Introduction to the Physics of Massive and Mixed Neutrinos,
Samoil Bilenky,
Lect.Notes Phys. 947 (2018) 1-273, Springer.Lecture Notes in Physics, Volume 947.https://doi.org/10.1007/978-3-319-74802-3.
[Bilenky:2018hbz]
Fundamentals of Neutrino Physics and Astrophysics,
C. Giunti, C. W. Kim, Oxford University Press, Oxford, UK, 2007.ISBN 978-0-19-850871-7.http://www.oup.com/uk/catalogue/?ci=9780198508717.
[Giunti:2007ry]
Fundamentals in nuclear physics: From nuclear structure to cosmology,
J. L. Basdevant, J. Rich, M. Spiro, Springer, 2005.http://www.springer.com/book/0-387-01672-4.
[Basdevant:2005in]
The Cosmological Distance Ladder: Distance and Time in the Universe,
Michael Rowan-Robinson, W.H. Freeman and Company, 1985. [RowanRobinson-Ladder-1985]
AGN feedback with the Square Kilometer Array (SKA) and implications for cluster physics and cosmology,
Asif Iqbal et al.,
J.Astrophys.Astron. 38 (2017) 68,arXiv:1705.04444.
[Iqbal:2017wqs]
Probing statistical isotropy of cosmological radio sources using SKA,
Shamik Ghosh et al.,
J.Astrophys.Astron. 37 (2016) 25,arXiv:1610.08176.
[Ghosh:2016tbj]
Recent results and perspectives on cosmology and fundamental physics from microwave surveys,
Carlo Burigana et al.,
Int.J.Mod.Phys. D25 (2016) 1630016,arXiv:1604.03819.
[Burigana:2016cqp]
The Carnegie-Chicago Hubble Program. I. A New Approach to the Distance Ladder Using Only Distance Indicators of Population II,
Rachael L. Beaton et al.,
Astrophys.J. 832 (2016) 210,arXiv:1604.01788.
[Beaton:2016nsw]
Cosmology with the Square Kilometre Array by SKA-Japan,
Daisuke Yamauchi et al.(SKA-Japan Consortium Cosmology Science Working Group),
PoS DSU2015 (2016) 004,arXiv:1603.01959.
[Yamauchi:2016ypt]
The expansion field: The value of $H_0$,
G.A. Tammann, A. Sandage, B. Reindl,
Astron.Astrophys.Rev. 15 (2008) 289-331,arXiv:0806.3018.
[Tammann:2008xf]
The Hubble Constant: A Summary of the HST Program for the Luminosity Calibration of Type Ia Supernovae by Means of Cepheids,
A. Sandage et al.,
Astrophys. J. 653 (2006) 843-860,arXiv:astro-ph/0603647.
[Sandage:2006cv]
Imaging the first light: experimental challenges and future perspectives in the observation of the Cosmic Microwave Background Anisotropy,
A. Mennella et al.,
Astron.Astrophys (2004),arXiv:astro-ph/0402528.
[Mennella:2004ph]
Interferometric Observations of the Cosmic Microwave Background Radiation,
A. C. S. Readhead, T. J. Pearson,
arXiv:astro-ph/0306383, 2003.Carnegie Observatories Astrophysics Series, Vol. 2: Measuring and Modeling the Universe. [Readhead:2003pq]
The Planck legacy - Reinforcing the case for a standard model of cosmology: $\Lambda$CDM,
Nazzareno Mandolesi, Diego Molinari, Alessandro Gruppuso, Carlo Burigana, Paolo Natoli,
arXiv:1605.01533, 2016.17th Lomonosov Conference on Elementary Particle Physics. Moscow State University, Moscow, 20-26 August, 2015. [Mandolesi:2016tow]
Results from the Wilkinson Microwave Anisotropy Probe,
Eiichiro Komatsu, Charles L. Bennett(on behalf of the WMAP Science Team),
PTEP 2014 (2014) 06B102,arXiv:1404.5415.
[Komatsu:2014ioa]
Snowmass Cosmic Frontiers 6 (CF6) Working Group Summary -The Bright Side of the Cosmic Frontier: Cosmic Probes of Fundamental Physics,
J.J. Beatty et al.(CTA Collaboration, PINGU Collaboration, VERITAS),
arXiv:1310.5662, 2013. [Beatty:2013lza]
The Future of Neutrino Mass Measurements: Terrestrial, Astrophysical, and Cosmological Measurements in the Next Decade. Highlights of the NuMass 2013 Workshop. Milano, Italy, February 4 - 7, 2013,
G. J. Barker et al.,
arXiv:1309.7810, 2013. [Barker:2013kvg]
Neutrino matter with PLANCK,
Stephane Plaszczynski,
PoS IDM2010 (2011) 066,arXiv:1012.2215.
Identification of Dark Matter 2010-IDM2010, July 26-30, 2010, Montpellier, France. [Plaszczynski:2010sj]
Searching for the First Galaxies,
Steven L. Finkelstein,
ASP Conf.Ser. 432 (2010) 33,arXiv:1004.0001.
Frank N. Bash Symposium 2009: New Horizons in Astronomy. [Finkelstein:2010ip]
Cosmological science enabled by Planck,
Martin White,
New Astron. Rev. 50 (2006) 938-944,arXiv:astro-ph/0606643.
UC Irvine conference on cosmic microwave background temperature and polarization anisotropies. [White:2006fx]
Current Status and Perspectives of Cosmic Microwave Background Observations,
Marco Bersanelli, Davide Maino, Aniello Mennella,
Aip Conf. Proc. 703 (2004) 385,arXiv:astro-ph/0310089.
International Symposium on Plasmas in the Laboratory and in the Universe: new insights and new challenges, September 16-19, 2003, Como, Italy. [Bersanelli:2003uv]
The cosmic microwave background radiation,
Bruce Winstein, 2003.31st SLAC Summer Institute on Particle Physics: Cosmic Connection to Particle Physics (SSI 2003), Menlo Park, California, 28 Jul - 8 Aug 2003.http://quiet.uchicago.edu/capmap/slaclatex.pdf.
[Winstein:2003zw]
In the Realm of the Hubble tension $-$ a Review of Solutions,
Eleonora Di Valentino, Olga Mena, Supriya Pan, Luca Visinelli, Weiqiang Yang, Alessandro Melchiorri, David F. Mota, Adam G. Riess, Joseph Silk,
arXiv:2103.01183, 2021. [DiValentino:2021izs]
The First Three Seconds: a Review of Possible Expansion Histories of the Early Universe,
Rouzbeh Allahverdi et al.,
arXiv:2006.16182, 2020. [Allahverdi:2020bys]
Calculation of distances in cosmological models with small-scale inhomogeneities and their use in observational cosmology: a review,
Phillip Helbig,
Open J.Astrophys. 3 (2020) 1,arXiv:1912.12269.
[Helbig:2019jcm]
Cosmological parameter inference with Bayesian statistics,
Luis E. Padilla, Luis O. Tellez, Luis A. Escamilla, J. Alberto Vazquez,
arXiv:1903.11127, 2019. [Padilla:2019mgi]
Big Bang Nucleosynthesis and Neutrino Cosmology,
Evan B. Grohs, J. Richard Bond, Ryan J. Cooke, George M. Fuller, Joel Meyers, Mark W. Paris,
arXiv:1903.09187, 2019. [Grohs:2019cae]
Tracing the formation history of galaxy clusters into the epoch of reionization,
Roderik Overzier, Nobunari Kashikawa,
arXiv:1903.04980, 2019. [Overzier:2019glo]
'SZ spectroscopy' in the coming decade: Galaxy cluster cosmology and astrophysics in the submillimeter,
Kaustuv Basu et al.,
arXiv:1903.04944, 2019. [Basu:2019hww]
Messengers from the Early Universe: Cosmic Neutrinos and Other Light Relics,
Daniel Green et al.,
Bull.Am.Astron.Soc. 51 (2019) 159,arXiv:1903.04763.
[Green:2019glg]
Unveiling the Phase Transition of the Universe During the Reionization Epoch with Lyman-alpha,
Steven L. Finkelstein et al.,
arXiv:1903.04518, 2019. [Finkelstein:2019idd]
The galaxy cluster mass scale and its impact on cosmological constraints from the cluster population,
G.W. Pratt, M. Arnaud, A. Biviano, D. Eckert, S. Ettori, D. Nagai, N. Okabe, T.H. Reiprich,
Space Sci.Rev. 215 (2019) 25,arXiv:1902.10837.
[Pratt:2019cnf]
Measuring gravity at cosmological scales,
Luca Amendola, Dario Bettoni, Ana Marta Pinho, Santiago Casas,
Universe 6 (2020) 20,arXiv:1902.06978.
[Amendola:2019laa]
Dark energy in Horndeski theories after GW170817: A review,
Ryotaro Kase, Shinji Tsujikawa,
Int.J.Mod.Phys. D28 (2019) 1942005,arXiv:1809.08735.
[Kase:2018aps]
Sterile Neutrino Dark Matter,
A. Boyarsky, M. Drewes, T. Lasserre, S. Mertens, O. Ruchayskiy,
Prog.Part.Nucl.Phys. 104 (2019) 1-45,arXiv:1807.07938.
[Boyarsky:2018tvu]
High Energy Physics and Cosmology at the Unification Frontier: Opportunities and Challenges in the coming years,
Pran Nath,
Int.J.Mod.Phys. A33 (2018) 1830017,arXiv:1807.05302.
[Nath:2018rqn]
Neutrino Mass Ordering in 2018: Global Status,
P. F. de Salas, S. Gariazzo, O. Mena, C. A. Ternes, M. Tortola,
Front.Astron.Space Sci. 5 (2018) 36,arXiv:1806.11051.
[deSalas:2018bym]
Status of neutrino properties and future prospects - Cosmological and astrophysical constraints,
Martina Gerbino, Massimiliano Lattanzi,
Front.in Phys. 5 (2018) 70,arXiv:1712.07109.
[Lattanzi:2017ubx]
One Hundred Years of the Cosmological Constant: from 'Superfluous Stunt' to Dark Energy,
Cormac O'Raifeartaigh, Michael O'Keeffe, Werner Nahm, Simon Mitton,
Eur.Phys.J. H43 (2018) 73-117,arXiv:1711.06890.
[ORaifeartaigh:2017yby]
Dark energy two decades after: Observables, probes, consistency tests,
Dragan Huterer, Daniel L Shafer,
Rept.Prog.Phys. 81 (2018) 016901,arXiv:1709.01091.
[Huterer:2017buf]
Small-Scale Challenges to the $\Lambda$CDM Paradigm,
James S. Bullock, Michael Boylan-Kolchin,
Ann.Rev.Astron.Astrophys. 55 (2017) 343-387,arXiv:1707.04256.
[Bullock:2017xww]
Review on Effects of Long-lived Negatively Charged Massive Particles on Big Bang Nucleosynthesis,
Motohiko Kusakabe, Grant. J. Mathews, Toshitaka Kajino, Myung-Ki Cheoun,
Int.J.Mod.Phys. E26 (2017) 1741004,arXiv:1706.03143.
[Kusakabe:2017brd]
Introduction to Big Bang Nucleosynthesis and Modern Cosmology,
Grant J. Mathews, Motohiko Kusakabe, Toshitaka Kajino,
Int.J.Mod.Phys. E26 (2017) 1741001,arXiv:1706.03138.
[Mathews:2017xht]
Massive and supermassive black holes in the contemporary and early universe and the new problems of cosmology and astrophysics,
A.D. Dolgov,
Usp.Fiz.Nauk 188 (2018) 121-142,arXiv:1705.06859.
[Dolgov:2017aec]
Testing theories of Gravity and Supergravity with inflation and observations of the cosmic microwave background,
Girish Kumar Chakravarty, Gaetano Lambiase, Subhendra Mohanty,
Int.J.Mod.Phys. D26 (2017) 1730023,arXiv:1607.06325.
[Chakravarty:2016set]
Small scale problems of the $\Lambda$CDM model: a short review,
Antonino Del Popolo, Morgan Le Delliou,
Galaxies 5 (2017) 17,arXiv:1606.07790.
[DelPopolo:2016emo]
Implications of Planck2015 for inflationary, ekpyrotic and anamorphic bouncing cosmologies,
Anna Ijjas, Paul J. Steinhardt,
Class. Quant. Grav. 33 (2016) 044001,arXiv:1512.09010.
[Ijjas:2015hcc]
Nonminimal Couplings in the Early Universe: Multifield Models of Inflation and the Latest Observations,
David I. Kaiser,
Fundam.Theor.Phys. 183 (2016) 41-57,arXiv:1511.09148.
[Kaiser:2015usz]
On the theory and applications of modern cosmography,
Peter K. S. Dunsby, Orlando Luongo,
Int.J.Geom.Meth.Mod.Phys. 13 (2016) 1630002,arXiv:1511.06532.
[Dunsby:2015ers]
CMB Anomalies after Planck,
Dominik J. Schwarz, Craig J. Copi, Dragan Huterer, Glenn D. Starkman,
Class.Quant.Grav. 33 (2016) 184001,arXiv:1510.07929.
[Schwarz:2015cma]
Indirect and direct search for dark matter,
Michael Klasen, Martin Pohl, Gunter Sigl,
Prog. Part. Nucl. Phys. 85 (2015) 1-32,arXiv:1507.03800.
[Klasen:2015uma]
Big Bang Nucleosynthesis: 2015,
Richard H. Cyburt, Brian D. Fields, Keith A. Olive, Tsung-Han Yeh,
Rev.Mod.Phys. 88 (2016) 015004,arXiv:1505.01076.
[Cyburt:2015mya]
Big-Bang Nucleosynthesis,
Brian D. Fields, Paolo Molaro, Subir Sarkar(Particle Data Group),
Chin.Phys. C38 (2014) 090001,arXiv:1412.1408.
[Agashe:2014kda]
A Tale of Two Paradigms: the Mutual Incommensurability of LCDM and MOND,
Stacy S. McGaugh,
Can.J. Phys. 93 (2015) 250-259,arXiv:1404.7525.
[McGaugh:2014nsa]
Fundamental Particle Structure in the Cosmological Dark Matter,
Maxim Yu. Khlopov,
International Journal of Modern Physics A, Vol. 28 (2013) 1330042 (60 pages),arXiv:1311.2468.
[Khlopov:2013ava]
Cosmic dark radiation and neutrinos,
Maria Archidiacono, Elena Giusarma, Steen Hannestad, Olga Mena,
Adv.High Energy Phys. 2013 (2013) 191047,arXiv:1307.0637.
[Archidiacono:2013fha]
What is half a neutrino? Reviewing cosmological constraints on neutrinos and dark radiation,
Signe Riemer-Sorensen, David Parkinson, Tamara M. Davis,
Publ.Astron.Soc.Austral. 30 (2013) e029,arXiv:1301.7102.
[RiemerSorensen:2013ih]
Search for GeV-scale sterile neutrinos responsible for active neutrino oscillations and baryon asymmetry of the Universe,
S. N. Gninenko, D. S. Gorbunov, M. E. Shaposhnikov,
Adv.High Energy Phys. 2012 (2012) 718259,arXiv:1301.5516.
[Gninenko:2013tk]
Matter and Antimatter in the Universe,
Laurent Canetti, Marco Drewes, Mikhail Shaposhnikov,
New J. Phys. 14 (2012) 095012,arXiv:1204.4186.
[Canetti:2012zc]
The neutron and its role in cosmology and particle physics,
Dirk Dubbers, Michael G. Schmidt,
Rev. Mod. Phys. 83 (2011) 1111-1171,arXiv:1105.3694.
[Dubbers:2011ns]
Cosmological and Astrophysical Neutrino Mass Measurements,
K. N. Abazajian et al.,
Astropart. Phys. 35 (2011) 177-184,arXiv:1103.5083.
[Abazajian:2011dt]
Cosmological Parameters from Observations of Galaxy Clusters,
Steven W. Allen, August E. Evrard, Adam B. Mantz,
Ann.Rev.Astron.Astrophys. 49 (2011) 409-470,arXiv:1103.4829.
[Allen:2011zs]
Big Bang Nucleosynthesis as a Probe of New Physics,
Maxim Pospelov, Josef Pradler,
Ann. Rev. Nucl. Part. Sci. 60 (2010) 539-568,arXiv:1011.1054.
[Pospelov:2010hj]
Dark Matter Candidates from Particle Physics and Methods of Detection,
Jonathan L. Feng,
Ann. Rev. Astron. Astrophys. 48 (2010) 495,arXiv:1003.0904.
[Feng:2010gw]
The Physics of Cosmic Acceleration,
Robert R. Caldwell, Marc Kamionkowski,
Ann. Rev. Nucl. Part. Sci. 59 (2013) 397,arXiv:0903.0866.
[Capozziello:2013kla]
Physics, Astrophysics and Cosmology with Gravitational Waves,
B. S. Sathyaprakash, B. F. Schutz,
Living Rev. Rel. 12 (2009) 2,arXiv:0903.0338.
[Sathyaprakash:2009xs]
The Large Scale Structure in the Universe: From Power-Laws to Acoustic Peaks,
Vicent J. Martinez,
Lect.Notes Phys. 665 (2009) 269,arXiv:0804.1536.
[Martinez:2008rx]
Bayes in the sky: Bayesian inference and model selection in cosmology,
Roberto Trotta,
Contemp. Phys. 49 (2008) 71-104,arXiv:0803.4089.
[Trotta:2008qt]
Dark Energy and the Accelerating Universe,
Joshua Frieman, Michael Turner, Dragan Huterer,
Ann. Rev. Astron. Astrophys. 46 (2008) 385-432,arXiv:0803.0982.
[Frieman:2008sn]
The Cosmic Microwave Background for Pedestrians: A Review for Particle and Nuclear Physicists,
Dorothea Samtleben, Suzanne Staggs, Bruce Winstein,
Ann. Rev. Nucl. Part. Sci. 57 (2007) 245-283,arXiv:0803.0834.
[Samtleben:2007zz]
An introduction to the dark energy problem,
Antonio Dobado, Antonio L. Maroto,
Astrophys. Space Sci. 320 (2009) 167-171,arXiv:0802.1873.
[Dobado:2008xn]
Cosmic Acceleration, Dark Energy and Fundamental Physics,
Michael S. Turner, Dragan Huterer,
J. Phys. Soc. Jap. 76 (2007) 111015,arXiv:0706.2186.
[Turner:2007qg]
Resource Letter BE-1: The Beginning and Evolution of the Universe,
Bharat Ratra, Michael S. Vogeley,
Publ. Astron. Soc. Pac. 120 (2008) 235-265,arXiv:0706.1565.
[Ratra:2007sa]
The modified Newtonian dynamics-MOND-and its implications for new physics,
Jacob D. Bekenstein,
Contemp.Phys. (2007),arXiv:astro-ph/0701848.
[Bekenstein:2007iq]
Probing Models of Quantum Decoherence in Particle Physics and Cosmology,
Nikolaos E. Mavromatos, Sarben Sarkar,
arXiv:hep-ph/0612193, 2006. [Mavromatos:2006yn]
The Physics and Early History of the Intergalactic Medium,
Rennan Barkana, Abraham Loeb,
Rept. Prog. Phys. 70 (2007) 627,arXiv:astro-ph/0611541.
[Barkana:2006ep]
Cosmology at Low Frequencies: The 21 cm Transition and the High-Redshift Universe,
Steven Furlanetto, S. Peng Oh, Frank Briggs,
Phys. Rept. 433 (2006) 181-301,arXiv:astro-ph/0608032.
[Furlanetto:2006jb]
The large-scale structure of the Universe,
Volker Springel, Carlos S. Frenk, Simon D. M. White,
Nature Nature (2006) (2006),arXiv:astro-ph/0604561.
[Springel:2006vs]
Understanding our universe: Current status and open issues,
T. Padmanabhan,
100 Years Of Relativity : space-time structure: Einstein and beyond (2005) 175-204,arXiv:gr-qc/0503107.
[Padmanabhan:2005cw]
Inflationary Cosmology: Exploring the Universe from the Smallest to the Largest Scales,
Alan H. Guth, David I. Kaiser,
Science 307 (2005) 884,arXiv:astro-ph/0502328.
[Guth:2005zr]
Leptogenesis as the origin of matter,
W. Buchmuller, R. D. Peccei, T. Yanagida,
Ann. Rev. Nucl. Part. Sci. 55 (2005) 311,arXiv:hep-ph/0502169.
[Buchmuller:2005eh]
APS Neutrino Study: Report of the Neutrino Astrophysics and Cosmology Working Group,
Steve W. Barwick et al.,
arXiv:astro-ph/0412544, 2004. [Barwick:2004ep]
Non-Gaussianity from Inflation: Theory and Observations,
N. Bartolo, E. Komatsu, S. Matarrese, A. Riotto,
Phys. Rep. 402 (2004) 103,arXiv:astro-ph/0406398.
[Bartolo:2004if]
Particle Dark Matter: Evidence, Candidates and Constraints,
Gianfranco Bertone, Dan Hooper, Joseph Silk,
Phys. Rep. 405 (2013) 279,arXiv:hep-ph/0404175.
[Sadeghian:2013bga]
Observational Cosmology: caveats and open questions in the standard model,
M. Lopez-Corredoira,
Astron.Astrophys. (2003),arXiv:astro-ph/0310214.
[LopezCorredoira:2003uc]
The Accelerating Universe and Dark Energy: Evidence from Type Ia Supernovae,
A. V. Filippenko,
Lect. Notes Phys. 646 (2004) 191,arXiv:astro-ph/0309739.
