Neutrino Decay

Filter this page

(Note: The process can take some time.)

EXPAND ALL
COMPRESS ALL

References

1 - Reviews

[1-1]
Report of the Topical Group on Neutrino Properties for Snowmass 2021, Carlo Giunti, Julieta Gruszko, Benjamin Jones, Lisa Kaufman, Diana Parno, Andrea Pocar, arXiv:2209.03340, 2022.
[Giunti:2022aea]
[1-2]
Snowmass White Paper: Beyond the Standard Model effects on Neutrino Flavor, C. A. Arguelles et al., arXiv:2203.10811, 2022.
[Arguelles:2022xxa]
[1-3]
Electromagnetic neutrinos in terrestrial experiments and astrophysics, Carlo Giunti, Konstantin A. Kouzakov, Yu-Feng Li, Alexey V. Lokhov, Alexander I. Studenikin et al., Annalen Phys. 528 (2016) 198-215, arXiv:1506.05387.
[Giunti:2015gga]
[1-4]
Neutrino electromagnetic interactions: a window to new physics, Carlo Giunti, Alexander Studenikin, Rev.Mod.Phys. 87 (2015) 531, arXiv:1403.6344.
[Giunti:2014ixa]
[1-5]
Electromagnetic Properties of Neutrinos, C. Broggini, C. Giunti, A. Studenikin, Adv. High Energy Phys. 2012 (2012) 459526, arXiv:1207.3980.
[Broggini:2012df]
[1-6]
Neutrino electromagnetic properties, Carlo Giunti, Alexander Studenikin, Phys. Atom. Nucl. 72 (2009) 2089-2125, arXiv:0812.3646.
[Giunti:2008ve]
[1-7]
Neutrinos in cosmology, A. D. Dolgov, Phys. Rep. 370 (2002) 333-535, arXiv:hep-ph/0202122.
[Dolgov:2002wy]
[1-8]
Astrophysics probes of particle physics, G. G. Raffelt, Phys. Rept. 333 (2000) 593-618.
[Raffelt:2000kp]
[1-9]
Particle physics from stars, Georg G. Raffelt, Ann.Rev.Nucl.Part.Sci. 49 (1999) 163-216, arXiv:hep-ph/9903472.
[Raffelt:1999tx]
[1-10]
Limits on neutrino electromagnetic properties: An update, G. G. Raffelt, Phys. Rept. 320 (1999) 319-327.
[Raffelt:1999gv]
[1-11]
Astrophysical methods to constrain axions and other novel particle phenomena, Georg G. Raffelt, Phys. Rept. 198 (1990) 1-113.
[Raffelt:1990yz]
[1-12]
Cosmology and elementary particles, A. D. Dolgov, Ya. B. Zeldovich, Rev. Mod. Phys. 53 (1981) 1-41.
[Dolgov:1981hv]

2 - Habilitation, PhD and Master Theses

[2-1]
Light, Unstable Sterile Neutrinos: Phenomenology, a Search in the IceCube Experiment, and a Global Picture, Marjon H. Moulai, arXiv:2110.02351, 2021.
[Moulai:2021zey]

3 - Experiment

[3-1]
First Search for Unstable Sterile Neutrinos with the IceCube Neutrino Observatory, R. Abbasi et al. (IceCube), Phys.Rev.Lett. 129 (2022) 151801, arXiv:2204.00612.
[IceCubeCollaboration:2022tso]
[3-2]
Constraints on Neutrino Lifetime from the Sudbury Neutrino Observatory, B. Aharmim et al. (SNO), Phys.Rev. D99 (2019) 032013, arXiv:1812.01088.
[SNO:2018pvg]
[3-3]
Heavy neutrino decay at SHALON, V.G. Sinitsyna, M. Masip, S.I. Nikolsky, V.Y. Sinitsyna, arXiv:0903.4654, 2009.
[Sinitsyna:2009dn]
[3-4]
Experimental Limits on the Mass and Lifetime of Muon-neutrino, V. E. Barnes et al., Phys. Rev. Lett. 38 (1977) 1049.
[Barnes:1977em]
[3-5]
Experimental Limits on the Mass and Decay Lifetime of Muon Neutrino, V. E. Barnes, Phys. Lett. B65 (1976) 174-176.
[Barnes:1976sa]

4 - Experiment - Talks

[4-1]
Search for Heavy Neutrino in $K \to \mu \nu_h$ ($\nu_h \to \nu \gamma$) Decay at ISTRA+ Setup, ISTRA+ collaboration et al. (ISTRA+), Phys. Lett. B710 (2012) 307-317, arXiv:1110.1610. QFTHEP-2011.
[ISTRA:2011bgc]
[4-2]
Search for possible solar neutrino radiative decays during total solar eclipses, S. Cecchini et al., arXiv:hep-ex/0606037, 2006. SPSE2006, Waw an Namos, Libya, 27-29 March 2006.
[Cecchini:2006fz]
[4-3]
Search for neutrino radiative decays during a total solar eclipse, V. Popa, PoS AHEP2003 (2003) AHEP2003/068, arXiv:hep-ex/0402014. AHEP2003, Valencia.
[Popa:2003mjo]

