Snowmass Topical Report: Underground Facilities for Neutrinos,
Tim Bolton, M. Patrick Decowski, Albert De Roeck, Gabriel Orebi Gann, Danielle H. Speller,
arXiv:2209.07622, 2022. [Bolton:2022pgb]
Report of the Topical Group on Neutrino Properties for Snowmass 2021,
Carlo Giunti, Julieta Gruszko, Benjamin Jones, Lisa Kaufman, Diana Parno, Andrea Pocar,
arXiv:2209.03340, 2022. [Giunti:2022aea]
Toward the discovery of matter creation with neutrinoless double-beta decay,
Matteo Agostini, Giovanni Benato, Jason A. Detwiler, Javier Menendez, Francesco Vissani,
arXiv:2202.01787, 2022. [Agostini:2022zub]
Beyond-mean-field approaches for nuclear neutrinoless double beta decay in the standard mechanism,
J. M. Yao, J. Meng, Y. F. Niu, P. Ring,
Prog.Part.Nucl.Phys. 126 (2022) 103965,arXiv:2111.15543.
[Yao:2021wst]
Neutrinoless Double Beta Decay with Germanium Detectors: 10$^{26}$ yr and Beyond,
V. D'Andrea, N. Di Marco, M.B. Junker, M. Laubenstein, C. Macolino, M. Morella, F. Salamida, C. Vignoli,
Universe 7 (2021) 341,arXiv:2109.07575.
[DAndrea:2021gqg]
CUORE Opens the Door to Tonne-scale Cryogenics Experiments,
D. Q. Adams et al.(CUORE),
Prog.Part.Nucl.Phys. 122 (2022) 103902,arXiv:2108.07883.
[CUORE:2021ctv]
What is matter according to particle physics and why try to observe its creation in lab,
Francesco Vissani,
Universe 7 (2021) 61,arXiv:2103.02642.
[Vissani:2021gdw]
Present Status of Nuclear Shell-Model Calculations of Neutrinoless Double-Beta Decay Matrix Elements,
L. Coraggio, N. Itaco, G. De Gregorio, A. Gargano, R. Mancino, S. Pastore,
Universe 6 (2020) 233,arXiv:2011.14734.
[Coraggio:2020iht]
Nuclear matrix elements from lattice QCD for electroweak and beyond-Standard-Model processes,
Zohreh Davoudi, William Detmold, Kostas Orginos, Assumpta Parreno, Martin J. Savage, Phiala Shanahan, Michael L. Wagman,
Phys.Rept. 900 (2021) 1-74,arXiv:2008.11160.
[Davoudi:2020ngi]
Neutrinoless Double-Electron Capture,
K. Blaum, S. Eliseev, F. A. Danevich, V. I. Tretyak, Sergey Kovalenko, M. I. Krivoruchenko, Yu. N. Novikov, J. Suhonen,
Rev.Mod.Phys. 92 (2020) 045007,arXiv:2007.14908.
[Blaum:2020ogl]
Double Beta Decay APPEC Committee Report,
A. Giuliani, J. J. Gomez Cadenas, S. Pascoli, E. Previtali, R. Saakyan, K. Schaeffner, S. Schoenert,
arXiv:1910.04688, 2019. [Giuliani:2019uno]
High Pressure Gas Xenon TPCs for Double Beta Decay Searches,
J.J. Gomez-Cadenas, F. Monrabal, P. Ferrario,
Front.in Phys. 7 (2019) 51,arXiv:1903.02435.
[Gomez-Cadenas:2019ges]
Neutrinoless Double-Beta Decay: Status and Prospects,
Michelle J. Dolinski, Alan W. P. Poon, Werner Rodejohann,
Ann.Rev.Nucl.Part.Sci. 69 (2019) 219-251,arXiv:1902.04097.
[Dolinski:2019nrj]
Neutrino-nuclear responses for astro-neutrinos, single beta decays and double beta decays,
H. Ejiri, J. Suhonen, K. Zuber,
Phys. Rept. 797 (2019) 1-102. [Ejiri:2019ezh]
Neutrino Mass Ordering in 2018: Global Status,
P. F. de Salas, S. Gariazzo, O. Mena, C. A. Ternes, M. Tortola,
Front.Astron.Space Sci. 5 (2018) 36,arXiv:1806.11051.
[DeSalas:2018rby]
Main features of detectors and isotopes to investigate double beta decay with increased sensitivity,
A.S. Barabash,
Int.J.Mod.Phys. A33 (2018) 1843001,arXiv:1803.06894.
[Barabash:2018rds]
Potentialities of the future technical improvements in the search of rare nuclear decays by bolometers,
Fabio Bellini,
Int.J.Mod.Phys. A33 (2018) 1843003,arXiv:1802.04260.
[Bellini:2018qhw]
Value of the axial-vector coupling strength in $\beta$ and $\beta\beta$ decays: A review,
Jouni Suhonen,
Front.in Phys. 5 (2017) 55,arXiv:1712.01565.
[Suhonen:2017krv]
Status and Future of Nuclear Matrix Elements for Neutrinoless Double-Beta Decay: A Review,
Jonathan Engel, Javier Menendez,
Rept.Prog.Phys. 80 (2017) 046301,arXiv:1610.06548.
[Engel:2016xgb]
Neutrinoless double beta decay: 2015 review,
S. Dell'Oro, S. Marcocci, M. Viel, F. Vissani,
Adv.High Energy Phys. 2016 (2016) 2162659,arXiv:1601.07512.
[DellOro:2016tmg]
Current Status and Future Prospects of the SNO+ Experiment,
S. Andringa et al.(SNO+),
Adv. High Energy Phys. 2016 (2015) 6194250,arXiv:1508.05759.
[SNO:2015wyx]
Neutrinoless Double-Beta Decay: a Probe of Physics Beyond the Standard Model,
S.M. Bilenky, C. Giunti,
Int.J.Mod.Phys. A30 (2015) 0001,arXiv:1411.4791.
[Bilenky:2014uka]
Exploring the Neutrinoless Double Beta Decay in the Inverted Neutrino Hierarchy with Bolometric Detectors,
D. R. Artusa et al.(CUORE),
Eur.Phys.J. C74 (2014) 3096,arXiv:1404.4469.
[CUORE:2014jua]
Lepton Flavor and Number Conservation, and Physics Beyond the Standard Model,
Andre de Gouvea, Petr Vogel,
Prog.Part.Nucl. Phys. 71 (2013) 75-92,arXiv:1303.4097.
[deGouvea:2013zba]
Status and prospects of searches for neutrinoless double beta decay,
Bernhard Schwingenheuer,
Annalen Phys. 525 (2013) 269-280,arXiv:1210.7432.
[Schwingenheuer:2012zs]
Neutrinoless Double Beta Decay and Physics Beyond the Standard Model,
Frank F. Deppisch, Martin Hirsch, Heinrich Pas,
J. Phys. G39 (2012) 124007,arXiv:1208.0727.
[Deppisch:2012nb]
Review of the properties of the $0\nu\beta^-\beta^-$ nuclear matrix elements,
Jouni Suhonen, Osvaldo Civitarese,
J. Phys. G39 (2012) 124005. [Suhonen:2012ii]
The Search for neutrinoless double beta decay,
J.J. Gomez-Cadenas, J. Martin-Albo, M. Mezzetto, F. Monrabal, M. Sorel,
Riv.Nuovo Cim. 35 (2012) 29-98,arXiv:1109.5515.
[Gomez-Cadenas:2011oep]
Double Beta Decay, Majorana Neutrinos, and Neutrino Mass,
III Avignone, Frank T., Steven R. Elliott, Jonathan Engel,
Rev. Mod. Phys. 80 (2008) 481-516,arXiv:0708.1033.
[Avignone:2007fu]
Next generation double-beta decay experiments: Metrics for their evaluation,
F. T. Avignone, G. S. King, Yu. G. Zdesenko,
New J. Phys. 7 (2005) 6.http://www.iop.org/EJ/abstract/1367-2630/7/1/006.
[Avignone:2005cs]
The Shell model as unified view of nuclear structure,
E. Caurier, G. Martinez-Pinedo, F. Nowacki, A. Poves, A.P. Zuker,
Rev.Mod.Phys. 77 (2005) 427-488,arXiv:nucl-th/0402046.
[Caurier:2004gf]
Absolute values of neutrino masses: Status and prospects,
S. M. Bilenky, C. Giunti, J. A. Grifols, E. Masso,
Phys. Rep. 379 (2003) 69-148,arXiv:hep-ph/0211462.
[Bilenky:2002aw]
Tables of double beta decay data: An update,
V.I. Tretyak, Yuri G. Zdesenko,
Atom.Data Nucl.Data Tabl. 80 (2002) 83-116. From the abstract:An updated version of a previous compilation of data on double beta decay is presented.... Theoretical estimates are given for comparison as well. The literature has been covered to April 2001. [Tretyak:2002dx]
Weak-interaction and nuclear-structure aspects of nuclear double beta decay,
J. Suhonen, O. Civitarese,
Phys. Rep. 300 (1998) 123-214. [Suhonen:1998ck]
Towards Precise and Accurate Calculations of Neutrinoless Double-Beta Decay: Project Scoping Workshop Report,
V. Cirigliano et al.,
J.Phys.G 49 (2022) 120502,arXiv:2207.01085.
[Cirigliano:2022rmf]
The Physics of Neutrinoless Double Beta Decay: A Primer,
B.J.P. Jones,
arXiv:2108.09364, 2021.Theoretical Advanced Study Institute: The Obscure Universe: Neutrinos and Other Dark Matters - TASI2020. [Jones:2021cga]
$|\Delta\mathcal{B}| =2$: A State of the Field, and Looking Forward-A brief status report of theoretical and experimental physics opportunities,
Kaladi Babu et al.,
arXiv:2010.02299, 2020.Amherst Center for Fundamental Interactions workshop. [Proceedings:2020nzz]
The Nature of the Neutrino (Dirac/Majorana) and Double Beta Decay with or without Neutrinos,
S. T. Petcov,
arXiv:1910.09331, 2019.International Conference on History of the Neutrino, Paris, France, September 5-7, 2018. [Petcov:2019yud]
Status and Prospects of the Search for Neutrinoless Double Beta Decay of $^{76}$Ge,
Karl-Tasso Knoepfle,
arXiv:1801.06395, 2018.18th Lomonosov Conference on Elementary Particle Physics (Moscow, 24-30 August 2017). [Knoepfle:2018qkv]
Testing creation of matter with neutrinoless double beta decay,
Stefano Dell'Oro, Simone Marcocci, Francesco Vissani,
PoS NEUTEL2017 (2018) 030,arXiv:1710.06732.
XVII International Workshop on Neutrino Telescopes 13-17 March 2017, Venice, Italy. [DellOro:2017pgd]
Present status of neutrinoless double beta decay searches,
Werner Maneschg,
arXiv:1704.08537, 2017.NuPhys2016, London, UK, December 12-14, 2016. [Maneschg:2017mzu]
Searching for $0\nu\beta\beta$ decay in $^{136}$Xe - towards the tonne-scale and beyond,
Thomas Brunner, Lindley Winslow,
Nucl.Phys.News 27 (2017) 14-19,arXiv:1704.01528.
[Brunner:2017iql]
Assess the neutrino mass with micro and macro calorimeter approach,
Andrea Giachero,
J.Phys.Conf.Ser. 841 (2017) 012027,arXiv:1703.02747.
7th Young Researcher Meeting 2016 (7YRM). [Giachero:2017fsr]
Light sterile neutrinos and neutrinoless double-beta decay,
Carlo Giunti,
AIP Conf. Proc. 1894 (2017) 020009.Matrix Elements for the Double beta decay Experiments (MEDEX'17): Prague, Czech Republic. [Giunti:2017doy]
What do we know about neutrinoless double-beta decay nuclear matrix elements?,
J. Menendez,
arXiv:1605.05059, 2016.NuPhys2015 (London, 16-18 December 2015). [Menendez:2016kkg]
Search for Neutrinoless Double-Beta Decay,
Werner Tornow,
arXiv:1412.0734, 2014.XXXIV Physics in Collision Symposium Bloomington, Indiana, September 16-20, 2014. [Tornow:2014vta]
Status of double beta decay experiments using isotopes other than Xe-136,
Luciano Pandola,
Phys.Dark Univ. 4 (2014) 17-22,arXiv:1403.3329.
TAUP2013 (Asilomar, US). [Pandola:2014naa]
The Neutrinoless Double Beta Decay, Physics beyond the Standard Model and the Neutrino Mass,
Amand Faessler,
arXiv:1203.3648, 2012.Schladming Meeting, February 25 - March 3, 2012. [Faessler:2012kua]
False starts in history of searches for double beta decay, or Discoverless double beta decay,
V. I. Tretyak,
AIP Conf. Proc. 1417 (2011) 129-133,arXiv:1112.4183.
Workshop on Calculation of Double Beta Decay Matrix Elements (MEDEX'11), Prague, June 13-16, 2011. [Tretyak:2011pg]
Nuclear Double Beta Decay, Fundamental Particle Physics, Hot Dark Matter, And Dark Energy,
Hans V. Klapdor-Kleingrothaus, Irina V. Krivosheina,
Acta Phys.Polon. B41 (2010) 2423,arXiv:1006.2423.
DARK 2009 - Dark Matter in Astrophysics and Particle Physics, Christchurch, New Zealand, 18-24 January 2009. [Iltan:2010qb]
Neutrino masses and Neutrinoless Double Beta Decay: Status and expectations,
Oliviero Cremonesi,
arXiv:1002.1437, 2010.'European Strategy for Future Neutrino Physics' Workshop, CERN October 1-3 2009. [Cremonesi:2010xs]
Are neutrinos their own antiparticles?,
Boris Kayser,
J. Phys. Conf. Ser. 173 (2009) 012013,arXiv:0903.0899.
Carolina International Symposium on Neutrino Physics. [Kayser:2009zz]
Nuclear physics aspects of double beta decay,
Petr Vogel,
Proc.Int.Sch.Phys.Fermi 170 (2009) 49-103,arXiv:0807.2457.
CLXX 'MEASUREMENTS OF NEUTRINO MASS' Int. School of Physics 'Enrico Fermi', Varenna, June 2008. [Vogel:2008sx]
Are Neutrinos Majorana Particles?,
G. Rajasekaran,
arXiv:0803.4387, 2008.Workshop on Neutrinoless Double Beta Decay (NDBD07) at Tata Institute of Fundamental Research, Mumbai, October 2007. [Rajasekaran:2008ct]
Theory and phenomenology of neutrino mixing,
Carlo Giunti,
Nucl. Phys. Proc. Suppl. 169 (2007) 309-320,arXiv:hep-ph/0611125.
Tau06 (19-22 September 2006, Pisa, Italy) and HQL06 (16-20 October 2006, Munich, Germany). [Giunti:2006rs]
Phenomenology of neutrinoless double beta decay,
M. Hirsch,
Nucl. Phys. Proc. Suppl. 221 (2011) 119-124,arXiv:hep-ph/0609146.
Neutrino 2006, Santa Fe. [Hirsch:2006tt]
Introduction to the double-beta decay experimental program,
Steven R. Elliott,
Nucl. Phys. Proc. Suppl. 221 (2011) 73-78,arXiv:nucl-ex/0609024.
Neutrino 2006. [Elliott:2006bb]
Double beta decay experiments: past and present achievements,
Alexander Barabash,
Nucl. Phys. Proc. Suppl. 221 (2011) 26-31,arXiv:hep-ex/0608054.
NEUTRINO'06 (Santa Fe, June 13-19, 2006). [Barabash:2006fw]
Absolute Neutrino Masses,
Carlo Giunti,
Acta Phys. Polon. B36 (2005) 3215,arXiv:hep-ph/0511131.
XXIX International Conference of Theoretical Physics 'Matter To The Deepest: Recent Developments In Physics Of Fundamental Interactions', 8-14 September 2005, Ustron, Poland. [Giunti:2005qd]
Consensus Report of a Workshop on 'Matrix elements for Neutrinoless Double Beta Decay',
K. Zuber,
arXiv:nucl-ex/0511009, 2005.'Matrix elements for Neutrinoless Double Beta Decay', IPPP Durham (UK), 23-24 May 2005. [Zuber:2005fu]
Neutrinoless double beta-decay: Status and future,
S. M. Bilenky,
Phys. Atom. Nucl. 69 (2006) 2134-2140,arXiv:hep-ph/0509098.
International conference 'Non-Accelerator New Physics' NANP05 Dubna, Russia, June 20-25, 2005. [Bilenky:2005bq]
Neutrino mass and mixing parameters: A short review,
G.L. Fogli et al.,
arXiv:hep-ph/0506307, 2005.40th Rencontres de Moriond on Electroweak Interactions and Unified Theories, La Thuile, Aosta Valley, Italy, 5-12 Mar 2005. [Fogli:2005gs]
Theoretical Prospects of Neutrinoless Double Beta Decay,
S. T. Petcov,
Phys. Scripta T121 (2005) 94,arXiv:hep-ph/0504166.
Nobel Symposium (N 129) on Neutrino Physics, August 19 - 24, 2004, Haga Slott, Enkoping, Sweden. [Petcov:2005yq]
Evidence for Neutrino Mass: A Decade of Discovery,
K.M. Heeger,
arXiv:hep-ex/0412032, 2004.SEESAW25: International Conference on the Seesaw Mechanism and Neutrino Mass, Paris, France, 10-11 June 2004. [Heeger:2004mp]
Recent Results of non-accelarator-based neutrino experiments,
Yifang Wang,
Int. J. Mod. Phys. A20 (2005) 5244,arXiv:hep-ex/0411028.
'32nd International Conference on High Energy Physics', Aug. 16-22, 2004, Beijing, P.R. China. [Wang:2004wu]
Physics of Massive Neutrinos,
J. W. F. Valle,
Nucl. Phys. Proc. Suppl. 149 (2005) 3,arXiv:hep-ph/0410103.
Sixth International Conf. on Neutrino Factories and SuperBeams (NuFact04) Osaka, Japan, July 26-August 1, 2004. [Valle:2004cr]
Neutrinoless Double Beta Decay in Theories Beyond the Standard Model,
J.D. Vergados,
Nucl. Phys. Proc. Suppl. 143 (2005) 211,arXiv:hep-ph/0409319.
XXIst Int. Conf. on Neutrino Physics and Astrophysics, June 13-19, College de France, Paris, France. [Vergados:2004rw]
Neutrinoless Double $\beta$-Decay,
S. M. Bilenky,
Frascati Phys.Ser. 34 (2004) 119-139,arXiv:hep-ph/0403245.
' Rencontres de Physique de La Vallee d'Aoste', La Thuile, Aosta Valley, February 29-March 6, 2004. [Bilenky:2004hw]
Double Beta Decay and the Absolute Neutrino Mass Scale,
Carlo Giunti,
Aip Conf. Proc. 721 (2004) 170,arXiv:hep-ph/0308206.
NuFact 03, 5th International Workshop on Neutrino Factories and Superbeams, 5-11 June 2003, Columbia University, New York.http://www.cap.bnl.gov/nufact03/WG1/6june/giunti.pdf.
[Giunti:2003kb]
Neutrino Masses, Mixing and Neutrinoless Double-Beta Decay,
S. Pascoli, S. T. Petcov,
arXiv:hep-ph/0308034, 2003.Xth International Workshop on Neutrino Telescopes, March 11 - 14, 2003, Venice, Italy. [Pascoli:2003xb]
Neutrino oscillations in the framework of the tree-neutrino mixing,
S. M. Bilenky,
arXiv:hep-ph/0307186, 2003.Ist Yamada Symposium Om neutrinos and Dark Matter in Nuclear Physics, June 9-14, 2003, Nara, Japan. [Bilenky:2003rb]
Determination of neutrino masses, present and future,
Jean-Luc Vuilleumier,
arXiv:hep-ex/0306010, 2003.XXXVIII Rencontres de Moriond, Electroweak interactions and Unified Theories, Les Arcs, March 15-22, 2003. [Vuilleumier:2003us]
Experiments for Double-Beta Decay,
Steven R. Elliott,
Int. J. Mod. Phys. A18 (2003) 4097,arXiv:nucl-ex/0301011.
Neutrino and Implications for Physics beyond the Standard Model. [Elliott:2003rh]
The Neutrinoless Double Beta Decay: The Case for Germanium Detectors,
A. Morales, J. Morales,
Nucl. Phys. Proc. Suppl. 114 (2003) 141-157,arXiv:hep-ph/0211332.
XXX International Meeting on Fundamental Physics, IMFP2002, February 2002, Jaca, Spain. [Morales:2002zf]
Development of cryogenic low background detector based on enriched zinc molybdate crystal scintillators to search for neutrinoless double beta decay of $^{100}$Mo,
Dmitry Chernyak,
arXiv:1507.04591, 2015. [Chernyak:2015bda]
Measurement of the double beta decay half-life of $^{150}$Nd and search for neutrinoless decay modes with NEMO-3 detector,
Nasim Fatemi-Ghomi,
arXiv:0905.0822, 2009. [Fatemi-Ghomi:2009ecj]
Some implications of the CP invariance for mixing of Majorana neutrinos,
Samoil M. Bilenky, N. P. Nedelcheva, S. T. Petcov,
Nucl. Phys. B247 (1984) 61. [Bilenky:1984fg]
Search for exotic physics in double-$\beta$ decays with GERDA Phase II,
M. Agostini et al.(GERDA),
JCAP 12 (2022) 012,arXiv:2209.01671.
[GERDA:2022ffe]
Final Result of the MAJORANA DEMONSTRATOR's Search for Neutrinoless Double-$\beta$ Decay in $^{76}$Ge,
I. J. Arnquist et al.,
Phys.Rev.Lett. 130 (2023) 062501,arXiv:2207.07638.
[Majorana:2022udl]
Final Result on the Neutrinoless Double Beta Decay of $^{82}$Se with CUPID-0,
O. Azzolini et al.(CUPID-0),
Phys.Rev.Lett. 129 (2022) 111801,arXiv:2206.05130.
[CUPID:2022puj]
Search for Neutrinoless Double-Beta Decay of $^{76}$Ge with a Natural Broad Energy Germanium Detector,
W. H. Dai et al.(CDEX),
Phys.Rev.D 106 (2022) 032012,arXiv:2205.10718.
[CDEX:2022bdk]
Double-Weak Decays of $^{124}$Xe and $^{136}$Xe in the XENON1T and XENONnT Experiments,
E. Aprile et al.,
Phys.Rev.C 106 (2022) 024328,arXiv:2205.04158.
[XENON:2022evz]
First Search for the Majorana Nature of Neutrinos in the Inverted Mass Ordering Region with KamLAND-Zen,
S. Abe et al.(KamLAND-Zen),
Phys.Rev.Lett. 130 (2023) 051801,arXiv:2203.02139.
[KamLAND-Zen:2022tow]
Search for Majoron-emitting modes of $^{136}$Xe double beta decay with the complete EXO-200 dataset,
S. Al Kharusi et al.(EXO-200),
Phys.Rev.D 104 (2021) 112002,arXiv:2109.01327.
[Kharusi:2021jez]
Search for double $\beta$-decay modes of $^{64}$Zn using purified zinc,
F. Bellini et al.,
Eur.Phys.J. C81 (2021) 106,arXiv:2012.05873.
[Bellini:2020alj]
Final Results of GERDA on the Search for Neutrinoless Double-$\beta$ Decay,
M. Agostini et al.(GERDA),
Phys.Rev.Lett. 125 (2020) 252502,arXiv:2009.06079.
[GERDA:2020xhi]
Improved Limit on Neutrinoless Double-Beta Decay in $^{130}$Te with CUORE,
D. Q. Adams et al.(CUORE),
Phys.Rev.Lett. 124 (2020) 122501,arXiv:1912.10966.
[CUORE:2019yfd]
Searching for Neutrino-less Double Beta Decay of $^{136}$Xe with PandaX-II Liquid Xenon Detector,
Kaixiang Ni et al.,
Chin.Phys.C 43 (2019) 113001,arXiv:1906.11457.
[PandaX-II:2019euf]
Final result of CUPID-0 phase-I in the search for the $^{82}$Se Neutrinoless Double Beta Decay,
O. Azzolini et al.(CUPID-0),
Phys.Rev.Lett. 123 (2019) 032501,arXiv:1906.05001.
[CUPID:2019gpc]
Search for Neutrinoless Double-Beta Decay with the Complete EXO-200 Dataset,
G. Anton et al.(EXO-200),
Phys.Rev.Lett. 123 (2019) 161802,arXiv:1906.02723.
[EXO-200:2019rkq]
A Search for Neutrinoless Double-Beta Decay in $^{76}$Ge with 26 kg-yr of Exposure from the MAJORANA DEMONSTRATOR,
S.I. Alvis et al.,
Phys.Rev. C100 (2019) 025501,arXiv:1902.02299.
