:astro-ph/0405333.
[Frampton:2004xn]
[29-294]
Scalar condensate decay in a fermionic heat bath in the early universe, K. Enqvist, J. Hogdahl, JCAP 0409 (2004) 013, arXiv:hep-ph/0405299.
[Enqvist:2004pr]
[29-295]
Holographic Cosmology, T. Banks, W. Fischler, arXiv:hep-th/0405200, 2004.
[Banks:2004vg]
[29-296]
Dark Energy with $w > -4/3$, Andrei Gruzinov, arXiv:astro-ph/0405096, 2004.
[Gruzinov:2004xe]
[29-297]
Towards a future singularity?, M. Gasperini, Int. J. Mod. Phys. D13 (2004) 2267, arXiv:gr-qc/0405083.
[Gasperini:2004xw]
[29-298]
A Possible Origin of Dark Energy, T. D. Lee, Chin. Phys. Lett. 21 (2004) 1187, arXiv:astro-ph/0404601.
[Lee:2004bg]
[29-299]
The Classification of Universes, James D. Bjorken, Phys. Rev.D. (2004), arXiv:astro-ph/0404233.
[Bjorken:2004an]
[29-300]
A solution to the baryon and dark-matter coincidence puzzle in a $\tilde{N}$ dominated early universe, M. Ibe, T. Yanagida, Phys. Lett. B597 (2004) 47, arXiv:hep-ph/0404134.
[Ibe:2004yp]
[29-301]
Dark matter in the framework of shell-universe, Merab Gogberashvili, Michael Maziashvili, Gen. Rel. Grav. 37 (2005) 1129, arXiv:astro-ph/0404117.
[Gogberashvili:2004hf]
[29-302]
An outline of Weyl geometric models in cosmology, Erhard Scholz, Annalen Phys. (2004), arXiv:astro-ph/0403446.
[Scholz:2004si]
[29-303]
Creating the Universe from Brane-Antibrane Annihilation, Neil Barnaby, James M. Cline, Phys. Rev. D70 (2004) 023506, arXiv:hep-th/0403223.
[Barnaby:2004dp]
[29-304]
On the Geometry of Dark Energy, M. D. Maia, E. M. Monte, J. M. F. Maia, J. S. Alcaniz, Class. Quant. Grav. 22 (2005) 1623, arXiv:astro-ph/0403072.
[Maia:2004fq]
[29-305]
A new duality relating density perturbations in expanding and contracting Friedmann cosmologies, Latham A. Boyle, Paul J. Steinhardt, Neil Turok, Phys. Rev. D70 (2004) 023504, arXiv:hep-th/0403026.
[Boyle:2004gv]
[29-306]
Dynamical CP Violation in the Early Universe, K.R.S. Balaji, Robert H. Brandenberger, David London, Phys. Lett. B595 (2004) 22, arXiv:hep-ph/0403014.
[Balaji:2004xy]
[29-307]
Cosmology and Gravitostatics, Peter Rastall, arXiv:astro-ph/0402339, 2004.
[Rastall:2004ek]
[29-308]
Structure formation in a string-inspired modification of the cold dark matter model, Steven S. Gubser, P.J.E. Peebles, Phys. Rev. D70 (2004) 123510, arXiv:hep-th/0402225.
[Gubser:2004uh]
[29-309]
Dynamical Relaxation of the Cosmological Constant and Matter Creation in the Universe, Robert Brandenberger, Anupam Mazumdar, JCAP 0408 (2004) 015, arXiv:hep-th/0402205.
[Brandenberger:2004ki]
[29-310]
Infrared modification of gravity, Gia Dvali, arXiv:hep-th/0402130, 2004.
[Dvali:2004ph]
[29-311]
An hypersphere model of the Universe - The dismissal of dark matter, Jose B. Almeida, J. Phys.A (2004), arXiv:physics/0402075.
[Almeida:2004cd]
[29-312]
Hybrid Dark Sector: Locked Quintessence and Dark Matter, Minos Axenides, Konstantinos Dimopoulos, JCAP 0407 (2004) 010, arXiv:hep-ph/0401238.
[Axenides:2004kb]
[29-313]
Phenomenology of space time fluctuations, R. Aloisio, P. Blasi, A. Galante, A. F. Grillo, arXiv:gr-qc/0401082, 2004.
[Aloisio:2004up]
[29-314]
String theory and the shape of the universe, Brett McInnes, Phys. Lett. B593 (2004) 10, arXiv:hep-th/0401035.
[McInnes:2004zm]
[29-315]
Cosmology of the Mirror Universe, Paolo Ciarcelluti, arXiv:astro-ph/0312607, 2003.
[Ciarcelluti:2003wm]
[29-316]
Avoiding paradox with infinite space, D. H. Coule, Gen.Rel.Grav. 36 (2004) 2095, arXiv:gr-qc/0311022.
[Coule:2003wv]
[29-317]
Stability of a cosmological model with dynamical cancellation of vacuum energy, A. D. Dolgov, M. Kawasaki, arXiv:astro-ph/0310822, 2003.
[Dolgov:2003at]
[29-318]
Dark energy equation of state and anthropic selection, J. Garriga, A. Linde, A. Vilenkin, Phys. Rev. D69 (2004) 063521, arXiv:hep-th/0310034.
[Garriga:2003hj]
[29-319]
Vacuum dominance and holography, T. R. Mongan, arXiv:gr-qc/0310015, 2003.
[Mongan:2003rn]
[29-320]
Origin of universes with different properties, S. G. Rubin, Grav. Cosmol. 9 (2003) 243, arXiv:hep-ph/0309184.
[Rubin:2003vj]
[29-321]
The Graviton as a Bound State and the Cosmological Constant Problem, J. W. Moffat, arXiv:gr-qc/0309125, 2003.
[Moffat:2003mk]
[29-322]
Realistic cosmological model with dynamical cancellation of vacuum energy, A. D. Dolgov, M. Kawasaki, arXiv:astro-ph/0307442, 2003.
[Dolgov:2003fw]
[29-323]
Conserved cosmological perturbations, D. H. Lyth, D. Wands, Phys. Rev. D68 (2003) 103515, arXiv:astro-ph/0306498.
[Lyth:2003im]
[29-324]
Is Cosmic Speed-Up Due to New Gravitational Physics?, S. M. Carroll, V. Duvvuri, M. Trodden, M. S. Turner, Phys. Rev. D70 (2004) 043528, arXiv:astro-ph/0306438.
[Carroll:2003wy]
[29-325]
Damping of Tensor Modes in Cosmology, S. Weinberg, Phys. Rev. D69 (2004) 023503, arXiv:astro-ph/0306304.
[Weinberg:2003ur]
[29-326]
Cosmic Black Holes, E.-J. Ahn, M. Cavaglia, Int. J. Mod. Phys. D12 (2003) 1699, arXiv:hep-ph/0306189.
[Ahn:2003um]
[29-327]
Cosmological Perturbations in a Big Crunch/Big Bang Space-time, A. J. Tolley, N. Turok, P. J. Steinhardt, Phys. Rev. D69 (2004) 106005, arXiv:hep-th/0306109.
[Tolley:2003nx]
[29-328]
A Dynamical Approach to the Cosmological Constant, S. Mukohyama, L. Randall, Phys. Rev. Lett. 92 (2004) 211302, arXiv:hep-th/0306108.
[Mukohyama:2003nw]
[29-329]
Fat Gravitons, the Cosmological Constant and Sub-millimeter Tests, R. Sundrum, Phys. Rev. D69 (2004) 044014, arXiv:hep-th/0306106.
[Sundrum:2003jq]
[29-330]
Modulational instabilities in neutrino-anti-neutrino interactions, M. Marklund et al., J. Exp. Theor. Phys. 99 (2004) 9, arXiv:astro-ph/0306013.
[Marklund:2003nf]
[29-331]
Comment on contributions of fundamental particles to the vacuum energy, G. E. Volovik, arXiv:hep-ph/0306011, 2003.
[Volovik:2003qr]
[29-332]
Dark Energy Problem in a Four-Fermion Interaction Model, T. Inagaki, X. Meng, T. Murata, arXiv:hep-ph/0306010, 2003.
[Inagaki:2003qq]
[29-333]
Defining Multiverses, G. F. R. Ellis, U. Kirchner, W. R. Stoeger, Mon. Not. Roy. Astron. Soc. 347 (2004) 921, arXiv:astro-ph/0305292.
[Ellis:2003dx]
[29-334]
Supersymmetry, the Cosmological Constant and a Theory of Quantum Gravity in Our Universe, T. Banks, Gen. Rel. Grav. 35 (2003) 2075, arXiv:hep-th/0305206.
[Banks:2003ia]
[29-335]
Boundary condition and the cosmological constant, S. Hayakawa, arXiv:hep-th/0305186, 2003.
[Hayakawa:2003aq]
[29-336]
Second-order Perturbations of the Friedmann World Model, H. Noh, J. Hwang, arXiv:astro-ph/0305123, 2003.
[Noh:2003yg]
[29-337]
On the vacuum entropy and the cosmological constant, S. Carneiro, Int. J. Mod. Phys. D12 (2003) 1669, arXiv:gr-qc/0305081.
[Carneiro:2003zw]
[29-338]
Initial Conditions for a Universe, M. Bojowald, Gen. Rel. Grav. 35 (2003) 1877, arXiv:gr-qc/0305069.
[Bojowald:2003ij]
[29-339]
Considerations Concerning the Contributions of Fundamental Particles to the Vacuum Energy Density, G. Ossola, A. Sirlin, Eur. Phys. J. C31 (2003) 165, arXiv:hep-ph/0305050.
[Ossola:2003ku]
[29-340]
Accelerating Universe in a Big Bounce Model, B. Wang, H. Liu, L. Xu, Mod. Phys. Lett. A19 (2004) 449, arXiv:gr-qc/0304093.
[Wang:2003yr]
[29-341]
Speed-up through entanglement - many-body effects in neutrino processes, Nicole F. Bell, Andrew A. Rawlinson, R. F. Sawyer, Phys. Lett. B573 (2003) 86, arXiv:hep-ph/0304082.
[Bell:2003mg]
[29-342]
Neutrino flavor conversion in a neutrino background: single- versus multi-particle description, Alexander Friedland, Cecilia Lunardini, Phys. Rev. D68 (2003) 013007, arXiv:hep-ph/0304055.
[Friedland:2003dv]
[29-343]
The Copernican Principle in Compact Spacetimes, J. D. Barrow, J. Levin, Mon. Not. Roy. Astron. Soc. 346 (2003) 615, arXiv:gr-qc/0304038.
[Barrow:2003ma]
[29-344]
About the nature of dark matter and dark energy and a model of cosmology that may solve the cosmic coincidence problem, I. Cohen, arXiv:astro-ph/0304029, 2003.
[Cohen:2003fg]
[29-345]
Dark matter as dark energy, R. R. Khuri, Phys. Lett. B568 (2003) 8, arXiv:astro-ph/0303422.
[Khuri:2003hf]
[29-346]
Physical Perturbations in Cosmology, P.G. Miedema, W.A. van Leeuwen, arXiv:gr-qc/0303004, 2003.
[Miedema:2003ub]
[29-347]
Adiabatic Modes in Cosmology, S. Weinberg, Phys. Rev. D67 (2003) 123504, arXiv:astro-ph/0302326.
[Weinberg:2003sw]
[29-348]
On the Stability of the Einstein Static Universe, J. D. Barrow, G. Ellis, R. Maartens, C. Tsagas, Class. Quant. Grav. 20 (2003) L155, arXiv:gr-qc/0302094.
[Barrow:2003ni]
[29-349]
On hot bangs and the arrow of time in relativistic quantum field theory, D. Buchholz, Commun. Math. Phys. 237 (2003) 271, arXiv:hep-th/0301115.
[Buchholz:2003cz]
[29-350]
Cosmology and the standard model, James D. Bjorken, Phys. Rev. D67 (2003) 043508, arXiv:hep-th/0210202.
[Bjorken:2002sr]
[29-351]
Non-Local Modification of Gravity and the Cosmological Constant Problem, G. Gabadadze N. Arkani-Hamed, S. Dimopoulos, G. Dvali, arXiv:hep-th/0209227, 2002.
[Arkani-Hamed:2002ukf]
[29-352]
A New Perspective on Cosmic Coincidence Problems, N. Arkani-Hamed, L. J. Hall, C. F. Kolda, H. Murayama, Phys. Rev. Lett. 85 (2000) 4434-4437, arXiv:astro-ph/0005111.
[Arkani-Hamed:2000ifx]
[29-353]
Superfluid analogies of cosmological phenomena, G. E. Volovik, Phys. Rep. 351 (2001) 195-348, arXiv:gr-qc/0005091.
[Volovik:2000ua]
[29-354]
Neutrino flight times in cosmology, Leo Stodolsky, Phys. Lett. B473 (2000) 61-64, arXiv:astro-ph/9911167.
[Stodolsky:1999kc]
[29-355]
A Phantom Menace?, R. R. Caldwell, Phys. Lett. B545 (2002) 23-29, arXiv:astro-ph/9908168.
[Caldwell:1999ew]
[29-356]
SUSY {QCD} and quintessence, A. Masiero, M. Pietroni, F. Rosati, Phys. Rev. D61 (2000) 023504, arXiv:hep-ph/9905346.
[Masiero:1999sq]
[29-357]
Cosmological neutrino condensates, D. G. Caldi, Alan Chodos, arXiv:hep-ph/9903416, 1999.
[Caldi:1999db]
[29-358]
The Damping tail of CMB anisotropies, Wayne Hu, Martin J. White, Astrophys. J. 479 (1997) 568, arXiv:astro-ph/9609079.
[Hu:1996mn]
[29-359]
Anthropic bound on the cosmological constant, Steven Weinberg, Phys. Rev. Lett. 59 (1987) 2607.
[Weinberg:1987dv]
[29-360]
On the anomalous electroweak baryon number nonconservation in the early universe, V. A. Kuzmin, V. A. Rubakov, M. E. Shaposhnikov, Phys. Lett. B155 (1985) 36.
[Kuzmin:1985mm]
[29-361]
Fluctuations in the new inflationary universe, A. H. Guth, S. Y. Pi, Phys. Rev. Lett. 49 (1982) 1110-1113.
[Guth:1982ec]
[29-362]
A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Andrei D. Linde, Phys. Lett. B108 (1982) 389-393.
[Linde:1981mu]
[29-363]
Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations, Alexei A. Starobinsky, Phys. Lett. B117 (1982) 175-178.
[Starobinsky:1982ee]
[29-364]
The inflationary universe: a possible solution to the horizon and flatness problems, Alan H. Guth, Phys. Rev. D23 (1981) 347-356.
[Guth:1980zm]
[29-365]
The behaviour of point masses in an expanding cosmological substratum, P. Meszaros, Astron. Astrophys. 37 (1974) 225-228.
[Meszaros-AA37-225-1974]
[29-366]
A Hypothesis, unifying the structure and the entropy of the universe, Y. B. Zeldovich, Mon. Not. Roy. Astron. Soc. 160 (1972) 1-3.
[Wynn-Williams:1972vqe]
[29-367]
Fluctuations at the threshold of classical cosmology, Edward R. Harrison, Phys. Rev. D1 (1970) 2726-2730.
[Harrison:1969fb]
[29-368]
Primeval adiabatic perturbation in an expanding universe, P. J. E. Peebles, J. T. Yu, Astrophys. J. 162 (1970) 815-836.
[Peebles:1970ag]
[29-369]
Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe, A. D. Sakharov, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32-35.
[Sakharov:1967dj]
[29-370]
Evolution of the Solar System and the Expansion of the Universe, R. H. Dicke, P. J. E. Peebles, Phys. Rev. Lett. 12 (1964) 435-437.
[Dicke-Peebles-PRL:1966]
[29-371]
Significance of Spatial Isotropy, R. H. Dicke, P. J. E. Peebles, Phys. Rev. 127 (1962) 629-631.
[Dicke-Peebles-PR:1962]
[29-372]
L'univers en expansion, G. Lemaitre, Ann. Soc. Sci. de Bruxelles 47 (1927) 49.
[Lemaitre:1927]
[29-373]
On the Possibility of a world with constant negative curvature of space, A. Friedmann, Z. Phys. 21 (1924) 326-332. [Gen. Rel. Grav.31,2001(1999)].
[Friedmann:1924bb]
[29-374]
On the curvature of space, A. Friedmann, Z. Phys. 10 (1922) 377-386.
[Friedmann:1922]
[29-375]
Puzzles of Anthropic Reasoning Resolved Using Full Non-indexical Conditioning, Radford M. Neal, arXiv:math.ST/0608592, 20ma.
[math.ST/0608592]

30 - Theory - Talks

[30-1]
The hot Hagedorn Universe, Johann Rafelski, Jeremiah Birrell, EPJ Web Conf. 126 (2016) 03005, arXiv:1604.08689. 4th International Conference on New Frontiers in Physics (ICNFP 2015) 23-30 Aug 2015,Kolymbari, Greece.
[Rafelski:2016cho]
[30-2]
The cosmological constant and stability of the Higgs vacuum, Steven D. Bass, Acta Phys.Polon. B47 (2016) 485, arXiv:1512.02619. Jagiellonian Symposium on Fundamental and Applied Subatomic Physics, Cracow, Poland, June 7-12 2015.
[Bass:2015csr]
[30-3]
Generation of cosmic magnetic fields in electroweak plasma, Maxim Dvornikov, Nucl.Part.Phys.Proc. 273-275 (2016) 2342-2344, arXiv:1409.1463. 37th ICHEP.
[Dvornikov:2014tka]
[30-4]
Non-relativistic particles in a thermal bath, Antonio Vairo, EPJ Web Conf. 71 (2014) 00135, arXiv:1401.3204. International Conference on New Frontiers in Physics, Crete, August 2013.
[Vairo:2014xea]
[30-5]
Notes on Time's Enigma, L.Mersini-Houghton, arXiv:0909.2330, 2009. FQXI Conference, Azores, 2009.
[Mersini-Houghton:2009zev]
[30-6]
A Possible Connection Between Massive Fermions and Dark Energy, T. Goldman, G.J. Stephenson Jr., P.M. Alsing, B.H.J. McKellar, arXiv:0905.4308, 2009. Seventh International Heidelberg Conference on Dark Matter in Astro and Particle Physics, DARK'09.
[Goldman:2009wp]
[30-7]
Cosmic Microwave Background Anisotropies up to Second Order, Nicola Bartolo, Sabino Matarrese, Antonio Riotto, arXiv:astro-ph/0703496, 2007. Les Houches Summer School - Session 86: Particle Physics and Cosmology: The Fabric of Spacetime, Les Houches, France, 31 Jul - 25 Aug 2006.
[Bartolo:2007ax]
[30-8]
Dark-energy equation of state: how far can we go from \Lambda?, Hrvoje Stefancic, AIP Conf. Proc. 878 (2006) 247-253, arXiv:astro-ph/0609780. DSU2006, International Workshop on the Dark Side of the Universe, Madrid, Spain, 20-24 June 2006.
[Stefancic:2006ak]
[30-9]
Dark matter and dark energy as a effects of Modified Gravity, Andrzej Borowiec, Wlodzimierz Godlowski, Marek Szydlowski, Int. J. Geom. Meth. Mod. Phys. 4 (2006) 183-196, arXiv:astro-ph/0607639. 42nd Karpacz Winter School of Theoretical Physics: Ladek, Poland, 6-11 Feb 2006.
[Borowiec:2006qr]
[30-10]
Cosmic Acceleration and Modified Gravity, Mark Trodden, Int. J. Mod. Phys. D16 (2012) 2065-2074, arXiv:astro-ph/0607510. NASA workshop - From Quantum to Cosmos: Fundamental Physics Research in Space, May 21-24 2006.
[Trodden:2012yw]
[30-11]
Dark Energy: Beyond General Relativity?, David Polarski, AIP Conf. Proc. 861 (2006) 1013-1018, arXiv:astro-ph/0605532. Albert Einstein's Century international conference, 18-22 July 2005, Paris, France.
[Polarski:2006ut]
[30-12]
Avoiding Dark Energy with 1/R Modifications of Gravity, R. P. Woodard, Lect. Notes Phys. 720 (2007) 403-433, arXiv:astro-ph/0601672. 3rd Aegean Summer School, Chios, 26 September - 1 October, 2005.
[Woodard:2006nt]
[30-13]
Modified Newtonian Dynamics, an Introductory Review, Riccardo Scarpa, Aip Conf. Proc. 822 (2006) 253, arXiv:astro-ph/0601478. First Crisis in Cosmology.
[Scarpa:2006cm]
[30-14]
Cosmology with running parameters, Joan Sola, J. Phys. Conf. Ser. 39 (2006) 179, arXiv:gr-qc/0512030. TAUP 2005, Zaragoza, Spain, 10-14 Sep 2005.
[Sola:2005hb]
[30-15]
On the Reionization of the Universe, Nino Panagia, Chin.J.Astron.Astrophys.Suppl. 6 (2006) 0182, arXiv:astro-ph/0511363. Frascati Workshop 2005 'Multifrequency Behaviour of High Energy Cosmic Sources'.
[Panagia:2005vf]
[30-16]
Conservation of nonlinear curvature perturbations on super-Hubble scales, Misao Sasaki, Aip Conf. Proc. 805 (2006) 94, arXiv:astro-ph/0509793. PASCOS05.
[Sasaki:2005ju]
[30-17]
MOND and Cosmology, R.H. Sanders, EAS Publ.Ser. 20 (2006) 231, arXiv:astro-ph/0509532. IAP05: Mass Profiles and Shapes of Cosmological Structures.
[Sanders:2005pi]
[30-18]
Cosmology and spacetime symmetries, Ralf Lehnert, arXiv:hep-ph/0508316, 2005. New Worlds in Astroparticle Physics, Faro, Portugal, January 8-10, 2005.
[Lehnert:2005fc]
[30-19]
The Classical and Quantum Inflaton: the Precise Inflationary Potential and Quantum Inflaton Decay after WMAP, D. Boyanovsky, H. J. de Vega, N. G. Sanchez, Nucl. Phys. Proc. Suppl. 148 (2005) 96, arXiv:astro-ph/0503128. The Density Perturbation in the Universe, Demokritos Center, Athens, Grece, June 2004.
[Boyanovsky:2005yb]
[30-20]
Liouville Cosmology, John Ellis, N. E. Mavromatos, D. V. Nanopoulos, arXiv:gr-qc/0502119, 2005. Dark 2004 conference, College Station, October 2004.
[Ellis:2005ep]
[30-21]
Strangeness, Cosmological Cold Dark Matter and Dark Energy, Sibaji Raha et al., J. Phys. G31 (2005) S857, arXiv:astro-ph/0501378. SQM 2004.
[Raha:2005zd]
[30-22]
Dark Energy and Non-linear Perturbations, C. van de Bruck, D.F. Mota, arXiv:astro-ph/0501276, 2005. IDM, Edinburgh, September 2004.
[vandeBruck:2005ii]
[30-23]
A Quantum Approach to Cosmology, Antonio Alfonso-Faus, arXiv:physics/0501081, 2005. Sixth International Symposium Frontiers of Fundamental Physics, Udine (Italy), September 26-28 2004.
[Alfonso-Faus:2005kwo]
[30-24]
Cosmology of 'Visible' Sterile Neutrinos, Graciela B. Gelmini, Int. J. Mod. Phys. A20 (2005) 4670, arXiv:hep-ph/0412304. 8th Workshop on Non-Perturbative Quantum Chromodynamics, June 7-11, 2004, Paris, France.
[Gelmini:2004hf]
[30-25]
The Holographic Approach to Cosmology, T. Banks, W. Fischler, arXiv:hep-th/0412097, 2004.
[Banks:2004eb]
[30-26]
Challenges for Inflationary Cosmology, Robert H. Brandenberger, arXiv:astro-ph/0411671, 2004. PASCOS-04/NathFest, August 2004.
[Brandenberger:2004py]
[30-27]
Cosmological Theories of Special and General Relativity - II, Moshe Carmeli, arXiv:astro-ph/0411181, 2004. International Conference 'Frontiers of Fundamental Physics 6', Udine, Italy, September 26 - 29, 2004.
[Carmeli:2004ve]
[30-28]
Cosmological Theories of Special and General Relativity - I, Moshe Carmeli, arXiv:astro-ph/0411180, 2004. International Conference 'Frontiers of Fundamental Physics 6', Udine, September 26 - 29, 2004.
[Carmeli:2004vd]
[30-29]
Beyond the standard model of cosmology, John Ellis, D. V. Nanopoulos, Aip Conf. Proc. 743 (2005) 450, arXiv:astro-ph/0411153.
[Ellis:2004rn]
[30-30]
Nonlocal String Tachyon as a Model for Cosmological Dark Energy, I.Ya. Aref'eva, Aip Conf. Proc. 826 (2006) 301, arXiv:astro-ph/0410443. QUARKS-2004, Pushkinskie Gory, Russia, May 2004.
[Arefeva:2004qqr]
[30-31]
Chameleon Dark Energy, Ph. Brax et al., Aip Conf. Proc. 736 (2005) 105, arXiv:astro-ph/0410103. 'Phi in the Sky' conference, 8-10 July 2004, Porto, Portugual.
[Brax:2004px]
[30-32]
Dark Energy and the Dark Matter relic abundance, Francesca Rosati, Aip Conf. Proc. 736 (2005) 153, arXiv:astro-ph/0409530. 'Phi in the Sky - the quest for cosmological scalar fields', 8-10 July 2004, Porto (PT).
[Rosati:2004mw]
[30-33]
How Fundamental is Gravitation ?, B.G.Sidharth, Found.Phys.Lett. (2004) 147-154, arXiv:physics/0409088. Sixth International Symposium on Frontiers of Fundamental Physics, University of Udine, Italy.
[Sidharth:2004ed]
[30-34]
An approach to the cosmological constant problem(s), G. L. Kane, M. J. Perry, A. N. Zytkow, Phys. Lett. B609 (2004) 7, arXiv:hep-ph/0408169. Rencontres de Moriond, 2004.
[Kane:2005cd]
[30-35]
New Cosmic Low Energy States of Neutrino, E. I. Guendelman, A. B. Kaganovich, arXiv:hep-th/0405199, 2004. XXXIX Rencontres de Moriond 'Exploring the Universe. Contents and Structure of the Universe', La Thuile, Aosta, Italy, March 28 - April 4, 2004.
[Guendelman:2004vf]
[30-36]
Curvaton mechanism and its implications to sneutrino cosmology, Takeo Moroi, Nucl. Phys. Proc. Suppl. 137 (2004) 259, arXiv:hep-ph/0405047. Fujihara Seminar 'SEESAW 1979 - 2004: Neutrino Mass and Seesaw Mechanism' (Feb 23 - 25, 2004, KEK, Japan).
[Moroi:2004yz]
[30-37]
Status of non-Riemannian cosmology, Dirk Puetzfeld, New Astron. Rev. 49 (2005) 59, arXiv:gr-qc/0404119. Sixth UCLA Symposium on 'Sources and Detection of Dark Matter and Dark Energy in the Universe'.
[Puetzfeld:2004yg]
[30-38]
Cosmic Coincidence with a new Type of Dark Matter, E. I. Guendelman, A. B. Kaganovich, arXiv:hep-th/0403054, 2004. Tenth Marcel Grossmann Meeting.
[Guendelman:2004rk]
[30-39]
Beyond Inflation: A Cyclic Universe Scenario, Neil Turok, Paul J. Seinhardt, Phys. Scripta T117 (2005) 76, arXiv:hep-th/0403020. Nobel Symposium `String Theory and Cosmology', 2003.
[Turok:2004yx]
[30-40]
The Fuzzy Space Time Paradigm, B. G. Sidharth, arXiv:physics/0311040, 2003.
[Sidharth:2003ds]
[30-41]
Cosmology from the Top Down, Stephen Hawking, arXiv:astro-ph/0305562, 2003. Davis Inflation Meeting, 2003.
[Hawking:2003bf]
[30-42]
Cosmological constant, renormalization group and Planck scale physics, Ilya L. Shapiro, Joan Sola, Nucl. Phys. Proc. Suppl. 127 (2004) 71, arXiv:hep-ph/0305279. IRGA 2003: Renormalization Group and Anomalies in Gravitation and Cosmology, Ouro Preto, Brazil, 16-23 March, 2003.
[Shapiro:2003kv]
[30-43]
Some Thoughts on the Quantum Theory of de Sitter Space, T. Banks, arXiv:astro-ph/0305037, 2003. Davis Inflation Meeting, 2003.
[Banks:2003cg]
[30-44]
Chronology violation and the Cosmological Argument, G.E. Romero, arXiv:gr-qc/0301070, 2003. International Symposium on Astrophysics Research and on the Dialogue between Science and Religion, Vatican Observatory, 2002.
[Romero:2003sn]
[30-45]
What If w < -1 ?, Brett McInnes, arXiv:astro-ph/0210321, 2002. 18th IAP Colloquium on the Nature of Dark Energy: Observational and Theoretical Results on the Accelerating Universe, Paris, France, 1-5 Jul 2002.
[McInnes:2002qw]
[30-46]
Looking back with neutrinos, Leo Stodolsky, arXiv:astro-ph/0006384, 2000. Carolina Symposium on Neutrino Physics in Honor of Frank Avignone, Columbia, South Carolina, 10-12 Mar 2000.
[Stodolsky:2000aj]

31 - Theory - Inflation

[31-1]
Generation of neutrino dark matter, baryon asymmetry, and radiation after quintessential inflation, Kohei Fujikura, Soichiro Hashiba, Jun'ichi Yokoyama, Phys.Rev.D 107 (2023) 063537, arXiv:2210.05214.
[Fujikura:2022udt]
[31-2]
Inflaton-driven early dark energy, Michael Maziashvili, Astropart.Phys. 145 (2023) 102792, arXiv:2111.07288.
[Maziashvili:2021mbm]
[31-3]
Inflation and type III seesaw mechanism in $\nu$-gauge mediated supersymmetry breaking, Shinsuke Kawai, Nobuchika Okada, Phys.Rev.D 104 (2021) 115031, arXiv:2107.01263.
[Kawai:2021gap]
[31-4]
Inflation and long-range force from clockwork $D$-term, Anjan S. Joshipura, Subhendra Mohanty, Ketan M. Patel, Phys.Rev. D103 (2021) 035008, arXiv:2008.13334.
[Joshipura:2020ibd]
[31-5]
A minimal model of inflation and dark radiation, Kristjan Kannike, Aleksei Kubarski, Luca Marzola, Antonio Racioppi, Phys.Lett. B792 (2019) 74-80, arXiv:1810.12689.
[Kannike:2018zwn]
[31-6]
Failure of the stochastic approach to inflation in constant-roll and ultra-slow-roll, Diego Cruces, Cristiano Germani, Tomislav Prokopec, arXiv:1807.09057, 2018.
[Cruces:2018xvi]
[31-7]
A Simple No-Scale Model of Modulus Fixing and Inflation, John Ellis, Malcolm Fairbairn, Antonio Enea Romano, Oscar Zapata, Phys.Rev. D98 (2018) 103514, arXiv:1802.05713.
[Ellis:2018ojk]
[31-8]
The Relaxion: A Landscape Without Anthropics, Ann Nelson, Chanda Prescod-Weinstein, Phys.Rev. D96 (2017) 113007, arXiv:1708.00010.
[Nelson:2017cfv]
[31-9]
Inflation scenario driven by an inflaton belonging to low energy physics, J. G. Ferreira Jr, C. A. de S. Pires, J. G. Rodrigues, P. S. Rodrigues da Silva, Phys.Rev. D96 (2017) 103504, arXiv:1707.01049.
[Ferreira:2017ynu]
[31-10]
Inflection-point inflation in hyper-charge oriented U(1)$_X$ model, Nobuchika Okada, Satomi Okada, Digesh Raut, Phys.Rev. D95 (2017) 055030, arXiv:1702.02938.
[Okada:2017cvy]
[31-11]
Non-Minimal Quartic Inflation in Supersymmetric SO(10), George K. Leontaris, Nobuchika Okada, Qaisar Shafi, Phys.Lett.B 765 (2017) 256-259, arXiv:1611.10196.
[Leontaris:2016jty]
[31-12]
Clockwork Inflation, Alex Kehagias, Antonio Riotto, Phys.Lett. B767 (2017) 73-80, arXiv:1611.03316.
[Kehagias:2016kzt]
[31-13]
Inflection-point Higgs Inflation, Nobuchika Okada, Digesh Raut, Phys.Rev. D95 (2017) 035035, arXiv:1610.09362.
[Okada:2016ssd]
[31-14]
Starobinsky-Like Inflation and Neutrino Masses in a No-Scale SO(10) Model, John Ellis, Marcos A. G. Garcia, Natsumi Nagata, Dimitri V. Nanopoulos, Keith A. Olive, JCAP 1611 (2016) 018, arXiv:1609.05849.
[Ellis:2016ipm]
[31-15]
Fine Tuning May Not Be Enough, S. P. Miao, R. P. Woodard, JCAP 1509 (2015) 022, arXiv:1506.07306.
[Miao:2015oba]
[31-16]
Inflation in a modified radiative seesaw model, Romy H. S. Budhi, Shoichi Kashiwase, Daijiro Suematsu, Phys. Rev. D90 (2014) 113013, arXiv:1409.6889.
[Budhi:2014gxa]
[31-17]
Universality classes for models of inflation, P. Binetruy, E. Kiritsis, J. Mabillard, M. Pieroni, C. Rosset, JCAP 1504 (2015) 033, arXiv:1407.0820.
[Binetruy:2014zya]
[31-18]
Higgs Dynamics during Inflation, Kari Enqvist, Tuukka Meriniemi, Sami Nurmi, JCAP 1407 (2014) 025, arXiv:1404.3699.
[Enqvist:2014bua]
[31-19]
Pre-inflationary clues from String Theory?, N. Kitazawa, A. Sagnotti, JCAP 1404 (2014) 017, arXiv:1402.1418.
[Kitazawa:2014dya]
[31-20]
Non-minimal Inflationary Attractors, Renata Kallosh, Andrei Linde, JCAP 1310 (2013) 033, arXiv:1307.7938.
[Kallosh:2013maa]
[31-21]
Higgs inflation in a radiative seesaw model, Shinya Kanemura, Toshinori Matsui, Takehiro Nabeshima, Phys.Lett. B723 (2013) 126-131, arXiv:1211.4448.
[Kanemura:2012ha]
[31-22]
Supersymmetric Seesaw Inflation, Charanjit S. Aulakh, Ila Garg, Phys. Rev. D86 (2012) 065001, arXiv:1201.0519.
[Aulakh:2012st]
[31-23]
Can Inflation be Connected to Low Energy Particle Physics?, Mark P. Hertzberg, JCAP 1208 (2012) 008, arXiv:1110.5650.
[Hertzberg:2011rc]
[31-24]
Gravity triggered neutrino condensates, Gabriela Barenboim, Phys. Rev. D82 (2010) 093014, arXiv:1009.2504.
[Barenboim:2010db]
[31-25]
New Standard Model Higgs Inflation, Cristiano Germani, Alex Kehagias, Phys. Rev. Lett. 105 (2010) 011302, arXiv:1003.2635.
[Germani:2010gm]
[31-26]
Inflation might be caused by the right, Gabriela Barenboim, JHEP 03 (2009) 102, arXiv:0811.2998.
[Barenboim:2008ds]
[31-27]
Inflaton mass in the $\nu$MSM inflation, Alexey Anisimov, Yannick Bartocci, Fedor L. Bezrukov, Phys. Lett. B671 (2009) 211-215, arXiv:0809.1097.
[Anisimov:2008qs]
[31-28]
Thermal inflation, baryogenesis and axions, Seongcheol Kim, Wan-Il Park, Ewan D. Stewart, JHEP 01 (2009) 015, arXiv:0807.3607.
[Kim:2008yu]
[31-29]
Natural inflation at the GUT scale, Subhendra Mohanty, Akhilesh Nautiyal, Phys. Rev. D78 (2008) 123515, arXiv:0807.0317.
[Mohanty:2008ab]
[31-30]
A Tree Theorem for Inflation, Steven Weinberg, Phys. Rev. D78 (2008) 063534, arXiv:0805.3781.
[Weinberg:2008mc]
[31-31]
Dark spinor inflation - theory primer and dynamics, Christian G. Boehmer, Phys. Rev. D77 (2008) 123535, arXiv:0804.0616.
[Boehmer:2008rz]
[31-32]
Uses of a small field value which falls from a metastable maximum over cosmological times, Saul Barshay, Georg Kreyerhoff, Mod. Phys. Lett. A23 (2008) 2897-2905, arXiv:0801.2874.
[Barshay:2008my]
[31-33]
Modulated Inflation, Tomohiro Matsuda, Phys. Lett. B665 (2008) 338-343, arXiv:0801.2648.
[Matsuda:2008hx]
[31-34]
Inflation and Quintessence: Theoretical Approach of Cosmological Reconstruction, Ishwaree P. Neupane, Christoph Scherer, JCAP 0805 (2008) 009, arXiv:0712.2468.
[Neupane:2007jm]
[31-35]
The Standard Model Higgs boson as the inflaton, Fedor L. Bezrukov, Mikhail Shaposhnikov, Phys.Lett. B659 (2008) 703-706, arXiv:0710.3755.
[Bezrukov:2007ep]
[31-36]
Unifying inflation and dark matter with neutrino masses, Rouzbeh Allahverdi, Bhaskar Dutta, Anupam Mazumdar, Phys. Rev. Lett. 99 (2007) 261301, arXiv:0708.3983.
[Allahverdi:2007wt]
[31-37]
Theory and Numerics of Gravitational Waves from Preheating after Inflation, Jean Francois Dufaux, Amanda Bergman, Gary N. Felder, Lev Kofman, Jean-Philippe Uzan, Phys. Rev. D76 (2007) 123517, arXiv:0707.0875.
[Dufaux:2007pt]
[31-38]
Towards a gauge invariant volume-weighted probability measure for eternal inflation, Andrei Linde, JCAP 0706 (2007) 017, arXiv:0705.1160.
[Linde:2007nm]
[31-39]
Inflation by a spontaneous parity breaking field and consequences for nu-masses and B-asymmetry, Jinn-Ouk Gong, Narendra Sahu, Phys. Rev. D77 (2008) 023517, arXiv:0705.0068.
[Gong:2007yv]
[31-40]
Inflationary Cosmology Connecting Dark Energy and Dark Matter, Daniel J. H. Chung, Lisa L. Everett, Konstantin T. Matchev, Phys. Rev. D76 (2007) 103530, arXiv:0704.3285.
[Chung:2007vz]
[31-41]
Unified Model for Inflation and Dark Matter, Gabriel Zsembinszki, J. Phys. A40 (2007) 5219, arXiv:astro-ph/0611664.
[Zsembinszki:2006ye]
[31-42]
Pointer states for primordial fluctuations in inflationary cosmology, C. Kiefer, I. Lohmar, D. Polarski, A. A. Starobinsky, Class. Quant. Grav. 24 (2007) 1699-1718, arXiv:astro-ph/0610700.
[Kiefer:2006je]
[31-43]
The inflationary trispectrum, David Seery, James E. Lidsey, Martin S. Sloth, JCAP 0701 (2007) 027, arXiv:astro-ph/0610210.
[Seery:2006vu]
[31-44]
MSSM flat direction inflation: slow roll, stability, fine tunning and reheating, Rouzbeh Allahverdi et al., JCAP 0706 (2007) 019, arXiv:hep-ph/0610134.
[Allahverdi:2006we]
[31-45]
Inflation without Inflaton(s), Scott Watson, Malcolm J. Perry, Gordon L. Kane, Fred C. Adams, JCAP 0711 (2007) 017, arXiv:hep-th/0610054.
[Watson:2006px]
[31-46]
A-term inflation and the MSSM, J.C. Bueno Sanchez, K. Dimopoulos, David H. Lyth, JCAP 0701 (2007) 015, arXiv:hep-ph/0608299.
[BuenoSanchez:2006xk]
[31-47]
Nflation: non-gaussianity in the horizon-crossing approximation, Soo A. Kim, Andrew R. Liddle, Phys. Rev. D74 (2006) 063522, arXiv:astro-ph/0608186.
[Kim:2006te]
[31-48]
Slow rolling, inflation and quintessence, M. Capone, C. Rubano, P. Scudellaro, Europhys. Lett. 73 (2006) 149-155, arXiv:astro-ph/0607556.
[Capone:2006zq]
[31-49]
Gravitino production in an inflationary Universe: A fresh look, Raghavan Rangarajan, Narendra Sahu, Mod. Phys. Lett. A23 (2008) 427-436, arXiv:hep-ph/0606228.
[Rangarajan:2006xg]
[31-50]
The Gravitino-Overproduction Problem in Inflationary Universe, Masahiro Kawasaki, Fuminobu Takahashi, T. T. Yanagida, Phys. Rev. D74 (2006) 043519, arXiv:hep-ph/0605297.
[Kawasaki:2006hm]
[31-51]
MSSM inflation, David H. Lyth, JCAP 0704 (2007) 006, arXiv:hep-ph/0605283.
[Lyth:2006ec]
[31-52]
Power Spectrum of the Density Perturbations From Smooth Hybrid New Inflation Model, Masahiro Kawasaki, Tsutomu Takayama, Masahide Yamaguchi, Jun'ichi Yokoyama, Phys. Rev. D74 (2006) 043525, arXiv:hep-ph/0605271.
[Kawasaki:2006zv]
[31-53]
Lorentz Violating Inflation, Sugumi Kanno, Jiro Soda, Phys. Rev. D74 (2006) 063505, arXiv:hep-th/0604192.
[Kanno:2006ty]
[31-54]
Appearance of a Classical Scalar Field After Inflation and The Dark Energy, Houri Ziaeepour, arXiv:hep-ph/0603125, 2006.
[Ziaeepour:2006gz]
[31-55]
On the Decoherence of Primordial Fluctuations During Inflation, C.P. Burgess, R. Holman, D. Hoover, Phys. Rev. D77 (2008) 063534, arXiv:astro-ph/0601646.
[Burgess:2006jn]
[31-56]
The Lyth Bound and the End of Inflation, Richard Easther, William H. Kinney, Brian A. Powell, JCAP 0608 (2006) 004, arXiv:astro-ph/0601276.
[Easther:2006qu]
[31-57]
Inflation without inflatons, Reuven Opher, Ana Pelinson, Phys. Rev. D74 (2006) 023505, arXiv:astro-ph/0512336.
[Opher:2005qa]
[31-58]
Effect of the length of inflation on angular TT and TE power spectra in power-law inflation, Shiro Hirai, Tomoyuki Takami, Class. Quant. Grav. 23 (2006) 2541, arXiv:astro-ph/0512318.
[Hirai:2005pg]
[31-59]
Troubles for observing the inflaton potential, H. P. de Oliveira, C. A. Terrero-Escalante, JCAP 0601 (2006) 024, arXiv:astro-ph/0511660.
[deOliveira:2005mf]
[31-60]
'Graceful' Old Inflation, Fabrizio Di Marco, Alessio Notari, Phys. Rev. D73 (2006) 063514, arXiv:astro-ph/0511396.
[DiMarco:2005zn]
[31-61]
Can Inflation solve the Hierarchy Problem?, Tirthabir Biswas, Alessio Notari, Phys. Rev. D74 (2006) 043508, arXiv:hep-ph/0511207.
[Biswas:2005vz]
[31-62]
On the generation of density perturbations at the end of inflation, Michael P. Salem, Phys. Rev. D72 (2005) 123516, arXiv:astro-ph/0511146.
[Salem:2005nd]
[31-63]
Theoretical Uncertainties in Inflationary Predictions, William H. Kinney, Antonio Riotto, JCAP 0603 (2006) 011, arXiv:astro-ph/0511127.
[Kinney:2005in]
[31-64]
Asymmetric inflation: exact solutions, Roman V. Buniy, Arjun Berera, Thomas W. Kephart, Phys. Rev. D73 (2006) 063529, arXiv:hep-th/0511115.
[Buniy:2005qm]
[31-65]
Generating the curvature perturbation at the end of inflation, David H. Lyth, JCAP 0511 (2005) 006, arXiv:astro-ph/0510443.
[Lyth:2005qk]
[31-66]
Can oscillating scalar fields decay into particles with a large thermal mass?, Jun'ichi Yokoyama, Phys. Lett. B635 (2006) 66, arXiv:hep-ph/0510091.
[Yokoyama:2005dv]
[31-67]
Perturbative analysis of multiple-field cosmological inflation, Joydev Lahiri, Gautam Bhattacharya, Annals Phys. 321 (2006) 999, arXiv:astro-ph/0507630.
[Lahiri:2005xj]
[31-68]
A Bound Concerning Primordial Non-Gaussianity, David H. Lyth, Ignacio Zaballa, JCAP 0510 (2005) 005, arXiv:astro-ph/0507608.
[Lyth:2005qj]
[31-69]
Quantum corrections to the inflaton potential and the power spectra from superhorizon modes and trace anomalies, D. Boyanovsky, H. J. de Vega, N. G. Sanchez, Phys. Rev. D72 (2005) 103006, arXiv:astro-ph/0507596.
[Boyanovsky:2005px]
[31-70]
Clarifying Inflation Models: Slow-roll as an expansion in 1/N_{efolds} and No Fine Tuning, D. Boyanovsky, H. J. de Vega, N. G. Sanchez, Phys. Rev. D73 (2006) 023008, arXiv:astro-ph/0507595.
[Boyanovsky:2005pw]
[31-71]
Inflationary predictions reconsidered, Latham A. Boyle, Paul J. Steinhardt, Neil Turok, Phys. Rev. Lett. 96 (2006) 111301, arXiv:astro-ph/0507455.
[Boyle:2005ug]
[31-72]
Suppressing Super-Horizon Curvature Perturbations, Martin S. Sloth, Mod. Phys. Lett. A21 (2006) 961, arXiv:hep-ph/0507315.
[Sloth:2005yx]
[31-73]
N-flation, Savas Dimopoulos, Shamit Kachru, John McGreevy, Jay Wacker, JCAP 0808 (2008) 003, arXiv:hep-th/0507205.
[Dimopoulos:2005ac]
[31-74]
Inflaton field potential producing the exactly flat spectrum of adiabatic perturbations, Alexei A. Starobinsky, Jetp Lett. 82 (2005) 169, arXiv:astro-ph/0507193.
[Starobinsky:2005ab]
[31-75]
Sneutrino warm inflation in the minimal supersymmetric model, Mar Bastero-Gil, Arjun Berera, Phys. Rev. D72 (2005) 103526, arXiv:hep-ph/0507124.
[Bastero-Gil:2005klw]
[31-76]
An effective theory of initial conditions in inflation, Hael Collins, R. Holman, arXiv:hep-th/0507081, 2005.
[Collins:2005cm]
[31-77]
Decoherence during Inflation: the generation of classical inhomogeneities, Fernando C. Lombardo, Diana Lopez Nacir, Phys. Rev. D72 (2005) 063506, arXiv:gr-qc/0506051.
[Lombardo:2005iz]
[31-78]
Super Inflation, Marco Baldi, Fabio Finelli, Sabino Matarrese, Phys. Rev. D72 (2005) 083504, arXiv:astro-ph/0505552.
[Baldi:2005gk]
[31-79]
Does Inflation Provide Natural Initial Conditions for the Universe?, Sean M. Carroll, Jennifer Chen, Gen. Rel. Grav. 37 (2005) 1671, arXiv:gr-qc/0505037.
[Carroll:2005it]
[31-80]
B-Inflation, Alexey Anisimov, Eugeny Babichev, Alexander Vikman, JCAP 0506 (2005) 006, arXiv:astro-ph/0504560.
[Anisimov:2005ne]
[31-81]
The inflationary prediction for primordial non-gaussianity, David H. Lyth, Yeinzon Rodriguez, Phys. Rev. Lett. 95 (2005) 121302, arXiv:astro-ph/0504045.
[Lyth:2005fi]
[31-82]
Primordial inflation explains why the universe is accelerating today, Edward W. Kolb, Sabino Matarrese, Alessio Notari, Antonio Riotto, arXiv:hep-th/0503117, 2005.
[Kolb:2005me]
[31-83]
Stochastic approaches to inflation model building, Erandy Ramirez, Andrew R Liddle, Phys. Rev. D71 (2005) 123510, arXiv:astro-ph/0502361.
[Ramirez:2005cy]
[31-84]
Hybrid Inflation, Dark Energy And Dark Matter, Qaisar Shafi, Arunansu Sil, Siew-Phang Ng, Phys. Lett. B620 (2005) 105, arXiv:hep-ph/0502254.
[Shafi:2005fs]
[31-85]
Clarifying Inflation Models: the Precise Inflationary Potential from Effective Field Theory and the WMAP data, D. Cirigliano, H. J. de Vega, N. G. Sanchez, Phys. Rev. D71 (2005) 103518, arXiv:astro-ph/0412634.
[Cirigliano:2004yh]
[31-86]
Single Field Baryogenesis and the Scale of Inflation, K.R.S. Balaji, R. H. Brandenberger, Alessio Notari, arXiv:hep-ph/0412197, 2004.
[Balaji:2004cg]
[31-87]
Brany Liouville Inflation, John Ellis, N.E. Mavromatos, D.V. Nanopoulos, A. Sakharov, New J. Phys. 6 (2004) 171, arXiv:gr-qc/0407089.
[Ellis:2004up]
[31-88]
Particle decay in inflationary cosmology, D. Boyanovsky, H. J. de Vega, Phys. Rev. D70 (2004) 063508, arXiv:astro-ph/0406287.
[Boyanovsky:2004gq]
[31-89]
The Paradigm of Inflation, Juan Garcia-Bellido, arXiv:hep-ph/0406191, 2004.
[Garcia-Bellido:2004mio]
[31-90]
Must Cosmological Perturbations Remain Non-Adiabatic After Multi-Field Inflation?, Steven Weinberg, Phys. Rev. D70 (2004) 083522, arXiv:astro-ph/0405397.
[Weinberg:2004kf]
[31-91]
Triality between Inflation, Cyclic and Phantom Cosmologies, James E. Lidsey, Phys. Rev. D70 (2004) 041302, arXiv:gr-qc/0405055.
[Lidsey:2004xd]
[31-92]
Elastic Inflation, Andrei Gruzinov, Phys. Rev. D70 (2004) 063518, arXiv:astro-ph/0404548.
[Gruzinov:2004ty]
[31-93]
Can non-adiabatic perturbations arise after single-field inflation?, Steven Weinberg, Phys. Rev. D70 (2004) 043541, arXiv:astro-ph/0401313.
[Weinberg:2004kr]
[31-94]
Old inflation in string theory, Luigi Pilo, Antonio Riotto, Alberto Zaffaroni, JHEP 0407 (2004) 052, arXiv:hep-th/0401004.
[Pilo:2004mg]
[31-95]
Ghost Inflation, Nima Arkani-Hamed, Paolo Creminelli, Shinji Mukohyama, Matias Zaldarriaga, JCAP 0404 (2004) 001, arXiv:hep-th/0312100.
[Arkani-Hamed:2003juy]
[31-96]
Running of the Scalar Spectral Index from Inflationary Models, D. J.H. Chung, G. Shiu, M. Trodden, Phys. Rev. D68 (2003) 063501, arXiv:astro-ph/0305193.
[Chung:2003iu]
[31-97]
Extranatural Inflation, N. Arkani-Hamed, H.-C. Cheng, P. Creminelli, L. Randall, Phys. Rev. Lett. 90 (2003) 221302, arXiv:hep-th/0301218.
[Arkani-Hamed:2003xts]
[31-98]
Inflation without a beginning: a null boundary proposal, A. Aguirre, S. Gratton, Phys. Rev. D67 (2003) 083515, arXiv:gr-qc/0301042.
[Aguirre:2003ck]
[31-99]
Initial Conditions for Inflation, N. Kaloper, M. Kleban, A. Lawrence, S. Shenker, L. Susskind, JHEP 11 (2002) 037, arXiv:hep-th/0209231.
[Kaloper:2002cs]
[31-100]
Chaotic inflation and baryogenesis in supergravity, Hitoshi Murayama, Hiroshi Suzuki, T. Yanagida, Jun'ichi Yokoyama, Phys. Rev. D50 (1994) 2356-2360, arXiv:hep-ph/9311326.
[Murayama:1993xu]
[31-101]
From the Big Bang Theory to the Theory of a Stationary Universe, Andrei Linde, Dmitri Linde, Arthur Mezhlumian, Phys. Rev. D49 (1994) 1783, arXiv:gr-qc/9306035.
[Garcia-Bellido:1993fsr]

