Instrumentation

Filter this page

(Note: The process can take some time.)

EXPAND ALL
COMPRESS ALL

References

1 - Reviews

[1-1]
Impact of Detector Simulation in Particle Physics Collider Experiments, V. Daniel Elvira, arXiv:1706.04293, 2017.
[Elvira:2017qyw]
[1-2]
Advances in pixel detectors for experiments with high rate and radiation, Maurice Garcia-Sciveres, Norbert Wermes, arXiv:1705.10150, 2017.
[Garcia-Sciveres:2017ymt]
[1-3]
Fermilab Antiproton Source, Recycler Ring, and Main Injector, Sergei Nagaitsev, arXiv:1408.0759, 2014.
[Nagaitsev:2014bha]
[1-4]
Signal Formation in Various Detectors, Manolis Dris, Theo Alexopoulos, arXiv:1406.3217, 2014.
[Dris:2014qpa]
[1-5]
Intensity Frontier Instrumentation, S.H. Kettell, R.A. Rameika, R.S. Tschirhart, arXiv:1309.6704, 2013.
[Kettell:2013yla]
[1-6]
Status and New Ideas Regarding Liquid Argon Detectors, Alberto Marchionni, Ann.Rev.Nucl.Part.Sci. 63 (2013) 269-290, arXiv:1307.6918.
[Marchionni:2013tfa]
[1-7]
Particle identification, Christian Lippmann, Nucl. Instrum. Meth. A666 (2012) 148-172, arXiv:1101.3276.
[Lippmann:2011bb]
[1-8]
Cryogenic Particle Detection, A. Fleischmann, C. Enss, G.M. Seidel, Springer Berlin Heidelberg, Berlin, Heidelberg, 2005. http://dx.doi.org/10.1007/10933596_4.
[Fleischmann2005]

2 - Reviews - Conference Proceedings

[2-1]
Linear Accelerators, M. Vretenar, arXiv:1601.05210, 2016. CAS - CERN Accelerator School: Advanced Accelerator Physics Course, Trondheim, Norway, 18-29 Aug 2013.
[Vretenar:2016zfc]
[2-2]
Longitudinal Beam Dynamics, F. Tecker, arXiv:1601.04901, 2016. CAS - CERN Accelerator School: Advanced Accelerator Physics Course, Trondheim, Norway, 18-29 Aug 2013.
[Tecker:2016mlq]
[2-3]
Proceedings of the CAS - CERN Accelerator School: Ion Sources, Senec, Slovakia, 29 May - 8 June 2012, R. Bailey, arXiv:1411.2445, 2014.
[Bailey:2013rga]
[2-4]
The Sanford Underground Research Facility at Homestake, J. Heise, AIP Conf.Proc. 1604 (2014) 331-344, arXiv:1401.0861. VII International Conference on Interconnections between Particle Physics and Cosmology (PPC2013), Deadwood, SD, July 8-13, 2013.
[Heise:2014gta]
[2-5]
The ANDES Deep Underground Laboratory, X. Bertou, arXiv:1308.0059, 2013. 33rd International Cosmic Ray Conference, Rio de Janeiro 2013.
[Bertou:2013oda]
[2-6]
Acoustic Neutrino Detection in Ice: Past, Present, and Future, Timo Karg, AIP Conf.Proc. 1535 (2013) 162, arXiv:1210.7974. 5th International workshop on Acoustic and Radio EeV Neutrino detection Activities - ARENA 2012.
[Karg:2012ua]
[2-7]
Advances in Cryogenic Avalanche Detectors (review), A. Buzulutskov, JINST 7 (2012) C02025, arXiv:1112.6153. MPGD2011, Aug 29 - Sep 3, 2011, Kobe, Japan.
[Buzulutskov:2011de]
[2-8]
Gaseous Detectors: recent developments and applications, Maxim Titov, arXiv:1008.3736, 2010. 2009 Trans-European School of High Energy Physics, Zakopane, Poland, July 8-14(2009).
[Titov:2010br]

3 - PhD Theses

[3-1]
Acoustic detection of astrophysical neutrinos in South Pole ice, Justin Vandenbroucke, arXiv:1201.0072, 2012.
[Vandenbroucke:2012nn]

4 - Fundamental Papers

[4-1]
Micromegas in a bulk, I. Giomataris et al., Nucl. Instrum. Meth. A560 (2006) 405-408, arXiv:physics/0501003.
[Giomataris:2004aa]

