Fundamental Neutrino Properties

Filter this page

(Note: The process can take some time.)

EXPAND ALL
COMPRESS ALL

References

1 - Books

[1-1]
Introduction to the Physics of Massive and Mixed Neutrinos, Samoil Bilenky, Springer, 2018. Lecture Notes in Physics, Volume 947. https://doi.org/10.1007/978-3-319-74802-3.
[Bilenky:2018hbz]
[1-2]
Neutrinos in high energy and astroparticle physics, Jorge Romao, Jose W. F. Valle, Wiley, 2015. ISBN 978-3-527-41197-9. http://eu.wiley.com/WileyCDA/WileyTitle/productCd-3527411976.html.
[Romao-Valle-2015]
[1-3]
The physics of neutrinos, Vernon Barger, Danny Marfatia, Kerry Whisnant, Princeton University Press, 2012. ISBN 978-0691128535. http://press.princeton.edu/titles/9913.html.
[Barger:2012pxa]
[1-4]
Neutrinos in particle physics, astronomy and cosmology, Zhi-zhong Xing, Shun Zhou, Zhejiang University Press, Hangzhou, 2011. ISBN: 978-3-642-17560-2. https://link.springer.com/book/10.1007/978-3-642-17560-2.
[Xing:2011zza]
[1-5]
Neutrino Physics, K. Zuber, CRC Press, Boca Raton, USA, 2011. ISBN 9781420064711. https://www.routledge.com/Neutrino-Physics/Zuber/p/book/9781032242200.
[Zuber-Book:2011]
[1-6]
Fundamentals of Neutrino Physics and Astrophysics, C. Giunti, C. W. Kim, Oxford University Press, Oxford, UK, 2007. ISBN 978-0-19-850871-7. https://global.oup.com/academic/product/fundamentals-of-neutrino-physics-and-astrophysics-9780198508717.
[Giunti:2007ry]
[1-7]
Massive Neutrinos in Physics and Astrophysics, R. N. Mohapatra, P. B. Pal, World Scientific, 2004. Third Edition, Lecture Notes in Physics, Vol. 72. http://www.worldscientific.com/books/physics/5024.html.
[Mohapatra-Pal:2004]
[1-8]
Physics of neutrinos and applications to astrophysics, M. Fukugita, T. Yanagida, Springer, 2003. https://link.springer.com/book/10.1007/978-3-662-05119-1.
[Fukugita:2003en]
[1-9]
Stars as laboratories for fundamental physics: The astrophysics of neutrinos, axions, and other weakly interacting particles, G.G. Raffelt, University of Chicago Press, 1996. ISBN 0-226-70272-3. http://wwwth.mpp.mpg.de/members/raffelt/pages/mybook.html.
[Raffelt:1996wa]
[1-10]
Neutrinos in Physics and Astrophysics, C. W. Kim, A. Pevsner, Harwood Academic Press, 1993. Contemporary Concepts in Physics, Vol. 8.
[CWKim-book]
[1-11]
Physics of massive neutrinos, F. Boehm, P. Vogel, Cambridge University Press, 1992.
[Boehm:1992nn]
[1-12]
The Physics of massive neutrinos, B. Kayser, F. Gibrat-Debu, F. Perrier, 1989. World Sci.Lect.Notes Phys. 25.
[Kayser:1989iu]

2 - Reviews

[2-1]
Neutrinos: Majorana or Dirac?, S. Bilenky, arXiv:2008.02110, 2020.
[Bilenky:2020vjk]
[2-2]
On the Properties of Neutrinos, A. Baha Balantekin, Boris Kayser, Ann.Rev.Nucl.Part.Sci. 68 (2018) 313-338, arXiv:1805.00922.
[BahaBalantekin:2018ppj]
[2-3]
Neutrino in Standard Model and beyond, S. M. Bilenky, Phys.Part.Nucl. 46 (2015) 475-496, arXiv:1501.00232.
[Bilenky:2014ema]
[2-4]
Majorana neutrinos and other Majorana particles: Theory and experiment, Evgeny Akhmedov, arXiv:1412.3320, 2014.
[Akhmedov:2014kxa]
[2-5]
Majorana and Condensed Matter Physics, Frank Wilczek, arXiv:1404.0637, 2014.
[Wilczek:2014lwa]
[2-6]
Colloquium: Majorana Fermions in nuclear, particle and solid-state physics, S.R. Elliott, M. Franz, Rev.Mod.Phys. 87 (2015) 137, arXiv:1403.4976.
[Elliott:2014iha]
[2-7]
Neutrino Spectroscopy with Atoms and Molecules, Atsushi Fukumi et al., PTEP 2012 (2012) 04D002, arXiv:1211.4904.
[Fukumi:2012rn]
[2-8]
On Invariants of Quark and Lepton Mass Matrices in the Standard Model, Cecilia Jarlskog, Comptes Rendus Physique 13 (2012) 111-114, arXiv:1102.2823.
[Jarlskog:2011qa]
[2-9]
Dirac, Majorana and Weyl fermions, Palash B. Pal, Am. J. Phys. 79 (2011) 485-498, arXiv:1006.1718.
[Pal:2010ih]
[2-10]
A direct road to Majorana fields, Andreas Aste, Symmetry 2 (2010) 1776-1809, arXiv:0806.1690.
[Aste:2008dc]
[2-11]
Neutrino masses and mixings and..., Alessandro Strumia, Francesco Vissani, arXiv:hep-ph/0606054, 2006.
[Strumia:2006db]
[2-12]
Neutrino Majorana, S.M. Bilenky, arXiv:hep-ph/0605172, 2006.
[Bilenky:2006we]
[2-13]
Majorana neutrino mixing, S. M. Bilenky, J. Phys. G32 (2006) R127, arXiv:hep-ph/0511227.
[Bilenky:2005cp]
[2-14]
Theory of Neutrinos: A White Paper, R.N. Mohapatra et al., Rept. Prog. Phys. 70 (2007) 1757-1867, arXiv:hep-ph/0510213.
[Mohapatra:2005wg]
[2-15]
Neutrinos: A brief review, S. M. Bilenky, Mod. Phys. Lett. A19 (2004) 2451-2477.
[Bilenky:2004pp]
[2-16]
Neutrino Mass, Mixing, and Flavor Change, B. Kayser, Phys. Lett. B592 (2004). The Review of Particle Properties 2004. http://pdg.lbl.gov/2005/reviews/numixrpp.pdf.
[Kayser:2004pv]
[2-17]
Neutrino Mixing, C. Giunti, M. Laveder, arXiv:hep-ph/0310238, 2003. In 'Developments in Quantum Physics - 2004', p. 197-254, edited by F. Columbus and V. Krasnoholovets, Nova Science, Hauppauge, NY. http://novapublishers.com/catalog/product_info.php?products_id=1633.
[Giunti:2003qt]
[2-18]
Flavor Mixing and CP Violation of Massive Neutrinos, Z.-Z. Xing, Int. J. Mod. Phys. A19 (2004) 1, arXiv:hep-ph/0307359.
[Xing:2003ez]
[2-19]
Absolute values of neutrino masses: Status and prospects, S. M. Bilenky, C. Giunti, J. A. Grifols, E. Masso, Phys. Rep. 379 (2003) 69-148, arXiv:hep-ph/0211462.
[Bilenky:2002aw]
[2-20]
Neutrinos in cosmology, A. D. Dolgov, Phys. Rep. 370 (2002) 333-535, arXiv:hep-ph/0202122.
[Dolgov:2002wy]
[2-21]
Neutrino Masses and Mixing: Evidence and Implications, M.C. Gonzalez-Garcia, Y. Nir, Rev. Mod. Phys. 75 (2003) 345-402, arXiv:hep-ph/0202058.
[Gonzalez-Garcia:2002bkq]
[2-22]
Neutrino Physics as Explored by Flavor Change, B. Kayser, Phys. Rev. D66 (2002) 010001. The Review of Particle Properties 2002. http://pdg.lbl.gov/2002/neutrino_mixing_s805.pdf.
[Kayser:2002ed]
[2-23]
Lepton numbers in the framework of neutrino mixing, S. M. Bilenky, C. Giunti, Int. J. Mod. Phys. A16 (2001) 3931-3949, arXiv:hep-ph/0102320.
[Bilenky:2001yh]
[2-24]
Finally neutrino has mass?, S. M. Bilenky, C. Giunti, C. W. Kim, Int. J. Mod. Phys. A15 (2000) 625-650, arXiv:hep-ph/9902462.
[Bilenky:1999mf]
[2-25]
Phenomenology of neutrino oscillations, S. M. Bilenky, C. Giunti, W. Grimus, Prog. Part. Nucl. Phys. 43 (1999) 1, arXiv:hep-ph/9812360.
[Bilenky:1998dt]
[2-26]
Electric charge quantization, Robert Foot, H. Lew, R. R. Volkas, J. Phys. G19 (1993) 361-372, arXiv:hep-ph/9209259.
[Foot:1992ui]
[2-27]
Gauge theories and the physics of neutrino mass, J. W. F. Valle, Prog. Part. Nucl. Phys. 26 (1991) 91-171.
[Valle:1991pk]
[2-28]
The number of neutrino species, D. Denegri, B. Sadoulet, M. Spiro, Rev. Mod. Phys. 62 (1990) 1.
[Denegri:1989if]
[2-29]
Introduction to Majorana masses, Philip D. Mannheim, Int.J.Theor.Phys. 23 (1984) 643.
[Mannheim:1980eb]

3 - Reviews - Talks

[3-1]
On the Origin of Majorana Neutrino Masses, S. M. Bilenky, arXiv:2010.05336, 2020. 5-th International Conference on Particle Physics and Astrophysics, Moscow, Russia, 5-9 October 2020.
[Bilenky:2020zdq]
[3-2]
Majorana Fermions in Particle Physics, Solid State and Quantum Information, L. Borsten, M. J. Duff, Subnucl.Ser. 53 (2017) 77-121, arXiv:1612.01371. Erice International School of Subnuclear Physics, 53rd Course: 'The Future of Our Physics Including New Frontiers', and Celebration of the Triumph of Ettore Majorana, Erice, 24 June-3 July 2015.
[Borsten:2016mfn]
[3-3]
Selected Topics in Majorana Neutrino Physics, Luciano Maiani, Riv.Nuovo Cim. 37 (2014) 417-466, arXiv:1406.5503. Lectures Notes from the Ettore Majorana Lectures, Diaprtimento di Fisica, Universita' Federico II, Napoli, March 2014. Rivista del Nuovo Cimento, 2014.
[Maiani:2014vqa]
[3-4]
The Physics of Neutrinos, Renata Zukanovich Funchal, Benoit Schmauch, Gaelle Giesen, arXiv:1308.1029, 2013. Course given at Institut de Physique Theorique of CEA/Saclay in January/February 2013.
[ZukanovichFunchal:2013tdb]
[3-5]
Neutrino physics, P. Hernandez, arXiv:1010.4131, 2010. 5th CERN-Latin-American School of High-Energy Physics, Recinto Quirama, Colombia, 15 - 28 Mar 2009.
[Hernandez:2010mi]
[3-6]
Are neutrinos their own antiparticles?, Boris Kayser, J. Phys. Conf. Ser. 173 (2009) 012013, arXiv:0903.0899. Carolina International Symposium on Neutrino Physics.
[Kayser:2009zz]
[3-7]
Neutrino Oscillation Phenomenology, Boris Kayser, arXiv:0804.1121, 2008.
[Kayser:2008ev]
[3-8]
Are Neutrinos Majorana Particles?, G. Rajasekaran, arXiv:0803.4387, 2008. Workshop on Neutrinoless Double Beta Decay (NDBD07) at Tata Institute of Fundamental Research, Mumbai, October 2007.
[Rajasekaran:2008ct]
[3-9]
Neutrino Intrinsic Properties: The Neutrino-Antineutrino Relation, Boris Kayser, Phys. Scripta T121 (2005) 156, arXiv:hep-ph/0504052. Nobel Symposium on Neutrino Physics. http://www.physics.kth.se/nobel2004/talks/B_Kayser-Neutrino_intrinsic_properties.pdf.
[Kayser:2005cy]

4 - Habilitation, PhD and Master Theses

[4-1]
Non-Unitary $3 \times 3$ Mixing in Majorana Neutrinos and Vector-like Quark Models, Pedro M. F. Pereira, arXiv:2401.15049, 2024.
[Pereira:2024cud]
[4-2]
Model Independent Explorations of Majorana Neutrino Mass Origins, James Jenkins, arXiv:0805.0303, 2008.
[Jenkins:2008fx]

5 - Two-Component Theory of Massless Neutrinos - Original Papers

[5-1]
On the conservation laws for weak interactions, L. Landau, Nucl. Phys. 3 (1957) 127.
[Landau:1957tp]
[5-2]
Parity nonconservation and a two component theory of the neutrino, T. D. Lee, C. N. Yang, Phys. Rev. 105 (1957) 1671.
[Lee:1957qr]
[5-3]
On parity conservation and neutrino mass, A. Salam, Nuovo Cim. 5 (1957) 299.
[Salam:1957st]

6 - Fundamental Papers - Experiment

[6-1]
Observation of high-energy neutrino reactions and the existence of two kinds of neutrinos, G. Danby et al., Phys. Rev. Lett. 9 (1962) 36-44.
[Danby:1962nd]
[6-2]
Detection of the free anti-neutrino, F. Reines, C. L. Cowan, F. B. Harrison, A. D. McGuire, H. W. Kruse, Phys. Rev. 117 (1960) 159-173.
[Reines:1960pr]
[6-3]
Helicity of neutrinos, M. Goldhaber, L. Grodzins, A. W. Sunyar, Phys. Rev. 109 (1958) 1015-1017.
From the article: we find that the neutrino is left-handed, i.e. $ \mathbf{\sigma}_{\nu} \cdot \hat{\mathbf{p}}_{\nu} = - 1 $ (negative helicity).
[Goldhaber:1958nb]
[6-4]
A Proposed experiment to detect the free neutrino, F. Reines, C. L. Cowan, Phys. Rev. 90 (1953) 492-493.
[Reines:1953kf]
[6-5]
Detection of the free neutrino, F. Reines, C. L. Cowan, Phys. Rev. 92 (1953) 830-831.
[Reines:1953pu]