5 - Theory

[5-1]
Revisiting series expansions of neutrino oscillation and decay probabilities in matter, Jesper Gronroos, Tommy Ohlsson, Sampsa Vihonen, arXiv:2401.16864, 2024.
[Gronroos:2024jbs]
[5-2]
Geometrical Interpretation of Neutrino Oscillation with decay, Rajrupa Banerjee, Kiran Sharma, Sudhanwa Patra, Prasanta K. Panigrahi, arXiv:2312.08178, 2023.
[Banerjee:2023sxj]
[5-3]
Analytic treatment of 3-flavor neutrino oscillation and decay in matter, Dibya S. Chattopadhyay, Kaustav Chakraborty, Amol Dighe, Srubabati Goswami, JHEP 01 (2023) 051, arXiv:2204.05803.
[Chattopadhyay:2022ftv]
[5-4]
Investigating Leggett-Garg inequality in neutrino oscillations - role of decoherence and decay, Sheeba Shafaq, Tanmay Khushwaha, Poonam Mehta, arXiv:2112.12726, 2021.
[Shafaq:2021lju]
[5-5]
Neutrino propagation when mass eigenstates and decay eigenstates mismatch, Dibya S. Chattopadhyay, Kaustav Chakraborty, Amol Dighe, Srubabati Goswami, S. M. Lakshmi, Phys.Rev.Lett. 129 (2022) 011802, arXiv:2111.13128.
[Chattopadhyay:2021eba]
[5-6]
Three-Body Decays of Heavy Dirac and Majorana Fermions, Andre de Gouvea, Patrick J. Fox, Boris J. Kayser, Kevin J. Kelly, Phys.Rev.D 104 (2021) 015038, arXiv:2104.05719.
[deGouvea:2021ual]
[5-7]
Neutrino quantum decoherence engendered by neutrino radiative decay, Konstantin Stankevich, Alexander Studenikin, Phys.Rev. D101 (2020) 056004, arXiv:2002.02621.
[Stankevich:2020icp]
[5-8]
CP violation and circular polarisation in neutrino radiative decay, Shyam Balaji, Maura Ramirez-Quezada, Ye-Ling Zhou, JHEP 2004 (2020) 178, arXiv:1910.08558.
[Balaji:2019fxd]
[5-9]
Rates and angular distribution in heavy neutral leptons decays (I), Jean-Michel Levy, arXiv:1805.06419, 2018.
[Levy:2018dns]
[5-10]
Transition Radiation by Neutrinos at an Edge of Magnetic Field, A. Ioannisian, N. Kazarian, arXiv:1702.00943, 2017.
[Ioannisian:2017mqy]
[5-11]
Effective Majorana neutrino decay, Lucia Duarte, Ismael Romero, Javier Peressutti, Oscar A. Sampayo, Eur.Phys.J. C76 (2016) 453, arXiv:1603.08052.
[Duarte:2016miz]
[5-12]
Non-Unitary Neutrino Propagation, Jeffrey M. Berryman, Andre de Gouvea, Daniel Hernandez, Roberto L. N. Oliviera, Phys.Lett. B742 (2015) 74-79, arXiv:1407.6631.
[Berryman:2014yoa]
[5-13]
Decay of a massive neutrino in magnetized electron gas, Alexei I. Ternov, Pavel A. Eminov, Phys. Rev. D87 (2013) 113001.
[Ternov:2013ana]
[5-14]
High energy neutrino absorption by W production in a strong magnetic field, A.V. Kuznetsov, N.V. Mikheev, A. V. Serghienko, Phys. Lett. B690 (2010) 386-389, arXiv:1002.3804.
[Kuznetsov:2010sn]
[5-15]
Angular momentum non-conserving decays in isotropic media, Jose F. Nieves, Palash B. Pal, Eur. Phys. J. C63 (2009) 331-342, arXiv:0907.3000.
[Nieves:2009by]
[5-16]
Neutrino gravitational decay in a medium, Jose F. Nieves, Palash B. Pal, arXiv:0901.2982, 2009.
[Nieves:2009rw]
[5-17]
Neutrino absorption by W production in the presence of a magnetic field, Kaushik Bhattacharya, Sarira Sahu, Eur. Phys. J. C62 (2009) 481-489, arXiv:0811.1692.
[Bhattacharya:2008px]
[5-18]
Quantum theory of neutrino spin light in dense matter, A. Grigoriev, A. Studenikin, A. Ternov, Phys.Lett. B622 (2005) 199-206.
[Grigorev:2005sw]
[5-19]
Radiative decay of the massive neutrino in magnetized plasma, A.I. Ternov, P.A. Eminov, J. Phys.G G29 (2003) 357-369.
[Ternov:2003yi]
[5-20]
Radiative neutrino decay in media, Dario Grasso, Victor Semikoz, Phys. Rev. D60 (1999) 053010, arXiv:hep-ph/9808390.
[Grasso:1998td]
[5-21]
Radiative neutrino decay in hot media, Jose F. Nieves, Palash B. Pal, Phys. Rev. D56 (1997) 365-367, arXiv:hep-ph/9702283.
[Nieves:1997md]
[5-22]
Radiative neutrino decays in very strong magnetic fields, M. Kachelriess, G. Wunner, Phys.Lett. B390 (1997) 263-267, arXiv:hep-ph/9610439.
[Kachelriess:1996up]
[5-23]
The Radiative decay of the massive neutrino in the external electromagnetic fields, A.A. Gvozdev, N.V. Mikheev, L.A. Vasilevskaya, Phys. Rev. D54 (1996) 5674-5685, arXiv:hep-ph/9610219.
[Gvozdev:1996kx]
[5-24]
Radiative decay of a massive neutrino in the Weinberg-Salam model with mixing in a constant uniform magnetic field, V. Ch. Zhukovsky, P.A. Eminov, A.E. Grigoruk, Mod.Phys.Lett. A11 (1996) 3119-3126.
[Zhukovsky:1996bi]
[5-25]
Decay of massive neutrinos in a strong magnetic field, V.V. Skobelev, J.Exp.Theor.Phys. 81 (1995) 1-6.
[Skobelev:1995pf]
[5-26]
Radiative transition of a massive neutrino in the field of an intense electromagnetic wave, L.A. Vasilevskaya, A.A. Gvozdev, N.V. Mikheev, Phys.Atom.Nucl. 58 (1995) 654-659.
[Vasilevskaya:1995bi]
[5-27]
Electromagnetic catalysis of the radiative transitions of $\nu_{i}\to\nu_{j}\gamma$ type in the field of an intense monochromatic wave, A.A. Gvozdev, N.V. Mikheev, L.A. Vasilevskaya, Phys.Lett. B321 (1994) 108-112, arXiv:hep-ph/9404290.
[Gvozdev:1993js]
[5-28]
The Radiative decay of a high-energy neutrino in the Coulomb field of a nucleus, A.A. Gvozdev, N.V. Mikheev, L.A. Vasilevskaya, Phys.Lett. B323 (1994) 179-181, arXiv:hep-ph/9404289.
[Gvozdev:1993jr]
[5-29]
Massive neutrino decay $\nu_{i}\to\nu_{j}\gamma$ in a crossed field, L.A. Vasilevskaya, A.A. Gvozdev, N.V. Mikheev, Phys.Atom.Nucl. 57 (1994) 117-120.
[Vasilevskaya:1994ka]
[5-30]
The Radiative decay $\nu_{i}\to\nu_{j}\gamma$ ($i \neq j$) of a massive neutrino in the field of an intensive electromagnetic wave, A.A. Gvozdev, N.V. Mikheev, L.A. Vasilevskaya, Phys.Lett. B313 (1993) 161-164.
[Gvozdev:1993rh]
[5-31]
Majoron decay of neutrinos in matter, C. Giunti, C. W. Kim, U. W. Lee, W. P. Lam, Phys. Rev. D45 (1992) 1557-1568.
[Giunti:1992sy]
[5-32]
The Magnetic catalysis of the radiative decay of a massive neutrino in the standard model with lepton mixing, A.A. Gvozdev, N.V. Mikheev, L.A. Vasilevskaya, Phys.Lett. B289 (1992) 103-108.
[Gvozdev:1992np]
[5-33]
Radiative decay and magnetic moment of neutrinos in matter, C. Giunti, C.W. Kim, W.P. Lam, Phys. Rev. D43 (1991) 164-169.
[Giunti:1990pp]
[5-34]
Radiative Neutrino Decay in a Medium, Juan Carlos D'Olivo, Jose F. Nieves, Palash B. Pal, Phys. Rev. Lett. 64 (1990) 1088.
[DOlivo:1989brs]
[5-35]
Two photon decays of heavy neutrinos, Jose F. Nieves, Phys. Rev. D28 (1983) 1664.
[Nieves:1983bq]
[5-36]
Majoron emission by neutrinos, Vernon D. Barger, W. Y. Keung, S. Pakvasa, Phys. Rev. D25 (1982) 907.
[Barger:1981vd]
[5-37]
Radiative Decays of Massive Neutrinos, Palash B. Pal, Lincoln Wolfenstein, Phys. Rev. D25 (1982) 766.
[Pal:1981rm]
[5-38]
Neutrino decay and spontaneous violation of lepton number, J. Schechter, J. W. F. Valle, Phys. Rev. D25 (1982) 774.
[Schechter:1981cv]
[5-39]
Neutrino Decay in Gauge Theories, G.T. Zatsepin, A. Yu. Smirnov, Yad.Fiz. 28 (1978) 1569-1579. Sov. J. Nucl. Phys. 28 (1978) 807.
[Zatsepin:1978iy]
[5-40]
Limits on the Mass of the Muon-neutrino in the Absence of Muon Lepton Number Conservation, J. Terrance Goldman, Jr. Stephenson, G.J., Phys. Rev. D16 (1977) 2256.
[Goldman:1977jx]
[5-41]
Exotic Decays of the Muon and Heavy Leptons in Gauge Theories, W. J. Marciano, A. I. Sanda, Phys. Lett. B67 (1977) 303.
[Marciano:1977wx]
[5-42]
The Processes $\mu \to e \gamma$, $\mu \to e e \bar{e}$, $\nu' \to \nu \gamma$ in the Weinberg-Salam Model with Neutrino Mixing, S.T. Petcov, Sov. J. Nucl. Phys. 25 (1977) 340. Errata: ibid 25 (1977) 698; ibid 25 (1977) 1336.
[Petcov:1976ff]
[5-43]
Decay $L^{0} \to \nu_{l} \gamma$ in gauge theories of weak and electromagnetic interactions, R. Shrock, Phys. Rev. D9 (1974) 743-748.
[Shrock:1974nd]
[5-44]
Are neutrinos stable particles?, John N. Bahcall, N. Cabibbo, A. Yahil, Phys. Rev. Lett. 28 (1972) 316.
[Bahcall:1972my]

