Sterile Neutrinos

Filter this page

(Note: The process can take some time.)



1 - Books

Sterile Neutrino Dark Matter, Alexander Merle, IOP, 2017.
Fundamentals of Neutrino Physics and Astrophysics, C. Giunti, C. W. Kim, Oxford University Press, Oxford, UK, 2007. ISBN 978-0-19-850871-7.

2 - Reviews - Experiment

The Short-Baseline Neutrino Program at Fermilab, Pedro A. N. Machado, Ornella Palamara, David W. Schmitz, Ann.Rev.Nucl.Part.Sci. 69 (2019) 363-387, arXiv:1903.04608.
The STEREO Experiment, N. Allemandou et al., JINST 13 (2018) P07009, arXiv:1804.09052.
Roadmap for the international, accelerator-based neutrino programme, J. Cao et al., arXiv:1704.08181, 2017.
Sterile Neutrinos: An Introduction to Experiments, J. M. Conrad, M. H. Shaevitz, Adv.Ser.Direct.High Energy Phys. 28 (2018) 391-442, arXiv:1609.07803.
Experimental investigation of the thriving mystery of sterile neutrinos, A. Fava, Rev. Phys. 1 (2016) 52-59.
Observation of the new line at ~3.55 keV in X-ray spectra of galaxies and galaxy clusters, Dmytro Iakubovskyi, Adv.Astron.Space Phys. 6 (2016) 3-15, arXiv:1510.00358.
Searches for Active and Sterile Neutrinos in Beta-Ray Spectra, Otokar Dragoun, Drahoslav Venos, J. Phys. 3 (2016) 77-113, arXiv:1504.07496.
Beyond Standard Model Searches in the MiniBooNE Experiment, Teppei Katori, Janet Conrad, Adv.High Energy Phys. 2015 (2015) 362971, arXiv:1404.7759.
The LSND and MiniBooNE Oscillation Searches at High $\Delta{m}^2$, Janet M. Conrad, William C. Louis, Michael H. Shaevitz, Ann.Rev.Nucl.Part.Sci. 63 (2013) 45, arXiv:1306.6494.
On the 'LSND anomaly', Dmitry Dedovich, Alexey Zhemchugov, Mod. Phys. Lett. A27 (2012) 1230012.
MINOS neutrino oscillation results, Alec Habig, Mod. Phys. Lett. A25 (2010) 1219-1231, arXiv:1004.2647.
Searches for muon-to-electron (anti) neutrino flavor change, W.C. Louis, Prog.Part.Nucl. Phys. 63 (2009) 51-73.

3 - Reviews - Experiment - Conference Proceedings

Neutrino Experiments at J-PARC, Masahiro Kuze, arXiv:2001.03417, 2020. J-PARC Symposium 2019.
Review of Sterile Neutrino Experiments, Seon-Hee Seo, arXiv:2001.03349, 2020. 19th Lomonosov Conference on Elementary Particle Physics (Moscow State University, August 22-28, 2019).
Searches for sterile neutrinos at very short baseline reactor experiments, Mikhail Danilov, J.Phys.Conf.Ser. 1390 (2019) 012049, arXiv:1812.04085. 4th International Conference on Particle Physics and Astrophysics (ICPPA-2018), Moscow, Russia.
Neutrino Physics with Reactors, Bedrich Roskovec, arXiv:1812.03206, 2018. PIC2018: XXXVIII International Symposium on Physics in Collision, Bogota, Colombia, 2018.
Light sterile neutrino searches, Julia Haser, arXiv:1710.06330, 2017. 29th Rencontres de Blois 2017 on Particle Physics and Cosmology.
Sterile Neutrinos: Reactor Experiments, Christian Buck, arXiv:1704.08885, 2017. NuPhys2016 (London, 12-14 December 2016).
Heavy neutrino searches from MeV to TeV, Elena Graverini, arXiv:1611.07215, 2016. NuFact 2016.
Search for Sterile Neutrinos at Long and Short Baselines, Luca Stanco, arXiv:1604.06769, 2016. NuPhys2015 (London, 16-18 December 2015).
Hunt for Sterile Neutrinos: Decay at Rest Experiments, Fumihiko Suekane, arXiv:1604.06190, 2016. NuPhys2015 (London, 18 December 2015).
Low-energy neutrinos, Livia Ludhova, J. Phys. Conf. Ser. 718 (2016) 022012, arXiv:1601.08234. TAUP 2015, 7-11 September 2015, Torino (Italy).
Accelerator-based Short-baseline Neutrino Oscillation Experiments, Sowjanya Gollapinni (MicroBooNE), arXiv:1510.04412, 2015. Twelfth Conference on the Intersections of Particle and Nuclear Physics, Vail, Colorado, May 19-24, 2015.
Future short-baseline sterile neutrino searches with reactors, D. Lhuillier, AIP Conf. Proc. 1666 (2015) 180003.
(sub)eV Sterile Neutrinos: experimental aspects, Thierry Lasserre, Nucl. Part. Phys. Proc. 265-266 (2015) 281-287. NOW 2014.
Future short-baseline sterile neutrino searches with accelerators, J. Spitz, AIP Conf. Proc. 1666 (2015) 180004.
Future short baseline neutrino searches with nuclear decays, Barbara Caccianiga, AIP Conf. Proc. 1666 (2015) 180002.
Light Sterile Neutrinos in Particle Physics: Experimental Status, Thierry Lasserre, Phys.Dark Univ. 4 (2014) 81-85, arXiv:1404.7352. 13th International Conference on Topics in Astroparticle and Underground Physics, TAUP 2013.
Short Baseline Neutrino Oscillation Experiments, Teppei Katori, J. Phys. Conf. Ser. 598 (2015) 012006, arXiv:1404.6882. NuPhys2013 - prospects in neutrino physics, Institute of Physics, London, UK, Dec. 19-20, 2013.
Experimental review of sterile neutrino searches, David Lhuillier, PoS EPS-HEP2013 (2014) 522.
Current and Future Liquid Argon Neutrino Experiments, Georgia Karagiorgi, AIP Conf.Proc. 1663 (2015) 100001, arXiv:1304.2083. NuInt'12.
The current status of neutrino mixing, Justin Evans, arXiv:1107.3846, 2011. FPCP 2011.
Searching for physics beyond the standard model with accelerator neutrino experiments, William C. Louis, J. Phys. Conf. Ser. 173 (2009) 012017.
Radiochemical solar neutrino experiments, V. N. Gavrin, B. T. Cleveland, Nucl. Phys. Proc. Suppl. 221 (2011) 90-97, arXiv:nucl-ex/0703012. XXII Int. Conf. on Neutrino Physics and Astrophysics, Santa Fe, 13-19 June 2006.

4 - Reviews - Theory

Ambiguities and Subtleties in Fermion Mass Terms, Yifan Cheng, Otto C. W. Kong, Annals Phys. 348 (2014) 315-323, arXiv:1305.5772.
The role of sterile neutrinos in cosmology and astrophysics, Alexey Boyarsky, Oleg Ruchayskiy, Mikhail Shaposhnikov, Ann. Rev. Nucl. Part. Sci. 59 (2009) 191-214, arXiv:0901.0011.
Neutrino mass and new physics, R. N. Mohapatra, A. Y. Smirnov, Ann. Rev. Nucl. Part. Sci. 56 (2006) 569-628, arXiv:hep-ph/0603118.
Theory of Neutrinos, R.N. Mohapatra et al., arXiv:hep-ph/0412099, 2004.
Physics of the neutrino mass, R. N. Mohapatra, New J. Phys. 6 (2004) 82.
Introduction to sterile neutrinos, Raymond R. Volkas, Prog. Part. Nucl. Phys. 48 (2002) 161-174, arXiv:hep-ph/0111326.

5 - Reviews - Theory - Conference Proceedings

Leptogenesis, dark matter and neutrino masses, Michele Lucente, Asmaa Abada, Giorgio Arcadi, Valerie Domcke, arXiv:1803.10826, 2018. NuPhys2017 (London, 20-22 December 2017).
keV sterile Neutrino Dark Matter and Neutrino Model Building, Alexander Merle, J. Phys. Conf. Ser. 375 (2012) 012047, arXiv:1201.0881. TAUP 2011.
Theory of sterile neutrinos, Rabindra Mohapatra, 2002. 18th International Workshop on Weak Interactions and neutrinos (WIN02), 21-26 Jan 2002, Christchurch, New Zealand.

6 - Reviews - Phenomenology

Recent probes of standard and non-standard neutrino physics with nuclei, D.K. Papoulias, T.S. Kosmas, Y. Kuno, Phys. 7 (2019) 191, arXiv:1911.00916.
Status of Light Sterile Neutrino Searches, Sebastian Boser, Christian Buck, Carlo Giunti, Julien Lesgourgues, Livia Ludhova, Susanne Mertens, Anne Schukraft, Michael Wurm, Prog.Part.Nucl.Phys. 111 (2020) 103736, arXiv:1906.01739.
Where Are We With Light Sterile Neutrinos?, A. Diaz, C.A. Arguelles, G.H. Collin, J.M. Conrad, M.H. Shaevitz, arXiv:1906.00045, 2019.
Roles of sterile neutrinos in particle physics and cosmology, Sin Kyu Kang, Int.J.Mod.Phys. A34 (2019) 1930005, arXiv:1904.07108.
Neutrino physics with dark matter detectors, Bhaskar Dutta, Louis E. Strigari, Ann.Rev.Nucl.Part.Sci. 69 (2019) 137-161, arXiv:1901.08876.
eV-scale Sterile Neutrinos, C. Giunti, T. Lasserre, Ann. Rev. Nucl. Part. Sci. 69 (2019) 163-190, arXiv:1901.08330.
Heavy neutral leptons and high-intensity observables, Asmaa Abada, Ana M. Teixeira, Phys. 6 (2018) 142, arXiv:1812.08062.
A New Era in the Quest for Dark Matter, Gianfranco Bertone, Tim M. P. Tait, Nature 562 (2018) 51-56, arXiv:1810.01668.
Sterile Neutrino Dark Matter, A. Boyarsky, M. Drewes, T. Lasserre, S. Mertens, O. Ruchayskiy, Prog.Part.Nucl.Phys. 104 (2019) 1-45, arXiv:1807.07938.
Neutrino Mass Ordering in 2018: Global Status, P. F. de Salas, S. Gariazzo, O. Mena, C. A. Ternes, M. Tortola, Front.Astron.Space Sci. 5 (2018) 36, arXiv:1806.11051.
Physics with Reactor Neutrinos, Xin Qian, Jen-Chieh Peng, Rept.Prog.Phys. 82 (2019) 036201, arXiv:1801.05386.
Status of neutrino properties and future prospects - Cosmological and astrophysical constraints, Martina Gerbino, Massimiliano Lattanzi, Phys. 5 (2018) 70, arXiv:1712.07109.
Sterile neutrinos in cosmology, Kevork N. Abazajian, Phys.Rept. 711-712 (2017) 1-28, arXiv:1705.01837.
A review of the impact of sterile neutrino dark matter on core-collapse supernovae, MacKenzie Warren, Grant J. Mathews, Matthew Meixner, Jun Hidaka, Toshitaka Kajino, Int.J.Mod.Phys. A31 (2016) 1650137, arXiv:1603.05503.
A White Paper on keV Sterile Neutrino Dark Matter, R. Adhikari et al., JCAP 1701 (2017) 025, arXiv:1602.04816.
Review of Neutrino Oscillations With Sterile and Active Neutrinos, Leonard S. Kisslinger, Int.J.Mod.Phys. A31 (2016) 1630037, arXiv:1601.05391.
Global Analyses of Neutrino Oscillation Experiments, M.C. Gonzalez-Garcia, Michele Maltoni, Thomas Schwetz, Nucl. Phys. B908 (2016) 199-217, arXiv:1512.06856.
Light Sterile Neutrinos: Status and Perspectives, Carlo Giunti, Nucl. Phys. B908 (2016) 336-353, arXiv:1512.04758.
Sterile Neutrino Dark Matter from Freeze-In, Bibhushan Shakya, Mod. Phys. Lett. A31 (2016) 1630005, arXiv:1512.02751.
Light sterile neutrinos, S. Gariazzo, C. Giunti, M. Laveder, Y. F. Li, E.M. Zavanin, J. Phys. G43 (2016) 033001, arXiv:1507.08204.
Neutrinoless Double Beta Decay, Heinrich Pas, Werner Rodejohann, New J. Phys. 17 (2015) 115010, arXiv:1507.00170.
Neutrino Oscillation Studies with Reactors, P. Vogel, L.J. Wen, C. Zhang, Nature Communications 6 (2015) 6935, arXiv:1503.01059.
Neutrinos and Collider Physics, Frank F. Deppisch, P. S. Bhupal Dev, Apostolos Pilaftsis, New J. Phys. 17 (2015) 075019, arXiv:1502.06541.
Neutrino oscillations, G. Bellini, L. Ludhova, G. Ranucci, F.L. Villante, Adv.High Energy Phys. 2014 (2014) 191960, arXiv:1310.7858.
Neutrinos, A. de Gouvea et al. (Intensity Frontier Neutrino Working Group), arXiv:1310.4340, 2013.
Cosmic dark radiation and neutrinos, Maria Archidiacono, Elena Giusarma, Steen Hannestad, Olga Mena, Adv.High Energy Phys. 2013 (2013) 191047, arXiv:1307.0637.
Next decade of sterile neutrino studies, Alexey Boyarsky, Dmytro Iakubovskyi, Oleg Ruchayskiy, Phys.Dark Univ. 1 (2012) 136-154, arXiv:1306.4954.
Review of Recent Neutrino Physics Research, Leonard S. Kisslinger, Mod.Phys.Lett. A28 (2013) 1330024, arXiv:1306.3912.
News on Right Handed Neutrinos, Marco Drewes, International Journal of Modern Physics E, Vol. 22 (2013) 1330019, arXiv:1303.6912.
Dark Matter Studies Entrain Nuclear Physics, Susan Gardner, George Fuller, Prog.Part.Nucl. Phys. 71 (2013) 167-184, arXiv:1303.4758.
Phenomenology of light sterile neutrinos: a brief review, Antonio Palazzo, Mod.Phys.Lett. A28 (2013) 1330004, arXiv:1302.1102.
What is half a neutrino? Reviewing cosmological constraints on neutrinos and dark radiation, Signe Riemer-Sorensen, David Parkinson, Tamara M. Davis, Publ.Astron.Soc.Austral. 30 (2013) e029, arXiv:1301.7102.
Search for GeV-scale sterile neutrinos responsible for active neutrino oscillations and baryon asymmetry of the Universe, S. N. Gninenko, D. S. Gorbunov, M. E. Shaposhnikov, Adv.High Energy Phys. 2012 (2012) 718259, arXiv:1301.5516.
Neutrinos And Big Bang Nucleosynthesis, Gary Steigman, Adv. High Energy Phys. 2012 (2012) 268321, arXiv:1208.0032.
Sterile Neutrino Fits to Short Baseline Neutrino Oscillation Measurements, J.M. Conrad, C.M. Ignarra, G. Karagiorgi, M.H. Shaevitz, J. Spitz, Adv.High Energy Phys. 2013 (2013) 163897, arXiv:1207.4765.
The Acceleration Scale, Modified Newtonian Dynamics, and Sterile Neutrinos, Antonaldo Diaferio, Garry W. Angus, arXiv:1206.6231, 2012.
Neutrinoless double beta decay and neutrino physics, Werner Rodejohann, J. Phys. G39 (2012) 124008, arXiv:1206.2560.
Light Sterile Neutrinos: A White Paper, K. N. Abazajian et al., arXiv:1204.5379, 2012.
Neutrino mass in cosmology: status and prospects, Yvonne Y. Y. Wong, Ann. Rev. Nucl. Part. Sci. 61 (2011) 69-98, arXiv:1111.1436.
Neutrino-less Double Beta Decay and Particle Physics, Werner Rodejohann, Int. J. Mod. Phys. E20 (2011) 1833-1930, arXiv:1106.1334.
Big Bang Nucleosynthesis as a Probe of New Physics, Maxim Pospelov, Josef Pradler, Ann. Rev. Nucl. Part. Sci. 60 (2010) 539-568, arXiv:1011.1054.
Neutrino physics from precision cosmology, Steen Hannestad, Prog. Part. Nucl. Phys. 65 (2010) 185-208, arXiv:1007.0658.
Dark Matter Candidates from Particle Physics and Methods of Detection, Jonathan L. Feng, Ann. Rev. Astron. Astrophys. 48 (2010) 495, arXiv:1003.0904.
Signatures of Singlet Neutrinos in Large Extra Dimensions at the LHC, Douglas M. Gingrich, Int. J. Mod. Phys. A24 2009 (2009) 5173-5215, arXiv:0907.1878.
Sterile neutrinos: the dark side of the light fermions, Alexander Kusenko, Phys. Rept. 481 (2009) 1-28, arXiv:0906.2968.
Detection of Dark Matter Decay in the X-ray, Kevork N. Abazajian, arXiv:0903.2040, 2009.
Phenomenology with Massive Neutrinos, M. C. Gonzalez-Garcia, Michele Maltoni, Phys. Rept. 460 (2008) 1-129, arXiv:0704.1800.
Neutrino masses and mixings and..., Alessandro Strumia, Francesco Vissani, arXiv:hep-ph/0606054, 2006.
Theory of Neutrinos: A White Paper, R.N. Mohapatra et al., Rept. Prog. Phys. 70 (2007) 1757-1867, arXiv:hep-ph/0510213.
Status of global fits to neutrino oscillations, M. Maltoni, T. Schwetz, M.A. Tortola, J.W.F. Valle, New J. Phys. 6 (2004) 122, arXiv:hep-ph/0405172.
Neutrinos in cosmology, A. D. Dolgov, Phys. Rep. 370 (2002) 333-535, arXiv:hep-ph/0202122.
Neutrino Masses and Mixing: Evidence and Implications, M.C. Gonzalez-Garcia, Y. Nir, Rev. Mod. Phys. 75 (2003) 345-402, arXiv:hep-ph/0202058.
Phenomenology of neutrino oscillations, S. M. Bilenky, C. Giunti, W. Grimus, Prog. Part. Nucl. Phys. 43 (1999) 1, arXiv:hep-ph/9812360.

7 - Reviews - Phenomenology - Conference Proceedings

Light sterile neutrinos: the current picture from neutrino oscillations, S. Gariazzo, arXiv:1911.03463, 2019. TAUP 2019, Toyama, Japan, September 9-13, 2019.
Light sterile neutrinos: oscillations and cosmology, S. Gariazzo, Acta Phys.Polon. B50 (2019) 1719, arXiv:1910.13172. Matter To The Deepest, XLIII International Conference of Theoretical Physics, Katowice/Chorzow, Poland, 1-6 September 2019.
Sterile Neutrino. A short introduction, Dmitry V.Naumov, EPJ Web Conf. 207 (2019) 04004, arXiv:1901.00151. VLVnT2018.
The interplay between cosmology, particle physics and astrophysics, Aaron C. Vincent, PoS EDSU2018 (2018) 007, arXiv:1811.04148. 2nd World Summit on Exploring the Dark Side of the Universe (25-29 June 2018, Pointe-a-Pitre).
Phenomenology of light sterile neutrinos, Antonio Palazzo, PoS NEUTEL2017 (2018) 040. 17th International Workshop on Neutrino Telescopes (Neutel 2017): Venice, Italy, March 13-17, 2017.
Short- and long-baseline sterile neutrino phenomenology, Antonio Palazzo, arXiv:1705.01592, 2017. NuPhys2016 (London, 12-14 December 2016).
keV sterile neutrino Dark Matter, Alexander Merle, PoS NOW2016 (2017) 082, arXiv:1702.08430. NOW 2016.
Status of Dark Matter in the Universe, Katherine Freese, Int.J.Mod.Phys. D26 (2017) 1730012, arXiv:1701.01840. 14th Marcel Grossman Meeting, MG14, University of Rome 'La Sapienza', Rome, July 2015.
Long baseline experiments: a new window on sterile neutrinos, Antonio Palazzo, PoS EPS-HEP2017 (2017) 126. 2017 European Physical Society Conference on High Energy Physics (EPS-HEP 2017): Venice, Italy, July 5-12, 2017.
Phenomenology of light sterile neutrinos, A. Palazzo, Nuovo Cim. C40 (2017) 53. 15th Incontri di Fisica delle Alte Energie (IFAE 2016): Genoa, Italy, March 30-April 1, 2016.
Status of Light Sterile Neutrinos, Carlo Giunti, PoS EPS-HEP2017 (2017) 110. 2017 European Physical Society Conference on High Energy Physics (EPS-HEP 2017): Venice, Italy, July 5-12, 2017.
A Review on Present Status of Neutrino Mixings and Oscillations, Carlo Giunti, 2017. 17th Lomonosov Conference on Elementary Particle Physics: Moscow, Russia, August 20-26, 2015.
Sterile Neutrino Searches: Experiment and Theory, Carlo Giunti, Nucl. Part. Phys. Proc. 287-288 (2017) 133-138. 14th International Workshop on Tau Lepton Physics (TAU 2016): Beijing, China, September 19-23, 2016.
Light sterile neutrinos and neutrinoless double-beta decay, Carlo Giunti, AIP Conf. Proc. 1894 (2017) 020009. Matrix Elements for the Double beta decay Experiments (MEDEX'17): Prague, Czech Republic.
Oscillations Beyond Three-Neutrino Mixing, Carlo Giunti, J. Phys. Conf. Ser. 888 (2017) 012019, arXiv:1609.04688. Neutrino 2016, XXVII International Conference on Neutrino Physics and Astrophysics, 4-9 July 2016, London, UK.
Neutrino physics and precision cosmology, Steen Hannestad, arXiv:1605.03829, 2016. NuPhys2015 (London, 16-18 December 2015).
Light Sterile Neutrinos In Cosmology, Stefano Gariazzo, arXiv:1601.01475, 2016. 17th Lomonosov Conference.
Sterile Neutrinos, Antonio Palazzo, J. Phys. Conf. Ser. 718 (2016) 022015. 14th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2015): Torino, Italy, September 7-11, 2015.
Heavy neutrinos in particle physics and cosmology, Marco Drewes, PoS EPS-HEP2015 (2015) 075, arXiv:1510.07883. EPS-HEP2015.
Constraining right-handed neutrinos, F. J. Escrihuela, D. V. Forero, O. G. Miranda, M. Tortola, J. W. F. Valle, Nucl.Part.Phys.Proc. 273-275 (2016) 1909-1914, arXiv:1505.01097. ICHEP14.
How many new particles do we need after the Higgs boson?, Marco Drewes, arXiv:1405.2931, 2014. 49th Rencontres de Moriond on Electroweak Interactions and Unified Theories (2014).
Status of Neutrino Mass and Mixing, Guido Altarelli, Int.J.Mod.Phys. A29 (2014) 1444002, arXiv:1404.3859. International Conference on Flavor Physics and Mass Generation, Singapore, February 2014.
Are There Sterile Neutrinos?, Boris Kayser, AIP Conf.Proc. 1604 (2014) 201-203, arXiv:1402.3028. CETUP Workshop on Neutrino Physics and Astrophysics.
Reactors antineutrino anomalies and searches for sterile neutrinos in Europe, M. Cribier, PoS Neutel2013 (2014) 020.
Sterile neutrinos, C. Giunti, Nuovo Cim. C037 (2014) 95-100.
Theory of oscillations and sterile neutrinos, Antonio Palazzo, J. Phys. Conf. Ser. 556 (2014) 012062.
Phenomenology of neutrino oscillations and mixing, M. Laveder, C. Giunti, Acta Phys.Polon. B44 (2013) 2323-2330, arXiv:1310.7478. XXXVII International Conference of Theoretical Physics 'Matter to the deepest', Ustron, 1-6 September 2013.
Towards the Chalonge Meudon Workshop 2013. Highlights and Conclusions of the Chalonge Meudon workshop 2012: warm dark matter galaxy formation in agreement with observations, P.L. Biermann, H.J. de Vega, N.G. Sanchez, arXiv:1305.7452, 2013.
Status of Sterile Neutrinos, C. Giunti, Nucl. Phys. Proc. Suppl. 237-238 (2013) 295-300.
Phenomenology of light sterile neutrinos, C. Giunti, Acta Phys.Polon.Supp. 6 (2013) 667-674.
Low-energy sterile neutrinos: Theory, Antonio Palazzo, Nucl. Phys. Proc. Suppl. 237-238 (2013) 121-123.
Neutrino 2012: Outlook - theory, A. Yu. Smirnov, Nucl. Phys. Proc. Suppl. 235-236 (2013) 431-440, arXiv:1210.4061. XXV International Conference on Neutrino Physics and Astrophysics, June 3 - 9, 2012, Kyoto, Japan.
Tensions with the Three-Neutrino Paradigm, Boris Kayser, arXiv:1207.2167, 2012. Electroweak Session of the 47th Rencontres de Moriond.
Neutrinos and the Universe, Nick E. Mavromatos, J. Phys. Conf. Ser. 408 (2013) 012003, arXiv:1110.3729. Nufact 11, CERN and U. of Geneva, 1-6 August 2011.
Perspectives in Neutrino Physics, Guido Altarelli, arXiv:1107.1980, 2011. XIV International Workshop on 'Neutrino Telescopes' Venice, Italy, March 15-18, 2011.
Sterile Neutrino Fits, Carlo Giunti, arXiv:1106.4479, 2011. La Thuile 2011, NeuTel 2011 and IFAE 2011.
Lectures on neutrino phenomenology, Walter Winter, Nucl. Phys. B, Proc. Suppl. 203-204 2010 (2010) 45-81, arXiv:1004.4160. Schladming Winter School 2010 'Masses and Constants'.
Dark Matter Astrophysics, Guido D'Amico, Marc Kamionkowski, Kris Sigurdson, arXiv:0907.1912, 2009. Villa Olmo School on 'The Dark Side of the Universe,' 14-18 May 2007 and XIX Heidelberg Physics Graduate Days, 8-12 October 2007.
Bounds on Light Dark Matter, Alexey Boyarsky, Oleg Ruchayskiy, arXiv:0811.2385, 2008. 4th Patras Workshop on Axions, WIMPs and WISPs, DESY, Hamburg, Germany, 18-21 June 2008.
Neutrino oscillations: present status and outlook, Thomas Schwetz, AIP Conf. Proc. 981 (2008) 8-12, arXiv:0710.5027. NuFact07, Okayama, Japan.
Unbound neutrino roadmaps, Marco Laveder, Nucl. Phys. Proc. Suppl. 168 (2007) 344-346. Workshop on Neutrino Oscillation Physics (NOW 2006), Otranto, Lecce, Italy, 9-16 Sep 2006.
Sterile neutrino states, Alexander Kusenko, Nucl. Phys. Proc. Suppl. 221 (2011) 149-154, arXiv:hep-ph/0609158. Neutrino 2006.
Solar Neutrinos (with a tribute to John. N. Bahcall), G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo, arXiv:hep-ph/0605186, 2006. 3rd International Workshop on NO-VE: Neutrino Oscillations in Venice: 50 Years after the Neutrino Experimental Discovery, Venice, Italy, 7-10 Feb 2006.
Physics of Massive Neutrinos, J. W. F. Valle, Nucl. Phys. Proc. Suppl. 149 (2005) 3, arXiv:hep-ph/0410103. Sixth International Conf. on Neutrino Factories and SuperBeams (NuFact04) Osaka, Japan, July 26-August 1, 2004.
Global Analysis of Neutrino Data, M. C. Gonzalez-Garcia, Phys. Scripta T121 (2005) 72, arXiv:hep-ph/0410030. Nobel Symposium on Neutrino Physics, Haga Slott, Enkoping, Sweden.
Neutrino Physics: Open Theoretical Questions, A. Yu. Smirnov, Int. J. Mod. Phys. A19 (2004) 1180, arXiv:hep-ph/0311259. Lepton Photon 2003, 11-16 August 2003, Fermi National Accelerator Laboratory, Batavia, Illinois USA.
Comment: The figure in slide n.13 shows the sensitivity of MiniBoone in the $\nu_{\mu} \to \nu_{\mu}$ channel together with the predictions of a combined fit of LSND and null short-baseline experiments. [M.L.].
Brief Neutrino Physics Update, J. W. F. Valle, arXiv:hep-ph/0310125, 2003. String Phenomenology Workshop held at Durham, July 29 - August 4, 2003.
Neutrino masses twenty-five years later, J. W. F. Valle, Aip Conf. Proc. 687 (2003) 16, arXiv:hep-ph/0307192. MRST'03 (Joe-Fest), Syracuse, NY, May 2003.
Neutrino Physics after KamLAND, A. Yu. Smirnov, arXiv:hep-ph/0306075, 2003. 4th Workshop on 'Neutrino Oscillations and their Origin' (NOON2003), February 10-14, 2003, Ishikawa Kousei Nenkin Kaikan, Kanazawa, Japan.

8 - PhD Theses

Implication of Sterile Fermions in Particle Physics and Cosmology, Michele Lucente, arXiv:1609.07081, 2016.
Phenomenology of the Sterile Neutrinos, Zahra Tabrizi, arXiv:1605.09680, 2016.
New Developments in Cosmology, Stefano Gariazzo, arXiv:1603.09102, 2016.
Sterile Neutrinos in Cold Climates, Benjamin J. P. Jones, 2015. PhD thesis, FERMILAB-THESIS-2015-17.
New physics with atmospheric Neutrinos, C. A. Arguelles, 2015. PhD thesis, ISBN 978-1-339-06088-0.
Phenomenological Aspects of Four-neutrino Models, A. Kalliomaki, 2003. Academic Dissertation, June 2003. University of Helsinki.