7 - Fundamental Papers - Theory

[7-1]
On the Mikheev-Smirnov-Wolfenstein (MSW) mechanism of amplification of neutrino oscillations in matter, P. Langacker, S. T. Petcov, G. Steigman, S. Toshev, Nucl. Phys. B282 (1987) 589.
Comment: It is shown that the Dirac or Majorana nature of neutrinos cannot be distinguished in neutrino oscillations in matter, as well as in vacuum, because neutrino oscillations do not depend on the Majorana phases. [C.G.].
[Langacker:1986jv]
[7-2]
The phenomenology of neutrino oscillations, I. Yu. Kobzarev, B. V. Martemyanov, L. B. Okun, M. G. Shchepkin, Sov. J. Nucl. Phys. 32 (1980) 823.
[Kobzarev:1980nk]
[7-3]
Selection rules for the $\beta$-disintegration, G. Gamow, E. Teller, Phys. Rev. 49 (1936) 895-899.
[Gamow:1936jk]
[7-4]
Attempt at a theory of $\beta$ rays, E. Fermi, Z. Phys. 88 (1934) 161-177. In German.
[Fermi:1934hr]
[7-5]
Attempt at a theory of $\beta$ rays, E. Fermi, Nuovo Cim. 11 (1934) 1-19. In Italian.
[Fermi:1934sk]
[7-6]
Attempt at a theory of the emission of $\beta$ rays, E. Fermi, Ricerca Scientifica 4 (1933) 491. In Italian.
[Fermi-1933]

8 - Fundamental Papers - Theory - Nature

[8-1]
Some implications of the CP invariance for mixing of Majorana neutrinos, S. M. Bilenky, N. P. Nedelcheva, S. T. Petcov, Nucl. Phys. B247 (1984) 61.
[Bilenky:1984fg]
[8-2]
CPT, CP, and C phases and their effects in Majorana particle processes, Boris Kayser, Phys. Rev. D30 (1984) 1023.
[Kayser:1984ge]
[8-3]
Can the neutrinoless double beta decay take place in the case of Dirac neutrinos?, Eiichi Takasugi, Phys. Lett. B149 (1984) 372.
[Takasugi:1984xr]
[8-4]
CP violation in Majorana neutrinos, M. Doi, T. Kotani, H. Nishiura, K. Okuda, E. Takasugi, Phys. Lett. B102 (1981) 323.
Comment: It is shown that the Dirac or Majorana nature of neutrinos cannot be distinguished in neutrino oscillations in vacuum, because neutrino oscillations in vacuum do not depend on the Majorana phases. [C.G.].
[Doi:1980yb]
[8-5]
Neutrino Oscillation Thought Experiment, J. Schechter, J. W. F. Valle, Phys. Rev. D23 (1981) 1666.
[Schechter:1980gk]
[8-6]
CP properties of Majorana neutrinos and double beta decay, Lincoln Wolfenstein, Phys. Lett. B107 (1981) 77.
[Wolfenstein:1981rk]
[8-7]
On oscillations of neutrinos with Dirac and Majorana masses, S. M. Bilenky, J. Hosek, S. T. Petcov, Phys. Lett. B94 (1980) 495.
Comment: It is shown that the Dirac or Majorana nature of neutrinos cannot be distinguished in neutrino oscillations in vacuum, because neutrino oscillations in vacuum do not depend on the Majorana phases. [C.G.].
[Bilenky:1980cx]
[8-8]
Neutrino masses in SU(2) x U(1) theories, J. Schechter, J. W. F. Valle, Phys. Rev. D22 (1980) 2227.
[Schechter:1980gr]
[8-9]
Reformulation of the Majorana Theory of the Neutrino, K.M. Case, Phys. Rev. 107 (1957) 307-316.
[Case:1957zza]
[8-10]
Parity Nonconservation and the Theory of the Neutrino, J. A. Mclennan, Phys. Rev. 106 (1957) 821-822.
[Mclennan:1957]
[8-11]
On the equivalence theorem for the massless neutrino, L.A. Radicati, B. Touschek, Nuovo Cim. 5 (1957) 1693-1699.
[Touschek:1957]
[8-12]
Sur la theorie abregee des particules de spin 1/2, J. Serpe, Physica 18 (1952) 295-306.
[Serpe:1952]
[8-13]
On transition probabilities in double beta-disintegration, W.H. Furry, Phys. Rev. 56 (1939) 1184-1193.
[Furry:1939qr]
[8-14]
Teoria simmetrica dell'elettrone e del positrone, Ettore Majorana, Nuovo Cim. 14 (1937) 171-184. In Italian. http://people.na.infn.it/~sesposit/MajoranaSite/documents/EMP9.pdf.
[Majorana:1937vz]
[8-15]
On the symmetry of particle and antiparticle, G. Racah, Nuovo Cim. 14 (1937) 322-328.
[Racah:1937qq]

9 - Fundamental Papers - Phenomenology

[9-1]
Electron and muon neutrinos, B. Pontecorvo, Sov. Phys. JETP 10 (1960) 1236-1240.
[Pontecorvo:1959sn]
[9-2]
Feasibility of using high-energy neutrinos to study the weak interactions, M. Schwartz, Phys. Rev. Lett. 4 (1960) 306-307.
[Schwartz:1960hg]

10 - Experiment

[10-1]
Neutrino mass and nature through its mediation in atomic clock interference, Jose Bernabeu, Dylan O. Sabulsky, Federico Sanchez, Alejandro Segarra, AVS Quantum Sci. 6 (2023) 014410, arXiv:2306.00767.
[Bernabeu:2023ulb]
[10-2]
Search for Majorana neutrinos in same-sign $WW$ scattering events from $pp$ collisions at $\sqrt{s}=13$ TeV, Georges Aad et al. (ATLAS), Eur.Phys.J.C 83 (2023) 824, arXiv:2305.14931.
[ATLAS:2023tkz]
[10-3]
Search for heavy Majorana neutrino in lepton number violating decays of D- > K pi e+ e+, BESIII Collaboration et al., Phys.Rev. D99 (2019) 112002, arXiv:1902.02450.
[BESIII:2019oef]
[10-4]
Search for heavy Majorana neutrinos in same-sign dilepton channels in proton-proton collisions at $\sqrt{s} =$ 13 TeV, Albert M Sirunyan et al. (CMS), JHEP 1901 (2019) 122, arXiv:1806.10905.
[CMS:2018jxx]
[10-5]
Search for heavy Majorana neutrinos in $e^{\pm} e^{\pm} + \text{jets}$ and $e^{\pm} \mu^{\pm} + \text{jets}$ events in proton-proton collisions at $\sqrt{s} = 8 \, \text{TeV}$, Vardan Khachatryan et al. (CMS), JHEP 1604 (2016) 169, arXiv:1603.02248.
[CMS:2016aro]
[10-6]
Search for heavy Majorana neutrinos with the ATLAS detector in $pp$ collisions at $\sqrt{s} = 8 \, \text{TeV}$, (ATLAS), JHEP 07 (2015) 162, arXiv:1506.06020.
[ATLAS:2015gtp]
[10-7]
Search for heavy Majorana neutrinos in $\mu^{\pm} \mu^{\pm} + \text{jets}$ events in proton-proton collisions at $\sqrt{s} = 8 \, \text{TeV}$, Vardan Khachatryan et al. (CMS), Phys. Lett. B748 (2015) 144-166, arXiv:1501.05566.
[CMS:2015qur]
[10-8]
Search for Majorana neutrinos in $B^- \to \pi^+\mu^-\mu^-$ decays, Roel Aaij et al. (LHCb), Phys. Rev. Lett. 112 (2014) 131802, arXiv:1401.5361.
[LHCb:2014osd]
[10-9]
Search for heavy Majorana neutrinos in $\mu^{\pm}\mu^{\pm} +$ jets and $e^{\pm}e^{\pm} +$ jets events in pp collisions at $\sqrt{s} =$ 7 TeV, Serguei Chatrchyan et al. (CMS), Phys. Lett. B717 (2012) 109-128, arXiv:1207.6079.
[CMS:2012wqj]
[10-10]
Search for heavy neutrinos and right-handed $W$ bosons in events with two leptons and jets in $pp$ collisions at $\sqrt{s}=7$ TeV with the ATLAS detector, Georges Aad et al. (ATLAS), Eur. Phys. J. C72 (2012) 2056, arXiv:1203.5420.
[ATLAS:2012ak]
[10-11]
Searches for Majorana neutrinos in $B^-$ decays, R. Aaij et al. (LHCb), Phys. Rev. D85 (2012) 112004, arXiv:1201.5600.
[LHCb:2012pcm]
[10-12]
A Search for Excited Neutrinos in $e-p$ Collisions at HERA, H1 (H1), Phys. Lett. B663 (2008) 382-389, arXiv:0802.1858.
[H1:2008qoo]
[10-13]
Determination of the Michel parameters xi and delta in leptonic tau decays, H. Albrecht et al. (ARGUS), Phys. Lett. B349 (1995) 576-584.
From the abstract: Simultaneously to the determination of the Michel parameters, a measurement of the $\tau$-neutrino helicity $h_{\nu_{\tau}}$ in the decay $ \tau^{\mp} \to \pi^{mp} \pi^{+} \pi^{-} \nu $ was obtained. We observed $ h_{\nu_{\tau}} = -0.85 {}^{+0.15}_{-0.17} $.
[ARGUS:1995bpe]
[10-14]
Direct measurement of the helicity of the muonic neutrino, L. P. Roesch, V. L. Telegdi, P. Truttmann, A. Zehnder, L. Grenacs, L. Palffy, Am. J. Phys. 50 (1982) 931-935.
From the abstract: We find $ h_{\nu_{\mu}} = -1.06 \pm 0.11 $.
[Roesch:1982ry]
[10-15]
Average Polarization of ${}^{12}\text{B}$ in ${}^{12}\text{C} (\mu,\nu) {}^{12}\text{B(g.s.)}$ Reaction: Helicity of the pi Decay Muon and Nature of the Weak Coupling, A. Possoz, P. Deschepper, L. Grenacs, P. Lebrun, J. Lehmann, L. Palffy, A. De Moura Goncalves, C. Samour, V. L. Telegdi, Phys. Lett. 70B (1977) 265. [Erratum: Phys. Lett.73B,504(1978)].
Comment: $ h_{\bar\nu_{\mu}} = h_{\mu} = 1.0 \pm 0.1 $.
[Possoz:1977jf]
[10-16]
Observation of high-energy neutrino reactions and the existence of two kinds of neutrinos, G. Danby et al., Phys. Rev. Lett. 9 (1962) 36-44.
[Danby:1962nd]
[10-17]
Helicity of $\mu^-$ Mesons from $\pi$-Meson Decay, G. Backenstoss, B. D. Hyams, G. Knop, P. C. Marin, U. Stierlin, Phys. Rev. Lett. 6 (1961) 415-416.
From the article: $ h_{\mu} = 1.17 \pm 0.32 $.
Comment: In $\pi^{-} \to \mu^{-} + \bar\nu_{\mu} $ we have $ h_{\bar\nu_{\mu}} = h_{\mu} $.
[Backenstoss:1961zz]
[10-18]
Helicity of $\mu^-$ Mesons: Mott Scattering of Polarized Muons, Marcel Bardon, Paolo Franzini, Juliet Lee, Phys. Rev. Lett. 7 (1961) 23-25.
From the article: it is concluded that the helicity of the $\mu^-$ meson in $\pi^{-} \to \mu^{-} + \bar\nu_{\mu} $ is positive (right-handed) in agreement with the V-A theory. Thus the anti-neutrino is also right-handed, and hence no evidence is deduced from this result for $\nu_{e}\neq\nu_{\mu}$.
[Bardon:1961zz]
[10-19]
Detection of the free anti-neutrino, F. Reines, C. L. Cowan, F. B. Harrison, A. D. McGuire, H. W. Kruse, Phys. Rev. 117 (1960) 159-173.
[Reines:1960pr]
[10-20]
Helicity of neutrinos, M. Goldhaber, L. Grodzins, A. W. Sunyar, Phys. Rev. 109 (1958) 1015-1017.
From the article: we find that the neutrino is left-handed, i.e. $ \mathbf{\sigma}_{\nu} \cdot \hat{\mathbf{p}}_{\nu} = - 1 $ (negative helicity).
[Goldhaber:1958nb]
[10-21]
A Proposed experiment to detect the free neutrino, F. Reines, C. L. Cowan, Phys. Rev. 90 (1953) 492-493.
[Reines:1953kf]
[10-22]
Detection of the free neutrino, F. Reines, C. L. Cowan, Phys. Rev. 92 (1953) 830-831.
[Reines:1953pu]

11 - Experiment - Talks

[11-1]
Searches for Majorana Neutrinos and Direct Searches for Exotics at LHCb, X. Cid Vidal (LHCb), arXiv:1510.05483, 2015. LISHEP 2015.
[CidVidal:2015fow]
[11-2]
Search for Heavy Neutrino in K- > mu nu_h(nu_h- > nu gamma) Decay at ISTRA+ Setup, ISTRA+ collaboration et al. (ISTRA+), Phys. Lett. B710 (2012) 307-317, arXiv:1110.1610. QFTHEP-2011.
[ISTRA:2011bgc]
[11-3]
Excited Fermions at H1, E. Sauvan (H1), J. Phys. Conf. Ser. 110 (2008) 072037, arXiv:0709.0673. 2007 Europhysics Conference on High Energy Physics, Manchester, England, 19-25 July 2007.
[Sauvan:2007dm]

12 - Experiment - Number of Neutrino Species

[12-1]
Measurement of the Z boson invisible width at $\sqrt{s}=13$ TeV with the ATLAS detector, Georges Aad et al. (ATLAS), arXiv:2312.02789, 2023.
[ATLAS:2023ynf]
[12-2]
Precision electroweak measurements on the Z resonance, S. Schael et al. (ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group), Phys. Rept. 427 (2006) 257, arXiv:hep-ex/0509008.
From the abstract: The number of light neutrino species is determined to be $ 2.9840 \pm 0.0082 $.
[ALEPH:2005ab]
[12-3]
Search for the Anomalous Production of Single Photons in $e^+ e^-$ Annihilation at $\sqrt{s}=29\,\text{GeV}$, C. Hearty, J.E. Rothberg, K.K. Young, A.S. Johnson, John Scott Whitaker et al., Phys. Rev. D39 (1989) 3207.
[Hearty:1989pq]
[12-4]
Neutrino Counting With the CELLO Detector and Search for Supersymmetric Particles, H.J. Behrend et al. (CELLO), Phys.Lett. B215 (1988) 186.
[CELLO:1988wwh]
[12-5]
Intermediate vector boson cross-sections at the CERN Super Proton Synchrotron collider and the number of neutrino types, C. Albajar et al. (UA1), Phys. Lett. B198 (1987) 271.
[UA1:1987dfv]

