Sterile Neutrinos

Filter this page

(Note: The process can take some time.)

EXPAND ALL
COMPRESS ALL

References

1 - Books

[1-1]
Sterile Neutrino Dark Matter, Alexander Merle, IOP, 2017.
[Merle:2017qcs]
[1-2]
Fundamentals of Neutrino Physics and Astrophysics, C. Giunti, C. W. Kim, Oxford University Press, Oxford, UK, 2007. ISBN 978-0-19-850871-7. https://global.oup.com/academic/product/fundamentals-of-neutrino-physics-and-astrophysics-9780198508717.
[Giunti:2007ry]

2 - Reviews

[2-1]
Reactor antineutrino flux and anomaly, Chao Zhang, Xin Qian, Muriel Fallot, Prog.Part.Nucl.Phys. 136 (2024) 104106, arXiv:2310.13070.
[Zhang:2023zif]
[2-2]
The Gallium Anomaly, Steven R. Elliott, Vladimir Gavrin, Wick Haxton, Prog.Part.Nucl.Phys. 134 (2024) 104082, arXiv:2306.03299.
[Elliott:2023cvh]
[2-3]
Snowmass Neutrino Frontier Report, Patrick Huber et al., arXiv:2211.08641, 2022.
[Huber:2022lpm]
[2-4]
Neutrino Frontier Topical Group Report (NF03): Physics Beyond the Standard Model, Pilar Coloma, Lisa W. Koerner, Ian M. Shoemaker, Jaehoon Yu, arXiv:2209.10362, 2022.
[Coloma:2022dng]
[2-5]
Snowmass Neutrino Frontier: NF02 Topical Group Report on Understanding Experimental Neutrino Anomalies, G. Karagiorgi, B. R. Littlejohn, P. Machado, A. Sousa, arXiv:2209.05352, 2022.
[Karagiorgi:2022fgf]
[2-6]
The Present and Future Status of Heavy Neutral Leptons, Asli M. Abdullahi et al., J.Phys.G 50 (2023) 020501, arXiv:2203.08039.
[Abdullahi:2022jlv]
[2-7]
White Paper on Light Sterile Neutrino Searches and Related Phenomenology, M. A. Acero et al., arXiv:2203.07323, 2022.
[Acero:2022wqg]
[2-8]
Tau Neutrinos in the Next Decade: from GeV to EeV, Roshan Mammen Abraham et al., J.Phys.G 49 (2022) 110501, arXiv:2203.05591.
[MammenAbraham:2022xoc]
[2-9]
Review of sterile neutrino searches at very short-baseline reactor experiments, Mikhail Danilov, Phys.Scripta 97 (2022) 094001, arXiv:2203.03042.
[Danilov:2022str]
[2-10]
Two sides of the same coin: sterile neutrinos and dark radiation. Status and perspectives, Maria Archidiacono, Stefano Gariazzo, Universe 8 (2022) 175, arXiv:2201.10319.
[Archidiacono:2022ich]
[2-11]
Sterile neutrinos with neutrino telescopes, Carlos A. Arguelles, Jordi Salvado, Universe 7 (2021) 426, arXiv:2111.03357.
[Arguelles:2021gwv]
[2-12]
Neutrino Interactions with Matter and the MiniBooNE anomaly, Luis Alvarez-Ruso, Eduardo Saul-Sala, Eur.Phys.J.ST 230 (2021) 4373-4389, arXiv:2111.02504.
[Alvarez-Ruso:2021dna]
[2-13]
Brief Review of Recent Advances in Understanding Dark Matter and Dark Energy, Eugene Oks, New Astron.Rev. 93 (2021) 101632, arXiv:2111.00363.
[Oks:2021hef]
[2-14]
Status of Anomalies and Sterile Neutrino Searches at Nuclear Reactors, Stefan Schoppmann, Universe 7 (2021) 360, arXiv:2109.13541.
[Schoppmann:2021ywi]
[2-15]
A Decade of Discoveries by the Daya Bay Reactor Neutrino Experiment, David E. Jaffe, Mod.Phys.Lett.A 36 (2021) 2130021, arXiv:2106.07700.
[Jaffe:2021wgf]
[2-16]
Sterile Neutrinos, Basudeb Dasgupta, Joachim Kopp, Phys.Rept. 928 (2021) 63, arXiv:2106.05913.
[Dasgupta:2021ies]
[2-17]
Recent probes of standard and non-standard neutrino physics with nuclei, D.K. Papoulias, T.S. Kosmas, Y. Kuno, Front.in Phys. 7 (2019) 191, arXiv:1911.00916.
[Papoulias:2019xaw]
[2-18]
Status of Light Sterile Neutrino Searches, Sebastian Boser, Christian Buck, Carlo Giunti, Julien Lesgourgues, Livia Ludhova, Susanne Mertens, Anne Schukraft, Michael Wurm, Prog.Part.Nucl.Phys. 111 (2020) 103736, arXiv:1906.01739.
[Boser:2019rta]
[2-19]
Where Are We With Light Sterile Neutrinos?, A. Diaz, C.A. Arguelles, G.H. Collin, J.M. Conrad, M.H. Shaevitz, Phys.Rept. 884 (2020) 1-59, arXiv:1906.00045.
[Diaz:2019fwt]
[2-20]
Roles of sterile neutrinos in particle physics and cosmology, Sin Kyu Kang, Int.J.Mod.Phys. A34 (2019) 1930005, arXiv:1904.07108.
[Kang:2019xuq]
[2-21]
The Short-Baseline Neutrino Program at Fermilab, Pedro A. N. Machado, Ornella Palamara, David W. Schmitz, Ann.Rev.Nucl.Part.Sci. 69 (2019) 363-387, arXiv:1903.04608.
[Machado:2019oxb]
[2-22]
Neutrino physics with dark matter detectors, Bhaskar Dutta, Louis E. Strigari, Ann.Rev.Nucl.Part.Sci. 69 (2019) 137-161, arXiv:1901.08876.
[Dutta:2019oaj]
[2-23]
eV-scale Sterile Neutrinos, C. Giunti, T. Lasserre, Ann. Rev. Nucl. Part. Sci. 69 (2019) 163-190, arXiv:1901.08330.
[Giunti:2019aiy]
[2-24]
Heavy neutral leptons and high-intensity observables, Asmaa Abada, Ana M. Teixeira, Front.in Phys. 6 (2018) 142, arXiv:1812.08062.
[Abada:2018nio]
[2-25]
A New Era in the Quest for Dark Matter, Gianfranco Bertone, Tim M. P. Tait, Nature 562 (2018) 51-56, arXiv:1810.01668.
[Bertone:2018krk]
[2-26]
Sterile Neutrino Dark Matter, A. Boyarsky, M. Drewes, T. Lasserre, S. Mertens, O. Ruchayskiy, Prog.Part.Nucl.Phys. 104 (2019) 1-45, arXiv:1807.07938.
[Boyarsky:2018tvu]
[2-27]
Neutrino Mass Ordering in 2018: Global Status, P. F. de Salas, S. Gariazzo, O. Mena, C. A. Ternes, M. Tortola, Front.Astron.Space Sci. 5 (2018) 36, arXiv:1806.11051.
[DeSalas:2018rby]
[2-28]
The STEREO Experiment, N. Allemandou et al., JINST 13 (2018) P07009, arXiv:1804.09052.
[STEREO:2018blj]
[2-29]
Physics with Reactor Neutrinos, Xin Qian, Jen-Chieh Peng, Rept.Prog.Phys. 82 (2019) 036201, arXiv:1801.05386.
[Qian:2018wid]
[2-30]
Status of neutrino properties and future prospects - Cosmological and astrophysical constraints, Martina Gerbino, Massimiliano Lattanzi, Front.in Phys. 5 (2018) 70, arXiv:1712.07109.
[Lattanzi:2017ubx]
[2-31]
Sterile neutrinos in cosmology, Kevork N. Abazajian, Phys.Rept. 711-712 (2017) 1-28, arXiv:1705.01837.
[Abazajian:2017tcc]
[2-32]
Roadmap for the international, accelerator-based neutrino programme, J. Cao et al., arXiv:1704.08181, 2017.
[Cao:2017hno]
[2-33]
Sterile Neutrinos: An Introduction to Experiments, J. M. Conrad, M. H. Shaevitz, Adv.Ser.Direct.High Energy Phys. 28 (2018) 391-442, arXiv:1609.07803.
[Conrad:2016sve]
[2-34]
A review of the impact of sterile neutrino dark matter on core-collapse supernovae, MacKenzie Warren, Grant J. Mathews, Matthew Meixner, Jun Hidaka, Toshitaka Kajino, Int.J.Mod.Phys. A31 (2016) 1650137, arXiv:1603.05503.
[Warren:2016slz]
[2-35]
A White Paper on keV Sterile Neutrino Dark Matter, R. Adhikari et al., JCAP 1701 (2017) 025, arXiv:1602.04816.
[Drewes:2016upu]
[2-36]
Review of Neutrino Oscillations With Sterile and Active Neutrinos, Leonard S. Kisslinger, Int.J.Mod.Phys. A31 (2016) 1630037, arXiv:1601.05391.
[Kisslinger:2016dge]
[2-37]
Experimental investigation of the thriving mystery of sterile neutrinos, A. Fava, Rev. Phys. 1 (2016) 52-59.
[Fava:2016vas]
[2-38]
Global Analyses of Neutrino Oscillation Experiments, M.C. Gonzalez-Garcia, Michele Maltoni, Thomas Schwetz, Nucl. Phys. B908 (2016) 199-217, arXiv:1512.06856.
[Gonzalez-Garcia:2015qrr]
[2-39]
Light Sterile Neutrinos: Status and Perspectives, Carlo Giunti, Nucl. Phys. B908 (2016) 336-353, arXiv:1512.04758.
[Giunti:2015wnd]
[2-40]
Sterile Neutrino Dark Matter from Freeze-In, Bibhushan Shakya, Mod. Phys. Lett. A31 (2016) 1630005, arXiv:1512.02751.
[Shakya:2015xnx]
[2-41]
Observation of the new line at ~3.55 keV in X-ray spectra of galaxies and galaxy clusters, Dmytro Iakubovskyi, Adv.Astron.Space Phys. 6 (2016) 3-15, arXiv:1510.00358.
[Iakubovskyi:2015wma]
[2-42]
Light sterile neutrinos, S. Gariazzo, C. Giunti, M. Laveder, Y. F. Li, E.M. Zavanin, J. Phys. G43 (2016) 033001, arXiv:1507.08204.
[Gariazzo:2015rra]
[2-43]
Neutrinoless Double Beta Decay, Heinrich Pas, Werner Rodejohann, New J. Phys. 17 (2015) 115010, arXiv:1507.00170.
[Pas:2015eia]
[2-44]
Searches for Active and Sterile Neutrinos in Beta-Ray Spectra, Otokar Dragoun, Drahoslav Venos, J. Phys. 3 (2016) 77-113, arXiv:1504.07496.
[Dragoun:2015oja]
[2-45]
Neutrino Oscillation Studies with Reactors, P. Vogel, L.J. Wen, C. Zhang, Nature Communications 6 (2015) 6935, arXiv:1503.01059.
[Vogel:2015wua]
[2-46]
Neutrinos and Collider Physics, Frank F. Deppisch, P. S. Bhupal Dev, Apostolos Pilaftsis, New J. Phys. 17 (2015) 075019, arXiv:1502.06541.
[Deppisch:2015qwa]
[2-47]
Beyond Standard Model Searches in the MiniBooNE Experiment, Teppei Katori, Janet Conrad, Adv.High Energy Phys. 2015 (2015) 362971, arXiv:1404.7759.
[Katori:2014qta]
[2-48]
Neutrino oscillations, G. Bellini, L. Ludhova, G. Ranucci, F.L. Villante, Adv.High Energy Phys. 2014 (2014) 191960, arXiv:1310.7858.
[Bellini:2013wra]
[2-49]
Neutrinos, A. de Gouvea et al. (Intensity Frontier Neutrino Working Group), arXiv:1310.4340, 2013.
[IntensityFrontierNeutrinoWorkingGroup:2013sdv]
[2-50]
Cosmic dark radiation and neutrinos, Maria Archidiacono, Elena Giusarma, Steen Hannestad, Olga Mena, Adv.High Energy Phys. 2013 (2013) 191047, arXiv:1307.0637.
[Archidiacono:2013fha]
[2-51]
The LSND and MiniBooNE Oscillation Searches at High $\Delta{m}^2$, Janet M. Conrad, William C. Louis, Michael H. Shaevitz, Ann.Rev.Nucl.Part.Sci. 63 (2013) 45, arXiv:1306.6494.
[Conrad:2013mka]
[2-52]
Next decade of sterile neutrino studies, Alexey Boyarsky, Dmytro Iakubovskyi, Oleg Ruchayskiy, Phys.Dark Univ. 1 (2012) 136-154, arXiv:1306.4954.
[Boyarsky:2012rt]
[2-53]
Review of Recent Neutrino Physics Research, Leonard S. Kisslinger, Mod.Phys.Lett. A28 (2013) 1330024, arXiv:1306.3912.
[Kisslinger:2013ipa]
[2-54]
Ambiguities and Subtleties in Fermion Mass Terms, Yifan Cheng, Otto C. W. Kong, Annals Phys. 348 (2014) 315-323, arXiv:1305.5772.
[Cheng:2013yoa]
[2-55]
News on Right Handed Neutrinos, Marco Drewes, International Journal of Modern Physics E, Vol. 22 (2013) 1330019, arXiv:1303.6912.
[Drewes:2013gca]
[2-56]
Dark Matter Studies Entrain Nuclear Physics, Susan Gardner, George Fuller, Prog.Part.Nucl. Phys. 71 (2013) 167-184, arXiv:1303.4758.
[Gardner:2013ama]
[2-57]
Phenomenology of light sterile neutrinos: a brief review, Antonio Palazzo, Mod.Phys.Lett. A28 (2013) 1330004, arXiv:1302.1102.
[Palazzo:2013me]
[2-58]
What is half a neutrino? Reviewing cosmological constraints on neutrinos and dark radiation, Signe Riemer-Sorensen, David Parkinson, Tamara M. Davis, Publ.Astron.Soc.Austral. 30 (2013) e029, arXiv:1301.7102.
[Riemer-Sorensen:2013iql]
[2-59]
Search for GeV-scale sterile neutrinos responsible for active neutrino oscillations and baryon asymmetry of the Universe, S. N. Gninenko, D. S. Gorbunov, M. E. Shaposhnikov, Adv.High Energy Phys. 2012 (2012) 718259, arXiv:1301.5516.
[Gninenko:2012anz]
[2-60]
Neutrinos And Big Bang Nucleosynthesis, Gary Steigman, Adv. High Energy Phys. 2012 (2012) 268321, arXiv:1208.0032.
[Steigman:2012ve]
[2-61]
Sterile Neutrino Fits to Short Baseline Neutrino Oscillation Measurements, J.M. Conrad, C.M. Ignarra, G. Karagiorgi, M.H. Shaevitz, J. Spitz, Adv.High Energy Phys. 2013 (2013) 163897, arXiv:1207.4765.
[Conrad:2012qt]
[2-62]
The Acceleration Scale, Modified Newtonian Dynamics, and Sterile Neutrinos, Antonaldo Diaferio, Garry W. Angus, arXiv:1206.6231, 2012.
[Diaferio:2012zh]
[2-63]
Neutrinoless double beta decay and neutrino physics, Werner Rodejohann, J. Phys. G39 (2012) 124008, arXiv:1206.2560.
[Rodejohann:2012xd]
[2-64]
Light Sterile Neutrinos: A White Paper, K. N. Abazajian et al., arXiv:1204.5379, 2012.
[Abazajian:2012ys]
[2-65]
On the 'LSND anomaly', Dmitry Dedovich, Alexey Zhemchugov, Mod. Phys. Lett. A27 (2012) 1230012.
[Dedovich:2012zz]
[2-66]
Neutrino mass in cosmology: status and prospects, Yvonne Y. Y. Wong, Ann. Rev. Nucl. Part. Sci. 61 (2011) 69-98, arXiv:1111.1436.
[Wong:2011ip]
[2-67]
Neutrino-less Double Beta Decay and Particle Physics, Werner Rodejohann, Int. J. Mod. Phys. E20 (2011) 1833-1930, arXiv:1106.1334.
[Rodejohann:2011mu]
[2-68]
Big Bang Nucleosynthesis as a Probe of New Physics, Maxim Pospelov, Josef Pradler, Ann. Rev. Nucl. Part. Sci. 60 (2010) 539-568, arXiv:1011.1054.
[Pospelov:2010hj]
[2-69]
Neutrino physics from precision cosmology, Steen Hannestad, Prog. Part. Nucl. Phys. 65 (2010) 185-208, arXiv:1007.0658.
[Hannestad:2010kz]
[2-70]
MINOS neutrino oscillation results, Alec Habig, Mod. Phys. Lett. A25 (2010) 1219-1231, arXiv:1004.2647.
[Habig:2010vw]
[2-71]
Dark Matter Candidates from Particle Physics and Methods of Detection, Jonathan L. Feng, Ann. Rev. Astron. Astrophys. 48 (2010) 495, arXiv:1003.0904.
[Feng:2010gw]
[2-72]
Signatures of Singlet Neutrinos in Large Extra Dimensions at the LHC, Douglas M. Gingrich, Int. J. Mod. Phys. A24 2009 (2009) 5173-5215, arXiv:0907.1878.
[Gingrich:2009az]
[2-73]
Sterile neutrinos: the dark side of the light fermions, Alexander Kusenko, Phys. Rept. 481 (2009) 1-28, arXiv:0906.2968.
[Kusenko:2009up]
[2-74]
Detection of Dark Matter Decay in the X-ray, Kevork N. Abazajian, arXiv:0903.2040, 2009.
[Rusov:2013uaa]
[2-75]
The role of sterile neutrinos in cosmology and astrophysics, Alexey Boyarsky, Oleg Ruchayskiy, Mikhail Shaposhnikov, Ann. Rev. Nucl. Part. Sci. 59 (2009) 191-214, arXiv:0901.0011.
[Boyarsky:2009ix]
[2-76]
Searches for muon-to-electron (anti) neutrino flavor change, W.C. Louis, Prog.Part.Nucl. Phys. 63 (2009) 51-73.
[Louis:2009zza]
[2-77]
Phenomenology with Massive Neutrinos, M. C. Gonzalez-Garcia, Michele Maltoni, Phys. Rept. 460 (2008) 1-129, arXiv:0704.1800.
[Gonzalez-Garcia:2007dlo]
[2-78]
Neutrino masses and mixings and..., Alessandro Strumia, Francesco Vissani, arXiv:hep-ph/0606054, 2006.
[Strumia:2006db]
[2-79]
Neutrino mass and new physics, R. N. Mohapatra, A. Y. Smirnov, Ann. Rev. Nucl. Part. Sci. 56 (2006) 569-628, arXiv:hep-ph/0603118.
[Mohapatra:2006gs]
[2-80]
Theory of Neutrinos: A White Paper, R.N. Mohapatra et al., Rept. Prog. Phys. 70 (2007) 1757-1867, arXiv:hep-ph/0510213.
[Mohapatra:2005wg]
[2-81]
Theory of Neutrinos, R.N. Mohapatra et al., arXiv:hep-ph/0412099, 2004.
[Mohapatra:2004vr]
[2-82]
Status of global fits to neutrino oscillations, M. Maltoni, T. Schwetz, M.A. Tortola, J.W.F. Valle, New J. Phys. 6 (2004) 122, arXiv:hep-ph/0405172.
[Maltoni:2004ei]
[2-83]
Physics of the neutrino mass, R. N. Mohapatra, New J. Phys. 6 (2004) 82. http://www.iop.org/EJ/abstract/1367-2630/6/1/082.
[Mohapatra-NJP6-82-2004]
[2-84]
Neutrinos in cosmology, A. D. Dolgov, Phys. Rep. 370 (2002) 333-535, arXiv:hep-ph/0202122.
[Dolgov:2002wy]
[2-85]
Neutrino Masses and Mixing: Evidence and Implications, M.C. Gonzalez-Garcia, Y. Nir, Rev. Mod. Phys. 75 (2003) 345-402, arXiv:hep-ph/0202058.
[Gonzalez-Garcia:2002bkq]
[2-86]
Introduction to sterile neutrinos, Raymond R. Volkas, Prog. Part. Nucl. Phys. 48 (2002) 161-174, arXiv:hep-ph/0111326.
[Volkas:2001zb]
[2-87]
Phenomenology of neutrino oscillations, S. M. Bilenky, C. Giunti, W. Grimus, Prog. Part. Nucl. Phys. 43 (1999) 1, arXiv:hep-ph/9812360.
[Bilenky:1998dt]

3 - Reviews - Talks

[3-1]
Experimental Searches For Heavy Neutral Leptons, Sophie Middleton, arXiv:2206.11422, 2022. FPCP 2022, 20th Conference on Flavor Physics and CP Violation~.
[Middleton:2022dio]
[3-2]
Light Sterile Neutrinos, Stefano Gariazzo, J.Phys.Conf.Ser. 2156 (2021) 012003, arXiv:2110.09876. 17th International Conference on Topics in Astroparticle and Underground Physics (TAUP).
[Gariazzo:2021wsx]
[3-3]
Sterile Neutrinos as Dark Matter Candidates, Joachim Kopp, SciPost Phys.Lect.Notes 36 (2022) 1, arXiv:2109.00767. 10 pages, 2 figures; submitted to SciPost Physics Lecture Notes, Les Houches Summer School Series.
[Kopp:2021jlk]
[3-4]
Results of STEREO and PROSPECT, and status of sterile neutrino searches, Matthieu Licciardi, arXiv:2105.13776, 2021. 2021 EW session of the 55th Rencontres de Moriond.
[Licciardi:2021hyi]
[3-5]
Neutrinos in Astrophysics and Cosmology: Theoretical Advanced Study Institute (TASI) 2020 Lectures, Kevork N. Abazajian, arXiv:2102.10183, 2021.
[Abazajian:2021zui]
[3-6]
Neutrino Experiments at J-PARC, Masahiro Kuze, JPS Conf.Proc. 33 (2021) 011139, arXiv:2001.03417. J-PARC Symposium 2019.
[Kuze:2020mbj]
[3-7]
Review of Sterile Neutrino Experiments, Seon-Hee Seo, arXiv:2001.03349, 2020. 19th Lomonosov Conference on Elementary Particle Physics (Moscow State University, August 22-28, 2019).
[Seo:2020ehv]
[3-8]
Light sterile neutrinos: the current picture from neutrino oscillations, S. Gariazzo, J.Phys.Conf.Ser. 1468 (2020) 012120, arXiv:1911.03463. TAUP 2019, Toyama, Japan, September 9-13, 2019.
[Gariazzo:2019cym]
[3-9]
Light sterile neutrinos: oscillations and cosmology, S. Gariazzo, Acta Phys.Polon. B50 (2019) 1719, arXiv:1910.13172. Matter To The Deepest, XLIII International Conference of Theoretical Physics, Katowice/Chorzow, Poland, 1-6 September 2019.
[Gariazzo:2019vdj]
[3-10]
Sterile Neutrino. A short introduction, Dmitry V.Naumov, EPJ Web Conf. 207 (2019) 04004, arXiv:1901.00151. VLVnT2018.
[Naumov:2019kwm]
[3-11]
Searches for sterile neutrinos at very short baseline reactor experiments, Mikhail Danilov, J.Phys.Conf.Ser. 1390 (2019) 012049, arXiv:1812.04085. 4th International Conference on Particle Physics and Astrophysics (ICPPA-2018), Moscow, Russia.
[Danilov:2018dme]
[3-12]
Neutrino Physics with Reactors, Bedrich Roskovec, arXiv:1812.03206, 2018. PIC2018: XXXVIII International Symposium on Physics in Collision, Bogota, Colombia, 2018.
[Roskovec:2018jfn]
[3-13]
The interplay between cosmology, particle physics and astrophysics, Aaron C. Vincent, PoS EDSU2018 (2018) 007, arXiv:1811.04148. 2nd World Summit on Exploring the Dark Side of the Universe (25-29 June 2018, Pointe-a-Pitre).
[Vincent:2018vng]
[3-14]
Leptogenesis, dark matter and neutrino masses, Michele Lucente, Asmaa Abada, Giorgio Arcadi, Valerie Domcke, arXiv:1803.10826, 2018. NuPhys2017 (London, 20-22 December 2017).
[Lucente:2018lxx]
[3-15]
Phenomenology of light sterile neutrinos, Antonio Palazzo, PoS NEUTEL2017 (2018) 040. 17th International Workshop on Neutrino Telescopes (Neutel 2017): Venice, Italy, March 13-17, 2017.
[Palazzo:2017nqu]
[3-16]
Light sterile neutrino searches, Julia Haser, arXiv:1710.06330, 2017. 29th Rencontres de Blois 2017 on Particle Physics and Cosmology.
[Haser:2017owl]
[3-17]
Short- and long-baseline sterile neutrino phenomenology, Antonio Palazzo, arXiv:1705.01592, 2017. NuPhys2016 (London, 12-14 December 2016).
[Palazzo:2017wju]
[3-18]
Sterile Neutrinos: Reactor Experiments, Christian Buck, arXiv:1704.08885, 2017. NuPhys2016 (London, 12-14 December 2016).
[Buck:2017ibq]
[3-19]
keV sterile neutrino Dark Matter, Alexander Merle, PoS NOW2016 (2017) 082, arXiv:1702.08430. NOW 2016.
[Merle:2017jfn]
[3-20]
Status of Dark Matter in the Universe, Katherine Freese, Int.J.Mod.Phys. D26 (2017) 1730012, arXiv:1701.01840. 14th Marcel Grossman Meeting, MG14, University of Rome 'La Sapienza', Rome, July 2015.
[Freese:2017idy]
[3-21]
Light sterile neutrinos and neutrinoless double-beta decay, Carlo Giunti, AIP Conf. Proc. 1894 (2017) 020009. Matrix Elements for the Double beta decay Experiments (MEDEX'17): Prague, Czech Republic.
[Giunti:2017doy]
[3-22]
Sterile Neutrino Searches: Experiment and Theory, Carlo Giunti, Nucl. Part. Phys. Proc. 287-288 (2017) 133-138. 14th International Workshop on Tau Lepton Physics (TAU 2016): Beijing, China, September 19-23, 2016.
[Giunti:2017jav]
[3-23]
A Review on Present Status of Neutrino Mixings and Oscillations, Carlo Giunti, 2017. 17th Lomonosov Conference on Elementary Particle Physics: Moscow, Russia, August 20-26, 2015.
[Giunti:2017kun]
[3-24]
Status of Light Sterile Neutrinos, Carlo Giunti, PoS EPS-HEP2017 (2017) 110. 2017 European Physical Society Conference on High Energy Physics (EPS-HEP 2017): Venice, Italy, July 5-12, 2017.
[Giunti:2017rni]
[3-25]
Long baseline experiments: a new window on sterile neutrinos, Antonio Palazzo, PoS EPS-HEP2017 (2017) 126. 2017 European Physical Society Conference on High Energy Physics (EPS-HEP 2017): Venice, Italy, July 5-12, 2017.
[Palazzo:2017dww]
[3-26]
Phenomenology of light sterile neutrinos, A. Palazzo, Nuovo Cim. C40 (2017) 53. 15th Incontri di Fisica delle Alte Energie (IFAE 2016): Genoa, Italy, March 30-April 1, 2016.
[Palazzo:2017ttg]
[3-27]
Heavy neutrino searches from MeV to TeV, Elena Graverini, arXiv:1611.07215, 2016. NuFact 2016.
[Graverini:2016mhd]
[3-28]
Oscillations Beyond Three-Neutrino Mixing, Carlo Giunti, J. Phys. Conf. Ser. 888 (2017) 012019, arXiv:1609.04688. Neutrino 2016, XXVII International Conference on Neutrino Physics and Astrophysics, 4-9 July 2016, London, UK.
[Giunti:2016oan]
[3-29]
Neutrino physics and precision cosmology, Steen Hannestad, arXiv:1605.03829, 2016. NuPhys2015 (London, 16-18 December 2015).
[Hannestad:2016mvv]
[3-30]
Search for Sterile Neutrinos at Long and Short Baselines, Luca Stanco, arXiv:1604.06769, 2016. NuPhys2015 (London, 16-18 December 2015).
[Stanco:2016gnl]
[3-31]
Hunt for Sterile Neutrinos: Decay at Rest Experiments, Fumihiko Suekane, arXiv:1604.06190, 2016. NuPhys2015 (London, 18 December 2015).
[Suekane:2016zwh]
[3-32]
Low-energy neutrinos, Livia Ludhova, J. Phys. Conf. Ser. 718 (2016) 022012, arXiv:1601.08234. TAUP 2015, 7-11 September 2015, Torino (Italy).
[Ludhova:2016wbn]
[3-33]
Light Sterile Neutrinos In Cosmology, Stefano Gariazzo, arXiv:1601.01475, 2016. 17th Lomonosov Conference.
[Gariazzo:2016ehl]
[3-34]
Sterile Neutrinos, Antonio Palazzo, J. Phys. Conf. Ser. 718 (2016) 022015. 14th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2015): Torino, Italy, September 7-11, 2015.
[Palazzo:2016upt]
[3-35]
Heavy neutrinos in particle physics and cosmology, Marco Drewes, PoS EPS-HEP2015 (2015) 075, arXiv:1510.07883. EPS-HEP2015.
[Drewes:2015vma]
[3-36]
Accelerator-based Short-baseline Neutrino Oscillation Experiments, Sowjanya Gollapinni (MicroBooNE), arXiv:1510.04412, 2015. Twelfth Conference on the Intersections of Particle and Nuclear Physics, Vail, Colorado, May 19-24, 2015.
[Gollapinni:2015lca]
[3-37]
Constraining right-handed neutrinos, F. J. Escrihuela, D. V. Forero, O. G. Miranda, M. Tortola, J. W. F. Valle, Nucl.Part.Phys.Proc. 273-275 (2016) 1909-1914, arXiv:1505.01097. ICHEP14.
[Escrihuela:2015jaa]
[3-38]
Future short baseline neutrino searches with nuclear decays, Barbara Caccianiga, AIP Conf. Proc. 1666 (2015) 180002. Proceedings, 26th International Conference on Neutrino Physics and Astrophysics (Neutrino 2014).
[Caccianiga:2015ega]
[3-39]
(sub)eV Sterile Neutrinos: experimental aspects, Thierry Lasserre, Nucl. Part. Phys. Proc. 265-266 (2015) 281-287. NOW 2014.
[Lasserre:2015eva]
[3-40]
Future short-baseline sterile neutrino searches with reactors, D. Lhuillier, AIP Conf. Proc. 1666 (2015) 180003. Proceedings, 26th International Conference on Neutrino Physics and Astrophysics (Neutrino 2014).
[Lhuillier:2015fga]
[3-41]
Future short-baseline sterile neutrino searches with accelerators, J. Spitz, AIP Conf. Proc. 1666 (2015) 180004. Proceedings, 26th International Conference on Neutrino Physics and Astrophysics (Neutrino 2014).
[Spitz:2015gga]
[3-42]
How many new particles do we need after the Higgs boson?, Marco Drewes, arXiv:1405.2931, 2014. 49th Rencontres de Moriond on Electroweak Interactions and Unified Theories (2014).
[Drewes:2014vaa]
[3-43]
Light Sterile Neutrinos in Particle Physics: Experimental Status, Thierry Lasserre, Phys.Dark Univ. 4 (2014) 81-85, arXiv:1404.7352. 13th International Conference on Topics in Astroparticle and Underground Physics, TAUP 2013.
[Lasserre:2014ita]
[3-44]
Short Baseline Neutrino Oscillation Experiments, Teppei Katori, J. Phys. Conf. Ser. 598 (2015) 012006, arXiv:1404.6882. NuPhys2013 - prospects in neutrino physics, Institute of Physics, London, UK, Dec. 19-20, 2013.
[Katori:2014vka]
[3-45]
Status of Neutrino Mass and Mixing, Guido Altarelli, Int.J.Mod.Phys. A29 (2014) 1444002, arXiv:1404.3859. International Conference on Flavor Physics and Mass Generation, Singapore, February 2014.
[Altarelli:2014dca]
[3-46]
Are There Sterile Neutrinos?, Boris Kayser, AIP Conf.Proc. 1604 (2014) 201-203, arXiv:1402.3028. CETUP Workshop on Neutrino Physics and Astrophysics.
[Kayser:2014tia]
[3-47]
Reactors antineutrino anomalies and searches for sterile neutrinos in Europe, M. Cribier, PoS Neutel2013 (2014) 020.
[Cribier:2013ued]
[3-48]
Sterile neutrinos, C. Giunti, Nuovo Cim. C037 (2014) 95-100.
[Giunti:2014qpa]
[3-49]
Experimental review of sterile neutrino searches, David Lhuillier, PoS EPS-HEP2013 (2014) 522.
[Lhuillier:2014mna]
[3-50]
Theory of oscillations and sterile neutrinos, Antonio Palazzo, J. Phys. Conf. Ser. 556 (2014) 012062.
[Palazzo:2014uya]
[3-51]
Phenomenology of neutrino oscillations and mixing, M. Laveder, C. Giunti, Acta Phys.Polon. B44 (2013) 2323-2330, arXiv:1310.7478. XXXVII International Conference of Theoretical Physics 'Matter to the deepest', Ustron, 1-6 September 2013.
[Laveder:2013cja]
[3-52]
Towards the Chalonge Meudon Workshop 2013. Highlights and Conclusions of the Chalonge Meudon workshop 2012: warm dark matter galaxy formation in agreement with observations, P.L. Biermann, H.J. de Vega, N.G. Sanchez, arXiv:1305.7452, 2013.
[deVega:2013hpa]
[3-53]
Current and Future Liquid Argon Neutrino Experiments, Georgia Karagiorgi, AIP Conf.Proc. 1663 (2015) 100001, arXiv:1304.2083. NuInt'12.
[Karagiorgi:2013cwa]
[3-54]
Phenomenology of light sterile neutrinos, C. Giunti, Acta Phys.Polon.Supp. 6 (2013) 667-674.
[Giunti:2013rfa]
[3-55]
Status of Sterile Neutrinos, C. Giunti, Nucl. Phys. Proc. Suppl. 237-238 (2013) 295-300.
[Giunti:2013uaa]
[3-56]
Low-energy sterile neutrinos: Theory, Antonio Palazzo, Nucl. Phys. Proc. Suppl. 237-238 (2013) 121-123.
[Palazzo:2013exa]
[3-57]
Neutrino 2012: Outlook - theory, A. Yu. Smirnov, Nucl. Phys. Proc. Suppl. 235-236 (2013) 431-440, arXiv:1210.4061. XXV International Conference on Neutrino Physics and Astrophysics, June 3 - 9, 2012, Kyoto, Japan.
[Smirnov:2012ei]
[3-58]
Tensions with the Three-Neutrino Paradigm, Boris Kayser, arXiv:1207.2167, 2012. Electroweak Session of the 47th Rencontres de Moriond.
[Kayser:2012rd]
[3-59]
keV sterile Neutrino Dark Matter and Neutrino Model Building, Alexander Merle, J. Phys. Conf. Ser. 375 (2012) 012047, arXiv:1201.0881. TAUP 2011.
[Merle:2012ya]
[3-60]
Neutrinos and the Universe, Nick E. Mavromatos, J. Phys. Conf. Ser. 408 (2013) 012003, arXiv:1110.3729. Nufact 11, CERN and U. of Geneva, 1-6 August 2011.
[Mavromatos:2011ur]
[3-61]
The current status of neutrino mixing, Justin Evans, arXiv:1107.3846, 2011. FPCP 2011.
[Evans:2011tf]
[3-62]
Perspectives in Neutrino Physics, Guido Altarelli, arXiv:1107.1980, 2011. XIV International Workshop on 'Neutrino Telescopes' Venice, Italy, March 15-18, 2011.
[Altarelli:2011rv]
[3-63]
Sterile Neutrino Fits, Carlo Giunti, arXiv:1106.4479, 2011. La Thuile 2011, NeuTel 2011 and IFAE 2011.
[Giunti:2011ht]
[3-64]
Lectures on neutrino phenomenology, Walter Winter, Nucl. Phys. B, Proc. Suppl. 203-204 2010 (2010) 45-81, arXiv:1004.4160. Schladming Winter School 2010 'Masses and Constants'.
[Winter:2010hb]
[3-65]
Dark Matter Astrophysics, Guido D'Amico, Marc Kamionkowski, Kris Sigurdson, arXiv:0907.1912, 2009. Villa Olmo School on 'The Dark Side of the Universe,' 14-18 May 2007 and XIX Heidelberg Physics Graduate Days, 8-12 October 2007.
[DAmico:2009tep]
[3-66]
Searching for physics beyond the standard model with accelerator neutrino experiments, William C. Louis, J. Phys. Conf. Ser. 173 (2009) 012017.
[Louis:2009zzb]
[3-67]
Bounds on Light Dark Matter, Alexey Boyarsky, Oleg Ruchayskiy, arXiv:0811.2385, 2008. 4th Patras Workshop on Axions, WIMPs and WISPs, DESY, Hamburg, Germany, 18-21 June 2008.
[Boyarsky:2008mx]
[3-68]
Neutrino oscillations: present status and outlook, Thomas Schwetz, AIP Conf. Proc. 981 (2008) 8-12, arXiv:0710.5027. NuFact07, Okayama, Japan.
[Schwetz:2007my]
[3-69]
Radiochemical solar neutrino experiments, V. N. Gavrin, B. T. Cleveland, Nucl. Phys. Proc. Suppl. 221 (2011) 90-97, arXiv:nucl-ex/0703012. XXII Int. Conf. on Neutrino Physics and Astrophysics, Santa Fe, 13-19 June 2006.
[Gavrin:2007wc]
[3-70]
Unbound neutrino roadmaps, Marco Laveder, Nucl. Phys. Proc. Suppl. 168 (2007) 344-346. Workshop on Neutrino Oscillation Physics (NOW 2006), Otranto, Lecce, Italy, 9-16 Sep 2006.
[Laveder:2007zz]
[3-71]
Sterile neutrino states, Alexander Kusenko, Nucl. Phys. Proc. Suppl. 221 (2011) 149-154, arXiv:hep-ph/0609158. Neutrino 2006.
[Kusenko:2006zc]
[3-72]
Solar Neutrinos (with a tribute to John. N. Bahcall), G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo, arXiv:hep-ph/0605186, 2006. 3rd International Workshop on NO-VE: Neutrino Oscillations in Venice: 50 Years after the Neutrino Experimental Discovery, Venice, Italy, 7-10 Feb 2006.
[Fogli:2006fu]
[3-73]
Physics of Massive Neutrinos, J. W. F. Valle, Nucl. Phys. Proc. Suppl. 149 (2005) 3, arXiv:hep-ph/0410103. Sixth International Conf. on Neutrino Factories and SuperBeams (NuFact04) Osaka, Japan, July 26-August 1, 2004.
[Valle:2004cr]
[3-74]
Global Analysis of Neutrino Data, M. C. Gonzalez-Garcia, Phys. Scripta T121 (2005) 72, arXiv:hep-ph/0410030. Nobel Symposium on Neutrino Physics, Haga Slott, Enkoping, Sweden.
[Gonzalez-Garcia:2004oyj]
[3-75]
Neutrino Physics: Open Theoretical Questions, A. Yu. Smirnov, Int. J. Mod. Phys. A19 (2004) 1180, arXiv:hep-ph/0311259. Lepton Photon 2003, 11-16 August 2003, Fermi National Accelerator Laboratory, Batavia, Illinois USA. http://conferences.fnal.gov/lp2003/program/S12/smirnov_s12_winversion.pdf.
Comment: The figure in slide n.13 shows the sensitivity of MiniBoone in the $\nu_{\mu} \to \nu_{\mu}$ channel together with the predictions of a combined fit of LSND and null short-baseline experiments. [M.L.].
[Smirnov:2003xe]
[3-76]
Brief Neutrino Physics Update, J. W. F. Valle, arXiv:hep-ph/0310125, 2003. String Phenomenology Workshop held at Durham, July 29 - August 4, 2003.
[Valle:2003jj]
[3-77]
Neutrino masses twenty-five years later, J. W. F. Valle, Aip Conf. Proc. 687 (2003) 16, arXiv:hep-ph/0307192. MRST'03 (Joe-Fest), Syracuse, NY, May 2003.
[Valle:2003rh]
[3-78]
Neutrino Physics after KamLAND, A. Yu. Smirnov, arXiv:hep-ph/0306075, 2003. 4th Workshop on 'Neutrino Oscillations and their Origin' (NOON2003), February 10-14, 2003, Ishikawa Kousei Nenkin Kaikan, Kanazawa, Japan. http://www-sk.icrr.u-tokyo.ac.jp/noon2003/transparencies/10/Smirnov.pdf.
[Smirnov:2003uu]
[3-79]
Theory of sterile neutrinos, Rabindra Mohapatra, 2002. 18th International Workshop on Weak Interactions and neutrinos (WIN02), 21-26 Jan 2002, Christchurch, New Zealand. http://www.slac.stanford.edu/econf/C020121/overhead/R_Mohap2.pdf.
[Mohapatra:2002zz]

4 - Habilitation, PhD and Master Theses

[4-1]
Through Iron \& Ice: Searching for Sterile Neutrinos at the IceCube Neutrino Observatory, Alejandro Diaz, arXiv:2210.09418, 2022.
[Diaz:2022grj]
[4-2]
Testing Explanations of Short Baseline Neutrino Anomalies, Nicolo Foppiani, arXiv:2209.13455, 2022.
[Foppiani:2022qsi]
[4-3]
Light, Unstable Sterile Neutrinos: Phenomenology, a Search in the IceCube Experiment, and a Global Picture, Marjon H. Moulai, arXiv:2110.02351, 2021.
[Moulai:2021zey]
[4-4]
Theoretical and phenomenological consequences of active and sterile neutrino within Beyond Standard Model framework, Pritam Das, arXiv:2107.10622, 2021.
[Das:2021xat]
[4-5]
Dark Matter Phenomenology: Sterile Neutrino Portal and Gravitational Portal in Extra-Dimensions, Miguel G. Folgado, arXiv:2104.13442, 2021.
[GarciaFolgado:2021fsd]
[4-6]
Sterile Neutrino Searches at the IceCube Neutrino Observatory, Spencer Axani, arXiv:2003.02796, 2020.
[Axani:2019sbk]
[4-7]
Implication of Sterile Fermions in Particle Physics and Cosmology, Michele Lucente, arXiv:1609.07081, 2016.
[Lucente:2015cjm]
[4-8]
Phenomenology of the Sterile Neutrinos, Zahra Tabrizi, arXiv:1605.09680, 2016.
[Tabrizi:2016eeq]
[4-9]
New Developments in Cosmology, Stefano Gariazzo, arXiv:1603.09102, 2016.
[Gariazzo:2016gzm]
[4-10]
New physics with atmospheric Neutrinos, C. A. Arguelles, 2015. PhD thesis, ISBN 978-1-339-06088-0. https://docushare.icecube.wisc.edu/dsweb/Get/Document-75669/tesis.pdf.
[Arguelles:2015a]
[4-11]
Sterile Neutrinos in Cold Climates, Benjamin J. P. Jones, 2015. PhD thesis, FERMILAB-THESIS-2015-17. http://lss.fnal.gov/archive/thesis/2000/fermilab-thesis-2015-17.pdf.
[Jones:2015bya]
[4-12]
Phenomenological Aspects of Four-neutrino Models, A. Kalliomaki, 2003. Academic Dissertation, June 2003. University of Helsinki. http://ethesis.helsinki.fi/julkaisut/mat/fysik/vk/kalliomaki/.
[Kalliomaki-03]

5 - Experiment

[5-1]
On the half life of $^{71}$Ge and the Gallium Anomaly, E. B. Norman, A. Drobizhev, N. Gharibyan, K. E. Gregorich, Yu. G. Kolomensky, B. N. Sammis, N. D. Scielzo, J. A. Shusterman, K. J. Thomas, arXiv:2401.15286, 2024.
[Norman:2024hki]
[5-2]
New Measurements of $^{71}$Ge Decay: Impact on the Gallium Anomaly, J. I. Collar, S. G. Yoon, Phys.Rev.C 108 (2023) L021602, arXiv:2307.05353.
[Collar:2023yew]
[5-3]
Updated constraints on sterile neutrino mixing in the OPERA experiment using a new $\nu_e$ identification method, N. Agafonova et al., PTEP 2023 (2023) 033C01, arXiv:2211.04636.
[OPERA:2022svg]
[5-4]
First constraints on light sterile neutrino oscillations from combined appearance and disappearance searches with the MicroBooNE detector, P. Abratenko et al. (MicroBooNE), Phys.Rev.Lett. 130 (2023) 011801, arXiv:2210.10216.
[MicroBooNE:2022sdp]
[5-5]
Interpreting Reactor Antineutrino Anomalies with STEREO data, H. Almazan et al. (STEREO), Nature 613 (2023) 257-261, arXiv:2210.07664.
[STEREO:2022nzk]
[5-6]
Search for exotic physics in double-$\beta$ decays with GERDA Phase II, M. Agostini et al. (GERDA), JCAP 12 (2022) 012, arXiv:2209.01671.
[GERDA:2022ffe]
[5-7]
First Search for Unstable Sterile Neutrinos with the IceCube Neutrino Observatory, R. Abbasi et al. (IceCube), Phys.Rev.Lett. 129 (2022) 151801, arXiv:2204.00612.
[IceCubeCollaboration:2022tso]
[5-8]
Improved eV-scale Sterile-Neutrino Constraints from the Second KATRIN Measurement Campaign, M. Aker et al. (KATRIN), Phys.Rev.D 105 (2022) 072004, arXiv:2201.11593.
[KATRIN:2022ith]
[5-9]
A Search for Electron Neutrino Transitions to Sterile States in the BEST Experiment, V.V. Barinov et al. (BEST), Phys.Rev.C 105 (2022) 065502, arXiv:2201.07364.
[Barinov:2022wfh]
[5-10]
MiniBooNE and MicroBooNE Joint Fit to a 3+1 Sterile Neutrino Scenario, A. A. Aguilar-Arevalo et al. (MiniBooNE), Phys.Rev.Lett. 129 (2022) 201801, arXiv:2201.01724.
[MiniBooNE:2022emn]
[5-11]
Search for an anomalous excess of charged-current quasi-elastic $\nu_e$ interactions with the MicroBooNE experiment using Deep-Learning-based reconstruction, P. Abratenko et al. (MicroBooNE), Phys.Rev.D 105 (2022) 112003, arXiv:2110.14080.
[MicroBooNE:2021pvo]
[5-12]
Search for an anomalous excess of charged-current $\nu_e$ interactions without pions in the final state with the MicroBooNE experiment, P. Abratenko et al. (MicroBooNE), Phys.Rev.D 105 (2022) 112004, arXiv:2110.14065.
[MicroBooNE:2021wad]
[5-13]
Search for an Excess of Electron Neutrino Interactions in MicroBooNE Using Multiple Final State Topologies, P. Abratenko et al. (MicroBooNE), Phys.Rev.Lett. 128 (2022) 241801, arXiv:2110.14054.
[MicroBooNE:2021tya]
[5-14]
Search for an anomalous excess of inclusive charged-current $\nu_e$ interactions in the MicroBooNE experiment using Wire-Cell reconstruction, P. Abratenko et al. (MicroBooNE), Phys.Rev.D 105 (2022) 112005, arXiv:2110.13978.
[MicroBooNE:2021nxr]
[5-15]
Results from the Baksan Experiment on Sterile Transitions (BEST), V.V. Barinov et al. (BEST), Phys.Rev.Lett. 128 (2022) 232501, arXiv:2109.11482.
[Barinov:2021asz]
[5-16]
Search for active-sterile antineutrino mixing using neutral-current interactions with the NOvA experiment, M. A. Acero et al., Phys.Rev.Lett. 127 (2021) 201801, arXiv:2106.04673.
[NOvA:2021smv]
[5-17]
Bound on 3+1 active-sterile neutrino mixing from the first four-week science run of KATRIN, M. Aker et al. (KATRIN), Phys.Rev.Lett. 126 (2021) 091803, arXiv:2011.05087.
[KATRIN:2020dpx]
[5-18]
Search for sterile neutrino oscillations using RENO and NEOS data, Z. Atif et al. (RENO, NEOS), Phys. Rev. D 105 (2022) L111101, arXiv:2011.00896.
[RENO:2020hva]
[5-19]
Search for Signatures of Sterile Neutrinos with Double Chooz, T. Abrahao et al. (Double Chooz), Eur.Phys.J.C 81 (2021) 775, arXiv:2009.05515.
[DoubleChooz:2020pnv]
[5-20]
Updated MiniBooNE Neutrino Oscillation Results with Increased Data and New Background Studies, A.A. Aguilar-Arevalo et al. (MiniBooNE), Phys.Rev. D103 (2021) 052002, arXiv:2006.16883.
[MiniBooNE:2020pnu]
[5-21]
Improved Short-Baseline Neutrino Oscillation Search and Energy Spectrum Measurement with the PROSPECT Experiment at HFIR, M. Andriamirado et al. (PROSPECT), Phys.Rev. D103 (2021) 032001, arXiv:2006.11210.
[PROSPECT:2020sxr]
[5-22]
Search for Sub-eV Sterile Neutrino at RENO, J.H. Choi et al. (RENO), Phys.Rev.Lett. 125 (2020) 191801, arXiv:2006.07782.
[RENO:2020uip]
[5-23]
Searching for eV-scale sterile neutrinos with eight years of atmospheric neutrinos at the IceCube neutrino telescope, M. G. Aartsen et al. (IceCube), Phys.Rev. D102 (2020) 052009, arXiv:2005.12943.
[IceCube:2020tka]
[5-24]
An eV-scale sterile neutrino search using eight years of atmospheric muon neutrino data from the IceCube Neutrino Observatory, M. G. Aartsen et al. (IceCube), Phys.Rev.Lett. 125 (2020) 141801, arXiv:2005.12942.
[IceCube:2020phf]
[5-25]
Preparation of the Neutrino-4 experiment on search for sterile neutrino and the obtained results of measurements, A.P. Serebrov et al., Phys.Rev.D 104 (2021) 032003, arXiv:2005.05301.
[Serebrov:2020kmd]
[5-26]
The analysis of the results of the Neutrino-4 experiment on search for sterile neutrino and comparison with results of other experiments, A.P. Serebrov, R.M. Samoilov, Pisma Zh.Eksp.Teor.Fiz. 112 (2020) 211-225, arXiv:2003.03199.
[Serebrov:2020rhy]
[5-27]
Improved Constraints on Sterile Neutrino Mixing from Disappearance Searches in the MINOS, MINOS+, Daya Bay, and Bugey-3 Experiments, P. Adamson et al. (MINOS+, Daya Bay), Phys. Rev. Lett. 125 (2020) 071801, arXiv:2002.00301.
[MINOS:2020iqj]
[5-28]
Improved Sterile Neutrino Constraints from the STEREO Experiment with 179 Days of Reactor-On Data, Helena Almazan Molina et al. (STEREO), Phys.Rev. D102 (2020) 052002, arXiv:1912.06582.
[STEREO:2019ztb]
[5-29]
Final results on neutrino oscillation parameters from the OPERA experiment in the CNGS beam, N. Agafonova et al. (OPERA), Phys.Rev. D100 (2019) 051301, arXiv:1904.05686.
[OPERA:2019kzo]
[5-30]
Search for light sterile neutrinos with the T2K far detector Super-Kamiokande at a baseline of 295 km, K. Abe et al. (T2K), Phys.Rev. D99 (2019) 071103, arXiv:1902.06529.
[T2K:2019efw]
[5-31]
Measuring the atmospheric neutrino oscillation parameters and constraining the 3+1 neutrino model with ten years of ANTARES data, A. Albert et al. (ANTARES), JHEP 1906 (2019) 113, arXiv:1812.08650.
[ANTARES:2018rtf]
[5-32]
The first observation of effect of oscillation in Neutrino-4 experiment on search for sterile neutrino, A.P. Serebrov et al. (Neutrino-4), Pisma Zh.Eksp.Teor.Fiz. 109 (2019) 209-218, arXiv:1809.10561.
[NEUTRINO-4:2018huq]
[5-33]
First search for short-baseline neutrino oscillations at HFIR with PROSPECT, J. Ashenfelter et al. (PROSPECT), Phys.Rev.Lett. 121 (2018) 251802, arXiv:1806.02784.
[PROSPECT:2018dtt]
[5-34]
Sterile neutrino exclusion from the STEREO experiment with 66 days of reactor-on data, H. Almazan et al. (STEREO), Phys.Rev.Lett. 121 (2018) 161801, arXiv:1806.02096.
[STEREO:2018rfh]
[5-35]
Fuel-composition dependent reactor antineutrino yield and spectrum at RENO, G. Bak et al. (RENO), Phys.Rev.Lett. 122 (2019) 232501, arXiv:1806.00574.
[RENO:2018pwo]
[5-36]
Observation of a Significant Excess of Electron-Like Events in the MiniBooNE Short-Baseline Neutrino Experiment, A. A. Aguilar-Arevalo et al. (MiniBooNE), Phys.Rev.Lett. 121 (2018) 221801, arXiv:1805.12028.
[MiniBooNE:2018esg]
[5-37]
Search for sterile neutrinos at the DANSS experiment, I. Alekseev et al. (DANSS), Phys.Lett. B787 (2018) 56-63, arXiv:1804.04046.
[DANSS:2018fnn]
[5-38]
Final results of the search for $\nu_\mu \to \nu_{e}$ oscillations with the OPERA detector in the CNGS beam, N. Agafonova et al. (OPERA), JHEP 06 (2018) 151, arXiv:1803.11400.
[OPERA:2018ksq]
[5-39]
Search for sterile neutrinos in MINOS and MINOS+ using a two-detector fit, P. Adamson et al. (MINOS), Phys.Rev.Lett. 122 (2019) 091803, arXiv:1710.06488.
[MINOS:2017cae]
[5-40]
Experiment Neutrino-4 on search for sterile neutrino at SM-3 reactor, A. P. Serebrov et al. (Neutrino-4), arXiv:1708.00421, 2017.
[Serebrov:2017wml]
[5-41]
Search for active-sterile neutrino mixing using neutral-current interactions in NOvA, P. Adamson et al. (NOvA), Phys.Rev. D96 (2017) 072006, arXiv:1706.04592.
[NOvA:2017geg]
[5-42]
Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay, F. P. An et al. (Daya Bay), Phys.Rev.Lett. 118 (2017) 251801, arXiv:1704.01082.
[DayaBay:2017jkb]
[5-43]
Search for sterile neutrino mixing using three years of IceCube DeepCore data, M. G. Aartsen et al. (IceCube), Phys.Rev. D95 (2017) 112002, arXiv:1702.05160.
[IceCube:2017ivd]
[5-44]
Experiment NEUTRINO-4 Search for Sterile Neutrino, A. P. Serebrov et al. (Neutrino-4), PoS INPC2016 (2017) 255, arXiv:1702.00941.
[Serebrov:2017nxa]
[5-45]
Search for sterile neutrinos in the neutrino-4 experiment, A. P. Serebrov et al. (Neutrino-4), JETP Lett. 105 (2017) 347-351. [Zh. Eksp. Teor. Fiz.105,329(2017)].
[Serebrov:2017bwe]
[5-46]
A sterile neutrino search at NEOS Experiment, Y.J. Ko et al. (NEOS), Phys.Rev.Lett. 118 (2017) 121802, arXiv:1610.05134.
[NEOS:2016wee]
[5-47]
Improved Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay, F.P. An et al. (Daya Bay), Chin.Phys. C41 (2017) 013002, arXiv:1607.05378.
[DayaBay:2016ssb]
[5-48]
Limits on Active to Sterile Neutrino Oscillations from Disappearance Searches in the MINOS, Daya Bay, and Bugey-3 Experiments, P. Adamson et al. (MINOS, Daya Bay), Phys.Rev.Lett. 117 (2016) 151801, arXiv:1607.01177.
[DayaBay:2016lkk]
[5-49]
A search for sterile neutrinos mixing with muon neutrinos in MINOS, P. Adamson et al. (MINOS), Phys. Rev. Lett. 117 (2016) 151803, arXiv:1607.01176.
[MINOS:2016viw]
[5-50]
Improved Search for a Light Sterile Neutrino with the Full Configuration of the Daya Bay Experiment, F.P. An et al. (Daya Bay), Phys. Rev. Lett. 117 (2016) 151802, arXiv:1607.01174.
[DayaBay:2016qvc]
[5-51]
Searches for Sterile Neutrinos with the IceCube Detector, M. G. Aartsen et al. (IceCube), Phys. Rev. Lett. 117 (2016) 071801, arXiv:1605.01990.
[IceCube:2016rnb]
[5-52]
Online Monitoring of the Osiris Reactor with the Nucifer Neutrino Detector, G. Boireau et al. (NUCIFER), Phys. Rev. D93 (2016) 112006, arXiv:1509.05610.
[NUCIFER:2015hdd]
[5-53]
Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay, F. P. An et al. (Daya Bay), Phys. Rev. Lett. 116 (2016) 061801, arXiv:1508.04233.
[DayaBay:2015lja]
[5-54]
Limits on muon-neutrino to tau-neutrino oscillations induced by a sterile neutrino state obtained by OPERA at the CNGS beam, N. Agafonova et al. (OPERA), JHEP 1506 (2015) 069, arXiv:1503.01876.
[OPERA:2015zci]
[5-55]
Some conclusive considerations on the comparison of the ICARUS $\nu_\mu \to \nu_e$ oscillation search with the MiniBooNE low-energy event excess, M. Antonello et al., arXiv:1502.04833, 2015.
[Antonello:2015jxa]
[5-56]
Search for short baseline $\nu_e$ disappearance with the T2K near detector, K. Abe et al. (T2K), Phys. Rev. D91 (2015) 051102, arXiv:1410.8811.
[T2K:2014xvp]
[5-57]
Limits on Sterile Neutrino Mixing using Atmospheric Neutrinos in Super-Kamiokande, K. Abe et al. (Super-Kamiokande), Phys. Rev. D91 (2015) 052019, arXiv:1410.2008.
[Super-Kamiokande:2014ndf]
[5-58]
Search for a Light Sterile Neutrino at Daya Bay, F. P. An et al. (DAYA-BAY), Phys. Rev. Lett. 113 (2014) 141802, arXiv:1407.7259.
[DayaBay:2014fct]
[5-59]
Using L/E Oscillation Probability Distributions, A. A. Aguilar-Arevalo et al. (MiniBooNE), arXiv:1407.3304, 2014.
[MiniBooNE:2014xrx]
[5-60]
A search for an additional neutrino mass eigenstate in 2 to 100 eV region from 'Troitsk nu-mass' data - detailed analysis, A.I. Belesev et al., J. Phys. G41 (2014) 015001, arXiv:1307.5687.
[Belesev:2013cba]
[5-61]
Search for anomalies in the $\nu_e$ appearance from a $\nu_\mu$ beam, M. Antonello et al. (ICARUS), Eur.Phys.J. C73 (2013) 2599, arXiv:1307.4699.
[ICARUS:2013cwr]
[5-62]
Search for $\nu_\mu\to\nu_e$ oscillations with the OPERA experiment in the CNGS beam, N. Agafonova et al. (OPERA), JHEP 1307 (2013) 004, arXiv:1303.3953.
[OPERA:2013wvp]
[5-63]
Improved Search for $\bar\nu_\mu \to \bar\nu_e$ Oscillations in the MiniBooNE Experiment, A.A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Rev. Lett. 110 (2013) 161801, arXiv:1303.2588.
[MiniBooNE:2013uba]
[5-64]
An upper limit on additional neutrino mass eigenstate in 2 to 100 eV region from 'Troitsk nu-mass' data, A.I. Belesev, A.I. Berlev, E.V. Geraskin, A.A. Golubev, N.A. Likhovid et al., JETP Lett. 97 (2013) 67-69, arXiv:1211.7193.
[Belesev:2012hx]
[5-65]
Limit on sterile neutrino contribution from the Mainz Neutrino Mass Experiment, Christine Kraus, Andrej Singer, Kathrin Valerius, Christian Weinheimer, Eur.Phys.J. C73 (2013) 2323, arXiv:1210.4194.
[Kraus:2012he]
[5-66]
Experimental search for the LSND anomaly with the ICARUS detector in the CNGS neutrino beam, M Antonello, B Baibussinov, P Benetti, E Calligarich, N Canci et al. (ICARUS), Eur.Phys.J. C73 (2013) 2345, arXiv:1209.0122.
[Antonello:2012pq]
[5-67]
Dual baseline search for muon antineutrino disappearance at $0.1 \text{eV}^2 < \Delta{m}^2 < 100 \text{eV}^2$, G. Cheng et al. (SciBooNE-MiniBooNE), Phys. Rev. D86 (2012) 052009, arXiv:1208.0322.
[MiniBooNE:2012meu]
[5-68]
A Combined $\nu_\mu \to \nu_e$ and $\bar\nu_\mu \to \bar\nu_e$ Oscillation Analysis of the MiniBooNE Excesses, A.A. Aguilar-Arevalo et al. (MiniBooNE), arXiv:1207.4809, 2012.
[MiniBooNE:2012maf]
[5-69]
Test of Lorentz and CPT violation with Short Baseline Neutrino Oscillation Excesses, A. A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Lett. B718 (2013) 1303-1308, arXiv:1109.3480.
[MiniBooNE:2011pix]
[5-70]
Dual baseline search for muon neutrino disappearance at $0.5 < \Delta{m}^2 < 40 \, \text{eV}^2$, K. B. M. Mahn et al. (SciBooNE-MiniBooNE), Phys. Rev. D85 (2012) 032007, arXiv:1106.5685.
[SciBooNE:2011qyf]
[5-71]
Active to sterile neutrino mixing limits from neutral-current interactions in MINOS, P. Adamson et al. (MINOS), Phys. Rev. Lett. 107 (2011) 011802, arXiv:1104.3922.
[MINOS:2011ysd]
[5-72]
Observed Event Excess in the MiniBooNE Search for $\bar\nu_{\mu} \rightarrow \bar\nu_e$ Oscillations, A. A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Rev. Lett. 105 (2010) 181801, arXiv:1007.1150.
[MiniBooNE:2010idf]
[5-73]
Reanalysis of the GALLEX solar neutrino flux and source experiments, F. Kaether, W. Hampel, G. Heusser, J. Kiko, T. Kirsten, Phys. Lett. B685 (2010) 47-54, arXiv:1001.2731.
[Kaether:2010ag]
[5-74]
Search for sterile neutrino mixing in the MINOS long- baseline experiment, P. Adamson et al. (MINOS), Phys. Rev. D81 (2010) 052004, arXiv:1001.0336.
[MINOS:2010fgd]
[5-75]
Measurement of the solar neutrino capture rate with Gallium metal, Part III, J. N. Abdurashitov et al. (SAGE), Phys. Rev. C80 (2009) 015807, arXiv:0901.2200.
[SAGE:2009eeu]
[5-76]
A Search for Electron Neutrino Appearance at the $ \Delta{m}^{2} \sim 1 \, \text{eV}^{2} $ Scale, A. A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Rev. Lett. 98 (2007) 231801, arXiv:0704.1500.
[MiniBooNE:2007uho]
[5-77]
Measurement of the response of a Ga solar neutrino experiment to neutrinos from an Ar-37 source, J. N. Abdurashitov et al. (SAGE), Phys. Rev. C73 (2006) 045805, arXiv:nucl-ex/0512041.
From the abstract: The measured production rate was $ 11.0 {}^{+1.0}_{-0.9} \text{(stat)} \pm 0.6 \text{(syst)} $ atoms of 71Ge/d, which is $ 0.79 {}^{+0.09}_{-0.10} $ of the theoretically calculated production rate.
[Abdurashitov:2005tb]
[5-78]
Evidence for neutrino oscillations from the observation of $\bar\nu_e$ appearance in a $\bar\nu_\mu$ beam, A. Aguilar et al. (LSND), Phys. Rev. D64 (2001) 112007, arXiv:hep-ex/0104049.
[LSND:2001aii]
[5-79]
Limits on the existence of heavy neutrinos in the range 50- eV - 1000-eV from the study of the Re-187 beta decay, M. Galeazzi, F. Fontanelli, F. Gatti, S. Vitale, Phys. Rev. Lett. 86 (2001) 1978-1981.
[Galeazzi:2001py]
[5-80]
A high statistics search for $\nu_e (\bar\nu_e) \to \nu_\tau (\bar\nu_\tau)$ oscillations, D. Naples et al. (CCFR/NuTeV), Phys. Rev. D59 (1999) 031101, arXiv:hep-ex/9809023.
[CCFRNuTeV:1998gjj]
[5-81]
Measurement of the response of the Russian-American gallium experiment to neutrinos from a Cr-51 source, J. N. Abdurashitov et al. (SAGE), Phys. Rev. C59 (1999) 2246-2263, arXiv:hep-ph/9803418.
From the abstract: The ratio of the measured rate of production of 71Ge to the rate anticipated from the source activity was $ 0.95 {}^{+0.11}_{-0.10} \text{(stat)} {}^{+0.06}_{-0.05} \text{(syst)} {}^{+0.035}_{-0.027} \text{(theory)} $.
[SAGE:1998fvr]
[5-82]
Final results of the Cr-51 neutrino source experiments in GALLEX, W. Hampel et al. (GALLEX), Phys. Lett. B420 (1998) 114-126.
From the abstract: The ratio $R$ of the neutrino source strength derived from the measured rate of 71Ge production, divided by the directly determined source strength is $R = 1.01 {}^{+0.12}_{-0.11}$ for the first source and $R = 0.84 {}^{+0.12}_{-0.11}$ for the second one. The combined value of $R$ for the two source experiments is $R = 0.93 \pm 0.08$.
From the article: Update limits on short-baseline $\nu_e$ disappearance. See also [Go].
Comment: In reality, limits are relaxed in the high $\Delta m^2$ region, due to the result of the second source run, to the value $ \sin^2 2 \theta < 0.4 $ at 90\% CL. [M.L.].
[GALLEX:1997lja]
[5-83]
Evidence for $\nu_\mu \to \nu_e$ neutrino oscillations from LSND, C. Athanassopoulos et al. (LSND), Phys. Rev. Lett. 81 (1998) 1774-1777, arXiv:nucl-ex/9709006.
[LSND:1997vun]
[5-84]
Evidence for $\nu_\mu \to \nu_e$ oscillations from pion decay in flight neutrinos, C. Athanassopoulos et al. (LSND), Phys. Rev. C58 (1998) 2489-2511, arXiv:nucl-ex/9706006.
[LSND:1997vqj]
[5-85]
Evidence for $\bar\nu_\mu \to \bar\nu_e$ oscillation from the LSND experiment at the Los Alamos Meson Physics Facility, C. Athanassopoulos et al. (LSND), Phys. Rev. Lett. 77 (1996) 3082-3085, arXiv:nucl-ex/9605003.
[LSND:1996ubh]
[5-86]
Evidence for neutrino oscillations from muon decay at rest, C. Athanassopoulos et al. (LSND), Phys. Rev. C54 (1996) 2685-2708, arXiv:nucl-ex/9605001.
[LSND:1996vlr]
[5-87]
Candidate events in a search for $\bar\nu_\mu \to \bar\nu_e$ oscillations, C. Athanassopoulos et al. (LSND), Phys. Rev. Lett. 75 (1995) 2650-2653, arXiv:nucl-ex/9504002.
[LSND:1995lje]

