Neutrino Mass: Direct Measurements

Filter this page

(Note: The process can take some time.)

EXPAND ALL
COMPRESS ALL

References

1 - Reviews

[1-1]
Challenges in Neutrino Mass Measurements, Jyotsna Singh, M. Ibrahim Mirza, Adv.High Energy Phys. 2023 (2023) 8897375, arXiv:2305.12654.
[Singh:2023ked]
[1-2]
Report of the Topical Group on Neutrino Properties for Snowmass 2021, Carlo Giunti, Julieta Gruszko, Benjamin Jones, Lisa Kaufman, Diana Parno, Andrea Pocar, arXiv:2209.03340, 2022.
[Giunti:2022aea]
[1-3]
KATRIN: Status and Prospects for the Neutrino Mass and Beyond, M. Aker et al., J.Phys.G 49 (2022) 100501, arXiv:2203.08059.
[KATRIN:2022ayy]
[1-4]
Converging the Neutrino mass limit: An experimental approach, Athar Ahmad, Naila Islam, arXiv:2103.07888, 2021.
[Ahmad:2021etk]
[1-5]
The Design, Construction, and Commissioning of the KATRIN Experiment, M. Aker et al., JINST 16 (2021) T08015, arXiv:2103.04755.
[KATRIN:2021dfa]
[1-6]
Direct Measurements of Neutrino Mass, Joseph A. Formaggio, Andre Luiz C. de Gouvea, R. G. Hamish Robertson, Phys.Rept. 914 (2021) 1-54, arXiv:2102.00594.
[Formaggio:2021nfz]
[1-7]
Neutrino Mass Ordering in 2018: Global Status, P. F. de Salas, S. Gariazzo, O. Mena, C. A. Ternes, M. Tortola, Front.Astron.Space Sci. 5 (2018) 36, arXiv:1806.11051.
[DeSalas:2018rby]
[1-8]
The use of low temperature detectors for direct measurements of the mass of the electron neutrino, Angelo Nucciotti, Adv. High Energy Phys. 2016 (2016) 9153024, arXiv:1511.00968.
[Nucciotti:2015rsl]
[1-9]
Searches for Active and Sterile Neutrinos in Beta-Ray Spectra, Otokar Dragoun, Drahoslav Venos, J. Phys. 3 (2016) 77-113, arXiv:1504.07496.
[Dragoun:2015oja]
[1-10]
Neutrino Masses and Flavor Oscillations, Yifang Wang, Zhi-zhong Xing, Adv.Ser.Direct.High Energy Phys. 26 (2016) 371-395, arXiv:1504.06155.
[Wang:2015rma]
[1-11]
Neutrinos, A. de Gouvea et al. (Intensity Frontier Neutrino Working Group), arXiv:1310.4340, 2013.
[IntensityFrontierNeutrinoWorkingGroup:2013sdv]
[1-12]
Neutrino Masses, Christian Weinheimer, Kai Zuber, Annalen der Physik, 525 (2013) 565-575, arXiv:1307.3518.
[Weinheimer:2013hya]
[1-13]
Current direct neutrino mass experiments, G. Drexlin, V. Hannen, S. Mertens, C. Weinheimer, Adv. High Energy Phys. 2013 (2013) 293986, arXiv:1307.0101.
[Drexlin:2013lha]
[1-14]
Neutrino Spectroscopy with Atoms and Molecules, Atsushi Fukumi et al., PTEP 2012 (2012) 04D002, arXiv:1211.4904.
[Fukumi:2012rn]
[1-15]
Neutrino physics with cryogenic detectors, Ettore Fiorini, Prog. Part. Nucl. Phys. 64 (2010) 241-248.
[Fiorini:2010zz]
[1-16]
Neutrino mass limit from tritium beta decay, E.W. Otten, C. Weinheimer, Rept.Prog.Phys. 71 (2008) 086201, arXiv:0909.2104.
[Otten:2008zz]
[1-17]
Neutrinoless double beta decay and direct searches for neutrino mass, Craig Aalseth et al., arXiv:hep-ph/0412300, 2004.
[Aalseth:2004hb]
[1-18]
Neutrino Oscillations, Masses and Mixing, W.M. Alberico, S.M. Bilenky, Phys. Part. Nucl. 35 (2004) 297, arXiv:hep-ph/0306239.
[Alberico:2003kd]
[1-19]
Neutrino mass measurements, D. L. Wark, Phil. Trans. Roy. Soc. Lond. A361 (2003) 2527-2551.
[Wark:2003su]
[1-20]
Absolute values of neutrino masses: Status and prospects, S. M. Bilenky, C. Giunti, J. A. Grifols, E. Masso, Phys. Rep. 379 (2003) 69-148, arXiv:hep-ph/0211462.
[Bilenky:2002aw]
[1-21]
Neutrino mass from tritium beta decay: Present limits and perspectives, J. Bonn, C. Weinheimer, Acta Phys. Polon. B31 (2000) 1209-1220.
[Bonn:2000rv]
[1-22]
The Appearance and disappearance of the 17-keV neutrino, A. Franklin, Rev. Mod. Phys. 67 (1995) 457-490.
[Franklin:1995pk]
[1-23]
Electron antineutrino mass from beta decay, W. Kundig, E. Holzschuh, Prog. Part. Nucl. Phys. 32 (1994) 131-151.
[Kundig:1994kg]
[1-24]
Measurement of the neutrino mass from tritium beta decay, E. Holzschuh, Rept. Prog. Phys. 55 (1992) 1035-1091.
[Holzschuh:1992xy]
[1-25]
Direct measurements of neutrino mass, R. G. H. Robertson, D. A. Knapp, Ann. Rev. Nucl. Part. Sci. 38 (1988) 185-215.
[Robertson:1988qj]
[1-26]
On the determination of neutrino mass: a critical status report, Cheng-rui Ching, Tso-hsiu Ho, Phys. Rep. 112 (1984) 1.
[Ching:1984cj]
[1-27]
Theory of Beta Decay, M. Morita, Prog. Theor. Phys. Suppl. 26 (1963) 1-63.
[Morita:1963zz]
[1-28]
Fermi's Theory of Beta Decay, E. J. Konopinski, Rev. Mod. Phys. 27 (1955) 254-257. http://prola.aps.org/pdf/RMP/v27/i3/p254_1.
[Konopinski:1955]
[1-29]
Beta Decay, E. J. Konopinski, Rev. Mod. Phys. 25 (1943) 209-245. http://prola.aps.org/pdf/RMP/v15/i4/p209_1.
[Konopinski:1953]

2 - Reviews - Talks

[2-1]
Neutrino mass measurements using cryogenic detectors, Loredana Gastaldo, J.Low Temp.Phys. 209 (2022) 804-814, arXiv:2203.01395. 19th International Workshop on Low Temperature Detectors (LTD19).
[Gastaldo:2022uyk]
[2-2]
Light Sterile Neutrinos, Stefano Gariazzo, J.Phys.Conf.Ser. 2156 (2021) 012003, arXiv:2110.09876. 17th International Conference on Topics in Astroparticle and Underground Physics (TAUP).
[Gariazzo:2021wsx]
[2-3]
Direct Neutrino Mass Experiments, Susanne Mertens, J. Phys. Conf. Ser. 718 (2016) 022013, arXiv:1605.01579. NuPhys2015 (London, 16-18 December 2015).
[Mertens:2016ihw]
[2-4]
Direct probes of neutrino mass, R. G. Hamish Robertson, Nucl. Part. Phys. Proc. 265-266 (2015) 7-12, arXiv:1502.00144. NOW14, Neutrino Oscillation Workshop, Conca Specchiulla (Otranto, Lecce, Italy) Sept. 7-14, 2014.
[Robertson:2015owa]
[2-5]
Absolute neutrino masses, S. Mertens, 2015. TAUP 2015, 7-11 September 2015, Torino, Italy. http://www.taup-conference.to.infn.it/2015/day3/plenary/mertens.pdf.
[Mertens-TAUP2015]
[2-6]
$^{163}$Ho based experiments, Loredana Gastaldo, AIP Conf. Proc. 1666 (2015) 050001, arXiv:1409.0894.
[Gastaldo:2014hga]
[2-7]
Direct neutrino mass measurements after PLANCK, J.A. Formaggio, Phys.Dark Univ. 4 (2014) 75-80.
[Formaggio:2014ppa]
[2-8]
The Future of Neutrino Mass Measurements: Terrestrial, Astrophysical, and Cosmological Measurements in the Next Decade. Highlights of the NuMass 2013 Workshop. Milano, Italy, February 4 - 7, 2013, G. J. Barker et al., arXiv:1309.7810, 2013.
[Barker:2013kvg]
[2-9]
Direct neutrino mass measurements, Christian Weinheimer, Hyperfine Interact. 215 (2013) 85-93.
[Weinheimer:2013exa]
[2-10]
Status of PMNS and Impact of Large $\vartheta_{13}$ for Sterile Neutrino Phenomenology, C. Giunti, 2012. GDR Neutrino, 20-21 June 2012, APC, Paris, France. http://personalpages.to.infn.it/~giunti/slides/2012/giunti-120620-gdr.pdf.
[Giunti-GDR2012]
[2-11]
Neutrino Masses in Cosmology, Neutrinoless Double-Beta Decay and Direct Neutrino Masses, C. Giunti, 2012. LIONeutrino2012. http://personalpages.to.infn.it/~giunti/slides/2012/giunti-121024-lioneutrino.pdf.
[Giunti-LIONeutrino2012]
[2-12]
Neutrino Mass: Overview of $\beta\beta_{0\nu}$, Cosmology and Direct Measurements, C. Giunti, 2012. Neutrino Town Meeting, European Strategy for Neutrino Oscillation Physics - II, 14-16 May 2012, CERN. http://personalpages.to.infn.it/~giunti/slides/2012/giunti-120514-nutown.pdf.
[Giunti-NeutrinoTown2012]
[2-13]
Introduction to direct neutrino mass measurements and KATRIN, Thomas Thummler (KATRIN), Nucl. Phys. Proc. Suppl. 229-232 (2012) 146-151, arXiv:1012.2282. XXIV International Conference on Neutrino Physics and Astrophysics, Neutrino 2010.
[Thummler:2010tt]
[2-14]
Neutrino masses and Neutrinoless Double Beta Decay: Status and expectations, Oliviero Cremonesi, arXiv:1002.1437, 2010. 'European Strategy for Future Neutrino Physics' Workshop, CERN October 1-3 2009.
[Cremonesi:2010xs]
[2-15]
Direct determination of Neutrino Mass from Tritium Beta Spectrum, C. Weinheimer, Proc.Int.Sch.Phys.Fermi 170 (2009) 215-243, arXiv:0912.1619. International School of Physics 'Enrico Fermi', CLXX course 'Measurements of Neutrino Mass', June 17-27, 2008, Varenna, Italy.
[Weinheimer:2009cb]
[2-16]
Experiments for the absolute neutrino mass measurement, Markus Steidl, arXiv:0906.0454, 2009. Heavy Quarks and Leptons, Melbourne, 2008.
[Steidl:2009hx]
[2-17]
The Elusive $\nu$ Mass Since 1933, Ngee-Pong Chang, Int. J. Mod. Phys. A24 (2009) 3297-3305, arXiv:0905.1356. PAQFT08.
[Chang:2009gd]
[2-18]
Direct Measurement of Neutrino Mass, R.G. Hamish Robertson, J. Phys. Conf. Ser. 173 (2009) 012016, arXiv:0807.4258. Carolina International Symposium on Neutrino Physics, Columbia, SC, May 15-17, 2008.
[Robertson:2008sq]
[2-19]
Towards absolute neutrino masses, Petr Vogel, Nucl. Phys. Proc. Suppl. 168 (2007) 23-28, arXiv:hep-ph/0611210. NOW2006 Workshop, Otranto, Italy, September 2006.
[Vogel:2006cu]
[2-20]
Theory and phenomenology of neutrino mixing, Carlo Giunti, Nucl. Phys. Proc. Suppl. 169 (2007) 309-320, arXiv:hep-ph/0611125. Tau06 (19-22 September 2006, Pisa, Italy) and HQL06 (16-20 October 2006, Munich, Germany).
[Giunti:2006rs]
[2-21]
Absolute Neutrino Masses, Carlo Giunti, Acta Phys. Polon. B36 (2005) 3215, arXiv:hep-ph/0511131. XXIX International Conference of Theoretical Physics 'Matter To The Deepest: Recent Developments In Physics Of Fundamental Interactions', 8-14 September 2005, Ustron, Poland.
[Giunti:2005qd]
[2-22]
Neutrino mass and mixing parameters: A short review, G.L. Fogli et al., arXiv:hep-ph/0506307, 2005. 40th Rencontres de Moriond on Electroweak Interactions and Unified Theories, La Thuile, Aosta Valley, Italy, 5-12 Mar 2005.
[Fogli:2005gs]
[2-23]
Phenomenology of Absolute Neutrino Masses, Carlo Giunti, Nucl. Phys. Proc. Suppl. 145 (2005) 231, arXiv:hep-ph/0412148. NOW-2004, Neutrino Oscillation Workshop, 11-17 September 2004, Conca Specchiulla, Otranto, Italy. http://www.ba.infn.it/~now2004/talks/16_09_04/plen/GIUNTI.PDF.
[Giunti:2004vv]
[2-24]
Double Beta Decay and the Absolute Neutrino Mass Scale, Carlo Giunti, Aip Conf. Proc. 721 (2004) 170, arXiv:hep-ph/0308206. NuFact 03, 5th International Workshop on Neutrino Factories and Superbeams, 5-11 June 2003, Columbia University, New York. http://www.cap.bnl.gov/nufact03/WG1/6june/giunti.pdf.
[Giunti:2003kb]
[2-25]
The neutrino mass direct measurements, Christian Weinheimer, arXiv:hep-ex/0306057, 2003. 10th Int. Workshop on Neutrino Telescopes, Venice/Italy March 2003.
[Weinheimer:2003bh]
[2-26]
Determination of neutrino masses, present and future, Jean-Luc Vuilleumier, arXiv:hep-ex/0306010, 2003. XXXVIII Rencontres de Moriond, Electroweak interactions and Unified Theories, Les Arcs, March 15-22, 2003.
[Vuilleumier:2003us]
[2-27]
Double beta decay and tritium decay experiments, G. Gratta, 2003. XXI International Symposium on Lepton Photon 2003, 11-16 August 2003, Fermi National Accelerator Laboratory, Batavia, Illinois USA. http://conferences.fnal.gov/lp2003/program/S10/gratta_s10_ungarbled.pdf.
[Gratta:LP03]
[2-28]
The search for the neutrino mass by direct method in the tritium beta-decay and perspectives of study it in the project KATRIN, V. M. Lobashev, Nucl. Phys. A719 (2003) C153-C160. 17th International Nuclear Physics Divisional Conference: Europhysics Conference on Nuclear Physics in Astrophysics (NPDC 17), Debrecen, Hungary, 30 Sep - 3 Oct 2002.
[Lobashev:2003kt]
[2-29]
Absolute neutrino mass update, Heinrich Pas, Thomas J. Weiler, arXiv:hep-ph/0212194, 2002. SUSY02, DESY, Hamburg.
[Pas:2002fz]
[2-30]
Direct neutrino mass search, Christian Weinheimer, arXiv:hep-ex/0210050, 2002. International School of Physics Enrico Fermi: Course 152: Neutrino Physics, Varenna, Lake Como, Italy, 23 Jul - 2 Aug 2002.
[Weinheimer:2002rs]
[2-31]
Study of the tritium beta-spectrum in experiment 'Troitsk nu-mass', V. M. Lobashev, Prog. Part. Nucl. Phys. 48 (2002) 123-131. International School of Physics: 23rd Course: Neutrinos in Astro, Particle and Nuclear Physics, Erice, Italy, 18-26 Sep 2001.
[Lobashev:2002jv]
[2-32]
Direct Neutrino Mass Experiments: Present and Future, Ch. Weinheimer, 2002. XXth International Conference on Neutrino Physics and Astrophysics May 25 - 30, 2002, Munich, Germany. http://neutrino2002.ph.tum.de/pages/transparencies/weinheimer.
[Weinheimer-Nu2002]

