Supernovae

Filter this page

(Note: The process can take some time.)

EXPAND ALL
COMPRESS ALL

References

1 - Books

[1-1]
Neutrinos in particle physics, astronomy and cosmology, Zhi-zhong Xing, Shun Zhou, Zhejiang University Press, Hangzhou, 2011. ISBN: 978-3-642-17560-2. https://link.springer.com/book/10.1007/978-3-642-17560-2.
[Xing:2011zza]
[1-2]
Fundamentals of Neutrino Physics and Astrophysics, C. Giunti, C. W. Kim, Oxford University Press, Oxford, UK, 2007. ISBN 978-0-19-850871-7. https://global.oup.com/academic/product/fundamentals-of-neutrino-physics-and-astrophysics-9780198508717.
[Giunti:2007ry]
[1-3]
Stars as laboratories for fundamental physics: The astrophysics of neutrinos, axions, and other weakly interacting particles, G.G. Raffelt, University of Chicago Press, 1996. ISBN 0-226-70272-3. http://wwwth.mpp.mpg.de/members/raffelt/pages/mybook.html.
[Raffelt:1996wa]
[1-4]
Neutrino Astrophysics, J. N. Bahcall, Cambridge University Press, 1989.
[Bahcall:1989ks]
[1-5]
Black Holes, White Dwarfs, and Neutron Stars: the Physics of Compact Objects, S. L. Shapiro, S. A. Teukolsky, John Wiley, 1983.
[Shapiro:1983du]
[1-6]
An Introduction to the Study of Stellar Structure, S. Chandrasekhar, University of Chicago Press, 1938.
[Chandrasekhar-1938]

2 - Reviews

[2-1]
Supernova Simulations, Bernhard Muller, arXiv:2403.18952, 2024.
[Muller:2024slv]
[2-2]
The physics of Core-Collapse Supernovae: explosion mechanism and explosive nucleosynthesis, Luca Boccioli, Lorenzo Roberti, Universe 10 (2024) 148, arXiv:2403.12942.
[Boccioli:2024abp]
[2-3]
Supernovae in 2023 (review): breakthroughs by late observations, Noam Soker, arXiv:2311.17732, 2023.
[Soker:2023mbr]
[2-4]
The Role of Type Ia Supernovae in Constraining the Hubble Constant, Daniel Scolnic, Maria Vincenzi, arXiv:2311.16830, 2023.
[Scolnic:2023sps]
[2-5]
The Impact of Dust on Cepheid and Type Ia Supernova Distances, Dillon Brout, Adam Riess, arXiv:2311.08253, 2023.
[Brout:2023wol]
[2-6]
Dual-phase xenon time projection chambers for rare-event searches, Laura Baudis, Phil.Trans.Roy.Soc.Lond.A 382 (2023) 0083, arXiv:2311.05320.
[Baudis:2023pzu]
[2-7]
Neutrinos and nucleosynthesis of elements, Tobias Fischer, Gang Guo, Karlheinz Langanke, Gabriel Martinez-Pinedo, Yong-Zhong Qian, Meng-Ru Wu, Prog.Part.Nucl.Phys. 137 (2024) 104107, arXiv:2308.03962.
[Fischer:2023ebq]
[2-8]
Nucleosynthesis and observation of the heaviest elements, E. M. Holmbeck, T. M. Sprouse, M. R. Mumpower, Eur. Phys. J. A 59 (2023) 28, arXiv:2304.01850.
[Holmbeck:2023bjs]
[2-9]
Nucleosynthesis in jet-driven and jet-associated supernovae, M. Obergaulinger, M. Reichert, arXiv:2303.12458, 2023.
[Obergaulinger:2023ayf]
[2-10]
Nucleosynthesis in neutrino-heated ejecta and neutrino-driven winds of core-collapse supernovae; neutrino-induced nucleosynthesis, Shinya Wanajo, arXiv:2303.09442, 2023.
[Wanajo:2023smg]
[2-11]
Neutrinos from dense: flavor mechanisms, theoretical approaches, observations, new directions, Maria Cristina Volpe, arXiv:2301.11814, 2023.
[Volpe:2023met]
[2-12]
Many-body collective neutrino oscillations: recent developments, Amol V. Patwardhan, Michael J. Cervia, Ermal Rrapaj, Pooja Siwach, A. B. Balantekin, arXiv:2301.00342, 2023.
[Patwardhan:2022mxg]
[2-13]
Dynamics and Equation of State Dependencies of Relevance for Nucleosynthesis in Supernovae and Neutron Star Mergers, H. -Thomas Janka, Andreas Bauswein, arXiv:2212.07498, 2022.
[Janka:2022krt]
[2-14]
Snowmass Neutrino Frontier Report, Patrick Huber et al., arXiv:2211.08641, 2022.
[Huber:2022lpm]
[2-15]
Nuclei in Core-Collapse Supernovae Engine, Shun Furusawa, Hiroki Nagakura, Prog.Part.Nucl.Phys. 129 (2023) 104018, arXiv:2211.01050.
[Furusawa:2022ktu]
[2-16]
Snowmass 2021 topical group report: Neutrinos from Natural Sources, Yusuke Koshio, Gabriel D. Orebi Gann, Erin O'Sullivan, Irene Tamborra, arXiv:2209.04298, 2022.
[Koshio:2022zip]
[2-17]
Review: The role of jets in exploding supernovae and in shaping their remnants, Noam Soker, Res.Astron.Astrophys. 22 (2022) 122003, arXiv:2208.04875.
[Soker:2022vdg]
[2-18]
Diffuse supernova neutrino background, Anna M. Suliga, arXiv:2207.09632, 2022.
[Suliga:2022ica]
[2-19]
Fast Flavor Transformations, Sherwood Richers, Manibrata Sen, arXiv:2207.03561, 2022.
[Richers:2022zug]
[2-20]
Equation of state in neutron stars and supernovae, Kohsuke Sumiyoshi, Toru Kojo, Shun Furusawa, arXiv:2207.00033, 2022.
[Sumiyoshi:2022uoj]
[2-21]
On the Determination of the Evolutionary Status of Supernova Remnants from Radio Observation Data, Dejan Urosevic, Publ.Astron.Soc.Pac. 134 (2022) 061001, arXiv:2205.04223.
[Urosevic:2022ces]
[2-22]
Neutrino Flavor Conversions in High-Density Astrophysical and Cosmological Environments, Francesco Capozzi, Ninetta Saviano, Universe 8 (2022) 94, arXiv:2202.02494.
[Capozzi:2022slf]
[2-23]
Neutrino Astronomy with IMB, Kamiokande and Super Kamiokande, John M. LoSecco, arXiv:2202.01676, 2022.
[LoSecco:2022rdg]
[2-24]
Equation of state and neutrino transfer in supernovae and neutron stars, Kohsuke Sumiyoshi, Eur.Phys.J.A 57 (2021) 331, arXiv:2112.11159.
[Sumiyoshi:2021iqq]
[2-25]
Superluminous supernovae: an explosive decade, Matt Nicholl, Astron.Geophys. 62 (2021) 5.34-5.42, arXiv:2109.08697.
[Nicholl:2021pou]
[2-26]
The SNO+ Experiment, V. Albanese et al. (SNO+), JINST 16 (2021) P08059, arXiv:2104.11687.
[SNO:2021xpa]
[2-27]
Physics of Superluminous Supernovae, Ke-Jung Chen, Int.J.Mod.Phys. D30 (2021) 2130001, arXiv:2103.05230.
[Chen:2021wuo]
[2-28]
Synthesis of radioactive elements in novae and supernovae and their use as a diagnostic tool, J. Isern, M. Hernanz, E. Bravo, S. Grebenev, P. Jean, M. Renaud, T. Siegert, J. Vink, arXiv:2101.02738, 2021.
[2101.02738]
[2-29]
Supernova neutrino detection through neutron emission by nuclei, Pijushpani Bhattacharjee, Kamales Kar, Eur.Phys.J.ST 230 (2021) 505-515, arXiv:2012.14888.
[Bhattacharjee:2020rhs]
[2-30]
The Explosion Mechanism of Core-Collapse Supernovae and Its Observational Signatures, Ondrej Pejcha, arXiv:2012.11873, 2020.
[Pejcha:2020hpi]
[2-31]
New Developments in Flavor Evolution of a Dense Neutrino Gas, Irene Tamborra, Shashank Shalgar, Ann.Rev.Nucl.Part.Sci. 71 (2021) 165-188, arXiv:2011.01948.
[Tamborra:2020cul]
[2-32]
Physical, numerical, and computational challenges of modeling neutrino transport in core-collapse supernovae, Anthony Mezzacappa, Eirik Endeve, O.E. Bronson Messer, Stephen W. Bruenn, Liv.Rev.Comput.Astrophys. 6 (2020) 4, arXiv:2010.09013.
[Mezzacappa:2020oyq]
[2-33]
Gravitational Waves from Core-Collapse Supernovae, Ernazar Abdikamalov, Giulia Pagliaroli, David Radice, arXiv:2010.04356, 2020.
[Abdikamalov:2020jzn]
[2-34]
Core-Collapse Supernova Explosion Theory, Adam Burrows, David Vartanyan, Nature 589 (2021) 29-39, arXiv:2009.14157.
[Burrows:2020qrp]
[2-35]
Hydrodynamics of core-collapse supernovae and their progenitors, B. Muller, Astrophysics 6 (2020) 3, arXiv:2006.05083.
[Muller:2020ard]
[2-36]
Theoretical prediction of presupernova neutrinos and their detection, Chinami Kato, Koji Ishidoshiro, Takashi Yoshida, Ann.Rev.Nucl.Part.Sci. 70 (2020) 121-145, arXiv:2006.02519.
[Kato:2020hlc]
[2-37]
Supernovae Ia in 2019 (review): a rising demand for spherical explosions, Noam Soker, New Astron.Rev. 87 (2019) 101535, arXiv:1912.01550.
[Soker:2019aiy]
[2-38]
Grand Unified Neutrino Spectrum at Earth, Edoardo Vitagliano, Irene Tamborra, Georg Raffelt, Rev.Mod.Phys. 92 (2020) 045006, arXiv:1910.11878.
[Vitagliano:2019yzm]
[2-39]
Physics of radiation mediated shocks and its applications to GRBs, supernovae, and neutron star mergers, Amir Levinson, Ehud Nakar, Phys.Rept. 866 (2020) 1-46, arXiv:1909.10288.
[Levinson:2019usn]
[2-40]
New Regimes in the Observation of Core-Collapse Supernovae, Maryam Modjaz, Claudia P. Gutierrez, Iair Arcavi, Nat.Astron. 3 (2019) 717-724, arXiv:1908.02476.
[Modjaz:2019flw]
[2-41]
Machine Learning and the future of Supernova Cosmology, Emille E. O. Ishida, arXiv:1908.02315, 2019.
[1908.02315]
[2-42]
Observational properties of extreme supernovae, Cosimo Inserra, Nat.Astron. 3 (2019) 697-705, arXiv:1908.02314.
[Inserra:2019ciq]
[2-43]
Observational Properties of Thermonuclear Supernovae, Saurabh W. Jha, Kate Maguire, Mark Sullivan, Nat.Astron. 3 (2019) 706-716, arXiv:1908.02303.
[Jha:2019svc]
[2-44]
Current Status of r-Process Nucleosynthesis, T. Kajino, W. Aoki, A. B. Balantekin, R. Diehl, M. A. Famiano, G. J. Mathews, Prog.Part.Nucl.Phys. 107 (2019) 109-166, arXiv:1906.05002.
[Kajino:2019abv]
[2-45]
Neutrino Emission as Diagnostics of Core-Collapse Supernovae, B. Muller, Ann.Rev.Nucl.Part.Sci. 69 (2019) 253-278, arXiv:1904.11067.
[Muller:2019upo]
[2-46]
The Next Generation of Cosmological Measurements with Type Ia Supernovae, Dan Scolnic et al., arXiv:1903.05128, 2019.
[Scolnic:2019apa]
[2-47]
The Energy Sources of Superluminous Supernovae, S. Q. Wang, L. J. Wang, Z. G. Dai, Res.Astron.Astrophys. 19 (2019) 063, arXiv:1902.07943.
[Wang:2019qob]
[2-48]
Neutrino physics with dark matter detectors, Bhaskar Dutta, Louis E. Strigari, Ann.Rev.Nucl.Part.Sci. 69 (2019) 137-161, arXiv:1901.08876.
[Dutta:2019oaj]
[2-49]
Neutrino nucleosynthesis: An overview, Karlheinz Langanke, Gabriel Martinez-Pinedo, Andre Sieverding, arXiv:1901.03741, 2019.
[Langanke:2019ggn]
[2-50]
The Most Luminous Supernovae, Avishay Gal-Yam, Ann.Rev.Astron.Astrophys. 57 (2019) 305-333, arXiv:1812.01428.
[Gal-Yam:2018out]
[2-51]
Astrophysical Nuclear Reactions: from Hydrogen Burning to Supernovae Explosions, Francesco Cuda, arXiv:1806.11179, 2018.
[Cuda:2018zoq]
[2-52]
Models for Type Ia supernovae and related astrophysical transients, Friedrich K. Roepke, Stuart A. Sim, Space Sci.Rev. 214 (2018) 72, arXiv:1805.07268.
[Roepke:2018gqe]
[2-53]
r-Process Nucleosynthesis: Connecting Rare-Isotope Beam Facilities with the Cosmos, C. J. Horowitz et al., J.Phys. G46 (2019) 083001, arXiv:1805.04637.
[Horowitz:2018ndv]
[2-54]
Nuclear Equation of state for Compact Stars and Supernovae, G. Fiorella Burgio, Anthea F. Fantina, Astrophys.Space Sci.Libr. 457 (2018) 255-335, arXiv:1804.03020.
[FiorellaBurgio:2018dga]
[2-55]
The Morphologies and Kinematics of Supernova Remnants, Laura A. Lopez, Robert A. Fesen, arXiv:1804.00024, 2018.
[Lopez:2018ssz]
[2-56]
Superluminous supernovae, Takashi J. Moriya, Elena I. Sorokina, Roger A. Chevalier, Space Sci.Rev. 214 (2018) 59, arXiv:1803.01875.
[Moriya:2018sig]
[2-57]
On the Progenitors of Type Ia Supernovae, Mario Livio, Paolo Mazzali, Phys.Rept. 736 (2018) 1-23, arXiv:1802.03125.
[Livio:2018rue]
[2-58]
Neutrinos, supernovae, and the origin of the heavy elements, Yong-Zhong Qian, Sci.China Phys.Mech.Astron. 61 (2018) 049501, arXiv:1801.09554.
[Qian:2018ngd]
[2-59]
Mass-accreting white dwarfs and type Ia supernovae, Bo Wang, Res.Astron.Astrophys. 18 (2018) 49, arXiv:1801.04031.
[Wang:2018pac]
[2-60]
Circumstellar interaction in supernovae in dense environments - an observational perspective, Poonam Chandra, Space Sci.Rev. 214 (2018) 27, arXiv:1712.07405.
[Chandra:2017aev]
[2-61]
Infrared Emission from Supernova Remnants: Formation and Destruction of Dust, Brian J. Williams, Tea Temim, arXiv:1711.01002, 2017.
[Williams:2017fdd]
[2-62]
Turbulence in Core-Collapse Supernovae, David Radice et al., J.Phys. G45 (2018) 053003, arXiv:1710.01282.
[Radice:2017kmj]
[2-63]
What can be learned from a future supernova neutrino detection?, Shunsaku Horiuchi, James P Kneller, J.Phys. G45 (2018) 043002, arXiv:1709.01515.
[Horiuchi:2018ofe]
[2-64]
Dynamical Evolution and Radiative Processes of Supernova Remnants, Stephen P. Reynolds, arXiv:1708.05386, 2017.
[Reynolds:2017xad]
[2-65]
Supernova Signatures of Neutrino Mass Ordering, Kate Scholberg, J.Phys. G45 (2018) 014002, arXiv:1707.06384.
[Scholberg:2017czd]
[2-66]
Supernovae from massive stars, Marco Limongi, arXiv:1706.01913, 2017.
[Limongi:2017ggo]
[2-67]
Nucleosynthesis in thermonuclear supernovae, Ivo R. Seitenzahl, Dean M. Townsley, arXiv:1704.00415, 2017.
[Seitenzahl:2017ctl]
[2-68]
Combustion in thermonuclear supernova explosions, Friedrich K. Roepke, arXiv:1703.09274, 2017.
[Roepke:2017our]
[2-69]
Neutrino-driven Explosions, H.-Th. Janka, arXiv:1702.08825, 2017.
[Janka:2017vcp]
[2-70]
Neutrino Emission from Supernovae, H.-Th. Janka, arXiv:1702.08713, 2017.
[Janka:2017vlw]
[2-71]
Spectra of supernovae in the nebular phase, A. Jerkstrand, arXiv:1702.06702, 2017.
[Jerkstrand:2017ruq]
[2-72]
Supernova Remnants as Clues to Their Progenitors, Daniel Patnaude, Carles Badenes, arXiv:1702.03228, 2017.
[Patnaude:2017uyc]
[2-73]
Supernova of 1006 (G327.6+14.6), Satoru Katsuda, arXiv:1702.02054, 2017.
[Katsuda:2017rwh]
[2-74]
Thermal and non-thermal emission from circumstellar interaction, Roger A. Chevalier, Claes Fransson, arXiv:1612.07459, 2016.
[Chevalier:2016hzo]
[2-75]
The effects of supernovae on the dynamical evolution of binary stars and star clusters, Richard J. Parker, arXiv:1609.05908, 2016.
[1609.05908]
[2-76]
Massive Computation for Understanding Core-Collapse Supernova Explosions, Christian D. Ott, Comput.Sci.Eng. 18 (2016) 78-92, arXiv:1608.08069.
[Ott:2016rsr]
[2-77]
The Status of Multi-Dimensional Core-Collapse Supernova Models, B. Muller, Publ.Astron.Soc.Austral. 33 (2016) 48, arXiv:1608.03274.
[Muller:2016izw]
[2-78]
Shock breakout theory, Eli Waxman, Boaz Katz, arXiv:1607.01293, 2016.
[Waxman:2016qyw]
[2-79]
Frontiers in Nuclear Astrophysics, Carlos A. Bertulani, Toshitaka Kajino, Prog.Part.Nucl. Phys. 89 (2016) 56-100, arXiv:1604.03197.
[Bertulani:2016eru]
[2-80]
A review of the impact of sterile neutrino dark matter on core-collapse supernovae, MacKenzie Warren, Grant J. Mathews, Matthew Meixner, Jun Hidaka, Toshitaka Kajino, Int.J.Mod.Phys. A31 (2016) 1650137, arXiv:1603.05503.
[Warren:2016slz]
[2-81]
Physics of Core-Collapse Supernovae in Three Dimensions: a Sneak Preview, H.-Thomas Janka, Tobias Melson, Alexander Summa, Ann.Rev.Nucl.Part.Sci. 66 (2016) 341-375, arXiv:1602.05576.
[Janka:2016fox]
[2-82]
The Equation of State of Hot, Dense Matter and Neutron Stars, James M. Lattimer, M. Prakash, Phys.Rept. 621 (2016) 127-164, arXiv:1512.07820.
[Lattimer:2015nhk]
[2-83]
Supernova Neutrinos: Production, Oscillations and Detection, Alessandro Mirizzi et al., Riv. Nuovo Cim. 39 (2016) 1, arXiv:1508.00785.
[Mirizzi:2015eza]
[2-84]
Observational constraints on the progenitors of core-collapse supernovae : the case for missing high mass stars, S. J. Smartt, Publ.Astron.Soc.Austral. 32 (2015) e016, arXiv:1504.02635.
[Smartt:2015sfa]
[2-85]
Neutrino-nucleus reactions and their role for supernova dynamics and nucleosynthesis, K. G. Balasi, K. Langanke, G. Martinez-Pinedo, Prog. Part. Nucl. Phys. 85 (2015) 33-81, arXiv:1503.08095.
[Balasi:2015dba]
[2-86]
The explosion mechanism of core-collapse supernovae: progress in supernova theory and experiments, Thierry Foglizzo et al., Publ.Astron.Soc.Austral. 32 (2015) 9, arXiv:1501.01334.
[Foglizzo:2015dma]
[2-87]
Supernovae and the Galactic Ecosystem, Q. Daniel Wang, IAU Symp. 296 (2014) 273, arXiv:1401.6209.
[Wang:2014gpa]
[2-88]
Diverse, massive-star-associated sources for elements heavier than Fe and the roles of neutrinos, Yong-Zhong Qian, J. Phys. G41 (2014) 044002, arXiv:1310.4462.
[Qian:2013fsa]
[2-89]
Neutrinos in Cosmology and Astrophysics, A.B. Balantekin, G. M. Fuller, Prog.Part.Nucl. Phys. 71 (2013) 162-166, arXiv:1303.3874.
[Balantekin:2013gqa]
[2-90]
Neutrino astrophysics, Cristina Volpe, Ann.Phys.(Berlin) 525 (2013) 588-599, arXiv:1303.1681.
[Volpe:2013kxa]
[2-91]
Neutrino Astrophysics, W. C. Haxton, arXiv:1209.3743, 2012.
[Haxton:2012bk]
[2-92]
Explosion Mechanisms of Core-Collapse Supernovae, H.-Thomas Janka, Ann. Rev. Nucl. Part. Sci. 62 (2012) 407-451, arXiv:1206.2503.
[Janka:2012wk]
[2-93]
Supernova Neutrino Detection, Kate Scholberg, J. Phys. Conf. Ser. 375 (2012) 042036, arXiv:1205.6003.
[Scholberg:2012id]
[2-94]
Equation of State for Proto-Neutron Star, Gang Shen, arXiv:1202.5791, 2012.
[Shen:2012fq]
[2-95]
Massive Stars and their Supernovae, Friedrich-Karl Thielemann, Raphael Hirschi, Matthias Liebendorfer, Roland Diehl, Lect.Notes Phys. 812 (2011) 153, arXiv:1008.2144.
[Thielemann:2010ux]
[2-96]
Diffuse supernova neutrinos at underground laboratories, Cecilia Lunardini, Astropart.Phys. 79 (2016) 49-77, arXiv:1007.3252.
[Lunardini:2010ab]
[2-97]
The Diffuse Supernova Neutrino Background, John F. Beacom, Ann. Rev. Nucl. Part. Sci. 60 (2010) 439, arXiv:1004.3311.
[Beacom:2010kk]
[2-98]
Low energy neutrino scattering measurements at future Spallation Source facilities, R. Lazauskas, C. Volpe, J. Phys. G37 (2010) 125101, arXiv:1004.0310.
[Lazauskas:2010rh]
[2-99]
Collective Neutrino Oscillations, Huaiyu Duan, George M. Fuller, Yong-Zhong Qian, Ann. Rev. Nucl. Part. Sci. 60 (2010) 569-594, arXiv:1001.2799.
[Duan:2010bg]
[2-100]
Search for CP violation in the lepton sector, Cristina Volpe, Prog. Part. Nucl. Phys. 64 (2010) 325-333, arXiv:0911.4314.
[Volpe:2009tc]
[2-101]
Neutrino flavour transformation in supernovae, Huaiyu Duan, James P Kneller, J. Phys. G36 (2009) 113201, arXiv:0904.0974.
[Duan:2009cd]
[2-102]
The Gravitational Wave Signature of Core-Collapse Supernovae, Christian D. Ott, Class. Quant. Grav. 26 (2009) 063001, arXiv:0809.0695.
[Ott:2008wt]
[2-103]
The r-process of stellar nucleosynthesis: Astrophysics and nuclear physics achievements and mysteries, M. Arnould, S. Goriely, K. Takahashi, Phys. Rept. 450 (2007) 97-213, arXiv:0705.4512.
[Arnould:2007gh]
[2-104]
Supernova neutrinos, from back of the envelope to supercomputer, Christian Y. Cardall, arXiv:astro-ph/0701831, 2007.
[Cardall:2007dy]
[2-105]
Theory of Core-Collapse Supernovae, H.-Th. Janka et al., Phys. Rept. 442 (2007) 38-74, arXiv:astro-ph/0612072.
[Janka:2006fh]
[2-106]
The Supernova - Gamma-Ray Burst Connection, S. E. Woosley, J. S. Bloom, Ann. Rev. Astron. Astrophys. 44 (2006) 507-556, arXiv:astro-ph/0609142.
[Woosley:2006fn]
[2-107]
The Physics of Core-Collapse Supernovae, S. Woosley, H.-T. Janka, Nature Phys. 1 (2006) 147-154, arXiv:astro-ph/0601261.
[Woosley:2005cha]
[2-108]
The physics of dense hadronic matter and compact stars, Armen Sedrakian, Prog. Part. Nucl. Phys. 58 (2007) 168-246, arXiv:nucl-th/0601086.
[Sedrakian:2006mq]
[2-109]
Six Years of Chandra Observations of Supernova Remnants, Martin C. Weisskopf, John P. Hughes, arXiv:astro-ph/0511327, 2005.
[Weisskopf:2005pf]
[2-110]
Explosion Mechanism, Neutrino Burst, and Gravitational Wave in Core-Collapse Supernovae, Kei Kotake, Katsuhiko Sato, Keitaro Takahashi, Rept. Prog. Phys. 69 (2006) 971, arXiv:astro-ph/0509456.
[Kotake:2005zn]
[2-111]
Supernovae: Explosions in the Cosmos, Paingalil Kunjan Suresh, V. H. Satheesh Kumar, Science Reporter 42 (2005) 20, arXiv:astro-ph/0504597.
[Suresh:2005zk]
[2-112]
Progenitors of Core-Collapse Supernovae, John J. Eldridge, arXiv:astro-ph/0502046, 2005.
[Eldridge:2005pv]
[2-113]
Type Ia Supernovae and Cosmology, Alexei V. Filippenko, Astrophys.Space Sci.Libr. 332 (2005) 97, arXiv:astro-ph/0410609.
[Filippenko:2004ub]
[2-114]
Relic neutrino background from cosmological supernovae, Shin'ichiro Ando, Katsuhiko Sato, New J. Phys. 6 (2004) 170, arXiv:astro-ph/0410061.
[Ando:2004hc]
[2-115]
The Physics of Neutron Stars, J.M. Lattimer, M. Prakash, Science 304 (2004) 536-542, arXiv:astro-ph/0405262.
[Lattimer:2004pg]
[2-116]
Astrophysical Neutrino Telescopes, A. B. McDonald et al., Rev. Sci. Instrum. 75 (2004) 293, arXiv:astro-ph/0311343.
[McDonald:2003xn]
[2-117]
Supernova Science at Spallation Neutron Sources, W. R. Hix, A. Mezzacappa, O. E. B. Messer, S. W. Bruenn, J. Phys. G29 (2003) 2523, arXiv:astro-ph/0310763.
[Hix:2003vv]
[2-118]
Advances in r-Process Nucleosynthesis, John J. Cowan, Christopher Sneden, arXiv:astro-ph/0309802, 2003.
[Cowan:2003ej]
[2-119]
The Accelerating Universe and Dark Energy: Evidence from Type Ia Supernovae, A. V. Filippenko, Lect. Notes Phys. 646 (2004) 191, arXiv:astro-ph/0309739.
[Filippenko:2003ta]
[2-120]
Supernova Neutrino-Nucleus Astrophysics, A. B. Balantekin, G. M. Fuller, J. Phys. G29 (2003) 2513, arXiv:astro-ph/0309519.
[Balantekin:2003ip]
[2-121]
Shocks and Particle Acceleration in Supernova Remnants: Observational Features, Jacco Vink, Adv.Space Res. 33 (2004) 356, arXiv:astro-ph/0304176.
[Vink:2003tz]
[2-122]
Optical Light Curves of Supernovae, Bruno Leibundgut, Nicholas B.Suntzeff, Lect.Notes Phys. (2003), arXiv:astro-ph/0304112.
[Leibundgut:2003cp]
[2-123]
Measuring Cosmology with Supernovae, Saul Perlmutter, Brian P. Schmidt, Lect. Notes Phys. 598 (2003) 195-217, arXiv:astro-ph/0303428.
[Perlmutter:2003kf]
[2-124]
The Historical Supernovae, D. A. Green, F. R. Stephenson, Lect.Notes.Phys. (2003), arXiv:astro-ph/0301603.
[Green:2003ir]
[2-125]
The Origin of the Heavy Elements: Recent Progress in the Understanding of the r-Process, Yong-Zhong Qian, Prog. Part. Nucl. Phys. 50 (2003) 153, arXiv:astro-ph/0301422.
[Qian:2003wd]
[2-126]
Physics of SNeIa and Cosmology, P. Hoeflich, C. Gerardy, E. Linder, H. Marion, Lect.Notes Phys. 635 (2003) 203, arXiv:astro-ph/0301334.
[Hoflich:2003bg]
[2-127]
Classification of Supernovae, Massimo Turatto, Lect.Notes Phys. 598 (2003) 21, arXiv:astro-ph/0301107.
[Turatto:2003np]
[2-128]
Explosion Mechanisms of Massive Stars, H.-Th. Janka et al., arXiv:astro-ph/0212314, 2002.
[Janka:2002eg]
[2-129]
Absolute values of neutrino masses: Status and prospects, S. M. Bilenky, C. Giunti, J. A. Grifols, E. Masso, Phys. Rep. 379 (2003) 69-148, arXiv:hep-ph/0211462.
[Bilenky:2002aw]
[2-130]
Neutrino-Matter Interaction Rates in Supernovae: The Essential Microphysics of Core Collapse, A. Burrows, T. A. Thompson, arXiv:astro-ph/0211404, 2002.
[Burrows:2002jv]
[2-131]
Supernova remnants and gamma-ray sources, Diego F. Torres, Gustavo E. Romero, Thomas M. Dame, Jorge A. Combi, Yousaf M. Butt, Phys. Rep. 382 (2003) 303, arXiv:astro-ph/0209565.
[Torres:2002af]
[2-132]
Observations and Theory of Supernovae, J. Craig Wheeler, Am. J. Phys. 71 (2003) 11, arXiv:astro-ph/0209514.
[Wheeler:2002gw]
[2-133]
Nuclear weak interaction processes in stars, K. Langanke, G. Martinez-Pinedo, Rev. Mod. Phys. 75 (2003) 819-862, arXiv:nucl-th/0203071.
[Langanke:2002ab]
[2-134]
The evolution and explosion of massive stars, S. E. Woosley, A. Heger, T. A. Weaver, Rev. Mod. Phys. 74 (2002) 1015-1071.
[Woosley-Heger-Weaver-RMP74-2002]
[2-135]
Element Synthesis in Stars, F. K. Thielemann et al., Prog. Part. Nucl. Phys. 46 (2001) 5-22, arXiv:astro-ph/0101476.
[Thielemann:2001rn]
[2-136]
Observational neutrino astrophysics, M. Koshiba, Phys. Rep. 220 (1992) 229-381.
[Koshiba:1992yb]
[2-137]
Neutrino astronomy, Y. Totsuka, Rept. Prog. Phys. 55 (1992) 377-430.
[Totsuka:1992dm]
[2-138]
Galactic and extragalactic supernova rates, S. van den Bergh, G. A. Tammann, Ann. Rev. Astron. Astrophys. 29 (1991) 363-407.
[vandenBergh-Tammann-ARAA29-1991]
[2-139]
Supernova mechanisms, H. A. Bethe, Rev. Mod. Phys. 62 (1990) 801-866.
[Bethe:1990mw]
[2-140]
The number of neutrino species, D. Denegri, B. Sadoulet, M. Spiro, Rev. Mod. Phys. 62 (1990) 1.
[Denegri:1989if]
[2-141]
New physics from Supernova SN1987A, D. N. Schramm, J. W. Truran, Phys. Rept. 189 (1990) 89-126.
[Schramm:1990pf]
[2-142]
1987A: The greatest supernova since Kepler, V. Trimble, Rev. Mod. Phys. 60 (1988) 859-871.
[Trimble-RMP-60-859-1988]
[2-143]
1987A: The greatest supernova since Kepler, V. Trimble, Rev. Mod. Phys. 60 (1988) 859-871.
[Trimble-RMP60-859-1988]
[2-144]
The Physics of supernova explosions, S. E. Woosley, T. A. Weaver, Ann. Rev. Astron. Astrophys. 24 (1986) 205.
[Woosley:1986ta]
[2-145]
Supernovae. Part II: the aftermath, V. Trimble, Rev. Mod. Phys. 55 (1983) 511-563.
[Trimble-RMP-55-511-1983]
[2-146]
Supernovae. Part I: the events, V. Trimble, Rev. Mod. Phys. 54 (1982) 1183-1224.
[Trimble-RMP-54-1183-1982]
[2-147]
The Weak Neutral Current and Its Effects in Stellar Collapse, Daniel Z. Freedman, David N. Schramm, David L. Tubbs, Ann. Rev. Nucl. Part. Sci. 27 (1977) 167-207.
[Freedman:1977xn]
[2-148]
Synthesis of the Elements in Stars, E. Margaret Burbidge, G. R. Burbidge, William A. Fowler, F. Hoyle, Rev. Mod. Phys. 29 (1957) 547.
[Burbidge-Burbidge-Fowler-Hoyle-RMP29-547-1957]

3 - Reviews - Talks

[3-1]
Core-collapse supernovae and neutrino properties, Maria Cristina Volpe, J.Phys.Conf.Ser. 2502 (2023) 012008, arXiv:2205.13868. 10th Symposium on Large TPCs for low-energy rare event detection, 15-17 December 2021.
[Volpe:2022hex]
[3-2]
A Brief History of the Co-evolution of Supernova Theory with Neutrino Physics, Adam Burrows, arXiv:1812.05612, 2018. Conference on the History of the Neutrino, held in Paris France, Sept. 7-9, 2018.
[Burrows:2018qjy]
[3-3]
Introduction to neutrino astronomy, Andrea Gallo Rosso, Carlo Mascaretti, Andrea Palladino, Francesco Vissani, Eur.Phys.J.Plus 133 (2018) 267, arXiv:1806.06339. 4th Azarquiel School of Astronomy, June 2017, Porto Paolo di Capo Passero, Syracuse (Italy).
[GalloRosso:2018omb]
[3-4]
Neutrino astrophysics and its connections to nuclear physics, Maria Cristina Volpe, J.Phys.Conf.Ser. 1056 (2018) 012060, arXiv:1802.07478. Conference on Neutrino and Nuclear Physics (CNNP2017), 15-21 October, Catania.
[Volpe:2018zpr]
[3-5]
Supernovae in SuperK-Gd and other experiments, Lluis Marti-Magro, arXiv:1705.00675, 2017. NuPhys2016 (London, 12-14 December 2016).
[Marti-Magro:2017nbn]
[3-6]
The Core-Collapse Supernova Explosion Mechanism, B. Muller, IAU Symp. 324 (2016) 17-24, arXiv:1702.06940.
[Muller:2016hsh]
[3-7]
Neutrino Astrophysics, Cristina Volpe, Acta Phys.Polon.Supp. 9 (2016) 769, arXiv:1609.06747. 52th Winter School of Theoretical Physics, Ladek Zdroj, 14-21 February 2016.
[Volpe:2016bkp]
[3-8]
Nuclear Physics and Astrophysics of Neutrino Oscillations, A.B. Balantekin, JPS Conf.Proc. 14 (2017) 010701, arXiv:1609.02207. NIC 2016.
[Balantekin:2016ndb]
[3-9]
Detection of Supernova Neutrinos, Ines Gil-Botella, arXiv:1605.02204, 2016. NuPhys2015 (London, 16-18 December 2015).
[Gil-Botella:2016sfi]
[3-10]
Supernova Neutrinos: Theory, Irene Tamborra, arXiv:1604.07332, 2016. NuPhys2015 (London, 16-18 December 2015).
[Tamborra:2016lpf]
[3-11]
Neutrino astrophysics : recent advances and open issues, Cristina Volpe, J. Phys. Conf. Ser. 631 (2015) 012048, arXiv:1503.01355. DISCRETE 2014.
[Volpe:2015yya]
[3-12]
Recent advances in neutrino astrophysics, Cristina Volpe, PoS FFP14 (2016) 127, arXiv:1411.6533. Frontiers of Fundamental Physics 2014, July 15-18, Marseille.
[Volpe:2014rca]
[3-13]
Current and Future Liquid Argon Neutrino Experiments, Georgia Karagiorgi, AIP Conf.Proc. 1663 (2015) 100001, arXiv:1304.2083. NuInt'12.
[Karagiorgi:2013cwa]
[3-14]
Review of Multi-messenger observations of neutron rich matter, C. J. Horowitz, arXiv:1212.6405, 2012. Xth Quark Confinement and the Hadron Spectrum, Munich.
[Horowitz:2012za]
[3-15]
Core-Collapse Supernovae, Neutrinos, and Gravitational Waves, C. D. Ott et al., Nucl. Phys. Proc. Suppl. 235-236 (2013) 381-387, arXiv:1212.4250. Neutrino 2012, Kyoto, Japan.
[Ott:2012jq]
[3-16]
Neutrino flavour conversion and supernovae, Cristina Volpe, AIP Conf.Proc. 1560 (2013) 306-313, arXiv:1210.0176. CIPANP 2012, May 29 to June 3, Florida.
[Volpe:2012xqx]
[3-17]
Neutrinos and the stars, Georg Raffelt, Proc.Int.Sch.Phys.Fermi 182 (2012) 61-143, arXiv:1201.1637. ISAPP School 'Neutrino Physics and Astrophysics', 26 July-5 August 2011, Villa Monastero, Varenna, Italy.
[Raffelt:2012kt]
[3-18]
Neutrinos and core-collapse supernovae, Cristina Volpe, arXiv:1108.6285, 2011. XIV International Workshop on 'Neutrino Telescopes', March 15-18, 2011, Venice.
[Volpe:2011ff]
[3-19]
Physics and Astrophysics Opportunities with Supernova Neutrinos, Basudeb Dasgupta, PoS ICHEP2010 (2010) 294, arXiv:1005.2681. Electroweak Session of Rencontres de Moriond 2010.
[Dasgupta:2010gr]
[3-20]
Significance of neutrino cross-sections for astrophysics, A.B. Balantekin, AIP Conf. Proc. 1189 (2009) 11-15, arXiv:0909.0226. NUINT2009 (6th International Workshop on Neutrino-Nucleus Interactions in the Few-GeV Region), May 18-22, 2009, Sitges, Barcelona, Spain.
[Balantekin:2009qq]
[3-21]
Massive stars as thermonuclear reactors and their explosions following core collapse, Alak Ray, Astrophys.Space Sci.Proc. (2010) 209-275, arXiv:0907.5407. Kodai School on Synthesis of Elements in Stars.
[Ray:2009xa]
[3-22]
Opportunities for Neutrino Physics at the Spallation Neutron Source (SNS), Yu Efremenko, W R Hix, J. Phys. Conf. Ser. 173 (2009) 012006, arXiv:0807.2801. 2008 Carolina International Symposium on Neutrino Physics.
[Efremenko:2008an]
[3-23]
Physics of Supernovae: theory, observations, unresolved problems, D. K. Nadyozhin, arXiv:0804.4350, 2008. Baikal Young Scientists' International School (BAYSIS), 17-22 September 2007, Irkutsk, Russia.
[Nadyozhin:2008is]
[3-24]
Neutrinos from a core collapse supernova, Amol Dighe, AIP Conf. Proc. 981 (2008) 75-79, arXiv:0712.4386. NuFact07.
[Dighe:2007ks]
[3-25]
Neutrino-driven explosions twenty years after SN1987A, H. -Th. Janka, A. Marek, F. -S. Kitaura, AIP Conf. Proc. 937 (2007) 144-154, arXiv:0706.3056. Supernova 1987A: 20 Years After: Supernovae and Gamma-Ray Bursters.
[Janka:2007yu]
[3-26]
Supernova neutrinos, Christian Y. Cardall, Nucl. Phys. Proc. Suppl. 168 (2007) 96-102, arXiv:astro-ph/0703334. NOW2006, Conca Specchiulla, Italy, September 9-16, 2006.
[Cardall:2007ha]
[3-27]
Supernova neutrino observations: What can we learn?, Georg G. Raffelt, Nucl. Phys. Proc. Suppl. 221 (2011) 218-229, arXiv:astro-ph/0701677. ]Neutrino 2006.
[Raffelt:2007nv]
[3-28]
Supernova neutrino detection, K. Scholberg, Nucl. Phys. Proc. Suppl. 221 (2011) 248-253, arXiv:astro-ph/0701081. Neutrino 2006, Santa Fe.
[Scholberg:2007nu]
[3-29]
Nuclear Astrophysics: CIPANP 2006, W. C. Haxton, AIP Conf. Proc. 870 (2006) 33-43, arXiv:nucl-th/0609006. CIPANP 2006.
[Haxton:2006ae]
[3-30]
Nucleosynthesis in neutrino heated matter: The vp-process and the r-process, G. Martinez-Pinedo et al., PoS NIC-IX (2006) 064, arXiv:astro-ph/0608490. NIC-IX, International Symposium on Nuclear Astrophysics - Nuclei in the Cosmos - IX, CERN, Geneva, Switzerland, 25-30 June, 2006.
[Martinez-Pinedo:2006pdr]
[3-31]
From progenitor to afterlife, Roger A. Chevalier, arXiv:astro-ph/0607422, 2006. 2006 STScI May Symposium on Massive Stars.
[Chevalier:2006af]
[3-32]
Supernova and GRB connection: Observations and Questions, Massimo Della Valle, AIP Conf. Proc. 836 (2006) 367-379, arXiv:astro-ph/0604110. 16th Annual October Astrophysics Conference in Maryland, 'Gamma Ray Bursts in the Swift Era'.
[DellaValle:2006yq]
[3-33]
The Cosmic Stellar Birth and Death Rates, John F. Beacom, New Astron. Rev. 50 (2006) 561-565, arXiv:astro-ph/0602101. Astronomy with Radioactivities V, Clemson Univ., Sept. 2005.
[Beacom:2006wz]
[3-34]
Supernovae Shedding Light on Gamma-Ray Bursts, M. Della Valle, Nuovo Cim. 28C (2005) 563, arXiv:astro-ph/0504517. 4th Workshop Gamma-Ray Bursts in the Afterglow Era, Rome,18-22 October 2004.
[DellaValle:2005cr]
[3-35]
High Redshift Supernovae: Cosmological Implications, Nino Panagia, Nuovo Cim. B120 (2005) 667, arXiv:astro-ph/0502247. Vulcano Workshop 2004, Frontier Objects in Astrophysics and Particle Physics.
[Panagia:2005hr]
[3-36]
Supernova neutrino challenges, Christian Y. Cardall, Nucl. Phys. Proc. Suppl. 145 (2005) 295, arXiv:astro-ph/0502232. NOW2004, Conca Specchiulla (Otranto, Italy), September 11-17, 2004.
[Cardall:2005zy]
[3-37]
Supernova Neutrino Oscillations, Georg G. Raffelt, Phys. Scripta T121 (2005) 102, arXiv:hep-ph/0501049. Nobel Symposium 129 - Neutrino Physics, Haga Slott, Enkoping, Sweden, August 19-24, 2004.
[Raffelt:2005fb]
[3-38]
Physics of Supernovae, Dmitrij K. Nadyozhin, V. S. Imshennik, Int. J. Mod. Phys. A20 (2005) 6597, arXiv:astro-ph/0501002. 19th European Cosmic Ray Symposium (ECRS 2004), Florence, Italy, 30 Aug - 3 Sep 2004.
[Nadyozhin:2005ji]
[3-39]
Supernova neutrino detection, M. Selvi, Nucl. Phys. Proc. Suppl. 145 (2005) 339-342.
[Selvi:2005ac]
[3-40]
Three-flavour effects and CP- and T-violation in neutrino oscillations, Evgeny Akhmedov, Phys. Scripta T121 (2005) 65, arXiv:hep-ph/0412029. Nobel Symposium 129 - Neutrino Physics, Haga Slott, Enkoping, Sweden, August 19-24, 2004.
[Akhmedov:2004ve]
[3-41]
Supernovae and Their Massive Star Progenitors, Alexei V. Filippenko, Publ.Astron.Soc.Pac. (2004), arXiv:astro-ph/0412029. Science Symposium on the Fate of the Most Massive Stars, Grand Teton National Park, Wyoming, 23-28 May 2004.
[Filippenko:2004mu]
[3-42]
The Supernovae Associated with Gamma-Ray Bursts, Thomas Matheson, ASP Conf.Ser. (2004), arXiv:astro-ph/0410668. Supernovae as Cosmological Lighthouses, Padua, 2004.
[Matheson:2004ge]
[3-43]
Stellar explosions: from supernovae to gamma-ray bursts, Konstantin Postnov, NATO Adv.Study Inst.Ser.C.Math.Phys.Sci. (2004) 95-117, arXiv:astro-ph/0410349. ISCRA 14th School Neutrinos and Explosive Events in the Universe, Erice, Italy, July 2004.
[Postnov:2004cn]
[3-44]
Kepler's Supernova Remnant: The view at 400 Years, W. P. Blair, ASP Conf.Ser. (2004), arXiv:astro-ph/0410081. 1604-2004: Supernovae as Cosmological Lighthouses.
[Blair:2004hy]
[3-45]
Spectropolarimetry of Core-Collapse Supernovae, Douglas C. Leonard, Alexei V. Filippenko, ASP Conf.Ser. (2004), arXiv:astro-ph/0409518. Supernovae as Cosmological Lighthouses, 16-19 June, Padua, Italy.
[Leonard:2004mi]
[3-46]
Supernova neutrinos: production, propagation and oscillations, Amol Dighe, Nucl. Phys. Proc. Suppl. 143 (2005) 449, arXiv:hep-ph/0409268. Neutrino 2004, Paris.
[Dighe:2004xy]
[3-47]
Neutrinos: '...annus mirabilis', A. Yu. Smirnov, arXiv:hep-ph/0402264, 2004. 2nd Int. Workshop on Neutrino oscillations in Venice (NOVE) December 3-5, 2003, Venice, Italy.
[Smirnov:2004ju]
[3-48]
Spectropolarimetric Observations of Supernovae, Alexei V. Filippenko, Douglas C. Leonard, arXiv:astro-ph/0312500, 2003. 3-D Signatures in Stellar Explosions, 10-13 June, 2003.
[Filippenko:2003cb]
[3-49]
A Review of X-ray Observations of Supernova Remnants, Jacco Vink, Nucl. Phys. Proc. Suppl. 132 (2004) 21, arXiv:astro-ph/0311406. The restless high energy universe, Amsterdam, May 2003.
[Vink:2003nf]
[3-50]
Neutrinos as astrophysical probes, F. Cavanna, M. L. Costantini, O. Palamara, F. Vissani, Surveys High Energ. Phys. 19 (2004) 35, arXiv:astro-ph/0311256. ICTP Summer School on Astroparticle Physics and Cosmology, Trieste, Italy, 17 June - 5 Jul 2002.
[Cavanna:2003fx]
[3-51]
Supernova Spectra, M. Turatto, Springer Proc.Phys. 99 (2005) 151-160, arXiv:astro-ph/0310837. IAU Colloquium 192, Supernovae: 10 Years of 1993J Valencia, Spain 22-26 April 2003.
[Turatto:2003bi]
[3-52]
Observations of Type Ia Supernovae, and Challenges for Cosmology, W. Li, A. V. Filippenko, Springer Proc.Phys. 99 (2005) 525-533, arXiv:astro-ph/0310529. IAU Colloquium 192, Supernovae: 10 Years of 1993J Valencia, Spain 22-26 April 2003.
[Li:2003mm]
[3-53]
The Infrared Supernova Rate, F. Mannucci, G. Cresci, R. Maiolino, M. Della Valle, Springer Proc.Phys. 99 (2005) 355-359, arXiv:astro-ph/0310210. IAU Colloquium 192: Supernovae (10 Years after SN1993J), Valencia, Spain, 22-26 Apr 2003.
[Mannucci:2003ty]
[3-54]
Evidence from Type Ia Supernovae for an Accelerating Universe and Dark Energy, A. V. Filippenko, arXiv:astro-ph/0307139, 2003.
[Filippenko:2003pr]
[3-55]
Neutrino Physics after KamLAND, Alexei Yu. Smirnov, arXiv:hep-ph/0306075, 2003. 4th Workshop on 'Neutrino Oscillations and their Origin' (NOON2003), February 10-14, 2003, Ishikawa Kousei Nenkin Kaikan, Kanazawa, Japan. http://www-sk.icrr.u-tokyo.ac.jp/noon2003/transparencies/10/Smirnov.pdf.
[Smirnov:2003uu]
[3-56]
Cosmology with Supernovae, P. Ruiz-Lapuente, Astrophys. Space Sci. 290 (2004) 43, arXiv:astro-ph/0304108. JENAM 2002 (Porto, Portugal).
[Ruiz-Lapuente:2003skz]
[3-57]
Review on the Observed and Physical Properties of Core Collapse Supernovae, Mario Hamuy, arXiv:astro-ph/0301006, 2003. 2003 Aspen Summer Workshop on the Nuclear Physics of Core Collapse Supernovae, Aspen, Colorado, 26 May - 8 June 2003.
[Hamuy:2003xv]
[3-58]
Supernova Neutrinos and Particle-Physics Applications, G. Raffelt, 2003. Lectures given at ISAPP 2003 - International School on AstroParticle Physics, 14-19 July 2003, Madonna di Campiglio, Italy. http://wwwth.mppmu.mpg.de/members/raffelt/mytalks/ISAPP3.pdf.
[Raffelt:ISAPP2003]
[3-59]
Bolometric Light Curves of Supernovae, N. B. Suntzeff, arXiv:astro-ph/0212561, 2002. From Twilight to Highlight - The Physics of Supernovae ESO/MPA/MPE Workshop, Garching, July 29 - 31, 2002.
[Suntzeff:2002tc]
[3-60]
Type Ia Supernova models: latest developments, S. Blinnikov, E. Sorokina, Astrophys. Space Sci. 290 (2004) 13, arXiv:astro-ph/0212530. JENAM-2002 meeting (Porto, Portugal, September, 3-8).
[Blinnikov:2002gu]
[3-61]
Neutrinos from supernovae, Sandhya Choubey, Kamales Kar, Proc.Indian Natl.Sci.Acad. 70A (2004) 123, arXiv:hep-ph/0212326. INSA Proceedings.
[Choubey:2002hp]
[3-62]
Core Collapse and Then? The Route to Massive Star Explosions, H.-Th. Janka et al., arXiv:astro-ph/0212316, 2002. From Twilight to Highlight: The Physics of Supernovae, ESO Astrophysics Symposia.
[Janka:2002ei]
[3-63]
Astrophysical and Cosmological Neutrinos, G. G. Raffelt, Proc.Int.Sch.Phys.Fermi 152 (2003) 161-181, arXiv:hep-ph/0208024. International School of Physics 'Enrico Fermi,' CLII Course 'Neutrino Physics,' 23 July-2 August 2002, Varenna, Lake Como, Italy.
[Raffelt:2002nz]
[3-64]
Neutrino masses in astroparticle physics, G. G. Raffelt, New Astron. Rev. 46 (2002) 699-708, arXiv:astro-ph/0207220. Dennis Sciama Memorial Volume of NAR.
[Raffelt:2002ed]
[3-65]
Neutrinos from supernovae: experimental status and perspectives, Fabrizio Cei, Int. J. Mod. Phys. A17 (2002) 1765-1776, arXiv:hep-ex/0202043. Second International Workshop on Matter, Anti-Matter and Dark Matter, Trento (Italy), 29-30 October 2001.
[Cei:2002mq]
[3-66]
Physics with supernovae, Georg. G. Raffelt, Nucl. Phys. Proc. Suppl. 110 (2012) 254-267, arXiv:hep-ph/0201099. TAUP 2001: Topics in Astroparticle and Underground Physics, Assergi, Italy, 8-12 Sep 2001.
[Das:2012zk]
[3-67]
Supernovae : Theory, expected Rates, Energy Spectrum, Flavor Composition, Time Structure, G. Raffelt, 2002. Workshop on Large Detectors for proton decay, supernovae, and atmospheric neutrinos, and low energy neutrinos from high intensity beams, NNN02, CERN, 16-18 January 2002. http://muonstoragerings.cern.ch/NuWorkshop02/presentations/raffelt.ppt.
[Raffelt-NNN02]
[3-68]
Supernova types and rates, E. Cappellaro, M. Turatto, Astrophys.Space Sci.Libr. 264 (2001) 199, arXiv:astro-ph/0012455. The Influence of Binaries on Stellar Population Studies, Brussels 21-25 Aug. 2000.
[Cappellaro:2000ez]
[3-69]
Supernova and Cosmology, M. Signore, D. Puy, New Astron. Rev. 45 (2001) 409, arXiv:astro-ph/0010634.
[Signore:2000mg]
[3-70]
Massive neutrinos in astrophysics, Georg G. Raffelt, Werner Rodejohann, arXiv:hep-ph/9912397, 1999. 4th National Summer School for German-speaking Graduate Students of Theoretical Physics, Saalburg, Germany, 31 Aug - 11 Sep 1998.
[Raffelt:1998qp]
[3-71]
Supernova 1987A - A review, Bhattacharya D., Bulletin of the Astronomical Society of India 16 (1988) 57-66. Astronomical Society of India, Meeting, 12th, Raipur, India, Dec. 1987.
[Bhattacharya-1988BASI-16-57B]
[3-72]
Supernova models, S. E. Woosley, T. A. Weaver, New York Academy Sciences Annals 375 (1981) 357-380.
[Woosley-Weaver-1981NYASA-375-357W]
[3-73]
Evolution and explosion of massive stars, S. E. Woosley, T. A. Weaver, Ninth Texas Symposium on Relativistic Astrophysics. 335-357 (1980).
[Weaver-Woosley-1980txra-symp-335W]