[Filippenko:2003ta]
The first second of the Universe,
D. J. Schwarz,
Annalen Phys. 12 (2003) 220,arXiv:astro-ph/0303574.
invited review to appear in Annalen der Physik (50 pages, 16 figures). [Schwarz:2003du]
Intermediate-Mass Black Holes in the Universe? - A Review of Formation Theories and Observational Constraints,
R. P. van der Marel,
arXiv:astro-ph/0302101, 2003. [vanderMarel:2003ka]
Absolute values of neutrino masses: Status and prospects,
S. M. Bilenky, C. Giunti, J. A. Grifols, E. Masso,
Phys. Rep. 379 (2003) 69-148,arXiv:hep-ph/0211462.
[Bilenky:2002aw]
The picture of our universe: A view from modern cosmology,
David D. Reid, Daniel W. Kittell, Eric E. Arsznov, Gregory B. Thompson,
arXiv:astro-ph/0209504, 2002. [Reid:2002kp]
Astrophysical and cosmological constraints on neutrino masses,
Kimmo Kainulainen, Keith A. Olive,
Springer Tracts Mod. Phys. 190 (2003) 53-74,arXiv:hep-ph/0206163.
[Kainulainen:2002pu]
The Cold Dark Matter crisis on galactic and subgalactic scales,
A. Tasitsiomi,
Int. J. Mod. Phys. D12 (2003) 1157,arXiv:astro-ph/0205464.
[Tasitsiomi:2002hi]
Large-scale structure of the universe and cosmological perturbation theory,
F. Bernardeau, S. Colombi, E. Gaztanaga, R. Scoccimarro,
Phys. Rep. 367 (2002) 1-248,arXiv:astro-ph/0112551.
[Bernardeau:2001qr]
Neutrino propagation in dense astrophysical systems,
Madappa Prakash, James M. Lattimer, Raymond F. Sawyer, Raymond R. Volkas,
Ann. Rev. Nucl. Part. Sci. 51 (2001) 295-344,arXiv:astro-ph/0103095.
[Prakash:2001rx]
The Cosmic Triangle: Revealing the State of the Universe,
N. A. Bahcall, J. P. Ostriker, S. Perlmutter, P. J. Steinhardt,
Science 284 (1999) 1481-1488,arXiv:astro-ph/9906463.
[Bahcall:1999xn]
Primordial nucleosynthesis: Theory and observations,
Keith A. Olive, Gary Steigman, Terry P. Walker,
Phys. Rep. 333 (2000) 389-407,arXiv:astro-ph/9905320.
[Olive:1999ij]
The Cosmic microwave background and particle physics,
Marc Kamionkowski, Arthur Kosowsky,
Ann.Rev.Nucl.Part.Sci. 49 (1999) 77-123,arXiv:astro-ph/9904108.
[Kamionkowski:1999qc]
What have we already learned from the CMB?,
Charles R. Lawrence, Douglas Scott, Martin J. White,
Publ. Astron. Soc. Pac. 111 (1999) 525,arXiv:astro-ph/9810446.
[Lawrence:1998ri]
Big-bang nucleosynthesis enters the precision era,
David N. Schramm, Michael S. Turner,
Rev. Mod. Phys. 70 (1998) 303-318,arXiv:astro-ph/9706069.
[Schramm:1997vs]
Big bang nucleosynthesis and physics beyond the standard model,
Subir Sarkar,
Rept. Prog. Phys. 59 (1996) 1493-1610,arXiv:hep-ph/9602260.
[Sarkar:1995dd]
Probing the early universe: A Review of primordial nucleosynthesis beyond the standard Big Bang,
R. A. Malaney, G. J. Mathews,
Phys. Rep. 229 (1993) 145-219. [Malaney:1993ah]
Big Bang Nucleosynthesis: Theories and Observations,
Ann Merchant Boesgaard, Gary Steigman,
Ann. Rev. Astron. Astrophys. 23 (1985) 319. [Boesgaard:1985km]
Neutrinos in Astrophysics and Cosmology: Theoretical Advanced Study Institute (TASI) 2020 Lectures,
Kevork N. Abazajian,
arXiv:2102.10183, 2021. [Abazajian:2021zui]
Coming of Age of the Standard Model,
Roger Blandford, Jo Dunkley, Carlos Frenk, Ofer Lahav, Alice Shapley,
arXiv:2002.12350, 2020.10th Anniversary KICC Conference. [2002.12350]
Cosmology and Dark Matter,
V.A.Rubakov,
arXiv:1912.04727, 2019.European School on High Energy Physics ESHEP2019, Saint-Petersburg, Russia, September 2019. [Rubakov:2019nxp]
Light sterile neutrinos: oscillations and cosmology,
S. Gariazzo,
Acta Phys.Polon. B50 (2019) 1719,arXiv:1910.13172.
Matter To The Deepest, XLIII International Conference of Theoretical Physics, Katowice/Chorzow, Poland, 1-6 September 2019. [Gariazzo:2019vdj]
MOND vs. dark matter in light of historical parallels,
Mordehai Milgrom,
arXiv:1910.04368, 2019.Dark Matter and Modified Gravity, Aachen, February 2019. [Milgrom:2019cle]
Selected Topics in Numerical Methods for Cosmology,
Sandro Dias Pinto Vitenti, Mariana Penna-Lima,
Universe 5 (2019) 192,arXiv:1908.00116.
3rd Jose Plinio Baptista School on Cosmology held in 2016 in Pedra Azul, Espirito Santo, Brazil. [DiasPintoVitenti:2019vcn]
Primordial Non-Gaussianity,
Marco Celoria, Sabino Matarrese,
Proc.Int.Sch.Phys.Fermi 200 (2020) 179-215,arXiv:1812.08197.
International School of Physics Enrico Fermi - Course 200, Villa Monastero, Varenna, Lake Como (Italy), July 2017. [Celoria:2018euj]
The interplay between cosmology, particle physics and astrophysics,
Aaron C. Vincent,
PoS EDSU2018 (2018) 007,arXiv:1811.04148.
2nd World Summit on Exploring the Dark Side of the Universe (25-29 June 2018, Pointe-a-Pitre). [Vincent:2018vng]
TASI Lectures on Early Universe Cosmology: Inflation, Baryogenesis and Dark Matter,
James M. Cline,
PoS TASI2018 (2019) 001,arXiv:1807.08749.
[Cline:2018fuq]
Status of Dark Matter in the Universe,
Katherine Freese,
Int.J.Mod.Phys. D26 (2017) 1730012,arXiv:1701.01840.
14th Marcel Grossman Meeting, MG14, University of Rome 'La Sapienza', Rome, July 2015. [Freese:2017idy]
Primordial Nucleosynthesis,
Alain Coc,
J.Phys.Conf.Ser. 665 (2016) 012001,arXiv:1609.06048.
14th International Symposium on Nuclei in the Cosmos XIV (Niigata). [Coc:2016oab]
Another look to distortions of the CMB spectrum,
G. De Zotti, M. Negrello, G. Castex, A. Lapi, M. Bonato,
JCAP 1603 (2016) 047,arXiv:1512.04816.
CMB@50, Princeton University, 10-12 June 2015. [DeZotti:2015awh]
The Observational Status of Cosmic Inflation after Planck,
Jerome Martin,
Astrophys.Space Sci.Proc. 45 (2016) 41-134,arXiv:1502.05733.
II JPBCosmo School (Brazil). [Martin:2015dha]
An introduction to inflation after Planck: from theory to observations,
Sebastien Clesse,
arXiv:1501.00460, 2015.Xth Modave School in Mathematical Physics. [Clesse:2015yka]
Antimatter in the universe and laboratory,
A.D. Dolgov,
EPJ Web Conf. 95 (2015) 03007,arXiv:1411.2280.
Int. Conf. New Frontiers in Physics 2014. [Dolgov:2014xva]
B-mode in CMB polarization. What's that and why it is interesting,
A.D. Dolgov,
arXiv:1410.6280, 2014.XXX Int. Workshop on HIgh Energy Physics 'Particle and Astroparticle Physics, Gravitation and Cosmology:Predictions, Observations and New Projects. Protvino, June, 23-27, 2014. [Dolgov:2014nsa]
How many new particles do we need after the Higgs boson?,
Marco Drewes,
arXiv:1405.2931, 2014.49th Rencontres de Moriond on Electroweak Interactions and Unified Theories (2014). [Drewes:2014vaa]
CosPA2013: Outlook,
Francis Halzen,
arXiv:1402.7302, 2014.10th International Symposium on Cosmology and Particle Astrophysics (CosPA2013). [Halzen:2014nea]
Weak gravitational lensing,
H. Hoekstra,
Proc.Int.Sch.Phys.Fermi 186 (2014) 59-100,arXiv:1312.5981.
International School of Physics Enrico Fermi 'New Horizons for Observational Cosmology', Varenna, July 1-6, 2013. [Hoekstra:2013gua]
Large Scale Structure Observations,
Will J. Percival,
Proc.Int.Sch.Phys.Fermi 186 (2014) 101-135,arXiv:1312.5490.
Post-Planck Cosmology, Ecole de Physique des Houches, Les Houches, July 8-Aug 2, 2013 and New Horizons for Observational Cosmology, International School of Physics Enrico Fermi, Varenna, July 1-6, 2013. [Percival:2013awa]
Galaxy formation,
Joseph Silk, Arianna Di Cintio, Irina Dvorkin,
Proc.Int.Sch.Phys.Fermi 186 (2014) 137-187,arXiv:1312.0107.
Post-Planck Cosmology, Ecole de Physique des Houches, Les Houches, July 8-Aug 2, 2013. [Silk:2013xca]
Cosmology: theory,
Mikhail Shaposhnikov,
PoS EPS-HEP2013 (2014) 155,arXiv:1311.4979.
European Physical Society Conference on High Energy Physics, 18-24 July, 2013, Stockholm, Sweden. [Shaposhnikov:2013ira]
Particle Physics and Cosmology,
P. Pralavorio,
arXiv:1311.1769, 2013.100th Les Houches Summer School on Post-Planck Cosmology, July 8th - Aug 2nd 2013. [Pralavorio:2013qha]
Neutrino physics from Cosmology,
Steen Hannestad,
Nuovo Cim. C037 (2014) 111-116,arXiv:1311.0623.
Pontecorvo100 - Symposium in honour of Bruno Pontecorvo. [Hannestad:2013nva]
The Physics of Neutrinos,
Renata Zukanovich Funchal, Benoit Schmauch, Gaelle Giesen,
arXiv:1308.1029, 2013.Course given at Institut de Physique Theorique of CEA/Saclay in January/February 2013. [Funchal:2013ksa]
Towards the Chalonge 17th Paris Cosmology Colloquium 2013: highlights and conclusions of the Chalonge 16th Paris Cosmology Colloquium 2012,
H. J. de Vega, M.C. Falvella, N. G. Sanchez,
arXiv:1307.1847, 2013. [deVega:2013hpa]
Recent developments in astrophysical and cosmological exploitation of microwave surveys,
Carlo Burigana et al.,
Int.J.Mod.Phys. D22 (2013) 1330011,arXiv:1302.3474.
[Burigana:2013fsa]
Neutrino 2012: Outlook - theory,
A. Yu. Smirnov,
Nucl. Phys. Proc. Suppl. 235-236 (2013) 431-440,arXiv:1210.4061.
XXV International Conference on Neutrino Physics and Astrophysics, June 3 - 9, 2012, Kyoto, Japan. [Smirnov:2012ei]
The Neutron and the Universe - History of a Relationship,
Stephan Paul,
PoS BORMIO2012 (2012) 025,arXiv:1205.2451.
Bormio Winter Meeting 2012. [Paul:2012kp]
The Hubble constant and new discoveries in cosmology,
S. H. Suyu et al.,
arXiv:1202.4459, 2012.Workshop on the Hubble constant, KIPAC, February 6-8 2012. [Suyu:2012ax]
Proceedings of the 2010 European School of High-energy Physics, Raseborg, Finland, 20 Jun - 3 Jul 2010,
C. Grojean, M. Spiropulu,
arXiv:1202.1629, 2012. [Grojean:2012wp]
Proceedings of the first workshop on Flavor Symmetries and consequences in Accelerators and Cosmology (FLASY2011),
M. Hirsch et al.,
arXiv:1201.5525, 2012.1st Workshop on Flavor Symmetries and consequences in Accelerators and Cosmology 11 - 14 July 2011, Valencia (Spain). [Hirsch:2012ym]
Neutrinos and the Universe,
Nick E. Mavromatos,
J. Phys. Conf. Ser. 408 (2013) 012003,arXiv:1110.3729.
Nufact 11, CERN and U. of Geneva, 1-6 August 2011. [Mavromatos:2011ur]
Round Table Discussion at the Workshop 'New Directions in Modern Cosmology',
Theo M. Nieuwenhuizen, Peter D. Keefe, Vaclav Spicka,
J. Cosmol. 15 (2011) 6326-6339,arXiv:1108.3485.
[Nieuwenhuizen:2011vd]
What do we really know about Dark Energy?,
Ruth Durrer,
Phil.Trans.Roy.Soc.Lond. A369 (2011) 5102-5114,arXiv:1103.5331.
Cosmological Tests of General Relativity. [Durrer:2011gq]
Proceedings of the 2009 CERN-Latin-American School of High-Energy Physics, Recinto Quirama, Colombia, 15 - 28 March 2009,
C. Grojean, M. Spiropulu,
arXiv:1010.5976, 2010.CERN Yellow Report. [Grojean:2010zza]
Particle cosmology,
A. Riotto,
arXiv:1010.2642, 2010.5th CERN-Latin-American School of High-Energy Physics, Recinto Quirama, Colombia, 15 - 28 Mar 2009. [Riotto:2010jd]
The violent Universe: the Big Bang,
Keith A. Olive,
arXiv:1005.3955, 2010.2009 European School of High-Energy Physics, Bautzen, Germany, June 2009. [Olive:2010mh]
The connection between cosmology and neutrino physics,
Steen Hannestad,
arXiv:1003.4119, 2010.Workshop 'European Strategy for Future Neutrino Physics', CERN, oct.2009. [Hannestad:2010qz]
Dark Energy and Dark Matter,
Keith A. Olive,
Conf. Proc. C0908171 (2009) 257-270,arXiv:1001.5014.
XXIV International Symposium on Lepton Photon Interactions at High Energies, Hamburg Germany, August 2009. [Olive:2010qw]
Fundamental Symmetries of the Early Universe and the Precision Frontier,
Michael J. Ramsey-Musolf,
AIP Conf. Proc. 1182 (2009) 635-643,arXiv:0907.3916.
CIPANP 2009. [RamseyMusolf:2009ga]
Dark Matter Astrophysics,
Guido D'Amico, Marc Kamionkowski, Kris Sigurdson,
arXiv:0907.1912, 2009.Villa Olmo School on 'The Dark Side of the Universe,' 14-18 May 2007 and XIX Heidelberg Physics Graduate Days, 8-12 October 2007. [DAmico:2009tep]
Great Surveys of the Universe,
Steven T. Myers,
arXiv:0904.2593, 2009.Great Surveys of Astronomy Workshop, 20-22 November 2008, Santa Fe, NM. [Myers:2009ve]
Cosmologists in the dark,
Vicent J. Martinez, Virginia Trimble,
ASP Conf.Ser. 409 (2009) 47,arXiv:0904.1126.
Cosmology across Cultures, Granada, Spain, 2008. [Martinez:2009nq]
Baryogenesis and cosmological antimatter,
A.D. Dolgov,
AIP Conf. Proc. 1116 (2009) 155-170,arXiv:0901.2100.
XIII Mexican School of Particles and Fields, San Carlos, October, 2008. [Dolgov:2009py]
Dark matter and dark energy proposals: maintaining cosmology as a true science?,
George F. R. Ellis,
EAS Publ.Ser. 36 (2009) 325-336,arXiv:0811.3529.
CRAL-IPNL conference 'Dark Energy and Dark Matter', Lyon 2008. [Ellis:2008up]
Neutrinos as cosmic messengers,
J. W. F. Valle,
AIP Conf. Proc. 1115 (2009) 13-26,arXiv:0811.0707.
4th International Workshop on the Dark Side of the Universe (DSU08) Conference, Cairo. [Valle:2008rg]
Neutrinos and Future Concordance Cosmologies,
Peter Adshead, Richard Easther,
J. Phys. Conf. Ser. 136 (2008) 022044,arXiv:0810.2591.
Neutrino 2008. [Adshead:2008ky]
Cosmology for Particle Physicists,
U. A. Yajnik,
arXiv:0808.2236, 2008.SERC School on Theoretical High Energy Physics, PRL Ahmedabad, February 2006. [Yajnik:2006kn]
Neutrinos and BBN (and the CMB),
Gary Steigman,
arXiv:0807.3004, 2008.NO-VE IV International Workshop on: Neutrino Oscillations in Venice. [Steigman:2008eb]
The ART of Cosmological Simulations,
Stefan Gottloeber, Anatoly Klypin,
arXiv:0803.4343, 2008.High Performance Computing in Science and Engineering Garching/Munich 2007. [Gottloeber:2008ac]
Recent Developments in Gravitational Microlensing,
Andrew Gould,
ASP Conf.Ser. 403 (2009) 86,arXiv:0803.4324.
The Variable Universe: A Celebration of Bohdan Paczynski, 29 Sept 2007. [Gould:2008zu]
Cosmology and Neutrino Properties,
A. D. Dolgov,
Phys. Atom. Nucl. 71 (2008) 2152-2164,arXiv:0803.3887.
Meeting of Nuclear Physics Division of Russian Academy of Sci., November, 2007, Moscow. [Dolgov:2008hz]
Lecture Notes on CMB Theory: From Nucleosynthesis to Recombination,
Wayne Hu,
arXiv:0802.3688, 2008.XIX Canary Island Winter School of Astrophysics. [Hu:2008hd]
The evidence for unusual gravity from the large-scale structure of the Universe,
A. Diaferio,
arXiv:0802.2532, 2008.1st AFI symposium. [Diaferio:2008jy]
RICAP-07: Summary comments,
Thomas K. Gaisser,
Nucl. Instrum. Meth. A588 (2008) 276-280,arXiv:0801.4546.
Roma International Conference on Astroparticle Physics, June 2007. [Gaisser:2008cr]
The MOND paradigm,
Mordehai Milgrom,
arXiv:0801.3133, 2008.XIX Rencontres de Blois 'Matter and energy in the Universe: from nucleosynthesis to cosmology', May 2007. [Milgrom:2008rv]
Cosmological model: from initial conditions to structure formation,
V. Lukash,
Nuovo Cim. 122B (2007) 1411-1422,arXiv:0712.3356.
A Century of Cosmology : Past, Present and Future, August 27-31 2007, Venezia, Italy. [Lukash:2007ns]
The Future of Cosmology,
George Efstathiou,
Nuovo Cim. 122B (2007) 1423-1435,arXiv:0712.1513.
A Century of Cosmology, S. Servolo, August 2007. [Efstathiou:2007gz]
Observational approaches to understanding dark energy,
Yun Wang,
arXiv:0712.0041, 2007.23rd International Symposium on Lepton and Photon Interactions at High Energy (LP07). [Wang:2007sq]
CPT violations in Astrophysics and Cosmology,
G. Auriemma,
Chin.J.Astron.Astrophys.Suppl. 8 (2008) 33,arXiv:0711.0504.
Frascati Workshop 2007 Vulcano (Italy), May 28 - June 2, 2007. [Auriemma:2007bm]
Cosmology and the Unexpected,
Edward W. Kolb,
Subnucl.Ser. 45 (2009) 337-363,arXiv:0709.3102.
International School of Subnuclear Physics, Searching for the 'totally unexpected' in the LHC era, Erice, Italy 2007. [Kolb:2007gb]
WMAPping the Inflationary Universe,
Raghavan Rangarajan,
arXiv:0706.4166, 2007.17th DAE-BRNS High Energy Physics Symposium at the Indian Institute of Technology, Kharagpur, December 11-15, 2006. [Rangarajan:2007ff]
TASI Lectures on Astrophysical Aspects of Neutrinos,
John F. Beacom,
arXiv:0706.1824, 2007.Exploring New Frontiers Using Colliders and Neutrinos (TASI 2006), Boulder, Colorado, 4-30 Jun 2006. [Beacom:2007av]
Physics Beyond the Standard Model and Cosmological Connections: A Summary from LCWS 06,
K. Sridhar,
Pramana 69 (2007) 719-726,arXiv:hep-ph/0702109.
International Linear Collider Workshop in Bangalore, India in March 2006. [Sridhar:2007vv]
Gamow Legacy and the Primordial Abundance of Light Elements,
E. Terlevich, R. Terlevich, V. Luridiana,
arXiv:astro-ph/0701744, 2007.Astrophysics and Cosmology after Gamow - Theory and Observations, Odessa, August 8-14, 2004. [Terlevich:2007ym]
BBN And The CBR Probe The Early Universe,
Gary Steigman,
AIP Conf. Proc. 903 (2007) 40-47,arXiv:hep-ph/0611209.
SUSY06, 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions, UC Irvine, California, 12-17 June 2006'. [Steigman:2006yn]
Varying 'constants' in astrophysics and cosmology,
Thomas Dent,
AIP Conf. Proc. 903 (2007) 665-668,arXiv:hep-ph/0610376.
SUSY06, the 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions, UC Irvine, California, 12-17 June 2006. [Dent:2006mn]
Cosmic Microwave Background anisotropies: the power spectrum and beyond,
Enrique Martinez-Gonzalez,
Lect.Notes Phys. 665 (2009) 79,arXiv:astro-ph/0610162.
Valencia Summer School 'Data Analysis in Cosmology, September 2004. [MartinezGonzalez:2006na]
Dark Energy and Some Alternatives: a Brief Overview,
J.S. Alcaniz,
Braz. J. Phys. 36 (2006) 1109,arXiv:astro-ph/0608631.