3 - Experiment

[3-1]
Tritium Beta Spectrum and Neutrino Mass Limit from Cyclotron Radiation Emission Spectroscopy, A. Ashtari Esfahani et al. (Project 8), Phys.Rev.Lett. 131 (2023) 102502, arXiv:2212.05048.
[Project8:2022hun]
[3-2]
Improved eV-scale Sterile-Neutrino Constraints from the Second KATRIN Measurement Campaign, M. Aker et al. (KATRIN), Phys.Rev.D 105 (2022) 072004, arXiv:2201.11593.
[KATRIN:2022ith]
[3-3]
First direct neutrino-mass measurement with sub-eV sensitivity, M. Aker et al. (KATRIN), Nature Phys. 18 (2022) 160-166, arXiv:2105.08533.
[KATRIN:2021uub]
[3-4]
Analysis methods for the first KATRIN neutrino-mass measurement, M. Aker et al., Phys.Rev.D 104 (2021) 012005, arXiv:2101.05253.
[KATRIN:2021fgc]
[3-5]
Bound on 3+1 active-sterile neutrino mixing from the first four-week science run of KATRIN, M. Aker et al. (KATRIN), Phys.Rev.Lett. 126 (2021) 091803, arXiv:2011.05087.
[KATRIN:2020dpx]
[3-6]
An improved upper limit on the neutrino mass from a direct kinematic method by KATRIN, M. Aker et al. (KATRIN), Phys.Rev.Lett. 123 (2019) 221802, arXiv:1909.06048.
[KATRIN:2019yun]
[3-7]
Measurements with a TRISTAN prototype detector system at the 'Troitsk nu-mass' experiment in integral and differential mode, Tim Brunst et al., JINST 14 (2019) P11013, arXiv:1909.02898.
[Brunst:2019aod]
[3-8]
Status of the HOLMES Experiment to Directly Measure the Neutrino Mass, A. Nucciotti et al., J.Low.Temp.Phys. 193 (2018) 1137-1145, arXiv:1807.09269.
[Nucciotti:2018vyc]
[3-9]
Search for heavy neutral lepton production in $K^+$ decays, NA62, Phys.Lett. B778 (2018) 137-145, arXiv:1712.00297.
[NA62:2017qcd]
[3-10]
First measeurements in search for keV-sterile neutrino in tritium beta-decay by Troitsk nu-mass experiment, J.N. Abdurashitov et al., Pisma Zh.Eksp.Teor.Fiz. 105 (2017) 723-724, arXiv:1703.10779.
[Abdurashitov:2017kka]
[3-11]
Upper bound on neutrino mass based on T2K neutrino timing measurements, K. Abe et al. (T2K), Phys. Rev. D93 (2016) 012006, arXiv:1502.06605.
[T2K:2015sxa]
[3-12]
A search for an additional neutrino mass eigenstate in 2 to 100 eV region from 'Troitsk nu-mass' data - detailed analysis, A.I. Belesev et al., J. Phys. G41 (2014) 015001, arXiv:1307.5687.
[Belesev:2013cba]
[3-13]
Measurement of masses in the $t \bar{t}$ system by kinematic endpoints in $pp$ collisions at $\sqrt{s}=7\,\text{TeV}$, Serguei Chatrchyan et al. (CMS), Eur.Phys.J. C73 (2013) 2494, arXiv:1304.5783.
[CMS:2013wbt]
[3-14]
An upper limit on additional neutrino mass eigenstate in 2 to 100 eV region from 'Troitsk nu-mass' data, A.I. Belesev, A.I. Berlev, E.V. Geraskin, A.A. Golubev, N.A. Likhovid et al., JETP Lett. 97 (2013) 67-69, arXiv:1211.7193.
[Belesev:2012hx]
[3-15]
Limit on sterile neutrino contribution from the Mainz Neutrino Mass Experiment, Christine Kraus, Andrej Singer, Kathrin Valerius, Christian Weinheimer, Eur.Phys.J. C73 (2013) 2323, arXiv:1210.4194.
[Kraus:2012he]
[3-16]
Measurement of the electron antineutrino mass in tritium beta decay in the Troitsk nu-mass experiment, V. N. Aseev et al., Phys. Atom. Nucl. 75 (2012) 464-478. [Yad. Fiz.75,500(2012)].
[Aseev:2012zz]
[3-17]
An upper limit on electron antineutrino mass from Troitsk experiment, V.N. Aseev et al. (Troitsk), Phys. Rev. D84 (2011) 112003, arXiv:1108.5034.
[Troitsk:2011cvm]
[3-18]
Search for Massive Neutrinos in the Decay $\pi \to e \nu$, M. Aoki et al. (PIENU), Phys. Rev. D84 (2011) 052002, arXiv:1106.4055.
[PIENU:2011aa]
[3-19]
On the muon neutrino mass, N. Angelov et al., Nucl. Phys. A780 (2006) 78-89, arXiv:nucl-ex/0605002.
From the abstract: ... we obtained an experimental upper limit for the muon neutrino mass: $m_{\nu} < 2.2 \, \text{MeV}$ at a 90\% confidence level.
[Angelov:2006jn]
[3-20]
Final Results from phase II of the Mainz Neutrino Mass Search in Tritium $\beta$ Decay, Ch. Kraus et al., Eur. Phys. J. C40 (2005) 447-468, arXiv:hep-ex/0412056.
[Kraus:2004zw]
[3-21]
A bolometric measurement of the antineutrino mass, C.Arnaboldi et al., Phys. Rev. Lett. (2003), arXiv:hep-ex/0302006.
[Arnaboldi:2003nv]
[3-22]
New experimental limits on heavy neutrino mixing in B-8 decay obtained with the Borexino Counting Test Facility, H. O. Back et al., JETP Lett. 78 (2003) 261-266.
[Back:2003ae]
[3-23]
Limits on the mixing of tau neutrino to heavy neutrinos, J. Orloff, Alexandre N. Rozanov, C. Santoni, Phys. Lett. B550 (2002) 8-15, arXiv:hep-ph/0208075.
[Orloff:2002de]
[3-24]
Search for heavy neutrinos mixing with tau neutrinos, P. Astier et al. (NOMAD), Phys. Lett. B506 (2001) 27-38, arXiv:hep-ex/0101041.
[NOMAD:2001eyx]
[3-25]
Limits on the existence of heavy neutrinos in the range 50- eV - 1000-eV from the study of the Re-187 beta decay, M. Galeazzi, F. Fontanelli, F. Gatti, S. Vitale, Phys. Rev. Lett. 86 (2001) 1978-1981.
[Galeazzi:2001py]
[3-26]
Newest results from the Mainz neutrino mass experiment, J. Bonn et al., Phys. Atom. Nucl. 63 (2000) 969-974.
[Bonn:2000vc]
[3-27]
The beta-spectrum of S-35 and search for the admixture of heavy neutrinos, E. Holzschuh, L. Palermo, H. Stussi, P. Wenk, Phys. Lett. B482 (2000) 1-9.
[Holzschuh:2000nj]
[3-28]
Direct search for the neutrino mass in the beta decay of tritium: Status of the 'Troitsk nu-mass' experiment, V. M. Lobashev, Phys. Atom. Nucl. 63 (2000) 962-968.
[Lobashev:2000vb]
[3-29]
Search for an admixture of heavy neutrinos in the beta-decay of Pu-241, O. Dragoun et al., J. Phys. G25 (1999) 1839-1858.
[Dragoun:1999qm]
[3-30]
Search for heavy neutrinos in the beta-spectrum of Ni- 63, E. Holzschuh, W. Kundig, L. Palermo, H. Stussi, P. Wenk, Phys. Lett. B451 (1999) 247-255.
[Holzschuh:1999vy]
[3-31]
Direct search for mass of neutrino and anomaly in the tritium beta-spectrum, V. M. Lobashev et al., Phys. Lett. B460 (1999) 227-235.
[Lobashev:1999tp]
[3-32]
High precision measurement of the tritium beta spectrum near its endpoint and upper limit on the neutrino mass, C. Weinheimer et al., Phys. Lett. B460 (1999) 219-226.
[Weinheimer:1999tn]
[3-33]
Search for a heavy neutrino state in the decay $ pi^+ \to mu^+ + \nu_\mu $, K. Assamagan et al., Phys. Lett. B434 (1998) 158-162.
[Assamagan:1998vy]
[3-34]
An upper limit on the tau neutrino mass from three- and five-prong tau decays, R. Barate et al. (ALEPH), Eur. Phys. J. C2 (1998) 395-406.
[Barate:1998zg]
[3-35]
Search for the admixture of heavy neutrinos in the recoil spectra of Ar-37 decay, M. M. Hindi et al., Phys. Rev. C58 (1998) 2512-2525.
[Hindi:1998ym]
[3-36]
Upper limit of the muon-neutrino mass and charged pion mass from momentum analysis of a surface muon beam, K. Assamagan et al., Phys. Rev. D53 (1996) 6065-6077.
Comment: 2 results for the squared muon-neutrino mass are obtained, according to 2 different choices (A or B) for the $\pi^-$ mass. They are respectively : $m^2_{\nu{\mu}} (A) = (-0.143\pm0.024) \, \mathrm{MeV}^2 $ and $m^2_{\nu{\mu}} (B) = (-0.016\pm0.023) \, \mathrm{MeV}^2 $. The first value is negative by six standard deviations and it is considered unphysical by the authors and therefore rejected. [M.L.].
[Assamagan:1996wb]
[3-37]
A direct limit on the heavy neutrino in tritium beta decay, M. Y. Bahran, G. R. Kalbfleisch, Phys. Lett. B354 (1995) 481-485.
[Bahran:1995zu]
[3-38]
Results of the Troitsk experiment on the search for the electron anti-neutrino rest mass in tritium beta decay, A. I. Belesev et al., Phys. Lett. B350 (1995) 263-272.
[Belesev:1995sb]
[3-39]
Limits on neutrino masses from the tritium beta spectrum, K. H. Hiddemann, H. Daniel, O. Schwentker, J. Phys. G21 (1995) 639-650.
[Hiddemann:1995ce]
[3-40]
Measurement of the muon momentum in pion decay at rest using a surface muon beam, K. Assamagan et al., Phys. Lett. B335 (1994) 231-236.
[Assamagan:1994mb]
[3-41]
New evidence against 17-keV neutrino emission in the beta decay momentum spectrum of S-35, G. E. Berman, M. L. Pitt, F. P. Calaprice, M. M. Lowry, Phys. Rev. C48 (1993) 1-4.
[Berman:1993hg]
[3-42]
Experimental limits on heavy neutrinos in tritium beta decay, G. R. Kalbfleisch, M. Y. Bahran, Phys. Lett. B303 (1993) 355-358.
[Kalbfleisch:1993td]
[3-43]
Evidence against a 17-keV neutrino from S-35 beta decay, J. L. Mortara et al., Phys. Rev. Lett. 70 (1993) 394-397.
[Mortara:1993iv]
[3-44]
No 17-keV neutrino: Admixture < 0.073\% (95\% C.L.), T. Ohshima et al., Phys. Rev. D47 (1993) 4840-4856.
[Ohshima:1993pp]
[3-45]
Improved limit on the electron anti-neutrino rest mass from tritium beta decay, C. Weinheimer et al., Phys. Lett. B300 (1993) 210-216.
[Weinheimer:1993pd]
[3-46]
High sensitivity search for a 17-keV neutrino: Negative indication with an upper limit of 0.1-percent, H. Kawakami et al., Phys. Lett. B287 (1992) 45-50.
[Kawakami:1992py]
[3-47]
New precision measurement of the muon momentum in pion decay at rest, M. Daum, R. Frosch, D. Herter, M. Janousch, P. R. Kettle, Phys. Lett. B265 (1991) 425-429.
[Daum:1991km]
[3-48]
Search for massive neutrinos in $ \pi \to e \nu $ decay, N. De Leener- Rosier et al., Phys. Rev. D43 (1991) 3611-3618.
[DeLeener-Rosier:1991ic]
[3-49]
Limit on anti-electron-neutrino mass from observation of the beta decay of molecular tritium, R. G. H. Robertson, T. J. Bowles, G. J. Stephenson, D. L. Wark, John F. Wilkerson, D. A. Knapp, Phys. Rev. Lett. 67 (1991) 957-960.
[Robertson:1991vn]
[3-50]
Evidence for a 17-keV neutrino, I. Zlimen, A. Ljubicic, S. Kaucic, B. A. Logan, Phys. Rev. Lett. 67 (1991) 560-563.
[Zlimen:1991pm]
[3-51]
Searches for admixture of massive neutrinos into the electron flavor, J. Deutsch, M. Lebrun, R. Prieels, Nucl. Phys. A518 (1990) 149-155.
[Deutsch:1990ut]
[3-52]
Neutrino mass from the beta spectrum in the decay of tritium, S. D. Boris et al., Phys. Rev. Lett. 58 (1987) 2019-2022.
[Boris:1987tq]
[3-53]
Upper limits on the mixing of heavy neutrinos in the beta decay of NI-63, D. W. Hetherington, R. L. Graham, M. A. Lone, J. S. Geiger, G. E. Lee-Whiting, Phys. Rev. C36 (1987) 1504-1513.
[Hetherington:1987qr]
[3-54]
Measurement of the Neutrino Mass Using the Inner Bremsstrahlung Emitted in the Electron-Capture Decay of $^{163}$Ho, P. T. Springer, C. L. Bennett, P. A. Baisden, Phys. Rev. A35 (1987) 679-689.
[Springer:1987zz]
[3-55]
A method for measuring the anti-electron-neutrino rest mass, V. M. Lobashev, P. E. Spivak, Nucl. Instrum. Meth. A240 (1985) 305-310.
[Lobashev:1985mu]
[3-56]
Search for admixture of heavy neutrinos with masses between 5 keV and 55 keV, J. Markey, F. Boehm, Phys. Rev. C32 (1985) 2215-2216.
[Markey:1985ydd]
[3-57]
Search for heavy neutrinos in the beta decay of S-35 an evidence against the 17-keV heavy neutrino, T. Ohi et al., Phys. Lett. B160 (1985) 322.
[Ohi:1985zi]
[3-58]
Search for mixing of heavy neutrinos in the beta+ and beta- spectra of the Cu-64 decay, K. Schreckenbach, G. Colvin, F. Von Feilitzsch, Phys. Lett. B129 (1983) 265-268.
[Schreckenbach:1983cg]
[3-59]
Determination of an upper limit of the mass of the muonic neutrino from the pion decay in flight, H. B. Anderhub et al., Phys. Lett. B114 (1982) 76-80.
[Anderhub:1982ea]
[3-60]
A Limit on the Mass of the Electron Neutrino: The Case of $^{163}$Ho, J. U. Andersen et al., Phys. Lett. B113 (1982) 72.
[Andersen:1982hh]
[3-61]
Search for an admixture of heavy neutrino in pion decay, R. Abela et al., Phys. Lett. B105 (1981) 263-266.
[Abela:1981nf]
[3-62]
Limits on the emission of heavy neutrinos in H-3 decay, J. J. Simpson, Phys. Rev. D24 (1981) 2971-2972.
[Simpson:1981en]
[3-63]
Measurement of the Beta Energy Spectrum of $^{3}$H to Determine the Anti-neutrino Mass, J.J. Simpson, Phys. Rev. D23 (1981) 649-662.
[Simpson:1981gq]
[3-64]
An estimate of the electron - neutrino mass from the beta spectrum of tritium in the valine molecule, V. A. Lyubimov, E. G. Novikov, V. Z. Nozik, E. F. Tretyakov, V. S. Kosik, Phys. Lett. B94 (1980) 266-268.
[Lyubimov:1980un]
[3-65]
Precision measurement of the muon momentum in pion decay at rest, M. Daum et al., Phys. Rev. D20 (1979) 2692.
[Daum:1979my]
[3-66]
Experimental Limit of the Neutrino Rest Mass, L. Friedman, Phys. Rev. Lett. 1 (1958) 101-102.
[Friedman-PRL-1-101-1958]
[3-67]
Mass Difference T-He < sup > 3 < /sup > and the Mass of the Neutrino, L. Friedman, L. G. Smith, Phys. Rev. Lett. 109 (1958) 2214-2215.
[Friedman-Smith-PR-109-2214-1958]
[3-68]
The Beta-Spectrum of Tritium and the Mass of the Neutrino, L. M. Langer, R. J. D. Moffat, Phys. Rev. 88 (1952) 689-694.
[Langer-Moffat-PR-88-689-1952]