9 - Experiment - Neutrino Oscillations

Improved Constraints on Sterile Neutrino Mixing from Disappearance Searches in the MINOS, MINOS+, Daya Bay, and Bugey-3 Experiments, Daya Bay MINOS+, arXiv:2002.00301, 2020.
Improved Sterile Neutrino Constraints from the STEREO Experiment with 179 Days of Reactor-On Data, Helena Almazan Molina et al. (STEREO), arXiv:1912.06582, 2019.
Final results on neutrino oscillation parameters from the OPERA experiment in the CNGS beam, N. Agafonova et al. (OPERA), Phys.Rev. D100 (2019) 051301, arXiv:1904.05686.
Search for light sterile neutrinos with the T2K far detector Super-Kamiokande at a baseline of 295 km, K. Abe et al. (T2K), Phys.Rev. D99 (2019) 071103, arXiv:1902.06529.
Measuring the atmospheric neutrino oscillation parameters and constraining the 3+1 neutrino model with ten years of ANTARES data, A. Albert et al. (ANTARES), JHEP 1906 (2019) 113, arXiv:1812.08650.
The first observation of effect of oscillation in Neutrino-4 experiment on search for sterile neutrino, A.P. Serebrov et al. (Neutrino-4), Pisma Zh.Eksp.Teor.Fiz. 109 (2019) 209-218, arXiv:1809.10561.
First search for short-baseline neutrino oscillations at HFIR with PROSPECT, J. Ashenfelter et al. (PROSPECT), Phys.Rev.Lett. 121 (2018) 251802, arXiv:1806.02784.
Sterile neutrino exclusion from the STEREO experiment with 66 days of reactor-on data, H. Almazan et al. (STEREO), Phys.Rev.Lett. 121 (2018) 161801, arXiv:1806.02096.
Fuel-composition dependent reactor antineutrino yield and spectrum at RENO, G. Bak et al. (RENO), Phys.Rev.Lett. 122 (2019) 232501, arXiv:1806.00574.
Observation of a Significant Excess of Electron-Like Events in the MiniBooNE Short-Baseline Neutrino Experiment, A. A. Aguilar-Arevalo et al. (MiniBooNE), Phys.Rev.Lett. 121 (2018) 221801, arXiv:1805.12028.
Search for sterile neutrinos at the DANSS experiment, I. Alekseev et al. (DANSS), Phys.Lett. B787 (2018) 56-63, arXiv:1804.04046.
Final results of the search for $\nu_\mu \to \nu_{e}$ oscillations with the OPERA detector in the CNGS beam, N. Agafonova et al. (OPERA), arXiv:1803.11400, 2018.
Search for sterile neutrinos in MINOS and MINOS+ using a two-detector fit, P. Adamson et al. (MINOS), Phys.Rev.Lett. 122 (2019) 091803, arXiv:1710.06488.
Experiment Neutrino-4 on search for sterile neutrino at SM-3 reactor, A. P. Serebrov et al. (Neutrino-4), arXiv:1708.00421, 2017.
Search for active-sterile neutrino mixing using neutral-current interactions in NOvA, P. Adamson et al. (NOvA), Phys.Rev. D96 (2017) 072006, arXiv:1706.04592.
Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay, F. P. An et al. (Daya Bay), Phys.Rev.Lett. 118 (2017) 251801, arXiv:1704.01082.
Search for sterile neutrino mixing using three years of IceCube DeepCore data, M. G. Aartsen et al. (IceCube), Phys.Rev. D95 (2017) 112002, arXiv:1702.05160.
Experiment NEUTRINO-4 Search for Sterile Neutrino, A. P. Serebrov et al. (Neutrino-4), PoS INPC2016 (2017) 255, arXiv:1702.00941.
Search for sterile neutrinos in the neutrino-4 experiment, A. P. Serebrov et al. (Neutrino-4), JETP Lett. 105 (2017) 347-351. [Zh. Eksp. Teor. Fiz.105,329(2017)].
A sterile neutrino search at NEOS Experiment, Y.J. Ko et al. (NEOS), Phys.Rev.Lett. 118 (2017) 121802, arXiv:1610.05134.
Improved Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay, F.P. An et al. (Daya Bay), Chin.Phys. C41 (2017) 013002, arXiv:1607.05378.
Limits on Active to Sterile Neutrino Oscillations from Disappearance Searches in the MINOS, Daya Bay, and Bugey-3 Experiments, P. Adamson et al. (MINOS, Daya Bay), Phys.Rev.Lett. 117 (2016) 151801, arXiv:1607.01177.
A search for sterile neutrinos mixing with muon neutrinos in MINOS, P. Adamson et al. (MINOS), Phys. Rev. Lett. 117 (2016) 151803, arXiv:1607.01176.
Improved Search for a Light Sterile Neutrino with the Full Configuration of the Daya Bay Experiment, F.P. An et al. (Daya Bay), Phys. Rev. Lett. 117 (2016) 151802, arXiv:1607.01174.
Searches for Sterile Neutrinos with the IceCube Detector, M. G. Aartsen et al. (IceCube), Phys. Rev. Lett. 117 (2016) 071801, arXiv:1605.01990.
Online Monitoring of the Osiris Reactor with the Nucifer Neutrino Detector, G. Boireau et al. (NUCIFER), Phys. Rev. D93 (2016) 112006, arXiv:1509.05610.
Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay, F. P. An et al. (Daya Bay), Phys. Rev. Lett. 116 (2016) 061801, arXiv:1508.04233.
Limits on muon-neutrino to tau-neutrino oscillations induced by a sterile neutrino state obtained by OPERA at the CNGS beam, N. Agafonova et al. (OPERA), JHEP 1506 (2015) 069, arXiv:1503.01876.
Some conclusive considerations on the comparison of the ICARUS $\nu_\mu \to \nu_e$ oscillation search with the MiniBooNE low-energy event excess, M. Antonello et al., arXiv:1502.04833, 2015.
Search for short baseline $\nu_e$ disappearance with the T2K near detector, K. Abe et al. (T2K), Phys. Rev. D91 (2015) 051102, arXiv:1410.8811.
Limits on Sterile Neutrino Mixing using Atmospheric Neutrinos in Super-Kamiokande, K. Abe et al. (Super-Kamiokande), Phys. Rev. D91 (2015) 052019, arXiv:1410.2008.
Search for a Light Sterile Neutrino at Daya Bay, F. P. An et al. (DAYA-BAY), Phys. Rev. Lett. 113 (2014) 141802, arXiv:1407.7259.
Using L/E Oscillation Probability Distributions, A. A. Aguilar-Arevalo et al. (MiniBooNE), arXiv:1407.3304, 2014.
Search for anomalies in the $\nu_e$ appearance from a $\nu_\mu$ beam, M. Antonello et al. (ICARUS), Eur.Phys.J. C73 (2013) 2599, arXiv:1307.4699.
Search for $\nu_\mu\to\nu_e$ oscillations with the OPERA experiment in the CNGS beam, N. Agafonova et al. (OPERA), JHEP 1307 (2013) 004, arXiv:1303.3953.
Improved Search for $\bar\nu_\mu \to \bar\nu_e$ Oscillations in the MiniBooNE Experiment, A.A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Rev. Lett. 110 (2013) 161801, arXiv:1303.2588.
Experimental search for the LSND anomaly with the ICARUS detector in the CNGS neutrino beam, M Antonello, B Baibussinov, P Benetti, E Calligarich, N Canci et al. (ICARUS), Eur.Phys.J. C73 (2013) 2345, arXiv:1209.0122.
Dual baseline search for muon antineutrino disappearance at $0.1 \text{eV}^2 < \Delta{m}^2 < 100 \text{eV}^2$, G. Cheng et al. (SciBooNE-MiniBooNE), Phys. Rev. D86 (2012) 052009, arXiv:1208.0322.
A Combined $\nu_\mu \to \nu_e$ and $\bar\nu_\mu \to \bar\nu_e$ Oscillation Analysis of the MiniBooNE Excesses, A.A. Aguilar-Arevalo et al. (MiniBooNE), arXiv:1207.4809, 2012.
Test of Lorentz and CPT violation with Short Baseline Neutrino Oscillation Excesses, A. A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Lett. B718 (2013) 1303-1308, arXiv:1109.3480.
Dual baseline search for muon neutrino disappearance at $0.5 < \Delta{m}^2 < 40 \, \text{eV}^2$, K. B. M. Mahn et al. (SciBooNE-MiniBooNE), Phys. Rev. D85 (2012) 032007, arXiv:1106.5685.
Active to sterile neutrino mixing limits from neutral-current interactions in MINOS, P. Adamson et al. (MINOS), Phys. Rev. Lett. 107 (2011) 011802, arXiv:1104.3922.
Observed Event Excess in the MiniBooNE Search for $\bar\nu_{\mu} \rightarrow \bar\nu_e$ Oscillations, A. A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Rev. Lett. 105 (2010) 181801, arXiv:1007.1150.
Search for sterile neutrino mixing in the MINOS long- baseline experiment, P. Adamson et al. (MINOS), Phys. Rev. D81 (2010) 052004, arXiv:1001.0336.
A Search for Electron Neutrino Appearance at the $ \Delta{m}^{2} \sim 1 \, \text{eV}^{2} $ Scale, A. A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Rev. Lett. 98 (2007) 231801, arXiv:0704.1500.
Evidence for neutrino oscillations from the observation of $\bar\nu_e$ appearance in a $\bar\nu_\mu$ beam, A. Aguilar et al. (LSND), Phys. Rev. D64 (2001) 112007, arXiv:hep-ex/0104049.
A high statistics search for $\nu_e (\bar\nu_e) \to \nu_\tau (\bar\nu_\tau)$ oscillations, D. Naples et al. (CCFR/NuTeV), Phys. Rev. D59 (1999) 031101, arXiv:hep-ex/9809023.
Evidence for $\nu_\mu \to \nu_e$ neutrino oscillations from LSND, C. Athanassopoulos et al. (LSND), Phys. Rev. Lett. 81 (1998) 1774-1777, arXiv:nucl-ex/9709006.
Evidence for $\nu_\mu \to \nu_e$ oscillations from pion decay in flight neutrinos, C. Athanassopoulos et al. (LSND), Phys. Rev. C58 (1998) 2489-2511, arXiv:nucl-ex/9706006.
Evidence for $\bar\nu_\mu \to \bar\nu_e$ oscillation from the LSND experiment at the Los Alamos Meson Physics Facility, C. Athanassopoulos et al. (LSND), Phys. Rev. Lett. 77 (1996) 3082-3085, arXiv:nucl-ex/9605003.
Evidence for neutrino oscillations from muon decay at rest, C. Athanassopoulos et al. (LSND), Phys. Rev. C54 (1996) 2685-2708, arXiv:nucl-ex/9605001.
Candidate events in a search for $\bar\nu_\mu \to \bar\nu_e$ oscillations, C. Athanassopoulos et al. (LSND), Phys. Rev. Lett. 75 (1995) 2650-2653, arXiv:nucl-ex/9504002.

10 - Experiment - Neutrino Oscillations - Conference Proceedings

Recent results of the DANSS experiment, Mikhail Danilov (DANSS), arXiv:1911.10140, 2019. European Physical Society Conference on High Energy Physics, EPS-HEP2019, 10-17 July 2019, Ghent, Belgium.
A Search for Sterile Neutrinos with PROSPECT, Olga Kyzylova (PROSPECT), arXiv:1910.06314, 2019. 2019 Meeting of the Division of Particles and Fields of the American Physical Society (DPF2019), July 29 - August 2, 2019, Northeastern University, Boston.
Results from the STEREO Experiment with 119 days of Reactor-on Data, Laura Bernard (STEREO), arXiv:1905.11896, 2019. 2019 EW/QCD/Gravitation session of the 54th Rencontres de Moriond.
Recent results of the DANSS experiment, Mikhail Danilov, arXiv:1811.07354, 2018. La Thuile 2018.
Sterile Neutrino Search in the Neutrino-4 Experiment at the SM-3 Reactor, A. P. Serebrov et al., Phys. Part. Nucl. 49 (2018) 701-708. International Session-Conference 'Physics of Fundamental Interactions', Nalchik, Russia, June 6-8, 2017.
Sterile neutrino search in the NOvA Far Detector, Sijith Edayath et al., arXiv:1710.01280, 2017. APS Division of Particles and Fields Meeting (DPF 2017), July 31-August 4, 2017, Fermilab.
NOvA Short-Baseline Tau Neutrino Appearance Search, Rijeesh Keloth et al., arXiv:1710.00295, 2017. APS Division of Particles and Fields Meeting (DPF 2017), July 31-August 4, 2017, Fermilab.
Atmospheric neutrinos and new physics, Nuria Rius (IceCube), arXiv:1705.09140, 2017. Talk presented at NuPhys2016 (London, 12-14 December 2016).
New Constraints on Sterile Neutrinos with MINOS/MINOS+ and Daya Bay, Thomas Joseph Carroll, arXiv:1705.05064, 2017. 52nd Rencontres de Moriond EW 2017.
Current Results of NEUTRINO-4 Experiment, A. Serebrov et al., J. Phys. Conf. Ser. 934 (2017) 012010.
Status of Experiment NEUTRINO-4 Search for Sterile Neutrino, A. Serebrov et al. (Neutrino-4), J.Phys.Conf.Ser. 798 (2017) 012116, arXiv:1611.05245.
Results from the OPERA experiment, Donato Di Ferdinando (OPERA), arXiv:1608.01595, 2016. NuPhys2015 (London, 16-18 December 2015).
Results and Prospects from the Daya Bay Reactor Neutrino Experiment, A. Higuera (Daya Bay), arXiv:1607.07324, 2016. Seventh Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, June 20-24, 2016.
Neutrino-4 experiment on search for sterile neutrino with multi-section model of detector, A. P. Serebrov et al. (Neutrino-4), J.Phys.Conf.Ser. 888 (2017) 012089, arXiv:1605.05909.
Searching for Sterile Neutrinos with MINOS, Ashley Timmons (MINOS), arXiv:1605.04544, 2016. 51st Rencontres de Moriond EW 2016.
Search for exotic transitions of muon neutrinos to electron neutrinos with MINOS, Marianna Gabrielyan (MINOS), arXiv:1511.00179, 2015. DPF 2015 Meeting of the American Physical Society Division of Particles and Fields, Ann Arbor, Michigan, August 4-8, 2015.
Search for Sterile Neutrinos at OPERA and other Long-Baseline Experiments, Luca Stanco, PoS EPS-HEP2015 (2016) 057, arXiv:1510.04151. EPS2015, Vienna 22-29 July 2015.
OPERA neutrino oscillation search: status and perspectives, Giuliana Galati (OPERA), arXiv:1510.00343, 2015. CIPANP2015.
Searches for sterile neutrinos using the T2K off-axis near detector, Debra Dewhurst (T2K), arXiv:1504.08237, 2015. Prospects in Neutrino Physics Conference, 15 - 17 December, 2014, Queen Mary University of London, UK.
Searching for Sterile Neutrinos at MINOS, Ashley Timmons (MINOS), arXiv:1504.04046, 2015. NuPhys2014.
MiniBooNE Oscillation Results 2011, Zelimir Djurcic (MiniBooNE), J. Phys. Conf. Ser. 408 (2013) 012027, arXiv:1201.1519. NuFact 2011.
Updated Search for Electron Antineutrino Appearance at MiniBooNE, E. D. Zimmerman (MiniBooNE), AIP Conf. Proc. 1441 (2012) 458-460, arXiv:1111.1375. PANIC 2011.
MINOS Search for Sterile Neutrinos, Alexandre Sousa (MINOS), J. Phys. Conf. Ser. 408 (2013) 012026, arXiv:1110.3455. NuFact 2011.
Analysis of Neutral Current Interactions in MINOS: A Search for Sterile Neutrinos, Alexandre Sousa (MINOS), arXiv:0910.1369, 2009. DPF-2009, Detroit, MI, July 2009.
Neutrino Oscillation Search at MiniBooNE, Z. Djurcic (MiniBooNE), Nucl. Phys. Proc. Suppl. 168 (2007) 309-314, arXiv:hep-ex/0701017. Neutrino Oscillation Workshop (NOW2006), September 2006.

11 - Experiment - Neutrino Oscillations - Slides

MiniBooNE Results, Zelimir Djurcic (MiniBooNE), 2011. NUFACT 2011.
Short-baseline neutrino physics at MiniBooNE, E.D. Zimmerman (MiniBooNE), 2011. PANIC 2011.
MiniBooNE $\nu$ Oscillation Results, W.C. Louis (MiniBooNE), 2010. Aspen Winter Conference, January 22, 2010.
Results from Miniboone, G. Karagiorgi (MiniBooNE), 2009. 22nd International Workshop on Weak Interactions and Neutrinos Search, 14-19 September 2009, PERUGIA, Italy.
MiniBooNE Request for More Antineutrino Running, Richard Van de Water (MiniBooNE), 2009. PAC Review, March 5, 2009.
MiniBoone Oscillation Results, Zelimir Djurcic (MiniBooNE), 2009. Moriond EW 2009, Electroweak Interactions and Unified Theories, 7-14 March 2009, La Thuile, Aosta Valley, Italy.
Results from Miniboone, Georgia Karagiorgi (MiniBooNE), 2009. La Thuile 2009, Les Rencontres de Physique de La Vallee d'Aoste, 1-7 March 2009, La Thuile, Aosta Valley, Italy.
First MiniBooNE $\bar\nu_{e}$ Appearance Results, G. Karagiorgi (MiniBooNE), 2008. FNAL, 11 December 2008.
MiniBooNE and the Holy Grail - First Antineutrino Results!, H. Ray (MiniBooNE), 2008. Miami 2008, 16-21 December 2008, Fort Lauderdale, Florida, USA.
Results of the MiniBooNE neutrino oscillation search, E. D. Zimmerman (MiniBooNE), 2007. American Physical Society Meeting, Jacksonville, 16 April 2007.
First Results from MiniBooNE, W. Louis, J. Conrad (MiniBooNE), 2007. 11 April 2007.
Neutrino Oscillation Results from MiniBooNE, R. Tayloe (MiniBooNE), 2007. Lepton-Photon 2007, 12-18 August 2007, Daegu, Korea.
Sterile Neutrino Oscillations and CP-Violation Implications for MiniBooNE, G. Karagiorgi (MiniBooNE), 2007. NuFact07, 6-11 August 2007, Okayama, Japan.
MiniBooNE results on oscillations and its implications, M. Shaevitz (MiniBooNE), 2007. TAUP 2007, 11-15 September 2007, Sendai, Japan.
First Neutrino Oscillation Results From MiniBooNE, M. Sorel (MiniBooNE), 2007. CERN, 15 May 2007.
MiniBooNE Beam MC, Including HARP Data, D. Schmitz (Harp), 2005. 5th International Workshop on Neutrino Beams and Instrumentation,July 7-11, 2005, Fermilab, Batavia Illinois.
Status of MiniBooNE, R. Stefanski (Miniboone), 2005. 5th International Workshop on Neutrino Beams and Instrumentation, July 7-11, 2005, Fermilab, Batavia, Illinois.
Measurement of the SAGE Response to Neutrinos from Ar37 Source, V.N. Gavrin (SAGE), 2005. XI International Workshop on Neutrino Telescopes, February 22-25, 2005, Venice, Italy.
Comment: The ratio of the production rate (MEASURED/PREDICTED) is $0.79 +0.09 -0.10$.
Final Neutrino Oscillation Results from LSND and Karmen, G. Drexlin, 2002. XXth International Conference on Neutrino Physics and Astrophysics May 25 - 30, 2002, Munich, Germany.
MiniBooNE : Status and Plans, A. Bazarko, 2002. 19th International Workshop on Weak Interactions and Neutrinos, WIN2003, October 6-11, Lake Geneva, Wisconsin U.S.A.
Comment: The figure in slide n.27 shows the MiniBoone $ 90 \% $ C.L. sensitivity for $\nu_\mu \rightarrow \nu_\mu$ oscillations. [M.L.].

12 - Experiment

Search for heavy neutral leptons decaying into muon-pion pairs in the MicroBooNE detector, P. Abratenko et al., arXiv:1911.10545, 2019.
Search for heavy neutral leptons in decays of $W$ bosons produced in 13 TeV $pp$ collisions using prompt and displaced signatures with the ATLAS detector, Georges Aad et al. (ATLAS), JHEP 1910 (2019) 265, arXiv:1905.09787.
Search for a right-handed gauge boson decaying into a high-momentum heavy neutrino and a charged lepton in $pp$ collisions with the ATLAS detector at $\sqrt{s}=13$ TeV, Morad Aaboud et al. (ATLAS), Phys.Lett. B798 (2019) 134942, arXiv:1904.12679.
Search for Heavy Neutrinos in $\pi\to \mu\nu$ Decay, A. Aguilar-Arevalo et al., Phys.Lett. B798 (2019) 134980, arXiv:1904.03269.
Linear Analysis of Fast-Pairwise Collective Neutrino Oscillations in Core-Collapse Supernovae based on the Results of Boltzmann Simulations, Milad Delfan Azari, Shoichi Yamada, Taiki Morinaga, Wakana Iwakami, Hiroki Nagakura, Kohsuke Sumiyoshi, Phys.Rev. D99 (2019) 103011, arXiv:1902.07467.
An X-ray spectroscopic search for dark matter and unidentified line signatures in the Perseus cluster with Hitomi, Takayuki Tamura et al., Publ.Astron.Soc.Jap. 71 (2019) Publications of the Astronomical Society of Japan, Volume 71, Issue 3, June 2019, 50,, arXiv:1811.05767.
Search for heavy Majorana or Dirac neutrinos and right-handed $W$ gauge bosons in final states with two charged leptons and two jets at $\sqrt{s}$ = 13 TeV with the ATLAS detector, Morad Aaboud et al. (ATLAS), JHEP 1901 (2019) 016, arXiv:1809.11105.
Improved Search for Heavy Neutrinos in the Decay $\pi\rightarrow e\nu$, A. Aguilar-Arevalo et al., Phys.Rev. D97 (2018) 072012, arXiv:1712.03275.
Search for heavy neutrino in $K^{+} \to \mu^{+} \nu_{H}$ decay, A.S. Sadovsky et al., Eur.Phys.J. C78 (2018) 92, arXiv:1709.01473.
Search for Heavy Neutrinos in $K^+ \rightarrow \mu^+ \nu_{\mu}$ Decays, Cristina Lazzeroni et al. (NA62), Phys.Lett. B772 (2017) 712-718, arXiv:1705.07510.
First measeurements in search for keV-sterile neutrino in tritium beta-decay by Troitsk nu-mass experiment, J.N. Abdurashitov et al., arXiv:1703.10779, 2017.
Searching for the 3.5 keV Line in the Deep Fields with Chandra: the 10 Ms observations, Nico Cappelluti, Esra Bulbul, Adam Foster, Priyamvada Natarajan, Megan C. Urry, Mark W. Bautz, Francesca Civano, Eric Miller, Randall K. Smith, Astrophys.J. 854 (2018) 179, arXiv:1701.07932.
Search for a heavy right-handed W boson and a heavy neutrino in events with two same-flavor leptons and two jets at sqrt(s)=13 TeV, CMS Collaboration, 2017. CMS-PAS-EXO-17-011.
Search for heavy neutrinos and $\mathrm{W}$ bosons with right handed couplings in proton-proton collisions at $\sqrt{s} = 13~\mathrm{TeV}$, CMS Collaboration, 2017. CMS-PAS-EXO-16-045.
(Almost) Closing the Sterile Neutrino Dark Matter Window with NuSTAR, Kerstin Perez et al., Phys.Rev. D95 (2017) 123002, arXiv:1609.00667.
Decaying dark matter search with NuSTAR deep sky observations, Andrii Neronov, Denys Malyshev, Dominique Eckert, Phys. Rev. D94 (2016) 123504, arXiv:1607.07328.
7.1 keV sterile neutrino constraints from X-ray observations of 33 clusters of galaxies with Chandra ACIS, F. Hofmann, J. S. Sanders, K. Nandra, N. Clerc, M. Gaspari, Astron.Astrophys. 592 (2016) A112, arXiv:1606.04091.
Searching for the 3.5 keV Line in the Stacked Suzaku Observations of Galaxy Clusters, Esra Bulbul et al., Astrophys.J. 831 (2016) 55, arXiv:1605.02034.
Dark matter line emission constraints from NuSTAR observations of the Bullet Cluster, S. Riemer-Sorensen et al., Astrophys. J. 810 (2015) 48, arXiv:1507.01378.
Search for heavy Majorana neutrinos with the ATLAS detector in pp collisions at $\sqrt{s} = 8$ TeV, (ATLAS), JHEP 07 (2015) 162, arXiv:1506.06020.
Searching for keV Sterile Neutrino Dark Matter with X-ray Microcalorimeter Sounding Rockets, Enectali Figueroa-Feliciano et al., Astrophys. J. 814 (2015) 82, arXiv:1506.05519.
The role of eROSITA all-sky survey in searches for sterile neutrino dark matter, Fabio Zandanel, Christoph Weniger, Shin'ichiro Ando, JCAP 1509 (2015) 060, arXiv:1505.07829.
Improved Limits on Sterile Neutrino Dark Matter using Full-Sky Fermi-GBM Data, Kenny C. Y. Ng, Shunsaku Horiuchi, Jennifer M. Gaskins, Miles Smith, Robert Preece, Phys. Rev. D92 (2015) 043503, arXiv:1504.04027.
A Search for a keV Signature of Radiatively Decaying Dark Matter with Suzaku XIS Observations of the X-ray Diffuse Background, Norio Sekiya, Noriko Y. Yamasaki, Kazuhisa Mitsuda, Publ. Astron. Soc. Jap. (2015), arXiv:1504.02826.
Search for heavy Majorana neutrinos in $\mu^{\pm} \mu^{\pm} + \text{jets}$ events in proton-proton collisions at $\sqrt{s} = 8 \, \text{TeV}$, Vardan Khachatryan et al. (CMS), Phys. Lett. B748 (2015) 144-166, arXiv:1501.05566.
An X-ray Spectroscopic Search for Dark Matter in the Perseus Cluster with Suzaku, Takayuki Tamura, Ryo Iizuka, Yoshitomo Maeda, Kazuhisa Mitsuda, Noriko Y. Yamasaki, Publ.Astron.Soc.Jap. 67 (2015) 23, arXiv:1412.1869.
Search for heavy neutrinos in $K^+\to\mu^+\nu_H$ decays, A.V. Artamonov et al. (E949), Phys. Rev. D91 (2015) 052001, arXiv:1411.3963.
An unidentified line in X-ray spectra of the Andromeda galaxy and Perseus galaxy cluster, Alexey Boyarsky, Oleg Ruchayskiy, Dmytro Iakubovskyi, Jeroen Franse, Phys. Rev. Lett. 113 (2014) 251301, arXiv:1402.4119.
Detection of An Unidentified Emission Line in the Stacked X-ray spectrum of Galaxy Clusters, Esra Bulbul et al., Astrophys.J. 789 (2014) 13, arXiv:1402.2301.
New limits on heavy sterile neutrino mixing in ${^{8}\rm{B}}$-decay obtained with the Borexino detector, G. Bellini et al. (Borexino), Phys. Rev. D 88, 072010 (2013) 072010, arXiv:1311.5347.
Precision measures of the primordial abundance of deuterium, Ryan Cooke, Max Pettini, Regina A. Jorgenson, Michael T. Murphy, Charles C. Steidel, Astrophys. J. 781 (2014) 31, arXiv:1308.3240.
A search for an additional neutrino mass eigenstate in 2 to 100 eV region from 'Troitsk nu-mass' data - detailed analysis, A.I. Belesev et al., J. Phys. G41 (2014) 015001, arXiv:1307.5687.
Search for heavy neutrinos at Belle, D. Liventsev et al. (Belle), Phys. Rev. D87 (2013) 071102, arXiv:1301.1105.
An upper limit on additional neutrino mass eigenstate in 2 to 100 eV region from 'Troitsk nu-mass' data, A.I. Belesev, A.I. Berlev, E.V. Geraskin, A.A. Golubev, N.A. Likhovid et al., JETP Lett. 97 (2013) 67-69, arXiv:1211.7193.
Limit on sterile neutrino contribution from the Mainz Neutrino Mass Experiment, Christine Kraus, Andrej Singer, Kathrin Valerius, Christian Weinheimer, Eur.Phys.J. C73 (2013) 2323, arXiv:1210.4194.
Dark Matter Search Using XMM-Newton Observations of Willman 1, Michael Loewenstein, Alexander Kusenko, Astrophys. J. 751 (2012) 82, arXiv:1203.5229.
Search for Heavy Neutrino in K- > mu nu_h(nu_h- > nu gamma) Decay at ISTRA+ Setup, V. A. Duk et al. (ISTRA+), Phys. Lett. B710 (2012) 307-317, arXiv:1110.1610.
Swift observation of Segue 1: constraints on sterile neutrino parameters in the darkest galaxy, N. Mirabal, Mon.Not.Roy.Astron.Soc. 409 (2010) 128, arXiv:1010.4706.
The primordial abundance of 4He: evidence for non-standard big bang nucleosynthesis, Y. I. Izotov, T. X. Thuan, Astrophys. J. 710 (2010) L67-L71, arXiv:1001.4440.
Search for the light dark matter with an X-ray spectrometer, Alexey Boyarsky, Jan Willem den Herder, Andrey Neronov, Oleg Ruchayskiy, Astropart. Phys. 28 (2007) 303-311, arXiv:astro-ph/0612219.
New experimental limits on heavy neutrino mixing in B-8 decay obtained with the Borexino Counting Test Facility, H. O. Back et al., JETP Lett. 78 (2003) 261-266.
Limits on the existence of heavy neutrinos in the range 50- eV - 1000-eV from the study of the Re-187 beta decay, M. Galeazzi, F. Fontanelli, F. Gatti, S. Vitale, Phys. Rev. Lett. 86 (2001) 1978-1981.

13 - Experiment - Conference Proceedings

Search for eV Sterile Neutrinos - The STEREO Experiment [Blois 2019], Stefan Schoppmann, arXiv:1909.01017, 2019. Rencontres de Blois 2019.
Search for heavy neutrinos at CERN SPS, Venelin Kozhuharov, arXiv:1904.09124, 2019. NuPhys2018 (London, 19-21 December 2018).
IceCube Sterile Neutrino Searches, B.J.P. Jones (IceCube), EPJ Web Conf. 207 (2019) 04005, arXiv:1902.06185. VLVNT2018.
Improved Search for Heavy Neutrinos and a Test of Lepton Universality in the Decay $\pi^+ \rightarrow \mbox{e}^+ \nu$, R.E. Mischke et al., arXiv:1809.10314, 2018. CIPANP2018.
Heavy neutrino searches and NA62 status, Nicolas Lurkin, arXiv:1808.00827, 2018. 52nd Rencontres de Moriond (EW session), La Thuile, 18-25 March 2017.
Search for heavy neutral leptons with the CMS detector, Willem Verbeke, arXiv:1805.05084, 2018. 53rd Rencontres de Moriond 2018: Electroweak Interactions and Unified Theories.
Recent results from NA48/2 and NA62 experiments at CERN, Nicolas Lurkin, PoS HQL2016 (2017) 033, arXiv:1701.06979. HQL 2016, Blacksburg, 22-27 May 2016.
Latest Results from MINOS and MINOS+, Simon De Rijck (MINOS+, MINOS), J. Phys. Conf. Ser. 873 (2017) 012032.
Kaon experiments at CERN: recent results and prospects, Evgueni Goudzovski, EPJ Web Conf. 130 (2016) 01019, arXiv:1609.02952. MESON 2016 (Krakow, 2-6 June 2016).
Improved limits on sterile neutrino dark matter from full-sky observations by the Fermi-GBM, Shunsaku Horiuchi, Kenny C. Y. Ng, Jennifer M. Gaskins, Miles Smith, Robert Preece, arXiv:1502.03399, 2015. 2014 Fermi Symposium.

14 - Experiment - Slides

Search for sterile neutrinos at the DANSS experiment, M. Danilov, 2017. Solvay Workshop 'Beyond the Standard model with Neutrinos and Nuclear Physics', 29 November - 1 December 2017, Brussels, Belgium.
Search for Sterile Neutrino at Short Baseline using a Nuclear Reactor, Yoomin Oh et al., 2016. ICHEP 2016, 38th International Conference on High Energy Physics, 3-10 August 2016, Chicago, IL, USA.
First Results from Searches for Active to Sterile Neutrino Oscillations with NOvA, Gavin Davies, 2016. Fermilab Joint Experimental-Theoretical Physics Seminar, 29 July 2016.
Results from Daya Bay, Chao Zhang, 2014. Neutrino 2014, XXVI International Conference on Neutrino Physics and Astrophysics, 2-7 June 2014, Boston, Massachusetts, USA.