32 - Theory - Inflation - Talks

[32-1]
Particle physics models of inflation, D H Lyth, Lect. Notes Phys. 738 (2008) 81-118, arXiv:hep-th/0702128. 22nd IAP Colloquium, 'Inflation +25', Paris, June 2006.
[Lyth:2007qh]
[32-2]
Quantum noises and the large scale structure, Wo-Lung Lee, Mod. Phys. Lett. A22 (2007) 1945-1952, arXiv:astro-ph/0701886. CosPA 2006.
[Lee:2007pz]
[32-3]
The dark(er) side of inflation, Gabriela Barenboim, arXiv:hep-ph/0605111, 2006. XLIrst Rencontres de Moriond, Electroweak Interactions And Unified Theories, March 11 - 18, 2006.
[Barenboim:2006iu]
[32-4]
Models of inflation with primordial non-Gaussianities, Francis Bernardeau, Tristan Brunier, Jean-Philippe Uzan, AIP Conf. Proc. 861 (2006) 821-828, arXiv:astro-ph/0604200. Albert Einstein Century International Conference, UNESCO, Paris, France, 18-22 July 2005.
[Bernardeau:2006tf]
[32-5]
Inflation in the warm and cold regimes, Arjun Berera, Grav. Cosmol. 11 (2005) 51, arXiv:hep-ph/0604124. Cosmion04.
[Berera:2005um]
[32-6]
$U(1)_{B-L}$: Neutrino Physics and Inflation, V. N. Senoguz, Q. Shafi, arXiv:hep-ph/0512170, 2005. Planck 03, 11th International Workshop on Neutrino Telescopes, and PASCOS 2005.
[Senoguz:2005bc]