[Majorana:2019nbd]
Double-beta decay of ${}^{130}$Te to the first $0^+$ excited state of ${}^{130}$Xe with CUORE-0,
C. Alduino et al.(CUORE),
Eur.Phys.J. C79 (2019) 795,arXiv:1811.10363.
[CUORE:2018ncg]
Search of the neutrino-less double beta decay of $^{82}$Se into the excited states of $^{82}$Kr with CUPID-0,
O. Azzolini et al.(CUPID-0),
Eur.Phys.J. C78 (2018) 888,arXiv:1807.00665.
[CUPID:2018npf]
Final results on $^\textbf{82}$Se double beta decay to the ground state of $^\textbf{82}$Kr from the NEMO-3 experiment,
R. Arnold et al.(NEMO-3),
Eur.Phys.J. C78 (2018) 821,arXiv:1806.05553.
[Arnold:2018tmo]
Improved limit on neutrinoless double beta decay of $^{76}$Ge from GERDA Phase II,
M. Agostini et al.,
Phys.Rev.Lett. 120 (2018) 132503,arXiv:1803.11100.
[GERDA:2018pmc]
First Result on the Neutrinoless Double Beta Decay of $^{82}$Se with CUPID-0,
O. Azzolini et al.(CUPID-0),
Phys.Rev.Lett. 120 (2018) 232502,arXiv:1802.07791.
[CUPID-0:2018rcs]
Search for Zero-Neutrino Double Beta Decay in 76Ge with the Majorana Demonstrator,
C.E. Aalseth et al.,
Phys.Rev.Lett. 120 (2018) 132502,arXiv:1710.11608.
[Majorana:2017csj]
First Results from CUORE: A Search for Lepton Number Violation via $0\nu\beta\beta$ Decay of $^{130}$Te,
C. Alduino et al.(CUORE),
Phys.Rev.Lett. 120 (2018) 132501,arXiv:1710.07988.
[CUORE:2017tlq]
Search for Neutrinoless $\beta^{+}\hspace{-0.2em}EC$ Decay of $^{120}$Te with CUORE-0,
C. Alduino et al.(CUORE),
Phys.Rev. C97 (2018) 055502,arXiv:1710.07459.
[CUORE:2017dbf]
Search for Neutrinoless Double-Beta Decay with the Upgraded EXO-200 Detector,
J.B. Albert et al.,
Phys.Rev.Lett. 120 (2018) 072701,arXiv:1707.08707.
[EXO:2017poz]
Search for neutrinoless quadruple-$\beta$ decay of $^{150}$Nd with the NEMO-3 detector,
R. Arnold et al.,
Phys.Rev.Lett. 119 (2017) 041801,arXiv:1705.08847.
[NEMO-3:2017gmi]
Searches for Double Beta Decay of $^{134}\text{Xe}$ with EXO-200,
J.B. Albert et al.(EXO-200),
Phys.Rev. D96 (2017) 092001,arXiv:1704.05042.
[EXO-200:2017vqi]
The first result on 76Ge neutrinoless double beta decay from CDEX-1 experiment,
Li Wang et al.(CDEX),
Sci.China Phys.Mech.Astron. 60 (2017) 071011,arXiv:1703.01877.
[CDEX:2017pgl]
Measurement of the $2\nu\beta\beta$ Decay Half-Life and Search for the $0\nu\beta\beta$ Decay of $^{116}$Cd with the NEMO-3 Detector,
R. Arnold et al.(NEMO-3),
Phys.Rev.D 95 (2017) 012007,arXiv:1610.03226.
[NEMO-3:2016zfx]
Measurement of the 2$\nu\beta\beta$ decay half-life of $^{150}$Nd and a search for 0$\nu\beta\beta$ decay processes with the full exposure from the NEMO-3 detector,
R. Arnold et al.(NEMO-3),
Phys.Rev.D 94 (2016) 072003,arXiv:1606.08494.
[NEMO-3:2016qxo]
Search for Majorana Neutrinos near the Inverted Mass Hierarchy region with KamLAND-Zen,
A. Gando et al.(KamLAND-Zen),
Phys. Rev. Lett. 117 (2016) 082503,arXiv:1605.02889.
[KamLAND-Zen:2016pfg]
Limit on the Radiative Neutrinoless Double Electron Capture of $^{36}$Ar from GERDA Phase I,
M. Agostini et al.(GERDA),
Eur.Phys.J. C76 (2016) 652,arXiv:1605.01756.
[GERDA:2016fzn]
Measurement of the Double-Beta Decay Half-Life and Search for the Neutrinoless Double-Beta Decay of $^{48}{\rm Ca}$ with the NEMO-3 Detector,
R. Arnold et al.(NEMO-3),
Phys. Rev. D93 (2016) 112008,arXiv:1604.01710.
[NEMO-3:2016mvr]
Analysis Techniques for the Evaluation of the Neutrinoless Double-Beta Decay Lifetime in $^{130}$Te with CUORE-0,
C. Alduino et al.(CUORE),
Phys. Rev. C93 (2016) 045503,arXiv:1601.01334.
[CUORE:2016acf]
Results of a search for neutrinoless double-beta decay using the COBRA demonstrator,
Joachim Ebert et al.,
Phys. Rev. C94 (2016) 024603,arXiv:1509.04113.
[Ebert:2015rda]
The COBRA demonstrator at the LNGS underground laboratory,
J. Ebert et al.(COBRA),
Nucl. Instrum. Meth. A807 (2016) 114-120,arXiv:1507.08177.
[COBRA:2015agm]
A search for double-electron capture in 74Se using coincidence/anticoincidence gamma-ray spectrometry,
M. Jeskovsky et al.,
Nucl. Instrum. Meth. A795 (2015) 268,arXiv:1507.02200.
[Jeskovsky:2015jia]
Result of the search for neutrinoless double-$\beta$ decay in $^{100}$Mo with the NEMO-3 experiment,
R. Arnold et al.(NEMO-3),
Phys. Rev. D92 (2015) 072011,arXiv:1506.05825.
[NEMO-3:2015jgm]
Search for Neutrinoless Double-Beta Decay of $^{130}$Te with CUORE-0,
K. Alfonso et al.(CUORE),
Phys. Rev. Lett. 115 (2015) 102502,arXiv:1504.02454.
[CUORE:2015hsf]
Search for Majoron-emitting modes of double-beta decay of $^{136}$Xe with EXO-200,
J.B. Albert et al.(EXO-200),
Phys. Rev. D90 (2014) 092004,arXiv:1409.6829.
[EXO-200:2014vam]
Search for Majorana neutrinos with the first two years of EXO-200 data,
J.B. Albert et al.(EXO-200),
Nature 510 (2014) 229-234,arXiv:1402.6956.
[EXO-200:2014ofj]
Search for Neutrinoless Double-Beta Decay of $^{100}$Mo with the NEMO-3 Detector,
R. Arnold et al.(NEMO-3),
Phys. Rev. D89 (2014) 111101,arXiv:1311.5695.
[NEMO-3:2013pwo]
New determination of double-beta-decay properties in 48Ca: high-precision Q-value measurement and improved nuclear matrix element calculations,
A. A. Kwiatkowski et al.,
Phys. Rev. C89 (2014) 045502,arXiv:1308.3815.
[Kwiatkowski:2013xeq]
Why is the Conclusion of the GERDA Experiment not Justified ?,
Hans Volker Klapdor-Kleingrothaus, Irina V. Krivosheina, Sergey N. Karpov,
Phys.Part.Nucl.Lett. 10 (2013) 704-709,arXiv:1308.2524.
[KlapdorKleingrothaus:2013cja]
Results on neutrinoless double beta decay of 76Ge from GERDA Phase I,
M. Agostini et al.(GERDA),
Phys. Rev. Lett. 111 (2013) 122503,arXiv:1307.4720.
[GERDA:2013vls]
Limit on Neutrinoless betabeta Decay of Xe-136 from the First Phase of KamLAND-Zen and Comparison with the Positive Claim in Ge-76,
A. Gando et al.(KamLAND-Zen),
Phys. Rev. Lett. 110 (2013) 062502,arXiv:1211.3863.
[KamLAND-Zen:2012mmx]
Limits on Majoron-Emitting Double-Beta Decays of Xe-136 in KamLAND-Zen,
A. Gando et al.(KamLAND-Zen),
Phys. Rev. C86 (2012) 021601,arXiv:1205.6372.
[KamLAND-Zen:2012uen]
Search for Neutrinoless Double-Beta Decay in $^{136}$Xe with EXO-200,
M. Auger et al.(EXO),
Phys. Rev. Lett. 109 (2012) 032505,arXiv:1205.5608.
[EXO-200:2012pdt]
Measurement of the Double-Beta Decay Half-life of $^{136}$Xe in KamLAND-Zen,
KamLAND-Zen(KamLAND-Zen),
Phys. Rev. C85 (2012) 045504,arXiv:1201.4664.
[KamLAND-Zen:2012vpv]
Search for beta plus/EC double beta decay of 120Te,
E. Andreotti et al.(CUORICINO),
Astropart. Phys. 34 (2011) 643-648,arXiv:1011.4811.
[Andreotti:2010nn]
Search for beta+EC and ECEC processes in Sn-112,
A.S. Barabash, Ph. Hubert, A. Nachab, S.I. Konovalov, V. Umatov,
Phys. Rev. C80 (2009) 035501,arXiv:0909.1177.
[Barabash:2009ja]
Search for double-beta decays of Ru-96 and Ru-104 by ultra-low background HPGe gamma spectrometry,
P. Belli, R. Bernabei, F. Cappella, R. Cerulli, F.A. Danevich et al.,
Eur.Phys.J. A42 (2009) 171-177. [Belli:2009zz]
First limits on neutrinoless resonant 2epsilon captures in Ce-136 and new limits for other 2beta processes in Ce-136 and Ce-138 isotopes,
P. Belli, R. Bernabei, S. d'Angelo, F. Cappella, R. Cerulli et al.,
Nucl. Phys. A824 (2009) 101-114. [Belli:2009zza]
Measurement of the Double Beta Decay Half-life of $^{150}$Nd and Search for Neutrinoless Decay Modes with the NEMO-3 Detector,
J. Argyriades(NEMO),
Phys. Rev. C80 (2009) 032501,arXiv:0810.0248.
[NEMO:2008kpp]
Search for beta+ EC and ECEC processes in Sn-112 and beta- beta- decay of Sn-124 to the excited states of Te-124,
A.S. Barabash, Ph. Hubert, A. Nachab, S.I. Konovalov, I.A. Vanyushin et al.,
Nucl. Phys. A807 (2008) 269-281,arXiv:0804.3849.
[Barabash:2008wj]
A Search for double beta decays of tin isotopes with enhanced sensitivity,
J. Dawson, D. Degering, M. Kohler, R. Ramaswamy, C. Reeve et al.,
Phys. Rev. C78 (2008) 035503,arXiv:0804.1198.
[Dawson:2008kj]
Results from the CUORICINO neutrinoless double beta decay experiment,
C. Arnaboldi et al.(CUORICINO),
Phys. Rev. C78 (2008) 035502,arXiv:0802.3439. From the abstract:... an upper limit on the effective mass between 0.19 and 0.68 eV when analyzed with the many published nuclear structure calculations. In the context of these nuclear models, the values fall within the range corresponding to the claim of evidence of neutrinoless double beta decay by H.V. Klapdor-Kleingrothaus et al. [CUORICINO:2008jjc]
Double-electron capture on Sn-112 to the excited 1871 keV state in Cd-112: A possible alternative to double-beta decay,
M.F. Kidd, J.H. Esterline, W. Tornow,
Phys. Rev. C78 (2008) 035504. [Kidd:2008zz]
A Search for various double beta decay modes of tin isotopes,
J. Dawson, R. Ramaswamy, C. Reeve, J.R. Wilson, K. Zuber,
Nucl. Phys. A799 (2008) 167-180,arXiv:0709.4342.
[Dawson:2007re]
First results on double beta decay modes of Cd, Te and Zn isotopes with the COBRA experiment,
T. Bloxham et al.(COBRA),
Phys. Rev. C76 (2007) 025501,arXiv:0707.2756.
[COBRA:2007zty]
Limits on different Majoron decay modes of $^{100}\text{Mo}$ and $^{82}\text{Se}$ for neutrinoless double beta decays in the NEMO-3 experiment,
R. Arnold et al.(NEMO),
Nucl. Phys. A765 (2006) 483,arXiv:hep-ex/0601021.
[NEMO:2006uve]
The evidence for the observation of $0\nu\beta\beta$ decay: The identification of $0\nu\beta\beta$ events from the full spectra,
H. V. Klapdor-Kleingrothaus, I. V. Krivosheina,
Mod. Phys. Lett. A21 (2006) 1547-1566. From the abstract:Two different methods of pulse shape analysis have been used to select potential $0\nu\beta\beta$ events from the $\gamma$-background. Both methods lead to selections of events at $Q_{\beta\beta}$ with almost no $\gamma$-background. The observed line at $Q_{\beta\beta}$ is identified as a $0\nu\beta\beta$ signal. It has a confidence level of more than $6\sigma$. [Klapdor-Kleingrothaus:2006zcr]
First results of the search of neutrinoless double beta decay with the NEMO 3 detector,
R. Arnold et al.(NEMO),
Phys. Rev. Lett. 95 (2005) 182302,arXiv:hep-ex/0507083. From the abstract:After 389 effective days of data collection from February 2003 until September 2004 (Phase I), no evidence for neutrinoless double beta decay was found from ~7 kg of $^{100}\text{Mo}$ and ~1 kg of $^{82}\text{Se}$. The corresponding lower limits for the half-lives are $4.6 \times 10^{23}$ years for $^{100}\text{Mo}$ and $1.0 \times 10^{23}$ years for $^{82}\text{Se}$ (90% C.L.). Depending on the nuclear matrix elements calculation, limits for the effective Majorana neutrino mass are $\langle m\rangle < 0.7-2.8 \, \text{eV}$ for $^{100}\text{Mo}$ and $\langle m\rangle < 1.7-4.9 \, \text{eV}$ for $^{82}\text{Se}$. [NEMO:2005xxi]
Study of 2b-decay of Mo-100 and Se-82 using the NEMO3 detector,
NEMO Collaboration et al.(NEMO),
Jetp Lett. 80 (2004) 377,arXiv:hep-ex/0410021.
[NEMO:2004yad]
Search for neutrinoless double beta decay with enriched 76Ge in Gran Sasso 1990-2003,
H.V. Klapdor-Kleingrothaus, I.V. Krivosheina, A. Dietz, O. Chkvorets,
Phys. Lett. B586 (2004) 198-212,arXiv:hep-ph/0404088.
[Klapdor-Kleingrothaus:2004yzi]
On the possibility to search for $2\beta$ decay of initially unstable ($\alpha / \beta$ radioactive) nuclei,
V. I. Tretyak, F. A. Danevich, S. S. Nagorny, Yu. G. Zdesenko,
Europhys. Lett. 69 (2005) 41-47,arXiv:nucl-ex/0404016.
[Tretyak:2004ew]
Data acquisition and analysis of the 76Ge double beta experiment in Gran Sasso 1990-2003,
H.V. Klapdor-Kleingrothaus, A. Dietz, O. Chkvorez, I.V. Krivosheina,
Nucl. Instrum. Meth. A522 (2004) 371-406,arXiv:hep-ph/0403018. From the abstract:the confidence level for the neutrinoless signal has been improved. From the article:we confirm, with 4.2σ (99.9973% c.l.) probability, our claim from 2001 [Go], [Go], [Go], [Go], [Go] of first evidence for the neutrinoless double beta decay mode. ... Using the nuclear matrix element from Refs.[25-150], [25-151], we conclude from the half-life given above the effective mass $\langle m \rangle$ to be $\langle m \rangle = (0.2-0.6) \, \mathrm{eV}$ (99.73% c.l.) with the best value of 0.4 eV. ... Allowing conservatively for an uncertainty of the nuclear matrix element of ±50%, the range for the effective mass may widen to $\langle m \rangle = (0.1-0.9) \, \mathrm{eV}$ (99.73% c.l.). [Klapdor-Kleingrothaus:2004vvp]
From nuclear physics to physics beyond the standard model: first evidence for lepton number violation and the Majorana character of neutrinos,
H. V. Klapdor-Kleingrothaus,
Int. J. Mod. Phys. D13 (2004) 2107-2126.http://www.worldscinet.com/ijmpd/13/preserved-docs/1310/S0218271804006656.pdf.
[Klapdor-Kleingrothaus:2004bnz]
Search for neutrino-less double beta decay of Ca-48 by CaF-2 scintillator,
I. Ogawa, R. Hazama, H. Miyawaki, S. Shiomi, N. Suzuki et al.,
Nucl. Phys. A730 (2004) 215-223. [Ogawa:2004fy]
Measurement of the 214Bi spectrum in the energy region around the Q-value of 76Ge neutrinoless double-beta decay,
H.V. Klapdor-Kleingrothaus, O. Chkvorez, I.V. Krivosheina, C. Tomei,
Nucl. Instrum. Meth. A511 (2003) 335,arXiv:hep-ph/0309157.
[Klapdor-Kleingrothaus:2003glg]
Results of the experiment on investigation of Germanium-76 double beta decay. Experimental data of Heidelberg-Moscow collaboration November 1995 - August 2001,
A.M. Bakalyarov et al.(C03-06-23.1),
Phys. Part. Nucl. Lett. 2 (2005) 77,arXiv:hep-ex/0309016.
[Bakalyarov:2003jk]
Neutrinoless double beta decay: Status of evidence,
H. V. Klapdor-Kleingrothaus, A. Dietz, I. V. Krivosheina,
Found. Phys. 32 (2002) 1181-1223,arXiv:hep-ph/0302248.
[Klapdor-Kleingrothaus:2002ziq]
One Year of Evidence for Neutrinoless Double Beta Decay,
H.V. Klapdor-Kleingrothaus,
Proc.Indian Natl.Sci.Acad. 70A (2004) 95,arXiv:hep-ph/0302237.
[Klapdor-Kleingrothaus:2003rtc]
A Search for various Double Beta Decay Modes of Cd, Te and Zn Isotopes,
H. Kiel, D. Munstermann, K. Zuber,
Nucl. Phys. A723 (2003) 499,arXiv:nucl-ex/0301007.
[Kiel:2003sm]
Search for 2 beta decay of cadmium and tungsten isotopes: Final results of the Solotvina experiment,
Fedor A. Danevich, A. Sh. Georgadze, V. V. Kobychev, B. N. Kropivyansky, A. S. Nikolaiko et al.,
Phys. Rev. C68 (2003) 035501. [Danevich:2003ef]
Two-neutrino 2beta decay of Cd-116 and new half-life limits on 2beta decay of W-180 and W-186,
F. A. Danevich et al.,
Nucl. Phys. A717 (2003) 129-145. [Danevich:2003yj]
Reply to the comment on 'Evidence for neutrinoless double beta decay'. (Mod. Phys. Lett. A16 (2001) 2409),
H. L. Harney,
arXiv:hep-ph/0205293, 2002. [Harney:2001wb]
Reply to a comment of article 'Evidence for neutrinoless double beta decay',
H. V. Klapdor-Kleingrothaus,
arXiv:hep-ph/0205228, 2002. [Klapdor-Kleingrothaus:2002jbx]
The IGEX Ge-76 neutrinoless double-beta decay experiment: Prospects for next generation experiments,
C. E. Aalseth et al.(IGEX),
Phys. Rev. D65 (2002) 092007,arXiv:hep-ex/0202026. Comment:Lower bound for the neutrinoless double-beta decay half-life of 76Ge: T1/2 > 1.57 × 1025 y at 90% CL. The corresponding upper bound for the effective neutrino mass is <m> < 0.33-1.35 eV. This bound excludes part of the allowed range claimed in [Go]. (C.G.). [IGEX:2002bce]
Comment on 'Evidence for Neutrinoless Double Beta Decay',
C. E. Aalseth et al.,
Mod. Phys. Lett. A17 (2002) 1475-1478,arXiv:hep-ex/0202018. Comment:Critics of prominent members of the Double Beta Decay community to the claim in [Go]. (C.G.). [Aalseth:2002dt]
Evidence for Neutrinoless Double Beta Decay,
H. V. Klapdor-Kleingrothaus, A. Dietz, H. L. Harney, I. V. Krivosheina,
Mod. Phys. Lett. A16 (2001) 2409-2420,arXiv:hep-ph/0201231. Comment:Evidence in favor of the observation of neutrinoless double-beta decay of 76Ge is claimed, with T1/2 = (0.8-18.3) × 1025 y at 95% CL and best value T1/2 = 1.5 × 1025 y. The corresponding effective neutrino mass is <m> = 0.11-0.56 eV and best value <m> = 0.39 eV. (C.G.). [Klapdor-Kleingrothaus:2001oba]
Limits on Majoron emitting neutrinoless double-beta decay of Mo-100,
K. Fushimi, N. Kudomi, S. Yoshida, H. Ejiri, K. Hayashi et al.,
Phys.Lett. B531 (2002) 190-194. [Fushimi:2002sc]
First evidence for neutrinoless double beta decay,
H. V. Klapdor-Kleingrothaus, A. Dietz, I. V. Krivosheina,
Part. Nucl. Lett. 110 (2002) 57-79. [Klapdor-Kleingrothaus:2002sfd]
Has neutrinoless double beta decay of Ge-76 been really observed?,
Yu. G. Zdesenko, F. A. Danevich, V. I. Tretyak,
Phys. Lett. B546 (2002) 206-215. [Zdesenko:2002kz]
Limits on the Majorana neutrino mass and right-handed weak currents by neutrinoless double beta decay of Mo-100,
H. Ejiri, K. Fushimi, K. Hayashi, T. Kishimoto, N. Kudomi et al.,
Phys. Rev. C63 (2001) 065501. [Ejiri:2001fx]
Latest results from the HEIDELBERG-MOSCOW double beta decay experiment,
H. V. Klapdor-Kleingrothaus et al.,
Eur. Phys. J. A12 (2001) 147-154. Comment:Lower bound for the neutrinoless double-beta decay half-life of 76Ge: T1/2 > 1.9 × 1025 y at 90% CL. The corresponding upper bound for the effective neutrino mass is <m> < 0.35 eV. (C.G.). [KlapdorKleingrothaus:2001yx]
Evidence of the double beta decay of zirconium-96 measured in 1.8 X 109 year-old zircons,
Michael E. Wieser, John R. De Laeter,
Phys. Rev. C64 (2001) 024308. [Wieser:2001ud]
Quest for double beta decay of Gd-160 and Ce isotopes,
F. A. Danevich, V. V. Kobychev, O. A. Ponkratenko, V. I. Tretyak, Yu. G. Zdesenko,
Nucl. Phys. A694 (2001) 375-391,arXiv:nucl-ex/0011020.
[Danevich:2000tk]
High sensitivity 2beta decay study of Cd-116 and Mo-100 with the BOREXINO counting test facility (CAMEO project),
G. Bellini et al.,
Eur. Phys. J. C19 (2001) 43-55,arXiv:nucl-ex/0007012.
[Bellini:2000hp]
New results of Cd-116 double beta decay study with Cd- 116_WO-4 scintillators,
F. A. Danevich et al.,
Phys. Rev. C62 (2000) 045501,arXiv:nucl-ex/0003001.
[Danevich:2000cf]
High sensitivity quest for Majorana neutrino mass with the BOREXINO counting test facility,
G. Bellini et al.,
Phys. Lett. B493 (2000) 216-228. [Bellini:2000uf]
Search for double beta decay of Ca-48 in the TGV experiment,
V.B. Brudanin, N.I. Rukhadze, C. Briancon, V.G. Egorov, V.E. Kovalenko et al.,
Phys.Lett. B495 (2000) 63-68. [Brudanin:2000in]
Double-beta decay of Ca-48 in the TGV experiment,
V.B. Brudanin, N.I. Rukhadze, C. Briancon, V.G. Egorov, V.E. Kovalenko et al.,
Phys.Atom.Nucl. 63 (2000) 1218-1221. [Brudanin:2000ub]
Limits on different Majoron decay modes of Mo-100, Cd-116, Se-82 and Zr-96 for neutrinoless double beta decays in the NEMO-2 experiment,
D. Dassie et al.,
Nucl. Phys. A678 (2000) 341-352. CERN Library Record. [Dassie:2000uw]
Results of a search for the two neutrino double beta decay of Xe-136 with proportional counters,
Ju. M. Gavriljuk, V. V. Kuzminov, N. Ya. Osetrova, S. S. Ratkevich,
Phys. Rev. C61 (2000) 035501. [Gavriljuk:2000nh]
Double beta decays of Mo-100 and Nd-150,
Asoka S. De Silva, M.K. Moe, M.A. Nelson, M.A. Vient,
Phys. Rev. C56 (1997) 2451-2467,arXiv:nucl-ex/9706005.