4 - Experiment - Talks

[4-1]
First Calorimetric Measurement of Electron Capture in ${}^{193}$Pt with a Transition Edge Sensor, Katrina E. Koehler et al., J.Low.Temp.Phys. 193 (2018) 1151-1159, arXiv:1803.06370. 17th International Workshop on Low Temperature Detectors.
[Koehler:2018hzx]
[4-2]
The electron capture in $^{163}$Ho experiment - ECHo, L. Gastaldo et al., Eur. Phys. J. ST 226 (2017) 1623-1694.
[Gastaldo:2017edk]
[4-3]
Status of the MARE Experiment, M. Ribeiro Gomes, F. Gatti, A. Nucciotti, P. Manfrinetti, M. Galeazzi et al., IEEE Trans.Appl.Supercond. 23 (2013) 2101204.
[RibeiroGomes:2013isn]
[4-4]
Neutrino mass calorimetric searches in the MARE experiment, A. Nucciotti (MARE), Nucl. Phys. Proc. Suppl. 229-232 (2012) 155-159, arXiv:1012.2290. XXIV International Conference on Neutrino Physics and Astrophysics (Neutrino 2010), Athens, Greece, June 14-19, 2010.
[Nucciotti:2012yqp]
[4-5]
The Microcalorimeter Arrays for a Rhenium Experiment (MARE): a next-generation calorimetric neutrino mass experiment, A. Monfardini et al. (MARE), Prog. Part. Nucl. Phys. 57 (2006) 68, arXiv:hep-ex/0509038. LTD11, Tokyo 2005.
[Monfardini:2005dk]
[4-6]
New limits from the Milano neutrino mass experiment with thermal microcalorimeters, M. Sisti et al., Nucl. Instrum. Meth. A520 (2004) 125-131. 10th International Workshop on Low Temperature Detectors (LTD-10), Genoa, Italy, 7-11 Jul 2003.
[Sisti:2004iq]
[4-7]
Direct measurements of neutrino mass, F. Gatti, AIP Conf. Proc. 605 (2002) 429-434.
[Gatti:2002gs]
[4-8]
Development of rhenium microcalorimeter for neutrino mass measurements with sensitivity in the sub-eV range, M. Razeti, F. Gatti, D. Pergolesi, AIP Conf. Proc. 605 (2002) 457-460.
[Razeti:2002gy]
[4-9]
Status of the Milano neutrino mass experiment with arrays of AgReO-4 microcalorimeters, M. Sisti et al., Nucl. Phys. Proc. Suppl. 110 (2002) 369-371.
[Sisti:2002rr]
[4-10]
First results of the calorimetric spectrometer for the beta decay of rhenium-187, F. Gatti, F. Fontanelli, M. Galeazzi, S. Vitale, Nucl. Instrum. Meth. A444 (2000) 88-91.
[Gatti:2000fn]
[4-11]
The low-noise read-out electronics of the Re-187 experiment, F. Gatti, L. Parodi, Nucl. Instrum. Meth. A444 (2000) 129-131.
[Gatti:2000ft]
[4-12]
Experimental limits for heavy neutrino admixture deduced from Lu-177 beta decay and constraints on the life time of a radiative neutrino decay mode, S. Schonert et al., Nucl. Phys. Proc. Suppl. 48 (1996) 201-203.
[Schonert:1995xh]

5 - Experiment - Auxiliary Measurements

[5-1]
Penning-trap measurement of the $Q$-value of the electron capture in $^{163}\mathrm{Ho}$ for the determination of the electron neutrino mass, Christoph Schweiger et al., arXiv:2402.06464, 2024.
[Schweiger:2024cky]
[5-2]
Direct determination of the atomic mass difference of Re187 and Os187 for neutrino physics and cosmochronology, D.A. Nesterenko et al., Phys. Rev. C90 (2014) 042501, arXiv:1604.04394.
[Nesterenko:2014sma]
[5-3]
Direct Measurement of the Mass Difference of Ho163 and Dy163 Solves the Q-Value Puzzle for the Neutrino Mass Determination, S. Eliseev et al., Phys. Rev. Lett. 115 (2015) 062501, arXiv:1604.04210.
[ECHo:2015qgh]
[5-4]
Atomic Masses of Tritium and Helium-3, E. G. Myers, A. Wagner, H. Kracke, B. A. Wesson, Phys. Rev. Lett. 114 (2015) 013003.
[Myers:2015lca]
[5-5]
End-point energy and half-life of the Re-187 beta decay, M. Galeazzi, F. Fontanelli, F. Gatti, S. Vitale, Phys. Rev. C63 (2001) 014302.
[Galeazzi:2001ih]

6 - Experiment - Source

[6-1]
Anomalous Structure in the Beta Decay of Gaseous Molecular Tritium, Wolfgang Stoeffl, Daniel J. Decman, Phys. Rev. Lett. 75 (1995) 3237-3240.
[Stoeffl:1995wm]

7 - Experiment - Detector

[7-1]
Deep Learning Based Event Reconstruction for Cyclotron Radiation Emission Spectroscopy, A. Ashtari Esfahani et al., arXiv:2402.13256, 2024.
[AshtariEsfahani:2024akk]
[7-2]
A method for determining the transition energies of $^{\mathrm{83m}}$Kr at the KATRIN experiment, C. Rodenbeck, Eur.Phys.J.C 82 (2022) 700, arXiv:2205.01484.
[Rodenbeck:2022fxc]
[7-3]
Time-Focusing Time-of-Flight, a new method to turn a MAC-E-filter into a quasi-differential spectrometer, Alexander Fulst, Alexey Lokhov, Mariia Fedkevych, Nicholas Steinbrink, Christian Weinheimer, Eur.Phys.J. C80 (2020) 956, arXiv:2007.01020.
[Fulst:2020boz]
[7-4]
Shakeup and shakeoff satellite structure in the electron spectrum of $^{83}$Kr$^m$, R. G. Hamish Robertson, Vedantha Venkatapathy, Phys.Rev. C102 (2020) 035502, arXiv:2003.12952.
[Robertson:2020boa]
[7-5]
Ultracold Neutron Storage Simulation Using the Kassiopeia Software Package, Z. Bogorad, P.M. Murthy, J.A. Formaggio, New J.Phys. 24 (2022) 023007, arXiv:1811.05972.
[Bogorad:2018tcz]
[7-6]
The role of electron scattering from registration detector in a MAC-E type spectrometer, P.V. Grigorieva, A.A. Nozik, V.S. Pantuev, A.K. Skasyrskaya, Nucl.Instrum.Meth. A832 (2016) 15-20, arXiv:1511.06129.
[Grigorieva:2015wkq]
[7-7]
Development of holmium-163 electron-capture spectroscopy with transition-edge sensors, M. P. Croce et al., J.Low.Temp.Phys. 184 (2016) 958-968, arXiv:1510.03874.
[Croce:2015kwa]
[7-8]
Validation of a model for Radon-induced background processes in electrostatic spectrometers, N. Wandkowsky et al., J. Phys. G40 (2013) 085102, arXiv:1304.1379.
[Wandkowsky:2013vna]
[7-9]
Modeling of electron emission processes accompanying Radon-$\alpha$-decays within electrostatic spectrometers, N. Wandkowsky et al., New J. Phys. 15 (2013) 083040, arXiv:1304.1375.
[Wandkowsky:2013una]
[7-10]
Data analysis in beta-spectroscopy with criogenic detectors, F. Fontanelli, M. Galeazzi, F. Gatti, A.M. Swift, S. Vitale, Nucl. Instrum. Meth. A421 (1999) 464-470.
[Fontanelli:1999]

