Fundamental Neutrino Properties

Filter this page

(Note: The process can take some time.)



1 - Books

Introduction to the Physics of Massive and Mixed Neutrinos, Samoil Bilenky, Lect.Notes Phys. 947 (2018) pp.1-273, Springer. Lecture Notes in Physics, Volume 947.
The Physics of Ettore Majorana, Salvatore Esposito, Cambridge University Press, 2015. ISBN 9781107044029.
Neutrinos in high energy and astroparticle physics, Jorge Romao, Jose W. F. Valle, Wiley, 2015. ISBN 978-3-527-41197-9.
Neutrino Cosmology, Julien Lesgourgues, Gianpiero Mangano, Gennaro Miele, Sergio Pastor, Cambridge University Press, 2013. ISBN 9781139012874.
The physics of neutrinos, Vernon Barger, Danny Marfatia, Kerry Whisnant, Princeton University Press, 2012. ISBN 978-0691128535.
Neutrinos in particle physics, astronomy and cosmology, Zhi-zhong Xing, Shun Zhou, Zhejiang University Press, Hangzhou, 2011. ISBN 978-7308080248.
Neutrino, Frank Close, Oxford University Press, 2010.
Introduction to the physics of massive and mixed neutrinos, Samoil Bilenky, Springer, 2010. Lecture Notes in Physics, Volume 817; ISBN 978-3-642-14042-6.
Beta Beams, M. Lindroos, M. Mezzetto, World Scientific, 2009.
Fundamentals of Neutrino Physics and Astrophysics, C. Giunti, C. W. Kim, Oxford University Press, Oxford, UK, 2007. ISBN 978-0-19-850871-7.
Massive Neutrinos in Physics and Astrophysics, R. N. Mohapatra, P. B. Pal, World Scientific, 2004. Third Edition, Lecture Notes in Physics, Vol. 72.
Focus on Neutrino Physics, F. Halzen et al., 2004. New Journal of Physics, 6 (2004).
Neutrino, La particella fantasma, Lino Miramonti, Franco Reseghetti, Franco Muzzio editore, 2004. In Italian.
Neutrino Physics, K. Zuber, Taylor & Francis, 2003.
Unification and Supersymmetry. The Frontiers of Quark-Lepton Physics, R. N. Mohapatra, Springer, 2003. Series: Graduate Texts in Contemporary Physics, 3rd edition.
Physics of neutrinos and applications to astrophysics, M. Fukugita, T. Yanagida, Springer, 2003.,11855,5-10100-22-2258836-0,00.html.
Particle Astrophysics, H.V. Klapdor, K. Zuber, Institute of Physics Publishing, 2003. Series in High Energy Physics.
Current aspects of neutrino physics, (ed.) Caldwell, D. O., Springer, 2001.
Massive Neutrinos in Physics and Astrophysics, R. N. Mohapatra, P. B. Pal, World Scientific, 1998. Lecture Notes in Physics, Vol. 60.
Stars as laboratories for fundamental physics: The astrophysics of neutrinos, axions, and other weakly interacting particles, G.G. Raffelt, University of Chicago Press, 1996. ISBN 0-226-70272-3.
La lumiere des neutrinos, Vignaud Daniel Cribier Michel, Spiro Michel, Editions du Seuil, 1995. In French.
Physics and astrophysics of neutrinos, (ed.) Fukugita, M., (ed.) Suzuki, A., Springer, 1994.
Neutrinos in Physics and Astrophysics, C. W. Kim, A. Pevsner, Harwood Academic Press, 1993. Contemporary Concepts in Physics, Vol. 8.
Physics of massive neutrinos, F. Boehm, P. Vogel, Cambridge University Press, 1992.
Neutrino physics, (ed.) Winter, K., Camb.Monogr.Part.Phys.Nucl.Phys.Cosmol. 1 (1992) pp.1-670, Cambridge University Press. Camb.Monogr.Part.Phys.Nucl.Phys.Cosmol. 1.
Neutrinos and other matters: Selected works of Frederick Reines, (ed.) Kropp, W. R., (ed.) Moe, M., (ed.) Price, L., (ed.) Schultz, J., (ed.) Sobel, H., World Scientific, 1991.
Cosmic Rays and Particle Physics, T. K. Gaisser, Cambridge University Press, 1990.
Neutrino Astrophysics, J. N. Bahcall, Cambridge University Press, 1989.
The Physics of massive neutrinos, B. Kayser, F. Gibrat-Debu, F. Perrier, 1989. World Sci.Lect.Notes Phys. 25.

2 - Reviews

On the Properties of Neutrinos, A. Baha Balantekin, Boris Kayser, Ann.Rev.Nucl.Part.Sci. 68 (2018) 313-338, arXiv:1805.00922.
Neutrino in Standard Model and beyond, S. M. Bilenky, Phys.Part.Nucl. 46 (2015) 475-496, arXiv:1501.00232.
Majorana neutrinos and other Majorana particles: Theory and experiment, Evgeny Akhmedov, arXiv:1412.3320, 2014.
Majorana and Condensed Matter Physics, Frank Wilczek, arXiv:1404.0637, 2014.
Colloquium: Majorana Fermions in nuclear, particle and solid-state physics, S.R. Elliott, M. Franz, Rev.Mod.Phys. 87 (2015) 137, arXiv:1403.4976.
Neutrino Spectroscopy with Atoms and Molecules, Atsushi Fukumi et al., PTEP 2012 (2012) 04D002, arXiv:1211.4904.
On Invariants of Quark and Lepton Mass Matrices in the Standard Model, Cecilia Jarlskog, Comptes Rendus Physique 13 (2012) 111-114, arXiv:1102.2823.
Dirac, Majorana and Weyl fermions, Palash B. Pal, Am. J. Phys. 79 (2011) 485-498, arXiv:1006.1718.
A direct road to Majorana fields, Andreas Aste, Symmetry 2 (2010) 1776-1809, arXiv:0806.1690.
Neutrino masses and mixings and..., Alessandro Strumia, Francesco Vissani, arXiv:hep-ph/0606054, 2006.
Neutrino Majorana, S.M. Bilenky, arXiv:hep-ph/0605172, 2006.
Majorana neutrino mixing, S. M. Bilenky, J. Phys. G32 (2006) R127, arXiv:hep-ph/0511227.
Theory of Neutrinos: A White Paper, R.N. Mohapatra et al., Rept. Prog. Phys. 70 (2007) 1757-1867, arXiv:hep-ph/0510213.
Neutrinos: A brief review, S. M. Bilenky, Mod. Phys. Lett. A19 (2004) 2451-2477.
Neutrino Mass, Mixing, and Flavor Change, B. Kayser, Phys. Lett. B592 (2004). The Review of Particle Properties 2004.
Neutrino Mixing, C. Giunti, M. Laveder, arXiv:hep-ph/0310238, 2003. In 'Developments in Quantum Physics - 2004', p. 197-254, edited by F. Columbus and V. Krasnoholovets, Nova Science, Hauppauge, NY.
Flavor Mixing and CP Violation of Massive Neutrinos, Z.-Z. Xing, Int. J. Mod. Phys. A19 (2004) 1, arXiv:hep-ph/0307359.
Absolute values of neutrino masses: Status and prospects, S. M. Bilenky, C. Giunti, J. A. Grifols, E. Masso, Phys. Rep. 379 (2003) 69-148, arXiv:hep-ph/0211462.
Neutrinos in cosmology, A. D. Dolgov, Phys. Rep. 370 (2002) 333-535, arXiv:hep-ph/0202122.
Neutrino Masses and Mixing: Evidence and Implications, M.C. Gonzalez-Garcia, Y. Nir, Rev. Mod. Phys. 75 (2003) 345-402, arXiv:hep-ph/0202058.
Neutrino Physics as Explored by Flavor Change, B. Kayser, Phys. Rev. D66 (2002) 010001. The Review of Particle Properties 2002.
Lepton numbers in the framework of neutrino mixing, S. M. Bilenky, C. Giunti, Int. J. Mod. Phys. A16 (2001) 3931-3949, arXiv:hep-ph/0102320.
Finally neutrino has mass?, S. M. Bilenky, C. Giunti, C. W. Kim, Int. J. Mod. Phys. A15 (2000) 625-650, arXiv:hep-ph/9902462.
Phenomenology of neutrino oscillations, S. M. Bilenky, C. Giunti, W. Grimus, Prog. Part. Nucl. Phys. 43 (1999) 1, arXiv:hep-ph/9812360.
Electric charge quantization, Robert Foot, H. Lew, R. R. Volkas, J. Phys. G19 (1993) 361-372, arXiv:hep-ph/9209259.
Gauge theories and the physics of neutrino mass, J. W. F. Valle, Prog. Part. Nucl. Phys. 26 (1991) 91-171.
The number of neutrino species, D. Denegri, B. Sadoulet, M. Spiro, Rev. Mod. Phys. 62 (1990) 1.
Introduction to Majorana masses, Philip D. Mannheim, Int.J.Theor.Phys. 23 (1984) 643.