13 - Theory

[13-1]
Little group generators for Dirac neutrino one-particle states, R. Romero, Rev.Mex.Fis. 67 (2021) 25-32, arXiv:2007.14708.
[Romero:2020kgq]
[13-2]
A Mellin Transform Approach to Rephasing Invariants, Jean-Francois Fortin, Nicolas Giasson, Luc Marleau, Jasmine Pelletier-Dumont, Phys.Rev.D 102 (2020) 036001, arXiv:2004.14284.
[Fortin:2020oud]
[13-3]
Can gravity distinguish between Dirac and Majorana Neutrinos?, S. A. Alavi, A. Abbasnezhad, Grav.Cosmol. 22 (2016) 288-298, arXiv:1201.4741.
[Alavi:2012np]
[13-4]
Canonical quantization of a massive Weyl field, Maxim Dvornikov, Found. Phys. 42 (2012) 1469-1479, arXiv:1106.3303.
[Dvornikov:2011bu]
[13-5]
Rephasing Invariants of Quark and Lepton Mixing Matrices, Elizabeth Jenkins, Aneesh V. Manohar, Nucl. Phys. B792 (2008) 187-205, arXiv:0706.4313.
[Jenkins:2007ip]
[13-6]
Representation-independent manipulations with Dirac spinors, Palash B. Pal, arXiv:physics/0703214, 2007.
[Pal:2007dc]
[13-7]
A teleparallel model for the neutrino, Dmitri Vassiliev, Phys. Rev. D75 (2007) 025006, arXiv:gr-qc/0604011.
[Vassiliev:2006ux]
[13-8]
Generalized Neutrino Equations, Valeriy V. Dvoeglazov, arXiv:quant-ph/0012107, 2000.
[quant-ph/0012107]
[13-9]
Theory of neutral particles: McLennan-Case construct for neutrino, its generalization, and a fundamentally new wave equation, D. V. Ahluwalia, Int. J. Mod. Phys. A11 (1996) 1855-1874, arXiv:hep-th/9409134.
[Ahluwalia:1994uy]
[13-10]
On the Mikheev-Smirnov-Wolfenstein (MSW) mechanism of amplification of neutrino oscillations in matter, P. Langacker, S. T. Petcov, G. Steigman, S. Toshev, Nucl. Phys. B282 (1987) 589.
Comment: It is shown that the Dirac or Majorana nature of neutrinos cannot be distinguished in neutrino oscillations in matter, as well as in vacuum, because neutrino oscillations do not depend on the Majorana phases. [C.G.].
[Langacker:1986jv]
[13-11]
General {CP} Properties of Neutrino Mass Eigenstates, Simon Peter Rosen, Phys. Rev. D29 (1984) 2535. [Erratum: Phys. Rev. D 30 (1984) 1995].
[Rosen:1984wtl]
[13-12]
Neutrino decay and spontaneous violation of lepton number, J. Schechter, J. W. F. Valle, Phys. Rev. D25 (1982) 774.
[Schechter:1981cv]
[13-13]
Electromagnetic properties and decays of Dirac and Majorana neutrinos in a general class of gauge theories, Robert E. Shrock, Nucl. Phys. B206 (1982) 359.
[Shrock:1982sc]
[13-14]
Majorana Neutrinos and Magnetic Fields, J. Schechter, J. W. F. Valle, Phys. Rev. D24 (1981) 1883-1889.
[Schechter:1981hw]
[13-15]
Neutrino masses, mixings and oscillations in SU(2) x U(1) models of electroweak interactions, T. P. Cheng, Ling-Fong Li, Phys. Rev. D22 (1980) 2860.
[Cheng:1980qt]
[13-16]
The phenomenology of neutrino oscillations, I. Yu. Kobzarev, B. V. Martemyanov, L. B. Okun, M. G. Shchepkin, Sov. J. Nucl. Phys. 32 (1980) 823.
[Kobzarev:1980nk]
[13-17]
On the conservation laws for weak interactions, L. Landau, Nucl. Phys. 3 (1957) 127.
[Landau:1957tp]
[13-18]
Parity nonconservation and a two component theory of the neutrino, T. D. Lee, C. N. Yang, Phys. Rev. 105 (1957) 1671.
[Lee:1957qr]
[13-19]
On parity conservation and neutrino mass, A. Salam, Nuovo Cim. 5 (1957) 299.
[Salam:1957st]
[13-20]
Selection rules for the $\beta$-disintegration, G. Gamow, E. Teller, Phys. Rev. 49 (1936) 895-899.
[Gamow:1936jk]
[13-21]
Attempt at a theory of $\beta$ rays, E. Fermi, Z. Phys. 88 (1934) 161-177. In German.
[Fermi:1934hr]
[13-22]
Attempt at a theory of $\beta$ rays, E. Fermi, Nuovo Cim. 11 (1934) 1-19. In Italian.
[Fermi:1934sk]
[13-23]
Attempt at a theory of the emission of $\beta$ rays, E. Fermi, Ricerca Scientifica 4 (1933) 491. In Italian.
[Fermi-1933]

14 - Theory - Nature

[14-1]
Comments on 'Can quantum statistics help distinguish Dirac from Majorana neutrinos?' (arXiv:2402.05172 [hep-ph]), C. S. Kim, M. V. N. Murthy, Dibyakrupa Sahoo, arXiv:2402.11386, 2024.
[Kim:2024xof]
[14-2]
Can quantum statistics help distinguish Dirac from Majorana neutrinos?, Evgeny Akhmedov, Andreas Trautner, arXiv:2402.05172, 2024.
[Akhmedov:2024qpr]
[14-3]
Comments on 'On the Dirac-Majorana neutrinos distinction in four-body decays' (arXiv:2305.14140 [hep-ph]), C. S. Kim, M. V. N. Murthy, Dibyakrupa Sahoo, arXiv:2308.08464, 2023.
[Kim:2023ohr]
[14-4]
Practical Dirac Majorana confusion theorem: Issues and Applicability, C. S. Kim, Eur.Phys.J.C 83 (2023) 972, arXiv:2307.05654.
[Kim:2023iwz]
[14-5]
On the Dirac-Majorana neutrinos distinction in four-body decays, Juan Manuel Marquez, Diego Portillo-Sanchez, Gabriel Lopez Castro, Pablo Roig, Phys.Rev.D 109 (2024) 033005, arXiv:2305.14140.
[Marquez:2023rpc]
[14-6]
Determination of Majorana type-phases from the time evolution of lepton numbers, Nicholas J. Benoit, Yuta Kawamura, Saki Kawano, Takuya Morozumi, Yusuke Shimizu, Kei Yamamoto, arXiv:2212.00142, 2022.
[Benoit:2022qmt]
[14-7]
Three-Body Decays of Heavy Dirac and Majorana Fermions, Andre de Gouvea, Patrick J. Fox, Boris J. Kayser, Kevin J. Kelly, Phys.Rev.D 104 (2021) 015038, arXiv:2104.05719.
[deGouvea:2021ual]
[14-8]
Bargmann Invariants, Geometric Phases and Recursive Parametrization with Majorana Fermions, Rohan Pramanick, Swarup Sangiri, Utpal Sarkar, Nucl.Phys. B964 (2021) 115315, arXiv:2012.09653.
[Pramanick:2020bfg]
[14-9]
Parity operation for Majorana neutrinos, Kazuo Fujikawa, Phys.Rev. D102 (2020) 105001, arXiv:2008.11390.
[Fujikawa:2020ijt]
[14-10]
Operatorial characterization of Majorana neutrinos, Kazuo Fujikawa, Eur.Phys.J. C80 (2020) 285, arXiv:1910.03189.
[Fujikawa:2019mjd]
[14-11]
The number of sufficient and necessary conditions for CP conservation with Majorana neutrinos: three or four?, Bingrong Yu, Shun Zhou, Phys.Lett. B800 (2020) 135085, arXiv:1908.09306.
[Yu:2019ihs]
[14-12]
Non-thermal generation of quasiparticles: Majorana fields, Chang-Hun Lee, arXiv:1903.09626, 2019.
[Lee:2019sly]
[14-13]
Generalized Pauli-Gursey transformation and Majorana neutrinos, Kazuo Fujikawa, Phys.Lett. B789 (2019) 76-81, arXiv:1811.02295.
[Fujikawa:2018gms]
[14-14]
Majorana neutrino and the vacuum of Bogoliubov quasiparticle, Kazuo Fujikawa, Phys.Lett. B781 (2018) 295-301, arXiv:1801.06960.
[Fujikawa:2018rci]
[14-15]
Majorana Neutrino as Bogoliubov Quasiparticle, Kazuo Fujikawa, Anca Tureanu, Phys.Lett. B774 (2017) 273-278, arXiv:1708.01438.
[Fujikawa:2017jbn]
[14-16]
Determining Majorana Nature of Neutrino from Nucleon Decays and n-nbar oscillations, K.S. Babu, Rabindra N. Mohapatra, Phys. Rev. D91 (2015) 013008, arXiv:1408.0803.
[Babu:2014tra]
[14-17]
An effective field theory for non-relativistic Majorana neutrinos, Simone Biondini, Nora Brambilla, Miguel Angel Escobedo, Antonio Vairo, JHEP 1312 (2013) 028, arXiv:1307.7680.
[Biondini:2013xua]
[14-18]
Renormalization group invariants in neutrino sector, Naoyuki Haba, Ryo Takahashi, JHEP 1308 (2013) 123, arXiv:1306.1375.
[Haba:2013kga]
[14-19]
Majorana mass, time reversal symmetry, and the dimension of space, Igor F. Herbut, Physical Review D87 (2013) 085002, arXiv:1211.1317.
[Herbut:2012ep]
[14-20]
Oscillation of Dirac and Majorana neutrinos from muon decay in the case of a general interaction, Robert Szafron, Marek Zralek, Phys. Lett. B718 (2012) 113-116, arXiv:1210.2996.
[Szafron:2012mi]
[14-21]
Majorana neutrino oscillations in vacuum, Y. F. Perez, C. J. Quimbay, J. Mod. Phys. 3 (2012) 803-814, arXiv:1103.2781.
[Perez:2011wq]
[14-22]
No Effect of Majorana Phases in Neutrino Oscillations, Carlo Giunti, Phys. Lett. B686 (2010) 41-43, arXiv:1001.0760.
[Giunti:2010ec]
[14-23]
Majoranized Feynman rules, R. Kleiss, I. Malamos, G. v.d. Oord, Eur. Phys. J. C64 (2009) 387-389, arXiv:0906.3388.
[Kleiss:2009hu]
[14-24]
The Physical Range of Majorana Neutrino Mixing Parameters, Andre de Gouvea, James Jenkins, Phys. Rev. D78 (2008) 053003, arXiv:0804.3627.
[deGouvea:2008nm]
[14-25]
Probing the quantum nature of the neutrino with two-particle interferometry, Thomas D. Gutierrez, Phys.Rev.Lett. 96 (2006) 121802, arXiv:nucl-th/0510069.
[Gutierrez:2006bm]
[14-26]
From transition magnetic moments to majorana neutrino masses, Sacha Davidson, Martin Gorbahn, Arcadi Santamaria, Phys. Lett. B626 (2005) 151, arXiv:hep-ph/0506085.
[Davidson:2005cs]
[14-27]
Beta decays with momentum space Majorana spinors, M. Kirchbach, C. Compean, L. Noriega, Eur. Phys. J. A22 (2004) 149, arXiv:hep-ph/0411316.
[Kirchbach:2004qn]
[14-28]
Majorana zero modes, Rachel Jeannerot, Marieke Postma, JHEP 0412 (2004) 032, arXiv:hep-ph/0411259.
[Jeannerot:2004bs]
[14-29]
Neutral Fermion Phenomenology With Majorana Spinors, M. Kirchbach, C. Compean, L. Noriega, arXiv:hep-ph/0310297, 2003.
[Kirchbach:2003sa]
[14-30]
Extended set of Majorana spinors, a new dispersion relation, and a preferred frame, D. V. Ahluwalia-Khalilova, arXiv:hep-ph/0305336, 2003.
[Ahluwalia:2003jt]
[14-31]
Manifest CP Violation from Majorana Phases, A. de Gouvea, B. Kayser, R. Mohapatra, Phys. Rev. D67 (2003) 053004, arXiv:hep-ph/0211394.
[deGouvea:2002gf]
[14-32]
CP-violating Majorana phases, lepton-conserving processes and final state interactions, Jose F. Nieves, Palash B. Pal, Phys. Rev. D67 (2003) 036005, arXiv:hep-ph/0210232.
[Nieves:2002vq]
[14-33]
Rephasing-invariant CP violating parameters with Majorana neutrinos, Jose F. Nieves, Palash B. Pal, Phys. Rev. D64 (2001) 076005, arXiv:hep-ph/0105305.
[Nieves:2001fc]
[14-34]
Unitarity triangles and geometrical description of CP violation with Majorana neutrinos, J. A. Aguilar-Saavedra, G. C. Branco, Phys. Rev. D62 (2000) 096009, arXiv:hep-ph/0007025.
[Aguilar-Saavedra:2000jom]
[14-35]
Neutrino anti-neutrino transitions, Paul Langacker, Jing Wang, Phys. Rev. D58 (1998) 093004, arXiv:hep-ph/9802383.
[Langacker:1998pv]
[14-36]
Can neutrinos be Majorana particles?, Steen Hannestad, arXiv:hep-ph/9701216, 1997.
[Hannestad:1997mi]
[14-37]
CP violation in the lepton sector and Majorana neutrinos, J.K. Koh, C. Giunti, C.W. Kim, Journal of the Korean Physical Society 24 (1991) 275. http://personalpages.to.infn.it/~giunti/slides/1991/Koh-Giunti-Kim-JKPS24-275-1991.pdf.
[Koh-Giunti-Kim-1991]
[14-38]
Quantization of electric charge from anomaly constraints and a Majorana neutrino, K. S. Babu, Rabindra N. Mohapatra, Phys. Rev. D41 (1990) 271.
[Babu:1989ex]
[14-39]
A comment on the possibility of distinguishing between Dirac and Majorana neutrinos in $\nu_\mu - e$ scattering, Stephen M. Barr, A. Halprin, Phys. Lett. B202 (1988) 279.
[Barr:1988ht]
[14-40]
Minimal rephasing invariant CP violating parameters with Dirac and Majorana fermions, Jose F. Nieves, Palash B. Pal, Phys. Rev. D36 (1987) 315.
[Nieves:1987pp]
[14-41]
Some implications of the CP invariance for mixing of Majorana neutrinos, S. M. Bilenky, N. P. Nedelcheva, S. T. Petcov, Nucl. Phys. B247 (1984) 61.
[Bilenky:1984fg]
[14-42]
CPT, CP, and C phases and their effects in Majorana particle processes, Boris Kayser, Phys. Rev. D30 (1984) 1023.
[Kayser:1984ge]
[14-43]
Can the neutrinoless double beta decay take place in the case of Dirac neutrinos?, Eiichi Takasugi, Phys. Lett. B149 (1984) 372.
[Takasugi:1984xr]
[14-44]
CP properties of the leptonic sector for Majorana neutrinos, J. Bernabeu, P. Pascual, Nucl. Phys. B228 (1983) 21.
[Bernabeu:1983vi]
[14-45]
Majorana Neutrinos and their Electromagnetic Properties, Boris Kayser, Phys. Rev. D26 (1982) 1662.
[Kayser:1982br]
[14-46]
Physical processes involving Majorana neutrinos, L. F. Li, Frank Wilczek, Phys. Rev. D25 (1982) 143.
[Li:1982um]
[14-47]
Electromagnetic properties of Majorana neutrinos, Jose F. Nieves, Phys. Rev. D26 (1982) 3152.
[Nieves:1981zt]
[14-48]
CP violation in Majorana neutrinos, M. Doi, T. Kotani, H. Nishiura, K. Okuda, E. Takasugi, Phys. Lett. B102 (1981) 323.
Comment: It is shown that the Dirac or Majorana nature of neutrinos cannot be distinguished in neutrino oscillations in vacuum, because neutrino oscillations in vacuum do not depend on the Majorana phases. [C.G.].
[Doi:1980yb]
[14-49]
Neutrino Oscillation Thought Experiment, J. Schechter, J. W. F. Valle, Phys. Rev. D23 (1981) 1666.
[Schechter:1980gk]
[14-50]
CP properties of Majorana neutrinos and double beta decay, Lincoln Wolfenstein, Phys. Lett. B107 (1981) 77.
[Wolfenstein:1981rk]
[14-51]
On oscillations of neutrinos with Dirac and Majorana masses, S. M. Bilenky, J. Hosek, S. T. Petcov, Phys. Lett. B94 (1980) 495.
Comment: It is shown that the Dirac or Majorana nature of neutrinos cannot be distinguished in neutrino oscillations in vacuum, because neutrino oscillations in vacuum do not depend on the Majorana phases. [C.G.].
[Bilenky:1980cx]
[14-52]
Neutrino masses in SU(2) x U(1) theories, J. Schechter, J. W. F. Valle, Phys. Rev. D22 (1980) 2227.
[Schechter:1980gr]
[14-53]
C. Ryan, S. Okubo, Nuovo Cimento Suppl. 2 (1964) 234.
[Ryan-Okubo-NCS-2-234-1964]
[14-54]
Reformulation of the Majorana Theory of the Neutrino, K.M. Case, Phys. Rev. 107 (1957) 307-316.
[Case:1957zza]
[14-55]
Parity Nonconservation and the Theory of the Neutrino, J. A. Mclennan, Phys. Rev. 106 (1957) 821-822.
[Mclennan:1957]
[14-56]
On the equivalence theorem for the massless neutrino, L.A. Radicati, B. Touschek, Nuovo Cim. 5 (1957) 1693-1699.
[Touschek:1957]
[14-57]
Sur la theorie abregee des particules de spin 1/2, J. Serpe, Physica 18 (1952) 295-306.
[Serpe:1952]
[14-58]
On transition probabilities in double beta-disintegration, W.H. Furry, Phys. Rev. 56 (1939) 1184-1193.
[Furry:1939qr]
[14-59]
Teoria simmetrica dell'elettrone e del positrone, Ettore Majorana, Nuovo Cim. 14 (1937) 171-184. In Italian. http://people.na.infn.it/~sesposit/MajoranaSite/documents/EMP9.pdf.
[Majorana:1937vz]
[14-60]
On the symmetry of particle and antiparticle, G. Racah, Nuovo Cim. 14 (1937) 322-328.
[Racah:1937qq]