6 - Theory - Talks

[6-1]
Addressing the Majorana vs. Dirac Question Using Neutrino Decays, Boris Kayser, arXiv:1805.07523, 2018. 53rd Rencontres de Moriond Electroweak session of March 2018.
[Kayser:2018mot]
[6-2]
A decay of the ultra-high-energy neutrino $\nu_e \to e^- W^+$ in a magnetic field and its influence on the shape of the neutrino spectrum, A.V. Kuznetsov, N.V. Mikheev, A.V. Serghienko, arXiv:1010.0582, 2010. XVI International Seminar Quarks'2010, Kolomna, Moscow Region, June 6-12, 2010.
[Kuznetsov:2010rg]
[6-3]
Spin light mode of massive neutrino radiative decay in matter, Alexander Grigoriev, Alexey Lokhov, Alexander Studenikin, arXiv:1001.0101, 2010. 21st Rencontres de Blois (France), June 21-26, 2009.
[Grigoriev:2010ti]

7 - Theory - Models

[7-1]
Neutrino decay as a possible interpretation to the MiniBooNE observation with unparticle scenario, Xue-Qian Li, Yong Liu, Zheng-Tao Wei, Eur. Phys. J. C56 (2008) 97-103, arXiv:0707.2285.
[Li:2007kj]
[7-2]
Neutrino Decays and Neutrino Electron Elastic Scattering in Unparticle Physics, Shun Zhou, Phys. Lett. B659 (2008) 336-340, arXiv:0706.0302.
[Zhou:2007zq]
[7-3]
Radiative neutrino decay and CP-violation in R-parity violating supersymmetry, Gautam Bhattacharyya, Palash B. Pal, Heinrich Päs, Thomas J. Weiler, Phys. Rev. D74 (2006) 053006, arXiv:hep-ph/0608131.
[Bhattacharyya:2006cq]
[7-4]
Neutrino Decay and Neutrinoless Double Beta Decay in a 3-3- 1 Model, Alex G. Dias, A. Doff, C. A. de S. Pires, P. S. Rodrigues da Silva, Phys. Rev. D72 (2005) 035006, arXiv:hep-ph/0503014.
[Dias:2005jm]
[7-5]
Radiative Neutrino Decay in Left-right Models, Utpal Chattopadhyay, Palash B. Pal, Phys. Rev. D34 (1986) 3444.
[Chattopadhyay:1986cj]

