Sterile Neutrinos

Filter this page

(Note: The process can take some time.)

EXPAND ALL
COMPRESS ALL

References

1 - Books

[1-1]
Sterile Neutrino Dark Matter, Alexander Merle, IOP, 2017.
[Merle:2017qcs]
[1-2]
Fundamentals of Neutrino Physics and Astrophysics, C. Giunti, C. W. Kim, Oxford University Press, Oxford, UK, 2007. ISBN 978-0-19-850871-7. http://www.oup.com/uk/catalogue/?ci=9780198508717.
[Giunti:2007ry]

2 - Reviews

[2-1]
Snowmass Neutrino Frontier Report, Patrick Huber et al., arXiv:2211.08641, 2022.
[Huber:2022lpm]
[2-2]
Neutrino Frontier Topical Group Report (NF03): Physics Beyond the Standard Model, Pilar Coloma, Lisa W. Koerner, Ian M. Shoemaker, Jaehoon Yu, arXiv:2209.10362, 2022.
[Coloma:2022dng]
[2-3]
Snowmass Neutrino Frontier: NF02 Topical Group Report on Understanding Experimental Neutrino Anomalies, G. Karagiorgi, B. R. Littlejohn, P. Machado, A. Sousa, arXiv:2209.05352, 2022.
[Karagiorgi:2022fgf]
[2-4]
The Present and Future Status of Heavy Neutral Leptons, Asli M. Abdullahi et al., J.Phys.G 50 (2023) 020501, arXiv:2203.08039.
[Abdullahi:2022jlv]
[2-5]
White Paper on Light Sterile Neutrino Searches and Related Phenomenology, M. A. Acero et al., arXiv:2203.07323, 2022.
[Acero:2022wqg]
[2-6]
Tau Neutrinos in the Next Decade: from GeV to EeV, Roshan Mammen Abraham et al., J.Phys.G 49 (2022) 110501, arXiv:2203.05591.
[MammenAbraham:2022xoc]
[2-7]
Review of sterile neutrino searches at very short-baseline reactor experiments, Mikhail Danilov, Phys.Scripta 97 (2022) 094001, arXiv:2203.03042.
[Danilov:2022str]
[2-8]
Two sides of the same coin: sterile neutrinos and dark radiation. Status and perspectives, Maria Archidiacono, Stefano Gariazzo, Universe 8 (2022) 175, arXiv:2201.10319.
[Archidiacono:2022ich]
[2-9]
Sterile neutrinos with neutrino telescopes, Carlos A. Arguelles, Jordi Salvado, Universe 7 (2021) 426, arXiv:2111.03357.
[Arguelles:2021gwv]
[2-10]
Neutrino Interactions with Matter and the MiniBooNE anomaly, Luis Alvarez-Ruso, Eduardo Saul-Sala, Eur.Phys.J.ST 230 (2021) 4373-4389, arXiv:2111.02504.
[Alvarez-Ruso:2021dna]
[2-11]
Brief Review of Recent Advances in Understanding Dark Matter and Dark Energy, Eugene Oks, New Astron.Rev. 93 (2021) 101632, arXiv:2111.00363.
[Oks:2021hef]
[2-12]
Status of Anomalies and Sterile Neutrino Searches at Nuclear Reactors, Stefan Schoppmann, Universe 7 (2021) 360, arXiv:2109.13541.
[Schoppmann:2021ywi]
[2-13]
A Decade of Discoveries by the Daya Bay Reactor Neutrino Experiment, David E. Jaffe, Mod.Phys.Lett.A 36 (2021) 2130021, arXiv:2106.07700.
[Jaffe:2021wgf]
[2-14]
Sterile Neutrinos, Basudeb Dasgupta, Joachim Kopp, Phys.Rept. 928 (2021) 63, arXiv:2106.05913.
[Dasgupta:2021ies]
[2-15]
Recent probes of standard and non-standard neutrino physics with nuclei, D.K. Papoulias, T.S. Kosmas, Y. Kuno, Front.in Phys. 7 (2019) 191, arXiv:1911.00916.
[Papoulias:2019xaw]
[2-16]
Status of Light Sterile Neutrino Searches, Sebastian Boser, Christian Buck, Carlo Giunti, Julien Lesgourgues, Livia Ludhova, Susanne Mertens, Anne Schukraft, Michael Wurm, Prog.Part.Nucl.Phys. 111 (2020) 103736, arXiv:1906.01739.
[Boser:2019rta]
[2-17]
Where Are We With Light Sterile Neutrinos?, A. Diaz, C.A. Arguelles, G.H. Collin, J.M. Conrad, M.H. Shaevitz, Phys.Rept. 884 (2020) 1-59, arXiv:1906.00045.
[Diaz:2019fwt]
[2-18]
Roles of sterile neutrinos in particle physics and cosmology, Sin Kyu Kang, Int.J.Mod.Phys. A34 (2019) 1930005, arXiv:1904.07108.
[Kang:2019xuq]
[2-19]
The Short-Baseline Neutrino Program at Fermilab, Pedro A. N. Machado, Ornella Palamara, David W. Schmitz, Ann.Rev.Nucl.Part.Sci. 69 (2019) 363-387, arXiv:1903.04608.
[Machado:2019oxb]
[2-20]
Neutrino physics with dark matter detectors, Bhaskar Dutta, Louis E. Strigari, Ann.Rev.Nucl.Part.Sci. 69 (2019) 137-161, arXiv:1901.08876.
[Dutta:2019oaj]
[2-21]
eV-scale Sterile Neutrinos, C. Giunti, T. Lasserre, Ann. Rev. Nucl. Part. Sci. 69 (2019) 163-190, arXiv:1901.08330.
[Giunti:2019aiy]
[2-22]
Heavy neutral leptons and high-intensity observables, Asmaa Abada, Ana M. Teixeira, Front.in Phys. 6 (2018) 142, arXiv:1812.08062.
[Abada:2018nio]
[2-23]
A New Era in the Quest for Dark Matter, Gianfranco Bertone, Tim M. P. Tait, Nature 562 (2018) 51-56, arXiv:1810.01668.
[Bertone:2018krk]
[2-24]
Sterile Neutrino Dark Matter, A. Boyarsky, M. Drewes, T. Lasserre, S. Mertens, O. Ruchayskiy, Prog.Part.Nucl.Phys. 104 (2019) 1-45, arXiv:1807.07938.
[Boyarsky:2018tvu]
[2-25]
Neutrino Mass Ordering in 2018: Global Status, P. F. de Salas, S. Gariazzo, O. Mena, C. A. Ternes, M. Tortola, Front.Astron.Space Sci. 5 (2018) 36, arXiv:1806.11051.
[DeSalas:2018rby]
[2-26]
The STEREO Experiment, N. Allemandou et al., JINST 13 (2018) P07009, arXiv:1804.09052.
[STEREO:2018blj]
[2-27]
Physics with Reactor Neutrinos, Xin Qian, Jen-Chieh Peng, Rept.Prog.Phys. 82 (2019) 036201, arXiv:1801.05386.
[Qian:2018wid]
[2-28]
Status of neutrino properties and future prospects - Cosmological and astrophysical constraints, Martina Gerbino, Massimiliano Lattanzi, Front.in Phys. 5 (2018) 70, arXiv:1712.07109.
[Lattanzi:2017ubx]
[2-29]
Sterile neutrinos in cosmology, Kevork N. Abazajian, Phys.Rept. 711-712 (2017) 1-28, arXiv:1705.01837.
[Abazajian:2017tcc]
[2-30]
Roadmap for the international, accelerator-based neutrino programme, J. Cao et al., arXiv:1704.08181, 2017.
[Cao:2017hno]
[2-31]
Sterile Neutrinos: An Introduction to Experiments, J. M. Conrad, M. H. Shaevitz, Adv.Ser.Direct.High Energy Phys. 28 (2018) 391-442, arXiv:1609.07803.
[Conrad:2016sve]
[2-32]
A review of the impact of sterile neutrino dark matter on core-collapse supernovae, MacKenzie Warren, Grant J. Mathews, Matthew Meixner, Jun Hidaka, Toshitaka Kajino, Int.J.Mod.Phys. A31 (2016) 1650137, arXiv:1603.05503.
[Warren:2016slz]
[2-33]
A White Paper on keV Sterile Neutrino Dark Matter, R. Adhikari et al., JCAP 1701 (2017) 025, arXiv:1602.04816.
[Drewes:2016upu]
[2-34]
Review of Neutrino Oscillations With Sterile and Active Neutrinos, Leonard S. Kisslinger, Int.J.Mod.Phys. A31 (2016) 1630037, arXiv:1601.05391.
[Kisslinger:2016dge]
[2-35]
Experimental investigation of the thriving mystery of sterile neutrinos, A. Fava, Rev. Phys. 1 (2016) 52-59.
[Fava:2016vas]
[2-36]
Global Analyses of Neutrino Oscillation Experiments, M.C. Gonzalez-Garcia, Michele Maltoni, Thomas Schwetz, Nucl. Phys. B908 (2016) 199-217, arXiv:1512.06856.
[Gonzalez-Garcia:2015qrr]
[2-37]
Light Sterile Neutrinos: Status and Perspectives, Carlo Giunti, Nucl. Phys. B908 (2016) 336-353, arXiv:1512.04758.
[Giunti:2015wnd]
[2-38]
Sterile Neutrino Dark Matter from Freeze-In, Bibhushan Shakya, Mod. Phys. Lett. A31 (2016) 1630005, arXiv:1512.02751.
[Shakya:2015xnx]
[2-39]
Observation of the new line at ~3.55 keV in X-ray spectra of galaxies and galaxy clusters, Dmytro Iakubovskyi, Adv.Astron.Space Phys. 6 (2016) 3-15, arXiv:1510.00358.
[Iakubovskyi:2015wma]
[2-40]
Light sterile neutrinos, S. Gariazzo, C. Giunti, M. Laveder, Y. F. Li, E.M. Zavanin, J. Phys. G43 (2016) 033001, arXiv:1507.08204.
[Gariazzo:2015rra]
[2-41]
Neutrinoless Double Beta Decay, Heinrich Pas, Werner Rodejohann, New J. Phys. 17 (2015) 115010, arXiv:1507.00170.
[Pas:2015eia]
[2-42]
Searches for Active and Sterile Neutrinos in Beta-Ray Spectra, Otokar Dragoun, Drahoslav Venos, J. Phys. 3 (2016) 77-113, arXiv:1504.07496.
[Dragoun:2015oja]
[2-43]
Neutrino Oscillation Studies with Reactors, P. Vogel, L.J. Wen, C. Zhang, Nature Communications 6 (2015) 6935, arXiv:1503.01059.
[Vogel:2015wua]
[2-44]
Neutrinos and Collider Physics, Frank F. Deppisch, P. S. Bhupal Dev, Apostolos Pilaftsis, New J. Phys. 17 (2015) 075019, arXiv:1502.06541.
[Deppisch:2015qwa]
[2-45]
Beyond Standard Model Searches in the MiniBooNE Experiment, Teppei Katori, Janet Conrad, Adv.High Energy Phys. 2015 (2015) 362971, arXiv:1404.7759.
[Katori:2014qta]
[2-46]
Neutrino oscillations, G. Bellini, L. Ludhova, G. Ranucci, F.L. Villante, Adv.High Energy Phys. 2014 (2014) 191960, arXiv:1310.7858.
[Bellini:2013wra]
[2-47]
Neutrinos, A. de Gouvea et al. (Intensity Frontier Neutrino Working Group), arXiv:1310.4340, 2013.
[IntensityFrontierNeutrinoWorkingGroup:2013sdv]
[2-48]
Cosmic dark radiation and neutrinos, Maria Archidiacono, Elena Giusarma, Steen Hannestad, Olga Mena, Adv.High Energy Phys. 2013 (2013) 191047, arXiv:1307.0637.
[Archidiacono:2013fha]
[2-49]
The LSND and MiniBooNE Oscillation Searches at High $\Delta{m}^2$, Janet M. Conrad, William C. Louis, Michael H. Shaevitz, Ann.Rev.Nucl.Part.Sci. 63 (2013) 45, arXiv:1306.6494.
[Conrad:2013mka]
[2-50]
Next decade of sterile neutrino studies, Alexey Boyarsky, Dmytro Iakubovskyi, Oleg Ruchayskiy, Phys.Dark Univ. 1 (2012) 136-154, arXiv:1306.4954.
[Boyarsky:2012rt]
[2-51]
Review of Recent Neutrino Physics Research, Leonard S. Kisslinger, Mod.Phys.Lett. A28 (2013) 1330024, arXiv:1306.3912.
[Kisslinger:2013ipa]
[2-52]
Ambiguities and Subtleties in Fermion Mass Terms, Yifan Cheng, Otto C. W. Kong, Annals Phys. 348 (2014) 315-323, arXiv:1305.5772.
[Cheng:2013yoa]
[2-53]
News on Right Handed Neutrinos, Marco Drewes, International Journal of Modern Physics E, Vol. 22 (2013) 1330019, arXiv:1303.6912.
[Drewes:2013gca]
[2-54]
Dark Matter Studies Entrain Nuclear Physics, Susan Gardner, George Fuller, Prog.Part.Nucl. Phys. 71 (2013) 167-184, arXiv:1303.4758.
[Gardner:2013ama]
[2-55]
Phenomenology of light sterile neutrinos: a brief review, Antonio Palazzo, Mod.Phys.Lett. A28 (2013) 1330004, arXiv:1302.1102.
[Palazzo:2013me]
[2-56]
What is half a neutrino? Reviewing cosmological constraints on neutrinos and dark radiation, Signe Riemer-Sorensen, David Parkinson, Tamara M. Davis, Publ.Astron.Soc.Austral. 30 (2013) e029, arXiv:1301.7102.
[Riemer-Sorensen:2013iql]
[2-57]
Search for GeV-scale sterile neutrinos responsible for active neutrino oscillations and baryon asymmetry of the Universe, S. N. Gninenko, D. S. Gorbunov, M. E. Shaposhnikov, Adv.High Energy Phys. 2012 (2012) 718259, arXiv:1301.5516.
[Gninenko:2012anz]
[2-58]
Neutrinos And Big Bang Nucleosynthesis, Gary Steigman, Adv. High Energy Phys. 2012 (2012) 268321, arXiv:1208.0032.
[Steigman:2012ve]
[2-59]
Sterile Neutrino Fits to Short Baseline Neutrino Oscillation Measurements, J.M. Conrad, C.M. Ignarra, G. Karagiorgi, M.H. Shaevitz, J. Spitz, Adv.High Energy Phys. 2013 (2013) 163897, arXiv:1207.4765.
[Conrad:2012qt]
[2-60]
The Acceleration Scale, Modified Newtonian Dynamics, and Sterile Neutrinos, Antonaldo Diaferio, Garry W. Angus, arXiv:1206.6231, 2012.
[Diaferio:2012zh]
[2-61]
Neutrinoless double beta decay and neutrino physics, Werner Rodejohann, J. Phys. G39 (2012) 124008, arXiv:1206.2560.
[Rodejohann:2012xd]
[2-62]
Light Sterile Neutrinos: A White Paper, K. N. Abazajian et al., arXiv:1204.5379, 2012.
[Abazajian:2012ys]
[2-63]
On the 'LSND anomaly', Dmitry Dedovich, Alexey Zhemchugov, Mod. Phys. Lett. A27 (2012) 1230012.
[Dedovich:2012zz]
[2-64]
Neutrino mass in cosmology: status and prospects, Yvonne Y. Y. Wong, Ann. Rev. Nucl. Part. Sci. 61 (2011) 69-98, arXiv:1111.1436.
[Wong:2011ip]
[2-65]
Neutrino-less Double Beta Decay and Particle Physics, Werner Rodejohann, Int. J. Mod. Phys. E20 (2011) 1833-1930, arXiv:1106.1334.
[Rodejohann:2011mu]
[2-66]
Big Bang Nucleosynthesis as a Probe of New Physics, Maxim Pospelov, Josef Pradler, Ann. Rev. Nucl. Part. Sci. 60 (2010) 539-568, arXiv:1011.1054.
[Pospelov:2010hj]
[2-67]
Neutrino physics from precision cosmology, Steen Hannestad, Prog. Part. Nucl. Phys. 65 (2010) 185-208, arXiv:1007.0658.
[Hannestad:2010kz]
[2-68]
MINOS neutrino oscillation results, Alec Habig, Mod. Phys. Lett. A25 (2010) 1219-1231, arXiv:1004.2647.
[Habig:2010vw]
[2-69]
Dark Matter Candidates from Particle Physics and Methods of Detection, Jonathan L. Feng, Ann. Rev. Astron. Astrophys. 48 (2010) 495, arXiv:1003.0904.
[Feng:2010gw]
[2-70]
Signatures of Singlet Neutrinos in Large Extra Dimensions at the LHC, Douglas M. Gingrich, Int. J. Mod. Phys. A24 2009 (2009) 5173-5215, arXiv:0907.1878.
[Gingrich:2009az]
[2-71]
Sterile neutrinos: the dark side of the light fermions, Alexander Kusenko, Phys. Rept. 481 (2009) 1-28, arXiv:0906.2968.
[Kusenko:2009up]
[2-72]
Detection of Dark Matter Decay in the X-ray, Kevork N. Abazajian, arXiv:0903.2040, 2009.
[Rusov:2013uaa]
[2-73]
The role of sterile neutrinos in cosmology and astrophysics, Alexey Boyarsky, Oleg Ruchayskiy, Mikhail Shaposhnikov, Ann. Rev. Nucl. Part. Sci. 59 (2009) 191-214, arXiv:0901.0011.
[Boyarsky:2009ix]
[2-74]
Searches for muon-to-electron (anti) neutrino flavor change, W.C. Louis, Prog.Part.Nucl. Phys. 63 (2009) 51-73.
[Louis:2009zza]
[2-75]
Phenomenology with Massive Neutrinos, M. C. Gonzalez-Garcia, Michele Maltoni, Phys. Rept. 460 (2008) 1-129, arXiv:0704.1800.
[Gonzalez-Garcia:2007dlo]
[2-76]
Neutrino masses and mixings and..., Alessandro Strumia, Francesco Vissani, arXiv:hep-ph/0606054, 2006.
[Strumia:2006db]
[2-77]
Neutrino mass and new physics, R. N. Mohapatra, A. Y. Smirnov, Ann. Rev. Nucl. Part. Sci. 56 (2006) 569-628, arXiv:hep-ph/0603118.
[Mohapatra:2006gs]
[2-78]
Theory of Neutrinos: A White Paper, R.N. Mohapatra et al., Rept. Prog. Phys. 70 (2007) 1757-1867, arXiv:hep-ph/0510213.
[Mohapatra:2005wg]
[2-79]
Theory of Neutrinos, R.N. Mohapatra et al., arXiv:hep-ph/0412099, 2004.
[Mohapatra:2004vr]
[2-80]
Status of global fits to neutrino oscillations, M. Maltoni, T. Schwetz, M.A. Tortola, J.W.F. Valle, New J. Phys. 6 (2004) 122, arXiv:hep-ph/0405172.
[Maltoni:2004ei]
[2-81]
Physics of the neutrino mass, R. N. Mohapatra, New J. Phys. 6 (2004) 82. http://www.iop.org/EJ/abstract/1367-2630/6/1/082.
[Mohapatra-NJP6-82-2004]
[2-82]
Neutrinos in cosmology, A. D. Dolgov, Phys. Rep. 370 (2002) 333-535, arXiv:hep-ph/0202122.
[Dolgov:2002wy]
[2-83]
Neutrino Masses and Mixing: Evidence and Implications, M.C. Gonzalez-Garcia, Y. Nir, Rev. Mod. Phys. 75 (2003) 345-402, arXiv:hep-ph/0202058.
[Gonzalez-Garcia:2002bkq]
[2-84]
Introduction to sterile neutrinos, Raymond R. Volkas, Prog. Part. Nucl. Phys. 48 (2002) 161-174, arXiv:hep-ph/0111326.
[Volkas:2001zb]
[2-85]
Phenomenology of neutrino oscillations, S. M. Bilenky, C. Giunti, W. Grimus, Prog. Part. Nucl. Phys. 43 (1999) 1, arXiv:hep-ph/9812360.
[Bilenky:1998dt]

3 - Reviews - Talks

[3-1]
Experimental Searches For Heavy Neutral Leptons, Sophie Middleton, arXiv:2206.11422, 2022. FPCP 2022, 20th Conference on Flavor Physics and CP Violation~.
[Middleton:2022dio]
[3-2]
Light Sterile Neutrinos, Stefano Gariazzo, J.Phys.Conf.Ser. 2156 (2021) 012003, arXiv:2110.09876. 17th International Conference on Topics in Astroparticle and Underground Physics (TAUP).
[Gariazzo:2021wsx]
[3-3]
Sterile Neutrinos as Dark Matter Candidates, Joachim Kopp, SciPost Phys.Lect.Notes 36 (2022) 1, arXiv:2109.00767. 10 pages, 2 figures; submitted to SciPost Physics Lecture Notes, Les Houches Summer School Series.
[Kopp:2021jlk]
[3-4]
Results of STEREO and PROSPECT, and status of sterile neutrino searches, Matthieu Licciardi, arXiv:2105.13776, 2021. 2021 EW session of the 55th Rencontres de Moriond.
[Licciardi:2021hyi]
[3-5]
Neutrinos in Astrophysics and Cosmology: Theoretical Advanced Study Institute (TASI) 2020 Lectures, Kevork N. Abazajian, arXiv:2102.10183, 2021.
[Abazajian:2021zui]
[3-6]
Neutrino Experiments at J-PARC, Masahiro Kuze, JPS Conf.Proc. 33 (2021) 011139, arXiv:2001.03417. J-PARC Symposium 2019.
[Kuze:2020mbj]
[3-7]
Review of Sterile Neutrino Experiments, Seon-Hee Seo, arXiv:2001.03349, 2020. 19th Lomonosov Conference on Elementary Particle Physics (Moscow State University, August 22-28, 2019).
[Seo:2020ehv]
[3-8]
Light sterile neutrinos: the current picture from neutrino oscillations, S. Gariazzo, J.Phys.Conf.Ser. 1468 (2020) 012120, arXiv:1911.03463. TAUP 2019, Toyama, Japan, September 9-13, 2019.
[Gariazzo:2019cym]
[3-9]
Light sterile neutrinos: oscillations and cosmology, S. Gariazzo, Acta Phys.Polon. B50 (2019) 1719, arXiv:1910.13172. Matter To The Deepest, XLIII International Conference of Theoretical Physics, Katowice/Chorzow, Poland, 1-6 September 2019.
[Gariazzo:2019vdj]
[3-10]
Sterile Neutrino. A short introduction, Dmitry V.Naumov, EPJ Web Conf. 207 (2019) 04004, arXiv:1901.00151. VLVnT2018.
[Naumov:2019kwm]
[3-11]
Searches for sterile neutrinos at very short baseline reactor experiments, Mikhail Danilov, J.Phys.Conf.Ser. 1390 (2019) 012049, arXiv:1812.04085. 4th International Conference on Particle Physics and Astrophysics (ICPPA-2018), Moscow, Russia.
[Danilov:2018dme]
[3-12]
Neutrino Physics with Reactors, Bedrich Roskovec, arXiv:1812.03206, 2018. PIC2018: XXXVIII International Symposium on Physics in Collision, Bogota, Colombia, 2018.
[Roskovec:2018jfn]
[3-13]
The interplay between cosmology, particle physics and astrophysics, Aaron C. Vincent, PoS EDSU2018 (2018) 007, arXiv:1811.04148. 2nd World Summit on Exploring the Dark Side of the Universe (25-29 June 2018, Pointe-a-Pitre).
[Vincent:2018vng]
[3-14]
Leptogenesis, dark matter and neutrino masses, Michele Lucente, Asmaa Abada, Giorgio Arcadi, Valerie Domcke, arXiv:1803.10826, 2018. NuPhys2017 (London, 20-22 December 2017).
[Lucente:2018lxx]
[3-15]
Phenomenology of light sterile neutrinos, Antonio Palazzo, PoS NEUTEL2017 (2018) 040. 17th International Workshop on Neutrino Telescopes (Neutel 2017): Venice, Italy, March 13-17, 2017.
[Palazzo:2017nqu]
[3-16]
Light sterile neutrino searches, Julia Haser, arXiv:1710.06330, 2017. 29th Rencontres de Blois 2017 on Particle Physics and Cosmology.
[Haser:2017owl]
[3-17]
Short- and long-baseline sterile neutrino phenomenology, Antonio Palazzo, arXiv:1705.01592, 2017. NuPhys2016 (London, 12-14 December 2016).
[Palazzo:2017wju]
[3-18]
Sterile Neutrinos: Reactor Experiments, Christian Buck, arXiv:1704.08885, 2017. NuPhys2016 (London, 12-14 December 2016).
[Buck:2017ibq]
[3-19]
keV sterile neutrino Dark Matter, Alexander Merle, PoS NOW2016 (2017) 082, arXiv:1702.08430. NOW 2016.
[Merle:2017jfn]
[3-20]
Status of Dark Matter in the Universe, Katherine Freese, Int.J.Mod.Phys. D26 (2017) 1730012, arXiv:1701.01840. 14th Marcel Grossman Meeting, MG14, University of Rome 'La Sapienza', Rome, July 2015.
[Freese:2017idy]
[3-21]
Light sterile neutrinos and neutrinoless double-beta decay, Carlo Giunti, AIP Conf. Proc. 1894 (2017) 020009. Matrix Elements for the Double beta decay Experiments (MEDEX'17): Prague, Czech Republic.
[Giunti:2017doy]
[3-22]
Sterile Neutrino Searches: Experiment and Theory, Carlo Giunti, Nucl. Part. Phys. Proc. 287-288 (2017) 133-138. 14th International Workshop on Tau Lepton Physics (TAU 2016): Beijing, China, September 19-23, 2016.
[Giunti:2017jav]
[3-23]
A Review on Present Status of Neutrino Mixings and Oscillations, Carlo Giunti, 2017. 17th Lomonosov Conference on Elementary Particle Physics: Moscow, Russia, August 20-26, 2015.
[Giunti:2017kun]
[3-24]
Status of Light Sterile Neutrinos, Carlo Giunti, PoS EPS-HEP2017 (2017) 110. 2017 European Physical Society Conference on High Energy Physics (EPS-HEP 2017): Venice, Italy, July 5-12, 2017.
[Giunti:2017rni]
[3-25]
Long baseline experiments: a new window on sterile neutrinos, Antonio Palazzo, PoS EPS-HEP2017 (2017) 126. 2017 European Physical Society Conference on High Energy Physics (EPS-HEP 2017): Venice, Italy, July 5-12, 2017.
[Palazzo:2017dww]
[3-26]
Phenomenology of light sterile neutrinos, A. Palazzo, Nuovo Cim. C40 (2017) 53. 15th Incontri di Fisica delle Alte Energie (IFAE 2016): Genoa, Italy, March 30-April 1, 2016.
[Palazzo:2017ttg]
[3-27]
Heavy neutrino searches from MeV to TeV, Elena Graverini, arXiv:1611.07215, 2016. NuFact 2016.
[Graverini:2016mhd]
[3-28]
Oscillations Beyond Three-Neutrino Mixing, Carlo Giunti, J. Phys. Conf. Ser. 888 (2017) 012019, arXiv:1609.04688. Neutrino 2016, XXVII International Conference on Neutrino Physics and Astrophysics, 4-9 July 2016, London, UK.
[Giunti:2016oan]
[3-29]
Neutrino physics and precision cosmology, Steen Hannestad, arXiv:1605.03829, 2016. NuPhys2015 (London, 16-18 December 2015).
[Hannestad:2016mvv]
[3-30]
Search for Sterile Neutrinos at Long and Short Baselines, Luca Stanco, arXiv:1604.06769, 2016. NuPhys2015 (London, 16-18 December 2015).
[Stanco:2016gnl]
[3-31]
Hunt for Sterile Neutrinos: Decay at Rest Experiments, Fumihiko Suekane, arXiv:1604.06190, 2016. NuPhys2015 (London, 18 December 2015).
[Suekane:2016zwh]
[3-32]
Low-energy neutrinos, Livia Ludhova, J. Phys. Conf. Ser. 718 (2016) 022012, arXiv:1601.08234. TAUP 2015, 7-11 September 2015, Torino (Italy).
[Ludhova:2016wbn]
[3-33]
Light Sterile Neutrinos In Cosmology, Stefano Gariazzo, arXiv:1601.01475, 2016. 17th Lomonosov Conference.
[Gariazzo:2016ehl]
[3-34]
Sterile Neutrinos, Antonio Palazzo, J. Phys. Conf. Ser. 718 (2016) 022015. 14th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2015): Torino, Italy, September 7-11, 2015.
[Palazzo:2016upt]
[3-35]
Heavy neutrinos in particle physics and cosmology, Marco Drewes, PoS EPS-HEP2015 (2015) 075, arXiv:1510.07883. EPS-HEP2015.
[Drewes:2015vma]
[3-36]
Accelerator-based Short-baseline Neutrino Oscillation Experiments, Sowjanya Gollapinni (MicroBooNE), arXiv:1510.04412, 2015. Twelfth Conference on the Intersections of Particle and Nuclear Physics, Vail, Colorado, May 19-24, 2015.
[Gollapinni:2015lca]
[3-37]
Constraining right-handed neutrinos, F. J. Escrihuela, D. V. Forero, O. G. Miranda, M. Tortola, J. W. F. Valle, Nucl.Part.Phys.Proc. 273-275 (2016) 1909-1914, arXiv:1505.01097. ICHEP14.
[Escrihuela:2015jaa]
[3-38]
Future short baseline neutrino searches with nuclear decays, Barbara Caccianiga, AIP Conf. Proc. 1666 (2015) 180002.
[Caccianiga:2015ega]
[3-39]
(sub)eV Sterile Neutrinos: experimental aspects, Thierry Lasserre, Nucl. Part. Phys. Proc. 265-266 (2015) 281-287. NOW 2014.
[Lasserre:2015eva]
[3-40]
Future short-baseline sterile neutrino searches with reactors, D. Lhuillier, AIP Conf. Proc. 1666 (2015) 180003.
[Lhuillier:2015fga]
[3-41]
Future short-baseline sterile neutrino searches with accelerators, J. Spitz, AIP Conf. Proc. 1666 (2015) 180004.
[Spitz:2015gga]
[3-42]
How many new particles do we need after the Higgs boson?, Marco Drewes, arXiv:1405.2931, 2014. 49th Rencontres de Moriond on Electroweak Interactions and Unified Theories (2014).
[Drewes:2014vaa]
[3-43]
Light Sterile Neutrinos in Particle Physics: Experimental Status, Thierry Lasserre, Phys.Dark Univ. 4 (2014) 81-85, arXiv:1404.7352. 13th International Conference on Topics in Astroparticle and Underground Physics, TAUP 2013.
[Lasserre:2014ita]
[3-44]
Short Baseline Neutrino Oscillation Experiments, Teppei Katori, J. Phys. Conf. Ser. 598 (2015) 012006, arXiv:1404.6882. NuPhys2013 - prospects in neutrino physics, Institute of Physics, London, UK, Dec. 19-20, 2013.
[Katori:2014vka]
[3-45]
Status of Neutrino Mass and Mixing, Guido Altarelli, Int.J.Mod.Phys. A29 (2014) 1444002, arXiv:1404.3859. International Conference on Flavor Physics and Mass Generation, Singapore, February 2014.
[Altarelli:2014dca]
[3-46]
Are There Sterile Neutrinos?, Boris Kayser, AIP Conf.Proc. 1604 (2014) 201-203, arXiv:1402.3028. CETUP Workshop on Neutrino Physics and Astrophysics.
[Kayser:2014tia]
[3-47]
Reactors antineutrino anomalies and searches for sterile neutrinos in Europe, M. Cribier, PoS Neutel2013 (2014) 020.
[Cribier:2013ued]
[3-48]
Sterile neutrinos, C. Giunti, Nuovo Cim. C037 (2014) 95-100.
[Giunti:2014qpa]
[3-49]
Experimental review of sterile neutrino searches, David Lhuillier, PoS EPS-HEP2013 (2014) 522.
[Lhuillier:2014mna]
[3-50]
Theory of oscillations and sterile neutrinos, Antonio Palazzo, J. Phys. Conf. Ser. 556 (2014) 012062.
[Palazzo:2014uya]
[3-51]
Phenomenology of neutrino oscillations and mixing, M. Laveder, C. Giunti, Acta Phys.Polon. B44 (2013) 2323-2330, arXiv:1310.7478. XXXVII International Conference of Theoretical Physics 'Matter to the deepest', Ustron, 1-6 September 2013.
[Laveder:2013cja]
[3-52]
Towards the Chalonge Meudon Workshop 2013. Highlights and Conclusions of the Chalonge Meudon workshop 2012: warm dark matter galaxy formation in agreement with observations, P.L. Biermann, H.J. de Vega, N.G. Sanchez, arXiv:1305.7452, 2013.
[deVega:2013hpa]
[3-53]
Current and Future Liquid Argon Neutrino Experiments, Georgia Karagiorgi, AIP Conf.Proc. 1663 (2015) 100001, arXiv:1304.2083. NuInt'12.
[Karagiorgi:2013cwa]
[3-54]
Phenomenology of light sterile neutrinos, C. Giunti, Acta Phys.Polon.Supp. 6 (2013) 667-674.
[Giunti:2013rfa]
[3-55]
Status of Sterile Neutrinos, C. Giunti, Nucl. Phys. Proc. Suppl. 237-238 (2013) 295-300.
[Giunti:2013uaa]
[3-56]
Low-energy sterile neutrinos: Theory, Antonio Palazzo, Nucl. Phys. Proc. Suppl. 237-238 (2013) 121-123.
[Palazzo:2013exa]
[3-57]
Neutrino 2012: Outlook - theory, A. Yu. Smirnov, Nucl. Phys. Proc. Suppl. 235-236 (2013) 431-440, arXiv:1210.4061. XXV International Conference on Neutrino Physics and Astrophysics, June 3 - 9, 2012, Kyoto, Japan.
[Smirnov:2012ei]
[3-58]
Tensions with the Three-Neutrino Paradigm, Boris Kayser, arXiv:1207.2167, 2012. Electroweak Session of the 47th Rencontres de Moriond.
[Kayser:2012rd]
[3-59]
keV sterile Neutrino Dark Matter and Neutrino Model Building, Alexander Merle, J. Phys. Conf. Ser. 375 (2012) 012047, arXiv:1201.0881. TAUP 2011.
[Merle:2012ya]
[3-60]
Neutrinos and the Universe, Nick E. Mavromatos, J. Phys. Conf. Ser. 408 (2013) 012003, arXiv:1110.3729. Nufact 11, CERN and U. of Geneva, 1-6 August 2011.
[Mavromatos:2011ur]
[3-61]
The current status of neutrino mixing, Justin Evans, arXiv:1107.3846, 2011. FPCP 2011.
[Evans:2011tf]
[3-62]
Perspectives in Neutrino Physics, Guido Altarelli, arXiv:1107.1980, 2011. XIV International Workshop on 'Neutrino Telescopes' Venice, Italy, March 15-18, 2011.
[Altarelli:2011rv]
[3-63]
Sterile Neutrino Fits, Carlo Giunti, arXiv:1106.4479, 2011. La Thuile 2011, NeuTel 2011 and IFAE 2011.
[Giunti:2011ht]
[3-64]
Lectures on neutrino phenomenology, Walter Winter, Nucl. Phys. B, Proc. Suppl. 203-204 2010 (2010) 45-81, arXiv:1004.4160. Schladming Winter School 2010 'Masses and Constants'.
[Winter:2010hb]
[3-65]
Dark Matter Astrophysics, Guido D'Amico, Marc Kamionkowski, Kris Sigurdson, arXiv:0907.1912, 2009. Villa Olmo School on 'The Dark Side of the Universe,' 14-18 May 2007 and XIX Heidelberg Physics Graduate Days, 8-12 October 2007.
[DAmico:2009tep]
[3-66]
Searching for physics beyond the standard model with accelerator neutrino experiments, William C. Louis, J. Phys. Conf. Ser. 173 (2009) 012017.
[Louis:2009zzb]
[3-67]
Bounds on Light Dark Matter, Alexey Boyarsky, Oleg Ruchayskiy, arXiv:0811.2385, 2008. 4th Patras Workshop on Axions, WIMPs and WISPs, DESY, Hamburg, Germany, 18-21 June 2008.
[Boyarsky:2008mx]
[3-68]
Neutrino oscillations: present status and outlook, Thomas Schwetz, AIP Conf. Proc. 981 (2008) 8-12, arXiv:0710.5027. NuFact07, Okayama, Japan.
[Schwetz:2007my]
[3-69]
Radiochemical solar neutrino experiments, V. N. Gavrin, B. T. Cleveland, Nucl. Phys. Proc. Suppl. 221 (2011) 90-97, arXiv:nucl-ex/0703012. XXII Int. Conf. on Neutrino Physics and Astrophysics, Santa Fe, 13-19 June 2006.
[Gavrin:2007wc]
[3-70]
Unbound neutrino roadmaps, Marco Laveder, Nucl. Phys. Proc. Suppl. 168 (2007) 344-346. Workshop on Neutrino Oscillation Physics (NOW 2006), Otranto, Lecce, Italy, 9-16 Sep 2006.
[Laveder:2007zz]
[3-71]
Sterile neutrino states, Alexander Kusenko, Nucl. Phys. Proc. Suppl. 221 (2011) 149-154, arXiv:hep-ph/0609158. Neutrino 2006.
[Kusenko:2006zc]
[3-72]
Solar Neutrinos (with a tribute to John. N. Bahcall), G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo, arXiv:hep-ph/0605186, 2006. 3rd International Workshop on NO-VE: Neutrino Oscillations in Venice: 50 Years after the Neutrino Experimental Discovery, Venice, Italy, 7-10 Feb 2006.
[Fogli:2006fu]
[3-73]
Physics of Massive Neutrinos, J. W. F. Valle, Nucl. Phys. Proc. Suppl. 149 (2005) 3, arXiv:hep-ph/0410103. Sixth International Conf. on Neutrino Factories and SuperBeams (NuFact04) Osaka, Japan, July 26-August 1, 2004.
[Valle:2004cr]
[3-74]
Global Analysis of Neutrino Data, M. C. Gonzalez-Garcia, Phys. Scripta T121 (2005) 72, arXiv:hep-ph/0410030. Nobel Symposium on Neutrino Physics, Haga Slott, Enkoping, Sweden.
[Gonzalez-Garcia:2004oyj]
[3-75]
Neutrino Physics: Open Theoretical Questions, A. Yu. Smirnov, Int. J. Mod. Phys. A19 (2004) 1180, arXiv:hep-ph/0311259. Lepton Photon 2003, 11-16 August 2003, Fermi National Accelerator Laboratory, Batavia, Illinois USA. http://conferences.fnal.gov/lp2003/program/S12/smirnov_s12_winversion.pdf.
Comment: The figure in slide n.13 shows the sensitivity of MiniBoone in the $\nu_{\mu} \to \nu_{\mu}$ channel together with the predictions of a combined fit of LSND and null short-baseline experiments. [M.L.].
[Smirnov:2003xe]
[3-76]
Brief Neutrino Physics Update, J. W. F. Valle, arXiv:hep-ph/0310125, 2003. String Phenomenology Workshop held at Durham, July 29 - August 4, 2003.
[Valle:2003jj]
[3-77]
Neutrino masses twenty-five years later, J. W. F. Valle, Aip Conf. Proc. 687 (2003) 16, arXiv:hep-ph/0307192. MRST'03 (Joe-Fest), Syracuse, NY, May 2003.
[Valle:2003rh]
[3-78]
Neutrino Physics after KamLAND, A. Yu. Smirnov, arXiv:hep-ph/0306075, 2003. 4th Workshop on 'Neutrino Oscillations and their Origin' (NOON2003), February 10-14, 2003, Ishikawa Kousei Nenkin Kaikan, Kanazawa, Japan. http://www-sk.icrr.u-tokyo.ac.jp/noon2003/transparencies/10/Smirnov.pdf.
[Smirnov:2003uu]
[3-79]
Theory of sterile neutrinos, Rabindra Mohapatra, 2002. 18th International Workshop on Weak Interactions and neutrinos (WIN02), 21-26 Jan 2002, Christchurch, New Zealand. http://www.slac.stanford.edu/econf/C020121/overhead/R_Mohap2.pdf.
[Mohapatra:2002zz]