5 - Articles

[5-1]
Assay of low-background stainless steel by smelting for the neutrino experiment at Jinping, Ghulam Hussain et al., arXiv:1706.04506, 2017.
[Hussain:2017doz]
[5-2]
Single-electron and single-photon sensitivity with a silicon Skipper CCD, Javier Tiffenberg et al., arXiv:1706.00028, 2017.
[Tiffenberg:2017aac]
[5-3]
High-resolution tracking in a GEM-Emulsion detector, A. Alexandrov et al., arXiv:1705.06635, 2017.
[Alexandrov:2017uaj]
[5-4]
Nuclear emulsion readout system HTS aiming at scanning an area of one thousand square meters, Masahiro Yoshimoto, Toshiyuki Nakano, Ryosuke Komatani, Hiroaki Kawahara, arXiv:1704.06814, 2017.
[Yoshimoto:2017ufm]
[5-5]
Gram-scale cryogenic calorimeters for rare-event searches, R. Strauss et al., arXiv:1704.04317, 2017.
[Strauss:2017cam]
[5-6]
Wide field-of-view and high-efficiency light concentrator, Yu Zhi, Ye Liang, Zhe Wang, Shaomin Chen, arXiv:1703.07527, 2017.
[Zhi:2017tbk]
[5-7]
First demonstration of emulsion multi-stage shifter for accelerator neutrino experiment in J-PARC T60, K. Yamada et al., arXiv:1703.03737, 2017.
[Yamada:2017qeg]
[5-8]
Design Considerations for Proposed Fermilab Integrable RCS, Jeffrey Eldred, Alexander Valishev, arXiv:1703.00953, 2017.
[Eldred:2017trw]
[5-9]
Integrable RCS as a proposed replacement for Fermilab Booster, Jeffrey Eldred, Alexander Valishev, AIP Conf.Proc. 1812 (2017) 100003, arXiv:1703.00952.
[Eldred:2017sqi]
[5-10]
Photon emission and atomic collision processes in two-phase argon doped with xenon and nitrogen, A. Buzulutskov, Europhys.Lett. 117 (2017) 39002, arXiv:1702.03612.
[Buzulutskov:2017wau]
[5-11]
Occulting Light Concentrators in Liquid Scintillator Neutrino Detectors, Margherita Buizza Avanzini et al., arXiv:1612.05444, 2016. Proceeding for Neutrino2016 conference.
[Avanzini:2016tjx]
[5-12]
A Novel Cosmic Ray Tagger System for Liquid Argon TPC Neutrino Detectors, M. Auger et al., arXiv:1612.04614, 2016.
[Auger:2016tjc]
[5-13]
Towards Background-free RENP using a Photonic Crystal Waveguide, Minoru Tanaka, Koji Tsumura, Noboru Sasao, Motohiko Yoshimura, PTEP 2017 (2017) 043B03, arXiv:1612.02423.
[Tanaka:2016wir]
[5-14]
New method of 85Kr reduction in a noble gas based low-background detector, D.Yu. Akimov et al., JINST 12 (2017) P04002, arXiv:1611.07168.
[Akimov:2016yuf]
[5-15]
Bulk and Surface Event Identification in p-type Germanium Detectors, L. T. Yang et al., arXiv:1611.03357, 2016.
[Yang:2016crf]
[5-16]
An Experiment to Demonstrate Cherenkov / Scintillation Signal Separation, J. Caravaca et al., Phys.Rev. C95 (2017) 055801, arXiv:1610.02029.
[Caravaca:2016ryf]
[5-17]
Dynamics of the ions in Liquid Argon Detectors and electron signal quenching, L. Romero, R. Santorelli, B. Montes, Astropart.Phys. 92 (2017) 11-20, arXiv:1609.08984.
[Romero:2016tla]
[5-18]
Study Performance of Liquid Scintillation Fiber Detector, Yongpeng Zhang et al., JINST 12 (2017) P03015, arXiv:1608.08307.
[Zhang:2016cbp]
[5-19]
Precision analysis of the photomultiplier response to ultra low signals, Pavel Degtiarenko, arXiv:1608.07525, 2016.
[Degtiarenko:2016qwv]
[5-20]
Light yield of an undoped CsI crystal coupled directly to a photomultiplier tube at 77 Kelvin, Jing Liu, Masaki Yamashita, Arun Kumar Soma, JINST 11 (2016) P10003, arXiv:1608.06278.
[Liu:2016iqv]
[5-21]
Metal-loaded organic scintillators for neutrino physics, Christian Buck, Minfang Yeh, J. Phys. G43 (2016) 093001, arXiv:1608.04897.
[Buck:2016vxe]
[5-22]
Reflectance dependence of polytetrafluoroethylene on thickness for xenon scintillation light, Jonathan Haefner et al., Nucl.Instrum.Meth. A856 (2017) 86-91, arXiv:1608.01717.
[Haefner:2016ncn]
[5-23]
OptoTracker project proposal, A. Celentano, arXiv:1606.03027, 2016.
[Celentano:2016gaq]
[5-24]
Low energy recoil detection with a spherical proportional counter, I. Savvidis, I. Katsioulas, C. Eleftheriadis, I. Giomataris, T. Papaevangellou, arXiv:1606.02146, 2016.
[Savvidis:2016wei]
[5-25]
Discrimination in Liquid Scintillator and Its Usage to Suppress $^{8}$He/$^{9}$Li Backgrounds, Ya-Ping Cheng, Liang-Jian Wen, Peng Zhang, Xing-Zhong Cao, Chin.Phys. C41 (2017) 016101, arXiv:1605.00941.
[Cheng:2016ego]
[5-26]
Long Term Performance Studies of Large Oil-Free Bakelite Resistive Plate Chamber, Rajesh Ganai et al., JINST 11 (2016) C09010, arXiv:1604.03668.
[Ganai:2016vqi]
[5-27]
A Convolutional Neural Network Neutrino Event Classifier, A. Aurisano et al., JINST 11 (2016) P09001, arXiv:1604.01444.
[Aurisano:2016jvx]
[5-28]
Characteristics of Cherenkov Radiation in Naturally Occuring Ice, R.E. Mikkelsen, T. Poulsen, U.I. Uggerhoj, S.R. Klein, Phys. Rev. D93 (2016) 053006, arXiv:1602.03714.
[Mikkelsen:2016vju]
[5-29]
Test of Topmetal-${II}^-$ In Liquid Nitrogen For Cryogenic Temperature TPCs, Shuguang Zou et al., Nucl.Instrum.Meth. A830 (2016) 275-278, arXiv:1601.06955.
[Zou:2016mah]
[5-30]
The efficiency study of different purification methods for liquid scintillator, Wei Hu et al., Chin.Phys. C40 (2016) 096202, arXiv:1601.02780.
[Hu:2016jwc]
[5-31]
Characterization of the ETEL D784UKFLB 11 inch Photomultiplier Tube, N. Barros et al., Nucl.Instrum.Meth. A852 (2017) 15-19, arXiv:1512.06916.
[Barros:2015pjt]
[5-32]
On the Electric Breakdown in Liquid Argon at Centimeter Scale, M. Auger et al., JINST 11 (2016) P03017, arXiv:1512.05968.
[Auger:2015xlo]
[5-33]
Sub-Penning gas mixtures: new possibilities for ton- to kiloton-scale time projection chambers, Benjamin Monreal, Luiz de Viveiros, William Luszczak, arXiv:1512.04926, 2015.
[Monreal:2015zmi]
[5-34]
Algorithms for Identification of Nearly-Coincident Events in Calorimetric Sensors, B. Alpert et al., J.Low.Temp.Phys. 184 (2016) 263-273, arXiv:1512.01608.
[Alpert:2015mtu]
[5-35]
Extra-large crystal emulsion detectors towards future large-scale experiments, T. Ariga et al., JINST 11 (2016) P03003, arXiv:1512.01339.
[Ariga:2015fll]
[5-36]
A search for cosmogenic production of $\beta$-neutron emitting radionuclides in water, S. Dazeley et al., Nucl.Instrum.Meth. A821 (2016) 151-159, arXiv:1512.00794.
[Dazeley:2015uyd]
[5-37]
Separation of Scintillation and Cherenkov Lights in Linear Alkyl Benzene, Mohan Li, Ziyi Guo, Minfang Yeh, Zhe Wang, Shaomin Chen, Nucl.Instrum.Meth. A830 (2016) 303-308, arXiv:1511.09339.
[Li:2015phc]
[5-38]
Results of measurements of an environment neutron background at BNO INR RAS objects with the helium proportional counter, I.R. Barabanov et al., arXiv:1510.05109, 2015.
[Barabanov:2015lza]
[5-39]
Toward Single Electron Resolution Phonon Mediated Ionization Detectors, Nader Mirabolfathi et al., Nucl.Instrum.Meth. A855 (2017) 88-91, arXiv:1510.00999.
[Mirabolfathi:2015pha]
[5-40]
Cryogenic silicon detectors with implanted contacts for the detection of visible photons using the Neganov-Luke Effect, X. Defay et al., J.Low.Temp.Phys. 184 (2016) 274-279, arXiv:1509.06266.
[Defay:2015oia]
[5-41]
Response of a proportional counter to $^{37}$Ar and $^{71}$Ge: real spectra versus GEANT4 simulation, D. Abdurashitov, Yu. Malyshkin, V. Matushko, B. Suerfu, Nucl. Instrum. Meth. B (2016), arXiv:1509.02669.
[Abdurashitov:2015eea]
[5-42]