4 - Habilitation, PhD and Master Theses

[4-1]
Unveiling diverse nature of core collapse supernovae, Amar Aryan, arXiv:2312.16266, 2023.
[Aryan:2023ykn]
[4-2]
Supernova Model Discrimination with Hyper-Kamiokande, Jost Migenda, arXiv:2002.01649, 2020.
[Migenda:2019xbm]
[4-3]
Early evolution of newly born proto-neutron stars, Giovanni Camelio, arXiv:1801.01350, 2018.
[Camelio:2017hrs]
[4-4]
Detecting Fast Time Variations in the Supernova Neutrino Flux with Hyper-Kamiokande, Jost Migenda, arXiv:1609.04286, 2016.
[Migenda:2016xnc]
[4-5]
Neutrino interactions in neutron matter, Andrea Cipollone, arXiv:1212.5849, 2012.
[Cipollone:2012rb]
[4-6]
Supernovae as laboratories for neutrino properties, Andreu Esteban-Pretel, arXiv:0912.1616, 2009.
[Esteban-Pretel:2009rcr]
[4-7]
Construction and Analysis of a Many-Body Neutrino model, Ivona Okuniewicz, arXiv:0903.2996, 2009.
[Okuniewicz:2006kz]
[4-8]
The Evolution of Low Mass Helium Stars towards Supernova Type I Explosion, Roni Waldman, Zalman Barkat, arXiv:astro-ph/0605692, 2006.
[Waldman:2006ge]
[4-9]
Supernova neutrino spectra and applications to flavor oscillations, Mathias Thorsten Keil, arXiv:astro-ph/0308228, 2003.
[Keil:2003sw]
[4-10]
A Search for Supernova Neutrinos with the Sudbury Neutrino Observatory, Jaret Heise, 2001. University of British Columbia, Vancouver BC, December 2001.
[Heise-PHD2001]

5 - Experiment - Type II

[5-1]
Search for Galactic core-collapse supernovae in a decade of data taken with the IceCube Neutrino Observatory, R. Abbasi et al. (IceCube), Astrophys.J. 961 (2024) 84, arXiv:2308.01172.
[IceCube:2023ogt]
[5-2]
Search for astrophysical electron antineutrinos in Super-Kamiokande with 0.01wt% gadolinium loaded water, M. Harada et al. (Super-Kamiokande), Astrophys.J.Lett. 951 (2023) L27, arXiv:2305.05135.
[Super-Kamiokande:2023xup]
[5-3]
Constraining High-Energy Neutrino Emission from Supernovae with IceCube, R. Abbasi et al., Astrophys.J.Lett. 949 (2023) L12, arXiv:2303.03316.
[IceCube:2023esf]
[5-4]
Search for supernova bursts in Super-Kamiokande IV, M. Mori et al. (Super-Kamiokande), Astrophys.J. 938 (2022) 35, arXiv:2206.01380.
[Super-Kamiokande:2022dsn]
[5-5]
Search for supernova neutrinos and constraint on the galactic star formation rate with the KamLAND data, S. Abe et al., arXiv:2204.12065, 2022.
[KamLAND:2022sqb]
[5-6]
Diffuse Supernova Neutrino Background Search at Super-Kamiokande, K. Abe et al. (Super-Kamiokande), Phys.Rev.D 104 (2021) 122002, arXiv:2109.11174.
[Super-Kamiokande:2021jaq]
[5-7]
Implementation and first results of the KM3NeT real-time core-collapse supernova neutrino search, S. Aiello et al. (KM3NeT), Eur.Phys.J.C 82 (2022) 317, arXiv:2109.05890.
[KM3NeT:2021oaa]
[5-8]
Extended search for supernova-like neutrinos in NOvA coincident with LIGO/Virgo detections, M. A. Acero et al. (NOvA), Phys.Rev.D 104 (2021) 063024, arXiv:2106.06035.
[NOvA:2021zhv]
[5-9]
A search for $hep$ solar neutrinos and the diffuse supernova neutrino background using all three phases of the Sudbury Neutrino Observatory, B. Aharmim et al. (SNO), Phys.Rev. D102 (2020) 062006, arXiv:2007.08018.
[SNO:2020gqd]
[5-10]
Supernova neutrino detection in NOvA, M. A. Acero et al. (NOvA), JCAP 2010 (2020) 014, arXiv:2005.07155.
[NOvA:2020dll]
[5-11]
Search for low-energy neutrinos from astrophysical sources with Borexino, M. Agostini et al. (Borexino), Astropart.Phys. 125 (2021) 102509, arXiv:1909.02422.
[Borexino:2019wln]
[5-12]
An Optically Targeted Search for Gravitational Waves emitted by Core-Collapse Supernovae during the First and Second Observing Runs of Advanced LIGO and Advanced Virgo, B. P. Abbott et al. (LIGO Scientific, Virgo), Phys.Rev. D101 (2020) 084002, arXiv:1908.03584.
[LIGOScientific:2019ryq]
[5-13]
Detection of a Type IIn Supernova in Optical Follow-up Observations of IceCube Neutrino Events, M. G. Aartsen et al. (IceCube), Astrophys. J. 811 (2015) 52, arXiv:1506.03115.
[IceCube:2015jsn]
[5-14]
Implication on the core collapse supernova rate from 21 years of data of the Large Volume Detector, N.Y. Agafonova et al. (LVD), Astrophys.J. 802 (2015) 47, arXiv:1411.1709.
[LVD:2014uzr]
[5-15]
Supernova Relic Neutrino Search with Neutron Tagging at Super-Kamiokande-IV, H. Zhang et al. (Super-Kamiokande), Astropart.Phys. 60 (2015) 41, arXiv:1311.3738.
[Super-Kamiokande:2013ufi]
[5-16]
Searching for soft relativistic jets in Core-collapse Supernovae with the IceCube Optical Follow-up Program, R. Abbasi et al. (IceCube), Astron. Astrophys. 539 (2012) A60, arXiv:1111.7030.
[IceCube:2011wip]
[5-17]
Supernova Relic Neutrino Search at Super-Kamiokande, K. Bays et al. (Super-Kamiokande), Phys. Rev. D85 (2012) 052007, arXiv:1111.5031.
[Super-Kamiokande:2011lwo]
[5-18]
IceCube Sensitivity for Low-Energy Neutrinos from Nearby Supernovae, R. Abbasi et al. (IceCube), Astron. Astrophys. 535 (2011) A109, arXiv:1108.0171.
[IceCube:2011cwc]
[5-19]
Low Multiplicity Burst Search at the Sudbury Neutrino Observatory, B. Aharmim et al. (SNO), Astrophys. J. 728 (2011) 83, arXiv:1011.5436.
[SNO:2010noh]
[5-20]
A Search for Core-Collapse Supernovae using the MiniBooNE Neutrino Detector, A. A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Rev. D81 (2010) 032001, arXiv:0910.3182.
[MiniBooNE:2009sim]
[5-21]
An Extremely Luminous X-ray Outburst Marking the Birth of a Normal Supernova, A. M. Soderberg et al., Nature. 453 (2008) 469-474, arXiv:0802.1712.
[Soderberg:2008uh]
[5-22]
Search for Supernova Neutrino Bursts at Super-Kamiokande, M. Ikeda, A. Takeda, Y. Fukuda, M. R. Vagins, M. Sakuda (Super-Kamiokande), Astrophys. J. 669 (2007) 519-524, arXiv:0706.2283.
[Super-Kamiokande:2007zsl]
[5-23]
A Search for Neutrinos from the Solar hep Reaction and the Diffuse Supernova Neutrino Background with the Sudbury Neutrino Observatory, B. Aharmim et al. (SNO), Astrophys. J. 653 (2006) 1545-1551, arXiv:hep-ex/0607010.
[SNO:2006dke]
[5-24]
Gamma-Ray Burst associated Supernovae: Outliers become Mainstream, E. Pian et al., Nature 442 (2006) 1011-1013, arXiv:astro-ph/0603530.
[Pian:2006pr]
[5-25]
Discovery of 35 New Supernova Remnants in the Inner Galaxy, C. L. Brogan et al., Astrophys. J. 639 (2006) L25, arXiv:astro-ph/0601451.
[Brogan:2006tv]
[5-26]
Echoes from Ancient Supernovae in the Large Magellanic Cloud, A. Rest et al., Nature (2005), arXiv:astro-ph/0510738.
[Rest:2005un]
[5-27]
Discovery of X-Ray Emission from Supernova 1970G with Chandra: Filling the Void between Supernovae and Supernova Remnants, Stefan Immler, K. D. Kuntz, Astrophys. J. 632 (2005) L99, arXiv:astro-ph/0506023.
[Immler:2005ym]
[5-28]
Late-time X-Ray, UV and Optical Monitoring of Supernova 1979C, Stefan Immler et al., Astrophys. J. 632 (2005) 283, arXiv:astro-ph/0503678.
[Immler:2005vx]
[5-29]
Hubble Space Telescope imaging of the progenitor sites of six nearby core-collapse supernovae, Justyn R. Maund, Stephen J. Smartt, Mon. Not. Roy. Astron. Soc. 360 (2005) 288, arXiv:astro-ph/0501323.
[Maund:2005nq]
[5-30]
SN Ib 1990I: Clumping and Dust in the Ejecta?, Abouazza Elmhamdi et al., Astron. Astrophys. 426 (2004) 963-977, arXiv:astro-ph/0407145.
[Elmhamdi:2004he]
[5-31]
SNEWS: The SuperNova Early Warning System, P. Antonioli et al., New J. Phys. 6 (2004) 114, arXiv:astro-ph/0406214.
[Antonioli:2004zb]
[5-32]
The type IIn supernova 1994W: evidence for the explosive ejection of a circumstellar envelope, Nikolai N. Chugai et al., Mon. Not. Roy. Astron. Soc. 352 (2004) 1213, arXiv:astro-ph/0405369.
[Chugai:2004gq]
[5-33]
XMM-Newton observation of Kepler's supernova remnant, G. Cassam-Chenai et al., Astron.Astrophys. (2003), arXiv:astro-ph/0310687.
[Cassam-Chenai:2003lgh]
[5-34]
Twenty Years of Galactic Observations in Searching for Bursts of Collapse Neutrinos with the Baksan Underground Scintillation Telescope, E.N.Alexeyev, L.N.Alexeyeva, J. Exp. Theor. Phys. 95 (2002) 5, arXiv:astro-ph/0212499.
[Alekseev:2002ji]
[5-35]
Search for supernova relic neutrinos at Super-Kamiokande, M. Malek et al. (Super-Kamiokande), Phys. Rev. Lett. 90 (2003) 061101, arXiv:hep-ex/0209028.
[Super-Kamiokande:2002hei]
[5-36]
The Asiago Supernova Catalogue - 10 years after, R. Barbon, V. Buondi, E. Cappellaro, M. Turatto, Astron. Astrophys. 139 (1999) 531-536.
[Asiago-Supernova-Catalogue-AA139-1999]

6 - Experiment - Type II - Talks

[6-1]
Eleven Year Search for Supernovae with the IceCube Neutrino Observatory, Robert Cross, Alexander Fritz, Spencer Griswold (IceCube), PoS ICRC2019 (2020) 889, arXiv:1908.07249. 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, U.S.A.
[Cross:2019jpb]
[6-2]
Improved Detection of Supernovae with the IceCube Observatory, Lutz Kopke (IceCube), J.Phys.Conf.Ser. 1029 (2018) 012001, arXiv:1704.03823. 8th international symposium on large TPCs for low-energy rare event detection, Paris, Dec. 5-7, 2016.
[Kopke:2017req]
[6-3]
The core collapse supernova rate from 24 years of data of the Large Volume Detector, G. Bruno, A. Molinario, W. Fulgione, C. Vigorito (LVD), J.Phys.Conf.Ser. 888 (2017) 012256, arXiv:1701.06765. XXV ECRS 2016.
[Bruno:2017oxg]
[6-4]
The IceCube Neutrino Observatory Part V: Neutrino Oscillations and Supernova Searches, M. G. Aartsen et al. (IceCube), arXiv:1309.7008, 2013. 33nd International Cosmic Ray Conference, Rio de Janeiro 2013.
[IceCube:2013lje]
[6-5]
Supernova Detection in IceCube: Status and Future, Ronald Bruijn (IceCube), Nucl. Phys.B, Proc.Suppl.237-238 2013 (2013) 94-97, arXiv:1302.2040. NOW 2012.
[Bruijn:2013ibl]
[6-6]
The IceCube Neutrino Observatory VI: Neutrino Oscillations, Supernova Searches, Ice Properties, R. Abbasi et al. (IceCube), arXiv:1111.2731, 2011. 32nd International Cosmic Ray Conference, Beijing 2011.
[IceCube:2011vzz]
[6-7]
Low Energy Neutrino Astronomy in Super-Kamiokande, Michael Smy, arXiv:1110.0012, 2011. DPF 2011.
[Smy:2011tm]
[6-8]
Search for neutrino bursts from core collapse supernovae at the Baksan Underground Scintillation Telescope, R.V. Novoseltseva et al., arXiv:0910.0738, 2009. 31 International Cosmic Ray Conference, Lodz, Poland, July 7-15, 2009.
[Novoseltseva:2009cr]
[6-9]
Supernova Search with the AMANDA / IceCube Detectors, Thomas Kowarik, Timo Griesel, Alexander Piegsa (Icecube), arXiv:0908.0441, 2009. 31st ICRC, Lodz, Poland, July 2009.
[Kowarik:2009qr]
[6-10]
Search for High Energetic Neutrinos from Supernova Explosions with AMANDA, Dirk Lennarz, Jan-Patrick Huls, Christopher Wiebusch (IceCube), arXiv:0907.4621, 2009. 31st ICRC, Lodz, Poland, July 2009.
[Lennarz:2009xr]
[6-11]
Recent Type II Radio Supernovae, Christopher J. Stockdale et al., AIP Conf. Proc. 937 (2007) 264-268, arXiv:0708.1182. Supernova 1987A: 20 Years After: Supernovae and Gamma-Ray Bursters.
[Stockdale:2007pe]
[6-12]
LVD highlights, Marco Selvi et al. (LVD), arXiv:hep-ex/0608061, 2006. Vulcano Workshop 2006 'Frontier Objects in Astrophysics and Particle Physics'.
[Selvi:2006bi]
[6-13]
SNLS - the Supernova Legacy Survey, C.J. Pritchet, SNLS (SNLS), ASP Conf.Ser. (2004), arXiv:astro-ph/0406242. Observing Dark Energy (NOAO/Tucson proceedings).
[Pritchet:2004af]
[6-14]
Evidence for Core Collapse in the Type Ib/c SN 1999ex, Mario Hamuy et al., arXiv:astro-ph/0212368, 2002. From Twilight to Highlight: The Physics of Supernovae, ESO Astrophysics Symposia.
[Hamuy:2002rz]
[6-15]
The dusty type IIn Supernova 1998S, Peter Meikle et al., arXiv:astro-ph/0211144, 2002. ESO/MPA/MPE Workshop 'From Twilight to Highlight: The Physics of Supernovae', Garching, Germany, 29-31 July 2002.
[Meikle:2002dn]
[6-16]
A Search for Core-Collapse Supernova Progenitors In Hubble Space Telescope Images, Schuyler D. Van Dyk, Weidong Li, Alexei V. Filippenko, Publ.Astron.Soc.Pac. (2002), arXiv:astro-ph/0210347. PASP (2003 Jan).
[VanDyk:2002ry]
[6-17]
An Intermediate Redshift Supernova Search at ESO: Reduction Tools and Efficiency Tests, M. Riello et al., arXiv:astro-ph/0210265, 2002. ESO/MPA/MPE Workshop 'From Twilight to Highlight, The Physics of Supernovae', Garching, Jul 29-31, 2002.
[Riello:2002hm]
[6-18]
Search for double degenerate progenitors of supernovae type Ia with SPY, R. Napiwotzki, H. Drechsel, U. Heber, C. Karl, E.-M. Pauli et al., others, others, others, others, others, others, others, others, others, others, arXiv:astro-ph/0210155, 2002. 'White Dwarfs', Proc. XIII Workshop on White Dwarfs.
[Napiwotzki:2002sa]

7 - Experiment - Type Ia

[7-1]
Are classification metrics good proxies for SN Ia cosmological constraining power?, Alex I. Malz et al. (LSST Dark Energy Science), arXiv:2305.14421, 2023.
[LSSTDarkEnergyScience:2023bbq]
[7-2]
Cosmological Constraints from Measurements of Type Ia Supernovae discovered during the first 1.5 years of the Pan-STARRS1 Survey, A. Rest et al., Astrophys.J. 795 (2014) 44, arXiv:1310.3828.
[Rest:2013mwz]
[7-3]
Systematic Uncertainties Associated with the Cosmological Analysis of the First Pan-STARRS1 Type Ia Supernova Sample, D. Scolnic et al., Astrophys.J. 795 (2014) 45, arXiv:1310.3824.
[Scolnic:2013efb]
[7-4]
The Carnegie Supernova Project: Analysis of the First Sample of Low-Redshift Type-Ia Supernovae, Gaston Folatelli et al., Astron. J. 139 (2010) 120-144, arXiv:0910.3317.
[Folatelli:2009nm]
[7-5]
Asymmetric Explosion of Type Ia Supernovae as Seen from Near Infrared Observations, K. Motohara et al., Astrophys. J. 652 (2006) L101-L104, arXiv:astro-ph/0610303.
[Motohara:2006tg]
[7-6]
The Rise Time of Type Ia Supernovae from the Supernova Legacy Survey, A. Conley et al. (SNLS), Astron. J. 132 (2006) 1707-1713, arXiv:astro-ph/0607363.
[SNLS:2006vah]
[7-7]
Nonlinear Decline-Rate Dependence and Intrinsic Variation of Type Ia Supernova Luminosities, Lifan Wang et al., Astrophys. J. 641 (2006) 50-69, arXiv:astro-ph/0512370.
[Wang:2005bw]
[7-8]
The Supernova Legacy Survey: Measurement of $\Omega_\text{M}$, $\Omega_{\Lambda}$ and $w$ from the First Year Data Set, P. Astier et al. (SNLS), Astron. Astrophys. 447 (2006) 31, arXiv:astro-ph/0510447.
From the abstract: With this data set, we have built a Hubble diagram extending to $z=1$, with all distance measurements involving at least two bands.... Cosmological fits to this first year SNLS Hubble diagram give the following results: $ \Omega_{\text{M}} = 0.263 \pm 0.042 \pm 0.032 $ for a flat $\Lambda\text{CDM}$; and $w = -1.023 \pm 0.090 \pm 0.054 $ for a flat cosmology with constant equation of state $w$ when combined with the constraint from the recent Sloan Digital Sky Survey measurement of baryon acoustic oscillations.
[SNLS:2005qlf]
[7-9]
Hubble Space Telescope and Ground-Based Observations of Type Ia Supernovae at Redshift 0.5: Cosmological Implications, A. Clocchiatti et al. (High Z SN Search), Astrophys. J. 642 (2006) 1-21, arXiv:astro-ph/0510155.
[HighZSNSearch:2005xhg]
[7-10]
Spectroscopy of twelve Type Ia supernovae at intermediate redshift, C. Balland et al., Astron.Astrophys. (2005), arXiv:astro-ph/0507703.
[Balland:2005rw]
[7-11]
First results from the Canada-France High-z Quasar Survey: Constraints on the z=6 quasar luminosity function and the quasar contribution to reionization, Chris J. Willott et al., Astrophys. J. 633 (2005) 630, arXiv:astro-ph/0507183.
[Willott:2005zr]
[7-12]
Evidence for Spectropolarimetric Diversity in Type Ia Supernovae, Douglas C. Leonard et al., Astrophys. J. 632 (2005) 450, arXiv:astro-ph/0506470.
[Leonard:2005td]
[7-13]
A Definitive Measurement of Time Dilation in the Spectral Evolution of the Moderate-Redshift Type Ia Supernova 1997ex, R. J. Foley et al., Astrophys. J. 626 (2005) L11, arXiv:astro-ph/0504481.
[Foley:2005qu]
[7-14]
Restframe I-band Hubble diagram for type Ia supernovae up to redshift $z \sim 0.5$, Serena Nobili et al. (Supernova Cosmology Project), Astron.Astrophys. (2005), arXiv:astro-ph/0504139.
[SupernovaCosmologyProject:2005zcy]
[7-15]
Cepheid Calibrations from the Hubble Space Telescope of the Luminosity of Two Recent Type Ia Supernovae and a Re-determination of the Hubble Constant, Adam G. Riess et al., Astrophys. J. 627 (2005) 579, arXiv:astro-ph/0503159.
From the abstract: $H_0 = 73 +\pm 4 \pm 5 \, \text{km} \, \text{s}^{-1} \, \text{Mps}^{-1}$.
[Riess:2005zi]
[7-16]
The Deepest Supernova Search is Realized in the Hubble Ultra Deep Field Survey, Louis-Gregory Strolger, Adam G. Riess, Astron. J. 131 (2006) 1629-1638, arXiv:astro-ph/0503093.
[Strolger:2005uk]
[7-17]
Spectroscopic confirmation of high-redshift supernovae with the ESO VLT, C. Lidman et al. (Supernova Cosmology Project), Astron.Astrophys. (2004), arXiv:astro-ph/0410506.
[SupernovaCosmologyProject:2004akn]
[7-18]
The Hubble Higher-Z Supernova Search: Supernovae to z=1.6 and Constraints on Type Ia Progenitor Models, L. G. Strolger et al., Astrophys. J. 613 (2004) 200-223, arXiv:astro-ph/0406546.
[Strolger:2004kk]
[7-19]
Type Ia supernova rate at a redshift of ~ 0.1, Guillaume Blanc et al. (EROS), Astron. Astrophys. 423 (2004) 881, arXiv:astro-ph/0405211.
[EROS:2004reu]
[7-20]
Spectroscopic Observations and Analysis of the Peculiar SN 1999aa, Gabriele Garavini et al. (The Supernova Cosmology Project), Mon. Not. Roy. Astron. Soc. 356 (2004) 456, arXiv:astro-ph/0404393.
[SupernovaCosmologyProject:2004yms]
[7-21]
Type Ia Supernova Discoveries at z > 1 From the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution, Adam G. Riess et al. (Supernova Search Team), Astrophys. J. 607 (2004) 665, arXiv:astro-ph/0402512.
From the abstract: We have discovered 16 Type Ia supernovae (SNe Ia) with the Hubble Space Telescope (HST) and have used them to provide the first conclusive evidence for cosmic deceleration that preceded the current epoch of cosmic acceleration.
...
A purely kinematic interpretation of the SN Ia sample provides evidence at the > 99\% confidence level for a transition from deceleration to acceleration or similarly, strong evidence for a cosmic jerk. Using a simple model of the expansion history, the transition between the two epochs is constrained to be at $z=0.46 \pm 0.13$.
The data are consistent with the cosmic concordance model of $\Omega_M \approx 0.3, \Omega_\Lambda \approx 0.7$ ($\chi^2_{dof}=1.06$), and are inconsistent with a simple model of evolution or dust as an alternative to dark energy.
For a flat Universe with a cosmological constant, we measure $\Omega_M = 0.29 {}^{+0.05}_{-0.03}$ (equivalently, $\Omega_\Lambda=0.71$). When combined with external flat-Universe constraints including the cosmic microwave background and large-scale structure, we find $w = -1.02 {}^{+0.13}_{-0.19}$ (and $w<-0.76$ at the 95\% confidence level) for an assumed static equation of state of dark energy, $P = w\rho c^2$.
...
Our constraints are consistent with the static nature of and value of $w$ expected for a cosmological constant (i.e., $w_0 = -1.0$, $dw/dz = 0$), and are inconsistent with very rapid evolution of dark energy.

[Ivanov:2004qa]
[7-22]
23 High Redshift Supernovae from the IfA Deep Survey: Doubling the SN Sample at $z > 0.7$, Brian J. Barris et al., Astrophys. J. 602 (2004) 571, arXiv:astro-ph/0310843.
From the abstract: This sample of 23 high-redshift supernovae includes 15 at $z\geq0.7$, doubling the published number of objects at these redshifts, and indicates that the evidence for acceleration of the universe is not due to a systematic effect proportional to redshift. In combination with the recent compilation of Tonry and others (2003), we calculate cosmological parameter density contours which are consistent with the flat universe indicated by the CMB [Go]. Adopting the constraint that $\Omega_{total} = 1.0$, we obtain best-fit values of ($\Omega_{m}$,$\Omega_{\Lambda}$)=(0.33, 0.67) using 22 SNe from this survey augmented by the literature compilation.
[Barris:2003dq]
[7-23]
New Constraints on $\Omega_M$, $\Omega_\Lambda$, and $w$ from an Independent Set of Eleven High-Redshift Supernovae Observed with HST, Robert A. Knop et al. (The Supernova Cosmology Project), Astrophys. J. 598 (2003) 102, arXiv:astro-ph/0309368.
From the abstract: We report measurements of $\Omega_{\mathrm{M}}$, $\Omega_{\Lambda}$, and $w$ from eleven supernovae at $z=0.36$-$0.86$ with high-quality lightcurves measured using WFPC2 on the HST. This is an independent set of high-redshift supernovae that confirms previous supernova evidence for an accelerating Universe. The high-quality lightcurves available from photometry on \wfpc\ make it possible for these eleven supernovae alone to provide measurements of the cosmological parameters comparable in statistical weight to the previous results. Combined with earlier Supernova Cosmology Project data, the new supernovae yield a measurement of the mass density $\Omega_{\mathrm{M}}=0.25^{+0.07}_{-0.06}$ (statistical) $\pm0.04$ (identified systematics), or equivalently, a cosmological constant of $\Omega_{\Lambda}=0.75^{+0.06}_{-0.07}$ (statistical) $\pm0.04$ (identified systematics), under the assumptions of a flat universe and that the dark energy equation of state parameter has a constant value $w=-1$. When the supernova results are combined with independent flat-universe measurements of $\Omega_{\mathrm{M}}$ from CMB and galaxy redshift distortion data, they provide a measurement of $w=-1.05^{+0.15}_{-0.20}$ (statistical) $\pm0.09$ (identified systematic), if $w$ is assumed to be constant in time.... dark energy is required with $P(\Omega_{\Lambda}>0)>0.99$.
[SupernovaCosmologyProject:2003dcn]
[7-24]
Cosmological Results from High-z Supernovae, John L. Tonry et al. (Supernova Search Team), Astrophys. J. 594 (2003) 1, arXiv:astro-ph/0305008.
From the abstract: The High-$ z$ Supernova Search Team has discovered and observed 8 new supernovae in the redshift interval $ z=0.3-1.2$. These independent observations, analyzed by similar but distinct methods, confirm the result of Riess and others (1998a) and Perlmutter and others (1999) that supernova luminosity distances imply an accelerating universe. More importantly, they extend the redshift range of consistently observed SN Ia to $ z\approx 1$, where the signature of cosmological effects has the opposite sign of some plausible systematic effects.... if the equation of state parameter of the dark energy is $ w=-1$, then $ H_0\,t_0 = 0.96\pm0.04$, and $ \Omega_\Lambda-1.4\Omega_M=0.35\pm0.14$. Including the constraint of a flat Universe, we find $ \Omega_M=0.28\pm0.05$, independent of any large-scale structure measurements. Adopting a prior based on the 2dF redshift survey constraint on $ \Omega_M$ and assuming a flat universe, we find that the equation of state parameter of the dark energy lies in the range $ -1.48-1$, we obtain $ w<-0.73$ at 95% confidence.
[SupernovaSearchTeam:2003cyd]
[7-25]
SN 2002cx: The Most Peculiar Known Type Ia Supernova, Weidong Li et al., Publ. Astron. Soc. Pac. 115 (2003) 453-473, arXiv:astro-ph/0301428.
[Li:2003wja]
[7-26]
Optical and Infrared Photometry of the Nearby Type Ia Supernova 2001el, Kevin Krisciunas et al., Astron. J. 125 (2003) 166, arXiv:astro-ph/0210327.
[Krisciunas:2002rc]
[7-27]
The Type la Supernova 2001V in NGC 3987, J. Vinko et al., Astron. Astrophys. 397 (2003) 115, arXiv:astro-ph/0210186.
[Vinko:2002pa]
[7-28]
The distant Type Ia supernova rate, R. Pain et al. (Supernova Cosmology Project), Astrophys. J. 577 (2002) 120, arXiv:astro-ph/0205476.
[SupernovaCosmologyProject:2002nuh]
[7-29]
The Farthest Known Supernova: Support for an Accelerating Universe and a Glimpse of the Epoch of Deceleration, Adam G. Riess et al. (Supernova Search Team), Astrophys. J. 560 (2001) 49-71, arXiv:astro-ph/0104455.
[SupernovaSearchTeam:2001qse]
[7-30]
Measurements of Omega and Lambda from 42 High-Redshift Supernovae, S. Perlmutter et al. (Supernova Cosmology Project), Astrophys. J. 517 (1999) 565-586, arXiv:astro-ph/9812133.
From the abstract: The measurement yields a joint probability distribution of the cosmological parameters that is approximated by the relation $0.8 \,\Omega_{\rm M}- 0.6\,\Omega_\Lambda \approx -0.2 \pm 0.1$ in the region of interest ($\Omega_{\rm M} \lesssim 1.5$). For a flat ($\Omega_{\rm M}+\Omega_\Lambda = 1$) cosmology we find $\Omega_{\rm M}^{\rm flat} = 0.28^{+0.09}_{-0.08}$ (1$\sigma$ statistical) $^{+0.05}_{-0.04}$ (identified systematics). The data are strongly inconsistent with a $\Lambda = 0$ flat cosmology, the simplest inflationary universe model. An open, $\Lambda = 0$ cosmology also does not fit the data well: the data indicate that the cosmological constant is non-zero and positive, with a confidence of $P(\Lambda > 0) = 99$\%, including the identified systematic uncertainties. The best-fit age of the universe relative to the Hubble time is $t_0^{\rm flat}=14.9^{+1.4}_{-1.1}\,(0.63/h)$ Gyr for a flat cosmology.
[SupernovaCosmologyProject:1998vns]
[7-31]
Supernova Limits on the Cosmic Equation of State, Peter M. Garnavich et al. (Supernova Search Team), Astrophys. J. 509 (1998) 74-79, arXiv:astro-ph/9806396.
[SupernovaSearchTeam:1998cav]
[7-32]
Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant, Adam G. Riess et al. (Supernova Search Team), Astron. J. 116 (1998) 1009-1038, arXiv:astro-ph/9805201.
[SupernovaSearchTeam:1998fmf]

8 - Experiment - Type Ia - Talks

[8-1]
Exploring the Physics of Type Ia Supernovae Through the X-ray Spectra of their Remnants, C. Badenes et al., Mem.Soc.Ast.It. (2005), arXiv:astro-ph/0506576. "Stellar end products" workshop, 13-15 April 2005, Granada, Spain.
[Badenes:2005kx]
[8-2]
The Fall 2004 SDSS Supernova Survey, Masao Sako et al. (The SDSS), eConf C041213 (2004) 1424, arXiv:astro-ph/0504455. 22nd Texas Symposium on Relativistic Astrophysics.
[SDSS:2004bao]

9 - Experiment - Type II - Supernova Remnant

[9-1]
Additional evidence for a pulsar wind nebula in the heart of SN 1987A from multi-epoch X-ray data and MHD modeling, Emanuele Greco et al., Astrophys.J. 931 (2022) 132, arXiv:2204.06804.
[Greco:2022cto]
[9-2]
A 'Missing' Supernova Remnant revealed by the 21-cm Line of Atomic Hydrogen, B-C Koo, J-h Kang, C.J. Salter, Astrophys. J. 643 (2006) L49-L52, arXiv:astro-ph/0604186.
[Koo:2006sr]

10 - Experiment - Type II - SN1987A

[10-1]
JWST NIRSpec observations of Supernova 1987A - from the inner ejecta to the reverse shock, J. Larsson et al., Astrophys.J.Lett. 949 (2023) L27, arXiv:2302.03576.
[Larsson:2023lml]
[10-2]
Polarized radio emission unveils the structure of the pre-supernova circumstellar magnetic field and the radio emission in SN1987A, O. Petruk, V. Beshley, S. Orlando, F. Bocchino, M. Miceli, S. Nagataki, M. Ono, S. Loru, A. Pellizzoni, E. Egron, Mon. Not. Roy. Astron. Soc. 518 (2022) 6377-6389, arXiv:2212.00656.
[Petruk:2022urq]
[10-3]
A 3D view of molecular hydrogen in Supernova 1987A, J.Larsson, J. Spyromilio, C. Fransson, R. Indebetouw, M. Matsuura, F. J. Abellan, P. Cigan, H. Gomez, B. Leibundgut, Astrophys.J. 873 (2019) 15, arXiv:1901.11235.
[Larsson:2019uwm]
[10-4]
Time evolution of the line emission from the inner circumstellar ring of SN 1987A and its hot spots, Per Groeningsson et al., Astron.Astrophys. 492 (2008) 481, arXiv:0810.2661.
[Groeningsson:2008nc]
[10-5]
Chandra HETG Spectra of SN 1987A at 20 years, D. Dewey, S. A. Zhekov, R. McCray, C. R. Canizares, Astrophys.J. 676 (2008) L131, arXiv:0802.2340.
[Dewey:2008gy]
[10-6]
Infrared Integral Field Spectroscopy of SN 1987A, Karina Kjaer et al., AIP Conf. Proc. 937 (2007) 76-80, arXiv:astro-ph/0703720.
[Kjaer:2007wx]
[10-7]
Discovery of a nearby twin of SN1987A's nebula around the luminous blue variable HD168625: Was Sk-69 202 an LBV?, Nathan Smith, Astron. J. 133 (2007) 1034-1040, arXiv:astro-ph/0611544.
[Smith:2006es]
[10-8]
On the Progenitor of Supernova 1987A, M. Parthasarathy, David Branch, E. Baron, David J. Jeffery, Bull.Astron.Soc.India (2006), arXiv:astro-ph/0611033.
[Parthasarathy:2006jr]
[10-9]
Evolutionary Status of SNR 1987A at the Age of Eighteen, Sangwook Park et al., Astrophys. J. 646 (2006) 1001-1008, arXiv:astro-ph/0604201.
[Park:2006tg]
[10-10]
Coronal emission from the shocked circumstellar ring of SN 1987A, Per Groningsson et al., Astron.Astrophys. (2006), arXiv:astro-ph/0603815.
[Groningsson:2006cb]
[10-11]
SN 1987A After 18 Years: Mid-Infrared GEMINI and SPITZER Observations of the Remnant, Patrice Bouchet et al., Astrophys. J. 650 (2006) 212-227, arXiv:astro-ph/0601495.
[Bouchet:2006ff]
[10-12]
The reverse shock of SNR1987A at 18 years after outburst, Nathan Smith et al., Astrophys. J. 635 (2005) L41, arXiv:astro-ph/0510835.
[Smith:2005gu]
[10-13]
Supernova Remnant 1987A: Opening the Future by Reaching the Past, Sangwook Park, Svetozar A. Zhekov, David N. Burrows, Richard McCray, Astrophys. J. 634 (2005) L73, arXiv:astro-ph/0510442.
[Park:2005qj]
[10-14]
Imaging of the Radio Remnant of SN 1987A at 12 mm Wavelength, R. N. Manchester et al., Astrophys. J. 628 (2005) L131, arXiv:astro-ph/0506475.
[Manchester:2005ti]
[10-15]
Chandra Observations of Shock Kinematics in Supernova Remnant 1987A, S.A. Zhekov et al., Astrophys. J. 628 (2005) L127, arXiv:astro-ph/0506443.
[Zhekov:2005ni]
[10-16]
Limits from the Hubble Space Telescope on a Point Source in SN 1987A, G. J. M. Graves et al., Astrophys. J. 629 (2005) 944, arXiv:astro-ph/0505066.
[Graves:2005xy]
[10-17]
A New View of the Circumstellar Environment of SN 1987A, Ben E. K. Sugerman et al., Astrophys. J. 627 (2005) 888, arXiv:astro-ph/0502268.
[Sugerman:2005dk]
[10-18]
Supernova Remnant 1987A: The Latest Report from the Chandra X-Ray Observatory, Sangwook Park et al., Adv. Space Res. 35 (2005) 991-995, arXiv:astro-ph/0501561.
[Park:2005ic]
[10-19]
Constraints on the luminosity of the stellar remnant in SNR1987A, P. Shtykovskiy, A. Lutovinov, M. Gilfanov, R. Sunyaev, Astron. Lett. 31 (2005) 258, arXiv:astro-ph/0411731.
[Shtykovskiy:2004uj]
[10-20]
High Resolution Imaging of SN 1987A at 10 micron, P. Bouchet et al., Astrophys. J. 611 (2004) 394, arXiv:astro-ph/0312240.
[Bouchet:2003ng]
[10-21]
The X-ray Remnant of SN1987A, David N. Burrows et al., Astrophys. J. 543 (2000) L149-L152, arXiv:astro-ph/0009265.
[Burrows:2000yi]
[10-22]
Young Stellar Populations Around SN1987A, Nino Panagia, Martino Romaniello, Salvatore Scuderi, Robert P. Kirshner, Astrophys. J. 539 (2000) 197-208, arXiv:astro-ph/0001476.
[Panagia:2000ga]
[10-23]
A Second Bright Source Detected Near SN1987A, Peter Nisenson, Costas Papaliolios, Astrophys.J. 518 (1999) L29, arXiv:astro-ph/9904109.
[Nisenson:1999qd]
[10-24]
The X-ray lightcurve of SN 1987A, G. Hasinger, B. Aschenbach, J. Trumper, Astron. Astrophys. 312 (1996) L9-L12, arXiv:astro-ph/9606149.
[Hasinger:1996rj]
[10-25]
Ultraviolet observations of SN 1987A, Robert P. Kirshner, George Sonneborn, D. Michael Crenshaw, George E. Nassiopoulos, Astrophys. J. 320 (1987) 602-608.
[Kirshner-ApJ320-1987]
[10-26]
The progenitor of SN 1987A - Spatially resolved ultraviolet spectroscopy of the supernova field, George Sonneborn, Bruce Altner, Robert P. Kirshner, Astrophys. J. 323 (1987) L35-L39.
[Kirshner-ApJ323-1987]

11 - Experiment - Type II - SN1987A - Talks

[11-1]
SN1987A: Revisiting the Data and the Correlation between Neutrino and Gravitational Detectors, P. Galeotti, G. V. Pallottino, G. Pizzella, Italian Phys.Soc.Proc. 98 (2009) 233-242, arXiv:0810.3759. Vulcano Wokshop 2008, Frontier Objects in Astrophysics and Particle Physics, May 26-31.
[Galeotti:2008wc]
[11-2]
Chandra Observations of Supernova 1987A, Sangwook Park et al., AIP Conf. Proc. 937 (2007) 43-50, arXiv:0704.0209. Supernova 1987A: 20 Years after Supernovae and Gamma-Ray Bursters, Aspen, CO, USA, Feb 19-23, 2007.
[Park:2007nr]
[11-3]
Supernova Remnant 1987A: High Resolution Images and Spectrum from Chandra Observations, Sangwook Park et al., ESA Spec.Publ. 604 (2006) 335, arXiv:astro-ph/0511355. The X-Ray Universe 2005, Sept 26-30, 2005, El Escorial, Madrid, Spain.
[Park:2005vu]
[11-4]
A 2.14 ms Candidate Optical Pulsar in SN1987A, J. Middleditch et al., arXiv:astro-ph/0010044, 2000. 5th CTIO/ESO Workshop and 1st CTIO/ESO/LCO Workshop: SN 1987A: Ten Years After, La Serena, Chile, 22-28 Feb 1997.
[Middleditch:2000it]

12 - Experiment - Type II - SN1987A - Baksan

[12-1]
DETECTION OF THE NEUTRINO SIGNAL FROM SN1987A IN THE LMC USING THE INR BAKSAN UNDERGROUND SCINTILLATION TELESCOPE, E. N. Alekseev, L. N. Alekseeva, I. V. Krivosheina, V. I. Volchenko, Phys. Lett. B205 (1988) 209-214.
[Alekseev:1988gp]
[12-2]
POSSIBLE DETECTION OF A NEUTRINO SIGNAL ON 23 FEBRUARY 1987 AT THE BAKSAN UNDERGROUND SCINTILLATION TELESCOPE OF THE INSTITUTE OF NUCLEAR RESEARCH, E. N. Alekseev, L. N. Alekseeva, V. I. Volchenko, I. V. Krivosheina, JETP Lett. 45 (1987) 589-592. [Pisma Zh. Eksp. Teor. Fiz. 45, 461-464 (1987)].
[Alekseev:1987ej]
[12-3]
CHARACTERISTICS OF THE NEUTRINO EMISSION FROM SUPERNOVA SN1987A, A. E. Chudakov, Ya. S. Elensky, S. P. Mikheev, JETP Lett. 46 (1987) 373-377. [Pisma Zh. Eksp. Teor. Fiz. 46, 297 (1987)].
[Chudakov:1987my]

13 - Experiment - Type II - SN1987A - IMB

[13-1]
ANGULAR DISTRIBUTION OF EVENTS FROM SN1987A, C. B. Bratton et al. (IMB), Phys. Rev. D37 (1988) 3361.
[IMB:1988suc]
[13-2]
NEUTRINOS FROM SN1987A IN THE IMB DETECTOR, J. C. Van Der Velde et al. (IMB), Nucl. Instrum. Meth. A264 (1988) 28-31.
[VanDerVelde:1988hh]
[13-3]
OBSERVATION OF A NEUTRINO BURST IN COINCIDENCE WITH SUPERNOVA SN1987A IN THE LARGE MAGELLANIC CLOUD, R. M. Bionta et al. (IMB), Phys. Rev. Lett. 58 (1987) 1494.
[Bionta:1987qt]

14 - Experiment - Type II - SN1987A - Kamiokande

[14-1]
Observation in the Kamiokande-II detector of the neutrino burst from supernova SN1987A, K. S. Hirata et al. (Kamiokande), Phys. Rev. D38 (1988) 448-458.
[Hirata:1988ad]
[14-2]
Observation of a neutrino burst from the supernova SN1987a, K. Hirata et al. (Kamiokande), Phys. Rev. Lett. 58 (1987) 1490-1493.
[Kamiokande-II:1987idp]
[14-3]
A search for high-energy neutrinos from SN1987a: first six months, Y. Oyama et al. (Kamiokande), Phys. Rev. Lett. 59 (1987) 2604.
[Kamiokande-II:1987ive]

15 - Experiment - Type II - SN1987A - LSD

[15-1]
Simulation of the LSD Response to the Neutrino Burst from SN 1987A, K.V. Manukovskiy, A.V. Yudin, N.Yu. Agafonova, A.S. Malgin, O.G. Ryazhskaya, J.Exp.Theor.Phys. 134 (2022) 277-289, arXiv:2204.07399.
[Manukovskiy:2022zzg]
[15-2]
Correlations between low-energy and high-energy pulses detected by the LSD installation under Mt. Blanc from 10 February 1987 to 1 July 1987, V. L. Dadykin et al., JETP Lett. 56 (1992) 426-429.
[Dadykin:1992yi]
[15-3]
Coincidences among the data recorded by the Baksan, Kamioka and Mont Blanc underground neutrino detectors, and by the Maryland and Rome gravitational wave detectors during supernova SN1987A, M. Aglietta et al., Nuovo Cim. C14 (1991) 171-193.
[Aglietta:1991im]
[15-4]
Correlation between the Maryland and Rome gravitational wave detectors and the Mont Blanc, Kamioka and IMB particle detectors during SN1987A, M. Aglietta et al., Nuovo Cim. B106 (1991) 1257-1269.
[Aglietta:1991xa]
[15-5]
Correlations of the low-energy pulses and muons recorded at the Mont Blanc LSD apparatus between 10 February and 1 July 1987, V. L. Dadykin et al., Bull. Russ. Acad. Sci. Phys. 55 (1991) 4129.
[Dadykin:1991sq]
[15-6]
Neutrino astrophysics and SN1987A, M. Aglietta et al., Nuovo Cim. C13 (1990) 365-374.
[Aglietta:1990sw]
[15-7]
ANALYSIS OF THE DATA RECORDED BY THE MONT BLANC NEUTRINO DETECTOR AND BY THE MARYLAND AND ROME GRAVITATIONAL WAVE DETECTORS DURING SN1987A, M. Aglietta et al., Nuovo Cim. C12 (1989) 75-103.
[Aglietta:1989tw]
[15-8]
DETECTION OF A RARE EVENT ON 23 FEBRUARY 1987 BY THE NEUTRINO RADIATION DETECTOR UNDER MONT BLANC, V. L. Dadykin et al., JETP Lett. 45 (1987) 593-595.
[Dadykin:1987ek]
[15-9]
NEUTRINO OBSERVATIONS FROM SUPERNOVA SN1987A, P. Galeotti et al., Helv. Phys. Acta 60 (1987) 619-628.
[Galeotti:1987kw]