33 - Theory - Leptogenesis and Baryogenesis

[33-1]
A common framework for fermion mass hierarchy, leptogenesis and dark matter, Carolina Arbelaez, A. E. Carcamo Hernandez, Claudio Dib, Patricio Escalona Contreras, Vishnudath K. N., Alfonso Zerwekh, arXiv:2404.06577, 2024.
[Arbelaez:2024rbm]
[33-2]
On the Role of Cosmological Gravitational Particle Production in Baryogenesis, Marcos M. Flores, Yuber F. Perez-Gonzalez, arXiv:2404.06530, 2024.
[Flores:2024lzv]
[33-3]
A Scotogenic Model as a Prototype for Leptogenesis with One Single Gauge Singlet, Bjorn Garbrecht, Edward Wang, arXiv:2404.02207, 2024.
[Garbrecht:2024bbo]
[33-4]
Flavored leptogenesis from a sudden mass gain of right-handed neutrinos, Zhen-hua Zhao, Jing Zhang, Xiang-Yi Wu, arXiv:2403.18630, 2024.
[Zhao:2024uid]
[33-5]
Cogenesis of baryon and dark matter with PBH and QCD axion, Debasish Borah, Nayan Das, Suruj Jyoti Das, Rome Samanta, arXiv:2403.02401, 2024.
[Borah:2024qyo]
[33-6]
Neutrino Mixing and Resonant Leptogenesis in Inverse Seesaw and $\Delta(54)$ Flavor Symmetry, Hrishi Bora, Ng. K. Francis, Bikash Thapa, Shawan Kumar Jha, arXiv:2402.18906, 2024.
[Bora:2024dia]
[33-7]
Minimal seesaw and leptogenesis with the smallest modular finite group, Simone Marciano, Davide Meloni, Matteo Parriciatu, arXiv:2402.18547, 2024.
[Marciano:2024quu]
[33-8]
Affleck-Dine Dirac Leptogenesis, Neil D. Barrie, Chengcheng Han, arXiv:2402.15245, 2024.
[Barrie:2024yhj]
[33-9]
Leptogenesis consequences of TM1 mixing and $\mu$-$\tau$ reflection symmetry in minimal seesaw model with pseudo-Dirac right-handed neutrinos, Zhen-hua Zhao, Hong-Yu Shi, Yan Shao, arXiv:2402.14441, 2024.
[Zhao:2024zgx]
[33-10]
Affleck-Dine leptogenesis scenario for resonant production of sterile neutrino dark matter, Kentaro Kasai, Masahiro Kawasaki, Kai Murai, arXiv:2402.11902, 2024.
[Kasai:2024diy]
[33-11]
Right-handed neutrino as a common mother of baryon number asymmetry and dark matter, Daijiro Suematsu, arXiv:2402.10561, 2024.
[Suematsu:2024rtu]
[33-12]
Lepto-axiogenesis with light right-handed neutrinos, Patrick Barnes, Raymond T. Co, Keisuke Harigaya, Aaron Pierce, arXiv:2402.10263, 2024.
[Barnes:2024jap]
[33-13]
Post-inflationary Dark Matter production and Leptogenesis: Metric versus Palatini formalism, Anish Ghoshal, Zygmunt Lalak, Supratik Pal, Shiladitya Porey, arXiv:2401.17262, 2024.
[Ghoshal:2024ycp]
[33-14]
Towards a more complete description of hybrid leptogenesis, Rohan Pramanick, Tirtha Sankar Ray, Arunansu Sil, arXiv:2401.12189, 2024.
[Pramanick:2024gvu]
[33-15]
Triplet scalar flavored leptogenesis with spontaneous CP violation, Sreerupa Chongdar, Sasmita Mishra, JCAP 04 (2024) 054, arXiv:2401.05699.
[Chongdar:2024cty]
[33-16]
Parameter Space of Leptogenesis in Polynomial Inflation, Manuel Drees, Yong Xu, JCAP 04 (2024) 036, arXiv:2401.02485.
[Drees:2024hok]
[33-17]
Thermal leptogenesis in the presence of helical hypermagnetic fields, Sahar Safari, Mehran Dehpour, Saeed Abbaslu, Siamak Sadat Gousheh, arXiv:2401.01105, 2024.
[Safari:2024ojv]
[33-18]
Thermal leptogenesis in nonextensive cosmology, Mehran Dehpour, Eur.Phys.J.C 84 (2024) 340, arXiv:2401.00229.
[Dehpour:2023dfo]
[33-19]
Leptogenesis from a Phase Transition in a Dynamical Vacuum, Dipendu Bhandari, Arghyajit Datta, Arunansu Sil, arXiv:2312.13157, 2023.
[Bhandari:2023wit]
[33-20]
Testing Leptogenesis and Seesaw using Long-lived Particle Searches in the $B-L$ Model, Wei Liu, Frank F. Deppisch, arXiv:2312.11165, 2023.
[Liu:2023klu]
[33-21]
Baryogenesis and Leptogenesis from Supercooled Confinement, Maximilian Dichtl, Jacopo Nava, Silvia Pascoli, Filippo Sala, JHEP 02 (2024) 059, arXiv:2312.09282.
[Dichtl:2023xqd]
[33-22]
Leptogenesis in the minimal flipped $SU(5)$ unification, Renato Fonseca, Michal Malinsky, Vaclav Miratsky, Martin Zdrahal, arXiv:2312.08357, 2023.
[Fonseca:2023per]
[33-23]
Superradiant Leptogenesis, Anish Ghoshal, Yuber F. Perez-Gonzalez, Jessica Turner, JHEP 02 (2024) 113, arXiv:2312.06768.
[Ghoshal:2023fno]
[33-24]
Leptogenesis with a Coupling Knob, Peisi Huang, Tao Xu, arXiv:2312.06380, 2023.
[Huang:2023gse]
[33-25]
Resonant leptogenesis in minimal inverse seesaw ISS(2,2) model, Bikash Thapa, Ng. K. Francis, arXiv:2312.04399, 2023.
[Thapa:2023brk]
[33-26]
Type-II Seesaw Leptogenesis along the Ridge, Chengcheng Han, Zhanhong Lei, Jin Min Yang, arXiv:2312.01718, 2023.
[Han:2023kjg]
[33-27]
$M_{W_R}$ dependence of leptogenesis in Minimal Left-Right Symmetric Model with different strengths of Type-II seesaw mass, Ankita Kakoti, Mrinal Kumar Das, JHEP 03 (2024) 132, arXiv:2312.00822.
[Kakoti:2023xkn]
[33-28]
Second leptogenesis: Unraveling the baryon-lepton asymmetry discrepancy, YeolLin ChoeJo, Kazuki Enomoto, Yechan Kim, Hye-Sung Lee, JHEP 03 (2024) 003, arXiv:2311.16672.
[ChoeJo:2023cnx]
[33-29]
Impact of primordial black holes on heavy neutral leptons searches in the framework of resonant leptogenesis, Roberta Calabrese, Marco Chianese, Jacob Gunn, Gennaro Miele, Stefano Morisi, Ninetta Saviano, arXiv:2311.13276, 2023.
[Calabrese:2023bxz]
[33-30]
Leptogenesis and dark matter in minimal inverse seesaw using $A_4$ modular symmetry, Jotin Gogoi, Lavina Sarma, Mrinal Kumar Das, arXiv:2311.09883, 2023.
[Gogoi:2023jzl]
[33-31]
Leptogenesis driven by majoron, Eung Jin Chun, Tae Hyun Jung, arXiv:2311.09005, 2023.
[Chun:2023eqc]
[33-32]
Baryogenesis through Asymmetric Reheating in the Mirror Twin Higgs, Gonzalo Alonso-Alvarez, David Curtin, Andrija Rasovic, Zhihan Yuan, arXiv:2311.06341, 2023.
[Alonso-Alvarez:2023bat]
[33-33]
Softly Broken Hidden Symmetry in Every Renormalizable Field Theory, Ernest Ma, arXiv:2311.05859, 2023.
[Ma:2023yxq]
[33-34]
Towards a systematic study of non-thermal leptogenesis from inflaton decays, Xinyi Zhang, arXiv:2311.05824, 2023.
[Zhang:2023oyo]
[33-35]
Wash-in leptogenesis after the evaporation of primordial black holes, Kai Schmitz, Xun-Jie Xu, Phys.Lett.B 849 (2024) 138473, arXiv:2311.01089.
[Schmitz:2023pfy]
[33-36]
Clockwork Neutrinogenesis: Baryogenesis from theory space, Suvam Maharana, Tripurari Srivastava, arXiv:2310.09640, 2023.
[Maharana:2023wyq]
[33-37]
Leptogenesis in Left-Right symmetric model with double seesaw, Utkarsh Patel, Pratik Adarsh, Sudhanwa Patra, Purushottam Sahu, JHEP 03 (2024) 029, arXiv:2310.09337.
[Patel:2023voj]
[33-38]
Varying Entropy Degrees of Freedom Effects in Low-Scale Leptogenesis, Dimitrios Karamitros, Thomas McKelvey, Apostolos Pilaftsis, Phys.Rev.D 109 (2024) 055007, arXiv:2310.03703.
[Karamitros:2023tqr]
[33-39]
Non-thermal WIMPy Baryogenesis with Primordial Black Hole, Ki-Young Choi, Jongkuk Kim, Erdenebulgan Lkhagvadorj, JCAP 02 (2024) 020, arXiv:2309.16122.
[Choi:2023kxo]
[33-40]
Common origin of dark matter, baryon asymmetry and neutrino masses in the standard model with extended scalars, Sin Kyu Kang, Raymundo Ramos, arXiv:2309.08277, 2023.
[Kang:2023iur]
[33-41]
Early Universe hypercharge breaking and neutrino mass generation, Sergio Lopez-Zurdo, Alvaro Lozano-Onrubia, Luca Merlo, Jose Miguel No, arXiv:2308.09206, 2023.
[Lopez-Zurdo:2023xmr]
[33-42]
Fermion mass, Axion dark matter, and Leptogenesis in SO(10) GUT, Ajay Kaladharan, Shaikh Saad, Phys.Rev.D 109 (2024) 055010, arXiv:2308.04497.
[Kaladharan:2023zbr]
[33-43]
Leptogenesis in Parity Solutions to the Strong CP Problem and Standard Model Parameters, Juanca Carrasco-Martinez, David I. Dunsky, Lawrence J. Hall, Keisuke Harigaya, arXiv:2307.15731, 2023.
[Carrasco-Martinez:2023nit]
[33-44]
Rescuing leptogenesis parameter space of inverse seesaw, Ananya Mukherjee, Abhijit Kumar Saha, Phys.Lett.B 849 (2024) 138474, arXiv:2307.14405.
[Mukherjee:2023nyi]
[33-45]
Low-Scale Leptogenesis with Low-Energy Dirac CP-Violation, Alessandro Granelli, Silvia Pascoli, Serguey T. Petcov, Phys.Rev.D 108 (2023) L101302, arXiv:2307.07476.
[Granelli:2023tcj]
[33-46]
Inflationary gravitational waves, pulsar timing data and low-scale-leptogenesis, Satyabrata Datta, Phys.Rev.D 108 (2023), arXiv:2307.00646.
[Datta:2023vbs]
[33-47]
Baryogenesis via flavoured leptogenesis in a minimal type-II seesaw model, Sreerupa Chongdar, Sasmita Mishra, arXiv:2306.15229, 2023.
[Chongdar:2023gnu]
[33-48]
Dirac leptogenesis via scatterings, Julian Heeck, Jan Heisig, Anil Thapa, Phys.Rev.D 108 (2023) L031703, arXiv:2306.13707.
[Heeck:2023rrz]
[33-49]
Baryon asymmetry from dark matter decay in the vicinity of a phase transition, Debasish Borah, Arnab Dasgupta, Matthew Knauss, Indrajit Saha, Phys.Rev.D 108 (2023) L091701, arXiv:2306.05459.
[Borah:2023god]
[33-50]
Thermal Leptogenesis in the Minimal Gauged $U(1)_{L_\mu-L_\tau}$ Model, Alessandro Granelli, Koichi Hamaguchi, Natsumi Nagata, Maura E. Ramirez-Quezada, Juntaro Wada, JHEP 09 (2023) 079, arXiv:2305.18100.
[Granelli:2023egb]
[33-51]
Dirac-Majorana neutrino type conversion induced by an oscillating scalar dark matter, YeolLin ChoeJo, Yechan Kim, Hye-Sung Lee, Phys.Rev.D 108 (2023) 095028, arXiv:2305.16900.
[ChoeJo:2023ffp]
[33-52]
Predicting the baryon asymmetry with degenerate right-handed neutrinos, S. Sandner, P. Hernandez, J. Lopez-Pavon, N. Rius, JHEP 11 (2023) 153, arXiv:2305.14427.
[Sandner:2023tcg]
[33-53]
Reheating process in the $R^2$ inflationary model with the baryogenesis scenario, Hyun Jeong, Kohei Kamada, Alexei A. Starobinsky, Jun'ichi Yokoyama, JCAP 11 (2023) 023, arXiv:2305.14273.
[Jeong:2023zrv]
[33-54]
Limits on light primordial black holes from high-scale leptogenesis, Roberta Calabrese, Marco Chianese, Jacob Gunn, Gennaro Miele, Stefano Morisi, Ninetta Saviano, Phys.Rev.D 107 (2023) 123537, arXiv:2305.13369.
[Calabrese:2023key]
[33-55]
Baryon asymmetry from dark matter decay, Debasish Borah, Suruj Jyoti Das, Rishav Roshan, Phys.Rev.D 108 (2023) 075025, arXiv:2305.13367.
[Borah:2023qag]
[33-56]
Bubble-assisted Leptogenesis, Eung Jin Chun, Tomasz P. Dutka, Tae Hyun Jung, Xander Nagels, Miguel Vanvlasselaer, JHEP 09 (2023) 164, arXiv:2305.10759.
[Chun:2023ezg]
[33-57]
A short survey of matter-antimatter evolution in the primordial universe, Johann Rafelski, Jeremiah Birrell, Andrew Steinmetz, Cheng Tao Yang, Universe 9 (2023) 309, arXiv:2305.09055.
[Rafelski:2023emw]
[33-58]
Linking Resonant leptogenesis with dynamics of the inverse seesaw theory with $ A_{4} $ flavor symmetry, Maibam Ricky Devi, Kalpana Bora, arXiv:2304.13546, 2023.
[RickyDevi:2023fqd]
[33-59]
Novel aspects of Dirac leptogenesis, Julian Heeck, Jan Heisig, Anil Thapa, Phys.Rev.D 108 (2023) 035014, arXiv:2304.09893.
[Heeck:2023soj]
[33-60]
Leptogenesis and Dark Matter-Nucleon Scattering Cross Section in the SE6SSM, Roman Nevzorov, Universe 9 (2023) 3, arXiv:2304.04629.
[Nevzorov:2023scg]
[33-61]
Primordial Black Hole Leptogenesis in Supersymmetry, Suhail Khan, Rathin Adhikari, arXiv:2304.02604, 2023.
[Khan:2023myt]
[33-62]
Testing the type II seesaw leptogenesis at the LHC, Chengcheng Han, Zhanhong Lei, Weihao Liao, Chin.Phys.C 47 (2023) 093104, arXiv:2303.15709.
[Han:2023vme]
[33-63]
Leptogenesis and Neutrinoless Double Beta Decay in the Scotogenic Hybrid Textures of Neutrino Mass Matrix, Ankush, Rishu Verma, Sahil Kumar, B. C. Chauhan, JCAP 08 (2023) 062, arXiv:2303.11149.
[Ankush:2023pax]
[33-64]
Muon $g-2$ and non-thermal leptogenesis in $U(1)_{L_{\mu}-L_{\tau}}$ model, Shintaro Eijima, Masahiro Ibe, Kai Murai, JHEP 05 (2023) 010, arXiv:2303.09751.
[Eijima:2023yiw]
[33-65]
Supersymmetric Baryogenesis in a Hybrid Inflation Model, Yoshihiro Gunji, Koji Ishiwata, Takahiro Yoshida, JHEP 08 (2023) 201, arXiv:2303.05663.
[Gunji:2023xme]
[33-66]
Neutrino Mixing with non-zero $\theta _{13}$ and Unflavored Leptogenesis from a Dihedral Flavor Symmetry, M. Miskaoui, arXiv:2303.02769, 2023.
[Miskaoui:2023tcq]
[33-67]
Gauged $U(1)_X$ breaking as origin of neutrino masses, dark matter and leptogenesis at TeV scale, Toshinori Matsui, Takaaki Nomura, Kei Yagyu, Phys.Rev.D 108 (2023) L011301, arXiv:2303.00417.
[Matsui:2023bwa]
[33-68]
Leptogenesis and muon $\boldsymbol{(g-2)}$ in a scotogenic model, A. Alvarez, A. Banik, R. Cepedello, B. Herrmann, W. Porod, M. Sarazin, M. Schnelke, JHEP 06 (2023) 163, arXiv:2301.08485.
[Alvarez:2023dzz]
[33-69]
ULYSSES, Universal LeptogeneSiS Equation Solver: version 2, Alessandro Granelli, Christopher Leslie, Yuber F. Perez-Gonzalez, Holger Schulz, Brian Shuve, Jessica Turner, Rosie Walker, Comput.Phys.Commun. 291 (2023) 108834, arXiv:2301.05722.
[Granelli:2023vcm]
[33-70]
Impact of high-scale Seesaw and Leptogenesis on inflationary tensor perturbations as detectable gravitational waves, Maximilian Berbig, Anish Ghoshal, JHEP 05 (2023) 172, arXiv:2301.05672.
[Berbig:2023yyy]
[33-71]
Electroweak baryogenesis in the three-loop neutrino mass model with dark matter, Mayumi Aoki, Kazuki Enomoto, Shinya Kanemura, Phys.Rev.D 107 (2023) 115022, arXiv:2212.14786.
[Aoki:2022bkg]
[33-72]
Leptogenesis via Inflaton Mass Terms in Non-Minimally Coupled Inflation, Kit Lloyd-Stubbs, John McDonald, Phys.Rev.D 107 (2023) 103511, arXiv:2212.09454.
[Lloyd-Stubbs:2022wmh]
[33-73]
On different approaches to freeze-in and freeze-out leptogenesis with quasi-degenerate neutrinos, J. Racker, Eur.Phys.J.C 83 (2023) 170, arXiv:2212.05349.
[Racker:2022ibr]
[33-74]
Minimal Leptogenesis in Brane-inspired Cosmology, Alessandro Di Marco, Amit Dutta Banik, Anish Ghoshal, Gianfranco Pradisi, Phys.Rev.D 107 (2023) 103509, arXiv:2211.11361.
[DiMarco:2022doy]
[33-75]
Bremsstrahlung High-frequency Gravitational Wave Signatures of High-scale Non-thermal Leptogenesis, Anish Ghoshal, Rome Samanta, Graham White, Phys.Rev.D 108 (2023) 035019, arXiv:2211.10433.
[Ghoshal:2022kqp]
[33-76]
Low-scale leptogenesis and dark matter in a three-loop radiative seesaw model, Osamu Seto, Tetsuo Shindou, Takanao Tsuyuki, Phys.Rev.D 108 (2023) 055002, arXiv:2211.10059.
[Seto:2022tow]
[33-77]
PeV-scale leptogenesis, gravity waves and black holes from a SUSY-breaking phase transition, James M. Cline, Benoit Laurent, Stuart Raby, Jean-Samuel Roux, Phys.Rev.D 107 (2023) 095011, arXiv:2211.00422.
[Cline:2022xhx]
[33-78]
Scalar-singlet assisted leptogenesis with CP violation from the vacuum, D. M. Barreiros, H. B. Camara, R. G. Felipe, F. R. Joaquim, JHEP 01 (2023) 010, arXiv:2211.00042.
[Barreiros:2022fpi]
[33-79]
CMB footprints of high scale non-thermal leptogenesis, Anish Ghoshal, Dibyendu Nanda, Abhijit Kumar Saha, Phys.Lett.B 849 (2024) 138484, arXiv:2210.14176.
[Ghoshal:2022fud]
[33-80]
Wash-in leptogenesis after axion inflation, Valerie Domcke, Kohei Kamada, Kyohei Mukaida, Kai Schmitz, Masaki Yamada, JHEP 01 (2023) 053, arXiv:2210.06412.
[Domcke:2022kfs]
[33-81]
Gravity as a Portal to Reheating, Leptogenesis and Dark Matter, Basabendu Barman, Simon Clery, Raymond T. Co, Yann Mambrini, Keith A. Olive, JHEP 12 (2022) 072, arXiv:2210.05716.
[Barman:2022qgt]
[33-82]
Lepton Flavour Violation Tests of Type II Seesaw Leptogenesis, N. D. Barrie, S. T. Petcov, JHEP 01 (2023) 001, arXiv:2210.02110.
[Barrie:2022ake]
[33-83]
Leptogenesis from composite singlets, Nobuki Yoshimatsu, arXiv:2209.08386, 2022.
[Yoshimatsu:2022yuw]
[33-84]
Connecting low-energy CP violation, resonant leptogenesis and neutrinoless double beta decay in a radiative seesaw model, Bikash Thapa, Ng. K. Francis, Nucl.Phys.B 986 (2023) 116054, arXiv:2209.06263.
[Thapa:2022fhv]
[33-85]
A Predictive and Testable Unified Theory of Fermion Masses, Mixing and Leptogenesis, Bowen Fu, Stephen F. King, Luca Marsili, Silvia Pascoli, Jessica Turner, Ye-Ling Zhou, JHEP 11 (2022) 072, arXiv:2209.00021.
[Fu:2022lrn]
[33-86]
Interplay between dark matter and leptogenesis in a common framework, XinXin Qi, Hao Sun, JHEP 09 (2023) 118, arXiv:2208.13345.
[Qi:2022fzs]
[33-87]
Low-scale Fermion Triplet Leptogenesis, Drona Vatsyayan, Srubabati Goswami, Phys.Rev.D 107 (2023) 035014, arXiv:2208.12011.
[Vatsyayan:2022rth]
[33-88]
Observable r, Gravitino Dark Matter, and Non-thermal Leptogenesis in No-Scale Supergravity, Waqas Ahmed, Muhammad Moosa, Shoaib Munir, Umer Zubair, JHEP 05 (2023) 011, arXiv:2208.11888.
[Ahmed:2022wed]
[33-89]
Vacuum stability of the type II seesaw leptogenesis from inflation, Chengcheng Han, Sihui Huang, Zhanhong Lei, Binglong Zhang, Phys.Rev.D 107 (2023) 015021, arXiv:2208.11336.
[Han:2022ssz]
[33-90]
WIMPy Leptogenesis in Non-Standard Cosmologies, Devabrat Mahanta, Debasish Borah, JCAP 03 (2023) 049, arXiv:2208.11295.
[Mahanta:2022gsi]
[33-91]
Gravitational Waves-Tomography of Low-Scale-Leptogenesis, Satyabrata Datta, Rome Samanta, JHEP 11 (2022) 159, arXiv:2208.09949.
[Datta:2022tab]
[33-92]
Sneutrinos as two inflatons and curvaton and leptogenesis, Tomo Takahashi, Toshifumi Yamada, Shuichiro Yokoyama, JCAP 11 (2022) 021, arXiv:2208.08296.
[Takahashi:2022bqc]
[33-93]
Lepto-axiogenesis and the scale of supersymmetry, Patrick Barnes, Raymond T. Co, Keisuke Harigaya, Aaron Pierce, JHEP 05 (2023) 114, arXiv:2208.07878.
[Barnes:2022ren]
[33-94]
Leptogenesis and Dark Matter Through Relativistic Bubble Walls with Observable Gravitational Waves, Debasish Borah, Arnab Dasgupta, Indrajit Saha, JHEP 11 (2022) 136, arXiv:2207.14226.
[Borah:2022cdx]
[33-95]
Affleck-Dine Leptogenesis with One Loop Neutrino Mass and strong CP, Rabindra N. Mohapatra, Nobuchika Okada, Phys.Rev.D 106 (2022) 115014, arXiv:2207.10619.
[Mohapatra:2022tgb]
[33-96]
Bounds on right-handed neutrino parameters from observable leptogenesis, Pilar Hernandez, Jacobo Lopez-Pavon, Nuria Rius, Stefan Sandner, JHEP 12 (2022) 012, arXiv:2207.01651.
[Hernandez:2022ivz]
[33-97]
Origin of Neutrino Mass, Dark Matter, Leptogenesis and Inflation in Seesaw Model with Triplets, Pritam Das, Najimuddin Khan, Phys.Rev.D 107 (2023) 075008, arXiv:2207.01238.
[Das:2022qyc]
[33-98]
Large Neutrino Asymmetry from TeV Scale Leptogenesis in the Light of Helium Anomaly, Debasish Borah, Arnab Dasgupta, Phys.Rev.D 108 (2023) 035015, arXiv:2206.14722.
[Borah:2022uos]
[33-99]
Leptogenesis in $SO(10)$ Models with $A_4$ Modular Symmetry, Gui-Jun Ding, Stephen F. King, Jun-Nan Lu, Bu-Yao Qu, JHEP 10 (2022) 071, arXiv:2206.14675.
[Ding:2022bzs]
[33-100]
Effects of Reheating on Charged Lepton Yukawa Equilibration and Leptogenesis, Arghyajit Datta, Rishav Roshan, Arunansu Sil, Phys.Rev.Lett. 132 (2024) 061802, arXiv:2206.10650.
[Datta:2022jic]
[33-101]
Tri-Resonant Leptogenesis in a Seesaw Extension of the Standard Model, P. Candia da Silva, D. Karamitros, T. McKelvey, A. Pilaftsis, JHEP 11 (2022) 065, arXiv:2206.08352.
[daSilva:2022mrx]
[33-102]
Searches for heavy neutrinos at multi-TeV muon collider: a resonant leptogenesis perspective, Indrani Chakraborty, Himadri Roy, Tripurari Srivastava, Eur.Phys.J.C 83 (2023) 280, arXiv:2206.07037.
[Chakraborty:2022pcc]
[33-103]
Gravitational Wave Pathway to Testable Leptogenesis, Arnab Dasgupta, P.S. Bhupal Dev, Anish Ghoshal, Anupam Mazumdar, Phys.Rev.D 106 (2022) 075027, arXiv:2206.07032.
[Dasgupta:2022isg]
[33-104]
Anomalies, CPT and Leptogenesis, Sarben Sarkar, PoS DISCRETE2020-2021 (2022) 039, arXiv:2206.05203.
[Sarkar:2022odh]
[33-105]
Leptogenesis triggered by a first-order phase transition, Peisi Huang, Ke-Pan Xie, JHEP 09 (2022) 052, arXiv:2206.04691.
[Huang:2022vkf]
[33-106]
Tests of Low-Scale Leptogenesis in Charged Lepton Flavour Violation Experiments, A. Granelli, J. Klaric, S. T. Petcov, Phys.Lett.B 837 (2023) 137643, arXiv:2206.04342.
[Granelli:2022eru]
[33-107]
Natural mass hierarchy among three heavy Majorana neutrinos for resonant leptogenesis under modular $A_4$ symmetry, Dong Woo Kang, Jongkuk Kim, Takaaki Nomura, Hiroshi Okada, JHEP 07 (2022) 050, arXiv:2205.08269.
[Kang:2022psa]
[33-108]
Dirac dark matter, neutrino masses, and dark baryogenesis, Diego Restrepo, Andres Rivera, Walter Tangarife, Phys.Rev.D 106 (2022) 055021, arXiv:2205.05762.
[Restrepo:2022cpq]
[33-109]
Probing High Scale Dirac Leptogenesis via Gravitational Waves from Domain Walls, Basabendu Barman, Debasish Borah, Arnab Dasgupta, Anish Ghoshal, Phys.Rev.D 106 (2022) 015007, arXiv:2205.03422.
[Barman:2022yos]
[33-110]
Neutrino Mixing and Leptogenesis in a $L_e-L_\mu-L_\tau$ model, Giorgio Arcadi, Simone Marciano, Davide Meloni, Eur.Phys.J.C 83 (2023) 137, arXiv:2205.02565.
[Arcadi:2022ojj]
[33-111]
Inflationary Gravitational Leptogenesis, Raymond T. Co, Yann Mambrini, Keith A. Olive, Phys.Rev.D 106 (2022) 075006, arXiv:2205.01689.
[Co:2022bgh]
[33-112]
Comment on 'Flavored leptogenesis and neutrino mass with $A_4$ symmetry' [JHEP12(2021)051, arXiv:2106.06773], V. V. Vien, arXiv:2204.13935, 2022.
[2204.13935]
[33-113]
Flavor symmetric origin of texture zeros in minimal inverse seesaw and impacts on leptogenesis, Nayana Gautam, Mrinal Kumar Das, arXiv:2204.11450, 2022.
[Gautam:2022jrg]
[33-114]
Cogenesis of Baryon Asymmetry and Gravitational Dark Matter from PBH, Basabendu Barman, Debasish Borah, Suruj Jyoti Das, Rishav Roshan, JCAP 08 (2022) 068, arXiv:2204.10339.
[Barman:2022gjo]
[33-115]
Retrieving Inverse Seesaw parameter space for Dirac Phase Leptogenesis, Ananya Mukherjee, Nimmala Narendra, arXiv:2204.08820, 2022.
[Mukherjee:2022fjm]
[33-116]
Type II Seesaw Leptogenesis, Neil D. Barrie, Chengcheng Han, Hitoshi Murayama, JHEP 05 (2022) 160, arXiv:2204.08202.
[Barrie:2022cub]
[33-117]
Archimedean Lever Leptogenesis, Djuna Croon, Hooman Davoudiasl, Rachel Houtz, Phys.Rev.D 106 (2022) 035006, arXiv:2204.07584.
[Croon:2022gwq]
[33-118]
Leptogenesis and light scalar dark matter in a $L_\mu-L_\tau$ model, XinXin Qi, Wei Liu, Hao Sun, arXiv:2204.01086, 2022.
[Qi:2022kgs]
[33-119]
Rescuing High-Scale Leptogenesis using Primordial Black Holes, Nicolas Bernal, Chee Sheng Fong, Yuber F. Perez-Gonzalez, Jessica Turner, Phys.Rev.D 106 (2022) 035019, arXiv:2203.08823.
[Bernal:2022pue]
[33-120]
Low-scale leptogenesis with flavour and CP symmetries, Marco Drewes, Yannis Georis, Claudia Hagedorn, Juraj Klaric, JHEP 12 (2022) 044, arXiv:2203.08538.
[Drewes:2022kap]
[33-121]
Sterile neutrino rates for general $M$, $T$, $\mu$, $k$: review of a theoretical framework, M. Laine, Annals Phys. 444 (2022) 169022, arXiv:2203.05772.
[Laine:2022pgk]
[33-122]
Constraining the Cosmic Strings Gravitational Wave Spectra in No Scale Inflation with Viable Gravitino Dark matter and Non Thermal Leptogenesis, Waqas Ahmed, M. Junaid, Salah Nasri, Umer Zubair, Phys.Rev.D 105 (2022) 115008, arXiv:2202.06216.
[Ahmed:2022rwy]
[33-123]
Asymmetric Self-interacting Dark Matter via Dirac Leptogenesis, Manoranjan Dutta, Nimmala Narendra, Narendra Sahu, Sujay Shil, Phys.Rev.D 106 (2022) 095017, arXiv:2202.04704.
[Dutta:2022knf]
[33-124]
Leptogenesis in Majoron Models without Domain Walls, Tim Brune, Phys.Rev.D 107 (2023), arXiv:2201.12239.
[Brune:2022vzd]
[33-125]
Freeze-in Leptogenesis via Dark-Matter Oscillations, Justin Berman, Brian Shuve, David Tucker-Smith, Phys.Rev.D 105 (2022) 095027, arXiv:2201.11502.
[Berman:2022oht]
[33-126]
Linear seesaw in $A^\prime_5$ modular symmetry with Leptogenesis, Mitesh Kumar Behera, Rukmani Mohanta, Front.in Phys. 10 (2022) 854595, arXiv:2201.10429.
[Behera:2022wco]
[33-127]
Leptogenesis from a feebly interacting dark matter sector, Suresh Chand, Mariana Frank, Poulose Poulose, Phys.Rev.D 106 (2022) 043030, arXiv:2201.08537.
[Chand:2022vrf]
[33-128]
Neutrino Mass from Affleck-Dine Leptogenesis and WIMP Dark Matter, Rabindra N. Mohapatra, Nobuchika Okada, JHEP 03 (2022) 092, arXiv:2201.06151.
[Mohapatra:2022ngo]
[33-129]
Unified Origin of Dark Matter Self-Interactions and Low Scale Leptogenesis, Debasish Borah, Arnab Dasgupta, Satyabrata Mahapatra, Narendra Sahu, arXiv:2112.14786, 2021.
[2112.14786]
[33-130]
Scalar Triplet Leptogenesis with a CP violating phase, Sreerupa Chongdar, Sasmita Mishra, Nucl.Phys.B 995 (2023) 116346, arXiv:2112.11838.
[Chongdar:2021tgm]
[33-131]
Probing Leptogenesis with the Cosmological Collider, Yanou Cui, Zhong-Zhi Xianyu, Phys.Rev.Lett. 129 (2022) 111301, arXiv:2112.10793.
[Cui:2021iie]
[33-132]
Resonant Leptogenesis, Collider Signals and Neutrinoless Double Beta Decay from Flavor and CP Symmetries, Garv Chauhan, P. S. Bhupal Dev, Nucl.Phys.B 986 (2023) 116058, arXiv:2112.09710.
[Chauhan:2021xus]
[33-133]
$TeV$-Scale Resonant Leptogenesis $A_4$ with a scaling texture, H.B. Benaoum, arXiv:2112.01170, 2021.
[Benaoum:2021mwc]
[33-134]
Leptogenesis and eV scale sterile neutrino, Srubabati Goswami, Vishnudath K. N., Ananya Mukherjee, Nimmala Narendra, Phys.Rev.D 105 (2022) 095040, arXiv:2111.14719.
[Goswami:2021eqy]
[33-135]
Dirac Radiative Neutrino Mass with Modular Symmetry and Leptogenesis, Arnab Dasgupta, Takaaki Nomura, Hiroshi Okada, Oleg Popov, Morimitsu Tanimoto, arXiv:2111.06898, 2021.
[Dasgupta:2021ggp]
[33-136]
Mass-derivative relations for leptogenesis, Tomas Blazek, Peter Matak, Eur.Phys.J.C 82 (2022) 214, arXiv:2111.03419.
[Blazek:2021gmw]
[33-137]
Robustness of ARS Leptogenesis in Scalar Extensions, Oliver Fischer, Manfred Lindner, Susan van der Woude, JHEP 05 (2022) 149, arXiv:2110.14499.
[Fischer:2021nha]
[33-138]
Scalar Triplet Flavor Leptogenesis with Dark Matter, Arghyajit Datta, Rishav Roshan, Arunansu Sil, Phys.Rev.D 105 (2022) 095032, arXiv:2110.03914.
[Datta:2021gyi]
[33-139]
Testing leptogenesis at the LHC and future muon colliders: a $Z'$ scenario, Wei Liu, Ke-Pan Xie, Zihan Yi, Phys.Rev.D 105 (2022) 095034, arXiv:2109.15087.
[Liu:2021akf]
[33-140]
Hidden-Sector Neutrinos and Freeze-In Leptogenesis, Ina Flood, Rafael Porto, Jane Schlesinger, Brian Shuve, Maxwell Thum, Phys.Rev.D 105 (2022) 095025, arXiv:2109.10908.
[Flood:2021qhq]
[33-141]
Leptogenesis and fermion mass fit in a renormalizable $SO(10)$ model, V. Suryanarayana Mummidi, Ketan M. Patel, JHEP 12 (2021) 042, arXiv:2109.04050.
[Mummidi:2021anm]
[33-142]
CP violation in mixing and oscillations for leptogenesis II: the highly degenerate case, J. Racker, JHEP 11 (2021) 027, arXiv:2109.00040.
[Racker:2021kme]
[33-143]
Aspects of High Scale Leptogenesis with Low-Energy Leptonic CP Violation, A. Granelli, K. Moffat, S. T. Petcov, JHEP 11 (2021) 149, arXiv:2107.02079.
[Granelli:2021fyc]
[33-144]
Resonant leptogenesis and TM$_1$ mixing in minimal Type-I seesaw model with S$_4$ symmetry, Bikash Thapa, Ng. K. Francis, Eur.Phys.J.C 81 (2021) 1061, arXiv:2107.02074.
[Thapa:2021ehj]
[33-145]
Leptogenesis in Type Ib seesaw models, Bowen Fu, Stephen F. King, Phys.Rev.D 105 (2022) 095001, arXiv:2107.01486.
[Fu:2021fyk]
[33-146]
Mapping the viable parameter space for testable leptogenesis, Marco Drewes, Yannis Georis, Juraj Klaric, Phys.Rev.Lett. 128 (2022) 051801, arXiv:2106.16226.
[Drewes:2021nqr]
[33-147]
TeV Scale Resonant Leptogenesis with $L_{\mu}-L_{\tau}$ Gauge Symmetry in the Light of Muon $(g-2)$, Debasish Borah, Arnab Dasgupta, Devabrat Mahanta, Phys.Rev.D 104 (2021) 075006, arXiv:2106.14410.
[Borah:2021mri]
[33-148]
A Model of Gravitational Leptogenesis, Graham M. Shore, arXiv:2106.09562, 2021.
[Shore:2021qqr]
[33-149]
Resonant leptogenesis in (2,2) inverse see-saw realisation, Indrani Chakraborty, Himadri Roy, Tripurari Srivastava, Nucl.Phys.B 979 (2022) 115780, arXiv:2106.08232.
[Chakraborty:2021azg]
[33-150]
Leptogenesis, Fermion Masses and Mixings in a SUSY $SU(5)$ GUT with $D_{4}$ Flavor Symmetry, M. Miskaoui, M. A. Loualidi, JHEP 11 (2021) 147, arXiv:2106.07332.
[Miskaoui:2021nbm]
[33-151]
Flavored Leptogenesis and Neutrino Mass with $A_4$ Symmetry, Arghyajit Datta, Biswajit Karmakar, Arunansu Sil, JHEP 12 (2021) 051, arXiv:2106.06773.
[Datta:2021zzf]
[33-152]
FIMP dark matter and low scale leptogenesis in an extended neutrino two Higgs doublet model($\nu$2HDM), Lavina Sarma, Bichitra Bijay Boruah, Mrinal Kumar Das, Eur.Phys.J.C 82 (2022) 488, arXiv:2106.04124.
[Sarma:2021icl]
[33-153]
Affleck-Dine Leptogenesis from Higgs Inflation, Neil D. Barrie, Chengcheng Han, Hitoshi Murayama, Phys.Rev.Lett. 128 (2022) 141801, arXiv:2106.03381.
[Barrie:2021mwi]
[33-154]
Leptogenesis in an anomaly-free $\mathrm{U}(1)$ extension with higher-dimensional operators, Kuldeep Deka, Tanumoy Mandal, Ananya Mukherjee, Soumya Sadhukhan, Nucl.Phys.B 991 (2023) 116213, arXiv:2105.15088.
[Deka:2021koh]
[33-155]
Realizing flavored leptogenesis: a reappraisal through special kinds of orthogonal matrices, Ananya Mukherjee, Nimmala Narendra, J.Phys.G 50 (2023) 075004, arXiv:2105.14593.
[Mukherjee:2021hed]
[33-156]
Gravitational Leptogenesis in Bounce Cosmology, Neil D. Barrie, JCAP 06 (2021) 049, arXiv:2105.06624.
[Barrie:2021orn]
[33-157]
Baryogenesis from Hierarchical Dirac Neutrinos, Shao-Ping Li, Xin-Qiang Li, Xin-Shuai Yan, Ya-Dong Yang, Phys.Rev.D 104 (2021) 115014, arXiv:2105.01317.
[Li:2021tlv]
[33-158]
Low scale leptogenesis and dark matter in the presence of primordial black holes, Suruj Jyoti Das, Devabrat Mahanta, Debasish Borah, JCAP 11 (2021) 019, arXiv:2104.14496.
[JyotiDas:2021shi]
[33-159]
Gravitino Dark matter, Non Thermal Leptogenesis and Low reheating temperature in No-scale Higgs Inflation, Waqas Ahmed, Athanasios Karozas, George K. Leontaris, Phys.Rev.D 104 (2021) 055025, arXiv:2104.04328.
[Ahmed:2021dvo]
[33-160]
Flavour mixing transport theory and resonant leptogenesis, Henri Jukkala, Kimmo Kainulainen, Pyry M. Rahkila, JHEP 09 (2021) 119, arXiv:2104.03998.
[Jukkala:2021sku]
[33-161]
Fermion masses and mixings, dark matter, leptogenesis and $g-2$ muon anomaly in an extended 2HDM with inverse seesaw, A. E. Carcamo Hernandez, Catalina Espinoza, Juan Carlos Gomez-Izquierdo, Myriam Mondragon, Eur.Phys.J.Plus 137 (2022) 1224, arXiv:2104.02730.
[Hernandez:2021kju]
[33-162]
FIMP Dark Matter from Leptogenesis in Fast Expanding Universe, Zhi-Fang Chang, Zhao-Xuan Chen, Jia-Shu Xu, Zhi-Long Han, JCAP 2106 (2021) 006, arXiv:2104.02364.
[Chang:2021ose]
[33-163]
Reconciling resonant leptogenesis and baryogenesis via neutrino oscillations, Juraj Klaric, Mikhail Shaposhnikov, Inar Timiryasov, Phys.Rev.D 104 (2021) 055010, arXiv:2103.16545.
[Klaric:2021cpi]
[33-164]
Baryogenesis via Leptogenesis: Spontaneous B and L Violation, Pavel Fileviez Perez, Clara Murgui, Alexis D. Plascencia, Phys.Rev.D 104 (2021) 055007, arXiv:2103.13397.
[FileviezPerez:2021hbc]
[33-165]
Broken Scaling Neutrino Mass Matrix and Leptogenesis based on A$_4$ Modular invariance, Monal Kashav, Surender Verma, JHEP 09 (2021) 100, arXiv:2103.07207.
[Kashav:2021zir]
[33-166]
Dark Matter and Leptogenesis from Gravitational Production, Nicolas Bernal, Chee Sheng Fong, JCAP 2106 (2021) 028, arXiv:2103.06896.
[Bernal:2021kaj]
[33-167]
Lepton flavor violation and leptogenesis in discrete flavor symmetric scotogenic model, Bichitra Bijay Boruah, Lavina Sarma, Mrinal Kumar Das, arXiv:2103.05295, 2021.
[Boruah:2021qlf]
[33-168]
The Hubble Tension as a Hint of Leptogenesis and Neutrino Mass Generation, Miguel Escudero, Samuel J. Witte, Eur.Phys.J. C81 (2021) 515, arXiv:2103.03249.
[Escudero:2021rfi]
[33-169]
Non-thermal leptogenesis and UV freeze-in of dark matter: impact of inflationary reheating, Basabendu Barman, Debasish Borah, Rishav Roshan, Phys.Rev.D 104 (2021) 035022, arXiv:2103.01675.
[Barman:2021tgt]
[33-170]
Leptogenesis in an extended seesaw model with $U(1)_{B-L}$ symmetry, Ujjal Kumar Dey, Tapoja Jha, Ananya Mukherjee, Nirakar Sahoo, J.Phys.G 50 (2023) 015004, arXiv:2102.04494.
[Dey:2021ecr]
[33-171]
Low scale Dirac leptogenesis and dark matter with observable $\Delta N_{\rm eff}$, Devabrat Mahanta, Debasish Borah, Eur.Phys.J.C 82 (2022) 495, arXiv:2101.02092.
[Mahanta:2021plx]
[33-172]
CP violation in mixing and oscillations for leptogenesis with quasi-degenerate neutrinos, J. Racker, JHEP 2104 (2021) 290, arXiv:2012.05354.
[Racker:2020avp]
[33-173]
Common origin of radiative neutrino mass, dark matter and leptogenesis in scotogenic Georgi-Machacek model, Shao-Long Chen, Amit Dutta Banik, Ze-Kun Liu, Nucl.Phys. B966 (2021) 115394, arXiv:2011.13551.
[Chen:2020ark]
[33-174]
Wash-In Leptogenesis, Valerie Domcke, Kohei Kamada, Kyohei Mukaida, Kai Schmitz, Masaki Yamada, Phys.Rev.Lett. 126 (2021) 201802, arXiv:2011.09347.
[Domcke:2020quw]
[33-175]
Matter and dark matter asymmetry from a composite Higgs model, M. Ahmadvand, Eur.Phys.J. C81 (2021) 358, arXiv:2010.10121.
[Ahmadvand:2020izy]
[33-176]
Low scale leptogenesis in a model with promising $CP$ structure, Daijiro Suematsu, Eur.Phys.J. C81 (2021) 311, arXiv:2010.06184.
[Suematsu:2020ixc]
[33-177]
Assessing the tension between a black hole dominated early universe and leptogenesis, Yuber F. Perez-Gonzalez, Jessica Turner, Phys.Rev.D 104 (2021) 103021, arXiv:2010.03565.
[Perez-Gonzalez:2020vnz]
[33-178]
Gravitational wave complementarity and impact of NANOGrav data on gravitational leptogenesis, Rome Samanta, Satyabrata Datta, JHEP 2105 (2021) 211, arXiv:2009.13452.
[Samanta:2020cdk]
[33-179]
MeV-scale Seesaw and Leptogenesis, Valerie Domcke, Marco Drewes, Marco Hufnagel, Michele Lucente, JHEP 2101 (2021) 200, arXiv:2009.11678.
[Domcke:2020ety]
[33-180]
Flavoured Resonant Leptogenesis at Sub-TeV Scales, A. Granelli, K. Moffat, S. T. Petcov, Nucl.Phys.B 973 (2021) 115597, arXiv:2009.03166.
[Granelli:2020ysj]
[33-181]
Uniting low-scale leptogeneses, Juraj Klaric, Mikhail Shaposhnikov, Inar Timiryasov, arXiv:2008.13771, 2020.
[Klaric:2020lov]
[33-182]
Exploring $0\nu\beta\beta$ and Leptogenesis in the Alternative Left-Right Model, Mariana Frank, Chayan Majumdar, P. Poulose, Supriya Senapati, Urjit A. Yajnik, Phys.Rev. D102 (2020) 075020, arXiv:2008.12270.
[Frank:2020odd]
[33-183]
Dark Sector Assisted Low Scale Leptogenesis from Three Body Decay without Loops, Debasish Borah, Arnab Dasgupta, Devabrat Mahanta, Phys.Rev.D 105 (2022) 015015, arXiv:2008.10627.
[Borah:2020ivi]
[33-184]
Leptogenesis from low energy CP violation in minimal left-right symmetric model, Xinyi Zhang, Jiang-Hao Yu, Bo-Qiang Ma, Nucl.Phys.B 976 (2022) 115670, arXiv:2008.06433.
[Zhang:2020lir]
[33-185]
Leptogenesis from the Asymmetric Texture, Moinul Hossain Rahat, Phys.Rev. D103 (2021) 3, arXiv:2008.04204.
[Rahat:2020mio]
[33-186]
Neutrino mixing and Leptogenesis with modular $S_3$ symmetry in the framework of type III seesaw, Subhasmita Mishra, arXiv:2008.02095, 2020.
[Mishra:2020gxg]
[33-187]
$1 \leftrightarrow 2$ Processes of a Sterile Neutrino Around Electroweak Scale in the Thermal Plasma, Xue-Min Jiang, Yi-Lei Tang, Zhao-Huan Yu, Hong-Hao Zhang, Phys.Rev. D103 (2021) 095003, arXiv:2008.00642.
[Jiang:2020kbt]
[33-188]
A dark clue to seesaw and leptogenesis in singlet doublet scenario with (non)standard cosmology, Partha Konar, Ananya Mukherjee, Abhijit Kumar Saha, Sudipta Show, JHEP 2103 (2021) 044, arXiv:2007.15608.
[Konar:2020vuu]
[33-189]
Sterile Neutrino Dark Matter and Leptogenesis in Left-Right Higgs Parity, David Dunsky, Lawrence J. Hall, Keisuke Harigaya, JHEP 2101 (2021) 125, arXiv:2007.12711.
[Dunsky:2020dhn]
[33-190]
Flavour effects in gravitational leptogenesis, Rome Samanta, Satyabrata Datta, JHEP 2012 (2020) 067, arXiv:2007.11725.
[Samanta:2020tcl]
[33-191]
$\nu$ Electroweak Baryogenesis, E. Fernandez-Martinez, J. Lopez-Pavon, T. Ota, S. Rosauro-Alcaraz, JHEP 2010 (2020) 063, arXiv:2007.11008.
[Fernandez-Martinez:2020szk]
[33-192]
Testing quasi-Dirac leptogenesis through neutrino oscillations, C. S. Fong, T. Gregoire, A. Tonero, Phys.Lett. B816 (2021) 136175, arXiv:2007.09158.
[Fong:2020smz]
[33-193]
ULYSSES: Universal LeptogeneSiS Equation Solver, Alessandro Granelli, Kristian Moffat, Yuber Perez-Gonzalez, Holger Schulz, Jessica Turner, Comput.Phys.Commun. 262 (2021) 107813, arXiv:2007.09150.
[Granelli:2020pim]
[33-194]
Renormalization in gravitational leptogenesis with pseudo-scalar-tensor coupling, Kohei Kamada, Jun'ya Kume, Yusuke Yamada, JCAP 2010 (2020) 030, arXiv:2007.08029.
[Kamada:2020jaf]
[33-195]
Implications of $A_4$ modular symmetry on Neutrino mass, Mixing and Leptogenesis with Linear Seesaw, Mitesh Kumar Behera, Subhasmita Mishra, Shivaramakrishna Singirala, Rukmani Mohanta, Phys.Dark Univ. 36 (2022) 101027, arXiv:2007.00545.
[Behera:2020sfe]
[33-196]
Lepto-Axiogenesis, Raymond T. Co, Nicolas Fernandez, Akshay Ghalsasi, Lawrence J. Hall, Keisuke Harigaya, JHEP 2103 (2021) 017, arXiv:2006.05687.
[Co:2020jtv]
[33-197]
Leptogenesis and low-energy CP violation in a type-II-dominated left-right seesaw model, Thomas Rink, Werner Rodejohann, Kai Schmitz, Nucl.Phys.B 972 (2021) 115552, arXiv:2006.03021.
[Rink:2020uvt]
[33-198]
Purely Triplet Seesaw and Leptogenesis within Cosmological Bound, Dark Matter and Vacuum Stability, M. K. Parida, Swaraj Kumar Nanda, Riyanka Samantaray, Nucl.Phys. B960 (2020) 115203, arXiv:2005.12077.
[Parida:2020sng]
[33-199]
Cosmic Inflation in Minimal $U(1)_{B-L}$ Model: Implications for (Non) Thermal Dark Matter and Leptogenesis, Debasish Borah, Suruj Jyoti Das, Abhijit Kumar Saha, Eur.Phys.J. C81 (2021) 169, arXiv:2005.11328.
[Borah:2020wyc]
[33-200]
Leptogenesis due to oscillating Higgs field, Seishi Enomoto, Chengfeng Cai, Zhao-Huan Yu, Hong-Hao Zhang, Eur.Phys.J. C80 (2020) 1098, arXiv:2005.08037.
[Enomoto:2020lpf]
[33-201]
Leptogenesis in the $\mu\tau$ basis, C. C. Nishi, Chee Sheng Fong, JHEP 2007 (2020) 140, arXiv:2005.03469.
[Nishi:2020oas]
[33-202]
The $SO(10)$-inspired leptogenesis timely opportunity, Pasquale Di Bari, Rome Samanta, JHEP 2008 (2020) 124, arXiv:2005.03057.
[DiBari:2020plh]
[33-203]
Freeze-in Dirac neutrinogenesis: thermal leptonic CP asymmetry, Shao-Ping Li, Xin-Qiang Li, Xin-Shuai Yan, Ya-Dong Yang, Eur.Phys.J. C80 (2020) 1122, arXiv:2005.02927.
[Li:2020ner]
[33-204]
Complete leading-order standard model corrections to quantum leptogenesis, Paul Frederik Depta, Andreas Halsch, Janine Hutig, Sebastian Mendizabal, Owe Philipsen, JHEP 2009 (2020) 036, arXiv:2005.01728.
[Depta:2020zmy]
[33-205]
Leptogenesis in the minimal gauged U(1)$_{L_\mu-L_\tau}$ model and the sign of the cosmological baryon asymmetry, Kento Asai, Koichi Hamaguchi, Natsumi Nagata, Shih-Yen Tseng, JCAP 2011 (2020) 013, arXiv:2005.01039.
[Asai:2020qax]
[33-206]
Fingerprint of Low-Scale Leptogenesis in the Primordial Gravitational-Wave Spectrum, Simone Blasi, Vedran Brdar, Kai Schmitz, Phys.Rev.Res. 2 (2020) 043321, arXiv:2004.02889.
[Blasi:2020wpy]
[33-207]
Perfect Occam's razor for neutrino masses and leptogenesis, D. M. Barreiros, F. R. Joaquim, T. T. Yanagida, Phys.Rev. D102 (2020) 055021, arXiv:2003.06332.
[Barreiros:2020mnr]
[33-208]
Bridging resonant leptogenesis and low-energy CP violation with an RGE-modified seesaw relation, Zhi-zhong Xing, Di Zhang, Phys.Lett. B804 (2020) 135397, arXiv:2003.06312.
[Xing:2020ghj]
[33-209]
Renormalization group assisted leptogenesis in the minimal type-I seesaw model, Zhen-hua Zhao, JHEP 11 (2021) 170, arXiv:2003.00654.
[Zhao:2020bzx]
[33-210]
Predictive $S_4$ flavon model with $TM_1$ mixing and bayrogenesis through leptogenesis, Mainak Chakraborty, R. Krishnan, Ambar Ghosal, JHEP 2009 (2020) 025, arXiv:2003.00506.
[Chakraborty:2020gqc]
[33-211]
A direct link between unflavored leptogenesis and low-energy CP violation via the one-loop quantum corrections, Zhi-zhong Xing, Di Zhang, JHEP 2004 (2020) 179, arXiv:2003.00480.
[Xing:2020erm]
[33-212]
CP odd weak basis invariants in minimal see-saw model and Leptogenesis, Madan Singh, PTEP 2020 (2020) 123B02, arXiv:2002.09462.
[Singh:2020bad]
[33-213]
Higgs Inflation, Vacuum Stability, and Leptogenesis, Neil D. Barrie, Akio Sugamoto, Tatsu Takeuchi, Kimiko Yamashita, JHEP 2008 (2020) 072, arXiv:2001.07032.
[Barrie:2020hiu]
[33-214]
Leptogenesis and Dark Matter from Low Scale Seesaw, Ang Liu, Zhi-Long Han, Yi Jin, Fa-Xin Yang, Phys.Rev. D101 (2020) 095005, arXiv:2001.04085.
[Liu:2020mxj]
[33-215]
Neutrino mass, leptogenesis and sterile neutrino dark matter in inverse seesaw framework, Nayana Gautam, Mrinal Kumar Das, Int.J.Mod.Phys.A 36 (2021) 2150146, arXiv:2001.00452.
[Gautam:2020wsd]
[33-216]
TeV Scale Leptogenesis with Dark Matter in Non-standard Cosmology, Devabrat Mahanta, Debasish Borah, JCAP 2004 (2020) 032, arXiv:1912.09726.
[Mahanta:2019sfo]
[33-217]
Leptogenesis in fast expanding Universe, Shao-Long Chen, Amit Dutta Banik, Ze-Kun Liu, JCAP 2003 (2020) 009, arXiv:1912.07185.
[Chen:2019etb]
[33-218]
Soft leptogenesis in the NMSSM with a singlet right-handed neutrino superfield, Waleed Abdallah, Abhass Kumar, Abhijit Kumar Saha, JHEP 2004 (2020) 065, arXiv:1911.03363.
[Abdallah:2019tij]
[33-219]
Inflation and Leptogenesis in High-Scale Supersymmetry, Kunio Kaneta, Yann Mambrini, Keith A. Olive, Sarunas Verner, Phys.Rev. D101 (2020) 015002, arXiv:1911.02463.
[Kaneta:2019yjn]
[33-220]
Minimal Seesaw extension for Neutrino Mass and Mixing, Leptogenesis and Dark Matter: FIMPzillas through the Right-Handed Neutrino Portal, Marco Chianese, Bowen Fu, Stephen F. King, JCAP 2003 (2020) 030, arXiv:1910.12916.
[Chianese:2019epo]
[33-221]
A thermal neutrino interaction rate at NLO, G. Jackson, M. Laine, Nucl.Phys. B950 (2020) 114870, arXiv:1910.12880.
[Jackson:2019tnr]
[33-222]
A minimal model for the SM fermion flavor structure, mass hierarchy, dark matter, leptogenesis and the $g-2$ anomalies, A. E. Carcamo Hernandez, D. T. Huong, H. N. Long, Phys.Rev. D102 (2020) 055002, arXiv:1910.12877.
[CarcamoHernandez:2019lhv]
[33-223]
Asymmetric Dark Matter From Triplet Scalar Leptogenesis, Nimmala Narendra, Narendra Sahu, Sujay Shil, Eur.Phys.J.C 81 (2021) 1098, arXiv:1910.12762.
[Narendra:2019cyt]
[33-224]
Superstring-Inspired Particle Cosmology: Inflation, Neutrino Masses, Leptogenesis, Dark Matter & the SUSY Scale, John Ellis, Marcos A. G. Garcia, Natsumi Nagata, Dimitri V. Nanopoulos, Keith A. Olive, JCAP 2001 (2020) 035, arXiv:1910.11755.
[Ellis:2019opr]
[33-225]
Baryogenesis From a Dark First-Order Phase Transition, Eleanor Hall, Thomas Konstandin, Robert McGehee, Hitoshi Murayama, Geraldine Servant, JHEP 2004 (2020) 042, arXiv:1910.08068.
[Hall:2019ank]
[33-226]
$A_4$ model of Magic neutrino mass matrix with broken $\mu-\tau$ symmetry and Leptogenesis, Surender Verma, Monal Kashav, J.Phys. G47 (2020) 085003, arXiv:1910.04467.
