Solar Neutrinos

Only neutrinos, with their extremely small interaction cross sections,
can enable us to see into the interior of a star,
and thus verify directly the hypothesis of nuclear energy generation in stars.

John N. Bahcall (1964)

Filter this page

(Note: The process can take some time.)

EXPAND ALL
COMPRESS ALL

References

1 - Books

[1-1]
Introduction to the Physics of Massive and Mixed Neutrinos, Samoil Bilenky, Springer, 2018. Lecture Notes in Physics, Volume 947. https://doi.org/10.1007/978-3-319-74802-3.
[Bilenky:2018hbz]
[1-2]
Neutrinos in high energy and astroparticle physics, Jorge Romao, Jose W. F. Valle, Wiley, 2015. ISBN 978-3-527-41197-9. http://eu.wiley.com/WileyCDA/WileyTitle/productCd-3527411976.html.
[Romao-Valle-2015]
[1-3]
Neutrinos in particle physics, astronomy and cosmology, Zhi-zhong Xing, Shun Zhou, Zhejiang University Press, Hangzhou, 2011. ISBN: 978-3-642-17560-2. https://link.springer.com/book/10.1007/978-3-642-17560-2.
[Xing:2011zza]
[1-4]
Fundamentals of Neutrino Physics and Astrophysics, C. Giunti, C. W. Kim, Oxford University Press, Oxford, UK, 2007. ISBN 978-0-19-850871-7. https://global.oup.com/academic/product/fundamentals-of-neutrino-physics-and-astrophysics-9780198508717.
[Giunti:2007ry]
[1-5]
Fundamentals in nuclear physics: From nuclear structure to cosmology, J. L. Basdevant, J. Rich, M. Spiro, Springer, 2005. http://www.springer.com/book/0-387-01672-4.
[Basdevant:2005in]
[1-6]
Stars as laboratories for fundamental physics: The astrophysics of neutrinos, axions, and other weakly interacting particles, G.G. Raffelt, University of Chicago Press, 1996. ISBN 0-226-70272-3. http://wwwth.mpp.mpg.de/members/raffelt/pages/mybook.html.
[Raffelt:1996wa]
[1-7]
Neutrino Astrophysics, J. N. Bahcall, Cambridge University Press, 1989.
[Bahcall:1989ks]
[1-8]
Cauldrons in the Cosmos, Claus E. Rolfs, William S. Rodney, The University of Chicago Press, 1988.
[Rolfs-Rodney-book-88]

2 - Reviews

[2-1]
Dual-phase xenon time projection chambers for rare-event searches, Laura Baudis, Phil.Trans.Roy.Soc.Lond.A 382 (2023) 0083, arXiv:2311.05320.
[Baudis:2023pzu]
[2-2]
Snowmass Neutrino Frontier: NF01 Topical Group Report on Three-Flavor Neutrino Oscillations, Peter B. Denton, Megan Friend, Mark D. Messier, Hirohisa A. Tanaka, Sebastian Boser, Joao A. B. Coelho, Mathieu Perrin-Terrin, Tom Stuttard, arXiv:2212.00809, 2022.
[Denton:2022een]
[2-3]
Snowmass Neutrino Frontier Report, Patrick Huber et al., arXiv:2211.08641, 2022.
[Huber:2022lpm]
[2-4]
Solar neutrino physics, Xun-Jie Xu, Zhe Wang, Shaomin Chen, Prog.Part.Nucl.Phys. 131 (2023) 104043, arXiv:2209.14832.
[Xu:2022wcq]
[2-5]
Snowmass Topical Report: Underground Facilities for Neutrinos, Tim Bolton, M. Patrick Decowski, Albert De Roeck, Gabriel Orebi Gann, Danielle H. Speller, arXiv:2209.07622, 2022.
[Bolton:2022pgb]
[2-6]
Neutrinos in Stellar Astrophysics, G. M. Fuller, W. C. Haxton, arXiv:2208.08050, 2022.
[Fuller:2022nbn]
[2-7]
Extreme solar events, Edward W. Cliver, Carolus J. Schrijver, Kazunari Shibata, Ilya G. Usoskin, arXiv:2205.09265, 2022.
[2205.09265]
[2-8]
History of Solar Neutrino Observations, Masayuki Nakahata, PTEP 2022 (2022) 12B103, arXiv:2202.12421.
[Nakahata:2022xvq]
[2-9]
Neutrino Astronomy with IMB, Kamiokande and Super Kamiokande, John M. LoSecco, arXiv:2202.01676, 2022.
[LoSecco:2022rdg]
[2-10]
Novel data analysis techniques in coronal seismology, Sergey A. Anfinogentov, Patrick Antolin, Andrew R. Inglis, Dmitrii Kolotkov, Elena G. Kupriyanova, James A. McLaughlin, Giuseppe Nistico, David J. Pascoe, S. Krishna Prasad, Ding Yuan, arXiv:2112.13577, 2021.
[2112.13577]
[2-11]
NuFIT: Three-Flavour Global Analyses of Neutrino Oscillation Experiments, M.C. Gonzalez-Garcia, Michele Maltoni, Thomas Schwetz, Universe 7 (2021) 459, arXiv:2111.03086.
[Gonzalez-Garcia:2021dve]
[2-12]
The Future of Solar Neutrinos, G. D. Orebi Gann, K. Zuber, D. Bemmerer, A. Serenelli, Ann.Rev.Nucl.Part.Sci. 71 (2021) 491-528, arXiv:2107.08613.
[Gann:2021ndb]
[2-13]
Small-scale solar surface magnetism, Robert J. Rutten, arXiv:2105.14533, 2021.
[2105.14533]
[2-14]
Borexino results on neutrinos from the Sun and Earth, Sindhujha Kumaran, Livia Ludhova, Omer Penek, Giulio Settanta, Universe 7 (2021) 231, arXiv:2105.13858.
[Kumaran:2021lvv]
[2-15]
Flux emergence and generation of flare-productive active regions, Shin Toriumi, arXiv:2105.09961, 2021.
[2105.09961]
[2-16]
The SNO+ Experiment, V. Albanese et al. (SNO+), JINST 16 (2021) P08059, arXiv:2104.11687.
[SNO:2021xpa]
[2-17]
Space weather: the solar perspective - an update to Schwenn (2006), Manuela Temmer, arXiv:2104.04261, 2021.
[2104.04261]
[2-18]
Upflows in the upper solar atmosphere, Hui Tian, Louise Harra, Deborah Baker, David H. Brooks, Lidong Xia, arXiv:2102.02429, 2021.
[2102.02429]
[2-19]
The relevance of nuclear reactions for Standard Solar Models construction, Francesco L. Villante, Aldo Serenelli, Front.Astron.Space Sci. 7 (2021) 112, arXiv:2101.03077.
[Villante:2020adi]
[2-20]
Earth-affecting Solar Transients: A Review of Progresses in Solar Cycle 24, Jie Zhang et al., arXiv:2012.06116, 2020.
[2012.06116]
[2-21]
Progress in Solar Cycle Predictions: Sunspot Cycles 24-25 in Perspective, Dibyendu Nandy, arXiv:2009.01908, 2020.
[2009.01908]
[2-22]
Solar structure and evolution, Joergen Christensen-Dalsgaard, arXiv:2007.06488, 2020.
[Christensen-Dalsgaard:2020imv]
[2-23]
Radiation hydrodynamics in simulations of the solar atmosphere, Jorrit Leenaarts, arXiv:2002.03623, 2020.
[2002.03623]
[2-24]
Solar Elemental Abundances, Katharina Lodders, arXiv:1912.00844, 2019.
[1912.00844]
[2-25]
Grand Unified Neutrino Spectrum at Earth, Edoardo Vitagliano, Irene Tamborra, Georg Raffelt, Rev.Mod.Phys. 92 (2020) 045006, arXiv:1910.11878.
[Vitagliano:2019yzm]
[2-26]
Solar cycle prediction, Kristof Petrovay, arXiv:1907.02107, 2019.
[1907.02107]
[2-27]
The Sun at GeV-TeV Energies: A New Laboratory for Astroparticle Physics, M.U. Nisa, J.F. Beacom, S.Y. BenZvi, R.K. Leane, T. Linden, K.C.Y. Ng, A.H.G. Peter, B. Zhou, arXiv:1903.06349, 2019.
[Nisa:2019mpb]
[2-28]
Neutrino physics with dark matter detectors, Bhaskar Dutta, Louis E. Strigari, Ann.Rev.Nucl.Part.Sci. 69 (2019) 137-161, arXiv:1901.08876.
[Dutta:2019oaj]
[2-29]
A Basic Introduction to the Physics of Solar Neutrinos, Mike Guidry, Jay Billings, arXiv:1812.00035, 2018.
[Guidry:2018ocm]
[2-30]
Detection techniques and investigation of different neutrino experiments, Ankur Nath, Ng. K. Francis, Int.J.Mod.Phys. A36 (2021) 2130008, arXiv:1804.08467.
[Nath:2018ywc]
[2-31]
Helioseismology: Observations and Space Missions, P.L. Palle, T. Appourchaux, J. Christensen-Dalsgaard, R.A. Garcia, arXiv:1802.00674, 2018.
[1802.00674]
[2-32]
Neutrino oscillations: the rise of the PMNS paradigm, Claudio Giganti, Stephane Lavignac, Marco Zito, Prog.Part.Nucl.Phys. 98 (2018) 1-54, arXiv:1710.00715.
[Giganti:2017fhf]
[2-33]
LUNA: Status and Prospects, C. Broggini, D. Bemmerer, A. Caciolli, D. Trezzi, Prog.Part.Nucl.Phys. 98 (2018) 55-84, arXiv:1707.07952.
[Broggini:2017cez]
[2-34]
L'eliosismologia: onde sismiche per studiare l'interno del Sole, M. P. Di Mauro, arXiv:1706.02105, 2017.
[1706.02105]
[2-35]
Solar Neutrino Spectroscopy, Michael Wurm, Phys.Rept. 685 (2017) 1-52, arXiv:1704.06331.
[Wurm:2017cmm]
[2-36]
Computation of astrophysical opacities, Claudio Mendoza, Atoms 6 (2018) 28, arXiv:1704.03528.
[Mendoza:2017pnu]
[2-37]
Solar neutrinos: Oscillations or No-oscillations?, A. Yu. Smirnov, arXiv:1609.02386, 2016.
[Smirnov:2016xzf]
[2-38]
Global Seismology of the Sun, Sarbani Basu, arXiv:1606.07071, 2016.
[1606.07071]
[2-39]
Frontiers in Nuclear Astrophysics, Carlos A. Bertulani, Toshitaka Kajino, Prog.Part.Nucl. Phys. 89 (2016) 56-100, arXiv:1604.03197.
[Bertulani:2016eru]
[2-40]
The Sudbury Neutrino Observatory, A. Bellerive, J.R. Klein, A.B. McDonald, A.J. Noble, A.W.P. Poon (SNO), Nucl. Phys. B908 (2016) 30-51, arXiv:1602.02469.
[Bellerive:2016byv]
[2-41]
The Global Solar Dynamo, R. H. Cameron, M. Dikpati, A. Brandenburg, arXiv:1602.01754, 2016.
[1602.01754]
[2-42]
Solar and Stellar Photospheric Abundances, Carlos Allende Prieto, arXiv:1602.01121, 2016.
[1602.01121]
[2-43]
Alive and well: a short review about standard solar models, Aldo Serenelli, Eur.Phys.J. A52 (2016) 78, arXiv:1601.07179.
[Serenelli:2016dgz]
[2-44]
Interaction Between Convection and Pulsation, Gunter Houdek, Marc-Antoine Dupret, arXiv:1601.03913, 2016.
[1601.03913]
[2-45]
Nobel Lecture: The Sudbury Neutrino Observatory: Observation of flavor change for solar neutrinos, Arthur B. McDonald, Rev. Mod. Phys. 88 (2016) 030502.
[McDonald:2016ixn]
[2-46]
Solar neutrinos and neutrino physics, Michele Maltoni, Alexei Yu. Smirnov, Eur.Phys.J. A52 (2016) 87, arXiv:1507.05287.
[Maltoni:2015kca]
[2-47]
Neutrino oscillations, G. Bellini, L. Ludhova, G. Ranucci, F.L. Villante, Adv.High Energy Phys. 2014 (2014) 191960, arXiv:1310.7858.
[Bellini:2013wra]
[2-48]
Advancements in solar neutrino physics, Vito Antonelli, Lino Miramonti, Int.J.Mod.Phys. E22 (2013) 1330009, arXiv:1304.6304.
[Miramonti:2013vbr]
[2-49]
Phenomenology of light sterile neutrinos: a brief review, Antonio Palazzo, Mod.Phys.Lett. A28 (2013) 1330004, arXiv:1302.1102.
[Palazzo:2013me]
[2-50]
Solar Neutrinos: Status and Prospects, W.C. Haxton, R.G. Hamish Robertson, Aldo M. Serenelli, Ann.Rev.Astron.Astrophys. 51 (2013) 21-61, arXiv:1208.5723.
[Haxton:2012wfz]
[2-51]
Solar Neutrinos, V. Antonelli, L. Miramonti, C. Pena-Garay, A. Serenelli, Adv.High Energy Phys. 2013 (2013) 351926, arXiv:1208.1356.
[Antonelli:2012qu]
[2-52]
Solar neutrinos, helioseismology and the solar internal dynamics, S. Turck-Chieze, S. Couvidat, Rept. Prog. Phys. 74 (2011) 086901, arXiv:1009.0852.
[Turck-Chieze:2010rvs]
[2-53]
Solar fusion cross sections II: the pp chain and CNO cycles, E. G. Adelberger et al., Rev. Mod. Phys. 83 (2011) 195, arXiv:1004.2318.
[Adelberger:2010qa]
[2-54]
Neutrino Physics and The Solar Neutrino Problem, Andrew John Lowe, arXiv:0907.3658, 2009.
[Lowe:2009sx]
[2-55]
The Scientific Life Of John Bahcall, W. C. Haxton, Ann. Rev. Nucl. Part. Sci. 59 (2009) 1-20, arXiv:0904.2865.
[Haxton:2009zb]
[2-56]
Phenomenology with Massive Neutrinos, M. C. Gonzalez-Garcia, Michele Maltoni, Phys. Rept. 460 (2008) 1-129, arXiv:0704.1800.
[Gonzalez-Garcia:2007dlo]
[2-57]
Astrophysics in 2005, V. Trimble, M.J. Aschwanden, C.J. Hansen, Publ.Astron.Soc.Pac. 118 (2006) 947, arXiv:astro-ph/0606663.
[Trimble:2006gt]
[2-58]
Global analysis of three-flavor neutrino masses and mixings, G. L. Fogli, E. Lisi, A. Marrone, A. Palazzo, Prog. Part. Nucl. Phys. 57 (2006) 742-795, arXiv:hep-ph/0506083.
[Fogli:2005cq]
[2-59]
Solar hydrogen burning and neutrinos, W. C. Haxton, P. D. Parker, C. E. Rolfs, Nucl. Phys. A777 (2006) 226-253, arXiv:nucl-th/0501020.
[Haxton:2005rw]
[2-60]
Helioseismology, H. M. Antia, J. Astrophys. Astr. 26 (2005) 161-169.
[Antia-JAA-26-161-2005]
[2-61]
Report of the Solar and Atmospheric Neutrino Experiments Working Group of the APS Multidivisional Neutrino Study, H. Back et al., arXiv:hep-ex/0412016, 2004.
[Back:2004qi]
[2-62]
Solar Neutrino Measurements, A.B. McDonald, New J. Phys. 6 (2004) 121, arXiv:astro-ph/0406253. http://www.iop.org/EJ/S/3/648/5thmNQS.a4iurwqXcRsyZw/abstract/1367-2630/6/1/121.
[McDonald:2004dd]
[2-63]
Solar models and solar neutrino oscillations, John N. Bahcall, Carlos Pena-Garay, New J. Phys. 6 (2004) 63, arXiv:hep-ph/0404061.
[Bahcall:2004mz]
[2-64]
Low Energy Neutrino Physics after SNO and KamLAND, Lothar Oberauer, Mod. Phys. Lett. A19 (2004) 337, arXiv:hep-ph/0402162.
[Oberauer:2004ji]
[2-65]
Neutrino Masses and Oscillations: Triumphs and Challenges, R.D. McKeown, P. Vogel, Phys. Rep. 394 (2004) 315, arXiv:hep-ph/0402025.
[McKeown:2004yq]
[2-66]
The Solar Hep Process, Kuniharu Kubodera, Tae-Sun Park, Ann. Rev. Nucl. Part. Sci. 54 (2004) 19, arXiv:nucl-th/0402008.
[Kubodera:2004zm]
[2-67]
Evidence for the MSW effect, Gianluigi Fogli, Eligio Lisi, New J. Phys. 6 (2004) 139.
[Fogli:2004zn]
[2-68]
Theoretical neutrino physics, H. Murayama, Eur. Phys. J. C33 (2004) s51-s66. http://www.edpsciences.org/articles/epjc/pdf/2004/19/10052S51.pdf?access=ok.
[Murayama:2004fe]
[2-69]
Astrophysical Neutrino Telescopes, A. B. McDonald et al., Rev. Sci. Instrum. 75 (2004) 293, arXiv:astro-ph/0311343.
[McDonald:2003xn]
[2-70]
Neutrino Mixing, Carlo Giunti, Marco Laveder, arXiv:hep-ph/0310238, 2003. In 'Developments in Quantum Physics - 2004', p. 197-254, edited by F. Columbus and V. Krasnoholovets, Nova Science, Hauppauge, NY. http://novapublishers.com/catalog/product_info.php?products_id=1633.
[Giunti:2003qt]
[2-71]
Solar neutrino physics: Historical evolution, present status and perspectives, L. Miramonti, F. Reseghetti, La Rivista del Nuovo Cimento 25 (2002) 1, arXiv:hep-ex/0302035.
[Miramonti:2002wz]
[2-72]
Fusion cycles in stars and stellar neutrinos, G. Wolschin, arXiv:astro-ph/0210032, 2002.
[Wolschin:2002dh]
[2-73]
Direct observation of neutrino oscillations at the Sudbury Neutrino Observatory, B. Ananthanarayan, Ritesh K. Singh, Curr. Sci. 83 (2002) 553, arXiv:physics/0208096.
[Ananthanarayan:2002hx]
[2-74]
Nuclear weak interaction processes in stars, K. Langanke, G. Martinez-Pinedo, Rev. Mod. Phys. 75 (2003) 819-862, arXiv:nucl-th/0203071.
[Langanke:2002ab]
[2-75]
Neutrino Masses and Mixing: Evidence and Implications, M.C. Gonzalez-Garcia, Y. Nir, Rev. Mod. Phys. 75 (2003) 345-402, arXiv:hep-ph/0202058.
[Gonzalez-Garcia:2002bkq]
[2-76]
The solar neutrino problem and its oscillation solution, M. B. Smy, Mod. Phys. Lett. A17 (2002) 2163-2178.
[Smy:2002tn]
[2-77]
Solar neutrinos, M. F. Altmann, R. L. Mossbauer, L. J. N. Oberauer, Rept. Prog. Phys. 64 (2001) 97-146.
[Altmann:2001eu]
[2-78]
Nuclear spin isospin responses for low-energy neutrinos, H. Ejiri, Phys. Rept. 338 (2000) 265-351.
[Ejiri:2000ps]
[2-79]
Solar neutrinos, Yoichiro Suzuki, Int. J. Mod. Phys. A15S1 (2000) 201-228.
[Suzuki:1999rn]
[2-80]
Phenomenology of neutrino oscillations, S. M. Bilenky, C. Giunti, W. Grimus, Prog. Part. Nucl. Phys. 43 (1999) 1, arXiv:hep-ph/9812360.
[Bilenky:1998dt]
[2-81]
Solar fusion cross-sections, Eric G. Adelberger et al., Rev. Mod. Phys. 70 (1998) 1265-1292, arXiv:astro-ph/9805121.
[Adelberger:1998qm]
[2-82]
Standard Solar Composition, N. Grevesse, A. J. Sauval, Space Sci. Rev. 85 (1998) 161-174.
[Grevesse:1998bj]
[2-83]
Solar neutrinos: Beyond standard solar models, V. Castellani, S. Degl'Innocenti, G. Fiorentini, M. Lissia, B. Ricci, Phys. Rep. 281 (1997) 309-398, arXiv:astro-ph/9606180.
[Castellani:1996cm]
[2-84]
On using a neutrino magnetic moment to attack the solar neutrino problem, X. Shi, D.N. Schramm, R. Rosner, D.S. Dearborn, Comments Nucl.Part.Phys. 21 (1993) 151-182.
[Shi:1992ek]
[2-85]
The Solar interior, S. Turck-Chieze et al., Phys. Rep. 230 (1993) 57-235.
[Turck-Chieze:1993yf]
[2-86]
Particle physics confronts the solar neutrino problem, Palash B. Pal, Int.J.Mod.Phys. A7 (1992) 5387-5460.
[Pal:1991pm]
[2-87]
The Solar neutrino problem and the neutrino magnetic moment, Joao Pulido, Phys.Rept. 211 (1992) 167-199.
[Pulido:1991fb]
[2-88]
Neutrino oscillations in matter, T. K. Kuo, James Pantaleone, Rev. Mod. Phys. 61 (1989) 937.
[Kuo:1989qe]
[2-89]
Resonance oscillations of neutrinos in matter, S. P. Mikheev, A. Yu. Smirnov, Sov. Phys. Usp. 30 (1987) 759-790.
[Mikheev:1987qk]
[2-90]
Experimental and theoretical nuclear astrophysics: the quest for the origin of the elements, W. A. Fowler, Rev. Mod. Phys. 56 (1984) 149-179.
[Fowler-RMP-56-149-1984]
[2-91]
Solar Neutrino Experiments, John N. Bahcall, Rev. Mod. Phys. 50 (1978) 881.
[Bahcall:1978fa]
[2-92]
The Internal Constitution of the Stars, A. S. Eddington, Observatory 43 (1920) 353.
[Eddington-1920]

3 - Reviews - Talks

[3-1]
Solar Neutrino Measurements, Andrea Pocar, arXiv:1812.02326, 2018. XXXVIII International Symposium on Physics in Collision, Bogota, Colombia, 11-15 september 2018.
[BOREXINO:2018mzm]
[3-2]
Helioseismology and solar neutrinos, J. Christensen-Dalsgaard, arXiv:1809.03000, 2018. 5th International Solar Neutrino Conference.
[Christensen-Dalsgaard:2018etv]
[3-3]
Introduction to neutrino astronomy, Andrea Gallo Rosso, Carlo Mascaretti, Andrea Palladino, Francesco Vissani, Eur.Phys.J.Plus 133 (2018) 267, arXiv:1806.06339. 4th Azarquiel School of Astronomy, June 2017, Porto Paolo di Capo Passero, Syracuse (Italy).
[GalloRosso:2018omb]
[3-4]
Current State of Astrophysical Opacities: A White Paper, A.E. Lynas-Gray et al., ASP Conf.Ser. 515 (2018) 301, arXiv:1804.06804. Second Workshop on Astrophysical Opacities, Kalamazoo, Michigan, USA: 2017 August 1st - 4th.
[Lynas-Gray:2018eru]
[3-5]
Solar neutrino physics on the beginning of 2017, Francesco Vissani, Nucl.Phys.Atom.Energy 18 (2017) 5-12, arXiv:1706.05435.
[Vissani:2017dto]
[3-6]
Neutrino Astrophysics, Cristina Volpe, Acta Phys.Polon.Supp. 9 (2016) 769, arXiv:1609.06747. 52th Winter School of Theoretical Physics, Ladek Zdroj, 14-21 February 2016.
[Volpe:2016bkp]
[3-7]
Low-energy neutrinos, Livia Ludhova, J. Phys. Conf. Ser. 718 (2016) 022012, arXiv:1601.08234. TAUP 2015, 7-11 September 2015, Torino (Italy).
[Ludhova:2016wbn]
[3-8]
Oscillations at low energies, D.A. Dwyer, L. Ludhova, Nucl. Part. Phys. Proc. 265-266 (2015) 339-345, arXiv:1506.01998. Neutrino Oscillation Workshop, 2014.
[Dwyer:2015exa]
[3-9]
An Experimental Review of Solar Neutrinos, Jeanne R. Wilson, arXiv:1504.04281, 2015. NuPhys2014.
[Wilson:2015qga]
[3-10]
Everything Under the Sun: A Review of Solar Neutrino, G. D. Orebi Gann, arXiv:1504.02154, 2015.
[OrebiGann:2015uss]
[3-11]
Neutrino astrophysics : recent advances and open issues, Cristina Volpe, J. Phys. Conf. Ser. 631 (2015) 012048, arXiv:1503.01355. DISCRETE 2014.
[Volpe:2015yya]
[3-12]
Recent advances in neutrino astrophysics, Cristina Volpe, PoS FFP14 (2016) 127, arXiv:1411.6533. Frontiers of Fundamental Physics 2014, July 15-18, Marseille.
[Volpe:2014rca]
[3-13]
Impact on Astrophysics and Elementary Particle Physics of recent and future solar neutrino data, Vito Antonelli, Lino Miramonti, arXiv:1311.2575, 2013. 14th ICATPP Conference on Astroparticle, Particle, Space Physics and Detectors for Physics Applications (Villa Olmo, Como - September 2013).
[Antonelli:2013eva]
[3-14]
Low Energy Neutrino Measurements, Davide D'Angelo, Pramana 79 (2012) 757-780, arXiv:1211.5359. XXV Lepton Photon, 22 to 27 August 2011.
[DAngelo:2012jch]
[3-15]
Neutrino 2012: Outlook - theory, A. Yu. Smirnov, Nucl. Phys. Proc. Suppl. 235-236 (2013) 431-440, arXiv:1210.4061. XXV International Conference on Neutrino Physics and Astrophysics, June 3 - 9, 2012, Kyoto, Japan.
[Smirnov:2012ei]
[3-16]
Solar Neutrinos in 2011, Alvaro Chavarria, arXiv:1201.6311, 2012. XXXI Physics in Collision 2011.
[Chavarria:2012sd]
[3-17]
Neutrinos and the stars, Georg Raffelt, Proc.Int.Sch.Phys.Fermi 182 (2012) 61-143, arXiv:1201.1637. ISAPP School 'Neutrino Physics and Astrophysics', 26 July-5 August 2011, Villa Monastero, Varenna, Italy.
[Raffelt:2012kt]
[3-18]
Solar neutrinos and the sun, Aldo Serenelli, arXiv:1109.2602, 2011. XIV International Workshop on 'Neutrino Telescopes', March 15-18, 2011, Venice, Italy.
[Serenelli:2011ea]
[3-19]
New Results on Solar Neutrinos, Alain Bellerive, PoS ICHEP2010 (2010) 529, arXiv:1012.2493. 35th International Conference of High Energy Physics, Paris, France, July 22-28, 2010.
[Bellerive:2010xw]
[3-20]
Lectures on neutrino phenomenology, Walter Winter, Nucl. Phys. B, Proc. Suppl. 203-204 2010 (2010) 45-81, arXiv:1004.4160. Schladming Winter School 2010 'Masses and Constants'.
[Winter:2010hb]
[3-21]
Spectroscopy of Solar Neutrinos, Michael Wurm et al., Astron.Nachr. 331 (2010) 512, arXiv:1004.0831. Annual Fall Meeting of the German Astronomische Gesellschaft in Potsdam (Sep 2009).
[Wurm:2010am]
[3-22]
Solar Neutrinos, Marco Pallavicini, arXiv:0910.3304, 2009. XXIX Physics in Collisions conference - Kobe, Japan - 2009.
[Pallavicini:2009ne]
[3-23]
Significance of neutrino cross-sections for astrophysics, A.B. Balantekin, AIP Conf. Proc. 1189 (2009) 11-15, arXiv:0909.0226. NUINT2009 (6th International Workshop on Neutrino-Nucleus Interactions in the Few-GeV Region), May 18-22, 2009, Sitges, Barcelona, Spain.
[Balantekin:2009qq]
[3-24]
Solar neutrino detection, Lino Miramonti, AIP Conf. Proc. 1123 (2009) 166-173, arXiv:0901.3443. III School on Cosmic Rays and Astrophysics August 25 to September 5, 2008 Arequipa (Peru).
[Miramonti:2009hm]
[3-25]
Muons and Neutrinos 2007, Thomas K. Gaisser, arXiv:0801.4542, 2008. 30th International Cosmic Ray Conference, Merida, Yucatan, July, 2007.
[Gaisser:2008cp]
[3-26]
Solar Neutrinos: Models, Observations, and New Opportunities, W. C. Haxton, Publ. Astron. Soc. Austral. 25 (2008) 44-51, arXiv:0710.2295. Nuclear Astrophysics 1957:2007: Beyond the First 50 Years, Caltech, July, 2007.
[Haxton:2007kg]
[3-27]
Radiochemical solar neutrino experiments, V. N. Gavrin, B. T. Cleveland, Nucl. Phys. Proc. Suppl. 221 (2011) 90-97, arXiv:nucl-ex/0703012. XXII Int. Conf. on Neutrino Physics and Astrophysics, Santa Fe, 13-19 June 2006.
[Gavrin:2007wc]
[3-28]
Nuclear Astrophysics: CIPANP 2006, W. C. Haxton, AIP Conf. Proc. 870 (2006) 33-43, arXiv:nucl-th/0609006. CIPANP 2006.
[Haxton:2006ae]
[3-29]
Global fits to neutrino oscillation data, Thomas Schwetz, Phys. Scripta T127 (2006) 1-5, arXiv:hep-ph/0606060. SNOW2006 workshop, Stockholm, 2-6 May 2006.
[Schwetz:2006dh]
[3-30]
Solar Neutrinos, R.G.H. Robertson, Prog. Part. Nucl. Phys. 57 (2006) 90, arXiv:nucl-ex/0602005. International School on Nuclear Physics; 27th Course: 'Neutrinos in Cosmology, in Astro, Particle and Nuclear Physics' in Erice, Sicily, Italy; September 16 - 24, 2005.
[Robertson:2006pk]
[3-31]
Helioseismology, Neutrinos and Radiative Zones, S. Turck-Chieze, S. Couvidat, L. Piau, EAS Publ.Ser. 17 (2005) 149, arXiv:astro-ph/0511008. Mons 2005: Element Stratifications in Stars: 40 Years of Atomic Diffusion: Meeting in Honor of Georges Michaud, Mons, France, 6-10 June 2005.
[Turck-Chieze:2005qdb]
[3-32]
Neutrino oscillations: Current status and prospects, Thomas Schwetz, Acta Phys. Polon. B36 (2005) 3203, arXiv:hep-ph/0510331. XXIX International Conference of Theoretical Physics, 'Matter To The Deepest: Recent Developments In Physics of Fundamental Interactions', 8-14 September 2005, Ustron, Poland.
[Schwetz:2005jr]
[3-33]
Status of the Standard Solar Model Prediction of Solar Neutrino Fluxes, Moshe Gai, Phys. Atom. Nucl. 69 (2006) 1805-1811, arXiv:nucl-ex/0510081. Fifth International Conferenceon Non-Accelerator New Physics, Dubna, June 20-25, 2005.
[Gai:2005md]
[3-34]
Review of Solar and Reactor Neutrinos, A.W.P. Poon, Int. J. Mod. Phys. A21 (2006) 1855-1868, arXiv:hep-ex/0509024. XXII International Symposium on Lepton and Photon Interactions at High Energy (Lepton-Photon 2005, June 30 to July 5, 2005, Uppsala, Sweden).
[Poon:2005qu]
[3-35]
Neutrino mass and mixing parameters: A short review, G.L. Fogli et al., arXiv:hep-ph/0506307, 2005. 40th Rencontres de Moriond on Electroweak Interactions and Unified Theories, La Thuile, Aosta Valley, Italy, 5-12 Mar 2005.
[Fogli:2005gs]
[3-36]
Solar Models and Solar Neutrinos: Current Status, John N. Bahcall, Phys. Scripta T121 (2005) 46, arXiv:hep-ph/0412068. Nobel Symposium 2004, Enkoping, Sweden, August 19-24, 2004.
[Bahcall:2004qv]
[3-37]
Evidence for Neutrino Mass: A Decade of Discovery, K.M. Heeger, arXiv:hep-ex/0412032, 2004. SEESAW25: International Conference on the Seesaw Mechanism and Neutrino Mass, Paris, France, 10-11 June 2004.
[Heeger:2004mp]
[3-38]
Three-flavour effects and CP- and T-violation in neutrino oscillations, Evgeny Akhmedov, Phys. Scripta T121 (2005) 65, arXiv:hep-ph/0412029. Nobel Symposium 129 - Neutrino Physics, Haga Slott, Enkoping, Sweden, August 19-24, 2004.
[Akhmedov:2004ve]
[3-39]
Recent Results of non-accelarator-based neutrino experiments, Yifang Wang, Int. J. Mod. Phys. A20 (2005) 5244, arXiv:hep-ex/0411028. '32nd International Conference on High Energy Physics', Aug. 16-22, 2004, Beijing, P.R. China.
[Wang:2004wu]
[3-40]
The solar chemical composition, Martin Asplund, Nicolas Grevesse, Jacques Sauval, Nucl. Phys. A777 (2006) 1-4, arXiv:astro-ph/0410214. International Symposium on Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis in Honor of Professor David Lambert, Austin, Texas, 17-19 June 2004.
[Asplund:2004eu]
[3-41]
Physics of Massive Neutrinos, J. W. F. Valle, Nucl. Phys. Proc. Suppl. 149 (2005) 3, arXiv:hep-ph/0410103. Sixth International Conf. on Neutrino Factories and SuperBeams (NuFact04) Osaka, Japan, July 26-August 1, 2004.
[Valle:2004cr]
[3-42]
Neutrino 2004: Concluding Talk, Guido Altarelli, Nucl. Phys. Proc. Suppl. 143 (2005) 470, arXiv:hep-ph/0410101. Neutrino 2004, Paris, 14-19 June 2004.
[Altarelli:2004cp]
[3-43]
Global Analysis of Neutrino Data, M. C. Gonzalez-Garcia, Phys. Scripta T121 (2005) 72, arXiv:hep-ph/0410030. Nobel Symposium on Neutrino Physics, Haga Slott, Enkoping, Sweden.
[Gonzalez-Garcia:2004oyj]
[3-44]
Solar Neutrino Oscillation - An Overview, D. P. Roy, arXiv:hep-ph/0409336, 2004. Xth International Symposium on Particles, Strings and Cosmology (PASCOS), Boston, 16-22 August 2004.
[Roy:2004wf]
[3-45]
Solar Neutrino Oscillation Parameters in Experiments with Reactor Anti-Neutrinos, Sandhya Choubey, arXiv:hep-ph/0402288, 2004. 2nd International Workshop on Neutrino oscillations in Venice (NOVE), December 3-5, 2003, Venice, Italy.
[Choubey:2004tu]
[3-46]
Neutrinos: '...annus mirabilis', A. Yu. Smirnov, arXiv:hep-ph/0402264, 2004. 2nd Int. Workshop on Neutrino oscillations in Venice (NOVE) December 3-5, 2003, Venice, Italy.
[Smirnov:2004ju]
[3-47]
Global analysis of neutrino oscillation, S. Goswami, 2004. Neutrino 2004, 13-19 June 2004, Paris, France. http://neutrino2004.in2p3.fr/slides/tuesday/goswami.pdf.
[Goswami-Nu2004]
[3-48]
Neutrino physics, recent results, E. Lisi, 2004. IFAE-2004, 14-16 April 2004, Torino, Italy. http://agenda.cern.ch/askArchive.php?base=agenda&categ=a041654&id=a041654s3t6/transparencies. http://www.ph.unito.it/ifae/Proceedings/Sessioni/Neutrinos.pdf.
[Lisi:IFAE2004]
[3-49]
Review of Solar Neutrino Experiments, Alain Bellerive, Int. J. Mod. Phys. A19 (2004) 1167, arXiv:hep-ex/0312045. XXI International Symposium on Lepton and Photon Interactions at High Energies, Fermilab, USA, 11-16 August 2003.
[Bellerive:2003rj]
[3-50]
Solar neutrino oscillation phenomenology, S. Goswami, Pramana 62 (2004) 241, arXiv:hep-ph/0307224. 9th International Symposium on Particles, Strings and Cosmology (PASCOS 03), Mumbai, India, 3-8 Jan 2003.
[Goswami:2003ek]
[3-51]
Neutrino masses twenty-five years later, J. W. F. Valle, Aip Conf. Proc. 687 (2003) 16, arXiv:hep-ph/0307192. MRST'03 (Joe-Fest), Syracuse, NY, May 2003.
[Valle:2003rh]
[3-52]
Neutrino oscillations in the framework of the tree-neutrino mixing, S. M. Bilenky, arXiv:hep-ph/0307186, 2003. Ist Yamada Symposium Om neutrinos and Dark Matter in Nuclear Physics, June 9-14, 2003, Nara, Japan.
[Bilenky:2003rb]
[3-53]
Neutrino Physics after KamLAND, A. Yu. Smirnov, arXiv:hep-ph/0306075, 2003. 4th Workshop on 'Neutrino Oscillations and their Origin' (NOON2003), February 10-14, 2003, Ishikawa Kousei Nenkin Kaikan, Kanazawa, Japan. http://www-sk.icrr.u-tokyo.ac.jp/noon2003/transparencies/10/Smirnov.pdf.
[Smirnov:2003uu]
[3-54]
Status of Neutrino Fits, C. Giunti, arXiv:hep-ph/0305139, 2003. XXXVIIIth Rencontres de Moriond, ElectroWeak Interactions and Unified Theories, 15-22 March 2003, Les Arcs, France. http://moriond.in2p3.fr/EW/2003/Transparencies/1_Sunday/1_2_afternoon/1_2_6_Giunti/C.Giunti.pdf.
[Giunti:2003vf]
[3-55]
The MSW effect and Solar Neutrinos, A. Yu. Smirnov, arXiv:hep-ph/0305106, 2003. 11th workshop on Neutrino Telescopes, Venice, March 11- 14, 2003.
[Smirnov:2003da]
[3-56]
Solar Fusion and The Coulomb Dissociation of 8B; What Have We Learned and Where Do We Go From Here?, Moshe Gai, Heavy Ion Phys. 21 (2004) 335, arXiv:nucl-ex/0303009. 19th Winter Workshop on Nuclear Dynamics, Breckenridge, Colorado, 9-15 Feb 2003.
[Gai:2003yr]
[3-57]
Neutrino Physics: Experimental Status, T. Kajita, 2003. 19th International Workshop on Weak Interactions and Neutrinos, WIN2003, October 6-11, Lake Geneva, Wisconsin, USA. http://conferences.fnal.gov/win03/Talks/Takaaki%20Kajita.pdf.
Comment: The slide n. 19 shows the $ 90 \% $ C.L. allowed contours for $\nu_\mu \rightarrow \nu_\tau$ oscillations obtained by different atmospheric neutrino experiments. The figure in slide n.24 shows the $ 90 \% $ C.L. allowed contour for $\nu_\mu \rightarrow \nu_\tau$ oscillations obtained by Super-Kamiokande. [M.L.].
[Kajita:WIN2003]
[3-58]
Neutrino Masses and Mixing: Where We Stand and Where We are Going, M. C. Gonzalez-Garcia, arXiv:hep-ph/0211054, 2002. 10th International Conference on Supersymmetry and Unification of Fundamental Interactions, SUSY02 (June 17-23, 2002, DESY, Hamburg).
[Gonzalez-Garcia:2002wak]
[3-59]
Theory of Neutrino Masses and Mixing, M. C. Gonzalez-Garcia, Nucl. Phys. Proc. Suppl. 117 (2003) 186, arXiv:hep-ph/0210359. 31st international conference on high energy physics (ICHEP 2002), Amsterdam, 24-31 July 2002.
[Gonzalez-Garcia:2002ygb]
[3-60]
Current Status of Neutrino Masses and Mixings, C. Giunti, Nucl. Phys. Proc. Suppl. 117 (2003) 24-28, arXiv:hep-ph/0209103. 31st International Conference on High Energy Physics 'ICHEP02', 24-31 July 2002, Amsterdam. http://www.ichep02.nl/Transparencies/NEU/NEU-2/NEU-2-1.giunti.ps.
[Giunti:2002sr]
[3-61]
Global analysis of solar neutrinos, S. Choubey, 2002. Fourth NuFact '02 Workshop on Neutrino Factories based on Muon Storage Rings, Imperial College, London, 1-6 July 2002. http://www.hep.ph.ic.ac.uk/NuFact02/Scientific-programme/files/Wednesday/wg2/A01_choubey.ps.
[Choubey-talk:2002a]
[3-62]
Actuality and potentiality of neutrino mixing, C. Giunti, 2002. IIIrd International Workshop on Low Energy Solar Neutrinos - LowNu 2002, 22-24 May 2002, Heidelberg, Germany. http://www.mpi-hd.mpg.de/nubis/www_lownu2002/transparency/giunti_lownu_2002.pdf.
[Giunti-LowNu2002]
[3-63]
Solar Neutrinos, K. Nishikawa, 2002. Topical Seminar on Frontier of Particle Physics 2002: Neutrinos and Cosmology, 20-25 August 2002, Beijing, China. http://bes.ihep.ac.cn/particle/2002/presentation/K.Nishikawa/TALK_1.ZIP.
[Nishikawa-talk:2002a]
[3-64]
Review of solar models and helioseismology, S. Turck-Chieze, Nucl. Phys. Proc. Suppl. 91 (2001) 73-79.
[Turck-Chieze:2001te]