4 - Habilitation, PhD and Master Theses

[4-1]
Through Iron \& Ice: Searching for Sterile Neutrinos at the IceCube Neutrino Observatory, Alejandro Diaz, arXiv:2210.09418, 2022.
[Diaz:2022grj]
[4-2]
Testing Explanations of Short Baseline Neutrino Anomalies, Nicolo Foppiani, arXiv:2209.13455, 2022.
[Foppiani:2022qsi]
[4-3]
Light, Unstable Sterile Neutrinos: Phenomenology, a Search in the IceCube Experiment, and a Global Picture, Marjon H. Moulai, arXiv:2110.02351, 2021.
[Moulai:2021zey]
[4-4]
Theoretical and phenomenological consequences of active and sterile neutrino within Beyond Standard Model framework, Pritam Das, arXiv:2107.10622, 2021.
[Das:2021xat]
[4-5]
Dark Matter Phenomenology: Sterile Neutrino Portal and Gravitational Portal in Extra-Dimensions, Miguel G. Folgado, arXiv:2104.13442, 2021.
[GarciaFolgado:2021fsd]
[4-6]
Sterile Neutrino Searches at the IceCube Neutrino Observatory, Spencer Axani, arXiv:2003.02796, 2020.
[Axani:2019sbk]
[4-7]
Implication of Sterile Fermions in Particle Physics and Cosmology, Michele Lucente, arXiv:1609.07081, 2016.
[Lucente:2015cjm]
[4-8]
Phenomenology of the Sterile Neutrinos, Zahra Tabrizi, arXiv:1605.09680, 2016.
[Tabrizi:2016eeq]
[4-9]
New Developments in Cosmology, Stefano Gariazzo, arXiv:1603.09102, 2016.
[Gariazzo:2016gzm]
[4-10]
New physics with atmospheric Neutrinos, C. A. Arguelles, 2015. PhD thesis, ISBN 978-1-339-06088-0. https://docushare.icecube.wisc.edu/dsweb/Get/Document-75669/tesis.pdf.
[Arguelles:2015a]
[4-11]
Sterile Neutrinos in Cold Climates, Benjamin J. P. Jones, 2015. PhD thesis, FERMILAB-THESIS-2015-17. http://lss.fnal.gov/archive/thesis/2000/fermilab-thesis-2015-17.pdf.
[Jones:2015bya]
[4-12]
Phenomenological Aspects of Four-neutrino Models, A. Kalliomaki, 2003. Academic Dissertation, June 2003. University of Helsinki. http://ethesis.helsinki.fi/julkaisut/mat/fysik/vk/kalliomaki/.
[Kalliomaki-03]

5 - Experiment

[5-1]
Search for a heavy neutrino in tau decays at Belle, D. Liventsev et al. (Belle), arXiv:2212.10095, 2022.
[Belle:2022tfo]
[5-2]
Updated constraints on sterile neutrino mixing in the OPERA experiment using a new $\nu_e$ identification method, N. Agafonova et al., arXiv:2211.04636, 2022.
[OPERA:2022svg]
[5-3]
First constraints on light sterile neutrino oscillations from combined appearance and disappearance searches with the MicroBooNE detector, P. Abratenko et al. (MicroBooNE), Phys.Rev.Lett. 130 (2023) 011801, arXiv:2210.10216.
[MicroBooNE:2022sdp]
[5-4]
Interpreting Reactor Antineutrino Anomalies with STEREO data, H. Almazan et al. (STEREO), Nature 613 (2023) 257-261, arXiv:2210.07664.
[STEREO:2022nzk]
[5-5]
Search for a heavy composite Majorana neutrino in events with dilepton signatures from proton-proton collisions at $\sqrt{s}$ = 13 TeV, CMS, arXiv:2210.03082, 2022.
[CMS:2022cfk]
[5-6]
Search for exotic physics in double-$\beta$ decays with GERDA Phase II, M. Agostini et al. (GERDA), JCAP 12 (2022) 012, arXiv:2209.01671.
[GERDA:2022ffe]
[5-7]
Search for keV-scale Sterile Neutrinos with first KATRIN Data, M. Aker et al., arXiv:2207.06337, 2022.
[KATRIN:2022spi]
[5-8]
Probing heavy Majorana neutrinos and the Weinberg operator through vector boson fusion processes in proton-proton collisions at $\sqrt{s}$ = 13 TeV, CMS, arXiv:2206.08956, 2022.
[CMS:2022rqc]
[5-9]
First Search for Unstable Sterile Neutrinos with the IceCube Neutrino Observatory, R. Abbasi et al. (IceCube), Phys.Rev.Lett. 129 (2022) 151801, arXiv:2204.00612.
[IceCubeCollaboration:2022tso]
[5-10]
Search for type-III seesaw heavy leptons in leptonic final states in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, Georges Aad et al. (ATLAS), Eur.Phys.J.C 82 (2022) 988, arXiv:2202.02039.
[ATLAS:2022yhd]
[5-11]
Improved eV-scale Sterile-Neutrino Constraints from the Second KATRIN Measurement Campaign, M. Aker et al. (KATRIN), Phys.Rev.D 105 (2022) 072004, arXiv:2201.11593.
[KATRIN:2022ith]
[5-12]
A Search for Electron Neutrino Transitions to Sterile States in the BEST Experiment, V.V. Barinov et al. (BEST), Phys.Rev.C 105 (2022) 065502, arXiv:2201.07364.
[Barinov:2022wfh]
[5-13]
Search for long-lived heavy neutral leptons with displaced vertices in proton-proton collisions at $\sqrt{s}$ =13 TeV, Armen Tumasyan et al. (CMS), JHEP 07 (2022) 081, arXiv:2201.05578.
[CMS:2022fut]
[5-14]
MiniBooNE and MicroBooNE Joint Fit to a 3+1 Sterile Neutrino Scenario, A. A. Aguilar-Arevalo et al. (MiniBooNE), Phys.Rev.Lett. 129 (2022) 201801, arXiv:2201.01724.
[MiniBooNE:2022emn]
[5-15]
Search for an anomalous excess of charged-current quasi-elastic $\nu_e$ interactions with the MicroBooNE experiment using Deep-Learning-based reconstruction, P. Abratenko et al. (MicroBooNE), Phys.Rev.D 105 (2022) 112003, arXiv:2110.14080.
[MicroBooNE:2021pvo]
[5-16]
Search for an anomalous excess of charged-current $\nu_e$ interactions without pions in the final state with the MicroBooNE experiment, P. Abratenko et al. (MicroBooNE), Phys.Rev.D 105 (2022) 112004, arXiv:2110.14065.
[TheMicroBooNECollaboration:2021cjf]
[5-17]
Search for an Excess of Electron Neutrino Interactions in MicroBooNE Using Multiple Final State Topologies, P. Abratenko et al. (MicroBooNE), Phys.Rev.Lett. 128 (2022) 241801, arXiv:2110.14054.
[MicroBooNE:2021tya]
[5-18]
Search for an anomalous excess of inclusive charged-current $\nu_e$ interactions in the MicroBooNE experiment using Wire-Cell reconstruction, P. Abratenko et al. (MicroBooNE), Phys.Rev.D 105 (2022) 112005, arXiv:2110.13978.
[MicroBooNE:2021nxr]
[5-19]
Results from the Baksan Experiment on Sterile Transitions (BEST), V.V. Barinov et al. (BEST), Phys.Rev.Lett. 128 (2022) 232501, arXiv:2109.11482.
[Barinov:2021asz]
[5-20]
New constraints on tau-coupled Heavy Neutral Leptons with masses $m_N = 280-970$ MeV, R. Acciarri et al. (ArgoNeuT), Phys.Rev.Lett. 127 (2021) 121801, arXiv:2106.13684.
[ArgoNeuT:2021clc]
[5-21]
Search for active-sterile antineutrino mixing using neutral-current interactions with the NOvA experiment, M. A. Acero et al., Phys.Rev.Lett. 127 (2021) 201801, arXiv:2106.04673.
[NOvA:2021smv]
[5-22]
First Dark Matter Search Results From Coherent CAPTAIN-Mills, A. A. Aguilar-Arevalo et al., Phys.Rev.D 106 (2022) 012001, arXiv:2105.14020.
[CCM:2021leg]
[5-23]
A Search for the 3.5 keV Line from the Milky Way's Dark Matter Halo with HaloSat, E.M. Silich, K. Jahoda, L. Angelini, P. Kaaret, A. Zajczyk, D.M. LaRocca, R. Ringuette, J. Richardson, Astrophys.J. 916 (2021) 2, arXiv:2105.12252.
[Silich:2021sra]
[5-24]
Search for $K^+$ decays to a muon and invisible particles, Eduardo Cortina Gil et al. (NA62), Phys.Lett. B816 (2021) 136259, arXiv:2101.12304.
[NA62:2021bji]
[5-25]
Search for heavy neutral leptons in $W^+\to\mu^{+}\mu^{\pm}\text{jet}$ decays, Roel Aaij et al. (LHCb), Eur. Phys. J. C 81 (2021) 248, arXiv:2011.05263.
[LHCb:2020wxx]
[5-26]
Bound on 3+1 active-sterile neutrino mixing from the first four-week science run of KATRIN, M. Aker et al. (KATRIN), Phys.Rev.Lett. 126 (2021) 091803, arXiv:2011.05087.
[KATRIN:2020dpx]
[5-27]
Search for sterile neutrino oscillations using RENO and NEOS data, Z. Atif et al. (RENO, NEOS), Phys. Rev. D 105 (2022) L111101, arXiv:2011.00896.
[RENO:2020hva]
[5-28]
Limits on the Existence of sub-MeV Sterile Neutrinos from the Decay of $^7$Be in Superconducting Quantum Sensors, S. Friedrich et al., Phys.Rev.Lett. 126 (2021) 021803, arXiv:2010.09603.
[Friedrich:2020nze]
[5-29]
Search for Signatures of Sterile Neutrinos with Double Chooz, T. Abrahao et al. (Double Chooz), Eur.Phys.J.C 81 (2021) 775, arXiv:2009.05515.
[DoubleChooz:2020pnv]
[5-30]
Updated MiniBooNE Neutrino Oscillation Results with Increased Data and New Background Studies, A.A. Aguilar-Arevalo et al. (MiniBooNE), Phys.Rev. D103 (2021) 052002, arXiv:2006.16883.
[MiniBooNE:2020pnu]
[5-31]
Improved Short-Baseline Neutrino Oscillation Search and Energy Spectrum Measurement with the PROSPECT Experiment at HFIR, M. Andriamirado et al. (PROSPECT), Phys.Rev. D103 (2021) 032001, arXiv:2006.11210.
[PROSPECT:2020sxr]
[5-32]
Search for Sub-eV Sterile Neutrino at RENO, J.H. Choi et al. (RENO), Phys.Rev.Lett. 125 (2020) 191801, arXiv:2006.07782.
[RENO:2020uip]
[5-33]
Searching for eV-scale sterile neutrinos with eight years of atmospheric neutrinos at the IceCube neutrino telescope, M. G. Aartsen et al. (IceCube), Phys.Rev. D102 (2020) 052009, arXiv:2005.12943.
[IceCube:2020tka]
[5-34]
An eV-scale sterile neutrino search using eight years of atmospheric muon neutrino data from the IceCube Neutrino Observatory, M. G. Aartsen et al. (IceCube), Phys.Rev.Lett. 125 (2020) 141801, arXiv:2005.12942.
[IceCube:2020phf]
[5-35]
Search for heavy neutral lepton production in $K^+$ decays to positrons, E. Cortina Gil et al. (NA62), Phys.Lett. BB807 (2020) 135599, arXiv:2005.09575.
[NA62:2020mcv]
[5-36]
Preparation of the Neutrino-4 experiment on search for sterile neutrino and the obtained results of measurements, A.P. Serebrov et al., Phys.Rev.D 104 (2021) 032003, arXiv:2005.05301.
[Serebrov:2020kmd]
[5-37]
The analysis of the results of the Neutrino-4 experiment on search for sterile neutrino and comparison with results of other experiments, A.P. Serebrov, R.M. Samoilov, Pisma Zh.Eksp.Teor.Fiz. 112 (2020) 211-225, arXiv:2003.03199.
[Serebrov:2020rhy]
[5-38]
Improved Constraints on Sterile Neutrino Mixing from Disappearance Searches in the MINOS, MINOS+, Daya Bay, and Bugey-3 Experiments, P. Adamson et al. (MINOS+, Daya Bay), Phys. Rev. Lett. 125 (2020) 071801, arXiv:2002.00301.
[MINOS:2020iqj]
[5-39]
Improved Sterile Neutrino Constraints from the STEREO Experiment with 179 Days of Reactor-On Data, Helena Almazan Molina et al. (STEREO), Phys.Rev. D102 (2020) 052002, arXiv:1912.06582.
[STEREO:2019ztb]
[5-40]
Search for heavy neutral leptons decaying into muon-pion pairs in the MicroBooNE detector, P. Abratenko et al., Phys.Rev. D101 (2020) 052001, arXiv:1911.10545.
[MicroBooNE:2019izn]
[5-41]
Search for heavy neutral leptons in decays of $W$ bosons produced in 13 TeV $pp$ collisions using prompt and displaced signatures with the ATLAS detector, Georges Aad et al. (ATLAS), JHEP 1910 (2019) 265, arXiv:1905.09787.
[ATLAS:2019kpx]
[5-42]
Search for a right-handed gauge boson decaying into a high-momentum heavy neutrino and a charged lepton in $pp$ collisions with the ATLAS detector at $\sqrt{s}=13$ TeV, Morad Aaboud et al. (ATLAS), Phys.Lett. B798 (2019) 134942, arXiv:1904.12679.
[ATLAS:2019isd]
[5-43]
Final results on neutrino oscillation parameters from the OPERA experiment in the CNGS beam, N. Agafonova et al. (OPERA), Phys.Rev. D100 (2019) 051301, arXiv:1904.05686.
[OPERA:2019kzo]
[5-44]
Search for Heavy Neutrinos in $\pi\to \mu\nu$ Decay, A. Aguilar-Arevalo et al., Phys.Lett. B798 (2019) 134980, arXiv:1904.03269.
[PIENU:2019usb]
[5-45]
Linear Analysis of Fast-Pairwise Collective Neutrino Oscillations in Core-Collapse Supernovae based on the Results of Boltzmann Simulations, Milad Delfan Azari, Shoichi Yamada, Taiki Morinaga, Wakana Iwakami, Hiroki Nagakura, Kohsuke Sumiyoshi, Phys.Rev. D99 (2019) 103011, arXiv:1902.07467.
[DelfanAzari:2019epo]
[5-46]
Search for light sterile neutrinos with the T2K far detector Super-Kamiokande at a baseline of 295 km, K. Abe et al. (T2K), Phys.Rev. D99 (2019) 071103, arXiv:1902.06529.
[T2K:2019efw]
[5-47]
Measuring the atmospheric neutrino oscillation parameters and constraining the 3+1 neutrino model with ten years of ANTARES data, A. Albert et al. (ANTARES), JHEP 1906 (2019) 113, arXiv:1812.08650.
[ANTARES:2018rtf]
[5-48]
An X-ray spectroscopic search for dark matter and unidentified line signatures in the Perseus cluster with Hitomi, Takayuki Tamura et al., Publ.Astron.Soc.Jap. 71 (2019) Publications of the Astronomical Society of Japan, Volume 71, Issue 3, June 2019, 50, https://doi.org/10.1093/pasj/psz023, arXiv:1811.05767.
[Tamura:2018scp]
[5-49]
Search for heavy Majorana or Dirac neutrinos and right-handed $W$ gauge bosons in final states with two charged leptons and two jets at $\sqrt{s}$ = 13 TeV with the ATLAS detector, Morad Aaboud et al. (ATLAS), JHEP 1901 (2019) 016, arXiv:1809.11105.
[ATLAS:2018dcj]
[5-50]
The first observation of effect of oscillation in Neutrino-4 experiment on search for sterile neutrino, A.P. Serebrov et al. (Neutrino-4), Pisma Zh.Eksp.Teor.Fiz. 109 (2019) 209-218, arXiv:1809.10561.
[NEUTRINO-4:2018huq]
[5-51]
First search for short-baseline neutrino oscillations at HFIR with PROSPECT, J. Ashenfelter et al. (PROSPECT), Phys.Rev.Lett. 121 (2018) 251802, arXiv:1806.02784.
[PROSPECT:2018dtt]
[5-52]
Sterile neutrino exclusion from the STEREO experiment with 66 days of reactor-on data, H. Almazan et al. (STEREO), Phys.Rev.Lett. 121 (2018) 161801, arXiv:1806.02096.
[STEREO:2018rfh]
[5-53]
Fuel-composition dependent reactor antineutrino yield and spectrum at RENO, G. Bak et al. (RENO), Phys.Rev.Lett. 122 (2019) 232501, arXiv:1806.00574.
[RENO:2018pwo]
[5-54]
Observation of a Significant Excess of Electron-Like Events in the MiniBooNE Short-Baseline Neutrino Experiment, A. A. Aguilar-Arevalo et al. (MiniBooNE), Phys.Rev.Lett. 121 (2018) 221801, arXiv:1805.12028.
[MiniBooNE:2018esg]
[5-55]
Search for sterile neutrinos at the DANSS experiment, I. Alekseev et al. (DANSS), Phys.Lett. B787 (2018) 56-63, arXiv:1804.04046.
[DANSS:2018fnn]
[5-56]
Final results of the search for $\nu_\mu \to \nu_{e}$ oscillations with the OPERA detector in the CNGS beam, N. Agafonova et al. (OPERA), JHEP 06 (2018) 151, arXiv:1803.11400.
[OPERA:2018ksq]
[5-57]
Search for heavy neutral leptons in events with three charged leptons in proton-proton collisions at $\sqrt{s} =$ 13 TeV, Albert M Sirunyan et al. (CMS), Phys. Rev. Lett. 120 (2018) 221801, arXiv:1802.02965.
[CMS:2018iaf]
[5-58]
Improved Search for Heavy Neutrinos in the Decay $\pi\rightarrow e\nu$, A. Aguilar-Arevalo et al., Phys.Rev. D97 (2018) 072012, arXiv:1712.03275.
[PIENU:2017wbj]
[5-59]
Search for sterile neutrinos in MINOS and MINOS+ using a two-detector fit, P. Adamson et al. (MINOS), Phys.Rev.Lett. 122 (2019) 091803, arXiv:1710.06488.
[MINOS:2017cae]
[5-60]
Search for heavy neutrino in $K^{+} \to \mu^{+} \nu_{H}$ decay, A.S. Sadovsky et al., Eur.Phys.J. C78 (2018) 92, arXiv:1709.01473.
[OKA:2017evc]
[5-61]
Experiment Neutrino-4 on search for sterile neutrino at SM-3 reactor, A. P. Serebrov et al. (Neutrino-4), arXiv:1708.00421, 2017.
[Serebrov:2017wml]
[5-62]
Search for active-sterile neutrino mixing using neutral-current interactions in NOvA, P. Adamson et al. (NOvA), Phys.Rev. D96 (2017) 072006, arXiv:1706.04592.
[NOvA:2017geg]
[5-63]
Search for Heavy Neutrinos in $K^+ \rightarrow \mu^+ \nu_{\mu}$ Decays, Cristina Lazzeroni et al. (NA62), Phys.Lett. B772 (2017) 712-718, arXiv:1705.07510.
[NA62:2017ynf]
[5-64]
Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay, F. P. An et al. (Daya Bay), Phys.Rev.Lett. 118 (2017) 251801, arXiv:1704.01082.
[DayaBay:2017jkb]
[5-65]
First measeurements in search for keV-sterile neutrino in tritium beta-decay by Troitsk nu-mass experiment, J.N. Abdurashitov et al., Pisma Zh.Eksp.Teor.Fiz. 105 (2017) 723-724, arXiv:1703.10779.
[Abdurashitov:2017kka]
[5-66]
Search for sterile neutrino mixing using three years of IceCube DeepCore data, M. G. Aartsen et al. (IceCube), Phys.Rev. D95 (2017) 112002, arXiv:1702.05160.
[IceCube:2017ivd]
[5-67]
Experiment NEUTRINO-4 Search for Sterile Neutrino, A. P. Serebrov et al. (Neutrino-4), PoS INPC2016 (2017) 255, arXiv:1702.00941.
[Serebrov:2017nxa]
[5-68]
Searching for the 3.5 keV Line in the Deep Fields with Chandra: the 10 Ms observations, Nico Cappelluti, Esra Bulbul, Adam Foster, Priyamvada Natarajan, Megan C. Urry, Mark W. Bautz, Francesca Civano, Eric Miller, Randall K. Smith, Astrophys.J. 854 (2018) 179, arXiv:1701.07932.
[Cappelluti:2017ywp]
[5-69]
Search for a heavy right-handed W boson and a heavy neutrino in events with two same-flavor leptons and two jets at sqrt(s)=13 TeV, CMS Collaboration, 2017. CMS-PAS-EXO-17-011.
[CMS:2017ilm]
[5-70]
Search for heavy neutrinos and $\mathrm{W}$ bosons with right handed couplings in proton-proton collisions at $\sqrt{s} = 13~\mathrm{TeV}$, CMS Collaboration, 2017. CMS-PAS-EXO-16-045.
[CMS:2017uoz]
[5-71]
Search for sterile neutrinos in the neutrino-4 experiment, A. P. Serebrov et al. (Neutrino-4), JETP Lett. 105 (2017) 347-351. [Zh. Eksp. Teor. Fiz.105,329(2017)].
[Serebrov:2017bwe]
[5-72]
A sterile neutrino search at NEOS Experiment, Y.J. Ko et al. (NEOS), Phys.Rev.Lett. 118 (2017) 121802, arXiv:1610.05134.
[NEOS:2016wee]
[5-73]
(Almost) Closing the Sterile Neutrino Dark Matter Window with NuSTAR, Kerstin Perez et al., Phys.Rev. D95 (2017) 123002, arXiv:1609.00667.
[Perez:2016tcq]
[5-74]
Decaying dark matter search with NuSTAR deep sky observations, Andrii Neronov, Denys Malyshev, Dominique Eckert, Phys. Rev. D94 (2016) 123504, arXiv:1607.07328.
[Neronov:2016wdd]
[5-75]
Improved Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay, F.P. An et al. (Daya Bay), Chin.Phys. C41 (2017) 013002, arXiv:1607.05378.
[DayaBay:2016ssb]
[5-76]
Limits on Active to Sterile Neutrino Oscillations from Disappearance Searches in the MINOS, Daya Bay, and Bugey-3 Experiments, P. Adamson et al. (MINOS, Daya Bay), Phys.Rev.Lett. 117 (2016) 151801, arXiv:1607.01177.
[DayaBay:2016lkk]
[5-77]
A search for sterile neutrinos mixing with muon neutrinos in MINOS, P. Adamson et al. (MINOS), Phys. Rev. Lett. 117 (2016) 151803, arXiv:1607.01176.
[MINOS:2016viw]
[5-78]
Improved Search for a Light Sterile Neutrino with the Full Configuration of the Daya Bay Experiment, F.P. An et al. (Daya Bay), Phys. Rev. Lett. 117 (2016) 151802, arXiv:1607.01174.
[DayaBay:2016qvc]
[5-79]
7.1 keV sterile neutrino constraints from X-ray observations of 33 clusters of galaxies with Chandra ACIS, F. Hofmann, J. S. Sanders, K. Nandra, N. Clerc, M. Gaspari, Astron.Astrophys. 592 (2016) A112, arXiv:1606.04091.
[Hofmann:2016urz]
[5-80]
Searching for the 3.5 keV Line in the Stacked Suzaku Observations of Galaxy Clusters, Esra Bulbul et al., Astrophys.J. 831 (2016) 55, arXiv:1605.02034.
[Bulbul:2016yop]
[5-81]
Searches for Sterile Neutrinos with the IceCube Detector, M. G. Aartsen et al. (IceCube), Phys. Rev. Lett. 117 (2016) 071801, arXiv:1605.01990.
[IceCube:2016rnb]
[5-82]
Online Monitoring of the Osiris Reactor with the Nucifer Neutrino Detector, G. Boireau et al. (NUCIFER), Phys. Rev. D93 (2016) 112006, arXiv:1509.05610.
[NUCIFER:2015hdd]
[5-83]
Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay, F. P. An et al. (Daya Bay), Phys. Rev. Lett. 116 (2016) 061801, arXiv:1508.04233.
[DayaBay:2015lja]
[5-84]
Dark matter line emission constraints from NuSTAR observations of the Bullet Cluster, S. Riemer-Sorensen et al., Astrophys. J. 810 (2015) 48, arXiv:1507.01378.
[Riemer-Sorensen:2015kqa]
[5-85]
Search for heavy Majorana neutrinos with the ATLAS detector in pp collisions at $\sqrt{s} = 8$ TeV, (ATLAS), JHEP 07 (2015) 162, arXiv:1506.06020.
[ATLAS:2015gtp]
[5-86]
Searching for keV Sterile Neutrino Dark Matter with X-ray Microcalorimeter Sounding Rockets, Enectali Figueroa-Feliciano et al., Astrophys. J. 814 (2015) 82, arXiv:1506.05519.
[XQC:2015mwy]
[5-87]
The role of eROSITA all-sky survey in searches for sterile neutrino dark matter, Fabio Zandanel, Christoph Weniger, Shin'ichiro Ando, JCAP 1509 (2015) 060, arXiv:1505.07829.
[Zandanel:2015xca]
[5-88]
Improved Limits on Sterile Neutrino Dark Matter using Full-Sky Fermi-GBM Data, Kenny C. Y. Ng, Shunsaku Horiuchi, Jennifer M. Gaskins, Miles Smith, Robert Preece, Phys. Rev. D92 (2015) 043503, arXiv:1504.04027.
[Ng:2015gfa]
[5-89]
A Search for a keV Signature of Radiatively Decaying Dark Matter with Suzaku XIS Observations of the X-ray Diffuse Background, Norio Sekiya, Noriko Y. Yamasaki, Kazuhisa Mitsuda, Publ. Astron. Soc. Jap. (2015), arXiv:1504.02826.
[Sekiya:2015jsa]
[5-90]
Limits on muon-neutrino to tau-neutrino oscillations induced by a sterile neutrino state obtained by OPERA at the CNGS beam, N. Agafonova et al. (OPERA), JHEP 1506 (2015) 069, arXiv:1503.01876.
[OPERA:2015zci]
[5-91]
Some conclusive considerations on the comparison of the ICARUS $\nu_\mu \to \nu_e$ oscillation search with the MiniBooNE low-energy event excess, M. Antonello et al., arXiv:1502.04833, 2015.
[Antonello:2015jxa]
[5-92]
Search for heavy Majorana neutrinos in $\mu^{\pm} \mu^{\pm} + \text{jets}$ events in proton-proton collisions at $\sqrt{s} = 8 \, \text{TeV}$, Vardan Khachatryan et al. (CMS), Phys. Lett. B748 (2015) 144-166, arXiv:1501.05566.
[CMS:2015qur]
[5-93]
An X-ray Spectroscopic Search for Dark Matter in the Perseus Cluster with Suzaku, Takayuki Tamura, Ryo Iizuka, Yoshitomo Maeda, Kazuhisa Mitsuda, Noriko Y. Yamasaki, Publ.Astron.Soc.Jap. 67 (2015) 23, arXiv:1412.1869.
[Tamura:2014mta]
[5-94]
Search for heavy neutrinos in $K^+\to\mu^+\nu_H$ decays, A.V. Artamonov et al. (E949), Phys. Rev. D91 (2015) 052001, arXiv:1411.3963.
[E949:2014gsn]
[5-95]
Search for short baseline $\nu_e$ disappearance with the T2K near detector, K. Abe et al. (T2K), Phys. Rev. D91 (2015) 051102, arXiv:1410.8811.
[T2K:2014xvp]
[5-96]
Limits on Sterile Neutrino Mixing using Atmospheric Neutrinos in Super-Kamiokande, K. Abe et al. (Super-Kamiokande), Phys. Rev. D91 (2015) 052019, arXiv:1410.2008.
[Super-Kamiokande:2014ndf]
[5-97]
Search for a Light Sterile Neutrino at Daya Bay, F. P. An et al. (DAYA-BAY), Phys. Rev. Lett. 113 (2014) 141802, arXiv:1407.7259.
[DayaBay:2014fct]
[5-98]
Using L/E Oscillation Probability Distributions, A. A. Aguilar-Arevalo et al. (MiniBooNE), arXiv:1407.3304, 2014.
[MiniBooNE:2014xrx]
[5-99]
An unidentified line in X-ray spectra of the Andromeda galaxy and Perseus galaxy cluster, Alexey Boyarsky, Oleg Ruchayskiy, Dmytro Iakubovskyi, Jeroen Franse, Phys. Rev. Lett. 113 (2014) 251301, arXiv:1402.4119.
[Boyarsky:2014jta]
[5-100]
Detection of An Unidentified Emission Line in the Stacked X-ray spectrum of Galaxy Clusters, Esra Bulbul et al., Astrophys.J. 789 (2014) 13, arXiv:1402.2301.
[Bulbul:2014sua]
[5-101]
New limits on heavy sterile neutrino mixing in ${^{8}\rm{B}}$-decay obtained with the Borexino detector, G. Bellini et al. (Borexino), Phys. Rev. D 88, 072010 (2013) 072010, arXiv:1311.5347.
[Borexino:2013bot]
[5-102]
Precision measures of the primordial abundance of deuterium, Ryan Cooke, Max Pettini, Regina A. Jorgenson, Michael T. Murphy, Charles C. Steidel, Astrophys. J. 781 (2014) 31, arXiv:1308.3240.
[Cooke:2013cba]
[5-103]
A search for an additional neutrino mass eigenstate in 2 to 100 eV region from 'Troitsk nu-mass' data - detailed analysis, A.I. Belesev et al., J. Phys. G41 (2014) 015001, arXiv:1307.5687.
[Belesev:2013cba]
[5-104]
Search for anomalies in the $\nu_e$ appearance from a $\nu_\mu$ beam, M. Antonello et al. (ICARUS), Eur.Phys.J. C73 (2013) 2599, arXiv:1307.4699.
[ICARUS:2013cwr]
[5-105]
Search for $\nu_\mu\to\nu_e$ oscillations with the OPERA experiment in the CNGS beam, N. Agafonova et al. (OPERA), JHEP 1307 (2013) 004, arXiv:1303.3953.
[OPERA:2013wvp]
[5-106]
Improved Search for $\bar\nu_\mu \to \bar\nu_e$ Oscillations in the MiniBooNE Experiment, A.A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Rev. Lett. 110 (2013) 161801, arXiv:1303.2588.
[MiniBooNE:2013uba]
[5-107]
Search for heavy neutrinos at Belle, D. Liventsev et al. (Belle), Phys. Rev. D87 (2013) 071102, arXiv:1301.1105.
[Belle:2013ytx]
[5-108]
An upper limit on additional neutrino mass eigenstate in 2 to 100 eV region from 'Troitsk nu-mass' data, A.I. Belesev, A.I. Berlev, E.V. Geraskin, A.A. Golubev, N.A. Likhovid et al., JETP Lett. 97 (2013) 67-69, arXiv:1211.7193.
[Belesev:2012hx]
[5-109]
Limit on sterile neutrino contribution from the Mainz Neutrino Mass Experiment, Christine Kraus, Andrej Singer, Kathrin Valerius, Christian Weinheimer, Eur.Phys.J. C73 (2013) 2323, arXiv:1210.4194.
[Kraus:2012he]
[5-110]
Experimental search for the LSND anomaly with the ICARUS detector in the CNGS neutrino beam, M Antonello, B Baibussinov, P Benetti, E Calligarich, N Canci et al. (ICARUS), Eur.Phys.J. C73 (2013) 2345, arXiv:1209.0122.
[Antonello:2012pq]
[5-111]
Dual baseline search for muon antineutrino disappearance at $0.1 \text{eV}^2 < \Delta{m}^2 < 100 \text{eV}^2$, G. Cheng et al. (SciBooNE-MiniBooNE), Phys. Rev. D86 (2012) 052009, arXiv:1208.0322.
[MiniBooNE:2012meu]
[5-112]
A Combined $\nu_\mu \to \nu_e$ and $\bar\nu_\mu \to \bar\nu_e$ Oscillation Analysis of the MiniBooNE Excesses, A.A. Aguilar-Arevalo et al. (MiniBooNE), arXiv:1207.4809, 2012.
[MiniBooNE:2012maf]
[5-113]
Dark Matter Search Using XMM-Newton Observations of Willman 1, Michael Loewenstein, Alexander Kusenko, Astrophys. J. 751 (2012) 82, arXiv:1203.5229.
[Loewenstein:2012px]
[5-114]
Search for Heavy Neutrino in K- > mu nu_h(nu_h- > nu gamma) Decay at ISTRA+ Setup, V. A. Duk et al. (ISTRA+), Phys. Lett. B710 (2012) 307-317, arXiv:1110.1610.
[ISTRA:2011bgc]
[5-115]
Test of Lorentz and CPT violation with Short Baseline Neutrino Oscillation Excesses, A. A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Lett. B718 (2013) 1303-1308, arXiv:1109.3480.
[MiniBooNE:2011pix]
[5-116]
Dual baseline search for muon neutrino disappearance at $0.5 < \Delta{m}^2 < 40 \, \text{eV}^2$, K. B. M. Mahn et al. (SciBooNE-MiniBooNE), Phys. Rev. D85 (2012) 032007, arXiv:1106.5685.
[SciBooNE:2011qyf]
[5-117]
Active to sterile neutrino mixing limits from neutral-current interactions in MINOS, P. Adamson et al. (MINOS), Phys. Rev. Lett. 107 (2011) 011802, arXiv:1104.3922.
[MINOS:2011ysd]
[5-118]
Swift observation of Segue 1: constraints on sterile neutrino parameters in the darkest galaxy, N. Mirabal, Mon.Not.Roy.Astron.Soc. 409 (2010) 128, arXiv:1010.4706.
[Mirabal:2010an]
[5-119]
Observed Event Excess in the MiniBooNE Search for $\bar\nu_{\mu} \rightarrow \bar\nu_e$ Oscillations, A. A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Rev. Lett. 105 (2010) 181801, arXiv:1007.1150.
[MiniBooNE:2010idf]
[5-120]
The primordial abundance of 4He: evidence for non-standard big bang nucleosynthesis, Y. I. Izotov, T. X. Thuan, Astrophys. J. 710 (2010) L67-L71, arXiv:1001.4440.
[Izotov:2010ca]
[5-121]
Reanalysis of the GALLEX solar neutrino flux and source experiments, F. Kaether, W. Hampel, G. Heusser, J. Kiko, T. Kirsten, Phys. Lett. B685 (2010) 47-54, arXiv:1001.2731.
[Kaether:2010ag]
[5-122]
Search for sterile neutrino mixing in the MINOS long- baseline experiment, P. Adamson et al. (MINOS), Phys. Rev. D81 (2010) 052004, arXiv:1001.0336.
[MINOS:2010fgd]
[5-123]
Measurement of the solar neutrino capture rate with Gallium metal, Part III, J. N. Abdurashitov et al. (SAGE), Phys. Rev. C80 (2009) 015807, arXiv:0901.2200.
[SAGE:2009eeu]
[5-124]
A Search for Electron Neutrino Appearance at the $ \Delta{m}^{2} \sim 1 \, \text{eV}^{2} $ Scale, A. A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Rev. Lett. 98 (2007) 231801, arXiv:0704.1500.
[MiniBooNE:2007uho]
[5-125]
Search for the light dark matter with an X-ray spectrometer, Alexey Boyarsky, Jan Willem den Herder, Andrey Neronov, Oleg Ruchayskiy, Astropart. Phys. 28 (2007) 303-311, arXiv:astro-ph/0612219.
[Boyarsky:2006hr]
[5-126]
Measurement of the response of a Ga solar neutrino experiment to neutrinos from an Ar-37 source, J. N. Abdurashitov et al. (SAGE), Phys. Rev. C73 (2006) 045805, arXiv:nucl-ex/0512041.
From the abstract: The measured production rate was $ 11.0 {}^{+1.0}_{-0.9} \text{(stat)} \pm 0.6 \text{(syst)} $ atoms of 71Ge/d, which is $ 0.79 {}^{+0.09}_{-0.10} $ of the theoretically calculated production rate.
[Abdurashitov:2005tb]
[5-127]
New experimental limits on heavy neutrino mixing in B-8 decay obtained with the Borexino Counting Test Facility, H. O. Back et al., JETP Lett. 78 (2003) 261-266.
[Back:2003ae]
[5-128]
Evidence for neutrino oscillations from the observation of $\bar\nu_e$ appearance in a $\bar\nu_\mu$ beam, A. Aguilar et al. (LSND), Phys. Rev. D64 (2001) 112007, arXiv:hep-ex/0104049.
[LSND:2001aii]
[5-129]
Limits on the existence of heavy neutrinos in the range 50- eV - 1000-eV from the study of the Re-187 beta decay, M. Galeazzi, F. Fontanelli, F. Gatti, S. Vitale, Phys. Rev. Lett. 86 (2001) 1978-1981.
[Galeazzi:2001py]
[5-130]
A high statistics search for $\nu_e (\bar\nu_e) \to \nu_\tau (\bar\nu_\tau)$ oscillations, D. Naples et al. (CCFR/NuTeV), Phys. Rev. D59 (1999) 031101, arXiv:hep-ex/9809023.
[CCFRNuTeV:1998gjj]
[5-131]
Measurement of the response of the Russian-American gallium experiment to neutrinos from a Cr-51 source, J. N. Abdurashitov et al. (SAGE), Phys. Rev. C59 (1999) 2246-2263, arXiv:hep-ph/9803418.
From the abstract: The ratio of the measured rate of production of 71Ge to the rate anticipated from the source activity was $ 0.95 {}^{+0.11}_{-0.10} \text{(stat)} {}^{+0.06}_{-0.05} \text{(syst)} {}^{+0.035}_{-0.027} \text{(theory)} $.
[SAGE:1998fvr]
[5-132]
Final results of the Cr-51 neutrino source experiments in GALLEX, W. Hampel et al. (GALLEX), Phys. Lett. B420 (1998) 114-126.
From the abstract: The ratio $R$ of the neutrino source strength derived from the measured rate of 71Ge production, divided by the directly determined source strength is $R = 1.01 {}^{+0.12}_{-0.11}$ for the first source and $R = 0.84 {}^{+0.12}_{-0.11}$ for the second one. The combined value of $R$ for the two source experiments is $R = 0.93 \pm 0.08$.
From the article: Update limits on short-baseline $\nu_e$ disappearance. See also [Go].
Comment: In reality, limits are relaxed in the high $\Delta m^2$ region, due to the result of the second source run, to the value $ \sin^2 2 \theta < 0.4 $ at 90\% CL. [M.L.].
[GALLEX:1997lja]
[5-133]
Evidence for $\nu_\mu \to \nu_e$ neutrino oscillations from LSND, C. Athanassopoulos et al. (LSND), Phys. Rev. Lett. 81 (1998) 1774-1777, arXiv:nucl-ex/9709006.
[LSND:1997vun]
[5-134]
Evidence for $\nu_\mu \to \nu_e$ oscillations from pion decay in flight neutrinos, C. Athanassopoulos et al. (LSND), Phys. Rev. C58 (1998) 2489-2511, arXiv:nucl-ex/9706006.
[LSND:1997vqj]
[5-135]
Evidence for $\bar\nu_\mu \to \bar\nu_e$ oscillation from the LSND experiment at the Los Alamos Meson Physics Facility, C. Athanassopoulos et al. (LSND), Phys. Rev. Lett. 77 (1996) 3082-3085, arXiv:nucl-ex/9605003.
[LSND:1996ubh]
[5-136]
Evidence for neutrino oscillations from muon decay at rest, C. Athanassopoulos et al. (LSND), Phys. Rev. C54 (1996) 2685-2708, arXiv:nucl-ex/9605001.
[LSND:1996vlr]
[5-137]
Candidate events in a search for $\bar\nu_\mu \to \bar\nu_e$ oscillations, C. Athanassopoulos et al. (LSND), Phys. Rev. Lett. 75 (1995) 2650-2653, arXiv:nucl-ex/9504002.
[LSND:1995lje]