16 - Phenomenology - Type II

[16-1]
Echoes of darkness: Supernova-neutrino-boosted dark matter from all galaxies, Yen-Hsun Lin, Meng-Ru Wu, arXiv:2404.08528, 2024.
[Lin:2024vzy]
[16-2]
Towards multi-messenger observations of core-collapse supernovae harboring choked jets, A. Zegarelli, D. Guetta, S. Celli, S. Gagliardini, I. Di Palma, I. Bartos, arXiv:2403.16234, 2024.
[Zegarelli:2024ivy]
[16-3]
Energy-dependent Boosted Dark Matter from Diffuse Supernova Neutrino Background, Anirban Das, Tim Herbermann, Manibrata Sen, Volodymyr Takhistov, arXiv:2403.15367, 2024.
[Das:2024ghw]
[16-4]
The Flavor Composition of Supernova Neutrinos, Antonio Capanema, Yago Porto, Maria Manuela Saez, arXiv:2403.14762, 2024.
[Capanema:2024hdm]
[16-5]
Supernovae Time Profiles as a Probe of New Physics at Neutrino Telescopes, Jeff Lazar, Ying-Ying Li, Carlos A. Arguelles, Vedran Brdar, arXiv:2403.09781, 2024.
[Lazar:2024ovc]
[16-6]
Observing neutrinos from failed Supernovae at LNGS, Giulia Pagliaroli, Christoph A. Ternes, arXiv:2403.06678, 2024.
[Pagliaroli:2024uhl]
[16-7]
Detecting Neutrinos from Supernova Bursts in PandaX-4T, Binyu Pang et al., arXiv:2403.06220, 2024.
[Pang:2024bmg]
[16-8]
Constraining neutrino-DM interactions with Milky Way dwarf spheroidals and supernova neutrinos, Sean Heston, Shunsaku Horiuchi, Satoshi Shirai, arXiv:2402.08718, 2024.
[Heston:2024ljf]
[16-9]
Supernova burst and Diffuse Supernova Neutrino Background simulator for Water Cherenkov Detectors, Fumi Nakanishi, Shota Izumiyama, Masayuki Harada, Yusuke Koshio, Astrophys.J. 965 (2024) 91, arXiv:2402.00283.
[Nakanishi:2024tib]
[16-10]
The Sun and core-collapse supernovae are leading probes of the neutrino lifetime, Pablo Martinez-Mirave, Irene Tamborra, Mariam Tortola, arXiv:2402.00116, 2024.
[Martinez-Mirave:2024hfd]
[16-11]
Multi-energy diffuse neutrino fluxes originating from core-collapse supernovae, Yosuke Ashida, arXiv:2401.12403, 2024.
[Ashida:2024nck]
[16-12]
Gravitational Waves from Neutrino-Driven Core Collapse Supernovae: Predictions, Detection, and Parameter Estimation, Anthony Mezzacappa, Michele Zanolin, arXiv:2401.11635, 2024.
[Mezzacappa:2024zph]
[16-13]
Using Bayesian Inference to Distinguish Neutrino Flavor Conversion Scenarios via a Prospective Supernova Neutrino Signal, Sajad Abbar, Maria Cristina Volpe, arXiv:2401.10851, 2024.
[Abbar:2024nhz]
[16-14]
Elastic scattering of supernova neutrinos with electrons in xenon, Pijushpani Bhattacharjee, Kamales Kar, arXiv:2401.05644, 2024.
[Bhattacharjee:2024apl]
[16-15]
Diffuse supernova neutrino background with up-to-date star formation rate measurements and long-term multi-dimensional supernova simulations, Phys.Rev.D 109 (2024) 023024.
[Ekanger:2023qzw]
[16-16]
Photons from neutrinos: the gamma ray echo of a supernova neutrino burst, Cecilia Lunardini, Joshua Loeffler, Mainak Mukhopadhyay, Matthew J. Hurley, Ebraheem Farag, F. X. Timmes, arXiv:2312.13197, 2023.
[Lunardini:2023ilg]
[16-17]
Fast Explicit Solutions for Neutrino-Electron Scattering: Explicit Asymptotic Methods, Aaron Lackey-Stewart, Raghav Chari, Adam Cole, Nick Brey, Kyle Gregory, Ryan Crowley, Mike Guidry, Eirik Endeve, arXiv:2312.09090, 2023.
[Lackey-Stewart:2023itn]
[16-18]
Successful $\nu p$-process in neutrino-driven outflows in core-collapse supernovae, Alexander Friedland, Payel Mukhopadhyay, Amol V. Patwardhan, arXiv:2312.03208, 2023.
[Friedland:2023kqp]
[16-19]
Resonant Spin-Flavor Precession of Sterile Neutrinos, Edward Wang, arXiv:2312.03061, 2023.
[Wang:2023nhh]
[16-20]
Determining the core-collapse supernova explosion mechanism with current and future gravitational-wave observatories, Jade Powell, Alberto Iess, Miquel Llorens-Monteagudo, Martin Obergaulinger, Bernhard Muller, Alejandro Torres-Forne, Elena Cuoco, Jose A. Font, Phys.Rev.D 109 (2024) 063019, arXiv:2311.18221.
[Powell:2023bex]
[16-21]
Absolutely Scintillating: constraining $\nu$ mass with black hole-forming supernovae, George Parker, Michael Wurm, arXiv:2311.10682, 2023.
[Parker:2023cos]
[16-22]
Prospects for realtime characterization of core-collapse supernova and neutrino properties, Meriem Bendahman et al., JCAP 02 (2024) 008, arXiv:2311.06216.
[Bendahman:2023hjj]
[16-23]
First Detailed Calculation of Atmospheric Neutrino Foregrounds to the Diffuse Supernova Neutrino Background in Super-Kamiokande, Bei Zhou, John F. Beacom, arXiv:2311.05675, 2023.
[Zhou:2023mou]
[16-24]
Exploring Neutrino Mass Orderings through Supernova Neutrino Detection, Maria Manuela Saez, Universe 9 (2023) 464, arXiv:2310.19939.
[Saez:2023snv]
[16-25]
Quasithermal GeV neutrinos from neutron-loaded magnetized outflows in core-collapse supernovae: spectra and light curves, Jose Alonso Carpio, Nick Ekanger, Mukul Bhattacharya, Kohta Murase, Shunsaku Horiuchi, arXiv:2310.16823, 2023.
[Carpio:2023wyt]
[16-26]
Prospects for detecting proto-neutron star rotation and spindown using supernova neutrinos, Tejas Prasanna, Todd A. Thompson, Christopher Hirata, Mon.Not.Roy.Astron.Soc. 528 (2024) 5649-5666, arXiv:2310.13763.
[Prasanna:2023fat]
[16-27]
On probing turbulence in core-collapse supernovae in upcoming neutrino detectors, Mainak Mukhopadhyay, Manibrata Sen, JCAP 03 (2024) 040, arXiv:2310.08627.
[Mukhopadhyay:2023tsc]
[16-28]
Probing self-interacting sterile neutrino dark matter with the diffuse supernova neutrino background, A. Baha Balantekin, George M. Fuller, Anupam Ray, Anna M. Suliga, Phys.Rev.D 108 (2023) 123011, arXiv:2310.07145.
[Balantekin:2023jlg]
[16-29]
How much do neutrinos live and weigh?, Federica Pompa, Olga Mena, Eur.Phys.J.C 84 (2024) 134, arXiv:2310.05474.
[Pompa:2023yzg]
[16-30]
Effects of Annihilation with Low-Energy Neutrinos on High-Energy Neutrinos from Binary Neutron Star Mergers and Rare Core-Collapse Supernovae, Gang Guo, Yong-Zhong Qian, Meng-Ru Wu, Phys.Rev.D 109 (2024) 083020, arXiv:2310.05137.
[Guo:2023sbt]
[16-31]
Axion emission from supernovae: a cheatsheet, Pierluca Carenza, Eur. Phys. J. Plus 138 (2023) 836, arXiv:2309.14798.
[Carenza:2023lci]
[16-32]
Detecting High-Energy Neutrinos from Galactic Supernovae with ATLAS, Alex Y. Wen, Carlos A. Arguelles, Ali Kheirandish, Kohta Murase, Phys.Rev.Lett. 132 (2024) 061001, arXiv:2309.09771.
[Wen:2023ijf]
[16-33]
Low-Energy Supernovae Bounds on Sterile Neutrinos, Garv Chauhan, Shunsaku Horiuchi, Patrick Huber, Ian M. Shoemaker, arXiv:2309.05860, 2023.
[Chauhan:2023sci]
[16-34]
The division between weak and strong explosions from failed supernovae, Eric R. Coughlin, Astrophys.J. 955 (2023) 110, arXiv:2308.04486.
[Coughlin:2023vyw]
[16-35]
Predicting gravitational waves from jittering-jets-driven core collapse supernovae, Noam Soker, Res.Astron.Astrophys. 23 (2023) 121001, arXiv:2308.04329.
[Soker:2023wib]
[16-36]
Transients stemming from collapsing massive stars: The missing pieces to advance joint observations of photons and high-energy neutrinos, Ersilia Guarini, Irene Tamborra, Raffaella Margutti, Enrico Ramirez-Ruiz, Phys.Rev.D 108 (2023) 083035, arXiv:2308.03840.
[Guarini:2023rnd]
[16-37]
Supernova Emission of Secretly Interacting Neutrino Fluid: Theoretical Foundations, Damiano F. G. Fiorillo, Georg Raffelt, Edoardo Vitagliano, Phys.Rev.D 109 (2024) 023017, arXiv:2307.15122.
[Fiorillo:2023cas]
[16-38]
Large Neutrino Secret Interactions, Small Impact on Supernovae, Damiano F. G. Fiorillo, Georg Raffelt, Edoardo Vitagliano, Phys.Rev.Lett. 132 (2024) 021002, arXiv:2307.15115.
[Fiorillo:2023ytr]
[16-39]
Do Neutrinos Become Flavor Unstable Due to Collisions with Matter in the Supernova Decoupling Region?, Shashank Shalgar, Irene Tamborra, arXiv:2307.10366, 2023.
[Shalgar:2023aca]
[16-40]
Shedding light on the $\Delta m^2_{21}$ tension with supernova neutrinos, Rasmi Hajjar, Sergio Palomares-Ruiz, Olga Mena, arXiv:2307.09509, 2023.
[Hajjar:2023xae]
[16-41]
Red Supergiant Candidates for Multimessenger Monitoring of the Next Galactic Supernova, Sarah Healy, Shunsaku Horiuchi, Marta Colomer Molla, Dan Milisavljevic, Jeff Tseng, Faith Bergin, Kathryn Weil, Masaomi Tanaka, Mon.Not.Roy.Astron.Soc. 529 (2024) 3630, arXiv:2307.08785.
[Healy:2023ovi]
[16-42]
New constraints on the gamma-ray and high energy neutrino fluxes from the circumstellar interaction of SN 2023ixf, Prantik Sarmah, arXiv:2307.08744, 2023.
[Sarmah:2023xrm]
[16-43]
Examining Neutrino-Matter Interactions in the Cassiopeia A Supernova, Toshiki Sato, Takashi Yoshida, Hideyuki Umeda, John P. Hughes, Keiichi Maeda, Shigehiro Nagataki, Brian J. Williams, Astrophys.J. 954 (2023) 112, arXiv:2307.03606.
[Sato:2023wje]
[16-44]
Diffuse neutrino background from past core-collapse supernovae, Shin'ichiro Ando, Nick Ekanger, Shunsaku Horiuchi, Yusuke Koshio, arXiv:2306.16076, 2023.
[Ando:2023fcc]
[16-45]
Low and High Energy Neutrinos from SN 2023ixf in M101, Dafne Guetta, Aurora Langella, Silvia Gagliardini, Massimo Della Valle, Astrophys.J.Lett. 955 (2023) L9, arXiv:2306.14717.
[Guetta:2023mls]
[16-46]
Optically Informed Searches of High-Energy Neutrinos from Interaction-Powered Supernovae, Tetyana Pitik, Irene Tamborra, Massimiliano Lincetto, Anna Franckowiak, Mon.Not.Roy.Astron.Soc. 524 (2023) 3, arXiv:2306.01833.
[Pitik:2023vcg]
[16-47]
Diffuse Neutrino Flux Based on the Rates of Core-Collapse Supernovae and Black Hole Formation Deduced from a Novel Galactic Chemical Evolution Model, Yosuke Ashida, Ken'ichiro Nakazato, Takuji Tsujimoto, Astrophys.J. 953 (2023) 151, arXiv:2305.13543.
[Ashida:2023heb]
[16-48]
Bayesian Inference of Supernova Neutrino Spectra with Multiple Detectors, Xu-Run Huang, Chuan-Le Sun, Lie-Wen Chen, Jun Gao, JCAP 09 (2023) 040, arXiv:2305.00392.
[Huang:2023aob]
[16-49]
Determination of neutrino mass ordering from Supernova neutrinos with T2HK and DUNE, Papia Panda, Monojit Ghosh, Rukmani Mohanta, JCAP 10 (2023) 033, arXiv:2304.13303.
[Panda:2023rxa]
[16-50]
Analyzing the time spectrum of supernova neutrinos to constrain their effective mass or Lorentz Invariance Violation, C. A. Moura, L. Quintino, F. Rossi-Torres, Universe 9 (2023) 259, arXiv:2304.12546.
[Moura:2023xba]
[16-51]
Constraining the onset density for the QCD phase transition with the neutrino signal from core-collapse supernovae, Noshad Khosravi Largani, Tobias Fischer, Niels Uwe F. Bastian, Astrophys.J. 964 (2024) 143, arXiv:2304.12316.
[Largani:2023oyk]
[16-52]
Detectability of Late-time Supernova Neutrinos with Fallback Accretion onto Protoneutron star, Ryuichiro Akaho, Hiroki Nagakura, Thierry Foglizzo, Astrophys.J. 960 (2024) 116, arXiv:2304.11150.
[Akaho:2023alv]
[16-53]
Observing Supernova Neutrino Light Curves with Super-Kamiokande. IV. Development of SPECIAL BLEND: a New Public Analysis Code for Supernova Neutrinos, Akira Harada, Yudai Suwa, Masayuki Harada, Yusuke Koshio, Masamitsu Mori, Fumi Nakanishi, Ken'ichiro Nakazato, Kohsuke Sumiyoshi, Roger A. Wendell, Astrophys.J. 954 (2023) 52, arXiv:2304.05437.
[Harada:2023elm]
[16-54]
Sensitivity to Supernovae Average $\nu_x$ Temperature with Neutral Current Interactions in DUNE, Darcy A. Newmark, Austin Schneider, Phys.Rev.D 108 (2023) 043005, arXiv:2304.00035.
[Newmark:2023vup]
[16-55]
Impact of cross-section uncertainties on supernova neutrino spectral parameter fitting in the Deep Underground Neutrino Experiment, Adam Abed Abud et al. (DUNE), arXiv:2303.17007, 2023.
[2303.17007]
[16-56]
Gamma-rays and neutrinos from supernovae of Type Ib/c with late time emission, Prantik Sarmah, Sovan Chakraborty, Irene Tamborra, Katie Auchettl, Phys.Rev.D 108 (2023) 103033, arXiv:2303.13576.
[Sarmah:2023sds]
[16-57]
Earth tomography with supernova neutrinos at future neutrino detectors, Rasmi Hajjar, Olga Mena, Sergio Palomares-Ruiz, Phys.Rev.D 108 (2023) 083011, arXiv:2303.09369.
[Hajjar:2023knk]
[16-58]
Timing coincidence search for supernova neutrinos with optical transient surveys, Sean Heston, Emily Kehoe, Yudai Suwa, Shunsaku Horiuchi, Phys.Rev.D 107 (2023) 123034, arXiv:2302.04884.
[Heston:2023gbx]
[16-59]
Long-term gravitational wave asteroseismology of supernova: from core collapse to 20 seconds postbounce, Masamitsu Mori, Yudai Suwa, Tomoya Takiwaki, Phys.Rev.D 107 (2023) 083015, arXiv:2302.00292.
[Mori:2023vhr]
[16-60]
Supernova model discrimination with a kilotonne-scale Gd-H$_{2}$O Cherenkov detector, Y. Schnellbach, J. Migenda, A. Carroll, J. Coleman, L. Kneale, M. Malek, C. Metelko, A. Tarrant, JCAP 01 (2024) 004, arXiv:2301.08079.
[Schnellbach:2023sep]
[16-61]
Constraints from the duration of supernova neutrino burst on resonant light gauge boson production by neutrinos, David G. Cerdeno, Marina Cermeno, Yasaman Farzan, Phys.Rev.D 107 (2023) 123012, arXiv:2301.00661.
[Cerdeno:2023kqo]
16-62.
The Scale of Stellar Yields: Implications of the Measured Mean Iron Yield of Core Collapse Supernovae, 2023.
[2309.05719]
[16-63]
Using supernova neutrinos to probe strange spin of proton with JUNO and THEIA, Bhavesh Chauhan, arXiv:2211.08443, 2022.
[Chauhan:2022wgj]
[16-64]
Characterizing a supernova's Standing Accretion Shock Instability with neutrinos and gravitational waves, Zidu Lin, Abhinav Rijal, Cecilia Lunardini, Manuel D. Morales, Michele Zanolin, Phys.Rev.D 107 (2023) 083017, arXiv:2211.07878.
[Lin:2022jea]
[16-65]
Detection of the 4.4-MeV gamma rays from $^{16}$O($\nu, \nu^{\prime}$)$^{16}$O(12.97 ${\rm MeV}, 2^-)$ with a water-Cherenkov detector in the supernova neutrino bursts, Makoto Sakuda, Toshio Suzuki, Mandeep Singh Reen, Ken'ichiro Nakazato, Hideyuki Suzuki, PTEP (2023) 013D02, arXiv:2211.07851.
[Sakuda:2022lod]
[16-66]
Leptonic and semi-leptonic neutrino interactions with muons in the proto-neutron star cooling, Ken'ichi Sugiura, Shun Furusawa, Kohsuke Sumiyoshi, Shoichi Yamada, PTEP 2022 (2022) 113E01, arXiv:2211.06944.
[Sugiura:2022cwi]
[16-67]
Neutral-current neutrino cross section and expected supernova signals for $^{40}$Ar from a three-fold increase in the magnetic dipole strength, W. Tornow, A. P. Tonchev, S. W. Finch, Krishichayan, X. B. Wang, A. C. Hayes, H. G. D. Yeomans, D. A. Newmark, Phys.Lett.B 835 (2022) 137576, arXiv:2210.14316.
[Tornow:2022kmo]
[16-68]
Uncovering the neutrino mass ordering with the next galactic core-collapse supernova neutrino burst, Cesar Jesus-Valls, Phys.Rev.D 108 (2023) 023009, arXiv:2210.11676.
[Jesus-Valls:2022lfj]
[16-69]
Supernova Neutrinos as a Precise Probe of Nuclear Neutron Skin, Xu-Run Huang, Lie-Wen Chen, Phys.Rev.D 106 (2022) 123034, arXiv:2210.04534.
[Huang:2022wqu]
[16-70]
Solar and supernova neutrino physics with future NaI(Tl) dark matter search detectors, Young Ju Ko, Hyun Su Lee, Astropart.Phys. 153 (2023) 102890, arXiv:2210.01386.
[Ko:2022pmu]
[16-71]
A Parameterized Neutrino Emission Model to Study Mass Ejection in Failed Core-collapse Supernovae, A. S. Schneider, E. O'Connor, Astrophys.J. 942 (2023) 16, arXiv:2209.15064.
[daSilvaSchneider:2022axz]
[16-72]
Exploring Supernova Gravitational Waves with Machine Learning, Ayan Mitra, Bekdaulet Shukirgaliyev, Y. Sultan Abylkairov, Ernazar Abdikamalov, arXiv:2209.14542, 2022.
[Mitra:2022nyc]
[16-73]
Analytic approach to ALP emission in core-collapse supernovae, Ana Luisa Foguel, Eduardo S. Fraga, Astropart.Phys. 151 (2023) 102855, arXiv:2209.14318.
[Foguel:2022fef]
[16-74]
Neutrino non-radiative decay and the diffuse supernova neutrino background, Pilar Ivanez-Ballesteros, M. Cristina Volpe, Phys.Rev.D 107 (2023) 023017, arXiv:2209.12465.
[Ivanez-Ballesteros:2022szu]
[16-75]
Impact of Rotation on the Multimessenger Signatures of a Hadron-quark Phase Transition in Core-collapse Supernovae, Shuai Zha, Evan O'Connor, Phys.Rev.D 106 (2022) 123037, arXiv:2209.12418.
[Zha:2022pnc]
[16-76]
Kicks and Induced Spins of Neutron Stars at Birth, Matthew S. B. Coleman, Adam Burrows, Mon.Not.Roy.Astron.Soc. 517 (2022) 3938-3961, arXiv:2209.02711.
[Coleman:2022lwr]
[16-77]
Effects of nuclear matter and composition in core-collapse supernovae and long-term proto-neutron star cooling, Kohsuke Sumiyoshi, Shun Furusawa, Hiroki Nagakura, Akira Harada, Hajime Togashi, Ken'ichiro Nakazato, Hideyuki Suzuki, PTEP 2023 (2022) 013, arXiv:2209.02474.
[Sumiyoshi:2022pqn]
[16-78]
Towards Powerful Probes of Neutrino Self-Interactions in Supernovae, Po-Wen Chang, Ivan Esteban, John F. Beacom, Todd A. Thompson, Christopher M. Hirata, Phys.Rev.Lett. 131 (2023) 071002, arXiv:2206.12426.
[Chang:2022aas]
[16-79]
Probing non-standard neutrino interactions with a light boson from next galactic and diffuse supernova neutrinos, Kensuke Akita, Sang Hui Im, Mehedi Masud, JHEP 12 (2022) 050, arXiv:2206.06852.
[Akita:2022etk]
[16-80]
An accurate evaluation of (anti-)neutrino scattering on nucleons, Giulia Ricciardi, Natascia Vignaroli, Francesco Vissani, JHEP 08 (2022) 212, arXiv:2206.05567.
[Ricciardi:2022pru]
[16-81]
Impact of late-time neutrino emission on the Diffuse Supernova Neutrino Background, Nick Ekanger, Shunsaku Horiuchi, Kei Kotake, Kohsuke Sumiyoshi, Phys.Rev.D 106 (2022) 043026, arXiv:2206.05299.
[Ekanger:2022neg]
[16-82]
Prospects for extending the core-collapse supernova detection horizon using high-energy neutrinos, Nora Valtonen-Mattila, Erin O'Sullivan, Astrophys.J. 945 (2023) 98, arXiv:2206.00450.
[Valtonen-Mattila:2022nej]
[16-83]
Dark Matter Pollution in the Diffuse Supernova Neutrino Background, Nicole F. Bell, Matthew J. Dolan, Sandra Robles, JCAP 11 (2022) 060, arXiv:2205.14123.
[Bell:2022ycf]
[16-84]
The diffuse supernova neutrino background as a probe of late-time neutrino mass generation, Andre de Gouvea, Ivan Martinez-Soler, Yuber F. Perez-Gonzalez, Manibrata Sen, Phys.Rev.D 106 (2022) 103026, arXiv:2205.01102.
[deGouvea:2022dtw]
[16-85]
Timing and Multi-Channel: Novel Method for Determining the Neutrino Mass Ordering from Supernovae, Vedran Brdar, Xun-Jie Xu, JCAP 08 (2022) 067, arXiv:2204.13135.
[Brdar:2022vfr]
[16-86]
The Role of the Hadron-Quark Phase Transition in Core-Collapse Supernovae, Pia Jakobus, Bernhard Mueller, Alexander Heger, Anton Motornenko, Jan Steinheimer, Horst Stoecker, Mon.Not.Roy.Astron.Soc. 516 (2022) 2554-2574, arXiv:2204.10397.
[Jakobus:2022ucs]
[16-87]
Time-delayed neutrino emission from supernovae as a probe of dark matter-neutrino interactions, Jose Alonso Carpio, Ali Kheirandish, Kohta Murase, JCAP 04 (2023) 019, arXiv:2204.09650.
[Carpio:2022sml]
[16-88]
Detecting High-Energy Neutrino Minibursts from Local Supernovae with Multiple Neutrino Observatories, Ali Kheirandish, Kohta Murase, Astrophys.J. 956 (2023) L8, arXiv:2204.08518.
[Kheirandish:2022eox]
[16-89]
Observing Supernova Neutrino Light Curves with Super-Kamiokande. III. Extraction of Mass and Radius of Neutron Stars from Synthetic Data, Yudai Suwa, Akira Harada, Masayuki Harada, Yusuke Koshio, Masamitsu Mori, Fumi Nakanishi, Ken'ichiro Nakazato, Kohsuke Sumiyoshi, Roger A. Wendell, arXiv:2204.08363, 2022.
[Suwa:2022vhp]
[16-90]
Exploring the Fate of Stellar Core Collapse with Supernova Relic Neutrinos, Yosuke Ashida, Ken'ichiro Nakazato, Astrophys.J. 937 (2022) 30, arXiv:2204.04880.
[Ashida:2022nnv]
[16-91]
EstrellaNueva: an open-source software to study the interactions and detection of neutrinos emitted by supernovae, O. I. Gonzalez-Reina, J. Rumleskie, E. Vazquez-Jauregui, Astrophys.J. 932 (2022) 125, arXiv:2203.15181.
[Gonzalez-Reina:2022ehy]
[16-92]
Comprehensive Analyses of the Neutrino-Process in the Core-collapsing Supernova, Heamin Ko et al., Astrophys.J. 937 (2022) 116, arXiv:2203.13365.
[Ko:2022uqv]
[16-93]
Rocks, Water and Noble Liquids: Unfolding the Flavor Contents of Supernova Neutrinos, Sebastian Baum, Francesco Capozzi, Shunsaku Horiuchi, Phys.Rev.D 106 (2022) 123008, arXiv:2203.12696.
[Baum:2022wfc]
[16-94]
Detectability of hadron-quark phase transition in neutrino signals of failing core-collapse supernova, Zidu Lin, Shuai Zha, Evan P. O'Connor, Andrew W. Steiner, Phys.Rev.D 109 (2024) 023005, arXiv:2203.05141.
[Lin:2022lck]
[16-95]
Exploiting a future galactic supernova to probe neutrino magnetic moments, Sudip Jana, Yago P Porto-Silva, Manibrata Sen, JCAP 09 (2022) 079, arXiv:2203.01950.
[Jana:2022tsa]
[16-96]
Prospects for Distinguishing Supernova Models Using a Future Neutrino Signal, Jackson Olsen, Yong-Zhong Qian, Phys.Rev.D 105 (2022) 083017, arXiv:2202.09975.
[Olsen:2022pkn]
[16-97]
The Diffuse Supernova Neutrino Background in the Standard and Double Collapse Models, Alexander Libanov, Andrey Sharofeev, Phys.Rev.D 106 (2022) 123012, arXiv:2202.01206.
[Libanov:2022yta]
[16-98]
Prospects for the detection of the Diffuse Supernova Neutrino Background with the experiments SK-Gd and JUNO, Yufeng Li, Mark Vagins, Michael Wurm, Universe 8 (2022) 181, arXiv:2201.12920.
[Li:2022myd]
[16-99]
Low-Energy Supernovae Severely Constrain Radiative Particle Decays, Andrea Caputo, Hans-Thomas Janka, Georg Raffelt, Edoardo Vitagliano, Phys.Rev.Lett. 128 (2022) 221103, arXiv:2201.09890.
[Caputo:2022mah]
[16-100]
Inferring Astrophysical Parameters of Core-Collapse Supernovae from their Gravitational-Wave Emission, Jade Powell, Bernhard Muller, Phys.Rev.D 105 (2022) 063018, arXiv:2201.01397.
[Powell:2022nrs]
[16-101]
Towards Probing the Diffuse Supernova Neutrino Background in All Flavors, Anna M. Suliga, John F. Beacom, Irene Tamborra, Phys.Rev.D 105 (2022) 043008, arXiv:2112.09168.
[Suliga:2021hek]
[16-102]
511 keV line constraints on feebly interacting particles from supernovae, Francesca Calore, Pierluca Carenza, Maurizio Giannotti, Joerg Jaeckel, Giuseppe Lucente, Leonardo Mastrototaro, Alessandro Mirizzi, Phys.Rev.D 105 (2022) 063026, arXiv:2112.08382.
[Calore:2021lih]
[16-103]
The supernova of the MAGIC GRB190114C, A. Melandri et al., Astron.Astrophys. 659 (2022) A39, arXiv:2112.04759.
[Melandri:2021rwu]
[16-104]
Type Ia Supernovae and their Explosive Nucleosynthesis: Constraints on Progenitors, Shing-Chi Leung, Ken'ichi Nomoto, arXiv:2111.14795, 2021. Sixteenth Marcel Grossmann Meeting.
[Leung:2021cfw]
[16-105]
Inference solves a boundary-value collision problem, with relevance to neutrino flavor transformation, Eve Armstrong, Phys.Rev.D 105 (2022) 083012, arXiv:2111.07412.
[Armstrong:2021bxq]
[16-106]
Efficient estimation method for time evolution of proto-neutron star mass and radius from supernova neutrino signal, Hiroki Nagakura, David Vartanyan, Mon.Not.Roy.Astron.Soc. 512 (2022) 2806-2816, arXiv:2111.05869.
[Nagakura:2021yci]
[16-107]
Stellar Initial Mass Function (IMF) Probed with Supernova Rates and Neutrino Background: Cosmic Average IMF Slope is $\simeq 2-3$ Similar to the Salpeter IMF, Shohei Aoyama, Masami Ouchi, Yuichi Harikane, Astrophys.J. 946 (2023) 69, arXiv:2111.02624.
[Aoyama:2021ltt]
[16-108]
Memory-triggered supernova neutrino detection, Mainak Mukhopadhyay, Zidu Lin, Cecilia Lunardini, Phys.Rev.D 106 (2022) 043020, arXiv:2110.14657.
[Mukhopadhyay:2021gox]
[16-109]
Primordial neutrino asymmetry evolution with full mean-field effects and collisions, Julien Froustey, Cyril Pitrou, JCAP 03 (2022) 065, arXiv:2110.11889.
[Froustey:2021azz]
[16-110]
Supernova Preshock Neutronization Burst as a Probe of Non-Standard Neutrino Interactions, Xu-Run Huang, Shuai Zha, Lie-Wen Chen, Astrophys.J.Lett. 923 (2021) L26, arXiv:2110.07249.
[Huang:2021enl]
[16-111]
Is the high-energy neutrino event IceCube-200530A associated with a hydrogen rich superluminous supernova?, Tetyana Pitik, Irene Tamborra, Charlotte R. Angus, Katie Auchettl, Astrophys.J. 929 (2022) 163, arXiv:2110.06944.
[Pitik:2021dyf]
[16-112]
Triangulating Black Hole Forming Stellar Collapses through Neutrinos, Lila Sarfati, Rasmus S. L. Hansen, Irene Tamborra, Phys.Rev.D 105 (2022) 023011, arXiv:2110.02347.
[Sarfati:2021vym]
[16-113]
Neutrino Echos following Black Hole Formation in Core-Collapse Supernovae, Samuel Gullin, Evan O'Connor, Jia-Shian Wang, Jeff Tseng, Astrophys.J. 926 (2022) 212, arXiv:2109.13242.
[Gullin:2021hfv]
[16-114]
Non-Radial Neutrino Emission upon Black Hole Formation in Core Collapse Supernovae, Jia-Shian Wang, Jeff Tseng, Samuel Gullin, Evan P. O'Connor, Phys.Rev.D 104 (2021) 104030, arXiv:2109.11430.
[Wang:2021elf]
[16-115]
SNEWPY: A Data Pipeline from Supernova Simulations to Neutrino Signals, Amanda L. Baxter et al., J.Open Source Softw. 6 (2021) 67, arXiv:2109.08188.
[SNEWS:2021ezc]
[16-116]
Neutrino interactions in liquid scintillators including active-sterile neutrino mixing, M.M. Saez, M.E. Mosquera, O. Civitarese, Int.J.Mod.Phys.E 31 (2022) 2250023, arXiv:2109.06244.
[Saez:2021fpa]
[16-117]
Probing neutrino decay scenarios by using the Earth matter effects on supernova neutrinos, Edwin A. Delgado, Hiroshi Nunokawa, Alexander A. Quiroga, JCAP 01 (2022) 003, arXiv:2109.02737.
[Delgado:2021vha]
[16-118]
Evidence of High-Energy Neutrinos from SN1987A by Kamiokande-II and IMB, Yuichi Oyama, Astrophys.J. 925 (2022) 166, arXiv:2108.05347.
[Oyama:2021caa]
[16-119]
Observing Supernova Neutrino Light Curves with Super-Kamiokande: II. Impact of the Nuclear Equation of State, Ken'ichiro Nakazato, Fumi Nakanishi, Masayuki Harada, Yusuke Koshio, Yudai Suwa, Kohsuke Sumiyoshi, Akira Harada, Masamitsu Mori, Roger A. Wendell, Astrophys.J. 925 (2022) 98, arXiv:2108.03009.
[Nakazato:2021yjv]
[16-120]
Combined detection of supernova neutrino signals, A. Sheshukov, A. Vishneva, A. Habig, JCAP 12 (2021) 053, arXiv:2107.13172.
[Sheshukov:2021acb]
[16-121]
Pre-supernova Ultra-light Axion-like Particles, Kanji Mori, Tomoya Takiwaki, Kei Kotake, arXiv:2107.12661, 2021.
[Mori:2021muf]
[16-122]
Supernova bounds on axion-like particles coupled with nucleons and electrons, Francesca Calore, Pierluca Carenza, Maurizio Giannotti, Joerg Jaeckel, Giuseppe Lucente, Alessandro Mirizzi, Phys.Rev.D 104 (2021) 043016, arXiv:2107.02186.
[Calore:2021klc]
[16-123]
Multimessenger Analysis Strategy for Core-Collapse Supernova Search: Gravitational Waves and Low-energy Neutrinos, Odysse Halim, Claudio Casentini, Marco Drago, Viviana Fafone, Kate Scholberg, Carlo Francesco Vigorito, Giulia Pagliaroli, JCAP 11 (2021) 021, arXiv:2107.02050.
[Halim:2021yqa]
[16-124]
Sensitivity of multi-PMT Optical Modules in Antarctic Ice to Supernova Neutrinos of MeV energy, Cristian Jesus Lozano Mariscal, Lew Classen, Martin Antonio Unland Elorrieta, Alexander Kappes, Eur.Phys.J.C 81 (2021) 1058, arXiv:2106.14199.
[LozanoMariscal:2021the]
[16-125]
The neutrino gravitational memory from a core collapse supernova: phenomenology and physics potential, Mainak Mukhopadhyay, Carlos Cardona, Cecilia Lunardini, JCAP 07 (2021) 055, arXiv:2105.05862.
[Mukhopadhyay:2021zbt]
[16-126]
Detecting and reconstructing gravitational waves from the next Galactic core-collapse supernova in the Advanced Detector Era, Marek Szczepanczyk et al., Phys.Rev.D 104 (2021) 102002, arXiv:2104.06462.
[Szczepanczyk:2021bka]
[16-127]
Boosted dark matter from diffuse supernova neutrinos, Anirban Das, Manibrata Sen, Phys.Rev.D 104 (2021) 075029, arXiv:2104.00027.
[Das:2021lcr]
[16-128]
Identification of neutrino bursts associated to supernovae with Real-time Test Statistic (RTS$^2$) method, Mathieu Lamoureux, Astron.Astrophys. 654 (2021) A95, arXiv:2103.09733.
[Lamoureux:2021bat]
[16-129]
Manifestations of non-zero Majorana CP violating phases in oscillations of supernova neutrinos, Artem Popov, Alexander Studenikin, Phys.Rev. D103 (2021) 115027, arXiv:2102.07991.
[Popov:2021icg]
[16-130]
Supernova Constraint on Self-Interacting Dark Sector Particles, Allan Sung, Gang Guo, Meng-Ru Wu, Phys.Rev. D103 (2021) 103005, arXiv:2102.04601.
[Sung:2021swd]
[16-131]
Measuring the distance and mass of galactic core-collapse supernovae using neutrinos, Manne Segerlund, Erin O'Sullivan, Evan O'Connor, arXiv:2101.10624, 2021.
[Segerlund:2021dfz]
[16-132]
Impact of Dark Photon Emission on Massive Star Evolution and Pre-Supernova Neutrino Signal, A. Sieverding, E. Rrapaj, G. Guo, Y.-Z. Qian, Astrophys.J. 912 (2021) 13, arXiv:2101.08672.
[Sieverding:2021jfa]
[16-133]
Time dependent signatures of core-collapse supernova neutrinos at HALO, B. Ekinci, Y. Pehlivan, Amol V. Patwardhan, Phys.Rev. D103 (2021) 043016, arXiv:2101.01797.
[Ekinci:2021miy]
[16-134]
Supernova neutrino induced neutrons in liquid xenon dark matter detectors, Pijushpani Bhattacharjee, Abhijit Bandyopadhyay, Sovan Chakraborty, Kamales Kar, Satyajit Saha, Phys.Rev.D 106 (2022) 043029, arXiv:2012.13986.
[Bhattacharjee:2020qrj]
[16-135]
Supernova neutrino fluxes in HALO-1kT, Super-Kamiokande, and JUNO, A. Gallo Rosso, JCAP 06 (2021) 046, arXiv:2012.12579.
[GalloRosso:2020qqa]
[16-136]
Binary interactions enhance the Diffuse Supernova Neutrino Background, Shunsaku Horiuchi, Tomoya Kinugawa, Tomoya Takiwaki, Koh Takahashi, Kei Kotake, Phys.Rev. D103 (2021) 043003, arXiv:2012.08524.
[Horiuchi:2020jnc]
[16-137]
Deep learning for multimessenger core-collapse supernova detection, M. Lopez Portilla, I. Di Palma, M. Drago, P. Cerda-Duran, F. Ricci, Phys.Rev. D103 (2021) 063011, arXiv:2011.13733.
[LopezPortilla:2020odz]
[16-138]
Flavor Triangle of the Diffuse Supernova Neutrino Background, Zahra Tabrizi, Shunsaku Horiuchi, JCAP 2105 (2021) 011, arXiv:2011.10933.
[Tabrizi:2020vmo]
[16-139]
Sensitivity of future liquid argon dark matter search experiments to core-collapse supernova neutrinos, P. Agnes et al., JCAP 2103 (2021) 043, arXiv:2011.07819.
[DarkSide20k:2020ymr]
[16-140]
Developing an end-to-end simulation framework of supernova neutrino detection, Masamitsu Mori, Yudai Suwa, Ken'ichiro Nakazato, Kohsuke Sumiyoshi, Masayuki Harada, Akira Harada, Yusuke Koshio, Roger A. Wendell, PTEP 2021 (2021) 023E01, arXiv:2010.16254.
[Mori:2020ugr]
[16-141]
Non-thermal neutrinos created by shock acceleration in successful and failed core-collapse supernova, Hiroki Nagakura, Kenta Hotokezaka, Mon.Not.Roy.Astron.Soc. 502 (2021) 89-107, arXiv:2010.15136.
[Nagakura:2020gls]
[16-142]
A Consistent Modeling of Neutrino-driven Wind with Accretion Flow onto a Protoneutron Star and its Implications for $^{56}$Ni Production, Ryo Sawada, Yudai Suwa, Astrophys.J. 908 (2021) 6, arXiv:2010.05615.
[Sawada:2020dsw]
[16-143]
Stellar Collapse Diversity and the Diffuse Supernova Neutrino Background, Daniel Kresse, Thomas Ertl, Hans-Thomas Janka, Astrophys.J. 909 (2021) 169, arXiv:2010.04728.
[Kresse:2020nto]
[16-144]
Enhanced Supernova Axion Emission and its Implications, Pierluca Carenza, Bryce Fore, Maurizio Giannotti, Alessandro Mirizzi, Sanjay Reddy, Phys.Rev.Lett. 126 (2021) 071102, arXiv:2010.02943.
[Carenza:2020cis]
[16-145]
Impact of neutrino pair-production rates in Core-Collapse Supernovae, Aurore Betranhandy, Evan O'Connor, Phys.Rev. D102 (2020) 123015, arXiv:2010.02261.
[Betranhandy:2020cdf]
[16-146]
Neutrino signatures of near-critical supernova outflows, Alexander Friedland, Payel Mukhopadhyay, Phys.Lett.B 834 (2022) 137403, arXiv:2009.10059.
[Friedland:2020ecy]
[16-147]
Impact of magnetic field on neutrino-matter interactions in core-collapse supernova, Takami Kuroda, Astrophys.J. 906 (2021) 128, arXiv:2009.07733.
[Kuroda:2020pta]
[16-148]
On the rate of core collapse supernovae in the Milky Way, Karolina Rozwadowska, Francesco Vissani, Enrico Cappellaro, New Astron. 83 (2021) 101498, arXiv:2009.03438.
[Rozwadowska:2020nab]
[16-149]
Muonization of supernova matter, Tobias Fischer, Gang Guo, Gabriel Martinez-Pinedo, Matthias Liebendorder, Anthony Mezzacappa, Phys.Rev. D102 (2020) 123001, arXiv:2008.13628.
[Fischer:2020vie]
[16-150]
Medium modifications for light and heavy nuclear clusters in simulations of core collapse supernovae - Impact on equation of state and weak interactions, Tobias Fischer, Stefan Typel, Gerd Ropke, Niels-Uwe F. Bastian, Gabriel Martinez-Pinedo, Phys.Rev. C102 (2020) 055807, arXiv:2008.13608.
[Fischer:2020krf]
[16-151]
Bounds on axion-like particles from the diffuse supernova flux, Francesca Calore, Pierluca Carenza, Maurizio Giannotti, Joerg Jaeckel, Alessandro Mirizzi, Phys.Rev. D102 (2020) 123005, arXiv:2008.11741.
[Calore:2020tjw]
[16-152]
Retrieval of energy spectra for all flavor of neutrinos from core-collapse supernova with multiple detectors, Hiroki Nagakura, Mon.Not.Roy.Astron.Soc. 500 (2020) 319-332, arXiv:2008.10082.
[Nagakura:2020bbw]
[16-153]
Analytic solutions for neutrino-light curves of core-collapse supernovae, Yudai Suwa, Akira Harada, Ken'ichiro Nakazato, Kohsuke Sumiyoshi, PTEP 2021 (2021) 013E01, arXiv:2008.07070.
[Suwa:2020nee]
[16-154]
Total Energy in Supernova Neutrinos and the Tidal Deformability and Binding Energy of Neutron Stars, Brendan Reed, C. J. Horowitz, Phys.Rev. D102 (2020) 103011, arXiv:2008.06108.
[Reed:2020gva]
[16-155]
Core-Collapse Supernovae: From Neutrino-Driven 1D Explosions to Light Curves and Spectra, Sanjana Curtis, Noah Wolfe, Carla Frohlich, Jonah M. Miller, Ryan Wollaeger, Kevin Ebinger, Astrophys.J. 921 (2021) 143, arXiv:2008.05498.
[Curtis:2020owz]
[16-156]
Neutrino-dominated accretion flows: second nucleosynthesis factory in core-collapse supernovae and regulation of iron markets in galaxies, Tong Liu, Yan-Qing Qi, Zhen-Yi Cai, Mou-Yuan Sun, Hui-Min Qu, Cui-Ying Song, Astrophys.J. 920 (2021) 5, arXiv:2008.05087.
[Liu:2020stx]
[16-157]
Exciting Prospects for Detecting Late-Time Neutrinos from Core-Collapse Supernovae, Shirley Weishi Li, Luke F. Roberts, John F. Beacom, Phys.Rev. D103 (2021) 023016, arXiv:2008.04340.
[Li:2020ujl]
[16-158]
Supernova-scope for the Direct Search of Supernova Axions, Shao-Feng Ge, Koichi Hamaguchi, Koichi Ichimura, Koji Ishidoshiro, Yoshiki Kanazawa, Yasuhiro Kishimoto, Natsumi Nagata, Jiaming Zheng, JCAP 2011 (2020) 059, arXiv:2008.03924.
[Ge:2020zww]
[16-159]
Modelling light curves of bipolar core collapse supernovae from the equatorial plane, Noam Soker, Noa Kaplan, Astrophys.J. 907 (2021) 120, arXiv:2007.14021.
[Soker:2020llu]
[16-160]
Fundamental physics with the diffuse supernova background neutrinos, Andre de Gouvea, Ivan Martinez-Soler, Yuber F. Perez-Gonzalez, Manibrata Sen, Phys.Rev. D102 (2020) 123012, arXiv:2007.13748.
[DeGouvea:2020ang]
[16-161]
Pulsational Pair-instability Supernovae. II. Neutrino Signals from Pulsations and their Detection by Terrestrial Neutrino Detectors, Shing-Chi Leung, Sergei Blinnikov, Koji Ishidoshiro, Alexandre Kozlov, Ken'ichi Nomoto, Astrophys.J. 889 (2020) 75, arXiv:2007.08470.
[Leung:2020nyj]
[16-162]
Gravitational-wave Signature of a First-order Quantum Chromodynamics Phase Transition in Core-Collapse Supernovae, Shuai Zha, Evan P. O'Connor, Ming-chung Chu, Lap-Ming Lin, Sean M. Couch, Phys.Rev.Lett. 125 (2020) 051102, arXiv:2007.04716.
[Zha:2020gjw]
[16-163]
Neutrinos from the cosmic noon: a probe of the cosmic star formation history, Riya, Vikram Rentala, JCAP 08 (2021) 019, arXiv:2007.02951.
[Singh:2020tmt]
[16-164]
Charged-Current Muonic Reactions in Core-Collapse Supernovae, Gang Guo, Gabriel Martinez-Pinedo, Andreas Lohs, Tobias Fischer, Phys.Rev. D102 (2020) 023037, arXiv:2006.12051.
[Guo:2020tgx]
[16-165]
Production of secondary particles in heavy nuclei interactions in supernova remnants, Maulik Bhatt, Iurii Sushch, Martin Pohl, Anatoli Fedynitch, Samata Das, Robert Brose, Pavlo Plotko, Dominique M.-A. Meyer, arXiv:2006.07018, 2020.
[Bhatt:2020dxk]
[16-166]
Supernovae neutrino detection via coherent scattering off silicon nuclei, Ana Luisa Foguel, Eduardo Souza Fraga, Carla Bonifazi, Astropart.Phys. 127 (2021) 102534, arXiv:2005.13068.
[Foguel:2020fjx]
[16-167]
Constraining sterile neutrinos by core-collapse supernovae with multiple detectors, Jian Tang, TseChun Wang, Meng-Ru Wu, JCAP 2010 (2020) 038, arXiv:2005.09168.
[Tang:2020pkp]
[16-168]
Explaining the Variations in Isotopic Ratios in Meteoritic Amino Acids, Michael A. Famiano, Richard N. Boyd, Toshitaka Kajino, Satoshi Chiba, Yirong Mo, Takashi Onaka, Toshi Suzuki, arXiv:2005.05540, 2020.
[2005.05540]
[16-169]
The sensitivity of presupernova neutrinos to stellar evolution models, Chinami Kato, Ryosuke Hirai, Hiroki Nagakura, Mon.Not.Roy.Astron.Soc. 496 (2020) 3961-3972, arXiv:2005.03124.
[Kato:2020lwd]
[16-170]
Supernova neutrino scattering off Gadolinium odd isotopes in water Cherenkov detectors, Paraskevi C. Divari, JCAP 2007 (2020) 008, arXiv:2004.12189.
[Divari:2020ghl]
[16-171]
Lifting the core-collapse supernova bounds on keV-mass sterile neutrinos, Anna M. Suliga, Irene Tamborra, Meng-Ru Wu, JCAP 2008 (2020) 018, arXiv:2004.11389.
[Suliga:2020vpz]
[16-172]
Presupernova neutrinos: directional sensitivity and prospects for progenitor identification, Mainak Mukhopadhyay, Cecilia Lunardini, F. X. Timmes, Kai Zuber, Astrophys.J. 899 (2020) 153, arXiv:2004.02045.
[Mukhopadhyay:2020ubs]
[16-173]
Shock breakouts from red supergiants: analytical and numerical predictions, Alexandra Kozyreva, Ehud Nakar, Roni Waldman, Sergei Blinnikov, Petr Baklanov, Mon.Not.Roy.Astron.Soc. 494 (2020) 3927-3936, arXiv:2003.14097.
[Kozyreva:2020uci]
[16-174]
Combining neutrino experimental light-curves for pointing to the next Galactic Core-Collapse Supernova, Alexis Coleiro, Marta Colomer Molla, Damien Dornic, Massimiliano Lincetto, Vladimir Kulikovskiy, Eur.Phys.J. C80 (2020) 856, arXiv:2003.04864.
[Coleiro:2020vyj]
[16-175]
Prospects for Pre-supernova Neutrino Observation in Future Large Liquid-scintillator Detectors, Hui-Ling Li, Yu-Feng Li, Liang-Jian Wen, Shun Zhou, arXiv:2003.03982, 2020.
[Li:2020pvf]
[16-176]
The explosion energy of the type IIP supernova SN 2013fs with a confined dense circumstellar shell, N. N. Chugai, Mon.Not.Roy.Astron.Soc. 494 (2020) L86-L90, arXiv:2003.03095.
[Chugai:2020fml]
[16-177]
Core-collapse supernova explosions driven by the hadron-quark phase transition as rare $r$ process site, Tobias Fischer, Meng-Ru Wu, Benjamin Wehmeyer, Niels-Uwe F. Bastian, Gabriel Martinez-Pinedo, Friedrich-Karl Thielemann, Astrophys.J. 894 (2020) 9, arXiv:2003.00972.
[Fischer:2020xjl]
[16-178]
A New Approach to Mass and Radius of Neutron Stars with Supernova Neutrinos, Ken'ichiro Nakazato, Hideyuki Suzuki, Astrophys.J. 891 (2020) 156, arXiv:2002.03300.
[Nakazato:2020ogl]
[16-179]
The Diffuse Supernova Neutrino Background, Samalka Anandagoda, Dieter H. Hartmann, Marco Ajello, Abhishek Desai, Res.Notes AAS 4 (2020) 4, arXiv:2001.07510.
[Anandagoda:2020idn]
[16-180]
Nuclear physics uncertainties in neutrino-driven, neutron-rich supernova ejecta, J. Bliss, A. Arcones, F. Montes, J. Pereira, Phys.Rev. C101 (2020) 055807, arXiv:2001.02085.
[Bliss:2020set]
[16-181]
Nucleosynthesis of 'Light' Heavy Nuclei in Neutrino-driven Winds. Role of ($\alpha,n$) reactions, Jorge Pereira, Almudena Arcones, Julia Bliss, Fernando Montes, J.Phys.Conf.Ser. 1668 (2020) 012033, arXiv:2001.00924.
[Pereira:2020uub]
[16-182]
Core-Collapse Supernova Gravitational-Wave Search and Deep Learning Classification, Alberto Iess, Elena Cuoco, Filip Morawski, Jade Powell, arXiv:2001.00279, 2020.
[Iess:2020yqj]
[16-183]
Detection and Classification of Supernova Gravitational Waves Signals: A Deep Learning Approach, Man Leong Chan, Ik Siong Heng, Chris Messenger, Phys.Rev.D 102 (2020) 043022, arXiv:1912.13517.
[Chan:2019fuz]
[16-184]
Influence of magnetic field on beta-processes in supernova matter, Alexandra Dobrynina, Igor Ognev, Phys.Rev.D 101 (2020) 083003, arXiv:1912.12889.
[Dobrynina:2019kdi]
[16-185]
Time of Flight and Supernova Progenitor Effects on the Neutrino Halo, John F. Cherry, George M. Fuller, Shunsaku Horiuchi, Kei Kotake, Tomoya Takiwaki, Tobias Fischer, Phys.Rev. D102 (2020) 023022, arXiv:1912.11489.
[Cherry:2019vkv]
[16-186]
Core-collapse supernovae stymie secret neutrino interactions, Shashank Shalgar, Irene Tamborra, Mauricio Bustamante, Phys.Rev. D103 (2021) 123008, arXiv:1912.09115.
[Shalgar:2019rqe]
[16-187]
Constraining properties of the next nearby core-collapse supernova with multi-messenger signals, MacKenzie L. Warren, Sean M. Couch, Evan P. O'Connor, Viktoriya Morozova, Astrophys.J. 898 (2020) 139, arXiv:1912.03328.
[Warren:2019lgb]
[16-188]
Detectability of SASI activity in supernova neutrino signals, Zidu Lin, Cecilia Lunardini, Michele Zanolin, Kei Kotake, Colter Richardson, Phys.Rev. D101 (2020) 123028, arXiv:1911.10656.
[Lin:2019wwm]
[16-189]
Heavy sterile neutrino emission in core-collapse supernovae: Constraints and signatures, Leonardo Mastrototaro, Alessandro Mirizzi, Pasquale Dario Serpico, Arman Esmaili, JCAP 2001 (2020) 010, arXiv:1910.10249.
[Mastrototaro:2019vug]
[16-190]
Towards a reconstruction of Supernova Neutrino Spectra in JUNO, C. Martellini, S.M. Mari, P. Montini, G. Settanta, EPJ Web Conf. 209 (2019) 01012, arXiv:1910.02005.
[Martellini:2019era]
[16-191]
On the Impact of Neutrino Decays on the Supernova Neutronization-Burst Flux, Andre de Gouvea, Ivan Martinez-Soler, Manibrata Sen, Phys.Rev. D101 (2020) 043013, arXiv:1910.01127.
[deGouvea:2019goq]
[16-192]
Resonance production of keV sterile neutrinos in core-collapse supernovae and lepton number diffusion, Vsevolod Syvolap, Oleg Ruchayskiy, Alexey Boyarsky, Phys.Rev.D 106 (2022) 015017, arXiv:1909.06320.
[Syvolap:2019dat]
[16-193]
Triangulation Pointing to Core-Collapse Supernovae with Next-Generation Neutrino Detectors, N. B. Linzer, K. Scholberg, Phys.Rev. D100 (2019) 103005, arXiv:1909.03151.
[Linzer:2019swe]
[16-194]
Tau lepton asymmetry by sterile neutrino emission - Moving beyond one-zone supernova models, Anna M. Suliga, Irene Tamborra, Meng-Ru Wu, JCAP 12 (2019) 019, arXiv:1908.11382.
[Suliga:2019bsq]
[16-195]
Sensitivity of Super-Kamiokande with Gadolinium to Low Energy Anti-neutrinos from Pre-supernova Emission, C. Simpson et al., Astrophys.J. 885 (2019) 133, arXiv:1908.07551.
[Super-Kamiokande:2019xnm]
[16-196]
Constraints for stellar electron-capture rates on $^{86}$Kr via the $^{86}$Kr($t$,$^{3}$He$+\gamma$)$^{86}$Br reaction and the implications for core-collapse supernovae, R. Titus et al., Phys.Rev. C100 (2019) 045805, arXiv:1908.03985.
[Titus:2019pcw]
[16-197]
New Insights into Uncertainties in the Relic Neutrino Background and Effects from the Nuclear Equation of State, Grant J. Mathews, Luca Boccioli, Jun Hidaka, Toshitaka Kajino, Mod.Phys.Lett. A35 (2020) 2030011, arXiv:1907.10088.
[Mathews:2019klh]
[16-198]
The initial mass-final luminosity relation of type II supernova progenitors. Hints of new physics?, Oscar Straniero, Inma Dominguez, Luciano Piersanti, Maurizio Giannotti, Alessandro Mirizzi, Astrophys.J. 881 (2019) 158, arXiv:1907.06367.
[Straniero:2019dtm]
[16-199]
Possible early linear acceleration of proto-neutron stars via asymmetric neutrino emission in core-collapse supernovae, Hiroki Nagakura, Kohsuke Sumiyoshi, Shoichi Yamada, Astrophys.J. 880 (2019) L28, arXiv:1907.04863.
[Nagakura:2019evv]
[16-200]
Multimessenger Asteroseismology of Core-Collapse Supernovae, John Ryan Westernacher-Schneider, Evan O'Connor, Erin O'Sullivan, Irene Tamborra, Meng-Ru Wu, Sean M. Couch, Felix Malmenbeck, Phys.Rev. D100 (2019) 123009, arXiv:1907.01138.
[Westernacher-Schneider:2019utn]
[16-201]
Probing Non-Standard Neutrino Interactions with Supernova Neutrinos at Hyper-K, Minjie Lei, Noah Steinberg, James D. Wells, JHEP 2001 (2020) 179, arXiv:1907.01059.
[Lei:2019nma]
[16-202]
Time delay of timelike particles in gravitational lensing of Schwarzschild spacetime, Junji Jia, Haotian Liu, Phys.Rev.D 100 (2019) 124050, arXiv:1906.11833.
[Jia:2019hih]
[16-203]
The impact of asymmetric neutrino emissions on nucleosynthesis in core-collapse supernovae, Shin-ichiro Fujimoto, Hiroki Nagakura, Mon.Not.Roy.Astron.Soc. 488 (2019) L114-L118, arXiv:1906.09553.
[Fujimoto:2019kod]
[16-204]
Constraining the Fraction of Core-Collapse Supernovae Harboring Choked Jets with High-energy Neutrinos, Dafne Guetta, Roi Rahin, Imre Bartos, Massimo Della Valle, Mon.Not.Roy.Astron.Soc. 492 (2020) 843-847, arXiv:1906.07399.
[Guetta:2019wpb]
[16-205]
Presupernova neutrino signals as potential probes of neutrino mass hierarchy, Gang Guo, Yong-Zhong Qian, Alexander Heger, Phys.Lett. B796 (2019) 126-130, arXiv:1906.06839.
[Guo:2019orq]
[16-206]
Paleo-Detectors for Galactic Supernova Neutrinos, Sebastian Baum, Thomas D. P. Edwards, Bradley J. Kavanagh, Patrick Stengel, Andrzej K. Drukier, Katherine Freese, Maciej Gorski, Christoph Weniger, Phys.Rev. D101 (2020) 103017, arXiv:1906.05800.
[Baum:2019fqm]
[16-207]
Impact of electron capture rates on nuclei far from stability on core-collapse supernovae, Aurelien Pascal, Simon Giraud, Anthea Fantina, Francesca Gulminelli, Jerome Novak, Micaela Oertel, Adriana Raduta, Phys.Rev. C101 (2020) 015803, arXiv:1906.05114.
[Pascal:2019awl]
[16-208]
Direct anthropic bound on the weak scale from supernovae explosions, Guido D'Amico, Alessandro Strumia, Alfredo Urbano, Wei Xue, Phys.Rev. D100 (2019) 083013, arXiv:1906.00986.
[DAmico:2019hih]
[16-209]
Pre-Supernova Neutrinos in Large Dark Matter Direct Detection Experiments, Nirmal Raj, Volodymyr Takhistov, Samuel J. Witte, Phys.Rev. D101 (2020) 043008, arXiv:1905.09283.
