Cosmology

Filter this page

(Note: The process can take some time.)

EXPAND ALL
COMPRESS ALL

References

1 - Books

[1-1]
Neutrinos in high energy and astroparticle physics, Jorge Romao, Jose W. F. Valle, Wiley, 2015. ISBN 978-3-527-41197-9. http://eu.wiley.com/WileyCDA/WileyTitle/productCd-3527411976.html.
[Romao-Valle-2015]
[1-2]
Neutrino Cosmology, Julien Lesgourgues, Gianpiero Mangano, Gennaro Miele, Sergio Pastor, Cambridge University Press, 2013. ISBN: 9781139012874. http://ebooks.cambridge.org/ebook.jsf?bid=CBO9781139012874.
[Lesgourgues-Mangano-Miele-Pastor-2013]
[1-3]
Neutrinos in particle physics, astronomy and cosmology, Zhi-zhong Xing, Shun Zhou, Zhejiang University Press, Hangzhou, 2011. ISBN: 9787308080248. http://www.zjupress.com/en/redir.php?catalog_id=64&book_id=1446.
[Xing:2011zza]
[1-4]
Introduction to the physics of massive and mixed neutrinos, Samoil Bilenky, Springer-Verlag Berlin Heidelberg, 2010. Lecture Notes in Physics, Volume 817; ISBN 978-3-642-14042-6. http://www.springer.com/physics/book/978-3-642-14042-6.
[Bilenky:2010zza]
[1-5]
Discovering the Expanding Universe, Harry Nussbaumer, Lydia Bieri, Cambridge University Press, 2009. ISBN: 9780521514842. https://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521514842&ss=cop.
[Nussbaumer-Bieri-2009]
[1-6]
Fundamentals of Neutrino Physics and Astrophysics, C. Giunti, C. W. Kim, Oxford University Press, Oxford, UK, 2007. ISBN 978-0-19-850871-7. http://www.oup.com/uk/catalogue/?ci=9780198508717.
[Giunti:2007ry]
[1-7]
Particle Physics and Inflationary Cosmology, A.D. Linde, Contemp. Concepts Phys. 5 (2005) 1, arXiv:hep-th/0503203, Harwood Academic Press. Contemporary Concepts in Physics, Vol. 5.
[Linde:1990nc]
[1-8]
Cosmology and Particle Astrophysics, L. Bergstrom, A. Goobar, Springer, 2004.
[Bergstrom-Goobar:2004]
[1-9]
Modern Cosmology, S. Dodelson, Academic Press, 2003. ISBN: 9780122191411. http://books.google.it/books?id=3oPRxdXJexcC.
[Dodelson-Cosmology-2003]
[1-10]
Newton's Principia for the Common Reader, S. Chandrasekhar, Oxford University Press, 2003. http://www.oup.com/uk/catalogue/?ci=9780198526759.
[Chandrasekhar:2003zz]
[1-11]
Cosmology: The Origin and Evolution of Cosmic Structure, P. Coles, F. Lucchin, John Wiley, 2002.
[Coles-Lucchin:2002]
[1-12]
Cosmological Physics, J. A. Peacock, Cambridge University Press, 1999.
[Peacock:1999ye]
[1-13]
Galaxy Formation, M. S. Longair, Springer-Verlag, 1998.
[Longair-Galaxy-Formation-1998]
[1-14]
First Principles of Cosmology, Eric V. Linder, Addison-Wesley, 1997.
[Linder:1997]
[1-15]
Cosmology and Astrophysics Through Problems, T. Padmanabhan, Cambridge University Press, 1996.
[Padmanabhan:1996]
[1-16]
Introduction to Cosmology, M. Roos, John Wiley, 1994.
[Roos:1994fz]
[1-17]
Principles of Physical Cosmology, P. J. E. Peebles, Princeton University Press, 1993.
[Peebles-Principles-of-Physical-Cosmology-1993]
[1-18]
The Early Universe, E. W. Kolb, M. S. Turner, Front.Phys. 69 (1990) 1-547, Addison-Wesley. Frontiers in Physics, 69.
[Kolb:1990vq]
[1-19]
The Cosmological Distance Ladder: Distance and Time in the Universe, Michael Rowan-Robinson, W.H. Freeman and Company, 1985.
[RowanRobinson-Ladder-1985]
[1-20]
Gravitation and Spacetime, H.C. Ohanian, W.W. Norton and Company, 1976.
[Ohanian-Gravitation-and-Spacetime-1976]
[1-21]
Gravitation, C.W. Misner, K.S. Thorne, J.A. Wheeler, W.H. Freeman and Company, 1973.
[Misner:1974qy]
[1-22]
Gravitation and Cosmology, S. Weinberg, John Wiley, 1972.
[Weinberg-Gravitation-and-Cosmology-1972]

2 - Reviews - Experiment

[2-1]
AGN feedback with the Square Kilometer Array (SKA) and implications for cluster physics and cosmology, Asif Iqbal et al., arXiv:1705.04444, 2017.
[Iqbal:2017wqs]
[2-2]
Probing statistical isotropy of cosmological radio sources using SKA, Shamik Ghosh et al., J.Astrophys.Astron. 37 (2016) 25, arXiv:1610.08176.
[Ghosh:2016tbj]
[2-3]
Recent results and perspectives on cosmology and fundamental physics from microwave surveys, Carlo Burigana et al., Int.J.Mod.Phys. D25 (2016) 1630016, arXiv:1604.03819.
[Burigana:2016cqp]
[2-4]
The Carnegie-Chicago Hubble Program. I. A New Approach to the Distance Ladder Using Only Distance Indicators of Population II, Rachael L. Beaton et al., Astrophys.J. 832 (2016) 210, arXiv:1604.01788.
[Beaton:2016nsw]
[2-5]
Cosmology with the Square Kilometre Array by SKA-Japan, Daisuke Yamauchi et al. (SKA-Japan Consortium Cosmology Science Working Group), PoS DSU2015 (2016) 004, arXiv:1603.01959.
[Yamauchi:2016ypt]
[2-6]
The Hubble Constant, Wendy L. Freedman, Barry F. Madore, Ann.Rev.Astron.Astrophys. 48 (2010) 673-710, arXiv:1004.1856.
[Freedman:2010xv]
[2-7]
The Temperature of the Cosmic Microwave Background, D.J. Fixsen, Astrophys.J. 707 (2009) 916-920, arXiv:0911.1955.
[Fixsen:2009ug]
[2-8]
The expansion field: The value of $H_0$, G.A. Tammann, A. Sandage, B. Reindl, Astron.Astrophys.Rev. 15 (2008) 289-331, arXiv:0806.3018.
[Tammann:2008xf]
[2-9]
Astrophysics in 2005, V. Trimble, M.J. Aschwanden, C.J. Hansen, Publ.Astron.Soc.Pac. 118 (2006) 947, arXiv:astro-ph/0606663.
[Trimble:2006gt]
[2-10]
The Hubble Constant: A Summary of the HST Program for the Luminosity Calibration of Type Ia Supernovae by Means of Cepheids, A. Sandage et al., Astrophys. J. 653 (2006) 843-860, arXiv:astro-ph/0603647.
[Sandage:2006cv]
[2-11]
Mapping the Large Scale Structure of the Universe, David H. Weinberg, Science 309 (2005) 564, arXiv:astro-ph/0510197.
[Weinberg:2005bc]
[2-12]
Dark Energy: The Observational Challenge, David H. Weinberg, New Astron. Rev. 49 (2005) 337, arXiv:astro-ph/0510196.
[Weinberg:2005bb]
[2-13]
Imaging the first light: experimental challenges and future perspectives in the observation of the Cosmic Microwave Background Anisotropy, A. Mennella et al., Astron.Astrophys (2004), arXiv:astro-ph/0402528.
[Mennella:2004ph]
[2-14]
X-ray Cluster Large Scale Structure and Cosmology, Marguerite Pierre, ASP Conf.Ser. (2003), arXiv:astro-ph/0311451.
[Pierre:2003sd]
[2-15]
Interferometric Observations of the Cosmic Microwave Background Radiation, A. C. S. Readhead, T. J. Pearson, arXiv:astro-ph/0306383, 2003. Carnegie Observatories Astrophysics Series, Vol. 2: Measuring and Modeling the Universe.
[Readhead:2003pq]
[2-16]
Measuring Cosmology with Supernovae, S. Perlmutter, B. P. Schmidt, Lect. Notes Phys. 598 (2003) 195-217, arXiv:astro-ph/0303428.
[Perlmutter:2003kf]
[2-17]
Galaxies and Intergalactic Matter at Redshift z~3: Overview, K.L. Adelberger, C.C. Steidel, A.E. Shapley, M. Pettini, Astrophys. J. 584 (2003) 45, arXiv:astro-ph/0210314.
[Adelberger:2002qp]

3 - Reviews - Experiment - Conference Proceedings

[3-1]
The Planck legacy - Reinforcing the case for a standard model of cosmology: $\Lambda$CDM, Nazzareno Mandolesi, Diego Molinari, Alessandro Gruppuso, Carlo Burigana, Paolo Natoli, arXiv:1605.01533, 2016. 17th Lomonosov Conference on Elementary Particle Physics. Moscow State University, Moscow, 20-26 August, 2015.
[Mandolesi:2016tow]
[3-2]
Results from the Wilkinson Microwave Anisotropy Probe, Eiichiro Komatsu, Charles L. Bennett (on behalf of the WMAP Science Team), PTEP 2014 (2014) 06B102, arXiv:1404.5415.
[Komatsu:2014ioa]
[3-3]
Snowmass Cosmic Frontiers 6 (CF6) Working Group Summary -The Bright Side of the Cosmic Frontier: Cosmic Probes of Fundamental Physics, J.J. Beatty et al. (CTA Collaboration, PINGU Collaboration, VERITAS), arXiv:1310.5662, 2013.
[Beatty:2013lza]
[3-4]
The Future of Neutrino Mass Measurements: Terrestrial, Astrophysical, and Cosmological Measurements in the Next Decade. Highlights of the NuMass 2013 Workshop. Milano, Italy, February 4 - 7, 2013, G. J. Barker et al., arXiv:1309.7810, 2013.
[Barker:2013kvg]
[3-5]
Neutrino matter with PLANCK, Stephane Plaszczynski, PoS IDM2010 (2011) 066, arXiv:1012.2215. Identification of Dark Matter 2010-IDM2010, July 26-30, 2010, Montpellier, France.
[Plaszczynski:2010sj]
[3-6]
Searching for the First Galaxies, Steven L. Finkelstein, ASP Conf.Ser. 432 (2010) 33, arXiv:1004.0001. Frank N. Bash Symposium 2009: New Horizons in Astronomy.
[Finkelstein:2010ip]
[3-7]
CMB from the South Pole: Past, Present, and Future, J. M. Kovac, D. Barkats, arXiv:0707.1075, 2007. 6th Rencontres du Vietnam 2006.
[Kovac:2007xx]
[3-8]
Cosmological science enabled by Planck, Martin White, New Astron. Rev. 50 (2006) 938-944, arXiv:astro-ph/0606643. UC Irvine conference on cosmic microwave background temperature and polarization anisotropies.
[White:2006fx]
[3-9]
Current Status and Perspectives of Cosmic Microwave Background Observations, Marco Bersanelli, Davide Maino, Aniello Mennella, Aip Conf. Proc. 703 (2004) 385, arXiv:astro-ph/0310089. International Symposium on Plasmas in the Laboratory and in the Universe: new insights and new challenges, September 16-19, 2003, Como, Italy.
[Bersanelli:2003uv]
[3-10]
The cosmic microwave background radiation, Bruce Winstein, 2003. 31st SLAC Summer Institute on Particle Physics: Cosmic Connection to Particle Physics (SSI 2003), Menlo Park, California, 28 Jul - 8 Aug 2003. http://quiet.uchicago.edu/capmap/slaclatex.pdf.
[Winstein:2003zw]
[3-11]
WMAP results, M. Limon, 2003. XXXVIII Rencontres de Moriond Electroweak Interactions and Unified Theories Les Arcs, France, 15-22 March 2003. http://moriond.in2p3.fr/EW/2003/Transparencies/3_Tuesday/3_1_morning/3_1_2_Limon/M_Limon.pdf.
[Limon:Moriond03]

4 - Reviews - Phenomenology

[4-1]
Sterile neutrinos in cosmology, Kevork N. Abazajian, arXiv:1705.01837, 2017.
[Abazajian:2017tcc]
[4-2]
Weighing neutrinos in dynamical dark energy models, Xin Zhang, Sci.China Phys.Mech.Astron. 60 (2017) 060431, arXiv:1703.00651.
[Zhang:2017rbg]
[4-3]
Modified Gravity and Large Scale Flows, a Review, Jeremy Mould, Astrophys.Space Sci. 362 (2017) 25, arXiv:1701.00173.
[Mould:2016hsz]
[4-4]
Large-Scale Galaxy Bias, Vincent Desjacques, Donghui Jeong, Fabian Schmidt, arXiv:1611.09787, 2016.
[Desjacques:2016bnm]
[4-5]
CMB-S4 Science Book, First Edition, Kevork N. Abazajian et al., arXiv:1610.02743, 2016.
[Abazajian:2016yjj]
[4-6]
General Relativity and Cosmology: Unsolved Questions and Future Directions, Ivan Debono, George F. Smoot, arXiv:1609.09781, 2016.
[1609.09781]
[4-7]
Unveiling the Dynamics of the Universe, Pedro Avelino et al., Symmetry 8 (2016) 70, arXiv:1607.02979.
[Avelino:2016lpj]
[4-8]
Small scale problems of the $\Lambda$CDM model: a short review, Antonino Del Popolo, Morgan Le Delliou, Galaxies 5 (2017) 17, arXiv:1606.07790.
[DelPopolo:2016emo]
[4-9]
Cosmology and Fundamental Physics with the Euclid Satellite, Luca Amendola et al., arXiv:1606.00180, 2016.
[Amendola:2016saw]
[4-10]
A History of Dark Matter, Gianfranco Bertone, Dan Hooper, arXiv:1605.04909, 2016.
[Bertone:2016nfn]
[4-11]
Cosmic Visions Dark Energy: Science, Scott Dodelson et al., arXiv:1604.07626, 2016.
[Dodelson:2016wal]
[4-12]
The Scales of Gravitational Lensing, Francesco De Paolis et al., Universe 2 (2016) 6, arXiv:1604.06601.
[Paolis:2016roy]
[4-13]
Preferred axis in cosmology, Wen Zhao, Larissa Santos, arXiv:1604.05484, 2016.
[Zhao:2016fas]
[4-14]
A White Paper on keV Sterile Neutrino Dark Matter, R. Adhikari et al., JCAP 1701 (2017) 025, arXiv:1602.04816.
[Adhikari:2016bei]
[4-15]
Implications of Planck2015 for inflationary, ekpyrotic and anamorphic bouncing cosmologies, Anna Ijjas, Paul J. Steinhardt, Class. Quant. Grav. 33 (2016) 044001, arXiv:1512.09010.
[Ijjas:2015hcc]
[4-16]
Beyond $\Lambda$CDM: Problems, solutions, and the road ahead, Philip Bull et al., Phys.Dark Univ. 12 (2016) 56-99, arXiv:1512.05356.
[Bull:2015stt]
[4-17]
Sterile Neutrino Dark Matter from Freeze-In, Bibhushan Shakya, Mod. Phys. Lett. A31 (2016) 1630005, arXiv:1512.02751.
[Shakya:2015xnx]
[4-18]
Nonminimal Couplings in the Early Universe: Multifield Models of Inflation and the Latest Observations, David I. Kaiser, Fundam.Theor.Phys. 183 (2016) 41-57, arXiv:1511.09148.
[Kaiser:2015usz]
[4-19]
On the theory and applications of modern cosmography, Peter K. S. Dunsby, Orlando Luongo, Int.J.Geom.Meth.Mod.Phys. 13 (2016) 1630002, arXiv:1511.06532.
[Dunsby:2015ers]
[4-20]
CMB Anomalies after Planck, Dominik J. Schwarz, Craig J. Copi, Dragan Huterer, Glenn D. Starkman, Class.Quant.Grav. 33 (2016) 184001, arXiv:1510.07929.
[Schwarz:2015cma]
[4-21]
Axion Cosmology, David J. E. Marsh, Phys.Rept. 643 (2016) 1-79, arXiv:1510.07633.
[Marsh:2015xka]
[4-22]
Primordial non-Gaussianities after Planck 2015: an introductory review, Sebastien Renaux-Petel, Comptes Rendus Physique 16 (2015) 969-985, arXiv:1508.06740.
[Renaux-Petel:2015bja]
[4-23]
Light sterile neutrinos, S. Gariazzo, C. Giunti, M. Laveder, Y.F. Li, E.M. Zavanin, J. Phys. G43 (2016) 033001, arXiv:1507.08204.
[Gariazzo:2015rra]
[4-24]
Indirect and direct search for dark matter, Michael Klasen, Martin Pohl, Gunter Sigl, Prog. Part. Nucl. Phys. 85 (2015) 1-32, arXiv:1507.03800.
[Klasen:2015uma]
[4-25]
Big Bang Nucleosynthesis: 2015, Richard H. Cyburt, Brian D. Fields, Keith A. Olive, Tsung-Han Yeh, Rev.Mod.Phys. 88 (2016) 015004, arXiv:1505.01076.
[Cyburt:2015mya]
[4-26]
Big-Bang Nucleosynthesis, Brian D. Fields, Paolo Molaro, Subir Sarkar (Particle Data Group), Chin.Phys. C38 (2014) 090001, arXiv:1412.1408.
[Agashe:2014kda]
[4-27]
Neutrinos from the Early Universe and Physics Beyond Standard Models, Daniela Kirilova, arXiv:1407.1784, 2014.
[Kirilova:2014ipa]
[4-28]
A Critical Review of Classical Bouncing Cosmologies, D. Battefeld, P. Peter, Phys.Rept. 571 (2015) 1-66, arXiv:1406.2790.
[Battefeld:2014uga]
[4-29]
Neutrino cosmology and Planck, Julien Lesgourgues, Sergio Pastor, New J. Phys. 16 (2014) 065002, arXiv:1404.1740.
[Lesgourgues:2014zoa]
[4-30]
Dark Energy: A Short Review, Michael J. Mortonson, David H. Weinberg, Martin White, arXiv:1401.0046, 2014.
[Alhamzawi:2014saa]
[4-31]
Dark Matter in the Local Universe, Gustavo Yepes, Stefan Gottloeber, Yehuda Hoffman, New Astron.Rev. 58 (2014) 1-18, arXiv:1312.0105.
[Yepes:2013wca]
[4-32]
Fundamental Particle Structure in the Cosmological Dark Matter, Maxim Yu. Khlopov, International Journal of Modern Physics A, Vol. 28 (2013) 1330042 (60 pages), arXiv:1311.2468.
[Khlopov:2013ava]
[4-33]
Neutrinos, A. de Gouvea et al. (Intensity Frontier Neutrino Working Group), arXiv:1310.4340, 2013.
[deGouvea:2013onf]
[4-34]
Recent Progress in Cosmology and Particle Astrophysics, Pisin Chen, JPS Conf.Proc. 1 (2014) 011002, arXiv:1310.1107.
[Chen:2013kia]
[4-35]
Neutrino Physics from the Cosmic Microwave Background and Large Scale Structure, K.N. Abazajian et al. (Topical Conveners: K.N. Abazajian, J.E. Carlstrom, A.T. Lee), Astropart.Phys. 63 (2015) 66-80, arXiv:1309.5383.
[Abazajian:2013oma]
[4-36]
Measuring cosmic distances with galaxy clusters, S.W. Allen et al., arXiv:1307.8152, 2013.
[Allen:2013zia]
[4-37]
Cosmic dark radiation and neutrinos, Maria Archidiacono, Elena Giusarma, Steen Hannestad, Olga Mena, Adv.High Energy Phys. 2013 (2013) 191047, arXiv:1307.0637.
[Archidiacono:2013fha]
[4-38]
Quintessence: A Review, Shinji Tsujikawa, Class. Quant. Grav. 30 (2013) 214003, arXiv:1304.1961.
[Khurshudyan:2013nka]
[4-39]
News on Right Handed Neutrinos, Marco Drewes, International Journal of Modern Physics E, Vol. 22 (2013) 1330019, arXiv:1303.6912.
[Drewes:2013gca]
[4-40]
Neutrinos in Cosmology and Astrophysics, A.B. Balantekin, G. M. Fuller, Prog.Part.Nucl. Phys. 71 (2013) 162-166, arXiv:1303.3874.
[Balantekin:2013gqa]
[4-41]
What is half a neutrino? Reviewing cosmological constraints on neutrinos and dark radiation, Signe Riemer-Sorensen, David Parkinson, Tamara M. Davis, Publ.Astron.Soc.Austral. 30 (2013) e029, arXiv:1301.7102.
[RiemerSorensen:2013ih]
[4-42]
Search for GeV-scale sterile neutrinos responsible for active neutrino oscillations and baryon asymmetry of the Universe, S. N. Gninenko, D. S. Gorbunov, M. E. Shaposhnikov, Adv.High Energy Phys. 2012 (2012) 718259, arXiv:1301.5516.
[Gninenko:2013tk]
[4-43]
Neutrino mass from Cosmology, Julien Lesgourgues, Sergio Pastor, Adv. High Energy Phys. 2012 (2012) 608515, arXiv:1212.6154.
[Lesgourgues:2012uu]
[4-44]
Neutrino Astrophysics, W. C. Haxton, arXiv:1209.3743, 2012.
[Haxton:2012bk]
[4-45]
Neutrinos And Big Bang Nucleosynthesis, Gary Steigman, Adv. High Energy Phys. 2012 (2012) 268321, arXiv:1208.0032.
[Steigman:2012ve]
[4-46]
Light Sterile Neutrinos: A White Paper, K. N. Abazajian et al., arXiv:1204.5379, 2012.
[Abazajian:2012ys]
[4-47]
Matter and Antimatter in the Universe, Laurent Canetti, Marco Drewes, Mikhail Shaposhnikov, New J. Phys. 14 (2012) 095012, arXiv:1204.4186.
[Canetti:2012zc]
[4-48]
Neutrino mass in cosmology: status and prospects, Yvonne Y. Y. Wong, Ann. Rev. Nucl. Part. Sci. 61 (2011) 69-98, arXiv:1111.1436.
[Wong:2011ip]
[4-49]
The origin of dark matter, matter-anti-matter asymmetry, and inflation, Anupam Mazumdar, arXiv:1106.5408, 2011.
[Mazumdar:2011zd]
[4-50]
The neutron and its role in cosmology and particle physics, Dirk Dubbers, Michael G. Schmidt, Rev. Mod. Phys. 83 (2011) 1111-1171, arXiv:1105.3694.
[Dubbers:2011ns]
[4-51]
Cosmological and Astrophysical Neutrino Mass Measurements, K. N. Abazajian et al., Astropart. Phys. 35 (2011) 177-184, arXiv:1103.5083.
[Abazajian:2011dt]
[4-52]
Cosmological Parameters from Observations of Galaxy Clusters, Steven W. Allen, August E. Evrard, Adam B. Mantz, Ann.Rev.Astron.Astrophys. 49 (2011) 409-470, arXiv:1103.4829.
[Allen:2011zs]
[4-53]
Big Bang Nucleosynthesis as a Probe of New Physics, Maxim Pospelov, Josef Pradler, Ann. Rev. Nucl. Part. Sci. 60 (2010) 539-568, arXiv:1011.1054.
[Pospelov:2010hj]
[4-54]
The Accelerating Universe, Dragan Huterer, arXiv:1010.1162, 2010.
[Huterer:2010eh]
[4-55]
Neutrino physics from precision cosmology, Steen Hannestad, Prog. Part. Nucl. Phys. 65 (2010) 185-208, arXiv:1007.0658.
[Hannestad:2010kz]
[4-56]
Dark Matter: A Primer, Katherine Garrett, Gintaras Duda, Adv. Astron. 2011 (2011) 968283, arXiv:1006.2483.
[Garrett:2010hd]
[4-57]
Dark Matter Candidates from Particle Physics and Methods of Detection, Jonathan L. Feng, Ann. Rev. Astron. Astrophys. 48 (2010) 495, arXiv:1003.0904.
[Feng:2010gw]
[4-58]
Baryon Acoustic Oscillations, Bruce A. Bassett, Renee Hlozek, arXiv:0910.5224, 2009.
[Bassett:2009mm]
[4-59]
Big Bang Nucleosynthesis and Particle Dark Matter, Karsten Jedamzik, Maxim Pospelov, New J. Phys. 11 (2009) 105028, arXiv:0906.2087.
[Jedamzik:2009uy]
[4-60]
Dark Matter Candidates, Lars Bergstrom, New J. Phys. 11 (2009) 105006, arXiv:0903.4849.
[Bergstrom:2009ib]
[4-61]
Observing the Evolution of the Universe, James Aguirre et al., arXiv:0903.0902, 2009.
[Aguirre:2009jt]
[4-62]
The Physics of Cosmic Acceleration, Robert R. Caldwell, Marc Kamionkowski, Ann. Rev. Nucl. Part. Sci. 59 (2013) 397, arXiv:0903.0866.
[Capozziello:2013kla]
[4-63]
Physics, Astrophysics and Cosmology with Gravitational Waves, B. S. Sathyaprakash, B. F. Schutz, Living Rev. Rel. 12 (2009) 2, arXiv:0903.0338.
[Sathyaprakash:2009xs]
[4-64]
Astrophysical Probes of Unification, Asimina Arvanitaki et al., Phys. Rev. D79 (2009) 105022, arXiv:0812.2075.
[Arvanitaki:2008hq]
[4-65]
Six Puzzles for LCDM Cosmology, L. Perivolaropoulos, arXiv:0811.4684, 2008.
[Perivolaropoulos:2008ud]
[4-66]
Cosmological Inflation: Theory and Observations, Daniel Baumann, Hiranya V. Peiris, Adv. Sci. Lett. 2 (2009) 105-120, arXiv:0810.3022.
[Baumann:2008bn]
[4-67]
Cosmological perturbations, Karim A. Malik, David Wands, Phys. Rept. 475 (2009) 1-51, arXiv:0809.4944.
[Malik:2008im]
[4-68]
Primordial Nucleosynthesis: from precision cosmology to fundamental physics, Fabio Iocco, Gianpiero Mangano, Gennaro Miele, Ofelia Pisanti, Pasquale D. Serpico, Phys.Rept. 472 (2009) 1-76, arXiv:0809.0631.
[Iocco:2008va]
[4-69]
Proton and Neutrino Extragalactic Astronomy, Paolo Lipari, Phys. Rev. D78 (2008) 083011, arXiv:0808.0344.
[Lipari:2008zf]
[4-70]
Will the LHC Look into the Fate of the Universe?, Steven A. Abel, John Ellis, Joerg Jaeckel, Valentin V. Khoze, arXiv:0807.2601, 2008.
[Abel:2008ve]
[4-71]
Colliders and Cosmology, Keith A. Olive, Eur. Phys. J. C59 (2009) 269-295, arXiv:0806.1208.
[Olive:2008uf]
[4-72]
Let there be Light: the Emergence of Structure out of the Dark Ages in the Early Universe, Abraham Loeb, arXiv:0804.2258, 2008.
[Loeb:2008dp]
[4-73]
The Large Scale Structure in the Universe: From Power-Laws to Acoustic Peaks, Vicent J. Martinez, Lect.Notes Phys. 665 (2009) 269, arXiv:0804.1536.
[Martinez:2008rx]
[4-74]
Bayes in the sky: Bayesian inference and model selection in cosmology, Roberto Trotta, Contemp. Phys. 49 (2008) 71-104, arXiv:0803.4089.
[Trotta:2008qt]
[4-75]
Dark Energy and the Accelerating Universe, Joshua Frieman, Michael Turner, Dragan Huterer, Ann. Rev. Astron. Astrophys. 46 (2008) 385-432, arXiv:0803.0982.
[Frieman:2008sn]
[4-76]
The Cosmic Microwave Background for Pedestrians: A Review for Particle and Nuclear Physicists, Dorothea Samtleben, Suzanne Staggs, Bruce Winstein, Ann. Rev. Nucl. Part. Sci. 57 (2007) 245-283, arXiv:0803.0834.
[Samtleben:2007zz]
[4-77]
An introduction to the dark energy problem, Antonio Dobado, Antonio L. Maroto, Astrophys. Space Sci. 320 (2009) 167-171, arXiv:0802.1873.
[Dobado:2008xn]
[4-78]
Mapping the Cosmological Expansion, Eric V. Linder, Rept. Prog. Phys. 71 (2008) 056901, arXiv:0801.2968.
[Linder:2008pp]
[4-79]
New Frontiers in Cosmology and Galaxy Formation: Challenges for the Future, Richard Ellis, Joseph Silk, arXiv:0712.2865, 2007.
[Ellis:2007sy]
[4-80]
Primordial Nucleosynthesis in the Precision Cosmology Era, Gary Steigman, ARN ARNPS (2007) 463, arXiv:0712.1100.
[Steigman:2007xt]
[4-81]
The Hubble Constant, Neal Jackson, Living Reviews in Relativity 10 (2007) 4, arXiv:0709.3924.
[Jackson:2007ug]
[4-82]
Dark Matter and Dark Energy, Marc Kamionkowski, arXiv:0706.2986, 2007.
[Kamionkowski:2007wv]
[4-83]
GRB Cosmology, Volker Bromm, Abraham Loeb, arXiv:0706.2445, 2007.
[Bromm:2007dq]
[4-84]
Cosmic Acceleration, Dark Energy and Fundamental Physics, Michael S. Turner, Dragan Huterer, J. Phys. Soc. Jap. 76 (2007) 111015, arXiv:0706.2186.
[Turner:2007qg]
[4-85]
Lectures on Astronomy, Astrophysics, and Cosmology, Luis A. Anchordoqui, arXiv:0706.1988, 2007.
[Anchordoqui:2007kb]
[4-86]
Resource Letter BE-1: The Beginning and Evolution of the Universe, Bharat Ratra, Michael S. Vogeley, Publ. Astron. Soc. Pac. 120 (2008) 235-265, arXiv:0706.1565.
[Ratra:2007sa]
[4-87]
Probing Models of Quantum Decoherence in Particle Physics and Cosmology, Nikolaos E. Mavromatos, Sarben Sarkar, arXiv:hep-ph/0612193, 2006.
[Mavromatos:2006yn]
[4-88]
The Physics and Early History of the Intergalactic Medium, Rennan Barkana, Abraham Loeb, Rept. Prog. Phys. 70 (2007) 627, arXiv:astro-ph/0611541.
[Barkana:2006ep]
[4-89]
Report by the ESA-ESO Working Group on Fundamental Cosmology, John A. Peacock et al., arXiv:astro-ph/0610906, 2006.
[Peacock:2006kj]
[4-90]
Reconstructing Dark Energy, Varun Sahni, Alexei Starobinsky, Int. J. Mod. Phys. D15 (2006) 2105-2132, arXiv:astro-ph/0610026.
[Sahni:2006pa]
[4-91]
Report of the Dark Energy Task Force, Andreas Albrecht et al., arXiv:astro-ph/0609591, 2006.
[Albrecht:2006um]
[4-92]
The First Stars in the Universe and Cosmic Reionization, Rennan Barkana, Science 313 (2006) 931=934, arXiv:astro-ph/0608450.
[Barkana:2006pj]
[4-93]
Cosmology at Low Frequencies: The 21 cm Transition and the High-Redshift Universe, Steven Furlanetto, S. Peng Oh, Frank Briggs, Phys. Rept. 433 (2006) 181-301, arXiv:astro-ph/0608032.
[Furlanetto:2006jb]
[4-94]
Surveying the dark side, Roberto Trotta, Richard Bower, Astron. Geophys. 47 (2006) 4:20-4:27, arXiv:astro-ph/0607066.
[Trotta:2006gx]
[4-95]
The CMB polarization: status and prospects, Amedeo Balbi, Paolo Natoli, Nicola Vittorio, arXiv:astro-ph/0606511, 2006.
[Balbi:2006vk]
[4-96]
The large-scale structure of the Universe, Volker Springel, Carlos S. Frenk, Simon D. M. White, Nature Nature (2006) (2006), arXiv:astro-ph/0604561.
[Springel:2006vs]
[4-97]
Task Force on Cosmic Microwave Background Research, James Bock et al., arXiv:astro-ph/0604101, 2006.
[Bock:2006yf]
[4-98]
Massive neutrinos and cosmology, Julien Lesgourgues, Sergio Pastor, Phys. Rept. 429 (2006) 307-379, arXiv:astro-ph/0603494.
[Lesgourgues:2006nd]
[4-99]
Primordial Neutrinos, Steen Hannestad, Ann. Rev. Nucl. Part. Sci. 56 (2006) 137-161, arXiv:hep-ph/0602058.
[Hannestad:2006zg]
[4-100]
Weak Gravitational Lensing of the CMB, Antony Lewis, Anthony Challinor, Phys. Rep. 429 (2006) 1, arXiv:astro-ph/0601594.
[Lewis:2006fu]
[4-101]
Cosmic Microwave Background Mini-Review, Douglas Scott, George Smoot, Rev.Part.Phys. (2006), arXiv:astro-ph/0601307. The Review of Particle Properties 2005. http://pdg.lbl.gov/2005/reviews/microwaverpp.pdf.
[Scott:2006xy]
[4-102]
The cosmological parameters 2005, Ofer Lahav, Andrew R Liddle, J. Phys. G33 (2010) 1, arXiv:astro-ph/0601168. The Review of Particle Properties 2005. http://pdg.lbl.gov/2005/reviews/hubblerpp.pdf.
[Lahav:2010mi]
[4-103]
Is Our Universe Natural?, Sean M. Carroll, Nature 440 (2006) 1132-1136, arXiv:hep-th/0512148.
[Carroll:2005ah]
[4-104]
Primordial Nucleosynthesis: Successes And Challenges, Gary Steigman, Int. J. Mod. Phys. E15 (2006) 1, arXiv:astro-ph/0511534.
[Steigman:2005uz]
[4-105]
Introduction to Higher Order Spatial Statistics in Cosmology, Istvan Szapudi, arXiv:astro-ph/0505391, 2005.
[Szapudi:2005vs]
[4-106]
Understanding our universe: Current status and open issues, T. Padmanabhan, 100 Years Of Relativity : space-time structure: Einstein and beyond (2005) 175-204, arXiv:gr-qc/0503107.
[Padmanabhan:2005cw]
[4-107]
Inflationary Cosmology: Exploring the Universe from the Smallest to the Largest Scales, Alan H. Guth, David I. Kaiser, Science 307 (2005) 884, arXiv:astro-ph/0502328.
[Guth:2005zr]
[4-108]
Leptogenesis as the origin of matter, W. Buchmuller, R. D. Peccei, T. Yanagida, Ann. Rev. Nucl. Part. Sci. 55 (2005) 311, arXiv:hep-ph/0502169.
[Buchmuller:2005eh]
[4-109]
APS Neutrino Study: Report of the Neutrino Astrophysics and Cosmology Working Group, Steve W. Barwick et al., arXiv:astro-ph/0412544, 2004.
[Barwick:2004ep]
[4-110]
Neutrinoless double beta decay and direct searches for neutrino mass, Craig Aalseth et al., arXiv:hep-ph/0412300, 2004.
[Aalseth:2004hb]
[4-111]
Neutrino Masses from Cosmological Probes, Oystein Elgaroy, Ofer Lahav, New J. Phys. 7 (2005) 61, arXiv:hep-ph/0412075.
[Elgaroy:2004rc]
[4-112]
Dark Energy: the Cosmological Challenge of the Millennium, T. Padmanabhan, Curr. Sci. 88 (2005) 1057, arXiv:astro-ph/0411044.
[Padmanabhan:2004av]
[4-113]
Type Ia Supernovae and Cosmology, Alexei V. Filippenko, Astrophys.Space Sci.Libr. 332 (2005) 97, arXiv:astro-ph/0410609.
[Filippenko:2004ub]
[4-114]
The Formation of the First Stars in the Universe, Simon C.O. Glover, Space Sci. Rev. 117 (2005) 445, arXiv:astro-ph/0409737.
[Glover:2004yb]
[4-115]
Big Bang Nucleosynthesis, Brian Fields, Subir Sarkar, Phys. Rev. D86 (2012) 066004, arXiv:astro-ph/0406663.
[Anchordoqui:2012wt]
[4-116]
Cosmic Background Radiation Mini-Review, Douglas Scott, George Smoot, Phys. Lett. B592 (2004) 221, arXiv:astro-ph/0406567. The Review of Particle Properties 2004. http://pdg.lbl.gov/2004/reviews/microwaverpp.pdf.
[Scott:2004pr]
[4-117]
Non-Gaussianity from Inflation: Theory and Observations, N. Bartolo, E. Komatsu, S. Matarrese, A. Riotto, Phys. Rep. 402 (2004) 103, arXiv:astro-ph/0406398.
[Bartolo:2004if]
[4-118]
BBN For Pedestrians, James P. Kneller, Gary Steigman, New J. Phys. 6 (2004) 117, arXiv:astro-ph/0406320.
[Kneller:2004jz]
[4-119]
Cosmic acceleration, scalar fields and observations, C. A. Terrero-Escalante, Lect. Notes Phys. 646 (2004) 109, arXiv:astro-ph/0404591.
[TerreroEscalante:2004aw]
[4-120]
Neutrinos in cosmology, Steen Hannestad, New J. Phys. 6 (2004) 108, arXiv:hep-ph/0404239. http://www.iop.org/EJ/abstract/1367-2630/6/1/108/.
[Hannestad:2004nb]
[4-121]
Particle Dark Matter: Evidence, Candidates and Constraints, Gianfranco Bertone, Dan Hooper, Joseph Silk, Phys. Rep. 405 (2013) 279, arXiv:hep-ph/0404175.
[Sadeghian:2013bga]
[4-122]
Variations of the Fine Structure Constant in Space and Time, D.F. Mota, arXiv:astro-ph/0401631, 2004.
[Mota:2004mz]
[4-123]
Dark and luminous matter connections. Towards understanding galaxy evolution, Paola Mazzei, arXiv:astro-ph/0401509, 2004.
[Mazzei:2004pf]
[4-124]
Leptogenesis for Pedestrians, W. Buchmuller, P. Di Bari, M. Plumacher, Annals Phys. 315 (2005) 305, arXiv:hep-ph/0401240.
[Buchmuller:2004nz]
[4-125]
Review of particle physics, S. Eidelman et al. (Particle Data Group), Phys. Lett. B592 (2004) 1. http://pdg.lbl.gov.
[Eidelman:2004wy]
[4-126]
Dark Matter, M. Drees, G. Gerbier, Phys. Lett. B592 (2004) 216. The Review of Particle Properties 2004. http://pdg.lbl.gov/2005/reviews/darkmatrpp.pdf.
[Drees:2004ak]
[4-127]
Big-Bang Cosmology, K. A. Olive, J. A. Peacock, Phys. Lett. B592 (2004) 191. The Review of Particle Properties 2004. http://pdg.lbl.gov/2005/reviews/bigbangrpp.pdf.
[Olive:2004qb]
[4-128]
Measuring our universe from galaxy redshift surveys, Ofer Lahav, Yasushi Suto, Living Rev. Relativity 7 (2004) 8, arXiv:astro-ph/0310642. http://www.livingreviews.org/lrr-2004-8/.
[Lahav:2003xw]
[4-129]
A Map of the Universe, J. R. Gott III et al., Astrophys. J. 624 (2005) 463, arXiv:astro-ph/0310571.
[Gott:2003pf]
[4-130]
Why is the Universe Accelerating?, S. M. Carroll, eConf C0307282 (2003) TTH09, arXiv:astro-ph/0310342.
[Carroll:2003qq]
[4-131]
The Accelerating Universe and Dark Energy: Evidence from Type Ia Supernovae, A. V. Filippenko, Lect. Notes Phys. 646 (2004) 191, arXiv:astro-ph/0309739.
[Filippenko:2003ta]
[4-132]
Cosmoparticle Physics -the Challenge for the Millenium, M. Yu. Khlopov, arXiv:astro-ph/0309704, 2003.
[Khlopov:2003cm]
[4-133]
Physics of Primordial Universe, M. Yu. Khlopov, arXiv:astro-ph/0309703, 2003.
[Khlopov:2003ck]
[4-134]
Development of the Universe and New Cosmology, A. S. Sakharov, H. Hofer, arXiv:astro-ph/0309326, 2003.
[Sakharov:2003bs]
[4-135]
Big Bang Nucleosynthesis: Probing the First 20 Minutes, Gary Steigman, arXiv:astro-ph/0307244, 2003.
[Steigman:2003gc]
[4-136]
Weak Gravitational Lensing by Large-Scale Structure, Alexandre Refregier, Ann. Rev. Astron. Astrophys. 41 (2003) 645-668, arXiv:astro-ph/0307212.
[Refregier:2003ct]
[4-137]
The First Nonlinear Structures and the Reionization History of the Universe, Z. Haiman, arXiv:astro-ph/0304131, 2003.
[Haiman:2003he]
[4-138]
The first second of the Universe, D. J. Schwarz, Annalen Phys. 12 (2003) 220, arXiv:astro-ph/0303574. invited review to appear in Annalen der Physik (50 pages, 16 figures).
[Schwarz:2003du]
[4-139]
The world according to the Hubble Space Telescope, M. Livio, arXiv:astro-ph/0303500, 2003.
[Livio:2003tc]
[4-140]
The origin of the matter-antimatter asymmetry, M. Dine, A. Kusenko, Rev. Mod. Phys. 76 (2003) 1, arXiv:hep-ph/0303065.
[Dine:2003ax]
[4-141]
A Preposterous Universe, A. Gangui, Science 229 (2003) 1333, arXiv:astro-ph/0303048.
[Gangui:2003tt]
[4-142]
Neutrinos from the Big Bang, Subir Sarkar, Proc. Indian Natl. Sci. Acad. 70A (2004) 163, arXiv:hep-ph/0302175.
[Sarkar:2003ch]
[4-143]
Intermediate-Mass Black Holes in the Universe? - A Review of Formation Theories and Observational Constraints, R. P. van der Marel, arXiv:astro-ph/0302101, 2003.
[vanderMarel:2003ka]
[4-144]
Particle Aspects of Cosmology and Baryogenesis, Riazuddin, arXiv:hep-ph/0302020, 2003.
[Riazuddin:2003ab]
[4-145]
Cosmological Constant - the Weight of the Vacuum, T. Padmanabhan, Phys. Rep. 380 (2003) 235, arXiv:hep-th/0212290.
[Padmanabhan:2002ji]
[4-146]
Absolute values of neutrino masses: Status and prospects, S. M. Bilenky, C. Giunti, J. A. Grifols, E. Masso, Phys. Rep. 379 (2003) 69-148, arXiv:hep-ph/0211462.
[Bilenky:2002aw]
[4-147]
CMB temperature and polarization anisotropy fundamentals, Wayne Hu, Annals Phys. 303 (2003) 203-225, arXiv:astro-ph/0210696.
[Hu:2002aa]
[4-148]
Measuring the Influence of Supernovae at High Redshift, K. L. Adelberger, ASP Conf.Ser. 291 (2003) 221, arXiv:astro-ph/0210315.
[Adelberger:2002qq]
[4-149]
The Dynamical Parameters of the Universe, S. M. Harun-or-Rashid M. Roos, arXiv:astro-ph/0209611, 2002.
[Roos:2002mk]
[4-150]
The picture of our universe: A view from modern cosmology, David D. Reid, Daniel W. Kittell, Eric E. Arsznov, Gregory B. Thompson, arXiv:astro-ph/0209504, 2002.
[Reid:2002kp]
[4-151]
The Cosmological Constant and Dark Energy, B. Ratra P. J. E. Peebles, Rev. Mod. Phys. 75 (2003) 599, arXiv:astro-ph/0207347.
[Peebles:2002gy]
[4-152]
Measuring spacetime: From big bang to black holes, M. Tegmark, Science 296 (2004) 1427-1433, arXiv:astro-ph/0207199.
[Tegmark:2002dg]
[4-153]
Halo models of large scale structure, Asantha Cooray, Ravi Sheth, Phys. Rep. 372 (2002) 1-129, arXiv:astro-ph/0206508.
[Cooray:2002dia]
[4-154]
Astrophysical and cosmological constraints on neutrino masses, Kimmo Kainulainen, Keith A. Olive, Springer Tracts Mod. Phys. 190 (2003) 53-74, arXiv:hep-ph/0206163.
[Kainulainen:2002pu]
[4-155]
The Cold Dark Matter crisis on galactic and subgalactic scales, A. Tasitsiomi, Int. J. Mod. Phys. D12 (2003) 1157, arXiv:astro-ph/0205464.
[Tasitsiomi:2002hi]
[4-156]
CP violation and baryogenesis, W. Bernreuther, Lect. Notes Phys. 591 (2002) 237-293, arXiv:hep-ph/0205279.
[Bernreuther:2002uj]
[4-157]
Neutrinos in cosmology, A. D. Dolgov, Phys. Rep. 370 (2002) 333-535, arXiv:hep-ph/0202122.
[Dolgov:2002wy]
[4-158]
Large-scale structure of the universe and cosmological perturbation theory, F. Bernardeau, S. Colombi, E. Gaztanaga, R. Scoccimarro, Phys. Rep. 367 (2002) 1-248, arXiv:astro-ph/0112551.
[Bernardeau:2001qr]
[4-159]
Cosmic Microwave Background Anisotropies, W. Hu, S. Dodelson, Ann. Rev. Astron. Astrophys. 40 (2002) 171, arXiv:astro-ph/0110414. http://background.uchicago.edu/~whu/araa/araa.html.
[Hu:2001bc]
[4-160]
Neutrino propagation in dense astrophysical systems, Madappa Prakash, James M. Lattimer, Raymond F. Sawyer, Raymond R. Volkas, Ann. Rev. Nucl. Part. Sci. 51 (2001) 295-344, arXiv:astro-ph/0103095.
[Prakash:2001rx]
[4-161]
Large-Scale Structure, Theory and Statistics, Peter Coles, arXiv:astro-ph/0103017, 2001. http://nedwww.ipac.caltech.edu/level5/March01/Coles/frames.html.
[Coles:2001cd]
[4-162]
Hot dark matter in cosmology, Joel R. Primack, Michael A. K. Gross, arXiv:astro-ph/0007165, 2000.
[Primack:2000iq]
[4-163]
The cosmological constant, Sean M. Carroll, Living Rev. Rel. 4 (2001) 1, arXiv:astro-ph/0004075. http://www.livingreviews.org/lrr-2001-1/.
[Carroll:2000fy]
[4-164]
Non-baryonic dark matter: Observational evidence and detection methods, Lars Bergstrom, Rept. Prog. Phys. 63 (2000) 793, arXiv:hep-ph/0002126.
[Bergstrom:2000pn]
[4-165]
The Cosmic Microwave Background Radiation, Eric Gawiser, Joseph Silk, Phys. Rep. 333 (2000) 245-267, arXiv:astro-ph/0002044.
[Gawiser:2000az]
[4-166]
Weak Gravitational Lensing, Matthias Bartelmann, Peter Schneider, Phys. Rep. 340 (2001) 291-472, arXiv:astro-ph/9912508.
[Bartelmann:1999yn]
[4-167]
The Cosmic Microwave Background: State of the Art, R. Belen Barreiro, New Astron. Rev. 44 (2000) 179-204, arXiv:astro-ph/9907094.
[Barreiro:1999ct]
[4-168]
The Cosmic Triangle: Revealing the State of the Universe, N. A. Bahcall, J. P. Ostriker, S. Perlmutter, P. J. Steinhardt, Science 284 (1999) 1481-1488, arXiv:astro-ph/9906463.
[Bahcall:1999xn]
[4-169]
Primordial nucleosynthesis: Theory and observations, Keith A. Olive, Gary Steigman, Terry P. Walker, Phys. Rep. 333 (2000) 389-407, arXiv:astro-ph/9905320.
[Olive:1999ij]
[4-170]
The Cosmic microwave background and particle physics, Marc Kamionkowski, Arthur Kosowsky, Ann.Rev.Nucl.Part.Sci. 49 (1999) 77-123, arXiv:astro-ph/9904108.
[Kamionkowski:1999qc]
[4-171]
Probing the Universe with Weak Lensing, Yannick Mellier, Ann. Rev. Astron. Astrophys. 37 (1999) 127, arXiv:astro-ph/9812172.
[Mellier:1998pk]
[4-172]
What have we already learned from the CMB?, Charles R. Lawrence, Douglas Scott, Martin J. White, Publ. Astron. Soc. Pac. 111 (1999) 525, arXiv:astro-ph/9810446.
[Lawrence:1998ri]
[4-173]
The Lyman Alpha Forest in the Spectra of QSOs, Michael Rauch, Ann. Rev. Astron. Astrophys. 36 (1998) 267-31, arXiv:astro-ph/9806286.
[Rauch:1998xn]
[4-174]
The Cosmic microwave background, A. W. Jones, A. N. Lasenby, Living Rev. Rel. 1 (1998) 11. http://www.livingreviews.org/lrr-1998-11/.
[Jones:1998gz]
[4-175]
A CMB Polarization Primer, Wayne Hu, Martin J. White, New Astron. 2 (1997) 323, arXiv:astro-ph/9706147.
[Hu:1997hv]
[4-176]
Big-bang nucleosynthesis enters the precision era, David N. Schramm, Michael S. Turner, Rev. Mod. Phys. 70 (1998) 303-318, arXiv:astro-ph/9706069.
[Schramm:1997vs]
[4-177]
The Physics of microwave background anisotropies, Wayne Hu, Naoshi Sugiyama, Joseph Silk, Nature 386 (1997) 37-43, arXiv:astro-ph/9604166.
[Hu:1995hf]
[4-178]
Big bang nucleosynthesis and physics beyond the standard model, Subir Sarkar, Rept. Prog. Phys. 59 (1996) 1493-1610, arXiv:hep-ph/9602260.
[Sarkar:1995dd]
[4-179]
Concepts in CMB anisotropy formation, Wayne Hu, Lect. Notes Phys. 470 (1996) 207, arXiv:astro-ph/9511130.
[Hu:1995fq]
[4-180]
Wandering in the background: A Cosmic microwave background explorer, Wayne T. Hu, arXiv:astro-ph/9508126, 1995.
[Hu:1995em]
[4-181]
Anisotropies in the cosmic microwave background, M. J. White, D. Scott, J. Silk, Ann. Rev. Astron. Astrophys. 32 (1994) 319-370. http://nedwww.ipac.caltech.edu/level5/March02/White/White_contents.html.
[White:1994sx]
[4-182]
Probing the early universe: A Review of primordial nucleosynthesis beyond the standard Big Bang, R. A. Malaney, G. J. Mathews, Phys. Rep. 229 (1993) 145-219.
[Malaney:1993ah]
[4-183]
The number of neutrino species, D. Denegri, B. Sadoulet, M. Spiro, Rev. Mod. Phys. 62 (1990) 1.
[Denegri:1989if]
[4-184]
Big Bang Nucleosynthesis: Theories and Observations, Ann Merchant Boesgaard, Gary Steigman, Ann. Rev. Astron. Astrophys. 23 (1985) 319.
[Boesgaard:1985km]
[4-185]
Cosmology and elementary particles, A. D. Dolgov, Ya. B. Zeldovich, Rev. Mod. Phys. 53 (1981) 1-41.
[Dolgov:1981hv]
[4-186]
Cosmology Confronts Particle Physics, G. Steigman, Ann. Rev. Nucl. Part. Sci. 29 (1979) 313-338.
[Steigman:1979kw]