6 - Experiment - Talks

[6-1]
New results from the DANSS experiment, Mikhail Danilov, PoS ICHEP2022 () 616, arXiv:2211.01208. The International Conference on High Energy Physics (ICHEP 2022), 6-13 July 2022, Bologna, Italy.
[Danilov:2022bss]
[6-2]
New results from the DANSS experiment, Mikhail Danilov, Nataliya Skrobova (DANSS), PoS EPS-HEP2021 (2022) 241, arXiv:2112.13413. The European Physical Society Conference on High Energy Physics (EPS-HEP2021).
[Danilov:2021oop]
[6-3]
New results from the DANSS experiment, Mikhail Danilov, PoS ICHEP2020 (2021) 121, arXiv:2012.10255. 40th International Conference on High Energy physics (ICHEP2020), July 28 - August 6, 2020, Prague, Czech Republic.
[Danilov:2020ucs]
[6-4]
MiniBooNE Neutrino Oscillation Search Results and Predicted Background Events, Teppei Katori (MiniBooNE), arXiv:2010.06015, 2020. 3rd World Summit on Exploring the Dark Side of the Universe, Guadeloupe Islands, March 9-13 2020.
[Katori:2020tvv]
[6-5]
Search for eV neutrino sterile: Status of STEREO experiment, Ilham El Atmani, arXiv:2002.12701, 2020. INPC 2019 Conference.
[ElAtmani:2020xgb]
[6-6]
Recent results of the DANSS experiment, Mikhail Danilov (DANSS), PoS EPS-HEP2019 (2020) 401, arXiv:1911.10140. European Physical Society Conference on High Energy Physics, EPS-HEP2019, 10-17 July 2019, Ghent, Belgium.
[Danilov:2019aef]
[6-7]
A Search for Sterile Neutrinos with PROSPECT, Olga Kyzylova (PROSPECT), arXiv:1910.06314, 2019. 2019 Meeting of the Division of Particles and Fields of the American Physical Society (DPF2019), July 29 - August 2, 2019, Northeastern University, Boston.
[Kyzylova:2019ogb]
[6-8]
Search for eV Sterile Neutrinos - The STEREO Experiment [Blois 2019], Stefan Schoppmann, arXiv:1909.01017, 2019. Rencontres de Blois 2019.
[Schoppmann:2019sys]
[6-9]
Results from the STEREO Experiment with 119 days of Reactor-on Data, Laura Bernard (STEREO), arXiv:1905.11896, 2019. 2019 EW/QCD/Gravitation session of the 54th Rencontres de Moriond.
[Bernard:2019jli]
[6-10]
Search for heavy neutrinos at CERN SPS, Venelin Kozhuharov, arXiv:1904.09124, 2019. NuPhys2018 (London, 19-21 December 2018).
[Kozhuharov:2019ied]
[6-11]
IceCube Sterile Neutrino Searches, B.J.P. Jones (IceCube), EPJ Web Conf. 207 (2019) 04005, arXiv:1902.06185. VLVNT2018.
[Jones:2019nix]
[6-12]
Recent results of the DANSS experiment, Mikhail Danilov, arXiv:1811.07354, 2018. La Thuile 2018.
[Danilov:2018kjo]
[6-13]
Improved Search for Heavy Neutrinos and a Test of Lepton Universality in the Decay $\pi^+ \rightarrow \mbox{e}^+ \nu$, R.E. Mischke et al., arXiv:1809.10314, 2018. CIPANP2018.
[PiENu:2018lsf]
[6-14]
Heavy neutrino searches and NA62 status, Nicolas Lurkin, arXiv:1808.00827, 2018. 52nd Rencontres de Moriond (EW session), La Thuile, 18-25 March 2017.
[NA62:2017xeg]
[6-15]
Search for heavy neutral leptons with the CMS detector, Willem Verbeke, arXiv:1805.05084, 2018. 53rd Rencontres de Moriond 2018: Electroweak Interactions and Unified Theories.
[Verbeke:2018dyv]
[6-16]
Sterile Neutrino Search in the Neutrino-4 Experiment at the SM-3 Reactor, A. P. Serebrov et al., Phys. Part. Nucl. 49 (2018) 701-708. International Session-Conference 'Physics of Fundamental Interactions', Nalchik, Russia, June 6-8, 2017.
[Serebrov:2018oyd]
[6-17]
Sterile neutrino search in the NOvA Far Detector, Sijith Edayath et al., arXiv:1710.01280, 2017. APS Division of Particles and Fields Meeting (DPF 2017), July 31-August 4, 2017, Fermilab.
[Edayath:2017cpi]
[6-18]
NOvA Short-Baseline Tau Neutrino Appearance Search, Rijeesh Keloth et al., arXiv:1710.00295, 2017. APS Division of Particles and Fields Meeting (DPF 2017), July 31-August 4, 2017, Fermilab.
[Keloth:2017vdp]
[6-19]
Atmospheric neutrinos and new physics, Nuria Rius (IceCube), arXiv:1705.09140, 2017. Talk presented at NuPhys2016 (London, 12-14 December 2016).
[Rius:2017hsc]
[6-20]
New Constraints on Sterile Neutrinos with MINOS/MINOS+ and Daya Bay, Thomas Joseph Carroll, arXiv:1705.05064, 2017. 52nd Rencontres de Moriond EW 2017.
[Carroll:2017xps]
[6-21]
Recent results from NA48/2 and NA62 experiments at CERN, Nicolas Lurkin, PoS HQL2016 (2017) 033, arXiv:1701.06979. HQL 2016, Blacksburg, 22-27 May 2016.
[Lurkin:2016vlh]
[6-22]
Search for sterile neutrinos at the DANSS experiment, M. Danilov, 2017. Solvay Workshop 'Beyond the Standard model with Neutrinos and Nuclear Physics', 29 November - 1 December 2017, Brussels, Belgium. http://www.solvayinstitutes.be/event/workshop/beyond_2018/slides/Danilov.pdf.
[DANSS-171201]
[6-23]
Latest Results from MINOS and MINOS+, Simon De Rijck (MINOS+, MINOS), J. Phys. Conf. Ser. 873 (2017) 012032.
[DeRijck:2017ynh]
[6-24]
Current Results of NEUTRINO-4 Experiment, A. Serebrov et al., J. Phys. Conf. Ser. 934 (2017) 012010.
[Serebrov:2017prl]
[6-25]
Status of Experiment NEUTRINO-4 Search for Sterile Neutrino, A. Serebrov et al. (Neutrino-4), J.Phys.Conf.Ser. 798 (2017) 012116, arXiv:1611.05245.
[Serebrov:2016bch]
[6-26]
Kaon experiments at CERN: recent results and prospects, Evgueni Goudzovski, EPJ Web Conf. 130 (2016) 01019, arXiv:1609.02952. MESON 2016 (Krakow, 2-6 June 2016).
[Goudzovski:2016etd]
[6-27]
Results from the OPERA experiment, Donato Di Ferdinando (OPERA), arXiv:1608.01595, 2016. NuPhys2015 (London, 16-18 December 2015).
[DiFerdinando:2016wbk]
[6-28]
Results and Prospects from the Daya Bay Reactor Neutrino Experiment, A. Higuera (Daya Bay), arXiv:1607.07324, 2016. Seventh Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, June 20-24, 2016.
[Higuera:2016vcm]
[6-29]
Neutrino-4 experiment on search for sterile neutrino with multi-section model of detector, A. P. Serebrov et al. (Neutrino-4), J.Phys.Conf.Ser. 888 (2017) 012089, arXiv:1605.05909.
[Serebrov:2016wzv]
[6-30]
Searching for Sterile Neutrinos with MINOS, Ashley Timmons (MINOS), arXiv:1605.04544, 2016. 51st Rencontres de Moriond EW 2016.
[Timmons:2016hvv]
[6-31]
Search for Sterile Neutrino at Short Baseline using a Nuclear Reactor, Yoomin Oh et al., 2016. ICHEP 2016, 38th International Conference on High Energy Physics, 3-10 August 2016, Chicago, IL, USA. http://indico.cern.ch/event/432527/contributions/1072452/attachments/1320616/1982385/yoomin_neos_v2.pdf.
[NEOS-ICHEP2016]
[6-32]
First Results from Searches for Active to Sterile Neutrino Oscillations with NOvA, Gavin Davies, 2016. Fermilab Joint Experimental-Theoretical Physics Seminar, 29 July 2016. http://theory.fnal.gov/jetp/talks/jetp_gsdavies_nova-2.pdf.
[NOVA-Fermilab-160729]
[6-33]
Search for exotic transitions of muon neutrinos to electron neutrinos with MINOS, Marianna Gabrielyan (MINOS), arXiv:1511.00179, 2015. DPF 2015 Meeting of the American Physical Society Division of Particles and Fields, Ann Arbor, Michigan, August 4-8, 2015.
[Gabrielyan:2015hnc]
[6-34]
Search for Sterile Neutrinos at OPERA and other Long-Baseline Experiments, Luca Stanco, PoS EPS-HEP2015 (2016) 057, arXiv:1510.04151. EPS2015, Vienna 22-29 July 2015.
[Stanco:2015sua]
[6-35]
OPERA neutrino oscillation search: status and perspectives, Giuliana Galati (OPERA), arXiv:1510.00343, 2015. CIPANP2015.
[Galati:2015ona]
[6-36]
Searches for sterile neutrinos using the T2K off-axis near detector, Debra Dewhurst (T2K), arXiv:1504.08237, 2015. Prospects in Neutrino Physics Conference, 15 - 17 December, 2014, Queen Mary University of London, UK.
[Dewhurst:2015aba]
[6-37]
Searching for Sterile Neutrinos at MINOS, Ashley Timmons (MINOS), arXiv:1504.04046, 2015. NuPhys2014.
[Timmons:2015lga]
[6-38]
Improved limits on sterile neutrino dark matter from full-sky observations by the Fermi-GBM, Shunsaku Horiuchi, Kenny C. Y. Ng, Jennifer M. Gaskins, Miles Smith, Robert Preece, arXiv:1502.03399, 2015. 2014 Fermi Symposium.
[Horiuchi:2015pda]
[6-39]
Results from Daya Bay, Chao Zhang, 2014. Neutrino 2014, XXVI International Conference on Neutrino Physics and Astrophysics, 2-7 June 2014, Boston, Massachusetts, USA. https://indico.fnal.gov/getFile.py/access?contribId=256&sessionId=15&resId=0&materialId=slides&confId=8022.
[DayaBay-Nu2014]
[6-40]
MiniBooNE Oscillation Results 2011, Zelimir Djurcic (MiniBooNE), J. Phys. Conf. Ser. 408 (2013) 012027, arXiv:1201.1519. NuFact 2011.
[Djurcic:2012np]
[6-41]
Updated Search for Electron Antineutrino Appearance at MiniBooNE, E. D. Zimmerman (MiniBooNE), AIP Conf. Proc. 1441 (2012) 458-460, arXiv:1111.1375. PANIC 2011.
[Zimmerman:2011hy]
[6-42]
MINOS Search for Sterile Neutrinos, Alexandre Sousa (MINOS), J. Phys. Conf. Ser. 408 (2013) 012026, arXiv:1110.3455. NuFact 2011.
[Sousa:2011rw]
[6-43]
MiniBooNE Results, Zelimir Djurcic (MiniBooNE), 2011. NUFACT 2011. http://indico.cern.ch/contributionDisplay.py?sessionId=1&contribId=134&confId=114816.
[Djurcic-NUFACT2011]
[6-44]
Short-baseline neutrino physics at MiniBooNE, E.D. Zimmerman (MiniBooNE), 2011. PANIC 2011. http://web.mit.edu/panic11/talks/monday/PARALLEL-1E/3-1410/zimmerman/panic11-edza-public.pdf.
[Zimmerman-PANIC2011]
[6-45]
MiniBooNE $\nu$ Oscillation Results, W.C. Louis (MiniBooNE), 2010. Aspen Winter Conference, January 22, 2010. http://www-boone.fnal.gov/slides-talks/conf-talk/louis/aspen2010.pdf.
[Louis-Aspen-2010]
[6-46]
Analysis of Neutral Current Interactions in MINOS: A Search for Sterile Neutrinos, Alexandre Sousa (MINOS), arXiv:0910.1369, 2009. DPF-2009, Detroit, MI, July 2009.
[Sousa:2009wp]
[6-47]
MiniBoone Oscillation Results, Zelimir Djurcic (MiniBooNE), 2009. Moriond EW 2009, Electroweak Interactions and Unified Theories, 7-14 March 2009, La Thuile, Aosta Valley, Italy. http://indico.in2p3.fr/getFile.py/access?contribId=104&sessionId=12&resId=1&materialId=slides&confId=1399.
[Djurcic-Moriond-EW-2009]
[6-48]
Results from Miniboone, Georgia Karagiorgi (MiniBooNE), 2009. La Thuile 2009, Les Rencontres de Physique de La Vallee d'Aoste, 1-7 March 2009, La Thuile, Aosta Valley, Italy. http://agenda.infn.it/getFile.py/access?contribId=13&sessionId=3&resId=0&materialId=slides&confId=930.
[Karagiorgi-LaThuile-2009]
[6-49]
Results from Miniboone, G. Karagiorgi (MiniBooNE), 2009. 22nd International Workshop on Weak Interactions and Neutrinos Search, 14-19 September 2009, PERUGIA, Italy. http://indico.cern.ch/materialDisplay.py?contribId=44&sessionId=18&materialId=slides&confId=54503.
[Karagiorgi:WIN2009]
[6-50]
MiniBooNE Request for More Antineutrino Running, Richard Van de Water (MiniBooNE), 2009. PAC Review, March 5, 2009. http://www.fnal.gov/directorate/program_planning/Mar2009PACPublic/VanDeWater_PACMar09.pdf.
[VandeWater-PAC-2009]
[6-51]
First MiniBooNE $\bar\nu_{e}$ Appearance Results, G. Karagiorgi (MiniBooNE), 2008. FNAL, 11 December 2008. http://theory.fnal.gov/jetp/talks/karagiorgi.pdf.
[Karagiorgi-FNAL-2008]
[6-52]
MiniBooNE and the Holy Grail - First Antineutrino Results!, H. Ray (MiniBooNE), 2008. Miami 2008, 16-21 December 2008, Fort Lauderdale, Florida, USA. http://server.physics.miami.edu/~cgc/Miami2008/Ray2008.ppt.
[Ray-Miami-2008]
[6-53]
Neutrino Oscillation Search at MiniBooNE, Z. Djurcic (MiniBooNE), Nucl. Phys. Proc. Suppl. 168 (2007) 309-314, arXiv:hep-ex/0701017. Neutrino Oscillation Workshop (NOW2006), September 2006.
[Djurcic:2007dx]
[6-54]
Sterile Neutrino Oscillations and CP-Violation Implications for MiniBooNE, G. Karagiorgi (MiniBooNE), 2007. NuFact07, 6-11 August 2007, Okayama, Japan. http://www-boone.fnal.gov/slides-talks/conf-talk/georgiak/georgiak_nufact07.pdf.
[Karagiorgi-LP07]
[6-55]
First Results from MiniBooNE, W. Louis, J. Conrad (MiniBooNE), 2007. 11 April 2007. http://www-boone.fnal.gov/publicpages/First_Results.pdf.
[Louis-Conrad-07-04-11]
[6-56]
MiniBooNE results on oscillations and its implications, M. Shaevitz (MiniBooNE), 2007. TAUP 2007, 11-15 September 2007, Sendai, Japan. http://www.awa.tohoku.ac.jp/taup2007/slides/plenary/plenary_13sep/04-Shaevitz_TAUP07.ppt.
[Shaevitz-TAUP07]
[6-57]
First Neutrino Oscillation Results From MiniBooNE, M. Sorel (MiniBooNE), 2007. CERN, 15 May 2007. http://ific.uv.es/~sorel/BooNE/CERNseminar07_sorel.pdf.
[Sorel-07-05-15]
[6-58]
Neutrino Oscillation Results from MiniBooNE, R. Tayloe (MiniBooNE), 2007. Lepton-Photon 2007, 12-18 August 2007, Daegu, Korea. http://chep.knu.ac.kr/lp07/htm/S4/S04_12.pdf.
[Tayloe-LP07]
[6-59]
Results of the MiniBooNE neutrino oscillation search, E. D. Zimmerman (MiniBooNE), 2007. American Physical Society Meeting, Jacksonville, 16 April 2007. http://hep-neutrino.colorado.edu/edz/talkscans/aps.pdf.
[Zimmerman-07-04-16]
[6-60]
Measurement of the SAGE Response to Neutrinos from Ar37 Source, V.N. Gavrin (SAGE), 2005. XI International Workshop on Neutrino Telescopes, February 22-25, 2005, Venice, Italy. http://www.pd.infn.it/~laveder/unbound/talks/exp/sage/VE05-Gavrin.pdf.
Comment: The ratio of the production rate (MEASURED/PREDICTED) is $0.79 +0.09 -0.10$.
[Gavrin:Venice2005]
[6-61]
MiniBooNE Beam MC, Including HARP Data, D. Schmitz (Harp), 2005. 5th International Workshop on Neutrino Beams and Instrumentation,July 7-11, 2005, Fermilab, Batavia Illinois. http://www.hep.utexas.edu/nbi2005/transparencies/beamMChadprod/dschmitz-harp-nbi2005.pdf.
[Schmitz:NBI2005]
[6-62]
Status of MiniBooNE, R. Stefanski (Miniboone), 2005. 5th International Workshop on Neutrino Beams and Instrumentation, July 7-11, 2005, Fermilab, Batavia, Illinois. http://www.hep.utexas.edu/nbi2005/transparencies/overview/rays_nbi_talk.ppt.
[Stefanski:NBI2005]
[6-63]
MiniBooNE : Status and Plans, A. Bazarko, 2002. 19th International Workshop on Weak Interactions and Neutrinos, WIN2003, October 6-11, Lake Geneva, Wisconsin U.S.A. http://conferences.fnal.gov/win03/Talks/Andrew%20Bazarko.pdf.
Comment: The figure in slide n.27 shows the MiniBoone $ 90 \% $ C.L. sensitivity for $\nu_\mu \rightarrow \nu_\mu$ oscillations. [M.L.].
[Bazarko:WIN2003]
[6-64]
Final Neutrino Oscillation Results from LSND and Karmen, G. Drexlin, 2002. XXth International Conference on Neutrino Physics and Astrophysics May 25 - 30, 2002, Munich, Germany. http://neutrino2002.ph.tum.de/pages/transparencies/drexlin.
[Drexlin-talk:2002a]

7 - Experiment - Dark Matter

[7-1]
Search for keV-scale Sterile Neutrinos with first KATRIN Data, M. Aker et al., Eur.Phys.J.C 83 (2023) 763, arXiv:2207.06337.
[KATRIN:2022spi]
[7-2]
First Dark Matter Search Results From Coherent CAPTAIN-Mills, A. A. Aguilar-Arevalo et al., Phys.Rev.D 106 (2022) 012001, arXiv:2105.14020.
[CCM:2021leg]
[7-3]
A Search for the 3.5 keV Line from the Milky Way's Dark Matter Halo with HaloSat, E.M. Silich, K. Jahoda, L. Angelini, P. Kaaret, A. Zajczyk, D.M. LaRocca, R. Ringuette, J. Richardson, Astrophys.J. 916 (2021) 2, arXiv:2105.12252.
[Silich:2021sra]
[7-4]
An X-ray spectroscopic search for dark matter and unidentified line signatures in the Perseus cluster with Hitomi, Takayuki Tamura et al., Publ.Astron.Soc.Jap. 71 (2019) Publications of the Astronomical Society of Japan, Volume 71, Issue 3, June 2019, 50, https://doi.org/10.1093/pasj/psz023, arXiv:1811.05767.
[Tamura:2018scp]
[7-5]
First measeurements in search for keV-sterile neutrino in tritium beta-decay by Troitsk nu-mass experiment, J.N. Abdurashitov et al., Pisma Zh.Eksp.Teor.Fiz. 105 (2017) 723-724, arXiv:1703.10779.
[Abdurashitov:2017kka]
[7-6]
Searching for the 3.5 keV Line in the Deep Fields with Chandra: the 10 Ms observations, Nico Cappelluti, Esra Bulbul, Adam Foster, Priyamvada Natarajan, Megan C. Urry, Mark W. Bautz, Francesca Civano, Eric Miller, Randall K. Smith, Astrophys.J. 854 (2018) 179, arXiv:1701.07932.
[Cappelluti:2017ywp]
[7-7]
(Almost) Closing the Sterile Neutrino Dark Matter Window with NuSTAR, Kerstin Perez et al., Phys.Rev. D95 (2017) 123002, arXiv:1609.00667.
[Perez:2016tcq]
[7-8]
Decaying dark matter search with NuSTAR deep sky observations, Andrii Neronov, Denys Malyshev, Dominique Eckert, Phys. Rev. D94 (2016) 123504, arXiv:1607.07328.
[Neronov:2016wdd]
[7-9]
7.1 keV sterile neutrino constraints from X-ray observations of 33 clusters of galaxies with Chandra ACIS, F. Hofmann, J. S. Sanders, K. Nandra, N. Clerc, M. Gaspari, Astron.Astrophys. 592 (2016) A112, arXiv:1606.04091.
[Hofmann:2016urz]
[7-10]
Searching for the 3.5 keV Line in the Stacked Suzaku Observations of Galaxy Clusters, Esra Bulbul et al., Astrophys.J. 831 (2016) 55, arXiv:1605.02034.
[Bulbul:2016yop]
[7-11]
Dark matter line emission constraints from NuSTAR observations of the Bullet Cluster, S. Riemer-Sorensen et al., Astrophys. J. 810 (2015) 48, arXiv:1507.01378.
[Riemer-Sorensen:2015kqa]
[7-12]
Searching for keV Sterile Neutrino Dark Matter with X-ray Microcalorimeter Sounding Rockets, Enectali Figueroa-Feliciano et al., Astrophys. J. 814 (2015) 82, arXiv:1506.05519.
[XQC:2015mwy]
[7-13]
The role of eROSITA all-sky survey in searches for sterile neutrino dark matter, Fabio Zandanel, Christoph Weniger, Shin'ichiro Ando, JCAP 1509 (2015) 060, arXiv:1505.07829.
[Zandanel:2015xca]
[7-14]
Improved Limits on Sterile Neutrino Dark Matter using Full-Sky Fermi-GBM Data, Kenny C. Y. Ng, Shunsaku Horiuchi, Jennifer M. Gaskins, Miles Smith, Robert Preece, Phys. Rev. D92 (2015) 043503, arXiv:1504.04027.
[Ng:2015gfa]
[7-15]
A Search for a keV Signature of Radiatively Decaying Dark Matter with Suzaku XIS Observations of the X-ray Diffuse Background, Norio Sekiya, Noriko Y. Yamasaki, Kazuhisa Mitsuda, Publ. Astron. Soc. Jap. (2015), arXiv:1504.02826.
[Sekiya:2015jsa]
[7-16]
An X-ray Spectroscopic Search for Dark Matter in the Perseus Cluster with Suzaku, Takayuki Tamura, Ryo Iizuka, Yoshitomo Maeda, Kazuhisa Mitsuda, Noriko Y. Yamasaki, Publ.Astron.Soc.Jap. 67 (2015) 23, arXiv:1412.1869.
[Tamura:2014mta]
[7-17]
An unidentified line in X-ray spectra of the Andromeda galaxy and Perseus galaxy cluster, Alexey Boyarsky, Oleg Ruchayskiy, Dmytro Iakubovskyi, Jeroen Franse, Phys. Rev. Lett. 113 (2014) 251301, arXiv:1402.4119.
[Boyarsky:2014jta]
[7-18]
Detection of An Unidentified Emission Line in the Stacked X-ray spectrum of Galaxy Clusters, Esra Bulbul et al., Astrophys.J. 789 (2014) 13, arXiv:1402.2301.
[Bulbul:2014sua]
[7-19]
Dark Matter Search Using XMM-Newton Observations of Willman 1, Michael Loewenstein, Alexander Kusenko, Astrophys. J. 751 (2012) 82, arXiv:1203.5229.
[Loewenstein:2012px]
[7-20]
Swift observation of Segue 1: constraints on sterile neutrino parameters in the darkest galaxy, N. Mirabal, Mon.Not.Roy.Astron.Soc. 409 (2010) 128, arXiv:1010.4706.
[Mirabal:2010an]

8 - Experiment - Heavy Neutral Leptons

[8-1]
Search for heavy Majorana neutrinos in $e^{\pm} e^{\pm}$ and $e^{\pm} \mu^{\pm}$ final states via WW scattering in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector, Georges Aad et al. (ATLAS), arXiv:2403.15016, 2024.
[2403.15016]
[8-2]
Search for long-lived heavy neutrinos in the decays of B mesons produced in proton-proton collisions at $\sqrt{s}$ =13 TeV, Aram Hayrapetyan et al. (CMS), arXiv:2403.04584, 2024.
[CMS:2024ita]
[8-3]
Search for heavy neutral leptons in final states with electrons, muons, and hadronically decaying tau leptons in proton-proton collisions at $\sqrt{s}$ =13 TeV, Aram Hayrapetyan et al. (CMS), arXiv:2403.00100, 2024.
[CMS:2024xdq]
[8-4]
Search for a heavy neutral lepton that mixes predominantly with the tau neutrino, M. Nayak et al. (Belle), arXiv:2402.02580, 2024.
[Belle:2024wyk]
[8-5]
Search for heavy neutral leptons in electron-positron and neutral-pion final states with the MicroBooNE detector, P. Abratenko et al. (MicroBooNE), Phys.Rev.Lett. 132 (2024) 041801, arXiv:2310.07660.
[MicroBooNE:2023eef]
[8-6]
Search for Z' bosons decaying to pairs of heavy Majorana neutrinos in proton-proton collisions at $\sqrt{s}$ = 13 TeV, Armen Tumasyan et al. (CMS), JHEP 11 (2023) 181, arXiv:2307.06959.
[CMS:2023ooo]
[8-7]
Search for heavy Majorana or Dirac neutrinos and right-handed $W$ gauge bosons in final states with charged leptons and jets in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector, Georges Aad et al. (ATLAS), Eur.Phys.J.C 83 (2023) 1164, arXiv:2304.09553.
[ATLAS:2023cjo]
[8-8]
Search for a heavy neutrino in tau decays at Belle, D. Liventsev et al. (Belle), Phys.Rev.Lett. 131 (2023) 211802, arXiv:2212.10095.
[Belle:2022tfo]
[8-9]
Search for a heavy composite Majorana neutrino in events with dilepton signatures from proton-proton collisions at $\sqrt{s}$ = 13 TeV, CMS, arXiv:2210.03082, 2022.
[CMS:2022cfk]
[8-10]
Probing heavy Majorana neutrinos and the Weinberg operator through vector boson fusion processes in proton-proton collisions at $\sqrt{s}$ = 13 TeV, CMS, arXiv:2206.08956, 2022.
[CMS:2022rqc]
[8-11]
Search for type-III seesaw heavy leptons in leptonic final states in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, Georges Aad et al. (ATLAS), Eur.Phys.J.C 82 (2022) 988, arXiv:2202.02039.
[ATLAS:2022yhd]
[8-12]
Search for long-lived heavy neutral leptons with displaced vertices in proton-proton collisions at $\sqrt{s}$ =13 TeV, Armen Tumasyan et al. (CMS), JHEP 07 (2022) 081, arXiv:2201.05578.
[CMS:2022fut]
[8-13]
New constraints on tau-coupled Heavy Neutral Leptons with masses $m_N = 280-970$ MeV, R. Acciarri et al. (ArgoNeuT), Phys.Rev.Lett. 127 (2021) 121801, arXiv:2106.13684.
[ArgoNeuT:2021clc]
[8-14]
Search for $K^+$ decays to a muon and invisible particles, Eduardo Cortina Gil et al. (NA62), Phys.Lett. B816 (2021) 136259, arXiv:2101.12304.
[NA62:2021bji]
[8-15]
Search for heavy neutral leptons in $W^+\to\mu^{+}\mu^{\pm}\text{jet}$ decays, Roel Aaij et al. (LHCb), Eur. Phys. J. C 81 (2021) 248, arXiv:2011.05263.
[LHCb:2020wxx]
[8-16]
Limits on the Existence of sub-MeV Sterile Neutrinos from the Decay of $^7$Be in Superconducting Quantum Sensors, S. Friedrich et al., Phys.Rev.Lett. 126 (2021) 021803, arXiv:2010.09603.
[Friedrich:2020nze]
[8-17]
Search for heavy neutral lepton production in $K^+$ decays to positrons, E. Cortina Gil et al. (NA62), Phys.Lett. BB807 (2020) 135599, arXiv:2005.09575.
[NA62:2020mcv]
[8-18]
Search for heavy neutral leptons decaying into muon-pion pairs in the MicroBooNE detector, P. Abratenko et al., Phys.Rev. D101 (2020) 052001, arXiv:1911.10545.
[MicroBooNE:2019izn]
[8-19]
Search for heavy neutral leptons in decays of $W$ bosons produced in 13 TeV $pp$ collisions using prompt and displaced signatures with the ATLAS detector, Georges Aad et al. (ATLAS), JHEP 1910 (2019) 265, arXiv:1905.09787.
[ATLAS:2019kpx]
[8-20]
Search for a right-handed gauge boson decaying into a high-momentum heavy neutrino and a charged lepton in $pp$ collisions with the ATLAS detector at $\sqrt{s}=13$ TeV, Morad Aaboud et al. (ATLAS), Phys.Lett. B798 (2019) 134942, arXiv:1904.12679.
[ATLAS:2019isd]
[8-21]
Search for Heavy Neutrinos in $\pi\to \mu\nu$ Decay, A. Aguilar-Arevalo et al., Phys.Lett. B798 (2019) 134980, arXiv:1904.03269.
[PIENU:2019usb]
[8-22]
Search for heavy Majorana or Dirac neutrinos and right-handed $W$ gauge bosons in final states with two charged leptons and two jets at $\sqrt{s}$ = 13 TeV with the ATLAS detector, Morad Aaboud et al. (ATLAS), JHEP 1901 (2019) 016, arXiv:1809.11105.
[ATLAS:2018dcj]
[8-23]
Search for heavy neutral leptons in events with three charged leptons in proton-proton collisions at $\sqrt{s} =$ 13 TeV, Albert M Sirunyan et al. (CMS), Phys. Rev. Lett. 120 (2018) 221801, arXiv:1802.02965.
[CMS:2018iaf]
[8-24]
Improved Search for Heavy Neutrinos in the Decay $\pi\rightarrow e\nu$, A. Aguilar-Arevalo et al., Phys.Rev. D97 (2018) 072012, arXiv:1712.03275.
[PIENU:2017wbj]
[8-25]
Search for heavy neutrino in $K^{+} \to \mu^{+} \nu_{H}$ decay, A.S. Sadovsky et al., Eur.Phys.J. C78 (2018) 92, arXiv:1709.01473.
[OKA:2017evc]
[8-26]
Search for Heavy Neutrinos in $K^+ \rightarrow \mu^+ \nu_{\mu}$ Decays, Cristina Lazzeroni et al. (NA62), Phys.Lett. B772 (2017) 712-718, arXiv:1705.07510.
[NA62:2017ynf]
[8-27]
Search for a heavy right-handed W boson and a heavy neutrino in events with two same-flavor leptons and two jets at sqrt(s)=13 TeV, CMS Collaboration, 2017. CMS-PAS-EXO-17-011.
[CMS:2017ilm]
[8-28]
Search for heavy neutrinos and $\mathrm{W}$ bosons with right handed couplings in proton-proton collisions at $\sqrt{s} = 13~\mathrm{TeV}$, CMS Collaboration, 2017. CMS-PAS-EXO-16-045.
[CMS:2017uoz]
[8-29]
Search for heavy Majorana neutrinos with the ATLAS detector in pp collisions at $\sqrt{s} = 8$ TeV, (ATLAS), JHEP 07 (2015) 162, arXiv:1506.06020.
[ATLAS:2015gtp]
[8-30]
Search for heavy Majorana neutrinos in $\mu^{\pm} \mu^{\pm} + \text{jets}$ events in proton-proton collisions at $\sqrt{s} = 8 \, \text{TeV}$, Vardan Khachatryan et al. (CMS), Phys. Lett. B748 (2015) 144-166, arXiv:1501.05566.
[CMS:2015qur]
[8-31]
Search for heavy neutrinos in $K^+\to\mu^+\nu_H$ decays, A.V. Artamonov et al. (E949), Phys. Rev. D91 (2015) 052001, arXiv:1411.3963.
[E949:2014gsn]
[8-32]
New limits on heavy sterile neutrino mixing in ${^{8}\rm{B}}$-decay obtained with the Borexino detector, G. Bellini et al. (Borexino), Phys. Rev. D 88, 072010 (2013) 072010, arXiv:1311.5347.
[Borexino:2013bot]
[8-33]
Search for heavy neutrinos at Belle, D. Liventsev et al. (Belle), Phys. Rev. D87 (2013) 071102, arXiv:1301.1105.
[Belle:2013ytx]
[8-34]
Search for Heavy Neutrino in K- > mu nu_h(nu_h- > nu gamma) Decay at ISTRA+ Setup, V. A. Duk et al. (ISTRA+), Phys. Lett. B710 (2012) 307-317, arXiv:1110.1610.
[ISTRA:2011bgc]
[8-35]
New experimental limits on heavy neutrino mixing in B-8 decay obtained with the Borexino Counting Test Facility, H. O. Back et al., JETP Lett. 78 (2003) 261-266.
[Back:2003ae]