[Raj:2019wpy]
[16-210]
Timing the Neutrino Signal of a Galactic Supernova, Rasmus S. L. Hansen, Manfred Lindner, Oliver Scholer, Phys.Rev. D101 (2020) 123018, arXiv:1904.11461.
[Hansen:2019giq]
[16-211]
Observing Supernova Neutrino Light Curves with Super-Kamiokande: Expected Event Number over Ten Seconds, Yudai Suwa, Kohsuke Sumiyoshi, Ken'ichiro Nakazato, Yasufumi Takahira, Yusuke Koshio, Masamitsu Mori, Roger A. Wendell, Astrophys.J. 881 (2019) 139, arXiv:1904.09996.
[Suwa:2019svl]
[16-212]
Constraining Chaplygin models using diffuse supernova neutrino background, Nan Yang, Junji Jia, Xionghui Liu, Hongbao Zhang, Phys.Dark Univ. 26 (2019) 100397, arXiv:1904.07510.
[Yang:2019nnl]
[16-213]
New constraint from supernova explosions on light particles beyond the Standard Model, Allan Sung, Huitzu Tu, Meng-Ru Wu, Phys.Rev. D99 (2019) 121305, arXiv:1903.07923.
[Sung:2019xie]
[16-214]
A model-independent approach to the reconstruction of multi-flavor supernova neutrino energy spectra, Hui-Ling Li, Xin Huang, Yu-Feng Li, Liang-Jian Wen, Shun Zhou, Phys.Rev. D99 (2019) 123009, arXiv:1903.04781.
[Li:2019qxi]
[16-215]
Neutrino self-interaction and MSW effects on the supernova neutrino-process, Heamin Ko et al., JPS Conf.Proc. 31 (2020) 011027, arXiv:1903.02086.
[Ko:2019ssx]
[16-216]
Astrophysics with core-collapse supernova gravitational wave signals in the next generation of gravitational wave detectors, Vincent Roma, Jade Powell, Ik Siong Heng, Ray Frey, Phys.Rev. D99 (2019) 063018, arXiv:1901.08692.
[Roma:2019kcd]
[16-217]
Transient High-energy Gamma-rays and Neutrinos from Nearby Type II Supernovae, Kai Wang, Tian-Qi Huang, Zhuo Li, Astrophys.J. 872 (2019) 157, arXiv:1901.05598.
[Wang:2019bcs]
[16-218]
LSST Target of Opportunity proposal for locating a core collapse supernova in our galaxy triggered by a neutrino supernova alert, Christopher W. Walter, Daniel M. Scolnic, Anze Slosar, arXiv:1901.01599, 2019.
[Walter:2019fdz]
[16-219]
Ultrahigh-energy cosmic-ray nuclei and neutrinos from engine-driven supernovae, B. Theodore Zhang, Kohta Murase, Phys.Rev. D100 (2019) 103004, arXiv:1812.10289.
[Zhang:2018agl]
[16-220]
Neutrino flavour as a test of the explosion mechanism of core-collapse supernovae, Nitsan Bar, Kfir Blum, Guido D'Amico, Phys.Rev. D99 (2019) 123004, arXiv:1811.11178.
[Bar:2018ejc]
[16-221]
Developing the MeV Potential of DUNE: Detailed Considerations of Muon-Induced Spallation Backgrounds and More, Guanying Zhu, Shirley Weishi Li, John F. Beacom, Phys.Rev. C99 (2019) 055810, arXiv:1811.07912.
[Zhu:2018rwc]
[16-222]
Galactic Simulations of r-process Elemental Abundances, Christopher Haynes, Chiaki Kobayashi, arXiv:1809.10991, 2018.
[1809.10991]
[16-223]
Late time supernova neutrino signal and proto-neutron star radius, A. Gallo Rosso, S. Abbar, F. Vissani, M.C. Volpe, JCAP 1812 (2018) 006, arXiv:1809.09074.
[GalloRosso:2018ugl]
[16-224]
Charged-current scattering off $^{16}$O nucleus as a detection channel for supernova neutrinos, Ken'ichiro Nakazato, Toshio Suzuki, Makoto Sakuda, PTEP 2018 (2018) 123E02, arXiv:1809.08398.
[Nakazato:2018xkv]
[16-225]
Neutrino induced reactions in core-collapse supernovae: effects on the electron fraction, M. M. Saez, O. Civitarese, M. E. Mosquera, Int.J.Mod.Phys. D27 (2018) 1850116, arXiv:1808.03249.
[Saez:2018zsb]
[16-226]
Supernova Neutrino Scattering off Gadolinium Even Isotopes in Water Cherenkov Detectors, Paraskevi C. Divari, JCAP 1809 (2018) 029, arXiv:1808.01677.
[Divari:2018gde]
[16-227]
Active galactic nuclei with GeV activities and the PeV neutrino source candidate TXS 0506+056, Neng-Hui Liao, Yu-Liang Xin, Yun-Feng Liang, Xiao-Lei Guo, Shang Li, Hao-Ning He, Qiang Yuan, Yi-Zhong Fan, arXiv:1807.05210, 2018.
[Liao:2018pta]
[16-228]
Constraints on differential Shapiro delay between neutrinos and photons from IceCube-170922A, Sibel Boran, Shantanu Desai, Emre O. Kahya, Eur.Phys.J. C79 (2019) 185, arXiv:1807.05201.
[Boran:2018ypz]
[16-229]
On Possibility of Determining Neutrino Mass Hierarchy by the Charged-Current and Neutral-Current Events of Supernova Neutrinos in Scintillation Detectors, Fei-Fan Lee, Feng-Shiuh Lee, Kwang-Chang Lai, Eur.Phys.J. C79 (2019) 131, arXiv:1807.05170.
[Lee:2018kup]
[16-230]
High-Energy Emission from Interacting Supernovae: New Constraints on Cosmic-Ray Acceleration in Dense Circumstellar Environments, Kohta Murase, Anna Franckowiak, Keiichi Maeda, Raffaella Margutti, John F. Beacom, Astrophys.J. 874 (2019) 80, arXiv:1807.01460.
[Murase:2018okz]
[16-231]
JUNO Sensitivity to Resonant Absorption of Galactic Supernova Neutrinos by Dark Matter, Tarso Franarin, Malcolm Fairbairn, Jonathan H. Davis, arXiv:1806.05015, 2018.
[Franarin:2018gfk]
[16-232]
Heavy sterile neutrinos in stellar core-collapse, Tomasz Rembiasz et al., Phys.Rev. D98 (2018) 103010, arXiv:1806.03300.
[Rembiasz:2018lok]
[16-233]
Sensitivity of the PICO-500 Bubble Chamber to Supernova Neutrinos Through Coherent Nuclear Elastic Scattering, Scott Fallows, Tetiana Kozynets, Carsten B. Krauss, Astropart.Phys. 105 (2019) 25-30, arXiv:1806.01417.
[Fallows:2018ika]
[16-234]
The $\nu$ process in the light of an improved understanding of supernova neutrino spectra, A. Sieverding, G. Martinez-Pinedo, L. Huther, K. Langanke, A. Heger, Astrophys.J. 865 (2018) 143, arXiv:1805.10231.
[Sieverding:2018rdt]
[16-235]
Production of Mo and Ru isotopes in neutrino-driven winds: implications for solar abundances and presolar grains, Julia Bliss, Almudena Arcones, Yong-Zhong Qian, Astrophys.J. 866 (2018) 105, arXiv:1804.03947.
[Bliss:2018djg]
[16-236]
Measuring the supernova unknowns at the next-generation neutrino telescopes through the diffuse neutrino background, Klaes Moller, Anna M. Suliga, Irene Tamborra, Peter B. Denton, JCAP 1805 (2018) 066, arXiv:1804.03157.
[Moller:2018kpn]
[16-237]
Neutrino Signals of Core-Collapse Supernovae in Underground Detectors, Shaquann Seadrow, Adam Burrows, David Vartanyan, David Radice, M. Aaron Skinner, Mon.Not.Roy.Astron.Soc. 480 (2018) 4710-4731, arXiv:1804.00689.
[Seadrow:2018ftp]
[16-238]
Neutrinos from Choked Jets Accompanied by Type-II Supernovae, Hao-Ning He, Alexander Kusenko, Shigehiro Nagataki, Yi-Zhong Fan, Da-Ming Wei, Astrophys.J. 856 (2018) 119, arXiv:1803.07478.
[He:2018lwb]
[16-239]
Probing secret interactions of eV-scale sterile neutrinos with the diffuse supernova neutrino background, Yu Seon Jeong, Sergio Palomares-Ruiz, Mary Hall Reno, Ina Sarcevic, JCAP 1806 (2018) 019, arXiv:1803.04541.
[Jeong:2018yts]
[16-240]
Neutrino flavor transformation in supernova as a probe for nonstandard neutrino-scalar interactions, Yue Yang, James P. Kneller, Phys.Rev. D97 (2018) 103018, arXiv:1803.04504.
[Yang:2018yvk]
[16-241]
Supernova Neutrino Neutrino Astronomy, Vedran Brdar, Manfred Lindner, Xun-Jie Xu, JCAP 1804 (2018) 025, arXiv:1802.02577.
[Brdar:2018zds]
[16-242]
Survey of astrophysical conditions in neutrino-driven supernova ejecta nucleosynthesis, Julia Bliss, Maximilian Witt, Almudena Arcones, Fernando Montes, Jorge Pereira, Astrophys.J. 855 (2018) 135, arXiv:1802.00737.
[Bliss:2018nhk]
[16-243]
Neutrino-nucleon scattering in the neutrino-sphere, Paulo F. Bedaque, Sanjay Reddy, Srimoyee Sen, Neill C. Warrington, Phys.Rev. C98 (2018) 015802, arXiv:1801.07077.
[Bedaque:2018wns]
[16-244]
PeV neutrinos from wind breakouts of type II supernovae, Zhuo Li, Sci.China Phys.Mech.Astron. 62 (2019) 959511, arXiv:1801.04389.
[Li:2018tfh]
[16-245]
Impact of Neutrino Opacities in Core-Collapse Supernova Simulations, Kei Kotake, Tomoya Takiwaki, Tobias Fischer, Ko Nakamura, Gabriel Martinez-Pinedo, Astrophys.J. 853 (2018) 170, arXiv:1801.02703.
[Kotake:2018ypf]
[16-246]
Role of core-collapse supernovae in explaining Solar System abundances of p nuclides, C. Travaglio, T. Rauscher, A. Heger, M. Pignatari, C. West, arXiv:1801.01929, 2018.
[1801.01929]
[16-247]
The gravitational wave signal from core-collapse supernovae, Viktoriya Morozova, David Radice, Adam Burrows, David Vartanyan, Astrophys.J. 861 (2018) 10, arXiv:1801.01914.
[Morozova:2018glm]
[16-248]
Shell-model computed cross sections for charged-current scattering of astrophysical neutrinos off $^{40}$Ar, Joel Kostensalo, Jouni Suhonen, K. Zuber, Phys. Rev. C97 (2018) 034309.
[Kostensalo:2018kgh]
[16-249]
Towards a complete reconstruction of supernova neutrino spectra in future large liquid-scintillator detectors, Hui-Ling Li, Yu-Feng Li, Meng Wang, Liang-Jian Wen, Shun Zhou, Phys.Rev. D97 (2018) 063014, arXiv:1712.06985.
[Li:2017dbg]
[16-250]
What can we learn on supernova neutrino spectra with water Cherenkov detectors?, Andrea Gallo Rosso, Francesco Vissani, Maria Cristina Volpe, JCAP 1804 (2018) 040, arXiv:1712.05584.
[GalloRosso:2017mdz]
[16-251]
Prospects for detecting eV-scale sterile neutrinos from a galactic supernova, Tarso Franarin, Jonathan H. Davis, Malcolm Fairbairn, JCAP 1809 (2018) 002, arXiv:1712.03836.
[Franarin:2017jnd]
[16-252]
Confronting Models of Massive Star Evolution and Explosions with Remnant Mass Measurements, Carolyn A. Raithel, Tuguldur Sukhbold, Feryal Ozel, Astrophys.J. 856 (2018) 35, arXiv:1712.00021.
[Raithel:2017nlc]
[16-253]
Robust measurement of supernova $\nu_e$ spectra with future neutrino detectors, Alex Nikrant, Ranjan Laha, Shunsaku Horiuchi, Phys.Rev. D97 (2018) 023019, arXiv:1711.00008.
[Nikrant:2017nya]
[16-254]
Intermediate-Mass-Elements in Young Supernova Remnants Reveal Neutron Star Kicks by Asymmetric Explosions, Satoru Katsuda et al., Astrophys.J. 856 (2018) 18, arXiv:1710.10372.
[Katsuda:2017hco]
[16-255]
A physical model of mass ejection in failed supernovae, Eric R. Coughlin, Eliot Quataert, Rodrigo Fernandez, Daniel Kasen, Mon.Not.Roy.Astron.Soc. 477 (2018) 1225-1238, arXiv:1710.01746.
[Coughlin:2017xdj]
[16-256]
Hydrogen-rich supernovae beyond the neutrino-driven core-collapse paradigm, G. Terreran et al., arXiv:1709.10475, 2017.
[1709.10475]
[16-257]
On the Possibility to Determine Neutrino Mass Hierarchy via Supernova Neutrinos with Short-Time Characteristics, Junji Jia, Yaoguang Wang, Shun Zhou, Chin.Phys. C43 (2019) 095102, arXiv:1709.09453.
[Jia:2017oar]
[16-258]
Measuring the Progenitor Mass and Dense Circumstellar Material of Type II Supernovae, Viktoriya Morozova, Anthony L. Piro, Stefano Valenti, Astrophys.J. 858 (2018) 15, arXiv:1709.04928.
[Morozova:2017hbk]
[16-259]
Neutrinos from beta processes in a presupernova: probing the isotopic evolution of a massive star, Kelly M. Patton, Cecilia Lunardini, Robert J. Farmer, F. X. Timmes, Astrophys.J. 851 (2017) 6, arXiv:1709.01877.
[Patton:2017neq]
[16-260]
Estimating the core compactness of massive stars with Galactic supernova neutrinos, Shunsaku Horiuchi, Ko Nakamura, Tomoya Takiwaki, Kei Kotake, J.Phys. G44 (2017) 114001, arXiv:1708.08513.
[Horiuchi:2017qlw]
[16-261]
Magnetar-powered superluminous supernovae must first be exploded by jets, Noam Soker, Avishai Gilkis, Astrophys.J. 851 (2017) 95, arXiv:1708.08356.
[Soker:2017dec]
[16-262]
Measuring the neutron star compactness and binding energy with supernova neutrinos, Andrea Gallo Rosso, Francesco Vissani, Maria Cristina Volpe, JCAP 1711 (2017) 036, arXiv:1708.00760.
[GalloRosso:2017hbp]
[16-263]
Explosive nucleosynthesis of ultra-stripped Type Ic supernovae: application to light trans-iron elements, Takashi Yoshida, Yudai Suwa, Hideyuki Umeda, Masaru Shibata, Koh Takahashi, Mon.Not.Roy.Astron.Soc. 471 (2017) 4275, arXiv:1707.02685.
[Yoshida:2017hbd]
[16-264]
The Neutrino Signal From Pair Instability Supernovae, Warren P. Wright, Matthew S. Gilmer, Carla Frohlich, James P. Kneller, Phys.Rev. D96 (2017) 103008, arXiv:1706.08410.
[Wright:2017zyq]
[16-265]
Diffuse neutrino supernova background as a cosmological test, J. Barranco, Argelia Bernal, D. Delepine, J.Phys. G45 (2018) 055201, arXiv:1706.03834.
[Barranco:2017lug]
[16-266]
Constraining high-energy neutrino emission from choked jets in stripped-envelope supernovae, Nicholas Senno, Kohta Murase, Peter Meszaros, JCAP 1801 (2018) 025, arXiv:1706.02175.
[Senno:2017vtd]
[16-267]
Supernovae in compact star clusters as sources of high-energy cosmic rays and neutrinos, A. M. Bykov, D. C. Ellison, P. E. Gladilin, S. M. Osipov, Adv.Space Res. 62 (2018) 2764-2772, arXiv:1706.01135.
[Bykov:2017fik]
[16-268]
Supernova Neutrino in a Strangeon Star Model, Mao Yuan, Jiguang Lu, Zhiliang Yang, Xiaoyu Lai, Renxin Xu, Res.Astron.Astrophys. 17 (2017) 092, arXiv:1705.08188.
[Yuan:2017yql]
[16-269]
Point-source and diffuse high-energy neutrino emission from Type IIn supernovae, Maria Petropoulou, Stefan Coenders, Georgios Vasilopoulos, Atish Kamble, Lorenzo Sironi, Mon.Not.Roy.Astron.Soc. 470 (2017) 1881, arXiv:1705.06752.
[Petropoulou:2017ymv]
[16-270]
Detecting High-Energy Neutrinos from the Next Galactic Supernova, Kohta Murase, Phys.Rev. D97 (2018) 081301, arXiv:1705.04750.
[Murase:2017pfe]
[16-271]
Diffuse neutrinos from luminous and dark supernovae: prospects for upcoming detectors at the O(10) kt scale, Alankrita Priya, Cecilia Lunardini, JCAP 1711 (2017) 031, arXiv:1705.02122.
[Priya:2017bmm]
[16-272]
Neutrino emissions in all flavors up to the pre-bounce of massive stars and the possibility of their detections, Chinami Kato et al., Astrophys.J. 848 (2017) 48, arXiv:1704.05480.
[Kato:2017ehj]
[16-273]
Neutrino intensity interferometry: Measuring proto-neutron star radii during core-collapse supernovae, Warren P. Wright, James P. Kneller, Phys.Rev.Lett. 119 (2017) 051101, arXiv:1704.00010.
[Wright:2017jwl]
[16-274]
The Nickel Mass Distribution of Normal Type II Supernovae, Tomas Muller, Jose L. Prieto, Ondrej Pejcha, Alejandro Clocchiatti, Astrophys.J. 841 (2017) 127, arXiv:1702.00416.
[Muller:2017bdf]
[16-275]
Neutrino fluxes from a core-collapse supernova in a model with three sterile neutrinos, A. V. Yudin, D. K. Nadyozhin, V. V. Khruschov, S. V. Fomichev, Astron. Lett. 42 (2016) 800-814, arXiv:1701.04713.
[Yudin:2016zqp]
[16-276]
Charged current neutrino interactions in hot and dense matter, Luke F. Roberts, Sanjay Reddy, Phys.Rev. C95 (2017) 045807, arXiv:1612.02764.
[Roberts:2016mwj]
[16-277]
Impact of $(\alpha,n)$ reactions on neutrino-driven wind nucleosynthesis, Julia Bliss, Almudena Arcones, Fernando Montes, Jorge Pereira, J.Phys. G44 (2017) 054003, arXiv:1612.02435.
[Bliss:2016spk]
[16-278]
Nuclear pasta and supernova neutrinos at late times, C. J. Horowitz et al., arXiv:1611.10226, 2016.
[Horowitz:2016fpa]
[16-279]
Evidence from stable isotopes and Be-10 for solar system formation triggered by a low-mass supernova, Projjwal Banerjee, Yong-Zhong Qian, Alexander Heger, W. C. Haxton, Nature Commun. 7 (2016) 3639, arXiv:1611.07162.
[Banerjee:2016tzd]
[16-280]
Neutrino-nucleon scattering in supernova matter from the virial expansion, C.J. Horowitz, O. L. Caballero, Zidu Lin, Evan O'Connor, A. Schwenk, Phys. Rev. C95 (2017) 025801, arXiv:1611.05140.
[Horowitz:2016gul]
[16-281]
Background Study on Supernova Relic Neutrinos Search in SuperK-Gd, Yang Zhang, arXiv:1610.09457, 2016.
[Zhang:2016mce]
[16-282]
Impact of new data for neutron-rich heavy nuclei on theoretical models for $r$-process nucleosynthesis, Toshitaka Kajino, Grant J. Mathews, Rept.Prog.Phys. 80 (2017) 084901, arXiv:1610.07929.
[Kajino:2016pia]
[16-283]
Inferring the core-collapse supernova explosion mechanism with gravitational waves, Jade Powell, Sarah Gossan, Joshua Logue, Ik Siong Heng, Phys. Rev. D94 (2016) 123012, arXiv:1610.05573.
[Powell:2016wke]
[16-284]
Supernova Constraints on Massive (Pseudo)Scalar Coupling to Neutrinos, Lucien Heurtier, Yongchao Zhang, JCAP 1702 (2017) 042, arXiv:1609.05882.
[Heurtier:2016otg]
[16-285]
Impact of Nucleon-Nucleon Bremsstrahlung Rates Beyond One-Pion Exchange, Alexander Bartl, Robert Bollig, Hans-Thomas Janka, Achim Schwenk, Phys. Rev. D94 (2016) 083009, arXiv:1608.05037.
[Bartl:2016iok]
[16-286]
Detecting supernova neutrinos with iron and lead detectors, Abhijit Bandyopadhyay, Pijushpani Bhattacharjee, Sovan Chakraborty, Kamales Kar, Satyajit Saha, Phys.Rev. D95 (2017) 065022, arXiv:1607.05591.
[Bandyopadhyay:2016gkv]
[16-287]
Detecting supernovae neutrino with Earth matter effect, Wei Liao, Phys. Rev. D94 (2016) 113016, arXiv:1607.03334.
[Liao:2016uis]
[16-288]
Supernova neutrino physics with xenon dark matter detectors: A timely perspective, Rafael F. Lang, Christopher McCabe, Shayne Reichard, Marco Selvi, Irene Tamborra, Phys. Rev. D94 (2016) 103009, arXiv:1606.09243.
[Lang:2016zhv]
[16-289]
Presupernova neutrino events relating to the final evolution of massive stars, Takashi Yoshida, Ko Takahashi, Hideyuki Umeda, Koji Ishidoshiro, Phys. Rev. D93 (2016) 123012, arXiv:1606.04915.
[Yoshida:2016imf]
[16-290]
Probing axions with the neutrino signal from the next galactic supernova, Tobias Fischer et al., Phys. Rev. D94 (2016) 085012, arXiv:1605.08780.
[Fischer:2016cyd]
[16-291]
Getting the Most from Detection of Galactic Supernova Neutrinos in Future Large Scintillator Detectors, Jia-Shu Lu, Yu-Feng Li, Shun Zhou, Phys. Rev. D94 (2016) 023006, arXiv:1605.07803.
[Lu:2016ipr]
[16-292]
Supernova energy measurement with longitudinal gravitational memory effect, Darsh Kodwani, Ue-Li Pen, I-Sheng Yang, arXiv:1605.05399, 2016.
[Kodwani:2016vis]
[16-293]
Non-Standard Neutrino Interactions in Supernovae, Charles J. Stapleford, Daavid J. Vaananen, James P. Kneller, Gail C. McLaughlin, Brandon T. Shapiro, Phys. Rev. D94 (2016) 093007, arXiv:1605.04903.
[Stapleford:2016jgz]
[16-294]
Neutrinos from Type Ia Supernovae I: The Deflagration-To-Detonation Transition Scenario, Warren P. Wright, Gautam Nagaraj, James P. Kneller, Kate Scholberg, Ivo R. Seitenzahl, Phys. Rev. D94 (2016) 025026, arXiv:1605.01408.
[Wright:2016xma]
[16-295]
Production of keV Sterile Neutrinos in Supernovae: New Constraints and Gamma Ray Observables, Carlos A. Arguelles, Vedran Brdar, Joachim Kopp, Phys.Rev. D99 (2019) 043012, arXiv:1605.00654.
[Arguelles:2016uwb]
[16-296]
How well can new particles interacting with neutrinos be constrained after a galactic supernova?, Jonathan H. Davis, arXiv:1605.00011, 2016.
[Davis:2016dqh]
[16-297]
Determination of the Neutron-Capture Rate of 17C for the R-process Nucleosynthesis, M. Heine et al., Phys. Rev. C95 (2017) 014613, arXiv:1604.05832.
[Heine:2016zse]
[16-298]
Sterile neutrino dark matter and core-collapse supernovae, Grant J. Mathews, MacKenzie Warren, Jun Hidaka, Toshitaka Kajino, arXiv:1604.02431, 2016.
[Mathews:2016xba]
[16-299]
Solar r-process-constrained actinide production in neutrino-driven winds of supernovae, S. Goriely, H. -Th. Janka, Mon.Not.Roy.Astron.Soc. 459 (2016) 4174-4182, arXiv:1603.04282.
[Goriely:2016gfe]
[16-300]
Neutral Current Coherent Cross Sections - Implications on Gaseous Spherical TPC's for detecting SN and Earth neutrinos, J. D. Vergados, Y. Giomataris, Int.J.Mod.Phys. E26 (2017) 1740030, arXiv:1603.03966.
[Vergados:2016ueq]
[16-301]
Probing Neutrino Mass Hierarchy by Comparing the Charged-Current and Neutral-Current Interaction Rates of Supernova Neutrinos, Kwang-Chang Lai et al., JCAP 1607 (2016) 039, arXiv:1603.00692.
[Lai:2016yvu]
[16-302]
Multi-messenger signals of long-term core-collapse supernova simulations : synergetic observation strategies, Ko Nakamura, Shunsaku Horiuchi, Masaomi Tanaka, Kazuhiro Hayama, Tomoya Takiwaki, Kei Kotake, Mon.Not.Roy.Astron.Soc. 461 (2016) 3296-3313, arXiv:1602.03028.
[Nakamura:2016kkl]
[16-303]
Pulsar Acceleration Shifts from nearby Supernova Explosion, Darsh Kodwani, Ue-Li Pen, I-Sheng Yang, Phys. Rev. D93 (2016) 103006, arXiv:1601.03917.
[Kodwani:2016all]
[16-304]
Observing Gravitational Waves from Core-Collapse Supernovae in the Advanced Detector Era, S. E. Gossan et al., Phys. Rev. D93 (2016) 042002, arXiv:1511.02836.
[Gossan:2015xda]
[16-305]
Presupernova neutrinos: realistic emissivities from stellar evolution, Kelly M. Patton, Cecilia Lunardini, Astrophys.J. 840 (2017) 2, arXiv:1511.02820.
[Patton:2015sqt]
[16-306]
Supernova neutrino detection at spallation neutron sources, Huang Ming-Yang, Guo Xin-Heng, Young Bing-Lin, Chin.Phys. C40 (2016) 073102, arXiv:1511.00806.
[Huang:2015aii]
[16-307]
Detecting the Supernova Breakout Burst in Terrestrial Neutrino Detectors, Joshua Wallace, Adam Burrows, Joshua C. Dolence, Astrophys. J. 817 (2016) 182, arXiv:1510.01338.
[Wallace:2015xma]
[16-308]
Nucleosynthesis of molybdenum in neutrino-driven winds, Julia Bliss, Almudena Arcones, arXiv:1509.07621, 2015.
[1509.07621]
[16-309]
The progenitors of core-collapse supernovae suggest thermonuclear origin for the explosions, Doron Kushnir, arXiv:1506.02655, 2015.
[Kushnir:2015vka]
[16-310]
Pre-supernova neutrino emissions from ONe cores in the progenitors of core-collapse supernovae: are they distinguishable from those of Fe cores?, Chinami Kato, Milad Delfan Azari, Shoichi Yamada, Koh Takahashi, Hideyuki Umeda et al., Astrophys. J. 808 (2015) 168, arXiv:1506.02358.
[Kato:2015faa]
[16-311]
Constraints on explosive silicon burning in core-collapse supernovae from measured Ni/Fe ratios, A. Jerkstrand et al., arXiv:1505.05323, 2015.
[1505.05323]
[16-312]
Relative contributions of the weak, main and fission-recycling r-process, S. Shibagaki et al., Astrophys. J. 816 (2016) 79, arXiv:1505.02257.
[Shibagaki:2015fga]
[16-313]
Neutrino Nucleosynthesis of radioactive nuclei in supernovae, A. Sieverding, L. Huther, K. Langanke, G. Martinez-Pinedo, A. Heger, arXiv:1505.01082, 2015.
[Sieverding:2015oya]
[16-314]
Prompt directional detection of galactic supernova by combining large liquid scintillator neutrino detectors, V. Fischer et al., arXiv:1504.05466, 2015.
[Fischer:2015oma]
[16-315]
Spallation Backgrounds in Super-Kamiokande Are Made in Muon-Induced Showers, Shirley Weishi Li, John F. Beacom, Phys. Rev. D91 (2015) 105005, arXiv:1503.04823.
[Li:2015kpa]
[16-316]
Spectrum of the Supernova Relic Neutrino Background and Metallicity Evolution of Galaxies, Ken'ichiro Nakazato, Eri Mochida, Yuu Niino, Hideyuki Suzuki, Astrophys.J. 804 (2015) 75, arXiv:1503.01236.
[Nakazato:2015rya]
[16-317]
Diffuse neutrinos from extragalactic supernova remnants: Dominating the 100 TeV IceCube flux, Sovan Chakraborty, Ignacio Izaguirre, Phys.Lett. B745 (2015) 35-39, arXiv:1501.02615.
[Chakraborty:2015sta]
[16-318]
Boundaries on Neutrino Mass from Supernovae Neutronization Burst by Liquid Argon Experiments, F. Rossi-Torres, M. M. Guzzo, E. Kemp, arXiv:1501.00456, 2015.
[Rossi-Torres:2015rla]
[16-319]
Effects of neutrino oscillations on nucleosynthesis and neutrino signals for an 18 M supernova model, Meng-Ru Wu, Yong-Zhong Qian, Gabriel Martinez-Pinedo, Tobias Fischer, Lutz Huther, Phys. Rev. D91 (2015) 065016, arXiv:1412.8587.
[Wu:2014kaa]
[16-320]
New Power to Measure Supernova $\nu_e$ with Large Liquid Scintillator Detectors, Ranjan Laha, John F. Beacom, Sanjib Kumar Agarwalla, arXiv:1412.8425, 2014.
[Laha:2014yua]
[16-321]
Constraining Absolute Neutrino Masses via Detection of Galactic Supernova Neutrinos at JUNO, Jia-Shu Lu, Jun Cao, Yu-Feng Li, Shun Zhou, JCAP 05 (2015) 044, arXiv:1412.7418.
[Lu:2014zma]
[16-322]
Observational Signatures of SNIa Progenitors, as Predicted by Models, Yael Hillman, Dina Prialnik, Attay Kovetz, Michael M. Shara, arXiv:1411.0382, 2014.
[1411.0382]
[16-323]
Supernova neutrinos and the turbulence power spectrum: point source statistics, James P. Kneller, Neel V. Kabadi, Phys. Rev. D92 (2015) 013009, arXiv:1410.5698.
[Kneller:2014oea]
[16-324]
Probing Rotation of Core-collapse Supernova with Concurrent Analysis of Gravitational Waves and Neutrinos, Takaaki Yokozawa, Mitsuhiro Asano, Tsubasa Kayano, Yudai Suwa, Nobuyuki Kanda et al., Astrophys. J. 811 (2015) 86, arXiv:1410.2050.
[Yokozawa:2014tca]
[16-325]
Neutrino viscosity and drag: impact on the magnetorotational instability in proto-neutron stars, Jerome Guilet, Ewald Mueller, Hans-Thomas Janka, Mon.Not.Roy.Astron.Soc. 447 (2015) 3992, arXiv:1410.1874.
[Guilet:2014kca]
[16-326]
Detecting the Diffuse Supernova Neutrino Background with LENA, Randolph Mollenberg et al., Phys. Rev. D91 (2015) 032005, arXiv:1409.2240.
[Mollenberg:2014pwa]
[16-327]
The Landscape of the Neutrino Mechanism of Core-Collapse Supernovae: Neutron Star and Black Hole Mass Functions, Explosion Energies and Nickel Yields, Ondrej Pejcha, Todd A. Thompson, Astrophys.J. 801 (2015) 90, arXiv:1409.0540.
[Pejcha:2014wda]
[16-328]
Study of Gamow-Teller transitions in isotopes of titanium within the quasi particle random phase approximation, Sadiye Cakmak, Jameel-Un Nabi, Tahsin Babacan, Cevad Selam, Astrophys.Space Sci. 352 (2014) 645-663, arXiv:1408.4886.
[Cakmak:2014yna]
[16-329]
How many nucleosynthesis processes exist at low metallicity?, C. J. Hansen, F. Montes, A. Arcones, Astrophys. J. 797 (2014) 123, arXiv:1408.4135.
[Hansen:2014tfa]
[16-330]
Bayesian parameter estimation of core collapse supernovae using gravitational wave simulations, Matthew C. Edwards, Renate Meyer, Nelson Christensen, Inverse Prob. 30 (2014) 114008, arXiv:1407.7549.
[Edwards:2014uya]
[16-331]
Resolving neutrino mass hierarchy from supernova (anti)neutrino-nucleus reactions, Deni Vale, Nils Paar, AIP Conf. Proc. 1681 (2015) 050011, arXiv:1406.2584.
[Vale:2014qaa]
[16-332]
Neutrino emission characteristics and detection opportunities based on three-dimensional supernova simulations, Irene Tamborra, Georg Raffelt, Florian Hanke, Hans-Thomas Janka, Bernhard Mueller, Phys. Rev. D90 (2014) 045032, arXiv:1406.0006.
[Tamborra:2014hga]
[16-333]
Supernova Relic Neutrinos and the Supernova Rate Problem: Analysis of Uncertainties and Detectability of ONeMg and Failed Supernovae, Grant J. Mathews, Jun Hidaka, Toshitaka Kajino, Jyutaro Suzuki, Astrophys.J. 790 (2014) 115, arXiv:1405.0458.
[Mathews:2014qba]
[16-334]
Spectrum of Supernova Neutrinos in Ultra-pure Scintillators, C. Lujan-Peschard, G. Pagliaroli, F. Vissani, JCAP 1407 (2014) 051, arXiv:1402.6953.
[Lujan-Peschard:2014lta]
[16-335]
r-Java 2.0: the astrophysics, M. Kostka, N. Koning, Z. Shand, R. Ouyed, P. Jaikumar, arXiv:1402.3824, 2014.
[Kostka:2014kwa]
[16-336]
Impact of sterile neutrinos on the early time flux from a galactic supernova, Arman Esmaili, O. L. G. Peres, Pasquale Dario Serpico, Phys. Rev. D90 (2014) 033013, arXiv:1402.1453.
[Esmaili:2014gya]
[16-337]
Dips in the Diffuse Supernova Neutrino Background, Yasaman Farzan, Sergio Palomares-Ruiz, JCAP 1406 (2014) 014, arXiv:1401.7019.
[Farzan:2014gza]
[16-338]
Signatures of the neutrino mass hierarchy in supernova neutrinos, S. H. Chiu, Chu-Ching Huang, Kwang-Chang Lai, PTEP 2015 (2013) 063, arXiv:1312.4262.
[Chiu:2013dya]
[16-339]
Supernova Bounds on Weinberg's Goldstone Bosons, Wai-Yee Keung, Kin-Wang Ng, Huitzu Tu, Tzu-Chiang Yuan, Phys. Rev. D90 (2014) 075014, arXiv:1312.3488.
[Keung:2013mfa]
[16-340]
Nucleosynthesis of elements between Sr and Ag in neutron- and proton-rich neutrino-driven winds, A. Arcones, J. Bliss, J. Phys. G41 (2014) 044005, arXiv:1312.0434.
[Arcones:2013pja]
[16-341]
Gadolinium in water Cherenkov detectors improves detection of supernova $\nu_e$, Ranjan Laha, John F. Beacom, Phys. Rev. D89 (2014) 063007, arXiv:1311.6407.
[Laha:2013hva]
[16-342]
Measuring the Angular Momentum Distribution in Core-Collapse Supernova Progenitors with Gravitational Waves, Ernazar Abdikamalov, Sarah Gossan, Alexandra M. DeMaio, Christian D. Ott, Phys. Rev. D90 (2014) 044001, arXiv:1311.3678.
[Abdikamalov:2013sta]
[16-343]
Supernova neutrinos and nucleosynthesis, G. Martinez-Pinedo, T. Fischer, L. Huther, J. Phys. G41 (2014) 044008, arXiv:1309.5477.
[Martinez-Pinedo:2013jna]
[16-344]
Observing supernova neutrino light curve in future dark matter detectors, Sovan Chakraborty, Pijushpani Bhattacharjee, Kamales Kar, Phys. Rev. D89 (2014) 013011, arXiv:1309.4492.
[Chakraborty:2013zua]
[16-345]
How to see an antistar, A.D. Dolgov, V.A. Novikov, M.I. Vysotsky, JETP Lett. 98 (2013) 519-522, arXiv:1309.2746.
[Dolgov:2013soa]
[16-346]
Neutrino-induced nucleosynthesis as a result of mixing between the He and C-O-Ne shells in core-collapse supernova, D.K. Nadyozhin, I.V. Panov, Mon.Not.Roy.Astron.Soc. 441 (2014) 733, arXiv:1308.4710.
[Nadyozhin:2013wma]
[16-347]
Imprint of Explosion Mechanism on Supernova Relic Neutrinos, Ken'ichiro Nakazato, Phys. Rev. D88 (2013) 083012, arXiv:1306.4526.
[Nakazato:2013maa]
[16-348]
Observing the Next Galactic Supernova, Scott M. Adams, C. S. Kochanek, John F. Beacom, Mark R. Vagins, K. Z. Stanek, Astrophys.J. 778 (2013) 164, arXiv:1306.0559.
[Adams:2013ana]
[16-349]
Natal Kicks of Stellar-Mass Black Holes by Asymmetric Mass Ejection in Fallback Supernovae, H.-Thomas Janka, Mon.Not.Roy.Astron.Soc. 434 (2013) 1355, arXiv:1306.0007.
[Janka:2013hfa]
[16-350]
Supernova Explosions of Super-Asymptotic Giant Branch Stars: Multicolor Light Curves of Electron-Capture Supernovae, Nozomu Tominaga, Sergei I. Blinnikov, Ken'ichi Nomoto, Astrophys.J. 771 (2013) L12, arXiv:1305.6813.
[Tominaga:2013ala]
[16-351]
Detectability of gravitational effects of supernova neutrino emission through pulsar timing, Ken D. Olum, Evan Pierce, Phys. Rev. D88 (2013) 043005, arXiv:1305.3881.
[Olum:2013gza]
[16-352]
Are Light Sterile Neutrinos Consistent with Supernova Explosions?, Meng-Ru Wu, Tobias Fischer, Gabriel Martinez-Pinedo, Yong-Zhong Qian, Phys. Rev. D89 (2014) 061303, arXiv:1305.2382.
[Wu:2013gxa]
[16-353]
Nucleosynthesis in the accretion disks of Type II collapsars, Indrani Banerjee, Banibrata Mukhopadhyay, RAA 13 (2013) 1063-1074, arXiv:1305.1755.
[Banerjee:2013aaa]
[16-354]
The r-process in proto-neutron-star wind revisited, Shinya Wanajo, Astrophys.J. 770 (2013) L22, arXiv:1305.0371.
[Wanajo:2013hba]
[16-355]
Revisiting the Triangulation Method for Pointing to Supernova and Failed Supernova with Neutrinos, T. Muhlbeier, H. Nunokawa, R. Zukanovich Funchal, Phys. Rev. D88 (2013) 085010, arXiv:1304.5006.
[Muhlbeier:2013gwa]
[16-356]
Detecting extra-galactic supernova neutrinos in the Antarctic ice, Sebastian Boser, Marek Kowalski, Lukas Schulte, Nora Linn Strotjohann, Markus Voge, Astropart.Phys. 62 (2015) 54-65, arXiv:1304.2553.
[Boser:2013oaa]
[16-357]
Could a reported 2007 analysis of Super-Kamiokande data have missed a detectable supernova signal from Andromeda?, Robert Ehrlich, ISRN High Energy Phys. 2014 (2014) 408508, arXiv:1301.3390.
[Ehrlich:2013eh]
[16-358]
Testing Lorentz Invariance with neutrino burst from supernova neutronization, Sovan Chakraborty, Alessandro Mirizzi, Gunter Sigl, Phys. Rev. D87 (2013) 017302, arXiv:1211.7069.
[Chakraborty:2012gb]
[16-359]
Tomography of Massive Stars from Core Collapse to Supernova Shock Breakout, Matthew D. Kistler, Wick C. Haxton, Hasan Yuksel, Astrophys. J. 778 (2013) 81, arXiv:1211.6770.
[Kistler:2012as]
[16-360]
Neutrino-Induced Production of 9Be in Core-Collapse Supernovae, P. Banerjee, Y.-Z. Qian, W. C. Haxton, A. Heger, Phys. Rev. Lett. 110 (2013) 141101, arXiv:1211.5860.
[Banerjee:2012hn]
[16-361]
High-resolution supernova neutrino spectra represented by a simple fit, Irene Tamborra, Bernhard Mueller, Lorenz Huedepohl, Hans-Thomas Janka, Georg Raffelt, Phys. Rev. D86 (2012) 125031, arXiv:1211.3920.
[Tamborra:2012ac]
[16-362]
High energy neutrino and gamma ray transients from relativistic supernova shock breakouts, Kazumi Kashiyama, Kohta Murase, Shunsaku Horiuchi, Shan Gao, Peter Meszaros, Astrophys.J. 769 (2013) L6, arXiv:1210.8147.
[Kashiyama:2013qet]
[16-363]
Fast time variations of supernova neutrino signals from 3-dimensional models, Tina Lund, Annop Wongwathanarat, Hans-Thomas Janka, Ewald Muller, Georg Raffelt, Phys. Rev. D86 (2012) 105031, arXiv:1208.0043.
[Lund:2012vm]
[16-364]
Neutrino-driven wind simulations and nucleosynthesis of heavy elements, A. Arcones, F.-K. Thielemann, J. Phys. G40 (2013) 013201, arXiv:1207.2527.
[Arcones:2012wj]
[16-365]
On the Importance of the Equation of State for the Neutrino-Driven Supernova Explosion Mechanism, Yudai Suwa et al., Astrophys. J. 764 (2013) 99, arXiv:1206.6101.
[Suwa:2012xd]
[16-366]
The Dependence of the Neutrino Mechanism of Core-Collapse Supernovae on the Equation of State, Sean M. Couch, Astrophys.J. 765 (2013) 29, arXiv:1206.4724.
[Couch:2012gh]
[16-367]
Probing the Structure of Jet Driven Core-Collapse Supernova and Long Gamma Ray Burst Progenitors with High Energy Neutrinos, Imre Bartos, Basudeb Dasgupta, Szabolcs Marka, Phys. Rev. D86 (2012) 083007, arXiv:1206.0764.
[Bartos:2012sg]
[16-368]
Neutrinos decoupled from $beta$-processes and supernova explosion, R. Mohammadi, Remo Ruffini, She-Sheng Xue, arXiv:1206.0431, 2012.
[Mohammadi:2012ki]
[16-369]
Charged-current weak interaction processes in hot and dense matter and its impact on the spectra of neutrinos emitted from proto-neutron star cooling, G. Martinez-Pinedo, T. Fischer, A. Lohs, L. Huther, Phys. Rev. Lett. 109 (2012) 251104, arXiv:1205.2793.
[Martinez-Pinedo:2012eaj]
[16-370]
Multimessengers from core-collapse supernovae: multidimensionality as a key to bridge theory and observation, Kei Kotake et al., Adv. Astron. 2012 (2012) 428757, arXiv:1204.2330.
[Kotake:2012iv]
[16-371]
R-process Nucleosynthesis during the Magnetohydrodynamics Explosions of a Massive Star, Motoaki Saruwatari, Masa-aki Hashimoto, Kei Kotake, Shoichi Yamada, arXiv:1204.1655, 2012.
[Saruwatari:2012vt]
[16-372]
Correlated Gravitational Wave and Neutrino Signals from General-Relativistic Rapidly Rotating Iron Core Collapse, C. D. Ott et al., Phys. Rev. D86 (2012) 024026, arXiv:1204.0512.
[Ott:2012kr]
[16-373]
Magneto-rotationally driven Supernovae as the origin of early galaxy r-process elements?, Christian Winteler et al., Astrophys.J. 750 (2012) L22, arXiv:1203.0616.
[Winteler:2012hu]
[16-374]
Inferring Core-Collapse Supernova Physics with Gravitational Waves, J. Logue, C.D. Ott, I.S. Heng, P. Kalmus, J. Scargill, Phys. Rev. D86 (2012) 044023, arXiv:1202.3256.
[Logue:2012zw]
[16-375]
Prospective Constraints on Neutrino Masses from a Core-Collapse Supernova, John Ellis, Hans-Thomas Janka, Nikolaos E. Mavromatos, Alexander S. Sakharov, Edward K. G. Sarkisyan, Phys. Rev. D85 (2012) 105028, arXiv:1202.0248.
[Ellis:2012ji]
[16-376]
Coherent scattering of neutral-current neutrinos as a probe for supernova detection, P. C. Divari, S. Galanopoulos, G. A. Souliotis, J. Phys. G39 (2012) 095204.
[Divari:2012cj]
[16-377]
Coherent and incoherent neutral current scattering for supernova detection, P. C. Divari, Adv. High Energy Phys. 2012 (2012) 379460.
[Divari:2012zz]
[16-378]
Nucleosynthesis in core-collapse supernova explosions triggered by a quark-hadron phase transition, Nobuya Nishimura et al., Astrophys. J. 758 (2012) 9, arXiv:1112.5684.
[Nishimura:2011yb]
[16-379]
Impact of supernova dynamics on the nup-process, A. Arcones, C. Frohlich, G. Martinez-Pinedo, Astrophys. J. 750 (2012) 18, arXiv:1112.4651.
[Arcones:2011zj]
[16-380]
Possible trace of neutrino nonstandard interactions in the supernova, C.R. Das, Joao Pulido, J. Phys. Conf. Ser. 375 (2012) 042040, arXiv:1111.6939. TAUP 2011, Munich, September 2011.
[Das:2011gb]
[16-381]
Study of Supernova nu-Nucleus Coherent Scattering Interactions, Carlos Martinez Amaya, Matteo Biassoni, Astropart.Phys. 36 (2012) 151-155, arXiv:1110.3536.
[Biassoni:2011xuo]
[16-382]
Supernova neutrino signals by liquid Argon detector and neutrino magnetic moment, Takashi Yoshida et al., Phys. Lett. B704 (2011) 108-112, arXiv:1109.2667.
[Yoshida:2011fc]
[16-383]
Neutrino induced reactions related to the $\nu$-process nucleosynthesis of ${}^{92}$Nb and ${}^{98}$Tc, Myung-Ki Cheoun et al., Phys. Rev. C85 (2012) 065807, arXiv:1108.4229.
[Cheoun:2011hj]
[16-384]
Evolution of Fluorine Abundances with the nu-Process, Chiaki Kobayashi et al., Astrophys.J. 739 (2011) L57, arXiv:1108.3030.
[Kobayashi:2011kf]
[16-385]
Preference for an Inverted Neutrino Mass Hierarchy from nu-Process Nucleosynthesis with Finite $\theta_{13}$ Mixing, G. J. Mathews, T. Kajino, W. Aoki, W. Fujiya, Phys. Rev. D85 (2012) 105023, arXiv:1108.0725.
[Mathews:2011jq]
[16-386]
The r-process in the neutrino-driven wind from a black-hole torus, Shinya Wanajo, Hans-Thomas Janka, Astrophys. J. 746 (2012) 180, arXiv:1106.6142.
[Wanajo:2011vy]
[16-387]
Neutrino nonstandard interactions in the supernova, C.R. Das, Joao Pulido, Phys. Rev. D84 (2011) 105040, arXiv:1106.4268.
[Das:2011yh]
[16-388]
Explosive nucleosynthesis in the neutrino-driven aspherical supernova explosion of a non-rotating 15$M_{\odot}$ star with solar metallicity, Shin-ichiro Fujimoto, Kei Kotake, Masa-aki Hashimoto, Masaomi Ono, Naofumi Ohnishi, Astrophys. J. 738 (2011) 61, arXiv:1106.2606.
[Fujimoto:2011nd]
[16-389]
Multi-messenger observations of neutron rich matter, C. J. Horowitz, Int.J.Mod.Phys. E20 (2011) 1, arXiv:1106.1661.
[Horowitz:2011vi]
[16-390]
Neutrino Spectra from Accretion Disks: Neutrino General Relativistic Effects and the Consequences for Nucleosynthesis, O.L Caballero, G.C. McLaughlin, R. Surman, Astrophys. J. 745 (2012) 170, arXiv:1105.6371.
[Caballero:2011dw]
[16-391]
Effect of collective neutrino flavor oscillations on vp-process nucleosynthesis, G. Martinez-Pinedo, B. Ziebarth, T. Fischer, K. Langanke, Eur. Phys. J. A47 (2011) 98, arXiv:1105.5304.
[Martinez-Pinedo:2011yhi]
[16-392]
Revealing local failed supernovae with neutrino telescopes, Lili Yang, Cecilia Lunardini, Phys. Rev. D84 (2011) 063002, arXiv:1103.4628.
[Yang:2011xd]
[16-393]
Reconstruction of supernova mu/tau-neutrino spectra at scintillator detectors, Basudeb Dasgupta, John. F. Beacom, Phys. Rev. D83 (2011) 113006, arXiv:1103.2768.
[Dasgupta:2011wg]
[16-394]
A Long, Cold, Early r-process? Neutrino-induced Nucleosynthesis in He Shells Revisited, P. Banerjee, W. C. Haxton, Y. -Z. Qian, Phys. Rev. Lett. 106 (2011) 201104, arXiv:1103.1193.
[Banerjee:2011zm]
[16-395]
Supernova bound on keV-mass sterile neutrinos reexamined, Georg G. Raffelt, Shun Zhou, Phys. Rev. D83 (2011) 093014, arXiv:1102.5124.
[Raffelt:2011nc]
[16-396]
11B and Constraints on Neutrino Oscillations and Spectra from Neutrino Nucleosynthesis, Sam M. Austin, Alex Heger, Clarisse Tur, Phys. Rev. Lett. 106 (2011) 152501, arXiv:1102.4858.
[Austin:2011gw]
[16-397]
The Cosmic Core-collapse Supernova Rate does not match the Massive-Star Formation Rate, Shunsaku Horiuchi et al., Astrophys. J. 738 (2011) 154-169, arXiv:1102.1977.
[Horiuchi:2011zz]
[16-398]
The diffuse supernova neutrino background: Expectations and uncertainties derived from SN1987A, Francesco Vissani, Giulia Pagliaroli, Astronomy $\text{\&}$ Astrophy OPHYSICS (2011) L1, arXiv:1102.0447.
[Vissani:2011kx]
[16-399]
Evaluating nuclear physics inputs in core-collapse supernova models, Eric J. Lentz, W. Raphael Hix, Mark L. Baird, O. E. Bronson Messer, Anthony Mezzacappa, arXiv:1101.0156, 2011. 5 pages, 2 figures, presented at Nuclei in the Cosmos XI, Heidelberg, Germany.
[Lentz:2011mw]
[16-400]
Reactions on Ar-40 involving solar neutrinos and neutrinos from core-collapsing supernovae, Myung-Ki Cheoun, Eunja Ha, Toshitaka Kajino, Phys. Rev. C83 (2011) 028801.
[Cheoun:2011zza]
[16-401]
Reanalysis of the (J = 5) state at 592 keV in 180Ta and its role in the neutrino-process nucleosynthesis of 180Ta in supernovae, T. Hayakawa, P. Mohr, T. Kajino, S. Chiba, G. J. Mathews, Phys. Rev. C82 (2010) 058801, arXiv:1012.5701.
[Hayakawa:2010zzc]
[16-402]
New estimate for the time-dependent thermal nucleosynthesis of $^{180}$Ta$^m$, T. Hayakawa, T. Kajino, S. Chiba, G. J. Mathews, Phys. Rev. C81 (2010) 052801, arXiv:1012.5700.
[Hayakawa:2010zza]
[16-403]
Black Hole Formation in Failing Core-Collapse Supernovae, Evan O'Connor, Christian D. Ott, Astrophys. J. 730 (2011) 70, arXiv:1010.5550.
[OConnor:2010moj]
[16-404]
mu- > e gamma decay versus mu- > eee bound and lepton flavor violating processes in supernova, Oleg Lychkovskiy, Mikhail Vysotsky, J. Exp. Theor. Phys. 114 (2012) 382-391, arXiv:1010.1694.
[Lychkovskiy:2010rz]
[16-405]
Cooling rates of neutron stars and the young neutron star in the Cassiopeia A supernova remnant, Dmitry G. Yakovlev, Wynn C. G. Ho, Peter S. Shternin, Craig O. Heinke, Alexander Y. Potekhin, Mon. Not. Roy. Astron. Soc. 411 (2011) 1977-1988, arXiv:1010.1154.
[Yakovlev:2010ed]
[16-406]
Theoretical Support for the Hydrodynamic Mechanism of Pulsar Kicks, J. Nordhaus, T. D. Brandt, A. Burrows, E. Livne, C. D. Ott, Phys. Rev. D82 (2010) 103016, arXiv:1010.0674.
[Nordhaus:2010ub]
[16-407]
Probing Exotic Physics With Supernova Neutrinos, Chris Kelso, Dan Hooper, arXiv:1009.5996, 2010.
[Kelso:2010yz]
[16-408]
The Ubiquity of the Rapid Neutron-Capture Process, I.U. Roederer et al., Astrophys. J. 724 (2010) 975-993, arXiv:1009.4496.
[Roederer:2010uu]
[16-409]
Neutrino reactions via neutral and charged current by Quasi-particle Random Phase Approximation(QRPA), Myung-Ki Cheoun, Eunja Ha, K. S. Kim, Toshitaka Kajino, J. Phys. G37 (2010) 055101, arXiv:1009.3082.
[Cheoun:2010zzc]
[16-410]
Neutrino reactions on $^{138}$La and $^{180}$Ta via charged and neutral currents by the Quasi-particle Random Phase Approximation (QRPA), Myung-Ki Cheoun, Eunja Ha, T. Hayakawa, Toshitaka Kajino, Satoshi Chiba, Phys. Rev. C82 (2010) 035504, arXiv:1009.3079.
[Cheoun:2010pm]
[16-411]
Statistical description of complex nuclear phases in supernovae and proto-neutron stars, Ad. R. Raduta, F. Gulminelli, Phys. Rev. C82 (2010) 065801, arXiv:1009.2226.
[Raduta:2010ym]
[16-412]
Boron Synthesis in Type Ic Supernovae, Ko Nakamura, Takashi Yoshida, Toshikazu Shigeyama, Toshitaka Kajino, Astrophys.J. 718 (2010) L137, arXiv:1007.0212.
[Nakamura:2010dj]
[16-413]
Fast time variations of supernova neutrino fluxes and their detectability, Tina Lund, Andreas Marek, Cecilia Lunardini, Hans-Thomas Janka, Georg Raffelt, Phys. Rev. D82 (2010) 063007, arXiv:1006.1889.
[Lund:2010kh]
[16-414]
Probing thermonuclear supernova explosions with neutrinos, A. Odrzywolek, T. Plewa, Astron.Astrophys. 529 (2011) A156, arXiv:1006.0490.
[Odrzywolek:2010je]
[16-415]
Gravitational Waves from Core Collapse Supernovae, Konstantin N Yakunin et al., Class. Quant. Grav. 27 (2010) 194005, arXiv:1005.0779.
[Yakunin:2010fn]
[16-416]
Uncertainties in the nu p-process: supernova dynamics versus nuclear physics, Shinya Wanajo, Hans-Thomas Janka, Shigeru Kubono, Astrophys. J. 729 (2011) 46, arXiv:1004.4487.
[Wanajo:2010mc]
[16-417]
Gravitational-Wave Signatures in Magnetically-driven Supernova Explosions, Tomoya Takiwaki, Kei Kotake, Astrophys. J. 743 (2011) 30, arXiv:1004.2896.
[Takiwaki:2010cf]
[16-418]
Searching for prompt signatures of nearby core-collapse supernovae by a joint analysis of neutrino and gravitational-wave data, I. Leonor et al., Class. Quant. Grav. 27 (2010) 084019, arXiv:1002.1511.
[Leonor:2010yp]
[16-419]
Multiflavor and multiband observations of neutrinos from core collapse supernovae, Ignacio Taboada, Phys. Rev. D81 (2010) 083011, arXiv:1002.0593.
[Taboada:2010xf]
[16-420]
Impact of Quarks and Pions on Dynamics and Neutrino Signal of Black Hole Formation in Non-rotating Stellar Core Collapse, Ken'ichiro Nakazato, Kohsuke Sumiyoshi, Shoichi Yamada, Astrophys. J. 721 (2010) 1284-1294, arXiv:1001.5084.
[Nakazato:2010ue]
[16-421]
Supernovae and the Chirality of the Amino Acids, R.N. Boyd, T. Kajino, T. Onaka, Astrobiology 10 (2010) 561, arXiv:1001.3849.
[Boyd:2010ak]
[16-422]
Synoptic Sky Surveys and the Diffuse Supernova Neutrino Background: Removing Astrophysical Uncertainties and Revealing Invisible Supernovae, Amy Lien, Brian D. Fields, John F. Beacom, Phys. Rev. D81 (2010) 083001, arXiv:1001.3678.
[Lien:2010yb]
[16-423]
The influence of model parameters on the prediction of gravitational wave signals from stellar core collapse, S. Scheidegger, R. Kaeppeli, S. C. Whitehouse, T. Fischer, M. Liebendoerfer, Astron.Astrophys. 514 (2010) A51, arXiv:1001.1570.
[Scheidegger:2010en]
[16-424]
Detecting the QCD phase transition in the next Galactic supernova neutrino burst, Basudeb Dasgupta et al., Phys. Rev. D81 (2010) 103005, arXiv:0912.2568.
[Dasgupta:2009yj]
[16-425]
Ray-Tracing Analysis of Anisotropic Neutrino Radiation for Estimating Gravitational Waves in Core-Collapse Supernovae, Kei Kotake, Wakana Iwakami, Naofumi Ohnishi, Shoichi Yamada, Astrophys. J. 704 (2009) 951-963, arXiv:0909.3622.
[Kotake:2009rr]
[16-426]
Reconstructing the supernova bounce time with neutrinos in IceCube, Francis Halzen, Georg G. Raffelt, Phys. Rev. D80 (2009) 087301, arXiv:0908.2317.
[Halzen:2009sm]
[16-427]
Reexamination of a Bound on the Dirac Neutrino Magnetic Moment from the Supernova Neutrino Luminosity, A.V. Kuznetsov, N.V. Mikheev, A. A. Okrugin, Int. J. Mod. Phys. A24 (2009) 5977-5989, arXiv:0907.2905.
[Kuznetsov:2009zm]
[16-428]
Shockwaves in Supernovae: New Implications on the Diffuse Supernova Neutrino Background, Sebastien Galais, James Kneller, Cristina Volpe, Jerome Gava, Phys. Rev. D81 (2010) 053002, arXiv:0906.5294.