6 - Experiment - Talks

[6-1]
New results from the DANSS experiment, Mikhail Danilov, PoS ICHEP2022 () 616, arXiv:2211.01208. The International Conference on High Energy Physics (ICHEP 2022), 6-13 July 2022, Bologna, Italy.
[Danilov:2022bss]
[6-2]
New results from the DANSS experiment, Mikhail Danilov, Nataliya Skrobova (DANSS), PoS EPS-HEP2021 (2022) 241, arXiv:2112.13413. The European Physical Society Conference on High Energy Physics (EPS-HEP2021).
[Danilov:2021oop]
[6-3]
New results from the DANSS experiment, Mikhail Danilov, PoS ICHEP2020 (2021) 121, arXiv:2012.10255. 40th International Conference on High Energy physics (ICHEP2020), July 28 - August 6, 2020, Prague, Czech Republic.
[Danilov:2020ucs]
[6-4]
MiniBooNE Neutrino Oscillation Search Results and Predicted Background Events, Teppei Katori (MiniBooNE), arXiv:2010.06015, 2020. 3rd World Summit on Exploring the Dark Side of the Universe, Guadeloupe Islands, March 9-13 2020.
[Katori:2020tvv]
[6-5]
Search for eV neutrino sterile: Status of STEREO experiment, Ilham El Atmani, arXiv:2002.12701, 2020. INPC 2019 Conference.
[ElAtmani:2020xgb]
[6-6]
Recent results of the DANSS experiment, Mikhail Danilov (DANSS), PoS EPS-HEP2019 (2020) 401, arXiv:1911.10140. European Physical Society Conference on High Energy Physics, EPS-HEP2019, 10-17 July 2019, Ghent, Belgium.
[Danilov:2019aef]
[6-7]
A Search for Sterile Neutrinos with PROSPECT, Olga Kyzylova (PROSPECT), arXiv:1910.06314, 2019. 2019 Meeting of the Division of Particles and Fields of the American Physical Society (DPF2019), July 29 - August 2, 2019, Northeastern University, Boston.
[Kyzylova:2019ogb]
[6-8]
Search for eV Sterile Neutrinos - The STEREO Experiment [Blois 2019], Stefan Schoppmann, arXiv:1909.01017, 2019. Rencontres de Blois 2019.
[Schoppmann:2019sys]
[6-9]
Results from the STEREO Experiment with 119 days of Reactor-on Data, Laura Bernard (STEREO), arXiv:1905.11896, 2019. 2019 EW/QCD/Gravitation session of the 54th Rencontres de Moriond.
[Bernard:2019jli]
[6-10]
Search for heavy neutrinos at CERN SPS, Venelin Kozhuharov, arXiv:1904.09124, 2019. NuPhys2018 (London, 19-21 December 2018).
[Kozhuharov:2019ied]
[6-11]
IceCube Sterile Neutrino Searches, B.J.P. Jones (IceCube), EPJ Web Conf. 207 (2019) 04005, arXiv:1902.06185. VLVNT2018.
[Jones:2019nix]
[6-12]
Recent results of the DANSS experiment, Mikhail Danilov, arXiv:1811.07354, 2018. La Thuile 2018.
[Danilov:2018kjo]
[6-13]
Improved Search for Heavy Neutrinos and a Test of Lepton Universality in the Decay $\pi^+ \rightarrow \mbox{e}^+ \nu$, R.E. Mischke et al., arXiv:1809.10314, 2018. CIPANP2018.
[PiENu:2018lsf]
[6-14]
Heavy neutrino searches and NA62 status, Nicolas Lurkin, arXiv:1808.00827, 2018. 52nd Rencontres de Moriond (EW session), La Thuile, 18-25 March 2017.
[NA62:2017xeg]
[6-15]
Search for heavy neutral leptons with the CMS detector, Willem Verbeke, arXiv:1805.05084, 2018. 53rd Rencontres de Moriond 2018: Electroweak Interactions and Unified Theories.
[Verbeke:2018dyv]
[6-16]
Sterile Neutrino Search in the Neutrino-4 Experiment at the SM-3 Reactor, A. P. Serebrov et al., Phys. Part. Nucl. 49 (2018) 701-708. International Session-Conference 'Physics of Fundamental Interactions', Nalchik, Russia, June 6-8, 2017.
[Serebrov:2018oyd]
[6-17]
Sterile neutrino search in the NOvA Far Detector, Sijith Edayath et al., arXiv:1710.01280, 2017. APS Division of Particles and Fields Meeting (DPF 2017), July 31-August 4, 2017, Fermilab.
[Edayath:2017cpi]
[6-18]
NOvA Short-Baseline Tau Neutrino Appearance Search, Rijeesh Keloth et al., arXiv:1710.00295, 2017. APS Division of Particles and Fields Meeting (DPF 2017), July 31-August 4, 2017, Fermilab.
[Keloth:2017vdp]
[6-19]
Atmospheric neutrinos and new physics, Nuria Rius (IceCube), arXiv:1705.09140, 2017. Talk presented at NuPhys2016 (London, 12-14 December 2016).
[Rius:2017hsc]
[6-20]
New Constraints on Sterile Neutrinos with MINOS/MINOS+ and Daya Bay, Thomas Joseph Carroll, arXiv:1705.05064, 2017. 52nd Rencontres de Moriond EW 2017.
[Carroll:2017xps]
[6-21]
Recent results from NA48/2 and NA62 experiments at CERN, Nicolas Lurkin, PoS HQL2016 (2017) 033, arXiv:1701.06979. HQL 2016, Blacksburg, 22-27 May 2016.
[Lurkin:2016vlh]
[6-22]
Search for sterile neutrinos at the DANSS experiment, M. Danilov, 2017. Solvay Workshop 'Beyond the Standard model with Neutrinos and Nuclear Physics', 29 November - 1 December 2017, Brussels, Belgium. http://www.solvayinstitutes.be/event/workshop/beyond_2018/slides/Danilov.pdf.
[DANSS-171201]
[6-23]
Latest Results from MINOS and MINOS+, Simon De Rijck (MINOS+, MINOS), J. Phys. Conf. Ser. 873 (2017) 012032.
[DeRijck:2017ynh]
[6-24]
Current Results of NEUTRINO-4 Experiment, A. Serebrov et al., J. Phys. Conf. Ser. 934 (2017) 012010.
[Serebrov:2017prl]
[6-25]
Status of Experiment NEUTRINO-4 Search for Sterile Neutrino, A. Serebrov et al. (Neutrino-4), J.Phys.Conf.Ser. 798 (2017) 012116, arXiv:1611.05245.
[Serebrov:2016bch]
[6-26]
Kaon experiments at CERN: recent results and prospects, Evgueni Goudzovski, EPJ Web Conf. 130 (2016) 01019, arXiv:1609.02952. MESON 2016 (Krakow, 2-6 June 2016).
[Goudzovski:2016etd]
[6-27]
Results from the OPERA experiment, Donato Di Ferdinando (OPERA), arXiv:1608.01595, 2016. NuPhys2015 (London, 16-18 December 2015).
[DiFerdinando:2016wbk]
[6-28]
Results and Prospects from the Daya Bay Reactor Neutrino Experiment, A. Higuera (Daya Bay), arXiv:1607.07324, 2016. Seventh Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, June 20-24, 2016.
[Higuera:2016vcm]
[6-29]
Neutrino-4 experiment on search for sterile neutrino with multi-section model of detector, A. P. Serebrov et al. (Neutrino-4), J.Phys.Conf.Ser. 888 (2017) 012089, arXiv:1605.05909.
[Serebrov:2016wzv]
[6-30]
Searching for Sterile Neutrinos with MINOS, Ashley Timmons (MINOS), arXiv:1605.04544, 2016. 51st Rencontres de Moriond EW 2016.
[Timmons:2016hvv]
[6-31]
Search for Sterile Neutrino at Short Baseline using a Nuclear Reactor, Yoomin Oh et al., 2016. ICHEP 2016, 38th International Conference on High Energy Physics, 3-10 August 2016, Chicago, IL, USA. http://indico.cern.ch/event/432527/contributions/1072452/attachments/1320616/1982385/yoomin_neos_v2.pdf.
[NEOS-ICHEP2016]
[6-32]
First Results from Searches for Active to Sterile Neutrino Oscillations with NOvA, Gavin Davies, 2016. Fermilab Joint Experimental-Theoretical Physics Seminar, 29 July 2016. http://theory.fnal.gov/jetp/talks/jetp_gsdavies_nova-2.pdf.
[NOVA-Fermilab-160729]
[6-33]
Search for exotic transitions of muon neutrinos to electron neutrinos with MINOS, Marianna Gabrielyan (MINOS), arXiv:1511.00179, 2015. DPF 2015 Meeting of the American Physical Society Division of Particles and Fields, Ann Arbor, Michigan, August 4-8, 2015.
[Gabrielyan:2015hnc]
[6-34]
Search for Sterile Neutrinos at OPERA and other Long-Baseline Experiments, Luca Stanco, PoS EPS-HEP2015 (2016) 057, arXiv:1510.04151. EPS2015, Vienna 22-29 July 2015.
[Stanco:2015sua]
[6-35]
OPERA neutrino oscillation search: status and perspectives, Giuliana Galati (OPERA), arXiv:1510.00343, 2015. CIPANP2015.
[Galati:2015ona]
[6-36]
Searches for sterile neutrinos using the T2K off-axis near detector, Debra Dewhurst (T2K), arXiv:1504.08237, 2015. Prospects in Neutrino Physics Conference, 15 - 17 December, 2014, Queen Mary University of London, UK.
[Dewhurst:2015aba]
[6-37]
Searching for Sterile Neutrinos at MINOS, Ashley Timmons (MINOS), arXiv:1504.04046, 2015. NuPhys2014.
[Timmons:2015lga]
[6-38]
Improved limits on sterile neutrino dark matter from full-sky observations by the Fermi-GBM, Shunsaku Horiuchi, Kenny C. Y. Ng, Jennifer M. Gaskins, Miles Smith, Robert Preece, arXiv:1502.03399, 2015. 2014 Fermi Symposium.
[Horiuchi:2015pda]
[6-39]
Results from Daya Bay, Chao Zhang, 2014. Neutrino 2014, XXVI International Conference on Neutrino Physics and Astrophysics, 2-7 June 2014, Boston, Massachusetts, USA. https://indico.fnal.gov/getFile.py/access?contribId=256&sessionId=15&resId=0&materialId=slides&confId=8022.
[DayaBay-Nu2014]
[6-40]
MiniBooNE Oscillation Results 2011, Zelimir Djurcic (MiniBooNE), J. Phys. Conf. Ser. 408 (2013) 012027, arXiv:1201.1519. NuFact 2011.
[Djurcic:2012np]
[6-41]
Updated Search for Electron Antineutrino Appearance at MiniBooNE, E. D. Zimmerman (MiniBooNE), AIP Conf. Proc. 1441 (2012) 458-460, arXiv:1111.1375. PANIC 2011.
[Zimmerman:2011hy]
[6-42]
MINOS Search for Sterile Neutrinos, Alexandre Sousa (MINOS), J. Phys. Conf. Ser. 408 (2013) 012026, arXiv:1110.3455. NuFact 2011.
[Sousa:2011rw]
[6-43]
MiniBooNE Results, Zelimir Djurcic (MiniBooNE), 2011. NUFACT 2011. http://indico.cern.ch/contributionDisplay.py?sessionId=1&contribId=134&confId=114816.
[Djurcic-NUFACT2011]
[6-44]
Short-baseline neutrino physics at MiniBooNE, E.D. Zimmerman (MiniBooNE), 2011. PANIC 2011. http://web.mit.edu/panic11/talks/monday/PARALLEL-1E/3-1410/zimmerman/panic11-edza-public.pdf.
[Zimmerman-PANIC2011]
[6-45]
MiniBooNE $\nu$ Oscillation Results, W.C. Louis (MiniBooNE), 2010. Aspen Winter Conference, January 22, 2010. http://www-boone.fnal.gov/slides-talks/conf-talk/louis/aspen2010.pdf.
[Louis-Aspen-2010]
[6-46]
Analysis of Neutral Current Interactions in MINOS: A Search for Sterile Neutrinos, Alexandre Sousa (MINOS), arXiv:0910.1369, 2009. DPF-2009, Detroit, MI, July 2009.
[Sousa:2009wp]
[6-47]
MiniBoone Oscillation Results, Zelimir Djurcic (MiniBooNE), 2009. Moriond EW 2009, Electroweak Interactions and Unified Theories, 7-14 March 2009, La Thuile, Aosta Valley, Italy. http://indico.in2p3.fr/getFile.py/access?contribId=104&sessionId=12&resId=1&materialId=slides&confId=1399.
[Djurcic-Moriond-EW-2009]
[6-48]
Results from Miniboone, Georgia Karagiorgi (MiniBooNE), 2009. La Thuile 2009, Les Rencontres de Physique de La Vallee d'Aoste, 1-7 March 2009, La Thuile, Aosta Valley, Italy. http://agenda.infn.it/getFile.py/access?contribId=13&sessionId=3&resId=0&materialId=slides&confId=930.
[Karagiorgi-LaThuile-2009]
[6-49]
Results from Miniboone, G. Karagiorgi (MiniBooNE), 2009. 22nd International Workshop on Weak Interactions and Neutrinos Search, 14-19 September 2009, PERUGIA, Italy. http://indico.cern.ch/materialDisplay.py?contribId=44&sessionId=18&materialId=slides&confId=54503.
[Karagiorgi:WIN2009]
[6-50]
MiniBooNE Request for More Antineutrino Running, Richard Van de Water (MiniBooNE), 2009. PAC Review, March 5, 2009. http://www.fnal.gov/directorate/program_planning/Mar2009PACPublic/VanDeWater_PACMar09.pdf.
[VandeWater-PAC-2009]
[6-51]
First MiniBooNE $\bar\nu_{e}$ Appearance Results, G. Karagiorgi (MiniBooNE), 2008. FNAL, 11 December 2008. http://theory.fnal.gov/jetp/talks/karagiorgi.pdf.
[Karagiorgi-FNAL-2008]
[6-52]
MiniBooNE and the Holy Grail - First Antineutrino Results!, H. Ray (MiniBooNE), 2008. Miami 2008, 16-21 December 2008, Fort Lauderdale, Florida, USA. http://server.physics.miami.edu/~cgc/Miami2008/Ray2008.ppt.
[Ray-Miami-2008]
[6-53]
Neutrino Oscillation Search at MiniBooNE, Z. Djurcic (MiniBooNE), Nucl. Phys. Proc. Suppl. 168 (2007) 309-314, arXiv:hep-ex/0701017. Neutrino Oscillation Workshop (NOW2006), September 2006.
[Djurcic:2007dx]
[6-54]
Sterile Neutrino Oscillations and CP-Violation Implications for MiniBooNE, G. Karagiorgi (MiniBooNE), 2007. NuFact07, 6-11 August 2007, Okayama, Japan. http://www-boone.fnal.gov/slides-talks/conf-talk/georgiak/georgiak_nufact07.pdf.
[Karagiorgi-LP07]
[6-55]
First Results from MiniBooNE, W. Louis, J. Conrad (MiniBooNE), 2007. 11 April 2007. http://www-boone.fnal.gov/publicpages/First_Results.pdf.
[Louis-Conrad-07-04-11]
[6-56]
MiniBooNE results on oscillations and its implications, M. Shaevitz (MiniBooNE), 2007. TAUP 2007, 11-15 September 2007, Sendai, Japan. http://www.awa.tohoku.ac.jp/taup2007/slides/plenary/plenary_13sep/04-Shaevitz_TAUP07.ppt.
[Shaevitz-TAUP07]
[6-57]
First Neutrino Oscillation Results From MiniBooNE, M. Sorel (MiniBooNE), 2007. CERN, 15 May 2007. http://ific.uv.es/~sorel/BooNE/CERNseminar07_sorel.pdf.
[Sorel-07-05-15]
[6-58]
Neutrino Oscillation Results from MiniBooNE, R. Tayloe (MiniBooNE), 2007. Lepton-Photon 2007, 12-18 August 2007, Daegu, Korea. http://chep.knu.ac.kr/lp07/htm/S4/S04_12.pdf.
[Tayloe-LP07]
[6-59]
Results of the MiniBooNE neutrino oscillation search, E. D. Zimmerman (MiniBooNE), 2007. American Physical Society Meeting, Jacksonville, 16 April 2007. http://hep-neutrino.colorado.edu/edz/talkscans/aps.pdf.
[Zimmerman-07-04-16]
[6-60]
Measurement of the SAGE Response to Neutrinos from Ar37 Source, V.N. Gavrin (SAGE), 2005. XI International Workshop on Neutrino Telescopes, February 22-25, 2005, Venice, Italy. http://www.pd.infn.it/~laveder/unbound/talks/exp/sage/VE05-Gavrin.pdf.
Comment: The ratio of the production rate (MEASURED/PREDICTED) is $0.79 +0.09 -0.10$.
[Gavrin:Venice2005]
[6-61]
MiniBooNE Beam MC, Including HARP Data, D. Schmitz (Harp), 2005. 5th International Workshop on Neutrino Beams and Instrumentation,July 7-11, 2005, Fermilab, Batavia Illinois. http://www.hep.utexas.edu/nbi2005/transparencies/beamMChadprod/dschmitz-harp-nbi2005.pdf.
[Schmitz:NBI2005]
[6-62]
Status of MiniBooNE, R. Stefanski (Miniboone), 2005. 5th International Workshop on Neutrino Beams and Instrumentation, July 7-11, 2005, Fermilab, Batavia, Illinois. http://www.hep.utexas.edu/nbi2005/transparencies/overview/rays_nbi_talk.ppt.
[Stefanski:NBI2005]
[6-63]
MiniBooNE : Status and Plans, A. Bazarko, 2002. 19th International Workshop on Weak Interactions and Neutrinos, WIN2003, October 6-11, Lake Geneva, Wisconsin U.S.A. http://conferences.fnal.gov/win03/Talks/Andrew%20Bazarko.pdf.
Comment: The figure in slide n.27 shows the MiniBoone $ 90 \% $ C.L. sensitivity for $\nu_\mu \rightarrow \nu_\mu$ oscillations. [M.L.].
[Bazarko:WIN2003]
[6-64]
Final Neutrino Oscillation Results from LSND and Karmen, G. Drexlin, 2002. XXth International Conference on Neutrino Physics and Astrophysics May 25 - 30, 2002, Munich, Germany. http://neutrino2002.ph.tum.de/pages/transparencies/drexlin.
[Drexlin-talk:2002a]