9 - Phenomenology

[9-1]
The role of the Look Elsewhere Effect in determining the significance of an oscillation disappearance search for a light sterile neutrino, Gioacchino Ranucci, arXiv:2403.17228, 2024.
[Ranucci:2024bgx]
[9-2]
Probing the mixing between sterile and tau neutrinos in the SHiP experiment, Ki-Young Choi, Sung Hyun Kim, Yeong Gyun Kim, Kang Young Lee, Kyong Sei Lee, Byung Do Park, Jong Yoon Sohn, Seong Moon Yoo, Chun Sil Yoon, arXiv:2403.04191, 2024.
[Choi:2024mos]
[9-3]
Neutrinoless double beta decay rates in the presence of light sterile neutrinos, W. Dekens, J. de Vries, D. Castillo, J. Menendez, E. Mereghetti, V. Plakkot, P. Soriano, G. Zhou, arXiv:2402.07993, 2024.
[Dekens:2024hlz]
[9-4]
nuOscillation: a software package for computation and simulation of neutrino propagation and interaction, Seonghyeok Jang, Eunju Jeon, Eunil Won, Young Ju Ko, Kyungmin Lee, arXiv:2401.13215, 2024.
[Jang:2024mfr]
[9-5]
Constraints on sterile neutrinos and the cosmological tensions, Supriya Pan, Osamu Seto, Tomo Takahashi, Yo Toda, arXiv:2312.15435, 2023.
[Pan:2023frx]
[9-6]
Resonant Spin-Flavor Precession of Sterile Neutrinos, Edward Wang, arXiv:2312.03061, 2023.
[Wang:2023nhh]
[9-7]
Confronting solutions of the Gallium Anomaly with reactor rate data, Carlo Giunti, Christoph A. Ternes, Phys.Lett.B 849 (2024) 138436, arXiv:2312.00565.
[Giunti:2023kyo]
[9-8]
Search for Hidden Neutrinos at the European Spallation Source: the SHiNESS experiment, Stefano Roberto Soleti, Pilar Coloma, Juan Jose Gomez Cadenas, arXiv:2311.18509, 2023.
[Soleti:2023hlr]
[9-9]
Constraints on metastable superheavy dark matter coupled to sterile neutrinos with the Pierre Auger Observatory, Adila Abdul Halim et al. (Pierre Auger), arXiv:2311.14541, 2023.
[PierreAuger:2023vql]
[9-10]
Broad Sterile Neutrinos & the Reactor/Gallium Tension, Hannah Banks, Kevin J. Kelly, Matthew McCullough, Tao Zhou, arXiv:2311.06352, 2023.
[Banks:2023qgd]
[9-11]
Shedding light on the MiniBoone Excess with Searches at the LHC, Christian Herwig, Joshua Isaacson, Bo Jayatilaka, Pedro A. N. Machado, Allie Reinsvold Hall, Murtaza Safdari, arXiv:2310.13042, 2023.
[Herwig:2023bnr]
[9-12]
MeV Sterile Neutrino in light of the Cabibbo-Angle Anomaly, Teppei Kitahara, Kohsaku Tobioka, Phys.Rev.D 108 (2023) 115034, arXiv:2308.13003.
[Kitahara:2023xab]
[9-13]
Probing mass orderings in presence of a very light sterile neutrino in a liquid argon detector, Animesh Chatterjee, Srubabati Goswami, Supriya Pan, Nucl.Phys.B 996 (2023) 116370, arXiv:2307.12885.
[Chatterjee:2023qyr]
[9-14]
Light Sterile Neutrinos in the Early Universe: Effects of Altered Dispersion Relations and a coupling to Axion-Like Dark Matter, Dominik Hellmann, Heinrich Pas, JCAP 11 (2023) 056, arXiv:2307.12118.
[Hellmann:2023ymj]
[9-15]
The result of the Neutrino-4 experiment, sterile neutrinos, dark matter and the Standard Model, A. P. Serebrov, R. M. Samoilov, O. M. Zherebtsov, arXiv:2306.09962, 2023.
[Serebrov:2023vfo]
[9-16]
Evolution of Tau-Neutrino Lepton Number in Protoneutron Stars due to Active-Sterile Neutrino Mixing, Anupam Ray, Yong-Zhong Qian, Phys.Rev.D 108 (2023) 063025, arXiv:2306.08209.
[Ray:2023gtu]
[9-17]
CP and T violation effects in presence of an $\mbox{eV}$ scale sterile neutrino at long baseline neutrino experiments, Sabila Parveen, Kiran Sharma, Sudhanwa Patra, Poonam Mehta, arXiv:2305.16824, 2023.
[Parveen:2023ixk]
[9-18]
Sterile neutrino searches with reactor antineutrinos using coherent neutrino-nucleus scattering experiments, S. P. Behera, D. K. Mishra, P. K. Netrakanti, R. Sehgal, R. Dey, V. Jha, Phys.Rev.D 108 (2023) 113002, arXiv:2304.00912.
[Behera:2023llq]
[9-19]
The Gallium Neutrino Absorption Cross Section and its Uncertainty, W. C. Haxton, E. J. Rule, S. R. Elliott, V. N. Gavrin, T. V. Ibragimova, Phys.Rev.C 108 (2023) 035502, arXiv:2303.13623.
[Elliott:2023xkb]
[9-20]
Towards Resolving the Gallium Anomaly, Vedran Brdar, Julia Gehrlein, Joachim Kopp, JHEP 05 (2023) 143, arXiv:2303.05528.
[Brdar:2023cms]
[9-21]
The result of the Neutrino-4 experiment, sterile neutrinos and dark matter, the fourth neutrino and the Hubble constant, A. P. Serebrov, R. M. Samoilov, M. E. Chaikovskii, O. M. Zherebtsov, arXiv:2302.09958, 2023.
[Serebrov:2023onj]
[9-22]
Improved sensitivities of ESS$\nu$SB from a two-detector fit, F. Capozzi, C. Giunti, C. A. Ternes, JHEP 04 (2023) 130, arXiv:2302.07154.
[Capozzi:2023ltl]
[9-23]
The influence of the effective number of active and sterile neutrinos on the determination of the values of cosmological parameters, P. A. Chernikov, A. V. Ivanchik, Astron.Lett. 48 (2022) 689-701, arXiv:2302.05251.
[Chernikov:2022mdn]
[9-24]
Implications of MicroBooNE's low sensitivity to electron antineutrino interactions in the search for the MiniBooNE excess, Nicholas W. Kamp, Matheus Hostert, Carlos A. Arguelles, Janet M. Conrad, Michael H. Shaevitz, Phys.Rev.D 107 (2023) 092002, arXiv:2301.12573.
[Kamp:2023mjn]
[9-25]
Impact of CP violation searches at MOMENT experiment with sterile neutrinos, Kiran Sharma, Sudhanwa Patra, JHEP 08 (2023) 100, arXiv:2301.00390.
[Sharma:2023jzg]
[9-26]
Inspection of the detection cross section dependence of the Gallium Anomaly, C. Giunti, Y.F. Li, C.A. Ternes, Z. Xin, Phys.Lett.B 842 (2023) 137983, arXiv:2212.09722.
[Giunti:2022xat]
[9-27]
Flux-integrated semiexclusive cross sections for charged-current quasielastic and neutral-current elastic neutrino scattering off $^{40}\text{Ar}$ and a sterile neutrino oscillation study, A. V. Butkevich, Phys.Rev.D 107 (2023) 073001, arXiv:2212.09300.
[Butkevich:2022pzd]
[9-28]
Sensitivity of Future Tritium Decay Experiments to New Physics, James A. L. Canning, Frank F. Deppisch, Wenna Pei, JHEP 03 (2023) 144, arXiv:2212.06106.
[Canning:2022nye]
[9-29]
Matter effect in presence of a sterile neutrino and resolving the octant degeneracy using liquid argon detector in DUNE, Animesh Chatterjee, Srubabati Goswami, Supriya Pan, Phys.Rev.D 108 (2023), arXiv:2212.02949.
[Chatterjee:2022pqg]
[9-30]
Sterile Neutrinos: Propagation in Matter and Sensitivity to Sterile Mass Ordering, Dibya S. Chattopadhyay, Moon Moon Devi, Amol Dighe, Debajyoti Dutta, Dipyaman Pramanik, Sushant K. Raut, JHEP 02 (2023) 044, arXiv:2211.03473.
[Chattopadhyay:2022hkw]
[9-31]
New Clues About Light Sterile Neutrinos: Preference for Models with Damping Effects in Global Fits, J. M. Hardin, I. Martinez-Soler, A. Diaz, M. Jin, M. W. Kamp, C. A. Arguelles, J. M. Conrad, M. H. Shaevitz, JHEP 09 (2023) 058, arXiv:2211.02610.
[Hardin:2022muu]
[9-32]
Study of light sterile neutrino at the long-baseline experiment options at KM3NeT, Dinesh Kumar Singha, Monojit Ghosh, Rudra Majhi, Rukmani Mohanta, Phys.Rev.D 107 (2023) 075039, arXiv:2211.01816.
[Singha:2022btw]
[9-33]
More Ingredients for an Altarelli Cocktail at MiniBooNE, Kevin J. Kelly, Joachim Kopp, JHEP 05 (2023) 113, arXiv:2210.08021.
[Kelly:2022uaa]
[9-34]
The impact of neutrino-nucleus interaction modeling on new physics searches, Nina M. Coyle, Shirley Weishi Li, Pedro A. N. Machado, JHEP 12 (2022) 166, arXiv:2210.03753.
[Coyle:2022bwa]
[9-35]
Light sterile neutrinos effects in processes with electron and muon neutrinos, V. V. Khruschov, S. V. Fomichev, arXiv:2210.03359, 2022.
[Khruschov:2022bqa]
[9-36]
How to Identify Different New Neutrino Oscillation Physics Scenarios at DUNE, Peter B. Denton, Alessio Giarnetti, Davide Meloni, JHEP 02 (2023) 210, arXiv:2210.00109.
[Denton:2022pxt]
[9-37]
Resonant Production of Light Sterile Neutrinos in Compact Binary Merger Remnants, Gardar Sigurdarson, Irene Tamborra, Meng-Ru Wu, Phys.Rev.D 106 (2022) 123030, arXiv:2209.07544.
[Sigurdarson:2022mcm]
[9-38]
Testing the Gallium Anomaly, Patrick Huber, Phys.Rev.D 107 (2023) 096011, arXiv:2209.02885.
[Huber:2022osv]
[9-39]
Gallium Anomaly: Critical View from the Global Picture of $\nu_{e}$ and $\bar\nu_{e}$ Disappearance, C. Giunti, Y. F. Li, C. A. Ternes, O. Tyagi, Z. Xin, JHEP 10 (2022) 164, arXiv:2209.00916.
[Giunti:2022btk]
[9-40]
Addressing the Short-Baseline Neutrino Anomalies with Energy-Dependent Mixing Parameters, K. S. Babu, Vedran Brdar, Andre de Gouvea, Pedro A. N. Machado, Phys.Rev.D 107 (2023) 015017, arXiv:2209.00031.
[Babu:2022non]
[9-41]
Zoom in muon survival probability with sterile neutrino for CP and T-violation, Kiran Sharma, Sudhanwa Patra, arXiv:2208.09696, 2022.
[Sharma:2022zaf]
[9-42]
Study of matter effects in the presence of sterile neutrino using OMSD approximation, Kiran Sharma, Sudhanwa Patra, arXiv:2207.03249, 2022.
[Sharma:2022qeo]
[9-43]
Large Extra Dimensions and neutrino experiments, D. V. Forero, C. Giunti, C. A. Ternes, O. Tyagi, Phys.Rev.D 106 (2022) 035027, arXiv:2207.02790.
[Forero:2022skg]
[9-44]
Dipole-Coupled Neutrissimo Explanations of the MiniBooNE Excess Including Constraints from MINERvA Data, Nicholas W. Kamp, Matheus Hostert, Austin Schneider, Stefano Vergani, Carlos A. Arguelles, Janet M. Conrad, Michael H. Shaevitz, Melissa A. Uchida, Phys.Rev.D 107 (2023) 055009, arXiv:2206.07100.
[Kamp:2022bpt]
[9-45]
Constraining super-light sterile neutrinos at Borexino and KamLAND, Zikang Chen, Jiajun Liao, Jiajie Ling, Baobiao Yue, arXiv:2205.07574, 2022.
[Chen:2022zts]
[9-46]
Very Light Sterile Neutrinos at NOvA and T2K, Andre de Gouvea, Giancarlo Jusino Sanchez, Kevin J. Kelly, Phys.Rev.D 106 (2022) 055025, arXiv:2204.09130.
[deGouvea:2022kma]
[9-47]
Sterile neutrino and dark matter, A.P. Serebrov, R.M. Samoilov, M.E. Chaikovskii, O.M. Zherebtsov, JETP Lett. 116 (2022) 669-682, arXiv:2203.09401.
[Serebrov:2022ajm]
[9-48]
Requirements on common solutions to the LSND and MiniBooNE excesses: a post-MicroBooNE study, Waleed Abdallah, Raj Gandhi, Samiran Roy, JHEP 06 (2022) 160, arXiv:2202.09373.
[Abdallah:2022grs]
[9-49]
Impact of Wave Package Separation in Low-Energy Sterile Neutrino Searches, Carlos A. Arguelles, Toni Bertolez-Martinez, Jordi Salvado, Phys.Rev.D 107 (2023) 036004, arXiv:2201.05108.
[Arguelles:2022bvt]
[9-50]
Quasi-Sterile Neutrinos from Dark Sectors I. BSM matter effects in neutrino oscillations and the short-baseline anomalies, Daniele S. M. Alves, William C. Louis, Patrick G. deNiverville, JHEP 08 (2022) 034, arXiv:2201.00876.
[Alves:2022vgn]
[9-51]
Analysis of the result of the Neutrino-4 experiment in conjunction with other experiments on the search for sterile neutrinos within the framework of the 3 + 1 neutrino model, A. P. Serebrov, R. M. Samoilov, M. E. Chaikovskii, arXiv:2112.14856, 2021.
[Serebrov:2021ndf]
[9-52]
Solar Active-Sterile Neutrino Conversion with Atomic Effects at Dark Matter Direct Detection Experiments, Shao-Feng Ge, Pedro Pasquini, Jie Sheng, JHEP 05 (2022) 088, arXiv:2112.05560.
[Ge:2021snv]
[9-53]
Short-baseline oscillation scenarios at JUNO and TAO, V.S. Basto-Gonzalez, D.V. Forero, C. Giunti, A.A. Quiroga, C.A. Ternes, Phys.Rev.D 105 (2022) 075023, arXiv:2112.00379.
[Basto-Gonzalez:2021aus]
[9-54]
Pseudoscalar sterile neutrino self-interactions in light of Planck, SPT and ACT data, Mattia Atzori Corona, Riccardo Murgia, Matteo Cadeddu, Maria Archidiacono, Stefano Gariazzo, Carlo Giunti, Steen Hannestad, JCAP 06 (2022) 010, arXiv:2112.00037.
[Corona:2021qxl]
[9-55]
Statistical significance of the sterile-neutrino hypothesis in the context of reactor and gallium data, Jeffrey M. Berryman, Pilar Coloma, Patrick Huber, Thomas Schwetz, Albert Zhou, JHEP 02 (2022) 055, arXiv:2111.12530.
[Berryman:2021yan]
[9-56]
MicroBooNE and the $\nu_e$ Interpretation of the MiniBooNE Low-Energy Excess, C. A. Arguelles, I. Esteban, M. Hostert, K. J. Kelly, J. Kopp, P. A. N. Machado, I. Martinez-Soler, Y. F. Perez-Gonzalez, Phys.Rev.Lett. 128 (2022) 241802, arXiv:2111.10359.
[Arguelles:2021meu]
[9-57]
Cascade Appearance Signatures of Sterile Neutrinos at 1-100 TeV, Benjamin R. Smithers, Benjamin J. P. Jones, Carlos A. Arguelles, Janet M. Conrad, Alejandro Diaz, Phys.Rev.D 105 (2022) 052001, arXiv:2111.08722.
[Smithers:2021orb]
[9-58]
Sterile Neutrino Searches with MicroBooNE: Electron Neutrino Disappearance, Peter B. Denton, Phys.Rev.Lett. 129 (2022) 061801, arXiv:2111.05793.
[Denton:2021czb]
[9-59]
Search for sterile neutrinos by shower events at a future neutrino telescope, Yabin Wang, Osamu Yasuda, PTEP 2022 (2022) 023B04, arXiv:2110.12655.
[Wang:2021gox]
[9-60]
Reactor antineutrino anomaly in light of recent flux model refinements, C. Giunti, Y.F. Li, C.A. Ternes, Z. Xin, Phys.Lett.B 829 (2022) 137054, arXiv:2110.06820.
[Giunti:2021kab]
[9-61]
Updated sensitivity of DUNE in 3+1 scenario with far and near detectors, Monojit Ghosh, Rukmani Mohanta, Eur.Phys.J.ST 231 (2022) 137-140, arXiv:2110.05767.
[Ghosh:2021rtn]
[9-62]
Hints of dark matter-neutrino interactions in Lyman-$\alpha$ data, Deanna C. Hooper, Matteo Lucca, Phys.Rev.D 105 (2022) 103504, arXiv:2110.04024.
[Hooper:2021rjc]
[9-63]
Minimal dark energy: key to sterile neutrino and Hubble constant tensions?, Eleonora Di Valentino, Stefano Gariazzo, Carlo Giunti, Olga Mena, Supriya Pan, Weiqiang Yang, Phys.Rev.D 105 (2022) 103511, arXiv:2110.03990.
[DiValentino:2021rjj]
[9-64]
Probing Active-Sterile Neutrino Transition Magnetic Moments with Photon Emission from CE$\nu$NS, Patrick D. Bolton, Frank F. Deppisch, Kare Fridell, Julia Harz, Chandan Hati, Suchita Kulkarni, Phys.Rev.D 106 (2022) 035036, arXiv:2110.02233.
[Bolton:2021pey]
[9-65]
Testing sterile neutrino mixing with present and future solar neutrino data, Kim Goldhagen, Michele Maltoni, Shayne Reichard, Thomas Schwetz, Eur.Phys.J.C 82 (2022) 116, arXiv:2109.14898.
[Goldhagen:2021kxe]
[9-66]
BEST Impact on Sterile Neutrino Hypothesis, Vladislav Barinov, Dmitry Gorbunov, Phys.Rev.D 105 (2022) L051703, arXiv:2109.14654.
[Barinov:2021mjj]
[9-67]
Experimental indications of the 3+1 neutrino model with one sterile neutrino, A. Serebrov, R. Samoilov, M. Chaikovskii, arXiv:2109.12385, 2021.
[Serebrov:2021zuh]
[9-68]
Effects of an Intermediate Mass Sterile Neutrino Population on the Early Universe, Hannah Rasmussen, Alex McNichol, George M. Fuller, Chad T. Kishimoto, Phys.Rev.D 105 (2022) 083513, arXiv:2109.11176.
[Rasmussen:2021kbf]
[9-69]
Low-energy probes of sterile neutrino transition magnetic moments, O. G. Miranda, D. K. Papoulias, O. Sanders, M. Tortola, J. W. F. Valle, JHEP 12 (2021) 191, arXiv:2109.09545.
[Miranda:2021kre]
[9-70]
An Altarelli Cocktail for the MiniBooNE Anomaly?, Vedran Brdar, Joachim Kopp, arXiv:2109.08157, 2021.
[Brdar:2021cgb]
[9-71]
Neutrino interactions in liquid scintillators including active-sterile neutrino mixing, M.M. Saez, M.E. Mosquera, O. Civitarese, Int.J.Mod.Phys.E 31 (2022) 2250023, arXiv:2109.06244.
[Saez:2021fpa]
[9-72]
Cosmological search for sterile neutrinos after Planck 2018, Lu Feng, Rui-Yun Guo, Jing-Fei Zhang, Xin Zhang, Phys.Lett.B 827 (2022) 136940, arXiv:2109.06111.
[Feng:2021ipq]
[9-73]
Neutrino Up-scattering via the Dipole Portal at Forward LHC Detectors, Ahmed Ismail, Sudip Jana, Roshan Mammen Abraham, Phys.Rev.D 105 (2022) 055008, arXiv:2109.05032.
[Ismail:2021dyp]
[9-74]
Probing Neutrino Dipole Portal at COHERENT Experiment, Jihn E. Kim, Arnab Dasgupta, Sin Kyu Kang, JHEP 11 (2021) 120, arXiv:2108.12998.
[Dasgupta:2021fpn]
[9-75]
Sterile neutrinos in $\Lambda_b^0\to (\Lambda_c^+,p^+)\ell^-_1\ell^-_2\ell^+_3\nu$ decays, Diganta Das, Jaydeb Das, Phys.Rev.D 105 (2022) 013009, arXiv:2108.07338.
[Das:2021kzi]
[9-76]
Matter Effects on Mass Square Difference for Four Flavor Neutrino Oscillation, Vivek Kumar Nautiyal, Bipin Singh Koranga, Ashish Shrivastava, Neelam Das, arXiv:2106.15945, 2021.
[Nautiyal:2021jwx]
[9-77]
New sources of leptonic CP violation at the DUNE neutrino experiment, A. Giarnetti, D. Meloni, arXiv:2106.00030, 2021.
[Giarnetti:2021aqe]
[9-78]
New physics from oscillations at the DUNE near detector, and the role of systematic uncertainties, Pilar Coloma, Jacobo Lopez-Pavon, Salvador Rosauro-Alcaraz, Salvador Urrea, JHEP 08 (2021) 065, arXiv:2105.11466.
[Coloma:2021uhq]
[9-79]
Explaining the MiniBooNE Excess Through a Mixed Model of Oscillation and Decay, Stefano Vergani, Nicholas W. Kamp, Alejandro Diaz, Carlos A. Arguelles, Janet M. Conrad, Mike H. Shaevitz, Melissa A. Uchida, Phys.Rev.D 104 (2021) 095005, arXiv:2105.06470.
[Vergani:2021tgc]
[9-80]
Limits on active-sterile neutrino mixing parameters using heavy nuclei abundances, M. M. Saez, K. J. Fushimi, M. E. Mosquera, O. Civitarese, Int.J.Mod.Phys. E30 (2021) 2150028, arXiv:2105.03202.
[Saez:2021rxq]
[9-81]
Hubble tension in lepton asymmetric cosmology with an extra radiation, Osamu Seto, Yo Toda, Phys.Rev.D 104 (2021) 063019, arXiv:2104.04381.
[Seto:2021tad]
[9-82]
Sterile neutrinos with non-standard interactions in $\beta$- and $0\nu\beta\beta$-decay experiments, Wouter Dekens, Jordy de Vries, Tom Tong, JHEP 08 (2021) 128, arXiv:2104.00140.
[Dekens:2021qch]
[9-83]
Future Searches for Light Sterile Neutrinos at Nuclear Reactors, Jeffrey M. Berryman, Luis A. Delgadillo, Patrick Huber, Phys.Rev.D 105 (2022) 035002, arXiv:2104.00005.
[Berryman:2021xsi]
[9-84]
Exploring the new physics phases in 3+1 scenario in neutrino oscillation experiments, Nishat Fiza, Mehedi Masud, Manimala Mitra, JHEP 09 (2021), arXiv:2102.05063.
[Fiza:2021gvq]
[9-85]
Neutrino-4 anomaly: oscillations or fluctuations?, C. Giunti, Y.F. Li, C.A. Ternes, Y.Y. Zhang, Phys.Lett. B816 (2021) 136214, arXiv:2101.06785.
[Giunti:2021iti]
[9-86]
Sterile Neutrino Search at the Short-Baseline Neutrino Program via Neutral Current Disappearance, Andrew Furmanski, Christopher Hilgenberg, Phys.Rev.D 103 (2021) 112011, arXiv:2012.09788.
[Furmanski:2020smg]
[9-87]
Search for Light Exotic Fermions in Double-Beta Decays, Matteo Agostini, Elisabetta Bossio, Alejandro Ibarra, Xabier Marcano, Phys.Lett. B815 (2021) 136127, arXiv:2012.09281.
[Agostini:2020cpz]
[9-88]
Two-Neutrino Double Beta Decay with Sterile Neutrinos, Patrick D. Bolton, Frank F. Deppisch, Lukas Graf, Fedor Simkovic, Phys.Rev. D103 (2021) 055019, arXiv:2011.13387.
[Bolton:2020ncv]
[9-89]
Quantum Kinetic Equilibrium, Chad T. Kishimoto, Heather Hodlin, Olexiy Dvornikov, arXiv:2011.11237, 2020.
[Kishimoto:2020qka]
[9-90]
The study of two quasi-degenerate heavy sterile neutrinos in rare meson decays, Jiabao Zhang, Tianhong Wang, Geng Li, Yue Jiang, Guo-Li Wang, Phys.Rev. D103 (2021) 035015, arXiv:2010.13286.
[Zhang:2020hwj]
[9-91]
Sterile neutrino searches at tagged kaon beams, Luis Delgadillo, Patrick Huber, Phys.Rev. D103 (2021) 035018, arXiv:2010.10268.
[Delgadillo:2020uvm]
[9-92]
Long-lived Sterile Neutrinos at the LHC in Effective Field Theory, Jordy de Vries, Herbert K. Dreiner, Julian Y. Gunther, Zeren Simon Wang, Guanghui Zhou, JHEP 2103 (2021) 148, arXiv:2010.07305.
[DeVries:2020jbs]
[9-93]
Flavors of Astrophysical Neutrinos with Active-Sterile Mixing, Markus Ahlers, Mauricio Bustamante, Niels Gustav Nortvig Willesen, JCAP 07 (2021) 029, arXiv:2009.01253.
[Ahlers:2020miq]
[9-94]
Search for sterile neutrino with light gauge interactions: recasting collider, beam-dump, and neutrino telescope searches, Yongsoo Jho, Jongkuk Kim, Pyungwon Ko, Seong Chan Park, arXiv:2008.12598, 2020.
[Jho:2020jfz]
[9-95]
Constraints on Decaying Sterile Neutrinos from Solar Antineutrinos, Matheus Hostert, Maxim Pospelov, Phys.Rev.D 104 (2021) 055031, arXiv:2008.11851.
[Hostert:2020oui]
[9-96]
Statistical interpretation of sterile neutrino oscillation searches at reactors, Pilar Coloma, Patrick Huber, Thomas Schwetz, Eur.Phys.J. C81 (2021) 2, arXiv:2008.06083.
[Coloma:2020ajw]
[9-97]
Interpretation of the XENON1T excess in the model with decaying sterile neutrinos, V. V. Khruschov, arXiv:2008.03150, 2020.
[Khruschov:2020cnf]
[9-98]
Future CEvNS experiments as probes of lepton unitarity and light-sterile neutrinos, O. G. Miranda, D. K. Papoulias, O. Sanders, M. Tortola, J. W. F. Valle, arXiv:2008.02759, 2020.
[Miranda:2020bpj]
[9-99]
The Neutrino Magnetic Moment Portal: Cosmology, Astrophysics, and Direct Detection, Vedran Brdar, Admir Greljo, Joachim Kopp, Toby Opferkuch, arXiv:2007.15563, 2020.
[Brdar:2020quo]
[9-100]
Constraints on the charged currents in general neutrino interactions with sterile neutrinos, Tong Li, Xiao-Dong Ma, Michael A. Schmidt, JHEP 2010 (2020) 115, arXiv:2007.15408.
[Li:2020wxi]
[9-101]
Observable features in (ultra)high energy neutrinos due to active-sterile secret interactions, Damiano F. G. Fiorillo, Stefano Morisi, Gennaro Miele, Ninetta Saviano, Phys.Rev. D102 (2020) 083014, arXiv:2007.07866.
[Fiorillo:2020zzj]
[9-102]
An Active-to-Sterile Neutrino Transition Dipole Moment and the XENON1T Excess, Ian M. Shoemaker, Yu-Dai Tsai, Jason Wyenberg, Phys.Rev.D 104 (2021) 115026, arXiv:2007.05513.
[Shoemaker:2020kji]
[9-103]
GeV-scale neutrinos: interactions with mesons and DUNE sensitivity, Pilar Coloma, Enrique Fernandez-Martinez, Manuel Gonzalez-Lopez, Josu Hernandez-Garcia, Zarko Pavlovic, Eur.Phys.J. C81 (2021) 78, arXiv:2007.03701.
[Coloma:2020lgy]
[9-104]
New physics at nuSTORM, Kaustav Chakraborty, Srubabati Goswami, Kenneth Long, Phys.Rev. D103 (2021) 075009, arXiv:2007.03321.
[Chakraborty:2020brc]
[9-105]
Active-sterile neutrino mixing constraint using reactor antineutrinos with the ISMRAN set-up, S. P. Behera, D. K. Mishra, L. M. Pant, Phys.Rev. D102 (2020) 013002, arXiv:2007.00392.
[Behera:2020qwf]
[9-106]
Solar Neutrino Scattering with Electron into Massive Sterile Neutrino, Shao-Feng Ge, Pedro Pasquini, Jie Sheng, Phys.Lett. B810 (2020) 135787, arXiv:2006.16069.
[Ge:2020jfn]
[9-107]
A Comment on the note arXiv:2006.13147 on arXiv:2005.05301, 'Preparation of the Neutrino-4 experiment on search for sterile neutrino and the obtained results of measurements', A.P. Serebrov, R.M. Samoilov (Neutrino-4), arXiv:2006.13639, 2020.
[Serebrov:2020yvp]
[9-108]
Note on arXiv:2005.05301, 'Preparation of the Neutrino-4 experiment on search for sterile neutrino and the obtained results of measurements', H. Almazan et al., arXiv:2006.13147, 2020.
[PROSPECT:2020raz]
[9-109]
Sterile neutrino self-interactions: $H_0$ tension and short-baseline anomalies, Maria Archidiacono, Stefano Gariazzo, Carlo Giunti, Steen Hannestad, Thomas Tram, JCAP 2012 (2020) 029, arXiv:2006.12885.
[Archidiacono:2020yey]
[9-110]
Note on Thermalization of Non-resonantly Produced Sterile Neutrinos, Graciela B. Gelmini, Philip Lu, Volodymyr Takhistov, JCAP 2010 (2020) A01, arXiv:2006.09553.
[Gelmini:2020duq]
[9-111]
Interpreting NO$\nu$A and T2K data in the presence of a light sterile neutrino, Sabya Sachi Chatterjee, Antonio Palazzo, arXiv:2005.10338, 2020.
[Chatterjee:2020yak]
[9-112]
Constraining sterile neutrinos by core-collapse supernovae with multiple detectors, Jian Tang, TseChun Wang, Meng-Ru Wu, JCAP 2010 (2020) 038, arXiv:2005.09168.
[Tang:2020pkp]
[9-113]
Big Bang Nucleosynthesis constraints on sterile neutrino and lepton asymmetry of the Universe, Graciela B. Gelmini, Masahiro Kawasaki, Alexander Kusenko, Kai Murai, Volodymyr Takhistov, JCAP 2009 (2020) 051, arXiv:2005.06721.
[Gelmini:2020ekg]
[9-114]
Sterile Neutrinos and the Global Reactor Antineutrino Dataset, Jeffrey M. Berryman, Patrick Huber, JHEP 2101 (2021) 167, arXiv:2005.01756.
[Berryman:2020agd]
[9-115]
Generic neutrino interactions with sterile neutrinos in light of neutrino-nucleus coherent scattering and meson invisible decays, Tong Li, Xiao-Dong Ma, Michael A. Schmidt, JHEP 2007 (2020) 152, arXiv:2005.01543.
[Li:2020lba]
[9-116]
Statistical Significance of Reactor Antineutrino Active-Sterile Oscillations, C. Giunti, Phys.Rev. D101 (2020) 095025, arXiv:2004.07577.
[Giunti:2020uhv]
[9-117]
MeV-scale reheating temperature and cosmological production of light sterile neutrinos, Takuya Hasegawa, Nagisa Hiroshima, Kazunori Kohri, Rasmus S. L. Hansen, Thomas Tram, Steen Hannestad, JCAP 2008 (2020) 015, arXiv:2003.13302.
[Hasegawa:2020ctq]
[9-118]
Active neutrino oscillations and double beta decay characteristics with sterile neutrinos contributions, V. V. Khruschov, S. V. Fomichev, S. V. Semenov, Phys.At.Nucl. 84 (2021) 328-338, arXiv:2003.06145.
[Khruschov:2020hah]
[9-119]
Bounds on light sterile neutrino mass and mixing from cosmology and laboratory searches, Steffen Hagstotz, Pablo F. de Salas, Stefano Gariazzo, Martina Gerbino, Massimiliano Lattanzi, Sunny Vagnozzi, Katherine Freese, Sergio Pastor, Phys.Rev.D 104 (2021) 123524, arXiv:2003.02289.
[Hagstotz:2020ukm]
[9-120]
Cosmogenic neutrino fluxes under the effect of active-sterile secret interactions, Damiano F. G. Fiorillo, Gennaro Miele, Stefano Morisi, Ninetta Saviano, Phys.Rev. D101 (2020) 083024, arXiv:2002.10125.
[Fiorillo:2020jvy]
[9-121]
Direct comparison of sterile neutrino constraints from cosmological data, $\nu_{e}$ disappearance data and $\nu_\mu\rightarrow\nu_{e}$ appearance data in a $3+1$ model, Matthew Adams, Fedor Bezrukov, Jack Elvin-Poole, Justin J. Evans, Pawel Guzowski, Brian O Fearraigh, Stefan Soldner-Rembold, Eur.Phys.J. C80 (2020) 758, arXiv:2002.07762.
[Adams:2020nue]
[9-122]
Sterile neutrinos and neutrinoless double beta decay in effective field theory, W. Dekens, J. de Vries, K. Fuyuto, E. Mereghetti, G. Zhou, JHEP 2006 (2020) 097, arXiv:2002.07182.
[Dekens:2020ttz]
[9-123]
Simulation of an experiment on looking for sterile neutrinos at nuclear reactor, S. V. Silaeva, V. V. Sinev, arXiv:2001.10752, 2020.
[Silaeva:2020yot]
[9-124]
The gallium anomaly reassessed using a Bayesian approach, Joel Kostensalo, Santtu Tikka, Jouni Suhonen, arXiv:2001.10064, 2020.
[Kostensalo:2020hbc]
[9-125]
Comment on 'Analysis of the Results of the Neutrino-4 Experiment on the Search for the Sterile Neutrino and Comparison with Results of Other Experiments' (JETP Letters 112, 199 (2020)), M. V. Danilov, N. A. Skrobova, JETP Lett. 112 (2020) 452-454. [Pisma Zh. Eksp. Teor. Fiz. 112, 484 (2020)].
[Danilov:2020rax]
[9-126]
KATRIN bound on 3+1 active-sterile neutrino mixing and the reactor antineutrino anomaly, C. Giunti, Y.F. Li, Y.Y. Zhang, JHEP 2005 (2020) 061, arXiv:1912.12956.
[Giunti:2019fcj]
[9-127]
Sensitivity to light sterile neutrinos at ESSnuSB, Monojit Ghosh, Tommy Ohlsson, Salvador Rosauro-Alcaraz, JHEP 2003 (2020) 026, arXiv:1912.10010.
[Ghosh:2019zvl]
[9-128]
A new analysis of the MiniBooNE low-energy excess, C. Giunti, A. Ioannisian, G. Ranucci, JHEP 2011 (2020) 146, arXiv:1912.01524.
[Giunti:2019sag]
[9-129]
Prospects of light sterile neutrino searches in long-baseline experiments, Yakefu Reyimuaji, Chun Liu, JHEP 06 (2020) 094, arXiv:1911.12524.
[Reyimuaji:2019wbn]
[9-130]
Probing ALP-Sterile Neutrino Couplings at the LHC, Alexandre Alves, Alex G. Dias, Diego D. Lopes, JHEP 08 (2020) 074, arXiv:1911.12394.
[Alves:2019xpc]
[9-131]
Effect of light sterile neutrino on currently running long-baseline experiments, Rudra Majhi, Soumya C, Rukmani Mohanta, J.Phys. G47 (2020) 095002, arXiv:1911.10952.
[Majhi:2019hdj]
[9-132]
Searching for Sterile Neutrino with X-ray Intensity Mapping, A. Caputo, M. Regis, M. Taoso, JCAP 2003 (2020) 001, arXiv:1911.09120.
[Caputo:2019djj]
[9-133]
Inflation models in the light of self-interacting sterile neutrinos, Arindam Mazumdar, Subhendra Mohanty, Priyank Parashari, Phys.Rev. D101 (2020) 083521, arXiv:1911.08512.
[Mazumdar:2019tbm]
[9-134]
Cosmological Dependence of Resonantly Produced Sterile Neutrinos, Graciela B. Gelmini, Philip Lu, Volodymyr Takhistov, JCAP 2006 (2020) 008, arXiv:1911.03398.
[Gelmini:2019clw]
[9-135]
Sterile neutrinos with altered dispersion relations revisited, G. Barenboim, P. Martinez-Mirave, C. A. Ternes, M. Tortola, JHEP 2003 (2020) 070, arXiv:1911.02329.
[Barenboim:2019hso]
[9-136]
On The Decaying-Sterile Neutrino Solution to the Electron (Anti)Neutrino Appearance Anomalies, Andre de Gouvea, O. L. G. Peres, Suprabh Prakash, G. V. Stenico, JHEP 2007 (2020) 141, arXiv:1911.01447.
[deGouvea:2019qre]
[9-137]
Decaying Sterile Neutrinos and the Short Baseline Oscillation Anomalies, Mona Dentler, Ivan Esteban, Joachim Kopp, Pedro Machado, Phys.Rev. D101 (2020) 115013, arXiv:1911.01427.
[Dentler:2019dhz]
[9-138]
Combining Sterile Neutrino Fits to Short Baseline Data with IceCube Data, M.H. Moulai, C.A. Arguelles, G.H. Collin, J.M. Conrad, A. Diaz, M.H. Shaevitz, Phys.Rev. D101 (2020) 055020, arXiv:1910.13456.
[Moulai:2019gpi]
[9-139]
The impact of the locally measured Hubble parameter on the mass of Sterile neutrino, M. Ebadinejad, Mon.Not.Roy.Astron.Soc. 488 (2019) 5763-5770, arXiv:1910.08046.
[Ebadinejad:2019acq]
[9-140]
The viability of the 3+1 neutrino model in the supernova neutrino process, Heamin Ko, Dukjae Jang, Motohiko Kusakabe, Myung-Ki Cheoun, Astrophys.J. 894 (2020) 99, arXiv:1910.04984.
[Ko:2019asm]
[9-141]
The Dodelson-Widrow Mechanism In the Presence of Self-Interacting Neutrinos, Andre de Gouvea, Manibrata Sen, Walter Tangarife, Yue Zhang, Phys.Rev.Lett. 124 (2020) 081802, arXiv:1910.04901.
[DeGouvea:2019wpf]
[9-142]
Constraints on active and sterile neutrinos in an interacting dark energy cosmology, Lu Feng, Dong-Ze He, Hai-Li Li, Jing-Fei Zhang, Xin Zhang, Sci.China Phys.Mech.Astron. 63 (2020) 290404, arXiv:1910.03872.
[Feng:2019jqa]
[9-143]
Physics potential of ESS$\nu$SB in the presence of a Light Sterile Neutrino, Sanjib Kumar Agarwalla, Sabya Sachi Chatterjee, Antonio Palazzo, JHEP 12 (2019) 174, arXiv:1909.13746.
[KumarAgarwalla:2019blx]
[9-144]
Cosmological Dependence of Non-resonantly Produced Sterile Neutrinos, Graciela B. Gelmini, Philip Lu, Volodymyr Takhistov, JCAP 12 (2019) 047, arXiv:1909.13328.
[Gelmini:2019wfp]
[9-145]
Constraints on Sterile Neutrinos in the MeV to GeV Mass Range, D. A. Bryman, R. Shrock, Phys.Rev. D100 (2019) 073011, arXiv:1909.11198.
[Bryman:2019bjg]
[9-146]
Explaining the MiniBooNE excess by a decaying sterile neutrino with mass in the 250 MeV range, Oliver Fischer, Alvaro Hernandez-Cabezudo, Thomas Schwetz, Phys.Rev. D101 (2020) 075045, arXiv:1909.09561.
[Fischer:2019fbw]
[9-147]
Implications of the Dark LMA solution and Fourth Sterile Neutrino for Neutrino-less Double Beta Decay, K. N. Deepthi, Srubabati Goswami, Vishnudath K. N., Tanmay Kumar Poddar, Phys.Rev. D102 (2020) 015020, arXiv:1909.09434.
[Deepthi:2019ljo]
[9-148]
Reevaluating Reactor Antineutrino Anomalies with Updated Flux Predictions, Jeffrey Berryman, Patrick Huber, Phys.Rev. D101 (2020) 015008, arXiv:1909.09267.
[Berryman:2019hme]
[9-149]
Resonance production of keV sterile neutrinos in core-collapse supernovae and lepton number diffusion, Vsevolod Syvolap, Oleg Ruchayskiy, Alexey Boyarsky, Phys.Rev.D 106 (2022) 015017, arXiv:1909.06320.
[Syvolap:2019dat]
[9-150]
Probe Of Sterile Neutrinos Using Astrophysical Neutrino Flavor, Carlos A. Arguelles, Kareem Farrag, Teppei Katori, Rishabh Khandelwal, Shivesh Mandalia, Jordi Salvado, JCAP 2002 (2020) 015, arXiv:1909.05341.
[Arguelles:2019tum]
[9-151]
Higgs phenomenology as a probe of sterile neutrinos, Jonathan M. Butterworth, Mikael Chala, Christoph Englert, Michael Spannowsky, Arsenii Titov, Phys.Rev. D100 (2019) 115019, arXiv:1909.04665.
[Butterworth:2019iff]
[9-152]
Visible Sterile Neutrinos as the Earliest Relic Probes of Cosmology, Graciela B. Gelmini, Philip Lu, Volodymyr Takhistov, Phys.Lett. B800 (2019) 135113, arXiv:1909.04168.
[Gelmini:2019esj]
[9-153]
Tau lepton asymmetry by sterile neutrino emission - Moving beyond one-zone supernova models, Anna M. Suliga, Irene Tamborra, Meng-Ru Wu, JCAP 12 (2019) 019, arXiv:1908.11382.
[Suliga:2019bsq]
[9-154]
Searching for a Sterile Neutrino in Tau Decays at B-factories, C.O. Dib, J.C. Helo, M. Nayak, N.A. Neill, A. Soffer, J. Zamora-Saa, arXiv:1908.09719, 2019.
[Dib:2019hzw]
[9-155]
A frequentist analysis of three right-handed neutrinos with GAMBIT, Marcin Chrzaszcz, Marco Drewes, Tomas Gonzalo, Julia Harz, Suraj Krishnamurthy, Christoph Weniger, Eur.Phys.J. C80 (2020) 569, arXiv:1908.02302.
[Chrzaszcz:2019inj]
[9-156]
Viable secret neutrino interactions with ultralight dark matter, James M. Cline, Phys.Lett. B802 (2020) 135182, arXiv:1908.02278.
[Cline:2019seo]
[9-157]
Probing sterile neutrino in meson decays with and without sequential neutrino decay, C. S. Kim, Dong Hun Lee, Sechul Oh, Dibyakrupa Sahoo, Eur.Phys.J. C80 (2020) 730, arXiv:1908.00376.
[Kim:2019xqj]
[9-158]
Ultra-light dark matter saving the 3+1 neutrino scheme from the cosmological bounds, Yasaman Farzan, Phys.Lett. B797 (2019) 134911, arXiv:1907.04271.
[Farzan:2019yvo]
[9-159]
Statistical Methods for the Search of Sterile Neutrinos, Matteo Agostini, Birgit Neumair, Eur.Phys.J. C80 (2020) 750, arXiv:1906.11854.
[Agostini:2019jup]
[9-160]
The gallium anomaly revisited, Joel Kostensalo, Jouni Suhonen, Carlo Giunti, Praveen C. Srivastava, Phys.Lett. B795 (2019) 542-547, arXiv:1906.10980.
[Kostensalo:2019vmv]
[9-161]
Hints of Sterile Neutrinos in Recent Measurements of the Hubble Parameter, Graciela B. Gelmini, Alexander Kusenko, Volodymyr Takhistov, JCAP 2106 (2021) 002, arXiv:1906.10136.
[Gelmini:2019deq]
[9-162]
A new analytical approximation for a light sterile neutrino oscillation in matter, Baobiao Yue, Wei Li, Jiajie Ling, Fanrong Xu, Chin.Phys. C44 (2020) 103001, arXiv:1906.03781.
[Yue:2019qat]
[9-163]
Icecube/DeepCore tests for novel explanations of the MiniBooNE anomaly, Pilar Coloma, Eur.Phys.J. C79 (2019) 748, arXiv:1906.02106.
[Coloma:2019qqj]
[9-164]
Thermalisation of sterile neutrinos in the early Universe in the 3+1 scheme with full mixing matrix, S. Gariazzo, P. F. de Salas, S. Pastor Carpi, JCAP 1907 (2019) 014, arXiv:1905.11290.
[Gariazzo:2019gyi]
[9-165]
Time-Delayed Electrons from Higgs Decays to Right-Handed Neutrinos, John D. Mason, JHEP 1907 (2019) 089, arXiv:1905.07772.
[Mason:2019okp]
[9-166]
Constraining Sterile Neutrino Cosmology with Terrestrial Oscillation Experiments, Jeffrey M. Berryman, Phys.Rev. D100 (2019) 023540, arXiv:1905.03254.
[Berryman:2019nvr]
[9-167]
Compact Perturbative Expressions for Oscillations with Sterile Neutrinos in Matter, Stephen J. Parke, Xining Zhang, Phys.Rev. D101 (2020) 056005, arXiv:1905.01356.
[Parke:2019jyu]
[9-168]
Active-sterile Neutrino Oscillations in Neutrino-driven Winds: Implications for Nucleosynthesis, Zewei Xiong, Meng-Ru Wu, Yong-Zhong Qian, arXiv:1904.09371, 2019.
[Xiong:2019nvw]
[9-169]
Improved Constraints on Sterile Neutrinos in the MeV to GeV Mass Range, D. A. Bryman, R. Shrock, Phys.Rev. D100 (2019) 053006, arXiv:1904.06787.
[Bryman:2019ssi]
[9-170]
Short-baseline neutrino oscillations with 3+1 non-unitary mixing, C. Giunti, Phys.Lett. B795 (2019) 236-240, arXiv:1904.02093.
[Giunti:2019hkv]
[9-171]
Seeking for sterile neutrinos with displaced leptons at the LHC, Jia Liu, Zhen Liu, Lian-Tao Wang, Xiao-Ping Wang, JHEP 1907 (2019) 159, arXiv:1904.01020.
[Liu:2019ayx]
[9-172]
Probing Sterile Neutrino via Lepton Flavor Violating Decays of Mesons, Shiyong Hu, Sam Ming-Yin Wong, Fanrong Xu, arXiv:1904.00568, 2019.
[Hu:2019zan]
[9-173]
A Model of Neutrino Anomalies and IceCube data, Y. H. Ahn, Sin Kyu Kang, JHEP 1912 (2019) 133, arXiv:1903.09008.
[Ahn:2019jbm]
[9-174]
Search of light sterile neutrinos from $W^\pm$ decays, Claudio O. Dib, Choong Sun Kim, Sebastian Tapia Araya, Phys.Rev. D101 (2020) 035022, arXiv:1903.04905.
[Dib:2019ztn]
[9-175]
Testing new physics with future COHERENT experiments, O. G. Miranda, G. Sanchez Garcia, O. Sanders, Adv.High Energy Phys. 2019 (2019) 3902819, arXiv:1902.09036.
[Miranda:2019skf]
[9-176]
Constraining the Effective Mass of Majorana Neutrino with Sterile Neutrino Mass for Inverted Ordering Spectrum, Jaydip Singh, Adv.High Energy Phys. 2019 (2019) 4863620, arXiv:1902.08575.
[Singh:2019qra]
[9-177]
On DUNE prospects in the search for sterile neutrinos, Igor Krasnov, Phys.Rev. D100 (2019) 075023, arXiv:1902.06099.
[Krasnov:2019kdc]
[9-178]
Impact of an eV-mass sterile neutrino on the neutrinoless double-beta decays: a Bayesian analysis, Guo-yuan Huang, Shun Zhou, Nucl.Phys. B (2019) 114691, arXiv:1902.03839.
[Huang:2019qvq]
[9-179]
The Neutrino Puzzle: Anomalies, Interactions, and Cosmological Tensions, Christina D. Kreisch, Francis-Yan Cyr-Racine, Olivier Dore, Phys.Rev. D101 (2020) 123505, arXiv:1902.00534.
[Kreisch:2019yzn]
[9-180]
Constraining Sterile Neutrino Interpretations of the LSND and MiniBooNE Anomalies with Coherent Neutrino Scattering Experiments, Carlos Blanco, Dan Hooper, Pedro Machado, Phys.Rev. D101 (2020) 075051, arXiv:1901.08094.
[Blanco:2019vyp]
[9-181]
Sensitivity to sterile neutrino mixing using reactor antineutrinos, S. P. Behera, D. K. Mishra, L. M. Pant, Eur.Phys.J. C79 (2019) 86, arXiv:1901.04746.
[Behera:2019hfs]
[9-182]
Diagnosing the Reactor Antineutrino Anomaly with Global Antineutrino Flux Data, C. Giunti, Y. F. Li, B. R. Littlejohn, P. T. Surukuchi, Phys.Rev. D99 (2019) 073005, arXiv:1901.01807.
[Giunti:2019qlt]
[9-183]
Effects of Violation of Equivalence Principle on UHE Neutrinos at IceCube in 4 Flavour Scenario, Madhurima Pandey, arXiv:1812.11570, 2018.
[Pandey:2018znw]
[9-184]
On $\theta_{23}$ Octant Measurement in $3+1$ Neutrino Oscillations in T2HKK, Naoyuki Haba, Yukihiro Mimura, Toshifumi Yamada, Phys.Rev. D101 (2020) 075034, arXiv:1812.10940.
[Haba:2018klh]
[9-185]
The Sterile-Active Neutrino Flavor Model: the Imprint of Dark Matter on the Electron Neutrino Spectra, Ilidio Lopes, Astrophys.J. 869 (2018) 112, arXiv:1812.07182.
[Lopes:2018ojq]
[9-186]
Is the $H_0$ tension suggesting a 4th neutrino's generation?, S. Carneiro, P. C. de Holanda, C. Pigozzo, F. Sobreira, Phys.Rev. D100 (2019) 023505, arXiv:1812.06064.
[Carneiro:2018xwq]
[9-187]
Investigating Sterile Neutrino Flux in the Solar Neutrino Data, Ankush, Rishu Verma, Gazal Sharma, B.C.Chauhan, Adv.High Energy Phys. 2019 (2019) 2598953, arXiv:1812.03634.
[Ankush:2018mkv]
[9-188]
Cosmological constraints on sterile neutrino oscillations from Planck, Alan M. Knee, Dagoberto Contreras, Douglas Scott, JCAP 2019 (2019) 039, arXiv:1812.02102.
[Knee:2018rvj]
[9-189]
Revisiting constraints on 3+1 active-sterile neutrino mixing using IceCube data, Luis Salvador Miranda, Soebur Razzaque, JHEP 1903 (2019) 203, arXiv:1812.00831.
[Miranda:2018buo]
[9-190]
Neutrinoless Double Beta Decay and Light Sterile Neutrino, C. H. Jang, B. J. Kim, Y. J. Ko, K. Siyeon, J.Korean Phys.Soc. 73 (2018) 1625-1630, arXiv:1811.09957.
[Jang:2018zug]
[9-191]
Exploring a New Degeneracy in the Sterile Neutrino Sector at Long-Baseline Experiments, Sandhya Choubey, Debajyoti Dutta, Dipyaman Pramanik, Eur.Phys.J. C79 (2019) 968, arXiv:1811.08684.
[Choubey:2018kqq]
[9-192]
Probing right handed neutrinos at the LHeC and lepton colliders using fat jet signatures, Arindam Das, Sudip Jana, Sanjoy Mandal, S. Nandi, Phys.Rev. D99 (2019) 055030, arXiv:1811.04291.
[Das:2018usr]
[9-193]
Activating the 4th Neutrino of the 3+1 Scheme, Peter B. Denton, Yasaman Farzan, Ian M. Shoemaker, Phys.Rev. D99 (2019) 035003, arXiv:1811.01310.
[Denton:2018dqq]
[9-194]
On the robustness of IceCube's bound on sterile neutrinos in the presence of non-standard interactions, Arman Esmaili, Hiroshi Nunokawa, Eur.Phys.J. C79 (2019) 70, arXiv:1810.11940.
[Esmaili:2018qzu]
[9-195]
MiniBooNE, MINOS+ and IceCube data imply a baroque neutrino sector, Jiajun Liao, Danny Marfatia, Kerry Whisnant, Phys.Rev. D99 (2019) 015016, arXiv:1810.01000.
[Liao:2018mbg]
[9-196]
Constraints on a sub-eV scale sterile neutrino from non-oscillation measurements, C. S. Kim, G. Lopez Castro, Dibyakrupa Sahoo, Phys.Rev. D98 (2018) 115021, arXiv:1809.02265.
[Kim:2018uht]
[9-197]
Inflation, (P)reheating and Neutrino Anomalies: Production of Sterile Neutrinos with Secret Interactions, Arnab Paul, Anish Ghoshal, Arindam Chatterjee, Supratik Pal, Eur.Phys.J. C79 (2019) 818, arXiv:1808.09706.
[Paul:2018njm]
[9-198]
Sterile neutrino and leptonic decays of the pseudoscalar mesons, Chong-Xing Yue, Ji-Ping Chu, Phys.Rev. D98 (2018) 055012, arXiv:1808.09139.
[Yue:2018hci]
[9-199]
A charmed search of lepton-number-violation at the LHCb experiment, Diego Milanes, Nestor Quintero, Phys.Rev. D98 (2018) 096004, arXiv:1808.06017.
[Milanes:2018aku]
[9-200]
Signature of Light Sterile Neutrinos at IceCube, Bhavesh Chauhan, Subhendra Mohanty, Phys.Rev. D98 (2018) 083021, arXiv:1808.04774.
[Chauhan:2018dkd]
[9-201]
Matter Effect of Light Sterile Neutrino: An Exact Analytical Approach, Wei Li, Jiajie Ling, Fanrong Xu, Baobiao Yue, JHEP 1810 (2018) 021, arXiv:1808.03985.
[Li:2018ezt]
[9-202]
Neutrino induced reactions in core-collapse supernovae: effects on the electron fraction, M. M. Saez, O. Civitarese, M. E. Mosquera, Int.J.Mod.Phys. D27 (2018) 1850116, arXiv:1808.03249.
[Saez:2018zsb]
[9-203]
Interference effects in reactor antineutrino oscillations, Zhi-zhong Xing, arXiv:1808.02256, 2018.
[Xing:2018zno]
[9-204]
Combined explanations of B-physics anomalies: the sterile neutrino solution, Aleksandr Azatov, Daniele Barducci, Diptimoy Ghosh, David Marzocca, Lorenzo Ubaldi, JHEP 1810 (2018) 092, arXiv:1807.10745.
[Azatov:2018kzb]
[9-205]
Constraining light sterile neutrino mass with the BICEP2/Keck Array 2014 B-mode polarization data, Shouvik Roy Choudhury, Sandhya Choubey, Eur.Phys.J. C79 (2019) 557, arXiv:1807.10294.
[RoyChoudhury:2018bsd]
[9-206]
Beta and Neutrinoless Double Beta Decays with KeV Sterile Fermions, Asmaa Abada, Alvaro Hernandez-Cabezudo, Xabier Marcano, JHEP 1901 (2019) 041, arXiv:1807.01331.
[Abada:2018qok]
[9-207]
Sterile Neutrinos with Secret Interactions - Cosmological Discord?, Xiaoyong Chu, Basudeb Dasgupta, Mona Dentler, Joachim Kopp, Ninetta Saviano, JCAP 1811 (2018) 049, arXiv:1806.10629.
[Chu:2018gxk]
[9-208]
Sterile neutrinos influence on oscillation characteristics of active neutrinos at short distances in the generalized model of neutrino mixing, V. V. Khruschov, S. V. Fomichev, Int.J.Mod.Phys. A34 (2019) 1950175, arXiv:1806.05922.
[Khruschov:2018uip]
[9-209]
Displaced vertices as probes of sterile neutrino mixing at the LHC, Giovanna Cottin, Juan Carlos Helo, Martin Hirsch, Phys.Rev. D98 (2018) 035012, arXiv:1806.05191.
[Cottin:2018nms]
[9-210]
Probing relic neutrino decays with 21 cm cosmology, Marco Chianese, Pasquale Di Bari, Kareem Farrag, Rome Samanta, Phys.Lett. B790 (2019) 64-70, arXiv:1805.11717.
[Chianese:2018luo]
[9-211]
Lepton Flavor Violating Dilepton Dijet Signatures from Sterile Neutrinos at Proton Colliders, Stefan Antusch, Eros Cazzato, Oliver Fischer, A. Hammad, Kechen Wang, JHEP 1810 (2018) 067, arXiv:1805.11400.
[Antusch:2018bgr]
[9-212]
Cosmological constraints with self-interacting sterile neutrinos, Ningqiang Song, M.C. Gonzalez-Garcia, Jordi Salvado, JCAP 1810 (2018) 055, arXiv:1805.08218.
[Song:2018zyl]
[9-213]
Active-sterile neutrino oscillations at INO-ICAL over a wide mass-squared range, Tarak Thakore, Moon Moon Devi, Sanjib Kumar Agarwalla, Amol Dighe, JHEP 1808 (2018) 022, arXiv:1804.09613.
[Thakore:2018lgn]
[9-214]
The spectroscopy of solar sterile neutrinos, Ilidio Lopes, Eur.Phys.J. C78 (2018) 4, arXiv:1804.08344.
Comment: Nice calculation, but unfortunately sterile neutrinos cannot be detected.
[Lopes:2018vec]
[9-215]
Sterile neutrinos as a possible explanation for the upward air shower events at ANITA, Guo-yuan Huang, Phys.Rev. D98 (2018) 043019, arXiv:1804.05362.
[Huang:2018als]
[9-216]
The Effect of a Light Sterile Neutrino at NO$\nu$A and DUNE, Shivani Gupta, Zachary M. Matthews, Pankaj Sharma, Anthony G. Williams, Phys.Rev. D98 (2018) 035042, arXiv:1804.03361.
[Gupta:2018qsv]
[9-217]
Degeneracy resolution capabilities of NO$\nu$A and DUNE in the presence of light sterile neutrino, Akshay Chatla, Sahithi Rudrabhatla, Bindu A. Bambah, Adv.High Energy Phys. 2018 (2018) 2547358, arXiv:1804.02818.
[Chatla:2018sos]
[9-218]
Problems With the MINOS/MINOS+ Sterile Neutrino $\nu _\mu$ Result, W. C. Louis, arXiv:1803.11488, 2018.
[Louis:2018yeg]
[9-219]
Updated global analysis of neutrino oscillations in the presence of eV-scale sterile neutrinos, Mona Dentler, Alvaro Hernandez-Cabezudo, Joachim Kopp, Pedro A. N. Machado, Michele Maltoni, Ivan Martinez-Soler, Thomas Schwetz, JHEP 1808 (2018) 010, arXiv:1803.10661.
[Dentler:2018sju]
[9-220]
Nuclear and Particle Conspiracy Solves Both Reactor Antineutrino Anomalies, Jeffrey M. Berryman, Vedran Brdar, Patrick Huber, Phys.Rev. D99 (2019) 055045, arXiv:1803.08506.
[Berryman:2018jxt]
[9-221]
Probing secret interactions of eV-scale sterile neutrinos with the diffuse supernova neutrino background, Yu Seon Jeong, Sergio Palomares-Ruiz, Mary Hall Reno, Ina Sarcevic, JCAP 1806 (2018) 019, arXiv:1803.04541.
[Jeong:2018yts]
[9-222]
IceCube bounds on sterile neutrinos above 10 eV, Mattias Blennow, Enrique Fernandez-Martinez, Julia Gehrlein, Josu Hernandez-Garcia, Jordi Salvado, Eur.Phys.J. C78 (2018) 807, arXiv:1803.02362.
[Blennow:2018hto]
[9-223]
Neutrino oscillations: ILL experiment revisited, B. K. Cogswell, D. J. Ernst, K. T. L. Ufheil, J. T. Gaglione, J. M. Malave, Phys.Rev. D99 (2019) 053003, arXiv:1802.07763.
[Cogswell:2018auu]
[9-224]
Neutron lifetime, dark matter and search for sterile neutrino, A. P. Serebrov, R. M. Samoilov, I. A. Mitropolsky, A. M. Gagarsky, arXiv:1802.06277, 2018.
[Serebrov:2018mva]
[9-225]
Exploring the Potential of Short-Baseline Physics at Fermilab, O. G. Miranda, Pedro Pasquini, M. Tortola, J. W. F. Valle, Phys.Rev. D97 (2018) 095026, arXiv:1802.02133.
[Miranda:2018yym]
[9-226]
A Sterile Neutrino Origin for the Upward Directed Cosmic Ray Shower Detected by ANITA, John F. Cherry, Ian Shoemaker, Phys.Rev. D99 (2019) 063016, arXiv:1802.01611.
[Cherry:2018rxj]
[9-227]
Model-Independent $\bar\nu_{e}$ Short-Baseline Oscillations from Reactor Spectral Ratios, S. Gariazzo, C. Giunti, M. Laveder, Y. F. Li, Phys.Lett. B782 (2018) 13-21, arXiv:1801.06467.
[Gariazzo:2018mwd]
[9-228]
Signatures of a Light Sterile Neutrino in T2HK, Sanjib Kumar Agarwalla, Sabya Sachi Chatterjee, Antonio Palazzo, JHEP 04 (2018) 091, arXiv:1801.04855.
[Agarwalla:2018nlx]
[9-229]
Search for sterile neutrinos decaying into pions at the LHC, Claudio O. Dib, C.S. Kim, Nicolas A. Neill, Xing-Bo Yuan, Phys.Rev. D97 (2018) 035022, arXiv:1801.03624.
[Dib:2018iyr]
[9-230]
Searches for light sterile neutrinos with multitrack displaced vertices, Giovanna Cottin, Juan Carlos Helo, Martin Hirsch, Phys.Rev. D97 (2018) 055025, arXiv:1801.02734.
[Cottin:2018kmq]
[9-231]
Constraining sterile neutrino cosmologies with strong gravitational lensing observations at redshift z~0.2, S. Vegetti, G. Despali, M. R. Lovell, W. Enzi, Mon.Not.Roy.Astron.Soc. 481 (2018) 3661-3669, arXiv:1801.01505.
[Vegetti:2018dly]
[9-232]
Bounds on Resonantly-Produced Sterile Neutrinos from Phase Space Densities of Milky Way Dwarf Galaxies, Mei-Yu Wang, John F. Cherry, Shunsaku Horiuchi, Louis E. Strigari, arXiv:1712.04597, 2017.
[Wang:2017hof]
[9-233]
Effective Majorana mass matrix from tau and pseudoscalar meson lepton number violating decays, Asmaa Abada, Valentina De Romeri, Michele Lucente, Ana M. Teixeira, Takashi Toma, JHEP 1802 (2018) 169, arXiv:1712.03984.
[Abada:2017jjx]
[9-234]
Prospects for detecting eV-scale sterile neutrinos from a galactic supernova, Tarso Franarin, Jonathan H. Davis, Malcolm Fairbairn, JCAP 1809 (2018) 002, arXiv:1712.03836.
[Franarin:2017jnd]
[9-235]
Search for sterile neutrinos in a universe of vacuum energy interacting with cold dark matter, Lu Feng, Jing-Fei Zhang, Xin Zhang, Phys.Dark Univ. 23 (2019) 100261, arXiv:1712.03148.
[Feng:2017usu]
[9-236]
COHERENT constraints to conventional and exotic neutrino physics, D. K. Papoulias, T. S. Kosmas, Phys.Rev. D97 (2018) 033003, arXiv:1711.09773.
[Papoulias:2017qdn]
[9-237]
Measuring the Sterile Neutrino CP Phase at DUNE and T2HK, Sandhya Choubey, Debajyoti Dutta, Dipyaman Pramanik, Eur.Phys.J. C78 (2018) 339, arXiv:1711.07464.
[Choubey:2017ppj]
[9-238]
Exploring a Non-Minimal Sterile Neutrino Model Involving Decay at IceCube and Beyond, Zander Moss, Marjon H. Moulai, Carlos A. Arguelles, Janet M. Conrad, Phys.Rev. D97 (2018) 055017, arXiv:1711.05921.
[Moss:2017pur]
[9-239]
Probing a Four Flavour vis-a-vis Three Flavour Neutrino Mixing for UHE Neutrino Signals at a 1 ${\rm Km}^2$ Detector, Madhurima Pandey, Debasish Majumdar, Amit Dutta Banik, Phys.Rev. D97 (2018) 103015, arXiv:1711.05018.
[Pandey:2017zyz]
[9-240]
Another look at the impact of an eV-mass sterile neutrino on the effective neutrino mass of neutrinoless double-beta decays, Jun-Hao Liu, Shun Zhou, Int.J.Mod.Phys. A33 (2018) 1850014, arXiv:1710.10359.
[Liu:2017ago]
[9-241]
keV-Scale Sterile Neutrino Sensitivity Estimation with Time-Of-Flight Spectroscopy in KATRIN using Self Consistent Approximate Monte Carlo, Nicholas M.N. Steinbrink, Jan D. Behrens, Susanne Mertens, Philipp C.-O. Ranitzsch, Christian Weinheimer, Eur.Phys.J. C78 (2018) 212, arXiv:1710.04939.
[Steinbrink:2017ung]
[9-242]
Measuring growth index in a universe with massive neutrinos: A revisit of the general relativity test with the latest observations, Ming-Ming Zhao, Jing-Fei Zhang, Xin Zhang, Phys.Lett. B779 (2018) 473-478, arXiv:1710.02391.
[Zhao:2017jma]
[9-243]
Effect of sterile Neutrinos and Nonstandard Interactions on the Geo-neutrino Flux, Guanwen Yan, arXiv:1709.09781, 2017.
[Yan:2017fqm]
[9-244]
Sterile Neutrinos or Flux Uncertainties? - Status of the Reactor Anti-Neutrino Anomaly, Mona Dentler, Alvaro Hernandez-Cabezudo, Joachim Kopp, Michele Maltoni, Thomas Schwetz, JHEP 1711 (2017) 099, arXiv:1709.04294.
[Dentler:2017tkw]
[9-245]
Decoherence effect in neutrinos produced in micro-quasar jets, M. E. Mosquera, O. Civitarese, JCAP 1804 (2018) 036, arXiv:1708.09714.
[Mosquera:2017vir]
[9-246]
The reactor antineutrino anomaly and low energy threshold neutrino experiments, B. C. Canas, E. A. Garces, O. G. Miranda, A. Parada, Phys.Lett. B776 (2018) 451-456, arXiv:1708.09518.
[Canas:2017umu]
[9-247]
A novel approach to neutrino mixing analysis based on singular values, K. Bielas, W. Flieger, J. Gluza, M. Gluza, Phys.Rev. D98 (2018) 053001, arXiv:1708.09196.
[Bielas:2017lok]
[9-248]
Reactor Fuel Fraction Information on the Antineutrino Anomaly, C. Giunti, X. P. Ji, M. Laveder, Y. F. Li, B. R. Littlejohn, JHEP 1710 (2017) 143, arXiv:1708.01133.
[Giunti:2017yid]
[9-249]
DUNE Sensitivities to the Mixing between Sterile and Tau Neutrinos, Pilar Coloma, David V. Forero, Stephen J. Parke, JHEP 07 (2018) 079, arXiv:1707.05348.
[Coloma:2017ptb]
[9-250]
Lepton-Jets and Low-Mass Sterile Neutrinos at Hadron Colliders, Sourabh Dube, Divya Gadkari, Arun M. Thalapillil, Phys.Rev. D96 (2017) 055031, arXiv:1707.00008.
[Dube:2017jgo]
[9-251]
Constraining sterile neutrino and dark energy with the latest cosmological observations, Lu Feng, Jing-Fei Zhang, Xin Zhang, Sci.China Phys.Mech.Astron. 61 (2018) 050411, arXiv:1706.06913.
[Feng:2017mfs]
[9-252]
Combining $\nu_e$ Appearance and $\nu_\mu$ Disappearance Channels in Light Sterile Neutrino Oscillation Searches at Fermilab's Short-Baseline Neutrino Facility, William G. S. Vinning, Andrew Blake, arXiv:1705.06561, 2017.
[Vinning:2017izb]
[9-253]
Imprints of a light Sterile Neutrino at DUNE, T2HK and T2HKK, Sandhya Choubey, Debajyoti Dutta, Dipyaman Pramanik, Phys.Rev. D96 (2017) 056026, arXiv:1704.07269.
[Choubey:2017cba]
[9-254]
Study of parameter degeneracy and hierarchy sensitivity of NO$\nu$A in presence of sterile neutrino, Monojit Ghosh, Shivani Gupta, Zachary M. Matthews, Pankaj Sharma, Anthony G. Williams, Phys.Rev. D96 (2017) 075018, arXiv:1704.04771.
[Ghosh:2017atj]
[9-255]
Cosmic microwave background constraints on secret interactions among sterile neutrinos, Francesco Forastieri et al., JCAP 1707 (2017) 038, arXiv:1704.00626.
[Forastieri:2017oma]
[9-256]
A search for sterile neutrinos in holographic dark energy cosmology: Reconciling Planck observation with the local measurement of Hubble constant, Ming-Ming Zhao, Dong-Ze He, Jing-Fei Zhang, Xin Zhang, Phys.Rev. D96 (2017) 043520, arXiv:1703.08456.
[Zhao:2017urm]
[9-257]
Statistical sensitivity on right-handed currents in presence of eV scale sterile neutrinos with KATRIN, Nicholas M. N. Steinbrink et al., JCAP 1706 (2017) 015, arXiv:1703.07667.
[Steinbrink:2017uhw]
[9-258]
GeV-scale hot sterile neutrino oscillations: a derivation of evolution equations, J. Ghiglieri, M. Laine, JHEP 1705 (2017) 132, arXiv:1703.06087.
[Ghiglieri:2017gjz]
[9-259]
A search for sterile neutrinos with the latest cosmological observations, Lu Feng, Jing-Fei Zhang, Xin Zhang, Eur.Phys.J. C77 (2017) 418, arXiv:1703.04884.
[Feng:2017nss]
[9-260]
Updated Global 3+1 Analysis of Short-BaseLine Neutrino Oscillations, S. Gariazzo, C. Giunti, M. Laveder, Y. F. Li, JHEP 1706 (2017) 135, arXiv:1703.00860.
[Gariazzo:2017fdh]
[9-261]
Searches for New Physics at the Hyper-Kamiokande Experiment, Kevin J. Kelly, Phys.Rev. D95 (2017) 115009, arXiv:1703.00448.
[Kelly:2017kch]
[9-262]
Probing light sterile neutrino signatures at reactor and Spallation Neutron Source neutrino experiments, T. S. Kosmas, D. K. Papoulias, M. Tortola, J.W.F. Valle, Phys.Rev. D96 (2017) 063013, arXiv:1703.00054.
[Kosmas:2017zbh]
[9-263]
The Dark Side of MSW: Solar Neutrinos as a Probe of Dark Matter-Neutrino Interactions, Francesco Capozzi, Ian M. Shoemaker, Luca Vecchi, JCAP 1707 (2017) 021, arXiv:1702.08464.
[Capozzi:2017auw]
[9-264]
Search for right-handed neutrinos from dark matter annihilation with gamma-rays, Miguel D. Campos, Farinaldo S. Queiroz, Carlos E. Yaguna, Christoph Weniger, JCAP 1707 (2017) 016, arXiv:1702.06145.
[Campos:2017odj]
[9-265]
Anomalies in (Semi)-Leptonic $B$ Decays $B^{\pm} \to \tau^{\pm} \nu$, $B^{\pm} \to D \tau^{\pm} \nu$ and $B^{\pm} \to D^* \tau^{\pm} \nu$, and Possible Resolution with Sterile Neutrino, G. Cvetic, Francis Halzen, C. S. Kim, Sechul Oh, Chin.Phys. C41 (2017) 113102, arXiv:1702.04335.
[Cvetic:2017gkt]
[9-266]
Echo for interaction in the dark sector, Suresh Kumar, Rafael C. Nunes, Phys.Rev. D96 (2017) 103511, arXiv:1702.02143.
[Kumar:2017dnp]
[9-267]
Prospects of Light Sterile Neutrino Oscillation and CP Violation Searches at the Fermilab Short Baseline Neutrino Facility, Davio Cianci, Andy Furmanski, Georgia Karagiorgi, Mark Ross-Lonergan, Phys.Rev. D96 (2017) 055001, arXiv:1702.01758.
[Cianci:2017okw]
[9-268]
Neutrino fluxes from a core-collapse supernova in a model with three sterile neutrinos, A. V. Yudin, D. K. Nadyozhin, V. V. Khruschov, S. V. Fomichev, Astron. Lett. 42 (2016) 800-814, arXiv:1701.04713.
[Yudin:2016zqp]
[9-269]
Cosmology and time dependent parameters induced by misaligned light scalar, Yue Zhao, Phys.Rev. D95 (2017) 115002, arXiv:1701.02735.
[Zhao:2017wmo]
[9-270]
Joint short- and long-baseline constraints on light sterile neutrinos, Francesco Capozzi, Carlo Giunti, Marco Laveder, Antonio Palazzo, Phys.Rev. D95 (2017) 033006, arXiv:1612.07764.
[Capozzi:2016vac]
[9-271]
Oscillation characteristics of active and sterile neutrinos and neutrino anomalies at short distances, V. V. Khruschov, S. V. Fomichev, O. A. Titov, Phys.Atom.Nucl. 79 (2016) 708-720, arXiv:1612.06544.
[Khruschov:2016sjl]
[9-272]
Projection effects in the strong lensing study of subhaloes, Ran Li, Carlos S. Frenk, Shaun Cole, Qiao Wang, Liang Gao, Mon.Not.Roy.Astron.Soc. 468 (2017) 1426, arXiv:1612.06227.
[Li:2016afu]
[9-273]
In-flight cLFV conversion: $e-\mu$, $e-\tau$ and $\mu-\tau$ in minimal extensions of the Standard Model with sterile fermions, A. Abada, V. De Romeri, J. Orloff, A.M. Teixeira, Eur.Phys.J. C77 (2017) 304, arXiv:1612.05548.
[Abada:2016vzu]
[9-274]
Sterile neutrinos facing kaon physics experiments, Asmaa Abada, Damir Becirevic, Olcyr Sumensari, Cedric Weiland, Renata Zukanovich Funchal, Phys.Rev. D95 (2017) 075023, arXiv:1612.04737.
[Abada:2016plb]
[9-275]
Sterile neutrino searches at future $e^-e^+$, $pp$, and $e^-p$ colliders, Stefan Antusch, Eros Cazzato, Oliver Fischer, Int.J.Mod.Phys. A32 (2017) 1750078, arXiv:1612.02728.
[Antusch:2016ejd]
[9-276]
On the IceCube Result on $\bar\nu_\mu \to \bar\nu_{s}$ Oscillations, S. T. Petcov, Int.J.Mod.Phys. A32 (2017) 1750018, arXiv:1611.09247.
[Petcov:2016iiu]
[9-277]
Discriminating sterile neutrinos and unitarity violation with CP invariants, Heinrich Pas, Philipp Sicking, Phys.Rev. D95 (2017) 075004, arXiv:1611.08450.
[Pas:2016qbg]
[9-278]
Sterile Neutrinos and Flavor Ratios in IceCube, Vedran Brdar, Joachim Kopp, Xiao-Ping Wang, JCAP 1701 (2017) 026, arXiv:1611.04598.
[Brdar:2016thq]
[9-279]
A sensitive search for unknown spectral emission lines in the diffuse X-ray background with XMM-Newton, A. Gewering-Peine, D. Horns, J.H.M.M. Schmitt, JCAP 1706 (2017) 036, arXiv:1611.01733.
[Gewering-Peine:2016yoj]
[9-280]
Cosmological constraints on exotic injection of electromagnetic energy, Vivian Poulin, Julien Lesgourgues, Pasquale D. Serpico, JCAP 1703 (2017) 043, arXiv:1610.10051.
[Poulin:2016anj]
[9-281]
MeV-scale sterile neutrino decays at the Fermilab Short-Baseline Neutrino program, Peter Ballett, Silvia Pascoli, Mark Ross-Lonergan, JHEP 1704 (2017) 102, arXiv:1610.08512.
[Ballett:2016opr]
[9-282]
Effects of active-sterile neutrino mixing during primordial nucleosynthesis, Osvaldo Civitarese, Mercedes Elisa Mosquera, Maria Manuela Saez, Int.J.Mod.Phys. E23 (2014) 1450080, arXiv:1610.05696.
[Civitarese:2014bra]
[9-283]
How Zwicky already ruled out modified gravity theories without dark matter, Theodorus Maria Nieuwenhuizen, Fortsch.Phys. 65 (2017) 1600050, arXiv:1610.01543.
[Nieuwenhuizen:2016uxv]
[9-284]
Non-Unitarity, sterile neutrinos, and Non-Standard neutrino Interactions, Mattias Blennow, Pilar Coloma, Enrique Fernandez-Martinez, Josu Hernandez-Garcia, Jacobo Lopez-Pavon, JHEP 1704 (2017) 153, arXiv:1609.08637.
[Blennow:2016jkn]
[9-285]
Dark Matter Relic Abundance and Light Sterile Neutrinos, Yi-Lei Tang, Shou-hua Zhu, JHEP 1701 (2017) 025, arXiv:1609.07841.
[Tang:2016sib]
[9-286]
Cosmological Imprints of Frozen-In Light Sterile Neutrinos, Samuel B. Roland, Bibhushan Shakya, JCAP 1705 (2017) 027, arXiv:1609.06739.
[Roland:2016gli]
[9-287]
Probing nonstandard neutrino cosmology with terrestrial neutrino experiments, Akshay Ghalsasi, David McKeen, Ann E. Nelson, Phys.Rev. D95 (2017) 115039, arXiv:1609.06326.
[Ghalsasi:2016pcj]
[9-288]
Light sterile neutrinos from a late phase transition, Luca Vecchi, Phys. Rev. D94 (2016) 113015, arXiv:1607.04161.
[Vecchi:2016lty]
[9-289]
Capabilities of long-baseline experiments in the presence of a sterile neutrino, Debajyoti Dutta, Raj Gandhi, Boris Kayser, Mehedi Masud, Suprabh Prakash, JHEP 1611 (2016) 122, arXiv:1607.02152.
[Dutta:2016glq]
[9-290]
A Combined View of Sterile-Neutrino Constraints from CMB and Neutrino Oscillation Measurements, Sarah Bridle et al., Phys.Lett. B764 (2017) 322-327, arXiv:1607.00032.
[Bridle:2016isd]
[9-291]
First Constraints on the Complete Neutrino Mixing Matrix with a Sterile Neutrino, G.H. Collin, C.A. Arguelles, J.M. Conrad, M.H. Shaevitz, Phys. Rev. Lett. 117 (2016) 221801, arXiv:1607.00011.
[Collin:2016aqd]
[9-292]
Getting the Most Neutrinos out of IsoDAR, Emilio Ciuffoli, Jarah Evslin, Hosam Mohammed, Fengyi Zhao, Maksym Deliyergiyev, Eur.Phys.J.C 77 (2017) 864, arXiv:1606.09451.
[Ciuffoli:2016mbt]
[9-293]
Pseudoscalar - sterile neutrino interactions: reconciling the cosmos with neutrino oscillations, Maria Archidiacono et al., JCAP 1608 (2016) 067, arXiv:1606.07673.
[Archidiacono:2016kkh]
[9-294]
Atmospheric neutrinos, $\nu_e-\nu_s$ oscillations, and a novel neutrino evolution equation, Evgeny Akhmedov, JHEP 1608 (2016) 153, arXiv:1606.07391.
[Akhmedov:2016hcb]
[9-295]
Breaking Be: a sterile neutrino solution to the cosmological lithium problem, Laura Salvati, Luca Pagano, Massimiliano Lattanzi, Martina Gerbino, Alessandro Melchiorri, JCAP 1608 (2016) 022, arXiv:1606.06968.
[Salvati:2016jng]
[9-296]
Big Bang Nucleosynthesis in the presence of sterile neutrinos with altered dispersion relations, Elke Aeikens, Heinrich Pas, Sandip Pakvasa, Thomas J. Weiler, Phys. Rev. D94 (2016) 113010, arXiv:1606.06695.
[Aeikens:2016rep]
[9-297]
Constraint on Matter Power Spectrum on $10^6-10^9M_\odot$ Scales from ${\large\tau_e}$, Renyue Cen, Astrophys.J. 836 (2017) 217, arXiv:1606.05930.
[Cen:2016htm]
[9-298]
Rare decays of B mesons via on-shell sterile neutrinos, Gorazd Cvetic, C.S. Kim, Phys. Rev. D94 (2016) 053001, arXiv:1606.04140.
[Cvetic:2016fbv]
[9-299]
Neutrino Oscillations With Two Sterile Neutrinos, Leonard S. Kisslinger, Int.J.Theor.Phys. 55 (2016) 4462-4468, arXiv:1606.02684.
[Kisslinger:2016vqt]
[9-300]
False Signals of CP-Invariance Violation at DUNE, Andre de Gouvea, Kevin J. Kelly, arXiv:1605.09376, 2016.
[deGouvea:2016pom]
[9-301]
Search for the sterile neutrino mixing with the ICAL detector at INO, S. P. Behera et al., Eur.Phys.J. C77 (2017) 307, arXiv:1605.08607.
[Behera:2016kwr]
[9-302]
Short-baseline neutrino oscillations, Planck, and IceCube, John F. Cherry, Alexander Friedland, Ian M. Shoemaker, arXiv:1605.06506, 2016.
[Cherry:2016jol]
[9-303]
Light sterile neutrino sensitivity of 163Ho experiments, L. Gastaldo, C. Giunti, E. M. Zavanin, JHEP 1606 (2016) 061, arXiv:1605.05497.
[Gastaldo:2016kak]
[9-304]
Octant of $\theta_{23}$ in danger with a light sterile neutrino, Sanjib Kumar Agarwalla, Sabya Sachi Chatterjee, Antonio Palazzo, Phys. Rev. Lett. 118 (2017) 031804, arXiv:1605.04299.
[Agarwalla:2016xlg]
[9-305]
Reionization and dark matter decay, Isabel M. Oldengott, Daniel Boriero, Dominik J. Schwarz, JCAP 1608 (2016) 054, arXiv:1605.03928.
[Oldengott:2016yjc]
[9-306]
Light Sterile Neutrinos, Lepton Number Violating Interactions and the LSND Anomaly, K. S. Babu, Douglas W. McKay, Irina Mocioiu, Sandip Pakvasa, Phys. Rev. D93 (2016) 113019, arXiv:1605.03625.
[Babu:2016fdt]
[9-307]
Reionisation in sterile neutrino cosmologies, Sownak Bose, Carlos S. Frenk, Hou Jun, Cedric G. Lacey, Mark R. Lovell, Mon.Not.Roy.Astron.Soc. 463 (2016) 3848-3859, arXiv:1605.03179.
[Bose:2016hlz]
[9-308]
A new scheme for short baseline electron antineutrino disappearance study, Jae Won Shin, Myung-Ki Cheoun, Toshitaka Kajino, J.Phys. G44 (2017) 09LT01, arXiv:1605.00642.
[Shin:2016mem]
[9-309]
Constraints on Sterile Neutrino Oscillations using DUNE Near Detector, Sandhya Choubey, Dipyaman Pramanik, Phys.Lett. B764 (2017) 135-141, arXiv:1604.04731.
[Choubey:2016fpi]
[9-310]
Prospects for Reconstruction of Leptonic Unitarity Quadrangle and Neutrino Oscillation Experiments, Surender Verma, Shankita Bhardwaj, Nucl. Phys. B907 (2016) 249-257, arXiv:1603.08291.
[Verma:2016vrb]
[9-311]
Physics Reach of DUNE with a Light Sterile Neutrino, Sanjib Kumar Agarwalla, Sabya Sachi Chatterjee, Antonio Palazzo, JHEP 1609 (2016) 016, arXiv:1603.03759.
[Agarwalla:2016xxa]
[9-312]
Impact of nonstandard interactions on sterile neutrino searches at IceCube, Jiajun Liao, Danny Marfatia, Phys. Rev. Lett. 117 (2016) 071802, arXiv:1602.08766.
[Liao:2016reh]
[9-313]
Neutrino oscillations in the presence of super-light sterile neutrinos, P. C. Divari, J. D. Vergados, Int.J.Mod.Phys. A31 (2016) 1650123, arXiv:1602.08690.
[Divari:2016jos]
[9-314]
Assessing the role of nuclear effects in the interpretation of the MiniBooNE low-energy anomaly, M. Ericson, M. V. Garzelli, C. Giunti, M. Martini, Phys. Rev. D93 (2016) 073008, arXiv:1602.01390.
[Ericson:2016yjn]
[9-315]
Sterile Neutrino Fits to Short Baseline Data, G. H. Collin, C. A. Arguelles, J. M. Conrad, M. H. Shaevitz, Nucl. Phys. B908 (2016) 354-365, arXiv:1602.00671.
[Collin:2016rao]
[9-316]
Discovery Potential of T2K and NOvA in the Presence of a Light Sterile Neutrino, Sanjib Kumar Agarwalla, Sabya Sachi Chatterjee, Arnab Dasgupta, Antonio Palazzo, JHEP 02 (2016) 111, arXiv:1601.05995.
[Agarwalla:2016mrc]
[9-317]
Higgs production from sterile neutrinos at future lepton colliders, Stefan Antusch, Eros Cazzato, Oliver Fischer, JHEP 1604 (2016) 189, arXiv:1512.06035.
[Antusch:2015gjw]
[9-318]
Electric Dipole Moments of Charged Leptons with Sterile Fermions, Asmaa Abada, Takashi Toma, JHEP 02 (2016) 174, arXiv:1511.03265.
[Abada:2015trh]
[9-319]
Neutrinos secretly converting to lighter particles to please both KATRIN and the cosmos, Yasaman Farzan, Steen Hannestad, JCAP 1602 (2016) 058, arXiv:1510.02201.
[Farzan:2015pca]
[9-320]
Earth matter effect on atmospheric neutrino oscillation in (3+3) model, Mushfiqur Rahman, arXiv:1510.01452, 2015.
[Rahman:2015hna]
[9-321]
Sterile neutrinos in the light of IceCube, Manfred Lindner, Werner Rodejohann, Xun-Jie Xu, JHEP 1601 (2016) 124, arXiv:1510.00666.
[Lindner:2015iaa]
[9-322]
Discovering sterile Neutrinos ligther than $M_W$ at the LHC, Claudio O. Dib, Choong Sun Kim, Phys. Rev. D92 (2015) 093009, arXiv:1509.05981.
[Dib:2015oka]
[9-323]
Checking T and CPT violation with sterile neutrino, Yogita Pant, Sujata Diwakar, Jyotsna Singh, R.B. Singh, Nucl. Phys. B909 (2016) 1079-1103, arXiv:1509.04096.
[Pant:2015rca]
[9-324]
Neutrino Physics with Accelerator Driven Subcritical Reactors, Emilio Ciuffoli, Jarah Evslin, Fengyi Zhao, JHEP 01 (2016) 004, arXiv:1509.03494.
[Ciuffoli:2015uta]
[9-325]
3-flavor and 4-flavor implications of the latest T2K and NO$\nu$A electron (anti-)neutrino appearance results, Antonio Palazzo, Phys.Lett. B757 (2016) 142-147, arXiv:1509.03148.
[Palazzo:2015gja]
[9-326]
Limits on sterile neutrino contributions to neutrinoless double beta decay, J. Barea, J. Kotila, F. Iachello, Phys. Rev. D92 (2015) 093001, arXiv:1509.01925.
[Barea:2015zfa]
[9-327]
The impact of sterile neutrinos on CP measurements at long baselines, Raj Gandhi, Boris Kayser, Mehedi Masud, Suprabh Prakash, JHEP 11 (2015) 039, arXiv:1508.06275.
[Gandhi:2015xza]
[9-328]
Right-handed neutrinos and the 2 TeV $W'$ boson, Pilar Coloma, Bogdan A. Dobrescu, Jacobo Lopez-Pavon, Phys. Rev. D92 (2015) 115023, arXiv:1508.04129.
[Coloma:2015una]
[9-329]
Appearance-Disappearance Relation in 3+$N_{s}$ Short-Baseline Neutrino Oscillations, C. Giunti, E. M. Zavanin, Mod. Phys. Lett. A31 (2016) 1650003, arXiv:1508.03172.
[Giunti:2015mwa]
[9-330]
Neutrino Oscillations With Three Active and Three Sterile Neutrinos, Leonard S. Kisslinger, Int.J.Theor.Phys. 55 (2016) 3274-3279, arXiv:1508.03027.
[Kisslinger:2015ita]
[9-331]
Sterile neutrinos with pseudoscalar self-interactions and cosmology, Maria Archidiacono, Steen Hannestad, Rasmus Sloth Hansen, Thomas Tram, Phys. Rev. D93 (2016) 045004, arXiv:1508.02504.
[Archidiacono:2015oma]
[9-332]
Secret Interactions of Sterile Neutrinos and MeV-scale gauge boson, Zahra Tabrizi, O. L. G. Peres, Phys. Rev. D93 (2016) 053003, arXiv:1507.06486.
[Tabrizi:2015bba]
[9-333]
A Sterile Neutrino at DUNE, Jeffrey M. Berryman, Andre de Gouvea, Kevin J. Kelly, Andrew Kobach, Phys. Rev. D92 (2015) 073012, arXiv:1507.03986.
[Berryman:2015nua]
[9-334]
Active-sterile neutrino oscillations in the early Universe with full collision terms, Steen Hannestad, Rasmus Sloth Hansen, Thomas Tram, Yvonne Y. Y. Wong, JCAP 1508 (2015) 019, arXiv:1506.05266.
[Hannestad:2015tea]
[9-335]
Neutrino pair and gamma beams from circulating excited ions, M. Yoshimura, N. Sasao, Phys. Rev. D92 (2015) 073015, arXiv:1505.07572.
[Yoshimura:2015rva]
[9-336]
Compact Neutrino Source, John LoSecco, Phys. Rev. D92 (2015) 033007, arXiv:1505.04156.
[LoSecco:2015hha]
[9-337]
Sterile Neutrinos with Secret Interactions - Lasting Friendship with Cosmology, Xiaoyong Chu, Basudeb Dasgupta, Joachim Kopp, JCAP 1510 (2015) 011, arXiv:1505.02795.
[Chu:2015ipa]
[9-338]
On the search for CPT violation in the leptonic sector by means of neutrino oscillometry, Michail V Smirnov, Kai K Loo, Yuri N Novikov, Wladyslaw H Trzaska, Michael Wurm, Nucl. Phys. B900 (2015) 104-114, arXiv:1505.02550.
[Smirnov:2015rha]
[9-339]
Predictions for Neutrinoless Double-Beta Decay in the 3+1 Sterile Neutrino Scenario, C. Giunti, E. M. Zavanin, JHEP 07 (2015) 171, arXiv:1505.00978.
[Giunti:2015kza]
[9-340]
Constraints on secret neutrino interactions after Planck, Francesco Forastieri, Massimiliano Lattanzi, Paolo Natoli, JCAP 1507 (2015) 014, arXiv:1504.04999.
[Forastieri:2015paa]
[9-341]
Low reheating temperatures in monomial and binomial inflationary potentials, Thomas Rehagen, Graciela B. Gelmini, JCAP 1506 (2015) 039, arXiv:1504.03768.
[Rehagen:2015zma]
[9-342]
A Combined Limit on the Neutrino Mass from Neutrinoless Double-Beta Decay and Constraints on Sterile Majorana Neutrinos, Pawel Guzowski et al., Phys. Rev. D92 (2015) 012002, arXiv:1504.03600.
[Guzowski:2015saa]
[9-343]
Multilepton and Lepton Jet Probes of Sub-Weak-Scale Right-Handed Neutrinos, Eder Izaguirre, Brian Shuve, Phys. Rev. D91 (2015) 093010, arXiv:1504.02470.
[Izaguirre:2015pga]
[9-344]
Consistent analysis of the $\nu_\mu\to \nu_e$ sterile neutrinos searches of ICARUS and OPERA, Antonio Palazzo, Phys. Rev. D91 (2015) 091301, arXiv:1503.03966.
[Palazzo:2015wea]
[9-345]
Some comments on high precision study of neutrino oscillations, S.M. Bilenky, Phys. Part. Nucl. Lett. 12 (2015) 453-461, arXiv:1502.06158.
[Bilenky:2015xwa]
[9-346]
Confronting the Stochastic Neutrino Mixing Mechanism and the sterile neutrino hypothesis as a solution to the short baseline neutrino anomalies, E. M. Zavanin, M. M. Guzzo, P. C. de Holanda, O. L. G. Peres, Phys. Rev. D91 (2015) 113009, arXiv:1502.05948.
[Zavanin:2015oia]
[9-347]
Probing $f(R)$ cosmology with sterile neutrinos via measurements of scale-dependent growth rate of structure, Yun-He Li, Jing-Fei Zhang, Xin Zhang, Phys.Lett. B744 (2015) 213-217, arXiv:1502.01136.
[Li:2015poa]
[9-348]
Effect of cross-section models on the validity of sterile neutrino mixing limits, Patrick Stowell, Callum Wilkinson, Susan Cartwright, arXiv:1501.02142, 2015.
[Stowell:2015ska]
[9-349]
More Is Different: Reconciling eV Sterile Neutrinos and Cosmological Mass Bounds, Yong Tang, Phys. Lett. B750 (2015) 201-208, arXiv:1501.00059.
[Tang:2014yla]
[9-350]
Imprints of CP-violating phases induced by sterile neutrinos in T2K, N. Klop, A. Palazzo, Phys. Rev. D91 (2015) 073017, arXiv:1412.7524.
[Klop:2014ima]
[9-351]
Light Sterile Neutrinos and Inflationary Freedom, S. Gariazzo, C. Giunti, M. Laveder, JCAP 1504 (2015) 023, arXiv:1412.7405.
[Gariazzo:2014dla]
[9-352]
Indirect searches for sterile neutrinos at a high-luminosity Z-factory, A. Abada, V. De Romeri, S. Monteil, J. Orloff, A. M. Teixeira, JHEP 1504 (2015) 051, arXiv:1412.6322.
[Abada:2014cca]
[9-353]
Enhancement of the sterile neutrinos yield at high matter density and at increasing the medium neutronization, V. V. Khruschov, A. V. Yudin, D. K. Nadyozhin, S. V. Fomichev, Astron. Lett. 41 (2015) 260-266, arXiv:1412.6262.
[Khruschov:2014xza]
[9-354]
Cosmology based on $f(R)$ gravity with ${\cal O}(1)$ eV sterile neutrino, A. S. Chudaykin, D. S. Gorbunov, A. A. Starobinsky, R. A. Burenin, JCAP 1505 (2015) 004, arXiv:1412.5239.
[Chudaykin:2014oia]
[9-355]
Testing Tensor-Vector-Scalar Theory with latest cosmological observations, Xiao-dong Xu, Bin Wang, Pengjie Zhang, Phys. Rev. D92 (2015) 083505, arXiv:1412.4073.
[Xu:2014doa]
[9-356]
CP-Invariance Violation at Short-Baseline Experiments in 3+1 Scenarios, Andre de Gouvea, Kevin J. Kelly, Andrew Kobach, Phys. Rev. D91 (2015) 053005, arXiv:1412.1479.
[deGouvea:2014aoa]
[9-357]
Majorana Neutrinos Production at LHeC in an Effective Approach, Lucia Duarte, Gabriel A. Gonzalez-Sprinberg, Oscar Alfredo Sampayo, Phys. Rev. D91 (2015) 053007, arXiv:1412.1433.
[Duarte:2014zea]
[9-358]
Radiative Emission of Neutrino Pairs in Atoms and Light Sterile Neutrinos, D. N. Dinh, S. T. Petcov, Phys.Lett. B742 (2015) 107-116, arXiv:1411.7459.
[Dinh:2014toa]
[9-359]
Probing new physics scenarios in accelerator and reactor neutrino experiments, A. Di Iura, I. Girardi, D. Meloni, J. Phys. G42 (2015) 065003, arXiv:1411.5330.
[DiIura:2014csa]
[9-360]
The Case for Muon-based Neutrino Beams, Patrick Huber, Alan Bross, Mark Palmer, arXiv:1411.0629, 2014.
[Huber:2014nga]
[9-361]
Wavelet Approach to Search for Sterile Neutrinos in Tritium $\beta$-Decay Spectra, S. Mertens et al., Phys. Rev. D91 (2015) 042005, arXiv:1410.7684.
[Mertens:2014osa]
[9-362]
Tension between secret sterile neutrino interactions and cosmological neutrino mass bounds, Alessandro Mirizzi, Gianpiero Mangano, Ofelia Pisanti, Ninetta Saviano, Phys. Rev. D91 (2015) 025019, arXiv:1410.1385.
[Mirizzi:2014ama]
[9-363]
Tension between the power spectrum of density perturbations measured on large and small scales, Richard A. Battye, Tom Charnock, Adam Moss, Phys. Rev. D91 (2015) 103508, arXiv:1409.2769.
[Battye:2014qga]
[9-364]
Unveiling secret interactions among sterile neutrinos with big-bang nucleosynthesis, Ninetta Saviano, Ofelia Pisanti, Gianpiero Mangano, Alessandro Mirizzi, Phys. Rev. D90 (2014) 113009, arXiv:1409.1680.
[Saviano:2014esa]
[9-365]
Neutrino Oscillations With Recently Measured Sterile-Active Neutrino Mixing Angle, Leonard S. Kisslinger, Int.J.Theor.Phys. 53 (2014) 3201, arXiv:1409.1610.
[Kisslinger:2014xta]
[9-366]
Sensitivity of Next-Generation Tritium Beta-Decay Experiments for keV-Scale Sterile Neutrinos, S. Mertens et al., JCAP 1502 (2015) 020, arXiv:1409.0920.
[Mertens:2014nha]
[9-367]
Solar neutrino physics with low-threshold dark matter detectors, J. Billard, L. Strigari, E. Figueroa-Feliciano, Phys. Rev. D91 (2015) 095023, arXiv:1409.0050.
[Billard:2014yka]
[9-368]
Sterile Neutrinos in Neutrinoless Double Beta Decay: An Update, Amand Faessler, Marcela Gonzalez, Sergey Kovalenko, Fedor Simkovic, Phys. Rev. D90 (2014) 096010, arXiv:1408.6077.
[Faessler:2014kka]
[9-369]
Cosmic Discordance: Are Planck CMB and CFHTLenS weak lensing measurements out of tune?, Niall MacCrann, Joe Zuntz, Sarah Bridle, Bhuvnesh Jain, Matthew R. Becker, Mon.Not.Roy.Astron.Soc. 451 (2015) 2877, arXiv:1408.4742.
[MacCrann:2014wfa]
[9-370]
Measuring growth index in a universe with sterile neutrinos, Jing-Fei Zhang, Yun-He Li, Xin Zhang, Phys.Lett. B739 (2014) 102-105, arXiv:1408.4603.
[Zhang:2014lfa]
[9-371]
Non-Detection of X-Ray Emission From Sterile Neutrinos in Stacked Galaxy Spectra, Michael E. Anderson, Eugene Churazov, Joel N. Bregman, Mon. Not. Roy. Astron. Soc. 452 (2015) 3905, arXiv:1408.4115.
[Anderson:2014tza]
[9-372]
Four-Neutrino Analysis of 1.5 km Baseline Reactor Antineutrino Oscillations, Sin Kyu Kang, Yeong-Duk Kim, Young-Ju Ko, Kim Siyeon, Adv.High Energy Phys. 2013 (2013) 138109, arXiv:1408.3211.
[Kang:2013zma]
[9-373]
Revisiting cosmological bounds on sterile neutrinos, Aaron C. Vincent, Enrique Fernandez Martinez, Pilar Hernandez, Massimiliano Lattanzi, Olga Mena, JCAP 1504 (2015) 006, arXiv:1408.1956.
[Vincent:2014rja]
[9-374]
Sterile neutrinos at LBNE, David Hollander, Irina Mocioiu, Phys. Rev. D91 (2015) 013002, arXiv:1408.1749.
[Hollander:2014iha]
[9-375]
Neutrinos and dark energy after Planck and BICEP2: data consistency tests and cosmological parameter constraints, Jing-Fei Zhang, Jia-Jia Geng, Xin Zhang, JCAP 1410 (2014) 044, arXiv:1408.0481.
[Zhang:2014ifa]
[9-376]
The Not-So-Sterile 4th Neutrino: Constraints on New Gauge Interactions from Neutrino Oscillation Experiments, Joachim Kopp, Johannes Welter, JHEP 1412 (2014) 104, arXiv:1408.0289.
[Kopp:2014fha]
[9-377]
Non-unitarity of the leptonic mixing matrix: Present bounds and future sensitivities, Stefan Antusch, Oliver Fischer, JHEP 1410 (2014) 94, arXiv:1407.6607.
[Antusch:2014woa]
[9-378]
Single photon events from neutral current interactions at MiniBooNE, E. Wang, L. Alvarez-Ruso, J. Nieves, Phys.Lett. B740 (2015) 16-22, arXiv:1407.6060.
[Wang:2014nat]
[9-379]
CL$_s$ Method at Gaussian Limit to Present Searches, X. Qian, A. Tan, J. J. Ling, Y. Nakajima, C. Zhang, Nucl.Instrum.Meth. A827 (2016) 63, arXiv:1407.5052.
[Qian:2014nha]
[9-380]
Statistical tests of sterile neutrinos using cosmology and short-baseline data, Johannes Bergstrom, M. C. Gonzalez-Garcia, V. Niro, J. Salvado, JHEP 1410 (2014) 104, arXiv:1407.3806.
[Bergstrom:2014fqa]
[9-381]
Searching for sterile neutrinos at the ESS$\nu$SB, Mattias Blennow, Pilar Coloma, Enrique Fernandez-Martinez, JHEP 1412 (2014) 120, arXiv:1407.1317.
[Blennow:2014fqa]
[9-382]
Flavor Ratios and Mass Hierarchy at Neutrino Telescopes, Lingjun Fu, Chiu Man Ho, arXiv:1407.1090, 2014.
[Fu:2014gja]
[9-383]
Effect of steriles states on lepton magnetic moments and neutrinoless double beta decay, A. Abada, V. De Romeri, A.M. Teixeira, JHEP 1409 (2014) 074, arXiv:1406.6978.
[Abada:2014nwa]
[9-384]
Helicitogenesis: WIMPy baryogenesis with sterile neutrinos and other realizations, J. Racker, N. Rius, JHEP 1411 (2014) 163, arXiv:1406.6105.
[Racker:2014uga]
[9-385]
Combining dark matter detectors and electron-capture sources to hunt for new physics in the neutrino sector, Pilar Coloma, Patrick Huber, Jonathan M. Link, JHEP 1411 (2014) 042, arXiv:1406.4914.
[Coloma:2014hka]
[9-386]
The quest for neutrinoless double beta decay: Pseudo-Dirac, Majorana and sterile neutrinos, A. Meroni, E. Peinado, Phys. Rev. D90 (2014) 053002, arXiv:1406.3990.
[Meroni:2014tba]
[9-387]
Daughters mimic sterile neutrinos (almost!) perfectly, Jasper Hasenkamp, JCAP 1409 (2014) 048, arXiv:1405.6736.
[Hasenkamp:2014hma]
[9-388]
Constraining Sterile Neutrinos Using Reactor Neutrino Experiments, Ivan Girardi, Davide Meloni, Tommy Ohlsson, He Zhang, Shun Zhou, JHEP 08 (2014) 057, arXiv:1405.6540.
[Girardi:2014wea]
[9-389]
Sterile neutrino oscillations in core-collapse supernova simulations, MacKenzie L. Warren, Matthew Meixner, Grant Mathews, Jun Hidaka, Toshitaka Kajino, Phys. Rev. D90 (2014) 103007, arXiv:1405.6101.
[Warren:2014qza]
[9-390]
Tilt of primordial gravitational wave spectrum in a universe with sterile neutrinos, Yun-He Li, Jing-Fei Zhang, Xin Zhang, Sci.China Phys.Mech.Astron. 57 (2014) 1455-1459, arXiv:1405.0570.
[Li:2014dja]
[9-391]
Cosmological Invisible Decay of Light Sterile Neutrinos, S. Gariazzo, C. Giunti, M. Laveder, arXiv:1404.6160, 2014.
[Gariazzo:2014pja]
[9-392]
No new cosmological concordance with massive sterile neutrinos, Boris Leistedt, Hiranya V. Peiris, Licia Verde, Phys. Rev. Lett. 113 (2014) 041301, arXiv:1404.5950.
[Leistedt:2014sia]
[9-393]
Cosmology with self-interacting sterile neutrinos and dark matter - A pseudoscalar model, Maria Archidiacono, Steen Hannestad, Rasmus Sloth Hansen, Thomas Tram, Phys. Rev. D91 (2015) 065021, arXiv:1404.5915.
[Archidiacono:2014nda]
[9-394]
Cosmological constraints on neutrinos after BICEP2, Jing-Fei Zhang, Yun-He Li, Xin Zhang, Eur.Phys.J. C74 (2014) 2954, arXiv:1404.3598.
[Zhang:2014nta]
[9-395]
Light sterile neutrinos after BICEP-2, Maria Archidiacono, Nicolao Fornengo, Stefano Gariazzo, Carlo Giunti, Steen Hannestad, Marco Laveder, JCAP 1406 (2014) 031, arXiv:1404.1794.
[Archidiacono:2014apa]
[9-396]
Neutrinos help reconcile Planck measurements with both Early and Local Universe, Cora Dvorkin, Mark Wyman, Douglas H. Rudd, Wayne Hu, Phys. Rev. D90 (2014) 083503, arXiv:1403.8049.
[Dvorkin:2014lea]
[9-397]
Using strong intense lasers to probe sterile neutrinos, Pouya Bakhti, Rohoollah Mohammadi, She-Sheng Xue, arXiv:1403.7327, 2014.
[Bakhti:2014zya]
[9-398]
Sterile neutrinos help reconcile the observational results of primordial gravitational waves from Planck and BICEP2, Jing-Fei Zhang, Yun-He Li, Xin Zhang, Phys.Lett. B740 (2015) 359-363, arXiv:1403.7028.
[Zhang:2014dxk]
[9-399]
Time evolution of cascade decay, Daniel Boyanovsky, Louis Lello, New J. Phys. 16 (2014) 063050, arXiv:1403.6366.
[Boyanovsky:2014uya]
[9-400]
Primordial Li Reduction Induced by a Long-lived MeV Sterile Neutrino, Hiroyuki Ishida, Motohiko Kusakabe, Hiroshi Okada, Phys. Rev. D90 (2014) 083519, arXiv:1403.5995.
[Ishida:2014wqa]
[9-401]
Constraining new physics scenarios in neutrino oscillations from Daya Bay data, I. Girardi, D. Meloni, Phys. Rev. D90 (2014) 073011, arXiv:1403.5507.
[Girardi:2014gna]
[9-402]
Relic Neutrinos, thermal axions and cosmology in early 2014, Elena Giusarma, Eleonora Di Valentino, Massimiliano Lattanzi, Alessandro Melchiorri, Olga Mena, Phys. Rev. D90 (2014) 043507, arXiv:1403.4852.
[Giusarma:2014zza]
[9-403]
Comment on lifetime of sterile neutrinos and the effect on detection of rare meson decays $M^+ \to {M'}^- \ell^+ \ell^+$, Claudio O. Dib, C.S. Kim, Phys. Rev. D89 (2014) 077301, arXiv:1403.1985.
[Dib:2014iga]
[9-404]
On the keV sterile neutrino search in electron capture, P. E. Filianin et al., J. Phys. G41 (2014) 095004, arXiv:1402.4400.
[Filianin:2014gaa]
[9-405]
Impact of sterile neutrinos on the early time flux from a galactic supernova, Arman Esmaili, O. L. G. Peres, Pasquale Dario Serpico, Phys. Rev. D90 (2014) 033013, arXiv:1402.1453.
[Esmaili:2014gya]
[9-406]
Effects of kination and scalar-tensor cosmologies on sterile neutrinos, Thomas Rehagen, Graciela B. Gelmini, JCAP 1406 (2014) 044, arXiv:1402.0607.
[Rehagen:2014vna]
[9-407]
Mass characteristics of active and sterile neutrinos in a phenomenological (3+1+2)-model, N. Yu. Zysina, S. V. Fomichev, V. V. Khruschov, Phys.Atom.Nucl. 77 (2014) 890-900, arXiv:1401.6306.
[Zysina:2014kqa]
[9-408]
Search for Sub-eV Sterile Neutrinos in the Precision Multiple Baselines Reactor Antineutrino Oscillation Experiments, Shu Luo, Nucl. Phys. B899 (2015) 312-327, arXiv:1401.0292.
[Luo:2014vha]
[9-409]
GSI Oscillations as Laboratory for Testing of New Physics, A. N. Ivanov, P. Kienle, arXiv:1312.5206, 2013.
[Ivanov:2013isa]
[9-410]
Sterile neutrinos in leptonic and semileptonic decays, A. Abada, A.M. Teixeira, A. Vicente, C. Weiland, JHEP 1402 (2014) 091, arXiv:1311.2830.
[Abada:2013aba]
[9-411]
Low-scale seesaw models versus $N_{\rm eff}$, P. Hernandez, M. Kekic, J. Lopez-Pavon, Phys. Rev. D89 (2014) 073009, arXiv:1311.2614.
[Hernandez:2013lza]
[9-412]
Detection of ultra high energy neutrinos by IceCube: Sterile neutrino scenario, Subhash Rajpoot, Sarira Sahu, Hsi Ching Wang, Eur.Phys.J. C74 (2014) 2936, arXiv:1310.7075.
[Rajpoot:2013dha]
[9-413]
A menage a trois of eV-scale sterile neutrinos, cosmology, and structure formation, Basudeb Dasgupta, Joachim Kopp, Phys. Rev. Lett. 112 (2014) 031803, arXiv:1310.6337.
[Dasgupta:2013zpn]
[9-414]
The Effect of Cancellation in Neutrinoless Double Beta Decay, Silvia Pascoli, Manimala Mitra, Steven Wong, Phys. Rev. D90 (2014) 093005, arXiv:1310.6218.
[Pascoli:2013fiz]
[9-415]
How secret interactions can reconcile sterile neutrinos with cosmology, Steen Hannestad, Rasmus Sloth Hansen, Thomas Tram, Phys. Rev. Lett. 112 (2014) 031802, arXiv:1310.5926.
[Hannestad:2013ana]
[9-416]
Active and sterile neutrino oscillations inside the Sun in a phenomenological (3+1+2)-model, V. V. Khruschov, S. V. Fomichev, arXiv:1310.5817, 2013.
[Khruschov:2013rma]
[9-417]
Sterile Plus Active Neutrinos and Neutrino Oscillations, Leonard S. Kisslinger, Int.J.Theor.Phys. 53 (2014) 3201-3207, arXiv:1309.4983.
[Kisslinger:2013sba]
[9-418]
Reanalysis of the Reactor Neutrino Anomaly, A.C. Hayes, J.L. Friar, G.T. Garvey, Guy Jonkmans, Phys. Rev. Lett. 112 (2014) 202501, arXiv:1309.4146.
[Hayes:2013wra]
[9-419]
Light Sterile Neutrinos in Cosmology and Short-Baseline Oscillation Experiments, S. Gariazzo, C. Giunti, M. Laveder, JHEP 1311 (2013) 211, arXiv:1309.3192.
[Gariazzo:2013gua]
[9-420]
Using MiniBooNE neutral current elastic cross section results to constrain 3+1 sterile neutrino models, Callum Wilkinson, Susan Cartwright, Lee Thompson, JHEP 1401 (2014) 064, arXiv:1309.1081.
[Wilkinson:2013mda]
[9-421]
Probing light sterile neutrinos in medium baseline reactor experiments, Arman Esmaili, Ernesto Kemp, O. L. G. Peres, Zahra Tabrizi, Phys. Rev. D88 (2013) 073012, arXiv:1308.6218.
[Esmaili:2013yea]
[9-422]
Constraints on very light sterile neutrinos from $\theta_{13}$-sensitive reactor experiments, Antonio Palazzo, JHEP 1310 (2013) 172, arXiv:1308.5880.
[Palazzo:2013bsa]
[9-423]
Evidence for massive neutrinos from CMB and lensing observations, Richard A. Battye, Adam Moss, Phys. Rev. Lett. 112 (2014) 051303, arXiv:1308.5870.
[Battye:2013xqa]
[9-424]
Neutrinoless Double Beta Decay in the Presence of Light Sterile Neutrinos, Ivan Girardi, Aurora Meroni, S. T. Petcov, JHEP 1311 (2013) 146, arXiv:1308.5802.
[Girardi:2013zra]
[9-425]
Unitarity Tests of the Neutrino Mixing Matrix, X. Qian, C. Zhang, M. Diwan, P. Vogel, arXiv:1308.5700, 2013.
[Qian:2013ora]
[9-426]
A Pragmatic View of Short-Baseline Neutrino Oscillations, C. Giunti, M. Laveder, Y. F. Li, H.W. Long, Phys. Rev. D88 (2013) 073008, arXiv:1308.5288.
[Giunti:2013aea]
[9-427]
A new life for sterile neutrinos: resolving inconsistencies using hot dark matter, Jan Hamann, Jasper Hasenkamp, JCAP 1310 (2013) 044, arXiv:1308.3255.
[Hamann:2013iba]
[9-428]
Precision measures of the primordial abundance of deuterium, Ryan Cooke, Max Pettini, Regina A. Jorgenson, Michael T. Murphy, Charles C. Steidel, Astrophys. J. 781 (2014) 31, arXiv:1308.3240.
[Cooke:2013cba]
[9-429]
Constraining Super-light Sterile Neutrino Scenario by JUNO and RENO-50, Pouya Bakhti, Yasaman Farzan, JHEP 1310 (2013) 200, arXiv:1308.2823.
[Bakhti:2013ora]
[9-430]
Primordial 4He abundance: a determination based on the largest sample of HII regions with a methodology tested on model HII regions, Y.I. Izotov, G. Stasinska, N.G. Guseva, Mon.Not.Roy.Astron.Soc. 445 (2014) 778-793, arXiv:1308.2100.
[Izotov:2014fga]
[9-431]
Sterile neutrinos, dark matter, and resonant effects in ultra high energy regimes, O. G. Miranda, C. A. Moura, A. Parada, Phys.Lett. B744 (2015) 55, arXiv:1308.1408.
[Miranda:2013wla]
[9-432]
Contamination of Dark Matter Experiments from Atmospheric Magnetic Dipoles, A. Bueno, M. Masip, P. Sanchez-Lucas, N. Setzer, Phys. Rev. D88 (2013) 073010, arXiv:1308.0011.
[Bueno:2013mfa]
[9-433]
$\nu\Lambda$CDM: Neutrinos reconcile Planck with the Local Universe, Mark Wyman, Douglas H. Rudd, R. Ali Vanderveld, Wayne Hu, Phys. Rev. Lett. 112 (2014) 051302, arXiv:1307.7715.
[Wyman:2013lza]
[9-434]
Restricting the LSND and MiniBooNE sterile neutrinos with the IceCube atmospheric neutrino data, Arman Esmaili, Alexei Yu. Smirnov, JHEP 1312 (2013) 014, arXiv:1307.6824.
[Esmaili:2013vza]
[9-435]
(Lack of) Cosmological evidence for dark radiation after Planck, Licia Verde, Stephen M. Feeney, Daniel J. Mortlock, Hiranya V. Peiris, JCAP 1309 (2013) 013, arXiv:1307.2904.
[Verde:2013cqa]
[9-436]
Multiple Detectors for a Short-Baseline Neutrino Oscillation Search Near Reactors, K. M. Heeger, B. R. Littlejohn, H. P. Mumm, arXiv:1307.2859, 2013.
[Heeger:2013ema]
[9-437]
Day-Night Asymmetries in Active-Sterile Solar Neutrino Oscillations, H.W. Long, Y. F. Li, C. Giunti, JHEP 1308 (2013) 056, arXiv:1306.4051.
[Long:2013ota]
[9-438]
Deficit of reactor antineutrinos at distances smaller than 100 m and inverse beta-decay, A. N. Ivanov et al., Phys. Rev. C88, 055501 (2013) 055501, arXiv:1306.1995.
[Ivanov:2013cga]
[9-439]
Are Light Sterile Neutrinos Consistent with Supernova Explosions?, Meng-Ru Wu, Tobias Fischer, Gabriel Martinez-Pinedo, Yong-Zhong Qian, Phys. Rev. D89 (2014) 061303, arXiv:1305.2382.
[Wu:2013gxa]
[9-440]
Implication of a vanishing element in 3+1 Scenario, Monojit Ghosh, Srubabati Goswami, Shivani Gupta, C. S. Kim, Phys. Rev. D88 (2013) 033009, arXiv:1305.0180.
[Ghosh:2013nya]
[9-441]
Dark Radiation after Planck, Najla Said, Eleonora Di Valentino, Martina Gerbino, Phys. Rev. D88 (2013) 023513, arXiv:1304.6217.
[Said:2013hta]
[9-442]
Dark Radiation candidates after Planck, Eleonora Di Valentino, Alessandro Melchiorri, Olga Mena, JCAP 1311 (2013) 018, arXiv:1304.5981.
[Valentino:2013wha]
[9-443]
CP-violating Phases in Active-Sterile Solar Neutrino Oscillations, H.W. Long, Y. F. Li, C. Giunti, Phys. Rev. D 87, 113004 (2013) 113004, arXiv:1304.2207.
[Long:2013hwa]
[9-444]
Sterile neutrinos: the necessity for a 5 sigma definitive clarification, Carlo Rubbia, Alberto Guglielmi, Francesco Pietropaolo, Paola Sala, arXiv:1304.2047, 2013.
[Rubbia:2013ywa]
[9-445]
Testing lepton flavor universality in terms of data of BES III and charm-tau factory, Bin Wang, Ming-Gang Zhao, Ke-Sheng Sun, Xue-Qian Li, Chin.Phys. C37 (2013) 073101, arXiv:1304.1290.
[Wang:2013hka]
[9-446]
Dark Radiation or Warm Dark Matter from long lived particle decays in the light of Planck, Pasquale Di Bari, Stephen F. King, Alexander Merle, Phys.Lett. B724 (2013) 77-83, arXiv:1303.6267.
[DiBari:2013dna]
[9-447]
The strongest bounds on active-sterile neutrino mixing after Planck data, Alessandro Mirizzi, Gianpiero Mangano, Ninetta Saviano, Enrico Borriello, Carlo Giunti, Gennaro Miele, Ofelia Pisanti, Phys. Lett. B726 (2013) 8-14, arXiv:1303.5368. http://www.sciencedirect.com/science/article/pii/S0370269313006412.
[Mirizzi:2013kva]
[9-448]
The importance of local measurements for cosmology, Licia Verde, Raul Jimenez, Stephen Feeney, Phys.Dark Univ. 2 (2013) 65-71, arXiv:1303.5341.
[Verde:2013fva]
[9-449]
Cosmology with sterile neutrino masses from oscillation experiments, Jostein R. Kristiansen, Oystein Elgaroy, Carlo Giunti, Marco Laveder, arXiv:1303.4654, 2013.
[Kristiansen:2013mza]
[9-450]
Constraints on electromagnetic properties of sterile neutrinos from MiniBooNE results, Alexander Radionov, Phys. Rev. D88 (2013) 015016, arXiv:1303.4587.
[Radionov:2013mca]
[9-451]
Light inflaton after LHC8 and WMAP9 results, F. Bezrukov, D. Gorbunov, JHEP 1307 (2013) 140, arXiv:1303.4395.
[Bezrukov:2013fca]
[9-452]
Exploring $\nu_{\tau}-\nu_{s}$ mixing with cascade events in DeepCore, Arman Esmaili, Francis Halzen, O. L. G. Peres, JCAP 1307 (2013) 048, arXiv:1303.3294.
[Esmaili:2013cja]
[9-453]
Sterile Neutrino Oscillations: The Global Picture, Joachim Kopp, Pedro A. N. Machado, Michele Maltoni, Thomas Schwetz, JHEP 1305 (2013) 050, arXiv:1303.3011.
[Kopp:2013vaa]
[9-454]
Reactor Antineutrino Anomaly with known $\theta_{13}$, C. Zhang, X. Qian, P. Vogel, Phys. Rev. D87 (2013) 073018, arXiv:1303.0900.
[Zhang:2013ela]
[9-455]
A potential sterile neutrino search using a two-reactor/one-detector configuration, M. Bergevin, C. Grant, R. Svoboda, arXiv:1303.0310, 2013.
[Bergevin:2013nea]
[9-456]
Can active-sterile neutrino oscillations lead to chaotic behavior of the cosmological lepton asymmetry?, Steen Hannestad, Rasmus Sloth Hansen, Thomas Tram, JCAP 1304 (2013) 032, arXiv:1302.7279.
[Hannestad:2013pha]
[9-457]
Sterile Neutrinos: Cosmology vs Short-BaseLine Experiments, Maria Archidiacono, Nicolao Fornengo, Carlo Giunti, Steen Hannestad, Alessandro Melchiorri, Phys. Rev. D87 (2013) 125034, arXiv:1302.6720. http://link.aps.org/doi/10.1103/PhysRevD.87.125034.
[Archidiacono:2013xxa]
[9-458]
Meter-baseline tests of sterile neutrinos at Daya Bay, Y. Gao, D. Marfatia, Phys.Lett. B723 (2013) 164-167, arXiv:1302.5725.
[Gao:2013tha]
[9-459]
Influence of a keV sterile neutrino on neutrino-less double beta decay - how things changed in the recent years, Alexander Merle, Viviana Niro, Phys. Rev. D88 (2013) 113004, arXiv:1302.2032.
[Merle:2013ibc]
[9-460]
Multi-momentum and multi-flavour active-sterile neutrino oscillations in the early universe: role of neutrino asymmetries and effects on nucleosynthesis, Ninetta Saviano et al., Phys. Rev. D87 (2013) 073006, arXiv:1302.1200.
[Saviano:2013ktj]
[9-461]
Is there evidence for additional neutrino species from cosmology?, Stephen M. Feeney, Hiranya V. Peiris, Licia Verde, JCAP 1304 (2013) 036, arXiv:1302.0014.
[Feeney:2013wp]
[9-462]
Tickling the CMB damping tail: scrutinizing the tension between the ACT and SPT experiments, Eleonora Di Valentino et al., Phys. Rev. D88 (2013) 023501, arXiv:1301.7343.
[DiValentino:2013mt]
[9-463]
Astrophysical neutrino flavor ratios in the presence of sterile neutrinos, D. Hollander, arXiv:1301.5313, 2013.
[Hollander:2013im]
[9-464]
Possible indication for non-zero neutrino mass and additional neutrino species from cosmological observations, R. A. Burenin, Astron.Lett. 39 (2013) 357-366, arXiv:1301.4791.
[Burenin:2013wg]
[9-465]
Detecting warm DM in the $MeV/c^2$ range, Francois Vannucci, Jean-Michel Levy, arXiv:1301.4380, 2013.
[Vannucci:2013jb]
[9-466]
Additional Light Sterile Neutrinos and Cosmology, Thomas D. Jacques, Lawrence M. Krauss, Cecilia Lunardini, Phys. Rev. D87 (2013) 083515, arXiv:1301.3119.
[Jacques:2013xr]
[9-467]
Dark Radiation and interacting scenarios, Roberta Diamanti, Elena Giusarma, Olga Mena, Maria Archidiacono, Alessandro Melchiorri, Phys. Rev. D87 (2013) 063509, arXiv:1212.6007.
[Diamanti:2012tg]
[9-468]
Short-Baseline Electron Neutrino Oscillation Length After Troitsk, C. Giunti, M. Laveder, Y. F. Li, H.W. Long, Phys. Rev. D87 (2013) 013004, arXiv:1212.3805.
[Giunti:2012bc]
[9-469]
Experimental Parameters for a Reactor Antineutrino Experiment at Very Short Baselines, K. M. Heeger, B. R. Littlejohn, H. P. Mumm, M. N. Tobin, Phys. Rev. D87 (2013) 073008, arXiv:1212.2182.
[Heeger:2012tc]
[9-470]
Sterile Neutrinos and Light Dark Matter Save Each Other, Chiu Man Ho, Robert J. Scherrer, Phys. Rev. D87 (2013) 065016, arXiv:1212.1689.
[Ho:2012br]
[9-471]
Dark Radiation and Decaying Matter, M. C. Gonzalez-Garcia, V. Niro, Jordi Salvado, JHEP 1304 (2013) 052, arXiv:1212.1472.
[Gonzalez-Garcia:2012djt]
[9-472]
Testing standard and non-standard neutrino physics with cosmological data, Elena Giusarma, Roland de Putter, Olga Mena, Phys. Rev. D87 (2013) 043515, arXiv:1211.2154.
[Giusarma:2012ph]
[9-473]
Right-Handed Neutrinos as the Dark Radiation: Status and Forecasts for the LHC, Luis A. Anchordoqui, Haim Goldberg, Gary Steigman, Phys. Lett. B718 (2013) 1162-1165, arXiv:1211.0186.
[Anchordoqui:2012qu]
[9-474]
Two Zero Mass Matrices and Sterile Neutrinos, Monojit Ghosh, Srubabati Goswami, Shivani Gupta, JHEP 1304 (2013) 103, arXiv:1211.0118.
[Ghosh:2012pw]
[9-475]
Conservative Constraints on Early Cosmology: an illustration of the Monte Python cosmological parameter inference code, Benjamin Audren, Julien Lesgourgues, Karim Benabed, Simon Prunet, JCAP 1302 (2013) 001, arXiv:1210.7183.
[Audren:2012wb]
[9-476]
Update of Short-Baseline Electron Neutrino and Antineutrino Disappearance, C. Giunti, M. Laveder, Y. F. Li, Q.Y. Liu, H.W. Long, Phys. Rev. D86 (2012) 113014, arXiv:1210.5715.
[Giunti:2012tn]
[9-477]
Can neutrino-induced photon production explain the low energy excess in MiniBooNE?, Xilin Zhang, Brian D. Serot, Phys. Lett. B719 (2013) 409-414, arXiv:1210.3610.
[Zhang:2012xn]
[9-478]
Towards testing the unitarity of the 3X3 lepton flavor mixing matrix in a precision reactor antineutrino oscillation experiment, Zhi-zhong Xing, Phys. Lett. B718 (2013) 1447-1453, arXiv:1210.1523.
[Xing:2012kh]
[9-479]
Searching for sterile neutrinos from $\pi$ and $K$ decays, Louis Lello, Daniel Boyanovsky, Phys. Rev. D87 (2013) 073017, arXiv:1208.5559.
[Lello:2012gi]
[9-480]
Are Light Sterile Neutrinos Preferred or Disfavored by Cosmology?, Shahab Joudaki, Kevork N. Abazajian, Manoj Kaplinghat, Phys. Rev. D87 (2013) 065003, arXiv:1208.4354.
[Joudaki:2012uk]
[9-481]
Testing 3+1 and 3+2 neutrino mass models with cosmology and short baseline experiments, Maria Archidiacono, Nicolao Fornengo, Carlo Giunti, Alessandro Melchiorri, Phys. Rev. D86 (2012) 065028, arXiv:1207.6515.
[Archidiacono:2012ri]
[9-482]
Sterile Neutrinos and Pulsar Velocities Revisited,, Leonard S. Kisslinger, Mikkel B. Johnson, Mod. Phys. Lett. A27 (2012) 1250215, arXiv:1207.2798.
[Kisslinger:2012br]
[9-483]
Constraining Sterile Neutrinos with AMANDA and IceCube Atmospheric Neutrino Data, Arman Esmaili, Francis Halzen, O. L. G. Peres, JCAP 1211 (2012) 041, arXiv:1206.6903.
[Esmaili:2012nz]
[9-484]
Cosmic Microwave Background constraints of decaying dark matter particle properties, S. Yeung, M. H. Chan, M.-C. Chu, Astrophys. J. 755 (2012) 108, arXiv:1206.4114.
[Yeung:2012ya]
[9-485]
Probing Sterile Neutrino Parameters with Double Chooz, Daya Bay and RENO, Kalpana Bora, Debajyoti Dutta, Pomita Ghoshal, JHEP 12 (2012) 025, arXiv:1206.2172.
[Bora:2012pi]
[9-486]
Light sterile neutrino production in the early universe with dynamical neutrino asymmetries, Alessandro Mirizzi, Ninetta Saviano, Gennaro Miele, Pasquale Dario Serpico, Phys. Rev. D86 (2012) 053009, arXiv:1206.1046.
[Mirizzi:2012we]
[9-487]
The Reactor Anomaly after Daya Bay and RENO, Emilio Ciuffoli, Jarah Evslin, Hong Li, JHEP 12 (2012) 110, arXiv:1205.5499.
[Ciuffoli:2012yd]
[9-488]
The minimal 3+2 neutrino model versus oscillation anomalies, A. Donini, P. Hernandez, J. Lopez-Pavon, M. Maltoni, T. Schwetz, JHEP 07 (2012) 161, arXiv:1205.5230.
[Donini:2012tt]
[9-489]
Confronting MOND and TeVeS with strong gravitational lensing over galactic scales: an extended survey, Ignacio Ferreras, Nick Mavromatos, Mairi Sakellariadou, Muhammad Furqaan Yusaf, Phys. Rev. D86 (2012) 083507, arXiv:1205.4880.
[Ferreras:2012fg]
[9-490]
Neutrino Phenomenology in a 3+1+1 Framework, Eric Kuflik, Samuel D. McDermott, Kathryn M. Zurek, Phys. Rev. D86 (2012) 033015, arXiv:1205.1791.
[Kuflik:2012sw]
[9-491]
Thermalisation of light sterile neutrinos in the early universe, Steen Hannestad, Irene Tamborra, Thomas Tram, JCAP 1207 (2012) 025, arXiv:1204.5861.
[Hannestad:2012ky]
[9-492]
Optimization of a Very Low Energy Neutrino Factory for the Disappearance Into Sterile Neutrinos, Walter Winter, Phys. Rev. D85 (2012) 113005, arXiv:1204.2671.
[Winter:2012sk]
[9-493]
Searches for sterile neutrinos with IceCube DeepCore, Soebur Razzaque, A. Yu. Smirnov, Phys. Rev. D85 (2012) 093010, arXiv:1203.5406.
[Razzaque:2012tp]
[9-494]
Testing Localization in Neutrino Oscillations, Dmitry V. Zhuridov, arXiv:1203.2764, 2012.
[Zhuridov:2012wx]
[9-495]
KATRIN Sensitivity to Sterile Neutrino Mass in the Shadow of Lightest Neutrino Mass, Arman Esmaili, Orlando L. G. Peres, Phys. Rev. D85 (2012) 117301, arXiv:1203.2632.
[Esmaili:2012vg]
[9-496]
Dark Neutrinos, A. Nicolaidis, J.Mod.Phys. 3 (2012) 1979, arXiv:1202.5171.
[Nicolaidis:2012qs]
[9-497]
Sterile neutrinos and indirect dark matter searches in IceCube, Carlos A. Arguelles, Joachim Kopp, JCAP JCAP07 (2012) 016, arXiv:1202.3431.
[Arguelles:2012cf]
[9-498]
Indirect Dark Matter Detection in the Light of Sterile Neutrinos, Arman Esmaili, Orlando L.G. Peres, JCAP 1205 (2012) 002, arXiv:1202.2869.
[Esmaili:2012ut]
[9-499]
Confronting the short-baseline oscillation anomalies with a single sterile neutrino and non-standard matter effects, G. Karagiorgi, M. H. Shaevitz, J. M. Conrad, arXiv:1202.1024, 2012.
[Karagiorgi:2012kw]
[9-500]
Atmospheric Sterile Neutrinos, Takehiko Asaka, Atsushi Watanabe, JHEP 07 (2012) 112, arXiv:1202.0725.
[Asaka:2012hc]
[9-501]
New limits on radiative sterile neutrino decays from a search for single photons in neutrino interactions, S. N. Gninenko, Phys. Lett. B710 (2012) 86-90, arXiv:1201.5194.
[Gninenko:2012rw]
[9-502]
An estimate of $\vartheta_{14}$ independent of reactor antineutrino fluxes, Antonio Palazzo, Phys. Rev. D85 (2012) 077301, arXiv:1201.4280.
[Palazzo:2012yf]
[9-503]
Constraints on massive sterile plus active neutrino species in non minimal cosmologies, Elena Giusarma, Maria Archidiacono, Roland de Putter, Alessandro Melchiorri, Olga Mena, Phys. Rev. D85 (2012) 083522, arXiv:1112.4661.
[Giusarma:2011zq]
[9-504]
Reply to 'Corrections to the HARP-CDP Analysis of the LSND Neutrino Oscillation Backgrounds', A. Bolshakova et al., arXiv:1112.3852, 2011.
[Bolshakova:2011dc]
[9-505]
Corrections to the HARP-CDP Analysis of the LSND Neutrino Oscillation Backgrounds, G. T. Garvey, W. C. Louis, G. B. Mills, D. H. White, arXiv:1112.2181, 2011.
[Garvey:2011aa]
[9-506]
Revisiting the 'LSND anomaly' II: critique of the data analysis, A. Bolshakova et al., Phys. Rev. D85 (2012) 092009, arXiv:1112.0907.
[Bolshakova:2011ib]
[9-507]
Sensitivity to eV-scale Neutrinos of Experiments at a Very Low Energy Neutrino Factory, Christopher D. Tunnell, John H. Cobb, Alan D. Bross, arXiv:1111.6550, 2011.
[Tunnell:2011ya]
[9-508]
First Double-Chooz Results and the Reactor Antineutrino Anomaly, Carlo Giunti, Marco Laveder, Phys. Rev. D85 (2012) 031301, arXiv:1111.5211.
[Giunti:2011vc]
[9-509]
Implications of sterile neutrinos for medium/long-baseline neutrino experiments and the determination of $\vartheta_{13}$, Bhubanjyoti Bhattacharya, Arun M. Thalapillil, Carlos E. M. Wagner, Phys. Rev. D85 (2012) 073004, arXiv:1111.4225.
[Bhattacharya:2011ee]
[9-510]
Implications of 3+1 Short-Baseline Neutrino Oscillations, Carlo Giunti, Marco Laveder, Phys. Lett. B706 (2011) 200-207, arXiv:1111.1069.
[Giunti:2011cp]
[9-511]
Vanishing effective mass of the neutrinoless double beta decay including light sterile neutrinos, Y. F. Li, S. Liu, Phys. Lett. B706 (2012) 406-411, arXiv:1110.5795.
[Li:2011ss]
[9-512]
Sterile Neutrino Production Through a Matter Effect Enhancement at Long Baselines, Joseph Bramante, Int.J.Mod.Phys. A28 (2013) 1350067, arXiv:1110.4871.
[Bramante:2011uu]
[9-513]
Evidence for extra radiation? Profile likelihood versus Bayesian posterior, Jan Hamann, JCAP 1203 (2012) 021, arXiv:1110.4271.
[Hamann:2011hu]
[9-514]
Revisiting the 'LSND anomaly' I: impact of new data, A. Bolshakova et al. (HARP-CDP), Phys. Rev. D85 (2012) 092008, arXiv:1110.4265.
[HARP-CDPGroup:2011hnr]
[9-515]
Impact of eV-mass sterile neutrinos on neutrino-driven supernova outflows, Irene Tamborra, Georg G. Raffelt, Lorenz Huedepohl, Hans-Thomas Janka, JCAP 1201 (2012) 013, arXiv:1110.2104.
[Tamborra:2011is]
[9-516]
Is there evidence for sterile neutrinos in IceCube data?, V. Barger, Y. Gao, D. Marfatia, Phys. Rev. D85 (2012) 011302, arXiv:1109.5748.
[Barger:2011rc]
[9-517]
Status of 3+1 Neutrino Mixing, Carlo Giunti, Marco Laveder, Phys. Rev. D84 (2011) 093006, arXiv:1109.4033.
[Giunti:2011hn]
[9-518]
The Case for Dark Radiation, Maria Archidiacono, Erminia Calabrese, Alessandro Melchiorri, Phys. Rev. D84 (2011) 123008, arXiv:1109.2767.
[Archidiacono:2011gq]
[9-519]
Atmospheric neutrinos as a probe of $\text{eV}^2$-scale active-sterile oscillations, Raj Gandhi, Pomita Ghoshal, Phys. Rev. D86 (2012) 037301, arXiv:1108.4360.
[Gandhi:2011jg]
[9-520]
Sterile neutrinos with eV masses in cosmology - how disfavoured exactly?, Jan Hamann, Steen Hannestad, Georg G. Raffelt, Yvonne Y. Y. Wong, JCAP 1109 (2011) 034, arXiv:1108.4136.
[Hamann:2011ge]
[9-521]
Testing Nonstandard Neutrino Properties with a Mossbauer Oscillation Experiment, P.A.N. Machado, H. Nunokawa, F. A. Pereira dos Santos, R. Zukanovich Funchal, JHEP 11 (2011) 136, arXiv:1108.3339.
[Machado:2011tn]
[9-522]
Search for sterile neutrinos at reactors, Osamu Yasuda, JHEP 09 (2011) 036, arXiv:1107.4766.
[Yasuda:2011np]
[9-523]
Sterile Neutrinos, Coherent Scattering and Oscillometry Measurements with Low-temperature Bolometers, Joseph A. Formaggio, E. Figueroa-Feliciano, A.J. Anderson, Phys. Rev. D85 (2012) 013009, arXiv:1107.3512.
[Formaggio:2011jt]
[9-524]
Learning from tau appearance, P. Migliozzi, F. Terranova, New J. Phys. 13 (2011) 083016, arXiv:1107.3018.
[Migliozzi:2011bj]
[9-525]
3+1 and 3+2 Sterile Neutrino Fits, Carlo Giunti, Marco Laveder, Phys. Rev. D84 (2011) 073008, arXiv:1107.1452.
[Giunti:2011gz]
[9-526]
Sterile neutrino decay as a common origin for LSND/MiniBooNe and T2K excess events, S.N. Gninenko, Phys. Rev. D85 (2012) 051702, arXiv:1107.0279.
[Gninenko:2011hb]
[9-527]
Short baseline neutrino oscillations: when entanglement suppresses coherence, Daniel Boyanovsky, Phys. Rev. D84 (2011) 065001, arXiv:1106.6248.
[Boyanovsky:2011xq]
[9-528]
Limits on Electron Neutrino Disappearance from the KARMEN and LSND electron neutrino - Carbon Cross Section Data, J.M. Conrad, M.H. Shaevitz, Phys. Rev. D85 (2012) 013017, arXiv:1106.5552.
[Conrad:2011ce]
[9-529]
Are priors responsible for cosmology favoring additional neutrino species?, Alma X. Gonzalez-Morales, Robert Poltis, Blake D. Sherwin, Licia Verde, arXiv:1106.5052, 2011.
[Gonzalez-Morales:2011tyq]
[9-530]
Possible, alternative explanations of the T2K observation of the $\nu_e$ appearance from an initial $\nu_\mu$, D.Gibin, A Guglielmi, F. Pietropaolo, C. Rubbia, P. Sala, arXiv:1106.4417, 2011.
[Gibin:2011hd]
[9-531]
Minimal models with light sterile neutrinos, A. Donini, P. Hernandez, J. Lopez-Pavon, M. Maltoni, JHEP 07 (2011) 105, arXiv:1106.0064.
[Donini:2011jh]
[9-532]
Analysis of KATRIN data using Bayesian inference, Anna Sejersen Riis, Steen Hannestad, Christian Weinheimer, Phys. Rev. C84 (2011) 045503, arXiv:1105.6005.
[SejersenRiis:2011sj]
[9-533]
Active to sterile neutrino oscillations: Coherence and MINOS results, Daniel Hernandez, A. Yu. Smirnov, Phys. Lett. B706 (2012) 360-366, arXiv:1105.5946.
[Hernandez:2011rs]
[9-534]
Short-baseline Neutrino Oscillation Waves in Ultra-large Liquid Scintillator Detectors, Sanjib Kumar Agarwalla, J.M. Conrad, M.H. Shaevitz, JHEP 12 (2011) 085, arXiv:1105.4984.
[Agarwalla:2011qf]
[9-535]
Sterile neutrino decay explanation of LSND and MiniBooNE anomalies, Claudio Dib, Juan Carlos Helo, Sergey Kovalenko, Ivan Schmidt, Phys. Rev. D84 (2011) 071301, arXiv:1105.4664.
[Dib:2011jh]
[9-536]
On the search of sterile neutrinos by oscillometry measurements, J.D. Vergados, Y. Giomataris, Yu. N. Novikov, Phys. Rev. D85 (2012) 033003, arXiv:1105.3654.
[Vergados:2011na]
[9-537]
On sterile neutrino mixing with $\nu_{\tau}$, Juan Carlos Helo, Sergey Kovalenko, Ivan Schmidt, Phys. Rev. D84 (2011) 053008, arXiv:1105.3019.
[Helo:2011yg]
[9-538]
Testing the very-short-baseline neutrino anomalies at the solar sector, Antonio Palazzo, Phys. Rev. D83 (2011) 113013, arXiv:1105.1705.
[Palazzo:2011rj]
[9-539]
Resolving the Reactor Neutrino Anomaly with the KATRIN Neutrino Experiment, J. A. Formaggio, J. Barrett, Phys. Lett. B706 (2011) 68-71, arXiv:1105.1326.
[Formaggio:2011jg]
[9-540]
Captures of Hot and Warm Sterile Antineutrino Dark Matter on EC-decaying Ho-163 Nuclei, Y. F. Li, Zhi-zhong Xing, JCAP 1108 (2011) 006, arXiv:1104.4000.
[Li:2011mw]
[9-541]
How Additional Massless Neutrinos Affect the Cosmic Microwave Background Damping Tail, Zhen Hou, Ryan Keisler, Lloyd Knox, Marius Millea, Christian Reichardt, Phys. Rev. D87 (2013) 083008, arXiv:1104.2333.
[Hou:2011ec]
[9-542]
Searching for sterile neutrinos in ice, Soebur Razzaque, A. Yu. Smirnov, JHEP 1107 (2011) 084, arXiv:1104.1390.
[Razzaque:2011ab]
[9-543]
Reactor sterile neutrinos, dark energy and the age of the universe, Jostein R. Kristiansen, Oystein Elgaroy, Astron.Astrophys. 532 (2011) A67, arXiv:1104.0704.
[Kristiansen:2011mp]
[9-544]
Probing the fourth neutrino existence by neutral current oscillometry in the spherical gaseous TPC, J.D. Vergados, Y. Giomataris, Yu.N. Novikov, Nucl. Phys. B854 (2012) 54-66, arXiv:1103.5307.
[Vergados:2011gia]
[9-545]
Are there sterile neutrinos at the eV scale?, Joachim Kopp, Michele Maltoni, Thomas Schwetz, Phys. Rev. Lett. 107 (2011) 091801, arXiv:1103.4570.
[Kopp:2011qd]
[9-546]
Neutrino Physics with Dark Matter Experiments and the Signature of New Baryonic Neutral Currents, Maxim Pospelov, Phys. Rev. D84 (2011) 085008, arXiv:1103.3261.
[Pospelov:2011ha]
[9-547]
Joint analysis of spectral reactor neutrino experiments, V.V. Sinev, arXiv:1103.2452, 2011.
[Sinev:2011ra]
[9-548]
A robust upper limit on $N_{\rm eff}$ from BBN, circa 2011, Gianpiero Mangano, Pasquale D. Serpico, Phys. Lett. B701 (2011) 296-299, arXiv:1103.1261.
[Mangano:2011ar]
[9-549]
Model Independent Constraints on Solar Neutrinos, Lal Singh, Bhag C. Chauhan, Ravi Dutt, K. K. Sharma, S. Dev, arXiv:1102.4917, 2011.
[Singh:2011hr]
[9-550]
Constraints on massive sterile neutrino species from current and future cosmological data, Elena Giusarma et al., Phys. Rev. D83 (2011) 115023, arXiv:1102.4774.
[Giusarma:2011ex]
[9-551]
BBN with Late Electron-Sterile Neutrino Oscillations - The Finest Leptometer, D. Kirilova, JCAP 1206 (2012) 007, arXiv:1101.4177.
[Kirilova:2011an]
[9-552]
The Reactor Antineutrino Anomaly, G. Mention et al., Phys. Rev. D83 (2011) 073006, arXiv:1101.2755.
[Mention:2011rk]
[9-553]
Pulsar Kicks from Active-Sterile Neutrino Transformation in Supernovae, Chad T. Kishimoto, arXiv:1101.1304, 2011.
[Kishimoto:2011mw]
[9-554]
Testing for Large Extra Dimensions with Neutrino Oscillations, P. A. N. Machado, H. Nunokawa, R. Zukanovich Funchal, Phys. Rev. D84 (2011) 013003, arXiv:1101.0003.
[Machado:2011jt]
[9-555]
Solar neutrino spectrum, sterile neutrinos and additional radiation in the Universe, P. C. de Holanda, A. Yu. Smirnov, Phys. Rev. D83 (2011) 113011, arXiv:1012.5627.
[deHolanda:2010am]
[9-556]
Large Short-Baseline $\bar\nu_{\mu}$ Disappearance, Carlo Giunti, Marco Laveder, Phys. Rev. D83 (2011) 053006, arXiv:1012.0267.
[Giunti:2010uj]
[9-557]
Muon Capture Constraints on Sterile Neutrino Properties, David McKeen, Maxim Pospelov, Phys. Rev. D82 (2010) 113018, arXiv:1011.3046.
[Gninenko:2010nv]
[9-558]
A refined constrain on lepton number from Big Bang Nucleosynthesis, G. Mangano, G. Miele, S. Pastor, O. Pisanti, S. Sarikas, JCAP JCAP03 (2011) 035, arXiv:1011.0916.
[Mangano:2010ei]
[9-559]
Short-Baseline $\bar\nu_{\mu}\to\bar\nu_{e}$ Oscillations, Carlo Giunti, Marco Laveder, Phys. Rev. D82 (2010) 093016, arXiv:1010.1395.
[Giunti:2010jt]
[9-560]
Hint of CPT Violation in Short-Baseline Electron Neutrino Disappearance, Carlo Giunti, Marco Laveder, Phys. Rev. D82 (2010) 113009, arXiv:1008.4750.
[Giunti:2010zs]
[9-561]
Detecting sterile neutrinos with KATRIN like experiments, Anna Sejersen Riis, Steen Hannestad, JCAP 1102 (2011) 011, arXiv:1008.1495.
[Riis:2010zm]
[9-562]
MiniBooNE and LSND data: non-standard neutrino interactions in a (3+1) scheme versus (3+2) oscillations, Evgeny Akhmedov, Thomas Schwetz, JHEP 10 (2010) 115, arXiv:1007.4171.
[Akhmedov:2010vy]
[9-563]
Sterile neutrinos beyond LSND at the Neutrino Factory, Davide Meloni, Jian Tang, Walter Winter, Phys. Rev. D82 (2010) 093008, arXiv:1007.2419.
[Meloni:2010zr]
[9-564]
Direct Detection of the Cosmic Neutrino Background Including Light Sterile Neutrinos, Y. F. Li, Shu Luo, Zhi-zhong Xing, Phys.Lett. B692 (2010) 261-267, arXiv:1007.0914.
[Li:2010sn]
[9-565]
Cosmology Favoring Extra Radiation and Sub-eV Mass Sterile Neutrinos as an Option, Jan Hamann, Steen Hannestad, Georg G. Raffelt, Irene Tamborra, Yvonne Y. Y. Wong, Phys. Rev. Lett. 105 (2010) 181301, arXiv:1006.5276.
[Hamann:2010bk]
[9-566]
Statistical Significance of the Gallium Anomaly, Carlo Giunti, Marco Laveder, Phys. Rev. C83 (2011) 065504, arXiv:1006.3244.
[Giunti:2010zu]
[9-567]
Gallium experiments with artificial neutrino sources as a tool for investigation of transition to sterile states, V. N. Gavrin, V. V. Gorbachev, E. P. Veretenkin, B. T. Cleveland, arXiv:1006.2103, 2010.
[Gavrin:2010qj]
[9-568]
Short-Baseline Electron Neutrino Disappearance, Tritium Beta Decay and Neutrinoless Double-Beta Decay, Carlo Giunti, Marco Laveder, Phys. Rev. D82 (2010) 053005, arXiv:1005.4599.
[Giunti:2010wz]
[9-569]
Apparent CPT Violation in Neutrino Oscillation Experiments, Netta Engelhardt, Ann E. Nelson, Jonathan R. Walsh, Phys. Rev. D81 (2010) 113001, arXiv:1002.4452.
[Engelhardt:2010dx]
[9-570]
Updated global fit to three neutrino mixing: status of the hints of theta13 > 0, M.C. Gonzalez-Garcia, Michele Maltoni, Jordi Salvado, JHEP 04 (2010) 056, arXiv:1001.4524.
[Gonzalez-Garcia:2010zke]
[9-571]
The primordial abundance of 4He: evidence for non-standard big bang nucleosynthesis, Y. I. Izotov, T. X. Thuan, Astrophys. J. 710 (2010) L67-L71, arXiv:1001.4440.
[Izotov:2010ca]
[9-572]
Evidence for right-handed neutrinos at a neutrino factory, F. del Aguila, J. de Blas, R. Szafron, J. Wudka, M. Zralek, Phys. Lett. B683 (2010) 282-288, arXiv:0911.3158.
[delAguila:2009vv]
[9-573]
Matter Effects in Active-Sterile Solar Neutrino Oscillations, C. Giunti, Y. F. Li, Phys. Rev. D80 (2009) 113007, arXiv:0910.5856.
[Giunti:2009xz]
[9-574]
Pseudo-Dirac Neutrino Scenario: Cosmic Neutrinos at Neutrino Telescopes, Arman Esmaili, Phys. Rev. D81 (2010) 013006, arXiv:0909.5410.
[Esmaili:2009fk]
[9-575]
Short-Baseline Electron Neutrino Disappearance at a Neutrino Factory, Carlo Giunti, Marco Laveder, Walter Winter, Phys. Rev. D80 (2009) 073005, arXiv:0907.5487.
[Giunti:2009en]
[9-576]
CPT-violating neutrino oscillations, S. Esposito, G. Salesi, Mod. Phys. Lett. A25 (2010) 597-606, arXiv:0906.5542.
[Esposito:2009ca]
[9-577]
Gravitational hydrodynamics of large scale structure formation, Theo M. Nieuwenhuizen, Carl H. Gibson, Rudy E. Schild, Europhys. Lett. 88 (2009) 49001, arXiv:0906.5087.
[Nieuwenhuizen:2009tz]
[9-578]
Active and Sterile Neutrino Emission and SN1987A Pulsar Velocity, Leonard S Kisslinger, Sandip Pakvasa, arXiv:0906.4117, 2009.
[Kisslinger:2009xb]
[9-579]
Large Mixing Angle Sterile Neutrinos and Pulsar Velocities, Leonard S. Kisslinger, Ernest M. Henley, Mikkel B. Johnson, Mod. Phys. Lett. A24 (2009) 2507-2516, arXiv:0906.2802.
[Kisslinger:2009rv]
[9-580]
Viability of $ \Delta m^2 \sim 1 \text{eV}^2 $ sterile neutrino mixing models in light of MiniBooNE electron neutrino and antineutrino data from the Booster and NuMI beamlines, G. Karagiorgi, Z. Djurcic, J. Conrad, M. H. Shaevitz, M. Sorel, Phys. Rev. D80 (2009) 073001, arXiv:0906.1997.
[Karagiorgi:2009nb]
[9-581]
Resonant active-sterile neutrino mixing in the presence of matter potentials and altered dispersion relations, Sebastian Hollenberg, Heinrich Pas, arXiv:0904.2167, 2009.
[Hollenberg:2009bq]
[9-582]
VSBL Electron Neutrino Disappearance, Carlo Giunti, Marco Laveder, Phys. Rev. D80 (2009) 013005, arXiv:0902.1992.
[Giunti:2009zz]
[9-583]
Light sterile neutrinos, spin flavour precession and the solar neutrino experiments, C.R. Das, Joao Pulido, Marco Picariello, Phys. Rev. D79 (2009) 073010, arXiv:0902.1310.
[Das:2009kw]
[9-584]
Sterile Neutrinos in Light of Recent Cosmological and Oscillation Data: a Multi-Flavor Scheme Approach, Alessandro Melchiorri et al., JCAP 0901 (2009) 036, arXiv:0810.5133.
[Melchiorri:2008gq]
[9-585]
The Existence of Sterile Neutrino Halos in Galactic Centers as an Explanation of the Black Hole mass - Velocity Dispersion Relation, M. H. Chan, M. C. Chu, Astrophys. J. 692 (2009) 212-216, arXiv:0810.4057.
[Chan:2008cr]
[9-586]
Semileptonic decays of charmed and beauty baryons with sterile neutrinos in the final state, Sabir Ramazanov, Phys. Rev. D79 (2009) 077701, arXiv:0810.0660.
[Ramazanov:2008ph]
[9-587]
Light Sterile Neutrino Effects at $\theta_{13}$-Sensitive Reactor Neutrino Experiments, Andre de Gouvea, Thomas Wytock, Phys. Rev. D79 (2009) 073005, arXiv:0809.5076.
[deGouvea:2008qk]
[9-588]
Chaos, Determinacy and Fractals in Active-Sterile Neutrino Oscillations in the Early Universe, Kevork N. Abazajian, Prateek Agrawal, JCAP 0810 (2008) 006, arXiv:0807.0456.
[Abazajian:2008dz]
[9-589]
Eosphoric sterile neutrinos, supernovae, and the galactic positrons, George M. Fuller, Alexander Kusenko, Kalliopi Petraki, Phys. Lett. B670 (2009) 281-284, arXiv:0806.4273.
[Fuller:2008erj]
[9-590]
Signatures of sterile neutrino mixing in high-energy cosmic neutrino flux, Andrea Donini, Osamu Yasuda, arXiv:0806.3029, 2008.
[Donini:2008xn]
[9-591]
Delayed pulsar kicks from the emission of sterile neutrinos, Alexander Kusenko, Bhabani Prasad Mandal, Alok Mukherjee, Phys. Rev. D77 (2008) 123009, arXiv:0801.4734.
[Kusenko:2008gh]
[9-592]
Pulsar Kicks With Sterile Neutrinos and Landau Levels, Leonard S. Kisslinger, Ernest M. Henley, Mikkel B. Johnson, arXiv:0712.0197, 2007.
[Kisslinger:2007uw]
[9-593]
Limits on $\nu_e$ and $\bar\nu_e$ disappearance from Gallium and reactor experiments, Mario A. Acero, Carlo Giunti, Marco Laveder, Phys. Rev. D78 (2008) 073009, arXiv:0711.4222.
[Acero:2007su]
[9-594]
Testing Primordial Abundances With Sterile Neutrinos, O. Civitarese, M. E. Mosquera, Phys. Rev. C77 (2008) 045806, arXiv:0711.2450.
[Civitarese:2007mn]
[9-595]
LSND versus MiniBooNE: Sterile neutrinos with energy dependent masses and mixing?, Thomas Schwetz, JHEP 02 (2008) 011, arXiv:0710.2985.
[Schwetz:2007cd]
[9-596]
Signature of sterile species in atmospheric neutrino data at neutrino telescopes, Sandhya Choubey, JHEP 0712 (2007) 014, arXiv:0709.1937.
[Choubey:2007ji]
[9-597]
Sterile neutrino signals from supernovae, P. Keranen, J. Maalampi, M. Myyrylainen, J. Riittinen, Phys. Rev. D76 (2007) 125026, arXiv:0708.3337.
[Keranen:2007ga]
[9-598]
$\nu_e$ Disappearance in MiniBooNE, Carlo Giunti, Marco Laveder, Phys. Rev. D77 (2008) 093002, arXiv:0707.4593.
[Giunti:2007xv]
[9-599]
The (3+2) Neutrino Mass Spectrum and Double Chooz, Abhijit Bandyopadhyay, Sandhya Choubey, arXiv:0707.2481, 2007.
[Bandyopadhyay:2007rj]
[9-600]
Sterile Neutrino-Enhanced Supernova Explosions, Jun Hidaka, George M. Fuller, Phys. Rev. D76 (2007) 083516, arXiv:0706.3886.
[Hidaka:2007se]
[9-601]
MiniBooNE Results and Neutrino Schemes with 2 sterile Neutrinos: Possible Mass Orderings and Observables related to Neutrino Masses, Srubabati Goswami, Werner Rodejohann, JHEP 10 (2007) 073, arXiv:0706.1462.
[Goswami:2007kv]
[9-602]
Invisible Z decay width bounds on active-sterile neutrino mixing in the (3+1) and (3+2) models, C. A. de S. Pires, Mod. Phys. Lett. A24 (2009) 475-483, arXiv:0706.1227.
[deSPires:2007wyk]
[9-603]
Confusing Sterile Neutrinos with Deviation from Tribimaximal Mixing at Neutrino Telescopes, Ram Lal Awasthi, Sandhya Choubey, Phys. Rev. D76 (2007) 113002, arXiv:0706.0399.
[Awasthi:2007az]
[9-604]
Right-Handed Neutrinos at LHC and the Mechanism of Neutrino Mass Generation, Joern Kersten, Alexei Yu. Smirnov, Phys. Rev. D76 (2007) 073005, arXiv:0705.3221.
[Kersten:2007vk]
[9-605]
Sterile neutrino oscillations after first MiniBooNE results, Michele Maltoni, Thomas Schwetz, Phys. Rev. D76 (2007) 093005, arXiv:0705.0107.
[Maltoni:2007zf]
[9-606]
3+1 sterile neutrinos at the CNGS, A. Donini et al., JHEP 12 (2007) 013, arXiv:0704.0388.
[Donini:2007yf]
[9-607]
Turbulent supernova shock waves and the sterile neutrino signature in megaton water detectors, Sandhya Choubey, N. P. Harries, G. G. Ross, Phys. Rev. D76 (2007) 073013, arXiv:hep-ph/0703092.
[Choubey:2007ga]
[9-608]
MiniBooNE and a $(CP)^2 = -1$ sterile neutrino, D. V. Ahluwalia-Khalilova, Alex B. Nielsen, Mod. Phys. Lett. A22 (2007) 1301-1307, arXiv:hep-ph/0702049.
[Ahluwalia:2007wxl]
[9-609]
Measuring the mass of a sterile neutrino with a very short baseline reactor experiment, D. C. Latimer, J. Escamilla, D. J. Ernst, Phys. Rev. C75 (2007) 042501, arXiv:hep-ex/0701004.
[Latimer:2007qe]
[9-610]
Probing active to sterile neutrino oscillations in the LENS detector, Christian Grieb, Jonathan Link, R. S. Raghavan, Phys. Rev. D75 (2007) 093006, arXiv:hep-ph/0611178.
[Grieb:2006mp]
[9-611]
Short-Baseline Active-Sterile Neutrino Oscillations?, Carlo Giunti, Marco Laveder, Mod. Phys. Lett. A22 (2007) 2499-2509, arXiv:hep-ph/0610352.
[Giunti:2006bj]
[9-612]
Leptonic CP violation studies at MiniBooNE in the (3+2) sterile neutrino oscillation hypothesis, G. Karagiorgi et al., Phys. Rev. D75 (2007) 013011, arXiv:hep-ph/0609177.
[Karagiorgi:2006jf]
[9-613]
Parametric resonance for antineutrino conversions using LSND best-fit results with a 3+1 flavor scheme, J. Linder, Phys. Rev. D74 (2006) 053001, arXiv:hep-ph/0609022.
[Linder:2006yu]
[9-614]
Light Element Signatures of Sterile Neutrinos and Cosmological Lepton Numbers, Christel J. Smith, George M. Fuller, Chad T. Kishimoto, Kevork N. Abazajian, Phys. Rev. D74 (2006) 085008, arXiv:astro-ph/0608377.
[Smith:2006uw]
[9-615]
Sterile neutrinos, lepton asymmetries, primordial elements: how much of each?, Yi-Zen Chu, Marco Cirelli, Phys. Rev. D74 (2006) 085015, arXiv:astro-ph/0608206.
[Chu:2006ua]
[9-616]
Coherent Active-Sterile Neutrino Flavor Transformation in the Early Universe, Chad T. Kishimoto, George M. Fuller, Christel J. Smith, Phys. Rev. Lett. 97 (2006) 141301, arXiv:astro-ph/0607403.
[Kishimoto:2006zk]
[9-617]
Unitarity of the Leptonic Mixing Matrix, S. Antusch et al., JHEP 10 (2006) 084, arXiv:hep-ph/0607020.
[Antusch:2006vwa]
[9-618]
Sum rules of four-neutrino mixing in matter, He Zhang, Mod. Phys. Lett. A22 (2007) 1341-1348, arXiv:hep-ph/0606040.
[Zhang:2006yq]
[9-619]
Probing neutrino oscillations from supernovae shock waves via the IceCube detector, Sandhya Choubey, N. P. Harries, G.G. Ross, Phys. Rev. D74 (2006) 053010, arXiv:hep-ph/0605255.
[Choubey:2006aq]
[9-620]
On the hadronic contribution to sterile neutrino production, Takehiko Asaka, Mikko Laine, Mikhail Shaposhnikov, JHEP 06 (2006) 053, arXiv:hep-ph/0605209.
[Asaka:2006rw]
[9-621]
Cosmological parameters from combining the Lyman-alpha forest with CMB, galaxy clustering and SN constraints, Uros Seljak, Anze Slosar, Patrick McDonald, JCAP 0610 (2006) 014, arXiv:astro-ph/0604335.
[Seljak:2006bg]
[9-622]
Constraining Mass Spectra with Sterile Neutrinos from Neutrinoless Double Beta Decay, Tritium Beta Decay and Cosmology, Srubabati Goswami, Werner Rodejohann, Phys. Rev. D73 (2006) 113003, arXiv:hep-ph/0512234.
[Goswami:2005ng]
[9-623]
Model Independent Constraints on Non-electronic Flavors in the Solar Boron Neutrino Flux, S. Dev, Sanjeev Kumar, Surender Verma, Mod. Phys. Lett. A21 (2006) 1761, arXiv:hep-ph/0512178.
[Dev:2005au]
[9-624]
Is cosmology compatible with sterile neutrinos?, Scott Dodelson, Alessandro Melchiorri, Anze Slosar, Phys. Rev. Lett. 97 (2006) 04301, arXiv:astro-ph/0511500.
[Dodelson:2005tp]
[9-625]
Local demands on sterile neutrinos, David C. Latimer, David J. Ernst, Mod. Phys. Lett. A21 (2006) 197, arXiv:nucl-th/0509066.
[Latimer:2005bd]
[9-626]
Explaining LSND by a decaying sterile neutrino, Sergio Palomares-Ruiz, Silvia Pascoli, Thomas Schwetz, JHEP 0509 (2005) 048, arXiv:hep-ph/0505216.
Comment: The figure 3 (left panel) corresponds to neutrino oscillations in (3+1) mass scheme with the last NOMAD data included. [M.L.].
[Palomares-Ruiz:2005zbh]
[9-627]
Constraints on Weakly Mixed Sterile Neutrinos in the Light of SNO Salt Phase and 766.3 Ty KamLAND Data, S. Dev, Sanjeev Kumar, Mod. Phys. Lett. A20 (2005) 2957, arXiv:hep-ph/0504237.
[Dev:2005px]
[9-628]
Sterile-active neutrino oscillations and shortcuts in the extra dimension, Heinrich Pas, Sandip Pakvasa, Thomas J. Weiler, Phys. Rev. D72 (2005) 095017, arXiv:hep-ph/0504096.
[Pas:2005rb]
[9-629]
Sterile neutrinos in neutrinoless double beta decay, P. Benes, Amand Faessler, S. Kovalenko, F. Simkovic, Phys. Rev. D71 (2005) 077901, arXiv:hep-ph/0501295.
[Benes:2005hn]
[9-630]
See-Saw Energy Scale and the LSND Anomaly, Andre de Gouvea, Phys. Rev. D72 (2005) 033005, arXiv:hep-ph/0501039.
[deGouvea:2005er]
[9-631]
Can a 3+2 Oscillation Model Explain the NuTeV Electroweak Results?, J. S. Ma, J. M. Conrad, M. Sorel, G. P. Zeller, Phys. Rev. D73 (2006) 057302, arXiv:hep-ex/0501011.
[Ma:2005eh]
[9-632]
Cosmological lepton asymmetry, primordial nucleosynthesis, and sterile neutrinos, Kevork Abazajian, Nicole F. Bell, George M. Fuller, Yvonne Y. Y. Wong, Phys. Rev. D72 (2005) 063004, arXiv:astro-ph/0410175.
[Abazajian:2004aj]
[9-633]
SNO, SuperKamiokande data, antineutrinos and sterile neutrinos, Bhag C. Chauhan, J. Pulido, JHEP 0412 (2004) 040, arXiv:hep-ph/0406227.
[Chauhan:2004xz]
[9-634]
New bounds on MeV sterile neutrinos based on the accelerator and Super-Kamiokande results, Alexander Kusenko, Silvia Pascoli, Dmitry Semikoz, JHEP 0511 (2005) 028, arXiv:hep-ph/0405198.
[Kusenko:2004qc]
[9-635]
Probing oscillations into sterile neutrinos with cosmology, astrophysics and experiments, Marco Cirelli, Guido Marandella, Alessandro Strumia, Francesco Vissani, Nucl. Phys. B708 (2005) 215, arXiv:hep-ph/0403158.
[Cirelli:2004cz]
[9-636]
Active-sterile neutrino oscillations and pulsar kicks, M. Barkovich, J. C. D'Olivo, R. Montemayor, Phys. Rev. D70 (2004) 043005, arXiv:hep-ph/0402259.
[Barkovich:2004jp]
[9-637]
Search for sterile neutrinos as another research objective of $\theta_{13}$ experiments at reactors, V. Kopeikin, L. Mikaelyan, V. Sinev, arXiv:hep-ph/0310246, 2003.
[Kopeikin:2003uu]
[9-638]
LSND anomaly from CPT violation in four-neutrino models, V. Barger, D. Marfatia, K. Whisnant, Phys. Lett. B576 (2003) 303, arXiv:hep-ph/0308299.
[Barger:2003xm]
[9-639]
BBN bounds on active-sterile neutrino mixing, A.D. Dolgov, F.L. Villante, Nucl. Phys. B679 (2004) 261, arXiv:hep-ph/0308083.
[Dolgov:2003sg]
[9-640]
Homestake result, sterile neutrinos and low energy solar neutrino experiments, P. C. de Holanda, A. Yu. Smirnov, Phys. Rev. D69 (2004) 113002, arXiv:hep-ph/0307266.
[deHolanda:2003tx]
[9-641]
A combined analysis of short-baseline neutrino experiments in the (3+1) and (3+2) sterile neutrino oscillation hypotheses, Michel Sorel, Janet Conrad, Michael Shaevitz, Phys. Rev. D70 (2004) 073004, arXiv:hep-ph/0305255.
From the article: (version v1) The best-fit point of a combined analysis of the NSBL and LSND data in (3+2) models would be interpreted in NOMAD as $\Delta{m}^2 \simeq 21.5 \, \mathrm{eV}^2$, $\sin^2 2\theta_{\mu e} \simeq 8 \times 10^{-4}$, which is compatible with the NOMAD limits [hep-ex/0306037].
Comment: (version v1) Figure 4 a) shows the allowed regions at 90\%, 95\% and 99\% CL for (3+1) schemes in $(\sin^2 2\theta_{\mu e},\Delta m^2)$ space, together with the best-fit point, indicated by the star.
Figure 8 shows the Nomad excluded region at 90\% CL (2 d.o.f) in $(\sin^2 2\theta_{\mu e},\Delta m^2)$ space, together with results from other experiments. [M.L.].