4 - Experiment

[4-1]
Solar flare observations with the Radio Neutrino Observatory Greenland (RNO-G), S. Agarwal et al., arXiv:2404.14995, 2024.
[Agarwal:2024tat]
[4-2]
A Measurement of Solar $pp$ Neutrino Flux using PandaX-4T Electron Recoil Data, Xiaoying Lu et al. (PandaX), arXiv:2401.07045, 2024.
[Lu:2024ilt]
[4-3]
Solar neutrino measurements using the full data period of Super-Kamiokande-IV, K. Abe et al. (Super-Kamiokande), arXiv:2312.12907, 2023.
[Super-Kamiokande:2023jbt]
[4-4]
Search for Periodic Time Variations of the Solar $^8$B Neutrino Flux Between 1996 and 2018 in Super-Kamiokande, K. Abe et al., arXiv:2311.01159, 2023.
[Super-Kamiokande:2023yqq]
[4-5]
Final results of Borexino on CNO solar neutrinos, D. Basilico et al., Phys.Rev.D 108 (2023) 102005, arXiv:2307.14636.
[BOREXINO:2023ygs]
[4-6]
Searching for neutrinos from solar flares across solar cycles 23 and 24 with the Super-Kamiokande detector, K. Okamoto et al. (Super-Kamiokande), arXiv:2210.12948, 2022.
[Super-Kamiokande:2022yrk]
[4-7]
A First Search for Solar $^8$B Neutrino in the PandaX-4T Experiment using Neutrino-Nucleus Coherent Scattering, Wenbo Ma et al. (PandaX), Phys.Rev.Lett. 130 (2023) 021802, arXiv:2207.04883.
[PandaX:2022aac]
[4-8]
Improved measurement of solar neutrinos from the Carbon-Nitrogen-Oxygen cycle by Borexino and its implications for the Standard Solar Model, S. Appel et al. (Borexino), Phys.Rev.Lett. 129 (2022) 252701, arXiv:2205.15975.
[BOREXINO:2022abl]
[4-9]
Independent determination of the Earth's orbital parameters with solar neutrinos in Borexino, S. Appel et al. (Borexino), Astropart.Phys. 145 (2023) 102778, arXiv:2204.07029.
[BOREXINO:2022wuy]
[4-10]
Testing Non-Standard Interactions Between Solar Neutrinos and Quarks with Super-Kamiokande, P. Weatherly et al. (Super-Kamiokande), arXiv:2203.11772, 2022.
[Super-Kamiokande:2022lyl]
[4-11]
First Directional Measurement of sub-MeV Solar Neutrinos with Borexino, M. Agostini et al. (Borexino), Phys.Rev.Lett. 128 (2022), arXiv:2112.11816.
[BOREXINO:2021efb]
[4-12]
First demonstration of directional measurement of sub-MeV solar neutrinos in a liquid scintillator detector with Borexino, M. Agostini et al. (Borexino), Phys.Rev.D 105 (2022) 052002, arXiv:2109.04770.
[BOREXINO:2021xzc]
[4-13]
Search for Solar Flare Neutrinos with the KamLAND detector, S. Abe et al. (KamLAND), Astrophys.J. 924 (2022) 103, arXiv:2105.02458.
[KamLAND:2021sda]
[4-14]
Search for GeV Neutrino Emission During Intense Gamma-Ray Solar Flares with the IceCube Neutrino Observatory, R. Abbasi et al. (IceCube), Phys.Rev. D103 (2021) 102001, arXiv:2101.00610.
[IceCube:2021jwt]
[4-15]
Search for solar electron anti-neutrinos due to spin-flavor precession in the Sun with Super-Kamiokande-IV, K. Abe et al. (Super-Kamiokande), Astropart.Phys. 139 (2022) 102702, arXiv:2012.03807.
[Super-Kamiokande:2020frs]
[4-16]
A search for $hep$ solar neutrinos and the diffuse supernova neutrino background using all three phases of the Sudbury Neutrino Observatory, B. Aharmim et al. (SNO), Phys.Rev. D102 (2020) 062006, arXiv:2007.08018.
[SNO:2020gqd]
[4-17]
First Direct Experimental Evidence of CNO neutrinos, M. Agostini et al. (Borexino), Nature 587 (2020) 577-582, arXiv:2006.15115.
[BOREXINO:2020aww]
[4-18]
Sensitivity to neutrinos from the solar CNO cycle in Borexino, M. Agostini et al. (Borexino), Eur.Phys.J. C80 (2020) 1091, arXiv:2005.12829.
[BOREXINO:2020hox]
[4-19]
Search for exotic neutrino-electron interactions using solar neutrinos in XMASS-I, K. Abe et al. (XMASS), Phys.Lett. B (2020) 135741, arXiv:2005.11891.
[XMASS:2020zke]
[4-20]
Measurement of the $^8$B Solar Neutrino Flux in SNO+ with Very Low Backgrounds, M. Anderson et al. (SNO+), Phys.Rev. D99 (2019) 012012, arXiv:1812.03355.
[SNO:2018fch]
[4-21]
Constraints on Neutrino Lifetime from the Sudbury Neutrino Observatory, B. Aharmim et al. (SNO), Phys.Rev. D99 (2019) 032013, arXiv:1812.01088.
[SNO:2018pvg]
[4-22]
Tests of Lorentz invariance at the Sudbury Neutrino Observatory, B. Aharmim et al. (SNO), Phys.Rev. D98 (2018) 112013, arXiv:1811.00166.
[SNO:2018mge]
[4-23]
Improved measurement of 8B solar neutrinos with 1.5 kt y of Borexino exposure, M. Agostini et al. (Borexino), Phys.Rev. D101 (2020) 062001, arXiv:1709.00756.
[Borexino:2017uhp]
[4-24]
First Simultaneous Precision Spectroscopy of $pp$, $^7$Be, and $pep$ Solar Neutrinos with Borexino Phase-II, M. Agostini et al. (Borexino), Phys.Rev. D100 (2019) 082004, arXiv:1707.09279.
[Borexino:2017rsf]
[4-25]
Seasonal Modulation of the $^7$Be Solar Neutrino Rate in Borexino, M. Agostini et al. (Borexino), Astropart.Phys. 92 (2017) 21-29, arXiv:1701.07970.
[BOREXINO:2017yyp]
[4-26]
Solar Neutrino Measurements in Super-Kamiokande-IV, K. Abe et al. (Super-Kamiokande), Phys. Rev. D94 (2016) 052010, arXiv:1606.07538.
[Super-Kamiokande:2016yck]
[4-27]
Measurement of neutrino flux from the primary proton-proton fusion process in the Sun with Borexino detector, O. Y. Smirnov et al. (Borexino), Phys.Part.Nucl. 47 (2016) 995-1002, arXiv:1507.02432.
[Borexino:2015axw]
[4-28]
7Be Solar Neutrino Measurement with KamLAND, A. Gando et al. (KamLAND), Phys.Rev. C92 (2015) 055808, arXiv:1405.6190.
[KamLAND:2014gul]
[4-29]
Neutrinos from the primary proton-proton fusion process in the Sun, G. Bellini et al. (Borexino), Nature 512 (2014) 383-386.
[BOREXINO:2014pcl]
[4-30]
First Indication of Terrestrial Matter Effects on Solar Neutrino Oscillation, A. Renshaw et al. (Super-Kamiokande), Phys. Rev. Lett. 112 (2014) 091805, arXiv:1312.5176.
[Super-Kamiokande:2013mie]
[4-31]
New limits on heavy sterile neutrino mixing in ${^{8}\rm{B}}$-decay obtained with the Borexino detector, G. Bellini et al. (Borexino), Phys. Rev. D 88, 072010 (2013) 072010, arXiv:1311.5347.
[Borexino:2013bot]
[4-32]
Final results of Borexino Phase-I on low energy solar neutrino spectroscopy, G. Bellini et al. (Borexino), Phys. Rev. D89 (2014) 112007, arXiv:1308.0443.
[Borexino:2013zhu]
[4-33]
First evidence of pep solar neutrinos by direct detection in Borexino, G. Bellini et al. (Borexino), Phys. Rev. Lett. 108 (2012) 051302, arXiv:1110.3230.
[Borexino:2011ufb]
[4-34]
Combined Analysis of all Three Phases of Solar Neutrino Data from the Sudbury Neutrino Observatory, B. Aharmim et al. (SNO), Phys. Rev. C88 (2013) 025501, arXiv:1109.0763.
[SNO:2011hxd]
[4-35]
Measurement of the $\nu_e$ and Total $^{8}$B Solar Neutrino Fluxes with the Sudbury Neutrino Observatory Phase-III Data Set, B. Aharmim et al. (SNO), Phys. Rev. C87 (2013) 015502, arXiv:1107.2901.
[SNO:2011ajh]
[4-36]
Measurement of the 8B Solar Neutrino Flux with KamLAND, S. Abe et al. (KamLAND), Phys. Rev. C84 (2011) 035804, arXiv:1106.0861.
[KamLAND:2011fld]
[4-37]
Absence of day-night asymmetry of 862 keV $^7\text{Be}$ solar neutrino rate in Borexino and MSW oscillation parameters, G. Bellini et al. (Borexino), Phys. Lett. B707 (2012) 22-26, arXiv:1104.2150.
[Borexino:2011bhn]
[4-38]
Precision measurement of the $^7\text{Be}$ solar neutrino interaction rate in Borexino, G. Bellini et al. (Borexino), Phys. Rev. Lett. 107 (2011) 141302, arXiv:1104.1816.
[Bellini:2011rx]
[4-39]
Solar neutrino results in Super-Kamiokande-III, K. Abe et al. (Super-Kamiokande), Phys. Rev. D83 (2011) 052010, arXiv:1010.0118.
[Super-Kamiokande:2010tar]
[4-40]
Study of solar and other unknown anti-neutrino fluxes with Borexino at LNGS, G. Bellini (Borexino), Phys. Lett. B696 (2011) 191-196, arXiv:1010.0029.
[Borexino:2010zht]
[4-41]
Reanalysis of the GALLEX solar neutrino flux and source experiments, F. Kaether, W. Hampel, G. Heusser, J. Kiko, T. Kirsten, Phys. Lett. B685 (2010) 47-54, arXiv:1001.2731.
[Kaether:2010ag]
[4-42]
Low Energy Threshold Analysis of the Phase I and Phase II Data Sets of the Sudbury Neutrino Observatory, B. Aharmim et al. (SNO), Phys. Rev. C81 (2010) 055504, arXiv:0910.2984.
[SNO:2009uok]
[4-43]
Searches for High Frequency Variations in the $^8\text{B}$ Solar Neutrino Flux at the Sudbury Neutrino Observatory, B. Aharmim et al. (SNO), Astrophys. J. 710 (2010) 540-548, arXiv:0910.2433.
[SNO:2009ktr]
[4-44]
Measurement of the solar neutrino capture rate with Gallium metal, Part III, J. N. Abdurashitov et al. (SAGE), Phys. Rev. C80 (2009) 015807, arXiv:0901.2200.
[SAGE:2009eeu]
[4-45]
Measurement of the solar $^{8}\text{B}$ neutrino flux with 246 live days of Borexino and observation of the MSW vacuum-matter transition, G. Bellini et al. (Borexino), Phys. Rev. D82 (2010) 033006, arXiv:0808.2868.
[Borexino:2008fkj]
[4-46]
The Borexino detector at the Laboratori Nazionali del Gran Sasso, G. Alimonti et al. (Borexino), Nucl. Instrum. Meth. A600 (2009) 568-593, arXiv:0806.2400.
[Borexino:2008gab]
[4-47]
An Independent Measurement of the Total Active 8B Solar Neutrino Flux Using an Array of 3He Proportional Counters at the Sudbury Neutrino Observatory, B. Aharmim et al. (SNO), Phys. Rev. Lett. 101 (2008) 111301, arXiv:0806.0989.
[SNO:2008gqy]
[4-48]
New results on solar neutrino fluxes from 192 days of Borexino data, C. Arpesella et al. (Borexino), Phys. Rev. Lett. 101 (2008) 091302, arXiv:0805.3843.
[Borexino:2008dzn]
[4-49]
Solar neutrino measurements in Super-Kamiokande-II, J.P. Cravens et al. (Super-Kamiokande), Phys. Rev. D78 (2008) 032002, arXiv:0803.4312.
From the abstract: The results of the second phase of the Super-Kamiokande solar neutrino measurement are presented and compared to the first phase. The solar neutrino flux spectrum and time-variation as well as oscillation results are statistically consistent with the first phase and do not show spectral distortion. The time-dependent flux measurement of the combined first and second phases coincides with the full period of solar cycle 23 and shows no correlation with solar activity.
[Super-Kamiokande:2008ecj]
[4-50]
First real time detection of ${}^{7}\text{B}$ solar neutrinos by Borexino, C. Arpesella et al. (Borexino), Phys. Lett. B658 (2008) 101-108, arXiv:0708.2251.
[Borexino:2007kvk]
[4-51]
Measurement of the $\nu_e$ and Total ${}^{8}\text{B}$ Solar Neutrino Fluxes with the Sudbury Neutrino Observatory Phase I Data Set, B. Aharmim et al. (SNO), Phys. Rev. C75 (2007) 045502, arXiv:nucl-ex/0610020.
[SNO:2006odc]
[4-52]
A Search for Neutrinos from the Solar hep Reaction and the Diffuse Supernova Neutrino Background with the Sudbury Neutrino Observatory, B. Aharmim et al. (SNO), Astrophys. J. 653 (2006) 1545-1551, arXiv:hep-ex/0607010.
[SNO:2006dke]
[4-53]
Search for electron antineutrino interactions with the Borexino Counting Test Facility at Gran Sasso, M. Balata et al. (Borexino), Eur. Phys. J. C47 (2006) 21-30, arXiv:hep-ex/0602027.
[Borexino:2006qmb]
[4-54]
The SAGE@LNGS experiment: Measurement of solar neutrinos at LNGS using gallium from SAGE, J. N. Abdurashitov et al., Astropart. Phys. 25 (2006) 349-354, arXiv:nucl-ex/0509031.
[Abdurashitov:2005ax]
[4-55]
Solar neutrino measurements in Super-Kamiokande-I, J. Hosaka et al. (Super-Kamkiokande), Phys. Rev. D73 (2006) 112001, arXiv:hep-ex/0508053.
[Super-Kamiokande:2005wtt]
[4-56]
A Search for Periodicities in the $^8\text{B}$ Solar Neutrino Flux Measured by the Sudbury Neutrino Observatory, B. Aharmim et al. (SNO), Phys. Rev. D72 (2005) 052010, arXiv:hep-ex/0507079.
From the abstract: The variation at a period of one year is consistent with modulation of the $^8\text{B}$ neutrino flux by the Earth's orbital eccentricity. No significant sinusoidal periodicities are found with periods between 1 day and 10 years.
[SNO:2005ftm]
[4-57]
Complete results for five years of GNO solar neutrino observations, M. Altmann et al. (GNO), Phys. Lett. B616 (2005) 174, arXiv:hep-ex/0504037.
[GNO:2005bds]
[4-58]
Electron Energy Spectra, Fluxes, and Day-Night Asymmetries of $^8\text{B}$ Solar Neutrinos from the 391-Day Salt Phase SNO Data Set, B. Aharmim et al. (SNO), Phys. Rev. C72 (2005) 055502, arXiv:nucl-ex/0502021.
[SNO:2005oxr]
[4-59]
Electron Antineutrino Search at the Sudbury Neutrino Observatory, B. Aharmim et al. (SNO), Phys. Rev. D70 (2004) 093014, arXiv:hep-ex/0407029.
[SNO:2004eru]
[4-60]
Limit On the Neutrino Magnetic Moment Using 1496 Days of Super-Kamiokande-I Solar Neutrino Data, D. W. Liu et al. (Super-Kamiokande), Phys. Rev. Lett. 93 (2004) 021802, arXiv:hep-ex/0402015.
[Super-Kamiokande:2004wqk]
[4-61]
Precise Measurement of the Solar Neutrino Day/Night and Seasonal Variation in Super-Kamiokande-I, M. B. Smy et al. (Super-Kamiokande), Phys. Rev. D69 (2004) 011104, arXiv:hep-ex/0309011.
[Super-Kamiokande:2003yed]
[4-62]
Measurement of the Total Active 8B Solar Neutrino Flux at the Sudbury Neutrino Observatory with Enhanced Neutral Current Sensitivity, S. N. Ahmed et al. (SNO), Phys. Rev. Lett. 92 (2004) 181301, arXiv:nucl-ex/0309004.
[SNO:2003bmh]
[4-63]
A search for periodic modulations of the solar neutrino flux in Super-Kamiokande-I, J. Yoo et al. (Super-Kamiokande), Phys. Rev. D68 (2003) 092002, arXiv:hep-ex/0307070.
[Super-Kamiokande:2003snd]
[4-64]
Search for $\bar\nu_e$ from the sun at Super-Kamiokande-I, Y. Gando et al. (Super-Kamiokande), Phys. Rev. Lett. 90 (2003) 171302, arXiv:hep-ex/0212067.
From the article: For the ${}^8\mathrm{B}$ spectrum the upper limit to the solar $\bar{\nu}_e$ flux is $8 \times 10^{-3}$ of the SSM $\nu_e$ flux prediction for total energy = 8 Mev - 20 MeV.
[Super-Kamiokande:2002exp]
[4-65]
Determination of solar neutrino oscillation parameters using 1496 days of Super-Kamiokande-I data, S. Fukuda et al. (Super-Kamiokande), Phys. Lett. B539 (2002) 179-187, arXiv:hep-ex/0205075.
[Super-Kamiokande:2002ujc]
[4-66]
Measurement of the Solar Neutrino Capture Rate by the Russian-American Gallium Solar Neutrino Experiment During One Half of the 22-Year Cycle of Solar Activity, J. N. Abdurashitov et al. (SAGE), J. Exp. Theor. Phys. 95 (2002) 181-193, arXiv:astro-ph/0204245.
From the abstract: Combined analysis of the data of 92 runs during the 12-year period January 1990 through December 2001 gives a capture rate of solar neutrinos with energy more than 233 keV of 70.8 +5.3/-5.2 (stat.) +3.7/-3.2 (syst.) SNU. This represents only slightly more than half of the predicted standard solar model rate of 130 SNU.... Using a simple analysis of the SAGE results combined with those from all other solar neutrino experiments, we estimate the electron neutrino pp flux that reaches the Earth to be (4.6 ± 1.1) × 1010 cm-2 s-1. Assuming that neutrinos oscillate to active flavors the pp neutrino flux emitted in the solar fusion reaction is approximately (7.7 ± 1.8) × 1010 cm-2 s-1, in agreement with the standard solar model calculation of (5.95 ± 0.06) × 1010 cm-2 s-1.
[SAGE:2002fps]
[4-67]
Measurement of Day and Night Neutrino Energy Spectra at SNO and Constraints on Neutrino Mixing Parameters, Q. R. Ahmad et al. (SNO), Phys. Rev. Lett. 89 (2002) 011302, arXiv:nucl-ex/0204009. http://www.sno.phy.queensu.ca/sno/results_04_02/DayNight.
[SNO:2002hgz]
[4-68]
Direct Evidence for Neutrino Flavor Transformation from Neutral-Current Interactions in the Sudbury Neutrino Observatory, Q. R. Ahmad et al. (SNO), Phys. Rev. Lett. 89 (2002) 011301, arXiv:nucl-ex/0204008. http://www.sno.phy.queensu.ca/sno/results_04_02/NC.
[SNO:2002tuh]
[4-69]
Search for radiative decays of solar neutrinos during a solar eclipse, G. Giacomelli, V. Popa, arXiv:hep-ex/0110013, 2001.
[Giacomelli:2001zb]
[4-70]
Measurement of the Rate of $\nu_e + d \to p + p + e^-$ Interactions Produced by $^8$B Solar Neutrinos at the Sudbury Neutrino Observatory, Q. R. Ahmad et al. (SNO), Phys. Rev. Lett. 87 (2001) 071301, arXiv:nucl-ex/0106015.
[SNO:2001kpb]
[4-71]
Solar $^8\mathrm{B}$ and $hep$ neutrino measurements from 1258 days of Super-Kamiokande data, S. Fukuda et al. (Super-Kamiokande), Phys. Rev. Lett. 86 (2001) 5651-5655, arXiv:hep-ex/0103032.
[Super-Kamiokande:2001ljr]
[4-72]
Measurement of the solar neutrino capture rate by SAGE and implications for neutrino oscillations in vacuum, J. N. Abdurashitov et al. (SAGE), Phys. Rev. Lett. 83 (1999) 4686-4689, arXiv:astro-ph/9907131.
[SAGE:1999uje]
[4-73]
Measurement of the solar neutrino capture rate with gallium metal, J. N. Abdurashitov et al. (SAGE), Phys. Rev. C60 (1999) 055801, arXiv:astro-ph/9907113.
[SAGE:1999nng]
[4-74]
GALLEX solar neutrino observations: Results for GALLEX IV, W. Hampel et al. (GALLEX), Phys. Lett. B447 (1999) 127.
[GALLEX-99]
[4-75]
Measurement of the solar neutrino energy spectrum using neutrino electron scattering, Y. Fukuda et al. (Super-Kamiokande), Phys. Rev. Lett. 82 (1999) 2430-2434, arXiv:hep-ex/9812011.
[Super-Kamiokande:1998zvz]
[4-76]
Constraints on neutrino oscillation parameters from the measurement of day-night solar neutrino fluxes at Super- Kamiokande, Y. Fukuda et al. (Super-Kamiokande), Phys. Rev. Lett. 82 (1999) 1810-1814, arXiv:hep-ex/9812009.
[Super-Kamiokande:1998oic]
[4-77]
Measurements of the solar neutrino flux from Super- Kamiokande's first 300 days, Y. Fukuda et al. (Super-Kamiokande), Phys. Rev. Lett. 81 (1998) 1158-1162, arXiv:hep-ex/9805021.
[Super-Kamiokande:1998qwk]
[4-78]
Measurement of the solar electron neutrino flux with the Homestake chlorine detector, B. T. Cleveland et al. (Homestake), Astrophys. J. 496 (1998) 505.
[Cleveland:1998nv]

5 - Experiment - Talks

[5-1]
Measuring Solar Neutrinos in the SNO+ Detector, Daniel Cookman, arXiv:2403.19532, 2024. NuPhys2023.
[Cookman:2024euw]
[5-2]
The Low Polonium Field of Borexino and its significance for the CNO neutrino detection, S. Kumaran et al., arXiv:2105.13209, 2021. 2021 Neutrinos session of the 55th Rencontres de Moriond.
[Borexino:2021wsd]
[5-3]
First detection of CNO neutrinos with Borexino, G. Settanta et al., arXiv:2105.09211, 2021. 2021 Neutrinos session of the 55th Rencontres de Moriond.
[Borexino:2021rat]
[5-4]
Recent results on pp-chain solar neutrinos with the Borexino detector, Lino Miramonti (Borexino), arXiv:1901.09965, 2019. NuPhys2018 (London, 19-21 December 2018).
[Miramonti:2019fyc]
[5-5]
Solar Neutrino Physics with Borexino, A. Pocar et al. (BOREXINO), SciPost Phys. Proc. 1 (2019) 025, arXiv:1810.12967. 15th International Workshop on Tau Lepton Physics (TAU2018): Amsterdam, Netherlands, September 24-28, 2018.
[BOREXINO:2018wno]
[5-6]
The Main Results of the Borexino Experiment, A. Derbin et al., arXiv:1605.06795, 2016. Third Annual Large Hadron Collider Physics Conference, St. Petersburg, Russia, 2015.
[Derbin:2015jgr]
[5-7]
Low-energy (anti)neutrino physics with Borexino: Neutrinos from the primary proton-proton fusion process in the Sun, P. Mosteiro et al., Nucl. Part. Phys. Proc. 265-266 (2015) 87-92, arXiv:1508.05379. NOW (Neutrino Oscillation Workshop) 2014.
[Mosteiro:2015boa]
[5-8]
Solar neutrino with Borexino: results and perspectives, O. Smirnov et al. (Borexino), Phys.Part.Nucl. 46 (2015) 166-173, arXiv:1410.0779. International Workshop on Prospects of Particle Physics, 'Neutrino Physics and Astrophysics', Valday, Russia, January 26 - February 02, 2014.
[Borexino:2014akx]
[5-9]
Recent Borexino results and prospects for the near future, D. D'Angelo et al. (Borexino), EPJ Web Conf. 126 (2016) 02008, arXiv:1405.7919. Rencontres de Moriond EW 2014.
[Borexino:2014lrx]
[5-10]
Solar Neutrino Results from Super-Kamiokande, Andrew Renshaw (Super-Kamiokande), Phys.Procedia 61 (2015) 345-354, arXiv:1403.4575.
[Renshaw:2014awa]
[5-11]
Solar neutrino analysis of Super-Kamiokande, Hiroyuki Sekiya (Super-Kamiokande), arXiv:1307.3686, 2013. 33rd International Cosmic Ray Conference, Rio De Janeiro 2013 (ICRC2013).
[Sekiya:2013hda]
[5-12]
Solar neutrino physics with Borexino I, L. Ludhova et al. (BOREXINO), arXiv:1205.2989, 2012. Moriond 2012 EW session.
[BOREXINO:2012vbs]
[5-13]
Low Energy Neutrino Astronomy in Super-Kamiokande, Michael Smy, arXiv:1110.0012, 2011. DPF 2011.
[Smy:2011tm]
[5-14]
The Recent Results of the Solar Neutrino Measurement in Borexino, Yusuke Koshio (Borexino), arXiv:1106.3055, 2011. Recontres de Moriond EW session 2011.
[Koshio:2011vq]
[5-15]
Results from the solar neutrino experiment BOREXINO, Lothar Oberauer (Borexino), J. Phys. Conf. Ser. 203 (2010) 012081.
[Oberauer:2010zz]
[5-16]
Solar neutrino results from Borexino and main future perspectives, M. Pallavicini (Borexino), Nucl. Instrum. Meth. A630 (2011) 210-213, arXiv:0910.3367. RICAP 2009.
[Pallavicini:2009ph]
[5-17]
Solar Neutrino Measurement at SK-III, B.S. Yang (Super-Kamiokande), arXiv:0909.5469, 2009. DPF-2009, Detroit, MI, July 2009.
[Yang:2009hp]
[5-18]
Searching for hep Neutrinos using the Sudbury Neutrino Observatory, Chris Howard (SNO), arXiv:0906.0040, 2009.
[Howard:2009uz]
[5-19]
Results from the Neutral Current Detector phase of the Sudbury Neutrino Observatory, Ryan Martin (SNO), arXiv:0905.4907, 2009. Lake Louise Winter Institute 2009.
[Martin:2009pb]
[5-20]
Results from the Borexino Experiment, Timo Lewke (Borexino), arXiv:0905.2526, 2009. Moriond 2009 EW session.
[Lewke:2009ry]
[5-21]
The first year of Borexino, Borexino (Borexino), arXiv:0905.1044, 2009. Heavy Quarks and Leptons, Melbourne, 2008.
[Borexino:2009awt]
[5-22]
Measurement of the Solar Neutrino Flux with an Array of Neutron Detectors in the Sudbury Neutrino Observatory, Blair Jamieson, for the SNO Collaboration (SNO), arXiv:0810.3760, 2008. ICHEP08.
[Jamieson:2008wd]
[5-23]
Recent Results from Super-Kamiokande, H. Sekiya et al. (Super-Kamiokande), arXiv:0810.0595, 2008. ICHEP08, Philadelphia, USA, July 2008.
[Sekiya:2008nb]
[5-24]
Results and perspectives of the solar neutrino experiment Borexino, G. Ranucci (Borexino), arXiv:0810.0176, 2008. ICHEP08, Philadelphia, USA, July 2008.
[Borexino:2008omw]
[5-25]
Search for possible solar neutrino radiative decays during total solar eclipses, S. Cecchini et al., arXiv:hep-ex/0606037, 2006. SPSE2006, Waw an Namos, Libya, 27-29 March 2006.
[Cecchini:2006fz]
[5-26]
Integral Fluxes, Day-Night, and Spectrum Results from SNO's 391-Day Salt Phase, Juergen Wendland et al. (SNO), arXiv:hep-ex/0507058, 2005. Lake Louise Winter Institute: Fundamental Interactions, Lake Louise, Alberta, Canada, Feb 20-26 2005.
[Wendland:2005kj]
[5-27]
Results from the Salt Phase of SNO, K. Miknaitis (SNO), arXiv:hep-ex/0505071, 2005. XXXXth Rencontres de Moriond: Electroweak Interactions and Unified Theories, La Thuile, Italy, March 5-12, 2005.
[Miknaitis:2005rw]
[5-28]
Measurement of the SAGE Response to Neutrinos from Ar37 Source, V.N. Gavrin (SAGE), 2005. XI International Workshop on Neutrino Telescopes, February 22-25, 2005, Venice, Italy. http://www.pd.infn.it/~laveder/unbound/talks/exp/sage/VE05-Gavrin.pdf.
Comment: The ratio of the production rate (measured/predicted) is $0.79 +0.09 -0.10$.
[Gavrin:Venice2005]
[5-29]
Sudbury Neutrino Observatory Results, A.B. McDonald et al. (SNO), Phys. Scripta T121 (2005) 29, arXiv:hep-ex/0412060. Nobel Symposium 129, August 19-24, 2004, Enkoping, Sweden.
[McDonald:2004rx]
[5-30]
Super Kamiokande results: atmospheric and solar neutrinos, M.Ishitsuka (Super-Kamiokande), arXiv:hep-ex/0406076, 2004. XXXIX Rencontres de Moriond, Electroweak Interactions and Unified Theories, La Thuile, March 21-28-2004. http://moriond.in2p3.fr/EW/2004/transparencies/3_Wednesday/3_2_afternoon/3_2_3_Ishitsuka/Ishitsuka.pdf.
[Ishitsuka:2004un]
[5-31]
High Sensitivity Anti-Neutrino Detection by KamLAND, S. Hatakeyama et al. (KamLAND), arXiv:hep-ex/0405001, 2004. Moriond EW04.
[Hatakeyama:2004gm]
[5-32]
Search for neutrino radiative decays during a total solar eclipse, V. Popa, PoS AHEP2003 (2003) AHEP2003/068, arXiv:hep-ex/0402014. AHEP2003, Valencia.
[Popa:2003mjo]
[5-33]
Results from radiochemical solar neutrino experiments, C. Cattadori, 2004. Neutrino 2004, 13-19 June 2004, Paris, France. http://neutrino2004.in2p3.fr/slides/monday/cattadori.ppt.
[Cattadori-Nu2004]
[5-34]
KamLAND: updated results, K. Inoue, 2004. Neutrino Oscillation Workshop NOW 2004, September 11-17, 2004, Conca Specchiulla (Otranto, Italy). http://www.ba.infn.it/~now2004/talks/12_09_04/plen/KamLAND.pdf.
[Inoue:2004]
[5-35]
SuperKamiokande's solar neutrino results, M. Nakahata (Super-Kamiokande), 2004. Neutrino 2004, 13-19 June 2004, Paris, France. http://neutrino2004.in2p3.fr/slides/monday/nakahata.pdf.
[Nakahata-Nu2004]
[5-36]
The Sudbury Neutrino Observatory, J. Wilkerson (SNO), 2004. Neutrino 2004, 13-19 June 2004, Paris, France. http://neutrino2004.in2p3.fr/slides/monday/wilkerson.pdf.
[Wilkerson-Nu2004]
[5-37]
Recent Results from the Sudbury Neutrino Observatory, A. W. P. Poon (SNO), Eur. Phys. J. C33 (2004) S823, arXiv:hep-ex/0312002. International Europhysics Conference on High Energy Physics (EPS2003).
[Poon:2003xx]
[5-38]
Recent Results from KamLAND, J. Detwiler (KamLAND), eConf C0307282 (2003) TW04, arXiv:hep-ex/0311007. SLAC Summer Institute, July 2003.
[Detwiler:2003fb]
[5-39]
The Solar Neutrino Day/Night Effect in Super-Kamiokande, M. B. Smy (Super-Kamiokande), Nucl. Phys. Proc. Suppl. 138 (2005) 91, arXiv:hep-ex/0310064. TAUP 2003.
[Smy:2003sb]
[5-40]
Latest News from SNO, K. Graham (SNO), eConf C030626 (2003) THAT02, arXiv:hep-ex/0310039. XXIII Physics in Collisions Conference (PIC03), Zeuthen, Germany, June 2003.
[Graham:2003pu]
[5-41]
A study of short-time periodic variation of the B8 solar neutrino flux at Super-Kamiokande, J. Yoo (Super-Kamiokande), eConf C030626 (2003) FRAP01, arXiv:hep-ex/0309048. XXIII Physics in Collisions Conference (PIC03), Zeuthen, Germany, June 2003.
[Yoo:2003ky]
[5-42]
KamLAND results, K. Inoue (Kamland), arXiv:hep-ex/0307030, 2003. XXXVIIIth Recontres de Moriond Electroweak Interactions and Unified Theories.
[Inoue:2003qs]
[5-43]
The recent results of solar neutrino measurements in Super-Kamiokande, Y. Koshio (Super-Kamiokande), arXiv:hep-ex/0306002, 2003. XXXVIIIth Recontres de Moriond Electroweak Interactions and Unified Theories.
[Koshio:2003py]
[5-44]
The Gallium Neutrino Observatory (GNO), E. Bellotti (GNO), 2003. TAUP 2003, September 5-9, 2003 University of Washington, Seattle, Washington. http://mocha.phys.washington.edu/~int_talk/WorkShops/TAUP03/Parallel/People/Bellotti_E/GNO-Bellotti.pdf.
[Bellotti:TAUP03]
[5-45]
KamLAND Results, K. Inoue (Kamland), 2003. The 4th Workshop on Neutrino Oscillations and their Origin (NOON2003), February 10-14, 2003, Ishikawa Kousei Nenkin Kaikan, Kanazawa, Japan. http://www-sk.icrr.u-tokyo.ac.jp/noon2003/transparencies/10/Inoue-KamLAND.pdf.
[Inoue:NOON2003]
[5-46]
Results from SNO and Other Solar Neutrino Experiments, R. Robertson, 2003. TAUP 2003, September 5-9, 2003 University of Washington, Seattle, Washington. http://mocha.phys.washington.edu/~int_talk/WorkShops/TAUP03/Plenary/People/Robertson_H/SNO_and_Others-Robertson.pdf.
[Robertson:TAUP03]
[5-47]
Solar Neutrino Observations at the Sudbury Neutrino Observatory, A. W. P. Poon (SNO), eConf C020805 (2002) TTH01, arXiv:hep-ex/0211013. SLAC Summer Institute Topical Conference (SSI02-TTh01), 2002.
[SNO:2002fbv]
[5-48]
Solar Neutrinos, A. B. McDonald, eConf C020620 (2002) SAAT02, arXiv:hep-ex/0209056. Physics in Collision Conference, Stanford, California, June, 2002.
[McDonald:2002fx]
[5-49]
Solar Neutrino Precision Measurements using all 1496 Days of Super-Kamiokande-I Data, M. B. Smy (Super-Kamiokande), Nucl. Phys. Proc. Suppl. 118 (2003) 25, arXiv:hep-ex/0208004. XXth International Conference on Neutrino Physics and Astrophysics May 25 - 30, 2002, Munich, Germany. http://neutrino2002.ph.tum.de/pages/transparencies/smy.
[Smy:2002rz]
[5-50]
Five Years of Neutrino Physics with Super-Kamiokande, M. B. Smy (Super-Kamiokande), arXiv:hep-ex/0206016, 2002. XXXVII Rencontres de Moriond: Electroweak Interactions and Unified Theories.
[Smy:2002hr]
[5-51]
An update on progress at KamLAND, S. A. Dazeley (KamLAND), arXiv:hep-ex/0205041, 2002.
[Dazeley:2002yf]
[5-52]
First Results from KamLAND: Evidence for $\bar{\nu}_e$ disappearance, G. Gratta (Kamland), 2002. SLAC Colloquium, December 2002. http://hep.stanford.edu/neutrino/KamLAND/TalksAndPublications/KamLAND_FirstResults_SLAC_Colloq.pdf.
[Gratta:SLAC2002]
[5-53]
The Sudbury Neutrino Observatory, A. Hallin (SNO), 2002. XXth International Conference on Neutrino Physics and Astrophysics May 25 - 30, 2002, Munich, Germany. http://neutrino2002.ph.tum.de/pages/transparencies/hailin.
[Hallin-talk:2002a]
[5-54]
KamLAND: Examination of the LMA solution with reactor neutrinos, A. Suzuki (Kamland), 2002. XVI International Conference on Particles and Nuclei, Osaka, Japan, September 30 - October 4, 2002. http://www.rcnp.osaka-u.ac.jp/Divisions/np2/PaNic02/Suzuki.pdf.
[Suzuki-Panic02]

6 - Experiment - Detector

[6-1]
Deep Probabilistic Direction Prediction in 3D with Applications to Directional Dark Matter Detectors, Majd Ghrear, Peter Sadowski, Sven Einar Vahsen, arXiv:2403.15949, 2024.
[Ghrear:2024rku]
[6-2]
Method to Reduce Noise for Measurement of $^7$Be and $^8$B Solar Neutrinos on Gallium-71, Jonathan Folkerts, Nick Solomey, Brooks Hartsock, Gregory Pawloski, arXiv:2312.10157, 2023.
[Folkerts:2023svx]
[6-3]
Discrimination of pp solar neutrinos and $^{14}$C pile-up events in a large scale LS detector, Guo-Ming Chen, Xin Zhang, Ze-Yuan Yu, Si-Yuan Zhang, Yu Xu, Wen-Jie Wu, Yao-Guang Wang, Yong-Bo Huang, Nucl.Sci.Tech. 34 (2023) 137, arXiv:2303.08512.
[Chen:2023xhj]
[6-4]
Slow-Fluor Scintillator for Low Energy Solar Neutrinos and Neutrinoless Double Beta Decay, Jack Dunger, Edward J. Leming, Steven D. Biller, Phys.Rev.D 105 (2022) 092006, arXiv:2203.01147.
[Dunger:2022gif]
[6-5]
A new method of energy reconstruction for large spherical liquid scintillator detectors, Wenjie Wu, Miao He, Xiang Zhou, Haoxue Qiao, JINST 14 (2019) P03009, arXiv:1812.01799.
[Wu:2018zwk]
[6-6]
Calibration of liquid argon and neon detectors with $^{83}Kr^m$, W.H. Lippincott et al., Phys. Rev. C81 (2010) 045803, arXiv:0911.5453.
[Lippincott:2009ea]
[6-7]
Self-Calibration of Neutrino Detectors using characteristic Backgrounds, Joachim Kopp, Manfred Lindner, Alexander Merle, Nucl. Instrum. Meth. A582 (2007) 456-461, arXiv:hep-ph/0703055.
[Kopp:2007us]
[6-8]
Reconstruction of Composite Events in Neutrino Telescopes, Mathieu Ribordy, Nucl. Instrum. Meth. A574 (2007) 137-143, arXiv:astro-ph/0611604.
[Ribordy:2006qd]
[6-9]
THE ANALYSIS OF RADIOACTIVE DECAY WITH A SMALL NUMBER OF COUNTS BY THE METHOD OF MAXIMUM LIKELIHOOD, B. T. Cleveland, Nucl. Instrum. Meth. 214 (1983) 451-458.
[Cleveland:1983sd]
[6-10]
V. A. Kuzmin, Sov. Phys. JETP 22 (1966) 1051. [Zh. Eksp. Teor. Fiz. 49 (1965) 1532].
[Kuzmin-Ga-65]
6-11.
L. W. Alvarez, 1949. University of California Radiation Laboratory Report UCRL 328.
[Alvarez-cl-49]
6-12.
B. Pontecorvo, 1946. Chalk River Report PD 205.
[Pontecorvo-cl-46]

7 - Experiment - Background

[7-1]
Study on cosmogenic activation in germanium detectors for future tonne-scale CDEX experiment, J. L. Ma et al., Sci.China Phys.Mech.Astron. 62 (2019) 11011, arXiv:1802.09327.
[Ma:2018tdv]
[7-2]
Study of the Production of Radioactive Isotopes through Cosmic Muon Spallation in KamLAND, S. Abe et al. (KamLAND), Phys. Rev. C81 (2010) 025807, arXiv:0907.0066.
[KamLAND:2009zwo]

8 - Neutrino Flux

[8-1]
Status of Direct Determination of Solar Neutrino Fluxes after Borexino, M. C. Gonzalez-Garcia, Michele Maltoni, Joao Paulo Pinheiro, Aldo M. Serenelli, JHEP 02 (2024) 064, arXiv:2311.16226.
[Gonzalez-Garcia:2023kva]
[8-2]
Solar models with convective overshoot, the solar-wind mass loss, and a PMS disk accretion: helioseismic quantities, Li depletion and neutrino fluxes, Qian-Sheng Zhang, Yan Li, Jorgen Christensen-Dalsgaard, arXiv:1907.02166, 2019.
[Zhang:2019xxs]
[8-3]
The effects of a revised $^7$Be e$^-$-capture rate on solar neutrino fluxes, D. Vescovi, L. Piersanti, S. Cristallo, M. Busso, F. Vissani, S. Palmerini, S. Simonucci, S. Taioli, Astron.Astrophys. 623 (2019) A126, arXiv:1902.01826.
[Vescovi:2019vjd]
[8-4]
Solar neutrinos at keV energies: thermal flux, Edoardo Vitagliano, Javier Redondo, Georg Raffelt, J.Phys.Conf.Ser. 1342 (2020) 012050, arXiv:1709.02811.
[Vitagliano:2017ona]
[8-5]
A new Generation of Standard Solar Models, Nuria Vinyoles et al., Astrophys.J. 835 (2017) 202, arXiv:1611.09867.
[Vinyoles:2016djt]
[8-6]
Solar models with new low-metal abundances, Wuming Yang, arXiv:1603.01666, 2016.
[1603.01666]
[8-7]
Generalised form factor dark matter in the Sun, Aaron C. Vincent, Aldo Serenelli, Pat Scott, JCAP 1508 (2015) 040, arXiv:1504.04378.
[Vincent:2015gqa]
[8-8]
Astrophysical implications of the proton-proton cross section updates, E. Tognelli, S. Degl'Innocenti, L. E. Marcucci, P.G. Prada Moroni, Phys.Lett. B742 (2015) 189-194, arXiv:1411.5480.
[Tognelli:2014axa]
[8-9]
The estimation of neutrino flux produced by $\mathbf{pep}$ reactions in the Sun, B.F. Irgaziev, V.B. Belyaev, Jameel-Un Nabi, Phys.Scripta 89 (2014) 084010, arXiv:1408.4532.
[Irgaziev:2014hfa]
[8-10]
The mixing in the solar core and the neutrino fluxes, Anatoly Kopylov, Valery Petukhov, arXiv:1209.3719, 2012.
[Kopylov:2012bc]
[8-11]
Solar models with accretion. I. Application to the solar abundance problem, Aldo M. Serenelli, Wick C. Haxton, Carlos Pena-Garay, Astrophys. J. 743 (2011) 24, arXiv:1104.1639.
Comment: SHP11.
[Serenelli:2011py]
[8-12]
Seismic and dynamical solar models i-the impact of the solar rotation history on neutrinos and seismic indicators, Sylvaine Turck-Chieze, Ana Palacios, Joao Marques, P. Nghiem, Astrophys. J. 715 (2010) 1539-1555, arXiv:1004.1657.
[Turck-Chieze:2010fxx]
[8-13]
New Solar Composition: The Problem With Solar Models Revisited, Aldo Serenelli, Sarbani Basu, Jason W. Ferguson, Martin Asplund, Astrophys. J. 705 (2009) L123-L127, arXiv:0909.2668.
[Serenelli:2009yc]
[8-14]
Solar neutrinos and the solar composition problem, Carlos Pena-Garay, Aldo Serenelli, arXiv:0811.2424, 2008.
[Pena-Garay:2008cyw]
[8-15]
10,000 Standard Solar Models: a Monte Carlo Simulation, John N. Bahcall, Aldo M. Serenelli, Sarbani Basu, Astrophys. J. Supp. Ser. 165 (2006) 400-431, arXiv:astro-ph/0511337.
[Bahcall:2005va]
[8-16]
What Is The Neon Abundance Of The Sun?, John N. Bahcall, Sarbani Basu, Aldo M. Serenelli, Astrophys. J. 631 (2005) 1281, arXiv:astro-ph/0502563.
From the abstract: We have evolved a series of thirteen complete solar models that utilize different assumed heavy element compositions.... The predicted solar neutrino fluxes are affected by the uncertainties in the composition by less than their $1\sigma$ theoretical uncertainties.
[Bahcall:2005dd]
[8-17]
New solar opacities, abundances, helioseismology, and neutrino fluxes, John N. Bahcall, Aldo M. Serenelli, Sarbani Basu, Astrophys. J. 621 (2005) L85-L88, arXiv:astro-ph/0412440.
From the abstract: We construct solar models with the newly calculated radiative opacities from the Opacity Project (OP) and recently determined (lower) heavy element abundances.... For all the variations we consider, solar models that are constructed with the newer and lower heavy element abundances advocated by Asplund and others (2005) disagree by much more than the estimated measuring errors with helioseismological determinations of the depth of the solar convective zone, the surface helium composition, the internal sound speeds, and the density profile. Using the new OP radiative opacities, the ratio of the $^8$B neutrino flux calculated with the older and larger heavy element abundances (or with the newer and lower heavy element abundances) to the total neutrino flux measured by the Sudbury Neutrino Observatory is 1.09 (0.87) with a 9\% experimental uncertainty and a 16\% theoretical uncertainty, $1\sigma$ errors.
Comment: BS05.
[Bahcall:2004pz]
[8-18]
How do Uncertainties in the Surface Chemical Abundances of the Sun Affect the Predicted Solar Neutrino Fluxes?, John N. Bahcall, Aldo M. Serenelli, Astrophys. J. 626 (2005) 530, arXiv:astro-ph/0412096.
[Bahcall:2004mq]
[8-19]
Surprising Sun, S. Turck-Chieze et al., Phys. Rev. Lett. 93 (2004) 211102, arXiv:astro-ph/0407176.
[Turck-Chieze:2004jqb]
[8-20]
What do we (not) know theoretically about solar neutrino fluxes?, John N. Bahcall, M. H. Pinsonneault, Phys. Rev. Lett. 92 (2004) 121301, arXiv:astro-ph/0402114.
From the abstract: Solar model predictions of ${}^8\mathrm{B}$ and $pp$ neutrinos agree with the experimentally-determined fluxes (including oscillations): $\phi(pp)_{\text{measured}} = \left(1.02 \pm 0.02 \pm 0.01\right) \phi(pp)_{\text{theory}}$, and $\phi({}^8\mathrm{B})_{\text{measured}} = \left(0.88 \pm 0.04 \pm 0.23\right) \phi({}^8\mathrm{B})_{\text{theory}}$, $ 1 \sigma $ experimental and theoretical uncertainties, respectively.
From the article: The 15\% increase in the calculated ${}^8\mathrm{B}$ neutrino flux is the only significant change in the best-estimate fluxes.
Comment: BP04.
[Bahcall:2004fg]
[8-21]
Solar seismic models and the neutrino predictions, S. Couvidat, Sylvaine Turck-Chieze, A.G. Kosovichev, Astrophys.J. 599 (2003) 1434-1448.
[Couvidat:2002gvk]
[8-22]
Our Sun. IV. The Standard Model and Helioseismology: Consequences of Uncertainties in Input Physics and in Observed Solar Parameters, Arnold I. Boothroyd, I.-Juliana Sackmann, Astrophys. J. 583 (2003) 1004, arXiv:astro-ph/0210127.
[Boothroyd:2002qw]
[8-23]
Solar models: Current epoch and time dependences, neutrinos, and helioseismological properties, J. N. Bahcall, M. H. Pinsonneault, S. Basu, Astrophys. J. 555 (2001) 990-1012, arXiv:astro-ph/0010346.
Comment: BP00.
[Bahcall:2000nu]
[8-24]
How uncertain are solar neutrino predictions?, J. N. Bahcall, S. Basu, M. H. Pinsonneault, Phys. Lett. B433 (1998) 1-8, arXiv:astro-ph/9805135.
Comment: BP98.
[Bahcall:1998wm]
[8-25]
Gallium solar neutrino experiments: Absorption cross sections, neutrino spectra, and predicted event rates, John N. Bahcall, Phys. Rev. C56 (1997) 3391, arXiv:hep-ph/9710491.
[Bahcall:1997eg]
[8-26]
Are standard solar models reliable?, J. N. Bahcall, M. H. Pinsonneault, S. Basu, J. Christensen-Dalsgaard, Phys. Rev. Lett. 78 (1997) 171-174, arXiv:astro-ph/9610250.
[Bahcall:1996qw]
[8-27]
Neutrino Energy Loss in Stellar Interiors. VII. Pair, Photo-, Plasma, Bremsstrahlung, and Recombination Neutrino Processes, N. Itoh, H. Hayashi, A. Nishikawa, Y. Kohyama, Astrophysical Journal Supplement 102 (1996) 411-424.
[1996ApJS..102..411I]
[8-28]
Solar models with helium and heavy element diffusion, J. N. Bahcall, M. H. Pinsonneault, Rev. Mod. Phys. 67 (1995) 781-808, arXiv:hep-ph/9505425.
Comment: BP95.
[Bahcall:1995bt]
[8-29]
The Be-7 solar neutrino line: A Reflection of the central temperature distribution of the sun, J. N. Bahcall, Phys. Rev. D49 (1994) 3923-3945.
[Bahcall:1994cf]
[8-30]
Toward a unified classical model of the sun: On the sensitivity of neutrinos and helioseismology to the microscopic physics, S. Turck-Chieze, I. Lopes, Astrophys. J. 408 (1993) 347-367.
[Turck-Chieze:1993dw]
[8-31]
Standard solar models, with and without helium diffusion and the solar neutrino problem, J. N. Bahcall, M. H. Pinsonneault, Rev. Mod. Phys. 64 (1992) 885-926.
Comment: BP92.
[Bahcall:1992hn]
[8-32]
Solar models, neutrino experiments and helioseismology, J. N. Bahcall, Roger K. Ulrich, Rev. Mod. Phys. 60 (1988) 297-372.
Comment: BU88.
[Bahcall:1988jc]
[8-33]
Standard solar models and the uncertainties in predicted capture rates of solar neutrinos, J. N. Bahcall, Walter F. Huebner, Stephen H. Lubow, Peter D. Parker, Roger K. Ulrich, Rev. Mod. Phys. 54 (1982) 767.
[Bahcall:1982zh]
[8-34]
Present status of the theoretical predictions for the Cl-36 solar neutrino experiment, John N. Bahcall, Neta A. Bahcall, G. Shaviv, Phys. Rev. Lett. 20 (1968) 1209-1212.
[Bahcall:1968hc]
[8-35]
Solar neutrinos. I: Theoretical, J. N. Bahcall, Phys. Rev. Lett. 12 (1964) 300-302.
[Bahcall:1964gx]
[8-36]
J. N. Bahcall, W. A. Fowler, I. Iben, R. L. Sears, Astrophys. J. 137 (1963) 344.
[Bahcall-63]
[8-37]
E. M. Burbidge, G. R Burbidge, W. A. Fowler, F. Hoyle, Rev. Mod. Phys. 29 (1957) 547.
[Burbidge-Burbidge-Fowler-Hoyle-RMP-29-547-1957]
[8-38]
Nuclear Reactions in Stars and Nucleogenesis, A. G. W. Cameron, Pub. Astron. Soc. Pac. 69 (1957) 201.
[Cameron-PASP-69-201-1957]
[8-39]
Energy Production in Stars, H. A. Bethe, Phys. Rev. 55 (1939) 434-456.
[Bethe-PR-55-434-1939]

