Instrumentation

Filter this page

(Note: The process can take some time.)

EXPAND ALL
COMPRESS ALL

References

1 - Books

[1-1]
Cryogenic Particle Detection, (ed.) Enss, Christian, Springer Berlin Heidelberg, 2005. https://www.springer.com/br/book/9783540201137.
[CryogenicParticleDetection:2005]

2 - Reviews

[2-1]
Dual-phase xenon time projection chambers for rare-event searches, Laura Baudis, Phil.Trans.Roy.Soc.Lond.A 382 (2023) 0083, arXiv:2311.05320.
[Baudis:2023pzu]
[2-2]
Experimentation at a muon collider, Massimo Casarsa, Donatella Lucchesi, Lorenzo Sestini, arXiv:2311.03280, 2023.
[Casarsa:2023vqx]
[2-3]
Detection and Calibration of Low-Energy Nuclear Recoils for Dark Matter and Neutrino Scattering Experiments, Jingke Xu, P. S. Barbeau, Ziqing Hong, Ann. Rev. Nucl. Part. Sci. 73 (2023) 95-121, arXiv:2311.02257.
[Xu:2023rzm]
[2-4]
Review of Novel Approaches to Organic Liquid Scintillators in Neutrino Physics, Stefan Schoppmann, Symmetry 15 (2023) 11, arXiv:2212.11341.
[Schoppmann:2022hst]
[2-5]
Snowmass 2021 Underground Facilities and Infrastructure Overview Topical Report, L. Baudis, J. Hall, K. T. Lesko, J. L. Orrell, arXiv:2212.07037, 2022.
[Baudis:2022pzb]
[2-6]
Snowmass 2021 Underground Facilities and Infrastructure Frontier Report, Laura Baudis, Jeter Hall, Kevin T. Lesko, John L. Orrell, arXiv:2211.13450, 2022.
[Baudis:2022qjb]
[2-7]
SNOWMASS Neutrino Frontier NF10 Topical Group Report: Neutrino Detectors, Joshua R. Klein et al., arXiv:2211.09669, 2022.
[Klein:2022lrf]
[2-8]
Snowmass Neutrino Frontier Report, Patrick Huber et al., arXiv:2211.08641, 2022.
[Huber:2022lpm]
[2-9]
Snowmass 2021 Topical Report on Synergies in Research at Underground Facilities, Catalina Curceanu, Derek Elsworth, Joe Formaggio, Jan Harms, Daniel Robertson, William Roggenthen, Herb Wang, Sijbrand de Jong, John L. Orrell, arXiv:2210.03145, 2022.
[Curceanu:2022zsg]
[2-10]
Report of the Instrumentation Frontier Working Group for Snowmass 2021, Phil Barbeau et al., arXiv:2209.14111, 2022. 2022 Snowmass Summer Study.
[Barbeau:2022muf]
[2-11]
Snowmass 2021 IF01: Quantum Sensors Topical Group Report, Thomas Cecil, Kent Irwin, Reina Maruyama, Matt Pyle, Silvia Zorzetti, arXiv:2208.13310, 2022. 2022 Snowmass Summer Study.
[Cecil:2022fiv]
[2-12]
Snowmass Instrumentation Frontier IF02 Topical Group Report: Photon Detectors, Carlos Escobar, Juan Estrada, Chris Rogan, arXiv:2208.13051, 2022.
[Escobar:2022jau]
[2-13]
Snowmass Instrumentation Frontier IF08 Topical Group Report: Noble Element Detectors, Carl Eric Dahl, Roxanne Guenette, Jennifer L. Raaf, arXiv:2208.11017, 2022.
[Dahl:2022bst]
[2-14]
Snowmass 21 Discussions on Future Accelerator HEP Facilities, Stephen Gourlay, Tor Raubenheimer, Vladimir Shiltsev, arXiv:2208.09552, 2022.
[Gourlay:2022ktb]
[2-15]
4D Tracking: Present Status and Perspective, N. Cartiglia, R. Arcidiacono, M. Costa, M. Ferrero, G. Gioachin, M. Mandurrino, L. Menzio, F. Siviero, V. Sola, M. Tornago, Nucl.Instrum.Meth.A 1040 (2022) 167228, arXiv:2204.06536.
[Cartiglia:2022ysm]
[2-16]
Key directions for research and development of superconducting radio frequency cavities, S. Belomestnykh et al., arXiv:2204.01178, 2022.
[Belomestnykh:2022scw]
[2-17]
4-Dimensional Trackers, Doug Berry et al., arXiv:2203.13900, 2022.
[Berry:2022und]
[2-18]
Test Beam and Irradiation Facilities, M. Hartz, P. Merkel, E. Niner, E. Prebys, N. Toro, arXiv:2203.09944, 2022.
[Hartz:2022xbd]
[2-19]
Future Collider Options for the US, P. C. Bhat et al., arXiv:2203.08088, 2022.
[Bhat:2022hdi]
[2-20]
Snowmass 2021 White Paper Instrumentation Frontier 05 - White Paper 1: MPGDs: Recent advances and current R&D, K. Dehmelt et al., arXiv:2203.06562, 2022.
[Dehmelt:2022inw]
[2-21]
Everything you always wanted to know about matched filters (but were afraid to ask), Roberto Vio, Paola Andreani, arXiv:2107.09378, 2021.
[2107.09378]
[2-22]
Review of Liquid Argon Detector Technologies in the Neutrino Sector, Krishanu Majumdar, Konstantinos Mavrokoridis, Appl.Sciences 11 (2021) 2455, arXiv:2103.06395.
[Majumdar:2021llu]
[2-23]
A Review of Basic Energy Reconstruction Techniques in Liquid Xenon and Argon Detectors for Dark Matter and Neutrino Physics Using NEST, M. Szydagis et al., Instruments 5 (2021) 13, arXiv:2102.10209.
[Szydagis:2021hfh]
[2-24]
Directional recoil detection, Sven E. Vahsen, Ciaran A. J. O'Hare, Dinesh Loomba, Ann.Rev.Nucl.Part.Sci. 71 (2021) 189-224, arXiv:2102.04596.
[Vahsen:2021gnb]
[2-25]
Wavelength shifters for applications in liquid argon detectors, Marcin Kuzniak, Andrzej M. Szelc, Instruments 5 (2021) 4, arXiv:2012.15626.
[Kuzniak:2020oka]
[2-26]
Calibration of calorimetric measurement in a liquid argon time projection chamber, Tingjun Yang, Instruments 5 (2020) 2, arXiv:2012.01319.
[Yang:2020any]
[2-27]
A Review on Machine Learning for Neutrino Experiments, Fernanda Psihas, Micah Groh, Christopher Tunnell, Karl Warburton, Int.J.Mod.Phys. A35 (2020) 2043005, arXiv:2008.01242.
[Psihas:2020pby]
[2-28]
Modern and Future Colliders, Vladimir Shiltsev, Frank Zimmermann, Rev.Mod.Phys. 93 (2021) 015006, arXiv:2003.09084.
[Shiltsev:2019rfl]
[2-29]
Progress on the radiation tolerance of CMOS Monolithic Active Pixel Sensors, M. Deveaux, JINST 14 (2019) R11001, arXiv:1909.05715.
[Deveaux:2019bgc]
[2-30]
Transparent tiles of silica aerogels for high-energy physics, Makoto Tabata, arXiv:1902.05374, 2019.
[Tabata:2019msp]
[2-31]
Silicon Photomultipliers in Particle and Nuclear Physics, Frank Simon, Nucl.Instrum.Meth. A926 (2019) 85-100, arXiv:1811.03877.
[Simon:2018xzl]
[2-32]
HEP Software Foundation Community White Paper Working Group - Detector Simulation, HEP Software Foundation, arXiv:1803.04165, 2018.
[HEPSoftwareFoundation:2018fmg]
[2-33]
Dual-Readout Calorimetry, Sehwook Lee, Michele Livan, Richard Wigmans, Rev.Mod.Phys. 90 (2018) 025002, arXiv:1712.05494.
[Lee:2017xss]
[2-34]
Low background techniques in bolometers for double-beta decay search, Denys Poda, Andrea Giuliani, Int.J.Mod.Phys. A32 (2017) 1743012, arXiv:1711.01075.
[Poda:2017jnl]
[2-35]
Impact of Detector Simulation in Particle Physics Collider Experiments, V. Daniel Elvira, arXiv:1706.04293, 2017.
[Elvira:2017qyw]
[2-36]
Advances in pixel detectors for experiments with high rate and radiation, Maurice Garcia-Sciveres, Norbert Wermes, Rept.Prog.Phys. 81 (2018) 066101, arXiv:1705.10150.
[Garcia-Sciveres:2017ymt]
[2-37]
Fermilab Antiproton Source, Recycler Ring, and Main Injector, Sergei Nagaitsev, arXiv:1408.0759, 2014.
[Nagaitsev:2013uax]
[2-38]
Signal Formation in Various Detectors, Manolis Dris, Theo Alexopoulos, arXiv:1406.3217, 2014.
[Dris:2014qpa]
[2-39]
Intensity Frontier Instrumentation, S.H. Kettell, R.A. Rameika, R.S. Tschirhart, arXiv:1309.6704, 2013.
[Kettell:2013yla]
[2-40]
Status and New Ideas Regarding Liquid Argon Detectors, Alberto Marchionni, Ann.Rev.Nucl.Part.Sci. 63 (2013) 269-290, arXiv:1307.6918.
[Marchionni:2013tfa]
[2-41]
Particle identification, Christian Lippmann, Nucl. Instrum. Meth. A666 (2012) 148-172, arXiv:1101.3276.
[Lippmann:2011bb]
[2-42]
Metallic Magnetic Calorimeters, A. Fleischmann, C. Enss, G.M. Seidel, 2005. In 'Cryogenic Particle Detection', edited by C. Enss, p.151-216. http://dx.doi.org/10.1007/10933596_4.
[Fleischmann2005]
[2-43]
Stopping of energetic light ions in elemental matter, J. F. Ziegler, Journal of Applied Physics 85 (1999) 1249-1272.
[Ziegler:1999]

3 - Reviews - Talks

[3-1]
Quantum Sensors for High Energy Physics, Aaron Chou et al., arXiv:2311.01930, 2023.
[Chou:2023hcc]
[3-2]
A Review and Outlook for the Removal of Radon-Generated Po-210 Surface Contamination, V.E. Guiseppe, C.D. Christofferson, K.R. Hair, F.M. Adams, AIP Conf.Proc. 1921 (2018) 070003, arXiv:1712.08167. Low Radioactivity Techniques (LRT) 2017, Seoul, South Korea, May 24-26, 2017.
[Guiseppe:2017yah]
[3-3]
The Sanford Underground Research Facility, Jaret Heise, J.Phys.Conf.Ser. 1342 (2020) 012085, arXiv:1710.11584. TAUP 2017.
[Heise:2017rpu]
[3-4]
TASI Lectures on Collider Physics, Matthew D. Schwartz, arXiv:1709.04533, 2017.
[Schwartz:2017hep]
[3-5]
Linear Accelerators, M. Vretenar, arXiv:1601.05210, 2016. CAS - CERN Accelerator School: Advanced Accelerator Physics Course, Trondheim, Norway, 18-29 Aug 2013.
[Vretenar:2014rpz]
[3-6]
Longitudinal Beam Dynamics, F. Tecker, arXiv:1601.04901, 2016. CAS - CERN Accelerator School: Advanced Accelerator Physics Course, Trondheim, Norway, 18-29 Aug 2013.
[Tecker:2014noj]
[3-7]
Proceedings of the CAS - CERN Accelerator School: Ion Sources, Senec, Slovakia, 29 May - 8 June 2012, R. Bailey, arXiv:1411.2445, 2014.
[Bailey:2013rga]
[3-8]
The Sanford Underground Research Facility at Homestake, J. Heise, AIP Conf.Proc. 1604 (2014) 331-344, arXiv:1401.0861. VII International Conference on Interconnections between Particle Physics and Cosmology (PPC2013), Deadwood, SD, July 8-13, 2013.
[Heise:2014gta]
[3-9]
The ANDES Deep Underground Laboratory, X. Bertou, arXiv:1308.0059, 2013. 33rd International Cosmic Ray Conference, Rio de Janeiro 2013.
[Bertou:2013oda]
[3-10]
Acoustic Neutrino Detection in Ice: Past, Present, and Future, Timo Karg, AIP Conf.Proc. 1535 (2013) 162, arXiv:1210.7974. 5th International workshop on Acoustic and Radio EeV Neutrino detection Activities - ARENA 2012.
[Karg:2012ua]
[3-11]
Advances in Cryogenic Avalanche Detectors (review), A. Buzulutskov, JINST 7 (2012) C02025, arXiv:1112.6153. MPGD2011, Aug 29 - Sep 3, 2011, Kobe, Japan.
[Buzulutskov:2011de]
[3-12]
Gaseous Detectors: recent developments and applications, Maxim Titov, arXiv:1008.3736, 2010. 2009 Trans-European School of High Energy Physics, Zakopane, Poland, July 8-14(2009).
[Titov:2010br]
[3-13]
The Physics of Hanbury Brown-Twiss intensity interferometry: From stars to nuclear collisions, Gordon Baym, Acta Phys. Polon. B29 (1998) 1839-1884, arXiv:nucl-th/9804026. 37th Cracow School, Zakopane, Poland, May 30-June 10, 1997.
[Baym:1997ce]

4 - Habilitation, PhD and Master Theses

[4-1]
High Power Cyclotrons: The Bridge Between Beyond the Standard Model Physics, Computation, and Medical Applications, Loyd Waites, arXiv:2212.11114, 2022.
[Waites:2022ick]
[4-2]
Acoustic detection of astrophysical neutrinos in South Pole ice, Justin Vandenbroucke, arXiv:1201.0072, 2012.
[Vandenbroucke:2011ofc]