3 - Reviews - Conference Proceedings

Majorana Fermions in Particle Physics, Solid State and Quantum Information, L. Borsten, M. J. Duff, Subnucl.Ser. 53 (2017) 77-121, arXiv:1612.01371. Erice International School of Subnuclear Physics, 53rd Course: 'The Future of Our Physics Including New Frontiers', and Celebration of the Triumph of Ettore Majorana, Erice, 24 June-3 July 2015.
Selected Topics in Majorana Neutrino Physics, Luciano Maiani, Riv.Nuovo Cim. 37 (2014) 417-466, arXiv:1406.5503. Lectures Notes from the Ettore Majorana Lectures, Diaprtimento di Fisica, Universita' Federico II, Napoli, March 2014. Rivista del Nuovo Cimento, 2014.
The Physics of Neutrinos, Renata Zukanovich Funchal, Benoit Schmauch, Gaelle Giesen, arXiv:1308.1029, 2013. Course given at Institut de Physique Theorique of CEA/Saclay in January/February 2013.
Neutrino physics, P. Hernandez, arXiv:1010.4131, 2010. 5th CERN-Latin-American School of High-Energy Physics, Recinto Quirama, Colombia, 15 - 28 Mar 2009.
Are neutrinos their own antiparticles?, Boris Kayser, J. Phys. Conf. Ser. 173 (2009) 012013, arXiv:0903.0899. Carolina International Symposium on Neutrino Physics.
Neutrino Oscillation Phenomenology, Boris Kayser, arXiv:0804.1121, 2008.
Are Neutrinos Majorana Particles?, G. Rajasekaran, arXiv:0803.4387, 2008. Workshop on Neutrinoless Double Beta Decay (NDBD07) at Tata Institute of Fundamental Research, Mumbai, October 2007.
Neutrino Intrinsic Properties: The Neutrino-Antineutrino Relation, Boris Kayser, Phys. Scripta T121 (2005) 156, arXiv:hep-ph/0504052. Nobel Symposium on Neutrino Physics.

4 - PhD Theses

Model Independent Explorations of Majorana Neutrino Mass Origins, James Jenkins, arXiv:0805.0303, 2008.

5 - Fundamental Papers - Experiment

Observation of high-energy neutrino reactions and the existence of two kinds of neutrinos, G. Danby et al., Phys. Rev. Lett. 9 (1962) 36-44.
Detection of the free anti-neutrino, F. Reines, C. L. Cowan, F. B. Harrison, A. D. McGuire, H. W. Kruse, Phys. Rev. 117 (1960) 159-173.
Helicity of neutrinos, M. Goldhaber, L. Grodzins, A. W. Sunyar, Phys. Rev. 109 (1958) 1015-1017.
A Proposed experiment to detect the free neutrino, F. Reines, C. L. Cowan, Phys. Rev. 90 (1953) 492-493.
Detection of the free neutrino, F. Reines, C. L. Cowan, Phys. Rev. 92 (1953) 830-831.

6 - Fundamental Papers - Theory

On the Mikheev-Smirnov-Wolfenstein (MSW) mechanism of amplification of neutrino oscillations in matter, P. Langacker, S. T. Petcov, G. Steigman, S. Toshev, Nucl. Phys. B282 (1987) 589.
Comment: It is shown that the Dirac or Majorana nature of neutrinos cannot be distinguished in neutrino oscillations in matter, as well as in vacuum, because neutrino oscillations do not depend on the Majorana phases. [C.G.].
The phenomenology of neutrino oscillations, I. Yu. Kobzarev, B. V. Martemyanov, L. B. Okun, M. G. Shchepkin, Sov. J. Nucl. Phys. 32 (1980) 823.
Selection rules for the $\beta$-disintegration, G. Gamow, E. Teller, Phys. Rev. 49 (1936) 895-899.
Attempt at a theory of $\beta$ rays, E. Fermi, Nuovo Cim. 11 (1934) 1-19. In Italian.
Attempt at a theory of $\beta$ rays, E. Fermi, Z. Phys. 88 (1934) 161-177. In German.
Attempt at a theory of the emission of $\beta$ rays, E. Fermi, Ricerca Scientifica 4 (1933) 491. In Italian.

7 - Fundamental Papers - Theory - Two-Component Theory of Massless Neutrinos

On parity conservation and neutrino mass, A. Salam, Nuovo Cim. 5 (1957) 299.
Parity nonconservation and a two component theory of the neutrino, T. D. Lee, C. N. Yang, Phys. Rev. 105 (1957) 1671.
On the conservation laws for weak interactions, L. Landau, Nucl. Phys. 3 (1957) 127.

8 - Fundamental Papers - Theory - Nature - Majorana

Some implications of the CP invariance for mixing of Majorana neutrinos, S. M. Bilenky, N. P. Nedelcheva, S. T. Petcov, Nucl. Phys. B247 (1984) 61.
Can the neutrinoless double beta decay take place in the case of Dirac neutrinos?, Eiichi Takasugi, Phys. Lett. B149 (1984) 372.
CPT, CP, and C phases and their effects in Majorana particle processes, Boris Kayser, Phys. Rev. D30 (1984) 1023.
CP violation in Majorana neutrinos, M. Doi, T. Kotani, H. Nishiura, K. Okuda, E. Takasugi, Phys. Lett. B102 (1981) 323.
Comment: It is shown that the Dirac or Majorana nature of neutrinos cannot be distinguished in neutrino oscillations in vacuum, because neutrino oscillations in vacuum do not depend on the Majorana phases. [C.G.].
CP properties of Majorana neutrinos and double beta decay, Lincoln Wolfenstein, Phys. Lett. B107 (1981) 77.
Neutrino Oscillation Thought Experiment, J. Schechter, J. W. F. Valle, Phys. Rev. D23 (1981) 1666.
Neutrino masses in SU(2) x U(1) theories, J. Schechter, J. W. F. Valle, Phys. Rev. D22 (1980) 2227.
On oscillations of neutrinos with Dirac and Majorana masses, S. M. Bilenky, J. Hosek, S. T. Petcov, Phys. Lett. B94 (1980) 495.
Comment: It is shown that the Dirac or Majorana nature of neutrinos cannot be distinguished in neutrino oscillations in vacuum, because neutrino oscillations in vacuum do not depend on the Majorana phases. [C.G.].
Parity Nonconservation and the Theory of the Neutrino, J. A. Mclennan, Phys. Rev. 106 (1957) 821-822.
Reformulation of the Majorana Theory of the Neutrino, K.M. Case, Phys. Rev. 107 (1957) 307-316.
On the equivalence theorem for the massless neutrino, L.A. Radicati, B. Touschek, Nuovo Cim. 5 (1957) 1693-1699.
Sur la theorie abregee des particules de spin 1/2, J. Serpe, Physica 18 (1952) 295-306.
On transition probabilities in double beta-disintegration, W.H. Furry, Phys. Rev. 56 (1939) 1184-1193.
Teoria simmetrica dell'elettrone e del positrone, Ettore Majorana, Nuovo Cim. 14 (1937) 171-184. In Italian.
On the symmetry of particle and antiparticle, G. Racah, Nuovo Cim. 14 (1937) 322-328.

9 - Fundamental Papers - Phenomenology

Electron and muon neutrinos, B. Pontecorvo, Sov. Phys. JETP 10 (1960) 1236-1240.
Feasibility of using high-energy neutrinos to study the weak interactions, M. Schwartz, Phys. Rev. Lett. 4 (1960) 306-307.

