Neutrinoless Double Beta Decay

Filter this page

(Note: The process can take some time.)

EXPAND ALL
COMPRESS ALL

References

1 - Reviews

[1-1]
Experimental neutrino physics in a nuclear landscape, D. S. Parno, A. W. P. Poon, V. Singh, arXiv:2310.06207, 2023.
[Parno:2023upv]
[1-2]
Probing Beyond the Standard Model Physics with Double-beta Decays, E. Bossio, M. Agostini, J.Phys.G 51 (2024) 023001, arXiv:2304.07198.
[Bossio:2023wpj]
[1-3]
Search for Majorana neutrinos, Itaru Shimizu, arXiv:2303.05127, 2023.
[Shimizu:2023ucb]
[1-4]
Snowmass Neutrino Frontier Report, Patrick Huber et al., arXiv:2211.08641, 2022.
[Huber:2022lpm]
[1-5]
Snowmass Topical Report: Underground Facilities for Neutrinos, Tim Bolton, M. Patrick Decowski, Albert De Roeck, Gabriel Orebi Gann, Danielle H. Speller, arXiv:2209.07622, 2022.
[Bolton:2022pgb]
[1-6]
Report of the Topical Group on Neutrino Properties for Snowmass 2021, Carlo Giunti, Julieta Gruszko, Benjamin Jones, Lisa Kaufman, Diana Parno, Andrea Pocar, arXiv:2209.03340, 2022.
[Giunti:2022aea]
[1-7]
On Baryon and Lepton Number Violation, Pavel Fileviez Perez et al., arXiv:2208.00010, 2022.
[FileviezPerez:2022ypk]
[1-8]
Neutrinoless Double-Beta Decay: A Roadmap for Matching Theory to Experiment, Vincenzo Cirigliano et al., arXiv:2203.12169, 2022.
[Cirigliano:2022oqy]
[1-9]
Toward the discovery of matter creation with neutrinoless double-beta decay, Matteo Agostini, Giovanni Benato, Jason A. Detwiler, Javier Menendez, Francesco Vissani, Rev.Mod.Phys. 95 (2023) 025002, arXiv:2202.01787.
[Agostini:2022zub]
[1-10]
Beyond-mean-field approaches for nuclear neutrinoless double beta decay in the standard mechanism, J. M. Yao, J. Meng, Y. F. Niu, P. Ring, Prog.Part.Nucl.Phys. 126 (2022) 103965, arXiv:2111.15543.
[Yao:2021wst]
[1-11]
Superconducting detectors for rare event search experiments, Yong-Hamb Kim, Sang-Jun Lee, Byeongsu Yang, Supercond.Sci.Technol. 35 (2022) 063001, arXiv:2111.08875.
[Kim:2021wae]
[1-12]
Neutrinoless Double Beta Decay with Germanium Detectors: 10$^{26}$ yr and Beyond, V. D'Andrea, N. Di Marco, M.B. Junker, M. Laubenstein, C. Macolino, M. Morella, F. Salamida, C. Vignoli, Universe 7 (2021) 341, arXiv:2109.07575.
[DAndrea:2021gqg]
[1-13]
CUORE Opens the Door to Tonne-scale Cryogenics Experiments, D. Q. Adams et al. (CUORE), Prog.Part.Nucl.Phys. 122 (2022) 103902, arXiv:2108.07883.
[CUORE:2021ctv]
[1-14]
The SNO+ Experiment, V. Albanese et al. (SNO+), JINST 16 (2021) P08059, arXiv:2104.11687.
[SNO:2021xpa]
[1-15]
What is matter according to particle physics and why try to observe its creation in lab, Francesco Vissani, Universe 7 (2021) 61, arXiv:2103.02642.
[Vissani:2021gdw]
[1-16]
Present Status of Nuclear Shell-Model Calculations of Neutrinoless Double-Beta Decay Matrix Elements, L. Coraggio, N. Itaco, G. De Gregorio, A. Gargano, R. Mancino, S. Pastore, Universe 6 (2020) 233, arXiv:2011.14734.
[Coraggio:2020iht]
[1-17]
Cosmogenic activation in double beta decay experiments, Susana Cebrian, Universe 6 (2020) 162, arXiv:2010.02381.
[Cebrian:2020bwn]
[1-18]
Advances in modeling nuclear matrix elements of neutrinoless double beta decay, J. M. Yao, Sci.Bull. 66 (2021) 3-5, arXiv:2008.13249.
[Yao:2020azz]
[1-19]
Nuclear matrix elements from lattice QCD for electroweak and beyond-Standard-Model processes, Zohreh Davoudi, William Detmold, Kostas Orginos, Assumpta Parreno, Martin J. Savage, Phiala Shanahan, Michael L. Wagman, Phys.Rept. 900 (2021) 1-74, arXiv:2008.11160.
[Davoudi:2020ngi]
[1-20]
Double Beta Decay Experiments at Canfranc Underground Laboratory, Susana Cebrian, Prog.Part.Nucl.Phys. 114 (2020) 103807, arXiv:2008.06426.
[Cebrian:2020yse]
[1-21]
Neutrinos: Majorana or Dirac?, S. Bilenky, arXiv:2008.02110, 2020.
[Bilenky:2020vjk]
[1-22]
Neutrinoless Double-Electron Capture, K. Blaum, S. Eliseev, F. A. Danevich, V. I. Tretyak, Sergey Kovalenko, M. I. Krivoruchenko, Yu. N. Novikov, J. Suhonen, Rev.Mod.Phys. 92 (2020) 045007, arXiv:2007.14908.
[Blaum:2020ogl]
[1-23]
Neutrinoless double beta decay experiment, Yong-Hamb Kim, arXiv:2004.02510, 2020.
[Kim:2020vjv]
[1-24]
Lattice QCD Inputs for Nuclear Double Beta Decay, Vincenzo Cirigliano, William Detmold, Amy Nicholson, Phiala Shanahan, arXiv:2003.08493, 2020.
[Cirigliano:2020yhp]
[1-25]
Double Beta Decay APPEC Committee Report, A. Giuliani, J. J. Gomez Cadenas, S. Pascoli, E. Previtali, R. Saakyan, K. Schaeffner, S. Schoenert, arXiv:1910.04688, 2019.
[Giuliani:2019uno]
[1-26]
High Pressure Gas Xenon TPCs for Double Beta Decay Searches, J.J. Gomez-Cadenas, F. Monrabal, P. Ferrario, Front.in Phys. 7 (2019) 51, arXiv:1903.02435.
[Gomez-Cadenas:2019ges]
[1-27]
Neutrinoless Double-Beta Decay: Status and Prospects, Michelle J. Dolinski, Alan W. P. Poon, Werner Rodejohann, Ann.Rev.Nucl.Part.Sci. 69 (2019) 219-251, arXiv:1902.04097.
[Dolinski:2019nrj]
[1-28]
Neutrino-nuclear responses for astro-neutrinos, single beta decays and double beta decays, H. Ejiri, J. Suhonen, K. Zuber, Phys. Rept. 797 (2019) 1-102.
[Ejiri:2019ezh]
[1-29]
Neutrino Mass Ordering in 2018: Global Status, P. F. de Salas, S. Gariazzo, O. Mena, C. A. Ternes, M. Tortola, Front.Astron.Space Sci. 5 (2018) 36, arXiv:1806.11051.
[DeSalas:2018rby]
[1-30]
Radioactive contamination of scintillators, F.A. Danevich, V.I. Tretyak, Int.J.Mod.Phys. A33 (2018) 1843007, arXiv:1804.00653.
[Danevich:2018wmq]
[1-31]
Main features of detectors and isotopes to investigate double beta decay with increased sensitivity, A.S. Barabash, Int.J.Mod.Phys. A33 (2018) 1843001, arXiv:1803.06894.
[Barabash:2018rds]
[1-32]
Potentialities of the future technical improvements in the search of rare nuclear decays by bolometers, Fabio Bellini, Int.J.Mod.Phys. A33 (2018) 1843003, arXiv:1802.04260.
[Bellini:2018qhw]
[1-33]
Study of Rare Nuclear Processes with CUORE, C. Alduino et al. (CUORE), arXiv:1801.05403, 2018.
[Alduino:2018fgb]
[1-34]
The saga of neutrinoless double beta decay search with TeO2 thermal detectors, Chiara Brofferio, Stefano Dell'Oro, Rev.Sci.Instrum. 89 (2018) 121502, arXiv:1801.03580.
[Brofferio:2018lys]
[1-35]
Value of the axial-vector coupling strength in $\beta$ and $\beta\beta$ decays: A review, Jouni Suhonen, Front.in Phys. 5 (2017) 55, arXiv:1712.01565.
[Suhonen:2017krv]
[1-36]
Low background techniques in bolometers for double-beta decay search, Denys Poda, Andrea Giuliani, Int.J.Mod.Phys. A32 (2017) 1743012, arXiv:1711.01075.
[Poda:2017jnl]
[1-37]
Neutrinoless double beta decay and neutrino mass, J.D. Vergados, H. Ejiri, F. Simkovic, Int.J.Mod.Phys. E25 (2016) 1630007, arXiv:1612.02924.
[Vergados:2016hso]
[1-38]
Status and Future of Nuclear Matrix Elements for Neutrinoless Double-Beta Decay: A Review, Jonathan Engel, Javier Menendez, Rept.Prog.Phys. 80 (2017) 046301, arXiv:1610.06548.
[Engel:2016xgb]
[1-39]
Search for neutrinoless double beta decay, Igor Ostrovskiy, Kevin O'Sullivan, Mod.Phys.Lett. A31 (2016) 1630017, arXiv:1605.00631.
[Ostrovskiy:2016uyx]
[1-40]
Neutrinoless double beta decay: 2015 review, S. Dell'Oro, S. Marcocci, M. Viel, F. Vissani, Adv.High Energy Phys. 2016 (2016) 2162659, arXiv:1601.07512.
[DellOro:2016tmg]
[1-41]
Current status of neutrinoless double-beta decay searches, Reyco Henning, Reviews in Physics 1 (2016) 29-35.
[Henning201629]
[1-42]
Current Status and Future Prospects of the SNO+ Experiment, S. Andringa et al. (SNO+), Adv. High Energy Phys. 2016 (2015) 6194250, arXiv:1508.05759.
[SNO:2015wyx]
[1-43]
Neutrinoless Double Beta Decay, Heinrich Pas, Werner Rodejohann, New J. Phys. 17 (2015) 115010, arXiv:1507.00170.
[Pas:2015eia]
[1-44]
Neutrino Masses and Flavor Oscillations, Yifang Wang, Zhi-zhong Xing, Adv.Ser.Direct.High Energy Phys. 26 (2016) 371-395, arXiv:1504.06155.
[Wang:2015rma]
[1-45]
Majorana neutrinos and other Majorana particles: Theory and experiment, Evgeny Akhmedov, arXiv:1412.3320, 2014.
[Akhmedov:2014kxa]
[1-46]
Neutrinoless Double-Beta Decay: a Probe of Physics Beyond the Standard Model, S.M. Bilenky, C. Giunti, Int.J.Mod.Phys. A30 (2015) 0001, arXiv:1411.4791.
[Bilenky:2014uka]
[1-47]
Exploring the Neutrinoless Double Beta Decay in the Inverted Neutrino Hierarchy with Bolometric Detectors, D. R. Artusa et al. (CUORE), Eur.Phys.J. C74 (2014) 3096, arXiv:1404.4469.
[CUORE:2014jua]
[1-48]
Colloquium: Majorana Fermions in nuclear, particle and solid-state physics, S.R. Elliott, M. Franz, Rev.Mod.Phys. 87 (2015) 137, arXiv:1403.4976.
[Elliott:2014iha]
[1-49]
Challenges in Double Beta Decay, O. Cremonesi, M. Pavan, Adv. High Energy Phys. 2014 (2014) 951432, arXiv:1310.4692.
[Cremonesi:2013vla]
[1-50]
Neutrinos, A. de Gouvea et al. (Intensity Frontier Neutrino Working Group), arXiv:1310.4340, 2013.
[IntensityFrontierNeutrinoWorkingGroup:2013sdv]
[1-51]
Neutrino Masses, Christian Weinheimer, Kai Zuber, Annalen der Physik, 525 (2013) 565-575, arXiv:1307.3518.
[Weinheimer:2013hya]
[1-52]
The Nature of Massive Neutrinos, S. T. Petcov, Adv.High Energy Phys. 2013 (2013) 852987, arXiv:1303.5819.
[Petcov:2013poa]
[1-53]
Lepton Flavor and Number Conservation, and Physics Beyond the Standard Model, Andre de Gouvea, Petr Vogel, Prog.Part.Nucl. Phys. 71 (2013) 75-92, arXiv:1303.4097.
[deGouvea:2013zba]
[1-54]
Review of double beta experiments, Xavier Sarazin, arXiv:1210.7666, 2012.
[Sarazin:2012ct]
[1-55]
Status and prospects of searches for neutrinoless double beta decay, Bernhard Schwingenheuer, Annalen Phys. 525 (2013) 269-280, arXiv:1210.7432.
[Schwingenheuer:2012zs]
[1-56]
Neutrinoless Double Beta Decay and Physics Beyond the Standard Model, Frank F. Deppisch, Martin Hirsch, Heinrich Pas, J. Phys. G39 (2012) 124007, arXiv:1208.0727.
[Deppisch:2012nb]
[1-57]
Neutrinoless double beta decay and neutrino physics, Werner Rodejohann, J. Phys. G39 (2012) 124008, arXiv:1206.2560.
[Rodejohann:2012xd]
[1-58]
Theory of neutrinoless double beta decay, J. D. Vergados, H. Ejiri, F. Simkovic, Rept. Prog. Phys. 75 (2012) 106301, arXiv:1205.0649.
[Vergados:2012xy]
[1-59]
Neutrinoless double-beta decay. A brief review, S. M. Bilenky, C. Giunti, Mod. Phys. Lett. A27 (2012) 1230015, arXiv:1203.5250.
[Bilenky:2012qi]
[1-60]
Neutrinoless Double-Beta Decay, Andrea Giuliani, Alfredo Poves, Adv.High Energy Phys. 2012 (2012) 857016.
[Giuliani:2012zu]
[1-61]
Review of the properties of the $0\nu\beta^-\beta^-$ nuclear matrix elements, Jouni Suhonen, Osvaldo Civitarese, J. Phys. G39 (2012) 124005.
[Suhonen:2012ii]
[1-62]
Double-beta-decay nuclear matrix elements in the QRPA framework, J. Suhonen, O. Civitarese, J. Phys. G39 (2012) 085105.
[Suhonen:2012zzc]
[1-63]
The Search for neutrinoless double beta decay, J.J. Gomez-Cadenas, J. Martin-Albo, M. Mezzetto, F. Monrabal, M. Sorel, Riv.Nuovo Cim. 35 (2012) 29-98, arXiv:1109.5515.
[Gomez-Cadenas:2011oep]
[1-64]
Neutrino-less Double Beta Decay and Particle Physics, Werner Rodejohann, Int. J. Mod. Phys. E20 (2011) 1833-1930, arXiv:1106.1334.
[Rodejohann:2011mu]
[1-65]
Double Beta Decay: Historical Review of 75 Years of Research, A.S. Barabash, Phys.Atom.Nucl. 74 (2011) 603-613, arXiv:1104.2714.
[Barabash:2011mf]
[1-66]
Precise half-life values for two neutrino double beta decay, A.S. Barabash, Phys. Rev. C81 (2010) 035501, arXiv:1003.1005.
[Barabash:2010ie]
[1-67]
Neutrinoless Double Beta-Decay, S. M. Bilenky, Lect. Notes Phys. 817 (2010) 139-158, arXiv:1001.1946.
[Bilenky:2010zz]
[1-68]
Neutrino physics with cryogenic detectors, Ettore Fiorini, Prog. Part. Nucl. Phys. 64 (2010) 241-248.
[Fiorini:2010zz]
[1-69]
Liquid Xenon Detectors for Particle Physics and Astrophysics, E. Aprile, T. Doke, Rev. Mod. Phys. 82 (2010) 2053-2097, arXiv:0910.4956.
[Aprile:2009dv]
[1-70]
Double Beta Decay, Majorana Neutrinos, and Neutrino Mass, III Avignone, Frank T., Steven R. Elliott, Jonathan Engel, Rev. Mod. Phys. 80 (2008) 481-516, arXiv:0708.1033.
[Avignone:2007fu]
[1-71]
Neutrinoless Double Beta Decay from 76Ge, Somnath Choudhury, arXiv:0704.0063, 2007.
[Choudhury:2007xe]
[1-72]
Majorana Neutrino Mixing, S. M. Bilenky, J. Phys. G32 (2006) R127, arXiv:hep-ph/0511227.
[Bilenky:2005cp]
[1-73]
Theory of Neutrinos: A White Paper, R.N. Mohapatra et al., Rept. Prog. Phys. 70 (2007) 1757-1867, arXiv:hep-ph/0510213.
[Mohapatra:2005wg]
[1-74]
Next generation double-beta decay experiments: Metrics for their evaluation, F. T. Avignone, G. S. King, Yu. G. Zdesenko, New J. Phys. 7 (2005) 6. http://www.iop.org/EJ/abstract/1367-2630/7/1/006.
[Avignone:2005cs]
[1-75]
Neutrinoless double beta decay and direct searches for neutrino mass, Craig Aalseth et al., arXiv:hep-ph/0412300, 2004.
[Aalseth:2004hb]
[1-76]
Double beta decay, Steven R. Elliott, Jonathan Engel, J. Phys. G30 (2004) R183, arXiv:hep-ph/0405078.
[Elliott:2004hr]
[1-77]
The Shell model as unified view of nuclear structure, E. Caurier, G. Martinez-Pinedo, F. Nowacki, A. Poves, A.P. Zuker, Rev.Mod.Phys. 77 (2005) 427-488, arXiv:nucl-th/0402046.
[Caurier:2004gf]
[1-78]
Neutrino masses, mixing, Majorana CP-violating phases and (beta beta)(0nu) decay, S.T. Petcov, New J. Phys. 6 (2004) 109.
[Petcov:2004wz]
[1-79]
Neutrino Oscillations, Masses and Mixing, W.M. Alberico, S.M. Bilenky, Phys. Part. Nucl. 35 (2004) 297, arXiv:hep-ph/0306239.
[Alberico:2003kd]
[1-80]
Absolute values of neutrino masses: Status and prospects, S. M. Bilenky, C. Giunti, J. A. Grifols, E. Masso, Phys. Rep. 379 (2003) 69-148, arXiv:hep-ph/0211462.
[Bilenky:2002aw]
[1-81]
The Neutrinoless double beta decay from a modern perspective, J. D. Vergados, Phys. Rep. 361 (2002) 1-56, arXiv:hep-ph/0209347.
[Vergados:2002pv]
[1-82]
Double beta decay, Steven R. Elliott, Petr Vogel, Ann. Rev. Nucl. Part. Sci. 52 (2002) 115, arXiv:hep-ph/0202264.
[Elliott:2002xe]
[1-83]
Tables of double beta decay data: An update, V.I. Tretyak, Yuri G. Zdesenko, Atom.Data Nucl.Data Tabl. 80 (2002) 83-116.
From the abstract: An updated version of a previous compilation of data on double beta decay is presented.... Theoretical estimates are given for comparison as well. The literature has been covered to April 2001.
[Tretyak:2002dx]
[1-84]
The future of double beta decay research, Yu. Zdesenko, Rev.Mod.Phys. 74 (2002) 663-684.
[Zdesenko:2003ec]
[1-85]
Double beta decay, Amand Faessler, Fedor Simkovic, J. Phys. G24 (1998) 2139-2178, arXiv:hep-ph/9901215.
[Faessler:1998sba]
[1-86]
Weak-interaction and nuclear-structure aspects of nuclear double beta decay, J. Suhonen, O. Civitarese, Phys. Rep. 300 (1998) 123-214.
[Suhonen:1998ck]
[1-87]
Double beta decay, M. Moe, P. Vogel, Ann. Rev. Nucl. Part. Sci. 44 (1994) 247-283.
[Moe:1994ss]
[1-88]
Double beta decay, T. Tomoda, Rept. Prog. Phys. 54 (1991) 53-126.
[Tomoda:1990rs]
[1-89]
Double beta decay and Majorana neutrino, M. Doi, T. Kotani, E. Takasugi, Prog. Theor. Phys. Suppl. 83 (1985) 1.
[Doi:1985dx]
[1-90]
Double Beta Decay, W. C. Haxton, G. J. Stephenson, Prog. Part. Nucl. Phys. 12 (1984) 409-479.
[Haxton:1984am]
[1-91]
Baryon number and lepton number conservation laws, Henry Primakoff, Peter S. Rosen, Ann. Rev. Nucl. Sci. 31 (1981) 145.
[Primakoff:1981sx]
[1-92]
Double beta decay, H. Primakoff, S. P. Rosen, Reports on Progress in Physics 22 (1959) 121-166.
[Primakoff-Rosen-1959-RPP-22-121]

2 - Reviews - Talks

[2-1]
Towards Precise and Accurate Calculations of Neutrinoless Double-Beta Decay: Project Scoping Workshop Report, V. Cirigliano et al., J.Phys.G 49 (2022) 120502, arXiv:2207.01085.
[Cirigliano:2022rmf]
[2-2]
The Physics of Neutrinoless Double Beta Decay: A Primer, B.J.P. Jones, arXiv:2108.09364, 2021. Theoretical Advanced Study Institute: The Obscure Universe: Neutrinos and Other Dark Matters - TASI2020.
[Jones:2021cga]
[2-3]
$|\Delta\mathcal{B}| =2$: A State of the Field, and Looking Forward-A brief status report of theoretical and experimental physics opportunities, Kaladi Babu et al., arXiv:2010.02299, 2020. Amherst Center for Fundamental Interactions workshop.
[Proceedings:2020nzz]
[2-4]
The Nature of the Neutrino (Dirac/Majorana) and Double Beta Decay with or without Neutrinos, S. T. Petcov, arXiv:1910.09331, 2019. International Conference on History of the Neutrino, Paris, France, September 5-7, 2018.
[Petcov:2019yud]
[2-5]
Neutrinoless double beta decay search with liquid scintillator experiments, Yoshihito Gando (KamLAND-Zen), arXiv:1904.06655, 2019. NuPhys2018.
[Gando:2019mxj]
[2-6]
Xenon TPCs for Double Beta Decay Searches, Michel Sorel, arXiv:1904.06349, 2019. NuPhys2018.
[Sorel:2019xqd]
[2-7]
Neutrinoless Double Beta Decay Overview, L. Cardani, SciPost Phys.Proc. 1 (2019) 024, arXiv:1810.12828.
[Cardani:2018lje]
[2-8]
Status and Prospects of the Search for Neutrinoless Double Beta Decay of $^{76}$Ge, Karl-Tasso Knoepfle, arXiv:1801.06395, 2018. 18th Lomonosov Conference on Elementary Particle Physics (Moscow, 24-30 August 2017).
[Knoepfle:2018qkv]
[2-9]
Beta decays in investigations and searches for rare effects, V.I. Tretyak, AIP Conf.Proc. 1894 (2017) 020026, arXiv:1710.08035. MEDEX'2017.
[Tretyak:2017zqd]
[2-10]
Testing creation of matter with neutrinoless double beta decay, Stefano Dell'Oro, Simone Marcocci, Francesco Vissani, PoS NEUTEL2017 (2018) 030, arXiv:1710.06732. XVII International Workshop on Neutrino Telescopes 13-17 March 2017, Venice, Italy.
[DellOro:2017pgd]
[2-11]
Future prospects for neutrinoless double-beta decay, Sergio Di Domizio, arXiv:1705.03935, 2017. NuPhys2016 (London, 12-14 December 2016).
[DiDomizio:2017rkc]
[2-12]
Present status of neutrinoless double beta decay searches, Werner Maneschg, arXiv:1704.08537, 2017. NuPhys2016, London, UK, December 12-14, 2016.
[Maneschg:2017mzu]
[2-13]
Searching for $0\nu\beta\beta$ decay in $^{136}$Xe - towards the tonne-scale and beyond, Thomas Brunner, Lindley Winslow, Nucl.Phys.News 27 (2017) 14-19, arXiv:1704.01528.
[Brunner:2017iql]
[2-14]
Assess the neutrino mass with micro and macro calorimeter approach, Andrea Giachero, J.Phys.Conf.Ser. 841 (2017) 012027, arXiv:1703.02747. 7th Young Researcher Meeting 2016 (7YRM).
[Giachero:2017fsr]
[2-15]
Light sterile neutrinos and neutrinoless double-beta decay, Carlo Giunti, AIP Conf. Proc. 1894 (2017) 020009. Matrix Elements for the Double beta decay Experiments (MEDEX'17): Prague, Czech Republic.
[Giunti:2017doy]
[2-16]
What do we know about neutrinoless double-beta decay nuclear matrix elements?, J. Menendez, arXiv:1605.05059, 2016. NuPhys2015 (London, 16-18 December 2015).
[Menendez:2016kkg]
[2-17]
Phenomenology of neutrinoless double beta decay, J.J. Gomez-Cadenas, Justo Martin-Albo, PoS GSSI14 (2015) 004, arXiv:1502.00581. Gran Sasso Summer Institute 2014 Hands-On Experimental Underground Physics at LNGS (GSSI14), September 2014.
[Gomez-Cadenas:2015twa]
[2-18]
Search for Neutrinoless Double-Beta Decay, Werner Tornow, arXiv:1412.0734, 2014. XXXIV Physics in Collision Symposium Bloomington, Indiana, September 16-20, 2014.
[Tornow:2014vta]
[2-19]
Neutrinoless Double Beta Decay Experiments, Alberto Garfagnini, arXiv:1408.2455, 2014. 2014 Flavor Physics and CP Violation (FPCP-2014), Marseille, France, May 26- 30 2014.
[Garfagnini:2014poa]
[2-20]
Status of double beta decay experiments using isotopes other than Xe-136, Luciano Pandola, Phys.Dark Univ. 4 (2014) 17-22, arXiv:1403.3329. TAUP2013 (Asilomar, US).
[Pandola:2014naa]
[2-21]
The search for neutrino-less double-beta decay: summary of current experiments, Delia Tosi (EXO), arXiv:1402.1170, 2014. ICATPP 2013.
[Tosi:2014zza]
[2-22]
CP Violation in the Neutrino Sector, Sandip Pakvasa, J. Phys. Conf. Ser. 556 (2014) 012060.
[Pakvasa:2014sya]
[2-23]
Recent Results in Neutrinoless Double Beta Decay, Lisa J. Kaufman, arXiv:1305.3306, 2013. Physics in Collision, Slovakia, 2012.
[Kaufman:2013ysa]
[2-24]
Direct neutrino mass measurements, Christian Weinheimer, Hyperfine Interact. 215 (2013) 85-93.
[Weinheimer:2013exa]
[2-25]
Experimental searches of neutrinoless double beta decay, Oliviero Cremonesi, Nucl. Phys. Proc. Suppl. 237-238 (2013) 7-12, arXiv:1212.4885. NOW2012 conference, Conca Specchiulla (Otranto, Lecce, Italy), September 9-16, 2012.
[Cremonesi:2012av]
[2-26]
The Neutrinoless Double Beta Decay, Physics beyond the Standard Model and the Neutrino Mass, Amand Faessler, arXiv:1203.3648, 2012. Schladming Meeting, February 25 - March 3, 2012.
[Faessler:2012kua]
[2-27]
Searches for neutrinoless double beta decay, B. Schwingenheuer, J. Phys. Conf. Ser. 375 (2012) 042007, arXiv:1201.4916. TAUP 2011.
[Schwingenheuer:2012jt]
[2-28]
Neutrinoless double beta decay, K. Zuber, Pramana 79 (2012) 781-791, arXiv:1201.4665. Lepton-Photon 2011 Conference.
[Zuber:2012fd]
[2-29]
Experimental searches of neutrinoless double beta decay, Oliviero Cremonesi, 2012. NOW 2012, Neutrino Oscillation Workshop, 9-16 September 2012, Conca Specchiulla, Otranto, Italy. http://www.ba.infn.it/~now/now2012/web-content/TALKS/Monday10/plenary/120910_cremonesi_NOW2012.pdf.
[Cremonesi-NOW2012]
[2-30]
Status of PMNS and Impact of Large $\vartheta_{13}$ for Sterile Neutrino Phenomenology, C. Giunti, 2012. GDR Neutrino, 20-21 June 2012, APC, Paris, France. http://personalpages.to.infn.it/~giunti/slides/2012/giunti-120620-gdr.pdf.
[Giunti-GDR2012]
[2-31]
Neutrino Masses in Cosmology, Neutrinoless Double-Beta Decay and Direct Neutrino Masses, C. Giunti, 2012. LIONeutrino2012. http://personalpages.to.infn.it/~giunti/slides/2012/giunti-121024-lioneutrino.pdf.
[Giunti-LIONeutrino2012]
[2-32]
Neutrino Mass: Overview of $\beta\beta_{0\nu}$, Cosmology and Direct Measurements, C. Giunti, 2012. Neutrino Town Meeting, European Strategy for Neutrino Oscillation Physics - II, 14-16 May 2012, CERN. http://personalpages.to.infn.it/~giunti/slides/2012/giunti-120514-nutown.pdf.
[Giunti-NeutrinoTown2012]
[2-33]
False starts in history of searches for double beta decay, or Discoverless double beta decay, V. I. Tretyak, AIP Conf. Proc. 1417 (2011) 129-133, arXiv:1112.4183. Workshop on Calculation of Double Beta Decay Matrix Elements (MEDEX'11), Prague, June 13-16, 2011.
[Tretyak:2011pg]
[2-34]
Double Beta Decay, Steven R. Elliott, J. Phys. Conf. Ser. 381 (2012) 012003, arXiv:1110.6159. Rutherford Centennial Meeting.
[Elliott:2011ar]
[2-35]
Double beta decay experiments, A.S. Barabash, Phys.Part.Nucl. 42 (2011) 613-627, arXiv:1107.5663. IV International Pontecorvo Neutrino Physics School, Alushta, Crimea, Ukraine, 26 September-6 October, 2010.
[Barabash:2011fg]
[2-36]
Neutrinoless Double Beta Decay in Particle Physics, Werner Rodejohann, Nucl. Phys. Proc. Suppl. 229-232 (2012) 113-117, arXiv:1011.4942. Neutrino 2010, Athens, Greece.
[Rodejohann:2010wi]
[2-37]
Nuclear Double Beta Decay, Fundamental Particle Physics, Hot Dark Matter, And Dark Energy, Hans V. Klapdor-Kleingrothaus, Irina V. Krivosheina, Acta Phys.Polon. B41 (2010) 2423, arXiv:1006.2423. DARK 2009 - Dark Matter in Astrophysics and Particle Physics, Christchurch, New Zealand, 18-24 January 2009.
[Iltan:2010qb]
[2-38]
Long term prospects for double beta decay, K.Zuber, arXiv:1002.4313, 2010. 'European Strategy For Future Neutrino Physics' Workshop, CERN, Oct. 1-3 2009.
[Zuber:2010bc]
[2-39]
Neutrino masses and Neutrinoless Double Beta Decay: Status and expectations, Oliviero Cremonesi, arXiv:1002.1437, 2010. 'European Strategy for Future Neutrino Physics' Workshop, CERN October 1-3 2009.
[Cremonesi:2010xs]
[2-40]
Are neutrinos their own antiparticles?, Boris Kayser, J. Phys. Conf. Ser. 173 (2009) 012013, arXiv:0903.0899. Carolina International Symposium on Neutrino Physics.
[Kayser:2009zz]
[2-41]
Fundamental Symmetries and Conservation Laws, W. C. Haxton, Nucl. Phys. A827 (2009) 42c-52c, arXiv:0902.1377. PANIC08.
[Haxton:2009mv]
[2-42]
Double Beta Decay: Scintillators, Mark C. Chen, J. Phys. Conf. Ser. 136 (2008) 022035, arXiv:0810.3696. Neutrino 2008.
[Chen:2008up]
[2-43]
Double beta decay: present status, A. S. Barabash, Phys. Atom. Nucl. 73 (2010) 162-178, arXiv:0807.2948. 13th Lomonosov Conference of Elementary Particle Physics, 23-29 August, 2007, Moscow, Russia.
[Barabash:2008dj]
[2-44]
Nuclear physics aspects of double beta decay, Petr Vogel, Proc.Int.Sch.Phys.Fermi 170 (2009) 49-103, arXiv:0807.2457. CLXX 'MEASUREMENTS OF NEUTRINO MASS' Int. School of Physics 'Enrico Fermi', Varenna, June 2008.
[Vogel:2008sx]
[2-45]
Are Neutrinos Majorana Particles?, G. Rajasekaran, arXiv:0803.4387, 2008. Workshop on Neutrinoless Double Beta Decay (NDBD07) at Tata Institute of Fundamental Research, Mumbai, October 2007.
[Rajasekaran:2008ct]
[2-46]
Importance of neutrinoless double beta decay, Utpal Sarkar, arXiv:0712.2690, 2007. Neutrinoless Double Beta Decay, New Delhi, 2007.
[Sarkar:2007ny]
[2-47]
Double beta decay to the excited states: experimental review, A.S. Barabash, AIP Conf. Proc. 942 (2007) 8-12, arXiv:0710.2194. MEDEX'07.
[Barabash:2007ig]
[2-48]
Double beta decay: experiments and theory review, A. Nucciotti, ECONF C070512 (2007) 025, arXiv:0707.2216. Flavor Physics and CP Violation Conference, Bled, 2007.
[Nucciotti:2007jk]
[2-49]
Probing Neutrino low energy and mass scales, Oliviero Cremonesi, Alessandro Melchiorri, Nucl. Phys. Proc. Suppl. 168 (2007) 383-388, arXiv:hep-ph/0701203. Neutrino Oscillation Workshop NOW2006, Otranto, Italy, September 9-16 2006.
[Cremonesi:2007qs]
[2-50]
Neutrinoless double beta decay, Petr Vogel, arXiv:hep-ph/0611243, 2006. TASI2006, Boulder, CO, June 2006.
[Vogel:2006sq]
[2-51]
Theory and phenomenology of neutrino mixing, Carlo Giunti, Nucl. Phys. Proc. Suppl. 169 (2007) 309-320, arXiv:hep-ph/0611125. Tau06 (19-22 September 2006, Pisa, Italy) and HQL06 (16-20 October 2006, Munich, Germany).
[Giunti:2006rs]
[2-52]
Neutrinoless double beta decay experiments, K. Zuber, Acta Polonica (2006) 37, arXiv:nucl-ex/0610007. Cracow Epiphany Conference on Neutrinos and Dark Matter, 2006.
[Zuber:2006hv]
[2-53]
Phenomenology of neutrinoless double beta decay, M. Hirsch, Nucl. Phys. Proc. Suppl. 221 (2011) 119-124, arXiv:hep-ph/0609146. Neutrino 2006, Santa Fe.
[Hirsch:2006tt]
[2-54]
Introduction to the double-beta decay experimental program, Steven R. Elliott, Nucl. Phys. Proc. Suppl. 221 (2011) 73-78, arXiv:nucl-ex/0609024. Neutrino 2006.
[Elliott:2006bb]
[2-55]
Double beta decay experiments: past and present achievements, Alexander Barabash, Nucl. Phys. Proc. Suppl. 221 (2011) 26-31, arXiv:hep-ex/0608054. NEUTRINO'06 (Santa Fe, June 13-19, 2006).
[Barabash:2006fw]
[2-56]
Double beta decay experiments, A. S. Barabash, JINST 1 (2006) P07002, arXiv:hep-ex/0602037. 12-th Lomonosov Conference on Elementary Particle Physics (Moscow, August 25-31, 2005).
[Barabash:2006se]
[2-57]
Absolute Neutrino Masses, Carlo Giunti, Acta Phys. Polon. B36 (2005) 3215, arXiv:hep-ph/0511131. XXIX International Conference of Theoretical Physics 'Matter To The Deepest: Recent Developments In Physics Of Fundamental Interactions', 8-14 September 2005, Ustron, Poland.
[Giunti:2005qd]
[2-58]
Consensus Report of a Workshop on 'Matrix elements for Neutrinoless Double Beta Decay', K. Zuber, arXiv:nucl-ex/0511009, 2005. 'Matrix elements for Neutrinoless Double Beta Decay', IPPP Durham (UK), 23-24 May 2005.
[Zuber:2005fu]
[2-59]
Neutrinoless double beta-decay: Status and future, S. M. Bilenky, Phys. Atom. Nucl. 69 (2006) 2134-2140, arXiv:hep-ph/0509098. International conference 'Non-Accelerator New Physics' NANP05 Dubna, Russia, June 20-25, 2005.
[Bilenky:2005bq]
[2-60]
Neutrino mass and mixing parameters: A short review, G.L. Fogli et al., arXiv:hep-ph/0506307, 2005. 40th Rencontres de Moriond on Electroweak Interactions and Unified Theories, La Thuile, Aosta Valley, Italy, 5-12 Mar 2005.
[Fogli:2005gs]
[2-61]
Theoretical Prospects of Neutrinoless Double Beta Decay, S. T. Petcov, Phys. Scripta T121 (2005) 94, arXiv:hep-ph/0504166. Nobel Symposium (N 129) on Neutrino Physics, August 19 - 24, 2004, Haga Slott, Enkoping, Sweden.
[Petcov:2005yq]
[2-62]
Phenomenology of Absolute Neutrino Masses, Carlo Giunti, Nucl. Phys. Proc. Suppl. 145 (2005) 231, arXiv:hep-ph/0412148. NOW-2004, Neutrino Oscillation Workshop, 11-17 September 2004, Conca Specchiulla, Otranto, Italy. http://www.ba.infn.it/~now2004/talks/16_09_04/plen/GIUNTI.PDF.
[Giunti:2004vv]
[2-63]
Evidence for Neutrino Mass: A Decade of Discovery, K.M. Heeger, arXiv:hep-ex/0412032, 2004. SEESAW25: International Conference on the Seesaw Mechanism and Neutrino Mass, Paris, France, 10-11 June 2004.
[Heeger:2004mp]
[2-64]
2004 TASI Lectures on Neutrino Physics, Andre de Gouvea, arXiv:hep-ph/0411274, 2004.
[deGouvea:2004gd]
[2-65]
Recent Results of non-accelarator-based neutrino experiments, Yifang Wang, Int. J. Mod. Phys. A20 (2005) 5244, arXiv:hep-ex/0411028. '32nd International Conference on High Energy Physics', Aug. 16-22, 2004, Beijing, P.R. China.
[Wang:2004wu]
[2-66]
Physics of Massive Neutrinos, J. W. F. Valle, Nucl. Phys. Proc. Suppl. 149 (2005) 3, arXiv:hep-ph/0410103. Sixth International Conf. on Neutrino Factories and SuperBeams (NuFact04) Osaka, Japan, July 26-August 1, 2004.
[Valle:2004cr]
[2-67]
Neutrinoless Double Beta Decay in Theories Beyond the Standard Model, J.D. Vergados, Nucl. Phys. Proc. Suppl. 143 (2005) 211, arXiv:hep-ph/0409319. XXIst Int. Conf. on Neutrino Physics and Astrophysics, June 13-19, College de France, Paris, France.
[Vergados:2004rw]
[2-68]
Neutrinoless Double $\beta$-Decay, S. M. Bilenky, Frascati Phys.Ser. 34 (2004) 119-139, arXiv:hep-ph/0403245. ' Rencontres de Physique de La Vallee d'Aoste', La Thuile, Aosta Valley, February 29-March 6, 2004.
[Bilenky:2004hw]
[2-69]
Neutrinos: '...annus mirabilis', A. Yu. Smirnov, arXiv:hep-ph/0402264, 2004. 2nd Int. Workshop on Neutrino oscillations in Venice (NOVE) December 3-5, 2003, Venice, Italy.
[Smirnov:2004ju]
[2-70]
$\mathbf{\beta\beta_{0\nu}}$ Decay Phenomenology, Carlo Giunti, 2004. Summary of the IPPP Workshop on Neutrinoless Double Beta Decay Phenomenology, 21-23 April 2004, Grey College, Durham, UK. http://personalpages.to.infn.it/~giunti/slides/2004/giunti-2004-ip3.pdf.
[Giunti-Durham-04]
[2-71]
Present and future of neutrinoless double beta decay experiments, A. Nucciotti, 2004. 5th International Workshop on the Identification of Dark Matter - IDM 2004 - 6-10 September 2004, Edinburgh, Scotland. http://www.shef.ac.uk/physics/idm2004/talks/monday/pdfs/nucciotti_angelo.pdf.
[Nucciotti:DM2004]
[2-72]
Double Beta Decay and the Absolute Neutrino Mass Scale, Carlo Giunti, Aip Conf. Proc. 721 (2004) 170, arXiv:hep-ph/0308206. NuFact 03, 5th International Workshop on Neutrino Factories and Superbeams, 5-11 June 2003, Columbia University, New York. http://www.cap.bnl.gov/nufact03/WG1/6june/giunti.pdf.
[Giunti:2003kb]
[2-73]
Neutrino Masses, Mixing and Neutrinoless Double-Beta Decay, S. Pascoli, S. T. Petcov, arXiv:hep-ph/0308034, 2003. Xth International Workshop on Neutrino Telescopes, March 11 - 14, 2003, Venice, Italy.
[Pascoli:2003xb]
[2-74]
Neutrino oscillations in the framework of the tree-neutrino mixing, S. M. Bilenky, arXiv:hep-ph/0307186, 2003. Ist Yamada Symposium Om neutrinos and Dark Matter in Nuclear Physics, June 9-14, 2003, Nara, Japan.
[Bilenky:2003rb]
[2-75]
Neutrino Physics - Theory, W. Grimus, Lect. Notes Phys. 629 (2004) 169, arXiv:hep-ph/0307149. 41 Internationale Universitatswochen fur Theoretische Physik, Flavour Physics, Schladming, Styria, Austria, February 22-28, 2003.
[Grimus:2003es]
[2-76]
Determination of neutrino masses, present and future, Jean-Luc Vuilleumier, arXiv:hep-ex/0306010, 2003. XXXVIII Rencontres de Moriond, Electroweak interactions and Unified Theories, Les Arcs, March 15-22, 2003.
[Vuilleumier:2003us]
[2-77]
Experiments for Double-Beta Decay, Steven R. Elliott, Int. J. Mod. Phys. A18 (2003) 4097, arXiv:nucl-ex/0301011. Neutrino and Implications for Physics beyond the Standard Model.
[Elliott:2003rh]
[2-78]
Double beta decay and tritium decay experiments, G. Gratta, 2003. XXI International Symposium on Lepton Photon 2003, 11-16 August 2003, Fermi National Accelerator Laboratory, Batavia, Illinois USA. http://conferences.fnal.gov/lp2003/program/S10/gratta_s10_ungarbled.pdf.
[Gratta:LP03]
[2-79]
Neutrino-less double beta decay: Experimentum crucis of neutrino physics, Z. Sujkowski, Acta Phys. Polon. B34 (2003) 2207-2220. 37th Zakopane School of Physics: Trends in Nuclear Physics, Zakopane, Poland, 3-10 Sep 2002.
[Sujkowski:2003ev]
[2-80]
The Neutrinoless Double Beta Decay: The Case for Germanium Detectors, A. Morales, J. Morales, Nucl. Phys. Proc. Suppl. 114 (2003) 141-157, arXiv:hep-ph/0211332. XXX International Meeting on Fundamental Physics, IMFP2002, February 2002, Jaca, Spain.
[Morales:2002zf]
[2-81]
Neutrinoless double beta decay: Present and future, Oliviero Cremonesi, Nucl. Phys. Proc. Suppl. 118 (2003) 287, arXiv:hep-ex/0210007. XXth International Conference on Neutrino Physics and Astrophysics May 25 - 30, 2002, Munich, Germany. http://neutrino2002.ph.tum.de/pages/transparencies/cremonesi.
[Cremonesi:2002is]
[2-82]
Neutrinoless Double Beta Decay, G. Gratta, 2002. Topical Seminar on Frontier of Particle Physics 2002: Neutrinos and Cosmology, August 20th - 25th, 2002, Beijing, China. http://bes.ihep.ac.cn/particle/2002/presentation/G.Gratta/TALK_2.ZIP.
[Gratta-talk:2002a]

3 - Habilitation, PhD and Master Theses

[3-1]
Theoretical Developments in Lattice Gauge Theory for Applications in Double-beta Decay Processes and Quantum Simulation, Saurabh V. Kadam, arXiv:2312.00780, 2023.
[Kadam:2023gli]
[3-2]
Development of cryogenic low background detector based on enriched zinc molybdate crystal scintillators to search for neutrinoless double beta decay of $^{100}$Mo, Dmitry Chernyak, arXiv:1507.04591, 2015.
[Chernyak:2015bda]
[3-3]
Measurement of the double beta decay half-life of $^{150}$Nd and search for neutrinoless decay modes with NEMO-3 detector, Nasim Fatemi-Ghomi, arXiv:0905.0822, 2009.
[Fatemi-Ghomi:2009ecj]
[3-4]
Search for double beta decay with HPGe detectors at the Gran Sasso underground laboratory, Oleg Chkvorets, arXiv:0812.1206, 2008.
[Chkvorets:2008ha]
[3-5]
Model Independent Explorations of Majorana Neutrino Mass Origins, James Jenkins, arXiv:0805.0303, 2008.
[Jenkins:2008fx]

4 - Fundamental Papers - Theory

[4-1]
Some implications of the CP invariance for mixing of Majorana neutrinos, Samoil M. Bilenky, N. P. Nedelcheva, S. T. Petcov, Nucl. Phys. B247 (1984) 61.
[Bilenky:1984fg]
[4-2]
CPT, CP, and C phases and their effects in Majorana particle processes, Boris Kayser, Phys. Rev. D30 (1984) 1023.
[Kayser:1984ge]
[4-3]
Dirac and pseudodirac neutrinos and neutrinoless double beta decay, Jose F. Nieves, Phys. Lett. B147 (1984) 375.
[Nieves:1984sn]
[4-4]
Can the neutrinoless double beta decay take place in the case of Dirac neutrinos?, Eiichi Takasugi, Phys. Lett. B149 (1984) 372.
[Takasugi:1984xr]
[4-5]
On pseudo-Dirac neutrinos, neutrino oscillations and neutrinoless double beta decay, S. T. Petcov, Phys. Lett. B110 (1982) 245-249.
[Petcov:1982ya]
[4-6]
Neutrinoless double-beta decay in SU(2) x U(1) theories, J. Schechter, J. W. F. Valle, Phys. Rev. D25 (1982) 2951.
[Schechter:1982bd]
[4-7]
CP properties of Majorana neutrinos and double beta decay, Lincoln Wolfenstein, Phys. Lett. B107 (1981) 77.
[Wolfenstein:1981rk]
[4-8]
Superweak interactions and double beta decay, B. Pontecorvo, Phys. Lett. B26 (1968) 630-632.
[Pontecorvo:1968wp]
[4-9]
On transition probabilities in double beta-disintegration, W.H. Furry, Phys. Rev. 56 (1939) 1184-1193.
[Furry:1939qr]
[4-10]
Double beta-disintegration, M. Goeppert-Mayer, Phys. Rev. 48 (1935) 512-516. http://prola.aps.org/pdf/PR/v48/i6/p512_1.
[Goeppert-Mayer:1935qp]