15 - Phenomenology

Simulation of an experiment on looking for sterile neutrinos at nuclear reactor, S. V. Silaeva, V. V. Sinev, arXiv:2001.10752, 2020.
The gallium anomaly reassessed using a Bayesian approach, Joel Kostensalo, Santtu Tikka, Jouni Suhonen, arXiv:2001.10064, 2020.
KATRIN bound on 3+1 active-sterile neutrino mixing and the reactor antineutrino anomaly, C. Giunti, Y.F. Li, Y.Y. Zhang, arXiv:1912.12956, 2019.
Sensitivity to light sterile neutrinos at ESSnuSB, Monojit Ghosh, Tommy Ohlsson, Salvador Rosauro-Alcaraz, arXiv:1912.10010, 2019.
Neutrinoless double beta decay versus other probes of heavy sterile neutrinos, Patrick D. Bolton, Frank F. Deppisch, P. S. Bhupal Dev, arXiv:1912.03058, 2019.
A new analysis of the MiniBooNE low-energy excess, C. Giunti, A. Ioannisian, G. Ranucci, arXiv:1912.01524, 2019.
Prospects of light sterile neutrino searches in long-baseline experiments, Yakefu Reyimuaji, Chun Liu, arXiv:1911.12524, 2019.
Probing ALP-Sterile Neutrino Couplings at the LHC, Alexandre Alves, Alex G. Dias, Diego D. Lopes, arXiv:1911.12394, 2019.
Effect of light sterile neutrino on currently running long-baseline experiments, Rudra Majhi, Soumya C, Rukmani Mohanta, arXiv:1911.10952, 2019.
New constraints on Heavy Neutral Leptons from Super-Kamiokande data, Pilar Coloma, Pilar Hernandez, Victor Munoz, Ian. M. Shoemaker, arXiv:1911.09129, 2019.
Searching for Sterile Neutrino with X-ray Intensity Mapping, A. Caputo, M. Regis, M. Taoso, arXiv:1911.09120, 2019.
Inflation models in the light of self-interacting sterile neutrinos, Arindam Mazumdar, Subhendra Mohanty, Priyank Parashari, arXiv:1911.08512, 2019.
Cosmological Dependence of Resonantly Produced Sterile Neutrinos, Graciela B. Gelmini, Philip Lu, Volodymyr Takhistov, arXiv:1911.03398, 2019.
Sterile neutrinos with altered dispersion relations revisited, G. Barenboim, P. Martinez-Mirave, C. A. Ternes, M. Tortola, arXiv:1911.02329, 2019.
On The Decaying-Sterile Neutrino Solution to the Electron (Anti)Neutrino Appearance Anomalies, Andre de Gouvea, O. L. G. Peres, Suprabh Prakash, G. V. Stenico, arXiv:1911.01447, 2019.
Decaying Sterile Neutrinos and the Short Baseline Oscillation Anomalies, Mona Dentler, Ivan Esteban, Joachim Kopp, Pedro Machado, arXiv:1911.01427, 2019.
Prospects for Finding Sterile Neutrino Dark Matter at KATRIN, Cristina Benso, Vedran Brdar, Manfred Lindner, Werner Rodejohann, Phys.Rev. D100 (2019) 115035, arXiv:1911.00328.
Combining Sterile Neutrino Fits to Short Baseline Data with IceCube Data, M.H. Moulai, C.A. Arguelles, G.H. Collin, J.M. Conrad, A. Diaz, M.H. Shaevitz, arXiv:1910.13456, 2019.
Heavy sterile neutrino emission in core-collapse supernovae: Constraints and signatures, Leonardo Mastrototaro, Alessandro Mirizzi, Pasquale Dario Serpico, Arman Esmaili, JCAP 2001 (2020) 010, arXiv:1910.10249.
The impact of the locally measured Hubble parameter on the mass of Sterile neutrino, M. Ebadinejad, Mon.Not.Roy.Astron.Soc. 488 (2019) 5763-5770, arXiv:1910.08046.
The viability of the 3+1 neutrino model in the supernova neutrino process, Heamin Ko, Dukjae Jang, Motohiko Kusakabe, Myung-Ki Cheoun, arXiv:1910.04984, 2019.
The Dodelson-Widrow Mechanism In the Presence of Self-Interacting Neutrinos, Andre de Gouvea, Manibrata Sen, Walter Tangarife, Yue Zhang, arXiv:1910.04901, 2019.
Constraints on active and sterile neutrinos in an interacting dark energy cosmology, Lu Feng, Dong-Ze He, Hai-Li Li, Jing-Fei Zhang, Xin Zhang, arXiv:1910.03872, 2019.
Physics potential of ESS$\nu$SB in the presence of a Light Sterile Neutrino, Sanjib Kumar Agarwalla, Sabya Sachi Chatterjee, Antonio Palazzo, arXiv:1909.13746, 2019.
Cosmological Dependence of Non-resonantly Produced Sterile Neutrinos, Graciela B. Gelmini, Philip Lu, Volodymyr Takhistov, arXiv:1909.13328, 2019.
Constraints on Sterile Neutrinos in the MeV to GeV Mass Range, D. A. Bryman, R. Shrock, Phys.Rev. D100 (2019) 073011, arXiv:1909.11198.
Explaining the MiniBooNE excess by a decaying sterile neutrino with mass in the 250 MeV range, Oliver Fischer, Alvaro Hernandez-Cabezudo, Thomas Schwetz, arXiv:1909.09561, 2019.
Implications of the Dark LMA solution and Fourth Sterile Neutrino for Neutrino-less Double Beta Decay, K. N. Deepthi, Srubabati Goswami, Vishnudath K. N., Tanmay Kumar Poddar, arXiv:1909.09434, 2019.
Reevaluating Reactor Antineutrino Anomalies with Updated Flux Predictions, Jeffrey Berryman, Patrick Huber, Phys.Rev. D101 (2020) 015008, arXiv:1909.09267.
Resonance production of keV sterile neutrinos in core-collapse supernovae and lepton number diffusion, Vsevolod Syvolap, Oleg Ruchayskiy, Alexey Boyarsky, arXiv:1909.06320, 2019.
Can EDGES observation favour any dark matter model?, Anton Rudakovskyi, Denys Savchenko, Maxym Tsizh, arXiv:1909.06303, 2019.
Probe Of Sterile Neutrinos Using Astrophysical Neutrino Flavor, Carlos A. Arguelles, Kareem Farrag, Teppei Katori, Rishabh Khandelwal, Shivesh Mandalia, Jordi Salvado, JCAP 2002 (2020) 015, arXiv:1909.05341.
Higgs phenomenology as a probe of sterile neutrinos, Jonathan M. Butterworth, Mikael Chala, Christoph Englert, Michael Spannowsky, Arsenii Titov, Phys.Rev. D100 (2019) 115019, arXiv:1909.04665.
Visible Sterile Neutrinos as the Earliest Relic Probes of Cosmology, Graciela B. Gelmini, Philip Lu, Volodymyr Takhistov, Phys.Lett. B800 (2019) 135113, arXiv:1909.04168.
Tau lepton asymmetry by sterile neutrino emission - Moving beyond one-zone supernova models, Anna M. Suliga, Irene Tamborra, Meng-Ru Wu, arXiv:1908.11382, 2019.
MeV neutrino dark matter: Relic density, electron recoil and lepton flavour violation, J. Fiaschi, M. Klasen, M. Vargas, C. Weinheimer, S. Zeinstra, JHEP 1911 (2019) 129, arXiv:1908.09882.
Searching for a Sterile Neutrino in Tau Decays at B-factories, C.O. Dib, J.C. Helo, M. Nayak, N.A. Neill, A. Soffer, J. Zamora-Saa, arXiv:1908.09719, 2019.
NuSTAR Tests of Sterile-Neutrino Dark Matter: New Galactic Bulge Observations and Combined Impact, Brandon M. Roach, Kenny C. Y. Ng, Kerstin Perez, John F. Beacom, Shunsaku Horiuchi, Roman Krivonos, Daniel R. Wik, arXiv:1908.09037, 2019.
A frequentist analysis of three right-handed neutrinos with GAMBIT, Marcin Chrzaszcz, Marco Drewes, Tomas Gonzalo, Julia Harz, Suraj Krishnamurthy, Christoph Weniger, arXiv:1908.02302, 2019.
Viable secret neutrino interactions with ultralight dark matter, James M. Cline, Phys.Lett. B802 (2020) 135182, arXiv:1908.02278.
Probing sterile neutrino in meson decays with and without sequential neutrino decay, C. S. Kim, Dong Hun Lee, Sechul Oh, Dibyakrupa Sahoo, arXiv:1908.00376, 2019.
Hidden Treasures: sterile neutrinos as dark matter with miraculous abundance, structure formation for different production mechanisms, and a solution to the sigma-8 problem, Kevork N. Abazajian, Alexander Kusenko, Phys.Rev. D100 (2019) 103513, arXiv:1907.11696.
The lensing properties of subhaloes in massive elliptical galaxies in sterile neutrino cosmologies, Giulia Despali, Mark Lovell, Simona Vegetti, Robert A. Crain, Benjamin D. Oppenheimer, Mon.Not.Roy.Astron.Soc. 491 (2020) 1295-1310, arXiv:1907.06649.
Ultra-light dark matter saving the 3+1 neutrino scheme from the cosmological bounds, Yasaman Farzan, Phys.Lett. B797 (2019) 134911, arXiv:1907.04271.
Statistical Methods for the Search of Sterile Neutrinos, Matteo Agostini, Birgit Neumair, arXiv:1906.11854, 2019.
The gallium anomaly revisited, Joel Kostensalo, Jouni Suhonen, Carlo Giunti, Praveen C. Srivastava, Phys.Lett. B795 (2019) 542-547, arXiv:1906.10980.
Hints of Sterile Neutrinos in Recent Measurements of the Hubble Parameter, Graciela B. Gelmini, Alexander Kusenko, Volodymyr Takhistov, arXiv:1906.10136, 2019.
A new analytical approximation for a light sterile neutrino oscillation in matter, Baobiao Yue, Wei Li, Jiajie Ling, Fanrong Xu, arXiv:1906.03781, 2019.
Icecube/DeepCore tests for novel explanations of the MiniBooNE anomaly, Pilar Coloma, Eur.Phys.J. C79 (2019) 748, arXiv:1906.02106.
Thermalisation of sterile neutrinos in the early Universe in the 3+1 scheme with full mixing matrix, S. Gariazzo, P. F. de Salas, S. Pastor Carpi, JCAP 1907 (2019) 014, arXiv:1905.11290.
Time-Delayed Electrons from Higgs Decays to Right-Handed Neutrinos, John D. Mason, JHEP 1907 (2019) 089, arXiv:1905.07772.
Constraining Sterile Neutrino Cosmology with Terrestrial Oscillation Experiments, Jeffrey M. Berryman, Phys.Rev. D100 (2019) 023540, arXiv:1905.03254.
Compact Perturbative Expressions for Oscillations with Sterile Neutrinos in Matter, Stephen J. Parke, Xining Zhang, arXiv:1905.01356, 2019.
7.1 keV sterile neutrino dark matter constraints from a deep Chandra X-ray observation of the Galactic bulge Limiting Window, F. Hofmann, C. Wegg, Astron.Astrophys. 625 (2019) L7, arXiv:1905.00916.
Sensitivity bounds on heavy neutrino mixing $|U_{\mu N}|^2$ and $|U_{\tau N}|^2$ from LHCb upgrade, Gorazd Cvetic, C. S. Kim, Phys.Rev. D100 (2019) 015014, arXiv:1904.12858.
Active-sterile Neutrino Oscillations in Neutrino-driven Winds: Implications for Nucleosynthesis, Zewei Xiong, Meng-Ru Wu, Yong-Zhong Qian, arXiv:1904.09371, 2019.
Improved Constraints on Sterile Neutrinos in the MeV to GeV Mass Range, D. A. Bryman, R. Shrock, Phys.Rev. D100 (2019) 053006, arXiv:1904.06787.
21-cm observations and warm dark matter models, Alexey Boyarsky, Dmytro Iakubovskyi, Oleg Ruchayskiy, Anton Rudakovskyi, Wessel Valkenburg, Phys.Rev. D100 (2019) 123005, arXiv:1904.03097.
Short-baseline neutrino oscillations with 3+1 non-unitary mixing, C. Giunti, Phys.Lett. B795 (2019) 236-240, arXiv:1904.02093.
Seeking for sterile neutrinos with displaced leptons at the LHC, Jia Liu, Zhen Liu, Lian-Tao Wang, Xiao-Ping Wang, JHEP 1907 (2019) 159, arXiv:1904.01020.
Probing Sterile Neutrino via Lepton Flavor Violating Decays of Mesons, Shiyong Hu, Sam Ming-Yin Wong, Fanrong Xu, arXiv:1904.00568, 2019.
Cosmological constraints on sterile neutrino Dark Matter production mechanisms, Lucia A. Popa, arXiv:1903.10712, 2019.
A Model of Neutrino Anomalies and IceCube data, Y. H. Ahn, Sin Kyu Kang, JHEP 1912 (2019) 133, arXiv:1903.09008.
Self-interacting sterile neutrino dark matter: the heavy-mediator case, Lucas Johns, George M. Fuller, Phys.Rev. D100 (2019) 023533, arXiv:1903.08296.
Heavy Neutrinos in displaced vertex searches at the LHC and HL-LHC, Marco Drewes, Jan Hajer, JHEP 2002 (2020) 070, arXiv:1903.06100.
Search of light sterile neutrinos from $W^\pm$ decays, Claudio O. Dib, Choong Sun Kim, Sebastian Tapia Araya, arXiv:1903.04905, 2019.
Heavy neutrino searches at future $Z$-factories, Jian-Nan Ding, Qin Qin, Fu-Sheng Yu, Eur.Phys.J. C79 (2019) 766, arXiv:1903.02570.
Testing new physics with future COHERENT experiments, O. G. Miranda, G. Sanchez Garcia, O. Sanders, Adv.High Energy Phys. 2019 (2019) 3902819, arXiv:1902.09036.
Constraining the Effective Mass of Majorana Neutrino with Sterile Neutrino Mass for Inverted Ordering Spectrum, Jaydip Singh, Adv.High Energy Phys. 2019 (2019) 4863620, arXiv:1902.08575.
On DUNE prospects in the search for sterile neutrinos, Igor Krasnov, Phys.Rev. D100 (2019) 075023, arXiv:1902.06099.
Impact of an eV-mass sterile neutrino on the neutrinoless double-beta decays: a Bayesian analysis, Guo-yuan Huang, Shun Zhou, Nucl.Phys. B (2019) 114691, arXiv:1902.03839.
The Neutrino Puzzle: Anomalies, Interactions, and Cosmological Tensions, Christina D. Kreisch, Francis-Yan Cyr-Racine, Olivier Dore, arXiv:1902.00534, 2019.
Constraining Sterile Neutrino Interpretations of the LSND and MiniBooNE Anomalies with Coherent Neutrino Scattering Experiments, Carlos Blanco, Dan Hooper, Pedro Machado, arXiv:1901.08094, 2019.
Sensitivity to sterile neutrino mixing using reactor antineutrinos, S. P. Behera, D. K. Mishra, L. M. Pant, Eur.Phys.J. C79 (2019) 86, arXiv:1901.04746.
Diagnosing the Reactor Antineutrino Anomaly with Global Antineutrino Flux Data, C. Giunti, Y. F. Li, B. R. Littlejohn, P. T. Surukuchi, Phys.Rev. D99 (2019) 073005, arXiv:1901.01807.
New Constraints on Sterile Neutrino Dark Matter from $NuSTAR$ M31 Observations, Kenny C. Y. Ng, Brandon M. Roach, Kerstin Perez, John F. Beacom, Shunsaku Horiuchi, Roman Krivonos, Daniel R. Wik, Phys.Rev. D99 (2019) 083005, arXiv:1901.01262.
Effects of Violation of Equivalence Principle on UHE Neutrinos at IceCube in 4 Flavour Scenario, Madhurima Pandey, arXiv:1812.11570, 2018.
On $\theta_{23}$ Octant Measurement in $3+1$ Neutrino Oscillations in T2HKK, Naoyuki Haba, Yukihiro Mimura, Toshifumi Yamada, arXiv:1812.10940, 2018.
The Sterile-Active Neutrino Flavor Model: the Imprint of Dark Matter on the Electron Neutrino Spectra, Ilidio Lopes, Astrophys.J. 869 (2018) 112, arXiv:1812.07182.
Evidence against the decaying dark matter interpretation of the 3.5 keV line from blank sky observations, Christopher Dessert, Nicholas L. Rodd, Benjamin R. Safdi, arXiv:1812.06976, 2018.
Is the $H_0$ tension suggesting a 4th neutrino's generation?, S. Carneiro, P. C. de Holanda, C. Pigozzo, F. Sobreira, Phys.Rev. D100 (2019) 023505, arXiv:1812.06064.
Investigating Sterile Neutrino Flux in the Solar Neutrino Data, Ankush, Rishu Verma, Gazal Sharma, B.C.Chauhan, Adv.High Energy Phys. 2019 (2019) 2598953, arXiv:1812.03634.
Cosmological constraints on sterile neutrino oscillations from Planck, Alan M. Knee, Dagoberto Contreras, Douglas Scott, JCAP 2019 (2019) 039, arXiv:1812.02102.
Revisiting constraints on 3+1 active-sterile neutrino mixing using IceCube data, Luis Salvador Miranda, Soebur Razzaque, JHEP 1903 (2019) 203, arXiv:1812.00831.
Neutrinoless Double Beta Decay and Light Sterile Neutrino, C. H. Jang, B. J. Kim, Y. J. Ko, K. Siyeon, J.Korean Phys.Soc. 73 (2018) 1625-1630, arXiv:1811.09957.
Exploring a New Degeneracy in the Sterile Neutrino Sector at Long-Baseline Experiments, Sandhya Choubey, Debajyoti Dutta, Dipyaman Pramanik, Eur.Phys.J. C79 (2019) 968, arXiv:1811.08684.
Probing right handed neutrinos at the LHeC and lepton colliders using fat jet signatures, Arindam Das, Sudip Jana, Sanjoy Mandal, S. Nandi, Phys.Rev. D99 (2019) 055030, arXiv:1811.04291.
Dark matter model favoured by reionization data: 7 keV sterile neutrino vs cold dark matter, Anton Rudakovskyi, Dmytro Iakubovskyi, Mon.Not.Roy.Astron.Soc. 483 (2019) 4080-4084, arXiv:1811.02799.
Activating the 4th Neutrino of the 3+1 Scheme, Peter B. Denton, Yasaman Farzan, Ian M. Shoemaker, Phys.Rev. D99 (2019) 035003, arXiv:1811.01310.
On the robustness of IceCube's bound on sterile neutrinos in the presence of non-standard interactions, Arman Esmaili, Hiroshi Nunokawa, Eur.Phys.J. C79 (2019) 70, arXiv:1810.11940.
Fat Jet Signature of a Heavy Neutrino at Lepton Collider, Sabyasachi Chakraborty, Manimala Mitra, Sujay Shil, Phys.Rev. D100 (2019) 015012, arXiv:1810.08970.
New constraints on sterile neutrino dark matter from the Galactic Center, R. Yunis, C. R. Arguelles, N. E. Mavromatos, A. Moline, A. Krut, J. A. Rueda, R. Ruffini, arXiv:1810.05756, 2018.
MiniBooNE, MINOS+ and IceCube data imply a baroque neutrino sector, Jiajun Liao, Danny Marfatia, Kerry Whisnant, Phys.Rev. D99 (2019) 015016, arXiv:1810.01000.
Induced resonance makes light sterile neutrino Dark Matter cool, F. Bezrukov, A. Chudaykin, D. Gorbunov, Phys.Rev. D99 (2019) 083507, arXiv:1809.09123.
Constraints on a sub-eV scale sterile neutrino from non-oscillation measurements, C. S. Kim, G. Lopez Castro, Dibyakrupa Sahoo, Phys.Rev. D98 (2018) 115021, arXiv:1809.02265.
Inflation, (P)reheating and Neutrino Anomalies: Production of Sterile Neutrinos with Secret Interactions, Arnab Paul, Anish Ghoshal, Arindam Chatterjee, Supratik Pal, Eur.Phys.J. C79 (2019) 818, arXiv:1808.09706.
Sterile neutrino and leptonic decays of the pseudoscalar mesons, Chong-Xing Yue, Ji-Ping Chu, Phys.Rev. D98 (2018) 055012, arXiv:1808.09139.
A charmed search of lepton-number-violation at the LHCb experiment, Diego Milanes, Nestor Quintero, Phys.Rev. D98 (2018) 096004, arXiv:1808.06017.
Signature of Light Sterile Neutrinos at IceCube, Bhavesh Chauhan, Subhendra Mohanty, Phys.Rev. D98 (2018) 083021, arXiv:1808.04774.
Matter Effect of Light Sterile Neutrino: An Exact Analytical Approach, Wei Li, Jiajie Ling, Fanrong Xu, Baobiao Yue, JHEP 1810 (2018) 021, arXiv:1808.03985.
Neutrino induced reactions in core-collapse supernovae: effects on the electron fraction, M. M. Saez, O. Civitarese, M. E. Mosquera, Int.J.Mod.Phys. D27 (2018) 1850116, arXiv:1808.03249.
Interference effects in reactor antineutrino oscillations, Zhi-zhong Xing, arXiv:1808.02256, 2018.
Combined explanations of B-physics anomalies: the sterile neutrino solution, Aleksandr Azatov, Daniele Barducci, Diptimoy Ghosh, David Marzocca, Lorenzo Ubaldi, JHEP 1810 (2018) 092, arXiv:1807.10745.
Constraining light sterile neutrino mass with the BICEP2/Keck Array 2014 B-mode polarization data, Shouvik Roy Choudhury, Sandhya Choubey, Eur.Phys.J. C79 (2019) 557, arXiv:1807.10294.
Beta and Neutrinoless Double Beta Decays with KeV Sterile Fermions, Asmaa Abada, Alvaro Hernandez-Cabezudo, Xabier Marcano, JHEP 1901 (2019) 041, arXiv:1807.01331.
Sterile Neutrinos with Secret Interactions - Cosmological Discord?, Xiaoyong Chu, Basudeb Dasgupta, Mona Dentler, Joachim Kopp, Ninetta Saviano, JCAP 1811 (2018) 049, arXiv:1806.10629.
Sterile neutrinos influence on oscillation characteristics of active neutrinos at short distances in the generalized model of neutrino mixing, V. V. Khruschov, S. V. Fomichev, Int.J.Mod.Phys. A34 (2019) 1950175, arXiv:1806.05922.
Displaced vertices as probes of sterile neutrino mixing at the LHC, Giovanna Cottin, Juan Carlos Helo, Martin Hirsch, Phys.Rev. D98 (2018) 035012, arXiv:1806.05191.
Heavy sterile neutrinos in stellar core-collapse, Tomasz Rembiasz et al., Phys.Rev. D98 (2018) 103010, arXiv:1806.03300.
Probing relic neutrino decays with 21 cm cosmology, Marco Chianese, Pasquale Di Bari, Kareem Farrag, Rome Samanta, Phys.Lett. B790 (2019) 64-70, arXiv:1805.11717.
Lepton Flavor Violating Dilepton Dijet Signatures from Sterile Neutrinos at Proton Colliders, Stefan Antusch, Eros Cazzato, Oliver Fischer, A. Hammad, Kechen Wang, JHEP 1810 (2018) 067, arXiv:1805.11400.
Phenomenology of GeV-scale Heavy Neutral Leptons, Kyrylo Bondarenko, Alexey Boyarsky, Dmitry Gorbunov, Oleg Ruchayskiy, JHEP 1811 (2018) 032, arXiv:1805.08567.
Cosmological constraints with self-interacting sterile neutrinos, Ningqiang Song, M.C. Gonzalez-Garcia, Jordi Salvado, JCAP 1810 (2018) 055, arXiv:1805.08218.
Probing heavy neutrino oscillations in rare W boson decays, Gorazd Cvetic, Arindam Das, Jilberto Zamora-Saa, J.Phys. G46 (2019) 075002, arXiv:1805.00070.
Active-sterile neutrino oscillations at INO-ICAL over a wide mass-squared range, Tarak Thakore, Moon Moon Devi, Sanjib Kumar Agarwalla, Amol Dighe, JHEP 1808 (2018) 022, arXiv:1804.09613.
The spectroscopy of solar sterile neutrinos, Ilidio Lopes, Eur.Phys.J. C78 (2018) 4, arXiv:1804.08344.
Comment: Nice calculation, but unfortunately sterile neutrinos cannot be detected.
Sterile neutrinos as a possible explanation for the upward air shower events at ANITA, Guo-yuan Huang, Phys.Rev. D98 (2018) 043019, arXiv:1804.05362.
The Effect of a Light Sterile Neutrino at NO$\nu$A and DUNE, Shivani Gupta, Zachary M. Matthews, Pankaj Sharma, Anthony G. Williams, Phys.Rev. D98 (2018) 035042, arXiv:1804.03361.
Degeneracy resolution capabilities of NO$\nu$A and DUNE in the presence of light sterile neutrino, Akshay Chatla, Sahithi Rudrabhatla, Bindu A. Bambah, Adv.High Energy Phys. 2018 (2018) 2547358, arXiv:1804.02818.
Problems With the MINOS/MINOS+ Sterile Neutrino $\nu _\mu$ Result, W. C. Louis, arXiv:1803.11488, 2018.
Updated global analysis of neutrino oscillations in the presence of eV-scale sterile neutrinos, Mona Dentler, Alvaro Hernandez-Cabezudo, Joachim Kopp, Pedro A. N. Machado, Michele Maltoni, Ivan Martinez-Soler, Thomas Schwetz, JHEP 1808 (2018) 010, arXiv:1803.10661.
Nuclear and Particle Conspiracy Solves Both Reactor Antineutrino Anomalies, Jeffrey M. Berryman, Vedran Brdar, Patrick Huber, Phys.Rev. D99 (2019) 055045, arXiv:1803.08506.
Warm FIRE: Simulating Galaxy Formation with Resonant Sterile Neutrino Dark Matter, Brandon Bozek et al., arXiv:1803.05424, 2018.
Probing secret interactions of eV-scale sterile neutrinos with the diffuse supernova neutrino background, Yu Seon Jeong, Sergio Palomares-Ruiz, Mary Hall Reno, Ina Sarcevic, JCAP 1806 (2018) 019, arXiv:1803.04541.
IceCube bounds on sterile neutrinos above 10 eV, Mattias Blennow, Enrique Fernandez-Martinez, Julia Gehrlein, Josu Hernandez-Garcia, Jordi Salvado, Eur.Phys.J. C78 (2018) 807, arXiv:1803.02362.
Heavy neutral fermions at the high-luminosity LHC, Juan Carlos Helo, Martin Hirsch, Zeren Simon Wang, JHEP 1807 (2018) 056, arXiv:1803.02212.
Neutrino oscillations: ILL experiment revisited, B. K. Cogswell, D. J. Ernst, K. T. L. Ufheil, J. T. Gaglione, J. M. Malave, Phys.Rev. D99 (2019) 053003, arXiv:1802.07763.
Neutron lifetime, dark matter and search for sterile neutrino, A. P. Serebrov, R. M. Samoilov, I. A. Mitropolsky, A. M. Gagarsky, arXiv:1802.06277, 2018.
Exploring the Potential of Short-Baseline Physics at Fermilab, O. G. Miranda, Pedro Pasquini, M. Tortola, J. W. F. Valle, Phys.Rev. D97 (2018) 095026, arXiv:1802.02133.
A Sterile Neutrino Origin for the Upward Directed Cosmic Ray Shower Detected by ANITA, John F. Cherry, Ian Shoemaker, Phys.Rev. D99 (2019) 063016, arXiv:1802.01611.
Model-Independent $\bar\nu_{e}$ Short-Baseline Oscillations from Reactor Spectral Ratios, S. Gariazzo, C. Giunti, M. Laveder, Y. F. Li, Phys.Lett. B782 (2018) 13-21, arXiv:1801.06467.
Signatures of a Light Sterile Neutrino in T2HK, Sanjib Kumar Agarwalla, Sabya Sachi Chatterjee, Antonio Palazzo, JHEP 04 (2018) 091, arXiv:1801.04855.
Galaxy Formation in Sterile Neutrino Dark Matter Models, N. Menci et al., Astrophys.J. 854 (2018) 1, arXiv:1801.03697.
Search for sterile neutrinos decaying into pions at the LHC, Claudio O. Dib, C.S. Kim, Nicolas A. Neill, Xing-Bo Yuan, Phys.Rev. D97 (2018) 035022, arXiv:1801.03624.
Searches for light sterile neutrinos with multitrack displaced vertices, Giovanna Cottin, Juan Carlos Helo, Martin Hirsch, Phys.Rev. D97 (2018) 055025, arXiv:1801.02734.
Constraining sterile neutrino cosmologies with strong gravitational lensing observations at redshift z~0.2, S. Vegetti, G. Despali, M. R. Lovell, W. Enzi, Mon.Not.Roy.Astron.Soc. 481 (2018) 3661-3669, arXiv:1801.01505.
Bounds on Resonantly-Produced Sterile Neutrinos from Phase Space Densities of Milky Way Dwarf Galaxies, Mei-Yu Wang, John F. Cherry, Shunsaku Horiuchi, Louis E. Strigari, arXiv:1712.04597, 2017.
Effective Majorana mass matrix from tau and pseudoscalar meson lepton number violating decays, Asmaa Abada, Valentina De Romeri, Michele Lucente, Ana M. Teixeira, Takashi Toma, JHEP 1802 (2018) 169, arXiv:1712.03984.
Prospects for detecting eV-scale sterile neutrinos from a galactic supernova, Tarso Franarin, Jonathan H. Davis, Malcolm Fairbairn, JCAP 1809 (2018) 002, arXiv:1712.03836.
Search for sterile neutrinos in a universe of vacuum energy interacting with cold dark matter, Lu Feng, Jing-Fei Zhang, Xin Zhang, arXiv:1712.03148, 2017.
COHERENT constraints to conventional and exotic neutrino physics, D. K. Papoulias, T. S. Kosmas, Phys.Rev. D97 (2018) 033003, arXiv:1711.09773.
Measuring the Sterile Neutrino CP Phase at DUNE and T2HK, Sandhya Choubey, Debajyoti Dutta, Dipyaman Pramanik, Eur.Phys.J. C78 (2018) 339, arXiv:1711.07464.
Exploring a Non-Minimal Sterile Neutrino Model Involving Decay at IceCube and Beyond, Zander Moss, Marjon H. Moulai, Carlos A. Arguelles, Janet M. Conrad, Phys.Rev. D97 (2018) 055017, arXiv:1711.05921.
Probing a Four Flavour vis-a-vis Three Flavour Neutrino Mixing for UHE Neutrino Signals at a 1 ${\rm Km}^2$ Detector, Madhurima Pandey, Debasish Majumdar, Amit Dutta Banik, Phys.Rev. D97 (2018) 103015, arXiv:1711.05018.
Another look at the impact of an eV-mass sterile neutrino on the effective neutrino mass of neutrinoless double-beta decays, Jun-Hao Liu, Shun Zhou, Int.J.Mod.Phys. A33 (2018) 1850014, arXiv:1710.10359.
keV-Scale Sterile Neutrino Sensitivity Estimation with Time-Of-Flight Spectroscopy in KATRIN using Self Consistent Approximate Monte Carlo, Nicholas M.N. Steinbrink, Jan D. Behrens, Susanne Mertens, Philipp C.-O. Ranitzsch, Christian Weinheimer, Eur.Phys.J. C78 (2018) 212, arXiv:1710.04939.
Explanation of the 511 keV line: Cascade annihilating dark matter with the $^8$Be anomaly, Lian-Bao Jia, Eur.Phys.J. C78 (2018) 112, arXiv:1710.03906.
Measuring growth index in a universe with massive neutrinos: A revisit of the general relativity test with the latest observations, Ming-Ming Zhao, Jing-Fei Zhang, Xin Zhang, Phys.Lett. B779 (2018) 473-478, arXiv:1710.02391.
Return of the X-rays: A New Hope for Fermionic Dark Matter at the keV Scale, Vedran Brdar, Joachim Kopp, Jia Liu, Xiao-Ping Wang, Phys.Rev.Lett. 120 (2018) 061301, arXiv:1710.02146.
Subjecting dark matter candidates to the cluster test, Theodorus Maria Nieuwenhuizen, arXiv:1710.01375, 2017.
Effect of sterile Neutrinos and Nonstandard Interactions on the Geo-neutrino Flux, Guanwen Yan, arXiv:1709.09781, 2017.
Sterile Neutrinos or Flux Uncertainties? - Status of the Reactor Anti-Neutrino Anomaly, Mona Dentler, Alvaro Hernandez-Cabezudo, Joachim Kopp, Michele Maltoni, Thomas Schwetz, JHEP 1711 (2017) 099, arXiv:1709.04294.
Universal subhalo accretion in cold and warm dark matter cosmologies, Bogna Kubik et al., Mon.Not.Roy.Astron.Soc. 472 (2017) 4099, arXiv:1709.00884.
Decoherence effect in neutrinos produced in micro-quasar jets, M. E. Mosquera, O. Civitarese, JCAP 1804 (2018) 036, arXiv:1708.09714.
The reactor antineutrino anomaly and low energy threshold neutrino experiments, B. C. Canas, E. A. Garces, O. G. Miranda, A. Parada, Phys.Lett. B776 (2018) 451-456, arXiv:1708.09518.
A novel approach to neutrino mixing analysis based on singular values, K. Bielas, W. Flieger, J. Gluza, M. Gluza, Phys.Rev. D98 (2018) 053001, arXiv:1708.09196.
Warm Dark Matter and Cosmic Reionization, Pablo Villanueva-Domingo, Nickolay Y. Gnedin, Olga Mena, Astrophys.J. 852 (2018) 139, arXiv:1708.08277.
Reactor Fuel Fraction Information on the Antineutrino Anomaly, C. Giunti, X. P. Ji, M. Laveder, Y. F. Li, B. R. Littlejohn, JHEP 1710 (2017) 143, arXiv:1708.01133.
DUNE Sensitivities to the Mixing between Sterile and Tau Neutrinos, Pilar Coloma, David V. Forero, Stephen J. Parke, JHEP 07 (2018) 079, arXiv:1707.05348.
Signatures of Compact Halos of Sterile-Neutrino Dark Matter, Florian Kuhnel, Tommy Ohlsson, Phys.Rev. D96 (2017) 103020, arXiv:1707.04493.
Sterile neutrino dark matter searches, Paraskevi Divari, J. D. Vergados, Adv.High Energy Phys. 2018 (2018) 1479313, arXiv:1707.02550.
Lepton-Jets and Low-Mass Sterile Neutrinos at Hadron Colliders, Sourabh Dube, Divya Gadkari, Arun M. Thalapillil, Phys.Rev. D96 (2017) 055031, arXiv:1707.00008.
Constraining sterile neutrino and dark energy with the latest cosmological observations, Lu Feng, Jing-Fei Zhang, Xin Zhang, Sci.China Phys.Mech.Astron. 61 (2018) 050411, arXiv:1706.06913.
Sterile neutrino searches via displaced vertices at LHCb, Stefan Antusch, Eros Cazzato, Oliver Fischer, Phys.Lett. B774 (2017) 114-118, arXiv:1706.05990.
Observing the very low-surface brightness dwarfs in a deep field in the VIRGO cluster: constraints on Dark Matter scenarios, N. Menci et al., Astron.Astrophys. 604 (2017) A59, arXiv:1706.04360.
Constraints from Ly-$\alpha$ forests on non-thermal dark matter including resonantly-produced sterile neutrinos, Julien Baur et al., JCAP 1712 (2017) 013, arXiv:1706.03118.
Thermalizing sterile neutrino dark matter, Rasmus S. L. Hansen, Stefan Vogl, Phys.Rev.Lett. 119 (2017) 251305, arXiv:1706.02707.
Sensitivity limits on heavy-light mixing $|U_{\mu N}|^2$ from lepton number violating $B$ meson decays, Gorazd Cvetic, C.S. Kim, Phys.Rev. D96 (2017) 035025, arXiv:1705.09403.
Combining $\nu_e$ Appearance and $\nu_\mu$ Disappearance Channels in Light Sterile Neutrino Oscillation Searches at Fermilab's Short-Baseline Neutrino Facility, William G. S. Vinning, Andrew Blake, arXiv:1705.06561, 2017.
Hiding an elephant: heavy sterile neutrino with large mixing angle does not contradict cosmology, F. Bezrukov, A. Chudaykin, D. Gorbunov, JCAP 1706 (2017) 051, arXiv:1705.02184.
'Non-cold' dark matter at small scales: a general approach, Riccardo Murgia, Alexander Merle, Matteo Viel, Maximilian Totzauer, Aurel Schneider, JCAP 1711 (2017) 046, arXiv:1704.07838.
Imprints of a light Sterile Neutrino at DUNE, T2HK and T2HKK, Sandhya Choubey, Debajyoti Dutta, Dipyaman Pramanik, Phys.Rev. D96 (2017) 056026, arXiv:1704.07269.
Study of parameter degeneracy and hierarchy sensitivity of NO$\nu$A in presence of sterile neutrino, Monojit Ghosh, Shivani Gupta, Zachary M. Matthews, Pankaj Sharma, Anthony G. Williams, Phys.Rev. D96 (2017) 075018, arXiv:1704.04771.
Cosmic microwave background constraints on secret interactions among sterile neutrinos, Francesco Forastieri et al., JCAP 1707 (2017) 038, arXiv:1704.00626.
A search for sterile neutrinos in holographic dark energy cosmology: Reconciling Planck observation with the local measurement of Hubble constant, Ming-Ming Zhao, Dong-Ze He, Jing-Fei Zhang, Xin Zhang, Phys.Rev. D96 (2017) 043520, arXiv:1703.08456.
Statistical sensitivity on right-handed currents in presence of eV scale sterile neutrinos with KATRIN, Nicholas M. N. Steinbrink et al., JCAP 1706 (2017) 015, arXiv:1703.07667.
GeV-scale hot sterile neutrino oscillations: a derivation of evolution equations, J. Ghiglieri, M. Laine, JHEP 1705 (2017) 132, arXiv:1703.06087.
A search for sterile neutrinos with the latest cosmological observations, Lu Feng, Jing-Fei Zhang, Xin Zhang, Eur.Phys.J. C77 (2017) 418, arXiv:1703.04884.
Constraints on warm dark matter from the ionization history of the Universe, Laura Lopez-Honorez, Olga Mena, Sergio Palomares-Ruiz, Pablo Villanueva Domingo, Phys.Rev. D96 (2017) 103539, arXiv:1703.02302.
Search for Heavy Sterile Neutrinos in Trileptons at the LHC, Claudio O. Dib, C. S. Kim, Kechen Wang, Chin.Phys. C41 (2017) 103103, arXiv:1703.01936.
Search for Dirac and Majorana Sterile Neutrinos in Trilepton Events at the LHC, Claudio O. Dib, C. S. Kim, Kechen Wang, Phys.Rev. D95 (2017) 115020, arXiv:1703.01934.
Updated Global 3+1 Analysis of Short-BaseLine Neutrino Oscillations, S. Gariazzo, C. Giunti, M. Laveder, Y. F. Li, JHEP 1706 (2017) 135, arXiv:1703.00860.
Searches for New Physics at the Hyper-Kamiokande Experiment, Kevin J. Kelly, Phys.Rev. D95 (2017) 115009, arXiv:1703.00448.
Probing light sterile neutrino signatures at reactor and Spallation Neutron Source neutrino experiments, T. S. Kosmas, D. K. Papoulias, M. Tortola, J.W.F. Valle, Phys.Rev. D96 (2017) 063013, arXiv:1703.00054.
The Dark Side of MSW: Solar Neutrinos as a Probe of Dark Matter-Neutrino Interactions, Francesco Capozzi, Ian M. Shoemaker, Luca Vecchi, JCAP 1707 (2017) 021, arXiv:1702.08464.
Search for right-handed neutrinos from dark matter annihilation with gamma-rays, Miguel D. Campos, Farinaldo S. Queiroz, Carlos E. Yaguna, Christoph Weniger, JCAP 1707 (2017) 016, arXiv:1702.06145.
Sterile neutrino dark matter from right-handed neutrino oscillations, Kenji Kadota, Kunio Kaneta, Phys.Rev. D97 (2018) 115021, arXiv:1702.04526.
Anomalies in (Semi)-Leptonic $B$ Decays $B^{\pm} \to \tau^{\pm} \nu$, $B^{\pm} \to D \tau^{\pm} \nu$ and $B^{\pm} \to D^* \tau^{\pm} \nu$, and Possible Resolution with Sterile Neutrino, G. Cvetic, Francis Halzen, C. S. Kim, Sechul Oh, Chin.Phys. C41 (2017) 113102, arXiv:1702.04335.
Echo for interaction in the dark sector, Suresh Kumar, Rafael C. Nunes, Phys.Rev. D96 (2017) 103511, arXiv:1702.02143.
Prospects of Light Sterile Neutrino Oscillation and CP Violation Searches at the Fermilab Short Baseline Neutrino Facility, Davio Cianci, Andy Furmanski, Georgia Karagiorgi, Mark Ross-Lonergan, Phys.Rev. D96 (2017) 055001, arXiv:1702.01758.
Closing in on Resonantly Produced Sterile Neutrino Dark Matter, John F. Cherry, Shunsaku Horiuchi, Phys.Rev. D95 (2017) 083015, arXiv:1701.07874.
Neutrino fluxes from a core-collapse supernova in a model with three sterile neutrinos, A. V. Yudin, D. K. Nadyozhin, V. V. Khruschov, S. V. Fomichev, Astron. Lett. 42 (2016) 800-814, arXiv:1701.04713.
Cosmology and time dependent parameters induced by misaligned light scalar, Yue Zhao, Phys.Rev. D95 (2017) 115002, arXiv:1701.02735.
Joint short- and long-baseline constraints on light sterile neutrinos, Francesco Capozzi, Carlo Giunti, Marco Laveder, Antonio Palazzo, Phys.Rev. D95 (2017) 033006, arXiv:1612.07764.
Oscillation characteristics of active and sterile neutrinos and neutrino anomalies at short distances, V. V. Khruschov, S. V. Fomichev, O. A. Titov, Phys.Atom.Nucl. 79 (2016) 708-720, arXiv:1612.06544.
Projection effects in the strong lensing study of subhaloes, Ran Li, Carlos S. Frenk, Shaun Cole, Qiao Wang, Liang Gao, Mon.Not.Roy.Astron.Soc. 468 (2017) 1426, arXiv:1612.06227.
In-flight cLFV conversion: $e-\mu$, $e-\tau$ and $\mu-\tau$ in minimal extensions of the Standard Model with sterile fermions, A. Abada, V. De Romeri, J. Orloff, A.M. Teixeira, Eur.Phys.J. C77 (2017) 304, arXiv:1612.05548.
Sterile neutrinos facing kaon physics experiments, Asmaa Abada, Damir Becirevic, Olcyr Sumensari, Cedric Weiland, Renata Zukanovich Funchal, Phys.Rev. D95 (2017) 075023, arXiv:1612.04737.
Sterile neutrino searches at future $e^-e^+$, $pp$, and $e^-p$ colliders, Stefan Antusch, Eros Cazzato, Oliver Fischer, Int.J.Mod.Phys. A32 (2017) 1750078, arXiv:1612.02728.
On the IceCube Result on $\bar\nu_\mu \to \bar\nu_{s}$ Oscillations, S. T. Petcov, Int.J.Mod.Phys. A32 (2017) 1750018, arXiv:1611.09247.
Discriminating sterile neutrinos and unitarity violation with CP invariants, Heinrich Pas, Philipp Sicking, Phys.Rev. D95 (2017) 075004, arXiv:1611.08450.
Sterile Neutrinos and Flavor Ratios in IceCube, Vedran Brdar, Joachim Kopp, Xiao-Ping Wang, JCAP 1701 (2017) 026, arXiv:1611.04598.
A sensitive search for unknown spectral emission lines in the diffuse X-ray background with XMM-Newton, A. Gewering-Peine, D. Horns, J.H.M.M. Schmitt, JCAP 1706 (2017) 036, arXiv:1611.01733.
Properties of Local Group galaxies in hydrodynamical simulations of sterile neutrino dark matter cosmologies, Mark R. Lovell et al., Mon.Not.Roy.Astron.Soc. 468 (2017) 4285, arXiv:1611.00010.
Addressing the too big to fail problem with baryon physics and sterile neutrino dark matter, Mark R. Lovell, Violeta Gonzalez-Perez, Sownak Bose, Alexey Boyarsky, Shaun Cole, Carlos S. Frenk, Oleg Ruchayskiy, Mon.Not.Roy.Astron.Soc. 468 (2017) 2836-2849, arXiv:1611.00005.
Cosmological constraints on exotic injection of electromagnetic energy, Vivian Poulin, Julien Lesgourgues, Pasquale D. Serpico, JCAP 1703 (2017) 043, arXiv:1610.10051.
MeV-scale sterile neutrino decays at the Fermilab Short-Baseline Neutrino program, Peter Ballett, Silvia Pascoli, Mark Ross-Lonergan, JHEP 1704 (2017) 102, arXiv:1610.08512.
Effects of active-sterile neutrino mixing during primordial nucleosynthesis, Osvaldo Civitarese, Mercedes Elisa Mosquera, Maria Manuela Saez, Int.J.Mod.Phys. E23 (2014) 1450080, arXiv:1610.05696.
How Zwicky already ruled out modified gravity theories without dark matter, Theodorus Maria Nieuwenhuizen, Fortsch.Phys. 65 (2017) 1600050, arXiv:1610.01543.
Non-Unitarity, sterile neutrinos, and Non-Standard neutrino Interactions, Mattias Blennow, Pilar Coloma, Enrique Fernandez-Martinez, Josu Hernandez-Garcia, Jacobo Lopez-Pavon, JHEP 1704 (2017) 153, arXiv:1609.08637.
Dark Matter Relic Abundance and Light Sterile Neutrinos, Yi-Lei Tang, Shou-hua Zhu, JHEP 1701 (2017) 025, arXiv:1609.07841.
Production of heavy sterile neutrinos from vector boson decay at electroweak temperatures, Louis Lello, Daniel Boyanovsky, Robert D. Pisarski, Phys.Rev. D95 (2017) 043524, arXiv:1609.07647.
Cosmological Imprints of Frozen-In Light Sterile Neutrinos, Samuel B. Roland, Bibhushan Shakya, JCAP 1705 (2017) 027, arXiv:1609.06739.
Probing nonstandard neutrino cosmology with terrestrial neutrino experiments, Akshay Ghalsasi, David McKeen, Ann E. Nelson, Phys.Rev. D95 (2017) 115039, arXiv:1609.06326.
Direct Search for keV Sterile Neutrino Dark Matter with a Stable Dysprosium Target, T. Lasserre et al., arXiv:1609.04671, 2016.
keV Sterile Neutrino Dark Matter from Singlet Scalar Decays: The Most General Case, Johannes Konig, Alexander Merle, Maximilian Totzauer, JCAP 1611 (2016) 038, arXiv:1609.01289.
Impact of ADC non-linearities on the sensitivity to sterile keV neutrinos with a KATRIN-like experiment, K. Dolde, S. Mertens, D. Radford, T. Bode, A. Huber, M. Korzeczek, T. Lasserre, M. Slezak, Nucl.Instrum.Meth. A848 (2017) 127-136, arXiv:1608.03158.
Light sterile neutrinos from a late phase transition, Luca Vecchi, Phys. Rev. D94 (2016) 113015, arXiv:1607.04161.
Warm dark matter sterile neutrinos in electron capture and beta decay spectra, O. Moreno, E. Moya de Guerra, M. Ramon Medrano, Adv.High Energy Phys. 2016 (2016) 6318102, arXiv:1607.02931.
Capabilities of long-baseline experiments in the presence of a sterile neutrino, Debajyoti Dutta, Raj Gandhi, Boris Kayser, Mehedi Masud, Suprabh Prakash, JHEP 1611 (2016) 122, arXiv:1607.02152.
A Combined View of Sterile-Neutrino Constraints from CMB and Neutrino Oscillation Measurements, Sarah Bridle et al., Phys.Lett. B764 (2017) 322-327, arXiv:1607.00032.
First Constraints on the Complete Neutrino Mixing Matrix with a Sterile Neutrino, G.H. Collin, C.A. Arguelles, J.M. Conrad, M.H. Shaevitz, Phys. Rev. Lett. 117 (2016) 221801, arXiv:1607.00011.
Getting the Most Neutrinos out of IsoDAR, Emilio Ciuffoli, Jarah Evslin, Hosam Mohammed, Fengyi Zhao, Maksym Deliyergiyev, arXiv:1606.09451, 2016.
Pseudoscalar - sterile neutrino interactions: reconciling the cosmos with neutrino oscillations, Maria Archidiacono et al., JCAP 1608 (2016) 067, arXiv:1606.07673.
Atmospheric neutrinos, $\nu_e-\nu_s$ oscillations, and a novel neutrino evolution equation, Evgeny Akhmedov, JHEP 1608 (2016) 153, arXiv:1606.07391.