XXVI Brazilian National Meeting on Particles and Fields, Sao Lourenco, Brazil. [Alcaniz:2006ay]
Probing dark energy with future surveys,
Roberto Trotta,
arXiv:astro-ph/0607496, 2006.'Cosmology, galaxy formation and astroparticle physics on the pathway to the SKA', Oxford, April 10-12 2006. [Trotta:2006pw]
Integrated Sachs-Wolfe effect in the era of precision cosmology,
Levon Pogosian,
New Astron. Rev. 50 (2006) 932-937,arXiv:astro-ph/0606626.
Fundamental Physics With CMB workshop, UC Irvine, March 23-25, 2006. [Pogosian:2006ay]
Future state of the Universe,
Mariusz P. Dabrowski,
Annalen Phys. 15 (2006) 352-363,arXiv:astro-ph/0606574.
Pomeranian Workshop in Fundamental Cosmology (COSMOFUN'05), Pobierowo, Poland, 1-6 September 2005. [Dabrowski:2006iv]
Cosmological quests in the CMB sky,
Tarun Souradeep,
Int. J. Mod. Phys. D15 (2006) 1725-1743,arXiv:astro-ph/0606512.
International Conference on Einstein's Legacy in the New Millennium, December 15 - 22, 2005, Puri, India. [Souradeep:2006vm]
Cosmology and New Physics,
A.D. Dolgov,
Phys. Atom. Nucl. 71 (2008) 651-670,arXiv:hep-ph/0606230.
9th International Moscow School of Physics (34th ITEP Winter School). [Dolgov:2006xi]
Constraints on cosmological parameters,
A. Balbi,
PoS CMB2006 (2006) 009,arXiv:astro-ph/0606183.
'CMB and Physics of the Early Universe' - International Conference - Ischia, Italy, 20-22 April 2006. [Balbi:2006mg]
Sub-eV upper limits on neutrino masses from cosmology,
Oystein Elgaroy, Ofer Lahav,
Phys. Scripta T127 (2006) 105-106,arXiv:hep-ph/0606007.
SNOW 2006, Stockholm, May 2-6, 2006. [Elgaroy:2006ii]
Cosmology with clusters of galaxies,
Stefano Borgani,
Lect.Notes Phys. (2006),arXiv:astro-ph/0605575.
2005 Guillermo Haro Summer School on Clusters. [Borgani:2006ba]
What is the Role of Neutrinos in Shaping the Universe?,
Lawrence M. Krauss,
arXiv:astro-ph/0605378, 2006.International Workshop on NO-VE, Venice, 2006. [Krauss:2006eb]
The Cosmology - Particle Physics Connection,
Mark Trodden,
AIP Conf. Proc. 842 (2006) 945-953,arXiv:hep-ph/0605284.
Particles and Nuclei International Conference (PANIC05) and CMB and Physics of the Early Universe International Conference (2006). [Trodden:2006ed]
Understanding Galaxy Formation and Evolution,
V. Avila-Reese,
arXiv:astro-ph/0605212, 2006.IV Mexican School of Astrophysics, July 18-25, 2005. [AvilaReese:2006rg]
Non Thermal Features in the Cosmic Neutrino Background,
G. Mangano,
arXiv:astro-ph/0603603, 2006.'Neutrino Oscillations in Venice' Conference, Venice, February 7-10 2006. [Mangano:2006xs]
Dark Energy: Mystery of the Millennium,
T. Padmanabhan,
AIP Conf. Proc. 861 (2006) 179-196,arXiv:astro-ph/0603114.
Albert Einstein Century International Conference at Palais de l'Unesco, Paris, France, 18-23 July, 2005. [Padmanabhan:2006ag]
Probing the Fundamental Symmetries of the Early Universe: The Low Energy Frontier,
M. J. Ramsey-Musolf,
AIP Conf. Proc. 842 (2006) 661-671,arXiv:hep-ph/0603023.
PANIC05 (Sante Fe, NM). [RamseyMusolf:2006ur]
The present and the future of cosmology with Gamma Ray Bursts,
G. Ghirlanda, G. Ghisellini,
arXiv:astro-ph/0602498, 2006.Science with the New Generation of High-Energy Gamma-Ray Experiments, Cividale del Friuli (Italy), 30 May - 1 June 2005. [Ghirlanda:2006bj]
Advanced Topics in Cosmology: A Pedagogical Introduction,
T. Padmanabhan,
AIP Conf. Proc. 843 (2006) 111-166,arXiv:astro-ph/0602117.
X Special Courses at Observatorio Nacional, Rio de Janeiro, Brazil during 26-30 Sept, 2005. [Padmanabhan:2006kz]
Cosmological constraints from galaxy clustering,
Will J. Percival,
Lect. Notes Phys. 720 (2007) 157-186,arXiv:astro-ph/0601538.
Third Aegean Summer School, The invisible universe: Dark matter and Dark energy. [Percival:2006kh]
Introduction to Modified Gravity and Gravitational Alternative for Dark Energy,
S. Nojiri, S.D. Odintsov,
Int. J. Geom. Meth. Mod. Phys. 4 (2006) 115-146,arXiv:hep-th/0601213.
42 Karpacz Winter School on Theor Physics. [Nojiri:2006ri]
Accelerating Universe: Observational Status and Theoretical Implications,
L. Perivolaropoulos,
AIP Conf. Proc. 848 (2006) 698-712,arXiv:astro-ph/0601014.
Third Aegean Summer School: `The Invisible Universe Dark Matter and Dark Energy'. [Perivolaropoulos:2006ce]
The Ups and Downs of the Hubble Constant,
G.A. Tammann,
Rev. Mod. Astron. 19 (2006) 1,arXiv:astro-ph/0512584.
79th Annual Scientific Meeting of the Astronomische Gesellschaft 2005. [Tammann:2005nx]
Primordial Black Holes: Do They Exist and Are They Useful?,
B. J. Carr,
arXiv:astro-ph/0511743, 2005.'Inflating Horizon of Particle Astrophysics and Cosmology', Universal Academy Press Inc and Yamada Science Foundation (2005). [Carr:2005zd]
First Light and Reionization: A Conference Summary,
E. J. Barton, J. S. Bullock, A. Cooray, M. Kaplinghat,
New Astron. Rev. 50 (2006) 1,arXiv:astro-ph/0511637.
UC Irvine Workshop on 'First Light and Reionization: Theoretical Study and Experimental Detection of the First Luminous Sources'. [Barton:2005kg]
Varying Constants,
John D. Barrow,
Phil. Trans. Roy. Soc. Lond. A363 (2005) 2139,arXiv:astro-ph/0511440.
Royal Society Discussion Meeting on 'The Fundamental Constants of Physics, Precision Measurements and the Base Units of SI', London, Feb. 14-15 (2005). [Barrow:2005hw]
Absolute Neutrino Masses,
Carlo Giunti,
Acta Phys. Polon. B36 (2005) 3215,arXiv:hep-ph/0511131.
XXIX International Conference of Theoretical Physics 'Matter To The Deepest: Recent Developments In Physics Of Fundamental Interactions', 8-14 September 2005, Ustron, Poland. [Giunti:2005qd]
The Standard Cosmological Model,
Douglas Scott,
Can. J. Phys. 84 (2006) 419-435,arXiv:astro-ph/0510731.
'Theory Canada 1', June 2005, Vancouver. [Scott:2005uf]
Darker Side of the Universe,
T. Padmanabhan,
arXiv:astro-ph/0510492, 2005.29th International Cosmic Ray Conference, Aug 3-10, 2005, Pune, India. [Padmanabhan:2005ur]
Dark energy - dark matter - and black holes: The music of the universe,
Peter L. Biermann,
arXiv:astro-ph/0510024, 2005.Carpathian Summer School in Physics 2005 (CSSP2005). [Biermann:2005qh]
The Cosmic Microwave Background anisotropies: open problems,
E. Martinez-Gonzalez, P. Vielva,
arXiv:astro-ph/0510003, 2005.The Many Scales of the Universe - JENAM 2004 Astrophysics Reviews. [MartinezGonzalez:2005pk]
Formation of the First Stars,
Volker Bromm,
IAU Symp. (2005),arXiv:astro-ph/0509354.
'From Lithium to Uranium: Elemental Tracers of Early Cosmic Evolution', IAU Symposium 228. [Bromm:2005gs]
Dark energy and dark matter from cosmological observations,
Steen Hannestad,
Int. J. Mod. Phys. A21 (2006) 1938-1949,arXiv:astro-ph/0509320.
22nd International Symposium on Lepton-Photon Interactions at High Energy (LP 2005), Uppsala, Sweden, 30 June - 5 Jul 2005. [Hannestad:2005fg]
ILC Cosmology,
Jonathan L. Feng,
eConf C050318 (2005) 0013,arXiv:hep-ph/0509309.
2005 International Linear Collider Workshop, Stanford, California, USA, 18-22 March 2005. [Feng:2005nz]
The Dark Side of the Universe,
Katherine Freese,
Nucl. Instrum. Meth. A559 (2006) 337,arXiv:astro-ph/0508279.
LTD-11 WOrkshop in Tokyo, August 2005. [Freese:2005hy]
Neutrinos and Cosmology: an update,
Ofelia Pisanti, P.D. Serpico,
Aip Conf. Proc. 794 (2005) 232,arXiv:astro-ph/0507346.
IFAE, Catania 2005. [Pisanti:2005yz]
Neutrino mass and mixing parameters: A short review,
G.L. Fogli et al.,
arXiv:hep-ph/0506307, 2005.40th Rencontres de Moriond on Electroweak Interactions and Unified Theories, La Thuile, Aosta Valley, Italy, 5-12 Mar 2005. [Fogli:2005gs]
Theory Summary of the Electroweak Session for Moriond 2005,
R. D. Peccei,
arXiv:hep-ph/0506016, 2005.Electroweak Session of the 2005 Moriond Meeting. [Peccei:2005pc]
Massive neutrinos and cosmology,
Sergio Pastor,
arXiv:hep-ph/0505148, 2005.XXXXth Moriond session on Electroweak Interactions and Unified Theories (La Thuile, 5-12 March 2005), and the XIth Int. Workshop on Neutrino Telescopes (Venice, 22-25 Feb 2005). [Pastor:2005qd]
From Little Bangs to the Big Bang,
John Ellis,
J. Phys. Conf. Ser. 50 (2006) 8-21,arXiv:astro-ph/0504501.
International Conference on the Physics and Astrophysics of the Quark-Gluon Plasma, Kolkata, Feb. 2005. [Ellis:2005xq]
Cosmology with Gamma Ray Bursts,
G. Ghisellini et al.,
Nuovo Cim. 28C (2005) 639,arXiv:astro-ph/0504306.
4th Workshop Gamma-Ray Bursts in the Afterglow Era, Rome,18-22 October 2004. [Ghisellini:2005vk]
Relic Gravitational Waves and Cosmology,
L. P. Grishchuk,
Phys. Usp. 48 (2005) 1235-1247,arXiv:gr-qc/0504018.
`Zeldovich-90', Moscow, December 2004. [Grishchuk:2005qe]
Extracting New Physics from the CMB,
B. Greene, K. Schalm, G. Shiu, J.P. van der Schaar,
eConf C041213 (2004) 0001,arXiv:astro-ph/0503458.
XXII Texas Symposium on Relativistic Astrophysics, Stanford University, 13-17 December 2004. [Greene:2005aj]
Measuring the cosmological density perturbation,
Subir Sarkar,
Nucl. Phys. Proc. Suppl. 148 (2005) 1,arXiv:hep-ph/0503271.
Workshop on 'The Density Perturbation in the Universe', Athens, June 2004. [Sarkar:2005fq]
Cosmological neutrino bounds for non-cosmologists,
Max Tegmark,
Phys. Scripta T121 (2005) 153,arXiv:hep-ph/0503257.
'Neutrino Physics', Proceedings of Nobel Symposium 129. [Tegmark:2005cy]
Primordial Gravitational Waves and Inflation: CMB and Direct Detection With Space-Based Laser Interferometers,
Asantha Cooray,
Mod. Phys. Lett. (2005) (2005),arXiv:astro-ph/0503118.
Daniel Chalonge International School of Astrophysics: WMAP and the Early Universe, Observatoire de Paris, December 2004. [Cooray:2005xr]
Cosmology and Astrophysics,
Juan Garcia-Bellido,
arXiv:astro-ph/0502139, 2005.CERN-JINR European School of High Energy Physics, San Feliu (Spain), 30 May - 12 June 2004. [Capozziello:2013kla]
The Shape of Space after WMAP data,
Jean-Pierre Luminet,
Braz. J. Phys. 36 (2006) 107,arXiv:astro-ph/0501189.
25th Brazilian Meeting of Particle Physics and Fields, Caxambu, Minas Gerais, Brazil, 24-27 Aug 2004. [Luminet:2005tn]
Neutrinos And Big Bang Nucleosynthesis,
Gary Steigman,
Phys. Scripta T121 (2005) 142,arXiv:hep-ph/0501100.
Nobel Symposium 129, Neutrino Physics. [Steigman:2005ys]
Dealing with dark energy,
Eric V. Linder,
arXiv:astro-ph/0501057, 2005.DARK 2004: 5th International Heidelberg Conference on Dark Matter in Astro and Particle Physics, College Station, Texas, 3-9 Oct 2004. [Linder:2005qz]
Massive Neutrinos in Astrophysics and Cosmology,
F. Villante, 2005.ISAPP 2005, International School on AstroParticle Physics (European Doctorate School): High Energy Cosmic Rays, 30 June - 9 July 2005, Belgirate, Lago Maggiore, Italy.http://www.isapp2005.to.infn.it/Lessons/Villante.pdf.
[Villante-ISAPP05]
From COBE to WMAP: A Decade of Data Under Scrutiny,
Louise M. Ord,
arXiv:astro-ph/0412354, 2004.5th Rencontres du Vietnam 'New Views on the Universe', Aug 5-11, 2004. [Ord:2004eb]
Dark Matter and Galaxy Formation: Challenges for the Next Decade,
Joseph Silk,
Aip Conf. Proc. 743 (2005) 33,arXiv:astro-ph/0412297.
Mitchell Symposium on Observational Cosmology and Strings and Cosmology Conference, College Station, April 2004, and C. Pope, AIP, New York, and PASCOS04/NathFest, Boston, August 2004. [Silk:2004uj]
What are the Building Blocks of Our Universe?,
Kameshwar C. Wali,
arXiv:astro-ph/0411321, 2004.International Conference on Cosmology, Facts and Problems (College de France, Paris, June 8-11, 2004). [Wali:2004zk]
Big Bang and Heavy Particles,
A.D. Dolgov,
arXiv:hep-ph/0411283, 2004.INFN Eloisatron Project, 44th Workshop, QCD at Cosmic Energies, August 29 - September 5, 2004, Erice, Italy. [Dolgov:2004gn]
The current status of observational cosmology,
Jeremiah P. Ostriker, Tarun Souradeep,
Pramana 63 (2004) 817,arXiv:astro-ph/0409131.
ICGC-04. [Ostriker:2004ht]
Lectures on astroparticle physics,
Guenter Sigl,
Aip Conf. Proc. 782 (2005) 1,arXiv:hep-ph/0408165.
XIth Brazilian School of Cosmology and Gravitation, Rio de Janeiro, July 26 - August 4, 2004. [Sigl:2004cq]
Modern Cosmology,
Juan Garcia-Bellido,
arXiv:hep-ph/0407111, 2004.XXXII International Meeting on Fundamental Physics, Alicante, March 1-5, 2004. [GarciaBellido:2004ri]
The Standard Model, Dark Matter, and Dark Energy: From the Sublime to the Ridiculous,
Lawrence M. Krauss,
arXiv:astro-ph/0406673, 2004.XIV Canary Islands Winter School in Astrophysics, 2002. [Krauss:2004iq]
The Cosmic Microwave Background and Its Polarization,
Angelica de Oliveira-Costa,
ASP Conf.Ser. 343 (2005) 485,arXiv:astro-ph/0406358.
'Astronomical Polarimetry - Current Status and Future Directions', Hawaii, USA, March 15-19, 2004. [deOliveiraCosta:2004zs]
Summary of the XXXIX Rencontres de Moriond,
Matts Roos,
arXiv:astro-ph/0405625, 2004.XXXIX Rencontres de Moriond 'Exploring the Universe'. [Roos:2004nd]
Astroparticle Physics,
I. I. Tkachev,
arXiv:hep-ph/0405168, 2004.2003 European School of High-Energy Physics, Tsakhkadzor, Armenia, 24 August - 6 September 2003. [Tkachev:2004ee]
Problems of vacuum energy and dark energy,
A.D. Dolgov,
Frascati Phys.Ser. 34 (2004) 75-94,arXiv:hep-ph/0405089.
18th Rencontre de Physique de la Vallee d'Aosta on Results and Perspectives in Particle Physics, 29/02 - 06/03, 2004. [Dolgov:2004xu]
Anisotropies in the Cosmic Microwave Background,
Anthony Challinor,
arXiv:astro-ph/0403344, 2004.2nd Aegean Summer School on the Early Universe (Springer LNP), 22-30 September 2003. [Challinor:2004bd]
Dark Matter and Dark Energy,
Varun Sahni,
Lect. Notes Phys. 653 (2004) 141,arXiv:astro-ph/0403324.
Second Aegean Summer School on the Early Universe, Syros, Greece, September 2003. [Sahni:2004ai]
Cosmic Topology: a Brief Overview,
M.J. Reboucas, G.I. Gomero,
Braz. J. Phys. 34 (2004) 1358,arXiv:astro-ph/0402324.
'XIV National Meeting of the Brazilian Physical Society, section Particles and Fields, Caxambu - MG, Brazil, from September 30 to October 04, 2003. [Reboucas:2004dv]
Observational Cosmology,
R.H. Sanders,
Lect. Notes Phys. 653 (2004) 105,arXiv:astro-ph/0402065.
Second Aegean Summer School on the Early Universe. [Sanders:2004xi]
TASI Lectures: Introduction to Cosmology,
Mark Trodden, Sean M. Carroll,
arXiv:astro-ph/0401547, 2004.TASI-02 and TASI-03 summer schools. [Trodden:2004st]
What we know and what we don't know about the universe,
Marcelo Gleiser,
Int. J. Mod. Phys. D13 (2004) 1381,arXiv:astro-ph/0401213.
1st International Workshop on Astronomy and Relativistic Astrophysics, Olinda, Brazil, 12-17 Oct 2003. [Gleiser:2004ny]
Precision Cosmology,
A. Primack, 2004.Sixth UCLA Symposium on Sources and Detection of Dark Matter and Dark Energy in the Universe, February 18-20, 2004, Marina del Rey, California, US.http://www.physics.ucla.edu/hep/dm04/talks/primack.pdf.
[Primack:DM2004]
Neutrinos and astrophysics,
S. Hannestad, 2004.SEESAW25,International Conference on the Seesaw Mechanism, 10-11 June 2004, Paris, France.http://seesaw25.in2p3.fr/trans/hannestad.pdf.
[Hannestad:SEESAW2004]
Inflation and Precision Cosmology,
Jerome Martin,
Braz. J. Phys. 34 (2004) 1307,arXiv:astro-ph/0312492.
XXIV Brazilian National Meeting on Particles and Fields (Caxambu, Brazil, 30 Sep - 4 Oct 2003). [Martin:2003bt]
Neutrino cosmology - an update,
Steen Hannestad,
arXiv:hep-ph/0312122, 2003.Thinking, observing, and mining the universe, Sorrento, Italy (22-27 September 2003). [Hannestad:2003px]
Open Problems in Cosmology,
P. J. E. Peebles,
Nucl. Phys. Proc. Suppl. 138 (2005) 5,arXiv:astro-ph/0311435.
TAUP 2003, Seattle, September, 2003. [Peebles:2003pk]
Status of observational cosmology and inflation,
L. Covi,
eConf C030626 (2003) THBT01,arXiv:hep-ph/0309238.
XXIII Physics in Collisions Conference (PIC03), Zeuthen, Germany, June 2003. [Covi:2003ku]
Gravitational lensing as a probe of structure,
Peter Schneider,
arXiv:astro-ph/0306465, 2003.XIV Canary Islands Winter School of Astrophysics 'Dark Matter and Dark Energy in the Universe' Tenerife. [Schneider:2003yb]
Magnetic fields in cosmology,
A. D. Dolgov,
arXiv:astro-ph/0306443, 2003.17th Rencontre de Physique de la Vallee d'Aoste on Results and Perspectives in Particle Physics, March 9-15, 2003. [Dolgov:2003xd]
Relic neutrinos: neutrino properties from cosmology,
S. Pastor,
arXiv:hep-ph/0306233, 2003.X Int. Workshop on Neutrino Telescopes, Venice, March 11-14, 2003. [Pastor:2003jx]
Cosmology at the Turn of Centuries,
A.D. Dolgov,
arXiv:hep-ph/0306200, 2003.International Conference I.Ya. Pomeranchuk and Physics at the Turn of Centuries, January 24-28, 2003, Moscow, Russia. [Dolgov:2003zg]
Cosmological Constraints on Neutrino Masses and Mixings,
A.D. Dolgov,
arXiv:hep-ph/0306154, 2003.NOON 2003 workshop, February 10-14, 2003, Kanazawa, Japan. [Dolgov:2003hi]
Theoretical Overview of Cosmic Microwave Background Anisotropy,
E. L. Wright,
arXiv:astro-ph/0305591, 2003.Carnegie Observatories Centennial Symposium II. [Wright:2003ig]
The Polarization of the Cosmic Microwave Background,
Matias Zaldarriaga,
arXiv:astro-ph/0305272, 2003.Carnegie Observatories Centenial Symposium II. [Zaldarriaga:2003bb]
Gravitational Lensing by Large Scale Structures: A Review,
L. Van Waerbeke, Y. Mellier,
arXiv:astro-ph/0305089, 2003.Aussois winter school, january 2003. [VanWaerbeke:2003uq]
Introductory Overview of Modern Cosmology,
Burin Gumjudpai,
arXiv:astro-ph/0305063, 2003.The Second Tah Poe School on Cosmology 'Modern Cosmology' (TPCosmo II), 17-25 April 2003, Naresuan University, Phitsanulok, Thailand. [Gumjudpai:2003nd]
Particle Physics and Cosmology,
John Ellis,
arXiv:astro-ph/0305038, 2003.Australian National University Summer School on the New Cosmology, January 2003. [Ellis:2003ch]
Physics of Structure Formation in the Universe,
T. Roy Choudhury,
Bull. Astron. Soc. India 31 (2003) 281,arXiv:astro-ph/0305033.