5 - Articles

[5-1]
First measurement of Gallium Arsenide as a low-temperature calorimeter, D. L. Helis et al., arXiv:2404.15741, 2024.
[2404.15741]
[5-2]
The environmental low-frequency background for macro-calorimeters at the millikelvin scale, L. Aragao et al., arXiv:2404.13602, 2024.
[Aragao:2024ijn]
[5-3]
A Kalman Filter for track reconstruction in very large time projection chambers, Federico Battisti, Marian Ivanov, Xianguo Lu, arXiv:2404.08614, 2024.
[Battisti:2024nqq]
[5-4]
Design, construction, and operation of a 1-ton Water-based Liquid scintillator detector at Brookhaven National Laboratory, X. Xiang et al., arXiv:2403.13231, 2024.
[Xiang:2024jfp]
[5-5]
Water-based Quantum Dots Liquid Scintillator for Particle Physics, M. Zhao et al., arXiv:2403.10122, 2024.
[Zhao:2024azj]
[5-6]
Validation of electrodeposited 241Am alpha-particle sources for use in liquified gas detectors at cryogenic temperatures, E. Calvo Alamillo et al., arXiv:2403.07539, 2024.
[CalvoAlamillo:2024rbo]
[5-7]
Using Machine Learning to Separate Cherenkov and Scintillation Light in Hybrid Neutrino Detector, Ayse Bat, arXiv:2403.05184, 2024.
[Bat:2024gln]
[5-8]
The Fast Stochastic Matching Pursuit for Neutrino and Dark Matter Experiments, Yuyi Wang, Aiqiang Zhang, Yiyang Wu, Benda Xu, Jiajie Chen, Zhe Wang, Shaomin Chen, arXiv:2403.03156, 2024.
[Wang:2024qxq]
[5-9]
Collective excitations and low-energy ionization signatures of relativistic particles in silicon detectors, Rouven Essig, Ryan Plestid, Aman Singal, arXiv:2403.00123, 2024.
[Essig:2024ebk]
[5-10]
Waveform Simulation for Scintillation Characteristics of NaI(Tl) Crystal, J. J. Choi et al., arXiv:2402.17125, 2024.
[Choi:2024ziz]
[5-11]
Measurements of low energy nuclear recoil quenching factors for Na and I recoils in the NaI(Tl) scintillator, S. H. Lee et al., arXiv:2402.15122, 2024.
[Lee:2024unz]
[5-12]
Single electron charge spectra of 8-inch MCP-PMTs coated by atomic layer deposition, Jun Weng, Aiqiang Zhang, Qi Wu, Lishuang Ma, Benda Xu, Sen Qian, Zhe Wang, Shaomin Chen, arXiv:2402.13266, 2024.
[Weng:2024tjs]
[5-13]
Mechanical detection of nuclear decays, Jiaxiang Wang, T. W. Penny, Juan Recoaro, Benjamin Siegel, Yu-Han Tseng, David C. Moore, arXiv:2402.13257, 2024.
[Wang:2024pnc]
[5-14]
A measurement of the sodium and iodine scintillation quenching factors across multiple NaI(Tl) detectors to identify systematics, D. Cintas et al., arXiv:2402.12480, 2024.
[Cintas:2024pdu]
[5-15]
Development of KI-TWPAs for the DARTWARS project, Felix Ahrens et al., IEEE Trans. Appl. Supercond. 34 (2024) 1-5, arXiv:2402.12295.
[Ahrens:2024bjr]
[5-16]
PocketWATCH: Design and operation of a multi-use test bed for water Cherenkov detector components in pure and gadolinium loaded water, Matthew Thiesse, Stephen T. Wilson, Jack Fannon, Matthew Malek, Jordan McElwee, Andrew Scarff, Lee F. Thompson, arXiv:2402.06565, 2024.
[Thiesse:2024vap]
[5-17]
Directional Response of Several Geometries for Reactor-Neutrino Detectors, Mark J. Duvall, Brian C. Crow, Max A. A. Dornfest, John G. Learned, Marc F. Bergevin, Steven A. Dazeley, Viacheslav A. Li, arXiv:2402.01636, 2024.
[Duvall:2024cae]
[5-18]
Measurement of the Photon Detection Efficiency of Hamamatsu VUV4 SiPMs at Cryogenic Temperature, Rodrigo Alvarez-Garrote et al., Nucl.Instrum.Meth.A 1064 (2024) 169347, arXiv:2402.01584.
[Alvarez-Garrote:2024byb]
[5-19]
The forest as a neutrino detector, Steven Prohira, arXiv:2401.14454, 2024.
[Prohira:2024pwv]
[5-20]
The Design and Construction of the Chips Water Cherenkov Neutrino Detector, B. Alonso Rancurel et al., arXiv:2401.11728, 2024.
[Rancurel:2024png]
[5-21]
On the determination of the interaction time of GeV neutrinos in large argon gas TPCs, A. Saa-Hernandez et al., arXiv:2401.09920, 2024.
[Saa-Hernandez:2024tvl]
[5-22]
Prototyping a High Purity Germanium cryogenic veto system for a bolometric detection experiment, Chloe Goupy, Stefanos Marnieros, Beatrice Mauri, Claudia Nones, Matthieu Vivier, arXiv:2401.09837, 2024.
[Goupy:2024zfq]
[5-23]
Multi-Calorimetry in Light-based Neutrino Detectors, Anatael Cabrera et al., arXiv:2312.12991, 2023.
[Cabrera:2023foo]
[5-24]
A novel design for 100 meter-scale water attenuation length measurement and monitoring, Li Wang, Jilei Xu, Shuxiang Lu, Haoqi Lu, Zhimin Wang, Min Li, Sibo Wang, Changgen Yang, Yichen Zheng, arXiv:2312.01293, 2023.
[Wang:2023iul]
[5-25]
Characterization of the scintillation response of water-based liquid scintillator to alpha particles, and implications for particle identification, E. J. Callaghan, T. Kaptanoglu, M. Smiley, M. Yeh, G. D. Orebi Gann, Eur.Phys.J.C 83 (2023) 1094, arXiv:2311.16288.
[Callaghan:2023oyu]
[5-26]
SPY: A Magnet System for a High-pressure Gaseous TPC Neutrino Detector, Andrea Bersani et al., arXiv:2311.16063, 2023.
[Bersani:2023rlw]
[5-27]
A novel cryogenic VUV spectrofluorometer for the characterization of wavelength shifters, A. Leonhardt, M. Goldbrunner, B. Hackett, S. Schonert, arXiv:2311.15901, 2023.
[Leonhardt:2023yiu]
[5-28]
RFSoC-based front-end electronics for pulse detection, S. N. Axani et al., JINST 19 (2024) P03013, arXiv:2311.14946.
[Axani:2023ipq]
[5-29]
Demonstrating the Q-Pix front-end using discrete OpAmp and CMOS transistors, Peng Miao, Jonathan Asaadi, James B. R. Battat, Mikyung Han, Kevin Keefe, S. Kohani, Austin D. McDonald, David Nygren, Olivia Seidel, Yuan Mei, arXiv:2311.09568, 2023.
[Miao:2023ivo]
[5-30]
A new cleaner and higher rate techniques for anti-neutrino detection using Tungsten 183 Isotope, Jarred Novak, Nickolas Solomey, Brooks Hartsock, Brian Doty, Jonathan Folkerts, arXiv:2311.08418, 2023.
[Novak:2023wqt]
[5-31]
NuHepMC: A standardized event record format for neutrino event generators, S. Gardiner, J. Isaacson, L. Pickering, arXiv:2310.13211, 2023.
[Gardiner:2023ejq]
[5-32]
Subsurface cosmogenic and radiogenic production of $^{42}\text{Ar}$, Sagar S. Poudel, Ben Loer, Richard Saldanha, Brianne R. Hackett, Henning O. Back, arXiv:2309.16169, 2023.
[Poudel:2023mtx]
[5-33]
R2D2 TPC: first Xenon results, R. Bouet et al., JINST 18 (2023) T10001, arXiv:2309.13637.
[Bouet:2023zyk]
[5-34]
Benchmarking GEANT4 simulation of mini-Iron Calorimeter for cosmic ray muon studies, J. M. John, G. Majumder, S. Pethuraj, JINST 18 (2023) P11023, arXiv:2309.00992.
[John:2023zqj]
[5-35]
Projections of Discovery Potentials from Expected Background, M. K. Singh, H. B. Li, H. T. Wong, V. Sharma, L. Singh, Phys.Rev.D 109 (2024) 032001, arXiv:2308.07049.
[Singh:2023baw]
[5-36]
DISCO: An optical instrument to calibrate neutrino detection in complex media, Carsten Rott, Segev BenZvi, Mike DuVernois, Kenneth Golden, Benjamin JONES, Christoph Toennis, PoS ICRC2023 (2023) 1139, arXiv:2308.02830.
[Rott:2023xtj]
[5-37]
The intelligent Photomultiplier Tubes for OSIRIS, Feng Gao, Tim Kuhlbusch, Achim Stahl, Jochen Steinmann, Cornelius Vollbrecht, Christian Wysotzki, JINST 18 (2023) P11027, arXiv:2307.16569.
[Gao:2023tfr]
[5-38]
Study of collision and $\gamma$-cascade times following neutron-capture processes in cryogenic detectors, G. Soum-Sidikov et al. (CRAB), Phys.Rev.D 108 (2023) 072009, arXiv:2305.10139.
[CRAB:2023kuz]
[5-39]
Sensitivity of Transition-Edge Sensors to Strong DC Electric Fields, K. M. Patel, D. J. Goldie, S. Withington, C. N. Thomas, arXiv:2305.06032, 2023.
[Patel:2023sbk]
[5-40]
Treating Detector Systematics via a Likelihood Free Inference Method, Leander Fischer, Richard Naab, Alexandra Trettin, JINST 18 (2023) P10019, arXiv:2305.02257.
[Fischer:2023dbo]
[5-41]
Unsupervised Domain Transfer for Science: Exploring Deep Learning Methods for Translation between LArTPC Detector Simulations with Differing Response Models, Yi Huang, Dmitrii Torbunov, Brett Viren, Haiwang Yu, Jin Huang, Meifeng Lin, Yihui Ren, arXiv:2304.12858, 2023.
[Huang:2023kgs]
[5-42]
SiPM array of Xenoscope, a full-scale DARWIN vertical demonstrator, R. Peres, JINST 18 (2023) C03027, arXiv:2303.15300.
[Peres:2023nbw]
[5-43]
A Hybrid 3D/2D Field Response Calculation for Liquid Argon Detectors with PCB Based Anode Plane, S. Martynenko et al., JINST 18 (2023) P04033, arXiv:2303.10224.
[Martynenko:2023bpe]
[5-44]
Performance of a liquid nitrogen cryostat for the study of nuclear recoils in undoped CsI crystals, K. Ding, J. Liu, Y. Yang, K. Scholberg, D.M. Markoff, Nucl.Instrum.Meth.A 1063 (2024) 169283, arXiv:2303.05437.
[Ding:2023pqe]
[5-45]
Performance evaluation of the 8-inch MCP-PMT for Jinping Neutrino Experiment, Aiqiang Zhang, Benda Xu, Jun Weng, Huiyou Chen, Wenhui Shao, Tong Xu, Ling Ren, Sen Qian, Zhe Wang, Shaomin Chen, Nucl.Instrum.Meth.A 1055 (2023) 168506, arXiv:2303.05373.
[Zhang:2023ued]
[5-46]
Restoring the saturation response of a PMT using pulse-shape and artificial-neural-networks, Hyun-Gi Lee, Jungsic Park, Byeongsu Yang, arXiv:2302.06170, 2023.
[Lee:2023jew]
[5-47]
A portable and high intensity 24 keV neutron source based on $^{124}$Sb-$^{9}$Be photoneutrons and an iron filter, A. Biekert et al. (SPICE/HeRALD), JINST 18 (2023) P07018, arXiv:2302.03869.
[SPICEHeRALD:2023fzk]
[5-48]
A platform for trapped cryogenic electrons, anions and cations for fundamental physics and chemical studies, Levi O. A. Azevedo, Rodolfo J. S. Costa, Wania Wolff, Alvaro N. Oliveira, Rodrigo L. Sacramento, Daniel M. Silveira, Claudio L. Cesar, arXiv:2301.13248, 2023.
[Azevedo:2023hfq]
[5-49]
Low Energy Electronic Recoils and Single Electron Detection with a Liquid Xenon Proportional Scintillation Counter, Jianyang Qi, Noah Hood, Abigail Kopec, Yue Ma, Haiwen Xu, Min Zhong, Kaixuan Ni, JINST 18 (2023) P07027, arXiv:2301.12296.
[Qi:2023bof]
[5-50]
Large Low Background kTon-Scale Liquid Argon Time Projection Chambers, A. Borkum et al., J.Phys.G 50 (2023) 060502, arXiv:2301.11878.
[Bezerra:2023gvl]
[5-51]
Radiation Shielding Analysis for the PIP-II Linac at Fermilab, Igor Rakhno, Nikolai Mokhov, Igor Tropin, Sergei Striganov, Yury Eidelman, arXiv:2301.08339, 2023.
[Rakhno:2023qyk]
5-52.
Meld: Exploring the Feasibility of a Framework-less Framework, 2023.
[2308.16710]
[5-53]
Nucl.Instrum.Meth.A 1048 (2023) 168011.
[Eller:2022xvi]
[5-54]
Primary scintillation yield in gaseous Xe for electrons and alpha-particles, 2023.
[Henriques:2023evt]
[5-55]
Measurement of radon emanation and impurity adsorption from argon gas using ultralow radioactive zeolite, Hiroshi Ogawa, Kenta Iyoki, Minoru Matsukura, Toru Wakihara, Ko Abe, Kentaro Miuchi, Saori Umehara, JINST 19 (2024) P02004, arXiv:2212.13664.
[Ogawa:2022tku]
[5-56]
Developing a single phase liquid argon detector with SiPM readout, L. Wang, Y. Lei, T. A. Wang, C. Guo, K. K. Zhao, X. H. Liang, S. B. Wang, R. D. Chen, arXiv:2212.13054, 2022.
[Wang:2022wkj]
[5-57]
Reactor neutrino physics potentials of cryogenic pure-CsI crystal, L. Wang, G. d. Li, Z. Y. Yu, X. H. Liang, T. A. Wang, X. L. Sun, C. Gu, arXiv:2212.11515, 2022.
[Wang:2022ekc]
[5-58]
Evaluation of the mean excitation energy of liquid argon, M. Strait, JINST 19 (2024) P01009, arXiv:2212.06286.
[Strait:2022tuk]
[5-59]
TRANSLATE - A Monte Carlo Simulation of Electron Transport in Liquid Argon, Zach Beever, David Caratelli, Angela Fava, Francesco Pietropaolo, Francesca Stocker, Jacob Zettlemoyer, Comput.Phys.Commun. 297 (2024) 109056, arXiv:2211.12645.
[Beever:2022cwf]
[5-60]
Coincidence-based reconstruction for reactor antineutrino detection in gadolinium-doped Cherenkov detectors, Liz Kneale, Michael Smy, Matthew Malek, Nucl.Instrum.Meth.A 1053 (2023) 168375, arXiv:2210.10576.
[Kneale:2022sht]
[5-61]
Characterization of the TruSense S310 Laser Range System for Contact-less Measurement of Liquid Levels in Large-Volume Neutrino Detectors, H. Th. J. Steiger, E. Theisen, L. Oberauer, O. Pilarczyk, M. Wurm, arXiv:2210.09415, 2022.
[Steiger:2022xos]
[5-62]
Measurement of proton light yield of water-based liquid scintillator, E. J. Callaghan, B. L. Goldblum, J. A. Brown, T. A. Laplace, J. J. Manfredi, M. Yeh, G. D. Orebi Gann, Eur.Phys.J.C 83 (2023) 134, arXiv:2210.03876.
[Callaghan:2022ahi]
[5-63]
Reconstruction Algorithm for a Novel Cherenkov Scintillation Detector, Wentai Luo, Qian Liu, Yangheng Zheng, Zhe Wang, Shaomin Chen, JINST 18 (2023) P02004, arXiv:2209.13772.
[Luo:2022xrd]
[5-64]
Reconstruction of Point Events in Liquid-Scintillator Detectors Subjected to Total Reflection, Wei Dou, Benda Xu, Jianfeng Zhou, Zhe Wang, Shaomin Chen, Nucl.Instrum.Meth.A 1057 (2023) 168692, arXiv:2209.10993.
[Dou:2022glt]
[5-65]
Reduction of $^{222}$Rn-induced Backgrounds in a Hermetic Dual-Phase Xenon Time Projection Chamber, Julia Dierle, Adam Brown, Horst Fischer, Robin Glade-Beucke, Jaron Grigat, Fabian Kuger, Sebastian Lindemann, Mariana Rajado Silva, Marc Schumann, Eur.Phys.J.C 83 (2023) 9, arXiv:2209.00362.
[Dierle:2022zzh]
[5-66]
Simulation of deflection uncertainties on directional reconstructions of muons using PROPOSAL, Pascal Gutjahr et al., Eur. Phys. J. C 82 (2022) 1143, arXiv:2208.11902. [Erratum: Eur.Phys.J.C 83, 12 (2023)].
[Gutjahr:2022quk]
[5-67]
Development of the Scintillating Fiber Timing Detector for the Mu3e Experiment, A. Bravar, A. Buonaura, S. Corrodi, A. Damyanova, Y. Demets, L. Gerritzen, Ch. Grab, C. Martin Perez, A. Papa, Nucl.Instrum.Meth.A 1058 (2024) 168766, arXiv:2208.09906.
[Bravar:2022qnf]
[5-68]
Skipper-CCDs: current applications and future, B. A. Cervantes-Vergara, S. Perez, J. C. D'Olivo, J. Estrada, D. J. Grimm, S. Holland, M. Sofo-Haro, W. Wong, Nucl.Instrum.Meth.A 1046 (2023) 167681, arXiv:2208.05434.
[Cervantes-Vergara:2022ccu]
[5-69]
Improved FIFRELIN de-excitation model for neutrino applications, H. Almazan et al., Eur.Phys.J.A 59 (2023) 75, arXiv:2207.10918.
[Almazan:2022tzc]
[5-70]
Submarine Navigation using Neutrinos, Javier Fidalgo Prieto et al., arXiv:2207.09231, 2022.
[Prieto:2022ibr]
[5-71]
Study on SiPM performance at low temperatures, C. Zhong, F. J. Luo, B. Zheng, X. D. Wang, M. Y. Bu, J. Zhou, M. N. Deng, JINST 17 (2022) T11003, arXiv:2207.06151.
[Zhong:2022jmk]
[5-72]
Cait: analysis toolkit for cryogenic particle detectors in Python, Felix Wagner, Daniel Bartolot, Damir Rizvanovic, Florian Reindl, Jochen Schieck, Wolfgang Waltenberger, Comput.Softw.Big Sci. 6 (2022) 19, arXiv:2207.02187.
[Wagner:2022xde]
[5-73]
Pulse Shape Simulation and Discrimination using Machine-Learning Techniques, Shubham Dutta, Sayan Ghosh, Satyaki Bhattacharya, Satyajit Saha, JINST 18 (2023) P03038, arXiv:2206.15156.
[Dutta:2022cdk]
[5-74]
Neutrino Characterisation using Convolutional Neural Networks in CHIPS water Cherenkov detectors, Josh Tingey et al., JINST 18 (2023) P06032, arXiv:2206.14904.
[Tingey:2022evd]
[5-75]
Using Machine Learning to Improve Neutron Identification in Water Cherenkov Detectors, Blair Jamieson, Matt Stubbs, Sheela Ramanna, John Walker, Nick Prouse, Ryosuke Akutsu, Patrick de Perio, Wojciech Fedorko, Front.Big Data 5 (2022) 978857, arXiv:2206.12954.
[Jamieson:2022scv]
[5-76]