5 - Experiment

[5-1]
With or without $\nu$? Hunting for the seed of the matter-antimatter asymmetry, D. Q. Adams et al. (CUORE), arXiv:2404.04453, 2024.
[CUORE:2024ikf]
[5-2]
Searching for Two-Neutrino and Neutrinoless Double Beta Decay of $^{134}$Xe with the PandaX-4T Experiment, Xiyu Yan et al., Phys.Rev.Lett. 132 (2024) 152502, arXiv:2312.15632.
[PandaX:2023ggs]
[5-3]
An improved limit on the neutrinoless double-electron capture of $^{36}$Ar with GERDA, M. Agostini et al. (GERDA), Eur.Phys.J.C 84 (2024) 34, arXiv:2311.02214.
[GERDA:2023cdx]
[5-4]
Searching for $^{76}$Ge neutrinoless double beta decay with the CDEX-1B experiment, B. T. Zhang et al., arXiv:2305.00894, 2023.
[CDEX:2023owy]
[5-5]
Search for exotic physics in double-$\beta$ decays with GERDA Phase II, M. Agostini et al. (GERDA), JCAP 12 (2022) 012, arXiv:2209.01671.
[GERDA:2022ffe]
[5-6]
Final Result of the MAJORANA DEMONSTRATOR's Search for Neutrinoless Double-$\beta$ Decay in $^{76}$Ge, I. J. Arnquist et al., Phys.Rev.Lett. 130 (2023) 062501, arXiv:2207.07638.
[Majorana:2022udl]
[5-7]
Final Result on the Neutrinoless Double Beta Decay of $^{82}$Se with CUPID-0, O. Azzolini et al. (CUPID-0), Phys.Rev.Lett. 129 (2022) 111801, arXiv:2206.05130.
[CUPID:2022puj]
[5-8]
Search for Neutrinoless Double-Beta Decay of $^{76}$Ge with a Natural Broad Energy Germanium Detector, W. H. Dai et al. (CDEX), Phys.Rev.D 106 (2022) 032012, arXiv:2205.10718.
[CDEX:2022bdk]
[5-9]
Double-Weak Decays of $^{124}$Xe and $^{136}$Xe in the XENON1T and XENONnT Experiments, E. Aprile et al., Phys.Rev.C 106 (2022) 024328, arXiv:2205.04158.
[XENON:2022evz]
[5-10]
First Search for the Majorana Nature of Neutrinos in the Inverted Mass Ordering Region with KamLAND-Zen, S. Abe et al. (KamLAND-Zen), Phys.Rev.Lett. 130 (2023) 051801, arXiv:2203.02139.
[KamLAND-Zen:2022tow]
[5-11]
Search for Majoron-emitting modes of $^{136}$Xe double beta decay with the complete EXO-200 dataset, S. Al Kharusi et al. (EXO-200), Phys.Rev.D 104 (2021) 112002, arXiv:2109.01327.
[Kharusi:2021jez]
[5-12]
High sensitivity neutrinoless double-beta decay search with one tonne-year of CUORE data, D. Q. Adams et al., arXiv:2104.06906, 2021.
[CUORE:2021gpk]
[5-13]
Search for double $\beta$-decay modes of $^{64}$Zn using purified zinc, F. Bellini et al., Eur.Phys.J. C81 (2021) 106, arXiv:2012.05873.
[Bellini:2020alj]
[5-14]
Final Results of GERDA on the Search for Neutrinoless Double-$\beta$ Decay, M. Agostini et al. (GERDA), Phys.Rev.Lett. 125 (2020) 252502, arXiv:2009.06079.
[GERDA:2020xhi]
[5-15]
Improved Limit on Neutrinoless Double-Beta Decay in $^{130}$Te with CUORE, D. Q. Adams et al. (CUORE), Phys.Rev.Lett. 124 (2020) 122501, arXiv:1912.10966.
[CUORE:2019yfd]
[5-16]
Probing Majorana neutrinos with double-$\beta$ decay, M. Agostini et al. (GERDA), Science 365 (2019) 1445, arXiv:1909.02726.
[GERDA:2019ivs]
[5-17]
Searching for Neutrino-less Double Beta Decay of $^{136}$Xe with PandaX-II Liquid Xenon Detector, Kaixiang Ni et al., Chin.Phys.C 43 (2019) 113001, arXiv:1906.11457.
[PandaX-II:2019euf]
[5-18]
Final result of CUPID-0 phase-I in the search for the $^{82}$Se Neutrinoless Double Beta Decay, O. Azzolini et al. (CUPID-0), Phys.Rev.Lett. 123 (2019) 032501, arXiv:1906.05001.
[CUPID:2019gpc]
[5-19]
Search for Neutrinoless Double-Beta Decay with the Complete EXO-200 Dataset, G. Anton et al. (EXO-200), Phys.Rev.Lett. 123 (2019) 161802, arXiv:1906.02723.
[EXO-200:2019rkq]
[5-20]
A Search for Neutrinoless Double-Beta Decay in $^{76}$Ge with 26 kg-yr of Exposure from the MAJORANA DEMONSTRATOR, S.I. Alvis et al., Phys.Rev. C100 (2019) 025501, arXiv:1902.02299.
[Majorana:2019nbd]
[5-21]
Double-beta decay of ${}^{130}$Te to the first $0^+$ excited state of ${}^{130}$Xe with CUORE-0, C. Alduino et al. (CUORE), Eur.Phys.J. C79 (2019) 795, arXiv:1811.10363.
[CUORE:2018ncg]
[5-22]
Search of the neutrino-less double beta decay of $^{82}$Se into the excited states of $^{82}$Kr with CUPID-0, O. Azzolini et al. (CUPID-0), Eur.Phys.J. C78 (2018) 888, arXiv:1807.00665.
[CUPID:2018npf]
[5-23]
Final results on $^\textbf{82}$Se double beta decay to the ground state of $^\textbf{82}$Kr from the NEMO-3 experiment, R. Arnold et al. (NEMO-3), Eur.Phys.J. C78 (2018) 821, arXiv:1806.05553.
[Arnold:2018tmo]
[5-24]
Improved limit on neutrinoless double beta decay of $^{76}$Ge from GERDA Phase II, M. Agostini et al., Phys.Rev.Lett. 120 (2018) 132503, arXiv:1803.11100.
[GERDA:2018pmc]
[5-25]
First Result on the Neutrinoless Double Beta Decay of $^{82}$Se with CUPID-0, O. Azzolini et al. (CUPID-0), Phys.Rev.Lett. 120 (2018) 232502, arXiv:1802.07791.
[CUPID-0:2018rcs]
[5-26]
Search for Zero-Neutrino Double Beta Decay in 76Ge with the Majorana Demonstrator, C.E. Aalseth et al., Phys.Rev.Lett. 120 (2018) 132502, arXiv:1710.11608.
[Majorana:2017csj]
[5-27]
First Results from CUORE: A Search for Lepton Number Violation via $0\nu\beta\beta$ Decay of $^{130}$Te, C. Alduino et al. (CUORE), Phys.Rev.Lett. 120 (2018) 132501, arXiv:1710.07988.
[CUORE:2017tlq]
[5-28]
Search for Neutrinoless $\beta^{+}\hspace{-0.2em}EC$ Decay of $^{120}$Te with CUORE-0, C. Alduino et al. (CUORE), Phys.Rev. C97 (2018) 055502, arXiv:1710.07459.
[CUORE:2017dbf]
[5-29]
Search for Neutrinoless Double-Beta Decay with the Upgraded EXO-200 Detector, J.B. Albert et al., Phys.Rev.Lett. 120 (2018) 072701, arXiv:1707.08707.
[EXO:2017poz]
[5-30]
Search for neutrinoless quadruple-$\beta$ decay of $^{150}$Nd with the NEMO-3 detector, R. Arnold et al., Phys.Rev.Lett. 119 (2017) 041801, arXiv:1705.08847.
[NEMO-3:2017gmi]
[5-31]
Searches for Double Beta Decay of $^{134}\text{Xe}$ with EXO-200, J.B. Albert et al. (EXO-200), Phys.Rev. D96 (2017) 092001, arXiv:1704.05042.
[EXO-200:2017vqi]
[5-32]
The first result on 76Ge neutrinoless double beta decay from CDEX-1 experiment, Li Wang et al. (CDEX), Sci.China Phys.Mech.Astron. 60 (2017) 071011, arXiv:1703.01877.
[CDEX:2017pgl]
[5-33]
Background free search for neutrinoless double beta decay with GERDA Phase II, M. Agostini et al. (GERDA), arXiv:1703.00570, 2017.
[Agostini:2017iyd]
[5-34]
Measurement of the $2\nu\beta\beta$ Decay Half-Life and Search for the $0\nu\beta\beta$ Decay of $^{116}$Cd with the NEMO-3 Detector, R. Arnold et al. (NEMO-3), Phys.Rev.D 95 (2017) 012007, arXiv:1610.03226.
[NEMO-3:2016zfx]
[5-35]
Measurement of the 2$\nu\beta\beta$ decay half-life of $^{150}$Nd and a search for 0$\nu\beta\beta$ decay processes with the full exposure from the NEMO-3 detector, R. Arnold et al. (NEMO-3), Phys.Rev.D 94 (2016) 072003, arXiv:1606.08494.
[NEMO-3:2016qxo]
[5-36]
Search for Majorana Neutrinos near the Inverted Mass Hierarchy region with KamLAND-Zen, A. Gando et al. (KamLAND-Zen), Phys. Rev. Lett. 117 (2016) 082503, arXiv:1605.02889.
[KamLAND-Zen:2016pfg]
[5-37]
Limit on the Radiative Neutrinoless Double Electron Capture of $^{36}$Ar from GERDA Phase I, M. Agostini et al. (GERDA), Eur.Phys.J. C76 (2016) 652, arXiv:1605.01756.
[GERDA:2016fzn]
[5-38]
Measurement of the Double-Beta Decay Half-Life and Search for the Neutrinoless Double-Beta Decay of $^{48}{\rm Ca}$ with the NEMO-3 Detector, R. Arnold et al. (NEMO-3), Phys. Rev. D93 (2016) 112008, arXiv:1604.01710.
[NEMO-3:2016mvr]
[5-39]
Analysis Techniques for the Evaluation of the Neutrinoless Double-Beta Decay Lifetime in $^{130}$Te with CUORE-0, C. Alduino et al. (CUORE), Phys. Rev. C93 (2016) 045503, arXiv:1601.01334.
[CUORE:2016acf]
[5-40]
Results of a search for neutrinoless double-beta decay using the COBRA demonstrator, Joachim Ebert et al., Phys. Rev. C94 (2016) 024603, arXiv:1509.04113.
[Ebert:2015rda]
[5-41]
The COBRA demonstrator at the LNGS underground laboratory, J. Ebert et al. (COBRA), Nucl. Instrum. Meth. A807 (2016) 114-120, arXiv:1507.08177.
[COBRA:2015agm]
[5-42]
A search for double-electron capture in 74Se using coincidence/anticoincidence gamma-ray spectrometry, M. Jeskovsky et al., Nucl. Instrum. Meth. A795 (2015) 268, arXiv:1507.02200.
[Jeskovsky:2015jia]
[5-43]
Result of the search for neutrinoless double-$\beta$ decay in $^{100}$Mo with the NEMO-3 experiment, R. Arnold et al. (NEMO-3), Phys. Rev. D92 (2015) 072011, arXiv:1506.05825.
[NEMO-3:2015jgm]
[5-44]
Search for Neutrinoless Double-Beta Decay of $^{130}$Te with CUORE-0, K. Alfonso et al. (CUORE), Phys. Rev. Lett. 115 (2015) 102502, arXiv:1504.02454.
[CUORE:2015hsf]
[5-45]
Search for Majoron-emitting modes of double-beta decay of $^{136}$Xe with EXO-200, J.B. Albert et al. (EXO-200), Phys. Rev. D90 (2014) 092004, arXiv:1409.6829.
[EXO-200:2014vam]
[5-46]
Search for Majorana neutrinos with the first two years of EXO-200 data, J.B. Albert et al. (EXO-200), Nature 510 (2014) 229-234, arXiv:1402.6956.
[EXO-200:2014ofj]
[5-47]
Search for Neutrinoless Double-Beta Decay of $^{100}$Mo with the NEMO-3 Detector, R. Arnold et al. (NEMO-3), Phys. Rev. D89 (2014) 111101, arXiv:1311.5695.
[NEMO-3:2013pwo]
[5-48]
New determination of double-beta-decay properties in 48Ca: high-precision Q-value measurement and improved nuclear matrix element calculations, A. A. Kwiatkowski et al., Phys. Rev. C89 (2014) 045502, arXiv:1308.3815.
[Kwiatkowski:2013xeq]
[5-49]
Why is the Conclusion of the GERDA Experiment not Justified ?, Hans Volker Klapdor-Kleingrothaus, Irina V. Krivosheina, Sergey N. Karpov, Phys.Part.Nucl.Lett. 10 (2013) 704-709, arXiv:1308.2524.
[KlapdorKleingrothaus:2013cja]
[5-50]
Results on neutrinoless double beta decay of 76Ge from GERDA Phase I, M. Agostini et al. (GERDA), Phys. Rev. Lett. 111 (2013) 122503, arXiv:1307.4720.
[GERDA:2013vls]
[5-51]
Limit on Neutrinoless betabeta Decay of Xe-136 from the First Phase of KamLAND-Zen and Comparison with the Positive Claim in Ge-76, A. Gando et al. (KamLAND-Zen), Phys. Rev. Lett. 110 (2013) 062502, arXiv:1211.3863.
[KamLAND-Zen:2012mmx]
[5-52]
Limits on Majoron-Emitting Double-Beta Decays of Xe-136 in KamLAND-Zen, A. Gando et al. (KamLAND-Zen), Phys. Rev. C86 (2012) 021601, arXiv:1205.6372.
[KamLAND-Zen:2012uen]
[5-53]
Search for Neutrinoless Double-Beta Decay in $^{136}$Xe with EXO-200, M. Auger et al. (EXO), Phys. Rev. Lett. 109 (2012) 032505, arXiv:1205.5608.
[EXO-200:2012pdt]
[5-54]
Measurement of the Double-Beta Decay Half-life of $^{136}$Xe in KamLAND-Zen, KamLAND-Zen (KamLAND-Zen), Phys. Rev. C85 (2012) 045504, arXiv:1201.4664.
[KamLAND-Zen:2012vpv]
[5-55]
Improved limits on beta+EC and ECEC processes in Sn-112, A.S. Barabash, Ph. Hubert, Ch. Marquet, A. Nachab, S.I. Konovalov et al., Phys. Rev. C83 (2011) 045503.
[Barabash:2011zza]
[5-56]
130Te Neutrinoless Double-Beta Decay with CUORICINO, E. Andreotti et al. (CUORICINO), Astropart. Phys. 34 (2011) 822-831, arXiv:1012.3266.
[Andreotti:2010vj]
[5-57]
Search for beta plus/EC double beta decay of 120Te, E. Andreotti et al. (CUORICINO), Astropart. Phys. 34 (2011) 643-648, arXiv:1011.4811.
[Andreotti:2010nn]
[5-58]
Search for beta+EC and ECEC processes in Sn-112, A.S. Barabash, Ph. Hubert, A. Nachab, S.I. Konovalov, V. Umatov, Phys. Rev. C80 (2009) 035501, arXiv:0909.1177.
[Barabash:2009ja]
[5-59]
Search for double-beta decays of Ru-96 and Ru-104 by ultra-low background HPGe gamma spectrometry, P. Belli, R. Bernabei, F. Cappella, R. Cerulli, F.A. Danevich et al., Eur.Phys.J. A42 (2009) 171-177.
[Belli:2009zz]
[5-60]
First limits on neutrinoless resonant 2epsilon captures in Ce-136 and new limits for other 2beta processes in Ce-136 and Ce-138 isotopes, P. Belli, R. Bernabei, S. d'Angelo, F. Cappella, R. Cerulli et al., Nucl. Phys. A824 (2009) 101-114.
[Belli:2009zza]
[5-61]
Measurement of the Double Beta Decay Half-life of $^{150}$Nd and Search for Neutrinoless Decay Modes with the NEMO-3 Detector, J. Argyriades (NEMO), Phys. Rev. C80 (2009) 032501, arXiv:0810.0248.
[NEMO:2008kpp]
[5-62]
Search for beta+ EC and ECEC processes in Sn-112 and beta- beta- decay of Sn-124 to the excited states of Te-124, A.S. Barabash, Ph. Hubert, A. Nachab, S.I. Konovalov, I.A. Vanyushin et al., Nucl. Phys. A807 (2008) 269-281, arXiv:0804.3849.
[Barabash:2008wj]
[5-63]
A Search for double beta decays of tin isotopes with enhanced sensitivity, J. Dawson, D. Degering, M. Kohler, R. Ramaswamy, C. Reeve et al., Phys. Rev. C78 (2008) 035503, arXiv:0804.1198.
[Dawson:2008kj]
[5-64]
Results from the CUORICINO neutrinoless double beta decay experiment, C. Arnaboldi et al. (CUORICINO), Phys. Rev. C78 (2008) 035502, arXiv:0802.3439.
From the abstract: ... an upper limit on the effective mass between 0.19 and 0.68 eV when analyzed with the many published nuclear structure calculations. In the context of these nuclear models, the values fall within the range corresponding to the claim of evidence of neutrinoless double beta decay by H.V. Klapdor-Kleingrothaus et al.
[CUORICINO:2008jjc]
[5-65]
Double-electron capture on Sn-112 to the excited 1871 keV state in Cd-112: A possible alternative to double-beta decay, M.F. Kidd, J.H. Esterline, W. Tornow, Phys. Rev. C78 (2008) 035504.
[Kidd:2008zz]
[5-66]
A Search for various double beta decay modes of tin isotopes, J. Dawson, R. Ramaswamy, C. Reeve, J.R. Wilson, K. Zuber, Nucl. Phys. A799 (2008) 167-180, arXiv:0709.4342.
[Dawson:2007re]
[5-67]
First results on double beta decay modes of Cd, Te and Zn isotopes with the COBRA experiment, T. Bloxham et al. (COBRA), Phys. Rev. C76 (2007) 025501, arXiv:0707.2756.
[COBRA:2007zty]
[5-68]
Limits on different Majoron decay modes of $^{100}\text{Mo}$ and $^{82}\text{Se}$ for neutrinoless double beta decays in the NEMO-3 experiment, R. Arnold et al. (NEMO), Nucl. Phys. A765 (2006) 483, arXiv:hep-ex/0601021.
[NEMO:2006uve]
[5-69]
The evidence for the observation of $0\nu\beta\beta$ decay: The identification of $0\nu\beta\beta$ events from the full spectra, H. V. Klapdor-Kleingrothaus, I. V. Krivosheina, Mod. Phys. Lett. A21 (2006) 1547-1566.
From the abstract: Two different methods of pulse shape analysis have been used to select potential $0\nu\beta\beta$ events from the $\gamma$-background. Both methods lead to selections of events at $Q_{\beta\beta}$ with almost no $\gamma$-background. The observed line at $Q_{\beta\beta}$ is identified as a $0\nu\beta\beta$ signal. It has a confidence level of more than $6\sigma$.
[Klapdor-Kleingrothaus:2006zcr]
[5-70]
First results of the search of neutrinoless double beta decay with the NEMO 3 detector, R. Arnold et al. (NEMO), Phys. Rev. Lett. 95 (2005) 182302, arXiv:hep-ex/0507083.
From the abstract: After 389 effective days of data collection from February 2003 until September 2004 (Phase I), no evidence for neutrinoless double beta decay was found from ~7 kg of $^{100}\text{Mo}$ and ~1 kg of $^{82}\text{Se}$. The corresponding lower limits for the half-lives are $4.6 \times 10^{23}$ years for $^{100}\text{Mo}$ and $1.0 \times 10^{23}$ years for $^{82}\text{Se}$ (90% C.L.). Depending on the nuclear matrix elements calculation, limits for the effective Majorana neutrino mass are $\langle m\rangle < 0.7-2.8 \, \text{eV}$ for $^{100}\text{Mo}$ and $\langle m\rangle < 1.7-4.9 \, \text{eV}$ for $^{82}\text{Se}$.
[NEMO:2005xxi]
[5-71]
A New Limit on the Neutrinoless DBD of 130Te, C. Arnaboldi et al., Phys. Rev. Lett. 95 (2005) 142501, arXiv:hep-ex/0501034.
[Arnaboldi:2005cg]
[5-72]
Study of 2b-decay of Mo-100 and Se-82 using the NEMO3 detector, NEMO Collaboration et al. (NEMO), Jetp Lett. 80 (2004) 377, arXiv:hep-ex/0410021.
[NEMO:2004yad]
[5-73]
Search for neutrinoless double beta decay with enriched 76Ge in Gran Sasso 1990-2003, H.V. Klapdor-Kleingrothaus, I.V. Krivosheina, A. Dietz, O. Chkvorets, Phys. Lett. B586 (2004) 198-212, arXiv:hep-ph/0404088.
[Klapdor-Kleingrothaus:2004yzi]
[5-74]
Search For Neutrinoless Double Beta Decay With Enriched 76Ge 1990-2003 - HEIDELBERG-MOSCOW-Experiment, H.V. Klapdor-Kleingrothaus et al., arXiv:hep-ph/0404062, 2004. INFN, Laboratori Nazionali del Gran Sasso, Annual Report 2003 (2004).
[Klapdor-Kleingrothaus:2004kzh]
[5-75]
On the possibility to search for $2\beta$ decay of initially unstable ($\alpha / \beta$ radioactive) nuclei, V. I. Tretyak, F. A. Danevich, S. S. Nagorny, Yu. G. Zdesenko, Europhys. Lett. 69 (2005) 41-47, arXiv:nucl-ex/0404016.
[Tretyak:2004ew]
[5-76]
Data acquisition and analysis of the 76Ge double beta experiment in Gran Sasso 1990-2003, H.V. Klapdor-Kleingrothaus, A. Dietz, O. Chkvorez, I.V. Krivosheina, Nucl. Instrum. Meth. A522 (2004) 371-406, arXiv:hep-ph/0403018.
From the abstract: the confidence level for the neutrinoless signal has been improved.
From the article: we confirm, with 4.2σ (99.9973% c.l.) probability, our claim from 2001 [Go], [Go], [Go], [Go], [Go] of first evidence for the neutrinoless double beta decay mode.
...
Using the nuclear matrix element from Refs.[25-163], [25-164], we conclude from the half-life given above the effective mass $\langle m \rangle$ to be $\langle m \rangle = (0.2-0.6) \, \mathrm{eV}$ (99.73% c.l.) with the best value of 0.4 eV.
...
Allowing conservatively for an uncertainty of the nuclear matrix element of ±50%, the range for the effective mass may widen to $\langle m \rangle = (0.1-0.9) \, \mathrm{eV}$ (99.73% c.l.).

[Klapdor-Kleingrothaus:2004vvp]
[5-77]
From nuclear physics to physics beyond the standard model: first evidence for lepton number violation and the Majorana character of neutrinos, H. V. Klapdor-Kleingrothaus, Int. J. Mod. Phys. D13 (2004) 2107-2126. http://www.worldscinet.com/ijmpd/13/preserved-docs/1310/S0218271804006656.pdf.
[Klapdor-Kleingrothaus:2004bnz]
[5-78]
Search for neutrino-less double beta decay of Ca-48 by CaF-2 scintillator, I. Ogawa, R. Hazama, H. Miyawaki, S. Shiomi, N. Suzuki et al., Nucl. Phys. A730 (2004) 215-223.
[Ogawa:2004fy]
[5-79]
Measurement of the 214Bi spectrum in the energy region around the Q-value of 76Ge neutrinoless double-beta decay, H.V. Klapdor-Kleingrothaus, O. Chkvorez, I.V. Krivosheina, C. Tomei, Nucl. Instrum. Meth. A511 (2003) 335, arXiv:hep-ph/0309157.
[Klapdor-Kleingrothaus:2003glg]
[5-80]
Results of the experiment on investigation of Germanium-76 double beta decay. Experimental data of Heidelberg-Moscow collaboration November 1995 - August 2001, A.M. Bakalyarov et al. (C03-06-23.1), Phys. Part. Nucl. Lett. 2 (2005) 77, arXiv:hep-ex/0309016.
[Bakalyarov:2003jk]
[5-81]
Neutrinoless double beta decay: Status of evidence, H. V. Klapdor-Kleingrothaus, A. Dietz, I. V. Krivosheina, Found. Phys. 32 (2002) 1181-1223, arXiv:hep-ph/0302248.
[Klapdor-Kleingrothaus:2002ziq]
[5-82]
One Year of Evidence for Neutrinoless Double Beta Decay, H.V. Klapdor-Kleingrothaus, Proc.Indian Natl.Sci.Acad. 70A (2004) 95, arXiv:hep-ph/0302237.
[Klapdor-Kleingrothaus:2003rtc]
[5-83]
A Search for various Double Beta Decay Modes of Cd, Te and Zn Isotopes, H. Kiel, D. Munstermann, K. Zuber, Nucl. Phys. A723 (2003) 499, arXiv:nucl-ex/0301007.
[Kiel:2003sm]
[5-84]
Search for 2 beta decay of cadmium and tungsten isotopes: Final results of the Solotvina experiment, Fedor A. Danevich, A. Sh. Georgadze, V. V. Kobychev, B. N. Kropivyansky, A. S. Nikolaiko et al., Phys. Rev. C68 (2003) 035501.
[Danevich:2003ef]
[5-85]
Two-neutrino 2beta decay of Cd-116 and new half-life limits on 2beta decay of W-180 and W-186, F. A. Danevich et al., Nucl. Phys. A717 (2003) 129-145.
[Danevich:2003yj]
[5-86]
A Calorimetric Search on Double Beta Decay of 130Te, C. Arnaboldi et al., Phys. Lett. B557 (2003) 167, arXiv:hep-ex/0211071.
[Arnaboldi:2002te]
[5-87]
EXO: the Enriched Xenon Observatory for Double Beta Decay, EXO (EXO), eConf C020620 (2002) THAP11, arXiv:hep-ph/0210186.
[Wamba:2002eg]
[5-88]
Reply to the comment on 'Evidence for neutrinoless double beta decay'. (Mod. Phys. Lett. A16 (2001) 2409), H. L. Harney, arXiv:hep-ph/0205293, 2002.
[Harney:2001wb]
[5-89]
Reply to a comment of article 'Evidence for neutrinoless double beta decay', H. V. Klapdor-Kleingrothaus, arXiv:hep-ph/0205228, 2002.
[Klapdor-Kleingrothaus:2002jbx]
[5-90]
The IGEX Ge-76 neutrinoless double-beta decay experiment: Prospects for next generation experiments, C. E. Aalseth et al. (IGEX), Phys. Rev. D65 (2002) 092007, arXiv:hep-ex/0202026.
Comment: Lower bound for the neutrinoless double-beta decay half-life of 76Ge: T1/2 > 1.57 × 1025 y at 90% CL. The corresponding upper bound for the effective neutrino mass is <m> < 0.33-1.35 eV. This bound excludes part of the allowed range claimed in [Go]. (C.G.).
[IGEX:2002bce]
[5-91]
Comment on 'Evidence for Neutrinoless Double Beta Decay', C. E. Aalseth et al., Mod. Phys. Lett. A17 (2002) 1475-1478, arXiv:hep-ex/0202018.
Comment: Critics of prominent members of the Double Beta Decay community to the claim in [Go]. (C.G.).
[Aalseth:2002dt]
[5-92]
Evidence for Neutrinoless Double Beta Decay, H. V. Klapdor-Kleingrothaus, A. Dietz, H. L. Harney, I. V. Krivosheina, Mod. Phys. Lett. A16 (2001) 2409-2420, arXiv:hep-ph/0201231.
Comment: Evidence in favor of the observation of neutrinoless double-beta decay of 76Ge is claimed, with T1/2 = (0.8-18.3) × 1025 y at 95% CL and best value T1/2 = 1.5 × 1025 y. The corresponding effective neutrino mass is <m> = 0.11-0.56 eV and best value <m> = 0.39 eV. (C.G.).
[Klapdor-Kleingrothaus:2001oba]
[5-93]
Limits on Majoron emitting neutrinoless double-beta decay of Mo-100, K. Fushimi, N. Kudomi, S. Yoshida, H. Ejiri, K. Hayashi et al., Phys.Lett. B531 (2002) 190-194.
[Fushimi:2002sc]
[5-94]
First evidence for neutrinoless double beta decay, H. V. Klapdor-Kleingrothaus, A. Dietz, I. V. Krivosheina, Part. Nucl. Lett. 110 (2002) 57-79.
[Klapdor-Kleingrothaus:2002sfd]
[5-95]
Has neutrinoless double beta decay of Ge-76 been really observed?, Yu. G. Zdesenko, F. A. Danevich, V. I. Tretyak, Phys. Lett. B546 (2002) 206-215.
[Zdesenko:2002kz]
[5-96]
Double beta decay of Mo-100, V. D. Ashitkov et al., Part. Nucl. Lett. 106 (2001) 69-73.
[Ashitkov:2000se]
[5-97]
Limits on the Majorana neutrino mass and right-handed weak currents by neutrinoless double beta decay of Mo-100, H. Ejiri, K. Fushimi, K. Hayashi, T. Kishimoto, N. Kudomi et al., Phys. Rev. C63 (2001) 065501.
[Ejiri:2001fx]
[5-98]
Latest results from the HEIDELBERG-MOSCOW double beta decay experiment, H. V. Klapdor-Kleingrothaus et al., Eur. Phys. J. A12 (2001) 147-154.
Comment: Lower bound for the neutrinoless double-beta decay half-life of 76Ge: T1/2 > 1.9 × 1025 y at 90% CL. The corresponding upper bound for the effective neutrino mass is <m> < 0.35 eV. (C.G.).
[KlapdorKleingrothaus:2001yx]
[5-99]
Evidence of the double beta decay of zirconium-96 measured in 1.8 X 109 year-old zircons, Michael E. Wieser, John R. De Laeter, Phys. Rev. C64 (2001) 024308.
[Wieser:2001ud]
[5-100]
Quest for double beta decay of Gd-160 and Ce isotopes, F. A. Danevich, V. V. Kobychev, O. A. Ponkratenko, V. I. Tretyak, Yu. G. Zdesenko, Nucl. Phys. A694 (2001) 375-391, arXiv:nucl-ex/0011020.
[Danevich:2000tk]
[5-101]
High sensitivity 2beta decay study of Cd-116 and Mo-100 with the BOREXINO counting test facility (CAMEO project), G. Bellini et al., Eur. Phys. J. C19 (2001) 43-55, arXiv:nucl-ex/0007012.
[Bellini:2000hp]
[5-102]
Double beta decay: Theory, experiment, and implications, Petr Vogel, arXiv:nucl-th/0005020, 2000.
[Vogel:2000vc]
[5-103]
New results of Cd-116 double beta decay study with Cd- 116_WO-4 scintillators, F. A. Danevich et al., Phys. Rev. C62 (2000) 045501, arXiv:nucl-ex/0003001.
[Danevich:2000cf]
[5-104]
New experimental results on double beta decay of Te-130, A. Alessandrello et al., Phys. Lett. B486 (2000) 13-21.
[Alessandrello:2000kt]
[5-105]
High sensitivity quest for Majorana neutrino mass with the BOREXINO counting test facility, G. Bellini et al., Phys. Lett. B493 (2000) 216-228.
[Bellini:2000uf]
[5-106]
Search for double beta decay of Ca-48 in the TGV experiment, V.B. Brudanin, N.I. Rukhadze, C. Briancon, V.G. Egorov, V.E. Kovalenko et al., Phys.Lett. B495 (2000) 63-68.
[Brudanin:2000in]
[5-107]
Double-beta decay of Ca-48 in the TGV experiment, V.B. Brudanin, N.I. Rukhadze, C. Briancon, V.G. Egorov, V.E. Kovalenko et al., Phys.Atom.Nucl. 63 (2000) 1218-1221.
[Brudanin:2000ub]
[5-108]
Limits on different Majoron decay modes of Mo-100, Cd-116, Se-82 and Zr-96 for neutrinoless double beta decays in the NEMO-2 experiment, D. Dassie et al., Nucl. Phys. A678 (2000) 341-352. CERN Library Record.
[Dassie:2000uw]
[5-109]
Results of a search for the two neutrino double beta decay of Xe-136 with proportional counters, Ju. M. Gavriljuk, V. V. Kuzminov, N. Ya. Osetrova, S. S. Ratkevich, Phys. Rev. C61 (2000) 035501.
[Gavriljuk:2000nh]
[5-110]
Search for beta beta decay in Xe-136: New results from the Gotthard experiment, R. Luscher et al., Phys. Lett. B434 (1998) 407-414.
[Luscher:1998sd]
[5-111]
Double beta decays of Mo-100 and Nd-150, Asoka S. De Silva, M.K. Moe, M.A. Nelson, M.A. Vient, Phys. Rev. C56 (1997) 2451-2467, arXiv:nucl-ex/9706005.
[DeSilva:1997cp]
[5-112]
Limits on neutrinoless double beta decay of Mo-100, H. Ejiri, K. Fushimi, K. Hayashi, R. Hazama, T. Kishimoto et al., Nucl. Phys. A611 (1996) 85-95.
[Ejiri:1996fs]
[5-113]
Final report on the search for neutrinoless double beta decay of Ge-76 from the Gotthard underground experiment, D. Reusser et al., Phys. Rev. D45 (1992) 2548-2551.
[Reusser:1991vx]
[5-114]
Double beta decay and dark matter in the Gotthard germanium experiment, M. Treichel et al., J. Phys. G17 (1991) S193-S201.
[Treichel:1991vf]
[5-115]
Two neutrino double beta decay of Mo-100 with ELEGANTS-IV, T. Watanabe, H. Ejiri, K. Okada, N. Kamikubota, H. Sano et al., J. Phys. G17 (1991) S217-S220.
[Watanabe:1991vg]
[5-116]
First 0 nu halflife limit from the Gotthard xenon time projection chamber, H. T. Wong et al., J. Phys. G17 (1991) S165-S172.
[Wong:1991vd]
[5-117]
Search for two beta decay of $^{116}$Cd with the help of a $^{116}$CdWO$_{4}$ scintillator, Fedor A. Danevich, Yu.G. Zdesenko, A.S. Nikolaiko, V.I. Tretyak, JETP Lett. 49 (1989) 476-479.
[Danevich:1989xh]

6 - Experiment - Talks

[6-1]
Results of the MAJORANA DEMONSTRATOR's Search for Neutrinoless Double Beta Decay, David J. Tedeschi (Majorana), arXiv:2401.04782, 2024. MEDEX'23.
[Tedeschi:2024tzj]
[6-2]
New results from the CUORE experiment, A. Giachero et al. (CUORE), PoS ICHEP2020 (2021) 133, arXiv:2011.09295. 40th International Conference on High Energy physics (ICHEP2020), July 28 - August 6, 2020, Prague, Czech Republic.
[CUORE:2020ymk]
[6-3]
AMoRE: A search for neutrinoless double-beta decay of 100Mo using low-temperature molybdenum-containing crystal detectors, Moo Hyun Lee (AMoRE), JINST 15 (2020) C08010, arXiv:2005.05567. INSTR'20 conference (Novosibirsk, Feb. 24-28, 2020).
[Lee:2020rjh]
[6-4]
Recent Results of the Majorana Demonstrator Experiment, J.M.Lopez-Castano (Majorana), AIP Conf.Proc. 2165 (2019) 020018, arXiv:1909.07509. MEDEX'19 proceedings. Since it was send to AIP, the last reference was published: S. I. Alvis et al. Phys. Rev. C 100, 025501.
[Lopez-Castano:2019alf]
[6-5]
Rare Low-Energy Event Searches with the Majorana Demonstrator, Gulden Othman (Majorana), arXiv:1901.09130, 2019. 14th Patras Workshop on Axions, WIMPs and WISPs, DESY in Hamburg, June 18 to 22, 2018.
[Othman:2019ckj]
[6-6]
Recent results from the MAJORANA DEMONSTRATOR, J. Myslik et al., PoS ICHEP2018 (2019) 635, arXiv:1812.08139. 39th International Conference on High Energy Physics (ICHEP2018), 4-11 July, 2018, Seoul, Korea.
[Majorana:2018ofd]
[6-7]
Search for neutrinoless double-beta decay with SNO+, Vincent Fischer (SNO+), arXiv:1809.05986, 2018. CIPANP2018.
[Fischer:2018squ]
[6-8]
Update on the recent progress of the CUORE experiment, D. Q. Adams et al. (CUORE), arXiv:1808.10342, 2018. Neutrino 2018.
[CUORE:2018hkz]
[6-9]
Searching for neutrinoless double beta decay with GERDA, M. Agostini et al. (GERDA), Int.J.Mod.Phys.Conf.Ser. 46 (2018) 1860040, arXiv:1710.07776. TAUP2017.
[GERDA:2017wlm]
[6-10]
The CUORE experiment at the LNGS, Antonio Branca (CUORE), arXiv:1705.00005, 2017. NuPhys2016 (London, 12-14 December 2016).
[Branca:2017qts]
[6-11]
Status of the SuperNEMO 0$\nu\beta\beta$ experiment, C. Patrick, F. Xie, arXiv:1704.06670, 2017. NuPhys2016 (London, 12-14 December 2016).
[Patrick:2017eso]
[6-12]
The CUORE and CUORE-0 experiments at LNGS, A. D'Addabbo et al., EPJ Web Conf. 164 (2017) 07047, arXiv:1612.04276. ICNFP2016.
[DAddabbo:2016cqu]
[6-13]
New limits on double beta processes in 106-Cd, V.I. Tretyak et al., J. Phys. Conf. Ser. 718 (2016) 062062, arXiv:1601.05698. TAUP 2015.
[Tretyak:2016txf]
[6-14]
Search for double beta decay of $^{116}$Cd with enriched $^{116}$CdWO$_4$ crystal scintillators (Aurora experiment), F.A. Danevich et al., J. Phys. Conf. Ser. 718 (2016) 062009, arXiv:1601.05578. TAUP 2015.
[Danevich:2016eot]
[6-15]
Search of Neutrinoless Double Beta Decay with the GERDA Experiment, Giovanni Benato (GERDA), arXiv:1509.07792, 2015. CIPANP2015.
[Benato:2015yla]
[6-16]
The search for 0nbb decay with the GERDA experiment: status and prospects, B. Majorovits (GERDA), AIP Conf. Proc. 1672 (2015) 110003, arXiv:1506.00415. LRT 2015, Seattle.
[Majorovits:2015vka]
[6-17]
Status of the CUORE and results from the CUORE-0 neutrinoless double beta decay experiments, M. Sisti et al. (CUORE), Nucl.Part.Phys.Proc. 273-275 (2016) 1719-1725, arXiv:1502.03653. ICHEP 2014, Valencia (Spain) 2-9 July 2014.
[CUORE:2015dfx]
[6-18]
CUORE-0 results and prospects for the CUORE experiment, D.R. Artusa et al. (CUORE), AIP Conf. Proc. 1666 (2015) 170001, arXiv:1502.02576. Neutrino 2014, 2-7 June 2014, Boston, Massachusetts, USA.
[CUORE:2015axb]
[6-19]
Results from KamLAND-Zen, K. Asakura et al. (KamLAND-Zen), AIP Conf. Proc. 1666 (2015) 170003, arXiv:1409.0077. XXVI Conference on Neutrino Physics and Astrophysics (Neutrino 2014).
[KamLAND-Zen:2014hhc]
[6-20]
CUORE and beyond: bolometric techniques to explore inverted neutrino mass hierarchy, D. R. Artusa et al., Phys.Procedia 61 (2015) 241-250, arXiv:1407.1094. TAUP 2013.
[Artusa:2014bka]
[6-21]
Results on neutrinoless double beta decay from GERDA Phase I, Carla Macolino (GERDA), Mod.Phys.Lett. A29 (2014) 1430001, arXiv:1312.0562.
[Macolino:2013ifa]
[6-22]
First result from KamLAND-Zen : Double beta decay with 136-Xe, A. Gando (KamLAND-Zen), arXiv:1205.6130, 2012. Moriond 2012 EW session.
[Gando:2012jr]
[6-23]
Improved limits on $\beta^{+}$EC and ECEC processes in $^{112}Sn$, A.S. Barabash, Ph. Hubert, A. Nachab, S.I. Konovalov, V. Umatov, Nucl. Phys. Proc. Suppl. 229-232 (2012) 474.
[Barabash:2012iwa]
[6-24]
Results of the NEMO-3 Double Beta Decay Experiment, Mathieu Bongrand (NEMO-3), arXiv:1105.2435, 2011. 22nd Rencontres de Blois, 2010.
[Bongrand:2011ei]
[6-25]
A Search for Neutrinoless Double Beta Decay: from NEMO-3 to SuperNEMO, Yu.A. Shitov (SuperNEMO), arXiv:1006.4775, 2010. Moriond EW 2010.
[Shitov:2010nt]
[6-26]
Search for double beta decay of Cd-106 in TGV-2 experiment, N.I. Rukhadze, Ch. Briancon, V.B. Brudanin, P. Cermak, V.G. Egorov et al., J. Phys. Conf. Ser. 203 (2010) 012072.
[Rukhadze:2010zz]
[6-27]
The Search for Neutrinoless Double Beta Decay in CUORE, L.M. Ejzak (CUORE), arXiv:0910.2994, 2009. DPF-2009, Detroit, Jul. 27-31.
[Ejzak:2009gj]
[6-28]
Search for neutrinoless double beta decay with NEMO 3 experiment, Zornitza Daraktchieva, Nucl. Phys. A827 (2009) 495c-497c, arXiv:0901.2720. PANIC08.
[Daraktchieva:2009mn]
[6-29]
Results of NEMO 3 and status of SuperNEMO, Ladislav Vala (NEMO), Nucl. Phys. Proc. Suppl. 188 (2009) 62-64, arXiv:0901.0473. NOW 2008.
[Vala:2009we]
[6-30]
Results from NEMO 3, R. L. Flack et al. (NEMO), J. Phys. Conf. Ser. 136 (2008) 022032, arXiv:0810.5497. Neutrino08.
[Flack:2008tf]
[6-31]
First results from the NEMO Phase 1 experiment, Isabella Amore (NEMO), Nucl. Instrum. Meth. A602 (2009) 68-71, arXiv:0810.3119. VLVNT08.
[Amore:2008db]
[6-32]
Neutrinoless double beta decay search with the NEMO 3 experiment, Irina Nasteva et al. (NEMO), AIP Conf. Proc. 1078 (2009) 332-334, arXiv:0810.0637. SUSY08.
[Nasteva:2008pa]
[6-33]
The Nemo-3 Experiment and the Supernemo Project, Laurent Simard (NEMO), arXiv:0810.0533, 2008. ICHEP 08.
[Simard:2008ky]
[6-34]
Cryogenic Double Beta Decay Experiments: CUORE and CUORICINO, Reina Maruyama, for the CUORE Collaboration (CUORE), Nucl. Phys. Proc. Suppl. 221 (2011) 174-178, arXiv:0809.3840. 22nd International Conference on Neutrino Physics and Astrophysics (Neutrino 2006), Santa Fe, New Mexico, 13-19 Jun 2006.
[Maruyama:2008ck]
[6-35]
Dark Matter Density in Disk Galaxies, J. A. Sellwood, IAU Symp. 254 (2009) 73, arXiv:0807.1973. XXth Rencontres de Blois, 18th - 23rd May 2008, Blois (France).
[Sellwood:2008bd]
[6-36]
Results from the NEMO 3 experiment, Ladislav Vala (NEMO), arXiv:0710.5604, 2007. 10th ICATPP Conference (Como, Italy, 8 - 12 October 2007).
[Vala:2007kj]
[6-37]
Search for Neutrinoless Double Beta Decay with NEMO 3 and SuperNEMO, Stefan Soldner-Rembold (NEMO 3), J. Phys. Conf. Ser. 110 (2008) 082019, arXiv:0710.4156. 2007 Europhysics Conference on High Energy Physics, in Manchester, England, 19-25 July 2007.
[Soldner-Rembold:2007rmw]
[6-38]
Results on Dark Matter and beta beta decay modes by DAMA at Gran Sasso, R. Bernabei, arXiv:0704.3543, 2007. Neutrinoless Double Beta Decay (NDBD07), Ahmedabad (India), February 2007.
[Bernabei:2007bx]
[6-39]
Search for beta+ EC and ECEC processes in Se-74, A.S. Barabash, Ph. Hubert, A. Nachab, V. Umatov, Nucl. Phys. A785 (2007) 371-380, arXiv:hep-ex/0610046.
[Barabash:2006qx]
[6-40]
NEMO-3 double beta decay experiment: lastest results, A.S. Barabash, Conf.Proc. C060726 (2006) 276-279, arXiv:hep-ex/0610025. XXXIII International Conference on High Energy Physics (Moscow, July 26 - August 02, 2006).
[Barabash:2006cb]
[6-41]
Results of the NEMO3 experiment, J.S Ricol, arXiv:hep-ex/0605104, 2006. Moriond 2006 EW conference.
[Ricol:2006ai]
[6-42]
NEMO-3 and SuperNEMO double beta decay experiments, A. S. Barabash et al. (NEMO), J. Phys. Conf. Ser. 39 (2006) 347-349, arXiv:hep-ex/0602011. TAUP 2005 (Zaragoza, Spain, September 10-14 2005).
[Barabash:2006mr]
[6-43]
Lessons after 3 years of running GENIUS-TF in Gran Sasso, I. V. Krivosheina, H. V. Klapdor-Kleingrothaus (Heidelberg-Moscow and GENIUS), Phys. Scripta T127 (2006) 52-53. 2nd Scandanavian Neutrino Workshop (SNOW 2006), Stockholm, Sweden, 2-6 May 2006.
[Krivosheina:2006zv]
[6-44]
First Evidence for Neutrinoless Double Beta Decay - and World Status of Double Beta Experiments, Hans Volker Klapdor-Kleingrothaus, arXiv:hep-ph/0512263, 2005. XI Int. Work. on Neutrino Telescopes, Febr. 22-25, 2005, Venice, Italy.
[Klapdor-Kleingrothaus:2005jiv]
[6-45]
Search for neutrinoless double beta decay with the NEMO-3 detector : First results, D. Lalanne, arXiv:hep-ex/0509005, 2005. High Energy Physics ICHEP 2004.
[Lalanne:2005ye]
[6-46]
Cuoricino last results and Cuore R&D, S. Capelli (CUORE), arXiv:hep-ex/0505045, 2005. Rencontres the Moriond: 2005 Electroweak session.
[CUORE:2005mbs]
[6-47]
Double beta decay of Cd-116. Final results of the Solotvina experiment and CAMEO project, F.A. Danevich, P.G. Bizzeti, T.F. Fazzini, A. Sh. Georgadze, V.V. Kobychev et al., Nucl. Phys. Proc. Suppl. 138 (2005) 230-232.
[Danevich:2005mr]
[6-48]
First evidence for neutrinoless double beta decay, with enriched Ge-76 in Gran Sasso 1990-2003, H. V. Klapdor-Kleingrothaus, Nucl. Phys. Proc. Suppl. 143 (2005) 229-232.
[Klapdor-Kleingrothaus:2005hi]
[6-49]
Search for neutrinoless double beta decay with the NEMO-3 detector: first results, Xavier Sarazin, Nucl. Phys. Proc. Suppl. 143 (2005) 221, arXiv:hep-ex/0412012. 21st International Conference on Neutrino Physics and Astrophysics, (Neutrino 2004) 14-19 June 2004, College de France - Paris.
[Sarazin:2004eu]
[6-50]
Results of Cuoricino and perspectives for CUORE, E. Fiorini, 2004. Neutrino 2004, 13-19 June 2004, Paris, France. http://neutrino2004.in2p3.fr/slides/thursday/fiorini.ppt.
[Fiorini-Nu2004]
[6-51]
Search for neutrinoless double beta decay with enriched ${}^{76}Ge$ in Gran Sasso, H.V. Klapdor-Kleingrothaus, 2004. Neutrino 2004, 13-19 June 2004, Paris, France. http://neutrino2004.in2p3.fr/slides/thursday/Klapdor/klapdor.html.
[Klapdor-Nu2004]
[6-52]
NEMO3 : first results, X. Sarazin, 2004. Neutrino 2004, 13-19 June 2004, Paris, France. http://neutrino2004.in2p3.fr/slides/thursday/sarazin.ppt.
[Sarazin-Nu2004]
[6-53]
Status of Evidence for Neutrinoless Double Beta Decay, and the Future: GENIUS and GENIUS-TF, H. V. Klapdor-Kleingrothaus, arXiv:hep-ph/0307330, 2003. NOON 2003, Japan, Kanazawa, February 2003.
[Klapdor-Kleingrothaus:2003enp]
[6-54]
Status report on the NEMO3 experiment, Anne-Isabelle Etienvre, arXiv:hep-ex/0306027, 2003.
[Etienvre:2003ig]
[6-55]
To be or not to Be? - First Evidence for Neutrinoless Double Beta Decay, H.V. Klapdor-Kleingrothaus, Int. J. Mod. Phys. A18 (2003) 4113, arXiv:hep-ph/0303217. International Conference 'Neutrinos and Implications for Physics Beyond the Standard Model', Oct. 11-13, 2002, Stony Brook, USA.
[Klapdor-Kleingrothaus:2003ehn]
[6-56]
First Evidence for Neutrinoless Double Beta Decay, H.V. Klapdor-Kleingrothaus, Found. Phys. 33 (2003) 813, arXiv:hep-ph/0302234. Zacatecas Forum in Physics 2002, 11-13 MAY, 2002, Zacatecas, Mexico.
[Klapdor-Kleingrothaus:2003vje]
[6-57]
Search for Neutrino Mass and Dark Matter in Underground Experiments, H.V. Klapdor-Kleingrothaus, arXiv:hep-ph/0211033, 2002. International Sixth School 'Non-Accelerator Astroparticle Physics', ICTP, Trieste, Italy, 9-20 July 2001.
[Klapdor-Kleingrothaus:2002cdj]
[6-58]
Start-up of the NEMO3 experiment, F. Piquemal (NEMO), arXiv:hep-ex/0205006, 2002. XXXVIth Rencontres de Moriond, Les Arcs(2002).
[Piquemal:2002aj]
[6-59]
New results of Cd-116 beta beta decay experiment, P. G. Bizzeti et al., Nucl. Phys. Proc. Suppl. 110 (2002) 389-391. TAUP 2001.
[Bizzeti:2002rx]