8 - Theory

[8-1]
General Approach to Neutrino Mass Mechanisms with Sterile Neutrinos, Phys.Rev.D 109 (2024) 073003.
[Fan:2023cml]
[8-2]
Refractive neutrino masses, ultralight dark matter and cosmology, Manibrata Sen, Alexei Y. Smirnov, JCAP 01 (2024) 040, arXiv:2306.15718.
[Sen:2023uga]
[8-3]
Prediction of non-SUSY AdS conjecture on the lightest neutrino mass revisited, Cao H. Nam, arXiv:2306.15383, 2023.
[CaoHNam:2023glk]
[8-4]
Radiative neutrino masses and the Cohen-Kaplan-Nelson bound, Patrick Adolf, Martin Hirsch, Heinrich Pas, JHEP 11 (2023) 078, arXiv:2306.15313.
[Adolf:2023wfw]
[8-5]
Radiative corrections to the endpoint of the tritium beta decay spectrum, W. W. Repko, Chong-En Wu, Phys. Rev. C28 (1983) 2433-2436.
[Repko:1983zcg]
[8-6]
$1/2^+ \to 1/2^+$ beta decay with neutrino mass effects in the elementary particle treatment of weak interactions, Chong-En Wu, W. W. Repko, Phys. Rev. C27 (1983) 1754-1760.
[Wu:1983sz]
[8-7]
General Theory of Weak Leptonic and Semileptonic Decays. 1. Leptonic Pseudoscalar Meson Decays, with Associated Tests For, and Bounds on, Neutrino Masses and Lepton Mixing, Robert E. Shrock, Phys. Rev. D24 (1981) 1232.
[Shrock:1980ct]
[8-8]
General theory of weak processes involving neutrinos. 2. Pure leptonic decays, Robert E. Shrock, Phys. Rev. D24 (1981) 1275.
[Shrock:1981wq]
[8-9]
The phenomenology of neutrino oscillations, I. Yu. Kobzarev, B. V. Martemyanov, L. B. Okun, M. G. Shchepkin, Sov. J. Nucl. Phys. 32 (1980) 823.
[Kobzarev:1980nk]
[8-10]
The influence of mixing of finite mass neutrinos on beta decay spectra, Bruce H. J. McKellar, Phys. Lett. B97 (1980) 93.
[McKellar:1980cn]
[8-11]
New tests for, and bounds on, neutrino masses and lepton mixing, R. E. Shrock, Phys. Lett. B96 (1980) 159.
[Shrock:1980vy]
[8-12]
On the Fermi Theory of Beta Radioactivity. II. The Forbidden Spectra, E. J. Konopinski, G. E. Uhlenbeck, Phys. Rev. 60 (1941) 308-320. http://prola.aps.org/pdf/PR/v60/i4/p308_1.
[Konopinski:1941]
[8-13]
On the Fermi Theory of Beta Radioactivity, E. J. Konopinski, G. E. Uhlenbeck, Phys. Rev. 48 (1935) 7-12. http://prola.aps.org/pdf/PR/v48/i1/p7_1.
[Konopinski:1935]