Tagging Spallation Backgrounds with Showers in Water-Cherenkov Detectors, Shirley Weishi Li, John F. Beacom, Phys. Rev. D92 (2015) 105033, arXiv:1508.05389.
[Li:2015lxa]
[5-43]
Low emittance pion beams generation from bright photons and relativistic protons, L. Serafini, C. Curatolo, V. Petrillo, arXiv:1507.06626, 2015.
[Serafini:2015zda]
[5-44]
First Demonstration of Imaging Cosmic Muons in a Two-Phase Liquid Argon TPC using an EMCCD Camera and a THGEM, K. Mavrokoridis et al., JINST 10 (2015) P10004, arXiv:1507.06586.
[Mavrokoridis:2015yda]
[5-45]
MiX: A Position Sensitive Dual-Phase Liquid Xenon Detector, S. Stephenson et al., JINST 10 (2015) P10040, arXiv:1507.01310.
[Stephenson:2015qta]
[5-46]
Electromagnetic modulation of monochromatic neutrino beams, A. L. Barabanov, O. A. Titov, Eur. Phys. J. A51 (2015) 96, arXiv:1506.07883.
[Barabanov:2015eka]
[5-47]
The Pandora Software Development Kit for Pattern Recognition, J. S. Marshall, M. A. Thomson, Eur. Phys. J. C75 (2015) 439, arXiv:1506.05348.
[Marshall:2015rfa]
[5-48]
A Study of Dielectric Breakdown Along Insulators Surrounding Conductors in Liquid Argon, Sarah Lockwitz, Hans Jostlein, JINST 11 (2016) P03026, arXiv:1506.04185.
[Lockwitz:2015qua]
[5-49]
Liquid Hole Multipliers: bubble-assisted electroluminescence in liquid xenon, L. Arazi et al., JINST 10 (2015) P08015, arXiv:1505.02316.
[Arazi:2015uja]
[5-50]
Electron Neutrino Classification in Liquid Argon Time Projection Chamber Detector, Piotr Plonski, Dorota Stefan, Robert Sulej, Krzysztof Zaremba, arXiv:1505.00424, 2015.
[Plonski:2015fva]
[5-51]
A new anti-neutrino detection technique based on positronium tagging with plastic scintillators, G. Consolati et al., Nucl.Instrum.Meth. A795 (2015) 364-369, arXiv:1504.01884.
[Consolati:2015bma]
[5-52]
Compact Muon Production and Collection Scheme for High-Energy Physics Experiments, Diktys Stratakis, David V. Neuffer, J. Phys. G41 (2014) 125002, arXiv:1504.00380.
[Stratakis:2014wwa]
[5-53]
Enhanced UV light detection using wavelength-shifting properties of Silicon nanoparticles, S. Magill et al., JINST 10 (2015) P05008, arXiv:1503.01383.
[Magill:2015zza]
[5-54]
Intensive neutrino source on the base of lithium converter, V.I. Lyashuk, Yu.S Lutostansky, arXiv:1503.01280, 2015.
[Lyashuk:2015aba]
[5-55]
Optimized Designs for Very Low Temperature Massive Calorimeters, Matt Pyle, Enectali Feliciano-Figueroa, Bernard Sadoulet, arXiv:1503.01200, 2015.
[Pyle:2015pya]
[5-56]
Image Segmentation in Liquid Argon Time Projection Chamber Detector, Piotr Plonski, Dorota Stefan, Robert Sulej, Krzysztof Zaremba, arXiv:1502.08046, 2015.
[Plonski:2015uja]
[5-57]
Acoustic signal detection through the cross-correlation method in experiments with different signal to noise ratio and reverberation conditions, S. Adrian-Martinez et al., arXiv:1502.05038, 2015.
[Adrian-Martinez:2015jza]
[5-58]
Index of refraction, Rayleigh scattering length, and Sellmeier coefficients in solid and liquid argon and xenon, Emily Grace, James A. Nikkel, arXiv:1502.04213, 2015.
[Grace:2015yta]
[5-59]
MPPC versus MRS APD in two-phase Cryogenic Avalanche Detectors, A. Bondar, A. Buzulutskov, A. Dolgov, E. Shemyakina, A. Sokolov, JINST 10 (2015) P04013, arXiv:1502.03663.
[Bondar:2015tna]
[5-60]
High Resolution Muon Computed Tomography at Neutrino Beam Facilities, Burkhant Suerfu, Christopher G. Tully, JINST 11 (2016) P02015, arXiv:1501.07238.
[Suerfu:2015lqa]
[5-61]
Magnetic guidance of charged particles, Dirk Dubbers, Phys. Lett. B748 (2015) 306-310, arXiv:1501.05131.
[Dubbers:2015iya]
[5-62]
Electron muon identification by atmospheric shower and electron beam in a new concept of an EAS detector, M. Iori, H. Denizli, A. Yilmaz, F. Ferrarotto, J. Russ, Astrophys.J. 801 (2015) 140, arXiv:1501.03470.
[Iori:2015ida]
[5-63]
Thermo-acoustic Sound Generation in the Interaction of Pulsed Proton and Laser Beams with a Water Target, R. Lahmann et al., Astropart.Phys. 65 (2014) 69-79, arXiv:1501.01494.
[Lahmann:2014rqa]
[5-64]
Automatic track recognition for large-angle minimum ionizing particles in nuclear emulsions, T. Fukuda et al., JINST 9 (2014) P12017, arXiv:1412.4955.
[Fukuda:2014vda]
[5-65]
A Multi-MW Proton/Electron Linac at KEK, Radoje Belusevic, arXiv:1411.4874, 2014.
[Belusevic:2014ala]
[5-66]
Extraction of Physics Signals Near Threshold with Germanium Detectors in Neutrino and Dark Matter Experiments, A.K. Soma et al. (TEXONO), Nucl.Instrum.Meth. A836 (2016) 67-82, arXiv:1411.4802.
[Soma:2014zgm]
[5-67]
A Study on the time resolution of Glass RPC, N. Dash, V. M. Datar, G. Majumder, arXiv:1410.5532, 2014.
[Dash:2014ifa]
[5-68]
Underground physics without underground labs: large detectors in solution-mined salt caverns, Benjamin Monreal, arXiv:1410.0076, 2014.
[Monreal:2014gda]
[5-69]
Advanced Scintillator Detector Concept (ASDC): A Concept Paper on the Physics Potential of Water-Based Liquid Scintillator, J. R. Alonso et al., arXiv:1409.5864, 2014.
[Alonso:2014fwf]
[5-70]
An in situ measurement of the radio-frequency attenuation in ice at Summit Station, Greenland, J. Avva, J. M. Kovac, C. Miki, D. Saltzberg, A. G. Vieregg, J. Glaciol. 61 (2015) 1005-1011, arXiv:1409.5413.
[Avva:2014ena]
[5-71]
Gaseous Detector with sub keV Threshold to Study Neutrino Scattering at Low Recoil Energies, A.V. Kopylov, I.V. Orekhov, V.V. Petukhov, A.E. Solomatin, Adv.High Energy Phys. 2014 (2014) 147046, arXiv:1409.4873.
[Kopylov:2014uia]
[5-72]
Beam-Induced Effects and Radiological Issues in High-Intensity High-Energy Fixed Target Experiments, N.V. Mokhov et al., Prog. Nucl. Sci. Tech. 4 (2014), arXiv:1409.0043.
[Mokhov:2014voa]
[5-73]
FNAL Proton Source High Intensity Operations and Beam Loss Control, F.G. Garcia, W. Pellico (PIP), arXiv:1409.0039, 2014.
[Garcia:2014uoa]
[5-74]
Improving Photoelectron Counting and Particle Identification in Scintillation Detectors with Bayesian Techniques, M. Akashi-Ronquest et al., Astropart.Phys. 65 (2014) 40-54, arXiv:1408.1914.
[Akashi-Ronquest:2014jga]
[5-75]
Scintillation Light from Cosmic-Ray Muons in Liquid Argon, Denver Whittington, Stuart Mufson, Phys. Rev.D (2014), arXiv:1408.1763.
[Whittington:2014aha]
[5-76]
A novel $^{83\mathrm{m}}$Kr tracer method for characterizing xenon gas and cryogenic distillation systems, S. Rosendahl et al., JINST 9 (2014) P10010, arXiv:1407.3981.
[Rosendahl:2014qqa]
[5-77]
First working prototype of a steerable UV laser system for LArTPC calibrations, A. Ereditato et al., JINST 9 (2014) T11007, arXiv:1406.6400.
[Ereditato:2014lra]
[5-78]
LArIAT: Liquid Argon In A Testbeam, F. Cavanna, M. Kordosky, J. Raaf, B. Rebel (LArIAT), arXiv:1406.5560, 2014.
[Cavanna:2014iqa]
[5-79]
NaNet: a Low-Latency, Real-Time, Multi-Standard Network Interface Card with GPUDirect Features, A. Lonardo et al., arXiv:1406.3568, 2014.
[Lonardo:2014txa]
[5-80]
Proposal for SPS beam time for the baby MIND and TASD neutrino detector prototypes, R. Asfandiyarov et al., arXiv:1405.6089, 2014.
[Asfandiyarov:2014haa]
[5-81]
Charge Coupled Devices for detection of coherent neutrino-nucleus scattering, Guillermo Fernandez Moroni et al., Phys. Rev. D91 (2015) 072001, arXiv:1405.5761.
[Moroni:2014wia]
[5-82]