10 - Experiment

Search for heavy Majorana neutrino in lepton number violating decays of D- > K pi e+ e+, BESIII Collaboration et al., arXiv:1902.02450, 2019.
Search for heavy Majorana neutrinos in same-sign dilepton channels in proton-proton collisions at $\sqrt{s} =$ 13 TeV, Albert M Sirunyan et al. (CMS), JHEP 1901 (2019) 122, arXiv:1806.10905.
Search for heavy Majorana neutrinos in $e^{\pm} e^{\pm} + \text{jets}$ and $e^{\pm} \mu^{\pm} + \text{jets}$ events in proton-proton collisions at $\sqrt{s} = 8 \, \text{TeV}$, Vardan Khachatryan et al. (CMS), JHEP 1604 (2016) 169, arXiv:1603.02248.
Search for heavy Majorana neutrinos with the ATLAS detector in $pp$ collisions at $\sqrt{s} = 8 \, \text{TeV}$, (ATLAS), JHEP 07 (2015) 162, arXiv:1506.06020.
Search for heavy Majorana neutrinos in $\mu^{\pm} \mu^{\pm} + \text{jets}$ events in proton-proton collisions at $\sqrt{s} = 8 \, \text{TeV}$, Vardan Khachatryan et al. (CMS), Phys. Lett. B748 (2015) 144-166, arXiv:1501.05566.
Search for Majorana neutrinos in $B^- \to \pi^+\mu^-\mu^-$ decays, Roel Aaij et al. (LHCb), Phys. Rev. Lett. 112 (2014) 131802, arXiv:1401.5361.
Search for heavy Majorana neutrinos in $\mu^{\pm}\mu^{\pm} +$ jets and $e^{\pm}e^{\pm} +$ jets events in pp collisions at $\sqrt{s} =$ 7 TeV, Serguei Chatrchyan et al. (CMS), Phys. Lett. B717 (2012) 109-128, arXiv:1207.6079.
Search for heavy neutrinos and right-handed $W$ bosons in events with two leptons and jets in $pp$ collisions at $\sqrt{s}=7$ TeV with the ATLAS detector, Georges Aad et al. (ATLAS), Eur. Phys. J. C72 (2012) 2056, arXiv:1203.5420.
Searches for Majorana neutrinos in $B^-$ decays, R. Aaij et al. (LHCb), Phys. Rev. D85 (2012) 112004, arXiv:1201.5600.
A Search for Excited Neutrinos in $e-p$ Collisions at HERA, H1 (H1), Phys. Lett. B663 (2008) 382-389, arXiv:0802.1858.

11 - Experiment - Conference Proceedings

Searches for Majorana Neutrinos and Direct Searches for Exotics at LHCb, X. Cid Vidal (LHCb), arXiv:1510.05483, 2015. LISHEP 2015.
Search for Heavy Neutrino in K- > mu nu_h(nu_h- > nu gamma) Decay at ISTRA+ Setup, ISTRA+ collaboration et al. (ISTRA+), Phys. Lett. B710 (2012) 307-317, arXiv:1110.1610. QFTHEP-2011.
Excited Fermions at H1, E. Sauvan (H1), J. Phys. Conf. Ser. 110 (2008) 072037, arXiv:0709.0673. 2007 Europhysics Conference on High Energy Physics, Manchester, England, 19-25 July 2007.

12 - Experiment - Number of Neutrino Species

Precision electroweak measurements on the Z resonance, S. Schael et al. (ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group), Phys. Rept. 427 (2006) 257, arXiv:hep-ex/0509008.
From the abstract: The number of light neutrino species is determined to be $ 2.9840 \pm 0.0082 $.
Search for the Anomalous Production of Single Photons in $e^+ e^-$ Annihilation at $\sqrt{s}=29\,\text{GeV}$, C. Hearty, J.E. Rothberg, K.K. Young, A.S. Johnson, John Scott Whitaker et al., Phys. Rev. D39 (1989) 3207.
Neutrino Counting With the CELLO Detector and Search for Supersymmetric Particles, H.J. Behrend et al. (CELLO), Phys.Lett. B215 (1988) 186.
Intermediate vector boson cross-sections at the CERN Super Proton Synchrotron collider and the number of neutrino types, C. Albajar et al. (UA1), Phys. Lett. B198 (1987) 271.

13 - Theory

Can gravity distinguish between Dirac and Majorana Neutrinos?, S. A. Alavi, A. Abbasnezhad, Grav.Cosmol. 22 (2016) 288-298, arXiv:1201.4741.
Canonical quantization of a massive Weyl field, Maxim Dvornikov, Found. Phys. 42 (2012) 1469-1479, arXiv:1106.3303.
Rephasing Invariants of Quark and Lepton Mixing Matrices, Elizabeth Jenkins, Aneesh V. Manohar, Nucl. Phys. B792 (2008) 187-205, arXiv:0706.4313.
Representation-independent manipulations with Dirac spinors, Palash B. Pal, arXiv:physics/0703214, 2007.
A teleparallel model for the neutrino, Dmitri Vassiliev, Phys. Rev. D75 (2007) 025006, arXiv:gr-qc/0604011.
Generalized Neutrino Equations, Valeriy V. Dvoeglazov, arXiv:quant-ph/0012107, 2000.
Theory of neutral particles: McLennan-Case construct for neutrino, its generalization, and a fundamentally new wave equation, D. V. Ahluwalia, Int. J. Mod. Phys. A11 (1996) 1855-1874, arXiv:hep-th/9409134.
General {CP} Properties of Neutrino Mass Eigenstates, Simon Peter Rosen, Phys. Rev. D29 (1984) 2535. [Erratum: Phys. Rev. D 30 (1984) 1995].
Electromagnetic properties and decays of Dirac and Majorana neutrinos in a general class of gauge theories, Robert E. Shrock, Nucl. Phys. B206 (1982) 359.
Neutrino decay and spontaneous violation of lepton number, J. Schechter, J. W. F. Valle, Phys. Rev. D25 (1982) 774.
Majorana Neutrinos and Magnetic Fields, J. Schechter, J. W. F. Valle, Phys. Rev. D24 (1981) 1883-1889.
Neutrino masses, mixings and oscillations in SU(2) x U(1) models of electroweak interactions, T. P. Cheng, Ling-Fong Li, Phys. Rev. D22 (1980) 2860.

14 - Theory - Nature

Oscillation of Dirac and Majorana neutrinos from muon decay in the case of a general interaction, Robert Szafron, Marek Zralek, Phys. Lett. B718 (2012) 113-116, arXiv:1210.2996.
Probing the quantum nature of the neutrino with two-particle interferometry, Thomas D. Gutierrez, Phys.Rev.Lett. 96 (2006) 121802, arXiv:nucl-th/0510069.
Majorana zero modes, Rachel Jeannerot, Marieke Postma, JHEP 0412 (2004) 032, arXiv:hep-ph/0411259.
A comment on the possibility of distinguishing between Dirac and Majorana neutrinos in $\nu_\mu - e$ scattering, Stephen M. Barr, A. Halprin, Phys. Lett. B202 (1988) 279.

15 - Theory - Nature - Conference Proceedings

Addressing the Majorana vs. Dirac Question Using Neutrino Decays, Boris Kayser, arXiv:1805.07523, 2018. 53rd Rencontres de Moriond Electroweak session of March 2018.