7 - Experiment - Detector

[7-1]
Generative Models for Simulation of KamLAND-Zen, Z. Fu, C. Grant, D. M. Krawiec, A. Li, L. Winslow, arXiv:2312.14372, 2023.
[Fu:2023ked]
[7-2]
A novel cryogenic VUV spectrofluorometer for the characterization of wavelength shifters, A. Leonhardt, M. Goldbrunner, B. Hackett, S. Schonert, arXiv:2311.15901, 2023.
[Leonhardt:2023yiu]
[7-3]
High-pressure xenon gas time projection chamber with scalable design and its performance at around the Q value of 136^{136}Xe double-beta decay, Masashi Yoshida et al., PTEP 2024 (2024) 013H01, arXiv:2310.19714.
[Yoshida:2023svu]
[7-4]
The background model of the CUPID-Mo $0\nu\beta\beta$ experiment, C. Augier et al. (CUPID-Mo), Eur.Phys.J.C 83 (2023) 675, arXiv:2305.01402.
[CUPID-Mo:2023vle]
[7-5]
A Compact Dication Source for Ba$^{2+}$ Tagging and Heavy Metal Ion Sensor Development, K. E. Navarro et al. (NEXT), JINST 18 (2023) P07044, arXiv:2303.01522.
[NEXT:2023qoy]
[7-6]
Eur.Phys.J.C 83 (2023) 236.
[Comellato:2023qrt]
[7-7]
A Method to Load Tellurium in Liquid Scintillator for the Study of Neutrinoless Double Beta Decay, D. J. Auty et al., Nucl.Instrum.Meth.A 1051 (2023) 168204, arXiv:2212.12444.
[Auty:2022lgh]
[7-8]
High resolution filtering and digitization system for cryogenic bolometric detectors, Paolo Carniti, Claudio Gotti, Gianluigi Pessina, Nucl.Instrum.Meth.A 1045 (2023) 167658, arXiv:2207.06284.
[Carniti:2022coa]
[7-9]
Identification and simulation of surface alpha events on passivated surfaces of germanium detectors and the influence of metalisation, Iris Abt, Christopher Gooch, Felix Hagemann, Lukas Hauertmann, Xiang Liu, Oliver Schulz, Martin Schuster, Anna Julia Zsigmond, Eur.Phys.J.C 82 (2022) 1119, arXiv:2206.15265.
[Abt:2022qub]
[7-10]
Xenon-Doped Liquid Argon TPCs as a Neutrinoless Double Beta Decay Platform, A. Mastbaum, F. Psihas, J. Zennamo, Phys.Rev.D 106 (2022) 092002, arXiv:2203.14700.
[Mastbaum:2022rhw]
[7-11]
The Ion Fluorescence Chamber (IFC): A new concept for directional dark matter and topologically imaging neutrinoless double beta decay searches, B. J. P. Jones, F. W. Foss, J. A. Asaadi, E. D. Church, J. deLeon, E. Gramellini, O. H. Seidel, T. T. Vuong, arXiv:2203.10198, 2022.
[Jones:2022moh]
[7-12]
Slow-Fluor Scintillator for Low Energy Solar Neutrinos and Neutrinoless Double Beta Decay, Jack Dunger, Edward J. Leming, Steven D. Biller, Phys.Rev.D 105 (2022) 092006, arXiv:2203.01147.
[Dunger:2022gif]
[7-13]
Simultaneous scintillation light and charge readout of a pure argon filled Spherical Proportional Counter, R. Bouet et al., Nucl.Instrum.Meth.A 1028 (2022) 166382, arXiv:2201.12621.
[Bouet:2022kav]
[7-14]
Ba${}^{2+}$ ion trapping by organic submonolayer: towards an ultra-low background neutrinoless double beta decay detector, P. Herrero-Gomez et al., arXiv:2201.09099, 2022.
[Herrero-Gomez:2022uci]
[7-15]
Identification of the anomalous fast bulk events in a p-type point contact germanium detector, Renmingjie Li et al., Nucl.Sci.Tech. 33 (2022) 57, arXiv:2201.02961.
[Li:2022fho]
[7-16]
BambooMC - A Geant4-based simulation program for the PandaX experiments, Xun Chen et al., JINST 16 (2021) T09004, arXiv:2107.05935.
[Chen:2021asx]
[7-17]
Surface characterization of p-type point contact germanium detectors, F. Edzards, L. Hauertmann, I. Abt, C. Gooch, B. Lehnert, X. Liu, S. Mertens, D. C. Radford, O. Schulz, M. Willers, Particles 4 (2021) 489-511, arXiv:2105.14487.
[Edzards:2021gmi]
[7-18]
Final results of CALDER: Kinetic inductance light detectors to search for rare events, Laura Cardani, Nicola Casali, Ivan Colantoni, Angelo Cruciani, Sergio Di Domizio, Maria Martinez, Valerio Pettinacci, Giorgio Pettinari, Marco Vignati, Eur.Phys.J.C 81 (2021) 636, arXiv:2104.06850.
[Cardani:2021iff]
[7-19]
Signal identification with Kalman Filter towards background-free neutrinoless double beta decay searches in gaseous detectors, Tao Li, Shaobo Wang, Yu Chen, Ke Han, Heng Lin, Kaixiang Ni, Wei Wang, Yiliu Xu, Anni Zou, JHEP 06 (2021) 106, arXiv:2102.08221.
[Li:2021viv]
[7-20]
Implication of the Temperature-Dependent Charge Barrier Height of Amorphous Germanium Contact Detector in Searching for Rare Event Physics, R. Panth, W.-Z. Wei, D.-M. Mei, J. Liu, S. Bhattarai, H. Mei, M. Raut, P. Acharya, K. Kooi, G.-J. Wang, Nucl.Instrum.Meth.A 1035 (2022) 166862, arXiv:2101.09322.
[Panth:2021lhw]
[7-21]
Modelling the shape of thermal pulses from low temperature detectors, Irene Nutini, Carlo Bucci, Oliviero Cremonesi, arXiv:2101.05029, 2021.
[Nutini:2021cjh]
[7-22]
Improving the light collection efficiency of silicon photomultipliers through the use of metalenses, A.A. Loya Villalpando, J. Martin-Albo, W.T. Chen, R. Guenette, C. Lego, J.S. Park, F. Capasso, JINST 15 (2020) P11021, arXiv:2007.06678.
[Villalpando:2020tsc]
[7-23]
R2D2 spherical TPC: first energy resolution results, R. Bouet et al., JINST 16 (2021) P03012, arXiv:2007.02570.
[Bouet:2020lbp]
[7-24]
Development of low-background photomultiplier tubes for liquid xenon detectors, K. Abe et al. (XMASS), JINST 15 (2020) P09027, arXiv:2006.00922.
[XMASS:2020zzt]
[7-25]
Design of a Multiple-Reflection Time-of-Flight Mass-Spectrometer for Barium-tagging, K. Murray, J. Dilling, R. Gornea, Y. Ito, T. Koffas, A.A. Kwiatkowski, Y. Lan, M.P. Reiter, V. Varentsov, T. Brunner, Hyperfine Interact. 240 (2019) 97, arXiv:1910.01667.
[Murray:2019snw]
[7-26]
The DireXeno Experiment - Measuring Correlated Scintillation Signatures in Liquid Xenon, R. Itay, P. Z. Szabo, G. Koltman, M.M. Devi, M. Shutman, H. Landsman, R. Budnik, JINST 15 (2020) T06001, arXiv:1909.08197.
[Itay:2019ggq]
[7-27]
Impact of Charge Trapping on the Energy Resolution of Ge Detectors for Rare-Event Physics Searches, D.-M. Mei et al., J.Phys. G47 (2020) 105106, arXiv:1909.05806.
[Mei:2019usy]
[7-28]
Deep learning based pulse shape discrimination for germanium detectors, P. Holl, L. Hauertmann, B. Majorovits, O. Schulz, M. Schuster, A.J. Zsigmond, Eur.Phys.J. C79 (2019) 450, arXiv:1903.01462.
[Holl:2019xtt]
[7-29]
Fabrication and Characterization of High-Purity Germanium Detectors with Amorphous Germanium Contacts, X.-H. Meng, G.-J. Wang, M.-D. Wagner, H. Mei, W.-Z. Wei, J. Liu, G. Yang, D.-M. Mei, JINST 14 (2019) P02019, arXiv:1810.05662.
[Meng:2018bnr]
[7-30]
Mobility and Clustering of Barium Ions and Dications in High Pressure Xenon Gas, E. Bainglass, B.J.P. Jones, F. W. Foss Jr, M. N. Huda, D. R. Nygren, Phys.Rev. A97 (2018) 062509, arXiv:1804.01169.
[Bainglass:2018odn]
[7-31]
Pulse Shapes in High Purity Germanium Point Contact Detectors with Low Net Impurity Concentration, N. Abgrall et al., Nucl.Instrum.Meth. A921 (2019) 81-88, arXiv:1803.06999.
[Mertens:2018xmv]
[7-32]
Three-dimensional convolutional neural networks for neutrinoless double-beta decay signal/background discrimination in high-pressure gaseous Time Projection Chamber, Pengcheng Ai, Dong Wang, Guangming Huang, Xiangming Sun, JINST 13 (2018) P08015, arXiv:1803.01482.
[Ai:2018juq]
[7-33]
Low-Temperature Relative Reflectivity Measurements of Reflective and Scintillating Foils used in Rare Event Searches, A. Langenkamper et al., Nucl.Instrum.Meth. A884 (2018) 40-44, arXiv:1703.07152.
[Langenkamper:2017icg]
[7-34]
Study of $\mathrm{CdMoO_4}$ crystal for a neutrinoless double beta decay experiment with $\mathrm{{}^{116}Cd}$ and $\mathrm{{}^{100}Mo}$ nuclides, Ming-xuan Xue, Yun-long Zhang, Hai-ping Peng, Zi-zong Xu, Xiao-lian Wang, Chin.Phys. C41 (2017) 046002, arXiv:1702.06946.
[Xue:2017qbf]
[7-35]
Production of 82Se enriched Zinc Selenide (ZnSe) crystals for the study of neutrinoless double beta decay, I. Dafinei et al., J.Cryst.Growth 475 (2017) 158-170, arXiv:1702.05877.
[Dafinei:2017xpc]
[7-36]
Electroluminescence collection cell as a readout for a high energy resolution Xenon gas TPC, S. Ban et al., Nucl.Instrum.Meth. A875 (2017) 185-192, arXiv:1701.03931.
[Ban:2017nnm]
[7-37]
Feasibility study of SiGHT: a novel ultra low background photosensor for low temperature operation, Yi Wang et al., JINST 12 (2017) P02019, arXiv:1611.04713.
[Wang:2016xac]
[7-38]
Alpha-event and surface characterisation in segmented true-coaxial HPGe detectors, Iris Abt, Lucia Garbini, Chris Gooch, Sabine Irlbeck, Xiang Liu, Matteo Palermo, Oliver Schulz, Nucl.Instrum.Meth. A858 (2017) 80-89, arXiv:1611.00165.
[Abt:2016trw]
[7-39]
Enriched TeO$_2$ bolometers with active particle discrimination: towards the CUPID experiment, D.R. Artusa et al., Phys.Lett. B767 (2017) 321-329, arXiv:1610.03513.
[Artusa:2016mat]
[7-40]
Separating Double-Beta Decay Events from Solar Neutrino Interactions in a Kiloton-Scale Liquid Scintillator Detector By Fast Timing, Andrey Elagin et al., Nucl.Instrum.Meth.A 849 (2017) 102-111, arXiv:1609.09865.
[Elagin:2016zgp]
[7-41]
First test of an enriched $^{116}$CdWO$_4$ scintillating bolometer for neutrinoless double-beta-decay searches, F.A. Danevich et al., Eur.Phys.J. C76 (2016) 487, arXiv:1606.07806.
[Barabash:2016zmb]
[7-42]
CUORE-0 detector: design, construction and operation, C. Alduino et al. (CUORE), JINST 11 (2016) P07009, arXiv:1604.05465.
[CUORE:2016aqq]
[7-43]
Optimization of the Cherenkov signal from TeO$_{2}$ bolometers, Nicola Casali, Astropart.Phys. 91 (2017) 44-50, arXiv:1604.01587.
[Casali:2016luq]
[7-44]
Cerenkov light identification with Si low-temperature detectors with Neganov-Luke effect-enhanced sensitivity, L. Gironi et al., Phys. Rev. C94 (2016) 054608, arXiv:1603.08049.
[Gironi:2016nae]
[7-45]
Characterization of a broad-energy germanium detector using an assembled collimation device at CJPL, Zhi Zeng et al., arXiv:1603.01782, 2016.
[Zeng:2016mef]
[7-46]
The 3-D topological signatures and a new discrimination method for single-electron events and $0\nu\beta\beta$ events in CZT: A Monte Carlo simulation study, Ming Zeng et al., Nucl.Instrum.Meth. A858 (2017) 44-52, arXiv:1601.06300.
[Zeng:2016rcz]
[7-47]
Background suppression in massive TeO$_2$ bolometers with Neganov-Luke amplified light detectors, N. Casali et al., J.Low.Temp.Phys. 184 (2016) 286-291, arXiv:1510.03266.
[Pattavina:2015jxe]
[7-48]
A low-background parylene temperature sensor, A. Dhar, J.C. Loach, P.J. Barton, J.T. Larsen, A.W.P. Poon, JINST 10 (2015) P12002, arXiv:1508.05757.
[Dhar:2015mba]
[7-49]
Energy resolution and efficiency of phonon-mediated KIDs for light detection, L. Cardani et al., Appl. Phys. Lett. 107 (2015) 093508, arXiv:1505.04666.
[Cardani:2015tqa]
[7-50]
Aboveground test of an advanced Li$_2$MoO$_4$ scintillating bolometer to search for neutrinoless double beta decay of $^{100}$Mo, T.B. Bekker et al., Astropart. Phys. 72 (2016) 38-45, arXiv:1410.6933.
[Bekker:2014tfa]
[7-51]
Simulation studies for Tin Bolometer Array for Neutrinoless Double Beta Decay, V. Singh, N. Dokania, S. Mathimalar, V. Nanal, R.G. Pillay, arXiv:1408.4520, 2014.
[Singh:2014fia]
[7-52]
Background discrimination in neutrinoless double beta decay search with $\textrm{TeO}_{2}$ bolometers using Neganov-Luke amplified cryogenic light detectors, M. Willers et al., JINST 10 (2015) P03003, arXiv:1407.6516.
[Willers:2014eoa]
[7-53]
A flexible scintillation light apparatus for rare event searches, Valter Bonvicini et al., Eur.Phys.J. C74 (2014) 3151, arXiv:1407.4608.
[Bonvicini:2014aca]
[7-54]
Rejection of randomly coinciding events in ZnMoO$_4$ scintillating bolometers, D.M. Chernyak et al., Eur.Phys.J. C74 (2014) 2913, arXiv:1404.1231.
[Chernyak:2014ska]
[7-55]
3D Particle Track Reconstrution in a Single Layer Cadmium-Telluride Hybrid Active Pixel Detector, Mykhaylo Filipenko, Thomas Gleixner, Gisela Anton, Thilo Michel, Eur.Phys.J. C74 (2014) 3013, arXiv:1403.5935.
[Filipenko:2014zta]
[7-56]
Thermal Model and Optimization of a Large Crystal Detector using a Metallic Magnetic Calorimeter, G.B. Kim et al., J. Low. Temp. Phys. 176 (2014) 637-643, arXiv:1402.2334.
[Kim:2014kwa]
[7-57]
Optimization of light collection from crystal scintillators for cryogenic experiments, F.A. Danevich et al., Nucl.Instrum.Meth. A744 (2014) 41-47, arXiv:1402.2241.
[Danevich:2014opa]
[7-58]
Characterization and modeling of a low background HPGe detector, N. Dokania et al., Nucl.Instrum.Meth. A745 (2014) 119-127, arXiv:1311.4779.
[Dokania:2013uma]
[7-59]
Pattern recognition techniques to reduce backgrounds in the search for the 136Xe double beta decay with gaseous TPCs, F.J. Iguaz et al., AIP Conf.Proc. 1549 (2013) 50, arXiv:1306.3446. Proceedings of the Low Radioactivity Techniques Conference (LRT2013), Gran Sasso (Italy). To be published in AIP Conf. Proc.
[Iguaz:2013pga]
[7-60]
Pattern recognition of $^{136}$Xe double beta decay events and background discrimination in a high pressure Xenon TPC, S Cebrian et al., J. Phys. G40 (2013) 125203, arXiv:1306.3067.
[Cebrian:2013nct]
[7-61]
Improved data analysis of the internal background measurements of 40Ca100MoO4 scintillation crystals, Nikita Khanbekov et al., arXiv:1304.4581, 2013.
[Khanbekov:2013sja]
[7-62]
Performances of a large mass ZnSe bolometer to search for rare events, J.W. Beeman et al., JINST 1305 (2013) P05021, arXiv:1303.4080.
[Beeman:2013vda]
[7-63]
Noise correlation and decorrelation in arrays of bolometric detectors, C. Mancini-Terracciano, M. Vignati, JINST JINST7 (2012) P06013, arXiv:1203.1782.
[Mancini-Terracciano:2012cyg]
[7-64]
Optimizing the energy threshold of light detectors coupled to luminescent bolometers, G. Piperno, S. Pirro, M. Vignati, JINST 6 (2011) P10005, arXiv:1107.5679.
[Piperno:2011fp]
[7-65]
Discrimination of alpha and beta/gamma interactions in a TeO$_2$ bolometer, J.W. Beeman et al., Astropart. Phys. 35 (2012) 558, arXiv:1106.6286.
[Beeman:2011yc]
[7-66]
GELATIO: a general framework for modular digital analysis of high-purity Ge detector signals, M. Agostini, L. Pandola, P. Zavarise, O. Volynets, JINST 6 (2011) P08013, arXiv:1106.1780.
[Agostini:2011xe]
[7-67]
Rejection of Surface Background in Thermal Detectors, Carlo Bucci, Paolo Gorla, Wolfgang Seidel, arXiv:1103.5296, 2011.
[Bucci:2011gc]
[7-68]
Micromegas readouts for double beta decay searches, S. Cebrian et al., JCAP 1010 (2010) 010, arXiv:1009.1827.
[Cebrian:2010nw]
[7-69]
Pulse shape discrimination studies with a Broad-Energy Germanium detector for signal identification and background suppression in the GERDA double beta decay experiment, Dusan Budjas, Marik Barnabe Heider, Oleg Chkvorets, Nikita Khanbekov, Stefan Schonert, JINST 4 (2009) P10007, arXiv:0909.4044.
[Budjas:2009zu]
[7-70]
Large-Mass Ultra-Low Noise Germanium Detectors: Performance and Applications in Neutrino and Astroparticle Physics, P.S. Barbeau, J.I. Collar, O. Tench, JCAP 0709 (2007) 009, arXiv:nucl-ex/0701012.
[Barbeau:2007qi]
[7-71]
Development of tin-loaded liquid scintillator for the double beta decay experiment, M. J. Hwang et al. (KIMS), Nucl. Instrum. Meth. A570 (2007) 454-458.
[KIMS:2007syj]
[7-72]
Pulse shape analysis in segmented detectors as a technique for background reduction in Ge double-beta decay experiments, S. R. Elliott et al., Nucl. Instrum. Meth. A558 (2006) 504, arXiv:nucl-ex/0509026.
[Elliott:2005at]
[7-73]
Pulse Shape Discrimination in the IGEX Experiment, D. Gonzalez et al., Nucl. Instrum. Meth. A515 (2003) 634, arXiv:hep-ex/0302018.
[Gonzalez:2003pr]

8 - Experiment - Detector - Talks

[8-1]
New results about the revolutionary bolometer assembly of BINGO, A. Armatol (BINGO), arXiv:2301.06946, 2023.
[Armatol:2023rvc]
[8-2]
Progress toward Barium Tagging in High Pressure Xenon Gas with Single Molecule Fluorescence Imaging, N. Byrnes, F. W. Foss Jr., B.J.P Jones, A.D. McDonald, D.R. Nygren, P. Thapa, A. Trinidad, J.Phys.Conf.Ser. 1312 (2019) 012001, arXiv:1901.03369. 9th Symposium on Large TPCs for Rare Event Detection in Paris, France.
[Byrnes:2019jxr]
[8-3]
On the possibility of positive-ion detection in gaseous TPCs and its potential use for neutrinoless double beta decay searches in Xe-136, Lior Arazi, J.Phys.Conf.Ser. 1029 (2018) 012004, arXiv:1703.10491. 8th Symposium on Large TPCs for Low-Energy Rare Event Detection.
[Arazi:2017exp]
[8-4]
The potential of discrimination methods in a high pressure xenon TPC for the search of the neutrinoless double-beta decay of Xe-136, F.J. Iguaz et al., J.Phys.Conf.Ser. 888 (2017) 012078, arXiv:1609.09735. XXVII International Conference on Neutrino Physics and Astrophysics (Neutrino 2016), London (U.K.), 4-9 July 2016.
[Iguaz:2016hlu]
[8-5]
Measurement of scintillation and ionization yield with high-pressure gaseous mixtures of Xe and TMA for improved neutrinoless double beta decay and dark matter searches, Y. Nakajima et al., JINST 11 (2016) C03041, arXiv:1511.02257. LIght Detection In Noble Elements (LIDINE 2015).
[Nakajima:2015meb]
[8-6]
Emulation workbench for position sensitive gaseous scintillation detectors, L. Pereira, L. M. S. Margato, A. Morozov, V. Solovov, F. A. F. Fraga, JINST 10 (2015) C12010, arXiv:1510.03792. IWORID2015 (Hamburg).
[Pereira:2015dpa]
[8-7]
Background radioactivity of construction materials, raw substance and ready-made CaMoO4 crystals, O.A. Busanov et al., EPJ Web Conf. 65 (2014) 03002, arXiv:1312.1041. Workshop on Radiopure Scintillators RPSCINT 2013, 17-20.09.2013, Kyiv, Ukraine.
[Busanov:2013jca]
[8-8]
Solar Neutrino Background in Neutrinoless double beta-decay searching for experiments, Alexander A. Klimenko, arXiv:hep-ph/0407156, 2004. LIV International Meeting on Nuclear Spectroscopy and Nuclear Structure 'NUCLEUS-2004' June 22-25, 2004, Belgorod, Russia.
[Klimenko:2004kc]

9 - Experiment - Two-Neutrino Double-Beta Decay

[9-1]
Searching for Two-Neutrino and Neutrinoless Double Beta Decay of $^{134}$Xe with the PandaX-4T Experiment, Xiyu Yan et al., Phys.Rev.Lett. 132 (2024) 152502, arXiv:2312.15632.
[PandaX:2023ggs]
[9-2]
Measurement of the $2\nu\beta\beta$ decay rate and spectral shape of $^{100}$Mo from the CUPID-Mo experiment, C. Augier et al., Phys.Rev.Lett. 131 (2023) 162501, arXiv:2307.14086.
[CUPID-Mo:2023lru]
[9-3]
Measurement of the 2$u\beta\beta$ Decay Half-Life of Se-82 with the Global CUPID-0 Background Model, O. Azzolini et al., Phys.Rev.Lett. 131 (2023), arXiv:2306.14654.
[CUPID:2023wyy]
[9-4]
Search for two-neutrino double-beta decay of $^{136}$Xe to the excited state of $^{136}$Ba with the complete EXO-200 dataset*, S. Al Kharusi et al. (EXO-200), Chin. Phys. C 47 (2023) 103001, arXiv:2303.01103.
[EXO-200:2023pdl]
[9-5]
Measurement of Double Beta Decay Half-life of $^{136}$Xe with the PandaX-4T Detector, Lin Si et al., Research 2022 (2022) 9798721, arXiv:2205.12809.
[PandaX:2022kwg]
[9-6]
Measurement of the ${}^{136}$Xe two-neutrino double beta decay half-life via direct background subtraction in NEXT, P. Novella et al. (NEXT), Phys.Rev.C 105 (2022) 055501, arXiv:2111.11091.
[NEXT:2021dqj]
[9-7]
Search for Periodic Modulations of the Rate of Double-Beta Decay of $^{100}$Mo in the NEMO-3 Detector, R. Arnold et al. (NEMO-3), arXiv:2011.07657, 2020.
[1830523]
[9-8]
Precision measurement of the $^{136}$Xe two-neutrino $\beta\beta$ spectrum in KamLAND-Zen and its impact on the quenching of nuclear matrix elements, A. Gando et al. (KamLAND-Zen), Phys.Rev.Lett. 122 (2019) 192501, arXiv:1901.03871.
[KamLAND-Zen:2019imh]
[9-9]
2K(2\nu)-Capture in Xe-124: Results of Data Processing for an Exposure of 37.7 kg x day, Yu.M.Gavriljuk et al., Phys.Part.Nucl. 49 (2018) 563-568, arXiv:1806.03060.
[Gavriljuk:2018pez]
[9-10]
Improved search for two-neutrino double electron capture on $^{124}$Xe and $^{126}$Xe using particle identification in XMASS-I, K. Abe et al. (XMASS), PTEP 2018 (2018) 053D03, arXiv:1801.03251.
[XMASS:2018txy]
[9-11]
Search for Two-Neutrino Double Electron Capture of $^{124}$Xe with XENON100, E. Aprile et al. (XENON), Phys.Rev. C95 (2017) 024605, arXiv:1609.03354.
[XENON:2016jyx]
[9-12]
Search for $2\beta$ decay of $^{106}$Cd with enriched $^{106}$CdWO$_4$ crystal scintillator in coincidence with four HPGe detectors, P. Belli et al., Phys. Rev. C93 (2016) 045502, arXiv:1603.06363.
[Belli:2016yof]
[9-13]
Search for $2\nu\beta\beta$ decay of $^{136}$Xe to the 0$_1^+$ excited state of $^{136}$Ba with EXO-200, J.B. Albert et al. (EXO-200), Phys.Rev.C 93 (2016) 035501, arXiv:1511.04770.
[EXO-200:2015koy]
[9-14]
Search for two-neutrino double electron capture on $^{124}$Xe with the XMASS-I detector, K. Abe et al. (XMASS), Phys.Lett. B759 (2016) 64-68, arXiv:1510.00754.
[XMASS:2015ljn]
[9-15]
$2\nu\beta\beta$ decay of $^{76}$Ge into excited states with GERDA Phase I, M. Agostini et al., J. Phys. G42 (2015) 115201, arXiv:1506.03120.
[GERDA:2015naf]
[9-16]
Results on $\beta\beta$ decay with emission of two neutrinos or Majorons in $^{76}$Ge from GERDA Phase I, M. Agostini et al., Eur. Phys. J. C75 (2015) 416, arXiv:1501.02345.
[Agostini:2015nwa]
[9-17]
Two-neutrino double-beta decay of $^{150}$Nd to excited final states in $^{150}$Sm, Mary F. Kidd, James H. Esterline, Sean W. Finch, Werner Tornow, Phys. Rev. C90 (2014) 055501, arXiv:1411.3755.
[Kidd:2014hra]
[9-18]
First results of the experiment to search for double beta decay of 106Cd with 106CdWO4 crystal scintillator in coincidence with four crystals HPGe detector, V.I. Tretyak, P. Belli, R. Bernabei, V.B. Brudanin, F. Cappella et al., EPJ Web Conf. 65 (2014) 01004, arXiv:1312.5773.
[Tretyak:2013zva]
[9-19]
First bolometric measurement of the two neutrino double beta decay of $^{100}$Mo with a ZnMoO$_4$ crystals array, L. Cardani et al., J. Phys. G41 (2014) 075204, arXiv:1312.4680.
[Cardani:2013mja]
[9-20]
Search for 2\u03b2 decays of 96Ru and 104Ru by ultralow-background HPGe \u03b3 spectrometry at LNGS: Final results, P. Belli, R. Bernabei, F. Cappella, R. Cerulli, F.A. Danevich et al., Phys. Rev. C87 (2013) 034607, arXiv:1302.7134.
[Belli:2013qja]
[9-21]
First search for double-beta decay of 184Os and 192Os, P. Belli, R. Bernabei, F. Cappella, R. Cerulli, F.A. Danevich et al., Eur.Phys.J. A49 (2013) 24, arXiv:1301.3366.
[Belli:2013dy]
[9-22]
Measurement of the half-life of the two-neutrino double beta decay of Ge-76 with the Gerda experiment, M. Agostini et al. (GERDA), J. Phys. G40 (2013) 035110, arXiv:1212.3210.
[GERDA:2012huf]
[9-23]
Observation of Two-Neutrino Double-Beta Decay in Xe-136 with EXO-200, N. Ackerman et al. (EXO-200), Phys. Rev. Lett. 107 (2011) 212501, arXiv:1108.4193.
[EXO-200:2011xzf]
[9-24]
New Results for Double-Beta Decay of Mo-100 to Excited Final States of Ru-100 Using the TUNL-ITEP Apparatus, M. F. Kidd, J. H. Esterline, W. Tornow, A. S. Barabash, V. I. Umatov, Nucl. Phys. A821 (2009) 251-261, arXiv:0902.4418.
[Kidd:2009ai]
[9-25]
Measurement of double beta decay of 100Mo to excited states in the NEMO 3 experiment, R. Arnold et al. (NEMO), Nucl. Phys. A781 (2007) 209-226, arXiv:hep-ex/0609058.
[NEMO:2006smm]
[9-26]
Two-neutrino 2beta decay of Cd-116 and new half-life limits on 2beta decay of W-180 and W-186, F. A. Danevich et al., Nucl. Phys. A717 (2003) 129-145.
[Danevich:2003yj-2nu]
[9-27]
Search for beta- and beta- beta- decays of Ca-48, A. Bakalyarov, A. Balysh, A. Barabash, C. Briancon, V. Brudanin et al., Nucl. Phys. A700 (2002) 17-24.
[Bakalyarov:2002wf]
[9-28]
Search for beta and beta beta decays in Ca-48, R. Bernabei et al., Nucl. Phys. A705 (2002) 29-39.
[Bernabei:2002su]

10 - Experiment - Two-Neutrino Double-Beta Decay - Talks

[10-1]
CUORE-0 background analysis and evaluation of $^{130}$Te $2\nu\beta\beta$ decay half-life, Davide Chiesa, arXiv:1610.04518, 2016. 28th Rencontres de Blois, Particle Physics and Cosmology, Chateau Royal de Blois, May 29 - June 03, 2016.
[Chiesa:2016pau]
[10-2]
Search for $2K(2\nu)$-capture of Xe-124, Yu.M. Gavrilyuk et al., Phys.Part.Nucl. 48 (2017) 38-41, arXiv:1507.04520. International Workshop on Prospects of Particle Physics: 'Neutrino Physics and Astrophysics' February 01 - Ferbuary 08, 2015, Valday, Russia.
[Gavrilyuk:2015ada]
[10-3]
Search for $2{\beta}$ decay of 116Cd with the help of enriched 116CdWO4 crystal scintillators, D.V. Poda, A.S. Barabash, P. Belli, R. Bernabei, F. Cappella et al., EJP Web Conf. 65 (2014) 01005, arXiv:1312.0743.
[Poda:2013ktq]
[10-4]
Search for Rare Nuclear Decays with HPGe Detectors at the STELLA Facility of the LNGS, P. Belli, R. Bernabei, F. Cappella, R. Cerulli, F.A. Danevich et al., AIP Conf.Proc. 1572 (2013) 114-117, arXiv:1308.2494.
[Belli:2013qha]
[10-5]
Search for double beta decay of Cd-106 by using isotopically enriched CdWO-106(4) crystal scintillator, P. Belli, R. Bernabei, R.S. Boiko, V.B. Brudanin, F. Cappella et al., J. Phys. Conf. Ser. 375 (2012) 042021.
[Belli:2012gk]
[10-6]
Double beta experiments with the help of scintillation and HPGe detectors at Gran Sasso, A. Barabash, P. Belli, R. Bernabei, R.S. Boiko, V.B. Brudanin et al., AIP Conf.Proc. 1417 (2011) 28-32.
[Barabash:2011zz]
[10-7]
Search for rare processes at Gran Sasso, P. Belli, R. Bernabei, R.S. Boiko, F. Cappella, R. Cerulli et al., 2007.
[Belli:2007zz]
[10-8]
Search for $\beta^+$EC and ECEC processes in $^{74}$Se, A.S. Barabash, Ph. Hubert, A. Nachab, V. Umatov, Nucl. Phys. A785 (2007) 371-380, arXiv:hep-ex/0610046. 2-nd Symposium on 'Neutrino and Dark Matter in Nuclear Physics' (Paris, September 3-9, 2006).
[Barabash:2006qx]

11 - Experiment - Nuclear Physics

[11-1]
The MONUMENT Experiment: Ordinary Muon Capture studies for 0$\nu\beta\beta$ decay, Dhanurdhar Bajpai et al., arXiv:2404.12686, 2024.
[Bajpai:2024bkf]
[11-2]
Simultaneous Measurement of Half-Life and Spectral Shape of $^{115}$In $\beta$-decay with an Indium Iodide Cryogenic Calorimeter, L. Pagnanini et al., arXiv:2401.16059, 2024.
[Pagnanini:2024qmi]
[11-3]
Determining $g_{A}/g_{V}$ with High Resolution Spectral Measurements Using an LiInSe$_2$ Bolometer, A.F. Leder et al., Phys.Rev.Lett. 129 (2022) 232502, arXiv:2206.06559.
[Leder:2022beq]
[11-4]
Double-$\beta$ decay studies with JYFLTRAP, V.S. Kolhinen, S. Rahaman, J. Suhonen, Hyperfine Interact. 223 (2014) 195-199.
[Kolhinen:2014vba]
[11-5]
On the resonant neutrinoless double-electron-capture decay of Ce-136, V.S. Kolhinen, T. Eronen, D. Gorelov, J. Hakala, A. Jokinen et al., Phys.Lett. B697 (2011) 116-120.
[Kolhinen:2011zz]
[11-6]
Double-beta decay Q values of Cd-116 and Te-130, S. Rahaman, V.V. Elomaa, T. Eronen, J. Hakala, A. Jokinen et al., Phys.Lett. B703 (2011) 412-416.
[Rahaman:2011zz]
[11-7]
Accurate Q value for the Se-74 double-electron-capture decay, V.S. Kolhinen, V.V. Elomaa, T. Eronen, J. Hakala, A. Jokinen et al., Phys.Lett. B684 (2010) 17-21.
[Kolhinen:2010zz]
[11-8]
Double-beta decay Q value of $^{150}$Nd, V.S. Kolhinen, T. Eronen, D. Gorelov, J. Hakala, A. Jokinen et al., Phys. Rev. C82 (2010) 022501.
[Kolhinen:2010zza]
[11-9]
Accurate Q Value for the Sn-112 Double-beta Decay and its Implication for the Search of the Neutrino Mass, S. Rahaman, V.-V. Elomaa, T. Eronen, J. Hakala, A. Jokinen et al., Phys. Rev. Lett. 103 (2009) 042501.
[Rahaman:2009zza]
[11-10]
Q value of the Mo-100 Double-Beta Decay, S. Rahaman, V.-V. Elomaa, T. Eronen, J. Hakala, A. Jokinen et al., Phys.Lett. B662 (2008) 111-116, arXiv:0712.3337.
[Rahaman:2007ng]

12 - Experiment - Background

[12-1]
Ultra-Low Background Germanium Assay at the Boulby Underground Laboratory, P. R. Scovell, E. Meehan, S. M. Paling, M. Thiesse, X. Liu, C. Ghag, M. Ginsz, P. Quirin, D. Ralet, JINST 19 (2024) P01017, arXiv:2308.03444.
[Scovell:2023pxo]
[12-2]
Evaluation of cosmogenic production of $^{39}Ar$ and $^{42}Ar$ for rare-event physics using underground argon, Chao Zhang, Dongming Mei, Astropart.Phys. 142 (2022) 102733, arXiv:2202.06403.
[Zhang:2022dlg]
[12-3]
Measurements of gamma ray, cosmic muon and residual neutron background fluxes for rare event search experiments at an underground laboratory, Sayan Ghosh, Shubham Dutta, Naba Kumar Mondal, Satyajit Saha, Astropart.Phys. 139 (2022) 102700, arXiv:2106.12980.
[Ghosh:2021xhu]
[12-4]
$^{210}$Pb measurements at the Andre E. Lalonde AMS Laboratory for the radioassay of materials used in rare event search detectors, Carlos Vivo-Vilches, Benjamin Weiser, Xiaolei Zhao, Barbara B.A. Francisco, Razvan Gornea, William E. Kieser, Nucl.Instrum.Meth.B 511 (2022) 64563, arXiv:2102.06776.
[Vivo-Vilches:2021lwr]
[12-5]
Mitigation of Backgrounds from Cosmogenic $^{137}$Xe in Xenon Gas Experiments using $^{3}$He Neutron Capture, L. Rogers et al., J.Phys. G47 (2020) 075001, arXiv:2001.11147.
[NEXT:2020qup]
[12-6]
Space-Time Discriminant to Separate Double-Beta Decay from $^8$B Solar Neutrinos in Liquid Scintillator, Runyu Jiang, Andrey Elagin, arXiv:1902.06912, 2019.
[Jiang:2019cnb]
[12-7]
Measurement of the neutron capture cross-section on argon, V. Fischer et al., Phys.Rev. D99 (2019) 103021, arXiv:1902.00596.
[Fischer:2019qfr]
[12-8]
Background Discrimination for Neutrinoless Double Beta Decay in Liquid Xenon Using Cherenkov Light, Jason Philip Brodsky, Samuele Sangiorgio, Michael Heffner, Tyana Stiegler, Nucl.Instrum.Meth. A922 (2019) 76-83, arXiv:1812.05694.
[Brodsky:2018abk]
[12-9]
Suppression of Cosmic Muon Spallation Backgrounds in Liquid Scintillator Detectors Using Convolutional Neural Networks, A. Li, A. Elagin, S. Fraker, C. Grant, L. Winslow, Nucl.Instrum.Meth. A947 (2019) 162604, arXiv:1812.02906.
[Li:2018rzw]
[12-10]
A large area detector for thermal neutron flux measurements at the KamLAND site, Alexandre Kozlov, Dmitry Chernyak, Nucl.Instrum.Meth. A903 (2018) 162-169, arXiv:1807.08529.
[Kozlov:2018nvs]
[12-11]
Neutron inelastic scattering measurements on $^{136}$Xe at $E_{n}$ = 0.7 to 100 MeV, S. J. Daugherty, J. B. Albert, L. J. Kaufman, M. Devlin, N. Fotiades, R. O. Nelson, M. Krticka, Phys.Rev. C98 (2018) 064606, arXiv:1807.05253.
[Daugherty:2018bts]
[12-12]
Study on cosmogenic activation in germanium detectors for future tonne-scale CDEX experiment, J. L. Ma et al., Sci.China Phys.Mech.Astron. 62 (2019) 11011, arXiv:1802.09327.
[Ma:2018tdv]
[12-13]
Observation of annual modulation induced by $\gamma$ rays from ($\alpha$, $\gamma$) reactions in Soudan, A. Tiwari, C. Zhang, D.-M. Mei, P. Cushman, Phys.Rev. C96 (2017) 044609, arXiv:1706.00100.
[Tiwari:2017xnj]
[12-14]
Input Comparison of Radiogenic Neutron Estimates for Ultra-low Background Experiments, J. Cooley et al., Nucl.Instrum.Meth. A888 (2018) 110-118, arXiv:1705.04736.
[Cooley:2017ocy]
[12-15]
The Muon-Induced Neutron Indirect Detection EXperiment, MINIDEX, I. Abt et al., Astropart.Phys. 90 (2017) 1-13, arXiv:1610.01459.
[Abt:2016nor]
[12-16]
Single Molecule Fluorescence Imaging as a Technique for Barium Tagging in Neutrinoless Double Beta Decay, B. J. P. Jones, A. D. McDonald, D. R. Nygren, JINST 11 (2016) P12011, arXiv:1609.04019.
[Jones:2016qiq]
[12-17]
Rejection of randomly coinciding events in Li$_2^{100}$MoO$_4$ scintillating bolometers using light detectors based on the Neganov-Luke effect, D.M. Chernyak et al., Eur.Phys.J. C77 (2017) 3, arXiv:1606.02287.
[Chernyak:2016aps]
[12-18]
Measurement of neutron capture on $^{136}$Xe, Joshua B. Albert et al., Phys. Rev. C94 (2016) 034617, arXiv:1605.05794.
[Albert:2016vmb]
[12-19]
A Database for Storing the Results of Material Radio-purity Measurements, J.C. Loach et al., Nucl.Instrum.Meth. A839 (2016) 6-11, arXiv:1604.06169.
[Loach:2016fsk]
[12-20]
Cosmogenic Activation of Materials Used in Rare Event Search Experiments, C. Zhang, D.-M. Mei, V. A. Kudryavtsev, S. Fiorucci, Astropart.Phys. 84 (2016) 62-69, arXiv:1603.00098.
[Zhang:2016rlz]
[12-21]
Improved background rejection in neutrinoless double beta decay experiments using a magnetic field in a high pressure xenon TPC, J. Renner et al., JINST 10 (2015) P12020, arXiv:1509.01821.
[Renner:2015vea]
[12-22]
Cosmogenic-neutron activation of TeO2 and implications for neutrinoless double-beta decay experiments, Barbara S. Wang et al., Phys. Rev. C92 (2015) 024620, arXiv:1503.02095.
[Wang:2015pxa]
[12-23]
Study of neutron-induced background and its impact on the search of 0$\nu\beta\beta$ decay in $\rm^{124}Sn$, N. Dokania et al., JINST 9 (2014) P11002, arXiv:1408.4985.
[Dokania:2014oqa]
[12-24]
Low energy fast events from radon progenies at the surface of a CsI(Tl) scintillator, S.C. Kim et al., Astropart. Phys. 35 (2012) 781-784, arXiv:1108.4353.
[Kim:2011je]
[12-25]
Study of the Production of Radioactive Isotopes through Cosmic Muon Spallation in KamLAND, S. Abe et al. (KamLAND), Phys. Rev. C81 (2010) 025807, arXiv:0907.0066.
[KamLAND:2009zwo]

13 - Experiment - Background - Talks

[13-1]
The study of the thermal neutron flux in the deep underground laboratory DULB-4900, Yu.M. Gavrilyuk et al., Phys.Part.Nucl. 48 (2017) 34-37, arXiv:1507.05488. International Workshop on Prospects of Particle Physics: 'Neutrino Physics and Astrophysics' February 01 - Ferbuary 08, 2015, Valday, Russia.
[Alekseenko:2015efe]
[13-2]
Studies on the Reduction of Radon Plate-Out, M. Bruemmer, M. Nakib, R. Calkins, J. Cooley, S. Sekula, AIP Conf. Proc. 1672 (2015) 140005, arXiv:1506.04050. Low Radioactivity Techniques 2015.
[Bruemmer:2015xma]
[13-3]
Radiation Background Studies for 0$\nu\beta\beta$ decay in $^{124}$Sn, Neha Dokania et al., arXiv:1504.05433, 2015. Prospects in Neutrino Physics Conference, Dec. 2014, London.
[Dokania:2015apa]