Deep learning for improved keV-scale recoil identification in high resolution gas time projection chambers, J. Schueler, M. Ghrear, S. E. Vahsen, P. Sadowski, C. Deaconu, arXiv:2206.10822, 2022.
[Schueler:2022lvr]
[5-77]
Energy reconstruction for large liquid scintillator detectors with machine learning techniques: aggregated features approach, Arsenii Gavrikov, Yury Malyshkin, Fedor Ratnikov, Eur.Phys.J.C 82 (2022) 1021, arXiv:2206.09040.
[Gavrikov:2022kok]
[5-78]
The estimation of n/$\gamma$ pulse shape discrimination capability of liquid argon scintillator with SiPM arrays contrast to PMTs, L.Wang, T.A. Wang, J.C. Liu, C. Guo, C.G. Yang, M.Y. Guan, X.H. Liang, Q. Zhao, arXiv:2206.01967, 2022.
[Wang:2022zrq]
[5-79]
Safe liquid scintillators for large scale detectors, A. Bonhomme, C. Buck, B. Gramlich, M. Raab, JINST 17 (2022) P11025, arXiv:2205.15046.
[Bonhomme:2022xcg]
[5-80]
A method for determining the transition energies of $^{\mathrm{83m}}$Kr at the KATRIN experiment, C. Rodenbeck, arXiv:2205.01484, 2022.
[Rodenbeck:2022fxc]
[5-81]
Improvement in light collection of a photomultiplier tube using a wavelength-shifting plate, Austin Mullen, Oluwatomi Akindele, Marc Bergevin, Adam Bernstein, Steven Dazeley, arXiv:2204.05534, 2022.
[Mullen:2022nwg]
[5-82]
A New Optical Model for Photomultiplier Tubes, Yaoguang Wang, Guofu Cao, Liangjian Wen, Yifang Wang, Eur.Phys.J.C 82 (2022) 329, arXiv:2204.02703.
[Wang:2022tij]
[5-83]
Novel Low Workfunction Semiconductors for Calorimetry and Detection: High Energy, Dark Matter and Neutrino Phenomena, David R Winn, arXiv:2203.09939, 2022.
[Winn:2022zyd]
[5-84]
Deep learning applications for quality control in particle detector construction, N. Akchurin, J. Damgov, S. Dugad, P. G C, S. Gronroos, K. Lamichhane, J. Martinez, T. Quast, S. Undleeb, A. Whitbeck, arXiv:2203.08969, 2022.
[Akchurin:2022apq]
[5-85]
Measurements of Rayleigh Ratios in Linear Alkylbenzene, Miao Yu, Wenjie Wu, Na Peng, Taozhe Yu, Yayun Ding, Qian Liu, Feng Ren, Zhenyu Zhang, Xiang Zhou, Rev.Sci.Instrum. 93 (2022) 063106, arXiv:2203.03126.
[Yu:2022cba]
[5-86]
A novel active veto prototype detector with an inner target for improved rare event searches, M. Chaudhuri et al., arXiv:2202.11004, 2022.
[Chaudhuri:2022acy]
[5-87]
Study of visible light scintillations in liquid argon and its mixtures with methane, A. Bondar, E. Borisova, A. Buzulutskov, E. Frolov, V. Nosov, V. Oleynikov, A. Sokolov, arXiv:2202.09154, 2022.
[Bondar:2022kgx]
[5-88]
Cryogenic digital data links for the liquid argon time projection chamber, Tiankuan Liu, Datao Gong, Suen Hou, Chonghan Liu, Da-Shung Su, Ping-kun Teng, Annie C. Xiang, Jingbo Ye, JINST 7 (2012) C01091, arXiv:2202.05103.
[Liu:2012zzc]
[5-89]
Muon Track Reconstruction in a Segmented Bolometric Array Using Multi-Objective Optimization, J. Yocum, D. Mayer, J. L. Ouellet, L. Winslow, JINST 17 (2022) P07004, arXiv:2202.03194.
[Yocum:2022hum]
[5-90]
Neutral Bremsstrahlung emission in xenon unveiled, C. A. O. Henriques et al., Phys.Rev.X 12 (2022) 021005, arXiv:2202.02614.
[NEXT:2022ijl]
[5-91]
Maximum likelihood reconstruction of water Cherenkov events with deep generative neural networks, Mo Jia, Karan Kumar, Liam S. Mackey, Alexander Putra, Cristovao Vilela, Michael J. Wilking, Junjie Xia, Chiaki Yanagisawa, Karan Yang, Front.Big Data 5 (2022) 868333, arXiv:2202.01276.
[Jia:2022ulh]
[5-92]
Adversarial methods to reduce simulation bias in neutrino interaction event filtering at Liquid Argon Time Projection Chambers, Marta Babicz, Saul Alonso-Monsalve, Stephen Dolan, Kazuhiro Terao, Phys.Rev.D 105 (2022) 112009, arXiv:2201.11009.
[Babicz:2022zgm]
[5-93]
Design and performance of a scintillation tracker for track matching in nuclear-emulsion-based neutrino interaction measurement, Takahiro Odagawa, Tsutomu Fukuda, Ayami Hiramoto, Hiroaki Kawahara, Tatsuya Kikawa, Akihiro Minamino, Tsuyoshi Nakaya, Osamu Sato, Yosuke Suzuki, Kenji Yasutome, Nucl.Instrum.Meth.A 1034 (2022) 166775, arXiv:2201.06828.
[Odagawa:2022crm]
[5-94]
Real-time Inference with 2D Convolutional Neural Networks on Field Programmable Gate Arrays for High-rate Particle Imaging Detectors, Yeon-jae Jwa, Giuseppe Di Guglielmo, Lukas Arnold, Luca Carloni, Georgia Karagiorgi, Front.Artif.Intell. 5 (2022) 855184, arXiv:2201.05638.
[Jwa:2022eaf]
[5-95]
Accelerating Deep Neural Networks for Real-time Data Selection for High-resolution Imaging Particle Detectors, Yeon-Jae Jwa, Giuseppe Di Guglielmo, Luca P. Carloni, Georgia Karagiorgi, arXiv:2201.04740, 2022.
[Jwa:2019zlh]
[5-96]
NuSD: A Geant4 based simulation framework for segmented anti-neutrino detectors, Mustafa Kandemir, Emrah Tiras, Vincent Fischer, Comput.Phys.Commun. 277 (2022) 108387, arXiv:2201.03689.
[Kandemir:2022ftk]
[5-97]
First measurement of the positive volume charge in a 1 litre dual-phase argon detector, Luciano Romero et al., Universe 8 (2022) 134, arXiv:2112.14725.
[Romero:2021lsj]
[5-98]
Towards the ultimate PMT waveform analysis, Dacheng Xu et al., JINST 17 (2022) P06040, arXiv:2112.06913.
[Xu:2021whl]
[5-99]
Neutral bremsstrahlung electroluminescence in noble liquids, E. Borisova, A. Buzulutskov, EPL 137 (2022) 24002, arXiv:2112.01737.
[Borisova:2021bio]
[5-100]
Non-Parametric Data-Driven Background Modelling using Conditional Probabilities, A. Chisholm, T. Neep, K. Nikolopoulos, R. Owen, E. Reynolds, J. Silva, JHEP 10 (2022) 001, arXiv:2112.00650.
[Chisholm:2021pdn]
[5-101]
Performance of a Radial Time Projection Chamber with Electroluminescence in Liquid Xenon, Yuehuan Wei, Jianyang Qi, Evan Shockley, Haiwen Xu, Kaixuan Ni, JINST 17 (2022) C02002, arXiv:2111.09112.
[Wei:2021nuk]
[5-102]
Photon detection probability prediction using one-dimensional generative neural network, Wei Mu, Alexander I. Himmel, Bryan Ramson, Mach.Learn.Sci.Tech. (), arXiv:2109.07277.
[Mu:2021nno]
[5-103]
Demonstrating a single-block 3D-segmented plastic-scintillator detector, A. Boyarintsev et al., JINST 16 (2021) P12010, arXiv:2108.11897.
[Boyarintsev:2021uyw]
[5-104]
Characterization of Silicon-Photomultipliers for a Cosmic Muon Veto detector, Mamta Jangra, Gobinda Majumder, Mandar Saraf, B. Satyanarayana, R.R. Shinde, Suresh S Upadhya, Vivek M Datar, JINST 16 (2021) P11029, arXiv:2108.05638.
[Jangra:2021key]
[5-105]
SiPM Photon Emission in the Dark, J. B. McLaughlin et al., Sensors 21 (2021) 5947, arXiv:2107.13753.
[McLaughlin:2021xat]
[5-106]
Optimizing the Hit Finding Algorithm for Liquid Argon TPC Neutrino Detectors Using Parallel Architectures, Sophie Berkman, Giuseppe Cerati, Kyle Knoepfel, Marc Mengel, Allison Reinsvold Hall, Michael Wang, Brian Gravelle, Boyana Norris, JINST 17 (2022) P01026, arXiv:2107.00812.
[Berkman:2021ffy]
[5-107]
Extracting low energy signals from raw LArTPC waveforms using deep learning techniques - A proof of concept, Lorenzo Uboldi, David Ruth, Michael Andrews, Michael H. L. S. Wang, Hans-Joachim Wenzel, Wanwei Wu, Tingjun Yang, Nucl.Instrum.Meth.A (2022) 166371, arXiv:2106.09911.
[Uboldi:2021jyj]
[5-108]
Development of very-thick transparent GEMs with wavelength-shifting capability for noble element TPCs, M. Kuzniak et al., Eur.Phys.J.C 81 (2021) 609, arXiv:2106.03773.
[Kuzniak:2021brl]
[5-109]
Coded masks for imaging of neutrino events, M. Andreotti et al., Eur.Phys.J.C 81 (2021) 1011, arXiv:2105.10820.
[NUFNAL:2021zov]
[5-110]
SANDD: A directional antineutrino detector with segmented 6Li-doped pulse-shape-sensitive plastic scintillator, F. Sutanto, T. M. Classen, S. A. Dazeley, M. J. Duvall, I. Jovanovic, V. A. Li, A. N. Mabe, E. T. E. Reedy, T. Wu, Nucl.Instrum.Meth. A1006 (2021) 165409, arXiv:2105.00083.
[Sutanto:2021xpo]
[5-111]
Segmentation of EM showers for neutrino experiments with deep graph neural networks, Vladislav Belavin, Ekaterina Trofimova, Andrey Ustyuzhanin, JINST 16 (2021) P12035, arXiv:2104.02040.
[Belavin:2021bxb]
[5-112]
Phonon-mediated crystal detectors with rejection capability of surface $\alpha$ and $\beta$ particles assisted by metallic film coating, I.C. Bandac et al., Appl.Phys.Lett. 118 (2021) 184105, arXiv:2103.07181.
[Bandac:2021qco]
[5-113]
Correlated Single- and Few-Electron Backgrounds Milliseconds after Interactions in Dual-Phase Liquid Xenon Time Projection Chambers, Abigail Kopec, Amanda L. Baxter, Michael Clark, Rafael F. Lang, Shengchao Li, Juehang Qin, Riya Singh, JINST 16 (2021) P07014, arXiv:2103.05077.
[Kopec:2021ccm]
[5-114]
Wavelength-Shifting Performance of Polyethylene Naphthalate Films in a Liquid Argon Environment, Y. Abraham et al., JINST 16 (2021) P07017, arXiv:2103.03232.
[Abraham:2021otn]
[5-115]
A High Pressure Time Projection Chamber with Optical Readout, Alexander Deisting et al., Instruments 5 (2021) 22, arXiv:2102.06643.
[Deisting:2021htu]
[5-116]
Event vertex and time reconstruction in large volume liquid scintillator detector, Ziyuan Li et al., Nucl.Sci.Tech. 32 (2021) 49, arXiv:2101.08901.
[Li:2021oos]
[5-117]
Modelling the shape of thermal pulses from low temperature detectors, Irene Nutini, Carlo Bucci, Oliviero Cremonesi, arXiv:2101.05029, 2021.
[Nutini:2021cjh]
[5-118]
Characterization of VUV4 SiPM for Liquid Argon detector, L. Wang et al., JINST 16 (2021) P07021, arXiv:2101.04295.
[Wang:2021gof]
[5-119]
A novel approach for nearly-coincident events rejection, M. Borghesi, M. De Gerone, M. Faverzani, M. Fedkevych, E. Ferri, G. Gallucci, A. Giachero, A. Nucciotti, A. Puiu, Eur.Phys.J. C81 (2021) 385, arXiv:2101.02705.
[Borghesi:2021fda]
[5-120]
Observables for Recoil Identification in Gas Time Projection Chambers, Majd Ghrear, Sven E. Vahsen, Cosmin Deaconu, JCAP 10 (2021) 005, arXiv:2012.13649.
[Ghrear:2020pzk]
[5-121]
Particle Track Reconstruction using Geometric Deep Learning, Yogesh Verma, Satyajit Jena, arXiv:2012.08515, 2020.
[Verma:2020gnq]
[5-122]
Properties of Liquid Argon Scintillation Light Emission, Ettore Segreto, Phys.Rev. D103 (2021) 043001, arXiv:2012.06527.
[Segreto:2020qks]
[5-123]
CATIROC: an integrated chip for neutrino experiments using photomultiplier tubes, Selma Conforti et al., JINST 16 (2021) P05010, arXiv:2012.01565.
[JUNO:2020orn]
[5-124]
Calibration of nuclear recoils at the 100 eV scale using neutron capture, L. Thulliez et al., JINST 16 (2021) P07032, arXiv:2011.13803.
[Thulliez:2020esw]
[5-125]
Predicting Transport Effects of Scintillation Light Signals in Large-Scale Liquid Argon Detectors, D. Garcia-Gamez, P. Green, A.M. Szelc, Eur.Phys.J. C81 (2021) 349, arXiv:2010.00324.
[Garcia-Gamez:2020xrv]
[5-126]
Modeling impurity concentrations in liquid argon detectors, Aiwu Zhang et al., Nucl.Instrum.Meth.A 1010 (2021) 165491, arXiv:2009.10906.
[Zhang:2020oaj]
[5-127]
A Kinetic Model for Xenon-Doped Liquid Argon Scintillation Light, D.E. Fields, R. Gibbons, M. Gold, J.L. Thomas, N. McFadden, S.R. Elliott, R. Massarczyk, K. Rielage, Nucl.Instrum.Meth.A 1046 (2023) 167707, arXiv:2009.10755.
[Fields:2020wge]
[5-128]
GPU-accelerated machine learning inference as a service for computing in neutrino experiments, Michael Wang, Tingjun Yang, Maria Acosta Flechas, Philip Harris, Benjamin Hawks, Burt Holzman, Kyle Knoepfel, Jeffrey Krupa, Kevin Pedro, Nhan Tran, Front.Big Data 3 (2021) 604083, arXiv:2009.04509.
[Wang:2020fjr]
[5-129]
High intensity H$_2^+$ beams from a filament-driven multicusp ion source, Daniel Winklehner, Janet Conrad, Joseph Smolsky, Loyd Waites, Rev.Sci.Instrum. 92 (2021) 123301, arXiv:2008.12292.
[Winklehner:2020itb]
[5-130]
Off-Axis Characterisation of the CERN T10 Beam for low Momentum Proton Measurements with a High Pressure Gas Time Projection Chamber, S. B. Jones et al., Instruments 4 (2020) 21, arXiv:2007.15609.
[Jones:2020dyx]
[5-131]
MeV-scale performance of water-based and slow liquid scintillators, B. J. Land, Z. Bagdasarian, J. Caravaca, M. Smiley, G. D. Orebi Gann, Phys.Rev. D103 (2021) 052004, arXiv:2007.14999.
[Land:2020oiz]
[5-132]
Augmented Signal Processing in Liquid Argon Time Projection Chamber with Deep Neural Network, Haiwang Yu et al., JINST 16 (2021) P01036, arXiv:2007.12743.
[Yu:2020wxu]
[5-133]
TITUS: Visualization of Neutrino Events in Liquid Argon Time Projection Chambers, Corey Adams, Marco Del Tutto, Instruments 4 (2020) 31, arXiv:2007.06517.
[Adams:2020uco]
[5-134]
Charge collection efficiency in back-illuminated Charge-Coupled Devices, Guillermo Fernandez-Moroni, Kevin Andersson, Ana Botti, Juan Estrada, Dario Rodrigues, Javier Tiffenberg, Phys.Rev.Applied 15 (2021) 064026, arXiv:2007.04201.
[Fernandez-Moroni:2020abn]
[5-135]
Scalable, Proposal-free Instance Segmentation Network for 3D Pixel Clustering and Particle Trajectory Reconstruction in Liquid Argon Time Projection Chambers, Dae Heun Koh, Pierre Cote de Soux, Laura Domine, Francois Drielsma, Ran Itay, Qing Lin, Kazuhiro Terao, Ka Vang Tsang, Tracy Usher (DeepLearnPhysics), arXiv:2007.03083, 2020.
[Koh:2020snv]
[5-136]
Clustering of Electromagnetic Showers and Particle Interactions with Graph Neural Networks in Liquid Argon Time Projection Chambers Data, Francois Drielsma, Qing Lin, Pierre Cote de Soux, Laura Domine, Ran Itay, Dae Heun Koh, Bradley J. Nelson, Kazuhiro Terao, Ka Vang Tsang, Tracy L. Usher, Phys.Rev.D 104 (2021) 072004, arXiv:2007.01335.
[DeepLearnPhysics:2020hut]
[5-137]
Point Proposal Network for Reconstructing 3D Particle Positions with Sub-Pixel Precision in Liquid Argon Time Projection Chambers, Laura Domine, Kazuhiro Terao, Phys.Rev.D 104 (2021) 032004, arXiv:2006.14745.
[Domine:2020tlx]
[5-138]
Benefits of MeV-Scale Reconstruction Capabilities in Large Liquid Argon Time Projection Chambers, W. Castiglioni, W. Foreman, I. Lepetic, B.R. Littlejohn, M. Malaker, A. Mastbaum, Phys.Rev. D102 (2020) 092010, arXiv:2006.14675.
[Castiglioni:2020tsu]
[5-139]
Electroluminescence and electron avalanching in two-phase detectors, A. Buzulutskov, Instruments 4 (2020) 16, arXiv:2006.11017.
[Buzulutskov:2020xhd]
[5-140]
Large-Scale, Precision Xenon Doping of Liquid Argon, N. McFadden, S.R. Elliott, M. Gold, D.E. Fields, K. Rielage, R. Massarczyk, R. Gibbons, Nucl.Instrum.Meth.A 1011 (2021) 165575, arXiv:2006.09780.
[McFadden:2020dxs]
[5-141]
Improving the light yield of NaI(Tl) crystal detectors, J.J. Choi, B.J. Park, C. Ha, K.W. Kim, S.K. Kim, Y.D. Kim, Y.J. Ko, H.S. Lee, S.H. Lee, S.L. Olsen, Nucl.Instrum.Meth. A981 (2020) 164556, arXiv:2006.02573.
[Choi:2020qcj]
[5-142]
A GEM-based Optically Readout Time Projection Chamber for charged particle tracking, V. C. Antochi et al., Nucl.Instrum.Meth. A999 (2021) 165209, arXiv:2005.12272.
[Antochi:2020hfw]
[5-143]
Neutrino-hydrogen interactions with a high-pressure TPC, Philip Hamacher-Baumann, Xianguo Lu, Justo Martin-Albo, Phys.Rev. D102 (2020) 033005, arXiv:2005.05252.
[Hamacher-Baumann:2020ogq]
[5-144]
A Gas Monitoring Chamber for High Pressure Applications, Philip Hamacher-Baumann, JINST 16 (2021) P08030, arXiv:2005.03636.
[Hamacher-Baumann:2020vwj]
[5-145]