[DeSilva:1997cp]
Limits on neutrinoless double beta decay of Mo-100,
H. Ejiri, K. Fushimi, K. Hayashi, R. Hazama, T. Kishimoto et al.,
Nucl. Phys. A611 (1996) 85-95. [Ejiri:1996fs]
Final report on the search for neutrinoless double beta decay of Ge-76 from the Gotthard underground experiment,
D. Reusser et al.,
Phys. Rev. D45 (1992) 2548-2551. [Reusser:1991vx]
Two neutrino double beta decay of Mo-100 with ELEGANTS-IV,
T. Watanabe, H. Ejiri, K. Okada, N. Kamikubota, H. Sano et al.,
J. Phys. G17 (1991) S217-S220. [Watanabe:1991vg]
Search for two beta decay of $^{116}$Cd with the help of a $^{116}$CdWO$_{4}$ scintillator,
Fedor A. Danevich, Yu.G. Zdesenko, A.S. Nikolaiko, V.I. Tretyak,
JETP Lett. 49 (1989) 476-479. [Danevich:1989xh]
New results from the CUORE experiment,
A. Giachero et al.(CUORE),
PoS ICHEP2020 (2021) 133,arXiv:2011.09295.
40th International Conference on High Energy physics (ICHEP2020), July 28 - August 6, 2020, Prague, Czech Republic. [CUORE:2020ymk]
Recent Results of the Majorana Demonstrator Experiment,
J.M.Lopez-Castano(Majorana),
AIP Conf.Proc. 2165 (2019) 020018,arXiv:1909.07509.
MEDEX'19 proceedings. Since it was send to AIP, the last reference was published: S. I. Alvis et al. Phys. Rev. C 100, 025501. [Lopez-Castano:2019alf]
Rare Low-Energy Event Searches with the Majorana Demonstrator,
Gulden Othman(Majorana),
arXiv:1901.09130, 2019.14th Patras Workshop on Axions, WIMPs and WISPs, DESY in Hamburg, June 18 to 22, 2018. [Othman:2019ckj]
Recent results from the MAJORANA DEMONSTRATOR,
J. Myslik et al.,
PoS ICHEP2018 (2019) 635,arXiv:1812.08139.
39th International Conference on High Energy Physics (ICHEP2018), 4-11 July, 2018, Seoul, Korea. [Majorana:2018ofd]
Searching for neutrinoless double beta decay with GERDA,
M. Agostini et al.(GERDA),
Int.J.Mod.Phys.Conf.Ser. 46 (2018) 1860040,arXiv:1710.07776.
TAUP2017. [GERDA:2017wlm]
Status of the SuperNEMO 0$\nu\beta\beta$ experiment,
C. Patrick, F. Xie,
arXiv:1704.06670, 2017.NuPhys2016 (London, 12-14 December 2016). [Patrick:2017eso]
New limits on double beta processes in 106-Cd,
V.I. Tretyak et al.,
J. Phys. Conf. Ser. 718 (2016) 062062,arXiv:1601.05698.
TAUP 2015. [Tretyak:2016txf]
The search for 0nbb decay with the GERDA experiment: status and prospects,
B. Majorovits(GERDA),
AIP Conf. Proc. 1672 (2015) 110003,arXiv:1506.00415.
LRT 2015, Seattle. [Majorovits:2015vka]
Status of the CUORE and results from the CUORE-0 neutrinoless double beta decay experiments,
M. Sisti et al.(CUORE),
Nucl.Part.Phys.Proc. 273-275 (2016) 1719-1725,arXiv:1502.03653.
ICHEP 2014, Valencia (Spain) 2-9 July 2014. [CUORE:2015dfx]
CUORE-0 results and prospects for the CUORE experiment,
D.R. Artusa et al.(CUORE),
AIP Conf. Proc. 1666 (2015) 170001,arXiv:1502.02576.
Neutrino 2014, 2-7 June 2014, Boston, Massachusetts, USA. [CUORE:2015axb]
Results from KamLAND-Zen,
K. Asakura et al.(KamLAND-Zen),
AIP Conf. Proc. 1666 (2015) 170003,arXiv:1409.0077.
XXVI Conference on Neutrino Physics and Astrophysics (Neutrino 2014). [KamLAND-Zen:2014hhc]
CUORE and beyond: bolometric techniques to explore inverted neutrino mass hierarchy,
D. R. Artusa et al.,
Phys.Procedia 61 (2015) 241-250,arXiv:1407.1094.
TAUP 2013. [Artusa:2014bka]
Improved limits on $\beta^{+}$EC and ECEC processes in $^{112}Sn$,
A.S. Barabash, Ph. Hubert, A. Nachab, S.I. Konovalov, V. Umatov,
Nucl. Phys. Proc. Suppl. 229-232 (2012) 474. [Barabash:2012iwa]
Search for double beta decay of Cd-106 in TGV-2 experiment,
N.I. Rukhadze, Ch. Briancon, V.B. Brudanin, P. Cermak, V.G. Egorov et al.,
J. Phys. Conf. Ser. 203 (2010) 012072. [Rukhadze:2010zz]
Cryogenic Double Beta Decay Experiments: CUORE and CUORICINO,
Reina Maruyama, for the CUORE Collaboration(CUORE),
Nucl. Phys. Proc. Suppl. 221 (2011) 174-178,arXiv:0809.3840.
22nd International Conference on Neutrino Physics and Astrophysics (Neutrino 2006), Santa Fe, New Mexico, 13-19 Jun 2006. [Maruyama:2008ck]
Dark Matter Density in Disk Galaxies,
J. A. Sellwood,
IAU Symp. 254 (2009) 73,arXiv:0807.1973.
XXth Rencontres de Blois, 18th - 23rd May 2008, Blois (France). [Sellwood:2008bd]
Results from the NEMO 3 experiment,
Ladislav Vala(NEMO),
arXiv:0710.5604, 2007.10th ICATPP Conference (Como, Italy, 8 - 12 October 2007). [Vala:2007kj]
Search for Neutrinoless Double Beta Decay with NEMO 3 and SuperNEMO,
Stefan Soldner-Rembold(NEMO 3),
J. Phys. Conf. Ser. 110 (2008) 082019,arXiv:0710.4156.
2007 Europhysics Conference on High Energy Physics, in Manchester, England, 19-25 July 2007. [Soldner-Rembold:2007rmw]
Results on Dark Matter and beta beta decay modes by DAMA at Gran Sasso,
R. Bernabei,
arXiv:0704.3543, 2007.Neutrinoless Double Beta Decay (NDBD07), Ahmedabad (India), February 2007. [Bernabei:2007bx]
Search for beta+ EC and ECEC processes in Se-74,
A.S. Barabash, Ph. Hubert, A. Nachab, V. Umatov,
Nucl. Phys. A785 (2007) 371-380,arXiv:hep-ex/0610046.
[Barabash:2006qx]
NEMO-3 double beta decay experiment: lastest results,
A.S. Barabash,
Conf.Proc. C060726 (2006) 276-279,arXiv:hep-ex/0610025.
XXXIII International Conference on High Energy Physics (Moscow, July 26 - August 02, 2006). [Barabash:2006cb]
NEMO-3 and SuperNEMO double beta decay experiments,
A. S. Barabash et al.(NEMO),
J. Phys. Conf. Ser. 39 (2006) 347-349,arXiv:hep-ex/0602011.
TAUP 2005 (Zaragoza, Spain, September 10-14 2005). [Barabash:2006mr]
Lessons after 3 years of running GENIUS-TF in Gran Sasso,
I. V. Krivosheina, H. V. Klapdor-Kleingrothaus(Heidelberg-Moscow and GENIUS),
Phys. Scripta T127 (2006) 52-53.2nd Scandanavian Neutrino Workshop (SNOW 2006), Stockholm, Sweden, 2-6 May 2006. [Krivosheina:2006zv]
First Evidence for Neutrinoless Double Beta Decay - and World Status of Double Beta Experiments,
Hans Volker Klapdor-Kleingrothaus,
arXiv:hep-ph/0512263, 2005.XI Int. Work. on Neutrino Telescopes, Febr. 22-25, 2005, Venice, Italy. [Klapdor-Kleingrothaus:2005jiv]
Search for neutrinoless double beta decay with the NEMO-3 detector : First results,
D. Lalanne,
arXiv:hep-ex/0509005, 2005.High Energy Physics ICHEP 2004. [Lalanne:2005ye]
Double beta decay of Cd-116. Final results of the Solotvina experiment and CAMEO project,
F.A. Danevich, P.G. Bizzeti, T.F. Fazzini, A. Sh. Georgadze, V.V. Kobychev et al.,
Nucl. Phys. Proc. Suppl. 138 (2005) 230-232. [Danevich:2005mr]
First evidence for neutrinoless double beta decay, with enriched Ge-76 in Gran Sasso 1990-2003,
H. V. Klapdor-Kleingrothaus,
Nucl. Phys. Proc. Suppl. 143 (2005) 229-232. [Klapdor-Kleingrothaus:2005hi]
Search for neutrinoless double beta decay with the NEMO-3 detector: first results,
Xavier Sarazin,
Nucl. Phys. Proc. Suppl. 143 (2005) 221,arXiv:hep-ex/0412012.
21st International Conference on Neutrino Physics and Astrophysics, (Neutrino 2004) 14-19 June 2004, College de France - Paris. [Sarazin:2004eu]
Status of Evidence for Neutrinoless Double Beta Decay, and the Future: GENIUS and GENIUS-TF,
H. V. Klapdor-Kleingrothaus,
arXiv:hep-ph/0307330, 2003.NOON 2003, Japan, Kanazawa, February 2003. [Klapdor-Kleingrothaus:2003enp]
To be or not to Be? - First Evidence for Neutrinoless Double Beta Decay,
H.V. Klapdor-Kleingrothaus,
Int. J. Mod. Phys. A18 (2003) 4113,arXiv:hep-ph/0303217.
International Conference 'Neutrinos and Implications for Physics Beyond the Standard Model', Oct. 11-13, 2002, Stony Brook, USA. [Klapdor-Kleingrothaus:2003ehn]
First Evidence for Neutrinoless Double Beta Decay,
H.V. Klapdor-Kleingrothaus,
Found. Phys. 33 (2003) 813,arXiv:hep-ph/0302234.
Zacatecas Forum in Physics 2002, 11-13 MAY, 2002, Zacatecas, Mexico. [Klapdor-Kleingrothaus:2003vje]
Search for Neutrino Mass and Dark Matter in Underground Experiments,
H.V. Klapdor-Kleingrothaus,
arXiv:hep-ph/0211033, 2002.International Sixth School 'Non-Accelerator Astroparticle Physics', ICTP, Trieste, Italy, 9-20 July 2001. [Klapdor-Kleingrothaus:2002cdj]
A Compact Dication Source for Ba$^{2+}$ Tagging and Heavy Metal Ion Sensor Development,
K. E. Navarro et al.(NEXT),
arXiv:2303.01522, 2023. [NEXT:2023qoy]
A Method to Load Tellurium in Liquid Scintillator for the Study of Neutrinoless Double Beta Decay,
D. J. Auty et al.,
Nucl.Instrum.Meth.A 1051 (2023) 168204,arXiv:2212.12444.
[Auty:2022lgh]
High resolution filtering and digitization system for cryogenic bolometric detectors,
Paolo Carniti, Claudio Gotti, Gianluigi Pessina,
Nucl.Instrum.Meth.A 1045 (2023) 167658,arXiv:2207.06284.
[Carniti:2022coa]
Identification and simulation of surface alpha events on passivated surfaces of germanium detectors and the influence of metalisation,
Iris Abt, Christopher Gooch, Felix Hagemann, Lukas Hauertmann, Xiang Liu, Oliver Schulz, Martin Schuster, Anna Julia Zsigmond,
Eur.Phys.J.C 82 (2022) 1119,arXiv:2206.15265.
[Abt:2022qub]
Xenon-Doped Liquid Argon TPCs as a Neutrinoless Double Beta Decay Platform,
A. Mastbaum, F. Psihas, J. Zennamo,
Phys.Rev.D 106 (2022) 092002,arXiv:2203.14700.
[Mastbaum:2022rhw]
The Ion Fluorescence Chamber (IFC): A new concept for directional dark matter and topologically imaging neutrinoless double beta decay searches,
B. J. P. Jones, F. W. Foss, J. A. Asaadi, E. D. Church, J. deLeon, E. Gramellini, O. H. Seidel, T. T. Vuong,
arXiv:2203.10198, 2022. [Jones:2022moh]
Slow-Fluor Scintillator for Low Energy Solar Neutrinos and Neutrinoless Double Beta Decay,
Jack Dunger, Edward J. Leming, Steven D. Biller,
Phys.Rev.D 105 (2022) 092006,arXiv:2203.01147.
[Dunger:2022gif]
Simultaneous scintillation light and charge readout of a pure argon filled Spherical Proportional Counter,
R. Bouet et al.,
Nucl.Instrum.Meth.A 1028 (2022) 166382,arXiv:2201.12621.
[Bouet:2022kav]
Ba${}^{2+}$ ion trapping by organic submonolayer: towards an ultra-low background neutrinoless double beta decay detector,
P. Herrero-Gomez et al.,
arXiv:2201.09099, 2022. [Herrero-Gomez:2022uci]
Identification of the anomalous fast bulk events in a p-type point contact germanium detector,
Renmingjie Li et al.,
Nucl.Sci.Tech. 33 (2022) 57,arXiv:2201.02961.
[Li:2022fho]
Surface characterization of p-type point contact germanium detectors,
F. Edzards, L. Hauertmann, I. Abt, C. Gooch, B. Lehnert, X. Liu, S. Mertens, D. C. Radford, O. Schulz, M. Willers,
Particles 4 (2021) 489-511,arXiv:2105.14487.
[Edzards:2021gmi]
Final results of CALDER: Kinetic inductance light detectors to search for rare events,
Laura Cardani, Nicola Casali, Ivan Colantoni, Angelo Cruciani, Sergio Di Domizio, Maria Martinez, Valerio Pettinacci, Giorgio Pettinari, Marco Vignati,
Eur.Phys.J.C 81 (2021) 636,arXiv:2104.06850.
[Cardani:2021iff]
Implication of the Temperature-Dependent Charge Barrier Height of Amorphous Germanium Contact Detector in Searching for Rare Event Physics,
R. Panth, W.-Z. Wei, D.-M. Mei, J. Liu, S. Bhattarai, H. Mei, M. Raut, P. Acharya, K. Kooi, G.-J. Wang,
Nucl.Instrum.Meth.A 1035 (2022) 166862,arXiv:2101.09322.
[Panth:2021lhw]
Modelling the shape of thermal pulses from low temperature detectors,
Irene Nutini, Carlo Bucci, Oliviero Cremonesi,
arXiv:2101.05029, 2021. [Nutini:2021cjh]
Improving the light collection efficiency of silicon photomultipliers through the use of metalenses,
A.A. Loya Villalpando, J. Martin-Albo, W.T. Chen, R. Guenette, C. Lego, J.S. Park, F. Capasso,
JINST 15 (2020) P11021,arXiv:2007.06678.
[Villalpando:2020tsc]
Development of low-background photomultiplier tubes for liquid xenon detectors,
K. Abe et al.(XMASS),
JINST 15 (2020) P09027,arXiv:2006.00922.
[XMASS:2020zzt]
Design of a Multiple-Reflection Time-of-Flight Mass-Spectrometer for Barium-tagging,
K. Murray, J. Dilling, R. Gornea, Y. Ito, T. Koffas, A.A. Kwiatkowski, Y. Lan, M.P. Reiter, V. Varentsov, T. Brunner,
Hyperfine Interact. 240 (2019) 97,arXiv:1910.01667.
[Murray:2019snw]
The DireXeno Experiment - Measuring Correlated Scintillation Signatures in Liquid Xenon,
R. Itay, P. Z. Szabo, G. Koltman, M.M. Devi, M. Shutman, H. Landsman, R. Budnik,
JINST 15 (2020) T06001,arXiv:1909.08197.
[Itay:2019ggq]
Impact of Charge Trapping on the Energy Resolution of Ge Detectors for Rare-Event Physics Searches,
D.-M. Mei et al.,
J.Phys. G47 (2020) 105106,arXiv:1909.05806.
[Mei:2019usy]
Deep learning based pulse shape discrimination for germanium detectors,
P. Holl, L. Hauertmann, B. Majorovits, O. Schulz, M. Schuster, A.J. Zsigmond,
Eur.Phys.J. C79 (2019) 450,arXiv:1903.01462.
[Holl:2019xtt]
Mobility and Clustering of Barium Ions and Dications in High Pressure Xenon Gas,
E. Bainglass, B.J.P. Jones, F. W. Foss Jr, M. N. Huda, D. R. Nygren,
Phys.Rev. A97 (2018) 062509,arXiv:1804.01169.
[Bainglass:2018odn]
Pulse Shapes in High Purity Germanium Point Contact Detectors with Low Net Impurity Concentration,
N. Abgrall et al.,
Nucl.Instrum.Meth. A921 (2019) 81-88,arXiv:1803.06999.
[Mertens:2018xmv]
Low-Temperature Relative Reflectivity Measurements of Reflective and Scintillating Foils used in Rare Event Searches,
A. Langenkamper et al.,
Nucl.Instrum.Meth. A884 (2018) 40-44,arXiv:1703.07152.
[Langenkamper:2017icg]
Production of 82Se enriched Zinc Selenide (ZnSe) crystals for the study of neutrinoless double beta decay,
I. Dafinei et al.,
J.Cryst.Growth 475 (2017) 158-170,arXiv:1702.05877.
[Dafinei:2017xpc]
Electroluminescence collection cell as a readout for a high energy resolution Xenon gas TPC,
S. Ban et al.,
Nucl.Instrum.Meth. A875 (2017) 185-192,arXiv:1701.03931.
[Ban:2017nnm]
Feasibility study of SiGHT: a novel ultra low background photosensor for low temperature operation,
Yi Wang et al.,
JINST 12 (2017) P02019,arXiv:1611.04713.
[Wang:2016xac]
Enriched TeO$_2$ bolometers with active particle discrimination: towards the CUPID experiment,
D.R. Artusa et al.,
Phys.Lett. B767 (2017) 321-329,arXiv:1610.03513.
[Artusa:2016mat]
Separating Double-Beta Decay Events from Solar Neutrino Interactions in a Kiloton-Scale Liquid Scintillator Detector By Fast Timing,
Andrey Elagin et al.,
Nucl.Instrum.Meth.A 849 (2017) 102-111,arXiv:1609.09865.
[Elagin:2016zgp]
First test of an enriched $^{116}$CdWO$_4$ scintillating bolometer for neutrinoless double-beta-decay searches,
F.A. Danevich et al.,
Eur.Phys.J. C76 (2016) 487,arXiv:1606.07806.
[Barabash:2016zmb]
Cerenkov light identification with Si low-temperature detectors with Neganov-Luke effect-enhanced sensitivity,
L. Gironi et al.,
Phys. Rev. C94 (2016) 054608,arXiv:1603.08049.
[Gironi:2016nae]
Characterization of a broad-energy germanium detector using an assembled collimation device at CJPL,
Zhi Zeng et al.,
arXiv:1603.01782, 2016. [Zeng:2016mef]
The 3-D topological signatures and a new discrimination method for single-electron events and $0\nu\beta\beta$ events in CZT: A Monte Carlo simulation study,
Ming Zeng et al.,
Nucl.Instrum.Meth. A858 (2017) 44-52,arXiv:1601.06300.
[Zeng:2016rcz]
Background suppression in massive TeO$_2$ bolometers with Neganov-Luke amplified light detectors,
N. Casali et al.,
J.Low.Temp.Phys. 184 (2016) 286-291,arXiv:1510.03266.
[Pattavina:2015jxe]
Energy resolution and efficiency of phonon-mediated KIDs for light detection,
L. Cardani et al.,
Appl. Phys. Lett. 107 (2015) 093508,arXiv:1505.04666.
[Cardani:2015tqa]
Aboveground test of an advanced Li$_2$MoO$_4$ scintillating bolometer to search for neutrinoless double beta decay of $^{100}$Mo,
T.B. Bekker et al.,
Astropart. Phys. 72 (2016) 38-45,arXiv:1410.6933.
[Bekker:2014tfa]
Simulation studies for Tin Bolometer Array for Neutrinoless Double Beta Decay,
V. Singh, N. Dokania, S. Mathimalar, V. Nanal, R.G. Pillay,
arXiv:1408.4520, 2014. [Singh:2014fia]
A flexible scintillation light apparatus for rare event searches,
Valter Bonvicini et al.,
Eur.Phys.J. C74 (2014) 3151,arXiv:1407.4608.
[Bonvicini:2014aca]
3D Particle Track Reconstrution in a Single Layer Cadmium-Telluride Hybrid Active Pixel Detector,
Mykhaylo Filipenko, Thomas Gleixner, Gisela Anton, Thilo Michel,
Eur.Phys.J. C74 (2014) 3013,arXiv:1403.5935.
[Filipenko:2014zta]
Thermal Model and Optimization of a Large Crystal Detector using a Metallic Magnetic Calorimeter,
G.B. Kim et al.,
J. Low. Temp. Phys. 176 (2014) 637-643,arXiv:1402.2334.
[Kim:2014kwa]
Optimization of light collection from crystal scintillators for cryogenic experiments,
F.A. Danevich et al.,
Nucl.Instrum.Meth. A744 (2014) 41-47,arXiv:1402.2241.
[Danevich:2014opa]
Characterization and modeling of a low background HPGe detector,
N. Dokania et al.,
Nucl.Instrum.Meth. A745 (2014) 119-127,arXiv:1311.4779.
[Dokania:2013uma]
Pattern recognition techniques to reduce backgrounds in the search for the 136Xe double beta decay with gaseous TPCs,
F.J. Iguaz et al.,
AIP Conf.Proc. 1549 (2013) 50,arXiv:1306.3446.
Proceedings of the Low Radioactivity Techniques Conference (LRT2013), Gran Sasso (Italy). To be published in AIP Conf. Proc. [Iguaz:2013pga]
Pattern recognition of $^{136}$Xe double beta decay events and background discrimination in a high pressure Xenon TPC,
S Cebrian et al.,
J. Phys. G40 (2013) 125203,arXiv:1306.3067.
[Cebrian:2013nct]
Improved data analysis of the internal background measurements of 40Ca100MoO4 scintillation crystals,
Nikita Khanbekov et al.,
arXiv:1304.4581, 2013. [Khanbekov:2013sja]
Noise correlation and decorrelation in arrays of bolometric detectors,
C. Mancini-Terracciano, M. Vignati,
JINST JINST7 (2012) P06013,arXiv:1203.1782.
[Mancini-Terracciano:2012cyg]
Optimizing the energy threshold of light detectors coupled to luminescent bolometers,
G. Piperno, S. Pirro, M. Vignati,
JINST 6 (2011) P10005,arXiv:1107.5679.
[Piperno:2011fp]
Discrimination of alpha and beta/gamma interactions in a TeO$_2$ bolometer,
J.W. Beeman et al.,
Astropart. Phys. 35 (2012) 558,arXiv:1106.6286.
[Beeman:2011yc]
GELATIO: a general framework for modular digital analysis of high-purity Ge detector signals,
M. Agostini, L. Pandola, P. Zavarise, O. Volynets,
JINST 6 (2011) P08013,arXiv:1106.1780.
[Agostini:2011xe]
Pulse shape discrimination studies with a Broad-Energy Germanium detector for signal identification and background suppression in the GERDA double beta decay experiment,
Dusan Budjas, Marik Barnabe Heider, Oleg Chkvorets, Nikita Khanbekov, Stefan Schonert,
JINST 4 (2009) P10007,arXiv:0909.4044.
[Budjas:2009zu]
Development of tin-loaded liquid scintillator for the double beta decay experiment,
M. J. Hwang et al.(KIMS),
Nucl. Instrum. Meth. A570 (2007) 454-458. [KIMS:2007syj]
Pulse shape analysis in segmented detectors as a technique for background reduction in Ge double-beta decay experiments,
S. R. Elliott et al.,
Nucl. Instrum. Meth. A558 (2006) 504,arXiv:nucl-ex/0509026.
[Elliott:2005at]
Progress toward Barium Tagging in High Pressure Xenon Gas with Single Molecule Fluorescence Imaging,
N. Byrnes, F. W. Foss Jr., B.J.P Jones, A.D. McDonald, D.R. Nygren, P. Thapa, A. Trinidad,
J.Phys.Conf.Ser. 1312 (2019) 012001,arXiv:1901.03369.