[Verma:2019uiu]
[33-227]
Scalar triplet leptogenesis in the presence of right-handed neutrinos with S3 symmetry, Subhasmita Mishra, Anjan Giri, J.Phys. G47 (2020) 055008, arXiv:1909.12147.
[Mishra:2019sye]
[33-228]
Type-I thermal leptogenesis in $Z_3$-symmetric three Higgs doublet model, Indrani Chakraborty, Himadri Roy, Eur.Phys.J. C80 (2020) 1038, arXiv:1909.07790.
[Chakraborty:2019zas]
[33-229]
Modular $A_4$ invariance and leptogenesis, Takehiko Asaka, Yongtae Heo, Takuya H. Tatsuishi, Takahiro Yoshida, JHEP 2001 (2020) 144, arXiv:1909.06520.
[Asaka:2019vev]
[33-230]
Flavoured leptogenesis and ${\rm CP}^{\mu\tau}$ symmetry, Rome Samanta, Manibrata Sen, JHEP 2001 (2020) 193, arXiv:1908.08126.
[Samanta:2019yeg]
[33-231]
Testing Seesaw and Leptogenesis with Gravitational Waves, Jeff A. Dror, Takashi Hiramatsu, Kazunori Kohri, Hitoshi Murayama, Graham White, Phys.Rev.Lett. 124 (2020) 041804, arXiv:1908.03227.
[Dror:2019syi]
[33-232]
MeV scale model of SIMP dark matter, neutrino mass and leptogenesis, Subhendra Mohanty, Ayon Patra, Tripurari Srivastava, JCAP 2003 (2020) 027, arXiv:1908.00909.
[Mohanty:2019drv]
[33-233]
Gravitational waves triggered by $B-L$ charged hidden scalar and leptogenesis, Ligong Bian, Wei Cheng, Huai-Ke Guo, Yongchao Zhang, Chin.Phys.C 45 (2021) 113104, arXiv:1907.13589.
[Bian:2019szo]
[33-234]
Parametrized leptogenesis from linear seesaw, Pei-Hong Gu, Eur.Phys.J. C80 (2020) 494, arXiv:1907.10576.
[Gu:2019ott]
[33-235]
Common origin of inverse seesaw and baryon asymmetry, Pei-Hong Gu, Phys.Lett. B800 (2020) 135118, arXiv:1907.09444.
[Gu:2019nhb]
[33-236]
Leptogenesis with testable Dirac neutrino mass generation, Pei-Hong Gu, Phys.Lett. B805 (2020) 135411, arXiv:1907.09443.
[Gu:2019yvw]
[33-237]
Low scale leptogenesis in a hybrid model of the scotogenic type I and III seesaw, Daijiro Suematsu, Phys.Rev.D 100 (2019) 055008, arXiv:1906.12008.
[Suematsu:2019kst]
[33-238]
Triplet Leptogenesis, Type-II Seesaw Dominance, Intrinsic Dark Matter, Vacuum Stability and Proton Decay in Minimal SO(10) Breakings, Mainak Chakraborty, M.K. Parida, Biswonath Sahoo, JCAP 2001 (2020) 049, arXiv:1906.05601.
[Chakraborty:2019uxk]
[33-239]
Leptogenesis after superconformal subcritical hybrid inflation, Yoshihiro Gunji, Koji Ishiwata, JHEP 1909 (2019) 065, arXiv:1906.04530.
[Gunji:2019wtk]
[33-240]
Fermion Dark Matter with $N_2$ Leptogenesis in Minimal Scotogenic Model, Devabrat Mahanta, Debasish Borah, JCAP 1911 (2019) 021, arXiv:1906.03577.
[Mahanta:2019gfe]
[33-241]
Leptogenesis in the Neutrino Option, I. Brivio, K. Moffat, S. Pascoli, S.T. Petcov, J. Turner, JHEP 1910 (2019) 059, arXiv:1905.12642.
[Brivio:2019hrj]
[33-242]
Sterile neutrino dark matter via GeV-scale leptogenesis?, J. Ghiglieri, M. Laine, JHEP 1907 (2019) 078, arXiv:1905.08814.
[Ghiglieri:2019kbw]
[33-243]
$TeV$-Scale Resonant Leptogenesis with New Scaling Ansatz on Neutrino Dirac Mass Matrix from $A_4$ Flavor Symmetry, H. B. Benaoum, S. H. Shaglel, Int.J.Mod.Phys. A35 (2020) 2050077, arXiv:1905.06579.
[Benaoum:2019ksi]
[33-244]
Leptogenesis in $\Delta(27)$ with a Universal Texture Zero, Fredrik Bjorkeroth, Ivo de Medeiros Varzielas, M.L. Lopez-Ibanez, Aurora Melis, Oscar Vives, JHEP 1909 (2019) 050, arXiv:1904.10545.
[Bjorkeroth:2019csz]
[33-245]
Relativistic and spectator effects in leptogenesis with heavy sterile neutrinos, Bjorn Garbrecht, Philipp Klose, Carlos Tamarit, JHEP 2002 (2020) 117, arXiv:1904.09956.
[Garbrecht:2019zaa]
[33-246]
Lopsided texture compatible with thermal leptogenesis in partially composite Pati-Salam unification, Masaki J. S. Yang, arXiv:1904.02881, 2019.
[Yang:2019tvk]
[33-247]
Mirror Dirac leptogenesis, Kevin Earl, Chee Sheng Fong, Thomas Gregoire, Alberto Tonero, JCAP 03 (2020) 036, arXiv:1903.12192.
[Earl:2019wjw]
[33-248]
Stability, reheating and leptogenesis, Djuna Croon, Nicolas Fernandez, David McKeen, Graham White, JHEP 1906 (2019) 098, arXiv:1903.08658.
[Croon:2019dfw]
[33-249]
Neutrino Oscillations and Leptogenesis, Anupam Yadav, Sabeeha Naaz, Jyotsna Singh, R.B. Singh, arXiv:1901.06127, 2019.
[Yadav:2019oet]
[33-250]
Low-scale Leptogenesis with Minimal Lepton Flavour Violation, Matthew J. Dolan, Tomasz P. Dutka, Raymond R. Volkas, Phys.Rev.D 99 (2019) 123508, arXiv:1812.11964.
[Dolan:2018yqy]
[33-251]
Resonant leptogenesis at TeV-scale and neutrinoless double beta decay, Takehiko Asaka, Takahiro Yoshida, JHEP 09 (2019) 089, arXiv:1812.11323.
[Asaka:2018hyk]
[33-252]
Natural Seesaw and Leptogenesis from Hybrid of High-Scale Type I and TeV-Scale Inverse, Kaustubh Agashe, Peizhi Du, Majid Ekhterachian, Chee Sheng Fong, Sungwoo Hong, Luca Vecchi, JHEP 1904 (2019) 029, arXiv:1812.08204.
[Agashe:2018cuf]
[33-253]
Low-scale leptogenesis assisted by a real scalar singlet, Tommi Alanne, Thomas Hugle, Moritz Platscher, Kai Schmitz, JCAP 1903 (2019) 037, arXiv:1812.04421.
[Alanne:2018brf]
[33-254]
Why is there more matter than antimatter? Calculational methods for leptogenesis and electroweak baryogenesis, Bjorn Garbrecht, Prog.Part.Nucl.Phys. 110 (2020) 103727, arXiv:1812.02651.
[Garbrecht:2018mrp]
[33-255]
Electroweak Baryogenesis From Dark CP Violation, Marcela Carena, Mariano Quiros, Yue Zhang, Phys.Rev.Lett. 122 (2019) 201802, arXiv:1811.09719.
[Carena:2018cjh]
[33-256]
Precision study of GeV-scale resonant leptogenesis, J. Ghiglieri, M. Laine, JHEP 1902 (2019) 014, arXiv:1811.01971.
[Ghiglieri:2018wbs]
[33-257]
Unitarity and CP violation in leptogenesis at NLO: general considerations and top Yukawa contributions, J. Racker, JHEP 1902 (2019) 042, arXiv:1811.00280.
[Racker:2018tzw]
[33-258]
Low-scale leptogenesis with three heavy neutrinos, Asmaa Abada, Giorgio Arcadi, Valerie Domcke, Marco Drewes, Juraj Klaric, Michele Lucente, JHEP 1901 (2019) 164, arXiv:1810.12463.
[Abada:2018oly]
[33-259]
TeV Scale Leptogenesis, Inflaton Dark Matter and Neutrino Mass in Scotogenic Model, Debasish Borah, P. S. Bhupal Dev, Abhass Kumar, Phys.Rev. D99 (2019) 055012, arXiv:1810.03645.
[Borah:2018rca]
[33-260]
Leptogenesis from Low Energy $CP$ Violation, K. Moffat, S. Pascoli, S.T. Petcov, J. Turner, JHEP 1903 (2019) 034, arXiv:1809.08251.
[Moffat:2018smo]
[33-261]
Baryogenesis via leptogenesis in multi-field inflation, Grigoris Panotopoulos, Nelson Videla, Eur.Phys.J. C78 (2018) 774, arXiv:1809.07633.
[Panotopoulos:2018pxw]
[33-262]
Affleck-Dine baryogenesis in the SUSY DFSZ axion model without R-parity, Kensuke Akita, Hajime Otsuka, Phys.Rev. D99 (2019) 055035, arXiv:1809.04361.
[Akita:2018zma]
[33-263]
TeV Scale Neutrino Mass Generation, Minimal Inelastic Dark Matter, and High Scale Leptogenesis, Pei-Hong Gu, Hong-Jian He, Phys.Rev. D99 (2019) 015025, arXiv:1808.09377.
[Gu:2018kmv]
[33-264]
$ \mu-\tau$ Reflection Symmetry and Its Explicit Breaking for Leptogenesis in a Minimal Seesaw Model, Newton Nath, Mod.Phys.Lett. A34 (2019) 1950329, arXiv:1808.05062.
[Nath:2018xih]
[33-265]
Leptogenesis via Varying Weinberg Operator: a Semi-Classical Approach, Silvia Pascoli, Jessica Turner, Ye-Ling Zhou, Chin.Phys. C43 (2019) 033101, arXiv:1808.00475.
[Pascoli:2018cqk]
[33-266]
Leptogenesis via Varying Weinberg Operator: the Closed-Time-Path Approach, Jessica Turner, Ye-Ling Zhou, JHEP 2001 (2020) 022, arXiv:1808.00470.
[Turner:2018mwh]
[33-267]
Leptogenesis via Neutrino Oscillation Magic, Yuta Hamada, Ryuichiro Kitano, Wen Yin, JHEP 1810 (2018) 178, arXiv:1807.06582.
[Hamada:2018epb]
[33-268]
Low-scale leptogenesis and dark matter, Andrea Caputo, Pilar Hernandez, Nuria Rius, Eur.Phys.J. C79 (2019) 574, arXiv:1807.03309.
[Caputo:2018zky]
[33-269]
The Dark Side of the Littlest Seesaw: freeze-in, the two right-handed neutrino portal and leptogenesis-friendly fimpzillas, Marco Chianese, Stephen F. King, JCAP 1809 (2018) 027, arXiv:1806.10606.
[Chianese:2018dsz]
[33-270]
Conformal GUT inflation, proton lifetime and non-thermal leptogenesis, K. Sravan Kumar, Paulo Vargas Moniz, Eur.Phys.J. C79 (2019) 945, arXiv:1806.09032.
[SravanKumar:2018tgk]
[33-271]
Neutrino phenomenology from leptogenesis, Franco Buccella, Damiano F. G. Fiorillo, Gennaro Miele, Stefano Morisi, Ofelia Pisanti, Pietro Santorelli, Eur.Phys.J. C78 (2018) 817, arXiv:1806.07615.
[Buccella:2018jij]
[33-272]
The New $\nu$MSM : Radiative Neutrino Masses, keV-Scale Dark Matter and Viable Leptogenesis with sub-TeV New Physics, Sven Baumholzer, Vedran Brdar, Pedro Schwaller, JHEP 1808 (2018) 067, arXiv:1806.06864.
[Baumholzer:2018sfb]
[33-273]
Leptogenesis from Dark Matter Annihilations in Scotogenic Model, Debasish Borah, Arnab Dasgupta, Sin Kyu Kang, Eur.Phys.J. C80 (2020) 498, arXiv:1806.04689.
[Borah:2018uci]
[33-274]
Assessing Perturbativity and Vacuum Stability in High-Scale Leptogenesis, Seyda Ipek, Alexis D. Plascencia, Jessica Turner, JHEP 1812 (2018) 111, arXiv:1806.00460.
[Ipek:2018sai]
[33-275]
Asymmetric Dark Matter, Inflation and Leptogenesis from B-L Symmetry Breaking, P. V. Dong, D. T. Huong, Daniel A. Camargo, Farinaldo S. Queiroz, Jose W. F. Valle, Phys.Rev. D99 (2019) 055040, arXiv:1805.08251.
[VanDong:2018yae]
[33-276]
Baryogenesis via Leptogenesis from Asymmetric Dark Matter and radiatively generated Neutrino mass, Nimmala Narendra, Sudhanwa Patra, Narendra Sahu, Sujay Shil, Phys.Rev. D98 (2018) 095016, arXiv:1805.04860.
[Narendra:2018vfw]
[33-277]
Pendulum Leptogenesis, Kazuharu Bamba, Neil D. Barrie, Akio Sugamoto, Tatsu Takeuchi, Kimiko Yamashita, Phys.Lett. B785 (2018) 184-190, arXiv:1805.04826.
[Bamba:2018bwl]
[33-278]
Leptogenesis explains little hierarchy, Ryo Nagai, Fuminobu Takahashi, Norimi Yokozaki, Phys.Lett. B784 (2018) 37-42, arXiv:1805.04243.
[Nagai:2018vyl]
[33-279]
Low-Scale Leptogenesis in the Scotogenic Neutrino Mass Model, Thomas Hugle, Moritz Platscher, Kai Schmitz, Phys.Rev. D98 (2018) 023020, arXiv:1804.09660.
[Hugle:2018qbw]
[33-280]
A cosmological pathway to testable leptogenesis, Bhaskar Dutta, Chee Sheng Fong, Esteban Jimenez, Enrico Nardi, JCAP 1810 (2018) 025, arXiv:1804.07676.
[Dutta:2018zkg]
[33-281]
Hybrid seesaw leptogenesis and TeV singlets, Kaustubh Agashe et al., Phys.Lett. B785 (2018) 489-497, arXiv:1804.06847.
[Agashe:2018oyk]
[33-282]
Leptogenesis in Cosmological Relaxation with Particle Production, Minho Son, Fang Ye, Tevong You, Phys.Rev. D99 (2019) 095016, arXiv:1804.06599.
[Son:2018avk]
[33-283]
Three-Flavoured Non-Resonant Leptogenesis at Intermediate Scales, K. Moffat, S. Pascoli, S.T. Petcov, H. Schulz, J. Turner, Phys.Rev. D98 (2018) 015036, arXiv:1804.05066.
[Moffat:2018wke]
[33-284]
Normal hierarchy neutrino mass model revisited with leptogenesis, Ananya Mukherjee, Mrinal Kumar Das, Jayanta Kumar Sarma, arXiv:1803.08239, 2018.
[Mukherjee:2018fms]
[33-285]
Big-bang nucleosynthesis and Leptogenesis in CMSSM, Munehiro Kubo, Joe Sato, Takashi Shimomura, Yasutaka Takanishi, Masato Yamanaka, Phys.Rev. D97 (2018) 115013, arXiv:1803.07686.
[Kubo:2018xrk]
[33-286]
Perturbations to $\mu-\tau$ symmetry, lepton Number Violation and baryogenesis in left-right symmetric Model, Happy Borgohain, Mrinal Kumar Das, arXiv:1803.05710, 2018.
[Borgohain:2018uhf]
[33-287]
Dirac-Phase Thermal Leptogenesis in the extended Type-I Seesaw Model, Matthew J. Dolan, Tomasz P. Dutka, Raymond R. Volkas, JCAP 1806 (2018) 012, arXiv:1802.08373.
[Dolan:2018qpy]
[33-288]
Strong thermal $SO(10)$-inspired leptogenesis in the light of recent results from long-baseline neutrino experiments, Marco Chianese, Pasquale Di Bari, JHEP 1805 (2018) 073, arXiv:1802.07690.
[Chianese:2018rnq]
[33-289]
Non-thermal Leptogenesis after Majoron Hilltop Inflation, Stefan Antusch, Kenneth Marschall, JCAP 1805 (2018) 015, arXiv:1802.05647.
[Antusch:2018zvu]
[33-290]
A minimally broken residual TBM-Klein symmetry and baryogenesis via leptogenesis, Rome Samanta, Mainak Chakraborty, JCAP 1902 (2019) 003, arXiv:1802.04751.
[Samanta:2018hqm]
[33-291]
Predictive Leptogenesis from Minimal Lepton Flavour Violation, L. Merlo, S. Rosauro-Alcaraz, JHEP 1807 (2018) 036, arXiv:1801.03937.
[Merlo:2018rin]
[33-292]
Light Dark Matter from Leptogenesis, Adam Falkowski, Eric Kuflik, Noam Levi, Tomer Volansky, Phys.Rev. D99 (2019) 015022, arXiv:1712.07652.
[Falkowski:2017uya]
[33-293]
Fermion Masses and Mixings, Leptogenesis and Baryon Number Violation in Pati-Salam Model, Shaikh Saad, Nucl.Phys. B943 (2019) 114630, arXiv:1712.04880.
[Saad:2017pqj]
[33-294]
Leptogenesis from Heavy Right-Handed Neutrinos in CPT Violating Backgrounds, Thomas Bossingham, Nick E. Mavromatos, Sarben Sarkar, Eur.Phys.J. C78 (2018) 113, arXiv:1712.03312.
[Bossingham:2017gtm]
[33-295]
Dark matter assisted Dirac leptogenesis and neutrino mass, Nimmala Narendra, Nirakar Sahoo, Narendra Sahu, Nucl.Phys. B936 (2018) 76-90, arXiv:1712.02960.
[Narendra:2017uxl]
[33-296]
Leptogenesis with TeV Scale $W_R$, Pei-Hong Gu, Rabindra N. Mohapatra, Phys.Rev. D97 (2018) 075014, arXiv:1712.00420.
[Gu:2017gra]
[33-297]
Radiative Dirac neutrino mass, DAMPE dark matter and leptogenesis, Pei-Hong Gu, arXiv:1711.11333, 2017.
[Gu:2017bdw]
[33-298]
GeV-scale hot sterile neutrino oscillations: a numerical solution, J. Ghiglieri, M. Laine, JHEP 1802 (2018) 078, arXiv:1711.08469.
[Ghiglieri:2017csp]
[33-299]
Leptogenesis Constraints on $B-L$ breaking Higgs Boson in TeV Scale Seesaw Models, P. S. Bhupal Dev, Rabindra N. Mohapatra, Yongchao Zhang, JHEP 1803 (2018) 122, arXiv:1711.07634.
[Dev:2017xry]
[33-300]
Gravitational Leptogenesis and Reheating, Peter Adshead, Andrew J. Long, Evangelos I. Sfakianakis, Phys.Rev. D97 (2018) 043511, arXiv:1711.04800.
[Adshead:2017znw]
[33-301]
Neutrino CP violation and sign of baryon asymmetry in the minimal seesaw model, Yusuke Shimizu, Kenta Takagi, Morimitsu Tanimoto, Phys.Lett. B778 (2018) 6-16, arXiv:1711.03863.
[Shimizu:2017vwi]
[33-302]
Electroweak phase transition and entropy release in the early universe, Arnab Chaudhuri, Alexander Dolgov, JCAP 1801 (2018) 032, arXiv:1711.01801.
[Chaudhuri:2017icn]
[33-303]
Leptogenesis as an origin of dark matter and baryon asymmetries in the E6 inspired SUSY models, R. Nevzorov, Phys.Lett.B 779 (2018) 223-229, arXiv:1710.11533.
[Nevzorov:2017gir]
[33-304]
Texture Zero Neutrino Models and Their Connection with Resonant Leptogenesis, Avtandil Achelashvili, Zurab Tavartkiladze, Nucl.Phys. B929 (2018) 21-57, arXiv:1710.10955.
[Achelashvili:2017nqp]
[33-305]
Neutrino masses, dark matter and leptogenesis with $U(1)_{B-L}$ gauge symmetry, Chao-Qiang Geng, Hiroshi Okada, Phys.Dark Univ. 20 (2018) 13-19, arXiv:1710.09536.
[Geng:2017foe]
[33-306]
On Feynman rules for not entirely external lines in leptogenesis and beyond, Adrian Lewandowski, Nucl.Phys. B937 (2018) 394-421, arXiv:1710.07165.
[Lewandowski:2017omt]
[33-307]
Conformal Standard Model, Leptogenesis and Dark Matter, Adrian Lewandowski, Krzysztof A. Meissner, Hermann Nicolai, Phys.Rev. D97 (2018) 035024, arXiv:1710.06149.
[Lewandowski:2017wov]
[33-308]
Gravitational Waves, mu Term $\text{\&}$ Leptogenesis from Higgs Inflation in Supergravity, C. Pallis, Universe 4 (2018) 13, arXiv:1710.05759.
[Pallis:2017xfo]
[33-309]
Probing Leptogenesis at Future Colliders, Stefan Antusch et al., JHEP 1809 (2018) 124, arXiv:1710.03744.
[Antusch:2017pkq]
[33-310]
$\mathbf{SO(10)}\times \mathbf{S_4} $ Grand Unified Theory of Flavour and Leptogenesis, Francisco J. de Anda, Stephen F. King, Elena Perdomo, JHEP 1712 (2017) 075, arXiv:1710.03229.
[deAnda:2017yeb]
[33-311]
Neutrino Mass, Leptogenesis, and Dark Matter from The Dark Sector with $U(1)_{D}$, Wei-Min Yang, JHEP 1803 (2018) 144, arXiv:1710.00691.
[Yang:2017qfj]
[33-312]
Freeze-out of baryon number in low-scale leptogenesis, S. Eijima, M. Shaposhnikov, I. Timiryasov, JCAP 1711 (2017) 030, arXiv:1709.07834.
[Eijima:2017cxr]
[33-313]
Neutrino masses, leptogenesis and dark matter from small lepton number violation?, Asmaa Abada, Giorgio Arcadi, Valerie Domcke, Michele Lucente, JCAP 1712 (2017) 024, arXiv:1709.00415.
[Abada:2017ieq]
[33-314]
From high-scale leptogenesis to low-scale one-loop neutrino mass generation, Hang Zhou, Pei-Hong Gu, Nucl.Phys. B927 (2018) 184-195, arXiv:1708.04207.
[Zhou:2017lrt]
[33-315]
Hot Leptogenesis from Thermal Dark Matter, Nicolas Bernal, Chee Sheng Fong, JCAP 1710 (2017) 042, arXiv:1707.02988.
[Bernal:2017zvx]
[33-316]
Leptogenesis and composite heavy neutrinos with gauge mediated interactions, Simone Biondini, Orlando Panella, Eur.Phys.J. C77 (2017) 644, arXiv:1707.00844.
[Biondini:2017fut]
[33-317]
Neutrino mass generation and leptogenesis via pseudo-Nambu-Goldstone Higgs portal, Tommi Alanne, Aurora Meroni, Kimmo Tuominen, Phys.Rev.D 96 (2017) 095015, arXiv:1706.10128.
[Alanne:2017sip]
[33-318]
Inflation and Leptogenesis in a $U(1)$-enhanced supersymmetric model, Y. H. Ahn, Phys.Rev. D100 (2019) 015002, arXiv:1706.09707.
[Ahn:2017dpf]
[33-319]
Spontaneous mirror left-right symmetry breaking for leptogenesis parametrized by Majorana neutrino mass matrix, Pei-Hong Gu, JHEP 1710 (2017) 016, arXiv:1706.07706.
[Gu:2017mkm]
[33-320]
A Model of Dark Matter, Leptogenesis, and Neutrino Mass from the $B-L$ Violation just above the Electroweak Scale, Wei-Min Yang, arXiv:1706.07235, 2017.
[Yang:2017qlg]
[33-321]
Generalized $\mathbb{Z}_2\times \mathbb{Z}_2$ in Scaling neutrino Majorana mass matrix and baryogenesis via flavored leptogenesis, Roopam Sinha, Rome Samanta, Ambar Ghosal, JHEP 1712 (2017) 030, arXiv:1706.00946.
[Sinha:2017rjj]
[33-322]
Full analytic solution of $SO(10)$-inspired leptogenesis, Pasquale Di Bari, Michele Re Fiorentin, JHEP 1710 (2017) 029, arXiv:1705.01935.
[DiBari:2017uka]
[33-323]
Baryogenesis from L-violating Higgs-doublet decay in the density-matrix formalism, Thomas Hambye, Daniele Teresi, Phys.Rev. D96 (2017) 015031, arXiv:1705.00016.
[Hambye:2017elz]
[33-324]
Initial condition for baryogenesis via neutrino oscillation, Takehiko Asaka, Shintaro Eijima, Hiroyuki Ishida, Kosuke Minogawa, Tomoya Yoshii, Phys.Rev. D96 (2017) 083010, arXiv:1704.02692.
[Asaka:2017rdj]
[33-325]
Neutrino Mass, Leptogenesis and FIMP Dark Matter in a ${\rm U}(1)_{\rm B-L}$ Model, Anirban Biswas, Sandhya Choubey, Sarif Khan, Eur.Phys.J. C77 (2017) 875, arXiv:1704.00819.
[Biswas:2017tce]
[33-326]
Fermion number violating effects in low scale leptogenesis, Shintaro Eijima, Mikhail Shaposhnikov, Phys.Lett. B771 (2017) 288-296, arXiv:1703.06085.
[Eijima:2017anv]
[33-327]
Baryogenesis at a Lepton-Number-Breaking Phase Transition, Andrew J. Long, Andrea Tesi, Lian-Tao Wang, JHEP 1710 (2017) 095, arXiv:1703.04902.
[Long:2017rdo]
[33-328]
Symmetry restoration due to preheating and lepton number asymmetry, Daijiro Suematsu, Phys.Rev. D96 (2017) 055015, arXiv:1703.02740.
[Suematsu:2017iki]
[33-329]
Lepton asymmetry rate from quantum field theory: NLO in the hierarchical limit, Dietrich Bodeker, Marc Sangel, JCAP 1706 (2017) 052, arXiv:1702.02155.
[Bodeker:2017deo]
[33-330]
Implications of residual CP symmetry for leptogenesis in two right-handed neutrino model, Cai-Chang Li, Gui-Jun Ding, Phys.Rev. D96 (2017) 075005, arXiv:1701.08508.
[Li:2017zmk]
[33-331]
Neutrino masses, mixing, and leptogenesis in an S3 model, Arturo Alvarez Cruz, Myriam Mondragon, arXiv:1701.07929, 2017.
[Cruz:2017add]
[33-332]
Non-thermal leptogenesis with distinct CP violation and minimal dark matter, Hang Zhou, Pei-Hong Gu, JCAP 1701 (2017) 030, arXiv:1612.06759.
[Zhou:2016jyp]
[33-333]
Reheating and Leptogenesis after Pati-Salam F-term Subcritical Hybrid Inflation, B. Charles Bryant, Zijie Poh, Stuart Raby, arXiv:1612.04382, 2016.
[Bryant:2016sjj]
[33-334]
Origin of CP violation for leptogenesis in seesaw, Pei-Hong Gu, arXiv:1612.04344, 2016.
[Gu:2016otg]
[33-335]
Dark Matter and Leptogenesis and Neutrino Mass from the TeV-scale $U(1)_{B-L}$ Violation, Wei-Min Yang, arXiv:1612.02661, 2016.
[Yang:2016kyy]
[33-336]
Affleck-Dine Leptogenesis with Varying Peccei-Quinn Scale, Kyu Jung Bae, Howard Baer, Koichi Hamaguchi, Kazunori Nakayama, JHEP 1702 (2017) 017, arXiv:1612.02511.
[Bae:2016zym]
[33-337]
Calculable Cosmological CP Violation and Resonant Leptogenesis, Avtandil Achelashvili, Zurab Tavartkiladze, Phys.Rev. D96 (2017) 015015, arXiv:1611.07956.
[Achelashvili:2016trx]
[33-338]
Seesaw Scale and CP Phases in a Minimal Model of Leptogenesis, Siyeon Kim, J.Korean Phys.Soc. 69 (2016) 1638-1643, arXiv:1611.04572.
[Siyeon:2016wro]
[33-339]
Naturalness, Vacuum Stability and Leptogenesis in the Minimal Seesaw Model, Gulab Bambhaniya, P. S. Bhupal Dev, Srubabati Goswami, Subrata Khan, Werner Rodejohann, Phys.Rev. D95 (2017) 095016, arXiv:1611.03827.
[Bambhaniya:2016rbb]
[33-340]
High-scale leptogenesis with three-loop neutrino mass generation and dark matter, Pei-Hong Gu, JHEP 1704 (2017) 159, arXiv:1611.03256.
[Gu:2016xno]
[33-341]
Mixed Inert Scalar Triplet Dark Matter, Radiative Neutrino Masses and Leptogenesis, Wen-Bin Lu, Pei-Hong Gu, Nucl.Phys. B924 (2017) 279-311, arXiv:1611.02106.
[Lu:2016dbc]
[33-342]
Baryon asymmetry via leptogenesis in a neutrino mass model with complex scaling, Rome Samanta, Mainak Chakraborty, Probir Roy, Ambar Ghosal, JCAP 1703 (2017) 025, arXiv:1610.10081.
[Samanta:2016hcj]
[33-343]
Testing the low scale seesaw and leptogenesis, Marco Drewes, Bjorn Garbrecht, Dario Gueter, Juraj Klaric, JHEP 1708 (2017) 018, arXiv:1609.09069.
[Drewes:2016jae]
[33-344]
Baryogenesis via leptonic CP-violating phase transition, Silvia Pascoli, Jessica Turner, Ye-Ling Zhou, Phys.Lett. B780 (2018) 313-318, arXiv:1609.07969.
[Pascoli:2016gkf]
[33-345]
Revisiting gravitino dark matter in thermal leptogenesis, Masahiro Ibe, Motoo Suzuki, Tsutomu T. Yanagida, JHEP 1702 (2017) 063, arXiv:1609.06834.
[Ibe:2016gir]
[33-346]
Leptogenesis in a $\Delta(27) \times SO(10)$ SUSY GUT, Fredrik Bjorkeroth, Francisco J. de Anda, Ivo de Medeiros Varzielas, Stephen F. King, JHEP 1701 (2017) 077, arXiv:1609.05837.
[Bjorkeroth:2016lzs]
[33-347]
Leptogenesis and neutral gauge bosons, Julian Heeck, Daniele Teresi, Phys. Rev. D94 (2016) 095024, arXiv:1609.03594.
[Heeck:2016oda]
[33-348]
Unifying inflation with the axion, dark matter, baryogenesis and the seesaw mechanism, Guillermo Ballesteros, Javier Redondo, Andreas Ringwald, Carlos Tamarit, Phys.Rev.Lett. 118 (2017) 071802, arXiv:1608.05414.
[Ballesteros:2016euj]
[33-349]
The reheating era leptogenesis in models with seesaw mechanism, Yuta Hamada, Koji Tsumura, Daiki Yasuhara, Phys.Rev. D95 (2017) 103505, arXiv:1608.05256.
[Hamada:2016npz]
[33-350]
Leptogenesis after Chaotic Sneutrino Inflation and the Supersymmetry Breaking Scale, Fredrik Bjorkeroth, Stephen F. King, Kai Schmitz, Tsutomu T. Yanagida, Nucl. Phys. B916 (2017) 688-708, arXiv:1608.04911.
[Bjorkeroth:2016qsk]
[33-351]
Standard Coupling Unification in SO(10), Hybrid Seesaw Neutrino Mass and Leptogenesis, Dark Matter, and Proton Lifetime Predictions, M. K. Parida, Bidyut Prava Nayak, Rajesh Satpathy, Ram Lal Awasthi, JHEP 1704 (2017) 075, arXiv:1608.03956.
[Parida:2016hln]
[33-352]
Common Origin of Neutrino Mass, Dark Matter and Dirac Leptogenesis, Debasish Borah, Arnab Dasgupta, JCAP 1612 (2016) 034, arXiv:1608.03872.
[Borah:2016zbd]
[33-353]
CP asymmetry in heavy Majorana neutrino decays at finite temperature: the hierarchical case, Simone Biondini, Nora Brambilla, Antonio Vairo, JHEP 1609 (2016) 126, arXiv:1608.01979.
[Biondini:2016arl]
[33-354]
Leptogenesis in a neutrino mass model coupled with inflaton, Daijiro Suematsu, Phys.Lett. B760 (2016) 538-543, arXiv:1606.07884.
[Suematsu:2016vgz]
[33-355]
Leptogenesis from Oscillations of Heavy Neutrinos with Large Mixing Angles, Marco Drewes, Bjorn Garbrecht, Dario Gueter, Juraj Klaric, JHEP 1612 (2016) 150, arXiv:1606.06690.
[Drewes:2016gmt]
[33-356]
Unifying leptogenesis, dark matter and high-energy neutrinos with right-handed neutrino mixing via Higgs portal, Pasquale Di Bari, Patrick Otto Ludl, Sergio Palomares-Ruiz, JCAP 1611 (2016) 044, arXiv:1606.06238.
[DiBari:2016guw]
[33-357]
Neutrinoless double $\beta$ decay and low scale leptogenesis, Marco Drewes, Shintaro Eijima, Phys.Lett. B763 (2016) 72-79, arXiv:1606.06221.
[Drewes:2016lqo]
[33-358]
A consistent model for leptogenesis, dark matter and the IceCube signal, M. Re Fiorentin, V. Niro, N. Fornengo, JHEP 1611 (2016) 022, arXiv:1606.04445.
[ReFiorentin:2016rzn]
[33-359]
Higgs doublet decay as the origin of the baryon asymmetry, Thomas Hambye, Daniele Teresi, Phys. Rev. Lett. 117 (2016) 091801, arXiv:1606.00017.
[Hambye:2016sby]
[33-360]
Dark Matter and Leptogenesis Linked by Classical Scale Invariance, Valentin V. Khoze, Alexis D. Plascencia, JHEP 1611 (2016) 025, arXiv:1605.06834.
[Khoze:2016zfi]
[33-361]
A minimal model of TeV scale WIMPy leptogenesis, Arnab Dasgupta, Chandan Hati, Sudhanwa Patra, Utpal Sarkar, arXiv:1605.01292, 2016.
[Dasgupta:2016odo]
[33-362]
Leptogenesis and gravity: baryon asymmetry without decays, J. I. McDonald, G. M. Shore, Phys.Lett. B766 (2017) 162-169, arXiv:1604.08213.
[McDonald:2016ehm]
[33-363]
Leptogenesis via the 750 GeV pseudoscalar, Alexander Kusenko, Lauren Pearce, Louis Yang, Phys. Rev. D93 (2016) 115005, arXiv:1604.02382.
[Kusenko:2016vcq]
[33-364]
Generation of hypermagnetic helicity and leptogenesis in early universe, V.B. Semikoz, Alexander Yu. Smirnov, D.D. Sokoloff, Phys. Rev. D93 (2016) 103003, arXiv:1604.02273.
[Semikoz:2016lqv]
[33-365]
Non-conservation of the neutrino current in a hot plasma of the early universe, Maxim Dvornikov, Victor B. Semikoz, J.Exp.Theor.Phys. 124 (2017) 731-739, arXiv:1603.07946.
[Dvornikov:2016gdo]
[33-366]
Leptogenesis, radiative neutrino masses and inert Higgs triplet dark matter, Wen-Bin Lu, Pei-Hong Gu, JCAP 1605 (2016) 040, arXiv:1603.05074.
[Lu:2016ucn]
[33-367]
Peccei-Quinn symmetry for Dirac seesaw and leptogenesis, Pei-Hong Gu, JCAP 1607 (2016) 004, arXiv:1603.05070.
[Gu:2016hxh]
[33-368]
A Model for Pseudo-Dirac Neutrinos: Leptogenesis and Ultra-High Energy Neutrinos, Y. H. Ahn, Sin Kyu Kang, C. S. Kim, JHEP 1610 (2016) 092, arXiv:1602.05276.
[Ahn:2016hhq]
[33-369]
Flavor and CP symmetries for leptogenesis and 0nubb decay, Claudia Hagedorn, Emiliano Molinaro, Nucl.Phys. B919 (2017) 404-469, arXiv:1602.04206.
[Hagedorn:2016lva]
[33-370]
Leptogenesis and residual CP symmetry, Peng Chen, Gui-Jun Ding, Stephen F. King, JHEP 1603 (2016) 206, arXiv:1602.03873.
[Chen:2016ptr]
[33-371]
Why three generations?, Masahiro Ibe, Alexander Kusenko, Tsutomu T. Yanagida, Phys.Lett. B758 (2016) 365-369, arXiv:1602.03003.
[Ibe:2016yfo]
[33-372]
TeV scale Leptogenesis from decay of next to lightest Neutralino, Rathin Adhikari, Arnab Dasgupta, Eur.Phys.J.C 81 (2021) 655, arXiv:1602.02684.
[Adhikari:2016yyu]
[33-373]
Lepton asymmetry from mixing and oscillations, Alexander Kartavtsev, Peter Millington, Hendrik Vogel, JHEP 1606 (2016) 066, arXiv:1601.03086.
[Kartavtsev:2015vto]
[33-374]
A possible relation between leptogenesis and PMNS phases, Jihn E. Kim, Bumseok Kyae, Phys. Rev. D94 (2016) 065004, arXiv:1601.00411.
[Covi:2016qla]
[33-375]
Supersymmetric $SO(10)$-inspired leptogenesis and a new $N_2$-dominated scenario, Pasquale Di Bari, Michele Re Fiorentin, JCAP 1603 (2016) 039, arXiv:1512.06739.
[DiBari:2015svd]
[33-376]
Leptogenesis from loop effects in curved spacetime, Jamie I. McDonald, Graham M. Shore, JHEP 1604 (2016) 030, arXiv:1512.02238.
[McDonald:2015iwt]
[33-377]
Leptogenesis parametrized by lepton mass matrices, Pei-Hong Gu, Xiao-Gang He, Eur.Phys.J. C76 (2016) 515, arXiv:1511.03835.
[Gu:2015wkd]
[33-378]
Neutrino dark energy and leptogenesis with TeV scale triplets, Chandan Hati, Utpal Sarkar, Eur.Phys.J. C76 (2016) 236, arXiv:1511.02874.
[Hati:2015hvq]
[33-379]
CP asymmetry in heavy Majorana neutrino decays at finite temperature: the nearly degenerate case, Simone Biondini, Nora Brambilla, Miguel Angel Escobedo, Antonio Vairo, JHEP 1603 (2016) 191, arXiv:1511.02803.
[Biondini:2015gyw]
[33-380]
Affleck-Dine leptogenesis and its backreaction to inflaton dynamics, Masaki Yamada, Phys. Lett. B754 (2016) 208-213, arXiv:1510.08514.
[Yamada:2015rza]
[33-381]
Type-IV Seesaw Mechanism and CP Violation for Leptogenesis, Edison T. Franco, Phys. Rev. D92 (2015) 113010, arXiv:1510.06240.
[Franco:2015pva]
[33-382]
Minimal leptogenesis, Yuta Hamada, Kiyoharu Kawana, Phys.Lett. B763 (2016) 388-392, arXiv:1510.05186.
[Hamada:2015xva]
[33-383]
Completing constrained flavor violation: lepton masses, neutrinos and leptogenesis, James M. Cline, Alfonso Diaz-Furlong, Jing Ren, Phys. Rev. D93 (2016) 036009, arXiv:1510.04688.
[Cline:2015yba]
[33-384]
Leptogenesis scenarios for natural SUSY with mixed axion-higgsino dark matter, Kyu Jung Bae, Howard Baer, Hasan Serce, Yi-Fan Zhang, JCAP 1601 (2016) 012, arXiv:1510.00724.
[Bae:2015efa]
[33-385]
Natural Relaxation, Luca Marzola, Martti Raidal, Mod.Phys.Lett. A31 (2016) 1650215, arXiv:1510.00710.
[Marzola:2015dia]
[33-386]
Exotic see-saw mechanism for neutrini and leptogenesis in a Pati-Salam model, Andrea Addazi, Massimo Bianchi, Giulia Ricciardi, JHEP 02 (2016) 035, arXiv:1510.00243.
[Addazi:2015yna]
[33-387]
Spontaneous CP Violation in Lepton-sector: a common origin for $\theta_{13}$, Dirac CP phase and leptogenesis, Biswajit Karmakar, Arunansu Sil, Phys. Rev. D93 (2016) 013006, arXiv:1509.07090.
[Karmakar:2015jza]
[33-388]
Dilepton events with displaced vertices, double beta decay, and resonant leptogenesis with Type-II seesaw dominance, TeV scale $Z'$ and RH neutrinos, Bidyut Prava Nayak, M. K. Parida, arXiv:1509.06192, 2015.
[Nayak:2015zka]
[33-389]
Fermion Masses and Leptogenesis from The Left-Right Symmetric Model, Wei-Min Yang, arXiv:1509.03716, 2015.
[Yang:2015dca]
[33-390]
Leptogenesis in an SU(5) x A5 Golden Ratio Flavour Model: Addendum, Julia Gehrlein, Serguey T. Petcov, Martin Spinrath, Xinyi Zhang, Nucl. Phys. B899 (2015) 617-630, arXiv:1508.07930.
[Gehrlein:2015dza]
[33-391]
Leptogenesis in $E_6 \times U(1)_A$ SUSY GUT model, Takuya Ishihara, Nobuhiro Maekawa, Mao Takegawa, Masato Yamanaka, JHEP 02 (2016) 108, arXiv:1508.06212.
[Ishihara:2015uua]
[33-392]
Constraining Type I Seesaw with $A_4$ Flavor Symmetry From Neutrino Data and Leptogenesis, Rupam Kalita, Debasish Borah, Phys. Rev. D92 (2015) 055012, arXiv:1508.05466.
[Kalita:2015jaa]
[33-393]
Radiatively-induced gravitational leptogenesis, J. I. McDonald, G. M. Shore, Phys. Lett. B751 (2015) 469-473, arXiv:1508.04119.
[McDonald:2015ooa]
[33-394]
Leptogenesis in GeV scale seesaw models, P. Hernandez, M.Kekic, J. Lopez-Pavon, J. Racker, N. Rius, JHEP 10 (2015) 067, arXiv:1508.03676.
[Hernandez:2015wna]
[33-395]
Leptogenesis from left-handed neutrino production during axion inflation, Peter Adshead, Evangelos I. Sfakianakis, Phys. Rev. Lett. 116 (2016) 091301, arXiv:1508.00881.
[Adshead:2015jza]
[33-396]
Basis invariant description of chemical equilibrium with implications for a recent axionic leptogenesis model, Bowen Shi, Stuart Raby, Phys. Rev. D92 (2015) 085008, arXiv:1507.08392.
[Shi:2015zwa]
[33-397]
Successful $N_2$ leptogenesis with flavour coupling effects in realistic unified models, Pasquale Di Bari, Stephen F. King, JCAP 1510 (2015) 008, arXiv:1507.06431.
[DiBari:2015oca]
[33-398]
Lepton number violation as a key to low-scale leptogenesis, Asmaa Abada, Giorgio Arcadi, Valerie Domcke, Michele Lucente, JCAP 1511 (2015) 041, arXiv:1507.06215.
[Abada:2015rta]
[33-399]
Mass Bounds on Light and Heavy Neutrinos from Radiative MFV Leptogenesis, Apostolos Pilaftsis, Daniele Teresi, Phys. Rev. D92 (2015) 085016, arXiv:1506.08124.
[Pilaftsis:2015bja]
[33-400]
A model realizing inverse seesaw and resonant leptogenesis, Mayumi Aoki, Naoyuki Haba, Ryo Takahashi, PTEP 2015 (2015) 113B03, arXiv:1506.06946.
[Aoki:2015owa]
[33-401]
Leptogenesis via Higgs Relaxation, Louis Yang, Lauren Pearce, Alexander Kusenko, Phys. Rev. D92 (2015) 043506, arXiv:1505.07912.
[Yang:2015ida]
[33-402]
Natural leptogenesis and neutrino masses with two Higgs doublets, Jackson D. Clarke, Robert Foot, Raymond R. Volkas, Phys. Rev. D92 (2015) 033006, arXiv:1505.05744.
[Clarke:2015hta]
[33-403]
Leptogenesis in minimal predictive seesaw models, Fredrik Bjorkeroth, Francisco J. de Anda, Ivo de Medeiros Varzielas, Stephen F. King, JHEP 10 (2015) 104, arXiv:1505.05504.
[Bjorkeroth:2015tsa]
[33-404]
Two Loop Neutrino Model with Dark Matter and Leptogenesis, Shoichi Kashiwase, Hiroshi Okada, Yuta Orikasa, Takashi Toma, Int.J.Mod.Phys. A31 (2016) 1650121, arXiv:1505.04665.
[Kashiwase:2015pra]
[33-405]
Leptogenesis Via Neutrino Production During Higgs Relaxation, Lauren Pearce, Louis Yang, Alexander Kusenko, Marco Peloso, Phys. Rev. D92 (2015) 023509, arXiv:1505.02461.
[Pearce:2015nga]
[33-406]
Addendum to 'Flavour Covariant Transport Equations: an Application to Resonant Leptogenesis', P.S. Bhupal Dev, Peter Millington, Apostolos Pilaftsis, Daniele Teresi, Nucl. Phys. B897 (2015) 749, arXiv:1504.07640.
[Dev:2015wpa]
[33-407]
Spontaneous thermal Leptogenesis via Majoron oscillation, Masahiro Ibe, Kunio Kaneta, Phys. Rev. D92 (2015) 035019, arXiv:1504.04125.
[Ibe:2015nfa]
[33-408]
A Model of Asymmetric Hadronic Dark Matter and Leptogenesis, Wei-Min Yang, arXiv:1503.08899, 2015.
[Yang:2015ssa]
[33-409]
Leptogenesis in the Symmetric Phase of the Early Universe: Baryon Asymmetry and Hypermagnetic Helicity Evolution, Victor B. Semikoz, Alexander Yu. Smirnov, J.Exp.Theor.Phys. 120 (2015) 217-225, arXiv:1503.06758.
[Semikoz:2015wsa]
[33-410]
Flavour always matters in scalar triplet leptogenesis, Stephane Lavignac, Benoit Schmauch, JHEP 1505 (2015) 124, arXiv:1503.00629.
[Lavignac:2015gpa]
[33-411]
Confronting Four Zero Neutrino Yukawa Textures with $N_2^{}$-dominated Leptogenesis, Jue Zhang, Phys. Rev. D91 (2015) 073012, arXiv:1502.04043.
[Zhang:2015qia]
[33-412]
Electroweak naturalness in three-flavour Type I see-saw and implications for leptogenesis, Jackson D. Clarke, Robert Foot, Raymond R. Volkas, Phys. Rev. D91 (2015) 073009, arXiv:1502.01352.
[Clarke:2015gwa]
[33-413]
Leptogenesis in an SU(5) x A5 Golden Ratio Flavour Model, Julia Gehrlein, Serguey T. Petcov, Martin Spinrath, Xinyi Zhang, Nucl. Phys. B896 (2015) 311, arXiv:1502.00110.
[Gehrlein:2015dxa]
[33-414]
Nonthermal CP Violation in Soft Leptogenesis, Rathin Adhikari, Arnab Dasgupta, Chee Sheng Fong, Raghavan Rangarajan, Phys. Rev. D91 (2015) 096001, arXiv:1501.06310.
[Adhikari:2015ysa]
[33-415]
Inflation and leptogenesis in the 3-3-1-1 model, D. T. Huong, P. V. Dong, C. S. Kim, N. T. Thuy, Phys. Rev. D91 (2015) 055023, arXiv:1501.00543.
[Huong:2015dwa]
[33-416]
Tree level Leptogenesis from Kalb-Ramond Torsion Background, M. de Cesare, Nick E. Mavromatos, Sarben Sarkar, Eur. Phys. J. C75 (2015) 514, arXiv:1412.7077.
[deCesare:2014dga]
[33-417]
keV Sterile Neutrino Dark Matter and Low Scale Leptogenesis, Sin Kyu Kang, Ayon Patra, J.Korean Phys.Soc. 69 (2016) 1375-1382, arXiv:1412.4899.
[Kang:2014mea]
[33-418]
Leptogenesis in SO(10), Chee Sheng Fong, Davide Meloni, Aurora Meroni, Enrico Nardi, JHEP 1501 (2015) 111, arXiv:1412.4776.
[Fong:2014gea]
[33-419]
Leptogenesis via axion oscillations after inflation, Alexander Kusenko, Kai Schmitz, Tsutomu T. Yanagida, Phys. Rev. Lett. 115 (2015) 011302, arXiv:1412.2043.
[Kusenko:2014uta]
[33-420]
Decrypting $SO(10)$-inspired leptogenesis, Pasquale Di Bari, Luca Marzola, Michele Re Fiorentin, Nucl. Phys. B893 (2015) 122-157, arXiv:1411.5478.
[DiBari:2014eya]
[33-421]
Phenomenology of Baryogenesis from Lepton-Doublet Mixing, Bjorn Garbrecht, Ignacio Izaguirre, Nucl. Phys. B896 (2015) 412-439, arXiv:1411.2834.
[Garbrecht:2014iia]
[33-422]
Right-handed neutrino production rate at T > 160 GeV, I. Ghisoiu, M. Laine, JCAP 1412 (2014) 032, arXiv:1411.1765.
[Ghisoiu:2014ena]
[33-423]
Kadanoff-Baym Approach to Flavour Mixing and Oscillations in Resonant Leptogenesis, P.S. Bhupal Dev, Peter Millington, Apostolos Pilaftsis, Daniele Teresi, Nucl. Phys. B891 (2015) 128-158, arXiv:1410.6434.
[BhupalDev:2014oar]
[33-424]
An SO(10) $\times$ SO(10)' model for common origin of neutrino masses, ordinary and dark matter-antimatter asymmetries, Pei-Hong Gu, JCAP 1412 (2014) 046, arXiv:1410.5759.
[Gu:2014nga]
[33-425]
A new leptogenesis scenario with predictions on $\sum m_\nu$ and $J_{CP}$, Pei-Hong Gu, Phys.Rev. D96 (2017) 075024, arXiv:1410.5753.
[Gu:2014mga]
[33-426]
Postinflationary Higgs relaxation and the origin of matter-antimatter asymmetry, Alexander Kusenko, Lauren Pearce, Louis Yang, Phys. Rev. Lett. 114 (2015) 061302, arXiv:1410.0722.
[Kusenko:2014lra]
[33-427]
Sterile Neutrino Dark Matter and Low Scale Leptogenesis from a Charged Scalar, Michele Frigerio, Carlos E. Yaguna, Eur.Phys.J. C75 (2015) 31, arXiv:1409.0659.
[Frigerio:2014ifa]
[33-428]
Neutrino Mixing and Leptogenesis in $\mu-\tau$ Symmetry, E. I. Lashin, N. Chamoun, C. Hamzaoui, S. Nasri, Phys. Rev. D91 (2015) 113014, arXiv:1408.5042.
[Lashin:2014wpa]
[33-429]
Perturbations to $\mu-\tau$ Symmetry, Leptogenesis and Lepton Flavour Violation with Type II Seesaw, Manikanta Borah, Debasish Borah, Mrinal Kumar Das, Sudhanwa Patra, Phys. Rev. D90 (2014) 095020, arXiv:1408.3191.
[Borah:2014bda]
[33-430]
Leptogenesis Constraints on the Mass of Right-handed Gauge Bosons, P. S. Bhupal Dev, Chang-Hun Lee, R. N. Mohapatra, Phys. Rev. D90 (2014) 095012, arXiv:1408.2820.
[BhupalDev:2014hro]
[33-431]
Leptogenesis and the Higgs Portal, Matthias Le Dall, Adam Ritz, Phys. Rev. D90 (2014) 096002, arXiv:1408.2498.
[LeDall:2014too]
[33-432]
Flavored leptogenesis in broken cyclic symmetric model, Biswajit Adhikary, Mainak Chakraborty, Ambar Ghosal, Phys. Rev. D93 (2016) 113001, arXiv:1407.6173.
[Adhikary:2014qba]
[33-433]
Nonzero $\theta_{13}$ and Leptogenesis in a Type-I See-saw Model with $A_4$ Symmetry, Biswajit Karmakar, Arunansu Sil, Phys. Rev. D91 (2015) 013004, arXiv:1407.5826.
[Karmakar:2014dva]
[33-434]
Strong Washout Approximation to Resonant Leptogenesis, Bjorn Garbrecht, Florian Gautier, Juraj Klaric, JCAP 1409 (2014) 033, arXiv:1406.4190.
[Garbrecht:2014aga]
[33-435]
Post-Sphaleron baryogenesis and $n-\bar{n}$ oscillation in non-SUSY SO(10) GUT with gauge coupling unification and proton decay, Sudhanwa Patra, Prativa Pritimita, Eur.Phys.J. C74 (2014) 3078, arXiv:1405.6836.
[Patra:2014goa]
[33-436]
The Dark Side of $\theta_{13}$, Leptogenesis and Inflation in Type-I Seesaw, Wei-Chih Huang, JHEP 1411 (2014) 083, arXiv:1405.5886.
[Huang:2014jaa]
[33-437]
Leptogenesis with a dynamical seesaw scale, D. Aristizabal Sierra, M. Tortola, J. W. F. Valle, A. Vicente, JCAP 1407 (2014) 052, arXiv:1405.4706.
[AristizabalSierra:2014uzi]
[33-438]
Lab-to-Genesis, Laurent Canetti, Marco Drewes, Bjorn Garbrecht, Phys. Rev. D90 (2014) 125005, arXiv:1404.7114.
[Canetti:2014dka]
[33-439]
Leptogenesis in crossing and runaway regimes, A. Hohenegger, A. Kartavtsev, JHEP 1407 (2014) 130, arXiv:1404.5309.
[Hohenegger:2014cpa]
[33-440]
Coherent Flavour Oscillation and CP Violating Parameter in Thermal Resonant Leptogenesis, Satoshi Iso, Kengo Shimada, JHEP 1408 (2014) 043, arXiv:1404.4816.
[Iso:2014afa]
[33-441]
Flavour Covariant Transport Equations: an Application to Resonant Leptogenesis, P. S. Bhupal Dev, Peter Millington, Apostolos Pilaftsis, Daniele Teresi, Nucl. Phys. B886 (2014) 569-664, arXiv:1404.1003.
[BhupalDev:2014pfm]
[33-442]
Commutators of lepton mass matrices associated with seesaw and leptogenesis, Yikun Wang, Zhi-zhong Xing, Phys. Rev. D89 (2014) 097301, arXiv:1404.0109.
[Wang:2014lla]
[33-443]
Neutrino masses, leptogenesis, and sterile neutrino dark matter, Takanao Tsuyuki, Phys. Rev. D90 (2014) 013007, arXiv:1403.5053.
[Tsuyuki:2014aia]
[33-444]
Kubo relations and radiative corrections for lepton number washout, D. Bodeker, M. Laine, JCAP 1405 (2014) 041, arXiv:1403.2755.
[Bodeker:2014hqa]
[33-445]
The Electroweak Vacuum Angle, Pavel Fileviez Perez, Hiren H. Patel, Phys.Lett. B732 (2014) 241, arXiv:1402.6340.
[FileviezPerez:2014xju]
[33-446]
Baryon Asymmetry in Neutrino Mass Models with and without $\theta_{13}$, Ng. K. Francis, arXiv:1401.8186, 2014.
[Francis:2014tea]
[33-447]
Chiral Gravity Waves and Leptogenesis in Inflationary Models with non-Abelian Gauge Fields, Azadeh Maleknejad, Phys. Rev. D90 (2014) 023542, arXiv:1401.7628.
[Maleknejad:2014wsa]
[33-448]
Neutrino mass from neutrinophilic Higgs and leptogenesis, Naoyuki Haba, Osamu Seto, Yuya Yamaguchi, arXiv:1401.6646, 2014.
[Haba:2014ita]
[33-449]
Strong thermal leptogenesis and the absolute neutrino mass scale, Pasquale Di Bari, Sophie King, Michele Re Fiorentin, JCAP 1403 (2014) 050, arXiv:1401.6185.
[DiBari:2014eqa]
[33-450]
Scalar triplet flavored leptogenesis: a systematic approach, D. Aristizabal Sierra, Mikael Dhen, Thomas Hambye, JCAP 1408 (2014) 003, arXiv:1401.4347.
[AristizabalSierra:2014nzr]
[33-451]
More Viable Parameter Space for Leptogenesis, Bjorn Garbrecht, Phys. Rev. D90 (2014) 063522, arXiv:1401.3278.
[Garbrecht:2014bfa]
[33-452]
Baryogenesis through Neutrino Oscillations: A Unified Perspective, Brian Shuve, Itay Yavin, Phys. Rev. D89 (2014) 075014, arXiv:1401.2459.
[Shuve:2014zua]
[33-453]
Leptogenesis and CP violation in SU(5) models with lepton flavor mixing originating from the right-handed sector, Heinrich Pas, Erik Schumacher, Phys. Rev. D89 (2014) 096010, arXiv:1401.2328.
[Pas:2014bra]
[33-454]
Kadanoff-Baym approach to the thermal resonant leptogenesis, Satoshi Iso, Kengo Shimada, Masato Yamanaka, JHEP 1404 (2014) 062, arXiv:1312.7680.
[Iso:2013lba]
[33-455]
Triplet Dark Matter from leptogenesis, Jae Ho Heo, Phys. Rev. D89 (2014) 087704, arXiv:1312.6217.
[Heo:2013xxa]
[33-456]
Falsifying Leptogenesis at the LHC, Frank F. Deppisch, Julia Harz, Martin Hirsch, Phys. Rev. Lett. 112 (2014) 221601, arXiv:1312.4447.
[Deppisch:2013jxa]
[33-457]
Non-relativistic leptogenesis, Dietrich Bodeker, Mirco Wormann, JCAP 1402 (2014) 016, arXiv:1311.2593.
[Bodeker:2013qaa]
[33-458]