22nd meeting of Astronomical Society of India (2003). [Choudhury:2003cc]
Quasar Lensing: the Observer's Point of View,
F. Courbin,
arXiv:astro-ph/0304497, 2003.'Gravitational Lensing: a unique tool for cosmology', Aussois, France, January 2003. [Courbin:2003ip]
Ten major challenges in cosmology,
Reuven Opher,
arXiv:astro-ph/0304369, 2003.Xth Brazilian School of Cosmology and Gravitation, Rio de Janeiro, July 29 - Aug. 9, 2002. [Opher:2003gv]
Inflation, Large Scale Structure and Particle Physics,
S. F. King,
Pramana 62 (2004) 307,arXiv:hep-ph/0304264.
9th International Symposium on Particles, Strings and Cosmology (PASCOS 03), Mumbai (Bombay) India, 3-8 Jan 2003. [King:2003jw]
Dark Matter and Dark Energy: Summary and Future Directions,
John Ellis,
Phil. Trans. Roy. Soc. Lond. A361 (2003) 2607,arXiv:astro-ph/0304183.
Royal Society Discussion Meeting on Dark Matter and Dark Energy, January 2003. [Ellis:2003ug]
Clusters of galaxies: a fundamental pillar of cosmology,
Africa Castillo-Morales, Sabine Schindler,
arXiv:astro-ph/0303609, 2003.Vulcano Workshop 2002 'Frontier Objects in Astrophysics and Particle Physics'. [CastilloMorales:2003ns]
Cosmology from Topological Defects,
Alejandro Gangui,
Aip Conf. Proc. 668 (2003) 226,arXiv:astro-ph/0303504.
Xth Brazilian School on Cosmology and Gravitation, Mangaratiba, Rio de Janeiro, July 29 - August 9, 2002. [Gangui:2003uu]
The evolution of the universe,
Juan Garcia-Bellido,
arXiv:hep-ph/0303153, 2003.International Colloquium on TIME AND MATTER, Venice, Italy, August 11 - 17, 2002. [GarciaBellido:2003ih]
Cosmology, inflation, and the physics of nothing,
William H. Kinney,
NATO Adv.Study Inst.Ser.II.Math.Phys.Chem. 123 (2003) 189-243,arXiv:astro-ph/0301448.
NATO Advanced Study Institute on Techniques and Concepts of High Energy Physics, St. Croix, USVI (2002). [Kinney:2003xf]
Cosmological Parameters: Fashion and Facts,
A. Blanchard,
arXiv:astro-ph/0301137, 2003.th Workshop on 'New Worlds in Astroparticle Physics' in Faro, Portugal, September 2003. [Blanchard:2003wf]
Could Dark Energy be Measured from Redshift Surveys ?,
Ofer Lahav,
arXiv:astro-ph/0212358, 2002.XVIIIth IAP meeting `On the Nature of Dark Energy', Paris 2002. [Lahav:2002rp]
The New Cosmology: Mid-term Report Card for Inflation,
Michael S. Turner,
Annales Henri Poincare 4 (2003) S333,arXiv:astro-ph/0212281.
Th2002 Congress (Paris, France, July 2002). [Turner:2002ts]
Particle Physics and Cosmology,
Juan Garcia-Bellido,
Frascati Phys. Ser. 31 (2003) 321,arXiv:hep-ph/0211316.
First International Workshop on Frontier Science, October 6-11, 2002, Frascati (Italy). [GarciaBellido:2002vv]
Neutrinos in cosmology, with some significant digressions,
R. R. Volkas,
Aip Conf. Proc. 655 (2003) 220,arXiv:hep-ph/0211309.
3rd Tropical Workshop on Particle Physics and Cosmology, San Juan, Puerto Rico, Aug 19-24 2002. [Volkas:2002vn]
High-Energy Astrophysics and Cosmology,
John Ellis,
arXiv:astro-ph/0210580, 2002.XIIth International Symposium on Very-High-Energy Cosmic-Ray Interactions, CERN, July 2002. [Ellis:2003aa]
Can We See the Shape of the Universe?,
G. I. Gomero,
Int. J. Mod. Phys. A17 (2002) 4281-4286,arXiv:astro-ph/0210279.
5th Alexander Friedmann Seminar on Gravitation and Cosmology. [Gomero:2002ki]
Inflation and the Theory of Cosmological Perturbations,
Antonio Riotto,
ICTP Lect.Notes Ser. 14 (2003) 317-413,arXiv:hep-ph/0210162.
'ICTP Summer School on Astroparticle Physics and Cosmology', Trieste, 17 June - 5 July 2002. [Riotto:2002yw]
Cosmological Implications of Neutrino Mass,
S. F. King,
arXiv:hep-ph/0210089, 2002.4th International Workshop on the Identification of Dark Matter (IDM2002), St. William's College, York Minster, York, England, September 2-6, 2002. [King:2002js]
Phenomenological and Cosmological Implications of Neutrino Oscillations,
S. F. King,
J. Phys. G29 (2003) 1551,arXiv:hep-ph/0210081.
4th Workshop on Neutrino Factories based on Muon Storage Rings (NuFact'02), Imperial College, London, July 1-6, 2002. [King:2002jq]
Cosmic Distances: Current Odds and Future Perspectives,
G. Bono,
ASP Conf.Ser. (2002),arXiv:astro-ph/0210068.
To appear in 'Hubble's Science Legacy: Future Optical-Ultraviolet Astronomy from Space'. [Bono:2002ze]
Cosmological implications of neutrinos,
A. D. Dolgov,
Surveys High Energ. Phys. 17 (2002) 91,arXiv:hep-ph/0208222.
5th Moscow International School of Physics and 30th ITEP Winter School of Physics, Moscow, Russia, 20-28 Feb 2002. [Dolgov:2002ad]
From Precision Cosmology to Accurate Cosmology,
P. J. E. Peebles,
arXiv:astro-ph/0208037, 2002.Moriond Conference on the Cosmological Model, Les Arcs, March 2002. [Peebles:2002iq]
Astrophysical and Cosmological Neutrinos,
G. G. Raffelt,
Proc.Int.Sch.Phys.Fermi 152 (2003) 161-181,arXiv:hep-ph/0208024.
International School of Physics 'Enrico Fermi,' CLII Course 'Neutrino Physics,' 23 July-2 August 2002, Varenna, Lake Como, Italy. [Raffelt:2002nz]
A review of self-tuning solutions of cosmological constant,
Jihn E. Kim,
arXiv:hep-ph/0207360, 2002.'5th Int. UCLA Symposium on Sources and Detection of Dark Matter and Dark Energy in the Universe', Marina del Rey, CA, 20-22 Feb. 2002. [Kim:2002ps]
Neutrino masses in astroparticle physics,
G. G. Raffelt,
New Astron. Rev. 46 (2002) 699-708,arXiv:astro-ph/0207220.
Dennis Sciama Memorial Volume of NAR. [Raffelt:2002ed]
Stars and Fundamental Physics,
G. G. Raffelt,
arXiv:hep-ph/0207144, 2002.ESO-CERN-ESA Symposium on Astronomy, Cosmology and Fundamental Physics (4-7 March 2002, Garching, Germany). [Raffelt:2002vg]
Cosmology Rounding the Cape,
Alessandro Melchiorri,
arXiv:astro-ph/0204262, 2002.4th Heidelberg International Conference on Dark Matter in Astro- and Particle Physics, Cape Town, South Africa (February 2002. Eds. H. Klapdor-Kleingrothaus and R. Viollier). [Melchiorri:2002yya]
CMB and Cosmological Parameters: Current Status and Prospects,
Alessandro Melchiorri,
PoS AHEP2003 (2003) AHEP2003/067,arXiv:astro-ph/0204017.
XIII Rencontres de Blois - Frontiers of the Universe, June 17-23, 2001. [Melchiorri:2002ne]
The Cosmological Constant,
U. Ellwanger,
arXiv:hep-ph/0203252, 2002.XIV Workshop 'Beyond the Standard Model', Bad Honnef, 11-14 March 2002. [Ellwanger:2002cd]
Big bang nucleosynthesis, implications of recent CMB data and supersymmetric dark matter,
K. A. Olive,
arXiv:astro-ph/0202486, 2002.1st NCTS Workshop on Astroparticle Physics, Taiwan, China, 6-9 Dec 2001. [Olive:2002qg]
Cosmological parameters from CMB and LSS,
J. Peacock, 2002.4th International Workshop on the Identification of Dark Matter (IDM2002), St. William's College, York Minster, York, England, September 2-6, 2002.http://www.shef.ac.uk/~phys/idm2002/talks/pdfs/peacock.pdf.
[Peacock-talk:2002a]
Neutrino Masses in Astrophysics and Cosmology,
G. Raffelt, 2002.Lecture at the International School on Astroparticle and Neutrino Physics, 10-15 June 2002, Villa Cipressi, Varenna, Italy.http://wwwth.mppmu.mpg.de/members/raffelt/mytalks/varenna.pdf.
[Raffelt:Varenna02]
big bang nucleosynthesis and cosmological constraints on neutrino oscillation parameters,
Daniela Kirilova, Mihail Chizhov,
arXiv:astro-ph/0108341, 2001.BLTP Research Workshop on Hot Points in Astrophysics, Dubna, Russia, 22-26 Aug 2000. [Kirilova:2001rs]
Massive neutrinos in astrophysics,
G. G. Raffelt, W. Rodejohann,
arXiv:hep-ph/9912397, 1999.4th National Summer School for German-speaking Graduate Students of Theoretical Physics, Saalburg, Germany, 31 Aug - 11 Sep 1998. [Raffelt:1998qp]
Introduction to Microwave Background Polarization,
A. Kosowsky,
New Astron. Rev. 43 (1999) 157,arXiv:astro-ph/9904102.
International School of Space and Science: 1998 Course on 3K Cosmology from Space, L'Aquila, Italy, 2-12 Sep 1998. [Kosowsky:1998mb]
Big bang nucleosynthesis: Reprise,
Subir Sarkar,
arXiv:astro-ph/9903183, 1999.2nd International Conference on Dark Matter in Astro and Particle Physics (DARK98), Heidelberg, Germany, 20-25 Jul 1998. [Sarkar:1998gx]
Particle physics in the early universe,
Edward W. Kolb,
NATO Adv.Study Inst.Ser.C.Math.Phys.Sci. 534 (1999) 239-262,arXiv:hep-ph/9810362.
10th NATO ASI on Techniques and Concepts of High-Energy Physics, St. Croix, U.S. Virgin Islands, 18-29 June 1998. [Kolb:1998kj]
Possible relics from new physics in the early universe: Inflation, the cosmic microwave background, and particle dark matter,
Marc Kamionkowski,
arXiv:astro-ph/9809214, 1998.Workshop on The Early and Future Universe, Beijing, China, 22-27 June 1998. [Kamionkowski:1998is]
Calculations of cosmic background radiation anisotropies and implications,
Emory F. Bunn,
arXiv:astro-ph/9607088, 1996.1996 NATO Advanced Study Institute on 'The Cosmic Background Radiation'. [Bunn:1996qg]
A systematic approach to generalisations of General Relativity and their cosmological implications,
Lavinia Heisenberg,
Phys.Rept. 796 (2019) 1-113,arXiv:1807.01725.
[Heisenberg:2018vsk]
Euclidean wormholes, baby universes, and their impact on particle physics and cosmology,
Arthur Hebecker, Thomas Mikhail, Pablo Soler,
Front.Astron.Space Sci. 5 (2018) 35,arXiv:1807.00824.
[Hebecker:2018ofv]
Dynamical systems applied to cosmology: dark energy and modified gravity,
Sebastian Bahamonde et al.,
Phys.Rept. 775-777 (2018) 1-122,arXiv:1712.03107.
[Bahamonde:2017ize]
Interactions relevant to the decoupling of the neutrini/antineutrini in the early Universe,
Evangelos Matsinos,
arXiv:1702.02872, 2017. [Matsinos:2017gqr]
Inhomogeneous cosmology and backreaction: current status and future prospects,
Krzysztof Bolejko, Mikolaj Korzynski,
Int.J.Mod.Phys. D26 (2017) 1730011,arXiv:1612.08222.
[Bolejko:2016qku]
Bouncing cosmologies with dark matter and dark energy,
Yi-Fu Cai, Antonino Marciano, Dong-Gang Wang, Edward Wilson-Ewing,
Universe 3 (2017) 1,arXiv:1610.00938.
[Cai:2016hea]
Topological Structure of the Vacuum, Cosmological Constant and Dark Energy,
B.G. Sidharth, A. Das, C.R. Das, L.V. Laperashvili, H.B. Nielsen,
Int.J.Mod.Phys. A31 (2016) 1630051,arXiv:1605.01169.
[Sidharth:2016gvj]
Quantum cosmology from group field theory condensates: a review,
Steffen Gielen, Lorenzo Sindoni,
SIGMA 12 (2016) 082,arXiv:1602.08104.
[Gielen:2016dss]
Dark Energy vs. Modified Gravity,
Austin Joyce, Lucas Lombriser, Fabian Schmidt,
Ann.Rev.Nucl.Part.Sci. 66 (2016) 95-122,arXiv:1601.06133.
[Joyce:2016vqv]
A Concise Introduction to Perturbation Theory in Cosmology,
Karim A. Malik, David R. Matravers,
Class. Quant. Grav. 25 (2008) 193001,arXiv:0804.3276.
[Malik:2008yp]
On the cosmological mass function theory,
A. Del Popolo,
Astron. Rep. 51 (2007) 709-734,arXiv:astro-ph/0609166.
Astronomy Reports, in print. [DelPopolo:2006gn]
Dynamics of dark energy,
Edmund J. Copeland, M. Sami, Shinji Tsujikawa,
Int. J. Mod. Phys. D15 (2006) 1753-1936,arXiv:hep-th/0603057.
[Copeland:2006wr]
Phase transitions in the early and the present Universe,
D. Boyanovsky, H. J. de Vega, D. J. Schwarz,
Ann. Rev. Nucl. Part. Sci. 56 (2006) 441-500,arXiv:hep-ph/0602002.
[Boyanovsky:2006bf]
Insights into Dark Energy: Interplay Between Theory and Observation,
Rachel Bean, Sean Carroll, Mark Trodden,
arXiv:astro-ph/0510059, 2005. [Bean:2005ru]
Inflation Dynamics and Reheating,
Bruce A. Bassett, Shinji Tsujikawa, David Wands,
Rev. Mod. Phys. 78 (2006) 537-589,arXiv:astro-ph/0507632.
[Bassett:2005xm]
Braneworld black holes in cosmology and astrophysics,
A. S. Majumdar, N. Mukherjee,
Int. J. Mod. Phys. D14 (2005) 1095,arXiv:astro-ph/0503473.
[Majumdar:2005ba]
Phenomenological Quantum Gravity,
Dagny Kimberly, Joao Magueijo,
Aip Conf. Proc. 782 (2005) 241,arXiv:gr-qc/0502110.
Lectures given at XI BSCG. [Kimberly:2005at]
Theoretical tools for the physics of CMB anisotropies,
Massimo Giovannini,
Int. J. Mod. Phys. D14 (2005) 363,arXiv:astro-ph/0412601.
[Giovannini:2004rj]
A Beginner's Guide to the Theory of CMB Temperature and Polarization Power Spectra in the Line-of-Sight Formalism,
Yen-Ting Lin, Benjamin D. Wandelt,
Astropart. Phys. 25 (2006) 151,arXiv:astro-ph/0409734.
[Lin:2004xy]
Expanding Confusion: common misconceptions of cosmological horizons and the superluminal expansion of the Universe,
T. M. Davis, C. H. Lineweaver,
Proc.Astron.Soc.Austral. (2003),arXiv:astro-ph/0310808.
[Davis:2003ad]
WMAPing the Universe: Supersymmetry, Dark Matter, Dark Energy, Proton Decay and Collider Physics,
A. B. Lahanas, N. E. Mavromatos, D. V. Nanopoulos,
Int. J. Mod. Phys. D12 (2003) 1529,arXiv:hep-ph/0308251.
[Lahanas:2003bh]
Standard Cosmology and Alternatives: A Critical Appraisal,
J. V. Narlikar, T. Padmanabhan,
Annual Review of Astronomy and Astrophysics 39 (2001) 211-248. [Narlikar-Padmanabhan-2001ARA&A-39-211N]
Particle physics models of inflation and the cosmological density perturbation,
David H. Lyth, Antonio Riotto,
Phys. Rep. 314 (1999) 1-146,arXiv:hep-ph/9807278.
[Lyth:1998xn]
Electroweak baryon number non-conservation in the early universe and in high-energy collisions,
V. A. Rubakov, M. E. Shaposhnikov,
Usp. Fiz. Nauk 166 (1996) 493-537,arXiv:hep-ph/9603208.
[Rubakov:1996vz]
The Theory of Inflation,
Jerome Martin,
Proc.Int.Sch.Phys.Fermi 200 (2020) 155-178,arXiv:1807.11075.
International School of Physics Enrico Fermi, Villa Monastero, Varenna, Lake of Como (Italy), July 2017. [Martin:2018ycu]
On the problem of initial conditions for inflation,
Andrei Linde,
Found.Phys. 48 (2018) 1246-1260,arXiv:1710.04278.
Black Holes, Gravitational Waves and Spacetime Singularities, Specola Vaticana 9-12 May 2017. [Linde:2017pwt]
No-Scale Inflation,
John Ellis, Marcos A. G. Garcia, Dimitri V. Nanopoulos, Keith A. Olive,
Class.Quant.Grav. 33 (2016) 094001,arXiv:1507.02308.
[Ellis:2015xna]
Nonequilibrium Quantum Fields: From Cold Atoms to Cosmology,
J. Berges,
arXiv:1503.02907, 2015.Les Houches Summer School on 'Strongly interacting quantum systems out of equilibrium'. [Berges:2015kfa]
Cosmological constant and vacuum energy: old and new ideas,
Joan Sola,
J. Phys. Conf. Ser. 453 (2013) 012015,arXiv:1306.1527.
15th Conference on Recent Developments in Gravity (NEB 15): Chania, Crete, Greece, June 20-23, 2012. [Sola:2013gha]
From Quark-Gluon Universe to Neutrino Decoupling: $200 < T < 2$ MeV,
Michael J. Fromerth, Inga Kuznetsova, Lance Labun, Jean Letessier, Jan Rafelski,
Acta Phys. Polon. B43 (2012) 2261,arXiv:1211.4297.
52 Krakow School of Theoretical Physics: Astroparticle Physics in the LHC Era, Zakopane, May 19-27, 2012. [Fromerth:2012fe]
Early Universe: inflation and cosmological perturbations,
David Langlois,
arXiv:0811.4329, 2008.Geometry, Topology, QFT and Cosmology, Paris (28-30 May 2008). [Langlois:2008ng]
Quintessence: a mini-review,
Jerome Martin,
Mod. Phys. Lett. A23 (2008) 1252-1265,arXiv:0803.4076.
2007 International Symposium on Cosmology and Particle Astrophysics, November 13-15, Taipei, Taiwan. [Martin:2008qp]
Cosmological Inflation: A Personal Perspective,
Demosthenes Kazanas,
arXiv:0803.2080, 2008.Symposium 'Chaos in Astronomy 2007', Athens, Greece, September 2007. [Kazanas:2008jz]
Physics Beyond the Standard Model and Dark Matter,
Hitoshi Murayama,
arXiv:0704.2276, 2007.Les Houches Summer School, Session 86, Particle Physics and Cosmology: the Fabric of Spacetime, July 31- August 25, 2006. [Murayama:2007ek]
Introduction to leptogenesis,
Yosef Nir,
arXiv:hep-ph/0702199, 2007.6th Recontres du Vietnam, `Challenges in Particle Astrophysics,' Hanoi, Vietnam, August 6-12, 2006. [Nir:2007zq]
Dilaton cosmology and phenomenology,
M. Gasperini,
Lect. Notes Phys. 737 (2008) 787-844,arXiv:hep-th/0702166.
String theory and fundamental interactions: celebrating Gabriele Veneziano on his 65th birthday. [Gasperini:2007ar]
String Gas Cosmology and Structure Formation - A Brief Review,
Robert Brandenberger,
Mod. Phys. Lett. A22 (2007) 1875-1885,arXiv:hep-th/0702001.
CosPA 2006, Nov. 15 - 17, 2006, National Taiwan University, Taipei. [Brandenberger:2007zza]
Baryogenesis,
James M. Cline,
arXiv:hep-ph/0609145, 2006.Les Houches Summer School, Session 86: Particle Physics and Cosmology: the Fabric of Spacetime, 7-11 Aug. 2006. [Cline:2006ts]
Matter-Antimatter Asymmetry in the Universe and an Arrow for Time,
R. D. Peccei,
arXiv:hep-ph/0608226, 2006.World Summit on Physics Beyond the Standard Model, Galapagos Islands, Ecuador, June 22-25, 2006. [Peccei:2006hh]
Basics of inflationary cosmology,
George Lazarides,
J. Phys. Conf. Ser. 53 (2006) 528-550,arXiv:hep-ph/0607032.
Corfu Summer Institute on Elementary Particle Physics (CORFU2005), Corfu, Greece, 4-26 September 2005. [Lazarides:2006ep]
Particle Physics Approach to Dark Matter,
George Lazarides,
Lect. Notes PHys. 720 (2007) 3-34,arXiv:hep-ph/0601016.