8 - Phenomenology

[8-1]
Synergy between DUNE and T2HKK to probe Invisible Neutrino Decay, Zannatun Firdowzy Dey, Debajyoti Dutta, arXiv:2402.13235, 2024.
[Dey:2024nzm]
[8-2]
The Sun and core-collapse supernovae are leading probes of the neutrino lifetime, Pablo Martinez-Mirave, Irene Tamborra, Mariam Tortola, arXiv:2402.00116, 2024.
[Martinez-Mirave:2024hfd]
[8-3]
Invisible neutrino decay at long-baseline neutrino oscillation experiments, Christoph A. Ternes, Giulia Pagliaroli, Phys.Rev.D 109 (2024) L071701, arXiv:2401.14316.
[Ternes:2024qui]
[8-4]
Relic neutrino decay solution to the excess radio background, P. S. Bhupal Dev, Pasquale Di Bari, Ivan Martinez-Soler, Rishav Roshan, JCAP 04 (2024) 046, arXiv:2312.03082.
[Dev:2023wel]
[8-5]
Confronting solutions of the Gallium Anomaly with reactor rate data, Carlo Giunti, Christoph A. Ternes, Phys.Lett.B 849 (2024) 138436, arXiv:2312.00565.
[Giunti:2023kyo]
[8-6]
Constraining axion-like particles with invisible neutrino decay using the IceCube observations of NGC 1068, Bhanu Prakash Pant, Phys.Rev.D 109 (2024) 063002, arXiv:2311.14597.
[Pant:2023lnz]
[8-7]
Solar neutrinos and $\nu_2$ visible decays to $\nu_1$, Andre de Gouvea, Jean Weill, Manibrata Sen, Phys.Rev.D 109 (2024) 013003, arXiv:2308.03838.
[deGouvea:2023jxn]
[8-8]
Do Neutrinos Become Flavor Unstable Due to Collisions with Matter in the Supernova Decoupling Region?, Shashank Shalgar, Irene Tamborra, arXiv:2307.10366, 2023.
[Shalgar:2023aca]
[8-9]
Probing invisible neutrino decay with KM3NeT-ORCA, S. Aiello et al. (KM3NeT), JHEP 04 (2023) 090, arXiv:2302.02717.
[KM3NeT:2023ncz]
[8-10]
Invisible Neutrino Decays as Origin of TeV Gamma Rays from GRB221009A, Jihong Huang, Yilin Wang, Bingrong Yu, Shun Zhou, JCAP 04 (2023) 056, arXiv:2212.03477.
[Huang:2022udc]
[8-11]
New Clues About Light Sterile Neutrinos: Preference for Models with Damping Effects in Global Fits, J. M. Hardin, I. Martinez-Soler, A. Diaz, M. Jin, M. W. Kamp, C. A. Arguelles, J. M. Conrad, M. H. Shaevitz, JHEP 09 (2023) 058, arXiv:2211.02610.
[Hardin:2022muu]
[8-12]
Neutrino non-radiative decay and the diffuse supernova neutrino background, Pilar Ivanez-Ballesteros, M. Cristina Volpe, Phys.Rev.D 107 (2023) 023017, arXiv:2209.12465.
[Ivanez-Ballesteros:2022szu]
[8-13]
Neutrino decay in the presence of NSI, Ashutosh Kumar Alok, Neetu Raj Singh Chundawat, Arindam Mandal, arXiv:2208.14881, 2022.
[Alok:2022jxo]
[8-14]
Visible Neutrino Decays and the Impact of the Daughter-Neutrino Mass, Andre de Gouvea, Manibrata Sen, Jean Weill, Phys.Rev.D 106 (2022) 013005, arXiv:2203.14976.
[deGouvea:2022cmo]
[8-15]
Weaker yet again: mass spectrum-consistent cosmological constraints on the neutrino lifetime, Joe Zhiyu Chen, Isabel M. Oldengott, Giovanni Pierobon, Yvonne Y. Y. Wong, Eur.Phys.J.C 82 (2022) 640, arXiv:2203.09075.
[Chen:2022idm]
[8-16]
Updating $\nu_{3}$ lifetime from solar antineutrino spectra, R. Picoreti, D. Pramanik, O.L.G. Peres, P.C.D. Holanda, Phys.Rev.D 106 (2022) 015025, arXiv:2109.13272.
[Picoreti:2021yct]
[8-17]
Characterizing Heavy Neutral Fermions via their Decays, Andre de Gouvea, Patrick J. Fox, Boris J. Kayser, Kevin J. Kelly, Phys.Rev.D 105 (2022) 015019, arXiv:2109.10358.
[deGouvea:2021rpa]
[8-18]
Unstable Cosmic Neutrino Capture, Kensuke Akita, Gaetano Lambiase, Masahide Yamaguchi, JHEP 02 (2022) 132, arXiv:2109.02900.
[Akita:2021hqn]
[8-19]
Probing neutrino decay scenarios by using the Earth matter effects on supernova neutrinos, Edwin A. Delgado, Hiroshi Nunokawa, Alexander A. Quiroga, JCAP 01 (2022) 003, arXiv:2109.02737.
[Delgado:2021vha]
[8-20]
Explaining the MiniBooNE Excess Through a Mixed Model of Oscillation and Decay, Stefano Vergani, Nicholas W. Kamp, Alejandro Diaz, Carlos A. Arguelles, Janet M. Conrad, Mike H. Shaevitz, Melissa A. Uchida, Phys.Rev.D 104 (2021) 095005, arXiv:2105.06470.
[Vergani:2021tgc]
[8-21]
Detecting the radiative decay of the cosmic neutrino background with line-intensity mapping, Jose Luis Bernal, Andrea Caputo, Francisco Villaescusa-Navarro, Marc Kamionkowski, Phys.Rev.Lett. 127 (2021) 131102, arXiv:2103.12099.
[Bernal:2021ylz]
[8-22]
Searching for Physics Beyond the Standard Model in an Off-Axis DUNE Near Detector, Moritz Breitbach, Luca Buonocore, Claudia Frugiuele, Joachim Kopp, Lukas Mittnacht, JHEP 01 (2022) 048, arXiv:2102.03383.
[Breitbach:2021gvv]
[8-23]
Invisible neutrino decay : First vs second oscillation maximum, Kaustav Chakraborty, Debajyoti Dutta, Srubabati Goswami, Dipyaman Pramanik, JHEP 2105 (2021) 091, arXiv:2012.04958.
[Chakraborty:2020cfu]
[8-24]
Invisible neutrino decay in precision cosmology, Gabriela Barenboim, Joe Zhiyu Chen, Steen Hannestad, Isabel M. Oldengott, Thomas Tram, Yvonne Y. Y. Wong, JCAP 2103 (2021) 087, arXiv:2011.01502.
[Barenboim:2020vrr]
[8-25]
Exploring invisible neutrino decay at ESSnuSB, Sandhya Choubey, Monojit Ghosh, Daniel Kempe, Tommy Ohlsson, JHEP 05 (2021) 133, arXiv:2010.16334.
[Choubey:2020dhw]
[8-26]
Interpretation of the XENON1T excess in the model with decaying sterile neutrinos, V. V. Khruschov, arXiv:2008.03150, 2020.
[Khruschov:2020cnf]
[8-27]
Improved BBN constraints on Heavy Neutral Leptons, Alexey Boyarsky, Maksym Ovchynnikov, Oleg Ruchayskiy, Vsevolod Syvolap, Phys.Rev.D 104 (2021) 023517, arXiv:2008.00749.
[Boyarsky:2020dzc]
[8-28]
Relaxing Cosmological Neutrino Mass Bounds with Unstable Neutrinos, Miguel Escudero, Jacobo Lopez-Pavon, Nuria Rius, Stefan Sandner, JHEP 2012 (2020) 119, arXiv:2007.04994.
[Escudero:2020ped]
[8-29]
Probing the sensitivity to leptonic $\delta_{CP}$ in presence of invisible decay of $\nu_3$ using atmospheric neutrinos, Lakshmi.S.Mohan, J.Phys. G47 (2020) 115004, arXiv:2006.04233.
[LakshmiSMohan:2020khn]
[8-30]
Visible Decay of Astrophysical Neutrinos at IceCube, Asli Abdullahi, Peter B. Denton, Phys.Rev. D102 (2020) 023018, arXiv:2005.07200.
[Abdullahi:2020rge]
[8-31]
New limits on neutrino decay from the Glashow resonance of high-energy cosmic neutrinos, Mauricio Bustamante, arXiv:2004.06844, 2020.