Organic Liquid TPCs for Neutrino Physics, J. V. Dawson, D. Kryn, JINST 9 (2014) P07002, arXiv:1405.1308.
[Dawson:2014lga]
[5-83]
Performance of liquid argon neutrino detectors with enhanced sensitivity to scintillation light, M. Sorel, JINST 9 (2014) 10002, arXiv:1405.0848.
[Sorel:2014rka]
[5-84]
The Liquid Argon Purity Demonstrator, M. Adamowski et al., JINST 9 (2014) P07005, arXiv:1403.7236.
[Adamowski:2014daa]
[5-85]
Low-Energy ( < 10 keV) Electron Ionization and Recombination Model for a Liquid Argon Detector, Michael Foxe et al., Nucl.Instrum.Meth. A771 (2014) 88-92, arXiv:1403.3719.
[Foxe:2014fra]
[5-86]
High Voltage in Noble Liquids for High Energy Physics, Edited by B. Rebel et al., JINST 9 (2014) T08004, arXiv:1403.3613.
[Rebel:2014uia]
[5-87]
Measurement of the liquid scintillator nonlinear energy response to electron, Fei-Hong Zhang et al., Chin.Phys. C39 (2015) 016003, arXiv:1403.3257.
[Zhang:2014iza]
[5-88]
Temperature dependence of the light yield of the LAB-based and mesitylene-based liquid scintillators, Xia DongMei et al., arXiv:1402.6871, 2014.
[DongMei:2014kua]
[5-89]
Thermal Model and Optimization of a Large Crystal Detector using a Metallic Magnetic Calorimeter, G.B. Kim et al., J. Low. Temp. Phys. 176 (2014) 637-643, arXiv:1402.2334.
[Kim:2014kwa]
[5-90]
Optimization of light collection from crystal scintillators for cryogenic experiments, F.A. Danevich et al., Nucl.Instrum.Meth. A744 (2014) 41-47, arXiv:1402.2241.
[Danevich:2014opa]
[5-91]
First measurement of the ionization yield of nuclear recoils in liquid argon, T. H. Joshi et al., Phys. Rev. Lett. 112 (2014) 171303, arXiv:1402.2037.
[Joshi:2014fna]
[5-92]
${}^{13}\text{C}(\alpha,n){}^{16}\text{O}$ background in a liquid scintillator based neutrino experiment, Jie Zhao et al., Chin.Phys. C38 (2014) 116201, arXiv:1312.6347.
[Zhao:2013mba]
[5-93]
Implementation of a local principal curves algorithm for neutrino interaction reconstruction in a liquid argon volume, J.J. Back et al., Eur.Phys.J. C74 (2014) 2832, arXiv:1312.6059.
[Back:2013cva]
[5-94]
Calibration of pulse transit time through a cable for EAS experiments, Qian Xiang-Li et al., arXiv:1312.4624, 2013.
[Xiang-Li:2013aga]
[5-95]
Measurement of Optical Attenuation in Acrylic Light Guides for a Dark Matter Detector, M. Bodmer et al., JINST 9 (2014) 02002, arXiv:1310.6454.
[Bodmer:2013lua]
[5-96]
Dead layer on silicon p-i-n diode charged-particle detectors, B. L. Wall et al., Nucl.Instrum.Meth. A744 (2014) 73-79, arXiv:1310.1178.
[Wall:2013wja]
[5-97]
Characterization of positronium properties in doped liquid scintillators, G. Consolati et al., Phys. Rev. C88 (2013) 065502, arXiv:1308.0493.
[Consolati:2013rka]
[5-98]
Liquid Argon Time Projection Chamber Research and Development in the United States, C. Bromberg et al., JINST 9 (2014) T05005, arXiv:1307.8166.
[Bromberg:2013fla]
[5-99]
Optical Properties of Quantum-Dot-Doped Liquid Scintillators, C. Aberle, J.J. Li, S. Weiss, L. Winslow, JINST 8 (2013) P10015, arXiv:1307.4742.
[Aberle:2013zza]
[5-100]
Critical Temperature tuning of Ti/TiN multilayer films suitable for low temperature detectors, A. Giachero et al., J. Low. Temp. Phys. 176 (2014) 155, arXiv:1307.3781.
[Giachero:2013gta]
[5-101]
The Fermilab Main Injector: high intensity operation and beam loss control, Bruce C. Brown et al., Phys. Rev. ST Accel. Beams 16, 071001 (2013) 071001, arXiv:1307.2934.
[Brown:2013idd]
[5-102]
Design and operation of ARGONTUBE: a 5 m long drift liquid argon TPC, A. Ereditato et al., JINST 1307 (2013) P07002, arXiv:1304.6961.
[Ereditato:2013xaa]
[5-103]
VUV-VIS optical characterization of Tetraphenyl-butadiene films on glass and specular reflector substrates from room to liquid Argon temperature, R. Francini et al., arXiv:1304.6117, 2013.
[Francini:2013lua]
[5-104]
Measuring Fast Neutrons with Large Liquid Scintillation Detector for Ultra-low Background Experiments, C. Zhang, D.-M. Mei, P. Davis, B. Woltman, F. Gray, Nucl.Instrum.Meth. A729 (2013) 138-146, arXiv:1304.4536.
[Zhang:2013hia]
[5-105]
Application of the Monte-Carlo refractive index matching (MCRIM) technique to the determination of the absolute light yield of a calcium molybdate scintillator, V. Alenkov et al., JINST 8 (2013) P06002, arXiv:1303.5952.
[Alenkov:2013aqa]
[5-106]
Applications of an Y-88/Be photo-neutron calibration source to Dark Matter and Neutrino Experiments, J.I. Collar, Phys. Rev. Lett. 110 (2013) 211101, arXiv:1303.2686.
[Collar:2013xva]
[5-107]
Beam Loss Control for the Fermilab Main Injector, Bruce C. Brown, arXiv:1301.7735, 2013.
[Brown:2012kp]
[5-108]
A Precise Analytic Delayed Coincidence Efficiency and Accidental Coincidence Rate Calculation, Jingyi Yu, Zhe Wang, Shaomin Chen, Chin.Phys. 39 (2015) 056102, arXiv:1301.5085.
[Yu:2015pka]
[5-109]
Photodegradation Mechanisms of Tetraphenyl Butadiene Coatings for Liquid Argon Detectors, B. J. P. Jones, J. K. VanGemert, J. M. Conrad, A. Pla-Dalmau, JINST 8 (2013) P01013, arXiv:1211.7150.
[Jones:2012hm]
[5-110]
Design and characterization of 90 GHz feedhorn-coupled TES polarimeter pixels in the SPTpol camera, J.T.Sayre et al., Proc. SPIE Int. Soc. Opt. Eng. 8452 (2012) 845239, arXiv:1210.4968.
[Sayre:2012fy]
[5-111]
Micromegas-TPC operation at high pressure in xenon-trimethylamine mixtures, S. Cebrian et al., JINST 8 (2013) P01012, arXiv:1210.3287.
[Cebrian:2012sp]
[5-112]
Characterization of the Hamamatsu R11780 12 inch Photomultiplier Tube, J. Brack et al., Nucl.Instrum.Meth. A712 (2013) 162-173, arXiv:1210.2765.
[Brack:2012ig]
[5-113]
A mobile antineutrino detector with plastic scintillators, Yasuhiro Kuroda et al., Nucl. Instrum. Meth. A690 (2012) 41-47, arXiv:1206.6566.
[Kuroda:2012dw]
[5-114]
Performance of a 250L liquid Argon TPC for sub-GeV charged particle identification, O. Araoka et al. (J-PARC T32), Phys.Lett. B718 (2013) 1181-1185, arXiv:1206.1181.
[Lin:2012gs]
[5-115]
Working characteristics of the New Low-Background Laboratory (DULB-4900, Baksan Neutrino Observatory), Ju.M. Gavriljuk et al., Nucl.Instrum.Meth. A729 (2013) 576-58-, arXiv:1204.6424.
[Gavriljuk:2013afa]
[5-116]
First Large Scale Production of Low Radioactivity Argon From Underground Sources, Henning O. Back et al., arXiv:1204.6024, 2012.
[Back:2012pg]
[5-117]
Study of infrared scintillations in gaseous and liquid argon - Part II: light yield and possible applications, A. Bondar et al., JINST 7 (2012) P06014, arXiv:1204.0580.
[Bondar:2012mt]
[5-118]
Study of infrared scintillations in gaseous and liquid argon - Part I: methodology and time measurements, A. Bondar et al., JINST 7 (2012) P06015, arXiv:1204.0180.
[Bondar:2012hz]
[5-119]
Position and energy-resolved particle detection using phonon-mediated microwave kinetic inductance detectors, D. C. Moore et al., Appl. Phys. Lett. 100 (2012) 232601, arXiv:1203.4549.
[Moore:2012au]
[5-120]
A low-resolution, GSa/s streaming digitizer for a correlation-based trigger system, Kurtis Nishimura et al., Conf.Proc.C120611.5X 2012 (2012) 1-6, arXiv:1203.4178.
[Nishimura:2012ts]
[5-121]
Characterizing Quantum-Dot-Doped Liquid Scintillator for Applications to Neutrino Detectors, Lindley Winslow, Raspberry Simpson, JINST 7 (2012) P07010, arXiv:1202.4733.