Third Aegean Summer School 'The Invisible Universe: Dark Matter and Dark Energy', 26 September-1 October 2005, Karfas, Island of Chios, Greece. [Lazarides:2006jw]
CP violation in cosmology,
A.D. Dolgov,
arXiv:hep-ph/0511213, 2005.Varenna School 'CP Violation: From Quarks to Leptons', Varenna, Italy, July, 2005. [Dolgov:2005wf]
The Influence of Evolving Dark Energy on Cosmology,
Luke Barnes, Matthew J. Francis, Geraint F. Lewis, Eric V. Linder,
Publ.Astron.Soc.Austral. 22 (2005) 315,arXiv:astro-ph/0510791.
[Barnes:2005bn]
Cosmic strings: progress and problems,
Alexander Vilenkin,
arXiv:hep-th/0508135, 2005.'Inflating Horizons of Particle Astrophysics and Cosmology', honoring Katsuhiko Sato on his 60th birthday. [Vilenkin:2005jg]
Introduction to Dark Energy and Dark Matter,
Paul H. Frampton,
arXiv:astro-ph/0506676, 2005.40th Rencontre de Moriond, La Thuile, Italy. March 5-12, 2005. [Frampton:2005za]
From Primordial Quantum Fluctuations to the Anisotropies of the Cosmic Microwave Background Radiation,
Norbert Straumann,
Annalen Phys. 15 (2006) 701-847,arXiv:hep-ph/0505249.
Physik-Combo, in Halle, Leipzig and Jena, winter semester 2004/5. [Straumann:2005mz]
A brief introduction to cosmic topology,
M.J. Reboucas,
Aip Conf. Proc. 782 (2005) 188,arXiv:astro-ph/0504365.
XIth Brazilian School of Cosmology and Gravitation. [Reboucas:2005ix]
Inflation and string cosmology,
Andrei Linde,
eConf C040802 (1990) L024,arXiv:hep-th/0503195.
SLAC Summer School 'Nature's Greatest Puzzles', Cosmo04 in Toronto, VI Mexican School on Gravitation, XXII Texas Symposium on Relativistic Astrophysics in 2004. [Linde:2005ht]
Dark Energy in the Universe, the Irreversibility of Time and Neutrinos,
N. E. Mavromatos,
Braz. J. Phys. 35 (2005) 284,arXiv:gr-qc/0411067.
DICE2004 international conference, Piombino (Italy), September 1-4 2004. [Mavromatos:2004gh]
Dark energy: A pedagogic review,
Paul H. Frampton,
arXiv:astro-ph/0409166, 2004.5th Rencontres du Vietnam on Particle Physics and Astrophysics: New Views in Particle Physics (Vietnam 2004), Hanoi, Vietnam, 5-11 Aug 2004. [Frampton:2004nh]
Modern Cosmology,
Juan Garcia-Bellido,
arXiv:hep-ph/0407111, 2004.XXXII International Meeting on Fundamental Physics, Alicante, March 1-5, 2004. [GarciaBellido:2004ri]
Supersymmetry and Cosmology,
Jonathan L. Feng,
eConf C0307282 (2003) L11,arXiv:hep-ph/0405215.
2003 SLAC Summer Institute: Cosmic Connections to Particle Physics. [Feng:2003zu]
Theory of Cosmic Microwave Background Polarization,
Paolo Cabella, Marc Kamionkowski,
arXiv:astro-ph/0403392, 2004.2003 Villa Mondragone School of Gravitation and Cosmology: 'The Polarization of the Cosmic Microwave Background,' Rome, Italy, September 6-11, 2003. [Cabella:2004mk]
Cosmological perturbation theory,
Ruth Durrer,
Lect. Notes Phys. 653 (2004) 31,arXiv:astro-ph/0402129.
Second Aegean Summerschool on the Early Universe. [Durrer:2004fx]
Alternative Dark Energy Models: An Overview,
J. A. S. Lima,
Braz. J. Phys. 34 (2004) 194,arXiv:astro-ph/0402109.
XXIII Brazilian National Meeting on Particles and Fields, Aguas de Lindoia, Sao Paulo, Brazil. [Lima:2004cq]
Prospects of Inflation,
Andrei Linde,
Phys. Scripta T117 (2005) 40,arXiv:hep-th/0402051.
Nobel Symposium 'Cosmology and String Theory,' August 2003. [Linde:2004kg]
A Briefing on the Ekpyrotic/Cyclic Universe,
Justin Khoury,
arXiv:astro-ph/0401579, 2004.Sixth RESCEU Symposium, Nov. 2003, Tokyo, Japan. [Khoury:2004xi]
Cosmological constant problem,
J. W. Moffat,
arXiv:gr-qc/0312115, 2003.Sixth Workshop on Quantum Field Theory under the Influence of External Conditions (QFEXT03), Norman, Oklahoma, 15-19 Sep 2003. [Moffat:2003az]
Early Cosmology and Fundamental Physics,
Hector De Vega,
arXiv:astro-ph/0307477, 2003.9th Chalonge School in Astrofundamental Physics, Palermo, September 2002. [DeVega:2003qm]
Inflation and Cosmological Perturbations,
A. H. Guth,
arXiv:astro-ph/0306275, 2003.Conference on the Future of Theoretical Physics and Cosmology in Honor of Steven Hawking's 60th Birthday, Cambridge, England, 7-10 Jan 2002. [Guth:2003rn]
Lectures on the Theory of Cosmological Perturbations,
Robert H. Brandenberger,
Lect. Notes Phys. 646 (2004) 127,arXiv:hep-th/0306071.
Vth Mexican School, November 2002, Playa del Carmen, Mexico. [Brandenberger:2003vk]
Baryogenesis and the New Cosmology,
Mark Trodden,
Pramana 62 (2004) 451,arXiv:hep-ph/0302151.
PASCOS-03, Mumbai, India; COSMO-02, Chicago; Aspen Winter 2003 Conference on Particle Physics: At the Frontiers of Particle Physics, Aspen Center for Physics. [Trodden:2003yn]
Time Since the Beginning,
Alan H. Guth,
ASP Conf.Ser. (2003),arXiv:astro-ph/0301199.
'Astrophysical Ages and Time Scales,' Hilo, Hawaii, 5-9 February 2001. [Guth:2003ev]
Inflationary cosmology: Theory and phenomenology,
Andrew R Liddle,
Class. Quant. Grav. 19 (2002) 3391-3402,arXiv:astro-ph/0109439.
Meeting on the Early Universe and Cosmological Observations: A Critical Review, Cape Town, South Africa, 23-25 Jul 2001. [Liddle:2001bk]
Dynamics of the inflationary era,
Edward W. Kolb,
arXiv:hep-ph/9910311, 1999.Pritzker Symposium and Workshop on the Status of Inflationary Cosmology, Chicago, IL, 29 Jan - 3 Feb 1999. [Kolb:1999ar]
Baryogenesis, 30 years after,
A. D. Dolgov,
arXiv:hep-ph/9707419, 1997.25th ITEP Winter School of Physics, Moscow, Russia, 18-27 Feb 1997. [Dolgov:1997qr]
CP Violation in the Lepton Sector and Implications for Leptogenesis,
C. Hagedorn, R. N. Mohapatra, E. Molinaro, C. C. Nishi, S. T. Petcov,
Int.J.Mod.Phys. A33 (2018) 1802001,arXiv:1711.02866.
[Hagedorn:2017wjy]
Status of rates and rate equations for thermal leptogenesis,
Simone Biondini et al.,
Int.J.Mod.Phys. A33 (2018) 1842004,arXiv:1711.02864.
[Biondini:2017rpb]
Neutrino coupling to cosmological background: A review on gravitational Baryo/Leptogenesis,
G. Lambiase, S. Mohanty, A.R. Prasanna,
Int.J.Mod.Phys. D22 (2013) 1330030,arXiv:1310.8459.
[Lambiase:2013haa]
The role of lepton flavor symmetries in leptogenesis,
D. Aristizabal Sierra, I. de Medeiros Varzielas,
Fortsch.Phys. 61 (2013) 645-665,arXiv:1205.6134.
[AristizabalSierra:2012js]
Leptogenesis as the origin of matter,
W. Buchmuller, R. D. Peccei, T. Yanagida,
Ann. Rev. Nucl. Part. Sci. 55 (2005) 311,arXiv:hep-ph/0502169.
[Buchmuller:2005eh]
Beyond the Standard Model with leptogenesis and neutrino data,
Pasquale Di Bari,
arXiv:1612.07794, 2016.Neutrino 2016, NuFact 2016 and IPA 2016. [DiBari:2016xtf]
TeV Scale Leptogenesis,
P. S. Bhupal Dev,
Springer Proc. Phys. 174 (2016) 245-253,arXiv:1506.00837.
XXI DAE-BRNS HEP Symposium, IIT Guwahati, December 2014. [Dev:2015cxa]
Leptonic CP Violation and Leptogenesis,
S. T. Petcov,
Int.J.Mod.Phys. A29 (2014) 1430028,arXiv:1405.2263.
Conference in Honor of the 90th Birthday of Freeman Dyson, Nanyang Technological University, Singapore, 26-29 August 2013. [Petcov:2014aia]
Neutrinos and the matter-antimatter asymmetry in the Universe,
R. Gonzalez Felipe,
Int. J. Mod. Phys. Proc. Suppl. E20 (2011) 56-64,arXiv:1108.2694.
Symposium STARS2011, 1 - 4 May 2011, Havana, Cuba. [GonzalezFelipe:2011fp]
Constraints on the neutrino parameters by future cosmological 21cm line and precise CMB polarization observations,
Yoshihiko Oyama,
arXiv:1510.05161, 2015.PhD thesis, The Graduate University for Advanced Studies (SOKENDAI). [1510.05161]
Particle Physics in the Sky and Astrophysics Underground: Connecting the Universe's Largest and Smallest Scales,
Molly E.C. Swanson,
arXiv:0808.0002, 2008. [Swanson:2008sg]
The Origin of the Large-Scale Structure in the Universe: Theoretical and Statistical Aspects,
Yeinzon Rodriguez,
arXiv:astro-ph/0507701, 2005. [Rodriguez:2005ru]
A Preliminary measurement of the cosmic microwave background spectrum by the cosmic background explorer (COBE) satellite,
J. C. Mather et al.,
Astrophys. J. 354 (1990) L37-L40. [Mather:1991pc]
Detection of anisotropy in the cosmic black body radiation,
G. F. Smoot, M. V. Gorenstein, R. A. Muller,
Phys. Rev. Lett. 39 (1977) 898. [Smoot:1977bs]
Separating the Early Universe from the Late Universe: cosmological parameter estimation beyond the black box,
Max Tegmark, Matias Zaldarriaga,
Phys. Rev. D66 (2002) 103508,arXiv:astro-ph/0207047.
[Tegmark:2002cy]
Do SNe Ia Provide Direct Evidence for Past Deceleration of the Universe?,
Michael S. Turner, Adam G. Riess,
Astrophys. J. 569 (2002) 18,arXiv:astro-ph/0106051.
[Turner:2001mx]
Measuring the metric: A parametrized post-Friedmanian approach to the cosmic dark energy problem,
Max Tegmark,
Phys. Rev. D66 (2002) 103507,arXiv:astro-ph/0101354.
[Tegmark:2001zc]
Cosmic Confusion: Degeneracies among Cosmological Parameters Derived from Measurements of Microwave Background Anisotropies,
G. Efstathiou, J. R. Bond,
Mon. Not. Roy. Astron. Soc. 304 (1999) 75-97,arXiv:astro-ph/9807103.
[Efstathiou:1998xx]
Weighing neutrinos with galaxy surveys,
Wayne Hu, Daniel J. Eisenstein, Max Tegmark,
Phys. Rev. Lett. 80 (1998) 5255-5258,arXiv:astro-ph/9712057.
[Hu:1997mj]
Power Spectra for Cold Dark Matter and its Variants,
Daniel J. Eisenstein, Wayne Hu,
Astrophys. J. 511 (1997) 5,arXiv:astro-ph/9710252.
[Eisenstein:1997jh]
Recovery of the Power Spectrum of Mass Fluctuations from Observations of the Lyman-alpha Forest,
Rupert A. C. Croft, David H. Weinberg, Neal Katz, Lars Hernquist,
Astron. J. 495 (1998) 44,arXiv:astro-ph/9708018.
[Croft:1997jf]
The Effect of physical assumptions on the calculation of microwave background anisotropies,
Wayne Hu, Douglas Scott, Naoshi Sugiyama, Martin J. White,
Phys. Rev. D52 (1995) 5498-5515,arXiv:astro-ph/9505043.
[Hu:1995fqa]
Anisotropies in the Cosmic Microwave Background: An Analytic Approach,
Wayne Hu, Naoshi Sugiyama,
Astrophys. J. 444 (1995) 489-506,arXiv:astro-ph/9407093.
[Hu:1994uz]
Small scale cosmic microwave background anisotropies as a probe of the geometry of the universe,
Marc Kamionkowski, David N. Spergel, Naoshi Sugiyama,
Astrophys. J. 426 (1994) L57,arXiv:astro-ph/9401003.
[Kamionkowski:1993aw]
Measuring cosmological parameters with cosmic microwave background experiments,
J. Richard Bond, Robert Crittenden, Richard L. Davis, George Efstathiou, Paul J. Steinhardt,
Phys. Rev. Lett. 72 (1994) 13-16,arXiv:astro-ph/9309041.
[Bond:1993fb]
Primordial nucleosynthesis without a computer,
Rahim Esmailzadeh, Glenn D. Starkman, Savas Dimopoulos,
Astrophys. J. 378 (1991) 504-518. [Esmailzadeh:1990hf]
Anisotropy of the microwave background due to the mass distribution in an open cosmological model,
P. J. E. Peebles,
Astrophys. J. 259 (1982) 442-448. [Peebles-APJ259-442-1982]
Primordial nucleosynthesis including radiative, coulomb, and finite temperature corrections to weak rates,
Duane A. Dicus et al.,
Phys. Rev. D26 (1982) 2694. [Dicus:1982bz]
Massive neutrinos and the large-scale structure of the universe,
J. R. Bond, G. Efstathiou, J. Silk,
Phys. Rev. Lett. 45 (1980) 1980-1984. [Bond:1980ha]
Limits from primordial nucleosynthesis on the properties of massive neutral leptons,
D. A. Dicus, E. W. Kolb, V. L. Teplitz, R. V. Wagoner,
Phys. Rev. D17 (1978) 1529-1538. [Dicus:1977av]
Cosmological implications of massive, unstable neutrinos: (new and improved),
Duane A. Dicus, Edward W. Kolb, Vigdor L. Teplitz,
Astrophys. J. 221 (1978) 327-341. [Dicus:1977qy]
Cosmological constraints on the mass and the number of heavy lepton neutrinos,
Katsuhiko Sato, Makoto Kobayashi,
Prog. Theor. Phys. 58 (1977) 1775. [Sato:1977ye]
Cosmological upper bound on heavy neutrino lifetimes,
Duane A. Dicus, Edward W. Kolb, Vigdor L. Teplitz,
Phys. Rev. Lett. 39 (1977) 168. [Dicus:1977nn]
On the Origin of Light Elements,
H. Reeves, J. Audouze, W. A. Fowler, D. N. Schramm,
Astrophys. J. 179 (1973) 909-930. [Reeves-Audouze-Fowler-Schramm-APJ179-179-1973]
On the Synthesis of elements at very high temperatures,
Robert V. Wagoner, William A. Fowler, Fred Hoyle,
Astrophys. J. 148 (1967) 3-49. [Wagoner:1966pv]
Rest mass of muonic neutrino and cosmology,
S. S. Gershtein, Ya. B. Zeldovich,
JETP Lett. 4 (1966) 120-122.[Pisma Zh. Eksp. Teor. Fiz. 4 (1966) 174]. [Gershtein:1966gg]
Physical Conditions in the Initial Stages of the Expanding Universe,
Ralph A. Alpher, J. W. Follin, Robert C. Herman,
Phys. Rev. 92 (1953) 1347-1361. [Alpher-Follin-Herman-PR92-1347-1953]
Neutron-Capture Theory of Element Formation in an Expanding Universe,
Ralph A. Alpher, Robert C. Herman,
Phys. Rev. 84 (1951) 60-68. [Alpher-Herman-PR84-60-1951]
A Neutron-Capture Theory of the Formation and Relative Abundance of the Elements,
Ralph A. Alpher,
Phys. Rev. 74 (1948) 1577-1589. [Alpher-PR74-1577-1948]
Thermonuclear Reactions in the Expanding Universe,
R. A. Alpher, R. Herman, G. A. Gamow,
Phys. Rev. 74 (1948) 1198-1199.Erratum: Phys. Rev. 75 (1949) 701. [Alpher-Herman-Gamow-PR74-1198-1948]
On the anomalous electroweak baryon number nonconservation in the early universe,
V. A. Kuzmin, V. A. Rubakov, M. E. Shaposhnikov,
Phys. Lett. B155 (1985) 36. [Kuzmin:1985mm]
Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations,
Alexei A. Starobinsky,
Phys. Lett. B117 (1982) 175-178. [Starobinsky:1982ee]
A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems,
Andrei D. Linde,
Phys. Lett. B108 (1982) 389-393. [Linde:1981mu]
Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe,
A. D. Sakharov,
Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32-35. [Sakharov:1967dj]
On the Possibility of a world with constant negative curvature of space,
A. Friedmann,
Z. Phys. 21 (1924) 326-332.[Gen. Rel. Grav.31,2001(1999)]. [Friedmann:1924bb]
Testing the Strong Equivalence Principle: Detection of the External Field Effect in Rotationally Supported Galaxies,
Kyu-Hyun Chae, Federico Lelli, Harry Desmond, Stacy S. McGaugh, Pengfei Li, James M. Schombert,
Astrophys. J. 904 (2020) 51,arXiv:2009.11525.
[Chae:2020omu]
The Atacama Cosmology Telescope: arcminute-resolution maps of 18,000 square degrees of the microwave sky from ACT 2008-2018 data combined with Planck,
Sigurd Naess et al.,
JCAP 2012 (2020) 046,arXiv:2007.07290.
[Naess:2020wgi]
The Atacama Cosmology Telescope: A Measurement of the Cosmic Microwave Background Power Spectra at 98 and 150 GHz,
Steve K. Choi et al.,
JCAP 2012 (2020) 045,arXiv:2007.07289.
[Choi:2020ccd]
The PHLEK Survey: A New Determination of the Primordial Helium Abundance,
Tiffany Hsyu, Ryan J. Cooke, J. Xavier Prochaska, Michael Bolte,
Astrophys.J. 896 (2020) 77,arXiv:2005.12290.
[Hsyu:2020uqb]
The Atacama Cosmology Telescope: A CMB lensing mass map over 2100 square degrees of sky and its cross-correlation with BOSS-CMASS galaxies,
Omar Darwish et al.,
Mon.Not.Roy.Astron.Soc. 500 (2020) 2250-2263,arXiv:2004.01139.
[Darwish:2020fwf]
Towards precise and accurate Cepheid chemical abundances for 1$\%$ $\mbox{H}_0$ measurement: temperature determination,
Sara Mancino, Martino Romaniello, Richard I. Anderson, Rolf-Peter Kudritzki,
arXiv:2001.05881, 2020.5 pages, 4 figures, to appear in RRL/CEP2019 conference proceedings. [Mancino:2020why]
The Sixteenth Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra,
Romina Ahumada et al.,
Astrophys.J.Suppl. 249 (2020) 3,arXiv:1912.02905.
[Ahumada:2019vht]
The Atacama Cosmology Telescope: Component-separated maps of CMB temperature and the thermal Sunyaev-Zel'dovich effect,
Mathew S. Madhavacheril et al.,
Phys.Rev. D102 (2020) 023534,arXiv:1911.05717.
[Madhavacheril:2019nfz]
Constraints on Cosmological Parameters from the 500 deg$^2$ SPTpol Lensing Power Spectrum,
F. Bianchini et al.(SPT),
Astrophys.J. 888 (2020) 119,arXiv:1910.07157.
[Bianchini:2019vxp]
Large Magellanic Cloud Cepheid Standards Provide a $1\%$ Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics Beyond LambdaCDM,
Adam G. Riess, Stefano Casertano, Wenlong Yuan, Lucas M. Macri, Dan Scolnic,
Astrophys.J. 876 (2019) 85,arXiv:1903.07603.
[Riess:2019cxk]
KiDS+VIKING-450: A new combined optical $\text{\&}$ near-IR dataset for cosmology and astrophysics,
Angus H. Wright et al.,
Astron.Astrophys. 632 (2019) A34,arXiv:1812.06077.
[Wright:2018nix]
The one-dimensional power spectrum from the SDSS DR14 Ly$\alpha$ forests,
Solene Chabanier et al.,
JCAP 1907 (2019) 017,arXiv:1812.03554.
[Chabanier:2018rga]
Planck 2018 results. III. High Frequency Instrument data processing and frequency maps,
Planck Collaboration et al.,
Astron.Astrophys. 641 (2020) A3,arXiv:1807.06207.
[Aghanim:2018fcm]
Planck 2018 results. II. Low Frequency Instrument data processing,
Planck Collaboration et al.,
Astron.Astrophys. 641 (2020) A2,arXiv:1807.06206.