9 - Neutrino Flux - Talks

[9-1]
New Results on Standard Solar Models, Aldo M. Serenelli, Astrophys. Space Sci. 328 (2010) 13-21, arXiv:0910.3690. Synergies between solar and stellar modelling, Rome, June 2009.
[Serenelli:2009ww]
[9-2]
Progress report on solar age calibration, G. Houdek, D.O. Gough, Phys. Rev. A78 (2008) 062104, arXiv:0807.3443. The Art of Modelling Stars in the 21st Century, Proc. IAU Symp. No. 252.
[Houdek:2008rw]
[9-3]
Solar Models and Solar Neutrinos, John N. Bahcall, eConf C030626 (2003) THAT04, arXiv:astro-ph/0310030. XXIII Physics in Collisions Conference (PIC03), Zeuthen, Germany, June 2003.
[Bahcall:2003jg]

10 - Astrophysics

[10-1]
In-depth analysis of solar models with high-metallicity abundances and updated opacity tables, G. Buldgen et al., arXiv:2404.10478, 2024.
[Buldgen:2024aak]
[10-2]
Higher metal abundances do not solve the solar problem, G. Buldgen, P. Eggenberger, A. Noels, R. Scuflaire, A. M. Amarsi, N. Grevesse, S. Salmon, Astron.Astrophys. 669 (2023) L9, arXiv:2212.06473.
[Buldgen:2022nso]
[10-3]
Rotating Solar Models in Agreement with Helioseismic Results and Updated Neutrino Fluxes, Wuming Yang, Astrophys.J. 939 (2022) 61, arXiv:2209.13483.
[Yang:2022dsq]
[10-4]
Theoretical evaluation of solar proton-proton fusion reaction rate and its uncertainties, Hilla De-Leon, Doron Gazit, Phys.Lett.B 844 (2023) 138093, arXiv:2207.10176.
[De-Leon:2022omx]
[10-5]
Core overshoot constrained by the absence of a solar convective core and some solar-like stars, Qian-Sheng Zhang, Jorgen Christensen-Dalsgaard, Yan Li, arXiv:2203.08686, 2022.
[2203.08686]
[10-6]
Observational constraints on the origin of the elements. IV: The standard composition of the Sun, Ekaterina Magg, Maria Bergemann, Aldo Serenelli, Manuel Bautista, Bertrand Plez, Ulrike Heiter, Jeffrey M. Gerber, Hans-Gunter Ludwig, Sarbani Basu, Jason W. Ferguson, Helena Carvajal Gallego, Sebastien Gamrath, Patrick Palmeri, Pascal Quinet, arXiv:2203.02255, 2022.
[2203.02255]
[10-7]
Search for solar atmospheric neutrinos with the ANTARES neutrino telescope, A. Albert et al. (ANTARES), JCAP 06 (2022) 018, arXiv:2201.11642.
[ANTARES:2022azv]
[10-8]
Astron.Astrophys. 667 (2022) L2.
[Kunitomo:2022flu]
[10-9]
Standard solar models: a perspective from updated solar neutrino fluxes and the gravity-mode period spacing, Sebastien Salmon, Gael Buldgen, Arlette Noels, Patrick Eggenberger, Richard Scuflaire, Georges Meynet, Astron.Astrophys. 651 (2021) A106, arXiv:2105.00911.
[Salmon:2021rar]
[10-10]
The impact of composition choices on solar evolution: age, helio- and asteroseismology, and neutrinos, Diogo Capelo, Ilidio Lopes, Mon.Not.Roy.Astron.Soc. 498 (2020) 2, arXiv:2010.01686.
[Capelo:2020lha]
[10-11]
On Stellar Evolution In A Neutrino Hertzsprung-Russell Diagram, Ebraheem Farag, F.X. Timmes, Morgan Taylor, Kelly M. Patton, R. Farmer, Astrophys.J. 893 (2020) 133, arXiv:2003.05844.
[Farag:2020nll]
[10-12]
Rotating Solar Models with Low Metal Abundances as Good as Those with High Metal Abundances, Wuming Yang, Astrophys.J. 873 (2019) 18, arXiv:1901.11290.
[Yang:2019jip]
[10-13]
Astrophysical S-factor of the $^{14}\textrm{N(p,}\gamma\textrm{)}^{15}\textrm{O}$ reaction at 0.4 - 1.3\,MeV, L. Wagner et al., Phys.Rev. C97 (2018) 015801, arXiv:1711.10847.
[Wagner:2017vpz]
[10-14]
Potential approach to astrophysical $^{3}{\rm He}(\alpha, \gamma)^{7}{\rm Be}$ and $^{3}{\rm H}(\alpha,\gamma)^{7}{\rm Li}$ direct capture reactions, E.M. Tursunov, S.A. Turakulov, A.S. Kadyrov, Phys.Rev. C97 (2018) 035802, arXiv:1707.05948.
[Tursunov:2017zlg]
[10-15]
The effect of ionic correlations on radiative properties in the solar interior and terrestrial experiments, Menahem Krief, Yair Kurzweil, Alexander Feigel, Doron Gazit, Astrophys.J. 856 (2018) 135, arXiv:1611.09339.
[Krief:2016vyp]
[10-16]
Magnetic helicity estimations in models and observations of the solar magnetic field. Part I: Finite volume methods, Gherardo Valori et al., arXiv:1610.02193, 2016.
[1610.02193]
[10-17]
Bayesian Estimation of Thermonuclear Reaction Rates, Christian Iliadis, Kevin Anderson, Alain Coc, Frank Timmes, Sumner Starrfield, Astrophys.J. 831 (2016) 107, arXiv:1608.05853.
[Iliadis:2016vkw]
[10-18]
Reconstruction of Solar Subsurfaces by Local Helioseismology, Alexander G. Kosovichev, Junwei Zhao, arXiv:1607.05681, 2016.
[1607.05681]
[10-19]
Model description of non-Maxwellian nuclear processes in the solar interior, Victor T. Voronchev, Yasuyuki Nakao, Yukinobu Watanabe, arXiv:1606.00612, 2016.
[1606.00612]
[10-20]
Implications of solar wind measurements for solar models and composition, Aldo Serenelli et al., Mon.Not.Roy.Astron.Soc. 463 (2016) 2-9, arXiv:1604.05318.
[Serenelli:2016nms]
[10-21]
A successful solar model using new solar composition data, Sunny Vagnozzi, Katherine Freese, Thomas H. Zurbuchen, Astrophys.J. 839 (2017) 55, arXiv:1603.05960.
[Vagnozzi:2016cmr]
[10-22]
Line broadening and the solar opacity problem, M. Krief, A. Feigel, D. Gazit, arXiv:1603.01153, 2016.
[1603.01153]
[10-23]
Sunspot Numbers from ISOON: A Ten-Year Data Analysis, K. S. Balasubramaniam, T. W. Henry, arXiv:1602.07741, 2016.
[1602.07741]
[10-24]
Chameleon fields and solar physics, Andrea Zanzi, Barbara Ricci, Mod.Phys.Lett. A30 (2015) 1550053, arXiv:1405.1581.
[Zanzi:2014aia]
[10-25]
The chemical composition of the Sun from helioseismic and solar neutrino data, F.L. Villante, A.M. Serenelli, F. Delahaye, M.H. Pinsonneault, Astrophys.J. 787 (2014) 13, arXiv:1312.3885.
[Villante:2013mba]
[10-26]
Planetary influence on the young Sun's evolution: the solar neutrino probe, Ilidio Lopes, Joseph Silk, Mon.Not.Roy.Astron.Soc. 435 (2013) 2109-2115, arXiv:1309.7571.
[Lopes:2013iia]
[10-27]
What have we learned from helioseismology, what have we really learned, and what do we aspire to learn?, Douglas Gough, Solar Phys. 287 (2013) 9, arXiv:1210.0820.
[Gough:2012tb]
[10-28]
Analytical results connecting stellar structure parameters and extended reaction rates, H.J. Haubold, D. Kumar, J.Astrophys. 2014 (2014) 656784, arXiv:1109.5613.
[Haubold:2011kk]
[10-29]
The solar energetic balance revisited by young solar analogs, helioseismology and neutrinos, Sylvaine Turck-Chieze, Laurent Piau, Sebastien Couvidat, Astrophys.J. 731 (2011) L29, arXiv:1103.2620.
[Turck-Chieze:2011iru]
[10-30]
Radioactivities in Low- and Intermediate-Mass Stars, Maria Lugaro, Alessandro Chieffi, Lect.Notes Phys. 218 (2011) 83-152, arXiv:1010.1304.
[Lugaro:2010ia]
[10-31]
The Extreme Energies Lines in the Solar Neutrino Spectrum, B.I. Goryachev, arXiv:1005.3458, 2010.
[Goryachev:2010am]
[10-32]
Fresh insights on the structure of the solar core, Sarbani Basu, William J. Chaplim, Yvonne Elsworth, Roger New, Aldo M. Serenelli, Astrophys. J. 699 (2009) 1403-1417, arXiv:0905.0651.
[Basu:2009mi]
[10-33]
Variations of the solar granulation motions with height using the GOLF/SoHO experiment, S. Lefebvre, R.A. Garcia, S.J. Jimenez-Reyes, S. Turck-Chieze, S. Mathur, Astron.Astrophys. 490 (2008) 1143, arXiv:0808.0422.
[Lefebvre:2008am]
[10-34]
Bayesian Analysis of Solar Oscillations, M. S. Marsh, J. Ireland, T. Kucera, Astrophys. J. 681 (2008) 672-679, arXiv:0804.1447.
[Marsh:2008qm]
[10-35]
New Evidence for the Solar Oxygen Crisis from Spectro-Polarimetric Observations, H. Socas-Navarro, R. Centeno, Astrophys.J. 682 (2008) L61, arXiv:0803.0990.
[Socas-Navarro:2008zns]
[10-36]
Update on g-mode research, R.A. Garcia et al., Astron. Nachr. 329 (2008) 476-484, arXiv:0802.4296.
[Garcia:2008mi]
[10-37]
Are solar cycles predictable?, Manfred Schuessler, Astron.Nachr. 328 (2007) 1087-1091, arXiv:0712.1917.
[Schuessler:2007rq]
[10-38]
The energy of high frequency waves in the low solar Chromosphere, Aleksandra Andic, Solar Phys. 242 (2007) 1-2, arXiv:astro-ph/0703721.
[Andic:2007wy]
[10-39]
Modeling the (upper) solar atmosphere including the magnetic field, H. Peter, Adv. Space Res. 39 (2007) 1814-1825, arXiv:astro-ph/0703575.
[Peter:2007yx]
[10-40]
The solar oxygen crisis: Probably not the last word, H. Socas-Navarro, A. A. Norton, Astrophys.J.Lett. (2007), arXiv:astro-ph/0702162.
[Socas-Norton:2007fbo]
[10-41]
Probing the internal solar magnetic field through g-modes, Timur I. Rashba, V. B. Semikoz, S. Turck-Chieze, J. W. F. Valle, Mon. Not. Roy. Astron. Soc. 377 (2007) 453, arXiv:astro-ph/0611728.
[Rashba:2006jp]
[10-42]
Low abundances of heavy elements in the solar outer layers: comparisons of solar models with helioseismic inversions, M. Castro, S. Vauclair, O. Richard, Astron.Astrophys. 463 (2007) 755-758, arXiv:astro-ph/0611619.
[Castro:2006qu]
[10-43]
Solar Atmospheric Oscillations and the Chromospheric Magnetic Topology, A. Vecchio et al., Astron. Astrophys. 461 (2007) L1-L4, arXiv:astro-ph/0611206.
[Vecchio:2006yi]
[10-44]
Origin of solar torsional oscillations, Matthias Rempel, Astrophys. J. 655 (2007) 651-659, arXiv:astro-ph/0610221.
[Rempel:2006zu]
[10-45]
Solar abundances and helioseismology: fine structure spacings and separation ratios of low-degree p modes, Sarbani Basu et al., Astrophys. J. 655 (2007) 660-671, arXiv:astro-ph/0610052. To appear in ApJ.
[Basu:2006vh]
[10-46]
Local helioseismology and correlation tracking analysis of surface structures in realistic simulations of solar convection, Dali Georgobiani et al., Astrophys. J. 657 (2007) 1157-1161, arXiv:astro-ph/0608204.
[Georgobiani:2006ty]
[10-47]
Damping and excitation variations of the solar acoustic modes using LOWL observations, D. Salabert, S.J. Jiménez-Reyes, Astrophys. J. 650 (2006) 451-460, arXiv:astro-ph/0607346.
[Salabert:2006td]
[10-48]
A Comparative Study on Lithium Abundances in Solar-Type Stars With and Without Planets, Y. Q. Chen, G. Zhao, Astron. J. 131 (2006) 1816, arXiv:astro-ph/0607295.
[Chen:2006fr]
[10-49]
Neon Abundances in B-Stars of the Orion Association: Solving the Solar Model Problem?, Katia Cunha, Ivan Hubeny, Thierry Lanz, Astrophys. J. 647 (2006) L143-L146, arXiv:astro-ph/0606738.
[Cunha:2006jf]
[10-50]
Long-term Variability in the Length of the Solar Cycle, Michael L. Rogers, Mercedes T. Richards, Donald St.P. Richards, arXiv:astro-ph/0606426, 2006.
[Rogers:2006bg]
[10-51]
Can Galactic Cosmic Rays Account for Solar 6Li Without Overproducing Gamma Rays?, T. Prodanovic, B. D. Fields, Astrophys. J. 645 (2006) L125-L128, arXiv:astro-ph/0605675.
[Prodanovic:2006fm]
[10-52]
The Sun's Interior Metallicity Constrained by Neutrinos, Guillermo Gonzalez, Mon. Not. Roy. Astron. Soc. Lett. 370 (2006) L90, arXiv:astro-ph/0605647.
[Gonzalez:2006zd]
[10-53]
Determining solar abundances using helioseismology, H.M. Antia, Sarbani Basu, Astrophys. J. 644 (2006) 1292-1298, arXiv:astro-ph/0603001.
[Antia:2006zy]
[10-54]
Total Solar Irradiance Variability and the Solar Activity Cycle, Probhas Raychaudhuri, arXiv:astro-ph/0601335, 2006.
[Raychaudhuri:2006zc]
[10-55]
The Solar Heavy Element Abundances: I. Constraints from Stellar Interiors, Franck Delahaye, Marc Pinsonneault, Astrophys. J. 649 (2006) 529-540, arXiv:astro-ph/0511779.
[Delahaye:2005ed]
[10-56]
Angular Momentum Transport by Gravity Waves in the Solar Interior, Tamara M. Rogers, Gary A. Glatzmaier, Astrophys. J. 653 (2006) 756-764, arXiv:astro-ph/0511739.
[Rogers:2005yz]
[10-57]
Radiative zone solar magnetic fields and g-modes, Timur I. Rashba, V. B. Semikoz, J. W. F. Valle, Mon. Not. Roy. Astron. Soc. 370 (2006) 845, arXiv:astro-ph/0511708.
[Rashba:2005uj]
[10-58]
7Be(p,gamma)8B S-factor from ab initio wave functions, P. Navratil, C.A. Bertulani, E. Caurier, Phys. Lett. B634 (2006) 191, arXiv:nucl-th/0511029.
[Navratil:2005xm]
[10-59]
The solar model problem resurrected, M. Asplund, N. Grevesse, M. Guedel, A.J. Sauval, Nature 436 (2005) 525, arXiv:astro-ph/0510377.
[Asplund:2005js]
[10-60]
The Ne/O abundance ratio in the quiet Sun, P.R. Young, Astron.Astrophys. (2005), arXiv:astro-ph/0510264.
[Young:2005ke]
[10-61]
Neon Lights Up a Controversy: the Solar Ne/O Abundance, J.T. Schmelz et al., Astrophys. J. 634 (2005) L197, arXiv:astro-ph/0510230.
[Schmelz:2005cm]
[10-62]
Solar Neutron Events of October-November 2003, K. Watanabe et al., Astrophys. J. 636 (2006) 1135, arXiv:astro-ph/0509527.
[Watanabe:2005pd]
[10-63]
Seismic analysis of the second ionization region of helium in the Sun: I. Sensitivity study and methodology, M.J.P.F.G. Monteiro, M.J. Thompson, Mon. Not. Roy. Astron. Soc. 361 (2005) 1187, arXiv:astro-ph/0506286.
[Monteiro:2005cb]
[10-64]
The Solar Model Problem Solved by the Abundance of Neon in Stars of the Local Cosmos, Jeremy J. Drake Paola Testa, Paola Testa, Nature 436 (2005) 525, arXiv:astro-ph/0506182.
[Drake:2005hn]
[10-65]
Can Enhanced Diffusion Improve Helioseismic Agreement for Solar Models with Revised Abundances?, J. Guzik, L. S. Watson, A. Cox, Astrophys. J. 627 (2005) 1049, arXiv:astro-ph/0502364.
[Guzik:2005db]
[10-66]
The discrepancy between solar abundances and helioseismology, H. M. Antia, Sarbani Basu, Astrophys. J. 620 (2005) L129, arXiv:astro-ph/0501129.
[Antia:2005mg]
[10-67]
Does solar structure vary with solar magnetic activity?, Sarbani Basu, Anna Mandel, Astrophys. J. 617 (2004) L155, arXiv:astro-ph/0411427.
[Basu:2004kq]
[10-68]
Helioseismological Implications of Recent Solar Abundance Determinations, John N. Bahcall, Sarbani Basu, Marc Pinsonneault, Aldo M. Serenelli, Astrophys. J. 618 (2005) 1049, arXiv:astro-ph/0407060.
[Bahcall:2004yr]
[10-69]
Determination of S17(0) from published data, R. H. Cyburt, B. Davids, B. K. Jennings, Phys. Rev. C70 (2004) 045801, arXiv:nucl-th/0406011.
[Cyburt:2004jp]
[10-70]
How Accurately Can We Calculate the Depth of the Solar Convective Zone?, John N. Bahcall, Aldo M. Serenelli, Marc Pinsonneault, Astrophys. J. 614 (2004) 464, arXiv:astro-ph/0403604.
[Bahcall:2004aq]
[10-71]
The $^{14}\mathrm{N}(p, \gamma)^{15}\mathrm{O}$ reaction, solar neutrinos and the age of the globular clusters, S. Degl'Innocenti, G. Fiorentini, B. Ricci, F.L. Villante, Phys. Lett. B590 (2004) 13, arXiv:astro-ph/0312559.
[DeglInnocenti:2003yia]
[10-72]
How Accurately Do We Know the Formation of Solar 8B?, Moshe Gai, arXiv:nucl-ex/0312003, 2003.
[Gai:2003ef]
[10-73]
On Solar Radius Variation with Magnetic Field, A. R. Choudhuri, P. Chatterjee, arXiv:astro-ph/0311028, 2003.
[Choudhuri:2003we]
[10-74]
A Millennium Scale Sunspot Number Reconstruction: Evidence For an Unusually Active Sun Since the 1940's, I. G. Usoskin et al., Phys. Rev. Lett. 91 (2003) 211101, arXiv:astro-ph/0310823.
[Usoskin:2003au]
[10-75]
Helioseismic Probing of Solar Variability: The Formalism and Simple Assessments, W.A. Dziembowski, P.R. Goode, Astrophys. J. 600 (2004) 464, arXiv:astro-ph/0310095.
[Dziembowski:2003vb]
[10-76]
Towards a Solution to the Early Faint Sun Paradox: A Lower Cosmic Ray Flux from a Stronger Solar Wind, N. J. Shaviv, J.Geophys.Res. A108 (2003) 1437, arXiv:astro-ph/0306477.
[Shaviv:2003hq]
[10-77]
Precise measurement of cross section of 3He(3He,2p)4He by using He-3 doubly charged beam, Nobuyuki Kudomi et al., Phys. Rev. C69 (2004) 015802, arXiv:astro-ph/0306454.
[Kudomi:2003xq]
[10-78]
Resonant origin for density fluctuations deep within the Sun: helioseismology and magneto-gravity waves, C. P. Burgess et al., Mon. Not. Roy. Astron. Soc. 348 (2004) 609, arXiv:astro-ph/0304462.
[Burgess:2003fj]
[10-79]
Bounds on the Magnetic Fields in the Radiative Zone of the Sun, Alexander Friedland, Andrei Gruzinov, Astrophys. J. 601 (2004) 570, arXiv:astro-ph/0211377.
[Friedland:2002is]
[10-80]
Possible in situ Tests of the Evolution of Elemental and Isotopic Abundances in the Solar Convection Zone, S. Turcotte, R. F. Wimmer-Schweingruber, J.Geophys.Res. A107 (2002) 1442, arXiv:astro-ph/0210219.
[Turcotte:2002wz]
[10-81]
Our Sun. V. A Bright Young Sun Consistent with Helioseismology and Warm Temperatures on Ancient Earth and Mars, I.-J. Sackmann, A. I. Boothroyd, Astrophys. J. 583 (2003) 1024, arXiv:astro-ph/0210128.
[Sackmann:2002qx]
[10-82]
Screened thermonuclear reactions in astrophysical plasmas: Improving Salpeter's and Mitler's models, Theodore E. Liolios, Eur. Phys. J. A18 (2003) S1-S25, arXiv:nucl-th/0210031.
[Liolios:2002zv]
[10-83]
The State Be7 in the Core of the Sun and the Solar Neutrino Flux, G. Shaviv N. J. Shaviv, Mon. Not. Roy. Astron. Soc. 341 (2003) 119, arXiv:astro-ph/0209253.
[Shaviv:2002kn]
[10-84]
Constraints on proton-proton fusion from helioseismology, D.B. Guenther K.I.T. Brown, M.N. Butler, arXiv:nucl-th/0207008, 2002.
[Brown:2002ih]
[10-85]
Seismic test of solar models, solar neutrinos and implications for metal-rich accretion, R. A. Winnick, Pierre Demarque, Sarbani Basu, D. B. Guenther, Astrophys. J. 576 (2002) 1075, arXiv:astro-ph/0111096.
[Winnick:2001uc]
[10-86]
A possible solution to the solar neutrino problem: Relativistic corrections to the Maxwellian velocity distribution, Jian-Miin Liu, arXiv:physics/0110002, 2001.
[Liu:2001qh]
[10-87]
Velocity distribution of high-energy particles and the solar neutrino problem, Jian-Miin Liu, arXiv:astro-ph/0108304, 2001.
[Liu:2001rm]
[10-88]
The luminosity constraint on solar neutrino fluxes, J. N. Bahcall, Phys. Rev. C65 (2002) 025801, arXiv:hep-ph/0108148.
[Bahcall:2001pf]
[10-89]
Solar models with helioseismic constraints and the solar neutrino problem, Satoru Watanabe, Hiromoto Shibahashi, Publ. Astron. Soc. Jap. 53 (2001) 565-575, arXiv:astro-ph/0105445.
[Watanabe:2000tx]
[10-90]
The solar neutrino problem: Low energy measurements of the ${}^7\mathrm{Be}(p,\gamma){}^8\mathrm{B}$ cross section, F. Hammache et al., Nucl. Phys. A688 (2001) 273-276.
[Hammache:2001ib]
[10-91]
Indirect measurements of the solar neutrino production reaction ${}^7\mathrm{Be}(p,\gamma){}^8\mathrm{B}$, T. Motobayashi, Nucl. Phys. A693 (2001) 258-268.
[Motobayashi:2001qy]
[10-92]
Precision measurements of the ${}^7\mathrm{Be}(p,\gamma){}^8\mathrm{B}$ reaction with radioactive beams and the $^8\mathrm{B}$ solar neutrino flux, Moshe Gai, Prog. Part. Nucl. Phys. 46 (2001) 89-96, arXiv:nucl-ex/0010014.
[Gai:2000yw]
[10-93]
The $hep$ reaction and the solar neutrino problem, L. E. Marcucci, Nucl. Phys. A689 (2001) 280-289, arXiv:nucl-th/0009066.
[Marcucci:2000bg]
[10-94]
Is it possible to determine the S-factor of the HEP process from a laboratory experiment?, W. M. Alberico, J. Bernabeu, Samoil M. Bilenky, W. Grimus, Phys. Lett. B478 (2000) 208-214, arXiv:hep-ph/0002029.
[Alberico:2000qe]
[10-95]
On a possibility to determine the S-factor of the hep process in experiments with thermal (cold) neutrons, W. M. Alberico, Samoil M. Bilenky, W. Grimus, Astropart. Phys. 15 (2001) 211-215, arXiv:hep-ph/0001245.
[Alberico:2000sx]
[10-96]
Neutrinos and solar models, W. A. Dziembowski, Acta Phys. Polon. B31 (2000) 1389-1401.
[Dziembowski:2000sa]
[10-97]
First Measurement of the He3+He3- > He4+2p Cross Section down to the Lower Edge of the Solar Gamow Peak, R. Bonetti et al. (LUNA), Phys. Rev. Lett. 82 (1999) 5205-5208, arXiv:nucl-ex/9902004.
[LUNA:1999enm]
[10-98]
Effects of solar magnetosonic waves in new solar neutrino observations, J. H. Colonia, M. M. Guzzo, N. Reggiani, Astropart. Phys. 8 (1997) 51-57.
[Colonia:1997ft]

11 - Astrophysics - Talks

[11-1]
Global Helioseismology, G. Buldgen, arXiv:1912.02003, 2019. How Much do we Trust Stellar Models?, Liege, Sept 2018.
[1912.02003]
[11-2]
New solar metallicity measurements, Sunny Vagnozzi, Atoms 7 (2019) 41, arXiv:1703.10834. 51st Rencontres de Moriond, Cosmology Session.
[Vagnozzi:2016pjr]
[11-3]
Relativistic implications of solar astrometry, Costantino Sigismondi, Int. J. Mod. Phys. Conf. Ser. 03 (2011) 464-474, arXiv:1106.2202. Friedmann Seminar, CBPF Rio de Janeiro, Brasil, 30 May - 3 June 2011.
[Sigismondi:2011fr]
[11-4]
CN-Cycle Neutrinos and Solar Metalicity, W. C. Haxton, A. M. Serenelli, arXiv:0902.0036, 2009. PANIC08, Eilat, Israel.
[Haxton:2009jh]
[11-5]
Measuring Solar Abundances with Seismology, Katie Mussack, Douglas Gough, ASP Conf.Ser. 416 (2009) 203, arXiv:0810.2722. GONG 2008/SOHO XXI.
[Mussack:2008pp]
[11-6]
Low-Energy Nuclear Astrophysics - the Fascinating Region of A=7, Michael Hass, Prog.Part.Nucl. Phys. 59 (2007) 131, arXiv:nucl-ex/0611039. Erice School on Nuclear Physics, 2006.
[Hass:2006zv]
[11-7]
Prospects for helio- and asteroseismology, J. Christensen-Dalsgaard, ESA Spec.Publ. 624 (2006) 41, arXiv:astro-ph/0610614. SOHO 18 / GONG 2006 / HELAS I Conference: Beyond the spherical Sun.
[Christensen-Dalsgaard:2006hpx]
[11-8]
Solar Mean Magnetic Field Near the Surface and its Variation During a Cycle, P.A.P. Nghiem, R.A. Garcia, S.J. Jimenez-Reyes, ESA Spec.Publ. 624 (2006) 70, arXiv:astro-ph/0608109. SOHO 18 / GONG 2006 / HELAS I.
[Nghiem:2006wp]
[11-9]
Solar Gravity Modes: Present and Future, Sylvaine Turck-Chieze, Adv.Space Res. 37 (2006) 1569, arXiv:astro-ph/0511126. COSPAR 2004.
[Turck-Chieze:2005phk]
[11-10]
Do We Accurately Know the Formation of Solar 8B?, Moshe Gai, Nucl. Phys. Proc. Suppl. 143 (2005) 495, arXiv:nucl-ex/0410031. Neutrino 04, Paris, June 14-19, 2004.
[Gai:2004gt]
[11-11]
(Two) Open Questions in Stellar Nuclear Physics, Moshe Gai, AIP Conf.Proc. 726 (2004) 109, arXiv:astro-ph/0405100. StuFiesta, Cocoyoc, Mexico, April 19-22, 2004.
[Gai:2004xi]
[11-12]
How helioseismology constrains solar neutrinos, S. Turck-Chieze, 2004. Neutrino 2004, 13-19 June 2004, Paris, France. http://neutrino2004.in2p3.fr/slides/monday/turck-chieze.pdf.
[Turck-Chieze-Nu2004]
[11-13]
Nuclear reactions in the Sun after SNO and KamLAND, G. Fiorentini, B. Ricci, arXiv:astro-ph/0310753, 2003. Beyond the Desert '03, Fourth International Conference on Physics Beyond the Standard Model, Schloss Ringberg, Germany, June 9-14, 2003.
[Fiorentini:2003vj]
[11-14]
New precision 7Be(p,g)8B cross section measurements and the astrophysical factor S_17, A.R. Junghans, 2003. TAUP 2003, September 5-9, 2003 University of Washington, Seattle, Washington. http://mocha.phys.washington.edu/~int_talk/WorkShops/TAUP03/Parallel/People/Junghans_A/S17-Junghans.pdf.
[Junghans:TAUP03]

12 - Astrophysical Cross Sections

[12-1]
Proton-Capture Rates on Carbon Isotopes and Their Impact on the Astrophysical C12/C13 Ratio, J. Skowronski et al. (LUNA), Phys. Rev. Lett. 131 (2023) 162701, arXiv:2308.16098.
[LUNA:2023enu]
[12-2]
Towards solar measurements of nuclear reaction rates, Earl Patrick Bellinger, Jorgen Christensen-Dalsgaard, Mon.Not.Roy.Astron.Soc. 517 (2022) 5281-5288, arXiv:2206.13570.
[Bellinger:2022owb]
[12-3]
Direct Measurement of the $^{13}$C ($\alpha$, n) $^{16}$O Cross Section into the s-Process Gamow Peak, G. F. Ciani et al. (LUNA), Phys. Rev. Lett. 127 (2021) 152701, arXiv:2110.00303.
[LUNA:2021jlt]
[12-4]
Astrophysical S factor and rate of $^{7}{\rm Be}(p, \gamma)^{8}{\rm B}$ direct capture reaction in a potential model, E.M. Tursunov, S.A. Turakulov, A.S. Kadyrov, L.D. Blokhintsev, Phys.Rev.C 104 (2021) 045806, arXiv:2105.11091.
[Tursunov:2021okl]
[12-5]
Halo effective field theory constrains the solar Beryllium-7 + proton - > Boron-8 + photon rate, Xilin Zhang, Kenneth M. Nollett, D. R. Phillips, Phys. Lett. B751 (2015) 535-540, arXiv:1507.07239.
[Zhang:2015ajn]
[12-6]
Ab initio many-body calculation of the 7Be(p,gamma)8B radiative capture, Petr Navratil, Robert Roth, Sofia Quaglioni, Phys. Lett. B704 (2011) 379-383, arXiv:1105.5977.
[Navratil:2011sa]
[12-7]
LUNA: Nuclear Astrophysics Deep Underground, Carlo Broggini, Daniel Bemmerer, Alessandra Guglielmetti, Roberto Menegazzo, Ann. Rev. Nucl. Part. Sci. 60 (2010) 53-73, arXiv:1010.4165.
[Broggini:2010mu]
[12-8]
The 14C(n,g) cross section between 10 keV and 1 MeV, R. Reifarth et al., Phys. Rev. C77 (2008) 015804, arXiv:0910.0106.
[Reifarth:2008zz]
[12-9]
Determination of the $ {}^3\text{He} + \alpha \to {}^7\text{Be} $ asymp. normalization coefficients (nucl. vertex constants) and their application for extrapolation of the $ {}^3\text{He} (\alpha,\gamma) {}^7\text{Be} $ astroph. S-factors to the solar energy region, S. B. Igamov, K. I. Tursunmakhatov, R. Yarmukhamedov, Phys. Rev. C85 (2012) 045807, arXiv:0905.2026.
[Igamov:2009eh]
[12-10]
The 3He(alpha,gamma)7Be S-factor at solar energies: the prompt gamma experiment at LUNA, H. Costantini et al., Nucl. Phys. A814 (2008) 144-158, arXiv:0809.5269.
[Costantini:2008ub]
[12-11]
The 3He + 4He - > 7Be Astrophysical S-factor, T. A. D. Brown et al., Phys. Rev. C76 (2007) 055801, arXiv:0710.1279.
[Brown:2007sj]
[12-12]
Isospin Effects on Astrophysical S-Factors, Sachie Kimura, Aldo Bonasera, Phys. Rev. C76 (2007) 031602, arXiv:0706.3864.
[Kimura:2007rv]
[12-13]
Astrophysical S-factor of the 3He(alpha,gamma)7Be reaction measured at low energy via prompt and delayed gamma detection, F. Confortola et al. (LUNA), Phys. Rev. C75 (2007) 065803, arXiv:0705.2151.
[LUNA:2007ffz]
[12-14]
Study of the 12C+12C fusion reactions near the Gamow energy, T.Spillane et al., Phys. Rev. Lett. 98 (2007) 122501, arXiv:nucl-ex/0702023.
[Spillane:2007xc]
[12-15]
3He(alpha,gamma)7Be cross section at low energies, Gy. Gyurky et al., Phys. Rev. C75 (2007) 035805, arXiv:nucl-ex/0702003.
[Gyurky:2007qq]
[12-16]
Activation measurement of the 3He(alpha,gamma)7Be cross section at low energy, D. Bemmerer et al., Phys. Rev. Lett. 97 (2006) 122502, arXiv:nucl-ex/0609013.
[Bemmerer:2006xa]
[12-17]
Influence of protons on the capture of electrons by the nuclei of 7Be in the Sun, V. B. Belyaev, M. Tater, E. Truhlik, Phys. Rev. C75 (2007) 034608, arXiv:astro-ph/0606679.
[Belyaev:2006qt]
[12-18]
${}^{7}\text{Be}(p,gamma){}^{8}\text{B}$ S-factor from ab initio no-core shell model wave functions, P. Navratil, C.A. Bertulani, E. Caurier, Phys. Rev. C73 (2006) 065801, arXiv:nucl-th/0601019.
[Navratil:2006tt]
[12-19]
S-factor of 14N(p,gamma)15O at astrophysical energies, G. Imbriani et al. (LUNA), Eur. Phys. J. A25 (2005) 455, arXiv:nucl-ex/0509005.
[LUNA:2005yso]
[12-20]
Scattering of $^{7}\text{Be}$ and $^{8}\text{B}$ and the astrophysical $S_{17}$ factor, G. Tabacaru et al., Phys. Rev. C73 (2006) 025808, arXiv:nucl-ex/0508029.
[Tabacaru:2005hv]
[12-21]
Is There a Significant Difference Between the Results of the Coulomb Dissociation of 8B and the Direct Capture 7Be(p,g)8B Reaction?, Moshe Gai, Phys. Rev. C74 (2005) 025810, arXiv:nucl-ex/0502020.
[Gai:2005bn]
[12-22]
Astrophysical $S_{17}(0)$ factor from a measurement of $d({}^{7}\text{Be},{}^{8}\text{B})n$ reaction at $E_{c.m.} = 4.5 MeV$, J.J. Das et al., arXiv:nucl-ex/0409017, 2004.
[Das:2004dx]
[12-23]
The ${}^{8}\text{B}$ neutrino spectrum, W. T. Winter, S. J. Freedman, K. E. Rehm, J. P. Schiffer, Phys. Rev. C73 (2006) 025503, arXiv:nucl-ex/0406019.
[Winter:2004kf]
[12-24]
Determination of $S_{17}(0)$ from published data, R. H. Cyburt, B. Davids, B. K. Jennings, Phys. Rev. C70 (2004) 045801, arXiv:nucl-th/0406011.
[Cyburt:2004jp]
[12-25]
Astrophysical S-factor of 14N(p,g)15O, A. Formicola et al. (LUNA), Phys. Lett. B591 (2004) 61, arXiv:nucl-ex/0312015.
[LUNA:2003yvu]
[12-26]
Precise measurement of the $^7\mathrm{Be}(p,gamma)^8\mathrm{B}$ S-factor, A. R. Junghans et al., Phys. Rev. C68 (2003) 065803, arXiv:nucl-ex/0308003.
[Junghans:2003bd]
[12-27]
Precise measurement of cross section of 3He(3He,2p)4He by using He-3 doubly charged beam, Nobuyuki Kudomi et al., Phys. Rev. C69 (2004) 015802, arXiv:astro-ph/0306454.
[Kudomi:2003xq]
[12-28]
Electromagnetic dissociation of ${}^{8}\text{B}$ and the astrophysical $S$ factor for ${}^{7}\text{Be}(p,gamma){}^{8}\text{B}$, B. Davids, S. Typel, Phys. Rev. C68 (2003) 045802, arXiv:nucl-th/0304054.
From the abstract: ... we take a weighted average of the results of four direct and three indirect measurements to obtain a recommended value for $S_{17}(0)$ of $19.0 \pm 1.0 \, \text{eV} \, \text{b}$ (95% confidence level).
From the article: If this value were adopted in solar models, the ${}^{7}\text{Be}(p,\gamma){}^{8}\text{B}$ reaction rate would no longer represent the dominant uncertainty in the theoretical prediction of the high-energy solar neutrino flux.
Comment: In the BP2000 SSM [8-23] $S_{17}(0) = 19 {}^{+2.7}_{-1.3} \, \text{eV} \, \text{b}$ (see [25-1]), taken from [2-81].
[Davids:2003aw]
[12-29]
The solar neutrino problem: Low energy measurements of the ${}^7\mathrm{Be}(p,\gamma){}^8\mathrm{B}$ cross section, F. Hammache et al., Nucl. Phys. A688 (2001) 273-276.
[Hammache:2001ib]
[12-30]
Indirect measurements of the solar neutrino production reaction ${}^7\mathrm{Be}(p,\gamma){}^8\mathrm{B}$, T. Motobayashi, Nucl. Phys. A693 (2001) 258-268.
[Motobayashi:2001qy]
[12-31]
Precision measurements of the ${}^7\mathrm{Be}(p,\gamma){}^8\mathrm{B}$ reaction with radioactive beams and the $^8\mathrm{B}$ solar neutrino flux, Moshe Gai, Prog. Part. Nucl. Phys. 46 (2001) 89-96, arXiv:nucl-ex/0010014.
[Gai:2000yw]
[12-32]
First Measurement of the He3+He3- > He4+2p Cross Section down to the Lower Edge of the Solar Gamow Peak, R. Bonetti et al. (LUNA), Phys. Rev. Lett. 82 (1999) 5205-5208, arXiv:nucl-ex/9902004.
[LUNA:1999enm]

13 - Astrophysical Cross Sections - Talks

[13-1]
Structure of ^8B and astrophysical S_{17} factor, Shashi K. Dhiman, R. Shyam, J. Phys. G31 (2005) S1531, arXiv:nucl-th/0504062. NUSTAR05.
[Dhiman:2005sv]