Breaking Be: a sterile neutrino solution to the cosmological lithium problem, Laura Salvati, Luca Pagano, Massimiliano Lattanzi, Martina Gerbino, Alessandro Melchiorri, JCAP 1608 (2016) 022, arXiv:1606.06968.
Big Bang Nucleosynthesis in the presence of sterile neutrinos with altered dispersion relations, Elke Aeikens, Heinrich Pas, Sandip Pakvasa, Thomas J. Weiler, Phys. Rev. D94 (2016) 113010, arXiv:1606.06695.
Constraint on Matter Power Spectrum on $10^6-10^9M_\odot$ Scales from ${\large\tau_e}$, Renyue Cen, Astrophys.J. 836 (2017) 217, arXiv:1606.05930.
Rare decays of B mesons via on-shell sterile neutrinos, Gorazd Cvetic, C.S. Kim, Phys. Rev. D94 (2016) 053001, arXiv:1606.04140.
Neutrino Oscillations With Two Sterile Neutrinos, Leonard S. Kisslinger, Int.J.Theor.Phys. 55 (2016) 4462-4468, arXiv:1606.02684.
A Stringent Limit on the Warm Dark Matter Particle Masses from the Abundance of $z=6$ Galaxies in the Hubble Frontier Fields, N. Menci, A. Grazian, M. Castellano, N.G. Sanchez, Astrophys.J. 825 (2016) L1, arXiv:1606.02530.
False Signals of CP-Invariance Violation at DUNE, Andre de Gouvea, Kevin J. Kelly, arXiv:1605.09376, 2016.
Search for the sterile neutrino mixing with the ICAL detector at INO, S. P. Behera et al., Eur.Phys.J. C77 (2017) 307, arXiv:1605.08607.
Short-baseline neutrino oscillations, Planck, and IceCube, John F. Cherry, Alexander Friedland, Ian M. Shoemaker, arXiv:1605.06506, 2016.
Light sterile neutrino sensitivity of 163Ho experiments, L. Gastaldo, C. Giunti, E. M. Zavanin, JHEP 1606 (2016) 061, arXiv:1605.05497.
Octant of $\theta_{23}$ in danger with a light sterile neutrino, Sanjib Kumar Agarwalla, Sabya Sachi Chatterjee, Antonio Palazzo, Phys. Rev. Lett. 118 (2017) 031804, arXiv:1605.04299.
Reionization and dark matter decay, Isabel M. Oldengott, Daniel Boriero, Dominik J. Schwarz, JCAP 1608 (2016) 054, arXiv:1605.03928.
Light Sterile Neutrinos, Lepton Number Violating Interactions and the LSND Anomaly, K. S. Babu, Douglas W. McKay, Irina Mocioiu, Sandip Pakvasa, Phys. Rev. D93 (2016) 113019, arXiv:1605.03625.
Reionisation in sterile neutrino cosmologies, Sownak Bose, Carlos S. Frenk, Hou Jun, Cedric G. Lacey, Mark R. Lovell, Mon.Not.Roy.Astron.Soc. 463 (2016) 3848-3859, arXiv:1605.03179.
Testing keV sterile neutrino dark matter in future direct detection experiments, Miguel D. Campos, Werner Rodejohann, Phys. Rev. D94 (2016) 095010, arXiv:1605.02918.
Distinguishing Dirac/Majorana Sterile Neutrinos at the LHC, Claudio O. Dib, C. S. Kim, Kechen Wang, Jue Zhang, Phys. Rev. D94 (2016) 013005, arXiv:1605.01123.
Production of keV Sterile Neutrinos in Supernovae: New Constraints and Gamma Ray Observables, Carlos A. Arguelles, Vedran Brdar, Joachim Kopp, Phys.Rev. D99 (2019) 043012, arXiv:1605.00654.
A new scheme for short baseline electron antineutrino disappearance study, Jae Won Shin, Myung-Ki Cheoun, Toshitaka Kajino, J.Phys. G44 (2017) 09LT01, arXiv:1605.00642.
Substructure and galaxy formation in the Copernicus Complexio warm dark matter simulations, Sownak Bose et al., Mon.Not.Roy.Astron.Soc. 464 (2017) 4520-4533-4533, arXiv:1604.07409.
Constraints on Sterile Neutrino Oscillations using DUNE Near Detector, Sandhya Choubey, Dipyaman Pramanik, Phys.Lett. B764 (2017) 135-141, arXiv:1604.04731.
Sterile neutrino dark matter and core-collapse supernovae, Grant J. Mathews, MacKenzie Warren, Jun Hidaka, Toshitaka Kajino, arXiv:1604.02431, 2016.
Displaced vertex searches for sterile neutrinos at future lepton colliders, Stefan Antusch, Eros Cazzato, Oliver Fischer, JHEP 1612 (2016) 007, arXiv:1604.02420.
Influence of 7 keV sterile neutrino dark matter on the process of reionization, Anton Rudakovskiy, Dmytro Iakubovskyi, JCAP 1606 (2016) 017, arXiv:1604.01341.
Prospects for Reconstruction of Leptonic Unitarity Quadrangle and Neutrino Oscillation Experiments, Surender Verma, Shankita Bhardwaj, Nucl. Phys. B907 (2016) 249-257, arXiv:1603.08291.
Physics Reach of DUNE with a Light Sterile Neutrino, Sanjib Kumar Agarwalla, Sabya Sachi Chatterjee, Antonio Palazzo, JHEP 1609 (2016) 016, arXiv:1603.03759.
Heavy Neutrino Impact on the Triple Higgs Coupling, Julien Baglio, Cedric Weiland, Phys. Rev. D94 (2016) 013002, arXiv:1603.00879.
Impact of nonstandard interactions on sterile neutrino searches at IceCube, Jiajun Liao, Danny Marfatia, Phys. Rev. Lett. 117 (2016) 071802, arXiv:1602.08766.
Neutrino oscillations in the presence of super-light sterile neutrinos, P. C. Divari, J. D. Vergados, Int.J.Mod.Phys. A31 (2016) 1650123, arXiv:1602.08690.
Can decaying sterile neutrinos account for all dark matter?, Man Ho Chan, Astrophys. Space Sci. 361 (2016) 116, arXiv:1602.08168.
Assessing the role of nuclear effects in the interpretation of the MiniBooNE low-energy anomaly, M. Ericson, M. V. Garzelli, C. Giunti, M. Martini, Phys. Rev. D93 (2016) 073008, arXiv:1602.01390.
Sterile Neutrino Fits to Short Baseline Data, G. H. Collin, C. A. Arguelles, J. M. Conrad, M. H. Shaevitz, Nucl. Phys. B908 (2016) 354-365, arXiv:1602.00671.
Astrophysical constraints on resonantly produced sterile neutrino dark matter, Aurel Schneider, JCAP 1604 (2016) 059, arXiv:1601.07553.
Atomic ionization by sterile-to-active neutrino conversion and constraints on dark matter sterile neutrinos with germanium detectors, Jiunn-Wei Chen et al., Phys. Rev. D93 (2016) 093012, arXiv:1601.07257.
Discovery Potential of T2K and NOvA in the Presence of a Light Sterile Neutrino, Sanjib Kumar Agarwalla, Sabya Sachi Chatterjee, Arnab Dasgupta, Antonio Palazzo, JHEP 02 (2016) 111, arXiv:1601.05995.
Constraining the Warm Dark Matter Particle Mass through Ultra-Deep UV Luminosity Functions at z=2, N. Menci, N.G. Sanchez, M. Castellano, A. Grazian, Astrophys. J. 818 (2016) 90, arXiv:1601.01820.
Constraints on the identity of the dark matter from strong gravitational lenses, Ran Li et al., Mon.Not.Roy.Astron.Soc. 460 (2016) 363-372, arXiv:1512.06507.
Higgs production from sterile neutrinos at future lepton colliders, Stefan Antusch, Eros Cazzato, Oliver Fischer, JHEP 1604 (2016) 189, arXiv:1512.06035.
Dodelson-Widrow Production of Sterile Neutrino Dark Matter with Non-Trivial Initial Abundance, Alexander Merle, Aurel Schneider, Maximilian Totzauer, JCAP 1604 (2016) 003, arXiv:1512.05369.
Properties of Resonantly Produced Sterile Neutrino Dark Matter Subhalos, Shunsaku Horiuchi et al., Mon. Not. Roy. Astron. Soc. 456 (2016) 4346-4353, arXiv:1512.04548.
Resonant Sterile Neutrino Dark Matter in the Local and High-z Universe, Brandon Bozek et al., Mon.Not.Roy.Astron.Soc. 459 (2016) 1489, arXiv:1512.04544.
Satellite galaxies in semi-analytic models of galaxy formation with sterile neutrino dark matter, Mark R.Lovell et al., Mon.Not.Roy.Astron.Soc. 461 (2016) 60-72, arXiv:1511.04078.
Electric Dipole Moments of Charged Leptons with Sterile Fermions, Asmaa Abada, Takashi Toma, JHEP 02 (2016) 174, arXiv:1511.03265.
Global Constraints on a Heavy Neutrino, Andre de Gouvea, Andrew Kobach, Phys. Rev. D93 (2016) 033005, arXiv:1511.00683.
Probing heavy neutrinos in the COMET experiment, Takehiko Asaka, Atsushi Watanabe, PTEP 2016 (2016) 033B03, arXiv:1510.07746.
Neutrinos secretly converting to lighter particles to please both KATRIN and the cosmos, Yasaman Farzan, Steen Hannestad, JCAP 1602 (2016) 058, arXiv:1510.02201.
Earth matter effect on atmospheric neutrino oscillation in (3+3) model, Mushfiqur Rahman, arXiv:1510.01452, 2015.
Sterile neutrinos in the light of IceCube, Manfred Lindner, Werner Rodejohann, Xun-Jie Xu, JHEP 1601 (2016) 124, arXiv:1510.00666.
Discovering sterile Neutrinos ligther than $M_W$ at the LHC, Claudio O. Dib, Choong Sun Kim, Phys. Rev. D92 (2015) 093009, arXiv:1509.05981.
Checking T and CPT violation with sterile neutrino, Yogita Pant, Sujata Diwakar, Jyotsna Singh, R.B. Singh, Nucl. Phys. B909 (2016) 1079-1103, arXiv:1509.04096.
Neutrino Physics with Accelerator Driven Subcritical Reactors, Emilio Ciuffoli, Jarah Evslin, Fengyi Zhao, JHEP 01 (2016) 004, arXiv:1509.03494.
3-flavor and 4-flavor implications of the latest T2K and NO$\nu$A electron (anti-)neutrino appearance results, Antonio Palazzo, Phys.Lett. B757 (2016) 142-147, arXiv:1509.03148.
Limits on sterile neutrino contributions to neutrinoless double beta decay, J. Barea, J. Kotila, F. Iachello, Phys. Rev. D92 (2015) 093001, arXiv:1509.01925.
The impact of sterile neutrinos on CP measurements at long baselines, Raj Gandhi, Boris Kayser, Mehedi Masud, Suprabh Prakash, JHEP 11 (2015) 039, arXiv:1508.06275.
Right-handed neutrinos and the 2 TeV $W'$ boson, Pilar Coloma, Bogdan A. Dobrescu, Jacobo Lopez-Pavon, Phys. Rev. D92 (2015) 115023, arXiv:1508.04129.
The case for mixed dark matter from sterile neutrinos, Louis Lello, Daniel Boyanovsky, JCAP 1606 (2016) 011, arXiv:1508.04077.
Appearance-Disappearance Relation in 3+$N_{s}$ Short-Baseline Neutrino Oscillations, C. Giunti, E. M. Zavanin, Mod. Phys. Lett. A31 (2016) 1650003, arXiv:1508.03172.
Neutrino Oscillations With Three Active and Three Sterile Neutrinos, Leonard S. Kisslinger, Int.J.Theor.Phys. 55 (2016) 3274-3279, arXiv:1508.03027.
Sterile neutrinos with pseudoscalar self-interactions and cosmology, Maria Archidiacono, Steen Hannestad, Rasmus Sloth Hansen, Thomas Tram, Phys. Rev. D93 (2016) 045004, arXiv:1508.02504.
Sterile neutrino dark matter: A tale of weak interactions in the strong coupling epoch, Tejaswi Venumadhav, Francis-Yan Cyr-Racine, Kevork N. Abazajian, Christopher M. Hirata, Phys. Rev. D94 (2016) 043515, arXiv:1507.06655.
Secret Interactions of Sterile Neutrinos and MeV-scale gauge boson, Zahra Tabrizi, O. L. G. Peres, Phys. Rev. D93 (2016) 053003, arXiv:1507.06486.
The X-Ray Line Feature At 3.5 Kev In Galaxy Cluster Spectra, K. J. H. Phillips, B. Sylwester, J. Sylwester, arXiv:1507.04619, 2015.
A Sterile Neutrino at DUNE, Jeffrey M. Berryman, Andre de Gouvea, Kevin J. Kelly, Andrew Kobach, Phys. Rev. D92 (2015) 073012, arXiv:1507.03986.
The COpernicus COmplexio: Statistical Properties of Warm Dark Matter Haloes, Sownak Bose et al., Mon. Not. Roy. Astron. Soc. 455 (2016) 318-333, arXiv:1507.01998.
Improved determination of sterile neutrino dark matter spectrum, J. Ghiglieri, M. Laine, JHEP 11 (2015) 171, arXiv:1506.06752.
Active-sterile neutrino oscillations in the early Universe with full collision terms, Steen Hannestad, Rasmus Sloth Hansen, Thomas Tram, Yvonne Y. Y. Wong, JCAP 1508 (2015) 019, arXiv:1506.05266.
Structure formation in warm dark matter cosmologies: Top-Bottom Upside-Down, Sinziana Paduroiu, Yves Revaz, Daniel Pfenniger, arXiv:1506.03789, 2015.
Neutrino pair and gamma beams from circulating excited ions, M. Yoshimura, N. Sasao, Phys. Rev. D92 (2015) 073015, arXiv:1505.07572.
Oscillation of heavy sterile neutrino in decay of $B \to \mu e \pi$, Gorazd Cvetic, C.S. Kim, Reinhart Kogerler, Jilberto Zamora-Saa, Phys. Rev. D92 (2015) 013015, arXiv:1505.04749.
Compact Neutrino Source, John LoSecco, Phys. Rev. D92 (2015) 033007, arXiv:1505.04156.
Sterile Neutrinos with Secret Interactions - Lasting Friendship with Cosmology, Xiaoyong Chu, Basudeb Dasgupta, Joachim Kopp, JCAP 1510 (2015) 011, arXiv:1505.02795.
On the search for CPT violation in the leptonic sector by means of neutrino oscillometry, Michail V Smirnov, Kai K Loo, Yuri N Novikov, Wladyslaw H Trzaska, Michael Wurm, Nucl. Phys. B900 (2015) 104-114, arXiv:1505.02550.
Predictions for Neutrinoless Double-Beta Decay in the 3+1 Sterile Neutrino Scenario, C. Giunti, E. M. Zavanin, JHEP 07 (2015) 171, arXiv:1505.00978.
Constraints on secret neutrino interactions after Planck, Francesco Forastieri, Massimiliano Lattanzi, Paolo Natoli, JCAP 1507 (2015) 014, arXiv:1504.04999.
Low reheating temperatures in monomial and binomial inflationary potentials, Thomas Rehagen, Graciela B. Gelmini, JCAP 1506 (2015) 039, arXiv:1504.03768.
A Combined Limit on the Neutrino Mass from Neutrinoless Double-Beta Decay and Constraints on Sterile Majorana Neutrinos, Pawel Guzowski et al., Phys. Rev. D92 (2015) 012002, arXiv:1504.03600.
Multilepton and Lepton Jet Probes of Sub-Weak-Scale Right-Handed Neutrinos, Eder Izaguirre, Brian Shuve, Phys. Rev. D91 (2015) 093010, arXiv:1504.02470.
Prospects of Heavy Neutrino Searches at Future Lepton Colliders, Shankha Banerjee, P. S. Bhupal Dev, Alejandro Ibarra, Tanumoy Mandal, Manimala Mitra, Phys. Rev. D92 (2015) 075002, arXiv:1503.05491.
Consistent analysis of the $\nu_\mu\to \nu_e$ sterile neutrinos searches of ICARUS and OPERA, Antonio Palazzo, Phys. Rev. D91 (2015) 091301, arXiv:1503.03966.
Some comments on high precision study of neutrino oscillations, S.M. Bilenky, Phys. Part. Nucl. Lett. 12 (2015) 453-461, arXiv:1502.06158.
Confronting the Stochastic Neutrino Mixing Mechanism and the sterile neutrino hypothesis as a solution to the short baseline neutrino anomalies, E. M. Zavanin, M. M. Guzzo, P. C. de Holanda, O. L. G. Peres, Phys. Rev. D91 (2015) 113009, arXiv:1502.05948.
Probing $f(R)$ cosmology with sterile neutrinos via measurements of scale-dependent growth rate of structure, Yun-He Li, Jing-Fei Zhang, Xin Zhang, Phys.Lett. B744 (2015) 213-217, arXiv:1502.01136.
keV Sterile Neutrino Dark Matter from Singlet Scalar Decays: Basic Concepts and Subtle Features, Alexander Merle, Maximilian Totzauer, JCAP 1506 (2015) 011, arXiv:1502.01011.
Experimental and cosmological constraints on heavy neutrinos, Marco Drewes, Bjorn Garbrecht, Nucl.Phys. B921 (2017) 250-315, arXiv:1502.00477.
Constrains on Dark Matter sterile neutrino resonant production in the light of Planck, L. A. Popa, A. Caramete, D. Tonoiu, JCAP 1509 (2015) 066, arXiv:1501.06355.
Effect of cross-section models on the validity of sterile neutrino mixing limits, Patrick Stowell, Callum Wilkinson, Susan Cartwright, arXiv:1501.02142, 2015.
More Is Different: Reconciling eV Sterile Neutrinos and Cosmological Mass Bounds, Yong Tang, Phys. Lett. B750 (2015) 201-208, arXiv:1501.00059.
Imprints of CP-violating phases induced by sterile neutrinos in T2K, N. Klop, A. Palazzo, Phys. Rev. D91 (2015) 073017, arXiv:1412.7524.
Light Sterile Neutrinos and Inflationary Freedom, S. Gariazzo, C. Giunti, M. Laveder, JCAP 1504 (2015) 023, arXiv:1412.7405.
Indirect searches for sterile neutrinos at a high-luminosity Z-factory, A. Abada, V. De Romeri, S. Monteil, J. Orloff, A. M. Teixeira, JHEP 1504 (2015) 051, arXiv:1412.6322.
Enhancement of the sterile neutrinos yield at high matter density and at increasing the medium neutronization, V. V. Khruschov, A. V. Yudin, D. K. Nadyozhin, S. V. Fomichev, Astron. Lett. 41 (2015) 260-266, arXiv:1412.6262.
Cosmology based on $f(R)$ gravity with ${\cal O}(1)$ eV sterile neutrino, A. S. Chudaykin, D. S. Gorbunov, A. A. Starobinsky, R. A. Burenin, JCAP 1505 (2015) 004, arXiv:1412.5239.
Heavy Neutrinos and the Kinematics of Tau Decays, Andrew Kobach, Sean Dobbs, Phys. Rev. D91 (2015) 053006, arXiv:1412.4785.
Testing Tensor-Vector-Scalar Theory with latest cosmological observations, Xiao-dong Xu, Bin Wang, Pengjie Zhang, Phys. Rev. D92 (2015) 083505, arXiv:1412.4073.
Structure formation in a mixed dark matter model with decaying sterile neutrino: the 3.5 keV X-ray line and the Galactic substructure, Akira Harada, Ayuki Kamada, Naoki Yoshida, JCAP 1601 (2016) 031, arXiv:1412.1592.
CP-Invariance Violation at Short-Baseline Experiments in 3+1 Scenarios, Andre de Gouvea, Kevin J. Kelly, Andrew Kobach, Phys. Rev. D91 (2015) 053005, arXiv:1412.1479.
Majorana Neutrinos Production at LHeC in an Effective Approach, Lucia Duarte, Gabriel A. Gonzalez-Sprinberg, Oscar Alfredo Sampayo, Phys. Rev. D91 (2015) 053007, arXiv:1412.1433.
Radiative Emission of Neutrino Pairs in Atoms and Light Sterile Neutrinos, D. N. Dinh, S. T. Petcov, Phys.Lett. B742 (2015) 107-116, arXiv:1411.7459.
Probing new physics scenarios in accelerator and reactor neutrino experiments, A. Di Iura, I. Girardi, D. Meloni, J. Phys. G42 (2015) 065003, arXiv:1411.5330.
Spin mixing mechanism in amplitude analysis of $\pi^{-} p \to \pi^{-} \pi^{+} n$ and a new view of dark matter, Miloslav Svec, arXiv:1411.4468, 2014.
Calculation of primordial abundances of light nuclei including a heavy sterile neutrino, M. Mosquera, O. Civitarese, JCAP 1508 (2015) 038, arXiv:1411.4030.
Cosmological Implications of Light Sterile Neutrinos produced after the QCD Phase Transition, Louis Lello, Daniel Boyanovsky, Phys. Rev. D91 (2015) 063502, arXiv:1411.2690.
Where do the 3.5 keV photons come from? A morphological study of the Galactic Center and of Perseus, Eric Carlson, Tesla Jeltema, Stefano Profumo, JCAP 1502 (2015) 009, arXiv:1411.1758.
The Case for Muon-based Neutrino Beams, Patrick Huber, Alan Bross, Mark Palmer, arXiv:1411.0629, 2014.
Excited dark matter reconciles conflicting observations of 3.5 keV X-rays, James M. Cline, Andrew R. Frey, Phys. Rev. D90 (2014) 123537, arXiv:1410.7766.
Wavelet Approach to Search for Sterile Neutrinos in Tritium $\beta$-Decay Spectra, S. Mertens et al., Phys. Rev. D91 (2015) 042005, arXiv:1410.7684.
Tension between secret sterile neutrino interactions and cosmological neutrino mass bounds, Alessandro Mirizzi, Gianpiero Mangano, Ofelia Pisanti, Ninetta Saviano, Phys. Rev. D91 (2015) 025019, arXiv:1410.1385.
Nearly degenerate heavy sterile neutrinos in cascade decay: mixing and oscillations, Daniel Boyanovsky, Phys. Rev. D90 (2014) 105024, arXiv:1409.4265.
Tension between the power spectrum of density perturbations measured on large and small scales, Richard A. Battye, Tom Charnock, Adam Moss, Phys. Rev. D91 (2015) 103508, arXiv:1409.2769.
Unveiling secret interactions among sterile neutrinos with big-bang nucleosynthesis, Ninetta Saviano, Ofelia Pisanti, Gianpiero Mangano, Alessandro Mirizzi, Phys. Rev. D90 (2014) 113009, arXiv:1409.1680.
Neutrino Oscillations With Recently Measured Sterile-Active Neutrino Mixing Angle, Leonard S. Kisslinger, Int.J.Theor.Phys. 53 (2014) 3201, arXiv:1409.1610.
Sensitivity of Next-Generation Tritium Beta-Decay Experiments for keV-Scale Sterile Neutrinos, S. Mertens et al., JCAP 1502 (2015) 020, arXiv:1409.0920.
Solar neutrino physics with low-threshold dark matter detectors, J. Billard, L. Strigari, E. Figueroa-Feliciano, Phys. Rev. D91 (2015) 095023, arXiv:1409.0050.
Sterile Neutrinos in Neutrinoless Double Beta Decay: An Update, Amand Faessler, Marcela Gonzalez, Sergey Kovalenko, Fedor Simkovic, Phys. Rev. D90 (2014) 096010, arXiv:1408.6077.
Cosmic Discordance: Are Planck CMB and CFHTLenS weak lensing measurements out of tune?, Niall MacCrann, Joe Zuntz, Sarah Bridle, Bhuvnesh Jain, Matthew R. Becker, Mon.Not.Roy.Astron.Soc. 451 (2015) 2877, arXiv:1408.4742.
Measuring growth index in a universe with sterile neutrinos, Jing-Fei Zhang, Yun-He Li, Xin Zhang, Phys.Lett. B739 (2014) 102-105, arXiv:1408.4603.
Non-Detection of X-Ray Emission From Sterile Neutrinos in Stacked Galaxy Spectra, Michael E. Anderson, Eugene Churazov, Joel N. Bregman, Mon. Not. Roy. Astron. Soc. 452 (2015) 3905, arXiv:1408.4115.
Constraints on 3.55 keV line emission from stacked observations of dwarf spheroidal galaxies, D. Malyshev, A. Neronov, D. Eckert, Phys. Rev. D90 (2014) 103506, arXiv:1408.3531.
Four-Neutrino Analysis of 1.5 km Baseline Reactor Antineutrino Oscillations, Sin Kyu Kang, Yeong-Duk Kim, Young-Ju Ko, Kim Siyeon, Adv.High Energy Phys. 2013 (2013) 138109, arXiv:1408.3211.
Revisiting cosmological bounds on sterile neutrinos, Aaron C. Vincent, Enrique Fernandez Martinez, Pilar Hernandez, Massimiliano Lattanzi, Olga Mena, JCAP 1504 (2015) 006, arXiv:1408.1956.
Sterile neutrinos at LBNE, David Hollander, Irina Mocioiu, Phys. Rev. D91 (2015) 013002, arXiv:1408.1749.
Dark matter searches going bananas: the contribution of Potassium (and Chlorine) to the 3.5 keV line, Tesla E. Jeltema, Stefano Profumo, Mon.Not.Roy.Astron.Soc. 450 (2015) 2143-2152, arXiv:1408.1699.
Neutrinos and dark energy after Planck and BICEP2: data consistency tests and cosmological parameter constraints, Jing-Fei Zhang, Jia-Jia Geng, Xin Zhang, JCAP 1410 (2014) 044, arXiv:1408.0481.
The Not-So-Sterile 4th Neutrino: Constraints on New Gauge Interactions from Neutrino Oscillation Experiments, Joachim Kopp, Johannes Welter, JHEP 1412 (2014) 104, arXiv:1408.0289.
Non-unitarity of the leptonic mixing matrix: Present bounds and future sensitivities, Stefan Antusch, Oliver Fischer, JHEP 1410 (2014) 94, arXiv:1407.6607.
Single photon events from neutral current interactions at MiniBooNE, E. Wang, L. Alvarez-Ruso, J. Nieves, Phys.Lett. B740 (2015) 16-22, arXiv:1407.6060.
CL$_s$ Method at Gaussian Limit to Present Searches, X. Qian, A. Tan, J. J. Ling, Y. Nakajima, C. Zhang, Nucl.Instrum.Meth. A827 (2016) 63, arXiv:1407.5052.
Statistical tests of sterile neutrinos using cosmology and short-baseline data, Johannes Bergstrom, M. C. Gonzalez-Garcia, V. Niro, J. Salvado, JHEP 1410 (2014) 104, arXiv:1407.3806.
Searching for sterile neutrinos at the ESS$\nu$SB, Mattias Blennow, Pilar Coloma, Enrique Fernandez-Martinez, JHEP 1412 (2014) 120, arXiv:1407.1317.
Modified Baryonic Dynamics: two-component cosmological simulations with light sterile neutrinos, Garry W. Angus, Antonaldo Diaferio, Benoit Famaey, Kurt J. van der Heyden, JCAP 1410 (2014) 079, arXiv:1407.1207.
Flavor Ratios and Mass Hierarchy at Neutrino Telescopes, Lingjun Fu, Chiu Man Ho, arXiv:1407.1090, 2014.
Effect of steriles states on lepton magnetic moments and neutrinoless double beta decay, A. Abada, V. De Romeri, A.M. Teixeira, JHEP 1409 (2014) 074, arXiv:1406.6978.
Helicitogenesis: WIMPy baryogenesis with sterile neutrinos and other realizations, J. Racker, N. Rius, JHEP 1411 (2014) 163, arXiv:1406.6105.
Combining dark matter detectors and electron-capture sources to hunt for new physics in the neutrino sector, Pilar Coloma, Patrick Huber, Jonathan M. Link, JHEP 1411 (2014) 042, arXiv:1406.4914.
The quest for neutrinoless double beta decay: Pseudo-Dirac, Majorana and sterile neutrinos, A. Meroni, E. Peinado, Phys. Rev. D90 (2014) 053002, arXiv:1406.3990.
Daughters mimic sterile neutrinos (almost!) perfectly, Jasper Hasenkamp, JCAP 1409 (2014) 048, arXiv:1405.6736.
Constraining Sterile Neutrinos Using Reactor Neutrino Experiments, Ivan Girardi, Davide Meloni, Tommy Ohlsson, He Zhang, Shun Zhou, JHEP 08 (2014) 057, arXiv:1405.6540.
Sterile neutrino oscillations in core-collapse supernova simulations, MacKenzie L. Warren, Matthew Meixner, Grant Mathews, Jun Hidaka, Toshitaka Kajino, Phys. Rev. D90 (2014) 103007, arXiv:1405.6101.
Tilt of primordial gravitational wave spectrum in a universe with sterile neutrinos, Yun-He Li, Jing-Fei Zhang, Xin Zhang, Sci.China Phys.Mech.Astron. 57 (2014) 1455-1459, arXiv:1405.0570.
Cosmological Invisible Decay of Light Sterile Neutrinos, S. Gariazzo, C. Giunti, M. Laveder, arXiv:1404.6160, 2014.
No new cosmological concordance with massive sterile neutrinos, Boris Leistedt, Hiranya V. Peiris, Licia Verde, Phys. Rev. Lett. 113 (2014) 041301, arXiv:1404.5950.
Cosmology with self-interacting sterile neutrinos and dark matter - A pseudoscalar model, Maria Archidiacono, Steen Hannestad, Rasmus Sloth Hansen, Thomas Tram, Phys. Rev. D91 (2015) 065021, arXiv:1404.5915.
3.5 keV X-rays as the '21 cm line' of dark atoms, and a link to light sterile neutrinos, James M. Cline, Yasaman Farzan, Zuowei Liu, Guy D. Moore, Wei Xue, Phys. Rev. D89 (2014) 121302, arXiv:1404.3729.
Cosmological constraints on neutrinos after BICEP2, Jing-Fei Zhang, Yun-He Li, Xin Zhang, Eur.Phys.J. C74 (2014) 2954, arXiv:1404.3598.
Light sterile neutrinos after BICEP-2, Maria Archidiacono, Nicolao Fornengo, Stefano Gariazzo, Carlo Giunti, Steen Hannestad, Marco Laveder, JCAP 1406 (2014) 031, arXiv:1404.1794.
Neutrinos help reconcile Planck measurements with both Early and Local Universe, Cora Dvorkin, Mark Wyman, Douglas H. Rudd, Wayne Hu, Phys. Rev. D90 (2014) 083503, arXiv:1403.8049.
Using strong intense lasers to probe sterile neutrinos, Pouya Bakhti, Rohoollah Mohammadi, She-Sheng Xue, arXiv:1403.7327, 2014.
Sterile neutrinos help reconcile the observational results of primordial gravitational waves from Planck and BICEP2, Jing-Fei Zhang, Yun-He Li, Xin Zhang, Phys.Lett. B740 (2015) 359-363, arXiv:1403.7028.
Time evolution of cascade decay, Daniel Boyanovsky, Louis Lello, New J. Phys. 16 (2014) 063050, arXiv:1403.6366.
Primordial Li Reduction Induced by a Long-lived MeV Sterile Neutrino, Hiroyuki Ishida, Motohiko Kusakabe, Hiroshi Okada, Phys. Rev. D90 (2014) 083519, arXiv:1403.5995.
Constraining new physics scenarios in neutrino oscillations from Daya Bay data, I. Girardi, D. Meloni, Phys. Rev. D90 (2014) 073011, arXiv:1403.5507.
Relic Neutrinos, thermal axions and cosmology in early 2014, Elena Giusarma, Eleonora Di Valentino, Massimiliano Lattanzi, Alessandro Melchiorri, Olga Mena, Phys. Rev. D90 (2014) 043507, arXiv:1403.4852.
Comment on lifetime of sterile neutrinos and the effect on detection of rare meson decays $M^+ \to {M'}^- \ell^+ \ell^+$, Claudio O. Dib, C.S. Kim, Phys. Rev. D89 (2014) 077301, arXiv:1403.1985.
On the keV sterile neutrino search in electron capture, P. E. Filianin et al., J. Phys. G41 (2014) 095004, arXiv:1402.4400.
Impact of sterile neutrinos on the early time flux from a galactic supernova, Arman Esmaili, O. L. G. Peres, Pasquale Dario Serpico, Phys. Rev. D90 (2014) 033013, arXiv:1402.1453.
Effects of kination and scalar-tensor cosmologies on sterile neutrinos, Thomas Rehagen, Graciela B. Gelmini, JCAP 1406 (2014) 044, arXiv:1402.0607.
Mass characteristics of active and sterile neutrinos in a phenomenological (3+1+2)-model, N. Yu. Zysina, S. V. Fomichev, V. V. Khruschov, Phys.Atom.Nucl. 77 (2014) 890-900, arXiv:1401.6306.
The High-$z$ Universe Confronts Warm Dark Matter: Galaxy Counts, Reionization and the Nature of Dark Matter, Christian Schultz, Jose Onorbe, Kevork N. Abazajian, James S. Bullock, Mon.Not.Roy.Astron.Soc. 442 (2014) 1597-1609, arXiv:1401.3769.
Search for Sub-eV Sterile Neutrinos in the Precision Multiple Baselines Reactor Antineutrino Oscillation Experiments, Shu Luo, Nucl. Phys. B899 (2015) 312-327, arXiv:1401.0292.
GSI Oscillations as Laboratory for Testing of New Physics, A. N. Ivanov, P. Kienle, arXiv:1312.5206, 2013.
Heavy neutrino searches at the LHC with displaced vertices, Juan Helo, Martin Hirsch, Sergey Kovalenko, Phys. Rev. D89 (2014) 073005, arXiv:1312.2900.
Electron events from the scattering with solar neutrinos in the search of keV scale sterile neutrino dark matter, Wei Liao, Xiao-Hong Wu, Hang Zhou, Phys. Rev. D89 (2014) 093017, arXiv:1311.6075.
Sterile neutrinos in leptonic and semileptonic decays, A. Abada, A.M. Teixeira, A. Vicente, C. Weiland, JHEP 1402 (2014) 091, arXiv:1311.2830.
Low-scale seesaw models versus $N_{\rm eff}$, P. Hernandez, M. Kekic, J. Lopez-Pavon, Phys. Rev. D89 (2014) 073009, arXiv:1311.2614.
Sterile neutrino dark matter bounds from galaxies of the Local Group, Shunsaku Horiuchi et al., Phys. Rev. D89 (2014) 025017, arXiv:1311.0282.
Detection of ultra high energy neutrinos by IceCube: Sterile neutrino scenario, Subhash Rajpoot, Sarira Sahu, Hsi Ching Wang, Eur.Phys.J. C74 (2014) 2936, arXiv:1310.7075.
A menage a trois of eV-scale sterile neutrinos, cosmology, and structure formation, Basudeb Dasgupta, Joachim Kopp, Phys. Rev. Lett. 112 (2014) 031803, arXiv:1310.6337.
The Effect of Cancellation in Neutrinoless Double Beta Decay, Silvia Pascoli, Manimala Mitra, Steven Wong, Phys. Rev. D90 (2014) 093005, arXiv:1310.6218.
How secret interactions can reconcile sterile neutrinos with cosmology, Steen Hannestad, Rasmus Sloth Hansen, Thomas Tram, Phys. Rev. Lett. 112 (2014) 031802, arXiv:1310.5926.
Active and sterile neutrino oscillations inside the Sun in a phenomenological (3+1+2)-model, V. V. Khruschov, S. V. Fomichev, arXiv:1310.5817, 2013.
Cosmological simulations in MOND: the cluster scale halo mass function with light sterile neutrinos, Garry W. Angus, Antonaldo Diaferio, Benoit Famaey, Kurt J. van der Heyden, Mon.Not.Roy.Astron.Soc. 436 (2013) 202, arXiv:1309.6094.
Sterile Plus Active Neutrinos and Neutrino Oscillations, Leonard S. Kisslinger, Int.J.Theor.Phys. 53 (2014) 3201-3207, arXiv:1309.4983.
Reanalysis of the Reactor Neutrino Anomaly, A.C. Hayes, J.L. Friar, G.T. Garvey, Guy Jonkmans, Phys. Rev. Lett. 112 (2014) 202501, arXiv:1309.4146.
Constraining Light Dark Matter with Diffuse X-Ray and Gamma-Ray Observations, Rouven Essig, Eric Kuflik, Samuel D. McDermott, Tomer Volansky, Kathryn M. Zurek, JHEP 1311 (2013) 193, arXiv:1309.4091.
Light Sterile Neutrinos in Cosmology and Short-Baseline Oscillation Experiments, S. Gariazzo, C. Giunti, M. Laveder, JHEP 1311 (2013) 211, arXiv:1309.3192.
Using MiniBooNE neutral current elastic cross section results to constrain 3+1 sterile neutrino models, Callum Wilkinson, Susan Cartwright, Lee Thompson, JHEP 1401 (2014) 064, arXiv:1309.1081.
Probing light sterile neutrinos in medium baseline reactor experiments, Arman Esmaili, Ernesto Kemp, O. L. G. Peres, Zahra Tabrizi, Phys. Rev. D88 (2013) 073012, arXiv:1308.6218.
Constraints on very light sterile neutrinos from $\theta_{13}$-sensitive reactor experiments, Antonio Palazzo, JHEP 1310 (2013) 172, arXiv:1308.5880.
Evidence for massive neutrinos from CMB and lensing observations, Richard A. Battye, Adam Moss, Phys. Rev. Lett. 112 (2014) 051303, arXiv:1308.5870.
Neutrinoless Double Beta Decay in the Presence of Light Sterile Neutrinos, Ivan Girardi, Aurora Meroni, S. T. Petcov, JHEP 1311 (2013) 146, arXiv:1308.5802.
Unitarity Tests of the Neutrino Mixing Matrix, X. Qian, C. Zhang, M. Diwan, P. Vogel, arXiv:1308.5700, 2013.
A Pragmatic View of Short-Baseline Neutrino Oscillations, C. Giunti, M. Laveder, Y. F. Li, H.W. Long, Phys. Rev. D88 (2013) 073008, arXiv:1308.5288.
A new life for sterile neutrinos: resolving inconsistencies using hot dark matter, Jan Hamann, Jasper Hasenkamp, JCAP 1310 (2013) 044, arXiv:1308.3255.
Precision measures of the primordial abundance of deuterium, Ryan Cooke, Max Pettini, Regina A. Jorgenson, Michael T. Murphy, Charles C. Steidel, Astrophys. J. 781 (2014) 31, arXiv:1308.3240.
Constraining Super-light Sterile Neutrino Scenario by JUNO and RENO-50, Pouya Bakhti, Yasaman Farzan, JHEP 1310 (2013) 200, arXiv:1308.2823.
Primordial 4He abundance: a determination based on the largest sample of HII regions with a methodology tested on model HII regions, Y.I. Izotov, G. Stasinska, N.G. Guseva, Mon.Not.Roy.Astron.Soc. 445 (2014) 778-793, arXiv:1308.2100.
Sterile neutrinos, dark matter, and resonant effects in ultra high energy regimes, O. G. Miranda, C. A. Moura, A. Parada, Phys.Lett. B744 (2015) 55, arXiv:1308.1408.
The properties of warm dark matter haloes, Mark R. Lovell et al., Mon.Not.Roy.Astron.Soc. 439 (2014) 300-317, arXiv:1308.1399.
Contamination of Dark Matter Experiments from Atmospheric Magnetic Dipoles, A. Bueno, M. Masip, P. Sanchez-Lucas, N. Setzer, Phys. Rev. D88 (2013) 073010, arXiv:1308.0011.
$\nu\Lambda$CDM: Neutrinos reconcile Planck with the Local Universe, Mark Wyman, Douglas H. Rudd, R. Ali Vanderveld, Wayne Hu, Phys. Rev. Lett. 112 (2014) 051302, arXiv:1307.7715.
Restricting the LSND and MiniBooNE sterile neutrinos with the IceCube atmospheric neutrino data, Arman Esmaili, Alexei Yu. Smirnov, JHEP 1312 (2013) 014, arXiv:1307.6824.
Are observations of the galaxy cluster Abell 1689 consistent with a neutrino dark matter scenario?, Theo M. Nieuwenhuizen, Andrea Morandi, Mon.Not.Roy.Astron.Soc. 434 (2013) 2679, arXiv:1307.6788.
(Lack of) Cosmological evidence for dark radiation after Planck, Licia Verde, Stephen M. Feeney, Daniel J. Mortlock, Hiranya V. Peiris, JCAP 1309 (2013) 013, arXiv:1307.2904.
Multiple Detectors for a Short-Baseline Neutrino Oscillation Search Near Reactors, K. M. Heeger, B. R. Littlejohn, H. P. Mumm, arXiv:1307.2859, 2013.
Day-Night Asymmetries in Active-Sterile Solar Neutrino Oscillations, H.W. Long, Y. F. Li, C. Giunti, JHEP 1308 (2013) 056, arXiv:1306.4051.
Deficit of reactor antineutrinos at distances smaller than 100 m and inverse beta-decay, A. N. Ivanov et al., Phys. Rev. C88, 055501 (2013) 055501, arXiv:1306.1995.
Are Light Sterile Neutrinos Consistent with Supernova Explosions?, Meng-Ru Wu, Tobias Fischer, Gabriel Martinez-Pinedo, Yong-Zhong Qian, Phys. Rev. D89 (2014) 061303, arXiv:1305.2382.
Implication of a vanishing element in 3+1 Scenario, Monojit Ghosh, Srubabati Goswami, Shivani Gupta, C. S. Kim, Phys. Rev. D88 (2013) 033009, arXiv:1305.0180.
Dark Radiation after Planck, Najla Said, Eleonora Di Valentino, Martina Gerbino, Phys. Rev. D88 (2013) 023513, arXiv:1304.6217.
Dark Radiation candidates after Planck, Eleonora Di Valentino, Alessandro Melchiorri, Olga Mena, JCAP 1311 (2013) 018, arXiv:1304.5981.
CP-violating Phases in Active-Sterile Solar Neutrino Oscillations, H.W. Long, Y. F. Li, C. Giunti, Phys. Rev. D 87, 113004 (2013) 113004, arXiv:1304.2207.
Sterile neutrinos: the necessity for a 5 sigma definitive clarification, Carlo Rubbia, Alberto Guglielmi, Francesco Pietropaolo, Paola Sala, arXiv:1304.2047, 2013.
Testing lepton flavor universality in terms of data of BES III and charm-tau factory, Bin Wang, Ming-Gang Zhao, Ke-Sheng Sun, Xue-Qian Li, Chin.Phys. C37 (2013) 073101, arXiv:1304.1290.
Dark Radiation or Warm Dark Matter from long lived particle decays in the light of Planck, Pasquale Di Bari, Stephen F. King, Alexander Merle, Phys.Lett. B724 (2013) 77-83, arXiv:1303.6267.
The strongest bounds on active-sterile neutrino mixing after Planck data, Alessandro Mirizzi, Gianpiero Mangano, Ninetta Saviano, Enrico Borriello, Carlo Giunti, Gennaro Miele, Ofelia Pisanti, Phys. Lett. B726 (2013) 8-14, arXiv:1303.5368.
The importance of local measurements for cosmology, Licia Verde, Raul Jimenez, Stephen Feeney, Phys.Dark Univ. 2 (2013) 65-71, arXiv:1303.5341.
Cosmology with sterile neutrino masses from oscillation experiments, Jostein R. Kristiansen, Oystein Elgaroy, Carlo Giunti, Marco Laveder, arXiv:1303.4654, 2013.
Constraints on electromagnetic properties of sterile neutrinos from MiniBooNE results, Alexander Radionov, Phys. Rev. D88 (2013) 015016, arXiv:1303.4587.
Light inflaton after LHC8 and WMAP9 results, F. Bezrukov, D. Gorbunov, JHEP 1307 (2013) 140, arXiv:1303.4395.
Exploring $\nu_{\tau}-\nu_{s}$ mixing with cascade events in DeepCore, Arman Esmaili, Francis Halzen, O. L. G. Peres, JCAP 1307 (2013) 048, arXiv:1303.3294.
Sterile Neutrino Oscillations: The Global Picture, Joachim Kopp, Pedro A. N. Machado, Michele Maltoni, Thomas Schwetz, JHEP 1305 (2013) 050, arXiv:1303.3011.
Reactor Antineutrino Anomaly with known $\theta_{13}$, C. Zhang, X. Qian, P. Vogel, Phys. Rev. D87 (2013) 073018, arXiv:1303.0900.
A potential sterile neutrino search using a two-reactor/one-detector configuration, M. Bergevin, C. Grant, R. Svoboda, arXiv:1303.0310, 2013.
Can active-sterile neutrino oscillations lead to chaotic behavior of the cosmological lepton asymmetry?, Steen Hannestad, Rasmus Sloth Hansen, Thomas Tram, JCAP 1304 (2013) 032, arXiv:1302.7279.
Sterile Neutrinos: Cosmology vs Short-BaseLine Experiments, Maria Archidiacono, Nicolao Fornengo, Carlo Giunti, Steen Hannestad, Alessandro Melchiorri, Phys. Rev. D87 (2013) 125034, arXiv:1302.6720.
Meter-baseline tests of sterile neutrinos at Daya Bay, Y. Gao, D. Marfatia, Phys.Lett. B723 (2013) 164-167, arXiv:1302.5725.
Influence of a keV sterile neutrino on neutrino-less double beta decay - how things changed in the recent years, Alexander Merle, Viviana Niro, Phys. Rev. D88 (2013) 113004, arXiv:1302.2032.
Multi-momentum and multi-flavour active-sterile neutrino oscillations in the early universe: role of neutrino asymmetries and effects on nucleosynthesis, Ninetta Saviano et al., Phys. Rev. D87 (2013) 073006, arXiv:1302.1200.
Is there evidence for additional neutrino species from cosmology?, Stephen M. Feeney, Hiranya V. Peiris, Licia Verde, JCAP 1304 (2013) 036, arXiv:1302.0014.
Tickling the CMB damping tail: scrutinizing the tension between the ACT and SPT experiments, Eleonora Di Valentino et al., Phys. Rev. D88 (2013) 023501, arXiv:1301.7343.
Dark matter mass profiles in the Milky Way and in galaxy clusters support a prior claim of 4.0 eV and 21.4 eV sterile neutrinos, Man Ho Chan, Robert Ehrlich, Astrophys.Space Sci. 349 (2014) 407-413, arXiv:1301.6640.
Astrophysical neutrino flavor ratios in the presence of sterile neutrinos, D. Hollander, arXiv:1301.5313, 2013.
Possible indication for non-zero neutrino mass and additional neutrino species from cosmological observations, R. A. Burenin, Astron.Lett. 39 (2013) 357-366, arXiv:1301.4791.
Detecting warm DM in the $MeV/c^2$ range, Francois Vannucci, Jean-Michel Levy, arXiv:1301.4380, 2013.
Additional Light Sterile Neutrinos and Cosmology, Thomas D. Jacques, Lawrence M. Krauss, Cecilia Lunardini, Phys. Rev. D87 (2013) 083515, arXiv:1301.3119.
Dark Radiation and interacting scenarios, Roberta Diamanti, Elena Giusarma, Olga Mena, Maria Archidiacono, Alessandro Melchiorri, Phys. Rev. D87 (2013) 063509, arXiv:1212.6007.
Short-Baseline Electron Neutrino Oscillation Length After Troitsk, C. Giunti, M. Laveder, Y. F. Li, H.W. Long, Phys. Rev. D87 (2013) 013004, arXiv:1212.3805.
Experimental Parameters for a Reactor Antineutrino Experiment at Very Short Baselines, K. M. Heeger, B. R. Littlejohn, H. P. Mumm, M. N. Tobin, Phys. Rev. D87 (2013) 073008, arXiv:1212.2182.
Sterile Neutrinos and Light Dark Matter Save Each Other, Chiu Man Ho, Robert J. Scherrer, Phys. Rev. D87 (2013) 065016, arXiv:1212.1689.
Dark Radiation and Decaying Matter, M. C. Gonzalez-Garcia, V. Niro, Jordi Salvado, JHEP 1304 (2013) 052, arXiv:1212.1472.
Heavy neutrino search in accelerator-based experiments, Takehiko Asaka, Shintaro Eijima, Atsushi Watanabe, JHEP 1303 (2013) 125, arXiv:1212.1062.
Testing standard and non-standard neutrino physics with cosmological data, Elena Giusarma, Roland de Putter, Olga Mena, Phys. Rev. D87 (2013) 043515, arXiv:1211.2154.
Right-Handed Neutrinos as the Dark Radiation: Status and Forecasts for the LHC, Luis A. Anchordoqui, Haim Goldberg, Gary Steigman, Phys. Lett. B718 (2013) 1162-1165, arXiv:1211.0186.
Two Zero Mass Matrices and Sterile Neutrinos, Monojit Ghosh, Srubabati Goswami, Shivani Gupta, JHEP 1304 (2013) 103, arXiv:1211.0118.