[Bustamante:2020niz]
[8-32]
Neutrino Invisible Decay at DUNE: a multi-channel analysis, A. Ghoshal, A. Giarnetti, D. Meloni, J.Phys. G48 (2021) 055004, arXiv:2003.09012.
[Ghoshal:2020hyo]
[8-33]
Determining the Neutrino Lifetime from Cosmology, Zackaria Chacko, Abhish Dev, Peizhi Du, Vivian Poulin, Yuhsin Tsai, Phys.Rev. D103 (2021) 043519, arXiv:2002.08401.
[Chacko:2020hmh]
[8-34]
On The Decaying-Sterile Neutrino Solution to the Electron (Anti)Neutrino Appearance Anomalies, Andre de Gouvea, O. L. G. Peres, Suprabh Prakash, G. V. Stenico, JHEP 2007 (2020) 141, arXiv:1911.01447.
[deGouvea:2019qre]
[8-35]
Decaying Sterile Neutrinos and the Short Baseline Oscillation Anomalies, Mona Dentler, Ivan Esteban, Joachim Kopp, Pedro Machado, Phys.Rev. D101 (2020) 115013, arXiv:1911.01427.
[Dentler:2019dhz]
[8-36]
On the Impact of Neutrino Decays on the Supernova Neutronization-Burst Flux, Andre de Gouvea, Ivan Martinez-Soler, Manibrata Sen, Phys.Rev. D101 (2020) 043013, arXiv:1910.01127.
[deGouvea:2019goq]
[8-37]
Explaining the MiniBooNE excess by a decaying sterile neutrino with mass in the 250 MeV range, Oliver Fischer, Alvaro Hernandez-Cabezudo, Thomas Schwetz, Phys.Rev. D101 (2020) 075045, arXiv:1909.09561.
[Fischer:2019fbw]
[8-38]
Cosmological Constraints on Invisible Neutrino Decays Revisited, Miguel Escudero, Malcolm Fairbairn, Phys.Rev. D100 (2019) 103531, arXiv:1907.05425.
[Escudero:2019gfk]
[8-39]
Invisible neutrino decays at the MOMENT experiment, Jian Tang, TseChun Wang, Yibing Zhang, JHEP 1904 (2019) 004, arXiv:1811.05623.
[Tang:2018rer]
[8-40]
Constraining the invisible neutrino decay with KM3NeT-ORCA, P.F. de Salas, S. Pastor, C.A. Ternes, T. Thakore, M. Tortola, Phys.Lett. B789 (2019) 472-479, arXiv:1810.10916.
[deSalas:2018kri]
[8-41]
Constraining Neutrino Lifetimes and Magnetic Moments via Solar Neutrinos in the Large Xenon Detectors, Guo-yuan Huang, Shun Zhou, JCAP 1902 (2019) 024, arXiv:1810.03877.
[Huang:2018nxj]
[8-42]
Addressing the Majorana vs. Dirac Question with Neutrino Decays, A. Baha Balantekin, Andre de Gouvea, Boris Kayser, Phys.Lett.B 789 (2019) 488-495, arXiv:1808.10518.
[Balantekin:2018ukw]
[8-43]
Probing relic neutrino decays with 21 cm cosmology, Marco Chianese, Pasquale Di Bari, Kareem Farrag, Rome Samanta, Phys.Lett. B790 (2019) 64-70, arXiv:1805.11717.
[Chianese:2018luo]
[8-44]
Invisible Neutrino Decay Resolves IceCube's Track and Cascade Tension, Peter B. Denton, Irene Tamborra, Phys.Rev.Lett. 121 (2018) 121802, arXiv:1805.05950.
[Denton:2018aml]
[8-45]
Matter effects in neutrino visible decay at future long-baseline experiments, M. V. Ascencio-Sosa, A. M. Calatayud-Cadenillas, A. M. Gago, J. Jones-Perez, Eur.Phys.J. C78 (2018) 809, arXiv:1805.03279.
[Ascencio-Sosa:2018lbk]
[8-46]
Invisible neutrino decay in the light of NOvA and T2K data, Sandhya Choubey, Debajyoti Dutta, Dipyaman Pramanik, JHEP 1808 (2018) 141, arXiv:1805.01848.
[Choubey:2018cfz]
[8-47]
Precision constraints on radiative neutrino decay with CMB spectral distortion, Jelle L. Aalberts et al., Phys.Rev. D98 (2018) 023001, arXiv:1803.00588.
[Aalberts:2018obr]
[8-48]
Exploring a Non-Minimal Sterile Neutrino Model Involving Decay at IceCube and Beyond, Zander Moss, Marjon H. Moulai, Carlos A. Arguelles, Janet M. Conrad, Phys.Rev. D97 (2018) 055017, arXiv:1711.05921.
[Moss:2017pur]
[8-49]
Sensitivity to neutrino decay with atmospheric neutrinos at INO, Sandhya Choubey, Srubabati Goswami, Chandan Gupta, S. M. Lakshmi, Tarak Thakore, Phys.Rev.D 97 (2018) 033005, arXiv:1709.10376.
[Choubey:2017eyg]
[8-50]
A Study of Invisible Neutrino Decay at DUNE and its Effects on $\theta_{23}$ Measurement, Sandhya Choubey, Srubabati Goswami, Dipyaman Pramanik, JHEP 1802 (2018) 055, arXiv:1705.05820.
[Choubey:2017dyu]
[8-51]
Visible neutrino decay at DUNE, Pilar Coloma, Orlando L. G. Peres, arXiv:1705.03599, 2017.
[Coloma:2017zpg]
[8-52]
Circular polarisation: a new probe of dark matter and neutrinos in the sky, Celine Bohm, Celine Degrande Olivier Mattelaer, Aaron C. Vincent, JCAP 1705 (2017) 043, arXiv:1701.02754.
[Boehm:2017nrl]
[8-53]
MeV-scale sterile neutrino decays at the Fermilab Short-Baseline Neutrino program, Peter Ballett, Silvia Pascoli, Mark Ross-Lonergan, JHEP 1704 (2017) 102, arXiv:1610.08512.
[Ballett:2016opr]
[8-54]
Testing decay of astrophysical neutrinos with incomplete information, Mauricio Bustamante, John F. Beacom, Kohta Murase, Phys.Rev. D95 (2017) 063013, arXiv:1610.02096.
[Bustamante:2016ciw]
[8-55]
Enhanced tau neutrino appearance through invisible decay, Giulia Pagliaroli, Natalia Di Marco, Massimo Mannarelli, Phys. Rev. D93 (2016) 113011, arXiv:1603.08696.
[Pagliaroli:2016zab]
[8-56]
Majorana neutrino decay in an Effective Approach, Lucia Duarte, Javier Peressutti, O.A. Sampayo, Phys. Rev. D92 (2015) 093002, arXiv:1508.01588.
[Duarte:2015iba]
[8-57]
Neutrino Decay and Solar Neutrino Seasonal Effect, R. Picoreti, M. M. Guzzo, P. C. de Holanda, O. L. G. Peres, Phys.Lett. B761 (2016) 70-73, arXiv:1506.08158.
[Picoreti:2015ika]
[8-58]
Testing neutrino decay scenarios with IceCube data, G. Pagliaroli, A. Palladino, F. Vissani, F.L. Villante, Phys. Rev. D92 (2015) 113008, arXiv:1506.02624.
[Pagliaroli:2015rca]
[8-59]
Constraint on Neutrino Decay with Medium-Baseline Reactor Neutrino Oscillation Experiments, Thamys Abrahao, Hisakazu Minakata, Hiroshi Nunokawa, Alexander A. Quiroga, JHEP 11 (2015) 001, arXiv:1506.02314.
[Abrahao:2015rba]
[8-60]
Solar Neutrinos and the Decaying Neutrino Hypothesis, Jeffrey M. Berryman, Andre de Gouvea, Daniel Hernandez, Phys. Rev. D92 (2015) 073003, arXiv:1411.0308.
[Berryman:2014qha]
[8-61]
Nearly degenerate heavy sterile neutrinos in cascade decay: mixing and oscillations, Daniel Boyanovsky, Phys. Rev. D90 (2014) 105024, arXiv:1409.4265.
[Boyanovsky:2014una]
[8-62]
Constraints on neutrino decay lifetime using accelerator neutrino and anti-neutrino disappearance data, R. A. Gomes, A. L. G. Gomes, O. L. G. Peres, Phys.Lett. B740 (2015) 345-352, arXiv:1407.5640.