Partial $\mu-\tau$ Textures and Leptogenesis, Cherif Hamzaoui, Salah Nasri, Manuel Toharia, Phys. Rev. D89 (2014) 073019, arXiv:1311.2188.
[Hamzaoui:2013twa]
[33-459]
Gravitino LSP and Leptogenesis after the first LHC results, Jan Heisig, JCAP 1404 (2014) 023, arXiv:1310.6352.
[Heisig:2013sva]
[33-460]
Inflation, Leptogenesis, and Yukawa Quasi-Unification within a Supersymmetric Left-Right Model, R. Armillis, G. Lazarides, C. Pallis, Phys. Rev. D89 (2014) 065032, arXiv:1309.6986.
[Armillis:2013fla]
[33-461]
Cloistered Baryogenesis, D. Aristizabal Sierra, Chee Sheng Fong, Enrico Nardi, Eduardo Peinado, JCAP 1402 (2014) 013, arXiv:1309.4770.
[AristizabalSierra:2013lyx]
[33-462]
Hypermagnetic helicity evolution in early universe: leptogenesis and hypermagnetic diffusion, V.B. Semikoz, A.Yu. Smirnov, D.D. Sokoloff, JCAP 1310 (2013) 014, arXiv:1309.4302.
[Semikoz:2013xkc]
[33-463]
Gravitino Leptogenesis, Lawrence M. Krauss, Andrew J. Long, Subir Sabharwal, Phys. Rev. D89 (2014) 043503, arXiv:1309.1454.
[Krauss:2013dia]
[33-464]
WIMPy Leptogenesis With Absorptive Final State Interactions, Jason Kumar, Patrick Stengel, Phys. Rev. D89 (2014) 055016, arXiv:1309.1145.
[Kumar:2013uca]
[33-465]
Mass bounds for baryogenesis from particle decays and the inert doublet model, J. Racker, JCAP 1403 (2014) 025, arXiv:1308.1840.
[Racker:2013lua]
[33-466]
SO(10)-inspired solution to the problem of the initial conditions in leptogenesis, Pasquale Di Bari, Luca Marzola, Nucl. Phys. B877 (2013) 719-751, arXiv:1308.1107.
[DiBari:2013qja]
[33-467]
Thermal right-handed neutrino production rate in the relativistic regime, M. Laine, JHEP 1308 (2013) 138, arXiv:1307.4909.
[Laine:2013lka]
[33-468]
Leptogenesis and Neutrino Oscillations in the Classically Conformal Standard Model with the Higgs Portal, Valentin V. Khoze, Gunnar Ro, JHEP 1310 (2013) 075, arXiv:1307.3764.
[Khoze:2013oga]
[33-469]
Leptogenesis with Lepton-Number-Violating Dirac Neutrinos, Julian Heeck, Phys. Rev. D 88, 076004 (2013) 076004, arXiv:1307.2241.
[Heeck:2013vha]
[33-470]
Cuts, Cancellations and the Closed Time Path: The Soft Leptogenesis Example, Bjorn Garbrecht, Michael J. Ramsey-Musolf, Nucl. Phys. B882 (2014) 145-170, arXiv:1307.0524.
[Garbrecht:2013iga]
[33-471]
A dynamical CP source for CKM, PMNS and Leptogenesis, Y. H. Ahn, Seungwon Baek, Phys. Rev. D88 (2014) 036017, arXiv:1306.4138.
[Vien:2014gza]
[33-472]
Correlations between low energy leptonic CP violation and leptogenesis in the light of recent experiments, H. Zeen Devi, Int.J.Mod.Phys. A29 (2014) 1450104, arXiv:1306.2426.
[Devi:2013qgy]
[33-473]
Neutrino spectral density at electroweak scale temperature, Kohtaroh Miura, Yoshimasa Hidaka, Daisuke Satow, Teiji Kunihiro, Phys. Rev. D88 (2013) 065024, arXiv:1306.1701.
[Miura:2013fxa]
[33-474]
New ways to TeV scale leptogenesis, Chee Sheng Fong, M.C. Gonzalez-Garcia, Enrico Nardi, Eduardo Peinado, JHEP 1308 (2013) 104, arXiv:1305.6312.
[Fong:2013gaa]
[33-475]
Resonant leptogenesis with mild degeneracy, Naoyuki Haba, Osamu Seto, Yuya Yamaguchi, Phys. Rev. D87 (2013) 123540, arXiv:1305.2484.
[Haba:2013pca]
[33-476]
Post-Sphaleron Baryogenesis and an Upper Limit on the Neutron-Antineutron Oscillation Time, K.S. Babu, P.S. Bhupal Dev, Elaine C.F.S. Fortes, R.N. Mohapatra, Phys. Rev. D87 (2013) 115019, arXiv:1303.6918.
[Babu:2013yca]
[33-477]
Scattering Rates For Leptogenesis: Damping of Lepton Flavour Coherence and Production of Singlet Neutrinos, Bjorn Garbrecht, Frank Glowna, Pedro Schwaller, Nucl. Phys. B877 (2013) 1-35, arXiv:1303.5498.
[Garbrecht:2013bia]
[33-478]
Hierarchical Neutrino Masses and Leptogenesis in Type I+II Seesaw Models, Debasish Borah, Mrinal Kumar Das, Phys. Rev. D90 (2014) 015006, arXiv:1303.1758.
[Borah:2013bza]
[33-479]
Right-Handed Neutrino Production at Finite Temperature: Radiative Corrections, Soft and Collinear Divergences, Bjorn Garbrecht, Frank Glowna, Matti Herranen, JHEP 1304 (2013) 099, arXiv:1302.0743.
[Garbrecht:2013gd]
[33-480]
Leptogenesis in a TeV scale neutrino mass model with inverted mass hierarchy, Shoichi Kashiwase, Daijiro Suematsu, Eur.Phys.J. C73 (2013) 2484, arXiv:1301.2087.
[Kashiwase:2013uy]
[33-481]
A Model of Fermion Flavor and Leptogenesis and Cold Dark Matter, Wei-Min Yang, Phys. Rev. D87 (2013) 095003, arXiv:1301.0076.
[Yang:2013ra]
[33-482]
Consequences of f(R)-theories of gravity on gravitational leptogenesis, G. Lambiase, S. Mohanty, L. Pizza, Gen.Rel.Grav. 45 (2013) 1771-1785, arXiv:1212.6026.
[Lambiase:2012tn]
[33-483]
Hidden from View: Neutrino Masses, Dark Matter and TeV-Scale Leptogenesis in a Neutrinophilic 2HDM, Wei Chao, Michael J. Ramsey-Musolf, Phys. Rev. D89 (2014) 033007, arXiv:1212.5709.
[Chao:2012pt]
[33-484]
Dark matter asymmetry in supersymmetric Dirac leptogenesis, Ki-Young Choi, Eung Jin Chun, Chang Sub Shin, Phys.Lett. B723 (2013) 90-94, arXiv:1211.5409.
[Choi:2012ba]
[33-485]
CPT-Violating Leptogenesis induced by Gravitational Defects, Nick E. Mavromatos, Sarben Sarkar, Eur.Phys.J. C73 (2013) 2359, arXiv:1211.0968.
[Mavromatos:2012ii]
[33-486]
Triplet Scalar Dark Matter and Leptogenesis in an Inverse See-Saw Model of Neutrino Mass Generation, Francois-Xavier Josse-Michaux, Emiliano Molinaro, Phys. Rev. D87 (2013) 036007, arXiv:1210.7202.
[Josse-Michaux:2012oqz]
[33-487]
Baryon asymmetry and dark matter from soft leptogenesis, Heidi Kuismanen, Iiro Vilja, Phys. Rev. D87 (2013) 015005, arXiv:1210.4335.
[Kuismanen:2012iz]
[33-488]
Baryogenesis from Mixing of Lepton Doublets, Bjorn Garbrecht, Nucl. Phys. B868 (2013) 557-576, arXiv:1210.0553.
[Garbrecht:2012pq]
[33-489]
Smooth Hybrid Inflation and Non-Thermal Type II Leptogenesis, Shaaban Khalil, Qaisar Shafi, Arunansu Sil, Phys. Rev. D86 (2012) 073004, arXiv:1208.0731.
[Khalil:2012nd]
[33-490]
Leptogenesis and Neutrino Masses in an Inflationary SUSY Pati-Salam Model, C. Pallis, N. Toumbas, arXiv:1207.3730, 2012.
[Pallis:2012zd]
[33-491]
Non-zero $\theta_{13}$ from the Triangular Ansatz and Leptogenesis, H. B. Benaoum, Mod. Phys. Lett. A27 (2012) 1250151, arXiv:1207.1967.
[Benaoum:2012my]
[33-492]
Minimal Flavor Violation in the Minimal $U(1)_{B-L}$ Model and Resonant Leptogenesis, Nobuchika Okada, Yuta Orikasa, Toshifumi Yamada, Phys. Rev. D86 (2012) 076003, arXiv:1207.1510.
[Okada:2012fs]
[33-493]
Leptogenesis from a GeV Seesaw without Mass Degeneracy, Marco Drewes, Bjorn Garbrecht, JHEP 1303 (2013) 096, arXiv:1206.5537.
[Drewes:2012ma]
[33-494]
The Impact of Non-zero $\theta_{13}$ on Neutrino Mass and Leptogenesis in a SUSY SO(10) Model, Swarup Kumar Majee, arXiv:1205.4751, 2012.
[Majee:2012dq]
[33-495]
Bubble Baryogenesis, Clifford Cheung, Alex Dahlen, Gilly Elor, JHEP 09 (2012) 073, arXiv:1205.3501.
[Cheung:2012im]
[33-496]
Leptogenesis with small violation of B-L, J. Racker, Manuel Pena, Nuria Rius, JCAP 1207 (2012) 030, arXiv:1205.1948.
[Racker:2012vw]
[33-497]
TeV Scale Leptogenesis in B-L Model with Alternative Cosmologies, W. Abdallah, D. Delepine, S. Khalil, Phys.Lett. B725 (2013) 361-367, arXiv:1205.1503.
[Abdallah:2012nm]
[33-498]
Neutrino Spin Flavor Precession and Leptogenesis, Juan Barranco, Roberto Cota, David Delepine, Shaaban Khalil, Phys. Rev. D86 (2012) 113009, arXiv:1205.1250.
[Barranco:2012ir]
[33-499]
Leptongenesis in models with keV sterile neutrino dark matter, F. Bezrukov, A. Kartavtsev, M. Lindner, J. Phys. G40 (2013) 095202, arXiv:1204.5477.
[Bezrukov:2012as]
[33-500]
Anarchy and Leptogenesis, Kwang Sik Jeong, Fuminobu Takahashi, JHEP 07 (2012) 170, arXiv:1204.5453.
[Jeong:2012zj]
[33-501]
Neutrino Masses and Leptogenesis from Extra Fermions, Dmitry V. Zhuridov, Int. J. Mod. Phys. A 28 (2013) 1350104, arXiv:1204.4581.
[Zhuridov:2012hb]
[33-502]
Non-Minimal Chaotic Inflation, Peccei-Quinn Phase Transition and non-Thermal Leptogenesis, C. Pallis, Q. Shafi, Phys. Rev. D86 (2012) 023523, arXiv:1204.0252.
[Pallis:2012iw]
[33-503]
Revisiting Leptogenesis in a SUSY SU(5) x T' Model of Flavour, A. Meroni, E. Molinaro, S. T. Petcov, Phys. Lett. B710 (2012) 435-445, arXiv:1203.4435.
[Meroni:2012ze]
[33-504]
Squeezing out predictions with leptogenesis from SO(10), Franco Buccella, Domenico Falcone, Chee Sheng Fong, Enrico Nardi, Giulia Ricciardi, Phys. Rev. D86 (2012) 035012, arXiv:1203.0829.
[Buccella:2012kc]
[33-505]
WIMP Dark Matter from Gravitino Decays and Leptogenesis, Wilfried Buchmuller, Valerie Domcke, Kai Schmitz, Phys. Lett. B713 (2012) 63-67, arXiv:1203.0285.
[Buchmuller:2012bt]
[33-506]
Thermal production of ultrarelativistic right-handed neutrinos: Complete leading-order results, Denis Besak, Dietrich Bodeker, JCAP 1203 (2012) 029, arXiv:1202.1288.
[Besak:2012qm]
[33-507]
Split neutrinos - leptogenesis, dark matter and inflation, Anupam Mazumdar, Stefano Morisi, Phys. Rev. D86 (2012) 045031, arXiv:1201.6189.
[Mazumdar:2012qk]
[33-508]
Leptogenesis from Additional Higgs Doublets, Bjorn Garbrecht, Phys. Rev. D85 (2012) 123509, arXiv:1201.5126.
[Garbrecht:2012qv]
[33-509]
Leptogenesis from first principles in the resonant regime, Mathias Garny, Alexander Kartavtsev, Andreas Hohenegger, Annals Phys. 328 (2013) 26-63, arXiv:1112.6428.
[Garny:2011hg]
[33-510]
Effective Theory of Resonant Leptogenesis in the Closed-Time-Path Approach, Bjorn Garbrecht, Matti Herranen, Nucl. Phys. B861 (2012) 17-52, arXiv:1112.5954.
[Garbrecht:2011aw]
[33-511]
Leptogenesis with heavy neutrino flavours: from density matrix to Boltzmann equations, Steve Blanchet, David A. Jones, Pasquale Di Bari, Luca Marzola, JCAP 1301 (2013) 041, arXiv:1112.4528.
[Blanchet:2011xq]
[33-512]
Technicolor Assisted Leptogenesis with an Ultra-Heavy Higgs Doublet, Hooman Davoudiasl, Ian Lewis, Phys. Rev. D86 (2012) 015024, arXiv:1112.1939.
[Davoudiasl:2011aa]
[33-513]
Leptogenesis in flavor models with type I and II seesaws, D. Aristizabal Sierra, F. Bazzocchi, I. de Medeiros Varzielas, Nucl. Phys. B858 (2012) 196-213, arXiv:1112.1843.
[AristizabalSierra:2011ab]
[33-514]
Leptogenesis via hypermagnetic fields and baryon asymmetry, Maxim Dvornikov, Victor B. Semikoz, JCAP 1202 (2012) 040, arXiv:1111.6876.
[Dvornikov:2011ey]
[33-515]
Scalar Neutrino as Asymmetric Dark Matter: Radiative Neutrino Mass and Leptogenesis, Ernest Ma, Utpal Sarkar, Phys. Rev. D85 (2012) 075015, arXiv:1111.5350.
[Ma:2011zm]
[33-516]
Dirac Leptogenesis with a Non-anomalous $U(1)^{\prime}$ Family Symmetry, Mu-Chun Chen, Jinrui Huang, William Shepherd, JHEP 11 (2012) 059, arXiv:1111.5018.
[Chen:2011sb]
[33-517]
Hard-Thermal-Loop Corrections in Leptogenesis II: Solving the Boltzmann Equations, Clemens Kiessig, Michael Plumacher, JCAP 1209 (2012) 012, arXiv:1111.1235.
[Kiessig:2011ga]
[33-518]
Hard-Thermal-Loop Corrections in Leptogenesis I: CP-Asymmetries, Clemens Kiessig, Michael Plumacher, JCAP 1207 (2012) 014, arXiv:1111.1231.
[Kiessig:2011fw]
[33-519]
Weak Scale Leptogenesis, R-symmetry, and a Displaced Higgs, Keith Rehermann, Christopher M. Wells, arXiv:1111.0008, 2011.
[Rehermann:2011ax]
[33-520]
Renormalisation group improved leptogenesis in family symmetry models, Iain K. Cooper, Stephen F. King, Christoph Luhn, Nucl. Phys. B859 (2012) 159-176, arXiv:1110.5676.
[Cooper:2011rh]
[33-521]
Majorana CP phases in bi-pair neutrino mixing and leptogenesis, Teruyuki Kitabayashi, Masaki Yasue, arXiv:1110.5162, 2011.
[Kitabayashi:2011zp]
[33-522]
Leptogenesis in the presence of exact flavor symmetries, D. Aristizabal Sierra, Federica Bazzocchi, JHEP 03 (2012) 057, arXiv:1110.3781.
[AristizabalSierra:2011pkj]
[33-523]
$\theta_{13}$, CP Violation and Leptogenesis in Minimal Supersymmetric $SU(4)_c \times SU(2)_L \times SU(2)_R$, Nobuchika Okada, Qaisar Shafi, Phys.Rev. D98 (2018) 035044, arXiv:1109.4963.
[Okada:2011ar]
[33-524]
Electroweak Beautygenesis: From $b \to s$ CP-violation to the Cosmic Baryon Asymmetry, Tao Liu, Michael J. Ramsey-Musolf, Jing Shu, Phys. Rev. Lett. 108 (2012) 221301, arXiv:1109.4145.
[Liu:2011jh]
[33-525]
Re-analysing the implications of CPT and unitarity for baryogenesis and leptogenesis, Atri Bhattacharya, Raj Gandhi, Satyanarayan Mukhopadhyay, Phys. Rev. D89 (2014) 116014, arXiv:1109.1832.
[Bhattacharya:2011sy]
[33-526]
Reheating and leptogenesis in brane inflation, Sayantan Choudhury, Supratik Pal, Nucl. Phys. B857 (2012) 85-100, arXiv:1108.5676.
[Choudhury:2011rz]
[33-527]
Asymmetric Inelastic Inert Doublet Dark Matter from Triplet Scalar Leptogenesis, Chiara Arina, Narendra Sahu, Nucl. Phys. B854 (2012) 666-699, arXiv:1108.3967.
[Arina:2011cu]
[33-528]
Non-Minimal Higgs Inflation and non-Thermal Leptogenesis in A Supersymmetric Pati-Salam Model, C. Pallis, N. Toumbas, JCAP 1112 (2011) 002, arXiv:1108.1771.
[Pallis:2011gr]
[33-529]
A Common Framework for Dark Matter, Leptogenesis and Neutrino Masses, Francois-Xavier Josse-Michaux, Emiliano Molinaro, Phys. Rev. D84 (2011) 125021, arXiv:1108.0482.
[Josse-Michaux:2011sjn]
[33-530]
Leptogenesis in the two right-handed neutrino model revisited, S. Antusch, P. Di Bari, D.A. Jones, S.F. King, Phys. Rev. D86 (2012) 023516, arXiv:1107.6002.
[Antusch:2011nz]
[33-531]
Leptogenesis from Soft Supersymmetry Breaking (Soft Leptogenesis), Chee Sheng Fong, M. C. Gonzalez-Garcia, Enrico Nardi, Int. J. Mod. Phys. A26 (2011) 3491-3604, arXiv:1107.5312.
[Fong:2011yx]
[33-532]
Leptogenesis in a SUSY SU(5) x T' Model with Geometrical CP Violation, Mu-Chun Chen, K.T. Mahanthappa, arXiv:1107.3856, 2011.
[Chen:2011tj]
[33-533]
Leptogenesis by curvature coupling of heavy neutrinos, Gaetano Lambiase, Subhendra Mohanty, Phys. Rev. D84 (2011) 023509, arXiv:1107.1213.
[Lambiase:2011by]
[33-534]
New Ways for Leptogenesis versus Neutrino Masses, Dmitry V. Zhuridov, Mod. Phys. Lett. A26 (2011) 2983-2996, arXiv:1107.1087.
[Zhuridov:2011ar]
[33-535]
Thermal leptogenesis in a supersymmetric neutrinophilic Higgs model, Naoyuki Haba, Osamu Seto, Phys. Rev. D84 (2011) 103524, arXiv:1106.5354.
[Haba:2011yc]
[33-536]
Towards leptogenesis at NLO: the right-handed neutrino interaction rate, Alberto Salvio, Paolo Lodone, Alessandro Strumia, JHEP 08 (2011) 116, arXiv:1106.2814.
[Salvio:2011sf]
[33-537]
New Solution for Neutrino Masses and Leptogenesis in Adjoint SU(5), Kristjan Kannike, Dmitry Zhuridov, JHEP 07 (2011) 102, arXiv:1105.4546.
[Kannike:2011fx]
[33-538]
Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays, W. Buchmuller, K. Schmitz, G. Vertongen, Nucl. Phys. B851 (2011) 481-532, arXiv:1104.2750.
[Buchmuller:2011mw]
[33-539]
Electromagnetic leptogenesis at the TeV scale, Debajyoti Choudhury, Namit Mahajan, Sudhanwa Patra, Utpal Sarkar, JCAP 1204 (2012) 017, arXiv:1104.1851.
[Choudhury:2011gbi]
[33-540]
Resonant Leptogenesis with nonholomorphic R-Parity violation and LHC Phenomenology, Joydeep Chakrabortty, Sourov Roy, Phys. Rev. D85 (2012) 035014, arXiv:1104.1387.
[Chakrabortty:2011zz]
[33-541]
Leptogenesis in a TeV scale model for neutrino masses, Daijiro Suematsu, Eur. Phys. J. C72 (2012) 1951, arXiv:1103.0857.
[Suematsu:2011va]
[33-542]
Minimal Dark Matter and Leptogenesis, Eung Jin Chun, JHEP 03 (2011) 098, arXiv:1102.3455.
[Chun:2011cc]
[33-543]
Low scale thermal leptogenesis in neutrinophilic Higgs doublet models, Naoyuki Haba, Osamu Seto, Prog. Theor. Phys. 125 (2011) 1155-1169, arXiv:1102.2889.
[Haba:2011ra]
[33-544]
Asymmetric Dark Matter from Leptogenesis, Adam Falkowski, Joshua T. Ruderman, Tomer Volansky, JHEP 05 (2011) 106, arXiv:1101.4936.
[Falkowski:2011xh]
[33-545]
Affleck-Dine leptogenesis in the radiative neutrino mass model, H. Higashi, T. Ishima, D. Suematsu, Int. J. Mod. Phys. A26 (2011) 995-1009, arXiv:1101.2704.
[Higashi:2011qq]
[33-546]
Quantum Leptogenesis I, A. Anisimov, W. Buchmuller, M. Drewes, S. Mendizabal, Annals Phys. 326 (2011) 1998-2038, arXiv:1012.5821.
[Anisimov:2010dk]
[33-547]
Thermal production of relativistic Majorana neutrinos: Strong enhancement by multiple soft scattering, Alexey Anisimov, Denis Besak, Dietrich Bodeker, JCAP 1103 (2011) 042, arXiv:1012.3784.
[Anisimov:2010gy]
[33-548]
Leptogenesis in B-L gauged SUSY with MSSM Higgs sector, Juho Pelto, Iiro Vilja, Heidi Virtanen, Phys. Rev. D83 (2011) 055001, arXiv:1012.3288.
[Pelto:2010vq]
[33-549]
Testing SO(10)-inspired leptogenesis with low energy neutrino experiments, Pasquale Di Bari, Antonio Riotto, JCAP 1104 (2011) 037, arXiv:1012.2343.
[DiBari:2010ux]
[33-550]
Lepton Flavour Violation and theta(13) in Minimal Resonant Leptogenesis, Frank F. Deppisch, Apostolos Pilaftsis, Phys. Rev. D83 (2011) 076007, arXiv:1012.1834.
[Deppisch:2010fr]
[33-551]
Early Universe effective theories: The Soft Leptogenesis and R-Genesis Cases, Chee Sheng Fong, M. C. Gonzalez-Garcia, Enrico Nardi, JCAP 1102 (2011) 032, arXiv:1012.1597.
[Fong:2010bv]
[33-552]
MINOS and Leptogenesis, Chiu Man Ho, Phys.Lett. B702 (2011) 398-401, arXiv:1012.1053.
[Ho:2010jv]
[33-553]
Low-scale Leptogenesis and Dark Matter, Wei-Chih Huang, arXiv:1012.0285, 2010.
[Huang:2010uu]
[33-554]
Leptogenesis at the Electroweak Scale, Boris Kayser, Gino Segre, Phys. Lett. B704 (2011) 570-573, arXiv:1011.6362.
[Kayser:2010fc]
[33-555]
Resonant Leptogenesis in the Minimal B-L Extended Standard Model at TeV, Satoshi Iso, Nobuchika Okada, Yuta Orikasa, Phys. Rev. D83 (2011) 093011, arXiv:1011.4769.
[Iso:2010mv]
[33-556]
Leptogenesis: The Other Cuts, Bjorn Garbrecht, Nucl. Phys. B847 (2011) 350-366, arXiv:1011.3122.
[Garbrecht:2010sz]
[33-557]
CP Violation from Scatterings with Gauge Bosons in Leptogenesis, Chee Sheng Fong, M. C. Gonzalez-Garcia, J. Racker, Phys. Lett. B697 (2011) 463-470, arXiv:1010.2209.
[Fong:2010bh]
[33-558]
Leptogenesis with TeV Scale Inverse Seesaw in SO(10), Steve Blanchet, P. S. Bhupal Dev, R. N. Mohapatra, Phys. Rev. D82 (2010) 115025, arXiv:1010.1471.
[Blanchet:2010kw]
[33-559]
Seesaw and leptogenesis: a triangular ansatz, D. Falcone, Mod. Phys. Lett. A26 (2011) 1375-1379, arXiv:1009.6175.
[Falcone:2010ca]
[33-560]
Type II Seesaw Higgs Triplet as the inflaton for Chaotic Inflation and Leptogenesis, Chian-Shu Chen, Chia-Min Lin, Phys. Lett. B695 (2011) 9-12, arXiv:1009.5727.
[Chen:2010uc]
[33-561]
Aidnogenesis via Leptogenesis and Dark Sphalerons, Mattias Blennow, Basudeb Dasgupta, Enrique Fernandez-Martinez, Nuria Rius, JHEP 03 (2011) 014, arXiv:1009.3159.
[Blennow:2010qp]
[33-562]
Baryogenesis from a right-handed neutrino condensate, Gabriela Barenboim, Javier Rasero, JHEP 03 (2011) 097, arXiv:1009.3024.
[Barenboim:2010nm]
[33-563]
Baryon asymmetry from leptogenesis with four zero neutrino Yukawa textures, Biswajit Adhikary, Ambar Ghosal, Probir Roy, JCAP 1101 (2011) 025, arXiv:1009.2635.
[Adhikary:2010fa]
[33-564]
Standard Model CP-violation and Cold Electroweak Baryogenesis, Anders Tranberg, Phys. Rev. D84 (2011) 083516, arXiv:1009.2358.
[Tranberg:2010af]
[33-565]
Leptogenesis origin of Dirac gaugino dark matter, Eung Jin Chun, Phys. Rev. D83 (2011) 053004, arXiv:1009.0983.
[Chun:2010hz]
[33-566]
Xogenesis, Matthew R. Buckley, Lisa Randall, JHEP 09 (2011) 009, arXiv:1009.0270.
[Buckley:2010ui]
[33-567]
Supersymmetric Leptogenesis, Chee Sheng Fong, M. C. Gonzalez-Garcia, Enrico Nardi, J. Racker, JCAP 1012 (2010) 013, arXiv:1009.0003.
[Fong:2010qh]
[33-568]
Matter and Dark Matter from False Vacuum Decay, W. Buchmuller, K. Schmitz, G. Vertongen, Phys. Lett. B693 (2010) 421-425, arXiv:1008.2355.
[Buchmuller:2010yy]
[33-569]
Leptogenesis, Gravitino Dark Matter and Entropy Production, Jasper Hasenkamp, Jorn Kersten, Phys. Rev. D82 (2010) 115029, arXiv:1008.1740.
[Hasenkamp:2010if]
[33-570]
Flavoured Leptogenesis in the CTP Formalism, Martin Beneke, Bjorn Garbrecht, Christian Fidler, Matti Herranen, Pedro Schwaller, Nucl. Phys. B843 (2011) 177-212, arXiv:1007.4783.
[Beneke:2010dz]
[33-571]
Soft Leptogenesis and Gravitino Dark Matter in Gauge Mediation, Koichi Hamaguchi, Norimi Yokozaki, Phys. Lett. B694 (2011) 398-401, arXiv:1007.3323.
[Hamaguchi:2010cw]
[33-572]
Leptogenesis with Linear, Inverse or Double Seesaw, Pei-Hong Gu, Utpal Sarkar, Phys. Lett. B694 (2010) 226-232, arXiv:1007.2323.
[Gu:2010xc]
[33-573]
Implications of Flavor Dynamics for Fermion Triplet Leptogenesis, D. Aristizabal Sierra, Jernej F. Kamenik, Miha Nemevsek, JHEP 10 (2010) 036, arXiv:1007.1907.
[AristizabalSierra:2010mv]
[33-574]
The problem of the initial conditions in flavoured leptogenesis and the tauon N_2-dominated scenario, Enrico Bertuzzo, Pasquale Di Bari, Luca Marzola, Nucl. Phys. B849 (2011) 521-548, arXiv:1007.1641.
[Bertuzzo:2010et]
[33-575]
Sneutrino Hybrid Inflation and Nonthermal Leptogenesis, Stefan Antusch, Jochen P. Baumann, Valerie F. Domcke, Philipp M. Kostka, JCAP 1010 (2010) 006, arXiv:1007.0708.
[Antusch:2010mv]
[33-576]
Baryogenesis via leptogenesis from quark-lepton symmetry\par and a compact heavy $N_R$ spectrum, F. Buccella, D. Falcone, L. Oliver, Phys. Rev. D83 (2011) 093013, arXiv:1006.5698.
[Buccella:2010jc]
[33-577]
Probing lepton flavor violation with nonzero $U_{e3}$ and leptogenesis through $A_4$ symmetry breaking, Y. H. Ahn, arXiv:1006.2953, 2010.
[Ahn:2010ui]
[33-578]
Examining leptogenesis with lepton flavor violation and the dark matter abundance, Steve Blanchet, Danny Marfatia, Azar Mustafayev, JHEP 11 (2010) 038, arXiv:1006.2857.
[Blanchet:2010td]
[33-579]
Bridging flavour violation and leptogenesis in SU(3) family models, Lorenzo Calibbi, Eung Jin Chun, Liliana Velasco-Sevilla, JHEP 11 (2010) 090, arXiv:1005.5563.
[Calibbi:2010rf]
[33-580]
Quantum corrections to leptogenesis from the gradient expansion, M. Garny, A. Hohenegger, A. Kartavtsev, arXiv:1005.5385, 2010.
[Garny:2010nz]
[33-581]
Leptogenesis in a Hybrid Texture Neutrino Mass Model, S. Dev, Surender Verma, Mod. Phys. Lett. A25 (2010) 2837-2848, arXiv:1005.4521.
[Dev:2010vy]
[33-582]
Large Lepton Asymmetry for Small Baryon Asymmetry and Warm Dark Matter, Pei-Hong Gu, Phys. Rev. D82 (2010) 093009, arXiv:1005.1632.
[Gu:2010dg]
[33-583]
Dark Matter, Baryon Asymmetry, and Spontaneous B and L Breaking, Timothy R. Dulaney, Pavel Fileviez Perez, Mark B. Wise, Phys. Rev. D83 (2011) 023520, arXiv:1005.0617.
[Dulaney:2010dj]
[33-584]
Flavoured soft leptogenesis and natural values of the B term, Chee Sheng Fong, M. C. Gonzalez-Garcia, Enrico Nardi, J. Racker, JHEP 07 (2010) 001, arXiv:1004.5125.
[Fong:2010zu]
[33-585]
Supersymmetric Leptogenesis with a Light Hidden Sector, Andrea De Simone, Mathias Garny, Alejandro Ibarra, Christoph Weniger, JCAP 1007 (2010) 017, arXiv:1004.4890.
[DeSimone:2010tr]
[33-586]
$(L_e-L_{\mu}-L_{\tau})$ discrete symmetry for heavy right-handed neutrinos and degenerate leptogenesis, Riazuddin,, Phys. Rev. D81 (2010) 093003, arXiv:1004.4768.
[Riazuddin:2010ry]
[33-587]
Neutrino decay into fermionic quasiparticles in leptogenesis, Clemens P. Kiessig, Markus H. Thoma, Michael Pluemacher, arXiv:1004.3999, 2010. 6 pages, 3 figures, proceedings of 'Beyond the standard models of particle physics, cosmology and astrophysics', Cape Town, Feb 2010.
[Kiessig:2010ev]
[33-588]
On the Vanishing of the CP Asymmetry in Leptogenesis due to Form Dominance, Sandhya Choubey, S. F. King, Manimala Mitra, Phys. Rev. D82 (2010) 033002, arXiv:1004.3756.
[Choubey:2010vs]
[33-589]
A direct link between neutrinoless double beta decay and leptogenesis in a seesaw model with $S_4$ symmetry, Y. H. Ahn, Sin Kyu Kang, C. S. Kim, T. Phong Nguyen, Phys. Rev. D82 (2010) 093005, arXiv:1004.3469.
[Ahn:2010nw]
[33-590]
On fast CP violating interactions in leptogenesis, Chee Sheng Fong, J. Racker, JCAP 1007 (2010) 001, arXiv:1004.2546.
[Fong:2010up]
[33-591]
Non-thermal leptogenesis in supersymmetric 3-3-1 model with inflationary scenario, D. T. Huong, H. N. Long, J. Phys. G38 (2011) 015202, arXiv:1004.1246.
[Huong:2010km]
[33-592]
Low-Scale Leptogenesis and the Domain Wall Problem in Models with Discrete Flavor Symmetries, Francesco Riva, Phys. Lett. B690 (2010) 443-450, arXiv:1004.1177.
[Riva:2010jm]
[33-593]
A fuller flavour treatment of N_2-dominated leptogenesis, Stefan Antusch, Pasquale Di Bari, David A. Jones, Steve F. King, Nucl. Phys. B856 (2012) 180-209, arXiv:1003.5132.
[Antusch:2010ms]
[33-594]
Decay of a Yukawa fermion at finite temperature and applications to leptogenesis, Clemens P. Kiessig, Michael Plumacher, Markus H. Thoma, Phys. Rev. D82 (2010) 036007, arXiv:1003.3016.
[Kiessig:2010pr]
[33-595]
Non-thermal Leptogenesis in a simple 5D SO(10) GUT, Takeshi Fukuyama, Nobuchika Okada, JCAP 1009 (2010) 024, arXiv:1003.2691.
[Fukuyama:2010hh]
[33-596]
Gauged B-L Leptogenesis, Yuji Kajiyama, Shaaban Khalil, Hiroshi Okada, Ernest Ma, arXiv:1003.0324, 2010.
[Kajiyama:2010iq]
[33-597]
Finite Number Density Corrections to Leptogenesis, Martin Beneke, Bjorn Garbrecht, Matti Herranen, Pedro Schwaller, Nucl. Phys. B838 (2010) 1-27, arXiv:1002.1326.
[Beneke:2010wd]
[33-598]
Medium corrections to the CP-violating parameter in leptogenesis, M. Garny, A. Hohenegger, A. Kartavtsev, Phys. Rev. D81 (2010) 085028, arXiv:1002.0331.
[Garny:2010nj]
[33-599]
Quantum Interference in a Thermal Bath, A. Anisimov, W. Buchmuller, M. Drewes, S. Mendizabal, Phys. Rev. Lett. 104 (2010) 121102, arXiv:1001.3856.
[Anisimov:2010aq]
[33-600]
Non-zero U_{e3} and TeV-Leptogenesis through A_4 symmetry breaking, Y.H. Ahn, Chian-Shu chen, Mod. Phys. Lett. A25 (2010) 1014-1025, arXiv:1001.2869.
[Ahn:2010cc]
[33-601]
Resonant Leptogenesis and Verifiable Seesaw from Large Extra Dimensions, Pei-Hong Gu, Phys. Rev. D81 (2010) 073002, arXiv:1001.1340.
[Gu:2010ye]
[33-602]
Electroweak baryogenesis in the MSSM with vector-like quarks, S. W. Ham, Seong-a Shim, S. K. OH, arXiv:1001.1129, 2010.
[Ham:2010tr]
[33-603]
Thermal leptogenesis in a 5D split fermion scenario with bulk neutrinos, Jukka Maalampi, Iiro Vilja, Heidi Virtanen, Phys. Rev. D82 (2010) 013009, arXiv:0912.4377.
[Maalampi:2009su]
[33-604]
Reconciling leptogenesis with observable mu - > e gamma rates, Steve Blanchet, Thomas Hambye, Francois-Xavier Josse-Michaux, JHEP 04 (2010) 023, arXiv:0912.3153.
[Blanchet:2009kk]
[33-605]
Wash-Out in N_2-dominated leptogenesis, Florian Hahn-Woernle, JCAP 1008 (2010) 029, arXiv:0912.1787.
[Hahn-Woernle:2009okg]
[33-606]
Testable Leptogenesis in extended Standard Model, Sudhanwa Patra, arXiv:0911.4577, 2009.
[Patra:2009bu]
[33-607]
Leptogenesis as a Common Origin for Matter and Dark Matter, Haipeng An, Shao-Long Chen, Rabindra N. Mohapatra, Yue Zhang, JHEP 03 (2010) 124, arXiv:0911.4463.
[An:2009vq]
[33-608]
Flavour leptogenesis with tribimaximal mixings and beyond, H. Zeen Devi, Amal Kr Sarma, N. Nimai Singh, arXiv:0911.2309, 2009.
[Devi:2009cg]
[33-609]
Leptogenesis Bound on Spontaneous Symmetry Breaking of Global Lepton Number, Pei-Hong Gu, Utpal Sarkar, Eur. Phys. J. C71 (2011) 1560, arXiv:0909.5468.
[Gu:2009hn]
[33-610]
Leptogenesis without violation of B-L, M.C. Gonzalez-Garcia, J. Racker, N. Rius, JHEP 11 (2009) 079, arXiv:0909.3518.
[Gonzalez-Garcia:2009cza]
[33-611]
Color Octet Leptogenesis, Marta Losada, Sean Tulin, arXiv:0909.0648, 2009.
[Losada:2009yy]
[33-612]
Constraints on leptogenesis from a symmetry viewpoint, R. Gonzalez Felipe, H. Serodio, Phys. Rev. D81 (2010) 053008, arXiv:0908.2947.
[Felipe:2009rr]
[33-613]
Leptogenesis and Reheating in Complex Hybrid Inflation, Carlos Martinez Prieto, David Delepine, Luis Arturo Urena Lopez, Phys. Rev. D81 (2010) 036001, arXiv:0908.2436.
[Martinez-Prieto:2009rdn]
[33-614]
Tri-Bimaximal Lepton Mixing and Leptogenesis, D. Aristizabal Sierra, F. Bazzocchi, I. de Medeiros Varzielas, L. Merlo, S. Morisi, Nucl. Phys. B827 (2010) 34-58, arXiv:0908.0907.
[AristizabalSierra:2009ex]
[33-615]
Majorana Phases and Leptogenesis in See-Saw Models with A_4 Symmetry, C. Hagedorn, E. Molinaro, S.T. Petcov, JHEP 09 (2009) 115, arXiv:0908.0240.
[Hagedorn:2009jy]
[33-616]
Flavor symmetries, leptogenesis and the absolute neutrino mass scale, E. Bertuzzo, P. Di Bari, F. Feruglio, E. Nardi, JHEP 11 (2009) 036, arXiv:0908.0161.
[Bertuzzo:2009im]
[33-617]
Resonant Dirac leptogenesis on throats, Andreas Bechinger, Gerhart Seidl, Phys. Rev. D81 (2010) 065015, arXiv:0907.4341.
[Bechinger:2009qk]
[33-618]
Non-degenerate Low Energy Leptogenesis, Chao-Qiang Geng, Dmitry V. Zhuridov, arXiv:0907.1462, 2009.
[Geng:2009ru]
[33-619]
Full Boltzmann equations for leptogenesis including scattering, F. Hahn-Woernle, M. Plumacher, Y. Y. Y. Wong, JCAP 0908 (2009) 028, arXiv:0907.0205.
[Hahn-Woernle:2009jyb]
[33-620]
Leptogenesis in model with Friedberg-Lee symmetry, Takeshi Araki, C. Q. Geng, Phys. Lett. B680 (2009) 343-350, arXiv:0906.1903.
[Araki:2009kp]
[33-621]
Neutrino Masses, Leptogenesis and Decaying Dark Matter, Chuan-Hung Chen, Chao-Qiang Geng, Dmitry V. Zhuridov, JCAP 0910 (2009) 001, arXiv:0906.1646.
[Chen:2009gd]
[33-622]
On the full Boltzmann equations for Leptogenesis, J. Garayoa, S. Pastor, T. Pinto, N. Rius, O. Vives, JCAP 0909 (2009) 035, arXiv:0905.4834.
[Garayoa:2009my]
[33-623]
Lepton-mediated electroweak baryogenesis, Daniel J. H. Chung, Bjorn Garbrecht, Michael J. Ramsey-Musolf, Sean Tulin, Phys. Rev. D81 (2010) 063506, arXiv:0905.4509.
[Chung:2009cb]
[33-624]
Neutrino masses, muon g-2, dark matter, lithium problem, and leptogenesis at TeV-scale, Chian-Shu Chen, Chung-Hsien Chou, Phys. Lett. B699 (2011) 68-73, arXiv:0905.3477.
[Chen:2009ata]
[33-625]
Resolution to neutrino masses, baryon asymmetry in leptogenesis and cosmic-ray anomalies, Chuan-Hung Chen, arXiv:0905.3425, 2009.
[Chen:2009zpa]
[33-626]
Lepton Flavor Equilibration and Leptogenesis, D. Aristizabal Sierra, Marta Losada, Enrico Nardi, JCAP 0912 (2009) 015, arXiv:0905.0662.
[AristizabalSierra:2009mq]
[33-627]
Resonant leptogenesis and tribimaximal leptonic mixing with A4 symmetry, G.C. Branco, R. Gonzalez Felipe, M.N. Rebelo, H. Serodio, Phys. Rev. D79 (2009) 093008, arXiv:0904.3076.
[Branco:2009by]
[33-628]
Purely Flavored Leptogenesis, D. Aristizabal Sierra, Luis Alfredo Munoz, Enrico Nardi, Phys. Rev. D80 (2009) 016007, arXiv:0904.3043.
[AristizabalSierra:2009bh]
[33-629]
Probing Resonant Leptogenesis at the LHC, Steve Blanchet, Z. Chacko, Solomon S. Granor, Rabindra N. Mohapatra, Phys. Rev. D82 (2010) 076008, arXiv:0904.2174.
[Blanchet:2009bu]
[33-630]
Low Scale Leptogenesis from Non-Leptonic CP-Phases, Daniel J. H. Chung, Bjorn Garbrecht, Michael J. Ramsey-Musolf, arXiv:0904.1591, 2009.
[Chung:2009eb]
[33-631]
Higgs-dependent Leptogenesis, Yuji Kajiyama, Martti Raidal, arXiv:0903.4893, 2009.
[Kajiyama:2009qj]
[33-632]
Non-Unitary Lepton Mixing Matrix, Leptogenesis and Low Energy CP Violation, Werner Rodejohann, Europhys. Lett. 88 (2009) 51001, arXiv:0903.4590.
[Rodejohann:2009cq]
[33-633]
Probing Supersymmetric Leptogenesis with mu - > e gamma, Alejandro Ibarra, Cristoforo Simonetto, JHEP 08 (2009) 113, arXiv:0903.1776.
[Ibarra:2009bg]
[33-634]
Electron EDM and soft leptogenesis in supersymmetric B-L extension of the standard model, Yuji Kajiyama, Shaaban Khalil, Martti Raidal, Nucl. Phys. B820 (2009) 75-88, arXiv:0902.4405.
[Kajiyama:2009ae]
[33-635]
Casas-Ibarra Parametrization and Unflavored Leptogenesis, Zhi-zhong Xing, Chin. Phys. C34 (2010) 1-6, arXiv:0902.2469.
[Xing:2009vb]
[33-636]
New Ways to Leptogenesis with Gauged B-L Symmetry, K.S. Babu, Yanzhi Meng, Zurab Tavartkiladze, Phys. Lett. B681 (2009) 37-43, arXiv:0901.1044.
[Babu:2009pi]
[33-637]
On Gaugino Contributions to Soft Leptogenesis, Chee Sheng Fong, M.C. Gonzalez-Garcia, JHEP 03 (2009) 073, arXiv:0901.0008.
[Fong:2009iu]
[33-638]
Leptogenesis, Z' bosons, and the reheating temperature of the Universe, J. Racker, E. Roulet, JHEP 03 (2009) 065, arXiv:0812.4285.
[Racker:2008hp]
[33-639]
Neutrino Mass Seesaw at the Weak Scale, the Baryon Asymmetry, and the LHC, Steve Blanchet, Z. Chacko, Rabindra N. Mohapatra, Phys. Rev. D80 (2009) 085002, arXiv:0812.3837.
[Blanchet:2008zg]
[33-640]
Leptogenesis Scenarios via Non-Thermally Produced Right- handed Neutrino and Sneutrino in Supersymmetric Seesaw Model, Masato Senami, Tsutomu Takayama, JCAP 0906 (2009) 007, arXiv:0812.0120.
[Senami:2008yw]
[33-641]
Bridges of Low Energy observables with Leptogenesis in mu- tau Reflection Symmetry, Y. H. Ahn, Sin Kyu Kang, C. S. Kim, T. Phong Nguyen, arXiv:0811.1458, 2008.
[Ahn:2008hy]
[33-642]
Pathways to testable leptogenesis, Pei-Hong Gu, Utpal Sarkar, Mod. Phys. Lett. A25 (2010) 501-509, arXiv:0811.0956.
[Gu:2008yk]
[33-643]
Neutrino masses, leptogenesis and dark matter in hybrid seesaw, Pei-Hong Gu, M. Hirsch, Utpal Sarkar, J.W.F. Valle, Phys. Rev. D79 (2009) 033010, arXiv:0811.0953.
[Gu:2008yj]
[33-644]
Leptogenesis with Composite Neutrinos, Yuval Grossman, Yuhsin Tsai, JHEP 12 (2008) 016, arXiv:0811.0871.
[Grossman:2008xb]
[33-645]
Leptogenesis with an almost conserved lepton number, Takehiko Asaka, Steve Blanchet, Phys. Rev. D78 (2008) 123527, arXiv:0810.3015.
[Asaka:2008bj]
[33-646]
Soft Leptogenesis without singlet, Tatsuru Kikuchi, arXiv:0810.2194, 2008.
[Kikuchi:2008xy]
[33-647]
On the Role of Low-Energy CP Violation in Leptogenesis, Steve Blanchet, Pavel Fileviez Perez, Mod. Phys. Lett. A24 (2009) 1399-1409, arXiv:0810.1301.
[Blanchet:2008ga]
[33-648]
Recent developments in thermal leptogenesis: the role of flavours in various seesaw realisations, Francois-Xavier Josse-Michaux, arXiv:0809.4960, 2008. Ph.D. Thesis.
[Josse-Michaux:2008ttf]
[33-649]
Neutrino Masses, Baryon Asymmetry, Dark Matter and the Moduli Problem - A Complete Framework, Piyush Kumar, JHEP 05 (2009) 083, arXiv:0809.2610.
[Kumar:2008vs]
[33-650]
Successful type I Leptogenesis with SO(10)-inspired mass relations, Pasquale Di Bari, Antonio Riotto, Phys. Lett. B671 (2009) 462-469, arXiv:0809.2285.
[DiBari:2008mp]
[33-651]
A Case of Subdominant/Suppressed 'High Energy' Contribution to the Baryon Asymmetry of the Universe in Flavoured Leptogenesis, E. Molinaro, S. T. Petcov, Phys. Lett. B671 (2009) 60-65, arXiv:0808.3534.
[Molinaro:2008cw]
[33-652]
Successful Leptogenesis in SO(10) Unification with a Left-Right Symmetric Seesaw Mechanism, Asmaa Abada, Pierre Hosteins, Francois-Xavier Josse-Michaux, Stephane Lavignac, Nucl. Phys. B809 (2009) 183-217, arXiv:0808.2058.
[Abada:2008gs]
[33-653]
Neutrino mass and low-scale leptogenesis in a testable SUSY SO(10) model, Swarup Kumar Majee, Mina K. Parida, Amitava Raychaudhuri, Phys. Lett. B668 (2008) 299-302, arXiv:0807.3959.
[Majee:2008mn]
[33-654]
Baryogenesis via Leptogenesis in Adjoint SU(5), Steve Blanchet, Pavel Fileviez Perez, JCAP 0808 (2008) 037, arXiv:0807.3740.
[Blanchet:2008cj]
[33-655]
A New Era of Leptogenesis, Steve Blanchet, arXiv:0807.1408, 2008. PhD thesis.
[Blanchet:2008hg]
[33-656]
Natural inflation at the GUT scale, Subhendra Mohanty, Akhilesh Nautiyal, Phys. Rev. D78 (2008) 123515, arXiv:0807.0317.
[Mohanty:2008ab]
[33-657]
Electromagnetic Leptogenesis, Nicole F. Bell, Boris J. Kayser, Sandy S. C. Law, Phys. Rev. D78 (2008) 085024, arXiv:0806.3307.
[Bell:2008fm]
[33-658]
Inhomogeneous baryogenesis, cosmic antimatter, and dark matter, A.D. Dolgov, M. Kawasaki, N. Kevlishvili, Nucl. Phys. B807 (2009) 229-250, arXiv:0806.2986.
[Dolgov:2008wu]
[33-659]
CP Violation in the SUSY Seesaw: Leptogenesis and Low Energy, Sacha Davidson, Julia Garayoa, Federica Palorini, Nuria Rius, JHEP 09 (2008) 053, arXiv:0806.2832.
[Davidson:2008pf]
[33-660]
Leptogenesis in the minimal extnsion of the Babu-Zee model, C. S. Chen, C. Q. Geng, D. V. Zhuridov, arXiv:0806.2698, 2008.
[Chen:2008ma]
[33-661]
Is leptogenesis falsifiable at LHC?, J.-M. Frere, T. Hambye, G. Vertongen, JHEP 01 (2009) 051, arXiv:0806.0841.
[Frere:2008ct]
[33-662]
Leptogenesis in the Exceptional Supersymmetric Standard Model: flavour dependent lepton asymmetries, S.F. King, R. Luo, D.J. Miller, R. Nevrozov, JHEP 12 (2008) 042, arXiv:0806.0330.
[King:2008qb]
[33-663]
Neutrino Masses, Leptogenesis, and Unification in the Absence of Low Energy Supersymmetry, W. Fischler, R. Flauger, JHEP 09 (2008) 020, arXiv:0805.3000.
[Fischler:2008xm]
[33-664]
Electroweak Resonant Leptogenesis in the Singlet Majoron Model, Apostolos Pilaftsis, Phys. Rev. D78 (2008) 013008, arXiv:0805.1677.
[Pilaftsis:2008qt]
[33-665]
Lepton-flavour violation in the light of leptogenesis and muon g-2, Motoi Endo, Tetsuo Shindou, arXiv:0805.0996, 2008.
[Endo:2008um]
[33-666]
Flavoured Soft Leptogenesis, Chee Sheng Fong, M.C.Gonzalez-Garcia, JHEP 06 (2008) 076, arXiv:0804.4471.
[Fong:2008mu]
[33-667]
Higgs Boson Exempt No-Scale Supersymmetry with a Neutrino Seesaw: Implications for Lepton Flavor Violation and Leptogenesis, Eung Jin Chun, Jason L. Evans, David E. Morrissey, James D. Wells, Phys. Rev. D79 (2009) 015003, arXiv:0804.3050.
[Chun:2008tw]
[33-668]
A new, direct link between the baryon asymmetry and neutrino masses, Michele Frigerio, Pierre Hosteins, Stephane Lavignac, Andrea Romanino, Nucl. Phys. B806 (2009) 84-102, arXiv:0804.0801.
[Frigerio:2008ai]
[33-669]
Supersymmetric Leptogenesis and the Gravitino Bound, G.F. Giudice, L. Mether, A. Riotto, F. Riva, Phys. Lett. B664 (2008) 21-24, arXiv:0804.0166.
[Giudice:2008gu]
[33-670]
The Interplay Between the "Low" and "High" Energy CP-Violation in Leptogenesis, E. Molinaro, S. T. Petcov, Eur. Phys. J. C61 (2009) 93-109, arXiv:0803.4120.
[Molinaro:2009lud]
[33-671]
Nonzero U_{e3}, CP violation and leptogenesis in a see-saw type softly broken A_4 symmetric model, Biswajit Adhikary, Ambar Ghosal, Phys. Rev. D78 (2008) 073007, arXiv:0803.3582.
[Adhikary:2008au]
[33-672]
Baryogenesis via Leptogenesis in an inhomogeneous Universe, A. Kartavtsev, D. Besak, Phys. Rev. D78 (2008) 083001, arXiv:0803.2729.
[Kartavtsev:2008fp]
[33-673]
A Yukawa coupling parameterization for type I + II seesaw formula and applications to lepton flavor violation and leptogenesis, Evgeny Kh. Akhmedov, Werner Rodejohann, JHEP 06 (2008) 106, arXiv:0803.2417.
[Akhmedov:2008tb]
[33-674]
Dirac Leptogenesis in extended nMSSM, Eung Jin Chun, Probir Roy, JHEP 06 (2008) 089, arXiv:0803.1720.
[Chun:2008pg]
[33-675]
CP Violation and Baryogenesis from New Heavy Quarks, Wei-Shu Hou, Chin. J. Phys. 47 (2009) 134, arXiv:0803.1234.
[Hou:2008xd]
[33-676]
Leptogenesis in a perturbative SO(10) model, Tatsuru Kikuchi, JHEP 09 (2008) 045, arXiv:0802.3470.
[Kikuchi:2008ed]
[33-677]
Effects of reheating on leptogenesis, F. Hahn-Woernle, M. Plumacher, Nucl. Phys. B806 (2009) 68-83, arXiv:0801.3972.
[Hahn-Woernle:2008tsk]
[33-678]
Muon-Tau Symmetry and Leptogenesis in the Minimal Seesaw Model, Daniel Wegman Ostrosky, arXiv:0801.3054, 2008.
[Ostrosky:2008qq]
[33-679]
mu-tau symmetry, sterile right-handed neutrinos, and leptogenesis, Riazuddin,, Phys. Rev. D77 (2008) 013005.
[Riazuddin:2008zz]
[33-680]
Radiative Neutrino Mass, Dark Matter and Leptogenesis, Pei-Hong Gu, Utpal Sarkar, Phys. Rev. D77 (2008) 105031, arXiv:0712.2933.
[Gu:2007ug]
[33-681]
B-L Conserved Baryogenesis, Pei-Hong Gu, Utpal Sarkar, Mod. Phys. Lett. A23 (2008) 2047-2051, arXiv:0712.2793.
[Gu:2007qy]
[33-682]
The Minimal Type-II Seesaw Model and Flavor-dependent Leptogenesis, Shu Luo, Zhi-zhong Xing, Int. J. Mod. Phys. A23 (2008) 3412-3415, arXiv:0712.2610.
[Luo:2007mq]
[33-683]
Hypermagnetic Baryogenesis, Kazuharu Bamba, C. Q. Geng, S. H. Ho, Phys. Lett. B664 (2008) 154-156, arXiv:0712.1523.
[Bamba:2007hf]
[33-684]
Non-thermal leptogenesis and gravitino problem in inflaton decay, Grigoris Panotopoulos, JHEP JHEP0712 (2007) 016, arXiv:0712.1430.
[Panotopoulos:2007fh]
[33-685]
Leptogenesis in a seesaw model with Fritzsch type lepton mass matrices, Y. H. Ahn, Sin Kyu Kang, C. S. Kim, Jake Lee, Phys. Rev. D77 (2008) 073009, arXiv:0711.1001.
[Ahn:2007mj]
[33-686]
The (ir)relevance of Initial Conditions to Soft Leptogenesis, Omri Bahat-Treidel, Ze'ev Surujon, JHEP 11 (2008) 046, arXiv:0710.3905.
[Bahat-Treidel:2007zoe]
[33-687]
Low Scale Leptogenesis and Dark Matter Candidates in an Extended Seesaw Model, H. Sung Cheon, Sin Kyu Kang, C. S. Kim, JCAP 0805 (2008) 004, arXiv:0710.2416.
[SungCheon:2007nw]
[33-688]
Triplet Leptogenesis in Left-Right Symmetric Seesaw Models, Tomas Hallgren, Thomas Konstandin, Tommy Ohlsson, JCAP 0801 (2008) 014, arXiv:0710.2408.
[Hallgren:2007nq]
[33-689]
Realistic Neutrinogenesis with Radiative Vertex Correction, Pei-Hong Gu, Hong-Jian He, Utpal Sarkar, Phys. Lett. B659 (2008) 634-639, arXiv:0709.1019.
[Gu:2007mc]
[33-690]
Effects of Lightest Neutrino Mass in Leptogenesis, E. Molinaro, S. T. Petcov, T. Shindou, Y. Takanishi, Nucl. Phys. B797 (2008) 93-116, arXiv:0709.0413.
[Molinaro:2007uv]
[33-691]
Singlet fermion dark matter and electroweak baryogenesis with radiative neutrino mass, K. S. Babu, Ernest Ma, Int. J. Mod. Phys. A23 (2008) 1813-1819, arXiv:0708.3790.
[Babu:2007sm]
[33-692]
Viability of Dirac phase leptogenesis, Alexey Anisimov, Steve Blanchet, Pasquale Di Bari, JCAP 0804 (2008) 033, arXiv:0707.3024.
[Blanchet:2007qs]
[33-693]
Quintessential Kination and Leptogenesis, Eung Jin Chun, Stefano Scopel, JCAP 0710 (2007) 011, arXiv:0707.1544.
[Chun:2007np]
[33-694]
Neutrino masses, mixing and leptogenesis in TeV scale B-L extension of the standard model, M. Abbas, S. Khalil, JHEP 04 (2008) 056, arXiv:0707.0841.
[Abbas:2007ag]
[33-695]
CP violation in scatterings, three body processes and the Boltzmann equations for leptogenesis, Enrico Nardi, Juan Racker, Esteban Roulet, JHEP 09 (2007) 090, arXiv:0707.0378.
[Nardi:2007jp]
[33-696]
Leptogenesis and dark matter unified in a non-SUSY model for neutrino masses, Daijiro Suematsu, Eur. Phys. J. C56 (2008) 379-387, arXiv:0706.2401.
[Suematsu:2007dc]
[33-697]
Cosmological Charge Asymmetry and Rare Processes in Particle Physics, A. D. Dolgov, Frascati Phys.Ser. 44 (2007) 3-11, arXiv:0706.1229.
[Dolgov:2007fu]
[33-698]
Leptogenesis With Many Neutrinos, Marc-Thomas Eisele, Phys. Rev. D77 (2008) 043510, arXiv:0706.0200.
[Eisele:2007ws]
[33-699]
Predictive Model of Inverted Neutrino Mass Hierarchy and Resonant Leptogenesis, K.S. Babu, Abdel G. Bachri, Zurab Tavartkiladze, Int. J. Mod. Phys. A23 (2008) 1679-1696, arXiv:0705.4419.
[Babu:2007zm]
[33-700]