15 - Theory - Nature - Talks

[15-1]
Addressing the Majorana vs. Dirac Question Using Neutrino Decays, Boris Kayser, arXiv:1805.07523, 2018. 53rd Rencontres de Moriond Electroweak session of March 2018.
[Kayser:2018mot]
[15-2]
Two Questions About Neutrinos, Boris Kayser, arXiv:1012.4469, 2010. 22nd Rencontres de Blois.
[Kayser:2010xb]
[15-3]
Evidence for Majorana Neutrinos: Dawn of a new era in spacetime structure, D. V. Ahluwalia, arXiv:hep-ph/0212222, 2002. Beyond the Desert '02, June, 2002, Oulu, Finland.
[Ahluwalia:2002nk]

16 - Theory - Mixing

[16-1]
Theoretical Aspect of Nonunitarity in Neutrino Oscillation, Chee Sheng Fong, arXiv:2301.12960, 2023.
[Fong:2023fpt]
[16-2]
Geometry of the neutrino mixing space, Wojciech Flieger, Janusz Gluza, Phys.Rev.D 106 (2022) 035005, arXiv:2201.06036.
[Flieger:2022ekj]
[16-3]
An analytical treatment of the neutrino masses and mixings, Renata Jora, Joseph Schechter, M. Naeem Shahid, Mod.Phys.Lett. A28 (2013) 1350184, arXiv:1304.7899.
[Jora:2013kta]
[16-4]
Properties of the Neutrino Mixing Matrix, S. H. Chiu, T. K. Kuo, Eur. Phys. J. C (2013) 73:2579, arXiv:1210.7061.
[Chiu:2012uc]
[16-5]
Simple parametrization of neutrino mixing matrix, Bo-Qiang Ma, Phys. Rev. D87 (2013) 017301, arXiv:1205.0766.
[Ma:2012zma]
[16-6]
Dependence of Neutrino Mixing Angles and CP-violating Phase on Mixing Matrix Parametrizations, Melin Huang, Dawei Liu, Jen-Chieh Peng, S.D. Reitzner, Wei-Chun Tsai, arXiv:1108.3906, 2011.
[Huang:2011by]
[16-7]
Symmetrical Parametrizations of the Lepton Mixing Matrix, W. Rodejohann, J. W. F. Valle, Phys. Rev. D84 (2011) 073011, arXiv:1108.3484.
[Rodejohann:2011vc]
[16-8]
Parametrization of fermion mixing matrices in Kobayashi-Maskawa form, Nan Qin, Bo-Qiang Ma, Phys. Rev. D83 (2011) 033006, arXiv:1101.4729.
[Qin:2011ub]
[16-9]
New Parametrization of Neutrino Mixing Matrix, H.B. Benaoum, Mod. Phys. Lett. A26 (2011) 423-431, arXiv:1011.0666.
[Benaoum:2010yn]
[16-10]
Plaquette Invariants and the Flavour Symmetric Description of Quark and Neutrino Mixings, P.F. Harrison, D.R.J. Roythorne, W.G. Scott, Phys. Lett. B657 (2007) 210-216, arXiv:0709.1439.
[Harrison:2007yn]
[16-11]
Real Invariant Matrices and Flavour-Symmetric Mixing Variables with Emphasis on Neutrino Oscillations, P. F. Harrison, W. G. Scott, T. J. Weiler, Phys. Lett. B641 (2006) 372-380, arXiv:hep-ph/0607335.
[Harrison:2006bj]
[16-12]
A recursive parameterisation of unitary matrices, C. Jarlskog, J. Math. Phys. 46 (2005) 103508, arXiv:math-ph/0504049.
[Jarlskog:2005zb]

17 - Theory - Interactions

[17-1]
Neutrino spin evolution in presence of general external fields, M. Dvornikov, A. Studenikin, JHEP 09 (2002) 016, arXiv:hep-ph/0202113.
[Dvornikov:2002rs]

18 - Theory - Gravitational Effects

[18-1]
'Evaporation' of a flavor-mixed particle from a gravitational potential, Mikhail V. Medvedev, J. Phys. A 43 (2010) 372002, arXiv:1201.5697.
[Medvedev:2010csv]
[18-2]
Neutrino spin and chiral dynamics in gravitational fields, Dinesh Singh, Phys. Rev. D71 (2005) 105003, arXiv:gr-qc/0401044.
[Singh:2004pq]

19 - Theory - Alternative Models

[20-1]
Fermions and discrete symmetries in Quantum Field Theory. I. Generalities and the propagator for one flavor, Quentin Duret, Bruno Machet, Annals Phys. 325 (2010) 2041-2074, arXiv:0809.0431.
[Duret:2008zv]
[20-2]
Mixing angles of quarks and leptons in Quantum Field Theory, Quentin Duret, Bruno Machet, M. I. Vysotsky, Eur. Phys. J. C61 (2009) 247-278, arXiv:0805.4121.
[Duret:2009zce]
[20-3]
The neighborhood of the Standard Model: mixing angles and quark-lepton complementarity for three generations of non-degenerate coupled fermions, Quentin Duret, Bruno Machet, arXiv:0705.1237, 2007.
[Duret:2007pr]
[20-4]
Mixing Angles and Non-Degenerate Systems of Particles, Quentin Duret, Bruno Machet, Phys. Lett. B643 (2006) 303-310, arXiv:hep-ph/0606303.
[Duret:2006ez]

20 - Theory - Alternative Models

[20-1]
Fermions and discrete symmetries in Quantum Field Theory. I. Generalities and the propagator for one flavor, Quentin Duret, Bruno Machet, Annals Phys. 325 (2010) 2041-2074, arXiv:0809.0431.
[Duret:2008zv]
[20-2]
Mixing angles of quarks and leptons in Quantum Field Theory, Quentin Duret, Bruno Machet, M. I. Vysotsky, Eur. Phys. J. C61 (2009) 247-278, arXiv:0805.4121.
[Duret:2009zce]
[20-3]
The neighborhood of the Standard Model: mixing angles and quark-lepton complementarity for three generations of non-degenerate coupled fermions, Quentin Duret, Bruno Machet, arXiv:0705.1237, 2007.
[Duret:2007pr]
[20-4]
Mixing Angles and Non-Degenerate Systems of Particles, Quentin Duret, Bruno Machet, Phys. Lett. B643 (2006) 303-310, arXiv:hep-ph/0606303.
[Duret:2006ez]