9th Symposium on Large TPCs for Rare Event Detection in Paris, France. [Byrnes:2019jxr]
On the possibility of positive-ion detection in gaseous TPCs and its potential use for neutrinoless double beta decay searches in Xe-136,
Lior Arazi,
J.Phys.Conf.Ser. 1029 (2018) 012004,arXiv:1703.10491.
8th Symposium on Large TPCs for Low-Energy Rare Event Detection. [Arazi:2017exp]
The potential of discrimination methods in a high pressure xenon TPC for the search of the neutrinoless double-beta decay of Xe-136,
F.J. Iguaz et al.,
J.Phys.Conf.Ser. 888 (2017) 012078,arXiv:1609.09735.
XXVII International Conference on Neutrino Physics and Astrophysics (Neutrino 2016), London (U.K.), 4-9 July 2016. [Iguaz:2016hlu]
Measurement of scintillation and ionization yield with high-pressure gaseous mixtures of Xe and TMA for improved neutrinoless double beta decay and dark matter searches,
Y. Nakajima et al.,
JINST 11 (2016) C03041,arXiv:1511.02257.
LIght Detection In Noble Elements (LIDINE 2015). [Nakajima:2015meb]
Emulation workbench for position sensitive gaseous scintillation detectors,
L. Pereira, L. M. S. Margato, A. Morozov, V. Solovov, F. A. F. Fraga,
JINST 10 (2015) C12010,arXiv:1510.03792.
IWORID2015 (Hamburg). [Pereira:2015dpa]
Background radioactivity of construction materials, raw substance and ready-made CaMoO4 crystals,
O.A. Busanov et al.,
EPJ Web Conf. 65 (2014) 03002,arXiv:1312.1041.
Workshop on Radiopure Scintillators RPSCINT 2013, 17-20.09.2013, Kyiv, Ukraine. [Busanov:2013jca]
Solar Neutrino Background in Neutrinoless double beta-decay searching for experiments,
Alexander A. Klimenko,
arXiv:hep-ph/0407156, 2004.LIV International Meeting on Nuclear Spectroscopy and Nuclear Structure 'NUCLEUS-2004' June 22-25, 2004, Belgorod, Russia. [Klimenko:2004kc]
Measurement of the ${}^{136}$Xe two-neutrino double beta decay half-life via direct background subtraction in NEXT,
P. Novella et al.(NEXT),
Phys.Rev.C 105 (2022) 055501,arXiv:2111.11091.
[NEXT:2021dqj]
Search for Periodic Modulations of the Rate of Double-Beta Decay of $^{100}$Mo in the NEMO-3 Detector,
R. Arnold et al.(NEMO-3),
arXiv:2011.07657, 2020. [1830523]
Precision measurement of the $^{136}$Xe two-neutrino $\beta\beta$ spectrum in KamLAND-Zen and its impact on the quenching of nuclear matrix elements,
A. Gando et al.(KamLAND-Zen),
Phys.Rev.Lett. 122 (2019) 192501,arXiv:1901.03871.
[KamLAND-Zen:2019imh]
2K(2\nu)-Capture in Xe-124: Results of Data Processing for an Exposure of 37.7 kg x day,
Yu.M.Gavriljuk et al.,
Phys.Part.Nucl. 49 (2018) 563-568,arXiv:1806.03060.
[Gavriljuk:2018pez]
Improved search for two-neutrino double electron capture on $^{124}$Xe and $^{126}$Xe using particle identification in XMASS-I,
K. Abe et al.(XMASS),
PTEP 2018 (2018) 053D03,arXiv:1801.03251.
[XMASS:2018txy]
Search for Two-Neutrino Double Electron Capture of $^{124}$Xe with XENON100,
E. Aprile et al.(XENON),
Phys.Rev. C95 (2017) 024605,arXiv:1609.03354.
[XENON:2016jyx]
Search for $2\beta$ decay of $^{106}$Cd with enriched $^{106}$CdWO$_4$ crystal scintillator in coincidence with four HPGe detectors,
P. Belli et al.,
Phys. Rev. C93 (2016) 045502,arXiv:1603.06363.
[Belli:2016yof]
Search for $2\nu\beta\beta$ decay of $^{136}$Xe to the 0$_1^+$ excited state of $^{136}$Ba with EXO-200,
J.B. Albert et al.(EXO-200),
Phys.Rev.C 93 (2016) 035501,arXiv:1511.04770.
[EXO-200:2015koy]
Search for two-neutrino double electron capture on $^{124}$Xe with the XMASS-I detector,
K. Abe et al.(XMASS),
Phys.Lett. B759 (2016) 64-68,arXiv:1510.00754.
[XMASS:2015ljn]
$2\nu\beta\beta$ decay of $^{76}$Ge into excited states with GERDA Phase I,
M. Agostini et al.,
J. Phys. G42 (2015) 115201,arXiv:1506.03120.
[GERDA:2015naf]
Results on $\beta\beta$ decay with emission of two neutrinos or Majorons in $^{76}$Ge from GERDA Phase I,
M. Agostini et al.,
Eur. Phys. J. C75 (2015) 416,arXiv:1501.02345.
[Agostini:2015nwa]
Two-neutrino double-beta decay of $^{150}$Nd to excited final states in $^{150}$Sm,
Mary F. Kidd, James H. Esterline, Sean W. Finch, Werner Tornow,
Phys. Rev. C90 (2014) 055501,arXiv:1411.3755.
[Kidd:2014hra]
First results of the experiment to search for double beta decay of 106Cd with 106CdWO4 crystal scintillator in coincidence with four crystals HPGe detector,
V.I. Tretyak, P. Belli, R. Bernabei, V.B. Brudanin, F. Cappella et al.,
EPJ Web Conf. 65 (2014) 01004,arXiv:1312.5773.
[Tretyak:2013zva]
First bolometric measurement of the two neutrino double beta decay of $^{100}$Mo with a ZnMoO$_4$ crystals array,
L. Cardani et al.,
J. Phys. G41 (2014) 075204,arXiv:1312.4680.
[Cardani:2013mja]
Search for 2\u03b2 decays of 96Ru and 104Ru by ultralow-background HPGe \u03b3 spectrometry at LNGS: Final results,
P. Belli, R. Bernabei, F. Cappella, R. Cerulli, F.A. Danevich et al.,
Phys. Rev. C87 (2013) 034607,arXiv:1302.7134.
[Belli:2013qja]
First search for double-beta decay of 184Os and 192Os,
P. Belli, R. Bernabei, F. Cappella, R. Cerulli, F.A. Danevich et al.,
Eur.Phys.J. A49 (2013) 24,arXiv:1301.3366.
[Belli:2013dy]
Measurement of the half-life of the two-neutrino double beta decay of Ge-76 with the Gerda experiment,
M. Agostini et al.(GERDA),
J. Phys. G40 (2013) 035110,arXiv:1212.3210.
[GERDA:2012huf]
Observation of Two-Neutrino Double-Beta Decay in Xe-136 with EXO-200,
N. Ackerman et al.(EXO-200),
Phys. Rev. Lett. 107 (2011) 212501,arXiv:1108.4193.
[EXO-200:2011xzf]
New Results for Double-Beta Decay of Mo-100 to Excited Final States of Ru-100 Using the TUNL-ITEP Apparatus,
M. F. Kidd, J. H. Esterline, W. Tornow, A. S. Barabash, V. I. Umatov,
Nucl. Phys. A821 (2009) 251-261,arXiv:0902.4418.
[Kidd:2009ai]
Measurement of double beta decay of 100Mo to excited states in the NEMO 3 experiment,
R. Arnold et al.(NEMO),
Nucl. Phys. A781 (2007) 209-226,arXiv:hep-ex/0609058.
[NEMO:2006smm]
Two-neutrino 2beta decay of Cd-116 and new half-life limits on 2beta decay of W-180 and W-186,
F. A. Danevich et al.,
Nucl. Phys. A717 (2003) 129-145. [Danevich:2003yj-2nu]
Search for beta- and beta- beta- decays of Ca-48,
A. Bakalyarov, A. Balysh, A. Barabash, C. Briancon, V. Brudanin et al.,
Nucl. Phys. A700 (2002) 17-24. [Bakalyarov:2002wf]
CUORE-0 background analysis and evaluation of $^{130}$Te $2\nu\beta\beta$ decay half-life,
Davide Chiesa,
arXiv:1610.04518, 2016.28th Rencontres de Blois, Particle Physics and Cosmology, Chateau Royal de Blois, May 29 - June 03, 2016. [Chiesa:2016pau]
Search for $2K(2\nu)$-capture of Xe-124,
Yu.M. Gavrilyuk et al.,
Phys.Part.Nucl. 48 (2017) 38-41,arXiv:1507.04520.
International Workshop on Prospects of Particle Physics: 'Neutrino Physics and Astrophysics' February 01 - Ferbuary 08, 2015, Valday, Russia. [Gavrilyuk:2015ada]
Search for $2{\beta}$ decay of 116Cd with the help of enriched 116CdWO4 crystal scintillators,
D.V. Poda, A.S. Barabash, P. Belli, R. Bernabei, F. Cappella et al.,
EJP Web Conf. 65 (2014) 01005,arXiv:1312.0743.
[Poda:2013ktq]
Search for Rare Nuclear Decays with HPGe Detectors at the STELLA Facility of the LNGS,
P. Belli, R. Bernabei, F. Cappella, R. Cerulli, F.A. Danevich et al.,
AIP Conf.Proc. 1572 (2013) 114-117,arXiv:1308.2494.
[Belli:2013qha]
Search for double beta decay of Cd-106 by using isotopically enriched CdWO-106(4) crystal scintillator,
P. Belli, R. Bernabei, R.S. Boiko, V.B. Brudanin, F. Cappella et al.,
J. Phys. Conf. Ser. 375 (2012) 042021. [Belli:2012gk]
Double beta experiments with the help of scintillation and HPGe detectors at Gran Sasso,
A. Barabash, P. Belli, R. Bernabei, R.S. Boiko, V.B. Brudanin et al.,
AIP Conf.Proc. 1417 (2011) 28-32. [Barabash:2011zz]
Search for $\beta^+$EC and ECEC processes in $^{74}$Se,
A.S. Barabash, Ph. Hubert, A. Nachab, V. Umatov,
Nucl. Phys. A785 (2007) 371-380,arXiv:hep-ex/0610046.
2-nd Symposium on 'Neutrino and Dark Matter in Nuclear Physics' (Paris, September 3-9, 2006). [Barabash:2006qx]
Determining $g_{A}/g_{V}$ with High Resolution Spectral Measurements Using an LiInSe$_2$ Bolometer,
A.F. Leder et al.,
Phys.Rev.Lett. 129 (2022) 232502,arXiv:2206.06559.
[Leder:2022beq]
On the resonant neutrinoless double-electron-capture decay of Ce-136,
V.S. Kolhinen, T. Eronen, D. Gorelov, J. Hakala, A. Jokinen et al.,
Phys.Lett. B697 (2011) 116-120. [Kolhinen:2011zz]
Double-beta decay Q values of Cd-116 and Te-130,
S. Rahaman, V.V. Elomaa, T. Eronen, J. Hakala, A. Jokinen et al.,
Phys.Lett. B703 (2011) 412-416. [Rahaman:2011zz]
Accurate Q value for the Se-74 double-electron-capture decay,
V.S. Kolhinen, V.V. Elomaa, T. Eronen, J. Hakala, A. Jokinen et al.,
Phys.Lett. B684 (2010) 17-21. [Kolhinen:2010zz]
Double-beta decay Q value of $^{150}$Nd,
V.S. Kolhinen, T. Eronen, D. Gorelov, J. Hakala, A. Jokinen et al.,
Phys. Rev. C82 (2010) 022501. [Kolhinen:2010zza]
Accurate Q Value for the Sn-112 Double-beta Decay and its Implication for the Search of the Neutrino Mass,
S. Rahaman, V.-V. Elomaa, T. Eronen, J. Hakala, A. Jokinen et al.,
Phys. Rev. Lett. 103 (2009) 042501. [Rahaman:2009zza]
Q value of the Mo-100 Double-Beta Decay,
S. Rahaman, V.-V. Elomaa, T. Eronen, J. Hakala, A. Jokinen et al.,
Phys.Lett. B662 (2008) 111-116,arXiv:0712.3337.
[Rahaman:2007ng]
Evaluation of cosmogenic production of $^{39}Ar$ and $^{42}Ar$ for rare-event physics using underground argon,
Chao Zhang, Dongming Mei,
Astropart.Phys. 142 (2022) 102733,arXiv:2202.06403.
[Zhang:2022dlg]
$^{210}$Pb measurements at the Andre E. Lalonde AMS Laboratory for the radioassay of materials used in rare event search detectors,
Carlos Vivo-Vilches, Benjamin Weiser, Xiaolei Zhao, Barbara B.A. Francisco, Razvan Gornea, William E. Kieser,
Nucl.Instrum.Meth.B 511 (2022) 64563,arXiv:2102.06776.
[Vivo-Vilches:2021lwr]
Mitigation of Backgrounds from Cosmogenic $^{137}$Xe in Xenon Gas Experiments using $^{3}$He Neutron Capture,
L. Rogers et al.,
J.Phys. G47 (2020) 075001,arXiv:2001.11147.
[NEXT:2020qup]
Space-Time Discriminant to Separate Double-Beta Decay from $^8$B Solar Neutrinos in Liquid Scintillator,
Runyu Jiang, Andrey Elagin,
arXiv:1902.06912, 2019. [Jiang:2019cnb]
Background Discrimination for Neutrinoless Double Beta Decay in Liquid Xenon Using Cherenkov Light,
Jason Philip Brodsky, Samuele Sangiorgio, Michael Heffner, Tyana Stiegler,
Nucl.Instrum.Meth. A922 (2019) 76-83,arXiv:1812.05694.
[Brodsky:2018abk]
Suppression of Cosmic Muon Spallation Backgrounds in Liquid Scintillator Detectors Using Convolutional Neural Networks,
A. Li, A. Elagin, S. Fraker, C. Grant, L. Winslow,
Nucl.Instrum.Meth. A947 (2019) 162604,arXiv:1812.02906.
[Li:2018rzw]
A large area detector for thermal neutron flux measurements at the KamLAND site,
Alexandre Kozlov, Dmitry Chernyak,
Nucl.Instrum.Meth. A903 (2018) 162-169,arXiv:1807.08529.
[Kozlov:2018nvs]
Neutron inelastic scattering measurements on $^{136}$Xe at $E_{n}$ = 0.7 to 100 MeV,
S. J. Daugherty, J. B. Albert, L. J. Kaufman, M. Devlin, N. Fotiades, R. O. Nelson, M. Krticka,
Phys.Rev. C98 (2018) 064606,arXiv:1807.05253.
[Daugherty:2018bts]
Study on cosmogenic activation in germanium detectors for future tonne-scale CDEX experiment,
J. L. Ma et al.,
Sci.China Phys.Mech.Astron. 62 (2019) 11011,arXiv:1802.09327.
[Ma:2018tdv]
Observation of annual modulation induced by $\gamma$ rays from ($\alpha$, $\gamma$) reactions in Soudan,
A. Tiwari, C. Zhang, D.-M. Mei, P. Cushman,
Phys.Rev. C96 (2017) 044609,arXiv:1706.00100.
[Tiwari:2017xnj]
Input Comparison of Radiogenic Neutron Estimates for Ultra-low Background Experiments,
J. Cooley et al.,
Nucl.Instrum.Meth. A888 (2018) 110-118,arXiv:1705.04736.
[Cooley:2017ocy]
Single Molecule Fluorescence Imaging as a Technique for Barium Tagging in Neutrinoless Double Beta Decay,
B. J. P. Jones, A. D. McDonald, D. R. Nygren,
JINST 11 (2016) P12011,arXiv:1609.04019.
[Jones:2016qiq]
Rejection of randomly coinciding events in Li$_2^{100}$MoO$_4$ scintillating bolometers using light detectors based on the Neganov-Luke effect,
D.M. Chernyak et al.,
Eur.Phys.J. C77 (2017) 3,arXiv:1606.02287.
[Chernyak:2016aps]
A Database for Storing the Results of Material Radio-purity Measurements,
J.C. Loach et al.,
Nucl.Instrum.Meth. A839 (2016) 6-11,arXiv:1604.06169.
[Loach:2016fsk]
Cosmogenic Activation of Materials Used in Rare Event Search Experiments,
C. Zhang, D.-M. Mei, V. A. Kudryavtsev, S. Fiorucci,
Astropart.Phys. 84 (2016) 62-69,arXiv:1603.00098.
[Zhang:2016rlz]
Improved background rejection in neutrinoless double beta decay experiments using a magnetic field in a high pressure xenon TPC,
J. Renner et al.,
JINST 10 (2015) P12020,arXiv:1509.01821.
[Renner:2015vea]
Cosmogenic-neutron activation of TeO2 and implications for neutrinoless double-beta decay experiments,
Barbara S. Wang et al.,
Phys. Rev. C92 (2015) 024620,arXiv:1503.02095.
[Wang:2015pxa]
Study of neutron-induced background and its impact on the search of 0$\nu\beta\beta$ decay in $\rm^{124}Sn$,
N. Dokania et al.,
JINST 9 (2014) P11002,arXiv:1408.4985.
[Dokania:2014oqa]
Low energy fast events from radon progenies at the surface of a CsI(Tl) scintillator,
S.C. Kim et al.,
Astropart. Phys. 35 (2012) 781-784,arXiv:1108.4353.
[Kim:2011je]
Study of the Production of Radioactive Isotopes through Cosmic Muon Spallation in KamLAND,
S. Abe et al.(KamLAND),
Phys. Rev. C81 (2010) 025807,arXiv:0907.0066.
[KamLAND:2009zwo]
The study of the thermal neutron flux in the deep underground laboratory DULB-4900,
Yu.M. Gavrilyuk et al.,
Phys.Part.Nucl. 48 (2017) 34-37,arXiv:1507.05488.
International Workshop on Prospects of Particle Physics: 'Neutrino Physics and Astrophysics' February 01 - Ferbuary 08, 2015, Valday, Russia. [Alekseenko:2015efe]
Studies on the Reduction of Radon Plate-Out,
M. Bruemmer, M. Nakib, R. Calkins, J. Cooley, S. Sekula,
AIP Conf. Proc. 1672 (2015) 140005,arXiv:1506.04050.
Low Radioactivity Techniques 2015. [Bruemmer:2015xma]
Light-neutrino exchange and long-distance contributions to $0\nu2\beta$ decays: an exploratory study on $\pi\pi\to ee$,
Xu Feng, Lu-Chang Jin, Xin-Yu Tuo, Shi-Cheng Xia,
Phys.Rev.Lett. 122 (2019) 022001,arXiv:1809.10511.
[Feng:2018pdq]
A neutrinoless double beta decay master formula from effective field theory,
V. Cirigliano, W. Dekens, J. de Vries, M. L. Graesser, E. Mereghetti,
JHEP 1812 (2018) 097,arXiv:1806.02780.
[Cirigliano:2018yza]
On the MSW neutrino mixing effects in atomic weak interactions and double beta decays,
Mihai Horoi,
Eur.Phys.J. A56 (2020) 39,arXiv:1803.06332.
[Horoi:2018jyt]
A new leading contribution to neutrinoless double-beta decay,
V. Cirigliano et al.,
Phys.Rev.Lett. 120 (2018) 202001,arXiv:1802.10097.
[Cirigliano:2018hja]
Neutrinoless double beta decay in chiral effective field theory: lepton number violation at dimension seven,
V. Cirigliano, W. Dekens, J. de Vries, M. L. Graesser, E. Mereghetti,
JHEP 1712 (2017) 082,arXiv:1708.09390.
[Cirigliano:2017djv]
Neutrino propagation in nuclear medium and neutrinoless double-beta decay,
S. Kovalenko, M. I. Krivoruchenko, F. Simkovic,
Phys. Rev. Lett. 112 (2014) 142503,arXiv:1311.4200.
[Kovalenko:2013eba]
Effective Lagrangian approach to neutrinoless double beta decay and neutrino masses,
Francisco del Aguila, Alberto Aparici, Subhaditya Bhattacharya, Arcadi Santamaria, Jose Wudka,
JHEP 06 (2012) 146,arXiv:1204.5986.
[delAguila:2012nu]
Localizability of Tachyonic Particles and Neutrinoless Double Beta Decay,
U. D. Jentschura, B. J. Wundt,
Eur. Phys. J C72 (2012) 1894,arXiv:1201.0359.
[Jentschura:2012rd]
On the Quantitative Impact of the Schechter-Valle Theorem,
Michael Duerr, Manfred Lindner, Alexander Merle,
JHEP 06 (2011) 091,arXiv:1105.0901.
[Duerr:2011zd]
Manifest CP Violation from Majorana Phases,
Andre de Gouvea, Boris Kayser, Rabindra Mohapatra,
Phys. Rev. D67 (2003) 053004,arXiv:hep-ph/0211394.
[deGouvea:2002gf]
Unitarity triangles and geometrical description of CP violation with Majorana neutrinos,
J. A. Aguilar-Saavedra, G. C. Branco,
Phys. Rev. D62 (2000) 096009,arXiv:hep-ph/0007025.
[Aguilar-Saavedra:2000jom]
Possible consequences of the Zeno effect on nuclear double beta decay and a bound on $m_{\nu}$,
Jacob Levitan, L. P. Horwitz,
Europhys. Lett. 9 (1989) 761. [Levitan:1989vd]
Minimal rephasing invariant CP violating parameters with Dirac and Majorana fermions,
Jose F. Nieves, Palash B. Pal,
Phys. Rev. D36 (1987) 315. [Nieves:1987pp]
Some implications of the CP invariance for mixing of Majorana neutrinos,
Samoil M. Bilenky, N. P. Nedelcheva, S. T. Petcov,
Nucl. Phys. B247 (1984) 61. [Bilenky:1984fg]
Effects of light and heavy majorana neutrinos in neutrinoless double beta decay,
A. Halprin, S. T. Petcov, S. P. Rosen,
Phys. Lett. B125 (1983) 335. [Halprin:1983ez]
Neutrinoless double beta decay mediated by the neutrino magnetic moment,
Marek Gozdz, Wieslaw A. Kaminski,
Acta Phys.Polon. B47 (2016) 1245,arXiv:1411.1877.
XXI Nuclear Physics Workshop, Kazimierz (Poland) 2014. [Gozdz:2014gna]
How to construct self/anti-self charge conjugate states for higher spins?,
Valeriy V. Dvoeglazov,
AIP Conf.Proc. 1488 (2012) 248-256,arXiv:1210.4401.
Beauty in Physics (Cocoyoc, Mexico, May 2012), PASCOS2012 (Merida, Mexico, June 2012), WGMP-XXXI (Bialowieza, Poland, June 2012). [Dvoeglazov:2012vx]
Processes that break baryon number by two units and the Majorana nature of the neutrino,
Susan Gardner, Xinshuai Yan,
Phys.Lett. B790 (2019) 421-426,arXiv:1808.05288.
[Gardner:2018azu]
Double beta decay and neutrino mass models,
J. C. Helo, M. Hirsch, T. Ota, F. A. Pereira dos Santos,
JHEP 1505 (2015) 092,arXiv:1502.05188.
[Helo:2015fba]
Sterile Neutrinos for Warm Dark Matter and the Reactor Anomaly in Flavor Symmetry Models,
James Barry, Werner Rodejohann, He Zhang,
JCAP 1201 (2012) 052,arXiv:1110.6382.
[Barry:2011fp]
The Elements of the Neutrino Mass Matrix: Allowed Ranges and Implications of Texture Zeros,
A. Merle, W. Rodejohann,
Phys. Rev. D73 (2006) 073012,arXiv:hep-ph/0603111.
[Merle:2006du]
Impact of nuclear matrix element calculations for current and future neutrinoless double beta decay searches,
Federica Pompa, Thomas Schwetz, Jing-Yu Zhu,
arXiv:2303.10562, 2023. [Pompa:2023jxc]
Probing the Nature of Heavy Neutral Leptons in Direct Searches and Neutrinoless Double Beta Decay,
Patrick D. Bolton, Frank F. Deppisch, Mudit Rai, Zhong Zhang,
arXiv:2212.14690, 2022. [Bolton:2022tds]
Probing the Mechanism of Neutrinoless Double-Beta Decay in Multiple Isotopes,
Matteo Agostini, Frank F. Deppisch, Graham Van Goffrier,
JHEP 02 (2023) 172,arXiv:2212.00045.
[Agostini:2022bjh]
Discovering neutrinoless double-beta decay in the era of precision neutrino cosmology,
Manuel Ettengruber, Matteo Agostini, Allen Caldwell, Philipp Eller, Oliver Schulz,
Phys.Rev.D 106 (2022) 073004,arXiv:2208.09954.