16 - Theory - Nature - Majorana

Generalized Pauli-Gursey transformation and Majorana neutrinos, Kazuo Fujikawa, Phys.Lett. B789 (2019) 76-81, arXiv:1811.02295.
Majorana neutrino and the vacuum of Bogoliubov quasiparticle, Kazuo Fujikawa, Phys.Lett. B781 (2018) 295-301, arXiv:1801.06960.
Majorana Neutrino as Bogoliubov Quasiparticle, Kazuo Fujikawa, Anca Tureanu, Phys.Lett. B774 (2017) 273-278, arXiv:1708.01438.
Determining Majorana Nature of Neutrino from Nucleon Decays and n-nbar oscillations, K.S. Babu, Rabindra N. Mohapatra, Phys. Rev. D91 (2015) 013008, arXiv:1408.0803.
An effective field theory for non-relativistic Majorana neutrinos, Simone Biondini, Nora Brambilla, Miguel Angel Escobedo, Antonio Vairo, JHEP 1312 (2013) 028, arXiv:1307.7680.
Renormalization group invariants in neutrino sector, Naoyuki Haba, Ryo Takahashi, JHEP 1308 (2013) 123, arXiv:1306.1375.
Majorana mass, time reversal symmetry, and the dimension of space, Igor F. Herbut, Physical Review D87 (2013) 085002, arXiv:1211.1317.
Majorana neutrino oscillations in vacuum, Y. F. Perez, C. J. Quimbay, J. Mod. Phys. 3 (2012) 803-814, arXiv:1103.2781.
No Effect of Majorana Phases in Neutrino Oscillations, Carlo Giunti, Phys. Lett. B686 (2010) 41-43, arXiv:1001.0760.
Majoranized Feynman rules, R. Kleiss, I. Malamos, G. v.d. Oord, Eur. Phys. J. C64 (2009) 387-389, arXiv:0906.3388.
The Physical Range of Majorana Neutrino Mixing Parameters, Andre de Gouvea, James Jenkins, Phys. Rev. D78 (2008) 053003, arXiv:0804.3627.
From transition magnetic moments to majorana neutrino masses, Sacha Davidson, Martin Gorbahn, Arcadi Santamaria, Phys. Lett. B626 (2005) 151, arXiv:hep-ph/0506085.
Beta decays with momentum space Majorana spinors, M. Kirchbach, C. Compean, L. Noriega, Eur. Phys. J. A22 (2004) 149, arXiv:hep-ph/0411316.
Neutral Fermion Phenomenology With Majorana Spinors, M. Kirchbach, C. Compean, L. Noriega, arXiv:hep-ph/0310297, 2003.
Extended set of Majorana spinors, a new dispersion relation, and a preferred frame, D. V. Ahluwalia-Khalilova, arXiv:hep-ph/0305336, 2003.
Manifest CP Violation from Majorana Phases, A. de Gouvea, B. Kayser, R. Mohapatra, Phys. Rev. D67 (2003) 053004, arXiv:hep-ph/0211394.
CP-violating Majorana phases, lepton-conserving processes and final state interactions, Jose F. Nieves, Palash B. Pal, Phys. Rev. D67 (2003) 036005, arXiv:hep-ph/0210232.
Rephasing-invariant CP violating parameters with Majorana neutrinos, Jose F. Nieves, Palash B. Pal, Phys. Rev. D64 (2001) 076005, arXiv:hep-ph/0105305.
Unitarity triangles and geometrical description of CP violation with Majorana neutrinos, J. A. Aguilar-Saavedra, G. C. Branco, Phys. Rev. D62 (2000) 096009, arXiv:hep-ph/0007025.
Neutrino anti-neutrino transitions, Paul Langacker, Jing Wang, Phys. Rev. D58 (1998) 093004, arXiv:hep-ph/9802383.
Can neutrinos be Majorana particles?, Steen Hannestad, arXiv:hep-ph/9701216, 1997.
CP violation in the lepton sector and Majorana neutrinos, J.K. Koh, C. Giunti, C.W. Kim, Journal of the Korean Physical Society 24 (1991) 275.
Quantization of electric charge from anomaly constraints and a Majorana neutrino, K. S. Babu, Rabindra N. Mohapatra, Phys. Rev. D41 (1990) 271.
Minimal rephasing invariant CP violating parameters with Dirac and Majorana fermions, Jose F. Nieves, Palash B. Pal, Phys. Rev. D36 (1987) 315.
CP properties of the leptonic sector for Majorana neutrinos, J. Bernabeu, P. Pascual, Nucl. Phys. B228 (1983) 21.
Physical processes involving Majorana neutrinos, L. F. Li, Frank Wilczek, Phys. Rev. D25 (1982) 143.
Electromagnetic properties of Majorana neutrinos, Jose F. Nieves, Phys. Rev. D26 (1982) 3152.
Majorana Neutrinos and their Electromagnetic Properties, Boris Kayser, Phys. Rev. D26 (1982) 1662.
C. Ryan, S. Okubo, Nuovo Cimento Suppl. 2 (1964) 234.

17 - Theory - Nature - Majorana - Conference Proceedings

Two Questions About Neutrinos, Boris Kayser, arXiv:1012.4469, 2010. 22nd Rencontres de Blois.
Evidence for Majorana Neutrinos: Dawn of a new era in spacetime structure, D. V. Ahluwalia, arXiv:hep-ph/0212222, 2002. Beyond the Desert '02, June, 2002, Oulu, Finland.

18 - Theory - Nature - Pseudo-Dirac

Dirac and pseudo-Dirac neutrinos and neutrinoless double beta decay, Jose F. Nieves, Phys. Lett. B147 (1984) 375.
Pseudo-Dirac neutrino, Masaru Doi, Masakatsu Kenmoku, Tsuneyuki Kotani, Hiroyuki Nishiura, Eiichi Takasugi, Prog.Theor.Phys. 70 (1983) 1331.
On pseudo-Dirac neutrinos, neutrino oscillations and neutrinoless double beta decay, S. T. Petcov, Phys. Lett. B110 (1982) 245-249.
Different Varieties of Massive Dirac Neutrinos, Lincoln Wolfenstein, Nucl. Phys. B186 (1981) 147.

19 - Theory - Mixing

An analytical treatment of the neutrino masses and mixings, Renata Jora, Joseph Schechter, M. Naeem Shahid, Mod.Phys.Lett. A28 (2013) 1350184, arXiv:1304.7899.
Properties of the Neutrino Mixing Matrix, S. H. Chiu, T. K. Kuo, Eur. Phys. J. C (2013) 73:2579, arXiv:1210.7061.
Simple parametrization of neutrino mixing matrix, Bo-Qiang Ma, Phys. Rev. D87 (2013) 017301, arXiv:1205.0766.
Dependence of Neutrino Mixing Angles and CP-violating Phase on Mixing Matrix Parametrizations, Melin Huang, Dawei Liu, Jen-Chieh Peng, S.D. Reitzner, Wei-Chun Tsai, arXiv:1108.3906, 2011.
Symmetrical Parametrizations of the Lepton Mixing Matrix, W. Rodejohann, J. W. F. Valle, Phys. Rev. D84 (2011) 073011, arXiv:1108.3484.
Parametrization of fermion mixing matrices in Kobayashi-Maskawa form, Nan Qin, Bo-Qiang Ma, Phys. Rev. D83 (2011) 033006, arXiv:1101.4729.
New Parametrization of Neutrino Mixing Matrix, H.B. Benaoum, Mod. Phys. Lett. A26 (2011) 423-431, arXiv:1011.0666.
Plaquette Invariants and the Flavour Symmetric Description of Quark and Neutrino Mixings, P.F. Harrison, D.R.J. Roythorne, W.G. Scott, Phys. Lett. B657 (2007) 210-216, arXiv:0709.1439.
Real Invariant Matrices and Flavour-Symmetric Mixing Variables with Emphasis on Neutrino Oscillations, P. F. Harrison, W. G. Scott, T. J. Weiler, Phys. Lett. B641 (2006) 372-380, arXiv:hep-ph/0607335.
A recursive parameterisation of unitary matrices, C. Jarlskog, J. Math. Phys. 46 (2005) 103508, arXiv:math-ph/0504049.

20 - Theory - Interactions

Neutrino spin evolution in presence of general external fields, M. Dvornikov, A. Studenikin, JHEP 09 (2002) 016, arXiv:hep-ph/0202113.

21 - Theory - Gravitational Effects

'Evaporation' of a flavor-mixed particle from a gravitational potential, Mikhail V. Medvedev, J. Phys. A 43 (2010) 372002, arXiv:1201.5697.
Neutrino spin and chiral dynamics in gravitational fields, Dinesh Singh, Phys. Rev. D71 (2005) 105003, arXiv:gr-qc/0401044.

22 - Theory - Alternative Models

Fermions and discrete symmetries in Quantum Field Theory. I. Generalities and the propagator for one flavor, Quentin Duret, Bruno Machet, Annals Phys. 325 (2010) 2041-2074, arXiv:0809.0431.
Mixing angles of quarks and leptons in Quantum Field Theory, Quentin Duret, Bruno Machet, M. I. Vysotsky, Eur. Phys. J. C61 (2009) 247-278, arXiv:0805.4121.
The neighborhood of the Standard Model: mixing angles and quark-lepton complementarity for three generations of non-degenerate coupled fermions, Quentin Duret, Bruno Machet, arXiv:0705.1237, 2007.
Mixing Angles and Non-Degenerate Systems of Particles, Quentin Duret, Bruno Machet, Phys. Lett. B643 (2006) 303-310, arXiv:hep-ph/0606303.

23 - Theory - Alternative Models

Fermions and discrete symmetries in Quantum Field Theory. I. Generalities and the propagator for one flavor, Quentin Duret, Bruno Machet, Annals Phys. 325 (2010) 2041-2074, arXiv:0809.0431.
Mixing angles of quarks and leptons in Quantum Field Theory, Quentin Duret, Bruno Machet, M. I. Vysotsky, Eur. Phys. J. C61 (2009) 247-278, arXiv:0805.4121.
The neighborhood of the Standard Model: mixing angles and quark-lepton complementarity for three generations of non-degenerate coupled fermions, Quentin Duret, Bruno Machet, arXiv:0705.1237, 2007.
Mixing Angles and Non-Degenerate Systems of Particles, Quentin Duret, Bruno Machet, Phys. Lett. B643 (2006) 303-310, arXiv:hep-ph/0606303.