9 - Phenomenology

[9-1]
Absolutely Scintillating: constraining $\nu$ mass with black hole-forming supernovae, George Parker, Michael Wurm, arXiv:2311.10682, 2023.
[Parker:2023cos]
[9-2]
Weighing neutrinos at the damping tail, Eleonora Di Valentino, Stefano Gariazzo, William Giare, Olga Mena, Phys.Rev.D 108 (2023) 083509, arXiv:2305.12989.
[DiValentino:2023fei]
[9-3]
Neutrino mass matrix in neutrino-related processes, M. I. Krivoruchenko, F. Simkovic, Phys.Atom.Nucl. 86 (2023) 709-724, arXiv:2305.12378.
[Krivoruchenko:2023npj]
[9-4]
Quantifying the tension between cosmological and terrestrial constraints on neutrino masses, Stefano Gariazzo, Olga Mena, Thomas Schwetz, Phys.Dark Univ. 40 (2023) 101226, arXiv:2302.14159.
[Gariazzo:2023joe]
[9-5]
Sensitivity of Future Tritium Decay Experiments to New Physics, James A. L. Canning, Frank F. Deppisch, Wenna Pei, JHEP 03 (2023) 144, arXiv:2212.06106.
[Canning:2022nye]
[9-6]
A study of the relativistic corrections to tritium $\beta$-decay, Gianluca Cavoto, Angelo Esposito, Guglielmo Papiri, Antonio Davide Polosa, Phys.Rev.C 107 (2023) 064603, arXiv:2211.13247.
[Cavoto:2022xwo]
[9-7]
Gallium Anomaly: Critical View from the Global Picture of $\nu_{e}$ and $\bar\nu_{e}$ Disappearance, C. Giunti, Y. F. Li, C. A. Ternes, O. Tyagi, Z. Xin, JHEP 10 (2022) 164, arXiv:2209.00916.
[Giunti:2022btk]
[9-8]
Michel parameters in the presence of massive Dirac and Majorana neutrinos, Juan Manuel Marquez, Gabriel Lopez Castro, Pablo Roig, JHEP 11 (2022) 117, arXiv:2208.01715.
[Marquez:2022bpg]
[9-9]
Plutonium-241 as a possible isotope for neutrino mass measurement and capture, Nicolo de Groot, J.Phys.G 50 (2023) 055106, arXiv:2203.01708.
[deGroot:2022tbi]
[9-10]
An absolute $\nu$ mass measurement with the DUNE experiment, Federica Pompa, Francesco Capozzi, Olga Mena, Michel Sorel, Phys.Rev.Lett. 129 (2022) 121802, arXiv:2203.00024.
[Pompa:2022cxc]
[9-11]
Beta-Decay Spectrum and Lorentz Violation, Ralf Lehnert, Phys.Lett.B 828 (2022) 137017, arXiv:2112.13803.
[Lehnert:2021tbv]
[9-12]
Tritium beta decay with modified neutrino dispersion relations: KATRIN in the dark sea, Guo-yuan Huang, Werner Rodejohann, Nucl.Phys.B 993 (2023) 116262, arXiv:2110.03718.
[Huang:2021zzz]
[9-13]
The unfinished fabric of the three neutrino paradigm, Francesco Capozzi, Eleonora Di Valentino, Eligio Lisi, Antonio Marrone, Alessandro Melchiorri, Antonio Palazzo, Phys.Rev.D 104 (2021) 083031, arXiv:2107.00532.
[Capozzi:2021fjo]
[9-14]
Heisenberg's uncertainty as a limiting factor for neutrino mass detection in $\beta$-decay, Yevheniia Cheipesh, Vadim Cheianov, Alexey Boyarsky, Phys.Rev.D 104 (2021) 116004, arXiv:2101.10069.
[Cheipesh:2021fmg]
[9-15]
Persistent magnetization at neutrino pair emission, M. Yoshimura, arXiv:2004.03812, 2020.
[Yoshimura:2020qyc]
[9-16]
Addendum to: Global constraints on absolute neutrino masses and their ordering, Francesco Capozzi, Eleonora Di Valentino, Eligio Lisi, Antonio Marrone, Alessandro Melchiorri, Antonio Palazzo, Phys.Rev. D101 (2020) 116013, arXiv:2003.08511.
[Capozzi:2017ipn]
[9-17]
Bounds on light sterile neutrino mass and mixing from cosmology and laboratory searches, Steffen Hagstotz, Pablo F. de Salas, Stefano Gariazzo, Martina Gerbino, Massimiliano Lattanzi, Sunny Vagnozzi, Katherine Freese, Sergio Pastor, Phys.Rev.D 104 (2021) 123524, arXiv:2003.02289.
[Hagstotz:2020ukm]
[9-18]
KATRIN bound on 3+1 active-sterile neutrino mixing and the reactor antineutrino anomaly, C. Giunti, Y.F. Li, Y.Y. Zhang, JHEP 2005 (2020) 061, arXiv:1912.12956.
[Giunti:2019fcj]
[9-19]
QED background against atomic neutrino process with initial spatial phase, Minoru Tanaka, Koji Tsumura, Noboru Sasao, Satoshi Uetake, Motohiko Yoshimura, Eur.Phys.J.Plus 135 (2020) 283, arXiv:1912.02475.
[Tanaka:2019blr]
[9-20]
Prospects for Finding Sterile Neutrino Dark Matter at KATRIN, Cristina Benso, Vedran Brdar, Manfred Lindner, Werner Rodejohann, Phys.Rev. D100 (2019) 115035, arXiv:1911.00328.
[Benso:2019jog]
[9-21]
Effective neutrino masses in KATRIN and future tritium beta-decay experiments, Guo-yuan Huang, Werner Rodejohann, Shun Zhou, Phys.Rev. D101 (2020) 016003, arXiv:1910.08332.
[Huang:2019tdh]
[9-22]
Comment on 'An improved upper limit on the neutrino mass from a direct kinematic method by KATRIN', Alan Chodos, arXiv:1909.08207, 2019.
[Chodos:2019wtw]
[9-23]
Raman stimulated neutrino pair emission, H. Hara, M. Yoshimura, Eur.Phys.J. C79 (2019) 684, arXiv:1904.03813.
[Hara:2019bur]
[9-24]
Tritium beta decay with additional emission of new light bosons, Giorgio Arcadi, Julian Heeck, Florian Heizmann, Susanne Mertens, Farinaldo S. Queiroz, Werner Rodejohann, Martin Slezak, Kathrin Valerius, JHEP 1901 (2019) 206, arXiv:1811.03530.
[Arcadi:2018xdd]
[9-25]
Neutrino mass from bremsstrahlung endpoint in coherent scattering on nuclei, Alexander Millar, Georg Raffelt, Leo Stodolsky, Edoardo Vitagliano, Phys.Rev. D98 (2018) 123006, arXiv:1810.06584.
[Millar:2018hkv]
[9-26]
Precision electroweak shift of muonium hyperfine splitting, T. Asaka, M. Tanaka, K. Tsumura, M.Yoshimura, arXiv:1810.05429, 2018.
[Asaka:2018qfg]
[9-27]
Beta and Neutrinoless Double Beta Decays with KeV Sterile Fermions, Asmaa Abada, Alvaro Hernandez-Cabezudo, Xabier Marcano, JHEP 1901 (2019) 041, arXiv:1807.01331.
[Abada:2018qok]
[9-28]
Coherent two-photon emission from hydrogen molecules excited by counter-propagating laser pulses, Takahiro Hiraki et al., Adv.Atom.Molec.Phys. 52 (2019) 045401, arXiv:1806.04005.
[Hiraki:2018jwu]
[9-29]
Shining Light on the Mass Scale and Nature of Neutrinos with $e\gamma \to e\nu\overline\nu$, Jeffrey M. Berryman, Andre de Gouvea, Kevin J. Kelly, Michael Schmitt, Phys.Rev. D98 (2018) 016009, arXiv:1805.10294.
[Berryman:2018qxn]
[9-30]
Current unknowns in the three neutrino framework, F. Capozzi, E. Lisi, A. Marrone, A. Palazzo, Prog.Part.Nucl.Phys. 102 (2018) 48-72, arXiv:1804.09678.
[Capozzi:2018ubv]
[9-31]
Application of integral equations to neutrino mass searches in beta decay, Thomas M. Semkow, Xin Li, arXiv:1801.05009, 2018.
[Semkow:2018xso]
[9-32]
$\textit{Ab initio}$ calculation of the calorimetric electron capture spectrum of $^{163}$Holmium: Intra-atomic decay into bound-states, M. Bras, C. Enss, L. Gastaldo, M.W. Haverkort, Phys.Rev. C97 (2018) 054620, arXiv:1711.10309.
[Brass:2017kov]
[9-33]
keV-Scale Sterile Neutrino Sensitivity Estimation with Time-Of-Flight Spectroscopy in KATRIN using Self Consistent Approximate Monte Carlo, Nicholas M.N. Steinbrink, Jan D. Behrens, Susanne Mertens, Philipp C.-O. Ranitzsch, Christian Weinheimer, Eur.Phys.J. C78 (2018) 212, arXiv:1710.04939.
[Steinbrink:2017ung]
[9-34]
Statistical sensitivity on right-handed currents in presence of eV scale sterile neutrinos with KATRIN, Nicholas M. N. Steinbrink et al., JCAP 1706 (2017) 015, arXiv:1703.07667.
[Steinbrink:2017uhw]
[9-35]
Can one determine the neutrino mass by electron capture?, Amand Faessler, arXiv:1703.06318, 2017.
[Faessler:2017hks]
[9-36]
Probability Densities of the effective neutrino masses $m_{\beta}$ and $m_{\beta\beta}$, Andrea Di Iura, Davide Meloni, Nucl.Phys. B921 (2017) 829-840, arXiv:1612.05453.
[DiIura:2016zsx]
[9-37]
Neutrino Mass, Electron Capture and the Shake-off Contributions, Amand Faessler, Loredana Gastaldo, Fedor Simkovic, Phys.Rev. C95 (2017) 045502, arXiv:1611.00325.
[Faessler:2016hxd]
[9-38]
Impact of ADC non-linearities on the sensitivity to sterile keV neutrinos with a KATRIN-like experiment, K. Dolde, S. Mertens, D. Radford, T. Bode, A. Huber, M. Korzeczek, T. Lasserre, M. Slezak, Nucl.Instrum.Meth. A848 (2017) 127-136, arXiv:1608.03158.
[Dolde:2016wnv]
[9-39]
Warm dark matter sterile neutrinos in electron capture and beta decay spectra, O. Moreno, E. Moya de Guerra, M. Ramon Medrano, Adv.High Energy Phys. 2016 (2016) 6318102, arXiv:1607.02931.
[Moreno:2016hrs]
[9-40]
Anharmonicity of internal atomic oscillation and effective antineutrino mass evaluation from gaseous molecular tritium $\beta$-decay, Alexey V. Lokhov, Nikita A. Titov, J. Phys. G43 (2016) 075102, arXiv:1606.02746.
[Lokhov:2016gtr]
[9-41]
Light sterile neutrino sensitivity of 163Ho experiments, L. Gastaldo, C. Giunti, E. M. Zavanin, JHEP 1606 (2016) 061, arXiv:1605.05497.
[Gastaldo:2016kak]
[9-42]
Improved Statistical Determination of Absolute Neutrino Masses via Radiative Emission of Neutrino Pairs from Atoms, Jue Zhang, Shun Zhou, Phys. Rev. D93 (2016) 113020, arXiv:1604.08008.
[Zhang:2016lqp]
[9-43]
Direct Neutrino Mass Experiments and Exotic Charged Current Interactions, Patrick Otto Ludl, Werner Rodejohann, JHEP 1606 (2016) 040, arXiv:1603.08690.
[Ludl:2016ane]
[9-44]
Neutrino masses and ordering via gravitational waves, photon and neutrino detections, Kasper Langaeble, Aurora Meroni, Francesco Sannino, Phys. Rev. D94 (2016) 053013, arXiv:1603.00230.
[Langaeble:2016han]
[9-45]
The calorimetric spectrum of the electron-capture decay of $^{163}$Ho. The spectral endpoint region, A. De Rujula, M. Lusignoli, JHEP 1605 (2016) 015, arXiv:1601.04990.
[DeRujula:2016fdu]
[9-46]
Probing heavy neutrinos in the COMET experiment, Takehiko Asaka, Atsushi Watanabe, PTEP 2016 (2016) 033B03, arXiv:1510.07746.
[Asaka:2015qma]
[9-47]
The calorimetric spectrum of the electron-capture decay of $^{163}$Ho. A preliminary analysis of the preliminary data, A. De Rujula, M. Lusignoli, arXiv:1510.05462, 2015.
[DeRujula:2015lya]
[9-48]
Neutrinos secretly converting to lighter particles to please both KATRIN and the cosmos, Yasaman Farzan, Steen Hannestad, JCAP 1602 (2016) 058, arXiv:1510.02201.
[Farzan:2015pca]
[9-49]
Conditions for Statistical Determination of the Neutrino Mass Spectrum in Radiative Emission of Neutrino Pairs in Atoms, Ningqiang Song et al., Phys.Rev. D93 (2016) 013020, arXiv:1510.00421.
[Song:2015xaa]
[9-50]
Majorana/Dirac distinction and neutrino mass determination using circulating heavy ions, M. Yoshimura, Phys. Rev. D93 (2016) 013016, arXiv:1508.02795.
[Yoshimura:2015wsa]
[9-51]
The $\nu$ generation: present and future constraints on neutrino masses from cosmology and laboratory experiments, Martina Gerbino, Massimiliano Lattanzi, Alessandro Melchiorri, Phys. Rev. D93 (2016) 033001, arXiv:1507.08614.
[Gerbino:2015ixa]
[9-52]
Determination of the neutrino mass by electron capture in 163 Holmium and the role of the three-hole states in 163 Dysprosium, Amand Faessler, Christian Enss, Loredana Gastaldo, F. Simkovic, Phys. Rev. C91 (2015) 064302, arXiv:1503.02282.
[Faessler:2015txa]
[9-53]
Assessment of molecular effects on neutrino mass measurements from tritium beta decay, L.I. Bodine, D.S. Parno, R.G.H. Robertson, Phys. Rev. C91 (2015) 035505, arXiv:1502.03497.
[Bodine:2015sma]
[9-54]
Improved Description of One- and Two-Hole States after Electron Capture in 163 Holmium and the Determination of the Neutrino Mass, Amand Faessler, Fedor Simkovic, Phys. Rev. C91 (2015) 045505, arXiv:1501.04338.
[Faessler:2015pka]
[9-55]
Boundaries on Neutrino Mass from Supernovae Neutronization Burst by Liquid Argon Experiments, F. Rossi-Torres, M. M. Guzzo, E. Kemp, arXiv:1501.00456, 2015.
[Rossi-Torres:2015rla]
[9-56]
Phys.Rev.D 91 (2015) 053006.
[Kobach:2014hea]
[9-57]
Constraining Absolute Neutrino Masses via Detection of Galactic Supernova Neutrinos at JUNO, Jia-Shu Lu, Jun Cao, Yu-Feng Li, Shun Zhou, JCAP 05 (2015) 044, arXiv:1412.7418.
[Lu:2014zma]
[9-58]
Majorana Neutrinos Production at LHeC in an Effective Approach, Lucia Duarte, Gabriel A. Gonzalez-Sprinberg, Oscar Alfredo Sampayo, Phys. Rev. D91 (2015) 053007, arXiv:1412.1433.
[Duarte:2014zea]
[9-59]
Radiative Emission of Neutrino Pairs in Atoms and Light Sterile Neutrinos, D. N. Dinh, S. T. Petcov, Phys.Lett. B742 (2015) 107-116, arXiv:1411.7459.
[Dinh:2014toa]
[9-60]
Examination of the calorimetric spectrum to determine the neutrino mass in low-energy electron capture decay, R. G. H. Robertson, Phys. Rev. C 91 (2015) 035504, arXiv:1411.2906.
[Robertson:2014fka]
[9-61]
Wavelet Approach to Search for Sterile Neutrinos in Tritium $\beta$-Decay Spectra, S. Mertens et al., Phys. Rev. D91 (2015) 042005, arXiv:1410.7684.
[Mertens:2014osa]
[9-62]
Sensitivity of Next-Generation Tritium Beta-Decay Experiments for keV-Scale Sterile Neutrinos, S. Mertens et al., JCAP 1502 (2015) 020, arXiv:1409.0920.
[Mertens:2014nha]
[9-63]
Electron Capture in 163Ho and Overlap plus Exchange Corrections and the Neutrino Mass, Amand Faessler, Loredana Gastaldo, M.F. Simkovic, J. Phys. G42 (2015) 015108, arXiv:1407.6504.
[Faessler:2014xpa]
[9-64]
Statistical sensitivity of 163-Ho electron capture neutrino mass experiments, A. Nucciotti, Eur.Phys.J. C74 (2014) 3161, arXiv:1405.5060.
[Nucciotti:2014raa]
[9-65]
Two-photon paired solitons supported by medium polarization, M. Yoshimura, N. Sasao, PTEP 2014 (2014) 073B02, arXiv:1403.5048.
[Yoshimura:2014zha]
[9-66]
On the keV sterile neutrino search in electron capture, P. E. Filianin et al., J. Phys. G41 (2014) 095004, arXiv:1402.4400.
[Filianin:2014gaa]
[9-67]
Mass characteristics of active and sterile neutrinos in a phenomenological (3+1+2)-model, N. Yu. Zysina, S. V. Fomichev, V. V. Khruschov, Phys.Atom.Nucl. 77 (2014) 890-900, arXiv:1401.6306.
[Zysina:2014kqa]
[9-68]
Neutrino mass and Extreme Value Distributions in $\beta$-decay, J. G. Esteve, Fernando Falceto, J. Phys. G41 (2014) 055011, arXiv:1401.1644.
[Esteve:2014tfa]
[9-69]
M. Yoshimura, N. Sasao, Phys. Rev. D89 (2014) 053013.
[Yoshimura:2013wva]
[9-70]
Parity violation in radiative emission of neutrino pair from metastable states of heavy alkaline earth atoms, M. Yoshimura, N. Sasao, S. Uetake, Phys. Rev. D90 (2014) 013022, arXiv:1312.6758.
[Yoshimura:2014lja]
[9-71]
Measurement of Neutrino Masses from Relative Velocities, Hong-Ming Zhu, Ue-Li Pen, Xuelei Chen, Derek Inman, Yu Yu, Phys. Rev. Lett. 113 (2014) 131301, arXiv:1311.3422.
[Zhu:2013tma]
[9-72]
I$_{2}$ molecule for neutrino mass spectroscopy: ab initio calculation of spectral rate, Motomichi Tashiro et al., PTEP (2014) 013B02, arXiv:1310.7342.
[Tashiro:2013vja]
[9-73]
Thorium isomer for radiative emission of neutrino pair, N. Sasao, S. Uetake, A. Yoshimi, K. Yoshimura, M. Yoshimura, arXiv:1310.7341, 2013.
[Sasao:2013wia]
[9-74]
Model independent constraints of the averaged neutrino masses revisited, Takeshi Fukuyama, Hiroyuki Nishiura, Mod.Phys.Lett. A28 (2013) 1350186, arXiv:1310.3568.
[Fukuyama:2013roa]
[9-75]
Neutrino mass sensitivity by MAC-E-Filter based time-of-flight spectroscopy with the example of KATRIN, Nicholas Steinbrink et al., New J. Phys. 15 (2013) 113020, arXiv:1308.0532.
[Steinbrink:2013ska]
[9-76]
Two old ways to measure the electron-neutrino mass, A. De Rujula, arXiv:1305.4857, 2013.