[Galais:2009wi]
[16-429]
Neutrino deuteron reaction in the heating mechanism of core-collapse supernovae, S. X. Nakamura, K. Sumiyoshi, T. Sato, Phys. Rev. C80 (2009) 035802, arXiv:0906.0856.
[Nakamura:2009se]
[16-430]
Spin flip of neutrinos with magnetic moment in core-collapse supernova, Oleg Lychkovskiy, Sergei Blinnikov, Phys.Atom.Nucl. 73 (2010) 614-624, arXiv:0905.3658.
[Lychkovskiy:2009pm]
[16-431]
Fingerprints of a Local Supernova, Oliver Manuel, Hilton Ratcliffe, arXiv:0905.0684, 2009.
[Manuel:2009nc]
[16-432]
Dirac-Neutrino Magnetic Moment and the Dynamics of a Supernova Explosion, A. V. Kuznetsov, N. V. Mikheev, A. A. Okrugin, JETP Lett. 89 (2009) 97-101, arXiv:0903.2321.
[Kuznetsov:2009we]
[16-433]
Neutrinos from Supernovae as a Trigger for Gravitational Wave Search, G. Pagliaroli, F. Vissani, E. Coccia, W. Fulgione, Phys. Rev. Lett. 103 (2009) 031102, arXiv:0903.1191.
[Pagliaroli:2009qy]
[16-434]
Mimicking diffuse supernova antineutrinos with the Sun as a source, Georg Raffelt, Timur Rashba, Phys. Atom. Nucl. 73 (2010) 609-613, arXiv:0902.4832.
[Raffelt:2009mm]
[16-435]
Comment on '138La-138Ce-136Ce nuclear cosmochronometer of the supernova neutrino process', P. von Neumann-Cosel, A. Richter, A. Byelikov, Phys. Rev. C79 (2009) 059801, arXiv:0902.1844.
[Neumann-Cosel:2009iel]
[16-436]
Estimating the Explosion Time of Core-Collapse Supernovae from Their Optical Light Curves, D.F. Cowen, A. Franckowiak, M. Kowalski, Astropart. Phys. 33 (2010) 19-23, arXiv:0901.4877.
[Cowen:2009ev]
[16-437]
138La-138Ce-136Ce nuclear cosmochronometer of supernova neutrino process, Takehito Hayakawa, Toshiyuki Shizuma, Toshitaka Kajino, Kengo Ogawa, Hitoshi Nakada, Phys. Rev. C77 (2008) 065802, arXiv:0901.3593.
[Hayakawa:2008zza]
[16-438]
An 'archaeological' quest for galactic supernova neutrinos, Rimantas Lazauskas, Cecilia Lunardini, Cristina Volpe, JCAP 0904 (2009) 029, arXiv:0901.0581.
[Lazauskas:2009yh]
[16-439]
Diffuse neutrino flux from failed supernovae, Cecilia Lunardini, Phys. Rev. Lett. 102 (2009) 231101, arXiv:0901.0568.
[Lunardini:2009ya]
[16-440]
The Diffuse Supernova Neutrino Background is detectable in Super-Kamiokande, Shunsaku Horiuchi, John F. Beacom, Eli Dwek, Phys. Rev. D79 (2009) 083013, arXiv:0812.3157.
[Horiuchi:2008jz]
[16-441]
Applying Bayesian Neural Network to Determine Neutrino Incoming Direction in Reactor Neutrino Experiments and Supernova Explosion Location by Scintillator Detectors, Weiwei Xu, Ye Xu, Yixiong Meng, Bin Wu, JINST 4 (2009) P01002, arXiv:0812.2713.
[Xu:2008yj]
[16-442]
Core-Collapse Astrophysics with a Five-Megaton Neutrino Detector, Matthew D. Kistler, Hasan Yuksel, Shin'ichiro Ando, John F. Beacom, Yoichiro Suzuki, Phys. Rev. D83 (2011) 123008, arXiv:0810.1959.
[Kistler:2008us]
[16-443]
Neutrino mass spectrum from gravitational waves generated by double neutrino spin-flip in supernovae, Herman J. Mosquera Cuesta, Gaetano Lambiase, Astrophys.J. 689 (2008) 371, arXiv:0809.0526.
[MosqueraCuesta:2008skn]
[16-444]
How precisely neutrino emission from supernova remnants can be constrained by gamma ray observations?, F.L. Villante, F. Vissani, Phys. Rev. D78 (2008) 103007, arXiv:0807.4151.
[Villante:2008qg]
[16-445]
Neutrino-Nucleus Reaction Cross Sections for Light Element Synthesis in Supernova Explosions, T. Yoshida et al., Astrophys.J. 686 (2008) 448-466, arXiv:0807.2723.
[Yoshida:2008zb]
[16-446]
Nonthermal neutrinos from supernovae leaving a magnetar, Shunsaku Horiuchi, Yudai Suwa, Hajime Takami, Shin'ichiro Ando, Katsuhiko Sato, Mon.Not.Roy.Astron.Soc. 391 (2008) 1893, arXiv:0807.0267.
[Horiuchi:2008zc]
[16-447]
Eosphoric sterile neutrinos, supernovae, and the galactic positrons, George M. Fuller, Alexander Kusenko, Kalliopi Petraki, Phys. Lett. B670 (2009) 281-284, arXiv:0806.4273.
[Fuller:2008erj]
[16-448]
Upper limits on the diffuse supernova neutrino flux from the SuperKamiokande data, Cecilia Lunardini, Orlando L. G. Peres, JCAP 0808 (2008) 033, arXiv:0805.4225.
[Lunardini:2008xd]
[16-449]
Probing protoneutron star density profile from neutrino signals, M. Baldo, V. Palmisano, Phys. Rev. C78 (2008) 015807, arXiv:0804.3247.
[Baldo:2008yc]
[16-450]
Dirac neutrino magnetic moment and the shock wave revival in a supernova explosion, A.V. Kuznetsov, N.V. Mikheev, A. A. Okrugin, Phys. Atom. Nucl. 71 (2008) 2165-2168, arXiv:0804.1916.
[Kuznetsov:2008yk]
[16-451]
Neutrino magnetic moment signatures in the supernova neutrino signal, Oleg Lychkovskiy, arXiv:0804.1005, 2008.
[Lychkovskiy:2008da]
[16-452]
Astrophysical Implications of Equation of State for Hadron-Quark Mixed Phase: Compact Stars and Stellar Collapses, Ken'ichiro Nakazato, Kohsuke Sumiyoshi, Shoichi Yamada, Phys. Rev. D77 (2008) 103006, arXiv:0804.0661.
[Nakazato:2008su]
[16-453]
Parameter Degeneracy in Flavor-Dependent Reconstruction of Supernova Neutrino Fluxes, H. Minakata, H. Nunokawa, R. Tomas, J. W. F. Valle, JCAP 0812 (2008) 006, arXiv:0802.1489.
[Minakata:2008nc]
[16-454]
Learning more about what can be concluded from the observation of neutrinos from a galactic supernova, Solveig Skadhauge, Renata Zukanovich Funchal, arXiv:0802.1177, 2008.
[Skadhauge:2008gf]
[16-455]
Neutrino oscillation signatures of oxygen-neon-magnesium supernovae, C. Lunardini, B. Mueller, H. -Th. Janka, Phys. Rev. D78 (2008) 023016, arXiv:0712.3000.
[Lunardini:2007vn]
[16-456]
Supernova Relic Electron Neutrinos and anti-Neutrinos in future Large-scale Observatories, C. Volpe, J. Welzel, arXiv:0711.3237, 2007.
[Volpe:2007qx]
[16-457]
The supernova rate in local galaxy clusters, F. Mannucci et al., Mon. Not. Roy. Astron. Soc. 383 (2008) 1121-1130, arXiv:0710.1094.
[Mannucci:2007pb]
[16-458]
On-line recognition of supernova neutrino bursts in the LVD detector, N.Yu. Agafonova et al., Astropart. Phys. 28 (2008) 516-522, arXiv:0710.0259.
[Agafonova:2007hn]
[16-459]
Neutrino-Induced Gamma-Ray Emission from Supernovae, Yu Lu, Yong-Zhong Qian, Phys. Rev. D76 (2007) 103002, arXiv:0709.0501.
[Lu:2007wp]
[16-460]
New bounds on the neutrino magnetic moment from the plasma induced neutrino chirality flip in a supernova, Alexander V. Kuznetsov, Nickolay V. Mikheev, Journal of Cosmology and Astroparticle PHYSICS11 (2007) 031, arXiv:0709.0110.
[Kuznetsov:2007mp]
[16-461]
Capability of multi-detector analyses on supernova neutrinos, Shao-Hsuan Chiu, Astron.Astrophys. 473 (2007) L9, arXiv:0708.1068.
[Caffau:2007qe]
[16-462]
The primary cosmic ray spectrum in supernova remnants from very high energy gamma-ray data, F.L. Villante, F. Vissani, Phys. Rev. D76 (2007) 125019, arXiv:0707.0471.
[Villante:2007mh]
[16-463]
In which shell-type SNRs should we look for gamma-rays and neutrinos from p-p collisions?, Boaz Katz, Eli Waxman, JCAP 0801 (2008) 018, arXiv:0706.3485.
[Katz:2007ds]
[16-464]
Impact of the Neutrino Magnetic Moment on Supernova r-process Nucleosynthesis, A.B. Balantekin, C. Volpe, J. Welzel, JCAP 0709 (2007) 016, arXiv:0706.3023.
[Balantekin:2007xq]
[16-465]
Confusing Sterile Neutrinos with Deviation from Tribimaximal Mixing at Neutrino Telescopes, Ram Lal Awasthi, Sandhya Choubey, Phys. Rev. D76 (2007) 113002, arXiv:0706.0399.
[Awasthi:2007az]
[16-466]
On Possibilities of Studying of Supernova Neutrinos at BAKSAN, G.V. Domogatsky, V.I. Kopeikin, L.A. Mikaelyan, V.V. Sinev, Phys. Atom. Nucl. 70 (2007) 1081, arXiv:0705.1893.
[Domogatsky:2007dg]
[16-467]
High-energy Cosmic Rays and Neutrinos from Semi-relativistic Hypernovae, Xiang-Yu Wang, Soebur Razzaque, Peter Meszaros, Zi-Gao Dai, Phys. Rev. D76 (2007) 083009, arXiv:0705.0027.
[Wang:2007ya]
[16-468]
Probing non-standard neutrino interactions with supernova neutrinos, A. Esteban-Pretel, R. Tomas, J. W. F. Valle, Phys. Rev. D76 (2007) 053001, arXiv:0704.0032.
[Esteban-Pretel:2007zkv]
[16-469]
Turbulent supernova shock waves and the sterile neutrino signature in megaton water detectors, Sandhya Choubey, N. P. Harries, G. G. Ross, Phys. Rev. D76 (2007) 073013, arXiv:hep-ph/0703092.
[Choubey:2007ga]
[16-470]
Detecting neutrino-transients with optical follow-up observations, Marek Kowalski, Anna Mohr, Astropart. Phys. 27 (2007) 533-538, arXiv:astro-ph/0701618.
[Kowalski:2007xb]
[16-471]
On the Rates of Gamma Ray Bursts and Type Ib/c Supernovae, Dafne Guetta, Massimo Della Valle, Astrophys. J. Lett. 657 (2007) L73-L76, arXiv:astro-ph/0612194.
[Guetta:2006gq]
[16-472]
Gravitational Lensing of Supernova Neutrinos, Olga Mena, Irina Mocioiu, Chris Quigg, Astropart. Phys. 28 (2007) 348-356, arXiv:astro-ph/0610918.
[Mena:2006ym]
[16-473]
Bayesian Single-Epoch Photometric Classification of Supernovae, Dovi Poznanski, Dan Maoz, Avishay Gal-Yam, Astron. J. 134 (2007) 1285-1297, arXiv:astro-ph/0610129.
[Poznanski:2006kr]
[16-474]
A Probabilistic Approach to Classifying Supernovae Using Photometric Information, Natalia V. Kuznetsova, Brian M. Connolly, Astrophys. J. 659 (2007) 530-540, arXiv:astro-ph/0609637.
[Kuznetsova:2006ed]
[16-475]
Neutrinos from supernova remnants after the first HESS observations, Francesco Vissani, arXiv:astro-ph/0609575, 2006. Vulcano Workshop 2006: Frontier Objects in Astrophysics and Particle Physics, Vulcano, Italy, 22-27 May 2006.
[Vissani:2006pi]
[16-476]
Cosmic Supernova Rates and the Hubble Sequence, F. Calura, F. Matteucci, Astrophys. J. 652 (2006) 889-901, arXiv:astro-ph/0607674.
[Calura:2006zs]
[16-477]
Inverse Compton Emission from Galactic Supernova Remnants: Effect of the Interstellar Radiation Field, Troy A. Porter, Igor V. Moskalenko, Andrew W. Strong, Astrophys. J. 648 (2006) L29-L32, arXiv:astro-ph/0607344.
[Porter:2006tb]
[16-478]
Neutrino signatures of supernova turbulence, Alexander Friedland, Andrei Gruzinov, arXiv:astro-ph/0607244, 2006.
[Friedland:2006ta]
[16-479]
Probing Dark Energy via Neutrino and Supernova Observatories, Lawrence J. Hall, Hitoshi Murayama, Michele Papucci, Gilad Perez, arXiv:hep-ph/0607109, 2006.
[Hall:2006br]
[16-480]
Supernova Neutrinos: The Accretion Disk Scenario, G. C. McLaughlin, R. Surman, Phys. Rev. D75 (2007) 023005, arXiv:astro-ph/0605281.
[McLaughlin:2006yy]
[16-481]
Supernova remnant energetics and magnetars: no evidence in favour of millisecond proto-neutron stars, Jacco Vink, Lucien Kuiper, Mon. Not. Roy. Astron. Soc. Lett. 370 (2006) L14-L18, arXiv:astro-ph/0604187.
[Vink:2006ss]
[16-482]
Reconstructing supernova-neutrino spectra using low-energy beta-beams, N. Jachowicz, G. C. McLaughlin, Phys. Rev. Lett. 96 (2006) 172301, arXiv:nucl-th/0604046.
[Jachowicz:2006xx]
[16-483]
High energy diffuse gamma-ray emission of the galactic disk and Galactic Cosmic-Ray spectra, Thoudam Satyendra, Astropart. Phys. 25 (2006) 328-341, arXiv:astro-ph/0603599.
[Satyendra:2006xn]
[16-484]
Towards a Cosmological Hubble Diagram for Type II-P Supernovae, Peter Nugent et al. (SNLS), Astrophys. J. 645 (2006) 841-850, arXiv:astro-ph/0603535.
[SNLS:2006mwe]
[16-485]
Cosmological Gravitational Wave Background from Phase Transitions in Neutron Stars, Guenter Sigl, JCAP 0604 (2006) 002, arXiv:astro-ph/0602345.
[Sigl:2006ur]
[16-486]
TeV Gamma-Rays from Old Supernova Remnants, Ryo Yamazaki et al., Mon. Not. Roy. Astron. Soc. 371 (2006) 1975-1982, arXiv:astro-ph/0601704.
[Yamazaki:2006uf]
[16-487]
Study of core collapse neutrino signals and constraints on neutrino masses from a future Galactic Supernova, Jorge I. Zuluaga, arXiv:astro-ph/0511771, 2005.
[Zuluaga:2005ah]
[16-488]
Neutrino-induced nucleosynthesis of A > 64 nuclei: The nu p-process, C. Frohlich et al., Phys. Rev. Lett. 96 (2006) 142502, arXiv:astro-ph/0511376.
[Frohlich:2005ys]
[16-489]
High energy neutrinos from a slow jet model of core collapse supernovae, Soebur Razzaque, Peter Meszaros, Eli Waxman, Mod. Phys. Lett. A20 (2005) 2351, arXiv:astro-ph/0509729.
[Razzaque:2005bh]
[16-490]
Direct measurement of supernova neutrino emission parameters with a gadolinium enhanced Super-Kamiokande detector, Hasan Yuksel, Shin'ichiro Ando, John F. Beacom, Phys. Rev. C74 (2006) 015803, arXiv:astro-ph/0509297.
[Yuksel:2005ae]
[16-491]
The diffuse supernova neutrino flux, star formation rate and SN1987A, Cecilia Lunardini, Astropart. Phys. 26 (2006) 190-201, arXiv:astro-ph/0509233.
[Lunardini:2005jf]
[16-492]
Time-integrated supernova neutrino flux from a nearby cluster, Van. T. Nguyen, Calvin W. Johnson, Astropart. Phys. 27 (2007) 233-237, arXiv:astro-ph/0508267.
[McGary:2005zjo]
[16-493]
New Test of Supernova Electron Neutrino Emission using Sudbury Neutrino Observatory Sensitivity to the Diffuse Supernova Neutrino Background, John F. Beacom, Louis E. Strigari, Phys. Rev. C73 (2006) 035807, arXiv:hep-ph/0508202.
[Beacom:2005it]
[16-494]
New Estimates of the Solar-Neighborhood Massive-Stars Birthrate and the Galactic Supernova Rate, B. Cameron Reed, Astronomical J. 130 (2005) 1652-1657, arXiv:astro-ph/0506708.
[Reed:2005en]
[16-495]
The supernova rate-velocity dispersion relation in the interstellar medium, Sami Dib, Eric Bell, Andreas Burkert, Astrophys. J. 638 (2006) 797, arXiv:astro-ph/0506339.
[Dib:2005uw]
[16-496]
Rates of Neutrino Absorption on Nucleons and the Reverse Processes in Strong Magnetic Fields, Huaiyu Duan, Yong-Zhong Qian, Phys. Rev. D72 (2005) 023005, arXiv:astro-ph/0506033.
[Duan:2005fc]
[16-497]
Iron Needles in Supernova Remnants?, H L Gomez, L Dunne, S Eales, E Gomez, M Edmunds, Mon.Not.Roy.Astron.Soc. (2005), arXiv:astro-ph/0505557.
[Gomez:2005gr]
[16-498]
Mini Z' Burst from Relic Supernova Neutrinos and Late Neutrino Masses, Haim Goldberg, Gilad Perez, Ina Sarcevic, JHEP 11 (2006) 023, arXiv:hep-ph/0505221.
[Goldberg:2005yw]
[16-499]
Testing CPT Symmetry with Supernova Neutrinos, Hisakazu Minakata, Shoichi Uchinami, Phys. Rev. D72 (2005) 105007, arXiv:hep-ph/0505133.
[Minakata:2005jy]
[16-500]
Constraining the Spectrum of Supernova Neutrinos from Neutrino-Process-Induced Light-Element Synthesis, Takashi Yoshida, Toshitaka Kajino, Dieter H. Hartmann, Phys. Rev. Lett. 94 (2005) 231101, arXiv:astro-ph/0505043.
[Yoshida:2005uy]
[16-501]
Probing the Origins of Neutrino Mass with Supernova Data, Hooman Davoudiasl, Patrick Huber, Phys. Rev. Lett. 95 (2005) 191302, arXiv:hep-ph/0504265.
[Davoudiasl:2005fd]
[16-502]
Supernovae and Gamma-Ray Bursts Powered by Hot Neutrino-Cooled Coronae, Enrico Ramirez-Ruiz, Aristotle Socrates, Astrophys.J. (2005), arXiv:astro-ph/0504257.
[Ramirez-Ruiz:2005xkx]
[16-503]
Detection of Neutrinos from Supernovae in Nearby Galaxies, Shin'ichiro Ando, John F. Beacom, Hasan Yuksel, Phys. Rev. Lett. 95 (2005) 171101, arXiv:astro-ph/0503321.
[Ando:2005ka]
[16-504]
Revealing the Supernova-Gamma-Ray Burst Connection with TeV Neutrinos, Shin'ichiro Ando, John F. Beacom, Phys. Rev. Lett. 95 (2005) 061103, arXiv:astro-ph/0502521.
[Ando:2005xi]
[16-505]
Neutrino-Dominated Accretion and Supernovae, Kazunori Kohri, Ramesh Narayan, Tsvi Piran, Astrophys. J. 629 (2005) 341, arXiv:astro-ph/0502470.
[Kohri:2005tq]
[16-506]
Geotomography with solar and supernova neutrinos, E. Kh. Akhmedov, M. A. Tortola, J. W. F. Valle, JHEP 0506 (2005) 053, arXiv:hep-ph/0502154.
[Akhmedov:2005yt]
[16-507]
The Concordance Cosmic Star Formation Rate: Implications from and for the Supernova Neutrino and Gamma Ray Backgrounds, Louis E. Strigari, John F. Beacom, Terry P. Walker, Pengjie Zhang, JCAP 0504 (2005) 017, arXiv:astro-ph/0502150.
[Strigari:2005hu]
[16-508]
The Neutrino Bubble Instability: A Mechanism for Generating Pulsar Kicks, Aristotle Socrates, Omer Blaes, Aimee Hungerford, Chris L. Fryer, Astrophys. J. 632 (2005) 531, arXiv:astro-ph/0412144.
[Socrates:2004tt]
[16-509]
Constraints on neutrino masses from a Galactic supernova neutrino signal at present and future detectors, Enrico Nardi, Jorge I. Zuluaga, Nucl. Phys. B731 (2005) 140, arXiv:hep-ph/0412104.
[Nardi:2004zg]
[16-510]
Exploiting the neutronization burst of a galactic supernova, M. Kachelriess et al., Phys. Rev. D71 (2005) 063003, arXiv:astro-ph/0412082.
[Kachelriess:2004ds]
[16-511]
The supernova rate per unit mass, Filippo Mannucci et al., Astron. Astrophys. 433 (2005) 807-814, arXiv:astro-ph/0411450.
[Mannucci:2004mp]
[16-512]
Pulsar Kicks Induced by Spin Flavor Oscillations of Neutrinos in Gravitational Fields, G. Lambiase, Mon. Not. Roy. Astron. Soc. 362 (2005) 867, arXiv:astro-ph/0411242.
[Lambiase:2004qk]
[16-513]
Extracting clean supernova spectra, S. Blondin, J. R. Walsh, B. Leibundgut, G. Sainton, Astron. Astrophys. 431 (2005) 757, arXiv:astro-ph/0410406.
[Blondin:2004ka]
[16-514]
Type IIP Supernovae as Cosmological Probes: A SEAM Distance to SN 1999em, E. Baron, Peter Nugent, David Branch, Peter H. Hauschildt, Astrophys. J. 616 (2004) L91, arXiv:astro-ph/0410153.
[Baron:2004wb]
[16-515]
Nucleosynthesis in the Hot Convective Bubble in Core-Collapse Supernovae, J. Pruet et al., Astrophys. J. 623 (2005) 325, arXiv:astro-ph/0409446.
[Pruet:2004vb]
[16-516]
Supernova relic neutrinos in liquid argon detectors, A. G. Cocco, A. Ereditato, G. Fiorillo, G. Mangano, V. Pettorino, JCAP 0412 (2004) 002, arXiv:hep-ph/0408031.
[Cocco:2004ac]
[16-517]
Death rate of massive stars at redshift $\sim0.3$, Enrico Cappellaro et al., Astron.Astrophys. (2004), arXiv:astro-ph/0407216.
[Cappellaro:2004ti]
[16-518]
Neutrino signatures of supernova shock and reverse shock propagation, R. Tomas et al., JCAP 0409 (2004) 015, arXiv:astro-ph/0407132.
[Tomas:2004gr]
[16-519]
High Redshift Supernova Rates, Tomas Dahlen et al., Astrophys. J. 613 (2004) 189-199, arXiv:astro-ph/0406547.
[Dahlen:2004km]
[16-520]
The Progenitors of Core-Collapse Supernovae, J. J. Eldridge, C. A. Tout, Mon. Not. Roy. Astron. Soc. 353 (2004) 87, arXiv:astro-ph/0405408.
[Eldridge:2004nz]
[16-521]
Appearance of neutronization peak and decaying supernova neutrinos, Shin'ichiro Ando, Phys. Rev. D70 (2004) 033004, arXiv:hep-ph/0405200.
[Ando:2004qe]
[16-522]
Neutrino Opacities in Nuclear Matter, Adam Burrows, Sanjay Reddy, Todd A. Thompson, Nucl. Phys. A777 (2006) 356-394, arXiv:astro-ph/0404432.
[Burrows:2004vq]
[16-523]
Viscosity and Rotation in Core-Collapse Supernovae, Todd A. Thompson, Eliot Quataert, Adam Burrows, Astrophys. J. 620 (2005) 861, arXiv:astro-ph/0403224.
[Thompson:2004if]
[16-524]
Neutrino Interaction with Nucleons in the Envelope of a Collapsing Star with a Strong Magnetic Field, A. A. Gvozdev, I. S. Ognev, J. Exp. Theor. Phys. 94 (2002) 1043, arXiv:astro-ph/0403011.
[Gvozdev:2002nu]
[16-525]
Analytic Solutions for the Evolution of Radiative Supernova Remnants, R. Bandiera, O. Petruk, Astron. Astrophys. 419 (2004) 419, arXiv:astro-ph/0402598.
[Bandiera:2004ii]
[16-526]
Redshift Accuracy Requirements for Future Supernova and Number Count Surveys, Dragan Huterer, Alex Kim, Lawrence M. Krauss, Tamara Broderick, Astrophys. J. 615 (2004) 595, arXiv:astro-ph/0402002.
[Huterer:2004rf]
[16-527]
Neutrino Processes in Strong Magnetic Fields and Implications for Supernova Dynamics, Huaiyu Duan, Yong-Zhong Qian, Phys. Rev. D69 (2004) 123004, arXiv:astro-ph/0401634.
[Duan:2004nc]
[16-528]
Cosmic Star Formation History and the Future Observation of Supernova Relic Neutrinos, Shin'ichiro Ando, Astrophys. J. 607 (2004) 20, arXiv:astro-ph/0401531.
[Ando:2004sb]
[16-529]
The Nearby Supernova Factory, W. M. Wood-Vasey et al., New Astron. Rev. 48 (2004) 637, arXiv:astro-ph/0401513.
[Wood-Vasey:2004thg]
[16-530]
Ion-Ion Correlation Effect on the Neutrino-Nucleus Scattering in Supernova Cores, Naoki Itoh, Ryohei Asahara, Nami Tomizawa, Shinya Wanajo, Satoshi Nozawa, Astrophys. J. 611 (2004) 1041, arXiv:astro-ph/0401488.
[Itoh:2004ni]
[16-531]
Effects of degenerate sterile neutrinos on the supernova neutrino flux, P. Keranen, J. Maalampi, M. Myyrylainen, J. Riittinen, Phys. Lett. B597 (2004) 374, arXiv:hep-ph/0401082.
[Keranen:2004rg]
[16-532]
Core-collapse supernovae and gravitational waves, Christian Y. Cardall, Nucl. Phys. Proc. Suppl. 138 (2005) 436, arXiv:astro-ph/0401060.
[Cardall:2004qm]
[16-533]
Magnetorotational effects on anisotropic neutrino emission and convection in core-collapse supernovae, K. Kotake, K. Sato, H. Sawai, S. Yamada, Astrophys. J. 608 (2004) 391-404.
[Kotake:2004jt]
[16-534]
nu/e (anti-nu/e) - Ar-40 absorption cross sections for supernova neutrinos, M. Sajjad Athar, S. K. Singh, Phys. Lett. B591 (2004) 69-75.
[SajjadAthar:2004yf]
[16-535]
Asphericity Effects in Supernovae, P. Hoeflich, C. Gerardy, R. Quimby, arXiv:astro-ph/0312587, 2003.
[Hoeflich:2003rp]
[16-536]
Low-mass supernovae in the early Galactic halo: source of the double r/s-process enriched halo stars?, Albert A. Zijlstra, Mon. Not. Roy. Astron. Soc. 348 (2004) L23, arXiv:astro-ph/0312481.
[Zijlstra:2003bg]
[16-537]
Long and short gamma-ray bursts, and the pulsar kicks, Alexander Kusenko, Dmitry V. Semikoz, arXiv:astro-ph/0312399, 2003.
[Kusenko:2003px]
[16-538]
The Supernova Relic Neutrino Backgrounds at KamLAND and Super-Kamiokande, Louis E. Strigari, Manoj Kaplinghat, Gary Steigman, Terry P. Walker, JCAP 0403 (2004) 007, arXiv:astro-ph/0312346.
[Strigari:2003ig]
[16-539]
Prospects of probing $\theta_{13}$ and neutrino mass hierarchy by Supernova Neutrinos in KamLAND, Abhijit Bandyopadhyay, Sandhya Choubey, Srubabati Goswami, Kamales Kar, arXiv:hep-ph/0312315, 2003.
[Bandyopadhyay:2003ts]
[16-540]
Formation rates of core collapse SNe and GRBs, Robert G. Izzard, Enrico Ramirez-Ruiz, Christopher A. Tout, Mon. Not. Roy. Astron. Soc. 348 (2004) 1215, arXiv:astro-ph/0311463.
[Izzard:2003uz]
[16-541]
Detection possibility of the pair-annihilation neutrinos from the neutrino-cooled pre-supernova star, A. Odrzywolek, M. Misiaszek, M. Kutschera, Astropart. Phys. 21 (2004) 303, arXiv:astro-ph/0311012.
[Odrzywolek:2003vn]
[16-542]
The consequences of nuclear electron capture in core collapse supernovae, W. R. Hix et al., Phys. Rev. Lett. 91 (2003) 201102, arXiv:astro-ph/0310883.
[Hix:2003fg]
[16-543]
Towards Gravitational Wave Signals from Realistic Core Collapse Supernova Models, E. Mueller et al., Astrophys. J. 603 (2004) 221, arXiv:astro-ph/0309833.
[Mueller:2003fs]
[16-544]
Gravitational Waves from a Pulsar Kick Caused by Neutrino Conversions, Lee C. Loveridge, Phys. Rev. D69 (2004) 024008, arXiv:astro-ph/0309362.
[Loveridge:2003fy]
[16-545]
Neutrino signatures of the supernova - gamma ray burst relationship, Soebur Razzaque, Peter Meszaros, Eli Waxman, Phys. Rev. D69 (2004) 023001, arXiv:astro-ph/0308239.
[Razzaque:2003uw]
[16-546]
Neutrino Nucleosynthesis, A. Heger et al., Phys. Lett. B606 (2005) 258, arXiv:astro-ph/0307546.
[Heger:2003mm]
[16-547]
Decaying neutrinos and implications from the supernova relic neutrino observation, Shin'ichiro Ando, Phys. Lett. B570 (2003) 11, arXiv:hep-ph/0307169.
[Ando:2003ie]
[16-548]
Supernova pointing with low- and high-energy neutrino detectors, R. Tomas et al., Phys. Rev. D68 (2003) 093013, arXiv:hep-ph/0307050.
[Tomas:2003xn]
[16-549]
Asymmetric neutrino emission due to neutrino-nucleon scatterings in supernova magnetic fields, Shin'ichiro Ando, Phys. Rev. D68 (2003) 063002, arXiv:astro-ph/0307006.
[Ando:2003gj]
[16-550]
Theoretical Light Curves of Type II-P SNe and Applications to Cosmology, A. Chieffi et al., Mon. Not. Roy. Astron. Soc. 345 (2003) 111, arXiv:astro-ph/0306629.
[Chieffi:2003av]
[16-551]
Nucleosynthesis in Black-Hole-Forming Supernovae and Abundance Patterns of Extremely Metal-Poor Stars, K. Nomoto et al., Prog. Theor. Phys. Suppl. 151 (2003) 44, arXiv:astro-ph/0306412. 12 pages, 9 figures. To appear in 'Carnegie Observatories Astrophysics Series, Vol. 4: Origin and Evolution of the Elements, 2003, eds. A. McWilliam and M. Rauch (Pasadena: Carnegie Observatories).
[Nomoto:2003tg]
[16-552]
Exploring the sub-eV neutrino mass range with supernova neutrinos, Enrico Nardi, Jorge I. Zuluaga, Phys. Rev. D69 (2004) 103002, arXiv:astro-ph/0306384.
[Nardi:2003pr]
[16-553]
Supernova Neutrinos, Neutrino Oscillations, and the Mass of the Progenitor Star, Keitaro Takahashi, Katsuhiko Sato, Adam Burrows, Todd A. Thompson, Phys. Rev. D68 (2003) 113009, arXiv:hep-ph/0306056.
[Takahashi:2003rn]
[16-554]
Neutrino processes in the K0 condensed phase of color flavor locked quark matter, Sanjay Reddy, Mariusz Sadzikowski, Motoi Tachibana, Phys. Rev. D68 (2003) 053010, arXiv:nucl-th/0306015.
[Reddy:2003ap]
[16-555]
Nucleosynthesis of Light Elements and Heavy r-Process Elements through the nu-Process in Supernova Explosion, T. Yoshida, M. Terasawa, T. Kajino, K. Sumiyoshi, Astrophys. J. 600 (2004) 204, arXiv:astro-ph/0305555.
[Yoshida:2003ay]
[16-556]
On the relative frequencies of core-collapse supernovae sub-types: the role of progenitor metallicity, Nikos Prantzos, Samuel Boissier, Astron. Astrophys. 406 (2003) 259, arXiv:astro-ph/0305376.
[Prantzos:2003ph]
[16-557]
The First Supernova Explosions in the Universe, Volker Bromm, Naoki Yoshida, Lars Hernquist, Astrophys. J. 596 (2003) L135, arXiv:astro-ph/0305333.
[Bromm:2003hy]
[16-558]
Jets and Black Holes in Hypernova Explosions, K. Maeda, K. Nomoto, Prog. Theor. Phys. Suppl. 151 (2003) 211, arXiv:astro-ph/0305183.
[Maeda:2003ii]
[16-559]
A Two-Component Model for the Light Curves of Hypernovae, K. Maeda et al., Astrophys. J. 593 (2003) 931, arXiv:astro-ph/0305182.
[Maeda:2003ih]
[16-560]
Realistic Neutrino Opacities for Supernova Simulations With Correlations and Weak Magnetism, C. J. Horowitz, M.A. Perez-Garcia, Phys. Rev. C68 (2003) 025803, arXiv:astro-ph/0305138.
[Horowitz:2003yx]
[16-561]
Supernovae and Light Neutralinos: SN1987A Bounds on Supersymmetry Revisited, H. K. Dreiner, C. Hanhart, U. Langenfeld, D. R. Phillips, Phys. Rev. D68 (2003) 055004, arXiv:hep-ph/0304289.
[Dreiner:2003wh]
[16-562]
Bipolar Supernova Explosions: Nucleosynthesis and Implication on Abundances in Extremely Metal-Poor Stars, K. Maeda, K. Nomoto, Astrophys. J. 598 (2003) 1163, arXiv:astro-ph/0304172.
[Maeda:2003ku]
[16-563]
Light curves and $\mathrm{H}\alpha$ luminosities as indicators of $^{56}\mathrm{Ni}$ mass in type IIP supernovae, A. Elmhamdi, N. N. Chugai, I. J. Danziger, Astron. Astrophys. 404 (2003) 1077-1086, arXiv:astro-ph/0304144.
[Elmhamdi:2003ht]
[16-564]
Analysis of energy- and time-dependence of supernova shock effects on neutrino crossing probabilities, G.L. Fogli, E. Lisi, A. Mirizzi, D. Montanino, Phys. Rev. D68 (2003) 033005, arXiv:hep-ph/0304056.
[Fogli:2003dw]
[16-565]
Supernova and neutron-star limits on large extra dimensions reexamined, S.Hannestad, G.G.Raffelt, Phys. Rev. D67 (2003) 125008, arXiv:hep-ph/0304029.
[Hannestad:2003yd]
[16-566]
Neutrino driven explosions in GRBs and hypernovae, Chris L. Fryer, Peter Meszaros, Astrophys. J. 588 (2003) L25, arXiv:astro-ph/0303334.
[Fryer:2003xt]
[16-567]
Detecting the Neutrino Mass Hierarchy with a Supernova at IceCube, A.S.Dighe, M.T.Keil, G.G.Raffelt, JCAP 0306 (2003) 005, arXiv:hep-ph/0303210.
[Dighe:2003be]
[16-568]
The infrared supernova rate in starburst galaxies, F. Mannucci et al., Astron. Astrophys. 401 (2003) 519, arXiv:astro-ph/0302323.
[Mannucci:2003st]
[16-569]
Signatures of Supernova Neutrino Oscillations into Extra Dimensions, Giacomo Cacciapaglia, Marco Cirelli, Andrea Romanino, Phys. Rev. D68 (2003) 033013, arXiv:hep-ph/0302246.
[Cacciapaglia:2003dx]
[16-570]
Precise quasielastic neutrino/nucleon cross section, Alessandro Strumia, Francesco Vissani, Phys. Lett. B564 (2003) 42, arXiv:astro-ph/0302055.
[Strumia:2003zx]
[16-571]
Global anisotropy vs small-scale fluctuation of neutrino flux in supernova explosions, Hideki Madokoro, Tetsuya Shimizu, Yuko Mochizuki, Astrophys. J. 592 (2003) 1035, arXiv:astro-ph/0302015.
[Madokoro:2003ve]
[16-572]
Stellar Sources for Heavy r-Process Nuclei, Y.-Z. Qian, G. J. Wasserburg, Astrophys.J. (2003), arXiv:astro-ph/0301461.
[Qian:2003ae]
[16-573]
Did Egret Detect Distant Supernova Remnants?, Diego F. Torres et al., Adv. Space Res. 33 (2004) 450, arXiv:astro-ph/0301424.
[Torres:2003wf]
[16-574]
Effects of the Sound Speed of Quintessence on the Microwave Background and Large Scale Structure, Simon DeDeo, R.R. Caldwell, Paul J. Steinhardt, Phys. Rev. D67 (2003) 103509, arXiv:astro-ph/0301284.
[DeDeo:2003te]
[16-575]
Gamma-Ray Lines from Asymmetric Supernovae, A. L. Hungerford, C. L. Fryer, M. S. Warren, Astrophys. J. 594 (2003) 390, arXiv:astro-ph/0301120.
[Hungerford:2003pc]
[16-576]
Anisotropic neutrino radiation in rotational core collapse, K. Kotake, K. Sato, S. Yamada, Astrophys. J. 595 (2003) 304-316.
[Kotake:2003it]
[16-577]
How Massive Single Stars End their Life, A. Heger et al., Astrophys. J. 591 (2003) 288, arXiv:astro-ph/0212469.
[Heger:2002by]
[16-578]
Shock propagation and neutrino oscillation in supernova, K. Takahashi, K. Sato, H. E. Dalhed, J. R. Wilson, Astropart. Phys. 20 (2003) 189, arXiv:astro-ph/0212195.
[Takahashi:2002yj]
[16-579]
Asymmetric Explosions of Thermonuclear Supernovae, C. R. Ghezzi, E. M. de Gouveia Dal Pino, J. E. Horvath, Mon. Not. Roy. Astron. Soc. 348 (2004) 451, arXiv:astro-ph/0211605.
[Ghezzi:2002je]
[16-580]
Gravitational lens time delays for distant supernovae: break the degeneracy between radial mass profiles and the Hubble constant, Masamune Oguri, Yozo Kawano, Mon. Not. Roy. Astron. Soc. 338 (2003) L25-L29, arXiv:astro-ph/0211499.
[Oguri:2002ku]
[16-581]
SN1999E: Another piece in the SN-GRB connection puzzle, L. Rigon et al., Mon. Not. Roy. Astron. Soc. 340 (2003) 191, arXiv:astro-ph/0211432.
[Rigon:2002qy]
[16-582]
Massive galaxy clusters as gravitational telescopes for distant supernovae, Christofer Gunnarsson, Ariel Goobar, Astron. Astrophys. 405 (2003) 859, arXiv:astro-ph/0211401.
[Gunnarsson:2002js]
[16-583]
Bounds on the coupling of the Majoron to light neutrinos from supernova cooling, Yasaman Farzan, Phys. Rev. D67 (2003) 073015, arXiv:hep-ph/0211375.
[Farzan:2002wx]
[16-584]
Ozone Depletion from Nearby Supernovae, Neil Gehrels et al., Astrophys. J. 585 (2003) 1169, arXiv:astro-ph/0211361.
[Gehrels:2002ws]
[16-585]
Three-generation study of neutrino spin-flavor conversion in supernova and implication for neutrino magnetic moment, Shin'ichiro Ando, Katsuhiko Sato, Phys. Rev. D67 (2003) 023004, arXiv:hep-ph/0211053.
[Ando:2002sk]
[16-586]
Supernova relic neutrinos and observational implications for neutrino oscillation, Shin'ichiro Ando, Katsuhiko Sato, Phys. Lett. B559 (2003) 113, arXiv:astro-ph/0210502.
[Ando:2002zj]
[16-587]
Mirror model for sterile neutrinos, Veniamin Berezinsky, Mohan Narayan, Francesco Vissani, Nucl. Phys. B658 (2003) 254, arXiv:hep-ph/0210204.
From the abstract: ... The considered subdominant neutrino oscillations (active <-> sterile) nu_a <-> nu_s can reveal itself as the big effects in observations of supernova neutrinos.
[Berezinsky:2002fa]
[16-588]
The high energy gamma-ray emission expected from Tycho's supernova remnant, H.J. Voelk, E.G. Berezhko, L.T. Ksenofontov, G.P. Rowell, Astron. Astrophys. 396 (2002) 649, arXiv:astro-ph/0210176.
[Volk:2002nq]
[16-589]
Peculiar, Low Luminosity Type II Supernovae: Low Energy Explosions in Massive Progenitors?, L. Zampieri et al., Mon. Not. Roy. Astron. Soc. 338 (2003) 711, arXiv:astro-ph/0210171.
[Zampieri:2002nj]
[16-590]
Gravitational Lensing Magnification and Time Delay Statistics for Distant Supernovae, Masamune Oguri, Yasushi Suto, Edwin L. Turner, Astrophys. J. 583 (2003) 584, arXiv:astro-ph/0210107.
[Oguri:2002hv]
[16-591]
Photometry and Spectroscopy of the Type IIP SN 1999em from Outburst to Dust Formation, A. Elmhamdi et al., Mon. Not. Roy. Astron. Soc. 338 (2003) 939-956, arXiv:astro-ph/0209623.
[Elmhamdi:2002my]
[16-592]
What Can Be Learned with a Lead-Based Supernova-Neutrino Detector?, J. Engel, G. C. McLaughlin, C. Volpe, Phys. Rev. D67 (2003) 013005, arXiv:hep-ph/0209267.
[Engel:2002hg]
[16-593]
Observed and Physical Properties of Core-Collapse Supernovae, Mario Hamuy, Astrophys. J. 582 (2003) 905, arXiv:astro-ph/0209174.
[Hamuy:2002qx]
[16-594]
Bulk neutrinos and core collapse supernovae, G. Cacciapaglia, M. Cirelli, Y. Lin, A. Romanino, Phys. Rev. D67 (2003) 053001, arXiv:hep-ph/0209063.
[Cacciapaglia:2002qr]
[16-595]
Monte Carlo study of supernova neutrino spectra formation, Mathias Th. Keil, Georg G. Raffelt, Hans-Thomas Janka, Astrophys.J. 590 (2003) 971-991, arXiv:astro-ph/0208035.
[Keil:2002in]
[16-596]
Flavor oscillations in the supernova hot bubble region: Nonlinear effects of neutrino background, Sergio Pastor, Georg Raffelt, Phys. Rev. Lett. 89 (2002) 191101, arXiv:astro-ph/0207281.
[Pastor:2002we]
[16-597]
Tomography of the Earth's Core Using Supernova Neutrinos, Manfred Lindner, Tommy Ohlsson, Ricard Tomas, Walter Winter, Astropart. Phys. 19 (2003) 755, arXiv:hep-ph/0207238.
[Lindner:2002wm]
[16-598]
Neutrino oscillation mechanism for pulsar kicks revisited, M. Barkovich, J. C. D'Olivo, R. Montemayo, J. F. Zanella, Phys. Rev. D66 (2002) 123005, arXiv:astro-ph/0206471.
[Barkovich:2002wh]
[16-599]
Connection between supernova shocks, flavor transformation, and the neutrino signal, Richard C. Schirato, George M. Fuller, arXiv:astro-ph/0205390, 2002.
[Schirato:2002tg]
[16-600]
Detection of supernova neutrinos by neutrino proton elastic scattering, John F. Beacom, Will M. Farr, Petr Vogel, Phys. Rev. D66 (2002) 033001, arXiv:hep-ph/0205220.
[Beacom:2002hs]
[16-601]
Effects of neutrino oscillation on supernova neutrino: inverted mass hierarchy, K. Takahashi, K. Sato, Prog. Theor. Phys. 109 (2003) 919, arXiv:hep-ph/0205070.
[Takahashi:2002cm]
[16-602]
Potential for supernova neutrino detection in MiniBooNE, Matthew K. Sharp, John F. Beacom, Joseph A. Formaggio, Phys. Rev. D66 (2002) 013012, arXiv:hep-ph/0205035.
[Sharp:2002as]
[16-603]
Electron neutrino pair annihilation: A New source for muon and tau neutrinos in supernovae, Robert Buras, Hans-Thomas Janka, Mathias T. Keil, Georg G. Raffelt, Markus Rampp, Astrophys.J. 587 (2003) 320-326, arXiv:astro-ph/0205006.
[Buras:2002wt]
[16-604]
A supernova constraint on bulk majorons, Steen Hannestad, Petteri Keranen, Francesco Sannino, Phys. Rev. D66 (2002) 045002, arXiv:hep-ph/0204231.
[Hannestad:2002ff]
[16-605]
Detectability of the supernova relic neutrinos and neutrino oscillation, S. Ando, K. Sato, T. Totani, Astropart. Phys. 18 (2003) 307, arXiv:astro-ph/0202450.
[Ando:2002ky]
[16-606]
Revisiting nonstandard interaction effects on supernova neutrino flavor oscillations, Gian Luigi Fogli, E. Lisi, A. Mirizzi, D. Montanino, Phys. Rev. D66 (2002) 013009, arXiv:hep-ph/0202269.
[Fogli:2002xj]
[16-607]
Supernova-neutrino studies with Mo-100, H. Ejiri, J. Engel, N. Kudomi, Phys. Lett. B530 (2002) 27-32, arXiv:astro-ph/0112379.
[Ejiri:2001ie]
[16-608]
Supernova Neutrinos and LSND, Michel Sorel, Janet Conrad, Phys. Rev. D66 (2002) 033009, arXiv:hep-ph/0112214.
[Sorel:2001jn]
[16-609]
Determining the supernova direction by its neutrinos, Shinichiro Ando, Katsuhiko Sato, Prog. Theor. Phys. 107 (2002) 957, arXiv:hep-ph/0110187.
[Ando:2001zi]
[16-610]
Time Delay Between Gravitational Waves and Neutrino Burst From a Supernova Explosion: a Test for the Neutrino Mass, D. Fargion, Lett. Nuovo Cim. 31 (1981) 499-500, arXiv:hep-ph/0110061.
[Fargion:1981gg]
[16-611]
Gravity wave and neutrino bursts from stellar collapse: A sensitive test of neutrino masses, N. Arnaud et al., Phys. Rev. D65 (2002) 033010, arXiv:hep-ph/0109027.
[Arnaud:2001gt]
[16-612]
Seeing double: strong gravitational lensing of high- redshift supernovae, Daniel E. Holz, Astrophys. J. 556 (2001) L71, arXiv:astro-ph/0104440.
[Holz:2001zr]
[16-613]
Supernova neutrino detection in Borexino, L. Cadonati, F. P. Calaprice, M. C. Chen, Astropart. Phys. 16 (2002) 361-372, arXiv:hep-ph/0012082.
[Cadonati:2000kq]
[16-614]
Black hole formation in core collapse supernovae and time- of-flight measurements of the neutrino masses, J. F. Beacom, R. N. Boyd, A. Mezzacappa, Phys. Rev. D63 (2001) 073011, arXiv:astro-ph/0010398.
[Beacom:2000qy]
[16-615]
Technique for direct eV scale measurements of the mu and tau neutrino masses using supernova neutrinos, J. F. Beacom, R. N. Boyd, A. Mezzacappa, Phys. Rev. Lett. 85 (2000) 3568, arXiv:hep-ph/0006015.
[Beacom:2000ng]
[16-616]
Discovering ultra high energy neutrinos by horizontal and upward tau air-showers: First evidences in terrestrial gamma flashes, D. Fargion, Astrophys. J. 570 (2002) 909-925, arXiv:astro-ph/0002453.
[Fargion:2000iz]
[16-617]
Right-handed neutrino production in dense and hot plasmas, Alejandro Ayala, Juan Carlos D'Olivo, Manuel Torres, Nucl. Phys. B564 (2000) 204-222, arXiv:hep-ph/9907398.
[Ayala:1999xn]
[16-618]
A new determination of supernova rates and a comparison with indicators for galactic star formation, E. Cappellaro, R. Evans, M. Turatto, Astron. Astrophys. 351 (1999) 459-466, arXiv:astro-ph/9904225.
[Cappellaro:1999qy]
[16-619]
Why are supernovae in our Galaxy so frequent?, P. M. Dragicevich, D. G. Blair, R. R Burman, Mon. Not. Roy. Astron. Soc. 302 (1999) 693-699.
[Dragicevich-Blair-Burman-MNRAS-302-693-1999]
[16-620]
Mass signature of supernova $\nu_\mu$ and $\nu_\tau$ neutrinos in the Sudbury neutrino observatory, J. F. Beacom, P. Vogel, Phys. Rev. D58 (1998) 093012, arXiv:hep-ph/9806311.
[Beacom:1998yb]
[16-621]
Bound on the neutrino magnetic moment from chirality flip in supernovae, Alejandro Ayala, Juan Carlos D'Olivo, Manuel Torres, Phys. Rev. D59 (1999) 111901, arXiv:hep-ph/9804230.
[Ayala:1998qz]
[16-622]
Electron neutrino mass measurement by supernova neutrino bursts and implications on hot dark matter, Tomonori Totani, Phys. Rev. Lett. 80 (1998) 2039-2042, arXiv:astro-ph/9801104.
[Totani:1998nf]
[16-623]
Constraints from $^{26}$Al Measurements on the Galaxy's Recent Global Star Formation Rate and Core Collapse Supernovae Rate, F. X. Timmes, R. Diehl, D. H. Hartmann, Astrophys.J. 479 (1997) 760, arXiv:astro-ph/9701242.
[Timmes:1997ua]
[16-624]
Supernova neutrinos and the $\nu_\tau$ mass, Gianni Fiorentini, Camillo Acerbi, Astropart. Phys. 7 (1997) 245-262, arXiv:astro-ph/9701232.
[Fiorentini:1996hi]
[16-625]
The rate of Supernovae from the combined sample of five searches, E. Cappellaro et al., Astron. Astrophys. 322 (1997) 431-441, arXiv:astro-ph/9611191.
[Cappellaro:1996cc]
[16-626]
Resonant Neutrino Spin-Flavor Precession and Supernova Nucleosynthesis and Dynamics, H. Nunokawa, Y. Z. Qian, G. M. Fuller, Phys. Rev. D55 (1997) 3265-3275, arXiv:astro-ph/9610209.
[Nunokawa:1996gp]
[16-627]
Effects of neutrino oscillation on the supernova relic neutrino background, Tomonori Totani, Katsuhiko Sato, Int. J. Mod. Phys. D5 (1996) 519-528, arXiv:hep-ph/9609241.
[Totani:1996pg]
[16-628]
Resonant spin-flavor conversion of supernova neutrinos and deformation of the electron antineutrino spectrum, Tomonori Totani, Katsuhiko Sato, Phys. Rev. D54 (1996) 5975-5992, arXiv:astro-ph/9609035.
[Totani:1996wf]
[16-629]
Gravitational collapse of rotating stellar cores and supernovae, K. Sato, T. M. Shimizu, S. Yamada, Nucl. Phys. A606 (1996) 118-136.
[Sato:1996pk]
[16-630]
Spectrum of the Supernova Relic Neutrino Background and Evolution of Galaxies, Tomonori Totani, Katsuhiko Sato, Yuzuru Yoshii, Astrophys. J. 460 (1996) 303-312, arXiv:astro-ph/9509130.
[Totani:1995dw]
[16-631]
Effects of random density fluctuations on matter enhanced neutrino flavor transitions in supernovae and implications for supernova dynamics and nucleosynthesis, F. N. Loreti, Y. Z. Qian, G. M. Fuller, A. B. Balantekin, Phys. Rev. D52 (1995) 6664-6670, arXiv:astro-ph/9508106.
[Loreti:1995ae]
[16-632]
Cherenkov radiation by neutrinos in a supernova core, Subhendra Mohanty, Manoj K. Samal, Phys. Rev. Lett. 77 (1996) 806-809, arXiv:hep-ph/9506385.
[Mohanty:1995bx]
[16-633]
Spectrum of the relic neutrino background from past supernovae and cosmological models, Tomonori Totani, Katsuhiko Sato, Astropart. Phys. 3 (1995) 367-376, arXiv:astro-ph/9504015.
[Totani:1995rg]
[16-634]
Neutrino oscillations in the magnetic field of the sun, supernovae, and neutron stars, G.G. Likhachev, A.I. Studenikin, J.Exp.Theor.Phys. 81 (1995) 419-425.
[Likhachev:1990ki]
[16-635]
Gravitational radiation from rotational collapse of a supernova core, S. Yamada, K. Sato, Astrophys. J. 450 (1995) 245-252.
[Yamada:1995pd]
[16-636]
Neutrino-neutrino scattering and matter enhanced neutrino flavor transformation in Supernovae, Yong Zhong Qian, George M. Fuller, Phys. Rev. D51 (1995) 1479-1494, arXiv:astro-ph/9406073.
[Qian:1994wh]
[16-637]
The Detection of a cosmologically significant neutrino mass from the neutrino burst of a galactic supernova, D. B. Cline et al., Phys. Rev. D50 (1994) 720-729.
[Cline:1994cy]
[16-638]
Signature of supernova neutrino flavor mixing in water Cerenkov detectors, Yong-Zhong Qian, George M. Fuller, Phys. Rev. D49 (1994) 1762-1770.
[Qian:1994hh]
[16-639]
'Guest stars', sample completeness and the local supernova rate, R. G. Strom, Astron. Astrophys. 288 (1994) L1-L4.
[Strom-AA-288-L1-1994]
[16-640]
The Galactic supernova rate, G. A. Tammann, W. Loeffler, A. Schroder, Astrophys. J. Suppl. 92 (1994) 487-493.
[Tammann:1994ev]
[16-641]
The Rate of Supernovae. II. the Selection Effects and the Frequencies Per Unit Blue Luminosity, E. Cappellaro et al., Astron. Astrophys. 273 (1993) 383, arXiv:astro-ph/9302017.
[Cappellaro:1993ns]
[16-642]
The absolute magnitudes of Type IA supernovae, M. M. Phillips, Astrophys. J. 413 (1993) L105-L108.
[Phillips-1993ApJ-413L-105P]
[16-643]
A Connection between flavor mixing of cosmologically significant neutrinos and heavy element nucleosynthesis in supernovae, Yong-Zhong Qian et al., Phys. Rev. Lett. 71 (1993) 1965-1968.
[Qian:1993dg]
[16-644]
Convective instability in hot bubble in a delayed supernova explosion, Shoichi Yamada, Tetsuya Shimizu, Katsuhiko Sato, Prog. Theor. Phys. 89 (1993) 1175-1182.
[Yamada:1993sk]
[16-645]
How rare are supernovae?, S. van den Bergh, Comments on Astrophys. 17 (1993) 125-130.
[vandenBerg-CommAstrophys-17-125-1993]
[16-646]
The Future of supernova neutrino detection, Adam Burrows, David Klein, Raj Gandhi, Phys. Rev. D45 (1992) 3361-3385.
From the abstract: In this paper, we construct a detailed fiducial model of supernova neutrino bursts that incorporates the numerous emission features derived and predicted by supernova and protoneutron star theorists during the last decade.
[Burrows:1992kf]
[16-647]
High rate for Type IC supernovae, Richard A. Muller et al., Astrophys. J. 384 (1992) L9-L13.
[Muller-etal-ApJ-384-L9-1992]
[16-648]
The modified correlation mass method for detecting neutrino mass from astrophysical neutrino bursts, K. L. Chan, H. Chiu, Y. Kondo, Astron. Astrophys. 215 (1989) 387-398.
[Chan-Chiu-Kondo-1989A&A-215-387C]
[16-649]
The rate of stellar collapses in the galaxy, Kavan U. Ratnatunga, Sidney van den Bergh, Astrophys. J. 343 (1989) 713-717.
[Ratnatunga-vandenBergh-ApJ-343-713-1989]
[16-650]
Neutronization neutrino pulses from supernovae and the triplet majoron model, Y. Aharonov, F. T. Avignone, S. Nussinov, Phys. Lett. B200 (1988) 122-124.
[Aharonov:1988ju]
[16-651]
Neutral current reactions of solar and supernova neutrinos on deuterium, J. N. Bahcall, K. Kubodera, S. Nozawa, Phys. Rev. D38 (1988) 1030.
[Bahcall:1988em]
[16-652]
Implications of the supernova SN1987a neutrino signals, I. Goldman, Y. Aharonov, G. Alexander, S. Nussinov, Phys. Rev. Lett. 60 (1988) 1789.
[Goldman:1987fg]
[16-653]
$\nu_e-\nu_e$ scattering and the possibility of a resonance change of neutrino helicity in the magnetic field of a supernova, L. B. Okun, Sov. J. Nucl. Phys. 48 (1988) 967-968.
[Okun:1988qs]
[16-654]
Resonant Helicity Flip of $\nu_e$ Due to Magnetic Moment and Dynamics of Supernova, M.B. Voloshin, Phys.Lett. B209 (1988) 360.
[Voloshin:1988xu]
[16-655]
Neutrino magnetic moment may solve the supernovae problem, Arnon Dar, 1987. Print-87-0178 (IAS, Princeton).
[Dar:1987yv]
[16-656]
Magnetic moments of neutrinos: particle and astrophysical aspects, Shmuel Nussinov, Yoel Rephaeli, Phys. Rev. D36 (1987) 2278.
[Nussinov:1987zr]
[16-657]
Supernova explosions and constraints on mass and lifetime of heavy neutrinos, M. Takahara, K. Sato, Phys. Lett. B174 (1986) 373-377.
[Takahara:1986wr]
[16-658]
Revival of a stalled supernova shock by neutrino heating, Hans A. Bethe, R. Wilson, James, Astrophys. J. 295 (1985) 14-23.
[Bethe:1985ux]
[16-659]
Accreting white dwarf models of Type I supernovae. III - Carbon deflagration supernovae, K. Nomoto, F.K. Thielemann, K. Yokoi, Astrophys. J. 286 (1984) 644-658.
[Nomoto-Thielemann-Yokoi-ApJ286-1984]
[16-660]
Neutrino mass and detection of neutrino supernova bursts, T. Piran, Phys. Lett. B102 (1981) 299-302.
[Piran:1981zz]
[16-661]
Neutrinos of Non-Zero Rest Mass, S. Pakvasa, K. Tennakone, Phys. Rev. Lett. 28 (1972) 1415.
[Pakvasa:1972gz]
[16-662]
G. T. Zatsepin, JETP Lett. 8 (1968) 205. [Zh. Eksp. Teor. Fiz. 8, 333 (1968)].
[Zatsepin:1968]
[16-663]
Remarks on Super-Novae and Cosmic Rays, W. Baade, F. Zwicky, Phys. Rev. 46 (1934) 76-77.
[Baade-Zwicky-PR-46-76-1934]