[Winslow:2012ey]
[5-122]
Reconstruction efficiency and discovery potential of a Mediterranean neutrino telescope: A simulation study using the Hellenic Open University Simulation & Reconstruction (HOURS) package, A. G. Tsirigotis, A. Leisos, S. E. Tzamarias (KM3NeT), Nucl.Instrum.Meth. A725 (2013) 68-71, arXiv:1201.5079.
[Tsirigotis:2013cma]
[5-123]
A reconstruction method for neutrino induced muon tracks taking into account the apriori knowledge of the neutrino source, A.G. Tsirigotis, A. Leisos, S. E. Tzamarias (KM3NeT), arXiv:1201.5050, 2012.
[Tsirigotis:2013mma]
[5-124]
SiPMs coated with TPB : coating protocol and characterization for NEXT, V. Alvarez et al., JINST 7 (2012) P02010, arXiv:1201.2018.
[Alvarez:2012ub]
[5-125]
The Sound Emission Board of the KM3NeT Acoustic Positioning System, C. D. Llorens et al., JINST 7 (2012) C01001, arXiv:1201.1184.
[Llorens:2012dc]
[5-126]
Large scale Gd-beta-diketonate based organic liquid scintillator production for antineutrino detection, C. Aberle et al., JINST 7 (2012) P06008, arXiv:1112.5941.
[Aberle:2011ar]
[5-127]
Single electron emission in two-phase xenon with application to the detection of coherent neutrino-nucleus scattering, E. Santos et al. (ZEPLIN-III), JHEP 12 (2011) 115, arXiv:1110.3056.
[Santos:2011ju]
[5-128]
PENTATRAP: A novel cryogenic multi-Penning trap experiment for high-precision mass measurements on highly charged ions, J. Repp et al., arXiv:1110.2919, 2011.
[Repp:2011hm]
[5-129]
Scintillator detectors with long WLS fibers and multi-pixel photodiodes, O.Mineev, Yu.Kudenko, Yu.Musienko, I.Polyansky, N.Yershov, JINST 6 (2011) P12004, arXiv:1110.2651.
[Mineev:2011xp]
[5-130]
Design and performance of the South Pole Acoustic Test Setup, Yasser Abdou et al., Nucl. Instrum. Meth. A683 (2012) 78-90, arXiv:1105.4339.
[Abdou:2011cy]
[5-131]
Energy Resolution studies for NEXT, C. A. B. Oliveira et al., JINST 6 (2011) P05007, arXiv:1105.2954.
[Oliveira:2011xk]
[5-132]
Fluorescence Efficiency and Visible Re-emission Spectrum of Tetraphenyl Butadiene Films at Extreme Ultraviolet Wavelengths, V. M. Gehman et al., Nucl. Instrum. Meth. A654 (2011) 116-121, arXiv:1104.3259.
[Gehman:2011xm]
[5-133]
A simulation toolkit for electroluminescence assessment in rare event experiments, C. A. B. Oliveira et al., Phys. Lett. B703 (2011) 217-222, arXiv:1103.6237.
[Oliveira:2011xx]
[5-134]
Infrared scintillation yield in gaseous and liquid argon for rare-event experiments, A. Buzulutskov, A. Bondar, A. Grebenuk, Europhys. Lett. 94 (2011) 52001, arXiv:1102.1825.
[Buzulutskov:2011qw]
[5-135]
Lowering the energy threshold of large-mass bolometric detectors, Sergio Di Domizio, Filippo Orio, Marco Vignati, JINST 6 (2011) P02007, arXiv:1012.1263.
[DiDomizio:2010ph]
[5-136]
Time Projection Chambers for the T2K Near Detectors, N. Abgrall et al. (T2K ND280 TPC), Nucl. Instrum. Meth. A637 (2011) 25-46, arXiv:1012.0865.
[Abgrall:2010hi]
[5-137]
Positronium signature in organic liquid scintillators for neutrino experiments, D. Franco, G. Consolati, D. Trezzi, Phys. Rev. C83 (2011) 015504, arXiv:1011.5736.
[Franco:2010rs]
[5-138]
A hardware implementation of Region-of-Interest selection in LAr-TPC for data reduction and triggering, B. Baibussinov et al., JINST 5 (2010) P12006, arXiv:1009.2262.
[Baibussinov:2010yu]
[5-139]
Energy Calibration of Underground Neutrino Detectors using a 100 MeV electron accelerator, Sebastian White, Vitaly Yakimenko, arXiv:1004.3068, 2010.
[White:2010gg]
[5-140]
Neutrino tagging through secondary beam scraping, L. Ludovici, F. Terranova, Eur. Phys. J. C69 (2010) 331-339, arXiv:1004.2904.
[Ludovici:2010ci]
[5-141]
Optical Scattering Lengths in Large Liquid-Scintillator Neutrino Detectors, Michael Wurm et al., Rev. Sci. Instrum. 81 (2010) 053301, arXiv:1004.0811.
[Wurm:2010ad]
[5-142]
Free electron lifetime achievements in Liquid Argon Imaging TPC, B. Baibussinov et al., JINST 5 (2010) P03005, arXiv:0910.5087.
[Baibussinov:2009gs]
[5-143]
Remark on the studies of the muon-induced neutron background in the liquid scintillator detectors, Karim Zbiri, Nucl. Instrum. Meth. A615 (2010) 220-222, arXiv:0910.3714.
[Zbiri:2009xi]
[5-144]
XAX: a multi-ton, multi-target detection system for dark matter, double beta decay and pp solar neutrinos, K. Arisaka et al., Astropart. Phys. 31 (2009) 63-74, arXiv:0808.3968.
[Arisaka:2008mb]
[5-145]
A low background facility inside the LVD detector at Gran Sasso, F. Arneodo, W. Fulgione, JCAP 0902 (2009) 028, arXiv:0808.1465.
[Arneodo:2008hd]
[5-146]
Observation of Neutrons with a Gadolinium Doped Water Cerenkov Detector, S. Dazeley, A. Bernstein, N. S. Bowden, R. Svoboda, Nucl. Instrum. Meth. A607 (2009) 616-619, arXiv:0808.0219.
[Dazeley:2008xk]
[5-147]
Characterisation of a silicon photomultiplier device for applications in liquid argon based neutrino physics and dark matter searches, P.K. Lightfoot, G.J. Barker, K. Mavrokoridis, Y.A. Ramachers, N.J.C. Spooner, JINST 3 (2008) P10001, arXiv:0807.3220.
[Lightfoot:2008im]
[5-148]
Large-Mass Ultra-Low Noise Germanium Detectors: Performance and Applications in Neutrino and Astroparticle Physics, P.S. Barbeau, J.I. Collar, O. Tench, JCAP 0709 (2007) 009, arXiv:nucl-ex/0701012.
[Barbeau:2007qi]
[5-149]
Development of tin-loaded liquid scintillator for the double beta decay experiment, M. J. Hwang et al. (KIMS), Nucl. Instrum. Meth. A570 (2007) 454-458.
[Hwang:2007ix]
[5-150]
A TPC for the near detector at T2K, Thorsten Lux (T2K), J. Phys. Conf. Ser. 65 (2007) 012018.
[Lux:2007zz]
[5-151]
Bulk micromegas detectors for large TPC applications, J. Bouchez et al., Nucl. Instrum. Meth. A574 (2007) 425-432.
[Bouchez:2007pe]
[5-152]
A two-phase argon avalanche detector operated in a single electron counting mode, A. Bondar et al., Nucl.Instrum.Meth. A574 (2007) 493-499, arXiv:physics/0611068.
[Bondar:2006ma]
[5-153]
Pulse shape analysis in segmented detectors as a technique for background reduction in Ge double-beta decay experiments, S. R. Elliott et al., Nucl. Instrum. Meth. A558 (2006) 504, arXiv:nucl-ex/0509026.
[Elliott:2005at]
[5-154]
Destruction of Nuclear Bombs Using Ultra-High Energy Neutrino Beam, Hirotaka Sugawara, Hiroyuki Hagura, Toshiya Sanami, arXiv:hep-ph/0305062, 2003.
From the article: We have shown that it is possible to eliminate the nuclear bombs from the surface of the earth utilizing the extremely high energy neutrino beam. When the neutrino beam hits a bomb, it will cause the fizzle explosion with 3\% of the full strength. It seems that it is not possible to decrease the magnitude of the explosion smaller than this number at this stage. It is important to decrease this number to destroy bombs safely. We are not sure what this means when the plutonium or uranium is used to ignite the hydrogen bomb. We may just break the bomb or may lead to a full explosion.
...
We are certainly aware of the fact that this kind of device can not only target the nuclear bombs but other kinds of weapons of mass destruction and also, unfortunately, any kind of living object including human. But we should emphasize that the device itself is not a weapon of mass destruction.