[DeRujula:2013jba]
[9-77]
Relativity violations and beta decay, Jorge S. Diaz, Alan Kostelecky, Ralf Lehnert, Phys. Rev. D88 (2013) 071902, arXiv:1305.4636.
[Diaz:2013saa]
[9-78]
Search for the Cosmic Neutrino Background and KATRIN, Amand Faessler, Rastislav Hodak, Sergey Kovalenko, Fedor Simkovic, Rom.J. Phys. 58 (2013) 1221-1231, arXiv:1304.5632.
[Faessler:2013jla]
[9-79]
Short-Baseline Electron Neutrino Oscillation Length After Troitsk, C. Giunti, M. Laveder, Y. F. Li, H.W. Long, Phys. Rev. D87 (2013) 013004, arXiv:1212.3805.
[Giunti:2012bc]
[9-80]
Observables in Neutrino Mass Spectroscopy Using Atoms, D. N. Dinh, S. T. Petcov, N. Sasao, M. Tanaka, M. Yoshimura, Phys. Lett. B719 (2013) 154-163, arXiv:1209.4808.
[Dinh:2012qb]
[9-81]
Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP violation searches, G.L. Fogli et al., Phys. Rev. D86 (2012) 013012, arXiv:1205.5254.
[Fogli:2012ua]
[9-82]
A systematic search for step-like anomalies in the tritium beta-decay spectrum in the Troitsk-nu-mass experiment, A. V. Lokhov, F. V. Tkachov, P. S. Trukhanov, Nucl. Phys. A897 (2013) 218-228, arXiv:1204.1908.
[Lokhov:2012yg]
[9-83]
KATRIN Sensitivity to Sterile Neutrino Mass in the Shadow of Lightest Neutrino Mass, Arman Esmaili, Orlando L. G. Peres, Phys. Rev. D85 (2012) 117301, arXiv:1203.2632.
[Esmaili:2012vg]
[9-84]
Neutrinos Polarimetry in Muon Decay, S. J. Ciechanowicz, W. Sobkow, M. Misiaszek, arXiv:1112.6114, 2011.
[Ciechanowicz:2011cu]
[9-85]
Implications of 3+1 Short-Baseline Neutrino Oscillations, Carlo Giunti, Marco Laveder, Phys. Lett. B706 (2011) 200-207, arXiv:1111.1069.
[Giunti:2011cp]
[9-86]
Analysis of KATRIN data using Bayesian inference, Anna Sejersen Riis, Steen Hannestad, Christian Weinheimer, Phys. Rev. C84 (2011) 045503, arXiv:1105.6005.
[SejersenRiis:2011sj]
[9-87]
Resolving the Reactor Neutrino Anomaly with the KATRIN Neutrino Experiment, J. A. Formaggio, J. Barrett, Phys. Lett. B706 (2011) 68-71, arXiv:1105.1326.
[Formaggio:2011jg]
[9-88]
Prediction for the neutrino mass in the KATRIN experiment from lensing by the galaxy cluster A1689, Theo M. Nieuwenhuizen, Andrea Morandi, J.Cosmol. 15 (2011) 6005, arXiv:1103.6270.
[Nieuwenhuizen:2011yg]
[9-89]
Beta Decaying Nuclei as a Probe of Cosmic Neutrino Background, Rastislav Hodak, Sergey Kovalenko, Fedor Simkovic, Amand Faessler, arXiv:1102.1799, 2011.
[Faessler:2011qj]
[9-90]
The absolute mass of neutrino and the first unique forbidden beta-decay of 187Re, Rastislav Dvornicky, Kazuo Muto, Fedor Simkovic, Amand Faessler, Phys. Rev. C83 (2011) 045502, arXiv:1101.3413.
[Dvornicky:2011fm]
[9-91]
Neutrino Mass Hierarchy Determination Using Reactor Antineutrinos, Pomita Ghoshal, S.T.Petcov, JHEP 03 (2011) 058, arXiv:1011.1646.
[Ghoshal:2010wt]
[9-92]
Experimental signatures of cosmological neutrino condensation, Mofazzal Azam, Jitesh R. Bhatt, Utpal Sarkar, Phys. Lett. B697 (2011) 7-10, arXiv:1008.5214.
[Azam:2010kw]
[9-93]
Detecting sterile neutrinos with KATRIN like experiments, Anna Sejersen Riis, Steen Hannestad, JCAP 1102 (2011) 011, arXiv:1008.1495.
[Riis:2010zm]
[9-94]
Direct Detection of the Cosmic Neutrino Background Including Light Sterile Neutrinos, Y. F. Li, Shu Luo, Zhi-zhong Xing, Phys.Lett. B692 (2010) 261-267, arXiv:1007.0914.
[Li:2010sn]
[9-95]
Robust Cosmological Bounds on Neutrinos and their Combination with Oscillation Results, M. C. Gonzalez-Garcia, Michele Maltoni, Jordi Salvado, JHEP 08 (2010) 117, arXiv:1006.3795.
[Gonzalez-Garcia:2010keg]
[9-96]
Sensitivity of Neutrino Mass Experiments to the Cosmic Neutrino Background, A. Kaboth, J. A. Formaggio, B. Monreal, Phys. Rev. D82 (2010) 062001, arXiv:1006.1886.
[Kaboth:2010kf]
[9-97]
Short-Baseline Electron Neutrino Disappearance, Tritium Beta Decay and Neutrinoless Double-Beta Decay, Carlo Giunti, Marco Laveder, Phys. Rev. D82 (2010) 053005, arXiv:1005.4599.
[Giunti:2010wz]
[9-98]
Expectations for a new calorimetric neutrino mass experiment, A. Nucciotti, E. Ferri, O. Cremonesi, Astropart. Phys. 34 (2010) 80-89, arXiv:0912.4638.
[Nucciotti:2009wq]
[9-99]
Ultra-low Q values for neutrino mass measurements, Joachim Kopp, Alexander Merle, Phys. Rev. C81 (2010) 045501, arXiv:0911.3329.
[Kopp:2009yp]
[9-100]
A New Proposal for Neutrino Mass and |V(ud)| Measurements, Akihiro Matsuzaki, Hidekazu Tanaka, Prog. Theor. Phys. 123 (2010) 1003-1012, arXiv:0908.4163.
[Matsuzaki:2009vf]
[9-101]
Relativistic Cyclotron Radiation Detection of Tritium Decay Electrons as a New Technique for Measuring the Neutrino Mass, Benjamin Monreal, Joseph A. Formaggio, Phys. Rev. D80 (2009) 051301, arXiv:0904.2860.
[Monreal:2009za]
[9-102]
Measuring neutrino mass with radioactive ions in a storage ring, Mats Lindroos, Bob McElrath, Christopher Orme, Thomas Schwetz, Eur. Phys. J. C64 (2009) 549-560, arXiv:0904.1089.
[Lindroos:2009mx]
[9-103]
Statistical Analysis of future Neutrino Mass Experiments including Neutrino-less Double Beta Decay, Werner Maneschg, Alexander Merle, Werner Rodejohann, Europhys. Lett. 85 (2009) 51002, arXiv:0812.0479.
[Maneschg:2008sf]
[9-104]
Absolute neutrino mass from helicity measurements, C. C. Nishi, Mod. Phys. Lett. A24 (2009) 219-227, arXiv:0805.2597.
[Nishi:2008jx]
[9-105]
Observables sensitive to absolute neutrino masses (Addendum), G. L. Fogli et al., Phys. Rev. D78 (2008) 033010, arXiv:0805.2517.
[Fogli:2008ig]
[9-106]
Prospects for cosmic neutrino detection in tritium experiments in the case of hierarchical neutrino masses, Mattias Blennow, Phys. Rev. D77 (2008) 113014, arXiv:0803.3762.
[Blennow:2008fh]
[9-107]
Lorentz violating extension of the Standard Model and the $\beta$-decay end-point, Alex E. Bernardini, O. Bertolami, Phys. Rev. D77 (2008) 085032, arXiv:0802.2199.
[Bernardini:2008ef]
[9-108]
Global neutrino parameter estimation using Markov Chain Monte Carlo, Steen Hannestad, arXiv:0710.1952, 2007.
[Hannestad:2007tu]
[9-109]
MiniBooNE Results and Neutrino Schemes with 2 sterile Neutrinos: Possible Mass Orderings and Observables related to Neutrino Masses, Srubabati Goswami, Werner Rodejohann, JHEP 10 (2007) 073, arXiv:0706.1462.
[Goswami:2007kv]
[9-110]
Exact relativistic beta decay endpoint spectrum, S. S. Masood et al., Phys. Rev. C76 (2007) 045501, arXiv:0706.0897.
[Masood:2007rc]
[9-111]
The KATRIN sensitivity to the neutrino mass and to right- handed currents in beta decay, J. Bonn, K. Eitel, F. Gluck, D. Sevilla-Sanchez, N. Titov, Phys. Lett. B703 (2011) 310-312, arXiv:0704.3930.
[Bonn:2007su]
[9-112]
Is it possible to observe a suppressing of $\beta$-decay caused by an atomic substance - plasma transition ?, B. V. Vasiliev, arXiv:nucl-ex/0604015, 2006.
[Vasiliev:2006ec]
[9-113]
A Comment on the Measurement of Neutrino Masses in Beta-Decay Experiments, S. M. Bilenky, M. D. Mateev, S. T. Petcov, Phys. Lett. B639 (2006) 312-317, arXiv:hep-ph/0603178.
[Bilenky:2006zd]
[9-114]
Molecular effects in investigations of tritium molecule beta decay endpoint experiments, Natasha Doss, Jonathan Tennyson, Alejandro Saenz, Svante Jonsell, Phys. Rev. C73 (2006) 025502.
[Doss:2006zv]
[9-115]
Constraining Mass Spectra with Sterile Neutrinos from Neutrinoless Double Beta Decay, Tritium Beta Decay and Cosmology, Srubabati Goswami, Werner Rodejohann, Phys. Rev. D73 (2006) 113003, arXiv:hep-ph/0512234.
[Goswami:2005ng]
[9-116]
Non-Oscillation Probes of the Neutrino Mass Hierarchy and Vanishing $U_{e3}$, Andre de Gouvea, James Jenkins, arXiv:hep-ph/0507021, 2005.
[deGouvea:2005hj]
[9-117]
Possible new interactions of neutrino and the KATRIN experiment, A.Yu. Ignatiev, B.H.J. McKellar, Phys. Lett. B633 (2006) 89, arXiv:hep-ph/0506246.
[Ignatiev:2005nu]
[9-118]
The Absolute Neutrino Mass Scale, Neutrino Mass Spectrum, Majorana CP-Violation and Neutrinoless Double-Beta Decay, S. Pascoli, S. T. Petcov, T. Schwetz, Nucl. Phys. B734 (2006) 24, arXiv:hep-ph/0505226.
[Pascoli:2005zb]
[9-119]
Fine structure of beta decay endpoint spectrum, Samina S. Masood, Salah Nasri, Joseph Schechter, Int. J. Mod. Phys. A21 (2006) 517-532, arXiv:hep-ph/0505183.
[Masood:2005aj]
[9-120]
Daemons, the "Troitsk anomaly" in tritium beta spectrum, and the KATRIN experiment, E.M.Drobyshevski, arXiv:hep-ph/0502056, 2005.
[Drobyshevski:2005ej]
[9-121]
Neutrino mass constraints on beta decay, Takeyasu M. Ito, Gary Prezeau, Phys. Rev. Lett. 94 (2005) 161802, arXiv:hep-ph/0410254.
[Ito:2004sh]
[9-122]
Observables sensitive to absolute neutrino masses: Constraints and correlations from world neutrino data, G. L. Fogli et al., Phys. Rev. D70 (2004) 113003, arXiv:hep-ph/0408045.
[Fogli:2004as]
[9-123]
Radiative tritium beta-decay and the neutrino mass, S. Gardner, V. Bernard, U.-G. Meisner, Phys. Lett. B598 (2004) 188, arXiv:hep-ph/0407077.
[Gardner:2004ib]
[9-124]
Effect of energy scale imperfections on results of neutrino mass measurements from beta-decay, J. Kaspar, M. Rysavy, A. Spalek, O. Dragoun, Nucl. Instrum. Meth. A527 (2004) 423-431.
[Kaspar:2004zg]
[9-125]
Beta decay in external field and neutrino mass, O. F. Dorofeev, A. E. Lobanov, Phys. Lett. B590 (2004) 35, arXiv:hep-ph/0311239.
[Dorofeev:2003tm]
[9-126]
No Hope to Kinematically Detect the Effective Masses of Muon and Tau Neutrinos, Zhi-zhong Xing, High Energy Phys. Nucl. Phys. 27 (2003) 841, arXiv:hep-ph/0303178.
[Xing:2003tp]
[9-127]
Possible improvements on the mass of nu/tau neutrino using leptonic D/s+- decays, S. Pakvasa, K. Zuber, Phys. Lett. B566 (2003) 207, arXiv:hep-ph/0212051.
[Pakvasa:2002qq]
[9-128]
On the Effective Mass of the Electron Neutrino in Beta Decay, Y. Farzan, A. Yu. Smirnov, Phys. Lett. B557 (2003) 224, arXiv:hep-ph/0211341.
[Farzan:2002zq]
[9-129]
The SNO Solar Neutrino Data, Neutrinoless Double-Beta Decay and Neutrino Mass Spectrum, S. Pascoli, S. T. Petcov, Phys. Lett. B544 (2004) 239-250, arXiv:hep-ph/0205022.
[Pascoli:2003ke]
[9-130]
Neutrino oscillations and signals in beta and 0nu2beta experiments, Ferruccio Feruglio, Alessandro Strumia, Francesco Vissani, Nucl. Phys. B637 (2002) 345-377, arXiv:hep-ph/0201291.
[Feruglio:2002af]
[9-131]
Parametrization of the energy spectrum in the tritium beta decay, J. Studnik, M. Zralek, arXiv:hep-ph/0110232, 2001.
[Studnik:2001hs]
[9-132]
Neutrino mass spectrum and future beta decay experiments, Y. Farzan, O. L. G. Peres, A. Yu. Smirnov, Nucl. Phys. B612 (2001) 59-97, arXiv:hep-ph/0105105.
[Farzan:2001cj]
[9-133]
Majorana neutrinos, neutrino mass spectrum, CP-violation and neutrinoless double beta-decay. II: Mixing of four neutrinos, Samoil M. Bilenky, S. Pascoli, S. T. Petcov, Phys. Rev. D64 (2001) 113003, arXiv:hep-ph/0104218.
[Bilenky:2001xq]
[9-134]
Majorana neutrinos, neutrino mass spectrum, CP-violation and neutrinoless double beta-decay. I: The three-neutrino mixing case, Samoil M. Bilenky, S. Pascoli, S. T. Petcov, Phys. Rev. D64 (2001) 053010, arXiv:hep-ph/0102265.
[Bilenky:2001rz]
[9-135]
Absolute neutrino mass determination, H. Pas, Thomas J. Weiler, Phys. Rev. D63 (2001) 113015, arXiv:hep-ph/0101091.
[Pas:2001nd]
[9-136]
Measuring the neutrino mass using intense photon and neutrino beams, Duane A. Dicus, Wayne W. Repko, Roberto Vega, Phys. Rev. D62 (2000) 093027, arXiv:hep-ph/0006264.
[Dicus:2000uw]
[9-137]
Tritium beta decay, neutrino mass matrices and interactions beyond the standard model, G. J. Stephenson, Jr., J. Terrance Goldman, B. H. J. McKellar, Phys. Rev. D62 (2000) 093013, arXiv:hep-ph/0006095.
[Stephenson:2000mw]
[9-138]
Neutrino mass spectrum and neutrinoless double beta decay, H. V. Klapdor-Kleingrothaus, H. Pas, A. Y. Smirnov, Phys. Rev. D63 (2001) 073005, arXiv:hep-ph/0003219.
[Klapdor-Kleingrothaus:2000tjb]
[9-139]
Improved Molecular Final-State Distribution of $HeT+$ for the $\beta$-Decay Process of $T2$, Alejandro Saenz, Svante Jonsell, Piotr Froelich, Phys. Rev. Lett. 84 (2000) 242-245, American Physical Society.
[PhysRevLett.84.242]
[9-140]
Improved Molecular Final-State Distribution of $\text{HeT}^{+}$ for the $\beta$-Decay Process of $\text{T}_{2}$, Alejandro Saenz, Svante Jonsell, Piotr Froelich, Phys. Rev. Lett. 84 (2000) 242.
[Saenz:2000dul]
[9-141]
A possible solution to the tritium endpoint problem, Jr. Stephenson, G. J., T. Goldman, Phys. Lett. B440 (1998) 89-93, arXiv:nucl-th/9807057.
[Stephenson:1998cx]
[9-142]
Limits on the Neutrino Mass and Mixing Angle from Pion and Lepton Decays, A. Bottino, N. Fornengo, C. W. Kim, G. Mignola, Phys. Rev. D53 (1996) 6361-6373, arXiv:hep-ph/9505394.
[Bottino:1995zz]
[9-143]
An Experiment to search for a massive admixed neutrino in nuclear beta decay by complete kinematic reconstruction of the final state, Guido Finocchiaro, Robert E. Shrock, Phys. Rev. D46 (1992) 888-891.
[Finocchiaro:1992hy]
[9-144]
Single Electron Ejection in Electron Capture as a Tool to Measure the Electron Neutrino Mass, A. De Rujula, Maurizio Lusignoli, Nucl. Phys. B219 (1983) 277.
[DeRujula:1982bq]
[9-145]
Calorimetric Measurements of $^{163}$Ho Decay as Tools to Determine the Electron Neutrino Mass, A. De Rujula, Maurizio Lusignoli, Phys. Lett. B118 (1982) 429.
[DeRujula:1982qt]
[9-146]
A new way to measure neutrino masses, A. De Rujula, Nucl. Phys. B188 (1981) 414-458.
[DeRujula:1981ti]
[9-147]
General Theory of Weak Leptonic and Semileptonic Decays. 1. Leptonic Pseudoscalar Meson Decays, with Associated Tests For, and Bounds on, Neutrino Masses and Lepton Mixing, Robert E. Shrock, Phys. Rev. D24 (1981) 1232.
[Shrock:1980ct]
[9-148]
General theory of weak processes involving neutrinos. 2. Pure leptonic decays, Robert E. Shrock, Phys. Rev. D24 (1981) 1275.
[Shrock:1981wq]
[9-149]
The phenomenology of neutrino oscillations, I. Yu. Kobzarev, B. V. Martemyanov, L. B. Okun, M. G. Shchepkin, Sov. J. Nucl. Phys. 32 (1980) 823.
[Kobzarev:1980nk]
[9-150]
The influence of mixing of finite mass neutrinos on beta decay spectra, Bruce H. J. McKellar, Phys. Lett. B97 (1980) 93.
[McKellar:1980cn]
[9-151]
New tests for, and bounds on, neutrino masses and lepton mixing, R. E. Shrock, Phys. Lett. B96 (1980) 159.
[Shrock:1980vy]
[9-152]
Possible existence of a neutrino with mass and partial conservation of muon charge, M. Nakagawa, H. Okonogi, S. Sakata, A. Toyoda, Prog. Theor. Phys. 30 (1963) 727-729.
[Nakagawa:1963uw]
[9-153]
On the Fermi Theory of Beta Radioactivity. II. The Forbidden Spectra, E. J. Konopinski, G. E. Uhlenbeck, Phys. Rev. 60 (1941) 308-320. http://prola.aps.org/pdf/PR/v60/i4/p308_1.
[Konopinski:1941]
[9-154]
On the Fermi Theory of Beta Radioactivity, E. J. Konopinski, G. E. Uhlenbeck, Phys. Rev. 48 (1935) 7-12. http://prola.aps.org/pdf/PR/v48/i1/p7_1.
[Konopinski:1935]
[9-155]
F. Perrin, Comptes Rendues 197 (1933) 1625.
[Perrin-1933]