14 - Detection Cross Sections

[14-1]
Calculated solar-neutrino capture rate for a radiochemical 205 Tl-based solar-neutrino detector, Joel Kostensalo, Jouni Suhonen, Kai Zuber, Phys.Rev. C101 (2020) 031302, arXiv:1912.05334.
[Kostensalo:2019cua]
[14-2]
Neutrino-Deuteron Reactions at Solar Neutrino Energies in Pionless Effective Field Theory with Dibaryon Fields, Shung-Ichi Ando, Young-Ho Song, Chang Ho Hyun, Phys.Rev. C101 (2020) 054001, arXiv:1911.11307.
[Ando:2019yum]
[14-3]
Precision ${}^{71}\text{Ga}-{}^{71}\text{Ge}$ mass-difference measurement, M. Alanssari et al., Int. J. Mass Spectrometry 406 (2016) 1-3.
[Alanssari:2016itw]
[14-4]
Precision evaluation of the $^{71}$Ga($\nu_e,e^-$) solar neutrino capture rate from the ($^3$He,$t$) charge-exchange reaction, D. Frekers et al., Phys. Rev. C91 (2015) 034608.
[Frekers:2015wga]
[14-5]
Penning-trap Q-value determination of the reaction using threshold charge breeding of on-line produced isotopes, D. Frekers et al., Phys. Lett. B722 (2013) 233-237.
[Frekers:2013hsa]
[14-6]
The $^{71}\text{Ga}(^{3}\text{He},t)$ reaction and the low-energy neutrino response, D. Frekers, H. Ejiri, H. Akimune, T. Adachi, B. Bilgier et al., Phys. Lett. B706 (2011) 134-138.
[Frekers:2011zz]
[14-7]
Model dependence of the neutrino-deuteron disintegration cross sections at low energies, B. Mosconi, P. Ricci, E. Truhlik, P. Vogel, Phys. Rev. C75 (2007) 044610, arXiv:nucl-th/0702073.
[Mosconi:2007tz]
[14-8]
Constraining the leading weak axial two-body current by SNO and super-K, Jiunn-Wei Chen, Karsten M. Heeger, R. G. Hamish Robertson, Phys. Rev. C67 (2003) 025801, arXiv:nucl-th/0210073.
[Chen:2002pv]
[14-9]
Parameter-free effective field theory calculation for the solar proton fusion and hep processes, T. S. Park et al., Phys. Rev. C67 (2003) 055206, arXiv:nucl-th/0208055.
[Park:2002yp]
[14-10]
Solar-neutrino reactions on deuteron in effective field theory, S. Ando, Y. H. Song, T. S. Park, H. W. Fearing, K. Kubodera, Phys. Lett. B555 (2003) 49, arXiv:nucl-th/0206001.
[Ando:2002pv]
[14-11]
Nonlocality of the Nucleon Axial Charge and Solar Neutrino Problem, N. I. Kochelev, arXiv:hep-ph/0204235, 2002.
[Kochelev:2002fj]
[14-12]
Neutrino-deuteron reactions at solar neutrino energies, S. Nakamura et al., Nucl. Phys. A707 (2002) 561-576, arXiv:nucl-th/0201062.
[Nakamura:2002jg]
[14-13]
On the normalization of the neutrino deuteron cross section, J. F. Beacom, Stephen J. Parke, Phys. Rev. D64 (2001) 091302, arXiv:hep-ph/0106128.
[Beacom:2001hr]
[14-14]
QED corrections to neutrino electron scattering, M. Passera, Phys. Rev. D64 (2001) 113002, arXiv:hep-ph/0011190.
[Passera:2000ug]
[14-15]
Neutrino reactions on deuteron, S. Nakamura, T. Sato, V. Gudkov, K. Kubodera, Phys. Rev. C63 (2001) 034617, arXiv:nucl-th/0009012.
[Nakamura:2000vp]
[14-16]
Neutrino deuteron scattering in effective field theory at next-to-next-to-leading order, Malcolm Butler, Jiunn-Wei Chen, Xinwei Kong, Phys. Rev. C63 (2001) 035501, arXiv:nucl-th/0008032.
[Butler:2000zp]
[14-17]
The angular distribution of the reaction $\bar\nu_e + p \to e^+ + n$, P. Vogel, J. F. Beacom, Phys. Rev. D60 (1999) 053003, arXiv:hep-ph/9903554.
[Vogel:1999zy]
[14-18]
Cross section uncertainties in the gallium neutrino source experiments, W. C. Haxton, Phys. Lett. B431 (1998) 110-118, arXiv:nucl-th/9804011.
[Haxton:1998uc]
[14-19]
Neutrino absorption efficiency of an Ar-40 detector from the beta decay of Ti-40, M. Bhattacharya et al., Phys. Rev. C58 (1998) 3677-3687.
[Bhattacharya:1998hc]
[14-20]
Beta decay of Ti-40 and Ti-41 and implication for solar neutrino detection, W. Liu et al. (ICARUS), Phys. Rev. C58 (1998) 2677-2688.
[ICARUS:1998nzl]
[14-21]
Gallium solar neutrino experiments: Absorption cross sections, neutrino spectra, and predicted event rates, J. N. Bahcall, Phys. Rev. C56 (1997) 3391, arXiv:hep-ph/9710491.
[Bahcall:1997eg]
[14-22]
Ti-40 beta decay and the neutrino capture cross-section of Ar-40, W. Trinder et al., Phys. Lett. B415 (1997) 211-216.
[Trinder:1997xr]
[14-23]
Standard Neutrino Spectrum from $^8$B Decay, J. N. Bahcall et al., Phys. Rev. C54 (1996) 411-422, arXiv:nucl-th/9601044.
[Bahcall:1996qv]
[14-24]
Implications of the GALLEX source experiment for the solar neutrino problem, Naoya Hata, Wick Haxton, Phys. Lett. B353 (1995) 422-431, arXiv:nucl-th/9503017.
[Hata:1995cw]
[14-25]
Solar neutrinos: Radiative corrections in neutrino - electron scattering experiments, J. N. Bahcall, Marc Kamionkowski, Alberto Sirlin, Phys. Rev. D51 (1995) 6146-6158, arXiv:astro-ph/9502003.
[Bahcall:1995mm]
[14-26]
Charge exchange reactions and the efficiency of solar neutrino detectors, Sam M. Austin, N. Anantaraman, W. G. Love, Phys. Rev. Lett. 73 (1994) 30-33.
[Austin:1994ba]
[14-27]
Neutrino - electron scattering and solar neutrino experiments, J. N. Bahcall, Rev. Mod. Phys. 59 (1987) 505.
[Bahcall:1987pf]
[14-28]
Gamow-Teller strength distributions for solar neutrino detectors via the (p,n) reaction, D. Krofcheck, 1987. PhD Thesis, Ohio State University.
[Krofcheck-PhD-1987]
[14-29]
Half-life of Ge-71, W. Hampel, L.P. Remsberg, Phys. Rev. C31 (1985) 666-667.
[Hampel:1985zz]
[14-30]
Gamow-Teller strength function in Ge-71 via the (p, n) reaction at medium-energies, D. Krofcheck et al., Phys. Rev. Lett. 55 (1985) 1051-1054.
[Krofcheck:1985fg]
[14-31]
Solar neutrino experiments, John N. Bahcall, Rev. Mod. Phys. 50 (1978) 881-903, American Physical Society. http://link.aps.org/doi/10.1103/RevModPhys.50.881.
[Bahcall-RevModPhys.50.881]

15 - Detection Cross Sections - Talks

[15-1]
Radiative Corrections to Low-Energy Neutrino-Deuteron Reactions Revisited, Takahiro Kubota, AIP Conf. Proc. 842 (2006) 886-888, arXiv:hep-ph/0601081. 'Particles and Nuclei International Conference' (PANIC'05, at Santa Fe in U.S.A., October 2005).
[Kubota:2006fu]
[15-2]
Interactions of the solar neutrinos with the deuterons, B. Mosconi, P. Ricci, E. Truhlik, Eur. Phys. J. A27 (2006) 67-72, arXiv:nucl-th/0507029.
[Mosconi:2005mz]
[15-3]
Neutrino-deuteron reactions at solar neutrino energies, S. Nakamura et al., Nucl. Phys. A721 (2003) 549, arXiv:nucl-th/0212059. PaNic02, Osaka, Japan, September 30 - October 4, 2002.
[Nakamura:2002he]
[15-4]
QED corrections to the scattering of solar neutrinos and electrons, M. Passera, J. Phys. G29 (2003) 141-152, arXiv:hep-ph/0102212. 50 Years of Electroweak Physics: A Symposium in Honor of Professor Alberto Sirlin's 70th Birthday, New York, New York, 27-28 Oct 2000.
[Passera:2001gh]