5 - Reviews - Phenomenology - Conference Proceedings

[5-1]
Neutrino properties from cosmology, Maria Archidiacono, Thejs Brinckmann, Julien Lesgourgues, Vivian Poulin, arXiv:1705.00496, 2017. NuPhys2016 (London, 12-14 December 2016).
[Archidiacono:2017tlz]
[5-2]
Status of Dark Matter in the Universe, Katherine Freese, arXiv:1701.01840, 2017. 14th Marcel Grossman Meeting, MG14, University of Rome 'La Sapienza', Rome, July 2015.
[Freese:2017idy]
[5-3]
Primordial Nucleosynthesis, Alain Coc, J.Phys.Conf.Ser. 665 (2016) 012001, arXiv:1609.06048. 14th International Symposium on Nuclei in the Cosmos XIV (Niigata).
[Coc:2016oab]
[5-4]
Nuclear Physics and Astrophysics of Neutrino Oscillations, A.B. Balantekin, JPS Conf.Proc. 14 (2017) 010701, arXiv:1609.02207. NIC 2016.
[Balantekin:2016ndb]
[5-5]
CMB foregrounds - A brief review, Clive Dickinson, arXiv:1606.03606, 2016. Rencontres de Moriond Cosmology 2016.
[Dickinson:2016xyz]
[5-6]
Cosmic Neutrinos and Other Light Relics, Joel Meyers, arXiv:1605.05575, 2016. Rencontres de Moriond Cosmology 2016.
[Meyers:2016htp]
[5-7]
Neutrino physics and precision cosmology, Steen Hannestad, arXiv:1605.03829, 2016. NuPhys2015 (London, 16-18 December 2015).
[Hannestad:2016mvv]
[5-8]
Running Vacuum in the Universe: current phenomenological status, Joan Sola, arXiv:1601.01668, 2016. 14th Marcel Grossmann Meeting.
[Sola:2016vis]
[5-9]
Light Sterile Neutrinos In Cosmology, Stefano Gariazzo, arXiv:1601.01475, 2016. 17th Lomonosov Conference.
[Gariazzo:2016ehl]
[5-10]
Another look to distortions of the CMB spectrum, G. De Zotti, M. Negrello, G. Castex, A. Lapi, M. Bonato, JCAP 1603 (2016) 047, arXiv:1512.04816. CMB@50, Princeton University, 10-12 June 2015.
[DeZotti:2015awh]
[5-11]
Heavy neutrinos in particle physics and cosmology, Marco Drewes, PoS EPS-HEP2015 (2015) 075, arXiv:1510.07883. EPS-HEP2015.
[Drewes:2015vma]
[5-12]
A Taste of Cosmology, L. Verde, arXiv:1504.05945, 2015.
[Verde:2015jla]
[5-13]
The Observational Status of Cosmic Inflation after Planck, Jerome Martin, Astrophys.Space Sci.Proc. 45 (2016) 41-134, arXiv:1502.05733. II JPBCosmo School (Brazil).
[Martin:2015dha]
[5-14]
An introduction to inflation after Planck: from theory to observations, Sebastien Clesse, arXiv:1501.00460, 2015. Xth Modave School in Mathematical Physics.
[Clesse:2015yka]
[5-15]
Antimatter in the universe and laboratory, A.D. Dolgov, EPJ Web Conf. 95 (2015) 03007, arXiv:1411.2280. Int. Conf. New Frontiers in Physics 2014.
[Dolgov:2014xva]
[5-16]
B-mode in CMB polarization. What's that and why it is interesting, A.D. Dolgov, arXiv:1410.6280, 2014. XXX Int. Workshop on HIgh Energy Physics 'Particle and Astroparticle Physics, Gravitation and Cosmology:Predictions, Observations and New Projects. Protvino, June, 23-27, 2014.
[Dolgov:2014nsa]
[5-17]
How many new particles do we need after the Higgs boson?, Marco Drewes, arXiv:1405.2931, 2014. 49th Rencontres de Moriond on Electroweak Interactions and Unified Theories (2014).
[Drewes:2014vaa]
[5-18]
CosPA2013: Outlook, Francis Halzen, arXiv:1402.7302, 2014. 10th International Symposium on Cosmology and Particle Astrophysics (CosPA2013).
[Halzen:2014nea]
[5-19]
Weak gravitational lensing, H. Hoekstra, Proc.Int.Sch.Phys.Fermi 186 (2014) 59-100, arXiv:1312.5981. International School of Physics Enrico Fermi 'New Horizons for Observational Cosmology', Varenna, July 1-6, 2013.
[Hoekstra:2013gua]
[5-20]
Large Scale Structure Observations, Will J. Percival, Proc.Int.Sch.Phys.Fermi 186 (2014) 101-135, arXiv:1312.5490. Post-Planck Cosmology, Ecole de Physique des Houches, Les Houches, July 8-Aug 2, 2013 and New Horizons for Observational Cosmology, International School of Physics Enrico Fermi, Varenna, July 1-6, 2013.
[Percival:2013awa]
[5-21]
Galaxy formation, Joseph Silk, Arianna Di Cintio, Irina Dvorkin, Proc.Int.Sch.Phys.Fermi 186 (2014) 137-187, arXiv:1312.0107. Post-Planck Cosmology, Ecole de Physique des Houches, Les Houches, July 8-Aug 2, 2013.
[Silk:2013xca]
[5-22]
Cosmology: theory, Mikhail Shaposhnikov, PoS EPS-HEP2013 (2014) 155, arXiv:1311.4979. European Physical Society Conference on High Energy Physics, 18-24 July, 2013, Stockholm, Sweden.
[Shaposhnikov:2013ira]
[5-23]
Particle Physics and Cosmology, P. Pralavorio, arXiv:1311.1769, 2013. 100th Les Houches Summer School on Post-Planck Cosmology, July 8th - Aug 2nd 2013.
[Pralavorio:2013qha]
[5-24]
Neutrino physics from Cosmology, Steen Hannestad, Nuovo Cim. C037 (2014) 111-116, arXiv:1311.0623. Pontecorvo100 - Symposium in honour of Bruno Pontecorvo.
[Hannestad:2013nva]
[5-25]
The Physics of Neutrinos, Renata Zukanovich Funchal, Benoit Schmauch, Gaelle Giesen, arXiv:1308.1029, 2013. Course given at Institut de Physique Theorique of CEA/Saclay in January/February 2013.
[Funchal:2013ksa]
[5-26]
Towards the Chalonge 17th Paris Cosmology Colloquium 2013: highlights and conclusions of the Chalonge 16th Paris Cosmology Colloquium 2012, H. J. de Vega, M.C. Falvella, N. G. Sanchez, arXiv:1307.1847, 2013.
[deVega:2013hpa]
[5-27]
Recent developments in astrophysical and cosmological exploitation of microwave surveys, Carlo Burigana et al., Int.J.Mod.Phys. D22 (2013) 1330011, arXiv:1302.3474.
[Burigana:2013fsa]
[5-28]
Neutrino 2012: Outlook - theory, A. Yu. Smirnov, Nucl. Phys. Proc. Suppl. 235-236 (2013) 431-440, arXiv:1210.4061. XXV International Conference on Neutrino Physics and Astrophysics, June 3 - 9, 2012, Kyoto, Japan.
[Smirnov:2012ei]
[5-29]
The Neutron and the Universe - History of a Relationship, Stephan Paul, PoS BORMIO2012 (2012) 025, arXiv:1205.2451. Bormio Winter Meeting 2012.
[Paul:2012kp]
[5-30]
The Hubble constant and new discoveries in cosmology, S. H. Suyu et al., arXiv:1202.4459, 2012. Workshop on the Hubble constant, KIPAC, February 6-8 2012.
[Suyu:2012ax]
[5-31]
Proceedings of the 2010 European School of High-energy Physics, Raseborg, Finland, 20 Jun - 3 Jul 2010, C. Grojean, M. Spiropulu, arXiv:1202.1629, 2012.
[Grojean:2012wp]
[5-32]
Proceedings of the first workshop on Flavor Symmetries and consequences in Accelerators and Cosmology (FLASY2011), M. Hirsch et al., arXiv:1201.5525, 2012. 1st Workshop on Flavor Symmetries and consequences in Accelerators and Cosmology 11 - 14 July 2011, Valencia (Spain).
[Hirsch:2012ym]
[5-33]
Neutrinos and the Universe, Nick E. Mavromatos, J. Phys. Conf. Ser. 408 (2013) 012003, arXiv:1110.3729. Nufact 11, CERN and U. of Geneva, 1-6 August 2011.
[Mavromatos:2011ur]
[5-34]
Round Table Discussion at the Workshop 'New Directions in Modern Cosmology', Theo M. Nieuwenhuizen, Peter D. Keefe, Vaclav Spicka, J. Cosmol. 15 (2011) 6326-6339, arXiv:1108.3485.
[Nieuwenhuizen:2011vd]
[5-35]
What do we really know about Dark Energy?, Ruth Durrer, Phil.Trans.Roy.Soc.Lond. A369 (2011) 5102-5114, arXiv:1103.5331. Cosmological Tests of General Relativity.
[Durrer:2011gq]
[5-36]
Proceedings of the 2009 CERN-Latin-American School of High-Energy Physics, Recinto Quirama, Colombia, 15 - 28 March 2009, C. Grojean, M. Spiropulu, arXiv:1010.5976, 2010. CERN Yellow Report.
[Grojean:2010zza]
[5-37]
Particle cosmology, A. Riotto, arXiv:1010.2642, 2010. 5th CERN-Latin-American School of High-Energy Physics, Recinto Quirama, Colombia, 15 - 28 Mar 2009.
[Riotto:2010jd]
[5-38]
The violent Universe: the Big Bang, Keith A. Olive, arXiv:1005.3955, 2010. 2009 European School of High-Energy Physics, Bautzen, Germany, June 2009.
[Olive:2010mh]
[5-39]
The connection between cosmology and neutrino physics, Steen Hannestad, arXiv:1003.4119, 2010. Workshop 'European Strategy for Future Neutrino Physics', CERN, oct.2009.
[Hannestad:2010qz]
[5-40]
Gif Lectures on direct detection of Dark Matter, Eric Armengaud, arXiv:1003.2380, 2010. Gif school 2009.
[Armengaud:2010zg]
[5-41]
Summary & Outlook: Particles and Cosmology, Wilfried Buchmuller, PoS EPS-HEP2009 (2009) 029, arXiv:1003.1078. EPS 2009, Kracow.
[Buchmuller:2010iy]
[5-42]
Dark Energy and Dark Matter, Keith A. Olive, Conf. Proc. C0908171 (2009) 257-270, arXiv:1001.5014. XXIV International Symposium on Lepton Photon Interactions at High Energies, Hamburg Germany, August 2009.
[Olive:2010qw]
[5-43]
Statistical methods in cosmology, Licia Verde, Lect. Notes Phys. 800 (2010) 147-177, arXiv:0911.3105. 2nd Trans-Regio Winter school in Passo del Tonale.
[Verde:2009tu]
[5-44]
Weak lensing: Dark Matter, Dark Energy and Dark Gravity, Alan Heavens, Nucl. Phys. Proc. Suppl. 194 (2009) 76-81, arXiv:0911.0350.
[Heavens:2009fi]
[5-45]
Fundamental Symmetries of the Early Universe and the Precision Frontier, Michael J. Ramsey-Musolf, AIP Conf. Proc. 1182 (2009) 635-643, arXiv:0907.3916. CIPANP 2009.
[RamseyMusolf:2009ga]
[5-46]
Dark Matter Astrophysics, Guido D'Amico, Marc Kamionkowski, Kris Sigurdson, arXiv:0907.1912, 2009. Villa Olmo School on 'The Dark Side of the Universe,' 14-18 May 2007 and XIX Heidelberg Physics Graduate Days, 8-12 October 2007.
[DAmico:2009tep]
[5-47]
Introduction to Cosmology, A.D. Dolgov, Phys. Atom. Nucl. 73 (2010) 815-847, arXiv:0907.0668. ITEP Winter School, 2009.
[Dolgov:2009zj]
[5-48]
Statistical techniques in cosmology, Alan Heavens, arXiv:0906.0664, 2009. Francesco Lucchin summer school, Bertinoro, Italy, May 2009.
[Heavens:2009nx]
[5-49]
Great Surveys of the Universe, Steven T. Myers, arXiv:0904.2593, 2009. Great Surveys of Astronomy Workshop, 20-22 November 2008, Santa Fe, NM.
[Myers:2009ve]
[5-50]
Cosmologists in the dark, Vicent J. Martinez, Virginia Trimble, ASP Conf.Ser. 409 (2009) 47, arXiv:0904.1126. Cosmology across Cultures, Granada, Spain, 2008.
[Martinez:2009nq]
[5-51]
TASI 2008 Lectures on Dark Matter, Dan Hooper, arXiv:0901.4090, 2009. 2008 Theoretical Advanced Study Institute (TASI).
[Hooper:2009zm]
[5-52]
Baryogenesis and cosmological antimatter, A.D. Dolgov, AIP Conf. Proc. 1116 (2009) 155-170, arXiv:0901.2100. XIII Mexican School of Particles and Fields, San Carlos, October, 2008.
[Dolgov:2009py]
[5-53]
Dark matter and dark energy proposals: maintaining cosmology as a true science?, George F. R. Ellis, EAS Publ.Ser. 36 (2009) 325-336, arXiv:0811.3529. CRAL-IPNL conference 'Dark Energy and Dark Matter', Lyon 2008.
[Ellis:2008up]
[5-54]
Neutrinos as cosmic messengers, J. W. F. Valle, AIP Conf. Proc. 1115 (2009) 13-26, arXiv:0811.0707. 4th International Workshop on the Dark Side of the Universe (DSU08) Conference, Cairo.
[Valle:2008rg]
[5-55]
Neutrinos and Future Concordance Cosmologies, Peter Adshead, Richard Easther, J. Phys. Conf. Ser. 136 (2008) 022044, arXiv:0810.2591. Neutrino 2008.
[Adshead:2008ky]
[5-56]
A Cosmic Vision Beyond Einstein, Eric V. Linder, PoS IDM2008 (2008) 042, arXiv:0810.1754. IDM2008.
[Linder:2008rd]
[5-57]
Cosmology for Particle Physicists, U. A. Yajnik, arXiv:0808.2236, 2008. SERC School on Theoretical High Energy Physics, PRL Ahmedabad, February 2006.
[Yajnik:2006kn]
[5-58]
Neutrinos and BBN (and the CMB), Gary Steigman, arXiv:0807.3004, 2008. NO-VE IV International Workshop on: Neutrino Oscillations in Venice.
[Steigman:2008eb]
[5-59]
The ART of Cosmological Simulations, Stefan Gottloeber, Anatoly Klypin, arXiv:0803.4343, 2008. High Performance Computing in Science and Engineering Garching/Munich 2007.
[Gottloeber:2008ac]
[5-60]
Recent Developments in Gravitational Microlensing, Andrew Gould, ASP Conf.Ser. 403 (2009) 86, arXiv:0803.4324. The Variable Universe: A Celebration of Bohdan Paczynski, 29 Sept 2007.
[Gould:2008zu]
[5-61]
Cosmology and Neutrino Properties, A. D. Dolgov, Phys. Atom. Nucl. 71 (2008) 2152-2164, arXiv:0803.3887. Meeting of Nuclear Physics Division of Russian Academy of Sci., November, 2007, Moscow.
[Dolgov:2008hz]
[5-62]
Lecture Notes on CMB Theory: From Nucleosynthesis to Recombination, Wayne Hu, arXiv:0802.3688, 2008. XIX Canary Island Winter School of Astrophysics.
[Hu:2008hd]
[5-63]
The evidence for unusual gravity from the large-scale structure of the Universe, A. Diaferio, arXiv:0802.2532, 2008. 1st AFI symposium.
[Diaferio:2008jy]
[5-64]
Cosmic Neutrinos, Chris Quigg, arXiv:0802.0013, 2008. 2007 SLAC Summer Institute.
[Quigg:2008ab]
[5-65]
RICAP-07: Summary comments, Thomas K. Gaisser, Nucl. Instrum. Meth. A588 (2008) 276-280, arXiv:0801.4546. Roma International Conference on Astroparticle Physics, June 2007.
[Gaisser:2008cr]
[5-66]
Cosmological model: from initial conditions to structure formation, V. Lukash, Nuovo Cim. 122B (2007) 1411-1422, arXiv:0712.3356. A Century of Cosmology : Past, Present and Future, August 27-31 2007, Venezia, Italy.
[Lukash:2007ns]
[5-67]
The Future of Cosmology, George Efstathiou, Nuovo Cim. 122B (2007) 1423-1435, arXiv:0712.1513. A Century of Cosmology, S. Servolo, August 2007.
[Efstathiou:2007gz]
[5-68]
Observational approaches to understanding dark energy, Yun Wang, arXiv:0712.0041, 2007. 23rd International Symposium on Lepton and Photon Interactions at High Energy (LP07).
[Wang:2007sq]
[5-69]
CPT violations in Astrophysics and Cosmology, G. Auriemma, Chin.J.Astron.Astrophys.Suppl. 8 (2008) 33, arXiv:0711.0504. Frascati Workshop 2007 Vulcano (Italy), May 28 - June 2, 2007.
[Auriemma:2007bm]
[5-70]
Cosmology and the Unexpected, Edward W. Kolb, Subnucl.Ser. 45 (2009) 337-363, arXiv:0709.3102. International School of Subnuclear Physics, Searching for the 'totally unexpected' in the LHC era, Erice, Italy 2007.
[Kolb:2007gb]
[5-71]
LHC Physics and Cosmology, Nikolaos E. Mavromatos, arXiv:0708.0134, 2007. Lake Louise Winter Institute 2007, February 19-24, 2007.
[Mavromatos:2007mv]
[5-72]
Dark Matter, Viktor Zacek, arXiv:0707.0472, 2007. 2007 Lake Louise Winter Institute, March 2007.
[Zacek:2007mi]
[5-73]
WMAPping the Inflationary Universe, Raghavan Rangarajan, arXiv:0706.4166, 2007. 17th DAE-BRNS High Energy Physics Symposium at the Indian Institute of Technology, Kharagpur, December 11-15, 2006.
[Rangarajan:2007ff]
[5-74]
TASI Lectures on Astrophysical Aspects of Neutrinos, John F. Beacom, arXiv:0706.1824, 2007. Exploring New Frontiers Using Colliders and Neutrinos (TASI 2006), Boulder, Colorado, 4-30 Jun 2006.
[Beacom:2007av]
[5-75]
Cosmology with type-Ia supernovae, Ramon Miquel, J. Phys. A40 (2007) 6743, arXiv:astro-ph/0703459. IRGAC 06.
[Miquel:2007zi]
[5-76]
Physics Beyond the Standard Model and Cosmological Connections: A Summary from LCWS 06, K. Sridhar, Pramana 69 (2007) 719-726, arXiv:hep-ph/0702109. International Linear Collider Workshop in Bangalore, India in March 2006.
[Sridhar:2007vv]
[5-77]
Gamow Legacy and the Primordial Abundance of Light Elements, E. Terlevich, R. Terlevich, V. Luridiana, arXiv:astro-ph/0701744, 2007. Astrophysics and Cosmology after Gamow - Theory and Observations, Odessa, August 8-14, 2004.
[Terlevich:2007ym]
[5-78]
Probing Neutrino low energy and mass scales, Oliviero Cremonesi, Alessandro Melchiorri, Nucl. Phys. Proc. Suppl. 168 (2007) 383-388, arXiv:hep-ph/0701203. Neutrino Oscillation Workshop NOW2006, Otranto, Italy, September 9-16 2006.
[Cremonesi:2007qs]
[5-79]
Upper limits on neutrino masses from cosmology, Oystein Elgaroy, arXiv:hep-ph/0612097, 2006. NOW2006.
[Elgaroy:2006iy]
[5-80]
Cosmological constraints on Neutrino - Dark Matter interactions, Gianpiero Mangano, Nucl. Phys. Proc. Suppl. 168 (2007) 34-36, arXiv:astro-ph/0611887. Neutrino Oscillation Workshop NOW2006, Otranto, Italy, September 9-16 2006.
[Mangano:2006kj]
[5-81]
BBN And The CBR Probe The Early Universe, Gary Steigman, AIP Conf. Proc. 903 (2007) 40-47, arXiv:hep-ph/0611209. SUSY06, 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions, UC Irvine, California, 12-17 June 2006'.
[Steigman:2006yn]
[5-82]
Probing The Universe With Neutrinos At 20 Minutes And 400 Thousand Years, Gary Steigman, arXiv:astro-ph/0610599, 2006. Neutrino 2006.
[Steigman:2006mv]
[5-83]
Varying 'constants' in astrophysics and cosmology, Thomas Dent, AIP Conf. Proc. 903 (2007) 665-668, arXiv:hep-ph/0610376. SUSY06, the 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions, UC Irvine, California, 12-17 June 2006.
[Dent:2006mn]
[5-84]
Cosmic Microwave Background anisotropies: the power spectrum and beyond, Enrique Martinez-Gonzalez, Lect.Notes Phys. 665 (2009) 79, arXiv:astro-ph/0610162. Valencia Summer School 'Data Analysis in Cosmology, September 2004.
[MartinezGonzalez:2006na]
[5-85]
Dark Energy and Some Alternatives: a Brief Overview, J.S. Alcaniz, Braz. J. Phys. 36 (2006) 1109, arXiv:astro-ph/0608631. XXVI Brazilian National Meeting on Particles and Fields, Sao Lourenco, Brazil.
[Alcaniz:2006ay]
[5-86]
Baryogenesis via leptogenesis, Alessandro Strumia, arXiv:hep-ph/0608347, 2006. LesHouches 2005.
[Strumia:2006qk]
[5-87]
Probing dark energy with future surveys, Roberto Trotta, arXiv:astro-ph/0607496, 2006. 'Cosmology, galaxy formation and astroparticle physics on the pathway to the SKA', Oxford, April 10-12 2006.
[Trotta:2006pw]
[5-88]
Integrated Sachs-Wolfe effect in the era of precision cosmology, Levon Pogosian, New Astron. Rev. 50 (2006) 932-937, arXiv:astro-ph/0606626. Fundamental Physics With CMB workshop, UC Irvine, March 23-25, 2006.
[Pogosian:2006ay]
[5-89]
Future state of the Universe, Mariusz P. Dabrowski, Annalen Phys. 15 (2006) 352-363, arXiv:astro-ph/0606574. Pomeranian Workshop in Fundamental Cosmology (COSMOFUN'05), Pobierowo, Poland, 1-6 September 2005.
[Dabrowski:2006iv]
[5-90]
Cosmological quests in the CMB sky, Tarun Souradeep, Int. J. Mod. Phys. D15 (2006) 1725-1743, arXiv:astro-ph/0606512. International Conference on Einstein's Legacy in the New Millennium, December 15 - 22, 2005, Puri, India.
[Souradeep:2006vm]
[5-91]
Cosmology and New Physics, A.D. Dolgov, Phys. Atom. Nucl. 71 (2008) 651-670, arXiv:hep-ph/0606230. 9th International Moscow School of Physics (34th ITEP Winter School).
[Dolgov:2006xi]
[5-92]
Constraints on cosmological parameters, A. Balbi, PoS CMB2006 (2006) 009, arXiv:astro-ph/0606183. 'CMB and Physics of the Early Universe' - International Conference - Ischia, Italy, 20-22 April 2006.
[Balbi:2006mg]
[5-93]
Sub-eV upper limits on neutrino masses from cosmology, Oystein Elgaroy, Ofer Lahav, Phys. Scripta T127 (2006) 105-106, arXiv:hep-ph/0606007. SNOW 2006, Stockholm, May 2-6, 2006.
[Elgaroy:2006ii]
[5-94]
Cosmology with clusters of galaxies, Stefano Borgani, Lect.Notes Phys. (2006), arXiv:astro-ph/0605575. 2005 Guillermo Haro Summer School on Clusters.
[Borgani:2006ba]
[5-95]
What is the Role of Neutrinos in Shaping the Universe?, Lawrence M. Krauss, arXiv:astro-ph/0605378, 2006. International Workshop on NO-VE, Venice, 2006.
[Krauss:2006eb]
[5-96]
The Cosmology - Particle Physics Connection, Mark Trodden, AIP Conf. Proc. 842 (2006) 945-953, arXiv:hep-ph/0605284. Particles and Nuclei International Conference (PANIC05) and CMB and Physics of the Early Universe International Conference (2006).
[Trodden:2006ed]
[5-97]
Understanding Galaxy Formation and Evolution, V. Avila-Reese, arXiv:astro-ph/0605212, 2006. IV Mexican School of Astrophysics, July 18-25, 2005.
[AvilaReese:2006rg]
[5-98]
Gravitational Microlensing, Joachim Wambsganss, arXiv:astro-ph/0604278, 2006. 'Gravitational Lensing: Strong, Weak and Micro', 33rd Saas-Fee Advanced Course.
[Wambsganss:2006nj]
[5-99]
Non Thermal Features in the Cosmic Neutrino Background, G. Mangano, arXiv:astro-ph/0603603, 2006. 'Neutrino Oscillations in Venice' Conference, Venice, February 7-10 2006.
[Mangano:2006xs]
[5-100]
First Light, Abraham Loeb, arXiv:astro-ph/0603360, 2006. SAAS-Fee Winter School, April 2006.
[Loeb:2006za]
[5-101]
Dark Energy: Mystery of the Millennium, T. Padmanabhan, AIP Conf. Proc. 861 (2006) 179-196, arXiv:astro-ph/0603114. Albert Einstein Century International Conference at Palais de l'Unesco, Paris, France, 18-23 July, 2005.
[Padmanabhan:2006ag]
[5-102]
Probing the Fundamental Symmetries of the Early Universe: The Low Energy Frontier, M. J. Ramsey-Musolf, AIP Conf. Proc. 842 (2006) 661-671, arXiv:hep-ph/0603023. PANIC05 (Sante Fe, NM).
[RamseyMusolf:2006ur]
[5-103]
The present and the future of cosmology with Gamma Ray Bursts, G. Ghirlanda, G. Ghisellini, arXiv:astro-ph/0602498, 2006. Science with the New Generation of High-Energy Gamma-Ray Experiments, Cividale del Friuli (Italy), 30 May - 1 June 2005.
[Ghirlanda:2006bj]
[5-104]
Advanced Topics in Cosmology: A Pedagogical Introduction, T. Padmanabhan, AIP Conf. Proc. 843 (2006) 111-166, arXiv:astro-ph/0602117. X Special Courses at Observatorio Nacional, Rio de Janeiro, Brazil during 26-30 Sept, 2005.
[Padmanabhan:2006kz]
[5-105]
Cosmological parameters from Galaxy Clusters: an Introduction, Paolo Tozzi, Lect. Notes Phys. 720 (2007) 125-156, arXiv:astro-ph/0602072. 3rd Aegean Summer School, Chios, 26 September - 1 October, 2005.
[Tozzi:2006nf]
[5-106]
Cosmic Microwave Background Polarization, James G. Bartlett, J. Phys. Conf. Ser. 39 (2006) 1-8, arXiv:astro-ph/0601576. TAUP 2005.
[Bartlett:2006xy]
[5-107]
Cosmological constraints from galaxy clustering, Will J. Percival, Lect. Notes Phys. 720 (2007) 157-186, arXiv:astro-ph/0601538. Third Aegean Summer School, The invisible universe: Dark matter and Dark energy.
[Percival:2006kh]
[5-108]
Accelerating Universe: Observational Status and Theoretical Implications, L. Perivolaropoulos, AIP Conf. Proc. 848 (2006) 698-712, arXiv:astro-ph/0601014. Third Aegean Summer School: `The Invisible Universe Dark Matter and Dark Energy'.
[Perivolaropoulos:2006ce]
[5-109]
The Ups and Downs of the Hubble Constant, G.A. Tammann, Rev. Mod. Astron. 19 (2006) 1, arXiv:astro-ph/0512584. 79th Annual Scientific Meeting of the Astronomische Gesellschaft 2005.
[Tammann:2005nx]
[5-110]
Primordial Black Holes: Do They Exist and Are They Useful?, B. J. Carr, arXiv:astro-ph/0511743, 2005. 'Inflating Horizon of Particle Astrophysics and Cosmology', Universal Academy Press Inc and Yamada Science Foundation (2005).
[Carr:2005zd]
[5-111]
First Light and Reionization: A Conference Summary, E. J. Barton, J. S. Bullock, A. Cooray, M. Kaplinghat, New Astron. Rev. 50 (2006) 1, arXiv:astro-ph/0511637. UC Irvine Workshop on 'First Light and Reionization: Theoretical Study and Experimental Detection of the First Luminous Sources'.
[Barton:2005kg]
[5-112]
Introduction to neutrino cosmology, Steen Hannestad, Prog. Part. Nucl. Phys. 57 (2006) 309, arXiv:astro-ph/0511595. Erice 2005.
[Hannestad:2005ey]
[5-113]
Varying Constants, John D. Barrow, Phil. Trans. Roy. Soc. Lond. A363 (2005) 2139, arXiv:astro-ph/0511440. Royal Society Discussion Meeting on 'The Fundamental Constants of Physics, Precision Measurements and the Base Units of SI', London, Feb. 14-15 (2005).
[Barrow:2005hw]
[5-114]
Seeing Darkness: the New Cosmology, Eric V. Linder, J. Phys. Conf. Ser. 39 (2006) 56-62, arXiv:astro-ph/0511197. TAUP2005.
[Linder:2005uw]
[5-115]
Absolute Neutrino Masses, Carlo Giunti, Acta Phys. Polon. B36 (2005) 3215, arXiv:hep-ph/0511131. XXIX International Conference of Theoretical Physics 'Matter To The Deepest: Recent Developments In Physics Of Fundamental Interactions', 8-14 September 2005, Ustron, Poland.
[Giunti:2005qd]
[5-116]
Massive Neutrinos in Cosmology, Masataka Fukugita, Nucl. Phys. Proc. Suppl. 155 (2006) 10, arXiv:hep-ph/0511068. NuFact05, Frascati, 21-26 June 2005.
[Fukugita:2005sb]
[5-117]
The Standard Cosmological Model, Douglas Scott, Can. J. Phys. 84 (2006) 419-435, arXiv:astro-ph/0510731. 'Theory Canada 1', June 2005, Vancouver.
[Scott:2005uf]
[5-118]
Darker Side of the Universe, T. Padmanabhan, arXiv:astro-ph/0510492, 2005. 29th International Cosmic Ray Conference, Aug 3-10, 2005, Pune, India.
[Padmanabhan:2005ur]
[5-119]
Dark energy - dark matter - and black holes: The music of the universe, Peter L. Biermann, arXiv:astro-ph/0510024, 2005. Carpathian Summer School in Physics 2005 (CSSP2005).
[Biermann:2005qh]
[5-120]
The Cosmic Microwave Background anisotropies: open problems, E. Martinez-Gonzalez, P. Vielva, arXiv:astro-ph/0510003, 2005. The Many Scales of the Universe - JENAM 2004 Astrophysics Reviews.
[MartinezGonzalez:2005pk]
[5-121]
Formation of the First Stars, Volker Bromm, IAU Symp. (2005), arXiv:astro-ph/0509354. 'From Lithium to Uranium: Elemental Tracers of Early Cosmic Evolution', IAU Symposium 228.
[Bromm:2005gs]
[5-122]
Dark energy and dark matter from cosmological observations, Steen Hannestad, Int. J. Mod. Phys. A21 (2006) 1938-1949, arXiv:astro-ph/0509320. 22nd International Symposium on Lepton-Photon Interactions at High Energy (LP 2005), Uppsala, Sweden, 30 June - 5 Jul 2005.
[Hannestad:2005fg]
[5-123]
ILC Cosmology, Jonathan L. Feng, eConf C050318 (2005) 0013, arXiv:hep-ph/0509309. 2005 International Linear Collider Workshop, Stanford, California, USA, 18-22 March 2005.
[Feng:2005nz]
[5-124]
Weak Gravitational Lensing, Peter Schneider, arXiv:astro-ph/0509252, 2005. 33rd Advanced Saas Fee Course on Gravitational Lensing: Strong, Weak, and Micro, Les Diablerets, Switzerland, 7-12 Apr 2003.
[Schneider:2005ka]
[5-125]
The Dark Side of the Universe, Katherine Freese, Nucl. Instrum. Meth. A559 (2006) 337, arXiv:astro-ph/0508279. LTD-11 WOrkshop in Tokyo, August 2005.
[Freese:2005hy]
[5-126]
Neutrinos and Cosmology: an update, Ofelia Pisanti, P.D. Serpico, Aip Conf. Proc. 794 (2005) 232, arXiv:astro-ph/0507346. IFAE, Catania 2005.
[Pisanti:2005yz]
[5-127]
Neutrino mass and mixing parameters: A short review, G.L. Fogli et al., arXiv:hep-ph/0506307, 2005. 40th Rencontres de Moriond on Electroweak Interactions and Unified Theories, La Thuile, Aosta Valley, Italy, 5-12 Mar 2005.
[Fogli:2005gs]
[5-128]
Theory Summary of the Electroweak Session for Moriond 2005, R. D. Peccei, arXiv:hep-ph/0506016, 2005. Electroweak Session of the 2005 Moriond Meeting.
[Peccei:2005pc]
[5-129]
Massive neutrinos and cosmology, Sergio Pastor, arXiv:hep-ph/0505148, 2005. XXXXth Moriond session on Electroweak Interactions and Unified Theories (La Thuile, 5-12 March 2005), and the XIth Int. Workshop on Neutrino Telescopes (Venice, 22-25 Feb 2005).
[Pastor:2005qd]
[5-130]
From Little Bangs to the Big Bang, John Ellis, J. Phys. Conf. Ser. 50 (2006) 8-21, arXiv:astro-ph/0504501. International Conference on the Physics and Astrophysics of the Quark-Gluon Plasma, Kolkata, Feb. 2005.