Conservative Constraints on Early Cosmology: an illustration of the Monte Python cosmological parameter inference code, Benjamin Audren, Julien Lesgourgues, Karim Benabed, Simon Prunet, JCAP 1302 (2013) 001, arXiv:1210.7183.
Update of Short-Baseline Electron Neutrino and Antineutrino Disappearance, C. Giunti, M. Laveder, Y. F. Li, Q.Y. Liu, H.W. Long, Phys. Rev. D86 (2012) 113014, arXiv:1210.5715.
Can neutrino-induced photon production explain the low energy excess in MiniBooNE?, Xilin Zhang, Brian D. Serot, Phys. Lett. B719 (2013) 409-414, arXiv:1210.3610.
Towards testing the unitarity of the 3X3 lepton flavor mixing matrix in a precision reactor antineutrino oscillation experiment, Zhi-zhong Xing, Phys. Lett. B718 (2013) 1447-1453, arXiv:1210.1523.
Heavy neutrino decays at MiniBooNE, Manuel Masip, Pere Masjuan, Davide Meloni, JHEP 01 (2013) 106, arXiv:1210.1519.
Searching for sterile neutrinos from $\pi$ and $K$ decays, Louis Lello, Daniel Boyanovsky, Phys. Rev. D87 (2013) 073017, arXiv:1208.5559.
Are Light Sterile Neutrinos Preferred or Disfavored by Cosmology?, Shahab Joudaki, Kevork N. Abazajian, Manoj Kaplinghat, Phys. Rev. D87 (2013) 065003, arXiv:1208.4354.
Testing 3+1 and 3+2 neutrino mass models with cosmology and short baseline experiments, Maria Archidiacono, Nicolao Fornengo, Carlo Giunti, Alessandro Melchiorri, Phys. Rev. D86 (2012) 065028, arXiv:1207.6515.
Sterile Neutrinos and Pulsar Velocities Revisited,, Leonard S. Kisslinger, Mikkel B. Johnson, Mod. Phys. Lett. A27 (2012) 1250215, arXiv:1207.2798.
Constraining Sterile Neutrinos with AMANDA and IceCube Atmospheric Neutrino Data, Arman Esmaili, Francis Halzen, O. L. G. Peres, JCAP 1211 (2012) 041, arXiv:1206.6903.
Cosmic Microwave Background constraints of decaying dark matter particle properties, S. Yeung, M. H. Chan, M.-C. Chu, Astrophys. J. 755 (2012) 108, arXiv:1206.4114.
Probing Sterile Neutrino Parameters with Double Chooz, Daya Bay and RENO, Kalpana Bora, Debajyoti Dutta, Pomita Ghoshal, JHEP 12 (2012) 025, arXiv:1206.2172.
Light sterile neutrino production in the early universe with dynamical neutrino asymmetries, Alessandro Mirizzi, Ninetta Saviano, Gennaro Miele, Pasquale Dario Serpico, Phys. Rev. D86 (2012) 053009, arXiv:1206.1046.
The Reactor Anomaly after Daya Bay and RENO, Emilio Ciuffoli, Jarah Evslin, Hong Li, JHEP 12 (2012) 110, arXiv:1205.5499.
The minimal 3+2 neutrino model versus oscillation anomalies, A. Donini, P. Hernandez, J. Lopez-Pavon, M. Maltoni, T. Schwetz, JHEP 07 (2012) 161, arXiv:1205.5230.
Confronting MOND and TeVeS with strong gravitational lensing over galactic scales: an extended survey, Ignacio Ferreras, Nick Mavromatos, Mairi Sakellariadou, Muhammad Furqaan Yusaf, Phys. Rev. D86 (2012) 083507, arXiv:1205.4880.
Neutrino Phenomenology in a 3+1+1 Framework, Eric Kuflik, Samuel D. McDermott, Kathryn M. Zurek, Phys. Rev. D86 (2012) 033015, arXiv:1205.1791.
Thermalisation of light sterile neutrinos in the early universe, Steen Hannestad, Irene Tamborra, Thomas Tram, JCAP 1207 (2012) 025, arXiv:1204.5861.
Optimization of a Very Low Energy Neutrino Factory for the Disappearance Into Sterile Neutrinos, Walter Winter, Phys. Rev. D85 (2012) 113005, arXiv:1204.2671.
Searches for sterile neutrinos with IceCube DeepCore, Soebur Razzaque, A. Yu. Smirnov, Phys. Rev. D85 (2012) 093010, arXiv:1203.5406.
Testing Localization in Neutrino Oscillations, Dmitry V. Zhuridov, arXiv:1203.2764, 2012.
KATRIN Sensitivity to Sterile Neutrino Mass in the Shadow of Lightest Neutrino Mass, Arman Esmaili, Orlando L. G. Peres, Phys. Rev. D85 (2012) 117301, arXiv:1203.2632.
Dark Neutrinos, A. Nicolaidis, J.Mod.Phys. 3 (2012) 1979, arXiv:1202.5171.
Sterile neutrinos and indirect dark matter searches in IceCube, Carlos A. Arguelles, Joachim Kopp, JCAP JCAP07 (2012) 016, arXiv:1202.3431.
Indirect Dark Matter Detection in the Light of Sterile Neutrinos, Arman Esmaili, Orlando L.G. Peres, JCAP 1205 (2012) 002, arXiv:1202.2869.
Typical density profile for warm dark matter haloes, Jordi Vinas, Eduard Salvador-Sole, Alberto Manrique, Mon. Not. Roy. Astron. Soc. 424 (2012) L6, arXiv:1202.2860.
The inner structure of haloes in Cold+Warm dark matter models, Andrea V. Maccio', Oleg Ruchayskiy, Alexey Boyarsky, Juan C. Munoz-Cuartas, Mon.Not.Roy.Astron.Soc. 428 (2013) 882-890, arXiv:1202.2858.
Restrictions on the lifetime of sterile neutrinos from primordial nucleosynthesis, Oleg Ruchayskiy, Artem Ivashko, JCAP 1210 (2012) 014, arXiv:1202.2841.
Confronting the short-baseline oscillation anomalies with a single sterile neutrino and non-standard matter effects, G. Karagiorgi, M. H. Shaevitz, J. M. Conrad, arXiv:1202.1024, 2012.
Atmospheric Sterile Neutrinos, Takehiko Asaka, Atsushi Watanabe, JHEP 07 (2012) 112, arXiv:1202.0725.
New limits on radiative sterile neutrino decays from a search for single photons in neutrino interactions, S. N. Gninenko, Phys. Lett. B710 (2012) 86-90, arXiv:1201.5194.
An estimate of $\vartheta_{14}$ independent of reactor antineutrino fluxes, Antonio Palazzo, Phys. Rev. D85 (2012) 077301, arXiv:1201.4280.
Constraints on massive sterile plus active neutrino species in non minimal cosmologies, Elena Giusarma, Maria Archidiacono, Roland de Putter, Alessandro Melchiorri, Olga Mena, Phys. Rev. D85 (2012) 083522, arXiv:1112.4661.
Reply to 'Corrections to the HARP-CDP Analysis of the LSND Neutrino Oscillation Backgrounds', A. Bolshakova et al., arXiv:1112.3852, 2011.
Corrections to the HARP-CDP Analysis of the LSND Neutrino Oscillation Backgrounds, G. T. Garvey, W. C. Louis, G. B. Mills, D. H. White, arXiv:1112.2181, 2011.
Revisiting the 'LSND anomaly' II: critique of the data analysis, A. Bolshakova et al., Phys. Rev. D85 (2012) 092009, arXiv:1112.0907.
Sensitivity to eV-scale Neutrinos of Experiments at a Very Low Energy Neutrino Factory, Christopher D. Tunnell, John H. Cobb, Alan D. Bross, arXiv:1111.6550, 2011.
First Double-Chooz Results and the Reactor Antineutrino Anomaly, Carlo Giunti, Marco Laveder, Phys. Rev. D85 (2012) 031301, arXiv:1111.5211.
Implications of sterile neutrinos for medium/long-baseline neutrino experiments and the determination of $\vartheta_{13}$, Bhubanjyoti Bhattacharya, Arun M. Thalapillil, Carlos E. M. Wagner, Phys. Rev. D85 (2012) 073004, arXiv:1111.4225.
Constraining Sterile Neutrino Warm Dark Matter with Chandra Observations of the Andromeda Galaxy, Casey R. Watson, Zhiyuan Li, Nicholas K. Polley, JCAP 1203 (2012) 018, arXiv:1111.4217.
Electron-positron Annihilation Lines and Decaying Sterile Neutrinos, M. H. Chan, M.-C. Chu, Astrophys. Space Sci. 338 (2012) 313-317, arXiv:1111.3216.
A WDM model for the evolution of galactic halos, L. Acedo, JCAP 0907 (2009) 037, arXiv:1111.1536.
Implications of 3+1 Short-Baseline Neutrino Oscillations, Carlo Giunti, Marco Laveder, Phys. Lett. B706 (2011) 200-207, arXiv:1111.1069.
Heavy sterile neutrinos, entropy and relativistic energy production, and the relic neutrino background, George M. Fuller, Chad T. Kishimoto, Alexander Kusenko, arXiv:1110.6479, 2011.
Vanishing effective mass of the neutrinoless double beta decay including light sterile neutrinos, Y. F. Li, S. Liu, Phys. Lett. B706 (2012) 406-411, arXiv:1110.5795.
Heavy Sterile Neutrinos in Tau Decays and the MiniBooNE Anomaly, Claudio Dib, Juan Carlos Helo, Martin Hirsch, Sergey Kovalenko, Ivan Schmidt, Phys. Rev. D85 (2012) 011301, arXiv:1110.5400.
Sterile Neutrino Production Through a Matter Effect Enhancement at Long Baselines, Joseph Bramante, Int.J.Mod.Phys. A28 (2013) 1350067, arXiv:1110.4871.
Evidence for extra radiation? Profile likelihood versus Bayesian posterior, Jan Hamann, JCAP 1203 (2012) 021, arXiv:1110.4271.
Revisiting the 'LSND anomaly' I: impact of new data, A. Bolshakova et al. (HARP-CDP), Phys. Rev. D85 (2012) 092008, arXiv:1110.4265.
Impact of eV-mass sterile neutrinos on neutrino-driven supernova outflows, Irene Tamborra, Georg G. Raffelt, Lorenz Huedepohl, Hans-Thomas Janka, JCAP 1201 (2012) 013, arXiv:1110.2104.
Constraints on sterile neutrino dark matter from XMM-Newton observation of M33, Enrico Borriello, Maurizio Paolillo, Gennaro Miele, Gennaro Longo, Richard Owen, Mon. Not. Roy. Astron. Soc. 425 (2012) 1628-1632, arXiv:1109.5943.
Is there evidence for sterile neutrinos in IceCube data?, V. Barger, Y. Gao, D. Marfatia, Phys. Rev. D85 (2012) 011302, arXiv:1109.5748.
Status of 3+1 Neutrino Mixing, Carlo Giunti, Marco Laveder, Phys. Rev. D84 (2011) 093006, arXiv:1109.4033.
The Case for Dark Radiation, Maria Archidiacono, Erminia Calabrese, Alessandro Melchiorri, Phys. Rev. D84 (2011) 123008, arXiv:1109.2767.
Atmospheric neutrinos as a probe of $\text{eV}^2$-scale active-sterile oscillations, Raj Gandhi, Pomita Ghoshal, Phys. Rev. D86 (2012) 037301, arXiv:1108.4360.
Sterile neutrinos with eV masses in cosmology - how disfavoured exactly?, Jan Hamann, Steen Hannestad, Georg G. Raffelt, Yvonne Y. Y. Wong, JCAP 1109 (2011) 034, arXiv:1108.4136.
Testing Nonstandard Neutrino Properties with a Mossbauer Oscillation Experiment, P.A.N. Machado, H. Nunokawa, F. A. Pereira dos Santos, R. Zukanovich Funchal, JHEP 11 (2011) 136, arXiv:1108.3339.
Search for sterile neutrinos at reactors, Osamu Yasuda, JHEP 09 (2011) 036, arXiv:1107.4766.
Sterile Neutrinos, Coherent Scattering and Oscillometry Measurements with Low-temperature Bolometers, Joseph A. Formaggio, E. Figueroa-Feliciano, A.J. Anderson, Phys. Rev. D85 (2012) 013009, arXiv:1107.3512.
Learning from tau appearance, P. Migliozzi, F. Terranova, New J. Phys. 13 (2011) 083016, arXiv:1107.3018.
3+1 and 3+2 Sterile Neutrino Fits, Carlo Giunti, Marco Laveder, Phys. Rev. D84 (2011) 073008, arXiv:1107.1452.
Sterile neutrino decay as a common origin for LSND/MiniBooNe and T2K excess events, S.N. Gninenko, Phys. Rev. D85 (2012) 051702, arXiv:1107.0279.
Short baseline neutrino oscillations: when entanglement suppresses coherence, Daniel Boyanovsky, Phys. Rev. D84 (2011) 065001, arXiv:1106.6248.
Limits on Electron Neutrino Disappearance from the KARMEN and LSND electron neutrino - Carbon Cross Section Data, J.M. Conrad, M.H. Shaevitz, Phys. Rev. D85 (2012) 013017, arXiv:1106.5552.
Are priors responsible for cosmology favoring additional neutrino species?, Alma X. Gonzalez-Morales, Robert Poltis, Blake D. Sherwin, Licia Verde, arXiv:1106.5052, 2011.
Possible, alternative explanations of the T2K observation of the $\nu_e$ appearance from an initial $\nu_\mu$, D.Gibin, A Guglielmi, F. Pietropaolo, C. Rubbia, P. Sala, arXiv:1106.4417, 2011.
Minimal models with light sterile neutrinos, A. Donini, P. Hernandez, J. Lopez-Pavon, M. Maltoni, JHEP 07 (2011) 105, arXiv:1106.0064.
Analysis of KATRIN data using Bayesian inference, Anna Sejersen Riis, Steen Hannestad, Christian Weinheimer, Phys. Rev. C84 (2011) 045503, arXiv:1105.6005.
Active to sterile neutrino oscillations: Coherence and MINOS results, Daniel Hernandez, A. Yu. Smirnov, Phys. Lett. B706 (2012) 360-366, arXiv:1105.5946.
Short-baseline Neutrino Oscillation Waves in Ultra-large Liquid Scintillator Detectors, Sanjib Kumar Agarwalla, J.M. Conrad, M.H. Shaevitz, JHEP 12 (2011) 085, arXiv:1105.4984.
Sterile neutrino decay explanation of LSND and MiniBooNE anomalies, Claudio Dib, Juan Carlos Helo, Sergey Kovalenko, Ivan Schmidt, Phys. Rev. D84 (2011) 071301, arXiv:1105.4664.
On the search of sterile neutrinos by oscillometry measurements, J.D. Vergados, Y. Giomataris, Yu. N. Novikov, Phys. Rev. D85 (2012) 033003, arXiv:1105.3654.
On sterile neutrino mixing with $\nu_{\tau}$, Juan Carlos Helo, Sergey Kovalenko, Ivan Schmidt, Phys. Rev. D84 (2011) 053008, arXiv:1105.3019.
Testing the very-short-baseline neutrino anomalies at the solar sector, Antonio Palazzo, Phys. Rev. D83 (2011) 113013, arXiv:1105.1705.
Resolving the Reactor Neutrino Anomaly with the KATRIN Neutrino Experiment, J. A. Formaggio, J. Barrett, Phys. Lett. B706 (2011) 68-71, arXiv:1105.1326.
Captures of Hot and Warm Sterile Antineutrino Dark Matter on EC-decaying Ho-163 Nuclei, Y. F. Li, Zhi-zhong Xing, JCAP 1108 (2011) 006, arXiv:1104.4000.
How Additional Massless Neutrinos Affect the Cosmic Microwave Background Damping Tail, Zhen Hou, Ryan Keisler, Lloyd Knox, Marius Millea, Christian Reichardt, Phys. Rev. D87 (2013) 083008, arXiv:1104.2333.
Searching for sterile neutrinos in ice, Soebur Razzaque, A. Yu. Smirnov, JHEP 1107 (2011) 084, arXiv:1104.1390.
Reactor sterile neutrinos, dark energy and the age of the universe, Jostein R. Kristiansen, Oystein Elgaroy, Astron.Astrophys. 532 (2011) A67, arXiv:1104.0704.
Probing the fourth neutrino existence by neutral current oscillometry in the spherical gaseous TPC, J.D. Vergados, Y. Giomataris, Yu.N. Novikov, Nucl. Phys. B854 (2012) 54-66, arXiv:1103.5307.
Are there sterile neutrinos at the eV scale?, Joachim Kopp, Michele Maltoni, Thomas Schwetz, Phys. Rev. Lett. 107 (2011) 091801, arXiv:1103.4570.
Neutrino Physics with Dark Matter Experiments and the Signature of New Baryonic Neutral Currents, Maxim Pospelov, Phys. Rev. D84 (2011) 085008, arXiv:1103.3261.
Joint analysis of spectral reactor neutrino experiments, V.V. Sinev, arXiv:1103.2452, 2011.
A robust upper limit on $N_{\rm eff}$ from BBN, circa 2011, Gianpiero Mangano, Pasquale D. Serpico, Phys. Lett. B701 (2011) 296-299, arXiv:1103.1261.
Heavy-neutrino decays at neutrino telescopes, Manuel Masip, Pere Masjuan, Phys. Rev. D83 (2011) 091301, arXiv:1103.0689.
Supernova bound on keV-mass sterile neutrinos reexamined, Georg G. Raffelt, Shun Zhou, Phys. Rev. D83 (2011) 093014, arXiv:1102.5124.
Model Independent Constraints on Solar Neutrinos, Lal Singh, Bhag C. Chauhan, Ravi Dutt, K. K. Sharma, S. Dev, arXiv:1102.4917, 2011.
Constraints on massive sterile neutrino species from current and future cosmological data, Elena Giusarma et al., Phys. Rev. D83 (2011) 115023, arXiv:1102.4774.
BBN with Late Electron-Sterile Neutrino Oscillations - The Finest Leptometer, D. Kirilova, JCAP 1206 (2012) 007, arXiv:1101.4177.
New muon decay experiment to search for heavy sterile neutrino, S.N. Gninenko, Phys. Rev. D83 (2011) 093010, arXiv:1101.4004.
The Reactor Antineutrino Anomaly, G. Mention et al., Phys. Rev. D83 (2011) 073006, arXiv:1101.2755.
Pulsar Kicks from Active-Sterile Neutrino Transformation in Supernovae, Chad T. Kishimoto, arXiv:1101.1304, 2011.
Testing for Large Extra Dimensions with Neutrino Oscillations, P. A. N. Machado, H. Nunokawa, R. Zukanovich Funchal, Phys. Rev. D84 (2011) 013003, arXiv:1101.0003.
Solar neutrino spectrum, sterile neutrinos and additional radiation in the Universe, P. C. de Holanda, A. Yu. Smirnov, Phys. Rev. D83 (2011) 113011, arXiv:1012.5627.
Large Short-Baseline $\bar\nu_{\mu}$ Disappearance, Carlo Giunti, Marco Laveder, Phys. Rev. D83 (2011) 053006, arXiv:1012.0267.
Muon Capture Constraints on Sterile Neutrino Properties, David McKeen, Maxim Pospelov, Phys. Rev. D82 (2010) 113018, arXiv:1011.3046.
A refined constrain on lepton number from Big Bang Nucleosynthesis, G. Mangano, G. Miele, S. Pastor, O. Pisanti, S. Sarikas, JCAP JCAP03 (2011) 035, arXiv:1011.0916.
Effects of CP Violation from Neutral Heavy Fermions on Neutrino Oscillations, and the LSND/MiniBooNE Anomalies, Ann E Nelson, Phys. Rev. D84 (2011) 053001, arXiv:1010.3970.
Short-Baseline $\bar\nu_{\mu}\to\bar\nu_{e}$ Oscillations, Carlo Giunti, Marco Laveder, Phys. Rev. D82 (2010) 093016, arXiv:1010.1395.
Observational evidences for the existence of 17.4 keV decaying degenerate sterile neutrinos near the Galactic Center, Man Ho Chan, Ming-Chung Chu, Astrophys. J. 727 (2011) L47, arXiv:1009.5872.
Possible Capture of keV Sterile Neutrino Dark Matter on Radioactive $\beta$-decaying Nuclei, Y. F. Li, Zhi-zhong Xing, Phys. Lett. B695 (2011) 205-210, arXiv:1009.5870.
A resolution of puzzles from the LSND, KARMEN, and MiniBooNE experiments, Sergei Gninenko, Phys. Rev. D83 (2011) 015015, arXiv:1009.5536.
Rotation Curve of a Dark Matter Filament, Brian A. Slovick, arXiv:1009.1113, 2010.
Hint of CPT Violation in Short-Baseline Electron Neutrino Disappearance, Carlo Giunti, Marco Laveder, Phys. Rev. D82 (2010) 113009, arXiv:1008.4750.
Detecting sterile neutrinos with KATRIN like experiments, Anna Sejersen Riis, Steen Hannestad, JCAP 1102 (2011) 011, arXiv:1008.1495.
Small scale aspects of warm dark matter : power spectra and acoustic oscillations, Daniel Boyanovsky, Jun Wu, Phys. Rev. D83 (2011) 043524, arXiv:1008.0992.
MiniBooNE and LSND data: non-standard neutrino interactions in a (3+1) scheme versus (3+2) oscillations, Evgeny Akhmedov, Thomas Schwetz, JHEP 10 (2010) 115, arXiv:1007.4171.
Sterile neutrinos beyond LSND at the Neutrino Factory, Davide Meloni, Jian Tang, Walter Winter, Phys. Rev. D82 (2010) 093008, arXiv:1007.2419.
Direct Detection of the Cosmic Neutrino Background Including Light Sterile Neutrinos, Y. F. Li, Shu Luo, Zhi-zhong Xing, Phys.Lett. B692 (2010) 261-267, arXiv:1007.0914.
Cosmology Favoring Extra Radiation and Sub-eV Mass Sterile Neutrinos as an Option, Jan Hamann, Steen Hannestad, Georg G. Raffelt, Irene Tamborra, Yvonne Y. Y. Wong, Phys. Rev. Lett. 105 (2010) 181301, arXiv:1006.5276.
Statistical Significance of the Gallium Anomaly, Carlo Giunti, Marco Laveder, Phys. Rev. C83 (2011) 065504, arXiv:1006.3244.
Short-Baseline Electron Neutrino Disappearance, Tritium Beta Decay and Neutrinoless Double-Beta Decay, Carlo Giunti, Marco Laveder, Phys. Rev. D82 (2010) 053005, arXiv:1005.4599.
Constraints on the Dark Matter Particle Mass from the Number of Milky Way Satellites, Emil Polisensky, Massimo Ricotti, Phys. Rev. D83 (2011) 043506, arXiv:1004.1459.
Willman 1 in X-rays: Can you tell a dwarf galaxy from a globular cluster?, N. Mirabal, D. Nieto, arXiv:1003.3745, 2010.
Apparent CPT Violation in Neutrino Oscillation Experiments, Netta Engelhardt, Ann E. Nelson, Jonathan R. Walsh, Phys. Rev. D81 (2010) 113001, arXiv:1002.4452.
Updated global fit to three neutrino mixing: status of the hints of theta13 > 0, M.C. Gonzalez-Garcia, Michele Maltoni, Jordi Salvado, JHEP 04 (2010) 056, arXiv:1001.4524.
Can the excess in the FeXXVI Ly gamma line from the Galactic Center provide evidence for 17 keV sterile neutrinos?, D. A. Prokhorov, Joseph Silk, Astrophys.J. 725 (2010) L131, arXiv:1001.0215.
Dark Matter Search Using Chandra Observations of Willman 1, and a Spectral Feature Consistent with a Decay Line of a 5 keV Sterile Neutrino, Michael Loewenstein, Alexander Kusenko, Astrophys. J. 714 (2010) 652-662, arXiv:0912.0552.
Evidence for right-handed neutrinos at a neutrino factory, F. del Aguila, J. de Blas, R. Szafron, J. Wudka, M. Zralek, Phys. Lett. B683 (2010) 282-288, arXiv:0911.3158.
Matter Effects in Active-Sterile Solar Neutrino Oscillations, C. Giunti, Y. F. Li, Phys. Rev. D80 (2009) 113007, arXiv:0910.5856.
Pseudo-Dirac Neutrino Scenario: Cosmic Neutrinos at Neutrino Telescopes, Arman Esmaili, Phys. Rev. D81 (2010) 013006, arXiv:0909.5410.
Short-Baseline Electron Neutrino Disappearance at a Neutrino Factory, Carlo Giunti, Marco Laveder, Walter Winter, Phys. Rev. D80 (2009) 073005, arXiv:0907.5487.
The MiniBooNE anomaly, the decay Ds - > mu+nu and heavy sterile neutrino, S.N. Gninenko, D.S. Gorbunov, Phys. Rev. D81 (2010) 075013, arXiv:0907.4666.
Lepton Number Violating Processes Mediated by Majorana Neutrinos at Hadron Colliders, Sergey Kovalenko, Zhun Lu, Ivan Schmidt, Phys. Rev. D80 (2009) 073014, arXiv:0907.2533.
A lower limit on the dark particle mass from dSphs, Garry W. Angus, JCAP 1003 (2010) 026, arXiv:0907.1526.
CPT-violating neutrino oscillations, S. Esposito, G. Salesi, Mod. Phys. Lett. A25 (2010) 597-606, arXiv:0906.5542.
Gravitational hydrodynamics of large scale structure formation, Theo M. Nieuwenhuizen, Carl H. Gibson, Rudy E. Schild, Europhys. Lett. 88 (2009) 49001, arXiv:0906.5087.
Active and Sterile Neutrino Emission and SN1987A Pulsar Velocity, Leonard S Kisslinger, Sandip Pakvasa, arXiv:0906.4117, 2009.
Equilibrium configurations of 11eV sterile neutrinos in MONDian galaxy clusters, Garry W. Angus, Benoit Famaey, Antonaldo Diaferio, Mon.Not.Roy.Astron.Soc. 402 (2010) 395, arXiv:0906.3322.
Large Mixing Angle Sterile Neutrinos and Pulsar Velocities, Leonard S. Kisslinger, Ernest M. Henley, Mikkel B. Johnson, Mod. Phys. Lett. A24 (2009) 2507-2516, arXiv:0906.2802.
Viability of $ \Delta m^2 \sim 1 \text{eV}^2 $ sterile neutrino mixing models in light of MiniBooNE electron neutrino and antineutrino data from the Booster and NuMI beamlines, G. Karagiorgi, Z. Djurcic, J. Conrad, M. H. Shaevitz, M. Sorel, Phys. Rev. D80 (2009) 073001, arXiv:0906.1997.
Resonant active-sterile neutrino mixing in the presence of matter potentials and altered dispersion relations, Sebastian Hollenberg, Heinrich Pas, arXiv:0904.2167, 2009.
The MiniBooNE anomaly and heavy neutrino decay, S. N. Gninenko, Phys. Rev. Lett. 103 (2009) 241802, arXiv:0902.3802.
VSBL Electron Neutrino Disappearance, Carlo Giunti, Marco Laveder, Phys. Rev. D80 (2009) 013005, arXiv:0902.1992.
Light sterile neutrinos, spin flavour precession and the solar neutrino experiments, C.R. Das, Joao Pulido, Marco Picariello, Phys. Rev. D79 (2009) 073010, arXiv:0902.1310.
Do non-relativistic neutrinos constitute the dark matter?, Th. M. Nieuwenhuizen, Europhys. Lett. 86 (2009) 59001, arXiv:0812.4552.
From the abstract: A fit of Abell 1689 galaxy yields a relic neutrino mass of $1.445 \pm 0.030 \, \text{eV}$.
Realistic sterile neutrino dark matter with keV mass does not contradict cosmological bounds, Alexey Boyarsky, Julien Lesgourgues, Oleg Ruchayskiy, Matteo Viel, Phys. Rev. Lett. 102 (2009) 201304, arXiv:0812.3256.
Cosmological constraints on a light non-thermal sterile neutrino, Mario A. Acero, Julien Lesgourgues, Phys. Rev. D79 (2009) 045026, arXiv:0812.2249.
Lyman-alpha constraints on warm and on warm-plus-cold dark matter models, Alexey Boyarsky, Julien Lesgourgues, Oleg Ruchayskiy, Matteo Viel, JCAP 0905 (2009) 012, arXiv:0812.0010.
Sterile Neutrinos in Light of Recent Cosmological and Oscillation Data: a Multi-Flavor Scheme Approach, Alessandro Melchiorri et al., JCAP 0901 (2009) 036, arXiv:0810.5133.
The Existence of Sterile Neutrino Halos in Galactic Centers as an Explanation of the Black Hole mass - Velocity Dispersion Relation, M. H. Chan, M. C. Chu, Astrophys. J. 692 (2009) 212-216, arXiv:0810.4057.
Semileptonic decays of charmed and beauty baryons with sterile neutrinos in the final state, Sabir Ramazanov, Phys. Rev. D79 (2009) 077701, arXiv:0810.0660.
Light Sterile Neutrino Effects at $\theta_{13}$-Sensitive Reactor Neutrino Experiments, Andre de Gouvea, Thomas Wytock, Phys. Rev. D79 (2009) 073005, arXiv:0809.5076.
Constraining sterile neutrino dark matter by phase-space density observations, D. Gorbunov, A. Khmelnitsky, V. Rubakov, JCAP 0810 (2008) 041, arXiv:0808.3910.
Chaos, Determinacy and Fractals in Active-Sterile Neutrino Oscillations in the Early Universe, Kevork N. Abazajian, Prateek Agrawal, JCAP 0810 (2008) 006, arXiv:0807.0456.
Eosphoric sterile neutrinos, supernovae, and the galactic positrons, George M. Fuller, Alexander Kusenko, Kalliopi Petraki, Phys. Lett. B670 (2009) 281-284, arXiv:0806.4273.
Signatures of sterile neutrino mixing in high-energy cosmic neutrino flux, Andrea Donini, Osamu Yasuda, arXiv:0806.3029, 2008.
Decaying Sterile Neutrinos as a Heating Source in the Milky Way Center, M. H. Chan, M.-C. Chu, Mon. Not. Roy. Astron. Soc. 389 (2008) 297-300, arXiv:0806.1311.
Are sterile neutrinos consistent with clusters, the CMB and MOND?, Garry W. Angus, Mon.Not.Roy.Astron.Soc. 394 (2009) 527, arXiv:0805.4014.
MeV sterile neutrinos in low reheating temperature cosmological scenarios, Graciela Gelmini, Efunwande Osoba, Sergio Palomares-Ruiz, Silvia Pascoli, JCAP 0810 (2008) 029, arXiv:0803.2735.
The Energy Cascade from Warm Dark Matter Decays, M. Valdes, A. Ferrara, Mon.Not.Roy.Astron.Soc. 387 (2008) 8, arXiv:0803.0370.
Lepton Number-Driven Sterile Neutrino Production in the Early Universe, Chad T. Kishimoto, George M. Fuller, Phys. Rev. D78 (2008) 023524, arXiv:0802.3377.
Testing non-unitarity of neutrino mixing matrices at neutrino factories, Srubabati Goswami, Toshihiko Ota, Phys. Rev. D78 (2008) 033012, arXiv:0802.1434.
Delayed pulsar kicks from the emission of sterile neutrinos, Alexander Kusenko, Bhabani Prasad Mandal, Alok Mukherjee, Phys. Rev. D77 (2008) 123009, arXiv:0801.4734.
Small-scale structure formation properties of chilled sterile neutrinos as dark matter, Kalliopi Petraki, Phys. Rev. D77 (2008) 105004, arXiv:0801.3470.
Neutrinos as galactic dark matter in the Ursa Major galaxy group?, G. Gentile, H. S. Zhao, B. Famaey, Mon.Not.Roy.Astron.Soc. 385 (2008) 68, arXiv:0712.1816.
Pulsar Kicks With Sterile Neutrinos and Landau Levels, Leonard S. Kisslinger, Ernest M. Henley, Mikkel B. Johnson, arXiv:0712.0197, 2007.
Limits on $\nu_e$ and $\bar\nu_e$ disappearance from Gallium and reactor experiments, Mario A. Acero, Carlo Giunti, Marco Laveder, Phys. Rev. D78 (2008) 073009, arXiv:0711.4222.
Testing Primordial Abundances With Sterile Neutrinos, O. Civitarese, M. E. Mosquera, Phys. Rev. C77 (2008) 045806, arXiv:0711.2450.
Constraints on dark matter particles from theory, galaxy observations and N-body simulations, D. Boyanovsky, H. J. de Vega, N. Sanchez, Phys. Rev. D77 (2008) 043518, arXiv:0710.5180.
Constraining DM properties with SPI, Alexey Boyarsky, Denys Malyshev, Andrey Neronov, Oleg Ruchayskiy, Mon. Not. Roy. Astron. Soc. 387 (2008) 1345, arXiv:0710.4922.
LSND versus MiniBooNE: Sterile neutrinos with energy dependent masses and mixing?, Thomas Schwetz, JHEP 02 (2008) 011, arXiv:0710.2985.
Constraints on decaying Dark Matter from XMM-Newton observations of M31, Alexey Boyarsky, Dmytro Iakubovskyi, Oleg Ruchayskiy, Vladimir Savchenko, Mon. Not. Roy. Astron. Soc. 387 (2008) 1361, arXiv:0709.2301.
Signature of sterile species in atmospheric neutrino data at neutrino telescopes, Sandhya Choubey, JHEP 0712 (2007) 014, arXiv:0709.1937.
Signatures of heavy sterile neutrinos at long baseline experiments, Amol Dighe, Shamayita Ray, Phys. Rev. D76 (2007) 113001, arXiv:0709.0383.
Sterile neutrino signals from supernovae, P. Keranen, J. Maalampi, M. Myyrylainen, J. Riittinen, Phys. Rev. D76 (2007) 125026, arXiv:0708.3337.
$\nu_e$ Disappearance in MiniBooNE, Carlo Giunti, Marco Laveder, Phys. Rev. D77 (2008) 093002, arXiv:0707.4593.
The (3+2) Neutrino Mass Spectrum and Double Chooz, Abhijit Bandyopadhyay, Sandhya Choubey, arXiv:0707.2481, 2007.
Sterile neutrinos as subdominant warm dark matter, A. Palazzo, D. Cumberbatch, A. Slosar, J. Silk, Phys. Rev. D76 (2007) 103511, arXiv:0707.1495.
Strong Upper Limits on Sterile Neutrino Warm Dark Matter, Hasan Yuksel, John F. Beacom, Casey R. Watson, Phys. Rev. Lett. 101 (2008) 121301, arXiv:0706.4084.
Sterile Neutrino-Enhanced Supernova Explosions, Jun Hidaka, George M. Fuller, Phys. Rev. D76 (2007) 083516, arXiv:0706.3886.
MiniBooNE Results and Neutrino Schemes with 2 sterile Neutrinos: Possible Mass Orderings and Observables related to Neutrino Masses, Srubabati Goswami, Werner Rodejohann, JHEP 10 (2007) 073, arXiv:0706.1462.
Invisible Z decay width bounds on active-sterile neutrino mixing in the (3+1) and (3+2) models, C. A. de S. Pires, Mod. Phys. Lett. A24 (2009) 475-483, arXiv:0706.1227.
Constraining Warm Dark Matter using QSO gravitational lensing, M. Miranda, A.V. Maccio, Mon.Not.Roy.Astron.Soc. 382 (2007) 1225, arXiv:0706.0896.
Confusing Sterile Neutrinos with Deviation from Tribimaximal Mixing at Neutrino Telescopes, Ram Lal Awasthi, Sandhya Choubey, Phys. Rev. D76 (2007) 113002, arXiv:0706.0399.
Sterile neutrino production in models with low reheating temperatures, Carlos E. Yaguna, JHEP 06 (2007) 002, arXiv:0706.0178.
Right-Handed Neutrinos at LHC and the Mechanism of Neutrino Mass Generation, Joern Kersten, Alexei Yu. Smirnov, Phys. Rev. D76 (2007) 073005, arXiv:0705.3221.
Sterile neutrino oscillations after first MiniBooNE results, Michele Maltoni, Thomas Schwetz, Phys. Rev. D76 (2007) 093005, arXiv:0705.0107.
3+1 sterile neutrinos at the CNGS, A. Donini et al., JHEP 12 (2007) 013, arXiv:0704.0388.
Turbulent supernova shock waves and the sterile neutrino signature in megaton water detectors, Sandhya Choubey, N. P. Harries, G. G. Ross, Phys. Rev. D76 (2007) 073013, arXiv:hep-ph/0703092.
MiniBooNE and a $(CP)^2 = -1$ sterile neutrino, D. V. Ahluwalia-Khalilova, Alex B. Nielsen, Mod. Phys. Lett. A22 (2007) 1301-1307, arXiv:hep-ph/0702049.
Measuring the mass of a sterile neutrino with a very short baseline reactor experiment, D. C. Latimer, J. Escamilla, D. J. Ernst, Phys. Rev. C75 (2007) 042501, arXiv:hep-ex/0701004.
Probing active to sterile neutrino oscillations in the LENS detector, Christian Grieb, Jonathan Link, R. S. Raghavan, Phys. Rev. D75 (2007) 093006, arXiv:hep-ph/0611178.
Limits on the Radiative Decay of Sterile Neutrino Dark Matter from the Unresolved Cosmic and Soft X-ray Backgrounds, Kevork N. Abazajian, Maxim Markevitch, Savvas M. Koushiappas, Ryan C. Hickox, Phys. Rev. D75 (2007) 063511, arXiv:astro-ph/0611144.
Constraints on the parameters of radiatively decaying dark matter from the dark matter halo of the Milky Way and Ursa Minor, Alexey Boyarsky, Jukka Nevalainen, Oleg Ruchayskiy, Astron. Astrophys. 471 (2007) 51-57, arXiv:astro-ph/0610961.
Short-Baseline Active-Sterile Neutrino Oscillations?, Carlo Giunti, Marco Laveder, Mod. Phys. Lett. A22 (2007) 2499-2509, arXiv:hep-ph/0610352.
Probing the nature of dark matter with Cosmic X-rays: Constraints from 'Dark blobs' and grating spectra of galaxy clusters, Signe Riemer-Sorensen, Kristian Pedersen, Steen H. Hansen, Haakon Dahle, Phys. Rev. D76 (2007) 043524, arXiv:astro-ph/0610034.
Heating the intergalactic medium by radiative decay of neutrinos, M. H. Chan, M. -C. Chu, Astrophys. J. 658 (2007) 859, arXiv:astro-ph/0609563.
Leptonic CP violation studies at MiniBooNE in the (3+2) sterile neutrino oscillation hypothesis, G. Karagiorgi et al., Phys. Rev. D75 (2007) 013011, arXiv:hep-ph/0609177.
On the Law of Gravity, the Mass of Neutrinos and the Proof of Dark Matter, Garry W. Angus, HuanYuan Shan, HongSheng Zhao, Benoit Famaey, Astrophys. J. 654 (2007) L13-L16, arXiv:astro-ph/0609125.
Parametric resonance for antineutrino conversions using LSND best-fit results with a 3+1 flavor scheme, J. Linder, Phys. Rev. D74 (2006) 053001, arXiv:hep-ph/0609022.
Light Element Signatures of Sterile Neutrinos and Cosmological Lepton Numbers, Christel J. Smith, George M. Fuller, Chad T. Kishimoto, Kevork N. Abazajian, Phys. Rev. D74 (2006) 085008, arXiv:astro-ph/0608377.
Sterile neutrinos, lepton asymmetries, primordial elements: how much of each?, Yi-Zen Chu, Marco Cirelli, Phys. Rev. D74 (2006) 085015, arXiv:astro-ph/0608206.
Coherent Active-Sterile Neutrino Flavor Transformation in the Early Universe, Chad T. Kishimoto, George M. Fuller, Christel J. Smith, Phys. Rev. Lett. 97 (2006) 141301, arXiv:astro-ph/0607403.
Unitarity of the Leptonic Mixing Matrix, S. Antusch et al., JHEP 10 (2006) 084, arXiv:hep-ph/0607020.
Intergalactic medium heating by dark matter, E. Ripamonti, M. Mapelli, A. Ferrara, Mon. Not. Roy. Astron. Soc. 374 (2007) 1067-1077, arXiv:astro-ph/0606482.
Sum rules of four-neutrino mixing in matter, He Zhang, Mod. Phys. Lett. A22 (2007) 1341-1348, arXiv:hep-ph/0606040.
Can sterile neutrinos be ruled out as warm dark matter candidates?, Matteo Viel et al., Phys. Rev. Lett. 97 (2006) 071301, arXiv:astro-ph/0605706.
Direct X-ray Constraints on Sterile Neutrino Warm Dark Matter, Casey R. Watson, John F. Beacom, Hasan Yuksel, Terry P. Walker, Phys. Rev. D74 (2006) 033009, arXiv:astro-ph/0605424.
Constraints on Sterile Neutrino Dark Matter, Kevork Abazajian, Savvas M. Koushiappas, Phys. Rev. D74 (2006) 023527, arXiv:astro-ph/0605271.
Probing neutrino oscillations from supernovae shock waves via the IceCube detector, Sandhya Choubey, N. P. Harries, G.G. Ross, Phys. Rev. D74 (2006) 053010, arXiv:hep-ph/0605255.
On the hadronic contribution to sterile neutrino production, Takehiko Asaka, Mikko Laine, Mikhail Shaposhnikov, JHEP 06 (2006) 053, arXiv:hep-ph/0605209.
Cosmological parameters from combining the Lyman-alpha forest with CMB, galaxy clustering and SN constraints, Uros Seljak, Anze Slosar, Patrick McDonald, JCAP 0610 (2006) 014, arXiv:astro-ph/0604335.
The $\nu\text{MSM}$, Inflation, and Dark Matter, Mikhail Shaposhnikov, Igor Tkachev, Phys. Lett. B639 (2006) 414-417, arXiv:hep-ph/0604236.
Sterile neutrinos in the Milky Way: Observational constraints, Signe Riemer-Sorensen, Steen H. Hansen, Kristian Pedersen, Astrophys. J. 644 (2006) L33-L36, arXiv:astro-ph/0603661.
How to find a dark matter sterile neutrino?, A. Boyarsky et al., Phys. Rev. Lett. 97 (2006) 261302, arXiv:astro-ph/0603660.
Restrictions on parameters of sterile neutrino dark matter from observations of galaxy clusters, Alexey Boyarsky, Andrey Neronov, Oleg Ruchayskiy, Mikhail Shaposhnikov, Phys. Rev. D74 (2006) 103506, arXiv:astro-ph/0603368.
Can sterile neutrinos be the dark matter?, Uros Seljak, Alexey Makarov, Patrick McDonald, Hy Trac, Phys. Rev. Lett. 97 (2006) 191303, arXiv:astro-ph/0602430.
Opening a new window for warm dark matter, Takehiko Asaka, Alexander Kusenko, Mikhail Shaposhnikov, Phys. Lett. B638 (2006) 401-406, arXiv:hep-ph/0602150.
Constraints on sterile neutrino as a dark matter candidate from the diffuse X-ray background, A. Boyarsky, A. Neronov, O. Ruchayskiy, M. Shaposhnikov, Mon. Not. Roy. Astron. Soc. 370 (2013) 213-218, arXiv:astro-ph/0512509.
Constraining Mass Spectra with Sterile Neutrinos from Neutrinoless Double Beta Decay, Tritium Beta Decay and Cosmology, Srubabati Goswami, Werner Rodejohann, Phys. Rev. D73 (2006) 113003, arXiv:hep-ph/0512234.
Model Independent Constraints on Non-electronic Flavors in the Solar Boron Neutrino Flux, S. Dev, Sanjeev Kumar, Surender Verma, Mod. Phys. Lett. A21 (2006) 1761, arXiv:hep-ph/0512178.
Nonthermal Production and Perturbation Evolution of Sterile Neutrino Dark Matter, Kevork Abazajian, Phys. Rev. D73 (2006) 063506, arXiv:astro-ph/0511630.
Is cosmology compatible with sterile neutrinos?, Scott Dodelson, Alessandro Melchiorri, Anze Slosar, Phys. Rev. Lett. 97 (2006) 04301, arXiv:astro-ph/0511500.
Local demands on sterile neutrinos, David C. Latimer, David J. Ernst, Mod. Phys. Lett. A21 (2006) 197, arXiv:nucl-th/0509066.
Explaining LSND by a decaying sterile neutrino, Sergio Palomares-Ruiz, Silvia Pascoli, Thomas Schwetz, JHEP 0509 (2005) 048, arXiv:hep-ph/0505216.
Comment: The figure 3 (left panel) corresponds to neutrino oscillations in (3+1) mass scheme with the last NOMAD data included. [M.L.].
Constraints on Weakly Mixed Sterile Neutrinos in the Light of SNO Salt Phase and 766.3 Ty KamLAND Data, S. Dev, Sanjeev Kumar, Mod. Phys. Lett. A20 (2005) 2957, arXiv:hep-ph/0504237.
Sterile-active neutrino oscillations and shortcuts in the extra dimension, Heinrich Pas, Sandip Pakvasa, Thomas J. Weiler, Phys. Rev. D72 (2005) 095017, arXiv:hep-ph/0504096.
Sterile neutrinos in neutrinoless double beta decay, P. Benes, Amand Faessler, S. Kovalenko, F. Simkovic, Phys. Rev. D71 (2005) 077901, arXiv:hep-ph/0501295.
See-Saw Energy Scale and the LSND Anomaly, Andre de Gouvea, Phys. Rev. D72 (2005) 033005, arXiv:hep-ph/0501039.
Can a 3+2 Oscillation Model Explain the NuTeV Electroweak Results?, J. S. Ma, J. M. Conrad, M. Sorel, G. P. Zeller, Phys. Rev. D73 (2006) 057302, arXiv:hep-ex/0501011.
May Heavy neutrinos solve underground and cosmic ray puzzles?, K. Belotsky, D. Fargion, M. Khlopov, R.V. Konoplich, Phys. Atom. Nucl. 71 (2008) 147-161, arXiv:hep-ph/0411093.
Cosmological lepton asymmetry, primordial nucleosynthesis, and sterile neutrinos, Kevork Abazajian, Nicole F. Bell, George M. Fuller, Yvonne Y. Y. Wong, Phys. Rev. D72 (2005) 063004, arXiv:astro-ph/0410175.
SNO, SuperKamiokande data, antineutrinos and sterile neutrinos, Bhag C. Chauhan, J. Pulido, JHEP 0412 (2004) 040, arXiv:hep-ph/0406227.
New bounds on MeV sterile neutrinos based on the accelerator and Super-Kamiokande results, Alexander Kusenko, Silvia Pascoli, Dmitry Semikoz, JHEP 0511 (2005) 028, arXiv:hep-ph/0405198.
Probing oscillations into sterile neutrinos with cosmology, astrophysics and experiments, Marco Cirelli, Guido Marandella, Alessandro Strumia, Francesco Vissani, Nucl. Phys. B708 (2005) 215, arXiv:hep-ph/0403158.
Active-sterile neutrino oscillations and pulsar kicks, M. Barkovich, J. C. D'Olivo, R. Montemayor, Phys. Rev. D70 (2004) 043005, arXiv:hep-ph/0402259.
Search for sterile neutrinos as another research objective of $\theta_{13}$ experiments at reactors, V. Kopeikin, L. Mikaelyan, V. Sinev, arXiv:hep-ph/0310246, 2003.
LSND anomaly from CPT violation in four-neutrino models, V. Barger, D. Marfatia, K. Whisnant, Phys. Lett. B576 (2003) 303, arXiv:hep-ph/0308299.
BBN bounds on active-sterile neutrino mixing, A.D. Dolgov, F.L. Villante, Nucl. Phys. B679 (2004) 261, arXiv:hep-ph/0308083.
Pulsar kicks from a dark-matter sterile neutrino, G. M. Fuller, A. Kusenko, I. Mocioiu, S. Pascoli, Phys. Rev. D68 (2003) 103002, arXiv:astro-ph/0307267.
Homestake result, sterile neutrinos and low energy solar neutrino experiments, P. C. de Holanda, A. Yu. Smirnov, Phys. Rev. D69 (2004) 113002, arXiv:hep-ph/0307266.
A combined analysis of short-baseline neutrino experiments in the (3+1) and (3+2) sterile neutrino oscillation hypotheses, Michel Sorel, Janet Conrad, Michael Shaevitz, Phys. Rev. D70 (2004) 073004, arXiv:hep-ph/0305255.
From the article: (version v1) The best-fit point of a combined analysis of the NSBL and LSND data in (3+2) models would be interpreted in NOMAD as $\Delta{m}^2 \simeq 21.5 \, \mathrm{eV}^2$, $\sin^2 2\theta_{\mu e} \simeq 8 \times 10^{-4}$, which is compatible with the NOMAD limits [hep-ex/0306037].
Comment: (version v1) Figure 4 a) shows the allowed regions at 90\%, 95\% and 99\% CL for (3+1) schemes in $(\sin^2 2\theta_{\mu e},\Delta m^2)$ space, together with the best-fit point, indicated by the star.
Figure 8 shows the Nomad excluded region at 90\% CL (2 d.o.f) in $(\sin^2 2\theta_{\mu e},\Delta m^2)$ space, together with results from other experiments. [M.L.].