[Akrami:2018jnw]
Planck 2018 results. I. Overview and the cosmological legacy of Planck,
Planck Collaboration et al.,
Astron.Astrophys. 641 (2020) A1,arXiv:1807.06205.
[Akrami:2018vks]
Dark Energy Survey Year 1 Results: Methodology and Projections for Joint Analysis of Galaxy Clustering, Galaxy Lensing, and CMB Lensing Two-point Functions,
T. Giannantonio et al.(DES),
Phys.Rev. D99 (2019) 023508,arXiv:1802.05257.
[Baxter:2018kap]
New Parallaxes of Galactic Cepheids from Spatially Scanning the Hubble Space Telescope: Implications for the Hubble Constant,
A. G. Riess, S. Casertano, W. Yuan, J. Macri, L. and Anderson, J. W. Mackenty, K. I. Bowers, J. B. and Clubb, A. V. Filippenko, B. E. Jones, D. O. and Tucker,
arXiv:1801.01120, 2018. [2018arXiv180101120R]
Dark Energy Survey Year 1 Results: Calibration of redMaGiC Redshift Distributions in DES and SDSS from Cross-Correlations,
R. Cawthon et al.,
Mon.Not.Roy.Astron.Soc. 481 (2018) 2427,arXiv:1712.07298.
[Cawthon:2017qxi]
Dark Energy Survey Year 1 Results: galaxy mock catalogues for BAO,
S. Avila et al.,
Mon.Not.Roy.Astron.Soc. 479 (2018) 94-110,arXiv:1712.06232.
[Avila:2017nyy]
Dark Energy Survey Year 1 Results: Galaxy Sample for BAO Measurement,
M. Crocce et al.,
Mon.Not.Roy.Astron.Soc. 482 (2019) 2807-2822,arXiv:1712.06211.
[Crocce:2017iwq]
Dark Energy Survey Year 1 Results: Measurement of the Baryon Acoustic Oscillation scale in the distribution of galaxies to redshift 1,
T. M. C. Abbott et al.(Dark Energy Survey),
Mon.Not.Roy.Astron.Soc. 483 (2019) 4866-4883,arXiv:1712.06209.
[Abbott:2017wcz]
Dark Energy Survey Year 1 Results: A Precise H0 Measurement from DES Y1, BAO, and D/H Data,
T. M. C. Abbott et al.(DES),
Mon.Not.Roy.Astron.Soc. 480 (2018) 3879,arXiv:1711.00403. From the abstract:We combine Dark Energy Survey Year 1 clustering and weak lensing data with Baryon Acoustic Oscillations (BAO) and Big Bang Nucleosynthesis (BBN) experiments to constrain the Hubble constant. Assuming a flat $\Lambda$CDM model with minimal neutrino mass ($\sum m_\nu = 0.06$ eV) we find $H_0=67.2^{+1.2}_{-1.0}$ km/s/Mpc (68% CL). [Abbott:2017smn]
A gravitational-wave standard siren measurement of the Hubble constant,
B. P. Abbott et al.(LIGO Scientific, VINROUGE, Las Cumbres Observatory, DLT40, Virgo, 1M2H, MASTER),
Nature (2017),arXiv:1710.05835.
[Abbott:2017xzu]
The Atacama Cosmology Telescope: The Two-Season ACTPol Sunyaev-Zel'dovich Effect Selected Cluster Catalog,
Matt Hilton et al.(ACT),
Astrophys. J. Suppl. 235 (2018) 20,arXiv:1709.05600.
[Hilton:2017gal]
Dark Energy Survey Year 1 Results: Cosmological Constraints from Cosmic Shear,
M. A. Troxel et al.(DES),
Phys.Rev. D98 (2018) 043528,arXiv:1708.01538.
[Troxel:2017xyo]
Dark Energy Survey Year 1 Results: Galaxy clustering for combined probes,
J. Elvin-Poole et al.(DES),
Phys.Rev. D98 (2018) 042006,arXiv:1708.01536.
[Elvin-Poole:2017xsf]
Dark Energy Survey Year 1 Results: Curved-Sky Weak Lensing Mass Map,
C. Chang et al.(DES),
Mon.Not.Roy.Astron.Soc. 475 (2018) 3165,arXiv:1708.01535.
[Chang:2017kmv]
Dark Energy Survey Year 1 Results: The Impact of Galaxy Neighbours on Weak Lensing Cosmology with im3shape,
S. Samuroff et al.(DES),
Mon.Not.Roy.Astron.Soc. 475 (2018) 4524,arXiv:1708.01534.
[Samuroff:2017hlw]
Dark Energy Survey Year 1 Results: Weak Lensing Shape Catalogues,
J. Zuntz et al.,
Mon.Not.Roy.Astron.Soc. 481 (2018) 1149-1182,arXiv:1708.01533.
[Zuntz:2017pso]
Dark Energy Survey Year 1 Results: Redshift distributions of the weak lensing source galaxies,
B. Hoyle et al.(DES),
Mon.Not.Roy.Astron.Soc. 478 (2018) 592-610,arXiv:1708.01532.
[Hoyle:2017mee]
Dark Energy Survey Year 1 Results: Photometric Data Set for Cosmology,
A. Drlica-Wagner et al.(DES),
Astrophys.J.Suppl. 235 (2018) 33,arXiv:1708.01531.
[Drlica-Wagner:2017tkk]
Dark Energy Survey Year 1 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing,
T. M. C. Abbott et al.(DES),
Phys.Rev. D98 (2018) 043526,arXiv:1708.01530.
[Abbott:2017wau]
Dark Energy Survey Year 1 Results: Multi-Probe Methodology and Simulated Likelihood Analyses,
E. Krause et al.(DES),
arXiv:1706.09359, 2017. [Krause:2017ekm]
BICEP2 / Keck Array IX: New Bounds on Anisotropies of CMB Polarization Rotation and Implications for Axion-Like Particles and Primordial Magnetic Fields,
Keck Array et al.(BICEP2s),
Phys.Rev. D96 (2017) 102003,arXiv:1705.02523.
[Array:2017rlf]
First Data Release of the Hyper Suprime-Cam Subaru Strategic Program,
Hiroaki Aihara et al.,
Publ.Astron.Soc.Jap. 70 (2018) 8,arXiv:1702.08449.
[Aihara:2017tri]
The Atacama Cosmology Telescope: Two-Season ACTPol Lensing Power Spectrum,
Blake D. Sherwin et al.(ACT),
Phys.Rev. D95 (2017) 123529,arXiv:1611.09753.
[Sherwin:2016tyf]
The Atacama Cosmology Telescope: Two-Season ACTPol Spectra and Parameters,
Thibaut Louis et al.,
JCAP 1706 (2017) 031,arXiv:1610.02360.
[Louis:2016ahn]
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample,
Shadab Alam et al.,
Mon.Not.Roy.Astron.Soc. 470 (2017) 2617-2652,arXiv:1607.03155.
[Alam:2016hwk]
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: tomographic BAO analysis of DR12 combined sample in configuration space,
Yuting Wang et al.,
Mon.Not.Roy.Astron.Soc. 469 (2017) 3762-3774,arXiv:1607.03154.
[Wang:2016wjr]
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: tomographic BAO analysis of DR12 combined sample in Fourier space,
Gong-Bo Zhao et al.,
Mon.Not.Roy.Astron.Soc. 466 (2017) 762-779,arXiv:1607.03153.
[Zhao:2016das]
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: double-probe measurements from BOSS galaxy clustering $\text{\&}$ Planck data - towards an analysis without informative priors,
Marcos Pellejero-Ibanez et al.,
Mon.Not.Roy.Astron.Soc. 468 (2017) 4116-4133,arXiv:1607.03152.
[Pellejero-Ibanez:2016ypj]
The Clustering of Galaxies in the Completed SDSS-III Baryon Oscillation Spectroscopic Survey: single-probe measurements from DR12 galaxy clustering - towards an accurate model,
Chia-Hsun Chuang et al.,
Mon.Not.Roy.Astron.Soc. 471 (2017) 2370-2390,arXiv:1607.03151.
[Chuang:2016uuz]
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Anisotropic galaxy clustering in Fourier-space,
Florian Beutler et al.,
Mon.Not.Roy.Astron.Soc. 466 (2017) 2242-2260,arXiv:1607.03150.
[Beutler:2016arn]
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in Fourier-space,
Florian Beutler et al.,
Mon.Not.Roy.Astron.Soc. 464 (2017) 3409-3430-3430,arXiv:1607.03149.
[Beutler:2016ixs]
BOSS DR12 combined galaxy sample: The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: On the measurement of growth rate using galaxy correlation functions,
Siddharth Satpathy et al.,
Mon.Not.Roy.Astron.Soc. 469 (2017) 1369-1382,arXiv:1607.03148.
[Satpathy:2016tct]
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the configuration-space clustering wedges,
Ariel G. Sanchez et al.,
Mon.Not.Roy.Astron.Soc. 464 (2017) 1640-1658,arXiv:1607.03147.
[Sanchez:2016sas]
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: combining correlated Gaussian posterior distributions,
Ariel G. Sanchez et al.,
Mon.Not.Roy.Astron.Soc. 464 (2017) 1493-1501,arXiv:1607.03146.
[Sanchez:2016gky]
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Observational systematics and baryon acoustic oscillations in the correlation function,
Ashley J. Ross et al.,
Mon.Not.Roy.Astron.Soc. 464 (2017) 1168-1191,arXiv:1607.03145.
[Ross:2016gvb]
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Angular clustering tomography and its cosmological implications,
Salvador Salazar-Albornoz et al.,
Mon.Not.Roy.Astron.Soc. 468 (2017) 2938-2956,arXiv:1607.03144.
[Salazar-Albornoz:2016psd]
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological implications of the Fourier space wedges of the final sample,
Jan Niklas Grieb et al.,
Mon.Not.Roy.Astron.Soc. 467 (2017) 2085,arXiv:1607.03143.
[Grieb:2016uuo]
H0LiCOW V. New COSMOGRAIL time delays of HE0435-1223: $H_0$ to 3.8% precision from strong lensing in a flat $\Lambda$CDM model,
V. Bonvin et al.,
Mon.Not.Roy.Astron.Soc. 465 (2017) 4914,arXiv:1607.01790.
[Bonvin:2016crt]
Planck 2016 intermediate results. XLVII. Planck constraints on reionization history,
R. Adam et al.(Planck),
Astron.Astrophys. 596 (2016) A108,arXiv:1605.03507.
[Adam:2016hgk]
Cosmological Constraints from Galaxy Clusters in the 2500 square-degree SPT-SZ Survey,
T. de Haan et al.,
Astrophys.J. 832 (2016) 95,arXiv:1603.06522.
[deHaan:2016qvy]
The XXL Survey: XII. Optical spectroscopy of X-ray-selected clusters and the frequency of AGN in superclusters,
E. Koulouridis et al.,
Astron.Astrophys. 592 (2016) A11,arXiv:1512.04342.
[Koulouridis:2015qtt]
The XXL Survey: I. Scientific motivations - XMM-Newton observing plan - Follow-up observations and simulation programme,
M. Pierre et al.,
Astron.Astrophys. 592 (2016) A1,arXiv:1512.04317.
[Pierre:2015cqe]
The XXL Survey. II. The bright cluster sample: catalogue and luminosity function,
F. Pacaud et al.,
Astron.Astrophys. 592 (2016) A2,arXiv:1512.04264.
[Pacaud:2015oqr]
The XXL Survey X: K-band luminosity - weak-lensing mass relation for groups and clusters of galaxies,
F. Ziparo et al.,
Astron.Astrophys. 592 (2016) A9,arXiv:1512.03903.
[Ziparo:2015dcv]
The XXL Survey IV. Mass-temperature relation of the bright cluster sample,
Maggie Lieu et al.,
Astron.Astrophys. 592 (2016) A4,arXiv:1512.03857.
[Lieu:2015pit]
The XXL Survey III. Luminosity-temperature relation of the Bright Cluster Sample,
P. A. Giles et al.,
Astron.Astrophys. 592 (2016) A3,arXiv:1512.03833.
[Giles:2015gtd]
The XXL Survey. XIII. Baryon content of the bright cluster sample,
D. Eckert et al.,
Astron.Astrophys. 592 (2016) A12,arXiv:1512.03814.
[Eckert:2015rlr]
BICEP2 / Keck Array VI: Improved Constraints On Cosmology and Foregrounds When Adding 95 GHz Data From Keck Array,
Keck Array et al.(Keck Array, BICEP2),
Phys. Rev. Lett. 116 (2016) 031302,arXiv:1510.09217.
[Array:2015xqh]
Cosmic Shear Results from the Deep Lens Survey - II: Full Cosmological Parameter Constraints from Tomography,
M. James Jee et al.,
Astrophys.J. 824 (2016) 77,arXiv:1510.03962.
[Jee:2015jta]
Planck 2015 results. XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation,
P. A. R. Ade et al.(Planck),
Astron.Astrophys. 594 (2016) A23,arXiv:1509.06555.
[Ade:2015ira]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Modeling the clustering and halo occupation distribution of BOSS-CMASS galaxies in the Final Data Release,
Sergio A. Rodriguez-Torres et al.,
Mon.Not.Roy.Astron.Soc. 460 (2016) 1173-1187,arXiv:1509.06404.
[Rodriguez-Torres:2015vqa]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Mock galaxy catalogues for the final BOSS Data Release,
Francisco-Shu Kitaura et al.,
Mon. Not. Roy. Astron. Soc. 456 (2016) 4156,arXiv:1509.06400.
[Kitaura:2015uqa]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: RSD measurement from the LOS-dependent power spectrum of DR12 BOSS galaxies,
Hector Gil-Marin et al.,
Mon.Not.Roy.Astron.Soc. 460 (2016) 4188-4209,arXiv:1509.06386.
[Gil-Marin:2015sqa]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Effect of smoothing of density field on reconstruction and anisotropic BAO analysis,
M. Vargas-Magana, S.Ho, S. Fromenteau, A. J.Cuesta,
Mon.Not.Roy.Astron.Soc. 467 (2017) 2331-2348,arXiv:1509.06384.
[Vargas-Magana:2015rqa]
Detecting Effects of Filaments on Galaxy Properties in the Sloan Digital Sky Survey III,
Yen-Chi Chen et al.,
Mon.Not.Roy.Astron.Soc. 466 (2017) 1880,arXiv:1509.06376.
[Chen:2015oqa]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: BAO measurement from the LOS-dependent power spectrum of DR12 BOSS galaxies,
Hector Gil-Marin et al.,
Mon.Not.Roy.Astron.Soc. 460 (2016) 4210-4219,arXiv:1509.06373.
[Gil-Marin:2015nqa]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the correlation function of LOWZ and CMASS galaxies in Data Release 12,
Antonio J. Cuesta et al.,
Mon. Not. Roy. Astron. Soc. 457 (2016) 1770,arXiv:1509.06371.
[Cuesta:2015mqa]
POLARBEAR Constraints on Cosmic Birefringence and Primordial Magnetic Fields,
Peter A.R. Ade et al.(POLARBEAR),
Phys. Rev. D92 (2015) 123509,arXiv:1509.02461.
[Ade:2015cao]
The SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Overview and Early Data,
Kyle S. Dawson et al.,
Astron. J. 151 (2016) 44,arXiv:1508.04473.
[Dawson:2015wdb]
Planck 2013 results. XXXI. Consistency of the Planck data,
P. A. R. Ade et al.(Planck),
Astron. Astrophys. 571 (2014) A31,arXiv:1508.03375.
[Ade:2015dga]
Cosmology from Cosmic Shear with DES Science Verification Data,
T. Abbott et al.(Dark Energy Survey),
Phys. Rev. D94 (2016) 022001,arXiv:1507.05552.
[Abbott:2015swa]
Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of parameters,
N. Aghanim et al.(Planck),
Astron.Astrophys. 594 (2016) A11,arXiv:1507.02704.
[Aghanim:2015xee]
Planck 2015 results. XXVI. The Second Planck Catalogue of Compact Sources,
P. A. R. Ade et al.(Planck),
Astron.Astrophys. 594 (2016) A26,arXiv:1507.02058.
[Ade:2015tht]
Planck 2015 results. XVI. Isotropy and statistics of the CMB,
P. A. R. Ade et al.(Planck),
Astron.Astrophys. 594 (2016) A16,arXiv:1506.07135.
[Ade:2015hxq]
Planck 2015 results. XXV. Diffuse low-frequency Galactic foregrounds,
P. A. R. Ade et al.(Planck),
Astron.Astrophys. 594 (2016) A25,arXiv:1506.06660.
[Ade:2015qkp]
Planck 2015 results. IX. Diffuse component separation: CMB maps,
R. Adam et al.(Planck),
Astron.Astrophys. 594 (2016) A9,arXiv:1502.05956.
[Adam:2015tpy]
Planck 2015 results. XXVIII. The Planck Catalogue of Galactic Cold Clumps,
P. A. R. Ade et al.(Planck),
Astron.Astrophys. 594 (2016) A28,arXiv:1502.01599.
[Ade:2015oya]
Planck 2015 results. XXVII. The Second Planck Catalogue of Sunyaev-Zeldovich Sources,
P. A. R. Ade et al.(Planck),
Astron.Astrophys. 594 (2016) A27,arXiv:1502.01598.
[Ade:2015gva]
Planck 2015 results. XXIV. Cosmology from Sunyaev-Zeldovich cluster counts,
P. A. R. Ade et al.(Planck),
Astron.Astrophys. 594 (2016) A24,arXiv:1502.01597.
[Ade:2015fva]
Planck 2015 results. XXII. A map of the thermal Sunyaev-Zeldovich effect,
N. Aghanim et al.(Planck),
Astron.Astrophys. 594 (2016) A22,arXiv:1502.01596.
[Aghanim:2015eva]
Planck 2015 results. XXI. The integrated Sachs-Wolfe effect,
P. A. R. Ade et al.(Planck),
Astron.Astrophys. 594 (2016) A21,arXiv:1502.01595.
[Ade:2015dva]
Planck 2015 results. XIX. Constraints on primordial magnetic fields,
P. A. R. Ade et al.(Planck),
Astron.Astrophys. 594 (2016) A19,arXiv:1502.01594.
[Ade:2015cva]
Planck 2015 results. XVIII. Background geometry $\text{\&}$ topology,
P. A. R. Ade et al.(Planck),
Astron.Astrophys. 594 (2016) A18,arXiv:1502.01593.
[Ade:2015bva]
Planck 2015 results. XVII. Constraints on primordial non-Gaussianity,
P. A. R. Ade et al.(Planck),
Astron.Astrophys. 594 (2016) A17,arXiv:1502.01592.
[Ade:2015ava]
Planck 2015 results. XIV. Dark energy and modified gravity,
P. A. R. Ade et al.(Planck),
Astron.Astrophys. 594 (2016) A14,arXiv:1502.01590.
[Ade:2015rim]
Planck 2015 results. VIII. High Frequency Instrument data processing: Calibration and maps,
R. Adam et al.(Planck),
Astron.Astrophys. 594 (2016) A8,arXiv:1502.01587.
[Adam:2015vua]
Planck 2015 results. IV. Low Frequency Instrument beams and window functions,
P. A. R. Ade et al.(Planck),
Astron.Astrophys. 594 (2016) A4,arXiv:1502.01584.
[Ade:2015tua]
Planck 2015 results. II. Low Frequency Instrument data processing,
P. A. R. Ade et al.(Planck),
Astron.Astrophys. 594 (2016) A2,arXiv:1502.01583.
[Ade:2015sua]
Planck 2015 results. I. Overview of products and scientific results,
R. Adam et al.(Planck),
Astron.Astrophys. 594 (2016) A1,arXiv:1502.01582.
[Adam:2015rua]
Planck 2013 results. XXIX. The Planck catalogue of Sunyaev-Zeldovich sources: Addendum,
P. A. R. Ade et al.(Planck),
Astron. Astrophys. 581 (2015) A14,arXiv:1502.00543.
[Ade:2015mva]
Planck intermediate results. XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes,
R. Adam et al.(Planck),
Astron. Astrophys. 586 (2016) A133,arXiv:1409.5738.
[Adam:2014bub]
CFHTLenS: Cosmological constraints from a combination of cosmic shear two-point and three-point correlations,
Liping Fu, Martin Kilbinger, Thomas Erben, Catherine Heymans, Hendrik Hildebrandt et al.,
Mon.Not.Roy.Astron.Soc. 441 (2014) 2725-2743,arXiv:1404.5469.
[Fu:2014loa]
Detection of B-Mode Polarization at Degree Angular Scales by BICEP2,
P.A.R. Ade et al.(BICEP2),
Phys. Rev. Lett. 112 (2014) 241101,arXiv:1403.3985.
[Ade:2014xna]
Evidence for a Lower Value for $H_0$ from Cosmic Chronometers Data?,
Vinicius C. Busti, Chris Clarkson, Marina Seikel,
Mon.Not.Roy.Astron.Soc. 441 (2014) 11,arXiv:1402.5429.
[Busti:2014dua]
The 400d Galaxy Cluster Survey weak lensing programme: III: Evidence for consistent WL and X-ray masses at $z\approx 0.5$,
Holger Israel et al.,
Astron.Astrophys. 564 (2014) A129,arXiv:1402.3267.
[Israel:2014pha]
3D Cosmic Shear: Cosmology from CFHTLenS,
T.D. Kitching et al.(CFHTLenS),
Mon.Not.Roy.Astron.Soc. 442 (2014) 1326-1349,arXiv:1401.6842.
[Kitching:2014dtq]
Evidence for Gravitational Lensing of the Cosmic Microwave Background Polarization from Cross-correlation with the Cosmic Infrared Background,
P.A.R. Ade et al.(POLARBEAR),
Phys. Rev. Lett. 112 (2014) 131302,arXiv:1312.6645.