16 - Phenomenology

[16-1]
Up-scattering production of a sterile fermion at DUNE: complementarity with spallation source and direct detection experiments, Pablo M. Candela, Valentina De Romeri, Pantelis Melas, Dimitrios K. Papoulias, Niki Saoulidou, arXiv:2404.12476, 2024.
[Candela:2024ljb]
[16-2]
Constraining electron number density in the Sun via Earth-based neutrino flavor data, Caroline Laber-Smith, Eve Armstrong, A. Baha Balantekin, Elizabeth K. Jones, Lily Newkirk, Amol V. Patwardhan, Sarah Ranginwala, M. Margarette Sanchez, Hansen Torres, arXiv:2404.06468, 2024.
[Laber-Smith:2024hbc]
[16-3]
Prospects for measuring time variation of astrophysical neutrino sources at dark matter detectors, Yi Zhuang, Louis E. Strigari, Lei Jin, Samiran Sinha, arXiv:2402.18454, 2024.
[Zhuang:2024exm]
[16-4]
Generalized Lomb-Scargle Analysis of 22 years of Super-Kamiokande solar $^8$B neutrino data, Vibhavasu Pasumarti, Shantanu Desai, arXiv:2402.11258, 2024.
[Pasumarti:2024oei]
[16-5]
Light vector mediators at direct detection experiments, Valentina De Romeri, Dimitrios K. Papoulias, Christoph A. Ternes, arXiv:2402.05506, 2024.
[DeRomeri:2024dbv]
[16-6]
The Sun and core-collapse supernovae are leading probes of the neutrino lifetime, Pablo Martinez-Mirave, Irene Tamborra, Mariam Tortola, arXiv:2402.00116, 2024.
[Martinez-Mirave:2024hfd]
[16-7]
nuOscillation: a software package for computation and simulation of neutrino propagation and interaction, Seonghyeok Jang, Eunju Jeon, Eunil Won, Young Ju Ko, Kyungmin Lee, arXiv:2401.13215, 2024.
[Jang:2024mfr]
[16-8]
Jovian Signal at BOREXINO, Saeed Ansarifard, Yasaman Farzan, arXiv:2401.13043, 2024.
[Ansarifard:2024fan]
[16-9]
A non-unitary solar constraint for long-baseline neutrino experiments, Andres Lopez Moreno, arXiv:2401.12829, 2024.
[Moreno:2024pbw]
[16-10]
Solar neutrino constraints on light mediators through coherent elastic neutrino-nucleus scattering, Mehmet Demirci, M. Fauzi Mustamin, Phys.Rev.D 109 (2024) 015021, arXiv:2312.17502.
[Demirci:2023tui]
[16-11]
Status of Direct Determination of Solar Neutrino Fluxes after Borexino, M. C. Gonzalez-Garcia, Michele Maltoni, Joao Paulo Pinheiro, Aldo M. Serenelli, JHEP 02 (2024) 064, arXiv:2311.16226.
[Gonzalez-Garcia:2023kva]
[16-12]
Testing neutrino electromagnetic properties at current and future dark matter experiments, Carlo Giunti, Christoph A. Ternes, Phys. Rev. D 108 (2023) 095044, arXiv:2309.17380.
[Giunti:2023yha]
[16-13]
Shedding light on neutrino self-interactions with solar antineutrino searches, Quan-feng Wu, Xun-Jie Xu, JCAP 02 (2024) 037, arXiv:2308.15849.
[Wu:2023twu]
[16-14]
Solar neutrinos and $\nu_2$ visible decays to $\nu_1$, Andre de Gouvea, Jean Weill, Manibrata Sen, Phys.Rev.D 109 (2024) 013003, arXiv:2308.03838.
[deGouvea:2023jxn]
[16-15]
Prediction of solar flares using neutrino detectors of the second generation, Oleg Boyarkin, Iren Boyarkina, arXiv:2307.16249, 2023.
[Boyarkin:2023zid]
[16-16]
Exploring Solar Neutrino Oscillation Parameters with LCS at Yemilab and JUNO, Pouya Bakhti, Meshkat Rajaee, Seon-Hee Seo, Seodong Shin, arXiv:2307.11582, 2023.
[Bakhti:2023vzn]
[16-17]
Exploring Non-Standard Quark Interactions through Solar Neutrino Studies, Ilidio Lopes, Phys.Rev.D 108 (2023) 035028, arXiv:2307.04557.
[Lopes:2023stx]
[16-18]
Beyond Tree Level with Solar Neutrinos: Towards Measuring the Flavor Composition and CP Violation, Vedran Brdar, Xun-Jie Xu, Phys.Lett.B 846 (2023) 138255, arXiv:2306.03160.
[Brdar:2023ttb]
[16-19]
Solar neutrinos with CE$u$NS and flavor-dependent radiative corrections, Nityasa Mishra, Louis E. Strigari, Phys.Rev.D 108 (2023) 063023, arXiv:2305.17827.
[Mishra:2023jlq]
[16-20]
Terrestrial detection of hidden vectors produced by solar nuclear reactions, Francesco D'Eramo, Giuseppe Lucente, Newton Nath, Seokhoon Yun, JHEP 12 (2023) 091, arXiv:2305.14420.
[DEramo:2023buu]
[16-21]
Neutrino CPT violation in the solar sector, Gabriela Barenboim, Pablo Martinez-Miravie, Christoph A. Ternes, Mariam Tortola, Phys.Rev.D 108 (2023) 035039, arXiv:2305.06384.
[Barenboim:2023krl]
[16-22]
Nuclear recoil response of liquid xenon and its impact on solar 8B neutrino and dark matter searches, X. Xiang et al., Phys.Rev.D 108 (2023) 022007, arXiv:2304.06142.
[Xiang:2023csc]
[16-23]
JUNO as a Probe of the Pseudo-Dirac Nature using Solar Neutrinos, Jack Franklin, Yuber F. Perez-Gonzalez, Jessica Turner, Phys.Rev.D 108 (2023) 035010, arXiv:2304.05418.
[Franklin:2023diy]
[16-24]
PEANUTS: a software for the automatic computation of solar neutrino flux and its propagation within Earth, Tomas E. Gonzalo, Michele Lucente, Eur.Phys.J.C 84 (2024) 119, arXiv:2303.15527.
[Gonzalo:2023mdh]
[16-25]
Effects of electromagnetic fluctuations in plasmas on solar neutrino fluxes, Eunseok Hwang, Dukjae Jang, Kiwan Park, Motohiko Kusakabe, Toshitaka Kajino, A. Baha Balantekin, Tomoyuki Maruyama, Youngshin Kwon, Kyujin Kwak, Myung-Ki Cheoun, arXiv:2211.00907, 2022.
[Hwang:2022yjc]
[16-26]
Inference finds consistency between a neutrino flavor evolution model and Earth-based solar neutrino measurements, Caroline Laber-Smith, A. A. Ahmetaj, Eve Armstrong, A. Baha Balantekin, Amol V. Patwardhan, M. Margarette Sanchez, Sherry Wong, Phys.Rev.D 107 (2023) 023013, arXiv:2210.10884.
[Laber-Smith:2022eih]
[16-27]
Solar and supernova neutrino physics with future NaI(Tl) dark matter search detectors, Young Ju Ko, Hyun Su Lee, Astropart.Phys. 153 (2023) 102890, arXiv:2210.01386.
[Ko:2022pmu]
[16-28]
Gallium Anomaly: Critical View from the Global Picture of $\nu_{e}$ and $\bar\nu_{e}$ Disappearance, C. Giunti, Y. F. Li, C. A. Ternes, O. Tyagi, Z. Xin, JHEP 10 (2022) 164, arXiv:2209.00916.
[Giunti:2022btk]
[16-29]
Bremsstrahlung from the Cosmic Neutrino Background, Konstantin Asteriadis, Alejandro Quiroga Trivino, Martin Spinrath, Int.J.Mod.Phys.A 38 (2023) 2350139, arXiv:2208.01207.
[Asteriadis:2022zmo]
[16-30]
Solar $\bar{\nu}_e$ flux: Revisiting bounds on neutrino magnetic moments and solar magnetic field, Evgeny Akhmedov, Pablo Martinez-Mirave, JHEP 10 (2022) 144, arXiv:2207.04516.
[Akhmedov:2022txm]
[16-31]
The solar disk at high energies, Miguel Gutierrez, Manuel Masip, Sergio Munoz, Astrophys.J. 941 (2022) 86, arXiv:2206.00964.
[Gutierrez:2022mor]
[16-32]
New description of neutrino flavour evolution in solar matter, Jakub Rembielinski, Jacek Ciborowski, arXiv:2205.11493, 2022.
[Rembielinski:2022aef]
[16-33]
Inverse Tritium Beta Decay with Relic Neutrinos, Solar Neutrinos, and a 51Cr Source, Jen-Chieh Peng, Gordon Baym, Phys.Rev.D 106 (2022) 063018, arXiv:2205.02363.
[Peng:2022nvi]
[16-34]
Constraining New Physics with Borexino Phase-II spectral data, Pilar Coloma, M.C. Gonzalez-Garcia, Michele Maltoni, Joao Paulo Pinheiro, Salvador Urrea, JHEP 07 (2022) 138, arXiv:2204.03011.
[Coloma:2022umy]
[16-35]
Probing neutrino magnetic moments and the XENON1T excess with coherent elastic solar neutrino scattering, Yu-Feng Li, Shuo-yu Xia, Phys.Rev.D 106 (2022) 095022, arXiv:2203.16525.
[Li:2022bqr]
[16-36]
Neutrino-Flux Variability, Nuclear-Decay Variability, and Their Apparent Relationship, Peter A. Sturrock, Space Sci.Rev. 218 (2022) 23, arXiv:2203.05069.
[Sturrock:2022dgy]
[16-37]
The Potential to Probe Solar Neutrino Physics with LiCl Water Solution, Wenhui Shao, Weiran Xu, Ye Liang, Wentai Luo, Tong Xu, Ming Qi, Jialiang Zhang, Benda Xu, Zhe Wang, Shaomin Chen, Eur.Phys.J.C 83 (2023) 799, arXiv:2203.01860.
[Shao:2022yjc]
[16-38]
Taking Neutrino Pictures via Electrons, Guey-Lin Lin, Thi Thuy Linh Nguyen, Martin Spinrath, Thi Dieu Hien Van, Tse-Chun Wang, JCAP 08 (2022) 027, arXiv:2201.06733.
[Lin:2022jyv]
[16-39]
Constraining Light Mediators via Detection of Coherent Elastic Solar Neutrino Nucleus Scattering, Yu-Feng Li, Shuo-yu Xia, Nucl.Phys.B 977 (2022) 115737, arXiv:2201.05015.
[Li:2022jfl]
[16-40]
Non-standard interactions from the future neutrino solar sector, P. Martinez-Mirave, S. Molina Sedgwick, M. Tortola, Phys.Rev.D 105 (2022) 035004, arXiv:2111.03031.
[Martinez-Mirave:2021cvh]
[16-41]
$pp$ Solar Neutrinos at DARWIN, Andre de Gouvea, Emma McGinness, Ivan Martinez-Soler, Yuber F. Perez-Gonzalez, Phys.Rev.D 106 (2022) 096017, arXiv:2111.02421.
[deGouvea:2021ymm]
[16-42]
Testing sterile neutrino mixing with present and future solar neutrino data, Kim Goldhagen, Michele Maltoni, Shayne Reichard, Thomas Schwetz, Eur.Phys.J.C 82 (2022) 116, arXiv:2109.14898.
[Goldhagen:2021kxe]
[16-43]
Updating $\nu_{3}$ lifetime from solar antineutrino spectra, R. Picoreti, D. Pramanik, O.L.G. Peres, P.C.D. Holanda, Phys.Rev.D 106 (2022) 015025, arXiv:2109.13272.
[Picoreti:2021yct]
[16-44]
Resolving the LMA-dark NSI degeneracy with coherent neutrino-nucleus scattering, Mariano Esteves Chaves, Thomas Schwetz, JHEP 2105 (2021) 042, arXiv:2102.11981.
[Chaves:2021pey]
[16-45]
Measuring solar neutrinos over Gigayear timescales with Paleo Detectors, Natalia Tapia Arellano, Shunsaku Horiuchi, Phys.Rev. D103 (2021) 123016, arXiv:2102.01755.
[Tapia-Arellano:2021cml]
[16-46]
A closer look at the $pp$-chain reaction in the Sun: Constraining the coupling of light mediators to protons, Anna M. Suliga, Shashank Shalgar, George M. Fuller, JCAP 07 (2021) 042, arXiv:2012.11620.
[Suliga:2020lir]
[16-47]
Luminous solar neutrinos II: Mass-mixing portals, Ryan Plestid, Phys.Rev.D 104 (2021) 075028, arXiv:2010.09523.
[Plestid:2020ssy]
[16-48]
Luminous solar neutrinos I: Dipole portals, Ryan Plestid, Phys.Rev.D 104 (2021) 075027, arXiv:2010.04193.
[Plestid:2020vqf]
[16-49]
The luminosity constraint in the era of precision solar physics, Diego Vescovi, Carlo Mascaretti, Francesco Vissani, Luciano Piersanti, Oscar Straniero, J.Phys. G48 (2021) 015201, arXiv:2009.05676.
[Vescovi:2020wyz]
[16-50]
Challenge to Anomalous Phenomena in Solar Neutrino, Y.H. Ahn, JHEP 2103 (2021) 115, arXiv:2009.01458.
[Ahn:2020szh]
[16-51]
Refining constraints from Borexino measurements on a light $Z'$-boson coupled to $L_\mu$-$L_\tau$ current, Sergei Gninenko, Dmitry Gorbunov, Phys.Lett.B 823 (2021) 136739, arXiv:2007.16098.
[Gninenko:2020xys]
[16-52]
The fate of hints: updated global analysis of three-flavor neutrino oscillations, Ivan Esteban, M.C. Gonzalez-Garcia, Michele Maltoni, Thomas Schwetz, Albert Zhou, JHEP 09 (2020) 178, arXiv:2007.14792.
[Esteban:2020cvm]
[16-53]
On first detection of solar neutrinos from CNO cycle with Borexino, L.B. Bezrukov, I.S. Karpikov, A.S. Kurlovich, A.K. Mezhokh, S.V.Silaeva, V.V. Sinev, V.P. Zavarzina, Bull.Russ.Acad.Sci.Phys. 85 (2021) 430-432, arXiv:2007.07371.
[Bezrukov:2020aqv]
[16-54]
Solar Neutrino Scattering with Electron into Massive Sterile Neutrino, Shao-Feng Ge, Pedro Pasquini, Jie Sheng, Phys.Lett. B810 (2020) 135787, arXiv:2006.16069.
[Ge:2020jfn]
[16-55]
Telling Solar Neutrinos from Solar Axions When You Can't Shut Off the Sun, Pilar Coloma, Patrick Huber, Jonathan M. Link, arXiv:2006.15767, 2020.
[Coloma:2020voz]
[16-56]
Light new physics in XENON1T, Celine Boehm, David G. Cerdeno, Malcolm Fairbairn, Pedro A. N. Machado, Aaron C. Vincent, Phys.Rev. D102 (2020) 115013, arXiv:2006.11250.
[Boehm:2020ltd]
[16-57]
2020 Global reassessment of the neutrino oscillation picture, P. F. de Salas, D. V. Forero, S. Gariazzo, P. Martinez-Mirave, O. Mena, C. A. Ternes, M. Tortola, J. W. F. Valle, JHEP 2021 (2020) 071, arXiv:2006.11237.
[deSalas:2020pgw]
[16-58]
Solar neutrinos as indicators of the Sun's activity, O.M. Boyarkin, I.O. Boyarkina, Int.J.Mod.Phys. A34 (2019) 1950227, arXiv:2004.10056.
[Boyarkin:2019kby]
[16-59]
Sensitivities of future solar neutrino observatories to NSI, Pouya Bakhti, Meshkat Rajaee, Phys.Rev. D102 (2020) 035024, arXiv:2003.12984.
[Bakhti:2020hbz]
[16-60]
Solar Flare Detection Method using Rn-222 Radioactive Source, Jonathan Walg, Yaniv Zigel, Anatoly Rodnianski, Itzhak Orion, arXiv:2002.02787, 2020.
[Walg:2020wpe]
[16-61]
Oscillation tomography of the Earth with solar neutrinos and future experiments, Pouya Bakhti, Alexei Smirnov, Phys.Rev.D 101 (2020) 123031, arXiv:2001.08030.
[Bakhti:2020tcj]
[16-62]
On Resolving the Dark LMA Solution at Neutrino Oscillation Experiments, Sandhya Choubey, Dipyaman Pramanik, JHEP 2012 (2020) 133, arXiv:1912.08629.
[Choubey:2019osj]
[16-63]
The Sun at TeV energies: gammas, neutrons, neutrinos and a cosmic ray shadow, Miguel Gutierrez, Manuel Masip, Astropart.Phys. 119 (2020) 102440, arXiv:1911.07530.
[Gutierrez:2019fna]
[16-64]
Development of a method for determining the search window for solar flare neutrinos, K. Okamoto, Y. Nakano, S. Masuda, Y. Itow, M. Miyake, T. Terasawa, S. Ito, M. Nakahata, Solar Phys. 295 (2020) 133, arXiv:1909.10715.
[Okamoto:2019wcy]
[16-65]
Solar Neutrino Limits on Decoherence, Pedro Cunha de Holanda, JCAP 2003 (2020) 012, arXiv:1909.09504.
[deHolanda:2019tuf]
[16-66]
An Oscillation Evident in Both Solar Neutrino Data and Radon Decay Data, P.A. Sturrock, E. Fischbach, O. Piatibratova, G. Steinitz, F. Scholkmann, arXiv:1907.11749, 2019.
[Sturrock:2019vzu]
[16-67]
Borexino and General Neutrino Interactions, Amir N. Khan, Werner Rodejohann, Xun-Jie Xu, Phys.Rev.D 101 (2020) 055047, arXiv:1906.12102.
[Khan:2019jvr]
[16-68]
Neutrino spin-flavor oscillations in solar environment, Sandeep Joshi, Sudhir R. Jain, Res.Astron.Astrophys. 20 (2020) 123, arXiv:1906.09475.
[Joshi:2019dcj]
[16-69]
Sensitivity to neutrino-antineutrino transitions for boron neutrinos, S.J. Li, J.J. Ling, N. Raper, M.V. Smirnov, Nucl.Phys. B (2019) 114661, arXiv:1905.05464.
[Li:2019snw]
[16-70]
Anticipating the Sun's heavy-element abundance, Douglas Gough, arXiv:1904.00301, 2019.
[1904.00301]
[16-71]
Investigating Sterile Neutrino Flux in the Solar Neutrino Data, Ankush, Rishu Verma, Gazal Sharma, B.C.Chauhan, Adv.High Energy Phys. 2019 (2019) 2598953, arXiv:1812.03634.
[Ankush:2018mkv]
[16-72]
Developing the MeV Potential of DUNE: Detailed Considerations of Muon-Induced Spallation Backgrounds and More, Guanying Zhu, Shirley Weishi Li, John F. Beacom, Phys.Rev. C99 (2019) 055810, arXiv:1811.07912.
[Zhu:2018rwc]
[16-73]
Global analysis of three-flavour neutrino oscillations: synergies and tensions in the determination of $\vartheta_{23}$, $\delta_{\text{CP}}$, and the mass ordering, Ivan Esteban, M.C. Gonzalez-Garcia, Alvaro Hernandez-Cabezudo, Michele Maltoni, Thomas Schwetz, JHEP 1901 (2019) 106, arXiv:1811.05487.
[Esteban:2018azc]
[16-74]
Solar neutrino flare, megaton neutrino detectors and human space journey, Danile Fargion et al., arXiv:1809.02004, 2018.
[Fargion:2018wsu]
[16-75]
A Semi-Analytical Computation of the Theoretical Uncertainties of the Solar Neutrino Flux, Andreas Christ Solvsten Jorgensen, Jorgen Christensen-Dalsgaard, Mon.Not.Roy.Astron.Soc. 471 (2017) 4802-4805, arXiv:1808.09153.
[Jorgensen:2017bgg]
[16-76]
DUNE as the Next-Generation Solar Neutrino Experiment, Francesco Capozzi, Shirley Weishi Li, Guanying Zhu, John F. Beacom, Phys.Rev.Lett. 123 (2019) 131803, arXiv:1808.08232.
[Capozzi:2018dat]
[16-77]
Current unknowns in the three neutrino framework, F. Capozzi, E. Lisi, A. Marrone, A. Palazzo, Prog.Part.Nucl.Phys. 102 (2018) 48-72, arXiv:1804.09678.
[Capozzi:2018ubv]
[16-78]
The spectroscopy of solar sterile neutrinos, Ilidio Lopes, Eur.Phys.J. C78 (2018) 4, arXiv:1804.08344.
Comment: Nice calculation, but unfortunately sterile neutrinos cannot be detected.
[Lopes:2018vec]
[16-79]
Sensitivity of a low threshold directional detector to CNO-cycle solar neutrinos, R. Bonventre, G. D. Orebi Gann, Eur.Phys.J. C78 (2018) 435, arXiv:1803.07109.
[Bonventre:2018hyd]
[16-80]
Novel matter effects on the flavor conversions of solar neutrinos and high-energy astrophysical neutrinos, Guo-yuan Huang, Jun-Hao Liu, Shun Zhou, Nucl.Phys. B931 (2018) 324, arXiv:1803.02037.
[Huang:2018ufu]
[16-81]
CNO Neutrino Grand Prix: The race to solve the solar metallicity problem, David G. Cerdeno, Jonathan H. Davis, Malcolm Fairbairn, Aaron C. Vincent, JCAP 1804 (2018) 037, arXiv:1712.06522.
[Cerdeno:2017xxl]
[16-82]
Solar flares and their associated processes, O.M. Boyarkin, I.O. Boyarkina, arXiv:1711.09247, 2017.
[Boyarkin:2017dwa]
[16-83]
Constraining the $^7$Be($p,\gamma$)$^8$B $S$-factor with the new precise $^7$Be solar neutrino flux from Borexino, Marcell P. Takacs, Daniel Bemmerer, Arnd R. Junghans, Kai Zuber, Nucl.Phys. A970 (2018) 78-85, arXiv:1711.05033.
[Takacs:2017tkr]
[16-84]
Helioseismic and Neutrino Data Driven Reconstruction of Solar Properties, Ningqiang Song, M.C. Gonzalez-Garcia, Francesco L. Villante, Nuria Vinyoles, Aldo Serenelli, Mon.Not.Roy.Astron.Soc. 477 (2018) 1397-1413, arXiv:1710.02147.
[Song:2017kvf]
[16-85]
Joint analysis of Borexino and SNO solar neutrino data and reconstruction of the survival probability, Francesco Vissani, Nucl.Phys.Atom.Energy 18 (2017) 303-312, arXiv:1709.05813.
[Vissani:2017wvk]
[16-86]
Solar neutrino flux at keV energies, Edoardo Vitagliano, Javier Redondo, Georg Raffelt, JCAP 1712 (2017) 010, arXiv:1708.02248.
[Vitagliano:2017odj]
[16-87]
High energy neutrinos from the Sun, M. Masip, Astropart.Phys. 97 (2018) 63-68, arXiv:1706.01290.
[Masip:2017gvw]
[16-88]
Analysis of Ten Years of Radon-Chain Decay Measurements: Evidence of Solar Influences and Inferences Concerning Solar Internal Structure and the Role of Neutrinos, P.A. Sturrock, G. Steinitz, E. Fischbach, arXiv:1705.03010, 2017.
[Sturrock:2017qwn]
[16-89]
$sin^2\theta_W$ estimate and bounds on nonstandard interactions at source and detector in the solar neutrino low-energy regime, Amir N. Khan, Douglas W. McKay, JHEP 1707 (2017) 143, arXiv:1704.06222.
[Khan:2017oxw]
[16-90]
Nonstandard interactions in solar neutrino oscillations with Hyper-Kamiokande and JUNO, Jiajun Liao, Danny Marfatia, Kerry Whisnant, Phys.Lett. B771 (2017) 247-253, arXiv:1704.04711.
[Liao:2017awz]
[16-91]
Neutrinos from cosmic ray interactions in the Sun, Joakim Edsjo, Jessica Elevant, Rikard Enberg, Carl Niblaeus, JCAP 1706 (2017) 033, arXiv:1704.02892.
[Edsjo:2017kjk]
[16-92]
Solar neutrino interactions with the double beta decay nuclei of $^{82}$Se, $^{100}$Mo and $^{150}$Nd, H. Ejiri, S. R. Elliott, Phys.Rev. C95 (2017) 055501, arXiv:1703.06915.
[Ejiri:2017vyl]
[16-93]
The Dark Side of MSW: Solar Neutrinos as a Probe of Dark Matter-Neutrino Interactions, Francesco Capozzi, Ian M. Shoemaker, Luca Vecchi, JCAP 1707 (2017) 021, arXiv:1702.08464.
[Capozzi:2017auw]
[16-94]
Scanning the Earth with solar neutrinos and DUNE, Ara Ioannisian, Alexei Smirnov, Daniel Wyler, Phys.Rev. D96 (2017) 036005, arXiv:1702.06097.
[Ioannisian:2017dkx]
[16-95]
New neutrino physics and the altered shapes of solar neutrino spectra, Ilidio Lopes, Phys. Rev. D95 (2017) 015023, arXiv:1702.00447.
[Lopes:2017ryb]
[16-96]
Solar neutrinos, helicity effects and new affine gravity with torsion II, David Alvarez-Castillo, Diego Julio Cirilo-Lombardo, Jilberto Zamora-Saa, JHEAp 13 (2017) 14, arXiv:1611.02137.
[Alvarez-Castillo:2016wve]
[16-97]
Low-energy electronic recoil in xenon detectors by solar neutrinos, Jiunn-Wei Chen, Hsin-Chang Chi, C.-P. Liu, Chih-Pan Wu, Phys.Lett. B774 (2017) 656-661, arXiv:1610.04177.
[Chen:2016eab]
[16-98]
Influence of solar flares on behavior of solar neutrino flux, O. M. Boyarkin, G. G. Boyarkina, Astropart.Phys. 85 (2016) 39-42, arXiv:1609.05860.
[Boyarkin:2016ypz]
[16-99]
Projections for measuring the size of the solar core with neutrino-electron scattering, Jonathan H. Davis, Phys. Rev. Lett. 117 (2016) 211101, arXiv:1606.02558.
[Davis:2016hil]
[16-100]
Comparative analyses of 90Sr/90Y90 decay measurements at the Physikalisch-Technische Bundesanstalt and 222Rn decay measurements at the Geological Survey of Israel. Evidence of a solar influence, Peter Sturrock, Gideon Steinitz, Ephraim Fischbach, Alexander Parkhomov, Jeffrey Scargle, Astropart.Phys. 84 (2016) 8-14, arXiv:1605.03088.
[Sturrock:2016kry]
[16-101]
The Solar Solution: Tracking the Sun with Low Energy Neutrinos, Nicole Hartman, Stephen Sekula, arXiv:1605.01787, 2016.
[Hartman:2016fbh]
[16-102]
Generalized Lomb-Scargle periodogram analysis of Super-Kamiokande and Sudbury Neutrino Observatory solar neutrino datasets, Shantanu Desai, Dawei W. Liu, Astropart.Phys. 82 (2016) 86, arXiv:1604.06758.
[Desai:2016bmz]
[16-103]
Limits on CPT violation from solar neutrinos, Jorge S. Diaz, Thomas Schwetz, Phys. Rev. D93 (2016) 093004, arXiv:1603.04468.
[Diaz:2016fqd]
[16-104]
Solar neutrino interactions with liquid scintillators used for double beta decay experiments, Hiroyasu Ejiri, Kai Zuber, J. Phys. G43 (2016) 045201, arXiv:1602.00364.
[Ejiri:2016mra]
[16-105]
Combined effect of NSI and SFP on solar electron neutrino oscillation, Deniz Yilmaz, Adv.High Energy Phys. 2016 (2016) 1435191, arXiv:1601.03161.
[Yilmaz:2016ilw]
[16-106]
Updated determination of the solar neutrino fluxes from solar neutrino data, Johannes Bergstrom et al., JHEP 1603 (2016) 132, arXiv:1601.00972.
[Bergstrom:2016cbh]
[16-107]
Comparative Analysis of Brookhaven National Laboratory Nuclear Decay Data and Super-Kamiokande Neutrino Data: Indication of a Solar Connection, P.A. Sturrock, E. Fischbach, arXiv:1511.08770, 2015.
[Sturrock:2015ivo]
[16-108]
Minicharged Particles from the Sun: A Cutting-Edge Bound, Nuria Vinyoles, Hendrik Vogel, JCAP 1603 (2016) 002, arXiv:1511.01122.
[Vinyoles:2015khy]
[16-109]
Peculiar seasonal effects in the neutrino day-night asymmetry, Oleg G. Kharlanov, arXiv:1509.08073, 2015.
[Kharlanov:2015oua]
[16-110]
Neutrino Decay and Solar Neutrino Seasonal Effect, R. Picoreti, M. M. Guzzo, P. C. de Holanda, O. L. G. Peres, Phys.Lett. B761 (2016) 70-73, arXiv:1506.08158.
[Picoreti:2015ika]
[16-111]
Constraining Big Bang lithium production with recent solar neutrino data, Marcell P. Takacs, Daniel Bemmerer, Tamas Szucs, Kai Zuber, Phys. Rev. D91 (2015) 123526, arXiv:1505.07620.
[Takacs:2015yua]
[16-112]
A model for large non-standard interactions of neutrinos leading to the LMA-Dark solution, Yasaman Farzan, Phys. Lett. B748 (2015) 311-315, arXiv:1505.06906.
[Farzan:2015doa]
[16-113]
On the detection of neutrinos from solar flares using pion-decay photons to provide a time window template, G. de Wasseige, K. Hanson, N. van Eijndhoven, P. Evenson, K.-L. Klein, arXiv:1505.05837, 2015.
[deWasseige:2015yra]
[16-114]
Spallation Backgrounds in Super-Kamiokande Are Made in Muon-Induced Showers, Shirley Weishi Li, John F. Beacom, Phys. Rev. D91 (2015) 105005, arXiv:1503.04823.
[Li:2015kpa]
[16-115]
Oscillations of the $^7$Be solar neutrinos inside the Earth, A. N. Ioannisian, A. Yu. Smirnov, D. Wyler, Phys. Rev. D92 (2015) 013014, arXiv:1503.02183.
[Ioannisian:2015qwa]
[16-116]
New axion and hidden photon constraints from a solar data global fit, Nuria Vinyoles et al., JCAP 1510 (2015) 015, arXiv:1501.01639.
[Vinyoles:2015aba]
[16-117]
Solar Neutrinos and the Decaying Neutrino Hypothesis, Jeffrey M. Berryman, Andre de Gouvea, Daniel Hernandez, Phys. Rev. D92 (2015) 073003, arXiv:1411.0308.
[Berryman:2014qha]
[16-118]
ecCNO Solar Neutrinos: A Challenge for Gigantic Ultra-Pure Liquid Scintillator Detectors, F.L. Villante, Phys.Lett. B742 (2015) 279-284, arXiv:1410.2796.
[Villante:2014txa]
[16-119]
Updated fit to three neutrino mixing: status of leptonic CP violation, M.C. Gonzalez-Garcia, Michele Maltoni, Thomas Schwetz, JHEP 1411 (2014) 052, arXiv:1409.5439.
[Gonzalez-Garcia:2014bfa]
[16-120]
No role for neutrons, muons and solar neutrinos in the DAMA annual modulation results, R. Bernabei et al., Eur.Phys.J. C74 (2014) 3196, arXiv:1409.3516.
[Bernabei:2014tqa]
[16-121]
Comment on 'Fitting the annual modulation in DAMA with neutrons from muons and neutrinos', P.S. Barbeau, J.I. Collar, Yu. Efremenko, K. Scholberg, Phys. Rev. Lett. 113 (2014) 229001, arXiv:1409.3185.
[Barbeau:2014mla]
[16-122]
Detecting gravity modes in the solar $^8B$ neutrino flux, Ilidio Lopes, Sylvaine Turck-Chieze, Astrophys.J. 792 (2014) L35, arXiv:1408.6671.
[Lopes:2014bya]
[16-123]
Detecting the Upturn of the Solar $^8$B Neutrino Spectrum with LENA, Randolph Mollenberg et al., Phys.Lett. B737 (2014) 251-255, arXiv:1408.0623.
[Mollenberg:2014mfa]
[16-124]
Fitting the annual modulation in DAMA with neutrons from muons and neutrinos, Jonathan H. Davis, Phys. Rev. Lett. 113 (2014) 081302, arXiv:1407.1052.
[Davis:2014cja]
[16-125]
Neutrino oscillations refitted, D. V. Forero, M. Tortola, J. W. F. Valle, Phys. Rev. D90 (2014) 093006, arXiv:1405.7540.
[Forero:2014bxa]
[16-126]
Discrete flavour symmetries for degenerate solar neutrino pair and their predictions, Anjan S. Joshipura, Ketan M. Patel, Phys. Rev. D90 (2014) 036005, arXiv:1405.6106.
[Joshipura:2014qaa]
[16-127]
Status of three-neutrino oscillation parameters, circa 2013, F. Capozzi, G.L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, Phys. Rev. D89 (2014) 093018, arXiv:1312.2878.
[Capozzi:2013csa]
[16-128]
Active and sterile neutrino oscillations inside the Sun in a phenomenological (3+1+2)-model, V. V. Khruschov, S. V. Fomichev, arXiv:1310.5817, 2013.
[Khruschov:2013rma]
[16-129]
Search for global f-modes and p-modes in the 8B neutrino flux, Ilidio Lopes, Astrophys.J. 777 (2013) L7, arXiv:1310.3467.
[Lopes:2013mfa]
[16-130]
The charged current neutrino cross section for solar neutrinos, and background to $\beta\beta(0\nu)$ experiments, H. Ejiri, S.R. Elliott, Phys. Rev. C89 (2014) 055501, arXiv:1309.7957.
[Ejiri:2013jda]
[16-131]
Constraining Alternative Gravity Theories Using Solar Neutrino Problem, Sumanta Chakraborty, Class.Quant.Grav. 31 (2014) 055005, arXiv:1309.0693.
[Chakraborty:2013ywa]
[16-132]
Probing the Sun's inner core using solar neutrinos: a new diagnostic method, Ilidio Lopes, Phys. Rev. D88 (2013) 045006, arXiv:1308.3346.
[Lopes:2013sba]
[16-133]
Reexamination of constrains on the Maxwell-Boltzmann distribution by Helioseismology, Jian-jun He, Li-yong Zhang, Su-qing Hou, Shi-wei Xu, Chin.Phys. C37 (2013) 104001, arXiv:1307.0573.
[He:2013yga]
[16-134]
Day-Night Asymmetries in Active-Sterile Solar Neutrino Oscillations, H.W. Long, Y. F. Li, C. Giunti, JHEP 1308 (2013) 056, arXiv:1306.4051.
[Long:2013ota]
[16-135]
Non-Standard Models, Solar Neutrinos, and Large $\theta_{13}$, R. Bonventre et al., Phys. Rev. D88 (2013) 053010, arXiv:1305.5835.
[Bonventre:2013loa]
[16-136]
CP-violating Phases in Active-Sterile Solar Neutrino Oscillations, H.W. Long, Y. F. Li, C. Giunti, Phys. Rev. D 87, 113004 (2013) 113004, arXiv:1304.2207.
[Long:2013hwa]
[16-137]
Analytical treatment of long-term observations of the day-night asymmetry for solar neutrinos, S. S. Aleshin, O. G. Kharlanov, A. E. Lobanov, Phys. Rev. D87 (2013) 045025, arXiv:1302.7201.
[Aleshin:2013sia]
[16-138]
Quasi-Dirac neutrinos and solar neutrino data, F. Rossi-Torres, A.C.B. Machado, V. Pleitez, Eur.Phys.J. C73 (2013) 2596, arXiv:1302.5590.
[Rossi-Torres:2013dya]
[16-139]
Solar neutrino physics oscillations: Sensitivity to the electronic density in the Sun's core, Ilidio Lopes, Sylvaine Turck-Chieze, Astrophys.J. 765 (2013) 14, arXiv:1302.2791.
[Lopes:2013nfa]
[16-140]
MCMC Sampling in the global analysis of solar and reactor neutrino data, W. Liu, Y. F. Li, Q.Y. Liu, Int.J.Mod.Phys. A28 (2013) 1350005.
[Liu:2013ylb]
[16-141]
Spectral Content of 22Na/44Ti Decay Data: Implications for a Solar Influence, Daniel O'Keefe et al., Astrophys.Space Sci. 344 (2013) 297-303, arXiv:1212.2198.
[OKeefe:2012ioh]
[16-142]
New limits on neutrino magnetic moment through non-vanishing 13-mixing, Marcelo Moraes Guzzo, Pedro Cunha de Holanda, Orlando Luis Goulart Peres, Phys.Rev. D97 (2018) 093006, arXiv:1212.1396.
[Guzzo:2012rf]
[16-143]
Using the Standard Solar Model to Constrain Composition and S-Factors, Aldo Serenelli, Carlos Pena-Garay, W. C. Haxton, Phys. Rev. D87 (2013) 043001, arXiv:1211.6740.
[Serenelli:2012zw]
[16-144]
An Analysis of Apparent r-Mode Oscillations in Solar Activity, the Solar Diameter, the Solar Neutrino Flux, and Nuclear Decay Rates, with Implications Concerning the Solar Internal Structure and Rotation, and Neutrino Processes, P.A. Sturrock et al., Astropart. Phys. 42 (2013) 62-69, arXiv:1211.6352.
[Sturrock:2012re]
[16-145]
Update of Short-Baseline Electron Neutrino and Antineutrino Disappearance, C. Giunti, M. Laveder, Y. F. Li, Q.Y. Liu, H.W. Long, Phys. Rev. D86 (2012) 113014, arXiv:1210.5715.
[Giunti:2012tn]
[16-146]
Global fit to three neutrino mixing: critical look at present precision, M.C. Gonzalez-Garcia, Michele Maltoni, Jordi Salvado, Thomas Schwetz, JHEP 12 (2012) 123, arXiv:1209.3023.
[Gonzalez-Garcia:2012hef]
[16-147]
Analysis of Solar Neutrino Data from SuperKamiokande I and II: Back to the Solar Neutrino Problem, H. J. Haubold, A. M. Mathai, R. K. Saxena, Entropy 16 (2014) 1414, arXiv:1209.1520.
[Haubold:2012qw]
[16-148]
Constraining Non-Standard Interactions of the Neutrino with Borexino, Sanjib Kumar Agarwalla, Francesco Lombardi, Tatsu Takeuchi, JHEP 12 (2012) 079, arXiv:1207.3492.
[Agarwalla:2012wf]
[16-149]
Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP violation searches, G.L. Fogli et al., Phys. Rev. D86 (2012) 013012, arXiv:1205.5254.
[Fogli:2012ua]
[16-150]
Global status of neutrino oscillation parameters after Neutrino-2012, D.V. Forero, M. Tortola, J.W.F. Valle, Phys. Rev. D86 (2012) 073012, arXiv:1205.4018.
[Forero:2012faj]
[16-151]
Elastic scattering signals of solar neutrinos with enhanced baryonic currents, Maxim Pospelov, Josef Pradler, Phys. Rev. D85 (2012) 113016, arXiv:1203.0545.
[Pospelov:2012gm]
[16-152]
Solar neutrino records: Gauss or non-Gauss is the question, A. Haubold, H. J. Haubold, D. Kumar, arXiv:1202.1549, 2012.
[1202.1549]
[16-153]
Relating large $U_{e3}$ to the ratio of neutrino mass-squared differences, Werner Rodejohann, Morimitsu Tanimoto, Atsushi Watanabe, Phys. Lett. B710 (2012) 636-640, arXiv:1201.4936.
[Rodejohann:2012jz]
[16-154]
An estimate of $\vartheta_{14}$ independent of reactor antineutrino fluxes, Antonio Palazzo, Phys. Rev. D85 (2012) 077301, arXiv:1201.4280.
[Palazzo:2012yf]
[16-155]
The Variation of the Solar Neutrino Fluxes over Time in the Homestake, GALLEX(GNO) and Super-Kamiokande Experiments, K. Sakurai, H. J. Haubold, T. Shirai, Space RADIATION5 (2011) 207-216, arXiv:1111.5530.
[Sakurai:2011cg]
[16-156]
Global Neutrino Data Analysis and the Quest to Pin Down $\sin\vartheta_{13}$ in Different Mixing Matrix Parametrizations, Melin Huang, S. D. Reitzner, Wei-Chun Tsai, Huitzu Tu, arXiv:1111.3175, 2011.
[Huang:2011yi]
[16-157]
The fluxes of CN neutrinos from the Sun in case of mixing in a spherical layer in the solar core, Anatoly Kopylov, Valery Petukhov, JCAP 1203 (2012) 003, arXiv:1110.5703.
[Kopylov:2011rs]
[16-158]
Solar Neutrino Matter Effects Redux, A.B. Balantekin, A. Malkus, Phys. Rev. D85 (2012) 013010, arXiv:1109.5216.
[Balantekin:2011ft]
[16-159]
Optimization of Neutrino Oscillation Parameters using Differential Evolution, Ghulam Mustafa, Faisal Akram, Bilal Masud, Commun.Theor.Phys. 59 (2013) 324-330, arXiv:1109.2431.
[Mustafa:2011at]
[16-160]
Testing alternative theories of gravity using the Sun, Jordi Casanellas, Paolo Pani, Ilidio Lopes, Vitor Cardoso, Astrophys. J. 745 (2012) 15, arXiv:1109.0249.
[Casanellas:2011kf]
[16-161]
Evidence of $\vartheta_{13} > 0$ from global neutrino data analysis, G. L. Fogli, E. Lisi, A. Marrone, A. Palazzo, A. M. Rotunno, Phys. Rev. D84 (2011) 053007, arXiv:1106.6028.
[Fogli:2011qn]
[16-162]
Lorentz noninvariant oscillations of massless neutrinos are excluded, Vernon Barger, Jiajun Liao, Danny Marfatia, Kerry Whisnant, Phys. Rev. D84 (2011) 056014, arXiv:1106.6023.
[Barger:2011qj]
[16-163]
Isospin-Violating Dark Matter and Neutrinos From the Sun, Shao-Long Chen, Yue Zhang, Phys. Rev. D84 (2011) 031301, arXiv:1106.4044.
[Chen:2011vda]
[16-164]
Testing the very-short-baseline neutrino anomalies at the solar sector, Antonio Palazzo, Phys. Rev. D83 (2011) 113013, arXiv:1105.1705.
[Palazzo:2011rj]
[16-165]
A step toward CNO solar neutrinos detection in liquid scintillators, F.L. Villante, A. Ianni, F. Lombardi, G. Pagliaroli, F. Vissani, Phys. Lett. B701 (2011) 336-341, arXiv:1104.1335.
[Villante:2011zh]
[16-166]
Solar neutrino-electron scattering as background limitation for double beta decay, N. F. de Barros, K. Zuber, J. Phys. G38 (2011) 105201, arXiv:1103.5757.
[deBarros:2011qq]
[16-167]
Model Independent Constraints on Solar Neutrinos, Lal Singh, Bhag C. Chauhan, Ravi Dutt, K. K. Sharma, S. Dev, arXiv:1102.4917, 2011.
[Singh:2011hr]
[16-168]
Hint of non-standard MSW dynamics in solar neutrino conversion, Antonio Palazzo, Phys. Rev. D83 (2011) 101701, arXiv:1101.3875.
[Palazzo:2011vg]
[16-169]
Reactions on Ar-40 involving solar neutrinos and neutrinos from core-collapsing supernovae, Myung-Ki Cheoun, Eunja Ha, Toshitaka Kajino, Phys. Rev. C83 (2011) 028801.
[Cheoun:2011zza]
[16-170]
Solar neutrino spectrum, sterile neutrinos and additional radiation in the Universe, P. C. de Holanda, A. Yu. Smirnov, Phys. Rev. D83 (2011) 113011, arXiv:1012.5627.
[deHolanda:2010am]
[16-171]
Search for modulations of the solar Be-7 flux in the next-generation neutrino observatory LENA, Michael Wurm et al., Phys. Rev. D83 (2011) 032010, arXiv:1012.3021.
[Wurm:2010mq]
[16-172]
Neutrino oscillations trigger a minimal length, Marcus Bleicher, Piero Nicolini, Martin Sprenger, Class. Quant. Grav. 28 (2011) 235019, arXiv:1011.5225.
[Sprenger:2010dg]
[16-173]
Solar Neutrino Observables Sensitive to Matter Effects, Hisakazu Minakata, Carlos Pena-Garay, Adv. High Energy Phys. 2012 (2012) 349686, arXiv:1009.4869.
[Minakata:2010be]
[16-174]
Improving LMA predictions with non-standard interactions: neutrino decay in solar matter?, C.R. Das, Joao Pulido, Phys. Rev. D83 (2011) 053009, arXiv:1007.2167.
[Das:2010sd]
[16-175]
Constraints on the opacity profile of the sun from helioseismic observables and solar neutrino flux measurements, F.L. Villante, Astrophys. J. 724 (2010) 98-110, arXiv:1006.3875.
[Villante:2010vt]
[16-176]
False-alarm probability in relation to over-sampled power spectra, with application to Super-Kamiokande solar neutrino data, Peter A. Sturrock, Jeffrey D. Scargle, Astrophys. J. 718 (2010) 527-529, arXiv:1006.0546.
[Sturrock:2010js]
[16-177]
Light WIMPs in the Sun: Constraints from Helioseismology, Daniel T. Cumberbatch, Joyce. A. Guzik, Joseph Silk, L. Scott Watson, Stephen M. West, Phys. Rev. D82 (2010) 103503, arXiv:1005.5102.
[Cumberbatch:2010hh]
[16-178]
Improving LMA predictions with non standard interactions, C.R. Das, Joao Pulido, arXiv:1003.5904, 2010.
[Das:2010aw]
[16-179]
Asymmetric dark matter and the Sun, Mads T. Frandsen, Subir Sarkar, Phys. Rev. Lett. 105 (2010) 011301, arXiv:1003.4505.
[Frandsen:2010yj]
[16-180]
Extraterrestrial Solar Neutrino Physics, W-Y. Pauchy Hwang, Jen-Chieh Peng, arXiv:1003.4347, 2010.
[Hwang:2010vz]
[16-181]
Neutrino oscillation phase dynamically induced by f(R)-gravity, S. Capozziello, M. De Laurentis, D. Vernieri, Mod. Phys. Lett. A25 (2010) 1163-1168, arXiv:1001.4173.
[Capozziello:2010yz]
[16-182]
Matter Effects in Active-Sterile Solar Neutrino Oscillations, C. Giunti, Y. F. Li, Phys. Rev. D80 (2009) 113007, arXiv:0910.5856.
[Giunti:2009xz]
[16-183]
Direct determination of the solar neutrino fluxes from solar neutrino data, M.C. Gonzalez-Garcia, Michele Maltoni, Jordi Salvado, JHEP 05 (2010) 072, arXiv:0910.4584.
[Gonzalez-Garcia:2009dpj]
[16-184]
Confusing non-zero $\theta_{13}$ with non-standard interactions in the solar neutrino sector, A. Palazzo, J. W. F. Valle, Phys. Rev. D80 (2009) 091301, arXiv:0909.1535.
[Palazzo:2009rb]
[16-185]
Constraining nonstandard neutrino-quark interactions with solar, reactor and accelerator data, F. J. Escrihuela, O. G. Miranda, M. A. Tortola, J. W. F. Valle, Phys. Rev. D80 (2009) 105009, arXiv:0907.2630.
[Escrihuela:2009up]
[16-186]
Re-Examination of Possible Bimodality of GALLEX Solar Neutrino Data, P.A. Sturrock, Solar Phys. 260 (2009) 245, arXiv:0904.4236.
[Sturrock:2009cm]
[16-187]
A Bayesian Assessment of P-Values for Significance Estimation of Power Spectra and an Alternative Procedure, with Application to Solar Neutrino Data, P.A. Sturrock, J.D. Scargle, Astrophys. J. 706 (2009) 393-398, arXiv:0904.1713.
[Sturrock:2009gc]
[16-188]
Golden Ratio Prediction for Solar Neutrino Mixing, Adisorn Adulpravitchai, Alexander Blum, Werner Rodejohann, New J. Phys. 11 (2009) 063026, arXiv:0903.0531.
[Adulpravitchai:2009bg]
[16-189]
Mimicking diffuse supernova antineutrinos with the Sun as a source, Georg Raffelt, Timur Rashba, Phys. Atom. Nucl. 73 (2010) 609-613, arXiv:0902.4832.
[Raffelt:2009mm]
[16-190]
Light sterile neutrinos, spin flavour precession and the solar neutrino experiments, C.R. Das, Joao Pulido, Marco Picariello, Phys. Rev. D79 (2009) 073010, arXiv:0902.1310.
[Das:2009kw]
[16-191]
Probing non-standard neutrino-electron interactions with solar and reactor neutrinos, A. Bolanos, O. G. Miranda, A. Palazzo, M. A. Tortola, J. W. F. Valle, Phys. Rev. D79 (2009) 113012, arXiv:0812.4417.
[Bolanos:2008km]
[16-192]
New Limits for the Violation of the Equivalence Principle in the Solar-Reactor Neutrino Sector, G. do A. Valdiviesso, M. M. Guzzo, P. C. de Holanda, Phys.Lett. B701 (2011) 240-247, arXiv:0811.2128.
[Valdiviesso:2008vyk]
[16-193]
Possible scenario for MaVaN's as the only neutrino flavor conversion mechanism in the Sun, Pedro Cunha de Holanda, JCAP 0907 (2009) 024, arXiv:0811.0567.
[deHolanda:2008nn]
[16-194]
Bayesian Constraints on $\vartheta_{13}$ from Solar and KamLAND Neutrino Data, H.L. Ge, C. Giunti, Q.Y. Liu, Phys. Rev. D80 (2009) 053009, arXiv:0810.5443.
[Ge:2008sj]
[16-195]
Solar neutrino variability and its implications for solar physics and neutrino physics, P.A. Sturrock, Astrophys.J.688 (2008), arXiv:0810.2755.
[Sturrock:2008qa]
[16-196]
Joint analysis of solar neutrino and new KamLAND data in the RSFP framework, D. Yilmaz, arXiv:0810.1037, 2008.
[Yilmaz:2008vh]
[16-197]
CN Neutrinos and the Sun's Primordial Core Metalicity, W. C. Haxton, J. Phys. Conf. Ser. 173 (2009) 012014, arXiv:0809.3342.
[Haxton:2008we]
[16-198]
Range of stability of solar neutrino flux from the SAGE experiment data, V.A. Koutvitsky, V.B. Semikoz, D.D. Sokoloff, arXiv:0809.3172, 2008.
[Koutvitsky:2008kd]
[16-199]
A Bayesian approach to power-spectrum significance estimation, with application to solar neutrino data, P. A. Sturrock, arXiv:0809.0276, 2008.
[Sturrock:2008ur]
[16-200]
Three-flavour neutrino oscillation update, Thomas Schwetz, Mariam Tortola, Jose W. F. Valle, New J. Phys. 10 (2008) 113011, arXiv:0808.2016.
[Schwetz:2008er]
[16-201]
Solar neutrino limit on the axion-like interpretation of the DAMA signal, Paolo Gondolo, Georg Raffelt, Phys. Rev. D79 (2009) 107301, arXiv:0807.2926.
[Gondolo:2008dd]
[16-202]
The Role of Solar Neutrinos in the Jupiter, Valery Burov, W-Y. Pauchy Hwang, arXiv:0806.0429, 2008.
[Burov:2008tg]
[16-203]
Combined analysis of solar neutrino and solar irradiance data: further evidence for variability of the solar neutrino flux and its implications concerning the solar core, P. A. Sturrock, Solar Phys. 254 (2009) 227, arXiv:0805.3686.
[Sturrock:2008jm]
[16-204]
Observables sensitive to absolute neutrino masses (Addendum), G. L. Fogli et al., Phys. Rev. D78 (2008) 033010, arXiv:0805.2517.
[Fogli:2008ig]
[16-205]
CN-Cycle Solar Neutrinos and Sun's Primordial Core Metalicity, W. C. Haxton, A. M. Serenelli, Astrophys. J. 687 (2008) 678-691, arXiv:0805.2013.
[Haxton:2008yv]
[16-206]
Neutrino Oscillation Parameters After High Statistics KamLAND Results, Abhijit Bandyopadhyay, Sandhya Choubey, Srubabati Goswami, S.T. Petcov, D.P. Roy, arXiv:0804.4857, 2008.
[Bandyopadhyay:2008va]
[16-207]
Contrasting solar and reactor neutrinos with a non-zero value of $\theta_{13}$, A. B. Balantekin, D. Yilmaz, J. Phys. G35 (2008) 075007, arXiv:0804.3345.
[Balantekin:2008zm]
[16-208]
Constraints from Solar and Reactor Neutrinos on Unparticle Long-Range Forces, M.C. Gonzalez-Garcia, P.C. Holanda, R. Zukanovich Funchal, JCAP 0806 (2008) 019, arXiv:0803.1180.
[Gonzalez-Garcia:2008jtw]
[16-209]
Evidence for R-Mode Oscillations in Super-Kamiokande Solar Neutrino Data, P. A. Sturrock, Solar Phys. 252 (2008) 221, arXiv:0802.3399.
[Sturrock:2008dg]
[16-210]
Time-Frequency Analysis of GALLEX and GNO Solar Neutrino Data: Evidence Suggestive of Asymmetric and Variable Nuclear Burning, P.A. Sturrock, arXiv:0802.3370, 2008.
[Sturrock:2008hz]
[16-211]
Probing neutrino magnetic moment and unparticle interactions with Borexino, D. Montanino, M. Picariello, J. Pulido, Phys. Rev. D77 (2008) 093011, arXiv:0801.2643.
[Montanino:2008hu]
[16-212]
Analysis of bimodality in histograms formed from GALLEX and GNO solar neutrino data, P. A. Sturrock, Solar Phys. 249 (2008) 1, arXiv:0711.0216.
[Sturrock:2007qp]
[16-213]
Neutrino flavor ratios as diagnostic of solar WIMP annihilation, Ralf Lehnert, Thomas J. Weiler, Phys. Rev. D77 (2008) 125004, arXiv:0708.1035.
[Lehnert:2007fv]
[16-214]
Analysis and packaging of radiochemical solar neutrino data. 1. Bayesian approach, P. A. Sturrock, M. S. Wheatland, Solar Phys. 247 (2008) 217-224, arXiv:0706.2192.
[Sturrock:2007qk]
[16-215]
Challenging Lorentz noninvariant neutrino oscillations without neutrino masses, V. Barger, D. Marfatia, K. Whisnant, Phys. Lett. B653 (2007) 267-277, arXiv:0706.1085.
[Barger:2007dc]
[16-216]
The golden ratio prediction for the solar neutrino mixing, Yuji Kajiyama, Martti Raidal, Alessandro Strumia, Phys. Rev. D76 (2007) 117301, arXiv:0705.4559.
[Kajiyama:2007gx]
[16-217]
SNO+: predictions from standard solar models and spin flavour precession, Marco Picariello et al., JHEP 11 (2007) 055, arXiv:0705.4070.
[Picariello:2007sw]
[16-218]
Probing non-standard decoherence effects with solar and KamLAND neutrinos, G.L. Fogli et al., Phys. Rev. D76 (2007) 033006, arXiv:0704.2568.
[Fogli:2007tx]
[16-219]
Global analysis of solar neutrinos (assumed to be Majorana particles) together with the new KamLAND data, D. Yilmaz, A. U. Yilmazer, J. Phys. G31 (2005) 1123-1131, arXiv:hep-ph/0702057.
[Yilmaz:2005xf]
[16-220]
Global analysis of the data from solar neutrinos having transition magnetic moment together with KamLAND data, D. Yilmaz, A. U. Yilmazer, arXiv:hep-ph/0702029, 2007.
[Yilmaz:2007fn]
[16-221]
Time Variations of the Forbush Decrease Data, Koushik Ghosh, Probhas Raychaudhuri, arXiv:astro-ph/0701860, 2007.
[Ghosh:2007jc]
[16-222]
Constraints on flavor-dependent long range forces from solar neutrinos and KamLAND, Abhijit Bandyopadhyay, Amol Dighe, Anjan S. Joshipura, Phys. Rev. D75 (2007) 093005, arXiv:hep-ph/0610263.
[Bandyopadhyay:2006uh]
[16-223]
Comparative Analysis of Super-Kamiokande and SNO Solar-Neutrino Data and the Photospheric Magnetic Field, P.A. Sturrock, Solar Phys. 239 (2006) 1, arXiv:hep-ph/0610065.
[Sturrock:2006ps]
[16-224]
Probing long-range leptonic forces with solar and reactor neutrinos, M. C. Gonzalez-Garcia, P. C. de Holanda, E. Masso, R. Zukanovich Funchal, JCAP 0701 (2007) 005, arXiv:hep-ph/0609094.
[Gonzalez-Garcia:2006vic]
[16-225]
Probing the temperature profile of energy production in the sun, Christian Grieb, R. S. Raghavan, Phys. Rev. Lett. 98 (2007) 141102, arXiv:hep-ph/0609030.
[Grieb:2006zc]
[16-226]
Solar Model Parameters and Direct Measurements of Solar Neutrino Fluxes, Abhijit Bandyopadhyay, Sandhya Choubey, Srubabati Goswami, S. T. Petcov, Phys. Rev. D75 (2007) 093007, arXiv:hep-ph/0608323.
[Bandyopadhyay:2006jn]
[16-227]
Oscillations of solar atmosphere neutrinos, G.L. Fogli et al., Phys. Rev. D74 (2006) 093004, arXiv:hep-ph/0608321.
[Fogli:2006jk]
[16-228]
On the Mass Eigenstate Composition of the 8B Neutrinos from the Sun, A. Kopylov, V. Petukhov, JCAP 0704 (2007) 002, arXiv:hep-ph/0608149.
[Kopylov:2006hb]
[16-229]
Two Gallium data sets, spin flavour precession and KamLAND, Bhag C. Chauhan, Joao Pulido, Marco Picariello, J. Phys. G34 (2007) 1803-1812, arXiv:hep-ph/0608049.
[Chauhan:2006yd]
[16-230]
Spectral Distortions at Super-Kamiokande, S. Dev, Sanjeev Kumar, Phys. Rev. D74 (2006) 117301, arXiv:hep-ph/0607176.
[Dev:2006vx]
[16-231]
Precision measurement of solar neutrino oscillation parameters by a long-baseline reactor neutrino experiment in Europe, S.T. Petcov, T. Schwetz, Phys. Lett. B642 (2006) 487-494, arXiv:hep-ph/0607155.
[Petcov:2006gy]
[16-232]
Time Variations of the Solar Neutrino Flux Data from Sudbury Neutrino Observatory, Koushik Ghosh, Probhas Raychaudhuri, arXiv:hep-ph/0606317, 2006.
[Ghosh:2006me]
[16-233]
Periodicities in Solar Neutrino Flux Data from Sage and Gallex-Gno Detectors, Koushik Ghosh, Probhas Raychaudhuri, arXiv:hep-ph/0606222, 2006.
[Ghosh:2006xa]
[16-234]
Finite Variance Scaling Analysis of the Solar Neutrino Flux Data from Sage and Gallex-Gno Detectors, Koushik Ghosh, Probhas Raychaudhuri, arXiv:hep-ph/0606221, 2006.
[Ghosh:2006wz]
[16-235]
Time Variations of the Solar Neutrino Flux Data from Sage and Gallex-Gno Detectors Obtained by Rayleigh Power Spectrum Analysis, Koushik Ghosh, Probhas Raychaudhuri, arXiv:astro-ph/0606083, 2006.
[Ghosh:2006xk]
[16-236]
Time Variations of the Superkamiokande Solar Neutrino Flux Data by Rayleigh Power Spectrum Analysis, Koushik Ghosh, Probhas Raychaudhuri, arXiv:astro-ph/0606082, 2006.
[Ghosh:2006xj]
[16-237]
Periodogram and likelihood periodicity search in the SNO solar neutrino data, Gioacchino Ranucci, Marco Rovere, Phys. Rev. D75 (2007) 013010, arXiv:hep-ph/0605212.
[Ranucci:2006rz]
[16-238]
Testing the stability of the solar neutrino LMA solution with a Bayesian analysis, B. L. Chen, H. L. Ge, C. Giunti, Q. Y. Liu, Mod. Phys. Lett. A21 (2006) 2269-2282, arXiv:hep-ph/0605195.
[Chen:2006rk]
[16-239]
Time Variations of the Solar Neutrino Flux Data from Sage and Gallex-Gno Detectors by Simple Denoising Algorithm Using Wavelet Transform, Koushik Ghosh, Probhas Raychaudhuri, arXiv:hep-ph/0604080, 2006.
[Ghosh:2006uw]
[16-240]
Lowering solar mixing angle in inverted hierarchy without charged lepton corrections, N.Nimai Singh, Monisa Rajkhowa, Abhijit Borah, J. Phys. G34 (2007) 345-352, arXiv:hep-ph/0603154.
[Singh:2006uw]
[16-241]
Time Variations of the Superkamiokande Solar Neutrino Flux Data, Abu Salem Mandal, Koushik Ghosh, Probhas Raychaudhuri, arXiv:hep-ph/0602099, 2006.
[Mandal:2006gy]
[16-242]
Power-spectrum analysis of Super-Kamiokande solar neutrino data, taking into account asymmetry in the error estimates, P.A. Sturrock, Solar Phys. 237 (2006) 1, arXiv:hep-ph/0601251.
[Sturrock:2006qz]
[16-243]
Fixing the Solar Parameters with Sterile Neutrinos, J.C. Gomez-Izquierdo, A. Perez-Lorenzana, Phys. Rev. D74 (2006) 013005, arXiv:hep-ph/0601223.
[Gomez-Izquierdo:2006bwq]
[16-244]
What Fraction of Boron-8 Solar Neutrinos arrive at the Earth as a nu_2 mass eigenstate?, Hiroshi Nunokawa, Stephen Parke, Renata Zukanovich Funchal, Phys. Rev. D74 (2006) 013006, arXiv:hep-ph/0601198.
[Parke:2006yu]
[16-245]
Model Independent Constraints on Non-electronic Flavors in the Solar Boron Neutrino Flux, S. Dev, Sanjeev Kumar, Surender Verma, Mod. Phys. Lett. A21 (2006) 1761, arXiv:hep-ph/0512178.
[Dev:2005au]
[16-246]
Effects of Environment Dependence of Neutrino Mass versus Solar and Reactor Neutrino Data, M. C. Gonzalez-Garcia, P. C. de Holanda, R. Zukanovich Funchal, Phys. Rev. D73 (2006) 033008, arXiv:hep-ph/0511093.
[Gonzalez-Garcia:2005zgl]
[16-247]
Statistically improved Analysis of Neutrino Oscillation Data with the latest KamLAND result, P. Aliani, V. Antonelli M. Picariello, E. Torrente-Lujan, arXiv:hep-ph/0511071, 2005.
[Aliani:2005se]
[16-248]
Likelihood scan of the Super-Kamiokande I time series data, Gioacchino Ranucci, Phys. Rev. D73 (2006) 103003, arXiv:hep-ph/0511026.
[Ranucci:2005ep]
[16-249]
$^7$Be Neutrino Signal Variation in KamLAND, Bhag C. Chauhan, JHEP 0602 (2006) 035, arXiv:hep-ph/0510415.
[Chauhan:2005ju]
[16-250]
Solving Solar Neutrino Puzzle via LMA MSW Conversion, Q. Y. Liu et al., Commun. Theor. Phys. 44 (2005) 505, arXiv:hep-ph/0509182.
[Liu:2005rh]
[16-251]
An approximate solution for solar and supernova neutrino oscillation in matter, Rui Luo, arXiv:hep-ph/0506020, 2005.
[Luo:2005pg]
[16-252]
Do solar neutrinos probe neutrino electromagnetic properties?, Alexander Friedland, arXiv:hep-ph/0505165, 2005.
[Friedland:2005xh]
[16-253]
Time Series Analysis Methods Applied to the Super-Kamiokande I Data, Gioacchino Ranucci, arXiv:hep-ph/0505062, 2005.
[Ranucci:2005jr]
[16-254]
Coherent lunar effect on solar neutrino, K. Ishikawa, T. Shimomura, arXiv:hep-ph/0505057, 2005.
[Ishikawa:2005jk]
[16-255]
Constraints on Weakly Mixed Sterile Neutrinos in the Light of SNO Salt Phase and 766.3 Ty KamLAND Data, S. Dev, Sanjeev Kumar, Mod. Phys. Lett. A20 (2005) 2957, arXiv:hep-ph/0504237.
[Dev:2005px]
[16-256]
Random magnetic fields inducing solar neutrino spin-flavor precession in a three generation context, M. M. Guzzo, P. C. de Holanda, O. L. G. Peres, Phys. Rev. D72 (2005) 073004, arXiv:hep-ph/0504185.
[Guzzo:2005rr]
[16-257]
Low Energy Solar Neutrinos and Spin Flavour Precession, Bhag C. Chauhan, Joao Pulido, R. S. Raghavan, JHEP 0507 (2005) 051, arXiv:hep-ph/0504069.
[Chauhan:2005pn]
[16-258]
Do two flavour oscillations explain both KamLAND data and the Solar Neutrino Spectrum?, Bipin Singh Koranga, Mohan Narayan, S. Uma Sankar, Int. J. Theor. Phys. 50 (2011) 1515-1521, arXiv:hep-ph/0503092.
[SinghKoranga:2005ty]
[16-259]
Mass Varying Neutrinos in the Sun, Marco Cirelli, M. C. Gonzalez-Garcia, Carlos Pena-Garay, Nucl. Phys. B719 (2005) 219, arXiv:hep-ph/0503028.
[Cirelli:2005sg]
[16-260]
The Polarized electron target as a new solar-neutrino detector, Marcin Misiaszek, S. Ciechanowicz, W. Sobkow, Nucl. Phys. B734 (2006) 203-207, arXiv:astro-ph/0502522.
[Misiaszek:2005xj]
[16-261]
Solar mass-varying neutrino oscillations, V. Barger, Patrick Huber, Danny Marfatia, Phys. Rev. Lett. 95 (2005) 211802, arXiv:hep-ph/0502196.
[Barger:2005mn]
[16-262]
Geotomography with solar and supernova neutrinos, E. Kh. Akhmedov, M. A. Tortola, J. W. F. Valle, JHEP 0506 (2005) 053, arXiv:hep-ph/0502154.
[Akhmedov:2005yt]
[16-263]
Neutrinos in a fluctuating plasma and the solar neutrino puzzle, Archil Kobakhidze, arXiv:hep-ph/0501249, 2005.
[Kobakhidze:2005ya]
[16-264]
Testing the LMA solution with solar neutrinos independently of solar models, V. Barger, D. Marfatia, K. Whisnant, Phys. Lett. B617 (2005) 78, arXiv:hep-ph/0501247.
[Barger:2005si]
[16-265]
Power-Spectrum Analyses of Super-Kamiokande Solar Neutrino Data: Variability and its Implications for Solar Physics and Neutrino Physics, P.A. Sturrock, D.O. Caldwell, J.D. Scargle, M.S. Wheatland, Phys. Rev. D72 (2005) 113004, arXiv:hep-ph/0501205.
[Sturrock:2005wf]
[16-266]
Evidence for solar neutrino flux variability and its implications, David O. Caldwell, P. A. Sturrock, Astropart. Phys. 23 (2005) 543-556.
[Caldwell:2003dw]
[16-267]
Solar neutrinos and 1-3 leptonic mixing, Srubabati Goswami, Alexei Yu. Smirnov, Phys. Rev. D72 (2005) 053011, arXiv:hep-ph/0411359.
[Goswami:2004cn]
[16-268]
Does the neutrino magnetic moment have an impact on solar physics?, A. B. Balantekin, C. Volpe, Phys. Rev. D72 (2005) 033008, arXiv:hep-ph/0411148.
[Balantekin:2004tk]
[16-269]
About the sign of $\Delta m_{12}^2$, Anatoly Kopylov, arXiv:hep-ph/0411031, 2004.
[Kopylov:2004cy]
[16-270]
High Precision Measurements of $\theta_{\odot}$ in Solar and Reactor Neutrino Experiments, Abhijit Bandyopadhyay, Sandhya Choubey, Srubabati Goswami, S.T. Petcov, Phys. Rev. D72 (2005) 033013, arXiv:hep-ph/0410283.
[Bandyopadhyay:2004cp]
[16-271]
Constraints on the Neutrino Parameters from the `Rise-up' in the Boron Neutrino Spectrum at Low Energies, S. Dev, Sanjeev Kumar, Mod. Phys. Lett. A20 (2005) 2083, arXiv:hep-ph/0409325.
[Dev:2004sc]
[16-272]
Power spectrum analysis of the Gallex and GNO solar neutrino data, P.A. Sturrock, D.O. Caldwell, Astropart. Phys. 26 (2006) 174-185, arXiv:hep-ph/0409064.
[Sturrock:2004jv]
[16-273]
Review of methods of power-spectrum analysis as applied to Super-Kamiokande solar neutrino data, P. A. Sturrock, Phys. Rev. D72 (2004) 113004, arXiv:hep-ph/0408017.
[Sturrock:2004vv]
[16-274]
Possible neutrino gravitoelectric dipole moments and atmospheric and solar neutrino anomalies, An. S. Kuznetsov, arXiv:hep-ph/0407031, 2004.
[Kuznetsov:2004xn]
[16-275]
Update of the solar neutrino oscillation analysis with the 766 Ty KamLAND spectrum, Abhijit Bandyopadhyay et al., Phys. Lett. B608 (2005) 115, arXiv:hep-ph/0406328.
[Bandyopadhyay:2004da]
[16-276]
Probing New Physics by Comparing Solar and KamLAND Data, Andre de Gouvea, Carlos Pena-Garay, Phys. Rev. D71 (2005) 093002, arXiv:hep-ph/0406301.
[deGouvea:2004va]
[16-277]
Solar neutrinos before and after Neutrino 2004, John N. Bahcall, M. C. Gonzalez-Garcia, Carlos Pena-Garay, JHEP 08 (2004) 016, arXiv:hep-ph/0406294.
[Bahcall:2004ut]
[16-278]
Are solar neutrino oscillations robust?, O. G. Miranda, M. A. Tortola, J. W. F. Valle, JHEP 10 (2006) 008, arXiv:hep-ph/0406280.
[Miranda:2004nb]
[16-279]
Search for time modulations in the Gallex/GNO solar neutrino data, L. Pandola, Astropart. Phys. 22 (2004) 219, arXiv:hep-ph/0406248.
[Pandola:2004gz]
[16-280]
SNO, SuperKamiokande data, antineutrinos and sterile neutrinos, Bhag C. Chauhan, J. Pulido, JHEP 0412 (2004) 040, arXiv:hep-ph/0406227.
[Chauhan:2004xz]
[16-281]
Analysis of Neutrino oscillation data with the recent KamLAND results, P. Aliani et al., arXiv:hep-ph/0406182, 2004.
[Aliani:2004bf]
[16-282]
Enhanced solar anti-neutrino flux in random magnetic fields, O. G. Miranda, T. I. Rashba, A. I. Rez, J. W. F. Valle, Phys. Rev. D70 (2004) 113002, arXiv:hep-ph/0406066.
[Miranda:2004nz]
[16-283]
Physics from future SNO and KamLAND data, A. B. Balantekin et al., Phys. Lett. B613 (2005) 61, arXiv:hep-ph/0405019.
[Balantekin:2004hi]
[16-284]
A simple analytic three-flavour description of the day-night effect in the solar neutrino flux, E. Kh. Akhmedov, M. A. Tortola, J. W. F. Valle, JHEP 0405 (2004) 057, arXiv:hep-ph/0404083.
[Akhmedov:2004rq]
[16-285]
Toward precision measurements in solar neutrinos, P.C. de Holanda, Wei Liao, A. Yu. Smirnov, Nucl. Phys. B702 (2004) 307, arXiv:hep-ph/0404042.
[deHolanda:2004fd]
[16-286]
Comment on 'Search for periodic modulations of the solar neutrino flux in Super-Kamiokande' by J. Yoo et al, P.A. Sturrock et al., arXiv:hep-ph/0403246, 2004.
[Sturrock:2004hx]
[16-287]
Probing oscillations into sterile neutrinos with cosmology, astrophysics and experiments, Marco Cirelli, Guido Marandella, Alessandro Strumia, Francesco Vissani, Nucl. Phys. B708 (2005) 215, arXiv:hep-ph/0403158.
[Cirelli:2004cz]
[16-288]
Effects of non-standard neutrino interactions on MSW-LMA solution, M. M. Guzzo, P. C. de Holanda, O. L. G. Peres, Phys. Lett. B591 (2004) 1, arXiv:hep-ph/0403134.
[Guzzo:2004ue]
[16-289]
Implications of SNO and BOREXINO results on Neutrino Oscillations and Majorana Magnetic Moments, Sin Kyu Kang, C. S. Kim, Phys. Lett. B584 (2004) 98, arXiv:hep-ph/0403059.
[Kang:2004tx]
[16-290]
Unbinned test of time-dependent signals in real-time neutrino oscillation experiments, E. Lisi, A. Palazzo, A.M. Rotunno, Astropart. Phys. 21 (2004) 511, arXiv:hep-ph/0403036.
[Lisi:2004jw]
[16-291]
Equalization of Response Functions of SK and SNO, Faisal Akram, Haris Rashid, arXiv:hep-ph/0403006, 2004.
[Akram:2004xq]
[16-292]
Solar neutrinos as probes of neutrino-matter interactions, Alexander Friedland, Cecilia Lunardini, Carlos Pena-Garay, Phys. Lett. B594 (2004) 347, arXiv:hep-ph/0402266.
[Friedland:2004pp]
[16-293]
LMA and sterile neutrinos: a case for resonance spin flavour precession?, Bhag C. Chauhan, Joao Pulido, JHEP 0406 (2004) 008, arXiv:hep-ph/0402194.
[Chauhan:2004sf]
[16-294]
Search for possible neutrino radiative decays during the 2001 total solar eclipse, S. Cecchini et al., Astropart. Phys. 21 (2004) 183, arXiv:hep-ex/0402008.
[Cecchini:2004ym]
[16-295]
Neutrino magnetic moments and photo-disintegration of deuterium, J. A. Grifols, Eduard Masso, Subhendra Mohanty, Phys. Lett. B587 (2004) 184, arXiv:hep-ph/0401144.
[Grifols:2004yn]
[16-296]
Solar Neutrino Constraints on the BBN Production of Li, Richard H. Cyburt, Brian D. Fields, Keith A. Olive, Phys. Rev. D69 (2004) 123519, arXiv:astro-ph/0312629.
[Cyburt:2003ae]
[16-297]
Neutrino flux variations and solar activity, R.N. Ikhsanov, E.V. Miletsky, arXiv:astro-ph/0312581, 2003.
[Ikhsanov:2003rh]
[16-298]
Neutrino oscillations, fluctuations and solar magneto- gravity waves, C. P. Burgess N. S. Dzhalilov et al., PoS AHEP2003 (2003) AHEP2003/054, arXiv:hep-ph/0312345.
[Burgess:2003bi]
[16-299]
Detecting Solar Neutrino Flares and Flavors, D. Fargion, JHEP 0406 (2004) 045, arXiv:hep-ph/0312011.
[Fargion:2003yq]
[16-300]
Neutrino oscillations in the Sun probe long-range leptonic forces, J. A. Grifols, E. Masso, Phys. Lett. B579 (2004) 123, arXiv:hep-ph/0311141.
[Grifols:2003gy]
[16-301]
Day-Night Effect in Solar Neutrino Oscillations with Three Flavors, M. Blennow, T. Ohlsson, H. Snellman, Phys. Rev. D69 (2004) 073006, arXiv:hep-ph/0311098.
[Blennow:2003xw]
[16-302]
The effect of very low energy solar neutrinos on the MSW mechanism, S. Esposito, Mod. Phys. Lett. A19 (2004) 2611, arXiv:hep-ph/0311093.
[Esposito:2003xr]
[16-303]
Constraining the neutrino magnetic moment with anti-neutrinos from the Sun, O. G. Miranda, T. I. Rashba, A. I. Rez, J. W. F. Valle, Phys. Rev. Lett. 93 (2004) 051304, arXiv:hep-ph/0311014.
[Miranda:2003yh]
[16-304]
Cornering Solar Radiative-Zone Fluctuations with KamLAND and SNO Salt, C. P. Burgess et al., JCAP 0401 (2004) 007, arXiv:hep-ph/0310366.
[Burgess:2003su]
[16-305]
Three-neutrino model analysis of the world's oscillation data, D. C. Latimer, D. J. Ernst, arXiv:nucl-th/0310083, 2003.
Comment: Another junk paper in which it is claimed that solar, atmospheric and LSND data can be fitted in a three-neutrino model.
Important data (energy spectra) are omitted and the analysis is very approximate.
The claimed best-fit values of the largest $\Delta{m}^2$ are either $ 1.2 \times 10^{-3} \, \mathrm{eV}^2 $ or $ > 0.1 \, \mathrm{eV}^2 $.
The smaller value $( 1.2 \times 10^{-3} \, \mathrm{eV}^2 )$ give $P_{\bar\nu_\mu\to\bar\nu_e}=0$ in LSND. Therefore, this case is equivalent to neglect LSND.
The larger values $( > 0.1 \, \mathrm{eV}^2 )$ obviously cannot fit the energy spectra of atmospheric neutrinos, which have been omitted in the analysis.
[C.G.].

[Latimer:2003hq]
[16-306]
Solar neutrinos: the SNO salt phase results and physics of conversion, P. C. de Holanda, A. Yu. Smirnov, Astropart. Phys. 21 (2004) 287, arXiv:hep-ph/0309299.
[deHolanda:2003nj]
[16-307]
Solar Neutrinos from CNO Electron Capture, L. C. Stonehill, J. A. Formaggio, R. G. H. Robertson, Phys. Rev. C69 (2004) 015801, arXiv:hep-ph/0309266.
[Stonehill:2003zf]
[16-308]
Analysis of Super-Kamiokande 5-day Measurements of the Solar Neutrino Flux, P. A. Sturrock, Astrophys. J. 605 (2004) 568, arXiv:hep-ph/0309239.
[Sturrock:2003kv]
[16-309]
On the Measurement of Solar Neutrino Oscillation Parameters with KamLAND, Abhijit Bandyopadhyay, Sandhya Choubey, Srubabati Goswami, S.T. Petcov, Phys. Lett. B581 (2004) 62, arXiv:hep-ph/0309236.
[Bandyopadhyay:2003ks]
[16-310]
Constraints on neutrino oscillation parameters from the SNO salt phase data, Abhijit Bandyopadhyay et al., Phys. Lett. B583 (2004) 134, arXiv:hep-ph/0309174.
[Bandyopadhyay:2003pk]
[16-311]
The Neutrino mass matrix after Kamland and SNO salt enhanced results, P. Aliani, V. Antonelli, M. Picariello, E. Torrente-Lujan, arXiv:hep-ph/0309156, 2003.
[Aliani:2003ns]
[16-312]
Status of three-neutrino oscillations after the SNO-salt data, M. Maltoni, T. Schwetz, M.A. Tortola, J.W.F. Valle, Phys. Rev. D68 (2003) 113010, arXiv:hep-ph/0309130.
[Maltoni:2003da]
[16-313]
Monte Carlo simulation of an experiment looking for radiative solar neutrino decays, S. Cecchini et al., Astropart. Phys. 21 (2004) 35, arXiv:hep-ph/0309107.
[Cecchini:2003ye]
[16-314]
Evidence for Mikheyev-Smirnov-Wolfenstein effects in solar neutrino flavor transitions, G.L. Fogli, E. Lisi, A. Marrone, A Palazzo, Phys. Lett. B583 (2004) 149, arXiv:hep-ph/0309100.
[Fogli:2003vj]
[16-315]
Constraints on Neutrino Parameters from Neutral-Current Solar Neutrino Measurements, A.B. Balantekin, H. Yuksel, Phys. Rev. D68 (2003) 113002, arXiv:hep-ph/0309079.
[Balantekin:2003jm]
[16-316]
Addendum to: Solar neutrino oscillation parameters after first KamLAND results, G.L. Fogli et al., Phys. Rev. D69 (2004) 017301, arXiv:hep-ph/0308055.
[Fogli:2003am]
[16-317]
Neutrino Oscillations, Solar Antineutrinos and the Solar Magnetic Fields, S. Dev, Sanjeev Kumar, arXiv:hep-ph/0308054, 2003.
[Dev:2003ak]
[16-318]
Homestake result, sterile neutrinos and low energy solar neutrino experiments, P. C. de Holanda, A. Yu. Smirnov, Phys. Rev. D69 (2004) 113002, arXiv:hep-ph/0307266.
[deHolanda:2003tx]
[16-319]
Constraints on axial two-body currents from solar neutrino data, A. B. Balantekin, H. Yuksel, Phys. Rev. C68 (2003) 055801, arXiv:hep-ph/0307227.
[Balantekin:2003ep]
[16-320]
New Interpretation on the Solar Neutrino Flux with Flavor Mixing and Majorana Magnetic Moment, Sin Kyu Kang, C. S. Kim, arXiv:hep-ph/0306210, 2003.
[Kang:2003zs]
[16-321]
Precision Neutrino Oscillation Physics with an Intermediate Baseline Reactor Neutrino Experiment, Sandhya Choubey, S.T. Petcov, M. Piai, Phys. Rev. D68 (2003) 113006, arXiv:hep-ph/0306017.
[Choubey:2003qx]
[16-322]
Three neutrino mixing after the first results from K2K and KamLAND, M. C. Gonzalez-Garcia, Carlos Pena-Garay, Phys. Rev. D68 (2003) 093003, arXiv:hep-ph/0306001.
[Gonzalez-Garcia:2003myw]
[16-323]
Further Evidence for Neutrino Flux Variability from Super- Kamiokande Data, D. O. Caldwell, P. A. Sturrock, Phys. Rev. Lett. (2003), arXiv:hep-ph/0305303.
[Caldwell:2003yg]
[16-324]
Global analyses as a road map to solar neutrino fluxes and oscillation parameters, John N. Bahcall, Carlos Pena-Garay, JHEP 0311 (2003) 004, arXiv:hep-ph/0305159.
From the abstract: Existing experiments show that the $p-p$ solar neutrino flux is $1.01 \pm 0.02\, (1\sigma)$ times the flux predicted by the BP00 standard solar model; the $^7$Be neutrino flux is $0.93 {}^{+0.25}_{-0.63}$ the predicted flux; and the $^8$B flux is $1.01 \pm 0.04$ the predicted flux. The oscillation parameters are: $\Delta m^2 = 7.3^{+0.4}_{-0.6}\times 10^{-5}~{\rm eV^2}$ and $\tan^2 \theta_{12} = 0.41 \pm 0.04$.
...
A future $^7$Be $\nu-e$ scattering experiment accurate to $\pm 10$\% can reduce the uncertainty in the experimentally determined $^7$Be neutrino flux by a factor of four and the uncertainty in the $p-p$ neutrino flux by a factor of 2.5 (to $\pm 0.8$\%). A future $p-p$ experiment must be accurate to better than $\pm 3$\% to shrink the uncertainty in $\tan^2 \theta_{12}$ by more than 15\%.