[Ettengruber:2022mtm]
Inference of neutrino nature and Majorana CP phases from $0\nu\beta\beta$ decays with inverted mass ordering,
Guo-yuan Huang, Newton Nath,
Eur.Phys.J.C 82 (2022) 838,arXiv:2206.06688.
[Huang:2022lub]
Majorana neutrino mass constraints in the landscape of nuclear matrix elements,
Eligio Lisi, Antonio Marrone,
Phys.Rev.D 106 (2022) 013009,arXiv:2204.09569.
[Lisi:2022nka]
Effect of right-handed currents and dark side of the solar neutrino parameter space to Neutrinoless Double Beta Decay,
Pritam Kumar Bishee, Purushottam Sahu, Sudhanwa Patra,
arXiv:2204.07334, 2022. [Bishee:2022hcc]
Unravelling the left-right mixing using $0\nu\beta\beta$ decay and collider probes,
Gang Li, Michael J. Ramsey-Musolf, Juan Carlos Vasquez,
Phys.Rev.D 105 (2022) 115021,arXiv:2202.01789.
[Li:2022cuq]
Testing the Inverted Neutrino Mass Ordering with Neutrinoless Double-Beta Decay,
Matteo Agostini, Giovanni Benato, Jason A. Detwiler, Javier Menendez, Francesco Vissani,
Phys.Rev.C 104 (2021),arXiv:2107.09104.
[Agostini:2021kba]
The unfinished fabric of the three neutrino paradigm,
Francesco Capozzi, Eleonora Di Valentino, Eligio Lisi, Antonio Marrone, Alessandro Melchiorri, Antonio Palazzo,
Phys.Rev.D 104 (2021) 083031,arXiv:2107.00532.
[Capozzi:2021fjo]
Least-Informative Priors for $0\nu\beta\beta$ Decay Searches,
Frank F. Deppisch, Graham Van Goffrier,
Phys.Rev.D 104 (2021) 055040,arXiv:2103.06660.
[Deppisch:2021aob]
Combined Constraints on Majorana Masses from Neutrinoless Double Beta Decay Experiments,
Steven D. Biller,
Phys.Rev.D 104 (2021) 012002,arXiv:2103.06036.
[Biller:2021bqx]
Bayesian Analysis of a Future Beta Decay Experiment's Sensitivity to Neutrino Mass Scale and Ordering,
A. Ashtari Esfahani et al.,
Phys.Rev. C103 (2021) 065501,arXiv:2012.14341.
[AshtariEsfahani:2020bfp]
Constraints on the mass of Majorana neutrinos from Cosmology,
M. Agostini, G. Benato, S. Dell'Oro, S. Pirro, F. Vissani,
Phys.Rev. D103 (2021) 033008,arXiv:2012.13938.
[Agostini:2020oiv]
Analysis of Light Neutrino Exchange and Short-Range Mechanisms in $0\nu\beta\beta$ Decay,
Frank F. Deppisch, Lukas Graf, Francesco Iachello, Jenni Kotila,
Phys.Rev. D102 (2020) 095016,arXiv:2009.10119.
[Deppisch:2020ztt]
2020 Global reassessment of the neutrino oscillation picture,
P. F. de Salas, D. V. Forero, S. Gariazzo, P. Martinez-Mirave, O. Mena, C. A. Ternes, M. Tortola, J. W. F. Valle,
JHEP 2021 (2020) 071,arXiv:2006.11237.
[deSalas:2020pgw]
Neutrino Self-Interactions and Double Beta Decay,
Frank F. Deppisch, Lukas Graf, Werner Rodejohann, Xun-Jie Xu,
Phys.Rev. D102 (2020) 051701,arXiv:2004.11919.
[Deppisch:2020sqh]
Searching for New Physics in Two-Neutrino Double Beta Decay,
Frank F. Deppisch, Lukas Graf, Fedor Simkovic,
Phys.Rev.Lett. 125 (2020) 171801,arXiv:2003.11836.
[Deppisch:2020mxv]
Addendum to: Global constraints on absolute neutrino masses and their ordering,
Francesco Capozzi, Eleonora Di Valentino, Eligio Lisi, Antonio Marrone, Alessandro Melchiorri, Antonio Palazzo,
Phys.Rev. D101 (2020) 116013,arXiv:2003.08511.
[Capozzi:2017ipn]
Active neutrino oscillations and double beta decay characteristics with sterile neutrinos contributions,
V. V. Khruschov, S. V. Fomichev, S. V. Semenov,
Phys.At.Nucl. 84 (2021) 328-338,arXiv:2003.06145.
[Khruschov:2020hah]
Bounds on light sterile neutrino mass and mixing from cosmology and laboratory searches,
Steffen Hagstotz, Pablo F. de Salas, Stefano Gariazzo, Martina Gerbino, Massimiliano Lattanzi, Sunny Vagnozzi, Katherine Freese, Sergio Pastor,
Phys.Rev.D 104 (2021) 123524,arXiv:2003.02289.
[Hagstotz:2020ukm]
Sterile neutrinos and neutrinoless double beta decay in effective field theory,
W. Dekens, J. de Vries, K. Fuyuto, E. Mereghetti, G. Zhou,
JHEP 2006 (2020) 097,arXiv:2002.07182.
[Dekens:2020ttz]
Neutrinoless double beta decay versus other probes of heavy sterile neutrinos,
Patrick D. Bolton, Frank F. Deppisch, P. S. Bhupal Dev,
JHEP 2003 (2020) 170,arXiv:1912.03058.
[Bolton:2019pcu]
Implications of the Dark LMA solution and Fourth Sterile Neutrino for Neutrino-less Double Beta Decay,
K. N. Deepthi, Srubabati Goswami, Vishnudath K. N., Tanmay Kumar Poddar,
Phys.Rev. D102 (2020) 015020,arXiv:1909.09434.
[Deepthi:2019ljo]
Empirical inference on the Majorana mass of the ordinary neutrinos,
Stefano Dell'Oro, Simone Marcocci, Francesco Vissani,
Phys.Rev. D100 (2019) 073003,arXiv:1909.05381.
[DellOro:2019pqi]
The Exposure-Background Duality in the Searches of Neutrinoless Double Beta Decay,
M.K. Singh, H.T. Wong, L. Singh, V. Sharma, V. Singh, Q. Yue,
Phys.Rev. D101 (2020) 013006,arXiv:1908.10082.
[Singh:2019vyc]
Towards the meV limit of the effective neutrino mass in neutrinoless double-beta decays,
Jun Cao, Guo-yuan Huang, Yu-Feng Li, Yifang Wang, Liang-Jian Wen, Zhi-zhong Xing, Zhen-hua Zhao, Shun Zhou,
Chin.Phys. C44 (2020) 031001,arXiv:1908.08355.
[Cao:2019hli]
Simulated neutrino signals of low and intermediate energy neutrinos on Cd detectors,
J. Sinatkas, V. Tsaktsara, Odysseas Kosmas,
Front.in Phys. 7 (2019) 42,arXiv:1904.01056.
[Sinatkas:2019pfd]
Constraining the Effective Mass of Majorana Neutrino with Sterile Neutrino Mass for Inverted Ordering Spectrum,
Jaydip Singh,
Adv.High Energy Phys. 2019 (2019) 4863620,arXiv:1902.08575.
[Singh:2019qra]
Impact of an eV-mass sterile neutrino on the neutrinoless double-beta decays: a Bayesian analysis,
Guo-yuan Huang, Shun Zhou,
Nucl.Phys. B (2019) 114691,arXiv:1902.03839.
[Huang:2019qvq]
Neutrinoless Double Beta Decay and Light Sterile Neutrino,
C. H. Jang, B. J. Kim, Y. J. Ko, K. Siyeon,
J.Korean Phys.Soc. 73 (2018) 1625-1630,arXiv:1811.09957.
[Jang:2018zug]
The $10^{-3}$ eV Frontier in Neutrinoless Double Beta Decay,
J. T. Penedo, S. T. Petcov,
Phys.Lett. B786 (2018) 410-417,arXiv:1806.03203.
[Penedo:2018kpc]
Bound-state double-$\beta$ decay,
A. Babic, D. Stefanik, M. I. Krivoruchenko, F. Simkovic,
Phys.Rev. C98 (2018) 065501,arXiv:1805.07815.
[Babic:2018zmg]
The interpolating formula for the $0\nu\beta\beta$-decay half-life in the case of light and heavy neutrino mass mechanisms,
A. Babic, S. Kovalenko, M.I. Krivoruchenko, F. Simkovic,
Phys.Rev. D98 (2018) 015003,arXiv:1804.04218.
[Babic:2018ikc]
Shell model study on the possibility of using an effective field theory for disentangling several contributions to the neutrinoless double-beta decay,
Andrei Neacsu, Mihai Horoi,
Phys.Rev. C98 (2018) 035502,arXiv:1801.04496.
[Horoi:2018fls]
Neutrinoless Double Beta Decay and the Baryon Asymmetry of the Universe,
Frank F. Deppisch, Lukas Graf, Julia Harz, Wei-Chih Huang,
Phys.Rev. D98 (2018) 055029,arXiv:1711.10432.
[Deppisch:2017ecm]
Can one ever prove that neutrinos are Dirac particles?,
Martin Hirsch, Rahul Srivastava, Jose W. F. Valle,
Phys.Lett. B781 (2018) 302-305,arXiv:1711.06181.
[Hirsch:2017col]
Another look at the impact of an eV-mass sterile neutrino on the effective neutrino mass of neutrinoless double-beta decays,
Jun-Hao Liu, Shun Zhou,
Int.J.Mod.Phys. A33 (2018) 1850014,arXiv:1710.10359.
[Liu:2017ago]
Half-life Expectations for Neutrinoless Double Beta Decay in Standard and Non-Standard Scenarios,
Shao-Feng Ge, Werner Rodejohann, Kai Zuber,
Phys.Rev. D96 (2017) 055019,arXiv:1707.07904.
[Ge:2017erv]
Discovery probability of next-generation neutrinoless double-$\beta$ decay experiments,
Matteo Agostini, Giovanni Benato, Jason Detwiler,
Phys.Rev. D96 (2017) 053001,arXiv:1705.02996.
[Agostini:2017jim]
A Global Bayesian Analysis of Neutrino Mass Data,
Allen Caldwell, Alexander Merle, Oliver Schulz, Maximilian Totzauer,
Phys.Rev. D96 (2017) 073001,arXiv:1705.01945.
[Caldwell:2017mqu]
Solar neutrino interactions with the double beta decay nuclei of $^{82}$Se, $^{100}$Mo and $^{150}$Nd,
H. Ejiri, S. R. Elliott,
Phys.Rev. C95 (2017) 055501,arXiv:1703.06915.
[Ejiri:2017vyl]
The effective neutrino mass of neutrinoless double-beta decays: how possible to fall into a well,
Zhi-zhong Xing, Zhen-hua Zhao,
Eur.Phys.J. C77 (2017) 192,arXiv:1612.08538.
[Xing:2016ymd]
Probability Densities of the effective neutrino masses $m_{\beta}$ and $m_{\beta\beta}$,
Andrea Di Iura, Davide Meloni,
Nucl.Phys. B921 (2017) 829-840,arXiv:1612.05453.
[DiIura:2016zsx]
On Lepton-Number-Violating Searches for Muon to Positron Conversion,
Jeffrey M. Berryman, Andre de Gouvea, Kevin J. Kelly, Andrew Kobach,
Phys.Rev. D95 (2017) 115010,arXiv:1611.00032.
[Berryman:2016slh]
Limiting the Effective Mass and New Physics Parameters from $0\nu\beta\beta$,
Ram Lal Awasthi, Arnab Dasgupta, Manimala Mitra,
Phys. Rev. D94 (2016) 073003,arXiv:1607.03835.
[Awasthi:2016kbk]
Predicted value of $0\nu\beta\beta$-decay effective Majorana mass with error of lightest neutrino mass,
Shinji Maedan,
arXiv:1605.06871, 2016. [Maedan:2016lzh]
Solar neutrino interactions with liquid scintillators used for double beta decay experiments,
Hiroyasu Ejiri, Kai Zuber,
J. Phys. G43 (2016) 045201,arXiv:1602.00364.
[Ejiri:2016mra]
The nature of massive neutrinos and multiple mechanisms in neutrinoless double beta decay,
Aurora Meroni,
Eur. Phys. J. Plus 130 (2015) 232,arXiv:1510.05523.
[Meroni:2015oya]
Limits on sterile neutrino contributions to neutrinoless double beta decay,
J. Barea, J. Kotila, F. Iachello,
Phys. Rev. D92 (2015) 093001,arXiv:1509.01925.
[Barea:2015zfa]
The $\nu$ generation: present and future constraints on neutrino masses from cosmology and laboratory experiments,
Martina Gerbino, Massimiliano Lattanzi, Alessandro Melchiorri,
Phys. Rev. D93 (2016) 033001,arXiv:1507.08614.
[Gerbino:2015ixa]
The light neutrino exchange mechanism of the $0\nu\beta\beta$-decay with left- and right-handed leptonic and hadronic currents revisited,
Dusan Stefanik, Rastislav Dvornicky, Fedor Simkovic, Petr Vogel,
Phys. Rev. C92 (2015) 055502,arXiv:1506.07145.
[Stefanik:2015twa]
Degeneracies of particle and nuclear physics uncertainties in neutrinoless double beta decay,
E. Lisi, A. Rotunno, F. Simkovic,
Phys. Rev. D92 (2015) 093004,arXiv:1506.04058.
[Lisi:2015yma]
Predictions for Neutrinoless Double-Beta Decay in the 3+1 Sterile Neutrino Scenario,
C. Giunti, E. M. Zavanin,
JHEP 07 (2015) 171,arXiv:1505.00978.
[Giunti:2015kza]
How to interpret a discovery or null result of the $0\nu2\beta$ decay,
Zhi-zhong Xing, Zhen-hua Zhao, Ye-Ling Zhou,
Eur. Phys. J. C75 (2015) 423,arXiv:1504.05820.
[Xing:2015zha]
A Combined Limit on the Neutrino Mass from Neutrinoless Double-Beta Decay and Constraints on Sterile Majorana Neutrinos,
Pawel Guzowski et al.,
Phys. Rev. D92 (2015) 012002,arXiv:1504.03600.
[Guzowski:2015saa]
Falsifying High-Scale Baryogenesis with Neutrinoless Double Beta Decay and Lepton Flavor Violation,
Frank F. Deppisch, Julia Harz, Martin Hirsch, Wei-Chih Huang, Heinrich Pas,
Phys. Rev. D92 (2015) 036005,arXiv:1503.04825.
[Deppisch:2015yqa]
Effect of steriles states on lepton magnetic moments and neutrinoless double beta decay,
A. Abada, V. De Romeri, A.M. Teixeira,
JHEP 1409 (2014) 074,arXiv:1406.6978.
[Abada:2014nwa]
The quest for neutrinoless double beta decay: Pseudo-Dirac, Majorana and sterile neutrinos,
A. Meroni, E. Peinado,
Phys. Rev. D90 (2014) 053002,arXiv:1406.3990.
[Meroni:2014tba]
Neutrinoless double-beta decay of $^{76}$Ge and $^{130}$Te. A correction of the neutrinoless 2$\beta$-decay model and a reanalysis of QUORICINO results,
I.V. Kirpichnikov,
arXiv:1405.4703, 2014. [Kirpichnikov:2014tsa]
Geometry of the effective Majorana neutrino mass in the neutrinoless double-beta decay,
Zhi-zhong Xing, Ye-Ling Zhou,
Chin.Phys. C39 (2015) 011001,arXiv:1404.7001.
[Xing:2014yka]
Constraining Majorana CP Phase in Precision Era of Cosmology and Double Beta Decay Experiment,
Hisakazu Minakata, Hiroshi Nunokawa, Alexander A. Quiroga,
PTEP 2015 (2014) 033B03,arXiv:1402.6014.
[Minakata:2014jba]
The charged current neutrino cross section for solar neutrinos, and background to $\beta\beta(0\nu)$ experiments,
H. Ejiri, S.R. Elliott,
Phys. Rev. C89 (2014) 055501,arXiv:1309.7957.
[Ejiri:2013jda]
Neutrinoless Double Beta Decay in the Presence of Light Sterile Neutrinos,
Ivan Girardi, Aurora Meroni, S. T. Petcov,
JHEP 1311 (2013) 146,arXiv:1308.5802.
[Girardi:2013zra]
Measuring Directionality in Double-Beta Decay and Neutrino Interactions with Kiloton-Scale Scintillation Detectors,
C. Aberle, A. Elagin, H. J. Frisch, M. Wetstein, L. Winslow,
JINST 9 (2014) P06012,arXiv:1307.5813.
[Aberle:2013jba]
Short-range mechanisms of neutrinoless double beta decay at the LHC,
J.C. Helo, M. Hirsch, H. Pas, S.G. Kovalenko,
Phys. Rev. D88 (2013) 073011,arXiv:1307.4849.
[Helo:2013ika]
Constraints on neutrino mass ordering and degeneracy from Planck and neutrino-less double beta decay,
Naoyuki Haba, Ryo Takahashi,
Acta Phys.Polon. B45 (2014) 61-69,arXiv:1305.0147.
[Haba:2013xwa]
Constraining Neutrino Mass from Neutrinoless Double Beta Decay,
P. S. Bhupal Dev, Srubabati Goswami, Manimala Mitra, Werner Rodejohann,
Phys. Rev. D88 (2013) 091301,arXiv:1305.0056.
[BhupalDev:2013ntw]
Influence of a keV sterile neutrino on neutrino-less double beta decay - how things changed in the recent years,
Alexander Merle, Viviana Niro,
Phys. Rev. D88 (2013) 113004,arXiv:1302.2032.
[Merle:2013ibc]
Random coincidence of $2\nu2\beta$ decay events as a background source in bolometric $0\nu2\beta$ decay experiments,
D.M. Chernyak et al.,
Eur.Phys.J. C72 (2012) 1989,arXiv:1301.4248.
[Chernyak:2012zz]
Discovery potential of xenon-based neutrinoless double beta decay experiments in light of small angular scale CMB observations,
J.J. Gomez-Cadenas, J. Martin-Albo, J. Munoz Vidal, C. Pena-Garay,
JCAP JCAP03 (2013) 043,arXiv:1301.2901.
[Gomez-Cadenas:2013duj]
Combining and comparing neutrinoless double beta decay experiments using different nuclei,
Johannes Bergstrom,
JHEP 1302 (2013) 093,arXiv:1212.4484.
[Bergstrom:2012nx]
Multiple CP Non-conserving Mechanisms of $\beta\beta$-Decay and Nuclei with Largely Different Nuclear Matrix Elements,
A. Meroni, S. T. Petcov, F. Simkovic,
JHEP 1302 (2013) 025,arXiv:1212.1331.
[Meroni:2012qf]
On the possibility of a measurement of the CP Majorana phase in the $0\nu\beta\beta$-decay,
F. Simkovic, S.M. Bilenky, Amand Faessler, Th. Gutsche,
Phys. Rev. D87 (2013) 073002,arXiv:1210.1306.
[Simkovic:2012hq]
Direct constraints on charged excitations of dark matter,
Haipeng An, Maxim Pospelov, Josef Pradler,
Phys. Rev. Lett. 109 (2012) 251302,arXiv:1209.6358.
[An:2012bs]
Can heavy neutrinos dominate neutrinoless double beta decay?,
J. Lopez-Pavon, S. Pascoli, Chan-fai Wong,
Phys. Rev. D87 (2013) 093007,arXiv:1209.5342.
[Lopez-Pavon:2012yda]
Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP violation searches,
G.L. Fogli et al.,
Phys. Rev. D86 (2012) 013012,arXiv:1205.5254.
[Fogli:2012ua]
Excitation functions of proton-induced reactions on natural Nd in the 10-30 MeV energy range, and production of radionuclides relevant for double-beta decay,
O. Lebeda, V. Lozza, P. Schrock, J. Stursa, K. Zuber,
Phys. Rev. C85 (2012) 014602,arXiv:1202.5185.
[Lebeda:2012zz]
Implications of 3+1 Short-Baseline Neutrino Oscillations,
Carlo Giunti, Marco Laveder,
Phys. Lett. B706 (2011) 200-207,arXiv:1111.1069.
[Giunti:2011cp]
Vanishing effective mass of the neutrinoless double beta decay including light sterile neutrinos,
Y. F. Li, S. Liu,
Phys. Lett. B706 (2012) 406-411,arXiv:1110.5795.
[Li:2011ss]
Four-jet final state in same-sign lepton colliders and neutrinoless double beta decay mechanisms,
C. H. Kom, Werner Rodejohann,
Phys. Rev. D85 (2012) 015013,arXiv:1110.3220.
[Kom:2011nc]
Solar neutrino-electron scattering as background limitation for double beta decay,
N. F. de Barros, K. Zuber,
J. Phys. G38 (2011) 105201,arXiv:1103.5757.
[deBarros:2011qq]
Consistency Test of Neutrinoless Double Beta Decay with one Isotope,
Michael Duerr, Manfred Lindner, Kai Zuber,
Phys. Rev. D84 (2011) 093004,arXiv:1103.4735.
[Duerr:2011yh]
Neutrinoless Double Beta Decay, the Inverted Hierarchy and Precision Determination of theta(12),
Alexander Dueck, Werner Rodejohann, Kai Zuber,
Phys. Rev. D83 (2011) 113010,arXiv:1103.4152.
[Dueck:2011hu]
Constraining New Physics with a Positive or Negative Signal of Neutrino-less Double Beta Decay,
Johannes Bergstrom, Alexander Merle, Tommy Ohlsson,
JHEP 05 (2011) 122,arXiv:1103.3015.
[Bergstrom:2011dt]
Robust Cosmological Bounds on Neutrinos and their Combination with Oscillation Results,
M. C. Gonzalez-Garcia, Michele Maltoni, Jordi Salvado,
JHEP 08 (2010) 117,arXiv:1006.3795.
[Gonzalez-Garcia:2010keg]
Klapdor's claim for the observation of the neutrinoless double beta-decay of Ge-76. Analysis and corrections,
Kirpichnikov I.V.,
arXiv:1006.2025, 2010. [Kirpichnikov:2010nu]
Few active mechanisms of the neutrinoless double beta-decay and effective mass of Majorana neutrinos,
Fedor Simkovic, John Vergados, Amand Faessler,
Phys. Rev. D82 (2010) 113015,arXiv:1006.0571.
[Simkovic:2010ka]
Probing New Physics Models of Neutrinoless Double Beta Decay with SuperNEMO,
R. Arnold et al.(SuperNEMO),
Eur. Phys. J. C70 (2010) 927-943,arXiv:1005.1241.
[SuperNEMO:2010wnd]
Conversion of experimental half-life to effective electron neutrino mass in 0nubetabeta decay,
Anatoly Smolnikov, Peter Grabmayr,
Phys. Rev. C81 (2010) 028502. [Smolnikov:2010zz]
Neutrinoless double beta decays of the top quark and other effects of heavy Majorana neutrinos,
Gad Eilam,
PoS 2008LHC (2008) 061,arXiv:0902.4622.
[Eilam:2008qtl]
Statistical Analysis of future Neutrino Mass Experiments including Neutrino-less Double Beta Decay,
Werner Maneschg, Alexander Merle, Werner Rodejohann,
Europhys. Lett. 85 (2009) 51002,arXiv:0812.0479.
[Maneschg:2008sf]
Neutrino Mass Bounds from from $0\nu\beta\beta$ Decays and Large Scale Structures,
Y.-Y. Keum, K. Ichiki, T. Kajino,
AIP Conf. Proc. 1016 (2008) 343-349,arXiv:0803.2393.
[Keum:2008st]
Majorana Neutrinos, Neutrino Mass Spectrum and the $|\rangle m \langle| \sim 0.001 eV$ Frontier in Neutrinoless Double Beta Decay,
S. Pascoli, S. T. Petcov,
Phys. Rev. D77 (2008) 113003,arXiv:0711.4993.
[Pascoli:2007qh]
Probing new physics in the Neutrinoless double beta decay using electron angular correlation,
A. Ali, A.V. Borisov, D.V. Zhuridov,
Phys. Rev. D76 (2007) 093009,arXiv:0706.4165.
[Ali:2007ec]
MiniBooNE Results and Neutrino Schemes with 2 sterile Neutrinos: Possible Mass Orderings and Observables related to Neutrino Masses,
Srubabati Goswami, Werner Rodejohann,
JHEP 10 (2007) 073,arXiv:0706.1462.
[Goswami:2007kv]
Getting Information on $|U_{e3}|^2$ from Neutrino-less Double Beta Decay,
Alexander Merle, Werner Rodejohann,
Adv. High Energy Phys. 2007 (2007) 82674,arXiv:hep-ph/0703135.