[Ellis:2005xq]
[5-131]
Cosmology with Gamma Ray Bursts, G. Ghisellini et al., Nuovo Cim. 28C (2005) 639, arXiv:astro-ph/0504306. 4th Workshop Gamma-Ray Bursts in the Afterglow Era, Rome,18-22 October 2004.
[Ghisellini:2005vk]
[5-132]
Relic Gravitational Waves and Cosmology, L. P. Grishchuk, Phys. Usp. 48 (2005) 1235-1247, arXiv:gr-qc/0504018. `Zeldovich-90', Moscow, December 2004.
[Grishchuk:2005qe]
[5-133]
Extracting New Physics from the CMB, B. Greene, K. Schalm, G. Shiu, J.P. van der Schaar, eConf C041213 (2004) 0001, arXiv:astro-ph/0503458. XXII Texas Symposium on Relativistic Astrophysics, Stanford University, 13-17 December 2004.
[Greene:2005aj]
[5-134]
Measuring the cosmological density perturbation, Subir Sarkar, Nucl. Phys. Proc. Suppl. 148 (2005) 1, arXiv:hep-ph/0503271. Workshop on 'The Density Perturbation in the Universe', Athens, June 2004.
[Sarkar:2005fq]
[5-135]
Cosmological neutrino bounds for non-cosmologists, Max Tegmark, Phys. Scripta T121 (2005) 153, arXiv:hep-ph/0503257. 'Neutrino Physics', Proceedings of Nobel Symposium 129.
[Tegmark:2005cy]
[5-136]
Primordial Gravitational Waves and Inflation: CMB and Direct Detection With Space-Based Laser Interferometers, Asantha Cooray, Mod. Phys. Lett. (2005) (2005), arXiv:astro-ph/0503118. Daniel Chalonge International School of Astrophysics: WMAP and the Early Universe, Observatoire de Paris, December 2004.
[Cooray:2005xr]
[5-137]
TASI Lectures on AstroParticle Physics, Keith A. Olive, arXiv:astro-ph/0503065, 2005. TASI 2004.
[Olive:2005qz]
[5-138]
Summary of ICGC04 Cosmology Workshop, Tarun Souradeep, Pramana 63 (2004) 891, arXiv:astro-ph/0502249. Workshop on Cosmology, ICGC-04, Jan 5-10, 2004.
[Souradeep:2005cr]
[5-139]
High Redshift Supernovae: Cosmological Implications, Nino Panagia, Nuovo Cim. B120 (2005) 667, arXiv:astro-ph/0502247. Vulcano Workshop 2004, Frontier Objects in Astrophysics and Particle Physics.
[Panagia:2005hr]
[5-140]
New Cosmology with Clusters of Galaxies, Peter Schuecker, Rev.Mod.Astron. (2005), arXiv:astro-ph/0502234.
[Schuecker:2005aa]
[5-141]
Cosmology and Astrophysics, Juan Garcia-Bellido, arXiv:astro-ph/0502139, 2005. CERN-JINR European School of High Energy Physics, San Feliu (Spain), 30 May - 12 June 2004.
[Capozziello:2013kla]
[5-142]
The Shape of Space after WMAP data, Jean-Pierre Luminet, Braz. J. Phys. 36 (2006) 107, arXiv:astro-ph/0501189. 25th Brazilian Meeting of Particle Physics and Fields, Caxambu, Minas Gerais, Brazil, 24-27 Aug 2004.
[Luminet:2005tn]
[5-143]
Neutrinos And Big Bang Nucleosynthesis, Gary Steigman, Phys. Scripta T121 (2005) 142, arXiv:hep-ph/0501100. Nobel Symposium 129, Neutrino Physics.
[Steigman:2005ys]
[5-144]
Dealing with dark energy, Eric V. Linder, arXiv:astro-ph/0501057, 2005. DARK 2004: 5th International Heidelberg Conference on Dark Matter in Astro and Particle Physics, College Station, Texas, 3-9 Oct 2004.
[Linder:2005qz]
[5-145]
Massive Neutrinos in Astrophysics and Cosmology, F. Villante, 2005. ISAPP 2005, International School on AstroParticle Physics (European Doctorate School): High Energy Cosmic Rays, 30 June - 9 July 2005, Belgirate, Lago Maggiore, Italy. http://www.isapp2005.to.infn.it/Lessons/Villante.pdf.
[Villante-ISAPP05]
[5-146]
Astrophysics, A. Ferrari, 2005. ISAPP 2005, International School on AstroParticle Physics (European Doctorate School): High Energy Cosmic Rays, 30 June - 9 July 2005, Belgirate, Lago Maggiore, Italy. http://www.isapp2005.to.infn.it/Lessons/Ferrari1.pdf. http://www.isapp2005.to.infn.it/Lessons/Ferrari2.pdf.
[Ferrari-ISAPP05]
[5-147]
From COBE to WMAP: A Decade of Data Under Scrutiny, Louise M. Ord, arXiv:astro-ph/0412354, 2004. 5th Rencontres du Vietnam 'New Views on the Universe', Aug 5-11, 2004.
[Ord:2004eb]
[5-148]
Dark Matter and Galaxy Formation: Challenges for the Next Decade, Joseph Silk, Aip Conf. Proc. 743 (2005) 33, arXiv:astro-ph/0412297. Mitchell Symposium on Observational Cosmology and Strings and Cosmology Conference, College Station, April 2004, and C. Pope, AIP, New York, and PASCOS04/NathFest, Boston, August 2004.
[Silk:2004uj]
[5-149]
Neutrino mass bounds from cosmology, Steen Hannestad, Nucl. Phys. Proc. Suppl. 145 (2005) 313, arXiv:hep-ph/0412181. NOW2004 workshop, Conca Specchiulla, Italy, September 11-17, 2004.
[Hannestad:2004bq]
[5-150]
Phenomenology of Absolute Neutrino Masses, Carlo Giunti, Nucl. Phys. Proc. Suppl. 145 (2005) 231, arXiv:hep-ph/0412148. NOW-2004, Neutrino Oscillation Workshop, 11-17 September 2004, Conca Specchiulla, Otranto, Italy. http://www.ba.infn.it/~now2004/talks/16_09_04/plen/GIUNTI.PDF.
[Giunti:2004vv]
[5-151]
What are the Building Blocks of Our Universe?, Kameshwar C. Wali, arXiv:astro-ph/0411321, 2004. International Conference on Cosmology, Facts and Problems (College de France, Paris, June 8-11, 2004).
[Wali:2004zk]
[5-152]
Big Bang and Heavy Particles, A.D. Dolgov, arXiv:hep-ph/0411283, 2004. INFN Eloisatron Project, 44th Workshop, QCD at Cosmic Energies, August 29 - September 5, 2004, Erice, Italy.
[Dolgov:2004gn]
[5-153]
Weighing Neutrinos with Large-Scale Structure, Ofer Lahav, Oystein Elgaroy, Nucl. Phys. Proc. Suppl. 143 (2005) 439, arXiv:astro-ph/0411092. Neutrino 2004.
[Lahav:2004ha]
[5-154]
Neutrino 2004: Concluding Talk, Guido Altarelli, Nucl. Phys. Proc. Suppl. 143 (2005) 470, arXiv:hep-ph/0410101. Neutrino 2004, Paris, 14-19 June 2004.
[Altarelli:2004cp]
[5-155]
An overview of Cosmology, Julien Lesgourgues, arXiv:astro-ph/0409426, 2004. Summer Students Programme of CERN (2002-2004).
[Lesgourgues:2004qt]
[5-156]
The current status of observational cosmology, Jeremiah P. Ostriker, Tarun Souradeep, Pramana 63 (2004) 817, arXiv:astro-ph/0409131. ICGC-04.
[Ostriker:2004ht]
[5-157]
Lectures on astroparticle physics, Guenter Sigl, Aip Conf. Proc. 782 (2005) 1, arXiv:hep-ph/0408165. XIth Brazilian School of Cosmology and Gravitation, Rio de Janeiro, July 26 - August 4, 2004.
[Sigl:2004cq]
[5-158]
Dark energy probes in light of the CMB, Wayne Hu, ASP Conf.Ser. 339 (2005) 215, arXiv:astro-ph/0407158.
[Hu:2004kn]
[5-159]
Modern Cosmology, Juan Garcia-Bellido, arXiv:hep-ph/0407111, 2004. XXXII International Meeting on Fundamental Physics, Alicante, March 1-5, 2004.
[GarciaBellido:2004ri]
[5-160]
Connecting Cosmology and Colliders, Mark Trodden, arXiv:astro-ph/0407024, 2004. LCWS2004, Paris April 2004.
[Trodden:2004sn]
[5-161]
The Standard Model, Dark Matter, and Dark Energy: From the Sublime to the Ridiculous, Lawrence M. Krauss, arXiv:astro-ph/0406673, 2004. XIV Canary Islands Winter School in Astrophysics, 2002.
[Krauss:2004iq]
[5-162]
The Cosmic Microwave Background and Its Polarization, Angelica de Oliveira-Costa, ASP Conf.Ser. 343 (2005) 485, arXiv:astro-ph/0406358. 'Astronomical Polarimetry - Current Status and Future Directions', Hawaii, USA, March 15-19, 2004.
[deOliveiraCosta:2004zs]
[5-163]
Summary of the XXXIX Rencontres de Moriond, Matts Roos, arXiv:astro-ph/0405625, 2004. XXXIX Rencontres de Moriond 'Exploring the Universe'.
[Roos:2004nd]
[5-164]
Cosmological Magnetic Fields vs. CMB, Tina Kahniashvili, New Astron. Rev. 49 (2005) 79, arXiv:astro-ph/0405184. Dark Matter 2004.
[Kahniashvili:2004gq]
[5-165]
Astroparticle Physics, I. I. Tkachev, arXiv:hep-ph/0405168, 2004. 2003 European School of High-Energy Physics, Tsakhkadzor, Armenia, 24 August - 6 September 2003.
[Tkachev:2004ee]
[5-166]
Problems of vacuum energy and dark energy, A.D. Dolgov, arXiv:hep-ph/0405089, 2004. 18th Rencontre de Physique de la Vallee d'Aosta on Results and Perspectives in Particle Physics, 29/02 - 06/03, 2004.
[Dolgov:2004xu]
[5-167]
Anisotropies in the Cosmic Microwave Background, Anthony Challinor, arXiv:astro-ph/0403344, 2004. 2nd Aegean Summer School on the Early Universe (Springer LNP), 22-30 September 2003.
[Challinor:2004bd]
[5-168]
Dark Matter and Dark Energy, Varun Sahni, Lect. Notes Phys. 653 (2004) 141, arXiv:astro-ph/0403324. Second Aegean Summer School on the Early Universe, Syros, Greece, September 2003.
[Sahni:2004ai]
[5-169]
Maps of the Cosmos: The Cosmic Microwave Background, Lyman Page, ASP Conf.Ser. (2004), arXiv:astro-ph/0402547. IAU 2003.
[Page:2004ui]
[5-170]
Cosmic Topology: a Brief Overview, M.J. Reboucas, G.I. Gomero, Braz. J. Phys. 34 (2004) 1358, arXiv:astro-ph/0402324. 'XIV National Meeting of the Brazilian Physical Society, section Particles and Fields, Caxambu - MG, Brazil, from September 30 to October 04, 2003.
[Reboucas:2004dv]
[5-171]
Observational Cosmology, R.H. Sanders, Lect. Notes Phys. 653 (2004) 105, arXiv:astro-ph/0402065. Second Aegean Summer School on the Early Universe.
[Sanders:2004xi]
[5-172]
TASI Lectures: Introduction to Cosmology, Mark Trodden, Sean M. Carroll, arXiv:astro-ph/0401547, 2004. TASI-02 and TASI-03 summer schools.
[Trodden:2004st]
[5-173]
What we know and what we don't know about the universe, Marcelo Gleiser, Int. J. Mod. Phys. D13 (2004) 1381, arXiv:astro-ph/0401213. 1st International Workshop on Astronomy and Relativistic Astrophysics, Olinda, Brazil, 12-17 Oct 2003.
[Gleiser:2004ny]
[5-174]
Precision Cosmology, A. Primack, 2004. Sixth UCLA Symposium on Sources and Detection of Dark Matter and Dark Energy in the Universe, February 18-20, 2004, Marina del Rey, California, US. http://www.physics.ucla.edu/hep/dm04/talks/primack.pdf.
[Primack:DM2004]
[5-175]
Neutrinos and astrophysics, S. Hannestad, 2004. SEESAW25,International Conference on the Seesaw Mechanism, 10-11 June 2004, Paris, France. http://seesaw25.in2p3.fr/trans/hannestad.pdf.
[Hannestad:SEESAW2004]
[5-176]
Inflation and Precision Cosmology, Jerome Martin, Braz. J. Phys. 34 (2004) 1307, arXiv:astro-ph/0312492. XXIV Brazilian National Meeting on Particles and Fields (Caxambu, Brazil, 30 Sep - 4 Oct 2003).
[Martin:2003bt]
[5-177]
Neutrino cosmology - an update, Steen Hannestad, arXiv:hep-ph/0312122, 2003. Thinking, observing, and mining the universe, Sorrento, Italy (22-27 September 2003).
[Hannestad:2003px]
[5-178]
Open Problems in Cosmology, P. J. E. Peebles, Nucl. Phys. Proc. Suppl. 138 (2005) 5, arXiv:astro-ph/0311435. TAUP 2003, Seattle, September, 2003.
[Peebles:2003pk]
[5-179]
Cosmological constraints from Microwave Background Anisotropy and Polarization, Alessandro Melchiorri, Bled Workshops Phys. 4 (2003) 6-15, arXiv:hep-ph/0311319. Euresco Conference, 'What comes beyond the Standard Model', 12. - 17. July 2003 Portoroz.
[Melchiorri:2003jx]
[5-180]
Neutrino Mixing and Cosmology, Nicole F. Bell, Nucl. Phys. Proc. Suppl. 138 (2005) 76, arXiv:hep-ph/0311283. TAUP 2003.
[Bell:2003bu]
[5-181]
Cosmic Connections, J. Ellis, eConf C0307282 (2003) TF07, arXiv:astro-ph/0310913. 31st SLAC Summer Institute, July 2003.
[Ellis:2003rm]
[5-182]
Connections Between Big and Small, J. Ellis, eConf C0307282 (2003) L01, arXiv:astro-ph/0310911. 31st SLAC Summer Institute, July 2003.
[Ellis:2003rj]
[5-183]
Neutrino physics from cosmology, S. Hannestad, arXiv:astro-ph/0310133, 2003. Beyond the Desert '03, Ringberg, 11-15 July 2003.
[Hannestad:2003ep]
[5-184]
Status of observational cosmology and inflation, L. Covi, eConf C030626 (2003) THBT01, arXiv:hep-ph/0309238. XXIII Physics in Collisions Conference (PIC03), Zeuthen, Germany, June 2003.
[Covi:2003ku]
[5-185]
Gravitational lensing as a probe of structure, Peter Schneider, arXiv:astro-ph/0306465, 2003. XIV Canary Islands Winter School of Astrophysics 'Dark Matter and Dark Energy in the Universe' Tenerife.
[Schneider:2003yb]
[5-186]
Magnetic fields in cosmology, A. D. Dolgov, arXiv:astro-ph/0306443, 2003. 17th Rencontre de Physique de la Vallee d'Aoste on Results and Perspectives in Particle Physics, March 9-15, 2003.
[Dolgov:2003xd]
[5-187]
Relic neutrinos: neutrino properties from cosmology, S. Pastor, arXiv:hep-ph/0306233, 2003. X Int. Workshop on Neutrino Telescopes, Venice, March 11-14, 2003.
[Pastor:2003jx]
[5-188]
Cosmology at the Turn of Centuries, A.D. Dolgov, arXiv:hep-ph/0306200, 2003. International Conference I.Ya. Pomeranchuk and Physics at the Turn of Centuries, January 24-28, 2003, Moscow, Russia.
[Dolgov:2003zg]
[5-189]
Cosmological Constraints on Neutrino Masses and Mixings, A.D. Dolgov, arXiv:hep-ph/0306154, 2003. NOON 2003 workshop, February 10-14, 2003, Kanazawa, Japan.
[Dolgov:2003hi]
[5-190]
Theoretical Overview of Cosmic Microwave Background Anisotropy, E. L. Wright, arXiv:astro-ph/0305591, 2003. Carnegie Observatories Centennial Symposium II.
[Wright:2003ig]
[5-191]
Cosmology with the Ly-a forest, Martin White, arXiv:astro-ph/0305474, 2003. Davis Inflation Meeting, 2003.
[White:2003je]
[5-192]
The Polarization of the Cosmic Microwave Background, Matias Zaldarriaga, arXiv:astro-ph/0305272, 2003. Carnegie Observatories Centenial Symposium II.
[Zaldarriaga:2003bb]
[5-193]
Inflation and the Cosmic Microwave Background, Charles H. Lineweaver, arXiv:astro-ph/0305179, 2003. New Cosmology Summer School.
[Lineweaver:2003ie]
[5-194]
Gravitational Lensing by Large Scale Structures: A Review, L. Van Waerbeke, Y. Mellier, arXiv:astro-ph/0305089, 2003. Aussois winter school, january 2003.
[VanWaerbeke:2003uq]
[5-195]
Introductory Overview of Modern Cosmology, Burin Gumjudpai, arXiv:astro-ph/0305063, 2003. The Second Tah Poe School on Cosmology 'Modern Cosmology' (TPCosmo II), 17-25 April 2003, Naresuan University, Phitsanulok, Thailand.
[Gumjudpai:2003nd]
[5-196]
Particle Physics and Cosmology, John Ellis, arXiv:astro-ph/0305038, 2003. Australian National University Summer School on the New Cosmology, January 2003.
[Ellis:2003ch]
[5-197]
Physics of Structure Formation in the Universe, T. Roy Choudhury, Bull. Astron. Soc. India 31 (2003) 281, arXiv:astro-ph/0305033. 22nd meeting of Astronomical Society of India (2003).
[Choudhury:2003cc]
[5-198]
Quasar Lensing: the Observer's Point of View, F. Courbin, arXiv:astro-ph/0304497, 2003. 'Gravitational Lensing: a unique tool for cosmology', Aussois, France, January 2003.
[Courbin:2003ip]
[5-199]
Ten major challenges in cosmology, Reuven Opher, arXiv:astro-ph/0304369, 2003. Xth Brazilian School of Cosmology and Gravitation, Rio de Janeiro, July 29 - Aug. 9, 2002.
[Opher:2003gv]
[5-200]
Inflation, Large Scale Structure and Particle Physics, S. F. King, Pramana 62 (2004) 307, arXiv:hep-ph/0304264. 9th International Symposium on Particles, Strings and Cosmology (PASCOS 03), Mumbai (Bombay) India, 3-8 Jan 2003.
[King:2003jw]
[5-201]
Proceedings of the Davis Meeting on Cosmic Inflation, Manoj Kaplinghat, N. Kaloper, L. Knox, arXiv:astro-ph/0304225, 2003.
[Kaplinghat:2003dg]
[5-202]
Dark Matter and Dark Energy: Summary and Future Directions, John Ellis, Phil. Trans. Roy. Soc. Lond. A361 (2003) 2607, arXiv:astro-ph/0304183. Royal Society Discussion Meeting on Dark Matter and Dark Energy, January 2003.
[Ellis:2003ug]
[5-203]
Cosmology with Supernovae, P. Ruiz-Lapuente, Astrophys. Space Sci. 290 (2004) 43, arXiv:astro-ph/0304108. JENAM 2002 (Porto, Portugal).
[RuizLapuente:2003cj]
[5-204]
Clusters of galaxies: a fundamental pillar of cosmology, Africa Castillo-Morales, Sabine Schindler, arXiv:astro-ph/0303609, 2003. Vulcano Workshop 2002 'Frontier Objects in Astrophysics and Particle Physics'.
[CastilloMorales:2003ns]
[5-205]
Cosmology from Topological Defects, Alejandro Gangui, Aip Conf. Proc. 668 (2003) 226, arXiv:astro-ph/0303504. Xth Brazilian School on Cosmology and Gravitation, Mangaratiba, Rio de Janeiro, July 29 - August 9, 2002.
[Gangui:2003uu]
[5-206]
The evolution of the universe, Juan Garcia-Bellido, arXiv:hep-ph/0303153, 2003. International Colloquium on TIME AND MATTER, Venice, Italy, August 11 - 17, 2002.
[GarciaBellido:2003ih]
[5-207]
Neutrinos in Physics and Astrophysics, G. G. Raffelt, IAU Symp. (2003), arXiv:astro-ph/0302589. Texas in Tuscany, Dec. 2002.
[Raffelt:2003nc]
[5-208]
CIW Cosmology Symposium: Conference Summary - Observations, S. M. Faber, arXiv:astro-ph/0302495, 2003.
[Faber:2003nc]
[5-209]
Cosmology, inflation, and the physics of nothing, William H. Kinney, NATO Adv.Study Inst.Ser.II.Math.Phys.Chem. 123 (2003) 189-243, arXiv:astro-ph/0301448. NATO Advanced Study Institute on Techniques and Concepts of High Energy Physics, St. Croix, USVI (2002).
[Kinney:2003xf]
[5-210]
Cosmological Parameters: Fashion and Facts, A. Blanchard, arXiv:astro-ph/0301137, 2003. th Workshop on 'New Worlds in Astroparticle Physics' in Faro, Portugal, September 2003.
[Blanchard:2003wf]
[5-211]
Neutrino physics from cosmology, S. Hannestad, 2003. EPS 2003. http://eps2003.physik.rwth-aachen.de/data/talks/parallel/07Neutrino/07hannestad.ppt.
[Hannestad-EPS2003]
[5-212]
Neutrino Mixing and Cosmology, N. Bell, 2003. TAUP 2003, September 5-9, 2003 University of Washington, Seattle, Washington. http://mocha.phys.washington.edu/~int_talk/WorkShops/TAUP03/Parallel/People/Bell_N/N_BellTAUP031.pdf.
[Bell:TAUP03]
[5-213]
Bright stars, dark energy, R. Kirshner, 2003. XXI International Symposium on Lepton Photon 2003, 11-16 August 2003, Fermi National Accelerator Laboratory, Batavia, Illinois USA. http://conferences.fnal.gov/lp2003/program/S9/kirshner_s09_updated.pdf.
[Kirshner:LP03]
[5-214]
Relic Neutrinos, S. Pastor, 2003. 10th International Workshop on Neutrino Telescopes, March 11-14, 2003, Venice, Italy. http://www.pd.infn.it/~laveder/conference2003/transparencies/Pastor.ppt.
[Pastor:Venice03]
[5-215]
Cosmological Parameters, M. Tegmark, 2003. TAUP 2003, September 5-9, 2003 University of Washington, Seattle, Washington. http://mocha.phys.washington.edu/~int_talk/WorkShops/TAUP03/Plenary/People/Tegmark_M/Cosmological_Parameters-Tegmark.pdf.
[Tegmark:TAUP03]
[5-216]
The role of topologigal defects in cosmology, Mairi Sakellariadou, arXiv:hep-ph/0212365, 2002.
[Sakellariadou:2002mq]
[5-217]
Could Dark Energy be Measured from Redshift Surveys ?, Ofer Lahav, arXiv:astro-ph/0212358, 2002. XVIIIth IAP meeting `On the Nature of Dark Energy', Paris 2002.
[Lahav:2002rp]
[5-218]
The New Cosmology: Mid-term Report Card for Inflation, Michael S. Turner, Annales Henri Poincare 4 (2003) S333, arXiv:astro-ph/0212281. Th2002 Congress (Paris, France, July 2002).
[Turner:2002ts]
[5-219]
Particle Physics and Cosmology, Juan Garcia-Bellido, Frascati Phys. Ser. 31 (2003) 321, arXiv:hep-ph/0211316. First International Workshop on Frontier Science, October 6-11, 2002, Frascati (Italy).
[GarciaBellido:2002vv]
[5-220]
Neutrinos in cosmology, with some significant digressions, R. R. Volkas, Aip Conf. Proc. 655 (2003) 220, arXiv:hep-ph/0211309. 3rd Tropical Workshop on Particle Physics and Cosmology, San Juan, Puerto Rico, Aug 19-24 2002.
[Volkas:2002vn]
[5-221]
High-Energy Astrophysics and Cosmology, John Ellis, arXiv:astro-ph/0210580, 2002. XIIth International Symposium on Very-High-Energy Cosmic-Ray Interactions, CERN, July 2002.
[Ellis:2003aa]
[5-222]
Can We See the Shape of the Universe?, G. I. Gomero, Int. J. Mod. Phys. A17 (2002) 4281-4286, arXiv:astro-ph/0210279. 5th Alexander Friedmann Seminar on Gravitation and Cosmology.
[Gomero:2002ki]
[5-223]
Inflation and the Theory of Cosmological Perturbations, Antonio Riotto, ICTP Lect.Notes Ser. 14 (2003) 317-413, arXiv:hep-ph/0210162. 'ICTP Summer School on Astroparticle Physics and Cosmology', Trieste, 17 June - 5 July 2002.
[Riotto:2002yw]
[5-224]
Cosmological Implications of Neutrino Mass, S. F. King, arXiv:hep-ph/0210089, 2002. 4th International Workshop on the Identification of Dark Matter (IDM2002), St. William's College, York Minster, York, England, September 2-6, 2002.
[King:2002js]
[5-225]
Phenomenological and Cosmological Implications of Neutrino Oscillations, S. F. King, J. Phys. G29 (2003) 1551, arXiv:hep-ph/0210081. 4th Workshop on Neutrino Factories based on Muon Storage Rings (NuFact'02), Imperial College, London, July 1-6, 2002.
[King:2002jq]
[5-226]
Cosmic Distances: Current Odds and Future Perspectives, G. Bono, ASP Conf.Ser. (2002), arXiv:astro-ph/0210068. To appear in 'Hubble's Science Legacy: Future Optical-Ultraviolet Astronomy from Space'.
[Bono:2002ze]
[5-227]
20+ years of Inflation, Juan Garcia-Bellido, Nucl. Phys. Proc. Suppl. 114 (2003) 13-26, arXiv:hep-ph/0210050.
[GarciaBellido:2002ny]
[5-228]
Neutrino physics from cosmological observations, S. Hannestad, Nucl. Phys. Proc. Suppl. 118 (2003) 315, arXiv:astro-ph/0208567. XXth International Conference on Neutrino Physics and Astrophysics May 25 - 30, 2002, Munich, Germany. http://neutrino2002.ph.tum.de/pages/transparencies/hannestad.
[Hannestad:2002iz]
[5-229]
Cosmological implications of neutrinos, A. D. Dolgov, Surveys High Energ. Phys. 17 (2002) 91, arXiv:hep-ph/0208222. 5th Moscow International School of Physics and 30th ITEP Winter School of Physics, Moscow, Russia, 20-28 Feb 2002.
[Dolgov:2002ad]
[5-230]
From Precision Cosmology to Accurate Cosmology, P. J. E. Peebles, arXiv:astro-ph/0208037, 2002. Moriond Conference on the Cosmological Model, Les Arcs, March 2002.
[Peebles:2002iq]
[5-231]
Astrophysical and Cosmological Neutrinos, G. G. Raffelt, Proc.Int.Sch.Phys.Fermi 152 (2003) 161-181, arXiv:hep-ph/0208024. International School of Physics 'Enrico Fermi,' CLII Course 'Neutrino Physics,' 23 July-2 August 2002, Varenna, Lake Como, Italy.
[Raffelt:2002nz]
[5-232]
GUT, Neutrinos, and Baryogenesis, H. Murayama, Nucl. Phys. Proc. Suppl. 111 (2002) 136-145, arXiv:hep-ph/0208005. 5th KEK Topical Conference: Frontiers In Flavor Physics, 20-22 Nov 2001, Tsukuba, Ibaraki, Japan.
[Murayama:2002jq]
[5-233]
A review of self-tuning solutions of cosmological constant, Jihn E. Kim, arXiv:hep-ph/0207360, 2002. '5th Int. UCLA Symposium on Sources and Detection of Dark Matter and Dark Energy in the Universe', Marina del Rey, CA, 20-22 Feb. 2002.
[Kim:2002ps]
[5-234]
Neutrino masses in astroparticle physics, G. G. Raffelt, New Astron. Rev. 46 (2002) 699-708, arXiv:astro-ph/0207220. Dennis Sciama Memorial Volume of NAR.
[Raffelt:2002ed]
[5-235]
Stars and Fundamental Physics, G. G. Raffelt, arXiv:hep-ph/0207144, 2002. ESO-CERN-ESA Symposium on Astronomy, Cosmology and Fundamental Physics (4-7 March 2002, Garching, Germany).
[Raffelt:2002vg]
[5-236]
Cosmology Rounding the Cape, Alessandro Melchiorri, arXiv:astro-ph/0204262, 2002. 4th Heidelberg International Conference on Dark Matter in Astro- and Particle Physics, Cape Town, South Africa (February 2002. Eds. H. Klapdor-Kleingrothaus and R. Viollier).
[Melchiorri:2002yya]
[5-237]
CMB and Cosmological Parameters: Current Status and Prospects, Alessandro Melchiorri, PoS AHEP2003 (2003) AHEP2003/067, arXiv:astro-ph/0204017. XIII Rencontres de Blois - Frontiers of the Universe, June 17-23, 2001.
[Melchiorri:2002ne]
[5-238]
The Cosmological Constant, U. Ellwanger, arXiv:hep-ph/0203252, 2002. XIV Workshop 'Beyond the Standard Model', Bad Honnef, 11-14 March 2002.
[Ellwanger:2002cd]
[5-239]
Big bang nucleosynthesis, implications of recent CMB data and supersymmetric dark matter, K. A. Olive, arXiv:astro-ph/0202486, 2002. 1st NCTS Workshop on Astroparticle Physics, Taiwan, China, 6-9 Dec 2001.
[Olive:2002qg]
[5-240]
New results in cosmology, Subir Sarkar, PoS HEP2001 (2001) hep2001/299, arXiv:hep-ph/0201140.
[Sarkar:2002gc]
[5-241]
Beyond Cosmological Parameters, M. Tegmark, 2002. Workshop on Neutrino News from the Lab and the Cosmos, Fermilab, October 17 - 19, 2002. http://www-astro-theory.fnal.gov/Conferences/NuCosmo/talks/tegmark.pdf.
[Tegmark-talk:2002a]
[5-242]
Cosmological parameters from CMB and LSS, J. Peacock, 2002. 4th International Workshop on the Identification of Dark Matter (IDM2002), St. William's College, York Minster, York, England, September 2-6, 2002. http://www.shef.ac.uk/~phys/idm2002/talks/pdfs/peacock.pdf.
[Peacock-talk:2002a]
[5-243]
Neutrino Masses in Astrophysics and Cosmology, G. Raffelt, 2002. Lecture at the International School on Astroparticle and Neutrino Physics, 10-15 June 2002, Villa Cipressi, Varenna, Italy. http://wwwth.mppmu.mpg.de/members/raffelt/mytalks/varenna.pdf.
[Raffelt:Varenna02]
[5-244]
big bang nucleosynthesis and cosmological constraints on neutrino oscillation parameters, Daniela Kirilova, Mihail Chizhov, arXiv:astro-ph/0108341, 2001. BLTP Research Workshop on Hot Points in Astrophysics, Dubna, Russia, 22-26 Aug 2000.
[Kirilova:2001rs]
[5-245]
Neutrino oscillations in the early universe, D. Kirilova, M. Chizhov, Nucl. Phys. Proc. Suppl. 100 (2001) 360-362, arXiv:hep-ph/0102114. Europhysics Neutrino Oscillation Workshop (NOW 2000), Conca Specchiulla, Otranto, Lecce, Italy, 9-16 Sep 2000.
[Kirilova:2000pm]
[5-246]
Massive neutrinos in astrophysics, G. G. Raffelt, W. Rodejohann, arXiv:hep-ph/9912397, 1999. 4th National Summer School for German-speaking Graduate Students of Theoretical Physics, Saalburg, Germany, 31 Aug - 11 Sep 1998.
[Raffelt:1998qp]
[5-247]
Introduction to Microwave Background Polarization, A. Kosowsky, New Astron. Rev. 43 (1999) 157, arXiv:astro-ph/9904102. International School of Space and Science: 1998 Course on 3K Cosmology from Space, L'Aquila, Italy, 2-12 Sep 1998.
[Kosowsky:1998mb]
[5-248]
Big bang nucleosynthesis: Reprise, Subir Sarkar, arXiv:astro-ph/9903183, 1999. 2nd International Conference on Dark Matter in Astro and Particle Physics (DARK98), Heidelberg, Germany, 20-25 Jul 1998.
[Sarkar:1998gx]
[5-249]
Particle physics in the early universe, Edward W. Kolb, NATO Adv.Study Inst.Ser.C.Math.Phys.Sci. 534 (1999) 239-262, arXiv:hep-ph/9810362. 10th NATO ASI on Techniques and Concepts of High-Energy Physics, St. Croix, U.S. Virgin Islands, 18-29 June 1998.
[Kolb:1998kj]
[5-250]
Possible relics from new physics in the early universe: Inflation, the cosmic microwave background, and particle dark matter, Marc Kamionkowski, arXiv:astro-ph/9809214, 1998. Workshop on The Early and Future Universe, Beijing, China, 22-27 June 1998.
[Kamionkowski:1998is]
[5-251]
Calculations of cosmic background radiation anisotropies and implications, Emory F. Bunn, arXiv:astro-ph/9607088, 1996. 1996 NATO Advanced Study Institute on 'The Cosmic Background Radiation'.
[Bunn:1996qg]