[Sorel:2003hf]
[9-642]
Last CPT-Invariant Hope for LSND Neutrino Oscillations, C. Giunti, Mod. Phys. Lett. A18 (2003) 1179, arXiv:hep-ph/0302173.
[Giunti:2003cf]
[9-643]
WMAPping out Neutrino Masses, A. Pierce, H. Murayama, Phys. Lett. B581 (2004) 218, arXiv:hep-ph/0302131.
[Pierce:2003uh]
[9-644]
Probing the LSND scale and four neutrino scenarios with a neutrino telescope, H. Nunokawa, O. L. G. Peres, R. Zukanovich Funchal, Phys. Lett. B562 (2003) 279, arXiv:hep-ph/0302039.
[Nunokawa:2003ep]
[9-645]
Searches for sterile component with solar neutrinos and KamLAND, P. C. de Holanda, A. Yu. Smirnov, arXiv:hep-ph/0211264, 2002.
[deHolanda:2002ma]
[9-646]
Are four neutrino models ruled out?, R. Foot, Mod. Phys. Lett. A18 (2003) 2079, arXiv:hep-ph/0210393.
[Foot:2002tf]
[9-647]
Mirror model for sterile neutrinos, V. Berezinsky, M. Narayan, F. Vissani, Nucl. Phys. B658 (2003) 254, arXiv:hep-ph/0210204.
From the abstract: ... The considered subdominant neutrino oscillations (active <-> sterile) nu_a <-> nu_s can reveal itself as the big effects in observations of supernova neutrinos.
[Berezinsky:2002fa]
[9-648]
The hidden sterile neutrino and the (2+2) sum rule, T.J. Weiler H. Ps, L. Song, Phys. Rev. D67 (2003) 073019, arXiv:hep-ph/0209373.
[Pas:2002ah]
[9-649]
Constraining neutrino oscillation parameters with current solar and atmospheric data, M. Maltoni, T. Schwetz, M. A. Tortola, J. W. F. Valle, Phys. Rev. D67 (2003) 013011, arXiv:hep-ph/0207227.
[Maltoni:2002ni]
[9-650]
Ruling out four-neutrino oscillation interpretations of the LSND anomaly?, M. Maltoni, T. Schwetz, M. A. Tortola, J. W. F. Valle, Nucl. Phys. B643 (2002) 321-338, arXiv:hep-ph/0207157.
From the abstract: ... all four-neutrino descriptions of the LSND anomaly, both in (2+2) as well as (3+1) realizations, are highly disfavoured. Our analysis brings the LSND hint to a more puzzling status.
From the article: The exclusion of four-neutrino oscillation schemes of the (2+2)-type is based on the improved sensitivity of solar and atmospheric neutrino experiments to oscillations into a sterile neutrino, thanks to recent experimental data. This is a very robust result, independent of whether the LSND experiment is confirmed or disproved. The exclusion of (3+1) schemes depends somehow on the used LSND data. Furthermore, it heavily relies on the results of negative SBL experiments, especially on the Bugey and CDHS disappearance experiments.
[Maltoni:2002xd]
[9-651]
If sterile neutrinos exist, how can one determine the total B-8 and Be-7 solar neutrino fluxes?, J. N. Bahcall, M. C. Gonzalez-Garcia, C. Pena-Garay, Phys. Rev. C66 (2002) 035802, arXiv:hep-ph/0204194.
[Bahcall:2002zh]
[9-652]
Statistical Analysis of Different $\bar\nu_\mu\to\bar\nu_e$ Searches, E. D. Church, K. Eitel, G. B. Mills, M. Steidl, Phys. Rev. D66 (2002) 013001, arXiv:hep-ex/0203023.
From the article: This paper describes a combined statistical analysis of the final LSND and KARMEN 2 results.... For both experiments, the data are analysed with a maximum likelihood analysis followed by the extraction of confidence levels in a unified approach.... There are two oscillation scenarios with either $\Delta m^2 \approx 7 \, \mathrm{eV}^2$ or $\Delta m^2 < 1 \, \mathrm{eV}^2$ compatible with both experiments.
[Church:2002tc]
[9-653]
$\nu_e \to \nu_s$ oscillations with large neutrino mass in NuTeV?, Carlo Giunti, Marco Laveder, arXiv:hep-ph/0202152, 2002.
From the abstract: We propose an explanation of NuTeV anomaly in terms of oscillations of electron neutrinos into sterile neutrinos with average probability $P_{\nu_e \rightarrow \nu_s} = 0.21 \pm 0.07$.
[Giunti:2002nh]
[9-654]
Interpreting the LSND anomaly: Sterile neutrinos or CPT- violation or...?, Alessandro Strumia, Phys. Lett. B539 (2002) 91-101, arXiv:hep-ph/0201134.
Comment: Table 2 in the Addendum about the first Kamland and WMAP data (20 feb 2003) collects all the interpretations of all experimental neutrino data together with the quality of their fits. Fig. 7b shows the 3+1 best fit solution including all data.
Figure n.4 Left shows the best-fit regions at 90\% and 99\% CL (2 d.o.f.) in (3+1) schemes. The dotted lines show the regions suggested by only the LSND data. The dots show the best fit points. Constraints from cosmology are not included in this figure. [M.L.].

[Strumia:2002fw]
[9-655]
High-energy neutrino oscillations in absorbing matter, Vadim A. Naumov, Phys. Lett. B529 (2002) 199-211, arXiv:hep-ph/0112249.
[Naumov:2001ci]
[9-656]
Supernova Neutrinos and LSND, Michel Sorel, Janet Conrad, Phys. Rev. D66 (2002) 033009, arXiv:hep-ph/0112214.
[Sorel:2001jn]
[9-657]
Oscillation Induced Neutrino Asymmetry Growth in the Early Universe, Kimmo Kainulainen, Antti Sorri, JHEP 02 (2002) 020, arXiv:hep-ph/0112158.
[Kainulainen:2001cb]
[9-658]
Blocking active-sterile neutrino oscillations in the early universe with a Majoron field, Luis Bento, Zurab Berezhiani, Phys. Rev. D64 (2001) 115015, arXiv:hep-ph/0108064.
[Bento:2001xi]
[9-659]
Matter effects in upward-going muons and sterile neutrino oscillations, M. Ambrosio et al. (MACRO), Phys. Lett. B517 (2001) 59-66, arXiv:hep-ex/0106049.
[MACRO:2001fie]
[9-660]
Neutrino asymmetry generation in the early universe (from $\nu_\alpha\leftrightarrows\nu_s$ oscillations), P. Di Bari, arXiv:hep-ph/0105133, 2001.
[DiBari:2001im]
[9-661]
Majorana neutrinos, neutrino mass spectrum, CP-violation and neutrinoless double beta-decay. II: Mixing of four neutrinos, Samoil M. Bilenky, S. Pascoli, S. T. Petcov, Phys. Rev. D64 (2001) 113003, arXiv:hep-ph/0104218.
[Bilenky:2001xq]
[9-662]
Active-sterile neutrino oscillations in the early universe: Asymmetry generation at low $|\Delta{m}^2|$ and the Landau-Zener approximation, P. Di Bari, R. Foot, Phys. Rev. D65 (2002) 045003, arXiv:hep-ph/0103192.
[DiBari:2001jk]
[9-663]
4-neutrino mass schemes and the likelihood of (3+1)-mass spectra, W. Grimus, T. Schwetz, Eur. Phys. J. C20 (2001) 1-11, arXiv:hep-ph/0102252.
[Grimus:2001mn]
[9-664]
Sterile neutrinos in tau lepton decays, Vladimir Gribanov, Sergey Kovalenko, Ivan Schmidt, Nucl. Phys. B607 (2001) 355-368, arXiv:hep-ph/0102155.
[Gribanov:2001vv]
[9-665]
Is it possible to test the LSND parameters at reactors?, V. V. Sinev, Part. Nucl. Lett. 108 (2001) 37-40. http://www1.jinr.ru/Archive/Pepan_letters/panl_5_2001/04_sinev.pdf.
[Sinev:2001kd]
[9-666]
On the chaoticity of active-sterile neutrino oscillations in the early universe, Poul-Erik N. Braad, Steen Hannestad, arXiv:hep-ph/0012194, 2000.
[Braad:2000zw]
[9-667]
(3+1) spectrum of neutrino masses: A Chance for LSND?, O.L.G. Peres, A.Yu. Smirnov, Nucl. Phys. B599 (2001) 3, arXiv:hep-ph/0011054.
[Peres:2000ic]
[9-668]
Large $\nu_\mu \to \nu_\tau$ and $\nu_e \to \nu_\tau$ transitions in short baseline experiments?, Carlo Giunti, Marco Laveder, JHEP 02 (2001) 001, arXiv:hep-ph/0010009.
[Giunti:2000ur]
[9-669]
Maximum lepton asymmetry from active - sterile neutrino oscillations in the early universe, R. Buras, D. V. Semikoz, Phys. Rev. D64 (2001) 017302, arXiv:hep-ph/0009266.
[Buras:2000ah]
[9-670]
Tau neutrinos favored over sterile neutrinos in atmospheric muon neutrino oscillations, S. Fukuda et al. (Super-Kamiokande), Phys. Rev. Lett. 85 (2000) 3999-4003, arXiv:hep-ex/0009001.
[Super-Kamiokande:2000ywb]
[9-671]
Active-sterile neutrino oscillations and BBN + CMBR constraints, P. Di Bari, R. Foot, Phys. Rev. D63 (2001) 043008, arXiv:hep-ph/0008258.
[DiBari:2000wd]
[9-672]
Fate of the sterile neutrino, V. D. Barger, B. Kayser, J. Learned, T. Weiler, K. Whisnant, Phys. Lett. B489 (2000) 345-352, arXiv:hep-ph/0008019.
[Barger:2000ch]
[9-673]
Is the $\nu_\mu\to\nu_s$ oscillation solution to the atmospheric neutrino anomaly excluded by the superKamiokande data?, R. Foot, Phys. Lett. B496 (2000) 169-174, arXiv:hep-ph/0007065.
[Foot:2000bi]
[9-674]
Pulsar acceleration by asymmetric emission of sterile neutrinos, Enrico Nardi, Jorge I. Zuluaga, Astrophys. J. 549 (2001) 1076-1084, arXiv:astro-ph/0006285.
[Nardi:2000rr]
[9-675]
Four-neutrino oscillation solutions of the solar neutrino problem, C. Giunti, M. C. Gonzalez-Garcia, Carlos Pena-Garay, Phys. Rev. D62 (2000) 013005, arXiv:hep-ph/0001101.
[Giunti:2000wt]
[9-676]
Impact of radiative corrections on sterile neutrino scenarios, A. Ibarra, I. Navarro, JHEP 02 (2000) 031, arXiv:hep-ph/9912282.
[Ibarra:1999se]
[9-677]
On the sign of the neutrino asymmetry induced by active- sterile neutrino oscillations in the early universe, P. Di Bari, R. Foot, Phys. Rev. D61 (2000) 105012, arXiv:hep-ph/9912215.
[DiBari:1999vg]
[9-678]
Four-neutrino mixing and long-baseline experiments, Carlo Giunti, JHEP 01 (2000) 032, arXiv:hep-ph/9912211.
[Giunti:1999vc]
[9-679]
Amplification of isocurvature perturbations induced by active-sterile neutrino oscillations, P. Di Bari, Phys. Lett. B482 (2000) 150-160, arXiv:hep-ph/9911214.
[DiBari:1999fz]
[9-680]
Sterile neutrinos and supernova nucleosynthesis, David O. Caldwell, George M. Fuller, Yong-Zhong Qian, Phys. Rev. D61 (2000) 123005, arXiv:astro-ph/9910175.
[Caldwell:1999zk]
[9-681]
Cosmological nucleosynthesis and active-sterile neutrino oscillations with small mass differences: The resonant case, D. P. Kirilova, M. V. Chizhov, Nucl. Phys. B591 (2000) 457-468, arXiv:hep-ph/9909408.
[Kirilova:1999xj]
[9-682]
Matter effects in four-neutrino mixing, David Dooling, Carlo Giunti, Kyungsik Kang, Chung W. Kim, Phys. Rev. D61 (2000) 073011, arXiv:hep-ph/9908513.
[Dooling:1999sg]
[9-683]
Constraints from neutrino oscillation experiments on the effective Majorana mass in neutrinoless double beta decay, Samoil M. Bilenky, C. Giunti, W. Grimus, Boris Kayser, S. T. Petcov, Phys. Lett. B465 (1999) 193-202, arXiv:hep-ph/9907234.
[Bilenky:1999wz]
[9-684]
Four-neutrino MS**2 mixing, C. Giunti, Phys. Lett. B467 (1999) 83-94, arXiv:hep-ph/9906456.
[Giunti:1999zw]
[9-685]
Neutrinoless double-beta decay with three or four neutrino mixing, C. Giunti, Phys. Rev. D61 (2000) 036002, arXiv:hep-ph/9906275.
[Giunti:1999jw]
[9-686]
Neutrino-mixing-generated lepton asymmetry and the primordial He-4 abundance, X. Shi, G. M. Fuller, K. Abazajian, Phys. Rev. D60 (1999) 063002, arXiv:astro-ph/9905259.
[Shi:1999kg]
[9-687]
Four-neutrino mass spectra and the Super-Kamiokande atmospheric up-down asymmetry, Samoil M. Bilenky, C. Giunti, W. Grimus, T. Schwetz, Phys. Rev. D60 (1999) 073007, arXiv:hep-ph/9903454.
[Bilenky:1999ny]
[9-688]
An Active-Sterile Neutrino Transformation Solution for r- Process Nucleosynthesis, G. C. McLaughlin, J. M. Fetter, A. B. Balantekin, G. M. Fuller, Phys. Rev. C59 (1999) 2873-2887, arXiv:astro-ph/9902106.
[McLaughlin:1999pd]
[9-689]
Relic neutrino asymmetries and big bang nucleosynthesis in a four neutrino model, N. F. Bell, R. Foot, R. R. Volkas, Phys. Rev. D58 (1998) 105010, arXiv:hep-ph/9805259.
[Bell:1998sr]
[9-690]
Four-neutrino mixing and big-bang nucleosynthesis, Samoil M. Bilenky, C. Giunti, W. Grimus, T. Schwetz, Astropart. Phys. 11 (1999) 413-428, arXiv:hep-ph/9804421.
[Bilenky:1998ne]
[9-691]
Long-baseline neutrino oscillation experiments and CP violation in the lepton sector, Samoil M. Bilenky, C. Giunti, W. Grimus, Phys. Rev. D58 (1998) 033001, arXiv:hep-ph/9712537.
[Bilenky:1997dd]
[9-692]
Bounds on long-baseline $\bar\nu_e\to\bar\nu_e$ and $\nu_{\mu}\to\nu_{e}$ ($\bar\nu_{\mu}\to\bar\nu_{e}$) transition probabilities, Samoil M. Bilenky, C. Giunti, W. Grimus, Phys. Rev. D57 (1998) 1920-1933, arXiv:hep-ph/9710209.
[Bilenky:1997zm]
[9-693]
Studies of neutrino asymmetries generated by ordinary sterile neutrino oscillations in the early universe and implications for big bang nucleosynthesis bounds, R. Foot, R. R. Volkas, Phys. Rev. D55 (1997) 5147-5176, arXiv:hep-ph/9610229.
[Foot:1996qc]
[9-694]
Neutrino mass spectrum from the results of neutrino oscillation experiments, S. M. Bilenky, C. Giunti, W. Grimus, Eur. Phys. J. C1 (1998) 247-253, arXiv:hep-ph/9607372.
[Bilenky:1996rw]
[9-695]
A sterile neutrino scenario constrained by experiments and cosmology, Nobuchika Okada, Osamu Yasuda, Int. J. Mod. Phys. A12 (1997) 3669-3694, arXiv:hep-ph/9606411.
[Okada:1996kw]
[9-696]
New supernova constraints on sterile-neutrino production, Edward W. Kolb, Rabindra N. Mohapatra, Vigdor L. Teplitz, Phys. Rev. Lett. 77 (1996) 3066-3069, arXiv:hep-ph/9605350.
[Kolb:1996pa]
[9-697]
Limits on Active-Sterile Neutrino Mixing and the Primordial Deuterium Abundance, Christian Y. Cardall, George M. Fuller, Phys. Rev. D54 (1996) 1260-1263, arXiv:astro-ph/9603105.
[Cardall:1996ka]
[9-698]
On the MSW $\nu_e \to \nu_s$ transition solution of the solar neutrino problem, P. I. Krastev, S. T. Petcov, L. Qiuyu, Phys. Rev. D54 (1996) 7057-7066, arXiv:hep-ph/9602333.
[Krastev:1996gc]
[9-699]
Can a 'natural' three generation neutrino mixing scheme satisfy everything?, Christian Y. Cardall, George M. Fuller, Phys. Rev. D53 (1996) 4421-4429, arXiv:astro-ph/9602104.
[Cardall:1996qk]
[9-700]
Reconciling sterile neutrinos with big bang nucleosynthesis, Robert Foot, R. R. Volkas, Phys. Rev. Lett. 75 (1995) 4350, arXiv:hep-ph/9508275.
[Foot:1995bm]
[9-701]
Accelerator, reactor, solar and atmospheric neutrino oscillation: Beyond three generations, Srubabati Goswami, Phys. Rev. D55 (1997) 2931-2949, arXiv:hep-ph/9507212.
[Goswami:1995yq]
[9-702]
Future tau-neutrino oscillation experiments and present data, J.J. Gomez-Cadenas, M.C. Gonzalez-Garcia, Z.Phys. C71 (1996) 443-454, arXiv:hep-ph/9504246.
[Gomez-Cadenas:1995epo]
[9-703]
Results from the LSND neutrino oscillation search for anti- muon-neutrino $\to$ anti-electron-neutrino, James E. Hill, Phys. Rev. Lett. 75 (1995) 2654-2657, arXiv:hep-ex/9504009.
[Hill:1995gf]
[9-704]
Are there sterile neutrinos in the flux of solar neutrinos on the earth?, S. M. Bilenky, C. Giunti, Z. Phys. C68 (1995) 495-502, arXiv:hep-ph/9502263.
[Bilenky:1995fy]
[9-705]
A Model independent approach to future solar neutrino experiments, S. M. Bilenky, C. Giunti, Astropart. Phys. 2 (1994) 353-374, arXiv:hep-ph/9403345.
[Bilenky:1994xv]
[9-706]
Sterile-neutrinos and future solar neutrino experiments, S. M. Bilenky, C. Giunti, Phys. Lett. B320 (1994) 323-328, arXiv:hep-ph/9310314.
[Bilenky:1993yk]
[9-707]
Neutrino experiments and the question of leptonic-charge conservation, B. Pontecorvo, Sov. Phys. JETP 26 (1968) 984-988. [Zh. Eksp. Teor. Fiz. 53, 1717 (1967)].
[Pontecorvo:1967fh]