21 - Phenomenology

[21-1]
Discriminating Majorana and Dirac heavy neutrinos at lepton colliders, Krzysztof Mekala, Jurgen Reuter, Aleksander Filip Zarnecki, JHEP 03 (2024) 075, arXiv:2312.05223.
[Mekala:2023kzo]
[21-2]
Distinguishing (Dirac or Majorana) neutrinos in purely leptonic decays of leptons, Yao Yu, Bai-Cian Ke, arXiv:2205.10419, 2022.
[Yu:2022kbm]
[21-3]
Distinguishing Dirac vs. Majorana Neutrinos: a Cosmological Probe, Beatriz Hernandez-Molinero, Raul Jimenez, Carlos Pena-Garay, JCAP 08 (2022) 038, arXiv:2205.00808.
[Hernandez-Molinero:2022zoo]
[21-4]
Inferring the nature of active neutrinos: Dirac or Majorana?, C. S. Kim, M. V. N. Murthy, Dibyakrupa Sahoo, Phys.Rev.D 105 (2022) 113006, arXiv:2106.11785.
[Kim:2021dyj]
[21-5]
Unraveling the Dirac Neutrino with Cosmological and Terrestrial Detectors, Peter Adshead, Yanou Cui, Andrew J. Long, Michael Shamma, Phys.Lett.B 823 (2021) 136736, arXiv:2009.07852.
[Adshead:2020ekg]
[21-6]
Distinguishing Dirac from Majorana neutrinos in a microwave cavity, Mehdi Abdi, Roohollah Mohammadi, She-Sheng Xue, Moslem Zarei, arXiv:1909.01536, 2019.
[Abdi:2019hvx]
[21-7]
Distinguishing Dirac and Majorana neutrinos by their gravi-majoron decays, Lena Funcke, Georg Raffelt, Edoardo Vitagliano, Phys.Rev. D101 (2020) 015025, arXiv:1905.01264.
[Funcke:2019grs]
[21-8]
Addressing the Majorana vs. Dirac Question with Neutrino Decays, A. Baha Balantekin, Andre de Gouvea, Boris Kayser, Phys.Lett.B 789 (2019) 488-495, arXiv:1808.10518.
[Balantekin:2018ukw]
[21-9]
Shining Light on the Mass Scale and Nature of Neutrinos with $e\gamma \to e\nu\overline\nu$, Jeffrey M. Berryman, Andre de Gouvea, Kevin J. Kelly, Michael Schmitt, Phys.Rev. D98 (2018) 016009, arXiv:1805.10294.
[Berryman:2018qxn]
[21-10]
Cosmological bounds on neutrino statistics, P.F. de Salas et al., JCAP 1803 (2018) 050, arXiv:1802.04639.
[deSalas:2018idd]
[21-11]
Can one ever prove that neutrinos are Dirac particles?, Martin Hirsch, Rahul Srivastava, Jose W. F. Valle, Phys.Lett. B781 (2018) 302-305, arXiv:1711.06181.
[Hirsch:2017col]
[21-12]
Distinguishing heavy Dirac and Majorana neutrinos through $\tau^- \to \pi^- \mu^- e^+ \nu(\text{or }\bar\nu)$ decay, C. S. Kim, G. Lopez Castro, Dibyakrupa Sahoo, Phys.Rev. D96 (2017) 075016, arXiv:1708.00802.
[Kim:2017pra]
[21-13]
Distinguishing between Dirac and Majorana neutrinos in the presence of general interactions, Werner Rodejohann, Xun-Jie Xu, Carlos E. Yaguna, JHEP 1705 (2017) 024, arXiv:1702.05721.
[Rodejohann:2017vup]
[21-14]
Probing neutrino nature at Borexino detector with chromium neutrino source, W. Sobkow, A. Blaut, Eur.Phys.J. C76 (2016) 550, arXiv:1607.03536.
[Sobkow:2016zsg]
[21-15]
Majorana/Dirac distinction and neutrino mass determination using circulating heavy ions, M. Yoshimura, Phys. Rev. D93 (2016) 013016, arXiv:1508.02795.
[Yoshimura:2015wsa]
[21-16]
Scattering processes could distinguish Majorana from Dirac neutrinos, J. Barranco, D. Delepine, V. Gonzalez Macias, C. Lujan-Peschard, M. Napsuciale, Phys.Lett. B739 (2014) 343-347, arXiv:1408.3219.
[Barranco:2014cda]
[21-17]
Laser photons acquire circular polarization by interacting with a Dirac or Majorana neutrino beam, Rohoollah Mohammadi, She-Sheng Xue, Phys.Lett. B731 (2014) 272, arXiv:1312.3862.
[Mohammadi:2013ksa]
[21-18]
Radiative emission of neutrino pair from nucleus and inner core electrons in heavy atoms, M. Yoshimura, N. Sasao, Phys. Rev. D89 (2014) 053013, arXiv:1310.6472.
[Yoshimura:2013wva]
[21-19]
Neutrinoless Quadruple Beta Decay, Julian Heeck, Werner Rodejohann, EPL, 103 (2013) 32001, arXiv:1306.0580.
[Heeck:2013rpa]
[21-20]
Heavy neutrino search in accelerator-based experiments, Takehiko Asaka, Shintaro Eijima, Atsushi Watanabe, JHEP 1303 (2013) 125, arXiv:1212.1062.
[Asaka:2012bb]
[21-21]
Observables in Neutrino Mass Spectroscopy Using Atoms, D. N. Dinh, S. T. Petcov, N. Sasao, M. Tanaka, M. Yoshimura, Phys. Lett. B719 (2013) 154-163, arXiv:1209.4808.
[Dinh:2012qb]
[21-22]
Proposition of direct experiment to study the properties of the neutrino with inverted helicity, Raul Nakhmanson-Kulish, arXiv:1208.1163, 2012.
[Nakhmanson-Kulish:2012pvg]
[21-23]
Multi-Lepton Collider Signatures of Heavy Dirac and Majorana Neutrinos, Chien-Yi Chen, P. S. Bhupal Dev, Phys. Rev. D85 (2012) 093018, arXiv:1112.6419.
[Chen:2011hc]
[21-24]
Extended Empirical Fermion Mass Relation, Werner Rodejohann, He Zhang, Phys. Lett. B698 (2011) 152-156, arXiv:1101.5525.
[Rodejohann:2011jj]
[21-25]
Tevatron Discovery Potential for Fourth Generation Neutrinos: Dirac, Majorana and Everything in Between, A. Rajaraman, D. Whiteson, Phys. Rev. D82 (2010) 051702, arXiv:1005.4407.
[Rajaraman:2010ua]
[21-26]
Unified Parametrization for Quark and Lepton Mixing Angles, Werner Rodejohann, Phys. Lett. B671 (2009) 267-271, arXiv:0810.5239.
[Rodejohann:2008ir]
[21-27]
Sterile Neutrinos in Light of Recent Cosmological and Oscillation Data: a Multi-Flavor Scheme Approach, Alessandro Melchiorri et al., JCAP 0901 (2009) 036, arXiv:0810.5133.
[Melchiorri:2008gq]
[21-28]
Building the full PMNS Matrix from six independent Majorana-type phases, Gustavo C. Branco, M. N. Rebelo, Phys. Rev. D79 (2009) 013001, arXiv:0809.2799.
[Branco:2008ai]
[21-29]
Comment on 'Can gravity distinguish between Dirac and Majorana neutrinos?', Jose F. Nieves, Palash B. Pal, Phys. Rev. Lett. 98 (2007) 069001, arXiv:gr-qc/0610098.
[Nieves:2006tq]
[21-30]
New Method of Enhancing Lepton Number Nonconservation, M. Ikeda, I. Nakano, M. Sakuda, R. Tanaka, M. Yoshimura, arXiv:hep-ph/0506062, 2005.
[Ikeda:2005yh]
[21-31]
Nuclear-atomic state degeneracy in neutrinoless double-electron capture: A unique test for a Majorana-neutrino, D. Frekers, Phys.Lett.B (2005), arXiv:hep-ex/0506002.
[Frekers:2005ze]
[21-32]
How Magnetic is the Dirac Neutrino?, Nicole F. Bell et al., Phys. Rev. Lett. 95 (2005) 151802, arXiv:hep-ph/0504134.
[Bell:2005kz]
[21-33]
Neutrino statistics and big bang nucleosynthesis, A. D. Dolgov, S. H. Hansen, A. Yu. Smirnov, JCAP 0506 (2005) 004, arXiv:astro-ph/0503612.
[Dolgov:2005mi]
[21-34]
New Parameterization in Muon Decay and Type of Neutrino, Masaru Doi, Tsuneyuki Kotani, Hiroyuki Nishiura, Prog. Theor. Phys. 114 (2005) 845, arXiv:hep-ph/0502136.
[Doi:2005pm]
[21-35]
Possible violation of the spin-statistics relation for neutrinos: cosmological and astrophysical consequences, A.D. Dolgov, A.Yu. Smirnov, Phys. Lett. B621 (2005) 1, arXiv:hep-ph/0501066.
[Dolgov:2005qi]
[21-36]
A variety of lepton number violating processes related to Majorana neutrino masses, C.S. Lim, E. Takasugi, M. Yoshimura, Prog. Theor. Phys. 113 (2005) 1367, arXiv:hep-ph/0411139.
[Lim:2004tb]
[21-37]
Neutrino properties and tests of symmetries, Andre de Gouvea, Nucl. Phys. Proc. Suppl. 143 (2005) 167, arXiv:hep-ph/0408246.
[deGouvea:2004nu]
[21-38]
What can we learn from neutrinoless double beta decay experiments?, John N. Bahcall, Hitoshi Murayama, Carlos Pena-Garay, Phys. Rev. D70 (2004) 033012, arXiv:hep-ph/0403167.
[Bahcall:2004ip]
[21-39]
A potential test of the CP properties and Majorana nature of neutrinos, S. Pastor, J. Segura, V. B. Semikoz, J. W. F. Valle, Nucl. Phys. B566 (2000) 92-102, arXiv:hep-ph/9905405.
[Pastor:1999iw]
[21-40]
Remarks on neutrino tests of special relativity, S. L. Glashow, A. Halprin, P. I. Krastev, C. N. Leung, J. Pantaleone, Phys. Rev. D56 (1997) 2433-2434, arXiv:hep-ph/9703454.
[Glashow:1997gx]
[21-41]
Implications of a nonzero neutrino mass for the process $\gamma \gamma \to \nu \bar\nu$, E. Fischbach et al., Phys. Rev. D16 (1977) 2377-2378.
[Fischbach:1977qp]
[21-42]
Helicity - flipping neutral currents and $\gamma \gamma \to \nu \bar\nu$, E. Fischbach et al., Phys. Rev. D13 (1976) 1523.
[Fischbach:1976yy]
[21-43]
Nonvanishing neutrino mass and the process $\gamma \gamma \to \nu \bar\nu$, Arthur Halprin, Phys. Rev. D11 (1975) 147.
[Halprin:1975nh]
[21-44]
Electron and muon neutrinos, B. Pontecorvo, Sov. Phys. JETP 10 (1960) 1236-1240.
[Pontecorvo:1959sn]
[21-45]
On The Neutrinos emitted in $\beta$ decay and $\mu$ capture, Simon Peter Rosen, Phys. Rev. Lett. 4 (1960) 613-615.
[Rosen:1960ymn]
[21-46]
Feasibility of using high-energy neutrinos to study the weak interactions, M. Schwartz, Phys. Rev. Lett. 4 (1960) 306-307.
[Schwartz:1960hg]
[21-47]
Proposed Experiment to Determine the Direction of $\mu$-Meson Polarization in Pion Decay, J. D. Jackson, S. B. Treiman, H. W. Wyld, Phys. Rev. 107 (1957) 327-328.
[Jackson-Treiman-Wyld-1957-PR-107-327]

22 - Phenomenology - Talks

[22-1]
Constraints on fourth generation Majorana neutrinos, Alexander Lenz, Heinrich Pas, Dario Schalla, J. Phys. Conf. Ser. 259 (2010) 012096, arXiv:1010.3883. 16th International Symposium on Particles, Strings and Cosmology (PASCOS2010), Valencia (Spain), July 19th - 23rd, 2010.
[Lenz:2010ha]
[22-2]
Majorana Neutrinos in Muon Decay, Hiroyuki Nishiura, arXiv:hep-ph/0601231, 2006. NNR05 workshop on Neutrino Nuclear Responses in Double Beta Decays and Low-energy Astro-neutrinos, CAST and SPring-8, Japan, 2-4 December 2005.
[Nishiura:2006kt]
[22-3]
Neutrino, Cosmos, and New Physics, A.D. Dolgov, arXiv:hep-ph/0504238, 2005. Neutrino Telescopes, Venice, 22/02-25/02, 2005 and Rencontre LaThuile-05, 27/02-05/03, 2005.
[Dolgov:2005py]