Comment: Figure 4 shows the allowed regions for oscillation of solar neutrinos before and after the presentation of new data at TAUP03 conference [M.L.].
[Bahcall:2003ce]
[16-325]
A new model of solar neutrinos in manifest violation of CPT invariance, R. S. Raghavan, JCAP 0308 (2003) 002, arXiv:astro-ph/0304331.
[Raghavan:2003du]
[16-326]
KamLAND, solar antineutrinos and the solar magnetic field, Bhag C. Chauhan, Joao Pulido, E. Torrente-Lujan, Phys. Rev. D68 (2003) 033015, arXiv:hep-ph/0304297.
[Chauhan:2003wr]
[16-327]
Possible Observation of Nuclear Reactor Neutrinos Near the Oscillation Absolute Minimum, C.Bouchiat, arXiv:hep-ph/0304253, 2003.
[Bouchiat:2003jj]
[16-328]
Joint Time-Series Analysis of Homestake and GALLEX-GNO Solar Neutrino Data: Evidence for Rieger-Type Periodicities and their Interpretation as R-Mode Oscillations, P. A. Sturrock, Astrophys.J. (2003), arXiv:hep-ph/0304106.
[Sturrock:2003yi]
[16-329]
Time-Series Analysis of Super-Kamiokande Measurements of the Solar Neutrino Flux, P.A. Sturrock, Astrophys. J. 594 (2003) 1102, arXiv:hep-ph/0304073.
[Sturrock:2003ep]
[16-330]
Limits on charge non-conservation from possible seasonal variations of the solar neutrino experiments, Manuel Torres, Hector Vucetich, Mod. Phys. Lett. A19 (2004) 639, arXiv:astro-ph/0303588.
[Torres:2003ei]
[16-331]
Large mixing angle solution to the solar neutrino problem and random matter density perturbations, M. M. Guzzo, P. C. de Holanda, N. Reggiani, Phys. Lett. B569 (2003) 45, arXiv:hep-ph/0303203.
[Guzzo:2003xk]
[16-332]
Do the KamLAND and Solar Neutrino Data Rule out Solar Density Fluctuations?, A. B. Balantekin, H. Yuksel, Phys. Rev. D68 (2003) 013006, arXiv:hep-ph/0303169.
[Balantekin:2003qm]
[16-333]
Exploring the sensitivity of current and future experiments to $\theta_{\odot}$, Abhijit Bandyopadhyay, Sandhya Choubey, Srubabati Goswami, Phys. Rev. D67 (2003) 113011, arXiv:hep-ph/0302243.
[Bandyopadhyay:2003du]
[16-334]
Maximum likelihood analysis of the first KamLAND results, A. Ianni, J. Phys. G29 (2003) 2107, arXiv:hep-ph/0302230.
[Ianni:2003xy]
[16-335]
KamLAND Bounds on Solar Antineutrinos and neutrino transition magnetic moments, E. Torrente-Lujan, JHEP 0304 (2003) 054, arXiv:hep-ph/0302082.
[Torrente-Lujan:2003xfu]
[16-336]
A Search for Periodicity in the Super-Kamiokande Solar Neutrino Flux Data, A. Milsztajn, arXiv:hep-ph/0301252, 2003.
[Milsztajn:2003af]
[16-337]
Global Analysis of Solar Neutrino and KamLAND Data, A.B. Balantekin, H. Yuksel, J. Phys. G29 (2003) 665, arXiv:hep-ph/0301072.
[Balantekin:2003dc]
[16-338]
Does the Sun Shine by pp or CNO Fusion Reactions?, J. N. Bahcall, M. C. Gonzalez-Garcia, C. Penya-Garay, Phys. Rev. Lett. 90 (2003) 131301, arXiv:astro-ph/0212331.
[Bahcall:2002jt]
[16-339]
LMA MSW solution of the solar neutrino problem and first KamLAND results, P. C. de Holanda, A. Yu. Smirnov, JCAP 0302 (2003) 001, arXiv:hep-ph/0212270.
[deHolanda:2002iv]
[16-340]
Neutrino mass parameters from Kamland, SNO and other solar evidence, P. Aliani, V. Antonelli, M. Picariello, E. Torrente-Lujan, Phys. Rev. D69 (2004) 013005, arXiv:hep-ph/0212212.
[Aliani:2002na]
[16-341]
Determining the oscillation parameters by Solar neutrinos and KamLAND, H. Nunokawa, W. J. C. Teves, R. Zukanovich Funchal, Phys. Lett. B562 (2003) 28, arXiv:hep-ph/0212202.
[Nunokawa:2002mq]
[16-342]
Solar Neutrinos Before and After KamLAND, J. N. Bahcall, M. C. Gonzalez-Garcia, Carlos Pena-Garay, JHEP 0302 (2003) 009, arXiv:hep-ph/0212147.
[Bahcall:2002ij]
[16-343]
The Solar Neutrino Problem after the first results from Kamland, Abhijit Bandyopadhyay et al., Phys. Lett. B559 (2003) 121, arXiv:hep-ph/0212146.
[Bandyopadhyay:2002en]
[16-344]
Implications of the KamLAND Measurement on the Lepton Flavor Mixing Matrix and the Neutrino Mass Matrix, W.-L. Guo, Z.-Z. Xing, Phys. Rev. D67 (2003) 053002, arXiv:hep-ph/0212142.
[Guo:2002ei]
[16-345]
Combining first KamLAND results with solar neutrino data, M. Maltoni, T. Schwetz, J.W.F. Valle, Phys. Rev. D67 (2003) 093003, arXiv:hep-ph/0212129.
[Maltoni:2002aw]
[16-346]
Solar neutrino oscillation parameters after first KamLAND results, G.L. Fogli et al., Phys. Rev. D67 (2003) 073002, arXiv:hep-ph/0212127.
[Fogli:2002au]
[16-347]
KamLAND and solar neutrino data eliminate the LOW solution, V. Barger, D. Marfatia, Phys. Lett. B555 (2003) 144, arXiv:hep-ph/0212126.
[Barger:2002at]
[16-348]
Super-Kamiokande hep neutrino best fit: A possible signal of nonmaxwellian solar plasma, Massimo Coraddu, Marcello Lissia, Giuseppe Mezzorani, Piero Quarati, Physica A326 (2003) 473, arXiv:hep-ph/0212054.
[Coraddu:2002qt]
[16-349]
Implications on neutrino oscillation plus decay from recent solar neutrino data, D. Indumathi, arXiv:hep-ph/0212038, 2002.
[Indumathi:2002qb]
[16-350]
Critical review of the results of the Homestake solar neutrino experiment, Paolo Walter Cattaneo, arXiv:astro-ph/0211534, 2002.
Comment: The data are reanalyzed and a new ratio $\mathrm{DATA/BP00} = 0.40 \pm 0.03$ has been found. (M.L.).
[Cattaneo:2002vj]
[16-351]
Solar neutrino oscillations and indications of matter effects in the Sun, G.L. Fogli, E. Lisi, A. Palazzo, A.M. Rotunno, Phys. Rev. D67 (2003) 073001, arXiv:hep-ph/0211414.
[Fogli:2002hb]
[16-352]
Status of a Supersymmetric Flavour Violating Solution to the Solar Neutrino Puzzle with Three Generations, H. K. Dreiner, G. Moreau, Phys. Rev. D67 (2003) 055005, arXiv:hep-ph/0211354.
[Dreiner:2002ne]
[16-353]
Analysis of solar neutrino problem by means of Notzold and Nakagawa's approach including the interference term- Hyperbolic-tangent profile for electron density in the sun and exact solution -, Masahiro Kaneyama, Minoru Biyajima, arXiv:hep-ph/0211273, 2002.
[Kaneyama:2002mj]
[16-354]
Testing the solar LMA region with KamLAND data, Abhijit Bandyopadhyay et al., J. Phys. G29 (2003) 2465, arXiv:hep-ph/0211266.
[Bandyopadhyay:2002mc]
[16-355]
Searches for sterile component with solar neutrinos and KamLAND, P. C. de Holanda, A. Yu. Smirnov, arXiv:hep-ph/0211264, 2002.
[deHolanda:2002ma]
[16-356]
Active neutrino Oscillations and the SNO neutral Current measurement, A. A. Aguilar-Arevalo, J.C. Dolivo, Phys. Rev. D66 (2002) 113009, arXiv:hep-ph/0211091.
[Aguilar-Arevalo:2002use]
[16-357]
Solar neutrino oscillations and bounds on neutrino magnetic moment and solar magnetic field, E. K. Akhmedov, Joao Pulido, Phys. Lett. B553 (2003) 7, arXiv:hep-ph/0209192.
[Akhmedov:2002mf]
[16-358]
Large mixing angle oscillations as a probe of the deep solar interior, C. Burgess et al., Astrophys. J. 588 (2003) L65, arXiv:hep-ph/0209094.
[Burgess:2002we]
[16-359]
Constraining Majorana neutrino electromagnetic properties from the LMA-MSW solution of the solar neutrino problem, W. Grimus, M. Maltoni, T. Schwetz, M. A. Tortola, J. W. F. Valle, Nucl. Phys. B648 (2003) 376-396, arXiv:hep-ph/0208132.
[Grimus:2002vb]
[16-360]
KamLAND, solar antineutrinos and their magnetic moment, P. Aliani, V. Antonelli, M. Picariello, E. Torrente-Lujan, JHEP 02 (2003) 025, arXiv:hep-ph/0208089.
[Aliani:2002pf]
[16-361]
Three-flavor solar neutrino oscillations with terrestrial neutrino constraints, G. L. Fogli et al., Phys. Rev. D66 (2002) 093008, arXiv:hep-ph/0208026.
[Fogli:2002pb]
[16-362]
KamLAND potentiality on the determination of Neutrino mixing parameters in the post SNO-NC era, P. Aliani, V. Antonelli, M. Picariello, E. Torrente-Lujan, New J. Phys. 5 (2003) 2, arXiv:hep-ph/0207348.
[Aliani:2002ca]
[16-363]
Confronting Spin Flavor Solutions of the Solar Neutrino Problem with current and future solar neutrino data, J. Barranco, O. G. Miranda, T. I. Rashba, V. B. Semikoz, J. W. F. Valle, Phys. Rev. D66 (2002) 093009, arXiv:hep-ph/0207326.
[Barranco:2002te]
[16-364]
Constraining neutrino oscillation parameters with current solar and atmospheric data, M. Maltoni, T. Schwetz, M. A. Tortola, J. W. F. Valle, Phys. Rev. D67 (2003) 013011, arXiv:hep-ph/0207227.
[Maltoni:2002ni]
[16-365]
Ruling out four-neutrino oscillation interpretations of the LSND anomaly?, M. Maltoni, T. Schwetz, M. A. Tortola, J. W. F. Valle, Nucl. Phys. B643 (2002) 321-338, arXiv:hep-ph/0207157.
From the abstract: ... all four-neutrino descriptions of the LSND anomaly, both in (2+2) as well as (3+1) realizations, are highly disfavoured. Our analysis brings the LSND hint to a more puzzling status.
From the article: The exclusion of four-neutrino oscillation schemes of the (2+2)-type is based on the improved sensitivity of solar and atmospheric neutrino experiments to oscillations into a sterile neutrino, thanks to recent experimental data. This is a very robust result, independent of whether the LSND experiment is confirmed or disproved. The exclusion of (3+1) schemes depends somehow on the used LSND data. Furthermore, it heavily relies on the results of negative SBL experiments, especially on the Bugey and CDHS disappearance experiments.
[Maltoni:2002xd]
[16-366]
Does Solar Physics Provide Constraints to Weakly Interacting Massive Particles?, A. Bottino et al., Phys. Rev. D66 (2002) 053005, arXiv:hep-ph/0206211.
[Bottino:2002pd]
[16-367]
Resonance spin flavour precession of solar neutrinos after SNO NC data, Bhag C. Chauhan, Joao Pulido, Phys. Rev. D66 (2002) 053006, arXiv:hep-ph/0206193.
[Chauhan:2002jw]
[16-368]
Getting the most from the statistical analysis of solar neutrino oscillations, G. L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, Phys. Rev. D66 (2002) 053010, arXiv:hep-ph/0206162.
[Fogli:2002pt]
[16-369]
Constraints on two-body axial currents from reactor antineutrino deuteron breakup reactions, Malcolm Butler, Jiunn-Wei Chen, Petr Vogel, Phys. Lett. B549 (2002) 26-31, arXiv:nucl-th/0206026.
[Butler:2002cw]
[16-370]
Which solar neutrino data favour the LMA solution?, Alessandro Strumia, Carla Cattadori, Nicola Ferrari, Francesco Vissani, Phys. Lett. B541 (2002) 327-331, arXiv:hep-ph/0205261.
[Strumia:2002rv]
[16-371]
Solar neutrinos: Global analysis with day and night spectra from SNO, P. C. de Holanda, A. Yu. Smirnov, Phys. Rev. D66 (2002) 113005, arXiv:hep-ph/0205241.
[deHolanda:2002pp]
[16-372]
Determination of neutrino mixing parameters after SNO oscillation evidence, P. Aliani, V. Antonelli, R. Ferrari, M. Picariello, E. Torrente-Lujan, Phys. Rev. D67 (2003) 013006, arXiv:hep-ph/0205053.
[Aliani:2002ma]
[16-373]
The SNO solar neutrino data, neutrinoless double-beta decay and neutrino mass spectrum, S. Pascoli, S. T. Petcov, Phys. Lett. B544 (2004) 239-250, arXiv:hep-ph/0205022.
[Pascoli:2003ke]
[16-374]
Before and after: How has the SNO neutral current measurement changed things?, J. N. Bahcall, M. C. Gonzalez-Garcia, Carlos Pena-Garay, JHEP 07 (2002) 054, arXiv:hep-ph/0204314.
[Bahcall:2002hv]
[16-375]
Bounds on neutrino magnetic moment tensor from solar neutrinos, Anjan S. Joshipura, Subhendra Mohanty, Phys. Rev. D66 (2002) 012003, arXiv:hep-ph/0204305.
[Joshipura:2002bp]
[16-376]
Implications of the first neutral current data from SNO for solar neutrino oscillation, Abhijit Bandyopadhyay, Sandhya Choubey, Srubabati Goswami, D. P. Roy, Phys. Lett. B540 (2002) 14-19, arXiv:hep-ph/0204286.
[Bandyopadhyay:2002xj]
[16-377]
Imprint of SNO neutral current data on the solar neutrino problem, V. Barger, D. Marfatia, K. Whisnant, B. P. Wood, Phys. Lett. B537 (2002) 179-186, arXiv:hep-ph/0204253.
From the article: Since in SNO the measured NC flux is consistent with the Solar Standard Model Prediction one obtains $P(\nu_e \rightarrow \nu_s) = -0.01 \pm 0.22$.
[Barger:2002iv]
[16-378]
If sterile neutrinos exist, how can one determine the total B-8 and Be-7 solar neutrino fluxes?, J. N. Bahcall, M. C. Gonzalez-Garcia, C. Pena-Garay, Phys. Rev. C66 (2002) 035802, arXiv:hep-ph/0204194.
[Bahcall:2002zh]
[16-379]
Neutrino decay confronts the SNO data, Srubabati Goswami Abhijit Bandyopadhyay, Sandhya Choubey, Phys. Lett. B555 (2003) 33, arXiv:hep-ph/0204173.
[Bandyopadhyay:2002qg]
[16-380]
Solar Magnetic Fields Profile: A Natural Consequence of RSFP Scenario, B. C. Chauhan, arXiv:hep-ph/0204160, 2002.
[Chauhan:2002pt]
[16-381]
Do solar neutrinos decay?, J. F. Beacom, N. F. Bell, Phys. Rev. D65 (2002) 113009, arXiv:hep-ph/0204111.
[Beacom:2002cb]
[16-382]
Constraints on decay plus oscillation solutions of the solar neutrino problem, Anjan S. Joshipura, Eduard Masso, Subhendra Mohanty, Phys. Rev. D66 (2002) 113008, arXiv:hep-ph/0203181.
[Joshipura:2002fb]
[16-383]
What can the SNO neutral current rate teach us about the solar neutrino anomaly, Abhijit Bandyopadhyay, Sandhya Choubey, Srubabati Goswami, D. P. Roy, Mod. Phys. Lett. A17 (2002) 1455-1464, arXiv:hep-ph/0203169.
[Bandyopadhyay:2002bu]
[16-384]
Addendum to: Model-dependent and -independent implications of the first Sudbury Neutrino Observatory results, Gian Luigi Fogli, E. Lisi, D. Montanino, A. Palazzo, Phys. Rev. D65 (2002) 117301, arXiv:hep-ph/0203138.
[Fogli:2002ts]
[16-385]
Has Super-Kamiokande observed antineutrinos from the Sun?, Andrei Gruzinov Alexander Friedland, Astropart. Phys. 19 (2003) 575, arXiv:hep-ph/0202095.
[Friedland:2002pg]
[16-386]
Distinguishing magnetic moment from oscillation solutions of the solar neutrino problem with Borexino, E. K. Akhmedov, Joao Pulido, Phys. Lett. B529 (2002) 193-198, arXiv:hep-ph/0201089.
[Akhmedov:2002ti]
[16-387]
On the Day-Night Effect and CC to NC Event Rate Ratio Predictions for the SNO Detector, M. Maris, S. T. Petcov, Phys. Lett. B534 (2002) 17-27, arXiv:hep-ph/0201087.
[Maris:2001tg]
[16-388]
Seasonal Variations of the Effect from Solar Neutrinos in Lithium Detector, Anatoli Kopylov, Valeri Petukhov, Phys. Lett. B544 (2002) 11-15, arXiv:hep-ph/0201042.
[Kopylov:2002kx]
[16-389]
Implications of recent solar neutrino observations: an analysis of charged current data, C. V. K. Baba, D. Indumathi, M. V. N. Murthy, Phys. Rev. D65 (2002) 073033, arXiv:hep-ph/0201031.
[Baba:2002gx]
[16-390]
Matter Effects of Thin Layers: Detecting Oil by Oscillations of Solar Neutrinos, Ara N. Ioannisian, Alexei Yu. Smirnov, arXiv:hep-ph/0201012, 2002.
[Ioannisian:2002yj]
[16-391]
Solar neutrino zenith angle distribution and uncertainty in earth matter density, Lian-You Shan, arXiv:hep-ph/0112319, 2001.
[Shan:2001mt]
[16-392]
Status of a hybrid three-neutrino interpretation of neutrino data, M. Guzzo et al., Nucl. Phys. B629 (2002) 479-490, arXiv:hep-ph/0112310.
[Guzzo:2001mi]
[16-393]
Solar Neutrinos with Magnetic Moment: Rates and Global Analysis, Joao Pulido, Astropart. Phys. 18 (2002) 173-181, arXiv:hep-ph/0112104.
[Pulido:2001bd]
[16-394]
The LMA MSW solution of the solar neutrino problem, inverted neutrino mass hierarchy and reactor neutrino experiments, S. T. Petcov, M. Piai, Phys. Lett. B533 (2002) 94-106, arXiv:hep-ph/0112074.
[Petcov:2001sy]
[16-395]
Global analysis of the post-SNO solar neutrino data for standard and non-standard oscillation mechanisms, A. M. Gago et al., Phys. Rev. D65 (2002) 073012, arXiv:hep-ph/0112060.
[Gago:2001si]
[16-396]
Global analysis of solar neutrino oscillation evidence including SNO and implications for Borexino, P. Aliani, V. Antonelli, M. Picariello, E. Torrente-Lujan, Nucl. Phys. B634 (2002) 393-409, arXiv:hep-ph/0111418.
[Aliani:2001zi]
[16-397]
The solar neutrino spectrum derived from electron scattering and charged current interactions, G. Fiorentini, F. L. Villante, arXiv:hep-ph/0111330, 2001.
[Fiorentini:2001zf]
[16-398]
Model independent information on solar neutrino oscillations, M. V. Garzelli, C. Giunti, Phys. Rev. D65 (2002) 093005, arXiv:hep-ph/0111254.
[Garzelli:2001ju]
[16-399]
Robust signatures of solar neutrino oscillation solutions, J. N. Bahcall, M. C. Gonzalez-Garcia, Carlos Pena-Garay, JHEP 04 (2002) 007, arXiv:hep-ph/0111150.
[Bahcall:2001cb]
[16-400]
Large solar neutrino mixing and radiative neutrino mechanism, Teruyuki Kitabayashi, Masaki Yasue, Phys. Lett. B524 (2002) 308-318, arXiv:hep-ph/0110303.
[Kitabayashi:2001ex]
[16-401]
Which solar neutrino experiment after KamLAND and Borexino?, Alessandro Strumia, Francesco Vissani, JHEP 11 (2001) 048, arXiv:hep-ph/0109172.
[Strumia:2001gi]
[16-402]
Energy independent solution to the solar neutrino anomaly including the SNO data, Sandhya Choubey, Srubabati Goswami, D. P. Roy, Phys. Rev. D65 (2002) 073001, arXiv:hep-ph/0109017.
[Choubey:2001bi]
[16-403]
Bayesian view of solar neutrino oscillations, M. V. Garzelli, C. Giunti, JHEP 12 (2001) 017, arXiv:hep-ph/0108191.
[Garzelli:2001zu]
[16-404]
Global analysis with SNO: Toward the solution of the solar neutrino problem, P. I. Krastev, A. Yu. Smirnov, Phys. Rev. D65 (2002) 073022, arXiv:hep-ph/0108177.
[Krastev:2001tv]
[16-405]
Obtaining the large angle MSW solution to the solar neutrino problem in models, Ilja Dorsner, Stephen M. Barr, Nucl. Phys. B617 (2001) 493-513, arXiv:hep-ph/0108168.
[Dorsner:2001sg]
[16-406]
Exact analysis of the combined data of SNO and Super-Kamiokande, V. Berezinsky, Astropart. Phys. 17 (2002) 509-514, arXiv:hep-ph/0108166.
[Berezinsky:2001se]
[16-407]
How many sigma's is the solar neutrino effect?, J. N. Bahcall, Phys. Rev. C65 (2002) 015802, arXiv:hep-ph/0108147.
[Bahcall:2001pe]
[16-408]
A non-resonant dark-side solution to the solar neutrino problem, O. G. Miranda, Carlos Pena-Garay, T. I. Rashba, V. B. Semikoz, J. W. F. Valle, Phys. Lett. B521 (2001) 299-307, arXiv:hep-ph/0108145.
[Miranda:2001hv]
[16-409]
Electron neutrino survival probability from solar-neutrino data, V. Berezinsky, M. Lissia, Phys. Lett. B521 (2001) 287-290, arXiv:hep-ph/0108108.
[Berezinsky:2001uv]
[16-410]
SN1987A and the status of oscillation solutions to the solar neutrino problem, M. Kachelriess, A. Strumia, R. Tomas, J. W. F. Valle, Phys. Rev. D65 (2002) 073016, arXiv:hep-ph/0108100.
[Kachelriess:2001sg]
[16-411]
Implications for solar neutrino oscillations from Super- Kamiokande and SNO data, Michael B. Smy, arXiv:hep-ex/0108053, 2001.
[Smy:2001yn]
[16-412]
Are there $\nu_\mu$ or $\nu_\tau$ in the flux of solar neutrinos on Earth?, C. Giunti, Phys. Rev. D65 (2002) 033006, arXiv:hep-ph/0107310.
[Giunti:2001ws]
[16-413]
Solving the solar neutrino puzzle with KamLAND and solar data, Andre de Gouvea, Carlos Pena-Garay, Phys. Rev. D64 (2001) 113011, arXiv:hep-ph/0107186.
[deGouvea:2001su]
[16-414]
Neutrinoless double beta decay, solar neutrinos and mass scales, Per Osland, Geir Vigdel, Phys. Lett. B520 (2001) 143-151, arXiv:hep-ph/0107161.
[Osland:2001pm]
[16-415]
Violation of the equivalence principle in the light of the SNO and SK solar neutrino results, Amitava Raychaudhuri, Arunansu Sil, Phys. Rev. D65 (2002) 073035, arXiv:hep-ph/0107022.
[Raychaudhuri:2001gy]
[16-416]
Probing an extended region of $\Delta{m}^2$ with rapidly oscillating $^7\mathrm{Be}$ solar neutrinos, A. J. Baltz, Phys. Rev. D65 (2002) 053005, arXiv:hep-ph/0106339.
[Baltz:2001sg]
[16-417]
Global analysis of solar neutrino oscillations including SNO CC measurement, J. N. Bahcall, M. C. Gonzalez-Garcia, Carlos Pena-Garay, JHEP 08 (2001) 014, arXiv:hep-ph/0106258.
[Bahcall:2001zu]
[16-418]
Model-dependent and independent implications of the first Sudbury Neutrino Observatory results, Gian Luigi Fogli, E. Lisi, D. Montanino, A. Palazzo, Phys. Rev. D64 (2001) 093007, arXiv:hep-ph/0106247.
[Fogli:2001vr]
[16-419]
Is right-handed neutrino degeneracy compatible with the solar and atmospheric neutrino data?, R. Gonzalez Felipe, F. R. Joaquim, JHEP 09 (2001) 015, arXiv:hep-ph/0106226.
[GonzalezFelipe:2001kr]
[16-420]
Unknowns after the SNO charged-current measurement, Vernon D. Barger, D. Marfatia, K. Whisnant, Phys. Rev. Lett. 88 (2002) 011302, arXiv:hep-ph/0106207.
[Barger:2001zs]
[16-421]
Global analysis of solar neutrinos with magnetic moment and solar field profiles, Joao Pulido, arXiv:hep-ph/0106201, 2001.
[Pulido:2001zk]
[16-422]
Global oscillation analysis of solar neutrino data with helioseismically constrained fluxes, Sandhya Choubey, Srubabati Goswami, Kamales Kar, H. M. Antia, S. M. Chitre, Phys. Rev. D64 (2001) 113001, arXiv:hep-ph/0106168.
[Choubey:2001ws]
[16-423]
Solar neutrino results from super-Kamiokande, M. B. Smy (Super-Kamiokande), arXiv:hep-ex/0106064, 2001.
[Smy:2001wf]
[16-424]
Status of the Gribov-Pontecorvo solution to the solar neutrino problem, V. Berezinsky, M. C. Gonzalez-Garcia, Carlos Pena-Garay, Phys. Lett. B517 (2001) 149-157, arXiv:hep-ph/0105294.
[Berezinsky:2001cm]
[16-425]
Solar and atmospheric four-neutrino oscillations, M. C. Gonzalez-Garcia, M. Maltoni, Carlos Pena-Garay, Phys. Rev. D64 (2001) 093001, arXiv:hep-ph/0105269.
[Gonzalez-Garcia:2001hid]
[16-426]
A new three flavor oscillation solution of the solar neutrino deficit in R-parity violating supersymmetry, Rathin Adhikari, Arunansu Sil, Amitava Raychaudhuri, Eur. Phys. J. C25 (2002) 125-130, arXiv:hep-ph/0105119.
[Adhikari:2001ei]
[16-427]
Solutions of the atmospheric, solar and LSND neutrino anomalies from TeV scale quark lepton unification, T. L. Yoon, R. Foot, Phys. Rev. D65 (2002) 015002, arXiv:hep-ph/0105101.
[Yoon:2001cf]
[16-428]
Quasiaveraged solar neutrino oscillations, Gian Luigi Fogli, E. Lisi, A. Palazzo, Phys. Rev. D65 (2002) 073019, arXiv:hep-ph/0105080.
[Fogli:2001wi]
[16-429]
Exotic solutions to the solar neutrino problem and some implications for low energy solar neutrino experiments, Hiroshi Nunokawa, arXiv:hep-ph/0105027, 2001.
[Nunokawa:2000kb]
[16-430]
Atmospheric, solar, and CHOOZ neutrinos: A global three generation analysis, G. L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, arXiv:hep-ph/0104221, 2001.
[Fogli:2001xt]
[16-431]
Three flavor neutrino oscillations, LSND, SNA and ANA, Gulsheen Ahuja, Monika Randhawa, Manmohan Gupta, arXiv:hep-ph/0104190, 2001.
[Ahuja:2001ss]
[16-432]
Piecing the solar neutrino puzzle together at SNO, V. D. Barger, D. Marfatia, K. Whisnant, Phys. Lett. B509 (2001) 19-29, arXiv:hep-ph/0104166.
[Barger:2001pf]
[16-433]
Solar and atmospheric neutrinos: A solution with large extra dimensions, Dominique Monderen, arXiv:hep-ph/0104113, 2001.
[Monderen:2001ey]
[16-434]
Earth regeneration of solar neutrinos at SNO and Super-Kamiokande, V. D. Barger, D. Marfatia, K. Whisnant, B. P. Wood, Phys. Rev. D64 (2001) 073009, arXiv:hep-ph/0104095.
[Barger:2001bw]
[16-435]
Reviving the energy independent suppression of the solar neutrino flux, Sandhya Choubey, Srubabati Goswami, Nayantara Gupta, D. P. Roy, Phys. Rev. D64 (2001) 053002, arXiv:hep-ph/0103318.
[Choubey:2001vw]
[16-436]
Solar neutrinos: Global analysis and implications for SNO, J. N. Bahcall, Plamen I. Krastev, Alexei Yu. Smirnov, JHEP 05 (2001) 015, arXiv:hep-ph/0103179.
[Bahcall:2001hv]
[16-437]
Comparative analysis of {GALLEX-GNO} solar neutrino data and {SOHO/MDI} helioseismology data: Further evidence for rotational modulation of the solar neutrino flux, Peter A. Sturrock, Mark A. Weber, Astrophys. J. 565 (2002) 1366-1375, arXiv:astro-ph/0103154.
[Sturrock:2001qn]
[16-438]
Constraints on neutrino oscillations using 1258 days of Super-Kamiokande solar neutrino data, S. Fukuda et al. (Super-Kamiokande), Phys. Rev. Lett. 86 (2001) 5656-5660, arXiv:hep-ex/0103033.
[Super-Kamiokande:2001bfk]
[16-439]
Solar neutrino event spectra: Tuning SNO to equalize super- Kamiokande, G. L. Fogli, E. Lisi, A. Palazzo, F. L. Villante, Phys. Rev. D63 (2001) 113016, arXiv:hep-ph/0102288.
[Fogli:2001nn]
[16-440]
A new fit to solar neutrino data in models with large extra dimensions, D. O. Caldwell, R. N. Mohapatra, S. J. Yellin, Phys. Rev. D64 (2001) 073001, arXiv:hep-ph/0102279.
[Caldwell:2001dj]
[16-441]
Frequentist analyses of solar neutrino data, Paolo Creminelli, Giovanni Signorelli, Alessandro Strumia, JHEP 05 (2001) 052, arXiv:hep-ph/0102234.
[Creminelli:2001ij]
[16-442]
QED corrections to the scattering of solar neutrinos and electrons, M. Passera, J. Phys. G29 (2003) 141, arXiv:hep-ph/0102212.
[Passera:2001gh]
[16-443]
Can three flavor oscillations solve the solar neutrino problem?, Helmut Schlattl, Phys. Rev. D64 (2001) 013009, arXiv:hep-ph/0102063.
[Schlattl:2001gw]
[16-444]
MSW mediated neutrino decay and the solar neutrino problem, Abhijit Bandyopadhyay, Sandhya Choubey, Srubabati Goswami, Phys. Rev. D63 (2001) 113019, arXiv:hep-ph/0101273.
[Bandyopadhyay:2001ct]
[16-445]
Solar neutrino with magnetic moments and solar field profiles, Joao Pulido, arXiv:hep-ph/0101116, 2001.
[Pulido:2001ap]
[16-446]
Status of the solution to the solar neutrino problem based on non-standard neutrino interactions, S. Bergmann, M. M. Guzzo, P. C. de Holanda, P. I. Krastev, H. Nunokawa, Nucl. Phys. Proc. Suppl. 97 (2001) 235-238.
[Bergmann:2001mt]
[16-447]
Exotic solutions to the solar neutrino anomaly, M. M. Guzzo, Braz. J. Phys. 31 (2001) 263-276.
[Guzzo:2001pk]
[16-448]
Zenith angle distributions at super-Kamiokande and SNO and the solution of the solar neutrino problem, M. C. Gonzalez-Garcia, Carlos Pena-Garay, Alexei Yu. Smirnov, Phys. Rev. D63 (2001) 113004, arXiv:hep-ph/0012313.
[Gonzalez-Garcia:2000mcm]
[16-449]
Violation of equivalence principle and solar neutrinos, A. M. Gago, H. Nunokawa, R. Zukanovich Funchal, Nucl. Phys. Proc. Suppl. 100 (2001) 68-70, arXiv:hep-ph/0012168.
[Gago:2000mw]
[16-450]
On the massless 'just-so' solution to the solar neutrino problem, M. M. Guzzo, H. Nunokawa, P. C. de Holanda, O. L. G. Peres, Phys. Rev. D64 (2001) 097301, arXiv:hep-ph/0012089.
[Guzzo:2000kx]
[16-451]
Non standard analysis of the solar neutrino anomaly, Riccardo Barbieri, Alessandro Strumia, JHEP 12 (2000) 016, arXiv:hep-ph/0011307.
[Barbieri:2000sv]
[16-452]
Resolving the solar neutrino problem with KamLAND, V. D. Barger, Danny Marfatia, Benjamin P. Wood, Phys. Lett. B498 (2001) 53-61, arXiv:hep-ph/0011251.
[Barger:2000hy]
[16-453]
Histogram analysis of GALLEX, GNO and SAGE neutrino data: Further evidence for variability of the solar neutrino flux, Peter A. Sturrock, Jeffrey D. Scargle, Astrophys. J. 550 (2001) L101-L104, arXiv:astro-ph/0011228.
[Sturrock:2000jk]
[16-454]
Limits on radiative decays of solar neutrinos from a measurement during a solar eclipse, S. Cecchini et al., Astrophys. Space Sci. 282 (2002) 235, arXiv:hep-ex/0011048.
[Cecchini:2000tv]
[16-455]
Is the LMA solar neutrino solution ruled out by SN1987A data?, David B. Cline, Nucl. Phys. Proc. Suppl. 100 (2001) 58-61, arXiv:astro-ph/0010339.
[Cline:2000gu]
[16-456]
The sign of the day-night asymmetry for solar neutrinos, Cheng-Wei Chiang, Lincoln Wolfenstein, Phys. Rev. D63 (2001) 057303, arXiv:hep-ph/0010213.
[Chiang:2000kh]
[16-457]
Three-Neutrino Analysis of the Super-Kamiokande Solar Neutrino Data, C. E. C. Lima, H. M. Portella, L. C. S. de Oliveira, arXiv:hep-ph/0010038, 2000.
[Lima:2000bx]
[16-458]
Neutrinos from SN1987A, Earth matter effects and the LMA solution of the solar neutrino problem, C. Lunardini, A. Yu. Smirnov, Phys. Rev. D63 (2001) 073009, arXiv:hep-ph/0009356.
[Lunardini:2000sw]
[16-459]
Solar neutrino results and violation of the equivalence principle: An analysis of the existing data and predictions for SNO, Debasish Majumdar, Amitava Raychaudhuri, Arunansu Sil, Phys. Rev. D63 (2001) 073014, arXiv:hep-ph/0009339.
[Majumdar:2000sd]
[16-460]
A frequentist analysis of solar neutrino data, M. V. Garzelli, C. Giunti, Astropart. Phys. 17 (2002) 205-220, arXiv:hep-ph/0007155.
[Garzelli:2000yf]
[16-461]
Reply to 'Is U(e3) really related to the solar neutrino solutions?', Evgeny K. Akhmedov, G.C. Branco, M.N. Rebelo, arXiv:hep-ph/0007029, 2000.
[Akhmedov:2000vv]
[16-462]
Is U(e3) really related to the solar neutrino solutions?, N. Haba, Tomoharu Suzuki, Mod.Phys.Lett. A15 (2000) 2257-2264, arXiv:hep-ph/0006281.
[Haba:2000xz]
[16-463]
Statistical treatment of detection cross-section uncertainties in the analysis of solar neutrino data, M. V. Garzelli, C. Giunti, Phys. Lett. B488 (2000) 339-343, arXiv:hep-ph/0006026.
[Garzelli:2000tn]
[16-464]
Quasi-vacuum solar neutrino oscillations, Gian Luigi Fogli, E. Lisi, D. Montanino, A. Palazzo, Phys. Rev. D62 (2000) 113004, arXiv:hep-ph/0005261.
[Fogli:2000bk]
[16-465]
SNO and the neutrino magnetic moment solution of the solar neutrino problem, E. K. Akhmedov, Joao Pulido, Phys. Lett. B485 (2000) 178-186, arXiv:hep-ph/0005173.
[Akhmedov:2000fj]
[16-466]
Pseudo-Dirac solar neutrinos, Yosef Nir, JHEP 06 (2000) 039, arXiv:hep-ph/0002168.
[Nir:2000xn]
[16-467]
The dark side of the solar neutrino parameter space, Andre de Gouvea, Alexander Friedland, Hitoshi Murayama, Phys. Lett. B490 (2000) 125-130, arXiv:hep-ph/0002064.
[deGouvea:2000cq]
[16-468]
MSW effects in vacuum oscillations, Alexander Friedland, Phys. Rev. Lett. 85 (2000) 936-939, arXiv:hep-ph/0002063.
[Friedland:2000cp]
[16-469]
Four-neutrino oscillation solutions of the solar neutrino problem, C. Giunti, M. C. Gonzalez-Garcia, Carlos Pena-Garay, Phys. Rev. D62 (2000) 013005, arXiv:hep-ph/0001101.
[Giunti:2000wt]
[16-470]
The status of the solar neutrino problem in the resonant spin-flavor precession scenario with twisting solar magnetic fields, S. Dev, J. D. Sharma, Mod. Phys. Lett. A15 (2000) 1445-1460.
[Dev:2000wx]
[16-471]
Another look at just-so solar neutrino oscillations, J. M. Gelb, S. P. Rosen, Found. Phys. 30 (2000) 599-606.
[Gelb:2000ud]
[16-472]
Correlative aspects of the solar electron neutrino flux and solar activity, R. M. Wilson, Astrophys. J. 545 (2000) 532-546.
[Wilson:2000dc]
[16-473]
Radon diffusion through polymer membranes used in the solar neutrino experiment Borexino, M. Wojcik, W. Wlazlo, G. Zuzel, G. Heusser, Nucl. Instrum. Meth. A449 (2000) 158-171.
[Wojcik:2000vd]
[16-474]
Three-flavor MSW solutions of the solar neutrino problem, Gian Luigi Fogli, E. Lisi, D. Montanino, A. Palazzo, Phys. Rev. D62 (2000) 013002, arXiv:hep-ph/9912231.
[Fogli:1999zg]
[16-475]
Linking solar and long baseline terrestrial neutrino experiments, E. K. Akhmedov, G. C. Branco, M. N. Rebelo, Phys. Rev. Lett. 84 (2000) 3535, arXiv:hep-ph/9912205.
[Akhmedov:1999uw]
[16-476]
Earth matter effect in Be-7 solar neutrino experiments, Andre de Gouvea, Alexander Friedland, Hitoshi Murayama, JHEP 03 (2001) 009, arXiv:hep-ph/9910286.
[deGouvea:1999xe]
[16-477]
A Mass matrix for atmospheric, solar, and LSND neutrino oscillations, James M. Gelb, Simon Peter Rosen, Phys. Rev. D62 (2000) 013003, arXiv:hep-ph/9909293.
[Gelb:1999ar]
[16-478]
Matter effects in four-neutrino mixing, David Dooling, Carlo Giunti, Kyungsik Kang, Chung W. Kim, Phys. Rev. D61 (2000) 073011, arXiv:hep-ph/9908513.
[Dooling:1999sg]
[16-479]
Comment on the broadening of the Be-7 neutrino line in vacuum oscillation solutions of the solar neutrino, James M. Gelb, Simon Peter Rosen, arXiv:hep-ph/9908325, 1999.
[Gelb:1999pv]
[16-480]
Resonance spin flavor precession and solar neutrinos, Joao Pulido, E. K. Akhmedov, Astropart. Phys. 13 (2000) 227-244, arXiv:hep-ph/9907399.
[Pulido:1999xp]
[16-481]
Neutrino magnetic moments, flavor mixing, and the Super-Kamiokande solar data, John F. Beacom, P. Vogel, Phys. Rev. Lett. 83 (1999) 5222-5225, arXiv:hep-ph/9907383.
[Beacom:1999wx]
[16-482]
Seasonal variations of the Be-7 solar neutrino flux, Andre de Gouvea, Alexander Friedland, Hitoshi Murayama, Phys. Rev. D60 (1999) 093011, arXiv:hep-ph/9904399.
[deGouvea:1999wg]
[16-483]
Rotational Signature and Possible R-Mode Signature in the GALLEX Solar Neutrino Data, P. A. Sturrock, J. D. Scargle, G. Walther, M. S. Wheatland, Astrophys. J. 523 (1999) L177, arXiv:astro-ph/9904278.
[Sturrock:1999ac]
[16-484]
Day-night and energy variations for maximal neutrino mixing angles, Alan H. Guth, Lisa Randall, Mario Serna, JHEP 08 (1999) 018, arXiv:hep-ph/9903464.
[Guth:1999pi]
[16-485]
Enhancing mechanisms of neutrino transitions in a medium of nonperiodic constant-density layers and in the earth, M. V. Chizhov, S. T. Petcov, Phys. Rev. D63 (2001) 073003, arXiv:hep-ph/9903424.
[Chizhov:1999he]
[16-486]
Coherence and the day - night asymmetry in the solar neutrino flux, Amol S. Dighe, Q. Y. Liu, Alexei \relax Yu. Smirnov, arXiv:hep-ph/9903329, 1999.
[Dighe:1999id]
[16-487]
Enhancing the seasonal variation effect in the case of the vacuum oscillation solution of the solar neutrino problem, M. Maris, S. T. Petcov, Phys. Lett. B457 (1999) 319, arXiv:hep-ph/9903303.
[Maris:1999dy]
[16-488]
Another look at 'just so' oscillations, James M. Gelb, Simon Peter Rosen, Phys. Rev. D60 (1999) 011301, arXiv:hep-ph/9809508.
[Gelb:1998cn]
[16-489]
Do hep neutrinos affect the solar neutrino energy spectrum?, John N. Bahcall, Plamen I. Krastev, Phys. Lett. B436 (1998) 243-250, arXiv:hep-ph/9807525.
[Bahcall:1998se]
[16-490]
Solar neutrino interactions: Using charged currents at SNO to tell neutral currents at Super-Kamiokande, F. L. Villante, G. Fiorentini, E. Lisi, Phys. Rev. D59 (1999) 013006, arXiv:hep-ph/9807360.
[Villante:1998pe]
[16-491]
Where do we stand with solar neutrino oscillations?, J. N. Bahcall, P. I. Krastev, A. Yu. Smirnov, Phys. Rev. D58 (1998) 096016, arXiv:hep-ph/9807216.
[Bahcall:1998jt]
[16-492]
Vacuum oscillations and variations of solar neutrino rates in Super-Kamiokande and Borexino, B. Faid, Gian Luigi Fogli, E. Lisi, D. Montanino, Astropart. Phys. 10 (1999) 93-105, arXiv:hep-ph/9805293.
[Faid:1998yb]
[16-493]
Parametric resonance of neutrino oscillations and passage of solar and atmospheric neutrinos through the earth, E. K. Akhmedov, Nucl. Phys. B538 (1999) 25-51, arXiv:hep-ph/9805272.
[Akhmedov:1998ui]
[16-494]
Diffractive-like (or parametric-resonance-like?) enhancement of the earth (day-night) effect for solar neutrinos crossing the earth core, S. T. Petcov, Phys. Lett. B434 (1998) 321-332, arXiv:hep-ph/9805262.
[Petcov:1998su]
[16-495]
A study of the solar neutrino survival probability, C. M. Bhat, P. C. Bhat, M. Paterno, H. B. Prosper, Phys. Rev. Lett. 81 (1998) 5056-5059, arXiv:astro-ph/9804252.
[Bhat:1998qq]
[16-496]
Discriminating MSW solutions to the solar neutrino problem with flux-independent information at Super-Kamiokande and SNO, Gian Luigi Fogli, E. Lisi, D. Montanino, Phys. Lett. B434 (1998) 333-339, arXiv:hep-ph/9803309.
[Fogli:1998rk]
[16-497]
Effects of neutrino oscillations and neutrino magnetic moments on elastic neutrino - electron scattering, W. Grimus, P. Stockinger, Phys. Rev. D57 (1998) 1762-1768, arXiv:hep-ph/9708279.
[Grimus:1997aa]
[16-498]
Solar neutrinos and grand unification, K. S. Babu, Q. Y. Liu, A. Yu. Smirnov, Phys. Rev. D57 (1998) 5825-5835, arXiv:hep-ph/9707457.
[Babu:1997xa]
[16-499]
Does the sun appear brighter at night in neutrinos?, John N. Bahcall, P. I. Krastev, Phys. Rev. C56 (1997) 2839-2857, arXiv:hep-ph/9706239.
[Bahcall:1997jc]
[16-500]
Three-neutrino mixing and combined vacuum oscillations and MSW transitions of solar neutrinos, Q. Y. Liu, S. T. Petcov, Phys. Rev. D56 (1997) 7392-7411, arXiv:hep-ph/9702400.
[Liu:1997dg]
[16-501]
A study of the day-night effect for the super-Kamiokande detector. I: Time averaged solar neutrino survival probability, Q. Y. Liu, M. Maris, S. T. Petcov, Phys. Rev. D56 (1997) 5991-6002, arXiv:hep-ph/9702361.
[Liu:1997bra]
[16-502]
Earth regeneration effect in solar neutrino oscillations: An analytic approach, Eligio Lisi, Daniele Montanino, Phys. Rev. D56 (1997) 1792-1803, arXiv:hep-ph/9702343.
[Lisi:1997yc]
[16-503]
Search for periodicities in the Homestake solar neutrino data, P. A. Sturrock, G. Walther, M. S. Wheatland, Astrophys. J. 491 (1997) 409-413.
[Sturrock:1997gp]
[16-504]
Searching for the MSW enhancement, James M. Gelb, Wai-kwok Kwong, Simon Peter Rosen, Phys. Rev. Lett. 78 (1997) 2296-2299, arXiv:hep-ph/9612332.
[Gelb:1996xw]
[16-505]
Constraints on energy independent solutions of the solar neutrino problem, P. I. Krastev, S. T. Petcov, Phys. Lett. B395 (1997) 69-75, arXiv:hep-ph/9612243.
[Krastev:1996hs]
[16-506]
How large is the Be-7 neutrino flux from the sun?, L. Wolfenstein, P. I. Krastev, Phys. Rev. D55 (1997) 4405-4411, arXiv:hep-ph/9610394.
[Wolfenstein:1996ry]
[16-507]
Neutrino oscillations and moments of electron spectra, John N. Bahcall, P. I. Krastev, E. Lisi, Phys. Rev. C55 (1997) 494-503, arXiv:nucl-ex/9610010.
[Bahcall:1996ha]
[16-508]
An apparent periodicity in the GALLEX, Homestake and Kamiokande neutrino data, P. A. Sturrock, G. Walther, arXiv:astro-ph/9609151, 1996.
[Sturrock:1996xa]
[16-509]
What can be learned by measuring the fluxes of the Be-7 and the p e p solar neutrino lines?, John N. Bahcall, P. I. Krastev, Phys. Rev. C55 (1997) 929-941, arXiv:astro-ph/9607013.
[Bahcall:1996ve]
[16-510]
On the MSW $\nu_e \to \nu_s$ transition solution of the solar neutrino problem, P. I. Krastev, S. T. Petcov, L. Qiuyu, Phys. Rev. D54 (1996) 7057-7066, arXiv:hep-ph/9602333.
[Krastev:1996gc]
[16-511]
Relations between the SNO and the Super-Kamiokande solar neutrino rates, Waikwok Kwong, Simon Peter Rosen, Phys. Rev. D54 (1996) 2043-2047, arXiv:hep-ph/9602295.
[Kwong:1996nn]
[16-512]
How Does the Sun Shine?, John N. Bahcall, M. Fukugita, P. I. Krastev, Phys. Lett. B374 (1996) 1-6, arXiv:astro-ph/9602065.
[Bahcall:1996pt]
[16-513]
How well do we (and will we) know solar neutrino fluxes and oscillation parameters?, J. N. Bahcall, P. I. Krastev, Phys. Rev. D53 (1996) 4211-4225, arXiv:hep-ph/9512378.
[Bahcall:1995rs]
[16-514]
On The Vacuum Oscillation Solution of The Solar Neutrino Problem, P. I. Krastev, S. T. Petcov, Phys. Rev. D53 (1996) 1665-1677, arXiv:hep-ph/9510367.
[Krastev:1995pz]
[16-515]
What can be learned with an iodine solar neutrino detector?, J. Engel, P. I. Krastev, K. Lande, Phys. Rev. C51 (1995) 2837-2840, arXiv:hep-ph/9501219.
[Engel:1995ps]
[16-516]
Standard solar model uncertainties and their correlations in the analysis of the solar neutrino problem, Gian Luigi Fogli, E. Lisi, Astropart. Phys. 3 (1995) 185-196.
[Fogli:1994nn]
[16-517]
A Method for analyzing electron spectra observed in solar neutrino experiments, Waikwok Kwong, Simon Peter Rosen, Phys. Rev. D51 (1995) 6159-6166.
[Kwong:1994xi]
[16-518]
The Solar neutrino problem and bounds on solar neutrino fluxes, W. Kwong, Simon Peter Rosen, Mod. Phys. Lett. A10 (1995) 1331-1349.
[Kwong:1995zq]
[16-519]
Neutrino oscillations in the magnetic field of the sun, supernovae, and neutron stars, G.G. Likhachev, A.I. Studenikin, J.Exp.Theor.Phys. 81 (1995) 419-425.
[Likhachev:1990ki]
[16-520]
Solar neutrino data, neutrino magnetic moments and flavor mixing, E. Kh. Akhmedov, A. Lanza, S. T. Petcov, Phys. Lett. B348 (1995) 124-132, arXiv:hep-ph/9411299.
[Akhmedov:1994ix]
[16-521]
A Model independent analysis of solar neutrino data, S. M. Bilenky, C. Giunti, arXiv:hep-ph/9407379, 1994.
[Bilenky:1994ti]
[16-522]
Semiempirical bound on the Cl-37 solar neutrino experiment, Wai-Kwok Kwong, Simon Peter Rosen, Phys. Rev. Lett. 73 (1994) 369-372, arXiv:hep-ph/9404308.
[Kwong:1994ny]
[16-523]
Implication of gallium results on the possibility of observing day - night matter oscillations at SNO, Super- Kamiokande and Borexino, A. J. Baltz, J. Weneser, Phys. Rev. D50 (1994) 5971-5979.
[Baltz:1994fn]
[16-524]
The Central temperature of the sun can be measured via the Be-7 solar neutrino line, John N. Bahcall, Phys. Rev. Lett. 71 (1993) 2369-2371, arXiv:hep-ph/9309292.
[Bahcall:1993ej]
[16-525]
Towards a model independent treatment of future solar neutrino data, S. M. Bilenky, C. Giunti, Phys. Lett. B311 (1993) 179, arXiv:hep-ph/9305257.
[Bilenky:1993ts]
[16-526]
The Earth effect in the MSW analysis of the solar neutrino experiments, Naoya Hata, Paul Langacker, Phys. Rev. D48 (1993) 2937-2940, arXiv:hep-ph/9305205.
[Hata:1993rk]
[16-527]
Pontecorvo's original oscillations revisited, E. Kh. Akhmedov, S. T. Petcov, A. Yu. Smirnov, Phys. Lett. B309 (1993) 95-102, arXiv:hep-ph/9301247.
[Akhmedov:1993ta]
[16-528]
Implications of gallium solar neutrino data for the resonant spin flavor precession scenario, E. Kh. Akhmedov, A. Lanza, S. T. Petcov, Phys. Lett. B303 (1993) 85-94, arXiv:hep-ph/9301239.
[Akhmedov:1993fv]
[16-529]
Neutrinos with mixing in twisting magnetic fields, Evgeny K. Akhmedov, S.T. Petcov, A.Yu. Smirnov, Phys. Rev. D48 (1993) 2167-2181, arXiv:hep-ph/9301211.
[Akhmedov:1993sh]
[16-530]
Recent solar neutrino observations and unconventional neutrino properties, P. I. Krastev, S. T. Petcov, Phys. Lett. B299 (1993) 99-110.
[Krastev:1993zx]
[16-531]
Implications of new GALLEX results for the MSW solution of the solar neutrino problem, James M. Gelb, Wai-kwok Kwong, Simon Peter Rosen, Phys. Rev. Lett. 69 (1992) 1864-1866, arXiv:hep-ph/9206228.
[Gelb:1992cc]
[16-532]
Oscillations of pseudo-Dirac neutrinos and the solar neutrino problem, C. Giunti, C. W. Kim, U. W. Lee, Phys. Rev. D46 (1992) 3034-3039, arXiv:hep-ph/9205214.
[Giunti:1992hk]
[16-533]
Decaying Dirac neutrinos, A. Acker, S. Pakvasa, James T. Pantaleone, Phys. Rev. D45 (1992) 1-4.
[Acker:1991ej]
[16-534]
Solar and supernova neutrino physics with Sudbury Neutrino Observatory, A. B. Balantekin, F. Loreti, Phys. Rev. D45 (1992) 1059-1065.
[Balantekin:1992dv]
[16-535]
Solutions of the solar neutrino problem, S. A. Bludman, D. C. Kennedy, P. G. Langacker, Nucl. Phys. B374 (1992) 373-391.
[Bludman:1991iq]
[16-536]
Solutions of the solar neutrino problem, S. A. Bludman, D. C. Kennedy, P. G. Langacker, Nucl. Phys. B374 (1992) 373-391.
[Bludman:1992iq]
[16-537]
Neutrino oscillations in vacuum as a possible solution of the solar neutrino problem, P. I. Krastev, S. T. Petcov, Phys. Lett. B285 (1992) 85-90.
[Krastev:1992tj]
[16-538]
Energy dependence of solar neutrino - electron scattering as a test of neutral currents, Waik-wok Kwong, Simon Peter Rosen, Phys. Rev. Lett. 68 (1992) 748-751.
[Kwong:1991pk]
[16-539]
The Solar neutrino problem and the neutrino magnetic moment, Joao Pulido, Phys.Rept. 211 (1992) 167-199.
[Pulido:1991fb]
[16-540]
Monte Carlo exploration of Mikheev-Smirnov-Wolfenstein solutions to the solar neutrino problem, X. Shi, D. N. Schramm, John N. Bahcall, Phys. Rev. Lett. 69 (1992) 717-720.
[Shi:1992aq]
[16-541]
The Solar neutrino problem: Some old solutions revisited, Andy Acker, Sandip Pakvasa, James Pantaleone, Phys. Rev. D43 (1991) 1754-1758.
[Acker:1991zj]
[16-542]
Direct tests for solar neurino mass, mixing and Majorana magnetic moment, R.S. Raghavan, A.B. Balantekin, F. Loreti, A.J. Baltz, S. Pakvasa et al., Phys. Rev. D44 (1991) 3786-3790.
[Raghavan:1991em]
[16-543]
The Geometrical phase in neutrino spin precession and the solar neutrino problem, A.Yu. Smirnov, Phys. Lett. B260 (1991) 161-164.
[Smirnov:1991ia]
[16-544]
Matter Enhanced Spin Flavor Precession of Solar Neutrinos With Transition Magnetic Moments, A.B. Balantekin, P.J. Hatchell, F. Loreti, Phys. Rev. D41 (1990) 3583.
[Balantekin:1990jg]
[16-545]
Solar model independent neutrino oscillation signals in the forthcoming solar neutrino experiments?, M. Spiro, D. Vignaud, Phys. Lett. B242 (1990) 279-284.
[Spiro:1990vi]
[16-546]
Nondynamical contributions to left-right transitions in the solar neutrino problem, Jorge Vidal, Jose Wudka, Phys. Lett. B249 (1990) 473-477.
[Vidal:1990fr]
[16-547]
Hybrid Solution of the Solar Neutrino Problem in Anticorrelation With Sunspot Activity, Hisakazu Minakata, Hiroshi Nunokawa, Phys. Rev. Lett. 63 (1989) 121.
[Minakata:1988gm]
[16-548]
The solar neutrino puzzle and the $\nu_{L}\to\nu_{R}$ conversion hypothesis, Riccardo Barbieri, G. Fiorentini, Nucl. Phys. B304 (1988) 909.
[Barbieri:1987xm]
[16-549]
$^{37}$Ar as a Calibration Source for Solar Neutrino Detectors, W. C. Haxton, Phys. Rev. C38 (1988) 2474-2477.
[Haxton:1988ee]
[16-550]
The Mixing Angles in Matter for Three Generations of Neutrinos and the Msw Mechanism, H. W. Zaglauer, K. H. Schwarzer, Z. Phys. C40 (1988) 273.
[Zaglauer:1988gz]
[16-551]
The Msw Effect in Electron - Neutrino Scattering Experiments, John N. Bahcall, J. M. Gelb, Simon Peter Rosen, Phys. Rev. D35 (1987) 2976.
[Bahcall:1986uz]
[16-552]
Magnetic moments of neutrinos: particle and astrophysical aspects, Shmuel Nussinov, Yoel Rephaeli, Phys. Rev. D36 (1987) 2278.
[Nussinov:1987zr]
[16-553]
The Msw Mechanism for Three Neutrino Generations and the Solar Neutrino Puzzle, H. W. Zaglauer, K. H. Schwarzer, Phys. Lett. B198 (1987) 556.
[Zaglauer:1987gut]
[16-554]
Mikheev-Smirnov-Wolfenstein Enhancement of Oscillations as a Possible Solution to the Solar Neutrino Problem, Simon Peter Rosen, James M. Gelb, Phys. Rev. D34 (1986) 969.
[Rosen:1986jy]
[16-555]
Direct approach to resolve the solar-neutrino problem, H. H. Chen, Phys. Rev. Lett. 55 (1985) 1534-1536.
[Chen:1985na]
[16-556]
Three neutrino oscillations and present experimental data, Vernon D. Barger, K. Whisnant, R. J. N. Phillips, Phys. Rev. D22 (1980) 1636.
[Barger:1980hs]
[16-557]
Possible indications of neutrino oscillations, Vernon D. Barger, K. Whisnant, D. Cline, R. J. N. Phillips, Phys. Lett. B93 (1980) 194.
[Barger:1980ry]
[16-558]
Proposed Solar Neutrino Experiment Using Ga-71, John N. Bahcall et al., Phys. Rev. Lett. 40 (1978) 1351-1354.
[Bahcall:1978qq]