10 - Phenomenology - Talks

[10-1]
A Standard Model explanation for the MiniBooNE anomaly, Ara Ioannisian, Carlo Giunti, Gioacchino Ranucci, PoS ICHEP2020 (2021) 142, arXiv:2012.06164. ICHEP 2020, July 28-August 6, Prague, Czech Republic.
[Ioannisian:2020wbm]
[10-2]
Probing secret interactions of eV-scale sterile neutrinos with the diffuse supernova neutrino background, Mary Hall Reno, Yu Seon Jeong, Sergio Palomares-Ruiz, Ina Sarcevic, PoS ICHEP2020 (2021) 603, arXiv:2012.05380. ICHEP 2020, July 28-August 6, Prague, Czech Republic.
[Reno:2020cgj]
[10-3]
Effect of sterile phases on degeneracy resolution capabilities of LBL experiments, Akshay Chatla, Bindu A. Bambah, Phys.At.Nucl. 84 (2021) 377-380, arXiv:2010.06321. 5th international conference on particle physics and astrophysics, Moscow (05-09 October 2020).
[Chatla:2020bqb]
[10-4]
Matrix norms and search for sterile neutrinos, Wojciech Flieger, Franciszek Pindel, Kamil Porwit, PoS CORFU2018 (2019) 050, arXiv:1904.10649. Corfu Summer Institute 2018 'School and Workshops on Elementary Particle Physics and Gravity', 31 August-29 September 2018 Corfu, Greece.
[Flieger:2019nsb]
[10-5]
Neutrino Properties and the Cosmological Tensions in the $\Lambda$CDM Model, Stefano Gariazzo, arXiv:1812.00638, 2018. 15th Marcel Grossmann Meeting.
[Gariazzo:2018zho]
[10-6]
Discovery potential of light sterile neutrinos with displaced vertices, Giovanna Cottin, PoS ICHEP2018 (2019) 574, arXiv:1811.03449. ICHEP 2018.
[Cottin:2018mtl]
[10-7]
Searching for MeV-scale Neutrinos with the DUNE Near Detector, P. Ballett, T. Boschi, S. Pascoli, arXiv:1803.10824, 2018. NuPhys2017 (London, 20-22 December 2017).
[Ballett:2018fah]
[10-8]
Parameter degeneracy and hierarchy sensitivity of NO$\nu$A in presence of sterile neutrino, Monojit Ghosh, Shivani Gupta, Zachary M. Matthews, Pankaj Sharma, Anthony G. Williams, PoS NuFact2017 (2018) 133, arXiv:1712.06714. 19th international Workshop on Neutrinos from Accelerators (NuFact2017), 25-30 September 2017, Uppsala University, Uppsala, Sweden.
[Ghosh:2017sli]
[10-9]
Status of Sterile Neutrino fits with Global Data, Alejandro Diaz, arXiv:1710.04360, 2017. APS Division of Particles and Fields Meeting (DPF 2017), July 31-August 4, 2017, Fermilab.
[Diaz:2017mfd]
[10-10]
Searches for Sterile Neutrinos at Future Electron-Proton Colliders, Stefan Antusch, Oliver Fischer, PoS DIS2017 (2018) 090, arXiv:1709.00880. DIS 2017.
[Fischer:2017wkj]
[10-11]
Searching for heavy sterile neutrinos in kaon decays, C. Weiland, arXiv:1707.01725, 2017. 52nd Rencontres de Moriond EW 2017.
[Weiland:2017abp]
[10-12]
Light Sterile Neutrinos at $\nu$STORM: Decoherence and CP violation, Peter Ballett, Matheus Hostert, Silvia Pascoli, arXiv:1705.09214, 2017. NuPhys2016 (London, 12-14 December 2016).
[Ballett:2017bug]
[10-13]
Non-Unitarity vs sterile neutrinos at DUNE, Josu Hernandez-Garcia, Jacobo Lopez-Pavon, arXiv:1705.01840, 2017. NuPhys2016 (London, 12-14 December 2016).
[Hernandez-Garcia:2017pwx]
[10-14]
Radiative decay of heavy neutrinos at MiniBooNE and MicroBooNE, Luis Alvarez-Ruso, Eduardo Saul-Sala, arXiv:1705.00353, 2017. NuPhys2016 (London, 12-14 December 2016).
[Alvarez-Ruso:2017hdm]
[10-15]
Can we measure $\theta_{23}$ octant in 3+1 scheme?, Sanjib Kumar Agarwalla, Sabya Sachi Chatterjee, Antonio Palazzo, Springer Proc.Phys. 203 (2018) 235-237, arXiv:1704.07151. XXII DAE-BRNS High Energy Physics Symposium 2016, University of Delhi, Delhi, India, 12-16 December, 2016.
[Agarwalla:2017lle]
[10-16]
Testing the sterile neutrino dark matter paradigm with astrophysical observations, Aurel Schneider, PoS NOW2016 (2017) 093, arXiv:1704.01832. NOW 2016.
[Schneider:2017qdf]
[10-17]
Light sterile neutrinos and pseudoscalar interactions in cosmology, Stefano Gariazzo, PoS NOW2016 (2017) 083, arXiv:1610.01330. Neutrino Oscillation Workshop (NOW) 2016.
[Gariazzo:2016lsd]
[10-18]
Direct detection of relic active and sterile neutrinos, Yu-Feng Li, J. Phys. Conf. Ser. 718 (2016) 062038, arXiv:1606.04734. 14th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2015).
[Li:2016qsu]
[10-19]
Predictions for Neutrinoless Double-Beta Decay in the 3+1 Sterile Neutrino Scenario, C. Giunti, E. M. Zavanin, J. Phys. Conf. Ser. 718 (2016) 062074, arXiv:1511.03838. TAUP 2015.
[Giunti:2015iyr]
[10-20]
Dark Radiation and Inflationary Freedom, Stefano Gariazzo, J. Phys. Conf. Ser. 718 (2016) 032006, arXiv:1510.05980. TAUP 2015.
[Gariazzo:2015apa]
[10-21]
Indirect searches for sterile neutrinos at a high-luminosity Z-factory, Valentina De Romeri, Asmaa Abada, Stephane Monteil, Jean Orloff, Ana M. Teixeira, PoS EPS-HEP2015 (2015) 056, arXiv:1510.02598. The European Physical Society Conference on High Energy Physics, 22-29 July 2015, Vienna (Austria).
[DeRomeri:2015ipa]
[10-22]
Inverse-square law violation and reactor antineutrino anomaly, D.V. Naumov, V.A. Naumov, D.S. Shkirmanov, Phys.Part.Nucl. 48 (2017) 12-20, arXiv:1507.04573. International Workshop on Prospects of Particle Physics: 'Neutrino Physics and Astrophysics', Valday, Russia, February 1-8, 2015.
[Naumov:2015hba]
[10-23]
Supernova Bounds on keV-mass Sterile Neutrinos, Shun Zhou, Int.J.Mod.Phys. A30 (2015) 0033, arXiv:1504.02729. International Conference on Massive Neutrinos, Singapore, February 9-13, 2015.
[Zhou:2015jha]
[10-24]
Review of Sterile Neutrino Searches, C. Giunti, 2015. NNN15, 28-31 October 2015, Stony Brook, New York, USA. http://personalpages.to.infn.it/~giunti/slides/2015/giunti-151030-nnn.pdf.
[Giunti-NNN2015]
[10-25]
Global Status of Sterile Neutrino Scenarios, C. Giunti, 2015. NeuTel 2015, XVI International Workshop on Neutrino Telescopes, 2-6 March 2015, Venice, Italy. http://personalpages.to.infn.it/~giunti/slides/2015/giunti-150304-neutel.pdf.
[Giunti-NeuTel2015]
[10-26]
Light Sterile Neutrinos, M. Laveder, 2015. Seminar at Krakow Institute for Nuclear Studies, 2 September 2015, Krakow, Poland. http://www.pd.infn.it/~laveder/seminar/Laveder-Krakow-150902.pdf.
[Laveder-2015-Krakow]
[10-27]
Using MiniBooNE NCEL and CCQE cross section results to constrain 3+1 sterile neutrino models, Callum Wilkinson, Susan Cartwright, Lee Thompson, J. Phys. Conf. Ser. 598 (2015) 012035, arXiv:1412.0461. NuPhys2013, 19-20 December 2013, IOP, London.
[Wilkinson:2014pca]
[10-28]
The Effect of Sterile States on the Magnetic Moments of Neutrinos, A.B. Balantekin, N. Vassh, AIP Conf.Proc. 1604 (2014) 150-155, arXiv:1404.1393. CETUP' (Center for Theoretical Underground Physics and Related Areas) 2013 Summer Institute.
[Balantekin:2014mqa]
[10-29]
A sterile neutrino at MiniBooNE and IceCube, Manuel Masip, AIP Conf.Proc. 1606 (2014) 59-65, arXiv:1402.0665. II Russian-Spanish Congress: Particle and Nuclear Physics at all Scales, Saint-Petersburg, October 1-4, 2013.
[Masip:2014xna]
[10-30]
Sterile Neutrinos - Review, C. Giunti, 2014. NNN 2014, 4-6 November 2014, APC, Paris, France. http://personalpages.to.infn.it/~giunti/slides/2014/giunti-141105-nnn.pdf.
[Giunti-NNN-2014]
[10-31]
Theory and Phenomenology of Sterile Neutrinos, J. Kopp, 2014. Neutrino 2014, 2-7 June 2014, Boston, Massachusetts, USA. https://indico.fnal.gov/getFile.py/access?contribId=295&sessionId=25&resId=0&materialId=slides&confId=8022.
[Kopp-Neutrino-2014]
[10-32]
Active-Sterile Solar Neutrino Oscillation, H. Long, 2014. Padua University, 27 October 2014. http://www.pd.infn.it/~laveder/unbound/seminari/fisica-neutrino/Long_Padova_2014.pdf.
[Long-PD-2014]
[10-33]
(Sub)eV sterile neutrinos: phenomenological aspects, M. Maltoni, 2014. NOW 2014, 7-14 September 2014, Conca Specchiulla, Otranto, Italy. http://www.ba.infn.it/~now/now2014/web-content/TALKS/eSat/Plen/seminar-maltoni.pdf.
[Maltoni-NOW-2014]
[10-34]
Sterile Neutrino Status, C. Giunti, arXiv:1311.1335, 2013. NuFact 2013, 19-24 August 2013, IHEP, Beijing, China.
[Giunti:2013waa]
[10-35]
Sterile neutrinos in the 3+s scenario and solar data, Joao Pulido, C.R. Das, PoS EPS-HEP2013 (2014) 527, arXiv:1310.0426. EPS Conference on High Energy Physics-EPS-HEP2013, 18-24 July 2013, Stockholm, Sweden.
[Pulido:2013sna]
[10-36]
Tracing the Interplay between Non-Thermal Dark Matter and Right-Handed Dirac Neutrinos with LHC Data, Luis A. Anchordoqui, Haim Goldberg, Brian Vlcek, Phys. Rev. D88 (2013) 043513, arXiv:1305.0146. 33rd International Cosmic Ray Conference (ICRC2013), Rio de Janeiro, Brazil, 2-9 July, 2013.
[Anchordoqui:2013pta]
[10-37]
Sterile neutrinos and $R_K$, A. Vicente, J. Phys. Conf. Ser. 447 (2013) 012040, arXiv:1302.5539.
[Vicente:2013zxa]
[10-38]
Global Status of Sterile Neutrino Scenarios, Joachim Kopp, Pedro A. N. Machado, Michele Maltoni, Thomas Schwetz, PoS Neutel2013 (2013) 019. 15th International Workshop on Neutrino Telescopes (Neutel 2013).
[Kopp:2013uik]
[10-39]
Constraints on Neutrino Physics from Cosmology, A. Melchiorri, 2013. The Future of Neutrino Mass Measurements: Terrestrial, Astrophysical, and Cosmological Measurements in the Next Decade, 4-7 February 2013, Milano, Italy. http://artico.mib.infn.it/numass2013/images/slides/workshop_melk.pdf.
[Melchiotti-numass-2012]
[10-40]
New signals in dark matter detectors, Joachim Kopp, J. Phys. Conf. Ser. 485 (2014) 012032, arXiv:1210.2703. PASCOS 2012.
[Kopp:2012dz]
[10-41]
Beyond Three-Neutrino Mixing: Theory and Phenomenology, C. Giunti, 2012. CIPANP 2012, 29 May - 3 June 2012, St. Petersburg, FL, USA. http://personalpages.to.infn.it/~giunti/slides/2012/giunti-120531-cipanp.pdf.
[Giunti-CIPANP2012]
[10-42]
Neutrino Anomalies, C. Giunti, 2012. EUROnu 2012, 4th EUROnu Annual Meeting, 12-15 June 2012, Paris, France. http://personalpages.to.infn.it/~giunti/slides/2012/giunti-120613-euronu.pdf.
[Giunti-EUROnu2012]
[10-43]
Status of PMNS and Impact of Large $\vartheta_{13}$ for Sterile Neutrino Phenomenology, C. Giunti, 2012. GDR Neutrino, 20-21 June 2012, APC, Paris, France. http://personalpages.to.infn.it/~giunti/slides/2012/giunti-120620-gdr.pdf.
[Giunti-GDR2012]
[10-44]
Neutrino Masses in Cosmology, Neutrinoless Double-Beta Decay and Direct Neutrino Masses, C. Giunti, 2012. LIONeutrino2012, Neutrinos at the forefront of elementary particle physics and astrophysics 22-24 October 2012, Lyon, France. http://personalpages.to.infn.it/~giunti/slides/2012/giunti-121024-lioneutrino.pdf.
[Giunti-LIONeutrino2012]
[10-45]
Phenomenology of Sterile Neutrinos, C. Giunti, 2012. Moscow State University, 15 February 2012. http://personalpages.to.infn.it/~giunti/slides/2012/giunti-120215-msu.pdf.
[Giunti-MSU2012]
[10-46]
Neutrino Masses, C. Giunti, 2012. 47th Rencontres de Moriond - Cosmology, 10 - 17 March 2012, La Thuile (Val d\u2019Aosta, Italy). http://personalpages.to.infn.it/~giunti/slides/2012/giunti-120314-moriond.pdf.
[Giunti-Moriond2012]
[10-47]
Status of Sterile Neutrinos, C. Giunti, 2012. NOW 2012, Neutrino Oscillation Workshop, 9-16 September 2012, Conca Specchiulla, Otranto, Italy. http://personalpages.to.infn.it/~giunti/slides/2012/giunti-120915-now.pdf.
[Giunti-NOW2012]
[10-48]
Phenomenology of Light Sterile Neutrinos, C. Giunti, 2012. NPB 2012, International Symposium on Neutrino Physics and Beyond, 23-26 September 2012, Shenzhen, China. http://personalpages.to.infn.it/~giunti/slides/2012/giunti-120923-npb.pdf.
[Giunti-NPB2012]
[10-49]
Beyond Three-Neutrino Mixing, C. Giunti, 2012. $\nu$TURN 2012, Neutrino at the Turning Point, 8-10 May 2012, LNGS, Assergi, Italy. http://personalpages.to.infn.it/~giunti/slides/2012/giunti-120509-nuturn.pdf.
[Giunti-NUTURN2012]
[10-50]
Neutrino Mass: Overview of $\beta\beta_{0\nu}$, Cosmology and Direct Measurements, C. Giunti, 2012. Neutrino Town Meeting, European Strategy for Neutrino Oscillation Physics - II, 14-16 May 2012, CERN. http://personalpages.to.infn.it/~giunti/slides/2012/giunti-120514-nutown.pdf.
[Giunti-NeutrinoTown2012]
[10-51]
Status of 3+N Global fits, C. Ignarra, 2012. NOW 2012, Neutrino Oscillation Workshop, 9-16 September 2012, Conca Specchiulla, Otranto, Italy. http://www.ba.infn.it/~now/now2012/web-content/TALKS/Wedsnday12/parallel1/Ignarra_3plusNfits_12Sep2012.pdf.
[Ignarra-NOW2012]
[10-52]
Toward Solution of the MiniBooNE-LSND Anomalies, G. Karagiorgi, Nucl. Phys. Proc. Suppl. 229-232 (2012) 50-54. 24th International Conference on Neutrino physics and astrophysics (Neutrino 2010).
[Karagiorgi:2012usa]
[10-53]
Sterile Neutrinos: Phenomenology and Fits, M. Laveder, 2012. 16th Paris Cosmology Colloquium Chalonge 2012, 25-27 July 2012, Observatoire de Paris, France. http://personalpages.to.infn.it/~giunti/slides/2012/laveder-120725-chalonge.pdf.
[Laveder-Chalonge2012]
[10-54]
Low-energy sterile nu (theory), A. Palazzo, 2012. NOW 2012, Neutrino Oscillation Workshop, 9-16 September 2012, Conca Specchiulla, Otranto, Italy. http://www.ba.infn.it/~now/now2012/web-content/TALKS/Friday14/parallel2/NOW_2012_palazzo.pdf.
[Palazzo-NOW2012]
[10-55]
Active sterile neutrino oscillations in the Early Universe with dynamical lepton asymmetries, N. Saviano, 2012. NOW 2012, Neutrino Oscillation Workshop, 9-16 September 2012, Conca Specchiulla, Otranto, Italy. http://www.ba.infn.it/~now/now2012/web-content/TALKS/Friday14/parallel1/saviano.pdf.
[Saviano-NOW2012]
[10-56]
Sterile nu's in early universe, I. Tamborra, 2012. NOW 2012, Neutrino Oscillation Workshop, 9-16 September 2012, Conca Specchiulla, Otranto, Italy. http://www.ba.infn.it/~now/now2012/web-content/TALKS/Friday14/parallel1/Tamborra.pdf.
[Tamborra-NOW2012]
[10-57]
Sterile Neutrinos and IceCube, Francis Halzen, J. Phys. Conf. Ser. 408 (2013) 012023, arXiv:1111.0918. NUFACT 11, the XIIIth Intl. Workshop on Neutrino Factories, Super beams and Beta beams, 1-6 August 2011 at CERN and the University of Geneva, Switzerland.
[Halzen:2011yq]
[10-58]
Phenomenology of Sterile Neutrinos, Carlo Giunti, J. Phys. Conf. Ser. 408 (2013) 012009, arXiv:1110.3914. NUFACT 11, XIIIth International Workshop on Neutrino Factories, Super beams and Beta beams, 1-6 August 2011, CERN and University of Geneva.
[Giunti:2011bx]
[10-59]
Confronting Recent Neutrino Oscillation Data with Sterile Neutrinos, G. Karagiorgi, arXiv:1110.3735, 2011. DPF-2011.
[Karagiorgi:2011ut]
[10-60]
Search for sterile neutrinos at reactors with a small core, Osamu Yasuda, Acta Phys.Polon. B42 (2011) 2379, arXiv:1110.2579. 35th International Conference of Theoretical Physics: Matter to the Deepest: Recent Development in Physics of Fundamental Interactions, Ustron, Poland, 12-18 Sep 2011.
[Yasuda:2011wk]
[10-61]
Neutrino-triggered asymmetric magnetorotational mechanism for pulsar natal kick, A.V. Kuznetsov, N.V. Mikheev, arXiv:1110.1041, 2011. XV-th International School 'Particles and Cosmology', Troitsk, Moscow Region, May 26 - June 2, 2011, and XV-th Lomonosov Conference on Elementary Particle Physics, August 18-24, 2011, Moscow State University, Moscow.
[Kuznetsov:2011ne]
[10-62]
Is there any 'LSND anomaly'?, A. Bolshakova (HARP-CDP), Phys. Part. Nucl. 42 (2011) 680-682. 4th International Pontecorvo Neutrino physics School: Alushta, Crimea, Ukraine, September 26-October 6, 2010.
[Bolshakova:2011zz]
[10-63]
Searches for Sterile Neutrinos, C. Rubbia, 2011. XIV International Workshop on Neutrino Telescopes, March 15-18, 2011, Venice, Italy. http://agenda.infn.it/getFile.py/access?contribId=34&sessionId=10&resId=0&materialId=slides&confId=3101.
[CRUBBIA-NEUTEL2011]
[10-64]
Neutrino nuclear responses for beta and double-beta decays, Hiro Ejiri, 2011. MEDEX'11, Matrix Elements for the Double-beta-decay EXperiments, 13-16 June 2011, Prague, Czechoslovakia. http://medex11.utef.cvut.cz/talks/Ejiri.pdf.
[Ejiri-MEDEX11]
[10-65]
The Reactor Antineutrino Anomaly, M. Fechner, 2011. Workshop on Sterile Neutrinos and on the Reactor (anti)-Neutrino Anomaly, TUM, Garching, February 8th 2011. http://www.e15.physik.tu-muenchen.de/fileadmin/downloads/seminars/1011/SterileNeutrinosWorkshop/fechner_reactoranomaly_munich.pdf.
[FECHNER2011]
[10-66]
Short-Baseline $\bar\nu_{\mu}\to\bar\nu_{e}$ Oscillations, C. Giunti, 2011. Third EUROnu Annual Meeting, 18-21 January 2011, RAL, UK. http://personalpages.to.infn.it/~giunti/slides/2011/giunti-110118-ral-sbl.pdf.
[Giunti-110118-ral-sbl]
[10-67]
Review of Neutrino Physics, C. Giunti, 2011. Third EUROnu Annual Meeting, 18-21 January 2011, RAL, UK. http://personalpages.to.infn.it/~giunti/slides/2011/giunti-110119-ral-rev.pdf.
[Giunti-110119-ral-rev]
[10-68]
Sterile Neutrinos and Short-Baseline Oscillations, C. Giunti, 2011. Workshop on Sterile Neutrinos and the Reactor Antineutrino Anomaly, T.U.M, Garching, 8 February 2011. http://personalpages.to.infn.it/~giunti/slides/2011/giunti-110208-tum.pdf.
[Giunti-110208-tum]
[10-69]
Recent Progress in Neutrino Physics, C. Giunti, 2011. La Thuile 2011, Les Rencontres de Physique de La Vallee d'Aoste, 27 February - 5 March 2011. http://personalpages.to.infn.it/~giunti/slides/2011/giunti-110301-lathuile.pdf.
[Giunti-110301-lathuile]
[10-70]
Sterile Neutrino Fits, C. Giunti, 2011. XIV International Workshop on Neutrino Telescopes, March 15-18, 2011, Venice, Italy. http://personalpages.to.infn.it/~giunti/slides/2011/giunti-110317-neutel.pdf.
[Giunti-NEUTEL2011]
[10-71]
3+N Fits to World Data, C. Ignarra, 2011. Short-Baseline Neutrino Workshop (SBNW11), 12-14 May 2011, Fermilab. https://indico.fnal.gov/getFile.py/access?contribId=22&sessionId=4&resId=0&materialId=slides&confId=4157.
[Ignarra2011]
[10-72]
The Reactor Antineutrino Anomaly, T. Lasserre, 2011. XIV International Workshop on Neutrino Telescopes, March 15-18, 2011, Venice, Italy. http://agenda.infn.it/getFile.py/access?contribId=63&sessionId=8&resId=0&materialId=slides&confId=3101.
[LASSERRE-NEUTEL2011]
[10-73]
Short Baseline Oscillations: what to look for?, M. Laveder, 2011. LAGUNA/LAGUNA-LBNO General Meeting, CERN, 3-5 march 2011. http://indico.cern.ch/getFile.py/access?contribId=13&sessionId=7&resId=0&materialId=slides&confId=124959.
[Laveder:LAGUNA11]
[10-74]
Reactor anomaly, D. Lhuillier, 2011. Workshop on Beyond Three Family Neutrino Oscillations, 3-4 May 2011, LNGS, Italy. http://agenda.infn.it/getFile.py/access?contribId=1&sessionId=0&resId=0&materialId=slides&confId=3422.
[Lhuillier2011]
[10-75]
Reactor Anti-Neutrino Anomaly, T. Mention, 2011. Rencontres de Moriond EW 2011, Electroweak Interactions and Unified Theories, 13-20 March 2011, La Thuile, Aosta Valley, Italy. http://indico.in2p3.fr/getFile.py/access?contribId=41&sessionId=7&resId=0&materialId=slides&confId=4403.
[MENTION-MORIOND2011]
[10-76]
Antineutrino reactor anomaly, T. Mueller, 2011. 23rd Rencontres de Blois,Particle Physics and Cosmology, May 29-June 3, 2011, Chateau Royal de Blois France. http://blois.in2p3.fr/2011/transparencies/Nu/mueller.pdf.
[Mueller-Blois-2011]
[10-77]
Testing the sterile neutrino hypothesis at the solar sector, A. Palazzo, 2011. 12th International Conference on Topics in Astroparticle and Underground Physics, TAUP2011, 5-9 September 2011, Munich, Germany. http://taup2011.mpp.mpg.de/php/downloadPresentationFile.php?type=webpage&sessionid=35&presentationid=29.
[Palazzo-TAUP2011]
[10-78]
The antineutrino anomaly: implications for the solar neutrino sector, A. Palazzo, 2011. Rencontres de Moriond EW 2011, 13-20 March 2011, La Thuile, Italy. http://indico.in2p3.fr/getFile.py/access?contribId=39&sessionId=7&resId=0&materialId=slides&confId=4403.
[Palazzo2011]
[10-79]
Borexino Search for Sterile Neutrinos, M. Pallavicini, 2011. Short-Baseline Neutrino Workshop (SBNW11), 12-14 May 2011, Fermilab. https://indico.fnal.gov/getFile.py/access?contribId=41&sessionId=11&resId=0&materialId=slides&confId=4157.
[Pallavicini2011]
[10-80]
Short-BaseLine Electron Neutrino Disappearance, Carlo Giunti, Marco Laveder, Nucl. Phys. Proc. Suppl. 217 (2011) 193-195, arXiv:1012.4356. NOW 2010, 4-11 September 2010, Conca Specchiulla (Otranto, Lecce, Italy).
[Giunti:2010rz]
[10-81]
Some attempts to explain MINOS anomaly, Osamu Yasuda, AIP Conf. Proc. 1382 (2011) 103-105, arXiv:1012.3478. 12th International Workshop on Neutrino Factories, Superbeams and Beta Beams (NuFact10), October 20-25, 2010, Mumbai, India.
[Yasuda:2010aa]
[10-82]
Constraining sterile neutrinos with a low energy beta-beam, Sanjib Kumar Agarwalla, AIP Conf. Proc. 1222 (2010) 169-173, arXiv:1006.1640. 11th International Workshop on Neutrino Factories, Superbeams and Betabeams: NuFact09, Chicago, Illinois, 20-25 Jul 2009.
[Agarwalla:2010dk]
[10-83]
Sensitivity to sterile neutrino mixings and the discovery channel at a neutrino factory, Osamu Yasuda, arXiv:1004.2388, 2010. Fifth International Conference on BEYOND THE STANDARD MODELS OF PARTICLE PHYSICS, COSMOLOGY AND ASTROPHYSICS, Cape Town, South Africa, 1 - 6 February, 2010.
[Yasuda:2010rj]
[10-84]
The case of 1.5 eV neutrino hot dark matter, Theo M. Nieuwenhuizen, arXiv:1003.0459, 2010. Marcel Grossmann XII, Paris, 2009.
[Nieuwenhuizen:2010se]
[10-85]
Physics of Sterile Neutrinos, Carlo Giunti, 2010. Padova, 8 November 2010. http://personalpages.to.infn.it/~giunti/slides/2010/giunti-101108-padova.pdf.
[Giunti-101108-Padova]
[10-86]
Hint of CPT Violation in Short-Baseline Electron Neutrino Disappearance, C. Giunti, 2010. DISCRETE 2010, 6-11 December 2010, Rome, Italy. http://personalpages.to.infn.it/~giunti/slides/2010/giunti-101207-discrete.pdf.
[Giunti-101207-discrete]
[10-87]
Sterile Neutrinos, Carlo Giunti, 2010. NEU2012, 27-28 September 2010, CERN, Geneva, Switzerland. http://indico.cern.ch/getFile.py/access?contribId=10&sessionId=1&resId=0&materialId=slides&confId=106198.
[Giunti:NEU2012]
[10-88]
Short-Baseline $\bar\nu_{\mu}\to\bar\nu_{e}$ Oscillations, C. Giunti, M. Laveder, 2010. 11th International Workshop on Next generation Nucleon Decay and Neutrino Detectors,14-16 December 2010, Toyama, Japan. http://www.pd.infn.it/~laveder/talks/Laveder-NNN2010.pdf.
[Laveder:NNN10]
[10-89]
Is there any 'LSND anomaly'?, A. Zhemchugov (HARP-CDP), PoS ICHEP2010 (2010) 334. 35th International Conference on High energy physics (ICHEP 2010): Paris, France, July 22-28, 2010.
[Zhemchugov:2010zz]
[10-90]
Matter Effects in Solar Neutrino Active-Sterile Oscillations, Carlo Giunti, Yu-Feng Li, Prog. Part. Nucl. Phys. 64 (2010) 213-215, arXiv:0911.3934. Erice 2009 Neutrinos in Cosmology, in Astro-, Particle- and Nuclear Physics.
[Giunti:2009jf]
[10-91]
Cosmological and Astrophysical Implications of Sterile Neutrinos, Kalliopi Petraki, ASP Conf.Ser. 426 (2010) 149, arXiv:0906.4049. SnowPAC 2009.
[Petraki:2009vf]
[10-92]
The Gallium and reactor neutrinos anomaly, Mario A. Acero, Carlo Giunti, Marco Laveder, Nucl. Phys. Proc. Suppl. 188 (2009) 211-213. NOW 2008: Neutrino Oscillation Workshop, Conca Specchiulla (Otranto), Lecce, Italy, 6-13 Sep 2008.
[Acero:2008zz]
[10-93]
Very-Short-BaseLine Electron Neutrino Disappearance, C. Giunti, 2009. CERN, 11 December 2009. http://personalpages.to.infn.it/~giunti/slides/2009/giunti-091211-cern-vsbl.pdf.
[Giunti-091211-cern-vsbl]
[10-94]
Investigating CPT violation with sterile neutrino fits, Christina Ignarra, 2009. Fermilab, 7 August 2009. http://microboone-docdb.fnal.gov/cgi-bin/RetrieveFile?docid=523&version=1&filename=sterileNeutrinos_aug09.pdf.
[Ignarra-Fermilab-090807]
[10-95]
Short Baseline Electron Neutrino Disappearance, Marco Laveder, 2009. EUROnu, European Commission Framework Programme 7 Design Study to investigate second generation neutrino oscillation facilities in Europe, 23-27 March 2009, CERN, Geneva, Switzerland. http://indico.cern.ch/contributionDisplay.py?contribId=53&sessionId=16&confId=42846.
[Laveder:2009EURONU]
[10-96]
Very Short Baseline Electron Neutrino Disappearance, Marco Laveder, 2009. Torino University, 31 March 2009. http://www.pd.infn.it/~laveder/seminar/Laveder-torino-09.pdf.
[Laveder:2009TO]
[10-97]
Very-Short-BaseLine Electron Neutrino Disappearance, M. Laveder, 2009. Madrid Neutrino Non Standard Interactions Workshop, 10-11 December 2009, Madrid, Spain. http://www.ft.uam.es/workshops/neutrino/pdfs/12-Laveder-VSBLElectronNeutrino.pdf.
[Laveder:NSI09]
[10-98]
Status of Neutrino Oscillations and Sterile Neutrinos, M. Maltoni, 2009. Physics at ESS Workshop, 2-4 December 2009, Lund, Sweden. http://indico.hep.lu.se/materialDisplay.py?contribId=19&sessionId=5&materialId=slides&confId=896.
[Maltoni:ESS09]
[10-99]
Near detector for new physics searches, W. Winter, 2009. Fourth Plenary Meeting 12-14 October 2009 at the Tata Institute of Fundamental Research,Mumbai, India. https://www.ids-nf.org/wiki/TIFR-2009-10-12/Agenda/Physics/Files?action=AttachFile&do=get&target=S2-Winter-1-v1.ppt.
[Winter:IDS-NF2009]
[10-100]
Sterile neutrinos at future long baseline experiments, Davide Meloni, Nucl. Phys. Proc. Suppl. 188 (2009) 207-210, arXiv:0812.3555. NOW2008, Conca Specchiulla, Otranto, Italy, September 6-13, 2008.
[Meloni:2008ti]
[10-101]
New interactions: past and future experiments, Michele Maltoni, J. Phys. Conf. Ser. 136 (2008) 022024, arXiv:0810.3517. Neutrino 08.
[Maltoni:2008mu]
[10-102]
The LSND puzzle in the light of MiniBooNE results, Thomas Schwetz, arXiv:0805.2234, 2008. Rencontres de Moriond EW 2008, La Thuile, 1-8 March 2008.
[Schwetz:2008cp]
[10-103]
Gallium and Reactor Neutrinos Anomaly, Carlo Giunti, 2008. NO-VE 08, IV International Workshop on: 'Neutrino Oscillations in Venice', 16th of the series 'Un altro modo di guardare il cielo', 15-18 April 2008, Venice, Italy. http://neutrino.pd.infn.it/NO-VE2008/Talks/Giunti.pdf.
[Giunti-NoVE08]
[10-104]
Signatures of sterile neutrino oscillations in high-energy cosmic neutrino flux, Osamu Yasuda, Andrea Donini, PoS NUFACT08 (2008) 146. Proceedings, 10th International Workshop on Neutrino factories, super beams and beta beams (NuFact08).
[Yasuda:2008zz]
[10-105]
Neutrino telescopes as a probe of active and sterile neutrino mixings, Zhi-zhong Xing, Nucl. Phys. B, Proc. Suppl. 175-176 (2008) 421-426, arXiv:0711.4163. XIV International Symposium on Very High Energy Cosmic Ray Interactions, Weihai, China, August 15-22, 2006.
[Xing:2007rz]
[10-106]
Sterile neutrinos after the first MiniBooNE results, Michele Maltoni, J. Phys. Conf. Ser. 110 (2008) 082011, arXiv:0711.2018. The 2007 Europhysics Conference on High Energy Physics, Manchester, England, July 19-25, 2007.
[Maltoni:2007ur]
[10-107]
Sterile neutrinos and structure formation, Jaroslaw Stasielak, Peter L. Biermann, Alexander Kusenko, Acta Phys. Polon. B38 (2007) 3869-3878, arXiv:0710.5431. XLVII Cracow School of Theoretical Physics held in Zakopane, Poland, June 2007.
[Stasielak:2007ex]
[10-108]
Accounting for the Unresolved X-ray Background with Sterile Neutrino Dark Matter, Daniel Cumberbatch, Joseph Silk, AIP Conf. Proc. 957 (2007) 375-378, arXiv:0709.0279. 13th International Symposium on Particles, Strings and Cosmology (PASCOS-07).
[Cumberbatch:2007qq]
[10-109]
LENS as a Probe of Sterile Neutrino Mediated Oscillations, C. Grieb et al., arXiv:0705.2769, 2007. 12th International Workshop on Neutrinos Telescopes: Twenty Years after the Supernova 1987A Neutrino Bursts Discovery, Venice, Italy, 6-9 Mar 2007.
[Grieb:2007jt]
[10-110]
Restrictions on sterile neutrino parameters from astrophysical observations, Oleg Ruchayskiy, arXiv:0704.3215, 2007. 11th Marcel Grossmann meeting on general relativity, 23-29 July 2006, Berlin, Germany.
[Ruchayskiy:2007pq]
[10-111]
Limits on the dark matter particle mass from black hole growth in galaxies, Faustin Munyaneza, arXiv:astro-ph/0702167, 2007. 11th Marcel Grossmann meeting on general relativity, 23-29 July 2006, Berlin, Germany.
[Munyaneza:2007tn]
[10-112]
Sterile Neutrino as Dark Matter candidate from CMB alone, L.A. Popa, A. Vasile, arXiv:astro-ph/0701331, 2007. Eleventh Marcel Grossmann Meeting on General Relativity.
[Popa:2007hw]
[10-113]
Electron Neutrino Disappearance in Miniboone, M. Laveder, 2007. Torino University, 17 December 2007. http://www.pd.infn.it/~laveder/seminar/Laveder-Torino-07.pdf.
[Laveder-To-2007]
[10-114]
Sterile Neutrinos as mirror matter, Marco Laveder, 2007. Search for Baryon and Lepton Number Violations International Workshop, 20-22 September 2007,LBNL Berkeley, California, U.S.A. http://inpa.lbl.gov/blnv2/files/Friday/Session10/Laveder.pdf.
[Laveder:2007BLNV]
[10-115]
Electron Neutrino Disappearance in Miniboone, Marco Laveder, 2007. CARE07, Annual Meeting, 29-31 October 2007, CERN, Geneva, Switzerland. http://www.pd.infn.it/~laveder/talks/Laveder-CARE07.pdf.
[Laveder:2007CARE]
[10-116]
Unbound neutrino roadmaps, Marco Laveder, Nucl. Phys. Proc. Suppl. 168 (2007) 344-346. Workshop on Neutrino Oscillation Physics (NOW 2006), Otranto, Lecce, Italy, 9-16 Sep 2006.
[Laveder:2007zz]
[10-117]
Detecting sterile dark matter in space, Alexander Kusenko, Int. J. Mod. Phys. D16 (2008) 2325-2335, arXiv:astro-ph/0608096. From Quantum to Cosmos: fundametal physics research in space, Washington, DC, May 22-24, 2006.
[Kusenko:2006wa]
[10-118]
Sterile neutrino decay and the LSND experiment, Sergio Palomares-Ruiz, J. Phys. Conf. Ser. 39 (2006) 307-309, arXiv:hep-ph/0602083. 9th International Conference on Astroparticle and Underground Physics (TAUP 2005), Zaragoza, Spain, 10-14 Sep 2005.
[Palomares-Ruiz:2006djb]
[10-119]
Sterile Neutrinos in astrophysical and cosmological sauce, Marco Cirelli, arXiv:astro-ph/0410122, 2004. 10th International Symposium on Particles, Strings and Cosmology (PASCOS '04), August 2004, Boston, USA, and XVI Incontri sulla Fisica delle Alte Energie (IFAE), April 2004, Torino, Italy.
[Cirelli:2004qs]
[10-120]
Searches for sterile neutrinos (and other light particles), Alessandro Strumia, Nucl. Phys. Proc. Suppl. 143 (2005) 144, arXiv:hep-ph/0407132. Neutrino 2004.
[Strumia:2004vp]
[10-121]
Sterile neutrinos: from cosmology to experiments, Guido Marandella, arXiv:hep-ph/0405090, 2004. 39th Rencontres de Moriond on Electroweak Interactions and Unified Theories, La Thuile, Aosta Valley, Italy, 21-28 March 2004.
[Marandella:2004xv]
[10-122]
Possible astrophysical clues of dark matter, Alexander Kusenko, New Astron. Rev. 49 (2005) 115, arXiv:astro-ph/0404568. Sixth UCLA Symposium on Sources and Detection of Dark Matter and Dark Energy in the Universe (Dark Matter 2004), Marina del Rey, California, February 18-20, 2004.
[Kusenko:2004xk]
[10-123]
Pulsar kicks and dark matter from a sterile neutrino, Alexander Kusenko, Int. J. Mod. Phys. A20 (2005) 1148, arXiv:astro-ph/0404483. Coral Gables Conference (CG2003), Ft. Lauderdale, Florida, December 17-21, 2003.
[Kusenko:2004gp]
[10-124]
Neutrino fits, C. Pena-Garay, 2004. XXXIX Rencontres de Moriond, Electroweak Interactions and Unified Theories, La Thuile, 21-28 March 2003. http://moriond.in2p3.fr/EW/2004/transparencies/3_Wednesday/3_2_afternoon/3_2_7_Pena-Garay/Pena-Garay.pdf.
[Pena-Garay:Moriond2004]
[10-125]
MiniBooNE and Sterile Neutrinos, M.H. Shaevitz, 2004. Fujihara Seminar 'Neutrino mass and seesaw mechanism' February 23-25, 2004, KEK, Japan. http://neutrino.kek.jp/seesaw/transparencies/0224/M_Shaevitz.pdf.
[Shaevitz:Fujihara2004]
[10-126]
Search for sterile neutrinos, A. Strumia, 2004. Neutrino 2004, 13-19 June 2004, Paris, France. http://neutrino2004.in2p3.fr/slides/tuesday/strumia.pdf.
[Strumia-Nu2004]
[10-127]
Big Bang Nucleosynthesis and neutrinos, F.L. Villante, A.D. Dolgov, arXiv:hep-ph/0310138, 2003. Beyond the Desert '03, Ringberg, 11-15 July 2003.
[Villante:2003jy]
[10-128]
Can four neutrinos explain global oscillation data including LSND and cosmology?, M. Maltoni, T. Schwetz, M. A. Tortola, J. W. F. Valle, arXiv:hep-ph/0305312, 2003. NOON 2003 workshop, February 10-14, 2003, Kanazawa, Japan.
Comment: Figure 5 Left shows allowed regions at 90\% and 99\% CL for (3+1) schemes without (solid and dashed lines) and including data from cosmology (coloured regions). The grey region is the 99\% CL region of LSND. [M.L.].
[Maltoni:2003yr]
[10-129]
Neutrino anomalies, Alessandro Strumia, arXiv:hep-ex/0304039, 2003. 'Neutrino Telescopes', Venezia, march 2003.
[Strumia:2003pc]
[10-130]
Can 4 neutrinos explain global oscillation data including LSND?, T. Schwetz, 2003. 4th Workshop on 'Neutrino Oscillations and their Origin' (NOON2003), February 10-14, 2003, Ishikawa Kousei Nenkin Kaikan, Kanazawa, Japan. http://www-sk.icrr.u-tokyo.ac.jp/noon2003/transparencies/10/Schwets.pdf.
[Schwetz:NOON2003]
[10-131]
Standard and Non-Standard Physics in Neutrino Oscillations, M. Maltoni, Nucl. Phys. Proc. Suppl. 114 (2003) 191-196, arXiv:hep-ph/0210111. XXX International Meeting on Fundamental Physics (Jaca, Spain, 28/01-1/02/2002).
[Maltoni:2002kq]
[10-132]
Global analysis of neutrino oscillation data in four-neutrino schemes, M. Maltoni, T. Schwetz, M. A. Tortola, J. W. F. Valle, Nucl. Phys. Proc. Suppl. 114 (2003) 203-207, arXiv:hep-ph/0209368. XXX Int. Meeting on Fundamental Physics, Jaca, Spain, 28 Jan-1 Feb 2002.
Comment: The figure n.4 shows the upper bound on $\sin^2 2\theta_{LSND}$ from SBL and atmospheric neutrino data in (3+1) schemes compared to LSND allowed region. [M.L.].
[Maltoni:2002ac]
[10-133]
Standard and non-standard neutrino properties, J. W. F. Valle, Nucl. Phys. Proc. Suppl. 118 (2003) 255, arXiv:hep-ph/0209047. XXth International Conference on Neutrino Physics and Astrophysics May 25 - 30, 2002, Munich, Germany. http://neutrino2002.ph.tum.de/pages/transparencies/valle.
[Valle:2002tm]
[10-134]
Neutrino oscillations beyond two flavours, E. Kh. Akhmedov, Nucl. Phys. Proc. Suppl. 118 (2003) 245, arXiv:hep-ph/0207342. XXth International Conference on Neutrino Physics and Astrophysics, May 25 - 30, 2002, Munich, Germany. http://neutrino2002.ph.tum.de/pages/transparencies/akhmedov.
[Akhmedov:2002za]
[10-135]
Telling three from four neutrino scenarios, D. Meloni, arXiv:hep-ph/0204351, 2002. XXXVIIth Rencontres de Moriond.
[Meloni:2002mw]
[10-136]
Theory of Neutrino Masses and Mixings, Hitoshi Murayama, Int. J. Mod. Phys. A17 (2002) 3403-3420, arXiv:hep-ph/0201022. 20th International Symposium on Lepton and Photon Interactions at High Energies (LP 01), Rome, Italy, 23-28 Jul 2001.
[Murayama:2002bj]
[10-137]
The cosmological information on neutrino mixing, Pasquale Di Bari, PoS HEP2001 (2001) hep2001/214, arXiv:hep-ph/0111056. International Europhysics Conference on High-Energy Physics (HEP 2001), Budapest, Hungary, 12-18 Jul 2001.
[DiBari:2001qd]
[10-138]
Update on solar and atmospheric four-neutrino oscillations, M. C. Gonzalez-Garcia, M. Maltoni, Carlos Pena-Garay, PoS HEP2001 (2001) hep2001/191, arXiv:hep-ph/0108073. International Europhysics Conference on High-Energy Physics (HEP 2001), Budapest, Hungary, 12-18 Jul 2001.
[Gonzalez-Garcia:2001gyi]
[10-139]
Physical reach of a neutrino factory in the 2+2 and 3+1 four-family scenario, A. Donini, D. Meloni, Nucl. Instrum. Meth. A503 (2001) 230, arXiv:hep-ph/0107274.
[Donini:2001qv]
[10-140]
Four neutrino mass spectra at the neutrino factory, A. Donini, D. Meloni, arXiv:hep-ph/0105163, 2001.
[Donini:2001mt]
[10-141]
Four-neutrino mixing solutions of the atmospheric neutrino anomaly, A. Marrone, Nucl. Phys. Proc. Suppl. 100 (2001) 264-266, arXiv:hep-ph/0103026.
[Marrone:2000kx]
[10-142]
Status of 3nu and 4nu scenarios, Eligio Lisi, Nucl. Phys. Proc. Suppl. 100 (2001) 185-187, arXiv:hep-ph/0102294.
[Lisi:2000nu]
[10-143]
Neutrino oscillations with four generations, Osamu Yasuda, arXiv:hep-ph/0102166, 2001.
[Yasuda:2000xs]
[10-144]
Four-neutrino scenarios, C. Giunti, Nucl. Phys. Proc. Suppl. 100 (2001) 244-249. NOW 2000, Conca Specchiulla (Otranto, Italy), 9-16 Sep. 2000.
[Giunti:2000di]
[10-145]
CP-violation in 3- and 4-family at the neutrino factory, A. Donini, Nucl. Phys. Proc. Suppl. 100 (2001) 210-213, arXiv:hep-ph/0012153.
[Donini:2000hw]
[10-146]
Four-neutrino oscillations at SNO, Carlos Pena-Garay, Nucl. Phys. Proc. Suppl. 95 (2001) 150-154, arXiv:hep-ph/0012130.
[Pena-Garay:2000pgt]
[10-147]
Four neutrino oscillation analysis of atmospheric neutrino data and application to long baseline experiments, Osamu Yasuda, arXiv:hep-ph/0008256, 2000. $30^{\mathrm{th}}$ International Conference on High-Energy Physics (ICHEP 2000), Osaka, Japan, 27 Jul - 2 Aug 2000.
[Yasuda:2000wb]
[10-148]
Update on four-family neutrino oscillations at nu-factory, A. Donini, S. Rigolin, arXiv:hep-ph/0007283, 2000. NuFACT'00: International Workshop on Muon Storage Ring for a Neutrino Factory, Monterey, California, 22-26 May 2000.
[Donini:2000ma]
[10-149]
Four-neutrino oscillations and the solar neutrino problem, C. Giunti, M. C. Gonzalez-Garcia, Carlos Pena-Garay, Nucl. Instrum. Meth. A472 (2000) 364-370, arXiv:hep-ph/0007154. NuFACT'00: International Workshop on Muon Storage Ring for a Neutrino Factory, Monterey, California, 22-26 May 2000.
[Giunti:2000ye]
[10-150]
Analysis of the Superkamiokande atmospheric neutrino data in the framework of four neutrino mixings, Osamu Yasuda, Nucl. Instrum. Meth. A472 (2000) 343-347, arXiv:hep-ph/0007076. NuFACT'00: International Workshop on Muon Storage Ring for a Neutrino Factory, Monterey, California, 22-26 May 2000.
[Yasuda:2000dc]
[10-151]
What are sterile neutrinos good for?, Mitesh Patel, George M. Fuller, arXiv:hep-ph/0003034, 2000. American Physical Society (APS) Meeting of the Division of Particles and Fields (DPF 99), Los Angeles, California, 5-9 Jan 1999.
[Patel:1999hm]
[10-152]
Four species neutrino oscillations at nu-factory: Sensitivity and CP-violation, A. Donini, M. B. Gavela, P. Hernandez, S. Rigolin, Nucl. Instrum. Meth. A451 (2000) 58, arXiv:hep-ph/9910516. NuFACT'99, Lyon, France, 5-9 Jul 1999.
[Donini:1999he]
[10-153]
Four-neutrino oscillations, Carlo Giunti, Nucl. Instrum. Meth. A451 (2000) 51, arXiv:hep-ph/9910336. NuFACT'99, Lyon, France, 5-9 Jul 1999.
[Giunti:1999bn]
[10-154]
Experimental constraints on four-neutrino mixing, Carlo Giunti, arXiv:hep-ph/9909465, 1999. Neutrino Mixing: Meeting in Honor of Samoil Bilenky's $70^{\mathrm{th}}$ Birthday, Turin, Italy, 25-27 Mar 1999.
[Giunti:1999hb]
[10-155]
Four-neutrino mixing, Carlo Giunti, arXiv:hep-ph/9909395, 1999. Proc. of the $23^{\mathrm{rd}}$ Johns Hopkins Workshop on Current Problems in Particle Theory: Neutrinos in the Next Millennium, Baltimore, MD, 10-12 June 1999, edited by G. Domokos and S. Kovesi-Domokos, pag. 305.
[Giunti:1999ww]
[10-156]
Four neutrino mixing, C. Giunti, arXiv:hep-ph/9907485, 1999. $10^{\mathrm{th}}$ International School on Particles and Cosmology, Karbardino-Balkaria, Russia, 19-25 Apr 1999.
[Giunti:1999tz]
[10-157]
Sterile neutrinos?, S. M. Bilenky, C. Giunti, arXiv:hep-ph/9905246, 1999. $8^{\mathrm{th}}$ International Workshop on Neutrino Telescopes, Venice, Italy, 23-26 Feb 1999, vol. 2, p. 1.
[Bilenky:1999hk]
[10-158]
Four-neutrino spectrum from oscillation data, S. M. Bilenky, C. Giunti, W. Grimus, T. Schwetz, arXiv:hep-ph/9904316, 1999. Proc. ot the $17^{\mathrm{th}}$ International Workshop on Weak Interactions and Neutrinos (WIN 99), Cape Town, South Africa, 24-30 Jan 1999, edited by C.A. Dominguez and R.D. Viollier, pag. 195.
[Bilenky:1999ga]
[10-159]
Searches for sterile neutrinos at reactor experiments, L. Mikaelyan, V. Sinev, Phys. Atom. Nucl. 62 (1999) 2008-2012, arXiv:hep-ph/9811228.
[Mikaelyan:1998yg]
[10-160]
Four-neutrino mixing, oscillations and big-bang nucleosynthesis, C. Giunti, S. M. Bilenky, W. Grimus, T. Schwetz, arXiv:hep-ph/9809466, 1998. \textit{New Era in Neutrino Physics}, Proc. of the Satellite Symposium after Neutrino '98, Tokyo, Metropolitan University, Japan, 11-12 June 1998, edited by H. Minakata and O. Yasuda, Universal Academy Press, 1999, p. 179.
[Giunti:1998vz]
[10-161]
Sterile neutrinos: Phenomenology and theory, Rabindra N. Mohapatra, AIP Conf.Proc. 478 (1999) 440, arXiv:hep-ph/9808236.
[Mohapatra:1998fs]
[10-162]
Four-neutrino mixing, oscillations and BBN, S. M. Bilenky, C. Giunti, W. Grimus, T. Schwetz, arXiv:hep-ph/9807569, 1998. \textit{New Trends in Neutrino Physics}, Proc. of the Ringberg Euroconference, Tergernsee, Germany, 24-29 May 1998, edited by B.A. Kniehl, G.G. Raffelt and N. Schmitz, World Scientific, 1999, p. 117.
[Bilenky:1998yq]
[10-163]
Neutrino mass spectrum and mixing from neutrino oscillation data, S. M. Bilenky, C. Giunti, W. Grimus, arXiv:hep-ph/9807568, 1998. \textit{New Trends in Neutrino Physics}, Proc. of the Ringberg Euroconference, Tergernsee, Germany, 24-29 May 1998, edited by B.A. Kniehl, G.G. Raffelt and N. Schmitz, World Scientific, 1999, p. 107.
[Bilenky:1998yp]
[10-164]
Neutrino masses and mixing, S. M. Bilenky, C. Giunti, W. Grimus, arXiv:hep-ph/9805411, 1998. $12^{\mathrm{th}}$ \textit{Les Rencontre de Physique de la Vallee d'Aoste: Results and Perspectives in Particle Physics}, La Thuile, Aosta Valley, Italy, 1-7 Mar 1998.
[Bilenky:1998id]
[10-165]
Four neutrino mixing and long baseline neutrino oscillation experiments, S. M. Bilenky, C. Giunti, W. Grimus, arXiv:hep-ph/9805387, 1998. $33^{\mathrm{rd}}$ \textit{Rencontres de Moriond: Electroweak Interactions and Unified Theories}, Les Arcs, France, 14-21 Mar 1998.
[Bilenky:1988soz]
[10-166]
Neutrino masses and mixings in the light of experimental data, S. M. Bilenky, C. Giunti, W. Grimus, Pramana 51 (1998) 51, arXiv:hep-ph/9805368. $5^{\mathrm{th}}$ Workshop on High-Energy Phenomenology (WHEPP 5), Pune, India, 12-26 Jan 1998.
[Bilenky:1998cy]
[10-167]
Constraints on long baseline neutrino oscillations from the results of neutrino oscillation experiments, S. M. Bilenky, C. Giunti, W. Grimus, Nucl. Phys. Proc. Suppl. 70 (1999) 258, arXiv:hep-ph/9711432. $5^{\mathrm{th}}$ International Workshop on Topics in Astroparticle and Underground Physics (TAUP 97), Gran Sasso, Italy, 7-11 Sep 1997.
[Bilenky:1997hw]
[10-168]
Neutrino masses and mixing from neutrino oscillation experiments, S. M. Bilenky, C. Giunti, W. Grimus, arXiv:hep-ph/9711416, 1997. Proc. of the \textit{International Europhysics Conference on High-Energy Physics} (HEP 97), Jerusalem, Israel, 19-26 Aug 1997, Springer-Verlag 1999, pag. 815-820.
[Bilenky:1997fa]
[10-169]
Schemes of neutrino mixing from the results of neutrino oscillation experiments, S. M. Bilenky, C. Giunti, W. Grimus, arXiv:hep-ph/9707372, 1997. Proc. of the $9^{\mathrm{th}}$ \textit{International School on Particles and Cosmology} (Baksan 97), Baksan, Russia, 15-22 Apr 1997, pag. 54-63.
[Bilenky:1997fx]
[10-170]
Neutrino masses and mixing from neutrino oscillation data, S. M. Bilenky, C. Giunti, W. Grimus, Nucl. Phys. Proc. Suppl. 66 (1998) 404, arXiv:hep-ph/9707358. $16^{\mathrm{th}}$ International Workshop on Weak Interactions and Neutrinos (WIN 97), Capri, Italy, 22-28 June 1997.
[Bilenky:1997cc]
[10-171]
Neutrino masses and mixing from neutrino oscillation experiments, S. M. Bilenky, C. Giunti, W. Grimus, arXiv:hep-ph/9705436, 1997. Proc. of the \textit{Fourth International Solar Neutrino Conference}, Heidelberg, Germany, 8-11 Apr 1997, pag. 354-369.
[Bilenky:1997wm]
[10-172]
Neutrino oscillation experiments and the neutrino mass spectrum, S. M. Bilenky, C. Giunti, W. Grimus, arXiv:hep-ph/9609343, 1996. Proc. of the $17^{\mathrm{th}}$ \textit{International Conference on Neutrino Physics and Astrophysics} (Neutrino '96), Helsinki, Finland, 13-20 June 1996, World Scientific 1997, pag. 174-181.
[Bilenky:1996iw]
[10-173]
Possible tests for sterile neutrinos, S. M. Bilenky, C. Giunti, Nucl. Phys. Proc. Suppl. 48 (1996) 381-383, arXiv:hep-ph/9512349.
[Bilenky:1995uc]
[10-174]
Review of dark matter, David O. Caldwell, 1993. Proc. of the $28^{\mathrm{th}}$ Rencontres de Moriond: \textit{Perspectives in Neutrinos, Atomic Physics and Gravitation}, Villars sur Ollon, Switzerland, 30 Jan - 6 Feb 1993 (Editions Frontieres, Gif-sur-Yvette, France, 1993), p. 187.
Comment: First idea of Four-Neutrino Mixing to explain the solar and atmospheric deficits and have some hot dark matter (thanks to D.O. Caldwell for pointing it out). The idea was further developed in [19-123]. (C.G.).
[Caldwell:1993kk]

11 - Phenomenology - Dark Matter

[11-1]
Probing sterile neutrino freeze-in at stronger coupling, Niko Koivunen, Oleg Lebedev, Martti Raidal, arXiv:2403.15533, 2024.
[Koivunen:2024vhr]
[11-2]
Constraining dark matter model using 21cm line intensity mapping, Koya Murakami, Kenji Kadota, Atsushi J. Nishizawa, Kentaro Nagamine, Ikkoh Shimizu, arXiv:2403.06203, 2024.
[Murakami:2024jyi]
[11-3]
Dark population transfer mechanism for sterile neutrino dark matter, George M. Fuller, Lukas Graf, Amol V. Patwardhan, Jacob Spisak, arXiv:2402.13878, 2024.
[Fuller:2024noz]
[11-4]
Dark matter decay in the Milky Way halo, Mark R. Lovell, arXiv:2401.05493, 2024.
[Lovell:2024qwb]
[11-5]
Thermal Relic Right-Handed Neutrino Dark Matter, Yu Cheng, Jie Sheng, Tsutomu T. Yanagida, arXiv:2312.15637, 2023.
[Cheng:2023ver]
[11-6]
Primordial Black Hole Sterile Neutrinogenesis: Sterile Neutrino Dark Matter Production Independent of Couplings, Muping Chen, Graciela B. Gelmini, Philip Lu, Volodymyr Takhistov, arXiv:2312.12136, 2023.
[Chen:2023tzd]
[11-7]
Probing self-interacting sterile neutrino dark matter with the diffuse supernova neutrino background, A. Baha Balantekin, George M. Fuller, Anupam Ray, Anna M. Suliga, Phys.Rev.D 108 (2023) 123011, arXiv:2310.07145.
[Balantekin:2023jlg]
[11-8]
Sterile Neutrino Dark Matter, Matter-Antimatter Separation, and the QCD Phase Transition, Mikhail Shaposhnikov, Alexei Yu Smirnov, arXiv:2309.13376, 2023.
[Shaposhnikov:2023hrx]
[11-9]
Primordial Black Hole Neutrinogenesis of Sterile Neutrino Dark Matter, Muping Chen, Graciela B. Gelmini, Philip Lu, Volodymyr Takhistov, arXiv:2309.12258, 2023.
[Chen:2023lnj]
[11-10]
Visible in the laboratory and invisible in cosmology: decaying sterile neutrinos, Kevork N. Abazajian, Helena Garcia Escudero, Phys.Rev.D 108 (2023) 123036, arXiv:2309.11492.
[Abazajian:2023reo]
[11-11]
Thermal effects in freeze-in neutrino dark matter production, A. Abada, G. Arcadi, M. Lucente, G. Piazza, S. Rosauro-Alcaraz, JHEP 11 (2023) 180, arXiv:2308.01341.
[Abada:2023mib]
[11-12]
Boosting the production of sterile neutrino dark matter with self-interactions, Maria Dias Astros, Stefan Vogl, JHEP 03 (2024) 032, arXiv:2307.15565.
[Astros:2023xhe]
[11-13]
Exploring resonantly produced mixed sterile neutrino dark matter models, Emma L. Horner, Francisco Mungia Wulftange, Isabella A. Ianora, Chad T. Kishimoto, Phys.Rev.D 108 (2023) 083503, arXiv:2306.16532.
[Horner:2023cmc]
[11-14]
Limits from the grave: resurrecting Hitomi for decaying dark matter and forecasting leading sensitivity for XRISM, Christopher Dessert, Orion Ning, Nicholas L. Rodd, Benjamin R. Safdi, arXiv:2305.17160, 2023.
[Dessert:2023vyl]
[11-15]
Twin Sterile Neutrino Dark Matter, Ian Holst, Dan Hooper, Gordan Krnjaic, Deheng Song, Phys.Rev.D 109 (2024) 063514, arXiv:2305.06364.
[Holst:2023hff]
[11-16]
Right-Handed Neutrino Dark Matter with Forbidden Annihilation, Yu Cheng, Shao-Feng Ge, Jie Sheng, Tsutomu T. Yanagida, Phys.Rev.D 107 (2023) 123013, arXiv:2304.02997.
[Cheng:2023hzw]
[11-17]
Anticipating the XRISM search for the decay of resonantly produced sterile neutrino dark matter, Mark R. Lovell, arXiv:2303.15513, 2023.
[Lovell:2023olv]
[11-18]
All-sky limits on Sterile Neutrino Galactic Dark Matter obtained with SRG/ART-XC after two years of operations, E.I. Zakharov et al., Phys.Rev.D 109 (2024) L021301, arXiv:2303.12673.
[Zakharov:2023mnp]
[11-19]
KeV dark matter in minimal extended seesaw model and its predictions in neutrinoless double beta decay and baryogenesis, Mayengbam Kishan Singh, S. Robertson Singh, N. Nimai Singh, arXiv:2302.09840, 2023.
[Singh:2023jll]
[11-20]
Sterile neutrino dark matter: relativistic freeze-out, Oleg Lebedev, Takashi Toma, JHEP 05 (2023) 108, arXiv:2302.09515.
[Lebedev:2023uzp]
[11-21]
Synergy Between Hubble Tension Motivated Self-Interacting Neutrino and KeV-Sterile Neutrino Dark Matter, Mansi Dhuria, Abinas Pradhan, Phys.Rev.D 107 (2023) 123030, arXiv:2301.09552.
[Dhuria:2023yrw]
[11-22]
Can Neutrino Self-interactions Save Sterile Neutrino Dark Matter?, Rui An, Vera Gluscevic, Ethan O. Nadler, Yue Zhang, Astrophys.J.Lett. 954 (2023) L18, arXiv:2301.08299.
[An:2023mkf]
[11-23]
Phys.Rev.D 107 (2023) L071702.
[Bringmann:2022aim]
[11-24]
Was There a 3.5 keV Line?, 2023.
[Dessert:2023fen]
[11-25]
Gravitational production of sterile neutrinos, 2023.
[Koutroulis:2023fgp]
[11-26]
Probing sterile neutrino dark matter in the PTOLEMY-like experiment, Ki-Young Choi, Erdenebulgan Lkhagvadorj, Seong Moon Yoo, JCAP 06 (2023) 021, arXiv:2212.14192.
[Choi:2022gbs]
[11-27]
Shinning Light on Sterile Neutrino Portal Dark Matter from Cosmology and Collider, Ang Liu, Feng-Lan Shao, Zhi-Long Han, Yi Jin, Honglei Li, Phys.Rev.D 108 (2023) 115028, arXiv:2212.10043.
[Liu:2022cct]
[11-28]
Dark matter produced from right-handed neutrinos, Shao-Ping Li, Xun-Jie Xu, JCAP 06 (2023) 047, arXiv:2212.09109.
[Li:2022bpp]
[11-29]
Correlation Analysis of Decaying Sterile Neutrino Dark Matter in the Context of the SRG Mission, V. V. Barinov, JCAP 02 (2023) 055, arXiv:2211.05919.
[Barinov:2022kfp]
[11-30]
Gravitational scattering of the sterile neutrino halo dark matter, Man Ho Chan, Mon.Not.Roy.Astron.Soc. 517 (2022) L146-L149, arXiv:2210.11667.
[Chan:2022rsp]
[11-31]
Entering the Era of Measuring Sub-Galactic Dark Matter Structure: Accurate Transfer Functions for Axino, Gravitino \& Sterile Neutrino Thermal Warm Dark Matter, Cannon M. Vogel, Kevork N. Abazajian, Phys.Rev.D 108 (2023) 043520, arXiv:2210.10753.
[Vogel:2022odl]
[11-32]
Axion-assisted Resonance Oscillation Rescues the Dodelson-Widrow Mechanism, Shu-Yuan Guo, Xuewen Liu, Bin Zhu, Eur.Phys.J.C 83 (2023) 999, arXiv:2209.11045.
[Guo:2022hnx]
[11-33]
Constraints on light decaying dark matter candidates from 16 years of INTEGRAL/SPI observations, Francesca Calore, Ariane Dekker, Pasquale Dario Serpico, Thomas Siegert, Mon.Not.Roy.Astron.Soc. 520 (2023) 4167-4172, arXiv:2209.06299.
[Calore:2022pks]
[11-34]
Constraining Sterile Neutrino Dark Matter in the Milky Way Halo with Swift-XRT, Dominic Sicilian, Dannell Lopez, Massimo Moscetti, Esra Bulbul, Nico Cappelluti, Astrophys.J. 941 (2022) 2, arXiv:2208.12271.
[Sicilian:2022wvm]
[11-35]
Core-collapse Supernova Constraint on the Origin of Sterile Neutrino Dark Matter via Neutrino Self-interactions, Yu-Ming Chen, Manibrata Sen, Walter Tangarife, Douglas Tuckler, Yue Zhang, JCAP 11 (2022) 014, arXiv:2207.14300.
[Chen:2022kal]
[11-36]
Improved cosmological bounds for a fine-tuned see-saw mechanism of keV sterile neutrinos, M. N. Dubinin, D.M. Kazarkin, arXiv:2206.05186, 2022.
[Dubinin:2022axc]
[11-37]
Constraints on sterile neutrino models from strong gravitational lensing, Milky Way satellites, and Lyman-$\alpha$ forest, Ioana A. Zelko, Tommaso Treu, Kevork N. Abazajian, Daniel Gilman, Andrew J. Benson, Simon Birrer, Anna M. Nierenberg, Alexander Kusenko, Phys.Rev.Lett. 129 (2022) 191301, arXiv:2205.09777.
[Zelko:2022tgf]
[11-38]
Freeze-in and freeze-out of sterile neutrino dark matter, Rupert Coy, Michael A. Schmidt, JCAP 08 (2022) 070, arXiv:2204.08795.
[Coy:2022unt]
[11-39]
Freeze-In of radiative keV-scale neutrino dark matter from a new $\text{U}(1)_\text{B-L}$, Maximilian Berbig, JHEP 09 (2022) 101, arXiv:2203.04276.
[Berbig:2022nre]
[11-40]
Bounds on sterile neutrino lifetime and mixing angle with active neutrinos by global 21 cm signal, Pravin Kumar Natwariya, Alekha C. Nayak, Phys.Lett.B 827 (2022) 136955, arXiv:2202.06007.
[Natwariya:2022xlv]
[11-41]
Momentum distributions of cosmic relics: Improved analysis, Kalle Ala-Mattinen, Matti Heikinheimo, Kimmo Kainulainen, Kimmo Tuominen, Phys.Rev.D 105 (2022) 123005, arXiv:2201.06456.
[Ala-Mattinen:2022nuj]
[11-42]
Imprints of fermionic and bosonic mixed dark matter on the 21-cm signal at cosmic dawn, Sambit K. Giri, Aurel Schneider, Phys.Rev.D 105 (2022) 083011, arXiv:2201.02210.
[Giri:2022nxq]
[11-43]
Pseudo-Dirac Sterile Neutrino Dark Matter, Wei Chao, Siyu Jiang, Zhu-Yao Wang, Yu-Feng Zhou, arXiv:2112.14527, 2021.
[Chao:2021grp]
[11-44]
511 keV line constraints on feebly interacting particles from supernovae, Francesca Calore, Pierluca Carenza, Maurizio Giannotti, Joerg Jaeckel, Giuseppe Lucente, Leonardo Mastrototaro, Alessandro Mirizzi, Phys.Rev.D 105 (2022) 063026, arXiv:2112.08382.
[Calore:2021lih]
[11-45]
Sterile neutrino dark matter production in presence of non-standard neutrino self-interactions: an EFT approach, Cristina Benso, Werner Rodejohann, Manibrata Sen, Aaroodd Ujjayini Ramachandran, Phys.Rev.D 105 (2022) 055016, arXiv:2112.00758.
[Benso:2021hhh]
[11-46]
Neutrino collective effects and sterile neutrino production in the early universe, R. F. Sawyer, arXiv:2111.07204, 2021.
[Sawyer:2021ytt]
[11-47]
Cosmological Dependence of Sterile Neutrino Dark Matter With Self-Interacting Neutrinos, Carlos Chichiri, Graciela B. Gelmini, Philip Lu, Volodymyr Takhistov, JCAP 09 (2022) 036, arXiv:2111.04087.
[Chichiri:2021wvw]
[11-48]
The Epoch of Reionization in Warm Dark Matter Scenarios, Massimiliano Romanello, Nicola Menci, Marco Castellano, Universe 7 (2021) 365, arXiv:2110.05262.
[Romanello:2021gnp]
[11-49]
Mirror Twin Higgs Cosmology: Constraints and a Possible Resolution to the $H_0$ and $S_8$ Tensions, Saurabh Bansal, Jeong Han Kim, Christopher Kolda, Matthew Low, Yuhsin Tsai, JHEP 05 (2022) 050, arXiv:2110.04317.
[Bansal:2021dfh]
[11-50]
Sterile neutrino dark matter with dipole interaction, Wonsub Cho, Ki-Young Choi, Osamu Seto, Phys.Rev.D 105 (2022) 015016, arXiv:2108.07569.
[Cho:2021yxk]
[11-51]
Self-Interacting Dark Matter in Cosmology: accurate numerical implementation and observational constraints, Rafael Yunis, Carlos R. Arguelles, Claudia G. Scoccola, Diana Lopez Nacir, Gaston Giordano, JCAP 02 (2022) 024, arXiv:2108.02657.
[Yunis:2021fgz]
[11-52]
A model for mixed warm and hot right-handed neutrino dark matter, Maira Dutra, Vinicius Oliveira, C. A. de S. Pires, Farinaldo S. Queiroz, JHEP 10 (2021) 005, arXiv:2104.14542.
[Dutra:2021lto]
[11-53]
Freeze-in sterile neutrino dark matter in a class of U$(1)^\prime$ models with inverse seesaw, Arindam Das, Srubabati Goswami, Vishnudath K.N., Tanmay Kumar Poddar, arXiv:2104.13986, 2021.
[Das:2021nqj]
[11-54]
Axion-Sterile-Neutrino Dark Matter, Alberto Salvio, Simone Scollo, Universe 7 (2021) 354, arXiv:2104.01334.
[Salvio:2021puw]
[11-55]
Decaying dark matter in dwarf spheroidal galaxies: Prospects for X-ray and gamma-ray telescopes, Shin'ichiro Ando et al., Phys.Rev.D 104 (2021) 023022, arXiv:2103.13242.
[Ando:2021fhj]
[11-56]
Searches for sterile neutrinos and axionlike particles from the Galactic halo with eROSITA, Ariane Dekker, Ebo Peerbooms, Fabian Zimmer, Kenny C. Y. Ng, Shin'ichiro Ando, Phys.Rev.D 104 (2021) 023021, arXiv:2103.13241.
[Dekker:2021bos]
[11-57]
Sterile Neutrino Dark Matter from Generalized $CPT$-Symmetric Early-Universe Cosmologies, Adam Duran, Logan Morrison, Stefano Profumo, Phys.Rev.D 104 (2021) 023509, arXiv:2103.08626.
[Duran:2021wao]
[11-58]
Rapid onset of the 21-cm signal suggests a preferred mass range for dark matter particle, Venno Vipp, Andi Hektor, Gert Hutsi, Phys.Rev. D103 (2021) 123002, arXiv:2103.07462.
[Vipp:2021obj]
[11-59]
A deep search for decaying dark matter with XMM-Newton blank-sky observations, Joshua W. Foster, Marius Kongsore, Christopher Dessert, Yujin Park, Nicholas L. Rodd, Kyle Cranmer, Benjamin R. Safdi, Phys.Rev.Lett. 127 (2021) 051101, arXiv:2102.02207.
[Foster:2021ngm]
[11-60]
Oscillations of sterile neutrinos from dark matter decay eliminates the IceCube-Fermi tension, Luis A. Anchordoqui, Vernon Barger, Danny Marfatia, Mary Hall Reno, Thomas J. Weiler, Phys.Rev. D103 (2021) 075022, arXiv:2101.09559.
[Anchordoqui:2021dls]
[11-61]
The Sun: Light Dark Matter and Sterile Neutrinos, Ilidio Lopes, Astrophys.J. 905 (2020) 22, arXiv:2101.00210.
[Lopes:2020hem]
[11-62]
A massive blow for $\Lambda$CDM $-$ the high redshift, mass, and collision velocity of the interacting galaxy cluster El Gordo contradicts concordance cosmology, E. Asencio, I. Banik, P. Kroupa, Mon.Not.Roy.Astron.Soc. 500 (2021) 5249-5267, arXiv:2012.03950.
[Asencio:2020mqh]
[11-63]
Intimate Relationship Between Sterile Neutrino Dark Matter and $\Delta N_{\rm eff}$, Kevin J. Kelly, Manibrata Sen, Yue Zhang, Phys.Rev.Lett. 127 (2021) 041101, arXiv:2011.02487.
[Kelly:2020aks]
[11-64]
Joint constraints on thermal relic dark matter from a selection of astrophysical probes, Wolfgang Enzi et al., Mon.Not.Roy.Astron.Soc. 506 (2021) 4, arXiv:2010.13802.
[Enzi:2020ieg]
[11-65]
Degeneracies between baryons and dark matter: the challenge of constraining the nature of dark matter with JWST, Diana Khimey, Sownak Bose, Sandro Tacchella, Mon.Not.Roy.Astron.Soc. 506 (2021) 4139-4150, arXiv:2010.10520.
[Khimey:2020shj]
[11-66]
New Constraints on the Mass of Fermionic Dark Matter from Dwarf Spheroidal Galaxies, James Alvey, Nashwan Sabti, Victoria Tiki, Diego Blas, Kyrylo Bondarenko, Alexey Boyarsky, Miguel Escudero, Malcolm Fairbairn, Matthew Orkney, Justin I. Read, Mon.Not.Roy.Astron.Soc. 501 (2021) 1, arXiv:2010.03572.
[Alvey:2020xsk]
[11-67]
The KBC void and Hubble tension contradict $\Lambda$CDM on a Gpc scale $-$ Milgromian dynamics as a possible solution, Moritz Haslbauer, Indranil Banik, Pavel Kroupa, Mon.Not.Roy.Astron.Soc. 499 (2020) 2845-2883, arXiv:2009.11292.
[Haslbauer:2020xaa]
[11-68]
The neutrino-floor in the presence of dark radation, Marco Nikolic, Suchita Kulkarni, Josef Pradler, Eur.Phys.J.C 82 (2022) 650, arXiv:2008.13557.
[Nikolic:2020fom]
[11-69]
Shedding New Light on Sterile Neutrinos from XENON1T Experiment, Soroush Shakeri, Fazlollah Hajkarim, She-Sheng Xue, JHEP 2012 (2020) 194, arXiv:2008.05029.
[Shakeri:2020wvk]
[11-70]
Dark Matter EFT, the Third - Neutrino WIMPs, Ingolf Bischer, Tilman Plehn, Werner Rodejohann, SciPost Phys. 10 (2021) 039, arXiv:2008.04718.
[Bischer:2020sop]
[11-71]
Probing the Milky Way's Dark Matter Halo for the 3.5 keV Line, Dominic Sicilian, Nico Cappelluti, Esra Bulbul, Francesca Civano, Massimo Moscetti, Christopher S. Reynolds, arXiv:2008.02283, 2020.
[Sicilian:2020ofh]
[11-72]
Boosted Neutrinos and Relativistic Dark Particles as Messengers from Reheating, Joerg Jaeckel, Wen Yin, JCAP 2102 (2021) 044, arXiv:2007.15006.
[Jaeckel:2020oet]
[11-73]
Towards Testing Sterile Neutrino Dark Matter with SRG Mission, V.V. Barinov, D.S. Gorbunov, R.A. Burenin, R.A. Krivonos, Phys.Rev. D103 (2021) 063512, arXiv:2007.07969.
[Barinov:2020hiq]
[11-74]
The XMM Cluster Survey: new evidence for the 3.5 keV feature in clusters is inconsistent with a dark matter origin, S. Bhargava et al., Mon.Not.Roy.Astron.Soc. 497 (2020) 656-671, arXiv:2006.13955.
[Bhargava:2020fxr]
[11-75]
Degenerate dark matter micro-nuggets from $\rm{eV}$ sterile states and the Hubble tension, Subinoy Das, Prolay Chanda, Astrophys.J. 915 (2021) 132, arXiv:2005.11889.
[Gogoi:2020qif]
[11-76]
Origin of Sterile Neutrino Dark Matter via Vector Secret Neutrino Interactions, Kevin J. Kelly, Manibrata Sen, Walter Tangarife, Yue Zhang, Phys.Rev. D101 (2020) 115031, arXiv:2005.03681.
[Kelly:2020pcy]
[11-77]
Sterile neutrino dark matter: Impact of active-neutrino opacities, Dietrich Bodeker, Alexander Klaus, JHEP 2007 (2020) 218, arXiv:2005.03039.
[Bodeker:2020hbo]
[11-78]
Lifting the core-collapse supernova bounds on keV-mass sterile neutrinos, Anna M. Suliga, Irene Tamborra, Meng-Ru Wu, JCAP 2008 (2020) 018, arXiv:2004.11389.
[Suliga:2020vpz]
[11-79]
Sterile neutrino dark matter via coinciding resonances, J. Ghiglieri, M. Laine, JCAP 2007 (2020) 012, arXiv:2004.10766.
[Ghiglieri:2020ulj]
[11-80]
Neutrino dark matter and the Higgs portal: improved freeze-in analysis, Valentina De Romeri, Dimitrios Karamitros, Oleg Lebedev, Takashi Toma, JHEP 2010 (2020) 137, arXiv:2003.12606.
[DeRomeri:2020wng]
[11-81]
Towards a general parametrization of the warm dark matter halo mass function, Mark R. Lovell, arXiv:2003.01125, 2020.
[Lovell:2020bcy]
[11-82]
Local Group star formation in warm and self-interacting dark matter cosmologies, Mark R. Lovell, Wojciech Hellwing, Aaron Ludlow, Jesus Zavala, Andrew Robertson, Azadeh Fattahi, Carlos S. Frenk, Jennifer Hardwick, Mon.Not.Roy.Astron.Soc. 498 (2020) 702-717, arXiv:2002.11129.
[Lovell:2020vlf]
[11-83]
Prospects for Finding Sterile Neutrino Dark Matter at KATRIN, Cristina Benso, Vedran Brdar, Manfred Lindner, Werner Rodejohann, Phys.Rev. D100 (2019) 115035, arXiv:1911.00328.
[Benso:2019jog]
[11-84]
Can EDGES observation favour any dark matter model?, Anton Rudakovskyi, Denys Savchenko, Maxym Tsizh, Mon.Not.Roy.Astron.Soc. 497 (2020) 3393-3399, arXiv:1909.06303.
[Rudakovskyi:2019cxt]
[11-85]
MeV neutrino dark matter: Relic density, electron recoil and lepton flavour violation, J. Fiaschi, M. Klasen, M. Vargas, C. Weinheimer, S. Zeinstra, JHEP 1911 (2019) 129, arXiv:1908.09882.
[Fiaschi:2019evv]
[11-86]
NuSTAR Tests of Sterile-Neutrino Dark Matter: New Galactic Bulge Observations and Combined Impact, Brandon M. Roach, Kenny C. Y. Ng, Kerstin Perez, John F. Beacom, Shunsaku Horiuchi, Roman Krivonos, Daniel R. Wik, arXiv:1908.09037, 2019.
[Roach:2019kwx]
[11-87]
Hidden Treasures: sterile neutrinos as dark matter with miraculous abundance, structure formation for different production mechanisms, and a solution to the sigma-8 problem, Kevork N. Abazajian, Alexander Kusenko, Phys.Rev. D100 (2019) 103513, arXiv:1907.11696.
[Abazajian:2019ejt]
[11-88]
The lensing properties of subhaloes in massive elliptical galaxies in sterile neutrino cosmologies, Giulia Despali, Mark Lovell, Simona Vegetti, Robert A. Crain, Benjamin D. Oppenheimer, Mon.Not.Roy.Astron.Soc. 491 (2020) 1295-1310, arXiv:1907.06649.
[Despali:2019bhl]
[11-89]
7.1 keV sterile neutrino dark matter constraints from a deep Chandra X-ray observation of the Galactic bulge Limiting Window, F. Hofmann, C. Wegg, Astron.Astrophys. 625 (2019) L7, arXiv:1905.00916.
[Hofmann:2019ihc]
[11-90]
21-cm observations and warm dark matter models, Alexey Boyarsky, Dmytro Iakubovskyi, Oleg Ruchayskiy, Anton Rudakovskyi, Wessel Valkenburg, Phys.Rev. D100 (2019) 123005, arXiv:1904.03097.
[Boyarsky:2019fgp]
[11-91]
Cosmological constraints on sterile neutrino Dark Matter production mechanisms, Lucia A. Popa, arXiv:1903.10712, 2019.
[Popa:2019ruk]
[11-92]
Self-interacting sterile neutrino dark matter: the heavy-mediator case, Lucas Johns, George M. Fuller, Phys.Rev. D100 (2019) 023533, arXiv:1903.08296.
[Johns:2019cwc]
[11-93]
New Constraints on Sterile Neutrino Dark Matter from $NuSTAR$ M31 Observations, Kenny C. Y. Ng, Brandon M. Roach, Kerstin Perez, John F. Beacom, Shunsaku Horiuchi, Roman Krivonos, Daniel R. Wik, Phys.Rev. D99 (2019) 083005, arXiv:1901.01262.
[Ng:2019gch]
[11-94]
Evidence against the decaying dark matter interpretation of the 3.5 keV line from blank sky observations, Christopher Dessert, Nicholas L. Rodd, Benjamin R. Safdi, Science 367 (2020) 1465, arXiv:1812.06976.
[Dessert:2018qih]
[11-95]
Dark matter model favoured by reionization data: 7 keV sterile neutrino vs cold dark matter, Anton Rudakovskyi, Dmytro Iakubovskyi, Mon.Not.Roy.Astron.Soc. 483 (2019) 4080-4084, arXiv:1811.02799.
[Rudakovskyi:2018jfc]
[11-96]
New constraints on sterile neutrino dark matter from the Galactic Center, R. Yunis, C. R. Arguelles, N. E. Mavromatos, A. Moline, A. Krut, J. A. Rueda, R. Ruffini, arXiv:1810.05756, 2018.
[Yunis:2018eux]
[11-97]
Induced resonance makes light sterile neutrino Dark Matter cool, F. Bezrukov, A. Chudaykin, D. Gorbunov, Phys.Rev. D99 (2019) 083507, arXiv:1809.09123.
[Bezrukov:2018wvd]
[11-98]
Warm FIRE: Simulating Galaxy Formation with Resonant Sterile Neutrino Dark Matter, Brandon Bozek et al., Mon.Not.Roy.Astron.Soc. 483 (2019) 4086-4099, arXiv:1803.05424.
[Bozek:2018ekc]
[11-99]
Galaxy Formation in Sterile Neutrino Dark Matter Models, N. Menci et al., Astrophys.J. 854 (2018) 1, arXiv:1801.03697.
[Menci:2018lis]
[11-100]
Explanation of the 511 keV line: Cascade annihilating dark matter with the $^8$Be anomaly, Lian-Bao Jia, Eur.Phys.J. C78 (2018) 112, arXiv:1710.03906.
[Jia:2017iyc]
[11-101]
Return of the X-rays: A New Hope for Fermionic Dark Matter at the keV Scale, Vedran Brdar, Joachim Kopp, Jia Liu, Xiao-Ping Wang, Phys.Rev.Lett. 120 (2018) 061301, arXiv:1710.02146.
[Brdar:2017wgy]
[11-102]
Subjecting dark matter candidates to the cluster test, Theodorus Maria Nieuwenhuizen, arXiv:1710.01375, 2017.
[Nieuwenhuizen:2017pto]
[11-103]
Universal subhalo accretion in cold and warm dark matter cosmologies, Bogna Kubik et al., Mon.Not.Roy.Astron.Soc. 472 (2017) 4099, arXiv:1709.00884.
[Kubik:2017sxp]
[11-104]
Warm Dark Matter and Cosmic Reionization, Pablo Villanueva-Domingo, Nickolay Y. Gnedin, Olga Mena, Astrophys.J. 852 (2018) 139, arXiv:1708.08277.
[Villanueva-Domingo:2017lae]
[11-105]
Signatures of Compact Halos of Sterile-Neutrino Dark Matter, Florian Kuhnel, Tommy Ohlsson, Phys.Rev. D96 (2017) 103020, arXiv:1707.04493.
[Kuhnel:2017ofn]
[11-106]
Sterile neutrino dark matter searches, Paraskevi Divari, J. D. Vergados, Adv.High Energy Phys. 2018 (2018) 1479313, arXiv:1707.02550.
[Divari:2017coh]
[11-107]
Observing the very low-surface brightness dwarfs in a deep field in the VIRGO cluster: constraints on Dark Matter scenarios, N. Menci et al., Astron.Astrophys. 604 (2017) A59, arXiv:1706.04360.
[Menci:2017mtz]
[11-108]
Constraints from Ly-$\alpha$ forests on non-thermal dark matter including resonantly-produced sterile neutrinos, Julien Baur et al., JCAP 1712 (2017) 013, arXiv:1706.03118.
[Baur:2017stq]
[11-109]
Thermalizing sterile neutrino dark matter, Rasmus S. L. Hansen, Stefan Vogl, Phys.Rev.Lett. 119 (2017) 251305, arXiv:1706.02707.
[Hansen:2017rxr]
[11-110]
'Non-cold' dark matter at small scales: a general approach, Riccardo Murgia, Alexander Merle, Matteo Viel, Maximilian Totzauer, Aurel Schneider, JCAP 1711 (2017) 046, arXiv:1704.07838.
[Murgia:2017lwo]
[11-111]
Constraints on warm dark matter from the ionization history of the Universe, Laura Lopez-Honorez, Olga Mena, Sergio Palomares-Ruiz, Pablo Villanueva Domingo, Phys.Rev. D96 (2017) 103539, arXiv:1703.02302.
[Lopez-Honorez:2017csg]
[11-112]
Sterile neutrino dark matter from right-handed neutrino oscillations, Kenji Kadota, Kunio Kaneta, Phys.Rev. D97 (2018) 115021, arXiv:1702.04526.
[Kadota:2017hzy]
[11-113]
Closing in on Resonantly Produced Sterile Neutrino Dark Matter, John F. Cherry, Shunsaku Horiuchi, Phys.Rev. D95 (2017) 083015, arXiv:1701.07874.
[Cherry:2017dwu]
[11-114]
Properties of Local Group galaxies in hydrodynamical simulations of sterile neutrino dark matter cosmologies, Mark R. Lovell et al., Mon.Not.Roy.Astron.Soc. 468 (2017) 4285, arXiv:1611.00010.
[Lovell:2016fec]
[11-115]
Addressing the too big to fail problem with baryon physics and sterile neutrino dark matter, Mark R. Lovell, Violeta Gonzalez-Perez, Sownak Bose, Alexey Boyarsky, Shaun Cole, Carlos S. Frenk, Oleg Ruchayskiy, Mon.Not.Roy.Astron.Soc. 468 (2017) 2836-2849, arXiv:1611.00005.
[Lovell:2016nkp]
[11-116]
Direct Search for keV Sterile Neutrino Dark Matter with a Stable Dysprosium Target, T. Lasserre et al., arXiv:1609.04671, 2016.
[Lasserre:2016eot]
[11-117]
keV Sterile Neutrino Dark Matter from Singlet Scalar Decays: The Most General Case, Johannes Konig, Alexander Merle, Maximilian Totzauer, JCAP 1611 (2016) 038, arXiv:1609.01289.
[Konig:2016dzg]
[11-118]
Impact of ADC non-linearities on the sensitivity to sterile keV neutrinos with a KATRIN-like experiment, K. Dolde, S. Mertens, D. Radford, T. Bode, A. Huber, M. Korzeczek, T. Lasserre, M. Slezak, Nucl.Instrum.Meth. A848 (2017) 127-136, arXiv:1608.03158.
[Dolde:2016wnv]
[11-119]
Warm dark matter sterile neutrinos in electron capture and beta decay spectra, O. Moreno, E. Moya de Guerra, M. Ramon Medrano, Adv.High Energy Phys. 2016 (2016) 6318102, arXiv:1607.02931.
[Moreno:2016hrs]
[11-120]
A Stringent Limit on the Warm Dark Matter Particle Masses from the Abundance of $z=6$ Galaxies in the Hubble Frontier Fields, N. Menci, A. Grazian, M. Castellano, N.G. Sanchez, Astrophys.J. 825 (2016) L1, arXiv:1606.02530.
[Menci:2016eui]
[11-121]
Testing keV sterile neutrino dark matter in future direct detection experiments, Miguel D. Campos, Werner Rodejohann, Phys. Rev. D94 (2016) 095010, arXiv:1605.02918.
[Campos:2016gjh]
[11-122]
Substructure and galaxy formation in the Copernicus Complexio warm dark matter simulations, Sownak Bose et al., Mon.Not.Roy.Astron.Soc. 464 (2017) 4520-4533-4533, arXiv:1604.07409.
[Bose:2016irl]
[11-123]
Sterile neutrino dark matter and core-collapse supernovae, Grant J. Mathews, MacKenzie Warren, Jun Hidaka, Toshitaka Kajino, arXiv:1604.02431, 2016.
[Mathews:2016xba]
[11-124]
Influence of 7 keV sterile neutrino dark matter on the process of reionization, Anton Rudakovskiy, Dmytro Iakubovskyi, JCAP 1606 (2016) 017, arXiv:1604.01341.
[Rudakovskiy:2016ngi]
[11-125]
Can decaying sterile neutrinos account for all dark matter?, Man Ho Chan, Astrophys. Space Sci. 361 (2016) 116, arXiv:1602.08168.
[Chan:2016aab]
[11-126]
Astrophysical constraints on resonantly produced sterile neutrino dark matter, Aurel Schneider, JCAP 1604 (2016) 059, arXiv:1601.07553.
[Schneider:2016uqi]
[11-127]
Atomic ionization by sterile-to-active neutrino conversion and constraints on dark matter sterile neutrinos with germanium detectors, Jiunn-Wei Chen et al., Phys. Rev. D93 (2016) 093012, arXiv:1601.07257.
[Chen:2016lyr]
[11-128]
Constraining the Warm Dark Matter Particle Mass through Ultra-Deep UV Luminosity Functions at z=2, N. Menci, N.G. Sanchez, M. Castellano, A. Grazian, Astrophys. J. 818 (2016) 90, arXiv:1601.01820.
[Menci:2016eww]
[11-129]
Constraints on the identity of the dark matter from strong gravitational lenses, Ran Li et al., Mon.Not.Roy.Astron.Soc. 460 (2016) 363-372, arXiv:1512.06507.
[Li:2015xpc]
[11-130]
Dodelson-Widrow Production of Sterile Neutrino Dark Matter with Non-Trivial Initial Abundance, Alexander Merle, Aurel Schneider, Maximilian Totzauer, JCAP 1604 (2016) 003, arXiv:1512.05369.
[Merle:2015vzu]
[11-131]
Properties of Resonantly Produced Sterile Neutrino Dark Matter Subhalos, Shunsaku Horiuchi et al., Mon. Not. Roy. Astron. Soc. 456 (2016) 4346-4353, arXiv:1512.04548.
[Horiuchi:2015qri]
[11-132]
Resonant Sterile Neutrino Dark Matter in the Local and High-z Universe, Brandon Bozek et al., Mon.Not.Roy.Astron.Soc. 459 (2016) 1489, arXiv:1512.04544.
[Bozek:2015bdo]
[11-133]
Satellite galaxies in semi-analytic models of galaxy formation with sterile neutrino dark matter, Mark R.Lovell et al., Mon.Not.Roy.Astron.Soc. 461 (2016) 60-72, arXiv:1511.04078.
[Lovell:2015psz]
[11-134]
The case for mixed dark matter from sterile neutrinos, Louis Lello, Daniel Boyanovsky, JCAP 1606 (2016) 011, arXiv:1508.04077.
[Lello:2015uma]
[11-135]
Sterile neutrino dark matter: A tale of weak interactions in the strong coupling epoch, Tejaswi Venumadhav, Francis-Yan Cyr-Racine, Kevork N. Abazajian, Christopher M. Hirata, Phys. Rev. D94 (2016) 043515, arXiv:1507.06655.
[Venumadhav:2015pla]
[11-136]
The X-Ray Line Feature At 3.5 Kev In Galaxy Cluster Spectra, K. J. H. Phillips, B. Sylwester, J. Sylwester, Astrophys.J. 809 (2015) 50, arXiv:1507.04619.
[Phillips:2015wla]
[11-137]
The COpernicus COmplexio: Statistical Properties of Warm Dark Matter Haloes, Sownak Bose et al., Mon. Not. Roy. Astron. Soc. 455 (2016) 318-333, arXiv:1507.01998.
[Bose:2015mga]
[11-138]
Improved determination of sterile neutrino dark matter spectrum, J. Ghiglieri, M. Laine, JHEP 11 (2015) 171, arXiv:1506.06752.
[Ghiglieri:2015jua]
[11-139]
Structure formation in warm dark matter cosmologies: Top-Bottom Upside-Down, Sinziana Paduroiu, Yves Revaz, Daniel Pfenniger, arXiv:1506.03789, 2015.
[Paduroiu:2015jfa]
[11-140]
keV Sterile Neutrino Dark Matter from Singlet Scalar Decays: Basic Concepts and Subtle Features, Alexander Merle, Maximilian Totzauer, JCAP 1506 (2015) 011, arXiv:1502.01011.
[Merle:2015oja]
[11-141]
Constrains on Dark Matter sterile neutrino resonant production in the light of Planck, L. A. Popa, A. Caramete, D. Tonoiu, JCAP 1509 (2015) 066, arXiv:1501.06355.
[Popa:2015eta]
[11-142]
Structure formation in a mixed dark matter model with decaying sterile neutrino: the 3.5 keV X-ray line and the Galactic substructure, Akira Harada, Ayuki Kamada, Naoki Yoshida, JCAP 1601 (2016) 031, arXiv:1412.1592.
[Harada:2014lma]
[11-143]
Spin mixing mechanism in amplitude analysis of $\pi^{-} p \to \pi^{-} \pi^{+} n$ and a new view of dark matter, Miloslav Svec, arXiv:1411.4468, 2014.
[Svec:2014eea]
[11-144]
Cosmological Implications of Light Sterile Neutrinos produced after the QCD Phase Transition, Louis Lello, Daniel Boyanovsky, Phys. Rev. D91 (2015) 063502, arXiv:1411.2690.
[Lello:2014yha]
[11-145]
Where do the 3.5 keV photons come from? A morphological study of the Galactic Center and of Perseus, Eric Carlson, Tesla Jeltema, Stefano Profumo, JCAP 1502 (2015) 009, arXiv:1411.1758.
[Carlson:2014lla]
[11-146]
Excited dark matter reconciles conflicting observations of 3.5 keV X-rays, James M. Cline, Andrew R. Frey, Phys. Rev. D90 (2014) 123537, arXiv:1410.7766.
[Cline:2014vsa]
[11-147]
Constraints on 3.55 keV line emission from stacked observations of dwarf spheroidal galaxies, D. Malyshev, A. Neronov, D. Eckert, Phys. Rev. D90 (2014) 103506, arXiv:1408.3531.
[Malyshev:2014xqa]
[11-148]
Dark matter searches going bananas: the contribution of Potassium (and Chlorine) to the 3.5 keV line, Tesla E. Jeltema, Stefano Profumo, Mon.Not.Roy.Astron.Soc. 450 (2015) 2143-2152, arXiv:1408.1699.
[Jeltema:2014qfa]
[11-149]
Modified Baryonic Dynamics: two-component cosmological simulations with light sterile neutrinos, Garry W. Angus, Antonaldo Diaferio, Benoit Famaey, Kurt J. van der Heyden, JCAP 1410 (2014) 079, arXiv:1407.1207.
[Angus:2014kja]
[11-150]
3.5 keV X-rays as the '21 cm line' of dark atoms, and a link to light sterile neutrinos, James M. Cline, Yasaman Farzan, Zuowei Liu, Guy D. Moore, Wei Xue, Phys. Rev. D89 (2014) 121302, arXiv:1404.3729.
[Cline:2014eaa]
[11-151]
The High-$z$ Universe Confronts Warm Dark Matter: Galaxy Counts, Reionization and the Nature of Dark Matter, Christian Schultz, Jose Onorbe, Kevork N. Abazajian, James S. Bullock, Mon.Not.Roy.Astron.Soc. 442 (2014) 1597-1609, arXiv:1401.3769.
[Schultz:2014eia]
[11-152]
Electron events from the scattering with solar neutrinos in the search of keV scale sterile neutrino dark matter, Wei Liao, Xiao-Hong Wu, Hang Zhou, Phys. Rev. D89 (2014) 093017, arXiv:1311.6075.
[Liao:2013jwa]
[11-153]
Sterile neutrino dark matter bounds from galaxies of the Local Group, Shunsaku Horiuchi et al., Phys. Rev. D89 (2014) 025017, arXiv:1311.0282.
[Horiuchi:2013noa]
[11-154]
Cosmological simulations in MOND: the cluster scale halo mass function with light sterile neutrinos, Garry W. Angus, Antonaldo Diaferio, Benoit Famaey, Kurt J. van der Heyden, Mon.Not.Roy.Astron.Soc. 436 (2013) 202, arXiv:1309.6094.
[Angus:2013sxa]
[11-155]
Constraining Light Dark Matter with Diffuse X-Ray and Gamma-Ray Observations, Rouven Essig, Eric Kuflik, Samuel D. McDermott, Tomer Volansky, Kathryn M. Zurek, JHEP 1311 (2013) 193, arXiv:1309.4091.
[Essig:2013goa]
[11-156]
The properties of warm dark matter haloes, Mark R. Lovell et al., Mon.Not.Roy.Astron.Soc. 439 (2014) 300-317, arXiv:1308.1399.
[Lovell:2013ola]
[11-157]
Are observations of the galaxy cluster Abell 1689 consistent with a neutrino dark matter scenario?, Theo M. Nieuwenhuizen, Andrea Morandi, Mon.Not.Roy.Astron.Soc. 434 (2013) 2679, arXiv:1307.6788.
[Nieuwenhuizen:2013oza]
[11-158]
Dark matter mass profiles in the Milky Way and in galaxy clusters support a prior claim of 4.0 eV and 21.4 eV sterile neutrinos, Man Ho Chan, Robert Ehrlich, Astrophys.Space Sci. 349 (2014) 407-413, arXiv:1301.6640.
[Chan:2013pnj]
[11-159]
Typical density profile for warm dark matter haloes, Jordi Vinas, Eduard Salvador-Sole, Alberto Manrique, Mon. Not. Roy. Astron. Soc. 424 (2012) L6, arXiv:1202.2860.
[Vinas:2012uj]
[11-160]
The inner structure of haloes in Cold+Warm dark matter models, Andrea V. Maccio', Oleg Ruchayskiy, Alexey Boyarsky, Juan C. Munoz-Cuartas, Mon.Not.Roy.Astron.Soc. 428 (2013) 882-890, arXiv:1202.2858.
[Maccio:2012rjx]
[11-161]
Restrictions on the lifetime of sterile neutrinos from primordial nucleosynthesis, Oleg Ruchayskiy, Artem Ivashko, JCAP 1210 (2012) 014, arXiv:1202.2841.
[Ruchayskiy:2012si]
[11-162]
Constraining Sterile Neutrino Warm Dark Matter with Chandra Observations of the Andromeda Galaxy, Casey R. Watson, Zhiyuan Li, Nicholas K. Polley, JCAP 1203 (2012) 018, arXiv:1111.4217.
[Watson:2011dw]
[11-163]
Electron-positron Annihilation Lines and Decaying Sterile Neutrinos, M. H. Chan, M.-C. Chu, Astrophys. Space Sci. 338 (2012) 313-317, arXiv:1111.3216.
[Chan:2011yz]
[11-164]
A WDM model for the evolution of galactic halos, L. Acedo, JCAP 0907 (2009) 037, arXiv:1111.1536.
[Acedo:2009zz]
[11-165]
Constraints on sterile neutrino dark matter from XMM-Newton observation of M33, Enrico Borriello, Maurizio Paolillo, Gennaro Miele, Gennaro Longo, Richard Owen, Mon. Not. Roy. Astron. Soc. 425 (2012) 1628-1632, arXiv:1109.5943.
[Borriello:2011un]
[11-166]
Observational evidences for the existence of 17.4 keV decaying degenerate sterile neutrinos near the Galactic Center, Man Ho Chan, Ming-Chung Chu, Astrophys. J. 727 (2011) L47, arXiv:1009.5872.
[Chan:2010wa]
[11-167]
Possible Capture of keV Sterile Neutrino Dark Matter on Radioactive $\beta$-decaying Nuclei, Y. F. Li, Zhi-zhong Xing, Phys. Lett. B695 (2011) 205-210, arXiv:1009.5870.
[Li:2010vy]
[11-168]
Rotation Curve of a Dark Matter Filament, Brian A. Slovick, arXiv:1009.1113, 2010.
[Slovick:2010kb]
[11-169]
Small scale aspects of warm dark matter : power spectra and acoustic oscillations, Daniel Boyanovsky, Jun Wu, Phys. Rev. D83 (2011) 043524, arXiv:1008.0992.
[Boyanovsky:2010pw]
[11-170]
Constraints on the Dark Matter Particle Mass from the Number of Milky Way Satellites, Emil Polisensky, Massimo Ricotti, Phys. Rev. D83 (2011) 043506, arXiv:1004.1459.
[Polisensky:2010rw]
[11-171]
Willman 1 in X-rays: Can you tell a dwarf galaxy from a globular cluster?, N. Mirabal, D. Nieto, arXiv:1003.3745, 2010.
[Mirabal:2010jj]
[11-172]
Can the excess in the FeXXVI Ly gamma line from the Galactic Center provide evidence for 17 keV sterile neutrinos?, D. A. Prokhorov, Joseph Silk, Astrophys.J. 725 (2010) L131, arXiv:1001.0215.
[Prokhorov:2010us]
[11-173]
Dark Matter Search Using Chandra Observations of Willman 1, and a Spectral Feature Consistent with a Decay Line of a 5 keV Sterile Neutrino, Michael Loewenstein, Alexander Kusenko, Astrophys. J. 714 (2010) 652-662, arXiv:0912.0552.
[Boyarsky:2010ci]
[11-174]
A lower limit on the dark particle mass from dSphs, Garry W. Angus, JCAP 1003 (2010) 026, arXiv:0907.1526.
[Angus:2009sw]
[11-175]
Equilibrium configurations of 11eV sterile neutrinos in MONDian galaxy clusters, Garry W. Angus, Benoit Famaey, Antonaldo Diaferio, Mon.Not.Roy.Astron.Soc. 402 (2010) 395, arXiv:0906.3322.
[Angus:2009gx]
[11-176]
Do non-relativistic neutrinos constitute the dark matter?, Th. M. Nieuwenhuizen, Europhys. Lett. 86 (2009) 59001, arXiv:0812.4552.
From the abstract: A fit of Abell 1689 galaxy yields a relic neutrino mass of $1.445 \pm 0.030 \, \text{eV}$.
[Nieuwenhuizen:2008pf]
[11-177]
Realistic sterile neutrino dark matter with keV mass does not contradict cosmological bounds, Alexey Boyarsky, Julien Lesgourgues, Oleg Ruchayskiy, Matteo Viel, Phys. Rev. Lett. 102 (2009) 201304, arXiv:0812.3256.
[Boyarsky:2008mt]
[11-178]
Cosmological constraints on a light non-thermal sterile neutrino, Mario A. Acero, Julien Lesgourgues, Phys. Rev. D79 (2009) 045026, arXiv:0812.2249.
[Acero:2008rh]
[11-179]
Lyman-alpha constraints on warm and on warm-plus-cold dark matter models, Alexey Boyarsky, Julien Lesgourgues, Oleg Ruchayskiy, Matteo Viel, JCAP 0905 (2009) 012, arXiv:0812.0010.
[Boyarsky:2008xj]
[11-180]
Constraining sterile neutrino dark matter by phase-space density observations, D. Gorbunov, A. Khmelnitsky, V. Rubakov, JCAP 0810 (2008) 041, arXiv:0808.3910.
[Gorbunov:2008ka]
[11-181]
Decaying Sterile Neutrinos as a Heating Source in the Milky Way Center, M. H. Chan, M.-C. Chu, Mon. Not. Roy. Astron. Soc. 389 (2008) 297-300, arXiv:0806.1311.
[Chan:2008wn]
[11-182]
Are sterile neutrinos consistent with clusters, the CMB and MOND?, Garry W. Angus, Mon.Not.Roy.Astron.Soc. 394 (2009) 527, arXiv:0805.4014.
[Angus:2008qz]
[11-183]
MeV sterile neutrinos in low reheating temperature cosmological scenarios, Graciela Gelmini, Efunwande Osoba, Sergio Palomares-Ruiz, Silvia Pascoli, JCAP 0810 (2008) 029, arXiv:0803.2735.
[Gelmini:2008fq]
[11-184]
The Energy Cascade from Warm Dark Matter Decays, M. Valdes, A. Ferrara, Mon.Not.Roy.Astron.Soc. 387 (2008) 8, arXiv:0803.0370.
[Valdes:2008cr]
[11-185]
Lepton Number-Driven Sterile Neutrino Production in the Early Universe, Chad T. Kishimoto, George M. Fuller, Phys. Rev. D78 (2008) 023524, arXiv:0802.3377.
[Kishimoto:2008ic]
[11-186]
Testing non-unitarity of neutrino mixing matrices at neutrino factories, Srubabati Goswami, Toshihiko Ota, Phys. Rev. D78 (2008) 033012, arXiv:0802.1434.
[Goswami:2008mi]
[11-187]
Small-scale structure formation properties of chilled sterile neutrinos as dark matter, Kalliopi Petraki, Phys. Rev. D77 (2008) 105004, arXiv:0801.3470.
[Petraki:2008ef]
[11-188]
Neutrinos as galactic dark matter in the Ursa Major galaxy group?, G. Gentile, H. S. Zhao, B. Famaey, Mon.Not.Roy.Astron.Soc. 385 (2008) 68, arXiv:0712.1816.
[Gentile:2007pt]
[11-189]
Constraints on dark matter particles from theory, galaxy observations and N-body simulations, D. Boyanovsky, H. J. de Vega, N. Sanchez, Phys. Rev. D77 (2008) 043518, arXiv:0710.5180.
[Boyanovsky:2007ay]
[11-190]
Constraining DM properties with SPI, Alexey Boyarsky, Denys Malyshev, Andrey Neronov, Oleg Ruchayskiy, Mon. Not. Roy. Astron. Soc. 387 (2008) 1345, arXiv:0710.4922.
[Boyarsky:2007ge]
[11-191]
Constraints on decaying Dark Matter from XMM-Newton observations of M31, Alexey Boyarsky, Dmytro Iakubovskyi, Oleg Ruchayskiy, Vladimir Savchenko, Mon. Not. Roy. Astron. Soc. 387 (2008) 1361, arXiv:0709.2301.
[Boyarsky:2007ay]
[11-192]
Sterile neutrinos as subdominant warm dark matter, A. Palazzo, D. Cumberbatch, A. Slosar, J. Silk, Phys. Rev. D76 (2007) 103511, arXiv:0707.1495.
[Palazzo:2007gz]
[11-193]
Strong Upper Limits on Sterile Neutrino Warm Dark Matter, Hasan Yuksel, John F. Beacom, Casey R. Watson, Phys. Rev. Lett. 101 (2008) 121301, arXiv:0706.4084.
[Yuksel:2007xh]
[11-194]
Constraining Warm Dark Matter using QSO gravitational lensing, M. Miranda, A.V. Maccio, Mon.Not.Roy.Astron.Soc. 382 (2007) 1225, arXiv:0706.0896.
[Miranda:2007rb]
[11-195]
Sterile neutrino production in models with low reheating temperatures, Carlos E. Yaguna, JHEP 06 (2007) 002, arXiv:0706.0178.
[Yaguna:2007wi]
[11-196]
Search for the light dark matter with an X-ray spectrometer, Alexey Boyarsky, Jan Willem den Herder, Andrey Neronov, Oleg Ruchayskiy, Astropart. Phys. 28 (2007) 303-311, arXiv:astro-ph/0612219.
[Boyarsky:2006hr]
[11-197]
Limits on the Radiative Decay of Sterile Neutrino Dark Matter from the Unresolved Cosmic and Soft X-ray Backgrounds, Kevork N. Abazajian, Maxim Markevitch, Savvas M. Koushiappas, Ryan C. Hickox, Phys. Rev. D75 (2007) 063511, arXiv:astro-ph/0611144.
[Abazajian:2006jc]
[11-198]
Constraints on the parameters of radiatively decaying dark matter from the dark matter halo of the Milky Way and Ursa Minor, Alexey Boyarsky, Jukka Nevalainen, Oleg Ruchayskiy, Astron. Astrophys. 471 (2007) 51-57, arXiv:astro-ph/0610961.
[Boyarsky:2006ag]
[11-199]
Probing the nature of dark matter with Cosmic X-rays: Constraints from 'Dark blobs' and grating spectra of galaxy clusters, Signe Riemer-Sorensen, Kristian Pedersen, Steen H. Hansen, Haakon Dahle, Phys. Rev. D76 (2007) 043524, arXiv:astro-ph/0610034.
[Riemer-Sorensen:2006pdg]
[11-200]
Heating the intergalactic medium by radiative decay of neutrinos, M. H. Chan, M. -C. Chu, Astrophys. J. 658 (2007) 859, arXiv:astro-ph/0609563.
[Chan:2006nw]
[11-201]
On the Law of Gravity, the Mass of Neutrinos and the Proof of Dark Matter, Garry W. Angus, HuanYuan Shan, HongSheng Zhao, Benoit Famaey, Astrophys. J. 654 (2007) L13-L16, arXiv:astro-ph/0609125.
[Angus:2006ev]
[11-202]
Intergalactic medium heating by dark matter, E. Ripamonti, M. Mapelli, A. Ferrara, Mon. Not. Roy. Astron. Soc. 374 (2007) 1067-1077, arXiv:astro-ph/0606482.
[Ripamonti:2006gq]
[11-203]
Can sterile neutrinos be ruled out as warm dark matter candidates?, Matteo Viel et al., Phys. Rev. Lett. 97 (2006) 071301, arXiv:astro-ph/0605706.
[Viel:2006kd]
[11-204]
Direct X-ray Constraints on Sterile Neutrino Warm Dark Matter, Casey R. Watson, John F. Beacom, Hasan Yuksel, Terry P. Walker, Phys. Rev. D74 (2006) 033009, arXiv:astro-ph/0605424.
[Watson:2006qb]
[11-205]
Constraints on Sterile Neutrino Dark Matter, Kevork Abazajian, Savvas M. Koushiappas, Phys. Rev. D74 (2006) 023527, arXiv:astro-ph/0605271.
[Abazajian:2006yn]
[11-206]
The $\nu\text{MSM}$, Inflation, and Dark Matter, Mikhail Shaposhnikov, Igor Tkachev, Phys. Lett. B639 (2006) 414-417, arXiv:hep-ph/0604236.
[Shaposhnikov:2006xi]
[11-207]
Sterile neutrinos in the Milky Way: Observational constraints, Signe Riemer-Sorensen, Steen H. Hansen, Kristian Pedersen, Astrophys. J. 644 (2006) L33-L36, arXiv:astro-ph/0603661.
[Riemer-Sorensen:2006uyy]
[11-208]
How to find a dark matter sterile neutrino?, A. Boyarsky et al., Phys. Rev. Lett. 97 (2006) 261302, arXiv:astro-ph/0603660.
[Boyarsky:2006fg]
[11-209]
Restrictions on parameters of sterile neutrino dark matter from observations of galaxy clusters, Alexey Boyarsky, Andrey Neronov, Oleg Ruchayskiy, Mikhail Shaposhnikov, Phys. Rev. D74 (2006) 103506, arXiv:astro-ph/0603368.
[Boyarsky:2006zi]
[11-210]
Can sterile neutrinos be the dark matter?, Uros Seljak, Alexey Makarov, Patrick McDonald, Hy Trac, Phys. Rev. Lett. 97 (2006) 191303, arXiv:astro-ph/0602430.
[Seljak:2006qw]
[11-211]
Opening a new window for warm dark matter, Takehiko Asaka, Alexander Kusenko, Mikhail Shaposhnikov, Phys. Lett. B638 (2006) 401-406, arXiv:hep-ph/0602150.
[Asaka:2006ek]
[11-212]
Constraints on sterile neutrino as a dark matter candidate from the diffuse X-ray background, A. Boyarsky, A. Neronov, O. Ruchayskiy, M. Shaposhnikov, Mon. Not. Roy. Astron. Soc. 370 (2013) 213-218, arXiv:astro-ph/0512509.
[Rusov:2013uaa]
[11-213]
Nonthermal Production and Perturbation Evolution of Sterile Neutrino Dark Matter, Kevork Abazajian, Phys. Rev. D73 (2006) 063506, arXiv:astro-ph/0511630.
[Abazajian:2005gj]
[11-214]
Pulsar kicks from a dark-matter sterile neutrino, G. M. Fuller, A. Kusenko, I. Mocioiu, S. Pascoli, Phys. Rev. D68 (2003) 103002, arXiv:astro-ph/0307267.
[Fuller:2003gy]
[11-215]
Constraining the window on sterile neutrinos as warm dark matter, Steen H. Hansen, Julien Lesgourgues, Sergio Pastor, Joseph Silk, Mon. Not. Roy. Astron. Soc. 333 (2002) 544-546, arXiv:astro-ph/0106108.
[Hansen:2001zv]
[11-216]
Producing massive sterile neutrinos as warm dark matter, A. D. Dolgov, S. H. Hansen, arXiv:hep-ph/0103118, 2001.
[Dolgov:2001nz]
[11-217]
Sterile neutrino hot, warm, and cold dark matter, Kevork Abazajian, George M. Fuller, Mitesh Patel, Phys. Rev. D64 (2001) 023501, arXiv:astro-ph/0101524.
[Abazajian:2001nj]
[11-218]
Diffuse ionization in the Milky Way and sterile neutrinos, Rabindra N. Mohapatra, Dennis W. Sciama, arXiv:hep-ph/9811446, 1998.
[Mohapatra:1998vm]
[11-219]
A new dark matter candidate: Non-thermal sterile neutrinos, Xiang-dong Shi, George M. Fuller, Phys. Rev. Lett. 82 (1999) 2832-2835, arXiv:astro-ph/9810076.
[Shi:1998km]
[11-220]
Sterile-neutrinos as dark matter, Scott Dodelson, Lawrence M. Widrow, Phys. Rev. Lett. 72 (1994) 17-20, arXiv:hep-ph/9303287.
[Dodelson:1993je]