Do we need stars to reionize the universe at high redshifts? Early reionization by decaying heavy sterile neutrinos, S. H. Hansen, Z. Haiman, Astrophys. J. 600 (2004) 26, arXiv:astro-ph/0305126.
Last CPT-Invariant Hope for LSND Neutrino Oscillations, C. Giunti, Mod. Phys. Lett. A18 (2003) 1179, arXiv:hep-ph/0302173.
WMAPping out Neutrino Masses, A. Pierce, H. Murayama, Phys. Lett. B581 (2004) 218, arXiv:hep-ph/0302131.
Probing the LSND scale and four neutrino scenarios with a neutrino telescope, H. Nunokawa, O. L. G. Peres, R. Zukanovich Funchal, Phys. Lett. B562 (2003) 279, arXiv:hep-ph/0302039.
Searches for sterile component with solar neutrinos and KamLAND, P. C. de Holanda, A. Yu. Smirnov, arXiv:hep-ph/0211264, 2002.
Are four neutrino models ruled out?, R. Foot, Mod. Phys. Lett. A18 (2003) 2079, arXiv:hep-ph/0210393.
Mirror model for sterile neutrinos, V. Berezinsky, M. Narayan, F. Vissani, Nucl. Phys. B658 (2003) 254, arXiv:hep-ph/0210204.
From the abstract: ... The considered subdominant neutrino oscillations (active <-> sterile) nu_a <-> nu_s can reveal itself as the big effects in observations of supernova neutrinos.
The hidden sterile neutrino and the (2+2) sum rule, T.J. Weiler H. Ps, L. Song, Phys. Rev. D67 (2003) 073019, arXiv:hep-ph/0209373.
Constraining neutrino oscillation parameters with current solar and atmospheric data, M. Maltoni, T. Schwetz, M. A. Tortola, J. W. F. Valle, Phys. Rev. D67 (2003) 013011, arXiv:hep-ph/0207227.
Ruling out four-neutrino oscillation interpretations of the LSND anomaly?, M. Maltoni, T. Schwetz, M. A. Tortola, J. W. F. Valle, Nucl. Phys. B643 (2002) 321-338, arXiv:hep-ph/0207157.
From the abstract: ... all four-neutrino descriptions of the LSND anomaly, both in (2+2) as well as (3+1) realizations, are highly disfavoured. Our analysis brings the LSND hint to a more puzzling status.
From the article: The exclusion of four-neutrino oscillation schemes of the (2+2)-type is based on the improved sensitivity of solar and atmospheric neutrino experiments to oscillations into a sterile neutrino, thanks to recent experimental data. This is a very robust result, independent of whether the LSND experiment is confirmed or disproved. The exclusion of (3+1) schemes depends somehow on the used LSND data. Furthermore, it heavily relies on the results of negative SBL experiments, especially on the Bugey and CDHS disappearance experiments.
If sterile neutrinos exist, how can one determine the total B-8 and Be-7 solar neutrino fluxes?, J. N. Bahcall, M. C. Gonzalez-Garcia, C. Pena-Garay, Phys. Rev. C66 (2002) 035802, arXiv:hep-ph/0204194.
Statistical Analysis of Different $\bar\nu_\mu\to\bar\nu_e$ Searches, E. D. Church, K. Eitel, G. B. Mills, M. Steidl, Phys. Rev. D66 (2002) 013001, arXiv:hep-ex/0203023.
From the article: This paper describes a combined statistical analysis of the final LSND and KARMEN 2 results.... For both experiments, the data are analysed with a maximum likelihood analysis followed by the extraction of confidence levels in a unified approach.... There are two oscillation scenarios with either $\Delta m^2 \approx 7 \, \mathrm{eV}^2$ or $\Delta m^2 < 1 \, \mathrm{eV}^2$ compatible with both experiments.
$\nu_e \to \nu_s$ oscillations with large neutrino mass in NuTeV?, Carlo Giunti, Marco Laveder, arXiv:hep-ph/0202152, 2002.
From the abstract: We propose an explanation of NuTeV anomaly in terms of oscillations of electron neutrinos into sterile neutrinos with average probability $P_{\nu_e \rightarrow \nu_s} = 0.21 \pm 0.07$.
Interpreting the LSND anomaly: Sterile neutrinos or CPT- violation or...?, Alessandro Strumia, Phys. Lett. B539 (2002) 91-101, arXiv:hep-ph/0201134.
Comment: Table 2 in the Addendum about the first Kamland and WMAP data (20 feb 2003) collects all the interpretations of all experimental neutrino data together with the quality of their fits. Fig. 7b shows the 3+1 best fit solution including all data.
Figure n.4 Left shows the best-fit regions at 90\% and 99\% CL (2 d.o.f.) in (3+1) schemes. The dotted lines show the regions suggested by only the LSND data. The dots show the best fit points. Constraints from cosmology are not included in this figure. [M.L.].