[Merle:2007hv]
Pinning down the mechanism of neutrinoless double beta decay with measurements in different nuclei,
F. Deppisch, H. Pas,
Phys. Rev. Lett. 98 (2007) 232501,arXiv:hep-ph/0612165.
[Deppisch:2006hb]
Observables sensitive to absolute neutrino masses: A reappraisal after WMAP-3y and first MINOS results,
G.L. Fogli et al.,
Phys. Rev. D75 (2007) 053001,arXiv:hep-ph/0608060.
[Fogli:2006yq]
Improved Limit on $\theta_{13}$ and Implications for Neutrino Masses in Neutrino-less Double Beta Decay and Cosmology,
M. Lindner, A. Merle, W. Rodejohann,
Phys. Rev. D73 (2006) 053005,arXiv:hep-ph/0512143.
[Lindner:2005kr]
Neutrinoless double beta decay and neutrino mass hierarchies,
S.M. Bilenky, A. Faessler, T. Gutsche, F. Simkovic,
Phys. Rev. D72 (2005) 053015,arXiv:hep-ph/0507260.
[Bilenky:2005ck]
Non-Oscillation Probes of the Neutrino Mass Hierarchy and Vanishing U_e3,
Andre de Gouvea, James Jenkins,
arXiv:hep-ph/0507021, 2005. [deGouvea:2005hj]
New Method of Enhancing Lepton Number Nonconservation,
M. Ikeda, I. Nakano, M. Sakuda, R. Tanaka, M. Yoshimura,
arXiv:hep-ph/0506062, 2005. [Ikeda:2005yh]
Nuclear-atomic state degeneracy in neutrinoless double-electron capture: A unique test for a Majorana-neutrino,
D. Frekers,
Phys.Lett.B (2005),arXiv:hep-ex/0506002.
[Frekers:2005ze]
The Absolute Neutrino Mass Scale, Neutrino Mass Spectrum, Majorana CP-Violation and Neutrinoless Double-Beta Decay,
S. Pascoli, S. T. Petcov, T. Schwetz,
Nucl. Phys. B734 (2006) 24,arXiv:hep-ph/0505226.
[Pascoli:2005zb]
Neutrino-nucleus interactions as a probe to constrain double-beta decay predictions,
Cristina Volpe,
J. Phys. G31 (2005) 903,arXiv:hep-ph/0501233.
[Volpe:2005iy]
Light neutrino and heavy particle exchange in neutrinoless double-beta decay,
Gary Prezeau,
Phys. Lett. B633 (2006) 93,arXiv:hep-ph/0409235.
[Prezeau:2004cs]
Observables sensitive to absolute neutrino masses: Constraints and correlations from world neutrino data,
G. L. Fogli et al.,
Phys. Rev. D70 (2004) 113003,arXiv:hep-ph/0408045.
[Fogli:2004as]
Neutrinoless Double Beta Decay and Lepton Flavor Violation,
V. Cirigliano, A. Kurylov, M.J. Ramsey-Musolf, P. Vogel,
Phys. Rev. Lett. 93 (2004) 231802,arXiv:hep-ph/0406199.
[Cirigliano:2004tc]
Nuclear Matrix Elements of $0\nu_{\beta\beta}$-Decay: Possible Test of the Calculations,
S.M. Bilenky, S.T. Petcov,
arXiv:hep-ph/0405237, 2004. [Bilenky:2004um]
What can we learn from neutrinoless double beta decay experiments?,
John N. Bahcall, Hitoshi Murayama, Carlos Pena-Garay,
Phys. Rev. D70 (2004) 033012,arXiv:hep-ph/0403167.
[Bahcall:2004ip]
Support of Evidence for Neutrinoless Double Beta Decay,
H.V. Klapdor-Kleingrothaus et al.,
Phys. Lett. B578 (2004) 54-62,arXiv:hep-ph/0312171.
[Klapdor-Kleingrothaus:2004ooq]
Neutrinoless double electron capture: A Tool to search for Majorana neutrinos,
Z. Sujkowski, S. Wycech,
Phys. Rev. C70 (2004) 052501,arXiv:hep-ph/0312040.
[Sujkowski:2003mb]
Addendum: The SNO Solar Neutrino Data, Neutrinoless Double Beta-Decay and Neutrino Mass Spectrum,
S. Pascoli, S. T. Petcov,
Phys. Lett. B580 (2004) 280,arXiv:hep-ph/0310003.
[Pascoli:2003ke]
Neutrinoless Double Beta Decay in Light of SNO Salt Data,
Hitoshi Murayama, Carlos Pena-Garay,
Phys. Rev. D69 (2004) 031301,arXiv:hep-ph/0309114.
[Murayama:2003ci]
Consequences of neutrinoless double beta decay and WMAP,
H.V. Klapdor-Kleingrothaus, U. Sarkar,
Mod. Phys. Lett. A18 (2003) 2243,arXiv:hep-ph/0304032.
[Klapdor-Kleingrothaus:2003zoq]
Neutrinoless double-beta decay and effective field theory,
Gary Prezeau, M. Ramsey-Musolf, Petr Vogel,
Phys. Rev. D68 (2003) 034016,arXiv:hep-ph/0303205.
[Prezeau:2003xn]
Can the Majorana Neutrino CP-Violating Phases be Restricted?,
K. Matsuda, T. Fukuyama, H. Nishiura,
Mod. Phys. Lett. A18 (2003) 1803,arXiv:hep-ph/0302254.
[Matsuda:2003kf]
Particle physics implications of the WMAP neutrino mmass bound,
G. Bhattacharyya, H. Pas, L. Song, T.J. Weiler,
Phys. Lett. B564 (2003) 175,arXiv:hep-ph/0302191.
[Bhattacharyya:2003gi]
Neutrinoless Double Beta Decay from Singlet Neutrinos in Extra Dimensions,
G. Bhattacharyya, H.V. Klapdor-Kleingrothaus, H. Päs, A. Pilaftsis,
Phys. Rev. D67 (2003) 113001,arXiv:hep-ph/0212169.
[Bhattacharyya:2002vf]
On the Neutrino Mass Spectrum and Neutrinoless Double-Beta Decay,
S. Pascoli, S.T. Petcov, W. Rodejohann,
Phys. Lett. B558 (2003) 141,arXiv:hep-ph/0212113.
[Pascoli:2002ae]
The possible test of the calculations of nuclear matrix elements of the $(\beta \beta)_{0\nu}$-decay,
S. M. Bilenky, J. A. Grifols,
Phys. Lett. B550 (2002) 154-159,arXiv:hep-ph/0211101.
[Bilenky:2002ga]
Baryon and Lepton Number Violation with Scalar Bilinears,
H. V. Klapdor-Kleingrothaus, Ernest Ma, Utpal Sarkar,
Mod. Phys. Lett. A17 (2002) 2221,arXiv:hep-ph/0210156.
[Klapdor-Kleingrothaus:2002rvk]
On the CP Violation Associated with Majorana Neutrinos and Neutrinoless Double-Beta Decay,
S. Pascoli, S. T. Petcov, W. Rodejohann,
Phys. Lett. B549 (2002) 177-193,arXiv:hep-ph/0209059.
[Pascoli:2002qm]
Constraining the absolute neutrino mass scale and Majorana CP violating phases by future neutrinoless double beta decay experiments,
H. Nunokawa, W. J. C. Teves, R. Zukanovich Funchal,
Phys. Rev. D66 (2002) 093010,arXiv:hep-ph/0206137.
[Nunokawa:2002iv]
No-go for detecting CP violation via neutrinoless double beta decay,
V. Barger, S. L. Glashow, P. Langacker, D. Marfatia,
Phys. Lett. B540 (2002) 247-251,arXiv:hep-ph/0205290.
[Barger:2002vy]
A Full Determination of the Neutrino Mass Spectrum from Two-zero Textures of the Neutrino Mass Matrix,
Zhi-zhong Xing,
Phys. Lett. B539 (2002) 85-90,arXiv:hep-ph/0205032.
[Xing:2002ap]
Constraints from Neutrinoless Double Beta Decay,
H. Nishiura K. Matsuda, T. Kikuchi, T. Fukuyama,
Mod. Phys. Lett. A17 (2002) 2597,arXiv:hep-ph/0204254.
[Matsuda:2002iw]
Predictions on the neutrinoless double beta decay from the leptogenesis via the LH(u) flat direction,
Masaaki Fujii, K. Hamaguchi, T. Yanagida,
Phys. Lett. B538 (2002) 107-114,arXiv:hep-ph/0203189.
[Fujii:2002hp]
Constraining four neutrino mass patterns from neutrinoless double beta decay,
Sandip Pakvasa, Probir Roy,
Phys. Lett. B535 (2002) 181-186,arXiv:hep-ph/0203188.
[Pakvasa:2002hn]
Model-independent Constraint on the Neutrino Mass Spectrum from the Neutrinoless Double Beta Decay,
Zhi-zhong Xing,
Phys. Rev. D65 (2002) 077302,arXiv:hep-ph/0202034.
[Xing:2002kx]
Neutrino mixing schemes and neutrinoless double beta decay,
H. V. Klapdor-Kleingrothaus, U. Sarkar,
Phys. Lett. B532 (2002) 71-76,arXiv:hep-ph/0202006.
[Klapdor-Kleingrothaus:2002oqq]
Neutrino mass matrix solutions and neutrinoless double beta decay,
Thomas Hambye,
Eur. Phys. J. direct C4 (2002) 13,arXiv:hep-ph/0201307.
[Hambye:2002di]
Neutrinoless double beta decay can constrain neutrino dark matter,
V. Barger, S.L. Glashow, D. Marfatia, K. Whisnant,
Phys.Lett. B532 (2002) 15-18,arXiv:hep-ph/0201262.
[Barger:2002xm]
Implications of observed neutrinoless double beta decay,
H. V. Klapdor-Kleingrothaus, U. Sarkar,
Mod. Phys. Lett. A16 (2001) 2469-2482,arXiv:hep-ph/0201224.
[Klapdor-Kleingrothaus:2001wti]
In quest of neutrino masses at O(eV) scale,
M. Czakon, J. Gluza, J. Studnik, M. Zralek,
Phys. Rev. D65 (2002) 053008,arXiv:hep-ph/0110166.
[Czakon:2001uh]
Majorana neutrinos, neutrino mass spectrum, CP-violation and neutrinoless double beta-decay. II: Mixing of four neutrinos,
Samoil M. Bilenky, S. Pascoli, S. T. Petcov,
Phys. Rev. D64 (2001) 113003,arXiv:hep-ph/0104218.
[Bilenky:2001xq]
Majorana neutrinos, neutrino mass spectrum, CP-violation and neutrinoless double beta-decay. I: The three-neutrino mixing case,
Samoil M. Bilenky, S. Pascoli, S. T. Petcov,
Phys. Rev. D64 (2001) 053010,arXiv:hep-ph/0102265.
[Bilenky:2001rz]
MNS parameters from neutrino oscillations, single beta decay and double beta decay,
K. Matsuda, N. Takeda, T. Fukuyama, H. Nishiura,
Phys. Rev. D64 (2001) 013001,arXiv:hep-ph/0012357.
[Matsuda:2000iw]
Neutrino mass spectrum and neutrinoless double beta decay,
H. V. Klapdor-Kleingrothaus, H. Pas, A. Y. Smirnov,
Phys. Rev. D63 (2001) 073005,arXiv:hep-ph/0003219.
[Klapdor-Kleingrothaus:2000tjb]
Constraints from neutrino oscillation experiments on the effective Majorana mass in neutrinoless double beta decay,
Samoil M. Bilenky, C. Giunti, W. Grimus, B. Kayser, S. T. Petcov,
Phys. Lett. B465 (1999) 193-202,arXiv:hep-ph/9907234.
[Bilenky:1999wz]
Signal of neutrinoless double beta decay, neutrino spectrum and oscillation scenarios,
Francesco Vissani,
JHEP 06 (1999) 022,arXiv:hep-ph/9906525.
[Vissani:1999tu]
Closing the neutrinoless double beta decay window into violations of the equivalence principle and/or Lorentz invariance,
A. Halprin, R. R. Volkas,
Phys. Lett. B459 (1999) 183-185,arXiv:hep-ph/9904298.
[Halprin:1999cg]
Majorana neutrino masses from neutrinoless double beta decay and cosmology,
Vernon D. Barger, K. Whisnant,
Phys.Lett. B456 (1999) 194-200,arXiv:hep-ph/9904281.
[Barger:1999na]
Neutrino oscillation constraints on neutrinoless double beta decay,
Samoil M. Bilenky, C. Giunti, C. W. Kim, M. Monteno,
Phys. Rev. D57 (1998) 6981-6988,arXiv:hep-ph/9711400.
[Bilenky:1997bu]
Short-baseline neutrino oscillations and neutrinoless double-beta decay in schemes with an inverted mass spectrum,
S. M. Bilenky, C. Giunti, C. W. Kim, S. T. Petcov,
Phys. Rev. D54 (1996) 4432-4444,arXiv:hep-ph/9604364.
[Bilenky:1996cb]
Short-baseline neutrino oscillations and neutrinoless double-beta decay in the framework of three neutrino mixing and a mass hierarchy,
Samoil M. Bilenky, A. Bottino, C. Giunti, C. W. Kim,
Phys. Rev. D54 (1996) 1881-1890,arXiv:hep-ph/9602216.
[Bilenky:1996uf]
Alternate interpretation of the results from the st. Gotthard laboratory double beta decay experiment,
F. T. Avignone, R. L. Brodzinski, H. S. Miley, J. H. Reeves,
Phys. Lett. B198 (1987) 253-254. [Avignone:1987js]
Neutrinoless Beta Beta Decay and a New Limit on the Right-handed Current,
T. Tomoda, A. Faessler, K.W. Schmid, F. Grummer,
Nucl. Phys. A452 (1986) 591-620. [Tomoda:1986yz]
NEUTRINOLESS DOUBLE BETA DECAY AND A NEW LIMIT ON THE LEPTON NUMBER VIOLATION,
T. Tomoda, A. Faessler, K.W. Schmid, F. Grummer,
Phys.Lett. B157 (1985) 4-8. [Tomoda:1985xc]
Neutrinoless Double Electron Capture as a Tool to Measure the $\nu_e$ Mass,
J. Bernabeu, A. De Rujula, C. Jarlskog,
Nucl. Phys. B223 (1983) 15. [Bernabeu:1983yb]
The Energy Spectrum and the Angular Correlation in the Beta Beta Decay,
Masaru Doi, Tsuneyuki Kotani, Hiroyuki Nishiura, Eiichi Takasugi,
Prog.Theor.Phys. 70 (1983) 1353. [Doi:1983wv]
Effects of Light and Heavy Majorana Neutrinos in Neutrinoless Double Beta Decay,
A. Halprin, S. T. Petcov, Simon Peter Rosen,
Phys. Lett. 125B (1983) 335-338. [Halprin:1983ez]
Conversion of an Atomic Electron Into a Positron and Double Beta+ Decay,
R.A. Eramzhian, Guenakh Mitselmakher, M.B. Voloshin,
JETP Lett. 35 (1982) 656. [Eramzhian:1982bi]
Higgs boson exchange contributions to neutrinoless double beta decay,
W. C. Haxton, Simon Peter Rosen, G. J. Stephenson,
Phys. Rev. D26 (1982) 1805-1808. [Haxton:1982ff]
Double-beta Decay and a Massive Majorana Neutrino,
A. Halprin, P. Minkowski, H. Primakoff, Simon Peter Rosen,
Phys. Rev. D13 (1976) 2567. [Halprin:1976mr]
Nuclear double-beta decay and a new limit on lepton nonconservation,
H. Primakoff, Simon Peter Rosen,
Phys. Rev. 184 (1969) 1925-1933. [Primakoff:1969mvu]
Scotogenic neutrino masses and dark matter stability from residual gauge symmetry,
Julio Leite, Oleg Popov, Rahul Srivastava, Jose W. F. Valle,
arXiv:2009.02652, 2020.NDM-2020. [Leite:2020kos]
Neutrino mass eigenstates and their ordering: a Bayesian approach,
S. Gariazzo,
Nuovo Cim.C 42 (2019) 176,arXiv:1806.11344.
Incontri di Fisica delle Alte Energie (IFAE) 2018. [Gariazzo:2018tft]
Neutrino Mass Ordering in Future Neutrinoless Double Beta Decay Experiments,
Jue Zhang,
Mod.Phys.Lett. A31 (2016) 1630020,arXiv:1605.07724.
International Conference on New Physics at the Large Hadron Collider, Singapore, 29 February - 4 March 2016. [Zhang:2016ysf]
Predictions for Neutrinoless Double-Beta Decay in the 3+1 Sterile Neutrino Scenario,
C. Giunti, E. M. Zavanin,
J. Phys. Conf. Ser. 718 (2016) 062074,arXiv:1511.03838.
TAUP 2015. [Giunti:2015iyr]
A combined limit for neutrinoless double-beta decay,
Pawel Guzowski,
arXiv:1504.08285, 2015.Prospects in Neutrino Physics Conference, 15 - 17 December, 2014, Queen Mary University of London, UK. [Guzowski:2015gba]
A Critical Appraisal of Some Concepts Used in Neutrino Physics,
Francesco Vissani, Manimala Mitra, Giulia Pagliaroli,
Nuovo Cim. C36 (2013) 223-228,arXiv:1206.1466.
IFAE 2012. [Vissani:2012dm]
Neutrinoless Double Beta Decay and Neutrino Masses,
Michael Duerr,
AIP Conf.Proc. 1467 (2012) 235-238,arXiv:1206.0565.
International Workshop on Grand Unified Theories, Yukawa Institute for Theoretical Physics, Kyoto, Japan, March 2012. [Duerr:2012nd]
Suppression of $0nu2beta$ Decay from CP Violation,
Marek Gozdz, W. A. Kaminski,
Int. J. Mod. Phys. E16 (2007) 561,arXiv:1201.1236.
Nuclear Physics Workshop in Kazimierz Dolny, Poland, 2006. [Gozdz:2007ya]
Mildly mixed coupled models vs. WMAP7 data,
Giuseppe La Vacca, Silvio A. Bonometto,
Nucl. Phys. Proc. Suppl. 217 (2011) 68-71,arXiv:1101.2155.
NOW2010, Conca Specchiulla, Italy, September 4-11, 2010. [LaVacca:2011dc]
Constraints on fourth generation Majorana neutrinos,
Alexander Lenz, Heinrich Pas, Dario Schalla,
J. Phys. Conf. Ser. 259 (2010) 012096,arXiv:1010.3883.
16th International Symposium on Particles, Strings and Cosmology (PASCOS2010), Valencia (Spain), July 19th - 23rd, 2010. [Lenz:2010ha]
What we (would like to) know about the neutrino mass,
G. L. Fogli, E. Lisi, A. Marrone, A. Palazzo, A. M. Rotunno,
arXiv:0809.2936, 2008.NO-VE 2008, IV International Workshop on 'Neutrino Oscillations in Venice' (Venice, Italy, April 15-18, 2008). [Fogli:2008cx]
Electron angular correlation in neutrinoless double beta decay and new physics,
A. Ali, A.V. Borisov, D.V. Zhuridov,
arXiv:0801.2512, 2008.13th Lomonosov Conference on Elementary Particle Physics, 23 -29 August 2007, Moscow, Russia. [Ali:2008af]
Neutrinoless double beta decay: Electron angular correlation as a probe of new physics,
A. Ali, A.V. Borisov, D.V. Zhuridov,
arXiv:hep-ph/0606072, 2006. [Ali:2006iu]
Searching for Majorana neutrinos with double beta decay and with beta beams,
L. Lukaszuk, Z. Sujkowski, S. Wycech,
Eur.Phys.J. A27 (2006) 63-66.Workshop on Statistical Mechanics of Non-Extensive Systems (NBS 2005), 24-25 October 2005, Paris, France. [Lukaszuk:2006ua]
Neutrinoless Double $\beta$-Decay: The Problem of Nuclear Matrix Elements,
S. M. Bilenky,
arXiv:hep-ph/0504075, 2005.International Workshop 'Neutrino Telescopes', Venice, February 22-25, 2005. [Bilenky:2005za]
On the atomic resonances in the 0 nu 2EC transitions,
S. Wycech, Z. Sujkowski,
Acta Phys.Polon. B35 (2004) 1223-1230,arXiv:nucl-th/0402103.
[Wycech:2004uv]
Possible Evidence of Time Variation of Weak Interaction Constant from Double Beta Decay Experiments,
A.S. Barabash,
Astrophys. Space Sci. 283 (2003) 607,arXiv:nucl-ex/0210011.
Workshop on varing fundamental constants, JENAM 2002, Porto, Portugal, September 2-7, 2002. [Barabash:2002rg]
Absolute neutrino masses: physics beyond SM, double beta decay and cosmic rays,
Thomas J. Weiler Heinrich Pas,
arXiv:hep-ph/0205191, 2002.NOON2001 workshop, ICRR, University of Tokyo, Kashiwa, Japan. [Pas:2002ff]
Analysis of solar neutrino induced double beta processes for several nuclei,
P. Domin S. V. Semenov, Yu. V. Gaponov, F. Simkovic,
Phys. Atom. Nucl. 65 (2002) 2184,arXiv:hep-ph/0205003.
International Workhop on Non-Accelerator New Physics (NANP'01), Dubna, Russia, June 2001. [Semenov:2002pt]
Non-oscillation searches of neutrino mass in the age of oscillations,
Francesco Vissani,
Nucl. Phys. Proc. Suppl. 100 (2001) 273-275,arXiv:hep-ph/0012018.
Europhysics Neutrino Oscillation Workshop (NOW 2000), Conca Specchiulla, Otranto, Lecce, Ita, 9-16 Sep 2000. [Vissani:2000ci]
Neutrino spectrum, oscillation scenarios and neutrinoless double beta decay,
Francesco Vissani,
arXiv:hep-ph/9904349, 1999.Sixth Topical Seminar on Neutrino and AstroParticle Physics, San Miniato, Italy, 17-21 May 1999. [Vissani:1999pw]
Neutrinoless double-beta decay in the neutrino-extended Standard Model,
Wouter Dekens, Jordy de Vries, Emanuele Mereghetti, Javier Menendez, Pablo Soriano, Guanghui Zhou,
arXiv:2303.04168, 2023. [Dekens:2023iyc]
Neutrinoless double beta decay in Left-Right symmetric model with double seesaw,
Sudhanwa Patra, S. T. Petcov, Prativa Pritimita, Purushottam Sahu,
arXiv:2302.14538, 2023. [Patra:2023ltl]
KeV dark matter in minimal extended seesaw model and its predictions in neutrinoless double beta decay and baryogenesis,
Mayengbam Kishan Singh, S. Robertson Singh, N. Nimai Singh,
arXiv:2302.09840, 2023. [Singh:2023jll]
Light Sterile Neutrinos, Left-Right Symmetry, and $0\nu\beta\beta$ Decay,
Jordy de Vries, Gang Li, Michael J. Ramsey-Musolf, Juan Carlos Vasquez,
JHEP 11 (2022) 056,arXiv:2209.03031.
[deVries:2022nyh]
Neutrinoless double beta decay and Sterile dark matter in extended left right symmetric model,
Bichitra Bijay Boruah, Nayana Gautam, Mrinal Kumar Das,
arXiv:2206.00696, 2022. [Boruah:2022csq]
Uncovering a chirally suppressed mechanism of $0\nu\beta\beta$ decay with LHC searches,
Michael L. Graesser, Gang Li, Michael J. Ramsey-Musolf, Tianyang Shen, Sebastian Urrutia-Quiroga,
JHEP 10 (2022) 034,arXiv:2202.01237.
[Graesser:2022nkv]
Neutrinoless Double Beta Decay via Light Neutralinos in R-Parity Violating Supersymmetry,
Patrick D. Bolton, Frank F. Deppisch, P. S. Bhupal Dev,
JHEP 03 (2022) 152,arXiv:2112.12658.
[Bolton:2021hje]
Complementarity between neutrinoless double beta decay and collider searches for heavy neutrinos in composite-fermion models,
S. Biondini, S. Dell'Oro, R. Leonardi, S. Marcocci, O. Panella, M. Presilla, F. Vissani,
arXiv:2111.01053, 2021. [Biondini:2021vip]
Scotogenesis in Hybrid Textures of Neutrino Mass Matrix and Neutrinoless Double Beta Decay,
Ankush, Monal Kashav, Surender Verma, B. C. Chauhan,
Phys.Lett.B 824 (2022) 136796,arXiv:2109.14211.