17 - Phenomenology - Type II - Talks

[17-1]
Neutrino nonradiative decay and the diffuse supernova neutrino background, Pilar Ivanez-Ballesteros, M. Cristina Volpe, PoS TAUP2023 (2024) 182, arXiv:2311.09725. 18th International Conference on Topics in Astroparticle and Underground Physics.
[Ivanez-Ballesteros:2023lob]
[17-2]
Oscillations of Majorana neutrinos in supernova and CP violation, Artem Popov, Alexander Studenikin, arXiv:2302.05908, 2023.
[Popov:2023wif]
[17-3]
Core-Collapse Supernova Search Strategy: GravitationalWaves and Low-Energy Neutrinos, Odysse Halim, Claudio Casentini, Marco Drago, Viviana Fafone, Kate Scholberg, Carlo Vigorito, Giulia Pagliaroli, PoS EPS-HEP2021 (2022) 101, arXiv:2110.13545. EPS-HEP2021.
[Halim:2021pys]
[17-4]
Neutrinos: from the r-process to the diffuse supernova neutrino background, Volpe Maria Cristina, J.Phys.Conf.Ser. 2156 (2021) 012126, arXiv:2110.09027. 17th International Conference on Topics in Astroparticle and Underground Physics.
[Volpe:2021afs]
[17-5]
Probing secret interactions of eV-scale sterile neutrinos with the diffuse supernova neutrino background, Mary Hall Reno, Yu Seon Jeong, Sergio Palomares-Ruiz, Ina Sarcevic, PoS ICHEP2020 (2021) 603, arXiv:2012.05380. ICHEP 2020, July 28-August 6, Prague, Czech Republic.
[Reno:2020cgj]
[17-6]
Core-Collapse Supernove Burst Neutrinos in DUNE, C. Cuesta, PoS ICHEP2020 (2021) 590, arXiv:2011.06969. ICHEP 2020.
[Cuesta:2020dyj]
[17-7]
Expanding Core-Collapse Supernova Search Horizon of Neutrino Detectors, Odysse Halim, Carlo Vigorito, Claudio Casentini, Giulia Pagliaroli, Marco Drago, Viviana Fafone, J.Phys.Conf.Ser. 1468 (2020) 012154, arXiv:1911.11450.
[Halim:2019esz]
[17-8]
Effects of the Metallicity on Li and B Production in Supernova Neutrino Process, Motohiko Kusakabe, Myung-Ki Cheoun, K. S. Kim, Masa-aki Hashimoto, Masaomi Ono, Ken'ichi Nomoto, Toshio Suzuki, Toshitaka Kajino, Grant J. Mathews, JPS Conf.Proc. 31 (2020) 011044, arXiv:1910.08687. OMEG15.
[Kusakabe:2019yyp]
[17-9]
Diagnosing the Structure of Massive Stars with Galactic Supernova Neutrinos, Shunsaku Horiuchi, Ko Nakamura, Tomoya Takiwaki, Kei Kotake, arXiv:1805.00050, 2018. NuPhys2017 (London, 20-22 December 2017).
[Horiuchi:2018gkc]
[17-10]
Supernova Physics at DUNE, Artur Ankowski et al., arXiv:1608.07853, 2016. Summary of workshop 'Supernova Physics at DUNE', Virginia Tech.
[Ankowski:2016lab]
[17-11]
Neutrino-Induced Nucleosynthesis in Helium Shells of Early Core-Collapse Supernovae, Projjwal Banerjee, Yong-Zhong Qian, Alexander Heger, Wick Haxton, EPJ Web Conf. 109 (2016) 06001, arXiv:1512.01523. OMEG 2015.
[Banerjee:2015eke]
[17-12]
Probing Efficient Cosmic-Ray Acceleration in Young Supernovae, Vikram V. Dwarkadas, M. Renaud, A. Marcowith, V. Tatischeff, PoS ICRC2015 (2016) 493, arXiv:1509.00879. 34th International Cosmic Ray Conference (ICRC).
[Dwarkadas:2015ppa]
[17-13]
The Physics Of Supernova Neutrino Oscillations, James P. Kneller, arXiv:1507.01434, 2015. CIPANP2015.
[Kneller:2015lqa]
[17-14]
Type IIn supernovae as sources of high energy neutrinos, V.N. Zirakashvili, V.S. Ptuskin, PoS ICRC2015 (2016) 472, arXiv:1505.08144. 34th ICRC, Hague, Netherlands 30July-06Aug 2015.
[Zarikashvili:2015wpw]
[17-15]
Principal Physical Effects in Collapsing Stellar Cores, D.K. Nadyozhin, A.V. Yudin, arXiv:1308.4448, 2013. ICRANet Workshop 'From Nuclei to White Dwarfs and Neutron Stars', Les Houches, 3-8 April 2011.
[Nadyozhin:2013kba]
[17-16]
A Critical Appraisal of Some Concepts Used in Neutrino Physics, Francesco Vissani, Manimala Mitra, Giulia Pagliaroli, Nuovo Cim. C36 (2013) 223-228, arXiv:1206.1466. IFAE 2012.
[Vissani:2012dm]
[17-17]
Estimations of the Distances of Stellar Collapses in the Galaxy by Analyzing the Energy Spectrum of Neutrino Bursts, Ernesto Kemp, Bruno Miguez, Walter Fulgione, Int.J.Mod.Phys. E20S2 (2011) 57-60, arXiv:1202.0181. SMFNS 2011.
[Kemp:2011qtg]
[17-18]
Astrophysical Models of r-Process Nucleosynthesis: An Update, Yong-Zhong Qian, AIP Conf.Proc. 1484 (2012) 201, arXiv:1201.5112. 11th International Symposium on Origin of Matter and Evolution of Galaxies (OMEG11), Wako, Japan.
[Qian:2012pe]
[17-19]
Core-Collapse Supernovae: Explosion Dynamics, Neutrinos and Gravitational Waves, Bernhard Mueller et al., arXiv:1112.1913, 2011. HANSE 2011.
[Muller:2011dvt]
[17-20]
Neutral Current Coherent Cross Sections- Implications on Gaseous Spherical TPC's for detecting SN and Earth neutrinos, J. D. Vergados, J. Phys. Conf. Ser. 309 (2011) 012031, arXiv:1103.1107. Fifth symposium on large TPCs for low energy rare event detection and workshop on neutrinos from Supernovae, Paris Dec. 14-18, 2010.
[Vergados:2011ym]
[17-21]
Explosive nucleosynthesis in core-collapse supernovae, A. Arcones, J. Phys. Conf. Ser. 312 (2011) 042005, arXiv:1012.4917. INPC 2010 Vancouver.
[Arcones:2010fk]
[17-22]
Lepton flavor violating New Physics and supernova explosion, Oleg Lychkovskiy, Sergei Blinnikov, Mikhail Vysotsky, arXiv:1010.0883, 2010. 16th International Seminar on High Energy Physics 'QUARKS-2010', Kolomna, Russia, 6-12 June, 2010.
[Lychkovskiy:2010xh]
[17-23]
Dirac neutrino magnetic moment and a possible time evolution of the neutrino signal from a supernova, R.A. Anikin, A.V. Kuznetsov, N.V. Mikheev, Astron.Lett. 36 (2010) 680, arXiv:1010.0583. XVI International Seminar Quarks'2010, Kolomna, Moscow Region, June 6-12, 2010.
[Anikin:2010rh]
[17-24]
Can a supernova bang twice?, Jurgen Schaffner-Bielich et al., Prog. Theor. Phys. Suppl. 186 (2010) 93-98, arXiv:1009.6096. Yukawa International Program for Quark-Hadron Sciences: New Frontiers in QCD 2010, Kyoto, Japan.
[Schaffner-Bielich:2010eyw]
[17-25]
The r-Process in Black Hole Winds, Shinya Wanajo, Hans-Thomas Janka, AIP Conf. Proc. 1269 (2010) 120-125, arXiv:1006.2277. OMEG10, March 2010.
[Wanajo:2010ab]
[17-26]
Using supernova neutrinos to monitor the collapse, to search for gravity waves and to probe neutrino masses, F. Vissani, G. Pagliaroli, F. Rossi-Torres, arXiv:1005.3682, 2010. Galileo-Xu Guangqi meeting: The Sun, the Stars, the Universe and General Relativity; October 26-30, 2009, Shanghai (China).
[Vissani:2010kwv]
[17-27]
Implication of the Steady State Equilibrium Condition for Electron-Positron Gas in the Neutrino-driven Wind from Proto-Neutron Star, Men-Quan Liu, Ye-Fei Yuan, arXiv:1005.1845, 2010. Compact stars in the QCD phase diagram II (CSQCD II), May 20-24, 2009, Beijing, P. R. China.
[Liu:2010pk]
[17-28]
Nucleosynthesis in neutrino-driven winds: influence of the nuclear physics input, Almudena Arcones, Gabriel Martinez-Pinedo, J. Phys. Conf. Ser. 202 (2010) 012007, arXiv:0909.1012. Nuclear Physics in Astrophysics IV.
[Arcones:2009gu]
[17-29]
Probing the Core-Collapse Supernova Mechanism with Gravitational Waves, C. D. Ott, Class. Quant. Grav. 26 (2009) 204015, arXiv:0905.2797. 13th Gravitational Wave Data Analysis Workshop.
[Ott:2009bw]
[17-30]
The Strange Prospects for Astrophysics, Irina Sagert et al., J. Phys. G36 (2009) 064009, arXiv:0902.2084. International conference on strangeness in quark matter (SQM2008), Beijing, October 6-10, Beijing, China.
[Sagert:2009bn]
[17-31]
Physics potential of future supernova neutrino observations, Amol Dighe, J. Phys. Conf. Ser. 136 (2008) 022041, arXiv:0809.2977. Neutrino 2008, Christchurch, NZ.
[Dighe:2008dq]
[17-32]
Supernova neutrinos: Strong coupling effects of weak interactions, G. L. Fogli, E. Lisi, A. Marrone, A. Mirizzi, arXiv:0809.2940, 2008. NO-VE 2008, IV International Workshop on.
[Fogli:2008cz]
[17-33]
Formation of quark phases in compact stars and SN explosion, Alessandro Drago, Giuseppe Pagliara, Giulia Pagliaroli, Francesco Lorenzo Villante, Francesco Vissani, AIP Conf. Proc. 1056 (2008) 256-263, arXiv:0809.0518. 6th International Conference on Perspectives in Hadronic Physics, May 2008, Trieste.
[Drago:2008tb]
[17-34]
Core-collapse supernova neutrinos and neutrino properties, J. Gava, C. Volpe, AIP Conf. Proc. 1038 (2008) 193-201, arXiv:0805.2717. Three days of Strong Interactions and Astrophysics HLPW08, 6-8 March 2008.
[Gava:2008st]
[17-35]
Nucleosynthesis in Early Neutrino Driven Winds, R.D. Hoffman et al., AIP Conf. Proc. 1005 (2008) 225-228, arXiv:0801.1828. CNR 2007 Compound-Nuclear Reactions and Related Topics Workshop.
[Hoffman:2008jm]
[17-36]
Plasma induced neutrino spin-flip in a supernova and new bounds on the neutrino magnetic moment, A.V. Kuznetsov, N.V. Mikheev, arXiv:0708.2802, 2007. XIV International School 'Particles and Cosmology', Baksan Valley, Kabardino Balkaria, Russia, April 16-21, 2007.
[Kuznetsov:2007np]
[17-37]
Spectral Modeling of Type II Supernovae, E. Baron, AIP Conf. Proc. 924 (2007) 350-357, arXiv:astro-ph/0611545. The Multicoloured Landscape of Compact Objects and their Explosive Progenitors: Theory vs Observations.
[Baron:2006et]
[17-38]
The diffuse supernova neutrino flux, Cecilia Lunardini, Nucl. Phys. Proc. Suppl. 221 (2011) 160-165, arXiv:astro-ph/0610534. Neutrino 2006, Santa Fe, June 2006.
[Lunardini:2006em]
[17-39]
Time-dependence Effects in Photospheric-Phase Type II Supernova Spectra, Luc Dessart, John Hillier, AIP Conf.Proc. 924 (2007) 441, arXiv:astro-ph/0610136. The Multicoloured Landscape of Compact Objects and their Explosive Progenitors: Theory vs Observations, Cefalu, Sicily, June 11-24, 2006.
[Dessart:2006ky]
[17-40]
Neutrinos from supernova remnants after the first HESS observations, Francesco Vissani, arXiv:astro-ph/0609575, 2006. Vulcano Workshop 2006: Frontier Objects in Astrophysics and Particle Physics, Vulcano, Italy, 22-27 May 2006.
[Vissani:2006pi]
[17-41]
R-process Experimental Campaign at the National Superconducting Cyclotron Laboratory, J. Pereira et al., PoS NIC-IX (2006) 162, arXiv:astro-ph/0608582. PoS.
[Pereira:2006vr]
[17-42]
Thermal neutrinos from pre-supernova, A. Odrzywolek, M. Misiaszek, M. Kutschera, Nucl. Phys. Proc. Suppl. 221 (2011) 380, arXiv:astro-ph/0608492. Neutrino 2006.
[Odrzywolek:2006fn]
[17-43]
Aspects of Neutrino Production in Supernovae, Todd A. Thompson, arXiv:astro-ph/0608231, 2006. International Workshop on the Energy Budget in the High Energy Universe, Kashiwa campus, Univ. of Tokyo, Chiba, Japan, Feb. 2006.
[Thompson:2006ar]
[17-44]
Neutrinos, Fisson Cycling, and the r-process, J. Beun, G. C. McLaughlin, R. Surman, W. R. Hix, PoS NIC-IX (2006) 140, arXiv:astro-ph/0607180. NIC-IX, International Symposium on Nuclear Astrophysics - Nuclei in the Cosmos - IX, CERN, Geneva, Switzerland, 25-30 June, 2006.
[Beun:2006vg]
[17-45]
Neutrino chirality flip in a supernova and the bound on the neutrino magnetic moment, A.V. Kuznetsov, N.V. Mikheev, arXiv:hep-ph/0606261, 2006. XIV International Seminar Quarks'2006, St.-Petersburg, Repino, Russia, May 19-25, 2006.
[Kuznetsov:2006ch]
[17-46]
The Supernova Gamma-Ray Burst Connection, Stan Woosley, Alexander Heger, AIP Conf. Proc. 836 (2006) 398-407, arXiv:astro-ph/0604131. AIP Conf. Proc. 'Gamma Ray Bursts in the Swift Era'.
[Woosley:2006gw]
[17-47]
Shell-type Supernova Remnants, Heinrich J. Volk, arXiv:astro-ph/0603502, 2006. Cherenkov 2005, Towards a Network of Atmospheric Cherenkov Detectors VII, Ecole Polytechnique, Palaiseau (France), April 27-29, 2005.
[Volk:2006nm]
[17-48]
The Relic Neutrino Backround from the First Stars, Keith A. Olive, Pearl Sandick, arXiv:astro-ph/0603236, 2006. IIIrd International Workshop on: NO-VE 'Neutrino Oscillations in Venice', Venice Italy, February 2006.
[Olive:2006ei]
[17-49]
Nucleosynthesis in Neutrino-Driven Supernovae, C. Froehlich et al., New Astron. Rev. 50 (2006) 496-499, arXiv:astro-ph/0511584. Astronomy with Radioactivities V, Clemson University, September 5-9, 2005.
[Frohlich:2005em]
[17-50]
Neutrinos from Supernovas and Supernova Remnants, Francesco Vissani, Maria Laura Costantini, Aip Conf. Proc. 794 (2005) 219, arXiv:astro-ph/0508152. IFAE, Catania 2005.
[Costantini:2005vh]
[17-51]
Nucleosynthesis of PopIII Core Collapse Supernovae and the Abundances of Extremely Metal Poor Stars, Marco Limongi, Alessandro Chieffi, IAU Symp. (2005), arXiv:astro-ph/0507340. 6IAU Symp. No. 228 'From Lithium to Uranium: Elemental Tracers of Early Cosmic Evolution'.
[Limongi:2005yu]
[17-52]
Neutrino Processes in Strong Magnetic Fields, Huaiyu Duan, Yong-Zhong Qian, arXiv:astro-ph/0506129, 2005. INT workshop.
[Duan:2005wv]
[17-53]
SN/GRB connection: a statistical approach with BATSE and Asiago Catalogues, S. Valenti et al., Nuovo Cim. 28C (2005) 633, arXiv:astro-ph/0505052. 4th workshop on Gamma Ray Bursts in the Afterglow Era, Rome, 2004.
[Valenti:2005vh]
[17-54]
Supernova search at intermediate z. II. Host galaxy morphology, J. Mendez et al., ASP Conf.Ser. 342 (2005) 488, arXiv:astro-ph/0502397. 1604-2004: Supernovae as Cosmological Lighthouses.
[Mendez:2005iu]
[17-55]
Supernova search at intermediate z. I. Spectroscopic analysis, G. Altavilla et al., ASP Conf.Ser. 342 (2005) 486, arXiv:astro-ph/0502395. 1604-2004: Supernovae as Cosmological Lighthouses.
[Altavilla:2005is]
[17-56]
Supernova Rates in Galaxy Clusters, Dan Maoz, ASP Conf.Ser. (2005), arXiv:astro-ph/0501492. 1604-2004: Supernovae as Cosmological Lighthouses.
[Maoz:2005xu]
[17-57]
Searching for Progenitors of Core-Collapse Supernovae, Schuyler D. Van Dyk, ASP Conf.Ser. (2005), arXiv:astro-ph/0501363. 1604-2004: Supernovae as Cosmological Lighthouses.
[VanDyk:2005yn]
[17-58]
Nuclear physics and astrophysics of the r-process, Y. -Z. Qian, Nucl. Phys. A752 (2005) 550, arXiv:astro-ph/0501237. International Nuclear Physics Conference (INPC2004).
[Qian:2005am]
[17-59]
IMF variations and their implications for Supernovae numbers, C. Weidner, P. Kroupa, Proc. Sci. BDMH2004 (2004) 063, arXiv:astro-ph/0412114. 'Baryons in Dark Matter Halos', Novigrad, Croatia, October 5-9, 2004.
[Weidner:2004ni]
[17-60]
Supernova Neutrinos and the absolute scale of neutrino masses - a Bayesian approach, Enrico Nardi, arXiv:hep-ph/0412024, 2004. Fifth Latin American Simposium on High Energy Physics (V-SILAFAE) Lima, Peru, July 12-17, 2004.
[Nardi:2004uz]
[17-61]
Supernova Neutrino Process and its Impact on the Galactic Chemical Evolution of the Light Elements, Takashi Yoshida, Toshitaka Kajino, Nucl. Phys. A758 (2005) 35, arXiv:astro-ph/0410651. Nuclei in the Cosmos VIII.
[Yoshida:2004fm]
[17-62]
The r-process nucleosynthesis: a continued challenge for nuclear physics and astrophysics, S. Goriely et al., Nucl. Phys.A (2004), arXiv:astro-ph/0410429. Nuclei in the Cosmos.
[Goriely:2004qb]
[17-63]
Sterile Neutrinos in astrophysical and cosmological sauce, Marco Cirelli, arXiv:astro-ph/0410122, 2004. 10th International Symposium on Particles, Strings and Cosmology (PASCOS '04), August 2004, Boston, USA, and XVI Incontri sulla Fisica delle Alte Energie (IFAE), April 2004, Torino, Italy.
[Cirelli:2004qs]
[17-64]
Parity Violation in Astrophysics, C. J. Horowitz, Eur. Phys. J. A24S2 (2005) 167, arXiv:nucl-th/0410074. PAVI04 conference in Grenoble, France.
[Horowitz:2004pc]
[17-65]
Powerful gravitational-wave bursts from supernova neutrino oscillations, Herman J. Mosquera Cuesta, Karen Fiuza, Aip Conf. Proc. 739 (2005) 702, arXiv:astro-ph/0407526. 'Hadron Physics - RANP 2004', Angra dos Reis - Rio de Janeiro - Brazil, March 28 to April 03.
[MosqueraCuesta:2004xd]
[17-66]
Neutrino Oscillations at Supernova Core Bounce Generate the Strongest Gravitational-Wave Bursts, Herman J. Mosquera Cuesta, Karen Fiuza, Int. J. Mod. Phys. D13 (2004) 1297, arXiv:astro-ph/0407184. International Workshop on Astronomy and Relativistic Astrophysics, Olinda (Brazil), October 12-16 (2003).
[MosqueraCuesta:2004qh]
[17-67]
Core-Collapse Supernovae Induced by Anisotropic Neutrino Radiation, Yuko Motizuki, Hideki Madokoro, Tetsuya Shimizu, EAS Publ.Ser. 11 (2004) 163, arXiv:astro-ph/0406303. Int. conf. in hohour of the 60th birthday of Marcel Arnould, The Future Astronuclear Physics, From microscopic puzzles to macroscopic nightmares.
[Motizuki:2004jg]
[17-68]
Supernova Neutrino-Nucleus Physics and the r-process, W. C. Haxton, arXiv:nucl-th/0406012, 2004. 'The r-process: The Astrophysical Origin of the Heavy Elements...'.
[Haxton:2004qn]
[17-69]
Global Anisotropies in Supernova Explosions and Pulsar Recoil, L. Scheck et al., arXiv:astro-ph/0405311, 2004. 12th Workshop on Nuclear Astrophysics, Ringberg Castle, March 22-27, 2004.
[Scheck:2004wq]
[17-70]
Decays of supernova relic neutrinos, G.L. Fogli, E. Lisi, A. Mirizzi, D. Montanino, arXiv:hep-ph/0405136, 2004. 39th Rencontres de Moriond on Electroweak Interactions and Unified Theories, La Thuile, Italy, 21-28 Mar 2004.
[Fogli:2004uy]
[17-71]
Sterile neutrinos: from cosmology to experiments, Guido Marandella, arXiv:hep-ph/0405090, 2004. 39th Rencontres de Moriond on Electroweak Interactions and Unified Theories, La Thuile, Aosta Valley, Italy, 21-28 March 2004.
[Marandella:2004xv]
[17-72]
Neutrinos from pre-supernova star, A. Odrzywolek, M. Misiaszek, M. Kutschera, Acta Phys. Polon. B35 (2004) 1981, arXiv:astro-ph/0405006. Epiphany Conference on Astroparticle Physics, 8-11 January 2004, Cracow, Poland.
[Odrzywolek:2004em]
[17-73]
An Approach to Neutrino Radiative Transfer in Supernova Simulations, Christian Y. Cardall, arXiv:astro-ph/0404401, 2004. Numerical Methods for Multidimensional Radiative Transfer Problems (RadConf2003), Heidelberg, Germany, 24-26 September 2003.
[Cardall:2004nd]
[17-74]
The Evolution of Supernovae in the Winds of Massive Stars, Vikram Dwarkadas, arXiv:astro-ph/0403195, 2004. Cosmic Explosions in Three Dimensions: Asymmetries in Supernovae and Gamma-Ray Bursts.
[Dwarkadas:2004zu]
[17-75]
Detection of Supernova Neutrinos, B. Bekman, J. Holeczek, J. Kisiel, Acta Phys. Polon. B35 (2004) 1215, arXiv:hep-ph/0403117. XXVIII Mazurian Lakes School of Physics, Krzyze, Poland, August 31 - September 7, 2003.
[Bekman:2004qj]
[17-76]
Neutrino Processes in Supernovae and Neutrons Stars in Their Infancy and Old Age, M. Prakash, S. Ratkovic, S. I. Dutta, arXiv:astro-ph/0403038, 2004. KIAS-APCTP International Symposium in Astro-Hadron Physics, November 10-14, 2003.
[Prakash:2004wv]
[17-77]
Measuring neutrino masses with supernova neutrinos, Enrico Nardi, arXiv:astro-ph/0401624, 2004. X Marcel Grossmann Meeting, Rio de Janeiro, 20-26 July 2003.
[Nardi:2004ms]
[17-78]
Neutron Star Kicks and Supernova Asymmetry, Dong Lai, arXiv:astro-ph/0312542, 2003. 3D Signatures of Stellar Explosion, a workshop honoring J.C. Wheeler's 60th Birthday.
[Lai:2003hm]
[17-79]
Low frequency radio and X-ray properties of core-collapse supernovae, A. Ray, P. Chandra, F. Sutaria, S. Bhatnagar, Springer Proc.Phys. 99 (2005) 145-150, arXiv:astro-ph/0311419. IAU Colloquium 192 'Supernovae (10 years of SN 1993J)', April 2003, Valencia, Spain.
[Ray:2003nu]
[17-80]
Pulsar velocities and dark matter hint at a singlet neutrino, Alexander Kusenko, arXiv:astro-ph/0311240, 2003. Sixth RESCEU International Symposium 'Frontier in Astroparticle Physics and Cosmology', Tokyo, Japan, November 4 - 7, 2003.
[Kusenko:2003ff]
[17-81]
Expected Changes of Supernovae with Redshift due to Evolution of their Progenitors, I. Dominguez et al., Springer Proc.Phys. 99 (2005) 567-572, arXiv:astro-ph/0311140. IAU Colloquium 192, 'Supernovae (10 years of 1993J)', Valencia, Spain 22-26 April 2003.
[Dominguez:2003rx]
[17-82]
44Ti radioactivity in young supernova remnants: Cas A and SN 1987A, Y. Motizuki, S. Kumagai, New Astron. Rev. 48 (2004) 69, arXiv:astro-ph/0311080. 'Astronomy with Radioactivities IV', Seeon, Germany, June 2003.
[Motizuki:2003dx]
[17-83]
Supernova Statistics, E. Cappellaro, R. Barbon, M. Turatto, Springer Proc.Phys. 99 (2005) 347-354, arXiv:astro-ph/0310859. IAU Colloquium 192, Supernovae: 10 Years of 1993J Valencia, Spain 22-26 April 2003.
[Cappellaro:2003eg]
[17-84]
Type Ia Supernovae: Spectroscopic Surprises, D. Branch, arXiv:astro-ph/0310685, 2003. 3-D Signatures of Stellar Explosions: A Workshop Honoring J. Craig Wheeler's 60th Birthday.
[Branch:2003fr]
[17-85]
Effects of Small-Scale Fluctuations of Neutrino Flux in Supernova Explosions, H. Madokoro, T. Shimizu, Y. Motizuki, Springer Proc.Phys. 99 (2005) 309-314, arXiv:astro-ph/0310481. IAU Colloquium 192, SUPERNOVAE (10 years of SN1993J), Valencia, Spain.
[Madokoro:2003hh]
[17-86]
Understanding Type II Supernovae, L. Zampieri, M. Ramina, A. Pastorello, Springer Proc.Phys. 99 (2005) 275-280, arXiv:astro-ph/0310057. IAU Colloquium 192, 'Supernovae (10 years of 1993J)', Valencia, Spain 22-26 April 2003.
[Zampieri:2003qn]
[17-87]
Observational Properties of Type II Plateau Supernovae, A. Pastorello et al., Springer Proc.Phys. 99 (2005) 195-199, arXiv:astro-ph/0310056. IAU Colloquium 192, 'Supernovae (10 years of 1993J)', Valencia, Spain 22-26 April 2003.
[Pastorello:2003qm]
[17-88]
Cosmic rays, stellar evolution, and supernova physics, P. L. Biermann, New Astron. Rev. 48 (2004) 41, arXiv:astro-ph/0309810. 'Astronomy With Radioactivities IV - Filling the Sensitivty Gap in MEV Astronomy', Seeon Conference, Bavaria, Germany, May 2003.
[Biermann:2003et]
[17-89]
A Geometric Determination of the Distance to SN 1987A and the LMC, N. Panagia, Springer Proc.Phys. 99 (2005) 585-592, arXiv:astro-ph/0309416. IAU Colloquium 192 'Supernovae (10 years of SN1993J)', Valencia, Spain.
[Panagia:2003rt]
[17-90]
$^{56}\mathrm{Ni}$ mass in type IIP SNe: Light curves and H-alpha luminosities diagnostics, Abouazza Elmhamdi, N. N. Chugai, I. J. Danziger, Springer Proc.Phys. 99 (2005) 303-308, arXiv:astro-ph/0309286. IAU Colloquium 192: Supernovae (10 Years after SN1993J), Valencia, Spain, 22-26 Apr 2003.
[Elmhamdi:2003wu]
[17-91]
Neutrinos and (anti)neutrinos from supernovae and from the earth in the Borexino detector, L. Miramonti, arXiv:hep-ex/0307029, 2003. 1st Yamada Symposium on Neutrinos and Dark Matter in Nuclear Physics June 9-14, 2003, Nara, Japan.
[Miramonti:2003hw]
[17-92]
Neutrinos in Extra Dimensions and Supernovae, M. Cirelli, arXiv:hep-ph/0305141, 2003. 38th Rencontres de Moriond - Electroweak Interactions and Unified Theories, March 15-22, 2003, Les Arcs, France.
[Cirelli:2003vh]
[17-93]
Supernova neutrinos: Flavor-dependent fluxes and spectra, G.G.Raffelt et al., arXiv:astro-ph/0303226, 2003. NOON 03, Kanazawa, 10-14 Feb 2003.
[Raffelt:2003en]
[17-94]
Neutrinos and Nucleosynthesis in Supernova, U. Solis, J. C. D'Olivo, L. G. Cabral-Rosetti, J. Phys. Conf. Ser. 37 (2006) 127-130, arXiv:hep-ph/0302015. Mexican School of Astrophysics (EMA), Guanajuato, Mexico, July 31 - August 7, 2002.
[Solis:2003ak]
[17-95]
Supernova Explosions from Accretion Disk Winds, Andrew I. MacFadyen, arXiv:astro-ph/0301425, 2003. 'From Twilight to Highlight - The Physics of Supernovae' ESO/MPA/MPE Workshop, Garching July 2002.
[MacFadyen:2003wg]
[17-96]
Presupernova Evolution of Rotating Massive Stars and the Rotation Rate of Pulsars, A. Heger, S. E. Woosley, N. Langer, H. C. Spruit, IAU Symp. 215 (2004) 591, arXiv:astro-ph/0301374. IAU 215 'Stellar Rotation'.
[Heger:2003nh]
[17-97]
Supernovae, Gamma-Ray Bursts, and Stellar Rotation, S. E. Woosley, A. Heger, IAU Symp. (2003), arXiv:astro-ph/0301373. IAU 215 'Stellar Rotation'.
[Woosley:2003ng]
[17-98]
Circumstellar Interaction Around Supernovae, Roger A. Chevalier, arXiv:astro-ph/0301368, 2003. 'From Twilight to Highlight - The Physics of Supernovae' ESO/MPA/MPE Workshop, Garching July 2002.
[Chevalier:2003nb]
[17-99]
Supernova Neutrinos : oscillations and new interactions, D. Montanino, 2003. Seminar at Padua University, November 18, 2003, Padua, Italy. http://www.pd.infn.it/~laveder/unbound/seminari/sn/SuperNovae.ppt.
[Montanino:PD2003]
[17-100]
Observable Effects of Shocks in Compact and Extended Presupernovae, S. Blinnikov et al., arXiv:astro-ph/0212569, 2002. ESO/MPA/MPE Workshop 'From Twilight to Highlight: The Physics of Supernovae', Garching, July 2002.
[Blinnikov:2002tk]
[17-101]
Light Curves of Type Ia Supernovae as a Probe for an Explosion Model, Elena Sorokina, Sergey Blinnikov, arXiv:astro-ph/0212527, 2002. From Twilight to Highlight: The Physics of Supernovae, ESO Astrophysics Symposia.
[Sorokina:2002gr]
[17-102]
The Mechanism of Core-Collapse Supernovae and the Ejection of Heavy Elements, H.-Th. Janka, R. Buras, M. Rampp, Nucl. Phys. A718 (2003) 269, arXiv:astro-ph/0212317. NIC7, Fuji-Yoshida, Japan, July 8-12, 2002.
[Janka:2002ej]
[17-103]
X-ray emission of young SN Ia remnants as a probe for an explosion model, D.I.Kosenko, E.I.Sorokina, S.I.Blinnikov, P. Lundqvist, Adv.Space Res. 33 (2004) 392-397, arXiv:astro-ph/0212188. 34th COSPAR Sci. Assembly, Houston, 10-19 october 2002.
[Kosenko:2002yc]
[17-104]
Energy exchange inside SN ejecta and light curves of SNe Ia, E.I.Sorokina, S.I.Blinnikov, arXiv:astro-ph/0212187, 2002. 11th Workshop on 'Nuclear Astrophysics', Ringberg Castle, Tegernsee, Germany, February 11-16, 2002.
[Sorokina:2002yb]
[17-105]
Magnetic Field in Supernovae, Shizuka Akiyama, J. Craig Wheeler, arXiv:astro-ph/0211458, 2002. conference 'Core Collapse of Massive Stars'.
[Akiyama:2002ur]
[17-106]
The Neutrino Signal in Stellar Core Collapse and Postbounce Evolution, M. Liebendoerfer et al., Nucl. Phys. A719 (2003) 144, arXiv:astro-ph/0211329. Nuclear Physics in Astrophysics Conference, Debrecen, Hungary, 2002.
[Liebendoerfer:2002ny]
[17-107]
Variety in Supernovae, Massimo Turatto, Stefano Benetti, Enrico Cappellaro, arXiv:astro-ph/0211219, 2002. ESO / MPA / MPE Workshop: From Twilight to Highlight: The Physics of Supernovae, Garching, Germany, 29-31 June 2002.
[Turatto:2002nx]
[17-108]
Synchronised neutrino oscillations from self interaction and associated applications, Yvonne Y. Y. W., Aip Conf. Proc. 655 (2003) 240, arXiv:hep-ph/0211045. 3rd Topical Workshop on Particle Physics and Cosmology: Neutrinos, Branes and Cosmology, San Juan, Puerto Rico, 19-24 Aug 2002.
[Wong:2002sc]
[17-109]
Nucleosynthesis as a result of multiple delayed detonations in Type Ia Supernovae, Domingo Garcia-Senz, Eduardo Bravo, Nucl. Phys. A718 (2003) 563, arXiv:astro-ph/0210339. 'Nuclei in the Cosmos VII' 2002.
[Garcia-Senz:2002fvw]
[17-110]
Neutrino-nucleon scattering rate in the relativistic random phase approximation, L. Mornas, Nucl. Phys. A721 (2003) 1040, arXiv:nucl-th/0210035. PANIC02 conference, 30 sept - 4 oct 2002, Osaka, Japan.
[Mornas:2002ji]
[17-111]
Supernovae and Neutrinos, John F. Beacom, Nucl. Phys. Proc. Suppl. 118 (2003) 307, arXiv:astro-ph/0209136. XXth International Conference on Neutrino Physics and Astrophysics (Neutrino 2002), Munich, Germany, May 25-30, 2002.
[Beacom:2002th]
[17-112]
Neutron Stars, Pulsars and Supernova Remnants: concluding remarks, F. Pacini, arXiv:astro-ph/0208563, 2002. Proceedings of the 270. WE-Heraeus Seminar on Neutron Stars, Pulsars and Supernova Remnants, Jan. 21-25, 2002, Physikzentrum Bad Honnef.
[Pacini:2002iv]
[17-113]
Supernova neutrinos, LSND and MiniBooNE, Michel Sorel, arXiv:hep-ph/0205207, 2002. 37th Rencontres de Moriond on Electroweak Interactions and Unified Theories, Les Arcs, France, 9-16 Mar 2002.
[Sorel:2002hd]
[17-114]
Core-collapse supernova simulations: Variations of the input physics, M. Rampp, R. Buras, H.-Th. Janka, G. Raffelt, arXiv:astro-ph/0203493, 2002. Proceedings of the 11th Workshop on 'Nuclear Astrophysics' held at Ringberg Castle, February 11-16, 2002.
[Rampp:2002kn]
[17-115]
Neutrinos from SNR, T. Stanev, 2002. International Workshop on Neutrinos and Subterranean Science - NeSS 02, Washington, DC, September 19-21, 2002. http://mocha.phys.washington.edu/~int_talk/WorkShops/Neutrino02/Working_Groups/People/Stanev_T/stanev_thurs_astrocosmo.pdf.
[Stanev-talk:2002a]
[17-116]
Supernova constraints on neutrino mass and mixing, Srubabati Goswami, Pramana 54 (2000) 173-184, arXiv:hep-ph/0104094. Meeting on Recent Developments in Neutrino Physics, Ahmedabad, India, 2-4 Feb 1999.
[Goswami:2000bv]
[17-117]
Supernova neutrinos and the neutrino masses, J. F. Beacom, Rev.Mex.Fis. 45 (1999) 36, arXiv:hep-ph/9901300. 22nd Symposium on Nuclear Physics, Oaxtepec, Morelos, Mexico, 5-8 Jan 1999.
[Beacom:1999bn]
[17-118]
Supernova Remnants - Part One - Historical Events, R. G. Strom, 1990. NATO Advanced Study Institute on Neutron Stars: Their Birth, Evolution, Radiation and Winds, Erice, Sicily, Italy, September 5-17, 1988, p. 253.
[Strom-253-1990]
[17-119]
Supernova statistics and related problems, G. A. Tammann, 1982. Supernovae: a Survey of Current Research, Cambridge, England, June 29-July 10, 1981, p. 371-403.
[Tammann-371-1982]
17-120.
N. Cabibbo, 1980. Proc. of 'Astrophysics and Elementary Particles, Common Problems', Rome, Italy, 21-23 February 1980, p. 209.
[Cabibbo:1980]