24 - Phenomenology

Addressing the Majorana vs. Dirac Question with Neutrino Decays, A. Baha Balantekin, Andre de Gouvea, Boris Kayser, arXiv:1808.10518, 2018.
Shining Light on the Mass Scale and Nature of Neutrinos with $e\gamma \to e\nu\overline\nu$, Jeffrey M. Berryman, Andre de Gouvea, Kevin J. Kelly, Michael Schmitt, Phys.Rev. D98 (2018) 016009, arXiv:1805.10294.
Cosmological bounds on neutrino statistics, P.F. de Salas et al., JCAP 1803 (2018) 050, arXiv:1802.04639.
Can one ever prove that neutrinos are Dirac particles?, Martin Hirsch, Rahul Srivastava, Jose W. F. Valle, Phys.Lett. B781 (2018) 302-305, arXiv:1711.06181.
Distinguishing heavy Dirac and Majorana neutrinos through $\tau^- \to \pi^- \mu^- e^+ \nu(\text{or }\bar\nu)$ decay, C. S. Kim, G. Lopez Castro, Dibyakrupa Sahoo, Phys.Rev. D96 (2017) 075016, arXiv:1708.00802.
Distinguishing between Dirac and Majorana neutrinos in the presence of general interactions, Werner Rodejohann, Xun-Jie Xu, Carlos E. Yaguna, JHEP 1705 (2017) 024, arXiv:1702.05721.
Probing neutrino nature at Borexino detector with chromium neutrino source, W. Sobkow, A. Blaut, Eur.Phys.J. C76 (2016) 550, arXiv:1607.03536.
Majorana/Dirac distinction and neutrino mass determination using circulating heavy ions, M. Yoshimura, Phys. Rev. D93 (2016) 013016, arXiv:1508.02795.
Scattering processes could distinguish Majorana from Dirac neutrinos, J. Barranco, D. Delepine, V. Gonzalez Macias, C. Lujan-Peschard, M. Napsuciale, Phys.Lett. B739 (2014) 343-347, arXiv:1408.3219.
Laser photons acquire circular polarization by interacting with a Dirac or Majorana neutrino beam, Rohoollah Mohammadi, She-Sheng Xue, Phys.Lett. B731 (2014) 272, arXiv:1312.3862.
Radiative emission of neutrino pair from nucleus and inner core electrons in heavy atoms, M. Yoshimura, N. Sasao, Phys. Rev. D89 (2014) 053013, arXiv:1310.6472.
Neutrinoless Quadruple Beta Decay, Julian Heeck, Werner Rodejohann, EPL, 103 (2013) 32001, arXiv:1306.0580.
Heavy neutrino search in accelerator-based experiments, Takehiko Asaka, Shintaro Eijima, Atsushi Watanabe, JHEP 1303 (2013) 125, arXiv:1212.1062.
Observables in Neutrino Mass Spectroscopy Using Atoms, D. N. Dinh, S. T. Petcov, N. Sasao, M. Tanaka, M. Yoshimura, Phys. Lett. B719 (2013) 154-163, arXiv:1209.4808.
Proposition of direct experiment to study the properties of the neutrino with inverted helicity, Raul Nakhmanson-Kulish, arXiv:1208.1163, 2012.
Multi-Lepton Collider Signatures of Heavy Dirac and Majorana Neutrinos, Chien-Yi Chen, P. S. Bhupal Dev, Phys. Rev. D85 (2012) 093018, arXiv:1112.6419.
Extended Empirical Fermion Mass Relation, Werner Rodejohann, He Zhang, Phys. Lett. B698 (2011) 152-156, arXiv:1101.5525.
Tevatron Discovery Potential for Fourth Generation Neutrinos: Dirac, Majorana and Everything in Between, A. Rajaraman, D. Whiteson, Phys. Rev. D82 (2010) 051702, arXiv:1005.4407.
Unified Parametrization for Quark and Lepton Mixing Angles, Werner Rodejohann, Phys. Lett. B671 (2009) 267-271, arXiv:0810.5239.
Sterile Neutrinos in Light of Recent Cosmological and Oscillation Data: a Multi-Flavor Scheme Approach, Alessandro Melchiorri et al., JCAP 0901 (2009) 036, arXiv:0810.5133.
Building the full PMNS Matrix from six independent Majorana-type phases, Gustavo C. Branco, M. N. Rebelo, Phys. Rev. D79 (2009) 013001, arXiv:0809.2799.
Comment on 'Can gravity distinguish between Dirac and Majorana neutrinos?', Jose F. Nieves, Palash B. Pal, Phys. Rev. Lett. 98 (2007) 069001, arXiv:gr-qc/0610098.
New Method of Enhancing Lepton Number Nonconservation, M. Ikeda, I. Nakano, M. Sakuda, R. Tanaka, M. Yoshimura, arXiv:hep-ph/0506062, 2005.
Nuclear-atomic state degeneracy in neutrinoless double-electron capture: A unique test for a Majorana-neutrino, D. Frekers, Phys.Lett.B (2005), arXiv:hep-ex/0506002.
How Magnetic is the Dirac Neutrino?, Nicole F. Bell et al., Phys. Rev. Lett. 95 (2005) 151802, arXiv:hep-ph/0504134.
Neutrino statistics and big bang nucleosynthesis, A. D. Dolgov, S. H. Hansen, A. Yu. Smirnov, JCAP 0506 (2005) 004, arXiv:astro-ph/0503612.
New Parameterization in Muon Decay and Type of Neutrino, Masaru Doi, Tsuneyuki Kotani, Hiroyuki Nishiura, Prog. Theor. Phys. 114 (2005) 845, arXiv:hep-ph/0502136.
Possible violation of the spin-statistics relation for neutrinos: cosmological and astrophysical consequences, A.D. Dolgov, A.Yu. Smirnov, Phys. Lett. B621 (2005) 1, arXiv:hep-ph/0501066.
A variety of lepton number violating processes related to Majorana neutrino masses, C.S. Lim, E. Takasugi, M. Yoshimura, Prog. Theor. Phys. 113 (2005) 1367, arXiv:hep-ph/0411139.
Neutrino properties and tests of symmetries, Andre de Gouvea, Nucl. Phys. Proc. Suppl. 143 (2005) 167, arXiv:hep-ph/0408246.
What can we learn from neutrinoless double beta decay experiments?, John N. Bahcall, Hitoshi Murayama, Carlos Pena-Garay, Phys. Rev. D70 (2004) 033012, arXiv:hep-ph/0403167.
A potential test of the CP properties and Majorana nature of neutrinos, S. Pastor, J. Segura, V. B. Semikoz, J. W. F. Valle, Nucl. Phys. B566 (2000) 92-102, arXiv:hep-ph/9905405.
Remarks on neutrino tests of special relativity, S. L. Glashow, A. Halprin, P. I. Krastev, C. N. Leung, J. Pantaleone, Phys. Rev. D56 (1997) 2433-2434, arXiv:hep-ph/9703454.
Implications of a nonzero neutrino mass for the process $\gamma \gamma \to \nu \bar\nu$, E. Fischbach et al., Phys. Rev. D16 (1977) 2377-2378.
Helicity - flipping neutral currents and $\gamma \gamma \to \nu \bar\nu$, E. Fischbach et al., Phys. Rev. D13 (1976) 1523.
Nonvanishing neutrino mass and the process $\gamma \gamma \to \nu \bar\nu$, Arthur Halprin, Phys. Rev. D11 (1975) 147.

25 - Phenomenology - Conference Proceedings

Constraints on fourth generation Majorana neutrinos, Alexander Lenz, Heinrich Pas, Dario Schalla, J. Phys. Conf. Ser. 259 (2010) 012096, arXiv:1010.3883. 16th International Symposium on Particles, Strings and Cosmology (PASCOS2010), Valencia (Spain), July 19th - 23rd, 2010.
Majorana Neutrinos in Muon Decay, Hiroyuki Nishiura, arXiv:hep-ph/0601231, 2006. NNR05 workshop on Neutrino Nuclear Responses in Double Beta Decays and Low-energy Astro-neutrinos, CAST and SPring-8, Japan, 2-4 December 2005.
Neutrino, Cosmos, and New Physics, A.D. Dolgov, arXiv:hep-ph/0504238, 2005. Neutrino Telescopes, Venice, 22/02-25/02, 2005 and Rencontre LaThuile-05, 27/02-05/03, 2005.