[Ade:2013hjl]
The Clustering of Galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Measuring growth rate and geometry with anisotropic clustering,
Lado Samushia et al.,
Mon.Not.Roy.Astron.Soc. 439 (2014) 3504-3519,arXiv:1312.4899.
[Samushia:2013yga]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: single-probe measurements from CMASS and LOWZ anisotropic galaxy clustering,
Chia-Hsun Chuang et al.,
Mon.Not.Roy.Astron.Soc. 461 (2016) 3781-3793,arXiv:1312.4889.
[Chuang:2013wga]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the Data Release 10 and 11 galaxy samples,
Lauren Anderson et al.(BOSS),
Mon.Not.Roy.Astron.Soc. 441 (2014) 24-62,arXiv:1312.4877.
[Anderson:2013zyy]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the full shape of the clustering wedges in the data release 10 and 11 galaxy samples,
Ariel G. Sanchez et al.,
Mon.Not.Roy.Astron.Soc. 433 (2013) 1202-1222,arXiv:1312.4854.
[Sanchez:2013tga]
The Clustering of Galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Including covariance matrix errors,
Will J. Percival et al.,
Mon.Not.Roy.Astron.Soc. 439 (2014) 2531,arXiv:1312.4841.
[Percival:2013sga]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Testing gravity with redshift-space distortions using the power spectrum multipoles,
Florian Beutler et al.(BOSS),
Mon.Not.Roy.Astron.Soc. 443 (2014) 1065,arXiv:1312.4611.
[Beutler:2013yhm]
Degree-Scale CMB Polarization Measurements from Three Years of BICEP1 Data,
D. Barkats et al.(BICEP1),
Astrophys.J. 783 (2014) 67,arXiv:1310.1422.
[Barkats:2013jfa]
Precision measures of the primordial abundance of deuterium,
Ryan Cooke, Max Pettini, Regina A. Jorgenson, Michael T. Murphy, Charles C. Steidel,
Astrophys. J. 781 (2014) 31,arXiv:1308.3240.
[Cooke:2013cba]
Planck intermediate results. XIII. Constraints on peculiar velocities,
P. A. R. Ade et al.(Planck),
Astron.Astrophys. (2013),arXiv:1303.5090.
[Ade:2013opi]
Planck 2013 results. XXIX. Planck catalogue of Sunyaev-Zeldovich sources,
P. A. R. Ade et al.(Planck),
Astron.Astrophys. (2013),arXiv:1303.5089.
[Ade:2013skr]
Planck 2013 results. XXVIII. The Planck Catalogue of Compact Sources,
P. A. R. Ade et al.(Planck),
Astron.Astrophys. 571 (2014) A28,arXiv:1303.5088.
[Ade:2013jbr]
Planck 2013 results. XXVII. Doppler boosting of the CMB: Eppur si muove,
N. Aghanim et al.(Planck),
Astron.Astrophys. 571 (2014) A27,arXiv:1303.5087.
[Aghanim:2013suk]
Planck 2013 results. XXVI. Background geometry and topology of the Universe,
P. A. R. Ade et al.(Planck),
Grav.Cosmol. 20 (2014) 15-20,arXiv:1303.5086.
[Luminet:2013ama]
Planck 2013 results. XXV. Searches for cosmic strings and other topological defects,
P. A. R. Ade et al.(Planck),
Astron.Astrophys. 571 (2014) A25,arXiv:1303.5085.
[Ade:2013xla]
Planck 2013 Results. XXIV. Constraints on primordial non-Gaussianity,
P. A. R. Ade et al.(Planck),
Astron.Astrophys. 571 (2014) A24,arXiv:1303.5084.
[Ade:2013ydc]
Planck 2013 results. XXIII. Isotropy and Statistics of the CMB,
P. A. R. Ade et al.(Planck),
Astron.Astrophys. 571 (2014) A23,arXiv:1303.5083.
[Ade:2013nlj]
Planck 2013 results. XX. Cosmology from Sunyaev-Zeldovich cluster counts,
P. A. R. Ade et al.(Planck),
Astron.Astrophys. 571 (2014) A20,arXiv:1303.5080.
[Ade:2013lmv]
Planck 2013 results. XIX. The integrated Sachs-Wolfe effect,
P. A. R. Ade et al.(Planck),
Astron.Astrophys. 571 (2014) A19,arXiv:1303.5079.
[Ade:2013dsi]
Planck 2013 results. XVIII. Gravitational lensing-infrared background correlation,
P. A. R. Ade et al.(Planck),
Astron.Astrophys. 571 (2014) A18,arXiv:1303.5078.
[Ade:2013aro]
Planck 2013 results. XVII. Gravitational lensing by large-scale structure,
P. A. R. Ade et al.(Planck),
Astron.Astrophys. 571 (2014) A17,arXiv:1303.5077.
[Ade:2013tyw]
Planck 2013 results X. Energetic particle effects: characterization, removal, and simulation,
P. A. R. Ade et al.(Planck),
Astron.Astrophys. 571 (2014) A10,arXiv:1303.5071.
[Ade:2013gta]
Planck 2013 results. VIII. HFI photometric calibration and mapmaking,
P. A. R. Ade et al.(Planck),
Astron.Astrophys. 571 (2014) A8,arXiv:1303.5069.
[Ade:2013eta]
Planck 2013 results. VI. High Frequency Instrument data processing,
P. A. R. Ade et al.(Planck),
Astron.Astrophys. 571 (2014) A6,arXiv:1303.5067.
[Planck:2013cta]
Planck 2013 results. IV. Low Frequency Instrument beams and window functions,
N. Aghanim et al.(Planck),
Astron.Astrophys. 571 (2014) A4,arXiv:1303.5065.
[Aghanim:2013ata]
Planck 2013 results. II. The Low Frequency Instrument data processing,
N. Aghanim et al.(Planck),
Astron.Astrophys. 571 (2014) A2,arXiv:1303.5063.
[Aghanim:2013ysa]
Planck 2013 results. I. Overview of products and scientific results,
P.A.R. Ade et al.(Planck),
Astron.Astrophys. 571 (2014) A1,arXiv:1303.5062.
[Ade:2013sjv]
The Atacama Cosmology Telescope: temperature and gravitational lensing power spectrum measurements from three seasons of data,
Sudeep Das, Thibaut Louis, Michael R. Nolta, Graeme E. Addison, Elia S. Battistelli et al.,
JCAP 1404 (2014) 014,arXiv:1301.1037.
[Das:2013zf]
The Atacama Cosmology Telescope: Cosmological parameters from three seasons of data,
Jonathan L. Sievers et al.(Atacama Cosmology Telescope),
JCAP 1310 (2013) 060,arXiv:1301.0824.
[Sievers:2013ica]
The Atacama Cosmology Telescope: Sunyaev-Zel'dovich Selected Galaxy Clusters at 148 GHz from Three Seasons of Data,
Matthew Hasselfield et al.,
JCAP 1307 (2013) 008,arXiv:1301.0816.
[Hasselfield:2013wf]
The Atacama Cosmology Telescope: likelihood for small-scale CMB data,
J. Dunkley, E. Calabrese, J. Sievers, G.E. Addison, N. Battaglia et al.,
JCAP 1307 (2013) 025,arXiv:1301.0776.
[Dunkley:2013vu]
Constraints on Cosmology from the Cosmic Microwave Background Power Spectrum of the 2500-square degree SPT-SZ Survey,
Z. Hou, C.L. Reichardt, K.T. Story, B. Follin, R. Keisler et al.,
Astrophys.J. 782 (2014) 74,arXiv:1212.6267.
[Hou:2012xq]
CFHTLenS: Combined probe cosmological model comparison using 2D weak gravitational lensing,
Martin Kilbinger, Liping Fu, Catherine Heymans, Fergus Simpson, Jonathan Benjamin et al.,
Monthly Notices of the Royal Astronomical Society 430 (2013) 2200-2220,arXiv:1212.3338.
[Kilbinger:2012qz]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: weighing the neutrino mass using the galaxy power spectrum of the CMASS sample,
Gong-Bo Zhao, Shun Saito, Will J. Percival, Ashley J. Ross, Francesco Montesano et al.,
Mon.Not.Roy.Astron.Soc. 436 (2013) 2038-2053,arXiv:1211.3741.
[Zhao:2012xw]
A Measurement of the Cosmic Microwave Background Damping Tail from the 2500-square-degree SPT-SZ survey,
K.T. Story, C.L. Reichardt, Z. Hou, R. Keisler, K.A. Aird et al.,
Astrophys.J. 779 (2013) 86,arXiv:1210.7231.
[Story:2012wx]
The WiggleZ Dark Energy Survey: Final data release and cosmological results,
David Parkinson, Signe Riemer-Sorensen, Chris Blake, Gregory B. Poole, Tamara M. Davis et al.,
Phys. Rev. D86 (2012) 103518,arXiv:1210.2130.
[Parkinson:2012vd]
CFHTLenS: The Canada-France-Hawaii Telescope Lensing Survey,
Catherine Heymans, Ludovic Van Waerbeke, Lance Miller, Thomas Erben, Hendrik Hildebrandt et al.,
Mon.Not.Roy.Astron.Soc. 427 (2012) 146,arXiv:1210.0032.
[Heymans:2012gg]
Two accurate time-delay distances from strong lensing: Implications for cosmology,
S.H. Suyu, M.W. Auger, S. Hilbert, P.J. Marshall, M. Tewes et al.,
Astrophys.J. 766 (2013) 70,arXiv:1208.6010.
[Suyu:2012aa]
The luminosity of supernovae of type Ia from TRGB distances and the value of $H_0$,
G.A. Tammann, B. Reindl,
Astron.Astrophys. 549 (2013) A136,arXiv:1208.5054.
[Tammann:2012ut]
Carnegie Hubble Program: A Mid-Infrared Calibration of the Hubble Constant,
Wendy L. Freedman, Barry F. Madore, Victoria Scowcroft, Chris Burns, Andy Monson et al.,
Astrophys.J. 758 (2012) 24,arXiv:1208.3281.
[Freedman:2012ny]
The Megamaser Cosmology Project: IV. A Direct Measurement of the Hubble Constant from UGC 3789,
M.J. Reid, J.A. Braatz, J.J. Condon, K.Y. Lo, C.Y. Kuo et al.,
Astrophys.J. 767 (2013) 154,arXiv:1207.7292.
[Reid:2012hm]
The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey,
Christopher P. Ahn et al.(SDSS),
Astrophys.J.Suppl. 203 (2012) 21,arXiv:1207.7137.
[Smee:2012wd]
The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey,
Christopher P. Ahn et al.(SDSS),
Astrophys.J.Suppl. 203 (2012) 21,arXiv:1207.7137.
[Ahn:2012fh]
Competitive Crossing Check for a 3% Determination of the Hubble Constant,
J.A.S. Lima, J.V. Cunha,
Astrophys.J. 781 (2014) L38,arXiv:1206.0332.
[Lima:2012jm]
A new, precise measurement of the primordial abundance of Deuterium,
Max Pettini, Ryan Cooke,
Mon.Not.Roy.Astron.Soc. 425 (2012) 2477-2486,arXiv:1205.3785.
[Pettini:2012ph]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measurements of the growth of structure and expansion rate at z=0.57 from anisotropic clustering,
Beth A. Reid, Lado Samushia, Martin White, Will J. Percival, Marc Manera et al.,
Mon.Not.Roy.Astron.Soc. 426 (2012) 2719,arXiv:1203.6641.
[Reid:2012sw]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the large-scale two-point correlation function,
Ariel G. Sanchez, C.G. Scoccola, A.J. Ross, W. Percival, M. Manera et al.,
Mon.Not.Roy.Astron.Soc. 425 (2012) 415,arXiv:1203.6616.
[Sanchez:2012sg]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the Data Release 9 Spectroscopic Galaxy Sample,
Lauren Anderson, Eric Aubourg, Stephen Bailey, Dmitry Bizyaev, Michael Blanton et al.,
Mon.Not.Roy.Astron.Soc. 428 (2013) 1036-1054,arXiv:1203.6594.
[Anderson:2012sa]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measuring structure growth using passive galaxies,
Rita Tojeiro, W.J. Percival, J. Brinkmann, J.R. Brownstein, D. Eisenstein et al.,
Mon.Not.Roy.Astron.Soc. 424 (2012) 2339,arXiv:1203.6565.
[Tojeiro:2012rp]
Determining the Hubble constant using Giant extragalactic HII regions and HII galaxies,
Ricardo Chavez, Elena Terlevich, Roberto Terlevich, Manolis Plionis, Fabio Bresolin et al.,
Mon.Not.Roy.Astron.Soc. 425 (2012) 56,arXiv:1203.6222.
[Chavez:2012km]
A measurement of gravitational lensing of the microwave background using South Pole Telescope data,
A. van Engelen, R. Keisler, O. Zahn, K.A. Aird, B.A. Benson et al.,
Astrophys. J. 756 (2012) 142,arXiv:1202.0546.
[vanEngelen:2012va]
Clustering of Sloan Digital Sky Survey III Photometric Luminous Galaxies: The Measurement, Systematics and Cosmological Implications,
Shirley Ho et al.,
Astrophys. J. 761 (2012) 14,arXiv:1201.2137.
[Ho:2012vy]
The WiggleZ Dark Energy Survey: Cosmological neutrino mass constraint from blue high-redshift galaxies,
Signe Riemer-Sorensen et al.,
Phys. Rev. D85 (2012) 081101,arXiv:1112.4940.
[RiemerSorensen:2011fe]
A measurement of secondary cosmic microwave background anisotropies with two years of South Pole Telescope observations,
C.L. Reichardt, L. Shaw, O. Zahn, K.A. Aird, B.A. Benson et al.,
Astrophys.J. 755 (2012) 70,arXiv:1111.0932.
[Reichardt:2011yv]
Cepheid Period-Luminosity Relations in the Near-Infrared and the Distance to M31 from the Hubble Space Telescope Wide Field Camera 3,
Adam G. Riess, Juergen Fliri, David Valls-Gabaud,
Astrophys.J. 745 (2012) 156,arXiv:1110.3769.
[Riess:2011vh]
The WiggleZ Dark Energy Survey: mapping the distance-redshift relation with baryon acoustic oscillations,
Chris Blake, Eyal Kazin, Florian Beutler, Tamara Davis, David Parkinson et al.,
Mon.Not.Roy.Astron.Soc. 418 (2011) 1707-1724,arXiv:1108.2635.
[Blake:2011en]
The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant,
Florian Beutler, Chris Blake, Matthew Colless, D. Heath Jones, Lister Staveley-Smith et al.,
Mon.Not.Roy.Astron.Soc. 416 (2011) 3017-3032,arXiv:1106.3366.
[Beutler:2011hx]
The Atacama Cosmology Telescope: a measurement of the primordial power spectrum,
Renee Hlozek, Joanna Dunkley, Graeme Addison, John William Appel, J. Richard Bond et al.,
Astrophys.J. 749 (2012) 90,arXiv:1105.4887.
[Hlozek:2011pc]
A Measurement of the Damping Tail of the Cosmic Microwave Background Power Spectrum with the South Pole Telescope,
R. Keisler et al.,
Astrophys. J. 743 (2011) 28,arXiv:1105.3182.
[Keisler:2011aw]
A 3% Solution: Determination of the Hubble Constant with the Hubble Space Telescope and Wide Field Camera 3,
Adam G. Riess, Lucas Macri, Stefano Casertano, Hubert Lampeitl, Henry C. Ferguson et al.,
Astrophys.J. 730 (2011) 119,arXiv:1103.2976.
[Riess:2011yx]
Swift observation of Segue 1: constraints on sterile neutrino parameters in the darkest galaxy,
N. Mirabal,
Mon.Not.Roy.Astron.Soc. 409 (2010) 128,arXiv:1010.4706.
[Mirabal:2010an]
The Atacama Cosmology Telescope: Cosmological Parameters from the 2008 Power Spectra,
J. Dunkley et al.,
Astrophys. J. 739 (2011) 52,arXiv:1009.0866.
[Dunkley:2010ge]
The Atacama Cosmology Telescope: A Measurement of the Cosmic Microwave Background Power Spectrum at 148 and 218 GHz from the 2008 Southern Survey,
Sudeep Das, Tobias A. Marriage, Peter A.R. Ade, Paula Aguirre, Mandana Amir et al.,
Astrophys.J. 729 (2011) 62,arXiv:1009.0847.
[Das:2010ga]
A Measurement of the Rate of Type Ia Supernovae in Galaxy Clusters from the SDSS-II Supernova Survey,
Benjamin Dilday et al.(SDSS),
Astrophys.J. 715 (2010) 1021-1035,arXiv:1003.1521.
[Dilday:2010xe]
Measurements of the Rate of Type Ia Supernovae at Redshift z < ~0.3 from the SDSS-II Supernova Survey,
Benjamin Dilday et al.(SDSS),
Astrophys.J. 713 (2010) 1026-1036,arXiv:1001.4995.
[Dilday:2010qk]
Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Are There Cosmic Microwave Background Anomalies?,
C. L. Bennett et al.,
Astrophys. J. Suppl. 192 (2011) 17,arXiv:1001.4758.
[Bennett:2010jb]
Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Planets and Celestial Calibration Sources,
J. L. Weiland et al.,
Astrophys. J. Suppl. 192 (2011) 19,arXiv:1001.4731.
[Weiland:2010ij]
Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Power Spectra and WMAP-Derived Parameters,
D. Larson, J. Dunkley, G. Hinshaw, E. Komatsu, M.R. Nolta et al.,
Astrophys.J.Suppl. 192 (2011) 16,arXiv:1001.4635.
[Larson:2010gs]
Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation,
E. Komatsu et al.(WMAP),
Astrophys. J. Suppl. 192 (2011) 18,arXiv:1001.4538. From the abstract:Notable examples of improved parameters are the total mass of neutrinos, $\sum m_\nu < 0.58 \, \text{eV} \quad \text{(95\% CL)}$, and the effective number of neutrino species, $N_{\text{eff}} = 4.34^{+ 0.86}_{- 0.88} \quad \text{(68\%~CL)}$, which benefit from better determinations of the third peak and $H_0$. [Komatsu:2010fb]
The primordial abundance of 4He: evidence for non-standard big bang nucleosynthesis,
Y. I. Izotov, T. X. Thuan,
Astrophys. J. 710 (2010) L67-L71,arXiv:1001.4440.
[Izotov:2010ca]
Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample,
Will J. Percival et al.(SDSS),
Mon.Not.Roy.Astron.Soc. 401 (2010) 2148-2168,arXiv:0907.1660.
[Percival:2009xn]
Cosmological Constraints from the Clustering of the Sloan Digital Sky Survey DR7 Luminous Red Galaxies,
Beth A. Reid, Will J. Percival, Daniel J. Eisenstein, Licia Verde, David N. Spergel et al.,
Mon.Not.Roy.Astron.Soc. 404 (2010) 60-85,arXiv:0907.1659.
[Reid:2009xm]
Cepheid Calibrations of Modern Type Ia Supernovae:Implications for the Hubble Constant,
Adam G. Riess, Lucas Macri, Weidong Li, Hubert Lampeitl, Stefano Casertano et al.,
Astrophys.J.Suppl. 183 (2009) 109-141,arXiv:0905.0697.
[Riess:2009pv]
A Redetermination of the Hubble Constant with the Hubble Space Telescope from a Differential Distance Ladder,
Adam G. Riess, Lucas Macri, Stefano Casertano, Megan Sosey, Hubert Lampeitl et al.,
Astrophys.J. 699 (2009) 539-563,arXiv:0905.0695.
[Riess:2009pu]
The 6dF Galaxy Survey: Final Redshift Release (DR3) and Southern Large-Scale Structures,
D. Heath Jones, Mike A. Read, Will Saunders, Matthew Colless, Tom Jarrett et al.,
Mon.Not.Roy.Astron.Soc. 399 (2009) 683,arXiv:0903.5451.
[Jones:2009yz]
Cosmological Parameters from the QUaD CMB polarization experiment,
QUaD collaboration et al.(QUaD),
Astrophys. J. 701 (2009) 857-864,arXiv:0901.0810.
[Castro:2009ej]
The Seventh Data Release of the Sloan Digital Sky Survey,
Kevork N. Abazajian et al.(SDSS),
Astrophys.J.Suppl. 182 (2009) 543-558,arXiv:0812.0649.
[Abazajian:2008wr]
Very-High-Energy Gamma Rays from a Distant Quasar: How Transparent Is the Universe?,
J. Albert et al.(MAGIC),
Science 320 (2008) 1752,arXiv:0807.2822.
[Aliu:2008ay]
Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, and Basic Results,
G. Hinshaw et al.(WMAP),
Astrophys. J. Suppl. 180 (2009) 225-245,arXiv:0803.0732.
[Hinshaw:2008kr]
Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Angular Power Spectra,
M. R. Nolta et al.(WMAP),
Astrophys. J. Suppl. 180 (2009) 296-305,arXiv:0803.0593.
[Nolta:2008ih]
Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Likelihoods and Parameters from the WMAP data,
J. Dunkley et al.(WMAP),
Astrophys. J. Suppl. 180 (2009) 306-329,arXiv:0803.0586.
[Dunkley:2008ie]
Five-Year Wilkinson Microwave Anisotropy Probe (WMAP)Observations: Beam Maps and Window Functions,
R. S. Hill et al.(WMAP),
Astrophys. J. Suppl. 180 (2009) 246-264,arXiv:0803.0570.