[Gomes:2014yua]
[8-63]
Flavor Ratios and Mass Hierarchy at Neutrino Telescopes, Lingjun Fu, Chiu Man Ho, arXiv:1407.1090, 2014.
[Fu:2014gja]
[8-64]
Cosmological Invisible Decay of Light Sterile Neutrinos, S. Gariazzo, C. Giunti, M. Laveder, arXiv:1404.6160, 2014.
[Gariazzo:2014pja]
[8-65]
Detecting the neutrino magnetic moment at hadron colliders, O. M. Boyarkin, G. G. Boyarkina, Phys. Rev. D90 (2014) 105021.
[Boyarkin:2014hva]
[8-66]
Invisible decays of ultra-high energy neutrinos, L. Dorame, O.G. Miranda, J.W.F. Valle, Front. Phys. 1 (2013) 25, arXiv:1303.4891.
[Dorame:2013lka]
[8-67]
Heavy neutrino decays at MiniBooNE, Manuel Masip, Pere Masjuan, Davide Meloni, JHEP 01 (2013) 106, arXiv:1210.1519.
[Masip:2012ke]
[8-68]
Neutrino Decays over Cosmological Distances and the Implications for Neutrino Telescopes, Philipp Baerwald, Mauricio Bustamante, Walter Winter, JCAP 1210 (2012) 020, arXiv:1208.4600.
[Baerwald:2012kc]
[8-69]
New limits on radiative sterile neutrino decays from a search for single photons in neutrino interactions, S. N. Gninenko, Phys. Lett. B710 (2012) 86-90, arXiv:1201.5194.
[Gninenko:2012rw]
[8-70]
Search for Radiative Decays of Cosmic Background Neutrino using Cosmic Infrared Background Energy Spectrum, Shin-Hong Kim, Ken-ichi Takemasa, Yuji Takeuchi, Shuji Matsuura, J. Phys. Soc Jap. 81 (2012) 024101, arXiv:1112.4568.
[Kim:2011ye]
[8-71]
Can the excess in the FeXXVI Ly gamma line from the Galactic Center provide evidence for 17 keV sterile neutrinos?, D. A. Prokhorov, Joseph Silk, Astrophys.J. 725 (2010) L131, arXiv:1001.0215.
[Prokhorov:2010us]
[8-72]
New Lower Limits on the Lifetime of Heavy Neutrino Radiative Decay, S. Cecchini et al., Astropart. Phys. 34 (2011) 486-492, arXiv:0912.5086.
[Cecchini:2009fx]
[8-73]
The MiniBooNE anomaly and heavy neutrino decay, S. N. Gninenko, Phys. Rev. Lett. 103 (2009) 241802, arXiv:0902.3802.
[Gninenko:2009ks]
[8-74]
Testing neutrino oscillations plus decay with neutrino telescopes, Michele Maltoni, Walter Winter, JHEP 07 (2008) 064, arXiv:0803.2050.
[Maltoni:2008jr]
[8-75]
Status of Oscillation plus Decay of Atmospheric and Long-Baseline Neutrinos, M.C. Gonzalez-Garcia, M. Maltoni, Phys. Lett. B663 (2008) 405-409, arXiv:0802.3699.
[Gonzalez-Garcia:2008mgl]
[8-76]
Investigating Possible Neutrino Decay in Long Baseline Experiment Using ICAL as Far end Detector, Debasish Majumdar, Ambar Ghosal, arXiv:0712.0697, 2007.
[Majumdar:2007kn]
[8-77]
Unparticle decay of neutrinos and it's effect on ultra high energy neutrinos, Debasish Majumdar, arXiv:0708.3485, 2007.
[Majumdar:2007mp]
[8-78]
Revisiting cosmological bounds on radiative neutrino lifetime, A. Mirizzi, D. Montanino, P.D. Serpico, Phys. Rev. D76 (2007) 053007, arXiv:0705.4667.
[Mirizzi:2007jd]
[8-79]
Heating the intergalactic medium by radiative decay of neutrinos, M. H. Chan, M. -C. Chu, Astrophys. J. 658 (2007) 859, arXiv:astro-ph/0609563.
[Chan:2006nw]
[8-80]
Constraining invisible neutrino decays with the cosmic microwave background, Steen Hannestad, Georg Raffelt, Phys. Rev. D72 (2005) 103514, arXiv:hep-ph/0509278.
[Hannestad:2005ex]
[8-81]
Explaining LSND by a decaying sterile neutrino, Sergio Palomares-Ruiz, Silvia Pascoli, Thomas Schwetz, JHEP 0509 (2005) 048, arXiv:hep-ph/0505216.
Comment: The figure 3 (left panel) corresponds to neutrino oscillations in (3+1) mass scheme with the last NOMAD data included. [M.L.].
[Palomares-Ruiz:2005zbh]
[8-82]
Search for possible neutrino radiative decays during the 2001 total solar eclipse, S. Cecchini et al., Astropart. Phys. 21 (2004) 183, arXiv:hep-ex/0402008.
[Cecchini:2004ym]
[8-83]
Three-generation flavor transitions and decays of supernova relic neutrinos, G.L. Fogli, E. Lisi, A. Mirizzi, D. Montanino, Phys. Rev. D70 (2004) 013001, arXiv:hep-ph/0401227.
[Fogli:2004gy]
[8-84]
Decaying neutrinos and implications from the supernova relic neutrino observation, Shin'ichiro Ando, Phys. Lett. B570 (2003) 11, arXiv:hep-ph/0307169.
[Ando:2003ie]
[8-85]
Do solar neutrinos decay?, John F. Beacom, Nicole F. Bell, Phys. Rev. D65 (2002) 113009, arXiv:hep-ph/0204111.
[Beacom:2002cb]
[8-86]
Probing neutrino properties with the cosmic microwave background, Robert E. Lopez, Phys. Rev.D (1999), arXiv:astro-ph/9909414.
[Lopez:1999ur]
[8-87]
Neutrino decay and atmospheric neutrinos, Vernon D. Barger et al., Phys. Lett. B462 (1999) 109-114, arXiv:hep-ph/9907421.
[Barger:1999bg]
[8-88]
Improved treatment of cosmic microwave background fluctuations induced by a late decaying massive neutrino, Manoj Kaplinghat, Robert E. Lopez, Scott Dodelson, Robert J. Scherrer, Phys. Rev. D60 (1999) 123508, arXiv:astro-ph/9907388.
[Kaplinghat:1999xy]
[8-89]
Is neutrino decay really ruled out as a solution to the atmospheric neutrino problem from Super-Kamiokande data?, Sandhya Choubey, Srubabati Goswami, Astropart. Phys. 14 (2000) 67-78, arXiv:hep-ph/9904257.
[Choubey:1999ir]
[8-90]
Probing neutrino decays with the cosmic microwave background, Steen Hannestad, Phys. Rev. D59 (1999) 125020, arXiv:astro-ph/9903475.
[Hannestad:1999xy]
[8-91]
Photon spectrum produced by the late decay of a cosmic neutrino background, Eduard Masso, Ramon Toldra, Phys. Rev. D60 (1999) 083503, arXiv:astro-ph/9903397.
[Masso:1999wj]
[8-92]
Super-Kamiokande data and atmospheric neutrino decay, Gian Luigi Fogli, E. Lisi, A. Marrone, G. Scioscia, Phys. Rev. D59 (1999) 117303, arXiv:hep-ph/9902267.
[Fogli:1999qt]
[8-93]
On exotic solutions of the atmospheric neutrino problem, Paolo Lipari, Maurizio Lusignoli, Phys. Rev. D60 (1999) 013003, arXiv:hep-ph/9901350.
[Lipari:1999vh]
[8-94]
Neutrino decay as an explanation of atmospheric neutrino observations, Vernon D. Barger, J. G. Learned, S. Pakvasa, Thomas J. Weiler, Phys. Rev. Lett. 82 (1999) 2640-2643, arXiv:astro-ph/9810121.
[Barger:1998xk]
[8-95]
Comment on neutrino radiative decay limits from the infrared background, Georg G. Raffelt, Phys. Rev. Lett. 81 (1998) 4020, arXiv:astro-ph/9808299.
[Raffelt:1998xu]