[Sugawara:2003wa]
[5-155]
Pulse Shape Discrimination in the IGEX Experiment, D. Gonzalez et al., Nucl. Instrum. Meth. A515 (2003) 634, arXiv:hep-ex/0302018.
[Gonzalez:2003pr]
[5-156]
maXs: Microcalorimeter Arrays for High-Resolution X-Ray Spectroscopy at GSI/FAIR, C. Pies et al., Journal of Low Temperature Physics (269-279).
[Pies:2012nua]

6 - Articles - Conference Proceedings

[6-1]
Measurement of the ionization yield of nuclear recoils in liquid argon using a two-phase detector with electroluminescence gap, A. Bondar et al., arXiv:1705.05107, 2017. Instrumentation for Colliding Beam Physics Conference (INSTR17).
[Bondar:2017til]
[6-2]
Further studies of proportional electroluminescence in two-phase argon, A. Bondar et al., arXiv:1705.05101, 2017. Instrumentation for Colliding Beam Physics Conference (INSTR17).
[Bondar:2017qkx]
[6-3]
Characterisation and testing of a prototype $6 \times 6$ cm$^2$ Argonne MCP-PMT, Greig A. Cowan, Franz Muheim, Matthew Needham, Silvia Gambetta, Stephan Eisenhardt, Neil McBlane, Matthew Malek, arXiv:1611.00185, 2016. RICH 2016.
[Cowan:2016xie]
[6-4]
Two-phase Cryogenic Avalanche Detector with electroluminescence gap operated in argon doped with nitrogen, A. Bondar et al., Nucl.Instrum.Meth. A845 (2017) 206-209, arXiv:1605.08729. Vienna Conference of Instrumentation (2016).
[Bondar:2016lay]
[6-5]
Near-infrared scintillation of liquid argon, T. Alexander, C. O. Escobar, W. H. Lippincott, P. Rubinov, JINST 11 (2016) C03010, arXiv:1603.02290. Light Detection in Noble Elements (LIDINE 2015).
[Alexander:2016zpd]
[6-6]
Future HEP Accelerators: The US Perspective, Pushpalatha Bhat, Vladimir Shiltsev, arXiv:1511.00390, 2015. DPF 2015 Meeting of the American Physical Society Division of Particles and Fields, Ann Arbor, Michigan, August 4-8, 2015.
[Bhat:2015ogg]
[6-7]
Development FD-SOI MOSFET amplifiers for integrated read-out circuit of superconducting-tunnel-junction single-photon-detectors, Kenji Kiuchi et al., arXiv:1507.07424, 2015. International Workshop on SOI Pixel Detector (SOIPIX2015), Tohoku University, Sendai, Japan, 3-6, June, 2015.
[Kiuchi:2015ilf]
[6-8]
The origin of the background radioactive isotope Xe-127 in the sample of Xe enriched in Xe-124, Yu.M. Gavrilyuk et al., Phys.Part.Nucl. 48 (2017) 42-46, arXiv:1507.04181. International Workshop on Prospects of Particle Physics: 'Neutrino Physics and Astrophysics', Ferbuary 1 - 8, 2015, Valday, Russia.
[Gavrilyuk:2015tva]
[6-9]
Measurement of scintillation and ionization yield with high-pressure gaseous mixtures of Xe and TMA for improved neutrinoless double beta decay and dark matter searches, Y. Nakajima et al., J. Phys. Conf. Ser. 650 (2015) 012012, arXiv:1505.03585. Seventh international symposium on large TPCs for low-energy rare event detection, Paris, December 15-17, 2014.
[Nakajima:2015cva]
[6-10]
The Sanford Underground Research Facility at Homestake, Jaret Heise, J. Phys. Conf. Ser. 606 (2015) 012015, arXiv:1503.01112. Workshop on Germanium-Based Detectors and Technology - 2014, Vermillion, SD, September 14-17, 2014.
[Heise:2015vza]
[6-11]
Characterization of a Spherical Proportional Counter in argon-based mixtures, F.J. Iguaz, A. Rodriguez, J.F. Castel, I.G. Irastorza, PoS TIPP2014 (2014) 162, arXiv:1501.01626. 3rd International Conference on Technology and Instrumentation in Particle Physics (TIPP 2014).
[Iguaz:2015vxa]
[6-12]
Assembly and bench testing of a spiral fiber tracker for the J-PARC TREK/E36 experiment, Makoto Tabata et al., JPS Conf. Proc. 8 (2015) 024001, arXiv:1412.0088. 2nd International Symposium on Science at J-PARC (J-PARC 2014).
[Tabata:2014dca]
[6-13]
Drilling deep in South Pole Ice, Timo Karg, Rolf Nahnhauer, arXiv:1410.5267, 2014. ARENA2014, June 9-12 2014, Annapolis.
[Karg:2014mba]
[6-14]
Front-End Board with Cyclone V as a Test High-Resolution Platform for the Auger-Beyond-2015 Front End Electronics, Zbigniew Szadkowski (Pierre Auger), IEEE Nucl.Sci.Symp.Conf.Rec. (2014) 1-4, arXiv:1406.1918. IEEE Real Time Conference, Nara (Japan) May 25-30, 2014.
[Szadkowski:2014lpa]
[6-15]
Artificial Neural Network as a FPGA Trigger for a Detection of Very Inclined Air Showers, Zbigniew Szadkowski, K. Pytel (Pierre Auger), IEEE Trans.Nucl.Sci. 62 (2015) 1002, arXiv:1406.1903. IEEE Real Time Conference, Nara (Japan) May 25-30, 2014.
[Szadkowski:2014zna]
[6-16]
Removal of long-lived $^{222}$Rn daughters by electropolishing thin layers of stainless steel, R. W. Schnee et al., AIP Conf.Proc. 1549 (2013) 128-131, arXiv:1404.5843. Low Radioactivity Techniques (LRT) 2013, Gran Sasso, Italy, April 10-12, 2013.
[Schnee:2014eea]
[6-17]
Construction and measurements of a vacuum-swing-adsorption radon-mitigation system, R. W. Schnee et al., AIP Conf.Proc. 1549 (2013) 116-119, arXiv:1404.5811. Low Radioactivity Techniques (LRT) 2013, Gran Sasso, Italy, April 10-12, 2013.
[Schnee:2014cea]
[6-18]
The BetaCage, an ultra-sensitive screener for surface contamination, R. Bunker et al., AIP Conf.Proc. 1549 (2013) 132-135, arXiv:1404.5803. Low Radioactivity Techniques (LRT) 2013, Gran Sasso, Italy, April 10-12, 2013.
[Bunker:2014bea]
[6-19]
The second-phase development of the China JinPing underground Laboratory, Jainmin Li, Xiangdong Ji, Wick Haxton, Joseph S.Y. Wang, Phys.Procedia 61 (2015) 576-585, arXiv:1404.2651. 13th International Conference on Topics in Astroparticle and Underground Physics, TAUP 2013.
[Li:2014rca]
[6-20]
Evidence of electric breakdown induced by bubbles in liquid argon, F. Bay et al., arXiv:1401.2777, 2014. High Voltage in Noble Liquids (HVNL13) Workshop, FNAL, 8-9 November 2013.
[Bay:2014jwa]
[6-21]
Using Fast Photosensors in Water Cherenkov Neutrino Detectors, Ioana Anghel, arXiv:1310.2654, 2013. DPF 2013 Meeting of the American Physical Society Division of Particles and Fields, Santa Cruz, California, August 13-17, 2013.
[Anghel:2013zxa]
[6-22]
A large-area single photon sensor employing wavelength-shifting and light-guiding technology, Lukas Schulte et al., arXiv:1307.6713, 2013. 33rd International Cosmic Ray Conference, Rio de Janeiro, Brazil, July 2013.
[Schulte:2013dza]
[6-23]
Measurement of ortho-Positronium Properties in Liquid Scintillators, S. Perasso et al., JINST 9 (2014) C03028, arXiv:1306.6001. Low Radioactivity Techniques 2013 Workshop at LNGS, Assergi (AQ), Italy, April 10-12 2013.
[Perasso:2013zba]
[6-24]