[Ankush:2021opd]
Lepton Number Violation: from $0\nu\beta\beta$ Decay to Long-Lived Particle Searches,
Gang Li, Michael J. Ramsey-Musolf, Shufang Su, Juan Carlos Vasquez,
Phys.Rev.D 105 (2022),arXiv:2109.08172.
[Li:2021fvw]
Zooming in on eV-MeV Scale Sterile Neutrinos in light of Neutrinoless Double Beta Decay,
Tapoja Jha, Sarif Khan, Manimala Mitra, Ayon Patra,
Phys.Rev.D 105 (2022) 035001,arXiv:2107.03807.
[Jha:2021oxl]
Nuclear $0\nu2\beta$ decays in $B-L$ symmetric SUSY model and TeV scale left-right symmetric model,
Jin Lei Yang, Chao-Hsi Chang, Tai-Fu Feng,
Commun.Theor.Phys. 74 (2022) 085202,arXiv:2107.01367.
[Yang:2021ueh]
TeV-scale Lepton Number Violation: Connecting Leptogenesis, Neutrinoless Double Beta Decay, and Colliders,
Julia Harz, Michael J. Ramsey-Musolf, Tianyang Shen, Sebastian Urrutia-Quiroga,
arXiv:2106.10838, 2021. [Harz:2021psp]
Impact of texture zeros on dark matter and neutrinoless double beta decay in inverse seesaw,
Nayana Gautam, Mrinal Kumar Das,
Nucl.Phys.B 971 (2021) 115519,arXiv:2104.13071.
[Gautam:2021vhf]
Controlled fermion mixing and FCNCs in a $\Delta(27)$ 3+1 Higgs Doublet Model,
A. E. Carcamo Hernandez, Ivo de Medeiros Varzielas, M. L. Lopez-Ibanez, Aurora Melis,
JHEP 2105 (2021) 215,arXiv:2102.05658.
[CarcamoHernandez:2021osw]
Fermion masses and mixings in a $U(1)_X$ model based on the $\Sigma(18)$ discrete symmetry,
V. V. Vien, A. E. Carcamo Hernandez, H. N. Long,
PTEP 2021 (2021) 8,arXiv:2101.03506.
[Vien:2021ciw]
What if a specific neutrinoless double beta decay is absent,
Takehiko Asaka, Hiroyuki Ishida, Kazuki Tanaka,
PTEP 2021 (2021) 063B01,arXiv:2012.13186.
[Asaka:2020lsx]
Left-right symmetry and leading contributions to neutrinoless double beta decay,
Gang Li, Michael Ramsey-Musolf, Juan Carlos Vasquez,
Phys.Rev.Lett. 126 (2021) 151801,arXiv:2009.01257.
[Li:2020flq]
Exploring $0\nu\beta\beta$ and Leptogenesis in the Alternative Left-Right Model,
Mariana Frank, Chayan Majumdar, P. Poulose, Supriya Senapati, Urjit A. Yajnik,
Phys.Rev. D102 (2020) 075020,arXiv:2008.12270.
[Frank:2020odd]
Numerical analysis of neutrino physics within a high scale supersymmetry model via machine learning,
Ying-Ke Lei, Chun Liu, Zhiqiang Chen,
Mod.Phys.Lett. A35 (2020) 2050218,arXiv:2006.01495.
[Lei:2020ucb]
Consequences of Neutrinoless Double Decays Dominated by Short Range Interactions,
C.Q. Geng, J.N. Ng,
Phys.Rev. D102 (2020) 013004,arXiv:2003.06948.
[Geng:2020gsu]
Flavoured CP-asymmetry at the effective neutrino mass floor,
Nimmala Narendra, Narendra Sahu, S. Uma Sankar,
Nucl.Phys. B962 (2021) 115268,arXiv:2002.08753.
[Narendra:2020hoz]
A comparative study of $0\nu\beta\beta$ decay in symmetric and asymmetric left-right model,
Chayan Majumdar, Sudhanwa Patra, Prativa Pritimita, Supriya Senapati,
Nucl.Phys. B954 (2020) 115000,arXiv:2001.09488.
[Senapati:2020alx]
Interference Effects for $0\nu\beta\beta$ Decay in the Left-Right Symmetric Model,
Fahim Ahmed, Mihai Horoi,
Phys.Rev. C101 (2020) 035504,arXiv:1912.02850.
[Ahmed:2019vum]
Quark Condensate Seesaw Mechanism for Neutrino Mass,
A. Babic, S. G. Kovalenko, M. I. Krivoruchenko, F. Simkovic,
Phys.Rev. D103 (2021) 015007,arXiv:1911.12189.
[Babic:2019zqu]
Renormalization Group Evolution of Dimension-seven Operators in Standard Model Effective Field Theory and Relevant Phenomenology,
Yi Liao, Xiao-Dong Ma,
JHEP 1903 (2019) 179,arXiv:1901.10302.
[Liao:2019tep]
Impact of RGE-induced $ \mu-\tau$ Reflection Symmetry Breaking on the Effective Majorana Neutrino Mass in $ 0\nu\beta\beta$ Decay,
Newton Nath,
Phys.Rev. D99 (2019) 035026,arXiv:1810.07938.
[Nath:2018zoi]
Lower Mass Bound on the $W^\prime$ mass via Neutrinoless Double Beta Decay in a 3-3-1 Model,
A. C. O. Santos, P. Vasconcelos,
Adv.High Energy Phys. 2018 (2018) 9132381,arXiv:1708.03955.
[Santos:2017jbv]
Neutrino Mass and Neutrinoless double beta decay in SO(10) GUT with Pati-Salam symmetry,
M. Sruthilaya, Rukmani Mohanta, Sudhanwa Patra,
J.Phys. G45 (2018) 075004,arXiv:1705.04125.
[Sruthilaya:2017vui]
One-loop radiative seesaw dark matter and neutrinoless double beta decay with two zero flavor neutrino mass texture,
Teruyuki Kitabayashi, Shinya Ohkawa, Masaki Yasue,
Int.J.Mod.Phys. A32 (2017) 1750186,arXiv:1703.09417.
[Kitabayashi:2017sjz]
Interference Between Light and Heavy Neutrinos for $0\nu\beta\beta$ Decay in the Left-Right Symmetric Model,
Fahim Ahmed, Andrei Neacsu, Mihai Horoi,
Phys.Lett. B769 (2017) 299-304,arXiv:1701.03177.
[Ahmed:2017pqa]
Neutrinoless double beta decay and chiral $SU(3)$,
V. Cirigliano, W. Dekens, M. Graesser, E. Mereghetti,
Phys.Lett. B769 (2017) 460-464,arXiv:1701.01443.
[Cirigliano:2017ymo]
A model of neutrino mass and dark matter with large neutrinoless double beta decay,
Julien Alcaide, Dipankar Das, Arcadi Santamaria,
JHEP 1704 (2017) 049,arXiv:1701.01402.
[Alcaide:2017xoe]
A neutrino mass-mixing sum rule from SO(10) and neutrinoless double beta decay,
F. Buccella et al.,
JHEP 1704 (2017) 004,arXiv:1701.00491.
[Buccella:2017jkx]
Predictions for the Majorana CP Violation Phases in the Neutrino Mixing Matrix and Neutrinoless Double Beta Decay,
I. Girardi, S. T. Petcov, A. V. Titov,
Nucl. Phys. B911 (2016) 754-804,arXiv:1605.04172.
[Girardi:2016zwz]
Dilepton bounds on left-right symmetry at the LHC run II and neutrinoless double beta decay,
Manfred Lindner, Farinaldo S. Queiroz, Werner Rodejohann,
Phys.Lett. B762 (2016) 190-195,arXiv:1604.07419.
[Lindner:2016lpp]
Implications of the Diboson Excess for Neutrinoless Double Beta Decay and Lepton Flavor Violation in TeV Scale Left Right Symmetric Model,
Ram Lal Awasthi, P. S. Bhupal Dev, Manimala Mitra,
Phys. Rev. D93 (2015) 011701,arXiv:1509.05387.
[Awasthi:2015ota]
TeV Lepton Number Violation: From Neutrinoless Double Beta Decay to the LHC,
Tao Peng, Michael J. Ramsey-Musolf, Peter Winslow,
Phys. Rev. D93 (2016) 093002,arXiv:1508.04444.
[Peng:2015haa]
Radiative Corrections to Light Neutrino Masses in Low Scale Type I Seesaw Scenarios and Neutrinoless Double Beta Decay,
J. Lopez-Pavon, E. Molinaro, S. T. Petcov,
JHEP 11 (2015) 030,arXiv:1506.05296.
[Lopez-Pavon:2015cga]
Left-Right Symmetric Models at the High-Intensity Frontier,
Oscar Castillo-Felisola, Claudio O. Dib, Juan C. Helo, Sergey G. Kovalenko, Sebastian E. Ortiz,
Phys. Rev. D92 (2015) 013001,arXiv:1504.02489.
[Castillo-Felisola:2015bha]
Degenerate spectrum in the neutrino mass anarchy with Wishart matrices and implications for $0\nu\beta\beta$ and $\delta_{\rm CP}$,
Kwang Sik Jeong, Naoya Kitajima, Fuminobu Takahashi,
Phy s.Rev. D91 (2015) 113010,arXiv:1412.4061.
[Jeong:2014qpa]
Relating quarks and leptons with the T7 flavour group,
Cesar Bonilla, Stefano Morisi, Eduardo Peinado, Jose W.F. Valle,
Phys.Lett. B742 (2015) 99-106,arXiv:1411.4883.
[Bonilla:2014xla]
Double Beta Decay, Lepton Flavour Violation and Collider Signatures of Left-Right Symmetric Models with Spontaneous D Parity Breaking,
Frank F. Deppisch, Tomas E. Gonzalo, Sudhanwa Patra, Narendra Sahu, Utpal Sarkar,
Phys. Rev. D91 (2015) 015018,arXiv:1410.6427.
[Deppisch:2014zta]
Resonant Slepton Production Yields CMS $eejj$ and $ejj$ Missing $p_T$ Excesses,
B.C. Allanach, S. Biswas, S. Mondal, M. Mitra,
Phys. Rev. D91 (2015) 015011,arXiv:1410.5947.
[Allanach:2014nna]
TeV Scale Left-Right Symmetry and Large Mixing Effects in Neutrinoless Double Beta Decay,
P. S. Bhupal Dev, Srubabati Goswami, Manimala Mitra,
Phys. Rev. D91 (2015) 113004,arXiv:1405.1399.
[BhupalDev:2014qbx]
Radiative neutrino mass generation linked to neutrino mixing and neutrinoless double beta decay predictions,
Michael Gustafsson, Jose M. No, Maximiliano A. Rivera,
Phys. Rev. D90 (2014) 013012,arXiv:1402.0515.
[Gustafsson:2014vpa]
Towards a realistic model of quarks and leptons, leptonic CP violation and neutrinoless $\beta\beta$-decay,
Y. H. Ahn, Paolo Gondolo,
Phys. Rev. D91 (2015) 013007,arXiv:1402.0150.
[Ahn:2014zja]
Proton decay and new contribution to neutrino-less double beta decay in SO(10) with low-mass Z-prime boson, observable n-nbar oscillation, lepton flavor violation, and rare kaon decay,
M. K. Parida, Ram Lal Awasthi, P. K. Sahu,
JHEP 1501 (2015) 045,arXiv:1401.1412.
[Parida:2014dba]
Type-II seesaw dominance in SO(10), low-mass Z', Lepton flavor violations, and new contributions to neutrino-less double beta decay,
Bidyut Prava Nayak, M. K. Parida,
Eur.Phys.J. C75 (2015) 183,arXiv:1312.3185.
[Nayak:2013dza]
On neutrinoless double beta decay in the minimal left-right symmetric model,
Wei-Chih Huang, J. Lopez-Pavon,
Eur.Phys.J. C74 (2014) 2853,arXiv:1310.0265.
[Huang:2013kma]
The Power of Neutrino Mass Sum Rules for Neutrinoless Double Beta Decay Experiments,
Stephen F. King, Alexander Merle, Alexander J. Stuart,
JHEP 1312 (2013) 005,arXiv:1307.2901.
[King:2013psa]
Lepton number and lepton flavour violation in left-right symmetric theories,
James Barry, Werner Rodejohann,
JHEP 1309 (2013) 153,arXiv:1303.6324.
[Barry:2013xxa]
Quark-Lepton Mass Relation and CKM mixing in an A4 Extension of the Minimal Supersymmetric Standard Model,
S. Morisi, M. Nebot, Ketan M. Patel, E. Peinado, J. W. F. Valle,
Phys. Rev. D88 (2013) 036001,arXiv:1303.4394.
[Morisi:2013eca]
Neutrino masses, dominant neutrinoless double beta decay, and observable lepton flavor violation in left-right models and SO(10) grand unification with low mass $ W_R, Z_R$ bosons,
Ram Lal Awasthi, M. K. Parida, Sudhanwa Patra,
JHEP 1308 (2013) 122,arXiv:1302.0672.
[Awasthi:2013ff]
Neutrinoless double beta decay and pseudo-Dirac neutrino mass predictions through inverse seesaw mechanism,
Ram Lal Awasthi, M. K. Parida, Sudhanwa Patra,
arXiv:1301.4784, 2013. [Awasthi:2013we]
Left-right models with light neutrino mass prediction and dominant neutrinoless double beta decay rate,
M. K. Parida, Sudhanwa Patra,
Phys. Lett B718 (2013) 1407-1412,arXiv:1211.5000.
[Parida:2012sq]
Left-Right Symmetry: from Majorana to Dirac,
Miha Nemevsek, Goran Senjanovic, Vladimir Tello,
Phys. Rev. Lett. 110 (2013) 151802,arXiv:1211.2837.
[Nemevsek:2012iq]
Linear Collider Test of a Neutrinoless Double Beta Decay Mechanism in left-right Symmetric Theories,
James Barry, Luis Dorame, Werner Rodejohann,
Eur. Phys. J. C72 (2012) 2023,arXiv:1203.3365.
[Barry:2012ga]
Lepton Number and Lepton Flavor Violation through Color Octet States,
Sandhya Choubey, Michael Duerr, Manimala Mitra, Werner Rodejohann,
JHEP 05 (2012) 017,arXiv:1201.3031.
[Choubey:2012ux]
A realistic model of neutrino masses with a large neutrinoless double beta decay rate,
Francisco del Aguila, Alberto Aparici, Subhaditya Bhattacharya, Arcadi Santamaria, Jose Wudka,
JHEP 05 (2012) 133,arXiv:1111.6960.
[delAguila:2011gr]
Constraining neutrinoless double beta decay,
L. Dorame, D. Meloni, S. Morisi, E. Peinado, J. W. F. Valle,
Nucl. Phys. B861 (2012) 259-270,arXiv:1111.5614.
[Dorame:2011eb]
R-Parity violating flavor symmetries, recent neutrino data and absolute neutrino mass scale,
Gautam Bhattacharyya, Heinrich Pas, Daniel Pidt,
Phys. Rev. D84 (2011) 113009,arXiv:1109.6183.
[Bhattacharyya:2011zv]
Predictions for Neutrino Masses, $\beta\beta_{0nu}$-Decay and Lepton Flavor Violation in a SUSY $SU(5) \times T^{\prime}$ Model of Flavour,
Mu-Chun Chen, Kalyana T. Mahanthappa, Aurora Meroni, S. T. Petcov,
arXiv:1109.0731, 2011. [Chen:2011vd]
Nonzero Theta13 for Neutrino Mixing in a Supersymmetric B-L Gauge Model with T_7 Lepton Flavor Symmetry,
Qing-Hong Cao, Shaaban Khalil, Ernest Ma, Hiroshi Okada,
Phys. Rev. D84 (2011) 071302,arXiv:1108.0570.
[Cao:2011cp]
Admixture of quasi-Dirac and Majorana neutrinos with tri-bimaximal mixing,
S. Morisi, E. Peinado,
Phys. Lett. B701 (2011) 451-457,arXiv:1104.4961.
[Morisi:2011ge]
Neutrino mass hierarchy and the origin of leptonic flavor mixing from the righthanded sector,
Philipp Leser, Heinrich Pas,
Phys. Rev. D84 (2011) 017303,arXiv:1104.2448.
[Leser:2011fz]
Neutrinoless double-beta decay and seesaw,
S.M. Bilenky, Amand Faessler, W. Potzel, F. Simkovic,
Eur. Phys. J. C71 (2011) 1754,arXiv:1104.1952.
[Bilenky:2011tr]
Testing the Bimodal/Schizophrenic Neutrino Hypothesis in Neutrino-less Double Beta Decay and Neutrino Telescopes,
James Barry, Rabindra N. Mohapatra, Werner Rodejohann,
Phys. Rev. D83 (2011) 113012,arXiv:1012.1761.
[Barry:2010en]
TeV Scale See-Saw Mechanisms of Neutrino Mass Generation, the Majorana Nature of the Heavy Singlet Neutrinos and $\beta\beta$-Decay,
A. Ibarra, E. Molinaro, S. T. Petcov,
JHEP 09 (2010) 108,arXiv:1007.2378.
[Ibarra:2010xw]
A direct link between neutrinoless double beta decay and leptogenesis in a seesaw model with $S_4$ symmetry,
Y. H. Ahn, Sin Kyu Kang, C. S. Kim, T. Phong Nguyen,
Phys. Rev. D82 (2010) 093005,arXiv:1004.3469.
[Ahn:2010nw]
Low-energy limits on heavy Majorana neutrino masses from the neutrinoless double-beta decay and non-unitary neutrino mixing,
Zhi-zhong Xing,
Phys. Lett. B679 (2009) 255-259,arXiv:0907.3014.
[Xing:2009ce]
Neutrinoless Double Beta Decay and $H^{\pm\pm}\to {l'}^\pm l^\pm$ Decays in the Higgs Triplet Model,
S. T. Petcov, H. Sugiyama, Y. Takanishi,
Phys. Rev. D80 (2009) 015005,arXiv:0904.0759.
[Petcov:2009zr]
LHC and B physics probes of neutrinoless double beta decay in supersymmetry without R-parity,
B. C. Allanach, C. H. Kom, H. Pas,
JHEP 10 (2009) 026,arXiv:0903.0347.
[Allanach:2009xx]
Large Hadron Collider probe of supersymmetric neutrinoless double beta decay mechanism,
B. C. Allanach, C. H. Kom, H. Pas,
Phys. Rev. Lett. 103 (2009) 091801,arXiv:0902.4697.
[Allanach:2009iv]
Coupling between cold dark matter and dark energy from neutrino mass experiments,
J. R. Kristiansen, G. La Vacca, L. P. L. Colombo, S. A. Bonometto,
New Astron. 15 (2010) 609-613,arXiv:0902.2737.
[Kristiansen:2009yx]
The Effect of Quark Sector Minimal Flavor Violation on Neutrinoless Double Beta Decay,
Brian Dudley, Christopher Kolda,
Phys. Rev. D79 (2009) 013014,arXiv:0810.2997.
[Dudley:2008vg]
Bilepton contributions to the neutrinoless double beta decay in the economical 3-3-1 model,
Dang Van Soa, Phung Van Dong, Trinh Thi Huong, Hoang Ngoc Long,
J. Exp. Theor. Phys. 108 (2009) 757-763,arXiv:0805.4456.
[VanSoa:2008bm]
Neutrino Mass Matrices With Vanishing Determinant,
Bhag C. Chauhan, Joao Pulido, Marco Picariello,
Phys. Rev. D73 (2006) 053003,arXiv:hep-ph/0602084.
[Chauhan:2006uf]
Predicting Neutrinoless Double Beta Decay,
M. Hirsch, Ernest Ma, J. W. F. Valle, A. Villanova del Moral,
Phys. Rev. D72 (2005) 091301,arXiv:hep-ph/0507148.
[Hirsch:2005mc]
Neutrino Decay and Neutrinoless Double Beta Decay in a 3-3- 1 Model,
Alex G. Dias, A. Doff, C. A. de S. Pires, P. S. Rodrigues da Silva,
Phys. Rev. D72 (2005) 035006,arXiv:hep-ph/0503014.
[Dias:2005jm]
The neutrinoless double $\beta$ decay and the neutrino mass hierarchy,
Naoyuki Haba, Tomoharu Suzuki,
Mod. Phys. Lett. A17 (2002) 865-874,arXiv:hep-ph/0202143.
[Haba:2002my]
Sneutrino oscillations and neutrinoless double beta decay,
M. Hirsch, H. V. Klapdor-Kleingrothaus, S. G. Kovalenko,
Phys. Lett. B403 (1997) 291-296. [Hirsch:1997is]
Impact of Neutrinoless Double Beta Decay on Models of Baryogenesis,
Frank F. Deppisch, Julia Harz, Wei-Chih Huang,
PoS EPS-HEP2015 (2015) 078,arXiv:1510.06305.
European Physical Society Conference on High Energy Physics 2015 (EPS-HEP 2015), Vienna, Austria, 22nd to 29th of July 2015. [Deppisch:2015sva]
Lepton Number Violation and the Baryon Asymmetry of the Universe,
Julia Harz, Wei-Chih Huang, Heinrich Pas,
Int.J.Mod.Phys. A30 (2015) 1530045,arXiv:1505.07632.
International Conference on Massive Neutrinos, Singapore 2015. [Harz:2015fwa]
Neutrinoless double $\beta$ decay with small neutrino masses,
F. del Aguila, A. Aparici, S. Bhattacharya, A. Santamaria, J. Wudka,
PoS Corfu2012 (2013) 028,arXiv:1305.4900.
Corfu Summer Institute 2012 'School and Workshops on Elementary Particle Physics and Gravity', September 8-27, 2012, Corfu, Greece. [delAguila:2013zba]
Heavy Sterile Neutrinos and Neutrinoless Double Beta Decay,
Manimala Mitra, Goran Senjanovic, Francesco Vissani,
arXiv:1205.3867, 2012.Moriond EW 2012. [Mitra:2012qz]
$0\nu2\beta$ Nuclear Matrix Elements and Neutrino Magnetic Moments,
M. Gozdz, W. A. Kaminski,
Int. J. Mod. Phys. E19 (2010) 692,arXiv:1201.1247.
Nuclear Physics Workshop in Kazimierz Dolny, Poland, 2009. [Gozdz:2010zz]
Neutrinoless double beta decay constrained by the existence of large extra dimensions,
Marek Gozdz, W. A. Kaminski,
Int. J. Mod. Phys. E13 (2004) 367,arXiv:1201.1238.
Nuclear Physics Workshop in Kazimierz Dolny, Poland, 2003. [Gozdz:2004yp]
Neutrinoless double beta decay: searching for new physics with comparison of different nuclei,
A. Ali, A. V. Borisov, D. V. Zhuridov,
arXiv:1112.4074, 2011.14th Lomonosov Conference on Elementary Particle Physics (Moscow, August 19-25, 2009). [Ali:2010vol]
Probing the Majorana nature of the neutrino with neutrinoless double beta decay,
S. Morisi,
J. Phys. Conf. Ser. 203 (2010) 012060,arXiv:0910.2542.
TAUP09, July 1-5, 2009 (Roma). [Morisi:2009sz]
Two-Neutrino Double Beta Decay with Sterile Neutrinos,
Patrick D. Bolton, Frank F. Deppisch, Lukas Graf, Fedor Simkovic,
Phys.Rev. D103 (2021) 055019,arXiv:2011.13387.
[Bolton:2020ncv]
A variety of lepton number violating processes related to Majorana neutrino masses,
C.S. Lim, E. Takasugi, M. Yoshimura,
Prog. Theor. Phys. 113 (2005) 1367,arXiv:hep-ph/0411139.
[Lim:2004tb]
Aluminum as a source of background in low background experiments,
B. Majorovits, I. Abt, M. Laubenstein, O. Volynets,
Nucl. Instrum. Meth. A647 (2011) 39-45,arXiv:1105.3591.
[Majorovits:2011mb]
Neutron Inelastic Scattering Processes as Background for Double-Beta Decay Experiments,
D.-M. Mei et al.,
Phys. Rev. C77 (2008) 054614,arXiv:0704.0306.
[Mei:2007zd]
Solar Neutrinos as Background to Neutrinoless Double-beta Decay Experiments,
S. R. Elliott, H. Ejiri,
AIP Conf.Proc. 1894 (2017) 020008,arXiv:1708.00927.
MEDEX 2017. [Elliott:2017bui]
Neutron- and muon-induced background in underground physics experiments,
V.A. Kudryavtsev, L. Pandola, V. Tomasello,
Eur. Phys. J. A36 (2008) 171-180,arXiv:0802.3566.