17 - Phenomenology - Talks

[17-1]
An updated discussion of the solar abundance problem, F.L. Villante, A. Serenelli, arXiv:2004.06365, 2020. 5th International Solar Neutrino Conference.
[Villante:2019tcd]
[17-2]
Luminosity constraint and entangled solar neutrino signals, Francesco Vissani, arXiv:1808.01495, 2018. 5th International Solar Neutrino Conference, Dresden, Germany, June 2018.
[Vissani:2018vxe]
[17-3]
Probing New Physics in Low Energy Solar Neutrino Oscillation Data, Amir N. Khan, Douglas W. McKay, arXiv:1709.09961, 2017. 6th CST-MISC Joint Symposium on Particle Physics - from Space-time Dynamics to Phenomenology -, Oct. 15-16, 2016, Campus Plaza Kyoto, Kyoto, Japan.
[Khan:2017bkm]
[17-4]
Solar Neutrinos as Background to Neutrinoless Double-beta Decay Experiments, S. R. Elliott, H. Ejiri, AIP Conf.Proc. 1894 (2017) 020008, arXiv:1708.00927. MEDEX 2017.
[Elliott:2017bui]
[17-5]
Observing future Solar Flare Neutrino in Hyper-KamioKande in Japan, Korea and in IceCube, Daniele Fargion, Pietro Oliva, arXiv:1707.01987, 2017. ICRC 2017.
[Fargion:2017iqv]
[17-6]
Concerning the variability of beta-decay measurements, P.A. Sturrock, E. Fischbach, A. Parkhomov, J.D. Scargle, G. Steinitz, arXiv:1510.05996, 2015.
[Sturrock:2015wqa]
[17-7]
Peculiar seasoning in the neutrino day-night asymmetry: where and when to look for spices?, Oleg G. Kharlanov, Andrey E. Lobanov, arXiv:1510.00985, 2015. 16th Lomonosov Conference on Elementary Particle Physics (Moscow, Russia, August 22-28, 2013).
[Kharlanov:2015mca]
[17-8]
Active-Sterile Solar Neutrino Oscillation, H. Long, 2014. Padua University, 27 October 2014. http://www.pd.infn.it/~laveder/unbound/seminari/fisica-neutrino/Long_Padova_2014.pdf.
[Long-PD-2014]
[17-9]
Sterile neutrinos in the 3+s scenario and solar data, Joao Pulido, C.R. Das, PoS EPS-HEP2013 (2014) 527, arXiv:1310.0426. EPS Conference on High Energy Physics-EPS-HEP2013, 18-24 July 2013, Stockholm, Sweden.
[Pulido:2013sna]
[17-10]
The Case for a Solar Influence on Certain Nuclear Decay Rates, Peter Sturrock, Ephraim Fischbach, Daniel Javorsek II, Jere Jenkins, Robert Lee, arXiv:1301.3754, 2013. 8th Patras Workshop on Axions, WIMPs and WISPs, Chicago, July 18-22, 2012.
[Sturrock:2013pw]
[17-11]
Neutrino Solar Flare detection for a saving alert system of satellites and astronauts, Daniele Fargion, arXiv:1106.3750, 2011. ICRC2011.
[Fargion:2011pj]
[17-12]
Evidence for Time-Varying Nuclear Decay Rates: Experimental Results and Their Implications for New Physics, Ephraim Fischbach, Jere H. Jenkins, Peter A. Sturrock, arXiv:1106.1470, 2011. Rencontres de Moriond 2011: Gravitational Waves and Experimental Gravity (20-27 March 2011), La Thuile, Aosta valley, Italy.
[Fischbach:2011rm]
[17-13]
The antineutrino anomaly: implications for the solar neutrino sector, A. Palazzo, 2011. Rencontres de Moriond EW 2011, 13-20 March 2011, La Thuile, Italy. http://indico.in2p3.fr/getFile.py/access?contribId=39&sessionId=7&resId=0&materialId=slides&confId=4403.
[Palazzo2011]
[17-14]
NSI can improve LMA predictions: neutrino decay in solar matter?, Joao Pulido, C.R. Das, Nucl. Phys. Proc. Suppl. 217 (2011) 350-352, arXiv:1012.3842. NOW 2010, Neutrino Oscillation Workshop, Conca Specchiulla (Otranto, Lecce, Italy), September 4-11, 2010.
[Pulido:2010ht]
[17-15]
Lorentz violation in solar-neutrino oscillations, Jonah E. Bernhard, arXiv:1009.4717, 2010. Fifth Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, June 28-July 2, 2010.
[Bernhard:2010zb]
[17-16]
Evidence for Solar Influences on Nuclear Decay Rates, Ephraim Fischbach et al., arXiv:1007.3318, 2010. Fifth Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, June 28-July 2, 2010.
[Fischbach:2010ct]
[17-17]
Matter Effects in Solar Neutrino Active-Sterile Oscillations, Carlo Giunti, Yu-Feng Li, Prog. Part. Nucl. Phys. 64 (2010) 213-215, arXiv:0911.3934. Erice 2009 Neutrinos in Cosmology, in Astro-, Particle- and Nuclear Physics.
[Giunti:2009jf]
[17-18]
Neutrinos from CNO cycle at the present epoch of the solar neutrino research, A. Kopylov, V.Petukhov, Prog. Part. Nucl. Phys. 64 (2010) 423-425, arXiv:0910.5152. Erice School 2009 in 'Progress in Particle and Nuclear Physics'.
[Kopylov:2009id]
[17-19]
Remaining inconsistencies with solar neutrinos: can spin flavour precession provide a clue?, Joao Pulido, C R Das, Marco Picariello, J. Phys. Conf. Ser. 203 (2010) 012086, arXiv:0910.0203. TAUP 2009 (Rome).
[Pulido:2009sb]
[17-20]
Neutrino Dipole Moments and Solar Experiments, M. Picariello et al., arXiv:0907.0637, 2009. 44th Rencontres de Moriond in the Electroweak 09.
[Picariello:2009yv]
[17-21]
SNO, KamLAND and neutrino oscillations: theta(13), G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo, A.M. Rotunno, arXiv:0905.3549, 2009. NEUTEL 2009, XIII International Workshop on 'Neutrino Telescopes' (Venice, Italy, March 10-13, 2009).
[Fogli:2009ce]
[17-22]
Three-flavour neutrino oscillation update and comments on possible hints for a non-zero $\theta_{13}$, Michele Maltoni, Thomas Schwetz, PoS IDM2008 (2008) 072, arXiv:0812.3161. IDM2008, Aug. 18-22, 2008, Stockholm, Sweden.
[Maltoni:2008ka]
[17-23]
Solar Neutrinos as Background in Direct Dark Matter Searches, J. D. Vergados, I. Giomataris, AIP Conf. Proc. 1115 (2009) 7-12, arXiv:0809.0785. DSU.
[Vergados:2008yf]
[17-24]
Analytical description of the Day-Night neutrino asymmetry, A. D. Supanitsky, J. C. D'Olivo, G. A. Medina-Tanco, arXiv:0708.0629, 2007. 30th International Cosmic Ray Conference, Merida, Mexico, July 2007.
[Supanitsky:2007ks]
[17-25]
SNO and solar neutrino results, J. Maneira, Nucl. Phys. Proc. Suppl. 168 (2007) 84-89.
[Maneira:2007zz]
[17-26]
MSW Oscillations - LMA and Subdominant Effects, Alexander Friedland, Nucl. Phys. Proc. Suppl. 221 (2011) 79-84, arXiv:hep-ph/0612266. Neutrino 2006.
[Friedland:2006xj]
[17-27]
Gallium data variability and KamLAND, Joao Pulido, Bhag Chauhan, Marco Picariello, Nucl. Phys. Proc. Suppl. 168 (2007) 137-139, arXiv:hep-ph/0611331. NOW2006, Sep.9-16, Otranto, Italy.
[Pulido:2006yn]
[17-28]
On the Mass Eigenstate Purity of $B^8$ Solar Neutrinos, Stephen Parke, Hiroshi Nunokawa, Renata Zukanovich Funchal, AIP Conf. Proc. 842 (2006) 889-891, arXiv:hep-ph/0601208. PANIC 2005.
[Parke:2006yu]
[17-29]
On solar neutrino fluxes in radiochemical experiments, R. N. Ikhsanov, Yu. N. Gnedin, E. V. Miletsky, arXiv:hep-ph/0512094, 2005. 9th International Pulkovo Conference on Solar Physics, Saint-Petersburg, Russia, July 4-9, 2005.
[Ikhsanov:2005yn]
[17-30]
Solar Neutrinos: Spin Flavour Precession and LMA, Joao Pulido, B. C. Chauhan, R. S. Raghavan, arXiv:hep-ph/0511341, 2005. 12th Lomonosov Conference in Elementary Particle Physics, Moscow, Aug 24-31 (2005).
[Pulido:2005pt]
[17-31]
The measurement of theta(13) and delta: The role of the uncertainties on the solar and atmospheric parameters, D. Meloni, Nucl. Phys. Proc. Suppl. 155 (2006) 178, arXiv:hep-ph/0509370. NUFACT'05, 21-26 June 2005, Frascati.
[Meloni:2005mv]
[17-32]
Global Analysis of Neutrino Oscillation, Srubabati Goswami, Abhijit Bandyopadhyay, Sandhya Choubey, Nucl. Phys. Proc. Suppl. 143 (2005) 121, arXiv:hep-ph/0409224. 21st International Conference on Neutrino Physics and Astrophysics (Neutrino 2004), Paris, France, 14-19 June 2004.
[Goswami:2004ya]
[17-33]
Discovering Tau and Muon Solar Neutrino Flares above backgrounds, D. Fargion, F. Moscato, arXiv:astro-ph/0407211, 2004. Noon 2004, Februry 2004.
[Fargion:2004td]
[17-34]
Efficient solar anti-neutrino production in random magnetic fields, O. G. Miranda, T. I. Rashba, A. I. Rez, J. W. F. Valle, PoS AHEP2003 (2003) AHEP2003/072, arXiv:hep-ph/0405107. International Workshop on Astroparticle and High Energy Physics (AHEP-2003), Valencia, Spain, 14-18 October 2003.
[Miranda:2003ozy]
[17-35]
Problem of neutrino handedness in weak interactions, S. Ciechanowicz, W. Sobkow, M. Misiaszek, Acta Phys. Polon. B35 (2004) 1961, arXiv:astro-ph/0405066. Epiphany Conference on Astroparticle Physics, 8-11 January 2004, Cracow, Poland.
[Ciechanowicz:2004kj]
[17-36]
Muon and Tau Neutrinos Spectra from Solar Flares, D. Fargion, F. Moscato, Chin. J. Astron. Astrophys. 3 (2003) S75, arXiv:astro-ph/0405039. Vulcano Conference 2003.
[Fargion:2003vzi]
[17-37]
Constraining neutrino magnetic moment with solar and reactor neutrino data, M. A. Tortola, PoS AHEP2003 (2003) 022, arXiv:hep-ph/0401135. International Workshop on Astroparticle and High Energy Physics (AHEP-2003), Valencia, Spain, 14-18 October 2003.
[Tortola:2003rql]
[17-38]
Constraints on neutrino mixing parameters with the SNO data, Alain Bellerive (SNO), ECONF C030908 (2003) TUIT003, arXiv:hep-ex/0401018. PHYSTAT2003, SLAC, Stanford, Ca, USA, 8-11 Sep 2003. http://www.slac.stanford.edu/econf/C030908/papers/TUIT003.pdf.
[Bellerive:2003mmz]
[17-39]
What can we learn on solar models from future solar neutrino experiments?, C. Pena-Garay, 2004. Neutrino 2004, 13-19 June 2004, Paris, France. http://neutrino2004.in2p3.fr/slides/monday/pena-garay.ppt.
[Pena-Garay-Nu2004]
[17-40]
Physics Potential of Solar Neutrino Experiments, A.B. Balantekin, H. Yuksel, Nucl. Phys. Proc. Suppl. 138 (2005) 347, arXiv:hep-ph/0312281. TAUP 2003, 8th Int. Workshop on Topics in Astroparticle and Underground Physics, September 5 - 9, 2003 University of Washington, Seattle, Washington USA.
[Balantekin:2003in]
[17-41]
Solar Neutrino Oscillation Parameters after KamLAND, Srubabati Goswami, Abhijit Bandyopadhyay, Sandhya Choubey, Phys. Atom. Nucl. 67 (2004) 1076, arXiv:hep-ph/0312028. 4th International Conference on Nonaccelerator New Physics (NANP 03), Dubna, Russia, 23-28 June 2003.
[Goswami:2003dh]
[17-42]
Neutrino transition magnetic moments and the solar magnetic field from the Kamland evidence, V.Antonelli et al., arXiv:hep-ph/0310262, 2003. TAUP 2003.
[Antonelli:2003za]
[17-43]
Neutrino Oscillations: A Global Analysis, G.L. Fogli et al., eConf C030626 (2003) THAT05, arXiv:hep-ph/0310012. XXIII Physics in Collisions Conference (PIC03), Zeuthen, Germany, June 2003.
[Fogli:2003kp]
[17-44]
KamLAND and Solar Antineutrino Spectrum, Bhag C. Chauhan, Joao Pulido, E. Torrente-Lujan, Phys. Atom. Nucl. 67 (2004) 1151, arXiv:hep-ph/0309068. NANP'03, JINR Dubna, Russia, June 2003.
[Chauhan:2003ja]
[17-45]
Solar Neutrino Experiments: An Overview, Srubabati Goswami, Proc.Indian Natl.Acad.Sci. (2003), arXiv:hep-ph/0303075. Indian National Academy of Sciences, on Neutrino Physics.
[Goswami:2003bh]
[17-46]
Magnus Expansion and Three-Neutrino Oscillations in Matter, Alexis A. Aguilar-Arevalo, L. G. Cabral-Rosetti, J. C. D'Olivo, J. Phys. Conf. Ser. 37 (2006) 161, arXiv:hep-ph/0302017. Mexican School of Astrophysics (EMA), Guanajuato, Mexico, July 31 - August 7, 2002.
[Aguilar-Arevalo:2003hty]
[17-47]
Solar neutrino problem and KamLAND, S. Goswami, 2003. IV International conference on non-accelerator new physics - NANP 2003 - Dubna, Russia, June 23-28, 2003. http://nanp.dubna.ru/talks/goswami.pdf.
[Goswami:Nanp03]
[17-48]
Solar and reactor neutrino analysis: Results and desiderata, E. Lisi, 2003. 4th Workshop on 'Neutrino Oscillations and their Origin' (NOON2003), February 10-14, 2003, Ishikawa Kousei Nenkin Kaikan, Kanazawa, Japan. http://www-sk.icrr.u-tokyo.ac.jp/noon2003/transparencies/10/Lisi.pdf.
[Lisi:NOON2003]
[17-49]
Neutrino Oscillations: Global Fits, T. Schwetz, 2003. MPI-TUM Ringberg Workshop on Neutrinos and Astroparticle Physics, July 24-25, 2003, Ringberg Castle, Tegernsee, Germany. http://www1.physik.tu-muenchen.de/~sfb375/Server/ringberg_2003/schwetz.pdf.
[Schwetz:MPI2003]
[17-50]
After Sno and Before Kamland: Present and Future of Solar and Reactor Neutrino Physics, P. Aliani et al., Aip Conf. Proc. 655 (2003) 103, arXiv:hep-ph/0211062. Third Tropical Workshop on Particle Physics and Cosmology: Neutrinos, Branes and Cosmology (Puerto Rico, August 2002).
[Aliani:2002sv]
[17-51]
Standard and Non-Standard Physics in Neutrino Oscillations, M. Maltoni, Nucl. Phys. Proc. Suppl. 114 (2003) 191-196, arXiv:hep-ph/0210111. XXX International Meeting on Fundamental Physics (Jaca, Spain, 28/01-1/02/2002).
[Maltoni:2002kq]
[17-52]
Solar Neutrinos: Interpretation of Results, A. Smirnov, Nucl. Phys. Proc. Suppl. 118 (2003) 87, arXiv:hep-ph/0209131. XXth International Conference on Neutrino Physics and Astrophysics May 25 - 30, 2002, Munich, Germany. http://neutrino2002.ph.tum.de/pages/transparencies/smirnov.
[Smirnov:2002in]
[17-53]
Standard and non-standard neutrino properties, J. W. F. Valle, Nucl. Phys. Proc. Suppl. 118 (2003) 255, arXiv:hep-ph/0209047. XXth International Conference on Neutrino Physics and Astrophysics May 25 - 30, 2002, Munich, Germany. http://neutrino2002.ph.tum.de/pages/transparencies/valle.
[Valle:2002tm]
[17-54]
The solar neutrino puzzle: present situation and future scenarios, E.Torrente-Lujan P. Aliani, V.Antonelli, R. Ferrari, M.Picariello, arXiv:hep-ph/0206308, 2002. Les Rencontres de Physique de la Vallee d'Aoste, February 2002.
[Aliani:2002er]
[17-55]
Solving the solar neutrino problem with kamLAND and BOREXINO, P. Aliani, V. Antonelli, R. Ferrari, M. Picariello, E. Torrente-Lujan, arXiv:hep-ph/0205061, 2002. 37th Rencontres de Moriond on Electroweak Interactions and Unified Theories, Les Arcs, France, 9-16 Mar 2002.
[Aliani:2002rv]
[17-56]
Analysis of solar neutrino induced double beta processes for several nuclei, P. Domin S. V. Semenov, Yu. V. Gaponov, F. Simkovic, Phys. Atom. Nucl. 65 (2002) 2184, arXiv:hep-ph/0205003. International Workhop on Non-Accelerator New Physics (NANP'01), Dubna, Russia, June 2001.
[Semenov:2002pt]
[17-57]
Status of the Borexino experiment, Tristan J. Beau, arXiv:hep-ex/0204035, 2002. Rencontres de Moriond conference, Electroweak and Unified Theories session, 2002.
[Beau:2002hn]
[17-58]
A Unique Oscillation Solution to the Solar Neutrino Problem?, M. B. Smy, arXiv:hep-ex/0202020, 2002. NOON 2001 workshop.
[Smy:2002fs]
[17-59]
Neutrino oscillations - global analyses, E. Lisi, 2002. XXth International Conference on Neutrino Physics and Astrophysics May 25 - 30, 2002, Munich, Germany. http://neutrino2002.ph.tum.de/pages/transparencies/lisi.
[Lisi-Nu2002]
[17-60]
After the SNO NC result, C. Pena-Garay, 2002. Muon Week at CERN, 12 june 2002. http://muonstoragerings.web.cern.ch/muonstoragerings/Events/20020610/pena.pdf.
[Pena-CERN-02-12-06]
[17-61]
A Place in the Sun for Neutrinos, H. Robertson (SNO), 2002. 18th International Workshop on Weak Interactions and Neutrinos, WIN 2002, Christchurch, New Zealand, January 21 - 26, 2002. http://www.anta.canterbury.ac.nz/neutrino/overheads/H_Robertson.pdf.
[Robertson-WIN2002]
[17-62]
Recent Progress in Neutrino Astrophysics, Steen Hannestad, arXiv:hep-ph/0112167, 2001.
[Hannestad:2001ib]
[17-63]
Solar neutrino experiments and Borexino perspectives, P. Aliani, V. Antonelli, M. Picariello, E. Torrente-Lujan, Nucl. Phys. Proc. Suppl. 110 (2002) 361-363, arXiv:hep-ph/0112101. TAUP 2001.
[Aliani:2001ba]
[17-64]
Solar neutrino results from the Sudbury Neutrino Observatory, Joshua R. Klein (SNO), Int. J. Mod. Phys. A17 (2002) 3378-3392, arXiv:hep-ex/0111040.
[Klein:2001qs]
[17-65]
Update on solar and atmospheric four-neutrino oscillations, M. C. Gonzalez-Garcia, M. Maltoni, Carlos Pena-Garay, PoS HEP2001 (2001) hep2001/191, arXiv:hep-ph/0108073.
[Gonzalez-Garcia:2001gyi]
[17-66]
Solar Neutrino Results from Super-Kamiokande, M. B. Smy (Super-Kamiokande), arXiv:hep-ex/0106064, 2001. XXXVI th Rencontres de Moriond 'Electroweak Interactions and Unified Theories', Les Arcs, France, 10-17 Mar 2001.
[Smy:2001wf]
[17-67]
A new fit to solar neutrinos using extra dimensions, David O. Caldwell, arXiv:hep-ph/0105275, 2001.
[Caldwell:2001bs]
[17-68]
Statistical analysis of solar neutrino data, M. V. Garzelli, C. Giunti, arXiv:hep-ph/0104085, 2001. 5th Topical Workshop at the Gran Sasso Laboratory: Solar Neutrinos: Where are the Oscillations?, Gran Sasso, Italy, 12-14 Mar 2001.
[Garzelli:2001zv]
[17-69]
Testing large mixing MSW solutions of the solar neutrino problem through earth regeneration effects, Antonio Palazzo, Nucl. Phys. Proc. Suppl. 100 (2001) 55-57, arXiv:hep-ph/0103027.
[Palazzo:2000ky]
[17-70]
Solar neutrino oscillations in the quasi-vacuum regime, Daniele Montanino, Nucl. Phys. Proc. Suppl. 100 (2001) 51-54, arXiv:hep-ph/0102076.
[Montanino:2000it]
[17-71]
Solar neutrino problem accounting for self-consistent magnetohydrodynamics solution for solar magnetic fields, T. I. Rashba, O. G. Miranda, Carlos Pena-Garay, V. B. Semikoz, J. W. F. Valle, Nucl. Phys. Proc. Suppl. 95 (2001) 123-129, arXiv:hep-ph/0101207.
[Rashba:2000sr]
[17-72]
Neutrinos, large extra dimensions and solar neutrino puzzle, D. O. Caldwell, R. N. Mohapatra, S. J. Yellin, arXiv:hep-ph/0101043, 2001.
[Caldwell:2000gk]
[17-73]
Solar neutrino results from SAGE, V. N. Gavrin (SAGE), Nucl. Phys. Proc. Suppl. 91 (2001) 36-43.
[Gavrin:2001sz]
[17-74]
Updated solution to the solar neutrino problem based on non-standard neutrino interactions, M. M. Guzzo, P. C. de Holanda, H. Nunokawa, Nucl. Phys. Proc. Suppl. 100 (2001) 62-64.
[Guzzo:2001zn]
[17-75]
Solutions to the solar neutrino problem, P. Krastev, Nucl. Phys. Proc. Suppl. 100 (2001) 83-86.
[Krastev:2001zr]
[17-76]
Solar neutrinos and gravity, T. K. Kuo, Nucl. Phys. Proc. Suppl. 100 (2001) 65-67.
[Kuo:2001zp]
[17-77]
Solar Neutrinos, A.B. McDonald, 2001. TAUP2001 - Topics in Astroparticle and Underground Physics, LNGS, Italy (September 8-12, 2001). http://taup2001.lngs.infn.it/f2/f2.pdf.
[McDonald-TAUP2001]
[17-78]
Experiments with Solar and Atmospheric Neutrinos: Evidence for Neutrino Masses and Lepton Mixing. Experimental status and Future Projects, S. Schoenert, 2001. Astroparticle Physics Workshop, DESY - Zeuten, 19-21 June 2001. http://www.desy.de/desy-hs/zeuthen2001/presentations/main/schoenert.pdf.
[Schoenert-DESY2001]
[17-79]
Solar Neutrino Results from Super-Kamiokande, Y. Suzuki, Nucl. Phys. Proc. Suppl. 91 (2001) 29-35.
[Suzuki:2000xw]
[17-80]
Solar neutrino results (from radio-chemical and water Cherenkov detectors), Y. Suzuki, Nucl. Phys. Proc. Suppl. 100 (2001) 14-23.
[Suzuki:2001kf]
[17-81]
Statistical analysis of solar neutrino data, M. V. Garzelli, C. Giunti, Nucl. Phys. Proc. Suppl. 100 (2001) 77-79, arXiv:hep-ph/0012247. Europhysics Neutrino Oscillation Workshop (NOW 2000), Conca Specchiulla, Otranto, Lecce, Ita, 9-16 Sep 2000.
[Garzelli:2000gz]
[17-82]
Helioseismology and solar neutrinos: An update, G. Fiorentini, B. Ricci, F. L. Villante, Nucl. Phys. Proc. Suppl. 95 (2001) 116-122, arXiv:astro-ph/0012239.
[Fiorentini:2000eg]
[17-83]
Neutrino magnetic moment solution for the solar neutrino problem and the SNO experiment, Joao Pulido, Nucl. Phys. Proc. Suppl. 100 (2001) 71-73, arXiv:hep-ph/0012059. Europhysics Neutrino Oscillation Workshop (NOW 2000), Conca Specchiulla, Otranto, Lecce, Ita, 9-16 Sep 2000.
[Pulido:2000gb]
[17-84]
A frequentist analysis of solar neutrino data, M. V. Garzelli, C. Giunti, Nucl. Phys. Proc. Suppl. 95 (2001) 146-149, arXiv:hep-ph/0012044. EURESCO Conference on Frontiers in Particle Astrophysics and Cosmology, San Feliu de Guixols, Spain, 30 Sep - 5 Oct 2000.
[Garzelli:2000fk]
[17-85]
Elastic $\nu-e^-$ scattering of solar neutrinos with electromagnetic moments, W. Grimus, T. Schwetz, Nucl. Phys. Proc. Suppl. 95 (2001) 169-172, arXiv:hep-ph/0011169.
[Grimus:2000ia]
[17-86]
Solar and atmospheric neutrino oscillations, M. C. Gonzalez-Garcia, Phys. Scripta T93 (2001) 26-31, arXiv:hep-ph/0010136.
[Gonzalez-Garcia:2000vyl]
[17-87]
Experimental results on neutrino oscillations using atmospheric, solar and accelerator beams, D. Kielczewska (Super-Kamiokande and K2K), Acta Phys. Polon. B31 (2000) 1181-1207.
[Kielczewska:2000ru]
[17-88]
Pseudo-Dirac scenario for neutrino oscillations, C. S. Lim, 2000. Workshop on Neutrino Oscillations and Their Origin, Fujiyoshida, Japan, 11-13 Feb 2000.
[Lim:2000sr]
[17-89]
Mixed MSW and vacuum solutions of solar neutrino problem, Q. Y. Liu, arXiv:hep-ph/9708308, 1997. 4th International Solar Neutrino Conference, Heidelberg, Germany, 8-11 Apr 1997.
[Liu:1997gu]
[17-90]
The Neutrino magnetic moment and time variations of the solar neutrino flux, Evgeny K. Akhmedov, arXiv:hep-ph/9705451, 1997.
[Akhmedov:1997yv]
[17-91]
A Model independent approach to future solar neutrino experiments, S. M. Bilenky, C. Giunti, arXiv:hep-ph/9501241, 1995. Proceedings of the $4^{\mathrm{th}}$ \textit{International Conference on Physics Beyond the Standard Model}, Lake Tahoe, California, 13-18 Dec 1994, pag. 567-569.
[Bilenky:1994vw]
[17-92]
A Model independent analysis of solar neutrino data, S. M. Bilenky, C. Giunti, Nucl. Phys. Proc. Suppl. 43 (1994) 71-74, arXiv:hep-ph/9412296.
[Bilenky:1994nb]
[17-93]
A Model independent approach to solar neutrino experiments, S. M. Bilenky, C. Giunti, arXiv:hep-ph/9411373, 1994. Proceedings of the \textit{The First Artic Workshop on Future Physics and Accelerators}, Saariselka, Finland, 21-26 Aug 1994, pag. 170-192.
[Bilenky:1994yi]
[17-94]
Future solar neutrino experiments and neutrino spin flavor precession, S. M. Bilenky, C. Giunti, arXiv:hep-ph/9312211, 1993. Proceedings of the $6^{\mathrm{th}}$ \textit{International Workshop on Neutrino Telescopes}, Venezia, 22-24 February 1994, pag. 293-301.
[Bilenky:1993rh]
[17-95]
Neutrino mixing and future solar neutrino experiments, S. M. Bilenky, C. Giunti, Nucl. Phys. Proc. Suppl. 35 (1994) 430-432, arXiv:hep-ph/9310352.
[Bilenky:1993yq]
[17-96]
Pseudo-Dirac neutrinos and the solar neutrino problem, C. W. Kim, 1992. 4th International Symposium on Neutrino Telescopes, Venice, Italy, 10-13 Mar 1992.
[Kim:1992gb]
[17-97]
Pseudo-Dirac neutrinos and the solar neutrino problem, Hisakazu Minakata, Hiroshi Nunokawa, Phys. Rev. D45 (1992) 3316-3320.
[Minakata:1991wp]
[17-98]
Pseudo-Dirac solar neutrinos?, Utpal Sarkar, Phys. Rev. D35 (1987) 1528.
[Sarkar:1986rf]
[17-99]
The solar neutrino puzzle, the Mikheev-Smirnov-Wolfenstein mechanism and the pseudo-Dirac neutrino, S. Toshev, Phys. Lett. B180 (1986) 285-289.
[Toshev:1986yp]

18 - Phenomenology - Background

[18-1]
Measuring the Cosmic Ray Muon-Induced Fast Neutron Spectrum by (n,p) Isotope Production Reactions in Underground Detectors, Cristiano Galbiati, John. F. Beacom, Phys. Rev. C72 (2005) 025807, arXiv:hep-ph/0504227.
[Galbiati:2005ft]