6 - Reviews - Phenomenology - Alternative Models

[6-1]
Testing theories of Gravity and Supergravity with inflation and observations of the cosmic microwave background, Girish Kumar Chakravarty, Gaetano Lambiase, Subhendra Mohanty, arXiv:1607.06325, 2016.
[Chakravarty:2016set]
[6-2]
MOND theory, Mordehai Milgrom, Can.J. Phys. 93 (2015) 107-118, arXiv:1404.7661.
[Milgrom:2014usa]
[6-3]
A Tale of Two Paradigms: the Mutual Incommensurability of LCDM and MOND, Stacy S. McGaugh, Can.J. Phys. 93 (2015) 250-259, arXiv:1404.7525.
[McGaugh:2014nsa]
[6-4]
The Acceleration Scale, Modified Newtonian Dynamics, and Sterile Neutrinos, Antonaldo Diaferio, Garry W. Angus, arXiv:1206.6231, 2012.
[Diaferio:2012zh]
[6-5]
The Cosmic Spacetime, Fulvio Melia, arXiv:1205.2713, 2012.
[Melia:2012qb]
[6-6]
The dark side of gravity: Modified theories of gravity, Francisco S. N. Lobo, Gen.Rel.Grav. 45 (2013) 531-544, arXiv:0807.1640.
[Sil:2012bq]
[6-7]
Is the evidence for dark energy secure?, Subir Sarkar, Gen. Rel. Grav. 40 (2008) 269-284, arXiv:0710.5307.
[Sarkar:2007cx]
[6-8]
The modified Newtonian dynamics-MOND-and its implications for new physics, Jacob D. Bekenstein, Contemp.Phys. (2007), arXiv:astro-ph/0701848.
[Bekenstein:2007iq]
[6-9]
Alternatives to Dark Matter and Dark Energy, Philip D. Mannheim, Prog. Part. Nucl. Phys. 56 (2006) 340, arXiv:astro-ph/0505266.
[Mannheim:2005bfa]
[6-10]
Alternative ideas in cosmology, J. V. Narlikar, The Scientific Legacy of Fred Hoyle (2005) 127-148.
[Narlikar-2005slfh-book-127N]
[6-11]
Observational Cosmology: caveats and open questions in the standard model, M. Lopez-Corredoira, Astron.Astrophys. (2003), arXiv:astro-ph/0310214.
[LopezCorredoira:2003uc]
[6-12]
Action at a distance and cosmology: A historical perspective, J. V. Narlikar, Ann. Rev. Astron. Astrophys. 41 (2003) 169-189.
[Narlikar:2003sq]

7 - Reviews - Phenomenology - Alternative Models - Conference Proceedings

[7-1]
From dark matter to MOND, R.H. Sanders, arXiv:0806.2585, 2008. XX Rencontres de Blois, Astroparticle physics.
[Sanders:2008iy]
[7-2]
The MOND paradigm, Mordehai Milgrom, arXiv:0801.3133, 2008. XIX Rencontres de Blois 'Matter and energy in the Universe: from nucleosynthesis to cosmology', May 2007.
[Milgrom:2008rv]
[7-3]
Introduction to Modified Gravity and Gravitational Alternative for Dark Energy, S. Nojiri, S.D. Odintsov, Int. J. Geom. Meth. Mod. Phys. 4 (2006) 115-146, arXiv:hep-th/0601213. 42 Karpacz Winter School on Theor Physics.
[Nojiri:2006ri]

8 - Reviews - Theory

[8-1]
Interactions relevant to the decoupling of the neutrini/antineutrini in the early Universe, Evangelos Matsinos, arXiv:1702.02872, 2017.
[Matsinos:2017gqr]
[8-2]
Inhomogeneous cosmology and backreaction: current status and future prospects, Krzysztof Bolejko, Mikolaj Korzynski, arXiv:1612.08222, 2016.
[Bolejko:2016qku]
[8-3]
Holographic Dark Energy, Shuang Wang, Yi Wang, Miao Li, arXiv:1612.00345, 2016.
[Wang:2016och]
[8-4]
Bouncing cosmologies with dark matter and dark energy, Yi-Fu Cai, Antonino Marciano, Dong-Gang Wang, Edward Wilson-Ewing, Universe 3 (2017) 1, arXiv:1610.00938.
[Cai:2016hea]
[8-5]
Lectures on Inflation, Leonardo Senatore, arXiv:1609.00716, 2016.
[Senatore:2016aui]
[8-6]
Multi-field inflation and cosmological perturbations, Jinn-Ouk Gong, Int.J.Mod.Phys. D26 (2016) 1740003, arXiv:1606.06971.
[Gong:2016qmq]
[8-7]
Electrodynamics of a Cosmic Dark Fluid, Alexander B. Balakin, Symmetry 8 (2016) 56, arXiv:1606.06331.
[Balakin:2016cbe]
[8-8]
Scientific Realism and Primordial Cosmology, Feraz Azhar, Jeremy Butterfield, arXiv:1606.04071, 2016.
[Azhar:2016mpg]
[8-9]
Quantum Yang-Mills Dark Energy, Roman Pasechnik, Universe 2 (2016) 4, arXiv:1605.07610.
[Pasechnik:2016sbh]
[8-10]
Gravitational waves from inflation, Maria Chiara Guzzetti, Nicola Bartolo, Michele Liguori, Sabino Matarrese, Riv.Nuovo Cim. 39 (2016) 1, arXiv:1605.01615.
[Guzzetti:2016mkm]
[8-11]
Topological Structure of the Vacuum, Cosmological Constant and Dark Energy, B.G. Sidharth, A. Das, C.R. Das, L.V. Laperashvili, H.B. Nielsen, Int.J.Mod.Phys. A31 (2016) 1630051, arXiv:1605.01169.
[Sidharth:2016gvj]
[8-12]
Dark Energy: The Shadowy Reflection of Dark Matter?, Kostas Kleidis, Nikolaos K. Spyrou, Entropy 18 (2016) 94, arXiv:1603.03879.
[Kleidis:2016mqf]
[8-13]
Quantum cosmology from group field theory condensates: a review, Steffen Gielen, Lorenzo Sindoni, SIGMA 12 (2016) 082, arXiv:1602.08104.
[Gielen:2016dss]
[8-14]
Dark Energy vs. Modified Gravity, Austin Joyce, Lucas Lombriser, Fabian Schmidt, Ann.Rev.Nucl.Part.Sci. 66 (2016) 95-122, arXiv:1601.06133.
[Joyce:2016vqv]
[8-15]
The Multiverse and Particle Physics, John F. Donoghue, Ann.Rev.Nucl.Part.Sci. 66 (2016) 1-21, arXiv:1601.05136.
[Donoghue:2016tjk]
[8-16]
Initial Conditions for Inflation - A Short Review, Robert Brandenberger, Int.J.Mod.Phys. D26 (2016) 1740002, arXiv:1601.01918.
[Brandenberger:2016uzh]
[8-17]
A brief history of the multiverse, Andrei Linde, Rept.Prog.Phys. 80 (2017) 022001, arXiv:1512.01203.
[Linde:2015edk]
[8-18]
A Review of WIMP Baryogenesis Mechanisms, Yanou Cui, Mod. Phys. Lett. A30 (2015) 1530028, arXiv:1510.04298.
[Cui:2015eba]
[8-19]
General relativity and cosmology, Martin Bucher, Wei-Tou Ni, Int. J. Mod. Phys. D24 (2015) 1530030, arXiv:1509.04497.
[Bucher:2015ria]
[8-20]
Higgs boson cosmology, Ian G. Moss, Contemp. Phys. 56 (2015) 468, arXiv:1507.05760.
[Moss:2015fma]
[8-21]
Vacuum energy and the cosmological constant, Steven D. Bass, Mod.Phys.Lett. A30 (2015) 1540033, arXiv:1503.05483.
[Bass:2015yaa]
[8-22]
Strong Dynamics and Inflation: a review, Phongpichit Channuie, Nucl. Phys. B892 (2015) 429-448, arXiv:1410.7547.
[Channuie:2014ysa]
[8-23]
Beyond the Cosmological Standard Model, Austin Joyce, Bhuvnesh Jain, Justin Khoury, Mark Trodden, Phys. Rept. 568 (2015) 1-98, arXiv:1407.0059.
[Joyce:2014kja]
[8-24]
The Higgs field as an inflaton, Fedor Bezrukov, Class.Quant.Grav. 30 (2013) 214001, arXiv:1307.0708.
[Bezrukov:2013fka]
[8-25]
Encyclopaedia Inflationaris, Jerome Martin, Christophe Ringeval, Vincent Vennin, Phys.Dark Univ. (2014), arXiv:1303.3787.
[Martin:2014vha]
[8-26]
Extended Theories of Gravity, Salvatore Capozziello, Mariafelicia De Laurentis, Phys. Rept. 509 (2011) 167-321, arXiv:1108.6266.
[Capozziello:2011et]
[8-27]
Supergravity based inflation models: a review, Masahide Yamaguchi, Class. Quant. Grav. 28 (2011) 103001, arXiv:1101.2488.
[Yamaguchi:2011kg]
[8-28]
Horava-Lifshitz Cosmology: A Review, Shinji Mukohyama, Class. Quant. Grav. 27 (2010) 223101, arXiv:1007.5199.
[Mukohyama:2010xz]
[8-29]
Dark Energy and Tracker Solution- A Review, R. Rakhi, K. Indulekha, arXiv:0910.5406, 2009.
[Rakhi:2009qf]
[8-30]
Phenomenology and Cosmology of Supersymmetric Grand Unified Theories, Achilleas Vamvasakis, arXiv:0907.4549, 2009.
[Vamvasakis:2009wg]
[8-31]
An introduction to inflation and cosmological perturbation theory, L. Sriramkumar, arXiv:0904.4584, 2009.
[Sriramkumar:2009kg]
[8-32]
Approaches to Understanding Cosmic Acceleration, Alessandra Silvestri, Mark Trodden, Rept. Prog. Phys. 72 (2009) 096901, arXiv:0904.0024.
[Silvestri:2009hh]
[8-33]
Dark Energy and Modified Gravity, Ruth Durrer, Roy Maartens, 'Dark ENERGY (2008) Observational & Theoretical Approaches', arXiv:0811.4132.
[Durrer:2008in]
[8-34]
A Concise Introduction to Perturbation Theory in Cosmology, Karim A. Malik, David R. Matravers, Class. Quant. Grav. 25 (2008) 193001, arXiv:0804.3276.
[Malik:2008yp]
[8-35]
Physics in the multiverse: an introductory review, Aurelien Barrau, CERN Courier 47N10 (2007) 13-17, arXiv:0711.4460.
[Barrau:2007ce]
[8-36]
Dark Energy and Dark Gravity, Ruth Durrer, Roy Maartens, Gen. Rel. Grav. 40 (2008) 301-328, arXiv:0711.0077.
[Durrer:2007re]
[8-37]
Dark Energy from Structure - A Status Report, Thomas Buchert, Gen. Rel. Grav. 40 (2008) 467-527, arXiv:0707.2153.
[Buchert:2007ik]
[8-38]
Dark Energy and Gravity, T. Padmanabhan, Gen. Rel. Grav. 40 (2008) 529-564, arXiv:0705.2533.
[Padmanabhan:2007xy]
[8-39]
Why CMB physics?, Massimo Giovannini, Int. J. Mod. Phys. A22 (2007) 2697-2894, arXiv:astro-ph/0703730.
[Giovannini:2007xh]
[8-40]
Magnetic fields, strings and cosmology, Massimo Giovannini, Lect. Notes Phys. 737 (2008) 863-939, arXiv:astro-ph/0612378.
[Giovannini:2006kg]
[8-41]
Theory Challenges of the Accelerating Universe, Eric V. Linder, J. Phys. A40 (2007) 6697-6706, arXiv:astro-ph/0610173.
[Linder:2006uf]
[8-42]
On the cosmological mass function theory, A. Del Popolo, Astron. Rep. 51 (2007) 709-734, arXiv:astro-ph/0609166. Astronomy Reports, in print.
[DelPopolo:2006gn]
[8-43]
Neutrino mass and baryogenesis, D. Falcone, arXiv:hep-ph/0607287, 2006.
[Falcone:2006gt]
[8-44]
Dark Energy: Recent Developments, Norbert Straumann, Mod. Phys. Lett. A21 (2006) 1083-1098, arXiv:hep-ph/0604231.
[Straumann:2006tv]
[8-45]
Dynamics of dark energy, Edmund J. Copeland, M. Sami, Shinji Tsujikawa, Int. J. Mod. Phys. D15 (2006) 1753-1936, arXiv:hep-th/0603057.
[Copeland:2006wr]
[8-46]
Cosmic Strings, Mairi Sakellariadou, Lect. Notes Phys. 718 (2007) 247-288, arXiv:hep-th/0602276.
[Sakellariadou:2006qs]
[8-47]
Phase transitions in the early and the present Universe, D. Boyanovsky, H. J. de Vega, D. J. Schwarz, Ann. Rev. Nucl. Part. Sci. 56 (2006) 441-500, arXiv:hep-ph/0602002.
[Boyanovsky:2006bf]
[8-48]
Inflation: Homogeneous Limit, V. Mukhanov, arXiv:astro-ph/0511570, 2005.
[Mukhanov:2005bn]
[8-49]
The Phenomenology of Dvali-Gabadadze-Porrati Cosmologies, Arthur Lue, Phys. Rep. 423 (2006) 1, arXiv:astro-ph/0510068.
[Lue:2005ya]
[8-50]
Insights into Dark Energy: Interplay Between Theory and Observation, Rachel Bean, Sean Carroll, Mark Trodden, arXiv:astro-ph/0510059, 2005.
[Bean:2005ru]
[8-51]
The Universe from Scratch, R. Loll, J. Ambjorn, J. Jurkiewicz, Contemp. Phys. 47 (2006) 103-117, arXiv:hep-th/0509010.
[Ambjorn:2005jj]
[8-52]
Inflation Dynamics and Reheating, Bruce A. Bassett, Shinji Tsujikawa, David Wands, Rev. Mod. Phys. 78 (2006) 537-589, arXiv:astro-ph/0507632.
[Bassett:2005xm]
[8-53]
The Dynamics of Brane-World Cosmological Models, A. A. Coley, Can.J. Phys. 83 (2005) 475, arXiv:astro-ph/0504226.
[Coley:2005xg]
[8-54]
Braneworld black holes in cosmology and astrophysics, A. S. Majumdar, N. Mukherjee, Int. J. Mod. Phys. D14 (2005) 1095, arXiv:astro-ph/0503473.
[Majumdar:2005ba]
[8-55]
Theoretical tools for the physics of CMB anisotropies, Massimo Giovannini, Int. J. Mod. Phys. D14 (2005) 363, arXiv:astro-ph/0412601.
[Giovannini:2004rj]
[8-56]
Quantum cosmological models, D. H. Coule, Class. Quant. Grav. 22 (2005) R125, arXiv:gr-qc/0412026.
[Coule:2004qf]
[8-57]
A Beginner's Guide to the Theory of CMB Temperature and Polarization Power Spectra in the Line-of-Sight Formalism, Yen-Ting Lin, Benjamin D. Wandelt, Astropart. Phys. 25 (2006) 151, arXiv:astro-ph/0409734.
[Lin:2004xy]
[8-58]
A Conceptual Tour About the Standard Cosmological Model, Antonio L. Maroto, Juan Ramirez, arXiv:astro-ph/0409280, 2004.
[Maroto:2004pd]
[8-59]
Anthropic predictions: the case of the cosmological constant, Alexander Vilenkin, arXiv:astro-ph/0407586, 2004.
[Vilenkin:2004fj]
[8-60]
Inflation, Alan H. Guth, arXiv:astro-ph/0404546, 2004.
[Guth:2004tw]
[8-61]
The magnetized universe, Massimo Giovannini, Int. J. Mod. Phys. D13 (2004) 391, arXiv:astro-ph/0312614.
[Giovannini:2003yn]
[8-62]
Expanding Confusion: common misconceptions of cosmological horizons and the superluminal expansion of the Universe, T. M. Davis, C. H. Lineweaver, Proc.Astron.Soc.Austral. (2003), arXiv:astro-ph/0310808.
[Davis:2003ad]
[8-63]
Cosmology calculations almost without general relativity, T. F. Jordan, Am. J. Phys. 73 (2005) 653, arXiv:astro-ph/0309756.
[Jordan:2003tt]
[8-64]
WMAPing the Universe: Supersymmetry, Dark Matter, Dark Energy, Proton Decay and Collider Physics, A. B. Lahanas, N. E. Mavromatos, D. V. Nanopoulos, Int. J. Mod. Phys. D12 (2003) 1529, arXiv:hep-ph/0308251.
[Lahanas:2003bh]
[8-65]
Classical geometry of de Sitter spacetime: An introductory review, Y. Kim, C. Y. Oh, N. Park, arXiv:hep-th/0212326, 2002.
[Kim:2002uz]
[8-66]
Cosmological consequences of MSSM flat directions, Kari Enqvist, Anupam Mazumdar, Phys. Rep. 380 (2003) 99-234, arXiv:hep-ph/0209244.
[Enqvist:2003gh]
[8-67]
Standard Cosmology and Alternatives: A Critical Appraisal, J. V. Narlikar, T. Padmanabhan, Annual Review of Astronomy and Astrophysics 39 (2001) 211-248.
[Narlikar-Padmanabhan-2001ARA&A-39-211N]
[8-68]
An exposition on inflationary cosmology, Gary Scott Watson, arXiv:astro-ph/0005003, 2000.
[Watson:2000hb]
[8-69]
Particle physics models of inflation and the cosmological density perturbation, David H. Lyth, Antonio Riotto, Phys. Rep. 314 (1999) 1-146, arXiv:hep-ph/9807278.
[Lyth:1998xn]
[8-70]
Cosmic Topology, M. Lachieze-Rey, J. P. Luminet, Phys. Rep. 254 (1995) 135, arXiv:gr-qc/9605010.
[LachiezeRey:1995kj]
[8-71]
Electroweak baryon number non-conservation in the early universe and in high-energy collisions, V. A. Rubakov, M. E. Shaposhnikov, Usp. Fiz. Nauk 166 (1996) 493-537, arXiv:hep-ph/9603208.
[Rubakov:1996vz]
[8-72]
Inflation for astronomers, J. V. Narlikar, T. Padmanabhan, Ann. Rev. Astron. Astrophys. 29 (1991) 325-362.
[Narlikar:1990bu]
[8-73]
The cosmological constant problem, Steven Weinberg, Rev. Mod. Phys. 61 (1989) 1-23.
[Weinberg:1988cp]
[8-74]
Light pseudoscalars, particle physics and cosmology, Jihn E. Kim, Phys. Rep. 150 (1987) 1-177.
[Kim:1986ax]