12 - Phenomenology - Dark Matter - Talks

[12-1]
Dark matter from sterile-sterile neutrino mixing, Pasquale Di Bari, PoS CORFU2022 (2023) 065, arXiv:2305.03032. CORFU2022: 22th Hellenic School and Workshops on Elementary Particle Physics and Gravity.
[DiBari:2023nrd]
[12-2]
Sterile neutrino dark matter in a U(1) extension of the standard model, Karoly Seller, Acta Phys.Polon.Supp. 15 (2022) 1, arXiv:2112.00525. Matter To The Deepest: Recent Developments In Physics Of Fundamental Interactions. XLIV International Conference of Theoretical Physics, 2021.
[Seller:2021csy]

13 - Phenomenology - Heavy Neutral Leptons

[13-1]
Distinguishing Dirac/Majorana Heavy Neutrino at Future Lepton Colliders, Qing-Hong Cao, Kun Cheng, Yandong Liu, arXiv:2403.06561, 2024.
[Cao:2024rzb]
[13-2]
Prospects for Heavy Neutral Lepton Searches at Short and Medium Baseline Reactor Experiments, N. van Remortel, M. Colomer Molla, B. Clerbeaux, A. De Roeck, M. Drewes, R. Keloth, H. Sfar, S. Vercaemer, M. Verstraeten, arXiv:2403.04662, 2024.
[vanRemortel:2024wcf]
[13-3]
Two-dimensional models of core-collapse supernova explosions assisted by heavy sterile neutrinos, Kanji Mori, Tomoya Takiwaki, Kei Kotake, Shunsaku Horiuchi, arXiv:2402.14333, 2024.
[Mori:2024vrf]
[13-4]
Probing the Sterile Neutrino Dipole Portal with SN1987A and Low-Energy Supernovae, Garv Chauhan, Shunsaku Horiuchi, Patrick Huber, Ian M. Shoemaker, arXiv:2402.01624, 2024.
[Chauhan:2024nfa]
[13-5]
Discriminating Majorana and Dirac heavy neutrinos at lepton colliders, Krzysztof Mekala, Jurgen Reuter, Aleksander Filip Zarnecki, JHEP 03 (2024) 075, arXiv:2312.05223.
[Mekala:2023kzo]
[13-6]
New physics at the Intensity Frontier: how much can we learn and how?, Oleksii Mikulenko, Kyrylo Bondarenko, Alexey Boyarsky, Oleg Ruchayskiy, arXiv:2312.00659, 2023.
[Mikulenko:2023olf]
[13-7]
Search for Hidden Neutrinos at the European Spallation Source: the SHiNESS experiment, Stefano Roberto Soleti, Pilar Coloma, Juan Jose Gomez Cadenas, arXiv:2311.18509, 2023.
[Soleti:2023hlr]
[13-8]
Discovering Heavy Neutral Leptons with the Higgs Boson, Nicolas Bernal, Kuldeep Deka, Marta Losada, arXiv:2311.18033, 2023.
[Bernal:2023coo]
[13-9]
Heavy Neutral Leptons via Axion-Like Particles at Neutrino Facilities, Asli M Abdullahi, Andre de Gouvea, Bhaskar Dutta, Ian M. Shoemaker, Zahra Tabrizi, arXiv:2311.07713, 2023.
[Abdullahi:2023gdj]
[13-10]
Comprehensive constraints on heavy sterile neutrinos from core-collapse supernovae, Pierluca Carenza, Giuseppe Lucente, Leonardo Mastrototaro, Alessandro Mirizzi, Pasquale Dario Serpico, Phys.Rev.D 109 (2024) 063010, arXiv:2311.00033.
[Carenza:2023old]
[13-11]
Long-lived HNLs at lepton colliders as a probe of left-right symmetric models, Kevin A. Urquia-Calderon, Phys.Rev.D 109 (2024) 055002, arXiv:2310.17406.
[Urquia-Calderon:2023dkf]
[13-12]
Long-lived neutral fermions at the DUNE near detector, Julian Y. Gunther, Jordy de Vries, Herbi K. Dreiner, Zeren Simon Wang, Guanghui Zhou, JHEP 01 (2024) 108, arXiv:2310.12392.
[Gunther:2023vmz]
[13-13]
Hunting for sterile neutrino with collider signatures, Hao Yang, Bingwei Long, Cong-Feng Qiao, arXiv:2309.16233, 2023.
[Yang:2023ice]
[13-14]
Rare tau decays via exchange of on-shell almost degenerate Majorana neutrinos, $\tau^{\mp} \to \pi^{\mp} N_j \to \pi^{\mp} \mu^{\mp} \pi^{\pm}$ and $\tau^{\mp} \to \pi^{\mp} N_j \to \pi^{\mp} \mu^{\pm} \pi^{\mp}$, Gorazd Cvetic, C. S. Kim, JHEP 02 (2024) 215, arXiv:2309.14281.
[Cvetic:2023bwr]
[13-15]
Heavy neutral leptons from kaons in effective field theory, Rebeca Beltran, Julian Gunther, Martin Hirsch, Arsenii Titov, Zeren Simon Wang, arXiv:2309.11546, 2023.
[Beltran:2023ksw]
[13-16]
Low-Energy Supernovae Bounds on Sterile Neutrinos, Garv Chauhan, Shunsaku Horiuchi, Patrick Huber, Ian M. Shoemaker, arXiv:2309.05860, 2023.
[Chauhan:2023sci]
[13-17]
Z' Mediated right-handed Neutrinos from Meson Decays at the FASER, Jiale Li, Wei Liu, Hao Sun, Phys.Rev.D 109 (2024) 035022, arXiv:2309.05020.
[Li:2023dbs]
[13-18]
When Energy Goes Missing: New Physics in $b\to suu$ with Sterile Neutrinos, Tobias Felkl, Anjan Giri, Rukmani Mohanta, Michael A. Schmidt, Eur.Phys.J.C 83 (2023) 1135, arXiv:2309.02940.
[Felkl:2023ayn]
[13-19]
Monochromatic neutrinos from dark matter through the Higgs portal, Pablo de la Torre, Miguel Gutierrez, Manuel Masip, JCAP 11 (2023) 068, arXiv:2309.00374.
[delaTorre:2023nfk]
[13-20]
Probing the dipole portal to heavy neutral leptons via meson decays at the high-luminosity LHC, Daniele Barducci, Wei Liu, Arsenii Titov, Zeren Simon Wang, Yu Zhang, Phys.Rev.D 108 (2023) 115009, arXiv:2308.16608.
[Barducci:2023hzo]
[13-21]
Sterile Neutrino Portal Dark Matter from Semi-Production, Ang Liu, Feng-Lan Shao, Zhi-Long Han, Yi Jin, Honglei Li, Phys.Rev.D 109 (2024) 055027, arXiv:2308.12588.
[Liu:2023zah]
[13-22]
Heavy neutrino-antineutrino oscillations at the FCC-ee, Stefan Antusch, Jan Hajer, Bruno M. S. Oliveira, JHEP 10 (2023) 129, arXiv:2308.07297.
[Antusch:2023jsa]
[13-23]
New limits on $W_R$ from meson decays, Gustavo F. S. Alves, Chee Sheng Fong, Luighi P. S. Leal, Renata Zukanovich Funchal, arXiv:2307.04862, 2023.
[Alves:2023znq]
[13-24]
Long-Lived Particles and the Quiet Sun, R. Andrew Gustafson, Ryan Plestid, Ian M. Shoemaker, Albert Zhou, Phys.Rev.D 109 (2024) 015020, arXiv:2307.01856.
[Gustafson:2023hvm]
[13-25]
HNL see-saw: lower mixing limit and pseudodegenerate state, Igor Krasnov, arXiv:2307.01190, 2023.
[Krasnov:2023jlt]
[13-26]
Pinning down the leptophobic $Z^\prime$ in leptonic final states with Deep Learning, Tanumoy Mandal, Aniket Masaye, Subhadip Mitra, Cyrin Neeraj, Naveen Reule, Kalp Shah, Phys.Lett.B 849 (2024) 138417, arXiv:2307.01118.
[Mandal:2023mck]
[13-27]
Searching for heavy neutral lepton and lepton number violation through VBS at high-energy muon colliders, Tong Li, Chang-Yuan Yao, Man Yuan, JHEP 09 (2023) 131, arXiv:2306.17368.
[Li:2023lkl]
[13-28]
Recasting Bounds on Long-lived Heavy Neutral Leptons in Terms of a Light Supersymmetric R-parity Violating Neutralino, Herbi K. Dreiner, Dominik Kohler, Saurabh Nangia, Martin Schurmann, Zeren Simon Wang, JHEP 08 (2023) 058, arXiv:2306.14700.
[Dreiner:2023gir]
[13-29]
Coleman-Weinberg dynamics of ultralight scalar dark matter and GeV-scale right-handed neutrinos, Clara Murgui, Ryan Plestid, arXiv:2306.13799, 2023.
[Murgui:2023kig]
[13-30]
Tree-level UV completions for $N_R$SMEFT $d=6$ and $d=7$ operators, Rebeca Beltran, Ricardo Cepedello, Martin Hirsch, JHEP 08 (2023) 166, arXiv:2306.12578.
[Beltran:2023ymm]
[13-31]
Left-Right Symmetry at FCC-hh, Miha Nemevsek, Fabrizio Nesti, Phys.Rev.D 108 (2023) 015030, arXiv:2306.12104.
[Nemevsek:2023hwx]
[13-32]
Complementarity of $B\to K^{(*)} \mu \bar \mu$ and $B\to K^{(*)} + \mathrm{inv}$ for searches of GeV-scale Higgs-like scalars, Maksym Ovchynnikov, Michael A. Schmidt, Thomas Schwetz, Eur.Phys.J.C 83 (2023) 791, arXiv:2306.09508.
[Ovchynnikov:2023von]
[13-33]
Heavy Neutral Leptons from Stopped Muons and Pions, Yohei Ema, Zhen Liu, Kun-Feng Lyu, Maxim Pospelov, JHEP 08 (2023) 169, arXiv:2306.07315.
[Ema:2023buz]
[13-34]
Axion effective potentials induced by heavy sterile fermions, Nick E. Mavromatos, Sarben sarkar, Eur.Phys.J.C 83 (2023) 866, arXiv:2306.02122.
[Mavromatos:2023bdx]
[13-35]
Bounds on lepton non-unitarity and heavy neutrino mixing, Mattias Blennow, Enrique Fernandez-Martinez, Josu Hernandez-Garcia, Jacobo Lopez-Pavon, Xabier Marcano, Daniel Naredo-Tuero, JHEP 08 (2023) 030, arXiv:2306.01040.
[Blennow:2023mqx]
[13-36]
Effective portals to heavy neutral leptons, Enrique Fernandez-Martinez, Manuel Gonzalez-Lopez, Josu Hernandez-Garcia, Matheus Hostert, Jacobo Lopez-Pavon, JHEP 09 (2023) 001, arXiv:2304.06772.
[Fernandez-Martinez:2023phj]
[13-37]
Probing Heavy Neutrinos at the LHC from Fat-jet using Machine Learning, Wei Liu, Jing Li, Zixiang Chen, Hao Sun, arXiv:2303.15920, 2023.
[Liu:2023gpt]
[13-38]
Hunting for Neutral Leptons with Ultra-High-Energy Cosmic Rays, Robert Heighton, Lucien Heurtier, Michael Spannowsky, Phys.Rev.D 108 (2023) 055009, arXiv:2303.11352.
[Heighton:2023qpg]
[13-39]
Testing Neutrino Dipole Portal by Long-lived Particle Detectors at the LHC, Wei Liu, Yu Zhang, Eur.Phys.J.C 83 (2023) 568, arXiv:2302.02081.
[Liu:2023nxi]
[13-40]
Right-handed neutrino pair production via second-generation leptoquarks, Arvind Bhaskar, Yash Chaurasia, Kuldeep Deka, Tanumoy Mandal, Subhadip Mitra, Ananya Mukherjee, Phys.Lett.B 843 (2023) 138039, arXiv:2301.11889.
[Bhaskar:2023xkm]
[13-41]
Testing Heavy Neutral Leptons in Cosmic Ray Beam Dump experiments, Oliver Fischer, Baibhab Pattnaik, Jose Zurita, JHEP 07 (2023) 193, arXiv:2301.07120.
[Fischer:2023bfn]
[13-42]
Heavy Neutral Leptons at Muon Colliders, Peiran Li, Zhen Liu, Kun-Feng Lyu, JHEP 03 (2023) 231, arXiv:2301.07117.
[Li:2023tbx]
[13-43]
Testing heavy neutral leptons produced in the supernovae explosions with future neutrino detectors, Vsevolod Syvolap, arXiv:2301.07052, 2023.
[Syvolap:2023trc]
[13-44]
Probing active-sterile neutrino transition magnetic moments at LEP and CEPC, Yu Zhang, Wei Liu, Phys.Rev.D 107 (2023) 095031, arXiv:2301.06050.
[Zhang:2023nxy]
[13-45]
Searching for Heavy Neutral Leptons at A Future Muon Collider, Tsz Hong Kwok, Lingfeng Li, Tao Liu, Ariel Rock, arXiv:2301.05177, 2023.
[Kwok:2023dck]
[13-46]
Can Sterile Neutrino Explain Very High Energy Photons from GRB221009A?, Shu-Yuan Guo, Maxim Khlopov, Lei Wu, Bin Zhu, Phys.Rev.D 108 (2023) L021302, arXiv:2301.03523.
[Guo:2023bpo]
[13-47]
Optimal search reach for heavy neutral leptons at a muon collider, Krzysztof Mekala, Juergen Reuter, Aleksander Filip Zarnecki, Phys.Lett.B 841 (2023) 137945, arXiv:2301.02602.
[Mekala:2023diu]
[13-48]
Probing the Nature of Heavy Neutral Leptons in Direct Searches and Neutrinoless Double Beta Decay, Patrick D. Bolton, Frank F. Deppisch, Mudit Rai, Zhong Zhang, arXiv:2212.14690, 2022.
[Bolton:2022tds]
[13-49]
Probing HNL-ALP couplings at colliders, Arturo de Giorgi, Luca Merlo, Jean-Loup Tastet, Fortsch.Phys. 71 (2023), arXiv:2212.11290.
[deGiorgi:2022oks]
[13-50]
Search for heavy Majorana neutrinos at future lepton colliders, Peng-Cheng Lu, Zong-Guo Si, Zhe Wang, Xing-Hua Yang, Xin-Yi Zhang, Chin.Phys.C 47 (2023) 043107, arXiv:2212.10027.
[Lu:2022wsm]
[13-51]
Beyond lepton number violation at the HL-LHC: Resolving heavy neutrino-antineutrino oscillations, Stefan Antusch, Jan Hajer, Johannes Rosskopp, JHEP 09 (2023) 170, arXiv:2212.00562.
[Antusch:2022hhh]
[13-52]
Modelling Heavy Neutral Leptons in Accelerator Beamlines, Komninos-John Plows, Xianguo Lu, Phys.Rev.D 107 (2023) 055003, arXiv:2211.10210.
[Plows:2022gxc]
[13-53]
Probing Left-handed Heavy Neutral Leptons on the Massive Vector Doublet Model, Paulo Areyuna C., Jilberto Zamora-Saa, Alfonso R. Zerwekh, JHEP 02 (2024) 153, arXiv:2211.09753.
[C:2022nuo]
[13-54]
Sterile Neutrinos from Dark Matter: A $\nu$ Nightmare?, Logan Morrison, Stefano Profumo, Bibhushan Shakya, JHEP 09 (2023) 163, arXiv:2211.05996.
[Morrison:2022zwk]
[13-55]
GRB 221009A Gamma Rays from Radiative Decay of Heavy Neutrinos?, Alexei Y. Smirnov, Andreas Trautner, Phys.Rev.Lett. 131 (2023) 021002, arXiv:2211.00634.
[Smirnov:2022suv]
[13-56]
Probe the Mixing Parameter $|V_{\tau N}|^2$ for Heavy Neutrinos, Lingxiao Bai, Ying-nan Mao, Kechen Wang, Phys.Rev.D 107 (2023) 095008, arXiv:2211.00309.
[Bai:2022lbv]
[13-57]
Search for heavy Majorana neutrinos in the $\tau$ final state at proton-electron colliders, Haiyong Gu, Ying-nan Mao, Hao Sun, Kechen Wang, JHEP 09 (2023) 152, arXiv:2210.17050.
[Gu:2022nlj]
[13-58]
Neutrinoless double-beta decay at colliders: interference between Majorana states, Jonathan L. Schubert, Oleg Ruchayskiy, arXiv:2210.11294, 2022.
[Schubert:2022lcp]
[13-59]
Heavy Neutral Leptons at the Electron-Ion Collider, Brian Batell, Tathagata Ghosh, Tao Han, Keping Xie, JHEP 03 (2023) 020, arXiv:2210.09287.
[Batell:2022ogj]
[13-60]
Heavy Neutral Leptons Beyond Simplified Scenarios, Gioacchino Piazza, Asmaa Abada, Pablo Escribano, Xabier Marcano, arXiv:2209.14659, 2022. 56th Rencontres de Moriond on Electroweak Interactions and Unified Theories.
[Piazza:2022yrw]
[13-61]
Sensitivity to Heavy Neutral Leptons with the SAND detector at the DUNE ND complex, Zahra Ghorbani Moghaddam (DUNE), arXiv:2209.01899, 2022.
[Moghaddam:2022tac]
[13-62]
Blast from the past II: Constraints on heavy neutral leptons from the BEBC WA66 beam dump experiment, Ryan Barouki, Giacomo Marocco, Subir Sarkar, SciPost Phys. 13 (2022) 118, arXiv:2208.00416.
[Barouki:2022bkt]
[13-63]
Charged Higgs induced 5 and 6 lepton signatures from heavy neutrinos at the LHC, Arindam Das, Shinya Kanemura, Prasenjit Sanyal, Eur.Phys.J.C 83 (2023) 454, arXiv:2207.13372.
[Das:2022cmv]
[13-64]
Right-handed Dirac and Majorana neutrinos at Belle II, Tao Han, Jiajun Liao, Hongkai Liu, Danny Marfatia, JHEP 04 (2023) 013, arXiv:2207.07029.
[Han:2022uho]
[13-65]
DarkNews: a Python-based event generator for heavy neutral lepton production in neutrino-nucleus scattering, Asli M. Abdullahi, Jaime Hoefken Zink, Matheus Hostert, Daniele Massaro, Silvia Pascoli, Comput.Phys.Commun. 297 (2024) 109075, arXiv:2207.04137.
[Abdullahi:2022cdw]
[13-66]
Heavy Neutral Leptons at Beam Dump Experiments of Future Lepton Colliders, Pierce Giffin, Stefania Gori, Yu-Dai Tsai, Douglas Tuckler, JHEP 04 (2023) 046, arXiv:2206.13745.
[Giffin:2022rei]
[13-67]
Improved constraints and the prospects of detecting TeV to PeV scale Heavy Neutral Leptons, Kevin A. Urquia Calderon, Inar Timiryasov, Oleg Ruchayskiy, JHEP 23 (2020) 167, arXiv:2206.04540.
[Urquia-Calderon:2022ufc]
[13-68]
A New Way To Seek Out Dark Neutrino Sectors And To Boldly Explore Multi-Dimensional Parameter Spaces, Carlos A. Arguelles, Nicolo Foppiani, Matheus Hostert, Phys.Rev.D 107 (2023) 035027, arXiv:2205.12273.
[Arguelles:2022lzs]
[13-69]
Neutrino dipole portal at electron colliders, Yu Zhang, Mao Song, Ran Ding, Liangwen Chen, Phys.Lett.B 829 (2022) 137116, arXiv:2204.07802.
[Zhang:2022spf]
[13-70]
Sterile neutrino production at small mixing in the early universe, Gonzalo Alonso-Alvarez, James M. Cline, arXiv:2204.04224, 2022.
[Alonso-Alvarez:2022uxp]
[13-71]
Constraints on Heavy Neutral Leptons interacting with a singlet scalar, James M. Cline, Guillermo Gambini, Phys.Rev.D 105 (2022) 115035, arXiv:2203.08166.
[Cline:2022gcg]
[13-72]
Heavy Majorana neutrino pair production from $Z^\prime$ at hadron and lepton colliders, Arindam Das, Sanjoy Mandal, Takaaki Nomura, Sujay Shil, Phys.Rev.D 105 (2022) 095031, arXiv:2202.13358.
[Das:2022rbl]
[13-73]
Indirect search of Heavy Neutral Leptons using the DUNE Near Detector, S. Carbajal, A. M. Gago, arXiv:2202.09217, 2022.
[Carbajal:2022zlp]
[13-74]
Heavy Neutrinos at the FCC-hh in the $U(1)_{B-L}$ Model, Wei Liu, Suchita Kulkarni, Frank F. Deppisch, Phys.Rev.D 105 (2022) 095043, arXiv:2202.07310.
[Liu:2022kid]
[13-75]
Heavy neutrinos at future linear e$^+$e$^-$ colliders, Krzysztof Mekala, Jurgen Reuter, Aleksander Filip Zarnecki, JHEP 06 (2022) 010, arXiv:2202.06703.
[Mekala:2022cmm]
[13-76]
Search for heavy Majorana neutrinos at electron-proton colliders, Haiyong Gu, Kechen Wang, Phys.Rev.D 106 (2022) 015006, arXiv:2201.12997.
[Gu:2022muc]
[13-77]
Hunting for light heavy neutrinos at future $Z$-factories, Yin-Fa Shen, Jian-Nan Ding, Qin Qin, Eur.Phys.J.C 82 (2022) 398, arXiv:2201.05831.
[Shen:2022ffi]
[13-78]
Revisiting PS191 limits on sterile neutrinos, Dmitry Gorbunov, Igor Krasnov, Sergey Suvorov, Phys.Lett.B 830 (2022) 137173, arXiv:2112.06800.
[Gorbunov:2021wua]
[13-79]
Long-lived Sterile Neutrinos at Belle II in Effective Field Theory, Guanghui Zhou, Julian Y. Gunther, Zeren Simon Wang, Jordy de Vries, Herbi K. Dreiner, JHEP 04 (2022) 057, arXiv:2111.04403.
[Zhou:2021ylt]
[13-80]
A Tale of Invisibility: Constraints on New Physics in $b\to s\nu\nu$, Tobias Felkl, Sze Lok Li, Michael A. Schmidt, JHEP 12 (2021) 118, arXiv:2111.04327.
[Felkl:2021uxi]
[13-81]
Complementarity between neutrinoless double beta decay and collider searches for heavy neutrinos in composite-fermion models, S. Biondini, S. Dell'Oro, R. Leonardi, S. Marcocci, O. Panella, M. Presilla, F. Vissani, arXiv:2111.01053, 2021.
[Biondini:2021vip]
[13-82]
Long-lived heavy neutral leptons at the LHC: four-fermion single-$N_R$ operators, Rebeca Beltran, Giovanna Cottin, Juan Carlos Helo, Martin Hirsch, Arsenii Titov, Zeren Simon Wang, JHEP 01 (2022) 044, arXiv:2110.15096.
[Beltran:2021hpq]
[13-83]
Characterizing Heavy Neutral Fermions via their Decays, Andre de Gouvea, Patrick J. Fox, Boris J. Kayser, Kevin J. Kelly, Phys.Rev.D 105 (2022) 015019, arXiv:2109.10358.
[deGouvea:2021rpa]
[13-84]
Heavy neutral leptons below the kaon mass at hodoscopic detectors, Carlos A. Arguelles, Nicolo Foppiani, Matheus Hostert, Phys.Rev.D 105 (2022) 095006, arXiv:2109.03831.
[Arguelles:2021dqn]
[13-85]
The MicroBooNE Experiment, the NuMI Absorber, and Heavy Neutral Leptons, Kevin J. Kelly, Pedro A.N. Machado, Phys.Rev.D 104 (2021) 055015, arXiv:2106.06548.
[Kelly:2021xbv]
[13-86]
Heavy neutral leptons in effective field theory and the high-luminosity LHC, Giovanna Cottin, Juan Carlos Helo, Martin Hirsch, Arsenii Titov, Zeren Simon Wang, JHEP 09 (2021) 039, arXiv:2105.13851.
[Cottin:2021lzz]
[13-87]
Leptonic anomalous magnetic moments in $\nu$SMEFT, Vincenzo Cirigliano, Wouter Dekens, Jordy de Vries, Kaori Fuyuto, Emanuele Mereghetti, Richard Ruiz, JHEP 08 (2021) 103, arXiv:2105.11462.
[Cirigliano:2021peb]
[13-88]
Constraining active-sterile neutrino transition magnetic moments at DUNE near and far detectors, Thomas Schwetz, Albert Zhou, Jing-Yu Zhu, JHEP 21 (2020) 200, arXiv:2105.09699.
[Schwetz:2020xra]
[13-89]
Heavy Neutrino searches through Double-Bang Events at Super-Kamiokande, DUNE, and Hyper-Kamiokande, Mack Atkinson, Pilar Coloma, Ivan Martinez-Soler, Noemi Rocco, Ian M. Shoemaker, JHEP 04 (2022) 174, arXiv:2105.09357.
[Atkinson:2021rnp]
[13-90]
Massive sterile neutrinos in the early universe: From thermal decoupling to cosmological constraints, Leonardo Mastrototaro, Pasquale Dario Serpico, Alessandro Mirizzi, Ninetta Saviano, Phys.Rev.D 104 (2021) 016026, arXiv:2104.11752.
[Mastrototaro:2021wzl]
[13-91]
Searching for Physics Beyond the Standard Model in an Off-Axis DUNE Near Detector, Moritz Breitbach, Luca Buonocore, Claudia Frugiuele, Joachim Kopp, Lukas Mittnacht, JHEP 01 (2022) 048, arXiv:2102.03383.
[Breitbach:2021gvv]
[13-92]
Radiative decays of charged leptons as constraints of unitarity polygons for active-sterile neutrino mixing and CP violation, Zhi-zhong Xing, Di Zhang, Eur.Phys.J. C80 (2020) 1134, arXiv:2009.09717.
[Xing:2020ivm]
[13-93]
Analysis of published data of electron capture in 7Be in the search for a heavy neutrino in the mass range under 840 keV, N.A. Likhovid, V.S. Pantuev, arXiv:2009.04754, 2020.
[Likhovid:2020tjv]
[13-94]
Projected NA62 sensitivity to heavy neutral lepton production in $K^+ \to \pi^0 e^+ N$ decays, Jean-Loup Tastet, Evgueni Goudzovski, Inar Timiryasov, Oleg Ruchayskiy, Phys.Rev.D 104 (2021) 055005, arXiv:2008.11654.
[Tastet:2020tzh]
[13-95]
Improved BBN constraints on Heavy Neutral Leptons, Alexey Boyarsky, Maksym Ovchynnikov, Oleg Ruchayskiy, Vsevolod Syvolap, Phys.Rev.D 104 (2021) 023517, arXiv:2008.00749.
[Boyarsky:2020dzc]
[13-96]
Model Independent Bounds on the Non-Oscillatory Explanations of the MiniBooNE Excess, Vedran Brdar, Oliver Fischer, Alexei Yu. Smirnov, Phys.Rev.D 103 (2021) 075008, arXiv:2007.14411.
[Brdar:2020tle]
[13-97]
Sensitivity Reach on the Heavy Neutral Leptons and $\tau$-Neutrino Mixing $|U_{\tauN}|^2 $ at the HL-LHC, Kingman Cheung, Yi-Lun Chung, Hiroyuki Ishida, Chih-Ting Lu, Phys.Rev. D102 (2020) 075038, arXiv:2004.11537.
[Cheung:2020buy]
[13-98]
Heavy Neutral Leptons from kaon decays in the SHiP experiment, Dmitry Gorbunov, Igor Krasnov, Yury Kudenko, Sergey Suvorov, Phys.Lett. B810 (2020) 135817, arXiv:2004.07974.
[Gorbunov:2020rjx]
[13-99]
Effects of heavy Majorana neutrinos on lepton flavor violating processes, G. Hernandez-Tome, J. I. Illana, G. Lopez Castro, M. Masip, P. Roig, Phys.Rev.D 101 (2020) 075020, arXiv:1912.13327.
[Hernandez-Tome:2019lkb]
[13-100]
Neutrinoless double beta decay versus other probes of heavy sterile neutrinos, Patrick D. Bolton, Frank F. Deppisch, P. S. Bhupal Dev, JHEP 2003 (2020) 170, arXiv:1912.03058.
[Bolton:2019pcu]
[13-101]
New constraints on Heavy Neutral Leptons from Super-Kamiokande data, Pilar Coloma, Pilar Hernandez, Victor Munoz, Ian. M. Shoemaker, Eur.Phys.J. C80 (2020) 235, arXiv:1911.09129.
[Coloma:2019htx]
[13-102]
Heavy sterile neutrino emission in core-collapse supernovae: Constraints and signatures, Leonardo Mastrototaro, Alessandro Mirizzi, Pasquale Dario Serpico, Arman Esmaili, JCAP 2001 (2020) 010, arXiv:1910.10249.
[Mastrototaro:2019vug]
[13-103]
Searching for Heavy Neutrinos with the MoEDAL-MAPP Detector at the LHC, Mariana Frank, Marc de Montigny, Pierre-Philippe A. Ouimet, James Pinfold, Ameir Shaa, Michael Staelens, Phys.Lett. B802 (2020) 135204, arXiv:1909.05216.
[Frank:2019pgk]
[13-104]
Sensitivity bounds on heavy neutrino mixing $|U_{\mu N}|^2$ and $|U_{\tau N}|^2$ from LHCb upgrade, Gorazd Cvetic, C. S. Kim, Phys.Rev. D100 (2019) 015014, arXiv:1904.12858.
[Cvetic:2019shl]
[13-105]
Heavy Neutrinos in displaced vertex searches at the LHC and HL-LHC, Marco Drewes, Jan Hajer, JHEP 2002 (2020) 070, arXiv:1903.06100.
[Drewes:2019fou]
[13-106]
Heavy neutrino searches at future $Z$-factories, Jian-Nan Ding, Qin Qin, Fu-Sheng Yu, Eur.Phys.J. C79 (2019) 766, arXiv:1903.02570.
[Ding:2019tqq]
[13-107]
Heavy Neutrinos with Dynamic Jet Vetoes: Multilepton Searches at $\sqrt{s} = 14,~27,$ and $100$ TeV, Silvia Pascoli, Richard Ruiz, Cedric Weiland, JHEP 1906 (2019) 049, arXiv:1812.08750.
[Pascoli:2018heg]
[13-108]
Fat Jet Signature of a Heavy Neutrino at Lepton Collider, Sabyasachi Chakraborty, Manimala Mitra, Sujay Shil, Phys.Rev. D100 (2019) 015012, arXiv:1810.08970.
[Chakraborty:2018khw]
[13-109]
Probing Leptoquark and Heavy Neutrino at LHeC, Sanjoy Mandal, Manimala Mitra, Nita Sinha, Phys.Rev. D98 (2018) 095004, arXiv:1807.06455.
[Mandal:2018qpg]
[13-110]
Heavy sterile neutrinos in stellar core-collapse, Tomasz Rembiasz et al., Phys.Rev. D98 (2018) 103010, arXiv:1806.03300.
[Rembiasz:2018lok]
[13-111]
Phenomenology of GeV-scale Heavy Neutral Leptons, Kyrylo Bondarenko, Alexey Boyarsky, Dmitry Gorbunov, Oleg Ruchayskiy, JHEP 1811 (2018) 032, arXiv:1805.08567.
[Bondarenko:2018ptm]
[13-112]
Probing heavy neutrino oscillations in rare W boson decays, Gorazd Cvetic, Arindam Das, Jilberto Zamora-Saa, J.Phys. G46 (2019) 075002, arXiv:1805.00070.
[Cvetic:2018elt]
[13-113]
Heavy neutral fermions at the high-luminosity LHC, Juan Carlos Helo, Martin Hirsch, Zeren Simon Wang, JHEP 1807 (2018) 056, arXiv:1803.02212.
[Helo:2018qej]
[13-114]
Heavy Neutral Leptons at FASER, Felix Kling, Sebastian Trojanowski, Phys.Rev. D97 (2018) 095016, arXiv:1801.08947.
[Kling:2018wct]
[13-115]
Sterile neutrino searches via displaced vertices at LHCb, Stefan Antusch, Eros Cazzato, Oliver Fischer, Phys.Lett. B774 (2017) 114-118, arXiv:1706.05990.
[Antusch:2017hhu]
[13-116]
Sensitivity limits on heavy-light mixing $|U_{\mu N}|^2$ from lepton number violating $B$ meson decays, Gorazd Cvetic, C.S. Kim, Phys.Rev. D96 (2017) 035025, arXiv:1705.09403.
[Cvetic:2017vwl]
[13-117]
Hiding an elephant: heavy sterile neutrino with large mixing angle does not contradict cosmology, F. Bezrukov, A. Chudaykin, D. Gorbunov, JCAP 1706 (2017) 051, arXiv:1705.02184.
[Bezrukov:2017ike]
[13-118]
Search for Heavy Sterile Neutrinos in Trileptons at the LHC, Claudio O. Dib, C. S. Kim, Kechen Wang, Chin.Phys. C41 (2017) 103103, arXiv:1703.01936.
[Dib:2017vux]
[13-119]
Search for Dirac and Majorana Sterile Neutrinos in Trilepton Events at the LHC, Claudio O. Dib, C. S. Kim, Kechen Wang, Phys.Rev. D95 (2017) 115020, arXiv:1703.01934.
[Dib:2017iva]
[13-120]
Production of heavy sterile neutrinos from vector boson decay at electroweak temperatures, Louis Lello, Daniel Boyanovsky, Robert D. Pisarski, Phys.Rev. D95 (2017) 043524, arXiv:1609.07647.
[Lello:2016rvl]
[13-121]
Distinguishing Dirac/Majorana Sterile Neutrinos at the LHC, Claudio O. Dib, C. S. Kim, Kechen Wang, Jue Zhang, Phys. Rev. D94 (2016) 013005, arXiv:1605.01123.
[Dib:2016wge]
[13-122]
Production of keV Sterile Neutrinos in Supernovae: New Constraints and Gamma Ray Observables, Carlos A. Arguelles, Vedran Brdar, Joachim Kopp, Phys.Rev. D99 (2019) 043012, arXiv:1605.00654.
[Arguelles:2016uwb]
[13-123]
Displaced vertex searches for sterile neutrinos at future lepton colliders, Stefan Antusch, Eros Cazzato, Oliver Fischer, JHEP 1612 (2016) 007, arXiv:1604.02420.
[Antusch:2016vyf]
[13-124]
Heavy Neutrino Impact on the Triple Higgs Coupling, Julien Baglio, Cedric Weiland, Phys. Rev. D94 (2016) 013002, arXiv:1603.00879.
[Baglio:2016ijw]
[13-125]
Global Constraints on a Heavy Neutrino, Andre de Gouvea, Andrew Kobach, Phys. Rev. D93 (2016) 033005, arXiv:1511.00683.
[deGouvea:2015euy]
[13-126]
Probing heavy neutrinos in the COMET experiment, Takehiko Asaka, Atsushi Watanabe, PTEP 2016 (2016) 033B03, arXiv:1510.07746.
[Asaka:2015qma]
[13-127]
Oscillation of heavy sterile neutrino in decay of $B \to \mu e \pi$, Gorazd Cvetic, C.S. Kim, Reinhart Kogerler, Jilberto Zamora-Saa, Phys. Rev. D92 (2015) 013015, arXiv:1505.04749.
[Cvetic:2015ura]
[13-128]
Prospects of Heavy Neutrino Searches at Future Lepton Colliders, Shankha Banerjee, P. S. Bhupal Dev, Alejandro Ibarra, Tanumoy Mandal, Manimala Mitra, Phys. Rev. D92 (2015) 075002, arXiv:1503.05491.
[Banerjee:2015gca]
[13-129]
Experimental and cosmological constraints on heavy neutrinos, Marco Drewes, Bjorn Garbrecht, Nucl.Phys. B921 (2017) 250-315, arXiv:1502.00477.
[Drewes:2015iva]
[13-130]
Heavy Neutrinos and the Kinematics of Tau Decays, Andrew Kobach, Sean Dobbs, Phys. Rev. D91 (2015) 053006, arXiv:1412.4785.
[Kobach:2014hea]
[13-131]
Calculation of primordial abundances of light nuclei including a heavy sterile neutrino, M. Mosquera, O. Civitarese, JCAP 1508 (2015) 038, arXiv:1411.4030.
[Mosquera:2014lpa]
[13-132]
Nearly degenerate heavy sterile neutrinos in cascade decay: mixing and oscillations, Daniel Boyanovsky, Phys. Rev. D90 (2014) 105024, arXiv:1409.4265.
[Boyanovsky:2014una]
[13-133]
Heavy neutrino searches at the LHC with displaced vertices, Juan Helo, Martin Hirsch, Sergey Kovalenko, Phys. Rev. D89 (2014) 073005, arXiv:1312.2900.
[Helo:2013esa]
[13-134]
Heavy neutrino search in accelerator-based experiments, Takehiko Asaka, Shintaro Eijima, Atsushi Watanabe, JHEP 1303 (2013) 125, arXiv:1212.1062.
[Asaka:2012bb]
[13-135]
Heavy neutrino decays at MiniBooNE, Manuel Masip, Pere Masjuan, Davide Meloni, JHEP 01 (2013) 106, arXiv:1210.1519.
[Masip:2012ke]
[13-136]
Heavy sterile neutrinos, entropy and relativistic energy production, and the relic neutrino background, George M. Fuller, Chad T. Kishimoto, Alexander Kusenko, arXiv:1110.6479, 2011.
[Fuller:2011qy]
[13-137]
Heavy Sterile Neutrinos in Tau Decays and the MiniBooNE Anomaly, Claudio Dib, Juan Carlos Helo, Martin Hirsch, Sergey Kovalenko, Ivan Schmidt, Phys. Rev. D85 (2012) 011301, arXiv:1110.5400.
[Dib:2011hc]
[13-138]
Heavy-neutrino decays at neutrino telescopes, Manuel Masip, Pere Masjuan, Phys. Rev. D83 (2011) 091301, arXiv:1103.0689.
[Masip:2011qb]
[13-139]
Supernova bound on keV-mass sterile neutrinos reexamined, Georg G. Raffelt, Shun Zhou, Phys. Rev. D83 (2011) 093014, arXiv:1102.5124.
[Raffelt:2011nc]
[13-140]
New muon decay experiment to search for heavy sterile neutrino, S.N. Gninenko, Phys. Rev. D83 (2011) 093010, arXiv:1101.4004.
[Gninenko:2011xa]
[13-141]
Effects of CP Violation from Neutral Heavy Fermions on Neutrino Oscillations, and the LSND/MiniBooNE Anomalies, Ann E Nelson, Phys. Rev. D84 (2011) 053001, arXiv:1010.3970.
[Nelson:2010hz]
[13-142]
A resolution of puzzles from the LSND, KARMEN, and MiniBooNE experiments, Sergei Gninenko, Phys. Rev. D83 (2011) 015015, arXiv:1009.5536.
[Gninenko:2010pr]
[13-143]
The MiniBooNE anomaly, the decay Ds - > mu+nu and heavy sterile neutrino, S.N. Gninenko, D.S. Gorbunov, Phys. Rev. D81 (2010) 075013, arXiv:0907.4666.
[Gninenko:2009yf]
[13-144]
Lepton Number Violating Processes Mediated by Majorana Neutrinos at Hadron Colliders, Sergey Kovalenko, Zhun Lu, Ivan Schmidt, Phys. Rev. D80 (2009) 073014, arXiv:0907.2533.
[Kovalenko:2009td]
[13-145]
The MiniBooNE anomaly and heavy neutrino decay, S. N. Gninenko, Phys. Rev. Lett. 103 (2009) 241802, arXiv:0902.3802.
[Gninenko:2009ks]
[13-146]
Signatures of heavy sterile neutrinos at long baseline experiments, Amol Dighe, Shamayita Ray, Phys. Rev. D76 (2007) 113001, arXiv:0709.0383.
[Dighe:2007uf]
[13-147]
May Heavy neutrinos solve underground and cosmic ray puzzles?, K. Belotsky, D. Fargion, M. Khlopov, R.V. Konoplich, Phys. Atom. Nucl. 71 (2008) 147-161, arXiv:hep-ph/0411093.
[Belotsky:2004st]
[13-148]
Do we need stars to reionize the universe at high redshifts? Early reionization by decaying heavy sterile neutrinos, S. H. Hansen, Z. Haiman, Astrophys. J. 600 (2004) 26, arXiv:astro-ph/0305126.
[Hansen:2003yj]
[13-149]
Heavy sterile neutrinos: Bounds from big-bang nucleosynthesis and SN 1987A, A. D. Dolgov, S. H. Hansen, G. Raffelt, D. V. Semikoz, Nucl. Phys. B590 (2000) 562-574, arXiv:hep-ph/0008138.
Comment: Large $\nu_e \rightarrow \nu_s$ mixings of heavy (10-200 MeV) sterile neutrinos are allowed from analysis of BBN and SN1987A. [M.L.].
[Dolgov:2000jw]
[13-150]
Cosmological and astrophysical bounds on a heavy sterile neutrino and the KARMEN anomaly, A. D. Dolgov, S. H. Hansen, G. Raffelt, D. V. Semikoz, Nucl. Phys. B580 (2000) 331-351, arXiv:hep-ph/0002223.
[Dolgov:2000pj]

14 - Phenomenology - Heavy Neutral Leptons - Talks

[14-1]
Cosmological constraints on heavy sterile neutrinos, L. Mastrototaro, J.Phys.Conf.Ser. 2156 (2021) 012009, arXiv:2202.11390. 17th International Conference on Topics in Astroparticle and Underground Physics.
[Mastrototaro:2021kzm]