Neutrino Detection, Position Calibration and Marine Science with Acoustic Arrays in the Deep Sea, Robert Lahmann, Nucl.Instrum.Meth. A725 (2013) 32-37, arXiv:1304.0697. 5th workshop on very large volume neutrino telescopes (VLVnT 11) in Erlangen, Germany, 12 -14 October 2011.
[Lahmann:2013hya]
[6-25]
Simulation Chain for Acoustic Ultra-high Energy Neutrino Detectors, M. Neff et al., arXiv:1304.0578, 2013. VLVnT 2011.
[Neff:2013xsa]
[6-26]
Future liquid Argon detectors, A. Rubbia, Nucl. Phys. Proc. Suppl. 235-236 (2013) 190-197, arXiv:1304.0127. XXV International Conference on Neutrino Physics and Astrophysics (Neutrino 2012), Kyoto, Japan.
[Rubbia:2013tpa]
[6-27]
Acoustic Calibration for the KM3NeT Pre-Production Module, Alexander Enzenhofer (KM3NeT), Nucl.Instrum.Meth. A725 (2013) 211-214, arXiv:1303.6877. VLVnT11 - Very Large Volume Neutrino Telescope Workshop (2011).
[Enzenhofer:2013zba]
[6-28]
Micromegas-TPC operation at high pressure in Xenon-trimethylamine mixtures, D. C. Herrera et al., J. Phys. Conf. Ser. 460 (2013) 012012, arXiv:1303.5790.
[Herrera:2013qda]
[6-29]
First demonstration of THGEM/GAPD-matrix optical readout in two-phase Cryogenic Avalanche Detector in Ar, A. Bondar et al., Nucl.Instrum.Meth. A732 (2013) 213-216, arXiv:1303.4817. Vienna Conference of Instrumentation (Feb 15-20, 2013, Vienna, Austria).
[Bondar:2013sla]
[6-30]
Observation of Instabilities of Coherent Transverse Ocillations in the Fermilab Booster, Y. Alexahin et al., Conf.Proc. C1205201 (2012) 3129-3131, arXiv:1301.7679. 3rd International Particle Accelerator Conference (IPAC 2012) 20-25 May 2012, New Orleans, Louisiana.
[Alexahin:2012zzf]
[6-31]
The Six-Cavity Test - Demonstrated Acceleration of Beam with Multiple RF Cavities and a Single Klystron, J. Steimel et al., Conf.Proc. C1205201 (2012) 3877-3879, arXiv:1301.7039. 3rd International Particle Accelerator Conference (IPAC 2012) 20-25 May 2012, New Orleans, Louisiana.
[Chaurize:2012zz]
[6-32]
Fermilab PXIE Beam Diagnostics Development and Testing at the HINS Beam Facility, V.A. Lebedev et al., Conf.Proc. C1205201 (2012) 954-956, arXiv:1301.6774. 3rd International Particle Accelerator Conference (IPAC 2012) 20-25 May 2012, New Orleans, Louisiana.
[Lebedev:2012zzb]
[6-33]
Imaging with SiPMs in noble-gas detectors, N. Yahlali, L. M. P. Fernandes, K. Gonzalez, A. N. C. Garcia, A. Soriano, JINST 8 (2013) C01003, arXiv:1210.4746. IWORID 2012.
[Yahlali:2012cx]
[6-34]
Cryostat for Ultra-low-energy Threshold Germanium Spectrometers, Craig E. Aalseth et al., IEEE Trans.Nucl.Sci. 60 (2013) 1168-1174, arXiv:1210.2347. Symposium on Radiation Measurements and Applications (SORMA West) May 14-17, 2012.
[Aalseth:2012xu]
[6-35]
Transverse beam shape measurements of intense proton beams using optical transition radiation, Victor E. Scarpine, Phys. Procedia 37 (2012) 2123-2128, arXiv:1210.1233. 2nd International Conference on Technology and Instrumentation in Particle Physics 2011: TIPP2011. 9-14 Jun 2011. Chicago, Illinois.
[Scarpine:2012zz]
[6-36]
CW high intensity non-scaling FFAG proton drivers, C. Johnstone, M. Berz, K. Makino, P. Snopok, arXiv:1208.5798, 2012. Particle Accelerator, 24th Conference (PAC'11) 2011. 28 Mar - 1 Apr 2011. New York, USA.
[Johnstone:2011zzc]
[6-37]
Ion source development for the proposed FNAL 750-keV injector upgrade, D. S. Bollinger, AIP Conf. Proc. 1390 (2011) 284-291, arXiv:1207.7049. 2nd International Symposium on Negative Ions, Beams and Sources: NIBS2010, 16-19 Nov 2010. Takayama, Japan.
[Bollinger:2010zz]
[6-38]
Data Preservation and Long Term Analysis in High Energy Physics, David M. South, J. Phys. Conf. Ser. 396 (2012) 062018, arXiv:1206.5198. 2012 International Conference on Computing in High Energy and Nuclear Physics (CHEP 2012).
[South:2012vf]
[6-39]
Studies of material properties under irradiation at BNL Linear Isotope Producer (BLIP), N. Simos et al., arXiv:1202.3799, 2012. 46th ICFA Advanced Beam Dynamics Workshop HB2010, Sep 27 - Oct 1 2010: Morschach, Switzerland.
[Simos:2010zz]
[6-40]
JASMIN: Japanese-American study of muon interactions and neutron detection, Hiroshi Nakashima et al., arXiv:1202.2098, 2012. 10th Meeting of the Task-Force on Shielding Aspects of Accelerators, Targets and Irradiation Facilities (SATIF10), 2-4 Jun 2010: Geneva, Switzerland.
[Nakashima:2010zz]
[6-41]
Experiences with the Fermilab HINS 325 MHz RFQ, R. C. Webber et al., arXiv:1202.1550, 2012. 25th International Linear Accelerator Conference (LINAC10) 12-17 Sep 2010: Tsukuba, Japan.
[Webber:2010zz]
[6-42]
Research and Development for a Gadolinium Doped Water Cherenkov Detector, Andrew Renshaw (Super-Kamiokande), Phys.Procedia 37 (2012) 1249-1256, arXiv:1201.1017. TIPP 2011.
[Renshaw:2012np]
[6-43]
Acoustic detection of ultra-high energetic neutrinos - a snap shot, Rolf Nahnhauer, Nucl. Instrum. Meth. A692 (2012) 58-64, arXiv:1201.0908. RICAP11, Rome 2011.
[Nahnhauer:2012yi]
[6-44]
SciBath: A Novel Tracking Detector for Measuring Neutral Particles Underground, R. Cooper et al., arXiv:1110.4432, 2011. DPF-2011 Conference, Providence, RI, August 8-13, 2011.
[Cooper:2011kx]
[6-45]
The ArgoNeuT experiment, Roxanne Guenette, arXiv:1110.0443, 2011. DPF-2011 Conference, Providence, RI, August 8-13, 2011.
[Guenette:2011zj]
[6-46]
Status of R&D on Micromegas for Rare Event Searches: The T-REX project, I. G. Irastorza et al., EAS Publ.Ser. 53 (2012) 147-154, arXiv:1109.4021. 3rd International conference on Directional Detection of Dark Matter (CYGNUS 2011), Aussois, France, 8-10 June 2011.
[Irastorza:2011hh]
[6-47]
Signal Classification for Acoustic Neutrino Detection, M. Neff et al., Nucl. Instrum. Meth. A662 (2012) S242-S245, arXiv:1104.3248. ARENA 2010.
[Neff:2011xh]
[6-48]
Development of Combined Opto-Acoustical Sensor Modules, A. Enzenhofer et al., Nucl. Instrum. Meth. A662 (2012) S203-S205, arXiv:1104.3061. ARENA2010.
[Enzenhofer:2011sy]
[6-49]
Feasibility of acoustic neutrino detection in ice: Design and performance of the South Pole Acoustic Test Setup (SPATS), S. Boeser et al., arXiv:0807.4676, 2008. International Cosmic Ray Conference, 2007.
[Boeser:2008bj]
[6-50]
Mass production test of Hamamatsu MPPC for T2K neutrino oscillation experiment, M. Yokoyama et al., Nucl. Instrum. Meth. A610 (2009) 362-365, arXiv:0807.3147. NDIP 2008, Aix-les-Bains, France, June 15-20, 2008.
[Yokoyama:2008hq]
[6-51]
Application of Hamamatsu MPPC to T2K Neutrino Detectors, M. Yokoyama et al., Nucl. Instrum. Meth. A610 (2009) 128-130, arXiv:0807.3145. NDIP 2008, Aix-les-Bains, France, June 15-20, 2008.
[Yokoyama:2008hn]