9 - Reviews - Theory - Conference Proceedings

[9-1]
TASI lectures on cosmological observables and string theory, Eva Silverstein, arXiv:1606.03640, 2016.
[Silverstein:2016ggb]
[9-2]
Conformal frames in cosmology, Guillem Domenech, Misao Sasaki, Int.J.Mod.Phys. D25 (2016) 1645006, arXiv:1602.06332. 2nd LeCosPA Symposium: Everything about Gravity.
[Domenech:2016yxd]
[9-3]
No-Scale Inflation, John Ellis, Marcos A. G. Garcia, Dimitri V. Nanopoulos, Keith A. Olive, Class.Quant.Grav. 33 (2016) 094001, arXiv:1507.02308.
[Ellis:2015xna]
[9-4]
Nonequilibrium Quantum Fields: From Cold Atoms to Cosmology, J. Berges, arXiv:1503.02907, 2015. Les Houches Summer School on 'Strongly interacting quantum systems out of equilibrium'.
[Berges:2015kfa]
[9-5]
Lectures on the Cosmological Constant Problem, Antonio Padilla, arXiv:1502.05296, 2015.
[Padilla:2015aaa]
[9-6]
From Quark-Gluon Universe to Neutrino Decoupling: $200 < T < 2$ MeV, Michael J. Fromerth, Inga Kuznetsova, Lance Labun, Jean Letessier, Jan Rafelski, Acta Phys. Polon. B43 (2012) 2261, arXiv:1211.4297. 52 Krakow School of Theoretical Physics: Astroparticle Physics in the LHC Era, Zakopane, May 19-27, 2012.
[Fromerth:2012fe]
[9-7]
Developments in Leptogenesis, Pasquale Di Bari, Nucl. Phys.B, Proc.Suppl.229-232 2012 (2012) 305-311, arXiv:1102.3409. Neutrino 2010.
[DiBari:2011zf]
[9-8]
Early Universe: inflation and cosmological perturbations, David Langlois, arXiv:0811.4329, 2008. Geometry, Topology, QFT and Cosmology, Paris (28-30 May 2008).
[Langlois:2008ng]
[9-9]
Lorentz invariance, vacuum energy, and cosmology, F.R. Klinkhamer, arXiv:0810.1684, 2008. ICHEP08, Philadelphia, USA, July 2008.
[Klinkhamer:2008nr]
[9-10]
Quintessence: a mini-review, Jerome Martin, Mod. Phys. Lett. A23 (2008) 1252-1265, arXiv:0803.4076. 2007 International Symposium on Cosmology and Particle Astrophysics, November 13-15, Taipei, Taiwan.
[Martin:2008qp]
[9-11]
Cosmological Inflation: A Personal Perspective, Demosthenes Kazanas, arXiv:0803.2080, 2008. Symposium 'Chaos in Astronomy 2007', Athens, Greece, September 2007.
[Kazanas:2008jz]
[9-12]
Baryogenesis - 40 Years Later, Wilfried Buchmuller, arXiv:0710.5857, 2007. PASCOS-07, Imperial College, London.
[Buchmuller:2007fd]
[9-13]
Fundamental Constants, Frank Wilczek, arXiv:0708.4361, 2007.
[Wilczek:2007iu]
[9-14]
Physics Beyond the Standard Model and Dark Matter, Hitoshi Murayama, arXiv:0704.2276, 2007. Les Houches Summer School, Session 86, Particle Physics and Cosmology: the Fabric of Spacetime, July 31- August 25, 2006.
[Murayama:2007ek]
[9-15]
TASI 2006 Lectures on Leptogenesis, Mu-Chun Chen, arXiv:hep-ph/0703087, 2007. TASI 2006, Boulder, Colorado, June 4-30, 2006.
[Chen:2007fv]
[9-16]
Introduction to leptogenesis, Yosef Nir, arXiv:hep-ph/0702199, 2007. 6th Recontres du Vietnam, `Challenges in Particle Astrophysics,' Hanoi, Vietnam, August 6-12, 2006.
[Nir:2007zq]
[9-17]
Dilaton cosmology and phenomenology, M. Gasperini, Lect. Notes Phys. 737 (2008) 787-844, arXiv:hep-th/0702166. String theory and fundamental interactions: celebrating Gabriele Veneziano on his 65th birthday.
[Gasperini:2007ar]
[9-18]
String Gas Cosmology and Structure Formation - A Brief Review, Robert Brandenberger, Mod. Phys. Lett. A22 (2007) 1875-1885, arXiv:hep-th/0702001. CosPA 2006, Nov. 15 - 17, 2006, National Taiwan University, Taipei.
[Brandenberger:2007zza]
[9-19]
Precision Cosmology and the Landscape, Raphael Bousso, arXiv:hep-th/0610211, 2006.
[Bousso:2006nx]
[9-20]
Baryogenesis, James M. Cline, arXiv:hep-ph/0609145, 2006. Les Houches Summer School, Session 86: Particle Physics and Cosmology: the Fabric of Spacetime, 7-11 Aug. 2006.
[Cline:2006ts]
[9-21]
Matter-Antimatter Asymmetry in the Universe and an Arrow for Time, R. D. Peccei, arXiv:hep-ph/0608226, 2006. World Summit on Physics Beyond the Standard Model, Galapagos Islands, Ecuador, June 22-25, 2006.
[Peccei:2006hh]
[9-22]
Basics of inflationary cosmology, George Lazarides, J. Phys. Conf. Ser. 53 (2006) 528-550, arXiv:hep-ph/0607032. Corfu Summer Institute on Elementary Particle Physics (CORFU2005), Corfu, Greece, 4-26 September 2005.
[Lazarides:2006ep]
[9-23]
Anthropic principle in cosmology, Brandon Carter, arXiv:gr-qc/0606117, 2006. Cosmology: Facts and problems, Paris, 2004.
[Carter:2006gy]
[9-24]
Particle Physics Approach to Dark Matter, George Lazarides, Lect. Notes PHys. 720 (2007) 3-34, arXiv:hep-ph/0601016. Third Aegean Summer School 'The Invisible Universe: Dark Matter and Dark Energy', 26 September-1 October 2005, Karfas, Island of Chios, Greece.
[Lazarides:2006jw]
[9-25]
Universe scenarios from loop quantum cosmology, Martin Bojowald, Annalen Phys. 15 (2006) 326, arXiv:astro-ph/0511557. 'Pomeranian Workshop in Fundamental Cosmology', Pobierowo, Sep 2005.
[Bojowald:2005az]
[9-26]
CP violation in cosmology, A.D. Dolgov, arXiv:hep-ph/0511213, 2005. Varenna School 'CP Violation: From Quarks to Leptons', Varenna, Italy, July, 2005.
[Dolgov:2005wf]
[9-27]
The Influence of Evolving Dark Energy on Cosmology, Luke Barnes, Matthew J. Francis, Geraint F. Lewis, Eric V. Linder, Publ.Astron.Soc.Austral. 22 (2005) 315, arXiv:astro-ph/0510791.
[Barnes:2005bn]
[9-28]
Cosmic strings: progress and problems, Alexander Vilenkin, arXiv:hep-th/0508135, 2005. 'Inflating Horizons of Particle Astrophysics and Cosmology', honoring Katsuhiko Sato on his 60th birthday.
[Vilenkin:2005jg]
[9-29]
Introduction to Dark Energy and Dark Matter, Paul H. Frampton, arXiv:astro-ph/0506676, 2005. 40th Rencontre de Moriond, La Thuile, Italy. March 5-12, 2005.
[Frampton:2005za]
[9-30]
From Primordial Quantum Fluctuations to the Anisotropies of the Cosmic Microwave Background Radiation, Norbert Straumann, Annalen Phys. 15 (2006) 701-847, arXiv:hep-ph/0505249. Physik-Combo, in Halle, Leipzig and Jena, winter semester 2004/5.
[Straumann:2005mz]
[9-31]
A brief introduction to cosmic topology, M.J. Reboucas, Aip Conf. Proc. 782 (2005) 188, arXiv:astro-ph/0504365. XIth Brazilian School of Cosmology and Gravitation.
[Reboucas:2005ix]
[9-32]
Inflation and string cosmology, Andrei Linde, eConf C040802 (1990) L024, arXiv:hep-th/0503195. SLAC Summer School 'Nature's Greatest Puzzles', Cosmo04 in Toronto, VI Mexican School on Gravitation, XXII Texas Symposium on Relativistic Astrophysics in 2004.
[Linde:2005ht]
[9-33]
Baryogenesis and Leptogenesis, Mark Trodden, eConf C040802 (2004) L018, arXiv:hep-ph/0411301. SLAC 2004 Summer Science Institute.
[Trodden:2004mj]
[9-34]
Dark Energy in the Universe, the Irreversibility of Time and Neutrinos, N. E. Mavromatos, Braz. J. Phys. 35 (2005) 284, arXiv:gr-qc/0411067. DICE2004 international conference, Piombino (Italy), September 1-4 2004.
[Mavromatos:2004gh]
[9-35]
Dark energy: A pedagogic review, Paul H. Frampton, arXiv:astro-ph/0409166, 2004. 5th Rencontres du Vietnam on Particle Physics and Astrophysics: New Views in Particle Physics (Vietnam 2004), Hanoi, Vietnam, 5-11 Aug 2004.
[Frampton:2004nh]
[9-36]
Modern Cosmology, Juan Garcia-Bellido, arXiv:hep-ph/0407111, 2004. XXXII International Meeting on Fundamental Physics, Alicante, March 1-5, 2004.
[GarciaBellido:2004ri]
[9-37]
Inflationary Cosmological Perturbations of Quantum-Mechanical Origin, Jerome Martin, Lect. Notes Phys. 669 (2005) 199, arXiv:hep-th/0406011. 40th Karpacz Winter School on Theoretical Physics (Poland, Feb. 2004).
[Martin:2004um]
[9-38]
Supersymmetry and Cosmology, Jonathan L. Feng, eConf C0307282 (2003) L11, arXiv:hep-ph/0405215. 2003 SLAC Summer Institute: Cosmic Connections to Particle Physics.
[Feng:2003zu]
[9-39]
Light Thoughts on Dark Energy, Eric V. Linder, New Astron. Rev. 49 (2005) 93, arXiv:astro-ph/0404032. Dark Matter/Dark Energy 2004.
[Linder:2004vg]
[9-40]
Theory of Cosmic Microwave Background Polarization, Paolo Cabella, Marc Kamionkowski, arXiv:astro-ph/0403392, 2004. 2003 Villa Mondragone School of Gravitation and Cosmology: 'The Polarization of the Cosmic Microwave Background,' Rome, Italy, September 6-11, 2003.
[Cabella:2004mk]
[9-41]
Cosmological perturbation theory, Ruth Durrer, Lect. Notes Phys. 653 (2004) 31, arXiv:astro-ph/0402129. Second Aegean Summerschool on the Early Universe.
[Durrer:2004fx]
[9-42]
Alternative Dark Energy Models: An Overview, J. A. S. Lima, Braz. J. Phys. 34 (2004) 194, arXiv:astro-ph/0402109. XXIII Brazilian National Meeting on Particles and Fields, Aguas de Lindoia, Sao Paulo, Brazil.
[Lima:2004cq]
[9-43]
Prospects of Inflation, Andrei Linde, Phys. Scripta T117 (2005) 40, arXiv:hep-th/0402051. Nobel Symposium 'Cosmology and String Theory,' August 2003.
[Linde:2004kg]
[9-44]
A Briefing on the Ekpyrotic/Cyclic Universe, Justin Khoury, arXiv:astro-ph/0401579, 2004. Sixth RESCEU Symposium, Nov. 2003, Tokyo, Japan.
[Khoury:2004xi]
[9-45]
Cosmological constant problem, J. W. Moffat, arXiv:gr-qc/0312115, 2003. Sixth Workshop on Quantum Field Theory under the Influence of External Conditions (QFEXT03), Norman, Oklahoma, 15-19 Sep 2003.
[Moffat:2003az]
[9-46]
Early Cosmology and Fundamental Physics, Hector De Vega, arXiv:astro-ph/0307477, 2003. 9th Chalonge School in Astrofundamental Physics, Palermo, September 2002.
[DeVega:2003qm]
[9-47]
Inflation and Cosmological Perturbations, A. H. Guth, arXiv:astro-ph/0306275, 2003. Conference on the Future of Theoretical Physics and Cosmology in Honor of Steven Hawking's 60th Birthday, Cambridge, England, 7-10 Jan 2002.
[Guth:2003rn]
[9-48]
Lectures on the Theory of Cosmological Perturbations, Robert H. Brandenberger, Lect. Notes Phys. 646 (2004) 127, arXiv:hep-th/0306071. Vth Mexican School, November 2002, Playa del Carmen, Mexico.
[Brandenberger:2003vk]
[9-49]
Introductory review of cosmic inflation, Shinji Tsujikawa, arXiv:hep-ph/0304257, 2003. The Second Tah Poe School on Cosmology 'Modern Cosmology', Naresuan University, Phitsanulok, Thailand, April 17 -25, 2003.
[Tsujikawa:2003jp]
[9-50]
Baryogenesis and the New Cosmology, Mark Trodden, Pramana 62 (2004) 451, arXiv:hep-ph/0302151. PASCOS-03, Mumbai, India; COSMO-02, Chicago; Aspen Winter 2003 Conference on Particle Physics: At the Frontiers of Particle Physics, Aspen Center for Physics.
[Trodden:2003yn]
[9-51]
Time Since the Beginning, Alan H. Guth, ASP Conf.Ser. (2003), arXiv:astro-ph/0301199. 'Astrophysical Ages and Time Scales,' Hilo, Hawaii, 5-9 February 2001.
[Guth:2003ev]
[9-52]
Inflationary cosmology: Theory and phenomenology, Andrew R Liddle, Class. Quant. Grav. 19 (2002) 3391-3402, arXiv:astro-ph/0109439. Meeting on the Early Universe and Cosmological Observations: A Critical Review, Cape Town, South Africa, 23-25 Jul 2001.
[Liddle:2001bk]
[9-53]
Dynamics of the inflationary era, Edward W. Kolb, arXiv:hep-ph/9910311, 1999. Pritzker Symposium and Workshop on the Status of Inflationary Cosmology, Chicago, IL, 29 Jan - 3 Feb 1999.
[Kolb:1999ar]
[9-54]
Baryogenesis, 30 years after, A. D. Dolgov, arXiv:hep-ph/9707419, 1997. 25th ITEP Winter School of Physics, Moscow, Russia, 18-27 Feb 1997.
[Dolgov:1997qr]

10 - Reviews - Theory - Quantum Gravity and Cosmology

[10-1]
Symmetry Reduced Loop Quantum Gravity: A Bird's Eye View, Abhay Ashtekar, Int.J.Mod.Phys. D25 (2016) 1642010, arXiv:1605.02648.
[Ashtekar:2016ecx]
[10-2]
What lattice theorists can do for quantum gravity, Masanori Hanada, Int.J.Mod.Phys. A31 (2016) 1643006, arXiv:1604.05421.
[Hanada:2016jok]
[10-3]
The Atoms Of Space, Gravity and the Cosmological Constant, T. Padmanabhan, Int.J.Mod.Phys. D25 (2016) 1630020, arXiv:1603.08658.
[Padmanabhan:2016eld]
[10-4]
The Holographic Universe, Jean-Pierre Luminet, arXiv:1602.07258, 2016.
[Luminet:2016cuw]
[10-5]
Conceptual issues in loop quantum cosmology, Aurelien Barrau, Boris Bolliet, Int.J.Mod.Phys. D25 (2016) 1642008, arXiv:1602.04452.
[Barrau:2016nwy]
[10-6]
Theory and Phenomenology of Spacetime Defects, Sabine Hossenfelder, Adv.High Energy Phys. 2014 (2014) 950672, arXiv:1401.0276.
[Hossenfelder:2014hha]
[10-7]
A review of Quantum Gravity at the Large Hadron Collider, Xavier Calmet, Mod. Phys. Lett. A25 (2010) 1553-1579, arXiv:1005.1805.
[Calmet:2010nt]
[10-8]
String Cosmology: A Review, Liam McAllister, Eva Silverstein, Gen. Rel. Grav. 40 (2008) 565-605, arXiv:0710.2951.
[McAllister:2007bg]
[10-9]
Loop Quantum Gravity: An Inside View, Thomas Thiemann, Lect. Notes Phys. 721 (2007) 185-263, arXiv:hep-th/0608210.
[Thiemann:2006cf]
[10-10]
Black Holes at Future Colliders and Beyond: a Topical Review, Greg Landsberg, J. Phys. G32 (2006) R337-R365, arXiv:hep-ph/0607297.
[Landsberg:2006mm]
[10-11]
Quantum Cosmology, Martin Bojowald, arXiv:gr-qc/0603110, 2006.
[Bojowald:2006nd]
[10-12]
Phenomenological Quantum Gravity, Dagny Kimberly, Joao Magueijo, Aip Conf. Proc. 782 (2005) 241, arXiv:gr-qc/0502110. Lectures given at XI BSCG.
[Kimberly:2005at]
[10-13]
How far are we from the quantum theory of gravity?, Lee Smolin, arXiv:hep-th/0303185, 2003.
[Smolin:2003rk]
[10-14]
Why the quantum must yield to gravity, Joy Christian, arXiv:gr-qc/9810078, 1998.
[Christian:1998ep]

11 - Reviews - Theory - Quantum Gravity and Cosmology - Conference Proceedings

[11-1]
Gravitons in Kaluza-Klein Theory, V H Satheesh Kumar, P K Suresh, arXiv:gr-qc/0605016, 2006.
[SatheeshKumar:2006bu]
[11-2]
Gravity, Geometry and the Quantum, Abhay Ashtekar, AIP Conf. Proc. 861 (2006) 3-14, arXiv:gr-qc/0605011. `Einstein Century' Conference, 15-22 July, Paris.
[Ashtekar:2006bp]

12 - Reviews - Theory - Leptogenesis

[12-1]
Neutrino coupling to cosmological background: A review on gravitational Baryo/Leptogenesis, G. Lambiase, S. Mohanty, A.R. Prasanna, Int.J.Mod.Phys. D22 (2013) 1330030, arXiv:1310.8459.
[Lambiase:2013haa]
[12-2]
Leptogenesis in the Universe, Chee Sheng Fong, Enrico Nardi, Antonio Riotto, Adv. High Energy Phys. 2012 (2012) 158303, arXiv:1301.3062.
[Fong:2013wr]
[12-3]
Leptogenesis: beyond the minimal type I seesaw scenario, Thomas Hambye, New J. Phys. 14 (2012) 125014, arXiv:1212.2888.
[Hambye:2012fh]
[12-4]
The minimal scenario of leptogenesis, Steve Blanchet, Pasquale Di Bari, New J. Phys. 14 (2012) 125012, arXiv:1211.0512.
[Blanchet:2012bk]
[12-5]
An introduction to leptogenesis and neutrino properties, Pasquale Di Bari, Contemp.Phys. 53 (2012) 315-338, arXiv:1206.3168.
[DiBari:2012fz]
[12-6]
The role of lepton flavor symmetries in leptogenesis, D. Aristizabal Sierra, I. de Medeiros Varzielas, Fortsch.Phys. 61 (2013) 645-665, arXiv:1205.6134.
[AristizabalSierra:2012js]
[12-7]
Leptogenesis, Sacha Davidson, Enrico Nardi, Yosef Nir, Phys. Rept. 466 (2008) 105-177, arXiv:0802.2962.
[Davidson:2008bu]
[12-8]
Leptogenesis as the origin of matter, W. Buchmuller, R. D. Peccei, T. Yanagida, Ann. Rev. Nucl. Part. Sci. 55 (2005) 311, arXiv:hep-ph/0502169.
[Buchmuller:2005eh]
[12-9]
Some Aspects of Thermal Leptogenesis, W. Buchmuller, P. Di Bari, M. Plumacher, New J. Phys. 6 (2004) 105, arXiv:hep-ph/0406014.
[Buchmuller:2004tu]

13 - Reviews - Theory - Leptogenesis - Conference Proceedings

[13-1]
Beyond the Standard Model with leptogenesis and neutrino data, Pasquale Di Bari, arXiv:1612.07794, 2016. Neutrino 2016, NuFact 2016 and IPA 2016.
[DiBari:2016xtf]
[13-2]
TeV Scale Leptogenesis, P. S. Bhupal Dev, Springer Proc. Phys. 174 (2016) 245-253, arXiv:1506.00837. XXI DAE-BRNS HEP Symposium, IIT Guwahati, December 2014.
[Dev:2015cxa]
[13-3]
Leptonic CP Violation and Leptogenesis, S. T. Petcov, Int.J.Mod.Phys. A29 (2014) 1430028, arXiv:1405.2263. Conference in Honor of the 90th Birthday of Freeman Dyson, Nanyang Technological University, Singapore, 26-29 August 2013.
[Petcov:2014aia]
[13-4]
Leptogenesis: Theory and Neutrino Masses, Wilfried Buchmuller, Nucl. Phys. Proc. Suppl. 235-236 (2013) 329-335, arXiv:1210.7758. XXV Int. Conf. on Neutrino Physics, Kyoto.
[Buchmuller:2012eb]
[13-5]
Neutrinos and the matter-antimatter asymmetry in the Universe, R. Gonzalez Felipe, Int. J. Mod. Phys. Proc. Suppl. E20 (2011) 56-64, arXiv:1108.2694. Symposium STARS2011, 1 - 4 May 2011, Havana, Cuba.
[GonzalezFelipe:2011fp]
[13-6]
Developments in Leptogenesis, Pasquale Di Bari, Nucl. Phys.B, Proc.Suppl.229-232 2012 (2012) 305-311, arXiv:1102.3409. Neutrino 2010.
[DiBari:2011zf]

14 - PhD Theses - Phenomenology

[14-1]
Cosmological constant vis-a-vis dynamical vacuum: bold challenging the $\Lambda$CDM, Joan Sola, Int.J.Mod.Phys. A31 (2016) 1630035, arXiv:1612.02449.
[Sola:2016zeg]
[14-2]
Implication of Sterile Fermions in Particle Physics and Cosmology, Michele Lucente, arXiv:1609.07081, 2016.
[Lucente:2016vru]
[14-3]
New Developments in Cosmology, Stefano Gariazzo, arXiv:1603.09102, 2016.
[Gariazzo:2016gzm]
[14-4]
Constraints on the neutrino parameters by future cosmological 21cm line and precise CMB polarization observations, Yoshihiko Oyama, arXiv:1510.05161, 2015. PhD thesis, The Graduate University for Advanced Studies (SOKENDAI).
[1510.05161]
[14-5]
Cosmological limits on axions and axion-like particles, Davide Cadamuro, arXiv:1210.3196, 2012.
[Cadamuro:2012rm]
[14-6]
The Early Universe as a Probe of New Physics, Chris Bird, arXiv:0812.4494, 2008.
[Bird:2008nf]
[14-7]
Particle Physics in the Sky and Astrophysics Underground: Connecting the Universe's Largest and Smallest Scales, Molly E.C. Swanson, arXiv:0808.0002, 2008.
[Swanson:2008sg]

15 - PhD Theses - Theory

[15-1]
Cosmic Topology, Jaspreet Sandhu, arXiv:1612.04157, 2016.
[Sandhu:2016gbz]
[15-2]
Studies of inflation and dark energy with coupled scalar fields, Susan Vu, arXiv:1502.00930, 2015.
[Vu:2015jja]
[15-3]
Non-Equilibrium Aspects of Relic Neutrinos: From Freeze-out to the Present Day, Jeremiah Birrell, arXiv:1409.4500, 2014.
[Birrell:2014ona]
[15-4]
The B-L Phase Transition: Implications for Cosmology and Neutrinos, Kai Schmitz, arXiv:1307.3887, 2013.
[Schmitz:2012kaa]
[15-5]
Flavour Condensate and the Dark Sector of the Universe, Walter Tarantino, arXiv:1202.3812, 2012.
[Tarantino:2011jy]
[15-6]
On Friedmann-Lemaitre-Robertson-Walker cosmologies in non-standard gravity, Diego Saez-Gomez, arXiv:1104.0813, 2011.
[SaezGomez:2011ny]
[15-7]
Throat Cosmology, B. v. Harling, arXiv:1002.2830, 2010.
[vonHarling:2010ap]
[15-8]
Quantum kinetic theory with nonlocal coherence, Matti Herranen, arXiv:0906.3136, 2009.
[Herranen:2009zi]
[15-9]
Construction and Analysis of a Many-Body Neutrino model, Ivona Okuniewicz, arXiv:0903.2996, 2009.
[Okuniewicz:2006kz]
[15-10]
Topics in particle physics and cosmology beyond the standard model, Alejandro Jenkins, arXiv:hep-th/0607239, 2006.
[Jenkins:2006bz]
[15-11]
Alternative Approaches to Dark Matter Puzzle, Gabrijela Zaharijas, arXiv:astro-ph/0510088, 2005.
[Zaharijas:2005yw]
[15-12]
The Origin of the Large-Scale Structure in the Universe: Theoretical and Statistical Aspects, Yeinzon Rodriguez, arXiv:astro-ph/0507701, 2005.
[Rodriguez:2005ru]
[15-13]
Topics in neutrino physics and cosmology, Louis Anthony Lello, 2016-09-21. PhD thesis, Pittsburgh U. http://d-scholarship.pitt.edu/29597/.
[Lello:2016zjr]

16 - Fundamental Papers - Experiment

[16-1]
Structure in the COBE DMR first year maps, G. F. Smoot et al., Astrophys. J. 396 (1992) L1-L5.
[Smoot:1992td]
[16-2]
A Preliminary measurement of the cosmic microwave background spectrum by the cosmic background explorer (COBE) satellite, J. C. Mather et al., Astrophys. J. 354 (1990) L37-L40.
[Mather:1991pc]
[16-3]
Detection of anisotropy in the cosmic black body radiation, G. F. Smoot, M. V. Gorenstein, R. A. Muller, Phys. Rev. Lett. 39 (1977) 898.
[Smoot:1977bs]
[16-4]
A Measurement of excess antenna temperature at 4080-Mc/s, Arno A. Penzias, Robert Woodrow Wilson, Astrophys. J. 142 (1965) 419-421.
[Penzias:1965wn]
[16-5]
A relation between distance and radial velocity among extra-galactic nebulae, Edwin Hubble, Proc. Nat. Acad. Sci. 15 (1929) 168-173.
[Hubble:1929ig]
[16-6]
Extragalactic nebulae, E. P. Hubble, Astrophys. J. 64 (1926) 321-369.
[Hubble:1926yw]

17 - Fundamental Papers - Phenomenology

[17-1]
Separating the Early Universe from the Late Universe: cosmological parameter estimation beyond the black box, Max Tegmark, Matias Zaldarriaga, Phys. Rev. D66 (2002) 103508, arXiv:astro-ph/0207047.
[Tegmark:2002cy]
[17-2]
Efficient Cosmological Parameter Estimation from Microwave Background Anisotropies, Arthur Kosowsky, Milos Milosavljevic, Raul Jimenez, Phys. Rev. D66 (2002) 063007, arXiv:astro-ph/0206014.
[Kosowsky:2002zt]
[17-3]
Do SNe Ia Provide Direct Evidence for Past Deceleration of the Universe?, Michael S. Turner, Adam G. Riess, Astrophys. J. 569 (2002) 18, arXiv:astro-ph/0106051.
[Turner:2001mx]
[17-4]
Angular trispectrum of the cosmic microwave background, Wayne Hu, Phys. Rev. D64 (2001) 083005, arXiv:astro-ph/0105117.
[Hu:2001fa]
[17-5]
Measuring the metric: A parametrized post-Friedmanian approach to the cosmic dark energy problem, Max Tegmark, Phys. Rev. D66 (2002) 103507, arXiv:astro-ph/0101354.
[Tegmark:2001zc]
[17-6]
Cosmic Confusion: Degeneracies among Cosmological Parameters Derived from Measurements of Microwave Background Anisotropies, G. Efstathiou, J. R. Bond, Mon. Not. Roy. Astron. Soc. 304 (1999) 75-97, arXiv:astro-ph/9807103.
[Efstathiou:1998xx]
[17-7]
Weighing neutrinos with galaxy surveys, Wayne Hu, Daniel J. Eisenstein, Max Tegmark, Phys. Rev. Lett. 80 (1998) 5255-5258, arXiv:astro-ph/9712057.
[Hu:1997mj]
[17-8]
The Cosmic Baryon Budget, M. Fukugita, C. J. Hogan, P. J. E. Peebles, Astrophys. J. 503 (1998) 518, arXiv:astro-ph/9712020.
[Fukugita:1997bi]
[17-9]
Power Spectra for Cold Dark Matter and its Variants, Daniel J. Eisenstein, Wayne Hu, Astrophys. J. 511 (1997) 5, arXiv:astro-ph/9710252.
[Eisenstein:1997jh]
[17-10]
Small scale perturbations in a general MDM cosmology, Wayne Hu, Daniel J. Eisenstein, Astrophys. J. 498 (1998) 497, arXiv:astro-ph/9710216.
[Hu:1997vi]
[17-11]
Recovery of the Power Spectrum of Mass Fluctuations from Observations of the Lyman-alpha Forest, Rupert A. C. Croft, David H. Weinberg, Neal Katz, Lars Hernquist, Astron. J. 495 (1998) 44, arXiv:astro-ph/9708018.
[Croft:1997jf]
[17-12]
The Effect of physical assumptions on the calculation of microwave background anisotropies, Wayne Hu, Douglas Scott, Naoshi Sugiyama, Martin J. White, Phys. Rev. D52 (1995) 5498-5515, arXiv:astro-ph/9505043.
[Hu:1995fqa]
[17-13]
Anisotropies in the Cosmic Microwave Background: An Analytic Approach, Wayne Hu, Naoshi Sugiyama, Astrophys. J. 444 (1995) 489-506, arXiv:astro-ph/9407093.
[Hu:1994uz]
[17-14]
Small scale cosmic microwave background anisotropies as a probe of the geometry of the universe, Marc Kamionkowski, David N. Spergel, Naoshi Sugiyama, Astrophys. J. 426 (1994) L57, arXiv:astro-ph/9401003.
[Kamionkowski:1993aw]
[17-15]
Measuring cosmological parameters with cosmic microwave background experiments, J. Richard Bond, Robert Crittenden, Richard L. Davis, George Efstathiou, Paul J. Steinhardt, Phys. Rev. Lett. 72 (1994) 13-16, arXiv:astro-ph/9309041.
[Bond:1993fb]
[17-16]
Interpretation of the CMB anisotropy detected by the COBE DMR, E. L. Wright et al., Astrophys. J. 396 (1992) L13-L18.
[Wright:1992tf]
[17-17]
Primordial nucleosynthesis without a computer, Rahim Esmailzadeh, Glenn D. Starkman, Savas Dimopoulos, Astrophys. J. 378 (1991) 504-518.
[Esmailzadeh:1990hf]
[17-18]
Cosmological Helium production simplified, Jeremy Bernstein, Lowell S. Brown, G. Feinberg, Rev. Mod. Phys. 61 (1989) 25.
[Bernstein:1988ad]
[17-19]
The statistics of cosmic background radiation fluctuations, J. R. Bond, G. Efstathiou, Mon. Not. Roy. Astron. Soc. 226 (1987) 655-687.
[Bond:1987ub]
[17-20]
Tests of cosmological models constrained by inflation, P. J. E. Peebles, Astrophys. J. 284 (1984) 439-444.
[Peebles:1984ge]
[17-21]
The collisionless damping of density fluctuations in an expanding universe, J. R. Bond, A. S. Szalay, Astrophys. J. 274 (1983) 443-468.
[Bond:1983hb]
[17-22]
New constraints on 'ino' masses from cosmology. 2. neutrinos, Lawrence M. Krauss, Phys. Lett. B128 (1983) 37.
[Krauss:1983iu]
[17-23]
Constraint on the photino mass from cosmology, H. Goldberg, Phys. Rev. Lett. 50 (1983) 1419.
[Goldberg:1983nd]
[17-24]
Primordial nucleosynthesis including radiative, coulomb, and finite temperature corrections to weak rates, Duane A. Dicus et al., Phys. Rev. D26 (1982) 2694.
[Dicus:1982bz]
[17-25]
Anisotropy of the microwave background due to the mass distribution in an open cosmological model, P. J. E. Peebles, Astrophys. J. 259 (1982) 442-448.
[Peebles-APJ259-442-1982]
[17-26]
Massive neutrinos and the large-scale structure of the universe, J. R. Bond, G. Efstathiou, J. Silk, Phys. Rev. Lett. 45 (1980) 1980-1984.
[Bond:1980ha]
[17-27]
Dynamical role of light neutral leptons in cosmology, S. Tremaine, J. E. Gunn, Phys. Rev. Lett. 42 (1979) 407-410.
[Tremaine:1979we]
[17-28]
Limits from primordial nucleosynthesis on the properties of massive neutral leptons, D. A. Dicus, E. W. Kolb, V. L. Teplitz, R. V. Wagoner, Phys. Rev. D17 (1978) 1529-1538.
[Dicus:1977av]
[17-29]
Cosmological implications of massive, unstable neutrinos: (new and improved), Duane A. Dicus, Edward W. Kolb, Vigdor L. Teplitz, Astrophys. J. 221 (1978) 327-341.
[Dicus:1977qy]
[17-30]
Cosmological lower bound on heavy-neutrino masses, Benjamin W. Lee, Steven Weinberg, Phys. Rev. Lett. 39 (1977) 165-168.
[Lee:1977ua]
[17-31]
Limits on masses and number of neutral weakly interacting particles, P. Hut, Phys. Lett. B69 (1977) 85.
[Hut:1977zn]
[17-32]
Cosmological limits to the number of massive leptons, G. Steigman, D. N. Schramm, J. E. Gunn, Phys. Lett. B66 (1977) 202-204.
[Steigman:1977kc]
[17-33]
Cosmological limits on the masses of neutral leptons, M. I. Vysotsky, A. D. Dolgov, Ya. B. Zeldovich, JETP Lett. 26 (1977) 188-190.
[Vysotsky:1977pe]
[17-34]
Cosmological constraints on the mass and the number of heavy lepton neutrinos, Katsuhiko Sato, Makoto Kobayashi, Prog. Theor. Phys. 58 (1977) 1775.
[Sato:1977ye]
[17-35]
Cosmological upper bound on heavy neutrino lifetimes, Duane A. Dicus, Edward W. Kolb, Vigdor L. Teplitz, Phys. Rev. Lett. 39 (1977) 168.
[Dicus:1977nn]
[17-36]
The origin of deuterium, R. I. Epstein, J. M. Lattimer, D. N. Schramm, Nature 263 (1976) 198-202.
[Epstein-Lattimer-Schramm-Nat263-198-1976]
[17-37]
On the Origin of Light Elements, H. Reeves, J. Audouze, W. A. Fowler, D. N. Schramm, Astrophys. J. 179 (1973) 909-930.
[Reeves-Audouze-Fowler-Schramm-APJ179-179-1973]
[17-38]
An upper limit on the neutrino rest mass, R. Cowsik, J. McClelland, Phys. Rev. Lett. 29 (1972) 669-670.
[Cowsik:1972gh]
[17-39]
Primeval adiabatic perturbation in an expanding universe, P. J. E. Peebles, J. T. Yu, Astrophys. J. 162 (1970) 815-836.
[Peebles:1970ag]
[17-40]
On the Synthesis of elements at very high temperatures, Robert V. Wagoner, William A. Fowler, Fred Hoyle, Astrophys. J. 148 (1967) 3-49.
[Wagoner:1966pv]
[17-41]
Rest mass of muonic neutrino and cosmology, S. S. Gershtein, Ya. B. Zeldovich, JETP Lett. 4 (1966) 120-122. [Pisma Zh. Eksp. Teor. Fiz. 4 (1966) 174].
[Gershtein:1966gg]
[17-42]
Primordial Helium Abundance and the Primordial Fireball. II, P. J. E. Peebles, Astrophys. J. 146 (1966) 542.
[Peebles-APJ146-542-1966]
[17-43]
Primeval Helium Abundance and the Primeval Fireball, P. J. E. Peebles, Phys. Rev. Lett. 16 (1966) 410-413.
[Peebles-PRL:1966]
[17-44]
Cosmic Black-Body Radiation, R. H. Dicke, P. J. E. Peebles, P. G. Roll, D. T. Wilkinson, Astrophys. J. 142 (1965) 414-419.
[Dicke:1965]
[17-45]
Physical Conditions in the Initial Stages of the Expanding Universe, Ralph A. Alpher, J. W. Follin, Robert C. Herman, Phys. Rev. 92 (1953) 1347-1361.
[Alpher-Follin-Herman-PR92-1347-1953]
[17-46]
Neutron-Capture Theory of Element Formation in an Expanding Universe, Ralph A. Alpher, Robert C. Herman, Phys. Rev. 84 (1951) 60-68.
[Alpher-Herman-PR84-60-1951]
[17-47]
Remarks on the Evolution of the Expanding Universe, Ralph A. Alpher, Robert C. Herman, Phys. Rev. 75 (1949) 1089-1095.
[Alpher-Herman-PR75-1089-1949]
[17-48]
Thermonuclear Reactions in the Expanding Universe, R. A. Alpher, R. Herman, G. A. Gamow, Phys. Rev. 74 (1948) 1198-1199. Erratum: Phys. Rev. 75 (1949) 701.
[Alpher-Herman-Gamow-PR74-1198-1948]
[17-49]
The Origin of Chemical Elements, R. A. Alpher, H. Bethe, G. Gamow, Phys. Rev. 73 (1948) 803-804.
[Alpher-Bethe-Gamow-PR73-803-1948]
[17-50]
On the Relative Abundance of the Elements, Ralph A. Alpher, Robert C. Herman, Phys. Rev. 74 (1948) 1737-1742.
[Alpher-Herman-PR74-1737-1948]
[17-51]
A Neutron-Capture Theory of the Formation and Relative Abundance of the Elements, Ralph A. Alpher, Phys. Rev. 74 (1948) 1577-1589.
[Alpher-PR74-1577-1948]
[17-52]
Expanding Universe and the Origin of Elements, G. Gamow, Phys. Rev. 70 (1946) 572-573.
[Gamow-PR70-572-1946]

18 - Fundamental Papers - Theory

[18-1]
On the anomalous electroweak baryon number nonconservation in the early universe, V. A. Kuzmin, V. A. Rubakov, M. E. Shaposhnikov, Phys. Lett. B155 (1985) 36.
[Kuzmin:1985mm]
[18-2]
Fluctuations in the new inflationary universe, A. H. Guth, S. Y. Pi, Phys. Rev. Lett. 49 (1982) 1110-1113.
[Guth:1982ec]
[18-3]
A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Andrei D. Linde, Phys. Lett. B108 (1982) 389-393.
[Linde:1981mu]
[18-4]
Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations, Alexei A. Starobinsky, Phys. Lett. B117 (1982) 175-178.
[Starobinsky:1982ee]
[18-5]
The inflationary universe: a possible solution to the horizon and flatness problems, Alan H. Guth, Phys. Rev. D23 (1981) 347-356.
[Guth:1980zm]
[18-6]
The behaviour of point masses in an expanding cosmological substratum, P. Meszaros, Astron. Astrophys. 37 (1974) 225-228.
[Meszaros-AA37-225-1974]
[18-7]
A Hypothesis, unifying the structure and the entropy of the universe, Y. B. Zeldovich, Mon. Not. Roy. Astron. Soc. 160 (1972) 1-3.
[Zeldovich:1972ij]
[18-8]
Fluctuations at the threshold of classical cosmology, Edward R. Harrison, Phys. Rev. D1 (1970) 2726-2730.
[Harrison:1969fb]
[18-9]
Primeval adiabatic perturbation in an expanding universe, P. J. E. Peebles, J. T. Yu, Astrophys. J. 162 (1970) 815-836.
[Peebles:1970ag]
[18-10]
Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe, A. D. Sakharov, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32-35.
[Sakharov:1967dj]
[18-11]
L'univers en expansion, G. Lemaitre, Ann. Soc. Sci. de Bruxelles 47 (1927) 49.
[Lemaitre:1927]
[18-12]
On the Possibility of a world with constant negative curvature of space, A. Friedmann, Z. Phys. 21 (1924) 326-332. [Gen. Rel. Grav.31,2001(1999)].
[Friedmann:1924bb]
[18-13]
On the curvature of space, A. Friedmann, Z. Phys. 10 (1922) 377-386.
[Friedmann:1922]