7 - Phenomenology

[7-1]
Towards Resolving the Gallium Anomaly, Vedran Brdar, Julia Gehrlein, Joachim Kopp, arXiv:2303.05528, 2023.
[Brdar:2023cms]
[7-2]
The result of the Neutrino-4 experiment, sterile neutrinos and dark matter, the fourth neutrino and the Hubble constant, A. P. Serebrov, R. M. Samoilov, M. E. Chaikovskii, O. M. Zherebtsov, arXiv:2302.09958, 2023.
[Serebrov:2023onj]
[7-3]
Improved sensitivities of ESS$\nu$SB from a two-detector fit, F. Capozzi, C. Giunti, C. A. Ternes, arXiv:2302.07154, 2023.
[Capozzi:2023ltl]
[7-4]
The influence of the effective number of active and sterile neutrinos on the determination of the values of cosmological parameters, P. A. Chernikov, A. V. Ivanchik, Astron.Lett. 48 (2022) 689-701, arXiv:2302.05251.
[Chernikov:2022mdn]
[7-5]
Implications of MicroBooNE's low sensitivity to electron antineutrino interactions in the search for the MiniBooNE excess, Nicholas W. Kamp, Matheus Hostert, Carlos A. Arguelles, Janet M. Conrad, Michael H. Shaevitz, arXiv:2301.12573, 2023.
[Kamp:2023mjn]
[7-6]
Impact of CP violation searches at MOMENT experiment with sterile neutrinos, Kiran Sharma, Sudhanwa Patra, arXiv:2301.00390, 2023.
[Sharma:2023jzg]
[7-7]
Inspection of the detection cross section dependence of the Gallium Anomaly, C. Giunti, Y.F. Li, C.A. Ternes, Z. Xin, arXiv:2212.09722, 2022.
[Giunti:2022xat]
[7-8]
Flux-integrated semiexclusive cross sections for charged-current quasielastic and neutral-current elastic neutrino scattering off 40{}^{40}Ar and a sterile neutrino oscillation study, A. V. Butkevich, arXiv:2212.09300, 2022.
[Butkevich:2022pzd]
[7-9]
Sensitivity of Future Tritium Decay Experiments to New Physics, James A. L. Canning, Frank F. Deppisch, Wenna Pei, arXiv:2212.06106, 2022.
[Canning:2022nye]
[7-10]
Matter effect in presence of a sterile neutrino and resolving the octant degeneracy using liquid argon detector in DUNE, Animesh Chatterjee, Srubabati Goswami, Supriya Pan, arXiv:2212.02949, 2022.
[Chatterjee:2022pqg]
[7-11]
Sterile Neutrinos: Propagation in Matter and Sensitivity to Sterile Mass Ordering, Dibya S. Chattopadhyay, Moon Moon Devi, Amol Dighe, Debajyoti Dutta, Dipyaman Pramanik, Sushant K. Raut, JHEP 02 (2023) 044, arXiv:2211.03473.
[Chattopadhyay:2022hkw]
[7-12]
New Clues About Light Sterile Neutrinos: Preference for Models with Damping Effects in Global Fits, J. M. Hardin, I. Martinez-Soler, A. Diaz, M. Jin, M. W. Kamp, C. A. Arguelles, J. M. Conrad, M. H. Shaevitz, arXiv:2211.02610, 2022.
[Hardin:2022muu]
[7-13]
Study of light sterile neutrino at the long-baseline experiment options at KM3NeT, Dinesh Kumar Singha, Monojit Ghosh, Rudra Majhi, Rukmani Mohanta, arXiv:2211.01816, 2022.
[Singha:2022btw]
[7-14]
More Ingredients for an Altarelli Cocktail at MiniBooNE, Kevin J. Kelly, Joachim Kopp, arXiv:2210.08021, 2022.
[Kelly:2022uaa]
[7-15]
The impact of neutrino-nucleus interaction modeling on new physics searches, Nina M. Coyle, Shirley Weishi Li, Pedro A. N. Machado, JHEP 12 (2022) 166, arXiv:2210.03753.
[Coyle:2022bwa]
[7-16]
Light sterile neutrinos effects in processes with electron and muon neutrinos, V. V. Khruschov, S. V. Fomichev, arXiv:2210.03359, 2022.
[Khruschov:2022bqa]
[7-17]
How to Identify Different New Neutrino Oscillation Physics Scenarios at DUNE, Peter B. Denton, Alessio Giarnetti, Davide Meloni, JHEP 02 (2023) 210, arXiv:2210.00109.
[Denton:2022pxt]
[7-18]
Resonant Production of Light Sterile Neutrinos in Compact Binary Merger Remnants, Gardar Sigurdarson, Irene Tamborra, Meng-Ru Wu, Phys.Rev.D 106 (2022) 123030, arXiv:2209.07544.
[Sigurdarson:2022mcm]
[7-19]
Testing the Gallium Anomaly, Patrick Huber, arXiv:2209.02885, 2022.
[Huber:2022osv]
[7-20]
Gallium Anomaly: Critical View from the Global Picture of $\nu_{e}$ and $\bar\nu_{e}$ Disappearance, C. Giunti, Y. F. Li, C. A. Ternes, O. Tyagi, Z. Xin, JHEP 10 (2022) 164, arXiv:2209.00916.
[Giunti:2022btk]
[7-21]
Addressing the Short-Baseline Neutrino Anomalies with Energy-Dependent Mixing Parameters, K. S. Babu, Vedran Brdar, Andre de Gouvea, Pedro A. N. Machado, Phys.Rev.D 107 (2023) 015017, arXiv:2209.00031.
[Babu:2022non]
[7-22]
Zoom in muon survival probability with sterile neutrino for CP and T-violation, Kiran Sharma, Sudhanwa Patra, arXiv:2208.09696, 2022.
[Sharma:2022zaf]
[7-23]
Study of matter effects in the presence of sterile neutrino using OMSD approximation, Kiran Sharma, Sudhanwa Patra, arXiv:2207.03249, 2022.
[Sharma:2022qeo]
[7-24]
Large Extra Dimensions and neutrino experiments, D. V. Forero, C. Giunti, C. A. Ternes, O. Tyagi, Phys.Rev.D 106 (2022) 035027, arXiv:2207.02790.
[Forero:2022skg]
[7-25]
Dipole-Coupled Neutrissimo Explanations of the MiniBooNE Excess Including Constraints from MINERvA Data, Nicholas W. Kamp, Matheus Hostert, Austin Schneider, Stefano Vergani, Carlos A. Arguelles, Janet M. Conrad, Michael H. Shaevitz, Melissa A. Uchida, Phys.Rev.D 107 (2023) 055009, arXiv:2206.07100.
[Kamp:2022bpt]
[7-26]
Constraining super-light sterile neutrinos at Borexino and KamLAND, Zikang Chen, Jiajun Liao, Jiajie Ling, Baobiao Yue, arXiv:2205.07574, 2022.
[Chen:2022zts]
[7-27]
Very Light Sterile Neutrinos at NOvA and T2K, Andre de Gouvea, Giancarlo Jusino Sanchez, Kevin J. Kelly, Phys.Rev.D 106 (2022) 055025, arXiv:2204.09130.
[deGouvea:2022kma]
[7-28]
Sterile neutrino and dark matter, A.P. Serebrov, R.M. Samoilov, M.E. Chaikovskii, O.M. Zherebtsov, JETP Lett. 116 (2022) 669-682, arXiv:2203.09401.
[Serebrov:2022ajm]
[7-29]
Requirements on common solutions to the LSND and MiniBooNE excesses: a post-MicroBooNE study, Waleed Abdallah, Raj Gandhi, Samiran Roy, JHEP 06 (2022) 160, arXiv:2202.09373.
[Abdallah:2022grs]
[7-30]
Impact of Wave Package Separation in Low-Energy Sterile Neutrino Searches, Carlos A. Arguelles, Toni Bertolez-Martinez, Jordi Salvado, Phys.Rev.D 107 (2023) 036004, arXiv:2201.05108.
[Arguelles:2022bvt]
[7-31]
Quasi-Sterile Neutrinos from Dark Sectors I. BSM matter effects in neutrino oscillations and the short-baseline anomalies, Daniele S. M. Alves, William C. Louis, Patrick G. deNiverville, JHEP 08 (2022) 034, arXiv:2201.00876.
[Alves:2022vgn]
[7-32]
Analysis of the result of the Neutrino-4 experiment in conjunction with other experiments on the search for sterile neutrinos within the framework of the 3 + 1 neutrino model, A. P. Serebrov, R. M. Samoilov, M. E. Chaikovskii, arXiv:2112.14856, 2021.
[Serebrov:2021ndf]
[7-33]
Solar Active-Sterile Neutrino Conversion with Atomic Effects at Dark Matter Direct Detection Experiments, Shao-Feng Ge, Pedro Pasquini, Jie Sheng, JHEP 05 (2022) 088, arXiv:2112.05560.
[Ge:2021snv]
[7-34]
Short-baseline oscillation scenarios at JUNO and TAO, V.S. Basto-Gonzalez, D.V. Forero, C. Giunti, A.A. Quiroga, C.A. Ternes, Phys.Rev.D 105 (2022) 075023, arXiv:2112.00379.
[Basto-Gonzalez:2021aus]
[7-35]
Pseudoscalar sterile neutrino self-interactions in light of Planck, SPT and ACT data, Mattia Atzori Corona, Riccardo Murgia, Matteo Cadeddu, Maria Archidiacono, Stefano Gariazzo, Carlo Giunti, Steen Hannestad, JCAP 06 (2022) 010, arXiv:2112.00037.
[Corona:2021qxl]
[7-36]
Statistical significance of the sterile-neutrino hypothesis in the context of reactor and gallium data, Jeffrey M. Berryman, Pilar Coloma, Patrick Huber, Thomas Schwetz, Albert Zhou, JHEP 02 (2022) 055, arXiv:2111.12530.
[Berryman:2021yan]
[7-37]
MicroBooNE and the $\nu_e$ Interpretation of the MiniBooNE Low-Energy Excess, C. A. Arguelles, I. Esteban, M. Hostert, K. J. Kelly, J. Kopp, P. A. N. Machado, I. Martinez-Soler, Y. F. Perez-Gonzalez, Phys.Rev.Lett. 128 (2022) 241802, arXiv:2111.10359.
[Arguelles:2021meu]
[7-38]
Cascade Appearance Signatures of Sterile Neutrinos at 1-100 TeV, Benjamin R. Smithers, Benjamin J. P. Jones, Carlos A. Arguelles, Janet M. Conrad, Alejandro Diaz, Phys.Rev.D 105 (2022) 052001, arXiv:2111.08722.
[Smithers:2021orb]
[7-39]
Sterile Neutrino Searches with MicroBooNE: Electron Neutrino Disappearance, Peter B. Denton, Phys.Rev.Lett. 129 (2022) 061801, arXiv:2111.05793.
[Denton:2021czb]
[7-40]
Search for sterile neutrinos by shower events at a future neutrino telescope, Yabin Wang, Osamu Yasuda, PTEP 2022 (2022) 023B04, arXiv:2110.12655.
[Wang:2021gox]
[7-41]
Reactor antineutrino anomaly in light of recent flux model refinements, C. Giunti, Y.F. Li, C.A. Ternes, Z. Xin, Phys.Lett.B 829 (2022) 137054, arXiv:2110.06820.
[Giunti:2021kab]
[7-42]
Updated sensitivity of DUNE in 3+1 scenario with far and near detectors, Monojit Ghosh, Rukmani Mohanta, Eur.Phys.J.ST 231 (2022) 137-140, arXiv:2110.05767.
[Ghosh:2021rtn]
[7-43]
Hints of dark matter-neutrino interactions in Lyman-$\alpha$ data, Deanna C. Hooper, Matteo Lucca, Phys.Rev.D 105 (2022) 103504, arXiv:2110.04024.
[Hooper:2021rjc]
[7-44]
Minimal dark energy: key to sterile neutrino and Hubble constant tensions?, Eleonora Di Valentino, Stefano Gariazzo, Carlo Giunti, Olga Mena, Supriya Pan, Weiqiang Yang, Phys.Rev.D 105 (2022) 103511, arXiv:2110.03990.
[DiValentino:2021rjj]
[7-45]
Probing Active-Sterile Neutrino Transition Magnetic Moments with Photon Emission from CE$\nu$NS, Patrick D. Bolton, Frank F. Deppisch, Kare Fridell, Julia Harz, Chandan Hati, Suchita Kulkarni, Phys.Rev.D 106 (2022) 035036, arXiv:2110.02233.
[Bolton:2021pey]
[7-46]
Testing sterile neutrino mixing with present and future solar neutrino data, Kim Goldhagen, Michele Maltoni, Shayne Reichard, Thomas Schwetz, Eur.Phys.J.C 82 (2022) 116, arXiv:2109.14898.
[Goldhagen:2021kxe]
[7-47]
BEST Impact on Sterile Neutrino Hypothesis, Vladislav Barinov, Dmitry Gorbunov, Phys.Rev.D 105 (2022) L051703, arXiv:2109.14654.
[Barinov:2021mjj]
[7-48]
Experimental indications of the 3+1 neutrino model with one sterile neutrino, A. Serebrov, R. Samoilov, M. Chaikovskii, arXiv:2109.12385, 2021.
[Serebrov:2021zuh]
[7-49]
Effects of an Intermediate Mass Sterile Neutrino Population on the Early Universe, Hannah Rasmussen, Alex McNichol, George M. Fuller, Chad T. Kishimoto, Phys.Rev.D 105 (2022) 083513, arXiv:2109.11176.
[Rasmussen:2021kbf]
[7-50]
Low-energy probes of sterile neutrino transition magnetic moments, O. G. Miranda, D. K. Papoulias, O. Sanders, M. Tortola, J. W. F. Valle, JHEP 12 (2021) 191, arXiv:2109.09545.
[Miranda:2021kre]
[7-51]
An Altarelli Cocktail for the MiniBooNE Anomaly?, Vedran Brdar, Joachim Kopp, arXiv:2109.08157, 2021.
[Brdar:2021cgb]
[7-52]
Neutrino interactions in liquid scintillators including active-sterile neutrino mixing, M.M. Saez, M.E. Mosquera, O. Civitarese, Int.J.Mod.Phys.E 31 (2022) 2250023, arXiv:2109.06244.
[Saez:2021fpa]
[7-53]
Cosmological search for sterile neutrinos after Planck 2018, Lu Feng, Rui-Yun Guo, Jing-Fei Zhang, Xin Zhang, Phys.Lett.B 827 (2022) 136940, arXiv:2109.06111.
[Feng:2021ipq]
[7-54]
Neutrino Up-scattering via the Dipole Portal at Forward LHC Detectors, Ahmed Ismail, Sudip Jana, Roshan Mammen Abraham, Phys.Rev.D 105 (2022) 055008, arXiv:2109.05032.
[Ismail:2021dyp]
[7-55]
Probing Neutrino Dipole Portal at COHERENT Experiment, Jihn E. Kim, Arnab Dasgupta, Sin Kyu Kang, JHEP 11 (2021) 120, arXiv:2108.12998.
[Dasgupta:2021fpn]
[7-56]
Sterile neutrinos in $\Lambda_b^0\to (\Lambda_c^+,p^+)\ell^-_1\ell^-_2\ell^+_3\nu$ decays, Diganta Das, Jaydeb Das, Phys.Rev.D 105 (2022) 013009, arXiv:2108.07338.
[Das:2021kzi]
[7-57]
Matter Effects on Mass Square Difference for Four Flavor Neutrino Oscillation, Vivek Kumar Nautiyal, Bipin Singh Koranga, Ashish Shrivastava, Neelam Das, arXiv:2106.15945, 2021.
[Nautiyal:2021jwx]
[7-58]
New sources of leptonic CP violation at the DUNE neutrino experiment, A. Giarnetti, D. Meloni, arXiv:2106.00030, 2021.
[Giarnetti:2021aqe]
[7-59]
New physics from oscillations at the DUNE near detector, and the role of systematic uncertainties, Pilar Coloma, Jacobo Lopez-Pavon, Salvador Rosauro-Alcaraz, Salvador Urrea, JHEP 08 (2021) 065, arXiv:2105.11466.
[Coloma:2021uhq]
[7-60]
Explaining the MiniBooNE Excess Through a Mixed Model of Oscillation and Decay, Stefano Vergani, Nicholas W. Kamp, Alejandro Diaz, Carlos A. Arguelles, Janet M. Conrad, Mike H. Shaevitz, Melissa A. Uchida, Phys.Rev.D 104 (2021) 095005, arXiv:2105.06470.
[Vergani:2021tgc]
[7-61]
Limits on active-sterile neutrino mixing parameters using heavy nuclei abundances, M. M. Saez, K. J. Fushimi, M. E. Mosquera, O. Civitarese, Int.J.Mod.Phys. E30 (2021) 2150028, arXiv:2105.03202.
[Saez:2021rxq]
[7-62]
Hubble tension in lepton asymmetric cosmology with an extra radiation, Osamu Seto, Yo Toda, Phys.Rev.D 104 (2021) 063019, arXiv:2104.04381.
[Seto:2021tad]
[7-63]
Sterile neutrinos with non-standard interactions in $\beta$- and $0\nu\beta\beta$-decay experiments, Wouter Dekens, Jordy de Vries, Tom Tong, JHEP 08 (2021) 128, arXiv:2104.00140.
[Dekens:2021qch]
[7-64]
Future Searches for Light Sterile Neutrinos at Nuclear Reactors, Jeffrey M. Berryman, Luis A. Delgadillo, Patrick Huber, Phys.Rev.D 105 (2022) 035002, arXiv:2104.00005.
[Berryman:2021xsi]
[7-65]
Exploring the new physics phases in 3+1 scenario in neutrino oscillation experiments, Nishat Fiza, Mehedi Masud, Manimala Mitra, JHEP 09 (2021), arXiv:2102.05063.
[Fiza:2021gvq]
[7-66]
Neutrino-4 anomaly: oscillations or fluctuations?, C. Giunti, Y.F. Li, C.A. Ternes, Y.Y. Zhang, Phys.Lett. B816 (2021) 136214, arXiv:2101.06785.
[Giunti:2021iti]
[7-67]
Sterile Neutrino Search at the Short-Baseline Neutrino Program via Neutral Current Disappearance, Andrew Furmanski, Christopher Hilgenberg, Phys.Rev.D 103 (2021) 112011, arXiv:2012.09788.
[Furmanski:2020smg]
[7-68]
Search for Light Exotic Fermions in Double-Beta Decays, Matteo Agostini, Elisabetta Bossio, Alejandro Ibarra, Xabier Marcano, Phys.Lett. B815 (2021) 136127, arXiv:2012.09281.
[Agostini:2020cpz]
[7-69]
Two-Neutrino Double Beta Decay with Sterile Neutrinos, Patrick D. Bolton, Frank F. Deppisch, Lukas Graf, Fedor Simkovic, Phys.Rev. D103 (2021) 055019, arXiv:2011.13387.
[Bolton:2020ncv]
[7-70]
Quantum Kinetic Equilibrium, Chad T. Kishimoto, Heather Hodlin, Olexiy Dvornikov, arXiv:2011.11237, 2020.
[Kishimoto:2020qka]
[7-71]
The study of two quasi-degenerate heavy sterile neutrinos in rare meson decays, Jiabao Zhang, Tianhong Wang, Geng Li, Yue Jiang, Guo-Li Wang, Phys.Rev. D103 (2021) 035015, arXiv:2010.13286.
[Zhang:2020hwj]
[7-72]
Sterile neutrino searches at tagged kaon beams, Luis Delgadillo, Patrick Huber, Phys.Rev. D103 (2021) 035018, arXiv:2010.10268.
[Delgadillo:2020uvm]
[7-73]
Long-lived Sterile Neutrinos at the LHC in Effective Field Theory, Jordy de Vries, Herbert K. Dreiner, Julian Y. Gunther, Zeren Simon Wang, Guanghui Zhou, JHEP 2103 (2021) 148, arXiv:2010.07305.
[DeVries:2020jbs]
[7-74]
Flavors of Astrophysical Neutrinos with Active-Sterile Mixing, Markus Ahlers, Mauricio Bustamante, Niels Gustav Nortvig Willesen, JCAP 07 (2021) 029, arXiv:2009.01253.
[Ahlers:2020miq]
[7-75]
Search for sterile neutrino with light gauge interactions: recasting collider, beam-dump, and neutrino telescope searches, Yongsoo Jho, Jongkuk Kim, Pyungwon Ko, Seong Chan Park, arXiv:2008.12598, 2020.
[Jho:2020jfz]
[7-76]
Constraints on Decaying Sterile Neutrinos from Solar Antineutrinos, Matheus Hostert, Maxim Pospelov, Phys.Rev.D 104 (2021) 055031, arXiv:2008.11851.
[Hostert:2020oui]
[7-77]
Statistical interpretation of sterile neutrino oscillation searches at reactors, Pilar Coloma, Patrick Huber, Thomas Schwetz, Eur.Phys.J. C81 (2021) 2, arXiv:2008.06083.
[Coloma:2020ajw]
[7-78]
Interpretation of the XENON1T excess in the model with decaying sterile neutrinos, V. V. Khruschov, arXiv:2008.03150, 2020.
[Khruschov:2020cnf]
[7-79]
Future CEvNS experiments as probes of lepton unitarity and light-sterile neutrinos, O. G. Miranda, D. K. Papoulias, O. Sanders, M. Tortola, J. W. F. Valle, arXiv:2008.02759, 2020.
[Miranda:2020bpj]
[7-80]
The Neutrino Magnetic Moment Portal: Cosmology, Astrophysics, and Direct Detection, Vedran Brdar, Admir Greljo, Joachim Kopp, Toby Opferkuch, arXiv:2007.15563, 2020.
[Brdar:2020quo]
[7-81]
Constraints on the charged currents in general neutrino interactions with sterile neutrinos, Tong Li, Xiao-Dong Ma, Michael A. Schmidt, JHEP 2010 (2020) 115, arXiv:2007.15408.
[Li:2020wxi]
[7-82]
Observable features in (ultra)high energy neutrinos due to active-sterile secret interactions, Damiano F. G. Fiorillo, Stefano Morisi, Gennaro Miele, Ninetta Saviano, Phys.Rev. D102 (2020) 083014, arXiv:2007.07866.
[Fiorillo:2020zzj]
[7-83]
An Active-to-Sterile Neutrino Transition Dipole Moment and the XENON1T Excess, Ian M. Shoemaker, Yu-Dai Tsai, Jason Wyenberg, Phys.Rev.D 104 (2021) 115026, arXiv:2007.05513.
[Shoemaker:2020kji]
[7-84]
GeV-scale neutrinos: interactions with mesons and DUNE sensitivity, Pilar Coloma, Enrique Fernandez-Martinez, Manuel Gonzalez-Lopez, Josu Hernandez-Garcia, Zarko Pavlovic, Eur.Phys.J. C81 (2021) 78, arXiv:2007.03701.
[Coloma:2020lgy]
[7-85]
New physics at nuSTORM, Kaustav Chakraborty, Srubabati Goswami, Kenneth Long, Phys.Rev. D103 (2021) 075009, arXiv:2007.03321.
[Chakraborty:2020brc]
[7-86]
Active-sterile neutrino mixing constraint using reactor antineutrinos with the ISMRAN set-up, S. P. Behera, D. K. Mishra, L. M. Pant, Phys.Rev. D102 (2020) 013002, arXiv:2007.00392.
[Behera:2020qwf]
[7-87]
Solar Neutrino Scattering with Electron into Massive Sterile Neutrino, Shao-Feng Ge, Pedro Pasquini, Jie Sheng, Phys.Lett. B810 (2020) 135787, arXiv:2006.16069.
[Ge:2020jfn]
[7-88]
A Comment on the note arXiv:2006.13147 on arXiv:2005.05301, 'Preparation of the Neutrino-4 experiment on search for sterile neutrino and the obtained results of measurements', A.P. Serebrov, R.M. Samoilov (Neutrino-4), arXiv:2006.13639, 2020.
[Serebrov:2020yvp]
[7-89]
Note on arXiv:2005.05301, 'Preparation of the Neutrino-4 experiment on search for sterile neutrino and the obtained results of measurements', H. Almazan et al., arXiv:2006.13147, 2020.
[PROSPECT:2020raz]
[7-90]
Sterile neutrino self-interactions: $H_0$ tension and short-baseline anomalies, Maria Archidiacono, Stefano Gariazzo, Carlo Giunti, Steen Hannestad, Thomas Tram, JCAP 2012 (2020) 029, arXiv:2006.12885.
[Archidiacono:2020yey]
[7-91]
Note on Thermalization of Non-resonantly Produced Sterile Neutrinos, Graciela B. Gelmini, Philip Lu, Volodymyr Takhistov, JCAP 2010 (2020) A01, arXiv:2006.09553.
[Gelmini:2020duq]
[7-92]
Interpreting NO$\nu$A and T2K data in the presence of a light sterile neutrino, Sabya Sachi Chatterjee, Antonio Palazzo, arXiv:2005.10338, 2020.
[Chatterjee:2020yak]
[7-93]
Constraining sterile neutrinos by core-collapse supernovae with multiple detectors, Jian Tang, TseChun Wang, Meng-Ru Wu, JCAP 2010 (2020) 038, arXiv:2005.09168.
[Tang:2020pkp]
[7-94]
Big Bang Nucleosynthesis constraints on sterile neutrino and lepton asymmetry of the Universe, Graciela B. Gelmini, Masahiro Kawasaki, Alexander Kusenko, Kai Murai, Volodymyr Takhistov, JCAP 2009 (2020) 051, arXiv:2005.06721.
[Gelmini:2020ekg]
[7-95]
Sterile Neutrinos and the Global Reactor Antineutrino Dataset, Jeffrey M. Berryman, Patrick Huber, JHEP 2101 (2021) 167, arXiv:2005.01756.
[Berryman:2020agd]
[7-96]
Generic neutrino interactions with sterile neutrinos in light of neutrino-nucleus coherent scattering and meson invisible decays, Tong Li, Xiao-Dong Ma, Michael A. Schmidt, JHEP 2007 (2020) 152, arXiv:2005.01543.
[Li:2020lba]
[7-97]
Statistical Significance of Reactor Antineutrino Active-Sterile Oscillations, C. Giunti, Phys.Rev. D101 (2020) 095025, arXiv:2004.07577.
[Giunti:2020uhv]
[7-98]
MeV-scale reheating temperature and cosmological production of light sterile neutrinos, Takuya Hasegawa, Nagisa Hiroshima, Kazunori Kohri, Rasmus S. L. Hansen, Thomas Tram, Steen Hannestad, JCAP 2008 (2020) 015, arXiv:2003.13302.
[Hasegawa:2020ctq]
[7-99]
Active neutrino oscillations and double beta decay characteristics with sterile neutrinos contributions, V. V. Khruschov, S. V. Fomichev, S. V. Semenov, Phys.At.Nucl. 84 (2021) 328-338, arXiv:2003.06145.
[Khruschov:2020hah]
[7-100]
Bounds on light sterile neutrino mass and mixing from cosmology and laboratory searches, Steffen Hagstotz, Pablo F. de Salas, Stefano Gariazzo, Martina Gerbino, Massimiliano Lattanzi, Sunny Vagnozzi, Katherine Freese, Sergio Pastor, Phys.Rev.D 104 (2021) 123524, arXiv:2003.02289.
[Hagstotz:2020ukm]
[7-101]
Cosmogenic neutrino fluxes under the effect of active-sterile secret interactions, Damiano F. G. Fiorillo, Gennaro Miele, Stefano Morisi, Ninetta Saviano, Phys.Rev. D101 (2020) 083024, arXiv:2002.10125.
[Fiorillo:2020jvy]
[7-102]
Direct comparison of sterile neutrino constraints from cosmological data, $\nu_{e}$ disappearance data and $\nu_\mu\rightarrow\nu_{e}$ appearance data in a $3+1$ model, Matthew Adams, Fedor Bezrukov, Jack Elvin-Poole, Justin J. Evans, Pawel Guzowski, Brian O Fearraigh, Stefan Soldner-Rembold, Eur.Phys.J. C80 (2020) 758, arXiv:2002.07762.
[Adams:2020nue]
[7-103]
Sterile neutrinos and neutrinoless double beta decay in effective field theory, W. Dekens, J. de Vries, K. Fuyuto, E. Mereghetti, G. Zhou, JHEP 2006 (2020) 097, arXiv:2002.07182.
[Dekens:2020ttz]
[7-104]
Simulation of an experiment on looking for sterile neutrinos at nuclear reactor, S. V. Silaeva, V. V. Sinev, arXiv:2001.10752, 2020.
[Silaeva:2020yot]
[7-105]
The gallium anomaly reassessed using a Bayesian approach, Joel Kostensalo, Santtu Tikka, Jouni Suhonen, arXiv:2001.10064, 2020.
[Kostensalo:2020hbc]
[7-106]
Comment on 'Analysis of the Results of the Neutrino-4 Experiment on the Search for the Sterile Neutrino and Comparison with Results of Other Experiments' (JETP Letters 112, 199 (2020)), M. V. Danilov, N. A. Skrobova, JETP Lett. 112 (2020) 452-454. [Pisma Zh. Eksp. Teor. Fiz. 112, 484 (2020)].
[Danilov:2020rax]
[7-107]
KATRIN bound on 3+1 active-sterile neutrino mixing and the reactor antineutrino anomaly, C. Giunti, Y.F. Li, Y.Y. Zhang, JHEP 2005 (2020) 061, arXiv:1912.12956.
[Giunti:2019fcj]
[7-108]
Sensitivity to light sterile neutrinos at ESSnuSB, Monojit Ghosh, Tommy Ohlsson, Salvador Rosauro-Alcaraz, JHEP 2003 (2020) 026, arXiv:1912.10010.
[Ghosh:2019zvl]
[7-109]
A new analysis of the MiniBooNE low-energy excess, C. Giunti, A. Ioannisian, G. Ranucci, JHEP 2011 (2020) 146, arXiv:1912.01524.
[Giunti:2019sag]
[7-110]
Prospects of light sterile neutrino searches in long-baseline experiments, Yakefu Reyimuaji, Chun Liu, JHEP 06 (2020) 094, arXiv:1911.12524.
[Reyimuaji:2019wbn]
[7-111]
Probing ALP-Sterile Neutrino Couplings at the LHC, Alexandre Alves, Alex G. Dias, Diego D. Lopes, JHEP 08 (2020) 074, arXiv:1911.12394.
[Alves:2019xpc]
[7-112]
Effect of light sterile neutrino on currently running long-baseline experiments, Rudra Majhi, Soumya C, Rukmani Mohanta, J.Phys. G47 (2020) 095002, arXiv:1911.10952.
[Majhi:2019hdj]
[7-113]
Searching for Sterile Neutrino with X-ray Intensity Mapping, A. Caputo, M. Regis, M. Taoso, JCAP 2003 (2020) 001, arXiv:1911.09120.
[Caputo:2019djj]
[7-114]
Inflation models in the light of self-interacting sterile neutrinos, Arindam Mazumdar, Subhendra Mohanty, Priyank Parashari, Phys.Rev. D101 (2020) 083521, arXiv:1911.08512.
[Mazumdar:2019tbm]
[7-115]
Cosmological Dependence of Resonantly Produced Sterile Neutrinos, Graciela B. Gelmini, Philip Lu, Volodymyr Takhistov, JCAP 2006 (2020) 008, arXiv:1911.03398.
[Gelmini:2019clw]
[7-116]
Sterile neutrinos with altered dispersion relations revisited, G. Barenboim, P. Martinez-Mirave, C. A. Ternes, M. Tortola, JHEP 2003 (2020) 070, arXiv:1911.02329.
[Barenboim:2019hso]
[7-117]
On The Decaying-Sterile Neutrino Solution to the Electron (Anti)Neutrino Appearance Anomalies, Andre de Gouvea, O. L. G. Peres, Suprabh Prakash, G. V. Stenico, JHEP 2007 (2020) 141, arXiv:1911.01447.
[deGouvea:2019qre]
[7-118]
Decaying Sterile Neutrinos and the Short Baseline Oscillation Anomalies, Mona Dentler, Ivan Esteban, Joachim Kopp, Pedro Machado, Phys.Rev. D101 (2020) 115013, arXiv:1911.01427.
[Dentler:2019dhz]
[7-119]
Combining Sterile Neutrino Fits to Short Baseline Data with IceCube Data, M.H. Moulai, C.A. Arguelles, G.H. Collin, J.M. Conrad, A. Diaz, M.H. Shaevitz, Phys.Rev. D101 (2020) 055020, arXiv:1910.13456.
[Moulai:2019gpi]
[7-120]
The impact of the locally measured Hubble parameter on the mass of Sterile neutrino, M. Ebadinejad, Mon.Not.Roy.Astron.Soc. 488 (2019) 5763-5770, arXiv:1910.08046.
[Ebadinejad:2019acq]
[7-121]
The viability of the 3+1 neutrino model in the supernova neutrino process, Heamin Ko, Dukjae Jang, Motohiko Kusakabe, Myung-Ki Cheoun, Astrophys.J. 894 (2020) 99, arXiv:1910.04984.
[Ko:2019asm]
[7-122]
The Dodelson-Widrow Mechanism In the Presence of Self-Interacting Neutrinos, Andre de Gouvea, Manibrata Sen, Walter Tangarife, Yue Zhang, Phys.Rev.Lett. 124 (2020) 081802, arXiv:1910.04901.
[DeGouvea:2019wpf]
[7-123]
Constraints on active and sterile neutrinos in an interacting dark energy cosmology, Lu Feng, Dong-Ze He, Hai-Li Li, Jing-Fei Zhang, Xin Zhang, Sci.China Phys.Mech.Astron. 63 (2020) 290404, arXiv:1910.03872.
[Feng:2019jqa]
[7-124]
Physics potential of ESS$\nu$SB in the presence of a Light Sterile Neutrino, Sanjib Kumar Agarwalla, Sabya Sachi Chatterjee, Antonio Palazzo, JHEP 12 (2019) 174, arXiv:1909.13746.
[KumarAgarwalla:2019blx]
[7-125]
Cosmological Dependence of Non-resonantly Produced Sterile Neutrinos, Graciela B. Gelmini, Philip Lu, Volodymyr Takhistov, JCAP 12 (2019) 047, arXiv:1909.13328.
[Gelmini:2019wfp]
[7-126]
Constraints on Sterile Neutrinos in the MeV to GeV Mass Range, D. A. Bryman, R. Shrock, Phys.Rev. D100 (2019) 073011, arXiv:1909.11198.
[Bryman:2019bjg]
[7-127]
Explaining the MiniBooNE excess by a decaying sterile neutrino with mass in the 250 MeV range, Oliver Fischer, Alvaro Hernandez-Cabezudo, Thomas Schwetz, Phys.Rev. D101 (2020) 075045, arXiv:1909.09561.
[Fischer:2019fbw]
[7-128]
Implications of the Dark LMA solution and Fourth Sterile Neutrino for Neutrino-less Double Beta Decay, K. N. Deepthi, Srubabati Goswami, Vishnudath K. N., Tanmay Kumar Poddar, Phys.Rev. D102 (2020) 015020, arXiv:1909.09434.
[Deepthi:2019ljo]
[7-129]
Reevaluating Reactor Antineutrino Anomalies with Updated Flux Predictions, Jeffrey Berryman, Patrick Huber, Phys.Rev. D101 (2020) 015008, arXiv:1909.09267.
[Berryman:2019hme]
[7-130]
Resonance production of keV sterile neutrinos in core-collapse supernovae and lepton number diffusion, Vsevolod Syvolap, Oleg Ruchayskiy, Alexey Boyarsky, Phys.Rev.D 106 (2022) 015017, arXiv:1909.06320.
[Syvolap:2019dat]
[7-131]
Probe Of Sterile Neutrinos Using Astrophysical Neutrino Flavor, Carlos A. Arguelles, Kareem Farrag, Teppei Katori, Rishabh Khandelwal, Shivesh Mandalia, Jordi Salvado, JCAP 2002 (2020) 015, arXiv:1909.05341.
[Arguelles:2019tum]
[7-132]
Higgs phenomenology as a probe of sterile neutrinos, Jonathan M. Butterworth, Mikael Chala, Christoph Englert, Michael Spannowsky, Arsenii Titov, Phys.Rev. D100 (2019) 115019, arXiv:1909.04665.
[Butterworth:2019iff]
[7-133]
Visible Sterile Neutrinos as the Earliest Relic Probes of Cosmology, Graciela B. Gelmini, Philip Lu, Volodymyr Takhistov, Phys.Lett. B800 (2019) 135113, arXiv:1909.04168.
[Gelmini:2019esj]
[7-134]
Tau lepton asymmetry by sterile neutrino emission - Moving beyond one-zone supernova models, Anna M. Suliga, Irene Tamborra, Meng-Ru Wu, JCAP 12 (2019) 019, arXiv:1908.11382.
[Suliga:2019bsq]
[7-135]
Searching for a Sterile Neutrino in Tau Decays at B-factories, C.O. Dib, J.C. Helo, M. Nayak, N.A. Neill, A. Soffer, J. Zamora-Saa, arXiv:1908.09719, 2019.
[Dib:2019hzw]
[7-136]
A frequentist analysis of three right-handed neutrinos with GAMBIT, Marcin Chrzaszcz, Marco Drewes, Tomas Gonzalo, Julia Harz, Suraj Krishnamurthy, Christoph Weniger, Eur.Phys.J. C80 (2020) 569, arXiv:1908.02302.
[Chrzaszcz:2019inj]
[7-137]
Viable secret neutrino interactions with ultralight dark matter, James M. Cline, Phys.Lett. B802 (2020) 135182, arXiv:1908.02278.
[Cline:2019seo]
[7-138]
Probing sterile neutrino in meson decays with and without sequential neutrino decay, C. S. Kim, Dong Hun Lee, Sechul Oh, Dibyakrupa Sahoo, Eur.Phys.J. C80 (2020) 730, arXiv:1908.00376.
[Kim:2019xqj]
[7-139]
Ultra-light dark matter saving the 3+1 neutrino scheme from the cosmological bounds, Yasaman Farzan, Phys.Lett. B797 (2019) 134911, arXiv:1907.04271.
[Farzan:2019yvo]
[7-140]
Statistical Methods for the Search of Sterile Neutrinos, Matteo Agostini, Birgit Neumair, Eur.Phys.J. C80 (2020) 750, arXiv:1906.11854.
[Agostini:2019jup]
[7-141]
The gallium anomaly revisited, Joel Kostensalo, Jouni Suhonen, Carlo Giunti, Praveen C. Srivastava, Phys.Lett. B795 (2019) 542-547, arXiv:1906.10980.
[Kostensalo:2019vmv]
[7-142]
Hints of Sterile Neutrinos in Recent Measurements of the Hubble Parameter, Graciela B. Gelmini, Alexander Kusenko, Volodymyr Takhistov, JCAP 2106 (2021) 002, arXiv:1906.10136.
[Gelmini:2019deq]
[7-143]
A new analytical approximation for a light sterile neutrino oscillation in matter, Baobiao Yue, Wei Li, Jiajie Ling, Fanrong Xu, Chin.Phys. C44 (2020) 103001, arXiv:1906.03781.
[Yue:2019qat]
[7-144]
Icecube/DeepCore tests for novel explanations of the MiniBooNE anomaly, Pilar Coloma, Eur.Phys.J. C79 (2019) 748, arXiv:1906.02106.
[Coloma:2019qqj]
[7-145]
Thermalisation of sterile neutrinos in the early Universe in the 3+1 scheme with full mixing matrix, S. Gariazzo, P. F. de Salas, S. Pastor Carpi, JCAP 1907 (2019) 014, arXiv:1905.11290.
[Gariazzo:2019gyi]
[7-146]
Time-Delayed Electrons from Higgs Decays to Right-Handed Neutrinos, John D. Mason, JHEP 1907 (2019) 089, arXiv:1905.07772.
[Mason:2019okp]
[7-147]
Constraining Sterile Neutrino Cosmology with Terrestrial Oscillation Experiments, Jeffrey M. Berryman, Phys.Rev. D100 (2019) 023540, arXiv:1905.03254.
[Berryman:2019nvr]
[7-148]
Compact Perturbative Expressions for Oscillations with Sterile Neutrinos in Matter, Stephen J. Parke, Xining Zhang, Phys.Rev. D101 (2020) 056005, arXiv:1905.01356.
[Parke:2019jyu]
[7-149]
Active-sterile Neutrino Oscillations in Neutrino-driven Winds: Implications for Nucleosynthesis, Zewei Xiong, Meng-Ru Wu, Yong-Zhong Qian, arXiv:1904.09371, 2019.
[Xiong:2019nvw]
[7-150]
Improved Constraints on Sterile Neutrinos in the MeV to GeV Mass Range, D. A. Bryman, R. Shrock, Phys.Rev. D100 (2019) 053006, arXiv:1904.06787.
[Bryman:2019ssi]
[7-151]
Short-baseline neutrino oscillations with 3+1 non-unitary mixing, C. Giunti, Phys.Lett. B795 (2019) 236-240, arXiv:1904.02093.
[Giunti:2019hkv]
[7-152]
Seeking for sterile neutrinos with displaced leptons at the LHC, Jia Liu, Zhen Liu, Lian-Tao Wang, Xiao-Ping Wang, JHEP 1907 (2019) 159, arXiv:1904.01020.
[Liu:2019ayx]
[7-153]
Probing Sterile Neutrino via Lepton Flavor Violating Decays of Mesons, Shiyong Hu, Sam Ming-Yin Wong, Fanrong Xu, arXiv:1904.00568, 2019.
[Hu:2019zan]
[7-154]
A Model of Neutrino Anomalies and IceCube data, Y. H. Ahn, Sin Kyu Kang, JHEP 1912 (2019) 133, arXiv:1903.09008.
[Ahn:2019jbm]
[7-155]
Search of light sterile neutrinos from $W^\pm$ decays, Claudio O. Dib, Choong Sun Kim, Sebastian Tapia Araya, Phys.Rev. D101 (2020) 035022, arXiv:1903.04905.
[Dib:2019ztn]
[7-156]
Testing new physics with future COHERENT experiments, O. G. Miranda, G. Sanchez Garcia, O. Sanders, Adv.High Energy Phys. 2019 (2019) 3902819, arXiv:1902.09036.
[Miranda:2019skf]
[7-157]
Constraining the Effective Mass of Majorana Neutrino with Sterile Neutrino Mass for Inverted Ordering Spectrum, Jaydip Singh, Adv.High Energy Phys. 2019 (2019) 4863620, arXiv:1902.08575.
[Singh:2019qra]
[7-158]
On DUNE prospects in the search for sterile neutrinos, Igor Krasnov, Phys.Rev. D100 (2019) 075023, arXiv:1902.06099.
[Krasnov:2019kdc]
[7-159]
Impact of an eV-mass sterile neutrino on the neutrinoless double-beta decays: a Bayesian analysis, Guo-yuan Huang, Shun Zhou, Nucl.Phys. B (2019) 114691, arXiv:1902.03839.
[Huang:2019qvq]
[7-160]
The Neutrino Puzzle: Anomalies, Interactions, and Cosmological Tensions, Christina D. Kreisch, Francis-Yan Cyr-Racine, Olivier Dore, Phys.Rev. D101 (2020) 123505, arXiv:1902.00534.
[Kreisch:2019yzn]
[7-161]
Constraining Sterile Neutrino Interpretations of the LSND and MiniBooNE Anomalies with Coherent Neutrino Scattering Experiments, Carlos Blanco, Dan Hooper, Pedro Machado, Phys.Rev. D101 (2020) 075051, arXiv:1901.08094.
[Blanco:2019vyp]
[7-162]
Sensitivity to sterile neutrino mixing using reactor antineutrinos, S. P. Behera, D. K. Mishra, L. M. Pant, Eur.Phys.J. C79 (2019) 86, arXiv:1901.04746.
[Behera:2019hfs]
[7-163]
Diagnosing the Reactor Antineutrino Anomaly with Global Antineutrino Flux Data, C. Giunti, Y. F. Li, B. R. Littlejohn, P. T. Surukuchi, Phys.Rev. D99 (2019) 073005, arXiv:1901.01807.
[Giunti:2019qlt]
[7-164]
Effects of Violation of Equivalence Principle on UHE Neutrinos at IceCube in 4 Flavour Scenario, Madhurima Pandey, arXiv:1812.11570, 2018.
[Pandey:2018znw]
[7-165]
On $\theta_{23}$ Octant Measurement in $3+1$ Neutrino Oscillations in T2HKK, Naoyuki Haba, Yukihiro Mimura, Toshifumi Yamada, Phys.Rev. D101 (2020) 075034, arXiv:1812.10940.
[Haba:2018klh]
[7-166]
The Sterile-Active Neutrino Flavor Model: the Imprint of Dark Matter on the Electron Neutrino Spectra, Ilidio Lopes, Astrophys.J. 869 (2018) 112, arXiv:1812.07182.
[Lopes:2018ojq]
[7-167]
Is the $H_0$ tension suggesting a 4th neutrino's generation?, S. Carneiro, P. C. de Holanda, C. Pigozzo, F. Sobreira, Phys.Rev. D100 (2019) 023505, arXiv:1812.06064.
[Carneiro:2018xwq]
[7-168]
Investigating Sterile Neutrino Flux in the Solar Neutrino Data, Ankush, Rishu Verma, Gazal Sharma, B.C.Chauhan, Adv.High Energy Phys. 2019 (2019) 2598953, arXiv:1812.03634.
[Ankush:2018mkv]
[7-169]
Cosmological constraints on sterile neutrino oscillations from Planck, Alan M. Knee, Dagoberto Contreras, Douglas Scott, JCAP 2019 (2019) 039, arXiv:1812.02102.
[Knee:2018rvj]
[7-170]
Revisiting constraints on 3+1 active-sterile neutrino mixing using IceCube data, Luis Salvador Miranda, Soebur Razzaque, JHEP 1903 (2019) 203, arXiv:1812.00831.
[Miranda:2018buo]
[7-171]
Neutrinoless Double Beta Decay and Light Sterile Neutrino, C. H. Jang, B. J. Kim, Y. J. Ko, K. Siyeon, J.Korean Phys.Soc. 73 (2018) 1625-1630, arXiv:1811.09957.
[Jang:2018zug]
[7-172]
Exploring a New Degeneracy in the Sterile Neutrino Sector at Long-Baseline Experiments, Sandhya Choubey, Debajyoti Dutta, Dipyaman Pramanik, Eur.Phys.J. C79 (2019) 968, arXiv:1811.08684.
[Choubey:2018kqq]
[7-173]
Probing right handed neutrinos at the LHeC and lepton colliders using fat jet signatures, Arindam Das, Sudip Jana, Sanjoy Mandal, S. Nandi, Phys.Rev. D99 (2019) 055030, arXiv:1811.04291.
[Das:2018usr]
[7-174]
Activating the 4th Neutrino of the 3+1 Scheme, Peter B. Denton, Yasaman Farzan, Ian M. Shoemaker, Phys.Rev. D99 (2019) 035003, arXiv:1811.01310.
[Denton:2018dqq]
[7-175]
On the robustness of IceCube's bound on sterile neutrinos in the presence of non-standard interactions, Arman Esmaili, Hiroshi Nunokawa, Eur.Phys.J. C79 (2019) 70, arXiv:1810.11940.
[Esmaili:2018qzu]
[7-176]
MiniBooNE, MINOS+ and IceCube data imply a baroque neutrino sector, Jiajun Liao, Danny Marfatia, Kerry Whisnant, Phys.Rev. D99 (2019) 015016, arXiv:1810.01000.
[Liao:2018mbg]
[7-177]
Constraints on a sub-eV scale sterile neutrino from non-oscillation measurements, C. S. Kim, G. Lopez Castro, Dibyakrupa Sahoo, Phys.Rev. D98 (2018) 115021, arXiv:1809.02265.
[Kim:2018uht]
[7-178]
Inflation, (P)reheating and Neutrino Anomalies: Production of Sterile Neutrinos with Secret Interactions, Arnab Paul, Anish Ghoshal, Arindam Chatterjee, Supratik Pal, Eur.Phys.J. C79 (2019) 818, arXiv:1808.09706.
[Paul:2018njm]
[7-179]
Sterile neutrino and leptonic decays of the pseudoscalar mesons, Chong-Xing Yue, Ji-Ping Chu, Phys.Rev. D98 (2018) 055012, arXiv:1808.09139.
[Yue:2018hci]
[7-180]
A charmed search of lepton-number-violation at the LHCb experiment, Diego Milanes, Nestor Quintero, Phys.Rev. D98 (2018) 096004, arXiv:1808.06017.
[Milanes:2018aku]
[7-181]
Signature of Light Sterile Neutrinos at IceCube, Bhavesh Chauhan, Subhendra Mohanty, Phys.Rev. D98 (2018) 083021, arXiv:1808.04774.
[Chauhan:2018dkd]
[7-182]
Matter Effect of Light Sterile Neutrino: An Exact Analytical Approach, Wei Li, Jiajie Ling, Fanrong Xu, Baobiao Yue, JHEP 1810 (2018) 021, arXiv:1808.03985.
[Li:2018ezt]
[7-183]
Neutrino induced reactions in core-collapse supernovae: effects on the electron fraction, M. M. Saez, O. Civitarese, M. E. Mosquera, Int.J.Mod.Phys. D27 (2018) 1850116, arXiv:1808.03249.
[Saez:2018zsb]
[7-184]
Interference effects in reactor antineutrino oscillations, Zhi-zhong Xing, arXiv:1808.02256, 2018.
[Xing:2018zno]
[7-185]
Combined explanations of B-physics anomalies: the sterile neutrino solution, Aleksandr Azatov, Daniele Barducci, Diptimoy Ghosh, David Marzocca, Lorenzo Ubaldi, JHEP 1810 (2018) 092, arXiv:1807.10745.
[Azatov:2018kzb]
[7-186]
Constraining light sterile neutrino mass with the BICEP2/Keck Array 2014 B-mode polarization data, Shouvik Roy Choudhury, Sandhya Choubey, Eur.Phys.J. C79 (2019) 557, arXiv:1807.10294.
[RoyChoudhury:2018bsd]
[7-187]
Beta and Neutrinoless Double Beta Decays with KeV Sterile Fermions, Asmaa Abada, Alvaro Hernandez-Cabezudo, Xabier Marcano, JHEP 1901 (2019) 041, arXiv:1807.01331.
[Abada:2018qok]
[7-188]
Sterile Neutrinos with Secret Interactions - Cosmological Discord?, Xiaoyong Chu, Basudeb Dasgupta, Mona Dentler, Joachim Kopp, Ninetta Saviano, JCAP 1811 (2018) 049, arXiv:1806.10629.
[Chu:2018gxk]
[7-189]
Sterile neutrinos influence on oscillation characteristics of active neutrinos at short distances in the generalized model of neutrino mixing, V. V. Khruschov, S. V. Fomichev, Int.J.Mod.Phys. A34 (2019) 1950175, arXiv:1806.05922.
[Khruschov:2018uip]
[7-190]
Displaced vertices as probes of sterile neutrino mixing at the LHC, Giovanna Cottin, Juan Carlos Helo, Martin Hirsch, Phys.Rev. D98 (2018) 035012, arXiv:1806.05191.
[Cottin:2018nms]
[7-191]
Probing relic neutrino decays with 21 cm cosmology, Marco Chianese, Pasquale Di Bari, Kareem Farrag, Rome Samanta, Phys.Lett. B790 (2019) 64-70, arXiv:1805.11717.
[Chianese:2018luo]
[7-192]
Lepton Flavor Violating Dilepton Dijet Signatures from Sterile Neutrinos at Proton Colliders, Stefan Antusch, Eros Cazzato, Oliver Fischer, A. Hammad, Kechen Wang, JHEP 1810 (2018) 067, arXiv:1805.11400.
[Antusch:2018bgr]
[7-193]
Cosmological constraints with self-interacting sterile neutrinos, Ningqiang Song, M.C. Gonzalez-Garcia, Jordi Salvado, JCAP 1810 (2018) 055, arXiv:1805.08218.
[Song:2018zyl]
[7-194]
Active-sterile neutrino oscillations at INO-ICAL over a wide mass-squared range, Tarak Thakore, Moon Moon Devi, Sanjib Kumar Agarwalla, Amol Dighe, JHEP 1808 (2018) 022, arXiv:1804.09613.
[Thakore:2018lgn]
[7-195]
The spectroscopy of solar sterile neutrinos, Ilidio Lopes, Eur.Phys.J. C78 (2018) 4, arXiv:1804.08344.
Comment: Nice calculation, but unfortunately sterile neutrinos cannot be detected.
[Lopes:2018vec]
[7-196]
Sterile neutrinos as a possible explanation for the upward air shower events at ANITA, Guo-yuan Huang, Phys.Rev. D98 (2018) 043019, arXiv:1804.05362.
[Huang:2018als]
[7-197]
The Effect of a Light Sterile Neutrino at NO$\nu$A and DUNE, Shivani Gupta, Zachary M. Matthews, Pankaj Sharma, Anthony G. Williams, Phys.Rev. D98 (2018) 035042, arXiv:1804.03361.
[Gupta:2018qsv]
[7-198]
Degeneracy resolution capabilities of NO$\nu$A and DUNE in the presence of light sterile neutrino, Akshay Chatla, Sahithi Rudrabhatla, Bindu A. Bambah, Adv.High Energy Phys. 2018 (2018) 2547358, arXiv:1804.02818.
[Chatla:2018sos]
[7-199]
Problems With the MINOS/MINOS+ Sterile Neutrino $\nu _\mu$ Result, W. C. Louis, arXiv:1803.11488, 2018.
[Louis:2018yeg]
[7-200]
Updated global analysis of neutrino oscillations in the presence of eV-scale sterile neutrinos, Mona Dentler, Alvaro Hernandez-Cabezudo, Joachim Kopp, Pedro A. N. Machado, Michele Maltoni, Ivan Martinez-Soler, Thomas Schwetz, JHEP 1808 (2018) 010, arXiv:1803.10661.
[Dentler:2018sju]
[7-201]
Nuclear and Particle Conspiracy Solves Both Reactor Antineutrino Anomalies, Jeffrey M. Berryman, Vedran Brdar, Patrick Huber, Phys.Rev. D99 (2019) 055045, arXiv:1803.08506.
[Berryman:2018jxt]
[7-202]
Probing secret interactions of eV-scale sterile neutrinos with the diffuse supernova neutrino background, Yu Seon Jeong, Sergio Palomares-Ruiz, Mary Hall Reno, Ina Sarcevic, JCAP 1806 (2018) 019, arXiv:1803.04541.
[Jeong:2018yts]
[7-203]
IceCube bounds on sterile neutrinos above 10 eV, Mattias Blennow, Enrique Fernandez-Martinez, Julia Gehrlein, Josu Hernandez-Garcia, Jordi Salvado, Eur.Phys.J. C78 (2018) 807, arXiv:1803.02362.
[Blennow:2018hto]
[7-204]
Neutrino oscillations: ILL experiment revisited, B. K. Cogswell, D. J. Ernst, K. T. L. Ufheil, J. T. Gaglione, J. M. Malave, Phys.Rev. D99 (2019) 053003, arXiv:1802.07763.
[Cogswell:2018auu]
[7-205]
Neutron lifetime, dark matter and search for sterile neutrino, A. P. Serebrov, R. M. Samoilov, I. A. Mitropolsky, A. M. Gagarsky, arXiv:1802.06277, 2018.
[Serebrov:2018mva]
[7-206]
Exploring the Potential of Short-Baseline Physics at Fermilab, O. G. Miranda, Pedro Pasquini, M. Tortola, J. W. F. Valle, Phys.Rev. D97 (2018) 095026, arXiv:1802.02133.
[Miranda:2018yym]
[7-207]
A Sterile Neutrino Origin for the Upward Directed Cosmic Ray Shower Detected by ANITA, John F. Cherry, Ian Shoemaker, Phys.Rev. D99 (2019) 063016, arXiv:1802.01611.
[Cherry:2018rxj]
[7-208]
Model-Independent $\bar\nu_{e}$ Short-Baseline Oscillations from Reactor Spectral Ratios, S. Gariazzo, C. Giunti, M. Laveder, Y. F. Li, Phys.Lett. B782 (2018) 13-21, arXiv:1801.06467.
[Gariazzo:2018mwd]
[7-209]
Signatures of a Light Sterile Neutrino in T2HK, Sanjib Kumar Agarwalla, Sabya Sachi Chatterjee, Antonio Palazzo, JHEP 04 (2018) 091, arXiv:1801.04855.
[Agarwalla:2018nlx]
[7-210]
Search for sterile neutrinos decaying into pions at the LHC, Claudio O. Dib, C.S. Kim, Nicolas A. Neill, Xing-Bo Yuan, Phys.Rev. D97 (2018) 035022, arXiv:1801.03624.
[Dib:2018iyr]
[7-211]
Searches for light sterile neutrinos with multitrack displaced vertices, Giovanna Cottin, Juan Carlos Helo, Martin Hirsch, Phys.Rev. D97 (2018) 055025, arXiv:1801.02734.
[Cottin:2018kmq]
[7-212]
Constraining sterile neutrino cosmologies with strong gravitational lensing observations at redshift z~0.2, S. Vegetti, G. Despali, M. R. Lovell, W. Enzi, Mon.Not.Roy.Astron.Soc. 481 (2018) 3661-3669, arXiv:1801.01505.
[Vegetti:2018dly]
[7-213]
Bounds on Resonantly-Produced Sterile Neutrinos from Phase Space Densities of Milky Way Dwarf Galaxies, Mei-Yu Wang, John F. Cherry, Shunsaku Horiuchi, Louis E. Strigari, arXiv:1712.04597, 2017.
[Wang:2017hof]
[7-214]
Effective Majorana mass matrix from tau and pseudoscalar meson lepton number violating decays, Asmaa Abada, Valentina De Romeri, Michele Lucente, Ana M. Teixeira, Takashi Toma, JHEP 1802 (2018) 169, arXiv:1712.03984.
[Abada:2017jjx]
[7-215]
Prospects for detecting eV-scale sterile neutrinos from a galactic supernova, Tarso Franarin, Jonathan H. Davis, Malcolm Fairbairn, JCAP 1809 (2018) 002, arXiv:1712.03836.
[Franarin:2017jnd]
[7-216]
Search for sterile neutrinos in a universe of vacuum energy interacting with cold dark matter, Lu Feng, Jing-Fei Zhang, Xin Zhang, Phys.Dark Univ. 23 (2019) 100261, arXiv:1712.03148.
[Feng:2017usu]
[7-217]
COHERENT constraints to conventional and exotic neutrino physics, D. K. Papoulias, T. S. Kosmas, Phys.Rev. D97 (2018) 033003, arXiv:1711.09773.
[Papoulias:2017qdn]
[7-218]
Measuring the Sterile Neutrino CP Phase at DUNE and T2HK, Sandhya Choubey, Debajyoti Dutta, Dipyaman Pramanik, Eur.Phys.J. C78 (2018) 339, arXiv:1711.07464.
[Choubey:2017ppj]
[7-219]
Exploring a Non-Minimal Sterile Neutrino Model Involving Decay at IceCube and Beyond, Zander Moss, Marjon H. Moulai, Carlos A. Arguelles, Janet M. Conrad, Phys.Rev. D97 (2018) 055017, arXiv:1711.05921.
[Moss:2017pur]
[7-220]
Probing a Four Flavour vis-a-vis Three Flavour Neutrino Mixing for UHE Neutrino Signals at a 1 ${\rm Km}^2$ Detector, Madhurima Pandey, Debasish Majumdar, Amit Dutta Banik, Phys.Rev. D97 (2018) 103015, arXiv:1711.05018.
[Pandey:2017zyz]
[7-221]
Another look at the impact of an eV-mass sterile neutrino on the effective neutrino mass of neutrinoless double-beta decays, Jun-Hao Liu, Shun Zhou, Int.J.Mod.Phys. A33 (2018) 1850014, arXiv:1710.10359.
[Liu:2017ago]
[7-222]
keV-Scale Sterile Neutrino Sensitivity Estimation with Time-Of-Flight Spectroscopy in KATRIN using Self Consistent Approximate Monte Carlo, Nicholas M.N. Steinbrink, Jan D. Behrens, Susanne Mertens, Philipp C.-O. Ranitzsch, Christian Weinheimer, Eur.Phys.J. C78 (2018) 212, arXiv:1710.04939.
[Steinbrink:2017ung]
[7-223]
Measuring growth index in a universe with massive neutrinos: A revisit of the general relativity test with the latest observations, Ming-Ming Zhao, Jing-Fei Zhang, Xin Zhang, Phys.Lett. B779 (2018) 473-478, arXiv:1710.02391.
[Zhao:2017jma]
[7-224]
Effect of sterile Neutrinos and Nonstandard Interactions on the Geo-neutrino Flux, Guanwen Yan, arXiv:1709.09781, 2017.
[Yan:2017fqm]
[7-225]
Sterile Neutrinos or Flux Uncertainties? - Status of the Reactor Anti-Neutrino Anomaly, Mona Dentler, Alvaro Hernandez-Cabezudo, Joachim Kopp, Michele Maltoni, Thomas Schwetz, JHEP 1711 (2017) 099, arXiv:1709.04294.
[Dentler:2017tkw]
[7-226]
Decoherence effect in neutrinos produced in micro-quasar jets, M. E. Mosquera, O. Civitarese, JCAP 1804 (2018) 036, arXiv:1708.09714.
[Mosquera:2017vir]
[7-227]
The reactor antineutrino anomaly and low energy threshold neutrino experiments, B. C. Canas, E. A. Garces, O. G. Miranda, A. Parada, Phys.Lett. B776 (2018) 451-456, arXiv:1708.09518.
[Canas:2017umu]
[7-228]
A novel approach to neutrino mixing analysis based on singular values, K. Bielas, W. Flieger, J. Gluza, M. Gluza, Phys.Rev. D98 (2018) 053001, arXiv:1708.09196.
[Bielas:2017lok]
[7-229]
Reactor Fuel Fraction Information on the Antineutrino Anomaly, C. Giunti, X. P. Ji, M. Laveder, Y. F. Li, B. R. Littlejohn, JHEP 1710 (2017) 143, arXiv:1708.01133.
[Giunti:2017yid]
[7-230]
DUNE Sensitivities to the Mixing between Sterile and Tau Neutrinos, Pilar Coloma, David V. Forero, Stephen J. Parke, JHEP 07 (2018) 079, arXiv:1707.05348.
[Coloma:2017ptb]
[7-231]
Lepton-Jets and Low-Mass Sterile Neutrinos at Hadron Colliders, Sourabh Dube, Divya Gadkari, Arun M. Thalapillil, Phys.Rev. D96 (2017) 055031, arXiv:1707.00008.
[Dube:2017jgo]
[7-232]
Constraining sterile neutrino and dark energy with the latest cosmological observations, Lu Feng, Jing-Fei Zhang, Xin Zhang, Sci.China Phys.Mech.Astron. 61 (2018) 050411, arXiv:1706.06913.
[Feng:2017mfs]
[7-233]
Combining $\nu_e$ Appearance and $\nu_\mu$ Disappearance Channels in Light Sterile Neutrino Oscillation Searches at Fermilab's Short-Baseline Neutrino Facility, William G. S. Vinning, Andrew Blake, arXiv:1705.06561, 2017.
[Vinning:2017izb]
[7-234]
Imprints of a light Sterile Neutrino at DUNE, T2HK and T2HKK, Sandhya Choubey, Debajyoti Dutta, Dipyaman Pramanik, Phys.Rev. D96 (2017) 056026, arXiv:1704.07269.
[Choubey:2017cba]
[7-235]
Study of parameter degeneracy and hierarchy sensitivity of NO$\nu$A in presence of sterile neutrino, Monojit Ghosh, Shivani Gupta, Zachary M. Matthews, Pankaj Sharma, Anthony G. Williams, Phys.Rev. D96 (2017) 075018, arXiv:1704.04771.
[Ghosh:2017atj]
[7-236]
Cosmic microwave background constraints on secret interactions among sterile neutrinos, Francesco Forastieri et al., JCAP 1707 (2017) 038, arXiv:1704.00626.
[Forastieri:2017oma]
[7-237]
A search for sterile neutrinos in holographic dark energy cosmology: Reconciling Planck observation with the local measurement of Hubble constant, Ming-Ming Zhao, Dong-Ze He, Jing-Fei Zhang, Xin Zhang, Phys.Rev. D96 (2017) 043520, arXiv:1703.08456.
[Zhao:2017urm]
[7-238]
Statistical sensitivity on right-handed currents in presence of eV scale sterile neutrinos with KATRIN, Nicholas M. N. Steinbrink et al., JCAP 1706 (2017) 015, arXiv:1703.07667.
[Steinbrink:2017uhw]
[7-239]
GeV-scale hot sterile neutrino oscillations: a derivation of evolution equations, J. Ghiglieri, M. Laine, JHEP 1705 (2017) 132, arXiv:1703.06087.
[Ghiglieri:2017gjz]
[7-240]
A search for sterile neutrinos with the latest cosmological observations, Lu Feng, Jing-Fei Zhang, Xin Zhang, Eur.Phys.J. C77 (2017) 418, arXiv:1703.04884.
[Feng:2017nss]
[7-241]
Updated Global 3+1 Analysis of Short-BaseLine Neutrino Oscillations, S. Gariazzo, C. Giunti, M. Laveder, Y. F. Li, JHEP 1706 (2017) 135, arXiv:1703.00860.
[Gariazzo:2017fdh]
[7-242]
Searches for New Physics at the Hyper-Kamiokande Experiment, Kevin J. Kelly, Phys.Rev. D95 (2017) 115009, arXiv:1703.00448.
[Kelly:2017kch]
[7-243]
Probing light sterile neutrino signatures at reactor and Spallation Neutron Source neutrino experiments, T. S. Kosmas, D. K. Papoulias, M. Tortola, J.W.F. Valle, Phys.Rev. D96 (2017) 063013, arXiv:1703.00054.
[Kosmas:2017zbh]
[7-244]
The Dark Side of MSW: Solar Neutrinos as a Probe of Dark Matter-Neutrino Interactions, Francesco Capozzi, Ian M. Shoemaker, Luca Vecchi, JCAP 1707 (2017) 021, arXiv:1702.08464.
[Capozzi:2017auw]
[7-245]
Search for right-handed neutrinos from dark matter annihilation with gamma-rays, Miguel D. Campos, Farinaldo S. Queiroz, Carlos E. Yaguna, Christoph Weniger, JCAP 1707 (2017) 016, arXiv:1702.06145.
[Campos:2017odj]
[7-246]
Anomalies in (Semi)-Leptonic $B$ Decays $B^{\pm} \to \tau^{\pm} \nu$, $B^{\pm} \to D \tau^{\pm} \nu$ and $B^{\pm} \to D^* \tau^{\pm} \nu$, and Possible Resolution with Sterile Neutrino, G. Cvetic, Francis Halzen, C. S. Kim, Sechul Oh, Chin.Phys. C41 (2017) 113102, arXiv:1702.04335.
[Cvetic:2017gkt]
[7-247]
Echo for interaction in the dark sector, Suresh Kumar, Rafael C. Nunes, Phys.Rev. D96 (2017) 103511, arXiv:1702.02143.
[Kumar:2017dnp]
[7-248]
Prospects of Light Sterile Neutrino Oscillation and CP Violation Searches at the Fermilab Short Baseline Neutrino Facility, Davio Cianci, Andy Furmanski, Georgia Karagiorgi, Mark Ross-Lonergan, Phys.Rev. D96 (2017) 055001, arXiv:1702.01758.
[Cianci:2017okw]
[7-249]
Neutrino fluxes from a core-collapse supernova in a model with three sterile neutrinos, A. V. Yudin, D. K. Nadyozhin, V. V. Khruschov, S. V. Fomichev, Astron. Lett. 42 (2016) 800-814, arXiv:1701.04713.
[Yudin:2016zqp]
[7-250]
Cosmology and time dependent parameters induced by misaligned light scalar, Yue Zhao, Phys.Rev. D95 (2017) 115002, arXiv:1701.02735.
[Zhao:2017wmo]
[7-251]
Joint short- and long-baseline constraints on light sterile neutrinos, Francesco Capozzi, Carlo Giunti, Marco Laveder, Antonio Palazzo, Phys.Rev. D95 (2017) 033006, arXiv:1612.07764.
[Capozzi:2016vac]
[7-252]
Oscillation characteristics of active and sterile neutrinos and neutrino anomalies at short distances, V. V. Khruschov, S. V. Fomichev, O. A. Titov, Phys.Atom.Nucl. 79 (2016) 708-720, arXiv:1612.06544.
[Khruschov:2016sjl]
[7-253]
Projection effects in the strong lensing study of subhaloes, Ran Li, Carlos S. Frenk, Shaun Cole, Qiao Wang, Liang Gao, Mon.Not.Roy.Astron.Soc. 468 (2017) 1426, arXiv:1612.06227.
[Li:2016afu]
[7-254]
In-flight cLFV conversion: $e-\mu$, $e-\tau$ and $\mu-\tau$ in minimal extensions of the Standard Model with sterile fermions, A. Abada, V. De Romeri, J. Orloff, A.M. Teixeira, Eur.Phys.J. C77 (2017) 304, arXiv:1612.05548.
[Abada:2016vzu]
[7-255]
Sterile neutrinos facing kaon physics experiments, Asmaa Abada, Damir Becirevic, Olcyr Sumensari, Cedric Weiland, Renata Zukanovich Funchal, Phys.Rev. D95 (2017) 075023, arXiv:1612.04737.
[Abada:2016plb]
[7-256]
Sterile neutrino searches at future $e^-e^+$, $pp$, and $e^-p$ colliders, Stefan Antusch, Eros Cazzato, Oliver Fischer, Int.J.Mod.Phys. A32 (2017) 1750078, arXiv:1612.02728.
[Antusch:2016ejd]
[7-257]
On the IceCube Result on $\bar\nu_\mu \to \bar\nu_{s}$ Oscillations, S. T. Petcov, Int.J.Mod.Phys. A32 (2017) 1750018, arXiv:1611.09247.
[Petcov:2016iiu]
[7-258]
Discriminating sterile neutrinos and unitarity violation with CP invariants, Heinrich Pas, Philipp Sicking, Phys.Rev. D95 (2017) 075004, arXiv:1611.08450.
[Pas:2016qbg]
[7-259]
Sterile Neutrinos and Flavor Ratios in IceCube, Vedran Brdar, Joachim Kopp, Xiao-Ping Wang, JCAP 1701 (2017) 026, arXiv:1611.04598.
[Brdar:2016thq]
[7-260]
A sensitive search for unknown spectral emission lines in the diffuse X-ray background with XMM-Newton, A. Gewering-Peine, D. Horns, J.H.M.M. Schmitt, JCAP 1706 (2017) 036, arXiv:1611.01733.
[Gewering-Peine:2016yoj]
[7-261]
Cosmological constraints on exotic injection of electromagnetic energy, Vivian Poulin, Julien Lesgourgues, Pasquale D. Serpico, JCAP 1703 (2017) 043, arXiv:1610.10051.
[Poulin:2016anj]
[7-262]
MeV-scale sterile neutrino decays at the Fermilab Short-Baseline Neutrino program, Peter Ballett, Silvia Pascoli, Mark Ross-Lonergan, JHEP 1704 (2017) 102, arXiv:1610.08512.
[Ballett:2016opr]
[7-263]
Effects of active-sterile neutrino mixing during primordial nucleosynthesis, Osvaldo Civitarese, Mercedes Elisa Mosquera, Maria Manuela Saez, Int.J.Mod.Phys. E23 (2014) 1450080, arXiv:1610.05696.
[Civitarese:2014bra]
[7-264]
How Zwicky already ruled out modified gravity theories without dark matter, Theodorus Maria Nieuwenhuizen, Fortsch.Phys. 65 (2017) 1600050, arXiv:1610.01543.
[Nieuwenhuizen:2016uxv]
[7-265]
Non-Unitarity, sterile neutrinos, and Non-Standard neutrino Interactions, Mattias Blennow, Pilar Coloma, Enrique Fernandez-Martinez, Josu Hernandez-Garcia, Jacobo Lopez-Pavon, JHEP 1704 (2017) 153, arXiv:1609.08637.
[Blennow:2016jkn]
[7-266]
Dark Matter Relic Abundance and Light Sterile Neutrinos, Yi-Lei Tang, Shou-hua Zhu, JHEP 1701 (2017) 025, arXiv:1609.07841.
[Tang:2016sib]
[7-267]
Cosmological Imprints of Frozen-In Light Sterile Neutrinos, Samuel B. Roland, Bibhushan Shakya, JCAP 1705 (2017) 027, arXiv:1609.06739.
[Roland:2016gli]
[7-268]
Probing nonstandard neutrino cosmology with terrestrial neutrino experiments, Akshay Ghalsasi, David McKeen, Ann E. Nelson, Phys.Rev. D95 (2017) 115039, arXiv:1609.06326.
[Ghalsasi:2016pcj]
[7-269]
Light sterile neutrinos from a late phase transition, Luca Vecchi, Phys. Rev. D94 (2016) 113015, arXiv:1607.04161.
[Vecchi:2016lty]
[7-270]
Capabilities of long-baseline experiments in the presence of a sterile neutrino, Debajyoti Dutta, Raj Gandhi, Boris Kayser, Mehedi Masud, Suprabh Prakash, JHEP 1611 (2016) 122, arXiv:1607.02152.
[Dutta:2016glq]
[7-271]
A Combined View of Sterile-Neutrino Constraints from CMB and Neutrino Oscillation Measurements, Sarah Bridle et al., Phys.Lett. B764 (2017) 322-327, arXiv:1607.00032.
[Bridle:2016isd]
[7-272]
First Constraints on the Complete Neutrino Mixing Matrix with a Sterile Neutrino, G.H. Collin, C.A. Arguelles, J.M. Conrad, M.H. Shaevitz, Phys. Rev. Lett. 117 (2016) 221801, arXiv:1607.00011.
[Collin:2016aqd]
[7-273]
Getting the Most Neutrinos out of IsoDAR, Emilio Ciuffoli, Jarah Evslin, Hosam Mohammed, Fengyi Zhao, Maksym Deliyergiyev, Eur.Phys.J.C 77 (2017) 864, arXiv:1606.09451.
[Ciuffoli:2016mbt]
[7-274]
Pseudoscalar - sterile neutrino interactions: reconciling the cosmos with neutrino oscillations, Maria Archidiacono et al., JCAP 1608 (2016) 067, arXiv:1606.07673.
[Archidiacono:2016kkh]
[7-275]
Atmospheric neutrinos, $\nu_e-\nu_s$ oscillations, and a novel neutrino evolution equation, Evgeny Akhmedov, JHEP 1608 (2016) 153, arXiv:1606.07391.
[Akhmedov:2016hcb]
[7-276]
Breaking Be: a sterile neutrino solution to the cosmological lithium problem, Laura Salvati, Luca Pagano, Massimiliano Lattanzi, Martina Gerbino, Alessandro Melchiorri, JCAP 1608 (2016) 022, arXiv:1606.06968.
[Salvati:2016jng]
[7-277]
Big Bang Nucleosynthesis in the presence of sterile neutrinos with altered dispersion relations, Elke Aeikens, Heinrich Pas, Sandip Pakvasa, Thomas J. Weiler, Phys. Rev. D94 (2016) 113010, arXiv:1606.06695.
[Aeikens:2016rep]
[7-278]
Constraint on Matter Power Spectrum on $10^6-10^9M_\odot$ Scales from ${\large\tau_e}$, Renyue Cen, Astrophys.J. 836 (2017) 217, arXiv:1606.05930.
[Cen:2016htm]
[7-279]
Rare decays of B mesons via on-shell sterile neutrinos, Gorazd Cvetic, C.S. Kim, Phys. Rev. D94 (2016) 053001, arXiv:1606.04140.
[Cvetic:2016fbv]
[7-280]
Neutrino Oscillations With Two Sterile Neutrinos, Leonard S. Kisslinger, Int.J.Theor.Phys. 55 (2016) 4462-4468, arXiv:1606.02684.
[Kisslinger:2016vqt]
[7-281]
False Signals of CP-Invariance Violation at DUNE, Andre de Gouvea, Kevin J. Kelly, arXiv:1605.09376, 2016.
[deGouvea:2016pom]
[7-282]
Search for the sterile neutrino mixing with the ICAL detector at INO, S. P. Behera et al., Eur.Phys.J. C77 (2017) 307, arXiv:1605.08607.
[Behera:2016kwr]
[7-283]
Short-baseline neutrino oscillations, Planck, and IceCube, John F. Cherry, Alexander Friedland, Ian M. Shoemaker, arXiv:1605.06506, 2016.
[Cherry:2016jol]
[7-284]
Light sterile neutrino sensitivity of 163Ho experiments, L. Gastaldo, C. Giunti, E. M. Zavanin, JHEP 1606 (2016) 061, arXiv:1605.05497.
[Gastaldo:2016kak]
[7-285]
Octant of $\theta_{23}$ in danger with a light sterile neutrino, Sanjib Kumar Agarwalla, Sabya Sachi Chatterjee, Antonio Palazzo, Phys. Rev. Lett. 118 (2017) 031804, arXiv:1605.04299.
[Agarwalla:2016xlg]
[7-286]
Reionization and dark matter decay, Isabel M. Oldengott, Daniel Boriero, Dominik J. Schwarz, JCAP 1608 (2016) 054, arXiv:1605.03928.
[Oldengott:2016yjc]
[7-287]
Light Sterile Neutrinos, Lepton Number Violating Interactions and the LSND Anomaly, K. S. Babu, Douglas W. McKay, Irina Mocioiu, Sandip Pakvasa, Phys. Rev. D93 (2016) 113019, arXiv:1605.03625.
[Babu:2016fdt]
[7-288]
Reionisation in sterile neutrino cosmologies, Sownak Bose, Carlos S. Frenk, Hou Jun, Cedric G. Lacey, Mark R. Lovell, Mon.Not.Roy.Astron.Soc. 463 (2016) 3848-3859, arXiv:1605.03179.
[Bose:2016hlz]
[7-289]
A new scheme for short baseline electron antineutrino disappearance study, Jae Won Shin, Myung-Ki Cheoun, Toshitaka Kajino, J.Phys. G44 (2017) 09LT01, arXiv:1605.00642.
[Shin:2016mem]
[7-290]
Constraints on Sterile Neutrino Oscillations using DUNE Near Detector, Sandhya Choubey, Dipyaman Pramanik, Phys.Lett. B764 (2017) 135-141, arXiv:1604.04731.
[Choubey:2016fpi]
[7-291]
Prospects for Reconstruction of Leptonic Unitarity Quadrangle and Neutrino Oscillation Experiments, Surender Verma, Shankita Bhardwaj, Nucl. Phys. B907 (2016) 249-257, arXiv:1603.08291.
[Verma:2016vrb]
[7-292]
Physics Reach of DUNE with a Light Sterile Neutrino, Sanjib Kumar Agarwalla, Sabya Sachi Chatterjee, Antonio Palazzo, JHEP 1609 (2016) 016, arXiv:1603.03759.
[Agarwalla:2016xxa]
[7-293]
Impact of nonstandard interactions on sterile neutrino searches at IceCube, Jiajun Liao, Danny Marfatia, Phys. Rev. Lett. 117 (2016) 071802, arXiv:1602.08766.
[Liao:2016reh]
[7-294]
Neutrino oscillations in the presence of super-light sterile neutrinos, P. C. Divari, J. D. Vergados, Int.J.Mod.Phys. A31 (2016) 1650123, arXiv:1602.08690.
[Divari:2016jos]
[7-295]
Assessing the role of nuclear effects in the interpretation of the MiniBooNE low-energy anomaly, M. Ericson, M. V. Garzelli, C. Giunti, M. Martini, Phys. Rev. D93 (2016) 073008, arXiv:1602.01390.
[Ericson:2016yjn]
[7-296]
Sterile Neutrino Fits to Short Baseline Data, G. H. Collin, C. A. Arguelles, J. M. Conrad, M. H. Shaevitz, Nucl. Phys. B908 (2016) 354-365, arXiv:1602.00671.
[Collin:2016rao]
[7-297]
Discovery Potential of T2K and NOvA in the Presence of a Light Sterile Neutrino, Sanjib Kumar Agarwalla, Sabya Sachi Chatterjee, Arnab Dasgupta, Antonio Palazzo, JHEP 02 (2016) 111, arXiv:1601.05995.
[Agarwalla:2016mrc]
[7-298]
Higgs production from sterile neutrinos at future lepton colliders, Stefan Antusch, Eros Cazzato, Oliver Fischer, JHEP 1604 (2016) 189, arXiv:1512.06035.
[Antusch:2015gjw]
[7-299]
Electric Dipole Moments of Charged Leptons with Sterile Fermions, Asmaa Abada, Takashi Toma, JHEP 02 (2016) 174, arXiv:1511.03265.
[Abada:2015trh]
[7-300]
Neutrinos secretly converting to lighter particles to please both KATRIN and the cosmos, Yasaman Farzan, Steen Hannestad, JCAP 1602 (2016) 058, arXiv:1510.02201.
[Farzan:2015pca]
[7-301]
Earth matter effect on atmospheric neutrino oscillation in (3+3) model, Mushfiqur Rahman, arXiv:1510.01452, 2015.
[Rahman:2015hna]
[7-302]
Sterile neutrinos in the light of IceCube, Manfred Lindner, Werner Rodejohann, Xun-Jie Xu, JHEP 1601 (2016) 124, arXiv:1510.00666.
[Lindner:2015iaa]
[7-303]