26 - Phenomenology - Nature - Majorana

Master Majorana neutrino mass parametrization, Isabel Cordero-Carrion, Martin Hirsch, Avelino Vicente, arXiv:1812.03896, 2018.
A charmed search of lepton-number-violation at the LHCb experiment, Diego Milanes, Nestor Quintero, Phys.Rev. D98 (2018) 096004, arXiv:1808.06017.
Decoherence in neutrino oscillations: neutrino nature and CPT violation, A. Capolupo, S. M. Giampaolo, G. Lambiase, arXiv:1807.07823, 2018.
A potential scenario for the Majorana neutrino detection at future lepton colliders, Yang Zhang, Bin Zhang, arXiv:1805.09520, 2018.
Heavy neutrino-antineutrino oscillations at colliders, Stefan Antusch, Eros Cazzato, Oliver Fischer, arXiv:1709.03797, 2017.
Lepton number violation in $B_s$ meson decays induced by an on-shell Majorana neutrino, Jhovanny Mejia-Guisao, Diego Milanes, Nestor Quintero, Jose D. Ruiz-Alvarez, Phys.Rev. D97 (2018) 075018, arXiv:1708.01516.
Stimulated transitions in resonant Atom Majorana Mixing, Jose Bernabeu, Alejandro Segarra, JHEP 1802 (2018) 017, arXiv:1706.08328.
Lepton Number Violating Four-body Tau Decay, Han Yuan, Yue Jiang, Tian-hong Wang, Qiang Li, Guo-Li Wang, J.Phys. G44 (2017) 115002, arXiv:1702.04555.
Deciphering the Majorana nature of neutrino via 'effective' Dalitz plot method, C. S. Kim, Dibyakrupa Sahoo, arXiv:1612.00607, 2016.
Not-that-heavy Majorana neutrino signals at the LHC, Lucia Duarte, Javier Peressutti, Oscar A. Sampayo, J.Phys. G45 (2018) 025001, arXiv:1610.03894.
Collider Phenomenology of $e^{-}e^{-}\to W^{-}W^{-}$, Kai Wang, Tao Xu, Liangliang Zhang, Phys.Rev. D95 (2017) 075021, arXiv:1610.02618.
$\boldsymbol{\mu^-}$- $\boldsymbol{e^+}$ conversion in upcoming LFV experiments, Tanja Geib, Alexander Merle, Kai Zuber, Phys.Lett. B764 (2017) 157-162, arXiv:1609.09088.
Revision of the LHCb Limit on Majorana Neutrinos, Brian Shuve, Michael E. Peskin, Phys. Rev. D94 (2016) 113007, arXiv:1607.04258.
Distinguishing Dirac/Majorana Sterile Neutrinos at the LHC, Claudio O. Dib, C. S. Kim, Kechen Wang, Jue Zhang, Phys. Rev. D94 (2016) 013005, arXiv:1605.01123.
Sensitivity to Majorana neutrinos in $\DeltaL=2$ decays of $B_c$ meson at LHCb, Diego Milanes, Nestor Quintero, Carlos E. Vera, Phys. Rev. D93 (2016) 094026, arXiv:1604.03177.
A favoured $B_c$ Decay mode to search for a Majorana neutrino, Sanjoy Mandal, Nita Sinha, Phys. Rev. D94 (2016) 033001, arXiv:1602.09112.
Probing the Majorana neutrinos and their CP violation in decays of charged scalar mesons $\pi, K, D, D_s, B, B_c$, Gorazd Cvetic, Claudio Dib, C. S. Kim, Jilberto Zamora-Saa, Symmetry 7 (2015) 726-773, arXiv:1503.01358.
Estimation of the Majorana phases using rephasing invariant quantities, Rome Samanta, Mainak Chakraborty, Ambar Ghosal, Nucl. Phys. B904 (2016) 86-105, arXiv:1502.06508.
Study Majorana Neutrino Contribution to B-meson Semi-leptonic Rare Decays, Ying Wang, Shou-Shan Bao, Zuo-Hong Li, Nan Zhu, Zong-Guo Si, Phys.Lett. B736 (2014) 428-432, arXiv:1407.2468.
Lepton-number violating four-body decays of heavy mesons, Han Yuan, Tianhong Wang, Guo-Li Wang, Wan-Li Ju, Jin-Mei Zhang, JHEP 1308 (2013) 066, arXiv:1304.3810.
Bounding resonant Majorana neutrinos from four-body B and D decays, Gabriel Lopez Castro, Nestor Quintero, Phys. Rev. D87 (2013) 077901, arXiv:1302.1504.
Lepton Number Violation and W' Chiral Couplings at the LHC, Tao Han, Ian Lewis, Richard Ruiz, Zong-guo Si, Phys. Rev. D87 (2013) 035011, arXiv:1211.6447.
Search for Majorna Neutrino Signal in $B_c$ Meson Rare Decay, Shou-Shan Bao, Hong-Lei Li, Zong-Guo Si, Yi-Bo Yang, Commun.Theor.Phys. 59 (2013) 472-478, arXiv:1208.5136.
Probing Majorana neutrinos in rare $\pi^+ \to e^+ e^+ \mu^- \nu$ decays, Gorazd Cvetic, Claudio Dib, C.S. Kim, JHEP 06 (2012) 149, arXiv:1203.0573.
Lepton number violating four-body tau lepton decays, Gabriel Lopez Castro, Nestor Quintero, Phys. Rev. D85 (2012) 076006, arXiv:1203.0537.
Back-to-back pair correlation of Majorana neutrinos with transit magnetic moments, Hyun Kyu Lee, Phys. Rev. D84 (2011) 077302, arXiv:1109.5766.
Lepton number violation in top quark and neutral B meson decays, D. Delepine, G. Lopez Castro, N. Quintero, Phys. Rev. D84 (2011) 096011, arXiv:1108.6009.
Fourth Generation Majorana Neutrinos, Alexander Lenz, Heinrich Pas, Dario Schalla, Phys. Rev. D85 (2012) 075025, arXiv:1104.2465.
Probing Majorana neutrinos in rare $K$ and $D$, $D_s$, $B$, $B_c$ meson decays, G. Cvetic, Claudio Dib, Sin Kyu Kang, C. S. Kim, Phys. Rev. D82 (2010) 053010, arXiv:1005.4282.
Lepton-Number Violating Decays of Heavy Mesons, Jin-Mei Zhang, Guo-Li Wang, Eur. Phys. J. C71 (2011) 1715, arXiv:1003.5570.
Experimental Sensitivity for Majorana Neutrinos Produced via a Z Boson at Hadron Colliders, Arvind Rajaraman, Daniel Whiteson, Phys. Rev. D81 (2010) 071301, arXiv:1001.1229.
A new strategy for probing the Majorana neutrino CP violating phases and masses, David Delepine, Vannia Gonzalez Macias, Shaaban Khalil, Gabriel Lopez Castro, AIP Conf. Proc. 1361 (2011) 395-397, arXiv:0908.2158.
Neutrinoless double beta decays of the top quark and other effects of heavy Majorana neutrinos, Gad Eilam, PoS 2008LHC (2008) 061, arXiv:0902.4622.
The Search for Heavy Majorana Neutrinos, Anupama Atre, Tao Han, Silvia Pascoli, Bin Zhang, JHEP 05 (2009) 030, arXiv:0901.3589.
Detecting Majorana nature of neutrinos in muon decay, Takeshi Fukuyama, Koji Tsumura, arXiv:0809.5221, 2008.
Neutrino Pair Emission from Excited Atoms, M. Yoshimura, Phys. Rev. D75 (2007) 113007, arXiv:hep-ph/0611362.
Signatures for Majorana neutrinos at hadron colliders, Tao Han, Bin Zhang, Phys. Rev. Lett. 97 (2006) 171804, arXiv:hep-ph/0604064.
New limits on effective Majorana neutrino masses from rare kaon decays, K. Zuber, Phys. Lett. B479 (2000) 33-36, arXiv:hep-ph/0003160.
Analog of the Michel Parameter for Neutrino - Electron Scattering: A Test for Majorana Neutrinos, Simon Peter Rosen, Phys. Rev. Lett. 48 (1982) 842.
$\mu \to e \gamma$ in theories with Dirac and Majorana neutrino mass terms, T. P. Cheng, Ling-Fong Li, Phys. Rev. Lett. 45 (1980) 1908.