19 - Experiment

[19-1]
BICEP2 / Keck Array IX: New Bounds on Anisotropies of CMB Polarization Rotation and Implications for Axion-Like Particles and Primordial Magnetic Fields, Keck Array et al. (BICEP2s), arXiv:1705.02523, 2017.
[Array:2017rlf]
[19-2]
First Data Release of the Hyper Suprime-Cam Subaru Strategic Program, Hiroaki Aihara et al., arXiv:1702.08449, 2017.
[Aihara:2017tri]
[19-3]
The Atacama Cosmology Telescope: Two-Season ACTPol Lensing Power Spectrum, Blake D. Sherwin et al. (ACT), arXiv:1611.09753, 2016.
[Sherwin:2016tyf]
[19-4]
The Atacama Cosmology Telescope: Two-Season ACTPol Spectra and Parameters, Thibaut Louis et al., arXiv:1610.02360, 2016.
[Louis:2016ahn]
[19-5]
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample, Shadab Alam et al., arXiv:1607.03155, 2016.
[Alam:2016hwk]
[19-6]
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: tomographic BAO analysis of DR12 combined sample in configuration space, Yuting Wang et al., arXiv:1607.03154, 2016.
[Wang:2016wjr]
[19-7]
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: tomographic BAO analysis of DR12 combined sample in Fourier space, Gong-Bo Zhao et al., Mon.Not.Roy.Astron.Soc. 466 (2017) 762-779, arXiv:1607.03153.
[Zhao:2016das]
[19-8]
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: double-probe measurements from BOSS galaxy clustering \& Planck data - towards an analysis without informative priors, Marcos Pellejero-Ibanez et al., arXiv:1607.03152, 2016.
[Pellejero-Ibanez:2016ypj]
[19-9]
The Clustering of Galaxies in the Completed SDSS-III Baryon Oscillation Spectroscopic Survey: single-probe measurements from DR12 galaxy clustering - towards an accurate model, Chia-Hsun Chuang et al., arXiv:1607.03151, 2016.
[Chuang:2016uuz]
[19-10]
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Anisotropic galaxy clustering in Fourier-space, Florian Beutler et al., arXiv:1607.03150, 2016.
[Beutler:2016arn]
[19-11]
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in Fourier-space, Florian Beutler et al., Mon.Not.Roy.Astron.Soc. 464 (2017) 3409-3430-3430, arXiv:1607.03149.
[Beutler:2016ixs]
[19-12]
BOSS DR12 combined galaxy sample: The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: On the measurement of growth rate using galaxy correlation functions, Siddharth Satpathy et al., arXiv:1607.03148, 2016.
[Satpathy:2016tct]
[19-13]
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the configuration-space clustering wedges, Ariel G. Sanchez et al., Mon.Not.Roy.Astron.Soc. 464 (2017) 1640-1658, arXiv:1607.03147.
[Sanchez:2016sas]
[19-14]
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: combining correlated Gaussian posterior distributions, Ariel G. Sanchez et al., Mon.Not.Roy.Astron.Soc. 464 (2017) 1493-1501, arXiv:1607.03146.
[Sanchez:2016gky]
[19-15]
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Observational systematics and baryon acoustic oscillations in the correlation function, Ashley J. Ross et al., Mon.Not.Roy.Astron.Soc. 464 (2017) 1168-1191, arXiv:1607.03145.
[Ross:2016gvb]
[19-16]
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Angular clustering tomography and its cosmological implications, Salvador Salazar-Albornoz et al., arXiv:1607.03144, 2016.
[Salazar-Albornoz:2016psd]
[19-17]
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological implications of the Fourier space wedges of the final sample, Jan Niklas Grieb et al., Mon.Not.Roy.Astron.Soc. 467 (2017) 2085, arXiv:1607.03143. 24 pages, 16 figures in the main text, appendix of 6 pages and 5 figures; submitted to MNRAS. The data used in this analysis will be made publicly available (final URL to appear in the revised version of this paper).
[Grieb:2016uuo]
[19-18]
H0LiCOW V. New COSMOGRAIL time delays of HE0435-1223: $H_0$ to 3.8% precision from strong lensing in a flat $\Lambda$CDM model, V. Bonvin et al., Mon.Not.Roy.Astron.Soc. 465 (2017) 4914, arXiv:1607.01790.
[Bonvin:2016crt]
[19-19]
KiDS-450: Cosmological parameter constraints from tomographic weak gravitational lensing, H. Hildebrandt et al., Mon.Not.Roy.Astron.Soc. 465 (2017) 1454, arXiv:1606.05338.
[Hildebrandt:2016iqg]
[19-20]
Planck 2016 intermediate results. XLVII. Planck constraints on reionization history, R. Adam et al. (Planck), Astron.Astrophys. 596 (2016) A108, arXiv:1605.03507.
[Adam:2016hgk]
[19-21]
A 2.4% Determination of the Local Value of the Hubble Constant, Adam G. Riess et al., Astrophys.J. 826 (2016) 56, arXiv:1604.01424.
[Riess:2016jrr]
[19-22]
Cosmological Constraints from Galaxy Clusters in the 2500 square-degree SPT-SZ Survey, T. de Haan et al., Astrophys.J. 832 (2016) 95, arXiv:1603.06522.
[deHaan:2016qvy]
[19-23]
The XXL Survey VII: A supercluster of galaxies at z=0.43, E. Pompei et al., Astron.Astrophys. 592 (2016) A6, arXiv:1512.04359.
[Pompei:2015rhw]
[19-24]
The XXL Survey: XII. Optical spectroscopy of X-ray-selected clusters and the frequency of AGN in superclusters, E. Koulouridis et al., Astron.Astrophys. 592 (2016) A11, arXiv:1512.04342.
[Koulouridis:2015qtt]
[19-25]
The XXL Survey XI: ATCA 2.1 GHz continuum observations, Vernesa Smolcic et al., arXiv:1512.04322, 2015.
[1512.04322]
[19-26]
The XXL Survey: I. Scientific motivations - XMM-Newton observing plan - Follow-up observations and simulation programme, M. Pierre et al., Astron.Astrophys. 592 (2016) A1, arXiv:1512.04317.
[Pierre:2015cqe]
[19-27]
The XXL Survey. II. The bright cluster sample: catalogue and luminosity function, F. Pacaud et al., Astron.Astrophys. 592 (2016) A2, arXiv:1512.04264.
[Pacaud:2015oqr]
[19-28]
The XXL Survey X: K-band luminosity - weak-lensing mass relation for groups and clusters of galaxies, F. Ziparo et al., Astron.Astrophys. 592 (2016) A9, arXiv:1512.03903.
[Ziparo:2015dcv]
[19-29]
The XXL Survey IV. Mass-temperature relation of the bright cluster sample, Maggie Lieu et al., Astron.Astrophys. 592 (2016) A4, arXiv:1512.03857.
[Lieu:2015pit]
[19-30]
The XXL Survey III. Luminosity-temperature relation of the Bright Cluster Sample, P. A. Giles et al., Astron.Astrophys. 592 (2016) A3, arXiv:1512.03833.
[Giles:2015gtd]
[19-31]
The XXL Survey. XIII. Baryon content of the bright cluster sample, D. Eckert et al., Astron.Astrophys. 592 (2016) A12, arXiv:1512.03814.
[Eckert:2015rlr]
[19-32]
BICEP2 / Keck Array VI: Improved Constraints On Cosmology and Foregrounds When Adding 95 GHz Data From Keck Array, Keck Array et al. (Keck Array, BICEP2), Phys. Rev. Lett. 116 (2016) 031302, arXiv:1510.09217.
[Array:2015xqh]
[19-33]
Cosmic Shear Results from the Deep Lens Survey - II: Full Cosmological Parameter Constraints from Tomography, M. James Jee et al., Astrophys.J. 824 (2016) 77, arXiv:1510.03962.
[Jee:2015jta]
[19-34]
Planck 2015 results. XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation, P. A. R. Ade et al. (Planck), Astron.Astrophys. 594 (2016) A23, arXiv:1509.06555.
[Ade:2015ira]
[19-35]
SDSS-III Baryon Oscillation Spectroscopic Survey Data Release 12: galaxy target selection and large scale structure catalogues, Beth Reid et al., Mon. Not. Roy. Astron. Soc. 455 (2016) 1553, arXiv:1509.06529.
[Reid:2015gra]
[19-36]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Modeling the clustering and halo occupation distribution of BOSS-CMASS galaxies in the Final Data Release, Sergio A. Rodriguez-Torres et al., Mon.Not.Roy.Astron.Soc. 460 (2016) 1173-1187, arXiv:1509.06404.
[Rodriguez-Torres:2015vqa]
[19-37]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Mock galaxy catalogues for the final BOSS Data Release, Francisco-Shu Kitaura et al., Mon. Not. Roy. Astron. Soc. 456 (2016) 4156, arXiv:1509.06400.
[Kitaura:2015uqa]
[19-38]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: RSD measurement from the LOS-dependent power spectrum of DR12 BOSS galaxies, Hector Gil-Marin et al., Mon.Not.Roy.Astron.Soc. 460 (2016) 4188-4209, arXiv:1509.06386.
[Gil-Marin:2015sqa]
[19-39]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Effect of smoothing of density field on reconstruction and anisotropic BAO analysis, M. Vargas-Magana, S.Ho, S. Fromenteau, A. J.Cuesta, arXiv:1509.06384, 2015.
[Vargas-Magana:2015rqa]
[19-40]
Detecting Effects of Filaments on Galaxy Properties in the Sloan Digital Sky Survey III, Yen-Chi Chen et al., Mon.Not.Roy.Astron.Soc. 466 (2017) 1880, arXiv:1509.06376.
[Chen:2015oqa]
[19-41]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: BAO measurement from the LOS-dependent power spectrum of DR12 BOSS galaxies, Hector Gil-Marin et al., Mon.Not.Roy.Astron.Soc. 460 (2016) 4210-4219, arXiv:1509.06373.
[Gil-Marin:2015nqa]
[19-42]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the correlation function of LOWZ and CMASS galaxies in Data Release 12, Antonio J. Cuesta et al., Mon. Not. Roy. Astron. Soc. 457 (2016) 1770, arXiv:1509.06371.
[Cuesta:2015mqa]
[19-43]
Planck 2015 results. XII. Full Focal Plane simulations, P. A. R. Ade et al. (Planck), Astrophysics 594 (2016) A12, arXiv:1509.06348.
[Ade:2015via]
[19-44]
POLARBEAR Constraints on Cosmic Birefringence and Primordial Magnetic Fields, Peter A.R. Ade et al. (POLARBEAR), Phys. Rev. D92 (2015) 123509, arXiv:1509.02461.
[Ade:2015cao]
[19-45]
The SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Overview and Early Data, Kyle S. Dawson et al., Astron. J. 151 (2016) 44, arXiv:1508.04473.
[Dawson:2015wdb]
[19-46]
Planck 2013 results. XXXI. Consistency of the Planck data, P. A. R. Ade et al. (Planck), Astron. Astrophys. 571 (2014) A31, arXiv:1508.03375.
[Ade:2015dga]
[19-47]
Planck 2015 results. III. LFI systematic uncertainties, P. A. R. Ade et al. (Planck), Astron.Astrophys. 594 (2016) A3, arXiv:1507.08853.
[Ade:2015mbi]
[19-48]
Cosmology from Cosmic Shear with DES Science Verification Data, T. Abbott et al. (Dark Energy Survey), Phys. Rev. D94 (2016) 022001, arXiv:1507.05552.
[Abbott:2015swa]
[19-49]
Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of parameters, N. Aghanim et al. (Planck), Astron.Astrophys. 594 (2016) A11, arXiv:1507.02704.
[Aghanim:2015xee]
[19-50]
Planck 2015 results. XXVI. The Second Planck Catalogue of Compact Sources, P. A. R. Ade et al. (Planck), Astron.Astrophys. 594 (2016) A26, arXiv:1507.02058.
[Ade:2015tht]
[19-51]
Planck 2015 results. XVI. Isotropy and statistics of the CMB, P. A. R. Ade et al. (Planck), Astron.Astrophys. 594 (2016) A16, arXiv:1506.07135.
[Ade:2015hxq]
[19-52]
Planck 2015 results. XXV. Diffuse low-frequency Galactic foregrounds, P. A. R. Ade et al. (Planck), Astron.Astrophys. 594 (2016) A25, arXiv:1506.06660.
[Ade:2015qkp]
[19-53]
Planck 2015 results. IX. Diffuse component separation: CMB maps, R. Adam et al. (Planck), Astron.Astrophys. 594 (2016) A9, arXiv:1502.05956.
[Adam:2015tpy]
[19-54]
Planck 2015. XX. Constraints on inflation, P. A. R. Ade et al. (Planck), Astron.Astrophys. 594 (2016) A20, arXiv:1502.02114.
[Ade:2015lrj]
[19-55]
Planck 2015 results. XXVIII. The Planck Catalogue of Galactic Cold Clumps, P. A. R. Ade et al. (Planck), Astron.Astrophys. 594 (2016) A28, arXiv:1502.01599.
[Ade:2015oya]
[19-56]
Planck 2015 results. XXVII. The Second Planck Catalogue of Sunyaev-Zeldovich Sources, P. A. R. Ade et al. (Planck), Astron.Astrophys. 594 (2016) A27, arXiv:1502.01598.
[Ade:2015gva]
[19-57]
Planck 2015 results. XXIV. Cosmology from Sunyaev-Zeldovich cluster counts, P. A. R. Ade et al. (Planck), Astron.Astrophys. 594 (2016) A24, arXiv:1502.01597.
[Ade:2015fva]
[19-58]
Planck 2015 results. XXII. A map of the thermal Sunyaev-Zeldovich effect, N. Aghanim et al. (Planck), Astron.Astrophys. 594 (2016) A22, arXiv:1502.01596.
[Aghanim:2015eva]
[19-59]
Planck 2015 results. XXI. The integrated Sachs-Wolfe effect, P. A. R. Ade et al. (Planck), Astron.Astrophys. 594 (2016) A21, arXiv:1502.01595.
[Ade:2015dva]
[19-60]
Planck 2015 results. XIX. Constraints on primordial magnetic fields, P. A. R. Ade et al. (Planck), Astron.Astrophys. 594 (2016) A19, arXiv:1502.01594.
[Ade:2015cva]
[19-61]
Planck 2015 results. XVIII. Background geometry & topology, P. A. R. Ade et al. (Planck), Astron.Astrophys. 594 (2016) A18, arXiv:1502.01593.
[Ade:2015bva]
[19-62]
Planck 2015 results. XVII. Constraints on primordial non-Gaussianity, P. A. R. Ade et al. (Planck), Astron.Astrophys. 594 (2016) A17, arXiv:1502.01592.
[Ade:2015ava]
[19-63]
Planck 2015 results. XV. Gravitational lensing, P. A. R. Ade et al. (Planck), Astron.Astrophys. 594 (2016) A15, arXiv:1502.01591.
[Ade:2015zua]
[19-64]
Planck 2015 results. XIV. Dark energy and modified gravity, P. A. R. Ade et al. (Planck), Astron.Astrophys. 594 (2016) A14, arXiv:1502.01590.
[Ade:2015rim]
[19-65]
Planck 2015 results. XIII. Cosmological parameters, P. A. R. Ade et al. (Planck), Astron.Astrophys. 594 (2016) A13, arXiv:1502.01589.
[Ade:2015xua]
[19-66]
Planck 2015 results. X. Diffuse component separation: Foreground maps, R. Adam et al. (Planck), Astron.Astrophys. 594 (2016) A10, arXiv:1502.01588.
[Adam:2015wua]
[19-67]
Planck 2015 results. VIII. High Frequency Instrument data processing: Calibration and maps, R. Adam et al. (Planck), Astron.Astrophys. 594 (2016) A8, arXiv:1502.01587.
[Adam:2015vua]
[19-68]
Planck 2015 results. VII. HFI TOI and beam processing, R. Adam et al. (Planck), Astron.Astrophys. 594 (2016) A7, arXiv:1502.01586.
[Adam:2015nya]
[19-69]
Planck 2015 results. VI. LFI mapmaking, P. A. R. Ade et al. (Planck), Astron.Astrophys. 594 (2016) A6, arXiv:1502.01585.
[Ade:2015uua]
[19-70]
Planck 2015 results. IV. Low Frequency Instrument beams and window functions, P. A. R. Ade et al. (Planck), Astron.Astrophys. 594 (2016) A4, arXiv:1502.01584.
[Ade:2015tua]
[19-71]
Planck 2015 results. II. Low Frequency Instrument data processing, P. A. R. Ade et al. (Planck), Astron.Astrophys. 594 (2016) A2, arXiv:1502.01583.
[Ade:2015sua]
[19-72]
Planck 2015 results. I. Overview of products and scientific results, R. Adam et al. (Planck), Astron.Astrophys. 594 (2016) A1, arXiv:1502.01582.
[Adam:2015rua]
[19-73]
A Joint Analysis of BICEP2/Keck Array and Planck Data, BICEP2/Keck et al. (Plancks), Phys. Rev. Lett. 114 (2015) 101301, arXiv:1502.00612.
[Ade:2015tva]
[19-74]
Planck 2013 results. XXIX. The Planck catalogue of Sunyaev-Zeldovich sources: Addendum, P. A. R. Ade et al. (Planck), Astron. Astrophys. 581 (2015) A14, arXiv:1502.00543.
[Ade:2015mva]
[19-75]
Cosmological implications of baryon acoustic oscillation (BAO) measurements, Eric Aubourg, Stephen Bailey, Julian E. Bautista, Florian Beutler, Vaishali Bhardwaj et al. (BOSS), Phys. Rev. D92 (2015) 123516, arXiv:1411.1074.
[Aubourg:2014yra]
[19-76]
Planck intermediate results. XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes, R. Adam et al. (Planck), Astron. Astrophys. 586 (2016) A133, arXiv:1409.5738.
[Adam:2014bub]
[19-77]
CFHTLenS: Cosmological constraints from a combination of cosmic shear two-point and three-point correlations, Liping Fu, Martin Kilbinger, Thomas Erben, Catherine Heymans, Hendrik Hildebrandt et al., Mon.Not.Roy.Astron.Soc. 441 (2014) 2725-2743, arXiv:1404.5469.
[Fu:2014loa]
[19-78]
BICEP2 II: Experiment and Three-Year Data Set, P. A. R Ade et al. (BICEP2), Astrophys.J. 792 (2014) 62, arXiv:1403.4302.
[Ade:2014gua]
[19-79]
Detection of B-Mode Polarization at Degree Angular Scales by BICEP2, P.A.R. Ade et al. (BICEP2), Phys. Rev. Lett. 112 (2014) 241101, arXiv:1403.3985.
[Ade:2014xna]
[19-80]
Evidence for a Lower Value for $H_0$ from Cosmic Chronometers Data?, Vinicius C. Busti, Chris Clarkson, Marina Seikel, Mon.Not.Roy.Astron.Soc. 441 (2014) 11, arXiv:1402.5429.
[Busti:2014dua]
[19-81]
The 400d Galaxy Cluster Survey weak lensing programme: III: Evidence for consistent WL and X-ray masses at $z\approx 0.5$, Holger Israel et al., Astron.Astrophys. 564 (2014) A129, arXiv:1402.3267.
[Israel:2014pha]
[19-82]
3D Cosmic Shear: Cosmology from CFHTLenS, T.D. Kitching et al. (CFHTLenS), Mon.Not.Roy.Astron.Soc. 442 (2014) 1326-1349, arXiv:1401.6842.
[Kitching:2014dtq]
[19-83]
Gravitational Lensing of Cosmic Microwave Background Polarization, P.A.R. Ade et al. (POLARBEAR), Phys. Rev. Lett. 113 (2014) 021301, arXiv:1312.6646.
[Ade:2013gez]
[19-84]
Evidence for Gravitational Lensing of the Cosmic Microwave Background Polarization from Cross-correlation with the Cosmic Infrared Background, P.A.R. Ade et al. (POLARBEAR), Phys. Rev. Lett. 112 (2014) 131302, arXiv:1312.6645.
[Ade:2013hjl]
[19-85]
The Clustering of Galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Measuring growth rate and geometry with anisotropic clustering, Lado Samushia et al., Mon.Not.Roy.Astron.Soc. 439 (2014) 3504-3519, arXiv:1312.4899.
[Samushia:2013yga]
[19-86]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: single-probe measurements from CMASS and LOWZ anisotropic galaxy clustering, Chia-Hsun Chuang et al., Mon.Not.Roy.Astron.Soc. 461 (2016) 3781-3793, arXiv:1312.4889.
[Chuang:2013wga]
[19-87]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the Data Release 10 and 11 galaxy samples, Lauren Anderson et al. (BOSS), Mon.Not.Roy.Astron.Soc. 441 (2014) 24-62, arXiv:1312.4877.
[Anderson:2013zyy]
[19-88]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the full shape of the clustering wedges in the data release 10 and 11 galaxy samples, Ariel G. Sanchez et al., Mon.Not.Roy.Astron.Soc. 433 (2013) 1202-1222, arXiv:1312.4854.
[Sanchez:2013tga]
[19-89]
The Clustering of Galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Including covariance matrix errors, Will J. Percival et al., Mon.Not.Roy.Astron.Soc. 439 (2014) 2531, arXiv:1312.4841.
[Percival:2013sga]
[19-90]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Testing gravity with redshift-space distortions using the power spectrum multipoles, Florian Beutler et al. (BOSS), Mon.Not.Roy.Astron.Soc. 443 (2014) 1065, arXiv:1312.4611.
[Beutler:2013yhm]
[19-91]
Quasar-Lyman $\alpha$ Forest Cross-Correlation from BOSS DR11 : Baryon Acoustic Oscillations, Andreu Font-Ribera et al. (BOSS), JCAP (2013), arXiv:1311.1767.
[Font-Ribera:2013wce]
[19-92]
Degree-Scale CMB Polarization Measurements from Three Years of BICEP1 Data, D. Barkats et al. (BICEP1), Astrophys.J. 783 (2014) 67, arXiv:1310.1422.
[Barkats:2013jfa]
[19-93]
Precision measures of the primordial abundance of deuterium, Ryan Cooke, Max Pettini, Regina A. Jorgenson, Michael T. Murphy, Charles C. Steidel, Astrophys. J. 781 (2014) 31, arXiv:1308.3240.
[Cooke:2013cba]
[19-94]
Planck intermediate results. XIII. Constraints on peculiar velocities, P. A. R. Ade et al. (Planck), Astron.Astrophys. (2013), arXiv:1303.5090.
[Ade:2013opi]
[19-95]
Planck 2013 results. XXIX. Planck catalogue of Sunyaev-Zeldovich sources, P. A. R. Ade et al. (Planck), Astron.Astrophys. (2013), arXiv:1303.5089.
[Ade:2013skr]
[19-96]
Planck 2013 results. XXVIII. The Planck Catalogue of Compact Sources, P. A. R. Ade et al. (Planck), Astron.Astrophys. 571 (2014) A28, arXiv:1303.5088.
[Ade:2013jbr]
[19-97]
Planck 2013 results. XXVII. Doppler boosting of the CMB: Eppur si muove, N. Aghanim et al. (Planck), Astron.Astrophys. 571 (2014) A27, arXiv:1303.5087.
[Aghanim:2013suk]
[19-98]
Planck 2013 results. XXVI. Background geometry and topology of the Universe, P. A. R. Ade et al. (Planck), Grav.Cosmol. 20 (2014) 15-20, arXiv:1303.5086.
[Luminet:2013ama]
[19-99]
Planck 2013 results. XXV. Searches for cosmic strings and other topological defects, P. A. R. Ade et al. (Planck), Astron.Astrophys. 571 (2014) A25, arXiv:1303.5085.
[Ade:2013xla]
[19-100]
Planck 2013 Results. XXIV. Constraints on primordial non-Gaussianity, P. A. R. Ade et al. (Planck), Astron.Astrophys. 571 (2014) A24, arXiv:1303.5084.
[Ade:2013ydc]
[19-101]
Planck 2013 results. XXIII. Isotropy and Statistics of the CMB, P. A. R. Ade et al. (Planck), Astron.Astrophys. 571 (2014) A23, arXiv:1303.5083.
[Ade:2013nlj]
[19-102]
Planck 2013 results. XXII. Constraints on inflation, P. A. R. Ade et al. (Planck), Astron.Astrophys. 571 (2014) A22, arXiv:1303.5082.
[Ade:2013uln]
[19-103]
Planck 2013 results. XXI. Cosmology with the all-sky Planck Compton parameter $y$-map, Planck (Planck), Astron.Astrophys. 571 (2014) A21, arXiv:1303.5081.
[Ade:2013qta]
[19-104]
Planck 2013 results. XX. Cosmology from Sunyaev-Zeldovich cluster counts, P. A. R. Ade et al. (Planck), Astron.Astrophys. 571 (2014) A20, arXiv:1303.5080.
[Ade:2013lmv]
[19-105]
Planck 2013 results. XIX. The integrated Sachs-Wolfe effect, P. A. R. Ade et al. (Planck), Astron.Astrophys. 571 (2014) A19, arXiv:1303.5079.
[Ade:2013dsi]
[19-106]
Planck 2013 results. XVIII. Gravitational lensing-infrared background correlation, P. A. R. Ade et al. (Planck), Astron.Astrophys. 571 (2014) A18, arXiv:1303.5078.
[Ade:2013aro]
[19-107]
Planck 2013 results. XVII. Gravitational lensing by large-scale structure, P. A. R. Ade et al. (Planck), Astron.Astrophys. 571 (2014) A17, arXiv:1303.5077.
[Ade:2013tyw]
[19-108]
Planck 2013 results. XVI. Cosmological parameters, P.A.R. Ade et al. (Planck), Astron.Astrophys. 571 (2014) A16, arXiv:1303.5076.
[Ade:2013zuv]
[19-109]
Planck 2013 results. XV. CMB power spectra and likelihood, Planck (Planck), Astron.Astrophys. 571 (2014) A15, arXiv:1303.5075.
[Ade:2013kta]
[19-110]
Planck 2013 results. XIV. Zodiacal emission, P. A. R. Ade et al. (Planck), Astron.Astrophys. 571 (2014) A14, arXiv:1303.5074.
[Ade:2013jta]
[19-111]
Planck 2013 results. XIII. Galactic CO emission, Planck (The Planck), Astron.Astrophys. 571 (2014) A13, arXiv:1303.5073.
[ThePlanck:2013ita]
[19-112]
Planck 2013 results. XII. Component separation, P. A. R. Ade et al. (Planck), Astron.Astrophys. 571 (2014) A12, arXiv:1303.5072.
[Ade:2013hta]
[19-113]
Planck 2013 results X. Energetic particle effects: characterization, removal, and simulation, P. A. R. Ade et al. (Planck), Astron.Astrophys. 571 (2014) A10, arXiv:1303.5071.
[Ade:2013gta]
[19-114]
Planck 2013 results. IX. HFI spectral response, P. A. R. Ade et al. (Planck), Astron.Astrophys. 571 (2014) A9, arXiv:1303.5070.
[Ade:2013fta]
[19-115]
Planck 2013 results. VIII. HFI photometric calibration and mapmaking, P. A. R. Ade et al. (Planck), Astron.Astrophys. 571 (2014) A8, arXiv:1303.5069.
[Ade:2013eta]
[19-116]
Planck 2013 results. VII. HFI time response and beams, P. A. R. Ade et al. (Planck), Astron.Astrophys. 571 (2014) A7, arXiv:1303.5068.
[Ade:2013dta]
[19-117]
Planck 2013 results. VI. High Frequency Instrument data processing, P. A. R. Ade et al. (Planck), Astron.Astrophys. 571 (2014) A6, arXiv:1303.5067.
[Planck:2013cta]
[19-118]
Planck 2013 results. V. LFI calibration, N. Aghanim et al. (Planck), Astron.Astrophys. 571 (2014) A5, arXiv:1303.5066.
[Aghanim:2013bta]
[19-119]
Planck 2013 results. IV. Low Frequency Instrument beams and window functions, N. Aghanim et al. (Planck), Astron.Astrophys. 571 (2014) A4, arXiv:1303.5065.
[Aghanim:2013ata]
[19-120]
Planck 2013 results. III. LFI systematic uncertainties, N. Aghanim et al. (Planck), Astron.Astrophys. 571 (2014) A3, arXiv:1303.5064.
[Aghanim:2013zsa]
[19-121]
Planck 2013 results. II. The Low Frequency Instrument data processing, N. Aghanim et al. (Planck), Astron.Astrophys. 571 (2014) A2, arXiv:1303.5063.
[Aghanim:2013ysa]
[19-122]
Planck 2013 results. I. Overview of products and scientific results, P.A.R. Ade et al. (Planck), Astron.Astrophys. 571 (2014) A1, arXiv:1303.5062.
[Ade:2013sjv]
[19-123]
The Atacama Cosmology Telescope: temperature and gravitational lensing power spectrum measurements from three seasons of data, Sudeep Das, Thibaut Louis, Michael R. Nolta, Graeme E. Addison, Elia S. Battistelli et al., JCAP 1404 (2014) 014, arXiv:1301.1037.
[Das:2013zf]
[19-124]
The Atacama Cosmology Telescope: Cosmological parameters from three seasons of data, Jonathan L. Sievers et al. (Atacama Cosmology Telescope), JCAP 1310 (2013) 060, arXiv:1301.0824.
[Sievers:2013ica]
[19-125]
The Atacama Cosmology Telescope: Sunyaev-Zel'dovich Selected Galaxy Clusters at 148 GHz from Three Seasons of Data, Matthew Hasselfield et al., JCAP 1307 (2013) 008, arXiv:1301.0816.
[Hasselfield:2013wf]
[19-126]
The Atacama Cosmology Telescope: likelihood for small-scale CMB data, J. Dunkley, E. Calabrese, J. Sievers, G.E. Addison, N. Battaglia et al., JCAP 1307 (2013) 025, arXiv:1301.0776.
[Dunkley:2013vu]
[19-127]
Constraints on Cosmology from the Cosmic Microwave Background Power Spectrum of the 2500-square degree SPT-SZ Survey, Z. Hou, C.L. Reichardt, K.T. Story, B. Follin, R. Keisler et al., Astrophys.J. 782 (2014) 74, arXiv:1212.6267.
[Hou:2012xq]
[19-128]
Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results, G. Hinshaw et al. (WMAP), Astrophys.J.Suppl. 208 (2013) 19, arXiv:1212.5226.
[Hinshaw:2012aka]
[19-129]
Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results, C.L. Bennett et al. (WMAP), Astrophys.J.Suppl. 208 (2013) 20, arXiv:1212.5225.
[Bennett:2012zja]
[19-130]
CFHTLenS: Combined probe cosmological model comparison using 2D weak gravitational lensing, Martin Kilbinger, Liping Fu, Catherine Heymans, Fergus Simpson, Jonathan Benjamin et al., Monthly Notices of the Royal Astronomical Society 430 (2013) 2200-2220, arXiv:1212.3338.
[Kilbinger:2012qz]
[19-131]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: weighing the neutrino mass using the galaxy power spectrum of the CMASS sample, Gong-Bo Zhao, Shun Saito, Will J. Percival, Ashley J. Ross, Francesco Montesano et al., Mon.Not.Roy.Astron.Soc. 436 (2013) 2038-2053, arXiv:1211.3741.
[Zhao:2012xw]
[19-132]
A Measurement of the Cosmic Microwave Background Damping Tail from the 2500-square-degree SPT-SZ survey, K.T. Story, C.L. Reichardt, Z. Hou, R. Keisler, K.A. Aird et al., Astrophys.J. 779 (2013) 86, arXiv:1210.7231.
[Story:2012wx]
[19-133]
The WiggleZ Dark Energy Survey: Final data release and cosmological results, David Parkinson, Signe Riemer-Sorensen, Chris Blake, Gregory B. Poole, Tamara M. Davis et al., Phys. Rev. D86 (2012) 103518, arXiv:1210.2130.
[Parkinson:2012vd]
[19-134]
CFHTLenS: The Canada-France-Hawaii Telescope Lensing Survey, Catherine Heymans, Ludovic Van Waerbeke, Lance Miller, Thomas Erben, Hendrik Hildebrandt et al., Mon.Not.Roy.Astron.Soc. 427 (2012) 146, arXiv:1210.0032.
[Heymans:2012gg]
[19-135]
Two accurate time-delay distances from strong lensing: Implications for cosmology, S.H. Suyu, M.W. Auger, S. Hilbert, P.J. Marshall, M. Tewes et al., Astrophys.J. 766 (2013) 70, arXiv:1208.6010.
[Suyu:2012aa]
[19-136]
The luminosity of supernovae of type Ia from TRGB distances and the value of $H_0$, G.A. Tammann, B. Reindl, Astron.Astrophys. 549 (2013) A136, arXiv:1208.5054.
[Tammann:2012ut]
[19-137]
Carnegie Hubble Program: A Mid-Infrared Calibration of the Hubble Constant, Wendy L. Freedman, Barry F. Madore, Victoria Scowcroft, Chris Burns, Andy Monson et al., Astrophys.J. 758 (2012) 24, arXiv:1208.3281.
[Freedman:2012ny]
[19-138]
The Megamaser Cosmology Project: IV. A Direct Measurement of the Hubble Constant from UGC 3789, M.J. Reid, J.A. Braatz, J.J. Condon, K.Y. Lo, C.Y. Kuo et al., Astrophys.J. 767 (2013) 154, arXiv:1207.7292.
[Reid:2012hm]
[19-139]
The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey, Christopher P. Ahn et al. (SDSS), Astrophys.J.Suppl. 203 (2012) 21, arXiv:1207.7137.
[Smee:2012wd]
[19-140]
The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey, Christopher P. Ahn et al. (SDSS), Astrophys.J.Suppl. 203 (2012) 21, arXiv:1207.7137.
[Ahn:2012fh]
[19-141]
Competitive Crossing Check for a 3% Determination of the Hubble Constant, J.A.S. Lima, J.V. Cunha, Astrophys.J. 781 (2014) L38, arXiv:1206.0332.
[Lima:2012jm]
[19-142]
A new, precise measurement of the primordial abundance of Deuterium, Max Pettini, Ryan Cooke, Mon.Not.Roy.Astron.Soc. 425 (2012) 2477-2486, arXiv:1205.3785.
[Pettini:2012ph]
[19-143]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measurements of the growth of structure and expansion rate at z=0.57 from anisotropic clustering, Beth A. Reid, Lado Samushia, Martin White, Will J. Percival, Marc Manera et al., Mon.Not.Roy.Astron.Soc. 426 (2012) 2719, arXiv:1203.6641.
[Reid:2012sw]
[19-144]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the large-scale two-point correlation function, Ariel G. Sanchez, C.G. Scoccola, A.J. Ross, W. Percival, M. Manera et al., Mon.Not.Roy.Astron.Soc. 425 (2012) 415, arXiv:1203.6616.
[Sanchez:2012sg]
[19-145]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the Data Release 9 Spectroscopic Galaxy Sample, Lauren Anderson, Eric Aubourg, Stephen Bailey, Dmitry Bizyaev, Michael Blanton et al., Mon.Not.Roy.Astron.Soc. 428 (2013) 1036-1054, arXiv:1203.6594.
[Anderson:2012sa]
[19-146]
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measuring structure growth using passive galaxies, Rita Tojeiro, W.J. Percival, J. Brinkmann, J.R. Brownstein, D. Eisenstein et al., Mon.Not.Roy.Astron.Soc. 424 (2012) 2339, arXiv:1203.6565.
[Tojeiro:2012rp]
[19-147]
Determining the Hubble constant using Giant extragalactic HII regions and HII galaxies, Ricardo Chavez, Elena Terlevich, Roberto Terlevich, Manolis Plionis, Fabio Bresolin et al., Mon.Not.Roy.Astron.Soc. 425 (2012) 56, arXiv:1203.6222.
[Chavez:2012km]
[19-148]
Cosmicflows-2: SNIa Calibration and H0, Helene M. Courtois, R. Brent Tully, Astrophys.J. 749 (2012) 174, arXiv:1202.3832.
[Courtois:2012kg]
[19-149]
A measurement of gravitational lensing of the microwave background using South Pole Telescope data, A. van Engelen, R. Keisler, O. Zahn, K.A. Aird, B.A. Benson et al., Astrophys. J. 756 (2012) 142, arXiv:1202.0546.
[vanEngelen:2012va]
[19-150]
Clustering of Sloan Digital Sky Survey III Photometric Luminous Galaxies: The Measurement, Systematics and Cosmological Implications, Shirley Ho et al., Astrophys. J. 761 (2012) 14, arXiv:1201.2137.
[Ho:2012vy]
[19-151]
The WiggleZ Dark Energy Survey: Cosmological neutrino mass constraint from blue high-redshift galaxies, Signe Riemer-Sorensen et al., Phys. Rev. D85 (2012) 081101, arXiv:1112.4940.
[RiemerSorensen:2011fe]
[19-152]
A measurement of secondary cosmic microwave background anisotropies with two years of South Pole Telescope observations, C.L. Reichardt, L. Shaw, O. Zahn, K.A. Aird, B.A. Benson et al., Astrophys.J. 755 (2012) 70, arXiv:1111.0932.
[Reichardt:2011yv]
[19-153]
Cepheid Period-Luminosity Relations in the Near-Infrared and the Distance to M31 from the Hubble Space Telescope Wide Field Camera 3, Adam G. Riess, Juergen Fliri, David Valls-Gabaud, Astrophys.J. 745 (2012) 156, arXiv:1110.3769.
[Riess:2011vh]
[19-154]
The WiggleZ Dark Energy Survey: mapping the distance-redshift relation with baryon acoustic oscillations, Chris Blake, Eyal Kazin, Florian Beutler, Tamara Davis, David Parkinson et al., Mon.Not.Roy.Astron.Soc. 418 (2011) 1707-1724, arXiv:1108.2635.
[Blake:2011en]
[19-155]
The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant, Florian Beutler, Chris Blake, Matthew Colless, D. Heath Jones, Lister Staveley-Smith et al., Mon.Not.Roy.Astron.Soc. 416 (2011) 3017-3032, arXiv:1106.3366.
[Beutler:2011hx]
[19-156]
The Atacama Cosmology Telescope: a measurement of the primordial power spectrum, Renee Hlozek, Joanna Dunkley, Graeme Addison, John William Appel, J. Richard Bond et al., Astrophys.J. 749 (2012) 90, arXiv:1105.4887.
[Hlozek:2011pc]
[19-157]
A Measurement of the Damping Tail of the Cosmic Microwave Background Power Spectrum with the South Pole Telescope, R. Keisler et al., Astrophys. J. 743 (2011) 28, arXiv:1105.3182.
[Keisler:2011aw]
[19-158]
A 3% Solution: Determination of the Hubble Constant with the Hubble Space Telescope and Wide Field Camera 3, Adam G. Riess, Lucas Macri, Stefano Casertano, Hubert Lampeitl, Henry C. Ferguson et al., Astrophys.J. 730 (2011) 119, arXiv:1103.2976.
[Riess:2011yx]
[19-159]
Swift observation of Segue 1: constraints on sterile neutrino parameters in the darkest galaxy, N. Mirabal, Mon.Not.Roy.Astron.Soc. 409 (2010) 128, arXiv:1010.4706.
[Mirabal:2010an]
[19-160]
The Atacama Cosmology Telescope: Cosmological Parameters from the 2008 Power Spectra, J. Dunkley et al., Astrophys. J. 739 (2011) 52, arXiv:1009.0866.
[Dunkley:2010ge]
[19-161]
The Atacama Cosmology Telescope: A Measurement of the Cosmic Microwave Background Power Spectrum at 148 and 218 GHz from the 2008 Southern Survey, Sudeep Das, Tobias A. Marriage, Peter A.R. Ade, Paula Aguirre, Mandana Amir et al., Astrophys.J. 729 (2011) 62, arXiv:1009.0847.
[Das:2010ga]
[19-162]
A Measurement of the Rate of Type Ia Supernovae in Galaxy Clusters from the SDSS-II Supernova Survey, Benjamin Dilday et al. (SDSS), Astrophys.J. 715 (2010) 1021-1035, arXiv:1003.1521.
[Dilday:2010xe]
[19-163]
Measurements of the Rate of Type Ia Supernovae at Redshift z < ~0.3 from the SDSS-II Supernova Survey, Benjamin Dilday et al. (SDSS), Astrophys.J. 713 (2010) 1026-1036, arXiv:1001.4995.
[Dilday:2010qk]
[19-164]
Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Are There Cosmic Microwave Background Anomalies?, C. L. Bennett et al., Astrophys. J. Suppl. 192 (2011) 17, arXiv:1001.4758.
[Bennett:2010jb]
[19-165]
Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results, N. Jarosik et al., Astrophys. J. Suppl. 192 (2011) 14, arXiv:1001.4744.
[Jarosik:2010iu]
[19-166]
Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Planets and Celestial Calibration Sources, J. L. Weiland et al., Astrophys. J. Suppl. 192 (2011) 19, arXiv:1001.4731.
[Weiland:2010ij]
[19-167]
Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Power Spectra and WMAP-Derived Parameters, D. Larson, J. Dunkley, G. Hinshaw, E. Komatsu, M.R. Nolta et al., Astrophys.J.Suppl. 192 (2011) 16, arXiv:1001.4635.
[Larson:2010gs]
[19-168]
Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Galactic Foreground Emission, B. Gold et al., Astrophys. J. Suppl. 192 (2011) 15, arXiv:1001.4555.
[Gold:2010fm]
[19-169]
Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, E. Komatsu et al. (WMAP), Astrophys. J. Suppl. 192 (2011) 18, arXiv:1001.4538.
From the abstract: Notable examples of improved parameters are the total mass of neutrinos, $\sum m_\nu < 0.58 \, \text{eV} \quad \text{(95\% CL)}$, and the effective number of neutrino species, $N_{\text{eff}} = 4.34^{+ 0.86}_{- 0.88} \quad \text{(68\%~CL)}$, which benefit from better determinations of the third peak and $H_0$.
[Komatsu:2010fb]
[19-170]
The primordial abundance of 4He: evidence for non-standard big bang nucleosynthesis, Y. I. Izotov, T. X. Thuan, Astrophys. J. 710 (2010) L67-L71, arXiv:1001.4440.
[Izotov:2010ca]
[19-171]
Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample, Will J. Percival et al. (SDSS), Mon.Not.Roy.Astron.Soc. 401 (2010) 2148-2168, arXiv:0907.1660.
[Percival:2009xn]
[19-172]
Cosmological Constraints from the Clustering of the Sloan Digital Sky Survey DR7 Luminous Red Galaxies, Beth A. Reid, Will J. Percival, Daniel J. Eisenstein, Licia Verde, David N. Spergel et al., Mon.Not.Roy.Astron.Soc. 404 (2010) 60-85, arXiv:0907.1659.
[Reid:2009xm]
[19-173]
Cepheid Calibrations of Modern Type Ia Supernovae:Implications for the Hubble Constant, Adam G. Riess, Lucas Macri, Weidong Li, Hubert Lampeitl, Stefano Casertano et al., Astrophys.J.Suppl. 183 (2009) 109-141, arXiv:0905.0697.
[Riess:2009pv]
[19-174]
A Redetermination of the Hubble Constant with the Hubble Space Telescope from a Differential Distance Ladder, Adam G. Riess, Lucas Macri, Stefano Casertano, Megan Sosey, Hubert Lampeitl et al., Astrophys.J. 699 (2009) 539-563, arXiv:0905.0695.
[Riess:2009pu]
[19-175]
The 6dF Galaxy Survey: Final Redshift Release (DR3) and Southern Large-Scale Structures, D. Heath Jones, Mike A. Read, Will Saunders, Matthew Colless, Tom Jarrett et al., Mon.Not.Roy.Astron.Soc. 399 (2009) 683, arXiv:0903.5451.
[Jones:2009yz]
[19-176]
Cosmological Parameters from the QUaD CMB polarization experiment, QUaD collaboration et al. (QUaD), Astrophys. J. 701 (2009) 857-864, arXiv:0901.0810.
[Castro:2009ej]
[19-177]
The Seventh Data Release of the Sloan Digital Sky Survey, Kevork N. Abazajian et al. (SDSS), Astrophys.J.Suppl. 182 (2009) 543-558, arXiv:0812.0649.
[Abazajian:2008wr]
[19-178]
Very-High-Energy Gamma Rays from a Distant Quasar: How Transparent Is the Universe?, J. Albert et al. (MAGIC), Science 320 (2008) 1752, arXiv:0807.2822.
[Aliu:2008ay]
[19-179]
Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, and Basic Results, G. Hinshaw et al. (WMAP), Astrophys. J. Suppl. 180 (2009) 225-245, arXiv:0803.0732.
[Hinshaw:2008kr]
[19-180]
Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Galactic Foreground Emission, B. Gold et al. (WMAP), Astrophys. J. Suppl. 180 (2009) 265-282, arXiv:0803.0715.
[Gold:2008kp]
[19-181]
Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Angular Power Spectra, M. R. Nolta et al. (WMAP), Astrophys. J. Suppl. 180 (2009) 296-305, arXiv:0803.0593.
[Nolta:2008ih]
[19-182]
Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Likelihoods and Parameters from the WMAP data, J. Dunkley et al. (WMAP), Astrophys. J. Suppl. 180 (2009) 306-329, arXiv:0803.0586.
[Dunkley:2008ie]
[19-183]
Five-Year Wilkinson Microwave Anisotropy Probe (WMAP)Observations: Beam Maps and Window Functions, R. S. Hill et al. (WMAP), Astrophys. J. Suppl. 180 (2009) 246-264, arXiv:0803.0570.
[Hill:2008hx]
[19-184]
Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, E. Komatsu et al. (WMAP), Astrophys. J. Suppl. 180 (2009) 330-376, arXiv:0803.0547.
From the abstract: The WMAP 5-year data provide stringent limits on deviations from the minimal, 6-parameter $\Lambda\text{CDM}$ model.... We detect no convincing deviations from the minimal model....
$\Omega_\Lambda = 0.721\pm 0.015$,..., $H_0 = 70.1\pm 1.3 \, \text{km} \, \text{s}^{-1} \, \text{Mpc}^{-1}$, $\Omega_b = 0.0462\pm 0.0015$, $\Omega_c = 0.233\pm 0.013$,...
We obtain tight, simultaneous limits on the (constant) equation of state of dark energy and the spatial curvature of the universe: $-0.11<1+w<0.14\, \text{(95\% CL)}$ and $-0.0175<\Omega_k<0.0085\, \text{(95\% CL)}$....
We find the limit on the total mass of massive neutrinos of $\sum m_\nu < 0.61 \, \text{eV}\, \text{(95\% CL)}$, which is free from the uncertainty in the normalization of the large-scale structure data. The number of relativistic degrees of freedom, expressed in units of the effective number of neutrino species, is constrained as $N_{\rm eff} = 4.4\pm 1.5$ (68\%), consistent with the standard value of 3.04.