Discovering sterile Neutrinos ligther than $M_W$ at the LHC, Claudio O. Dib, Choong Sun Kim, Phys. Rev. D92 (2015) 093009, arXiv:1509.05981.
[Dib:2015oka]
[7-304]
Checking T and CPT violation with sterile neutrino, Yogita Pant, Sujata Diwakar, Jyotsna Singh, R.B. Singh, Nucl. Phys. B909 (2016) 1079-1103, arXiv:1509.04096.
[Pant:2015rca]
[7-305]
Neutrino Physics with Accelerator Driven Subcritical Reactors, Emilio Ciuffoli, Jarah Evslin, Fengyi Zhao, JHEP 01 (2016) 004, arXiv:1509.03494.
[Ciuffoli:2015uta]
[7-306]
3-flavor and 4-flavor implications of the latest T2K and NO$\nu$A electron (anti-)neutrino appearance results, Antonio Palazzo, Phys.Lett. B757 (2016) 142-147, arXiv:1509.03148.
[Palazzo:2015gja]
[7-307]
Limits on sterile neutrino contributions to neutrinoless double beta decay, J. Barea, J. Kotila, F. Iachello, Phys. Rev. D92 (2015) 093001, arXiv:1509.01925.
[Barea:2015zfa]
[7-308]
The impact of sterile neutrinos on CP measurements at long baselines, Raj Gandhi, Boris Kayser, Mehedi Masud, Suprabh Prakash, JHEP 11 (2015) 039, arXiv:1508.06275.
[Gandhi:2015xza]
[7-309]
Right-handed neutrinos and the 2 TeV $W'$ boson, Pilar Coloma, Bogdan A. Dobrescu, Jacobo Lopez-Pavon, Phys. Rev. D92 (2015) 115023, arXiv:1508.04129.
[Coloma:2015una]
[7-310]
Appearance-Disappearance Relation in 3+$N_{s}$ Short-Baseline Neutrino Oscillations, C. Giunti, E. M. Zavanin, Mod. Phys. Lett. A31 (2016) 1650003, arXiv:1508.03172.
[Giunti:2015mwa]
[7-311]
Neutrino Oscillations With Three Active and Three Sterile Neutrinos, Leonard S. Kisslinger, Int.J.Theor.Phys. 55 (2016) 3274-3279, arXiv:1508.03027.
[Kisslinger:2015ita]
[7-312]
Sterile neutrinos with pseudoscalar self-interactions and cosmology, Maria Archidiacono, Steen Hannestad, Rasmus Sloth Hansen, Thomas Tram, Phys. Rev. D93 (2016) 045004, arXiv:1508.02504.
[Archidiacono:2015oma]
[7-313]
Secret Interactions of Sterile Neutrinos and MeV-scale gauge boson, Zahra Tabrizi, O. L. G. Peres, Phys. Rev. D93 (2016) 053003, arXiv:1507.06486.
[Tabrizi:2015bba]
[7-314]
A Sterile Neutrino at DUNE, Jeffrey M. Berryman, Andre de Gouvea, Kevin J. Kelly, Andrew Kobach, Phys. Rev. D92 (2015) 073012, arXiv:1507.03986.
[Berryman:2015nua]
[7-315]
Active-sterile neutrino oscillations in the early Universe with full collision terms, Steen Hannestad, Rasmus Sloth Hansen, Thomas Tram, Yvonne Y. Y. Wong, JCAP 1508 (2015) 019, arXiv:1506.05266.
[Hannestad:2015tea]
[7-316]
Neutrino pair and gamma beams from circulating excited ions, M. Yoshimura, N. Sasao, Phys. Rev. D92 (2015) 073015, arXiv:1505.07572.
[Yoshimura:2015rva]
[7-317]
Compact Neutrino Source, John LoSecco, Phys. Rev. D92 (2015) 033007, arXiv:1505.04156.
[LoSecco:2015hha]
[7-318]
Sterile Neutrinos with Secret Interactions - Lasting Friendship with Cosmology, Xiaoyong Chu, Basudeb Dasgupta, Joachim Kopp, JCAP 1510 (2015) 011, arXiv:1505.02795.
[Chu:2015ipa]
[7-319]
On the search for CPT violation in the leptonic sector by means of neutrino oscillometry, Michail V Smirnov, Kai K Loo, Yuri N Novikov, Wladyslaw H Trzaska, Michael Wurm, Nucl. Phys. B900 (2015) 104-114, arXiv:1505.02550.
[Smirnov:2015rha]
[7-320]
Predictions for Neutrinoless Double-Beta Decay in the 3+1 Sterile Neutrino Scenario, C. Giunti, E. M. Zavanin, JHEP 07 (2015) 171, arXiv:1505.00978.
[Giunti:2015kza]
[7-321]
Constraints on secret neutrino interactions after Planck, Francesco Forastieri, Massimiliano Lattanzi, Paolo Natoli, JCAP 1507 (2015) 014, arXiv:1504.04999.
[Forastieri:2015paa]
[7-322]
Low reheating temperatures in monomial and binomial inflationary potentials, Thomas Rehagen, Graciela B. Gelmini, JCAP 1506 (2015) 039, arXiv:1504.03768.
[Rehagen:2015zma]
[7-323]
A Combined Limit on the Neutrino Mass from Neutrinoless Double-Beta Decay and Constraints on Sterile Majorana Neutrinos, Pawel Guzowski et al., Phys. Rev. D92 (2015) 012002, arXiv:1504.03600.
[Guzowski:2015saa]
[7-324]
Multilepton and Lepton Jet Probes of Sub-Weak-Scale Right-Handed Neutrinos, Eder Izaguirre, Brian Shuve, Phys. Rev. D91 (2015) 093010, arXiv:1504.02470.
[Izaguirre:2015pga]
[7-325]
Consistent analysis of the $\nu_\mu\to \nu_e$ sterile neutrinos searches of ICARUS and OPERA, Antonio Palazzo, Phys. Rev. D91 (2015) 091301, arXiv:1503.03966.
[Palazzo:2015wea]
[7-326]
Some comments on high precision study of neutrino oscillations, S.M. Bilenky, Phys. Part. Nucl. Lett. 12 (2015) 453-461, arXiv:1502.06158.
[Bilenky:2015xwa]
[7-327]
Confronting the Stochastic Neutrino Mixing Mechanism and the sterile neutrino hypothesis as a solution to the short baseline neutrino anomalies, E. M. Zavanin, M. M. Guzzo, P. C. de Holanda, O. L. G. Peres, Phys. Rev. D91 (2015) 113009, arXiv:1502.05948.
[Zavanin:2015oia]
[7-328]
Probing $f(R)$ cosmology with sterile neutrinos via measurements of scale-dependent growth rate of structure, Yun-He Li, Jing-Fei Zhang, Xin Zhang, Phys.Lett. B744 (2015) 213-217, arXiv:1502.01136.
[Li:2015poa]
[7-329]
Effect of cross-section models on the validity of sterile neutrino mixing limits, Patrick Stowell, Callum Wilkinson, Susan Cartwright, arXiv:1501.02142, 2015.
[Stowell:2015ska]
[7-330]
More Is Different: Reconciling eV Sterile Neutrinos and Cosmological Mass Bounds, Yong Tang, Phys. Lett. B750 (2015) 201-208, arXiv:1501.00059.
[Tang:2014yla]
[7-331]
Imprints of CP-violating phases induced by sterile neutrinos in T2K, N. Klop, A. Palazzo, Phys. Rev. D91 (2015) 073017, arXiv:1412.7524.
[Klop:2014ima]
[7-332]
Light Sterile Neutrinos and Inflationary Freedom, S. Gariazzo, C. Giunti, M. Laveder, JCAP 1504 (2015) 023, arXiv:1412.7405.
[Gariazzo:2014dla]
[7-333]
Indirect searches for sterile neutrinos at a high-luminosity Z-factory, A. Abada, V. De Romeri, S. Monteil, J. Orloff, A. M. Teixeira, JHEP 1504 (2015) 051, arXiv:1412.6322.
[Abada:2014cca]
[7-334]
Enhancement of the sterile neutrinos yield at high matter density and at increasing the medium neutronization, V. V. Khruschov, A. V. Yudin, D. K. Nadyozhin, S. V. Fomichev, Astron. Lett. 41 (2015) 260-266, arXiv:1412.6262.
[Khruschov:2014xza]
[7-335]
Cosmology based on $f(R)$ gravity with ${\cal O}(1)$ eV sterile neutrino, A. S. Chudaykin, D. S. Gorbunov, A. A. Starobinsky, R. A. Burenin, JCAP 1505 (2015) 004, arXiv:1412.5239.
[Chudaykin:2014oia]
[7-336]
Testing Tensor-Vector-Scalar Theory with latest cosmological observations, Xiao-dong Xu, Bin Wang, Pengjie Zhang, Phys. Rev. D92 (2015) 083505, arXiv:1412.4073.
[Xu:2014doa]
[7-337]
CP-Invariance Violation at Short-Baseline Experiments in 3+1 Scenarios, Andre de Gouvea, Kevin J. Kelly, Andrew Kobach, Phys. Rev. D91 (2015) 053005, arXiv:1412.1479.
[deGouvea:2014aoa]
[7-338]
Majorana Neutrinos Production at LHeC in an Effective Approach, Lucia Duarte, Gabriel A. Gonzalez-Sprinberg, Oscar Alfredo Sampayo, Phys. Rev. D91 (2015) 053007, arXiv:1412.1433.
[Duarte:2014zea]
[7-339]
Radiative Emission of Neutrino Pairs in Atoms and Light Sterile Neutrinos, D. N. Dinh, S. T. Petcov, Phys.Lett. B742 (2015) 107-116, arXiv:1411.7459.
[Dinh:2014toa]
[7-340]
Probing new physics scenarios in accelerator and reactor neutrino experiments, A. Di Iura, I. Girardi, D. Meloni, J. Phys. G42 (2015) 065003, arXiv:1411.5330.
[DiIura:2014csa]
[7-341]
The Case for Muon-based Neutrino Beams, Patrick Huber, Alan Bross, Mark Palmer, arXiv:1411.0629, 2014.
[Huber:2014nga]
[7-342]
Wavelet Approach to Search for Sterile Neutrinos in Tritium $\beta$-Decay Spectra, S. Mertens et al., Phys. Rev. D91 (2015) 042005, arXiv:1410.7684.
[Mertens:2014osa]
[7-343]
Tension between secret sterile neutrino interactions and cosmological neutrino mass bounds, Alessandro Mirizzi, Gianpiero Mangano, Ofelia Pisanti, Ninetta Saviano, Phys. Rev. D91 (2015) 025019, arXiv:1410.1385.
[Mirizzi:2014ama]
[7-344]
Tension between the power spectrum of density perturbations measured on large and small scales, Richard A. Battye, Tom Charnock, Adam Moss, Phys. Rev. D91 (2015) 103508, arXiv:1409.2769.
[Battye:2014qga]
[7-345]
Unveiling secret interactions among sterile neutrinos with big-bang nucleosynthesis, Ninetta Saviano, Ofelia Pisanti, Gianpiero Mangano, Alessandro Mirizzi, Phys. Rev. D90 (2014) 113009, arXiv:1409.1680.
[Saviano:2014esa]
[7-346]
Neutrino Oscillations With Recently Measured Sterile-Active Neutrino Mixing Angle, Leonard S. Kisslinger, Int.J.Theor.Phys. 53 (2014) 3201, arXiv:1409.1610.
[Kisslinger:2014xta]
[7-347]
Sensitivity of Next-Generation Tritium Beta-Decay Experiments for keV-Scale Sterile Neutrinos, S. Mertens et al., JCAP 1502 (2015) 020, arXiv:1409.0920.
[Mertens:2014nha]
[7-348]
Solar neutrino physics with low-threshold dark matter detectors, J. Billard, L. Strigari, E. Figueroa-Feliciano, Phys. Rev. D91 (2015) 095023, arXiv:1409.0050.
[Billard:2014yka]
[7-349]
Sterile Neutrinos in Neutrinoless Double Beta Decay: An Update, Amand Faessler, Marcela Gonzalez, Sergey Kovalenko, Fedor Simkovic, Phys. Rev. D90 (2014) 096010, arXiv:1408.6077.
[Faessler:2014kka]
[7-350]
Cosmic Discordance: Are Planck CMB and CFHTLenS weak lensing measurements out of tune?, Niall MacCrann, Joe Zuntz, Sarah Bridle, Bhuvnesh Jain, Matthew R. Becker, Mon.Not.Roy.Astron.Soc. 451 (2015) 2877, arXiv:1408.4742.
[MacCrann:2014wfa]
[7-351]
Measuring growth index in a universe with sterile neutrinos, Jing-Fei Zhang, Yun-He Li, Xin Zhang, Phys.Lett. B739 (2014) 102-105, arXiv:1408.4603.
[Zhang:2014lfa]
[7-352]
Non-Detection of X-Ray Emission From Sterile Neutrinos in Stacked Galaxy Spectra, Michael E. Anderson, Eugene Churazov, Joel N. Bregman, Mon. Not. Roy. Astron. Soc. 452 (2015) 3905, arXiv:1408.4115.
[Anderson:2014tza]
[7-353]
Four-Neutrino Analysis of 1.5 km Baseline Reactor Antineutrino Oscillations, Sin Kyu Kang, Yeong-Duk Kim, Young-Ju Ko, Kim Siyeon, Adv.High Energy Phys. 2013 (2013) 138109, arXiv:1408.3211.
[Kang:2013zma]
[7-354]
Revisiting cosmological bounds on sterile neutrinos, Aaron C. Vincent, Enrique Fernandez Martinez, Pilar Hernandez, Massimiliano Lattanzi, Olga Mena, JCAP 1504 (2015) 006, arXiv:1408.1956.
[Vincent:2014rja]
[7-355]
Sterile neutrinos at LBNE, David Hollander, Irina Mocioiu, Phys. Rev. D91 (2015) 013002, arXiv:1408.1749.
[Hollander:2014iha]
[7-356]
Neutrinos and dark energy after Planck and BICEP2: data consistency tests and cosmological parameter constraints, Jing-Fei Zhang, Jia-Jia Geng, Xin Zhang, JCAP 1410 (2014) 044, arXiv:1408.0481.
[Zhang:2014ifa]
[7-357]
The Not-So-Sterile 4th Neutrino: Constraints on New Gauge Interactions from Neutrino Oscillation Experiments, Joachim Kopp, Johannes Welter, JHEP 1412 (2014) 104, arXiv:1408.0289.
[Kopp:2014fha]
[7-358]
Non-unitarity of the leptonic mixing matrix: Present bounds and future sensitivities, Stefan Antusch, Oliver Fischer, JHEP 1410 (2014) 94, arXiv:1407.6607.
[Antusch:2014woa]
[7-359]
Single photon events from neutral current interactions at MiniBooNE, E. Wang, L. Alvarez-Ruso, J. Nieves, Phys.Lett. B740 (2015) 16-22, arXiv:1407.6060.
[Wang:2014nat]
[7-360]
CL$_s$ Method at Gaussian Limit to Present Searches, X. Qian, A. Tan, J. J. Ling, Y. Nakajima, C. Zhang, Nucl.Instrum.Meth. A827 (2016) 63, arXiv:1407.5052.
[Qian:2014nha]
[7-361]
Statistical tests of sterile neutrinos using cosmology and short-baseline data, Johannes Bergstrom, M. C. Gonzalez-Garcia, V. Niro, J. Salvado, JHEP 1410 (2014) 104, arXiv:1407.3806.
[Bergstrom:2014fqa]
[7-362]
Searching for sterile neutrinos at the ESS$\nu$SB, Mattias Blennow, Pilar Coloma, Enrique Fernandez-Martinez, JHEP 1412 (2014) 120, arXiv:1407.1317.
[Blennow:2014fqa]
[7-363]
Flavor Ratios and Mass Hierarchy at Neutrino Telescopes, Lingjun Fu, Chiu Man Ho, arXiv:1407.1090, 2014.
[Fu:2014gja]
[7-364]
Effect of steriles states on lepton magnetic moments and neutrinoless double beta decay, A. Abada, V. De Romeri, A.M. Teixeira, JHEP 1409 (2014) 074, arXiv:1406.6978.
[Abada:2014nwa]
[7-365]
Helicitogenesis: WIMPy baryogenesis with sterile neutrinos and other realizations, J. Racker, N. Rius, JHEP 1411 (2014) 163, arXiv:1406.6105.
[Racker:2014uga]
[7-366]
Combining dark matter detectors and electron-capture sources to hunt for new physics in the neutrino sector, Pilar Coloma, Patrick Huber, Jonathan M. Link, JHEP 1411 (2014) 042, arXiv:1406.4914.
[Coloma:2014hka]
[7-367]
The quest for neutrinoless double beta decay: Pseudo-Dirac, Majorana and sterile neutrinos, A. Meroni, E. Peinado, Phys. Rev. D90 (2014) 053002, arXiv:1406.3990.
[Meroni:2014tba]
[7-368]
Daughters mimic sterile neutrinos (almost!) perfectly, Jasper Hasenkamp, JCAP 1409 (2014) 048, arXiv:1405.6736.
[Hasenkamp:2014hma]
[7-369]
Constraining Sterile Neutrinos Using Reactor Neutrino Experiments, Ivan Girardi, Davide Meloni, Tommy Ohlsson, He Zhang, Shun Zhou, JHEP 08 (2014) 057, arXiv:1405.6540.
[Girardi:2014wea]
[7-370]
Sterile neutrino oscillations in core-collapse supernova simulations, MacKenzie L. Warren, Matthew Meixner, Grant Mathews, Jun Hidaka, Toshitaka Kajino, Phys. Rev. D90 (2014) 103007, arXiv:1405.6101.
[Warren:2014qza]
[7-371]
Tilt of primordial gravitational wave spectrum in a universe with sterile neutrinos, Yun-He Li, Jing-Fei Zhang, Xin Zhang, Sci.China Phys.Mech.Astron. 57 (2014) 1455-1459, arXiv:1405.0570.
[Li:2014dja]
[7-372]
Cosmological Invisible Decay of Light Sterile Neutrinos, S. Gariazzo, C. Giunti, M. Laveder, arXiv:1404.6160, 2014.
[Gariazzo:2014pja]
[7-373]
No new cosmological concordance with massive sterile neutrinos, Boris Leistedt, Hiranya V. Peiris, Licia Verde, Phys. Rev. Lett. 113 (2014) 041301, arXiv:1404.5950.
[Leistedt:2014sia]
[7-374]
Cosmology with self-interacting sterile neutrinos and dark matter - A pseudoscalar model, Maria Archidiacono, Steen Hannestad, Rasmus Sloth Hansen, Thomas Tram, Phys. Rev. D91 (2015) 065021, arXiv:1404.5915.
[Archidiacono:2014nda]
[7-375]
Cosmological constraints on neutrinos after BICEP2, Jing-Fei Zhang, Yun-He Li, Xin Zhang, Eur.Phys.J. C74 (2014) 2954, arXiv:1404.3598.
[Zhang:2014nta]
[7-376]
Light sterile neutrinos after BICEP-2, Maria Archidiacono, Nicolao Fornengo, Stefano Gariazzo, Carlo Giunti, Steen Hannestad, Marco Laveder, JCAP 1406 (2014) 031, arXiv:1404.1794.
[Archidiacono:2014apa]
[7-377]
Neutrinos help reconcile Planck measurements with both Early and Local Universe, Cora Dvorkin, Mark Wyman, Douglas H. Rudd, Wayne Hu, Phys. Rev. D90 (2014) 083503, arXiv:1403.8049.
[Dvorkin:2014lea]
[7-378]
Using strong intense lasers to probe sterile neutrinos, Pouya Bakhti, Rohoollah Mohammadi, She-Sheng Xue, arXiv:1403.7327, 2014.
[Bakhti:2014zya]
[7-379]
Sterile neutrinos help reconcile the observational results of primordial gravitational waves from Planck and BICEP2, Jing-Fei Zhang, Yun-He Li, Xin Zhang, Phys.Lett. B740 (2015) 359-363, arXiv:1403.7028.
[Zhang:2014dxk]
[7-380]
Time evolution of cascade decay, Daniel Boyanovsky, Louis Lello, New J. Phys. 16 (2014) 063050, arXiv:1403.6366.
[Boyanovsky:2014uya]
[7-381]
Primordial Li Reduction Induced by a Long-lived MeV Sterile Neutrino, Hiroyuki Ishida, Motohiko Kusakabe, Hiroshi Okada, Phys. Rev. D90 (2014) 083519, arXiv:1403.5995.
[Ishida:2014wqa]
[7-382]
Constraining new physics scenarios in neutrino oscillations from Daya Bay data, I. Girardi, D. Meloni, Phys. Rev. D90 (2014) 073011, arXiv:1403.5507.
[Girardi:2014gna]
[7-383]
Relic Neutrinos, thermal axions and cosmology in early 2014, Elena Giusarma, Eleonora Di Valentino, Massimiliano Lattanzi, Alessandro Melchiorri, Olga Mena, Phys. Rev. D90 (2014) 043507, arXiv:1403.4852.
[Giusarma:2014zza]
[7-384]
Comment on lifetime of sterile neutrinos and the effect on detection of rare meson decays $M^+ \to {M'}^- \ell^+ \ell^+$, Claudio O. Dib, C.S. Kim, Phys. Rev. D89 (2014) 077301, arXiv:1403.1985.
[Dib:2014iga]
[7-385]
On the keV sterile neutrino search in electron capture, P. E. Filianin et al., J. Phys. G41 (2014) 095004, arXiv:1402.4400.
[Filianin:2014gaa]
[7-386]
Impact of sterile neutrinos on the early time flux from a galactic supernova, Arman Esmaili, O. L. G. Peres, Pasquale Dario Serpico, Phys. Rev. D90 (2014) 033013, arXiv:1402.1453.
[Esmaili:2014gya]
[7-387]
Effects of kination and scalar-tensor cosmologies on sterile neutrinos, Thomas Rehagen, Graciela B. Gelmini, JCAP 1406 (2014) 044, arXiv:1402.0607.
[Rehagen:2014vna]
[7-388]
Mass characteristics of active and sterile neutrinos in a phenomenological (3+1+2)-model, N. Yu. Zysina, S. V. Fomichev, V. V. Khruschov, Phys.Atom.Nucl. 77 (2014) 890-900, arXiv:1401.6306.
[Zysina:2014kqa]
[7-389]
Search for Sub-eV Sterile Neutrinos in the Precision Multiple Baselines Reactor Antineutrino Oscillation Experiments, Shu Luo, Nucl. Phys. B899 (2015) 312-327, arXiv:1401.0292.
[Luo:2014vha]
[7-390]
GSI Oscillations as Laboratory for Testing of New Physics, A. N. Ivanov, P. Kienle, arXiv:1312.5206, 2013.
[Ivanov:2013isa]
[7-391]
Sterile neutrinos in leptonic and semileptonic decays, A. Abada, A.M. Teixeira, A. Vicente, C. Weiland, JHEP 1402 (2014) 091, arXiv:1311.2830.
[Abada:2013aba]
[7-392]
Low-scale seesaw models versus $N_{\rm eff}$, P. Hernandez, M. Kekic, J. Lopez-Pavon, Phys. Rev. D89 (2014) 073009, arXiv:1311.2614.
[Hernandez:2013lza]
[7-393]
Detection of ultra high energy neutrinos by IceCube: Sterile neutrino scenario, Subhash Rajpoot, Sarira Sahu, Hsi Ching Wang, Eur.Phys.J. C74 (2014) 2936, arXiv:1310.7075.
[Rajpoot:2013dha]
[7-394]
A menage a trois of eV-scale sterile neutrinos, cosmology, and structure formation, Basudeb Dasgupta, Joachim Kopp, Phys. Rev. Lett. 112 (2014) 031803, arXiv:1310.6337.
[Dasgupta:2013zpn]
[7-395]
The Effect of Cancellation in Neutrinoless Double Beta Decay, Silvia Pascoli, Manimala Mitra, Steven Wong, Phys. Rev. D90 (2014) 093005, arXiv:1310.6218.
[Pascoli:2013fiz]
[7-396]
How secret interactions can reconcile sterile neutrinos with cosmology, Steen Hannestad, Rasmus Sloth Hansen, Thomas Tram, Phys. Rev. Lett. 112 (2014) 031802, arXiv:1310.5926.
[Hannestad:2013ana]
[7-397]
Active and sterile neutrino oscillations inside the Sun in a phenomenological (3+1+2)-model, V. V. Khruschov, S. V. Fomichev, arXiv:1310.5817, 2013.
[Khruschov:2013rma]
[7-398]
Sterile Plus Active Neutrinos and Neutrino Oscillations, Leonard S. Kisslinger, Int.J.Theor.Phys. 53 (2014) 3201-3207, arXiv:1309.4983.
[Kisslinger:2013sba]
[7-399]
Reanalysis of the Reactor Neutrino Anomaly, A.C. Hayes, J.L. Friar, G.T. Garvey, Guy Jonkmans, Phys. Rev. Lett. 112 (2014) 202501, arXiv:1309.4146.
[Hayes:2013wra]
[7-400]
Light Sterile Neutrinos in Cosmology and Short-Baseline Oscillation Experiments, S. Gariazzo, C. Giunti, M. Laveder, JHEP 1311 (2013) 211, arXiv:1309.3192.
[Gariazzo:2013gua]
[7-401]
Using MiniBooNE neutral current elastic cross section results to constrain 3+1 sterile neutrino models, Callum Wilkinson, Susan Cartwright, Lee Thompson, JHEP 1401 (2014) 064, arXiv:1309.1081.
[Wilkinson:2013mda]
[7-402]
Probing light sterile neutrinos in medium baseline reactor experiments, Arman Esmaili, Ernesto Kemp, O. L. G. Peres, Zahra Tabrizi, Phys. Rev. D88 (2013) 073012, arXiv:1308.6218.
[Esmaili:2013yea]
[7-403]
Constraints on very light sterile neutrinos from $\theta_{13}$-sensitive reactor experiments, Antonio Palazzo, JHEP 1310 (2013) 172, arXiv:1308.5880.
[Palazzo:2013bsa]
[7-404]
Evidence for massive neutrinos from CMB and lensing observations, Richard A. Battye, Adam Moss, Phys. Rev. Lett. 112 (2014) 051303, arXiv:1308.5870.
[Battye:2013xqa]
[7-405]
Neutrinoless Double Beta Decay in the Presence of Light Sterile Neutrinos, Ivan Girardi, Aurora Meroni, S. T. Petcov, JHEP 1311 (2013) 146, arXiv:1308.5802.
[Girardi:2013zra]
[7-406]
Unitarity Tests of the Neutrino Mixing Matrix, X. Qian, C. Zhang, M. Diwan, P. Vogel, arXiv:1308.5700, 2013.
[Qian:2013ora]
[7-407]
A Pragmatic View of Short-Baseline Neutrino Oscillations, C. Giunti, M. Laveder, Y. F. Li, H.W. Long, Phys. Rev. D88 (2013) 073008, arXiv:1308.5288.
[Giunti:2013aea]
[7-408]
A new life for sterile neutrinos: resolving inconsistencies using hot dark matter, Jan Hamann, Jasper Hasenkamp, JCAP 1310 (2013) 044, arXiv:1308.3255.
[Hamann:2013iba]
[7-409]
Precision measures of the primordial abundance of deuterium, Ryan Cooke, Max Pettini, Regina A. Jorgenson, Michael T. Murphy, Charles C. Steidel, Astrophys. J. 781 (2014) 31, arXiv:1308.3240.
[Cooke:2013cba]
[7-410]
Constraining Super-light Sterile Neutrino Scenario by JUNO and RENO-50, Pouya Bakhti, Yasaman Farzan, JHEP 1310 (2013) 200, arXiv:1308.2823.
[Bakhti:2013ora]
[7-411]
Primordial 4He abundance: a determination based on the largest sample of HII regions with a methodology tested on model HII regions, Y.I. Izotov, G. Stasinska, N.G. Guseva, Mon.Not.Roy.Astron.Soc. 445 (2014) 778-793, arXiv:1308.2100.
[Izotov:2014fga]
[7-412]
Sterile neutrinos, dark matter, and resonant effects in ultra high energy regimes, O. G. Miranda, C. A. Moura, A. Parada, Phys.Lett. B744 (2015) 55, arXiv:1308.1408.
[Miranda:2013wla]
[7-413]
Contamination of Dark Matter Experiments from Atmospheric Magnetic Dipoles, A. Bueno, M. Masip, P. Sanchez-Lucas, N. Setzer, Phys. Rev. D88 (2013) 073010, arXiv:1308.0011.
[Bueno:2013mfa]
[7-414]
$\nu\Lambda$CDM: Neutrinos reconcile Planck with the Local Universe, Mark Wyman, Douglas H. Rudd, R. Ali Vanderveld, Wayne Hu, Phys. Rev. Lett. 112 (2014) 051302, arXiv:1307.7715.
[Wyman:2013lza]
[7-415]
Restricting the LSND and MiniBooNE sterile neutrinos with the IceCube atmospheric neutrino data, Arman Esmaili, Alexei Yu. Smirnov, JHEP 1312 (2013) 014, arXiv:1307.6824.
[Esmaili:2013vza]
[7-416]
(Lack of) Cosmological evidence for dark radiation after Planck, Licia Verde, Stephen M. Feeney, Daniel J. Mortlock, Hiranya V. Peiris, JCAP 1309 (2013) 013, arXiv:1307.2904.
[Verde:2013cqa]
[7-417]
Multiple Detectors for a Short-Baseline Neutrino Oscillation Search Near Reactors, K. M. Heeger, B. R. Littlejohn, H. P. Mumm, arXiv:1307.2859, 2013.
[Heeger:2013ema]
[7-418]
Day-Night Asymmetries in Active-Sterile Solar Neutrino Oscillations, H.W. Long, Y. F. Li, C. Giunti, JHEP 1308 (2013) 056, arXiv:1306.4051.
[Long:2013ota]
[7-419]
Deficit of reactor antineutrinos at distances smaller than 100 m and inverse beta-decay, A. N. Ivanov et al., Phys. Rev. C88, 055501 (2013) 055501, arXiv:1306.1995.
[Ivanov:2013cga]
[7-420]
Are Light Sterile Neutrinos Consistent with Supernova Explosions?, Meng-Ru Wu, Tobias Fischer, Gabriel Martinez-Pinedo, Yong-Zhong Qian, Phys. Rev. D89 (2014) 061303, arXiv:1305.2382.
[Wu:2013gxa]
[7-421]
Implication of a vanishing element in 3+1 Scenario, Monojit Ghosh, Srubabati Goswami, Shivani Gupta, C. S. Kim, Phys. Rev. D88 (2013) 033009, arXiv:1305.0180.
[Ghosh:2013nya]
[7-422]
Dark Radiation after Planck, Najla Said, Eleonora Di Valentino, Martina Gerbino, Phys. Rev. D88 (2013) 023513, arXiv:1304.6217.
[Said:2013hta]
[7-423]
Dark Radiation candidates after Planck, Eleonora Di Valentino, Alessandro Melchiorri, Olga Mena, JCAP 1311 (2013) 018, arXiv:1304.5981.
[Valentino:2013wha]
[7-424]
CP-violating Phases in Active-Sterile Solar Neutrino Oscillations, H.W. Long, Y. F. Li, C. Giunti, Phys. Rev. D 87, 113004 (2013) 113004, arXiv:1304.2207.
[Long:2013hwa]
[7-425]
Sterile neutrinos: the necessity for a 5 sigma definitive clarification, Carlo Rubbia, Alberto Guglielmi, Francesco Pietropaolo, Paola Sala, arXiv:1304.2047, 2013.
[Rubbia:2013ywa]
[7-426]
Testing lepton flavor universality in terms of data of BES III and charm-tau factory, Bin Wang, Ming-Gang Zhao, Ke-Sheng Sun, Xue-Qian Li, Chin.Phys. C37 (2013) 073101, arXiv:1304.1290.
[Wang:2013hka]
[7-427]
Dark Radiation or Warm Dark Matter from long lived particle decays in the light of Planck, Pasquale Di Bari, Stephen F. King, Alexander Merle, Phys.Lett. B724 (2013) 77-83, arXiv:1303.6267.
[DiBari:2013dna]
[7-428]
The strongest bounds on active-sterile neutrino mixing after Planck data, Alessandro Mirizzi, Gianpiero Mangano, Ninetta Saviano, Enrico Borriello, Carlo Giunti, Gennaro Miele, Ofelia Pisanti, Phys. Lett. B726 (2013) 8-14, arXiv:1303.5368. http://www.sciencedirect.com/science/article/pii/S0370269313006412.
[Mirizzi:2013kva]
[7-429]
The importance of local measurements for cosmology, Licia Verde, Raul Jimenez, Stephen Feeney, Phys.Dark Univ. 2 (2013) 65-71, arXiv:1303.5341.
[Verde:2013fva]
[7-430]
Cosmology with sterile neutrino masses from oscillation experiments, Jostein R. Kristiansen, Oystein Elgaroy, Carlo Giunti, Marco Laveder, arXiv:1303.4654, 2013.
[Kristiansen:2013mza]
[7-431]
Constraints on electromagnetic properties of sterile neutrinos from MiniBooNE results, Alexander Radionov, Phys. Rev. D88 (2013) 015016, arXiv:1303.4587.
[Radionov:2013mca]
[7-432]
Light inflaton after LHC8 and WMAP9 results, F. Bezrukov, D. Gorbunov, JHEP 1307 (2013) 140, arXiv:1303.4395.
[Bezrukov:2013fca]
[7-433]
Exploring $\nu_{\tau}-\nu_{s}$ mixing with cascade events in DeepCore, Arman Esmaili, Francis Halzen, O. L. G. Peres, JCAP 1307 (2013) 048, arXiv:1303.3294.
[Esmaili:2013cja]
[7-434]
Sterile Neutrino Oscillations: The Global Picture, Joachim Kopp, Pedro A. N. Machado, Michele Maltoni, Thomas Schwetz, JHEP 1305 (2013) 050, arXiv:1303.3011.
[Kopp:2013vaa]
[7-435]
Reactor Antineutrino Anomaly with known $\theta_{13}$, C. Zhang, X. Qian, P. Vogel, Phys. Rev. D87 (2013) 073018, arXiv:1303.0900.
[Zhang:2013ela]
[7-436]
A potential sterile neutrino search using a two-reactor/one-detector configuration, M. Bergevin, C. Grant, R. Svoboda, arXiv:1303.0310, 2013.
[Bergevin:2013nea]
[7-437]
Can active-sterile neutrino oscillations lead to chaotic behavior of the cosmological lepton asymmetry?, Steen Hannestad, Rasmus Sloth Hansen, Thomas Tram, JCAP 1304 (2013) 032, arXiv:1302.7279.
[Hannestad:2013pha]
[7-438]
Sterile Neutrinos: Cosmology vs Short-BaseLine Experiments, Maria Archidiacono, Nicolao Fornengo, Carlo Giunti, Steen Hannestad, Alessandro Melchiorri, Phys. Rev. D87 (2013) 125034, arXiv:1302.6720. http://link.aps.org/doi/10.1103/PhysRevD.87.125034.
[Archidiacono:2013xxa]
[7-439]
Meter-baseline tests of sterile neutrinos at Daya Bay, Y. Gao, D. Marfatia, Phys.Lett. B723 (2013) 164-167, arXiv:1302.5725.
[Gao:2013tha]
[7-440]
Influence of a keV sterile neutrino on neutrino-less double beta decay - how things changed in the recent years, Alexander Merle, Viviana Niro, Phys. Rev. D88 (2013) 113004, arXiv:1302.2032.
[Merle:2013ibc]
[7-441]
Multi-momentum and multi-flavour active-sterile neutrino oscillations in the early universe: role of neutrino asymmetries and effects on nucleosynthesis, Ninetta Saviano et al., Phys. Rev. D87 (2013) 073006, arXiv:1302.1200.
[Saviano:2013ktj]
[7-442]
Is there evidence for additional neutrino species from cosmology?, Stephen M. Feeney, Hiranya V. Peiris, Licia Verde, JCAP 1304 (2013) 036, arXiv:1302.0014.
[Feeney:2013wp]
[7-443]
Tickling the CMB damping tail: scrutinizing the tension between the ACT and SPT experiments, Eleonora Di Valentino et al., Phys. Rev. D88 (2013) 023501, arXiv:1301.7343.
[DiValentino:2013mt]
[7-444]
Astrophysical neutrino flavor ratios in the presence of sterile neutrinos, D. Hollander, arXiv:1301.5313, 2013.
[Hollander:2013im]
[7-445]
Possible indication for non-zero neutrino mass and additional neutrino species from cosmological observations, R. A. Burenin, Astron.Lett. 39 (2013) 357-366, arXiv:1301.4791.
[Burenin:2013wg]
[7-446]
Detecting warm DM in the $MeV/c^2$ range, Francois Vannucci, Jean-Michel Levy, arXiv:1301.4380, 2013.
[Vannucci:2013jb]
[7-447]
Additional Light Sterile Neutrinos and Cosmology, Thomas D. Jacques, Lawrence M. Krauss, Cecilia Lunardini, Phys. Rev. D87 (2013) 083515, arXiv:1301.3119.
[Jacques:2013xr]
[7-448]
Dark Radiation and interacting scenarios, Roberta Diamanti, Elena Giusarma, Olga Mena, Maria Archidiacono, Alessandro Melchiorri, Phys. Rev. D87 (2013) 063509, arXiv:1212.6007.
[Diamanti:2012tg]
[7-449]
Short-Baseline Electron Neutrino Oscillation Length After Troitsk, C. Giunti, M. Laveder, Y. F. Li, H.W. Long, Phys. Rev. D87 (2013) 013004, arXiv:1212.3805.
[Giunti:2012bc]
[7-450]
Experimental Parameters for a Reactor Antineutrino Experiment at Very Short Baselines, K. M. Heeger, B. R. Littlejohn, H. P. Mumm, M. N. Tobin, Phys. Rev. D87 (2013) 073008, arXiv:1212.2182.
[Heeger:2012tc]
[7-451]
Sterile Neutrinos and Light Dark Matter Save Each Other, Chiu Man Ho, Robert J. Scherrer, Phys. Rev. D87 (2013) 065016, arXiv:1212.1689.
[Ho:2012br]
[7-452]
Dark Radiation and Decaying Matter, M. C. Gonzalez-Garcia, V. Niro, Jordi Salvado, JHEP 1304 (2013) 052, arXiv:1212.1472.
[Gonzalez-Garcia:2012djt]
[7-453]
Testing standard and non-standard neutrino physics with cosmological data, Elena Giusarma, Roland de Putter, Olga Mena, Phys. Rev. D87 (2013) 043515, arXiv:1211.2154.
[Giusarma:2012ph]
[7-454]
Right-Handed Neutrinos as the Dark Radiation: Status and Forecasts for the LHC, Luis A. Anchordoqui, Haim Goldberg, Gary Steigman, Phys. Lett. B718 (2013) 1162-1165, arXiv:1211.0186.
[Anchordoqui:2012qu]
[7-455]
Two Zero Mass Matrices and Sterile Neutrinos, Monojit Ghosh, Srubabati Goswami, Shivani Gupta, JHEP 1304 (2013) 103, arXiv:1211.0118.
[Ghosh:2012pw]
[7-456]
Conservative Constraints on Early Cosmology: an illustration of the Monte Python cosmological parameter inference code, Benjamin Audren, Julien Lesgourgues, Karim Benabed, Simon Prunet, JCAP 1302 (2013) 001, arXiv:1210.7183.
[Audren:2012wb]
[7-457]
Update of Short-Baseline Electron Neutrino and Antineutrino Disappearance, C. Giunti, M. Laveder, Y. F. Li, Q.Y. Liu, H.W. Long, Phys. Rev. D86 (2012) 113014, arXiv:1210.5715.
[Giunti:2012tn]
[7-458]
Can neutrino-induced photon production explain the low energy excess in MiniBooNE?, Xilin Zhang, Brian D. Serot, Phys. Lett. B719 (2013) 409-414, arXiv:1210.3610.
[Zhang:2012xn]
[7-459]
Towards testing the unitarity of the 3X3 lepton flavor mixing matrix in a precision reactor antineutrino oscillation experiment, Zhi-zhong Xing, Phys. Lett. B718 (2013) 1447-1453, arXiv:1210.1523.
[Xing:2012kh]
[7-460]
Searching for sterile neutrinos from $\pi$ and $K$ decays, Louis Lello, Daniel Boyanovsky, Phys. Rev. D87 (2013) 073017, arXiv:1208.5559.
[Lello:2012gi]
[7-461]
Are Light Sterile Neutrinos Preferred or Disfavored by Cosmology?, Shahab Joudaki, Kevork N. Abazajian, Manoj Kaplinghat, Phys. Rev. D87 (2013) 065003, arXiv:1208.4354.
[Joudaki:2012uk]
[7-462]
Testing 3+1 and 3+2 neutrino mass models with cosmology and short baseline experiments, Maria Archidiacono, Nicolao Fornengo, Carlo Giunti, Alessandro Melchiorri, Phys. Rev. D86 (2012) 065028, arXiv:1207.6515.
[Archidiacono:2012ri]
[7-463]
Sterile Neutrinos and Pulsar Velocities Revisited,, Leonard S. Kisslinger, Mikkel B. Johnson, Mod. Phys. Lett. A27 (2012) 1250215, arXiv:1207.2798.
[Kisslinger:2012br]
[7-464]
Constraining Sterile Neutrinos with AMANDA and IceCube Atmospheric Neutrino Data, Arman Esmaili, Francis Halzen, O. L. G. Peres, JCAP 1211 (2012) 041, arXiv:1206.6903.
[Esmaili:2012nz]
[7-465]
Cosmic Microwave Background constraints of decaying dark matter particle properties, S. Yeung, M. H. Chan, M.-C. Chu, Astrophys. J. 755 (2012) 108, arXiv:1206.4114.
[Yeung:2012ya]
[7-466]
Probing Sterile Neutrino Parameters with Double Chooz, Daya Bay and RENO, Kalpana Bora, Debajyoti Dutta, Pomita Ghoshal, JHEP 12 (2012) 025, arXiv:1206.2172.
[Bora:2012pi]
[7-467]
Light sterile neutrino production in the early universe with dynamical neutrino asymmetries, Alessandro Mirizzi, Ninetta Saviano, Gennaro Miele, Pasquale Dario Serpico, Phys. Rev. D86 (2012) 053009, arXiv:1206.1046.
[Mirizzi:2012we]
[7-468]
The Reactor Anomaly after Daya Bay and RENO, Emilio Ciuffoli, Jarah Evslin, Hong Li, JHEP 12 (2012) 110, arXiv:1205.5499.
[Ciuffoli:2012yd]
[7-469]
The minimal 3+2 neutrino model versus oscillation anomalies, A. Donini, P. Hernandez, J. Lopez-Pavon, M. Maltoni, T. Schwetz, JHEP 07 (2012) 161, arXiv:1205.5230.
[Donini:2012tt]
[7-470]
Confronting MOND and TeVeS with strong gravitational lensing over galactic scales: an extended survey, Ignacio Ferreras, Nick Mavromatos, Mairi Sakellariadou, Muhammad Furqaan Yusaf, Phys. Rev. D86 (2012) 083507, arXiv:1205.4880.
[Ferreras:2012fg]
[7-471]
Neutrino Phenomenology in a 3+1+1 Framework, Eric Kuflik, Samuel D. McDermott, Kathryn M. Zurek, Phys. Rev. D86 (2012) 033015, arXiv:1205.1791.
[Kuflik:2012sw]
[7-472]
Thermalisation of light sterile neutrinos in the early universe, Steen Hannestad, Irene Tamborra, Thomas Tram, JCAP 1207 (2012) 025, arXiv:1204.5861.
[Hannestad:2012ky]
[7-473]
Optimization of a Very Low Energy Neutrino Factory for the Disappearance Into Sterile Neutrinos, Walter Winter, Phys. Rev. D85 (2012) 113005, arXiv:1204.2671.
[Winter:2012sk]
[7-474]
Searches for sterile neutrinos with IceCube DeepCore, Soebur Razzaque, A. Yu. Smirnov, Phys. Rev. D85 (2012) 093010, arXiv:1203.5406.
[Razzaque:2012tp]
[7-475]
Testing Localization in Neutrino Oscillations, Dmitry V. Zhuridov, arXiv:1203.2764, 2012.
[Zhuridov:2012wx]
[7-476]
KATRIN Sensitivity to Sterile Neutrino Mass in the Shadow of Lightest Neutrino Mass, Arman Esmaili, Orlando L. G. Peres, Phys. Rev. D85 (2012) 117301, arXiv:1203.2632.
[Esmaili:2012vg]
[7-477]
Dark Neutrinos, A. Nicolaidis, J.Mod.Phys. 3 (2012) 1979, arXiv:1202.5171.
[Nicolaidis:2012qs]
[7-478]
Sterile neutrinos and indirect dark matter searches in IceCube, Carlos A. Arguelles, Joachim Kopp, JCAP JCAP07 (2012) 016, arXiv:1202.3431.
[Arguelles:2012cf]
[7-479]
Indirect Dark Matter Detection in the Light of Sterile Neutrinos, Arman Esmaili, Orlando L.G. Peres, JCAP 1205 (2012) 002, arXiv:1202.2869.
[Esmaili:2012ut]
[7-480]
Confronting the short-baseline oscillation anomalies with a single sterile neutrino and non-standard matter effects, G. Karagiorgi, M. H. Shaevitz, J. M. Conrad, arXiv:1202.1024, 2012.
[Karagiorgi:2012kw]
[7-481]
Atmospheric Sterile Neutrinos, Takehiko Asaka, Atsushi Watanabe, JHEP 07 (2012) 112, arXiv:1202.0725.
[Asaka:2012hc]
[7-482]
New limits on radiative sterile neutrino decays from a search for single photons in neutrino interactions, S. N. Gninenko, Phys. Lett. B710 (2012) 86-90, arXiv:1201.5194.
[Gninenko:2012rw]
[7-483]
An estimate of $\vartheta_{14}$ independent of reactor antineutrino fluxes, Antonio Palazzo, Phys. Rev. D85 (2012) 077301, arXiv:1201.4280.
[Palazzo:2012yf]
[7-484]
Constraints on massive sterile plus active neutrino species in non minimal cosmologies, Elena Giusarma, Maria Archidiacono, Roland de Putter, Alessandro Melchiorri, Olga Mena, Phys. Rev. D85 (2012) 083522, arXiv:1112.4661.
[Giusarma:2011zq]
[7-485]
Reply to 'Corrections to the HARP-CDP Analysis of the LSND Neutrino Oscillation Backgrounds', A. Bolshakova et al., arXiv:1112.3852, 2011.
[Bolshakova:2011dc]
[7-486]
Corrections to the HARP-CDP Analysis of the LSND Neutrino Oscillation Backgrounds, G. T. Garvey, W. C. Louis, G. B. Mills, D. H. White, arXiv:1112.2181, 2011.
[Garvey:2011aa]
[7-487]
Revisiting the 'LSND anomaly' II: critique of the data analysis, A. Bolshakova et al., Phys. Rev. D85 (2012) 092009, arXiv:1112.0907.
[Bolshakova:2011ib]
[7-488]
Sensitivity to eV-scale Neutrinos of Experiments at a Very Low Energy Neutrino Factory, Christopher D. Tunnell, John H. Cobb, Alan D. Bross, arXiv:1111.6550, 2011.
[Tunnell:2011ya]
[7-489]
First Double-Chooz Results and the Reactor Antineutrino Anomaly, Carlo Giunti, Marco Laveder, Phys. Rev. D85 (2012) 031301, arXiv:1111.5211.
[Giunti:2011vc]
[7-490]
Implications of sterile neutrinos for medium/long-baseline neutrino experiments and the determination of $\vartheta_{13}$, Bhubanjyoti Bhattacharya, Arun M. Thalapillil, Carlos E. M. Wagner, Phys. Rev. D85 (2012) 073004, arXiv:1111.4225.
[Bhattacharya:2011ee]
[7-491]
Implications of 3+1 Short-Baseline Neutrino Oscillations, Carlo Giunti, Marco Laveder, Phys. Lett. B706 (2011) 200-207, arXiv:1111.1069.
[Giunti:2011cp]
[7-492]
Vanishing effective mass of the neutrinoless double beta decay including light sterile neutrinos, Y. F. Li, S. Liu, Phys. Lett. B706 (2012) 406-411, arXiv:1110.5795.
[Li:2011ss]
[7-493]
Sterile Neutrino Production Through a Matter Effect Enhancement at Long Baselines, Joseph Bramante, Int.J.Mod.Phys. A28 (2013) 1350067, arXiv:1110.4871.
[Bramante:2011uu]
[7-494]
Evidence for extra radiation? Profile likelihood versus Bayesian posterior, Jan Hamann, JCAP 1203 (2012) 021, arXiv:1110.4271.
[Hamann:2011hu]
[7-495]
Revisiting the 'LSND anomaly' I: impact of new data, A. Bolshakova et al. (HARP-CDP), Phys. Rev. D85 (2012) 092008, arXiv:1110.4265.
[HARP-CDPGroup:2011hnr]
[7-496]
Impact of eV-mass sterile neutrinos on neutrino-driven supernova outflows, Irene Tamborra, Georg G. Raffelt, Lorenz Huedepohl, Hans-Thomas Janka, JCAP 1201 (2012) 013, arXiv:1110.2104.
[Tamborra:2011is]
[7-497]
Is there evidence for sterile neutrinos in IceCube data?, V. Barger, Y. Gao, D. Marfatia, Phys. Rev. D85 (2012) 011302, arXiv:1109.5748.
[Barger:2011rc]
[7-498]
Status of 3+1 Neutrino Mixing, Carlo Giunti, Marco Laveder, Phys. Rev. D84 (2011) 093006, arXiv:1109.4033.
[Giunti:2011hn]
[7-499]
The Case for Dark Radiation, Maria Archidiacono, Erminia Calabrese, Alessandro Melchiorri, Phys. Rev. D84 (2011) 123008, arXiv:1109.2767.
[Archidiacono:2011gq]
[7-500]
Atmospheric neutrinos as a probe of $\text{eV}^2$-scale active-sterile oscillations, Raj Gandhi, Pomita Ghoshal, Phys. Rev. D86 (2012) 037301, arXiv:1108.4360.
[Gandhi:2011jg]
[7-501]
Sterile neutrinos with eV masses in cosmology - how disfavoured exactly?, Jan Hamann, Steen Hannestad, Georg G. Raffelt, Yvonne Y. Y. Wong, JCAP 1109 (2011) 034, arXiv:1108.4136.
[Hamann:2011ge]
[7-502]
Testing Nonstandard Neutrino Properties with a Mossbauer Oscillation Experiment, P.A.N. Machado, H. Nunokawa, F. A. Pereira dos Santos, R. Zukanovich Funchal, JHEP 11 (2011) 136, arXiv:1108.3339.
[Machado:2011tn]
[7-503]
Search for sterile neutrinos at reactors, Osamu Yasuda, JHEP 09 (2011) 036, arXiv:1107.4766.
[Yasuda:2011np]
[7-504]
Sterile Neutrinos, Coherent Scattering and Oscillometry Measurements with Low-temperature Bolometers, Joseph A. Formaggio, E. Figueroa-Feliciano, A.J. Anderson, Phys. Rev. D85 (2012) 013009, arXiv:1107.3512.
[Formaggio:2011jt]
[7-505]
Learning from tau appearance, P. Migliozzi, F. Terranova, New J. Phys. 13 (2011) 083016, arXiv:1107.3018.
[Migliozzi:2011bj]
[7-506]
3+1 and 3+2 Sterile Neutrino Fits, Carlo Giunti, Marco Laveder, Phys. Rev. D84 (2011) 073008, arXiv:1107.1452.
[Giunti:2011gz]
[7-507]
Sterile neutrino decay as a common origin for LSND/MiniBooNe and T2K excess events, S.N. Gninenko, Phys. Rev. D85 (2012) 051702, arXiv:1107.0279.
[Gninenko:2011hb]
[7-508]
Short baseline neutrino oscillations: when entanglement suppresses coherence, Daniel Boyanovsky, Phys. Rev. D84 (2011) 065001, arXiv:1106.6248.
[Boyanovsky:2011xq]
[7-509]
Limits on Electron Neutrino Disappearance from the KARMEN and LSND electron neutrino - Carbon Cross Section Data, J.M. Conrad, M.H. Shaevitz, Phys. Rev. D85 (2012) 013017, arXiv:1106.5552.
[Conrad:2011ce]
[7-510]
Are priors responsible for cosmology favoring additional neutrino species?, Alma X. Gonzalez-Morales, Robert Poltis, Blake D. Sherwin, Licia Verde, arXiv:1106.5052, 2011.
[Gonzalez-Morales:2011tyq]
[7-511]
Possible, alternative explanations of the T2K observation of the $\nu_e$ appearance from an initial $\nu_\mu$, D.Gibin, A Guglielmi, F. Pietropaolo, C. Rubbia, P. Sala, arXiv:1106.4417, 2011.
[Gibin:2011hd]
[7-512]
Minimal models with light sterile neutrinos, A. Donini, P. Hernandez, J. Lopez-Pavon, M. Maltoni, JHEP 07 (2011) 105, arXiv:1106.0064.
[Donini:2011jh]
[7-513]
Analysis of KATRIN data using Bayesian inference, Anna Sejersen Riis, Steen Hannestad, Christian Weinheimer, Phys. Rev. C84 (2011) 045503, arXiv:1105.6005.
[SejersenRiis:2011sj]
[7-514]
Active to sterile neutrino oscillations: Coherence and MINOS results, Daniel Hernandez, A. Yu. Smirnov, Phys. Lett. B706 (2012) 360-366, arXiv:1105.5946.
[Hernandez:2011rs]
[7-515]
Short-baseline Neutrino Oscillation Waves in Ultra-large Liquid Scintillator Detectors, Sanjib Kumar Agarwalla, J.M. Conrad, M.H. Shaevitz, JHEP 12 (2011) 085, arXiv:1105.4984.
[Agarwalla:2011qf]
[7-516]
Sterile neutrino decay explanation of LSND and MiniBooNE anomalies, Claudio Dib, Juan Carlos Helo, Sergey Kovalenko, Ivan Schmidt, Phys. Rev. D84 (2011) 071301, arXiv:1105.4664.
[Dib:2011jh]
[7-517]
On the search of sterile neutrinos by oscillometry measurements, J.D. Vergados, Y. Giomataris, Yu. N. Novikov, Phys. Rev. D85 (2012) 033003, arXiv:1105.3654.
[Vergados:2011na]
[7-518]
On sterile neutrino mixing with $\nu_{\tau}$, Juan Carlos Helo, Sergey Kovalenko, Ivan Schmidt, Phys. Rev. D84 (2011) 053008, arXiv:1105.3019.
[Helo:2011yg]
[7-519]
Testing the very-short-baseline neutrino anomalies at the solar sector, Antonio Palazzo, Phys. Rev. D83 (2011) 113013, arXiv:1105.1705.
[Palazzo:2011rj]
[7-520]
Resolving the Reactor Neutrino Anomaly with the KATRIN Neutrino Experiment, J. A. Formaggio, J. Barrett, Phys. Lett. B706 (2011) 68-71, arXiv:1105.1326.
[Formaggio:2011jg]
[7-521]
Captures of Hot and Warm Sterile Antineutrino Dark Matter on EC-decaying Ho-163 Nuclei, Y. F. Li, Zhi-zhong Xing, JCAP 1108 (2011) 006, arXiv:1104.4000.
[Li:2011mw]
[7-522]
How Additional Massless Neutrinos Affect the Cosmic Microwave Background Damping Tail, Zhen Hou, Ryan Keisler, Lloyd Knox, Marius Millea, Christian Reichardt, Phys. Rev. D87 (2013) 083008, arXiv:1104.2333.
[Hou:2011ec]
[7-523]
Searching for sterile neutrinos in ice, Soebur Razzaque, A. Yu. Smirnov, JHEP 1107 (2011) 084, arXiv:1104.1390.
[Razzaque:2011ab]
[7-524]
Reactor sterile neutrinos, dark energy and the age of the universe, Jostein R. Kristiansen, Oystein Elgaroy, Astron.Astrophys. 532 (2011) A67, arXiv:1104.0704.
[Kristiansen:2011mp]
[7-525]
Probing the fourth neutrino existence by neutral current oscillometry in the spherical gaseous TPC, J.D. Vergados, Y. Giomataris, Yu.N. Novikov, Nucl. Phys. B854 (2012) 54-66, arXiv:1103.5307.
[Vergados:2011gia]
[7-526]
Are there sterile neutrinos at the eV scale?, Joachim Kopp, Michele Maltoni, Thomas Schwetz, Phys. Rev. Lett. 107 (2011) 091801, arXiv:1103.4570.
[Kopp:2011qd]
[7-527]
Neutrino Physics with Dark Matter Experiments and the Signature of New Baryonic Neutral Currents, Maxim Pospelov, Phys. Rev. D84 (2011) 085008, arXiv:1103.3261.
[Pospelov:2011ha]
[7-528]
Joint analysis of spectral reactor neutrino experiments, V.V. Sinev, arXiv:1103.2452, 2011.
[Sinev:2011ra]
[7-529]
A robust upper limit on $N_{\rm eff}$ from BBN, circa 2011, Gianpiero Mangano, Pasquale D. Serpico, Phys. Lett. B701 (2011) 296-299, arXiv:1103.1261.
[Mangano:2011ar]
[7-530]
Model Independent Constraints on Solar Neutrinos, Lal Singh, Bhag C. Chauhan, Ravi Dutt, K. K. Sharma, S. Dev, arXiv:1102.4917, 2011.
[Singh:2011hr]
[7-531]
Constraints on massive sterile neutrino species from current and future cosmological data, Elena Giusarma et al., Phys. Rev. D83 (2011) 115023, arXiv:1102.4774.
[Giusarma:2011ex]
[7-532]
BBN with Late Electron-Sterile Neutrino Oscillations - The Finest Leptometer, D. Kirilova, JCAP 1206 (2012) 007, arXiv:1101.4177.
[Kirilova:2011an]
[7-533]
The Reactor Antineutrino Anomaly, G. Mention et al., Phys. Rev. D83 (2011) 073006, arXiv:1101.2755.
[Mention:2011rk]
[7-534]
Pulsar Kicks from Active-Sterile Neutrino Transformation in Supernovae, Chad T. Kishimoto, arXiv:1101.1304, 2011.
[Kishimoto:2011mw]
[7-535]
Testing for Large Extra Dimensions with Neutrino Oscillations, P. A. N. Machado, H. Nunokawa, R. Zukanovich Funchal, Phys. Rev. D84 (2011) 013003, arXiv:1101.0003.
[Machado:2011jt]
[7-536]
Solar neutrino spectrum, sterile neutrinos and additional radiation in the Universe, P. C. de Holanda, A. Yu. Smirnov, Phys. Rev. D83 (2011) 113011, arXiv:1012.5627.
[deHolanda:2010am]
[7-537]
Large Short-Baseline $\bar\nu_{\mu}$ Disappearance, Carlo Giunti, Marco Laveder, Phys. Rev. D83 (2011) 053006, arXiv:1012.0267.
[Giunti:2010uj]
[7-538]
Muon Capture Constraints on Sterile Neutrino Properties, David McKeen, Maxim Pospelov, Phys. Rev. D82 (2010) 113018, arXiv:1011.3046.
[Gninenko:2010nv]
[7-539]
A refined constrain on lepton number from Big Bang Nucleosynthesis, G. Mangano, G. Miele, S. Pastor, O. Pisanti, S. Sarikas, JCAP JCAP03 (2011) 035, arXiv:1011.0916.
[Mangano:2010ei]
[7-540]
Short-Baseline $\bar\nu_{\mu}\to\bar\nu_{e}$ Oscillations, Carlo Giunti, Marco Laveder, Phys. Rev. D82 (2010) 093016, arXiv:1010.1395.
[Giunti:2010jt]
[7-541]
Hint of CPT Violation in Short-Baseline Electron Neutrino Disappearance, Carlo Giunti, Marco Laveder, Phys. Rev. D82 (2010) 113009, arXiv:1008.4750.
[Giunti:2010zs]
[7-542]
Detecting sterile neutrinos with KATRIN like experiments, Anna Sejersen Riis, Steen Hannestad, JCAP 1102 (2011) 011, arXiv:1008.1495.
[Riis:2010zm]
[7-543]
MiniBooNE and LSND data: non-standard neutrino interactions in a (3+1) scheme versus (3+2) oscillations, Evgeny Akhmedov, Thomas Schwetz, JHEP 10 (2010) 115, arXiv:1007.4171.
[Akhmedov:2010vy]
[7-544]
Sterile neutrinos beyond LSND at the Neutrino Factory, Davide Meloni, Jian Tang, Walter Winter, Phys. Rev. D82 (2010) 093008, arXiv:1007.2419.
[Meloni:2010zr]
[7-545]
Direct Detection of the Cosmic Neutrino Background Including Light Sterile Neutrinos, Y. F. Li, Shu Luo, Zhi-zhong Xing, Phys.Lett. B692 (2010) 261-267, arXiv:1007.0914.
[Li:2010sn]
[7-546]
Cosmology Favoring Extra Radiation and Sub-eV Mass Sterile Neutrinos as an Option, Jan Hamann, Steen Hannestad, Georg G. Raffelt, Irene Tamborra, Yvonne Y. Y. Wong, Phys. Rev. Lett. 105 (2010) 181301, arXiv:1006.5276.
[Hamann:2010bk]
[7-547]
Statistical Significance of the Gallium Anomaly, Carlo Giunti, Marco Laveder, Phys. Rev. C83 (2011) 065504, arXiv:1006.3244.
[Giunti:2010zu]
[7-548]
Gallium experiments with artificial neutrino sources as a tool for investigation of transition to sterile states, V. N. Gavrin, V. V. Gorbachev, E. P. Veretenkin, B. T. Cleveland, arXiv:1006.2103, 2010.
[Gavrin:2010qj]
[7-549]
Short-Baseline Electron Neutrino Disappearance, Tritium Beta Decay and Neutrinoless Double-Beta Decay, Carlo Giunti, Marco Laveder, Phys. Rev. D82 (2010) 053005, arXiv:1005.4599.
[Giunti:2010wz]
[7-550]
Apparent CPT Violation in Neutrino Oscillation Experiments, Netta Engelhardt, Ann E. Nelson, Jonathan R. Walsh, Phys. Rev. D81 (2010) 113001, arXiv:1002.4452.
[Engelhardt:2010dx]
[7-551]
Updated global fit to three neutrino mixing: status of the hints of theta13 > 0, M.C. Gonzalez-Garcia, Michele Maltoni, Jordi Salvado, JHEP 04 (2010) 056, arXiv:1001.4524.
[Gonzalez-Garcia:2010zke]
[7-552]
Evidence for right-handed neutrinos at a neutrino factory, F. del Aguila, J. de Blas, R. Szafron, J. Wudka, M. Zralek, Phys. Lett. B683 (2010) 282-288, arXiv:0911.3158.
[delAguila:2009vv]
[7-553]
Matter Effects in Active-Sterile Solar Neutrino Oscillations, C. Giunti, Y. F. Li, Phys. Rev. D80 (2009) 113007, arXiv:0910.5856.
[Giunti:2009xz]
[7-554]
Pseudo-Dirac Neutrino Scenario: Cosmic Neutrinos at Neutrino Telescopes, Arman Esmaili, Phys. Rev. D81 (2010) 013006, arXiv:0909.5410.
[Esmaili:2009fk]
[7-555]
Short-Baseline Electron Neutrino Disappearance at a Neutrino Factory, Carlo Giunti, Marco Laveder, Walter Winter, Phys. Rev. D80 (2009) 073005, arXiv:0907.5487.
[Giunti:2009en]
[7-556]
CPT-violating neutrino oscillations, S. Esposito, G. Salesi, Mod. Phys. Lett. A25 (2010) 597-606, arXiv:0906.5542.
[Esposito:2009ca]
[7-557]
Gravitational hydrodynamics of large scale structure formation, Theo M. Nieuwenhuizen, Carl H. Gibson, Rudy E. Schild, Europhys. Lett. 88 (2009) 49001, arXiv:0906.5087.
[Nieuwenhuizen:2009tz]
[7-558]
Active and Sterile Neutrino Emission and SN1987A Pulsar Velocity, Leonard S Kisslinger, Sandip Pakvasa, arXiv:0906.4117, 2009.
[Kisslinger:2009xb]
[7-559]
Large Mixing Angle Sterile Neutrinos and Pulsar Velocities, Leonard S. Kisslinger, Ernest M. Henley, Mikkel B. Johnson, Mod. Phys. Lett. A24 (2009) 2507-2516, arXiv:0906.2802.
[Kisslinger:2009rv]
[7-560]
Viability of $ \Delta m^2 \sim 1 \text{eV}^2 $ sterile neutrino mixing models in light of MiniBooNE electron neutrino and antineutrino data from the Booster and NuMI beamlines, G. Karagiorgi, Z. Djurcic, J. Conrad, M. H. Shaevitz, M. Sorel, Phys. Rev. D80 (2009) 073001, arXiv:0906.1997.
[Karagiorgi:2009nb]
[7-561]
Resonant active-sterile neutrino mixing in the presence of matter potentials and altered dispersion relations, Sebastian Hollenberg, Heinrich Pas, arXiv:0904.2167, 2009.
[Hollenberg:2009bq]
[7-562]
VSBL Electron Neutrino Disappearance, Carlo Giunti, Marco Laveder, Phys. Rev. D80 (2009) 013005, arXiv:0902.1992.
[Giunti:2009zz]
[7-563]
Light sterile neutrinos, spin flavour precession and the solar neutrino experiments, C.R. Das, Joao Pulido, Marco Picariello, Phys. Rev. D79 (2009) 073010, arXiv:0902.1310.
[Das:2009kw]
[7-564]
Sterile Neutrinos in Light of Recent Cosmological and Oscillation Data: a Multi-Flavor Scheme Approach, Alessandro Melchiorri et al., JCAP 0901 (2009) 036, arXiv:0810.5133.
[Melchiorri:2008gq]
[7-565]
The Existence of Sterile Neutrino Halos in Galactic Centers as an Explanation of the Black Hole mass - Velocity Dispersion Relation, M. H. Chan, M. C. Chu, Astrophys. J. 692 (2009) 212-216, arXiv:0810.4057.
[Chan:2008cr]
[7-566]
Semileptonic decays of charmed and beauty baryons with sterile neutrinos in the final state, Sabir Ramazanov, Phys. Rev. D79 (2009) 077701, arXiv:0810.0660.
[Ramazanov:2008ph]
[7-567]
Light Sterile Neutrino Effects at $\theta_{13}$-Sensitive Reactor Neutrino Experiments, Andre de Gouvea, Thomas Wytock, Phys. Rev. D79 (2009) 073005, arXiv:0809.5076.
[deGouvea:2008qk]
[7-568]
Chaos, Determinacy and Fractals in Active-Sterile Neutrino Oscillations in the Early Universe, Kevork N. Abazajian, Prateek Agrawal, JCAP 0810 (2008) 006, arXiv:0807.0456.
[Abazajian:2008dz]
[7-569]
Eosphoric sterile neutrinos, supernovae, and the galactic positrons, George M. Fuller, Alexander Kusenko, Kalliopi Petraki, Phys. Lett. B670 (2009) 281-284, arXiv:0806.4273.
[Fuller:2008erj]
[7-570]
Signatures of sterile neutrino mixing in high-energy cosmic neutrino flux, Andrea Donini, Osamu Yasuda, arXiv:0806.3029, 2008.
[Donini:2008xn]
[7-571]
Delayed pulsar kicks from the emission of sterile neutrinos, Alexander Kusenko, Bhabani Prasad Mandal, Alok Mukherjee, Phys. Rev. D77 (2008) 123009, arXiv:0801.4734.
[Kusenko:2008gh]
[7-572]
Pulsar Kicks With Sterile Neutrinos and Landau Levels, Leonard S. Kisslinger, Ernest M. Henley, Mikkel B. Johnson, arXiv:0712.0197, 2007.
[Kisslinger:2007uw]
[7-573]
Limits on $\nu_e$ and $\bar\nu_e$ disappearance from Gallium and reactor experiments, Mario A. Acero, Carlo Giunti, Marco Laveder, Phys. Rev. D78 (2008) 073009, arXiv:0711.4222.
[Acero:2007su]
[7-574]
Testing Primordial Abundances With Sterile Neutrinos, O. Civitarese, M. E. Mosquera, Phys. Rev. C77 (2008) 045806, arXiv:0711.2450.
[Civitarese:2007mn]
[7-575]
LSND versus MiniBooNE: Sterile neutrinos with energy dependent masses and mixing?, Thomas Schwetz, JHEP 02 (2008) 011, arXiv:0710.2985.
[Schwetz:2007cd]
[7-576]
Signature of sterile species in atmospheric neutrino data at neutrino telescopes, Sandhya Choubey, JHEP 0712 (2007) 014, arXiv:0709.1937.
[Choubey:2007ji]
[7-577]
Sterile neutrino signals from supernovae, P. Keranen, J. Maalampi, M. Myyrylainen, J. Riittinen, Phys. Rev. D76 (2007) 125026, arXiv:0708.3337.
[Keranen:2007ga]
[7-578]
$\nu_e$ Disappearance in MiniBooNE, Carlo Giunti, Marco Laveder, Phys. Rev. D77 (2008) 093002, arXiv:0707.4593.
[Giunti:2007xv]
[7-579]
The (3+2) Neutrino Mass Spectrum and Double Chooz, Abhijit Bandyopadhyay, Sandhya Choubey, arXiv:0707.2481, 2007.
[Bandyopadhyay:2007rj]
[7-580]
Sterile Neutrino-Enhanced Supernova Explosions, Jun Hidaka, George M. Fuller, Phys. Rev. D76 (2007) 083516, arXiv:0706.3886.
[Hidaka:2007se]
[7-581]
MiniBooNE Results and Neutrino Schemes with 2 sterile Neutrinos: Possible Mass Orderings and Observables related to Neutrino Masses, Srubabati Goswami, Werner Rodejohann, JHEP 10 (2007) 073, arXiv:0706.1462.
[Goswami:2007kv]
[7-582]
Invisible Z decay width bounds on active-sterile neutrino mixing in the (3+1) and (3+2) models, C. A. de S. Pires, Mod. Phys. Lett. A24 (2009) 475-483, arXiv:0706.1227.
[deSPires:2007wyk]
[7-583]
Confusing Sterile Neutrinos with Deviation from Tribimaximal Mixing at Neutrino Telescopes, Ram Lal Awasthi, Sandhya Choubey, Phys. Rev. D76 (2007) 113002, arXiv:0706.0399.
[Awasthi:2007az]
[7-584]
Right-Handed Neutrinos at LHC and the Mechanism of Neutrino Mass Generation, Joern Kersten, Alexei Yu. Smirnov, Phys. Rev. D76 (2007) 073005, arXiv:0705.3221.
[Kersten:2007vk]
[7-585]
Sterile neutrino oscillations after first MiniBooNE results, Michele Maltoni, Thomas Schwetz, Phys. Rev. D76 (2007) 093005, arXiv:0705.0107.
[Maltoni:2007zf]
[7-586]
3+1 sterile neutrinos at the CNGS, A. Donini et al., JHEP 12 (2007) 013, arXiv:0704.0388.
[Donini:2007yf]
[7-587]
Turbulent supernova shock waves and the sterile neutrino signature in megaton water detectors, Sandhya Choubey, N. P. Harries, G. G. Ross, Phys. Rev. D76 (2007) 073013, arXiv:hep-ph/0703092.
[Choubey:2007ga]
[7-588]
MiniBooNE and a $(CP)^2 = -1$ sterile neutrino, D. V. Ahluwalia-Khalilova, Alex B. Nielsen, Mod. Phys. Lett. A22 (2007) 1301-1307, arXiv:hep-ph/0702049.
[Ahluwalia:2007wxl]
[7-589]
Measuring the mass of a sterile neutrino with a very short baseline reactor experiment, D. C. Latimer, J. Escamilla, D. J. Ernst, Phys. Rev. C75 (2007) 042501, arXiv:hep-ex/0701004.
[Latimer:2007qe]
[7-590]
Probing active to sterile neutrino oscillations in the LENS detector, Christian Grieb, Jonathan Link, R. S. Raghavan, Phys. Rev. D75 (2007) 093006, arXiv:hep-ph/0611178.
[Grieb:2006mp]
[7-591]
Short-Baseline Active-Sterile Neutrino Oscillations?, Carlo Giunti, Marco Laveder, Mod. Phys. Lett. A22 (2007) 2499-2509, arXiv:hep-ph/0610352.
[Giunti:2006bj]
[7-592]
Leptonic CP violation studies at MiniBooNE in the (3+2) sterile neutrino oscillation hypothesis, G. Karagiorgi et al., Phys. Rev. D75 (2007) 013011, arXiv:hep-ph/0609177.
[Karagiorgi:2006jf]
[7-593]
Parametric resonance for antineutrino conversions using LSND best-fit results with a 3+1 flavor scheme, J. Linder, Phys. Rev. D74 (2006) 053001, arXiv:hep-ph/0609022.
[Linder:2006yu]
[7-594]
Light Element Signatures of Sterile Neutrinos and Cosmological Lepton Numbers, Christel J. Smith, George M. Fuller, Chad T. Kishimoto, Kevork N. Abazajian, Phys. Rev. D74 (2006) 085008, arXiv:astro-ph/0608377.
[Smith:2006uw]
[7-595]
Sterile neutrinos, lepton asymmetries, primordial elements: how much of each?, Yi-Zen Chu, Marco Cirelli, Phys. Rev. D74 (2006) 085015, arXiv:astro-ph/0608206.
[Chu:2006ua]
[7-596]
Coherent Active-Sterile Neutrino Flavor Transformation in the Early Universe, Chad T. Kishimoto, George M. Fuller, Christel J. Smith, Phys. Rev. Lett. 97 (2006) 141301, arXiv:astro-ph/0607403.
[Kishimoto:2006zk]
[7-597]
Unitarity of the Leptonic Mixing Matrix, S. Antusch et al., JHEP 10 (2006) 084, arXiv:hep-ph/0607020.
[Antusch:2006vwa]
[7-598]
Sum rules of four-neutrino mixing in matter, He Zhang, Mod. Phys. Lett. A22 (2007) 1341-1348, arXiv:hep-ph/0606040.
[Zhang:2006yq]
[7-599]
Probing neutrino oscillations from supernovae shock waves via the IceCube detector, Sandhya Choubey, N. P. Harries, G.G. Ross, Phys. Rev. D74 (2006) 053010, arXiv:hep-ph/0605255.
[Choubey:2006aq]
[7-600]
On the hadronic contribution to sterile neutrino production, Takehiko Asaka, Mikko Laine, Mikhail Shaposhnikov, JHEP 06 (2006) 053, arXiv:hep-ph/0605209.
[Asaka:2006rw]
[7-601]
Cosmological parameters from combining the Lyman-alpha forest with CMB, galaxy clustering and SN constraints, Uros Seljak, Anze Slosar, Patrick McDonald, JCAP 0610 (2006) 014, arXiv:astro-ph/0604335.
[Seljak:2006bg]
[7-602]
Constraining Mass Spectra with Sterile Neutrinos from Neutrinoless Double Beta Decay, Tritium Beta Decay and Cosmology, Srubabati Goswami, Werner Rodejohann, Phys. Rev. D73 (2006) 113003, arXiv:hep-ph/0512234.
[Goswami:2005ng]
[7-603]
Model Independent Constraints on Non-electronic Flavors in the Solar Boron Neutrino Flux, S. Dev, Sanjeev Kumar, Surender Verma, Mod. Phys. Lett. A21 (2006) 1761, arXiv:hep-ph/0512178.
[Dev:2005au]
[7-604]
Is cosmology compatible with sterile neutrinos?, Scott Dodelson, Alessandro Melchiorri, Anze Slosar, Phys. Rev. Lett. 97 (2006) 04301, arXiv:astro-ph/0511500.
[Dodelson:2005tp]
[7-605]
Local demands on sterile neutrinos, David C. Latimer, David J. Ernst, Mod. Phys. Lett. A21 (2006) 197, arXiv:nucl-th/0509066.
[Latimer:2005bd]
[7-606]
Explaining LSND by a decaying sterile neutrino, Sergio Palomares-Ruiz, Silvia Pascoli, Thomas Schwetz, JHEP 0509 (2005) 048, arXiv:hep-ph/0505216.
Comment: The figure 3 (left panel) corresponds to neutrino oscillations in (3+1) mass scheme with the last NOMAD data included. [M.L.].
[Palomares-Ruiz:2005zbh]
[7-607]
Constraints on Weakly Mixed Sterile Neutrinos in the Light of SNO Salt Phase and 766.3 Ty KamLAND Data, S. Dev, Sanjeev Kumar, Mod. Phys. Lett. A20 (2005) 2957, arXiv:hep-ph/0504237.
[Dev:2005px]
[7-608]
Sterile-active neutrino oscillations and shortcuts in the extra dimension, Heinrich Pas, Sandip Pakvasa, Thomas J. Weiler, Phys. Rev. D72 (2005) 095017, arXiv:hep-ph/0504096.
[Pas:2005rb]
[7-609]
Sterile neutrinos in neutrinoless double beta decay, P. Benes, Amand Faessler, S. Kovalenko, F. Simkovic, Phys. Rev. D71 (2005) 077901, arXiv:hep-ph/0501295.
[Benes:2005hn]
[7-610]
See-Saw Energy Scale and the LSND Anomaly, Andre de Gouvea, Phys. Rev. D72 (2005) 033005, arXiv:hep-ph/0501039.
[deGouvea:2005er]
[7-611]
Can a 3+2 Oscillation Model Explain the NuTeV Electroweak Results?, J. S. Ma, J. M. Conrad, M. Sorel, G. P. Zeller, Phys. Rev. D73 (2006) 057302, arXiv:hep-ex/0501011.
[Ma:2005eh]
[7-612]
Cosmological lepton asymmetry, primordial nucleosynthesis, and sterile neutrinos, Kevork Abazajian, Nicole F. Bell, George M. Fuller, Yvonne Y. Y. Wong, Phys. Rev. D72 (2005) 063004, arXiv:astro-ph/0410175.
[Abazajian:2004aj]
[7-613]
SNO, SuperKamiokande data, antineutrinos and sterile neutrinos, Bhag C. Chauhan, J. Pulido, JHEP 0412 (2004) 040, arXiv:hep-ph/0406227.
[Chauhan:2004xz]
[7-614]
New bounds on MeV sterile neutrinos based on the accelerator and Super-Kamiokande results, Alexander Kusenko, Silvia Pascoli, Dmitry Semikoz, JHEP 0511 (2005) 028, arXiv:hep-ph/0405198.
[Kusenko:2004qc]
[7-615]
Probing oscillations into sterile neutrinos with cosmology, astrophysics and experiments, Marco Cirelli, Guido Marandella, Alessandro Strumia, Francesco Vissani, Nucl. Phys. B708 (2005) 215, arXiv:hep-ph/0403158.
[Cirelli:2004cz]
[7-616]
Active-sterile neutrino oscillations and pulsar kicks, M. Barkovich, J. C. D'Olivo, R. Montemayor, Phys. Rev. D70 (2004) 043005, arXiv:hep-ph/0402259.
[Barkovich:2004jp]
[7-617]
Search for sterile neutrinos as another research objective of $\theta_{13}$ experiments at reactors, V. Kopeikin, L. Mikaelyan, V. Sinev, arXiv:hep-ph/0310246, 2003.
[Kopeikin:2003uu]
[7-618]
LSND anomaly from CPT violation in four-neutrino models, V. Barger, D. Marfatia, K. Whisnant, Phys. Lett. B576 (2003) 303, arXiv:hep-ph/0308299.
[Barger:2003xm]
[7-619]
BBN bounds on active-sterile neutrino mixing, A.D. Dolgov, F.L. Villante, Nucl. Phys. B679 (2004) 261, arXiv:hep-ph/0308083.
[Dolgov:2003sg]
[7-620]
Homestake result, sterile neutrinos and low energy solar neutrino experiments, P. C. de Holanda, A. Yu. Smirnov, Phys. Rev. D69 (2004) 113002, arXiv:hep-ph/0307266.
[deHolanda:2003tx]
[7-621]
A combined analysis of short-baseline neutrino experiments in the (3+1) and (3+2) sterile neutrino oscillation hypotheses, Michel Sorel, Janet Conrad, Michael Shaevitz, Phys. Rev. D70 (2004) 073004, arXiv:hep-ph/0305255.
From the article: (version v1) The best-fit point of a combined analysis of the NSBL and LSND data in (3+2) models would be interpreted in NOMAD as $\Delta{m}^2 \simeq 21.5 \, \mathrm{eV}^2$, $\sin^2 2\theta_{\mu e} \simeq 8 \times 10^{-4}$, which is compatible with the NOMAD limits [hep-ex/0306037].
Comment: (version v1) Figure 4 a) shows the allowed regions at 90\%, 95\% and 99\% CL for (3+1) schemes in $(\sin^2 2\theta_{\mu e},\Delta m^2)$ space, together with the best-fit point, indicated by the star.
Figure 8 shows the Nomad excluded region at 90\% CL (2 d.o.f) in $(\sin^2 2\theta_{\mu e},\Delta m^2)$ space, together with results from other experiments. [M.L.].