Dirac Neutrinos, Dark Energy and Baryon Asymmetry, Pei-Hong Gu, Hong-Jian He, Utpal Sarkar, JCAP 0711 (2007) 016, arXiv:0705.3736.
[Gu:2007mi]
[33-701]
On Resonant Leptogenesis, Andrea De Simone, Antonio Riotto, JCAP 0708 (2007) 013, arXiv:0705.2183.
[DeSimone:2007pa]
[33-702]
Leptogenesis, Dark Matter and Higgs Phenomenology at TeV, Pei-Hong Gu, Utpal Sarkar, Nucl. Phys. B789 (2008) 245-257, arXiv:0705.1920.
[Gu:2007dr]
[33-703]
Warped Leptogenesis with Dirac Neutrino Masses, Tony Gherghetta, Kenji Kadota, Masahide Yamaguchi, Phys. Rev. D76 (2007) 023516, arXiv:0705.1749.
[Gherghetta:2007au]
[33-704]
Sensitivity of the baryon asymmetry produced by leptogenesis to low energy CP violation, Sacha Davidson, Julia Garayoa, Federica Palorini, Nuria Rius, Phys. Rev. Lett. 99 (2007) 161801, arXiv:0705.1503.
[Davidson:2007va]
[33-705]
Variations on leptogenesis, Diego Aristizabal Sierra, Marta Losada, Enrico Nardi, Phys. Lett. B659 (2008) 328-335, arXiv:0705.1489.
[AristizabalSierra:2007ur]
[33-706]
Neutrino Mixing and Leptogenesis in Type-II Seesaw Scenarios with Left-Right Symmetry, Wei Chao, Shu Luo, Zhi-zhong Xing, Phys. Lett. B659 (2008) 281-289, arXiv:0704.3838.
[Chao:2007rm]
[33-707]
Non-thermal leptogenesis with strongly hierarchical right handed neutrinos, V. Nefer Senoguz, Phys. Rev. D76 (2007) 013005, arXiv:0704.3048.
[Senoguz:2007hu]
[33-708]
Flavour-Dependent Type II Leptogenesis, Stefan Antusch, Phys. Rev. D76 (2007) 023512, arXiv:0704.1591.
[Antusch:2007km]
[33-709]
Remark on the minimal seesaw model and leptogenesis with tri/bi-maximal mixing, Teruyuki Kitabayashi, Phys. Rev. D76 (2007) 033002, arXiv:hep-ph/0703303.
[Kitabayashi:2007bs]
[33-710]
A novel washout effect in the flavored leptogenesis, Tetsuo Shindou, Toshifumi Yamashita, JHEP 09 (2007) 043, arXiv:hep-ph/0703183.
[Shindou:2007se]
[33-711]
Quantum Boltzmann Equations and Leptogenesis, Andrea De Simone, Antonio Riotto, JCAP 0708 (2007) 002, arXiv:hep-ph/0703175.
[DeSimone:2007rw]
[33-712]
Study of flavour dependencies in leptogenesis, F. X. Josse-Michaux, A. Abada, JCAP 0710 (2007) 009, arXiv:hep-ph/0703084.
[Josse-Michaux:2007alz]
[33-713]
Quasi-degenerate neutrinos and leptogenesis from L_mu-L_tau, E. J. Chun, K. Turzynski, Phys. Rev. D76 (2007) 053008, arXiv:hep-ph/0703070.
[Chun:2007vh]
[33-714]
Thermal leptogenesis scenarios in the SO(10)-motivated left-right symmetric model, Yuya Wakabayashi, Prog. Theor. Phys. 117 (2007) 1099-1117, arXiv:hep-ph/0702261.
[Wakabayashi:2007dh]
[33-715]
Relating leptogenesis parameters to light neutrino masses, Guy Engelhard, Yuval Grossman, Yosef Nir, JHEP 07 (2007) 029, arXiv:hep-ph/0702151.
[Engelhard:2007kf]
[33-716]
SO(10) unified models and soft leptogenesis, E. J. Chun, L. Velasco-Sevilla, JHEP 08 (2007) 075, arXiv:hep-ph/0702039.
[Chun:2007ny]
[33-717]
Observable Electron EDM and Leptogenesis, F. R. Joaquim, I. Masina, A. Riotto, Int. J. Mod. Phys. A22 (2007) 6253-6278, arXiv:hep-ph/0701270.
[Joaquim:2007sm]
[33-718]
Leptogenesis implications in models with Abelian family symmetry and one extra real Higgs singlet, Sandy S. C. Law, Raymond R. Volkas, Phys. Rev. D75 (2007) 043510, arXiv:hep-ph/0701189.
[Law:2007jk]
[33-719]
Low Intermediate Scales for Leptogenesis in SUSY SO(10) GUTs, Swarup Kumar Majee, Mina K. Parida, Amitava Raychaudhuri, Utpal Sarkar, Phys. Rev. D75 (2007) 075003, arXiv:hep-ph/0701109.
[Majee:2007uv]
[33-720]
Baryogenesis via left-right asymmetry generation by Affleck-Dine mechanism in Dirac neutrino model, Masato Senami, Tsutomu Takayama, Phys. Rev. D75 (2007) 105004, arXiv:hep-ph/0701103.
[Senami:2007up]
[33-721]
Explaining dark matter, dark energy, neutrino masses and leptogenesis at the TeV scale, Narendra Sahu, Utpal Sarkar, Phys. Rev. D76 (2007) 045014, arXiv:hep-ph/0701062.
[Sahu:2007uh]
[33-722]
Minimal Lepton Flavour Violation and Leptogenesis with exclusively low-energy CP Violation, Selma Uhlig, JHEP 11 (2007) 066, arXiv:hep-ph/0612262.
[Uhlig:2006xf]
[33-723]
Stability and leptogenesis in the left-right symmetric seesaw mechanism, E. K. Akhmedov et al., JHEP 04 (2007) 022, arXiv:hep-ph/0612194.
[Akhmedov:2006yp]
[33-724]
The importance of N2 leptogenesis, Guy Engelhard, Yuval Grossman, Enrico Nardi, Yosef Nir, Phys. Rev. Lett. 99 (2007) 081802, arXiv:hep-ph/0612187.
[Engelhard:2006yg]
[33-725]
Type-II seesaw mass models and baryon asymmetry, Amal Kr. Sarma, H. Zeen Devi, N. Nimai Singh, Nucl. Phys. B765 (2007) 142-153, arXiv:hep-ph/0612143.
[Sarma:2006xk]
[33-726]
A 3 X 2 texture for neutrino oscillations and leptogenesis, Biswajoy Brahmachari, Nobuchika Okada, Phys. Lett. B660 (2008) 508-514, arXiv:hep-ph/0612079.
[Brahmachari:2006es]
[33-727]
Gravitational Leptogenesis, Gaetano Lambiase, Subhendra Mohanty, JCAP 0712 (2007) 008, arXiv:astro-ph/0611905.
[Lambiase:2006md]
[33-728]
On the Impact of Flavour Oscillations in Leptogenesis, Andrea De Simone, Antonio Riotto, JCAP 0702 (2007) 005, arXiv:hep-ph/0611357.
[DeSimone:2006dd]
[33-729]
Leptogenesis and Low Energy CP Violation in Neutrino Physics, S. Pascoli, S.T. Petcov, Antonio Riotto, Nucl. Phys. B774 (2007) 1-52, arXiv:hep-ph/0611338.
[Pascoli:2006ci]
[33-730]
Quantum Zeno effect and the impact of flavor in leptogenesis, S. Blanchet, P. Di Bari, G.G. Raffelt, JCAP 0703 (2007) 012, arXiv:hep-ph/0611337.
[Blanchet:2006ch]
[33-731]
Affleck-Dine baryogenesis in anomaly-mediated SUSY breaking, Masahiro Kawasaki, Kazunori Nakayama, JCAP 0702 (2007) 002, arXiv:hep-ph/0611320.
[Kawasaki:2006yb]
[33-732]
Soft leptogenesis in the inverse seesaw model, J. Garayoa, M. C. Gonzalez-Garcia, N. Rius, JHEP 02 (2007) 021, arXiv:hep-ph/0611311.
[Garayoa:2006xs]
[33-733]
Neutrino Phenomenology, Dark Energy and Leptogenesis from pseudo-Nambu-Goldstone Bosons, C.T. Hill, I. Mocioiu, E.A. Paschos, U. Sarkar, Phys. Lett. B651 (2007) 188-194, arXiv:hep-ph/0611284.
[Hill:2006hj]
[33-734]
Low-Energy Thermal Leptogenesis in an Extended NMSSM Model, Ernest Ma, Narendra Sahu, Utpal Sarkar, J. Phys. G34 (2007) 741-752, arXiv:hep-ph/0611257.
[Ma:2006te]
[33-735]
Towards constraints on the SUSY seesaw from flavour-dependent leptogenesis, S. Antusch, A. M. Teixeira, JCAP 0702 (2007) 024, arXiv:hep-ph/0611232.
[Antusch:2006gy]
[33-736]
Cosmological CPT Violation, Baryo/Leptogenesis And CMB Polarization, Mingzhe Li, Jun-Qing Xia, Hong Li, Xinmin Zhang, Phys. Lett. B651 (2007) 357-362, arXiv:hep-ph/0611192.
[Li:2006ss]
[33-737]
Neutrino Mass, Dark Matter, and Leptogenesis, Ernest Ma, Nucl. Phys. Proc. Suppl. 168 (2007) 347-349, arXiv:hep-ph/0611181.
[Ma:2006ms]
[33-738]
Spontaneous Non-thermal Leptogenesis in High-scale Inflation Models, Motoi Endo, Fuminobu Takahashi, T. T. Yanagida, Phys. Rev. D74 (2006) 123523, arXiv:hep-ph/0611055.
[Endo:2006nj]
[33-739]
Baryogenesis from an Earlier Phase Transition, Jing Shu, Tim M.P. Tait, Carlos E.M. Wagner, Phys. Rev. D75 (2007) 063510, arXiv:hep-ph/0610375.
[Shu:2006mm]
[33-740]
Neutrino Mass and Baryon Asymmetry from Dirac Seesaw, Pei-Hong Gu, Hong-Jian He, JCAP 0612 (2006) 010, arXiv:hep-ph/0610275.
[Gu:2006dc]
[33-741]
Simulations of Cold Electroweak Baryogenesis: Finite time quenches, Anders Tranberg, Jan Smit, Mark Hindmarsh, JHEP 01 (2007) 034, arXiv:hep-ph/0610096.
[Tranberg:2006dg]
[33-742]
CPT-odd Leptogenesis, Pavel A. Bolokhov, Maxim Pospelov, Phys. Rev. D74 (2006) 123517, arXiv:hep-ph/0610070.
[Bolokhov:2006wu]
[33-743]
Connecting Leptogenesis to CP Violation in Neutrino Mixings in a Tri-bimaximal Mixing model, R.N. Mohapatra, Hai-Bo Yu, Phys. Lett. B644 (2007) 346-351, arXiv:hep-ph/0610023.
[Mohapatra:2006se]
[33-744]
$\mu-\tau$ Symmetry and Radiatively Generated Leptogenesis, Y. H. Ahn, C. S. Kim, Sin Kyu Kang, Jake Lee, Phys. Rev. D75 (2007) 013012, arXiv:hep-ph/0610007.
[Ahn:2006rn]
[33-745]
Electric dipole moment constraints on minimal electroweak baryogenesis, Stephan J. Huber, Maxim Pospelov, Adam Ritz, Phys. Rev. D75 (2007) 036006, arXiv:hep-ph/0610003.
[Huber:2006ri]
[33-746]
A new bridge between leptonic CP violation and leptogenesis, G. C. Branco, R. Gonzalez Felipe, F. R. Joaquim, Phys. Lett. B645 (2007) 432-436, arXiv:hep-ph/0609297.
[Branco:2006ce]
[33-747]
Low Scale Seesaw, Electron EDM and Leptogenesis in a Model with Spontaneous CP Violation, Mu-Chun Chen, K.T. Mahanthappa, Phys. Rev. D75 (2007) 015001, arXiv:hep-ph/0609288.
[Chen:2006bv]
[33-748]
Analysis of Leptogenesis in Supersymmetric Triplet Seesaw Model, E.J. Chun, S. Scopel, Phys. Rev. D75 (2007) 023508, arXiv:hep-ph/0609259.
[Chun:2006sp]
[33-749]
Emanations of Dark Matter: Muon Anomalous Magnetic Moment, Radiative Neutrino Mass, and Novel Leptogenesis at the TeV Scale, Thomas Hambye, Kristjan Kannike, Ernest Ma, Martti Raidal, Phys. Rev. D75 (2007) 095003, arXiv:hep-ph/0609228.
[Hambye:2006zn]
[33-750]
Connecting low energy leptonic CP-violation to leptogenesis, S. Pascoli, S. T. Petcov, A. Riotto, Phys. Rev. D75 (2007) 083511, arXiv:hep-ph/0609125.
[Pascoli:2006ie]
[33-751]
Another Look at Minimal Lepton Flavour Violation, $ l_i \to l_j \gamma $, Leptogenesis, and the Ratio $M_\nu / \Lambda_{LFV}$, Gustavo C. Branco et al., JHEP 09 (2007) 004, arXiv:hep-ph/0609067.
[Branco:2006hz]
[33-752]
Soft Leptogenesis in Warped Extra Dimensions, Anibal D. Medina, Carlos E. M. Wagner, JHEP 12 (2006) 037, arXiv:hep-ph/0609052.
[Medina:2006hi]
[33-753]
Flavour-Dependent Leptogenesis with Sequential Dominance, S. Antusch, S.F. King, A. Riotto, JCAP 0611 (2006) 011, arXiv:hep-ph/0609038.
[Antusch:2006cw]
[33-754]
Decay of heavy Majorana neutrinos using the full Boltzmann equation including its implications for leptogenesis, Anders Basboll, Steen Hannestad, JCAP 0701 (2007) 003, arXiv:hep-ph/0609025.
[Basboll:2006yx]
[33-755]
Thermal Gravitino Production and Collider Tests of Leptogenesis, Josef Pradler, Frank Daniel Steffen, Phys. Rev. D75 (2007) 023509, arXiv:hep-ph/0608344.
[Pradler:2006qh]
[33-756]
Hidden Sector Baryogenesis, Bhaskar Dutta, Jason Kumar, Phys. Lett. B643 (2006) 284-289, arXiv:hep-th/0608188.
[Dutta:2006pt]
[33-757]
Baryogenesis, Dark Matter and the Pentagon, T. Banks, S. Echols, J.L. Jones, JHEP 11 (2006) 046, arXiv:hep-ph/0608104.
[Banks:2006xr]
[33-758]
Thermal leptogenesis in extended supersymmetric seesaw, M. Hirsch et al., Phys. Rev. D75 (2007) 011701, arXiv:hep-ph/0608006.
[Hirsch:2006ft]
[33-759]
Flavor effects on leptogenesis predictions, Steve Blanchet, Pasquale Di Bari, JCAP 0703 (2007) 018, arXiv:hep-ph/0607330.
[Blanchet:2006be]
[33-760]
TeV-scale Leptogenesis and Tri-bimaximal Neutrino Mixing in the Minimal Seesaw Model, Zhi-zhong Xing, Shun Zhou, Phys. Lett. B653 (2007) 278-287, arXiv:hep-ph/0607302.
[Xing:2006ms]
[33-761]
Lepton Flavor Violation and Supersymmetric Dirac Leptogenesis, Brooks Thomas, Manuel Toharia, Phys. Rev. D75 (2007) 013013, arXiv:hep-ph/0607285.
[Thomas:2006gr]
[33-762]
Leptogenesis and low energy CP phases with two heavy neutrinos, Kaushik Bhattacharya, Narendra Sahu, Utpal Sarkar, Santosh K. Singh, Phys. Rev. D74 (2006) 093001, arXiv:hep-ph/0607272.
[Bhattacharya:2006aw]
[33-763]
The Minimal Phantom Sector of the Standard Model: Higgs Phenomenology and Dirac Leptogenesis, D.G. Cerdeno, A. Dedes, T.E.J. Underwood, JHEP 09 (2006) 067, arXiv:hep-ph/0607157.
[Cerdeno:2006ha]
[33-764]
Flux of Primordial Monopoles, Shahida Dar, Qaisar Shafi, Arunansu Sil, Phys. Rev. D74 (2006) 035013, arXiv:hep-ph/0607129.
[Dar:2006cm]
[33-765]
New type of seesaw with MeV sterile neutrinos and low scale leptogenesis, Sin Kyu Kang, C. S. Kim, Phys. Lett. B646 (2007) 248-252, arXiv:hep-ph/0607072.
[Kang:2006sn]
[33-766]
CP violation and Leptogenesis in models with Minimal Lepton Flavour Violation, Vincenzo Cirigliano, Gino Isidori, Valentina Porretti, Nucl. Phys. B763 (2007) 228-246, arXiv:hep-ph/0607068.
[Cirigliano:2006nu]
[33-767]
Post-Sphaleron Baryogenesis, K.S. Babu, R.N. Mohapatra, S. Nasri, Phys. Rev. Lett. 97 (2006) 131301, arXiv:hep-ph/0606144.
[Babu:2006xc]
[33-768]
Non-thermal leptogenesis and baryon asymmetry in different neutrino mass models, G. Panotopoulos, Phys. Lett. B643 (2006) 279-283, arXiv:hep-ph/0606127.
[Panotopoulos:2006wj]
[33-769]
Flavour Matters in Leptogenesis, A. Abada et al., JHEP 09 (2006) 010, arXiv:hep-ph/0605281.
[Abada:2006ea]
[33-770]
Baryogenesis by R-parity violating top quark decays and neutron-antineutron oscillations, A.D. Dolgov, F.R. Urban, Nucl. Phys. B752 (2006) 297-315, arXiv:hep-ph/0605263.
[Dolgov:2006ay]
[33-771]
Baryogenesis in the Two-Higgs Doublet Model, Lars Fromme, Stephan J. Huber, Michael Seniuch, JHEP 11 (2006) 038, arXiv:hep-ph/0605242.
[Fromme:2006cm]
[33-772]
Breaking of $L_\mu$ - $L_\tau$ Flavor Symmetry, Lepton Flavor Violation and Leptogenesis, Toshihiko Ota, Werner Rodejohann, Phys. Lett. B639 (2006) 322-331, arXiv:hep-ph/0605231.
[Ota:2006xr]
[33-773]
Common Origin of Neutrino Mass, Dark Matter, and Baryogenesis, Ernest Ma, Mod. Phys. Lett. A21 (2006) 1777-1782, arXiv:hep-ph/0605180.
[Ma:2006fn]
[33-774]
Charged Lepton Decays $L_i \to L_j + \gamma$, Leptogenesis CP-Violating Parameters and Majorana Phases, S. T. Petcov, T. Shindou, Phys. Rev. D74 (2006) 073006, arXiv:hep-ph/0605151.
[Petcov:2006pc]
[33-775]
Leptogenesis in Realistic SO(10) Models, Xiangdong Ji et al., Phys. Lett. B651 (2007) 195-207, arXiv:hep-ph/0605088.
[Ji:2006tc]
[33-776]
Leptogenesis bound on neutrino masses in left-right symmetric models with spontaneous D-parity violation, Narendra Sahu, Utpal Sarkar, Phys. Rev. D74 (2006) 093002, arXiv:hep-ph/0605007.
[Sahu:2006pf]
[33-777]
Top transport in electroweak baryogenesis, Lars Fromme, Stephan J. Huber, JHEP 03 (2007) 049, arXiv:hep-ph/0604159.
[Fromme:2006wx]
[33-778]
Leptogenesis in a model of Dark Energy and Dark Matter, P. Q. Hung, arXiv:hep-ph/0604063, 2006.
[Hung:2006in]
[33-779]
Estimations of baryon asymmetry for different neutrino mass models, Amal Kr. Sarma, Hijam Zeen Devi, N. Nimai Singh, arXiv:hep-ph/0604040, 2006.
[Sarma:2006zk]
[33-780]
Soft breaking of $L_\mu-L_\tau$ symmetry: Light neutrino spectrum and Leptogenesis, Biswajit Adhikary, Phys. Rev. D74 (2006) 033002, arXiv:hep-ph/0604009.
[Adhikary:2006rf]
[33-781]
Right-Handed Sector Leptogenesis, Michele Frigerio, Thomas Hambye, Ernest Ma, JCAP 0609 (2006) 009, arXiv:hep-ph/0603123.
[Frigerio:2006gx]
[33-782]
Leptogenesis beyond the limit of hierarchical heavy neutrino masses, Steve Blanchet, Pasquale Di Bari, JCAP 0606 (2006) 023, arXiv:hep-ph/0603107.
[Blanchet:2006dq]
[33-783]
Bounds on neutrino masses from baryogenesis in thermal and non-thermal scenarios, Narendra Sahu, arXiv:hep-ph/0602201, 2006. Ph.D thesis.
[Sahu:2006sm]
[33-784]
Phased Breaking of mu-tau symmetry and Leptogenesis, Y. H. Ahn, Sin Kyu Kang, C. S. Kim, Jake Lee, Phys. Rev. D73 (2006) 093005, arXiv:hep-ph/0602160.
[Ahn:2006nu]
[33-785]
Affleck-Dine (Pseudo)-Dirac Neutrinogenesis, Steven Abel, Veronique Page, JHEP 05 (2006) 024, arXiv:hep-ph/0601149.
[Abel:2006hr]
[33-786]
The importance of flavor in leptogenesis, Enrico Nardi, Yosef Nir, Esteban Roulet, Juan Racker, JHEP 0601 (2006) 164, arXiv:hep-ph/0601084.
[Nardi:2006fx]
[33-787]
Flavour Issues in Leptogenesis, A. Abada et al., JCAP 0604 (2006) 004, arXiv:hep-ph/0601083.
[Abada:2006fw]
[33-788]
Baryogenesis via Leptogenesis in presence of cosmic strings, Narendra Sahu, Pijushpani Bhattacharjee, Urjit A Yajnik, Nucl. Phys. B752 (2006) 280-296, arXiv:hep-ph/0512350.
[Sahu:2005vu]
[33-789]
D-term Inflation and Leptogenesis by Right-handed Sneutrino, Kenji Kadota, J. Yokoyama, Phys. Rev. D73 (2006) 043507, arXiv:hep-ph/0512221.
[Kadota:2005mt]
[33-790]
Flavoured leptogenesis: a successful thermal leptogenesis with N_1 mass below 10^8 GeV, O. Vives, Phys. Rev. D73 (2006) 073006, arXiv:hep-ph/0512160.
[Vives:2005ra]
[33-791]
Comparison of Boltzmann Equations with Quantum Dynamics for Scalar Fields, Manfred Lindner, Markus Michael Muller, Phys. Rev. D73 (2006) 125002, arXiv:hep-ph/0512147.
[Lindner:2005kv]
[33-792]
Affleck-Dine baryogenesis and gravitino dark matter, Osamu Seto, Phys. Rev. D73 (2006) 043509, arXiv:hep-ph/0512071.
[Seto:2005pj]
[33-793]
On Higgs and sphaleron effects during the leptogenesis era, Enrico Nardi, Yosef Nir, Juan Racker, Esteban Roulet, JHEP 0601 (2006) 068, arXiv:hep-ph/0512052.
[Nardi:2005hs]
[33-794]
A scenario for leptogenesis at the TeV scale, Asmaa Abada, PoS HEP2005 (2006) 171, arXiv:hep-ph/0512018.
[Abada:2005uy]
[33-795]
Neutrinos in the simplest little Higgs scenario and TeV leptogenesis, Asmaa Abada, Gautam Bhattacharyya, Marta Losada, Phys. Rev. D73 (2006) 033006, arXiv:hep-ph/0511275.
[Abada:2005rt]
[33-796]
The CP-asymmetry in resonant leptogenesis, A. Anisimov, A. Broncano, M. Plumacher, Nucl. Phys. B737 (2006) 176, arXiv:hep-ph/0511248.
[Anisimov:2005hr]
[33-797]
Baryon and lepton number violation rates across the electroweak crossover, Y. Burnier, M. Laine, M. Shaposhnikov, JCAP 0602 (2006) 007, arXiv:hep-ph/0511246.
[Burnier:2005hp]
[33-798]
Generating the Baryon Asymmetry of the Universe in Split Fermion Models, Andrew Coulthurst, Phys. Rev. D73 (2006) 103517, arXiv:hep-ph/0511244.
[Coulthurst:2005hm]
[33-799]
Phenomenology of Dirac Neutrinogenesis in Split Supersymmetry, Brooks Thomas Manuel Toharia, Phys. Rev. D73 (2006) 063512, arXiv:hep-ph/0511206.
[Thomas:2005rs]
[33-800]
Constraints on SUSY Seesaw Parameters from Leptogenesis and Lepton Flavor Violation, F. Deppisch, H. Päs, R. Rückl, A. Redelbach, Phys. Rev. D73 (2006) 033004, arXiv:hep-ph/0511062.
[Deppisch:2005rv]
[33-801]
Baryon and lepton numbers in two scenarios of leptogenesis, A. Kartavtsev, Phys. Rev. D73 (2006) 023514, arXiv:hep-ph/0511059.
[Kartavtsev:2005rs]
[33-802]
Leptogenesis, Yukawa Textures and Weak Basis Invariants, Gustavo C. Branco, M. N. Rebelo, J. I. Silva-Marcos, Phys. Lett. B633 (2006) 345, arXiv:hep-ph/0510412.
[Branco:2005jr]
[33-803]
Space-time curvature coupling of spinors in early universe: Neutrino asymmetry and a possible source of baryogenesis, Ujjal Debnath, Banibrata Mukhopadhyay, Naresh Dadhich, Mod. Phys. Lett. A21 (2006) 399, arXiv:hep-ph/0510351.
[Debnath:2005wk]
[33-804]
Neutrinos in a left-right model with a horizontal symmetry, Ken Kiers et al., Phys. Rev. D73 (2006) 033009, arXiv:hep-ph/0510274.
[Kiers:2005vx]
[33-805]
Models of Baryogenesis via Spontaneous Lorentz Violation, Sean M. Carroll, Jing Shu, Phys. Rev. D73 (2006) 103515, arXiv:hep-ph/0510081.
[Carroll:2005dj]
[33-806]
Dark Matter and the Baryon Asymmetry, Glennys R. Farrar, Gabrijela Zaharijas, Phys. Rev. Lett. 96 (2006) 041302, arXiv:hep-ph/0510079.
[Farrar:2005zd]
[33-807]
Dark matter and leptogenesis in gauged B-L symmetric models embedding $\nu$ MSM, Narendra Sahu, Urjit A Yajnik, Phys. Lett. B635 (2006) 11, arXiv:hep-ph/0509285.
[Sahu:2005fe]
[33-808]
R-parity violation assisted thermal leptogenesis in the seesaw mechanism, Y. Farzan, J. W. F. Valle, Phys. Rev. Lett. 96 (2006) 011601, arXiv:hep-ph/0509280.
[Farzan:2005ez]
[33-809]
Baryon asymmetry in the universe resulting from Lorentz violation, E. Di Grezia, S. Esposito, G. Salesi, Europhys. Lett. 74 (2006) 747-753, arXiv:hep-ph/0508298.
[DiGrezia:2005yx]
[33-810]
Spontaneous Leptogenesis in Brans-Dicke Cosmology, Chi-Yi Chen, You-Gen Shen, Bo Feng, High Energy Phys. Nucl. Phys. 29 (2005) 1033, arXiv:hep-ph/0508059.
[Chen:2005tr]
[33-811]
TeV leptogenesis in Z-prime models and its collider probe, Eung Jin Chun, Phys. Rev. D72 (2005) 095010, arXiv:hep-ph/0508050.
[Chun:2005tg]
[33-812]
TeV Scale Leptogenesis, $\theta_{13}$ And Doubly Charged Particles At LHC, Shahida Dar, Qaisar Shafi, Arunansu Sil, Phys. Lett. B632 (2006) 517, arXiv:hep-ph/0508037.
[Dar:2005hm]
[33-813]
Leptogenesis in Unified Theories with Type II See-Saw, Stefan Antusch, Steve F. King, JHEP 0601 (2006) 117, arXiv:hep-ph/0507333.
[Antusch:2005tu]
[33-814]
Electroweak Baryogenesis, Large Yukawas and Dark Matter, A. Provenza, M. Quiros, P. Ullio, JHEP 0510 (2005) 048, arXiv:hep-ph/0507325.
[Provenza:2005nq]
[33-815]
Thermal leptogenesis in brane world cosmology, Nobuchika Okada, Osamu Seto, Phys. Rev. D73 (2006) 063505, arXiv:hep-ph/0507279.
[Okada:2005kv]
[33-816]
Leptogenesis from reheating after inflation and cosmic string decay, Rachel Jeannerot, Marieke Postma, JCAP 0512 (2005) 006, arXiv:hep-ph/0507162.
[Jeannerot:2005ah]
[33-817]
Probing Physics in the Standard Model and Beyond with Electroweak Baryogenesis and Effective Theories of the Strong Interactions, Christopher Lee, arXiv:hep-ph/0507111, 2005.
[Lee:2005gj]
[33-818]
Leptogenesis and Dark Matter related?, Nicolas Cosme, Laura Lopez Honorez, Michel H.G. Tytgat, Phys. Rev. D72 (2005) 043505, arXiv:hep-ph/0506320.
[Cosme:2005sb]
[33-819]
Electroweak-Scale Resonant Leptogenesis, Apostolos Pilaftsis, Thomas E.J. Underwood, Phys. Rev. D72 (2005) 113001, arXiv:hep-ph/0506107.
[Pilaftsis:2005rv]
[33-820]
Dynamical CP Violation in the Early Universe and Leptogenesis, K.R.S. Balaji, Tirthabir Biswas, Robert H. Brandenberger, David London, Phys. Rev. D72 (2005) 056005, arXiv:hep-ph/0506013.
[Balaji:2005ha]
[33-821]
Baryogenesis and CP-Violating Domain Walls in the Background of a Magnetic Field, L. Campanelli, P. Cea, G. L. Fogli, L. Tedesco, JCAP 0603 (2006) 005, arXiv:astro-ph/0505531.
[Campanelli:2005xy]
[33-822]
Split Fermions Baryogenesis from the Kobayashi-Maskawa Phase, Gilad Perez, Tomer Volansky, Phys. Rev. D72 (2005) 103522, arXiv:hep-ph/0505222.
[Perez:2005yx]
[33-823]
Sneutrino Leptogenesis at the Electroweak Scale, John Ellis, Sin Kyu Kang, arXiv:hep-ph/0505162, 2005.
[Ellis:2005uk]
[33-824]
Decoupling, lepton flavour violation and leptogenesis, Krzysztof Turzynski, arXiv:hep-ph/0505078, 2005.
[Turzynski:2005px]
[33-825]
Cosmological Family Asymmetry and CP violation, T. Fujihara et al., Phys. Rev. D72 (2005) 016006, arXiv:hep-ph/0505076.
[Fujihara:2005pv]
[33-826]
Electroweak Baryogenesis from Late Neutrino Masses, Lawrence J. Hall, Hitoshi Murayama, Gilad Perez, Phys. Rev. Lett. 95 (2005) 111301, arXiv:hep-ph/0504248.
[Hall:2005aq]
[33-827]
Natural soft leptogenesis, Yuval Grossman, Ryuichiro Kitano, Hitoshi Murayama, JHEP 0506 (2005) 058, arXiv:hep-ph/0504160.
[Grossman:2005yi]
[33-828]
Supermassive gravitinos, dark matter, leptogenesis and flat direction baryogenesis, Rouzbeh Allahverdi et al., arXiv:hep-ph/0504102, 2005.
[Allahverdi:2005rh]
[33-829]
Bi-large neutrino mixing see-saw mass matrix with texture zeros and leptogenesis, Wei Chao, Xiao-Gang He, Xue-Qian Li, Commun. Theor. Phys. 45 (2006) 1073-1084, arXiv:hep-ph/0503285.
[Chao:2005td]
[33-830]
Non-thermal leptogenesis via direct inflaton decay without SU(2)(L) triplets, Thomas Dent, George Lazarides, Roberto Ruiz de Austri, Phys. Rev. D72 (2005) 043502, arXiv:hep-ph/0503235.
[Dent:2005gx]
[33-831]
Leptogenesis from Bilinear R-parity Violating Couplings, Ido Ben-Dayan, arXiv:hep-ph/0503232, 2005.
[Ben-Dayan:2005upt]
[33-832]
Electroweak Baryogenesis with Embedded Domain Walls, Robert H. Brandenberger, Wessyl Kelly, Masahide Yamaguchi, Prog. Theor. Phys. 117 (2007) 823-834, arXiv:hep-ph/0503211.
[Brandenberger:2005bx]
[33-833]
Constraint on $B-L$ cosmic string from leptogenesis with degenerate neutrinos, Pei-Hong Gu, Hong Mao, Phys. Lett. B619 (2005) 226, arXiv:hep-ph/0503126.
[Gu:2005gu]
[33-834]
Neutrino masses, mixing and leptogenesis in a two Higgs doublet model for the third generation, David Atwood, Shaouly Bar-Shalom, Amarjit Soni, Phys. Lett. B635 (2006) 112, arXiv:hep-ph/0502234.
[Atwood:2005bf]
[33-835]
The baryon content of the Universe, M. Persic, P. Salucci, Mon.Not.Roy.Astron. (2005), arXiv:astro-ph/0502178.
[Persic:1992hci]
[33-836]
S_3 Flavor Symmetry and Leptogenesis, Takeshi Araki, Jisuke Kubo, Emmanuel A. Paschos, Eur. Phys. J. C45 (2006) 465, arXiv:hep-ph/0502164.
[Araki:2005ec]
[33-837]
Seesaw geometry and leptogenesis, Pasquale Di Bari, Nucl. Phys. B727 (2005) 318, arXiv:hep-ph/0502082.
[DiBari:2005st]
[33-838]
Leptogenesis, $\mu-\tau$ Symmetry and $\theta_{13}$, R.N. Mohapatra, S. Nasri, Haibo Yu, Phys. Lett. B615 (2005) 231, arXiv:hep-ph/0502026.
[Mohapatra:2005ra]
[33-839]
Superstring Inspired E6 Model: Constraints Implied by Leptogenesis, A.V. Kartavtsev, J.Phys. G31 (2005) 1191-1206, arXiv:hep-ph/0412196.
[Kartavtsev:2005xu]
[33-840]
Baryogenesis after Hyperextended Inflation, Antonio De Felice, Mark Trodden, Phys. Rev. D72 (2005) 043512, arXiv:hep-ph/0412020.
[DeFelice:2004uv]
[33-841]
Anomaly-induced baryogenesis, Archil Kobakhidze, arXiv:hep-ph/0411380, 2004.
[Kobakhidze:2004hx]
[33-842]
Electroweak baryogenesis and quantum corrections to the triple Higgs boson coupling, Shinya Kanemura, Yasuhiro Okada, Eibun Senaha, Phys. Lett. B606 (2005) 361, arXiv:hep-ph/0411354.
[Kanemura:2004ch]
[33-843]
Relating Leptogenesis to Low Energy Flavor Violating Observables in Models with Spontaneous CP Violation, Mu-Chun Chen, K.T. Mahanthappa, Phys. Rev. D71 (2005) 035001, arXiv:hep-ph/0411158.
[Chen:2004ww]
[33-844]
Neutrino helicity asymmetries in leptogenesis, Luis Bento, Francisco C. Santos, Phys. Rev. D71 (2005) 096001, arXiv:hep-ph/0411023.
[Bento:2004xu]
[33-845]
Leptogenesis and $\mu-\tau$ symmetry, R.N. Mohapatra, S. Nasri, Phys. Rev. D71 (2005) 033001, arXiv:hep-ph/0410369.
[Mohapatra:2004hta]
[33-846]
Electroweak Baryogenesis and New TeV Fermions, Marcela Carena, Ariel Megevand, Mariano Quiros, Carlos E.M. Wagner, Nucl. Phys. B716 (2005) 319, arXiv:hep-ph/0410352.
[Carena:2004ha]
[33-847]
Phenomenological Consequences of Soft Leptogenesis, Tamar Kashti, Phys. Rev. D71 (2005) 013008, arXiv:hep-ph/0410319.
[Kashti:2004vj]
[33-848]
Kinetic description of fermion flavor mixing and CP-violating sources for baryogenesis, Thomas Konstandin, Tomislav Prokopec, Michael G. Schmidt, Nucl. Phys. B716 (2005) 373, arXiv:hep-ph/0410135.
[Konstandin:2004gy]
[33-849]
Gauged B-L symmetry and baryogenesis via leptogenesis at TeV scale, Narendra Sahu, Urjit A. Yajnik, Phys. Rev. D71 (2005) 023507, arXiv:hep-ph/0410075.
[Sahu:2004sb]
[33-850]
A model for leptogenesis at the TeV scale, Asmaa Abada, Habib Aissaoui, Marta Losada, Nucl. Phys. B728 (2005) 55, arXiv:hep-ph/0409343.
[Abada:2004wn]
[33-851]
A New Mechanism For Baryogenesis Living Through Electroweak Era, Hyung Do Kim, Jihn E. Kim, Takuya Morozumi, Phys. Lett. B616 (2005) 108, arXiv:hep-ph/0409001.
[Kim:2004te]
[33-852]
Resonant tau leptogenesis with observable lepton number violation, Apostolos Pilaftsis, Phys. Rev. Lett. 95 (2005) 081602, arXiv:hep-ph/0408103.
[Pilaftsis:2004xx]
[33-853]
Low-scale standard supersymmetric leptogenesis, Martti Raidal, Alessandro Strumia, Krzysztof Turzynski, Phys. Lett. B609 (2005) 351-359, arXiv:hep-ph/0408015.
[Raidal:2004vt]
[33-854]
Leptogenesis in the minimal supersymmetric triplet seesaw model, G. D'Ambrosio et al., Phys. Lett. B604 (2004) 199, arXiv:hep-ph/0407312.
[DAmbrosio:2004rko]
[33-855]
Note about leptogenesis from gravity waves in models of inflation, David H. Lyth, Yeinzon Rodriguez, Carlos Quimbay, arXiv:hep-ph/0406329, 2004.
[Lyth:2004db]
[33-856]
Leptogenesis at the TeV scale, Asmaa Abada, Habib Aissaoui, Marta Losada, arXiv:hep-ph/0406304, 2004.
[Abada:2004vd]
[33-857]
A Minimal Model of Baryogenesis and Its Signatures in CMB, Bo Feng, Hong Li, Mingzhe Li, Xinmin Zhang, Phys. Lett. B620 (2005) 27, arXiv:hep-ph/0406269.
[Feng:2004mq]
[33-858]
Neutrino Mixing and Leptogenesis in Type II Seesaw Mechanism, Wan-lei Guo, Phys. Rev. D70 (2004) 053009, arXiv:hep-ph/0406268.
[Guo:2004mp]
[33-859]
Bound on neutrino masses from leptogenesis in type-II see-saw models, Narendra Sahu, S. Uma sankar, Phys. Rev. D71 (2005) 013006, arXiv:hep-ph/0406065.
[Sahu:2004ny]
[33-860]
Universal Neutrino Mass Hierarchy and Cosmological Baryon Number Asymmetry, Zhi-zhong Xing, Phys. Rev. D70 (2004) 071302, arXiv:hep-ph/0406047.
[Xing:2004ii]
[33-861]
Type II Leptogenesis and the Neutrino Mass Scale, Stefan Antusch, Steve F. King, Phys. Lett. B597 (2004) 199, arXiv:hep-ph/0405093.
[Antusch:2004xy]
[33-862]
Leptogenesis with triplet Higgs boson, Peihong Gu, Xiaojun Bi, Phys. Rev. D70 (2004) 063511, arXiv:hep-ph/0405092.
[Gu:2004xx]
[33-863]
Symmetric Mass Matrix with Two Zeros in SUSY SO(10) GUT, Lepton Flavor Violations and Leptogenesis, Masako Bando, Satoru Kaneko, Midori Obara, Morimitu Tanimoto, Prog.Theor.Phys. 112 (2004) 533, arXiv:hep-ph/0405071.
[Bando:2004hi]
[33-864]
The Kinetic Equation for Electroweak Baryogenesis, Jitesh Bhatt, Raghavan Rangarajan, Phys. Rev. D70 (2004) 127301, arXiv:hep-ph/0404284.
[Bhatt:2004cq]
[33-865]
Minimal seesaw model with tri/bi-maximal mixing and leptogenesis, Sanghyeon Chang, Sin Kyu Kang, Kim Siyeon, Phys. Lett. B597 (2004) 78, arXiv:hep-ph/0404187.
[Chang:2004wy]
[33-866]
Resonant leptogenesis in a predictive SO(10) grand unified model, Carl H. Albright, S.M. Barr, Phys. Rev. D70 (2004) 033013, arXiv:hep-ph/0404095.
[Albright:2004ws]
[33-867]
Low-scale leptogenesis and soft supersymmetry breaking, L. Boubekeur, T. Hambye, G. Senjanovic, Phys. Rev. Lett. 93 (2004) 111601, arXiv:hep-ph/0404038.
[Boubekeur:2004ez]
[33-868]
Late Leptogenesis from Radiative Soft Terms, Eung Jin Chun, Phys. Rev. D69 (2004) 117303, arXiv:hep-ph/0404029.
[Chun:2004eq]
[33-869]
Can One Phase Induce All CP Violations Including Leptogenesis?, Yoav Achiman, Phys. Lett. B599 (2004) 75, arXiv:hep-ph/0403309.
[Achiman:2004qf]
[33-870]
Inverted hybrid inflation and leptogenesis, V. N. Senoguz, Q. Shafi, Phys. Lett. B596 (2004) 8, arXiv:hep-ph/0403294.
[Senoguz:2004ky]
[33-871]
Gravitational Leptogenesis and Neutrino Mass Limit, Hong Li, Mingzhe Li, Xinmin Zhang, Phys. Rev. D70 (2004) 047302, arXiv:hep-ph/0403281.
[Li:2004hh]
[33-872]
Protecting the primordial baryon asymmetry in the SU(2)_{L} triplet Higgs model compatible with KamLAND and WMAP, K. Hasegawa, Phys. Rev. D70 (2004) 054002, arXiv:hep-ph/0403272.
[Hasegawa:2004bx]
[33-873]
Type II See-Saw Mechanism, Deviations from Bimaximal Neutrino Mixing and Leptogenesis, W. Rodejohann, Phys. Rev. D70 (2004) 073010, arXiv:hep-ph/0403236.
[Rodejohann:2004cg]
[33-874]
Viable Supersymmetry and Leptogenesis with Anomaly Mediation, Masahiro Ibe, Ryuichiro Kitano, Hitoshi Murayama, Tsutomu Yanagida, Phys. Rev. D70 (2004) 075012, arXiv:hep-ph/0403198.
[Ibe:2004tg]
[33-875]
TeV scale resonant leptogenesis from supersymmetry breaking, Thomas Hambye, John March-Russell, Stephen M. West, JHEP 0407 (2004) 070, arXiv:hep-ph/0403183.
[Hambye:2004jf]
[33-876]
Gravitational Baryogenesis, Hooman Davoudiasl et al., Phys. Rev. Lett. 93 (2004) 201301, arXiv:hep-ph/0403019.
[Davoudiasl:2004gf]
[33-877]
Leptonic CP violation phases using an ansatz for the neutrino mass matrix and application to leptogenesis, Salah Nasri, Joseph Schechter, Sherif Moussa, Phys. Rev. D70 (2004) 053005, arXiv:hep-ph/0402176.
[Nasri:2004rm]
[33-878]
Electroweak Baryogenesis in a Supersymmetric U(1)' Model, Junhai Kang, Paul Langacker, Tianjun Li, Tao Liu, Phys. Rev. Lett. 94 (2005) 061801, arXiv:hep-ph/0402086.
[Kang:2004pp]
[33-879]
Degenerate minimal see-saw and leptogenesis, Krzysztof Turzynski, Phys. Lett. B589 (2004) 135, arXiv:hep-ph/0401219.
[Turzynski:2004xy]
[33-880]
Leptogenesis from a sneutrino condensate revisited, Rouzbeh Allahverdi, Manuel Drees, Phys. Rev. D69 (2004) 103522, arXiv:hep-ph/0401054.
[Allahverdi:2004ix]
[33-881]
Leptogenesis in the type III seesaw mechanism, Carl H. Albright, S.M. Barr, Phys. Rev. D69 (2004) 073010, arXiv:hep-ph/0312224.
[Albright:2003xb]
[33-882]
Constraints on neutrino masses from leptogenesis models, Thomas Hambye et al., Nucl. Phys. B695 (2004) 169, arXiv:hep-ph/0312203.
[Hambye:2003rt]
[33-883]
Transport equations for chiral fermions to order \hbar and electroweak baryogenesis, T. Prokopec, M. G. Schmidt, S. Weinstock, Annals Phys. 314 (2004) 208, arXiv:hep-ph/0312110.
[Prokopec:2004ic]
[33-884]
Leptogenesis and a Jarlskog Invariant, Sacha Davidson, Ryuichiro Kitano, JHEP 0403 (2004) 020, arXiv:hep-ph/0312007.
[Davidson:2003yk]
[33-885]
Leptogenesis in seesaw models with a twofold-degenerate neutrino Dirac mass matrix, W. Grimus, L. Lavoura, J. Phys. G30 (2004) 1073, arXiv:hep-ph/0311362.
[Grimus:2003sf]
[33-886]
Hierarchical Matrices in the See-Saw Mechanism, large Neutrino Mixing and Leptogenesis, W. Rodejohann, Eur. Phys. J. C32 (2004) 235, arXiv:hep-ph/0311142.
[Rodejohann:2003gz]
[33-887]
TeV Scale Leptogenesis With Heavy Neutrinos, S. Dar, S. Huber, V. N. Senoguz, Q. Shafi, Phys. Rev. D69 (2004) 077701, arXiv:hep-ph/0311129.
[Dar:2003cr]
[33-888]
Radiatively induced leptogenesis in a minimal seesaw model, R. Gonzalez Felipe, F. R. Joaquim, B. M. Nobre, Phys. Rev. D70 (2004) 085009, arXiv:hep-ph/0311029.
[GonzalezFelipe:2003fi]
[33-889]
Thermal leptogenesis in a model with mass varying neutrinos, X.-J. Bi, P. Gu, X. Wang, X. Zhang, Phys. Rev. D69 (2004) 113007, arXiv:hep-ph/0311022.
[Bi:2003yr]
[33-890]
Calculable CP-violating Phases in the Minimal Seesaw Model of Leptogenesis and Neutrino Mixing, W.-L. Guo, Z.-Z. Xing, Phys. Lett. B583 (2004) 163, arXiv:hep-ph/0310326.
[Guo:2003cc]
[33-891]
Structure of Cosmological CP Violation via Neutrino Seesaw, V. Barger, D. A. Dicus, H.-J. He, T. Li, Phys. Lett. B583 (2004) 173, arXiv:hep-ph/0310278.
[Barger:2003gt]
[33-892]
Towards a complete theory of thermal leptogenesis in the SM and MSSM, G. F. Giudice et al., Nucl. Phys. B685 (2004) 89, arXiv:hep-ph/0310123.
[Giudice:2003jh]
[33-893]
Late Reheating, Hadronic Jets and Baryogenesis, Takehiko Asaka, Dmitri Grigoriev, Vadim Kuzmin, Mikhail Shaposhnikov, Phys. Rev. Lett. 92 (2004) 101303, arXiv:hep-ph/0310100.
[Asaka:2003vt]
[33-894]
Resonant Leptogenesis, A. Pilaftsis, T. E. J. Underwood, Nucl. Phys. B692 (2004) 303, arXiv:hep-ph/0309342.
[Pilaftsis:2003gt]
[33-895]
Protecting the primordial baryon asymmetry in the seesaw model compatible with WMAP and KamLAND, K. Hasegawa, Phys. Rev. D69 (2004) 013002, arXiv:hep-ph/0309098.
[Hasegawa:2003vh]
[33-896]
Primordial Lepton Family Asymmtries in Seesaw Model, T. Endoh, T. Morozumi, Z. Xiong, Prog. Theor. Phys. 111 (2004) 123, arXiv:hep-ph/0308276.
[Endoh:2003mz]
[33-897]
Soft Leptogenesis, G. D'Ambrosio, G. F. Giudice, M. Raidal, Phys. Lett. B575 (2003) 75, arXiv:hep-ph/0308031.
[DAmbrosio:2003nfv]
[33-898]
CMB constraints on non-thermal leptogenesis, A. Mazumdar, Phys. Lett. B580 (2004) 7, arXiv:hep-ph/0308020.
[Mazumdar:2003wm]
[33-899]
Neutrino Masses, Baryogenesis and Bilinear R-parity Violation, A.G. Akeroyd, E. J. Chun, M. A. Diaz, D.-W. Jung, Phys. Lett. B582 (2004) 64, arXiv:hep-ph/0307385.
[Akeroyd:2003pb]
[33-900]
Leptogenesis from Supersymmetry Breaking, Y. Grossman, T. Kashti, Y. Nir, E. Roulet, Phys. Rev. Lett. 91 (2003) 251801, arXiv:hep-ph/0307081.
[Grossman:2003jv]
[33-901]
Hierarchical Neutrino Mass Matrices, CP violation and Leptogenesis, L. Velasco-Sevilla, JHEP 0310 (2003) 035, arXiv:hep-ph/0307071.
[Velasco-Sevilla:2003fny]
[33-902]
Leptogenesis with four gauge singlets, A. Abada, M. Losada, Nucl. Phys. B673 (2003) 319, arXiv:hep-ph/0306180.
[Abada:2003rh]
[33-903]
Limits on $T_{\rm reh}$ for thermal leptogenesis with hierarchical neutrino masses, P. H. Chankowski, K. Turzynski, Phys. Lett. B570 (2003) 198, arXiv:hep-ph/0306059.
[Chankowski:2003rr]
[33-904]
Probing the seesaw mechanism with neutrino data and leptogenesis, E. Kh. Akhmedov, M. Frigerio, A. Yu. Smirnov, JHEP 0309 (2003) 021, arXiv:hep-ph/0305322.
[Akhmedov:2003dg]
[33-905]
Leptogenesis with supersymmetric Higgs triplets in TeV region, M. Senami, K. Yamamoto, Int. J. Mod. Phys. A21 (2006) 1291, arXiv:hep-ph/0305202.
[Senami:2003jn]
[33-906]
Leptogenesis in Neutrino Textures with Two Zeros, S. Kaneko, M. Katsumata, M. Tanimoto, JHEP 0307 (2003) 025, arXiv:hep-ph/0305014.
[Kaneko:2003cy]
[33-907]
Baryogenesis at the electroweak phase transition, Nicholas Petropoulos, arXiv:hep-ph/0304275, 2003.
[Petropoulos:2003pm]
[33-908]
Lopsided Mass Matrices and Leptogenesis in SO(10) GUT, T. Asaka, Phys. Lett. B562 (2003) 291, arXiv:hep-ph/0304124.
[Asaka:2003fp]
[33-909]
Baryogenesis in a flat direction with neither baryon nor lepton charge, Takeshi Chiba, Fuminobu Takahashi, Masahide Yamaguchi, Phys. Rev. Lett. 92 (2004) 011301, arXiv:hep-ph/0304102.
[Chiba:2003vp]
[33-910]
Coherent Baryogenesis, Bjorn Garbrecht, Tomislav Prokopec, Michael G. Schmidt, Phys. Rev. Lett. 92 (2004) 061303, arXiv:hep-ph/0304088.
[Garbrecht:2003mn]
[33-911]
The Neutrino Mass Window for Baryogenesis, W. Buchmuller, P. Di Bari, M. Plumacher, Nucl. Phys. B665 (2003) 445, arXiv:hep-ph/0302092.
[Buchmuller:2003gz]
[33-912]
From weak-scale observables to leptogenesis, S. Davidson, JHEP 0303 (2003) 037, arXiv:hep-ph/0302075.
[Davidson:2003cq]
[33-913]
On the Connection of Leptogenesis with Low Energy CP Violation and LFV Charged Lepton Decays, S. Pascoli, S. T. Petcov, W. Rodejohann, Phys. Rev. D68 (2003) 093007, arXiv:hep-ph/0302054.
[Pascoli:2003uh]
[33-914]
Cosmological Baryon Asymmetry and Neutrinos: Baryogenesis via Leptogenesis in Supersymmetric Theories, K. Hamaguchi, arXiv:hep-ph/0212305, 2002.
[Hamaguchi:2002vc]
[33-915]
Manifest CP Violation from Majorana Phases, A. de Gouvea, B. Kayser, R. Mohapatra, Phys. Rev. D67 (2003) 053004, arXiv:hep-ph/0211394.
[deGouvea:2002gf]
[33-916]
GUT Scale And Leptogenesis From 5D Inflation, B. Kyae, Q. Shafi, Phys. Lett. B556 (2003) 97, arXiv:hep-ph/0211059.
[Kyae:2003wm]
[33-917]
Minimal Scenarios for Leptogenesis and CP Violation, G. C. Branco et al., Phys. Rev. D67 (2003) 073025, arXiv:hep-ph/0211001.
[Branco:2002xf]
[33-918]
Leptogenesis in a prompt decay scenario, . Bento, arXiv:hep-ph/0210274, 2002.
[Bento:2002rz]
[33-919]
The Effective Lagrangian for the Seesaw Model of Neutrino Mass and Leptogenesis, A. Broncano, M. B. Gavela, E. Jenkins, Phys. Lett. B552 (2003) 177, arXiv:hep-ph/0210271.
[Broncano:2002rw]
[33-920]
Neutrino Mass Matrix with Two Zeros and Leptogenesis, S. Kaneko, M. Tanimoto, Phys. Lett. B551 (2003) 127, arXiv:hep-ph/0210155.
[Kaneko:2002yp]
[33-921]
Leptogenesis via multiscalar coherent evolution with supersymmetric neutrino see-saw, M. Senami, K. Yamamoto, Phys. Rev. D67 (2003) 095005, arXiv:hep-ph/0210073.
[Senami:2002jg]
[33-922]
A bound on neutrino masses from baryogenesis, W. Buchmuller, P. Di Bari, M. Plumacher, Phys. Lett. B547 (2002) 128-132, arXiv:hep-ph/0209301.
[Buchmuller:2002jk]
[33-923]
Leptogenesis within a predictive G(223)/SO(10) framework, J. C. Pati, arXiv:hep-ph/0209160, 2002.
[Pati:2002pe]
[33-924]
CP violation in neutrino oscillation and leptogenesis, T. Endoh, S. Kaneko, S. K. Kang, T. Morozumi, M. Tanimoto, Phys. Rev. Lett. 89 (2002) 231601, arXiv:hep-ph/0209020.
[Endoh:2002wm]
[33-925]
Non-thermal leptogenesis with almost degenerate superheavy neutrinos, R. Allahverdi, A. Mazumdar, Phys. Rev. D67 (2003) 023509, arXiv:hep-ph/0208268.
[Allahverdi:2002gz]
[33-926]
Leptogenesis at Low Scale, L. Boubekeur, arXiv:hep-ph/0208003, 2002.
[Boubekeur:2002jn]
[33-927]
Baryogenesis and Gravitino Dark Matter in Gauge-Mediated Supersymmetry-Breaking Models, Masaaki Fujii, T. Yanagida, Phys. Rev. D66 (2002) 123515, arXiv:hep-ph/0207339.
[Fujii:2002yx]
[33-928]
Leptogenesis without CP Violation at Low Energies, M. N. Rebelo, Phys. Rev. D67 (2003) 013008, arXiv:hep-ph/0207236.
[Rebelo:2002wj]
[33-929]
Leptogenesis, mass hierarchies and low energy parameters, W. Rodejohann, Phys. Lett. B542 (2002) 100-110, arXiv:hep-ph/0207053.
[Rodejohann:2002hx]
[33-930]
$\mu$-term as the origin of lepton number asymmetry, D. Suematsu, J. Phys. G31 (2005) 445, arXiv:hep-ph/0207039.
[Suematsu:2002hh]
[33-931]
Non-thermal Leptogenesis from the Heavier Majorana Neutrinos, T. Asaka, H. B. Nielsen, Y. Takanishi, Nucl. Phys. B647 (2002) 252-274, arXiv:hep-ph/0207023.
[Asaka:2002zu]
[33-932]
Leptogenesis and low-energy phases, A. Ibarra S. Davidson, Nucl. Phys. B648 (2003) 345-375, arXiv:hep-ph/0206304.
[Davidson:2002em]
[33-933]
Observable Consequences of Partially Degenerate Leptogenesis, J. R. Ellis, M. Raidal, T. Yanagida, Phys. Lett. B546 (2002) 228-236, arXiv:hep-ph/0206300.
[Ellis:2002eh]
[33-934]
Realistic Dirac Leptogenesis, A. Pierce H. Murayama, Phys. Rev. Lett. 89 (2002) 271601, arXiv:hep-ph/0206177.
[Murayama:2002je]
[33-935]
Cosmic Microwave Background, Matter-Antimatter Asymmetry and Neutrino Masses, W. Buchmuller, P. Di Bari, M. Plumacher, Nucl. Phys. B643 (2002) 367-390, arXiv:hep-ph/0205349.
[Buchmuller:2002rq]
[33-936]
Flat manifold leptogenesis in the supersymmetric standard model, M. Senami, K. Yamamoto, Phys. Rev. D66 (2002) 035006, arXiv:hep-ph/0205041.
[Senami:2002kn]
[33-937]
A lower bound on the right-handed neutrino mass from leptogenesis, S. Davidson, A. Ibarra, Phys. Lett. B535 (2002) 25-32, arXiv:hep-ph/0202239.
[Davidson:2002qv]
[33-938]
Leptogenesis with Almost Degenerate Majorana Neutrinos, Masaaki Fujii, K. Hamaguchi, T. Yanagida, Phys. Rev. D65 (2002) 115012, arXiv:hep-ph/0202210.
[Fujii:2002jw]
[33-939]
Leptogenesis from sneutrino-dominated early universe, Koichi Hamaguchi, Hitoshi Murayama, T. Yanagida, Phys. Rev. D65 (2002) 043512, arXiv:hep-ph/0109030.
[Hamaguchi:2001gw]
[33-940]
Affleck-Dine leptogenesis with triplet Higgs, M. Senami, K. Yamamoto, Phys. Lett. B524 (2002) 332-341, arXiv:hep-ph/0105054.
[Senami:2001qn]
[33-941]
Baryogenesis via neutrino oscillations, E. Kh. Akhmedov, V. A. Rubakov, A. Yu. Smirnov, Phys. Rev. Lett. 81 (1998) 1359-1362, arXiv:hep-ph/9803255.
[Akhmedov:1998qx]
[33-942]
Baryogenesis via leptogenesis, M. A. Luty, Phys. Rev. D45 (1992) 455-465.
[Luty:1992un]
[33-943]
Baryogenesis without grand unification, M. Fukugita, T. Yanagida, Phys. Lett. B174 (1986) 45.
[Fukugita:1986hr]
[33-944]
Mechanisms for cosmological baryon production, D. V. Nanopoulos, Steven Weinberg, Phys. Rev. D20 (1979) 2484.
[Nanopoulos:1979gx]
[33-945]
Cosmological production of baryons, Steven Weinberg, Phys. Rev. Lett. 42 (1979) 850-853.
[Weinberg:1979bt]