14 - Theory

[14-1]
Nuclear medium meson structures from the Schwinger proper-time Nambu-Jona-Lasinio model, Geoffry Gifari, Parada T. P. Hutauruk, Terry Mart, arXiv:2402.19048, 2024.
[Gifari:2024ssz]
[14-2]
Theoretical analysis and predictions for the double electron capture of $^{124}$Xe, Ovidiu Nitescu, Stefan Ghinescu, Vasile-Alin Sevestrean, Mihai Horoi, Fedor Simkovic, Sabin Stoica, arXiv:2402.13784, 2024.
[Nitescu:2024ppf]
[14-3]
Decomposition of $d=9$ short-range $0\nu\beta\beta$ decay operators at one-loop level, Ping-Tao Chen, Gui-Jun Ding, Chang-Yuan Yao, JHEP 12 (2021) 169, arXiv:2110.15347.
[Chen:2021rcv]
[14-4]
Evaluation of neutrinoless double beta decay: QCD running to sub-GeV scales, Cesar Ayala, Gorazd Cvetic, Lorena Gonzalez, Phys.Rev. D101 (2020) 094003, arXiv:2001.04000.
[Ayala:2020gtv]
[14-5]
Long-distance Contributions to Neutrinoless Double Beta Decay $\pi^- \to\pi^+ e e$, Xin-Yu Tuo, Xu Feng, Lu-Chang Jin, Phys.Rev.D 100 (2019) 094511, arXiv:1909.13525.
[Tuo:2019bue]
[14-6]
Light-neutrino exchange and long-distance contributions to $0\nu2\beta$ decays: an exploratory study on $\pi\pi\to ee$, Xu Feng, Lu-Chang Jin, Xin-Yu Tuo, Shi-Cheng Xia, Phys.Rev.Lett. 122 (2019) 022001, arXiv:1809.10511.
[Feng:2018pdq]
[14-7]
Short-Range Neutrinoless Double Beta Decay Mechanisms, Lukas Graf, Frank F. Deppisch, Francesco Iachello, Phys.Rev. D98 (2018) 095023, arXiv:1806.06058.
[Graf:2018ozy]
[14-8]
A neutrinoless double beta decay master formula from effective field theory, V. Cirigliano, W. Dekens, J. de Vries, M. L. Graesser, E. Mereghetti, JHEP 1812 (2018) 097, arXiv:1806.02780.
[Cirigliano:2018yza]
[14-9]
On the MSW neutrino mixing effects in atomic weak interactions and double beta decays, Mihai Horoi, Eur.Phys.J. A56 (2020) 39, arXiv:1803.06332.
[Horoi:2018jyt]
[14-10]
A new leading contribution to neutrinoless double-beta decay, V. Cirigliano et al., Phys.Rev.Lett. 120 (2018) 202001, arXiv:1802.10097.
[Cirigliano:2018hja]
[14-11]
Neutrinoless double beta decay and QCD running at low energy scales, Marcela Gonzalez, Martin Hirsch, Sergey Kovalenko, Phys.Rev. D97 (2018) 115005, arXiv:1711.08311.
[Gonzalez:2017mcg]
[14-12]
Neutrinoless double beta decay in chiral effective field theory: lepton number violation at dimension seven, V. Cirigliano, W. Dekens, J. de Vries, M. L. Graesser, E. Mereghetti, JHEP 1712 (2017) 082, arXiv:1708.09390.
[Cirigliano:2017djv]
[14-13]
Neutrino propagation in nuclear medium and neutrinoless double-beta decay, S. Kovalenko, M. I. Krivoruchenko, F. Simkovic, Phys. Rev. Lett. 112 (2014) 142503, arXiv:1311.4200.
[Kovalenko:2013eba]
[14-14]
Systematic decomposition of the neutrinoless double beta decay operator, Florian Bonnet, Martin Hirsch, Toshihiko Ota, Walter Winter, JHEP 1303 (2013) 055, arXiv:1212.3045.
[Bonnet:2012kh]
[14-15]
Effective Lagrangian approach to neutrinoless double beta decay and neutrino masses, Francisco del Aguila, Alberto Aparici, Subhaditya Bhattacharya, Arcadi Santamaria, Jose Wudka, JHEP 06 (2012) 146, arXiv:1204.5986.
[delAguila:2012nu]
[14-16]
Localizability of Tachyonic Particles and Neutrinoless Double Beta Decay, U. D. Jentschura, B. J. Wundt, Eur. Phys. J C72 (2012) 1894, arXiv:1201.0359.
[Jentschura:2012rd]
[14-17]
On the Quantitative Impact of the Schechter-Valle Theorem, Michael Duerr, Manfred Lindner, Alexander Merle, JHEP 06 (2011) 091, arXiv:1105.0901.
[Duerr:2011zd]
[14-18]
Vanishing Effective Mass of the Neutrinoless Double Beta Decay?, Zhi-zhong Xing, Phys. Rev. D68 (2003) 053002, arXiv:hep-ph/0305195.
[Xing:2003jf]
[14-19]
Manifest CP Violation from Majorana Phases, Andre de Gouvea, Boris Kayser, Rabindra Mohapatra, Phys. Rev. D67 (2003) 053004, arXiv:hep-ph/0211394.
[deGouvea:2002gf]
[14-20]
Unitarity triangles and geometrical description of CP violation with Majorana neutrinos, J. A. Aguilar-Saavedra, G. C. Branco, Phys. Rev. D62 (2000) 096009, arXiv:hep-ph/0007025.
[Aguilar-Saavedra:2000jom]
[14-21]
Neutrinoless double beta decay and CP violation, Patrick J. O'Donnell, Utpal Sarkar, Phys. Rev. D52 (1995) 1720-1721, arXiv:hep-ph/9305338.
[ODonnell:1993tlm]
[14-22]
Possible consequences of the Zeno effect on nuclear double beta decay and a bound on $m_{\nu}$, Jacob Levitan, L. P. Horwitz, Europhys. Lett. 9 (1989) 761.
[Levitan:1989vd]
[14-23]
Minimal rephasing invariant CP violating parameters with Dirac and Majorana fermions, Jose F. Nieves, Palash B. Pal, Phys. Rev. D36 (1987) 315.
[Nieves:1987pp]
[14-24]
Some implications of the CP invariance for mixing of Majorana neutrinos, Samoil M. Bilenky, N. P. Nedelcheva, S. T. Petcov, Nucl. Phys. B247 (1984) 61.
[Bilenky:1984fg]
[14-25]
Time scale of short time deviations from exponential decay, K. Grotz, H. V. Klapdor-Kleingrothaus, Phys. Rev. C30 (1984) 2098-3000.
[Grotz:1984tv]
[14-26]
CPT, CP, and C phases and their effects in Majorana particle processes, Boris Kayser, Phys. Rev. D30 (1984) 1023.
[Kayser:1984ge]
[14-27]
Dirac and pseudodirac neutrinos and neutrinoless double beta decay, Jose F. Nieves, Phys. Lett. B147 (1984) 375.
[Nieves:1984sn]
[14-28]
Can the neutrinoless double beta decay take place in the case of Dirac neutrinos?, Eiichi Takasugi, Phys. Lett. B149 (1984) 372.
[Takasugi:1984xr]
[14-29]
CP properties of the leptonic sector for Majorana neutrinos, J. Bernabeu, P. Pascual, Nucl. Phys. B228 (1983) 21.
[Bernabeu:1983vi]
[14-30]
Effects of light and heavy majorana neutrinos in neutrinoless double beta decay, A. Halprin, S. T. Petcov, S. P. Rosen, Phys. Lett. B125 (1983) 335.
[Halprin:1983ez]
[14-31]
Neutrinoless double beta decay and muonium - anti-muonium transitions, A. Halprin, Phys. Rev. Lett. 48 (1982) 1313-1316.
[Halprin:1982wm]
[14-32]
Physical processes involving Majorana neutrinos, L. F. Li, Frank Wilczek, Phys. Rev. D25 (1982) 143.
[Li:1982um]
[14-33]
On pseudo-Dirac neutrinos, neutrino oscillations and neutrinoless double beta decay, S. T. Petcov, Phys. Lett. B110 (1982) 245-249.
[Petcov:1982ya]
[14-34]
Neutrinoless double-beta decay in SU(2) x U(1) theories, J. Schechter, J. W. F. Valle, Phys. Rev. D25 (1982) 2951.
[Schechter:1982bd]
[14-35]
Nucleon resonance transitions in neutrinoless double beta decay and majorana neutrinos, A. Halprin, Phys. Rev. D24 (1981) 2988-2989.
[Halprin:1981hd]
[14-36]
CP properties of Majorana neutrinos and double beta decay, Lincoln Wolfenstein, Phys. Lett. B107 (1981) 77.
[Wolfenstein:1981rk]
[14-37]
Double - beta decay and a massive majorana neutrino, A. Halprin, P. Minkowski, H. Primakoff, S. P. Rosen, Phys. Rev. D13 (1976) 2567.
[Halprin:1976mr]
[14-38]
Superweak interactions and double beta decay, B. Pontecorvo, Phys. Lett. B26 (1968) 630-632.
[Pontecorvo:1968wp]
[14-39]
On transition probabilities in double beta-disintegration, W.H. Furry, Phys. Rev. 56 (1939) 1184-1193.
[Furry:1939qr]
[14-40]
Double beta-disintegration, M. Goeppert-Mayer, Phys. Rev. 48 (1935) 512-516. http://prola.aps.org/pdf/PR/v48/i6/p512_1.
[Goeppert-Mayer:1935qp]

15 - Theory - Talks

[15-1]
Neutrinoless double beta decay mediated by the neutrino magnetic moment, Marek Gozdz, Wieslaw A. Kaminski, Acta Phys.Polon. B47 (2016) 1245, arXiv:1411.1877. XXI Nuclear Physics Workshop, Kazimierz (Poland) 2014.
[Gozdz:2014gna]
[15-2]
How to construct self/anti-self charge conjugate states for higher spins?, Valeriy V. Dvoeglazov, AIP Conf.Proc. 1488 (2012) 248-256, arXiv:1210.4401. Beauty in Physics (Cocoyoc, Mexico, May 2012), PASCOS2012 (Merida, Mexico, June 2012), WGMP-XXXI (Bialowieza, Poland, June 2012).
[Dvoeglazov:2012vx]

16 - Theory - Majoron Emission

[16-1]
A New class of Majoron emitting double beta decays, C. P. Burgess, J. M. Cline, Phys. Rev. D49 (1994) 5925-5944, arXiv:hep-ph/9307316.
[Burgess:1993xh]
[16-2]
Constraints from nucleosynthesis and SN1987A on majoron emitting double beta decay, Sanghyeon Chang, Kiwoon Choi, Phys. Rev. D49 (1994) 12-15, arXiv:hep-ph/9303243.
[Chang:1993yp]
[16-3]
The neutrinoless double beta decay with majoron emission, M. Doi, T. Kotani, E. Takasugi, Phys. Rev. D37 (1988) 2575.
[Doi:1987rx]

17 - Theory - Models

[17-1]
Neutrinoless Double Beta Decay without Vacuum Majorana Neutrino Mass, Lukas Graf, Sudip Jana, Oliver Scholer, Nele Volmer, arXiv:2312.15016, 2023.
[Graf:2023dzf]
[17-2]
Neutrinoless double beta decay as seen by the devil's advocate, Gia Dvali, Alessio Maiezza, Goran Senjanovic, Vladimir Tello, Phys.Rev.D 108 (2023) 075012, arXiv:2303.17261.
[Dvali:2023snt]
[17-3]
Processes that break baryon number by two units and the Majorana nature of the neutrino, Susan Gardner, Xinshuai Yan, Phys.Lett. B790 (2019) 421-426, arXiv:1808.05288.
[Gardner:2018azu]
[17-4]
Double beta decay and neutrino mass models, J. C. Helo, M. Hirsch, T. Ota, F. A. Pereira dos Santos, JHEP 1505 (2015) 092, arXiv:1502.05188.
[Helo:2015fba]
[17-5]
Sterile Neutrinos for Warm Dark Matter and the Reactor Anomaly in Flavor Symmetry Models, James Barry, Werner Rodejohann, He Zhang, JCAP 1201 (2012) 052, arXiv:1110.6382.
[Barry:2011fp]
[17-6]
Pion dominance in RPV SUSY induced neutrinoless double beta decay, Amand Faessler, Thomas Gutsche, Sergey Kovalenko, Fedor Simkovic, Phys. Rev. D77 (2008) 113012, arXiv:0710.3199.
[Faessler:2007nz]
[17-7]
The Elements of the Neutrino Mass Matrix: Allowed Ranges and Implications of Texture Zeros, A. Merle, W. Rodejohann, Phys. Rev. D73 (2006) 073012, arXiv:hep-ph/0603111.
[Merle:2006du]

18 - Phenomenology

[18-1]
Neutrinoless double beta decay rates in the presence of light sterile neutrinos, W. Dekens, J. de Vries, D. Castillo, J. Menendez, E. Mereghetti, V. Plakkot, P. Soriano, G. Zhou, arXiv:2402.07993, 2024.
[Dekens:2024hlz]
[18-2]
Neutrinoless Double Beta Decay in Multiple Isotopes for Fingerprints Identification of Operators and Models, Shao-Long Chen, Yu-Qi Xiao, arXiv:2402.04600, 2024.
[Chen:2024ctu]
[18-3]
Study of neutrinoless double beta decay in the Standard Model extended with sterile neutrinos, Debashree Priyadarsini Das, Sasmita Mishra, arXiv:2310.13353, 2023.
[Das:2023aic]
[18-4]
Atomic electron shell excitations in double-$\beta$ decay, M. I. Krivoruchenko, K. S. Tyrin, F. F. Karpeshin, Zh.Eksp.Teor.Fiz. 118 (2023) 483-490, arXiv:2309.02850.
[Krivoruchenko:2023yly]
[18-5]
Impact of electron shell excitations on the energy spectrum of $\beta$-electrons in neutrinoless double-$\beta$ decay, M. I. Krivoruchenko, K. S. Tyrin, F. F. Karpeshin, Zh. Eksp. Teor. Fiz. 117 (2023) 887-891, arXiv:2306.07270.
[Krivoruchenko:2023hyg]
[18-6]
$\nu$DoBe - A Python Tool for Neutrinoless Double Beta Decay, Oliver Scholer, Jordy de Vries, Lukas Graf, JHEP 08 (2023) 043, arXiv:2304.05415.
[Scholer:2023bnn]
[18-7]
Impact of nuclear matrix element calculations for current and future neutrinoless double beta decay searches, Federica Pompa, Thomas Schwetz, Jing-Yu Zhu, JHEP 06 (2023) 104, arXiv:2303.10562.
[Pompa:2023jxc]
[18-8]
Probing the Nature of Heavy Neutral Leptons in Direct Searches and Neutrinoless Double Beta Decay, Patrick D. Bolton, Frank F. Deppisch, Mudit Rai, Zhong Zhang, arXiv:2212.14690, 2022.
[Bolton:2022tds]
[18-9]
Dark Matter stimulated neutrinoless double beta decay, Francesco Nozzoli, Cinzia Cernetti, arXiv:2212.07832, 2022.
[Nozzoli:2022tov]
[18-10]
Probing the Mechanism of Neutrinoless Double-Beta Decay in Multiple Isotopes, Matteo Agostini, Frank F. Deppisch, Graham Van Goffrier, JHEP 02 (2023) 172, arXiv:2212.00045.
[Agostini:2022bjh]
[18-11]
Shake-up and shake-off effects in neutrinoless double-beta decay, J. A. Detwiler, R. G. H. Robertson, Phys.Rev.C 107 (2023) L042501, arXiv:2210.08722.
[Detwiler:2022tfk]
[18-12]
Discovering neutrinoless double-beta decay in the era of precision neutrino cosmology, Manuel Ettengruber, Matteo Agostini, Allen Caldwell, Philipp Eller, Oliver Schulz, Phys.Rev.D 106 (2022) 073004, arXiv:2208.09954.
[Ettengruber:2022mtm]
[18-13]
Inference of neutrino nature and Majorana CP phases from $0\nu\beta\beta$ decays with inverted mass ordering, Guo-yuan Huang, Newton Nath, Eur.Phys.J.C 82 (2022) 838, arXiv:2206.06688.
[Huang:2022lub]
[18-14]
Unraveling the $0\nu\beta\beta$ Decay Mechanisms, Lukas Graf, Manfred Lindner, Oliver Scholer, Phys.Rev.D 106 (2022) 035022, arXiv:2204.10845.
[Graf:2022lhj]
[18-15]
Majorana neutrino mass constraints in the landscape of nuclear matrix elements, Eligio Lisi, Antonio Marrone, Phys.Rev.D 106 (2022) 013009, arXiv:2204.09569.
[Lisi:2022nka]
[18-16]
Effect of right-handed currents and dark side of the solar neutrino parameter space to Neutrinoless Double Beta Decay, Pritam Kumar Bishee, Purushottam Sahu, Sudhanwa Patra, arXiv:2204.07334, 2022.
[Bishee:2022hcc]
[18-17]
Unravelling the left-right mixing using $0\nu\beta\beta$ decay and collider probes, Gang Li, Michael J. Ramsey-Musolf, Juan Carlos Vasquez, Phys.Rev.D 105 (2022) 115021, arXiv:2202.01789.
[Li:2022cuq]
[18-18]
3D mapping of the effective Majorana neutrino masses with neutrino oscillation data, Ce-ran Hu, Zhi-zhong Xing, Nucl.Phys.B 971 (2021) 115521, arXiv:2108.00986.
[Hu:2021ziw]
[18-19]
Testing the Inverted Neutrino Mass Ordering with Neutrinoless Double-Beta Decay, Matteo Agostini, Giovanni Benato, Jason A. Detwiler, Javier Menendez, Francesco Vissani, Phys.Rev.C 104 (2021), arXiv:2107.09104.
[Agostini:2021kba]
[18-20]
The unfinished fabric of the three neutrino paradigm, Francesco Capozzi, Eleonora Di Valentino, Eligio Lisi, Antonio Marrone, Alessandro Melchiorri, Antonio Palazzo, Phys.Rev.D 104 (2021) 083031, arXiv:2107.00532.
[Capozzi:2021fjo]
[18-21]
Least-Informative Priors for $0\nu\beta\beta$ Decay Searches, Frank F. Deppisch, Graham Van Goffrier, Phys.Rev.D 104 (2021) 055040, arXiv:2103.06660.
[Deppisch:2021aob]
[18-22]
Combined Constraints on Majorana Masses from Neutrinoless Double Beta Decay Experiments, Steven D. Biller, Phys.Rev.D 104 (2021) 012002, arXiv:2103.06036.
[Biller:2021bqx]
[18-23]
Bayesian Analysis of a Future Beta Decay Experiment's Sensitivity to Neutrino Mass Scale and Ordering, A. Ashtari Esfahani et al., Phys.Rev. C103 (2021) 065501, arXiv:2012.14341.
[AshtariEsfahani:2020bfp]
[18-24]
Constraints on the mass of Majorana neutrinos from Cosmology, M. Agostini, G. Benato, S. Dell'Oro, S. Pirro, F. Vissani, Phys.Rev. D103 (2021) 033008, arXiv:2012.13938.
[Agostini:2020oiv]
[18-25]
Search for Light Exotic Fermions in Double-Beta Decays, Matteo Agostini, Elisabetta Bossio, Alejandro Ibarra, Xabier Marcano, Phys.Lett. B815 (2021) 136127, arXiv:2012.09281.
[Agostini:2020cpz]
[18-26]
Tentative sensitivity of future $0\nu\beta\beta$-decay experiments to neutrino masses and Majorana CP phases, Guo-yuan Huang, Shun Zhou, arXiv:2010.16281, 2020.
[Huang:2020mkz]
[18-27]
Flavoured Neutrinoless Double Beta Decay, Lukas Graf, Sudip Jana, Manfred Lindner, Werner Rodejohann, Xun-Jie Xu, Phys.Rev. D103 (2021) 055007, arXiv:2010.15109.
[Graf:2020cbf]
[18-28]
Analysis of Light Neutrino Exchange and Short-Range Mechanisms in $0\nu\beta\beta$ Decay, Frank F. Deppisch, Lukas Graf, Francesco Iachello, Jenni Kotila, Phys.Rev. D102 (2020) 095016, arXiv:2009.10119.
[Deppisch:2020ztt]
[18-29]
Modeling the collective motion of charge carriers in germanium semiconductor detectors, Tommaso Comellato, Matteo Agostini, Stefan Schonert, Eur.Phys.J. C81 (2021) 76, arXiv:2007.12910.
[Comellato:2020ljj]
[18-30]
2020 Global reassessment of the neutrino oscillation picture, P. F. de Salas, D. V. Forero, S. Gariazzo, P. Martinez-Mirave, O. Mena, C. A. Ternes, M. Tortola, J. W. F. Valle, JHEP 2021 (2020) 071, arXiv:2006.11237.
[deSalas:2020pgw]
[18-31]
Neutrino Self-Interactions and Double Beta Decay, Frank F. Deppisch, Lukas Graf, Werner Rodejohann, Xun-Jie Xu, Phys.Rev. D102 (2020) 051701, arXiv:2004.11919.
[Deppisch:2020sqh]
[18-32]
Searching for New Physics in Two-Neutrino Double Beta Decay, Frank F. Deppisch, Lukas Graf, Fedor Simkovic, Phys.Rev.Lett. 125 (2020) 171801, arXiv:2003.11836.
[Deppisch:2020mxv]
[18-33]
Addendum to: Global constraints on absolute neutrino masses and their ordering, Francesco Capozzi, Eleonora Di Valentino, Eligio Lisi, Antonio Marrone, Alessandro Melchiorri, Antonio Palazzo, Phys.Rev. D101 (2020) 116013, arXiv:2003.08511.
[Capozzi:2017ipn]
[18-34]
Active neutrino oscillations and double beta decay characteristics with sterile neutrinos contributions, V. V. Khruschov, S. V. Fomichev, S. V. Semenov, Phys.At.Nucl. 84 (2021) 328-338, arXiv:2003.06145.
[Khruschov:2020hah]
[18-35]
Bounds on light sterile neutrino mass and mixing from cosmology and laboratory searches, Steffen Hagstotz, Pablo F. de Salas, Stefano Gariazzo, Martina Gerbino, Massimiliano Lattanzi, Sunny Vagnozzi, Katherine Freese, Sergio Pastor, Phys.Rev.D 104 (2021) 123524, arXiv:2003.02289.
[Hagstotz:2020ukm]
[18-36]
Sterile neutrinos and neutrinoless double beta decay in effective field theory, W. Dekens, J. de Vries, K. Fuyuto, E. Mereghetti, G. Zhou, JHEP 2006 (2020) 097, arXiv:2002.07182.
[Dekens:2020ttz]
[18-37]
Neutrinoless double beta decay versus other probes of heavy sterile neutrinos, Patrick D. Bolton, Frank F. Deppisch, P. S. Bhupal Dev, JHEP 2003 (2020) 170, arXiv:1912.03058.
[Bolton:2019pcu]
[18-38]
The Normal Neutrino Mass Hierarchy is Exactly What We Need!, Shao-Feng Ge, Jing-Yu Zhu, Chin.Phys. C44 (2020) 083103, arXiv:1910.02666.
[Ge:2019ldu]
[18-39]
Implications of the Dark LMA solution and Fourth Sterile Neutrino for Neutrino-less Double Beta Decay, K. N. Deepthi, Srubabati Goswami, Vishnudath K. N., Tanmay Kumar Poddar, Phys.Rev. D102 (2020) 015020, arXiv:1909.09434.
[Deepthi:2019ljo]
[18-40]
Empirical inference on the Majorana mass of the ordinary neutrinos, Stefano Dell'Oro, Simone Marcocci, Francesco Vissani, Phys.Rev. D100 (2019) 073003, arXiv:1909.05381.
[DellOro:2019pqi]
[18-41]
The Exposure-Background Duality in the Searches of Neutrinoless Double Beta Decay, M.K. Singh, H.T. Wong, L. Singh, V. Sharma, V. Singh, Q. Yue, Phys.Rev. D101 (2020) 013006, arXiv:1908.10082.
[Singh:2019vyc]
[18-42]
Towards the meV limit of the effective neutrino mass in neutrinoless double-beta decays, Jun Cao, Guo-yuan Huang, Yu-Feng Li, Yifang Wang, Liang-Jian Wen, Zhi-zhong Xing, Zhen-hua Zhao, Shun Zhou, Chin.Phys. C44 (2020) 031001, arXiv:1908.08355.
[Cao:2019hli]
[18-43]
Simulated neutrino signals of low and intermediate energy neutrinos on Cd detectors, J. Sinatkas, V. Tsaktsara, Odysseas Kosmas, Front.in Phys. 7 (2019) 42, arXiv:1904.01056.
[Sinatkas:2019pfd]
[18-44]
Constraining the Effective Mass of Majorana Neutrino with Sterile Neutrino Mass for Inverted Ordering Spectrum, Jaydip Singh, Adv.High Energy Phys. 2019 (2019) 4863620, arXiv:1902.08575.
[Singh:2019qra]
[18-45]
Impact of an eV-mass sterile neutrino on the neutrinoless double-beta decays: a Bayesian analysis, Guo-yuan Huang, Shun Zhou, Nucl.Phys. B (2019) 114691, arXiv:1902.03839.
[Huang:2019qvq]
[18-46]
A New Sensitivity Goal for Neutrino-less Double Beta Decay Experiments, Vishnudath K. N., Sandhya Choubey, Srubabati Goswami, Phys.Rev. D99 (2019) 095038, arXiv:1901.04313.
[Vishnudath:2019eiu]
[18-47]
Neutrinoless Double Beta Decay and Light Sterile Neutrino, C. H. Jang, B. J. Kim, Y. J. Ko, K. Siyeon, J.Korean Phys.Soc. 73 (2018) 1625-1630, arXiv:1811.09957.
[Jang:2018zug]
[18-48]
Beta and Neutrinoless Double Beta Decays with KeV Sterile Fermions, Asmaa Abada, Alvaro Hernandez-Cabezudo, Xabier Marcano, JHEP 1901 (2019) 041, arXiv:1807.01331.
[Abada:2018qok]
[18-49]
The $10^{-3}$ eV Frontier in Neutrinoless Double Beta Decay, J. T. Penedo, S. T. Petcov, Phys.Lett. B786 (2018) 410-417, arXiv:1806.03203.
[Penedo:2018kpc]
[18-50]
Bound-state double-$\beta$ decay, A. Babic, D. Stefanik, M. I. Krivoruchenko, F. Simkovic, Phys.Rev. C98 (2018) 065501, arXiv:1805.07815.
[Babic:2018zmg]
[18-51]
$\Delta L \ge 4$ processes, Renato M. Fonseca, Martin Hirsch, Phys.Rev. D98 (2018) 015035, arXiv:1804.10545.
[Fonseca:2018aav]
[18-52]
The interpolating formula for the $0\nu\beta\beta$-decay half-life in the case of light and heavy neutrino mass mechanisms, A. Babic, S. Kovalenko, M.I. Krivoruchenko, F. Simkovic, Phys.Rev. D98 (2018) 015003, arXiv:1804.04218.
[Babic:2018ikc]
[18-53]
Neutrino masses and their ordering: Global Data, Priors and Models, S. Gariazzo et al., JCAP 1803 (2018) 011, arXiv:1801.04946.
[Gariazzo:2018pei]
[18-54]
Shell model study on the possibility of using an effective field theory for disentangling several contributions to the neutrinoless double-beta decay, Andrei Neacsu, Mihai Horoi, Phys.Rev. C98 (2018) 035502, arXiv:1801.04496.
[Horoi:2018fls]
[18-55]
A multi-isotope $0\nu2\beta$ bolometric experiment, A. Giuliani, F.A. Danevich, V.I. Tretyak, Eur.Phys.J. C78 (2018) 272, arXiv:1712.08534.
[Giuliani:2017tqo]
[18-56]
Neutrinoless Double Beta Decay and the Baryon Asymmetry of the Universe, Frank F. Deppisch, Lukas Graf, Julia Harz, Wei-Chih Huang, Phys.Rev. D98 (2018) 055029, arXiv:1711.10432.
[Deppisch:2017ecm]
[18-57]
Can one ever prove that neutrinos are Dirac particles?, Martin Hirsch, Rahul Srivastava, Jose W. F. Valle, Phys.Lett. B781 (2018) 302-305, arXiv:1711.06181.
[Hirsch:2017col]
[18-58]
Another look at the impact of an eV-mass sterile neutrino on the effective neutrino mass of neutrinoless double-beta decays, Jun-Hao Liu, Shun Zhou, Int.J.Mod.Phys. A33 (2018) 1850014, arXiv:1710.10359.
[Liu:2017ago]
[18-59]
Half-life Expectations for Neutrinoless Double Beta Decay in Standard and Non-Standard Scenarios, Shao-Feng Ge, Werner Rodejohann, Kai Zuber, Phys.Rev. D96 (2017) 055019, arXiv:1707.07904.
[Ge:2017erv]
[18-60]
Discovery probability of next-generation neutrinoless double-$\beta$ decay experiments, Matteo Agostini, Giovanni Benato, Jason Detwiler, Phys.Rev. D96 (2017) 053001, arXiv:1705.02996.
[Agostini:2017jim]
[18-61]
A Global Bayesian Analysis of Neutrino Mass Data, Allen Caldwell, Alexander Merle, Oliver Schulz, Maximilian Totzauer, Phys.Rev. D96 (2017) 073001, arXiv:1705.01945.
[Caldwell:2017mqu]
[18-62]
Solar neutrino interactions with the double beta decay nuclei of $^{82}$Se, $^{100}$Mo and $^{150}$Nd, H. Ejiri, S. R. Elliott, Phys.Rev. C95 (2017) 055501, arXiv:1703.06915.
[Ejiri:2017vyl]
[18-63]
The effective neutrino mass of neutrinoless double-beta decays: how possible to fall into a well, Zhi-zhong Xing, Zhen-hua Zhao, Eur.Phys.J. C77 (2017) 192, arXiv:1612.08538.
[Xing:2016ymd]
[18-64]
Probability Densities of the effective neutrino masses $m_{\beta}$ and $m_{\beta\beta}$, Andrea Di Iura, Davide Meloni, Nucl.Phys. B921 (2017) 829-840, arXiv:1612.05453.
[DiIura:2016zsx]
[18-65]
$\boldsymbol{\mu^-}$- $\boldsymbol{e^+}$ Conversion from Short-Range Operators, Tanja Geib, Alexander Merle, Phys.Rev. D95 (2017) 055009, arXiv:1612.00452.
[Geib:2016daa]
[18-66]
On Lepton-Number-Violating Searches for Muon to Positron Conversion, Jeffrey M. Berryman, Andre de Gouvea, Kevin J. Kelly, Andrew Kobach, Phys.Rev. D95 (2017) 115010, arXiv:1611.00032.
[Berryman:2016slh]
[18-67]
On neutrinoless double electron capture, E. G. Drukarev, A. I. Mikhailov, arXiv:1610.05098, 2016.
[Drukarev:2016jup]
[18-68]
QCD Corrections and Long-Range Mechanisms of neutrinoless double beta decay, Carolina Arbelaez, Marcela Gonzalez, Martin Hirsch, Sergey Kovalenko, Phys. Rev. D94 (2016) 096014, arXiv:1610.04096.
[Arbelaez:2016zlt]
[18-69]
Extracting Majorana Properties in the Throat of Neutrinoless Double Beta Decay, Shao-Feng Ge, Manfred Lindner, Phys.Rev. D95 (2017) 033003, arXiv:1608.01618.
[Ge:2016tfx]
[18-70]
Limiting the Effective Mass and New Physics Parameters from $0\nu\beta\beta$, Ram Lal Awasthi, Arnab Dasgupta, Manimala Mitra, Phys. Rev. D94 (2016) 073003, arXiv:1607.03835.
[Awasthi:2016kbk]
[18-71]
Constraints on lepton number violating short-range interactions from $|\Delta L|=2$ processes, Nestor Quintero, Phys.Lett. B764 (2017) 60-65, arXiv:1606.03477.
[Quintero:2016iwi]
[18-72]
Predicted value of $0\nu\beta\beta$-decay effective Majorana mass with error of lightest neutrino mass, Shinji Maedan, arXiv:1605.06871, 2016.
[Maedan:2016lzh]
[18-73]
Solar neutrino interactions with liquid scintillators used for double beta decay experiments, Hiroyasu Ejiri, Kai Zuber, J. Phys. G43 (2016) 045201, arXiv:1602.00364.
[Ejiri:2016mra]
[18-74]
Light neutrino contribution: is it all there is to neutrinoless double beta decay?, Namit Mahajan, arXiv:1511.09242, 2015.
[Mahajan:2015wpk]
[18-75]
The nature of massive neutrinos and multiple mechanisms in neutrinoless double beta decay, Aurora Meroni, Eur. Phys. J. Plus 130 (2015) 232, arXiv:1510.05523.
[Meroni:2015oya]
[18-76]
Effective Majorana Mass and Neutrinoless Double Beta Decay, Giovanni Benato, Eur. Phys. J. C75 (2015) 563, arXiv:1510.01089.
[Benato:2015via]
[18-77]
Limits on sterile neutrino contributions to neutrinoless double beta decay, J. Barea, J. Kotila, F. Iachello, Phys. Rev. D92 (2015) 093001, arXiv:1509.01925.
[Barea:2015zfa]
[18-78]
New physics effects on neutrinoless double beta decay from right-handed current, Shao-Feng Ge, Manfred Lindner, Sudhanwa Patra, JHEP 10 (2015) 077, arXiv:1508.07286.
[Ge:2015yqa]
[18-79]
Determination of neutrino mass ordering in future $^{76}$Ge-based neutrinoless double-beta decay experiments, Jue Zhang, Shun Zhou, Phys. Rev. D93 (2016) 016008, arXiv:1508.05472.
[Zhang:2015kaa]
[18-80]
The $\nu$ generation: present and future constraints on neutrino masses from cosmology and laboratory experiments, Martina Gerbino, Massimiliano Lattanzi, Alessandro Melchiorri, Phys. Rev. D93 (2016) 033001, arXiv:1507.08614.
[Gerbino:2015ixa]
[18-81]
JUNO and Neutrinoless Double Beta Decay, Shao-Feng Ge, Werner Rodejohann, Phys. Rev. D92 (2015) 093006, arXiv:1507.05514.
[Ge:2015bfa]
[18-82]
The light neutrino exchange mechanism of the $0\nu\beta\beta$-decay with left- and right-handed leptonic and hadronic currents revisited, Dusan Stefanik, Rastislav Dvornicky, Fedor Simkovic, Petr Vogel, Phys. Rev. C92 (2015) 055502, arXiv:1506.07145.
[Stefanik:2015twa]
[18-83]
Degeneracies of particle and nuclear physics uncertainties in neutrinoless double beta decay, E. Lisi, A. Rotunno, F. Simkovic, Phys. Rev. D92 (2015) 093004, arXiv:1506.04058.
[Lisi:2015yma]
[18-84]
The contribution of light Majorana neutrinos to neutrinoless double beta decay and cosmology, Stefano Dell'Oro, Simone Marcocci, Matteo Viel, Francesco Vissani, JCAP 2015 (2015) 023, arXiv:1505.02722.
[DellOro:2015kys]
[18-85]
Predictions for Neutrinoless Double-Beta Decay in the 3+1 Sterile Neutrino Scenario, C. Giunti, E. M. Zavanin, JHEP 07 (2015) 171, arXiv:1505.00978.
[Giunti:2015kza]
[18-86]
How to interpret a discovery or null result of the $0\nu2\beta$ decay, Zhi-zhong Xing, Zhen-hua Zhao, Ye-Ling Zhou, Eur. Phys. J. C75 (2015) 423, arXiv:1504.05820.
[Xing:2015zha]
[18-87]
A Combined Limit on the Neutrino Mass from Neutrinoless Double-Beta Decay and Constraints on Sterile Majorana Neutrinos, Pawel Guzowski et al., Phys. Rev. D92 (2015) 012002, arXiv:1504.03600.
[Guzowski:2015saa]
[18-88]
Falsifying High-Scale Baryogenesis with Neutrinoless Double Beta Decay and Lepton Flavor Violation, Frank F. Deppisch, Julia Harz, Martin Hirsch, Wei-Chih Huang, Heinrich Pas, Phys. Rev. D92 (2015) 036005, arXiv:1503.04825.
[Deppisch:2015yqa]
[18-89]
Estimation of the Majorana phases using rephasing invariant quantities, Rome Samanta, Mainak Chakraborty, Ambar Ghosal, Nucl. Phys. B904 (2016) 86-105, arXiv:1502.06508.
[Samanta:2015hxa]
[18-90]
Cosmogenic activation of a natural tellurium target, V. Lozza, J. Petzoldt, Astropart.Phys. 61 (2015) 62-71, arXiv:1411.5947.
[Lozza:2014haa]
[18-91]
Analytically expressed constraint on two Majorana phases in neutrinoless double beta decay, Shinji Maedan, arXiv:1409.2627, 2014.
[Maedan:2014uha]
[18-92]
Sterile Neutrinos in Neutrinoless Double Beta Decay: An Update, Amand Faessler, Marcela Gonzalez, Sergey Kovalenko, Fedor Simkovic, Phys. Rev. D90 (2014) 096010, arXiv:1408.6077.
[Faessler:2014kka]
[18-93]
Constraints on absolute neutrino Majorana mass from current data, Yanqi Huang, Bo-Qiang Ma, Universe 2 (2014) 65-71, arXiv:1407.4357.
[Huang:2014qwa]
[18-94]
Effect of steriles states on lepton magnetic moments and neutrinoless double beta decay, A. Abada, V. De Romeri, A.M. Teixeira, JHEP 1409 (2014) 074, arXiv:1406.6978.
[Abada:2014nwa]
[18-95]
The quest for neutrinoless double beta decay: Pseudo-Dirac, Majorana and sterile neutrinos, A. Meroni, E. Peinado, Phys. Rev. D90 (2014) 053002, arXiv:1406.3990.
[Meroni:2014tba]
[18-96]
Neutrinoless double-beta decay of $^{76}$Ge and $^{130}$Te. A correction of the neutrinoless 2$\beta$-decay model and a reanalysis of QUORICINO results, I.V. Kirpichnikov, arXiv:1405.4703, 2014.
[Kirpichnikov:2014tsa]
[18-97]
Geometry of the effective Majorana neutrino mass in the neutrinoless double-beta decay, Zhi-zhong Xing, Ye-Ling Zhou, Chin.Phys. C39 (2015) 011001, arXiv:1404.7001.
[Xing:2014yka]
[18-98]
The $0\nu2\beta$ decay and neutrino magnetic moment, Marek Gozdz, Wieslaw A. Kaminski, Phys. Rev. D89 (2014) 113005, arXiv:1404.6661.
[Gozdz:2014pla]
[18-99]
New expectations and uncertainties on Neutrinoless Double Beta Decay, Stefano Dell'Oro, Simone Marcocci, Francesco Vissani, Phys. Rev. D90 (2014) 033005, arXiv:1404.2616.
[DellOro:2014ysa]
[18-100]
Complementarity of Neutrinoless Double Beta Decay and Cosmology, Scott Dodelson, Joseph Lykken, arXiv:1403.5173, 2014.
[Dodelson:2014tga]
[18-101]
Constraining Majorana CP Phase in Precision Era of Cosmology and Double Beta Decay Experiment, Hisakazu Minakata, Hiroshi Nunokawa, Alexander A. Quiroga, PTEP 2015 (2014) 033B03, arXiv:1402.6014.
[Minakata:2014jba]
[18-102]
Limits on Lorentz and CPT violation from double beta decay, Jorge S. Diaz, Phys. Rev. D89 (2014) 043005, arXiv:1311.0930.
[Diaz:2013ywa]
[18-103]
The Effect of Cancellation in Neutrinoless Double Beta Decay, Silvia Pascoli, Manimala Mitra, Steven Wong, Phys. Rev. D90 (2014) 093005, arXiv:1310.6218.
[Pascoli:2013fiz]
[18-104]
A new way of comparing double beta decay experiments, M. Biassoni, O. Cremonesi, P. Gorla, arXiv:1310.3870, 2013.
[Biassoni:2013ywa]
[18-105]
The charged current neutrino cross section for solar neutrinos, and background to $\beta\beta(0\nu)$ experiments, H. Ejiri, S.R. Elliott, Phys. Rev. C89 (2014) 055501, arXiv:1309.7957.
[Ejiri:2013jda]
[18-106]
Neutrinoless Double Beta Decay in the Presence of Light Sterile Neutrinos, Ivan Girardi, Aurora Meroni, S. T. Petcov, JHEP 1311 (2013) 146, arXiv:1308.5802.
[Girardi:2013zra]
[18-107]
Direct Search for Right-handed Neutrinos and Neutrinoless Double Beta Decay, Takehiko Asaka, Shintaro Eijima, PTEP 2013 (2013) 113B02, arXiv:1308.3550.
[Asaka:2013jfa]
[18-108]
Measuring Directionality in Double-Beta Decay and Neutrino Interactions with Kiloton-Scale Scintillation Detectors, C. Aberle, A. Elagin, H. J. Frisch, M. Wetstein, L. Winslow, JINST 9 (2014) P06012, arXiv:1307.5813.
[Aberle:2013jba]
[18-109]
Short-range mechanisms of neutrinoless double beta decay at the LHC, J.C. Helo, M. Hirsch, H. Pas, S.G. Kovalenko, Phys. Rev. D88 (2013) 073011, arXiv:1307.4849.
[Helo:2013ika]
[18-110]
Neutrinoless Quadruple Beta Decay, Julian Heeck, Werner Rodejohann, EPL, 103 (2013) 32001, arXiv:1306.0580.
[Heeck:2013rpa]
[18-111]
Constraints on neutrino mass ordering and degeneracy from Planck and neutrino-less double beta decay, Naoyuki Haba, Ryo Takahashi, Acta Phys.Polon. B45 (2014) 61-69, arXiv:1305.0147.
[Haba:2013xwa]
[18-112]
Constraining Neutrino Mass from Neutrinoless Double Beta Decay, P. S. Bhupal Dev, Srubabati Goswami, Manimala Mitra, Werner Rodejohann, Phys. Rev. D88 (2013) 091301, arXiv:1305.0056.
[BhupalDev:2013ntw]
[18-113]
Neutrinoless double beta decay at the LHC, J.C. Helo, M. Hirsch, S.G. Kovalenko, H. Pas, Phys. Rev. D88 (2013) 011901, arXiv:1303.0899.
[Helo:2013dla]
[18-114]
Influence of a keV sterile neutrino on neutrino-less double beta decay - how things changed in the recent years, Alexander Merle, Viviana Niro, Phys. Rev. D88 (2013) 113004, arXiv:1302.2032.
[Merle:2013ibc]
[18-115]
Random coincidence of $2\nu2\beta$ decay events as a background source in bolometric $0\nu2\beta$ decay experiments, D.M. Chernyak et al., Eur.Phys.J. C72 (2012) 1989, arXiv:1301.4248.
[Chernyak:2012zz]
[18-116]
Discovery potential of xenon-based neutrinoless double beta decay experiments in light of small angular scale CMB observations, J.J. Gomez-Cadenas, J. Martin-Albo, J. Munoz Vidal, C. Pena-Garay, JCAP JCAP03 (2013) 043, arXiv:1301.2901.
[Gomez-Cadenas:2013duj]
[18-117]
Combining and comparing neutrinoless double beta decay experiments using different nuclei, Johannes Bergstrom, JHEP 1302 (2013) 093, arXiv:1212.4484.
[Bergstrom:2012nx]
[18-118]
Multiple CP Non-conserving Mechanisms of $\beta\beta$-Decay and Nuclei with Largely Different Nuclear Matrix Elements, A. Meroni, S. T. Petcov, F. Simkovic, JHEP 1302 (2013) 025, arXiv:1212.1331.
[Meroni:2012qf]
[18-119]
Two Zero Mass Matrices and Sterile Neutrinos, Monojit Ghosh, Srubabati Goswami, Shivani Gupta, JHEP 1304 (2013) 103, arXiv:1211.0118.
[Ghosh:2012pw]
[18-120]
On the possibility of a measurement of the CP Majorana phase in the $0\nu\beta\beta$-decay, F. Simkovic, S.M. Bilenky, Amand Faessler, Th. Gutsche, Phys. Rev. D87 (2013) 073002, arXiv:1210.1306.
[Simkovic:2012hq]
[18-121]
Direct constraints on charged excitations of dark matter, Haipeng An, Maxim Pospelov, Josef Pradler, Phys. Rev. Lett. 109 (2012) 251302, arXiv:1209.6358.
[An:2012bs]
[18-122]
Can heavy neutrinos dominate neutrinoless double beta decay?, J. Lopez-Pavon, S. Pascoli, Chan-fai Wong, Phys. Rev. D87 (2013) 093007, arXiv:1209.5342.
[Lopez-Pavon:2012yda]
[18-123]
Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP violation searches, G.L. Fogli et al., Phys. Rev. D86 (2012) 013012, arXiv:1205.5254.
[Fogli:2012ua]
[18-124]
Excitation functions of proton-induced reactions on natural Nd in the 10-30 MeV energy range, and production of radionuclides relevant for double-beta decay, O. Lebeda, V. Lozza, P. Schrock, J. Stursa, K. Zuber, Phys. Rev. C85 (2012) 014602, arXiv:1202.5185.
[Lebeda:2012zz]
[18-125]
Limits on Neutrino Masses from Neutrinoless Double-$\beta$ Decay, J. Barea, J. Kotila, F. Iachello, Phys. Rev. Lett. 109 (2012) 042501.
[Barea:2012zz]
[18-126]
Implications of 3+1 Short-Baseline Neutrino Oscillations, Carlo Giunti, Marco Laveder, Phys. Lett. B706 (2011) 200-207, arXiv:1111.1069.
[Giunti:2011cp]
[18-127]
Vanishing effective mass of the neutrinoless double beta decay including light sterile neutrinos, Y. F. Li, S. Liu, Phys. Lett. B706 (2012) 406-411, arXiv:1110.5795.
[Li:2011ss]
[18-128]
Four-jet final state in same-sign lepton colliders and neutrinoless double beta decay mechanisms, C. H. Kom, Werner Rodejohann, Phys. Rev. D85 (2012) 015013, arXiv:1110.3220.
[Kom:2011nc]
[18-129]
Light Sterile Neutrinos: Models and Phenomenology, James Barry, Werner Rodejohann, He Zhang, JHEP 07 (2011) 091, arXiv:1105.3911.
[Barry:2011wb]
[18-130]
Analytic Calculation of Neutrino Mass Eigenvalues, K. Chaturvedi, Bipin Singh Koranga, Vinod Kumar, Int. J. Theor. Phys. 51 (2012) 622-628, arXiv:1105.0656.
[Chaturvedi:2011mr]
[18-131]
Solar neutrino-electron scattering as background limitation for double beta decay, N. F. de Barros, K. Zuber, J. Phys. G38 (2011) 105201, arXiv:1103.5757.
[deBarros:2011qq]
[18-132]
Consistency Test of Neutrinoless Double Beta Decay with one Isotope, Michael Duerr, Manfred Lindner, Kai Zuber, Phys. Rev. D84 (2011) 093004, arXiv:1103.4735.
[Duerr:2011yh]
[18-133]
Neutrinoless Double Beta Decay, the Inverted Hierarchy and Precision Determination of theta(12), Alexander Dueck, Werner Rodejohann, Kai Zuber, Phys. Rev. D83 (2011) 113010, arXiv:1103.4152.
[Dueck:2011hu]
[18-134]
Constraining New Physics with a Positive or Negative Signal of Neutrino-less Double Beta Decay, Johannes Bergstrom, Alexander Merle, Tommy Ohlsson, JHEP 05 (2011) 122, arXiv:1103.3015.
[Bergstrom:2011dt]
[18-135]
Extended Empirical Fermion Mass Relation, Werner Rodejohann, He Zhang, Phys. Lett. B698 (2011) 152-156, arXiv:1101.5525.
[Rodejohann:2011jj]
[18-136]
Sense and sensitivity of double beta decay experiments, J.J. Gomez-Cadenas et al., JCAP 1106 (2011) 007, arXiv:1010.5112.
[Gomez-Cadenas:2010zcc]
[18-137]
Robust Cosmological Bounds on Neutrinos and their Combination with Oscillation Results, M. C. Gonzalez-Garcia, Michele Maltoni, Jordi Salvado, JHEP 08 (2010) 117, arXiv:1006.3795.
[Gonzalez-Garcia:2010keg]
[18-138]
Klapdor's claim for the observation of the neutrinoless double beta-decay of Ge-76. Analysis and corrections, Kirpichnikov I.V., arXiv:1006.2025, 2010.
[Kirpichnikov:2010nu]
[18-139]
Few active mechanisms of the neutrinoless double beta-decay and effective mass of Majorana neutrinos, Fedor Simkovic, John Vergados, Amand Faessler, Phys. Rev. D82 (2010) 113015, arXiv:1006.0571.
[Simkovic:2010ka]
[18-140]
Short-Baseline Electron Neutrino Disappearance, Tritium Beta Decay and Neutrinoless Double-Beta Decay, Carlo Giunti, Marco Laveder, Phys. Rev. D82 (2010) 053005, arXiv:1005.4599.
[Giunti:2010wz]
[18-141]
Inverse Neutrino-less Double Beta Decay Revisited: Neutrinos, Higgs Triplets and a Muon Collider, Werner Rodejohann, Phys. Rev. D81 (2010) 114001, arXiv:1005.2854.
[Rodejohann:2010jh]
[18-142]
Probing New Physics Models of Neutrinoless Double Beta Decay with SuperNEMO, R. Arnold et al. (SuperNEMO), Eur. Phys. J. C70 (2010) 927-943, arXiv:1005.1241.
[SuperNEMO:2010wnd]
[18-143]
Conversion of experimental half-life to effective electron neutrino mass in 0nubetabeta decay, Anatoly Smolnikov, Peter Grabmayr, Phys. Rev. C81 (2010) 028502.
[Smolnikov:2010zz]
[18-144]
Probing particle and nuclear physics models of neutrinoless double beta decay with different nuclei, G.L. Fogli, E. Lisi, A.M. Rotunno, Phys. Rev. D80 (2009) 015024, arXiv:0905.1832.
[Fogli:2009py]
[18-145]
Neutrinoless double beta decays of the top quark and other effects of heavy Majorana neutrinos, Gad Eilam, PoS 2008LHC (2008) 061, arXiv:0902.4622.
[Eilam:2008qtl]
[18-146]
Evaluation of neutrino masses from $m_{\beta\beta}$ values, V. V. Khruschov, arXiv:0812.1902, 2008.
[Khruschov:2008dk]
[18-147]
Statistical Analysis of future Neutrino Mass Experiments including Neutrino-less Double Beta Decay, Werner Maneschg, Alexander Merle, Werner Rodejohann, Europhys. Lett. 85 (2009) 51002, arXiv:0812.0479.
[Maneschg:2008sf]
[18-148]
Observables sensitive to absolute neutrino masses (Addendum), G. L. Fogli et al., Phys. Rev. D78 (2008) 033010, arXiv:0805.2517.
[Fogli:2008ig]
[18-149]
Neutrino Mass Bounds from from $0\nu\beta\beta$ Decays and Large Scale Structures, Y.-Y. Keum, K. Ichiki, T. Kajino, AIP Conf. Proc. 1016 (2008) 343-349, arXiv:0803.2393.
[Keum:2008st]
[18-150]
Majorana Neutrinos, Neutrino Mass Spectrum and the $|\rangle m \langle| \sim 0.001 eV$ Frontier in Neutrinoless Double Beta Decay, S. Pascoli, S. T. Petcov, Phys. Rev. D77 (2008) 113003, arXiv:0711.4993.
[Pascoli:2007qh]
[18-151]
Global neutrino parameter estimation using Markov Chain Monte Carlo, Steen Hannestad, arXiv:0710.1952, 2007.
[Hannestad:2007tu]
[18-152]
Probing new physics in the Neutrinoless double beta decay using electron angular correlation, A. Ali, A.V. Borisov, D.V. Zhuridov, Phys. Rev. D76 (2007) 093009, arXiv:0706.4165.
[Ali:2007ec]
[18-153]
MiniBooNE Results and Neutrino Schemes with 2 sterile Neutrinos: Possible Mass Orderings and Observables related to Neutrino Masses, Srubabati Goswami, Werner Rodejohann, JHEP 10 (2007) 073, arXiv:0706.1462.
[Goswami:2007kv]
[18-154]
Statistics of neutrinos and the double beta decay, A.S. Barabash et al., Nucl. Phys. B783 (2007) 90-111, arXiv:0704.2944.
[Barabash:2007gb]
[18-155]
Getting Information on $|U_{e3}|^2$ from Neutrino-less Double Beta Decay, Alexander Merle, Werner Rodejohann, Adv. High Energy Phys. 2007 (2007) 82674, arXiv:hep-ph/0703135.
[Merle:2007hv]
[18-156]
Multiple-Isotope Comparison for Determining Neutrinoless Double-Beta Decay Mechanisms, V.M. Gehman, S.R. Elliott, J. Phys. G34 (2007) 667-678, arXiv:hep-ph/0701099.
[Gehman:2007qg]
[18-157]
Pinning down the mechanism of neutrinoless double beta decay with measurements in different nuclei, F. Deppisch, H. Pas, Phys. Rev. Lett. 98 (2007) 232501, arXiv:hep-ph/0612165.
[Deppisch:2006hb]
[18-158]
Observables sensitive to absolute neutrino masses: A reappraisal after WMAP-3y and first MINOS results, G.L. Fogli et al., Phys. Rev. D75 (2007) 053001, arXiv:hep-ph/0608060.
[Fogli:2006yq]
[18-159]
Constraining Mass Spectra with Sterile Neutrinos from Neutrinoless Double Beta Decay, Tritium Beta Decay and Cosmology, Srubabati Goswami, Werner Rodejohann, Phys. Rev. D73 (2006) 113003, arXiv:hep-ph/0512234.
[Goswami:2005ng]
[18-160]
Improved Limit on $\theta_{13}$ and Implications for Neutrino Masses in Neutrino-less Double Beta Decay and Cosmology, M. Lindner, A. Merle, W. Rodejohann, Phys. Rev. D73 (2006) 053005, arXiv:hep-ph/0512143.
[Lindner:2005kr]
[18-161]
Neutrinoless double beta decay and neutrino mass hierarchies, S.M. Bilenky, A. Faessler, T. Gutsche, F. Simkovic, Phys. Rev. D72 (2005) 053015, arXiv:hep-ph/0507260.
[Bilenky:2005ck]
[18-162]
Non-Oscillation Probes of the Neutrino Mass Hierarchy and Vanishing U_e3, Andre de Gouvea, James Jenkins, arXiv:hep-ph/0507021, 2005.
[deGouvea:2005hj]
[18-163]
Neutrinoless Double Beta Decay and Future Neutrino Oscillation Precision Experiments, S. Choubey, W. Rodejohann, Phys. Rev. D72 (2005) 033016, arXiv:hep-ph/0506102.
[Choubey:2005rq]
[18-164]
New Method of Enhancing Lepton Number Nonconservation, M. Ikeda, I. Nakano, M. Sakuda, R. Tanaka, M. Yoshimura, arXiv:hep-ph/0506062, 2005.
[Ikeda:2005yh]
[18-165]
Nuclear-atomic state degeneracy in neutrinoless double-electron capture: A unique test for a Majorana-neutrino, D. Frekers, Phys.Lett.B (2005), arXiv:hep-ex/0506002.
[Frekers:2005ze]
[18-166]
The Absolute Neutrino Mass Scale, Neutrino Mass Spectrum, Majorana CP-Violation and Neutrinoless Double-Beta Decay, S. Pascoli, S. T. Petcov, T. Schwetz, Nucl. Phys. B734 (2006) 24, arXiv:hep-ph/0505226.
[Pascoli:2005zb]
[18-167]
Upper Bounds on Lepton-number Violating Processes, Anupama Atre, Vernon Barger, Tao Han, Phys. Rev. D71 (2005) 113014, arXiv:hep-ph/0502163.
[Atre:2005eb]
[18-168]
Sterile neutrinos in neutrinoless double beta decay, P. Benes, Amand Faessler, S. Kovalenko, F. Simkovic, Phys. Rev. D71 (2005) 077901, arXiv:hep-ph/0501295.
[Benes:2005hn]
[18-169]
Neutrino-nucleus interactions as a probe to constrain double-beta decay predictions, Cristina Volpe, J. Phys. G31 (2005) 903, arXiv:hep-ph/0501233.
[Volpe:2005iy]
[18-170]
Conditions for detecting CP violation via neutrinoless double beta decay, Alicja Joniec, Marek Zralek, Phys. Rev. D73 (2006) 033001, arXiv:hep-ph/0411070.
[Joniec:2004mx]
[18-171]
Double beta decay versus cosmology: Majorana CP phases and nuclear matrix elements, Frank Deppisch, Heinrich Paes, Jouni Suhonen, Phys. Rev. D72 (2005) 033012, arXiv:hep-ph/0409306.
[Deppisch:2004kn]
[18-172]
Light neutrino and heavy particle exchange in neutrinoless double-beta decay, Gary Prezeau, Phys. Lett. B633 (2006) 93, arXiv:hep-ph/0409235.
[Prezeau:2004cs]
[18-173]
Observables sensitive to absolute neutrino masses: Constraints and correlations from world neutrino data, G. L. Fogli et al., Phys. Rev. D70 (2004) 113003, arXiv:hep-ph/0408045.
[Fogli:2004as]
[18-174]
Neutrinoless Double Beta Decay and Lepton Flavor Violation, V. Cirigliano, A. Kurylov, M.J. Ramsey-Musolf, P. Vogel, Phys. Rev. Lett. 93 (2004) 231802, arXiv:hep-ph/0406199.
[Cirigliano:2004tc]
[18-175]
Nuclear Matrix Elements of $0\nu_{\beta\beta}$-Decay: Possible Test of the Calculations, S.M. Bilenky, S.T. Petcov, arXiv:hep-ph/0405237, 2004.
[Bilenky:2004um]
[18-176]
What can we learn from neutrinoless double beta decay experiments?, John N. Bahcall, Hitoshi Murayama, Carlos Pena-Garay, Phys. Rev. D70 (2004) 033012, arXiv:hep-ph/0403167.
[Bahcall:2004ip]
[18-177]
Critical View to 'The IGEX neutrinoless double beta decay experiment....' published in Phys. Rev. D, Volume 65 (2002) 092007, H.V. Klapdor-Kleingrothaus, A. Dietz, I.V. Krivosheina, Phys. Rev. D70 (2004) 078301, arXiv:hep-ph/0403056.
[Aalseth:2004wf]
[18-178]
The Majorana neutrino masses, neutrinoless double beta decay and nuclear matrix elements, S.M. Bilenky, Amand Faessler, F. Simkovic, Phys. Rev. D70 (2004) 033003, arXiv:hep-ph/0402250.
[Bilenky:2004wn]
[18-179]
Support of Evidence for Neutrinoless Double Beta Decay, H.V. Klapdor-Kleingrothaus et al., Phys. Lett. B578 (2004) 54-62, arXiv:hep-ph/0312171.
[Klapdor-Kleingrothaus:2004ooq]
[18-180]
Neutrinoless double electron capture: A Tool to search for Majorana neutrinos, Z. Sujkowski, S. Wycech, Phys. Rev. C70 (2004) 052501, arXiv:hep-ph/0312040.
[Sujkowski:2003mb]
[18-181]
Addendum: The SNO Solar Neutrino Data, Neutrinoless Double Beta-Decay and Neutrino Mass Spectrum, S. Pascoli, S. T. Petcov, Phys. Lett. B580 (2004) 280, arXiv:hep-ph/0310003.
[Pascoli:2003ke]
[18-182]
Neutrinoless Double Beta Decay in Light of SNO Salt Data, Hitoshi Murayama, Carlos Pena-Garay, Phys. Rev. D69 (2004) 031301, arXiv:hep-ph/0309114.
[Murayama:2003ci]
[18-183]
Background Analysis around Q_(beta-beta) for 76Ge Double Beta Decay experiments, and Statistics at Low Count Rates, H.V. Klapdor-Kleingrothaus et al., Nucl. Instrum. Meth. A510 (2003) 281, arXiv:hep-ph/0308275.
[Klapdor-Kleingrothaus:2003mpt]
[18-184]
Running Neutrino Masses, Mixings and CP Phases: Analytical Results and Phenomenological Consequences, Stefan Antusch, Joern Kersten, Manfred Lindner, Michael Ratz, Nucl. Phys. B674 (2003) 401, arXiv:hep-ph/0305273.
[Antusch:2003kp]
[18-185]
Neutrino masses from beta decays after KamLAND and WMAP, F. R. Joaquim, Phys. Rev. D68 (2003) 033019, arXiv:hep-ph/0304276.
[Joaquim:2003pn]
[18-186]
Impact of CP phases on neutrinoless double beta decay, Asmaa Abada, Gautam Bhattacharyya, Phys. Rev. D68 (2003) 033004, arXiv:hep-ph/0304159.
[Abada:2003zt]
[18-187]
Consequences of neutrinoless double beta decay and WMAP, H.V. Klapdor-Kleingrothaus, U. Sarkar, Mod. Phys. Lett. A18 (2003) 2243, arXiv:hep-ph/0304032.
[Klapdor-Kleingrothaus:2003zoq]
[18-188]
Neutrinoless double-beta decay and effective field theory, Gary Prezeau, M. Ramsey-Musolf, Petr Vogel, Phys. Rev. D68 (2003) 034016, arXiv:hep-ph/0303205.
[Prezeau:2003xn]
[18-189]
Neutrino mass patterns, WMAP, and Neutrinoless double beta decay, Kingman Cheung, Phys. Lett. B562 (2003) 97, arXiv:hep-ph/0302265.
[Cheung:2003pm]
[18-190]
Can the Majorana Neutrino CP-Violating Phases be Restricted?, K. Matsuda, T. Fukuyama, H. Nishiura, Mod. Phys. Lett. A18 (2003) 1803, arXiv:hep-ph/0302254.
[Matsuda:2003kf]
[18-191]
Particle physics implications of the WMAP neutrino mmass bound, G. Bhattacharyya, H. Pas, L. Song, T.J. Weiler, Phys. Lett. B564 (2003) 175, arXiv:hep-ph/0302191.
[Bhattacharyya:2003gi]
[18-192]
WMAPping out Neutrino Masses, Aaron Pierce, Hitoshi Murayama, Phys. Lett. B581 (2004) 218, arXiv:hep-ph/0302131.
[Pierce:2003uh]
[18-193]
Double Beta Decay Constraints on Neutrino Masses and Mixing; Reanalysis with KamLAND Data, Hisakazu Minakata, Hiroaki Sugiyama, Phys. Lett. B567 (2003) 305, arXiv:hep-ph/0212240.
[Minakata:2002ts]
[18-194]
Neutrinoless Double Beta Decay from Singlet Neutrinos in Extra Dimensions, G. Bhattacharyya, H.V. Klapdor-Kleingrothaus, H. Päs, A. Pilaftsis, Phys. Rev. D67 (2003) 113001, arXiv:hep-ph/0212169.
[Bhattacharyya:2002vf]
[18-195]
On the Neutrino Mass Spectrum and Neutrinoless Double-Beta Decay, S. Pascoli, S.T. Petcov, W. Rodejohann, Phys. Lett. B558 (2003) 141, arXiv:hep-ph/0212113.
[Pascoli:2002ae]
[18-196]
Double beta decay of $\sigma^-$ hyperons, C. Barbero, G. Lopez Castro, A. Mariano, Phys. Lett. B566 (2003) 98, arXiv:nucl-th/0212083.
[Barbero:2002wm]
[18-197]
Neutrinoless double beta decay with scalar bilinears, H.V. Klapdor-Kleingrothaus, U. Sarkar, Phys. Lett. B554 (2003) 45, arXiv:hep-ph/0211274.
[Klapdor-Kleingrothaus:2002jri]
[18-198]
The possible test of the calculations of nuclear matrix elements of the $(\beta \beta)_{0\nu}$-decay, S. M. Bilenky, J. A. Grifols, Phys. Lett. B550 (2002) 154-159, arXiv:hep-ph/0211101.
[Bilenky:2002ga]
[18-199]
Baryon and Lepton Number Violation with Scalar Bilinears, H. V. Klapdor-Kleingrothaus, Ernest Ma, Utpal Sarkar, Mod. Phys. Lett. A17 (2002) 2221, arXiv:hep-ph/0210156.
[Klapdor-Kleingrothaus:2002rvk]
[18-200]
Neutrinoless Double Beta Decay in Supersymmetric Seesaw model, Tai-Fu Feng, Xue-Qian Li, Yan-An Luo, Phys. Rev. D66 (2002) 056011, arXiv:hep-ph/0209310.
[Feng:2002ev]
[18-201]
On the CP Violation Associated with Majorana Neutrinos and Neutrinoless Double-Beta Decay, S. Pascoli, S. T. Petcov, W. Rodejohann, Phys. Lett. B549 (2002) 177-193, arXiv:hep-ph/0209059.
[Pascoli:2002qm]
[18-202]
$(\beta\beta)_{0\nu}$-decay, the problem of the nuclear matrix elements, S. M. Bilenky, J. A. Grifols, arXiv:hep-ph/0207281, 2002.
[Bilenky:2002fi]
[18-203]
Operator Analysis of Neutrinoless Double Beta Decay, Ki-woon Choi, Kwang Sik Jeong, Wan Young Song, Phys. Rev. D66 (2002) 093007, arXiv:hep-ph/0207180.
[Choi:2002bb]
[18-204]
Constraining the absolute neutrino mass scale and Majorana CP violating phases by future neutrinoless double beta decay experiments, H. Nunokawa, W. J. C. Teves, R. Zukanovich Funchal, Phys. Rev. D66 (2002) 093010, arXiv:hep-ph/0206137.
[Nunokawa:2002iv]
[18-205]
No-go for detecting CP violation via neutrinoless double beta decay, V. Barger, S. L. Glashow, P. Langacker, D. Marfatia, Phys. Lett. B540 (2002) 247-251, arXiv:hep-ph/0205290.
[Barger:2002vy]
[18-206]
Neutrinoless double $\beta$ decay, neutrino mass hierarchy, and neutrino dark matter, Tomoharu Suzuki Naoyuki Haba, Noboru Nakamura, arXiv:hep-ph/0205141, 2002.
[Haba:2002rc]
[18-207]
A Full Determination of the Neutrino Mass Spectrum from Two-zero Textures of the Neutrino Mass Matrix, Zhi-zhong Xing, Phys. Lett. B539 (2002) 85-90, arXiv:hep-ph/0205032.
[Xing:2002ap]
[18-208]
Constraints from Neutrinoless Double Beta Decay, H. Nishiura K. Matsuda, T. Kikuchi, T. Fukuyama, Mod. Phys. Lett. A17 (2002) 2597, arXiv:hep-ph/0204254.
[Matsuda:2002iw]
[18-209]
Measuring leptonic CP Violation in Neutrinoless Double Beta Decay, W. Rodejohann, arXiv:hep-ph/0203214, 2002.
[Rodejohann:2002ng]
[18-210]
Predictions on the neutrinoless double beta decay from the leptogenesis via the LH(u) flat direction, Masaaki Fujii, K. Hamaguchi, T. Yanagida, Phys. Lett. B538 (2002) 107-114, arXiv:hep-ph/0203189.
[Fujii:2002hp]
[18-211]
Constraining four neutrino mass patterns from neutrinoless double beta decay, Sandip Pakvasa, Probir Roy, Phys. Lett. B535 (2002) 181-186, arXiv:hep-ph/0203188.
[Pakvasa:2002hn]
[18-212]
Model-independent Constraint on the Neutrino Mass Spectrum from the Neutrinoless Double Beta Decay, Zhi-zhong Xing, Phys. Rev. D65 (2002) 077302, arXiv:hep-ph/0202034.
[Xing:2002kx]
[18-213]
Neutrino mixing schemes and neutrinoless double beta decay, H. V. Klapdor-Kleingrothaus, U. Sarkar, Phys. Lett. B532 (2002) 71-76, arXiv:hep-ph/0202006.
[Klapdor-Kleingrothaus:2002oqq]
[18-214]
Constraints on Neutrino Mixing Parameters By Observation of Neutrinoless Double Beta Decay, Hisakazu Minakata, Hiroaki Sugiyama, Phys. Lett. B532 (2002) 275-283, arXiv:hep-ph/0202003.
[Minakata:2002gr]
[18-215]
Neutrino mass matrix solutions and neutrinoless double beta decay, Thomas Hambye, Eur. Phys. J. direct C4 (2002) 13, arXiv:hep-ph/0201307.
[Hambye:2002di]
[18-216]
Neutrino oscillations and signals in beta and 0nu2beta experiments, Ferruccio Feruglio, Alessandro Strumia, Francesco Vissani, Nucl. Phys. B637 (2002) 345-377, arXiv:hep-ph/0201291.
[Feruglio:2002af]
[18-217]
Neutrinoless double beta decay can constrain neutrino dark matter, V. Barger, S.L. Glashow, D. Marfatia, K. Whisnant, Phys.Lett. B532 (2002) 15-18, arXiv:hep-ph/0201262.
[Barger:2002xm]
[18-218]
Implications of observed neutrinoless double beta decay, H. V. Klapdor-Kleingrothaus, U. Sarkar, Mod. Phys. Lett. A16 (2001) 2469-2482, arXiv:hep-ph/0201224.
[Klapdor-Kleingrothaus:2001wti]
[18-219]
Phenomenological aspects of light and heavy Majorana neutrinos, Werner Rodejohann, J. Phys. G28 (2002) 1477-1498.
[Rodejohann:2002xc]
[18-220]
In quest of neutrino masses at O(eV) scale, M. Czakon, J. Gluza, J. Studnik, M. Zralek, Phys. Rev. D65 (2002) 053008, arXiv:hep-ph/0110166.
[Czakon:2001uh]
[18-221]
Majorana neutrinos, neutrino mass spectrum, CP-violation and neutrinoless double beta-decay. II: Mixing of four neutrinos, Samoil M. Bilenky, S. Pascoli, S. T. Petcov, Phys. Rev. D64 (2001) 113003, arXiv:hep-ph/0104218.
[Bilenky:2001xq]
[18-222]
Majorana neutrinos, neutrino mass spectrum, CP-violation and neutrinoless double beta-decay. I: The three-neutrino mixing case, Samoil M. Bilenky, S. Pascoli, S. T. Petcov, Phys. Rev. D64 (2001) 053010, arXiv:hep-ph/0102265.
[Bilenky:2001rz]
[18-223]
MNS parameters from neutrino oscillations, single beta decay and double beta decay, K. Matsuda, N. Takeda, T. Fukuyama, H. Nishiura, Phys. Rev. D64 (2001) 013001, arXiv:hep-ph/0012357.
[Matsuda:2000iw]
[18-224]
Neutrino mass spectrum and neutrinoless double beta decay, H. V. Klapdor-Kleingrothaus, H. Pas, A. Y. Smirnov, Phys. Rev. D63 (2001) 073005, arXiv:hep-ph/0003219.
[Klapdor-Kleingrothaus:2000tjb]
[18-225]
Perspectives on finding the neutrino nature, M. Czakon, J. Gluza, M. Zralek, arXiv:hep-ph/0003161, 2000.
[Czakon:2000vz]
[18-226]
Constraints from neutrino oscillation experiments on the effective Majorana mass in neutrinoless double beta decay, Samoil M. Bilenky, C. Giunti, W. Grimus, B. Kayser, S. T. Petcov, Phys. Lett. B465 (1999) 193-202, arXiv:hep-ph/9907234.
[Bilenky:1999wz]
[18-227]
Signal of neutrinoless double beta decay, neutrino spectrum and oscillation scenarios, Francesco Vissani, JHEP 06 (1999) 022, arXiv:hep-ph/9906525.
[Vissani:1999tu]
[18-228]
Neutrinoless double-beta decay with three or four neutrino mixing, C. Giunti, Phys. Rev. D61 (2000) 036002, arXiv:hep-ph/9906275.
[Giunti:1999jw]
[18-229]
Closing the neutrinoless double beta decay window into violations of the equivalence principle and/or Lorentz invariance, A. Halprin, R. R. Volkas, Phys. Lett. B459 (1999) 183-185, arXiv:hep-ph/9904298.
[Halprin:1999cg]
[18-230]
Majorana neutrino masses from neutrinoless double beta decay and cosmology, Vernon D. Barger, K. Whisnant, Phys.Lett. B456 (1999) 194-200, arXiv:hep-ph/9904281.
[Barger:1999na]
[18-231]
Neutrino oscillation constraints on neutrinoless double beta decay, Samoil M. Bilenky, C. Giunti, C. W. Kim, M. Monteno, Phys. Rev. D57 (1998) 6981-6988, arXiv:hep-ph/9711400.
[Bilenky:1997bu]
[18-232]
Short-baseline neutrino oscillations and neutrinoless double-beta decay in schemes with an inverted mass spectrum, S. M. Bilenky, C. Giunti, C. W. Kim, S. T. Petcov, Phys. Rev. D54 (1996) 4432-4444, arXiv:hep-ph/9604364.
[Bilenky:1996cb]
[18-233]
Short-baseline neutrino oscillations and neutrinoless double-beta decay in the framework of three neutrino mixing and a mass hierarchy, Samoil M. Bilenky, A. Bottino, C. Giunti, C. W. Kim, Phys. Rev. D54 (1996) 1881-1890, arXiv:hep-ph/9602216.
[Bilenky:1996uf]
[18-234]
Alternate interpretation of the results from the st. Gotthard laboratory double beta decay experiment, F. T. Avignone, R. L. Brodzinski, H. S. Miley, J. H. Reeves, Phys. Lett. B198 (1987) 253-254.
[Avignone:1987js]
[18-235]
Neutrinoless Beta Beta Decay and a New Limit on the Right-handed Current, T. Tomoda, A. Faessler, K.W. Schmid, F. Grummer, Nucl. Phys. A452 (1986) 591-620.
[Tomoda:1986yz]
[18-236]
NEUTRINOLESS DOUBLE BETA DECAY AND A NEW LIMIT ON THE LEPTON NUMBER VIOLATION, T. Tomoda, A. Faessler, K.W. Schmid, F. Grummer, Phys.Lett. B157 (1985) 4-8.
[Tomoda:1985xc]
[18-237]
Neutrinoless Double Electron Capture as a Tool to Measure the $\nu_e$ Mass, J. Bernabeu, A. De Rujula, C. Jarlskog, Nucl. Phys. B223 (1983) 15.
[Bernabeu:1983yb]
[18-238]
The Energy Spectrum and the Angular Correlation in the Beta Beta Decay, Masaru Doi, Tsuneyuki Kotani, Hiroyuki Nishiura, Eiichi Takasugi, Prog.Theor.Phys. 70 (1983) 1353.
[Doi:1983wv]
[18-239]
Effects of Light and Heavy Majorana Neutrinos in Neutrinoless Double Beta Decay, A. Halprin, S. T. Petcov, Simon Peter Rosen, Phys. Lett. 125B (1983) 335-338.
[Halprin:1983ez]
[18-240]
Conversion of an Atomic Electron Into a Positron and Double Beta+ Decay, R.A. Eramzhian, Guenakh Mitselmakher, M.B. Voloshin, JETP Lett. 35 (1982) 656.
[Eramzhian:1982bi]
[18-241]
Higgs boson exchange contributions to neutrinoless double beta decay, W. C. Haxton, Simon Peter Rosen, G. J. Stephenson, Phys. Rev. D26 (1982) 1805-1808.
[Haxton:1982ff]
[18-242]
Double-beta Decay and a Massive Majorana Neutrino, A. Halprin, P. Minkowski, H. Primakoff, Simon Peter Rosen, Phys. Rev. D13 (1976) 2567.
[Halprin:1976mr]
[18-243]
Nuclear double-beta decay and a new limit on lepton nonconservation, H. Primakoff, Simon Peter Rosen, Phys. Rev. 184 (1969) 1925-1933.
[Primakoff:1969mvu]
[18-244]
Double K Capture and Single K Capture with Positron Emission, Rolf G. Winter, Phys. Rev. 100 (1955) 142-144.
[Winter:1955zz]