[8-96]
Probing unstable massive neutrinos with current cosmic microwave background observations, Robert E. Lopez, Scott Dodelson, Robert J. Scherrer, Michael S. Turner, Phys. Rev. Lett. 81 (1998) 3075-3078, arXiv:astro-ph/9806116.
[Lopez:1998jt]
[8-97]
Constraining neutrino decays with CMBR data, Steen Hannestad, Phys.Lett. B431 (1998) 363-367, arXiv:astro-ph/9804075.
[Hannestad:1998cv]
[8-98]
New limits to the IR background: Bounds on radiative neutrino decay and on VMO contributions to the dark matter problem, S.D. Biller, J. Buckley, A. Burdett, J. Bussons Gordo, D.A. Carter-Lewis et al., Phys. Rev. Lett. 80 (1998) 2992-2995, arXiv:astro-ph/9802234.
[Biller:1998nc]
[8-99]
Neutrino transitions $\nu \to \nu \gamma$, $\nu \to \nu e^{+} e^{-}$ in a strong magnetic field as a possible origin of cosmological gamma burst, A.A. Gvozdev, A.V. Kuznetsov, N.V. Mikheev, L.A. Vassilevskaya, Phys.Atom.Nucl. 61 (1998) 1031-1034, arXiv:hep-ph/9710219.
[Gvozdev:1997bs]
[8-100]
An updated precision estimate of the Hubble constant and the age and density of the universe in the decaying neutrino theory, D. W. Sciama, Mon.Not.Roy.Astron.Soc. (1997), arXiv:astro-ph/9703068.
[Sciama:1997kg]
[8-101]
A Cosmological three level neutrino laser, Steen Hannestad, Jes Madsen, Phys. Rev. D55 (1997) 4571-4576, arXiv:astro-ph/9702125.
[Hannestad:1997ai]
[8-102]
Gamma-rays and the decay of neutrinos from SN1987A, Andrew H. Jaffe, Michael S. Turner, Phys. Rev. D55 (1997) 7951-7959, arXiv:astro-ph/9601104.
[Jaffe:1995sw]
[8-103]
Remarks on the KARMEN anomaly, Vernon D. Barger, R.J.N. Phillips, Subir Sarkar, Phys.Lett. B352 (1995) 365-371, arXiv:hep-ph/9503295.
[Barger:1995ty]
[8-104]
Theoretical possibilities and observational constraints for radiatively decaying neutrinos with mass near 30-eV, S. Bowyer, M. Lampton, J. T. Peltoniemi, M. Roos, Phys. Rev. D52 (1995) 3214-3225.
[Bowyer:1994by]
[8-105]
Structure formation with decaying neutrinos, Martin J. White, G. Gelmini, J. Silk, Phys. Rev. D51 (1995) 2669-2676, arXiv:astro-ph/9411098.
[White:1994as]
[8-106]
Dark matter and structure formation with late decaying particles, Hang Bae Kim, Jihn E. Kim, Nucl. Phys. B433 (1995) 421-434, arXiv:hep-ph/9405385.
[Kim:1994ub]
[8-107]
Is a massive tau-neutrino just what cold dark matter needs?, Scott Dodelson, Geza Gyuk, Michael S. Turner, Phys. Rev. Lett. 72 (1994) 3754-3757, arXiv:astro-ph/9402028.
[Dodelson:1994it]
[8-108]
Primordial nucleosynthesis with a decaying tau-neutrino, Scott Dodelson, Geza Gyuk, Michael S. Turner, Phys. Rev. D49 (1994) 5068-5079, arXiv:astro-ph/9312062.
[Dodelson:1993ms]
[8-109]
A Neutrino decay model, solar anti-neutrinos and atmospheric neutrinos, Andy Acker, Anjan Joshipura, Sandip Pakvasa, Phys. Lett. B285 (1992) 371-375.
[Acker:1992eh]
[8-110]
Constraints to the decays of Dirac neutrinos from SN1987A, Scott Dodelson, Joshua A. Frieman, Michael S. Turner, Phys. Rev. Lett. 68 (1992) 2572-2575.
[Dodelson:1992tv]
[8-111]
The Formation of cosmic structure with a 17-KeV neutrino, J.R. Bond, G. Efstathiou, Phys.Lett. B265 (1991) 245-250.
[Bond:1991jj]
[8-112]
On the implications of a 17-keV neutrino, A. Hime, R.J.N. Phillips, Graham G. Ross, Subir Sarkar, Phys.Lett. B260 (1991) 381-388.
[Hime:1991tb]
[8-113]
The Grand Unified Photon Spectrum: A Coherent View of the Diffuse Extragalactic Background Radiation, M. Ted Ressell, Michael S. Turner, Comments Astrophys. 14 (1990) 323.
[Ressell:1989rz]
[8-114]
Precision estimate of cosmological and particle parameters in the decaying dark matter hypothesis, D. W. Sciama, Phys. Rev. Lett. 65 (1990) 2839-2841.
[Sciama:1990as]
[8-115]
Limits to the Radiative Decays of Neutrinos and Axions from Gamma-Ray Observations of SN 1987a, Edward W. Kolb, Michael S. Turner, Phys. Rev. Lett. 62 (1989) 509.
[Kolb:1988pe]
[8-116]
Radiative Neutrino Decays and Scattering Experiments, Georg G. Raffelt, Phys. Rev. D39 (1989) 2066.
[Raffelt:1988vd]
[8-117]
Neutrino mixing, decays and supernova SN1987a, Joshua A. Frieman, Howard E. Haber, Katherine Freese, Phys. Lett. B200 (1988) 115.
[Frieman:1988as]
[8-118]
Radiative Decay of Neutrino and Primordial Nucleosynthesis, N. Terasawa, M. Kawasaki, K. Sato, Nucl. Phys. B302 (1988) 697-738.
[Terasawa:1988my]
[8-119]
Big Bang Photosynthesis and Pregalactic Nucleon Synthesis of Light Elements, J. Audouze, D. Lindley, J. Silk, Astrophys.J. 293 (1985) L53-L57.
[Audouze:1985be]
[8-120]
A Difficulty With Evasion of a Cosmological Limit on Massive Neutrinos, Michael Gronau, Ram Yahalom, Phys. Rev. D30 (1984) 2422.
[Gronau:1984rs]
[8-121]
Astrophysical constraints on the radiative lifetime of neutrinos with mass between 10-eV and 100-eV, Randy Kimble, Stuart Bowyer, Peter Jakobsen, Phys. Rev. Lett. 46 (1981) 80.
[Kimble:1980vz]
[8-122]
NEUTRINO LIFETIME CONSTRAINTS FROM NEUTRAL HYDROGEN IN THE GALACTIC HALO, A.L. Melott, D.W. Sciama, Phys. Rev. Lett. 46 (1981) 1369-1372.
[Melott:1981iw]
[8-123]
Galactic Neutrinos and UV Astronomy, A. De Rujula, S.L. Glashow, Phys. Rev. Lett. 45 (1980) 942.
[DeRujula:1980qd]
[8-124]
Have massive cosmological neutrinos already been detected?, F.W. Stecker, Phys. Rev. Lett. 45 (1980) 1460.
[Stecker:1980bu]
[8-125]
Limits from Primordial Nucleosynthesis on the Properties of Massive Neutral Leptons, D.A. Dicus, Edward W. Kolb, V.L. Teplitz, R.V. Wagoner, Phys. Rev. D17 (1978) 1529-1538.
[Dicus:1977av]
[8-126]
Cosmological Constraints on the Lifetime and the Mass of the Heavy Lepton Neutrino: Constraints From the Big Bang Nucleosynthesis, Shoken Miyama, Katsuhiko Sato, Prog.Theor.Phys. 60 (1978) 1703.
[Miyama:1978mn]
[8-127]
Limits on the Radiative Decay of Neutrinos, R. Cowsik, Phys. Rev. Lett. 39 (1977) 784-787.
[Cowsik:1977vz]
[8-128]
Cosmological Constraints on the Mass and the Number of Heavy Lepton Neutrinos, Katsuhiko Sato, Makoto Kobayashi, Prog.Theor.Phys. 58 (1977) 1775.
[Sato:1977ye]
[8-129]
Neutrinos of Non-Zero Rest Mass, S. Pakvasa, K. Tennakone, Phys. Rev. Lett. 28 (1972) 1415.
[Pakvasa:1972gz]