18 - Phenomenology - Type II - SN1987A

[18-1]
Probing the Sterile Neutrino Dipole Portal with SN1987A and Low-Energy Supernovae, Garv Chauhan, Shunsaku Horiuchi, Patrick Huber, Ian M. Shoemaker, arXiv:2402.01624, 2024.
[Chauhan:2024nfa]
[18-2]
SN1987A constraints to BSM models with extra neutral bosons near the trapping regime: $U(1)_{L_\mu-L_\tau}$ model as an illustrative example, Kwang-Chang Lai, Chun Sing Jason Leung, Guey-Lin Lin, arXiv:2401.16023, 2024.
[Lai:2024mse]
[18-3]
Axion emission from strange matter in core-collapse SNe, Mael Cavan-Piton, Diego Guadagnoli, Micaela Oertel, Hyeonseok Seong, Ludovico Vittorio, arXiv:2401.10979, 2024.
[Cavan-Piton:2024ayu]
[18-4]
Limits on heavy neutral leptons, $Z'$ bosons and majorons from high-energy supernova neutrinos, Kensuke Akita, Sang Hui Im, Mehedi Masud, Seokhoon Yun, arXiv:2312.13627, 2023.
[Akita:2023iwq]
[18-5]
Comprehensive constraints on heavy sterile neutrinos from core-collapse supernovae, Pierluca Carenza, Giuseppe Lucente, Leonardo Mastrototaro, Alessandro Mirizzi, Pasquale Dario Serpico, Phys.Rev.D 109 (2024) 063010, arXiv:2311.00033.
[Carenza:2023old]
[18-6]
Supernova Simulations Confront SN 1987A Neutrinos, Damiano F. G. Fiorillo, Malte Heinlein, Hans-Thomas Janka, Georg Raffelt, Edoardo Vitagliano, Phys.Rev.D 108 (2023) 083040, arXiv:2308.01403.
[Fiorillo:2023frv]
[18-7]
Old Data, New Forensics: The First Second of SN 1987A Neutrino Emission, Shirley Weishi Li, John F. Beacom, Luke F. Roberts, Francesco Capozzi, arXiv:2306.08024, 2023.
[Li:2023ulf]
[18-8]
SN1987A cooling due to Plasmon-Plasmon scattering in the Randall-Sundrum Model, Manish Kumar Sharma, Saumyen Kundu, Prasanta Kumar Das, Phys. Dark Univ. 40 (2023) 101218, arXiv:2304.00380.
[Sharma:2023zqb]
[18-9]
The Neutrino Magnetic Moment Portal and Supernovae: New Constraints and Multimessenger Opportunities, Vedran Brdar, Andre de Gouvea, Ying-Ying Li, Pedro A. N. Machado, Phys.Rev.D 107 (2023) 073005, arXiv:2302.10965.
[Brdar:2023tmi]
[18-10]
SN1987A neutrino burst: limits on flavor conversion, Pedro Dedin Neto, Marcos V. dos Santos, Pedro Cunha de Holanda, Ernesto Kemp, Eur.Phys.J.C 83 (2023) 459, arXiv:2301.11407.
[DedinNeto:2023hhp]
[18-11]
Strong Supernova 1987A Constraints on Bosons Decaying to Neutrinos, Damiano F. G. Fiorillo, Georg G. Raffelt, Edoardo Vitagliano, Phys.Rev.Lett. 131 (2023) 021001, arXiv:2209.11773.
[Fiorillo:2022cdq]
[18-12]
Gravitational Lensing of Supernova Neutrino Bursts, John M. LoSecco, Universe 7 (2021) 335, arXiv:2109.01957.
[LoSecco:2021sdt]
[18-13]
Understanding and visualizing the statistical analysis of SN1987A neutrino data, Marcos V. dos Santos, Pedro Cunha de Holanda, Eur.Phys.J.C 82 (2022) 145, arXiv:2108.06448.
[dosSantos:2021egl]
[18-14]
Relationships among detector signals recorded during events SN1987A and GW170817, N. Agafonova, A. Malgin, E. Fischbach, arXiv:2107.00265, 2021.
[Agafonova:2021tgr]
[18-15]
SN1987A still shining: A Quest for Pseudo-Dirac Neutrinos, Ivan Martinez-Soler, Yuber F. Perez-Gonzalez, Manibrata Sen, Phys.Rev.D 105 (2022) 095019, arXiv:2105.12736.
[Martinez-Soler:2021unz]
[18-16]
Supernova 1987A: 3D Mixing and light curves for explosion models based on binary-merger progenitors, V. P. Utrobin, A. Wongwathanarat, H.-Th. Janka, E. Mueller, T. Ertl, A. Menon, A. Heger, Astrophys.J. 914 (2021) 4, arXiv:2102.09686.
[Utrobin:2021nhm]
[18-17]
Indication of a Pulsar Wind Nebula in the hard X-ray emission from SN 1987A, Emanuele Greco, Marco Miceli, Salvatore Orlando, Barbara Olmi, Fabrizio Bocchino, Shigehiro Nagataki, Masaomi Ono, Akira Dohi, Giovanni Peres, Astrophys.J.Lett. 908 (2021) L45, arXiv:2101.09029.
[Greco:2021sfi]
[18-18]
Discovery of an 8 MeV line in the SN 1987A neutrino spectrum, R. Ehrlich, LHEP 2021 (2021), arXiv:2101.08128.
[Ehrlich:2021era]
[18-19]
Supernova Constraints on Dark Flavored Sectors, Jorge Martin Camalich, Jorge Terol-Calvo, Laura Tolos, Robert Ziegler, Phys.Rev. D103 (2021) L121301, arXiv:2012.11632.
[Camalich:2020wac]
[18-20]
Supernova Muons: New Constraints on Z' Bosons, Axions, and ALPs, Djuna Croon, Gilly Elor, Rebecca K. Leane, Samuel D. McDermott, JHEP 2101 (2021) 107, arXiv:2006.13942.
[Croon:2020lrf]
[18-21]
NS 1987A in SN 1987A, Dany Page, Mikhail V. Beznogov, Ivan Garibay, James M. Lattimer, Madappa Prakash, Hans-Thomas Janka, Astrophys.J. 898 (2020) 125, arXiv:2004.06078.
[Page:2020gsx]
[18-22]
Properties of gamma-ray decay lines in 3D core-collapse supernova models, with application to SN 1987A and Cas A, A. Jerkstrand et al., Mon.Not.Roy.Astron.Soc. 494 (2020) 2471-2497, arXiv:2003.05156.
[Jerkstrand:2020hlf]
[18-23]
Is there a supernova bound on axions?, Nitsan Bar, Kfir Blum, Guido D'Amico, Phys.Rev. D101 (2020) 123025, arXiv:1907.05020.
[Bar:2019ifz]
[18-24]
Possible Explanation of the Geograv Detector Signal during the Explosion of SN 1987A in Modified Gravity Models, Yu. N. Eroshenko, E. O. Babichev, V. I. Dokuchaev, A. S. Malgin, J.Exp.Theor.Phys. 128 (2019) 599-606, arXiv:1906.06088.
[Eroshenko:2019qiv]
[18-25]
Three-dimensional mixing and light curves: constraints on the progenitor of supernova 1987A, Victor Utrobin, Annop Wongwathanarat, H.-Thomas Janka, Ewald Mueller, T. Ertl, Stan Woosley, Astron.Astrophys. 624 (2019) A116, arXiv:1812.11083.
[Utrobin:2018mjr]
[18-26]
Revisiting Supernova 1987A Limits on Axion-Like-Particles, Jun Seok Lee, arXiv:1808.10136, 2018.
[Lee:2018lcj]
[18-27]
The 30-Year Search for the Compact Object in SN 1987A, Dennis Alp et al., Astrophys.J. 864 (2018) 174, arXiv:1805.04526.
[Alp:2018oek]
[18-28]
Can a bright and energetic X-ray pulsar be hiding amid the debris of SN 1987A?, P. Esposito et al., Astrophys.J. 857 (2018) 58, arXiv:1803.04692.
[Esposito:2018nib]
[18-29]
Explaining the morphology of supernova remnant (SNR) 1987A with the jittering jets explosion mechanism, Ealeal Bear, Noam Soker, Mon.Not.Roy.Astron.Soc. 478 (2018) 682-691, arXiv:1803.03946.
[Bear:2018ssf]
[18-30]
Supernova 1987A Constraints on Sub-GeV Dark Sectors, Millicharged Particles, the QCD Axion, and an Axion-like Particle, Jae Hyeok Chang, Rouven Essig, Samuel D. McDermott, JHEP 1809 (2018) 051, arXiv:1803.00993.
[Chang:2018rso]
[18-31]
Interaction of the SN1987A Neutrino with the Galaxy, Kenzo Ishikawa, Terry Sloan, Yutaka Tobita, arXiv:1710.03441, 2017.
[Ishikawa:2017yrb]
[18-32]
Updated Constraints on Self-Interacting Dark Matter from Supernova 1987A, Cameron Mahoney, Adam K. Leibovich, Andrew R. Zentner, Phys.Rev. D96 (2017) 043018, arXiv:1706.08871.
[Mahoney:2017jqk]
[18-33]
Evidence for two neutrinos bursts from SN1987A, R. Valentim, J. E. Horvath, E. M. Rangel, Int.J.Mod.Phys.Conf.Ser. 45 (2017) 1760040, arXiv:1706.07824.
[Valentim:2017ihe]
[18-34]
Revisiting Supernova 1987A Constraints on Dark Photons, Jae Hyeok Chang, Rouven Essig, Samuel D. McDermott, JHEP 1701 (2017) 107, arXiv:1611.03864.
[Chang:2016ntp]
[18-35]
New analysis for the correlation between gravitational waves and neutrino detectors during SN1987A, P. Galeotti, G. Pizzella, Eur.Phys.J. C76 (2016) 426, arXiv:1603.05076.
[Galeotti:2016uum]
[18-36]
The Mont Blanc mystery solved? A $m^2=-0.28 keV^2$ neutrino, Robert Ehrlich, Astropart.Phys. 85 (2016) 43-49, arXiv:1602.09043.
[Ehrlich:2016ljp]
[18-37]
Neutrino Signal of Collapse-Induced Thermonuclear Supernovae: The Case for Prompt Black Hole Formation in SN1987A, Kfir Blum, Doron Kushnir, Astrophys.J. 828 (2016) 31, arXiv:1601.03422.
[Blum:2016afe]
[18-38]
Nucleon-nucleon bremsstrahlung of dark gauge bosons and revised supernova constraints, Ermal Rrapaj, Sanjay Reddy, Phys. Rev. C94 (2016) 045805, arXiv:1511.09136.
[Rrapaj:2015wgs]
[18-39]
Supernova 1987A: neutrino-driven explosions in three dimensions and light curves, Victor Utrobin, Annop Wongwathanarat, H.-Thomas Janka, Ewald Mueller, arXiv:1412.4122, 2014.
[1412.4122]
[18-40]
Revisiting the SN1987A gamma-ray limit on ultralight axion-like particles, Alexandre Payez et al., JCAP 1502 (2015) 006, arXiv:1410.3747.
[Payez:2014xsa]
[18-41]
Comparative analysis of SN1987A antineutrino fluence, Francesco Vissani, J. Phys. G42 (2015) 013001, arXiv:1409.4710.
[Vissani:2014doa]
[18-42]
Signatures of Neutrino Cooling in the SN1987A Scenario, Cristian G. Bernal, Nissim Fraija, Hidalgo-Gamez A. M, Mon.Not.Roy.Astron.Soc. 442 (2014) 239, arXiv:1402.6292.
[Fraija:2014qup]
[18-43]
Evidence for two neutrino mass eigenstates from SN 1987A and the possibility of superluminal neutrinos, Robert Ehrlich, Astropart.Phys. 35 (2012) 625-628, arXiv:1111.0502.
[Ehrlich:2011kb]
[18-44]
Neutrino mass bound in the standard scenario for supernova electronic antineutrino emission, Giulia Pagliaroli, Fernando Rossi-Torres, Francesco Vissani, Astropart. Phys. 33 (2010) 287-291, arXiv:1002.3349.
[Pagliaroli:2010ik]
[18-45]
The likelihood for supernova neutrino analyses, A. Ianni et al., Phys. Rev. D80 (2009) 043007, arXiv:0907.1891.
[Ianni:2009bd]
[18-46]
Active and Sterile Neutrino Emission and SN1987A Pulsar Velocity, Leonard S Kisslinger, Sandip Pakvasa, arXiv:0906.4117, 2009.
[Kisslinger:2009xb]
[18-47]
Could the compact remnant of SN 1987A be a quark star?, T. C. Chan et al., Astrophys. J. 695 (2009) 732-746, arXiv:0902.0653.
[Chan:2009mw]
[18-48]
Bounds on the Parameter of Noncommutativity from Supernova SN1987A, Mansour Haghighat, Phys. Rev. D79 (2009) 025011, arXiv:0901.1069.
[Haghighat:2009pv]
[18-49]
Improved analysis of SN1987A antineutrino events, G. Pagliaroli, F. Vissani, M.L. Costantini, A. Ianni, Astropart.Phys. 31 (2009) 163-176, arXiv:0810.0466.
[Pagliaroli:2008ur]
[18-50]
How much can we learn from SN1987A events? Or: An analysis with a two-Component model for the antineutrino signal, F. Vissani, G. Pagliaroli, arXiv:0807.1301, 2008.
[Vissani:2008ac]
[18-51]
Bounds on large extra dimensions from photon fusion process in SN1987A, V. H. Satheeshkumar, P. K. Suresh, JCAP 0806 (2008) 011, arXiv:0805.3429.
[Satheeshkumar:2008fb]
[18-52]
SN1987A Pulsar Velocity From Modified URCA Processes and Landau Levels, Leonard S. Kisslinger, Sandip Pakvasa, arXiv:0802.1689, 2008.
[Kisslinger:2008rx]
[18-53]
Constraints on Astro-unparticle Physics from SN 1987A, Sukanta Dutta, Ashok Goyal, JCAP 0803 (2008) 027, arXiv:0712.0145.
[Dutta:2007tz]
[18-54]
Statistical analysis of neutrino events from SN1987A neutrino burst: estimation of the electron antineutrino mass, B. I. Goryachev, arXiv:0709.4627, 2007.
[Goryachev:2007xg]
[18-55]
Unparticle constraints from SN1987A, Steen Hannestad, Georg Raffelt, Yvonne Y. Y. Wong, Phys. Rev. D76 (2007) 121701, arXiv:0708.1404.
[Hannestad:2007ys]
[18-56]
Supernovae as Probes of Extra Dimensions, V. H. Satheesh Kumar, P. K. Suresh, P. K. Das, AIP Conf. Proc. 939 (2007) 258-262, arXiv:0706.3551.
[SatheeshKumar:2007gb]
[18-57]
The first second of SN1987A neutrino emission, G. Pagliaroli, M.L. Costantini, A. Ianni, F. Vissani, arXiv:0705.4032, 2007.
[Pagliaroli:2007sd]
[18-58]
High resolution spectroscopy of the line emission from the inner circumstellar ring of SN 1987A and its hot spots, Per Groeningsson et al., Astron.Astrophys. (2007), arXiv:astro-ph/0703788.
[Groeningsson:2007nh]
[18-59]
Neutrino Spectrum from SN 1987A and from Cosmic Supernovae, Hasan Yuksel, John F. Beacom, Phys. Rev. D76 (2007) 083007, arXiv:astro-ph/0702613.
[Yuksel:2007mn]
[18-60]
Magnetic field in supernova remnant SN 1987A, E.G. Berezhko, L.T. Ksenofontov, Astrophys. J. 650 (2006) L59-L62, arXiv:astro-ph/0608586.
[Berezhko:2006vv]
[18-61]
Is there a problem with low energy SN1987A neutrinos?, Maria Laura Costantini, Aldo Ianni, Giulia Pagliaroli, Francesco Vissani, JCAP 0705 (2007) 014, arXiv:astro-ph/0608399.
[Costantini:2006xd]
[18-62]
Constraints on neutrino mixing angle $\theta_{13}$ and Supernova neutrino fluxes from the LSD neutrino signal from SN1987A, Oleg Lychkovskiy, arXiv:hep-ph/0604113, 2006.
[Lychkovskiy:2006yw]
[18-63]
Evolution of the Reverse Shock Emission from SNR 1987A, Kevin Heng et al., Astrophys. J. 644 (2006) 959-970, arXiv:astro-ph/0603151.
[Heng:2006nt]
[18-64]
Lower neutrino mass bound from SN1987A data and quantum geometry, G. Lambiase, G. Papini, R. Punzi, G. Scarpetta, Class. Quant. Grav. 23 (2006) 1347-1358, arXiv:gr-qc/0512154.
[Lambiase:2005ui]
[18-65]
New analysis of the SN 1987A neutrinos with a flexible spectral shape, Alessandro Mirizzi, Georg G. Raffelt, Phys. Rev. D72 (2005) 063001, arXiv:astro-ph/0508612.
[Mirizzi:2005tg]
[18-66]
The Three-Dimensional Circumstellar Environment of SN 1987A, Ben E. K. Sugerman et al., Astrophys. J. Suppl. 159 (2005) 60-99, arXiv:astro-ph/0502378.
[Sugerman:2005dr]
[18-67]
The Light Curve of Supernova 1987A: The Structure of the Presupernova and Radioactive Nickel Mixing, V. P. Utrobin, Astron. Lett. 30 (2004) 293, arXiv:astro-ph/0406410.
[Utrobin:2004rt]
[18-68]
SN1987A and the properties of neutrino burst, Maria Laura Costantini, Aldo Ianni, Francesco Vissani, Phys. Rev. D70 (2004) 043006, arXiv:astro-ph/0403436.
[Costantini:2004ry]
[18-69]
Constraints on a Putative Pulsar in SN 1987A, H. Ogelman, M.A. Alpar, Astrophys. J. 603 (2004) L33, arXiv:astro-ph/0402147.
[Ogelman:2004iu]
[18-70]
Neutrinos from SN1987A: flavor conversion and interpretation of results, C. Lunardini, A. Yu. Smirnov, Astropart. Phys. 21 (2004) 703, arXiv:hep-ph/0402128.
[Lunardini:2004bj]
[18-71]
A Rotating Collapsar and Possible Interpretation of the LSD Neutrino Signal from SN 1987A, V.S. Imshennik, O.G. Ryazhskaya, Astron. Lett. 30 (2004) 14, arXiv:astro-ph/0401613.
[Imshennik:2004iya]
[18-72]
Evidence of non-zero mass features for the neutrinos emitted at Supernova LMC-'87A, Humiaki Huzita, arXiv:hep-ph/0212337, 2002.
[Huzita:2002ia]
[18-73]
Supernova 1987A did not test the neutrino mass hierarchy, V. Barger, D. Marfatia, B. P. Wood, Phys. Lett. B532 (2002) 19-28, arXiv:hep-ph/0202158.
[Barger:2002px]
[18-74]
SN1987A and the status of oscillation solutions to the solar neutrino problem, M. Kachelriess, A. Strumia, R. Tomas, J. W. F. Valle, Phys. Rev. D65 (2002) 073016, arXiv:hep-ph/0108100.
[Kachelriess:2001sg]
[18-75]
Bayesian analysis of neutrinos observed from supernova SN 1987A, Thomas J. Loredo, Don Q. Lamb, Phys. Rev. D65 (2002) 063002, arXiv:astro-ph/0107260.
From the abstract: We present a Bayesian analysis of the energies and arrival times of the neutrinos from supernova SN 1987A detected by the Kamiokande II, IMB, and Baksan detectors, and find strong evidence for two components in the neutrino signal: a long time scale component from thermal Kelvin-Helmholtz cooling of the nascent neutron star, and a brief ($\sim 1$ s), softer component similar to that expected from emission by accreting material in the delayed supernova scenario. In the context of this model, we show that the data constrain the electron antineutrino rest mass to be less than 5.7~eV with 95% probability.
[Loredo:2001rx]
[18-76]
Large lepton mixing and supernova 1987A, M. Kachelriess, R. Tomas, J. W. F. Valle, JHEP 01 (2001) 030, arXiv:hep-ph/0012134.
[Kachelriess:2000fe]
[18-77]
Inverted hierarchy of neutrino masses disfavored by supernova 1987A, Hisakazu Minakata, Hiroshi Nunokawa, Phys. Lett. B504 (2001) 301-308, arXiv:hep-ph/0010240.
[Minakata:2000rx]
[18-78]
Neutrinos from SN1987A, Earth matter effects and the LMA solution of the solar neutrino problem, C. Lunardini, A. Yu. Smirnov, Phys. Rev. D63 (2001) 073009, arXiv:hep-ph/0009356.
[Lunardini:2000sw]
[18-79]
SN1987A: A testing ground for the KARMEN anomaly, I. Goldman, R. Mohapatra, S. Nussinov, Phys. Lett. B481 (2000) 151-159, arXiv:hep-ph/9912465.
[Goldman:1999hg]
[18-80]
Contact interactions involving right-handed neutrinos and SN 1987A, J. A. Grifols, E. Masso, R. Toldra, Phys. Rev. D57 (1998) 2005-2008, arXiv:hep-ph/9707531.
[Grifols:1997iy]
[18-81]
Gamma rays from SN1987A due to pseudoscalar conversion, J. A. Grifols, E. Masso, R. Toldra, Phys. Rev. Lett. 77 (1996) 2372-2375, arXiv:astro-ph/9606028.
[Grifols:1996id]
[18-82]
Gamma-rays and the decay of neutrinos from SN1987A, Andrew H. Jaffe, Michael S. Turner, Phys. Rev. D55 (1997) 7951-7959, arXiv:astro-ph/9601104.
[Jaffe:1995sw]
[18-83]
Bounds on the neutrino magnetic moment from SN1987A, A. Goyal, S. Dutta, S. R. Choudhury, Phys. Lett. B346 (1995) 312-316.
[Goyal:1995yd]
[18-84]
Testing special relativity with SN1987A neutrino pulses, E. Atzmon, S. Nussinov, Phys. Lett. B328 (1994) 103-108.
[Atzmon:1994ch]
[18-85]
Constraints from nucleosynthesis and SN1987A on majoron emitting double beta decay, Sanghyeon Chang, Kiwoon Choi, Phys. Rev. D49 (1994) 12-15, arXiv:hep-ph/9303243.
[Chang:1993yp]
[18-86]
Massive Dirac neutrinos and SN1987A, Adam Burrows, Raj Gandhi, MIchael S. Turner, Phys. Rev. Lett. 68 (1992) 3834-3837.
[Burrows:1992ec]
[18-87]
Constraints to the decays of Dirac neutrinos from SN1987A, Scott Dodelson, Joshua A. Frieman, Michael S. Turner, Phys. Rev. Lett. 68 (1992) 2572-2575.
[Dodelson:1992tv]
[18-88]
Dirac neutrinos and SN1987A, Michael S. Turner, Phys. Rev. D45 (1992) 1066-1075.
[Turner:1992ax]
[18-89]
Massive Dirac neutrinos and the SN1987A signal, Raj Gandhi, Adam Burrows, Phys. Lett. B246 (1990) 149-155.
[Gandhi:1990bq]
[18-90]
limits on the muon-neutrino and tau-neutrino masses from SN1987A, J. A. Grifols, E. Masso, Phys. Lett. B242 (1990) 77.
[Grifols:1990jn]
[18-91]
E(6) models confront SN1987A, J. A. Grifols, E. Masso, T. G. Rizzo, Phys. Rev. D42 (1990) 3293-3296.
[Grifols:1990tk]
[18-92]
comment on 'constraints on the majoron interactions from the supernova SN1987A.', Y. Aharonov, F. T. Avignone, S. Nussinov, Phys. Rev. D39 (1989) 985.
[Aharonov:1989ik]
[18-93]
axions and SN1987A, Adam Burrows, Michael S. Turner, R. P. Brinkmann, Phys. Rev. D39 (1989) 1020.
[Burrows:1989ah]
[18-94]
Neutrino helicity flips via electroweak interactions and SN1987A, K. J. F. Gaemers, R. Gandhi, J. m. Lattimer, Phys. Rev. D40 (1989) 309.
[Gaemers:1989fp]
[18-95]
Charge radius of the neutrino: a limit from SN1987A, J. A. Grifols, E. Masso, Phys. Rev. D40 (1989) 3819.
[Grifols:1989vi]
[18-96]
Limits to the Radiative Decays of Neutrinos and Axions from Gamma-Ray Observations of SN 1987a, Edward W. Kolb, Michael S. Turner, Phys. Rev. Lett. 62 (1989) 509.
[Kolb:1988pe]
[18-97]
Constraints on decaying right-handed majorana neutrinos from SN1987A observations, R. N. Mohapatra, S. Nussinov, Phys. Rev. D39 (1989) 1378-1385.
[Mohapatra:1989su]
[18-98]
constraints on the neutrino mass from the supernova data: a systematic analysis, L. F. Abbott, A. De Rujula, T. P. Walker, Nucl. Phys. B299 (1988) 734.
[Abbott:1988bm]
[18-99]
implications of the triplet - majoron model for the supernova SN1987A, Y. Aharonov, F. T. Avignone, S. Nussinov, Phys. Rev. D37 (1988) 1360-1367.
[Aharonov:1988ee]
[18-100]
Limit on the magnetic moment of the neutrino from supernova SN1987A observations, Riccardo Barbieri, Rabindra N. Mohapatra, Phys. Rev. Lett. 61 (1988) 27.
[Barbieri:1988nh]
[18-101]
The magnetic moment of the neutrino and its implications for neutrino signal from SN1987A, Riccardo Barbieri, R. N. Mohapatra, T. Yanagida, Phys. Lett. B213 (1988) 69.
[Barbieri:1988xw]
[18-102]
Correlation mass method for analysis of neutrinos from supernova 1987A, H. Chiu, K. L. Chan, Y. Kondo, Astrophys. J. 329 (1988) 326-334.
[Chiu-Chan-Kondo-1988ApJ-329-326C]
[18-103]
neutrino masses and flavors emitted in the supernova SN1987A, R. Cowsik, Phys. Rev. D37 (1988) 1685.
From the abstract: The analysis of the energies and times of arrival of neutrino events in the Kamioka and IMB detectors yelds two mass groupings at $\sim 22 \, \mathrm{eV}$ and the other at $\sim 4 \, \mathrm{eV}$, if all neutrinos were released rapidly at the supernova.
Comment: The author assumed that electron antineutrinos are emitted from the supernova in a very short time, of the order of 0.1 sec. This assumption is contrary to the standard understanding of the core-collapse supernova mechanism, according to which electron antineutrinos are emitted during the cooling phase of the proto-neutron star on a time scale of about 10 sec (see Supernovae). Moreover, the existence of neutrinos with masses of about 4 eV and 22 eV which have large mixing with the electron antineutrino is excluded by the Tritium upper bound on the effective electron neutrino mass (see Neutrino Mass: Direct Measurements). (C.G.).
[Cowsik:1988xr]
[18-104]
Neutrino mixing, decays and supernova SN1987a, Joshua A. Frieman, Howard E. Haber, Katherine Freese, Phys. Lett. B200 (1988) 115.
[Frieman:1988as]
[18-105]
Implications of the supernova SN1987A neutrino signals, I. Goldman, Y. Aharonov, G. Alexander, S. Nussinov, Phys. Rev. Lett. 60 (1988) 1789.
[Goldman:1988fg]
[18-106]
Supernova neutrinos and their oscillations, T. K. Kuo, James T. Pantaleone, Phys. Rev. D37 (1988) 298.
[Kuo:1987qu-SN1987A]
[18-107]
limits on the neutrino magnetic moment from SN1987A, J. M. Lattimer, J. Cooperstein, Phys. Rev. Lett. 61 (1988) 23-26.
[Lattimer:1988mf]
[18-108]
New Bounds on Neutrino Magnetic Moments From Stellar Collapse, Dirk Notzold, Phys. Rev. D38 (1988) 1658.
[Notzold:1988kz]
[18-109]
bounds on exotic particle interactions from SN1987A, Georg Raffelt, David Seckel, Phys. Rev. Lett. 60 (1988) 1793.
[Raffelt:1988yt]
[18-110]
Remarks on the first two events in the supernova burst observed by Kamiokande-ii, S. P. Rosen, Phys. Rev. D37 (1988) 1682.
[Rosen:1988yh]
[18-111]
The mass of the electron-neutrino: monte carlo studies of SN1987A observations, David N. Spergel, J. N. Bahcall, Phys. Lett. B200 (1988) 366.
[Spergel:1988ex]
[18-112]
Statistical analysis of the neutrino burst from SN1987A, Hideyuki Suzuki, Katsuhiko Sato, Prog. Theor. Phys. 79 (1988) 725.
[Suzuki:1988qi]
[18-113]
Neutrino mass limits from SN1987A, W. David Arnett, Jonathan L. Rosner, Phys. Rev. Lett. 58 (1987) 1906.
[Arnett:1987iz]
[18-114]
Neutrinos from the supernova in the LMC, J. N. Bahcall, A. Dar, T. Piran, Nature 326 (1987) 135.
[Bahcall:1987fz]
[18-115]
Upper limit on the mass of the electron-neutrino, J. N. Bahcall, S. L. Glashow, Nature 326 (1987) 476.
[Bahcall:1987nx]
[18-116]
Neutrino temperatures and fluxes from the LMC supernova, J. N. Bahcall, T. Piran, W. H. Press, D. N. Spergel, Nature 327 (1987) 682-685.
[Bahcall:1987ua]
[18-117]
Electric Charge of the Neutrinos from SN1987A, G. Barbiellini, G. Cocconi, Nature 329 (1987) 21-22.
[Barbiellini:1987zz]
[18-118]
constraints on the lifetime of massive neutrinos from SN1987A, Arnon Dar, Shlomo Dado, Phys. Rev. Lett. 59 (1987) 2368.
[Dar:1987nq]
[18-119]
May a supernova bang twice?, A. De Rujula, Phys. Lett. B193 (1987) 514.
[DeRujula:1987pg]
[18-120]
Constraints on light particles from supernova SN1987A, John R. Ellis, Keith A. Olive, Phys. Lett. B193 (1987) 525.
[Ellis:1987pk]
[18-121]
Neutrino mass speculation on the neutrino events from the supernova LMC 1987 A, H. Huzita, Mod. Phys. Lett. A2 (1987) 905-911.
From the abstract: ... time to energy correlation in Kamiokande detector has 2 separate groups. Each group correspond to non zero neutrino mass $3.4 \pm 0.6$ and $23 \pm 4$ eV.
[Huzita:1987cg]
[18-122]
How Reliable Are Neutrino Mass Limits Derived from SN 1987a?, Edward W. Kolb, Albert J. Stebbins, Michael S. Turner, Phys. Rev. D35 (1987) 3598. [Addendum: Phys. Rev.D36,3820(1987)].
[Kolb:1987dda]
[18-123]
Neutrino spectroscopy of the supernova SN1987A, Lawrence M. Krauss, Nature 329 (1987) 689-694.
[Krauss:1987re]
[18-124]
SN1987A: a black hole precursor?, S. Nussinov, I. Goldman, G. Alexander, Y. Aharonov, Nature 329 (1987) 134-135.
[Nussinov:1987hk]
[18-125]
Analysis of neutrino burst from the supernova in LMC, Katsuhiko Sato, Hideyuki Suzuki, Phys. Rev. Lett. 58 (1987) 2722.
[Sato:1987rd]
[18-126]
Total energy of neutrino burst from the supernova SN1987A and the mass of neutron star just born, Katsuhiko Sato, Hideyuki Suzuki, Phys. Lett. B196 (1987) 267.
[Sato:1987yi]
[18-127]
Neutrinos from supernova SN1987A, David N. Schramm, Comments Nucl. Part. Phys. 17 (1987) 239.
From the article: ... without making specific model assumptions, all that can be safely said is $m_{\bar\nu_e} < 30 \, \mathrm{eV}$.
[Schramm:1987ra]
[18-128]
A simple model for neutrino cooling of the LMC supernova, D. N. Spergel, T. Piran, A. Loeb, J. Goodman, J. N. Bahcall, Science 237 (1987) 1471.
[Spergel:1987ch]
[18-129]
Constraint on the mass and lifetime of heavy neutrinos from the supernova SN1987A in the Large Magellanic Cloud, Mariko Takahara, Katsuhiko Sato, Mod. Phys. Lett. A2 (1987) 293.
[Takahara:1987gb]

19 - Phenomenology - Type II - SN1987A - Talks

[19-1]
Neutrinos from SN 1987a. A Puzzle Revisited, Gerd Schatz, J. Phys. Conf. Ser. 632 (2015) 012024, arXiv:1507.07107. 24th European Cosmic Ray Symposium Kiel 2014.
[Schatz:2015qxa]
[19-2]
Reexamination of a Bound on the Dirac Neutrino Magnetic Moment from the Supernova Neutrino Luminosity, A.V. Kuznetsov, N.V. Mikheev, A.A. Okrugin, arXiv:1011.2100, 2010. XVI International Seminar Quarks'2010, Kolomna, Moscow Region, June 6-12, 2010.
[Kuznetsov:2010fe]
[19-3]
What is the issue with SN1987A neutrinos?, F. Vissani, M.L. Costantini, W. Fulgione, A. Ianni, G. Pagliaroli, Italian Phys.Soc.Proc. 103 (2011) 611-619, arXiv:1008.4726. Vulcano Workshop 2010: Frontier Objects in Astrophysics and Particle Physics, Vulcano, Italy, May 24-29, 2010.
[Vissani:2010zi]
[19-4]
Analysis of Neutrino Signals from SN1987A, G. Pagliaroli, M. L. Costantini, F. Vissani, arXiv:0804.4598, 2008. IFAE 2007, 19th Conference on High Energy Physics: April 11-13 2007, Naples, Italy.
[Pagliaroli:2008qi]
[19-5]
Analysis of the SN1987A two-stage explosion hypothesis with account for the MSW neutrino flavour conversion, Oleg Lychkovskiy, arXiv:0707.2508, 2007. Rencontres de Moriond EW 2007, 10-17 March 2007.
[Lychkovskiy:2007ru]
[19-6]
Neutrino events from SN1987A revisited, B. Bekman, J. Holeczek, J. Kisiel, Acta Phys. Polon. B37 (2006) 269, arXiv:hep-ph/0511271. XXIX Mazurian Lakes Conference on Physics, August 30 - September 6, 2005, Piaski, Poland.
[Bekman:2005rp]
[19-7]
SN 1987A: The Unusual Explosion of a Normal Type II Supernova, Nino Panagia, ASP Conf.Ser. (2004), arXiv:astro-ph/0410275. International Conference '1604-2004 Supernovae as Cosmological Lighthouses' (Padova, Italy, June 16-19, 2004).
[Panagia:2004ii]
[19-8]
SN1987A: Temporal Models, M.I.Wanas, M.Melek, M.E.Kahil, arXiv:gr-qc/0306086, 2003. MG IX (2002).
[Wanas:2003qq]
[19-9]
The precious information from supernova LMC-87A on the neutrino masses and neutrino mixing angles among the flavor states and the mass states, H. Huzita, Phys. Atom. Nucl. 63 (2000) 979-983. 2nd International Conference on Nonaccelerator New Physics (NANP 99), Dubna, Moscow Region, Russia, 28 June - 3 Jul 1999.
[Huzita:2000vd]
[19-10]
Analysis of Neutrinos from Supernova 1987A, H. Y. Chiu, K. L. Chan, Y. Kondo, IAU Colloq. 108: Atmospheric Diagnostics of Stellar Evolution 422 (1988).
[Chiu-Chan-Kondo-1988adse-conf-422C]
[19-11]
A Look at the Supernova SN 1987a, David N. Schramm, Nucl. Phys. Proc. Suppl. 3 (1988) 471. Lepton and photon interactions at high-energies. International symposium, Hamburg, F.R. Germany, July 27-31, 1987.
[Schramm:1987bv]
[19-12]
Mass determination of neutrinos, H. Y. Chiu, 1987. IN 'FAIRFAX 1987, PROCEEDINGS, SUPERNOVA 1987A IN THE LARGE MAGELLANIC CLOUD' 185-193.
[Chiu:1987cf]
[19-13]
Neutrino masses from SN1987a, Jerrold Franklin, 1987. IN 'FAIRFAX 1987, PROCEEDINGS, SUPERNOVA 1987A IN THE LARGE MAGELLANIC CLOUD' 197-199.
[Franklin:1987nz]

20 - Phenomenology - Type II - Astrophysics

[20-1]
Emission lines due to ionizing radiation from a compact object in the remnant of Supernova 1987A, C. Fransson et al., Science 383 (2024) 898-903, arXiv:2403.04386.
[Fransson:2024csf]
[20-2]
Favorable conditions for heavy element nucleosynthesis in rotating proto-magnetar winds, Tejas Prasanna, Matthew S. B. Coleman, Todd A. Thompson, arXiv:2402.06003, 2024.
[Prasanna:2024pcq]
[20-3]
Long-rising Type II supernovae resembling supernova 1987A - I. A comparative study through scaling relations, M. L. Pumo, S. P. Cosentino, A. Pastorello, S. Benetti, S. Cherubini, G. Manico, L. Zampieri, Mon.Not.Roy.Astron.Soc. 521 (2023) 4801-4818, arXiv:2303.10478.
[Pumo:2023qoy]
[20-4]
Proto-Neutron Star Convection and the Neutrino-Driven Wind: Implications for the r-Process, Brian Nevins, Luke F. Roberts, Mon.Not.Roy.Astron.Soc. 520 (2023) 3986-3999, arXiv:2302.01249.
[Nevins:2023tug]
[20-5]
Updating the $^{56}$Ni Problem in Core-collapse Supernova Explosion, Ryo Sawada, Yudai Suwa, arXiv:2301.03610, 2023.
[Sawada:2023iau]
[20-6]
On the maximum luminosities of normal stripped-envelope supernovae - brighter than explosion models allow, J. Sollerman, S. Yang, D. Perley, S. Schulze, C. Fremling, M. Kasliwal, K. Shin, B. Racine, Astron.Astrophys. 657 (2022) A64, arXiv:2109.14339.
[Sollerman:2021svd]
[20-7]
Equation of State Dependence of Gravitational Waves in Core-Collapse Supernovae, Oliver Eggenberger Andersen, Shuai Zha, Andre da Silva Schneider, Aurore Betranhandy, Sean M. Couch, Evan P. O'Connor, Astrophys.J. 923 (2021) 201, arXiv:2106.09734.
[Andersen:2021vzo]
[20-8]
Comparing Compact Object Distributions from Mass- and Presupernova Core Structure-based Prescriptions, Rachel A. Patton, Tuguldur Sukhbold, J.J. Eldridge, Mon.Not.Roy.Astron.Soc. 511 (2022) 903-913, arXiv:2106.05978.
[Patton:2021gwh]
[20-9]
Chiral Selection, Isotopic Abundance Shifts, and Autocatalysis of Meteoritic Amino Acids, Michael A. Famiano, Richard N. Boyd, Takashi Onaka, Toshitaka Kajino, Phys.Rev.Res. 3 (2021) 033025, arXiv:2106.01531.
[Famiano:2021qqq]
[20-10]
Failed Supernova Remnants, Daichi Tsuna, Publ.Astron.Soc.Jap. 73 (2021) Publications of the Astronomical Society of Japan, Volume 73, Issue 3, June 2021, Pages L6-L11, https://doi.org/10.1093/pasj/psab041-L11, arXiv:2104.10512.
[Tsuna:2021wee]
[20-11]
The Impact of Black Hole Formation on Population Averaged Supernova Yields, Emily J. Griffith, Tuguldur Sukhbold, David H. Weinberg, Jennifer A. Johnson, James W. Johnson, Fiorenzo Vincenzo, arXiv:2103.09837, 2021.
[2103.09837]
[20-12]
The Nucleosynthetic Yields of Core-Collapse Supernovae, prospects for the Next Generation of Gamma-Ray Astronomy, Sydney Andrews, Chris L. Fryer, Samuel W. Jones, Wesley P. Even, Marco Pignatari, arXiv:1912.10542, 2019.
[Andrews:2019spm]