[Hill:2008hx]
Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation,
E. Komatsu et al.(WMAP),
Astrophys. J. Suppl. 180 (2009) 330-376,arXiv:0803.0547. From the abstract:The WMAP 5-year data provide stringent limits on deviations from the minimal, 6-parameter $\Lambda\text{CDM}$ model.... We detect no convincing deviations from the minimal model.... $\Omega_\Lambda = 0.721\pm 0.015$,..., $H_0 = 70.1\pm 1.3 \, \text{km} \, \text{s}^{-1} \, \text{Mpc}^{-1}$, $\Omega_b = 0.0462\pm 0.0015$, $\Omega_c = 0.233\pm 0.013$,... We obtain tight, simultaneous limits on the (constant) equation of state of dark energy and the spatial curvature of the universe: $-0.11<1+w<0.14\, \text{(95\% CL)}$ and $-0.0175<\Omega_k<0.0085\, \text{(95\% CL)}$.... We find the limit on the total mass of massive neutrinos of $\sum m_\nu < 0.61 \, \text{eV}\, \text{(95\% CL)}$, which is free from the uncertainty in the normalization of the large-scale structure data. The number of relativistic degrees of freedom, expressed in units of the effective number of neutrino species, is constrained as $N_{\rm eff} = 4.4\pm 1.5$ (68\%), consistent with the standard value of 3.04. [Komatsu:2008hk]
High resolution CMB power spectrum from the complete ACBAR data set,
C.L. Reichardt, P.A.R. Ade, J.J. Bock, J. Richard Bond, J.A. Brevik et al.,
Astrophys.J. 694 (2009) 1200-1219,arXiv:0801.1491.
[Reichardt:2008ay]
The Sixth Data Release of the Sloan Digital Sky Survey,
Jennifer K. Adelman-McCarthy et al.(SDSS),
Astrophys.J.Suppl. 175 (2008) 297-313,arXiv:0707.3413.
[AdelmanMcCarthy:2007aa]
The Fifth Data Release of the Sloan Digital Sky Survey,
Jennifer K. Adelman-McCarthy(SDSS),
Astrophys. J. Suppl. 172 (2007) 634-644,arXiv:0707.3380.
[AdelmanMcCarthy:2007wh]
COSMOS: 3D weak lensing and the growth of structure,
Richard Massey et al.,
Astrophys. J. Suppl. 172 (2007) 239-253,arXiv:astro-ph/0701480.
[Massey:2007gh]
The DEEP2 Galaxy Redshift Survey: Clustering of Quasars and Galaxies at z=1,
Alison L. Coil et al.,
Astrophys. J. 654 (2006) 115-124,arXiv:astro-ph/0607454.
[Coil:2006ji]
The First DIRECT Distance Determination to a Detached Eclipsing Binary in M33,
Alceste Z. Bonanos et al.,
Astrophys. J. 652 (2006) 313,arXiv:astro-ph/0606279. From the article:... our LMC distance would imply a 15\% decrease in the Hubble constant to $ H_{0} = 61\; \rm km\;s^{-1}\; Mpc^{-1} $. [Bonanos:2006jd]
A Lyman-alpha blob in the GOODS South field: evidence for cold accretion onto a dark matter halo,
Kim Nilsson et al.,
Astron. Astrophys. 452 (2006) L23-L26,arXiv:astro-ph/0512396.
[Nilsson:2005rk]
First cosmic shear results from the Canada-France-Hawaii Telescope Wide Synoptic Legacy Survey,
H. Hoekstra et al.,
Astrophys. J. 647 (2006) 116-127,arXiv:astro-ph/0511089. From the abstract:Assuming a Cold Dark Matter model and marginalising over the Hubble parameter $h\in[0.6,0.8]$, the source redshift distribution and systematics, we constrain $\sigma_8$, the amplitude of the matter power spectrum. At a fiducial matter density $\Omega_m=0.3$ we find $\sigma_8=0.85\pm0.06$. This estimate is in excellent agreement with previous studies. Combination of our results with those from the Deep component of the CFHTLS enables us to place a constraint on a constant equation of state for the dark energy, based on cosmic shear data alone. We find that $w_0<-0.8$ at 68\% confidence. [Hoekstra:2005cs]
The DEEP2 Galaxy Redshift Survey: Discovery of Luminous, Metal-poor, Sta r-forming Galaxies at Redshifts z~0.7,
Carlos Hoyos et al.,
Astrophys. J. 635 (2005) L21,arXiv:astro-ph/0510843.
[Hoyos:2005hc]
The Supernova Legacy Survey: Measurement of $\Omega_\text{M}$, $\Omega_{\Lambda}$ and $w$ from the First Year Data Set,
P. Astier et al.(SNLS),
Astron. Astrophys. 447 (2006) 31,arXiv:astro-ph/0510447. From the abstract:With this data set, we have built a Hubble diagram extending to $z=1$, with all distance measurements involving at least two bands.... Cosmological fits to this first year SNLS Hubble diagram give the following results: $ \Omega_{\text{M}} = 0.263 \pm 0.042 \pm 0.032 $ for a flat $\Lambda\text{CDM}$ model; and $w = -1.023 \pm 0.090 \pm 0.054 $ for a flat cosmology with constant equation of state $w$ when combined with the constraint from the recent Sloan Digital Sky Survey measurement of baryon acoustic oscillations. [Astier:2005qq]
Hubble Space Telescope and Ground-Based Observations of Type Ia Supernovae at Redshift 0.5: Cosmological Implications,
A. Clocchiatti et al.(High Z SN Search),
Astrophys. J. 642 (2006) 1-21,arXiv:astro-ph/0510155.
[Clocchiatti:2005vy]
GRB 050904 at redshift 6.3: observations of the oldest cosmic explosion after the Big Bang,
G. Tagliaferri et al.,
Astron. Astrophys. 443 (2005) L1-L5,arXiv:astro-ph/0509766.
[Tagliaferri:2005cw]
The Fourth Data Release of the Sloan Digital Sky Survey,
J.K. Adelman-McCarthy et al.(SDSS),
Astrophys. J. Suppl. 162 (2006) 38,arXiv:astro-ph/0507711.
[AdelmanMcCarthy:2005se]
A Measurement of the CMB < EE > Spectrum from the 2003 Flight of BOOMERANG,
T.E. Montroy et al.,
Astrophys. J. 647 (2006) 813,arXiv:astro-ph/0507514.
[Montroy:2005yx]
Instrument, Method, Brightness and Polarization Maps from the 2003 flight of BOOMERanG,
S Masi et al.,
Astron.Astrophys. 458 (2006) 687,arXiv:astro-ph/0507509.
[Masi:2005ys]
A measurement of the polarization-temperature angular cross power spectrum of the Cosmic Microwave Background from the 2003 flight of BOOMERANG,
F Piacentini et al.,
Astrophys. J. 647 (2006) 833,arXiv:astro-ph/0507507.
[Piacentini:2005yq]
A Measurement of the Angular Power Spectrum of the CMB Temperature Anisotropy from the 2003 Flight of Boomerang,
W. C. Jones et al.,
Astrophys. J. 647 (2006) 823,arXiv:astro-ph/0507494.
[Jones:2005yb]
Keck Deep Fields. I. Observations, Reductions, and the Selection of Faint Star-Forming Galaxies at Redshifts z~4, 3, and 2,
Marcin Sawicki, David Thompson,
Astrophys. J. 635 (2005) 100,arXiv:astro-ph/0507424.
[Sawicki:2005qk]
First results from the Canada-France High-z Quasar Survey: Constraints on the z=6 quasar luminosity function and the quasar contribution to reionization,
Chris J. Willott et al.,
Astrophys. J. 633 (2005) 630,arXiv:astro-ph/0507183.
[Willott:2005zr]
Second Data Release of the 6dF Galaxy Survey,
D. Heath Jones, Will Saunders, Mike Read, Matthew Colless,
Publ.Astron.Soc.Austral. (2005),arXiv:astro-ph/0505068.
[Jones:2005ya]
Detection of Cosmic Magnification with the Sloan Digital Sky Survey,
Ryan Scranton et al.(SDSS),
Astrophys. J. 633 (2005) 589,arXiv:astro-ph/0504510.
SDSS News Release. [Scranton:2005ci]
The 2dF QSO Redshift Survey - XV. Correlation analysis of redshift-Space distortions,
J. da Angela et al.,
Mon. Not. Roy. Astron. Soc. 360 (2005) 1040-1054,arXiv:astro-ph/0504438. From the abstract:$ \Omega_{\text{M}} = 0.35 {}^{+0.19}_{-0.13} $. [daAngela:2005id]
The H I opacity of the intergalactic medium at redshifts 1.6 < z < 3.2,
David Kirkman et al.,
Mon. Not. Roy. Astron. Soc. 360 (2005) 1373,arXiv:astro-ph/0504391.
[Kirkman:2005jz]
Restframe I-band Hubble diagram for type Ia supernovae up to redshift $z \sim 0.5$,
Serena Nobili et al.(Supernova Cosmology Project),
Astron.Astrophys. (2005),arXiv:astro-ph/0504139.
[Nobili:2005tr]
The Sloan Digital Sky Survey Quasar Catalog III. Third Data Release,
D. P. Schneider et al.(The SDSS),
Astron. J. 130 (2005) 367-380,arXiv:astro-ph/0503679.
[Schneider:2005vy]
Cepheid Calibrations from the Hubble Space Telescope of the Luminosity of Two Recent Type Ia Supernovae and a Re-determination of the Hubble Constant,
Adam G. Riess et al.,
Astrophys. J. 627 (2005) 579,arXiv:astro-ph/0503159. From the abstract:$H_0 = 73 +\pm 4 \pm 5 \, \text{km} \, \text{s}^{-1} \, \text{Mps}^{-1}$. [Riess:2005zi]
The Deepest Supernova Search is Realized in the Hubble Ultra Deep Field Survey,
Louis-Gregory Strolger, Adam G. Riess,
Astron. J. 131 (2006) 1629-1638,arXiv:astro-ph/0503093.
[Strolger:2005uk]
The 2dF Galaxy Redshift Survey: Power-spectrum analysis of the final dataset and cosmological implications,
S. Cole et al.(The 2dFGRS),
Mon. Not. Roy. Astron. Soc. 362 (2005) 505,arXiv:astro-ph/0501174. From the abstract:Fitting to a CDM model, assuming a primordial $n_{\text{s}}=1$ spectrum, $h=0.72$ and negligible neutrino mass, the preferred parameters are $\Omega_{\text{m}} h = 0.168 \pm 0.016$ and a baryon fraction $\Omega_{\text{b}} /\Omega_{\text{m}} = 0.185\pm0.046$ (1$\sigma$ errors).... This analysis therefore implies a density significantly below the standard $\Omega_{\text{m}} =0.3$: in combination with CMB data from WMAP, we infer $\Omega_{\text{m}} =0.231\pm 0.021$. From the article:$\Omega_{\text{m}} = 0.231 \pm 0.021$, $\Omega_{\text{b}} = 0.042 \pm 0.002$, $h = 0.766 \pm 0.032$, $n_{\text{s}} = 1.027 \pm 0.050$. [Cole:2005sx]
Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies,
Daniel J. Eisenstein et al.(SDSS),
Astrophys. J. 633 (2005) 560,arXiv:astro-ph/0501171. From the abstract:We find a well-detected peak in the correlation function at $100 \, h^{-1} \, \text{Mpc} $ separation that is an excellent match to the predicted shape and location of the imprint of the recombination-epoch acoustic oscillations on the low-redshift clustering of matter. This detection demonstrates the linear growth of structure by gravitational instability between $z\approx 1000$ and the present and confirms a firm prediction of the standard cosmological theory. The acoustic peak provides a standard ruler by which we can measure the ratio of the distances to $z=0.35$ and $z=1089$ to 4\% fractional accuracy and the absolute distance to $z=0.35$ to 5\% accuracy. From the overall shape of the correlation function, we measure the matter density $\Omega_mh^2$ to 8\% and find agreement with the value from cosmic microwave background (CMB) anisotropies. Independent of the constraints provided by the CMB acoustic scale, we find $\Omega_m=0.273\pm0.025+0.123(1+w_0)+0.137\Omega_K$. Including the CMB acoustic scale, we find that the spatial curvature is $\Omega_K=-0.010\pm0.009$ if the dark energy is a cosmological constant. [Eisenstein:2005su]
Weak lensing measurements of dark matter halos of galaxies from COMBO-17,
M. Kleinheinrich et al.,
Astron.Astrophys. (2004),arXiv:astro-ph/0412615.
[Kleinheinrich:2004vs]
The CMB temperature power spectrum from an improved analysis of the Archeops data,
Matthieu Tristram et al.,
Astron. Astrophys. 436 (2005) 785-797,arXiv:astro-ph/0411633.
[Tristram:2004ke]
The Deep2 Galaxy Redshift Survey: Evolution of Close Galaxy Pairs and Major-Merger Rates Up to z ~ 1.2,
Lih-Wai Lin et al.,
Astrophys. J. 617 (2004) L9-L12,arXiv:astro-ph/0411104.
[Lin:2004kb]
The DEEP2 Galaxy Redshift Survey: First results on galaxy groups,
Brian F. Gerke et al.,
Astrophys. J. 625 (2005) 6,arXiv:astro-ph/0410721.
[Gerke:2004ra]
Spectroscopic confirmation of high-redshift supernovae with the ESO VLT,
C. Lidman et al.(Supernova Cosmology Project),
Astron.Astrophys. (2004),arXiv:astro-ph/0410506.
[Lidman:2004en]
The Third Data Release of the Sloan Digital Sky Survey,
K. Abazajian et al.(SDSS),
Astron. J. 129 (2005) 1755,arXiv:astro-ph/0410239.
[Abazajian:2004it]
The DEEP2 Galaxy Redshift Survey: Probing the Evolution of Dark Matter Halos around Isolated Galaxies at z~1,
Charlie Conroy et al.,
Astrophys. J. 635 (2005) 982,arXiv:astro-ph/0409305.
[Conroy:2004tz]
The Hubble Higher-Z Supernova Search: Supernovae to z=1.6 and Constraints on Type Ia Progenitor Models,
L. G. Strolger et al.,
Astrophys. J. 613 (2004) 200-223,arXiv:astro-ph/0406546.
[Strolger:2004kk]
The 2dF Galaxy Redshift Survey: Spherical Harmonics analysis of fluctuations in the final catalogue,
Will J. Percival et al.(The 2dFGRS),
Mon. Not. Roy. Astron. Soc. 353 (2004) 1201,arXiv:astro-ph/0406513.
[Percival:2004fs]
The Lyman-alpha Forest Power Spectrum from the Sloan Digital Sky Survey,
Patrick McDonald et al.(SDSS),
Astrophys. J. Suppl. 163 (2006) 80,arXiv:astro-ph/0405013.
[McDonald:2004eu]
Spectroscopic Observations and Analysis of the Peculiar SN 1999aa,
Gabriele Garavini et al.(The Supernova Cosmology Project),
Mon. Not. Roy. Astron. Soc. 356 (2004) 456,arXiv:astro-ph/0404393.
[Garavini:2004fa]
The Second Data Release of the Sloan Digital Sky Survey,
K. Abazajian et al.(SDSS),
Astron. J. 128 (2004) 502,arXiv:astro-ph/0403325.
[Abazajian:2004aja]
Design and Calibration of a Cryogenic Blackbody Calibrator at Centimeter Wavelengths,
A. Kogut et al.(ARCADE),
Rev. Sci. Instrum. 75 (2004) 5079,arXiv:astro-ph/0402580.
[Kogut:2004hq]
An Instrument to Measure the Temperature of the Cosmic Microwave Background Radiation at Centimeter Wavelengths,
A. Kogut et al.(ARCADE),
Astrophys.J. (2004),arXiv:astro-ph/0402578.
[Kogut:2004hn]
Type Ia Supernova Discoveries at z > 1 From the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution,
Adam G. Riess et al.(Supernova Search Team),
Astrophys. J. 607 (2004) 665,arXiv:astro-ph/0402512. From the abstract:We have discovered 16 Type Ia supernovae (SNe Ia) with the Hubble Space Telescope (HST) and have used them to provide the first conclusive evidence for cosmic deceleration that preceded the current epoch of cosmic acceleration. ... A purely kinematic interpretation of the SN Ia sample provides evidence at the > 99\% confidence level for a transition from deceleration to acceleration or similarly, strong evidence for a cosmic jerk. Using a simple model of the expansion history, the transition between the two epochs is constrained to be at $z=0.46 \pm 0.13$. The data are consistent with the cosmic concordance model of $\Omega_M \approx 0.3, \Omega_\Lambda \approx 0.7$ ($\chi^2_{dof}=1.06$), and are inconsistent with a simple model of evolution or dust as an alternative to dark energy. For a flat Universe with a cosmological constant, we measure $\Omega_M = 0.29 {}^{+0.05}_{-0.03}$ (equivalently, $\Omega_\Lambda=0.71$). When combined with external flat-Universe constraints including the cosmic microwave background and large-scale structure, we find $w = -1.02 {}^{+0.13}_{-0.19}$ (and $w<-0.76$ at the 95\% confidence level) for an assumed static equation of state of dark energy, $P = w\rho c^2$. ... Our constraints are consistent with the static nature of and value of $w$ expected for a cosmological constant (i.e., $w_0 = -1.0$, $dw/dz = 0$), and are inconsistent with very rapid evolution of dark energy. [Ivanov:2004qa]
High sensitivity measurements of the CMB power spectrum with the extended Very Small Array,
Clive Dickinson et al.,
Mon. Not. Roy. Astron. Soc. 353 (2004) 732,arXiv:astro-ph/0402498.
[Dickinson:2004yr]
Extended Mosaic Observations with the Cosmic Background Imager,
A. C. S. Readhead et al.,
Astrophys. J. 609 (2004) 498-512,arXiv:astro-ph/0402359.
[Readhead:2004gy]
The 2dF Galaxy Redshift Survey: Higher order galaxy correlation functions,
D. J. Croton et al.(2dFGRS Team),
Mon. Not. Roy. Astron. Soc. 352 (2004) 1232,arXiv:astro-ph/0401434.
[Croton:2004hy]
The Millennium Galaxy Catalogue: The photometric accuracy, completeness and contamination of the 2dFGRS and SDSS-EDR and DR1 datasets,
N. J. G. Cross et al.,
Mon. Not. Roy. Astron. Soc. 349 (2004) 576,arXiv:astro-ph/0312317.
[Cross:2003es]
The 2dF QSO Redshift Survey - XIII. A Measurement of Lambda from the QSO Power Spectrum,
P.J. Outram et al.,
Mon. Not. Roy. Astron. Soc. 348 (2004) 745,arXiv:astro-ph/0310873. From the abstract:Assuming a flat ($\Omega_{\rm m}+\Omega_{\Lambda}=1$) cosmology and a $\Lambda$ cosmology $r(z)$ function to convert from redshift into comoving distance, we find best fit values of $\Omega_{\Lambda}=0.71^{+0.09}_{-0.17}$ and $\beta_q(z\sim1.4)=0.45^{+0.09}_{-0.11}$. [Outram:2003ew]
23 High Redshift Supernovae from the IfA Deep Survey: Doubling the SN Sample at $z > 0.7$,
Brian J. Barris et al.,
Astrophys. J. 602 (2004) 571,arXiv:astro-ph/0310843. From the abstract:This sample of 23 high-redshift supernovae includes 15 at $z\geq0.7$, doubling the published number of objects at these redshifts, and indicates that the evidence for acceleration of the universe is not due to a systematic effect proportional to redshift. In combination with the recent compilation of Tonry and others (2003), we calculate cosmological parameter density contours which are consistent with the flat universe indicated by the CMB [19-299]. Adopting the constraint that $\Omega_{total} = 1.0$, we obtain best-fit values of ($\Omega_{m}$,$\Omega_{\Lambda}$)=(0.33, 0.67) using 22 SNe from this survey augmented by the literature compilation. [Barris:2003dq]
Systematic effects and a new determination of the primordial abundance of 4He and dY/dZ from observations of blue compact galaxies,
Y. I. Izotov, T. X. Thuan,
Astrophys. J. 602 (2004) 200-230,arXiv:astro-ph/0310421.
[Izotov:2003xn]
New Constraints on $\Omega_M$, $\Omega_\Lambda$, and $w$ from an Independent Set of Eleven High-Redshift Supernovae Observed with HST,
Robert A. Knop et al.(The Supernova Cosmology Project),
Astrophys. J. 598 (2003) 102,arXiv:astro-ph/0309368. From the abstract:We report measurements of $\Omega_{\mathrm{M}}$, $\Omega_{\Lambda}$, and $w$ from eleven supernovae at $z=0.36$-$0.86$ with high-quality lightcurves measured using WFPC2 on the HST. This is an independent set of high-redshift supernovae that confirms previous supernova evidence for an accelerating Universe. The high-quality lightcurves available from photometry on \wfpc\ make it possible for these eleven supernovae alone to provide measurements of the cosmological parameters comparable in statistical weight to the previous results. Combined with earlier Supernova Cosmology Project data, the new supernovae yield a measurement of the mass density $\Omega_{\mathrm{M}}=0.25^{+0.07}_{-0.06}$ (statistical) $\pm0.04$ (identified systematics), or equivalently, a cosmological constant of $\Omega_{\Lambda}=0.75^{+0.06}_{-0.07}$ (statistical) $\pm0.04$ (identified systematics), under the assumptions of a flat universe and that the dark energy equation of state parameter has a constant value $w=-1$. When the supernova results are combined with independent flat-universe measurements of $\Omega_{\mathrm{M}}$ from CMB and galaxy redshift distortion data, they provide a measurement of $w=-1.05^{+0.15}_{-0.20}$ (statistical) $\pm0.09$ (identified systematic), if $w$ is assumed to be constant in time.... dark energy is required with $P(\Omega_{\Lambda}>0)>0.99$. [Knop:2003iy]