Development of an ion exchange resin for gadolinium-loaded water, V. Fischer, J. He, M. Irving, R. Svoboda, JINST 15 (2020) P07004, arXiv:2004.04629.
[Fischer:2020hjj]
[5-146]
Measuring the Neutrino Event Time in Liquid Argon by a Post-Reconstruction One-parameter Fit, Evan Angelico, Andrey Elagin, Henry J. Frisch, Matthew Wetstein, arXiv:2004.00580, 2020.
[Angelico:2020gyn]
[5-147]
A complete optical model for liquid-scintillator detectors, Yan Zhang, Ze-Yuan Yu, Xin-Ying Li, Zi-Yan Deng, Liang-Jian Wen, Nucl.Instrum.Meth. A967 (2020) 163860, arXiv:2003.12212.
[Zhang:2020mqz]
[5-148]
Prospects of using opaque detectors in accelerator neutrino experiments, Jian Tang, Sampsa Vihonen, TseChun Wang, Phys.Rev. D102 (2020) 013006, arXiv:2003.02792.
[Tang:2020xoy]
[5-149]
A comparison between scintillation light Analog and Digital trigger for large volume Liquid Argon Time Projection Chambers, O. Barnaba, A. Menegolli, R. Nardo, M. Pirola, M.C. Prata, G.L. Raselli, E. Romano, M. Rossella, JINST 15 (2020) C04024, arXiv:2003.00258.
[Barnaba:2020aff]
[5-150]
Light Propagation in Liquid Argon, M. Babicz et al., JINST 15 (2020) P09009, arXiv:2002.09346.
[Babicz:2020den]
[5-151]
Reconstruction for Liquid Argon TPC Neutrino Detectors Using Parallel Architectures, Sophie Berkman, Giuseppe Cerati, Brian Gravelle, Boyana Norris, Allison Reinsvold Hall, Michael Wang, EPJ Web Conf. 245 (2020) 02012, arXiv:2002.06291.
[Berkman:2020oyz]
[5-152]
Slow Fluors for Highly Effective Separation of Cherenkov Light in Liquid Scintillators, Steven D. Biller, Edward J. Leming, Josephine J. Paton, Nucl.Instrum.Meth. A972 (2020) 164106, arXiv:2001.10825.
[Biller:2020uoi]
[5-153]
Polysiloxane-based scintillators for shashlik calorimeters, F. Acerbi et al., Nucl.Instrum.Meth. A956 (2020) 163379, arXiv:2001.03130.
[Acerbi:2020itd]
[5-154]
The Dichroicon: Spectral Photon Sorting For Large-Scale Cherenkov and Scintillation Detectors, Tanner Kaptanoglu, Meng Luo, Ben Land, Amanda Bacon, Josh Klein, Phys.Rev. D101 (2020) 072002, arXiv:1912.10333.
[Kaptanoglu:2019gtg]
[5-155]
Enhancing Neutrino Event Reconstruction with Pixel-Based 3D Readout for Liquid Argon Time Projection Chambers, Corey Adams, Marco Del Tutto, Jonathan Asaadi, Madeline Bernstein, Eric Church, Roxanne Guenette, Jairo M. Rojas, Hunter Sullivan, Akshat Tripathi, JINST 15 (2020) P04009, arXiv:1912.10133.
[Adams:2019uqx]
[5-156]
Pulse Shape Particle Identification by a Single Large Hemispherical Photo-Multiplier Tube, S. Samani et al., JINST 15 (2020) T05002, arXiv:1912.03901.
[Samani:2019qtj]
[5-157]
Reliability studies of electronic components for the operation at cryogenic temperature, N. Poonthottathil, F. Krennrich, J. Eisch, A. Weinstein, L.J Bond, D. Barnard, Z. Zhang, L Koester, arXiv:1911.10285, 2019.
[Poonthottathil:2019noe]
[5-158]
Spin coating TPB film on acrylics and measurement of its wavelength shifting efficiency, Hang Yang, Zi-Feng Xu, Jian Tang, Yi Zhang, Nucl.Sci.Tech. 31 (2020) 28, arXiv:1911.08897.
[Yang:2019zob]
[5-159]
Production of highly charged ions of rare species by laser-induced desorption inside an electron beam ion trap, Christoph Schweiger et al., arXiv:1911.05519, 2019.
[1911.05519]
[5-160]
The XBPF, a new multipurpose scintillating fibre monitor for the measurement of secondary beams at CERN, I. Ortega, L. Fosse, J. Franchi, A. Frassier, J. Fullerton, J. Kral, J. Lauener, T. Schneider, G. Tranquille, Nucl.Instrum.Meth. A951 (2020) 162996, arXiv:1910.12519.
[OrtegaRuiz:2019vmy]
[5-161]
A Method to Determine the Electric Field of Liquid Argon Time Projection Chambers Using a UV Laser System and its Application in MicroBooNE, C. Adams et al. (MicroBooNE), JINST 15 (2020) P07010, arXiv:1910.01430.
[MicroBooNE:2019koz]
[5-162]
Performance of Large Area Picosecond Photo-Detectors (LAPPD), A. V. Lyashenko et al., Nucl.Instrum.Meth. A958 (2020) 162834, arXiv:1909.10399.
[Lyashenko:2019tdj]
[5-163]
Calorimetry for low-energy electrons using charge and light in liquid argon, W. Foreman et al., Phys.Rev. D101 (2020) 012010, arXiv:1909.07920.
[LArIAT:2019gdz]
[5-164]
Modeling of a MeV-scale Particle Detector Based on Organic Liquid Scintillator, Yu. M. Malyshkin et al., Nucl.Instrum.Meth. A951 (2020) 162920, arXiv:1909.03229.
[Malyshkin:2019xux]
[5-165]
Evaluation of Gadolinium's Action on Water Cherenkov Detector Systems with EGADS, M. Ikeda et al., Nucl.Instrum.Meth.A 959 (2020) 163549, arXiv:1908.11532.
[Marti:2019dof]
[5-166]
A New Concept for Kilotonne Scale Liquid Argon Time Projection Chambers, M. Auger et al., Instruments 4 (2020) 6, arXiv:1908.10956.
[Asaadi:2019kof]
[5-167]
Light Yield of Perovskite Nanocrystal-Doped Liquid Scintillator, Eleanor Graham, Diana Gooding, Julieta Gruszko, Christopher Grant, Brian Naranjo, Lindley Winslow, arXiv:1908.03564, 2019.
[Graham:2019zqb]
[5-168]
Novel Opaque Scintillator for Neutrino Detection, Christian Buck, Benjamin Gramlich, Stefan Schoppmann, JINST 14 (2019) P11007, arXiv:1908.03334.
[Buck:2019tsa]
[5-169]
Neutrino Physics with an Opaque Detector, A. Cabrera et al., Commun.Phys. 4 (2021) 273, arXiv:1908.02859.
[LiquidO:2019mxd]
[5-170]
NuRadioMC: Simulating the radio emission of neutrinos from interaction to detector, Christian Glaser et al., Eur.Phys.J. C80 (2020) 77, arXiv:1906.01670.
[Glaser:2019cws]
[5-171]
Development of a method for measuring rare earth elements in the environment for future experiments with gadolinium loaded detectors, S. Ito, T. Okada, Y. Takaku, M. Harada, M. Ikdeda, Y. Kishimoto, Y. Koshio, M. Nakahata, Y. Nakajima, H. Sekiya, PTEP 2019 (2019) 063H03, arXiv:1905.10962.
[Ito:2019jhr]
[5-172]
Energy and Flavor Discrimination Using Precision Time Structure in On-Axis Neutrino Beams, Evan Angelico, Jonathan Eisch, Andrey Elagin, Henry Frisch, Sergei Nagaitsev, Matthew Wetstein, Phys.Rev. D100 (2019) 032008, arXiv:1904.01611.
[Angelico:2019gyi]
[5-173]
PMT choices for large detectors, Liang-Jian Wen, Miao He, Yi-Fang Wang, Jun Cao, Shu-Lin Liu, Yue-Kun Heng, Zhong-Hua Qin, Nucl.Instrum.Meth.A 947 (2019) 162766, arXiv:1903.12595.
[Wen:2019sik]
[5-174]
A 15-MW Proton Driver for Neutrino Oscillation Experiments, Radoje Belusevic, arXiv:1903.09405, 2019.
[Belusevic:2019plk]
[5-175]
Scalable Deep Convolutional Neural Networks for Sparse, Locally Dense Liquid Argon Time Projection Chamber Data, Laura Domine, Kazuhiro Terao, Phys.Rev.D 102 (2020) 012005, arXiv:1903.05663.
[Domine:2019zhm]
[5-176]
Technique for Surface Background Rejection in Liquid Argon Dark Matter Detectors using Layered Wavelength-Shifting and Scintillating Thin Films, M.G. Boulay, M. Kuzniak, Nucl.Instrum.Meth. A968 (2020) 163631, arXiv:1903.00257.
[Boulay:2019eal]
[5-177]
Wide band spectroscopic response of monocrystallines to low dose neutron and gamma radiation, Yossi Mosbacher, Micha Weiss, Hagar Landsman, Nadav Priel, Ilan Eliyahu, Arik Kreisel, Offir Ozeri, David Hershkovich, Ori Cheshnovsky, Ranny Budnik, arXiv:1902.10668, 2019.
[Mosbacher:2019igk]
[5-178]
Measurement of gamma-ray production via neutron-$^{16}$O reaction using a 77 MeV quasi-mono energetic neutron beam, Y. Ashida et al., Phys.Rev.C 109 (2024) 014620, arXiv:1902.08964.
[Ashida:2019nhd]
[5-179]
Characterisation of the Hamamatsu R12199-01 HA MOD photomultiplier tube for low temperature applications, M. A. Unland Elorrieta, L. Classen, J. Reubelt, S. Schmiemann, J. Schneider, A. Kappes, JINST 14 (2019) P03015, arXiv:1902.01714.
[UnlandElorrieta:2019yhd]
[5-180]
Prototype Analog Front-end for Negative-ion Gas and Dual-phase Liquid-Ar TPCs, Miki Nakazawa et al., JINST 14 (2019) T01008, arXiv:1901.02587.
[Nakazawa:2019hvo]
[5-181]
Detecting Cherenkov Light From 1-2 MeV Electrons in Linear Alkylbenzene, Julieta Gruszko, Brian Naranjo, Byron Daniel, Andrey Elagin, Diana Gooding, Chris Grant, Jonathan Ouellet, Lindley Winslow, JINST 14 (2019) P02005, arXiv:1811.11144.
[Gruszko:2018gzr]
[5-182]
Energy and spatial resolution of a large volume liquid scintillator detector, O. Smirnov, Instrum.Exp.Tech. 46 (2003) 327-344, arXiv:1811.02321.
[Smirnov:2003pq]
[5-183]
Research on Relative Collection Efficiency of PMTs with Point Light, Hai-qiong Zhang et al., arXiv:1810.04550, 2018.
[Zhang:2018rcs]
[5-184]
Studies of MCP-PMTs in the miniTimeCube neutrino detector, V.A. Li et al., AIP Adv. 8 (2018) 095003, arXiv:1809.08314.
[Li:2018vnu]
[5-185]
Measurement of proton quenching in a LAB based liquid scintillator, M. S. Yang, Z. Y. Yu, J. Cao, X. L. Sun, B. X. Yu, G. P. An, arXiv:1809.03813, 2018.
[Yang:2018wje]
[5-186]
Electronic Instrumentations for High Energy Particle Physics and Neutrino Physics, Paolo Carniti, arXiv:1808.10193, 2018.
[Carniti:2018mot]
[5-187]
On the role of radiative losses in energy scale of large liquid scintillator and water Cerenkov detectors, Andrey Formozov, arXiv:1808.07458, 2018.
[Formozov:2018liq]
[5-188]
LArPix: Demonstration of low-power 3D pixelated charge readout for liquid argon time projection chambers, D. A. Dwyer et al., JINST 13 (2018) P10007, arXiv:1808.02969.
[Dwyer:2018phu]
[5-189]
High energy neutrino beam generation based on crystal optics, Yu. A. Chesnokov, V.A. Maisheev, Nucl.Instrum.Meth. A910 (2018) 9-14, arXiv:1807.02636.
[Chesnokov:2018ozr]
[5-190]
A hybrid organic/inorgaic scintillator for high performance measurements, S. Wagner, M. Grassi, A. Cabrera, arXiv:1807.00628, 2018.
[Wagner:2018ajx]
[5-191]
Polyethylene naphthalate film as a wavelength shifter in liquid argon detectors, Marcin Kuzniak, Benjamin Broerman, Eur.Phys.J. C79 (2019) 291, arXiv:1806.04020.
[Kuzniak:2018dcf]
[5-192]
Streamer studies in Resistive Plate Chambers, A. Paoloni, A. Mengucci, M. Spinetti, M. Ventura, L. Votano, JINST 14 (2019) C08007, arXiv:1806.03443.
[Paoloni:2018kgj]
[5-193]
Study of radon reduction in gases for rare event search experiments, K.Pushkin et al., Nucl.Instrum.Meth. A903 (2018) 267-276, arXiv:1805.11306.
[Pushkin:2018wdl]
[5-194]
Characterization of a 109Cd gamma-ray source for the two-phase argon detector, A. Bondar et al., Instrum.Exp.Tech. 62 (2019) 746-749, arXiv:1805.02839.
[Bondar:2018qaw]
[5-195]
Bright muon source driven by GeV electron beams from a compact laser wakefield accelerator, Bobbili Sanyasi Rao, Jong Ho Jeon, Hyung Taek Kim, Chang Hee Nam, Plasma Phys.Control.Fusion 60 (2018) 095002, arXiv:1804.03886.
[Rao:2018njj]
[5-196]
Topological track reconstruction in unsegmented, large-volume liquid scintillator detectors, Bjorn S. Wonsak et al., JINST 13 (2018) P07005, arXiv:1803.08802.
[Wonsak:2018uby]
[5-197]
Vibration decoupling system for massive bolometers in dry cryostats, R. Maisonobe et al., JINST 13 (2018) T08009, arXiv:1803.03463.
[Maisonobe:2018tbq]
[5-198]
Increasing the efficiency of photon collection in LArTPCs: the ARAPUCA light trap, G. Cancelo et al., JINST 13 (2018) C03040, arXiv:1802.09726.
[Cancelo:2018dnf]
[5-199]
Simulation and Efficiency Studies of Optical Photon Transportation and Detection with Plastic Antineutrino Detector Modules, Altan Cakir, Mustafa Kandemir, Nucl.Instrum.Meth. A898 (2018) 30-39, arXiv:1802.09202.
[Kandemir:2018zta]
[5-200]
Growth and characterization of a Li2Mg2(MoO4)3 scintillating bolometer, F.A. Danevich et al., Nucl.Instrum.Meth. 889 (2018) 89-96, arXiv:1802.01888.
[Danevich:2018gyi]
[5-201]
Charge reconstruction in large-area photomultipliers, M. Grassi et al., JINST 13 (2018) P02008, arXiv:1801.08690.
[Grassi:2018pxk]
[5-202]
Study and mitigation of spurious electron emission from cathodic wires in noble liquid time projection chambers, A. Tomas et al., Astropart.Phys. 103 (2018) 49-61, arXiv:1801.07231.
[Tomas:2018pny]
[5-203]
Testbeam performance of a shashlik calorimeter with fine-grained longitudinal segmentation, G. Ballerini et al., JINST 13 (2018) P01028, arXiv:1801.06167.
[Ballerini:2018hus]
[5-204]
The China Jinping Underground Laboratory and its Early Science, Jian-Ping Cheng et al., Ann.Rev.Nucl.Part.Sci. 67 (2017) 231-251, arXiv:1801.00587.
[Cheng:2017usi]
[5-205]
Toward precise neutrino measurements: An efficient energy response model for liquid scintillator detectors, Logan Lebanowski, Linyan Wan, Xiangpan Ji, Zhe Wang, Shaomin Chen, Nucl.Instrum.Meth.A 890 (2018) 133-141, arXiv:1712.10112.
[Lebanowski:2017vhm]
[5-206]
A Dual-phase Xenon TPC for Scintillation and Ionisation Yield Measurements in Liquid Xenon, Laura Baudis et al., Eur.Phys.J. C78 (2018) 351, arXiv:1712.08607.
[Baudis:2017xov]
[5-207]
Some considerations about cosmogenic production of radioactive isotopes in Ar as target for the next neutrino experiments, Mihaela Parvu, I. Lazanu, Radiat.Phys.Chem. 152 (2018) 129, arXiv:1712.04399.
[Parvu:2017xde]
[5-208]
A method to define the energy threshold depending on noise level for rare events searches, M. Mancuso et al., Nucl.Instrum.Meth.A 940 (2019) 492-496, arXiv:1711.11459.
[Mancuso:2017ffg]
[5-209]
Deep learning for evaluating the effects of a layout of photon sensors on event reconstructions, Chang-Wei Loh et al., Adv.High Energy Phys. 2018 (2018) 7024309, arXiv:1711.00607.
[Loh:2017dfu]
[5-210]
Beam Based RF Voltage Measurements and Longitudinal Beam Tomography at the Fermilab Booster, C. M. Bhat, S. Bhat, arXiv:1710.07372, 2017.
[Bhat:2017nns]
[5-211]
Characterization of the Hamamatsu 8' R5912-MOD Photomultiplier Tube, Tanner Kaptanoglu, Nucl.Instrum.Meth. A889 (2018) 69-77, arXiv:1710.03334.
[Kaptanoglu:2017jxo]
[5-212]
Determination of Trace Levels of Uranium and Thorium in High Purity Gadolinium Sulfate Using ICP-MS with Solid-Phase Chromatographic Extraction Resin, S. Ito, Y. Takaku, Y. Kishimoto, M. Ikeda, PTEP 2017 (2017) 113H01, arXiv:1709.03417.
[Ito:2017zzt]
[5-213]
Slow Liquid Scintillator Candidates for MeV-scale Neutrino Experiments, Ziyi Guo et al., Astropart.Phys. 109 (2019) 33-40, arXiv:1708.07781.
[Guo:2017nnr]
[5-214]
Cosmogenic activation of materials, Susana Cebrian, Int.J.Mod.Phys. A32 (2017) 1743006, arXiv:1708.07449.
[Cebrian:2017oft]
[5-215]
A fully active fine grained detector with three readout views, D. Sgalaberna, A. Blondel, F. Cadoux, S. Fedotov, A. Korzenev, Y. Kudenko, A. Longhin, O. Mineev, E. Noah, N. Yershov, JINST 13 (2018) P02006, arXiv:1707.01785.
[Blondel:2017orl]
[5-216]
Infused Ice can Multiply IceCube's Sensitivity, Imre Bartos, Zsuzsa Marka, Szabolcs Marka, Nature Commun. 9 (2018) 1236, arXiv:1706.06589.
[Bartos:2017qka]
[5-217]
Charged particle tracking without magnetic field: optimal measurement of track momentum by a Bayesian analysis of the multiple measurements of deflections due to multiple scattering, Mikael Frosini, Denis Bernard, Nucl.Instrum.Meth. A867 (2017) 182-194, arXiv:1706.05863.
[Frosini:2017ftq]
[5-218]
Assay of low-background stainless steel by smelting for the neutrino experiment at Jinping, Ghulam Hussain et al., Nucl.Instrum.Meth. A881 (2018) 65-71, arXiv:1706.04506.
[Hussain:2017doz]
[5-219]
Single-electron and single-photon sensitivity with a silicon Skipper CCD, Javier Tiffenberg et al., Phys.Rev.Lett. 119 (2017) 131802, arXiv:1706.00028.
[Tiffenberg:2017aac]