High-energy neutrino oscillations in absorbing matter, Vadim A. Naumov, Phys. Lett. B529 (2002) 199-211, arXiv:hep-ph/0112249.
Supernova Neutrinos and LSND, Michel Sorel, Janet Conrad, Phys. Rev. D66 (2002) 033009, arXiv:hep-ph/0112214.
Oscillation Induced Neutrino Asymmetry Growth in the Early Universe, Kimmo Kainulainen, Antti Sorri, JHEP 02 (2002) 020, arXiv:hep-ph/0112158.
Blocking active-sterile neutrino oscillations in the early universe with a Majoron field, Luis Bento, Zurab Berezhiani, Phys. Rev. D64 (2001) 115015, arXiv:hep-ph/0108064.
Constraining the window on sterile neutrinos as warm dark matter, Steen H. Hansen, Julien Lesgourgues, Sergio Pastor, Joseph Silk, Mon. Not. Roy. Astron. Soc. 333 (2002) 544-546, arXiv:astro-ph/0106108.
Matter effects in upward-going muons and sterile neutrino oscillations, M. Ambrosio et al. (MACRO), Phys. Lett. B517 (2001) 59-66, arXiv:hep-ex/0106049.
Neutrino asymmetry generation in the early universe (from $\nu_\alpha\leftrightarrows\nu_s$ oscillations), P. Di Bari, arXiv:hep-ph/0105133, 2001.
Majorana neutrinos, neutrino mass spectrum, CP-violation and neutrinoless double beta-decay. II: Mixing of four neutrinos, Samoil M. Bilenky, S. Pascoli, S. T. Petcov, Phys. Rev. D64 (2001) 113003, arXiv:hep-ph/0104218.
Active-sterile neutrino oscillations in the early universe: Asymmetry generation at low $|\Delta{m}^2|$ and the Landau-Zener approximation, P. Di Bari, R. Foot, Phys. Rev. D65 (2002) 045003, arXiv:hep-ph/0103192.
Producing massive sterile neutrinos as warm dark matter, A. D. Dolgov, S. H. Hansen, arXiv:hep-ph/0103118, 2001.
4-neutrino mass schemes and the likelihood of (3+1)-mass spectra, W. Grimus, T. Schwetz, Eur. Phys. J. C20 (2001) 1-11, arXiv:hep-ph/0102252.
Sterile neutrinos in tau lepton decays, Vladimir Gribanov, Sergey Kovalenko, Ivan Schmidt, Nucl. Phys. B607 (2001) 355-368, arXiv:hep-ph/0102155.
Sterile neutrino hot, warm, and cold dark matter, Kevork Abazajian, George M. Fuller, Mitesh Patel, Phys. Rev. D64 (2001) 023501, arXiv:astro-ph/0101524.
Is it possible to test the LSND parameters at reactors?, V. V. Sinev, Part. Nucl. Lett. 108 (2001) 37-40.
On the chaoticity of active-sterile neutrino oscillations in the early universe, Poul-Erik N. Braad, Steen Hannestad, arXiv:hep-ph/0012194, 2000.
(3+1) spectrum of neutrino masses: A Chance for LSND?, O.L.G. Peres, A.Yu. Smirnov, Nucl. Phys. B599 (2001) 3, arXiv:hep-ph/0011054.
Large $\nu_\mu \to \nu_\tau$ and $\nu_e \to \nu_\tau$ transitions in short baseline experiments?, Carlo Giunti, Marco Laveder, JHEP 02 (2001) 001, arXiv:hep-ph/0010009.
Maximum lepton asymmetry from active - sterile neutrino oscillations in the early universe, R. Buras, D. V. Semikoz, Phys. Rev. D64 (2001) 017302, arXiv:hep-ph/0009266.
Tau neutrinos favored over sterile neutrinos in atmospheric muon neutrino oscillations, S. Fukuda et al. (Super-Kamiokande), Phys. Rev. Lett. 85 (2000) 3999-4003, arXiv:hep-ex/0009001.
Active-sterile neutrino oscillations and BBN + CMBR constraints, P. Di Bari, R. Foot, Phys. Rev. D63 (2001) 043008, arXiv:hep-ph/0008258.
Heavy sterile neutrinos: Bounds from big-bang nucleosynthesis and SN 1987A, A. D. Dolgov, S. H. Hansen, G. Raffelt, D. V. Semikoz, Nucl. Phys. B590 (2000) 562-574, arXiv:hep-ph/0008138.
Comment: Large $\nu_e \rightarrow \nu_s$ mixings of heavy (10-200 MeV) sterile neutrinos are allowed from analysis of BBN and SN1987A. [M.L.].
Fate of the sterile neutrino, V. D. Barger, B. Kayser, J. Learned, T. Weiler, K. Whisnant, Phys. Lett. B489 (2000) 345-352, arXiv:hep-ph/0008019.
Is the $\nu_\mu\to\nu_s$ oscillation solution to the atmospheric neutrino anomaly excluded by the superKamiokande data?, R. Foot, Phys. Lett. B496 (2000) 169-174, arXiv:hep-ph/0007065.
Pulsar acceleration by asymmetric emission of sterile neutrinos, Enrico Nardi, Jorge I. Zuluaga, Astrophys. J. 549 (2001) 1076-1084, arXiv:astro-ph/0006285.
Cosmological and astrophysical bounds on a heavy sterile neutrino and the KARMEN anomaly, A. D. Dolgov, S. H. Hansen, G. Raffelt, D. V. Semikoz, Nucl. Phys. B580 (2000) 331-351, arXiv:hep-ph/0002223.
Four-neutrino oscillation solutions of the solar neutrino problem, C. Giunti, M. C. Gonzalez-Garcia, Carlos Pena-Garay, Phys. Rev. D62 (2000) 013005, arXiv:hep-ph/0001101.
Impact of radiative corrections on sterile neutrino scenarios, A. Ibarra, I. Navarro, JHEP 02 (2000) 031, arXiv:hep-ph/9912282.
On the sign of the neutrino asymmetry induced by active- sterile neutrino oscillations in the early universe, P. Di Bari, R. Foot, Phys. Rev. D61 (2000) 105012, arXiv:hep-ph/9912215.
Four-neutrino mixing and long-baseline experiments, Carlo Giunti, JHEP 01 (2000) 032, arXiv:hep-ph/9912211.
Amplification of isocurvature perturbations induced by active-sterile neutrino oscillations, P. Di Bari, Phys. Lett. B482 (2000) 150-160, arXiv:hep-ph/9911214.
Sterile neutrinos and supernova nucleosynthesis, David O. Caldwell, George M. Fuller, Yong-Zhong Qian, Phys. Rev. D61 (2000) 123005, arXiv:astro-ph/9910175.
Cosmological nucleosynthesis and active-sterile neutrino oscillations with small mass differences: The resonant case, D. P. Kirilova, M. V. Chizhov, Nucl. Phys. B591 (2000) 457-468, arXiv:hep-ph/9909408.
Matter effects in four-neutrino mixing, David Dooling, Carlo Giunti, Kyungsik Kang, Chung W. Kim, Phys. Rev. D61 (2000) 073011, arXiv:hep-ph/9908513.
Constraints from neutrino oscillation experiments on the effective Majorana mass in neutrinoless double beta decay, Samoil M. Bilenky, C. Giunti, W. Grimus, Boris Kayser, S. T. Petcov, Phys. Lett. B465 (1999) 193-202, arXiv:hep-ph/9907234.
Four-neutrino MS**2 mixing, C. Giunti, Phys. Lett. B467 (1999) 83-94, arXiv:hep-ph/9906456.
Neutrinoless double-beta decay with three or four neutrino mixing, C. Giunti, Phys. Rev. D61 (2000) 036002, arXiv:hep-ph/9906275.
Neutrino-mixing-generated lepton asymmetry and the primordial He-4 abundance, X. Shi, G. M. Fuller, K. Abazajian, Phys. Rev. D60 (1999) 063002, arXiv:astro-ph/9905259.
Four-neutrino mass spectra and the Super-Kamiokande atmospheric up-down asymmetry, Samoil M. Bilenky, C. Giunti, W. Grimus, T. Schwetz, Phys. Rev. D60 (1999) 073007, arXiv:hep-ph/9903454.
An Active-Sterile Neutrino Transformation Solution for r- Process Nucleosynthesis, G. C. McLaughlin, J. M. Fetter, A. B. Balantekin, G. M. Fuller, Phys. Rev. C59 (1999) 2873-2887, arXiv:astro-ph/9902106.
Diffuse ionization in the Milky Way and sterile neutrinos, Rabindra N. Mohapatra, Dennis W. Sciama, arXiv:hep-ph/9811446, 1998.
A new dark matter candidate: Non-thermal sterile neutrinos, Xiang-dong Shi, George M. Fuller, Phys. Rev. Lett. 82 (1999) 2832-2835, arXiv:astro-ph/9810076.
Relic neutrino asymmetries and big bang nucleosynthesis in a four neutrino model, N. F. Bell, R. Foot, R. R. Volkas, Phys. Rev. D58 (1998) 105010, arXiv:hep-ph/9805259.
Four-neutrino mixing and big-bang nucleosynthesis, Samoil M. Bilenky, C. Giunti, W. Grimus, T. Schwetz, Astropart. Phys. 11 (1999) 413-428, arXiv:hep-ph/9804421.
Long-baseline neutrino oscillation experiments and CP violation in the lepton sector, Samoil M. Bilenky, C. Giunti, W. Grimus, Phys. Rev. D58 (1998) 033001, arXiv:hep-ph/9712537.
Bounds on long-baseline $\bar\nu_e\to\bar\nu_e$ and $\nu_{\mu}\to\nu_{e}$ ($\bar\nu_{\mu}\to\bar\nu_{e}$) transition probabilities, Samoil M. Bilenky, C. Giunti, W. Grimus, Phys. Rev. D57 (1998) 1920-1933, arXiv:hep-ph/9710209.
Studies of neutrino asymmetries generated by ordinary sterile neutrino oscillations in the early universe and implications for big bang nucleosynthesis bounds, R. Foot, R. R. Volkas, Phys. Rev. D55 (1997) 5147-5176, arXiv:hep-ph/9610229.
Neutrino mass spectrum from the results of neutrino oscillation experiments, S. M. Bilenky, C. Giunti, W. Grimus, Eur. Phys. J. C1 (1998) 247-253, arXiv:hep-ph/9607372.
A sterile neutrino scenario constrained by experiments and cosmology, Nobuchika Okada, Osamu Yasuda, Int. J. Mod. Phys. A12 (1997) 3669-3694, arXiv:hep-ph/9606411.
New supernova constraints on sterile-neutrino production, Edward W. Kolb, Rabindra N. Mohapatra, Vigdor L. Teplitz, Phys. Rev. Lett. 77 (1996) 3066-3069, arXiv:hep-ph/9605350.
Limits on Active-Sterile Neutrino Mixing and the Primordial Deuterium Abundance, Christian Y. Cardall, George M. Fuller, Phys. Rev. D54 (1996) 1260-1263, arXiv:astro-ph/9603105.
On the MSW $\nu_e \to \nu_s$ transition solution of the solar neutrino problem, P. I. Krastev, S. T. Petcov, L. Qiuyu, Phys. Rev. D54 (1996) 7057-7066, arXiv:hep-ph/9602333.
Can a 'natural' three generation neutrino mixing scheme satisfy everything?, Christian Y. Cardall, George M. Fuller, Phys. Rev. D53 (1996) 4421-4429, arXiv:astro-ph/9602104.
Reconciling sterile neutrinos with big bang nucleosynthesis, Robert Foot, R. R. Volkas, Phys. Rev. Lett. 75 (1995) 4350, arXiv:hep-ph/9508275.
Accelerator, reactor, solar and atmospheric neutrino oscillation: Beyond three generations, Srubabati Goswami, Phys. Rev. D55 (1997) 2931-2949, arXiv:hep-ph/9507212.
Future tau-neutrino oscillation experiments and present data, J.J. Gomez-Cadenas, M.C. Gonzalez-Garcia, Z.Phys. C71 (1996) 443-454, arXiv:hep-ph/9504246.
Results from the LSND neutrino oscillation search for anti- muon-neutrino $\to$ anti-electron-neutrino, James E. Hill, Phys. Rev. Lett. 75 (1995) 2654-2657, arXiv:hep-ex/9504009.
Are there sterile neutrinos in the flux of solar neutrinos on the earth?, S. M. Bilenky, C. Giunti, Z. Phys. C68 (1995) 495-502, arXiv:hep-ph/9502263.
A Model independent approach to future solar neutrino experiments, S. M. Bilenky, C. Giunti, Astropart. Phys. 2 (1994) 353-374, arXiv:hep-ph/9403345.
Sterile-neutrinos and future solar neutrino experiments, S. M. Bilenky, C. Giunti, Phys. Lett. B320 (1994) 323-328, arXiv:hep-ph/9310314.
Sterile-neutrinos as dark matter, Scott Dodelson, Lawrence M. Widrow, Phys. Rev. Lett. 72 (1994) 17-20, arXiv:hep-ph/9303287.
Neutrino experiments and the question of leptonic-charge conservation, B. Pontecorvo, Sov. Phys. JETP 26 (1968) 984-988. [Zh. Eksp. Teor. Fiz. 53, 1717 (1967)].