27 - Phenomenology - Nature - Majorana - Conference Proceedings

Stimulated X-rays in resonant atom Majorana mixing, A. Segarra, J. Bernabeu, arXiv:1711.04251, 2017. TAUP 2017.
Majorana phases in neutrino-antineutrino oscillations, Ye-Ling Zhou, arXiv:1310.5843, 2013. NUFACT 2013.
Heavy Flavor Physics, Sheldon Stone, arXiv:1109.3361, 2011. DPF-2011, Providence, RI, August 8-13, 2011.

28 - Phenomenology - Nature - Pseudo-Dirac

Majorana vs Pseudo-Dirac Neutrinos at the ILC, P. Hernandez, J. Jones-Perez, O. Suarez-Navarro, arXiv:1810.07210, 2018.
The Standard Model with Diracian neutrino sector, T. M. Nieuwenhuizen, arXiv:1810.04613, 2018.
Quasi-Dirac neutrinos and solar neutrino data, F. Rossi-Torres, A.C.B. Machado, V. Pleitez, Eur.Phys.J. C73 (2013) 2596, arXiv:1302.5590.
Neutrinoless double beta decay with pseudo Dirac neutrinos, Pei-Hong Gu, Phys. Rev. D85 (2012) 093016, arXiv:1101.5106.
Pseudo-Dirac Neutrino Scenario: Cosmic Neutrinos at Neutrino Telescopes, Arman Esmaili, Phys. Rev. D81 (2010) 013006, arXiv:0909.5410.
Probing Pseudo-Dirac Neutrino through Detection of Neutrino Induced Muons from GRB Neutrinos, Debasish Majumdar, Pramana 70 (2008) 51-60, arXiv:hep-ph/0607344.
Pseudo-Dirac Neutrinos, a Challenge for Neutrino Telescopes, J. F. Beacom et al., Phys. Rev. Lett. 92 (2004) 011101, arXiv:hep-ph/0307151.
Pseudo-Dirac scenario for neutrino oscillations, Makoto Kobayashi, C. S. Lim, Phys. Rev. D64 (2001) 013003, arXiv:hep-ph/0012266.
Phenomenology of pseudo Dirac neutrinos, Anjan S. Joshipura, Saurabh D. Rindani, Phys. Lett. B494 (2000) 114-123, arXiv:hep-ph/0007334.
Pseudo-Dirac solar neutrinos, Yosef Nir, JHEP 06 (2000) 039, arXiv:hep-ph/0002168.
Pseudo-Dirac neutrinos as a potential complete solution to the neutrino oscillation puzzle, A. Geiser, Phys. Lett. B444 (1999) 358, arXiv:hep-ph/9901433.
Oscillations of pseudo-Dirac neutrinos and the solar neutrino problem, C. Giunti, C. W. Kim, U. W. Lee, Phys. Rev. D46 (1992) 3034-3039, arXiv:hep-ph/9205214.
Pseudo-Dirac neutrinos and the solar neutrino problem, Hisakazu Minakata, Hiroshi Nunokawa, Phys. Rev. D45 (1992) 3316-3320.
Cosmological and astrophysical constraints on a pseudo-Dirac tau-neutrino, Lance J. Dixon, Yosef Nir, Phys. Lett. B266 (1991) 425-430.
Pseudo-Dirac solar neutrinos?, Utpal Sarkar, Phys. Rev. D35 (1987) 1528.
The solar neutrino puzzle, the Mikheev-Smirnov-Wolfenstein mechanism and the pseudo-Dirac neutrino, S. Toshev, Phys. Lett. B180 (1986) 285-289.

29 - Phenomenology - Nature - Pseudo-Dirac - Conference Proceedings

Pseudo-Dirac neutrino, Masaru Doi, Masakatsu Kenmoku, Tsuneyuki Kotani, Hiroyuki Nishiura, Eiichi Takasugi, Prog. Theor. Phys. 70 (1983) 1331. Lepton-Photon Conference, Ithaca, N.Y., Aug. 4-9, l983.

30 - Phenomenology - Number of Neutrino Species

A Fourth Neutrino and its Consequences on CP Asymmetries, D. Delepine, C. Lujan-Peschard, M. Napsuciale, arXiv:1303.4687, 2013.
Revisiting Constraints on Fourth Generation Neutrino Masses, Linda M. Carpenter, Arvind Rajaraman, Phys. Rev. D82 (2010) 114019, arXiv:1005.0628.
Neutrino mass and lepton mixing hierarchies and future oscillation experiments, Samoil M. Bilenky, M. Fabbrichesi, S. T. Petcov, Phys. Lett. B276 (1992) 223-230.
A Lower bound on the number of neutrino species measured at Z0 peak, Samoil M. Bilenky, W. Grimus, H. Neufeld, Phys. Lett. B252 (1990) 119-122.
Neutrino Counting at the $Z$ Peak and Right-handed Neutrinos, C. Jarlskog, Phys.Lett. B241 (1990) 579.
Combined limits on the number of light neutrinos and the top mass from the measurement of $ R = \sigma (W \to \ell\nu) / \sigma (Z \to \ell \ell) $, P. Colas, D. Denegri, C. Stubenrauch, Z. Phys. C40 (1988) 527.