[5-220]
High-resolution tracking in a GEM-Emulsion detector, A. Alexandrov et al., JINST 12 (2017) P09001, arXiv:1705.06635.
[Alexandrov:2017uaj]
[5-221]
Nuclear emulsion readout system HTS aiming at scanning an area of one thousand square meters, Masahiro Yoshimoto, Toshiyuki Nakano, Ryosuke Komatani, Hiroaki Kawahara, PTEP 10 (2017) 103, arXiv:1704.06814.
[Yoshimoto:2017ufm]
[5-222]
Gram-scale cryogenic calorimeters for rare-event searches, R. Strauss et al., Phys.Rev. D96 (2017) 022009, arXiv:1704.04317.
[Strauss:2017cam]
[5-223]
Wide field-of-view and high-efficiency light concentrator, Yu Zhi, Ye Liang, Zhe Wang, Shaomin Chen, Nucl.Instrum.Meth. A885 (2018) 114-118, arXiv:1703.07527.
[Zhi:2017tbk]
[5-224]
First demonstration of emulsion multi-stage shifter for accelerator neutrino experiment in J-PARC T60, K. Yamada et al., PTEP 2017 (2017) 063H02, arXiv:1703.03737.
[Yamada:2017qeg]
[5-225]
Design Considerations for Proposed Fermilab Integrable RCS, Jeffrey Eldred, Alexander Valishev, arXiv:1703.00953, 2017.
[Eldred:2017trw]
[5-226]
Integrable RCS as a proposed replacement for Fermilab Booster, Jeffrey Eldred, Alexander Valishev, AIP Conf.Proc. 1812 (2017) 100003, arXiv:1703.00952.
[Eldred:2017sqi]
[5-227]
Photon emission and atomic collision processes in two-phase argon doped with xenon and nitrogen, A. Buzulutskov, Europhys.Lett. 117 (2017) 39002, arXiv:1702.03612.
[Buzulutskov:2017wau]
[5-228]
Occulting Light Concentrators in Liquid Scintillator Neutrino Detectors, Margherita Buizza Avanzini et al., J.Phys.Conf.Ser. 888 (2017) 012055, arXiv:1612.05444. Proceeding for Neutrino2016 conference.
[Avanzini:2016tjx]
[5-229]
A Novel Cosmic Ray Tagger System for Liquid Argon TPC Neutrino Detectors, M. Auger et al., Instruments 1 (2017) 2, arXiv:1612.04614.
[Auger:2016tjc]
[5-230]
Towards Background-free RENP using a Photonic Crystal Waveguide, Minoru Tanaka, Koji Tsumura, Noboru Sasao, Motohiko Yoshimura, PTEP 2017 (2017) 043B03, arXiv:1612.02423.
[Tanaka:2016wir]
[5-231]
New method of 85Kr reduction in a noble gas based low-background detector, D.Yu. Akimov et al., JINST 12 (2017) P04002, arXiv:1611.07168.
[Akimov:2016yuf]
[5-232]
Bulk and Surface Event Identification in p-type Germanium Detectors, L. T. Yang et al., Nucl.Instrum.Meth. A886 (2018) 13-23, arXiv:1611.03357.
[Yang:2016crf]
[5-233]
An Experiment to Demonstrate Cherenkov / Scintillation Signal Separation, J. Caravaca et al., Phys.Rev. C95 (2017) 055801, arXiv:1610.02029.
[Caravaca:2016ryf]
[5-234]
Dynamics of the ions in Liquid Argon Detectors and electron signal quenching, L. Romero, R. Santorelli, B. Montes, Astropart.Phys. 92 (2017) 11-20, arXiv:1609.08984.
[Romero:2016tla]
[5-235]
Study Performance of Liquid Scintillation Fiber Detector, Yongpeng Zhang et al., JINST 12 (2017) P03015, arXiv:1608.08307.
[Zhang:2016cbp]
[5-236]
Precision analysis of the photomultiplier response to ultra low signals, Pavel Degtiarenko, Nucl.Instrum.Meth. A872 (2017) 1-15, arXiv:1608.07525.
[Degtiarenko:2016qwv]
[5-237]
Light yield of an undoped CsI crystal coupled directly to a photomultiplier tube at 77 Kelvin, Jing Liu, Masaki Yamashita, Arun Kumar Soma, JINST 11 (2016) P10003, arXiv:1608.06278.
[Liu:2016iqv]
[5-238]
Metal-loaded organic scintillators for neutrino physics, Christian Buck, Minfang Yeh, J. Phys. G43 (2016) 093001, arXiv:1608.04897.
[Buck:2016vxe]
[5-239]
Reflectance dependence of polytetrafluoroethylene on thickness for xenon scintillation light, Jonathan Haefner et al., Nucl.Instrum.Meth. A856 (2017) 86-91, arXiv:1608.01717.
[Haefner:2016ncn]
[5-240]
OptoTracker project proposal, A. Celentano, arXiv:1606.03027, 2016.
[Celentano:2016gaq]
[5-241]
Low energy recoil detection with a spherical proportional counter, I. Savvidis, I. Katsioulas, C. Eleftheriadis, I. Giomataris, T. Papaevangellou, Nucl.Instrum.Meth. A877 (2018) 220-226, arXiv:1606.02146.
[Savvidis:2016wei]
[5-242]
Discrimination in Liquid Scintillator and Its Usage to Suppress $^{8}$He/$^{9}$Li Backgrounds, Ya-Ping Cheng, Liang-Jian Wen, Peng Zhang, Xing-Zhong Cao, Chin.Phys. C41 (2017) 016101, arXiv:1605.00941.
[Cheng:2016ego]
[5-243]
Long Term Performance Studies of Large Oil-Free Bakelite Resistive Plate Chamber, Rajesh Ganai et al., JINST 11 (2016) C09010, arXiv:1604.03668.
[Ganai:2016vqi]
[5-244]
A Convolutional Neural Network Neutrino Event Classifier, A. Aurisano et al., JINST 11 (2016) P09001, arXiv:1604.01444.
[Aurisano:2016jvx]
[5-245]
Characteristics of Cherenkov Radiation in Naturally Occuring Ice, R.E. Mikkelsen, T. Poulsen, U.I. Uggerhoj, S.R. Klein, Phys. Rev. D93 (2016) 053006, arXiv:1602.03714.
[Mikkelsen:2016vju]
[5-246]
Test of Topmetal-${II}^-$ In Liquid Nitrogen For Cryogenic Temperature TPCs, Shuguang Zou et al., Nucl.Instrum.Meth. A830 (2016) 275-278, arXiv:1601.06955.
[Zou:2016mah]
[5-247]
The efficiency study of different purification methods for liquid scintillator, Wei Hu et al., Chin.Phys. C40 (2016) 096202, arXiv:1601.02780.
[Hu:2016jwc]
[5-248]
Characterization of the ETEL D784UKFLB 11 inch Photomultiplier Tube, N. Barros et al., Nucl.Instrum.Meth. A852 (2017) 15-19, arXiv:1512.06916.
[Barros:2015pjt]
[5-249]
On the Electric Breakdown in Liquid Argon at Centimeter Scale, M. Auger et al., JINST 11 (2016) P03017, arXiv:1512.05968.
[Auger:2015xlo]
[5-250]
Sub-Penning gas mixtures: new possibilities for ton- to kiloton-scale time projection chambers, Benjamin Monreal, Luiz de Viveiros, William Luszczak, arXiv:1512.04926, 2015.
[Monreal:2015zmi]
[5-251]
Algorithms for Identification of Nearly-Coincident Events in Calorimetric Sensors, B. Alpert et al., J.Low.Temp.Phys. 184 (2016) 263-273, arXiv:1512.01608.
[Alpert:2015mtu]
[5-252]
Extra-large crystal emulsion detectors towards future large-scale experiments, T. Ariga et al., JINST 11 (2016) P03003, arXiv:1512.01339.
[Ariga:2015fll]
[5-253]
A search for cosmogenic production of $\beta$-neutron emitting radionuclides in water, S. Dazeley et al., Nucl.Instrum.Meth. A821 (2016) 151-159, arXiv:1512.00794.
[Dazeley:2015uyd]
[5-254]
Separation of Scintillation and Cherenkov Lights in Linear Alkyl Benzene, Mohan Li, Ziyi Guo, Minfang Yeh, Zhe Wang, Shaomin Chen, Nucl.Instrum.Meth. A830 (2016) 303-308, arXiv:1511.09339.
[Li:2015phc]
[5-255]
Results of measurements of an environment neutron background at BNO INR RAS objects with the helium proportional counter, I.R. Barabanov et al., arXiv:1510.05109, 2015.
[Barabanov:2015lza]
[5-256]
Toward Single Electron Resolution Phonon Mediated Ionization Detectors, Nader Mirabolfathi et al., Nucl.Instrum.Meth. A855 (2017) 88-91, arXiv:1510.00999.
[Mirabolfathi:2015pha]
[5-257]
Cryogenic silicon detectors with implanted contacts for the detection of visible photons using the Neganov-Luke Effect, X. Defay et al., J.Low.Temp.Phys. 184 (2016) 274-279, arXiv:1509.06266.
[Defay:2015oia]
[5-258]
Response of a proportional counter to $^{37}$Ar and $^{71}$Ge: real spectra versus GEANT4 simulation, D. Abdurashitov, Yu. Malyshkin, V. Matushko, B. Suerfu, Nucl. Instrum. Meth. B (2016), arXiv:1509.02669.
[Abdurashitov:2015eea]
[5-259]
Tagging Spallation Backgrounds with Showers in Water-Cherenkov Detectors, Shirley Weishi Li, John F. Beacom, Phys. Rev. D92 (2015) 105033, arXiv:1508.05389.
[Li:2015lxa]
[5-260]
Low emittance pion beams generation from bright photons and relativistic protons, L. Serafini, C. Curatolo, V. Petrillo, arXiv:1507.06626, 2015.
[Serafini:2015zda]
[5-261]
First Demonstration of Imaging Cosmic Muons in a Two-Phase Liquid Argon TPC using an EMCCD Camera and a THGEM, K. Mavrokoridis et al., JINST 10 (2015) P10004, arXiv:1507.06586.
[Mavrokoridis:2015yda]
[5-262]
MiX: A Position Sensitive Dual-Phase Liquid Xenon Detector, S. Stephenson et al., JINST 10 (2015) P10040, arXiv:1507.01310.
[Stephenson:2015qta]
[5-263]
Electromagnetic modulation of monochromatic neutrino beams, A. L. Barabanov, O. A. Titov, Eur. Phys. J. A51 (2015) 96, arXiv:1506.07883.
[Barabanov:2015eka]
[5-264]
The Pandora Software Development Kit for Pattern Recognition, J. S. Marshall, M. A. Thomson, Eur. Phys. J. C75 (2015) 439, arXiv:1506.05348.
[Marshall:2015rfa]
[5-265]
A Study of Dielectric Breakdown Along Insulators Surrounding Conductors in Liquid Argon, Sarah Lockwitz, Hans Jostlein, JINST 11 (2016) P03026, arXiv:1506.04185.
[Lockwitz:2015qua]
[5-266]
Liquid Hole Multipliers: bubble-assisted electroluminescence in liquid xenon, L. Arazi et al., JINST 10 (2015) P08015, arXiv:1505.02316.
[Arazi:2015uja]
[5-267]
Electron Neutrino Classification in Liquid Argon Time Projection Chamber Detector, Piotr Plonski, Dorota Stefan, Robert Sulej, Krzysztof Zaremba, arXiv:1505.00424, 2015.
[Plonski:2015fva]
[5-268]
A new anti-neutrino detection technique based on positronium tagging with plastic scintillators, G. Consolati et al., Nucl.Instrum.Meth. A795 (2015) 364-369, arXiv:1504.01884.
[Consolati:2015bma]
[5-269]
Compact Muon Production and Collection Scheme for High-Energy Physics Experiments, Diktys Stratakis, David V. Neuffer, J. Phys. G41 (2014) 125002, arXiv:1504.00380.
[Stratakis:2014wwa]
[5-270]
Enhanced UV light detection using wavelength-shifting properties of Silicon nanoparticles, S. Magill et al., JINST 10 (2015) P05008, arXiv:1503.01383.
[Magill:2015zza]
[5-271]
Intensive neutrino source on the base of lithium converter, V.I. Lyashuk, Yu.S Lutostansky, arXiv:1503.01280, 2015.
[Lyashuk:2015aba]
[5-272]
Optimized Designs for Very Low Temperature Massive Calorimeters, Matt Pyle, Enectali Feliciano-Figueroa, Bernard Sadoulet, arXiv:1503.01200, 2015.
[Pyle:2015pya]
[5-273]
Image Segmentation in Liquid Argon Time Projection Chamber Detector, Piotr Plonski, Dorota Stefan, Robert Sulej, Krzysztof Zaremba, arXiv:1502.08046, 2015.
[Plonski:2015uja]
[5-274]
Acoustic signal detection through the cross-correlation method in experiments with different signal to noise ratio and reverberation conditions, S. Adrian-Martinez et al., arXiv:1502.05038, 2015.
[Adrian-Martinez:2015jza]
[5-275]
Index of refraction, Rayleigh scattering length, and Sellmeier coefficients in solid and liquid argon and xenon, Emily Grace, James A. Nikkel, Nucl.Instrum.Meth. A867 (2017) 204-208, arXiv:1502.04213.
[Grace:2015yta]
[5-276]
MPPC versus MRS APD in two-phase Cryogenic Avalanche Detectors, A. Bondar, A. Buzulutskov, A. Dolgov, E. Shemyakina, A. Sokolov, JINST 10 (2015) P04013, arXiv:1502.03663.
[Bondar:2015tna]
[5-277]
High Resolution Muon Computed Tomography at Neutrino Beam Facilities, Burkhant Suerfu, Christopher G. Tully, JINST 11 (2016) P02015, arXiv:1501.07238.
[Suerfu:2015lqa]
[5-278]
Magnetic guidance of charged particles, Dirk Dubbers, Phys. Lett. B748 (2015) 306-310, arXiv:1501.05131.
[Dubbers:2015iya]
[5-279]
Electron muon identification by atmospheric shower and electron beam in a new concept of an EAS detector, M. Iori, H. Denizli, A. Yilmaz, F. Ferrarotto, J. Russ, Astrophys.J. 801 (2015) 140, arXiv:1501.03470.
[Iori:2015ida]
[5-280]
Thermo-acoustic Sound Generation in the Interaction of Pulsed Proton and Laser Beams with a Water Target, R. Lahmann et al., Astropart.Phys. 65 (2014) 69-79, arXiv:1501.01494.
[Lahmann:2015cdb]
[5-281]
Automatic track recognition for large-angle minimum ionizing particles in nuclear emulsions, T. Fukuda et al., JINST 9 (2014) P12017, arXiv:1412.4955.
[Fukuda:2014vda]
[5-282]
A Multi-MW Proton/Electron Linac at KEK, Radoje Belusevic, J.Appl.Math.Phys. 5 (2017) 1222-1242, arXiv:1411.4874.
[Belusevic:2014ala]
[5-283]
Extraction of Physics Signals Near Threshold with Germanium Detectors in Neutrino and Dark Matter Experiments, A.K. Soma et al. (TEXONO), Nucl.Instrum.Meth. A836 (2016) 67-82, arXiv:1411.4802.
[TEXONO:2014eky]
[5-284]
A Study on the time resolution of Glass RPC, N. Dash, V. M. Datar, G. Majumder, arXiv:1410.5532, 2014.
[Dash:2014ifa]
[5-285]
Underground physics without underground labs: large detectors in solution-mined salt caverns, Benjamin Monreal, arXiv:1410.0076, 2014.
[Monreal:2014gda]
[5-286]
Advanced Scintillator Detector Concept (ASDC): A Concept Paper on the Physics Potential of Water-Based Liquid Scintillator, J. R. Alonso et al., arXiv:1409.5864, 2014.
[Alonso:2014fwf]
[5-287]
An in situ measurement of the radio-frequency attenuation in ice at Summit Station, Greenland, J. Avva, J. M. Kovac, C. Miki, D. Saltzberg, A. G. Vieregg, J. Glaciol. 61 (2015) 1005-1011, arXiv:1409.5413.
[Avva:2014ena]
[5-288]
Gaseous Detector with sub keV Threshold to Study Neutrino Scattering at Low Recoil Energies, A.V. Kopylov, I.V. Orekhov, V.V. Petukhov, A.E. Solomatin, Adv.High Energy Phys. 2014 (2014) 147046, arXiv:1409.4873.
[Kopylov:2014uia]
[5-289]
Beam-Induced Effects and Radiological Issues in High-Intensity High-Energy Fixed Target Experiments, N.V. Mokhov et al., Prog. Nucl. Sci. Tech. 4 (2014), arXiv:1409.0043.
[Mokhov:2012umh]
[5-290]
FNAL Proton Source High Intensity Operations and Beam Loss Control, F.G. Garcia, W. Pellico (PIP), arXiv:1409.0039, 2014.
[Garcia:2012erv]
[5-291]
Improving Photoelectron Counting and Particle Identification in Scintillation Detectors with Bayesian Techniques, M. Akashi-Ronquest et al., Astropart.Phys. 65 (2014) 40-54, arXiv:1408.1914.
[Akashi-Ronquest:2014jga]
[5-292]
Scintillation Light from Cosmic-Ray Muons in Liquid Argon, Denver Whittington, Stuart Mufson, Phys. Rev.D (2014), arXiv:1408.1763.
[Whittington:2014aha]
[5-293]
A novel $^{83\mathrm{m}}$Kr tracer method for characterizing xenon gas and cryogenic distillation systems, S. Rosendahl et al., JINST 9 (2014) P10010, arXiv:1407.3981.
[Rosendahl:2014qqa]
[5-294]
First working prototype of a steerable UV laser system for LArTPC calibrations, A. Ereditato et al., JINST 9 (2014) T11007, arXiv:1406.6400.
[Ereditato:2014lra]
[5-295]
LArIAT: Liquid Argon In A Testbeam, F. Cavanna, M. Kordosky, J. Raaf, B. Rebel (LArIAT), arXiv:1406.5560, 2014.
[Cavanna:2014iqa]
[5-296]
NaNet: a Low-Latency, Real-Time, Multi-Standard Network Interface Card with GPUDirect Features, A. Lonardo et al., arXiv:1406.3568, 2014.
[Lonardo:2014txa]
[5-297]
Proposal for SPS beam time for the baby MIND and TASD neutrino detector prototypes, R. Asfandiyarov et al., arXiv:1405.6089, 2014.
[Asfandiyarov:2014haa]
[5-298]
Charge Coupled Devices for detection of coherent neutrino-nucleus scattering, Guillermo Fernandez Moroni et al., Phys. Rev. D91 (2015) 072001, arXiv:1405.5761.
[FernandezMoroni:2014qlq]
[5-299]
Organic Liquid TPCs for Neutrino Physics, J. V. Dawson, D. Kryn, JINST 9 (2014) P07002, arXiv:1405.1308.
[Dawson:2014lga]
[5-300]
Performance of liquid argon neutrino detectors with enhanced sensitivity to scintillation light, M. Sorel, JINST 9 (2014) 10002, arXiv:1405.0848.
[Sorel:2014rka]
[5-301]
The Liquid Argon Purity Demonstrator, M. Adamowski et al., JINST 9 (2014) P07005, arXiv:1403.7236.
[Adamowski:2014daa]
[5-302]
Low-Energy ( < 10 keV) Electron Ionization and Recombination Model for a Liquid Argon Detector, Michael Foxe et al., Nucl.Instrum.Meth. A771 (2014) 88-92, arXiv:1403.3719.