16 - Phenomenology - Conference Proceedings

Matrix norms and search for sterile neutrinos, Wojciech Flieger, Franciszek Pindel, Kamil Porwit, PoS CORFU2018 (2019) 050, arXiv:1904.10649. Corfu Summer Institute 2018 'School and Workshops on Elementary Particle Physics and Gravity', 31 August-29 September 2018 Corfu, Greece.
Neutrino Properties and the Cosmological Tensions in the $\Lambda$CDM Model, Stefano Gariazzo, arXiv:1812.00638, 2018. 15th Marcel Grossmann Meeting.
Discovery potential of light sterile neutrinos with displaced vertices, Giovanna Cottin, PoS ICHEP2018 (2019) 574, arXiv:1811.03449. ICHEP 2018.
Searching for MeV-scale Neutrinos with the DUNE Near Detector, P. Ballett, T. Boschi, S. Pascoli, arXiv:1803.10824, 2018. NuPhys2017 (London, 20-22 December 2017).
Parameter degeneracy and hierarchy sensitivity of NO$\nu$A in presence of sterile neutrino, Monojit Ghosh, Shivani Gupta, Zachary M. Matthews, Pankaj Sharma, Anthony G. Williams, PoS NuFact2017 (2018) 133, arXiv:1712.06714. 19th international Workshop on Neutrinos from Accelerators (NuFact2017), 25-30 September 2017, Uppsala University, Uppsala, Sweden.
Status of Sterile Neutrino fits with Global Data, Alejandro Diaz, arXiv:1710.04360, 2017. APS Division of Particles and Fields Meeting (DPF 2017), July 31-August 4, 2017, Fermilab.
Searches for Sterile Neutrinos at Future Electron-Proton Colliders, Stefan Antusch, Oliver Fischer, PoS DIS2017 (2018) 090, arXiv:1709.00880. DIS 2017.
Searching for heavy sterile neutrinos in kaon decays, C. Weiland, arXiv:1707.01725, 2017. 52nd Rencontres de Moriond EW 2017.
Light Sterile Neutrinos at $\nu$STORM: Decoherence and CP violation, Peter Ballett, Matheus Hostert, Silvia Pascoli, arXiv:1705.09214, 2017. NuPhys2016 (London, 12-14 December 2016).
Non-Unitarity vs sterile neutrinos at DUNE, Josu Hernandez-Garcia, Jacobo Lopez-Pavon, arXiv:1705.01840, 2017. NuPhys2016 (London, 12-14 December 2016).
Radiative decay of heavy neutrinos at MiniBooNE and MicroBooNE, Luis Alvarez-Ruso, Eduardo Saul-Sala, arXiv:1705.00353, 2017. NuPhys2016 (London, 12-14 December 2016).
Can we measure $\theta_{23}$ octant in 3+1 scheme?, Sanjib Kumar Agarwalla, Sabya Sachi Chatterjee, Antonio Palazzo, Springer Proc.Phys. 203 (2018) 235-237, arXiv:1704.07151. XXII DAE-BRNS High Energy Physics Symposium 2016, University of Delhi, Delhi, India, 12-16 December, 2016.
Testing the sterile neutrino dark matter paradigm with astrophysical observations, Aurel Schneider, PoS NOW2016 (2017) 093, arXiv:1704.01832. NOW 2016.
Light sterile neutrinos and pseudoscalar interactions in cosmology, Stefano Gariazzo, PoS NOW2016 (2017) 083, arXiv:1610.01330. Neutrino Oscillation Workshop (NOW) 2016.
Direct detection of relic active and sterile neutrinos, Yu-Feng Li, J. Phys. Conf. Ser. 718 (2016) 062038, arXiv:1606.04734.
Predictions for Neutrinoless Double-Beta Decay in the 3+1 Sterile Neutrino Scenario, C. Giunti, E. M. Zavanin, J. Phys. Conf. Ser. 718 (2016) 062074, arXiv:1511.03838. TAUP 2015.
Dark Radiation and Inflationary Freedom, Stefano Gariazzo, J. Phys. Conf. Ser. 718 (2016) 032006, arXiv:1510.05980. TAUP 2015.
Indirect searches for sterile neutrinos at a high-luminosity Z-factory, Valentina De Romeri, Asmaa Abada, Stephane Monteil, Jean Orloff, Ana M. Teixeira, PoS EPS-HEP2015 (2015) 056, arXiv:1510.02598. The European Physical Society Conference on High Energy Physics, 22-29 July 2015, Vienna (Austria).
Inverse-square law violation and reactor antineutrino anomaly, D.V. Naumov, V.A. Naumov, D.S. Shkirmanov, Phys.Part.Nucl. 48 (2017) 12-20, arXiv:1507.04573. International Workshop on Prospects of Particle Physics: 'Neutrino Physics and Astrophysics', Valday, Russia, February 1-8, 2015.
Supernova Bounds on keV-mass Sterile Neutrinos, Shun Zhou, Int.J.Mod.Phys. A30 (2015) 0033, arXiv:1504.02729. International Conference on Massive Neutrinos, Singapore, February 9-13, 2015.
Using MiniBooNE NCEL and CCQE cross section results to constrain 3+1 sterile neutrino models, Callum Wilkinson, Susan Cartwright, Lee Thompson, J. Phys. Conf. Ser. 598 (2015) 012035, arXiv:1412.0461. NuPhys2013, 19-20 December 2013, IOP, London.
The Effect of Sterile States on the Magnetic Moments of Neutrinos, A.B. Balantekin, N. Vassh, AIP Conf.Proc. 1604 (2014) 150-155, arXiv:1404.1393. CETUP' (Center for Theoretical Underground Physics and Related Areas) 2013 Summer Institute.
A sterile neutrino at MiniBooNE and IceCube, Manuel Masip, AIP Conf.Proc. 1606 (2014) 59-65, arXiv:1402.0665. II Russian-Spanish Congress: Particle and Nuclear Physics at all Scales, Saint-Petersburg, October 1-4, 2013.
Sterile Neutrino Status, C. Giunti, arXiv:1311.1335, 2013. NuFact 2013, 19-24 August 2013, IHEP, Beijing, China.
Sterile neutrinos in the 3+s scenario and solar data, Joao Pulido, C.R. Das, PoS EPS-HEP2013 (2014) 527, arXiv:1310.0426. EPS Conference on High Energy Physics-EPS-HEP2013, 18-24 July 2013, Stockholm, Sweden.
Tracing the Interplay between Non-Thermal Dark Matter and Right-Handed Dirac Neutrinos with LHC Data, Luis A. Anchordoqui, Haim Goldberg, Brian Vlcek, Phys. Rev. D88 (2013) 043513, arXiv:1305.0146. 33rd International Cosmic Ray Conference (ICRC2013), Rio de Janeiro, Brazil, 2-9 July, 2013.
Sterile neutrinos and $R_K$, A. Vicente, J. Phys. Conf. Ser. 447 (2013) 012040, arXiv:1302.5539.
Global Status of Sterile Neutrino Scenarios, Joachim Kopp, Pedro A. N. Machado, Michele Maltoni, Thomas Schwetz, PoS Neutel2013 (2013) 019. 15th International Workshop on Neutrino Telescopes (Neutel 2013).
New signals in dark matter detectors, Joachim Kopp, J. Phys. Conf. Ser. 485 (2014) 012032, arXiv:1210.2703. PASCOS 2012.
Toward Solution of the MiniBooNE-LSND Anomalies, G. Karagiorgi, Nucl. Phys. Proc. Suppl. 229-232 (2012) 50-54. 24th International Conference on Neutrino physics and astrophysics (Neutrino 2010).
Sterile Neutrinos and IceCube, Francis Halzen, J. Phys. Conf. Ser. 408 (2013) 012023, arXiv:1111.0918. NUFACT 11, the XIIIth Intl. Workshop on Neutrino Factories, Super beams and Beta beams, 1-6 August 2011 at CERN and the University of Geneva, Switzerland.
Phenomenology of Sterile Neutrinos, Carlo Giunti, J. Phys. Conf. Ser. 408 (2013) 012009, arXiv:1110.3914. NUFACT 11, XIIIth International Workshop on Neutrino Factories, Super beams and Beta beams, 1-6 August 2011, CERN and University of Geneva.
Confronting Recent Neutrino Oscillation Data with Sterile Neutrinos, G. Karagiorgi, arXiv:1110.3735, 2011. DPF-2011.
Search for sterile neutrinos at reactors with a small core, Osamu Yasuda, Acta Phys.Polon. B42 (2011) 2379, arXiv:1110.2579. 35th International Conference of Theoretical Physics: Matter to the Deepest: Recent Development in Physics of Fundamental Interactions, Ustron, Poland, 12-18 Sep 2011.
Neutrino-triggered asymmetric magnetorotational mechanism for pulsar natal kick, A.V. Kuznetsov, N.V. Mikheev, arXiv:1110.1041, 2011. XV-th International School 'Particles and Cosmology', Troitsk, Moscow Region, May 26 - June 2, 2011, and XV-th Lomonosov Conference on Elementary Particle Physics, August 18-24, 2011, Moscow State University, Moscow.
Is there any 'LSND anomaly'?, A. Bolshakova (HARP-CDP), Phys. Part. Nucl. 42 (2011) 680-682. 4th International Pontecorvo Neutrino physics School: Alushta, Crimea, Ukraine, September 26-October 6, 2010.
Short-BaseLine Electron Neutrino Disappearance, Carlo Giunti, Marco Laveder, Nucl. Phys. Proc. Suppl. 217 (2011) 193-195, arXiv:1012.4356. NOW 2010, 4-11 September 2010, Conca Specchiulla (Otranto, Lecce, Italy).
Some attempts to explain MINOS anomaly, Osamu Yasuda, AIP Conf. Proc. 1382 (2011) 103-105, arXiv:1012.3478. 12th International Workshop on Neutrino Factories, Superbeams and Beta Beams (NuFact10), October 20-25, 2010, Mumbai, India.
Constraining sterile neutrinos with a low energy beta-beam, Sanjib Kumar Agarwalla, AIP Conf. Proc. 1222 (2010) 169-173, arXiv:1006.1640. 11th International Workshop on Neutrino Factories, Superbeams and Betabeams: NuFact09, Chicago, Illinois, 20-25 Jul 2009.
Sensitivity to sterile neutrino mixings and the discovery channel at a neutrino factory, Osamu Yasuda, arXiv:1004.2388, 2010. Fifth International Conference on BEYOND THE STANDARD MODELS OF PARTICLE PHYSICS, COSMOLOGY AND ASTROPHYSICS, Cape Town, South Africa, 1 - 6 February, 2010.
The case of 1.5 eV neutrino hot dark matter, Theo M. Nieuwenhuizen, arXiv:1003.0459, 2010. Marcel Grossmann XII, Paris, 2009.
Is there any 'LSND anomaly'?, A. Zhemchugov (HARP-CDP), PoS ICHEP2010 (2010) 334. 35th International Conference on High energy physics (ICHEP 2010): Paris, France, July 22-28, 2010.
Matter Effects in Solar Neutrino Active-Sterile Oscillations, Carlo Giunti, Yu-Feng Li, Prog. Part. Nucl. Phys. 64 (2010) 213-215, arXiv:0911.3934. Erice 2009 Neutrinos in Cosmology, in Astro-, Particle- and Nuclear Physics.
Cosmological and Astrophysical Implications of Sterile Neutrinos, Kalliopi Petraki, ASP Conf.Ser. 426 (2010) 149, arXiv:0906.4049. SnowPAC 2009.
The Gallium and reactor neutrinos anomaly, Mario A. Acero, Carlo Giunti, Marco Laveder, Nucl. Phys. Proc. Suppl. 188 (2009) 211-213. NOW 2008: Neutrino Oscillation Workshop, Conca Specchiulla (Otranto), Lecce, Italy, 6-13 Sep 2008.
Sterile neutrinos at future long baseline experiments, Davide Meloni, Nucl. Phys. Proc. Suppl. 188 (2009) 207-210, arXiv:0812.3555. NOW2008, Conca Specchiulla, Otranto, Italy, September 6-13, 2008.
New interactions: past and future experiments, Michele Maltoni, J. Phys. Conf. Ser. 136 (2008) 022024, arXiv:0810.3517. Neutrino 08.
The LSND puzzle in the light of MiniBooNE results, Thomas Schwetz, arXiv:0805.2234, 2008. Rencontres de Moriond EW 2008, La Thuile, 1-8 March 2008.
Signatures of sterile neutrino oscillations in high-energy cosmic neutrino flux, Osamu Yasuda, Andrea Donini, PoS NUFACT08 (2008) 146.
Neutrino telescopes as a probe of active and sterile neutrino mixings, Zhi-zhong Xing, Nucl. Phys. B, Proc. Suppl. 175-176 (2008) 421-426, arXiv:0711.4163. XIV International Symposium on Very High Energy Cosmic Ray Interactions, Weihai, China, August 15-22, 2006.
Sterile neutrinos after the first MiniBooNE results, Michele Maltoni, J. Phys. Conf. Ser. 110 (2008) 082011, arXiv:0711.2018. The 2007 Europhysics Conference on High Energy Physics, Manchester, England, July 19-25, 2007.
Sterile neutrinos and structure formation, Jaroslaw Stasielak, Peter L. Biermann, Alexander Kusenko, Acta Phys. Polon. B38 (2007) 3869-3878, arXiv:0710.5431. XLVII Cracow School of Theoretical Physics held in Zakopane, Poland, June 2007.
Accounting for the Unresolved X-ray Background with Sterile Neutrino Dark Matter, Daniel Cumberbatch, Joseph Silk, AIP Conf. Proc. 957 (2007) 375-378, arXiv:0709.0279. 13th International Symposium on Particles, Strings and Cosmology (PASCOS-07).
LENS as a Probe of Sterile Neutrino Mediated Oscillations, C. Grieb et al., arXiv:0705.2769, 2007. 12th International Workshop on Neutrinos Telescopes: Twenty Years after the Supernova 1987A Neutrino Bursts Discovery, Venice, Italy, 6-9 Mar 2007.
Restrictions on sterile neutrino parameters from astrophysical observations, Oleg Ruchayskiy, arXiv:0704.3215, 2007. 11th Marcel Grossmann meeting on general relativity, 23-29 July 2006, Berlin, Germany.
Limits on the dark matter particle mass from black hole growth in galaxies, Faustin Munyaneza, arXiv:astro-ph/0702167, 2007. 11th Marcel Grossmann meeting on general relativity, 23-29 July 2006, Berlin, Germany.
Sterile Neutrino as Dark Matter candidate from CMB alone, L.A. Popa, A. Vasile, arXiv:astro-ph/0701331, 2007. Eleventh Marcel Grossmann Meeting on General Relativity.
Unbound neutrino roadmaps, Marco Laveder, Nucl. Phys. Proc. Suppl. 168 (2007) 344-346. Workshop on Neutrino Oscillation Physics (NOW 2006), Otranto, Lecce, Italy, 9-16 Sep 2006.
Detecting sterile dark matter in space, Alexander Kusenko, Int. J. Mod. Phys. D16 (2008) 2325-2335, arXiv:astro-ph/0608096. From Quantum to Cosmos: fundametal physics research in space, Washington, DC, May 22-24, 2006.
Sterile neutrino decay and the LSND experiment, Sergio Palomares-Ruiz, J. Phys. Conf. Ser. 39 (2006) 307-309, arXiv:hep-ph/0602083. 9th International Conference on Astroparticle and Underground Physics (TAUP 2005), Zaragoza, Spain, 10-14 Sep 2005.
Sterile Neutrinos in astrophysical and cosmological sauce, Marco Cirelli, arXiv:astro-ph/0410122, 2004. 10th International Symposium on Particles, Strings and Cosmology (PASCOS '04), August 2004, Boston, USA, and XVI Incontri sulla Fisica delle Alte Energie (IFAE), April 2004, Torino, Italy.
Searches for sterile neutrinos (and other light particles), Alessandro Strumia, Nucl. Phys. Proc. Suppl. 143 (2005) 144, arXiv:hep-ph/0407132. Neutrino 2004.
Sterile neutrinos: from cosmology to experiments, Guido Marandella, arXiv:hep-ph/0405090, 2004. 39th Rencontres de Moriond on Electroweak Interactions and Unified Theories, La Thuile, Aosta Valley, Italy, 21-28 March 2004.
Possible astrophysical clues of dark matter, Alexander Kusenko, New Astron. Rev. 49 (2005) 115, arXiv:astro-ph/0404568. Sixth UCLA Symposium on Sources and Detection of Dark Matter and Dark Energy in the Universe (Dark Matter 2004), Marina del Rey, California, February 18-20, 2004.
Pulsar kicks and dark matter from a sterile neutrino, Alexander Kusenko, Int. J. Mod. Phys. A20 (2005) 1148, arXiv:astro-ph/0404483. Coral Gables Conference (CG2003), Ft. Lauderdale, Florida, December 17-21, 2003.
Neutrino fits, C. Pena-Garay, 2004. XXXIX Rencontres de Moriond, Electroweak Interactions and Unified Theories, La Thuile, 21-28 March 2003.
Search for sterile neutrinos, A. Strumia, 2004. Neutrino 2004, 13-19 June 2004, Paris, France.
MiniBooNE and Sterile Neutrinos, M.H. Shaevitz, 2004. Fujihara Seminar 'Neutrino mass and seesaw mechanism' February 23-25, 2004, KEK, Japan.
Big Bang Nucleosynthesis and neutrinos, F.L. Villante, A.D. Dolgov, arXiv:hep-ph/0310138, 2003. Beyond the Desert '03, Ringberg, 11-15 July 2003.
Can four neutrinos explain global oscillation data including LSND and cosmology?, M. Maltoni, T. Schwetz, M. A. Tortola, J. W. F. Valle, arXiv:hep-ph/0305312, 2003. NOON 2003 workshop, February 10-14, 2003, Kanazawa, Japan.
Comment: Figure 5 Left shows allowed regions at 90\% and 99\% CL for (3+1) schemes without (solid and dashed lines) and including data from cosmology (coloured regions). The grey region is the 99\% CL region of LSND. [M.L.].
Neutrino anomalies, Alessandro Strumia, arXiv:hep-ex/0304039, 2003. 'Neutrino Telescopes', Venezia, march 2003.
Can 4 neutrinos explain global oscillation data including LSND?, T. Schwetz, 2003. 4th Workshop on 'Neutrino Oscillations and their Origin' (NOON2003), February 10-14, 2003, Ishikawa Kousei Nenkin Kaikan, Kanazawa, Japan.
Standard and Non-Standard Physics in Neutrino Oscillations, M. Maltoni, Nucl. Phys. Proc. Suppl. 114 (2003) 191-196, arXiv:hep-ph/0210111. XXX International Meeting on Fundamental Physics (Jaca, Spain, 28/01-1/02/2002).
Global analysis of neutrino oscillation data in four-neutrino schemes, M. Maltoni, T. Schwetz, M. A. Tortola, J. W. F. Valle, Nucl. Phys. Proc. Suppl. 114 (2003) 203-207, arXiv:hep-ph/0209368. XXX Int. Meeting on Fundamental Physics, Jaca, Spain, 28 Jan-1 Feb 2002.
Comment: The figure n.4 shows the upper bound on $\sin^2 2\theta_{LSND}$ from SBL and atmospheric neutrino data in (3+1) schemes compared to LSND allowed region. [M.L.].
Standard and non-standard neutrino properties, J. W. F. Valle, Nucl. Phys. Proc. Suppl. 118 (2003) 255, arXiv:hep-ph/0209047. XXth International Conference on Neutrino Physics and Astrophysics May 25 - 30, 2002, Munich, Germany.
Neutrino oscillations beyond two flavours, E. Kh. Akhmedov, Nucl. Phys. Proc. Suppl. 118 (2003) 245, arXiv:hep-ph/0207342. XXth International Conference on Neutrino Physics and Astrophysics, May 25 - 30, 2002, Munich, Germany.
Telling three from four neutrino scenarios, D. Meloni, arXiv:hep-ph/0204351, 2002. XXXVIIth Rencontres de Moriond.
Theory of Neutrino Masses and Mixings, Hitoshi Murayama, Int. J. Mod. Phys. A17 (2002) 3403-3420, arXiv:hep-ph/0201022. 20th International Symposium on Lepton and Photon Interactions at High Energies (LP 01), Rome, Italy, 23-28 Jul 2001.
The cosmological information on neutrino mixing, Pasquale Di Bari, PoS HEP2001 (2001) hep2001/214, arXiv:hep-ph/0111056. International Europhysics Conference on High-Energy Physics (HEP 2001), Budapest, Hungary, 12-18 Jul 2001.
Update on solar and atmospheric four-neutrino oscillations, M. C. Gonzalez-Garcia, M. Maltoni, Carlos Pena-Garay, PoS HEP2001 (2001) hep2001/191, arXiv:hep-ph/0108073. International Europhysics Conference on High-Energy Physics (HEP 2001), Budapest, Hungary, 12-18 Jul 2001.
Physical reach of a neutrino factory in the 2+2 and 3+1 four-family scenario, A. Donini, D. Meloni, Nucl. Instrum. Meth. A503 (2001) 230, arXiv:hep-ph/0107274.
Four neutrino mass spectra at the neutrino factory, A. Donini, D. Meloni, arXiv:hep-ph/0105163, 2001.
Four-neutrino mixing solutions of the atmospheric neutrino anomaly, A. Marrone, Nucl. Phys. Proc. Suppl. 100 (2001) 264-266, arXiv:hep-ph/0103026.
Status of 3nu and 4nu scenarios, Eligio Lisi, Nucl. Phys. Proc. Suppl. 100 (2001) 185-187, arXiv:hep-ph/0102294.
Neutrino oscillations with four generations, Osamu Yasuda, arXiv:hep-ph/0102166, 2001.
Four-neutrino scenarios, C. Giunti, Nucl. Phys. Proc. Suppl. 100 (2001) 244-249. NOW 2000, Conca Specchiulla (Otranto, Italy), 9-16 Sep. 2000.
CP-violation in 3- and 4-family at the neutrino factory, A. Donini, Nucl. Phys. Proc. Suppl. 100 (2001) 210-213, arXiv:hep-ph/0012153.
Four-neutrino oscillations at SNO, Carlos Pena-Garay, Nucl. Phys. Proc. Suppl. 95 (2001) 150-154, arXiv:hep-ph/0012130.
Four neutrino oscillation analysis of atmospheric neutrino data and application to long baseline experiments, Osamu Yasuda, arXiv:hep-ph/0008256, 2000. $30^{\mathrm{th}}$ International Conference on High-Energy Physics (ICHEP 2000), Osaka, Japan, 27 Jul - 2 Aug 2000.
Update on four-family neutrino oscillations at nu-factory, A. Donini, S. Rigolin, arXiv:hep-ph/0007283, 2000. NuFACT'00: International Workshop on Muon Storage Ring for a Neutrino Factory, Monterey, California, 22-26 May 2000.
Four-neutrino oscillations and the solar neutrino problem, C. Giunti, M. C. Gonzalez-Garcia, Carlos Pena-Garay, Nucl. Instrum. Meth. A472 (2000) 364-370, arXiv:hep-ph/0007154. NuFACT'00: International Workshop on Muon Storage Ring for a Neutrino Factory, Monterey, California, 22-26 May 2000.