[Sorel:2003hf]
[7-622]
Last CPT-Invariant Hope for LSND Neutrino Oscillations, C. Giunti, Mod. Phys. Lett. A18 (2003) 1179, arXiv:hep-ph/0302173.
[Giunti:2003cf]
[7-623]
WMAPping out Neutrino Masses, A. Pierce, H. Murayama, Phys. Lett. B581 (2004) 218, arXiv:hep-ph/0302131.
[Pierce:2003uh]
[7-624]
Probing the LSND scale and four neutrino scenarios with a neutrino telescope, H. Nunokawa, O. L. G. Peres, R. Zukanovich Funchal, Phys. Lett. B562 (2003) 279, arXiv:hep-ph/0302039.
[Nunokawa:2003ep]
[7-625]
Searches for sterile component with solar neutrinos and KamLAND, P. C. de Holanda, A. Yu. Smirnov, arXiv:hep-ph/0211264, 2002.
[deHolanda:2002ma]
[7-626]
Are four neutrino models ruled out?, R. Foot, Mod. Phys. Lett. A18 (2003) 2079, arXiv:hep-ph/0210393.
[Foot:2002tf]
[7-627]
Mirror model for sterile neutrinos, V. Berezinsky, M. Narayan, F. Vissani, Nucl. Phys. B658 (2003) 254, arXiv:hep-ph/0210204.
From the abstract: ... The considered subdominant neutrino oscillations (active <-> sterile) nu_a <-> nu_s can reveal itself as the big effects in observations of supernova neutrinos.
[Berezinsky:2002fa]
[7-628]
The hidden sterile neutrino and the (2+2) sum rule, T.J. Weiler H. Ps, L. Song, Phys. Rev. D67 (2003) 073019, arXiv:hep-ph/0209373.
[Pas:2002ah]
[7-629]
Constraining neutrino oscillation parameters with current solar and atmospheric data, M. Maltoni, T. Schwetz, M. A. Tortola, J. W. F. Valle, Phys. Rev. D67 (2003) 013011, arXiv:hep-ph/0207227.
[Maltoni:2002ni]
[7-630]
Ruling out four-neutrino oscillation interpretations of the LSND anomaly?, M. Maltoni, T. Schwetz, M. A. Tortola, J. W. F. Valle, Nucl. Phys. B643 (2002) 321-338, arXiv:hep-ph/0207157.
From the abstract: ... all four-neutrino descriptions of the LSND anomaly, both in (2+2) as well as (3+1) realizations, are highly disfavoured. Our analysis brings the LSND hint to a more puzzling status.
From the article: The exclusion of four-neutrino oscillation schemes of the (2+2)-type is based on the improved sensitivity of solar and atmospheric neutrino experiments to oscillations into a sterile neutrino, thanks to recent experimental data. This is a very robust result, independent of whether the LSND experiment is confirmed or disproved. The exclusion of (3+1) schemes depends somehow on the used LSND data. Furthermore, it heavily relies on the results of negative SBL experiments, especially on the Bugey and CDHS disappearance experiments.
[Maltoni:2002xd]
[7-631]
If sterile neutrinos exist, how can one determine the total B-8 and Be-7 solar neutrino fluxes?, J. N. Bahcall, M. C. Gonzalez-Garcia, C. Pena-Garay, Phys. Rev. C66 (2002) 035802, arXiv:hep-ph/0204194.
[Bahcall:2002zh]
[7-632]
Statistical Analysis of Different $\bar\nu_\mu\to\bar\nu_e$ Searches, E. D. Church, K. Eitel, G. B. Mills, M. Steidl, Phys. Rev. D66 (2002) 013001, arXiv:hep-ex/0203023.
From the article: This paper describes a combined statistical analysis of the final LSND and KARMEN 2 results.... For both experiments, the data are analysed with a maximum likelihood analysis followed by the extraction of confidence levels in a unified approach.... There are two oscillation scenarios with either $\Delta m^2 \approx 7 \, \mathrm{eV}^2$ or $\Delta m^2 < 1 \, \mathrm{eV}^2$ compatible with both experiments.
[Church:2002tc]
[7-633]
$\nu_e \to \nu_s$ oscillations with large neutrino mass in NuTeV?, Carlo Giunti, Marco Laveder, arXiv:hep-ph/0202152, 2002.
From the abstract: We propose an explanation of NuTeV anomaly in terms of oscillations of electron neutrinos into sterile neutrinos with average probability $P_{\nu_e \rightarrow \nu_s} = 0.21 \pm 0.07$.
[Giunti:2002nh]
[7-634]
Interpreting the LSND anomaly: Sterile neutrinos or CPT- violation or...?, Alessandro Strumia, Phys. Lett. B539 (2002) 91-101, arXiv:hep-ph/0201134.
Comment: Table 2 in the Addendum about the first Kamland and WMAP data (20 feb 2003) collects all the interpretations of all experimental neutrino data together with the quality of their fits. Fig. 7b shows the 3+1 best fit solution including all data.
Figure n.4 Left shows the best-fit regions at 90\% and 99\% CL (2 d.o.f.) in (3+1) schemes. The dotted lines show the regions suggested by only the LSND data. The dots show the best fit points. Constraints from cosmology are not included in this figure. [M.L.].