[Komatsu:2008hk]
[19-185]
High resolution CMB power spectrum from the complete ACBAR data set, C.L. Reichardt, P.A.R. Ade, J.J. Bock, J. Richard Bond, J.A. Brevik et al., Astrophys.J. 694 (2009) 1200-1219, arXiv:0801.1491.
[Reichardt:2008ay]
[19-186]
The Sixth Data Release of the Sloan Digital Sky Survey, Jennifer K. Adelman-McCarthy et al. (SDSS), Astrophys.J.Suppl. 175 (2008) 297-313, arXiv:0707.3413.
[AdelmanMcCarthy:2007aa]
[19-187]
The Fifth Data Release of the Sloan Digital Sky Survey, Jennifer K. Adelman-McCarthy (SDSS), Astrophys. J. Suppl. 172 (2007) 634-644, arXiv:0707.3380.
[AdelmanMcCarthy:2007wh]
[19-188]
COSMOS: 3D weak lensing and the growth of structure, Richard Massey et al., Astrophys. J. Suppl. 172 (2007) 239-253, arXiv:astro-ph/0701480.
[Massey:2007gh]
[19-189]
The shape of the SDSS DR5 galaxy power spectrum, Will J. Percival et al., Astrophys. J. 657 (2007) 645-663, arXiv:astro-ph/0608636.
[Percival:2006gt]
[19-190]
The Chemical Evolution of Helium, Dana S. Balser, Astron. J. 132 (2006) 2326-2332, arXiv:astro-ph/0608436.
[Balser:2006fv]
[19-191]
The DEEP2 Galaxy Redshift Survey: Clustering of Quasars and Galaxies at z=1, Alison L. Coil et al., Astrophys. J. 654 (2006) 115-124, arXiv:astro-ph/0607454.
[Coil:2006ji]
[19-192]
The First DIRECT Distance Determination to a Detached Eclipsing Binary in M33, Alceste Z. Bonanos et al., Astrophys. J. 652 (2006) 313, arXiv:astro-ph/0606279.
From the article: ... our LMC distance would imply a 15\% decrease in the Hubble constant to $ H_{0} = 61\; \rm km\;s^{-1}\; Mpc^{-1} $.
[Bonanos:2006jd]
[19-193]
Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Beam Profiles, Data Processing, Radiometer Characterization and Systematic Error Limits, N. Jarosik et al. (WMAP), Astrophys. J. Suppl. 170 (2007) 263, arXiv:astro-ph/0603452. http://lambda.gsfc.nasa.gov/product/map/dr2/pub_papers/threeyear/syserr/wmap_3yr_syserr.pdf.
[Jarosik:2006ib]
[19-194]
Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Temperature Results, G. Hinshaw et al. (WMAP), Astrophys. J. Suppl. 170 (2007) 288, arXiv:astro-ph/0603451. http://lambda.gsfc.nasa.gov/product/map/dr2/pub_papers/threeyear/temperature/wmap_3yr_temp.pdf.
[Hinshaw:2006ia]
[19-195]
Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Polarization Analysis, L. Page et al. (WMAP), Astrophys. J. Suppl. 170 (2007) 335, arXiv:astro-ph/0603450. http://lambda.gsfc.nasa.gov/product/map/dr2/pub_papers/threeyear/polarization/wmap_3yr_pol.pdf.
[Page:2006hz]
[19-196]
Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for Cosmology, D.N. Spergel et al. (WMAP), Astrophys. J. Suppl. 170 (2007) 377, arXiv:astro-ph/0603449. http://lambda.gsfc.nasa.gov/product/map/dr2/pub_papers/threeyear/parameters/wmap_3yr_param.pdf.
[Spergel:2006hy]
[19-197]
Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Three Year Explanatory Supplement, M. Limon et al. (WMAP), 2006. http://lambda.gsfc.nasa.gov/product/map/dr2/pub_papers/threeyear/supplement/wmap_3yr_supplement.pdf.
[WMAP-2006-Limon]
[19-198]
A Lyman-alpha blob in the GOODS South field: evidence for cold accretion onto a dark matter halo, Kim Nilsson et al., Astron. Astrophys. 452 (2006) L23-L26, arXiv:astro-ph/0512396.
[Nilsson:2005rk]
[19-199]
Cosmic Shear Analysis with CFHTLS Deep data, E. Semboloni et al., Astron.Astrophys. (2005), arXiv:astro-ph/0511090.
[Semboloni:2005ct]
[19-200]
First cosmic shear results from the Canada-France-Hawaii Telescope Wide Synoptic Legacy Survey, H. Hoekstra et al., Astrophys. J. 647 (2006) 116-127, arXiv:astro-ph/0511089.
From the abstract: Assuming a Cold Dark Matter model and marginalising over the Hubble parameter $h\in[0.6,0.8]$, the source redshift distribution and systematics, we constrain $\sigma_8$, the amplitude of the matter power spectrum. At a fiducial matter density $\Omega_m=0.3$ we find $\sigma_8=0.85\pm0.06$. This estimate is in excellent agreement with previous studies. Combination of our results with those from the Deep component of the CFHTLS enables us to place a constraint on a constant equation of state for the dark energy, based on cosmic shear data alone. We find that $w_0<-0.8$ at 68\% confidence.
[Hoekstra:2005cs]
[19-201]
The DEEP2 Galaxy Redshift Survey: Discovery of Luminous, Metal-poor, Sta r-forming Galaxies at Redshifts z~0.7, Carlos Hoyos et al., Astrophys. J. 635 (2005) L21, arXiv:astro-ph/0510843.
[Hoyos:2005hc]
[19-202]
The Supernova Legacy Survey: Measurement of $\Omega_\text{M}$, $\Omega_{\Lambda}$ and $w$ from the First Year Data Set, P. Astier et al. (SNLS), Astron. Astrophys. 447 (2006) 31, arXiv:astro-ph/0510447.
From the abstract: With this data set, we have built a Hubble diagram extending to $z=1$, with all distance measurements involving at least two bands.... Cosmological fits to this first year SNLS Hubble diagram give the following results: $ \Omega_{\text{M}} = 0.263 \pm 0.042 \pm 0.032 $ for a flat $\Lambda\text{CDM}$ model; and $w = -1.023 \pm 0.090 \pm 0.054 $ for a flat cosmology with constant equation of state $w$ when combined with the constraint from the recent Sloan Digital Sky Survey measurement of baryon acoustic oscillations.
[Astier:2005qq]
[19-203]
Hubble Space Telescope and Ground-Based Observations of Type Ia Supernovae at Redshift 0.5: Cosmological Implications, A. Clocchiatti et al. (High Z SN Search), Astrophys. J. 642 (2006) 1-21, arXiv:astro-ph/0510155.
[Clocchiatti:2005vy]
[19-204]
GRB 050904 at redshift 6.3: observations of the oldest cosmic explosion after the Big Bang, G. Tagliaferri et al., Astron. Astrophys. 443 (2005) L1-L5, arXiv:astro-ph/0509766.
[Tagliaferri:2005cw]
[19-205]
Detection of a huge explosion in the early Universe, G. Cusumano et al., Nature (2005), arXiv:astro-ph/0509737.
[Cusumano:2005br]
[19-206]
RATAN-600 new zenith field survey and CMB problems, Yu.N. Parijskij et al., Grav. Cosmol. 10 (2004) 1, arXiv:astro-ph/0508065.
[Parijskij:2005fz]
[19-207]
The Fourth Data Release of the Sloan Digital Sky Survey, J.K. Adelman-McCarthy et al. (SDSS), Astrophys. J. Suppl. 162 (2006) 38, arXiv:astro-ph/0507711.
[AdelmanMcCarthy:2005se]
[19-208]
A Measurement of the CMB < EE > Spectrum from the 2003 Flight of BOOMERANG, T.E. Montroy et al., Astrophys. J. 647 (2006) 813, arXiv:astro-ph/0507514.
[Montroy:2005yx]
[19-209]
Instrument, Method, Brightness and Polarization Maps from the 2003 flight of BOOMERanG, S Masi et al., Astron.Astrophys. 458 (2006) 687, arXiv:astro-ph/0507509.
[Masi:2005ys]
[19-210]
A measurement of the polarization-temperature angular cross power spectrum of the Cosmic Microwave Background from the 2003 flight of BOOMERANG, F Piacentini et al., Astrophys. J. 647 (2006) 833, arXiv:astro-ph/0507507.
[Piacentini:2005yq]
[19-211]
A Measurement of the Angular Power Spectrum of the CMB Temperature Anisotropy from the 2003 Flight of Boomerang, W. C. Jones et al., Astrophys. J. 647 (2006) 823, arXiv:astro-ph/0507494.
[Jones:2005yb]
[19-212]
Keck Deep Fields. I. Observations, Reductions, and the Selection of Faint Star-Forming Galaxies at Redshifts z~4, 3, and 2, Marcin Sawicki, David Thompson, Astrophys. J. 635 (2005) 100, arXiv:astro-ph/0507424.
[Sawicki:2005qk]
[19-213]
First results from the Canada-France High-z Quasar Survey: Constraints on the z=6 quasar luminosity function and the quasar contribution to reionization, Chris J. Willott et al., Astrophys. J. 633 (2005) 630, arXiv:astro-ph/0507183.
[Willott:2005zr]
[19-214]
Second Data Release of the 6dF Galaxy Survey, D. Heath Jones, Will Saunders, Mike Read, Matthew Colless, Publ.Astron.Soc.Austral. (2005), arXiv:astro-ph/0505068.
[Jones:2005ya]
[19-215]
Detection of Cosmic Magnification with the Sloan Digital Sky Survey, Ryan Scranton et al. (SDSS), Astrophys. J. 633 (2005) 589, arXiv:astro-ph/0504510. SDSS News Release.
[Scranton:2005ci]
[19-216]
The 2dF QSO Redshift Survey - XV. Correlation analysis of redshift-Space distortions, J. da Angela et al., Mon. Not. Roy. Astron. Soc. 360 (2005) 1040-1054, arXiv:astro-ph/0504438.
From the abstract: $ \Omega_{\text{M}} = 0.35 {}^{+0.19}_{-0.13} $.
[daAngela:2005id]
[19-217]
The H I opacity of the intergalactic medium at redshifts 1.6 < z < 3.2, David Kirkman et al., Mon. Not. Roy. Astron. Soc. 360 (2005) 1373, arXiv:astro-ph/0504391.
[Kirkman:2005jz]
[19-218]
Restframe I-band Hubble diagram for type Ia supernovae up to redshift $z \sim 0.5$, Serena Nobili et al. (Supernova Cosmology Project), Astron.Astrophys. (2005), arXiv:astro-ph/0504139.
[Nobili:2005tr]
[19-219]
The Sloan Digital Sky Survey Quasar Catalog III. Third Data Release, D. P. Schneider et al. (The SDSS), Astron. J. 130 (2005) 367-380, arXiv:astro-ph/0503679.
[Schneider:2005vy]
[19-220]
Cepheid Calibrations from the Hubble Space Telescope of the Luminosity of Two Recent Type Ia Supernovae and a Re-determination of the Hubble Constant, Adam G. Riess et al., Astrophys. J. 627 (2005) 579, arXiv:astro-ph/0503159.
From the abstract: $H_0 = 73 +\pm 4 \pm 5 \, \text{km} \, \text{s}^{-1} \, \text{Mps}^{-1}$.
[Riess:2005zi]
[19-221]
The Deepest Supernova Search is Realized in the Hubble Ultra Deep Field Survey, Louis-Gregory Strolger, Adam G. Riess, Astron. J. 131 (2006) 1629-1638, arXiv:astro-ph/0503093.
[Strolger:2005uk]
[19-222]
The 2dF Galaxy Redshift Survey: Power-spectrum analysis of the final dataset and cosmological implications, S. Cole et al. (The 2dFGRS), Mon. Not. Roy. Astron. Soc. 362 (2005) 505, arXiv:astro-ph/0501174.
From the abstract: Fitting to a CDM model, assuming a primordial $n_{\text{s}}=1$ spectrum, $h=0.72$ and negligible neutrino mass, the preferred parameters are $\Omega_{\text{m}} h = 0.168 \pm 0.016$ and a baryon fraction $\Omega_{\text{b}} /\Omega_{\text{m}} = 0.185\pm0.046$ (1$\sigma$ errors).... This analysis therefore implies a density significantly below the standard $\Omega_{\text{m}} =0.3$: in combination with CMB data from WMAP, we infer $\Omega_{\text{m}} =0.231\pm 0.021$.
From the article: $\Omega_{\text{m}} = 0.231 \pm 0.021$, $\Omega_{\text{b}} = 0.042 \pm 0.002$, $h = 0.766 \pm 0.032$, $n_{\text{s}} = 1.027 \pm 0.050$.
[Cole:2005sx]
[19-223]
Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies, Daniel J. Eisenstein et al. (SDSS), Astrophys. J. 633 (2005) 560, arXiv:astro-ph/0501171.
From the abstract: We find a well-detected peak in the correlation function at $100 \, h^{-1} \, \text{Mpc} $ separation that is an excellent match to the predicted shape and location of the imprint of the recombination-epoch acoustic oscillations on the low-redshift clustering of matter. This detection demonstrates the linear growth of structure by gravitational instability between $z\approx 1000$ and the present and confirms a firm prediction of the standard cosmological theory. The acoustic peak provides a standard ruler by which we can measure the ratio of the distances to $z=0.35$ and $z=1089$ to 4\% fractional accuracy and the absolute distance to $z=0.35$ to 5\% accuracy. From the overall shape of the correlation function, we measure the matter density $\Omega_mh^2$ to 8\% and find agreement with the value from cosmic microwave background (CMB) anisotropies. Independent of the constraints provided by the CMB acoustic scale, we find $\Omega_m=0.273\pm0.025+0.123(1+w_0)+0.137\Omega_K$. Including the CMB acoustic scale, we find that the spatial curvature is $\Omega_K=-0.010\pm0.009$ if the dark energy is a cosmological constant.
[Eisenstein:2005su]
[19-224]
Weak lensing measurements of dark matter halos of galaxies from COMBO-17, M. Kleinheinrich et al., Astron.Astrophys. (2004), arXiv:astro-ph/0412615.
[Kleinheinrich:2004vs]
[19-225]
The CMB temperature power spectrum from an improved analysis of the Archeops data, Matthieu Tristram et al., Astron. Astrophys. 436 (2005) 785-797, arXiv:astro-ph/0411633.
[Tristram:2004ke]
[19-226]
The Deep2 Galaxy Redshift Survey: Evolution of Close Galaxy Pairs and Major-Merger Rates Up to z ~ 1.2, Lih-Wai Lin et al., Astrophys. J. 617 (2004) L9-L12, arXiv:astro-ph/0411104.
[Lin:2004kb]
[19-227]
The DEEP2 Galaxy Redshift Survey: First results on galaxy groups, Brian F. Gerke et al., Astrophys. J. 625 (2005) 6, arXiv:astro-ph/0410721.
[Gerke:2004ra]
[19-228]
Spectroscopic confirmation of high-redshift supernovae with the ESO VLT, C. Lidman et al. (Supernova Cosmology Project), Astron.Astrophys. (2004), arXiv:astro-ph/0410506.
[Lidman:2004en]
[19-229]
The Third Data Release of the Sloan Digital Sky Survey, K. Abazajian et al. (SDSS), Astron. J. 129 (2005) 1755, arXiv:astro-ph/0410239.
[Abazajian:2004it]
[19-230]
The DEEP2 Galaxy Redshift Survey: Probing the Evolution of Dark Matter Halos around Isolated Galaxies at z~1, Charlie Conroy et al., Astrophys. J. 635 (2005) 982, arXiv:astro-ph/0409305.
[Conroy:2004tz]
[19-231]
Old Galaxies in the Young Universe, A. Cimatti et al., Nature 430 (2004) 184-187, arXiv:astro-ph/0407131.
[Cimatti:2004gq]
[19-232]
The Hubble Higher-Z Supernova Search: Supernovae to z=1.6 and Constraints on Type Ia Progenitor Models, L. G. Strolger et al., Astrophys. J. 613 (2004) 200-223, arXiv:astro-ph/0406546.
[Strolger:2004kk]
[19-233]
The 2dF Galaxy Redshift Survey: Spherical Harmonics analysis of fluctuations in the final catalogue, Will J. Percival et al. (The 2dFGRS), Mon. Not. Roy. Astron. Soc. 353 (2004) 1201, arXiv:astro-ph/0406513.
[Percival:2004fs]
[19-234]
Type Ia supernova rate at a redshift of ~ 0.1, Guillaume Blanc et al. (EROS), Astron. Astrophys. 423 (2004) 881, arXiv:astro-ph/0405211.
[Blanc:2004ws]
[19-235]
The Lyman-alpha Forest Power Spectrum from the Sloan Digital Sky Survey, Patrick McDonald et al. (SDSS), Astrophys. J. Suppl. 163 (2006) 80, arXiv:astro-ph/0405013.
[McDonald:2004eu]
[19-236]
Spectroscopic Observations and Analysis of the Peculiar SN 1999aa, Gabriele Garavini et al. (The Supernova Cosmology Project), Mon. Not. Roy. Astron. Soc. 356 (2004) 456, arXiv:astro-ph/0404393.
[Garavini:2004fa]
[19-237]
The Second Data Release of the Sloan Digital Sky Survey, K. Abazajian et al. (SDSS), Astron. J. 128 (2004) 502, arXiv:astro-ph/0403325.
[Abazajian:2004aja]
[19-238]
Design and Calibration of a Cryogenic Blackbody Calibrator at Centimeter Wavelengths, A. Kogut et al. (ARCADE), Rev. Sci. Instrum. 75 (2004) 5079, arXiv:astro-ph/0402580.
[Kogut:2004hq]
[19-239]
The Temperature of the CMB at 10 GHz, D.J. Fixsen et al. (ARCADE), Astrophys. J. 612 (2004) 86, arXiv:astro-ph/0402579.
[Fixsen:2004hp]
[19-240]
An Instrument to Measure the Temperature of the Cosmic Microwave Background Radiation at Centimeter Wavelengths, A. Kogut et al. (ARCADE), Astrophys.J. (2004), arXiv:astro-ph/0402578.
[Kogut:2004hn]
[19-241]
Type Ia Supernova Discoveries at z > 1 From the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution, Adam G. Riess et al. (Supernova Search Team), Astrophys. J. 607 (2004) 665, arXiv:astro-ph/0402512.
From the abstract: We have discovered 16 Type Ia supernovae (SNe Ia) with the Hubble Space Telescope (HST) and have used them to provide the first conclusive evidence for cosmic deceleration that preceded the current epoch of cosmic acceleration.
...
A purely kinematic interpretation of the SN Ia sample provides evidence at the > 99\% confidence level for a transition from deceleration to acceleration or similarly, strong evidence for a cosmic jerk. Using a simple model of the expansion history, the transition between the two epochs is constrained to be at $z=0.46 \pm 0.13$.
The data are consistent with the cosmic concordance model of $\Omega_M \approx 0.3, \Omega_\Lambda \approx 0.7$ ($\chi^2_{dof}=1.06$), and are inconsistent with a simple model of evolution or dust as an alternative to dark energy.
For a flat Universe with a cosmological constant, we measure $\Omega_M = 0.29 {}^{+0.05}_{-0.03}$ (equivalently, $\Omega_\Lambda=0.71$). When combined with external flat-Universe constraints including the cosmic microwave background and large-scale structure, we find $w = -1.02 {}^{+0.13}_{-0.19}$ (and $w<-0.76$ at the 95\% confidence level) for an assumed static equation of state of dark energy, $P = w\rho c^2$.
...
Our constraints are consistent with the static nature of and value of $w$ expected for a cosmological constant (i.e., $w_0 = -1.0$, $dw/dz = 0$), and are inconsistent with very rapid evolution of dark energy.