19 - Phenomenology - Talks

[19-1]
Scotogenic neutrino masses and dark matter stability from residual gauge symmetry, Julio Leite, Oleg Popov, Rahul Srivastava, Jose W. F. Valle, arXiv:2009.02652, 2020. NDM-2020.
[Leite:2020kos]
[19-2]
Neutrino mass eigenstates and their ordering: a Bayesian approach, S. Gariazzo, Nuovo Cim.C 42 (2019) 176, arXiv:1806.11344. Incontri di Fisica delle Alte Energie (IFAE) 2018.
[Gariazzo:2018tft]
[19-3]
Neutrino Mass Ordering in Future Neutrinoless Double Beta Decay Experiments, Jue Zhang, Mod.Phys.Lett. A31 (2016) 1630020, arXiv:1605.07724. International Conference on New Physics at the Large Hadron Collider, Singapore, 29 February - 4 March 2016.
[Zhang:2016ysf]
[19-4]
Predictions for Neutrinoless Double-Beta Decay in the 3+1 Sterile Neutrino Scenario, C. Giunti, E. M. Zavanin, J. Phys. Conf. Ser. 718 (2016) 062074, arXiv:1511.03838. TAUP 2015.
[Giunti:2015iyr]
[19-5]
A combined limit for neutrinoless double-beta decay, Pawel Guzowski, arXiv:1504.08285, 2015. Prospects in Neutrino Physics Conference, 15 - 17 December, 2014, Queen Mary University of London, UK.
[Guzowski:2015gba]
[19-6]
A Critical Appraisal of Some Concepts Used in Neutrino Physics, Francesco Vissani, Manimala Mitra, Giulia Pagliaroli, Nuovo Cim. C36 (2013) 223-228, arXiv:1206.1466. IFAE 2012.
[Vissani:2012dm]
[19-7]
Neutrinoless Double Beta Decay and Neutrino Masses, Michael Duerr, AIP Conf.Proc. 1467 (2012) 235-238, arXiv:1206.0565. International Workshop on Grand Unified Theories, Yukawa Institute for Theoretical Physics, Kyoto, Japan, March 2012.
[Duerr:2012nd]
[19-8]
Suppression of $0nu2beta$ Decay from CP Violation, Marek Gozdz, W. A. Kaminski, Int. J. Mod. Phys. E16 (2007) 561, arXiv:1201.1236. Nuclear Physics Workshop in Kazimierz Dolny, Poland, 2006.
[Gozdz:2007ya]
[19-9]
Mildly mixed coupled models vs. WMAP7 data, Giuseppe La Vacca, Silvio A. Bonometto, Nucl. Phys. Proc. Suppl. 217 (2011) 68-71, arXiv:1101.2155. NOW2010, Conca Specchiulla, Italy, September 4-11, 2010.
[LaVacca:2011dc]
[19-10]
Constraints on fourth generation Majorana neutrinos, Alexander Lenz, Heinrich Pas, Dario Schalla, J. Phys. Conf. Ser. 259 (2010) 012096, arXiv:1010.3883. 16th International Symposium on Particles, Strings and Cosmology (PASCOS2010), Valencia (Spain), July 19th - 23rd, 2010.
[Lenz:2010ha]
[19-11]
Neutrino mass, neutrinoless double electron capture and rare beta decays, M.T. Mustonen, J. Suhonen, J. Phys. Conf. Ser. 203 (2010) 012066.
[Mustonen:2010zz]
[19-12]
Neutrinoless double EC and rare beta decays as tools to search for the neutrino mass, Jouni Suhonen, M.T. Mustonen, 2010.
[Suhonen:2010zz]
[19-13]
What we (would like to) know about the neutrino mass, G. L. Fogli, E. Lisi, A. Marrone, A. Palazzo, A. M. Rotunno, arXiv:0809.2936, 2008. NO-VE 2008, IV International Workshop on 'Neutrino Oscillations in Venice' (Venice, Italy, April 15-18, 2008).
[Fogli:2008cx]
[19-14]
Electron angular correlation in neutrinoless double beta decay and new physics, A. Ali, A.V. Borisov, D.V. Zhuridov, arXiv:0801.2512, 2008. 13th Lomonosov Conference on Elementary Particle Physics, 23 -29 August 2007, Moscow, Russia.
[Ali:2008af]
[19-15]
Neutrinoless double beta decay: Electron angular correlation as a probe of new physics, A. Ali, A.V. Borisov, D.V. Zhuridov, arXiv:hep-ph/0606072, 2006.
[Ali:2006iu]
[19-16]
Searching for Majorana neutrinos with double beta decay and with beta beams, L. Lukaszuk, Z. Sujkowski, S. Wycech, Eur.Phys.J. A27 (2006) 63-66. Workshop on Statistical Mechanics of Non-Extensive Systems (NBS 2005), 24-25 October 2005, Paris, France.
[Lukaszuk:2006ua]
[19-17]
Neutrinoless Double $\beta$-Decay: The Problem of Nuclear Matrix Elements, S. M. Bilenky, arXiv:hep-ph/0504075, 2005. International Workshop 'Neutrino Telescopes', Venice, February 22-25, 2005.
[Bilenky:2005za]
[19-18]
On the atomic resonances in the 0 nu 2EC transitions, S. Wycech, Z. Sujkowski, Acta Phys.Polon. B35 (2004) 1223-1230, arXiv:nucl-th/0402103.
[Wycech:2004uv]
[19-19]
Hot dark matter in the universe and the role of double beta decay, H.V. Klapdor, 2004. 5th International Workshop on the Identification of Dark Matter - IDM 2004 - 6-10 September 2004, Edinburgh, Scotland. http://www.shef.ac.uk/physics/idm2004/talks/tuesday/pdfs/klapdor-kleingrothaus.pdf.
[Klapdor:DM2004]
[19-20]
Neutrinoless Double Beta Decay Constraints, Hiroaki Sugiyama, arXiv:hep-ph/0307311, 2003. Workshop on Neutrino Oscillations and their Origin (NOON2003), Kanazawa, Japan, 10-14 Feb 2003.
[Sugiyama:2003gy]
[19-21]
Neutrino anomalies, Alessandro Strumia, arXiv:hep-ex/0304039, 2003. 'Neutrino Telescopes', Venezia, march 2003.
[Strumia:2003pc]
[19-22]
Neutrinoless Double Beta Decay and the Neutrino Mass Matrix, H.V. Klapdor-Kleingrothaus, arXiv:hep-ph/0211037, 2002. International Conference on Flavor Physics (ICFP2001), 31 May - 6 June, 2001, Zhang-Jia-Jie, China.
[Klapdor-Kleingrothaus:2002nmb]
[19-23]
Possible Evidence of Time Variation of Weak Interaction Constant from Double Beta Decay Experiments, A.S. Barabash, Astrophys. Space Sci. 283 (2003) 607, arXiv:nucl-ex/0210011. Workshop on varing fundamental constants, JENAM 2002, Porto, Portugal, September 2-7, 2002.
[Barabash:2002rg]
[19-24]
Absolute neutrino masses: physics beyond SM, double beta decay and cosmic rays, Thomas J. Weiler Heinrich Pas, arXiv:hep-ph/0205191, 2002. NOON2001 workshop, ICRR, University of Tokyo, Kashiwa, Japan.
[Pas:2002ff]
[19-25]
Analysis of solar neutrino induced double beta processes for several nuclei, P. Domin S. V. Semenov, Yu. V. Gaponov, F. Simkovic, Phys. Atom. Nucl. 65 (2002) 2184, arXiv:hep-ph/0205003. International Workhop on Non-Accelerator New Physics (NANP'01), Dubna, Russia, June 2001.
[Semenov:2002pt]
[19-26]
Neutrinoless double-beta decay and neutrino masses, F. Vissani, 2002. Workshop on Neutrino News from the Lab and the Cosmos, Fermilab, October 17 - 19, 2002. http://www-astro-theory.fnal.gov/Conferences/NuCosmo/talks/vissani.ps.
[Vissani-talk:2002a]
[19-27]
Non-oscillation searches of neutrino mass in the age of oscillations, Francesco Vissani, Nucl. Phys. Proc. Suppl. 100 (2001) 273-275, arXiv:hep-ph/0012018. Europhysics Neutrino Oscillation Workshop (NOW 2000), Conca Specchiulla, Otranto, Lecce, Ita, 9-16 Sep 2000.
[Vissani:2000ci]
[19-28]
Neutrino spectrum, oscillation scenarios and neutrinoless double beta decay, Francesco Vissani, arXiv:hep-ph/9904349, 1999. Sixth Topical Seminar on Neutrino and AstroParticle Physics, San Miniato, Italy, 17-21 May 1999.
[Vissani:1999pw]