10 - Phenomenology - Talks

[10-1]
Statistical criteria for possible indications of new physics in tritium $\beta$-decay spectrum, Aleksei Lokhov, Fyodor Tkachov, arXiv:1411.6245, 2014. PANIC 2014 (Hamburg, Germany, 25-29 August 2014).
[Lokhov:2014mga]
[10-2]
Mildly mixed coupled models vs. WMAP7 data, Giuseppe La Vacca, Silvio A. Bonometto, Nucl. Phys. Proc. Suppl. 217 (2011) 68-71, arXiv:1101.2155. NOW2010, Conca Specchiulla, Italy, September 4-11, 2010.
[LaVacca:2011dc]
[10-3]
Beyond the Standard Model interactions in beta-decay of tritium, Rastislav Dvornicky, Fedor Simkovic, Amand Faessler, Prog. Part. Nucl. Phys. 64 (2010) 303-305. International Workshop on Nuclear Physics, 31st Course, Erice, Italy, September 16-24, 2009.
[Dvornicky:2010zz]
[10-4]
What we (would like to) know about the neutrino mass, G. L. Fogli, E. Lisi, A. Marrone, A. Palazzo, A. M. Rotunno, arXiv:0809.2936, 2008. NO-VE 2008, IV International Workshop on 'Neutrino Oscillations in Venice' (Venice, Italy, April 15-18, 2008).
[Fogli:2008cx]
[10-5]
Beta decay of 115-In to the first excited level of 115-Sn: Potential outcome for neutrino mass, C.M.Cattadori et al., Phys. Atom. Nucl. 70 (2007) 127-132, arXiv:nucl-ex/0509020. NANP'05.
[Cattadori:2005by]
[10-6]
Non-oscillation searches of neutrino mass in the age of oscillations, Francesco Vissani, Nucl. Phys. Proc. Suppl. 100 (2001) 273-275, arXiv:hep-ph/0012018. Europhysics Neutrino Oscillation Workshop (NOW 2000), Conca Specchiulla, Otranto, Lecce, Ita, 9-16 Sep 2000.
[Vissani:2000ci]
[10-7]
Determination of the $\nu_e$ Mass From Experiments on Electron Capture Beta Decay, B. Jonson et al., Nucl. Phys. A396 (1983) 479. Nuclear Structure. Proceedings, International Conference (9th EPS Nuclear Physics Divisional Conference), Amsterdam, Netherlands, August 30 - September 3, 1982.
[Jonson:1982gr]
[10-8]
First steps towards the measurement of neutrino masses in electron capture, A. De Rujula, Prog.Phys. 6 (1982) 269-288. Third Workshop on Grand Unification Chapel Hill, North Carolina, April 15-17, 1982.
[DeRujula:1982xkc]

11 - Phenomenology - Models

[11-1]
Neutrino mass models at $\mu$TRISTAN, P. S. Bhupal Dev, Julian Heeck, Anil Thapa, Eur.Phys.J.C 84 (2024) 148, arXiv:2309.06463.
[Dev:2023nha]
[11-2]
Majorana neutrinos in the triple gauge boson coupling $ZZZ^*$, Phys.Rev.D 108 (2023) 075032.
[Novales-Sanchez:2023ztg]
[11-3]
Implications of Recent KATRIN Results for Lower-Limits on Neutrino Masses, Ephraim Fischbach, Dennis E. Krause, Quan Le Thien, Carol Scarlett, arXiv:2208.03790, 2022.
[Fischbach:2022pxx]
[11-4]
Large Extra Dimensions and neutrino experiments, D. V. Forero, C. Giunti, C. A. Ternes, O. Tyagi, Phys.Rev.D 106 (2022) 035027, arXiv:2207.02790.
[Forero:2022skg]
[11-5]
Two Day's Worth of KATRIN Data, Robert Ehrlich, Astropart.Phys. 99 (2018) 21-29, arXiv:1701.00488.
[Ehrlich:2017edl]
[11-6]
Sterile neutrinos and right-handed currents in KATRIN, James Barry, Julian Heeck, Werner Rodejohann, JHEP 1407 (2014) 081, arXiv:1404.5955.
[Barry:2014ika]
[11-7]
Kinematical Test of Large Extra Dimension in Beta Decay Experiments, Victor S. Basto-Gonzalez, Arman Esmaili, Orlando L. G. Peres, Phys. Lett. B718 (2013) 1020-1023, arXiv:1205.6212.
[Basto-Gonzalez:2012nel]
[11-8]
Search of keV Sterile Neutrino Warm Dark Matter in the Rhenium and Tritium beta decays, H.J. de Vega, O. Moreno, E. Moya de Guerra, M. Ramon Medrano, N. Sanchez, Nucl. Phys. B866 (2013) 177-195, arXiv:1109.3452.
[deVega:2011xh]
[11-9]
keV scale $\nu_R$ dark matter and its detection in $\beta$ decay experiment, Wei Liao, Phys. Rev. D82 (2010) 073001, arXiv:1005.3351.
[Liao:2010yx]
[11-10]
On Non-Unitary Lepton Mixing and Neutrino Mass Observables, Werner Rodejohann, Phys. Lett. B684 (2010) 40-47, arXiv:0912.3388.
[Rodejohann:2009ve]
[11-11]
Determination of the unknown absolute neutrino mass and MNS parameters at the LHC in the Higgs triplet model, Hiroyuki Nishiura, Takeshi Fukuyama, arXiv:0909.0595, 2009.
[Nishiura:2009yd]
[11-12]
Measuring the lower bound of neutrino mass at LHC in Higgs Triplet Model, Hiroyuki Nishiura, Takeshi Fukuyama, Phys. Rev. D80 (2009) 017302, arXiv:0905.3963.
[Nishiura:2009jn]
[11-13]
Coupling between cold dark matter and dark energy from neutrino mass experiments, J. R. Kristiansen, G. La Vacca, L. P. L. Colombo, S. A. Bonometto, New Astron. 15 (2010) 609-613, arXiv:0902.2737.
[Kristiansen:2009yx]

12 - Phenomenology - Models - Talks

[12-1]
Dark matter implications of the KATRIN neutrino mass experiment, Thede de Boer, Michael Klasen, Caroline Rodenbeck, Sybrand Zeinstra, arXiv:2104.10969, 2021. 2021 EW session of the 55th Rencontres de Moriond.
[DeBoer:2021lcv]

13 - Phenomenology - Tachyons

[13-1]
Tritium beta-decay endpoint for a Tachyonic Neutrino that travels Faster than Light, Ngee-Pong Chang, arXiv:hep-ph/0410175, 2004.
[Chang:2004sq]
[13-2]
Faster-than-light speeds, tachyons, and the possibility of tachyonic neutrinos, R. Ehrlich, Am. J. Phys. 71 (2003) 1109-1114.
[Ehrlich:2003ka]
[13-3]
Neutrino mass**2 inferred from the cosmic ray spectrum and tritium beta decay, Robert Ehrlich, Phys. Lett. B493 (2000) 229-232, arXiv:hep-ph/0009040.
[Ehrlich:2000sj]
[13-4]
Implications for the cosmic ray spectrum of a negative electron neutrino (mass)**2, Robert Ehrlich, Phys. Rev. D60 (1999) 17302, arXiv:astro-ph/9812336.
[Ehrlich:1999hz]
[13-5]
Are muon neutrinos faster than light particles?: possible consequences for neutrino oscillations, E. Giannetto, G. D. Maccarrone, R. Mignani, E. Recami, Phys. Lett. B178 (1986) 115.
[Giannetto:1986rm]
[13-6]
The neutrino as a tachyon, Alan Chodos, Avi I. Hauser, V. Alan Kostelecky, Phys. Lett. B150 (1985) 431.
[Chodos:1984cy]