[Ivanov:2004qa]
[19-242]
High sensitivity measurements of the CMB power spectrum with the extended Very Small Array, Clive Dickinson et al., Mon. Not. Roy. Astron. Soc. 353 (2004) 732, arXiv:astro-ph/0402498.
[Dickinson:2004yr]
[19-243]
Extended Mosaic Observations with the Cosmic Background Imager, A. C. S. Readhead et al., Astrophys. J. 609 (2004) 498-512, arXiv:astro-ph/0402359.
[Readhead:2004gy]
[19-244]
The FORS Deep Field Spectroscopic Survey, S. Noll et al., Astron. Astrophys. 418 (2004) 885, arXiv:astro-ph/0401500.
[Noll:2004nw]
[19-245]
The 2dF Galaxy Redshift Survey: Higher order galaxy correlation functions, D. J. Croton et al. (2dFGRS Team), Mon. Not. Roy. Astron. Soc. 352 (2004) 1232, arXiv:astro-ph/0401434.
[Croton:2004hy]
[19-246]
The Millennium Galaxy Catalogue: The photometric accuracy, completeness and contamination of the 2dFGRS and SDSS-EDR and DR1 datasets, N. J. G. Cross et al., Mon. Not. Roy. Astron. Soc. 349 (2004) 576, arXiv:astro-ph/0312317.
[Cross:2003es]
[19-247]
The 2dF QSO Redshift Survey - XIII. A Measurement of Lambda from the QSO Power Spectrum, P.J. Outram et al., Mon. Not. Roy. Astron. Soc. 348 (2004) 745, arXiv:astro-ph/0310873.
From the abstract: Assuming a flat ($\Omega_{\rm m}+\Omega_{\Lambda}=1$) cosmology and a $\Lambda$ cosmology $r(z)$ function to convert from redshift into comoving distance, we find best fit values of $\Omega_{\Lambda}=0.71^{+0.09}_{-0.17}$ and $\beta_q(z\sim1.4)=0.45^{+0.09}_{-0.11}$.
[Outram:2003ew]
[19-248]
23 High Redshift Supernovae from the IfA Deep Survey: Doubling the SN Sample at $z > 0.7$, Brian J. Barris et al., Astrophys. J. 602 (2004) 571, arXiv:astro-ph/0310843.
From the abstract: This sample of 23 high-redshift supernovae includes 15 at $z\geq0.7$, doubling the published number of objects at these redshifts, and indicates that the evidence for acceleration of the universe is not due to a systematic effect proportional to redshift. In combination with the recent compilation of Tonry and others (2003), we calculate cosmological parameter density contours which are consistent with the flat universe indicated by the CMB [27-210]. Adopting the constraint that $\Omega_{total} = 1.0$, we obtain best-fit values of ($\Omega_{m}$,$\Omega_{\Lambda}$)=(0.33, 0.67) using 22 SNe from this survey augmented by the literature compilation.
[Barris:2003dq]
[19-249]
Archeops results, J.-Ch. Hamilton, A. Benoit (Archeops), arXiv:astro-ph/0310788, 2003.
[Hamilton:2003xb]
[19-250]
The 3D power spectrum of galaxies from the SDSS, M. Tegmark et al. (SDSS), Astrophys. J. 606 (2004) 702, arXiv:astro-ph/0310725.
[Tegmark:2003uf]
[19-251]
Systematic effects and a new determination of the primordial abundance of 4He and dY/dZ from observations of blue compact galaxies, Y. I. Izotov, T. X. Thuan, Astrophys. J. 602 (2004) 200-230, arXiv:astro-ph/0310421.
[Izotov:2003xn]
[19-252]
MAXIMA: A Balloon-Borne Cosmic Microwave Background Anisotropy Experiment, B. Rabii et al., Rev. Sci. Instrum. 77 (2006) 071101, arXiv:astro-ph/0309414.
[Rabii:2003rr]
[19-253]
New Constraints on $\Omega_M$, $\Omega_\Lambda$, and $w$ from an Independent Set of Eleven High-Redshift Supernovae Observed with HST, Robert A. Knop et al. (The Supernova Cosmology Project), Astrophys. J. 598 (2003) 102, arXiv:astro-ph/0309368.
From the abstract: We report measurements of $\Omega_{\mathrm{M}}$, $\Omega_{\Lambda}$, and $w$ from eleven supernovae at $z=0.36$-$0.86$ with high-quality lightcurves measured using WFPC2 on the HST. This is an independent set of high-redshift supernovae that confirms previous supernova evidence for an accelerating Universe. The high-quality lightcurves available from photometry on \wfpc\ make it possible for these eleven supernovae alone to provide measurements of the cosmological parameters comparable in statistical weight to the previous results. Combined with earlier Supernova Cosmology Project data, the new supernovae yield a measurement of the mass density $\Omega_{\mathrm{M}}=0.25^{+0.07}_{-0.06}$ (statistical) $\pm0.04$ (identified systematics), or equivalently, a cosmological constant of $\Omega_{\Lambda}=0.75^{+0.06}_{-0.07}$ (statistical) $\pm0.04$ (identified systematics), under the assumptions of a flat universe and that the dark energy equation of state parameter has a constant value $w=-1$. When the supernova results are combined with independent flat-universe measurements of $\Omega_{\mathrm{M}}$ from CMB and galaxy redshift distortion data, they provide a measurement of $w=-1.05^{+0.15}_{-0.20}$ (statistical) $\pm0.09$ (identified systematic), if $w$ is assumed to be constant in time.... dark energy is required with $P(\Omega_{\Lambda}>0)>0.99$.
[Knop:2003iy]
[19-254]
An update on Archeops: flights and data products, J. Delabrouille, Ph. Filliatre (Archeops), Astrophys. Space Sci. 290 (2004) 119, arXiv:astro-ph/0307550.
[Delabrouille:2003mr]
[19-255]
Physical Evidence for Dark Energy, R. Scranton et al. (SDSS), arXiv:astro-ph/0307335, 2003.
[Scranton:2003in]
[19-256]
The 2dF Galaxy Redshift Survey: Final Data Release, M. Colless et al., arXiv:astro-ph/0306581, 2003.
[Colless:2003wz]
[19-257]
The Wilkinson Microwave Anisotropy Probe, Lyman Page, arXiv:astro-ph/0306381, 2003. Carnegie Observatories Astrophysics Series, Vol. 2: Measuring and Modeling the Universe.
[Page:2003pn]
[19-258]
Measuring CMB Polarization with BOOMERANG, T. Montroy et al., New Astron. Rev. 47 (2003) 1057-1065, arXiv:astro-ph/0305593. 'The Cosmic Microwave Background and its Polarization', New Astronomy Reviews.
[Montroy:2003ii]
[19-259]
The DEEP2 Redshift Survey: Spectral classification of galaxies at z~1, D. S Madgwick et al. (The DEEP2 Survey), Astrophys. J. 599 (2003) 997-1005, arXiv:astro-ph/0305587.
[Madgwick:2003cg]
[19-260]
The DEEP2 Galaxy Redshift Survey: Clustering of Galaxies in Early Data, Alison L. Coil et al. (The DEEP2 Survey), Astrophys. J. 609 (2004) 525, arXiv:astro-ph/0305586.
[Coil:2003cf]
[19-261]
First Results from the Arcminute Cosmology Bolometer Array Receiver, M. C. Runyan et al., New Astron.Rev. (2003), arXiv:astro-ph/0305553.
[Runyan:2003aw]
[19-262]
The First Data Release of the Sloan Digital Sky Survey, Kevork Abazajian et al. (SDSS), Astron. J. 126 (2003) 2081, arXiv:astro-ph/0305492.
[Abazajian:2003jy]
[19-263]
The XMM-LSS Survey II. First high redshift galaxy clusters: relaxed and collapsing systems, I. Valtchanov et al., Astron. Astrophys. 423 (2004) 75, arXiv:astro-ph/0305192.
[Valtchanov:2003it]
[19-264]
The XMM-LSS survey I. Scientific motivations, design and first results, M. Pierre et al., JCAP 0409 (2004) 011, arXiv:astro-ph/0305191.
[Pierre:2003is]
[19-265]
First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Dark Energy Induced Correlation with Radio Sources, M. R. Nolta et al. (WMAP), Astrophys. J. 608 (2004) 10, arXiv:astro-ph/0305097.
[Nolta:2003uy]
[19-266]
Cosmological results from the 2dF Galaxy Redshift Survey, Matthew Colless, arXiv:astro-ph/0305051, 2003.
[Colless:2003it]
[19-267]
Cosmological Results from High-z Supernovae, John L. Tonry et al. (Supernova Search Team), Astrophys. J. 594 (2003) 1, arXiv:astro-ph/0305008.
From the abstract: The High-$ z$ Supernova Search Team has discovered and observed 8 new supernovae in the redshift interval $ z=0.3-1.2$. These independent observations, analyzed by similar but distinct methods, confirm the result of Riess and others (1998a) and Perlmutter and others (1999) that supernova luminosity distances imply an accelerating universe. More importantly, they extend the redshift range of consistently observed SN Ia to $ z\approx 1$, where the signature of cosmological effects has the opposite sign of some plausible systematic effects.... if the equation of state parameter of the dark energy is $ w=-1$, then $ H_0\,t_0 = 0.96\pm0.04$, and $ \Omega_\Lambda-1.4\Omega_M=0.35\pm0.14$. Including the constraint of a flat Universe, we find $ \Omega_M=0.28\pm0.05$, independent of any large-scale structure measurements. Adopting a prior based on the 2dF redshift survey constraint on $ \Omega_M$ and assuming a flat universe, we find that the equation of state parameter of the dark energy lies in the range $ -1.48-1$, we obtain $ w<-0.73$ at 95% confidence.
[Tonry:2003zg]
[19-268]
The 2dF Galaxy Redshift Survey: galaxy clustering per spectral type, D. S. Madgwick et al., Mon. Not. Roy. Astron. Soc. 344 (2003) 847, arXiv:astro-ph/0303668.
[Madgwick:2003bd]
[19-269]
The Asiago-ESO/RASS QSO Survey. III. Clustering analysis and its theoretical interpretation, Andrea Grazian et al., Astron. J. 127 (2004) 592, arXiv:astro-ph/0303382.
[Grazian:2003cx]
[19-270]
First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for Inflation, H. V. Peiris et al. (WMAP), Astrophys. J. Suppl. 148 (2003) 213, arXiv:astro-ph/0302225.
[Peiris:2003ff]
[19-271]
First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: On-Orbit Radiometer Characterization, N. Jarosik et al. (WMAP), Astrophys. J. Suppl. 148 (2003) 29, arXiv:astro-ph/0302224.
[Jarosik:2003fe]
[19-272]
First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Tests of Gaussianity, E. Komatsu et al. (WMAP), Astrophys. J. Suppl. 148 (2003) 119, arXiv:astro-ph/0302223.
[Komatsu:2003fd]
[19-273]
First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing Methods and Systematic Errors Limits, G. Hinshaw et al. (WMAP), Astrophys. J. Suppl. 148 (2003) 63, arXiv:astro-ph/0302222.
[Hinshaw:2003fc]
[19-274]
First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Interpretation of the TT and TE Angular Power Spectrum Peaks, L. Page et al. (WMAP), Astrophys. J. Suppl. 148 (2003) 233, arXiv:astro-ph/0302220.
[Page:2003fa]
[19-275]
First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Parameter Estimation Methodology, L. Verde et al. (WMAP), Astrophys. J. Suppl. 148 (2003) 195, arXiv:astro-ph/0302218.
[Verde:2003ey]
[19-276]
First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Angular Power Spectrum, G. Hinshaw et al. (WMAP), Astrophys. J. Suppl. 148 (2003) 135, arXiv:astro-ph/0302217.
[Hinshaw:2003ex]
[19-277]
First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Galactic Signal Contamination from Sidelobe Pickup, C. Barnes et al. (WMAP), Astrophys. J. Suppl. 148 (2003) 51, arXiv:astro-ph/0302215.
[Barnes:2003ev]
[19-278]
First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Beam Profiles and Window Functions, L. Page et al. (WMAP), Astrophys. J. Suppl. 148 (2003) 39, arXiv:astro-ph/0302214.
[Page:2003eu]
[19-279]
Wilkinson Microwave Anisotropy Probe (WMAP) First Year Observations: TE Polarization, A. Kogut et al. (WMAP), Astrophys. J. Suppl. 148 (2003) 161, arXiv:astro-ph/0302213.
[Kogut:2003et]
[19-280]
First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Foreground Emission, C. Bennett et al. (WMAP), Astrophys. J. Suppl. 148 (2003) 97, arXiv:astro-ph/0302208.
[Bennett:2003ca]
[19-281]
First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results, C. L. Bennett et al. (WMAP), Astrophys. J. Supp. Ser. 148 (2003) 1-27, arXiv:astro-ph/0302207.
From the abstract: A best-fit cosmological model to the CMB and other measures of large scale structure works remarkably well with only a few parameters. The age of the best-fit universe is $t_0 = 13.7 \pm 0.2 \text{ Gyr}$ old. Decoupling was $t_{dec} = 379^{+ 8}_{- 7} \text{ kyr}$ after the Big Bang at a redshift of $z_{dec} = 1089 \pm 1$. The thickness of the decoupling surface was $\Delta z_{dec} = 195 \pm 2$. The matter density of the universe is $\Omega_mh^2 = 0.135^{+ 0.008}_{- 0.009}$, the baryon density is $\Omega_bh^2 = 0.0224 \pm 0.0009$, and the total mass-energy of the universe is $\Omega_{tot} = 1.02 \pm 0.02$.... This flat universe model is composed of 4.4% baryons, 22% dark matter and 73% dark energy.... Inflation theory is supported with $n_s\approx 1$, $\Omega_{tot}\approx 1$, Gaussian random phases of the CMB anisotropy, and superhorizon fluctuations implied by the TE anticorrelations at decoupling.
[Bennett:2003bz]
[19-282]
MAXIMA: Observations of CMB Anisotropy, Bahman Rabii, arXiv:astro-ph/0302159, 2003.
[Rabii:2003wy]
[19-283]
A Map of the Cosmic Microwave Background from the BEAST Experiment, Peter R. Meinhold et al., arXiv:astro-ph/0302034, 2003.
[Meinhold:2003vz]
[19-284]
The size distribution of galaxies in the Sloan Digital Sky Survey, Shiyin Shen et al., Mon. Not. Roy. Astron. Soc. 343 (2003) 978, arXiv:astro-ph/0301527.
[Shen:2003sda]
[19-285]
The CMB power spectrum out to l=1400 measured by the VSA, Keith Grainge et al., Mon. Not. Roy. Astron. Soc. 341 (2003) L23, arXiv:astro-ph/0212495.
[Grainge:2002da]
[19-286]
The Hubble Deep Field South Flanking Fields, Ray A. Lucas et al., Astron. J. 125 (2003) 398, arXiv:astro-ph/0212416.
[Lucas:2002ht]
[19-287]
High Resolution Observations of the CMB Power Spectrum with ACBAR, C.L. Kuo et al. (ACBAR), Astrophys. J. 600 (2004) 32, arXiv:astro-ph/0212289.
[Kuo:2002ua]
[19-288]
Improved Measurement of the Angular Power Spectrum of Temperature Anisotropy in the CMB from Two New Analyses of BOOMERANG Observations, J. E. Ruhl et al., Astrophys. J. 599 (2003) 786, arXiv:astro-ph/0212229.
[Ruhl:2002cz]
[19-289]
Astrometric Calibration of the Sloan Digital Sky Survey, Jeffrey R. Pier et al., Astron. J. 125 (2003) 1559, arXiv:astro-ph/0211375.
[Pier:2002iq]
[19-290]
Cosmological constraints from Archeops, A. Benoit et al. (Archeops), Astron. Astrophys. 399 (2003) L25-L30, arXiv:astro-ph/0210306.
[Benoit:2002mm]
[19-291]
The Cosmic Microwave Background Anisotropy Power Spectrum measured by Archeops, A. Benoit et al. (Archeops), Astron. Astrophys. 399 (2003) L19-L23, arXiv:astro-ph/0210305.
[Benoit:2002mk]
[19-292]
Constraints on Cosmological Parameters from the Analysis of the Cosmic Lens All Sky Survey Radio-Selected Gravitational Lens Statistics, K. H. Chae et al. (CLASS), Phys. Rev. Lett. 89 (2002) 151301, arXiv:astro-ph/0209602.
[Chae:2002mb]
[19-293]
Detection of Polarization in the Cosmic Microwave Background using DASI, J. Kovac, E. M. Leitch, C. Pryke J. E. Carlstrom, N. W. Halverson W. L. Holzapfel, Nature 420 (2002) 772, arXiv:astro-ph/0209478.
[Kovac:2002fg]
[19-294]
Measuring Polarization with DASI, E. M. Leitch et al., NATURE 420:763-771,2002. NATURE 420 (2002) 763-771, arXiv:astro-ph/0209476.
[Leitch:2002fe]
[19-295]
The Sloan Digital Sky Survey, Jon Loveday (SDSS), Contemp. Phys. 43 (2002) 437-449, arXiv:astro-ph/0207189.
[Loveday:2002ax]
[19-296]
The distant Type Ia supernova rate, R. Pain et al. (Supernova Cosmology Project), Astrophys. J. 577 (2002) 120, arXiv:astro-ph/0205476.
[Pain:2002wj]
[19-297]
The Anisotropy of the Microwave Background to l = 3500: Mosaic Observations with the Cosmic Background Imager, T. J. Pearson et al. (CBI), Astrophys. J. 591 (2003) 556, arXiv:astro-ph/0205388.
[Pearson:2002tr]
[19-298]
Cosmological Parameters from Cosmic Background Imager Observations and Comparisons with BOOMERANG, DASI, and MAXIMA, J. L. Sievers et al. (CBI), Astrophys. J. 591 (2003) 599, arXiv:astro-ph/0205387.
[Sievers:2002tq]
[19-299]
The Sunyaev-Zeldovich effect in CMB-calibrated theories applied to the Cosmic Background Imager anisotropy power at l > 2000, J. R. Bond et al. (CBI), Astrophys. J. 626 (2005) 12, arXiv:astro-ph/0205386.
[Bond:2002tp]
[19-300]
A Fast Gridded Method for the Estimation of the Power Spectrum of the CMB from Interferometer Data with Application to the Cosmic Background Imager, S. T. Myers et al. (CBI), Astrophys. J. 591 (2003) 575, arXiv:astro-ph/0205385.
[Myers:2002tn]
[19-301]
The Anisotropy of the Microwave Background to l = 3500: Deep Field Observations with the Cosmic Background Imager, B. S. Mason et al. (CBI), Astrophys. J. 591 (2003) 540, arXiv:astro-ph/0205384.
[Mason:2002tm]
[19-302]
First results from the Very Small Array - II. Observations of the CMB, Angela C. Taylor et al., Mon. Not. Roy. Astron. Soc. 341 (2003) 1066, arXiv:astro-ph/0205381.
[Taylor:2002ti]
[19-303]
The 2dF Galaxy Redshift Survey: The bias of galaxies and the density of the Universe, Licia Verde et al. (2dF team), Mon. Not. Roy. Astron. Soc. 335 (2002) 432, arXiv:astro-ph/0112161.
[Verde:2001sf]
[19-304]
The 3D Power Spectrum from Angular Clustering of Galaxies in Early SDSS Data, Scott Dodelson et al. (SDSS), Astrophys. J. 572 (2001) 140-156, arXiv:astro-ph/0107421.
[Dodelson:2001ux]
[19-305]
Multiple peaks in the angular power spectrum of the cosmic microwave background: Significance and consequences for cosmology, P. de Bernardis et al. (BOOMERANG), Astrophys. J. 564 (2002) 559-566, arXiv:astro-ph/0105296.
[deBernardis:2001xk]
[19-306]
The 2dF Galaxy Redshift Survey: The power spectrum and the matter content of the universe, Will J. Percival et al. (The 2dFGRS), Mon. Not. Roy. Astron. Soc. 327 (2001) 1297, arXiv:astro-ph/0105252.
[Percival:2001hw]
[19-307]
Cosmological Parameter Extraction from the First Season of Observations with DASI, C. Pryke et al., Astrophys. J. 568 (2002) 46-51, arXiv:astro-ph/0104490.
[Pryke:2001yz]
[19-308]
DASI First Results: A Measurement of the Cosmic Microwave Background Angular Power Spectrum, N. W. Halverson et al., Astrophys. J. 568 (2002) 38-45, arXiv:astro-ph/0104489.
[Halverson:2001yy]
[19-309]
A High Spatial Resolution Analysis of the MAXIMA-1 Cosmic Microwave Background Anisotropy Data, A. T. Lee et al., Astrophys. J. 561 (2001) L1-L6, arXiv:astro-ph/0104459.
[Lee:2001yp]
[19-310]
The Farthest Known Supernova: Support for an Accelerating Universe and a Glimpse of the Epoch of Deceleration, Adam G. Riess et al. (Supernova Search Team), Astrophys. J. 560 (2001) 49-71, arXiv:astro-ph/0104455.
[Riess:2001gk]
[19-311]
A measurement of the cosmological mass density from clustering in the 2dF Galaxy Redshift Survey, J. A. Peacock et al., Nature 410 (2001) 169-173, arXiv:astro-ph/0103143.
[Peacock:2001gs]
[19-312]
The 2dF Galaxy Redshift Survey: spectra and redshifts, M. Colless et al., Mon. Not. Roy. Astron. Soc. 328 (2001) 1039-1063.
[Colless-2001-MNRAS328]
[19-313]
Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant, W. L. Freedman et al. (HST), Astrophys. J. 553 (2001) 47-72, arXiv:astro-ph/0012376.
[Freedman:2000cf]
[19-314]
Towards a Precise Measurement of Matter Clustering: Lyman-alpha Forest Data at Redshifts 2-4, Rupert A. C. Croft et al., Astrophys. J. 581 (2002) 20-52, arXiv:astro-ph/0012324.
[Croft:2000hs]
[19-315]
A Measurement of the Temperature-Density Relation in the Intergalactic Medium Using a New Lyman-alpha Absorption Line Fitting Method, Patrick McDonald et al., Astrophys. J. 562 (2001) 52-75, arXiv:astro-ph/0005553.
[McDonald:2000nn]
[19-316]
A Flat Universe from High-Resolution Maps of the Cosmic Microwave Background Radiation, P. de Bernardis et al. (Boomerang), Nature 404 (2000) 955-959, arXiv:astro-ph/0004404.
[deBernardis:2000gy]
[19-317]
The Observed Probability Distribution Function, Power Spectrum, and Correlation Function of the Transmitted Flux in the Lyman-alpha Forest, Patrick McDonald et al., Astrophys. J. 543 (2000) 1-23, arXiv:astro-ph/9911196.
[McDonald:1999dt]
[19-318]
Measurements of Omega and Lambda from 42 High-Redshift Supernovae, S. Perlmutter et al. (Supernova Cosmology Project), Astrophys. J. 517 (1999) 565-586, arXiv:astro-ph/9812133.
From the abstract: The measurement yields a joint probability distribution of the cosmological parameters that is approximated by the relation $0.8 \,\Omega_{\rm M}- 0.6\,\Omega_\Lambda \approx -0.2 \pm 0.1$ in the region of interest ($\Omega_{\rm M} \lesssim 1.5$). For a flat ($\Omega_{\rm M}+\Omega_\Lambda = 1$) cosmology we find $\Omega_{\rm M}^{\rm flat} = 0.28^{+0.09}_{-0.08}$ (1$\sigma$ statistical) $^{+0.05}_{-0.04}$ (identified systematics). The data are strongly inconsistent with a $\Lambda = 0$ flat cosmology, the simplest inflationary universe model. An open, $\Lambda = 0$ cosmology also does not fit the data well: the data indicate that the cosmological constant is non-zero and positive, with a confidence of $P(\Lambda > 0) = 99$\%, including the identified systematic uncertainties. The best-fit age of the universe relative to the Hubble time is $t_0^{\rm flat}=14.9^{+1.4}_{-1.1}\,(0.63/h)$ Gyr for a flat cosmology.
[Perlmutter:1998np]
[19-319]
Calibrator Design for the COBE Far Infrared Absolute Spectrophotometer (FIRAS), J. C. Mather, D. J. Fixsen, R. A. Shafer, C. Mosier, D. T. Wilkinson, Astrophys. J. 512 (1999) 511-520, arXiv:astro-ph/9810373.
[Mather:1998gm]
[19-320]
Supernova Limits on the Cosmic Equation of State, Peter M. Garnavich et al. (Supernova Search Team), Astrophys. J. 509 (1998) 74-79, arXiv:astro-ph/9806396.
[Garnavich:1998th]
[19-321]
Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant, Adam G. Riess et al. (Supernova Search Team), Astron. J. 116 (1998) 1009-1038, arXiv:astro-ph/9805201.
[Riess:1998cb]
[19-322]
The Cosmic Microwave Background Spectrum from the Full COBE/FIRAS Data Set, D. J. Fixsen et al., Astrophys. J. 473 (1996) 576, arXiv:astro-ph/9605054.
[Fixsen:1996nj]
[19-323]
Measurement of the cosmic microwave background spectrum by the CODE FIRAS instrument, J. C. Mather et al., Astrophys. J. 420 (1994) 439-444.
[Mather:1993ij]

20 - Experiment - Conference Proceedings

[20-1]
SPT-3G: A Next-Generation Cosmic Microwave Background Polarization Experiment on the South Pole Telescope, B. A. Benson et al. (SPT-3G), Proc.SPIE Int.Soc.Opt.Eng. 9153 (2014) 91531P, arXiv:1407.2973. SPIE Astronomical Telescopes + Instrumentation 2014.
[Benson:2014qhw]
[20-2]
The First Scientific Results from the Pierre Auger Observatory, T. Yamamoto (Pierre Auger), AIP Conf. Proc. 842 (2006) 1016-1018, arXiv:astro-ph/0601035. PANIC 2005.
[Yamamoto:2006iq]
[20-3]
The 2dF Galaxy Redshift Survey as a Cosmological Laboratory, Ofer Lahav, Publ.Astron.Soc.Austral. (2004), arXiv:astro-ph/0404537. RESCEU6 (Tokyo) and 'Tully60' (Sydney).
[Lahav:2004mb]
[20-4]
Maps of the millimetre sky from the BOOMERanG experiment, P. de Bernardis et al., arXiv:astro-ph/0311396, 2003. IAU Symposium 216: Maps of the Cosmos. Sydney 14-17 July 2003 - ASP Conference Series.
[deBernardis:2003gq]
[20-5]
Recent Results from the MAXIMA Experiment, Andrew H. Jaffe et al., New Astron. Rev. 47 (2003) 727, arXiv:astro-ph/0306504. CMBNET Meeting, 20-21 February, 2003, Oxford, UK.
[Jaffe:2003it]
[20-6]
Comparing and combining Wilkinson Microwave Anisotropy (WMAP) probe results and Large Scale Structure, Licia verde, arXiv:astro-ph/0306272, 2003. Davis Inflation Meeting, 2003.
[Verde:2003rj]
[20-7]
WMAP First Year Results, E. L. Wright, New Astron.Rev. (2003), arXiv:astro-ph/0306132. The Cosmic Microwave Background and its Polarization, New Astronomy Reviews.
[Wright:2003qm]
[20-8]
COBE Observations of the Cosmic Infrared Background, E. L. Wright, New Astron. Rev. 48 (2004) 465, arXiv:astro-ph/0306058. 2nd VERITAS Symposium on TeV Astrophysics of Extragalactic Sources, April 24-26, 2003.
[Wright:2003tp]
[20-9]
WMAP Polarization Results, A. Kogut, New Astron.Rev. (2003), arXiv:astro-ph/0306048. 'The Cosmic Microwave Background and its Polarization', New Astronomy Reviews.
[Kogut:2003td]
[20-10]
Archeops' results on the Cosmic Microwave Background, S. Henrot-Versille (Archeops), arXiv:astro-ph/0306032, 2003. Moriond ElectroWeak 2003 conference.
[HenrotVersille:2003pa]
[20-11]
Search for distortions in the spectrum of the Cosmic Microwave Radiation, G.Sironi et al., arXiv:astro-ph/0301354, 2003. 3rd Sakharov Conf. - Moscow 2002.
[Sironi:2003eh]
[20-12]
WMAP results, M. Limon, 2003. XXXVIII Rencontres de Moriond Electroweak Interactions and Unified Theories Les Arcs, France, 15-22 March 2003. http://moriond.in2p3.fr/EW/2003/Transparencies/3_Tuesday/3_1_morning/3_1_2_Limon/M_Limon.pdf.
[Limon:Moriond03]
[20-13]
Large-Scale Structure in the NIR-Selected MUNICS Survey, C.S. Botzler et al., Astrophys. Space Sci. 284 (2003) 393, arXiv:astro-ph/0210329. 3rd EuroConference on the evolution of galaxies, Kiel, Germany, July 16-20, 2002.
[Botzler:2002re]
[20-14]
The SCUBA Local Universe Galaxy Survey, L. Dunne, S. A. Eales, Astrophys. Space Sci. 281 (2002) 321-322, arXiv:astro-ph/0210316. Euro-Conference on Galaxy Evolution, La Reunion, 2001.
[Dunne:2002qr]
[20-15]
CMB observations with the Cosmic Background Imager (CBI) Interferometer, C.R.Contaldi et al., arXiv:astro-ph/0210303, 2002. XVIII IAP Colloquium `On the nature of dark energy', Paris, 1-5 July 2002.
[Contaldi:2002mi]
[20-16]
The Deep Lens Survey, D. Wittman et al., Proc.SPIE Int.Soc.Opt.Eng. 4836 (2002) 73, arXiv:astro-ph/0210118. Proc. SPIE Vol. 4836.
[Wittman:2002ig]
[20-17]
The BOOMERanG experiment and the curvature of the Universe, S. Masi et al. (BOOMERANG), Prog. Part. Nucl. Phys. 48 (2002) 243-261, arXiv:astro-ph/0201137. To appear in the proceedings of International School of Physics: 23rd Course: Neutrinos in Astro, Particle and Nuclear Physics, Erice, Italy, 18-26 Sep 2001.
[Masi:2002hp]
[20-18]
Results from the Sloan Digital Sky Survey, S. Dodelson, 2002. PHENO 2002 SYMPOSIUM University of Wisconsin, Madison The Pyle Center, 702 Langdon St. April 22-24, 2002. http://pheno.physics.wisc.edu/pheno02/trasparencies/ScottDodelson.ps.gz.
[Dodelson-talk:2002a]
[20-19]
Combining LSS and CMB Power Spectra, L. Verde, 2002. Workshop on Neutrino News from the Lab and the Cosmos, Fermilab, October 17 - 19, 2002. http://www-astro-theory.fnal.gov/Conferences/NuCosmo/talks/verde.pdf.
[Verde-Fermilab2002]

21 - Experiment - Dark Matter

[21-1]
Limits on Dark Matter Annihilation in the Sun using the ANTARES Neutrino Telescope, ANTARES collaboration et al. (ANTARES), Phys.Lett. B759 (2016) 69-74, arXiv:1603.02228.
[Adrian-Martinez:2016gti]
[21-2]
A search for Secluded Dark Matter in the Sun with the ANTARES neutrino telescope, S. Adrian-Martinez et al. (ANTARES), JCAP 1605 (2016) 016, arXiv:1602.07000.
[Adrian-Martinez:2016ujo]
[21-3]
First spin-dependent WIMP-nucleon cross section limits from the LUX experiment, D. S. Akerib et al. (LUX), Phys. Rev. Lett. 116 (2016) 161302, arXiv:1602.03489.
[Akerib:2016lao]
[21-4]
Improved limits on dark matter annihilation in the Sun with the 79-string IceCube detector and implications for supersymmetry, M. G. Aartsen et al. (IceCube), JCAP 1604 (2016) 022, arXiv:1601.00653.
[Aartsen:2016exj]
[21-5]
A search for neutrino signal from dark matter annihilation in the center of the Milky Way with Baikal NT200, A.D. Avrorin et al. (BAIKAL), Astropart.Phys. 81 (2016) 12-20, arXiv:1512.01198.
[Avrorin:2015bct]
[21-6]
Direct dark matter search by annual modulation in XMASS-I, K. Abe et al. (XMASS), Phys.Lett. B759 (2016) 272-276, arXiv:1511.04807.
[Abe:2015eos]
[21-7]
Low radioactivity argon dark matter search results from the DarkSide-50 experiment, P. Agnes et al. (DarkSide), Phys. Rev. D93 (2016) 081101, arXiv:1510.00702.
[Agnes:2015ftt]
[21-8]
Dark matter line emission constraints from NuSTAR observations of the Bullet Cluster, S. Riemer-Sorensen et al., Astrophys. J. 810 (2015) 48, arXiv:1507.01378.
[Riemer-Sorensen:2015kqa]
[21-9]
The role of eROSITA all-sky survey in searches for sterile neutrino dark matter, Fabio Zandanel, Christoph Weniger, Shin'ichiro Ando, JCAP 1509 (2015) 060, arXiv:1505.07829.
[Zandanel:2015xca]
[21-10]
Search for Dark Matter Annihilation in the Galactic Center with IceCube-79, M. G. Aartsen et al. (IceCube), Eur. Phys. J. C75 (2015) 492, arXiv:1505.07259.
[Aartsen:2015xej]
[21-11]
Investigating Earth shadowing effect with DAMA/LIBRA-phase1, R. Bernabei et al., Eur.Phys.J. C75 (2015) 239, arXiv:1505.05336.
[Bernabei:2015nia]
[21-12]
Search of Dark Matter Annihilation in the Galactic Centre using the ANTARES Neutrino Telescope, S. Adrian-Martinez et al. (ANTARES), JCAP 1510 (2015) 068, arXiv:1505.04866.
[Adrian-Martinez:2015wey]
[21-13]
Improved WIMP-search reach of the CDMS II germanium data, R. Agnese et al. (SuperCDMS), Phys. Rev.D (2015), arXiv:1504.05871.
[Agnese:2015ywx]
[21-14]
Improved Limits on Sterile Neutrino Dark Matter using Full-Sky Fermi-GBM Data, Kenny C. Y. Ng, Shunsaku Horiuchi, Jennifer M. Gaskins, Miles Smith, Robert Preece, Phys. Rev. D92 (2015) 043503, arXiv:1504.04027.
[Ng:2015gfa]
[21-15]
The behaviour of dark matter associated with 4 bright cluster galaxies in the 10kpc core of Abell 3827, Richard Massey, Liliya Williams, Renske Smit, Mark Swinbank, Thomas D. Kitching et al., Mon.Not.Roy.Astron.Soc. 449 (2015) 3393, arXiv:1504.03388.
[Massey:2015dkw]
[21-16]
A Search for a keV Signature of Radiatively Decaying Dark Matter with Suzaku XIS Observations of the X-ray Diffuse Background, Norio Sekiya, Noriko Y. Yamasaki, Kazuhisa Mitsuda, Publ. Astron. Soc. Jap. (2015), arXiv:1504.02826.
[Sekiya:2015jsa]
[21-17]
Search for neutrinos from annihilation of captured low-mass dark matter particles in the Sun by Super-Kamiokande, K. Choi et al. (Super-Kamiokande), Phys. Rev. Lett. 114 (2015) 141301, arXiv:1503.04858.
[Choi:2015ara]
[21-18]
Multipole analysis of IceCube data to search for dark matter accumulated in the Galactic halo, M. G. Aartsen et al. (IceCube), Eur.Phys.J. C75 (2015) 20, arXiv:1406.6868.
[Aartsen:2014hva]
[21-19]
Search for bosonic superweakly interacting massive dark matter particles with the XMASS-I detector, K. Abe et al. (XMASS), Phys. Rev. Lett. 113 (2014) 121301, arXiv:1406.0502.
[Abe:2014zcd]
[21-20]
Search for neutrino emission from relic dark matter in the Sun with the Baikal NT200 detector, A.D. Avrorin et al. (Baikal), Astropart.Phys. 62 (2014) 12-20, arXiv:1405.3551.
[Avrorin:2014swy]
[21-21]
Limits on light WIMPs from the CDEX-1 experiment with a p-type point-contact germanium detector at the China Jingping Underground Laboratory, Q. Yue et al. (CDEX), Phys. Rev. D90 (2014) 091701, arXiv:1404.4946.
[Yue:2014qdu]
[21-22]
Limits on Light WIMPs with a Germanium Detector at 172 eVee threshold at the China Jinping Underground Laboratory, S.K. Liu et al. (CDEX), Phys. Rev. D90 (2014) 032003, arXiv:1403.5421.
[Liu:2014juh]
[21-23]
Model independent result on possible diurnal effect in DAMA/LIBRA-phase1, R. Bernabei et al. (DAMA-LIBRA), Eur.Phys.J. C74 (2014) 2827, arXiv:1403.4733.
[Bernabei:2014jnz]
[21-24]
Search for Low-Mass WIMPs with SuperCDMS, R. Agnese et al. (SuperCDMS), Phys. Rev. Lett. 112 (2014) 241302, arXiv:1402.7137.
[Agnese:2014aze]
[21-25]
High Statistics Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5-500 GeV with the Alpha Magnetic Spectrometer on the International Space Station, L Accardo (AMS), Phys. Rev. Lett. 113 (2014) 121101.
[Accardo:2014lma]
[21-26]
Electron and Positron Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station, M Aguilar (AMS), Phys. Rev. Lett. 113 (2014) 121102.
[Aguilar:2014mma]
[21-27]
First results from the LUX dark matter experiment at the Sanford Underground Research Facility, D.S. Akerib et al. (LUX), Phys. Rev. Lett. 112 (2014) 091303, arXiv:1310.8214.
[Akerib:2013tjd]
[21-28]
An IceCube Search for Dark Matter Annihilation in nearby Galaxies and Galaxy Clusters, M. G. Aartsen et al. (IceCube), Phys. Rev. D88 (2013) 122001, arXiv:1307.3473.
[Aartsen:2013dxa]
[21-29]
Dark Matter Search Results Using the Silicon Detectors of CDMS II, R. Agnese et al. (CDMS), Phys. Rev. Lett. 111 (2013) 251301, arXiv:1304.4279.
[Agnese:2013rvf]
[21-30]
Limits on spin-independent couplings of WIMP dark matter with a p-type point-contact germanium detector, H.B. Li et al. (TEXONO), Phys. Rev. Lett. 110, 261301 (2013) 261301, arXiv:1303.0925.
[Li:2013fla]
[21-31]
First Search for Dark Matter Annihilation in the Sun Using the ANTARES Neutrino Telescope, S. Adrian-Martinez et al. (ANTARES), JCAP 1311 (2013) 032, arXiv:1302.6516.
[Adrian-Martinez:2013ayv]
[21-32]
Search for muon signal from dark matter annihilations in the Sun with the Baksan Underground Scintillator Telescope for 24.12 years, M.M. Boliev, S.V. Demidov, S.P. Mikheyev, O.V. Suvorova, JCAP 1309 (2013) 019, arXiv:1301.1138.
[Boliev:2013ai]
[21-33]
First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of $0.5-350 \, \text{GeV}$, M. Aguilar et al. (AMS), Phys. Rev. Lett. 110 (2013) 141102. http://link.aps.org/doi/10.1103/PhysRevLett.110.141102.
[PhysRevLett.110.141102]
[21-34]
Comparisons of annual modulations in MINOS with the event rate modulation in CoGeNT, P. Adamson et al. (MINOS), Phys. Rev. D87 (2013) 032005, arXiv:1212.1776.
[Adamson:2012mu]
[21-35]
Search for Neutrinos from Annihilating Dark Matter in the Direction of the Galactic Center with the 40-String IceCube Neutrino Observatory, R. Abbasi et al. (IceCube), arXiv:1210.3557, 2012.
[Abbasi:2012ws]
[21-36]
Dark Matter Search Using XMM-Newton Observations of Willman 1, Michael Loewenstein, Alexander Kusenko, Astrophys. J. 751 (2012) 82, arXiv:1203.5229.
[Loewenstein:2012px]
[21-37]
Multi-year search for dark matter annihilations in the Sun with the AMANDA-II and IceCube detectors, R. Abbasi et al. (IceCube), Phys. Rev. D85 (2012) 042002, arXiv:1112.1840.
[IceCube:2011aj]
[21-38]
An Indirect Search for WIMPs in the Sun using 3109.6 days of upward-going muons in Super-Kamiokande, T. Tanaka et al. (Kamiokande), Astrophys. J. 742 (2011) 78, arXiv:1108.3384.
[Tanaka:2011uf]
[21-39]
Search for an Annual Modulation in a P-type Point Contact Germanium Dark Matter Detector, C.E. Aalseth, P.S. Barbeau, J. Colaresi, J.I. Collar, J.Diaz Leon et al., Phys. Rev. Lett. 107 (2011) 141301, arXiv:1106.0650.
[Aalseth:2011wp]
[21-40]
Dark Matter Results from 100 Live Days of XENON100 Data, E. Aprile et al. (XENON100), Phys. Rev. Lett. 107 (2011) 131302, arXiv:1104.2549.
[Aprile:2011hi]
[21-41]
Search for Dark Matter from the Galactic Halo with the IceCube Neutrino Observatory, R. Abbasi et al. (IceCube), Phys. Rev. D84 (2011) 022004, arXiv:1101.3349.
[Abbasi:2011eq]
[21-42]
Swift observation of Segue 1: constraints on sterile neutrino parameters in the darkest galaxy, N. Mirabal, Mon.Not.Roy.Astron.Soc. 409 (2010) 128, arXiv:1010.4706.
[Mirabal:2010an]
[21-43]
First Dark Matter Search Results from a Surface Run of the 10-L DMTPC Directional Dark Matter Detector, Steven Ahlen et al., Phys. Lett. B695 (2011) 124-129, arXiv:1006.2928.
[Ahlen:2010ub]
[21-44]
First Dark Matter Results from the XENON100 Experiment, E. Aprile et al. (XENON100), Phys. Rev. Lett. 105 (2010) 131302, arXiv:1005.0380.
[Aprile:2010um]
[21-45]
Indirect search for dark matter with micrOMEGAs2.4, G. Belanger et al., Comput. Phys. Commun. 182 (2011) 842-856, arXiv:1004.1092.
[Belanger:2010gh]
[21-46]
Limits on inelastic dark matter from ZEPLIN-III, D. Yu. Akimov et al. (ZEPLIN-III), Phys. Lett. B692 (2010) 180-183, arXiv:1003.5626.
[Akimov:2010vk]
[21-47]
First Results of the Phase II SIMPLE Dark Matter Search, M. Felizardo et al., Phys. Rev. Lett. 105 (2010) 211301, arXiv:1003.2987.
[Felizardo:2010mi]
[21-48]
Results from a Search for Light-Mass Dark Matter with a P-type Point Contact Germanium Detector, C. E. Aalseth et al. (CoGeNT), Phys. Rev. Lett. 106 (2011) 131301, arXiv:1002.4703.
[Aalseth:2010vx]