34 - Theory - Leptogenesis and Baryogenesis - Talks

[34-1]
Dynamical Generation of the Baryon Asymmetry from a Scale Hierarchy, Jae Hyeok Chang, Kwang Sik Jeong, Chang Hyeon Lee, Chang Sub Shin, arXiv:2401.13734, 2024.
[Chang:2024xjd]
[34-2]
Light sterile neutrino and leptogenesis, Ki-Young Jung, Kim Siyeon, J.Korean Phys.Soc. 81 (2022) 1211-1224, arXiv:2205.13860. NEUTRINO 2022.
[Jung:2022bgu]
[34-3]
Gravitational waves from neutrino mass genesis, Pasquale Di Bari, PoS CORFU2021 (2022) 064, arXiv:2205.05744. Corfu Summer Institute 2021.
[DiBari:2022zhe]
[34-4]
Sterile Neutrino Dark Matter and Leptogenesis in Left-Right Symmetric Theories, David Dunsky, Lawrence J. Hall, Keisuke Harigaya, arXiv:2105.08065, 2021. 2021 EW session of the 55th Rencontres de Moriond.
[Dunsky:2021yaj]
[34-5]
$\nu$ Electroweak Baryogenesis, S. Rosauro-Alcaraz, arXiv:2105.01452, 2021. 2021 EW session of the 55th Rencontres de Moriond.
[Rosauro-Alcaraz:2021fbf]
[34-6]
Testability of leptogenesis with three RH-neutrinos below the electroweak scale, Michele Lucente, arXiv:1906.11869, 2019. Rencontres de Moriond EW 2019, 16-23 March 2019 in La Thuile, Italy.
[Lucente:2019fhl]
[34-7]
Quantum Anomalies, Running Vacuum and Leptogenesis: an Interplay, Spyros Basilakos, Nick E. Mavromatos, Joan Sola, PoS CORFU2018 (2019) 044, arXiv:1905.05685. Corfu2018, Corfu (Greece) and HEP2019, Athens (Greece).
[Basilakos:2019wxu]
[34-8]
Freeze-in leptogenesis with 3 right-handed neutrinos, Michele Lucente, Asmaa Abada, Giorgio Arcadi, Valerie Domcke, Marco Drewes, Juraj Klaric, PoS ICHEP2018 (2018) 306, arXiv:1811.08292. 39th International Conference on High Energy Physics (ICHEP2018), 4-11 July 2018, Seoul, Korea.
[Lucente:2018uaj]
[34-9]
WIMPy Leptogenesis in extended Scotogenic Model, Debasish Borah, Arnab Dasgupta, Sin Kyu Kang, PoS ICHEP2018 (2019) 929, arXiv:1811.02094. 39th International Conference on High Energy Physics, ICHEP 2018, Seoul, Korea.
[Borah:2018enf]
[34-10]
B-L Higgs Inflation in Supergravity With Several Consequences, C. Pallis, PoS CORFU2017 (2018) 086, arXiv:1804.07038. Corfu Summer Institute 2017.
[Pallis:2018acu]
[34-11]
Creating the Baryon Asymmetry from Lepto-Bubbles, Silvia Pascoli, Jessica Turner, Ye-Ling Zhou, arXiv:1704.08322, 2017. NuPhys 2016.
[Pascoli:2017glr]
[34-12]
Leptogenesis after Inflation in a Pati-Salam Model, Stuart Raby, AIP Conf.Proc. 1900 (2017) 020009, arXiv:1703.02558. CETUP' 2016 Conference, Lead, SD.
[Raby:2017trf]
[34-13]
Effects Of leptonic non-unitarity on lepton flavor violation, neutrino oscillation, leptogenesis and lightest neutrino mass, Gayatri Ghosh, Kalpana Bora, Springer Proc.Phys. 203 (2018) 309-311, arXiv:1612.09047. XXII DAE BRNS High energy physics symposium, 12 - 16 December, 2016, Delhi University, Delhi, India.
[Ghosh:2016xpw]
[34-14]
Leptogenesis: Improving predictions for experimental searches, Marco Drewes, Bjorn Garbrecht, Dario Gueter, Juraj Klaric, PoS ICHEP2016 (2017) 514, arXiv:1611.08504. ICHEP2016, August 3-10 2016, Chicago, USA.
[Drewes:2016fjh]
[34-15]
On the relation between the CP phases in the PMNS matrix, CP-violation with sterile neutrinos and leptogenesis, Marco Drewes, Bjorn Garbrecht, Dario Gueter, Juraj Klaric, arXiv:1611.04769, 2016. 18th International Workshop on Neutrino Factories and Future Neutrino Facilities Search (NuFact16) Quy Nhon, Vietnam, August 21-27, 2016.
[Drewes:2016blc]
[34-16]
Lepton number symmetry as a way to testable leptogenesis, M. Lucente, A. Abada, G. Arcadi, V. Domcke, arXiv:1605.05328, 2016. 51st Rencontres de Moriond EW 2016, 12-19 March 2016 in La Thuile, Italy.
[Lucente:2016zbs]
[34-17]
Leptogenesis in natural low-scale seesaw mechanisms, Michele Lucente, PoS EPS-HEP2015 (2015) 393, arXiv:1510.04611. The European Physical Society Conference on High Energy Physics, 22-29 July 2015 in Vienna, Austria.
[Lucente:2015tda]
[34-18]
Novel Scenarios for Majorana Neutrino Mass Generation and Leptogenesis from Kalb-Ramond Torsion, Nick E. Mavromatos, PoS PLANCK2015 (2015) 082, arXiv:1510.02457. Planck 2015, 18th International Conference From the Planck Scale to the Electroweak Scale, 25-29 May 2015,Ioannina, Greece.
[Mavromatos:2015afa]
[34-19]
How to avoid unnatural hierarchical thermal leptogenesis, Jackson D. Clarke, PoS PLANCK2015 (2015) 026, arXiv:1509.07242. 18th International Conference From the Planck Scale to the Electroweak Scale (2015).
[Clarke:2015aea]
[34-20]
Higgs relaxation and the matter-antimatter asymmetry of the universe, Alexander Kusenko, arXiv:1507.06007, 2015. 50th Rencontres de Moriond session, 'Electroweak interactions and unified theories', La Thuile, March 14-21, 2015.
[Kusenko:2015nta]
[34-21]
Leptogenesis during Axion Relaxation after Inflation, Kai Schmitz, arXiv:1503.08908, 2015. 2nd Toyama International Workshop on Higgs as a Probe of New Physics (HPNP 2015), February 11-15, 2015.
[Schmitz:2015nqa]
[34-22]
TeV Scale Lepton Number Violation and Baryogenesis, P. S. Bhupal Dev, Chang-Hun Lee, R. N. Mohapatra, J. Phys. Conf. Ser. 631 (2015) 012007, arXiv:1503.04970. DISCRETE 2014, London.
[BhupalDev:2015khe]
[34-23]
Flavour effects in Resonant Leptogenesis from semi-classical and Kadanoff-Baym approaches, P. S. Bhupal Dev, Peter Millington, Apostolos Pilaftsis, Daniele Teresi, J. Phys. Conf. Ser. 631 (2015) 012087, arXiv:1502.07987. DISCRETE 2014, London.
[BhupalDev:2015oxc]
[34-24]
Strong thermal Leptogenesis: an exploded view of the low energy neutrino parameters in the SO(10)-inspired model, Luca Marzola, arXiv:1410.5565, 2014. XXX International Workshop on High Energy Physics 'Particle and Astroparticle Physics, Gravitation and Cosmology: Predictions, Observations and New Projects', June 23-27 2014, Protvino, Russia.
[Marzola:2014bga]
[34-25]
Flavour Covariant Formalism for Resonant Leptogenesis, P. S. Bhupal Dev, Peter Millington, Apostolos Pilaftsis, Daniele Teresi, Nucl.Part.Phys.Proc. 273-275 (2016) 268-274, arXiv:1409.8263. ICHEP 2014, Valencia, Spain.
[BhupalDev:2014sxe]
[34-26]
Effective field theories: from Cosmology to Quark Gluon Plasma, Simone Biondini, Frascati Phys.Ser. 59 (2014) 14-18, arXiv:1409.0511. 4th Young Researchers Workshop 'Physics Challenges in the LHC Era', Frascati, May 12 and 15, 2014.
[Biondini:2014xna]
[34-27]
Impact of Lepton Number Violation at the LHC on Models of Leptogenesis, Frank F. Deppisch, Julia Harz, arXiv:1408.5351, 2014. LHCP 2014.
[Deppisch:2014hva]
[34-28]
Neutrino parameters and the $N_2$-dominated scenario of leptogenesis, Michele Re Fiorentin, Sophie E. King, J. Phys. Conf. Ser. 598 (2015) 012027, arXiv:1405.2318. NuPhys2013 Conference: Prospects in Neutrino Physics, 19-20 December 2013, IOP, London.
[ReFiorentin:2014uwn]
[34-29]
WIMPy Leptogenesis, Patrick Stengel, arXiv:1402.0930, 2014. 10th International Symposium on Cosmology and Particle Astrophysics (CosPA2013).
[Stengel:2014jta]
[34-30]
Unifying Asymmetric Inert Fermion Doublet Dark Matter and Leptogenesis with Neutrino Mass, Narendra Sahu, arXiv:1212.3951, 2012. Recontres du Vietnam,July 15-21, 'Beyond the SM of Particle Physics', Quinon, Vietnam.
[Sahu:2012cg]
[34-31]
Scalar triplet leptogenesis without right-handed neutrino decoupling, D. Aristizabal Sierra, Nucl. Phys. Proc. Suppl. 237-238 (2013) 43-45, arXiv:1212.3302. Neutrino Oscillation Workshop 2012 (NOW 2012), Conca Specchiulla (Otranto, Lecce, Italy), September 9-16, 2012.
[AristizabalSierra:2012pv]
[34-32]
Thermal right-handed neutrino self-energy in the non-relativistic regime, M. Laine, arXiv:1209.2869, 2012. Frontiers in Perturbative Quantum Field Theory, 10-12 September 2012, Bielefeld, Germany.
[Laine:2012nq]
[34-33]
Validity of quasi-degenerate neutrino mass models and their predictions on baryogenesis, Ng. K. Francis, N. Nimai Singh, Nucl. Phys. B863 (2012) 19-32, arXiv:1206.3420. 25th International Conference on neutrino physics and Astrophysics, Kyoto, Japan, July 2012.
[Francis:2012jj]
[34-34]
Dark Matter and Leptogenesis in the Inverse Seesaw, Francois-Xavier Josse-Michaux, Emiliano Molinaro, PoS EPS-HEP2011 (2011) 102, arXiv:1111.5036. 2011 Europhysics Conference on High Energy Physics-HEP 2011, July 21-27, 2011, Grenoble, Rhone-Alpes France.
[Josse-Michaux:2011wby]
[34-35]
Lepton mixing induced by flavour symmetry and Leptogenesis constraints, Ivo de Medeiros Varzielas, Fortsch. Phys. 59 (2011) 1083-1087, arXiv:1103.3476. Corfu Summer Institute 2010.
[deMedeirosVarzielas:2011ctm]
[34-36]
Two Questions About Neutrinos, Boris Kayser, arXiv:1012.4469, 2010. 22nd Rencontres de Blois.
[Kayser:2010xb]
[34-37]
Flavour in Soft Leptogenesis, Chee Sheng Fong, Frascati Phys.Ser. 51 (2010) 67-72, arXiv:1010.0369. 2nd Young Researchers Workshop 'Physics Challenges in the LHC Era', Frascati, May 10 and 13, 2010.
[Fong:2010nq]
[34-38]
Leptogenesis constraints from flavour symmetry induced lepton mixing, Ivo de Medeiros Varzielas, PoS ICHEP2010 (2010) 295, arXiv:1009.6232. ICHEP 2010.
[deMedeirosVarzielas:2010lgh]
[34-39]
Supersymmetric leptogenesis and light hidden sectors, Christoph Weniger, J. Phys. Conf. Ser. 259 (2010) 012075, arXiv:1009.5865. PASCOS, Valencia, 19-23 July 2010.
[Weniger:2010vw]
[34-40]
Leptogenesis with Friedberg-Lee Symmetry, Takeshi Araki, C.Q. Geng, Mod. Phys. Lett. A25 (2010) 1004-1013, arXiv:1004.1241. International Workshop on Dark Matter, Dark Energy and Matter-Antimatter Asymmetry, Hsinchu, Taiwan, 20-21 Nov. 2009.
[Araki:2010kj]
[34-41]
Thermal masses in leptogenesis, Clemens P. Kiessig, Michael Plumacher, AIP Conf. Proc. 1200 (2010) 999-1002, arXiv:0910.4872. 4 pages, 2 figures, proceedings of SUSY 20y09.
[Kiessig:2009cm]
[34-42]
On the Interplay Between the 'Low' and 'High' Energy CP-Violation in Leptogenesis, E. Molinaro, S.T. Petcov, PoS EPS-HEP2009 (2009) 291, arXiv:0909.2836. The 2009 Europhysics Conference on High Energy Physics, July 16 - 22, 2009, Krakow, Poland.
[Molinaro:2009an]
[34-43]
Leptogenesis and its Electromagnetic Variant, Boris Kayser, arXiv:0907.2664, 2009. 2009 Rencontres de Moriond on Electroweak Interactions and Unified Theories.
[Kayser:2009vf]
[34-44]
Purely Flavored Leptogenesis at the TeV Scale, Luis Alfredo Munoz, Frascati Phys.Ser. 48 (2009) 13-18, arXiv:0906.3457. Young Researchers Workshop 'Physics Challenges in the LHC Era', Frascati, May 11 and 14, 2009.
[Munoz:2009ir]
[34-45]
Can LHC disprove Leptogenesis ?, G. Vertongen, arXiv:0905.3661, 2009. XLIVth Rencontres de Moriond, Electroweak Interactions And Unified Theories, La Thuile, Aosta Valley, Italy, 7-14 Mar 2007.
[Vertongen:2009pn]
[34-46]
Leptogenesis and Low-energy Observables, Gustavo C. Branco, M. N. Rebelo, Nucl. Phys. Proc. Suppl. 188 (2009) 325-328, arXiv:0902.0162. NOW 2008: Neutrino Oscillation Workshop, 6-13 Sep 2008, Conca Specchiulla (Otranto), Lecce, Italy.
[Branco:2009mb]
[34-47]
CP Violation and Lightest Neutrino Mass Effects in Thermal Leptogenesis, E. Molinaro, S. T. Petcov, T. Shindou, Y. Takanishi, J. Phys. Conf. Ser. 171 (2009) 012077, arXiv:0901.3524. DISCRETE'08, Symposium on Prospects in the Physics of Discrete Symmetries, IFIC, Valencia, Spain, 11-16 December 2008.
[Molinaro:2009iv]
[34-48]
Leptogenesis and LHC Physics with Type III See-Saw, Shao-Long Chen, Xiao-Gang He, Int. J. Mod. Phys. Conf. Ser. 01 (2011) 18-27, arXiv:0901.1264. COSPA2008, APCTP, Pohang, Korea, 28/10 - 1/11, 2008.
[Chen:2009vx]
[34-49]
Leptogenesis in Complex Hybrid Inflation, Carlos Martinez Prieto, AIP Conf. Proc. 1083 (2008) 136-143, arXiv:0810.5166. AIP Conference Proceedings of the III International Meeting on Gravitation and Cosmology, Morelia, Mexico, May 26-30, 2008.
[Martinez-Prieto:2008xjt]
[34-50]
Leptogenesis in the E$_6$SSM: Flavour Dependent Lepton Asymmetries, S. F. King, R. Luo, D. J. Miller, R. Nevzorov, AIP Conf. Proc. 1078 (2009) 509-511, arXiv:0808.3739. SUSY08.
[King:2008gw]
[34-51]
Quantum Boltzmann equations in resonant leptogenesis, Andrea De Simone, arXiv:0805.2354, 2008. 43rd Rencontres de Moriond - EW session, La Thuile (Italy), 1-8 March 2008.
[DeSimone:2008ez]
[34-52]
The see-saw mechanism: neutrino mixing, leptogenesis and lepton flavor violation, Werner Rodejohann, Pramana 72 (2009) 217-227, arXiv:0804.3925. 10th Workshop In High Energy Physics Phenomenology (WHEPP 10), January 2008, Chennai, India.
[Rodejohann:2008xp]
[34-53]
Leptonic CP Violation and Leptogenesis, M. N. Rebelo, arXiv:0712.1930, 2007. 6th International Heidelberg Conference on Dark Matter in Astro and Particle Physics, Sydney, Australia, 24-28 Sep 2007.
[Rebelo:2007rv]
[34-54]
Spontaneous Lorentz Violation and Baryogenesis, Jing Shu, arXiv:0711.2519, 2007. 4th Meeting on CPT and Lorentz Symmetry (CPT 07), Bloomington, Indiana, August 8-11.
[Shu:2007wi]
[34-55]
Leptogenesis in SO(10) models with a left-right symmetric seesaw mechanism, A. Abada, P. Hosteins, F. -X. Josse-Michaux, S. Lavignac, arXiv:0710.5802, 2007. SUSY07.
[Abada:2007em]
[34-56]
Stability and leptogenesis in left-right symmetric seesaw models, Tomas Hallgren, arXiv:0710.2438, 2007. SUSY07.
[Hallgren:2007pk]
[34-57]
The Role of Lepton Flavours in Thermal Leptogenesis, F.X. Josse-Michaux, arXiv:0710.1978, 2007. XLIInd Rencontres de Moriond on Electroweak Interactions and Unified Theories, La Thuile, March 10-17, 2007.
[Josse-Michaux:2007crw]
[34-58]
Dirac phase leptogenesis, Steve Blanchet, J. Phys. Conf. Ser. 120 (2008) 022007, arXiv:0710.0570. TAUP 07 conference, Sep. 11-15, Sendai, Japan.
[Blanchet:2007qs]
[34-59]
Leptogenesis with exclusively low-energy CP Violation in the Context of Minimal Lepton Flavour Violation, Selma Uhlig, J. Phys. Conf. Ser. 110 (2008) 072045, arXiv:0709.4624. EPS HEP 2007, Manchester (UK).
[Uhlig:2007xe]
[34-60]
TeV scale model for neutrino masses, dark matter and leptogenesis, Narendra Sahu, AIP Conf. Proc. 939 (2007) 294-297, arXiv:0706.0948. International workshop on theoretical high energy physics (IWTHEP), Roorkee, 2007.
[Sahu:2007sc]
[34-61]
Recent Issues in Leptogenesis, Enrico Nardi, arXiv:0706.0487, 2007. XLII Rencontres de Moriond, La Thuile, Aosta Valley, Italy, March 10 - 17, 2007.
[Nardi:2007cf]
[34-62]
Flavoured Leptogenesis, Sacha Davidson, arXiv:0705.1590, 2007. Venice Neutrino Telescopes Conference.
[Davidson:2007xu]
[34-63]
Flavor effects in thermal leptogenesis, Steve Blanchet, Pasquale Di Bari, Nucl. Phys. Proc. Suppl. 168 (2007) 372-374, arXiv:hep-ph/0702089. NOW 2006, Conca Specchiulla, Sep. 9-16, 2006.
[Blanchet:2007hv]
[34-64]
Topics in Leptogenesis, Enrico Nardi, AIP Conf. Proc. 917 (2007) 82-89, arXiv:hep-ph/0702033. 6th Latin American Symposium on High Energy Physics (VI-SILAFAE), Puerto Vallarta, Mexico, November 1-8, 2006.
[Nardi:2007fs]
[34-65]
Gravi-Leptogenesis: Leptogenesis from Gravity Waves in Pseudo-scalar Driven Inflation Models, S. H. Alexander, M. Peskin, M. M. Sheikh-Jabbari, eConf C0605151 (2006) 0022, arXiv:hep-ph/0701139. IPM School and Conference on Lepton and Hadron Physics (IPM-LHP06), Tehran, Iran.
[Alexander:2006lty]
[34-66]
Seesaw mechanism and leptogenesis, D. Falcone, arXiv:hep-ph/0612041, 2006. Laboratoire de Physique Theorique, Orsay, France.
[Falcone:2006qi]
[34-67]
Leptogenesis and Gravitino Dark Matter, Wilfried Buchmuller, AIP Conf. Proc. 903 (2007) 56-64, arXiv:hep-ph/0611368. SUSY06, Irvine.
[Buchmuller:2006nj]
[34-68]
Electroweak Baryogenesis in the nMSSM, Thomas Konstandin, AIP Conf. Proc. 903 (2007) 689-692, arXiv:hep-ph/0610405. SUSY06, the 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions, UC Irvine, California, 12-17 June 2006.
[Konstandin:2006nt]
[34-69]
Relating Leptogenesis to Low Energy CP Violation, Mu-Chun Chen, K.T. Mahanthappa, AIP Conf. Proc. 903 (2007) 303-306, arXiv:hep-ph/0610373. 14th International Conference on Supersymmetry and Unification of Fundamental Interactions (SUSY'06), Irvine, CA, 12-17 June 2006.
[Chen:2006gc]
[34-70]
Inflation, Strings, CMB anisotropies and Leptogenesis, Rachel Jeannerot, arXiv:hep-ph/0610295, 2006. Rencontres de Moriond 'Contents and Structures of the Universe', La Thuile, Italy, March 18-25, 2006.
[Jeannerot:2006dy]
[34-71]
Low scale leptogenesis with an SU(2)_L singlet scalar, Michele Frigerio, eConf C0605151 (2006) 0021, arXiv:hep-ph/0610211. IPM Conference on Lepton and Hadron Physics, Tehran, Iran, May 15-20, 2006.
[Frigerio:2006xv]
[34-72]
Minimal Lepton Flavour Violation and leptogenesis, V. Porretti, Conf.Proc. C060726 (2006) 304-307, arXiv:hep-ph/0610194. ICHEP06, Moscow, July 26 - August 2, 2006.
[Porretti:2006sh]
[34-73]
Aspects of matter-antimatter asymmetries in Astrophysics and relativistic heavy ion collisions, Fabio L. Braghin, arXiv:hep-ph/0609242, 2006. XXVVI Physics In Collisions (PIC), Buzios, Brasil, July 2006.
[Braghin:2006hh]
[34-74]
(Pseudo)-Dirac neutrinos and leptogenesis, Steven Abel, Veronique Page, AIP Conf. Proc. 878 (2006) 341-346, arXiv:hep-ph/0609140. Dark Side of the Universe Conference 2006 (DSU2006), Madrid, Spain, 20-24 June 2006.
[Abel:2006nv]
[34-75]
Baryogenesis by Heavy Quarks: Q-genesis, Jihn E. Kim, AIP Conf. Proc. 881 (2007) 65-72, arXiv:hep-ph/0608283. CICHEP-II.
[Kim:2006pb]
[34-76]
Simulations of Cold Electroweak Baryogenesis, Anders Tranberg, Jan Smit, Mark Hindmarsh, Nucl. Phys. A785 (2007) 102-105, arXiv:hep-ph/0608167. International Conference on Strong and Electroweak Matter (SEWM 2006), Upton, New York, 10-13 May 2006.
[Tranberg:2006nv]
[34-77]
Baryogenesis in the MSSM, nMSSM and NMSSM, Stephan J. Huber, Thomas Konstandin, Tomislav Prokopec, Michael G. Schmidt, Nucl. Phys. A785 (2007) 206-209, arXiv:hep-ph/0608017. 7th Conference on Strong and Electroweak Matter (SEWM06), Brookhaven National Laboratory, May 10-13, 2006.
[Huber:2006ma]
[34-78]
Supersymmetric Lepton Flavor Violation and Leptogenesis, S. Albino, F. Deppisch, R. Rückl, arXiv:hep-ph/0606226, 2006. XLIst Rencontres de Moriond, Electroweak Interactions and Unified Theories, La Thuile, Italy, March 11-18, 2006.
[Albino:2006xe]
[34-79]
Leptogenesis from right-handed neutrino decays to right-handed leptons, Thomas Hambye, arXiv:hep-ph/0606182, 2006. 41st Rencontres de Moriond on Electroweak Interactions and Unified Theories, La Thuile, Aosta Valley, Italy, 11-18 Mar 2006.
[Hambye:2006gk]
[34-80]
Relating leptogenesis and dark matter, Michel H.G. Tytgat, arXiv:hep-ph/0606140, 2006. 40th Rencontres de Moriond, Electroweak Interactions and Unified Theories, March 11 - 18, 2006.
[Tytgat:2006wy]
[34-81]
Observable Neutron-Anti-Neutron Oscillation, Baryogenesis and High Scale Seesaw, R. N. Mohapatra, Pramana 67 (2006) 783-792, arXiv:hep-ph/0605289. WHEPP9 symposium in Bhubaneswar, India; January, 2006.
[Mohapatra:2006ei]
[34-82]
LFV radiative Decays and Leptogenesis in the SUSY seesaw model, S. T. Petcov, T. Shindou, arXiv:hep-ph/0605204, 2006. XLIst Rencontres de Moriond, Electroweak Interactions and Unified Theories, La Thuile, Italy, 11-18 March 2006.
[Petcov:2006bn]
[34-83]
Neutrinos, leptonic CP violation and the origin of matter, F.R. Joaquim, arXiv:hep-ph/0512132, 2005. 'Symposium in Honour of Gustavo C. Branco: CP Violation and the Flavour Puzzle', Lisbon, Portugal, 19-20 July 2005.
[Joaquim:2005ke]
[34-84]
Fermion Mixing and Soft Leptogenesis in a SUSY SO(10) x SU(2)_F Model, Mu-Chun Chen, K.T. Mahanthappa, PoS HEP2005 (2006) 356, arXiv:hep-ph/0510296. EPS International Europhysics Conference on High Energy Physics (EPS-HEP2005), Lisbon, Portugal, 21-27 Jul 2005.
[Mahanthappa:2005fe]
[34-85]
Non-thermal Leptogenesis and a Prediction of Inflaton Mass in a Supersymmetric SO(10) Model, Takeshi Fukuyama, Tatsuru Kikuchi, Toshiyuki Osaka, JCAP 0506 (2005) 005, arXiv:hep-ph/0503201.
[Fukuyama:2005us]
[34-86]
Leptonic CP Violation and Baryon Asymmetry, M. N. Rebelo, arXiv:hep-ph/0502099, 2005. Fifth International Heidelberg Conference on Dark Matter In Astro And Particle Physics (DARK2004) at Texas A&M University, College Station, TX, USA October 3 - 9, 2004.
[Rebelo:2005wg]
[34-87]
Radiative leptogenesis in minimal seesaw models, F.R. Joaquim, Nucl. Phys. Proc. Suppl. 145 (2005) 276, arXiv:hep-ph/0501221. NOW 2004: Neutrino Oscillation Workshop, Conca Specchiulla, Otranto, Italy, 11-17 Sep 2004.
[Joaquim:2005zv]
[34-88]
Various realizations of leptogenesis and neutrino mass constraints, Thomas Hambye, arXiv:hep-ph/0412053, 2004. International Conference on the Seesaw Mechanism, Paris, France, 10-11 June 2004.
[Hambye:2004fn]
[34-89]
Neutrino Mass Models and Leptogenesis, S.F. King, Phys. Scripta T121 (2005) 178, arXiv:hep-ph/0411345. 10th International Symposium on Particles, Strings and Cosmology (Pascos04), Northeastern University, Boston, August 16-22, 2004 and Nobel Symposium 129 on Neutrino Physics, Haga Slott, Enkoping, Sweden, August 19-24, 2004.
[King:2004wd]
[34-90]
Bi-maximal mixing at GUT, the low energy data and the leptogenesis, S. Kanemura et al., Nucl. Phys. Proc. Suppl. 149 (2005) 357, arXiv:hep-ph/0411239. NuFact04, Osaka, Japan, July 26 - August 1, 2004.
[Kanemura:2004wy]
[34-91]
Seesaw mechanism and the baryon asymmetry, M. Raidal, arXiv:hep-ph/0410362, 2004. Seesaw25, Paris, June 10-11, 2004.
[Raidal:2004hk]
[34-92]
Electroweak Baryogenesis in the Next-to-MSSM, Shuichiro Tao, arXiv:hep-ph/0410246, 2004. 12th Int. Conference on Supersymmetry and Unification of Fundamental Interactions, SUSY04, Tsukuba, Japan, June 2004.
[Tao:2004my]
[34-93]
Coherent Baryogenesis and Nonthermal Leptogenesis: A comparison, Bjorn Garbrecht, Tomislav Prokopec, Michael G. Schmidt, arXiv:hep-ph/0410132, 2004. Strong and Electroweak Matter 2004 (SEWM2004), Helsinki, Finland, June 16-19, 2004.
[Garbrecht:2004gv]
[34-94]
Parametrizations of the Seesaw, or, can the Seesaw be tested?, Sacha Davidson, arXiv:hep-ph/0409339, 2004. Seesaw'25.
[Davidson:2004wi]
[34-95]
Implications of Running Neutrino Parameters for Leptogenesis and for Testing Model Predictions, Stefan Antusch, arXiv:hep-ph/0409229, 2004. 10th International Symposium on Particles, Strings and Cosmology (Pascos04), Northeastern University, Boston, August 16-22, 2004.
[Antusch:2004yf]
[34-96]
Cold Electroweak Baryogenesis, Jan Smit, arXiv:hep-ph/0409005, 2004. Strong and ElectroWeak Matter 2004.
[Smit:2004ti]
[34-97]
Gauge dilution in leptogenesis, N. Cosme, arXiv:hep-ph/0406283, 2004. XXXIXth Rencontres de Moriond, Electroweak Interactions and Unified Theories, La Thuile, Italy.
[Cosme:2004ra]
[34-98]
Leptogenesis, neutrino mixing data and the absolute neutrino mass scale, P. Di Bari, arXiv:hep-ph/0406115, 2004. 39th Rencontres de Moriond on Electroweak Interactions and Unified Theories, La Thuile, Aosta Valley, Italy, 21-28 Mar 2004.
[DiBari:2004en]
[34-99]
Models of maximal atmospheric neutrino mixing and leptogenesis, W. Grimus, L. Lavoura, arXiv:hep-ph/0405261, 2004. NOON2004, February 11-15, 2004, Tokyo, Japan.
[Grimus:2004cv]
[34-100]
Neutrino Masses and GUT Baryogenesis, J.A. Lopez-Perez, N. Rius, PoS AHEP2003 (2003) AHEP2003/048, arXiv:hep-ph/0404124. AHEP2003, Valencia, Spain, October 2003.
[Lopez-Perez:2003eqn]
[34-101]
Inflation and Leptogenesis in Five Dimensional SO(10), Bumseok Kyae, Qaisar Shafi, arXiv:hep-ph/0312257, 2003. 2nd Workshop on 'Physics Beyond The Standard Model', Ain Shams Univ., Cairo, Egypt, Feb. 17-20, 2003.
[Kyae:2003dh]
[34-102]
Oscillations and leptogenesis: what can we learn about right-handed neutrinos?, Michele Frigerio, arXiv:hep-ph/0312023, 2003. XV IFAE, Lecce (Italy), April 2003; IV NANP Conference, Dubna (Russia), June 2003; VIII TAUP Workshop, Seattle (USA), September 2003.
[Frigerio:2003zc]
[34-103]
Neutrino Data, CP violation and Cosmological Implications, M. N. Rebelo, arXiv:hep-ph/0311226, 2003. 4th International Conference on Physics Beyond the Standard Model: Beyond the Desert (BEYOND 03), Castle Ringberg, Tegernsee, Germany, 9-14 June 2003.
[Rebelo:2003qe]
[34-104]
Constraints on lepton flavour violation and leptogenesis, Martti Raidal, arXiv:hep-ph/0311115, 2003. Moriond 2003, EW session, March 2003.
[Raidal:2003cb]
[34-105]
Cosmology and CP Violation, Gustavo C. Branco, eConf C030603 (2003) VEN05, arXiv:hep-ph/0309215. Flavor Physics And CP Violation (FPCP 2003) 3-6 June 2003, Paris, France.
[Branco:2003hj]
[34-106]
Leptogenesis, E.A. Paschos, Pramana 62 (2004) 359, arXiv:hep-ph/0308261. IXth International Symposium on Particles, Strings and Cosmology at the Tata Institute of Fundamental Research, Mumbai (Bombay), India, during 3-8 January 2003.
[Paschos:2003jc]
[34-107]
Leptogenesis: a Link between the Matter-Antimatter Asymmetry and Neutrino Physics, J. Orloff, arXiv:hep-ph/0307351, 2003. XXXVIII Rencontres de Moriond: Electroweak Interactions and Unified Theories, Les Arcs, France, 15-22 March 2003.
[Orloff:2003bg]
[34-108]
Neutrinos and matter-antimatter asymmetry of the universe, Wilfried Buchmuller, arXiv:hep-ph/0306047, 2003. Neutrino Telescopes, Venice, March 2003.
[Buchmuller:2003jr]
[34-109]
From neutrino oscillations to baryogenesis, D. Falcone, arXiv:hep-ph/0305333, 2003. Fourth International School of Physics 'Bruno Pontecorvo', Capri, May 26-29, 2003.
[Falcone:2003jq]
[34-110]
An effective theory for Leptogenesis, A.Broncano, arXiv:hep-ph/0305131, 2003. XXXVIII Rencontres de Moriond (Electroweak Session).
[Broncano:2003ux]
[34-111]
Weak-scale implications of thermal leptogenesis in SUSY, Sacha Davidson, arXiv:hep-ph/0304120, 2003. Moriond 2003.
[Davidson:2003fj]
[34-112]
Leptogenesis with Left-Right domain walls, U. A. Yajnik, J. Cline, M. Rabikumar, Pramana 62 (2004) 771, arXiv:hep-ph/0304020.
[Yajnik:2003up]
[34-113]
News on leptogenesis, P. Di Bari, Aip Conf. Proc. 655 (2003) 208, arXiv:hep-ph/0211175. Third Tropical Workshop: Neutrinos, Branes and Cosmology, 19-23 August 2002, San Juan, Puerto Rico.
[DiBari:2002wi]
[34-114]
Tests of Leptogenesis at Low Energy, Thomas Hambye, arXiv:hep-ph/0210048, 2002. 14th Rencontres de Blois: Matter - Anti-matter Asymmetry, Blois, France, 17-22 June 2002.
[Hambye:2002nw]
[34-115]
Connecting Link Between Leptogenesis and Oscillations, Paul H. Frampton, Aip Conf. Proc. 655 (2003) 128, arXiv:hep-ph/0209273. Third Tropical Workshop on Particles and Cosmology. San Juan, Puerto Rico, August 2002.
[Frampton:2002ms]
[34-116]
Leptogenesis and Low energy CP violation, a link, T. Endoh, S. Kaneko, S. K. Kang, T. Morozumi, M. Tanimoto, J. Phys. G29 (2003) 1877, arXiv:hep-ph/0209098. 4th Nufac02, July 1-6, 2002.
[Endoh:2002sk]
[34-117]
Leptogenesis and CP Violation in Neutrino Oscillations, Zhi-zhong Xing, Nucl. Phys. Proc. Suppl. 117 (2003) 43-46, arXiv:hep-ph/0209066. ICHEP 2002, Amsterdam.
[Xing:2002yq]
[34-118]
Baryogenesis in the wake of inflation, Alexander Kusenko, arXiv:hep-ph/0112009, 2001. International Workshop on Particle Physics and the Early Universe (COSMO-01), Rovaniemi, Finland, 30 Aug - 4 Sep 2001.
[Kusenko:2001ji]