23 - Phenomenology - Nature

[23-1]
Distinguishing Dirac/Majorana Heavy Neutrino at Future Lepton Colliders, Qing-Hong Cao, Kun Cheng, Yandong Liu, arXiv:2403.06561, 2024.
[Cao:2024rzb]
[23-2]
From Dirac to Majorana: the Cosmic Neutrino Background capture rate in the minimally extended Standard Model, Yuber F. Perez-Gonzalez, Manibrata Sen, Phys.Rev.D 109 (2024) 023022, arXiv:2308.05147.
[Perez-Gonzalez:2023llw]
[23-3]
Distinguishing between Dirac and Majorana neutrinos using temporal correlations, Bhavya Soni, Sheeba Shafaq, Poonam Mehta, arXiv:2307.04496, 2023.
[Soni:2023njf]
[23-4]
Unveiling the Heavy Neutrino Nature at LHCb, G. A. Vasquez, Jilberto Zamora-Saa, Phys.Rev.D 108 (2023) 053008, arXiv:2307.01871.
[Vasquez:2023glo]
[23-5]
Towards distinguishing Dirac from Majorana neutrino mass with gravitational waves, Stephen F. King, Danny Marfatia, Moinul Hossain Rahat, Phys.Rev.D 109 (2024) 035014, arXiv:2306.05389.
[King:2023cgv]
[23-6]
Dirac-Majorana neutrino type conversion induced by an oscillating scalar dark matter, YeolLin ChoeJo, Yechan Kim, Hye-Sung Lee, Phys.Rev.D 108 (2023) 095028, arXiv:2305.16900.
[ChoeJo:2023ffp]
[23-7]
Search for heavy Majorana neutrinos at electron-proton colliders, Haiyong Gu, Kechen Wang, Phys.Rev.D 106 (2022) 015006, arXiv:2201.12997.
[Gu:2022muc]
[23-8]
$\Delta$L=2 hyperon decays induced by Majorana neutrinos and doubly-charged scalars, G. Hernandez-Tome, G. Lopez-Castro, D. Portillo-Sanchez, Phys.Rev.D 105 (2022) 113001, arXiv:2112.02227.
[Hernandez-Tome:2021byt]
[23-9]
Z-Boson Decays into Majorana or Dirac (Heavy) Neutrinos, Alain Blondel, Andre de Gouvea, Boris Kayser, Phys.Rev.D 104 (2021) 055027, arXiv:2105.06576.
[Blondel:2021mss]
[23-10]
General parametrization of Majorana neutrino mass models, Isabel Cordero-Carrion, Martin Hirsch, Avelino Vicente, Phys.Rev. D101 (2020) 075032, arXiv:1912.08858.
[Cordero-Carrion:2019qtu]
[23-11]
Top quark as a probe of heavy Majorana neutrino at the LHC and future collider, Ning Liu, Zong-guo Si, Lei Wu, Hang Zhou, Bin Zhu, Phys.Rev. D101 (2020) 071701, arXiv:1910.00749.
[Liu:2019qfa]
[23-12]
Empirical inference on the Majorana mass of the ordinary neutrinos, Stefano Dell'Oro, Simone Marcocci, Francesco Vissani, Phys.Rev. D100 (2019) 073003, arXiv:1909.05381.
[DellOro:2019pqi]
[23-13]
Hunting for T-violation and Majoranality of Neutrinos in Muon Decays, Takeshi Fukuyama, Sohtaro Kanda, Daisuke Nomura, Koichiro Shimomura, arXiv:1908.01630, 2019.
[Fukuyama:2019jiq]
[23-14]
Master Majorana neutrino mass parametrization, Isabel Cordero-Carrion, Martin Hirsch, Avelino Vicente, Phys.Rev. D99 (2019) 075019, arXiv:1812.03896.
[Cordero-Carrion:2018xre]
[23-15]
A charmed search of lepton-number-violation at the LHCb experiment, Diego Milanes, Nestor Quintero, Phys.Rev. D98 (2018) 096004, arXiv:1808.06017.
[Milanes:2018aku]
[23-16]
Decoherence in neutrino oscillations: neutrino nature and CPT violation, A. Capolupo, S. M. Giampaolo, G. Lambiase, Phys.Lett. B792 (2019) 298-303, arXiv:1807.07823.
[Capolupo:2018hrp]
[23-17]
A potential scenario for the Majorana neutrino detection at future lepton colliders, Yang Zhang, Bin Zhang, JHEP 1902 (2019) 175, arXiv:1805.09520.
[Zhang:2018rtr]
[23-18]
Heavy neutrino-antineutrino oscillations at colliders, Stefan Antusch, Eros Cazzato, Oliver Fischer, Mod.Phys.Lett. A34 (2019) 1950061, arXiv:1709.03797.
[Antusch:2017ebe]
[23-19]
Lepton number violation in $B_s$ meson decays induced by an on-shell Majorana neutrino, Jhovanny Mejia-Guisao, Diego Milanes, Nestor Quintero, Jose D. Ruiz-Alvarez, Phys.Rev. D97 (2018) 075018, arXiv:1708.01516.
[Mejia-Guisao:2017gqp]
[23-20]
Stimulated transitions in resonant Atom Majorana Mixing, Jose Bernabeu, Alejandro Segarra, JHEP 1802 (2018) 017, arXiv:1706.08328.
[Bernabeu:2017ape]
[23-21]
Lepton Number Violating Four-body Tau Decay, Han Yuan, Yue Jiang, Tian-hong Wang, Qiang Li, Guo-Li Wang, J.Phys. G44 (2017) 115002, arXiv:1702.04555.
[Yuan:2017xdp]
[23-22]
Deciphering the Majorana nature of neutrino via 'effective' Dalitz plot method, C. S. Kim, Dibyakrupa Sahoo, arXiv:1612.00607, 2016.
[Kim:2016bxw]
[23-23]
Not-that-heavy Majorana neutrino signals at the LHC, Lucia Duarte, Javier Peressutti, Oscar A. Sampayo, J.Phys. G45 (2018) 025001, arXiv:1610.03894.
[Duarte:2016caz]
[23-24]
Collider Phenomenology of $e^{-}e^{-}\to W^{-}W^{-}$, Kai Wang, Tao Xu, Liangliang Zhang, Phys.Rev. D95 (2017) 075021, arXiv:1610.02618.
[Wang:2016eln]
[23-25]
$\boldsymbol{\mu^-}$- $\boldsymbol{e^+}$ conversion in upcoming LFV experiments, Tanja Geib, Alexander Merle, Kai Zuber, Phys.Lett. B764 (2017) 157-162, arXiv:1609.09088.
[Geib:2016atx]
[23-26]
Revision of the LHCb Limit on Majorana Neutrinos, Brian Shuve, Michael E. Peskin, Phys. Rev. D94 (2016) 113007, arXiv:1607.04258.
[Shuve:2016muy]
[23-27]
Distinguishing Dirac/Majorana Sterile Neutrinos at the LHC, Claudio O. Dib, C. S. Kim, Kechen Wang, Jue Zhang, Phys. Rev. D94 (2016) 013005, arXiv:1605.01123.
[Dib:2016wge]
[23-28]
Sensitivity to Majorana neutrinos in $\DeltaL=2$ decays of $B_c$ meson at LHCb, Diego Milanes, Nestor Quintero, Carlos E. Vera, Phys. Rev. D93 (2016) 094026, arXiv:1604.03177.
[Milanes:2016rzr]
[23-29]
A favoured $B_c$ Decay mode to search for a Majorana neutrino, Sanjoy Mandal, Nita Sinha, Phys. Rev. D94 (2016) 033001, arXiv:1602.09112.
[Mandal:2016hpr]
[23-30]
Probing the Majorana neutrinos and their CP violation in decays of charged scalar mesons $\pi, K, D, D_s, B, B_c$, Gorazd Cvetic, Claudio Dib, C. S. Kim, Jilberto Zamora-Saa, Symmetry 7 (2015) 726-773, arXiv:1503.01358.
[Cvetic:2015naa]
[23-31]
Estimation of the Majorana phases using rephasing invariant quantities, Rome Samanta, Mainak Chakraborty, Ambar Ghosal, Nucl. Phys. B904 (2016) 86-105, arXiv:1502.06508.
[Samanta:2015hxa]
[23-32]
Study Majorana Neutrino Contribution to B-meson Semi-leptonic Rare Decays, Ying Wang, Shou-Shan Bao, Zuo-Hong Li, Nan Zhu, Zong-Guo Si, Phys.Lett. B736 (2014) 428-432, arXiv:1407.2468.
[Wang:2014lda]
[23-33]
Lepton-number violating four-body decays of heavy mesons, Han Yuan, Tianhong Wang, Guo-Li Wang, Wan-Li Ju, Jin-Mei Zhang, JHEP 1308 (2013) 066, arXiv:1304.3810.
[Yuan:2013yba]
[23-34]
Bounding resonant Majorana neutrinos from four-body B and D decays, Gabriel Lopez Castro, Nestor Quintero, Phys. Rev. D87 (2013) 077901, arXiv:1302.1504.
[Castro:2013jsn]
[23-35]
Lepton Number Violation and W' Chiral Couplings at the LHC, Tao Han, Ian Lewis, Richard Ruiz, Zong-guo Si, Phys. Rev. D87 (2013) 035011, arXiv:1211.6447.
[Han:2012vk]
[23-36]
Search for Majorna Neutrino Signal in $B_c$ Meson Rare Decay, Shou-Shan Bao, Hong-Lei Li, Zong-Guo Si, Yi-Bo Yang, Commun.Theor.Phys. 59 (2013) 472-478, arXiv:1208.5136.
[Bao:2012vq]
[23-37]
Probing Majorana neutrinos in rare $\pi^+ \to e^+ e^+ \mu^- \nu$ decays, Gorazd Cvetic, Claudio Dib, C.S. Kim, JHEP 06 (2012) 149, arXiv:1203.0573.
[Cvetic:2012hd]
[23-38]
Lepton number violating four-body tau lepton decays, Gabriel Lopez Castro, Nestor Quintero, Phys. Rev. D85 (2012) 076006, arXiv:1203.0537.
[LopezCastro:2012udb]
[23-39]
Back-to-back pair correlation of Majorana neutrinos with transit magnetic moments, Hyun Kyu Lee, Phys. Rev. D84 (2011) 077302, arXiv:1109.5766.
[Lee:2011rk]
[23-40]
Lepton number violation in top quark and neutral B meson decays, D. Delepine, G. Lopez Castro, N. Quintero, Phys. Rev. D84 (2011) 096011, arXiv:1108.6009.
[Quintero:2011yh]
[23-41]
Fourth Generation Majorana Neutrinos, Alexander Lenz, Heinrich Pas, Dario Schalla, Phys. Rev. D85 (2012) 075025, arXiv:1104.2465.
[Lenz:2011gd]
[23-42]
Probing Majorana neutrinos in rare $K$ and $D$, $D_s$, $B$, $B_c$ meson decays, G. Cvetic, Claudio Dib, Sin Kyu Kang, C. S. Kim, Phys. Rev. D82 (2010) 053010, arXiv:1005.4282.
[Cvetic:2010rw]
[23-43]
Lepton-Number Violating Decays of Heavy Mesons, Jin-Mei Zhang, Guo-Li Wang, Eur. Phys. J. C71 (2011) 1715, arXiv:1003.5570.
[Zhang:2010um]
[23-44]
Experimental Sensitivity for Majorana Neutrinos Produced via a Z Boson at Hadron Colliders, Arvind Rajaraman, Daniel Whiteson, Phys. Rev. D81 (2010) 071301, arXiv:1001.1229.
[Rajaraman:2010wk]
[23-45]
A new strategy for probing the Majorana neutrino CP violating phases and masses, David Delepine, Vannia Gonzalez Macias, Shaaban Khalil, Gabriel Lopez Castro, AIP Conf. Proc. 1361 (2011) 395-397, arXiv:0908.2158.
[Delepine:2009as]
[23-46]
Neutrinoless double beta decays of the top quark and other effects of heavy Majorana neutrinos, Gad Eilam, PoS 2008LHC (2008) 061, arXiv:0902.4622.
[Eilam:2008qtl]
[23-47]
The Search for Heavy Majorana Neutrinos, Anupama Atre, Tao Han, Silvia Pascoli, Bin Zhang, JHEP 05 (2009) 030, arXiv:0901.3589.
[Atre:2009rg]
[23-48]
Detecting Majorana nature of neutrinos in muon decay, Takeshi Fukuyama, Koji Tsumura, arXiv:0809.5221, 2008.
[Fukuyama:2008sz]
[23-49]
Neutrino Pair Emission from Excited Atoms, M. Yoshimura, Phys. Rev. D75 (2007) 113007, arXiv:hep-ph/0611362.
[Yoshimura:2006nd]
[23-50]
Signatures for Majorana neutrinos at hadron colliders, Tao Han, Bin Zhang, Phys. Rev. Lett. 97 (2006) 171804, arXiv:hep-ph/0604064.
[Han:2006ip]
[23-51]
New limits on effective Majorana neutrino masses from rare kaon decays, K. Zuber, Phys. Lett. B479 (2000) 33-36, arXiv:hep-ph/0003160.
[Zuber:2000vy]
[23-52]
Analog of the Michel Parameter for Neutrino - Electron Scattering: A Test for Majorana Neutrinos, Simon Peter Rosen, Phys. Rev. Lett. 48 (1982) 842.
[Rosen:1982pj]
[23-53]
$\mu \to e \gamma$ in theories with Dirac and Majorana neutrino mass terms, T. P. Cheng, Ling-Fong Li, Phys. Rev. Lett. 45 (1980) 1908.
[Cheng:1980tp]

24 - Phenomenology - Nature - Talks

[24-1]
Lepton family numbers and non-relativistic Majorana neutrinos, Apriadi Salim Adam, Nicholas J.Benoit, Yuta Kawamura, Yamato Matsuo, Takuya Morozumi, Yusuke Shimizu, Yuya Tokunaga, Naoya Toyota, arXiv:2105.04306, 2021. BSM-2021.
[Adam:2021vbl]
[24-2]
Stimulated X-rays in resonant atom Majorana mixing, A. Segarra, J. Bernabeu, J.Phys.Conf.Ser. 1342 (2020) 012100, arXiv:1711.04251. TAUP 2017.
[Segarra:2017jzz]
[24-3]
Majorana phases in neutrino-antineutrino oscillations, Ye-Ling Zhou, arXiv:1310.5843, 2013. NUFACT 2013.
[Zhou:2013eoa]
[24-4]
Heavy Flavor Physics, Sheldon Stone, arXiv:1109.3361, 2011. DPF-2011, Providence, RI, August 8-13, 2011.
[Stone:2011vd]

25 - Phenomenology - Nature - Pseudo-Dirac and Quasi-Dirac

[25-1]
JUNO as a Probe of the Pseudo-Dirac Nature using Solar Neutrinos, Jack Franklin, Yuber F. Perez-Gonzalez, Jessica Turner, Phys.Rev.D 108 (2023) 035010, arXiv:2304.05418.
[Franklin:2023diy]
[25-2]
Probing Pseudo-Dirac Neutrinos with Astrophysical Sources at IceCube, Kiara Carloni, Ivan Martinez-Soler, Carlos A. Arguelles, K. S. Babu, P. S. Bhupal Dev, PoS ICRC2023 (2023) 1040, arXiv:2212.00737.
[Carloni:2022cqz]
[25-3]
Constraints on pseudo-Dirac neutrinos using high-energy neutrinos from NGC 1068, Thomas Rink, Manibrata Sen, Phys.Lett.B 851 (2024) 138558, arXiv:2211.16520.
[Rink:2022nvw]
[25-4]
Revisiting pseudo-Dirac neutrino scenario after recent solar neutrino data, S. Ansarifard, Y. Farzan, Phys.Rev.D 107 (2023) 075029, arXiv:2211.09105.
[Ansarifard:2022kvy]
[25-5]
Simulating lepton number violation induced by heavy neutrino-antineutrino oscillations at colliders, Stefan Antusch, Jan Hajer, Johannes Rosskopp, JHEP 03 (2023) 110, arXiv:2210.10738.
[Antusch:2022ceb]
[25-6]
Naturally Light Dirac and Pseudo-Dirac Neutrinos from Left-Right Symmetry, K.S. Babu, Xiao-Gang He, Mingxian Su, Anil Thapa, JHEP 08 (2022) 140, arXiv:2205.09127.
[Babu:2022ikf]
[25-7]
Constraining Feeble Neutrino Interactions with Ultralight Dark Matter, Abhish Dev, Gordan Krnjaic, Pedro Machado, Harikrishnan Ramani, Phys.Rev.D 107 (2023) 035006, arXiv:2205.06821.
[Dev:2022bae]
[25-8]
SN1987A still shining: A Quest for Pseudo-Dirac Neutrinos, Ivan Martinez-Soler, Yuber F. Perez-Gonzalez, Manibrata Sen, Phys.Rev.D 105 (2022) 095019, arXiv:2105.12736.
[Martinez-Soler:2021unz]
[25-9]
Quasi-Dirac neutrinos in the linear seesaw model, Carolina Arbelaez, Claudio Dib, Kevin Monsalvez-Pozo, Ivan Schmidt, JHEP 07 (2021) 154, arXiv:2104.08023.
[Arbelaez:2021chf]
[25-10]
Quasi-Dirac neutrino oscillations at DUNE and JUNO, G. Anamiati, V. De Romeri, M. Hirsch, C. A. Ternes, M. Tortola, Phys.Rev. D100 (2019) 035032, arXiv:1907.00980.
[Anamiati:2019maf]
[25-11]
Majorana vs Pseudo-Dirac Neutrinos at the ILC, P. Hernandez, J. Jones-Perez, O. Suarez-Navarro, Eur.Phys.J. C79 (2019) 220, arXiv:1810.07210.
[Hernandez:2018cgc]
[25-12]
The Standard Model with Diracian neutrino sector, T. M. Nieuwenhuizen, Symmetry 11 (2019) 994, arXiv:1810.04613.
[Nieuwenhuizen:2018vzf]
[25-13]
Pseudo-Dirac neutrinos from flavour dependent CP symmetry, Anjan S. Joshipura, Ketan M. Patel, JHEP 1807 (2018) 137, arXiv:1805.02002.
[Joshipura:2018cpb]
[25-14]
Quasi Dirac neutrino oscillations, G. Anamiati, R. M. Fonseca, M. Hirsch, Phys.Rev. D97 (2018) 095008, arXiv:1710.06249.
[Anamiati:2017rxw]
[25-15]
Quasi-Dirac neutrinos at the LHC, G. Anamiati, M. Hirsch, E. Nardi, JHEP 1610 (2016) 010, arXiv:1607.05641.
[Anamiati:2016uxp]
[25-16]
Quasi-Dirac neutrinos and solar neutrino data, F. Rossi-Torres, A.C.B. Machado, V. Pleitez, Eur.Phys.J. C73 (2013) 2596, arXiv:1302.5590.
[Rossi-Torres:2013dya]
[25-17]
Implications of the Pseudo-Dirac Scenario for Ultra High Energy Neutrinos from GRBs, Arman Esmaili, Yasaman Farzan, JCAP 1212 (2012) 014, arXiv:1208.6012.
[Esmaili:2012ac]
[25-18]
Neutrinoless double beta decay with pseudo Dirac neutrinos, Pei-Hong Gu, Phys. Rev. D85 (2012) 093016, arXiv:1101.5106.
[Gu:2011ak]
[25-19]
Pseudo-Dirac Neutrino Scenario: Cosmic Neutrinos at Neutrino Telescopes, Arman Esmaili, Phys. Rev. D81 (2010) 013006, arXiv:0909.5410.
[Esmaili:2009fk]
[25-20]
Pseudo-Dirac Neutrinos in the New Standard Model, Andre de Gouvea, Wei-Chih Huang, James Jenkins, Phys. Rev. D80 (2009) 073007, arXiv:0906.1611.
[deGouvea:2009fp]
[25-21]
Probing Pseudo-Dirac Neutrino through Detection of Neutrino Induced Muons from GRB Neutrinos, Debasish Majumdar, Pramana 70 (2008) 51-60, arXiv:hep-ph/0607344.
[Majumdar:2006bu]
[25-22]
Pseudo-Dirac Neutrinos, a Challenge for Neutrino Telescopes, J. F. Beacom et al., Phys. Rev. Lett. 92 (2004) 011101, arXiv:hep-ph/0307151.
[Beacom:2003eu]
[25-23]
Pseudo-Dirac scenario for neutrino oscillations, Makoto Kobayashi, C. S. Lim, Phys. Rev. D64 (2001) 013003, arXiv:hep-ph/0012266.
[Kobayashi:2000md]
[25-24]
Phenomenology of pseudo Dirac neutrinos, Anjan S. Joshipura, Saurabh D. Rindani, Phys. Lett. B494 (2000) 114-123, arXiv:hep-ph/0007334.
[Joshipura:2000ts]
[25-25]
Pseudo-Dirac solar neutrinos, Yosef Nir, JHEP 06 (2000) 039, arXiv:hep-ph/0002168.
[Nir:2000xn]
[25-26]
Pseudo-Dirac neutrinos as a potential complete solution to the neutrino oscillation puzzle, A. Geiser, Phys. Lett. B444 (1999) 358, arXiv:hep-ph/9901433.
[Geiser:1998mr]
[25-27]
Oscillations of pseudo-Dirac neutrinos and the solar neutrino problem, C. Giunti, C. W. Kim, U. W. Lee, Phys. Rev. D46 (1992) 3034-3039, arXiv:hep-ph/9205214.
[Giunti:1992hk]
[25-28]
Pseudo-Dirac neutrinos and the solar neutrino problem, Hisakazu Minakata, Hiroshi Nunokawa, Phys. Rev. D45 (1992) 3316-3320.
[Minakata:1991wp]
[25-29]
Cosmological and astrophysical constraints on a pseudo-Dirac tau-neutrino, Lance J. Dixon, Yosef Nir, Phys. Lett. B266 (1991) 425-430.
[Dixon:1991ss]
[25-30]
Pseudo-Dirac solar neutrinos?, Utpal Sarkar, Phys. Rev. D35 (1987) 1528.
[Sarkar:1986rf]
[25-31]
The solar neutrino puzzle, the Mikheev-Smirnov-Wolfenstein mechanism and the pseudo-Dirac neutrino, S. Toshev, Phys. Lett. B180 (1986) 285-289.
[Toshev:1986yp]
[25-32]
Dirac and pseudo-Dirac neutrinos and neutrinoless double beta decay, Jose F. Nieves, Phys. Lett. B147 (1984) 375.
[Nieves:1984sn]
[25-33]
Pseudo-Dirac neutrino, Masaru Doi, Masakatsu Kenmoku, Tsuneyuki Kotani, Hiroyuki Nishiura, Eiichi Takasugi, Prog.Theor.Phys. 70 (1983) 1331.
[Doi:1983wu]
[25-34]
On pseudo-Dirac neutrinos, neutrino oscillations and neutrinoless double beta decay, S. T. Petcov, Phys. Lett. B110 (1982) 245-249.
[Petcov:1982ya]
[25-35]
Different Varieties of Massive Dirac Neutrinos, Lincoln Wolfenstein, Nucl. Phys. B186 (1981) 147.
[Wolfenstein:1981kw]