20 - Phenomenology - Models

[20-1]
Neutrinoless double beta decay in the minimal type-I seesaw model: mass-dependent nuclear matrix element, current limits and future sensitivities, Dong-Liang Fang, Yu-Feng Li, Yi-Yu Zhang, Jing-Yu Zhu, arXiv:2404.12316, 2024.
[Fang:2024hzy]
[20-2]
A Survey of Neutrino Flavor Models and the Neutrinoless Double Beta Decay Funnel, Phys.Rev.D 109 (2024) 055028.
[Denton:2023hkx]
[20-3]
Complementary LHC searches for UV resonances of the $0\nu\beta\beta$ decay operators, Gang Li, Jiang-Hao Yu, Xiang Zhao, Phys.Rev.D 109 (2024) 055012, arXiv:2311.10079.
[Li:2023wfi]
[20-4]
Predictions of $m_{ee}$ and neutrino mass from a consistent Froggatt-Nielsen model, Yu-Cheng Qiu, Jin-Wei Wang, Tsutomu T. Yanagida, Phys.Rev.D 108 (2023) 115021, arXiv:2307.16470.
[Qiu:2023igq]
[20-5]
Constraints on NJL four-fermion effective interactions from neutrinoless double beta decay, Luca Pacioselli, Orlando Panella, Matteo Presilla, She-Sheng Xue, JHEP 11 (2023) 054, arXiv:2304.08042.
[Pacioselli:2023yol]
[20-6]
Neutrinoless double-beta decay in the neutrino-extended Standard Model, Wouter Dekens, Jordy de Vries, Emanuele Mereghetti, Javier Menendez, Pablo Soriano, Guanghui Zhou, Phys.Rev.C 108 (2023) 045501, arXiv:2303.04168.
[Dekens:2023iyc]
[20-7]
Neutrinoless double beta decay in Left-Right symmetric model with double seesaw, Sudhanwa Patra, S. T. Petcov, Prativa Pritimita, Purushottam Sahu, Phys.Rev.D 107 (2023) 075037, arXiv:2302.14538.
[Patra:2023ltl]
[20-8]
KeV dark matter in minimal extended seesaw model and its predictions in neutrinoless double beta decay and baryogenesis, Mayengbam Kishan Singh, S. Robertson Singh, N. Nimai Singh, arXiv:2302.09840, 2023.
[Singh:2023jll]
[20-9]
Majorana CP violating phases, Chao-Shang Huang, arXiv:2302.01623, 2023.
[Huang:2023tjy]
[20-10]
Systematic study of one-loop realizations of $d=7$ long-range $0\nu\beta\beta$ decay operators, Ping-Tao Chen, Gui-Jun Ding, Chang-Yuan Yao, JHEP 03 (2023) 138, arXiv:2301.02503.
[Chen:2023xaz]
[20-11]
One vanishing minor in neutrino mass matrix using trimaximal mixing, Iffat Ara Mazumder, Rupak Dutta, Phys.Rev.D 107 (2023) 115023, arXiv:2212.12884.
[Mazumder:2022ywa]
[20-12]
Neutrinoless Double Beta Decay and $ < \eta > $ Mechanism in the Left-Right Symmetric Model, Takeshi Fukuyama, Toru Sato, JHEP 06 (2023) 049, arXiv:2209.10813.
[Fukuyama:2022naj]
[20-13]
Light Sterile Neutrinos, Left-Right Symmetry, and $0\nu\beta\beta$ Decay, Jordy de Vries, Gang Li, Michael J. Ramsey-Musolf, Juan Carlos Vasquez, JHEP 11 (2022) 056, arXiv:2209.03031.
[deVries:2022nyh]
[20-14]
Connecting dark matter, baryogenesis and neutrinoless double beta decay in a $A_{4}\otimes Z_{8}$ based $\nu$2HDM, Lavina Sarma, Partha Kumar Paul, Mrinal Kumar Das, Int.J.Mod.Phys.A 37 (2022) 2250157, arXiv:2208.14764.
[Sarma:2022qka]
[20-15]
Neutrinoless double beta decay and the muonium-to-antimuonium transition in models with a doubly charged scalar, Takeshi Fukuyama, Yukihiro Mimura, Yuichi Uesaka, Phys.Rev.D 106 (2022) 055041, arXiv:2206.09691.
[Fukuyama:2022dhe]
[20-16]
Neutrinoless double beta decay and Sterile dark matter in extended left right symmetric model, Bichitra Bijay Boruah, Nayana Gautam, Mrinal Kumar Das, J.Phys.G 51 (2024) 045002, arXiv:2206.00696.
[Boruah:2022csq]
[20-17]
The Neutrinoless Double Beta Decay in the Colored Zee-Babu Model, Shao-Long Chen, Yu-Qi Xiao, Nucl.Phys.B 986 (2023) 116041, arXiv:2205.13118.
[Chen:2022rcv]
[20-18]
Hiding neutrinoless double beta decay in split seesaw model with 2+1 right-handed neutrinos, Zhen-hua Zhao, Eur.Phys.J.C 82 (2022) 1020, arXiv:2205.01021.
[Zhao:2022trb]
[20-19]
Non-zero $\theta_{13}$, CP-violation and Neutrinoless Double Beta Decay for Neutrino Mixing in the $A_4\times Z_2\times Z_2^\prime$ Flavor Symmetry Model, Animesh Barman, Ng. K. Francis, Bikash Thapa, Ankur Nath, Int.J.Mod.Phys.A 38 (2023) 2350012, arXiv:2203.05536.
[Barman:2022hyq]
[20-20]
Uncovering a chirally suppressed mechanism of $0\nu\beta\beta$ decay with LHC searches, Michael L. Graesser, Gang Li, Michael J. Ramsey-Musolf, Tianyang Shen, Sebastian Urrutia-Quiroga, JHEP 10 (2022) 034, arXiv:2202.01237.
[Graesser:2022nkv]
[20-21]
MH-Octant-CPV entanglement, vacuum alignment of $ A_{4} $ flavour symmetry, and $0\nu\beta\beta$ decay in an inverse seesaw model, Maibam Ricky Devi, Kalpana Bora, Mod.Phys.Lett.A 37 (2022) 2250073, arXiv:2112.13004.
[Devi:2021aaz]
[20-22]
Neutrinoless double beta decay in the minimal type-I seesaw model: How the enhancement or cancellation happens?, Dong-Liang Fang, Yu-Feng Li, Yi-Yu Zhang, Phys.Lett.B 833 (2022) 137346, arXiv:2112.12779.
[Fang:2021jfv]
[20-23]
Neutrinoless Double Beta Decay via Light Neutralinos in R-Parity Violating Supersymmetry, Patrick D. Bolton, Frank F. Deppisch, P. S. Bhupal Dev, JHEP 03 (2022) 152, arXiv:2112.12658.
[Bolton:2021hje]
[20-24]
Neutrinoless double-beta decay and lepton flavor violation in discrete flavor symmetric left-right symmetric model, Bichitra Bijay Boruah, Mrinal Kumar Das, Int.J.Mod.Phys.A 37 (2022) 2250026, arXiv:2111.10341.
[Boruah:2021ktk]
[20-25]
Neutrino meets ultralight dark matter: $\boldsymbol{0\nu\beta\beta}$ decay and cosmology, Guo-yuan Huang, Newton Nath, JCAP 05 (2022) 034, arXiv:2111.08732.
[Huang:2021kam]
[20-26]
Complementarity between neutrinoless double beta decay and collider searches for heavy neutrinos in composite-fermion models, S. Biondini, S. Dell'Oro, R. Leonardi, S. Marcocci, O. Panella, M. Presilla, F. Vissani, arXiv:2111.01053, 2021.
[Biondini:2021vip]
[20-27]
Scotogenesis in Hybrid Textures of Neutrino Mass Matrix and Neutrinoless Double Beta Decay, Ankush, Monal Kashav, Surender Verma, B. C. Chauhan, Phys.Lett.B 824 (2022) 136796, arXiv:2109.14211.
[Ankush:2021opd]
[20-28]
Lepton Number Violation: from $0\nu\beta\beta$ Decay to Long-Lived Particle Searches, Gang Li, Michael J. Ramsey-Musolf, Shufang Su, Juan Carlos Vasquez, Phys.Rev.D 105 (2022), arXiv:2109.08172.
[Li:2021fvw]
[20-29]
Zooming in on eV-MeV Scale Sterile Neutrinos in light of Neutrinoless Double Beta Decay, Tapoja Jha, Sarif Khan, Manimala Mitra, Ayon Patra, Phys.Rev.D 105 (2022) 035001, arXiv:2107.03807.
[Jha:2021oxl]
[20-30]
Nuclear $0\nu2\beta$ decays in $B-L$ symmetric SUSY model and TeV scale left-right symmetric model, Jin Lei Yang, Chao-Hsi Chang, Tai-Fu Feng, Commun.Theor.Phys. 74 (2022) 085202, arXiv:2107.01367.
[Yang:2021ueh]
[20-31]
TeV-scale Lepton Number Violation: Connecting Leptogenesis, Neutrinoless Double Beta Decay, and Colliders, Julia Harz, Michael J. Ramsey-Musolf, Tianyang Shen, Sebastian Urrutia-Quiroga, arXiv:2106.10838, 2021.
[Harz:2021psp]
[20-32]
Impact of texture zeros on dark matter and neutrinoless double beta decay in inverse seesaw, Nayana Gautam, Mrinal Kumar Das, Nucl.Phys.B 971 (2021) 115519, arXiv:2104.13071.
[Gautam:2021vhf]
[20-33]
Controlled fermion mixing and FCNCs in a $\Delta(27)$ 3+1 Higgs Doublet Model, A. E. Carcamo Hernandez, Ivo de Medeiros Varzielas, M. L. Lopez-Ibanez, Aurora Melis, JHEP 2105 (2021) 215, arXiv:2102.05658.
[CarcamoHernandez:2021osw]
[20-34]
Neutrinoless double beta decays tell nature of right-handed neutrinos, Takehiko Asaka, Hiroyuki Ishida, Kazuki Tanaka, JHEP 07 (2023) 062, arXiv:2101.12498.
[Asaka:2021hkg]
[20-35]
Fermion masses and mixings in a $U(1)_X$ model based on the $\Sigma(18)$ discrete symmetry, V. V. Vien, A. E. Carcamo Hernandez, H. N. Long, PTEP 2021 (2021) 8, arXiv:2101.03506.
[Vien:2021ciw]
[20-36]
What if a specific neutrinoless double beta decay is absent, Takehiko Asaka, Hiroyuki Ishida, Kazuki Tanaka, PTEP 2021 (2021) 063B01, arXiv:2012.13186.
[Asaka:2020lsx]
[20-37]
Hiding neutrinoless double beta decay in the minimal seesaw mechanism, Takehiko Asaka, Hiroyuki Ishida, Kazuki Tanaka, Phys.Rev. D103 (2021) 015014, arXiv:2012.12564.
[Asaka:2020wfo]
[20-38]
Left-right symmetry and leading contributions to neutrinoless double beta decay, Gang Li, Michael Ramsey-Musolf, Juan Carlos Vasquez, Phys.Rev.Lett. 126 (2021) 151801, arXiv:2009.01257.
[Li:2020flq]
[20-39]
Exploring $0\nu\beta\beta$ and Leptogenesis in the Alternative Left-Right Model, Mariana Frank, Chayan Majumdar, P. Poulose, Supriya Senapati, Urjit A. Yajnik, Phys.Rev. D102 (2020) 075020, arXiv:2008.12270.
[Frank:2020odd]
[20-40]
Numerical analysis of neutrino physics within a high scale supersymmetry model via machine learning, Ying-Ke Lei, Chun Liu, Zhiqiang Chen, Mod.Phys.Lett. A35 (2020) 2050218, arXiv:2006.01495.
[Lei:2020ucb]
[20-41]
Scalar dark matter, leptogenesis and $0\nu\beta\beta$ in minimal scotogenic model, Lavina Sarma, Pritam Das, Mrinal Kumar Das, Nucl.Phys.B 963 (2021) 115300, arXiv:2004.13762.
[Sarma:2020msa]
[20-42]
Consequences of Neutrinoless Double Decays Dominated by Short Range Interactions, C.Q. Geng, J.N. Ng, Phys.Rev. D102 (2020) 013004, arXiv:2003.06948.
[Geng:2020gsu]
[20-43]
Flavoured CP-asymmetry at the effective neutrino mass floor, Nimmala Narendra, Narendra Sahu, S. Uma Sankar, Nucl.Phys. B962 (2021) 115268, arXiv:2002.08753.
[Narendra:2020hoz]
[20-44]
A comparative study of $0\nu\beta\beta$ decay in symmetric and asymmetric left-right model, Chayan Majumdar, Sudhanwa Patra, Prativa Pritimita, Supriya Senapati, Nucl.Phys. B954 (2020) 115000, arXiv:2001.09488.
[Senapati:2020alx]
[20-45]
Interference Effects for $0\nu\beta\beta$ Decay in the Left-Right Symmetric Model, Fahim Ahmed, Mihai Horoi, Phys.Rev. C101 (2020) 035504, arXiv:1912.02850.
[Ahmed:2019vum]
[20-46]
Quark Condensate Seesaw Mechanism for Neutrino Mass, A. Babic, S. G. Kovalenko, M. I. Krivoruchenko, F. Simkovic, Phys.Rev. D103 (2021) 015007, arXiv:1911.12189.
[Babic:2019zqu]
[20-47]
Loop-enhanced rate of neutrinoless double beta decay, Werner Rodejohann, Xun-Jie Xu, arXiv:1907.12478, 2019.
[Rodejohann:2019qzu]
[20-48]
Renormalization Group Evolution of Dimension-seven Operators in Standard Model Effective Field Theory and Relevant Phenomenology, Yi Liao, Xiao-Dong Ma, JHEP 1903 (2019) 179, arXiv:1901.10302.
[Liao:2019tep]
[20-49]
Neutrinoless Double Beta Decay with Non-standard Majoron Emission, Ricardo Cepedello, Frank F. Deppisch, Lorena Gonzalez, Martin Hirsch, Phys.Rev.Lett. 122 (2019) 181801, arXiv:1811.00031.
[Cepedello:2018zvr]
[20-50]
Impact of RGE-induced $ \mu-\tau$ Reflection Symmetry Breaking on the Effective Majorana Neutrino Mass in $ 0\nu\beta\beta$ Decay, Newton Nath, Phys.Rev. D99 (2019) 035026, arXiv:1810.07938.
[Nath:2018zoi]
[20-51]
Neutrinoless double beta decay in a minimal left-right symmetric model with gauge coupling unification, Chayan Majumdar, Sudhanwa Patra, Supriya Senapati, Urjit A. Yajnik, Nucl.Phys. B951 (2020) 114875, arXiv:1809.10577.
[Majumdar:2018eqz]
[20-52]
The $\lambda$ mechanism of the $0\nu\beta\beta$-decay, Fedor Simkovic, Dusan Stefanik, Rastislav Dvornicky, Amand Faessler, Fron.in Phys. 5 (2017) 57, arXiv:1804.04223.
[Simkovic:2017uvu]
[20-53]
Neutrinoless double-beta decay with massive scalar emission, Kfir Blum, Yosef Nir, Michal Shavit, Phys.Lett. B785 (2018) 354-361, arXiv:1802.08019.
[Blum:2018ljv]
[20-54]
Lepton Number Violation, Lepton Flavour Violation and Baryogenesis in Left-Right Symmetric Model, Happy Borgohain, Mrinal Kumar Das, Phys.Rev. D96 (2017) 075021, arXiv:1709.09542.
[Borgohain:2017akh]
[20-55]
Lower Mass Bound on the $W^\prime$ mass via Neutrinoless Double Beta Decay in a 3-3-1 Model, A. C. O. Santos, P. Vasconcelos, Adv.High Energy Phys. 2018 (2018) 9132381, arXiv:1708.03955.
[Santos:2017jbv]
[20-56]
Neutrino Mass Sum-rule and Neutrinoless Double Beta Decay, Asan Damanik, arXiv:1707.02865, 2017.
[Damanik:2017dxc]
[20-57]
Dominant light-heavy neutrino mixing contribution to $0\nu\beta\beta$ in minimal left-right symmetric model with universal seesaw, Debasish Borah, Arnab Dasgupta, Sudhanwa Patra, Int.J.Mod.Phys. A33 (2018) 1850198, arXiv:1706.02456.
[Borah:2017ldt]
[20-58]
Neutrino Mass and Neutrinoless double beta decay in SO(10) GUT with Pati-Salam symmetry, M. Sruthilaya, Rukmani Mohanta, Sudhanwa Patra, J.Phys. G45 (2018) 075004, arXiv:1705.04125.
[Sruthilaya:2017vui]
[20-59]
Neutrinoless double beta decay and lepton flavour violation in broken $\mu-\tau$ symmetric neutrino mass models, Happy Borgohain, Mrinal Kumar Das, Int.J.Theor.Phys. 56 (2017) 2911-2934, arXiv:1705.00922.
[Borgohain:2017inp]
[20-60]
One-loop radiative seesaw dark matter and neutrinoless double beta decay with two zero flavor neutrino mass texture, Teruyuki Kitabayashi, Shinya Ohkawa, Masaki Yasue, Int.J.Mod.Phys. A32 (2017) 1750186, arXiv:1703.09417.
[Kitabayashi:2017sjz]
[20-61]
Universal Seesaw and $0\nu\beta\beta$ in new 3331 left-right symmetric model, Debasish Borah, Sudhanwa Patra, Phys.Lett. B771 (2017) 318-326, arXiv:1701.08675.
[Borah:2017inr]
[20-62]
Interference Between Light and Heavy Neutrinos for $0\nu\beta\beta$ Decay in the Left-Right Symmetric Model, Fahim Ahmed, Andrei Neacsu, Mihai Horoi, Phys.Lett. B769 (2017) 299-304, arXiv:1701.03177.
[Ahmed:2017pqa]
[20-63]
Neutrinoless Double Beta Decay in Left-Right Symmetry with Universal Seesaw, Frank F. Deppisch, Chandan Hati, Sudhanwa Patra, Prativa Pritimita, Utpal Sarkar, Phys.Rev. D97 (2018) 035005, arXiv:1701.02107.
[Deppisch:2017vne]
[20-64]
Neutrinoless double beta decay and chiral $SU(3)$, V. Cirigliano, W. Dekens, M. Graesser, E. Mereghetti, Phys.Lett. B769 (2017) 460-464, arXiv:1701.01443.
[Cirigliano:2017ymo]
[20-65]
A model of neutrino mass and dark matter with large neutrinoless double beta decay, Julien Alcaide, Dipankar Das, Arcadi Santamaria, JHEP 1704 (2017) 049, arXiv:1701.01402.
[Alcaide:2017xoe]
[20-66]
A neutrino mass-mixing sum rule from SO(10) and neutrinoless double beta decay, F. Buccella et al., JHEP 1704 (2017) 004, arXiv:1701.00491.
[Buccella:2017jkx]
[20-67]
Gauge vectors and double beta decay, Renato M. Fonseca, Martin Hirsch, Phys.Rev. D95 (2017) 035033, arXiv:1612.04272.
[Fonseca:2016jbm]
[20-68]
Mu-tau reflection symmetry with a texture-zero, C. C. Nishi, B. L. Sanchez-Vega, JHEP 1701 (2017) 068, arXiv:1611.08282.
[Nishi:2016wki]
[20-69]
QCD-improved limits from neutrinoless double beta decay, Carolina Arbelaez, Marcela Gonzalez, Sergey Kovalenko, Martin Hirsch, Phys.Rev. D96 (2017) 015010, arXiv:1611.06095.
[Arbelaez:2016uto]
[20-70]
Extending two Higgs doublet models for two-loop neutrino mass generation and one-loop neutrinoless double beta decay, Zhen Liu, Pei-Hong Gu, Nucl. Phys. B915 (2017) 206-223, arXiv:1611.02094.
[Liu:2016mpf]
[20-71]
Neutrinoless Double Beta Decay in LRSM with Natural Type-II seesaw Dominance, Prativa Pritimita, Nitali Dash, Sudhanwa Patra, JHEP 1610 (2016) 147, arXiv:1607.07655.
[Pritimita:2016fgr]
[20-72]
Scalar-mediated double beta decay and LHC, L. Gonzales, J.C. Helo, M. Hirsch, S.G. Kovalenko, JHEP 12 (2016) 130, arXiv:1606.09555.
[Gonzalez:2016ztm]
[20-73]
On neutrinoless double beta decay in the $\nu$MSM, Takehiko Asaka, Shintaro Eijima, Hiroyuki Ishida, Phys.Lett. B762 (2016) 371-375, arXiv:1606.06686.
[Asaka:2016zib]
[20-74]
Neutrinoless double $\beta$ decay and low scale leptogenesis, Marco Drewes, Shintaro Eijima, Phys.Lett. B763 (2016) 72-79, arXiv:1606.06221.
[Drewes:2016lqo]
[20-75]
Majorana Neutrino Masses from Neutrinoless Double-Beta Decays and Lepton-Number-Violating Meson Decays, Jun-Hao Liu, Jue Zhang, Shun Zhou, Phys.Lett. B760 (2016) 571, arXiv:1606.04886.
[Liu:2016oph]
[20-76]
An electroweak basis for neutrinoless double $\beta$ decay, Michael L. Graesser, JHEP 1708 (2017) 099, arXiv:1606.04549.
[Graesser:2016bpz]
[20-77]
Analysis of four-zero textures in $3+1$ framework, Debasish Borah, Monojit Ghosh, Shivani Gupta, Suprabh Prakash, Sushant K. Raut, Phys. Rev. D94 (2016) 113001, arXiv:1606.02076.
[Borah:2016xkc]
[20-78]
Predictions for the Majorana CP Violation Phases in the Neutrino Mixing Matrix and Neutrinoless Double Beta Decay, I. Girardi, S. T. Petcov, A. V. Titov, Nucl. Phys. B911 (2016) 754-804, arXiv:1605.04172.
[Girardi:2016zwz]
[20-79]
Dilepton bounds on left-right symmetry at the LHC run II and neutrinoless double beta decay, Manfred Lindner, Farinaldo S. Queiroz, Werner Rodejohann, Phys.Lett. B762 (2016) 190-195, arXiv:1604.07419.
[Lindner:2016lpp]
[20-80]
Long-range contributions to double beta decay revisited, J.C. Helo, M. Hirsch, T. Ota, JHEP 1606 (2016) 006, arXiv:1602.03362.
[Helo:2016vsi]
[20-81]
Lepton Mixing Predictions from Infinite Group Series $D^{(1)}_{9n, 3n}$ with Generalized CP, Cai-Chang Li, Chang-Yuan Yao, Gui-Jun Ding, JHEP 1605 (2016) 007, arXiv:1601.06393.
[Li:2016ppt]
[20-82]
Neutrinoless double beta decay in the left-right symmetric models for linear seesaw, Pei-Hong Gu, JHEP 1609 (2016) 152, arXiv:1512.01119.
[Gu:2015uek]
[20-83]
The Scalar Triplet Contribution to Lepton Flavour Violation and Neutrinoless Double Beta Decay in Left-Right Symmetric Model, Gulab Bambhaniya, P. S. Bhupal Dev, Srubabati Goswami, Manimala Mitra, JHEP 1604 (2016) 046, arXiv:1512.00440.
[Bambhaniya:2015ipg]
[20-84]
Implications of the Diboson Excess for Neutrinoless Double Beta Decay and Lepton Flavor Violation in TeV Scale Left Right Symmetric Model, Ram Lal Awasthi, P. S. Bhupal Dev, Manimala Mitra, Phys. Rev. D93 (2015) 011701, arXiv:1509.05387.
[Awasthi:2015ota]
[20-85]
Neutrinoless Double Beta Decay in Type I+II Seesaw Models, Debasish Borah, Arnab Dasgupta, JHEP 11 (2015) 208, arXiv:1509.01800.
[Borah:2015ufa]
[20-86]
LHC dijet constraints on double beta decay, J. C. Helo, M. Hirsch, Phys. Rev. D92 (2015) 073017, arXiv:1509.00423.
[Helo:2015ffa]
[20-87]
TeV Lepton Number Violation: From Neutrinoless Double Beta Decay to the LHC, Tao Peng, Michael J. Ramsey-Musolf, Peter Winslow, Phys. Rev. D93 (2016) 093002, arXiv:1508.04444.
[Peng:2015haa]
[20-88]
Neutron-antineutron Oscillation and Baryonic Majoron: Low Scale Spontaneous Baryon Violation, Zurab Berezhiani, Eur.Phys.J. C76 (2016) 705, arXiv:1507.05478.
[Berezhiani:2015afa]
[20-89]
Probing flavor models with Ge-76-based experiments on neutrinoless double-beta decay, Matteo Agostini, Alexander Merle, Kai Zuber, Eur.Phys.J. C76 (2016) 176, arXiv:1506.06133.
[Agostini:2015dna]
[20-90]
Radiative Corrections to Light Neutrino Masses in Low Scale Type I Seesaw Scenarios and Neutrinoless Double Beta Decay, J. Lopez-Pavon, E. Molinaro, S. T. Petcov, JHEP 11 (2015) 030, arXiv:1506.05296.
[Lopez-Pavon:2015cga]
[20-91]
Lepton Number Violation within the Conformal Inverse Seesaw, Pascal Humbert, Manfred Lindner, Sudhanwa Patra, Juri Smirnov, JHEP 09 (2015) 064, arXiv:1505.07453.
[Humbert:2015yva]
[20-92]
SU(5)-inspired double beta decay, Renato M. Fonseca, Martin Hirsch, Phys. Rev. D92 (2015) 015014, arXiv:1505.06121.
[Fonseca:2015ena]
[20-93]
Left-Right Symmetric Models at the High-Intensity Frontier, Oscar Castillo-Felisola, Claudio O. Dib, Juan C. Helo, Sergey G. Kovalenko, Sebastian E. Ortiz, Phys. Rev. D92 (2015) 013001, arXiv:1504.02489.
[Castillo-Felisola:2015bha]
[20-94]
Degenerate spectrum in the neutrino mass anarchy with Wishart matrices and implications for $0\nu\beta\beta$ and $\delta_{\rm CP}$, Kwang Sik Jeong, Naoya Kitajima, Fuminobu Takahashi, Phy s.Rev. D91 (2015) 113010, arXiv:1412.4061.
[Jeong:2014qpa]
[20-95]
Relating quarks and leptons with the T7 flavour group, Cesar Bonilla, Stefano Morisi, Eduardo Peinado, Jose W.F. Valle, Phys.Lett. B742 (2015) 99-106, arXiv:1411.4883.
[Bonilla:2014xla]
[20-96]
Double Beta Decay, Lepton Flavour Violation and Collider Signatures of Left-Right Symmetric Models with Spontaneous D Parity Breaking, Frank F. Deppisch, Tomas E. Gonzalo, Sudhanwa Patra, Narendra Sahu, Utpal Sarkar, Phys. Rev. D91 (2015) 015018, arXiv:1410.6427.
[Deppisch:2014zta]
[20-97]
Resonant Slepton Production Yields CMS $eejj$ and $ejj$ Missing $p_T$ Excesses, B.C. Allanach, S. Biswas, S. Mondal, M. Mitra, Phys. Rev. D91 (2015) 015011, arXiv:1410.5947.
[Allanach:2014nna]
[20-98]
Lepton textures and neutrino oscillations, Rohit Verma, Int.J.Mod.Phys. A29 (2014) 1444009, arXiv:1406.0640.
[Verma:2014lpa]
[20-99]
TeV Scale Left-Right Symmetry and Large Mixing Effects in Neutrinoless Double Beta Decay, P. S. Bhupal Dev, Srubabati Goswami, Manimala Mitra, Phys. Rev. D91 (2015) 113004, arXiv:1405.1399.
[BhupalDev:2014qbx]
[20-100]
Radiative neutrino mass generation linked to neutrino mixing and neutrinoless double beta decay predictions, Michael Gustafsson, Jose M. No, Maximiliano A. Rivera, Phys. Rev. D90 (2014) 013012, arXiv:1402.0515.
[Gustafsson:2014vpa]
[20-101]
Towards a realistic model of quarks and leptons, leptonic CP violation and neutrinoless $\beta\beta$-decay, Y. H. Ahn, Paolo Gondolo, Phys. Rev. D91 (2015) 013007, arXiv:1402.0150.
[Ahn:2014zja]
[20-102]
Looking for the minimal realisation of the inverse seesaw, Asmaa Abada, Michele Lucente, Nucl. Phys. B885 (2014) 651, arXiv:1401.1507.
[Abada:2014vea]
[20-103]
Proton decay and new contribution to neutrino-less double beta decay in SO(10) with low-mass Z-prime boson, observable n-nbar oscillation, lepton flavor violation, and rare kaon decay, M. K. Parida, Ram Lal Awasthi, P. K. Sahu, JHEP 1501 (2015) 045, arXiv:1401.1412.
[Parida:2014dba]
[20-104]
Type-II seesaw dominance in SO(10), low-mass Z', Lepton flavor violations, and new contributions to neutrino-less double beta decay, Bidyut Prava Nayak, M. K. Parida, Eur.Phys.J. C75 (2015) 183, arXiv:1312.3185.
[Nayak:2013dza]
[20-105]
Texture and Cofactor Zeros of the Neutrino Mass Matrix, Jiajun Liao, D. Marfatia, K. Whisnant, JHEP 1409 (2014) 013, arXiv:1311.2639.
[Liao:2013saa]
[20-106]
On neutrinoless double beta decay in the minimal left-right symmetric model, Wei-Chih Huang, J. Lopez-Pavon, Eur.Phys.J. C74 (2014) 2853, arXiv:1310.0265.
[Huang:2013kma]
[20-107]
The Power of Neutrino Mass Sum Rules for Neutrinoless Double Beta Decay Experiments, Stephen F. King, Alexander Merle, Alexander J. Stuart, JHEP 1312 (2013) 005, arXiv:1307.2901.
[King:2013psa]
[20-108]
Lepton number and lepton flavour violation in left-right symmetric theories, James Barry, Werner Rodejohann, JHEP 1309 (2013) 153, arXiv:1303.6324.
[Barry:2013xxa]
[20-109]
Quark-Lepton Mass Relation and CKM mixing in an A4 Extension of the Minimal Supersymmetric Standard Model, S. Morisi, M. Nebot, Ketan M. Patel, E. Peinado, J. W. F. Valle, Phys. Rev. D88 (2013) 036001, arXiv:1303.4394.
[Morisi:2013eca]
[20-110]
Neutrino masses, dominant neutrinoless double beta decay, and observable lepton flavor violation in left-right models and SO(10) grand unification with low mass $ W_R, Z_R$ bosons, Ram Lal Awasthi, M. K. Parida, Sudhanwa Patra, JHEP 1308 (2013) 122, arXiv:1302.0672.
[Awasthi:2013ff]
[20-111]
Neutrinoless double beta decay and pseudo-Dirac neutrino mass predictions through inverse seesaw mechanism, Ram Lal Awasthi, M. K. Parida, Sudhanwa Patra, arXiv:1301.4784, 2013.
[Awasthi:2013we]
[20-112]
$0\nu\beta\beta$ decay process in left-right symmetric models without scalar Bidoublet, Sudhanwa Patra, Phys. Rev. D87 (2013) 015002, arXiv:1212.0612.
[Patra:2012ur]
[20-113]
Left-right models with light neutrino mass prediction and dominant neutrinoless double beta decay rate, M. K. Parida, Sudhanwa Patra, Phys. Lett B718 (2013) 1407-1412, arXiv:1211.5000.
[Parida:2012sq]
[20-114]
Left-Right Symmetry: from Majorana to Dirac, Miha Nemevsek, Goran Senjanovic, Vladimir Tello, Phys. Rev. Lett. 110 (2013) 151802, arXiv:1211.2837.
[Nemevsek:2012iq]
[20-115]
Neutrinoless double-$beta$ decay in TeV scale Left-Right symmetric models, Joydeep Chakrabortty, H. Zeen Devi, Srubabati Goswami, Sudhanwa Patra, JHEP 08 (2012) 008, arXiv:1204.2527.
[Chakrabortty:2012mh]
[20-116]
From dark matter to neutrinoless double beta decay, Pei-Hong Gu, arXiv:1203.4165, 2012.
[Gu:2012tn]
[20-117]
Linear Collider Test of a Neutrinoless Double Beta Decay Mechanism in left-right Symmetric Theories, James Barry, Luis Dorame, Werner Rodejohann, Eur. Phys. J. C72 (2012) 2023, arXiv:1203.3365.
[Barry:2012ga]
[20-118]
Lepton Number and Lepton Flavor Violation through Color Octet States, Sandhya Choubey, Michael Duerr, Manimala Mitra, Werner Rodejohann, JHEP 05 (2012) 017, arXiv:1201.3031.
[Choubey:2012ux]
[20-119]
Constraining Bilinear R-Parity Violation from Neutrino Masses, Marek Gozdz, Wieslaw A. Kaminski, Phys. Rev. D78 (2008) 075021, arXiv:1201.1241.
[Gozdz:2008zz]
[20-120]
Extra Dimensions and Neutrinoless Double Beta Decay Experiments, Marek Gozdz, Wieslaw A. Kaminski, Amand Faessler, Phys. Rev. D71 (2005) 096005, arXiv:1201.1228.
[Gozdz:2005wd]
[20-121]
A realistic model of neutrino masses with a large neutrinoless double beta decay rate, Francisco del Aguila, Alberto Aparici, Subhaditya Bhattacharya, Arcadi Santamaria, Jose Wudka, JHEP 05 (2012) 133, arXiv:1111.6960.
[delAguila:2011gr]
[20-122]
Constraining neutrinoless double beta decay, L. Dorame, D. Meloni, S. Morisi, E. Peinado, J. W. F. Valle, Nucl. Phys. B861 (2012) 259-270, arXiv:1111.5614.
[Dorame:2011eb]
[20-123]
Common origin of baryon asymmetry and proton decay, Pei-Hong Gu, Utpal Sarkar, Mod.Phys.Lett. A28 (2013) 1350159, arXiv:1110.4581.
[Gu:2011pf]
[20-124]
R-Parity violating flavor symmetries, recent neutrino data and absolute neutrino mass scale, Gautam Bhattacharyya, Heinrich Pas, Daniel Pidt, Phys. Rev. D84 (2011) 113009, arXiv:1109.6183.
[Bhattacharyya:2011zv]
[20-125]
Predictions for Neutrino Masses, $\beta\beta_{0nu}$-Decay and Lepton Flavor Violation in a SUSY $SU(5) \times T^{\prime}$ Model of Flavour, Mu-Chun Chen, Kalyana T. Mahanthappa, Aurora Meroni, S. T. Petcov, arXiv:1109.0731, 2011.
[Chen:2011vd]
[20-126]
Nonzero Theta13 for Neutrino Mixing in a Supersymmetric B-L Gauge Model with T_7 Lepton Flavor Symmetry, Qing-Hong Cao, Shaaban Khalil, Ernest Ma, Hiroshi Okada, Phys. Rev. D84 (2011) 071302, arXiv:1108.0570.
[Cao:2011cp]
[20-127]
Neutrinoless Double Beta Decay and Heavy Sterile Neutrinos, Manimala Mitra, Goran Senjanovic, Francesco Vissani, Nucl. Phys. B856 (2012) 26-73, arXiv:1108.0004.
[Mitra:2011qr]
[20-128]
Admixture of quasi-Dirac and Majorana neutrinos with tri-bimaximal mixing, S. Morisi, E. Peinado, Phys. Lett. B701 (2011) 451-457, arXiv:1104.4961.
[Morisi:2011ge]
[20-129]
Neutrino mass hierarchy and the origin of leptonic flavor mixing from the righthanded sector, Philipp Leser, Heinrich Pas, Phys. Rev. D84 (2011) 017303, arXiv:1104.2448.
[Leser:2011fz]
[20-130]
Neutrinoless double-beta decay and seesaw, S.M. Bilenky, Amand Faessler, W. Potzel, F. Simkovic, Eur. Phys. J. C71 (2011) 1754, arXiv:1104.1952.
[Bilenky:2011tr]
[20-131]
Neutrinoless double beta decay with pseudo Dirac neutrinos, Pei-Hong Gu, Phys. Rev. D85 (2012) 093016, arXiv:1101.5106.
[Gu:2011ak]
[20-132]
Testing the Bimodal/Schizophrenic Neutrino Hypothesis in Neutrino-less Double Beta Decay and Neutrino Telescopes, James Barry, Rabindra N. Mohapatra, Werner Rodejohann, Phys. Rev. D83 (2011) 113012, arXiv:1012.1761.
[Barry:2010en]
[20-133]
Left-Right Symmetry: from LHC to Neutrinoless Double Beta Decay, Vladimir Tello, Miha Nemevsek, Fabrizio Nesti, Goran Senjanovic, Francesco Vissani, Phys. Rev. Lett. 106 (2011) 151801, arXiv:1011.3522.
[Tello:2010am]
[20-134]
Schizophrenic Neutrinos and $\nu$-less Double Beta Decay, Rouzbeh Allahverdi, Bhaskar Dutta, Rabindra N. Mohapatra, Phys. Lett. B695 (2011) 181-184, arXiv:1008.1232.
[Allahverdi:2010us]
[20-135]
TeV Scale See-Saw Mechanisms of Neutrino Mass Generation, the Majorana Nature of the Heavy Singlet Neutrinos and $\beta\beta$-Decay, A. Ibarra, E. Molinaro, S. T. Petcov, JHEP 09 (2010) 108, arXiv:1007.2378.
[Ibarra:2010xw]
[20-136]
Neutrinoless double beta decay in seesaw models, Mattias Blennow, Enrique Fernandez-Martinez, Jacobo Lopez-Pavon, Javier Menendez, JHEP 1007 (2010) 096, arXiv:1005.3240.
[Blennow:2010th]
[20-137]
A direct link between neutrinoless double beta decay and leptogenesis in a seesaw model with $S_4$ symmetry, Y. H. Ahn, Sin Kyu Kang, C. S. Kim, T. Phong Nguyen, Phys. Rev. D82 (2010) 093005, arXiv:1004.3469.
[Ahn:2010nw]
[20-138]
On Non-Unitary Lepton Mixing and Neutrino Mass Observables, Werner Rodejohann, Phys. Lett. B684 (2010) 40-47, arXiv:0912.3388.
[Rodejohann:2009ve]
[20-139]
Low-energy limits on heavy Majorana neutrino masses from the neutrinoless double-beta decay and non-unitary neutrino mixing, Zhi-zhong Xing, Phys. Lett. B679 (2009) 255-259, arXiv:0907.3014.
[Xing:2009ce]
[20-140]
Neutrinoless Double Beta Decay and $H^{\pm\pm}\to {l'}^\pm l^\pm$ Decays in the Higgs Triplet Model, S. T. Petcov, H. Sugiyama, Y. Takanishi, Phys. Rev. D80 (2009) 015005, arXiv:0904.0759.
[Petcov:2009zr]
[20-141]
LHC and B physics probes of neutrinoless double beta decay in supersymmetry without R-parity, B. C. Allanach, C. H. Kom, H. Pas, JHEP 10 (2009) 026, arXiv:0903.0347.
[Allanach:2009xx]
[20-142]
Large Hadron Collider probe of supersymmetric neutrinoless double beta decay mechanism, B. C. Allanach, C. H. Kom, H. Pas, Phys. Rev. Lett. 103 (2009) 091801, arXiv:0902.4697.
[Allanach:2009iv]
[20-143]
Coupling between cold dark matter and dark energy from neutrino mass experiments, J. R. Kristiansen, G. La Vacca, L. P. L. Colombo, S. A. Bonometto, New Astron. 15 (2010) 609-613, arXiv:0902.2737.
[Kristiansen:2009yx]
[20-144]
The Effect of Quark Sector Minimal Flavor Violation on Neutrinoless Double Beta Decay, Brian Dudley, Christopher Kolda, Phys. Rev. D79 (2009) 013014, arXiv:0810.2997.
[Dudley:2008vg]
[20-145]
Minimally Allowed Neutrinoless Double Beta Decay Rates From Approximate Flavor Symmetries, James Jenkins, Phys. Rev. D79 (2009) 113004, arXiv:0810.1263.
[Jenkins:2008ex]
[20-146]
Minimally Allowed Neutrinoless Double Beta Decay Rates Within an Anarchical Framework, James Jenkins, Phys. Rev. D79 (2009) 113003, arXiv:0808.1702.
[Jenkins:2008ms]
[20-147]
Bilepton contributions to the neutrinoless double beta decay in the economical 3-3-1 model, Dang Van Soa, Phung Van Dong, Trinh Thi Huong, Hoang Ngoc Long, J. Exp. Theor. Phys. 108 (2009) 757-763, arXiv:0805.4456.
[VanSoa:2008bm]
[20-148]
Tri-bimaximal neutrino mixing and neutrinoless double beta decay, M. Hirsch, S. Morisi, J.W.F. Valle, Phys. Rev. D78 (2008) 093007, arXiv:0804.1521.
[Hirsch:2008rp]
[20-149]
Neutrino Mass Matrices With Vanishing Determinant, Bhag C. Chauhan, Joao Pulido, Marco Picariello, Phys. Rev. D73 (2006) 053003, arXiv:hep-ph/0602084.
[Chauhan:2006uf]
[20-150]
Neutrinos in a left-right model with a horizontal symmetry, Ken Kiers et al., Phys. Rev. D73 (2006) 033009, arXiv:hep-ph/0510274.
[Kiers:2005vx]
[20-151]
Predicting Neutrinoless Double Beta Decay, M. Hirsch, Ernest Ma, J. W. F. Valle, A. Villanova del Moral, Phys. Rev. D72 (2005) 091301, arXiv:hep-ph/0507148.
[Hirsch:2005mc]
[20-152]
nuMSM-Predictions for Neutrinoless Double Beta Decay, F. Bezrukov, Phys. Rev. D72 (2005) 071303, arXiv:hep-ph/0505247.
[Bezrukov:2005mx]
[20-153]
Neutrino Decay and Neutrinoless Double Beta Decay in a 3-3- 1 Model, Alex G. Dias, A. Doff, C. A. de S. Pires, P. S. Rodrigues da Silva, Phys. Rev. D72 (2005) 035006, arXiv:hep-ph/0503014.
[Dias:2005jm]
[20-154]
Neutrino masses, F. Buccella, D. Falcone, Mod. Phys. Lett. A19 (2004) 2993, arXiv:hep-ph/0404159.
[Buccella:2004cd]
[20-155]
Zee model and Neutrinoless double beta decay, Kingman Cheung Ming-Yang Cheng, arXiv:hep-ph/0203051, 2002.
[Cheng:2002hr]
[20-156]
Neutrinoless Double Beta Decay with Negligible Neutrino Mass, Biswajoy Brahmachari, Ernest Ma, Phys. Lett. B536 (2002) 259-262, arXiv:hep-ph/0202262.
[Brahmachari:2002xc]
[20-157]
The neutrinoless double $\beta$ decay and the neutrino mass hierarchy, Naoyuki Haba, Tomoharu Suzuki, Mod. Phys. Lett. A17 (2002) 865-874, arXiv:hep-ph/0202143.
[Haba:2002my]
[20-158]
Sneutrino oscillations and neutrinoless double beta decay, M. Hirsch, H. V. Klapdor-Kleingrothaus, S. G. Kovalenko, Phys. Lett. B403 (1997) 291-296.
[Hirsch:1997is]

21 - Phenomenology - Models - Talks

[21-1]
Falsifying Baryogenesis with Neutrinoless Double Beta Decay, Lukas Graf, arXiv:1605.01099, 2016. NuPhys2015 (London, 16-18 December 2015).
[Graf:2016fir]
[21-2]
Impact of Neutrinoless Double Beta Decay on Models of Baryogenesis, Frank F. Deppisch, Julia Harz, Wei-Chih Huang, PoS EPS-HEP2015 (2015) 078, arXiv:1510.06305. European Physical Society Conference on High Energy Physics 2015 (EPS-HEP 2015), Vienna, Austria, 22nd to 29th of July 2015.
[Deppisch:2015sva]
[21-3]
Lepton Number Violation and the Baryon Asymmetry of the Universe, Julia Harz, Wei-Chih Huang, Heinrich Pas, Int.J.Mod.Phys. A30 (2015) 1530045, arXiv:1505.07632. International Conference on Massive Neutrinos, Singapore 2015.
[Harz:2015fwa]
[21-4]
Neutrinoless double $\beta$ decay with small neutrino masses, F. del Aguila, A. Aparici, S. Bhattacharya, A. Santamaria, J. Wudka, PoS Corfu2012 (2013) 028, arXiv:1305.4900. Corfu Summer Institute 2012 'School and Workshops on Elementary Particle Physics and Gravity', September 8-27, 2012, Corfu, Greece.
[delAguila:2013zba]
[21-5]
Heavy Sterile Neutrinos and Neutrinoless Double Beta Decay, Manimala Mitra, Goran Senjanovic, Francesco Vissani, arXiv:1205.3867, 2012. Moriond EW 2012.
[Mitra:2012qz]
[21-6]
$0\nu2\beta$ Nuclear Matrix Elements and Neutrino Magnetic Moments, M. Gozdz, W. A. Kaminski, Int. J. Mod. Phys. E19 (2010) 692, arXiv:1201.1247. Nuclear Physics Workshop in Kazimierz Dolny, Poland, 2009.
[Gozdz:2010zz]
[21-7]
Neutrinoless double beta decay constrained by the existence of large extra dimensions, Marek Gozdz, W. A. Kaminski, Int. J. Mod. Phys. E13 (2004) 367, arXiv:1201.1238. Nuclear Physics Workshop in Kazimierz Dolny, Poland, 2003.
[Gozdz:2004yp]
[21-8]
Neutrinoless double beta decay: searching for new physics with comparison of different nuclei, A. Ali, A. V. Borisov, D. V. Zhuridov, arXiv:1112.4074, 2011. 14th Lomonosov Conference on Elementary Particle Physics (Moscow, August 19-25, 2009).
[Ali:2010vol]
[21-9]
Probing the Majorana nature of the neutrino with neutrinoless double beta decay, S. Morisi, J. Phys. Conf. Ser. 203 (2010) 012060, arXiv:0910.2542. TAUP09, July 1-5, 2009 (Roma).
[Morisi:2009sz]

22 - Phenomenology - Related Processes

[22-1]
Macroscopic neutrinoless double beta decay: long range quantum coherence, Gordon Baym, Jen-Chieh Peng, arXiv:2403.02602, 2024.
[Baym:2024jlq]
[22-2]
Two-Neutrino Double Beta Decay with Sterile Neutrinos, Patrick D. Bolton, Frank F. Deppisch, Lukas Graf, Fedor Simkovic, Phys.Rev. D103 (2021) 055019, arXiv:2011.13387.
[Bolton:2020ncv]
[22-3]
Majorana CP-violating phases in neutrino-antineutrino oscillations and other lepton-number-violating processes, Zhi-zhong Xing, Ye-Ling Zhou, Phys. Rev. D88 (2013) 033002, arXiv:1305.5718.
[Xing:2013woa]
[22-4]
A variety of lepton number violating processes related to Majorana neutrino masses, C.S. Lim, E. Takasugi, M. Yoshimura, Prog. Theor. Phys. 113 (2005) 1367, arXiv:hep-ph/0411139.
[Lim:2004tb]
[22-5]
Nuclear muon-positron conversion mediated by Majorana neutrinos, Pavol Domin, Amand Faessler, Sergey Kovalenko, Fedor Simkovic, Phys. Rev. C70 (2004) 065501, arXiv:nucl-th/0409033.
[Domin:2004tk]

23 - Phenomenology - Background

[23-1]
Aluminum as a source of background in low background experiments, B. Majorovits, I. Abt, M. Laubenstein, O. Volynets, Nucl. Instrum. Meth. A647 (2011) 39-45, arXiv:1105.3591.
[Majorovits:2011mb]
[23-2]
A background free double beta decay experiment, Ioannis Giomataris, J. Phys. Conf. Ser. 309 (2011) 012010, arXiv:1012.4289.
[Giomataris:2010qy]
[23-3]
Neutron Inelastic Scattering Processes as Background for Double-Beta Decay Experiments, D.-M. Mei et al., Phys. Rev. C77 (2008) 054614, arXiv:0704.0306.
[Mei:2007zd]
[23-4]
Muon-induced background study for underground laboratories, Dongming Mei, A. Hime, Phys. Rev. D73 (2006) 053004, arXiv:astro-ph/0512125.
[Mei:2005gm]

24 - Phenomenology - Background - Talks

[24-1]
Solar Neutrinos as Background to Neutrinoless Double-beta Decay Experiments, S. R. Elliott, H. Ejiri, AIP Conf.Proc. 1894 (2017) 020008, arXiv:1708.00927. MEDEX 2017.
[Elliott:2017bui]
[24-2]
Neutron- and muon-induced background in underground physics experiments, V.A. Kudryavtsev, L. Pandola, V. Tomasello, Eur. Phys. J. A36 (2008) 171-180, arXiv:0802.3566. IV ILIAS Annual Meeting.
[Kudryavtsev:2008fi]