35 - Theory - Neutrino Mixing

[35-1]
Neutrino-electron magnetohydrodynamics in an expanding Universe, L. M. Perrone, G. Gregori, B. Reville, L. O. Silva, R. Bingham, Phys.Rev.D 104 (2021) 123013, arXiv:2106.14892.
[Perrone:2021srr]
[35-2]
Neutrino Quantum Kinetic Equations: The Collision Term, Daniel N. Blaschke, Vincenzo Cirigliano, Phys. Rev. D94 (2016) 033009, arXiv:1605.09383.
[Blaschke:2016xxt]
[35-3]
On the Dynamics of Non-Relativistic Flavor-Mixed Particles, Mikhail V. Medvedev, JCAP 06 (2014) 063, arXiv:1305.1306.
[Medvedev:2013usa]
[35-4]
Extended evolution equations for neutrino propagation in astrophysical and cosmological environments, Cristina Volpe, Daavid Vaananen, Catalina Espinoza, Phys. Rev. D87 (2013) 113010, arXiv:1302.2374.
[Volpe:2013uxl]
[35-5]
Higher order correction to the neutrino self-energy in a medium and its astrophysical applications, Alberto Bravo Garcia, Sarira Sahu, Mod.Phys.Lett. A22 (2007) 213-225, arXiv:hep-ph/0702280.
[BravoGarcia:2007aqu]
[35-6]
Sterile neutrino production via active-sterile oscillations: the quantum Zeno effect, D. Boyanovsky, C. M. Ho, JHEP 07 (2007) 030, arXiv:hep-ph/0612092.
[Boyanovsky:2006it]

36 - Theory - Quantum Gravity and Cosmology

[36-1]
Visible Energy Alternative to Dark Energy, Maryam Roushan, Narges Rashidi, Kourosh Nozari, Chin.J.Phys. 77 (2022) 1827, arXiv:2204.07180.
[Roushan:2022abq]
[36-2]
Towards a unitary, renormalizable and ultraviolet-complete quantum theory of gravity, Christian F. Steinwachs, arXiv:2004.07842, 2020.
[Steinwachs:2020jkj]
[36-3]
The Construction Interpretation: a Conceptual Road to Quantum Gravity, Lucien Hardy, arXiv:1807.10980, 2018.
[Hardy:2018kbp]
[36-4]
Why we need to quantise everything, including gravity, Chiara Marletto, Vlatko Vedral, npj Quantum Inf. 3 (2017) 29, arXiv:1703.04325.
[Marletto:2017pjr]
[36-5]
Evolution without evolution and without ambiguities, C. Marletto, V. Vedral, Phys. Rev. D95 (2017) 043510, arXiv:1610.04773.
[Marletto:2016gwv]
[36-6]
Exact Quantum Loop Results in the Theory of General Relativity, B.F.L. Ward, Phys. Dark Universe 2 (2013) 97-109, arXiv:hep-ph/0607198.
[Ward:2010qs]
[36-7]
A lower limit to the scale of an effective theory of gravitation, Robert R. Caldwell, Daniel Grin, Phys. Rev. Lett. 100 (2008) 031301, arXiv:astro-ph/0606133.
[Caldwell:2006gu]
[36-8]
General Relativistic Effects of Gravity in Quantum Mechanics - A Case of Ultra-Relativistic, Spin 1/2 Particles -, Kohkichi Konno, Masumi Kasai, Prog. Theor. Phys. 100 (1998) 1145, arXiv:gr-qc/0603035.
[Konno:1998kq]
[36-9]
Quantum Nature of the Big Bang, Abhay Ashtekar, Tomasz Pawlowski, Parampreet Singh, Phys. Rev. Lett. 96 (2006) 141301, arXiv:gr-qc/0602086.
[Ashtekar:2006rx]
[36-10]
Observational Consequences of Quantum Cosmology, Qing-Guo Huang, Nucl. Phys. B777 (2007) 253-261, arXiv:hep-th/0510219.
[Huang:2005wq]
[36-11]
Beyond partial differential equations: A course on linear and quasi-linear abstract hyperbolic evolution equations, Horst R. Beyer, arXiv:gr-qc/0510097, 2005.
[Beyer:2005ef]
[36-12]
Tommy Gold revisited: Why does not the universe rotate?, George Chapline, Pawel O. Mazur, Aip Conf. Proc. 822 (2006) 160, arXiv:astro-ph/0509230.
[Chapline:2005hm]
[36-13]
A Proposed Test of the Local Causality of Spacetime, Adrian Kent, arXiv:gr-qc/0507045, 2005.
[Kent:2005fq]
[36-14]
A freely falling frame at the interface of gravitational and quantum realms, D. V. Ahluwalia-Khalilova, Class. Quant. Grav. 22 (2005) 1433-1450, arXiv:hep-th/0503141.
[Ahluwalia:2005jn]
[36-15]
The Computational Universe: Quantum gravity from quantum computation, Seth Lloyd, Science (2005), arXiv:quant-ph/0501135.
[Lloyd:2005js]
[36-16]
How does the entropy/information bound work ?, Jacob D. Bekenstein, Found. Phys. 35 (2005) 1805, arXiv:quant-ph/0404042.
[Bekenstein:2004sh]
[36-17]
Fundamental physics in space: A quantum-gravity perspective, Giovanni Amelino-Camelia, Gen. Rel. Grav. 36 (2004) 539-560, arXiv:astro-ph/0309174.
[Amelino-Camelia:2003ont]
[36-18]
Spacetime at the Planck Scale: The Quantum Computer View, Paola Zizzi, arXiv:gr-qc/0304032, 2003.
[Zizzi:2003dq]
[36-19]
Cosmological Perturbations from a New-Physics Hypersurface, V. Bozza, M. Giovannini, G. Veneziano, JCAP 0305 (2003) 001, arXiv:hep-th/0302184.
[Bozza:2003pr]
[36-20]
Experimental Challenges for Quantum Gravity, Robert C. Myers, Maxim Pospelov, Phys. Rev. Lett. 90 (2003) 211601, arXiv:hep-ph/0301124.
[Myers:2003fd]
[36-21]
An exactly soluble sector of quantum gravity, Joy Christian, Phys. Rev. D56 (1997) 4844-4877, arXiv:gr-qc/9701013.
[Christian:1997wj]
[36-22]
Gravitation, the Quantum, and Cosmological Constant, Pawel O. Mazur, Acta Phys. Polon. 27 (1996) 1849, arXiv:hep-th/9603014.
[Mazur:1996xy]

37 - Theory - Quantum Gravity and Cosmology - Talks

[37-1]
Lorentz violation as a quantum-gravity signature, Ralf Lehnert, Int. J. Mod. Phys. A20 (2005) 1303, arXiv:astro-ph/0508625. Coral Gables Conference on Launching of Belle Epoque in High-Energy Physics and Cosmology (CG 2003), Ft. Lauderdale, Florida, 17-21 Dec 2003.
[Lehnert:2005uh]
[37-2]
Dark Energy Stars, G. Chapline, eConf C041213 (2004) 0205, arXiv:astro-ph/0503200. Texas Conference on Relativistic Astrophysics, Stanford, CA, December, 2004.
[Chapline:2004jfp]
[37-3]
Emergent relativity, R. B. Laughlin, Int. J. Mod. Phys. A18 (2003) 831-854, arXiv:gr-qc/0302028.
[Laughlin:2003yh]
[37-4]
Quantum-gravity phenomenology: Status and prospects, Giovanni Amelino-Camelia, Mod. Phys. Lett. A17 (2002) 899-922, arXiv:gr-qc/0204051. 1st IUCAA Workshop on Interface of Gravitational and Quantum Realms, Pune, India, 17-21 Dec 2001.
[Amelino-Camelia:2002aqz]
[37-5]
Superfluid analogies of cosmological phenomena, G. E. Volovik, Phys. Rep. 351 (2001) 195-348, arXiv:gr-qc/0005091.
[Volovik:2000ua]

38 - History

[38-1]
Einstein's 1917 Static Model of the Universe: A Centennial Review, Cormac O'Raifeartaigh, Michael O'Keeffe, Werner Nahm, Simon Mitton, Eur.Phys.J. H42 (2017) 431-474, arXiv:1701.07261.
[ORaifeartaigh:2017uct]
[38-2]
Historical notes on the expanding universe, Michael Way, Ari Belenkiy, Harry Nussbaumer, John Peacock, Physics Today 67 (2014) 8-9.
[Way-Belenkiy-Nussbaumer-Peacock-2014-PhysicsToday-67-8]
[38-3]
Allan Sandage and the Cosmic Expansion, G. A. Tammann, B. Reindl, Astrophys.Space Sci. 341 (2012) 3-14, arXiv:1112.0170.
[Tammann:2011tw]
[38-4]
An Historical View: The Discovery of Voids in the Galaxy Distribution, Laird A. Thompson, Stephen A. Gregory, arXiv:1109.1268, 2011.
[Thompson:2011dc]
[38-5]
Who discovered the expanding universe?, Harry Nussbaumer, Lydia Bieri, The Observatory 131 (2011) 394, arXiv:1107.2281.
[Nussbaumer:2011ew]
[38-6]
The Curious Case of Lemaitre's Equation No. 24, Sidney van den Bergh, J.Roy.Astron.Soc.Canada 105 (2011) 151, arXiv:1106.1195.
[vandenBergh:2011thg]
[38-7]
Editorial note to 'The beginning of the world from the point of view of quantum theory', Jean-Pierre Luminet, Gen. Rel. Grav. 43 (2011) 2911-2928, arXiv:1105.6271.
[Luminet:2011ce]
[38-8]
Lost in translation: Mystery of the missing text solved, Mario Livio, Nature 479 (2011) 171.
[Livio-2011-Nature-479-171]
[38-9]
Cosmological Constraints on a Massive Neutrino, Masahiro Kawasaki, Katsuhiko Sato, Prog. Theor. Phys. 122 (2009) 205-217, arXiv:0907.2007.
[Kawasaki:2009ex]
[38-10]
Dark Energy: back to Newton?, Lucy Calder, Ofer Lahav, Astron.Geophys. (2007), arXiv:0712.2196.
[Calder:2007ci]
[38-11]
Indian Cosmological Ideas, R. H. Narayan, arXiv:0705.1192, 2007.
[0705.1192]
[38-12]
A Cosmic Archipelago: Multiverse Scenarios in the History of Modern Cosmology, Stephano Bettini, arXiv:physics/0510111, 2005.
[Bettini:2005nq]
[38-13]
Einstein And The Evolving Universe, A. N. Mitra, arXiv:gr-qc/0510090, 2005.
[Mitra:2005jt]
[38-14]
Anthropic Reasoning in Cosmology: A Historical Perspective, Stefano Bettini, arXiv:physics/0410144, 2004.
[Bettini:2004dj]
[38-15]
E. A. Milne and the Universes of Newton and Relativistic Cosmology, J. Dunning-Davies, arXiv:astro-ph/0402554, 2004.
[Dunning-Davies:2004wbe]
[38-16]
Ancient Origins of a Modern Anthropic Cosmological Argument, Milan M. Cirkovic, Astron. Astrophys. Trans. 22 (2003) 879, arXiv:astro-ph/0307564.
[Cirkovic:2003nf]

39 - History - Talks

[39-1]
Fifty years of cosmological particle creation, Leonard Parker, Jose Navarro-Salas, arXiv:1702.07132, 2017. ERE2014 (Valencia 1-5, September, 2014).
[Parker:2017imt]
[39-2]
Anybody but Hubble!, Virginia Trimble, arXiv:1307.2289, 2013.
[Trimble:2013kfa]
[39-3]
Dismantling Hubble's Legacy?, Michael J. Way, ASP Conf.Ser. 471 (2013) 97, arXiv:1301.7294.
[Way:2013ky]
[39-4]
Allan Sandage and the Distance Scale, G.A. Tammann, B. Reindl, IAU Symp. 289 (2013) 13, arXiv:1211.4655.
[Tammann:2012kd]
[39-5]
1106.3928, David L. Block, arXiv:1106.3928, 2011. Georges Lemaitre: Life, Science and Legacy. 80th Anniversary.
[Block:2011sa]
[39-6]
A Century of Cosmology, E. L. Wright, arXiv:astro-ph/0603750, 2006. Relativistic Astrophysics and Cosmology - Einstein's Legacy, Munich, Nov 2005.
[Wright:2006kx]

40 - Philosophy

40-1.
Big Bang Cosmology and Religious Thought, 2023.
[2305.19273]
[40-2]
The Anthropic (and Mis-) Principle revisited, Steven Weinberg in Memoriam, S. Deser, EPL 139 (2022) 69002, arXiv:2202.09358.
[Deser:2022byu]
[40-3]
Philosophical aspects of modern cosmology, Henrik Zinkernagel, Stud.Hist.Philos.Mod.Phys. 46 (2014) pp. 1-133, arXiv:1404.5854.
[Zinkernagel:2014jna]
[40-4]
Cosmic Conundrums, Joseph Silk, New Sci. 221 (2014) 26, arXiv:1404.3128.
[Silk:2014psa]
[40-5]
The fine-tuning problems of particle physics and anthropic mechanisms, John F. Donoghue, arXiv:0710.4080, 2007.
[Donoghue:2007zz]
[40-6]
The Mathematical Universe, Max Tegmark, Found. Phys. 38 (2008) 101-150, arXiv:0704.0646.
[Tegmark:2007ud]
[40-7]
On the Question of Validity of the Anthropic Principles, Zs. Hetesi, B. Balazs, Acta Phys. Polon. B37 (2006) 2729-2740, arXiv:astro-ph/0609495.
[Hetesi:2006xk]
[40-8]
Issues in the Philosophy of Cosmology, George F. R. Ellis, arXiv:astro-ph/0602280, 2006. Handbook in Philosophy of Physics.
[Ellis:2006fy]
[40-9]
Message in the Sky, S. Hsu, A. Zee, Mod.Phys.Lett. A21 (2006) 1495-1500, arXiv:physics/0510102.
[Hsu:2005nn]
[40-10]
How did it all begin?, Max Tegmark, arXiv:astro-ph/0508429, 2005.
[Tegmark:2005kh]
[40-11]
On making predictions in a multiverse: conundrums, dangers, and coincidences, Anthony Aguirre, arXiv:astro-ph/0506519, 2005.
[Aguirre:2005cj]
[40-12]
Too Early? On the Apparent Conflict of Astrobiology and Cosmology, Milan M. Cirkovic, Biol. Phil. 21 (2006) 369-379, arXiv:astro-ph/0505006.
[Cirkovic:2005me]
[40-13]
The Anthropic Principle and the Duration of the Cosmological Past, Milan M. Cirkovic, Astron. Astrophys. Trans. 23 (2004) 567-597, arXiv:astro-ph/0505005.
[Cirkovic:2004uyp]

41 - Philosophy - Talks

[41-1]
Cosmological Ontology and Epistemology, Don N. Page, arXiv:1412.7544, 2014. Philosophy of Cosmology UK/US Conference, 12th - 16th September 2014, Tenerife, Spain.
[Page:2014aqa]
[41-2]
What's the trouble with anthropic reasoning?, Roberto Trotta, Glenn D. Starkman, AIP Conf. Proc. 878 (2006) 323-329, arXiv:astro-ph/0610330. 'The Dark Side of the Universe', Madrid, June 2006.
[Trotta:2006uj]
[41-3]
Scientific Eschatology, H.Pierre Noyes, James Lindesay, Int.J.Theor.Phys. 44 (2005) 1599-1616, arXiv:physics/0503181. The Twenty-Sixth Annual Meeting of the Alternative Natural Philosophy Association Cambridge, England, 31 July - 5 August, 2004.
[Fulp:2005hu]

42 - Education

[42-1]
Modern Cosmology, an Amuse-Gueule, Kai Schmitz, arXiv:2203.04757, 2022.
[Schmitz:2022hsz]
[42-2]
Lorentz Transformation of Blackbody Radiation, G. W. Ford, R. F. O'Connell, Phys.Rev.E 88 (2013) 044101, arXiv:1310.3238.
[Ford:2013koa]
[42-3]
Did time begin? Will time end?, Paul H. Frampton, arXiv:0704.1132, 2007.
[Frampton:2007qk]
[42-4]
Missing Pages in Our Photo Album of the Infant Universe, Abraham Loeb, Physica Plus (2007), arXiv:astro-ph/0702298.
[Loeb:2007ub]
[42-5]
Cosmology under Milne's shadow, Michal Chodorowski, Publ. Astron. Soc. Austral. 22 (2005) 287, arXiv:astro-ph/0503690.
[Chodorowski:2005wj]

43 - Sociology

[43-1]
A Thousand Invisible Cords Binding Astronomy and High-Energy Physics, Rocky Kolb, Rept. Prog. Phys. 70 (2007) 1583-1596, arXiv:0708.1199. Why 'Fundamentalist' Physics Is Good for Astronomy (in response to the paper of Simon White, arXiv:0704.2291).
[Kolb:2007pn]

44 - Future Experiments

[44-1]
FarView: An In-Situ Manufactured Lunar Far Side Radio Array Concept for 21-cm Dark Ages Cosmology, Ronald S. Polidan, Jack O. Burns, Alex Ignatiev, Alex Hegedus, Jonathan Pober, Nivedita Mahesh, Tzu-Ching Chang, Gregg Hallinan, Yuhong Ning, Judd Bowman, arXiv:2404.03840, 2024.
[Polidan:2024kkh]
[44-2]
Euclid preparation TBD. Modelling spectroscopic clustering on mildly nonlinear scales in beyond-$\Lambda$CDM models, B. Bose et al. (Euclid), arXiv:2311.13529, 2023.
[Euclid:2023bgs]
[44-3]
Euclid preparation: XXVIII. Modelling of the weak lensing angular power spectrum, A. C. Deshpande et al. (Euclid), arXiv:2302.04507, 2023.
[Euclid:2023wdq]
[44-4]
The Maunakea Spectroscopic Explorer: Thousands of Fibers, Infinite Possibilities, 2023.
[2307.07667]
[44-5]
Suitability of magnetic microbolometers based on paramagnetic temperature sensors for CMB polarization measurements, Juan Manuel Geria et al., J.Astron.Telesc.Instrum.Syst. 9 (2023) 016002, arXiv:2209.06088.
[Geria:2022pho]
[44-6]
Euclid preparation. XXIV. Calibration of the halo mass function in $\Lambda(\nu)$CDM cosmologies, T. Castro et al. (Euclid), Astron.Astrophys. 671 (2023) A100, arXiv:2208.02174.
[Euclid:2022dbc]
[44-7]
Euclid: Forecasts from the void-lensing cross-correlation, M. Bonici et al., Astron.Astrophys. 670 (2023) A47, arXiv:2206.14211.
[Euclid:2022hdx]
[44-8]
Photometric Redshifts for Next-Generation Surveys, Jeffrey A. Newman, Daniel Gruen, Ann.Rev.Astron.Astrophys. 60 (2022) 363-414, arXiv:2206.13633.
[Newman:2022rbn]
[44-9]
Estimating the Impact of foregrounds on the Future Detection of Rayleigh scattering, Yijie Zhu, Benjamin Beringue, Steve K. Choi, Nicholas Battaglia, P. Daniel Meerburg, Joel Meyers, JCAP 09 (2022) 048, arXiv:2205.04496.
[Zhu:2022dqi]
[44-10]
Snowmass2021 Cosmic Frontier White Paper: Enabling Flagship Dark Energy Experiments to Reach their Full Potential, Jonathan A. Blazek et al., arXiv:2204.01992, 2022.
[Blazek:2022uzw]
[44-11]
Heisenberg's uncertainty principle in the PTOLEMY project: a theory update, A. Apponi et al. (PTOLEMY), Phys.Rev.D 106 (2022) 053002, arXiv:2203.11228.
[PTOLEMY:2022ldz]
[44-12]
Dark Matter Physics from the CMB-S4 Experiment, Cora Dvorkin et al., arXiv:2203.07064, 2022.
[Dvorkin:2022bsc]
[44-13]
Snowmass2021 CMB-HD White Paper, Simone Aiola et al. (CMB-HD), arXiv:2203.05728, 2022.
[CMB-HD:2022bsz]
[44-14]
Knowing when to stop, Ofer Lahav, Joseph Silk, Nature Astron. 5 (2021) 855-856, arXiv:2109.08190.
[Lahav:2021wfl]
[44-15]
The Simons Observatory: Overview of data acquisition, control, monitoring, and computer infrastructure, Brian J. Koopman et al., Astronomy 6 () 1145208, arXiv:2012.10345.
[Koopman:2020gkh]
[44-16]
The Simons Observatory: the Large Aperture Telescope Receiver (LATR) Integration and Validation Results, Zhilei Xu et al., Proc.SPIE Int.Soc.Opt.Eng. 11453 (2020) 1145315, arXiv:2012.07862.
[Xu:2020joy]
[44-17]
Euclid preparation: IX. EuclidEmulator2 - Power spectrum emulation with massive neutrinos and self-consistent dark energy perturbations, M. Knabenhans et al. (Euclid), Mon.Not.Roy.Astron.Soc. 505 (2021) 2840-2869, arXiv:2010.11288.
[Euclid:2020rfv]
[44-18]
THESEUS$-$BTA cosmological tests using Multimessenger Gamma-Ray Bursts observations, S. I. Shirokov, I. V. Sokolov, V. V. Vlasyuk, L. Amati, V. V. Sokolov, Yu. V. Baryshev, Astrophys.Bull. 75 (2020) 207-218, arXiv:2006.06488.
[Shirokov:2020ttb]
[44-19]
Low-redshift 21cm Cosmology in Canada, Adrian Liu, Simon Foreman, Hamsa Padmanabhan, H. Cynthia Chiang, Seth Siegel, Dallas Wulf, Jonathan Sievers, Matt Dobbs, Keith Vanderlinde, arXiv:1910.02889, 2019.
[Liu:2019jiy]
[44-20]
The Simons Observatory: Astro2020 Decadal Project Whitepaper, Simons Observatory Collaboration, Bull.Am.Astron.Soc. 51 (2019) 147, arXiv:1907.08284.
[SimonsObservatory:2019qwx]
[44-21]
The Detailed Science Case for the Maunakea Spectroscopic Explorer, 2019 edition, MSE Science Team et al., arXiv:1904.04907, 2019.
[Babusiaux:2019kxl]
[44-22]
Cosmology with the MaunaKea Spectroscopic Explorer, Will J. Percival et al., arXiv:1903.03158, 2019.
[Percival:2019csx]
[44-23]
PICO: Probe of Inflation and Cosmic Origins, Shaul Hanany et al., arXiv:1902.10541, 2019.
[NASAPICO:2019thw]
[44-24]
Neutrino Physics with the PTOLEMY project, M.G. Betti et al. (PTOLEMY), JCAP 2019 (2019) 047, arXiv:1902.05508.
[PTOLEMY:2019hkd]
[44-25]
A Design for an Electromagnetic Filter for Precision Energy Measurements at the Tritium Endpoint, M.G. Betti et al., Prog.Part.Nucl.Phys. 106 (2019) 120-131, arXiv:1810.06703.
[Betti:2018bjv]
[44-26]
Development of Calibration Strategies for the Simons Observatory, Sean A. Bryan et al., Proc.SPIE Int.Soc.Opt.Eng. 10708 (2018) 1070840, arXiv:1810.04633.
[Bryan:2018mva]
[44-27]
Fundamental Physics with the Square Kilometer Array, P. Bull et al., Publ.Astron.Soc.Austral. 37 (2020) e002, arXiv:1810.02680.
[Weltman:2018zrl]
[44-28]
The Simons Observatory: Science goals and forecasts, Peter Ade et al. (Simons Observatory), JCAP 1902 (2019) 056, arXiv:1808.07445.
[SimonsObservatory:2018koc]
[44-29]
The Simons Observatory: Instrument Overview, Nicholas Galitzki et al., Proc.SPIE Int.Soc.Opt.Eng. 10708 (2018) 1070804, arXiv:1808.04493.
[Galitzki:2018wvp]
[44-30]
PTOLEMY: A Proposal for Thermal Relic Detection of Massive Neutrinos and Directional Detection of MeV Dark Matter, E.Baracchini et al., arXiv:1808.01892, 2018.
[PTOLEMY:2018jst]
[44-31]
Design and characterization of the POLARBEAR-2b and POLARBEAR-2c cosmic microwave background cryogenic receivers, Logan Howe et al., Proc.SPIE Int.Soc.Opt.Eng. 10708 (2018) 107083W, arXiv:1806.05576.
[Howe:2018gfo]
[44-32]
Advanced ACTPol Low Frequency Array: Readout and Characterization of Prototype 27 and 39 GHz Transition Edge Sensors, Brian J. Koopman et al., J.Low Temp.Phys. 193 (2018) 1103-1111, arXiv:1711.02594.
[Koopman:2017kvs]
[44-33]
Exploring cosmic origins with CORE: gravitational lensing of the CMB, Anthony Challinor et al. (for the CORE), JCAP 1804 (2018) 018, arXiv:1707.02259.
[CORE:2017ywq]
[44-34]
CMB-S4 Technology Book, First Edition, Maximilian H. Abitbol et al., arXiv:1706.02464, 2017.
[CMB-S4:2017uhf]
[44-35]
Optimization Study for the Experimental Configuration of CMB-S4, Darcy Barron et al., JCAP 1802 (2018) 009, arXiv:1702.07467.
[Barron:2017kuo]
[44-36]
POLARBEAR-2: an instrument for CMB polarization measurements, Y. Inoue et al., Proc.SPIE Int.Soc.Opt.Eng. 9914 (2016) 99141I, arXiv:1608.03025.
[POLARBEAR:2016wwl]
[44-37]
H0LiCOW I. H0 Lenses in COSMOGRAIL's Wellspring: Program Overview, S. H. Suyu et al., Mon.Not.Roy.Astron.Soc. 468 (2017) 2590-2604, arXiv:1607.00017.
[Suyu:2016qxx]
[44-38]
The POLARBEAR-2 and the Simons Array Experiment, A. Suzuki et al. (POLARBEAR), J.Low.Temp.Phys. 184 (2016) 805-810, arXiv:1512.07299.
[POLARBEAR:2015ixw]
[44-39]
Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 4: Cosmic Frontier, J. L. Feng et al., arXiv:1401.6085, 2014.
[Feng:2014uja]
[44-40]
The DESI Experiment, a whitepaper for Snowmass 2013, Michael Levi et al. (representing the DESI), arXiv:1308.0847, 2013.
[DESI:2013agm]
[44-41]
Development of a Relic Neutrino Detection Experiment at PTOLEMY: Princeton Tritium Observatory for Light, Early-Universe, Massive-Neutrino Yield, S. Betts et al., arXiv:1307.4738, 2013.
[Betts:2013uya]
[44-42]
The Gravitational Universe, K. Danzmann et al. (eLISA), arXiv:1305.5720, 2013.
[eLISA:2013xep]
[44-43]
SPTpol: an instrument for CMB polarization measurements with the South Pole Telescope, J. E. Austermann et al., Proc. SPIE Int. Soc. Opt. Eng. 8452 (2012) 84520E, arXiv:1210.4970.
[Austermann:2012ga]
[44-44]
The BigBOSS Experiment, D. Schlegel et al. (BigBOSS), arXiv:1106.1706, 2011.
[BigBoss:2011xpw]
[44-45]
COrE (Cosmic Origins Explorer) A White Paper, COrE (COrE), arXiv:1102.2181, 2011.
[COrE:2011bfs]
[44-46]
ACTPol: A polarization-sensitive receiver for the Atacama Cosmology Telescope, M. D. Niemack et al., Proc.SPIE Int.Soc.Opt.Eng. 7741 (2010) 77411S, arXiv:1006.5049.
[Niemack:2010wz]
[44-47]
LSST Science Book, Version 2.0, Paul A. Abell et al. (LSST Science Collaborations, LSST Project), arXiv:0912.0201, 2009.
[LSSTScience:2009jmu]
[44-48]
The Synoptic All-Sky Infrared (SASIR) Survey, Joshua S. Bloom et al., arXiv:0905.1965, 2009.
[Bloom:2009dc]
[44-49]
Type Ia supernova science 2010-2020, D. A. Howell et al., arXiv:0903.1086, 2009.
[Howell:2009mt]
[44-50]
CMBPol Mission Concept Study: Foreground Science Knowledge and Prospects, A. A. Fraisse et al., AIP Conf.Proc. 1141 (2009) 265, arXiv:0811.3920.
[Fraisse:2008ar]
[44-51]
CMBPol Mission Concept Study: Probing Inflation with CMB Polarization, Daniel Baumann et al. (CMBPol Study Team), AIP Conf. Proc. 1141 (2009) 10-120, arXiv:0811.3919. 107 pages, 14 figures, 17 tables; Inflation Working Group contribution to the CMBPol Mission Concept Study.
[CMBPolStudyTeam:2008rgp]
[44-52]
CMBPol Mission Concept Study: Reionization Science with the Cosmic Microwave Background, Matias Zaldarriaga et al., arXiv:0811.3918, 2008.
[Zaldarriaga:2008ap]
[44-53]
CMBPol Mission Concept Study: Gravitational Lensing, Kendrick M. Smith et al., AIP Conf. Proc. 1141 (2009) 121, arXiv:0811.3916.
[Smith:2008an]
[44-54]
Destiny: A Candidate Architecture for the Joint Dark Energy Mission, Dominic J. Benford, Tod R. Lauer (Destiny), Proc.SPIE Int.Soc.Opt.Eng. 6265 (2006) 28, arXiv:astro-ph/0608413.
[Benford:2006ew]
[44-55]
The Scientific Programme of Planck, Planck (Planck), arXiv:astro-ph/0604069, 2006.
[Planck:2006aa]
[44-56]
COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses IV. Models of prospective time-delay lenses, P. Saha et al., Astron.Astrophys. 450 (2006) 461, arXiv:astro-ph/0601370.
[Saha:2006cx]
[44-57]
Testing Dark Energy with the Advanced Liquid-Mirror Probe of Asteroids, Cosmology and Astrophysics, Pier Stefano Corasaniti, Marilena LoVerde, Arlin Crotts, Chris Blake, Mon. Not. Roy. Astron. Soc. 369 (2006) 798-804, arXiv:astro-ph/0511632.
[Corasaniti:2005kb]
[44-58]
The Dark Energy Survey, Dark Energy Survey (Dark Energy Survey), arXiv:astro-ph/0510346, 2005.
[DES:2005dhi]
[44-59]
Supernova Cosmology and the ESSENCE project, Jesper Sollerman et al., ESA Spec. Publ. 637 (2005) 14.1, arXiv:astro-ph/0510026.
[Sollerman:2005qj]
[44-60]
Probing Dark Energy via Weak Gravitational Lensing with the SuperNova Acceleration Probe (SNAP), J. Albert et al. (SNAP), arXiv:astro-ph/0507460, 2005.
[SNAP:2005xgf]
[44-61]
Supernova Acceleration Probe: Studying Dark Energy with Type Ia Supernovae, J. Albert et al. (SNAP), arXiv:astro-ph/0507459, 2005.
[SNAP:2005ubn]
[44-62]
Seeing the Nature of the Accelerating Physics: It's a SNAP, J. Albert et al. (SNAP), arXiv:astro-ph/0507458, 2005.
[SNAP:2005qor]
[44-63]
A Gamma-Ray Burst Mission to Investigate the Properties of Dark Energy, D. Q. Lamb et al., arXiv:astro-ph/0507362, 2005.
[Lamb:2005cw]
[44-64]
Supernova / Acceleration Probe: A Satellite Experiment to Study the Nature of the Dark Energy, G. Aldering et al. (SNAP), arXiv:astro-ph/0405232, 2004.
[SNAP:2004hke]
[44-65]
Sensibility of the Pierre Auger Observatory to Large Scale Anisotropies, O. Deligny et al., JCAP 0410 (2004) 008, arXiv:astro-ph/0404253.
[Deligny:2004dj]
[44-66]
Polarization experiments, J. Delabrouille, J. Kaplan, M. Piat, C. Rosset, Comptes Rendus Physique 4 (2003) 925, arXiv:astro-ph/0403175.
[Delabrouille:2003teh]
[44-67]
Mapping the thermal history of the Universe with the new generation of CMB spectrum space experiments, C. Burigana, R. Salvaterra, Mon.Not.Roy.Astron.Soc. (2003), arXiv:astro-ph/0309509.
[Burigana:2003gb]
[44-68]
Measuring CMB polarisation with the Planck mission, J. Delabrouille, Astrophys. Space Sci. 290 (2004) 87, arXiv:astro-ph/0307549.
[Delabrouille:2003mq]
[44-69]
Weak Lensing from Space III: Cosmological Parameters, Alexandre Refregier et al., Astron. J. 127 (2004) 3102, arXiv:astro-ph/0304419.
[Refregier:2003xe]
[44-70]
Weak Lensing from Space I: Prospects for The Supernova/Acceleration Probe, Jason Rhodes, Alexandre Refregier, Richard Massey (SNAP), Astropart. Phys. 20 (2004) 377, arXiv:astro-ph/0304417.
[SNAP:2003aec]
[44-71]
Mining Weak Lensing Surveys, N. Padmanabhan, U. Seljak, U.L. Pen, New Astron. 8 (2003) 581, arXiv:astro-ph/0210478.
[Padmanabhan:2002yv]

45 - Future Experiments - Talks

[45-1]
Particle Physics with the Cosmic Microwave Background with SPT-3G, J. S. Avva et al., J.Phys.Conf.Ser. 1468 (2020) 012008, arXiv:1911.08047. TAUP 2019.
[SPT-3G:2019sok]
[45-2]
Unraveling the Universe with DESI, Mariana Vargas-Magana, David D. Brooks, Michael M. Levi, Gregory G. Tarle, arXiv:1901.01581, 2019. Recontres de Moriond 2018.
[Vargas-Magana:2018rbb]
[45-3]
The Simons Observatory: Project Overview, Nicholas Galitzki, arXiv:1810.02465, 2018. CIPANP2018.
[Galitzki:2018avl]
[45-4]
Simons Observatory large aperture receiver simulation overview, John L. Orlowski-Scherer et al., Proc.SPIE Int.Soc.Opt.Eng. 10708 (2018) 107083X, arXiv:1808.06648. SPIE.
[Orlowski-Scherer:2018gud]
[45-5]
Designs for next generation CMB survey strategies from Chile, Jason R. Stevens et al., Proc.SPIE Int.Soc.Opt.Eng. 10708 (2018) 1070841, arXiv:1808.05131. SPIE Astronomical Telescopes + Instrumentation 2018.
[Stevens:2018biw]
[45-6]
Optical Design of PICO, a Concept for a Space Mission to Probe Inflation and Cosmic Origins, Karl Young et al., arXiv:1808.01369, 2018. 2018 Conference on Astronomical Telescopes and Instrumentation.
[Young:2018aby]
[45-7]
PICO - the probe of inflation and cosmic origins, Brian Sutin et al., Proc.SPIE Int.Soc.Opt.Eng. 10698 (2018) 106984F, arXiv:1808.01368. Conference on Astronomical Telescopes and Instrumentation, 2018.
[Sutin:2018onu]
[45-8]
BFORE: a CMB balloon payload to measure reionization, neutrino mass, and cosmic Inflation (Conference Presentation), Sean Bryan et al., Proc. SPIE Int. Soc. Opt. Eng. 10708 (2018) 1070805, arXiv:1807.05215. Astronomical Telescopes and Instrumentation 2018: Austin, USA, June 10-15, 2018.
[Bryan:2018jgc]
[45-9]
WEAVE-QSO: A Massive Intergalactic Medium Survey for the William Herschel Telescope, M. M. Pieri et al. (WEAVE), arXiv:1611.09388, 2016. SF2A, Lyon, 2016.
[WEAVE:2016rxg]
[45-10]
Initial Performance of BICEP3: A Degree Angular Scale 95 GHz Band Polarimeter, W. L. K. Wu et al., J.Low.Temp.Phys. 184 (2016) 765-771, arXiv:1601.00125. LTD-16.
[Wu:2015oig]
[45-11]
The Whole is Greater than the Sum of the Parts: Optimizing the Joint Science Return from LSST, Euclid and WFIRST, B. Jain et al., arXiv:1501.07897, 2015. U. Penn Workshop.
[Jain:2015cpa]
[45-12]
Cosmology with a SKA HI intensity mapping survey, Mario G. Santos et al., PoS AASKA14 (2015) 019, arXiv:1501.03989.
[Santos:2015gra]
[45-13]
BICEP3: a 95 GHz refracting telescope for degree-scale CMB polarization, Z. Ahmed et al. (BICEP3), Proc.SPIE Int.Soc.Opt.Eng. 9153 (2014) 91531N, arXiv:1407.5928. SPIE Astronomical Telescopes and Instrumentation 2014: Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII.
[BICEP3:2014snp]
[45-14]
The Primordial Inflation Polarization Explorer (PIPER), Justin Lazear et al., Proc.SPIE Int.Soc.Opt.Eng. 9153 (2014) 91531L, arXiv:1407.2584. SPIE Astronomical Telescopes + Instrumentation 2014.
[Lazear:2014bga]
[45-15]
Mapping our Universe in 3D with MITEoR, Haoxuan Zheng et al. (MITEoR), Mon.Not.Roy.Astron.Soc. 445 (2014) 1084-1103, arXiv:1309.2639. 2013 IEEE International Symposium on Phased Array Systems $\text{\&}$ Technology.
[MITEoR:2014mlu]
[45-16]
Performance and on-sky optical characterization of the SPTpol instrument, E.M. George et al., Proc.SPIE Int.Soc.Opt.Eng. 8452 (2012) 84521F, arXiv:1210.4971. SPIE Astronomical Telescopes and Instrumentation 2012.
[George:2012gb]
[45-17]
Ultra High Energy Cosmology with POLARBEAR, B. Keating et al., arXiv:1110.2101, 2011. DPF 2011.
[Keating:2011iq]
[45-18]
The WiggleZ project: AAOmega and Dark Energy, Karl Glazebrook et al., ASP Conf.Ser. (2007), arXiv:astro-ph/0701876. Durham 'Cosmic Frontiers' ASP Conference.
[Glazebrook:2007pp]
[45-19]
Cosmology from Cosmic Microwave Background fluctuations with Planck, X. Dupac, arXiv:astro-ph/0701523, 2007. Challenges in particle astrophysics, Hanoi, Aug. 2006.
[Dupac:2007np]
[45-20]
DUNE: The Dark Universe Explorer, A. Refregier et al., Proc.SPIE Int.Soc.Opt.Eng. 6265 (2006) 1Y, arXiv:astro-ph/0610062. SPIE Symposium 'Astronomical Telescopes and Instrumentation', Orlando, May 2006.
[Refregier:2006vt]
[45-21]
Probing Dark Energy with Constellation-X, David Rapetti, Steven W. Allen et al. (Con-X Facility Science Team), arXiv:astro-ph/0608009, 2006. XLIst Rencontres de Moriond 'Contents and Structures of the Universe', La Thuille, Italy, March 18-25, 2006.
[Rapetti:2006du]
[45-22]
The Joint Efficient Dark-energy Investigation (JEDI): Measuring the cosmic expansion history from type Ia supernovae, M. M. Phillips et al., Proc.SPIE Int.Soc.Opt.Eng. 6265 (2006) 2A, arXiv:astro-ph/0606691. SPIE.
[Phillips:2006rf]
[45-23]
VADER - A Satellite Mission Concept For High Precision Dark Energy Studies, Rene Fassbender et al., Proc.SPIE Int.Soc.Opt.Eng. 6266 (2006) 32, arXiv:astro-ph/0606688. SPIE.
[Fassbender:2006rc]
[45-24]
Exploring Dark Energy with SNAP, G. Aldering, New Astron. Rev. 49 (2005) 346, arXiv:astro-ph/0507426. Wide-Field Imaging from Space.
[Aldering:2005qn]
[45-25]
ALMA and Cosmology, F. Combes, arXiv:astro-ph/0507385, 2005. Cosmology Workshop, SF2A-2005.
[Combes:2005gr]
[45-26]
The ALHAMBRA Survey: For a systematic Study of Cosmic Evolution, Mariano Moles et al., arXiv:astro-ph/0504545, 2005. JENAM 2004.
[Moles:2005dv]
[45-27]
Observing Dark Energy with SNAP, Eric V. Linder et al. (SNAP), ASP Conf.Ser. (2004), arXiv:astro-ph/0406186. Observing Dark Energy (NOAO/Tucson).
[Linder:2004ri]
[45-28]
Searching for cosmic missing baryons with DIOS - Diffuse Intergalactic Oxygen Surveyor -, Yasushi Suto et al., arXiv:astro-ph/0402389, 2004. VI International Conference on Gravitation and Astrophysics of Asian-Pacfic Countries.
[Suto:2004mc]
[45-29]
Future probes of the primordial scalar and tensor perturbation spectra: Prospects from the CMB, cosmic shear and high-volume redshift surveys, L. Knox, arXiv:astro-ph/0304370, 2003. Davis Inflation Meeting, 2003.
[Knox:2003jw]
[45-30]
Large-Scale Structure and Future Surveys, Daniel Eisenstein, ASP Conf.Ser. (2003), arXiv:astro-ph/0301623. Wide-Field Multi-Object Spectroscopy conference at NOAO in October 2001.
[Eisenstein:2003qy]
[45-31]
The Future of Microwave Background Physics, Arthur Kosowsky, Aip Conf. Proc. 666 (2003) 325, arXiv:astro-ph/0301131. The Emergence of Cosmic Structure, 13th Annual Astrophysics Conference in Maryland.
[Kosowsky:2003vz]
[45-32]
Probing Dark Energy with SNAP, Eric V. Linder, arXiv:astro-ph/0210217, 2002. 4th International Workshop on the Identification of Dark Matter (IDM2002), St. William's College, York Minster, York, England, September 2-6, 2002. http://www.shef.ac.uk/~phys/idm2002/talks/pdfs/linder.pdf.
[Linder:2002wx]
[45-33]
LSST: a Complementary Probe of Dark Energy, J. A. Tyson et al. (LSST), Nucl. Phys. Proc. Suppl. 124 (2003) 21, arXiv:astro-ph/0209632. 5th International UCLA Symposium on Sources and Detection of Dark Matter, Marina del Rey, February 2002.
[Tyson:2002nh]
[45-34]
The SNAP Telescope, M.Lampton (SNAP), arXiv:astro-ph/0209549, 2002. SPIE Proceedings Vol. 4849.
[SNAP:2002zkn]

Search Neutrino Unbound

Cross search NU

It is possible to perform a cross search between the various pages of Neutrino Unbound.
This is useful if you want to show the common elements that appear in the listings of two (or more) different topics or experiments.

Go to the search form.

[Go to ...]

Neutrino Unbound Home

Authors:
Stefano Gariazzo / gariazzo@to.infn.it
Carlo Giunti / giunti@to.infn.it
Marco Laveder / marco.laveder@pd.infn.it
Sabino Matarrese / sabino.matarrese@pd.infn.it
Last Update: Thu 25 Apr 2024, 10:42:55 CET