14 - Future Experiments

[14-1]
Quantum Noise Limited Phased Arrays for Single-Electron Cyclotron Radiation Emission Spectroscopy, Stafford Withington, Christopher Thomas, Songyuan Zhao, arXiv:2401.03247, 2024.
[Withington:2024xvn]
[14-2]
Neutrino mass and nature through its mediation in atomic clock interference, Jose Bernabeu, Dylan O. Sabulsky, Federico Sanchez, Alejandro Segarra, AVS Quantum Sci. 6 (2023) 014410, arXiv:2306.00767.
[Bernabeu:2023ulb]
[14-3]
Cyclotron Radiation Emission Spectroscopy of Electrons from Tritium Beta Decay and $^{83\rm m}$Kr Internal Conversion, A. Ashtari Esfahani et al. (Project 8), Phys.Rev.C 109 (2024) 035503, arXiv:2303.12055.
[Project8:2023jkj]
[14-4]
SYNCA: A Synthetic Cyclotron Antenna for the Project 8 Collaboration, A. Ashtari Esfahani et al., JINST 18 (2023) P01034, arXiv:2212.08026.
[Project8:2022kxg]
[14-5]
Searches for massive neutrinos with mechanical quantum sensors, Daniel Carney, Kyle G. Leach, David C. Moore, PRX Quantum 4 (2023) 010315, arXiv:2207.05883.
[Carney:2022pku]
[14-6]
Heisenberg's uncertainty principle in the PTOLEMY project: a theory update, A. Apponi et al. (PTOLEMY), Phys.Rev.D 106 (2022) 053002, arXiv:2203.11228.
[PTOLEMY:2022ldz]
[14-7]
Measuring the electron neutrino mass using the electron capture decay of 163Ho, Joel Ullom et al., arXiv:2203.07572, 2022.
[Ullom:2022kai]
[14-8]
The Project 8 Neutrino Mass Experiment, A. Ashtari Esfahani et al. (Project 8), arXiv:2203.07349, 2022. Snowmass 2021.
[Project8:2022wqh]
[14-9]
Progress in the development of TES microcalorimeter detectors suitable for neutrino mass measurement, A. Giachero et al., IEEE Trans.Appl.Supercond. 31 (2021) 2100205, arXiv:2101.02578.
[Giachero:2021tli]
[14-10]
Characterization of a Silicon Drift Detector for High-Resolution Electron Spectroscopy, Matteo Gugiatti et al., Nucl.Instrum.Meth. A979 (2020) 164474, arXiv:2006.13851.
[Gugiatti:2020wad]
[14-11]
Hunting keV sterile neutrinos with KATRIN: building the first TRISTAN module, Thibaut Houdy et al., J.Phys.Conf.Ser. 1468 (2020) 012177, arXiv:2004.07693.
[Houdy:2020vhw]
[14-12]
Macro-coherent radiative emission of neutrino pair between parity-even atomic states, M. Tashiro, B. P. Das, J. Ekman, P. Jonsson, N. Sasao, M. Yoshimura, Eur.Phys.J. C79 (2019) 907, arXiv:1911.01639.
[Tashiro:2019ghs]
[14-13]
Neutrino mass spectroscopy using Er$^{3+}$ ions placed at inversion center of host crystals, H. Hara, N. Sasao, A. Yoshimi, M. Yoshimura, arXiv:1910.14318, 2019.
[Hara:2019wos]
[14-14]
Physics Briefing Book, Richard Keith Ellis et al., arXiv:1910.11775, 2019.
[EuropeanStrategyforParticlePhysicsPreparatoryGroup:2019qin]
[14-15]
Divalent lanthanoid ions in crystals for neutrino mass spectroscopy, H. Hara, N. Sasao, M. Yoshimura, arXiv:1909.06554, 2019.
[Hara:2019tme]
[14-16]
Electron Radiated Power in Cyclotron Radiation Emission Spectroscopy Experiments, A. Ashtari Esfahani et al., Phys.Rev. C99 (2019) 055501, arXiv:1901.02844.
[AshtariEsfahani:2019yva]
[14-17]
A novel detector system for KATRIN to search for keV-scale sterile neutrinos, Susanne Mertens et al., J.Phys. G46 (2019) 065203, arXiv:1810.06711.
[KATRIN:2018oow]
[14-18]
A Design for an Electromagnetic Filter for Precision Energy Measurements at the Tritium Endpoint, M.G. Betti et al., Prog.Part.Nucl.Phys. 106 (2019) 120-131, arXiv:1810.06703.
[Betti:2018bjv]
[14-19]
Magnetic skyrmions as host of neutrino mass spectroscopy, M. Yoshimura, arXiv:1805.07890, 2018.
[Yoshimura:2018eam]
[14-20]
Determining the neutrino mass with Cyclotron Radiation Emission Spectroscopy - Project 8, Ali Ashtari Esfahani et al., J.Phys. G44 (2017) 054004, arXiv:1703.02037.
[Project8:2017nal]
[14-21]
Measuring the electron neutrino mass with improved sensitivity: the HOLMES experiment, A.Giachero et al., JINST 12 (2017) C02046, arXiv:1612.03947.
[HOLMES:2016spk]
[14-22]
Development of microwave-multiplexed superconductive detectors for the HOLMES experiment, A. Giachero et al., J. Phys. Conf. Ser. 718 (2016) 062020, arXiv:1601.03970.
[Giachero:2016ehv]
[14-23]
Development of microwave superconducting microresonators for neutrino mass measurement in the HOLMES framework, A. Giachero et al., J.Low.Temp.Phys. 184 (2016) 123-130, arXiv:1509.05237.
[Giachero:2015lva]
[14-24]
The current status of 'Troitsk nu-mass' experiment in search for sterile neutrino, D.N. Abdurashitov et al., JINST 10 (2015) T10005, arXiv:1504.00544.
[Abdurashitov:2015jha]
[14-25]
Searches for a Sterile-Neutrino Admixture in Detecting Tritium Decays in a Proportional Counter: New Possibilities, D.N. Abdurashitov, A.I. Berlev, N.A. Likhovid, A.V. Lokhov, I.I. Tkachev et al., Phys.Atom.Nucl. 78 (2015) 268-280.
[Abdurashitov:2014vqa]
[14-26]
HOLMES - The Electron Capture Decay of 163Ho to Measure the Electron Neutrino Mass with sub-eV sensitivity, B. Alpert et al., Eur.Phys.J. C75 (2015) 112, arXiv:1412.5060.
[Alpert:2014lfa]
[14-27]
First Calorimetric Measurement of OI-line in the Electron Capture Spectrum of $^{163}$Ho, P. C.-O. Ranitzsch et al., arXiv:1409.0071, 2014.
[Ranitzsch:2014kma]
[14-28]
Single electron detection and spectroscopy via relativistic cyclotron radiation, D.M. Asner et al., Phys. Rev. Lett. 114 (2015) 162501, arXiv:1408.5362.
[Project8:2014ivu]
[14-29]
Project 8: Determining neutrino mass from tritium beta decay using a frequency-based method, P.J. Doe et al. (Project 8), arXiv:1309.7093, 2013.
[Project8:2013trt]
[14-30]
The Electron Capture $^{163}\text{Ho}$ Experiment ECHo, K. Blaum et al., arXiv:1306.2655, 2013.
[Blaum:2013pfu]
[14-31]
Characterization of low temperature metallic magnetic calorimeters having gold absorbers with implanted $^{163}$Ho ions, L. Gastaldo et al., Nucl. Instrum. Meth. A711 (2013) 150-159, arXiv:1206.5647.
[Gastaldo:2012nv]
[14-32]
The Electron Capture Decay of 163-Ho to Measure the Electron Neutrino Mass with sub-eV Accuracy and Beyond, Flavio Gatti, Massimiliano Galeazzi, Maurizio Lusignoli, Angelo Nucciotti, Stefano Ragazzi, arXiv:1202.4763, 2012.
[Gatti:2012ii]
[14-33]
Development of Metallic Magnetic Calorimeters for High Precision Measurements of Calorimetric 187Re and 163Ho Spectra, P.C.-O. Ranitzsch, J.-P. Porst, S. Kempf, C. Pies, S. Schafer, D. Hengstler, A. Fleischmann, C. Enss, L. Gastaldo, Journal of Low Temperature Physics 167 (2012) 1004-1014.
[Ranitzsch-2012-163Ho]
[14-34]
Development of Metallic Magnetic Calorimeters for High Precision Measurements of Calorimetric $^{187}$Re and $^{163}$Ho Spectra, P. C.-O. Ranitzsch et al., Journal of Low Temperature Physics 167 (2012) 1004-1014.
[Ranitzsch:2012nua]
[14-35]
Solitons and Precision Neutrino Mass Spectroscopy, M. Yoshimura, Phys. Lett. B699 (2011) 123-128, arXiv:1101.2749.
[Yoshimura:2011ri]
[14-36]
Using Cold Atoms to Measure Neutrino Mass, M. Jerkins, J. R. Klein, J. H. Majors, M. G. Raizen, New J. Phys. 12 (2010) 043022, arXiv:0901.3111.
[Jerkins:2009tc]
[14-37]
An improved limit on the muon neutrino mass from pion decay in flight, R.M. Carey et al. (NuMass), 2002. The NuMass Proposal presented to the BNL PAC (March 2000), http://www.hep.umn.edu/numass.
[NuMass-00]
[14-38]
KATRIN: A next generation tritium beta decay experiment with sub-eV sensitivity for the electron neutrino mass, A. Osipowicz et al. (KATRIN), arXiv:hep-ex/0109033, 2001.
[KATRIN:2001ttj]

15 - Future Experiments - Talks

[15-1]
Going Big for Phase III of the Project 8 Neutrino Mass Experiment, Juliana Stachurska (Project 8), PoS TAUP2023 (2024) 229, arXiv:2311.16415. TAUP 2023.
[Stachurska:2023ufl]
[15-2]
Project 8: R\&D for a next-generation neutrino mass experiment, Rene Reimann (Project 8), PoS PANIC2021 (2022) 283.
[Reimann:2022omy]
[15-3]
Zero-deadtime processing in beta spectroscopy for measurement of the non-zero neutrino mass, Benjamin LaRoque (Project 8), EPJ Web Conf. 245 (2020) 01014.
[LaRoque:2020odr]
[15-4]
Distributed Computing for the Project 8 Experiment, Malachi Schram, Mathew Thomas, Kevin Fox, Benjamin LaRoque, Brent VanDevender, Noah Oblath, David Cowley (Project 8), EPJ Web Conf. 245 (2020) 03030.
[Schram:2020uqj]
[15-5]
The KATRIN Neutrino Mass Measurement: Experiment, Status, and Outlook, Gregg B. Franklin, arXiv:1809.10603, 2018. CIPANP2018.
[Franklin:2018adt]
[15-6]
Project 8: Towards a Direct Measurement of the Neutrino Mass with Tritium Beta Decays, Noah Oblath (Project 8), PoS NEUTEL2017 (2018) 026.
[Oblath:2017xma]
[15-7]
Status of the Project 8 Phase II, Mathieu Guigue (Project 8), J. Phys. Conf. Ser. 1342 (2020) 012025, arXiv:1710.01827.
[Guigue:2017wzr]
[15-8]
Overview of Project 8 and Progress Towards Tritium Operation, Walter C. Pettus (Project 8), J. Phys. Conf. Ser. 1342 (2020) 012040, arXiv:1710.01826.
[Pettus:2017sxd]
[15-9]
Project 8 detector upgrades for a tritium beta decay spectrum using cyclotron radiation, A Ashtari Esfahani et al. (Project 8), arXiv:1703.05761, 2017. Neutrino 2016, XXVII International Conference on Neutrino Physics and Astrophysics, 4-9 July 2016, London, UK.
[AshtariEsfahani:2017ogc]
[15-10]
Results from the Project 8 phase-1 cyclotron radiation emission spectroscopy detector, A Ashtari Esfahani et al. (Project 8), J.Phys.Conf.Ser. 888 (2017) 012074, arXiv:1703.05760. Neutrino 2016, XXVII International Conference on Neutrino Physics and Astrophysics, 4-9 July 2016, London, UK.
[AshtariEsfahani:2017swz]
[15-11]
Project 8 Phase III Design Concept, A Ashtari Esfahani et al. (Project 8), J.Phys.Conf.Ser. 888 (2017) 012230, arXiv:1703.05759. Neutrino 2016, XXVII International Conference on Neutrino Physics and Astrophysics, 4-9 July 2016, London, UK.
[AshtariEsfahani:2017vkm]
[15-12]
Direct neutrino mass measurement in the Project8 experiment, Brent A. VanDevender (PROJECT 8), PoS HQL2016 (2017) 018.
[VanDevender:2016gnv]
[15-13]
Status of the neutrino mass experiments KATRIN and Project 8, Florian Fraenkle, PoS EPS-HEP2015 (2015) 084.
[Fraenkle:2015yfs]
[15-14]
Project 8: First Results \& More, Noah S. Oblath (Project 8), PoS NEUTEL2015 (2015) 046.
[Oblath:2015pxa]
[15-15]
Project 8: Using Radio-Frequency Techniques to Measure Neutrino Mass, N. S. Oblath (Project 8), arXiv:1310.0397, 2013. Meeting of the APS Division of Particles and Fields.
[Oblath:2013rma]
[15-16]
Project 8: Determining neutrino mass from tritium beta decay using a frequency-based method, P. J. Doe et al. (Project 8), arXiv:1309.7093, 2013. Snowmass 2013}: {Snowmass on the Mississippi.
[Project8:2013trt]
[15-17]
The Electron Capture $^{163}$Ho Experiment ECHo: an overview, L. Gastaldo et al., J.Low Temp.Phys. 176 (2014) 876-884, arXiv:1309.5214. LTD15.
[Gastaldo:2013wha]
[15-18]
The KATRIN Experiment: Status and Outlook, D.S. Parno (KATRIN), arXiv:1307.5289, 2013. Sixth Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, June 17-21, 2013.
[Parno:2013yqa]
[15-19]
Measuring neutrino masses using radio-frequency techniques, J. A. Formaggio (Project 8), J. Phys. Conf. Ser. 375 (2012) 042005.
[Formaggio:2012fw]
[15-20]
Project 8: Update on a radiofrequency tritium spectrometer, B. Monreal (Project 8), AIP Conf. Proc. 1441 (2012) 441-443.
[Monreal:2012zz]
[15-21]
Status of the KATRIN experiment with special emphasis on source-related issues, Michael Sturm, arXiv:1111.4773, 2011. PIC 2011, Vancouver, August/September 2011.
[Sturm:2011ms]
[15-22]
Project 8: Using Radio Frequencies to Measure the Neutrino Mass, N. S. Oblath, arXiv:1110.2190, 2011. DPF-2011.
[Oblath:2011ne]
[15-23]
KATRIN: an experiment to determine the neutrino mass, F.M. Fraenkle (KATRIN), arXiv:1110.0087, 2011. DPF-2011 Conference, Providence, RI, August 8-13, 2011.
[Fraenkle:2011uu]
[15-24]
Project 8: Using Radio-Frequency Techniques to Measure Neutrino Mass, J. A. Formaggio (Project 8), Nucl. Phys. Proc. Supl. 229-232 (2012) 371-375, arXiv:1101.6077.
[Formaggio:2011ba]
[15-25]
The KATRIN Experiment, Marucs Beck (KATRIN), J. Phys. Conf. Ser. 203 (2010) 012097, arXiv:0910.4862. TAUP 2009.
[Beck:2010zzb]
[15-26]
The KATRIN Neutrino Mass Experiment, J. Wolf, for the KATRIN collaboration (KATRIN), Nucl. Instrum. Meth. A623 (2010) 442-444, arXiv:0810.3281. ICHEP2008.
[Wolf:2008hf]
[15-27]
KATRIN: an experiment to measure the neutrino mass, R. G. H. Robertson (KATRIN), J. Phys. Conf. Ser. 120 (2008) 052028, arXiv:0712.3893. TAUP 2007.
[Robertson:2007xx]
[15-28]
KATRIN: Direct measurement of neutrino masses in the sub- eV region, Lutz Bornschein et al. (KATRIN), eConf C030626 (2003) FRAP14, arXiv:hep-ex/0309007. XIII Physics in Collision Conference(PIC03), Zeuthen, Germany, June 2003.
[Bornschein:2003xi]
[15-29]
NUMASS experiment (BNL-E952), B.L. Roberts, 2002. 2nd International Workshop on Nuclear and Particle Physics at 50-GeV PS, Kyoto University, Kyoto, Japan, September 27-29, 2002. http://www-nh.scphys.kyoto-u.ac.jp/NP02/transp/Roberts2.pdf.
[Roberts-Kyoto2002]

Search Neutrino Unbound

Cross search NU

It is possible to perform a cross search between the various pages of Neutrino Unbound.
This is useful if you want to show the common elements that appear in the listings of two (or more) different topics or experiments.

Go to the search form.

[Go to ...]

Neutrino Unbound Home

Authors:
Stefano Gariazzo / gariazzo@to.infn.it
Carlo Giunti / giunti@to.infn.it
Marco Laveder / marco.laveder@pd.infn.it
Last Update: Fri 19 Apr 2024, 14:44:48 CET