25 - Nuclear Matrix Elements

[25-1]
Systematic shell-model analysis of $2\nu\beta\beta$ decay of $^{76}$Ge and $^{96}$Zr to the ground and excited states of $^{76}$Se and $^{96}$Mo, Deepak Patel, Praveen C. Srivastava, Jouni Suhonen, arXiv:2404.11896, 2024.
[Patel:2024bjq]
[25-2]
Nuclear matrix elements of neutrinoless double-beta decay in covariant density functional theory with different mechanisms, C. R. Ding, Gang Li, J. M. Yao, arXiv:2403.17722, 2024.
[Ding:2024obt]
[25-3]
Neutrinoless double-$\beta$ decay and double Gamow-Teller transitions, Y. K. Wang, P. W. Zhao, J. Meng, arXiv:2403.06455, 2024.
[Wang:2024zkl]
[25-4]
Muon Capture on $^{6}$Li, $^{12}$C, and $^{16}$O from $Ab~Initio$ Nuclear Theory, Lotta Jokiniemi, Petr Navratil, Jenni Kotila, Kostas Kravvaris, arXiv:2403.05776, 2024.
[Jokiniemi:2024zdl]
[25-5]
Long-Distance Nuclear Matrix Elements for Neutrinoless Double-Beta Decay from Lattice QCD, Zohreh Davoudi, William Detmold, Zhenghao Fu, Anthony V. Grebe, William Jay, David Murphy, Patrick Oare, Phiala E. Shanahan, Michael L. Wagman, arXiv:2402.09362, 2024.
[Davoudi:2024ukx]
[25-6]
Large-scale shell-model study of two-neutrino double-beta decay of 82^{82}Se, 94^{94}Zr, 108^{108}Cd, 124^{124}Sn, 128^{128}Te, 130^{130}Te, 136^{136}Xe, and 150^{150}Nd, Deepak Patel, Praveen C. Srivastava, V.K.B. Kota, R. Sahu, Nucl.Phys.A 1042 (2024) 122808, arXiv:2310.19015.
[Patel:2023vqy]
[25-7]
What can we learn from recent $2\nu\beta\beta$ experiments?, Dong-Liang Fang, Chin.Phys.C 48 (2024) 034101, arXiv:2309.13328.
[Fang:2023fzx]
[25-8]
Ab initio uncertainty quantification of neutrinoless double-beta decay in $^{76}$Ge, A. Belley et al., arXiv:2308.15634, 2023.
[Belley:2023lec]
[25-9]
A relativistic model-free prediction for neutrinoless double beta decay at leading order, Y. L. Yang, P. W. Zhao, arXiv:2308.03356, 2023.
[Yang:2023ynp]
[25-10]
Ab initio calculations of neutrinoless $\beta \beta$ decay refine neutrino mass limits, A. Belley, T. Miyagi, S. R. Stroberg, J. D. Holt, arXiv:2307.15156, 2023.
[Belley:2023btr]
[25-11]
Interplay between non-interfering neutrino exchange mechanisms and nuclear matrix elements in $0u\beta\beta$ decay, Eligio Lisi, Antonio Marrone, Newton Nath, Phys.Rev.D 108 (2023) 055023, arXiv:2306.07671.
[Lisi:2023amm]
[25-12]
Impact of isovector pairing fluctuation on neutrinoless double-beta decay in multi-reference covariant density functional theory, C. R. Ding, X. Zhang, J. M. Yao, P. Ring, J. Meng, Phys.Rev.C 108 (2023) 054304, arXiv:2305.00742.
[Ding:2023dnl]
[25-13]
Cause of discrepancy problem of calculated running sums to nuclear matrix element of two-neutrino double-$\beta$ decay, J. Terasaki, Phys.Rev.C 108 (2023) 014301, arXiv:2304.01719.
[Terasaki:2023zyt]
[25-14]
Ordinary muon capture rates on $^{100}$Mo and $^{\rm nat}$Mo for astro-antineutrinos and double beta decays, I. H. Hashim et al., arXiv:2302.05878, 2023.
[Hashim:2023crb]
[25-15]
Correlations Between Neutrinoless Double-Beta, Double Gamow-Teller and Double-Magnetic Decays in the pnQRPA Framework, Lotta Jokiniemi, Javier Menendez, Phys.Rev.C 107 (2023) 044316, arXiv:2302.05399.
[Jokiniemi:2023bes]
[25-16]
Predicting the neutrinoless double-beta decay matrix element of $^{136}$Xe using a statistical approach, Mihai Horoi, Andrei Neacsu, Sabin Stoica, Phys.Rev.C 107 (2023) 045501, arXiv:2302.03664.
[Horoi:2023uah]
[25-17]
$0^+$ to $2^+$ neutrinoless double-$\beta$ decay of $^{76}$Ge, $^{82}$Se, $^{130}$Te and $^{136}$Xe in the microscopic interacting boson model, J. Ferretti, R. Magana Vsevolodovna, J. Kotila, E. Santopinto, arXiv:2301.02007, 2023.
[Ferretti:2023hmv]
[25-18]
Two-neutrino $\beta\beta$ decay of $^{136}$Xe to the first excited $0^+$ state in $^{136}$Ba, Lotta Jokiniemi, Beatriz Romeo, Catharina Brase, Jenni Kotila, Pablo Soriano, Achim Schwenk, Javier Menendez, Phys.Lett.B 838 (2023) 137689, arXiv:2211.03764.
[Jokiniemi:2022yfr]
[25-19]
$0\nu\beta\beta$ to the first $2^+$ state with two-nucleon mechanism for L-R symmetric model, Dong-Liang Fang, Amand Faessler, Phys.Rev.C 107 (2023) 015501, arXiv:2208.08595.
[Fang:2022cos]
[25-20]
Neutrinoless $\beta\beta$-decay nuclear matrix elements from two-neutrino $\beta\beta$-decay data, Lotta Jokiniemi, Beatriz Romeo, Pablo Soriano, Javier Menendez, Phys.Rev.C 107 (2023) 044305, arXiv:2207.05108.
[Jokiniemi:2022ayc]
[25-21]
Lattice QCD calculation of light sterile neutrino contribution in $0\nu2\beta$ decay, Xin-Yu Tuo, Xu Feng, Lu-Chang Jin, Phys.Rev.D 106 (2022) 074510, arXiv:2206.00879.
[Tuo:2022hft]
[25-22]
What quenches ${g_A}$ in nuclei ?, Mannque Rho, arXiv:2204.08190, 2022.
[Rho:2022gic]
[25-23]
A Statistical Analysis for the Neutrinoless Double-Beta Decay Matrix element of 48Ca, M. Horoi, A. Neacsu, S. Stoica, Phys.Rev.C 106 (2022) 054302, arXiv:2203.10577.
[Horoi:2022ley]
[25-24]
Shell-model calculation of $^{100}$Mo double-$\beta$ decay, L. Coraggio, N. Itaco, G. De Gregorio, A. Gargano, R. Mancino, F. Nowacki, Phys.Rev.C 105 (2022) 034312, arXiv:2203.01013.
[Coraggio:2022vgy]
[25-25]
Symmetries in subatomic six-quark fermions, J.D. Vergados, D. Strottman, arXiv:2202.04563, 2022.
[Vergados:2022zkg]
[25-26]
Neutrinoless double-beta decay: combining quantum Monte Carlo and the nuclear shell model with the generalized contact formalism, Ronen Weiss, Pablo Soriano, Alessandro Lovato, Javier Menendez, R. B. Wiringa, Phys.Rev.C 106 (2022) 065501, arXiv:2112.08146.
[Weiss:2021rig]
[25-27]
Long-range neutrinoless double beta decay mechanisms, Jenni Kotila, Jacopo Ferretti, Francesco Iachello, arXiv:2110.09141, 2021.
[Kotila:2021xgw]
[25-28]
Impact of the leading-order short-range nuclear matrix element on the neutrinoless double-beta decay of heavy nuclei, Lotta Jokiniemi, Pablo Soriano, Javier Menendez, Phys.Lett.B 823 (2021) 136720, arXiv:2107.13354.
[Jokiniemi:2021qqv]
[25-29]
$\gamma\gamma$ decay as a probe of neutrinoless $\beta\beta$ decay nuclear matrix elements, B. Romeo, J. Menendez, C. Pena, Phys.Lett.B 827 (2022) 136965, arXiv:2102.11101.
[Romeo:2021zrn]
[25-30]
Determining the leading-order contact term in neutrinoless double $\boldsymbol\beta$ decay, Vincenzo Cirigliano, Wouter Dekens, Jordy de Vries, Martin Hoferichter, Emanuele Mereghetti, JHEP 2105 (2021) 289, arXiv:2102.03371.
[Cirigliano:2021qko]
[25-31]
$\rho$ exchange contribution to neutrinoless double beta decay, Namit Mahajan, Eur.Phys.J.C 83 (2023) 530, arXiv:2102.02185.
[Mahajan:2021rtc]
[25-32]
Large-$N_c$ analysis of two-nucleon neutrinoless double beta decay and charge-independence-breaking contact terms, Thomas R. Richardson, Matthias R. Schindler, Saori Pastore, Roxanne P. Springer, Phys.Rev. C103 (2021) 055501, arXiv:2102.02184.
[Richardson:2021xiu]
[25-33]
NMEs for $0\nu\beta\beta(0^+\rightarrow2^+)$ of two-nucleon mechanism for $^{76}$Ge, Dong-Liang Fang, Amand Faessler, Phys.Rev. C103 (2021) 045501, arXiv:2101.03299.
[Fang:2021zae]
[25-34]
Towards complete leading-order predictions for neutrinoless double $\beta$ decay, Vincenzo Cirigliano, Wouter Dekens, Jordy de Vries, Martin Hoferichter, Emanuele Mereghetti, Phys.Rev.Lett. 126 (2021) 172002, arXiv:2012.11602.
[Cirigliano:2020dmx]
[25-35]
Multifarious roles of hidden chiral-scale symmetry:'Quenching' ${g_A}$ in nuclei, Mannque Rho, Symmetry 13 (2021) 1388, arXiv:2012.07418.
[Rho:2020yxu]
[25-36]
The path from lattice QCD to the short-distance contribution to $0\nu\beta\beta$ decay with a light Majorana neutrino, Zohreh Davoudi, Saurabh V. Kadam, Phys.Rev.Lett. 126 (2021) 152003, arXiv:2012.02083.
[Davoudi:2020gxs]
[25-37]
Ab initio benchmarks of neutrinoless double beta decay in light nuclei with a chiral Hamiltonian, J. M. Yao, A. Belley, R. Wirth, T. Miyagi, C. G. Payne, S. R. Stroberg, H. Hergert, J. D. Holt, Phys.Rev. C103 (2021) 014315, arXiv:2010.08609.
[Yao:2020olm]
[25-38]
Ab initio neutrinoless double-beta decay matrix elements for 48Ca, 76Ge, and 82Se, A. Belley, C. G. Payne, S. R. Stroberg, T. Miyagi, J. D. Holt, Phys.Rev.Lett. 126 (2021) 042502, arXiv:2008.06588.
[Belley:2020ejd]
[25-39]
Two-neutrino double-beta decay in pionless effective field theory from a Euclidean finite-volume correlation function, Zohreh Davoudi, Saurabh V. Kadam, Phys.Rev. D102 (2020) 114521, arXiv:2007.15542.
[Davoudi:2020xdv]
[25-40]
Neutrinoless Double Beta Decay from Lattice QCD: The Long-Distance $\pi^{-} \rightarrow \pi^{+} e^{-} e^{-}$ Amplitude, W. Detmold, D.J. Murphy, arXiv:2004.07404, 2020.
[Detmold:2020jqv]
[25-41]
Ab Initio Treatment of Collective Correlations and the Neutrinoless Double Beta Decay of $^{48}$Ca, J. M. Yao, B. Bally, J. Engel, R. Wirth, T. R. Rodriguez, H. Hergert, Phys.Rev.Lett. 124 (2020) 232501, arXiv:1908.05424.
[Yao:2019rck]
[25-42]
A renormalized approach to neutrinoless double-beta decay, V. Cirigliano, W. Dekens, J. de Vries, M. L. Graesser, E. Mereghetti, S. Pastore, M. Piarulli, U. van Kolck, R. B. Wiringa, Phys.Rev. C100 (2019) 055504, arXiv:1907.11254.
[Cirigliano:2019vdj]
[25-43]
Discrepancy between experimental and theoretical $\beta$-decay rates resolved from first principles, P. Gysbers et al., Nature Phys. 15 (2019) 428-431, arXiv:1903.00047.
[Gysbers:2019uyb]
[25-44]
Computation of products of phase space factors and nuclear matrix elements for the Double Beta Decay, Sabin Stoica, Chin.Phys. C43 (2019) 064108, arXiv:1901.05718.
[Stoica:2019ikl]
[25-45]
Effective axial-vector current coupling and isoscalar pairing interaction for quasiparticle random-phase approximation approach to double-$\beta$ and $\beta$ decays, J. Terasaki, Y. Iwata, Phys.Rev. C100 (2019) 034325, arXiv:1901.05165.
[Terasaki:2019rbu]
[25-46]
Heavy physics contributions to neutrinoless double beta decay from QCD, A. Nicholson et al., Phys.Rev.Lett. 121 (2018) 172501, arXiv:1805.02634.
[Nicholson:2018mwc]
[25-47]
Neutrinoless $\beta\beta$ decay mediated by the exchange of light and heavy neutrinos: The role of nuclear structure correlations, Javier Menendez, Comments Nucl.Part.Phys. 45 (2018) 014003, arXiv:1804.02105.
[Menendez:2017fdf]
[25-48]
The $0\nu\beta\beta$-decay nuclear matrix element for light and heavy neutrino mass mechanisms from deformed QRPA cacluations for $^{76}$Ge, $^{82}$Se, $^{130}$Te, $^{136}$Xe and $^{150}$Nd with isospin restoration, Dong-Liang Fang, Amand Faessler, Fedor Simkovic, Phys.Rev. C97 (2018) 045503, arXiv:1803.09195.
[Fang:2018tui]
[25-49]
Neutrinoless double beta decay matrix elements in light nuclei, S. Pastore et al., Phys.Rev. C97 (2018) 014606, arXiv:1710.05026.
[Pastore:2017ofx]
[25-50]
Neutrinoless double beta decay in effective field theory: the light Majorana neutrino exchange mechanism, V. Cirigliano, W. Dekens, E. Mereghetti, A. Walker-Loud, Phys.Rev. C97 (2018) 065501, arXiv:1710.01729.
[Cirigliano:2017tvr]
[25-51]
Double Gamow-Teller transitions and its relation to neutrinoless $\beta\beta$ decay, Noritaka Shimizu, Javier Menendez, Kentaro Yako, Phys.Rev.Lett. 120 (2018) 142502, arXiv:1709.01088.
[Shimizu:2017qcy]
[25-52]
Impact of the quenching of $g_{\rm A}$ on the sensitivity of $0\nu\beta\beta$ experiments, Jouni Suhonen, Phys.Rev. C96 (2017) 055501, arXiv:1708.09604.
[Suhonen:2017rjf]
[25-53]
Towards an effective field theory approach to the neutrinoless double-beta decay, Mihai Horoi, Andrei Neacsu, arXiv:1706.05391, 2017.
[Horoi:2017gmj]
[25-54]
Calculation of Gamow-Teller and Two-Neutrino Double-Beta Decay Properties for 130Te and 136Xe with a realistic nucleon-nucleon potential, L. Coraggio, L. De Angelis, T. Fukui, A. Gargano, N. Itaco, Phys.Rev. C95 (2017) 064324, arXiv:1703.05087.
[Coraggio:2017bqn]
[25-55]
Double-$\beta$ Decay Matrix Elements from Lattice Quantum Chromodynamics, Brian C. Tiburzi, Michael L. Wagman, Frank Winter, Emmanuel Chang, Zohreh Davoudi, William Detmold, Kostas Orginos, Martin J. Savage, Phiala E. Shanahan, Phys.Rev. D96 (2017) 054505, arXiv:1702.02929.
[Tiburzi:2017iux]
[25-56]
Nuclear matrix element of neutrinoless double-$\beta$ decay: Relativity and short-range correlations, L. S. Song, J. M. Yao, P. Ring, J. Meng, Phys. Rev. C95 (2017) 024305, arXiv:1702.02448.
[Song:2017ktj]
[25-57]
Two-neutrino $\beta\beta$ decays and low-lying Gamow-Teller $\beta$ strength functions in the mass range A=70-76, D. S. Delion, J. Suhonen, Phys. Rev. C95 (2017) 034330.
[Delion:2017bie]
[25-58]
Charge-exchange reactions on double-$\beta$ decaying nuclei populating $ J^\pi = 2^- $ states, D. Frekers, M. Alanssari, H. Ejiri, M. Holl, A. Poves, J. Suhonen, Phys. Rev. C95 (2017) 034619.
[Frekers:2017kta]
[25-59]
Isovector spin-multipole strength distributions in double-$\beta$ decay triplets, Lotta Jokiniemi, Jouni Suhonen, Phys. Rev. C96 (2017) 034308.
[Jokiniemi:2017jut]
[25-60]
Electron spectra in forbidden $\beta$ decays and the quenching of the weak axial-vector coupling constant $g_{A}$, Joel Kostensalo, Mikko Haaranen, Jouni Suhonen, Phys. Rev. C95 (2017) 044313.
[Kostensalo:2017jgw]
[25-61]
$g_A$-driven shapes of electron spectra of forbidden $\beta$ decays in the nuclear shell model, Joel Kostensalo, Jouni Suhonen, Phys. Rev. C96 (2017) 024317.
[Kostensalo:2017xxq]
[25-62]
Nuclear structure calculations for two-neutrino double-beta decay, P. Sarriguren, O. Moreno, E. Moya de Guerra, Adv.High Energy Phys. 2016 (2016) 6391052, arXiv:1609.05648.
[Sarriguren:2016kls]
[25-63]
Shell model studies of competing mechanisms to the neutrinoless double-beta decay in $^{124}$Sn, $^{130}$Te, and $^{136}$Xe, Andrei Neacsu, Mihai Horoi, Adv.High Energy Phys. 2016 (2016) 1903767, arXiv:1607.01295.
[Neacsu:2016njp]
[25-64]
Statistical analysis of beta decays and the effective value of g_A in the pnQRPA framework, Frank F. Deppisch, Jouni Suhonen, Phys. Rev. C94 (2016) 055501, arXiv:1606.02908.
[Deppisch:2016rox]
[25-65]
Large-scale shell-model analysis of the neutrinoless $\beta\beta$ decay of $^{48}$Ca, Y. Iwata et al., Phys. Rev. Lett. 116 (2016) 112502, arXiv:1602.07822.
[Iwata:2016cxn]
[25-66]
QCD running in neutrinoless double beta decay: Short-range mechanisms, M. Gonzalez, M. Hirsch, S.G. Kovalenko, Phys. Rev. D93 (2016) 013017, arXiv:1511.03945.
[Gonzalez:2015ady]
[25-67]
Analysis of mechanisms that could contribute to the neutrinoless double-beta decay, Mihai Horoi, Andrei Neacsu, Phys. Rev. D93 (2016) 113014, arXiv:1511.00670.
[Horoi:2015gdv]
[25-68]
Testing the importance of collective correlations in neutrinoless $\beta\beta$ decay, J. Menendez, N. Hinohara, J. Engel, G. Martinez-Pinedo, T. R. Rodriguez, Phys. Rev. C93 (2016) 014305, arXiv:1510.06824.
[Menendez:2015kxa]
[25-69]
Nuclear matrix elements in neutrinoless double beta decay: beyond mean-field covariant density functional theory, J. M. Yao, L. S. Song, K. Hagino, P. Ring, J. Meng, Phys. Rev. C91 (2015) 024316, arXiv:1410.6326.
[Yao:2014uta]
[25-70]
Relativistic description of nuclear matrix elements in neutrinoless double-$\beta$ decay, L. S. Song, J. M. Yao, P. Ring, J. Meng, Phys. Rev. C90 (2014) 054309, arXiv:1407.1368.
[Song:2014vra]
[25-71]
Systematic Law for Half-lives of Double $\beta$-decay with Two Neutrinos, Yuejiao Ren, Zhongzhou Ren, Phys. Rev. C89 (2014) 064603, arXiv:1406.0923.
[Ren:2014fva]
[25-72]
Correlations and neutrinoless $\beta\beta$ decay nuclear matrix elements of $pf$-shell nuclei, Javier Menendez, Tomas R. Rodriguez, Gabriel Martinez-Pinedo, Alfredo Poves, Phys. Rev. C90 (2014) 024311, arXiv:1401.0651.
[Menendez:2014ena]
[25-73]
Shape and pairing fluctuations effects on neutrinoless double beta decay nuclear matrix elements, Nuria Lopez Vaquero, Tomas R. Rodriguez, J. Luis Egido, Phys. Rev. Lett. 111 (2013) 142501, arXiv:1401.0650.
[LopezVaquero:2013yji]
[25-74]
Neutrinoless double beta decay and QCD corrections, Namit Mahajan, Phys. Rev. Lett. 112 (2014) 031804, arXiv:1310.1064.
[Mahajan:2013ixa]
[25-75]
Study of Nuclear Effects in the Computation of the $0{\nu}{\beta}{\beta}$ Decay Matrix Elements, Andrei Neacsu, Sabin Stoica, J. Phys. G41 (2013) 015201, arXiv:1308.1047.
[Neacsu:2013pua]
[25-76]
Phase space factors for $\beta^+\beta^+$ decay and competing modes of double-$\beta$ decay, J. Kotila, F. Iachello, Phys. Rev. C87 (2013) 024313, arXiv:1303.4124.
[Kotila:2013gea]
[25-77]
Large-Scale Calculations of the Double-Beta Decay of 76Ge, 130Te, 136Xe, and 150Nd in the Deformed Self-Consistent Skyrme Quasiparticle Random-Phase Approximation, M.T. Mustonen, J. Engel, Phys. Rev. C87 (2013) 064302, arXiv:1301.6997.
[Mustonen:2013zu]
[25-78]
Nuclear matrix elements for double-$\beta$ decay, J. Barea, J. Kotila, F. Iachello, Phys. Rev. C87 (2013) 014315, arXiv:1301.4203.
[Barea:2013bz]
[25-79]
Matrix elements of four-quark operators and $\Delta L=2$ hyperon decays, C. Barbero, Ling-Fong Li, G. Lopez Castro, A. Mariano, Phys. Rev. D87, 036010 (2013) 036010, arXiv:1301.3448.
[Barbero:2013fc]
[25-80]
Addendum to: QRPA uncertainties and their correlations in the analysis of neutrinoless double beta decay, Amand Faessler et al., Phys. Rev. D87 (2013) 053002, arXiv:1301.1587.
[Faessler:2013hz]
[25-81]
Empirical Survey of Neutrinoless Double Beta Decay Matrix Elements, R. G. H. Robertson, Mod.Phys.Lett. A28 (2013) 1350021, arXiv:1301.1323.
[Robertson:2013cy]
[25-82]
Novel shell-model analysis of the $^{136}$Xe double beta decay nuclear matrix elements, M. Horoi, B. A. Brown, Phys. Rev. Lett. 110 (2013) 222502, arXiv:1301.0256.
[Horoi:2013jx]
[25-83]
Neutrinoless double-positron decay and positron-emitting electron capture in the interacting boson model, J. Barea, J. Kotila, F. Iachello, Phys. Rev. C87 (2013) 057301.
[Barea:2013wga]
[25-84]
Analysis of double-$\beta$ transitions in $^{78}\text{Kr}$, Jouni Suhonen, Phys. Rev. C87 (2013) 034318.
[Suhonen:2013dda]
[25-85]
Probing the quenching of g$_{A}$ by single and double beta decays, Jouni Suhonen, Osvaldo Civitarese, Phys.Lett. B725 (2013) 153-157.
[Suhonen:2013laa]
[25-86]
Double beta decays of $^{124}$Xe investigated in the QRPA framework, Jouni Suhonen, J. Phys. G40 (2013) 075102.
[Suhonen:2013rca]
[25-87]
Neutrinoless $\beta\beta$ decay nuclear matrix elements in an isotopic chain, Tomas R. Rodriguez, Gabriel Martinez-Pinedo, Phys.Lett. B719 (2013) 174-178, arXiv:1210.3225.
[Rodriguez:2012rv]
[25-88]
Phase space factors for double-$\beta$ decay, J. Kotila, F. Iachello, Phys. Rev. C85 (2012) 034316, arXiv:1209.5722.
[Kotila:2012zza]
[25-89]
Fast, Efficient Calculations of the Two-Body Matrix Elements of the Transition Operators for Neutrinoless Double Beta Decay, Andrei Neacsu, Sabin Stoica, Mihai Horoi, Phys. Rev. C86 (2012) 067304, arXiv:1208.5728.
[Neacsu:2012id]
[25-90]
Constraining the $0{\nu}2{\beta}$ matrix elements by nuclear structure observables, S.J. Freeman, J.P. Schiffer, J. Phys. G39 (2012) 124004, arXiv:1207.4290.
[Freeman:2012hr]
[25-91]
Nuclear matrix elements for neutrinoless double-beta decay and double-electron capture, Amand Faessler, Vadim Rodin, Fedor Simkovic, J. Phys. G39 (2012) 124006, arXiv:1206.0464.
[Faessler:2012ku]
[25-92]
A new Skyrme interaction with improved spin-isospin properties, X. Roca-Maza, G. Colo', H. Sagawa, Phys. Rev. C86 (2012) 031306, arXiv:1205.3958.
[Roca-Maza:2012dhp]
[25-93]
Theoretical investigation of the double-beta processes in Ru-96, Jouni Suhonen, Phys. Rev. C86 (2012) 024301.
[Suhonen:2012zz]
[25-94]
Nuclear matrix elements for the resonant neutrinoless double electron capture, J. Suhonen, Eur.Phys.J. A48 (2012) 51.
[Suhonen:2012zzb]
[25-95]
Shell Model description of the beta beta decay of 136Xe, Etienne Caurier, Frederic Nowacki, Alfredo Poves, Phys. Lett. B711 (2012) 62-64, arXiv:1112.5039.
[Caurier:2011gi]
[25-96]
Evaluation of the resonance enhancement effect in neutrinoless double-electron capture in 152Gd, 164Er and 180W atoms, Dong-Lianf Fang et al., Phys. Rev. C85 (2012) 035503, arXiv:1111.6862.
[Fang:2011et]
[25-97]
Transition Operators Entering Neutrinoles Double Electron Capture to Excited Nuclear States, J.D. Vergados, Phys. Rev. C84 (2011) 044328, arXiv:1107.3296.
[Vergados:2011gi]
[25-98]
Uncertainties in nuclear transition matrix elements for neutrinoless $\beta \beta $ decay within the PHFB model, P.K. Rath, R. Chandra, K. Chaturvedi, P.K. Raina, J.G. Hirsch, Phys. Rev. C82 (2010) 064310, arXiv:1104.3965.
[Rath:2010zz]
[25-99]
Chiral two-body currents in nuclei: Gamow-Teller transitions and neutrinoless double-beta decay, J. Menendez, D. Gazit, A. Schwenk, Phys. Rev. Lett. 107 (2011) 062501, arXiv:1103.3622.
[Menendez:2011qq]
[25-100]
Multi-isotope degeneracy of neutrinoless double beta decay mechanisms in the quasi-particle random phase approximation, Amand Faessler, G.L. Fogli, E. Lisi, A.M. Rotunno, F. Simkovic, Phys. Rev. D83 (2011) 113015, arXiv:1103.2504.
[Faessler:2011rv]
[25-101]
Uncovering Multiple CP-Nonconserving Mechanisms of $\betabeta$-Decay, Amand Faessler, A. Meroni, S.T. Petcov, F. Simkovic, J. Vergados, Phys. Rev. D83 (2011) 113003, arXiv:1103.2434.
[Faessler:2011qw]
[25-102]
Neutrinoless double beta decay of deformed nuclei within QRPA with realistic interaction, Dong-Liang Fang, Amand Faessler, Vadim Rodin, Fedor Simkovic, Phys. Rev. C83 (2011) 034320, arXiv:1101.2149.
[Fang:2011da]
[25-103]
Effects of orbital occupancies and spin-orbit partners II: $0{\nu}{\beta}{\beta}$ decays of Ge-76, Se-82 and Xe-136 to first excited $0^+$ states, Jouni Suhonen, Nucl. Phys. A853 (2011) 36-60.
[Suhonen:2011zza]
[25-104]
Neutrinoless double beta decays of Cd-106 revisited, Jouni Suhonen, Phys.Lett. B701 (2011) 490-495.
[Suhonen:2011zzc]
[25-105]
On the double-beta decays of Zn-70, Kr-86, Zr-94, Ru-104, Pd-110 and Sn-124, Jouni Suhonen, Nucl. Phys. A864 (2011) 63-90.
[Suhonen:2011zzd]
[25-106]
Resonance enhancement of neutrinoless double electron capture, M. I. Krivoruchenko, Fedor Simkovic, Dieter Frekers, Amand Faessler, Nucl. Phys. A859 (2011) 140-171, arXiv:1012.1204.
[Krivoruchenko:2010ng]
[25-107]
Relation between the $0\nu\beta\beta$ and $2\nu\beta\beta$ nuclear matrix elements revisited, Fedor Simkovic, Rastislav Hodak, Amand Faessler, Petr Vogel, Phys. Rev. C83 (2011) 015502, arXiv:1012.0512.
[Simkovic:2010zw]
[25-108]
Energy density functional study of nuclear matrix elements for neutrinoless $\beta\beta$ decay, Tomas R. Rodriguez, G. Martinez-Pinedo, Phys. Rev. Lett. 105 (2010) 252503, arXiv:1008.5260.
[Rodriguez:2010mn]
[25-109]
Effects of orbital occupancies and spin-orbit partners on $0{\nu}{\beta}{\beta}$-decay rates, J. Suhonen, O. Civitarese, Nucl. Phys. A847 (2010) 207-232.
[Suhonen:2010zzc]
[25-110]
Shell Model Analysis of the Neutrinoless Double Beta Decay of Ca-48, Mihai Horoi, Sabin Stoica, Phys. Rev. C81 (2010) 024321, arXiv:0911.3807.
[Horoi:2009gz]
[25-111]
Pionic Contribution to Neutrinoless Double Beta Decay, J.D. Vergados, Amand Faessler, H. Toki, Phys. Rev. D81 (2010) 034018, arXiv:0911.2117.
[Vergados:2009xu]
[25-112]
Running sums for $2\nu\beta\beta$-decay matrix elements within the QRPA with account for deformation, Dongliang Fang, Amand Faessler, Vadim Rodin, Mohamed Saleh Yousef, Fedor Simkovic, Phys. Rev. C81 (2010) 037303, arXiv:0910.3090.
[Fang:2009ic]
[25-113]
Deformed shell model results for two neutrino positron double beta decay of $^{74}$Se, A. Shukla, R. Sahu, V. K. B. Kota, Phys. Rev. C80 (2009) 057305, arXiv:0907.0932.
[Shukla:2009ed]
[25-114]
Deformation effects and neutrinoless positron $\beta \beta $ decay of $^{96}$Ru, $^{102}$Pd, $^{106}$Cd, $^{124}$Xe, $^{130}$Ba and $^{156}$Dy isotopes within Majorona neutrino mass mechanism, P. K. Rath, R. Chandra, K. Chaturvedi, P. K. Raina, J. G. Hirsch, Phys. Rev. C80 (2009) 044303, arXiv:0906.4476.
[Rath:2009dr]
[25-115]
Can one measure nuclear matrix elements of neutrinoless double beta decay?, Vadim Rodin, Amand Faessler, Phys. Rev. C80 (2009) 041302, arXiv:0906.1759.
[Rodin:2009hy]
[25-116]
The Occupancies of individual orbits and the nuclear matrix element of the Ge-76 neutrinoless beta beta decay, J. Menendez, A. Poves, E. Caurier, F. Nowacki, Phys. Rev. C80 (2009) 048501, arXiv:0906.0179.
[Menendez:2009xa]
[25-117]
The 0nbb-decay nuclear matrix elements with self-consistent short-range correlations, Fedor Simkovic, Amand Faessler, Herbert Muther, Vadim Rodin, Markus Stauf, Phys. Rev. C79 (2009) 055501, arXiv:0902.0331.
[Simkovic:2009pp]
[25-118]
Neutrinoless double-beta decay in the microscopic interacting boson model, J. Barea, F. Iachello, Phys. Rev. C79 (2009) 044301.
[Barea:2009zz]
[25-119]
Two-neutrino double-beta decay of Ge-76 in an anharmonic vibrator approach, J. Kotila, J. Suhonen, D.S. Delion, J. Phys. G36 (2009) 045106.
[Kotila:2009zz]
[25-120]
$0\nu\beta\beta$ nuclear matrix elements and the occupancy of individual orbits, Fedor Simkovic, Amand Faessler, Petr Vogel, Phys. Rev. C79 (2009) 015502, arXiv:0812.0348.
[Simkovic:2008cu]
[25-121]
Single and low-lying states dominance in two-neutrino double-beta decay, O. Moreno et al., J. Phys. G (2009) Nucl. Part. Phys.36:015106, arXiv:0811.0319.
[Moreno:2008dz]
[25-122]
QRPA uncertainties and their correlations in the analysis of neutrinoless double beta decay, Amand Faessler et al., Phys. Rev. D79 (2009) 053001, arXiv:0810.5733.
[Faessler:2008xj]
[25-123]
Nuclear Structure Relevant to Neutrinoless Double Beta Decay: the Valence Protons in 76Ge and 76Se, B. P. Kay et al., Phys. Rev. C79 (2009) 021301, arXiv:0810.4108.
[Kay:2008dg]
[25-124]
Two-neutrino double beta decay of deformed nuclei within QRPA with realistic interaction, Mohamed Saleh Yousef, Vadim Rodin, Amand Faessler, Fedor Simkovic, Phys. Rev. C79 (2009) 014314, arXiv:0806.0964.
[Yousef:2008jw]
[25-125]
Neutrinoless beta-beta matrix element of 76Ge from spectroscopic data, J. Suhonen, O. Civitarese, Phys.Lett. B668 (2008) 277-281, arXiv:0803.1375.
[Suhonen:2008zz]
[25-126]
Disassembling the Nuclear Matrix Elements of the Neutrinoless beta beta Decay, J. Menendez, A. Poves, E. Caurier, F. Nowacki, Nucl. Phys. A818 (2009) 139-151, arXiv:0801.3760.
[Menendez:2008jp]
[25-127]
Influence of the hexadecapole deformation on the two neutrino double-$\beta$ decay, R. Chandra, P. K. Rath, P. K. Raina, J. G. Hirsch, arXiv:0712.3966, 2007.
[Chandra:2007za]
[25-128]
Overconstrained estimates of neutrinoless double beta decay within the QRPA, Amand Faessler et al., J. Phys. G35 (2008) 075104, arXiv:0711.3996.
[Faessler:2007hu]
[25-129]
Anatomy of nuclear matrix elements for neutrinoless double-beta decay, Fedor Simkovic, Amand Faessler, Vadim Rodin, Petr Vogel, Jonathan Engel, Phys. Rev. C77 (2008) 045503, arXiv:0710.2055.
[Simkovic:2007vu]
[25-130]
The influence of pairing on the nuclear matrix elements of the neutrinoless double beta decays, E. Caurier, J. Menendez, F. Nowacki, A. Poves, Phys. Rev. Lett. 100 (2008) 052503, arXiv:0709.2137.
[Caurier:2007wq]
[25-131]
Nuclear matrix elements of neutrinoless double beta decay with improved short-range correlations, Markus Kortelainen, Jouni Suhonen, Phys. Rev. C76 (2007) 024315, arXiv:0708.0115.
[Kortelainen:2007mn]
[25-132]
Description of double beta decay within continuum-QRPA, Vadim Rodin, Amand Faessler, Phys. Rev. C77 (2008) 025502, arXiv:0707.2742.
[Rodin:2007zq]
[25-133]
Assessment of uncertainties in QRPA 0nu beta beta-decay nuclear matrix elements, V.A. Rodin, A. Faessler, F. Simkovic, P. Vogel, Nucl. Phys. A766 (2006) 107-131, arXiv:0706.4304.
[Rodin:2006bbw]
[25-134]
Improved short-range correlations and 0 neutrino beta beta nuclear matrix elements of Ge-76 and Se-82, Markus Kortelainen, Jouni Suhonen, Phys. Rev. C75 (2007) 051303, arXiv:0705.0469.
[Kortelainen:2007rh]
[25-135]
Short-range correlations and neutrinoless double beta decay, M. Kortelainen, O. Civitarese, J. Suhonen, J. Toivanen, Phys.Lett. B647 (2007) 128-132, arXiv:nucl-th/0701052.
[Kortelainen:2007rn]
[25-136]
Study of two neutrino $\beta^+\beta^+/\beta^+$ EC/ECEC decay of $^{124,126}\text{Xe}$ and $^{130,132}\text{Ba}$ for $ 0^+ \to 0^+ $ transition in PHFB model, A. Shukla, P. K. Raina, R. Chandra, P. K. Rath, J. G. Hirsch, J. Phys. G: Nucl. Part. Phys. 34 (2007) 549-563.
[Shukla:2004zp]
[25-137]
The $ 0^+ \to 0^+ $ positron double-beta decay with emission of two neutrinos in the nuclei Ru-96, Pd-102, Cd-106 and Cd-108, P. K. Raina, A. Shukla, S. Singh, P. K. Rath, J. G. Hirsch, Eur. Phys. J. A28 (2006) 27-36, arXiv:nucl-th/0601024.
[Raina:2006ty]
[25-138]
A Novel Nuclear Model for Double Beta Decay, Franjo Krmpotic, Fizika B14 (2005) 139-164, arXiv:nucl-th/0601007.
[Krmpotic:2005hhe]
[25-139]
Assessment of uncertainties in QRPA 0nu beta beta-decay nuclear matrix elements, V. A. Rodin, A. Faessler, F. Simkovic, P. Vogel, Nucl. Phys. A766 (2005) 107-131, arXiv:nucl-th/0503063.
[Rodin:2005dp]
[25-140]
Extracting information on the 0nu beta beta decays from the 2nu beta beta decays, O. Civitarese, J. Suhonen, Nucl. Phys. A761 (2005) 313-332.
[Civitarese:2005jb]
[25-141]
Universal features of the nuclear matrix elements governing the mass sector of the 0nu beta beta decay, O. Civitarese, J. Suhonen, Phys.Lett. B626 (2005) 80-85.
[Civitarese:2005jf]
[25-142]
Nuclear matrix elements of beta beta decay from beta-decay data, Jouni Suhonen, Phys.Lett. B607 (2005) 87-95, arXiv:nucl-th/0412064.
[Suhonen:2004pw]
[25-143]
n p interaction effects on the double beta decay nuclear matrix elements for medium mass nuclei, P. K. Raina et al., Phys.Atom.Nucl. 67 (2004) 2021-2026, arXiv:nucl-th/0410005.
[Raina:2004fw]
[25-144]
Effective Operators for Double-Beta Decay, J. Engel, P. Vogel, Phys. Rev. C69 (2004) 034304, arXiv:nucl-th/0311072.
[Engel:2003yr]
[25-145]
On the uncertainty in the $0\nu\beta\beta$ decay nuclear matrix elements, V. A. Rodin, Amand Faessler, F. Simkovic, Petr Vogel, Phys. Rev. C68 (2003) 044302, arXiv:nucl-th/0305005.
[Rodin:2003eb]
[25-146]
Light-neutrino masses and hierarchies and the observability of neutrinoless beta beta decay, O. Civitarese, J. Suhonen, Nucl. Phys. A729 (2003) 867-883, arXiv:nucl-th/0208005.
[Civitarese:2002tu]
[25-147]
Neutrinoless double beta decay of Ge-76, Se-82, Mo-100 and Xe-136 to excited 0+ states, F. Simkovic, M. Nowak, W. A. Kaminski, A. A. Raduta, Amand Faessler, Phys. Rev. C64 (2001) 035501, arXiv:nucl-th/0107016.
[Simkovic:2001qf]
[25-148]
Critical view on double-beta decay matrix elements within quasi random phase approximation-based methods, S. Stoica, H. V. Klapdor-Kleingrothaus, Nucl. Phys. A694 (2001) 269-294.
[Stoica:2001rd]
[25-149]
Neutrinoless double beta decay within self-consistent renormalized quasiparticle random phase approximation and inclusion of induced nucleon currents, A. Bobyk, W. A. Kaminski, F. Simkovic, Phys. Rev. C63 (2001) 051301, arXiv:nucl-th/0012010.
[Bobyk:2000dw]
[25-150]
Contribution of the lowest 1+ intermediate state to the 2nu beta beta-decay amplitude, S. V. Semenov, F. Simkovic, V. V. Khrushchev, P. Domin, Phys. Atom. Nucl. 63 (2000) 1196-1199.
[Semenov:2000tw]
[25-151]
Additional nucleon current contributions to neutrinoless double beta decay, F. Simkovic, G. Pantis, J. D. Vergados, Amand Faessler, Phys. Rev. C60 (1999) 055502, arXiv:hep-ph/9905509.
[Simkovic:1999re]
[25-152]
Nuclear moments for the neutrinoless double beta decay. II, C. Barbero, F. Krmpotic, A. Mariano, D. Tadic, Nucl. Phys. A650 (1999) 485-497, arXiv:nucl-th/9902040.
[Barbero:1999tw]
[25-153]
E. Caurier, F. Nowacki, A. Poves, J. Retamosa, Nucl. Phys. A654 (1999) 973.
[Caurier-NPA654-1999]
[25-154]
Mean-field effects on neutrinoless double beta decay, M. Aunola, J. Suhonen, Nucl. Phys. A643 (1998) 207-221.
[Aunola:1998jc]
[25-155]
Study of several double-beta-decaying nuclei using the renormalized proton neutron quasiparticle random-phase approximation, J. Toivanen, J. Suhonen, Phys. Rev. C55 (1997) 2314-2323.
[Toivanen:1997vq]
[25-156]
Non-collapsing renormalized QRPA with proton neutron pairing for neutrinoless double beta decay, F. Simkovic, J. Schwieger, M. Veselsky, G. Pantis, Amand Faessler, Phys. Lett. B393 (1997) 267-273, arXiv:nucl-th/9612037.
[Simkovic:1996nb]
[25-157]
Neutrinoless Double Beta Decay within QRPA with Proton- Neutron Pairing, G. Pantis, F. Simkovic, J. D. Vergados, Amand Faessler, Phys. Rev. C53 (1996) 695-707, arXiv:nucl-th/9612036.
[Pantis:1996py]
[25-158]
Shell Model Studies of the Double Beta Decays of 76Ge, 82Se, and 136Xe, E. Caurier, F. Nowacki, A. Poves, J. Retamosa, Phys. Rev. Lett. 77 (1996) 1954.
[Caurier-PRL77-1996]
[25-159]
Neutrinoless double beta decay of Ca-48, J. Retamosa, E. Caurier, F. Nowacki, Phys. Rev. C51 (1995) 371-378.
[Retamosa:1995xt]
[25-160]
Renormalized proton neutron quasiparticle random-phase approximation and its application to double beta decay, J. Toivanen, J. Suhonen, Phys. Rev. Lett. 75 (1995) 410-413.
[Toivanen:1995zi]
[25-161]
Nuclear structure calculations of beta+ beta+, beta+ / EC and EC / EC decay matrix elements, M. Hirsch, K. Muto, T. Oda, H.V. Klapdor-Kleingrothaus, Z.Phys. A347 (1994) 151-160.
[Hirsch:1994es]
[25-162]
Description of the $ 0^+ \to 0^+ $ neutrinoless double beta decay transition in Ge-76: PArticle number projected quasiparticle random phase approximation, J. Suhonen, O. Civitarese, Amand Faessler, Nucl. Phys. A543 (1992) 645-660.
[Suhonen:1991db]
[25-163]
Calculation of 2nu and 0nu double-beta decay rates, A. Staudt, K. Muto, H. V. Klapdor- Kleingrothaus, Europhys. Lett. 13 (1990) 31-36.
[Staudt:1990qi]
[25-164]
Effects of ground state correlations on 2 neutrino beta beta decay rates and limitations of the QRPA approach, K. Muto, E. Bender, H. V. Klapdor, Z. Phys. A334 (1989) 177-186.
[Muto:1989cc]
[25-165]
Nuclear structure effects in double beta decay, J. Engel, P. Vogel, M. R. Zirnbauer, Phys. Rev. C37 (1988) 731-746.
[Engel:1988au]
[25-166]
Suppression of the Two Neutrino Double beta Decay by Nuclear Structure Effects, P. Vogel, M.R. Zirnbauer, Phys. Rev. Lett. 57 (1986) 3148-3151.
[Vogel:1986nj]

26 - Nuclear Matrix Elements - Talks

[26-1]
Constraining Neutrinoless Double-Beta Decay Matrix Elements from Ab Initio Nuclear Theory, A. Belley, T. Miyagi, S. R. Stroberg, J. D. Holt, arXiv:2210.05809, 2022. MEDEX'22.
[Belley:2022zsq]
[26-2]
Consistency Examinations of Calculations of Nuclear Matrix Elements of Double-$\beta$ Decay by QRPA, J. Terasaki, Nucl.Theor. 37 (2018) 3, arXiv:1901.06841. 37th International Workshop on Nuclear Theory, June 24-30, 2018, Rila Mountains, Bulgaria.
[Terasaki:2018fld]
[26-3]
Lattice QCD and nuclear physics for searches of physics beyond the Standard Model, Emanuele Mereghetti, PoS LATTICE2018 (2019) 002, arXiv:1812.11238. 36th International Symposium on Lattice Field Theory (Lattice 2018).
[Mereghetti:2018sxs]
[26-4]
Symmetries and Interactions from Lattice QCD, A. Nicholson et al., arXiv:1812.11127, 2018. CIPANP2018.
[Nicholson:2018laj]
[26-5]
Nuclear Matrix Elements for Neutrinoless Double Beta Decay from Lattice QCD, W. Detmold, D.J. Murphy, PoS LATTICE2018 (2019) 262, arXiv:1811.05554. 36th Annual International Symposium on Lattice Field Theory (Lattice 2018).
[Detmold:2018zan]
[26-6]
Towards Reliable Nuclear Matrix Elements for Neutrinoless $\beta\beta$ Decay, Javier Menendez, JPS Conf.Proc. 23 (2018) 012036, arXiv:1804.02102. IIRC Symposium 'Perspectives of the Physics of Nuclear Structure', Tokyo, Japan, November 1-4, 2017.
[Menendez:2018mit]
[26-7]
Is it possible to study neutrinoless $\beta\beta$ decay by measuring double Gamow-Teller transitions?, Javier Menendez, Noritaka Shimizu, Kentaro Yako, J.Phys.Conf.Ser. 1056 (2018) 012037, arXiv:1712.08691. Conference on Neutrinos and Nuclear Physics (CNNP2017), Catania, 15-21 October, 2017.
[Menendez:2017vxf]
[26-8]
Nuclear physics insights for new-physics searches using nuclei: Neutrinoless $\beta\beta$ decay and dark matter direct detection, Javier Menendez, EPJ Web Conf. 137 (2017) 08011, arXiv:1703.08921. XIIth Quark Confinement $\text{\&}$ the Hadron Spectrum conference, Thessaloniki, Greece, 2016.
[Menendez:2017chr]
[26-9]
Heavy neutrino potential for neutrinoless double beta decay, Yoritaka Iwata, PoS INPC2016 (2017) 240, arXiv:1701.07894. INPC 2016.
[Iwata:2017lcg]
[26-10]
Neutrino potential for neutrinoless double beta decay, Yoritaka Iwata, Nucl.Phys.Rev. 34 (2017) 82-86, arXiv:1609.03118. 2016 Dalian International Workshop on Nuclear Physics.
[Iwata:2016btn]
[26-11]
Neutrinoless double beta decay from lattice QCD, Amy Nicholson, Evan Berkowitz, Chia Cheng Chang, M. A. Clark, Balint Joo, Thorsten Kurth, Enrico Rinaldi, Brian Tiburzi, Pavlos Vranas, Andre Walker-Loud, PoS LATTICE2016 (2016) 017, arXiv:1608.04793. 34th International Symposium on Lattice Field Theory, Southampton, UK, 24-30 July 2016.
[Nicholson:2016byl]
[26-12]
Two neutrino double-$\beta$ decay in the interacting boson-fermion model, N. Yoshida, F. Iachello, PTEP 2013 (2013) 043D01, arXiv:1301.7172.
[Yoshida:2013jh]
[26-13]
A compilation of $0\nu\beta\beta$ nuclear matrix elements in the interacting boson model, F. Iachello, J. Barea, J. Kotila, Nucl. Phys. Proc. Suppl. 237-238 (2013) 21-23.
[Iachello:2013hwa]
[26-14]
Double beta decay: An interface between nuclear, particle and atomic physics, Jouni Suhonen, J. Phys. Conf. Ser. 413 (2013) 012016.
[Suhonen:2013zda]
[26-15]
Nuclear and weak interaction aspects of neutrinoless double beta decay: Recent results, O. Civitarese, J. Suhonen, J. Phys. Conf. Ser. 387 (2012) 012007.
[Civitarese:2012ki]
[26-16]
Nuclear matrix elements for resonant neutrinoless double-electron capture, Jouni Suhonen, J. Phys. Conf. Ser. 375 (2012) 042026.
[Suhonen:2012gq]
[26-17]
Relation between the $2\nu\beta\beta$ and $0\nu\beta\beta$ nuclear matrix elements, Petr Vogel, Fedor Simkovic, AIP Conf. Proc. 1417 (2011) 139-143, arXiv:1108.1770. MEDEX'11, Prague, June 2011.
[Vogel:2011gq]
[26-18]
Neutrino nuclear responses for beta and double-beta decays, Hiro Ejiri, 2011. MEDEX'11, Matrix Elements for the Double-beta-decay EXperiments, 13-16 June 2011, Prague, Czechoslovakia. http://medex11.utef.cvut.cz/talks/Ejiri.pdf.
[Ejiri-MEDEX11]
[26-19]
Advances in the theory of 0 nu beta beta decay, F. Iachello, J. Barea, Nucl. Phys. Proc. Suppl. 217 (2011) 5-8.
[Iachello:2011zz]
[26-20]
Fundamental processes in the interacting boson model: 0 nu beta beta decay, F. Iachello, J. Barea, AIP Conf.Proc. 1355 (2011) 7-14.
[Iachello:2011zzb]
[26-21]
Advances in the theory of $0\nu$ beta beta decay, F. Iachello, J. Barea, J. Kotila, AIP Conf.Proc. 1417 (2011) 62-68.
[Iachello:2011zzd]
[26-22]
Neutrinoless double beta decay: The nuclear matrix elements revisited, J. Menendez, A. Poves, E. Caurier, F. Nowacki, J. Phys. Conf. Ser. 312 (2011) 072005.
[Menendez:2011zza]
[26-23]
Uncertainties in nuclear transition matrix elements for neutrinoless beta beta decay, P.K. Rath, J. Phys. Conf. Ser. 322 (2011) 012019.
[Rath:2011zz]
[26-24]
Neutrinoless double-beta decay and related topics, F. Simkovic, Phys.Part.Nucl. 42 (2011) 598-612.
[Simkovic:2011zz]
[26-25]
Double beta decays of Cd-106, Jouni Suhonen, AIP Conf.Proc. 1417 (2011) 115-119.
[Suhonen:2011zz]
[26-26]
Nuclear-structure effects on double beta decays to 0+ states in Ge-76, Jouni Suhonen, Int.J.Mod.Phys. E20 (2011) 451-458.
[Suhonen:2011zzb]
[26-27]
Neutrinoless double beta decay studied with configuration mixing methods, Tomas R. Rodriguez, Gabriel Martinez-Pinedo, Prog.Part.Nucl. Phys. 66 (2011) 436-440, arXiv:1012.1783.
[Rodriguez:2010eu]
[26-28]
Novel Nuclear Structure Aspects of the $0\nu\beta\beta$-Decay, J. Menendez, A. Poves, E. Caurier, F. Nowacki, J. Phys. Conf. Ser. 267 (2011) 012058, arXiv:1006.5631.
[Menendez:2010id]
[26-29]
Nuclear-structure aspects of double beta decay, Jouni Suhonen, AIP Conf.Proc. 1304 (2010) 74-84.
[Suhonen:2010zzb]
[26-30]
Nuclear matrix elements for double beta decay in the QRPA approach: A critical review, Osvaldo Civitarese, Jouni Suhonen, J. Phys. Conf. Ser. 173 (2009) 012012.
[Civitarese:2009zza]
[26-31]
Correlations and the neutrinoless double beta decay, J. Menendez, A. Poves, E. Caurier, F. Nowacki, AIP Conf.Proc. 1180 (2009) 86-90.
[Menendez:2009zz]
[26-32]
Effects of orbital occupation on 0 nu beta beta nuclear matrix element, J. Suhonen, O. Civitarese, Nucl. Phys. Proc. Suppl. 188 (2009) 59-61.
[Suhonen:2009zz]
[26-33]
Deformation and the Nuclear Matrix Elements of the Neutrinoless Double Beta Decay, J. Menendez, A. Poves, E. Caurier, F. Nowacki, Proc.Int.Sch.Phys.Fermi 170 (2009) 163-174, arXiv:0809.2183. Enrico Fermi School 2008, Measuring the Neutrino Mass.
[Menendez:2008jf]
[26-34]
Nuclear matrix elements for 0nu(beta beta) decay: Recent advances, J. Suhonen, M. Kortelainen, AIP Conf.Proc. 972 (2008) 128-136.
[Suhonen:2008zza]
[26-35]
Nuclear matrix elements for double beta decay, Jouni Suhonen, Markus Kortelainen, Int.J.Mod.Phys. E17 (2008) 1-11.
[Suhonen:2008zzb]
[26-36]
Nuclear and particle physics aspects of the 2nbb-decay of 150Nd, Rastislav Dvornicky, Fedor Simkovic, Amand Faessler, AIP Conference Pr OCEEDINGS942 (2007) 2007, arXiv:0710.5841. MEDEX'07, Prague, Czech Rep., June 11-14, 2007.
[Dvornicky:2007ex]
[26-37]
Muon-capture rates and their relation with the double-beta decay, J. Suhonen, M. Kortelainen, Czech.J. Phys. 56 (2006) 519-525.
[Suhonen:2006bh]
[26-38]
Theory of double beta decay, J. Suhonen, Nucl. Phys. A752 (2005) 53-66.
[Suhonen:2005jy]
[26-39]
Neutrino-less double beta decay and nuclear matrix elements, J. Suhonen, 2004. Neutrino 2004, 13-19 June 2004, Paris, France. http://neutrino2004.in2p3.fr/slides/thursday/Suhonen/suhonen.html.
[Suhonen-Nu2004]