[Foxe:2014fra]
[5-303]
High Voltage in Noble Liquids for High Energy Physics, Edited by B. Rebel et al., JINST 9 (2014) T08004, arXiv:1403.3613.
[Rebel:2014uia]
[5-304]
Measurement of the liquid scintillator nonlinear energy response to electron, Fei-Hong Zhang et al., Chin.Phys. C39 (2015) 016003, arXiv:1403.3257.
[Zhang:2014iza]
[5-305]
Temperature dependence of the light yield of the LAB-based and mesitylene-based liquid scintillators, Xia DongMei et al., arXiv:1402.6871, 2014.
[Xia:2014afa]
[5-306]
Thermal Model and Optimization of a Large Crystal Detector using a Metallic Magnetic Calorimeter, G.B. Kim et al., J. Low. Temp. Phys. 176 (2014) 637-643, arXiv:1402.2334.
[Kim:2014kwa]
[5-307]
Optimization of light collection from crystal scintillators for cryogenic experiments, F.A. Danevich et al., Nucl.Instrum.Meth. A744 (2014) 41-47, arXiv:1402.2241.
[Danevich:2014opa]
[5-308]
First measurement of the ionization yield of nuclear recoils in liquid argon, T. H. Joshi et al., Phys. Rev. Lett. 112 (2014) 171303, arXiv:1402.2037.
[Joshi:2014fna]
[5-309]
${}^{13}\text{C}(\alpha,n){}^{16}\text{O}$ background in a liquid scintillator based neutrino experiment, Jie Zhao et al., Chin.Phys. C38 (2014) 116201, arXiv:1312.6347.
[Zhao:2013mba]
[5-310]
Implementation of a local principal curves algorithm for neutrino interaction reconstruction in a liquid argon volume, J.J. Back et al., Eur.Phys.J. C74 (2014) 2832, arXiv:1312.6059.
[Back:2013cva]
[5-311]
Calibration of pulse transit time through a cable for EAS experiments, Qian Xiang-Li et al., arXiv:1312.4624, 2013.
[Qian:2013age]
[5-312]
Measurement of Optical Attenuation in Acrylic Light Guides for a Dark Matter Detector, M. Bodmer et al., JINST 9 (2014) 02002, arXiv:1310.6454.
[Bodmer:2013lua]
[5-313]
Dead layer on silicon p-i-n diode charged-particle detectors, B. L. Wall et al., Nucl.Instrum.Meth. A744 (2014) 73-79, arXiv:1310.1178.
[Wall:2013wja]
[5-314]
Effect of Correlations Between Model Parameters and Nuisance Parameters When Model Parameters are Fit to Data, Byron Roe, arXiv:1309.6146, 2013.
[Roe:2013aza]
[5-315]
Characterization of positronium properties in doped liquid scintillators, G. Consolati et al., Phys. Rev. C88 (2013) 065502, arXiv:1308.0493.
[Consolati:2013rka]
[5-316]
Liquid Argon Time Projection Chamber Research and Development in the United States, C. Bromberg et al., JINST 9 (2014) T05005, arXiv:1307.8166.
[Baller:2013xui]
[5-317]
Optical Properties of Quantum-Dot-Doped Liquid Scintillators, C. Aberle, J.J. Li, S. Weiss, L. Winslow, JINST 8 (2013) P10015, arXiv:1307.4742.
[Aberle:2013zza]
[5-318]
Critical Temperature tuning of Ti/TiN multilayer films suitable for low temperature detectors, A. Giachero et al., J. Low. Temp. Phys. 176 (2014) 155, arXiv:1307.3781.
[Giachero:2013gta]
[5-319]
The Fermilab Main Injector: high intensity operation and beam loss control, Bruce C. Brown et al., Phys. Rev. ST Accel. Beams 16, 071001 (2013) 071001, arXiv:1307.2934.
[Brown:2013idd]
[5-320]
Design and operation of ARGONTUBE: a 5 m long drift liquid argon TPC, A. Ereditato et al., JINST 1307 (2013) P07002, arXiv:1304.6961.
[Ereditato:2013xaa]
[5-321]
VUV-VIS optical characterization of Tetraphenyl-butadiene films on glass and specular reflector substrates from room to liquid Argon temperature, R. Francini et al., arXiv:1304.6117, 2013.
[Francini:2013lua]
[5-322]
Measuring Fast Neutrons with Large Liquid Scintillation Detector for Ultra-low Background Experiments, C. Zhang, D.-M. Mei, P. Davis, B. Woltman, F. Gray, Nucl.Instrum.Meth. A729 (2013) 138-146, arXiv:1304.4536.
[Zhang:2013hia]
[5-323]
Application of the Monte-Carlo refractive index matching (MCRIM) technique to the determination of the absolute light yield of a calcium molybdate scintillator, V. Alenkov et al., JINST 8 (2013) P06002, arXiv:1303.5952.
[Alenkov:2013aqa]
[5-324]
Applications of an Y-88/Be photo-neutron calibration source to Dark Matter and Neutrino Experiments, J.I. Collar, Phys. Rev. Lett. 110 (2013) 211101, arXiv:1303.2686.
[Collar:2013xva]
[5-325]
Beam Loss Control for the Fermilab Main Injector, Bruce C. Brown, arXiv:1301.7735, 2013.
[Brown:2012kp]
[5-326]
A Precise Analytic Delayed Coincidence Efficiency and Accidental Coincidence Rate Calculation, Jingyi Yu, Zhe Wang, Shaomin Chen, Chin.Phys. 39 (2015) 056102, arXiv:1301.5085.
[Yu:2013cob]
[5-327]
Photodegradation Mechanisms of Tetraphenyl Butadiene Coatings for Liquid Argon Detectors, B. J. P. Jones, J. K. VanGemert, J. M. Conrad, A. Pla-Dalmau, JINST 8 (2013) P01013, arXiv:1211.7150.
[Jones:2012hm]
[5-328]
Design and characterization of 90 GHz feedhorn-coupled TES polarimeter pixels in the SPTpol camera, J.T.Sayre et al., Proc. SPIE Int. Soc. Opt. Eng. 8452 (2012) 845239, arXiv:1210.4968.
[Sayre:2012fy]
[5-329]
Micromegas-TPC operation at high pressure in xenon-trimethylamine mixtures, S. Cebrian et al., JINST 8 (2013) P01012, arXiv:1210.3287.
[Cebrian:2012sp]
[5-330]
Characterization of the Hamamatsu R11780 12 inch Photomultiplier Tube, J. Brack et al., Nucl.Instrum.Meth. A712 (2013) 162-173, arXiv:1210.2765.
[Brack:2012ig]
[5-331]
A mobile antineutrino detector with plastic scintillators, Yasuhiro Kuroda et al., Nucl. Instrum. Meth. A690 (2012) 41-47, arXiv:1206.6566.
[Kuroda:2012dw]
[5-332]
Performance of a 250L liquid Argon TPC for sub-GeV charged particle identification, O. Araoka et al. (J-PARC T32), Phys.Lett. B718 (2013) 1181-1185, arXiv:1206.1181.
[Lin:2012gs]
[5-333]
Working characteristics of the New Low-Background Laboratory (DULB-4900, Baksan Neutrino Observatory), Ju.M. Gavriljuk et al., Nucl.Instrum.Meth. A729 (2013) 576-58-, arXiv:1204.6424.
[Gavriljuk:2012rik]
[5-334]
First Large Scale Production of Low Radioactivity Argon From Underground Sources, Henning O. Back et al., arXiv:1204.6024, 2012.
[Back:2012pg]
[5-335]
Study of infrared scintillations in gaseous and liquid argon - Part II: light yield and possible applications, A. Bondar et al., JINST 7 (2012) P06014, arXiv:1204.0580.
[Bondar:2012mt]
[5-336]
Study of infrared scintillations in gaseous and liquid argon - Part I: methodology and time measurements, A. Bondar et al., JINST 7 (2012) P06015, arXiv:1204.0180.
[Bondar:2012hz]
[5-337]
Position and energy-resolved particle detection using phonon-mediated microwave kinetic inductance detectors, D. C. Moore et al., Appl. Phys. Lett. 100 (2012) 232601, arXiv:1203.4549.
[Moore:2012au]
[5-338]
A low-resolution, GSa/s streaming digitizer for a correlation-based trigger system, Kurtis Nishimura et al., Conf.Proc.C120611.5X 2012 (2012) 1-6, arXiv:1203.4178.
[Nishimura:2012ts]
[5-339]
Characterizing Quantum-Dot-Doped Liquid Scintillator for Applications to Neutrino Detectors, Lindley Winslow, Raspberry Simpson, JINST 7 (2012) P07010, arXiv:1202.4733.
[Winslow:2012ey]
[5-340]
A Note on Neutron Capture Correlation Signals, Backgrounds, and Efficiencies, N. S. Bowden, M. Sweany, S. Dazeley, Nucl. Instrum. Meth. A693 (2012) 209-214, arXiv:1202.0512.
[Bowden:2012um]
[5-341]
Reconstruction efficiency and discovery potential of a Mediterranean neutrino telescope: A simulation study using the Hellenic Open University Simulation $\text{\&}$ Reconstruction (HOURS) package, A. G. Tsirigotis, A. Leisos, S. E. Tzamarias (KM3NeT), Nucl.Instrum.Meth. A725 (2013) 68-71, arXiv:1201.5079.
[Tsirigotis:2012svr]
[5-342]
A reconstruction method for neutrino induced muon tracks taking into account the apriori knowledge of the neutrino source, A.G. Tsirigotis, A. Leisos, S. E. Tzamarias (KM3NeT), Nucl.Instrum.Meth. A725 (2013) 114-117, arXiv:1201.5050.
[Tsirigotis:2012zvl]
[5-343]
SiPMs coated with TPB : coating protocol and characterization for NEXT, V. Alvarez et al., JINST 7 (2012) P02010, arXiv:1201.2018.
[Alvarez:2012ub]
[5-344]
The Sound Emission Board of the KM3NeT Acoustic Positioning System, C. D. Llorens et al., JINST 7 (2012) C01001, arXiv:1201.1184.
[Llorens:2012dc]
[5-345]
maXs: Microcalorimeter Arrays for High-Resolution X-Ray Spectroscopy at GSI/FAIR, C. Pies et al., Journal of Low Temperature Physics (2012) 269-279.
[Pies:2012nua]
[5-346]
Large scale Gd-beta-diketonate based organic liquid scintillator production for antineutrino detection, C. Aberle et al., JINST 7 (2012) P06008, arXiv:1112.5941.
[Aberle:2011ar]
[5-347]
Single electron emission in two-phase xenon with application to the detection of coherent neutrino-nucleus scattering, E. Santos et al. (ZEPLIN-III), JHEP 12 (2011) 115, arXiv:1110.3056.
[ZEPLIN-III:2011qer]
[5-348]
PENTATRAP: A novel cryogenic multi-Penning trap experiment for high-precision mass measurements on highly charged ions, J. Repp et al., arXiv:1110.2919, 2011.
[PENTATRAP:2011mka]
[5-349]
Scintillator detectors with long WLS fibers and multi-pixel photodiodes, O.Mineev, Yu.Kudenko, Yu.Musienko, I.Polyansky, N.Yershov, JINST 6 (2011) P12004, arXiv:1110.2651.
[Mineev:2011xp]
[5-350]
Design and performance of the South Pole Acoustic Test Setup, Yasser Abdou et al., Nucl. Instrum. Meth. A683 (2012) 78-90, arXiv:1105.4339.
[Abdou:2011cy]
[5-351]
Energy Resolution studies for NEXT, C. A. B. Oliveira et al., JINST 6 (2011) P05007, arXiv:1105.2954.
[Oliveira:2011xk]
[5-352]
Fluorescence Efficiency and Visible Re-emission Spectrum of Tetraphenyl Butadiene Films at Extreme Ultraviolet Wavelengths, V. M. Gehman et al., Nucl. Instrum. Meth. A654 (2011) 116-121, arXiv:1104.3259.
[Gehman:2011xm]
[5-353]
A simulation toolkit for electroluminescence assessment in rare event experiments, C. A. B. Oliveira et al., Phys. Lett. B703 (2011) 217-222, arXiv:1103.6237.
[Oliveira:2011xx]
[5-354]
Infrared scintillation yield in gaseous and liquid argon for rare-event experiments, A. Buzulutskov, A. Bondar, A. Grebenuk, Europhys. Lett. 94 (2011) 52001, arXiv:1102.1825.
[Buzulutskov:2011qw]
[5-355]
Lowering the energy threshold of large-mass bolometric detectors, Sergio Di Domizio, Filippo Orio, Marco Vignati, JINST 6 (2011) P02007, arXiv:1012.1263.
[DiDomizio:2010ph]
[5-356]
Time Projection Chambers for the T2K Near Detectors, N. Abgrall et al. (T2K ND280 TPC), Nucl. Instrum. Meth. A637 (2011) 25-46, arXiv:1012.0865.
[T2KND280TPC:2010nnd]
[5-357]
Positronium signature in organic liquid scintillators for neutrino experiments, D. Franco, G. Consolati, D. Trezzi, Phys. Rev. C83 (2011) 015504, arXiv:1011.5736.
[Franco:2010rs]
[5-358]
A hardware implementation of Region-of-Interest selection in LAr-TPC for data reduction and triggering, B. Baibussinov et al., JINST 5 (2010) P12006, arXiv:1009.2262.
[Baibussinov:2010yu]
[5-359]
Energy Calibration of Underground Neutrino Detectors using a 100 MeV electron accelerator, Sebastian White, Vitaly Yakimenko, arXiv:1004.3068, 2010.
[White:2010gg]
[5-360]
Neutrino tagging through secondary beam scraping, L. Ludovici, F. Terranova, Eur. Phys. J. C69 (2010) 331-339, arXiv:1004.2904.
[Ludovici:2010ci]
[5-361]
Optical Scattering Lengths in Large Liquid-Scintillator Neutrino Detectors, Michael Wurm et al., Rev. Sci. Instrum. 81 (2010) 053301, arXiv:1004.0811.
[Wurm:2010ad]
[5-362]
Semi-empirical calculation of quenching factors for ions in scintillators, V. I. Tretyak, Astropart. Phys. 33 (2010) 40-53, arXiv:0911.3041.
[Tretyak:2009sr]
[5-363]
Free electron lifetime achievements in Liquid Argon Imaging TPC, B. Baibussinov et al., JINST 5 (2010) P03005, arXiv:0910.5087.
[Baibussinov:2009gs]
[5-364]
Remark on the studies of the muon-induced neutron background in the liquid scintillator detectors, Karim Zbiri, Nucl. Instrum. Meth. A615 (2010) 220-222, arXiv:0910.3714.
[Zbiri:2009xi]
[5-365]
XAX: a multi-ton, multi-target detection system for dark matter, double beta decay and pp solar neutrinos, K. Arisaka et al., Astropart. Phys. 31 (2009) 63-74, arXiv:0808.3968.
[Arisaka:2008mb]
[5-366]
A low background facility inside the LVD detector at Gran Sasso, F. Arneodo, W. Fulgione, JCAP 0902 (2009) 028, arXiv:0808.1465.
[Arneodo:2008hd]
[5-367]
Applying Bayesian Neural Networks to Separate Neutrino Events from Backgrounds in Reactor Neutrino Experiments, Ye Xu, Yixiong Meng, Weiwei Xu, JINST 3 (2008) P08005, arXiv:0808.0240.
[Xu:2008xu]
[5-368]
Observation of Neutrons with a Gadolinium Doped Water Cerenkov Detector, S. Dazeley, A. Bernstein, N. S. Bowden, R. Svoboda, Nucl. Instrum. Meth. A607 (2009) 616-619, arXiv:0808.0219.
[Dazeley:2008xk]
[5-369]
Characterisation of a silicon photomultiplier device for applications in liquid argon based neutrino physics and dark matter searches, P.K. Lightfoot, G.J. Barker, K. Mavrokoridis, Y.A. Ramachers, N.J.C. Spooner, JINST 3 (2008) P10001, arXiv:0807.3220.
[Lightfoot:2008im]
[5-370]
Large-Mass Ultra-Low Noise Germanium Detectors: Performance and Applications in Neutrino and Astroparticle Physics, P.S. Barbeau, J.I. Collar, O. Tench, JCAP 0709 (2007) 009, arXiv:nucl-ex/0701012.
[Barbeau:2007qi]
[5-371]
Bulk micromegas detectors for large TPC applications, J. Bouchez et al., Nucl. Instrum. Meth. A574 (2007) 425-432.
[Bouchez:2007pe]
[5-372]
Development of tin-loaded liquid scintillator for the double beta decay experiment, M. J. Hwang et al. (KIMS), Nucl. Instrum. Meth. A570 (2007) 454-458.
[KIMS:2007syj]
[5-373]
A TPC for the near detector at T2K, Thorsten Lux (T2K), J. Phys. Conf. Ser. 65 (2007) 012018.
[Lux:2007zz]
[5-374]
A two-phase argon avalanche detector operated in a single electron counting mode, A. Bondar et al., Nucl.Instrum.Meth. A574 (2007) 493-499, arXiv:physics/0611068.
[Bondar:2006ma]
[5-375]
Pulse shape analysis in segmented detectors as a technique for background reduction in Ge double-beta decay experiments, S. R. Elliott et al., Nucl. Instrum. Meth. A558 (2006) 504, arXiv:nucl-ex/0509026.
[Elliott:2005at]
[5-376]
Micromegas in a bulk, I. Giomataris et al., Nucl. Instrum. Meth. A560 (2006) 405-408, arXiv:physics/0501003.
[Giomataris:2004aa]
[5-377]
Destruction of Nuclear Bombs Using Ultra-High Energy Neutrino Beam, Hirotaka Sugawara, Hiroyuki Hagura, Toshiya Sanami, arXiv:hep-ph/0305062, 2003.
From the article: We have shown that it is possible to eliminate the nuclear bombs from the surface of the earth utilizing the extremely high energy neutrino beam. When the neutrino beam hits a bomb, it will cause the fizzle explosion with 3\% of the full strength. It seems that it is not possible to decrease the magnitude of the explosion smaller than this number at this stage. It is important to decrease this number to destroy bombs safely. We are not sure what this means when the plutonium or uranium is used to ignite the hydrogen bomb. We may just break the bomb or may lead to a full explosion.
...
We are certainly aware of the fact that this kind of device can not only target the nuclear bombs but other kinds of weapons of mass destruction and also, unfortunately, any kind of living object including human. But we should emphasize that the device itself is not a weapon of mass destruction.