9 - Phenomenology - Talks

[9-1]
Neutrino nonradiative decay and the diffuse supernova neutrino background, Pilar Ivanez-Ballesteros, M. Cristina Volpe, PoS TAUP2023 (2024) 182, arXiv:2311.09725. 18th International Conference on Topics in Astroparticle and Underground Physics.
[Ivanez-Ballesteros:2023lob]
[9-2]
Probing 21cm cosmology and radiative neutrino decays, Kareem R. H. A. M. Farrag, arXiv:1904.08217, 2019. Nuphys 2018, Prospects in Neutrino Physics, December 19-21, 2018.
[Farrag:2019ovs]
[9-3]
New interactions: past and future experiments, Michele Maltoni, J. Phys. Conf. Ser. 136 (2008) 022024, arXiv:0810.3517. Neutrino 08.
[Maltoni:2008mu]
[9-4]
Neutrino Decays and Neutrino Telescopes, S. Pakvasa, arXiv:hep-ph/0305317, 2003. Tenth International Conference on Neutrino Telescopes, Mar 11-14, 2003; Venice, Italy.
[Pakvasa:2003db]

10 - Phenomenology - Models

[10-1]
Lorentz Breaking and $SU(2)_L \times U(1)_Y$ Gauge Invariance for Neutrino Decays, U. D. Jentschura, I. Nandori, G. Somogyi, Int.J.Mod.Phys. E28 (2019) 1950072, arXiv:1908.01389.
[Jentschura:2019wsr]
[10-2]
U(1)' mediated decays of heavy sterile neutrinos in MiniBooNE, Peter Ballett, Silvia Pascoli, Mark Ross-Lonergan, Phys.Rev.D 99 (2019) 071701, arXiv:1808.02915.
[Ballett:2018ynz]
[10-3]
A Dark Neutrino Portal to Explain MiniBooNE, Enrico Bertuzzo, Sudip Jana, Pedro A. N. Machado, Renata Zukanovich Funchal, Phys.Rev.Lett. 121 (2018) 241801, arXiv:1807.09877.
[Bertuzzo:2018itn]
[10-4]
Visible neutrino decay in the light of appearance and disappearance long baseline experiments, Alberto M. Gago, Ricardo A. Gomes, Abner L. G. Gomes, Joel Jones-Perez, Orlando L. G. Peres, JHEP 1711 (2017) 022, arXiv:1705.03074.
[Gago:2017zzy]
[10-5]
Radiative Decays of Cosmic Background Neutrinos in Extensions of MSSM with a Vector Like Lepton Generation, Amin Aboubrahim, Tarek Ibrahim, Pran Nath, Phys. Rev. D88 (2013) 013019, arXiv:1306.2275.
[Aboubrahim:2013gfa]
[10-6]
Constraints on sub-GeV hidden sector gauge bosons from a search for heavy neutrino decays, S. N. Gninenko, Phys. Lett. B713 (2012) 244-248, arXiv:1204.3583.
[Gninenko:2012eq]
[10-7]
Decaying Dirac neutrinos, A. Acker, S. Pakvasa, James T. Pantaleone, Phys. Rev. D45 (1992) 1-4.
[Acker:1991ej]
[10-8]
Remarks on the Zee Model of Neutrino Mixing ($\mu \to e + \gamma$, $\nu_{\text{H}} \to \nu_{\text{L}} + \gamma$, etc.), S.T. Petcov, Phys.Lett. B115 (1982) 401-406.
[Petcov:1982en]

Search Neutrino Unbound

Cross search NU

It is possible to perform a cross search between the various pages of Neutrino Unbound.
This is useful if you want to show the common elements that appear in the listings of two (or more) different topics or experiments.

Go to the search form.

[Go to ...]

Neutrino Unbound Home

Authors:
Stefano Gariazzo / gariazzo@to.infn.it
Carlo Giunti / giunti@to.infn.it
Marco Laveder / marco.laveder@pd.infn.it
Last Update: Wed 24 Apr 2024, 22:37:55 CET