27 - Future Experiments

[27-1]
Construction of Yemilab, K. S. Park, Y. D. Kim, K. M. Bang, H. K. Park, M. H. Lee, J. H. Jang, J. H. Kim, J. So, S. H. Kim, S. B. Kim, Front.in Phys. 12 (2024) 1323991, arXiv:2402.13708.
[Park:2024sio]
[27-2]
BINGO innovative assembly for background reduction in bolometric $0\nu\beta\beta$ experiments, A. Armatol et al., arXiv:2402.12262, 2024.
[Armatol:2024bsb]
[27-3]
First Study of the PIKACHU Project: Development and Evaluation of High-Purity Gd$_3$Ga$_3$Al$_2$O$_{12}$:Ce Crystals for $^{160}$Gd Double Beta Decay Search, Takumi Omori et al., PTEP 2024 (2024) 033D01, arXiv:2402.06830.
[Omori:2024wvc]
[27-4]
Status and Prospects of the PandaX-III Experiment, Wenming Zhang, Heng Lin, Yuanchun Liu, Ke Han, Kaixiang Ni, Shaobo Wang, Wenchang Zhai (PandaX-III), JINST 18 (2023) C12001, arXiv:2311.13396.
[Zhang:2023ywy]
[27-5]
Neutron Activation Background in the NvDEx Experiment, Qianming Wang, Zeyu Huang, Pengchong Hu, Emilio Ciuffoli, arXiv:2307.12785, 2023.
[Wang:2023hvt]
[27-6]
Demonstration of neutrinoless double beta decay searches in gaseous xenon with NEXT, P. Novella et al. (NEXT), JHEP 09 (2023) 190, arXiv:2305.09435.
[NEXT:2023daz]
[27-7]
NvDEx-100 Conceptual Design Report, X. Cao et al., Nucl.Sci.Tech. 35 (2024) 3, arXiv:2304.08362.
[NnDEx-100:2023alw]
[27-8]
ZnO-based scintillating bolometers: New prospects to study double beta decay of $^{64}$Zn, A. Armatol et al., JINST 18 (2023) P06026, arXiv:2304.05043.
[Armatol:2023jqk]
[27-9]
A Gaseous Time Projection Chamber with Micromegas Readout for Low Radioactive Material Screening, Haiyan Du et al., Radiat.Detect.Technol.Methods 7 (2023) 90-99, arXiv:2208.03046.
[Du:2022elk]
[27-10]
Cosmogenic background study for a $^{100}$Mo-based bolometric demonstration experiment at China JinPing underground Laboratory, W. Chen, L. Ma, J. H. Chen, H. Z. Huang, Y. G. Ma, Eur. Phys. J. C 82 (2022) 549, arXiv:2206.09288.
[Chen:2022rzg]
[27-11]
Low Background kTon-Scale Liquid Argon Time Projection Chambers, A. Avasthi et al., arXiv:2203.08821, 2022.
[Avasthi:2022tjr]
[27-12]
Snowmass 2021 White Paper: The Selena Neutrino Experiment, A.E. Chavarria et al., arXiv:2203.08779, 2022.
[Chavarria:2022hwx]
[27-13]
A Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics, J. Aalbers et al., J.Phys.G 50 (2023) 013001, arXiv:2203.02309.
[Aalbers:2022dzr]
[27-14]
Kilotonne-scale xenon detectors for neutrinoless double beta decay and other new physics searches, A. Avasthi et al., Phys.Rev.D 104 (2021) 112007, arXiv:2110.01537.
[Avasthi:2021lgy]
[27-15]
nEXO: Neutrinoless double beta decay search beyond $10^{28}$ year half-life sensitivity, G. Adhikari et al. (nEXO), J.Phys.G 49 (2022) 015104, arXiv:2106.16243.
[nEXO:2021ujk]
[27-16]
Design and production of the high voltage electrode grids and electron extraction region for the LZ dual-phase xenon time projection chamber, R. Linehan et al., Nucl.Instrum.Meth.A 1031 (2022) 165955, arXiv:2106.06622.
[Linehan:2021qnb]
[27-17]
Projected sensitivity of the LUX-ZEPLIN (LZ) experiment to the two-neutrino and neutrinoless double beta decays of $^{134}$Xe, D. S. Akerib et al. (LZ), Phys.Rev.C 104 (2021) 065501, arXiv:2104.13374.
[LZ:2021blo]
[27-18]
Phonon-mediated crystal detectors with rejection capability of surface $\alpha$ and $\beta$ particles assisted by metallic film coating, I.C. Bandac et al., Appl.Phys.Lett. 118 (2021) 184105, arXiv:2103.07181.
[Bandac:2021qco]
[27-19]
Slow Control System for PandaX-III experiment, Xiyu Yan et al., JINST 16 (2021) T05004, arXiv:2012.13275.
[Yan:2020fpm]
[27-20]
Enhanced search sensitivity to double beta decay of $^{136}$Xe to excited states with topological signatures, Chen Xie, Kaixiang Ni, Ke Han, Shaobo Wang, Sci.China Phys.Mech.Astron. 64 (2021) 261011, arXiv:2012.04552.
[Xie:2020xmd]
[27-21]
Measurement of the ionization response of amorphous selenium with 122keV $\gamma$ rays, Xinran Li, Alvaro Eugenio Chavarria, Snezana Bogdanovich, Cristiano Galbiati, Alexander Piers, Brad Polischuk, JINST 16 (2021) P06018, arXiv:2012.04079.
[Li:2020ryk]
[27-22]
An improved design of the readout base board of the photomultiplier tube for future PandaX dark matter experiments, Qibin Zheng, Yanlin Huang, Di Huang, Jianglai Liu, Xiangxiang Ren, Anqing Wang, Meng Wang, Jijun Yang, Binbin Yan, Yong Yang, JINST 15 (2020) T12006, arXiv:2012.03202.
[Zheng:2020kfp]
[27-23]
A novel technique for the study of pile-up events in cryogenic bolometers, CUPID Interest Group, Phys.Rev.C 104 (2021) 015501, arXiv:2011.11726.
[CUPID:2020cpe]
[27-24]
Topmetal CMOS direct charge sensing plane for neutrinoless double-beta decay search in high-pressure gaseous TPC, Yuan Mei, Xiangming Sun, Nu Xu, arXiv:2010.09226, 2020.
[Mei:2020sgh]
[27-25]
Controlling $T_c$ of Iridium Films Using the Proximity Effect, R. Hennings-Yeomans et al., J.Appl.Phys. 128 (2020) 154501, arXiv:2010.00772.
[Hennings-Yeomans:2020ktf]
[27-26]
Performance of a Large Area Photon Detector For Rare Event Search Applications, C.W. Fink et al. (CPD), Appl.Phys.Lett. 118 (2021) 022601, arXiv:2009.14302.
[CPD:2020xvi]
[27-27]
MeV-scale performance of water-based and slow liquid scintillators, B. J. Land, Z. Bagdasarian, J. Caravaca, M. Smiley, G. D. Orebi Gann, Phys.Rev. D103 (2021) 052004, arXiv:2007.14999.
[Land:2020oiz]
[27-28]
Barium Selective Chemosensing by Diazacrown Ether Naphthalimide Turn-on Fluorophores for Single Ion Barium Tagging, P. Thapa et al., arXiv:2006.09494, 2020.
[Thapa:2020gjw]
[27-29]
Sensitivity of the NEXT experiment to Xe-124 double electron capture, G. Martinez-Lema et al. (NEXT), JHEP 2021 (2020) 203, arXiv:2006.07320.
[NEXT:2020sux]
[27-30]
Sensitivity of a tonne-scale NEXT detector for neutrinoless double beta decay searches, C. Adams et al. (NEXT), JHEP 2021 (2021) 164, arXiv:2005.06467.
[NEXT:2020amj]
[27-31]
Sensitivity of the DARWIN observatory to the neutrinoless double beta decay of $^{136}$Xe, F. Agostini et al., Eur.Phys.J. C80 (2020) 808, arXiv:2003.13407.
[DARWIN:2020jme]
[27-32]
The energy calibration system for CANDLES using (n, \gamma) reaction, T. Iida et al., Nucl.Instrum.Meth. A986 (2021) 164727, arXiv:2003.13404.
[Iida:2020acx]
[27-33]
A resistive ACHINOS multi-anode structure with DLC coating for spherical proportional counters, I. Giomataris, M. Gros, I. Katsioulas, P. Knights, J.-P. Mols, K. Nikolopoulos, G. Savvidis, I. Savvidis, L. Shang, Y. Zhouf, JINST 15 (2020) P11023, arXiv:2003.01068.
[Giomataris:2020rna]
[27-34]
Detection prospects for the second-order weak decays of $^{124}$Xe in multi-tonne xenon time projection chambers, Christian Wittweg, Brian Lenardo, Alexander Fieguth, Christian Weinheimer, Eur.Phys.J. C80 (2020) 1161, arXiv:2002.04239.
[Wittweg:2020fak]
[27-35]
Design and performance of a 180 L high-pressure xenon gas TPC as a prototype for a large-scale neutrinoless double-beta decay search, S. Ban et al., PTEP 2020 (2020) 033H01, arXiv:2001.03281.
[Ban:2020hmr]
[27-36]
Theia: An advanced optical neutrino detector, M. Askins et al., Eur.Phys.J. C80 (2020) 416, arXiv:1911.03501.
[Theia:2019non]
[27-37]
Physics Briefing Book, Richard Keith Ellis et al., arXiv:1910.11775, 2019.
[EuropeanStrategyforParticlePhysicsPreparatoryGroup:2019qin]
[27-38]
Nano-tracking detector for neutrinoless double beta decay characterization, Ethan Brown, Kelly Odgers, Adam Tidball, arXiv:1910.08164, 2019.
[Brown:2019kru]
[27-39]
Towards a background-free neutrinoless double beta decay experiment based on a fluorescent bicolor sensor, Ivan Rivilla et al., arXiv:1909.02782, 2019.
[Rivilla:2019vzd]
[27-40]
High resolution digitization system for the CROSS experiment, P. Carniti, C. Gotti, G. Pessina, J.Low.Temp.Phys. 199 (2019) 833-839, arXiv:1908.11242.
[Carniti:2019emx]
[27-41]
The CROSS Experiment: Unveiling the Mysteries of Neutrinos by Superconductivity Methods, H. Khalife et al., J.Low.Temp.Phys. 199 (2020) 19-26, arXiv:1907.11411.
[Khalife:2019nyz]
[27-42]
CUPID pre-CDR, CUPID Interest Group, arXiv:1907.09376, 2019.
[CUPID:2019imh]
[27-43]
Contact-less phonon detection with massive cryogenic absorbers, Johannes Goupy et al., Appl.Phys.Lett. 115 (2019) 223506, arXiv:1906.10397.
[Goupy:2019wrx]
[27-44]
The $0\nu2\beta$-decay CROSS experiment: preliminary results and prospects, I. C. Bandac et al. (CROSS), JHEP 2001 (2020) 018, arXiv:1906.10233.
[CROSS:2019xov]
[27-45]
Barium Chemosensors with Dry-Phase Fluorescence for Neutrinoless Double Beta Decay, P. Thapa, I. Arnquist, N. Byrnes, A. A. Denisenko, F. W. Foss, B. J. P. Jones, A. D. McDonald, D. R. Nygren, K. Woodruff, Sci.Rep. 9 (2019) 15097, arXiv:1904.05901.
[Thapa:2019zjk]
[27-46]
Multi-site Event Discrimination in Large Liquid Scintillation Detectors, Jack Dunger, Steven D. Biller, Nucl.Instrum.Meth. A943 (2019) 162420, arXiv:1904.00440.
[Dunger:2019dfo]
[27-47]
Scintillation Balloon for Neutrinoless Double-Beta Decay Search with Liquid Scintillator Detectors, S. Obara, Y. Gando, K. Ishidoshiro, PTEP 2019 (2019) 073H01, arXiv:1903.10736.
[Obara:2019sbe]
[27-48]
Topological background discrimination in the PandaX-III neutrinoless double beta decay experiment, J Galan et al., J.Phys. G47 (2020) 045108, arXiv:1903.03979.
[Galan:2019ake]
[27-49]
Development of an alpha-particle imaging detector based on a low radioactive micro-time-projection chamber, H. Ito, T. Hashimoto, K. Miuchi, K. Kobayashi, Y. Takeuchi, K. D. Nakamura, T. Ikeda, H. Ishiura, Nucl.Instrum.Meth. A953 (2020) 163050, arXiv:1903.01090.
[Ito:2019adt]
[27-50]
Development of the Front-End Electronics for PandaX-III Prototype TPC, Danyang Zhu, Shubin Liu, Changqing Feng, Cheng Li, Haolei Chen, IEEE Trans.Nucl.Sci. 66 (2019) 1123-1129, arXiv:1806.09257.
[Liu:2018qdc]
[27-51]
Analysis of cryogenic calorimeters with light and heat read-out for double beta decay searches, O. Azzolini et al., Eur.Phys.J. C78 (2018) 734, arXiv:1806.02826.
[Azzolini:2018yye]
[27-52]
nEXO Pre-Conceptual Design Report, S. Al Kharusi et al. (nEXO), arXiv:1805.11142, 2018.
[nEXO:2018ylp]
[27-53]
CUPID-0: the first array of enriched scintillating bolometers for 0\nu\beta\betadecay investigations, O. Azzolini et al., Eur.Phys.J. C78 (2018) 428, arXiv:1802.06562.
[CUPID:2018kff]
[27-54]
Required sensitivity to search the neutrinoless double beta decay in $^{124}Sn$, M. K. Singh et al., Indian J.Phys. 94 (2019) 1263-1270, arXiv:1802.04484.
[Singh:2018lan]
[27-55]
Signal-background discrimination with convolutional neural networks in the PandaX-III experiment, Hao Qiao et al., Sci.China Phys.Mech.Astron. 61 (2018) 101007, arXiv:1802.03489.
[Qiao:2018edn]
[27-56]
First scintillating bolometer tests of a CLYMENE R\&D on Li$_2$MoO$_4$ scintillators towards a large-scale double-beta decay experiment, G. Buse et al., Nucl.Instrum.Meth. A891 (2018) 87-91, arXiv:1801.07909.
[Buse:2018nzg]
[27-57]
Neutrinoless Double Beta Decay with $^{82}$SeF$_6$ and Direct Ion Imaging, D.R. Nygren et al., JINST 13 (2018) P03015, arXiv:1801.04513.
[Nygren:2018ewr]
[27-58]
Demonstration of Single Barium Ion Sensitivity for Neutrinoless Double Beta Decay using Single Molecule Fluorescence Imaging, A.D. McDonald et al., Phys.Rev.Lett. 120 (2018) 132504, arXiv:1711.04782.
[McDonald:2017izm]
[27-59]
Upgrade for Phase II of the GERDA Experiment, M. Agostini et al., Eur.Phys.J. C78 (2018) 388, arXiv:1711.01452.
[GERDA:2017ihb]
[27-60]
Pulse shape discrimination performance of Inverted Coaxial Ge detectors, A. Domula et al., Nucl.Instrum.Meth. A891 (2018) 106-110, arXiv:1711.01433.
[Domula:2017mei]
[27-61]
Sensitivity and Discovery Potential of nEXO to Neutrinoless Double Beta Decay, J. B. Albert et al. (nEXO), Phys.Rev. C97 (2018) 065503, arXiv:1710.05075.
[nEXO:2017nam]
[27-62]
Study of a spherical Xenon gas TPC for neutrinoless double beta detection, A. Meregaglia et al., JINST 13 (2018) P01009, arXiv:1710.04536.
[Meregaglia:2017nhx]
[27-63]
A tin-loaded liquid scintillator approach for the 2 neutrino double-beta decay measurement of Sn-124, O. Chkvorets et al., arXiv:1707.08001, 2017.
[Chkvorets:2017bgf]
[27-64]
Cuore Sensitivity to $0\nu\beta\beta$ Decay, C. Alduino et al. (CUORE), Eur.Phys.J.C 77 (2017) 532, arXiv:1705.10816.
[CUORE:2017tpp]
[27-65]
Development of $^{100}$Mo-containing scintillating bolometers for a high-sensitivity neutrinoless double-beta decay search, E. Armengaud et al., Eur.Phys.J. C77 (2017) 785, arXiv:1704.01758.
[Armengaud:2017hit]
[27-66]
PandaX-III: Searching for Neutrinoless Double Beta Decay with High Pressure $^{136}$Xe Gas Time Projection Chambers, Xun Chen et al., Sci.China Phys.Mech.Astron. 60 (2017) 061011, arXiv:1610.08883.
[Chen:2016qcd]
[27-67]
Physics potential of searching for $0\nu\beta\beta$ decays in JUNO, Jie Zhao, Liang-Jian Wen, Yi-Fang Wang, Jun Cao, Chin.Phys. C41 (2017) 053001, arXiv:1610.07143.
[Zhao:2016brs]
[27-68]
A high-resolution CMOS imaging detector for the search of neutrinoless double beta decay in $^{82}$Se, A.E. Chavarria, C. Galbiati, X. Li, J.A. Rowlands, JINST 12 (2017) P03022, arXiv:1609.03887.
[Chavarria:2016hxk]
[27-69]
The MAGNEX spectrometer: results and perspectives, F. Cappuzzello, C. Agodi, D. Carbone, M. Cavallaro, Eur.Phys.J. A52 (2016) 167, arXiv:1606.06731.
[Cappuzzello:2016zlj]
[27-70]
First array of enriched Zn$^{82}$Se bolometers to search for double beta decay, D. R. Artusa et al., Eur.Phys.J. C76 (2016) 364, arXiv:1605.05934.
[Artusa:2016maw]
[27-71]
Technical Design Report for the AMoRE $0\nu\beta\beta$ Decay Search Experiment, V. Alenkov et al. (AMoRE), arXiv:1512.05957, 2015.
[AMoRE:2015asn]
[27-72]
CALDER - Neutrinoless double-beta decay identification in TeO$_2$ bolometers with kinetic inductance detectors, E.S. Battistelli et al., Eur. Phys. J. C75 (2015) 353, arXiv:1505.01318.
[Battistelli:2015vha]
[27-73]
R&D towards CUPID (CUORE Upgrade with Particle IDentification), G. Wang et al. (CUPID), arXiv:1504.03612, 2015.
[CUPID:2015tlr]
[27-74]
CUPID: CUORE (Cryogenic Underground Observatory for Rare Events) Upgrade with Particle IDentification, G. Wang et al. (CUPID), arXiv:1504.03599, 2015.
[CUPID:2015yfg]
[27-75]
Development and underground test of radiopure ZnMoO$_4$ scintillating bolometers for the LUMINEU $0\nu 2 \beta$ project, E. Armengaud et al. (LUMINEU, EDELWEISS), JINST 10 (2015) P05007.
[LUMINEU:2015tbz]
[27-76]
Double beta decay searches of Xe-134, Xe-126 and Xe-124 with large scale Xe detectors, N. Barros, J. Thurn, K. Zuber, J. Phys. G41 (2014) 115105, arXiv:1409.8308.
[Barros:2014exa]
[27-77]
Enriched Zn$^{100}$MoO$_4$ scintillating bolometers to search for $0 \nu 2\beta$ decay of $^{100}$Mo with the LUMINEU experiment, A.S. Barabash et al., Eur.Phys.J. C74 (2014) 3133, arXiv:1405.6937.
[Barabash:2014una]
[27-78]
Searching for neutrinoless double-beta decay of $^{130}$Te with CUORE, D. R. Artusa et al. (CUORE), Adv.High Energy Phys. 2015 (2015) 879871, arXiv:1402.6072.
[CUORE:2014erp]
[27-79]
Neutrino physics with multi-ton scale liquid xenon detectors, L. Baudis et al., JCAP 1401 (2014) 044, arXiv:1309.7024.
[Baudis:2013qla]
[27-80]
High Resolution Gamma Ray Detection in a Dual Phase Xenon Time Projection Chamber, Qing Lin et al., JINST 9 (2014) P04014, arXiv:1309.5561.
[Lin:2013ypa]
[27-81]
The 'Majorana Demonstrator' Neutrinoless Double-Beta Decay Experiment, N. Abgrall et al. (Majorana), Adv.High Energy Phys. 2014 (2014) 365432, arXiv:1308.1633.
[Majorana:2013cem]
[27-82]
Present status and future perspectives of the NEXT experiment, J.J. Gomez-Cadenas et al. (NEXT), Adv. High Energy Phys. 2014 (2014) 907067, arXiv:1307.3914.
[NEXT:2013wsz]
[27-83]
Next-Generation Liquid-Scintillator-Based Detectors: Quantums Dots and Picosecond Timing, Lindley Winslow, arXiv:1307.2929, 2013.
[Winslow:2013rsa]
[27-84]
Development of a Li2MoO4 scintillating bolometer for low background physics, L. Cardani et al., JINST 8 (2013) P10002, arXiv:1307.0134.
[Cardani:2013dia]
[27-85]
Probing Majorana neutrinos in the regime of the normal mass hierarchy, Steven D Biller, Phys. Rev. D87 (2013) 071301, arXiv:1306.5654.
[Biller:2013wua]
[27-86]
A Segmented, Enriched N-type Germanium Detector for Neutrinoless Double Beta-Decay Experiments, L. E. Leviner et al., Nucl.Instrum.Meth. A735 (2014) 66-77, arXiv:1304.5477.
[Leviner:2013pda]
[27-87]
XMASS detector, K. Abe et al., Nucl.Instrum.Meth. A716 (2013) 78-85, arXiv:1301.2815.
[Abe:2013tc]
[27-88]
AMoRE: Collaboration for searches for the neutrinoless double-beta decay of the isotope of $^{100}Mo$ with the aid of $^{40}Ca^{100}MoO_{4}$ as a cryogenic scintillation detector, N.D. Khanbekov, Phys.Atom.Nucl. 76 (2013) 1086-1089.
[Khanbekov:2013dja]
[27-89]
Effect of SiO2 coating in bolometric Ge light detectors for rare event searches, J. W. Beeman et al., Nucl.Instrum.Meth. A709 (2013) 22-28, arXiv:1211.5548.
[Beeman:2012cu]
[27-90]
Potential of a next generation neutrinoless double beta decay experiment based on ZnMoO4 scintillating bolometers, J.W. Beeman et al., Phys. Lett. B710 (2012) 318-323, arXiv:1112.3672.
[Beeman:2011bg]
[27-91]
GraXe, graphene and xenon for neutrinoless double beta decay searches, J. J. Gomez-Cadenas et al., JCAP 1202 (2012) 037, arXiv:1110.6133.
[Gomez-Cadenas:2011yrm]
[27-92]
Sensitivity of CUORE to Neutrinoless Double-Beta Decay, F. Alessandria et al., arXiv:1109.0494, 2011.
[CUORE:2011boi]
[27-93]
Deep Underground Science and Engineering Laboratory - Preliminary Design Report, Kevin T. Lesko et al., arXiv:1108.0959, 2011.
[Lesko:2011qk]
[27-94]
Studies of a three-stage dark matter and neutrino observatory based on multi-ton combinations of liquid xenon and liquid argon detectors, K. Arisaka et al., Astropart. Phys. 36 (2012) 93-122, arXiv:1107.1295.
[Arisaka:2011eu]
[27-95]
Primary and secondary scintillation measurements in a xenon Gas Proportional Scintillation Counter, L.M.P. Fernandes et al., JINST 5 (2010) P09006, arXiv:1009.2719.
[Fernandes:2010gg]
[27-96]
DUSEL Theory White Paper, S. Raby et al., arXiv:0810.4551, 2008.
[Raby:2008pd]
[27-97]
XAX: a multi-ton, multi-target detection system for dark matter, double beta decay and pp solar neutrinos, K. Arisaka et al., Astropart. Phys. 31 (2009) 63-74, arXiv:0808.3968.
[Arisaka:2008mb]
[27-98]
A low background facility inside the LVD detector at Gran Sasso, F. Arneodo, W. Fulgione, JCAP 0902 (2009) 028, arXiv:0808.1465.
[Arneodo:2008hd]
[27-99]
The SuperNEMO double beta decay experiment, Irina Nasteva (SuperNEMO), arXiv:0710.4279, 2007. 10th ICATPP Conference, Como, Italy, 8-12 October 2007.
[Nasteva:2007vd]
[27-100]
Feasibility study of the observation of the neutrino accompanied double beta-decay of Ge-76 to the 0+(1) excited state of Se-76 using segmented germanium detectors, K. Kroeninger, L. Pandola, V. Tretyak, Ukr. J. Phys. 52 (2007) 1036-1044, arXiv:nucl-ex/0702030.
[Kroninger:2007dz]
[27-101]
Experimental study of 113Cd beta decay using CdZnTe detectors, C. Goessling et al., Phys. Rev. C72 (2005) 064328, arXiv:nucl-ex/0508016.
[Goessling:2005jw]
[27-102]
CUORE: A Cryogenic underground observatory for rare events, R. Ardito, C. Arnaboldi, D.R. Artusa, III Avignone, F.T., M. Balata et al., arXiv:hep-ex/0501010, 2005.
[Ardito:2005ar]
[27-103]
The Majorana Neutrinoless Double-Beta Decay Experiment, C. E. Aalseth et al. (Majorana), Phys. Atom. Nucl. 67 (2004) 2002, arXiv:hep-ex/0405008.
[Majorana:2004csc]
[27-104]
A New 76Ge Double Beta Decay Experiment at LNGS, I. Abt et al. (GERDA), arXiv:hep-ex/0404039, 2004.
[Abt:2004yk]
[27-105]
White paper on the Majorana zero-neutrino double-beta decay experiment, R. Gaitskell et al. (Majorana), arXiv:nucl-ex/0311013, 2003.
[Majorana:2003hnu]
[27-106]
Physics Chapter: NUSEL-Homestake Science Book, C. Aalseth et al. (Homestake), arXiv:nucl-ex/0308018, 2003.
[Homestake:2003aa]
[27-107]
Physics potential and prospects for the CUORICINO and CUORE experiments, C. Arnaboldi et al. (CUORE), Astropart. Phys. 20 (2003) 91, arXiv:hep-ex/0302021.
[CUORE:2003fpg]
[27-108]
Cuore: A Cryogenic Underground Observatory for Rare Events, C. Arnaboldi et al. (CUORE), Nucl. Instrum. Meth. A518 (2004) 775, arXiv:hep-ex/0212053.
[CUORE:2002myo]
[27-109]
A cryogenic underground observatory for rare events: CUORE, an update, A. Alessandrello et al. (CUORE), Phys. Atom. Nucl. 66 (2003) 452, arXiv:hep-ex/0201038.
[CUORE:2002wyo]
[27-110]
High sensitivity GEM experiment on 2beta decay of Ge-76, Yu. G. Zdesenko, O. A. Ponkratenko, V. I. Tretyak, J. Phys. G27 (2001) 2129, arXiv:nucl-ex/0106021.
[Zdesenko:2001ee]
[27-111]
COBRA: Double beta decay searches using CdTe detectors, K. Zuber, Phys. Lett. B519 (2001) 1-7, arXiv:nucl-ex/0105018.
[Zuber:2001vm]
[27-112]
Double beta decay with large scale Yb-loaded scintillators, K. Zuber, Phys. Lett. B485 (2000) 23-26, arXiv:nucl-ex/0004010.
[Zuber:2000du]
[27-113]
Detection of very small neutrino masses in double-beta decay using laser tagging, M. Danilov et al., Phys. Lett. B480 (2000) 12-18, arXiv:hep-ex/0002003.
[Danilov:2000pp]
[27-114]
Neutrinoless double beta decay with Xe-136 in BOREXINO and the BOREXINO Counting Test Facility (CTF), B. Caccianiga, M. G. Giammarchi, Astropart. Phys. 14 (2000) 15-31.
[Caccianiga:2000hb]
[27-115]
Double beta decay: The future, E. Fiorini, Nucl. Phys. Proc. Suppl. 91 (2000) 262-269.
[Fiorini:2000ie]
[27-116]
Background and technical studies for GENIUS as a dark matter experiment, L. Baudis et al., Nucl. Instrum. Meth. A426 (1999) 425-435, arXiv:hep-ex/9811040.
[Baudis:1998wu]
[27-117]
A large scale double beta and dark matter experiment: GENIUS, J. Hellmig, H. V. Klapdor-Kleingrothaus, Z. Phys. A359 (1997) 351-359, arXiv:nucl-ex/9801004.
[Hellmig:1997lts]
[27-118]
Future perspectives of double beta decay and dark matter search - GENIUS, H. V. Klapdor-Kleingrothaus, J. Hellmig, M. Hirsch, J. Phys. G24 (1998) 483-516.
[Klapdor-Kleingrothaus:1998td]
[27-119]
Ice shielding in the large scale GENIUS experiment for double beta decay and dark matter search, H. V. Klapdor-Kleingrothaus, Yu. G. Zdesenko, Eur. Phys. J. A3 (1998) 107-108.
[Klapdor-Kleingrothaus:1998zy]
[27-120]
A large scale double beta and dark matter experiment: On the physics potential of GENIUS, H. V. Klapdor-Kleingrothaus, M. Hirsch, Z. Phys. A359 (1997) 361-372.
[Klapdor-Kleingrothaus:1997pw]

28 - Future Experiments - Talks

[28-1]
Present status of PICOLON project, K. Fushimi et al., MDPI Proc. 2023 (2024) 1, arXiv:2402.08786. 37th Workshop on Radiation Detectors and Their Use.
[Fushimi:2024lpn]
[28-2]
Front-end-Electronics for the SiPM-readout gaseous TPC for neutrinoless double beta decay search, K. Z. Nakamura, S. Ban, A. K. Ichikawa, M. Ikeno, K. D. Nakamura, T. Nakaya, S. Obara, S. Tanaka, T. Uchida, M. Yoshida, IEEE Trans.Nucl.Sci. 67 (2020) 1772-1776, arXiv:2001.02104. IEEE NSS/MIC 2019.
[AXEL:2020nwp]
[28-3]
The TPC detector of PandaX-III Neutrinoless Double Beta Decay experiment, Shaobo Wang, JINST 15 (2020) C03052, arXiv:2001.01356.
[Wang:2020owr]
[28-4]
Liquid Xenon detector R&D for $0\nu2\beta$ search (KamXP), Kota Ueshima, J.Phys.Conf.Ser. 1468 (2020) 012138, arXiv:1912.11197. 16th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2019), September 9-13, 2019, Toyama, Japan.
[Ueshima:2019out]
[28-5]
Scintillation balloon for liquid scintillator base Neutrinoless double beta decay search experiments, S.Obara, Y.Gando, K.Ishidoshiro, J.Phys.Conf.Ser. 1468 (2020) 012136, arXiv:1912.08067. 16th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2019), September 9-13, 2019, Toyama, Japan.
[Obara:2019qub]
[28-6]
The NEXT experiment for neutrinoless double beta decay searches, Justo Martin-Albo, arXiv:1910.07314, 2019. 31st Rencontres de Blois.
[Martin-Albo:2019ftj]
[28-7]
Development and characterization of noble solid bolometers, Philip L. R. Weigel, Erin V. Hansen, Michelle J. Dolinski, arXiv:1910.06276, 2019. 2019 Meeting of the Division of Particles and Fields of the American Physical Society (DPF2019), July 29 - August 2, 2019, Northeastern University, Boston.
[Weigel:2019uhj]
[28-8]
AXEL: High-pressure Xe gas TPC for BG-free $0\nu2\beta$ decay search, S. Obara et al., Nucl.Instrum.Meth. A958 (2020) 162803, arXiv:1909.09343. 15th Vienna Conference on Instrumentation (VCI2019).
[Obara:2019tnh]
[28-9]
Status and prospects of the NEXT experiment for neutrinoless double beta decay searches, J.J.Gomez-Cadenas, arXiv:1906.01743, 2019. 2019 EW/QCD/Gravitation session of the 54th Rencontres de Moriond.
[Gomez-Cadenas:2019sfa]
[28-10]
Neutrinoless Double Beta Decay Search with $^{76}$Ge: Status and Prospect with LEGEND, V. D'Andrea (LEGEND), arXiv:1905.06572, 2019. 2019 EW session of the 54th Rencontres de Moriond.
[DAndrea:2019umy]
[28-11]
Search for neutrinoless double-beta decays in Ge-76 in the LEGEND experiment, Jordan Myslik (LEGEND), PoS ICHEP2018 (2019) 636, arXiv:1812.08191. 39th International Conference on High Energy Physics (ICHEP2018), 4-11 July, 2018, Seoul, Korea.
[Myslik:2018knv]
[28-12]
LEGEND: The Large Enriched Germanium Experiment for Neutrinoless Double-Beta Decay, Jordan Myslik (LEGEND), arXiv:1810.00849, 2018. CIPANP2018.
[Myslik:2018vts]
[28-13]
Theia: A multi-purpose water-based liquid scintillator detector, Vincent Fischer (Theia), arXiv:1809.05987, 2018. CIPANP2018.
[Fischer:2018zsr]
[28-14]
FLARES, Mattia Beretta (FLARES), arXiv:1803.11362, 2018. NuPhys2017, Prospects in Neutrino Physic, Barbican Centre, London, UK, December 20-22, 2017.
[Beretta:2018kji]
[28-15]
Status of the SNO+ Experiment, SNO+ (Erica Caden), J.Phys.Conf.Ser. 1342 (2020) 012022, arXiv:1711.11094. TAUP2017.
[Caden:2017htb]
[28-16]
PandaX-III: Searching for Neutrinoless Double Beta Decay with High Pressure Gaseous Time Projection Chambers, Ke Han (PandaX-III), J.Phys.Conf.Ser. 1342 (2020) 012095, arXiv:1710.08908. TAUP 2017.
[Han:2017fol]
[28-17]
The NEXT double beta decay experiment, Paola Ferrario (NEXT), PoS EPS-HEP2017 (2017) 105, arXiv:1710.03022. EPS-HEP 2017, Venice (Italy), July 2017.
[Ferrario:2017zqp]
[28-18]
$^{100}$Mo-enriched Li$_2$MoO$_4$ scintillating bolometers for $0\nu 2\beta$ decay search: from LUMINEU to CUPID-0/Mo projects, D.V. Poda, AIP Conf.Proc. 1894 (2017) 020017, arXiv:1709.07846. MEDEX'17 meeting (Prague, May 29 - June 2, 2017).
[Poda:2017bmd]
[28-19]
The Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay (LEGEND), N. Abgrall et al. (LEGEND), AIP Conf.Proc. 1894 (2017) 020027, arXiv:1709.01980. MEDEX'17 meeting (Prague, May 29 - June 2, 2017).
[LEGEND:2017cdu]
[28-20]
High-sensitivity Kinetic Inductance Detectors for CALDER, A. D'Addabbo et al., arXiv:1705.04483, 2017.
[DAddabbo:2017kfj]
[28-21]
LUMINEU: a search for neutrinoless double beta decay based on ZnMoO$_4$ scintillating bolometers, E.Armengaud et al., J. Phys. Conf. Ser. 718 (2016) 062008, arXiv:1601.04989. TAUP 2015.
[Armengaud:2016dqg]
[28-22]
Microbulk Micromegas for the search of 0$\nu\beta\beta$ of 136Xe in the PandaX-III experiment, J. Galan (PANDAX-III), JINST 11 (2016) P04024, arXiv:1512.09034. MPGD 2015.
[Galan:2015tgl]
[28-23]
CALDER: cryogenic light detector for rare events search, L. Pagnanini et al., PoS NEUTEL2015 (2015) 076, arXiv:1512.08901. XVI International Workshop on Neutrino Telescopes, Venice.
[Pagnanini:2015ulo]
[28-24]
Probing neutrinoless double beta decay with SNO+, Evelina Arushanova, Ashley R. Back, arXiv:1505.00247, 2015. Prospects in Neutrino Physics Conference, 15 - 17 December, 2014, held at Queen Mary University of London, UK.
[Arushanova:2015cla]
[28-25]
UK low-background infrastructure for delivering SuperNEMO, Xin Ran Liu, arXiv:1504.08335, 2015. Prospects in Neutrino Physics Conference, 15 - 17 December, 2014, held at Queen Mary University of London, UK.
[Liu:2015kba]
[28-26]
The SuperNEMO tracking detector, M. Cascella, arXiv:1504.08304, 2015. Prospects in Neutrino Physics Conference, 15 - 17 December, 2014, held at Queen Mary University of London, UK.
[Cascella:2015iba]
[28-27]
Physics Potential of an Advanced Scintillation Detector: Introducing THEIA, Gabriel D. Orebi Gann, THEIA Interest Group (Group for the THEIA Interest), arXiv:1504.08284, 2015. Prospects in Neutrino Physics Conference, 15 - 17 December, 2014, held at Queen Mary University of London, UK.
[OrebiGann:2015gus]
[28-28]
Scintillating bolometers based on ZnMoO$_4$ and Zn$^{100}$MoO$_4$ crystals to search for 0$\nu$2$\beta$ decay of $^{100}$Mo (LUMINEU project): first tests at the Modane Underground Laboratory, D.V. Poda et al. (LUMINEU,EDELWEISS), Nucl.Part.Phys.Proc. 273-275 (2016) 1801-1806, arXiv:1502.01161. 37th International Conference on High Energy Physics (ICHEP 2014), Valencia, Spain, 2-9 July 2014.
[LUMINEU:2015uyv]
[28-29]
Status of the MAJORANA Demonstrator, C. Cuesta et al., Nucl. Part. Phys. Proc. 265-266 (2015) 70-72, arXiv:1412.5682. NOW 2014.
[Cuesta:2014dwa]
[28-30]
The NEXT experiment, Juan Jose Gomez-Cadenas, Nucl.Part.Phys.Proc. 273-275 (2016) 1732-1739, arXiv:1411.2433. ICHEP 2014, Valencia (Spain).
[Gomez-Cadenas:2014dxa]
[28-31]
The Hunt for neutrinoless double beta decay with the NEXT experiment, David Lorca (NEXT), arXiv:1411.0475, 2014. 20th Particles and Nuclei International Conference 2014.
[Lorca:2014ftl]
[28-32]
The CUORE and CUORE-0 Experiments at Gran Sasso, A. Giachero et al., EPJ Web Conf. 95 (2015) 04024, arXiv:1410.7481. International Conference of New Frontiers in Physics, ICNFP 2014.
[Giachero:2014hva]
[28-33]
SNO+ with Tellurium, Steven Biller (SNO+), Phys.Procedia 61 (2015) 205-210, arXiv:1405.3401.
[Biller:2014eha]
[28-34]
Purification of molybdenum oxide, growth and characterization of medium size zinc molybdate crystals for the LUMINEU program, V.N. Shlegel et al., EPJ Web Conf. 65 (2014) 03001, arXiv:1312.3515. Int. Workshop on Radiopure Scintillators RPSCINT 2013, 17-20 September 2013, Kyiv, Ukraine.
[Shlegel:2013iga]
[28-35]
The MAJORANA DEMONSTRATOR: A Search for Neutrinoless Double-beta Decay of Germanium-76, S.R. Elliott et al. (MAJORANA), AIP Conf.Proc. 1572 (2013) 45-48, arXiv:1307.7777. MEDEX 2013.
[Majorana:2013lfb]
[28-36]
Status and physics potential of NEXT-100, J. Martin-Albo, J.J. Gomez-Cadenas (NEXT), J. Phys. Conf. Ser. 460 (2013) 012010, arXiv:1301.2966. 6th TPC Symposium on large TPCs for low energy rare event detection (Paris, Dec 2012).
[Martin-Albo:2013hhs]
[28-37]
NEXT, high-pressure xenon gas experiments for ultimate sensitivity to Majorana neutrinos, J. J. Gomez-Cadenas, J. Martin-Albo, F. Monrabal, JINST 7 (2012) C11007, arXiv:1210.0341. 14th International Workshop on Radiation Imaging Detectors (iWoRID 2012), Figueira da Foz, Coimbra (Portugal), 1-5 July 2012.
[Gomez-Cadenas:2012pyo]
[28-38]
Neutrinoless Double Beta Decay with SNO+, J. Hartnell, SNO+ (SNO+), J. Phys. Conf. Ser. 375 (2012) 042015, arXiv:1201.6169. TAUP 2011.
[Hartnell:2012qd]
[28-39]
The Majorana experiment: an ultra-low background search for neutrinoless double-beta decay, D. G. Phillips II et al., J. Phys. Conf. Ser. 381 (2012) 012044, arXiv:1111.5578. Rutherford Centennial Conference on Nuclear Physics.
[Phillips:2011db]
[28-40]
New generation of double beta decay experiments: Are there any limitations?, A.S. Barabash, AIP Conf.Proc. 1417 (2011) 5-11, arXiv:1109.6423.
[Barabash:2011fs]
[28-41]
The Majorana Project, C. E. Aalseth et al. (MAJORANA), J. Phys. Conf. Ser. 203 (2010) 012057, arXiv:0910.4598. TAUP 2009.
[Majorana:2009wyl]
[28-42]
SuperNEMO - the next generation double beta decay experiment, Irina Nasteva et al. (SuperNEMO), PoS EPS-HEP2009 (2009) 463, arXiv:0909.3167. EPS-HEP 2009.
[Nasteva:2009gy]
[28-43]
Status of EXO-200, Nicole Ackerman (EXO), arXiv:0909.1826, 2009. DPF-2009, Detroit, MI, July 2009.
[Ackerman:2009br]
[28-44]
The MAJORANA DEMONSTRATOR: An R&D project towards a tonne- scale germanium neutrinoless double-beta decay search, Reyco Henning et al. (MAJORANA), AIP Conf. Proc. 1182 (2009) 88-91, arXiv:0907.1581. CIPANP 2009.
[Majorana:2009hyh]
[28-45]
The SNO+ Experiment, Mark C. Chen, SNO+ (SNO+), arXiv:0810.3694, 2008. ICHEP08.
[Chen:2008un]
[28-46]
The SuperNEMO Experiment, R. Benton Pahlka (SuperNEMO), arXiv:0810.3169, 2008. ICHEP08.
[Pahlka:2008dw]
[28-47]
Search for neutrinoless double-beta decay of Ge-76 with GERDA, Karl-Tasso Knoepfle (GERDA), arXiv:0809.5207, 2008. ICHEP08, Philadelphia, USA, July 2008.
[Knopfle:2008sq]
[28-48]
Supernemo: A Next Generation Project to Search for Neutrinoless Double Beta Decay, Yu. Shitov (SuperNEMO), arXiv:0807.3078, 2008. XXth Rencontres de Blois 18th-23rd May 2008.
[Shitov:2008gs]
[28-49]
Calorimeter R&D for the SuperNEMO Double Beta Decay Experiment, Matthew Kauer (SuperNEMO), J. Phys. Conf. Ser. 160 (2009) 012031, arXiv:0807.2188. Calor'08.
[Kauer:2008em]
[28-50]
The Majorana Project, S. R. Elliott et al. (MAJORANA), J. Phys. Conf. Ser. 173 (2009) 012007, arXiv:0807.1741. 2008 Carolina International Symposium on Neutrino Physics.
[Elliott:2008xc]
[28-51]
The MAJORANA 76Ge neutrino less double-beta decay project: A brief update, III Avignone, F. T. (MAJORANA), J. Phys. Conf. Ser. 120 (2008) 052059, arXiv:0711.4808.
[Avignone:2007js]
[28-52]
EXO: An advanced Enriched Xenon double-beta decay Observatory, D. Akimov et al., Nucl. Phys. Proc. Suppl. 138 (2005) 224-226.
[Akimov:2005mq]
[28-53]
Strategy for future double beta experiments, F. Avignone, 2004. Neutrino 2004, 13-19 June 2004, Paris, France. http://neutrino2004.in2p3.fr/slides/thursday/avignone.pdf.
[Avignone-Nu2004]
[28-54]
GENIUS - A New Underground Observatory for Non-Accelerator Particle Physics, H. V. Klapdor-Kleingrothaus, Nucl. Phys. Proc. Suppl. 110 (2002) 364-368, arXiv:hep-ph/0206249. TAUP 2001, September 8-12, 2001.
[Klapdor-Kleingrothaus:2002kvu]
[28-55]
The Majorana Ge-76 double-beta decay project, C. E. Aalseth et al. (MAJORANA), arXiv:hep-ex/0201021, 2002. 3rd International Conference on Nonaccelerator New Physics (NANPino 01), Dubna, Moscow Region Russia, 19-23 June 2001.
[Majorana:2002pxp]
[28-56]
CAMEO/GEM program for future 2beta decay and dark matter experiments, Yu. G. Zdesenko, Nucl. Phys. Proc. Suppl. 110 (2002) 385-388. TAUP 2001.
[Zdesenko:2002rw]
[28-57]
New underground neutrino observatory - GENIUS - in the new millenium: For solar neutrinos, dark matter and double beta decay, H. V. Klapdor-Kleingrothaus, arXiv:hep-ph/0104028, 2001. International Workshop on Low Energy Solar Neutrinos (LowNu2), December 4 and 5, 2000, Tokyo, Japan.
[Klapdor-Kleingrothaus:2000mnz]
[28-58]
New physics in the new millennium with GENIUS: Double beta decay, dark matter, solar neutrinos, H. V. Klapdor-Kleingrothaus, Part. Nucl. Lett. 104 (2001) 20-39, arXiv:hep-ph/0102319. International Workshop on Non-Accelerator New Physics in Neutrino Observations (NANPino), Dubna, Russia, July 19-22, 2000.
[Klapdor-Kleingrothaus:2000gfm]
[28-59]
GENIUS - A new facility of non-accelerator particle physics, H. V. Klapdor-Kleingrothaus, Nucl. Phys. Proc. Suppl. 100 (2001) 350-355, arXiv:hep-ph/0102277. Europhysics Neutrino Oscillation Workshop (NOW 2000), Conca Specchiulla, Otranto, Lecce, Italy, 9-16 Sep 2000.
[Klapdor-Kleingrothaus:2000nps]

Search Neutrino Unbound

Cross search NU

It is possible to perform a cross search between the various pages of Neutrino Unbound.
This is useful if you want to show the common elements that appear in the listings of two (or more) different topics or experiments.

Go to the search form.

[Go to ...]

Neutrino Unbound Home

Authors:
Stefano Gariazzo / gariazzo@to.infn.it
Carlo Giunti / giunti@to.infn.it
Marco Laveder / marco.laveder@pd.infn.it
Last Update: Wed 24 Apr 2024, 22:37:56 CET