[Sugawara:2003wa]
[5-378]
Pulse Shape Discrimination in the IGEX Experiment, D. Gonzalez et al., Nucl. Instrum. Meth. A515 (2003) 634, arXiv:hep-ex/0302018.
[Gonzalez:2003pr]
[5-379]
Observation of Electronic Excitation by Extremely Slow Protons With Applications to the Detection of Supermassive Charged Particles, D. J. Ficenec, S. P. Ahlen, A. A. Marin, J. A. Musser, G. Tarle, Phys. Rev. D36 (1987) 311-314.
[Ficenec:1987vy]
[5-380]
Can grand unification monopoles be detected with plastic scintillators?, S. p. Ahlen, G. Tarle, Phys. Rev. D27 (1983) 688-691.
[Ahlen:1983rw]
[5-381]
THE ANALYSIS OF RADIOACTIVE DECAY WITH A SMALL NUMBER OF COUNTS BY THE METHOD OF MAXIMUM LIKELIHOOD, B. T. Cleveland, Nucl. Instrum. Meth. 214 (1983) 451-458.
[Cleveland:1983sd]
[5-382]
Correlation between Photons in two Coherent Beams of Light, R. Hanbury Brown, R. Q. Twiss, Nature 177 (1956) 27-29.
[Brown:1956zza]
[5-383]
A Test of a new type of stellar interferometer on Sirius, R. Hanbury Brown, R. Q. Twiss, Nature 178 (1956) 1046-1048.
[HanburyBrown:1956bqd]