15 - Phenomenology - Models

[15-1]
Heavy neutral lepton search and $\mu \to e \gamma$ constraints in case of type-I seesaw, Stefano Morisi, arXiv:2403.00983, 2024.
[Morisi:2024yxi]
[15-2]
Neutrino phenomenology and keV dark matter in 2HDM with $A_4$ symmetry, V. V. Vien, arXiv:2402.13967, 2024.
[Vien:2024egc]
[15-3]
Explaining ATOMKI, $(g-2)_\mu$, and MiniBooNE anomalies with light mediators in $U(1)_H$ extended model, Sumit Ghosh, Pyungwon Ko, arXiv:2311.14099, 2023.
[Ghosh:2023dgk]
[15-4]
$B \to K \nu\bar\nu$, MiniBooNE and muon $g-2$ anomalies from a dark sector, Alakabha Datta, Danny Marfatia, Lopamudra Mukherjee, Phys.Rev.D 109 (2024) L031701, arXiv:2310.15136.
[Datta:2023iln]
[15-5]
Study of neutrinoless double beta decay in the Standard Model extended with sterile neutrinos, Debashree Priyadarsini Das, Sasmita Mishra, arXiv:2310.13353, 2023.
[Das:2023aic]
[15-6]
Modular $A_4$ symmetry in 3+1 active-sterile neutrino masses and mixings, Mayengbam Kishan Singh, S. Robertson Singh, N. Nimai Singh, arXiv:2303.10922, 2023.
[Singh:2023jke]
[15-7]
Retrieving texture zeros in 3+1 active-sterile neutrino framework under the action of $A_4$ modular-invariants, Maibam Ricky Devi, arXiv:2303.04900, 2023.
[Devi:2023vpe]
[15-8]
The Neutrino Magnetic Moment Portal and Supernovae: New Constraints and Multimessenger Opportunities, Vedran Brdar, Andre de Gouvea, Ying-Ying Li, Pedro A. N. Machado, Phys.Rev.D 107 (2023) 073005, arXiv:2302.10965.
[Brdar:2023tmi]
[15-9]
Sterile Neutrino Shape-shifting Caused by Dark Matter, Hooman Davoudiasl, Peter B. Denton, Phys.Rev.D 108 (2023) 035013, arXiv:2301.09651.
[Davoudiasl:2023uiq]
[15-10]
Dineutron decay into sterile anti-neutrinos in neutron stars and its observable consequences, Yongliang Hao, Dongdong Ni, Phys.Rev.D 107 (2023) 035026, arXiv:2211.16163.
[Hao:2022xyj]
[15-11]
Simulating lepton number violation induced by heavy neutrino-antineutrino oscillations at colliders, Stefan Antusch, Jan Hajer, Johannes Rosskopp, JHEP 03 (2023) 110, arXiv:2210.10738.
[Antusch:2022ceb]
[15-12]
Probing right-handed neutrinos dipole operators, Daniele Barducci, Enrico Bertuzzo, Marco Taoso, Claudio Toni, JHEP 03 (2023) 239, arXiv:2209.13469.
[Barducci:2022gdv]
[15-13]
Light Sterile Neutrinos, Left-Right Symmetry, and $0\nu\beta\beta$ Decay, Jordy de Vries, Gang Li, Michael J. Ramsey-Musolf, Juan Carlos Vasquez, JHEP 11 (2022) 056, arXiv:2209.03031.
[deVries:2022nyh]
[15-14]
Implications of Recent KATRIN Results for Lower-Limits on Neutrino Masses, Ephraim Fischbach, Dennis E. Krause, Quan Le Thien, Carol Scarlett, arXiv:2208.03790, 2022.
[Fischbach:2022pxx]
[15-15]
LSND and MiniBooNE as guideposts to understanding the muon $g-2$ results and the CDF II $W$ mass measurement, Waleed Abdallah, Raj Gandhi, Samiran Roy, Phys.Lett.B 840 (2023) 137841, arXiv:2208.02264.
[Abdallah:2022shy]
[15-16]
Phenomenological implications of sterile neutrinos in the $\mu\nu$SSM and dark matter, Paulina Knees, Daniel E. Lopez-Fogliani, C. Munoz, Astropart.Phys. 151 (2023) 102865, arXiv:2207.10689.
[Knees:2022wbt]
[15-17]
Fatjet signatures of heavy neutrinos and heavy leptons in a left-right model with universal seesaw at the HL-LHC, Atri Dey, Rafiqul Rahaman, Santosh Kumar Rai, Eur.Phys.J.C 84 (2024) 132, arXiv:2207.06857.
[Dey:2022tbp]
[15-18]
Large Extra Dimensions and neutrino experiments, D. V. Forero, C. Giunti, C. A. Ternes, O. Tyagi, Phys.Rev.D 106 (2022) 035027, arXiv:2207.02790.
[Forero:2022skg]
[15-19]
Sterile Neutrino Portal Dark Matter in $\nu$THDM, Ang Liu, Feng-Lan Shao, Zhi-Long Han, Yi Jin, Honglei Li, arXiv:2205.11846, 2022.
[2205.11846]
[15-20]
Constraining the Active-to-Heavy-Neutrino transitional magnetic moments associated with the $Z'$ interactions at FASER$\nu$, Kingman Cheung, C.J. Ouseph, Eur.Phys.J.C 83 (2023) 593, arXiv:2205.11077.
[Cheung:2022oji]
[15-21]
Cosmology-friendly time-varying neutrino masses via the sterile neutrino portal, Guo-yuan Huang, Manfred Lindner, Pablo Martinez-Mirave, Manibrata Sen, Phys.Rev.D 106 (2022) 033004, arXiv:2205.08431.
[Huang:2022wmz]
[15-22]
Neutrino Portals, Terrestrial Upscattering, and Atmospheric Neutrinos, R. Andrew Gustafson, Ryan Plestid, Ian M. Shoemaker, Phys.Rev.D 106 (2022) 095037, arXiv:2205.02234.
[Gustafson:2022rsz]
[15-23]
$Z'$s and sterile neutrinos from heterotic string models: exploring $Z'$ mass exclusion limits, Alon E. Faraggi, Marco Guzzi, Eur.Phys.J.C 82 (2022) 590, arXiv:2204.11974.
[Faraggi:2022emm]
[15-24]
Probing Heavy Sterile Neutrinos at Ultrahigh Energy Neutrino Telescopes via the Dipole Portal, Guo-yuan Huang, Sudip Jana, Manfred Lindner, Werner Rodejohann, Phys.Lett.B 840 (2023) 137842, arXiv:2204.10347.
[Huang:2022pce]
[15-25]
Sterile neutrino portals to Majorana dark matter: effective operators and UV completions, Leonardo Coito, Carlos Faubel, Juan Herrero-Garcia, Arcadi Santamaria, Arsenii Titov, JHEP 08 (2022) 085, arXiv:2203.01946.
[Coito:2022kif]
[15-26]
LHC signatures of sterile neutrinos in a minimal radiative extended seesaw framework, Sudhanwa Patra, Utkarsh Patel, Purushottam Sahu, Int.J.Mod.Phys.A 2150263 (2021) S0217751, arXiv:2201.07441.
[Patra:2022sbn]
[15-27]
Light sterile neutrinos and lepton-number-violating kaon decays in effective field theory, Guanghui Zhou, JHEP 06 (2022) 127, arXiv:2112.00767.
[Zhou:2021lnl]
[15-28]
A full parametrization of the $9\times 9$ active-sterile flavor mixing matrix in the inverse or linear seesaw scenario of massive neutrinos, He-chong Han, Zhi-zhong Xing, Nucl.Phys.B 973 (2021) 115609, arXiv:2110.12705.
[Han:2021qum]
[15-29]
The Dark $Z'$ and Sterile Neutrinos Behind Current Anomalies, A. Hammad, Ahmed Rashed, S. Moretti, Phys.Lett.B 827 (2022) 136945, arXiv:2110.08651.
[Hammad:2021mpl]
[15-30]
Roads for Right-handed Neutrino Dark Matter: Fast Expansion, Standard Freeze-out, and Early Matter Domination, Giorgio Arcadi, Jacinto Paulo Neto, Farinaldo S. Queiroz, Clarissa Siqueira, Phys.Rev.D 105 (2022) 035016, arXiv:2108.11398.
[Arcadi:2021doo]
[15-31]
Flavour and CP symmetries in the inverse seesaw, C. Hagedorn, J. Kriewald, J. Orloff, A. M. Teixeira, Eur.Phys.J.C 82 (2022) 194, arXiv:2107.07537.
[Hagedorn:2021ldq]
[15-32]
Sterile neutrino dark matter catalyzed by a very light dark photon, Gonzalo Alonso-Alvarez, James M. Cline, JCAP 10 (2021) 041, arXiv:2107.07524.
[Alonso-Alvarez:2021pgy]
[15-33]
Zooming in on eV-MeV Scale Sterile Neutrinos in light of Neutrinoless Double Beta Decay, Tapoja Jha, Sarif Khan, Manimala Mitra, Ayon Patra, Phys.Rev.D 105 (2022) 035001, arXiv:2107.03807.
[Jha:2021oxl]
[15-34]
Dirac CP phases in a 3+1 neutrino scenario with $\mu-\tau$ symmetry, Eduardo Becerra-Garcia, Abdel Perez-Lorenzana, Eur.Phys.J.C 81 (2021) 979, arXiv:2105.01205.
[Becerra-Garcia:2021gcd]
[15-35]
Sterile neutrino dark matter in a U(1) extension of the standard model, Sho Iwamoto, Karoly Seller, Zoltan Trocsanyi, JCAP 01 (2022) 035, arXiv:2104.11248.
[Iwamoto:2021fup]
[15-36]
Explaining the MiniBooNE Anomalous Excess via Leptophilic ALP-Sterile Neutrino Coupling, Chia-Hung Vincent Chang, Chuan-Ren Chen, Shu-Yu Ho, Shih-Yen Tseng, Phys.Rev.D 104 (2021) 015030, arXiv:2102.05012.
[Chang:2021myh]
[15-37]
Minimal inverse-seesaw mechanism with Abelian flavour symmetries, H. B. Camara, R. G. Felipe, F. R. Joaquim, JHEP 2105 (2021) 021, arXiv:2012.04557.
[Camara:2020efq]
[15-38]
Effect of sterile neutrino on low energy processes in minimal extended seesaw with $\Delta(96)$ symmetry and $\text{TM}_{1}$ mixing, Nayana Gautam, R. Krishnan, Mrinal Kumar Das, Front.in Phys. 0 (2021) 417, arXiv:2011.05693.
[Gautam:2020bnx]
[15-39]
Luminous solar neutrinos II: Mass-mixing portals, Ryan Plestid, Phys.Rev.D 104 (2021) 075028, arXiv:2010.09523.
[Plestid:2020ssy]
[15-40]
A two-Higgs doublet solution to the LSND, MiniBooNE and muon $g-2$ anomalies, Waleed Abdallah, Raj Gandhi, Samiran Roy, Phys.Rev.D 104 (2021) 055028, arXiv:2010.06159.
[Abdallah:2020vgg]
[15-41]
Luminous solar neutrinos I: Dipole portals, Ryan Plestid, Phys.Rev.D 104 (2021) 075027, arXiv:2010.04193.
[Plestid:2020vqf]
[15-42]
Phenomenology of vector-like leptons with Deep Learning at the Large Hadron Collider, Felipe F. Freitas, Joao Goncalves, Antonio P. Morais, Roman Pasechnik, JHEP 2101 (2021) 076, arXiv:2010.01307.
[Freitas:2020ttd]
[15-43]
Displaced Vertex signatures of a pseudo-Goldstone sterile neutrino, Stephane Lavignac, Anibal D. Medina, JHEP 2101 (2021) 151, arXiv:2010.00608.
[Lavignac:2020yld]
[15-44]
Galactic Center constraints on self-interacting sterile neutrinos from fermionic dark matter ('ino') models, R. Yunis, C. R. Arguelles, N. E. Mavromatos, A. Moline, A. Krut, M. Carinci, J. A. Rueda, R. Ruffini, Phys.Dark Univ. 30 (2020) 100699, arXiv:2008.08464.
[Yunis:2020klk]
[15-45]
A Dark Seesaw Solution to Low Energy Anomalies: MiniBooNE, the muon $(g-2)$, and BaBar, Asli Abdullahi, Matheus Hostert, Silvia Pascoli, Phys.Lett.B 820 (2021) 136531, arXiv:2007.11813.
[Abdullahi:2020nyr]
[15-46]
Angular and polarization observables for Majorana-mediated B decays with effective interactions, Lucia Duarte, Gabriel Zapata, O.A. Sampayo, Eur.Phys.J. C80 (2020) 896, arXiv:2006.11216.
[Duarte:2020vgj]
[15-47]
Explaining $(g-2)_{\mu,e}$, KOTO anomaly and MinibooNE excess in an extended Higgs model with sterile neutrinos, Bhaskar Dutta, Sumit Ghosh, Tianjun Li, Phys.Rev. D102 (2020) 055017, arXiv:2006.01319.
[Dutta:2020scq]
[15-48]
Dark sector origin of the KOTO and MiniBooNE anomalies, Alakabha Datta, Saeed Kamali, Danny Marfatia, Phys.Lett. B807 (2020) 135579, arXiv:2005.08920.
[Datta:2020auq]
[15-49]
Sterile Neutrino Dark Matter in Left-Right Theories, Jeff A. Dror, David Dunsky, Lawrence J. Hall, Keisuke Harigaya, JHEP 2007 (2020) 168, arXiv:2004.09511.
[Dror:2020jzy]
[15-50]
A Model of Metastable EeV Dark Datter, Emilian Dudas, Lucien Heurtier, Yann Mambrini, Keith A. Olive, Mathias Pierre, Phys.Rev. D101 (2020) 115029, arXiv:2003.02846.
[Dudas:2020sbq]
[15-51]
Enhancement of Higgs Production Through Leptoquarks at the LHC, Arvind Bhaskar, Debottam Das, Bibhabasu De, Subhadip Mitra, Phys.Rev.D 102 (2020) 035002, arXiv:2002.12571.
[Bhaskar:2020kdr]
[15-52]
eXTP perspectives for the $\nu$MSM sterile neutrino dark matter model, Denys Malyshev, Charles Thorpe-Morgan, Andrea Santangelo, Josef Jochum, Shuang-Nan Zhang, Phys.Rev. D101 (2020) 123009, arXiv:2001.07014.
[Malyshev:2020hcc]
[15-53]
Search for Long-Lived Heavy Neutrinos at the LHC with a VBF Trigger, J. Jones-Perez, J. Masias, J. D. Ruiz-Alvarez, Eur.Phys.J. C80 (2020) 642, arXiv:1912.08206.
[Jones-Perez:2019plk]
[15-54]
LHC constraints on $W^\prime,~Z^\prime$ that couple mainly to third generation fermions, Alper Hayreter, Xiao-Gang He, German Valencia, Eur.Phys.J. C80 (2020) 912, arXiv:1912.06344.
[Hayreter:2019dzc]
[15-55]
Type-I Seesaw with eV-Scale Neutrinos, G. C. Branco, J. T. Penedo, Pedro M. F. Pereira, M. N. Rebelo, J. I. Silva-Marcos, JHEP 2007 (2020) 164, arXiv:1912.05875.
[Branco:2020yvs]
[15-56]
Charged scalar production at the Compact Linear Collider for the $S_3 \otimes \mathbb{Z}_2$ model, G. De Conto, A. C. B. Machado, J. Montano, P. Chimenti, Eur.Phys.J. C80 (2020) 1031, arXiv:1912.02294.
[DeConto:2019fpm]
[15-57]
A unified SU(4) theory for the $R_{D^{(*)}}$ and $R_{K^{(*)}}$ anomalies, Shyam Balaji, Michael A. Schmidt, Phys.Rev. D101 (2020) 015026, arXiv:1911.08873.
[Balaji:2019kwe]
[15-58]
Displaced heavy neutrinos from $Z'$ decays at the LHC, Cheng-Wei Chiang, Giovanna Cottin, Arindam Das, Sanjoy Mandal, JHEP 1912 (2019) 070, arXiv:1908.09838.
[Chiang:2019ajm]
[15-59]
A cosmologically viable eV sterile neutrino model, C. A. de S. Pires, Phys.Lett. B800 (2020) 135135, arXiv:1908.09313.
[Pires:2019elj]
[15-60]
Lepton-Trijet and Displaced Vertex Searches for Heavy Neutrinos at Future Electron-Proton Colliders, Stefan Antusch, Oliver Fischer, A. Hammad, JHEP 2003 (2020) 110, arXiv:1908.02852.
[Antusch:2019eiz]
[15-61]
A Supersymmetric Theory of Baryogenesis and Sterile Sneutrino Dark Matter from B Mesons, Gonzalo Alonso-Alvarez, Gilly Elor, Ann E. Nelson, Huangyu Xiao, JHEP 2003 (2020) 046, arXiv:1907.10612.
[Alonso-Alvarez:2019fym]
[15-62]
Dark matter mass from relic abundance, extra $U(1)$ Gauge boson and Active-Sterile Neutrino Mixing, Imtiyaz Ahmad Bhat, Rathin Adhikari, Phys.Rev. D101 (2020) 075030, arXiv:1906.10185.
[Bhat:2019yqo]
[15-63]
Exploring CP-Violating heavy neutrino oscillations in rare tau decays at Belle II, Sebastian Tapia 'and' Jilberto Zamora-Saa, Nucl.Phys. B952 (2020) 114936, arXiv:1906.09470.
[Tapia:2019coy]
[15-64]
Heavy neutrino production via $Z'$ at the lifetime frontier, Frank F. Deppisch, Suchita Kulkarni, Wei Liu, Phys.Rev. D100 (2019) 035005, arXiv:1905.11889.
[Deppisch:2019kvs]
[15-65]
Measuring the heavy neutrino oscillations in rare W boson decays at the Large Hadron Collider, Gorazd Cvetic, Arindam Das, Sebastian Tapia, Jilberto Zamora-Saa, J.Phys. G47 (2020) 015001, arXiv:1905.03097.
[Cvetic:2019rms]
[15-66]
Heavy Neutral Leptons from low-scale seesaws at the DUNE Near Detector, Peter Ballett, Tommaso Boschi, Silvia Pascoli, JHEP 2003 (2020) 111, arXiv:1905.00284.
[Ballett:2019bgd]
[15-67]
On the Minimal Mixing of Heavy Neutrinos, Marco Drewes, arXiv:1904.11959, 2019.
[Drewes:2019mhg]
[15-68]
Phenomenology of keV scale sterile neutrino dark matter with $S_{4}$ flavor symmetry, Nayana Gautam, Mrinal Kumar Das, JHEP 2001 (2020) 098, arXiv:1904.10662.
[Gautam:2019pce]
[15-69]
Consequences of $\mu$-$\tau$ reflection symmetry for $3+1$ neutrino mixing, Kaustav Chakraborty, Srubabati Goswami, Biswajit Karmakar, Phys.Rev. D100 (2019) 035017, arXiv:1904.10184.
[Chakraborty:2019rjc]
[15-70]
CP-Violation phase analysis via non-trivial correlation of quarks and leptons in 3+1 scenario, Gazal Sharma, B. C. Chauhan, Mod.Phys.Lett. A33 (2019) 1950316, arXiv:1904.02040.
[Sharma:2019tef]
[15-71]
New mixing schemes for (3+1) neutrinos, S. Dev, Desh Raj, Radha Raman Gautam, Lal Singh, Nucl.Phys. B941 (2019) 401-424, arXiv:1902.01742.
[Dev:2019pdg]
[15-72]
Testing New Physics Explanations of MiniBooNE Anomaly at Neutrino Scattering Experiments, Carlos A. Arguelles, Matheus Hostert, Yu-Dai Tsai, Phys.Rev.Lett. 123 (2019) 261801, arXiv:1812.08768.
[Arguelles:2018mtc]
[15-73]
Direct Detection Experiments at the Neutrino Dipole Portal Frontier, Ian M. Shoemaker, Jason Wyenberg, Phys. Rev. D99 (2019) 075010, arXiv:1811.12435.
[Shoemaker:2018vii]
[15-74]
Heavy Majorana Neutrino Production at Future $ep$ Colliders, Shi-Yuan Li, Zong-Guo Si, Xing-Hua Yang, Phys.Lett. B795 (2019) 49-55, arXiv:1811.10313.
[Li:2018wut]
[15-75]
A Theory of $R(D^*,D)$ Anomaly With Right-Handed Currents, K.S. Babu, Bhaskar Dutta, Rabindra N. Mohapatra, JHEP 1901 (2019) 168, arXiv:1811.04496.
[Babu:2018vrl]
[15-76]
A Heavy Metal Path to New Physics, Marco Drewes, Andrea Giammanco, Jan Hajer, Michele Lucente, Olivier Mattelaer, PoS DIS2019 (2019) 090, arXiv:1810.09400.
[Drewes:2018xma]
[15-77]
Comment on 'keV Neutrino Dark Matter in a Fast Expanding Universe' by Biswas et al, Nicolas Fernandez, Stefano Profumo, Phys.Lett. B789 (2019) 603-604, arXiv:1810.06795.
[Fernandez:2018tfa]
[15-78]
Thermally modified sterile neutrino portal dark matter and gravitational waves from phase transition: The Freeze-in case, Ligong Bian, Yi-Lei Tang, JHEP 1812 (2018) 006, arXiv:1810.03172.
[Bian:2018mkl]
[15-79]
keV Neutrino Dark Matter in a Fast Expanding Universe, Anirban Biswas, Debasish Borah, Dibyendu Nanda, Phys.Lett. B786 (2018) 364-372, arXiv:1809.03519.
[Biswas:2018iny]
[15-80]
Sterile Neutrino Shortcuts in Asymmetrically Warped Extra Dimensions, Dominik Doring, Heinrich Pas, Eur.Phys.J. C79 (2019) 604, arXiv:1808.07734.
[Doring:2018ncz]
[15-81]
Sterile Neutrinos with Altered Dispersion Relations as an Explanation for the MiniBooNE, LSND, Gallium and Reactor Anomalies, Dominik Doring, Heinrich Pas, Philipp Sicking, Thomas J. Weiler, Eur.Phys.J. C80 (2020) 1202, arXiv:1808.07460.
[Doring:2018cob]
[15-82]
A Short Travel for Neutrinos in Large Extra Dimensions, G. V. Stenico, D. V. Forero, O. L. G. Peres, JHEP 1811 (2018) 155, arXiv:1808.05450.
[Stenico:2018jpl]
[15-83]
U(1)' mediated decays of heavy sterile neutrinos in MiniBooNE, Peter Ballett, Silvia Pascoli, Mark Ross-Lonergan, Phys.Rev.D 99 (2019) 071701, arXiv:1808.02915.
[Ballett:2018ynz]
[15-84]
A Dark Neutrino Portal to Explain MiniBooNE, Enrico Bertuzzo, Sudip Jana, Pedro A. N. Machado, Renata Zukanovich Funchal, Phys.Rev.Lett. 121 (2018) 241801, arXiv:1807.09877.
[Bertuzzo:2018itn]
[15-85]
Sterile Neutrinos in String Derived Models, Alon E. Faraggi, Eur.Phys.J. C78 (2018) 867, arXiv:1807.08031.
[Faraggi:2018pit]
[15-86]
Investigating the sterile neutrino parameters with QLC in 3 + 1 scenario, Gazal Sharma, B. C. Chauhan, Adv.High Energy Phys. 2019 (2019) 4685198, arXiv:1807.05785.
[Sharma:2018fkr]
[15-87]
Active and sterile neutrino phenomenology with $A_4$ based minimal extended seesaw, Pritam Das, Ananya Mukherjee, Mrinal Kumar Das, Nucl.Phys. B941 (2019) 755-779, arXiv:1805.09231.
[Das:2018qyt]
[15-88]
Numerical estimate of minimal active-sterile neutrino mixing for sterile neutrinos at GeV scale, Igor Krasnov, Timofey Grigorin-Ryabov, EPJ Web Conf. 191 (2018) 03003, arXiv:1802.04728.
[Krasnov:2018odt]
[15-89]
A new mechanism of sterile neutrino dark matter production, Johannes Herms, Alejandro Ibarra, Takashi Toma, JCAP 1806 (2018) 036, arXiv:1802.02973.
[Herms:2018ajr]
[15-90]
Exotic Sterile Neutrinos and Pseudo-Goldstone Phenomenology, Bibhushan Shakya, James D. Wells, JHEP 1902 (2019) 174, arXiv:1801.02640.
[Shakya:2018qzg]
[15-91]
Challenging Sterile Neutrino Searches at the LHC Complemented by Jet Substructure Techniques, Akanksha Bhardwaj, Arindam Das, Partha Konar, Arun Thalapillil, J.Phys. G47 (2020) 075002, arXiv:1801.00797.
[Bhardwaj:2018lma]
[15-92]
Probing the Light Sterile Neutrino Through the Heavy Charged Higgs Decay on the LHC, Yi-Lei Tang, Phys.Rev.D 98 (2018) 035043, arXiv:1712.10108.
[Tang:2017plx]
[15-93]
Non-universal Z' from SO(10) GUTs with vector-like family and the origin of neutrino masses, Stefan Antusch, Christian Hohl, Steve F. King, Vasja Susic, Nucl.Phys. B934 (2018) 578-605, arXiv:1712.05366.
[Antusch:2017tud]
[15-94]
Neutrinos in Large Extra Dimensions and Short-Baseline $\nu_e$ Appearance, Marcela Carena, Ying-Ying Li, Camila S. Machado, Pedro A. N. Machado, Carlos E. M. Wagner, Phys.Rev. D96 (2017) 095014, arXiv:1708.09548.
[Carena:2017qhd]
[15-95]
Probing sterile neutrinos in the framework of inverse-seesaw through leptoquark productions, Debottam Das, Kirtiman Ghosh, Manimala Mitra, Subhadeep Mondal, Phys.Rev. D97 (2018) 015024, arXiv:1708.06206.
[Das:2017kkm]
[15-96]
Sterile Neutrinos and B-L Symmetry, Pavel Fileviez Perez, Clara Murgui, Phys.Lett. B777 (2018) 381-387, arXiv:1708.02247.
[FileviezPerez:2017sbb]
[15-97]
Identifying Dark Matter Nature at $e^{-}e^{+}$ Colliders, Nabil Baouche, Amine Ahriche, Phys.Rev. D96 (2017) 055029, arXiv:1707.05263.
[Baouche:2017tzu]
[15-98]
LHC Search for Right-handed Neutrinos in $Z^\prime$ Models, Peter Cox, Chengcheng Han, Tsutomu T. Yanagida, JHEP 1801 (2018) 037, arXiv:1707.04532.
[Cox:2017eme]
[15-99]
Colder Freeze-in Axinos Decaying into Photons, Kyu Jung Bae, Ayuki Kamada, Seng Pei Liew, Keisuke Yanagi, Phys.Rev. D97 (2018) 055019, arXiv:1707.02077.
[Bae:2017tqn]
[15-100]
Heavy stable charged tracks as signatures of non-thermal dark matter at the LHC : a study in some non-supersymmetric scenarios, Avirup Ghosh, Tanmoy Mondal, Biswarup Mukhopadhyaya, JHEP 1712 (2017) 136, arXiv:1706.06815.
[Ghosh:2017vhe]
[15-101]
Neutrino Mass and Neutrinoless double beta decay in SO(10) GUT with Pati-Salam symmetry, M. Sruthilaya, Rukmani Mohanta, Sudhanwa Patra, J.Phys. G45 (2018) 075004, arXiv:1705.04125.
[Sruthilaya:2017vui]
[15-102]
Heavy Neutrino Search via the Higgs boson at the LHC, Arindam Das, Yu Gao, Teruki Kamon, Eur.Phys.J. C79 (2019) 424, arXiv:1704.00881.
[Das:2017rsu]
[15-103]
Constraining Sterile Neutrinos from Precision Higgs Data, Arindam Das, P. S. Bhupal Dev, C. S. Kim, Phys.Rev. D95 (2017) 115013, arXiv:1704.00880.
[Das:2017zjc]
[15-104]
Fuzzy Dark Matter from Infrared Confining Dynamics, Hooman Davoudiasl, Christopher W. Murphy, Phys.Rev.Lett. 118 (2017) 141801, arXiv:1701.01136.
[Davoudiasl:2017jke]
[15-105]
Effects of sterile neutrino and extra-dimension on big bang nucleosynthesis, Dukjae Jang, Motohiko Kusakabe, Myung-Ki Cheoun, Phys.Rev. D97 (2018) 043005, arXiv:1611.04472.
[Jang:2016rpi]
[15-106]
Sterile Neutrino Dark Matter with Supersymmetry, Bibhushan Shakya, James D. Wells, Phys.Rev. D96 (2017) 031702, arXiv:1611.01517.
[Shakya:2016oxf]
[15-107]
Phenomenological study of extended seesaw model for light sterile neutrino, Newton Nath, Monojit Ghosh, Srubabati Goswami, Shivani Gupta, JHEP 1703 (2017) 075, arXiv:1610.09090.
[Nath:2016mts]
[15-108]
Deviations in Tribimaximal Mixing From Sterile Neutrino Sector, S. Dev, Desh Raj, Radha Raman Gautam, Nucl. Phys. B911 (2016) 744-753, arXiv:1607.08051.
[Dev:2016bml]
[15-109]
$E_6$ and a 750 GeV Di-photon Resonance, Aniket Joglekar, Jonathan L. Rosner, Phys.Rev. D96 (2017) 015026, arXiv:1607.06900.
[Joglekar:2016yap]
[15-110]
Non-zero $\theta_{13}$ with Unbroken $\mu-\tau$ Symmetry of the Active Neutrino Mass Matrix in the Presence of a Light Sterile Neutrino, Debasish Borah, Phys.Rev. D95 (2017) 035016, arXiv:1607.05556.
[Borah:2016fqj]
[15-111]
Sterile Neutrino portal to Dark Matter II: Exact Dark symmetry, Miguel Escudero, Nuria Rius, Veronica Sanz, Eur.Phys.J. C77 (2017) 397, arXiv:1607.02373.
[Escudero:2016ksa]
[15-112]
Freeze-in Production of Sterile Neutrino Dark Matter in U(1)$_{\rm B-L}$ Model, Anirban Biswas, Aritra Gupta, JCAP 1609 (2016) 044, arXiv:1607.01469.
[Biswas:2016bfo]
[15-113]
Effect of compactification of twisted toroidal extra-dimension on sterile neutrino, Ajit Kumar Mohanty, arXiv:1606.07625, 2016.
[Mohanty:2016ojb]
[15-114]
Analysis of four-zero textures in $3+1$ framework, Debasish Borah, Monojit Ghosh, Shivani Gupta, Suprabh Prakash, Sushant K. Raut, Phys. Rev. D94 (2016) 113001, arXiv:1606.02076.
[Borah:2016xkc]
[15-115]
Sterile neutrino portal to Dark Matter I: The $U(1)_{B-L}$ case, Miguel Escudero, Nuria Rius, Veronica Sanz, JHEP 1702 (2017) 045, arXiv:1606.01258.
[Escudero:2016tzx]
[15-116]
Lepton number violating processes in the minimal 3-3-1 model with sterile neutrinos, A. C. B. Machado, J. Montano, V. Pleitez, J.Phys. G46 (2019) 115005, arXiv:1604.08539.
[Machado:2016jzb]
[15-117]
Shedding Light on Neutrino Masses with Dark Forces, Brian Batell, Maxim Pospelov, Brian Shuve, JHEP 1608 (2016) 052, arXiv:1604.06099.
[Batell:2016zod]
[15-118]
Short Wavelength Oscillations with Right-Handed Neutrinos, Emmanuel A. Paschos, arXiv:1603.05595, 2016.
[Paschos:2016tot]
[15-119]
Large, Extra Dimensions at the Deep Underground Neutrino Experiment, Jeffrey M. Berryman, Andre de Gouvea, Kevin J. Kelly, O.L.G. Peres, Zahra Tabrizi, Phys. Rev. D94 (2016) 033006, arXiv:1603.00018.
[Berryman:2016szd]
[15-120]
Isocurvature Constraints on Portal Couplings, Kimmo Kainulainen, Sami Nurmi, Tommi Tenkanen, Kimmo Tuominen, Ville Vaskonen, JCAP 1606 (2016) 022, arXiv:1601.07733.
[Kainulainen:2016vzv]
[15-121]
Extension of $\nu$MSM model and possible explanations of recent astronomical and collider observations, Krishna Kulkarni, arXiv:1512.06836, 2015.
[Kulkarni:2015gzu]
[15-122]
Three Twin Neutrinos: Evidence from LSND and MiniBooNE, Yang Bai, Ran Lu, Sida Lu, Jordi Salvado, Ben A. Stefanek, Phys. Rev. D93 (2016) 073004, arXiv:1512.05357.
[Bai:2015ztj]
[15-123]
Production of unstable heavy neutrinos in proto-neutron stars, C. Albertus, M. Masip, M. A. Perez-Garcia, Phys. Lett. B751 (2015) 209-214, arXiv:1509.03306.
[Albertus:2015xra]
[15-124]
Cosmological bounds of sterile neutrinos in a $SU(3)_C\otimes SU(3)_L\otimes SU(3)_R\otimes U(1)_N$ model as dark matter candidates, Cesar P. Ferreira, Marcelo M. Guzzo, Pedro C. de Holanda, Braz. J. Phys. 46 (2016) 453-461, arXiv:1509.02977.
[Ferreira:2015wja]
[15-125]
Toward the full test of the nuMSM sterile neutrino dark matter model with Athena, A. Neronov, D. Malyshev, Phys. Rev. D93 (2016) 063518, arXiv:1509.02758.
[Neronov:2015kca]
[15-126]
Sterile Neutrino Dark Matter Production in the Neutrino-phillic Two Higgs Doublet Model, Adisorn Adulpravitchai, Michael A. Schmidt, JHEP 12 (2015) 023, arXiv:1507.05694.
[Adulpravitchai:2015mna]
[15-127]
Decay of $B^\pm \to \tau^\pm +$ 'missing momentum' and direct measurement of the mixing parameter $U_{\tau N}$, Gorazd Cvetic, C. S. Kim, Y.-J. Kwon, Y.-M. Yook, Phys. Rev. D93 (2016) 013003, arXiv:1507.03822.
[Cvetic:2015roa]
[15-128]
Diluted Equilibrium Sterile Neutrino Dark Matter, Amol V. Patwardhan, George M. Fuller, Chad T. Kishimoto, Alexander Kusenko, Phys. Rev. D92 (2015) 103509, arXiv:1507.01977.
[Patwardhan:2015kga]
[15-129]
View FImP Miracle (by Scale Invariance) $\acute{\rm a}$ $\rm la$ Self-interaction, Zhaofeng Kang, Phys. Lett. B751 (2015) 201-204, arXiv:1505.06554.
[Kang:2015aqa]
[15-130]
Search for Heavy Right-Handed Neutrinos at the LHC and Beyond in the Same-Sign Leptons Final State, John N. Ng, Alejandro de la Puente, Bob Wei-Ping Pan, JHEP 12 (2015) 172, arXiv:1505.01934.
[Ng:2015hba]
[15-131]
Heavy neutrinos and the $pp\to lljj$ CMS data, J. Gluza, T. Jelinski, Phys. Lett. B748 (2015) 125-131, arXiv:1504.05568.
[Gluza:2015goa]
[15-132]
Lepton flavor violating decays of vector quarkonia and of the $Z$ boson, Asmaa Abada, Damir Becirevic, Michele Lucente, Olcyr Sumensari, Phys. Rev. D91 (2015) 113013, arXiv:1503.04159.
[Abada:2015zea]
[15-133]
Higgs sector extension of the neutrino minimal standard model with thermal freeze-in production mechanism, Hiroki Matsui, Mihoko Nojiri, Phys. Rev. D92 (2015) 025045, arXiv:1503.01293.
[Matsui:2015maa]
[15-134]
Testing sterile neutrino extensions of the Standard Model at future lepton colliders, Stefan Antusch, Oliver Fischer, JHEP 1505 (2015) 053, arXiv:1502.05915.
[Antusch:2015mia]
[15-135]
Testing $\nu$MSM with indirect searches, Dmitry Gorbunov, Inar Timiryasov, Phys.Lett. B745 (2015) 29-34, arXiv:1412.7751.
[Gorbunov:2014ypa]
[15-136]
Neutrino Masses and Sterile Neutrino Dark Matter from the PeV Scale, Samuel B. Roland, Bibhushan Shakya, James D. Wells, Phys. Rev. D92 (2015) 113009, arXiv:1412.4791.
[Roland:2014vba]
[15-137]
FImP Miracle of Sterile Neutrino Dark Matter by Scale Invariance, Zhaofeng Kang, Eur. Phys. J. C75 (2015) 471, arXiv:1411.2773.
[Kang:2014cia]
[15-138]
Neutrino Portal Dark Matter: From Dwarf Galaxies to IceCube, John F. Cherry, Alexander Friedland, Ian M. Shoemaker, arXiv:1411.1071, 2014.
[Cherry:2014xra]
[15-139]
Flavor ratios of extragalactical neutrinos and neutrino shortcuts in extra dimensions, Elke Aeikens, Heinrich Pas, Sandip Pakvasa, Philipp Sicking, JCAP 1510 (2015) 005, arXiv:1410.0408.
[Aeikens:2014yga]
[15-140]
Production of Sterile Neutrino Dark Matter and the 3.5 keV line, Alexander Merle, Aurel Schneider, Phys. Lett. B749 (2015) 283-288, arXiv:1409.6311.
[Merle:2014xpa]
[15-141]
A Fresh Look at keV Sterile Neutrino Dark Matter from Frozen-In Scalars, Adisorn Adulpravitchai, Michael A. Schmidt, JHEP 1501 (2015) 006, arXiv:1409.4330.
[Adulpravitchai:2014xna]
[15-142]
7 keV sterile neutrino Dark Matter in extended seesaw framework, Sudhanwa Patra, Prativa Pritimita, arXiv:1409.3656, 2014.
[Patra:2014pga]
[15-143]
Sterile Neutrino Dark Matter and Low Scale Leptogenesis from a Charged Scalar, Michele Frigerio, Carlos E. Yaguna, Eur.Phys.J. C75 (2015) 31, arXiv:1409.0659.
[Frigerio:2014ifa]
[15-144]
Determination of the mixing between active neutrinos and sterile neutrino through the quark-lepton complementarity and self-complementarity, Hong-Wei Ke, Tan Liu, Xue-Qian Li, Phys. Rev. D90 (2014) 053009, arXiv:1408.1315.
[Ke:2014hxa]
[15-145]
Signatures of Extra Dimensional Sterile Neutrinos, Werner Rodejohann, He Zhang, Phys.Lett. B737 (2014) 81, arXiv:1407.2739.
[Rodejohann:2014eka]
[15-146]
A new mechanism for dark energy: the adaptive screening, Andi Hektor, Luca Marzola, Martti Raidal, Hardi Veermae, JHEP 1501 (2015) 101, arXiv:1407.0389.
[Hektor:2014mqa]
[15-147]
$N_{\rm eff}$ in low-scale seesaw models versus the lightest neutrino mass, P. Hernandez, M. Kekic, J. Lopez-Pavon, Phys. Rev. D90 (2014) 065033, arXiv:1406.2961.
[Hernandez:2014fha]
[15-148]
Sterile neutrinos and right-handed currents in KATRIN, James Barry, Julian Heeck, Werner Rodejohann, JHEP 1407 (2014) 081, arXiv:1404.5955.
[Barry:2014ika]
[15-149]
Neutrino masses, leptogenesis, and sterile neutrino dark matter, Takanao Tsuyuki, Phys. Rev. D90 (2014) 013007, arXiv:1403.5053.
[Tsuyuki:2014aia]
[15-150]
A Dark Matter Progenitor: Light Vector Boson Decay into (Sterile) Neutrinos, Brian Shuve, Itay Yavin, Phys. Rev. D89 (2014) 113004, arXiv:1403.2727.
[Shuve:2014doa]
[15-151]
Effective field theory and keV lines from dark matter, Rebecca Krall, Matthew Reece, Thomas Roxlo, JCAP 1409 (2014) 007, arXiv:1403.1240.
[Krall:2014dba]
[15-152]
Resonantly-Produced 7 keV Sterile Neutrino Dark Matter Models and the Properties of Milky Way Satellites, Kevork N. Abazajian, Phys. Rev. Lett. 112 (2014) 161303, arXiv:1403.0954.
[Abazajian:2014gza]
[15-153]
Common origin of reactor and sterile neutrino mixing, Alexander Merle, Stefano Morisi, Walter Winter, JHEP 1407 (2014) 039, arXiv:1402.6332.
[Merle:2014eja]
[15-154]
7 keV sterile neutrino dark matter from split flavor mechanism, Hiroyuki Ishida, Kwang Sik Jeong, Fuminobu Takahashi, Phys.Lett. B732 (2014) 196-200, arXiv:1402.5837.
[Ishida:2014dlp]
[15-155]
Looking for the minimal realisation of the inverse seesaw, Asmaa Abada, Michele Lucente, Nucl. Phys. B885 (2014) 651, arXiv:1401.1507.
[Abada:2014vea]
[15-156]
Tight bonds between sterile neutrinos and dark matter, Torsten Bringmann, Jasper Hasenkamp, Joern Kersten, JCAP 1407 (2014) 042, arXiv:1312.4947.
[Bringmann:2013vra]
[15-157]
On the minimal active-sterile neutrino mixing in seesaw type I mechanism with sterile neutrinos at GeV scale, Dmitry Gorbunov, Alexander Panin, Phys. Rev. D89 (2014) 017302, arXiv:1312.2887.
[Gorbunov:2013dta]
[15-158]
Precision tests of unitarity in leptonic mixing, Lorenzo Basso, Oliver Fischer, Jochum J. van der Bij, Europhys.Lett. 105 (2014) 11001, arXiv:1310.2057.
[Basso:2013jka]
[15-159]
Longevity Problem of Sterile Neutrino Dark Matter, Hiroyuki Ishida, Kwang Sik Jeong, Fuminobu Takahashi, Phys.Lett. B731 (2014) 242-247, arXiv:1309.3069.
[Ishida:2013mva]
[15-160]
Supersymmetry at the LHC and The Theory of R-parity, Pavel Fileviez Perez, Sogee Spinner, Phys.Lett. B728 (2014) 489-495, arXiv:1308.0524.
[FileviezPerez:2013fsv]
[15-161]
MeV dark matter in the 3+1+1 model, Jinrui Huang, Ann E Nelson, Phys. Rev. D88 (2013) 033016, arXiv:1306.6079.
[Huang:2013zga]
[15-162]
New Production Mechanism for keV Sterile Neutrino Dark Matter by Decays of Frozen-In Scalars, Alexander Merle, Viviana Niro, Daniel Schmidt, JCAP 1403 (2014) 028, arXiv:1306.3996.
[Merle:2013wta]
[15-163]
The Sterile Neutrino Field and Late Time Acceleration, Stephon H.S. Alexander, arXiv:1306.2964, 2013.
[Alexander:2013baa]
[15-164]
A Parallel World in the Dark, Tetsutaro Higaki, Kwang Sik Jeong, Fuminobu Takahashi, JCAP 1308 (2013) 031, arXiv:1302.2516.
[Higaki:2013vuv]
[15-165]
Improving Electro-Weak Fits with TeV-scale Sterile Neutrinos, Evgeny Akhmedov, Alexander Kartavtsev, Manfred Lindner, Lisa Michaels, Juri Smirnov, JHEP 1305 (2013) 081, arXiv:1302.1872.
[Akhmedov:2013hec]
[15-166]
Neutrino Mass Matrix Textures: A Data-driven Approach, E. Bertuzzo, P. A. N. Machado, R. Zukanovich Funchal, JHEP 1306 (2013) 097, arXiv:1302.0653.
[Bertuzzo:2013ew]
[15-167]
Majorana neutrino mass matrices with three texture zeros and the sterile neutrino, Yongchao Zhang, Phys. Rev. D87 (2013) 053020, arXiv:1301.7302.
[Zhang:2013mb]
[15-168]
Light and Superlight Sterile Neutrinos in the Minimal Radiative Inverse Seesaw Model, P. S. Bhupal Dev, Apostolos Pilaftsis, Phys. Rev. D87 (2013) 053007, arXiv:1212.3808.
[BhupalDev:2012jvh]
[15-169]
Tree-level lepton universality violation in the presence of sterile neutrinos: impact for $R_K$ and $R_pi$, A. Abada, D. Das, A.M. Teixeira, A. Vicente, C. Weiland, JHEP 1302 (2013) 048, arXiv:1211.3052.
[Abada:2012mc]
[15-170]
Left-Right Symmetry: from Majorana to Dirac, Miha Nemevsek, Goran Senjanovic, Vladimir Tello, Phys. Rev. Lett. 110 (2013) 151802, arXiv:1211.2837.
[Nemevsek:2012iq]
[15-171]
Neutrino mass characteristics in a phenomenological 3+2+1 model, N. Yu. Zysina, S. V. Fomichev, V. V. Khruschov, arXiv:1209.0545, 2012.
[Zysina:2012wz]
[15-172]
Dark Matter, Baryogenesis and Neutrino Oscillations from Right Handed Neutrinos, Laurent Canetti, Marco Drewes, Tibor Frossard, Mikhail Shaposhnikov, Phys. Rev. D87 (2013) 093006, arXiv:1208.4607.
[Canetti:2012kh]
[15-173]
Limits on MeV Dark Matter from the Effective Number of Neutrinos, Chiu Man Ho, Robert J. Scherrer, Phys. Rev. D87 (2013) 023505, arXiv:1208.4347.
[Ho:2012ug]
[15-174]
KeV Warm Dark Matter and Composite Neutrinos, Dean J Robinson, Yuhsin Tsai, JHEP 08 (2012) 161, arXiv:1205.0569.
[Robinson:2012wu]
[15-175]
Warm Dark Matter from keVins, Stephen F. King, Alexander Merle, JCAP 1208 (2012) 016, arXiv:1205.0551.
[King:2012wg]
[15-176]
Cosmology based on f(R) Gravity admits 1 eV Sterile Neutrinos, Hayato Motohashi, Alexei A. Starobinsky, Jun'ichi Yokoyama, Phys. Rev. Lett. 110 (2013) 121302, arXiv:1203.6828.
[Motohashi:2012wc]
[15-177]
Light Sterile Neutrinos and Short Baseline Neutrino Oscillation Anomalies, JiJi Fan, Paul Langacker, JHEP 04 (2012) 083, arXiv:1201.6662.
[Fan:2012ca]
[15-178]
Kinetic Equations for Baryogenesis via Sterile Neutrino Oscillation, Takehiko Asaka, Shintaro Eijima, Hiroyuki Ishida, JCAP 1202 (2012) 021, arXiv:1112.5565.
[Asaka:2011wq]
[15-179]
Experimental bounds on sterile neutrino mixing angles, Oleg Ruchayskiy, Artem Ivashko, JHEP 06 (2012) 100, arXiv:1112.3319.
[Ruchayskiy:2011aa]
[15-180]
Hierarchically Acting Sterile Neutrinos, Chian-Shu Chen, Ryo Takahashi, Eur. Phys. J. C72 (2012) 2089, arXiv:1112.2102.
[Chen:2011ai]
[15-181]
A model of superluminal neutrinos, D. Marfatia, H. Pas, S. Pakvasa, T. J. Weiler, Phys. Lett. B707 (2012) 553-557, arXiv:1112.0527.
[Marfatia:2011bw]
[15-182]
Real and complex random neutrino mass matrices and theta13, Janusz Gluza, Robert Szafron, Phys. Rev. D85 (2012) 047701, arXiv:1111.7278.
[Gluza:2011nm]
[15-183]
Constraining the (Low-Energy) Type-I Seesaw, Andre de Gouvea, Wei-Chih Huang, Phys. Rev. D85 (2012) 053006, arXiv:1110.6122.
[deGouvea:2011zz]
[15-184]
Apparent faster than light propagation from light sterile neutrinos, Steen Hannestad, Martin S. Sloth, arXiv:1109.6282, 2011.
[Hannestad:2011bj]
[15-185]
Neutrinoless Double Beta Decay and Heavy Sterile Neutrinos, Manimala Mitra, Goran Senjanovic, Francesco Vissani, Nucl. Phys. B856 (2012) 26-73, arXiv:1108.0004.
[Mitra:2011qr]
[15-186]
Parametrization of Seesaw Models and Light Sterile Neutrinos, Mattias Blennow, Enrique Fernandez-Martinez, Phys. Lett. B704 (2011) 223-229, arXiv:1107.3992.
[Blennow:2011vn]
[15-187]
Bulk Neutrinos as an Alternative Cause of the Gallium and Reactor Anti-neutrino Anomalies, P. A. N. Machado, H. Nunokawa, F. A. Pereira dos Santos, R. Zukanovich Funchal, Phys. Rev. D 85 (2012) 073012, arXiv:1107.2400.
[Machado:2011kt]
[15-188]
Late and early time phenomenology of Higgs-dependent cutoff, F. Bezrukov, D. Gorbunov, M. Shaposhnikov, JCAP 1110 (2011) 001, arXiv:1106.5019.
[Bezrukov:2011sz]
[15-189]
Deriving Models for keV sterile Neutrino Dark Matter with the Froggatt-Nielsen mechanism, Alexander Merle, Viviana Niro, JCAP 1107 (2011) 023, arXiv:1105.5136.
[Merle:2011yv]
[15-190]
Light Sterile Neutrinos: Models and Phenomenology, James Barry, Werner Rodejohann, He Zhang, JHEP 07 (2011) 091, arXiv:1105.3911.
[Barry:2011wb]
[15-191]
Constraints on composite Dirac neutrinos from observations of galaxy clusters, R. S. Hundi, Sourov Roy, Phys. Lett. B702 (2011) 228-234, arXiv:1105.0291.
[Hundi:2011et]
[15-192]
Mixing of Active and Sterile Neutrinos, Takehiko Asaka, Shintaro Eijima, Hiroyuki Ishida, JHEP 04 (2011) 011, arXiv:1101.1382.
[Asaka:2011pb]
[15-193]
Baryon Asymmetry of the Universe without Boltzmann or Kadanoff-Baym, J. -S. Gagnon, M. Shaposhnikov, Phys. Rev. D83 (2011) 065021, arXiv:1012.1126.
[Gagnon:2010kt]
[15-194]
Soft L_e-L_mu-L_tau flavour symmetry breaking and sterile neutrino keV Dark Matter, Manfred Lindner, Alexander Merle, Viviana Niro, JCAP 1101 (2011) 034, arXiv:1011.4950.
[Lindner:2010wr]
[15-195]
WIMPs in a 3-3-1 model with heavy Sterile neutrinos, J. K. Mizukoshi, C. A. de S. Pires, F. S. Queiroz, P. S. Rodrigues da Silva, Phys. Rev. D83 (2011) 065024, arXiv:1010.4097.
[Mizukoshi:2010ky]
[15-196]
Substructure lensing in galaxy clusters as a constraint on low-mass sterile neutrinos in tensor-vector-scalar theory: The straight arc of Abell 2390, Martin Feix, HongSheng Zhao, Cosimo Fedeli, Jose Luis Garrido Pestana, Henk Hoekstra, Phys. Rev. D82 (2010) 124003, arXiv:1008.1963.
[Feix:2010pn]
[15-197]
Collider signatures of sterile neutrinos in models with a gauge-singlet Higgs, Ian M. Shoemaker, Kalliopi Petraki, Alexander Kusenko, JHEP 09 (2010) 060, arXiv:1006.5458.
[Shoemaker:2010fg]
[15-198]
Sterile neutrino dark matter, CDMS-II and a light Higgs boson, F. S. Queiroz, C. A. de S. Pires, P. S. Rodrigues da Silva, Phys. Rev. D82 (2010) 105014, arXiv:1002.4601.
[deSPires:2010ead]
[15-199]
Higgs portal dark matter in the minimal gauged $U(1)_{B-L}$ model, Nobuchika Okada, Osamu Seto, Phys. Rev. D82 (2010) 023507, arXiv:1002.2525.
[Okada:2010wd]
[15-200]
Interactions of keV sterile neutrinos with matter, Shin'ichiro Ando, Alexander Kusenko, Phys. Rev. D81 (2010) 113006, arXiv:1001.5273.
[Ando:2010ye]
[15-201]
Inert-Sterile Neutrino: Cold or Warm Dark Matter Candidate, Graciela B. Gelmini, Efunwande Osoba, Sergio Palomares-Ruiz, Phys. Rev. D81 (2010) 063529, arXiv:0912.2478.
[Gelmini:2009xd]
[15-202]
Oscillation dynamics of active-unsterile neutrino mixing in a $2+\tilde{1}$ mixing scheme, D. Boyanovsky, R. Holman, Jimmy A. Hutasoit, Phys. Rev. D81 (2010) 033009, arXiv:0912.2093.
[Boyanovsky:2009mq]
[15-203]
Symmetry and phenomenology of the minimal $\nu$SM, Xiao-Gang He, Tong Li, Wei Liao, Phys. Rev. D81 (2010) 033006, arXiv:0911.1598.
[He:2009mv]
[15-204]
Coupling active and sterile neutrinos in the cosmon plus seesaw framework, Alex E. Bernardini, Phys. Lett. B684 (2010) 162-166, arXiv:0911.0446.
[Bernardini:2009ij]
[15-205]
Gamma-ray detection from gravitino dark matter decay in the $\mu\nu$SSM, Ki-Young Choi, Daniel E.Lopez-Fogliani, Carlos Munoz, Roberto Ruiz de Austri, JCAP 1003 (2010) 028, arXiv:0906.3681.
[Choi:2009ng]
[15-206]
Unsterile-Active Neutrino Mixing: Consequences on Radiative Decay and Bounds from the X-ray Background, D. Boyanovsky, R. Holman, Jimmy A. Hutasoit, Phys. Rev. D80 (2009) 025012, arXiv:0905.4729.
[Boyanovsky:2009ke]
[15-207]
Sterile neutrinos produced near the EW scale I: mixing angles, MSW resonances and production rates, Jun Wu, Chiu-Man Ho, Daniel Boyanovsky, Phys. Rev. D80 (2009) 103511, arXiv:0902.4278.
[Wu:2009yr]
[15-208]
Decaying dark matter in Draco, Signe Riemer-Sorensen, Steen H. Hansen, Astron.Astrophys. 500 (2009) L37-L40, arXiv:0901.2569.
[Riemer-Sorensen:2009zil]
[15-209]
Kaluza-Klein Contamination in Fermi Accelerated Environments, Cong-Xin Qiu, arXiv:0806.3597, 2008.
[Qiu:2008kn]
[15-210]
Sterile neutrino dark matter as a consequence of nuMSM-induced lepton asymmetry, M. Laine, M. Shaposhnikov, JCAP 0806 (2008) 031, arXiv:0804.4543.
[Laine:2008pg]
[15-211]
The nuMSM, leptonic asymmetries, and properties of singlet fermions, Mikhail Shaposhnikov, JHEP 08 (2008) 008, arXiv:0804.4542.
[Shaposhnikov:2008pf]
[15-212]
Sterile neutrino dark matter in B-L extension of the standard model and galactic 511 keV line, Shaaban Khalil, Osamu Seto, JCAP 0810 (2008) 024, arXiv:0804.0336.
[Khalil:2008kp]
[15-213]
Investigation on light dark matter, R. Bernabei et al. (DAMA), Mod. Phys. Lett. A23 (2008) 2125-2140, arXiv:0802.4336.
[DAMA:2008vur]
[15-214]
Sterile Neutrinos as the Warm Dark Matter in the Type II Seesaw Model, Wan-lei Guo, Phys. Rev. D77 (2008) 033005, arXiv:0709.1632.
[Guo:2007cs]
[15-215]
How to find neutral leptons of the nuMSM?, Dmitry Gorbunov, Mikhail Shaposhnikov, JHEP 10 (2007) 015, arXiv:0705.1729.
[Gorbunov:2007ak]
[15-216]
Lightest sterile neutrino abundance within the nuMSM, Takehiko Asaka, Mikko Laine, Mikhail Shaposhnikov, JHEP 01 (2007) 091, arXiv:hep-ph/0612182.
[Asaka:2006nq]
[15-217]
Searching for dark matter sterile neutrino in laboratory, Fedor Bezrukov, Mikhail Shaposhnikov, Phys. Rev. D75 (2007) 053005, arXiv:hep-ph/0611352.
[Bezrukov:2006cy]
[15-218]
Seesaw right handed neutrino as the sterile neutrino for LSND, R. N. Mohapatra, S. Nasri, Hai-Bo Yu, Phys. Rev. D72 (2005) 033007, arXiv:hep-ph/0505021.
[Mohapatra:2005wk]
[15-219]
Can neutrinos probe extra dimensions?, Vladimir Ammosov, Guennadi Volkov, arXiv:hep-ph/0008032, 2000.
[Ammosov:2000kj]
[15-220]
Neutrino physics and the mirror world: How exact parity symmetry explains the solar neutrino deficit, the atmospheric neutrino anomaly and the LSND experiment, Robert Foot, R. R. Volkas, Phys. Rev. D52 (1995) 6595-6606, arXiv:hep-ph/9505359.
[Foot:1995pa]
[15-221]
Models of light singlet fermion and neutrino phenomenology, E.J. Chun, Anjan S. Joshipura, A. Yu. Smirnov, Phys.Lett. B357 (1995) 608-615, arXiv:hep-ph/9505275.
[Chun:1995js]
[15-222]
Majorana Neutrinos and the Production of the Right-handed Charged Gauge Boson, Wai-Yee Keung, Goran Senjanovic, Phys. Rev. Lett. 50 (1983) 1427.
[Keung:1983uu]

16 - Phenomenology - Models - Talks

[16-1]
GeV-scale neutrinos: interactions with mesons and DUNE sensitivity, Manuel Gonzalez-Lopez, arXiv:2105.09318, 2021. 2021 EW session of the 55th Rencontres de Moriond.
[Gonzalez-Lopez:2021yss]
[16-2]
Sterile Neutrino Dark Matter and Leptogenesis in Left-Right Symmetric Theories, David Dunsky, Lawrence J. Hall, Keisuke Harigaya, arXiv:2105.08065, 2021. 2021 EW session of the 55th Rencontres de Moriond.
[Dunsky:2021yaj]
[16-3]
Perspectives to find heavy neutrinos with NA62, Marco Drewes, Jan Hajer, Juraj Klaric, Gaia Lanfranchi, arXiv:1806.00100, 2018. 53rd Rencontres de Moriond on Electroweak Interactions and Unified Theories (2018).
[Drewes:2018irr]
[16-4]
On the relation between the CP phases in the PMNS matrix, CP-violation with sterile neutrinos and leptogenesis, Marco Drewes, Bjorn Garbrecht, Dario Gueter, Juraj Klaric, arXiv:1611.04769, 2016. 18th International Workshop on Neutrino Factories and Future Neutrino Facilities Search (NuFact16) Quy Nhon, Vietnam, August 21-27, 2016.
[Drewes:2016blc]
[16-5]
Neutrino masses and mixing within a SU(3) family symmetry model with one or two light sterile neutrinos, Albino Hernandez-Galeana, Bled Workshops Phys. 14 (2013) 82-106, arXiv:1312.3403. 16th Workshop 'What Comes Beyond the Standard Models', 14-21 July, Bled, Slovenia.
[Hernandez-Galeana:2013ifa]
[16-6]
Lepton Universality in Kaon Decays, Cedric Weiland, arXiv:1306.2894, 2013. Moriond 2013 EW session.
[Weiland:2013wua]
[16-7]
Dark matter in galaxies: the dark matter particle mass is about 2 keV, H. J. de Vega, N. G. Sanchez, arXiv:1304.0759, 2013. NuMass 2013, Milano-Bicocca, Feb 2013, Cosmic Frontiers, SLAC, March 2013, Chalonge Torino Colloquium 2013, Apr 2013.
[deVega:2013ysa]
[16-8]
Predictions for fermion masses and mixing from a low energy SU(3) flavor symmetry model with a Light Sterile Neutrino, Albino Hernandez Galeana, Bled Workshops Phys. 13 (2012) 28-46, arXiv:1111.7286. 14th Bled Workshop 'What Comes beyond the Standard Models', Bled 11-22 July 2011, Slovenia.
[Hernandez-Galeana:2012wcc]
[16-9]
Probing Extra Dimensions with Neutrino Oscillations, P. A. N. Machado, H. Nunokawa, R. Zukanovich Funchal, Nucl. Phys. Proc. Suppl. 217 (2011) 357-359, arXiv:1101.1686. NOW2010, Conca Specchiulla, Italy, September 4-11, 2010.
[Machado:2011ug]
[16-10]
A New Lorentz-Violating Model of Neutrino Oscillations, Kevin Labe, arXiv:1008.0105, 2010. Fifth Meeting on CPT and Lorentz Violation, Bloomington, Indiana, June 28 - July 2, 2010.
[Labe:2010ru]
[16-11]
Unsterile-Active Neutrino Mixing, Jimmy A. Hutasoit, J. Phys. Conf. Ser. 462 (2013) 012021, arXiv:1004.2705. 6th International Symposium on Quantum Theory and Symmetries.
[Hutasoit:2010yv]
[16-12]
Analysis of the $\nu MSM$ theory equations, V.M. Gorkavenko, S.I. Vilchynskiy, Eur. Phys. J. C70 (2010) 1091-1098, arXiv:0907.4484. Quark Matter 2009, March 30 - April 4, Knoxville, Tennessee.
[Gorkavenko:2009vd]
[16-13]
Sterile neutrinos in cosmology and how to find them in the lab, Mikhail Shaposhnikov, J. Phys. Conf. Ser. 136 (2008) 022045, arXiv:0809.2028. XXIII Int. Conf. on Neutrino Physics and Astrophysics, May 25-31, Christchurch, New Zealand.
[Shaposhnikov:2008rc]
[16-14]
Dark matter's X-files, Alexander Kusenko, arXiv:0711.2823, 2007. Sixth international Heidelberg conference on dark matter in astrophysics and particle physics, Sydney, Australia, September 24-28, 2007.
[Kusenko:2007ay]
[16-15]
Neutrino time travel, James Dent, Heinrich Pas, Sandip Pakvasa, Thomas J. Weiler, arXiv:0710.2524, 2007. SUSY07.
[Dent:2007rk]
[16-16]
nuMSM and its experimental tests, F. Bezrukov, J. Phys. Conf. Ser. 110 (2008) 082002, arXiv:0710.2501. International Europhysics Conference on High Energy Physics (EPS-HEP2007), Manchester, England, 19-25 Jul 2007.
[Bezrukov:2007qz]
[16-17]
How to find sterile neutrinos?, Mikhail Shaposhnikov, arXiv:0706.1894, 2007. 12th International Workshop on Neutrinos Telescopes: Twenty Years after the Supernova 1987A Neutrino Bursts Discovery, Venice, Italy, 6-9 Mar 2007.
[Shaposhnikov:2007cc]
[16-18]
Dark Matter: The Case of Sterile Neutrino, Mikhail Shaposhnikov, arXiv:astro-ph/0703673, 2007. 11th Marcel Grossmann Meeting on General Relativity (Berlin, 23.7 - 29.7.2006), XXXIII International Conference on High Energy Physics (Moscow, 26.7-2.7.2006), 6th International Workshop on the Identification of Dark Matter (Rhodes, 11.9-16.9.2006).
[Shaposhnikov:2007nf]
[16-19]
Sterile neutrinos, Alexander Kusenko, AIP Conf. Proc. 917 (2007) 58-68, arXiv:hep-ph/0703116. '12th Mexican School on particles and fields' and the '6th Latin American Symposium on high energy physics' (VI-Silafae/XII-MSPF).
[Kusenko:2007wv]
[16-20]
Dark Matter and Sterile Neutrinos, Peter L. Biermann, Faustin Munyaneza, arXiv:astro-ph/0702173, 2007. 11th Marcel Grossmann Meeting on General Relativity, 23-29 July 2006, Berlin, Germany.
[Biermann:2007ap]
[16-21]
The Nature of Dark Matter, Peter L. Biermann, Faustin Munyaneza, AIP Conf.Proc. 972 (2008) 39-52, arXiv:astro-ph/0702164. International School of Astrophysics at Ultra-high Energies, 20-27 June 2006, Erice, Sicily, Italy.
[Biermann:2007tj]
[16-22]
Thermal and chemical evolution of the primordial clouds in warm dark matter models with keV sterile neutrinos in one-zone approximation, Jaroslaw Stasielak, Peter L. Biermann, Alexander Kusenko, arXiv:astro-ph/0701585, 2007. 11th Marcel Grossmann Meeting held in Berlin, Germany, July 2006.
[Stasielak:2007vs]

17 - Theory

[17-1]
Categorical Symmetry of the Standard Model from Gravitational Anomaly, Pavel Putrov, Juven Wang, arXiv:2302.14862, 2023.
[Putrov:2023jqi]
[17-2]
Analytic Neutrino Oscillation Probabilities, Chee Sheng Fong, SciPost Phys. 15 (2023) 013, arXiv:2210.09436.
[Fong:2022oim]
[17-3]
Long-lived heavy neutral leptons from mesons in effective field theory, Rebeca Beltran, Giovanna Cottin, Juan Carlos Helo, Martin Hirsch, Arsenii Titov, Zeren Simon Wang, JHEP 01 (2023) 015, arXiv:2210.02461.
[Beltran:2022ast]
[17-4]
Matter Effect of Sterile Neutrino in Light of Renormalization-Group Equations, Shuge Zeng, Fanrong Xu, arXiv:2202.09851, 2022.
[Zeng:2022rxm]
[17-5]
Analytical Approach of Matter Effect on (3+1) Neutrino Oscillation, Vivek Kumar Nautiyal, Bipin Singh Koranga, arXiv:2106.14395, 2021.
[Nautiyal:2021sob]
[17-6]
Neutrino Mass Eigenvalues for Different Scheme within Four Flavor Neutrino framework, Vivek Kumar Nautiyal, Bipin Singh Koranga, arXiv:2106.04077, 2021.
[KumarNautiyal:2021ndv]
[17-7]
$1 \leftrightarrow 2$ Processes of a Sterile Neutrino Around Electroweak Scale in the Thermal Plasma, Xue-Min Jiang, Yi-Lei Tang, Zhao-Huan Yu, Hong-Hao Zhang, Phys.Rev. D103 (2021) 095003, arXiv:2008.00642.
[Jiang:2020kbt]
[17-8]
Scalar induced resonant sterile neutrino production in the early Universe, F. Bezrukov, A. Chudaykin, D. Gorbunov, Phys.Rev. D101 (2020) 103516, arXiv:1911.08502.
[Bezrukov:2019mak]
[17-9]
Kinetic equations for sterile neutrinos from thermal fluctuations, Dietrich Bodeker, Dennis Schroder, JCAP 2002 (2020) 033, arXiv:1911.05092.
[Bodeker:2019rvr]
[17-10]
CP violation and circular polarisation in neutrino radiative decay, Shyam Balaji, Maura Ramirez-Quezada, Ye-Ling Zhou, JHEP 2004 (2020) 178, arXiv:1910.08558.
[Balaji:2019fxd]
[17-11]
New limits on neutrino non-standard mixings based on prescribed singular values, Wojciech Flieger, Janusz Gluza, Kamil Porwit, JHEP 2003 (2020) 169, arXiv:1910.01233.
[Flieger:2019eor]
[17-12]
Circular polarization of cosmic photons due to their interactions with Sterile neutrino dark matter, M. Haghighat, S. Mahmoudi, R. Mohammadi, S. Tizchang, S.S. Xue, Phys.Rev. D101 (2020) 123016, arXiv:1909.03883.
[Haghighat:2019rht]
[17-13]
Derivation of the sterile neutrino Boltzmann equation from quantum kinetics, Lucas Johns, Phys.Rev. D100 (2019) 083536, arXiv:1908.04244.
[Johns:2019hjl]
[17-14]
Effective Majorana neutrino decay, Lucia Duarte, Ismael Romero, Javier Peressutti, Oscar A. Sampayo, Eur.Phys.J. C76 (2016) 453, arXiv:1603.08052.
[Duarte:2016miz]
[17-15]
Sterile neutrino Dark Matter production from scalar decay in a thermal bath, Marco Drewes, Jin U Kang, JHEP 1605 (2016) 051, arXiv:1510.05646.
[Drewes:2015eoa]
[17-16]
Radiative decay of keV-mass sterile neutrinos in a strongly magnetized plasma, Alexandra A. Dobrynina, Nicolay V. Mikheev, Georg G. Raffelt, Phys. Rev. D90 (2014) 113015, arXiv:1410.7915.
[Dobrynina:2014zza]
[17-17]
Space-time evolution of heavy sterile neutrinos in cascade decays, Daniel Boyanovsky, Phys.Rev. D90 (2014) 105024, arXiv:1406.5739.
[Boyanovsky:2014una]
[17-18]
A New Spin on Neutrino Quantum Kinetics, Vincenzo Cirigliano, George M. Fuller, Alexey Vlasenko, Phys.Lett. B747 (2015) 27-35, arXiv:1406.5558.
[Cirigliano:2014aoa]
[17-19]
Effect of interaction with neutrons in matter on flavor conversion of super-light sterile neutrino with active neutrino, Wei Liao, Yuchen Luo, Xiao-Hong Wu, JHEP 1406 (2014) 069, arXiv:1403.2559.
[Liao:2014ola]
[17-20]
Magnetic moments of active and sterile neutrinos, A.B. Balantekin, N. Vassh, Phys. Rev. D89 (2014) 073013, arXiv:1312.6858.
[Balantekin:2013sda]
[17-21]
Right-Handed Neutrino Production at Finite Temperature: Radiative Corrections, Soft and Collinear Divergences, Bjorn Garbrecht, Frank Glowna, Matti Herranen, JHEP 1304 (2013) 099, arXiv:1302.0743.
[Garbrecht:2013gd]
[17-22]
Cosmological evolution of warm dark matter fluctuations II: Solution from small to large scales and keV sterile neutrinos, H. J. de Vega, N. G. Sanchez, Phys. Rev. D85 (2012) 043517, arXiv:1111.0300.
[deVega:2011gs]
[17-23]
Cosmological evolution of warm dark matter fluctuations I: Efficient computational framework with Volterra integral equations, H. J. de Vega, N. G. Sanchez, Phys. Rev. D85 (2012) 043516, arXiv:1111.0290.
[deVega:2011gg]
[17-24]
The Physical Range of Majorana Neutrino Mixing Parameters, Andre de Gouvea, James Jenkins, Phys. Rev. D78 (2008) 053003, arXiv:0804.3627.
[deGouvea:2008nm]
[17-25]
Production of a sterile species: quantum kinetics, D. Boyanovsky, C.M.Ho, Phys. Rev. D76 (2007) 085011, arXiv:0705.0703.
[Boyanovsky:2007zz]
[17-26]
Sterile neutrino production via active-sterile oscillations: the quantum Zeno effect, D. Boyanovsky, C. M. Ho, JHEP 07 (2007) 030, arXiv:hep-ph/0612092.
[Boyanovsky:2006it]
[17-27]
Sterile neutrinos: direct mixing effects versus induced mass matrix of active neutrinos, Alexei Yu. Smirnov, Renata Zukanovich Funchal, Phys. Rev. D74 (2006) 013001, arXiv:hep-ph/0603009.
[Smirnov:2006bu]
[17-28]
Low reheating temperature and the visible sterile neutrino, G. Gelmini, S. Palomares-Ruiz, S. Pascoli, Phys. Rev. Lett. 93 (2004) 081302, arXiv:astro-ph/0403323.
[Gelmini:2004ah]
[17-29]
Relic neutrino asymmetry evolution from first principles, Nicole F. Bell, Raymond R. Volkas, Yvonne Y.Y. Wong, Phys. Rev. D59 (1999) 113001, arXiv:hep-ph/9809363.
[Bell:1998ds]

18 - Theory - Talks

[18-1]
Electric dipole moments of charged leptons with sterile fermions, Asmaa Abada, Takashi Toma, arXiv:1611.03464, 2016. NuFact2016, August 21-27 2016, Quy Nhon, Vietnam.
[Abada:2016pas]
[18-2]
Cosmology of 'Visible' Sterile Neutrinos, Graciela B. Gelmini, Int. J. Mod. Phys. A20 (2005) 4670, arXiv:hep-ph/0412304. 8th Workshop on Non-Perturbative Quantum Chromodynamics, June 7-11, 2004, Paris, France.
[Gelmini:2004hf]