[Strumia:2002fw]
[7-635]
High-energy neutrino oscillations in absorbing matter, Vadim A. Naumov, Phys. Lett. B529 (2002) 199-211, arXiv:hep-ph/0112249.
[Naumov:2001ci]
[7-636]
Supernova Neutrinos and LSND, Michel Sorel, Janet Conrad, Phys. Rev. D66 (2002) 033009, arXiv:hep-ph/0112214.
[Sorel:2001jn]
[7-637]
Oscillation Induced Neutrino Asymmetry Growth in the Early Universe, Kimmo Kainulainen, Antti Sorri, JHEP 02 (2002) 020, arXiv:hep-ph/0112158.
[Kainulainen:2001cb]
[7-638]
Blocking active-sterile neutrino oscillations in the early universe with a Majoron field, Luis Bento, Zurab Berezhiani, Phys. Rev. D64 (2001) 115015, arXiv:hep-ph/0108064.
[Bento:2001xi]
[7-639]
Matter effects in upward-going muons and sterile neutrino oscillations, M. Ambrosio et al. (MACRO), Phys. Lett. B517 (2001) 59-66, arXiv:hep-ex/0106049.
[MACRO:2001fie]
[7-640]
Neutrino asymmetry generation in the early universe (from $\nu_\alpha\leftrightarrows\nu_s$ oscillations), P. Di Bari, arXiv:hep-ph/0105133, 2001.
[DiBari:2001im]
[7-641]
Majorana neutrinos, neutrino mass spectrum, CP-violation and neutrinoless double beta-decay. II: Mixing of four neutrinos, Samoil M. Bilenky, S. Pascoli, S. T. Petcov, Phys. Rev. D64 (2001) 113003, arXiv:hep-ph/0104218.
[Bilenky:2001xq]
[7-642]
Active-sterile neutrino oscillations in the early universe: Asymmetry generation at low $|\Delta{m}^2|$ and the Landau-Zener approximation, P. Di Bari, R. Foot, Phys. Rev. D65 (2002) 045003, arXiv:hep-ph/0103192.
[DiBari:2001jk]
[7-643]
4-neutrino mass schemes and the likelihood of (3+1)-mass spectra, W. Grimus, T. Schwetz, Eur. Phys. J. C20 (2001) 1-11, arXiv:hep-ph/0102252.
[Grimus:2001mn]
[7-644]
Sterile neutrinos in tau lepton decays, Vladimir Gribanov, Sergey Kovalenko, Ivan Schmidt, Nucl. Phys. B607 (2001) 355-368, arXiv:hep-ph/0102155.
[Gribanov:2001vv]
[7-645]
Is it possible to test the LSND parameters at reactors?, V. V. Sinev, Part. Nucl. Lett. 108 (2001) 37-40. http://www1.jinr.ru/Archive/Pepan_letters/panl_5_2001/04_sinev.pdf.
[Sinev:2001kd]
[7-646]
On the chaoticity of active-sterile neutrino oscillations in the early universe, Poul-Erik N. Braad, Steen Hannestad, arXiv:hep-ph/0012194, 2000.
[Braad:2000zw]
[7-647]
(3+1) spectrum of neutrino masses: A Chance for LSND?, O.L.G. Peres, A.Yu. Smirnov, Nucl. Phys. B599 (2001) 3, arXiv:hep-ph/0011054.
[Peres:2000ic]
[7-648]
Large $\nu_\mu \to \nu_\tau$ and $\nu_e \to \nu_\tau$ transitions in short baseline experiments?, Carlo Giunti, Marco Laveder, JHEP 02 (2001) 001, arXiv:hep-ph/0010009.
[Giunti:2000ur]
[7-649]
Maximum lepton asymmetry from active - sterile neutrino oscillations in the early universe, R. Buras, D. V. Semikoz, Phys. Rev. D64 (2001) 017302, arXiv:hep-ph/0009266.
[Buras:2000ah]
[7-650]
Tau neutrinos favored over sterile neutrinos in atmospheric muon neutrino oscillations, S. Fukuda et al. (Super-Kamiokande), Phys. Rev. Lett. 85 (2000) 3999-4003, arXiv:hep-ex/0009001.
[Super-Kamiokande:2000ywb]
[7-651]
Active-sterile neutrino oscillations and BBN + CMBR constraints, P. Di Bari, R. Foot, Phys. Rev. D63 (2001) 043008, arXiv:hep-ph/0008258.
[DiBari:2000wd]
[7-652]
Fate of the sterile neutrino, V. D. Barger, B. Kayser, J. Learned, T. Weiler, K. Whisnant, Phys. Lett. B489 (2000) 345-352, arXiv:hep-ph/0008019.
[Barger:2000ch]
[7-653]
Is the $\nu_\mu\to\nu_s$ oscillation solution to the atmospheric neutrino anomaly excluded by the superKamiokande data?, R. Foot, Phys. Lett. B496 (2000) 169-174, arXiv:hep-ph/0007065.
[Foot:2000bi]
[7-654]
Pulsar acceleration by asymmetric emission of sterile neutrinos, Enrico Nardi, Jorge I. Zuluaga, Astrophys. J. 549 (2001) 1076-1084, arXiv:astro-ph/0006285.
[Nardi:2000rr]
[7-655]
Four-neutrino oscillation solutions of the solar neutrino problem, C. Giunti, M. C. Gonzalez-Garcia, Carlos Pena-Garay, Phys. Rev. D62 (2000) 013005, arXiv:hep-ph/0001101.
[Giunti:2000wt]
[7-656]
Impact of radiative corrections on sterile neutrino scenarios, A. Ibarra, I. Navarro, JHEP 02 (2000) 031, arXiv:hep-ph/9912282.
[Ibarra:1999se]
[7-657]
On the sign of the neutrino asymmetry induced by active- sterile neutrino oscillations in the early universe, P. Di Bari, R. Foot, Phys. Rev. D61 (2000) 105012, arXiv:hep-ph/9912215.
[DiBari:1999vg]
[7-658]
Four-neutrino mixing and long-baseline experiments, Carlo Giunti, JHEP 01 (2000) 032, arXiv:hep-ph/9912211.
[Giunti:1999vc]
[7-659]
Amplification of isocurvature perturbations induced by active-sterile neutrino oscillations, P. Di Bari, Phys. Lett. B482 (2000) 150-160, arXiv:hep-ph/9911214.
[DiBari:1999fz]
[7-660]
Sterile neutrinos and supernova nucleosynthesis, David O. Caldwell, George M. Fuller, Yong-Zhong Qian, Phys. Rev. D61 (2000) 123005, arXiv:astro-ph/9910175.
[Caldwell:1999zk]
[7-661]
Cosmological nucleosynthesis and active-sterile neutrino oscillations with small mass differences: The resonant case, D. P. Kirilova, M. V. Chizhov, Nucl. Phys. B591 (2000) 457-468, arXiv:hep-ph/9909408.
[Kirilova:1999xj]
[7-662]
Matter effects in four-neutrino mixing, David Dooling, Carlo Giunti, Kyungsik Kang, Chung W. Kim, Phys. Rev. D61 (2000) 073011, arXiv:hep-ph/9908513.
[Dooling:1999sg]
[7-663]
Constraints from neutrino oscillation experiments on the effective Majorana mass in neutrinoless double beta decay, Samoil M. Bilenky, C. Giunti, W. Grimus, Boris Kayser, S. T. Petcov, Phys. Lett. B465 (1999) 193-202, arXiv:hep-ph/9907234.
[Bilenky:1999wz]
[7-664]
Four-neutrino MS**2 mixing, C. Giunti, Phys. Lett. B467 (1999) 83-94, arXiv:hep-ph/9906456.
[Giunti:1999zw]
[7-665]
Neutrinoless double-beta decay with three or four neutrino mixing, C. Giunti, Phys. Rev. D61 (2000) 036002, arXiv:hep-ph/9906275.
[Giunti:1999jw]
[7-666]
Neutrino-mixing-generated lepton asymmetry and the primordial He-4 abundance, X. Shi, G. M. Fuller, K. Abazajian, Phys. Rev. D60 (1999) 063002, arXiv:astro-ph/9905259.
[Shi:1999kg]
[7-667]
Four-neutrino mass spectra and the Super-Kamiokande atmospheric up-down asymmetry, Samoil M. Bilenky, C. Giunti, W. Grimus, T. Schwetz, Phys. Rev. D60 (1999) 073007, arXiv:hep-ph/9903454.
[Bilenky:1999ny]
[7-668]
An Active-Sterile Neutrino Transformation Solution for r- Process Nucleosynthesis, G. C. McLaughlin, J. M. Fetter, A. B. Balantekin, G. M. Fuller, Phys. Rev. C59 (1999) 2873-2887, arXiv:astro-ph/9902106.
[McLaughlin:1999pd]
[7-669]
Relic neutrino asymmetries and big bang nucleosynthesis in a four neutrino model, N. F. Bell, R. Foot, R. R. Volkas, Phys. Rev. D58 (1998) 105010, arXiv:hep-ph/9805259.
[Bell:1998sr]
[7-670]
Four-neutrino mixing and big-bang nucleosynthesis, Samoil M. Bilenky, C. Giunti, W. Grimus, T. Schwetz, Astropart. Phys. 11 (1999) 413-428, arXiv:hep-ph/9804421.
[Bilenky:1998ne]
[7-671]
Long-baseline neutrino oscillation experiments and CP violation in the lepton sector, Samoil M. Bilenky, C. Giunti, W. Grimus, Phys. Rev. D58 (1998) 033001, arXiv:hep-ph/9712537.
[Bilenky:1997dd]
[7-672]
Bounds on long-baseline $\bar\nu_e\to\bar\nu_e$ and $\nu_{\mu}\to\nu_{e}$ ($\bar\nu_{\mu}\to\bar\nu_{e}$) transition probabilities, Samoil M. Bilenky, C. Giunti, W. Grimus, Phys. Rev. D57 (1998) 1920-1933, arXiv:hep-ph/9710209.
[Bilenky:1997zm]
[7-673]
Studies of neutrino asymmetries generated by ordinary sterile neutrino oscillations in the early universe and implications for big bang nucleosynthesis bounds, R. Foot, R. R. Volkas, Phys. Rev. D55 (1997) 5147-5176, arXiv:hep-ph/9610229.
[Foot:1996qc]
[7-674]
Neutrino mass spectrum from the results of neutrino oscillation experiments, S. M. Bilenky, C. Giunti, W. Grimus, Eur. Phys. J. C1 (1998) 247-253, arXiv:hep-ph/9607372.
[Bilenky:1996rw]
[7-675]
A sterile neutrino scenario constrained by experiments and cosmology, Nobuchika Okada, Osamu Yasuda, Int. J. Mod. Phys. A12 (1997) 3669-3694, arXiv:hep-ph/9606411.
[Okada:1996kw]
[7-676]
New supernova constraints on sterile-neutrino production, Edward W. Kolb, Rabindra N. Mohapatra, Vigdor L. Teplitz, Phys. Rev. Lett. 77 (1996) 3066-3069, arXiv:hep-ph/9605350.
[Kolb:1996pa]
[7-677]
Limits on Active-Sterile Neutrino Mixing and the Primordial Deuterium Abundance, Christian Y. Cardall, George M. Fuller, Phys. Rev. D54 (1996) 1260-1263, arXiv:astro-ph/9603105.
[Cardall:1996ka]
[7-678]
On the MSW $\nu_e \to \nu_s$ transition solution of the solar neutrino problem, P. I. Krastev, S. T. Petcov, L. Qiuyu, Phys. Rev. D54 (1996) 7057-7066, arXiv:hep-ph/9602333.
[Krastev:1996gc]
[7-679]
Can a 'natural' three generation neutrino mixing scheme satisfy everything?, Christian Y. Cardall, George M. Fuller, Phys. Rev. D53 (1996) 4421-4429, arXiv:astro-ph/9602104.
[Cardall:1996qk]
[7-680]
Reconciling sterile neutrinos with big bang nucleosynthesis, Robert Foot, R. R. Volkas, Phys. Rev. Lett. 75 (1995) 4350, arXiv:hep-ph/9508275.
[Foot:1995bm]
[7-681]
Accelerator, reactor, solar and atmospheric neutrino oscillation: Beyond three generations, Srubabati Goswami, Phys. Rev. D55 (1997) 2931-2949, arXiv:hep-ph/9507212.
[Goswami:1995yq]
[7-682]
Future tau-neutrino oscillation experiments and present data, J.J. Gomez-Cadenas, M.C. Gonzalez-Garcia, Z.Phys. C71 (1996) 443-454, arXiv:hep-ph/9504246.
[Gomez-Cadenas:1995epo]
[7-683]
Results from the LSND neutrino oscillation search for anti- muon-neutrino $\to$ anti-electron-neutrino, James E. Hill, Phys. Rev. Lett. 75 (1995) 2654-2657, arXiv:hep-ex/9504009.
[Hill:1995gf]
[7-684]
Are there sterile neutrinos in the flux of solar neutrinos on the earth?, S. M. Bilenky, C. Giunti, Z. Phys. C68 (1995) 495-502, arXiv:hep-ph/9502263.
[Bilenky:1995fy]
[7-685]
A Model independent approach to future solar neutrino experiments, S. M. Bilenky, C. Giunti, Astropart. Phys. 2 (1994) 353-374, arXiv:hep-ph/9403345.
[Bilenky:1994xv]
[7-686]
Sterile-neutrinos and future solar neutrino experiments, S. M. Bilenky, C. Giunti, Phys. Lett. B320 (1994) 323-328, arXiv:hep-ph/9310314.
[Bilenky:1993yk]
[7-687]
Neutrino experiments and the question of leptonic-charge conservation, B. Pontecorvo, Sov. Phys. JETP 26 (1968) 984-988. [Zh. Eksp. Teor. Fiz. 53, 1717 (1967)].
[Pontecorvo:1967fh]