26 - Phenomenology - Nature - Pseudo-Dirac and Quasi-Dirac - Talks

[26-1]
Pseudo-Dirac neutrino, Masaru Doi, Masakatsu Kenmoku, Tsuneyuki Kotani, Hiroyuki Nishiura, Eiichi Takasugi, Prog. Theor. Phys. 70 (1983) 1331. Lepton-Photon Conference, Ithaca, N.Y., Aug. 4-9, l983.
[Doi:1983wu]

27 - Phenomenology - Number of Neutrino Species

[27-1]
Improved Bhabha cross section at LEP and the number of light neutrino species, Patrick Janot, Stanislaw Jadach, Phys.Lett. B803 (2020) 135319, arXiv:1912.02067.
[Janot:2019oyi]
[27-2]
Beam-beam effects on the luminosity measurement at LEP and the number of light neutrino species, Georgios Voutsinas, Emmanuel Perez, Mogens Dam, Patrick Janot, Phys.Lett. B800 (2020) 135068, arXiv:1908.01704.
[Voutsinas:2019hwu]
[27-3]
A Fourth Neutrino and its Consequences on CP Asymmetries, D. Delepine, C. Lujan-Peschard, M. Napsuciale, arXiv:1303.4687, 2013.
[Delepine:2013sca]
[27-4]
Revisiting Constraints on Fourth Generation Neutrino Masses, Linda M. Carpenter, Arvind Rajaraman, Phys. Rev. D82 (2010) 114019, arXiv:1005.0628.
[Carpenter:2010dt]
[27-5]
Neutrino mass and lepton mixing hierarchies and future oscillation experiments, Samoil M. Bilenky, M. Fabbrichesi, S. T. Petcov, Phys. Lett. B276 (1992) 223-230.
[Bilenky:1991pk]
[27-6]
A Lower bound on the number of neutrino species measured at Z0 peak, Samoil M. Bilenky, W. Grimus, H. Neufeld, Phys. Lett. B252 (1990) 119-122.
[Bilenky:1990tm]
[27-7]
Neutrino Counting at the $Z$ Peak and Right-handed Neutrinos, C. Jarlskog, Phys.Lett. B241 (1990) 579.
[Jarlskog:1990kt]
[27-8]
Combined limits on the number of light neutrinos and the top mass from the measurement of $ R = \sigma (W \to \ell\nu) / \sigma (Z \to \ell \ell) $, P. Colas, D. Denegri, C. Stubenrauch, Z. Phys. C40 (1988) 527.
[Colas:1988cs]