19 - Phenomenology - Dark Matter

[19-1]
Dark matter bound-state formation in the Sun, Xiaoyong Chu, Raghuveer Garani, Camilo Garcia-Cely, Thomas Hambye, arXiv:2402.18535, 2024.
[Chu:2024gpe]
[19-2]
Linking solar bosonic dark matter halos and active neutrinos, Ilidio Lopes, Phys. Rev. D 108 (2023) 083028, arXiv:2310.14033.
[Lopes:2023vxn]
[19-3]
Neutrino constraints on inelastic dark matter captured in the Sun, Bhavesh Chauhan, Mary Hall Reno, Carsten Rott, Ina Sarcevic, JCAP 01 (2024) 030, arXiv:2308.16134.
[Chauhan:2023zuf]
[19-4]
Neutrinos from the Sun can discover dark matter-electron scattering, Tarak Nath Maity, Akash Kumar Saha, Sagnik Mondal, Ranjan Laha, arXiv:2308.12336, 2023.
[Maity:2023rez]
[19-5]
A Global Fit of Non-Relativistic Effective Dark Matter Operators Including Solar Neutrinos, 2023.
[AvisKozar:2023iyb]
[19-6]
KM3NeT upper bounds of detection rates of solar neutrinos from annihilations of dark matter at the solar core, Aman Gupta, Debasish Majumdar, Ashadul Halder, Mod.Phys.Lett.A 37 (2022) 2250233, arXiv:2203.13697.
[Gupta:2022lws]
[19-7]
Detecting Beyond the Standard Model Interactions of Solar Neutrinos in Low-Threshold Dark Matter Detectors, Thomas Schwemberger, Tien-Tien Yu, Phys.Rev.D 106 (2022) 015002, arXiv:2202.01254.
[Schwemberger:2022fjl]
[19-8]
Solar Active-Sterile Neutrino Conversion with Atomic Effects at Dark Matter Direct Detection Experiments, Shao-Feng Ge, Pedro Pasquini, Jie Sheng, JHEP 05 (2022) 088, arXiv:2112.05560.
[Ge:2021snv]
[19-9]
The Sun: Light Dark Matter and Sterile Neutrinos, Ilidio Lopes, Astrophys.J. 905 (2020) 22, arXiv:2101.00210.
[Lopes:2020hem]
[19-10]
Dark matter imprint on $^8$B neutrino spectrum, Ilidio Lopes, Joseph Silk, Phys.Rev. D99 (2019) 023008, arXiv:1812.07426.
[Lopes:2018wgp]
[19-11]
The Sterile-Active Neutrino Flavor Model: the Imprint of Dark Matter on the Electron Neutrino Spectra, Ilidio Lopes, Astrophys.J. 869 (2018) 112, arXiv:1812.07182.
[Lopes:2018ojq]
[19-12]
CNO Solar Neutrinos in Next-Generation Dark Matter Experiments, Jayden L. Newstead, Louis E. Strigari, Rafael F. Lang, Phys.Rev. D99 (2019) 043006, arXiv:1807.07169.
[Newstead:2018muu]
[19-13]
Solar Neutrinos as a Signal and Background in Direct-Detection Experiments Searching for Sub-GeV Dark Matter With Electron Recoils, Rouven Essig, Mukul Sholapurkar, Tien-Tien Yu, Phys.Rev.D 97 (2018) 095029, arXiv:1801.10159.
[Essig:2018tss]
[19-14]
Non-standard interactions of solar neutrinos in dark matter experiments, Bhaskar Dutta, Shu Liao, Louis E. Strigari, Joel W. Walker, Phys.Lett. B773 (2017) 242-246, arXiv:1705.00661.
[Dutta:2017nht]
[19-15]
Solar Atmospheric Neutrinos: A New Neutrino Floor for Dark Matter Searches, Kenny C. Y. Ng, John F. Beacom, Annika H. G. Peter, Carsten Rott, Phys.Rev. D96 (2017) 103006, arXiv:1703.10280.
[Ng:2017aur]
[19-16]
Solar Atmospheric Neutrinos and the Sensitivity Floor for Solar Dark Matter Annihilation Searches, C.A. Arguelles, G. de Wasseige, A. Fedynitch, B.J.P. Jones, JCAP 1707 (2017) 024, arXiv:1703.07798.
[Arguelles:2017eao]
[19-17]
Detection of sub-GeV Dark Matter and Solar Neutrinos via Chemical-Bond Breaking, Rouven Essig, Jeremy Mardon, Oren Slone, Tomer Volansky, Phys.Rev. D95 (2017) 056011, arXiv:1608.02940.
[Essig:2016crl]
[19-18]
Solar neutrinos as background in dark matter searches involving electron detection, A. Thomas, J.D. Vergados, J. Phys. G43 (2016) 07LT01, arXiv:1605.08008.
[Thomas:2016ahe]
[19-19]
Physics from solar neutrinos in dark matter direct detection experiments, David G. Cerdeno et al., JHEP 1605 (2016) 118, arXiv:1604.01025.
[Cerdeno:2016sfi]
[19-20]
Electron events from the scattering with solar neutrinos in the search of keV scale sterile neutrino dark matter, Wei Liao, Xiao-Hong Wu, Hang Zhou, Phys. Rev. D89 (2014) 093017, arXiv:1311.6075.
[Liao:2013jwa]
[19-21]
Solar constraints on asymmetric dark matter, Ilidio Lopes, Joseph Silk, Astrophys. J. 757 (2012) 130, arXiv:1209.3631.
[Lopes:2012af]
[19-22]
Exploring nu signals in dark matter detectors, Roni Harnik, Joachim Kopp, Pedro A. N. Machado, J. Phys. Conf. Ser. JCAP07 (2014) 026, arXiv:1202.6073.
[Kopp:2012dz]
[19-23]
Neutrinos from WIMP annihilation in the Sun : Implications of a self-consistent model of the Milky Way's dark matter halo, Susmita Kundu, Pijushpani Bhattacharjee, Phys. Rev. D85 (2012) 123533, arXiv:1106.5711.
[Kundu:2011ek]
[19-24]
Solar and Atmospheric Neutrinos: Limitations for Direct Dark Matter Searches, A. Gutlein et al., Nucl. Phys.B, Proc.Suppl.229-232 2012 (2012) 536, arXiv:1009.3815.
[Gutlein:2010ba]
[19-25]
Effect of low mass dark matter particles on the Sun, Marco Taoso, Fabio Iocco, Georges Meynet, Gianfranco Bertone, Patrick Eggenberger, Phys. Rev. D82 (2010) 083509, arXiv:1005.5711.
[Taoso:2010tg]
[19-26]
Solar and atmospheric neutrinos: background sources for the direct dark matter search, A. Gutlein et al., Astropart. Phys. 34 (2010) 90-96, arXiv:1003.5530.
[Gutlein:2010tq]
[19-27]
Can Solar Neutrinos be a Serious Background in Direct Dark Matter Searches?, J. D. Vergados, H. Ejiri, Nucl. Phys. B804 (2008) 144-159, arXiv:0805.2583.
[Vergados:2008jp]
[19-28]
Neutrino Backgrounds to Dark Matter Searches, Jocelyn Monroe, Peter Fisher, Phys. Rev. D76 (2007) 033007, arXiv:0706.3019.
[Monroe:2007xp]

20 - Theory

[20-1]
Analytical description of quasivacuum oscillations of solar neutrinos, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, S. T. Petcov, Phys. Rev. D63 (2001) 093002, arXiv:hep-ph/0011306.
[Lisi:2000su]
[20-2]
On the evolution of the neutrino state inside the sun, Alexander Friedland, Phys. Rev. D64 (2001) 013008, arXiv:hep-ph/0010231.
[Friedland:2000rn]
[20-3]
Solar neutrinos and the MSW effect for three neutrino mixing, X. Shi, David N. Schramm, Phys. Lett. B283 (1992) 305-312.
Comment: Three-neutrino MSW effect with one dominant $\Delta{m}^2$. (C.G.).
[Shi:1992zw]
[20-4]
Oscillation-assisted resonance spin-flavor precession and time variations of the solar neutrino flux, E. Kh. Akhmedov, Phys. Lett. B257 (1991) 163-167.
[Akhmedov:1991nt]
[20-5]
Anti-neutrinos from the sun, E. Kh. Akhmedov, Phys. Lett. B255 (1991) 84-88.
[Akhmedov:1991uk]
[20-6]
Solar weak currents, neutrino oscillations and time variations, W. C. Haxton, W. M. Zhang, Phys. Rev. D43 (1991) 2484-2494.
[Haxton:1990qb]
[20-7]
Resonant spin flavor precession of neutrinos and the solar neutrino problem, E. Kh. Akhmedov, O. V. Bychuk, Sov. Phys. JETP 68 (1989) 250-257.
[Akhmedov:1989ds]
[20-8]
Resonance enchancement of the neutrino spin precession in matter and the solar neutrino problem, E. Kh. Akhmedov, Sov. J. Nucl. Phys. 48 (1988) 382-383.
[Akhmedov:1988nc]
[20-9]
Resonant amplification of neutrino spin rotation in matter and the solar-neutrino problem, E. Kh. Akhmedov, Phys. Lett. B213 (1988) 64.
[Akhmedov:1988uk]
[20-10]
Resonant spin-flavor precession of solar and supernova neutrinos, Chong-Sa Lim, William J. Marciano, Phys. Rev. D37 (1988) 1368.
[Lim:1987tk]
[20-11]
Effect of transmission through the earth on neutrino oscillations, A. J. Baltz, J. Weneser, Phys. Rev. D35 (1987) 528.
[Baltz:1987hn]
[20-12]
Neutrino oscillations and the solar neutrino problem, A. Dar, A. Mann, Y. Melina, D. Zajfman, Phys. Rev. D35 (1987) 3607.
[Dar:1987pj]
[20-13]
Analytic treatments of matter enhanced solar neutrino oscillations, W. C. Haxton, Phys. Rev. D35 (1987) 2352.
[Haxton:1987bc]
[20-14]
Nonadiabatic resonant conversion of solar neutrinos in three generations, C. W. Kim, S. Nussinov, W. K. Sze, Phys. Lett. B184 (1987) 403.
[Kim:1986wg]
[20-15]
Three neutrino oscillations and the solar neutrino experiments, T. K. Kuo, James Pantaleone, Phys. Rev. D35 (1987) 3432.
[Kuo:1987zx]
[20-16]
Possible explanation of the solar-neutrino puzzle, H. A. Bethe, Phys. Rev. Lett. 56 (1986) 1305.
[Bethe:1986ej]
[20-17]
Matter effects for solar neutrino oscillations, J. Bouchez et al., Z. Phys. C32 (1986) 499.
[Bouchez:1986kb]
[20-18]
MSW regeneration of solar electron-neutrino in the earth, M. Cribier, W. Hampel, J. Rich, D. Vignaud, Phys. Lett. B182 (1986) 89.
[Cribier:1986ak]
[20-19]
Adiabatic conversion of solar neutrinos, W. C. Haxton, Phys. Rev. Lett. 57 (1986) 1271-1274.
[Haxton:1986dm]
[20-20]
The solar neutrino problem and three neutrino oscillations, T. K. Kuo, James Pantaleone, Phys. Rev. Lett. 57 (1986) 1805-1808.
[Kuo:1986sk]
[20-21]
Resonant amplification of neutrino oscillations in matter and solar neutrino spectroscopy, S. P. Mikheev, A. Yu. Smirnov, Nuovo Cim. C9 (1986) 17-26.
[Mikheev:1986wj]
[20-22]
Electromagnetic properties of neutrino and possible semiannual variation cycle of the solar neutrino flux, L. B. Okun, M. B. Voloshin, M. I. Vysotsky, Sov. J. Nucl. Phys. 44 (1986) 440.
[Okun:1986hi]
[20-23]
Neutrino electrodynamics and possible consequences for solar neutrinos, L. B. Okun, M. B. Voloshin, M. I. Vysotsky, Sov. Phys. JETP 64 (1986) 446-452.
[Okun:1986na]
[20-24]
On the electric dipole moment of neutrino, L. B. Okun, Sov. J. Nucl. Phys. 44 (1986) 546.
[Okun:1986uf]
[20-25]
Nonadiabatic level crossing in resonant neutrino oscillations, Stephen J. Parke, Phys. Rev. Lett. 57 (1986) 1275-1278.
[Parke:1986jy]
[20-26]
Resonant solar neutrino oscillation experiments, Stephen J. Parke, Terry P. Walker, Phys. Rev. Lett. 57 (1986) 2322.
[Parke:1986qp]
[20-27]
Neutrino magnetic moment and time variation of solar neutrino flux, M. B. Voloshin, M. I. Vysotsky, Sov. J. Nucl. Phys. 44 (1986) 544.
[Voloshin:1986ty]
[20-28]
Resonance enhancement of oscillations in matter and solar neutrino spectroscopy, S. P. Mikheev, A. Yu. Smirnov, Sov. J. Nucl. Phys. 42 (1985) 913-917.
[Mikheyev:1985zog]
[20-29]
Realistic calculations of solar neutrino oscillations, V. Barger, K. Whisnant, R. J. N. Phillips, Phys. Rev. D24 (1981) 538.
[Barger:1981xs]
[20-30]
Neutrino oscillations in matter, L. Wolfenstein, Phys. Rev. D17 (1978) 2369.
[Wolfenstein:1977ue]
[20-31]
Are neutrinos stable particles?, John N. Bahcall, N. Cabibbo, A. Yahil, Phys. Rev. Lett. 28 (1972) 316.
[Bahcall:1972my]
[20-32]
Effect of neutrino magnetic moment on solar neutrino observations, Arturo Cisneros, Astrophys. Space Sci. 10 (1971) 87-92.
[Cisneros:1971nq]
[20-33]
Lepton non-conservation and solar neutrinos, John N. Bahcall, Steven C. Frautschi, Phys. Lett. B29 (1969) 623-625.
[Bahcall:1969zb]
[20-34]
Neutrino astronomy and lepton charge, V. N. Gribov, B. Pontecorvo, Phys. Lett. B28 (1969) 493.
[Gribov:1968kq]
[20-35]
Neutrino experiments and the question of leptonic-charge conservation, B. Pontecorvo, Sov. Phys. JETP 26 (1968) 984-988.
[Pontecorvo:1967fh]

21 - Future Experiments

[21-1]
A newly developed multi-kilo-channel high-speed and precision waveform digitization system for neutrino experiments, H. Yang et al., arXiv:2404.10373, 2024.
[Yang:2024zwm]
[21-2]
CYG$\nu$S: Detecting solar neutrinos with directional gas time projection chambers, Chiara Lisotti et al., arXiv:2404.03690, 2024.
[Lisotti:2024fco]
[21-3]
Data reduction strategy in the PandaX-4T experiment, Yubo Zhou, Xun Chen, arXiv:2311.12412, 2023.
[Zhou:2023vmz]
[21-4]
Physics Potential of a Few Kiloton Scale Neutrino Detector at a Deep Underground Lab in Korea, Seon-Hee Seo et al., arXiv:2309.13435, 2023.
[Seo:2023xku]
[21-5]
JUNO sensitivity to $^7$Be, $pep$, and CNO solar neutrinos, Angel Abusleme et al., JCAP 10 (2023) 022, arXiv:2303.03910.
[JUNO:2023zty]
[21-6]
Observation of low-lying isomeric states in $^{136}$Cs: a new avenue for dark matter and solar neutrino detection in xenon detectors, Scott J. Haselschwardt, Brian G. Lenardo, Timothy Daniels, Sean W. Finch, Forrest Q. L. Friesen, Calvin R. Howell, Collin R. Malone, Ethan Mancil, Werner Tornow, Phys.Rev.Lett. 131 (2023) 052502, arXiv:2301.11893.
[Haselschwardt:2023thp]
[21-7]
Performance of the 1-ton Prototype Neutrino Detector at CJPL-I, Yiyang Wu et al., Nucl.Instrum.Meth.A 1054 (2023) 168400, arXiv:2212.13158.
[Wu:2022oxo]
[21-8]
Design of a Space-based Near-Solar Neutrino Detector for the $\nu$SOL Experiment, N. Solomey et al., Nucl.Instrum.Meth.A 1049 (2023) 168064, arXiv:2206.00703.
[Solomey:2022gja]
[21-9]
Low Background kTon-Scale Liquid Argon Time Projection Chambers, A. Avasthi et al., arXiv:2203.08821, 2022.
[Avasthi:2022tjr]
[21-10]
SoLAr: Solar Neutrinos in Liquid Argon, Saba Para et al., arXiv:2203.07501, 2022.
[Parsa:2022mnj]
[21-11]
Potential for a precision measurement of solar $pp$ neutrinos in the Serappis Experiment, Lukas Bieger et al., Eur.Phys.J.C 82 (2022) 779, arXiv:2109.10782.
[Bieger:2021sas]
[21-12]
Measurement of Muon-induced Neutron Production at China Jinping Underground Laboratory, Lin Zhao et al., Chin.Phys.C 46 (2022) 085001, arXiv:2108.04010.
[JNE:2021cyb]
[21-13]
Low-Energy Solar Neutrino Detection Utilizing Advanced Germanium Detectors, S. Bhattarai, D.-M. Mei, M.-S. Raut, J.Phys.G 50 (2023) 065201, arXiv:2104.14352.
[Bhattarai:2021gvl]
[21-14]
Enhancing the sensitivity of the LUX-ZEPLIN (LZ) dark matter experiment to low energy signals, D.S. Akerib et al., arXiv:2101.08753, 2021.
[Akerib:2021pfd]
[21-15]
The Hyper-Kamiokande Experiment - Snowmass LOI, K. Abe et al. (Hyper-Kamiokande), arXiv:2009.00794, 2020.
[Hyper-Kamiokande:2020aij]
[21-16]
Solar neutrino detection in liquid xenon detectors via charged-current scattering to excited states, Scott Haselschwardt, Brian Lenardo, Pekka Pirinen, Jouni Suhonen, Phys.Rev. D102 (2020) 072009, arXiv:2009.00535.
[Haselschwardt:2020ffr]
[21-17]
Muon Flux Measurement at China Jinping Underground Laboratory, Ziyi Guo et al., Chin.Phys.C 45 (2021) 025001, arXiv:2007.15925.
[JNE:2020bwn]
[21-18]
MeV-scale performance of water-based and slow liquid scintillators, B. J. Land, Z. Bagdasarian, J. Caravaca, M. Smiley, G. D. Orebi Gann, Phys.Rev. D103 (2021) 052004, arXiv:2007.14999.
[Land:2020oiz]
[21-19]
CYGNO: a gaseous TPC with optical readout for dark matter directional search, E. Baracchini et al., JINST 15 (2020) C07036, arXiv:2007.12627.
[Baracchini:2020btb]
[21-20]
Feasibility and physics potential of detecting $^8$B solar neutrinos at JUNO, Angel Abusleme et al. (JUNO), Chin.Phys. C45 (2021) 023004, arXiv:2006.11760.
[JUNO:2020hqc]
[21-21]
Solar Neutrino Detection Sensitivity in DARWIN via Electron Scattering, J. Aalbers et al., Eur.Phys.J. C80 (2020) 1133, arXiv:2006.03114.
[DARWIN:2020bnc]
[21-22]
Theia: An advanced optical neutrino detector, M. Askins et al., Eur.Phys.J. C80 (2020) 416, arXiv:1911.03501.
[Theia:2019non]
[21-23]
Data-Driven Modeling of Electron Recoil Nucleation in PICO C$_3$F$_8$ Bubble Chambers, C. Amole et al., Phys.Rev. D100 (2019) 082006, arXiv:1905.12522.
[PICO:2019rsv]
[21-24]
Hyper-Kamiokande Design Report, K. Abe et al. (Hyper-Kamiokande Proto-), arXiv:1805.04163, 2018.
[Hyper-Kamiokande:2018ofw]
[21-25]
Direct Detection of Light Dark Matter and Solar Neutrinos via Color Center Production in Crystals, Ranny Budnik, Ori Chesnovsky, Oren Slone, Tomer Volansky, Phys.Lett. B782 (2018) 242-250, arXiv:1705.03016.
[Budnik:2017sbu]
[21-26]
Design and analysis of a 1-ton prototype of the Jinping Neutrino Experiment, Zongyi Wang, Yuanqing Wang, Zhe Wang, Shaomin Chen, Xinxi Du, Tianxiong Zhang, Ziyi Guo, Huanxin Yuan, Nucl. Instrum. Meth. A855 (2017) 81, arXiv:1703.01478.
[Wang:2017ynm]
[21-27]
Letter of Intent: Jinping Neutrino Experiment, Jinping Neutrino Experiment group (Jinping), Chin.Phys. C41 (2017) 023002, arXiv:1602.01733.
[Jinping:2016iiq]
[21-28]
Solar neutrino detection in a large volume double-phase liquid argon experiment, D. Franco et al., JCAP 1608 (2016) 017, arXiv:1510.04196.
[Franco:2015pha]
[21-29]
Solar neutrino physics with low-threshold dark matter detectors, J. Billard, L. Strigari, E. Figueroa-Feliciano, Phys. Rev. D91 (2015) 095023, arXiv:1409.0050.
[Billard:2014yka]
[21-30]
Neutrino physics with multi-ton scale liquid xenon detectors, L. Baudis et al., JCAP 1401 (2014) 044, arXiv:1309.7024.
[Baudis:2013qla]
[21-31]
Hyper-Kamiokande Physics Opportunities, E. Kearns et al. (Hyper-Kamiokande Working Group), arXiv:1309.0184, 2013.
[Hyper-KamiokandeWorkingGroup:2013hcb]
[21-32]
Future large-scale water-Cherenkov detector, L. Agostino et al. (MEMPHYS), Phys. Rev. ST Accel. Beams 16, 061001 (2013) 061001, arXiv:1306.6865.
[Agostino:2013ilw]
[21-33]
XMASS detector, K. Abe et al., Nucl.Instrum.Meth. A716 (2013) 78-85, arXiv:1301.2815.
[Abe:2013tc]
[21-34]
Study of the performance of a large scale water-Cherenkov detector (MEMPHYS), L. Agostino et al. (MEMPHYS), JCAP 1301 (2013) 024, arXiv:1206.6665.
[MEMPHYS:2012bzz]
[21-35]
Letter of Intent: The Hyper-Kamiokande Experiment - Detector Design and Physics Potential, K. Abe et al., arXiv:1109.3262, 2011.
[Abe:2011ts]
[21-36]
Real-time spectroscopy of solar pp neutrinos using $^{150}$Nd, K. Zuber, Phys. Lett. B709 (2012) 6-8, arXiv:1108.2529.
[Zuber:2011db]
[21-37]
Studies of a three-stage dark matter and neutrino observatory based on multi-ton combinations of liquid xenon and liquid argon detectors, K. Arisaka et al., Astropart. Phys. 36 (2012) 93-122, arXiv:1107.1295.
[Arisaka:2011eu]
[21-38]
The next-generation liquid-scintillator neutrino observatory LENA, Michael Wurm et al. (LENA), Astropart. Phys. 35 (2012) 685-732, arXiv:1104.5620.
[LENA:2011ytb]
[21-39]
Research of the natural neutrino fluxes by use of large volume scintillation detector at Baksan, I. R. Barabanov, G. Ya. Novikova, V. V. Sinev, E. A. Yanovich, arXiv:0908.1466, 2009.
[Barabanov:2009rk]
[21-40]
XAX: a multi-ton, multi-target detection system for dark matter, double beta decay and pp solar neutrinos, K. Arisaka et al., Astropart. Phys. 31 (2009) 63-74, arXiv:0808.3968.
[Arisaka:2008mb]
[21-41]
Potential for Precision Measurement of Solar Neutrino Luminosity by HERON, Y. H. Huang et al., Astropart. Phys. 30 (2008) 1-11, arXiv:0711.4095.
[Huang:2007jh]
[21-42]
Low energy tracking and particles identification in the MUNU Time Projection Chamber at 1 bar. Possible application in low energy solar neutrino spectroscopy, Z. Daraktchieva et al. (MUNU), J. Phys. G35 (2008) 125107, arXiv:0710.1049.
[MUNU:2007muq]
[21-43]
Large underground, liquid based detectors for astro-particle physics in Europe: scientific case and prospects, J. Aysto et al., JCAP 0711 (2007) 011, arXiv:0705.0116.
[Autiero:2007zj]
[21-44]
MEMPHYS: A large scale water Cerenkov detector at Frejus, A. de Bellefon et al., arXiv:hep-ex/0607026, 2006.
[deBellefon:2006vq]
[21-45]
How to observe 8B solar neutrinos in liquid scintillator detectors, A. Ianni, D. Montanino, F.L. Villante, Phys. Lett. B627 (2005) 38, arXiv:physics/0506171.
[Ianni:2005ki]
[21-46]
Prototype scintillator cell for an In-based solar neutrino detector, Dario Motta et al., Nucl. Instrum. Meth. A547 (2005) 368, arXiv:physics/0502086.
[Motta:2005ua]
[21-47]
Calculations of liquid helium and neon VUV emission spectra, self-absorption and scattering for a neutrino detector, I. M. Savukov, arXiv:physics/0411215, 2004.
[physics/0411215]
[21-48]
Cosmogenic 11C production and sensitivity of organic scintillator detectors to pep and CNO neutrinos, C. Galbiati et al., Phys. Rev. C71 (2005) 055805, arXiv:hep-ph/0411002.
[Galbiati:2004wx]
[21-49]
Cryogenic avalanche detectors based on gas electron multipliers, A. Bondar et al., Nucl. Instrum. Meth. A524 (2004) 130, arXiv:physics/0403066.
[Bondar:2004rv]
[21-50]
Neutrino Detection With CLEAN, D. N. McKinsey, K. J. Coakley, Astropart. Phys. 22 (2005) 355, arXiv:astro-ph/0402007.
[McKinsey:2004rk]
[21-51]
A design outline for a Cherenkoff neutrino observatory, E. P. Bonvin, S. T. Hatamian, arXiv:physics/0310160, 2003.
[Bonvin:1991hz]
[21-52]
Physics Chapter: NUSEL-Homestake Science Book, C. Aalseth et al. (Homestake), arXiv:nucl-ex/0308018, 2003.
[Homestake:2003aa]
[21-53]
The Sensitivity of a Lithium Experiment on Solar Neutrinos to the Mixing Angle $\theta_{12}$, Anatoly Kopylov, Valery Petukhov, arXiv:hep-ph/0308004, 2003.
[Kopylov:2003sf]
[21-54]
Lithium Experiment in the Interplay of Solar and Neutrino Physics, Anatoly Kopylov, Valery Petukhov, arXiv:hep-ph/0306148, 2003.
[Kopylov:2003hc]
[21-55]
A Lithium Experiment as the Stringent Test of the Theory of Stellar Evolution, Anatoly Kopylov, Valery Petukhov, arXiv:hep-ph/0301016, 2003.
[Kopylov:2003ew]
[21-56]
Spectroscopy of low energy solar neutrinos using CdTe detectors, K. Zuber, Phys. Lett. B571 (2003) 148, arXiv:astro-ph/0206340.
[Zuber:2002wi]
[21-57]
Cosmogenesis Backgrounds, Experiment Depth and the Solar Neutrino TPC, G. Bonvicini, A. Schreiner, Nucl. Instrum. Meth. A493 (2002) 90-98, arXiv:hep-ex/0203014.
[Bonvicini:2002gp]
[21-58]
The HLMA project: Determination of high $\Delta{m}^2$ LMA mixing parameters and constraint on $|U_{e3}|$ with a new reactor neutrino experiment, Lothar Oberauer Stefan Schoenert, Thierry Lasserre, Astropart. Phys. 18 (2003) 565, arXiv:hep-ex/0203013.
[Schonert:2002ep]
[21-59]
A preliminary look at the physics reach of a solar neutrino TPC: Time-independent two neutrino oscillations, G. Bonvicini et al., eConf C010630 (2001) E603, arXiv:hep-ph/0109199.
[Bonvicini:2001te]
[21-60]
Review of the technical issues associated with the construction of a solar neutrino TPC, G. Bonvicini, D. Naples, V. Paolone, Nucl. Instrum. Meth. A491 (2002) 402-418, arXiv:hep-ex/0109032.
[Bonvicini:2001sp]
[21-61]
Why do solar neutrino experiments below 1-MeV?, J. N. Bahcall, arXiv:hep-ex/0106086, 2001.
[Bahcall:2001zk]
[21-62]
p p solar neutrino spectroscopy: Return of the indium detector, R. S. Raghavan, Phys. Rev. Lett. (2001), arXiv:hep-ex/0106054.
[Raghavan:2001jj]
[21-63]
LANNDD: A massive liquid argon detector for proton decay, supernova and solar neutrino studies, and a neutrino factory detector, David B. Cline, Franco Sergiampietri, John G. Learned, Kirk McDonald, Nucl. Instrum. Meth. A503 (2003) 136, arXiv:astro-ph/0105442.
[Cline:2001pt]
[21-64]
Perspectives on the solar neutrino experiments, G. Bellini, Nucl. Phys. Proc. Suppl. 100 (2001) 87-90.
[Bellini:2001zs]
[21-65]
Bulk GaAs as a solar neutrino detector, V. N. Gavrin et al., Nucl. Instrum. Meth. A466 (2001) 119-125.
[Gavrin:2001ve]
[21-66]
Se-75 as a new neutrino source for calibrating low- threshold detectors of solar neutrinos, V. N. Kornoukhov, Phys. Atom. Nucl. 64 (2001) 256-260.
[Kornoukhov:2001tf]
[21-67]
KamLAND: A reactor neutrino experiment testing the solar neutrino anomaly, A. Piepke (KamLAND), Nucl. Phys. Proc. Suppl. 91 (2001) 99-104.
[Piepke:2001tg]
[21-68]
Further studies of the OMNIS supernova neutrino observatory: Optimisation of detector configuration and possible extension to solar neutrinos, P. F. Smith, Astropart. Phys. 16 (2001) 75-96.
[Smith:2001ns]
[21-69]
Some future solar neutrino experiments, H. De Kerret, Nucl. Phys. Proc. Suppl. 100 (2001) 45-47.
[deKerret:2001zk]
[21-70]
Future solar neutrino experiments, F. von Feilitzsch, Nucl. Phys. Proc. Suppl. 91 (2001) 66-70.
[vonFeilitzsch:2001td]
[21-71]
Science and technology of Borexino: A real time detector for low energy solar neutrinos, G. Alimonti et al. (Borexino), Astropart. Phys. 16 (2002) 205-234, arXiv:hep-ex/0012030.
[Borexino:2000uvj]
[21-72]
Study of solar neutrinos with the 600-t liquid argon ICARUS detector, F. Arneodo et al., Nucl. Instrum. Meth. A455 (2000) 376-389.
[Arneodo:2000fa]
[21-73]
The solar neutrino project HELLAZ: Status report on the hardware and the simulation, P. Gorodetzky (HELLAZ), Nucl. Instrum. Meth. A471 (2000) 131-135.
[Gorodetzky:2000jk]
[21-74]
The solar neutrino problem and the radiochemical lithium detector, S. N. Danshin, G. T. Zatsepin, A. V. Kopylov, V. V. Petukhov, E. A. Yanovich, Phys. Part. Nucl. 28 (1997) 1-4.
[Danshin:1997wz]
[21-75]
Angular Distribution of Rotons Generated by Alpha Particles in Superfluid Helium: A Possible Tool for Low Energy Particle Detection, S. R. Bandler, S. M. Brouer, C. Enss, R. E. Lanou, H. J. Maris, F. S. Porter T. More, G. M. Seidel, Phys. Rev. Lett. 74 (1995) 3169-3172.
[Bandler:1995bs]
[21-76]
Particle detection by evaporation from superfluid helium, S. R. Bandler, R. E. Lanou, H. J. Maris, T. More, F. S. Porter, G. M. Seidel, R. H. Torii, Phys. Rev. Lett. 68 (1992) 2429-2432.
[Bandler:1992zz]
[21-77]
Detection of Solar Neutrinos in Superfluid Helium, R. E. Lanou, H. J. Maris, G. M. Seidel, Phys. Rev. Lett. 58 (1987) 2498.
[Lanou:1987eq]

22 - Future Experiments - Talks

[22-1]
Design and Testing of a 3U CubeSat to Test the In-situ Vetoing for the $\nu$SOL Solar Neutrino Detector, Jonathan Folkerts, arXiv:2210.07975, 2022. International Astronautical Congress, IAC 2022, Paris, France, 18-22 September.
[Folkerts:2022ozi]
[22-2]
Theia: A multi-purpose water-based liquid scintillator detector, Vincent Fischer (Theia), arXiv:1809.05987, 2018. CIPANP2018.
[Fischer:2018zsr]
[22-3]
Solar neutrinos with the JUNO experiment, Giuseppe Salamanna, arXiv:1809.03821, 2018. 5th International Solar Neutrino Conference Dresden, Germany, June 11-14, 2018.
[Salamanna:2018mbz]
[22-4]
Astroparticle Physics in Hyper-Kamiokande, Jost Migenda, PoS EPS-HEP2017 (2017) 020, arXiv:1710.08345. EPS-HEP2017.
[Migenda:2017tej]
[22-5]
Exploring Neutrino Interactions with MicroBooNE, Tia Miceli, arXiv:1411.4572, 2014. Physics in Collisions 2014.
[Miceli:2014cga]
[22-6]
Scintillator phase of the SNO+ experiment, V. Lozza (SNO+), J. Phys. Conf. Ser. 375 (2012) 042050, arXiv:1201.6599. TAUP2011.
[Lozza:2012bf]
[22-7]
The Physics Potential of the LENA Detector, Michael Wurm et al., Acta Phys. Polon. B41 (2010) 1749-1764, arXiv:1004.3474. Cracow Epiphany Conference, 5-8 January 2010.
[Wurm:2010ny]
[22-8]
The LAGUNA design study- towards giant liquid based underground detectors for neutrino physics and astrophysics and proton decay searches, D. Angus et al. (LAGUNA), arXiv:1001.0077, 2010. Workshop 'European Strategy for Future Neutrino Physics', CERN, Oct. 2009.
[LAGUNA:2010zms]
[22-9]
Giant Liquid Argon Observatory for Proton Decay, Neutrino Astrophysics and CP-violation in the Lepton Sector (GLACIER), A. Badertscher et al., arXiv:1001.0076, 2010. Workshop 'European Strategy for Future Neutrino Physics', CERN, Oct. 2009.
[Badertscher:2010sy]
[22-10]
R&D for Future 100 kton Scale Liquid Argon Detectors, A. Marchionni, arXiv:0912.4417, 2009. European Strategy for Future Neutrino Physics, CERN, Oct. 2009.
[Marchionni:2009tj]
[22-11]
Underground Neutrino Detectors for Particle and Astroparticle Science: the Giant Liquid Argon Charge Imaging ExpeRiment (GLACIER), A. Rubbia, J. Phys. Conf. Ser. 171 (2009) 012020, arXiv:0908.1286.
[Rubbia:2009md]
[22-12]
The SNO+ Experiment, Mark C. Chen (SNO+), arXiv:0810.3694, 2008. ICHEP08.
[Chen:2008un]
[22-13]
Perspectives to Study a Solar CNO Cycle by Means of a Lithium Detector of Neutrinos, A. Kopylov, V. Petukhov, JCAP 0810 (2008) 007, arXiv:0806.0460. International Symposium 'Physics of Massive Neutrinos' at MILOS (Greece) 19-23 May 2008.
[Kopylov:2008zz]
[22-14]
Borexino, Lino Miramonti (BOREXINO), Nucl. Phys. Proc. Suppl. 221 (2011) 375, arXiv:hep-ex/0609011. XXII International Conference on Neutrino Physics and Astrophysics. Santa Fe, New Mexico, June 13-19, 2006.
[Miramonti:2006kp]
[22-15]
Low energy neutrino astronomy with the large liquid scintillation detector LENA, T. Marrodan Undagoitia et al., Prog. Part. Nucl. Phys. 57 (2006) 283-289, arXiv:hep-ph/0605229. International School of Nuclear Physics, Neutrinos in Cosmology, in Astro, Particle and Nuclear Physics, Erice (SICILY) 16 - 24 Sept. 2005.
[MarrodanUndagoitia:2006re]
[22-16]
A lithium experiment in the program of solar neutrino research, A. Kopylov, I. Orekhov, V. Petukhov, A. Solomatin, Phys. Atom. Nucl. 69 (2006) 1829-1832, arXiv:hep-ph/0601091. 5th International Conference on Non-accelerator New Physics (NANP 05), Dubna, Russia, 20-25 June 2005.
[Kopylov:2006je]
[22-17]
Is FLARE for solar flare?, Daniele Fargion, Proc. Sci. HEP2005 (2006) 180, arXiv:astro-ph/0512181. EPS International Europhysics Conference on High Energy Physics (HEP-EPS 2005), Lisbon, Portugal, 21-27 Jul 2005.
[Fargion:2005st]
[22-18]
On the possiblity of detecting Solar pp-neutrino with a large volume liquid organic scintillator detector, A.V.Derbin, O.Yu.Smirnov, O.A.Zaimidoroga, Phys. Atom. Nucl. 67 (2004) 2066, arXiv:physics/0403030. Nonaccelerating New Neutrino Physics, NANP-2003, Dubna.
[Derbin:2004ma]
[22-19]
Future solar neutrino experiments, Y. Suzuki, 2004. Neutrino 2004, 13-19 June 2004, Paris, France. http://neutrino2004.in2p3.fr/slides/monday/suzuki.pdf.
[Suzuki-Nu2004]
[22-20]
Lithium Experiment on Solar Neutrinos to Weight the CNO Cycle, A. Kopylov et al., Phys. Atom. Nucl. 67 (2004) 1182, arXiv:hep-ph/0310163. NANP 2003, Dubna, Russia, June 2003.
[Kopylov:2003tj]
[22-21]
New Projects in Underground Physics, M. Goodman, arXiv:hep-ex/0307017, 2003. 10th International Workshop on Neutrino Telescopes, Venice, March 2003.
[Goodman:2003qq]
[22-22]
GENIUS - A New Underground Observatory for Non-Accelerator Particle Physics, H. V. Klapdor-Kleingrothaus, Nucl. Phys. Proc. Suppl. 110 (2002) 364-368, arXiv:hep-ph/0206249. TAUP 2001, September 8-12, 2001.
[Klapdor-Kleingrothaus:2002kvu]
[22-23]
Search for Cold Dark Matter and Solar Neutrinos with GENIUS and GENIUS-TF, I. V. Krivosheina, Prog. Part. Nucl. Phys. 48 (2002) 283-286, arXiv:hep-ph/0206149. International School on Nuclear Physics, 23rd Course: Neutrinos in Astro, Particle and Nuclear Physics, Erice, 18-26 September 2001.
[Krivosheina:2002jh]
[22-24]
Borexino: A real time liquid scintillator detector for low energy solar neutrino study, L. Miramonti, arXiv:hep-ex/0206063, 2002. 10th International Conference on Calorimetry in High Energy Physics.
[Miramonti:2002kr]
[22-25]
Phenomenological Study of Solar-Neutrino Induced Double Beta Decay of Mo100, P. Domin, F. Simkovic, S. V. Semenov, Yu. V. Gaponov, Czech. J. Phys. 52 (2002) 451, arXiv:hep-ph/0204143. MEDEX'01 (Prague, June, 2001), to appear in Czech. J. Phys. 52 (2002).
[Domin:2002mg]
[22-26]
Solar and Reactor Neutrinos: Upcoming Experiments and Future Projects, S. Schonert, Nucl. Phys. Proc. Suppl. 110 (2002) 277-287, arXiv:hep-ex/0202021. Contribution to the proceedings of 'TAUP2001 - Topics in Astroparticle and Underground Physics', LNGS, Italy (September 8-12, 2001). http://taup2001.lngs.infn.it/l3/l3.pdf.
[Schonert:2002ft]
[22-27]
Why do solar neutrino experiments below 1 MeV?, J. N. Bahcall, 2002. IIIrd International Workshop on Low Energy Solar Neutrinos - LowNu 2002, 22-24 May 2002, Heidelberg, Germany. http://www.mpi-hd.mpg.de/nubis/www_lownu2002/transparency/bahcall_lownu_2002.pdf.
[Bahcall-LowNu2002]
[22-28]
Borexino: Status Report, B. R. Vogelaar,, 2002. International Workshop on Neutrinos and Subterranean Science - NeSS 02, Washington, DC, September 19-21, 2002. http://mocha.phys.washington.edu/~int_talk/WorkShops/Neutrino02/Working_Groups/People/Vogelaar_R/vogelaar_thurs_snsnp.pdf.
[Bruce-talk:2002a]
[22-29]
The HLMA project, T. Lasserre, 2002. IIIrd International Workshop on Low Energy Solar Neutrinos - LowNu 2002, 22-24 May 2002, Heidelberg, Germany. http://www.mpi-hd.mpg.de/nubis/www_lownu2002/transparency/HLMAproject_lownu2002.ppt.
[Lasserre-LowNu2002]
[22-30]
UNO: Underground Nucleon Decay and Neutrino Observatory, C. McGrew, 2002. International Workshop on Neutrinos and Subterranean Science - NeSS 02, Washington, DC, September 19-21, 2002. http://mocha.phys.washington.edu/~int_talk/WorkShops/Neutrino02/Working_Groups/People/McGrew_C/mcgrew_thurs_protondecaywg.pdf.
[McGrew-talk:2002b]
[22-31]
Status of XMASS, M. Nakahata, 2002. IIIrd International Workshop on Low Energy Solar Neutrinos - LowNu 2002, 22-24 May 2002, Heidelberg, Germany. http://www.mpi-hd.mpg.de/nubis/www_lownu2002/transparency/nakahata_lownu_2002.pdf.
[Nakahata-LowNu2002]
[22-32]
New underground neutrino observatory - GENIUS - in the new millenium: For solar neutrinos, dark matter and double beta decay, H. V. Klapdor-Kleingrothaus, arXiv:hep-ph/0104028, 2001. International Workshop on Low Energy Solar Neutrinos (LowNu2), December 4 and 5, 2000, Tokyo, Japan.
[Klapdor-Kleingrothaus:2000mnz]
[22-33]
New physics in the new millennium with GENIUS: Double beta decay, dark matter, solar neutrinos, H. V. Klapdor-Kleingrothaus, Part. Nucl. Lett. 104 (2001) 20-39, arXiv:hep-ph/0102319. International Workshop on Non-Accelerator New Physics in Neutrino Observations (NANPino), Dubna, Russia, July 19-22, 2000.
[Klapdor-Kleingrothaus:2000gfm]
[22-34]
GENIUS - A new facility of non-accelerator particle physics, H. V. Klapdor-Kleingrothaus, Nucl. Phys. Proc. Suppl. 100 (2001) 350-355, arXiv:hep-ph/0102277. Europhysics Neutrino Oscillation Workshop (NOW 2000), Conca Specchiulla, Otranto, Lecce, Italy, 9-16 Sep 2000.
[Klapdor-Kleingrothaus:2000nps]

23 - Education

[23-1]
Solar Neutrinos: A Popular Account, John N. Bahcall, arXiv:physics/0411190, 2004.
[Bahcall:2004in]
[23-2]
How the sun shines, John N. Bahcall, SLAC Beam Line 31N1 (2001) 2-12, arXiv:astro-ph/0009259.
[Bahcall:2000xc]

24 - History

[24-1]
Solving the Mystery of the Missing Neutrinos, John Bahcall, arXiv:physics/0406040, 2004.
[Bahcall:2004cc]
[24-2]
Nobel Lecture: A half-century with solar neutrinos, R. Davis, Rev. Mod. Phys. 75 (2003) 985-994.
[Davis:2003kh]
[24-3]
A half-century with solar neutrinos, R. Davis, Int. J. Mod. Phys. A18 (2003) 3089-3108.
[Davis:2003xx]
[24-4]
Memories of a Nobel laureate, R. Davis, CERN Cour. 42N10 (2002) 15-17.
[Davis:2002fb]
[24-5]
The beginning of a new science, J. N. Bahcall, R. Davis, CERN Cour. 40N6 (2000) 17-21. http://www.cerncourier.com/main/article/40/6/18.
[Bahcall:2000up]
[24-6]
The evolution of neutrino astronomy, J. N. Bahcall, Raymond Davis, Publ. Astron. Soc. Pac. 112 (2000) 429-433, arXiv:astro-ph/9911486.
[Bahcall:2000rt]

25 - History - Talks

[25-1]
Solar Models: An Historical Overview, J. N. Bahcall, AAPPS Bull. 12N4 (2002) 12, arXiv:astro-ph/0209080. XXth International Conference on Neutrino Physics and Astrophysics May 25 - 30, 2002, Munich, Germany. http://neutrino2002.ph.tum.de/pages/transparencies/bahcall.
[Bahcall:2002ng]
[25-2]
Astrophysical neutrinos: 20th century and beyond, J. N. Bahcall, Nucl. Phys. Proc. Suppl. 91 (2001) 9-17, arXiv:hep-ph/0009044. Neutrino 2000.
[Bahcall:2000ue]

Search Neutrino Unbound

Cross search NU

It is possible to perform a cross search between the various pages of Neutrino Unbound.
This is useful if you want to show the common elements that appear in the listings of two (or more) different topics or experiments.

Go to the search form.

[Go to ...]

Neutrino Unbound Home

Authors:
Stefano Gariazzo / gariazzo@to.infn.it
Carlo Giunti / giunti@to.infn.it
Marco Laveder / marco.laveder@pd.infn.it
Last Update: Thu 25 Apr 2024, 10:46:37 CET