8 - Phenomenology - Talks

[8-1]
A Standard Model explanation for the MiniBooNE anomaly, Ara Ioannisian, Carlo Giunti, Gioacchino Ranucci, PoS ICHEP2020 (2021) 142, arXiv:2012.06164. ICHEP 2020, July 28-August 6, Prague, Czech Republic.
[Ioannisian:2020wbm]
[8-2]
Probing secret interactions of eV-scale sterile neutrinos with the diffuse supernova neutrino background, Mary Hall Reno, Yu Seon Jeong, Sergio Palomares-Ruiz, Ina Sarcevic, PoS ICHEP2020 (2021) 603, arXiv:2012.05380. ICHEP 2020, July 28-August 6, Prague, Czech Republic.
[Reno:2020cgj]
[8-3]
Effect of sterile phases on degeneracy resolution capabilities of LBL experiments, Akshay Chatla, Bindu A. Bambah, Phys.At.Nucl. 84 (2021) 377-380, arXiv:2010.06321. 5th international conference on particle physics and astrophysics, Moscow (05-09 October 2020).
[Chatla:2020bqb]
[8-4]
Matrix norms and search for sterile neutrinos, Wojciech Flieger, Franciszek Pindel, Kamil Porwit, PoS CORFU2018 (2019) 050, arXiv:1904.10649. Corfu Summer Institute 2018 'School and Workshops on Elementary Particle Physics and Gravity', 31 August-29 September 2018 Corfu, Greece.
[Flieger:2019nsb]
[8-5]
Neutrino Properties and the Cosmological Tensions in the $\Lambda$CDM Model, Stefano Gariazzo, arXiv:1812.00638, 2018. 15th Marcel Grossmann Meeting.
[Gariazzo:2018zho]
[8-6]
Discovery potential of light sterile neutrinos with displaced vertices, Giovanna Cottin, PoS ICHEP2018 (2019) 574, arXiv:1811.03449. ICHEP 2018.
[Cottin:2018mtl]
[8-7]
Searching for MeV-scale Neutrinos with the DUNE Near Detector, P. Ballett, T. Boschi, S. Pascoli, arXiv:1803.10824, 2018. NuPhys2017 (London, 20-22 December 2017).
[Ballett:2018fah]
[8-8]
Parameter degeneracy and hierarchy sensitivity of NO$\nu$A in presence of sterile neutrino, Monojit Ghosh, Shivani Gupta, Zachary M. Matthews, Pankaj Sharma, Anthony G. Williams, PoS NuFact2017 (2018) 133, arXiv:1712.06714. 19th international Workshop on Neutrinos from Accelerators (NuFact2017), 25-30 September 2017, Uppsala University, Uppsala, Sweden.
[Ghosh:2017sli]
[8-9]
Status of Sterile Neutrino fits with Global Data, Alejandro Diaz, arXiv:1710.04360, 2017. APS Division of Particles and Fields Meeting (DPF 2017), July 31-August 4, 2017, Fermilab.
[Diaz:2017mfd]
[8-10]
Searches for Sterile Neutrinos at Future Electron-Proton Colliders, Stefan Antusch, Oliver Fischer, PoS DIS2017 (2018) 090, arXiv:1709.00880. DIS 2017.
[Fischer:2017wkj]
[8-11]
Searching for heavy sterile neutrinos in kaon decays, C. Weiland, arXiv:1707.01725, 2017. 52nd Rencontres de Moriond EW 2017.
[Weiland:2017abp]
[8-12]
Light Sterile Neutrinos at $\nu$STORM: Decoherence and CP violation, Peter Ballett, Matheus Hostert, Silvia Pascoli, arXiv:1705.09214, 2017. NuPhys2016 (London, 12-14 December 2016).
[Ballett:2017bug]
[8-13]
Non-Unitarity vs sterile neutrinos at DUNE, Josu Hernandez-Garcia, Jacobo Lopez-Pavon, arXiv:1705.01840, 2017. NuPhys2016 (London, 12-14 December 2016).
[Hernandez-Garcia:2017pwx]
[8-14]
Radiative decay of heavy neutrinos at MiniBooNE and MicroBooNE, Luis Alvarez-Ruso, Eduardo Saul-Sala, arXiv:1705.00353, 2017. NuPhys2016 (London, 12-14 December 2016).
[Alvarez-Ruso:2017hdm]
[8-15]
Can we measure $\theta_{23}$ octant in 3+1 scheme?, Sanjib Kumar Agarwalla, Sabya Sachi Chatterjee, Antonio Palazzo, Springer Proc.Phys. 203 (2018) 235-237, arXiv:1704.07151. XXII DAE-BRNS High Energy Physics Symposium 2016, University of Delhi, Delhi, India, 12-16 December, 2016.
[Agarwalla:2017lle]
[8-16]
Testing the sterile neutrino dark matter paradigm with astrophysical observations, Aurel Schneider, PoS NOW2016 (2017) 093, arXiv:1704.01832. NOW 2016.
[Schneider:2017qdf]
[8-17]
Light sterile neutrinos and pseudoscalar interactions in cosmology, Stefano Gariazzo, PoS NOW2016 (2017) 083, arXiv:1610.01330. Neutrino Oscillation Workshop (NOW) 2016.
[Gariazzo:2016lsd]
[8-18]
Direct detection of relic active and sterile neutrinos, Yu-Feng Li, J. Phys. Conf. Ser. 718 (2016) 062038, arXiv:1606.04734.
[Li:2016qsu]
[8-19]
Predictions for Neutrinoless Double-Beta Decay in the 3+1 Sterile Neutrino Scenario, C. Giunti, E. M. Zavanin, J. Phys. Conf. Ser. 718 (2016) 062074, arXiv:1511.03838. TAUP 2015.
[Giunti:2015iyr]
[8-20]
Dark Radiation and Inflationary Freedom, Stefano Gariazzo, J. Phys. Conf. Ser. 718 (2016) 032006, arXiv:1510.05980. TAUP 2015.
[Gariazzo:2015apa]
[8-21]
Indirect searches for sterile neutrinos at a high-luminosity Z-factory, Valentina De Romeri, Asmaa Abada, Stephane Monteil, Jean Orloff, Ana M. Teixeira, PoS EPS-HEP2015 (2015) 056, arXiv:1510.02598. The European Physical Society Conference on High Energy Physics, 22-29 July 2015, Vienna (Austria).
[DeRomeri:2015ipa]
[8-22]
Inverse-square law violation and reactor antineutrino anomaly, D.V. Naumov, V.A. Naumov, D.S. Shkirmanov, Phys.Part.Nucl. 48 (2017) 12-20, arXiv:1507.04573. International Workshop on Prospects of Particle Physics: 'Neutrino Physics and Astrophysics', Valday, Russia, February 1-8, 2015.
[Naumov:2015hba]
[8-23]
Supernova Bounds on keV-mass Sterile Neutrinos, Shun Zhou, Int.J.Mod.Phys. A30 (2015) 0033, arXiv:1504.02729. International Conference on Massive Neutrinos, Singapore, February 9-13, 2015.
[Zhou:2015jha]
[8-24]
Review of Sterile Neutrino Searches, C. Giunti, 2015. NNN15, 28-31 October 2015, Stony Brook, New York, USA. http://personalpages.to.infn.it/~giunti/slides/2015/giunti-151030-nnn.pdf.
[Giunti-NNN2015]
[8-25]
Global Status of Sterile Neutrino Scenarios, C. Giunti, 2015. NeuTel 2015, XVI International Workshop on Neutrino Telescopes, 2-6 March 2015, Venice, Italy. http://personalpages.to.infn.it/~giunti/slides/2015/giunti-150304-neutel.pdf.
[Giunti-NeuTel2015]
[8-26]
Light Sterile Neutrinos, M. Laveder, 2015. Seminar at Krakow Institute for Nuclear Studies, 2 September 2015, Krakow, Poland. http://www.pd.infn.it/~laveder/seminar/Laveder-Krakow-150902.pdf.
[Laveder-2015-Krakow]
[8-27]
Using MiniBooNE NCEL and CCQE cross section results to constrain 3+1 sterile neutrino models, Callum Wilkinson, Susan Cartwright, Lee Thompson, J. Phys. Conf. Ser. 598 (2015) 012035, arXiv:1412.0461. NuPhys2013, 19-20 December 2013, IOP, London.
[Wilkinson:2014pca]
[8-28]
The Effect of Sterile States on the Magnetic Moments of Neutrinos, A.B. Balantekin, N. Vassh, AIP Conf.Proc. 1604 (2014) 150-155, arXiv:1404.1393. CETUP' (Center for Theoretical Underground Physics and Related Areas) 2013 Summer Institute.
[Balantekin:2014mqa]
[8-29]
A sterile neutrino at MiniBooNE and IceCube, Manuel Masip, AIP Conf.Proc. 1606 (2014) 59-65, arXiv:1402.0665. II Russian-Spanish Congress: Particle and Nuclear Physics at all Scales, Saint-Petersburg, October 1-4, 2013.
[Masip:2014xna]
[8-30]
Sterile Neutrinos - Review, C. Giunti, 2014. NNN 2014, 4-6 November 2014, APC, Paris, France. http://personalpages.to.infn.it/~giunti/slides/2014/giunti-141105-nnn.pdf.
[Giunti-NNN-2014]
[8-31]
Theory and Phenomenology of Sterile Neutrinos, J. Kopp, 2014. Neutrino 2014, 2-7 June 2014, Boston, Massachusetts, USA. https://indico.fnal.gov/getFile.py/access?contribId=295&sessionId=25&resId=0&materialId=slides&confId=8022.
[Kopp-Neutrino-2014]
[8-32]
Active-Sterile Solar Neutrino Oscillation, H. Long, 2014. Padua University, 27 October 2014. http://www.pd.infn.it/~laveder/unbound/seminari/fisica-neutrino/Long_Padova_2014.pdf.
[Long-PD-2014]
[8-33]
(Sub)eV sterile neutrinos: phenomenological aspects, M. Maltoni, 2014. NOW 2014, 7-14 September 2014, Conca Specchiulla, Otranto, Italy. http://www.ba.infn.it/~now/now2014/web-content/TALKS/eSat/Plen/seminar-maltoni.pdf.
[Maltoni-NOW-2014]
[8-34]
Sterile Neutrino Status, C. Giunti, arXiv:1311.1335, 2013. NuFact 2013, 19-24 August 2013, IHEP, Beijing, China.
[Giunti:2013waa]
[8-35]
Sterile neutrinos in the 3+s scenario and solar data, Joao Pulido, C.R. Das, PoS EPS-HEP2013 (2014) 527, arXiv:1310.0426. EPS Conference on High Energy Physics-EPS-HEP2013, 18-24 July 2013, Stockholm, Sweden.
[Pulido:2013sna]
[8-36]
Tracing the Interplay between Non-Thermal Dark Matter and Right-Handed Dirac Neutrinos with LHC Data, Luis A. Anchordoqui, Haim Goldberg, Brian Vlcek, Phys. Rev. D88 (2013) 043513, arXiv:1305.0146. 33rd International Cosmic Ray Conference (ICRC2013), Rio de Janeiro, Brazil, 2-9 July, 2013.
[Anchordoqui:2013pta]
[8-37]
Sterile neutrinos and $R_K$, A. Vicente, J. Phys. Conf. Ser. 447 (2013) 012040, arXiv:1302.5539.
[Vicente:2013zxa]
[8-38]
Global Status of Sterile Neutrino Scenarios, Joachim Kopp, Pedro A. N. Machado, Michele Maltoni, Thomas Schwetz, PoS Neutel2013 (2013) 019. 15th International Workshop on Neutrino Telescopes (Neutel 2013).
[Kopp:2013uik]
[8-39]
Constraints on Neutrino Physics from Cosmology, A. Melchiorri, 2013. The Future of Neutrino Mass Measurements: Terrestrial, Astrophysical, and Cosmological Measurements in the Next Decade, 4-7 February 2013, Milano, Italy. http://artico.mib.infn.it/numass2013/images/slides/workshop_melk.pdf.
[Melchiotti-numass-2012]
[8-40]
New signals in dark matter detectors, Joachim Kopp, J. Phys. Conf. Ser. 485 (2014) 012032, arXiv:1210.2703. PASCOS 2012.
[Kopp:2012dz]
[8-41]
Beyond Three-Neutrino Mixing: Theory and Phenomenology, C. Giunti, 2012. CIPANP 2012, 29 May - 3 June 2012, St. Petersburg, FL, USA. http://personalpages.to.infn.it/~giunti/slides/2012/giunti-120531-cipanp.pdf.
[Giunti-CIPANP2012]
[8-42]
Neutrino Anomalies, C. Giunti, 2012. EUROnu 2012, 4th EUROnu Annual Meeting, 12-15 June 2012, Paris, France. http://personalpages.to.infn.it/~giunti/slides/2012/giunti-120613-euronu.pdf.
[Giunti-EUROnu2012]
[8-43]
Status of PMNS and Impact of Large $\vartheta_{13}$ for Sterile Neutrino Phenomenology, C. Giunti, 2012. GDR Neutrino, 20-21 June 2012, APC, Paris, France. http://personalpages.to.infn.it/~giunti/slides/2012/giunti-120620-gdr.pdf.
[Giunti-GDR2012]
[8-44]
Neutrino Masses in Cosmology, Neutrinoless Double-Beta Decay and Direct Neutrino Masses, C. Giunti, 2012. LIONeutrino2012, Neutrinos at the forefront of elementary particle physics and astrophysics 22-24 October 2012, Lyon, France. http://personalpages.to.infn.it/~giunti/slides/2012/giunti-121024-lioneutrino.pdf.
[Giunti-LIONeutrino2012]
[8-45]
Phenomenology of Sterile Neutrinos, C. Giunti, 2012. Moscow State University, 15 February 2012. http://personalpages.to.infn.it/~giunti/slides/2012/giunti-120215-msu.pdf.
[Giunti-MSU2012]
[8-46]
Neutrino Masses, C. Giunti, 2012. 47th Rencontres de Moriond - Cosmology, 10 - 17 March 2012, La Thuile (Val d\u2019Aosta, Italy). http://personalpages.to.infn.it/~giunti/slides/2012/giunti-120314-moriond.pdf.
[Giunti-Moriond2012]
[8-47]
Status of Sterile Neutrinos, C. Giunti, 2012. NOW 2012, Neutrino Oscillation Workshop, 9-16 September 2012, Conca Specchiulla, Otranto, Italy. http://personalpages.to.infn.it/~giunti/slides/2012/giunti-120915-now.pdf.
[Giunti-NOW2012]
[8-48]
Phenomenology of Light Sterile Neutrinos, C. Giunti, 2012. NPB 2012, International Symposium on Neutrino Physics and Beyond, 23-26 September 2012, Shenzhen, China. http://personalpages.to.infn.it/~giunti/slides/2012/giunti-120923-npb.pdf.
[Giunti-NPB2012]
[8-49]
Beyond Three-Neutrino Mixing, C. Giunti, 2012. $\nu$TURN 2012, Neutrino at the Turning Point, 8-10 May 2012, LNGS, Assergi, Italy. http://personalpages.to.infn.it/~giunti/slides/2012/giunti-120509-nuturn.pdf.
[Giunti-NUTURN2012]
[8-50]
Neutrino Mass: Overview of $\beta\beta_{0\nu}$, Cosmology and Direct Measurements, C. Giunti, 2012. Neutrino Town Meeting, European Strategy for Neutrino Oscillation Physics - II, 14-16 May 2012, CERN. http://personalpages.to.infn.it/~giunti/slides/2012/giunti-120514-nutown.pdf.
[Giunti-NeutrinoTown2012]
[8-51]
Status of 3+N Global fits, C. Ignarra, 2012. NOW 2012, Neutrino Oscillation Workshop, 9-16 September 2012, Conca Specchiulla, Otranto, Italy. http://www.ba.infn.it/~now/now2012/web-content/TALKS/Wedsnday12/parallel1/Ignarra_3plusNfits_12Sep2012.pdf.
[Ignarra-NOW2012]
[8-52]
Toward Solution of the MiniBooNE-LSND Anomalies, G. Karagiorgi, Nucl. Phys. Proc. Suppl. 229-232 (2012) 50-54. 24th International Conference on Neutrino physics and astrophysics (Neutrino 2010).
[Karagiorgi:2012usa]
[8-53]
Sterile Neutrinos: Phenomenology and Fits, M. Laveder, 2012. 16th Paris Cosmology Colloquium Chalonge 2012, 25-27 July 2012, Observatoire de Paris, France. http://personalpages.to.infn.it/~giunti/slides/2012/laveder-120725-chalonge.pdf.
[Laveder-Chalonge2012]
[8-54]
Low-energy sterile nu (theory), A. Palazzo, 2012. NOW 2012, Neutrino Oscillation Workshop, 9-16 September 2012, Conca Specchiulla, Otranto, Italy. http://www.ba.infn.it/~now/now2012/web-content/TALKS/Friday14/parallel2/NOW_2012_palazzo.pdf.
[Palazzo-NOW2012]
[8-55]
Active sterile neutrino oscillations in the Early Universe with dynamical lepton asymmetries, N. Saviano, 2012. NOW 2012, Neutrino Oscillation Workshop, 9-16 September 2012, Conca Specchiulla, Otranto, Italy. http://www.ba.infn.it/~now/now2012/web-content/TALKS/Friday14/parallel1/saviano.pdf.
[Saviano-NOW2012]
[8-56]
Sterile nu's in early universe, I. Tamborra, 2012. NOW 2012, Neutrino Oscillation Workshop, 9-16 September 2012, Conca Specchiulla, Otranto, Italy. http://www.ba.infn.it/~now/now2012/web-content/TALKS/Friday14/parallel1/Tamborra.pdf.
[Tamborra-NOW2012]
[8-57]
Sterile Neutrinos and IceCube, Francis Halzen, J. Phys. Conf. Ser. 408 (2013) 012023, arXiv:1111.0918. NUFACT 11, the XIIIth Intl. Workshop on Neutrino Factories, Super beams and Beta beams, 1-6 August 2011 at CERN and the University of Geneva, Switzerland.
[Halzen:2011yq]
[8-58]
Phenomenology of Sterile Neutrinos, Carlo Giunti, J. Phys. Conf. Ser. 408 (2013) 012009, arXiv:1110.3914. NUFACT 11, XIIIth International Workshop on Neutrino Factories, Super beams and Beta beams, 1-6 August 2011, CERN and University of Geneva.
[Giunti:2011bx]
[8-59]
Confronting Recent Neutrino Oscillation Data with Sterile Neutrinos, G. Karagiorgi, arXiv:1110.3735, 2011. DPF-2011.
[Karagiorgi:2011ut]
[8-60]
Search for sterile neutrinos at reactors with a small core, Osamu Yasuda, Acta Phys.Polon. B42 (2011) 2379, arXiv:1110.2579. 35th International Conference of Theoretical Physics: Matter to the Deepest: Recent Development in Physics of Fundamental Interactions, Ustron, Poland, 12-18 Sep 2011.
[Yasuda:2011wk]
[8-61]
Neutrino-triggered asymmetric magnetorotational mechanism for pulsar natal kick, A.V. Kuznetsov, N.V. Mikheev, arXiv:1110.1041, 2011. XV-th International School 'Particles and Cosmology', Troitsk, Moscow Region, May 26 - June 2, 2011, and XV-th Lomonosov Conference on Elementary Particle Physics, August 18-24, 2011, Moscow State University, Moscow.
[Kuznetsov:2011ne]
[8-62]
Is there any 'LSND anomaly'?, A. Bolshakova (HARP-CDP), Phys. Part. Nucl. 42 (2011) 680-682. 4th International Pontecorvo Neutrino physics School: Alushta, Crimea, Ukraine, September 26-October 6, 2010.
[Bolshakova:2011zz]
[8-63]
Searches for Sterile Neutrinos, C. Rubbia, 2011. XIV International Workshop on Neutrino Telescopes, March 15-18, 2011, Venice, Italy. http://agenda.infn.it/getFile.py/access?contribId=34&sessionId=10&resId=0&materialId=slides&confId=3101.
[CRUBBIA-NEUTEL2011]
[8-64]
Neutrino nuclear responses for beta and double-beta decays, Hiro Ejiri, 2011. MEDEX'11, Matrix Elements for the Double-beta-decay EXperiments, 13-16 June 2011, Prague, Czechoslovakia. http://medex11.utef.cvut.cz/talks/Ejiri.pdf.
[Ejiri-MEDEX11]
[8-65]
The Reactor Antineutrino Anomaly, M. Fechner, 2011. Workshop on Sterile Neutrinos and on the Reactor (anti)-Neutrino Anomaly, TUM, Garching, February 8th 2011. http://www.e15.physik.tu-muenchen.de/fileadmin/downloads/seminars/1011/SterileNeutrinosWorkshop/fechner_reactoranomaly_munich.pdf.
[FECHNER2011]
[8-66]
Short-Baseline $\bar\nu_{\mu}\to\bar\nu_{e}$ Oscillations, C. Giunti, 2011. Third EUROnu Annual Meeting, 18-21 January 2011, RAL, UK. http://personalpages.to.infn.it/~giunti/slides/2011/giunti-110118-ral-sbl.pdf.
[Giunti-110118-ral-sbl]
[8-67]
Review of Neutrino Physics, C. Giunti, 2011. Third EUROnu Annual Meeting, 18-21 January 2011, RAL, UK. http://personalpages.to.infn.it/~giunti/slides/2011/giunti-110119-ral-rev.pdf.
[Giunti-110119-ral-rev]
[8-68]
Sterile Neutrinos and Short-Baseline Oscillations, C. Giunti, 2011. Workshop on Sterile Neutrinos and the Reactor Antineutrino Anomaly, T.U.M, Garching, 8 February 2011. http://personalpages.to.infn.it/~giunti/slides/2011/giunti-110208-tum.pdf.
[Giunti-110208-tum]
[8-69]
Recent Progress in Neutrino Physics, C. Giunti, 2011. La Thuile 2011, Les Rencontres de Physique de La Vallee d'Aoste, 27 February - 5 March 2011. http://personalpages.to.infn.it/~giunti/slides/2011/giunti-110301-lathuile.pdf.
[Giunti-110301-lathuile]
[8-70]
Sterile Neutrino Fits, C. Giunti, 2011. XIV International Workshop on Neutrino Telescopes, March 15-18, 2011, Venice, Italy. http://personalpages.to.infn.it/~giunti/slides/2011/giunti-110317-neutel.pdf.
[Giunti-NEUTEL2011]
[8-71]
3+N Fits to World Data, C. Ignarra, 2011. Short-Baseline Neutrino Workshop (SBNW11), 12-14 May 2011, Fermilab. https://indico.fnal.gov/getFile.py/access?contribId=22&sessionId=4&resId=0&materialId=slides&confId=4157.
[Ignarra2011]
[8-72]
The Reactor Antineutrino Anomaly, T. Lasserre, 2011. XIV International Workshop on Neutrino Telescopes, March 15-18, 2011, Venice, Italy. http://agenda.infn.it/getFile.py/access?contribId=63&sessionId=8&resId=0&materialId=slides&confId=3101.
[LASSERRE-NEUTEL2011]
[8-73]
Short Baseline Oscillations: what to look for?, M. Laveder, 2011. LAGUNA/LAGUNA-LBNO General Meeting, CERN, 3-5 march 2011. http://indico.cern.ch/getFile.py/access?contribId=13&sessionId=7&resId=0&materialId=slides&confId=124959.
[Laveder:LAGUNA11]
[8-74]
Reactor anomaly, D. Lhuillier, 2011. Workshop on Beyond Three Family Neutrino Oscillations, 3-4 May 2011, LNGS, Italy. http://agenda.infn.it/getFile.py/access?contribId=1&sessionId=0&resId=0&materialId=slides&confId=3422.
[Lhuillier2011]
[8-75]
Reactor Anti-Neutrino Anomaly, T. Mention, 2011. Rencontres de Moriond EW 2011, Electroweak Interactions and Unified Theories, 13-20 March 2011, La Thuile, Aosta Valley, Italy. http://indico.in2p3.fr/getFile.py/access?contribId=41&sessionId=7&resId=0&materialId=slides&confId=4403.
[MENTION-MORIOND2011]
[8-76]
Antineutrino reactor anomaly, T. Mueller, 2011. 23rd Rencontres de Blois,Particle Physics and Cosmology, May 29-June 3, 2011, Chateau Royal de Blois France. http://blois.in2p3.fr/2011/transparencies/Nu/mueller.pdf.
[Mueller-Blois-2011]
[8-77]
Testing the sterile neutrino hypothesis at the solar sector, A. Palazzo, 2011. 12th International Conference on Topics in Astroparticle and Underground Physics, TAUP2011, 5-9 September 2011, Munich, Germany. http://taup2011.mpp.mpg.de/php/downloadPresentationFile.php?type=webpage&sessionid=35&presentationid=29.
[Palazzo-TAUP2011]
[8-78]
The antineutrino anomaly: implications for the solar neutrino sector, A. Palazzo, 2011. Rencontres de Moriond EW 2011, 13-20 March 2011, La Thuile, Italy. http://indico.in2p3.fr/getFile.py/access?contribId=39&sessionId=7&resId=0&materialId=slides&confId=4403.
[Palazzo2011]
[8-79]
Borexino Search for Sterile Neutrinos, M. Pallavicini, 2011. Short-Baseline Neutrino Workshop (SBNW11), 12-14 May 2011, Fermilab. https://indico.fnal.gov/getFile.py/access?contribId=41&sessionId=11&resId=0&materialId=slides&confId=4157.
[Pallavicini2011]
[8-80]
Short-BaseLine Electron Neutrino Disappearance, Carlo Giunti, Marco Laveder, Nucl. Phys. Proc. Suppl. 217 (2011) 193-195, arXiv:1012.4356. NOW 2010, 4-11 September 2010, Conca Specchiulla (Otranto, Lecce, Italy).
[Giunti:2010rz]
[8-81]
Some attempts to explain MINOS anomaly, Osamu Yasuda, AIP Conf. Proc. 1382 (2011) 103-105, arXiv:1012.3478. 12th International Workshop on Neutrino Factories, Superbeams and Beta Beams (NuFact10), October 20-25, 2010, Mumbai, India.
[Yasuda:2010aa]
[8-82]
Constraining sterile neutrinos with a low energy beta-beam, Sanjib Kumar Agarwalla, AIP Conf. Proc. 1222 (2010) 169-173, arXiv:1006.1640. 11th International Workshop on Neutrino Factories, Superbeams and Betabeams: NuFact09, Chicago, Illinois, 20-25 Jul 2009.
[Agarwalla:2010dk]
[8-83]
Sensitivity to sterile neutrino mixings and the discovery channel at a neutrino factory, Osamu Yasuda, arXiv:1004.2388, 2010. Fifth International Conference on BEYOND THE STANDARD MODELS OF PARTICLE PHYSICS, COSMOLOGY AND ASTROPHYSICS, Cape Town, South Africa, 1 - 6 February, 2010.
[Yasuda:2010rj]
[8-84]
The case of 1.5 eV neutrino hot dark matter, Theo M. Nieuwenhuizen, arXiv:1003.0459, 2010. Marcel Grossmann XII, Paris, 2009.
[Nieuwenhuizen:2010se]
[8-85]
Physics of Sterile Neutrinos, Carlo Giunti, 2010. Padova, 8 November 2010. http://personalpages.to.infn.it/~giunti/slides/2010/giunti-101108-padova.pdf.
[Giunti-101108-Padova]
[8-86]
Hint of CPT Violation in Short-Baseline Electron Neutrino Disappearance, C. Giunti, 2010. DISCRETE 2010, 6-11 December 2010, Rome, Italy. http://personalpages.to.infn.it/~giunti/slides/2010/giunti-101207-discrete.pdf.
[Giunti-101207-discrete]
[8-87]
Sterile Neutrinos, Carlo Giunti, 2010. NEU2012, 27-28 September 2010, CERN, Geneva, Switzerland. http://indico.cern.ch/getFile.py/access?contribId=10&sessionId=1&resId=0&materialId=slides&confId=106198.
[Giunti:NEU2012]
[8-88]
Short-Baseline $\bar\nu_{\mu}\to\bar\nu_{e}$ Oscillations, C. Giunti, M. Laveder, 2010. 11th International Workshop on Next generation Nucleon Decay and Neutrino Detectors,14-16 December 2010, Toyama, Japan. http://www.pd.infn.it/~laveder/talks/Laveder-NNN2010.pdf.
[Laveder:NNN10]
[8-89]
Is there any 'LSND anomaly'?, A. Zhemchugov (HARP-CDP), PoS ICHEP2010 (2010) 334. 35th International Conference on High energy physics (ICHEP 2010): Paris, France, July 22-28, 2010.
[Zhemchugov:2010zz]
[8-90]
Matter Effects in Solar Neutrino Active-Sterile Oscillations, Carlo Giunti, Yu-Feng Li, Prog. Part. Nucl. Phys. 64 (2010) 213-215, arXiv:0911.3934. Erice 2009 Neutrinos in Cosmology, in Astro-, Particle- and Nuclear Physics.
[Giunti:2009jf]
[8-91]
Cosmological and Astrophysical Implications of Sterile Neutrinos, Kalliopi Petraki, ASP Conf.Ser. 426 (2010) 149, arXiv:0906.4049. SnowPAC 2009.
[Petraki:2009vf]
[8-92]
The Gallium and reactor neutrinos anomaly, Mario A. Acero, Carlo Giunti, Marco Laveder, Nucl. Phys. Proc. Suppl. 188 (2009) 211-213. NOW 2008: Neutrino Oscillation Workshop, Conca Specchiulla (Otranto), Lecce, Italy, 6-13 Sep 2008.
[Acero:2008zz]
[8-93]
Very-Short-BaseLine Electron Neutrino Disappearance, C. Giunti, 2009. CERN, 11 December 2009. http://personalpages.to.infn.it/~giunti/slides/2009/giunti-091211-cern-vsbl.pdf.
[Giunti-091211-cern-vsbl]
[8-94]
Investigating CPT violation with sterile neutrino fits, Christina Ignarra, 2009. Fermilab, 7 August 2009. http://microboone-docdb.fnal.gov/cgi-bin/RetrieveFile?docid=523&version=1&filename=sterileNeutrinos_aug09.pdf.
[Ignarra-Fermilab-090807]
[8-95]
Short Baseline Electron Neutrino Disappearance, Marco Laveder, 2009. EUROnu, European Commission Framework Programme 7 Design Study to investigate second generation neutrino oscillation facilities in Europe, 23-27 March 2009, CERN, Geneva, Switzerland. http://indico.cern.ch/contributionDisplay.py?contribId=53&sessionId=16&confId=42846.
[Laveder:2009EURONU]
[8-96]
Very Short Baseline Electron Neutrino Disappearance, Marco Laveder, 2009. Torino University, 31 March 2009. http://www.pd.infn.it/~laveder/seminar/Laveder-torino-09.pdf.
[Laveder:2009TO]
[8-97]
Very-Short-BaseLine Electron Neutrino Disappearance, M. Laveder, 2009. Madrid Neutrino Non Standard Interactions Workshop, 10-11 December 2009, Madrid, Spain. http://www.ft.uam.es/workshops/neutrino/pdfs/12-Laveder-VSBLElectronNeutrino.pdf.
[Laveder:NSI09]
[8-98]
Status of Neutrino Oscillations and Sterile Neutrinos, M. Maltoni, 2009. Physics at ESS Workshop, 2-4 December 2009, Lund, Sweden. http://indico.hep.lu.se/materialDisplay.py?contribId=19&sessionId=5&materialId=slides&confId=896.
[Maltoni:ESS09]
[8-99]
Near detector for new physics searches, W. Winter, 2009. Fourth Plenary Meeting 12-14 October 2009 at the Tata Institute of Fundamental Research,Mumbai, India. https://www.ids-nf.org/wiki/TIFR-2009-10-12/Agenda/Physics/Files?action=AttachFile&do=get&target=S2-Winter-1-v1.ppt.
[Winter:IDS-NF2009]
[8-100]
Sterile neutrinos at future long baseline experiments, Davide Meloni, Nucl. Phys. Proc. Suppl. 188 (2009) 207-210, arXiv:0812.3555. NOW2008, Conca Specchiulla, Otranto, Italy, September 6-13, 2008.
[Meloni:2008ti]
[8-101]
New interactions: past and future experiments, Michele Maltoni, J. Phys. Conf. Ser. 136 (2008) 022024, arXiv:0810.3517. Neutrino 08.
[Maltoni:2008mu]
[8-102]
The LSND puzzle in the light of MiniBooNE results, Thomas Schwetz, arXiv:0805.2234, 2008. Rencontres de Moriond EW 2008, La Thuile, 1-8 March 2008.
[Schwetz:2008cp]
[8-103]
Gallium and Reactor Neutrinos Anomaly, Carlo Giunti, 2008. NO-VE 08, IV International Workshop on: 'Neutrino Oscillations in Venice', 16th of the series 'Un altro modo di guardare il cielo', 15-18 April 2008, Venice, Italy. http://neutrino.pd.infn.it/NO-VE2008/Talks/Giunti.pdf.
[Giunti-NoVE08]
[8-104]
Signatures of sterile neutrino oscillations in high-energy cosmic neutrino flux, Osamu Yasuda, Andrea Donini, PoS NUFACT08 (2008) 146.
[Yasuda:2008zz]
[8-105]
Neutrino telescopes as a probe of active and sterile neutrino mixings, Zhi-zhong Xing, Nucl. Phys. B, Proc. Suppl. 175-176 (2008) 421-426, arXiv:0711.4163. XIV International Symposium on Very High Energy Cosmic Ray Interactions, Weihai, China, August 15-22, 2006.
[Xing:2007rz]
[8-106]
Sterile neutrinos after the first MiniBooNE results, Michele Maltoni, J. Phys. Conf. Ser. 110 (2008) 082011, arXiv:0711.2018. The 2007 Europhysics Conference on High Energy Physics, Manchester, England, July 19-25, 2007.
[Maltoni:2007ur]
[8-107]
Sterile neutrinos and structure formation, Jaroslaw Stasielak, Peter L. Biermann, Alexander Kusenko, Acta Phys. Polon. B38 (2007) 3869-3878, arXiv:0710.5431. XLVII Cracow School of Theoretical Physics held in Zakopane, Poland, June 2007.
[Stasielak:2007ex]
[8-108]
Accounting for the Unresolved X-ray Background with Sterile Neutrino Dark Matter, Daniel Cumberbatch, Joseph Silk, AIP Conf. Proc. 957 (2007) 375-378, arXiv:0709.0279. 13th International Symposium on Particles, Strings and Cosmology (PASCOS-07).
[Cumberbatch:2007qq]
[8-109]
LENS as a Probe of Sterile Neutrino Mediated Oscillations, C. Grieb et al., arXiv:0705.2769, 2007. 12th International Workshop on Neutrinos Telescopes: Twenty Years after the Supernova 1987A Neutrino Bursts Discovery, Venice, Italy, 6-9 Mar 2007.
[Grieb:2007jt]
[8-110]
Restrictions on sterile neutrino parameters from astrophysical observations, Oleg Ruchayskiy, arXiv:0704.3215, 2007. 11th Marcel G