IV ILIAS Annual Meeting. [Kudryavtsev:2008fi]
Ordinary muon capture rates on $^{100}$Mo and $^{\rm nat}$Mo for astro-antineutrinos and double beta decays,
I. H. Hashim et al.,
arXiv:2302.05878, 2023. [Hashim:2023crb]
Correlations Between Neutrinoless Double-Beta, Double Gamow-Teller and Double-Magnetic Decays in the pnQRPA Framework,
Lotta Jokiniemi, Javier Menendez,
arXiv:2302.05399, 2023. [Jokiniemi:2023bes]
Predicting the neutrinoless double-beta decay matrix element of $^{136}$Xe using a statistical approach,
Mihai Horoi, Andrei Neacsu, Sabin Stoica,
arXiv:2302.03664, 2023. [Horoi:2023uah]
$0^+$ to $2^+$ neutrinoless double-$\beta$ decay of $^{76}$Ge, $^{82}$Se, $^{130}$Te and $^{136}$Xe in the microscopic interacting boson model,
J. Ferretti, R. Magana Vsevolodovna, J. Kotila, E. Santopinto,
arXiv:2301.02007, 2023. [Ferretti:2023hmv]
Two-neutrino $\beta\beta$ decay of $^{136}$Xe to the first excited $0^+$ state in $^{136}$Ba,
Lotta Jokiniemi, Beatriz Romeo, Catharina Brase, Jenni Kotila, Pablo Soriano, Achim Schwenk, Javier Menendez,
Phys.Lett.B 838 (2023) 137689,arXiv:2211.03764.
[Jokiniemi:2022yfr]
$0\nu\beta\beta$ to the first $2^+$ state with two-nucleon mechanism for L-R symmetric model,
Dong-Liang Fang, Amand Faessler,
Phys.Rev.C 107 (2023) 015501,arXiv:2208.08595.
[Fang:2022cos]
Neutrinoless $\beta\beta$-decay nuclear matrix elements from two-neutrino $\beta\beta$-decay data,
Lotta Jokiniemi, Beatriz Romeo, Pablo Soriano, Javier Menendez,
arXiv:2207.05108, 2022. [Jokiniemi:2022ayc]
A Statistical Analysis for the Neutrinoless Double-Beta Decay Matrix element of 48Ca,
M. Horoi, A. Neacsu, S. Stoica,
Phys.Rev.C 106 (2022) 054302,arXiv:2203.10577.
[Horoi:2022ley]
Shell-model calculation of $^{100}$Mo double-$\beta$ decay,
L. Coraggio, N. Itaco, G. De Gregorio, A. Gargano, R. Mancino, F. Nowacki,
Phys.Rev.C 105 (2022) 034312,arXiv:2203.01013.
[Coraggio:2022vgy]
Neutrinoless double-beta decay: combining quantum Monte Carlo and the nuclear shell model with the generalized contact formalism,
Ronen Weiss, Pablo Soriano, Alessandro Lovato, Javier Menendez, R. B. Wiringa,
Phys.Rev.C 106 (2022) 065501,arXiv:2112.08146.
[Weiss:2021rig]
Impact of the leading-order short-range nuclear matrix element on the neutrinoless double-beta decay of heavy nuclei,
Lotta Jokiniemi, Pablo Soriano, Javier Menendez,
Phys.Lett.B 823 (2021) 136720,arXiv:2107.13354.
[Jokiniemi:2021qqv]
$\gamma\gamma$ decay as a probe of neutrinoless $\beta\beta$ decay nuclear matrix elements,
B. Romeo, J. Menendez, C. Pena,
Phys.Lett.B 827 (2022) 136965,arXiv:2102.11101.
[Romeo:2021zrn]
Large-$N_c$ analysis of two-nucleon neutrinoless double beta decay and charge-independence-breaking contact terms,
Thomas R. Richardson, Matthias R. Schindler, Saori Pastore, Roxanne P. Springer,
Phys.Rev. C103 (2021) 055501,arXiv:2102.02184.
[Richardson:2021xiu]
The path from lattice QCD to the short-distance contribution to $0\nu\beta\beta$ decay with a light Majorana neutrino,
Zohreh Davoudi, Saurabh V. Kadam,
Phys.Rev.Lett. 126 (2021) 152003,arXiv:2012.02083.
[Davoudi:2020gxs]
Ab initio benchmarks of neutrinoless double beta decay in light nuclei with a chiral Hamiltonian,
J. M. Yao, A. Belley, R. Wirth, T. Miyagi, C. G. Payne, S. R. Stroberg, H. Hergert, J. D. Holt,
Phys.Rev. C103 (2021) 014315,arXiv:2010.08609.
[Yao:2020olm]
Ab initio neutrinoless double-beta decay matrix elements for 48Ca, 76Ge, and 82Se,
A. Belley, C. G. Payne, S. R. Stroberg, T. Miyagi, J. D. Holt,
Phys.Rev.Lett. 126 (2021) 042502,arXiv:2008.06588.
[Belley:2020ejd]
Two-neutrino double-beta decay in pionless effective field theory from a Euclidean finite-volume correlation function,
Zohreh Davoudi, Saurabh V. Kadam,
Phys.Rev. D102 (2020) 114521,arXiv:2007.15542.
[Davoudi:2020xdv]
Ab Initio Treatment of Collective Correlations and the Neutrinoless Double Beta Decay of $^{48}$Ca,
J. M. Yao, B. Bally, J. Engel, R. Wirth, T. R. Rodriguez, H. Hergert,
Phys.Rev.Lett. 124 (2020) 232501,arXiv:1908.05424.
[Yao:2019rck]
A renormalized approach to neutrinoless double-beta decay,
V. Cirigliano, W. Dekens, J. de Vries, M. L. Graesser, E. Mereghetti, S. Pastore, M. Piarulli, U. van Kolck, R. B. Wiringa,
Phys.Rev. C100 (2019) 055504,arXiv:1907.11254.
[Cirigliano:2019vdj]
Discrepancy between experimental and theoretical $\beta$-decay rates resolved from first principles,
P. Gysbers et al.,
Nature Phys. 15 (2019) 428-431,arXiv:1903.00047.
[Gysbers:2019uyb]
Computation of products of phase space factors and nuclear matrix elements for the Double Beta Decay,
Sabin Stoica,
Chin.Phys. C43 (2019) 064108,arXiv:1901.05718.
[Stoica:2019ikl]
Effective axial-vector current coupling and isoscalar pairing interaction for quasiparticle random-phase approximation approach to double-$\beta$ and $\beta$ decays,
J. Terasaki, Y. Iwata,
Phys.Rev. C100 (2019) 034325,arXiv:1901.05165.
[Terasaki:2019rbu]
Heavy physics contributions to neutrinoless double beta decay from QCD,
A. Nicholson et al.,
Phys.Rev.Lett. 121 (2018) 172501,arXiv:1805.02634.
[Nicholson:2018mwc]
Neutrinoless $\beta\beta$ decay mediated by the exchange of light and heavy neutrinos: The role of nuclear structure correlations,
Javier Menendez,
Comments Nucl.Part.Phys. 45 (2018) 014003,arXiv:1804.02105.
[Menendez:2017fdf]
The $0\nu\beta\beta$-decay nuclear matrix element for light and heavy neutrino mass mechanisms from deformed QRPA cacluations for $^{76}$Ge, $^{82}$Se, $^{130}$Te, $^{136}$Xe and $^{150}$Nd with isospin restoration,
Dong-Liang Fang, Amand Faessler, Fedor Simkovic,
Phys.Rev. C97 (2018) 045503,arXiv:1803.09195.
[Fang:2018tui]
Neutrinoless double beta decay in effective field theory: the light Majorana neutrino exchange mechanism,
V. Cirigliano, W. Dekens, E. Mereghetti, A. Walker-Loud,
Phys.Rev. C97 (2018) 065501,arXiv:1710.01729.
[Cirigliano:2017tvr]
Impact of the quenching of $g_{\rm A}$ on the sensitivity of $0\nu\beta\beta$ experiments,
Jouni Suhonen,
Phys.Rev. C96 (2017) 055501,arXiv:1708.09604.
[Suhonen:2017rjf]
Calculation of Gamow-Teller and Two-Neutrino Double-Beta Decay Properties for 130Te and 136Xe with a realistic nucleon-nucleon potential,
L. Coraggio, L. De Angelis, T. Fukui, A. Gargano, N. Itaco,
Phys.Rev. C95 (2017) 064324,arXiv:1703.05087.
[Coraggio:2017bqn]
Double-$\beta$ Decay Matrix Elements from Lattice Quantum Chromodynamics,
Brian C. Tiburzi, Michael L. Wagman, Frank Winter, Emmanuel Chang, Zohreh Davoudi, William Detmold, Kostas Orginos, Martin J. Savage, Phiala E. Shanahan,
Phys.Rev. D96 (2017) 054505,arXiv:1702.02929.
[Tiburzi:2017iux]
Nuclear matrix element of neutrinoless double-$\beta$ decay: Relativity and short-range correlations,
L. S. Song, J. M. Yao, P. Ring, J. Meng,
Phys. Rev. C95 (2017) 024305,arXiv:1702.02448.
[Song:2017ktj]
Two-neutrino $\beta\beta$ decays and low-lying Gamow-Teller $\beta$ strength functions in the mass range A=70-76,
D. S. Delion, J. Suhonen,
Phys. Rev. C95 (2017) 034330. [Delion:2017bie]
Charge-exchange reactions on double-$\beta$ decaying nuclei populating $ J^\pi = 2^- $ states,
D. Frekers, M. Alanssari, H. Ejiri, M. Holl, A. Poves, J. Suhonen,
Phys. Rev. C95 (2017) 034619. [Frekers:2017kta]
Electron spectra in forbidden $\beta$ decays and the quenching of the weak axial-vector coupling constant $g_{A}$,
Joel Kostensalo, Mikko Haaranen, Jouni Suhonen,
Phys. Rev. C95 (2017) 044313. [Kostensalo:2017jgw]
$g_A$-driven shapes of electron spectra of forbidden $\beta$ decays in the nuclear shell model,
Joel Kostensalo, Jouni Suhonen,
Phys. Rev. C96 (2017) 024317. [Kostensalo:2017xxq]
Nuclear structure calculations for two-neutrino double-beta decay,
P. Sarriguren, O. Moreno, E. Moya de Guerra,
Adv.High Energy Phys. 2016 (2016) 6391052,arXiv:1609.05648.
[Sarriguren:2016kls]
Shell model studies of competing mechanisms to the neutrinoless double-beta decay in $^{124}$Sn, $^{130}$Te, and $^{136}$Xe,
Andrei Neacsu, Mihai Horoi,
Adv.High Energy Phys. 2016 (2016) 1903767,arXiv:1607.01295.
[Neacsu:2016njp]
Statistical analysis of beta decays and the effective value of g_A in the pnQRPA framework,
Frank F. Deppisch, Jouni Suhonen,
Phys. Rev. C94 (2016) 055501,arXiv:1606.02908.
[Deppisch:2016rox]
Large-scale shell-model analysis of the neutrinoless $\beta\beta$ decay of $^{48}$Ca,
Y. Iwata et al.,
Phys. Rev. Lett. 116 (2016) 112502,arXiv:1602.07822.
[Iwata:2016cxn]
Analysis of mechanisms that could contribute to the neutrinoless double-beta decay,
Mihai Horoi, Andrei Neacsu,
Phys. Rev. D93 (2016) 113014,arXiv:1511.00670.
[Horoi:2015gdv]
Testing the importance of collective correlations in neutrinoless $\beta\beta$ decay,
J. Menendez, N. Hinohara, J. Engel, G. Martinez-Pinedo, T. R. Rodriguez,
Phys. Rev. C93 (2016) 014305,arXiv:1510.06824.
[Menendez:2015kxa]
Nuclear matrix elements in neutrinoless double beta decay: beyond mean-field covariant density functional theory,
J. M. Yao, L. S. Song, K. Hagino, P. Ring, J. Meng,
Phys. Rev. C91 (2015) 024316,arXiv:1410.6326.
[Yao:2014uta]
Relativistic description of nuclear matrix elements in neutrinoless double-$\beta$ decay,
L. S. Song, J. M. Yao, P. Ring, J. Meng,
Phys. Rev. C90 (2014) 054309,arXiv:1407.1368.
[Song:2014vra]
Systematic Law for Half-lives of Double $\beta$-decay with Two Neutrinos,
Yuejiao Ren, Zhongzhou Ren,
Phys. Rev. C89 (2014) 064603,arXiv:1406.0923.
[Ren:2014fva]
Correlations and neutrinoless $\beta\beta$ decay nuclear matrix elements of $pf$-shell nuclei,
Javier Menendez, Tomas R. Rodriguez, Gabriel Martinez-Pinedo, Alfredo Poves,
Phys. Rev. C90 (2014) 024311,arXiv:1401.0651.
[Menendez:2014ena]
Shape and pairing fluctuations effects on neutrinoless double beta decay nuclear matrix elements,
Nuria Lopez Vaquero, Tomas R. Rodriguez, J. Luis Egido,
Phys. Rev. Lett. 111 (2013) 142501,arXiv:1401.0650.
[LopezVaquero:2013yji]
Study of Nuclear Effects in the Computation of the $0{\nu}{\beta}{\beta}$ Decay Matrix Elements,
Andrei Neacsu, Sabin Stoica,
J. Phys. G41 (2013) 015201,arXiv:1308.1047.
[Neacsu:2013pua]
Phase space factors for $\beta^+\beta^+$ decay and competing modes of double-$\beta$ decay,
J. Kotila, F. Iachello,
Phys. Rev. C87 (2013) 024313,arXiv:1303.4124.
[Kotila:2013gea]
Large-Scale Calculations of the Double-Beta Decay of 76Ge, 130Te, 136Xe, and 150Nd in the Deformed Self-Consistent Skyrme Quasiparticle Random-Phase Approximation,
M.T. Mustonen, J. Engel,
Phys. Rev. C87 (2013) 064302,arXiv:1301.6997.
[Mustonen:2013zu]
Matrix elements of four-quark operators and $\Delta L=2$ hyperon decays,
C. Barbero, Ling-Fong Li, G. Lopez Castro, A. Mariano,
Phys. Rev. D87, 036010 (2013) 036010,arXiv:1301.3448.
[Barbero:2013fc]
Addendum to: QRPA uncertainties and their correlations in the analysis of neutrinoless double beta decay,
Amand Faessler et al.,
Phys. Rev. D87 (2013) 053002,arXiv:1301.1587.
[Faessler:2013hz]
Empirical Survey of Neutrinoless Double Beta Decay Matrix Elements,
R. G. H. Robertson,
Mod.Phys.Lett. A28 (2013) 1350021,arXiv:1301.1323.
[Robertson:2013cy]
Novel shell-model analysis of the $^{136}$Xe double beta decay nuclear matrix elements,
M. Horoi, B. A. Brown,
Phys. Rev. Lett. 110 (2013) 222502,arXiv:1301.0256.
[Horoi:2013jx]
Neutrinoless double-positron decay and positron-emitting electron capture in the interacting boson model,
J. Barea, J. Kotila, F. Iachello,
Phys. Rev. C87 (2013) 057301. [Barea:2013wga]
Probing the quenching of g$_{A}$ by single and double beta decays,
Jouni Suhonen, Osvaldo Civitarese,
Phys.Lett. B725 (2013) 153-157. [Suhonen:2013laa]
Neutrinoless $\beta\beta$ decay nuclear matrix elements in an isotopic chain,
Tomas R. Rodriguez, Gabriel Martinez-Pinedo,
Phys.Lett. B719 (2013) 174-178,arXiv:1210.3225.
[Rodriguez:2012rv]
Fast, Efficient Calculations of the Two-Body Matrix Elements of the Transition Operators for Neutrinoless Double Beta Decay,
Andrei Neacsu, Sabin Stoica, Mihai Horoi,
Phys. Rev. C86 (2012) 067304,arXiv:1208.5728.
[Neacsu:2012id]
Constraining the $0{\nu}2{\beta}$ matrix elements by nuclear structure observables,
S.J. Freeman, J.P. Schiffer,
J. Phys. G39 (2012) 124004,arXiv:1207.4290.
[Freeman:2012hr]
A new Skyrme interaction with improved spin-isospin properties,
X. Roca-Maza, G. Colo', H. Sagawa,
Phys. Rev. C86 (2012) 031306,arXiv:1205.3958.
[Roca-Maza:2012dhp]
Shell Model description of the beta beta decay of 136Xe,
Etienne Caurier, Frederic Nowacki, Alfredo Poves,
Phys. Lett. B711 (2012) 62-64,arXiv:1112.5039.
[Caurier:2011gi]
Evaluation of the resonance enhancement effect in neutrinoless double-electron capture in 152Gd, 164Er and 180W atoms,
Dong-Lianf Fang et al.,
Phys. Rev. C85 (2012) 035503,arXiv:1111.6862.
[Fang:2011et]
Uncertainties in nuclear transition matrix elements for neutrinoless $\beta \beta $ decay within the PHFB model,
P.K. Rath, R. Chandra, K. Chaturvedi, P.K. Raina, J.G. Hirsch,
Phys. Rev. C82 (2010) 064310,arXiv:1104.3965.
[Rath:2010zz]
Chiral two-body currents in nuclei: Gamow-Teller transitions and neutrinoless double-beta decay,
J. Menendez, D. Gazit, A. Schwenk,
Phys. Rev. Lett. 107 (2011) 062501,arXiv:1103.3622.
[Menendez:2011qq]
Multi-isotope degeneracy of neutrinoless double beta decay mechanisms in the quasi-particle random phase approximation,
Amand Faessler, G.L. Fogli, E. Lisi, A.M. Rotunno, F. Simkovic,
Phys. Rev. D83 (2011) 113015,arXiv:1103.2504.
[Faessler:2011rv]
Effects of orbital occupancies and spin-orbit partners II: $0{\nu}{\beta}{\beta}$ decays of Ge-76, Se-82 and Xe-136 to first excited $0^+$ states,
Jouni Suhonen,
Nucl. Phys. A853 (2011) 36-60. [Suhonen:2011zza]
Relation between the $0\nu\beta\beta$ and $2\nu\beta\beta$ nuclear matrix elements revisited,
Fedor Simkovic, Rastislav Hodak, Amand Faessler, Petr Vogel,
Phys. Rev. C83 (2011) 015502,arXiv:1012.0512.
[Simkovic:2010zw]
Energy density functional study of nuclear matrix elements for neutrinoless $\beta\beta$ decay,
Tomas R. Rodriguez, G. Martinez-Pinedo,
Phys. Rev. Lett. 105 (2010) 252503,arXiv:1008.5260.
[Rodriguez:2010mn]
Effects of orbital occupancies and spin-orbit partners on $0{\nu}{\beta}{\beta}$-decay rates,
J. Suhonen, O. Civitarese,
Nucl. Phys. A847 (2010) 207-232. [Suhonen:2010zzc]
Shell Model Analysis of the Neutrinoless Double Beta Decay of Ca-48,
Mihai Horoi, Sabin Stoica,
Phys. Rev. C81 (2010) 024321,arXiv:0911.3807.
[Horoi:2009gz]
Running sums for $2\nu\beta\beta$-decay matrix elements within the QRPA with account for deformation,
Dongliang Fang, Amand Faessler, Vadim Rodin, Mohamed Saleh Yousef, Fedor Simkovic,
Phys. Rev. C81 (2010) 037303,arXiv:0910.3090.
[Fang:2009ic]
Deformed shell model results for two neutrino positron double beta decay of $^{74}$Se,
A. Shukla, R. Sahu, V. K. B. Kota,
Phys. Rev. C80 (2009) 057305,arXiv:0907.0932.
[Shukla:2009ed]
Deformation effects and neutrinoless positron $\beta \beta $ decay of $^{96}$Ru, $^{102}$Pd, $^{106}$Cd, $^{124}$Xe, $^{130}$Ba and $^{156}$Dy isotopes within Majorona neutrino mass mechanism,
P. K. Rath, R. Chandra, K. Chaturvedi, P. K. Raina, J. G. Hirsch,
Phys. Rev. C80 (2009) 044303,arXiv:0906.4476.
[Rath:2009dr]
The Occupancies of individual orbits and the nuclear matrix element of the Ge-76 neutrinoless beta beta decay,
J. Menendez, A. Poves, E. Caurier, F. Nowacki,
Phys. Rev. C80 (2009) 048501,arXiv:0906.0179.
[Menendez:2009xa]
The 0nbb-decay nuclear matrix elements with self-consistent short-range correlations,
Fedor Simkovic, Amand Faessler, Herbert Muther, Vadim Rodin, Markus Stauf,
Phys. Rev. C79 (2009) 055501,arXiv:0902.0331.
[Simkovic:2009pp]
Two-neutrino double-beta decay of Ge-76 in an anharmonic vibrator approach,
J. Kotila, J. Suhonen, D.S. Delion,
J. Phys. G36 (2009) 045106. [Kotila:2009zz]
$0\nu\beta\beta$ nuclear matrix elements and the occupancy of individual orbits,
Fedor Simkovic, Amand Faessler, Petr Vogel,
Phys. Rev. C79 (2009) 015502,arXiv:0812.0348.
[Simkovic:2008cu]
Single and low-lying states dominance in two-neutrino double-beta decay,
O. Moreno et al.,
J. Phys. G (2009) Nucl. Part. Phys.36:015106,arXiv:0811.0319.
[Moreno:2008dz]
QRPA uncertainties and their correlations in the analysis of neutrinoless double beta decay,
Amand Faessler et al.,
Phys. Rev. D79 (2009) 053001,arXiv:0810.5733.
[Faessler:2008xj]
Nuclear Structure Relevant to Neutrinoless Double Beta Decay: the Valence Protons in 76Ge and 76Se,
B. P. Kay et al.,
Phys. Rev. C79 (2009) 021301,arXiv:0810.4108.
[Kay:2008dg]
Neutrinoless beta-beta matrix element of 76Ge from spectroscopic data,
J. Suhonen, O. Civitarese,
Phys.Lett. B668 (2008) 277-281,arXiv:0803.1375.
[Suhonen:2008zz]
Disassembling the Nuclear Matrix Elements of the Neutrinoless beta beta Decay,
J. Menendez, A. Poves, E. Caurier, F. Nowacki,
Nucl. Phys. A818 (2009) 139-151,arXiv:0801.3760.
[Menendez:2008jp]
Influence of the hexadecapole deformation on the two neutrino double-$\beta$ decay,
R. Chandra, P. K. Rath, P. K. Raina, J. G. Hirsch,
arXiv:0712.3966, 2007. [Chandra:2007za]
Overconstrained estimates of neutrinoless double beta decay within the QRPA,
Amand Faessler et al.,
J. Phys. G35 (2008) 075104,arXiv:0711.3996.
[Faessler:2007hu]
Anatomy of nuclear matrix elements for neutrinoless double-beta decay,
Fedor Simkovic, Amand Faessler, Vadim Rodin, Petr Vogel, Jonathan Engel,
Phys. Rev. C77 (2008) 045503,arXiv:0710.2055.
[Simkovic:2007vu]
The influence of pairing on the nuclear matrix elements of the neutrinoless double beta decays,
E. Caurier, J. Menendez, F. Nowacki, A. Poves,
Phys. Rev. Lett. 100 (2008) 052503,arXiv:0709.2137.
[Caurier:2007wq]
Assessment of uncertainties in QRPA 0nu beta beta-decay nuclear matrix elements,
V.A. Rodin, A. Faessler, F. Simkovic, P. Vogel,
Nucl. Phys. A766 (2006) 107-131,arXiv:0706.4304.
[Rodin:2006bbw]
Improved short-range correlations and 0 neutrino beta beta nuclear matrix elements of Ge-76 and Se-82,
Markus Kortelainen, Jouni Suhonen,
Phys. Rev. C75 (2007) 051303,arXiv:0705.0469.
[Kortelainen:2007rh]
Short-range correlations and neutrinoless double beta decay,
M. Kortelainen, O. Civitarese, J. Suhonen, J. Toivanen,
Phys.Lett. B647 (2007) 128-132,arXiv:nucl-th/0701052.
[Kortelainen:2007rn]
Study of two neutrino $\beta^+\beta^+/\beta^+$ EC/ECEC decay of $^{124,126}\text{Xe}$ and $^{130,132}\text{Ba}$ for $ 0^+ \to 0^+ $ transition in PHFB model,
A. Shukla, P. K. Raina, R. Chandra, P. K. Rath, J. G. Hirsch,
J. Phys. G: Nucl. Part. Phys. 34 (2007) 549-563. [Shukla:2004zp]
The $ 0^+ \to 0^+ $ positron double-beta decay with emission of two neutrinos in the nuclei Ru-96, Pd-102, Cd-106 and Cd-108,
P. K. Raina, A. Shukla, S. Singh, P. K. Rath, J. G. Hirsch,
Eur. Phys. J. A28 (2006) 27-36,arXiv:nucl-th/0601024.
[Raina:2006ty]