28 - Phenomenology - Non-Unitary Mixing

[28-1]
Leptonic neutral-current probes in a short-distance DUNE-like setup, Salvador Centelles Chulia, Omar Miranda, Jose WF Valle, arXiv:2402.00114, 2024.
[CentellesChulia:2024sff]
[28-2]
A non-unitary solar constraint for long-baseline neutrino experiments, Andres Lopez Moreno, arXiv:2401.12829, 2024.
[Moreno:2024pbw]
[28-3]
Search for Hidden Neutrinos at the European Spallation Source: the SHiNESS experiment, Stefano Roberto Soleti, Pilar Coloma, Juan Jose Gomez Cadenas, JHEP 03 (2024) 148, arXiv:2311.18509.
[Soleti:2023hlr]
[28-4]
Constraining non-unitary neutrino mixing using matter effects in atmospheric neutrinos at INO-ICAL, Sadashiv Sahoo, Sudipta Das, Anil Kumar, Sanjib Kumar Agarwalla, arXiv:2309.16942, 2023.
[Sahoo:2023mpj]
[28-5]
Bounds on lepton non-unitarity and heavy neutrino mixing, Mattias Blennow, Enrique Fernandez-Martinez, Josu Hernandez-Garcia, Jacobo Lopez-Pavon, Xabier Marcano, Daniel Naredo-Tuero, JHEP 08 (2023) 030, arXiv:2306.01040.
[Blennow:2023mqx]
[28-6]
Improved sensitivities of ESS$\nu$SB from a two-detector fit, F. Capozzi, C. Giunti, C. A. Ternes, JHEP 04 (2023) 130, arXiv:2302.07154.
[Capozzi:2023ltl]
[28-7]
Non-unitary three-neutrino mixing in the early Universe, Stefano Gariazzo, Pablo Martinez-Mirave, Olga Mena, Sergio Pastor, Mariam Tortola, JCAP 03 (2023) 046, arXiv:2211.10522.
[Gariazzo:2022evs]
[28-8]
Revisiting leptonic non-unitarity in light of FASER$\nu$, Daniel Aloni, Avital Dery, Phys.Rev.D 109 (2024) 5, arXiv:2211.09638.
[Aloni:2022ebm]
[28-9]
Toward diagnosing neutrino non-unitarity through CP phase correlations, Hisakazu Minakata, PTEP 2022 (2022) 063B03, arXiv:2112.06178.
[Minakata:2021nii]
[28-10]
Non-Unitarity of the lepton mixing matrix at the European spallation source, Sabya Sachi Chatterjee, O. G. Miranda, M. Tortola, J. W. F. Valle, Phys.Rev.D 106 (2022) 075016, arXiv:2111.08673.
[Chatterjee:2021xyu]
[28-11]
Model-Independent Constraints on Non-Unitary Neutrino Mixing from High-Precision Long-Baseline Experiments, Sanjib Kumar Agarwalla, Sudipta Das, Alessio Giarnetti, Davide Meloni, JHEP 07 (2022) 121, arXiv:2111.00329.
[Agarwalla:2021owd]
[28-12]
Effect of non-unitary mixing on the mass hierarchy and CP violation determination at the Protvino to Orca experiment, Daljeet Kaur, Nafis Rezwan Khan Chowdhury, Ushak Rahaman, Eur.Phys.J.C 84 (2024) 118, arXiv:2110.02917.
[Kaur:2021rau]
[28-13]
Tau Neutrino Identification in Atmospheric Neutrino Oscillations Without Particle Identification or Unitarity, Peter B. Denton, Phys.Rev.D 104 (2021) 113003, arXiv:2109.14576.
[Denton:2021rsa]
[28-14]
New tau neutrino oscillation and scattering constraints on unitarity violation, Peter B. Denton, Julia Gehrlein, JHEP 06 (2022) 135, arXiv:2109.14575.
[Denton:2021mso]
[28-15]
Non-unitary Leptonic Flavor Mixing and CP Violation in Neutrino-antineutrino Oscillations, Yilin Wang, Shun Zhou, Phys.Lett.B 824 (2022) 136797, arXiv:2109.13622.
[Wang:2021rsi]
[28-16]
Strong signature of non-unitary neutrino mixing in the NO$\nu$A near detector data, Ushak Rahaman, Soebur Razzaque, Universe 8 (2022) 238, arXiv:2108.11783.
[Rahaman:2021cgc]
[28-17]
New physics from oscillations at the DUNE near detector, and the role of systematic uncertainties, Pilar Coloma, Jacobo Lopez-Pavon, Salvador Rosauro-Alcaraz, Salvador Urrea, JHEP 08 (2021) 065, arXiv:2105.11466.
[Coloma:2021uhq]
[28-18]
Probing non-unitary neutrino mixing via long-baseline neutrino oscillation experiments based at J-PARC, C Soumya, Phys.Rev.D 105 (2022) 015012, arXiv:2104.04315.
[Soumya:2021dmy]
[28-19]
Non-unitary neutrino mixing in short and long-baseline experiments, D.V. Forero, C. Giunti, C.A. Ternes, M. Tortola, Phys.Rev.D 104 (2021) 075030, arXiv:2103.01998.
[Forero:2021azc]
[28-20]
Global oscillation data analysis on the $3\nu$ mixing without unitarity, Zhuojun Hu, Jiajie Ling, Jian Tang, TseChun Wang, JHEP 2101 (2021) 124, arXiv:2008.09730.
[Hu:2020oba]
[28-21]
Future CEvNS experiments as probes of lepton unitarity and light-sterile neutrinos, O. G. Miranda, D. K. Papoulias, O. Sanders, M. Tortola, J. W. F. Valle, arXiv:2008.02759, 2020.
[Miranda:2020bpj]
[28-22]
Current and Future Neutrino Oscillation Constraints on Leptonic Unitarity, Sebastian A. R. Ellis, Kevin J. Kelly, Shirley Weishi Li, JHEP 2012 (2020) 068, arXiv:2008.01088.
[Ellis:2020hus]
[28-23]
New physics at nuSTORM, Kaustav Chakraborty, Srubabati Goswami, Kenneth Long, Phys.Rev. D103 (2021) 075009, arXiv:2007.03321.
[Chakraborty:2020brc]
[28-24]
Leptonic Unitarity Triangles, Sebastian A.R. Ellis, Kevin J. Kelly, Shirley Weishi Li, Phys.Rev. D102 (2020) 115027, arXiv:2004.13719.
[Ellis:2020ehi]
[28-25]
Searching for non-unitary neutrino oscillations in the present T2K and NO$\nu$A data, Luis Salvador Miranda, Pedro Pasquini, Ushak Rahaman, Soebur Razzaque, Eur.Phys.J. C81 (2021) 444, arXiv:1911.09398.
[Miranda:2019ynh]
[28-26]
On the nature of correlation between neutrino-SM CP phase and unitarity violating new physics parameters, Ivan Martinez-Soler, Hisakazu Minakata, PTEP 2020 (2020) 113B01, arXiv:1908.04855.
[Martinez-Soler:2019noy]
[28-27]
Neutrino counting experiments and non-unitarity from LEP and future experiments, F. J. Escrihuela, L. J. Flores, O. G. Miranda, Phys.Lett. B802 (2020) 135241, arXiv:1907.12675.
[Escrihuela:2019mot]
[28-28]
Testing unitarity of the $3\times 3$ neutrino mixing matrix in an atomic system, Guo-yuan Huang, Noboru Sasao, Zhi-zhong Xing, Motohiko Yoshimura, Int.J.Mod.Phys. A35 (2020) 2050004, arXiv:1904.10366.
[Huang:2019phr]
[28-29]
Short-baseline neutrino oscillations with 3+1 non-unitary mixing, C. Giunti, Phys.Lett. B795 (2019) 236-240, arXiv:1904.02093.
[Giunti:2019hkv]
[28-30]
Non Unitarity at DUNE and T2HK with Charged and Neutral Current Measurements, Debajyoti Dutta, Samiran Roy, J.Phys. G48 (2021) 045004, arXiv:1901.11298.
[Dutta:2019hmb]
[28-31]
Standard versus Non-Standard CP Phases in Neutrino Oscillation in Matter with Non-Unitarity, Ivan Martinez-Soler, Hisakazu Minakata, PTEP 2020 (2020) 063B01, arXiv:1806.10152.
[Martinez-Soler:2018lcy]
[28-32]
Indirect unitarity violation entangled with matter effects in reactor antineutrino oscillations, Yu-Feng Li, Zhi-zhong Xing, Jing-yu Zhu, Phys.Lett. B782 (2018) 578-588, arXiv:1802.04964.
[Li:2018jgd]
[28-33]
Exploring the Potential of Short-Baseline Physics at Fermilab, O. G. Miranda, Pedro Pasquini, M. Tortola, J. W. F. Valle, Phys.Rev. D97 (2018) 095026, arXiv:1802.02133.
[Miranda:2018yym]
[28-34]
Non-unitary evolution of neutrinos in matter and the leptonic unitarity test, Chee Sheng Fong, Hisakazu Minakata, Hiroshi Nunokawa, JHEP 1902 (2019) 015, arXiv:1712.02798.
[Fong:2017gke]
[28-35]
A novel approach to neutrino mixing analysis based on singular values, K. Bielas, W. Flieger, J. Gluza, M. Gluza, Phys.Rev. D98 (2018) 053001, arXiv:1708.09196.
[Bielas:2017lok]
[28-36]
Determination of the $\theta_{23}$ octant in long baseline neutrino experiments within and beyond the Standard Model, C.R. Das, Jukka Maalampi, Joao Pulido, Sampsa Vihonen, Phys.Rev. D97 (2018) 035023, arXiv:1708.05182.
[Das:2017fcz]
[28-37]
Probing Direct and Indirect Unitarity Violation in Future Accelerator Neutrino Facilities, Jian Tang, Yibing Zhang, Yu-Feng Li, Phys.Lett. B774 (2017) 217-224, arXiv:1708.04909.
[Tang:2017khg]
[28-38]
What measurements of neutrino neutral current events can reveal, Raj Gandhi, Boris Kayser, Suprabh Prakash, Samiran Roy, JHEP 1711 (2017) 202, arXiv:1708.01816.
[Gandhi:2017vzo]
[28-39]
Can we probe intrinsic CP/T violation and non-unitarity at long baseline accelerator experiments?, Jogesh Rout, Mehedi Masud, Poonam Mehta, Phys.Rev. D95 (2017) 075035, arXiv:1702.02163.
[Rout:2017udo]
[28-40]
Probing CP violation with non-unitary mixing in long-baseline neutrino oscillation experiments: DUNE as a case study, F. J. Escrihuela, D. V. Forero, O. G. Miranda, M. Tortola, J. W. F. Valle, New J.Phys. 19 (2017) 093005, arXiv:1612.07377.
[Escrihuela:2016ube]
[28-41]
Discriminating sterile neutrinos and unitarity violation with CP invariants, Heinrich Pas, Philipp Sicking, Phys.Rev. D95 (2017) 075004, arXiv:1611.08450.
[Pas:2016qbg]
[28-42]
Octant of $\theta_{23}$ at long baseline neutrino experiments in the light of Non Unitary Leptonic mixing, Debajyoti Dutta, Pomita Ghoshal, Sandeep K. Sehrawat, Phys.Rev. D95 (2017) 095007, arXiv:1610.07203.
[Dutta:2016eks]
[28-43]
Non-Unitarity, sterile neutrinos, and Non-Standard neutrino Interactions, Mattias Blennow, Pilar Coloma, Enrique Fernandez-Martinez, Josu Hernandez-Garcia, Jacobo Lopez-Pavon, JHEP 1704 (2017) 153, arXiv:1609.08637.
[Blennow:2016jkn]
[28-44]
A framework for testing leptonic unitarity by neutrino oscillation experiments, Chee Sheng Fong, Hisakazu Minakata, Hiroshi Nunokawa, JHEP 1702 (2017) 114, arXiv:1609.08623.
[Fong:2016yyh]
[28-45]
Effect of Non Unitarity on Neutrino Mass Hierarchy determination at DUNE, NO$\nu$A and T2K, Debajyoti Dutta, Pomita Ghoshal, Samiran Roy, Nucl.Phys. B920 (2017) 385-401, arXiv:1609.07094.
[Dutta:2016czj]
[28-46]
Probing Non-unitary $CP$ Violation effects in Neutrino Oscillation Experiments, Surender Verma, Shankita Bhardwaj, Indian J.Phys. 92 (2018) 1161-1167, arXiv:1609.06412.
[Verma:2016nfi]
[28-47]
Probing CP violation with T2K, NO$\nu$A and DUNE in the presence of non-unitarity, Debajyoti Dutta, Pomita Ghoshal, JHEP 1609 (2016) 110, arXiv:1607.02500.
[Dutta:2016vcc]
[28-48]
Global constraints on heavy neutrino mixing, Enrique Fernandez-Martinez, Josu Hernandez-Garcia, Jacobo Lopez-Pavon, JHEP 1608 (2016) 033, arXiv:1605.08774.
[Fernandez-Martinez:2016lgt]
[28-49]
Measuring the Leptonic CP Phase in Neutrino Oscillations with Non-Unitary Mixing, Shao-Feng Ge, Pedro Pasquini, M. Tortola, J. W. F. Valle, Phys.Rev. D95 (2017) 033005, arXiv:1605.01670.
[Ge:2016xya]
[28-50]
New ambiguity in probing CP violation in neutrino oscillations, O. G. Miranda, M. Tortola, J. W. F. Valle, Phys. Rev. Lett. 117 (2016) 061804, arXiv:1604.05690.
[Miranda:2016wdr]
[28-51]
Impact of sterile neutrinos on nuclear-assisted cLFV processes, A. Abada, V. De Romeri, A. M. Teixeira, JHEP 02 (2016) 083, arXiv:1510.06657.
[Abada:2015oba]
[28-52]
Unitarity and the three flavour neutrino mixing matrix, Stephen Parke, Mark Ross-Lonergan, Phys. Rev. D93 (2016) 113009, arXiv:1508.05095.
[Parke:2015goa]
[28-53]
On the description of non-unitary neutrino mixing, F. J. Escrihuela, D. V. Forero, O. G. Miranda, M. Tortola, J. W. F. Valle, Phys. Rev. D92 (2015) 053009, arXiv:1503.08879.
[Escrihuela:2015wra]
[28-54]
Testing sterile neutrino extensions of the Standard Model at future lepton colliders, Stefan Antusch, Oliver Fischer, JHEP 05 (2015) 053, arXiv:1502.05915.
[Antusch:2015mia]
[28-55]
Non-unitarity of the leptonic mixing matrix: Present bounds and future sensitivities, Stefan Antusch, Oliver Fischer, JHEP 10 (2014) 094, arXiv:1407.6607.
[Antusch:2014woa]
[28-56]
Sterile neutrinos in leptonic and semileptonic decays, A. Abada, A. M. Teixeira, A. Vicente, C. Weiland, JHEP 02 (2014) 091, arXiv:1311.2830.
[Abada:2013aba]
[28-57]
Precision tests of unitarity in leptonic mixing, Lorenzo Basso, Oliver Fischer, Jochum J. van der Bij, Europhys. Lett. 105 (2014) 11001, arXiv:1310.2057.
[Basso:2013jka]
[28-58]
Unitarity Tests of the Neutrino Mixing Matrix, X. Qian, C. Zhang, M. Diwan, P. Vogel, arXiv:1308.5700, 2013.
[Qian:2013ora]
[28-59]
Improving Electro-Weak Fits with TeV-scale Sterile Neutrinos, E. Akhmedov, A. Kartavtsev, M. Lindner, L. Michaels, J. Smirnov, JHEP 05 (2013) 081, arXiv:1302.1872.
[Akhmedov:2013hec]
[28-60]
Tree-level lepton universality violation in the presence of sterile neutrinos: impact for $R_K$ and $R_\pi$, A. Abada, D. Das, A. M. Teixeira, A. Vicente, C. Weiland, JHEP 02 (2013) 048, arXiv:1211.3052.
[Abada:2012mc]
[28-61]
Towards testing the unitarity of the 3X3 lepton flavor mixing matrix in a precision reactor antineutrino oscillation experiment, Zhi-zhong Xing, Phys. Lett. B718 (2013) 1447-1453, arXiv:1210.1523.
[Xing:2012kh]
[28-62]
Muon conversion to electron in nuclei in type-I seesaw models, R. Alonso, M. Dhen, M. B. Gavela, T. Hambye, JHEP 01 (2013) 118, arXiv:1209.2679.
[Alonso:2012ji]
[28-63]
A full parametrization of the 6 X 6 flavor mixing matrix in the presence of three light or heavy sterile neutrinos, Zhi-zhong Xing, Phys. Rev. D85 (2012) 013008, arXiv:1110.0083.
[Xing:2011ur]
[28-64]
Lepton flavor violation and non-unitary lepton mixing in low-scale type-I seesaw, D. V. Forero, S. Morisi, M. Tortola, J. W. F. Valle, JHEP 09 (2011) 142, arXiv:1107.6009.
[Forero:2011pc]
[28-65]
On Non-Unitary Lepton Mixing and Neutrino Mass Observables, Werner Rodejohann, Phys. Lett. B684 (2010) 40-47, arXiv:0912.3388.
[Rodejohann:2009ve]
[28-66]
Probing non-unitary mixing and CP-violation at a Neutrino Factory, Stefan Antusch, Mattias Blennow, Enrique Fernandez-Martinez, Jacobo Lopez-Pavon, Phys. Rev. D80 (2009) 033002, arXiv:0903.3986.
[Antusch:2009pm]
[28-67]
Probing Quasi-Unitary Parameterization of Neutrino Mixing, Lei Lu, Wenyu Wang, Zhaohua Xiong, Chin.Phys. C34 (2010) 1791-1796, arXiv:0902.2031.
[Lu:2010hso]
[28-68]
Testing non-unitarity of neutrino mixing matrices at neutrino factories, Srubabati Goswami, Toshihiko Ota, Phys. Rev. D78 (2008) 033012, arXiv:0802.1434.
[Goswami:2008mi]
[28-69]
Correlation between the Charged Current Interactions of Light and Heavy Majorana Neutrinos, Zhi-zhong Xing, Phys. Lett. B660 (2008) 515-521, arXiv:0709.2220.
[Xing:2007zj]
[28-70]
CP-violation from non-unitary leptonic mixing, E. Fernandez-Martinez, M.B. Gavela, J.Lopez-Pavon, O. Yasuda, Phys. Lett. B649 (2007) 427-435, arXiv:hep-ph/0703098.
[Fernandez-Martinez:2007iaa]
[28-71]
Unitarity of the Leptonic Mixing Matrix, S. Antusch et al., JHEP 10 (2006) 084, arXiv:hep-ph/0607020.
[Antusch:2006vwa]
[28-72]
Nondecoupling of heavy neutrinos and lepton flavor violation, D. Tommasini, G. Barenboim, J. Bernabeu, C. Jarlskog, Nucl. Phys. B444 (1995) 451-467, arXiv:hep-ph/9503228.
[Tommasini:1995ii]
[28-73]
Limits on neutrino mixing with new heavy particles, Enrico Nardi, Esteban Roulet, Daniele Tommasini, Phys. Lett. B327 (1994) 319-326, arXiv:hep-ph/9402224.
[Nardi:1994iv]
[28-74]
Seesaw type mixing and $\nu_{\mu}\to\nu_{\tau}$ oscillations, Samoil M. Bilenky, C. Giunti, Phys. Lett. B300 (1993) 137-140, arXiv:hep-ph/9211269.
[Bilenky:1992wv]
[28-75]
Lepton number violation and massless nonorthogonal neutrinos, Paul Langacker, David London, Phys. Rev. D38 (1988) 907.
[Langacker:1988up]
[28-76]
Mixing between ordinary and exotic fermions, Paul Langacker, David London, Phys. Rev. D38 (1988) 886.
[Langacker:1988ur]

29 - Phenomenology - Non-Unitary Mixing - Talks

[29-1]
Possible Precise Neutrino Unitarity?, Anatael Cabrera, PoS EPS-HEP2019 (2020) 375, arXiv:1911.03686. European Physical Society Conference on High Energy Physics - EPS-HEP2019 - 10-17 July, 2019. Ghent, Belgium.
[Cabrera:2019xkf]
[29-2]
Beyond Standard Neutrino Theory, Toshihiko Ota, PoS NuFact2017 (2018) 026, arXiv:1712.06784. 19th International Workshop on Neutrinos from Accelerators (NUFACT 2017).
[Ota:2017uae]
[29-3]
Non-Unitarity vs sterile neutrinos at DUNE, Josu Hernandez-Garcia, Jacobo Lopez-Pavon, arXiv:1705.01840, 2017. NuPhys2016 (London, 12-14 December 2016).
[Hernandez-Garcia:2017pwx]
[29-4]
Effects Of leptonic non-unitarity on lepton flavor violation, neutrino oscillation, leptogenesis and lightest neutrino mass, Gayatri Ghosh, Kalpana Bora, Springer Proc.Phys. 203 (2018) 309-311, arXiv:1612.09047. XXII DAE BRNS High energy physics symposium, 12 - 16 December, 2016, Delhi University, Delhi, India.
[Ghosh:2016xpw]
[29-5]
Completely general bounds on Non-Unitary leptonic mixing, Josu Hernandez-Garcia, arXiv:1611.07584, 2016. NuFact16 and ICHEP 2016.
[Hernandez-Garcia:2016hyv]

30 - History

[30-1]
First steps towards understanding neutrinos, Francesco Vissani, arXiv:2310.07834, 2023.
[Vissani:2023yqj]
[30-2]
Majorana, the Neutron, and the Neutrino: Some elementary historical remarks, Erasmo Recami, Hadronic J. 40 (2017) 149-185, arXiv:1712.02209.
[Recami:2017pfb]
[30-3]
On the Earlier and more recent history of the neutrino, W. Pauli, Cambridge Monogr. Part. Phys. Nucl. Phys. Cosmol. 14 (2000) 1-22.
[Pauli:2000ak]
[30-4]
The neutrino: From poltergeist to particle, F. Reines, Rev. Mod. Phys. 68 (1996) 317-327.
[Reines:1996ia]

Search Neutrino Unbound

Cross search NU

It is possible to perform a cross search between the various pages of Neutrino Unbound.
This is useful if you want to show the common elements that appear in the listings of two (or more) different topics or experiments.

Go to the search form.

[Go to ...]

Neutrino Unbound Home

Authors:
Stefano Gariazzo / gariazzo@to.infn.it
Carlo Giunti / giunti@to.infn.it
Marco Laveder / marco.laveder@pd.infn.it
Last Update: Thu 25 Apr 2024, 10:44:17 CET