6 - Articles - Talks

[6-1]
Fermilab Main Injector and Recycler Operations in the Megawatt Era, A. P. Schreckenberger, JACoW HB2023 (2024) THBP50, arXiv:2310.02085. HB 2023.
[Schreckenberger:2023slu]
[6-2]
Graph Neural Network for Object Reconstruction in Liquid Argon Time Projection Chambers, Jeremy Hewes et al., EPJ Web Conf. 251 (2021) 03054, arXiv:2103.06233. 25th International Conference on Computing in High-Energy and Nuclear Physics.
[Hewes:2021heg]
[6-3]
Characterization of Hamamatsu 14160 series of Silicon Photo-Multipliers, P.W. Cattaneo, A. Menegolli, M.C. Prata, G.L. Raselli, M. Rossella, JINST 15 (2020) C09056, arXiv:2006.06258. INSTR20: Instrumentation for Colliding Beam Physics, Novosibirsk, Russia, 24-28 February, 2020.
[Cattaneo:2020pie]
[6-4]
AVOLAR. A high voltage generator for liquid argon time projection chambers, L. Romero, J.M. Cela, E. Sanchez Garcia, M. Daniel, M. de Prado, JINST 15 (2020) C03057, arXiv:2001.05268. LIDINE 2019.
[Romero:2020lwn]
[6-5]
Radiation Damage Studies on Titanium Alloys as High Intensity Proton Accelerator Beam Window Materials, Taku Ishida et al. (RaDIATE), JPS Conf.Proc. 28 (2020) 041001, arXiv:1911.10198. IWSMT-14, 14th International Workshop on Spallation Materials Technology, 11th-17th Nov. 2018 at Fukushima, Japan.
[RaDIATE:2019rpr]
[6-6]
The Integrable Optics Test Accelerator, Ben Freemire, Jeffrey Eldred, PoS NuFACT2018 (2018) 118, arXiv:1903.05780. NuFACT 18.
[Freemire:2018efa]
[6-7]
The new Felsenkeller 5 MV underground accelerator, Daniel Bemmerer et al., arXiv:1810.08201, 2018. 5th International Solar Neutrino Conference, Dresden/Germany, 11-14 June 2018.
[Bemmerer:2018zsh]
[6-8]
Possibilities for Underground Physics in the Pyhasalmi mine, W.H. Trzaska et al., arXiv:1810.00909, 2018. CIPANP2018.
[Trzaska:2018gyg]
[6-9]
A novel water-Cherenkov detector design with retro-reflectors to produce antipodal rings, Lukas Berns, arXiv:1808.09623, 2018. XXVIII International Conference on Neutrino Physics and Astrophysics (Neutrino 2018).
[Berns:2018inr]
[6-10]
Numerical characterization of the ARAPUCA: a new approach for LAr scintillation light detection, F. Marinho, L. Paulucci, A.A. Machado, E. Segreto, J.Phys.Conf.Ser. 1056 (2018) 012036, arXiv:1804.03764. Conference on Neutrino and Nuclear Physics (CNNP2017).
[Marinho:2018doi]
[6-11]
Impact of the positive ion current on large size neutrino detectors and delayed photon emission, R. Santorelli et al., JINST 13 (2018) C04015, arXiv:1712.07971. Lidine 2017.
[Santorelli:2017aut]
[6-12]
Probing electron-argon scattering for liquid-argon based neutrino-oscillation program, V. Pandey et al., arXiv:1711.01671, 2017. International Workshop on (e,e'p) Processes, July 2-6, 2017, Bled, Slovenia.
[Pandey:2017cwd]
[6-13]
Measurement of the ionization yield of nuclear recoils in liquid argon using a two-phase detector with electroluminescence gap, A. Bondar et al., JINST 12 (2017) C05010, arXiv:1705.05107. Instrumentation for Colliding Beam Physics Conference (INSTR17).
[Bondar:2017til]
[6-14]
Further studies of proportional electroluminescence in two-phase argon, A. Bondar et al., JINST 12 (2017) C05016, arXiv:1705.05101. Instrumentation for Colliding Beam Physics Conference (INSTR17).
[Bondar:2017qkx]
[6-15]
Characterisation and testing of a prototype $6 \times 6$ cm$^2$ Argonne MCP-PMT, Greig A. Cowan, Franz Muheim, Matthew Needham, Silvia Gambetta, Stephan Eisenhardt, Neil McBlane, Matthew Malek, Nucl.Instrum.Meth. A876 (2017) 80-83, arXiv:1611.00185. RICH 2016.
[Cowan:2016xie]
[6-16]
Two-phase Cryogenic Avalanche Detector with electroluminescence gap operated in argon doped with nitrogen, A. Bondar et al., Nucl.Instrum.Meth. A845 (2017) 206-209, arXiv:1605.08729. Vienna Conference of Instrumentation (2016).
[Bondar:2016lay]
[6-17]
Near-infrared scintillation of liquid argon, T. Alexander, C. O. Escobar, W. H. Lippincott, P. Rubinov, JINST 11 (2016) C03010, arXiv:1603.02290. Light Detection in Noble Elements (LIDINE 2015).
[Alexander:2016zpd]
[6-18]
Future HEP Accelerators: The US Perspective, Pushpalatha Bhat, Vladimir Shiltsev, arXiv:1511.00390, 2015. DPF 2015 Meeting of the American Physical Society Division of Particles and Fields, Ann Arbor, Michigan, August 4-8, 2015.
[Bhat:2015ogg]
[6-19]
Development FD-SOI MOSFET amplifiers for integrated read-out circuit of superconducting-tunnel-junction single-photon-detectors, Kenji Kiuchi et al., arXiv:1507.07424, 2015. International Workshop on SOI Pixel Detector (SOIPIX2015), Tohoku University, Sendai, Japan, 3-6, June, 2015.
[Kiuchi:2015ilf]
[6-20]
The origin of the background radioactive isotope Xe-127 in the sample of Xe enriched in Xe-124, Yu.M. Gavrilyuk et al., Phys.Part.Nucl. 48 (2017) 42-46, arXiv:1507.04181. International Workshop on Prospects of Particle Physics: 'Neutrino Physics and Astrophysics', Ferbuary 1 - 8, 2015, Valday, Russia.
[Gavrilyuk:2015tva]
[6-21]
Measurement of scintillation and ionization yield with high-pressure gaseous mixtures of Xe and TMA for improved neutrinoless double beta decay and dark matter searches, Y. Nakajima et al., J. Phys. Conf. Ser. 650 (2015) 012012, arXiv:1505.03585. Seventh international symposium on large TPCs for low-energy rare event detection, Paris, December 15-17, 2014.
[Nakajima:2015cva]
[6-22]
The Sanford Underground Research Facility at Homestake, Jaret Heise, J. Phys. Conf. Ser. 606 (2015) 012015, arXiv:1503.01112. Workshop on Germanium-Based Detectors and Technology - 2014, Vermillion, SD, September 14-17, 2014.
[Heise:2015vza]
[6-23]
Characterization of a Spherical Proportional Counter in argon-based mixtures, F.J. Iguaz, A. Rodriguez, J.F. Castel, I.G. Irastorza, PoS TIPP2014 (2014) 162, arXiv:1501.01626. 3rd International Conference on Technology and Instrumentation in Particle Physics (TIPP 2014).
[Iguaz:2014alv]
[6-24]
Assembly and bench testing of a spiral fiber tracker for the J-PARC TREK/E36 experiment, Makoto Tabata et al., JPS Conf. Proc. 8 (2015) 024001, arXiv:1412.0088. 2nd International Symposium on Science at J-PARC (J-PARC 2014).
[Tabata:2014dca]
[6-25]
Drilling deep in South Pole Ice, Timo Karg, Rolf Nahnhauer, arXiv:1410.5267, 2014. ARENA2014, June 9-12 2014, Annapolis.
[Karg:2014mba]
[6-26]
Front-End Board with Cyclone V as a Test High-Resolution Platform for the Auger-Beyond-2015 Front End Electronics, Zbigniew Szadkowski (Pierre Auger), IEEE Nucl.Sci.Symp.Conf.Rec. (2014) 1-4, arXiv:1406.1918. IEEE Real Time Conference, Nara (Japan) May 25-30, 2014.
[Szadkowski:2014lpa]
[6-27]
Artificial Neural Network as a FPGA Trigger for a Detection of Very Inclined Air Showers, Zbigniew Szadkowski, K. Pytel (Pierre Auger), IEEE Trans.Nucl.Sci. 62 (2015) 1002, arXiv:1406.1903. IEEE Real Time Conference, Nara (Japan) May 25-30, 2014.
[Szadkowski:2014zna]
[6-28]
Removal of long-lived $^{222}$Rn daughters by electropolishing thin layers of stainless steel, R. W. Schnee et al., AIP Conf.Proc. 1549 (2013) 128-131, arXiv:1404.5843. Low Radioactivity Techniques (LRT) 2013, Gran Sasso, Italy, April 10-12, 2013.
[Schnee:2013osi]
[6-29]
Construction and measurements of a vacuum-swing-adsorption radon-mitigation system, R. W. Schnee et al., AIP Conf.Proc. 1549 (2013) 116-119, arXiv:1404.5811. Low Radioactivity Techniques (LRT) 2013, Gran Sasso, Italy, April 10-12, 2013.
[Schnee:2013zes]
[6-30]
The BetaCage, an ultra-sensitive screener for surface contamination, R. Bunker et al., AIP Conf.Proc. 1549 (2013) 132-135, arXiv:1404.5803. Low Radioactivity Techniques (LRT) 2013, Gran Sasso, Italy, April 10-12, 2013.
[Bunker:2013huy]
[6-31]
The second-phase development of the China JinPing underground Laboratory, Jainmin Li, Xiangdong Ji, Wick Haxton, Joseph S.Y. Wang, Phys.Procedia 61 (2015) 576-585, arXiv:1404.2651. 13th International Conference on Topics in Astroparticle and Underground Physics, TAUP 2013.
[Li:2014rca]
[6-32]
Evidence of electric breakdown induced by bubbles in liquid argon, F. Bay et al., arXiv:1401.2777, 2014. High Voltage in Noble Liquids (HVNL13) Workshop, FNAL, 8-9 November 2013.
[Bay:2014jwa]
[6-33]
Using Fast Photosensors in Water Cherenkov Neutrino Detectors, Ioana Anghel, arXiv:1310.2654, 2013. DPF 2013 Meeting of the American Physical Society Division of Particles and Fields, Santa Cruz, California, August 13-17, 2013.
[Anghel:2013zxa]
[6-34]
A large-area single photon sensor employing wavelength-shifting and light-guiding technology, Lukas Schulte et al., arXiv:1307.6713, 2013. 33rd International Cosmic Ray Conference, Rio de Janeiro, Brazil, July 2013.
[Schulte:2013dza]
[6-35]
Measurement of ortho-Positronium Properties in Liquid Scintillators, S. Perasso et al., JINST 9 (2014) C03028, arXiv:1306.6001. Low Radioactivity Techniques 2013 Workshop at LNGS, Assergi (AQ), Italy, April 10-12 2013.
[Perasso:2013zba]
[6-36]
Neutrino Detection, Position Calibration and Marine Science with Acoustic Arrays in the Deep Sea, Robert Lahmann, Nucl.Instrum.Meth. A725 (2013) 32-37, arXiv:1304.0697. 5th workshop on very large volume neutrino telescopes (VLVnT 11) in Erlangen, Germany, 12 -14 October 2011.
[Lahmann:2013hya]
[6-37]
Simulation Chain for Acoustic Ultra-high Energy Neutrino Detectors, M. Neff et al., AIP Conf.Proc. 1535 (2013) 204, arXiv:1304.0578. VLVnT 2011.
[Neff:2013xsa]
[6-38]
Future liquid Argon detectors, A. Rubbia, Nucl. Phys. Proc. Suppl. 235-236 (2013) 190-197, arXiv:1304.0127. XXV International Conference on Neutrino Physics and Astrophysics (Neutrino 2012), Kyoto, Japan.
[Rubbia:2013tpa]
[6-39]
Acoustic Calibration for the KM3NeT Pre-Production Module, Alexander Enzenhofer (KM3NeT), Nucl.Instrum.Meth. A725 (2013) 211-214, arXiv:1303.6877. VLVnT11 - Very Large Volume Neutrino Telescope Workshop (2011).
[Enzenhofer:2013zba]
[6-40]
Micromegas-TPC operation at high pressure in Xenon-trimethylamine mixtures, D. C. Herrera et al., J. Phys. Conf. Ser. 460 (2013) 012012, arXiv:1303.5790.
[Herrera:2013qda]
[6-41]
First demonstration of THGEM/GAPD-matrix optical readout in two-phase Cryogenic Avalanche Detector in Ar, A. Bondar et al., Nucl.Instrum.Meth. A732 (2013) 213-216, arXiv:1303.4817. Vienna Conference of Instrumentation (Feb 15-20, 2013, Vienna, Austria).
[Bondar:2013sla]
[6-42]
Observation of Instabilities of Coherent Transverse Ocillations in the Fermilab Booster, Y. Alexahin et al., Conf.Proc. C1205201 (2012) 3129-3131, arXiv:1301.7679. 3rd International Particle Accelerator Conference (IPAC 2012) 20-25 May 2012, New Orleans, Louisiana.
[Alexahin:2012zzf]
[6-43]
The Six-Cavity Test - Demonstrated Acceleration of Beam with Multiple RF Cavities and a Single Klystron, J. Steimel et al., Conf.Proc. C1205201 (2012) 3877-3879, arXiv:1301.7039. 3rd International Particle Accelerator Conference (IPAC 2012) 20-25 May 2012, New Orleans, Louisiana.
[Steimel:2012wzs]
[6-44]
Fermilab PXIE Beam Diagnostics Development and Testing at the HINS Beam Facility, V.A. Lebedev et al., Conf.Proc. C1205201 (2012) 954-956, arXiv:1301.6774. 3rd International Particle Accelerator Conference (IPAC 2012) 20-25 May 2012, New Orleans, Louisiana.
[Scarpine:2012qgp]
[6-45]
Imaging with SiPMs in noble-gas detectors, N. Yahlali, L. M. P. Fernandes, K. Gonzalez, A. N. C. Garcia, A. Soriano, JINST 8 (2013) C01003, arXiv:1210.4746. IWORID 2012.
[Yahlali:2012cx]
[6-46]
Cryostat for Ultra-low-energy Threshold Germanium Spectrometers, Craig E. Aalseth et al., IEEE Trans.Nucl.Sci. 60 (2013) 1168-1174, arXiv:1210.2347. Symposium on Radiation Measurements and Applications (SORMA West) May 14-17, 2012.
[Aalseth:2012xu]
[6-47]
Transverse beam shape measurements of intense proton beams using optical transition radiation, Victor E. Scarpine, Phys. Procedia 37 (2012) 2123-2128, arXiv:1210.1233. 2nd International Conference on Technology and Instrumentation in Particle Physics 2011: TIPP2011. 9-14 Jun 2011. Chicago, Illinois.
[Scarpine:2012zz]
[6-48]
CW high intensity non-scaling FFAG proton drivers, C. Johnstone, M. Berz, K. Makino, P. Snopok, arXiv:1208.5798, 2012. Particle Accelerator, 24th Conference (PAC'11) 2011. 28 Mar - 1 Apr 2011. New York, USA.
[Johnstone:2011zzc]
[6-49]
Ion source development for the proposed FNAL 750-keV injector upgrade, D. S. Bollinger, AIP Conf. Proc. 1390 (2011) 284-291, arXiv:1207.7049. 2nd International Symposium on Negative Ions, Beams and Sources: NIBS2010, 16-19 Nov 2010. Takayama, Japan.
[Bollinger:2010zz]
[6-50]
Data Preservation and Long Term Analysis in High Energy Physics, David M. South, J. Phys. Conf. Ser. 396 (2012) 062018, arXiv:1206.5198. 2012 International Conference on Computing in High Energy and Nuclear Physics (CHEP 2012).
[South:2012vf]
[6-51]
Studies of material properties under irradiation at BNL Linear Isotope Producer (BLIP), N. Simos et al., arXiv:1202.3799, 2012. 46th ICFA Advanced Beam Dynamics Workshop HB2010, Sep 27 - Oct 1 2010: Morschach, Switzerland.
[Simos:2010zz]
[6-52]
JASMIN: Japanese-American study of muon interactions and neutron detection, Hiroshi Nakashima et al., arXiv:1202.2098, 2012. 10th Meeting of the Task-Force on Shielding Aspects of Accelerators, Targets and Irradiation Facilities (SATIF10), 2-4 Jun 2010: Geneva, Switzerland.
[Nakashima:2010zz]
[6-53]
Experiences with the Fermilab HINS 325 MHz RFQ, R. C. Webber et al., arXiv:1202.1550, 2012. 25th International Linear Accelerator Conference (LINAC10) 12-17 Sep 2010: Tsukuba, Japan.
[Webber:2010zz]
[6-54]
Research and Development for a Gadolinium Doped Water Cherenkov Detector, Andrew Renshaw (Super-Kamiokande), Phys.Procedia 37 (2012) 1249-1256, arXiv:1201.1017. TIPP 2011.
[Renshaw:2012np]
[6-55]
Acoustic detection of ultra-high energetic neutrinos - a snap shot, Rolf Nahnhauer, Nucl. Instrum. Meth. A692 (2012) 58-64, arXiv:1201.0908. RICAP11, Rome 2011.
[Nahnhauer:2012yi]
[6-56]
SciBath: A Novel Tracking Detector for Measuring Neutral Particles Underground, R. Cooper et al., arXiv:1110.4432, 2011. DPF-2011 Conference, Providence, RI, August 8-13, 2011.
[Cooper:2011kx]
[6-57]
The ArgoNeuT experiment, Roxanne Guenette, arXiv:1110.0443, 2011. DPF-2011 Conference, Providence, RI, August 8-13, 2011.
[Guenette:2011zj]
[6-58]
Status of R&D on Micromegas for Rare Event Searches: The T-REX project, I. G. Irastorza et al., EAS Publ.Ser. 53 (2012) 147-154, arXiv:1109.4021. 3rd International conference on Directional Detection of Dark Matter (CYGNUS 2011), Aussois, France, 8-10 June 2011.
[Irastorza:2011hh]
[6-59]
Signal Classification for Acoustic Neutrino Detection, M. Neff et al., Nucl. Instrum. Meth. A662 (2012) S242-S245, arXiv:1104.3248. ARENA 2010.
[Neff:2011xh]
[6-60]
Development of Combined Opto-Acoustical Sensor Modules, A. Enzenhofer et al., Nucl. Instrum. Meth. A662 (2012) S203-S205, arXiv:1104.3061. ARENA2010.
[Enzenhofer:2011sy]
[6-61]
Feasibility of acoustic neutrino detection in ice: Design and performance of the South Pole Acoustic Test Setup (SPATS), S. Boeser et al., arXiv:0807.4676, 2008. International Cosmic Ray Conference, 2007.
[Descamps:2007opj]
[6-62]
Mass production test of Hamamatsu MPPC for T2K neutrino oscillation experiment, M. Yokoyama et al., Nucl. Instrum. Meth. A610 (2009) 362-365, arXiv:0807.3147. NDIP 2008, Aix-les-Bains, France, June 15-20, 2008.
[Yokoyama:2008hq]
[6-63]
Application of Hamamatsu MPPC to T2K Neutrino Detectors, M. Yokoyama et al., Nucl. Instrum. Meth. A610 (2009) 128-130, arXiv:0807.3145. NDIP 2008, Aix-les-Bains, France, June 15-20, 2008.
[Yokoyama:2008hn]

7 - Future Experiments

[7-1]
Construction of Yemilab, K. S. Park, Y. D. Kim, K. M. Bang, H. K. Park, M. H. Lee, J. H. Jang, J. H. Kim, J. So, S. H. Kim, S. B. Kim, Front.in Phys. 12 (2024) 1323991, arXiv:2402.13708.
[Park:2024sio]
[7-2]
Physics Potential of a Few Kiloton Scale Neutrino Detector at a Deep Underground Lab in Korea, Seon-Hee Seo et al., arXiv:2309.13435, 2023.
[Seo:2023xku]
[7-3]
EOS: a demonstrator of hybrid optical detector technology, T. Anderson et al., JINST 18 (2023) P02009, arXiv:2211.11969.
[Anderson:2022lbb]
[7-4]
Readout for Calorimetry at Future Colliders: A Snowmass 2021 White Paper, Timothy Andeen, Julia Gonski, James Hirschauer, James Hoff, Gabriel Matos, John Parsons, arXiv:2204.00098, 2022.
[Andeen:2022uut]
[7-5]
Photomultipliers as High Rate Radiation-Resistant In-Situ Sensors in Future Experiments, David R Winn, Yasar Onel, arXiv:2203.09941, 2022.
[Winn:2022wcu]
[7-6]
Celeritas: GPU-accelerated particle transport for detector simulation in High Energy Physics experiments, S. C. Tognini, P. Canal, T. M. Evans, G. Lima, A. L. Lund, S. R. Johnson, S. Y. Jun, V. R. Pascuzzi, P. K. Romano, arXiv:2203.09467, 2022.
[Tognini:2022nmd]
[7-7]
The Mercedes water Cherenkov detector, P. Assis et al., Eur.Phys.J.C 82 (2022) 899, arXiv:2203.08782.
[Assis:2022vfk]
[7-8]
Dark-matter And Neutrino Computation Explored (DANCE) Community Input to Snowmass, Amy Roberts et al., arXiv:2203.08338, 2022.
[Roberts:2022ezy]
[7-9]
The Sanford Underground Research Facility, Jaret Heise, J.Phys.Conf.Ser. 2156 (2021) 012172, arXiv:2203.08293.
[Heise:2021eym]
[7-10]
Irradiation Facilities and Irradiation Methods for High Power Target, F. Pellemoine et al., arXiv:2203.08239, 2022.
[Pellemoine:2022wmo]
[7-11]
Report of the Snowmass'21 Workshop on High-Power Cyclotrons and FFAs, Daniel Winklehner, Andreas Adelmann, Jose R. Alonso, Luciano Calabretta, Hiroki Okuno, Thomas Planche, Malek Haj Tahar, arXiv:2203.07919, 2022.
[Winklehner:2022rdu]
[7-12]
Tile Multiple-Readout Compensated Calorimetry, David Winn, Yasar Onel, arXiv:2203.07514, 2022.
[Winn:2022bgh]
[7-13]
Future Advances in Photon-Based Neutrino Detectors: A SNOWMASS White Paper, Joshua R. Klein et al., arXiv:2203.07479, 2022.
[Klein:2022tqr]
[7-14]
FNAL PIP-II Accumulator Ring, William Pellico, Chandra Bhat, Jeffrey Eldred, Carol Johnstone, John Johnstone, Kiyomi Seiya, Cheng-Yang Tan, Matthew Toups, Richard Van De Water, arXiv:2203.07339, 2022.
[Pellico:2022dju]
[7-15]
High-pressure TPCs in pressurized caverns: opportunities in dark matter and neutrino physics, Benjamin Monreal, arXiv:2203.06262, 2022.
[Monreal:2022crn]
[7-16]
Fast cycling HTS based superconducting accelerator magnets: Feasibility study and readiness demonstration program driven by neutrino physics and muon collider needs, Henryk Piekarz, Bradley Claypool, Steven Hays, Matthew Kufer, Vladimir Shiltsev, Alexander Zlobin, Lucio Rossi, arXiv:2203.06253, 2022.
[Piekarz:2022fjq]
[7-17]
Theia: Summary of physics program. Snowmass White Paper Submission, M. Askins et al., arXiv:2202.12839, 2022.
[Theia:2022uyh]
[7-18]
PANDORA a New Facility for Interdisciplinary In-Plasma Physics, D. Mascali et al., Eur.Phys.J. A53 (2017) 145, arXiv:1703.00479.
[Mascali:2017msr]
[7-19]
Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 10: Commuication, Education, and Outreach, M. Bardeen et al., arXiv:1401.6119, 2014.
[Bardeen:2013fta]
[7-20]
Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 9: Computing, L. A. T. Bauerdick et al., arXiv:1401.6117, 2014.
[Bauerdick:2014qka]
[7-21]
Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 8: Instrumentation Frontier, M. Demarteau et al., arXiv:1401.6116, 2014.
[Demarteau:2014pka]
[7-22]
Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 7: Underground Laboratory Capabilities, M. G. Gilchriese et al., arXiv:1401.6115, 2014.
[Gilchriese:2014oka]
[7-23]
Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 6: Accelerator Capabilities, W. A. Barletta et al., arXiv:1401.6114, 2014.
[Barletta:2014nka]
[7-24]
Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 4: Cosmic Frontier, J. L. Feng et al., arXiv:1401.6085, 2014.
[Feng:2014uja]
[7-25]
Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 3: Energy Frontier, R. Brock et al., arXiv:1401.6081, 2014.
[Brock:2014tja]
[7-26]
Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 2: Intensity Frontier, J. L. Hewett et al., arXiv:1401.6077, 2014.
[Hewett:2014qja]
[7-27]
Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 1: Summary, J. L. Rosner et al., arXiv:1401.6075, 2014.
[Rosner:2014pja]

Search Neutrino Unbound

Cross search NU

It is possible to perform a cross search between the various pages of Neutrino Unbound.
This is useful if you want to show the common elements that appear in the listings of two (or more) different topics or experiments.

Go to the search form.

[Go to ...]

Neutrino Unbound Home

Authors:
Stefano Gariazzo / gariazzo@to.infn.it
Carlo Giunti / giunti@to.infn.it
Marco Laveder / marco.laveder@pd.infn.it
Last Update: Thu 25 Apr 2024, 10:44:20 CET