31 - Phenomenology - Non-Unitary Mixing

Non Unitarity at DUNE and T2HK with Charged and Neutral Current Measurements, Debajyoti Dutta, Samiran Roy, arXiv:1901.11298, 2019.
Standard versus Non-Standard CP Phases in Neutrino Oscillation in Matter with Non-Unitarity, Ivan Martinez-Soler, Hisakazu Minakata, arXiv:1806.10152, 2018.
Indirect unitarity violation entangled with matter effects in reactor antineutrino oscillations, Yu-Feng Li, Zhi-zhong Xing, Jing-yu Zhu, Phys.Lett. B782 (2018) 578-588, arXiv:1802.04964.
Exploring the Potential of Short-Baseline Physics at Fermilab, O. G. Miranda, Pedro Pasquini, M. Tortola, J. W. F. Valle, Phys.Rev. D97 (2018) 095026, arXiv:1802.02133.
Non-unitary evolution of neutrinos in matter and the leptonic unitarity test, Chee Sheng Fong, Hisakazu Minakata, Hiroshi Nunokawa, JHEP 1902 (2019) 015, arXiv:1712.02798.
A novel approach to neutrino mixing analysis based on singular values, K. Bielas, W. Flieger, J. Gluza, M. Gluza, Phys.Rev. D98 (2018) 053001, arXiv:1708.09196.
Determination of the $\theta_{23}$ octant in long baseline neutrino experiments within and beyond the Standard Model, C.R. Das, Jukka Maalampi, Joao Pulido, Sampsa Vihonen, Phys.Rev. D97 (2018) 035023, arXiv:1708.05182.
Probing Direct and Indirect Unitarity Violation in Future Accelerator Neutrino Facilities, Jian Tang, Yibing Zhang, Yu-Feng Li, Phys.Lett. B774 (2017) 217-224, arXiv:1708.04909.
What measurements of neutrino neutral current events can reveal, Raj Gandhi, Boris Kayser, Suprabh Prakash, Samiran Roy, JHEP 1711 (2017) 202, arXiv:1708.01816.
Can we probe intrinsic CP/T violation and non-unitarity at long baseline accelerator experiments?, Jogesh Rout, Mehedi Masud, Poonam Mehta, Phys.Rev. D95 (2017) 075035, arXiv:1702.02163.
Probing CP violation with non-unitary mixing in long-baseline neutrino oscillation experiments: DUNE as a case study, F. J. Escrihuela, D. V. Forero, O. G. Miranda, M. Tortola, J. W. F. Valle, New J.Phys. 19 (2017) 093005, arXiv:1612.07377.
Discriminating sterile neutrinos and unitarity violation with CP invariants, Heinrich Pas, Philipp Sicking, Phys.Rev. D95 (2017) 075004, arXiv:1611.08450.
Octant of $\theta_{23}$ at long baseline neutrino experiments in the light of Non Unitary Leptonic mixing, Debajyoti Dutta, Pomita Ghoshal, Sandeep K. Sehrawat, Phys.Rev. D95 (2017) 095007, arXiv:1610.07203.
Non-Unitarity, sterile neutrinos, and Non-Standard neutrino Interactions, Mattias Blennow, Pilar Coloma, Enrique Fernandez-Martinez, Josu Hernandez-Garcia, Jacobo Lopez-Pavon, JHEP 1704 (2017) 153, arXiv:1609.08637.
A framework for testing leptonic unitarity by neutrino oscillation experiments, Chee Sheng Fong, Hisakazu Minakata, Hiroshi Nunokawa, JHEP 1702 (2017) 114, arXiv:1609.08623.
Effect of Non Unitarity on Neutrino Mass Hierarchy determination at DUNE, NO$\nu$A and T2K, Debajyoti Dutta, Pomita Ghoshal, Samiran Roy, Nucl.Phys. B920 (2017) 385-401, arXiv:1609.07094.
Probing Non-unitary $CP$ Violation effects in Neutrino Oscillation Experiments, Surender Verma, Shankita Bhardwaj, Indian J.Phys. 92 (2018) 1161-1167, arXiv:1609.06412.
Probing CP violation with T2K, NO$\nu$A and DUNE in the presence of non-unitarity, Debajyoti Dutta, Pomita Ghoshal, JHEP 1609 (2016) 110, arXiv:1607.02500.
Global constraints on heavy neutrino mixing, Enrique Fernandez-Martinez, Josu Hernandez-Garcia, Jacobo Lopez-Pavon, JHEP 1608 (2016) 033, arXiv:1605.08774.
Measuring the Leptonic CP Phase in Neutrino Oscillations with Non-Unitary Mixing, Shao-Feng Ge, Pedro Pasquini, M. Tortola, J. W. F. Valle, Phys.Rev. D95 (2017) 033005, arXiv:1605.01670.
New ambiguity in probing CP violation in neutrino oscillations, O. G. Miranda, M. Tortola, J. W. F. Valle, Phys. Rev. Lett. 117 (2016) 061804, arXiv:1604.05690.
Impact of sterile neutrinos on nuclear-assisted cLFV processes, A. Abada, V. De Romeri, A. M. Teixeira, JHEP 02 (2016) 083, arXiv:1510.06657.
Unitarity and the three flavour neutrino mixing matrix, Stephen Parke, Mark Ross-Lonergan, Phys. Rev. D93 (2016) 113009, arXiv:1508.05095.
On the description of non-unitary neutrino mixing, F. J. Escrihuela, D. V. Forero, O. G. Miranda, M. Tortola, J. W. F. Valle, Phys. Rev. D92 (2015) 053009, arXiv:1503.08879.
Testing sterile neutrino extensions of the Standard Model at future lepton colliders, Stefan Antusch, Oliver Fischer, JHEP 05 (2015) 053, arXiv:1502.05915.
Non-unitarity of the leptonic mixing matrix: Present bounds and future sensitivities, Stefan Antusch, Oliver Fischer, JHEP 10 (2014) 094, arXiv:1407.6607.
Sterile neutrinos in leptonic and semileptonic decays, A. Abada, A. M. Teixeira, A. Vicente, C. Weiland, JHEP 02 (2014) 091, arXiv:1311.2830.
Precision tests of unitarity in leptonic mixing, Lorenzo Basso, Oliver Fischer, Jochum J. van der Bij, Europhys. Lett. 105 (2014) 11001, arXiv:1310.2057.
Unitarity Tests of the Neutrino Mixing Matrix, X. Qian, C. Zhang, M. Diwan, P. Vogel, arXiv:1308.5700, 2013.
Improving Electro-Weak Fits with TeV-scale Sterile Neutrinos, E. Akhmedov, A. Kartavtsev, M. Lindner, L. Michaels, J. Smirnov, JHEP 05 (2013) 081, arXiv:1302.1872.
Tree-level lepton universality violation in the presence of sterile neutrinos: impact for $R_K$ and $R_\pi$, A. Abada, D. Das, A. M. Teixeira, A. Vicente, C. Weiland, JHEP 02 (2013) 048, arXiv:1211.3052.
Towards testing the unitarity of the 3X3 lepton flavor mixing matrix in a precision reactor antineutrino oscillation experiment, Zhi-zhong Xing, Phys. Lett. B718 (2013) 1447-1453, arXiv:1210.1523.
Muon conversion to electron in nuclei in type-I seesaw models, R. Alonso, M. Dhen, M. B. Gavela, T. Hambye, JHEP 01 (2013) 118, arXiv:1209.2679.
A full parametrization of the 6 X 6 flavor mixing matrix in the presence of three light or heavy sterile neutrinos, Zhi-zhong Xing, Phys. Rev. D85 (2012) 013008, arXiv:1110.0083.
Lepton flavor violation and non-unitary lepton mixing in low-scale type-I seesaw, D. V. Forero, S. Morisi, M. Tortola, J. W. F. Valle, JHEP 09 (2011) 142, arXiv:1107.6009.
On Non-Unitary Lepton Mixing and Neutrino Mass Observables, Werner Rodejohann, Phys. Lett. B684 (2010) 40-47, arXiv:0912.3388.
Probing non-unitary mixing and CP-violation at a Neutrino Factory, Stefan Antusch, Mattias Blennow, Enrique Fernandez-Martinez, Jacobo Lopez-Pavon, Phys. Rev. D80 (2009) 033002, arXiv:0903.3986.
Probing Quasi-Unitary Parameterization of Neutrino Mixing, Lei Lu, Wenyu Wang, Zhaohua Xiong, Chin.Phys. C34 (2010) 1791-1796, arXiv:0902.2031.
Testing non-unitarity of neutrino mixing matrices at neutrino factories, Srubabati Goswami, Toshihiko Ota, Phys. Rev. D78 (2008) 033012, arXiv:0802.1434.
Correlation between the Charged Current Interactions of Light and Heavy Majorana Neutrinos, Zhi-zhong Xing, Phys. Lett. B660 (2008) 515-521, arXiv:0709.2220.
CP-violation from non-unitary leptonic mixing, E. Fernandez-Martinez, M.B. Gavela, J.Lopez-Pavon, O. Yasuda, Phys. Lett. B649 (2007) 427-435, arXiv:hep-ph/0703098.
Unitarity of the Leptonic Mixing Matrix, S. Antusch et al., JHEP 10 (2006) 084, arXiv:hep-ph/0607020.
Nondecoupling of heavy neutrinos and lepton flavor violation, D. Tommasini, G. Barenboim, J. Bernabeu, C. Jarlskog, Nucl. Phys. B444 (1995) 451-467, arXiv:hep-ph/9503228.
Limits on neutrino mixing with new heavy particles, Enrico Nardi, Esteban Roulet, Daniele Tommasini, Phys. Lett. B327 (1994) 319-326, arXiv:hep-ph/9402224.
Seesaw type mixing and $\nu_{\mu}\to\nu_{\tau}$ oscillations, Samoil M. Bilenky, C. Giunti, Phys. Lett. B300 (1993) 137-140, arXiv:hep-ph/9211269.
Lepton number violation and massless nonorthogonal neutrinos, Paul Langacker, David London, Phys. Rev. D38 (1988) 907.
Mixing between ordinary and exotic fermions, Paul Langacker, David London, Phys. Rev. D38 (1988) 886.

32 - Phenomenology - Non-Unitary Mixing - Conference Proceedings

Beyond Standard Neutrino Theory, Toshihiko Ota, PoS NuFact2017 (2018) 026, arXiv:1712.06784. 19th International Workshop on Neutrinos from Accelerators (NUFACT 2017).
Non-Unitarity vs sterile neutrinos at DUNE, Josu Hernandez-Garcia, Jacobo Lopez-Pavon, arXiv:1705.01840, 2017. NuPhys2016 (London, 12-14 December 2016).
Effects Of leptonic non-unitarity on lepton flavor violation, neutrino oscillation, leptogenesis and lightest neutrino mass, Gayatri Ghosh, Kalpana Bora, Springer Proc.Phys. 203 (2018) 309-311, arXiv:1612.09047. XXII DAE BRNS High energy physics symposium, 12 - 16 December, 2016, Delhi University, Delhi, India.
Completely general bounds on Non-Unitary leptonic mixing, Josu Hernandez-Garcia, arXiv:1611.07584, 2016. NuFact16 and ICHEP 2016.

33 - History

Majorana, the Neutron, and the Neutrino: Some elementary historical remarks, Erasmo Recami, Hadronic J. 40 (2017) 149-185, arXiv:1712.02209.
On the Earlier and more recent history of the neutrino, W. Pauli, Cambridge Monogr. Part. Phys. Nucl. Phys. Cosmol. 14 (2000) 1-22.
The neutrino: From poltergeist to particle, F. Reines, Rev. Mod. Phys. 68 (1996) 317-327.

Search Neutrino Unbound

Cross search NU

It is possible to perform a cross search between the various pages of Neutrino Unbound.
This is useful if you want to show the common elements that appear in the listings of two (or more) different topics or experiments.

Go to the search form.

[Go to ...]

Neutrino Unbound Home

Stefano Gariazzo /
Carlo Giunti /
Marco Laveder /
Last Update: Mon 18 Feb 2019, 10:51:43 UTC