19 - Theory - Models

[19-1]
A Common Origin for the QCD Axion and Sterile Neutrinos from $SU(5)$ Strong Dynamics, Peter Cox, Tony Gherghetta, Arpon Paul, JHEP 12 (2023) 180, arXiv:2310.08557.
[Cox:2023dou]
[19-2]
Sensitivity prospects for lepton-trijet signals in the $\nu$SMEFT at the LHeC, Gabriel Zapata, Tomas Urruzola, Oscar A. Sampayo, Lucia Duarte, arXiv:2305.16991, 2023.
[Zapata:2023wsz]
[19-3]
The Geometric $\nu$SMEFT: Operators and Connections, Jim Talbert, JHEP 01 (2023) 069, arXiv:2208.11139.
[Talbert:2022unj]
[19-4]
Reviving keV sterile Neutrino Dark Matter, Carlos Jaramillo, JCAP 10 (2022) 093, arXiv:2207.11269.
[Jaramillo:2022mos]
[19-5]
The Dark Dimension and the Swampland, Miguel Montero, Cumrun Vafa, Irene Valenzuela, JHEP 02 (2023) 022, arXiv:2205.12293.
[Montero:2022prj]
[19-6]
Active-Sterile neutrino masses and mixings in $A_4$ minimal extended seesaw mechanism, M. Kishan Singh, S. Robertson Singh, N. Nimai Singh, arXiv:2204.03370, 2022.
[Singh:2022tge]
[19-7]
Leptogenesis and eV scale sterile neutrino, Srubabati Goswami, Vishnudath K. N., Ananya Mukherjee, Nimmala Narendra, Phys.Rev.D 105 (2022) 095040, arXiv:2111.14719.
[Goswami:2021eqy]
[19-8]
A chiral model for sterile neutrino, Chun Liu, Yakefu Reyimuaji, JHEP 12 (2021) 075, arXiv:2109.07828.
[Liu:2021ktw]
[19-9]
Left-Right symmetric fermions and sterile neutrinos from complex split biquaternions and bioctonions, Vatsalya Vaibhav, Tejinder P. Singh, Adv.Appl.Clifford Algebras 33 (2023) 32, arXiv:2108.01858.
[Vaibhav:2021xib]
[19-10]
Light Sterile Neutrinos and a High-Quality Axion from a Holographic Peccei-Quinn Mechanism, Peter Cox, Tony Gherghetta, Minh D. Nguyen, Phys.Rev.D 105 (2022) 055011, arXiv:2107.14018.
[Cox:2021lii]
[19-11]
Operator Bases in Effective Field Theories with Sterile Neutrinos: $d \leq 9$, Hao-Lin Li, Zhe Ren, Ming-Lei Xiao, Jiang-Hao Yu, Yu-Hui Zheng, JHEP 11 (2021) 003, arXiv:2105.09329.
[Li:2021tsq]
[19-12]
$B-L$ model with $A_4\times Z_3\times Z_4$ symmetry for $3+1$ active$-$sterile neutrino mixing, V. V. Vien, arXiv:2105.07394, 2021.
[Vien:2021ypd]
[19-13]
PeV Sterile Masses from D-Brane Instantons - Motivating Stringy Neutrino Options?, Jim Talbert, arXiv:2009.11813, 2020.
[Talbert:2020mny]
[19-14]
Sterile Neutrino Dark Matter and Leptogenesis in Left-Right Higgs Parity, David Dunsky, Lawrence J. Hall, Keisuke Harigaya, JHEP 2101 (2021) 125, arXiv:2007.12711.
[Dunsky:2020dhn]
[19-15]
Quantum breaks in a model for the evolution of neutrinos during their decoupling era in the big bang, R. F. Sawyer, arXiv:2007.12693, 2020.
[Sawyer:2020oii]
[19-16]
Dynamical Majorana Neutrino Masses and Axions II: Inclusion of Axial Background and Anomaly Terms, Nick E. Mavromatos, Alex Soto, Nucl.Phys. B962 (2021) 115275, arXiv:2006.13616.
[Mavromatos:2020hfy]
[19-17]
Topologically stable, finite-energy electroweak-scale monopoles, P. Q. Hung, Nucl.Phys. B962 (2021) 115278, arXiv:2003.02794.
[Hung:2020vuo]
[19-18]
Vacuum stability and spontaneous violation of the lepton number at low energy scale in a model for light sterile neutrinos, Joao Paulo Pinheiro, C. A. de S. Pires, Phys.Rev. D102 (2020) 015015, arXiv:2003.02350.
[Pinheiro:2020zde]
[19-19]
One-loop matching in the SMEFT extended with a sterile neutrino, Mikael Chala, Arsenii Titov, JHEP 05 (2020) 139, arXiv:2001.07732.
[Chala:2020vqp]
[19-20]
From Peccei Quinn symmetry to strong CP problem through hierarchical mass problem, Y. A. Garnica, R. Martinez, H. Vargas, J.Phys.G 48 (2021) 095002, arXiv:1911.05923.
[Garnica:2019hvn]
[19-21]
eV-scale sterile neutrinos from an extra dimension, Shinsuke Kawai, Nobuchika Okada, Phys.Rev. D100 (2019) 115043, arXiv:1910.02936.
[Kawai:2019uei]
[19-22]
Baryon Number, Lepton Number, and Operator Dimension in the SMEFT with Flavor Symmetries, Andreas Helset, Andrew Kobach, Phys.Lett. B800 (2020) 135132, arXiv:1909.05853.
[Helset:2019eyc]
[19-23]
Sterile Neutrinos, Black Hole Vacuum and Holographic Principle, Gabriela Barenboim, Christopher T. Hill, Eur.Phys.J. C81 (2021) 150, arXiv:1909.01956.
[Barenboim:2019mcs]
[19-24]
Sterile neutrino dark matter via GeV-scale leptogenesis?, J. Ghiglieri, M. Laine, JHEP 1907 (2019) 078, arXiv:1905.08814.
[Ghiglieri:2019kbw]
[19-25]
Light sterile neutrino and low scale left-right symmetry in a D-brane inspired $SU(4)_C \times SU(2)_L \times SU(2)_R$ model, George K. Leontaris, Qaisar Shafi, Phys. Rev. D99 (2019) 035032, arXiv:1811.12647.
[Leontaris:2018whz]
[19-26]
Neutrino masses in the minimal gauged $(B-L)$ supersymmetry, Yu-Li Yan et al., Phys.Rev. D97 (2018) 055036, arXiv:1803.04599.
[Yan:2018jdf]
[19-27]
Proton decay and light sterile neutrinos, Juan C. Helo, Martin Hirsch, Toshihiko Ota, JHEP 1806 (2018) 047, arXiv:1803.00035.
[Helo:2018bgb]
[19-28]
GeV-scale hot sterile neutrino oscillations: a numerical solution, J. Ghiglieri, M. Laine, JHEP 1802 (2018) 078, arXiv:1711.08469.
[Ghiglieri:2017csp]
[19-29]
$\psi'$MSSM: Light Sterile Neutrinos, Dark Matter, and New Resonances, A. Hebbar, G. Lazarides, Q.Shafi, Phys.Rev. D96 (2017) 055026, arXiv:1706.09630.
[Hebbar:2017fit]
[19-30]
Texture zeros of low-energy Majorana neutrino mass matrix in 3+1 scheme, Debasish Borah, Monojit Ghosh, Shivani Gupta, Sushant K. Raut, Phys.Rev. D96 (2017) 055017, arXiv:1706.02017.
[Borah:2017azf]
[19-31]
Operators up to Dimension Seven in Standard Model Effective Field Theory Extended with Sterile Neutrinos, Yi Liao, Xiao-Dong Ma, Phys.Rev. D96 (2017) 015012, arXiv:1612.04527.
[Liao:2016qyd]
[19-32]
SO(10) model of standard and dark matter, V. V. Khruschov, arXiv:1609.01858, 2016.
[Khruschov:2016twd]
[19-33]
Sterile Neutrinos, Dominant Seesaw Mechanisms, Double Beta Decay, and Other Predictions, M. K. Parida, Bidyut Prava Nayak, Adv.High Energy Phys. 2017 (2017) 4023493, arXiv:1607.07236.
[Parida:2016asc]
[19-34]
Light Sterile Neutrino and Dark Matter in Left-Right Symmetric Models Without Higgs Bidoublet, Debasish Borah, Phys. Rev. D94 (2016) 075024, arXiv:1607.00244.
[Borah:2016lrl]
[19-35]
Light Sterile Neutrino Mass Matrix with Texture Zero and a Vanishing Mass, Newton Nath, Monojit Ghosh, Shivani Gupta, Int.J.Mod.Phys. A31 (2016) 1650132, arXiv:1512.00635.
[Nath:2015emg]
[19-36]
Generating $\theta_{13}$ from sterile neutrinos in $\mu- \tau$ symmetric models, Diana C. Rivera-Agudelo, Abdel Perez-Lorenzana, Phys. Rev. D92 (2015) 073009, arXiv:1507.07030.
[Rivera-Agudelo:2015vza]
[19-37]
New Chiral Fermions, a New Gauge Interaction, Dirac Neutrinos, and Dark Matter, Andre de Gouvea, Daniel Hernandez, JHEP 10 (2015) 046, arXiv:1507.00916.
[deGouvea:2015pea]
[19-38]
The hidden symmetries in the PMNS matrix and the light sterile neutrino(s), Hong-Wei Ke, Jia-Hui Zhou, Shuai Chen, Tan Liu, Xue-Qian Li, Mod. Phys. Lett. A30 (2015) 1550136, arXiv:1502.00875.
[Ke:2015xka]
[19-39]
Common Origin of Active and Sterile Neutrino Masses with Dark Matter, Rathin Adhikari, Debasish Borah, Ernest Ma, arXiv:1411.4602, 2014.
[Adhikari:2014nea]
[19-40]
The Fermion Content of the Standard Model, Paul Mansfield, Phys.Lett. B743 (2015) 353-356, arXiv:1410.7298.
[Mansfield:2014vea]
[19-41]
Three sterile neutrinos in E6, Jonathan L. Rosner, Phys. Rev. D90 (2014) 035005, arXiv:1404.5198.
[Rosner:2014cha]
[19-42]
Common Radiative Origin of Active and Sterile Neutrino Masses, Debasish Borah, Rathin Adhikari, Phys.Lett. B729 (2014) 143, arXiv:1310.5419.
[Borah:2013waa]
[19-43]
A Light Sterile Neutrino from Friedberg-Lee Symmetry, Xiao-Gang He, Wei Liao, Phys.Lett. B728 (2014) 68-72, arXiv:1309.7581.
[He:2013cea]
[19-44]
Sterile neutrinos in U(1)' with R-parity Violation, Mariana Frank, Levent Selbuz, Phys. Rev. D88 (2013) 055003, arXiv:1308.5243.
[Frank:2013wga]
[19-45]
A Naturally Light Sterile neutrino in an Asymmetric Dark Matter Model, Yongchao Zhang, Xiangdong Ji, Rabindra N. Mohapatra, JHEP 1310 (2013) 104, arXiv:1307.6178.
[Zhang:2013ama]
[19-46]
A Left-Right Symmetric Theory with Light Sterile Neutrinos, Michael Duerr, Pavel Fileviez Perez, Manfred Lindner, Phys. Rev. D88 (2013) 051701, arXiv:1306.0568.
[Duerr:2013opa]
[19-47]
Lorentz-Violating Regulator Gauge Fields as the Origin of Dynamical Flavour Oscillations, Jean Alexandre, Julio Leite, Nick E. Mavromatos, Phys. Rev. D87 (2013) 125029, arXiv:1304.7706.
[Alexandre:2013tya]
[19-48]
Sterile Anarchy, Julian Heeck, Werner Rodejohann, Phys. Rev. D87 (2013) 037301, arXiv:1211.5295.
[Heeck:2012zb]
[19-49]
Exotic Charges, Multicomponent Dark Matter and Light Sterile Neutrinos, Julian Heeck, He Zhang, JHEP 1305 (2013) 164, arXiv:1211.0538.
[Heeck:2012bz]
[19-50]
Dilaton stabilization and composite dark matter in the string frame of heterotic-M-theory, Andrea Zanzi, arXiv:1210.4615, 2012.
[Zanzi:2012bf]
[19-51]
Light Sterile Neutrino in the Minimal Extended Seesaw, He Zhang, Phys. Lett. B714 (2012) 262-266, arXiv:1110.6838.
[Zhang:2011vh]
[19-52]
Sterile Neutrinos for Warm Dark Matter and the Reactor Anomaly in Flavor Symmetry Models, James Barry, Werner Rodejohann, He Zhang, JCAP 1201 (2012) 052, arXiv:1110.6382.
[Barry:2011fp]
[19-53]
Majorana Neutrinos from Inverse Seesaw in Warped Extra Dimension, Chee Sheng Fong, Rabindra N. Mohapatra, Ilmo Sung, Phys. Lett. B704 (2011) 171-178, arXiv:1107.4086.
[Fong:2011xh]
[19-54]
Sterile Particles from the Flavor Gauge Model of Masses, Adam Smetana, JHEP 1304 (2013) 139, arXiv:1104.1935.
[Smetana:2011tj]
[19-55]
Three Layers of Neutrinos, Vernon Barger, Pavel Fileviez Perez, Sogee Spinner, Phys. Lett. B696 (2011) 509-512, arXiv:1010.4023.
[Barger:2010iv]
[19-56]
Naturally Light Sterile Neutrinos from Theory of R-parity, Dilip Kumar Ghosh, Goran Senjanovic, Yue Zhang, Phys. Lett. B698 (2011) 420-424, arXiv:1010.3968.
[Ghosh:2010hy]
[19-57]
Composite Dirac Neutrinos, Yuval Grossman, Dean J Robinson, JHEP 01 (2011) 132, arXiv:1009.2781.
[Grossman:2010iq]
[19-58]
Schizophrenic active neutrinos and exotic sterile neutrinos, A. C. B. Machado, V. Pleitez, Phys. Lett. B698 (2011) 128-130, arXiv:1008.4572.
[Machado:2010ui]
[19-59]
$SU_{L}(4)\times U(1)$ model for electroweak unification and sterile neutrinos, Riazuddin, Fayyazuddin, Eur. Phys. J. C56 (2008) 389-394, arXiv:0803.4267.
[Riazuddin:2008yx]
[19-60]
mu-tau symmetry, sterile right-handed neutrinos, and leptogenesis, Riazuddin,, Phys. Rev. D77 (2008) 013005.
[Riazuddin:2008zz]
[19-61]
Dark-matter sterile neutrinos in models with a gauge singlet in the Higgs sector, Kalliopi Petraki, Alexander Kusenko, Phys. Rev. D77 (2008) 065014, arXiv:0711.4646.
[Petraki:2007gq]
[19-62]
Sterile neutrino dark matter in warped extra dimensions, Kenji Kadota, Phys. Rev. D77 (2008) 063509, arXiv:0711.1570.
[Kadota:2007mv]
[19-63]
Production of a sterile species via active-sterile mixing: an exactly solvable model, D. Boyanovsky, Phys. Rev. D76 (2007) 103514, arXiv:0706.3167.
[Boyanovsky:2007as]
[19-64]
Neutrinos in a Sterile Throat, Ben Gripaios, Nucl. Phys. B768 (2007) 157-176, arXiv:hep-ph/0611218.
[Gripaios:2006dc]
[19-65]
Thermal evolution of the primordial clouds in warm dark matter models with keV sterile neutrinos, Jaroslaw Stasielak, Peter L. Biermann, Alexander Kusenko, Astrophys. J. 654 (2007) 290-303, arXiv:astro-ph/0606435.
[Stasielak:2006br]
[19-66]
A possible symmetry of the $\nu\text{MSM}$, Mikhail Shaposhnikov, Nucl. Phys. B763 (2007) 49-59, arXiv:hep-ph/0605047.
[Shaposhnikov:2006nn]
[19-67]
Active-sterile neutrino mixing in the absence of bare active neutrino mass, Yi Liao, Nucl. Phys. B749 (2006) 153-171, arXiv:hep-ph/0604016.
[Liao:2006rn]
[19-68]
Fixing the Solar Parameters with Sterile Neutrinos, J.C. Gomez-Izquierdo, A. Perez-Lorenzana, Phys. Rev. D74 (2006) 013005, arXiv:hep-ph/0601223.
[Gomez-Izquierdo:2006bwq]
[19-69]
Calculable lepton masses, seesaw relations and four neutrino mixings in a 3-3-1 model with extra U(1) symmetry, Nelson V. Cortez, Mauro D. Tonasse, Phys. Rev. D72 (2005) 073005, arXiv:hep-ph/0510143.
[Cortez:2005cp]
[19-70]
Constraint on the heavy sterile neutrino mixing angles in the SO(10) model with double see-saw mechanism, Takeshi Fukuyama, Tatsuru Kikuchi, Koichi Matsuda, Eur. Phys. J. C55 (2008) 623-628, arXiv:hep-ph/0510054.
[Fukuyama:2005ph]
[19-71]
The simplest 3+2 model with two light sterile neutrinos, Wojciech Krolikowski, arXiv:hep-ph/0506099, 2005.
[Krolikowski:2005rm]
[19-72]
Seesaw right handed neutrino as the sterile neutrino for LSND, R. N. Mohapatra, S. Nasri, Hai-Bo Yu, Phys. Rev. D72 (2005) 033007, arXiv:hep-ph/0505021.
[Mohapatra:2005wk]
[19-73]
Sterile Neutrinos and Global Symmetries, J. Sayre, S. Wiesenfeldt, S. Willenbrock, Phys. Rev. D72 (2005) 015001, arXiv:hep-ph/0504198.
[Sayre:2005yh]
[19-74]
Avoiding BBN Constraints on Mirror Models for Sterile Neutrinos, R. N. Mohapatra, S. Nasri, Phys. Rev. D71 (2005) 053001, arXiv:hep-ph/0407194.
[Mohapatra:2004uy]
[19-75]
Chiral Gauge Models for Light Sterile Neutrinos, K.S. Babu, Gerhart Seidl, Phys. Rev. D70 (2004) 113014, arXiv:hep-ph/0405197.
[Babu:2004mj]
[19-76]
Late Time Neutrino Masses, the LSND Experiment and the Cosmic Microwave Background, Z. Chacko, Lawrence J. Hall, Steven J. Oliver, Maxim Perelstein, Phys. Rev. Lett. 94 (2005) 111801, arXiv:hep-ph/0405067.
[Chacko:2004cz]
[19-77]
The Sterile Neutrino: First Hint of 4th Generation Fermions?, Stephen Godfrey, Shouhua Zhu, arXiv:hep-ph/0405006, 2004.
Comment: No reasonable explanation why the left-handed Majorana mass term should be very large and the right-handed Majorana mass term should be zero, against well-known wisdom. [C.G.].
[Godfrey:2004gv]
[19-78]
Can one of three righthanded neutrinos be light enough to produce a small LSND effect?, Wojciech Krolikowski, Acta Phys. Polon. B35 (2004) 2241, arXiv:hep-ph/0404118.
[Krolikowski:2004nd]
[19-79]
Two light sterile neutrinos that mix maximally with each other and moderately with three active neutrinos, Wojciech Krolikowski, Acta Phys. Polon. B35 (2004) 1675, arXiv:hep-ph/0402183.
[Krolikowski:2004ru]
[19-80]
Fermion masses and mixing in extended technicolor models, Thomas Appelquist, Maurizio Piai, Robert Shrock, Phys. Rev. D69 (2004) 015002, arXiv:hep-ph/0308061.
[Appelquist:2003hn]
[19-81]
Neutrino Masses in Theories with Dynamical Electroweak Symmetry Breaking, Thomas Appelquist, Robert Shrock, Phys. Lett. B548 (2002) 204-214, arXiv:hep-ph/0204141.
[Appelquist:2002me]
[19-82]
A minimal three generation seesaw scenario for LSND, Biswajoy Brahmachari, Sandhya Choubey, Rabindra N. Mohapatra, Phys. Lett. B536 (2002) 94-100, arXiv:hep-ph/0204073.
From the abstract: ... a realistic 2+2 mixed scenario that fits all oscillation data.
[Brahmachari:2002va]
[19-83]
Double threefold degeneracies for active and sterile neutrinos, Ernest Ma, G. Rajasekaran, Mod. Phys. Lett. A16 (2001) 2207-2212, arXiv:hep-ph/0109236.
[Ma:2001ch]
[19-84]
Small active and sterile neutrino masses from the TeV scale, A. Perez-Lorenzana, C. A. De S. Pires, Phys. Lett. B522 (2001) 297-303, arXiv:hep-ph/0108158.
[Perez-Lorenzana:2001tob]
[19-85]
Connecting bimaximal neutrino mixing to a light sterile neutrino, R. N. Mohapatra, Phys. Rev. D64 (2001) 091301, arXiv:hep-ph/0107264.
[Mohapatra:2001ns]
[19-86]
Light unstable sterile neutrino, Ernest Ma, G. Rajasekaran, Phys. Rev. D64 (2001) 117303, arXiv:hep-ph/0107203.
[Ma:2001ip]
[19-87]
A light sterile neutrino based on the seesaw mechanism, Daijiro Suematsu, Prog. Theor. Phys. 106 (2001) 587-602, arXiv:hep-ph/0105223.
[Suematsu:2001ih]
[19-88]
A Model for Neutrino Warm Dark Matter and Neutrino Oscillations, Chun Liu, Jeonghyeon Song, Phys. Lett. B512 (2001) 247-251, arXiv:hep-ph/0102246.
[Liu:2001mg]
[19-89]
Scenario of light sterile neutrinos with a heavy tau- neutrino in a supersymmetric model, Chun Liu, Jeonghyeon Song, Nucl. Phys. B598 (2001) 3-12, arXiv:hep-ph/0101035.
[Liu:2001es]
[19-90]
Axino as a sterile neutrino and R parity violation, Kiwoon Choi, Eung Jin Chun, Kyuwan Hwang, Phys. Rev. D64 (2001) 033006, arXiv:hep-ph/0101026.
[Choi:2001cm]
[19-91]
Large lepton mixings induced by sterile neutrino, K. R. S. Balaji, A. Perez-Lorenzana, A. Yu. Smirnov, Phys. Lett. B509 (2001) 111-119, arXiv:hep-ph/0101005.
[Balaji:2001ns]
[19-92]
Light sterile neutrino from extra dimensions and four neutrino solutions to neutrino anomalies, A. Ioannisian, J. W. F. Valle, Phys. Rev. D63 (2001) 073002.
[Ioannisian:2001mu]
[19-93]
Three active and two sterile neutrinos in an E(6) model of diquark baryogenesis, Ernest Ma, Martti Raidal, J. Phys. G28 (2002) 95-102, arXiv:hep-ph/0012366.
[Ma:2000jf]
[19-94]
Supersymmetric seesaw model for the (1+3)-scheme of neutrino masses, F. Borzumati, K. Hamaguchi, T. Yanagida, Phys. Lett. B497 (2001) 259-264, arXiv:hep-ph/0011141.
[Borzumati:2000fe]
[19-95]
Large extra dimensions, sterile neutrinos and solar neutrino data, D. O. Caldwell, R. N. Mohapatra, S. J. Yellin, Phys. Rev. Lett. 87 (2001) 041601, arXiv:hep-ph/0010353.
[Caldwell:2000zn]
[19-96]
Reconciling neutrino anomalies in a simple four-neutrino scheme with R-parity violation, M. Hirsch, J. W. F. Valle, Phys. Lett. B495 (2000) 121-130, arXiv:hep-ph/0009066.
[Hirsch:2000xe]
[19-97]
Natural mass generation for the sterile neutrino, K. S. Babu, T. Yanagida, Phys. Lett. B491 (2000) 148-150, arXiv:hep-ph/0008110.
[Babu:2000hb]
[19-98]
Light sterile neutrinos from large extra dimensions, Ernest Ma, G. Rajasekaran, Utpal Sarkar, Phys. Lett. B495 (2000) 363-368, arXiv:hep-ph/0006340.
[Ma:2000gf]
[19-99]
Small neutrino masses from supersymmetry breaking, Nima Arkani-Hamed, Lawrence J. Hall, Hitoshi Murayama, David R. Smith, Neal Weiner, Phys. Rev. D64 (2001) 115011, arXiv:hep-ph/0006312.
[Arkani-Hamed:2000oup]
[19-100]
Democratic universal seesaw model with three harmless sterile neutrinos, Yoshio Koide, Ambar Ghosal, Phys. Lett. B488 (2000) 344-350, arXiv:hep-ph/0006084.
[Koide:2000fg]
[19-101]
Two sterile neutrinos as a consequence of matter structure, Wojciech Krolikowski, Acta Phys. Polon. B31 (2000) 1913-1930, arXiv:hep-ph/0004222.
[Krolikowski:2000nw]
[19-102]
Neutrino oscillations in an SO(10) SUSY GUT with $\mathrm{U(2) \times U(1)^n}$ family symmetry, T. Blazek, S. Raby, K. Tobe, Phys. Rev. D62 (2000) 055001, arXiv:hep-ph/9912482.
[Blazek:1999hz]
[19-103]
Brane-inspired four-neutrino models, A. Ioannisian, J. W. F Valle, Phys. Rev. D63 (2001) 073002, arXiv:hep-ph/9911349.
[Ioannisian:1999sw]
[19-104]
Sterile neutrino as a bulk neutrino, R. N. Mohapatra, A. Perez-Lorenzana, Nucl. Phys. B576 (2000) 466-478, arXiv:hep-ph/9910474.
[Mohapatra:1999af]
[19-105]
Hierarchical four-neutrino oscillations with a decay option, Ernest Ma, G. Rajasekaran, Ion Stancu, Phys. Rev. D61 (2000) 071302, arXiv:hep-ph/9908489.
[Ma:1999im]
[19-106]
Sterile neutrinos in E(6) and a natural understanding of vacuum oscillation solution to the solar neutrino puzzle, Z. Chacko, R. N. Mohapatra, Phys. Rev. D61 (2000) 053002, arXiv:hep-ph/9905388.
[Chacko:1999aj]
[19-107]
A 4-neutrino model with a Higgs triplet, W. Grimus, R. Pfeiffer, T. Schwetz, Eur. Phys. J. C13 (2000) 125-132, arXiv:hep-ph/9905320.
[Grimus:1999fz]
[19-108]
Four light neutrinos in singular seesaw mechanism with Abelian flavor symmetry, Chun Liu, Jeonghyeon Song, Phys. Rev. D60 (1999) 036002, arXiv:hep-ph/9812381.
[Liu:1998qp]
[19-109]
Radiative four neutrino masses and mixings, Probir Roy, arXiv:hep-ph/9810448, 1998.
[Roy:1998zd]
[19-110]
Naturally light sterile neutrinos in gauge mediated supersymmetry breaking, G. R. Dvali, Yosef Nir, JHEP 10 (1998) 014, arXiv:hep-ph/9810257.
[Dvali:1998qy]
[19-111]
Texture of a four neutrino mass matrix, Subhendra Mohanty, D. P. Roy, Utpal Sarkar, Phys. Lett. B445 (1998) 185-190, arXiv:hep-ph/9808451.
[Mohanty:1998js]
[19-112]
The singular seesaw mechanism with hierarchical Dirac neutrino mass, Yuichi Chikira, Naoyuki Haba, Yukihiro Mimura, Eur. Phys. J. C16 (2000) 701-705, arXiv:hep-ph/9808254.
[Chikira:1998qf]
[19-113]
Radiative neutrino mass matrix for three active plus one sterile species, Naveen Gaur, Ambar Ghosal, Ernest Ma, Probir Roy, Phys. Rev. D58 (1998) 071301, arXiv:hep-ph/9806272.
[Gaur:1998uk]
[19-114]
Grand unification of the sterile neutrino, Biswajoy Brahmachari, Rabindra N. Mohapatra, Phys. Lett. B437 (1998) 100-106, arXiv:hep-ph/9805429.
[Brahmachari:1998kt]
[19-115]
A mechanism for ordinary-sterile neutrino mixing, Paul Langacker, Phys. Rev. D58 (1998) 093017, arXiv:hep-ph/9805281.
[Langacker:1998ut]
[19-116]
A four-neutrino mixing scheme for observed neutrino data, S. C. Gibbons, R. N. Mohapatra, S. Nandi, Amitava Raychaudhuri, Phys. Lett. B430 (1998) 296-302, arXiv:hep-ph/9803299.
[Gibbons:1998pg]
[19-117]
Three neutrino Delta(m**2) scales and singular seesaw mechanism, E. J. Chun, C. W. Kim, U. W. Lee, Phys. Rev. D58 (1998) 093003, arXiv:hep-ph/9802209.
[Chun:1998qw]
[19-118]
Neutrino-modulino mixing, Karim Benakli, Alexei Yu. Smirnov, Phys. Rev. Lett. 79 (1997) 4314-4317, arXiv:hep-ph/9703465.
[Benakli:1997iu]
[19-119]
Is Zee Model The Model of Neutrino Masses?, Alexei Yu. Smirnov, Morimitsu Tanimoto, Phys. Rev. D55 (1997) 1665-1671, arXiv:hep-ph/9604370.
[Smirnov:1996bv]
[19-120]
Reconciling present neutrino puzzles: Sterile neutrinos as mirror neutrinos, Zurab G. Berezhiani, Rabindra N. Mohapatra, Phys. Rev. D52 (1995) 6607-6611, arXiv:hep-ph/9505385.
[Berezhiani:1995yi]
[19-121]
Model of four light neutrinos prompted by all desiderata, Ernest Ma, Probir Roy, Phys. Rev. D52 (1995) 4780-4783, arXiv:hep-ph/9504342.
[Ma:1995gf]
[19-122]
Reconciling dark matter, solar and atmospheric neutrinos, J. T. Peltoniemi, J. W. F. Valle, Nucl. Phys. B406 (1993) 409-422, arXiv:hep-ph/9302316.
[Peltoniemi:1993ec]
[19-123]
Neutrino mass explanations of solar and atmospheric neutrino deficits and hot dark matter, David O. Caldwell, Rabindra N. Mohapatra, Phys. Rev. D48 (1993) 3259-3263.
Comment: See also [10-174]. (C.G.).
[Caldwell:1993kn]
[19-124]
Reconciling dark matter and solar neutrinos, J. T. Peltoniemi, D. Tommasini, J. W. F. Valle, Phys. Lett. B298 (1993) 383-390.
[Peltoniemi:1993ss]
[19-125]
A theoretical pattern for neutrino and sterile-neutrino oscillations, Jiang Liu, Mod. Phys. Lett. A4 (1989) 535.
[Liu:1989at]

20 - Theory - Models - Talks

[20-1]
Light sterile neutrino and leptogenesis, Ki-Young Jung, Kim Siyeon, J.Korean Phys.Soc. 81 (2022) 1211-1224, arXiv:2205.13860. NEUTRINO 2022.
[Jung:2022bgu]
[20-2]
Spinor-vector duality and sterile neutrinos in string derived models, Alon E. Faraggi, J.Phys.Conf.Ser. 1586 (2020) 012026, arXiv:1812.10562. DISCRETE 2018, Vienna, 26-30 November 2018.
[Faraggi:2018svq]
[20-3]
Quark and lepton masses and mixing from a gauged SU(3)_F family symmetry with a light O(eV) sterile Dirac neutrino, Albino Hernandez-Galeana, Physics 17 (2016) 36, arXiv:1612.07388. 19th Workshop 'What Comes Beyond the Standard Models', July 11-19, Bled, Slovenia.
[Hernandez-Galeana:2016fdh]
[20-4]
Sterile Neutrinos in $E_{\rm 6}$, Jonathan L. Rosner, Mod. Phys. Lett. A30 (2015) 1530013, arXiv:1503.03854. International Conference on Massive Neutrinos, Singapore, February 9-13, 2015.
[Rosner:2015xwa]
[20-5]
General Majorana Neutrino Mass Matrix from a Low Energy SU(3) Family Symmetry with Sterile Neutrinos, Albino Hernandez-Galeana, Bled Workshops Phys. 15 (2014) 93-114, arXiv:1412.6708. 17th Bled Workshop 'What Comes Beyond the Standard Models', 20-28 July, Bled, Slovenia.
[Hernandez-Galeana:2014gha]
[20-6]
Sterile neutrinos in the grand unified group E6, Jonathan L. Rosner, arXiv:1401.2402, 2014. Snowmass.
[Rosner:2013oqa]
[20-7]
Charged lepton and Neutrino masses from a low energy SU(3) flavour symmetry model, Albino Hernandez-Galeana, Bled Workshops Phys. 13 (2012) 28-46, arXiv:1212.4571. 15th Bled Workshop 'What Comes Beyond the Standard Models', DMFA - ZALOZNISTVO, December 2012.
[Hernandez-Galeana:2012wcc]
[20-8]
Universal Extra Dimension models with right-handed neutrinos, Shigeki Matsumoto, Joe Sato, Masato Senami, Masato Yamanaka, AIP Conf. Proc. 1006 (2008) 122-125, arXiv:0810.0700. UAE - CERN Workshop On High Energy Physics And Applications, 26-28 Nov 2007, Al Ain, Abu Dhabi, United Arab Emirates.
[Matsumoto:2008zzb]
[20-9]
Sterile Neutrinos in a 6x6 Matrix Approach, T. Goldman, Int. J. Mod. Phys. A22 (2007) 4967-4978, arXiv:0804.0454. Festschrift for B.H.J. McKellar and G. Joshi, U of Melbourne, 29-30 Nov. 2006.
[Goldman:2007zz]
[20-10]
A see-saw mechanism with light sterile neutrinos, B. H. J. McKellar, G. J. Stephenson, T. Goldman, M. Garbutt, arXiv:hep-ph/0106121, 2001.
[McKellar:2001hi]
[20-11]
Discriminating between $\nu_\mu$ < - > $\nu_\tau$ and $\nu_\mu$ < - > $\nu_s$ in atmospheric $\nu_\mu$ oscillations with the Super-Kamiokande detector, A. Habig (Super-Kamiokande), arXiv:hep-ex/0106025, 2001.
[Habig:2001ej]
[20-12]
Sterile neutrinos, Rabindra N. Mohapatra, AIP Conf.Proc. 478 (1999) 440, arXiv:hep-ph/9903261.
[Mohapatra:1998qh]

21 - Future Experiments

[21-1]
Measuring the Sterile Neutrino Mass in Spallation Source and Direct Detection Experiments, David Alonso-Gonzalez, Dorian W. P. Amaral, Adriana Bariego-Quintana, David Cerdeno, Martin de los Rios, JHEP 12 (2023) 096, arXiv:2307.05176.
[Alonso-Gonzalez:2023tgm]
[21-2]
A lab scale experiment for keV sterile neutrino search, Y. C. Lee, H. B. Kim, H. L. Kim, S. K. Kim, Y. H. Kim, D. H. Kwon, H. S. Lim, H. S. Park, K. R. Woo, Y. S. Yoon, J.Low Temp.Phys. 209 (2022) 919-926, arXiv:2210.11108.
[Lee:2022eus]
[21-3]
Searches for massive neutrinos with mechanical quantum sensors, Daniel Carney, Kyle G. Leach, David C. Moore, PRX Quantum 4 (2023) 010315, arXiv:2207.05883.
[Carney:2022pku]
[21-4]
LANSCE-PSR Short-Pulse Upgrade for Improved Dark Sector Particle Searches with the Coherent Captain Mills Experiment, R.G. Van de Water et al., arXiv:2204.01860, 2022.
[VandeWater:2022qot]
[21-5]
Snowmass'21 Whitepaper - IsoDAR Overview, Jose R. Alonso, Janet M. Conrad, Michael H. Shaevitz, Joshua Spitz, Daniel Winklehner, arXiv:2203.08804, 2022.
[Alonso:2022uar]
[21-6]
Broader Impact of Cyclotron-based Neutrino Sources, Jose Alonso (IsoDAR), arXiv:2203.08106, 2022.
[Alonso:2022roj]
[21-7]
Heavy Neutral Lepton Searches at the Electron-Ion Collider: A Snowmass Whitepaper, Brian Batell, Tathagata Ghosh, Keping Xie, arXiv:2203.06705, 2022.
[Batell:2022ubw]
[21-8]
The Future Circular Collider: a Summary for the US 2021 Snowmass Process, G. Bernardi et al., arXiv:2203.06520, 2022.
[Bernardi:2022hny]
[21-9]
The Forward Physics Facility at the High-Luminosity LHC, Jonathan L. Feng et al., J.Phys.G 50 (2023) 030501, arXiv:2203.05090. 2022 Snowmass Summer Study.
[Feng:2022inv]
[21-10]
Physics Opportunities for the Fermilab Booster Replacement, John Arrington et al., arXiv:2203.03925, 2022.
[Arrington:2022pon]
[21-11]
PIONEER: Studies of Rare Pion Decays, W. Altmannshofer et al. (PIONEER), arXiv:2203.01981, 2022.
[PIONEER:2022yag]
[21-12]
Physics Opportunities with PROSPECT-II, M. Andriamirado et al., arXiv:2202.12343, 2022.
[Andriamirado:2022psq]
[21-13]
IsoDAR@Yemilab: A Report on the Technology, Capabilities, and Deployment, Jose R. Alonso et al., JINST 17 (2022) P09042, arXiv:2201.10040.
[Alonso:2022mup]
[21-14]
TRISTAN: A novel detector for searching keV-sterile neutrinos at the KATRIN experiment, Korbinian Urban et al., JINST 17 (2022) C09020, arXiv:2111.14161.
[Urban:2021ink]
[21-15]
Neutrino Physics Opportunities with the IsoDAR Source at Yemilab, J. Alonso, C.A. Arguelles, J.M. Conrad, Y.D. Kim, D. Mishins, S.H. Seo, M. Shaevitz, J. Spitz, D. Winklehner, Phys.Rev.D 105 (2022) 052009, arXiv:2111.09480.
[Alonso:2021kyu]
[21-16]
IsoDAR@Yemilab: A Conceptual Design Report for the Deployment of the Isotope Decay-At-Rest Experiment in Korea's New Underground Laboratory, Yemilab, J. R. Alonso et al., arXiv:2110.10635, 2021.
[Alonso:2021jxx]
[21-17]
PROSPECT-II Physics Opportunities, M. Andriamirado et al. (PROSPECT), J.Phys.G 49 (2022) 070501, arXiv:2107.03934.
[Andriamirado:2021qjc]
[21-18]
Sensitivity to light sterile neutrino mixing parameters with KM3NeT/ORCA, S. Aiello et al., JHEP 10 (2021) 180, arXiv:2107.00344.
[KM3NeT:2021uez]
[21-19]
Proposal: $\text{JSNS}^{2}$-II, S.Ajimura et al., arXiv:2012.10807, 2020.
[Ajimura:2020qni]
[21-20]
THESEUS Insights into ALP, Dark Photon and Sterile Neutrino Dark Matter, Charles Thorpe-Morgan, Denys Malyshev, Andrea Santangelo, Josef Jochum, Barbara Jager, Manami Sasaki, Sara Saeedi, Phys.Rev.D 102 (2020) 123003, arXiv:2008.08306.
[Thorpe-Morgan:2020rwc]
[21-21]
Characterization of Silicon Drift Detectors with Electrons for the TRISTAN Project, T. Brunst et al., J.Phys. G48 (2021) 015008, arXiv:2007.07136.
[Mertens:2020mdv]
[21-22]
Hunting keV sterile neutrinos with KATRIN: building the first TRISTAN module, Thibaut Houdy et al., J.Phys.Conf.Ser. 1468 (2020) 012177, arXiv:2004.07693.
[Houdy:2020vhw]
[21-23]
SoLid: A short baseline reactor neutrino experiment, Y. Abreu et al. (SoLid), JINST 16 (2021) P02025, arXiv:2002.05914.
[SoLid:2020cen]
[21-24]
Sterile neutrino oscillometry with Jinping, M.V. Smirnov, Zh.J. Hu, J.J. Ling, Yu.N. Novikov, Z. Wang, G. Yang, Eur.Phys.J. C80 (2020) 609, arXiv:2002.05246.
[Smirnov:2020bcr]
[21-25]
Far-forward neutrinos at the Large Hadron Collider, Weidong Bai, Milind Diwan, Maria Vittoria Garzelli, Yu Seon Jeong, Mary Hall Reno, JHEP 2006 (2020) 032, arXiv:2002.03012.
[Bai:2020ukz]
[21-26]
The Magnet of the Scattering and Neutrino Detector for the SHiP experiment at CERN, C. Ahdida et al. (SHiP), JINST 15 (2020) P01027, arXiv:1910.02952.
[SHiP:2019qbi]
[21-27]
Shielding Design for the ISODAR Neutrino Experiment, Adriana Bungau, Jose Alonso, Larry Bartoszek, Janet M. Conrad, Edward Dunton, Michael H. Shaevitz, JINST 15 (2020) T07002, arXiv:1909.08009.
[Bungau:2019brd]
[21-28]
A Sterile Neutrino Search Experiment at the Compact Materials Irradiation Facility in China, Liangwen Chen, Han-Jie Cai, Emilio Ciuffoli, Jarah Evslin, Fen Fu, Sheng Zhang, Xurong Chen, Lei Yang, Wenlong Zhan, Eur.Phys.J. C80 (2020) 146, arXiv:1908.09787.
[Chen:2019uwo]
[21-29]
BEST potential in testing eV-scale sterile neutrino explanation of reactor antineutrino anomalies, Vladislav Barinov, Vladimir Gavrin, Valery Gorbachev, Dmitry Gorbunov, Tatiana Ibragimova, Phys.Rev. D99 (2019) 111702, arXiv:1905.07437.
[Barinov:2019vmp]
[21-30]
Monte-Carlo sensitivity study for sterile neutrino search with $^{144}$Ce - $^{144}$Pr source and liquid scintillation detectors of various geometries, A.V. Derbin, I.S. Drachnev, I.S. Lomskaya, V.N. Muratova, N.V. Pilipenko, D.A. Semenov, E.V. Unzhakov, arXiv:1905.06670, 2019.
[Derbin:2019vec]
[21-31]
Stainless steel tank production and tests for the $\text{JSNS}^{2}$ neutrino detector, Y. Hino, H. Furuta, S. Hasegawa, T. Maruyama, K. Nishikawa, J. S. Park, F. Suekane, Y. Sugaya, arXiv:1904.08674, 2019.
[Hino:2019yxz]
[21-32]
Neutrino Physics with the PTOLEMY project, M.G. Betti et al. (PTOLEMY), JCAP 2019 (2019) 047, arXiv:1902.05508.
[PTOLEMY:2019hkd]
[21-33]
A high precision neutrino beam for a new generation of short baseline experiments, F. Acerbi et al., arXiv:1901.04768, 2019.
[Acerbi:2019qiv]
[21-34]
First Commissioning Results of the Multicusp Ion Source at MIT (MIST-1) for H$_2^+$, Daniel Winklehner et al., AIP Conf.Proc. 2011 (2018) 030002, arXiv:1811.01868.
[Winklehner:2018fbq]
[21-35]
A novel detector system for KATRIN to search for keV-scale sterile neutrinos, Susanne Mertens et al., J.Phys. G46 (2019) 065203, arXiv:1810.06711.
[KATRIN:2018oow]
[21-36]
Intensive electron antineutrino source with well defined hard spectrum on the base of nuclear reactor and 8-lithium transfer. The promising experiment for sterile neutrinos search, V. I. Lyashuk, JHEP 1906 (2019) 135, arXiv:1809.05949.
[Lyashuk:2018ard]
[21-37]
The PROSPECT Reactor Antineutrino Experiment, J. Ashenfelter et al. (PROSPECT), Nucl.Instrum.Meth. A922 (2019) 287-309, arXiv:1808.00097.
[PROSPECT:2018dnc]
[21-38]
High intensity cyclotrons for neutrino physics, Daniel Winklehner et al., Nucl.Instrum.Meth. A907 (2018) 231-243, arXiv:1807.03759.
[Winklehner:2018kqi]
[21-39]
On the gallium experiment BEST-2 with a $^{65}$Zn source to search for neutrino oscillations on a short baseline, V.N. Gavrin et al., arXiv:1807.02977, 2018.
[Gavrin:2018zmf]
[21-40]
The SHiP experiment and the RPC technology, Giovanni De Lellis, JINST 14 (2019) C06009, arXiv:1806.03890.
[DeLellis:2018ikc]
[21-41]
Racetrack FFAG muon decay ring for nuSTORM with triplet focusing, J.-B. Lagrange, R.B. Appleby, J.M. Garland, J. Pasternak, S. Tygier, JINST 13 (2018) P09013, arXiv:1806.02172.
[Lagrange:2018bck]
[21-42]
Optimizing the $^{8}$Li yield for the IsoDAR Neutrino Experiment, Adriana Bungau et al., JINST 14 (2019) P03001, arXiv:1805.00410.
[Bungau:2018spu]
[21-43]
Spectral shape analysis for electron antineutrino oscillation study by using $^{8}$Li generator with $^{252}$Cf source, Jae Won Shin, Myung-Ki Cheoun, Toshitaka Kajino, Takehito Hayakawa, JCAP 1809 (2018) 024, arXiv:1804.08225.
[Shin:2018ujc]
[21-44]
IsoDAR@KamLAND:A Conceptual Design Report for the Conventional Facilities, Jose R. Alonso (K. Nakamura for the IsoDAR), arXiv:1710.09325, 2017.
[Alonso:2017fci]
[21-45]
Signature of heavy sterile neutrinos at CEPC, Wei Liao, Xiao-Hong Wu, Phys.Rev. D97 (2018) 055005, arXiv:1710.09266.
[Liao:2017jiz]
[21-46]
Revised neutrino-gallium cross section and prospects of BEST in resolving the Gallium anomaly, Vladislav Barinov, Bruce Cleveland, Vladimir Gavrin, Dmitry Gorbunov, Tatiana Ibragimova, Phys.Rev. D97 (2018) 073001, arXiv:1710.06326.
[Barinov:2017ymq]
[21-47]
Slow Liquid Scintillator Candidates for MeV-scale Neutrino Experiments, Ziyi Guo et al., Astropart.Phys. 109 (2019) 33-40, arXiv:1708.07781.
[Guo:2017nnr]
[21-48]
Technical Design Report (TDR): Searching for a Sterile Neutrino at J-PARC MLF (E56, JSNS2), S.Ajimura et al., arXiv:1705.08629, 2017.
[Ajimura:2017fld]
[21-49]
Short-baseline electron antineutrino disappearance study by using neutrino sources from $^{13}$C + $^{9}$Be reaction, Jae Won Shin, Myung-Ki Cheoun, Toshitaka Kajino, Takehito Hayakawa, JCAP 1704 (2017) 044, arXiv:1702.08036.
[Shin:2017jii]
[21-50]
High flux lithium antineutrino source with variable hard spectrum. How to decrease the errors of the total spectrum ?, V.I. Lyashuk, arXiv:1612.08096, 2016.
[Lyashuk:2016lpn]
[21-51]
Status Report (22th J-PARC PAC): Searching for a Sterile Neutrino at J-PARC MLF (E56, JSNS2), M. Harada et al., arXiv:1610.08186, 2016.
[Harada:2016rou]
[21-52]
High flux lithium antineutrino source with variable hard spectrum, V.I. Lyashuk, arXiv:1609.02934, 2016.
[Lyashuk:2016poe]
[21-53]
Lithium antineutrino source in the tandem scheme of the accelerator and neutron producting tungsten target, V. I. Lyashuk, arXiv:1609.02127, 2016.
[Lyashuk:2016lxq]
[21-54]
Proposed experiments to detect keV range sterile neutrinos using energy-momentum reconstruction of beta decay or K-capture events, Peter F Smith, New J.Phys. 21 (2019) 053022, arXiv:1607.06876.
[Smith:2016vku]
[21-55]
DANSS: Detector of the reactor AntiNeutrino based on Solid Scintillator, I. Alekseev et al. (DANSS), JINST 11 (2016) P11011, arXiv:1606.02896.
[Alekseev:2016llm]
[21-56]
BEST sensitivity to O(1) eV sterile neutrino, Vladislav Barinov, Vladimir Gavrin, Dmitry Gorbunov, Tatiana Ibragimova, Phys. Rev. D93 (2016) 073002, arXiv:1602.03826.
[Barinov:2016znv]
[21-57]
Invited Article: miniTimeCube, V.A. Li et al., Rev. Sci. Instrum. 87 (2016) 021301, arXiv:1602.01405.
[mTC:2016yys]
[21-58]
Status Report for the 21th J-PARC PAC : Searching for a Sterile Neutrino at J-PARC MLF (J-PARC E56, JSNS2), M.Harada et al., arXiv:1601.01046, 2016.
[Harada:2016vlb]
[21-59]
The PROSPECT Physics Program, J. Ashenfelter et al. (PROSPECT), J. Phys. G43 (2016) 113001, arXiv:1512.02202.
[PROSPECT:2015iqr]
[21-60]
Development and Mass Production of a Mixture of LAB- and DIN-based Gadolinium-loaded Liquid Scintillator for the NEOS Short-baseline Neutrino Experiment, Ba Ro Kim et al. (NEOS), J.Radioanal.Nucl.Chem. 310 (2016) 311-316, arXiv:1511.05551.
[NEOS:2015dzs]
[21-61]
IsoDAR@KamLAND: A Conceptual Design Report for the Technical Facility, M. Abs et al., arXiv:1511.05130, 2015.
[Abs:2015tbh]
[21-62]
Developing Scintillation Light Readout Simulation for the SBND experiment, D. Garcia-Gamez, JINST 11 (2016) C01080, arXiv:1511.04611.
[Garcia-Gamez:2015jmu]
[21-63]
Sensitivity to oscillation with a sterile fourth generation neutrino from ultra-low threshold neutrino-nucleus coherent scattering, Bhaskar Dutta et al., Phys. Rev. D94 (2016) 093002, arXiv:1511.02834.
[Dutta:2015nlo]
[21-64]
IsoDAR Neutrino Experiment Simulation with Proton and Deuteron Beams, Fengyi Zhao, Yao Li, Chengdong Han, Qiang Fu, Xurong Chen, arXiv:1509.03922, 2015.
[Zhao:2015bba]
[21-65]
Light Collection and Pulse-Shape Discrimination in Elongated Scintillator Cells for the PROSPECT Reactor Antineutrino Experiment, J. Ashenfelter et al. (PROSPECT), JINST 10 (2015) P11004, arXiv:1508.06575.
[PROSPECT:2015rce]
[21-66]
Status Report for the 20th J-PARC PAC : A Search for Sterile Neutrino at J-PARC MLF (J-PARC E56, JSNS2), M. Harada et al. (JSNS2), arXiv:1507.07076, 2015.
[JSNS2:2015ror]
[21-67]
A Decisive Disappearance Search at High-$\Delta m^2$ with Monoenergetic Muon Neutrinos, S Axani et al., Phys. Rev. D92 (2015) 092010, arXiv:1506.05811.
[Axani:2015dha]
[21-68]
A facility to Search for Hidden Particles (SHiP) at the CERN SPS, M. Anelli et al. (SHiP), arXiv:1504.04956, 2015.
[SHiP:2015vad]
[21-69]
A facility to Search for Hidden Particles at the CERN SPS: the SHiP physics case, Sergey Alekhin et al. (SHiP), Rept.Prog.Phys. 79 (2016) 124201, arXiv:1504.04855.
[Alekhin:2015byh]
[21-70]
The current status of 'Troitsk nu-mass' experiment in search for sterile neutrino, D.N. Abdurashitov et al., JINST 10 (2015) T10005, arXiv:1504.00544.
[Abdurashitov:2015jha]
[21-71]
Search for Sterile Neutrinos in the Muon Neutrino Disappearance Mode at FNAL, A. Anokhina et al., Eur.Phys.J. C77 (2017) 23, arXiv:1503.07471.
[Anokhina:2015pga]
[21-72]
A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam, R. Acciarri et al. (MicroBooNE, LAr1-ND, ICARUS-WA104), arXiv:1503.01520, 2015.
[MicroBooNE:2015bmn]
[21-73]
On-site Background Measurements for the J-PARC E56 Experiment: A Search for Sterile Neutrino at J-PARC MLF, S. Ajimura et al., PTEP 2015 (2015) 063C01, arXiv:1502.06324.
[Ajimura:2015yux]
[21-74]
Status Report (BKG measurement): A Search for Sterile Neutrino at J-PARC MLF, M. Harada et al., arXiv:1502.02255, 2015.
[Harada:2015gla]
[21-75]
A new type of Neutrino Detector for Sterile Neutrino Search at Nuclear Reactors and Nuclear Nonproliferation Applications, C. Lane et al., arXiv:1501.06935, 2015.
[NuLat:2015wgu]
[21-76]
Creation of a neutrino laboratory for search for sterile neutrino at SM-3 reactor, A. P. Serebrov et al. (Neutrino-4), arXiv:1501.04740, 2015.
[Serebrov:2015eta]
[21-77]
Letter of Intent to Construct a nuPRISM Detector in the J-PARC Neutrino Beamline, S. Bhadra et al. (nuPRISM), arXiv:1412.3086, 2014.
[nuPRISM:2014mzw]
[21-78]
Experimental Parameters for a Cerium 144 Based Intense Electron Antineutrino Generator Experiment at Very Short Baselines, J. Gaffiot et al., Phys. Rev. D91 (2015) 072005, arXiv:1411.6694.
[Gaffiot:2014aka]
[21-79]
Searching for short baseline anomalies with the LAr-TPC detector at shallow depths, C. Rubbia, arXiv:1408.6431, 2014.
[Rubbia:2014dva]
[21-80]
Prospects for the measurement of muon-neutrino disappearance at the FNAL-Booster, A. Anokhina et al., arXiv:1404.2521, 2014.
[Anokhina:2014qda]
[21-81]
Light sterile neutrino sensitivity at the nuSTORM facility, D. Adey et al. (nuSTORM), Phys. Rev.D (2014), arXiv:1402.5250.
[nuSTORM:2014phr]
[21-82]
Development of a gadolinium-loaded liquid scintillator for the Hanaro short baseline prototype detector, In Sung Yeo, Kyung Kwang Joo, Sun Heang So, Sook Hyung Song, Hong Joo Kim et al., J.Korean Phys.Soc. 64 (2014) 377-381.
[Yeo:2014spa]
[21-83]
ICARUS at FNAL, M. Antonello et al., arXiv:1312.7252, 2013.
[Antonello:2013ypa]
[21-84]
CeLAND: search for a 4th light neutrino state with a 3 PBq 144Ce-144Pr electron antineutrino generator in KamLAND, A. Gando et al., arXiv:1312.0896, 2013.
[Gando:2013zoa]
[21-85]
On possibility of realization NEUTRINO-4 experiment on search for oscillations of the reactor antineutrino into a sterile state, A. P. Serebrov et al. (Neutrino-4), arXiv:1310.5521, 2013.
[Serebrov:2013yaa]
[21-86]
Electron Antineutrino Disappearance at KamLAND and JUNO as Decisive Tests of the Short Baseline $\bar\nu_\mu \to \bar\nu_e$ Appearance Anomaly, J.M. Conrad, M.H. Shaevitz, Phys. Rev. D89 (2014) 057301, arXiv:1310.3857.
[Conrad:2013ova]
[21-87]
Proposal to Search for Heavy Neutral Leptons at the SPS, W. Bonivento et al., arXiv:1310.1762, 2013.
[Bonivento:2013jag]
[21-88]
Proposal: A Search for Sterile Neutrino at J-PARC Materials and Life Science Experimental Facility, M. Harada et al. (JSNS2), arXiv:1310.1437, 2013.
[JSNS2:2013jdh]
[21-89]
A new investigation of $\nu_\mu\to\nu_e$ oscillations with improved sensitivity in the MiniBooNE+ experiment, R. Dharmapalan et al. (MiniBooNE+), arXiv:1310.0076, 2013.
[MiniBooNE:2013swv]
[21-90]
LAr1-ND: Testing Neutrino Anomalies with Multiple LArTPC Detectors at Fermilab, B. Fleming, O. Palamara, D.Schmitz (LArTPC), arXiv:1309.7987, 2013.
[LArTPC:2013hbn]
[21-91]
PROSPECT - A Precision Reactor Oscillation and Spectrum Experiment at Short Baselines, J. Ashenfelter et al. (PROSPECT), arXiv:1309.7647, 2013.
[PROSPECT:2013phf]
[21-92]
White paper: CeLAND - Investigation of the reactor antineutrino anomaly with an intense 144Ce-144Pr antineutrino source in KamLAND, A. Gando et al., arXiv:1309.6805, 2013.
[Gando:2013zla]
[21-93]
nuSTORM - Neutrinos from STORed Muons: Proposal to the Fermilab PAC, D. Adey et al. (nuSTORM), arXiv:1308.6822, 2013.
[nuSTORM:2013cqr]
[21-94]
Enabling Intensity and Energy Frontier Science with a Muon Accelerator Facility in the U.S.: A White Paper Submitted to the 2013 U.S. Community Summer Study of the Division of Particles and Fields of the American Physical Society, J-P. Delahaye et al., arXiv:1308.0494, 2013.
[Delahaye:2013jla]
[21-95]
The OscSNS White Paper, M. Elnimr et al. (OscSNS), arXiv:1307.7097, 2013.
[OscSNS:2013vwh]
[21-96]
Development of a Relic Neutrino Detection Experiment at PTOLEMY: Princeton Tritium Observatory for Light, Early-Universe, Massive-Neutrino Yield, S. Betts et al., arXiv:1307.4738, 2013.
[Betts:2013uya]
[21-97]
Whitepaper on the DAEdALUS Program, C. Aberle et al., arXiv:1307.2949, 2013.
[Aberle:2013ssa]
[21-98]
An Appraisal of Muon Neutrino Disappearance at Short Baseline Neutrino Beams, Luca Stanco, Stefano Dusini, Andrea Longhin, Alessandro Bertolin, Marco Laveder, Adv.High Energy Phys. 2013 (2013) 948626, arXiv:1306.3455.
[Stanco:2013dha]
[21-99]
OscSNS: A Precision Neutrino Oscillation Experiment at the SNS, W. Louis et al. (OscSNS), arXiv:1305.4189, 2013.
[OscSNS:2013hua]
[21-100]
SOX: Short distance neutrino Oscillations with BoreXino, G. Bellini et al. (Borexino), JHEP 1308 (2013) 038, arXiv:1304.7721.
[Borexino:2013xxa]
[21-101]
Registration of reactor neutrinos with the highly segmented plastic scintillator detector DANSSino, V. Belov et al. (DANSS), Phys.Part.Nucl.Lett. 11 (2014) 473-482, arXiv:1304.3696.
[Alekseev:2013dmu]
[21-102]
Sterile Neutrino Search Using China Advanced Research Reactor, Gang Guo et al., arXiv:1303.0607, 2013.
[Guo:2013sea]
[21-103]
Cost-effective Design Options for IsoDAR, A. Adelmann et al., arXiv:1210.4454, 2012.
[Adelmann:2012kq]
[21-104]
Letter of Intent: A new investigation of $\nu_\mu \to \nu_e$ oscillations with improved sensitivity in an enhanced MiniBooNE experiment, A. A. Aguilar-Arevalo et al. (MiniBooNE), arXiv:1210.2296, 2012.
[MiniBooNE:2012jhj]
[21-105]
nuSTORM: Neutrinos from STORed Muons, P. Kyberd et al. (nuSTORM), arXiv:1206.0294, 2012.
[nuSTORM:2012jbd]
[21-106]
Sterile Neutrino Sensitivity with Wrong-Sign Muon Appearance at nuSTORM, C. D. Tunnell, arXiv:1205.6338, 2012.
[Tunnell:2012nu]
[21-107]
An Electron Antineutrino Disappearance Search Using High-Rate 8Li Production and Decay, A. Bungau et al., Phys. Rev. Lett. 109 (2012) 141802, arXiv:1205.4419.
[Bungau:2012ys]
[21-108]
NEUTRINO-4 experiment: preparations for search for sterile neutrino at 100 MW reactor SM-3 at 6-12 meters, A. P. Serebrov et al. (Neutrino-4), arXiv:1205.2955, 2012.
[Serebrov:2012sq]
[21-109]
Search for neutrino oscillations at a research reactor, A. V. Derbin, A. S. Kayunov, V. N. Muratova, arXiv:1204.2449, 2012.
[Derbin:2012kf]
[21-110]
A Sterile Neutrino Search with Kaon Decay-at-rest, J. Spitz, Phys. Rev. D85 (2012) 093020, arXiv:1203.6050.
[Spitz:2012gp]
[21-111]
Search for 'anomalies' from neutrino and anti-neutrino oscillations at $\Delta m^2 \sim 1 \text{eV}^2$ with muon spectrometers and large LAr-TPC imaging detectors, M. Antonello et al., arXiv:1203.3432, 2012.
[Antonello:2012hf]
[21-112]
Measuring Active-to-Sterile Neutrino Oscillations with Neutral Current Coherent Neutrino-Nucleus Scattering, A. J. Anderson et al., Phys. Rev. D86 (2012) 013004, arXiv:1201.3805.
[Anderson:2012pn]
[21-113]
Prospect for Charge Current Neutrino Interactions Measurements at the CERN-PS, P. Bernardini et al., arXiv:1111.2242, 2011.
[NESSiE:2011dto]
[21-114]
Neutrino oscillometry at the next generation neutrino observatory, Yu.N. Novikov et al., arXiv:1110.2983, 2011.
[Novikov:2011gp]
[21-115]
Search for Sterile Neutrinos with a Radioactive Source at Daya Bay, D.A. Dwyer, K.M. Heeger, B.R. Littlejohn, P. Vogel, Phys. Rev. D87 (2013) 093002, arXiv:1109.6036.
[Dwyer:2011xs]
[21-116]
A proposed search for a fourth neutrino with a PBq antineutrino source, Michel Cribier et al., Phys. Rev. Lett. 107 (2011) 201801, arXiv:1107.2335.
[Cribier:2011fv]
[21-117]
New Physics with MeV Neutrino Sources Brighter than a Thousand Suns, S. K. Agarwalla, R. S. Raghavan, arXiv:1011.4509, 2010.
[Agarwalla:2010gd]
[21-118]
Gallium experiments with artificial neutrino sources as a tool for investigation of transition to sterile states, V. N. Gavrin, V. V. Gorbachev, E. P. Veretenkin, B. T. Cleveland, arXiv:1006.2103, 2010.
[Gavrin:2010qj]
[21-119]
A new search for anomalous neutrino oscillations at the CERN-PS, B. Baibussinov et al., arXiv:0909.0355, 2009.
[Baibussinov:2009tx]
[21-120]
Constraining sterile neutrinos with a low energy beta-beam, Sanjib K. Agarwalla, Patrick Huber, Jonathan M. Link, JHEP 01 (2010) 071, arXiv:0907.3145.
[Agarwalla:2009em]
[21-121]
Measuring active - sterile neutrino oscillations with a stopped pion neutrino source, G. T. Garvey et al., Phys. Rev. D72 (2005) 092001, arXiv:hep-ph/0501013.
[Garvey:2005pn]
[21-122]
Test of non-standard neutrino properties with the BOREXINO source experiments, A. Ianni, D. Montanino, G. Scioscia, Eur. Phys. J. C8 (1999) 609-617, arXiv:hep-ex/9901012.
[Ianni:1999nk]

22 - Future Experiments - Talks

[22-1]
Monte-Carlo Simulations of Superconducting Tunnel Junction Quantum Sensors for the BeEST Experiment, Connor E. Bray, Larry J. Hiller, Kyle G. Leach, Stephan Friedrich, J.Low Temp.Phys. 209 (2022) 857-863, arXiv:2205.14113. LTD19.
[Bray:2022hdo]
[22-2]
The Short Baseline Neutrino Program at Fermilab, M. Bonesini (SBN; Icarus, SBND, MicroBooNe), PoS NuFact2021 (2021) 009, arXiv:2203.05814. NuFact2021.
[Bonesini:2022pwy]
[22-3]
The BeEST Experiment: Searching for Beyond Standard Model Neutrinos using $^7$Be Decay in STJs, K.G. Leach, S. Friedrich, J.Low Temp.Phys. 209 (2022) 796-803, arXiv:2112.02029. 19th International Conference on Low-Temperature Detectors (LTD-19).
[Leach:2021bvh]
[22-4]
The SHiP experiment at CERN, Markus Cristinziani, arXiv:2009.06003, 2020. 3rd World Summit on Exploring the Dark Side of the Universe, Guadeloupe Islands, March 9-13 2020.
[Cristinziani:2020wvy]
[22-5]
Future Opportunities in Accelerator-based Neutrino Physics, Andrea Dell'Acqua et al., arXiv:1812.06739, 2018. European Neutrino Town Meeting, Oct 22-24, CERN.
[DellAcqua:2018lky]
[22-6]
Status and Prospects of the JSNS2 Experiment, Carsten Rott, PoS ICHEP2018 (2019) 185, arXiv:1811.03321. ICHEP2018.
[Rott:2018rlw]
[22-7]
The detectors of the SHiP experiment at CERN, Elena Graverini, Nucl.Instrum.Meth. A936 (2019) 724-725, arXiv:1809.00354. 14th Pisa meeting on Advanced Detectors.
[Graverini:2018wcy]
[22-8]
SHiP: a new facility to search for long lived neutral particles and investigate the $\nu_\tau$ properties, Elena Graverini, arXiv:1807.11737, 2018. 28$^{th}$ Rencontres de Blois conference (2016).
[Graverini:2018bib]
[22-9]
nuSTORM FFAG Decay Ring, J. B. Lagrange, J. Pasternak, R. B. Appleby, J. M. Garland, H. Owen, S. Tygier, A. Bross, A. Liu, arXiv:1805.04159, 2018. 7th International Particle Accelerator Conference (IPAC 2016): Busan, Korea, May 8-13, 2016. https://inspirehep.net/record/1672755/files/1805.04159.pdf.
[Lagrange:2016okg]
[22-10]
Detector Development for a Sterile Neutrino Search with the KATRIN Experiment, Tim Brunst et al., arXiv:1801.08182, 2018. 7th International Pontecorvo Neutrino Physics School.
[Brunst:2018vka]
[22-11]
Hidden sector searches with SHiP and NA62, P. Mermod (SHiP), PoS NuFact2017 (2017) 139, arXiv:1712.01768. 19th International Workshop on Neutrinos from Accelerators (NUFACT2017), 25-30 September, Uppsala, Sweden.
[Mermod:2017ceo]
[22-12]
Measurement of $^{144}\rm{Pr}$ beta-spectrum with Si(Li) detectors for the purpose of determining the spectrum of electron antineutrinos, A.V. Derbin et al., arXiv:1711.06985, 2017. 13th Patras Workshop on Axions, WIMPs and WISP, May 15th to 19th 2017, Thessaloniki, Greece.
[Derbin:2017umv]
[22-13]
Status of the SoLid experiment: Search for sterile neutrinos at the SCK$\cdot$CEN BR2 reactor, Luis Manzanillas, J.Phys.Conf.Ser. 1342 (2020) 012034, arXiv:1710.07933.
[Manzanillas:2017vgo]
[22-14]
Search for eV Sterile Neutrinos - The Stereo Experiment, Julia Haser, PoS EPS-HEP2017 (2017) 113, arXiv:1710.06310. EPS-HEP 2017, European Physical Society Conference on High Energy Physics (5-12 July 2017), Venice, Italy.
[Haser:2017ppu]
[22-15]
Search for new physics with the SHiP experiment at CERN, Oliver Lantwin, PoS EPS-HEP2017 (2017) 304, arXiv:1710.03277. EPS Conference on High Energy Physics (EPS-HEP), Venice, July 2017.
[Lantwin:2017xtc]
[22-16]
Updated physics design of the DAEdALUS and IsoDAR coupled cyclotrons for high intensity H2+ beam production, Daniel Winklehner (DAEdALUS), arXiv:1708.06412, 2017.
[Winklehner:2017kcf]
[22-17]
Right-handed neutrinos: the hunt is on!, P. Mermod (SHiP), arXiv:1704.08635, 2017. NuPhys2016.
[Mermod:2017kjb]
[22-18]
STEREO: Search for sterile neutrinos at the ILL, Luis Manzanillas (STEREO), PoS NOW2016 (2017) 033, arXiv:1702.02498. NOW 2016.
[Manzanillas:2017rta]
[22-19]
The Short Baseline Neutrino Oscillation Program at Fermilab, Matthew Bass, PoS ICHEP2016 (2016) 481, arXiv:1702.00990. ICHEP 2016.
[Bass:2016ucj]
[22-20]
Developments for the IsoDAR@KamLAND and DAE$\delta$ALUS Decay-At-Rest Neutrino Experiments, Jose R. Alonso (IsoDAR), arXiv:1611.03548, 2016. NuFact 2016, Quy Nhon Vietnam, August 25 2016.
[Alonso:2016adb]
[22-21]
SoLid: Search for Oscillation with a 6Li Detector at the BR2 research reactor, Ianthe Michiels (SoLid), arXiv:1605.00215, 2016. NuPhys2015 (London, 16-18 December 2015).
[Michiels:2016qui]
[22-22]
Sterile neutrino search at the ILL nuclear reactor: the STEREO experiment, V. Helaine (STEREO), arXiv:1604.08877, 2016. NuPhys2015 (London, 16-18 December 2015).
[Helaine:2016bmc]
[22-23]
An Intermediate Water Cherenkov Detector at J-PARC, Mark Scott (NuPRISM,Hyper-K), JPS Conf.Proc. 12 (2016) 010039, arXiv:1603.01251. NuInt2015, Osaka, November 2015.
[Scott:2016kdg]
[22-24]
Physics at the fcc-ee, David d'Enterria, arXiv:1602.05043, 2016. 17th Lomonosov conference on Elementary Particle Physics, Moscow, Aug. 2015.
[dEnterria:2016sca]
[22-25]
Search for a sterile neutrino with the STEREO detector at ILL, Stephane Zsoldos, arXiv:1602.00568, 2016. 50th Rencontres de Moriond Electroweak Interactions and Unified Theories 2015.
[Zsoldos:2015glq]
[22-26]
SOX: search for short baseline neutrino oscillations with Borexino, M. Vivier et al. (Borexino), J. Phys. Conf. Ser. 718 (2016) 062066. 14th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2015).
[Borexino:2016ses]
[22-27]
Search for eV sterile neutrinos at a nuclear reactor - the Stereo project, J. Haser (Stereo), J. Phys. Conf. Ser. 718 (2016) 062023. 14th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2015).
[Haser:2016xlb]
[22-28]
SOX: Short Distance Neutrino Oscillations with Borexino, D. Bravo-Berguno et al. (SOX), Nucl. Part. Phys. Proc. 273-275 (2016) 1760-1764. 37th International Conference on High Energy Physics (ICHEP 2014).
[SOX:2016rqv]
[22-29]
Technology of the SoLid detector and construction of the first submodule, Celine Moortgat (SoLid), PoS EPS-HEP2015 (2015) 080, arXiv:1511.07603. EPS HEP, Vienna 22nd-29th July 2015.
[Moortgat:2015bwg]
[22-30]
Sensitivity and Discovery Potential of the PROSPECT Experiment, Karin Gilje (PROSPECT), arXiv:1511.00177, 2015. DPF 2015 Meeting of the American Physical Society Division of Particles and Fields, Ann Arbor, Michigan, August 4-8, 2015.
[Gilje:2015idp]
[22-31]
Development of PROSPECT detectors for precision antineutrino studies, Danielle Norcini (PROSPECT), arXiv:1510.09082, 2015. DPF 2015 Meeting of the American Physical Society Division of Particles and Fields, Ann Arbor, Michigan, August 4-8, 2015.
[Norcini:2015ngg]
[22-32]
Trigger and readout electronics for the STEREO experiment, O. Bourrion et al., JINST 11 (2016) C02078, arXiv:1510.08238. Topical Workshop on Electronics for Particle Physics (TWEPP) 2015, Lisboa.
[Bourrion:2015axa]
[22-33]
First results of the deployment of a SoLid detector module at the SCK-CEN BR2 reactor, Nick Ryder (SoLid), PoS EPS-HEP2015 (2015) 071, arXiv:1510.07835. EPS HEP, Vienna 22nd-29th July 2015.
[Ryder:2015sma]
[22-34]
KPipe: a decisive test for muon neutrino disappearance, Spencer N. Axani et al., arXiv:1510.06994, 2015. DPF 2015 Meeting of the American Physical Society Division of Particles and Fields, Ann Arbor, Michigan, August 4-8, 2015.
[Axani:2015zxa]
[22-35]
nuSTORM: Neutrinos from Stored Muons, F.J.P. Soler, arXiv:1507.08836, 2015. Prospects in Neutrino Physics Conference (NuPhys).
[Soler:2015ada]
[22-36]
Why a NESSiE-like experiment at SBL is needed?, Laura Pasqualini, arXiv:1504.05701, 2015. NuPhys 2014, London.
[Pasqualini:2015iha]
[22-37]
Search for New Physics in SHiP and at future colliders, Elena Graverini, Nicola Serra, Barbara Storaci, JINST 10 (2015) 7007, arXiv:1503.08624. INFIERI 2014 School.
[Graverini:2015dka]
[22-38]
The Intermediate Neutrino Program, C. Adams et al., arXiv:1503.06637, 2015.
[Adams:2015ogl]
[22-39]
PROSPECT - A precision oscillation and spectrum experiment, T.J. Langford (PROSPECT), Nucl. Part. Phys. Proc. 265-266 (2015) 123-125, arXiv:1501.00194. NOW2014.
[Langford:2014ola]
[22-40]
The SOX experiment in the neutrino physics, L. Di Noto et al., Nuovo Cim. C038 (2015) 36. 26th Conference on High Energy Physics (IFAE 2014).
[DiNoto:2015tuv]
[22-41]
The SOX experiment, J. Gaffiot (SOX), Nucl. Part. Phys. Proc. 265-266 (2015) 129-131. Neutrino Oscillation Workshop (NOW 2014).
[Gaffiot:2015fva]
[22-42]
Current status of new SAGE project with $^{51}$Cr neutrino source, V. Gavrin et al., Phys. Part. Nucl. 46 (2015) 131-137. International Workshop on Prospects of Particle Physics: Neutrino Physics and Astrophysics.
[Gavrin:2015aca]
[22-43]
Precision Studies of Reactor Antineutrinos with PROSPECT, Karsten Heeger, 2015. TAUP 2015, 7-11 September 2015, Torino, Italy. http://www.taup-conference.to.infn.it/2015/day4/parallel/nua/1_heeger.pdf.
[Heeger-TAUP2015]
[22-44]
The Nucifer and Stereo reactor antineutrino experiments, M. Pequignot (Stereo, Nucifer), Nucl. Part. Phys. Proc. 265-266 (2015) 126-128. Neutrino Oscillation Workshop (NOW 2014).
[Pequignot:2015rta]
[22-45]
The Status of the MicroBooNE Experiment, Matt Toups, 2015. TAUP 2015, 7-11 September 2015, Torino, Italy. http://www.taup-conference.to.infn.it/2015/day4/parallel/nua/3_toups.pdf.
[Toups-TAUP2015]
[22-46]
ICARUS status and next future, Filippo Varanini, 2015. TAUP 2015, 7-11 September 2015, Torino, Italy. http://www.taup-conference.to.infn.it/2015/day4/parallel/nua/5_varanini.pdf.
[Varanini-TAUP2015]
[22-47]
SOX: Short Distance Neutrino Oscillations with Borexino, Matthieu Vivier, 2015. TAUP 2015, 7-11 September 2015, Torino, Italy. http://www.taup-conference.to.infn.it/2015/day4/parallel/nua/4_vivier.pdf.
[Vivier-TAUP2015]
[22-48]
SoLid: Search for Oscillations with a Lithium-6 Detector at the SCK-CEN BR2 reactor, Frederic Yermia, 2015. TAUP 2015, 7-11 September 2015, Torino, Italy. http://www.taup-conference.to.infn.it/2015/day4/parallel/nua/4_yermia.pdf.
[Yermia-TAUP2015]
[22-49]
Sensitivity of DANSS detector to short range neutrino oscillations, Mikhail Danilov (DANSS), arXiv:1412.0817, 2014. ICHEP2014.
[Danilov:2014vra]
[22-50]
Search for Heavy Right Handed Neutrinos at the FCC-ee, Alain Blondel, E. Gaverini, N. Serra, M. Shaposhnikov, FCC-ee study team (FCC-ee), Nucl.Part.Phys.Proc. 273-275 (2016) 1883-1890, arXiv:1411.5230. ICHEP 2014.
[Blondel:2014bra]
[22-51]
The NESSiE way to searches for sterile neutrinos at FNAL, L. Stanco et al. (NESSiE), Nucl.Part.Phys.Proc. 273-275 (2016) 1740-1748, arXiv:1410.3980. ICHEP2014, 2-7 July 2014, Valencia (Spain).
[NESSiE:2014fqg]
[22-52]
Recent Borexino results and prospects for the near future, D. D'Angelo et al. (Borexino), EPJ Web Conf. 126 (2016) 02008, arXiv:1405.7919. Rencontres de Moriond EW 2014.
[Borexino:2014lrx]
[22-53]
DANSS searching for sterile neutrino, V. Egorov, 2014. PPP 2014, 26 January - 2 Ferbuary 2014, Valday, Russia. http://www.inr.ac.ru/~school/talks/Egorov.pptx.
[Egorov-PPP2014]
[22-54]
Current status of SAGE new project with 51Cr neutrino source, V. Gavrin, 2014. PPP 2014, 26 January - 2 Ferbuary 2014, Valday, Russia. http://www.inr.ac.ru/~school/talks/Gavrin.ppt.
[Gavrin-PPP2014]
[22-55]
MiniBooNE and the hunt for the low mass sterile neutrino, H. Ray, 2014. PPP 2014, 26 January - 2 Ferbuary 2014, Valday, Russia. http://www.inr.ac.ru/~school/talks/HRay.pptx.
[Ray-PPP2014]
[22-56]
The NESSiE Concept for Sterile Neutrinos, L. Stanco et al. (NESSiE), PoS Neutel2013 (2014) 023, arXiv:1312.1227. XV Workshop on Neutrino Telescopes, 11-15 March 2013, Venice, Italy.
[NESSiE:2013nog]
[22-57]
Sensitivity of the DANSS detector to short range neutrino oscillations, M. Danilov (DANSS), PoS EPS-HEP2013 (2014) 493, arXiv:1311.2777. European Physical Society Conference on High Energy Physics, 18-24 July, 2013, Stockholm, Sweden.
[Danilov:2013caa]
[22-58]
NESSiE: The Experimental Sterile Neutrino Search in Short-Base-Line at CERN, Umut Kose (NESSiE), arXiv:1304.7127, 2013. Lake Louise Winter 2013 Conference, Banff, Alberta, Canada, 17-23 February 2013.
[Kose:2013zsa]
[22-59]
Search for sterile neutrinos at radioactive ion beam facilities, Catalina Espinoza, Rimantas Lazauskas, Cristina Volpe, J. Phys. Conf. Ser. 447 (2013) 012063.
[Espinoza:2013dsa]
[22-60]
Anti-neutrino monitoring development in the UK with segmented solid scintillator detector, A. Vacheret, 2013. AAP 2013 Workshop, Seoul, 2013. https://indico.cern.ch/event/245969/session/0/contribution/12/material/slides/0.pdf.
[Vacheret-AAP2013]
[22-61]
Opportunities for Neutrino Physics at the Spallation Neutron Source: A White Paper, A. Bolozdynya et al., arXiv:1211.5199, 2012. Workshop on Neutrinos at the Spallation Neutron Source, May 2012.
[Bolozdynya:2012xv]
[22-62]
High Current H2+ Cyclotrons for Neutrino Physics: The IsoDAR and DAE deltaALUS Projects, Jose R. Alonso (DAEdALUS), AIP Conf.Proc. 1525 (2012) 480-486, arXiv:1210.3679. 22nd International Conference on the Application of Accelerators in Research and Industry (CAARI), Ft. Worth, TX, Aug 5-10 (2012).
[Alonso:2012zv]
[22-63]
Testing the Reactor and Gallium Anomalies with Intense (Anti)Neutrino Emitters, Th. Lasserre, Nucl. Phys. Proc. Suppl. 235-236 (2013) 214-219, arXiv:1209.5090. Neutrino 2012 Conference, Kyoto, Japan, June 2012.
[Lasserre:2012vy]
[22-64]
Search for anomalies in the neutrino sector with muon spectrometers and large LArTPC imaging detectors at CERN, A. Antonello et al., arXiv:1208.0862, 2012. European Strategy for Particle Physics - Open Symposium Preparatory Group, Kracow 10-12 September 2012.
[Antonello:2012qx]
[22-65]
Reactor experiments to test sterile $\nu$'s, Jonathan Gaffiot, 2012. NOW 2012, Neutrino Oscillation Workshop, 9-16 September 2012, Conca Specchiulla, Otranto, Italy. http://www.ba.infn.it/~now/now2012/web-content/TALKS/Saturday15/parallel1/Gaffiot-NOW12_reactor-exp-for-sterile2.pptx.
[Gaffiot-NOW2012]
[22-66]
The SOX experiment, Jonathan Gaffiot, 2012. NOW 2014, Neutrino Oscillation Workshop, 7-14 September 2014, Conca Specchiulla, Otranto, Italy. http://www.ba.infn.it/~now/now2014/web-content/TALKS/dFri/Par2/2014_NOW-Jonathan.Gaffiot-slides.pdf.
[Gaffiot-NOW2014]
[22-67]
ICARUS/Nessie, D. Gibin, 2012. NOW 2012, Neutrino Oscillation Workshop, 9-16 September 2012, Conca Specchiulla, Otranto, Italy. http://www.ba.infn.it/~now/now2012/web-content/TALKS/Wedsnday12/parallel1/NOW12_ICARUSNESSIE.ppt.
[Gibin-NOW2012]
[22-68]
Neutrinos from the Sun and from radioactive sources, A. Ianni, 2012. NOW 2012, Neutrino Oscillation Workshop, 9-16 September 2012, Conca Specchiulla, Otranto, Italy. http://www.ba.infn.it/~now/now2012/web-content/TALKS/Tuesday11/plenary/NOW-2012-Ianni.pdf.
[Ianni-NOW2012]
[22-69]
Neutrinos from the sun and from radioactive sources in Borexino, A. Ianni, 2012. Padua University, 17 september 2012, Padova, Italy. http://www.pd.infn.it/~laveder/unbound/seminari/fisica-neutrino/Borexino-Ianni-PD-2012.pdf.
[Ianni-Padova-120917]
[22-71]
A proposal for short baseline neutrino 'anomalies' with innovative LAr imaging detectors coupled with large muon spectrometers, C. Rubbia, 2012. News from Experiments and Projects at the PS and SPS - 105th Meeting of the SPSC, 3 april 2012, CERN, Geneva, Switzerland. http://indico.cern.ch/getFile.py/access?contribId=11&sessionId=0&resId=0&materialId=slides&confId=183288.
[RubbiaC-SPSC-P347-2012]
[22-72]
Search for anomalies from neutrino and anti-neutrino oscillations at $\Delta{m}^2 = 1 \, \text{eV}^2$ with muon spectrometers and large LArTPC imaging detectors, C. Rubbia, 2012. Commissione Scientifica Nazionale 2, 17 April 2012, Frascati, Italy. http://agenda.infn.it/getFile.py/access?contribId=30&resId=1&materialId=slides&confId=4876.
[RubbiaCarlo-2012]
[22-73]
Short-baseline oscillations of high-energy neutrinos, L. Stanco, 2012. NOW 2012, Neutrino Oscillation Workshop, 9-16 September 2012, Conca Specchiulla, Otranto, Italy. http://www.ba.infn.it/~now/now2012/web-content/TALKS/Wedsnday12/plenary/NOW2012-Stanco.pdf.
[Stanco-NOW2012]
[22-74]
Experiment with reactor antineutrinos in US: SONGS, N. Bowden, 2011. LowNu11, 9-12, November, 2011, Seoul National University, Seoul, Korea. http://workshop.kias.re.kr/lownu11/?download=Y11M11D08_US_Antineutrino_Activities_LowNu(first%20talk).pdf.
[Bowden-LowNu11]
[22-75]
The recent experiments with reactor antineutrino in Russia : DANSS project, V. Egorov, 2011. LowNu11, 9-12, November, 2011, Seoul National University, Seoul, Korea. http://workshop.kias.re.kr/lownu11/downloads/Egorov_DANSS_LowNu-2011(third%20talk).pptx.
[Egorov-LowNu11]
[22-76]
Sterile Neutrino Searches with Ga, V. Gavrin, 2011. Short-Baseline Neutrino Workshop (SBNW11), 12-14 May 2011, Fermilab. https://indico.fnal.gov/getFile.py/access?contribId=41&sessionId=11&resId=0&materialId=slides&confId=4157.
[Gavrin-SBNW11]
[22-77]
Future Short-baseline Physicst at FermiLab, Bill Louis (MiniBooNE), 2011. NUFACT 2011. http://indico.cern.ch/contributionDisplay.py?sessionId=0&contribId=35&confId=114816.
[Louis-NUFACT2011]
[22-78]
Borexino Search for Sterile Neutrinos, M. Pallavicini, 2011. Short-Baseline Neutrino Workshop (SBNW11), 12-14 May 2011, Fermilab. https://indico.fnal.gov/getFile.py/access?contribId=47&sessionId=11&resId=0&materialId=slides&confId=4157.
[Pallavicini-SBNW11]
[22-79]
Korean efforts on reactor antineutrino physics, Y.D. Kim, 2011. LowNu11, 9-12, November, 2011, Seoul National University, Seoul, Korea. http://workshop.kias.re.kr/lownu11/?download=lownu-ydkim.pdf.
[YDKim-LowNu11]
[22-80]
DOUBLE-LAr: sterile neutrinos at the CERN-PS?, Carlo Rubbia, 2009. New Opportunities in the Physics Landscape at CERN, 10-13 May 2009, CERN. http://indico.cern.ch/getFile.py/access?contribId=24&sessionId=3&resId=0&materialId=slides&confId=51128.
[Rubbia-CERN-0905]
[22-81]
OscSNS: Precision Neutrino Measurements at the Spallation Neutron Source, Heather Ray (OscSNS), J. Phys. Conf. Ser. 136 (2008) 022029, arXiv:0810.3175. Neutrino 08.
[Ray:2008ea]

Search Neutrino Unbound

Cross search NU

It is possible to perform a cross search between the various pages of Neutrino Unbound.
This is useful if you want to show the common elements that appear in the listings of two (or more) different topics or experiments.

Go to the search form.

[Go to ...]

Neutrino Unbound Home

Authors:
Stefano Gariazzo / gariazzo@to.infn.it
Carlo Giunti / giunti@to.infn.it
Marco Laveder / marco.laveder@pd.infn.it
Last Update: Fri 29 Mar 2024, 11:21:11 CET