7 - Data Analysis

[7-1]
Effect of Correlations Between Model Parameters and Nuisance Parameters When Model Parameters are Fit to Data, Byron Roe, arXiv:1309.6146, 2013.
[Roe:2013aza]
[7-2]
A Note on Neutron Capture Correlation Signals, Backgrounds, and Efficiencies, N. S. Bowden, M. Sweany, S. Dazeley, Nucl. Instrum. Meth. A693 (2012) 209-214, arXiv:1202.0512.
[Bowden:2012um]
[7-3]
Applying Bayesian Neural Networks to Separate Neutrino Events from Backgrounds in Reactor Neutrino Experiments, Ye Xu, Yixiong Meng, Weiwei Xu, JINST 3 (2008) P08005, arXiv:0808.0240.
[Xu:2008xu]

8 - Future Experiments

[8-1]
PANDORA a New Facility for Interdisciplinary In-Plasma Physics, D. Mascali et al., arXiv:1703.00479, 2017.
[Mascali:2017msr]
[8-2]
Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 10: Commuication, Education, and Outreach, M. Bardeen et al., arXiv:1401.6119, 2014.
[Bardeen:2013fta]
[8-3]
Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 9: Computing, L. A. T. Bauerdick et al., arXiv:1401.6117, 2014.
[Bauerdick:2014qka]
[8-4]
Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 8: Instrumentation Frontier, M. Demarteau et al., arXiv:1401.6116, 2014.
[Demarteau:2014pka]
[8-5]
Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 7: Underground Laboratory Capabilities, M. G. Gilchriese et al., arXiv:1401.6115, 2014.
[Gilchriese:2014oka]
[8-6]
Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 6: Accelerator Capabilities, W. A. Barletta et al., arXiv:1401.6114, 2014.
[Barletta:2014nka]
[8-7]
Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 4: Cosmic Frontier, J. L. Feng et al., arXiv:1401.6085, 2014.
[Feng:2014uja]
[8-8]
Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 3: Energy Frontier, R. Brock et al., arXiv:1401.6081, 2014.
[Brock:2014tja]
[8-9]
Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 2: Intensity Frontier, J. L. Hewett et al., arXiv:1401.6077, 2014.
[Hewett:2014qja]
[8-10]
Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 1: Summary, J. L. Rosner et al., arXiv:1401.6075, 2014.
[Rosner:2014pja]

Search Neutrino Unbound

Cross search NU

It is possible to perform a cross search between the various pages of Neutrino Unbound.
This is useful if you want to show the common elements that appear in the listings of two (or more) different topics or experiments.

Go to the search form.

[Go to ...]

Neutrino Unbound Home

[empty]
Authors:
Stefano Gariazzo / gariazzo@to.infn.it
Carlo Giunti / giunti@to.infn.it
Marco Laveder / marco.laveder@pd.infn.it
Last Update: Fri 16 Jun 2017, 08:16:01 UTC