21 - Phenomenology - Type II - Simulations

[21-1]
Nucleosynthesis in the Innermost Ejecta of Magnetorotational Supernova Explosions in 3-dimensions, Shuai Zha, Bernhard Muller, Jade Powell, arXiv:2403.02072, 2024.
[Zha:2024fyo]
[21-2]
Grey Two-moment Neutrino Transport: Comprehensive Tests and Improvements for Supernova Simulations, Haakon Andresen, Evan P. O'Connor, Oliver Eggenberger Andersen, Sean M. Couch, arXiv:2402.18303, 2024.
[Andresen:2024mtt]
[21-3]
Two-dimensional models of core-collapse supernova explosions assisted by heavy sterile neutrinos, Kanji Mori, Tomoya Takiwaki, Kei Kotake, Shunsaku Horiuchi, arXiv:2402.14333, 2024.
[Mori:2024vrf]
[21-4]
The Influence of Stellar Rotation in Binary Systems on Core-Collapse Supernova Progenitors and Multi-messenger Signals, Hao-Sheng Wang, Kuo-Chuan Pan, Astrophys.J. 964 (2024) 23, arXiv:2401.08985.
[Wang:2024dwq]
[21-5]
Correlations and Distinguishability Challenges in Supernova Models: Insights from Future Neutrino Detectors, Maria Manuela Saez, Ermal Rrapaj, Akira Harada, Shigehiro Nagataki, Yong-Zhong Qian, arXiv:2401.02531, 2024.
[Saez:2024ayk]
[21-6]
The Guided Moments formalism: a new efficient full-neutrino treatment for astrophysical simulations, Manuel R. Izquierdo, J. Fernando Abalos, Carlos Palenzuela, Phys.Rev.D 109 (2024) 043044, arXiv:2312.09275.
[Izquierdo:2023fub]
[21-7]
A Comprehensive Theory for Neutron Star and Black Hole Kicks and Induced Spins, Adam Burrows, Tianshu Wang, David Vartanyan, Matthew S. B. Coleman, Astrophys.J. 963 (2024) 63, arXiv:2311.12109.
[Burrows:2023ffl]
[21-8]
Including Neutrino-driven Convection into the Force Explosion Condition to Predict Explodability of Multi-dimensional Core-collapse Supernovae (FEC+), Mariam Gogilashvili, Jeremiah W. Murphy, Jonah M. Miller, Astrophys.J. 962 (2024) 110, arXiv:2311.02179.
[Gogilashvili:2023fqn]
[21-9]
A 1-D Special Relativistic Shock Tube where Stellar Fluid undergoes Neutrino Heating, Gregory Mohammed, arXiv:2310.14494, 2023.
[Mohammed:2023wuz]
[21-10]
Spin-flavor precession of Dirac neutrinos in dense matter and its potential in core-collapse supernovae, Hirokazu Sasaki, Tomoya Takiwaki, A. Baha Balantekin, Phys.Rev.D 108 (2023) 103046, arXiv:2309.06691.
[Sasaki:2023sza]
[21-11]
Three-dimensional GRMHD Simulations of Rapidly Rotating Stellar Core-Collapse, Shota Shibagaki, Takami Kuroda, Kei Kotake, Tomoya Takiwaki, Tobias Fischer, arXiv:2309.05161, 2023.
[Shibagaki:2023tmh]
[21-12]
Two-Moment Neutrino Flavor Transformation with applications to the Fast Flavor Instability in Neutron Star Mergers, Evan Grohs, Sherwood Richers, Sean M. Couch, Francois Foucart, Julien Froustey, Jim Kneller, Gail McLaughlin, Astrophys.J. 963 (2024) 11, arXiv:2309.00972.
[Grohs:2023pgq]
[21-13]
Supernova Simulations Confront SN 1987A Neutrinos, Damiano F. G. Fiorillo, Malte Heinlein, Hans-Thomas Janka, Georg Raffelt, Edoardo Vitagliano, Phys.Rev.D 108 (2023) 083040, arXiv:2308.01403.
[Fiorillo:2023frv]
[21-14]
Neutrino Signatures of One Hundred 2D Axisymmetric Core-Collapse Supernova Simulations, David Vartanyan, Adam Burrows, Mon.Not.Roy.Astron.Soc. 526 (2023) 5900-5910, arXiv:2307.08735.
[Vartanyan:2023zlb]
[21-15]
General-relativistic radiation transport scheme in $\texttt{Gmunu}$ I: Implementation of two-moment based multi-frequency radiative transfer and code tests, Patrick Chi-Kit Cheong, Harry Ho-Yin Ng, Alan Tsz-Lok Lam, Tjonnie Guang Feng Li, Astrophys.J.Suppl. 267 (2023) 38, arXiv:2303.03261.
[Cheong:2023fgh]
[21-16]
Spontaneous Scalarization as a New Core-Collapse Supernova Mechanism and its Multi-Messenger Signals, Takami Kuroda, Masaru Shibata, Phys.Rev.D 107 (2023) 103025, arXiv:2302.09853.
[Kuroda:2023zbz]
[21-17]
Numerical simulations of the random angular momentum in convection II: delayed explosions of red supergiants following 'failed' supernovae, Andrea Antoni, Eliot Quataert, Mon.Not.Roy.Astron.Soc. 525 (2023) 1229-1245, arXiv:2301.05237.
[Antoni:2023yxs]
[21-18]
Correlation analysis of gravitational waves and neutrino signals to constrain neutrino flavor conversion in core-collapse supernova, Phys.Rev.D 108 (2023) 063020.
[Nagakura:2023jvx]
[21-19]
Basic characteristics of neutrino flavor conversions in the post-shock regions of core-collapse supernova, Phys.Rev.D 108 (2023) 123003.
[Nagakura:2023xhc]
[21-20]
General-relativistic radiation transport scheme in Gmunu II: Implementation of novel microphysical library for neutrino radiation - Weakhub, 2023.
[Ng:2023syk]
[21-21]
Core-collapse supernovae simulations with reduced nucleosynthesis networks, Gerard Navo, Moritz Reichert, Martin Obergaulinger, Almudena Arcones, Astrophys.J. 951 (2023) 112, arXiv:2210.11848.
[Navo:2022xle]
[21-22]
Three-dimensional core-collapse supernovae with complex magnetic structures: II. Rotational instabilities and multimessenger signatures, Matteo Bugli, Jerome Guilet, Thierry Foglizzo, Martin Obergaulinger, Mon.Not.Roy.Astron.Soc. 520 (2023) 5622-5634, arXiv:2210.05012.
[Bugli:2022mlq]
[21-23]
Effects of Different Closure Choices in Core-Collapse Supernova Simulations, Tianshu Wang, Adam Burrows, Astrophys.J. 943 (2023) 78, arXiv:2210.01824.
[Wang:2022voe]
[21-24]
Parameterisations of thermal bomb explosions for core-collapse supernovae and 56Ni production, Liliya Imasheva, H. -Thomas Janka, Achim Weiss, Mon.Not.Roy.Astron.Soc. 518 (2022) 1818-1839, arXiv:2209.10989.
[Imasheva:2022ykv]
[21-25]
The Early Evolution of Magnetar Rotation I: Slowly Rotating 'Normal' Magnetars, Tejas Prasanna, Matthew S. B. Coleman, Matthias J. Raives, Todd A. Thompson, Mon.Not.Roy.Astron.Soc. 517 (2022) 3008-3023, arXiv:2208.09042.
[Prasanna:2022ooe]
[21-26]
Magnetorotational supernovae: A nucleosynthetic analysis of sophisticated 3D models, Moritz Reichert, Martin Obergaulinger, Miguel-Angel Aloy, Michael Gabler, Almudena Arcones, Friedrich-Karl Thielemann, arXiv:2206.11914, 2022.
[Reichert:2022bga]
[21-27]
GRQKNT code: General-Relativistic Quantum-Kinetics Neutrino Transport, Hiroki Nagakura, Phys.Rev.D 106 (2022) 063011, arXiv:2206.04098.
[Nagakura:2022qko]
[21-28]
Protoneutron Star Convection Simulated with a New General Relativistic Boltzmann Neutrino Radiation-Hydrodynamics Code, Ryuichiro Akaho, Akira Harada, Hiroki Nagakura, Wakana Iwakami, Hirotada Okawa, Shun Furusawa, Hideo Matsufuru, Kohsuke Sumiyoshi, Shoichi Yamada, arXiv:2206.01673, 2022.
[2206.01673]
[21-29]
3D Simulations of Strongly Magnetised Non-Rotating Supernovae: Explosion Dynamics and Remnant Properties, Vishnu Varma, Bernhard Mueller, Fabian R. N. Schneider, Mon.Not.Roy.Astron.Soc. 518 (2022) 3622-3636, arXiv:2204.11009.
[Varma:2022piv]
[21-30]
Neutrino Driven Explosions aided by Axion Cooling in Multidimensional Simulations of Core-Collapse Supernovae, Aurore Betranhandy, Evan O'Connor, Phys.Rev.D 106 (2022) 063019, arXiv:2204.00503.
[Betranhandy:2022bvr]
[21-31]
Low-luminosity supernovae: SN 2005cs and SN 2020cxd as very low-energy iron core-collapse explosions, Alexandra Kozyreva, Hans-Thomas Janka, Daniel Kresse, Stefan Taubenberger, Mon.Not.Roy.Astron.Soc. 514 (2022) 4173-4189, arXiv:2203.00473.
[Kozyreva:2022wkp]
[21-32]
Comparison of Updated Electron Capture Rates in the N=50 Region using 1D Simulations of Core-collapse Supernovae, Zac Johnston, Sheldon Wasik, Rachel Titus, MacKenzie L. Warren, Evan P. O'Connor, Remco Zegers, Sean M. Couch, Astrophys.J. 939 (2022) 15, arXiv:2202.09370.
[Johnston:2022vxr]
[21-33]
Magnetic support for neutrino-driven explosion of 3D non-rotating core-collapse supernova models, Jin Matsumoto, Yuta Asahina, Tomoya Takiwaki, Kei Kotake, Hiroyuki R. Takahashi, Mon.Not.Roy.Astron.Soc. 516 (2022) 1752-1767, arXiv:2202.07967.
[Matsumoto:2022hzg]
[21-34]
Three-dimensional simulation of a core-collapse supernova for a binary star progenitor of SN 1987A, Ko Nakamura, Tomoya Takiwaki, Kei Kotake, Mon.Not.Roy.Astron.Soc. 514 (2022) 3941-3952, arXiv:2202.06295.
[Nakamura:2022zlc]
[21-35]
Hydrodynamic Simulations of Electron-capture Supernovae: Progenitor and Dimension Dependence, Shuai Zha, Evan P. O'Connor, Sean M. Couch, Shing-Chi Leung, Ken'ichi Nomoto, arXiv:2112.15257, 2021.
[2112.15257]
[21-36]
On the energy source of ultra-stripped supernovae, Ryo Sawada, Kazumi Kashiyama, Yudai Suwa, Astrophys.J. 927 (2022) 223, arXiv:2112.10782.
[Sawada:2021qkw]
[21-37]
Pulsational pair-instability supernovae: gravitational collapse, black-hole formation, and beyond, Ninoy Rahman, Hans-Thomas Janka, Georg Stockinger, Stan Woosley, Mon.Not.Roy.Astron.Soc. 512 (2022) 4503-4540, arXiv:2112.09707.
[Rahman:2021dvs]
[21-38]
Finite-temperature electron-capture rates for neutron-rich nuclei around N=50 and effects on core-collapse supernovae simulations, S. Giraud, E. M. Ney, A. Ravlic, R.G.T. Zegers, J. Engel, N. Paar, B.A. Brown, J.-M. Gabler, J. Lesniak, J. Rebenstock, Phys.Rev.C 105 (2022) 055801, arXiv:2112.01626.
[Giraud:2021fvz]
[21-39]
High-entropy ejecta plumes in Cassiopeia A from neutrino-driven convection, Toshiki Sato, Keiichi Maeda, Shigehiro Nagataki, Takashi Yoshida, Brian Grefenstette, Brian J. Williams, Hideyuki Umeda, Masaomi Ono, John P. Hughes, Nature 592 (2021) 537-540, arXiv:2110.10384.
[Sato:2021zwg]
[21-40]
The Collapse and Three-Dimensional Explosion of Three-Dimensional, vis a vis One-Dimensional, Massive-star Supernova Progenitor Models, David Vartanyan, Matthew S.B. Coleman, Mon.Not.Roy.Astron.Soc. 510 (2022) 4689-4705, arXiv:2109.10920.
[Vartanyan:2021dmy]
[21-41]
Principal-Axis Analysis of the Eddington Tensor for the Early Post-Bounce Phase of Rotational Core-Collapse Supernovae, Wakana Iwakami, Akira Harada, Hiroki Nagakura, Ryuichiro Akaho, Hirotada Okawa, Shun Furusawa, Hideo Matsufuru, Kohsuke Sumiyoshi, Shoichi Yamada, Astrophys.J. 933 (2022) 91, arXiv:2109.05846.
[Iwakami:2021pwo]
[21-42]
A Comparison of 2D Magnetohydrodynamic Supernova Simulations with the CoCoNuT-FMT and Aenus-Alcar Codes, Vishnu Varma, Bernhard Mueller, Martin Obergaulinger, Mon.Not.Roy.Astron.Soc. 508 (2021) 6033-6048, arXiv:2109.03603.
[Varma:2021smz]
[21-43]
Core-collapse supernova simulations and the formation of neutron stars, hybrid stars, and black holes, Takami Kuroda, Tobias Fischer, Tomoya Takiwaki, Kei Kotake, Astrophys.J. 924 (2022) 38, arXiv:2109.01508.
[Kuroda:2021eiv]
[21-44]
Anisotropic neutrinos and gravitational waves from black hole neutrino-dominated accretion flows in fallback core-collapse supernovae, Yun-Feng Wei, Tong Liu, Li Xue, Mon.Not.Roy.Astron.Soc. 507 (2021) 431-442, arXiv:2107.11087.
[Wei:2021eut]
[21-45]
Insights into non-axisymmetric instabilities in three-dimensional rotating supernova models with neutrino and gravitational-wave signatures, Tomoya Takiwaki, Kei Kotake, Thierry Foglizzo, Mon.Not.Roy.Astron.Soc. 508 (2021) 966-985, arXiv:2107.02933.
[Takiwaki:2021dve]
[21-46]
Collapse of $\sim 10^4$ $M_\odot$ population III supermassive stars with neutrino transfer, Chris Nagele, Hideyuki Umeda, Koh Takahashi, Takashi Yoshida, Kohsuke Sumiyoshi, Mon.Not.Roy.Astron.Soc. 508 (2021) 828-841, arXiv:2107.01761.
[Nagele:2021kvw]
[21-47]
Post-explosion evolution of core-collapse supernovae, M. Witt, A. Psaltis, H. Yasin, C. Horn, M. Reichert, T. Kuroda, M. Obergaulinger, S. M. Couch, A. Arcones, Astrophys.J. 921 (2021) 19, arXiv:2107.00687.
[Witt:2021gwk]
[21-48]
Three Dimensional Core-Collapse Supernova Simulations with 160 Isotopic Species Evolved to Shock Breakout, Michael A. Sandoval, W. Raphael Hix, O. E. Bronson Messer, Eric J. Lentz, J. Austin Harris, Astrophys.J. 921 (2021) 113, arXiv:2106.01389.
[Sandoval:2021hnk]
[21-49]
Gravitational Wave Signals from Two-Dimensional Core-Collapse Supernova Models with Rotation and Magnetic Fields, Rylan Jardine, Jade Powell, Bernhard Muller, Mon.Not.Roy.Astron.Soc. 510 (2022) 5535-5552, arXiv:2105.01315.
[Jardine:2021fsf]
[21-50]
Deep Learning of the Eddington Tensor in the Core-collapse Supernova Simulation, Akira Harada, Shota Nishikawa, Shoichi Yamada, Astrophys.J. 925 (2022) 117, arXiv:2104.13039.
[Harada:2021rpb]
[21-51]
Constructing angular distributions of neutrinos in core collapse supernova from zero-th and first moments calibrated by full Boltzmann neutrino transport, Hiroki Nagakura, Lucas Johns, Phys.Rev.D 103 (2021) 123025, arXiv:2104.05729.
[Nagakura:2021txn]
[21-52]
Numerical Study of Stellar Core Collapse and Neutrino Emission Using the Nuclear Equation of State Obtained by the Variational Method, Ken'ichiro Nakazato, Kohsuke Sumiyoshi, Hajime Togashi, Publ.Astron.Soc.Jap. 73 (2021) 639-651, arXiv:2103.14386.
[Nakazato:2021gfi]
[21-53]
Progenitor Dependence of Hadron-quark Phase Transition in Failing Core-collapse Supernovae, Shuai Zha, Evan P. O'Connor, Andre da Silva Schneider, Astrophys.J. 911 (2021) 74, arXiv:2103.02268.
[Zha:2021fbi]
[21-54]
Supernova neutrino signals based on long-term axisymmetric simulations, Hiroki Nagakura, Adam Burrows, David Vartanyan, Mon.Not.Roy.Astron.Soc. 506 (2021) 1462-1479, arXiv:2102.11283.
[Nagakura:2021lma]
[21-55]
Supernova 1987A: 3D Mixing and light curves for explosion models based on binary-merger progenitors, V. P. Utrobin, A. Wongwathanarat, H.-Th. Janka, E. Mueller, T. Ertl, A. Menon, A. Heger, Astrophys.J. 914 (2021) 4, arXiv:2102.09686.
[Utrobin:2021nhm]
[21-56]
General Relativistic Neutrino-Driven Turbulence in One-Dimensional Core-Collapse Supernovae, Luca Boccioli, Grant J. Mathews, Evan O'Connor, Astrophys.J. 912 (2021) 29, arXiv:2102.06767.
[Boccioli:2021eye]
[21-57]
A DG-IMEX method for two-moment neutrino transport: Nonlinear solvers for neutrino-matter coupling, M. Paul Laiu, Eirik Endeve, Ran Chu, J. Austin Harris, O. E. Bronson Messer, Astrophys.J.Suppl. 253 (2021) 52, arXiv:2102.02186.
[Laiu:2021pha]
[21-58]
Connecting the Light Curves of Type IIP Supernovae to the Properties of their Progenitors, Brandon L. Barker, Chelsea E. Harris, MacKenzie L. Warren, Evan P. O'Connor, Sean M. Couch, Astrophys.J. 934 (2022) 67, arXiv:2102.01118.
[Barker:2021iyr]
[21-59]
The impact of asymmetric neutrino emissions on nucleosynthesis in core-collapse supernovae II - progenitor dependences -, Shin-ichiro Fujimoto, Hiroki Nagakura, Mon.Not.Roy.Astron.Soc. 502 (2021) 2319-2330, arXiv:2101.09618.
[Fujimoto:2021djn]
[21-60]
Mass ejection in failed supernovae: equation of state and neutrino loss dependence, Mario Ivanov, Rodrigo Fernandez, Astrophys.J. 911 (2021) 6, arXiv:2101.02712.
[Ivanov:2021lun]
[21-61]
Three-dimensional Hydrodynamics Simulations of Pre-collapse Shell Burning in the Si and O-rich Layers, Takashi Yoshida, Tomoya Takiwaki, Kei Kotake, Koh Takahashi, Ko Nakamura, Hideyuki Umeda, Astrophys.J. 908 (2021) 44, arXiv:2012.13261.
[Yoshida:2020uzt]
[21-62]
Delayed Detonation Thermonuclear Supernovae With An Extended Dark Matter Component, H-S. Chan, M-C. Chu, S-C. Leung, L-M. Lin, Astrophys.J. 914 (2021) 138, arXiv:2012.06857.
[Chan:2020ijt]
[21-63]
Gravitational-wave Signals From Three-dimensional Supernova Simulations With Different Neutrino-Transport Methods, Haakon Andresen, Robert Glas, H-Thomas Janka, Mon.Not.Roy.Astron.Soc. 503 (2021) 3552-3567, arXiv:2011.10499.
[Andresen:2020jci]
[21-64]
Three-dimensional Supernova Models Provide New Insights into the Origins of Stardust, Jack Schulte, Maitrayee Bose, Patrick A. Young, Gregory S. Vance, Astrophys.J. 908 (2021) 38, arXiv:2011.07459.
[Schulte:2020jcj]
[21-65]
Multidimensional Boltzmann Neutrino Transport Code in Full General Relativity for Core-collapse Simulations, Ryuichiro Akaho, Akira Harada, Hiroki Nagakura, Kohsuke Sumiyoshi, Wakana Iwakami, Hirotada Okawa, Shun Furusawa, Hideo Matsufuru, Shoichi Yamada, Astrophys.J. 909 (2021) 210, arXiv:2010.10780.
[Akaho:2020xgb]
[21-66]
Self-consistent 3D Supernova Models From -7 Minutes to +7 Seconds: a 1-bethe Explosion of a ~19 Solar-mass Progenitor, R. Bollig, N. Yadav, D. Kresse, H.-Th. Janka, B. Mueller, A. Heger, Astrophys.J. 915 (2021) 28, arXiv:2010.10506.
[Bollig:2020phc]
[21-67]
Characteristic Time Variability of Gravitational-Wave and Neutrino Signals from Three-dimensional Simulations of Non-Rotating and Rapidly Rotating Stellar Core-Collapse, Shota Shibagaki, Takami Kuroda, Kei Kotake, Tomoya Takiwaki, Mon.Not.Roy.Astron.Soc. 502 (2021) 3066-3084, arXiv:2010.03882.
[Shibagaki:2020ksk]
[21-68]
Stellar Mass Black Hole Formation and Multi-messenger Signals from Three Dimensional Rotating Core-Collapse Supernova Simulations, Kuo-Chuan Pan, Matthias Liebendorfer, Sean Couch, Friedrich-Karl Thielemann, Astrophys.J. 914 (2021) 140, arXiv:2010.02453.
[Pan:2020idl]
[21-69]
Nucleosynthesis in magneto-rotational supernovae, Moritz Reichert, Martin Obergaulinger, Marius Eichler, Miguel-Angel Aloy, Almudena Arcones, Mon.Not.Roy.Astron.Soc. 501 (2021) 5733-5745, arXiv:2010.02227.
[Reichert:2020mjo]
[21-70]
The fully developed remnant of a neutrino-driven supernova: Evolution of ejecta structure and asymmetries in SNR Cassiopeia A, S. Orlando, A. Wongwathanarat, H.-T. Janka, M. Miceli, M. Ono, S. Nagataki, F. Bocchino, G. Peres, Astron.Astrophys. 645 (2021) A66, arXiv:2009.01789.
[Orlando:2020igr]
[21-71]
Nucleosynthesis of an $11.8\,M_\odot$ Supernova with 3D Simulation of the Inner Ejecta: Overall Yields and Implications for Short-Lived Radionuclides in the Early Solar System, Andre Sieverding, Bernhard Mueller, Yong-Zhong Qian, Astrophys.J. 904 (2020) 163, arXiv:2008.12831.
[Sieverding:2020wxw]
[21-72]
Two-dimensional numerical study for magnetic field dependence of neutrino-driven core-collapse supernova models, Jin Matsumoto, Tomoya Takiwaki, Kei Kotake, Yuta Asahina, Hiroyuki R. Takahashi, Mon.Not.Roy.Astron.Soc. 499 (2020) 4174-4194, arXiv:2008.08984.
[Matsumoto:2020rbz]
[21-73]
On The Development of Multidimensional Progenitor Models For Core-collapse Supernovae, C. E. Fields, S. M. Couch, Astrophys.J. 901 (2020) 33, arXiv:2008.04266.
[Fields:2020fgi]
[21-74]
The infancy of core-collapse supernova remnants, Michael Gabler, Annop Wongwathanarat, Hans-Thomas Janka, arXiv:2008.01763, 2020.
[2008.01763]
[21-75]
Gravitational-wave signal of a core-collapse supernova explosion of a 15 Solar mass star, Anthony Mezzacappa et al., Phys.Rev. D102 (2020) 023027, arXiv:2007.15099.
[Mezzacappa:2020lsn]
[21-76]
Gravitational Waves from Neutrino Asymmetries in Core-Collapse Supernovae, David Vartanyan, Adam Burrows, Astrophys.J. 901 (2020) 108, arXiv:2007.07261.
[Vartanyan:2020nmt]
[21-77]
Explosion Energies for Core-collapse Supernovae I: Analytic, Spherically Symmetric Solutions, Mariam Gogilashvili, Jeremiah W. Murphy, Quintin Mabanta, Mon.Not.Roy.Astron.Soc. 500 (2020) 5393-5407, arXiv:2007.06087.
[Gogilashvili:2020pnv]
[21-78]
Core-collapse supernova neutrino emission and detection informed by state-of-the-art three-dimensional numerical models, Hiroki Nagakura, Adam Burrows, David Vartanyan, David Radice, Mon.Not.Roy.Astron.Soc. 500 (2020) 696-717, arXiv:2007.05000.
[Nagakura:2020qhb]
[21-79]
The Role of Magnetic Fields in Neutrino-Driven Supernovae, Bernhard Muller, Vishnu Varma, Mon.Not.Roy.Astron.Soc. 498 (2020) L109-L113, arXiv:2007.04775.
[Muller:2020uxg]
[21-80]
A Generalized Kompaneets Formalism for Inelastic Neutrino-Nucleon Scattering in Supernova Simulations, Tianshu Wang, Adam Burrows, Phys.Rev. D102 (2020) 023017, arXiv:2006.12240.
[Wang:2020udq]
[21-81]
Three-dimensional Models of Core-collapse Supernovae From Low-mass Progenitors With Implications for Crab, G. Stockinger et al., Mon.Not.Roy.Astron.Soc. 496 (2020) 2039-2084, arXiv:2005.02420.
[Stockinger:2020hse]
[21-82]
Simulations of the Early Post-Bounce Phase of Core-Collapse Supernovae in Three-Dimensional Space with Full Boltzmann Neutrino Transport, Wakana Iwakami, Hirotada Okawa, Hiroki Nagakura, Akira Harada, Shun Furusawa, Kosuke Sumiyoshi, Hideo Matsufuru, Shoichi Yamada, Astrophys.J. 903 (2020) 82, arXiv:2004.02091.
[Iwakami:2020ctd]
[21-83]
On the character of turbulence in self-consistent models of core-collapse supernovae, Jordi Casanova, Eirik Endeve, Eric J. Lentz, O. E. Bronson Messer, W. Raphael Hix, J. Austin Harris, Stephen W. Bruenn, Phys.Scripta 95 (2020) 064005, arXiv:2004.02055.
[Casanova:2020xyv]
[21-84]
The Boltzmann-radiation-hydrodynamics Simulations of the Core-collapse Supernova with the Different Equations of State: the Role of Nuclear Composition and the Behavior of Neutrinos, Akira Harada, Hiroki Nagakura, Wakana Iwakami, Hirotada Okawa, Shun Furusawa, Kohsuke Sumiyoshi, Hideo Matsufuru, Shoichi Yamada, Astrophys.J. 902 (2020) 150, arXiv:2003.08630.
[Harada:2020fek]
[21-85]
A Novel Multi-Dimensional Boltzmann Neutrino Transport Scheme for Core-Collapse Supernovae, Conrad Chan, Bernhard Mueller, Mon.Not.Roy.Astron.Soc. 496 (2020) 2000-2020, arXiv:2003.02845.
[Chan:2020quo]
[21-86]
Three-dimensional core-collapse supernova simulations of massive and rotating progenitors, Jade Powell, Bernhard Muller, Mon.Not.Roy.Astron.Soc. 494 (2020) 4665-4675, arXiv:2002.10115.
[Powell:2020cpg]
[21-87]
Neutrino transport with Monte Carlo method: I. Towards fully consistent implementation of nucleon recoils in core-collapse supernova simulations, Chinami Kato, Hiroki Nagakura, Yusuke Hori, Shoichi Yamada, Astrophys.J. 897 (2020) 43, arXiv:2001.11148.
[Kato:2020szd]
[21-88]
Deep Core Convection and Dynamo in Newly-born Neutron Star, Youhei Masada, Tomoya Takiwaki, Kei Kotake, Astrophys.J. 924 (2022) 75, arXiv:2001.08452.
[Masada:2020dpy]
[21-89]
Simulating collective neutrinos oscillations on the Intel Many Integrated Core (MIC) architecture, Vahid Noormofidi, Susan R. Atlas, Huaiyu Duan, arXiv:1912.10596, 2019.
[Noormofidi:2019adj]
[21-90]
A systematic study of proto-neutron star convection in three-dimensional core-collapse supernova simulations, Hiroki Nagakura, Adam Burrows, David Radice, David Vartanyan, Mon.Not.Roy.Astron.Soc. 492 (2020) 5764-5779, arXiv:1912.07615.
[Nagakura:2019tmy]
[21-91]
The impact of progenitor asymmetries on the neutrino-driven convection in core-collapse supernovae, Remi Kazeroni, Ernazar Abdikamalov, Mon.Not.Roy.Astron.Soc. 494 (2020) 5360-5373, arXiv:1911.08819.
[Kazeroni:2019yfz]
[21-92]
Neutrino emission characteristics of black hole formation in three-dimensional simulations of stellar collapse, Laurie Walk, Irene Tamborra, Hans-Thomas Janka, Alexander Summa, Phys.Rev. D101 (2020) 123013, arXiv:1910.12971.
[Walk:2019miz]
[21-93]
Coupling Neutrino Oscillations and Simulations of Core-Collapse Supernovae, Charles J. Stapleford, Carla Frohlich, James P. Kneller, Phys.Rev. D102 (2020) 081301, arXiv:1910.04172.
[Stapleford:2019yqg]
[21-94]
The Overarching Framework of Core-Collapse Supernova Explosions as Revealed by 3D Fornax Simulations, Adam Burrows, David Radice, David Vartanyan, Hiroki Nagakura, M. Aaron Skinner, Joshua Dolence, Mon. Not. Roy. Astron. Soc. 491 (2020) 2715-2735, arXiv:1909.04152.
[Burrows:2019zce]
[21-95]
Influence of density dependence of symmetry energy in hot and dense matter for supernova simulations, Kohsuke Sumiyoshi, Ken'ichiro Nakazato, Hideyuki Suzuki, Jinniu Hu, Hong Shen, Astrophys.J. 887 (2019) 110, arXiv:1908.02928.
[Sumiyoshi:2019qgs]
[21-96]
Possible indications for jittering jets in core collapse supernova explosion simulations, Noam Soker, arXiv:1907.13312, 2019.
[Soker:2019rtx]
[21-97]
Three-Dimensional Boltzmann-Hydro Code for core-collapse in massive stars III. A New method for momentum feedback from neutrino to matter, Hiroki Nagakura, Kohsuke Sumiyoshi, Shoichi Yamada, Astrophys.J. 878 (2019) 160, arXiv:1906.10143.
[Nagakura:2019rdf]
[21-98]
Temporal and Angular Variations of 3D Core-Collapse Supernova Emissions and their Physical Correlations, David Vartanyan, Adam Burrows, David Radice, Mon.Not.Roy.Astron.Soc. 489 (2019) 2227-2246, arXiv:1906.08787.
[Vartanyan:2019ssu]
[21-99]
X-Ray and Gamma-Ray Emission From Core-collapse Supernovae: Comparison of Three-dimensional Neutrino-driven Explosions With SN 1987A, Dennis Alp, Josefin Larsson, Keiichi Maeda, Claes Fransson, Annop Wongwathanarat, Michael Gabler, Hans-Thomas Janka, Anders Jerkstrand, Alexander Heger, Athira Menon, arXiv:1906.04185, 2019.
[Alp:2019mua]
[21-100]
Fallback accretion powered supernova light curves based on a neutrino-driven explosion simulation of a 40 Msun star, Takashi J. Moriya, Bernhard Muller, Conrad Chan, Alexander Heger, Sergei I. Blinnikov, Astrophys.J. 880 (2019) 21, arXiv:1906.00153.
[Moriya:2019jon]
[21-101]
Towards an Understanding of the Resolution Dependence of Core-Collapse Supernova Simulations, Hiroki Nagakura, Adam Burrows, David Radice, David Vartanyan, Mon.Not.Roy.Astron.Soc. 490 (2019) 4622-4637, arXiv:1905.03786.
[Nagakura:2019gmh]
[21-102]
Long-term Simulations of Multi-Dimensional Core-collapse Supernovae: Implications for Neutron Star Kicks, Ko Nakamura, Tomoya Takiwaki, Kei Kotake, Publ.Astron.Soc.Jap. 71 (2019) Publications of the Astronomical Society of Japan, Volume 71, Issue 5, October 2019, 98, https://doi.org/10.1093/pasj/psz080, arXiv:1904.08088.
[Nakamura:2019snn]
[21-103]
Resolution Study for Three-dimensional Supernova Simulations with the Prometheus-Vertex Code, Tobias Melson, H.-Thomas Janka, arXiv:1904.01699, 2019.
[Melson:2019kjj]
[21-104]
One-, Two-, and Three-dimensional Simulations of Oxygen Shell Burning Just Before the Core-Collapse of Massive Stars, Takashi Yoshida, Tomoya Takiwaki, Kei Kotake, Koh Takahashi, Ko Nakamura, Hideyuki Umeda, Astrophys.J. 881 (2019) 16, arXiv:1903.07811.
[Yoshida:2019loj]
[21-105]
The $\nu$-process with fully time-dependent supernova neutrino emission spectra, Andre Sieverding, Gabriel Martinez-Pinedo, Karlheinz Langanke, Robert Bollig, Hans-Thomas Janka, Alexander Heger, Astrophys.J. 876 (2019) 151, arXiv:1902.06643.
[Sieverding:2019qet]
[21-106]
Simulating Turbulence-aided Neutrino-driven Core-collapse Supernova Explosions in One Dimension, Sean M. Couch, MacKenzie L. Warren, Evan P. O'Connor, arXiv:1902.01340, 2019.
[Couch:2019mrd]
[21-107]
Three-Dimensional Supernova Explosion Simulations of 9-, 10-, 11-, 12-, and 13-M$_{\odot}$ Stars, Adam Burrows, David Radice, David Vartanyan, Mon.Not.Roy.Astron.Soc. 485 (2019) 3153-3168, arXiv:1902.00547.
[Burrows:2019rtd]
[21-108]
Convection-Aided Explosions in One-Dimensional Core-Collapse Supernova Simulations I: Technique and Validation, Quintin A. Mabanta, Jeremiah W. Murphy, Joshua C. Dolence, arXiv:1901.11234, 2019.
[Mabanta:2019mmm]
[21-109]
NADA-FLD: A General Relativistic, Multi-dimensional Neutrino-hydrodynamics Code Employing Flux-limited Diffusion, Ninoy Rahman, Oliver Just, H.-Thomas Janka, Mon.Not.Roy.Astron.Soc. 490 (2019) 3545-3572, arXiv:1901.10523.
[Rahman:2019yxy]
[21-110]
Features of Accretion Phase Gravitational Wave Emission from Two-dimensional Rotating Core-Collapse Supernovae, Michael A. Pajkos, Sean M. Couch, Kuo-Chuan Pan, Evan P. O'Connor, Astrophys.J. 878 (2019) 13, arXiv:1901.09055.
[Pajkos:2019nef]
[21-111]
Effects of SASI and LESA in the neutrino emission of rotating supernovae, Laurie Walk, Irene Tamborra, Hans-Thomas Janka, Alexander Summa, Phys.Rev. D100 (2019) 063018, arXiv:1901.06235.
[Walk:2019ier]
[21-112]
Comparing treatments of weak reactions with nuclei in simulations of core-collapse supernovae, Hiroki Nagakura, Shun Furusawa, Hajime Togashi, Sherwood Richers, Kohsuke Sumiyoshi, Shoichi Yamada, Astrophys.J.Suppl. 240 (2019) 38, arXiv:1812.09811.
[Nagakura:2018qpg]
[21-113]
The Evolution towards Electron-capture Supernovae: the Flame Propagation and the Pre-bounce Electron-neutrino Radiation, K. Takahashi, K. Sumiyoshi, S. Yamada, H. Umeda, T. Yoshida, Astrophys.J. 871 (2019) 153, arXiv:1812.07175.
[Takahashi:2018lgj]
[21-114]
Gravitational Wave Emission from 3D Explosion Models of Core-Collapse Supernovae with Low and Normal Explosion Energies, Jade Powell, Bernhard Muller, Mon.Not.Roy.Astron.Soc. 487 (2019) 1178-1190, arXiv:1812.05738.
[Powell:2018isq]
[21-115]
Three-Dimensional Simulations of Neutrino-Driven Core-Collapse Supernovae from Low-Mass Single and Binary Star Progenitors, B. Muller, T.M. Tauris, A. Heger, P. Banerjee, Y.-Z. Qian, J. Powell, C. Chan, D.W. Gay, N. Langer, Mon.Not.Roy.Astron.Soc. 484 (2019) 3307, arXiv:1811.05483.
[Muller:2018utr]
[21-116]
On the Neutrino Distributions in Phase Space for the Rotating Core-Collapse Supernova Simulated with a Boltzmann-Neutrino-Radiation-Hydrodynamics Code, Akira Harada, Hiroki Nagakura, Wakana Iwakami, Hirotada Okawa, Shun Furusawa, Hideo Matsufuru, Kohsuke Sumiyoshi, Shoichi Yamada, Astrophys.J. 872 (2019) 181, arXiv:1810.12316.
[Harada:2018ubo]
[21-117]
Gravitational waves and core-collapse supernovae, G. S. Bisnovatyi-Kogan, S. G. Moiseenko, Phys. Usp. 60 (2017) 843-850, arXiv:1810.12198.
[Bisnovatyi-Kogan:2017vpn]
[21-118]
Gravitational waves from three-dimensional core-collapse supernova models: The impact of moderate progenitor rotation, H. Andresen, E. Muller, H.-Th. Janka, A. Summa, K. Gill, M. Zanolin, Mon.Not.Roy.Astron.Soc. 486 (2019) 2238-2253, arXiv:1810.07638.
[Andresen:2018aom]
[21-119]
Effects of LESA in Three-Dimensional Supernova Simulations with Multi-Dimensional and Ray-by-Ray-plus Neutrino Transport, Robert Glas, H.-Thomas Janka, Tobias Melson, Georg Stockinger, Oliver Just, arXiv:1809.10150, 2018.
[Glas:2018vcs]
[21-120]
Three-Dimensional Core-Collapse Supernova Simulations with Multi-Dimensional Neutrino Transport Compared to the Ray-by-Ray-plus Approximation, Robert Glas, Oliver Just, H.-Thomas Janka, Martin Obergaulinger, Astrophys.J. 873 (2019) 45, arXiv:1809.10146.
[Glas:2018oyz]
[21-121]
Chimera: A massively parallel code for core-collapse supernova simulation, Stephen W. Bruenn et al., Astrophys.J.Suppl. 248 (2020) 11, arXiv:1809.05608.
[Bruenn:2018wpz]
[21-122]
A Successful 3D Core-Collapse Supernova Explosion Model, David Vartanyan, Adam Burrows, David Radice, Aaron Skinner, Joshua Dolence, Mon.Not.Roy.Astron.Soc. 482 (2019) 351, arXiv:1809.05106.
[Vartanyan:2018iah]
[21-123]
Effects of rotation and magnetic field on the revival of a stalled shock in supernova explosions, Kotaro Fujisawa, Hirotada Okawa, Yu Yamamoto, Shoichi Yamada, Astrophys.J. 872 (2019) 155, arXiv:1809.04358.
[Fujisawa:2018dnh]
[21-124]
Exploring Fundamentally Three-dimensional Phenomena in High-fidelity Simulations of Core-collapse Supernovae, Evan O'Connor, Sean Couch, Astrophys.J. 865 (2018) 81, arXiv:1807.07579.
[OConnor:2018tuw]
[21-125]
Identifying rotating core-collapse supernovae with a neutrino gyroscope, Laurie Walk, Irene Tamborra, Hans-Thomas Janka, Alexander Summa, Phys.Rev. D98 (2018) 123001, arXiv:1807.02366.
[Walk:2018gaw]
[21-126]
The Impact of Different Neutrino Transport Methods on Multidimensional Core-collapse Supernova Simulations, Kuo-Chuan Pan et al., J.Phys. G46 (2019) 014001, arXiv:1806.10030.
[Pan:2018vkx]
[21-127]
Core-collapse supernovae in the hall of mirrors. A three-dimensional code-comparison project, Ruben M. Cabezon et al., Astron.Astrophys. 619 (2018) A118, arXiv:1806.09184.
[Cabezon:2018lpr]
[21-128]
Fornax: a Flexible Code for Multiphysics Astrophysical Simulations, M. Aaron Skinner, Joshua C. Dolence, Adam Burrows, David Radice, David Vartanyan, Astrophys.J.Suppl. 241 (2019) 7, arXiv:1806.07390.
[Skinner:2018iti]
[21-129]
Global Comparison of Core-Collapse Supernova Simulations in Spherical Symmetry, Evan O'Connor et al., J.Phys. G45 (2018) 104001, arXiv:1806.04175.
[OConnor:2018sti]
[21-130]
Core collapse with magnetic fields and rotation, M. Obergaulinger, O. Just, M.A. Aloy, J.Phys. G45 (2018) 084001, arXiv:1806.00393.
[Obergaulinger:2018udn]
[21-131]
Core-collapse supernova simulations in one and two dimensions: comparison of codes and approximations, Oliver Just et al., Mon.Not.Roy.Astron.Soc. 481 (2018) 4786-4814, arXiv:1805.03953.
[Just:2018djz]
[21-132]
The non-linear onset of neutrino-driven convection in two and three-dimensional core-collapse supernovae, Remi. Kazeroni, Brendan. K. Krueger, Jerome Guilet, Thierry Foglizzo, Daniel Pomarede, Mon.Not.Roy.Astron.Soc. 480 (2018) 261-280, arXiv:1802.08125.
[Kazeroni:2018blm]
[21-133]
Hydrodynamical Neutron-star Kicks in Electron-capture Supernovae and Implications for the CRAB Supernova, Alexandra Gessner, Hans-Thomas Janka, Astrophys.J. 865 (2018) 61, arXiv:1802.05274.
[Gessner:2018ekd]
[21-134]
$r$-Process Nucleosynthesis from Three-dimensional Jet-driven Core-Collapse Supernovae with Magnetic Misalignments, Goni Halevi, Philipp Mosta, Mon.Not.Roy.Astron.Soc. 477 (2018) 2366, arXiv:1801.08943.
[Halevi:2018vgp]
[21-135]
Revival of the Fittest: Exploding Core-Collapse Supernovae from 12 to 25 M$_{\odot}$, David Vartanyan, Adam Burrows, David Radice, M. Aaron Skinner, Joshua Dolence, Mon.Not.Roy.Astron.Soc. 477 (2018) 3091, arXiv:1801.08148.
[Vartanyan:2018xcd]
[21-136]
A full general relativistic neutrino radiation-hydrodynamics simulation of a collapsing very massive star and the formation of a black hole, Takami Kuroda, Kei Kotake, Tomoya Takiwaki, Friedrich-Karl Thielemann, Mon.Not.Roy.Astron.Soc. 477 (2018) L80-L84, arXiv:1801.01293.
[Kuroda:2018gqq]
[21-137]
R-process Nucleosynthesis from Three-Dimensional Magnetorotational Core-Collapse Supernovae, Philipp Mosta et al., Astrophys.J. 864 (2018) 171, arXiv:1712.09370.
[Mosta:2017geb]
[21-138]
The Progenitor Dependence of Three-Dimensional Core-Collapse Supernovae, C. D. Ott et al., Astrophys.J. 855 (2018) L3, arXiv:1712.01304.
[Ott:2017kxl]
[21-139]
Anisotropic emission of neutrino and gravitational-wave signals from rapidly rotating core-collapse supernovae, Tomoya Takiwaki, Kei Kotake, Mon.Not.Roy.Astron.Soc. 475 (2018) L91-L95, arXiv:1711.01905.
[Takiwaki:2017tpe]
[21-140]
Emission line models for the lowest-mass core collapse supernovae. I: Case study of a 9 $M_\odot$ one-dimensional neutrino-driven explosion, A. Jerkstrand et al., Mon.Not.Roy.Astron.Soc. 475 (2018) 277, arXiv:1710.04508.
[Jerkstrand:2017hbi]
[21-141]
Mass Ejection in Failed Supernovae: Variation with Stellar Progenitor, Rodrigo Fernandez, Eliot Quataert, Kazumi Kashiyama, Eric R. Coughlin, Mon.Not.Roy.Astron.Soc. 476 (2018) 2366-2383, arXiv:1710.01735.
[Fernandez:2017pcd]
[21-142]
Black hole formation and fallback during the supernova explosion of a $40 \,\mathrm{M}_\odot$ star, Conrad Chan, Bernhard Muller, Alexander Heger, Rudiger Pakmor, Volker Springel, Astrophys.J. 852 (2018) L19, arXiv:1710.00838.
[Chan:2017tdg]
[21-143]
Diffuse Supernova Neutrino Background from extensive core-collapse simulations of $8$-$100 {\rm M}_\odot$ progenitors, Shunsaku Horiuchi et al., Mon.Not.Roy.Astron.Soc. 475 (2018) 1363, arXiv:1709.06567.
[Horiuchi:2017qja]
[21-144]
Inferring the core-collapse supernova explosion mechanism with three-dimensional gravitational-wave simulations, Jade Powell, Marek Szczepanczyk, Ik Siong Heng, Phys.Rev. D96 (2017) 123013, arXiv:1709.00955.
[Powell:2017gbj]
[21-145]
Properties of Convective Oxygen and Silicon Burning Shells in Supernova Progenitors, C. Collins, B. Muller, A. Heger, arXiv:1709.00236, 2017.
[1709.00236]
[21-146]
Correlated Signatures of Gravitational-Wave and Neutrino Emission in Three-Dimensional General-Relativistic Core-Collapse Supernova Simulations, Takami Kuroda, Kei Kotake, Kazuhiro Hayama, Tomoya Takiwaki, Astrophys.J. 851 (2017) 62, arXiv:1708.05252.
[Kuroda:2017trn]
[21-147]
Rotation-supported Neutrino-driven Supernova Explosions in Three Dimensions and the Critical Luminosity Condition, A. Summa, H. -Th. Janka, T. Melson, A. Marek, Astrophys.J. 852 (2018) 28, arXiv:1708.04154.
[Summa:2017wxq]
[21-148]
A Detailed Comparison of Multi-Dimensional Boltzmann Neutrino Transport Methods in Core-Collapse Supernovae, Sherwood Richers, Hiroki Nagakura, Christian D. Ott, Joshua Dolence, Kohsuke Sumiyoshi, Shoichi Yamada, Astrophys.J. 847 (2017) 133, arXiv:1706.06187.
[Richers:2017awc]
[21-149]
Supernova Simulations from a 3D Progenitor Model - Impact of Perturbations and Evolution of Explosion Properties, B. Muller, T. Melson, A. Heger, H.-Th. Janka, Mon.Not.Roy.Astron.Soc. 472 (2017) 491, arXiv:1705.00620.
[Muller:2017hht]
[21-150]
Light curve analysis of ordinary type IIP supernovae based on neutrino-driven explosion simulations in three dimensions, V. P. Utrobin, A. Wongwathanarat, H.-Th. Janka, E. Mueller, Astrophys.J. 846 (2017) 37, arXiv:1704.03800.
[Utrobin:2017znb]
[21-151]
A Parametric Study of the Acoustic Mechanism for Core-Collapse Supernovae, A. Harada, H. Nagakura, W. Iwakami, S. Yamada, Astrophys.J. 839 (2017) 28, arXiv:1704.02984.
[Harada:2017teh]
[21-152]
The effect upon neutrinos of core-collapse supernova accretion phase turbulence, James P. Kneller, Mithi de los Reyes, J.Phys. G44 (2017) 084008, arXiv:1702.06951.
[Kneller:2017lqg]
[21-153]
Electron-Capture and Low-Mass Iron-Core-Collapse Supernovae: New Neutrino-Radiation-Hydrodynamics Simulations, David Radice, Adam Burrows, David Vartanyan, M. Aaron Skinner, Joshua C. Dolence, Astrophys.J. 850 (2017) 43, arXiv:1702.03927.
[Radice:2017ykv]
[21-154]
Six-Dimensional Simulations of Core-Collapse Supernovae with Full Boltzmann Neutrino Transport, Hiroki Nagakura et al., Astrophys.J. 854 (2018) 136, arXiv:1702.01752.
[Nagakura:2017mnp]
[21-155]
Flavor-dependent neutrino angular distribution in core-collapse supernovae, Irene Tamborra, Lorenz Huedepohl, Georg Raffelt, Hans-Thomas Janka, Astrophys.J. 839 (2017) 2, arXiv:1702.00060.
[Tamborra:2017ubu]
[21-156]
The Gravitational Wave Signal of a Core Collapse Supernova Explosion of a 15M$_\odot$ Star, Konstantin N. Yakunin et al., arXiv:1701.07325, 2017.
[Yakunin:2017tus]
[21-157]
Nucleosynthesis in the Innermost Ejecta of Neutrino-Drive Supernova Explosions in Two Dimensions, Shinya Wanajo, Bernhard Muller, Hans-Thomas Janka, Alexander Heger, Astrophys.J. 852 (2018) 40, arXiv:1701.06786.
[Wanajo:2017cyq]
[21-158]
Crucial Physical Dependencies of the Core-Collapse Supernova Mechanism, Adam Burrows, David Vartanyan, Joshua C. Dolence, M. Aaron Skinner, David Radice, Space Sci.Rev. 214 (2018) 33, arXiv:1611.05859.
[Burrows:2016ohd]
[21-159]
Production and Distribution of 44Ti and 56Ni in a Three-dimensional Supernova Model Resembling Cassiopeia A, A. Wongwathanarat, H.-Th. Janka, E. Mueller, E. Pllumbi, S. Wanajo, Astrophys.J. 842 (2017) 13, arXiv:1610.05643.
[Wongwathanarat:2016jvy]
[21-160]
Gravitational Wave Signals from 3D Neutrino Hydrodynamics Simulations of Core-Collapse Supernovae, Haakon Andresen, Bernhard Mueller, Ewald Mueller, Hans-Thomas Janka, Mon.Not.Roy.Astron.Soc. 468 (2017) 2032-2051, arXiv:1607.05199.
[Andresen:2016pdt]
[21-161]
A new gravitational-wave signature of SASI activities in non-rotating supernova cores, Takami Kuroda, Kei Kotake, Tomoya Takiwaki, Astrophys.J. 829 (2016) L14, arXiv:1605.09215.
[Kuroda:2016bjd]
[21-162]
Three-dimensional Boltzmann-Hydro code for core-collapse in massive stars II. The Implementation of moving-mesh for neutron star kicks, Hiroki Nagakura et al., Astrophys.J.Suppl. 229 (2017) 42, arXiv:1605.00666.
[Nagakura:2016jcl]
[21-163]
General Relativistic Three-Dimensional Multi-Group Neutrino Radiation-Hydrodynamics Simulations of Core-Collapse Supernovae, Luke F. Roberts et al., Astrophys.J. 831 (2016) 98, arXiv:1604.07848.
[Roberts:2016lzn]
[21-164]
Parametric initial conditions for core-collapse supernova simulations, Yudai Suwa, Ewald Muller, Mon.Not.Roy.Astron.Soc. 460 (2016) 2664-2674, arXiv:1603.05578.
[Suwa:2016uey]
[21-165]
Three-dimensional hydrodynamics simulations of rapidly rotating core-collapse supernovae: finding a new class of rotation-aided explosions, Tomoya Takiwaki, Kei Kotake, Yudai Suwa, Mon.Not.Roy.Astron.Soc. 461 (2016) L112, arXiv:1602.06759.
[Takiwaki:2016qgc]
[21-166]
Erratum: Progenitor-explosion connection and remnant birth masses for neutrino-driven supernovae of iron-core progenitors (2012, ApJ, 757, 69), Thomas Ertl, Marcella Ugliano, H.-Thomas Janka, Andreas Marek, Almudena Arcones, Astrophys.J. 821 (2016) 69, arXiv:1602.06327.
[Ugliano:2012fvp]
[21-167]
Progenitor-dependent Explosion Dynamics in Self-consistent, Axisymmetric Simulations of Neutrino-driven Core-collapse Supernovae, Alexander Summa et al., Astrophys.J. 825 (2016) 6, arXiv:1511.07871.
[Summa:2015nyk]
[21-168]
Two Dimensional Core-Collapse Supernova Explosions Aided by General Relativity with Multidimensional Neutrino Transport, Evan O'Connor, Sean Couch, Astrophys.J. 854 (2018) 63, arXiv:1511.07443.
[OConnor:2015rwy]
[21-169]
Neutrino-Driven Convection in Core-Collapse Supernovae: High-Resolution Simulations, David Radice et al., Astrophys.J. 820 (2016) 76, arXiv:1510.05022.
[Radice:2015qva]
[21-170]
Core-Collapse Supernovae from 9 to 120 Solar Masses Based on Neutrino-powered Explosions, Tuguldur Sukhbold, T. Ertl, S. E. Woosley, Justin M. Brown, H.-T. Janka, Astrophys.J. 821 (2016) 38, arXiv:1510.04643.
[Sukhbold:2015wba]
[21-171]
Quantum Simulations of Nuclei and Nuclear Pasta with the Multi-resolution Adaptive Numerical Environment for Scientific Simulations, I. Sagert, G. I. Fann, F. J. Fattoyev, S. Postnikov, C. J. Horowitz, Phys. Rev. C93 (2016) 055801, arXiv:1509.06671.
[Sagert:2015rra]
[21-172]
Stochasticity and efficiency of convection-dominated vs. SASI-dominated supernova explosions, Christian Y. Cardall, Reuben D. Budiardja, Astrophys. J. 813 (2015) L6, arXiv:1509.02494.
[Cardall:2015iva]
[21-173]
A Comparative study of hyperon equations of state in supernova simulations, Prasanta Char, Sarmistha Banik, Debades Bandyopadhyay, Astrophys. J. 809 (2015) 116, arXiv:1508.01854.
[Char:2015nea]
[21-174]
Jittering-jets explosion triggered by the standing accretion shock instability, Oded Papish, Avishai Gilkis, Noam Soker, arXiv:1508.00218, 2015.
[Papish:2015nqa]
[21-175]
Neutrino-driven explosions of ultra-stripped type Ic supernovae generating binary neutron stars, Yudai Suwa, Takashi Yoshida, Masaru Shibata, Hideyuki Umeda, Koh Takahashi, Mon. Not. Roy. Astron. Soc. 454 (2015) 3073-3081, arXiv:1506.08827.
[Suwa:2015saa]
[21-176]
The Dynamics of Neutrino-Driven Supernova Explosions after Shock Revival in 2D and 3D, Bernhard Muller, Mon. Not. Roy. Astron. Soc. 453 (2015) 287, arXiv:1506.05139.
[Muller:2015dia]
[21-177]
Gravitational Wave Signatures of Ab Initio Two-Dimensional Core Collapse Supernova Explosion Models for 12-25 Solar Masses Stars, Konstantin N. Yakunin et al., Phys. Rev. D92 (2015) 084040, arXiv:1505.05824.
[Yakunin:2015wra]
[21-178]
Three-dimensional core-collapse supernova simulated using a 15 $M_\odot$ projenitor, Eric J. Lentz et al., Astrophys.J.Lett. 807 (2015) L31, arXiv:1505.05110.
[Lentz:2015nxa]
[21-179]
Two-Dimensional Core-Collapse Supernova Simulations with the Isotropic Diffusion Source Approximation for Neutrino Transport, Kuo-Chuan Pan, Matthias Liebendorfer, Matthias Hempel, Friedrich-Karl Thieleman, Astrophys. J. 817 (2016) 72, arXiv:1505.02513.
[Pan:2015sga]
[21-180]
Three-Dimensional Simulations of SASI- and Convection-Dominated Core-Collapse Supernovae, Rodrigo Fernandez, Mon. Not. Roy. Astron. Soc. 452 (2015) 2071-2086, arXiv:1504.07996.
[Fernandez:2015yza]
[21-181]
Neutrino-driven explosion of a 20 solar-mass star in three dimensions enabled by strange-quark contributions to neutrino-nucleon scattering, Tobias Melson et al., Astrophys. J. 808 (2015) L42, arXiv:1504.07631.
[Melson:2015spa]
[21-182]
The Three Dimensional Evolution to Core Collapse of a Massive Star, Sean M. Couch, Emmanouil Chatzopoulos, W. David Arnett, F.X. Timmes, Astrophys. J. 808 (2015) L21, arXiv:1503.02199.
[Couch:2015gua]
[21-183]
A New Multi-Energy Neutrino Radiation-Hydrodynamics Code in Full General Relativity and Its Application to Gravitational Collapse of Massive Stars, Takami Kuroda, Tomoya Takiwaki, Kei Kotake, Astrophys. J. Suppl. 222 (2016) 20, arXiv:1501.06330.
[Kuroda:2015bta]
[21-184]
A new multidimensional, energy-dependent two-moment transport code for neutrino-hydrodynamics, Oliver Just, Martin Obergaulinger, H.-Thomas Janka, Mon. Not. Roy. Astron. Soc. 453 (2015) 3386-3413, arXiv:1501.02999.
[Just:2015fda]
[21-185]
Pushing 1D CCSNe to explosions: model and SN 1987A, A. Perego et al., Astrophys. J. 806 (2015) 275, arXiv:1501.02845.
[Perego:2015zca]
[21-186]
Neutrino-driven supernova of a low-mass iron-core progenitor boosted by three-dimensional turbulent convection, Tobias Melson, Hans-Thomas Janka, Andreas Marek, Astrophys.J. 801 (2015) L24, arXiv:1501.01961.
[Melson:2015tia]
[21-187]
Recent Progress on Ascertaining the Core Collapse Supernova Explosion Mechanism, Anthony Mezzacappa et al., arXiv:1501.01688, 2015.
[Mezzacappa:2015kya]
[21-188]
Failure of a neutrino-driven explosion after core-collapse may lead to a thermonuclear supernova, Doron Kushnir, Boaz Katz, Astrophys. J. 811 (2015) 97, arXiv:1412.1096.
[Kushnir:2014oca]
[21-189]
An Open-Source Neutrino Radiation Hydrodynamics Code for Core-Collapse Supernovae, Evan O'Connor, Astrophys. J. Suppl. 219 (2015) 24, arXiv:1411.7058.
[OConnor:2014sgn]
[21-190]
Magnetohydrodynamic Turbulence Powered by Magnetorotational Instability in Nascent Proto-Neutron Stars, Youhei Masada, Tomoya Takiwaki, Kei Kotake, Astrophys.J. 798 (2015) L22, arXiv:1411.6705.
[Masada:2014qia]
[21-191]
Neutrino-driven Turbulent Convection and Standing Accretion Shock Instability in Three-Dimensional Core-Collapse Supernovae, E. Abdikamalov et al., Astrophys. J. 808 (2015) 70, arXiv:1409.7078.
[Abdikamalov:2014oba]
[21-192]
The Development of Explosions in Axisymmetric Ab Initio Core-Collapse Supernova Simulations of 12-25 $M_\odot$ Stars, Stephen W. Bruenn et al., Astrophys. J. 818 (2016) 123, arXiv:1409.5779.
[Bruenn:2014qea]
[21-193]
Three-Dimensional Simulations of Core-Collapse Supernovae: From Shock Revival to Shock Breakout, Annop Wongwathanarat, Ewald Mueller, H.-Thomas Janka, Astron.Astrophys. 577 (2015) A48, arXiv:1409.5431.
[Wongwathanarat:2014yda]
[21-194]
Non-Radial Instabilities and Progenitor Asphericities in Core-Collapse Supernovae, B. Mueller, H.-Th. Janka, Mon.Not.Roy.Astron.Soc. 448 (2015) 2141, arXiv:1409.4783.
[Muller:2014dat]
[21-195]
The Role of Turbulence in Neutrino-Driven Core-Collapse Supernova Explosions, Sean M. Couch, Christian D. Ott, Astrophys.J. 799 (2015) 5, arXiv:1408.1399.
[Couch:2014kza]
[21-196]
Three-dimensional Boltzmann-Hydro code for core-collapse in massive stars I. special relativistic treatments, Hiroki Nagakura, Kohsuke Sumiyoshi, Shoichi Yamada, Astrophys.J.Suppl. 214 (2014) 16, arXiv:1407.5632.
[Nagakura:2014nta]
[21-197]
The criterion of supernova explosion revisited: the mass accretion history, Yudai Suwa, Shoichi Yamada, Tomoya Takiwaki, Kei Kotake, Astrophys. J. 816 (2016) 43, arXiv:1406.6414.
[Suwa:2014sqa]
[21-198]
Systematic Features of Axisymmetric Neutrino-Driven Core-Collapse Supernova Models in Multiple Progenitors, Ko Nakamura, Tomoya Takiwaki, Takami Kuroda, Kei Kotake, Publ.Astron.Soc.Jap. 67 (2015) 107, arXiv:1406.2415.
[Nakamura:2014caa]
[21-199]
Impacts of Rotation on Three-dimensional Hydrodynamics of Core-collapse Supernovae, Ko Nakamura, Takami Kuroda, Tomoya Takiwaki, Kei Kotake, Astrophys.J. 793 (2014) 45, arXiv:1403.7290.
[Nakamura:2014fxa]
[21-200]
Two-Dimensional Core-Collapse Supernova Models with Multi-Dimensional Transport, Joshua C. Dolence, Adam Burrows, Weiqun Zhang, Astrophys.J. 800 (2015) 10, arXiv:1403.6115.
[Dolence:2014rwa]
[21-201]
Multi-dimensional Features of Neutrino Transfer in Core-Collapse Supernovae, K. Sumiyoshi, T. Takiwaki, H. Matsufuru, S. Yamada, Astrophys.J.Suppl. 216 (2015) 5, arXiv:1403.4476.
[Sumiyoshi:2014qua]
[21-202]
MODA: a new algorithm to compute optical depths in multi-dimensional hydrodynamic simulations, A. Perego, E. Gafton, R. Cabezon, S. Rosswog, M. Liebendoerfer, Astron.Astrophys. 568 (2014) A11, arXiv:1403.1297.
[Perego:2014qda]
[21-203]
A New Multi-Dimensional General Relativistic Neutrino Hydrodynamics Code for Core-Collapse Supernovae IV. The Neutrino Signal, B. Mueller, H.-Th. Janka, Astrophys.J. 788 (2014) 82, arXiv:1402.3415.
[Muller:2014rpb]
[21-204]
Application of the nuclear equation of state obtained by the variational method to core-collapse supernovae, H. Togashi, M. Takano, K. Sumiyoshi, K. Nakazato, PTEP 2014 (2014) 023D05, arXiv:1401.5579.
[Togashi:2014aga]
[21-205]
Chaos and Turbulent Nucleosynthesis Prior to a Supernova Explosion, W. David Arnett, Casey Meakin, Maxime Viallet, arXiv:1312.3279, 2013.
[1312.3279]
[21-206]
From supernovae to neutron stars, Yudai Suwa, Publ.Astron.Soc.Jap. 66 (2014) L1, arXiv:1311.7249.
[Suwa:2013mva]
[21-207]
Gravitational wave signatures in black-hole forming core collapse, Pablo Cerda-Duran, Nicolas DeBrye, Miguel A Aloy, Jose A Font, Martin Obergaulinger, Astrophys.J. 779 (2013) L18, arXiv:1310.8290.
[Cerda-Duran:2013swa]
[21-208]
High-Resolution Three-Dimensional Simulations of Core-Collapse Supernovae in Multiple Progenitors, Sean M. Couch, Evan P. O'Connor, Astrophys.J. 785 (2014) 123, arXiv:1310.5728.
[Couch:2013kma]
[21-209]
Porting Large HPC Applications to GPU Clusters: The Codes GENE and VERTEX, Tilman Dannert, Andreas Marek, Markus Rampp, arXiv:1310.1485, 2013.
[1310.1485]
[21-210]
Characterizing SASI- and Convection-Dominated Core-Collapse Supernova Explosions in Two Dimensions, Rodrigo Fernandez, Bernhard Mueller, Thierry Foglizzo, Hans-Thomas Janka, Mon.Not.Roy.Astron.Soc. 440 (2014) 2763, arXiv:1310.0469.
[Fernandez:2013sqa]
[21-211]
Neutrino-pair emission from nuclear de-excitation in core-collapse supernova simulations, Tobias Fischer, Karlheinz Langanke, Gabriel Martinez-Pinedo, Phys. Rev. C88 (2013) 065804, arXiv:1309.4271.
[Fischer:2013qpa]
[21-212]
A Comparison of Two- and Three-dimensional Neutrino-hydrodynamics simulations of Core-collapse Supernovae, Tomoya Takiwaki, Kei Kotake, Yudai Suwa, Astrophys.J. 786 (2014) 83, arXiv:1308.5755.
[Takiwaki:2013cqa]
[21-213]
Neutrino signature of supernova hydrodynamical instabilities in three dimensions, Irene Tamborra, Florian Hanke, Bernhard Mueller, Hans-Thomas Janka, Georg Raffelt, Phys. Rev. Lett. 111 (2013) 121104, arXiv:1307.7936.
[Tamborra:2013laa]
[21-214]
General relativistic neutrino transport using spectral methods, Bruno Peres, Andrew Jason Penner, Jerome Novak, Silvano Bonazzola, Class.Quant.Grav. 31 (2014) 045012, arXiv:1307.1666.
[Peres:2013pua]
[21-215]
Gravitational Wave Signatures from Low-mode Spiral Instabilities in Rapidly Rotating Supernova Cores, Takami Kuroda, Tomoya Takiwaki, Kei Kotake, Phys. Rev. D89 (2014) 044011, arXiv:1304.4372.
[Kuroda:2013rga]
[21-216]
SASI Activity in Three-Dimensional Neutrino-Hydrodynamics Simulations of Supernova Cores, F. Hanke, B. Mueller, A. Wongwathanarat, A. Marek, H.-Th. Janka, Astrophys.J. 770 (2013) 66, arXiv:1303.6269.
[Hanke:2013ena]
[21-217]
Very Low Energy Supernovae from Neutrino Mass Loss, Elizabeth Lovegrove, Stan Woosley, Astrophys.J. 769 (2013) 109, arXiv:1303.5055.
[Lovegrove:2013ssa]
[21-218]
Axisymmetric Ab Initio Core-Collapse Supernova Simulations of 12-25 M_sol Stars, Stephen W. Bruenn et al., Astrophys.J. 767 (2013) L6, arXiv:1212.1747.
[Bruenn:2012mj]
[21-219]
Core-Collapse Supernovae: Reflections and Directions, H.-Thomas Janka et al., PTEP 2012 (2012) 01A309, arXiv:1211.1378.
[Janka:2012sb]
[21-220]
Three-dimensional neutrino-driven supernovae: Neutron star kicks, spins, and asymmetric ejection of nucleosynthesis products, A. Wongwathanarat, H.-Th. Janka, E. Mueller, A&A 552, A126 (2013), arXiv:1210.8148.
[Wongwathanarat:2012zp]
[21-221]
A New Multi-Dimensional General Relativistic Neutrino Hydrodynamics Code of Core-Collapse Supernovae III. Gravitational Wave Signals from Supernova Explosion Models, Bernhard Mueller, Hans-Thomas Janka, Andreas Marek, Astrophys.J. 766 (2013) 43, arXiv:1210.6984.
[Mueller:2012sv]
[21-222]
Post-shock-revival evolutions in the neutrino-heating mechanism of core-collapse supernovae, Yu Yamamoto, Shin-ichiro Fujimoto, Hiroki Nagakura, Shoichi Yamada, Astrophys.J. 771 (2013) 27, arXiv:1209.4824.
[Yamamoto:2012qh]
[21-223]
Current Status of Numerical-Relativity Simulations in Kyoto, Yuichiro Sekiguchi, Kenta Kiuchi, Koutarou Kyutoku, Masaru Shibata, PTEP 2012 (2012) 01A304, arXiv:1206.5927.
[Sekiguchi:2012uc]
[21-224]
Interplay of Neutrino Opacities in Core-collapse Supernova Simulations, Eric J. Lentz, Anthony Mezzacappa, O.E. Bronson Messer, W. Raphael Hix, Stephen W. Bruenn, Astrophys.J. 760 (2012) 94, arXiv:1206.1086.
[Lentz:2012xc]
[21-225]
Core-Collapse Supernovae as Supercomputing Science: a status report toward 6D simulations with exact Boltzmann neutrino transport in full general relativity, Kei Kotake et al., PTEP 2012 (2012) 01A301, arXiv:1205.6284.
[Kotake:2012nd]
[21-226]
The Dominance of Neutrino-Driven Convection in Core-Collapse Supernovae, Jeremiah W. Murphy, Joshua C. Dolence, Adam Burrows, Astrophys.J. 771 (2013) 52, arXiv:1205.3491.
[Murphy:2012id]
[21-227]
A New Code for Proto-Neutron Star Evolution, Luke F. Roberts, Astrophys. J. 755 (2012) 126, arXiv:1205.3228.
[Roberts:2012zza]
[21-228]
An Investigation into the Character of Pre-Explosion Core-Collapse Supernova Shock Motion, Adam Burrows, Joshua C. Dolence, Jeremiah W. Murphy, Astrophys. J. 759 (2012) 5, arXiv:1204.3088.
[Burrows:2012yk]
[21-229]
A New Monte Carlo Method for Time-Dependent Neutrino Radiation Transport, Ernazar Abdikamalov et al., Astrophys. J. 755 (2012) 111, arXiv:1203.2915.
[Abdikamalov:2012zi]
[21-230]
Fully General Relativistic Simulations of Core-Collapse Supernovae with An Approximate Neutrino Transport, Takami Kuroda, Kei Kotake, Tomoya Takiwaki, Astrophys. J. 755 (2012) 11, arXiv:1202.2487.
[Kuroda:2012nc]
[21-231]
A New Multi-Dimensional General Relativistic Neutrino Hydrodynamics Code for Core-Collapse Supernovae II. Relativistic Explosion Models of Core-Collapse Supernovae, B. Mueller, H.-Th. Janka, A. Marek, Astrophys. J. 756 (2012) 84, arXiv:1202.0815.
[Muller:2012aun]
[21-232]
Neutrino Transfer in Three Dimensions for Core-Collapse Supernovae. I. Static Configurations, Kohsuke Sumiyoshi, Shoichi Yamada, Astrophys. J. Supp. 199 (2012) 17, arXiv:1201.2244.
[Sumiyoshi:2012za]
[21-233]
Neutrino spectra evolution during proto-neutron star deleptonization, T. Fischer, G. Martinez-Piedo, M. Hempel, M. Liebendorfer, Phys. Rev. D85 (2012) 083003, arXiv:1112.3842.
[Fischer:2011cy]
[21-234]
Is Strong SASI Activity the Key to Successful Neutrino-Driven Supernova Explosions?, Florian Hanke, Andreas Marek, Bernhard Mueller, Hans-Thomas Janka, Astrophys. J. 755 (2012) 138, arXiv:1108.4355.
[Hanke:2011jf]
[21-235]
Three-dimensional Hydrodynamic Core-Collapse Supernova Simulations for an $11.2 M_{\odot}$ Star with Spectral Neutrino Transport, Tomoya Takiwaki, Kei Kotake, Yudai Suwa, Astrophys. J. 749 (2012) 98, arXiv:1108.3989.
[Takiwaki:2011db]
[21-236]
Relativistic collapse and explosion of rotating supermassive stars with thermonuclear effects, Pedro J. Montero, Hans-Thomas Janka, Ewald Mueller, Astrophys. J. 749 (2012) 37, arXiv:1108.3090.
[Montero:2011ps]
[21-237]
New equations of state in core-collapse supernova simulations, Matthias Hempel, Tobias Fischer, Jurgen Schaffner-Bielich, Matthias Liebendorfer, Astrophys. J. 748 (2012) 70, arXiv:1108.0848.
[Hempel:2011mk]
[21-238]
Parametrized 3D models of neutrino-driven supernova explosions: Neutrino emission asymmetries and gravitational-wave signals, E. Muller, H.-Th. Janka, A. Wongwathanarat, Astron.Astrophys. 537 (2012) A63, arXiv:1106.6301.
[Muller:2011yi]
[21-239]
A Global Turbulence Model for Neutrino-Driven Convection in Core-Collapse Supernovae, Jeremiah W. Murphy, Casey Meakin, Astrophys. J. 742 (2011) 74, arXiv:1106.5496.
[Murphy:2011ax]
[21-240]
Effects of Rotation on Stochasticity of Gravitational Waves in Nonlinear Phase of Core-Collapse Supernovae, Kei Kotake, Wakana Iwakami Nakano, Naofumi Ohnishi, Astrophys. J. 736 (2011) 124, arXiv:1106.0544.
[Kotake:2011ux]
[21-241]
Solving the transport equation by the use of 6D spectral methods in spherical geometry, Silvano Bonazzola, Nicolas Vasset, arXiv:1104.5330, 2011.
[Bonazzola:2011nu]
[21-242]
Magnetic field amplification in collapsing, non-rotating stellar cores, Martin Obergaulinger, Hans-Thomas Janka, arXiv:1101.1198, 2011.
[Obergaulinger:2011ic]
[21-243]
The revival of an explosion mechanism of massive stars - the quark hadron phase transition during the early post bounce phase of core collapse supernovae, T. Fischer et al., Astrophys. J. Supp. 194 (2011) 39, arXiv:1011.3409.
[Fischer:2010wp]
[21-244]
Induced Rotation in 3D Simulations of Core Collapse Supernovae: Implications for Pulsar Spins, E. Rantsiou, A. Burrows, J. Nordhaus, A. Almgren, Astrophys. J. 732 (2011) 57, arXiv:1010.5238.
[Rantsiou:2010md]
[21-245]
Hydrodynamical Neutron Star Kicks in Three Dimensions, A. Wongwathanarat, H.-Th. Janka, E. Mueller, Astrophys.J. 725 (2010) L106-L110, arXiv:1010.0167.
[Wongwathanarat:2010ip]
[21-246]
Formation of black hole and accretion disk in collapsar, Yuichiro Sekiguchi, Masaru Shibata, Astrophys. J. 737 (2011) 6, arXiv:1009.5303.
[Sekiguchi:2010ja]
[21-247]
Results From Core-Collapse Simulations with Multi-Dimensional, Multi-Angle Neutrino Transport, Timothy D. Brandt, Adam Burrows, Christian D. Ott, Astrophys. J. 728 (2011) 8, arXiv:1009.4654.
[Brandt:2010xa]
[21-248]
An implementation of the microphysics in full general relativity : General relativistic neutrino leakage scheme, Yuichiro Sekiguchi, Class.Quant.Grav. 27 (2010) 114107, arXiv:1009.3358.
[Sekiguchi:2010fh]
[21-249]
Stellar core collapse in full general relativity with microphysics - Formulation and Spherical collapse test -, Yuichiro Sekiguchi, Prog. Theor. Phys. 124 (2010) 331-379, arXiv:1009.3320.
[Sekiguchi:2010ep]
[21-250]
Dynamical r-process studies within the neutrino-driven wind scenario and its sensitivity to the nuclear physics input, A. Arcones, G. Martinez-Pinedo, Phys. Rev. C83 (2011) 045809, arXiv:1008.3890.
[Arcones:2010dz]
[21-251]
Nucleosynthesis-relevant conditions in neutrino-driven supernova outflows. II. The reverse shock in two-dimensional simulations, A. Arcones, H.-T. Janka, Astron.Astrophys. 526 (2011) A160, arXiv:1008.0882.
[Arcones:2010mz]
[21-252]
Production of Light Element Primary Process nuclei in neutrino-driven winds, A. Arcones, F. Montes, Astrophys. J. 731 (2011) 5, arXiv:1007.1275.
[Arcones:2010yt]
[21-253]
Dimension as a Key to the Neutrino Mechanism of Core-Collapse Supernova Explosions, J. Nordhaus, A. Burrows, A. Almgren, J. Bell, Astrophys. J. 720 (2010) 694-703, arXiv:1006.3792.
[Nordhaus:2010uk]
[21-254]
The Spiral Modes of the Standing Accretion Shock Instability in the Linear Phase, Rodrigo Fernandez, Astrophys. J. 725 (2010) 1563-1580, arXiv:1003.1730.
[Fernandez:2010db]
[21-255]
A new multi-dimensional general relativistic neutrino hydrodynamics code for core-collapse supernovae. I. Method and code tests in spherical symmetry, B. Mueller, H.-Th. Janka, H. Dimmelmeier, Astrophys. J. Suppl. 189 (2010) 104-133, arXiv:1001.4841.
[Muller:2010ymw]
[21-256]
A New Open-Source Code for Spherically-Symmetric Stellar Collapse to Neutron Stars and Black Holes, Evan O'Connor, Christian D. Ott, Class. Quant. Grav. 27 (2010) 114103, arXiv:0912.2393.
[OConnor:2009iuz]
[21-257]
Gravitational waves from supernova matter, S. Scheidegger, S.C. Whitehouse, R. Kaeppeli, M. Liebendoerfer, Class. Quant. Grav. 27 (2010) 114101, arXiv:0912.1455.
[Scheidegger:2009va]
[21-258]
Explosion geometry of a rotating 13 $M_{\odot}$ star driven by the SASI-aided neutrino-heating supernova mechanism, Yudai Suwa et al., Publ. Astron. Soc. Jap. 62 (2010) L49-L53, arXiv:0912.1157.
[Suwa:2009py]
[21-259]
Neutrino Signal of Electron-Capture Supernovae from Core Collapse to Cooling, L. Huedepohl, B. Mueller, H.-Th. Janka, A. Marek, G.G Raffelt, Phys. Rev. Lett. 104 (2010) 251101, arXiv:0912.0260.
[Hudepohl:2009tyy]
[21-260]
Three-Dimensional Simulations of Mixing Instabilities in Supernova Explosions, N.J. Hammer, H.-Th. Janka, E. Mueller, Astrophys. J. 714 (2010) 1371-1385, arXiv:0908.3474.
[Hammer:2009cn]
[21-261]
Protoneutron star evolution and the neutrino driven wind in general relativistic neutrino radiation hydrodynamics simulations, T. Fischer, S. C. Whitehouse, A. Mezzacappa, F. -K. Thielemann, M. Liebendorfer, Astron.Astrophys. 517 (2010) A80, arXiv:0908.1871.
[Fischer:2009af]
[21-262]
A Model for Gravitational Wave Emission from Neutrino-Driven Core-Collapse Supernovae, Jeremiah W. Murphy, Christian D. Ott, Adam Burrows, Astrophys. J. 707 (2009) 1173-1190, arXiv:0907.4762.
[Murphy:2009dx]
[21-263]
Stochastic Nature of Gravitational Waves from Supernova Explosions with Standing Accretion Shock Instability, Kei Kotake, Wakana Iwakami, Naofumi Ohnishi, Shoichi Yamada, Astrophys. J. 697 (2009) L133-L136, arXiv:0904.4300.
[Kotake:2009em]
[21-264]
Effects of Rotation on Standing Accretion Shock Instability in Nonlinear Phase for Core-Collapse Supernovae, Wakana Iwakami, Kei Kotake, Naofumi Ohnishi, Shoichi Yamada, Keisuke Sawada, Astrophys. J. 700 (2009) 232-242, arXiv:0811.0651.
[Iwakami:2008qj]
[21-265]
Systematic thermal reduction of neutronization in core-collapse supernovae, A.F. Fantina, P. Donati, P.M. Pizzochero, Phys. Lett. B676 (2009) 140-145, arXiv:0811.0456.
[Fantina:2008kx]
[21-266]
The neutrino signal from protoneutron star accretion and black hole formation, T. Fischer, S.C. Whitehouse, A. Mezzacappa, F.-K. Thielemann, M. Liebendorfer, Astron.Astrophys. 499 (2009) 1, arXiv:0809.5129.
[Fischer:2008rh]
[21-267]
Equation-of-State Dependent Features in Shock-Oscillation Modulated Neutrino and Gravitational-Wave Signals from Supernovae, A. Marek, H. -Th. Janka, E. Mueller, Astron.Astrophys. 496 (2009) 475, arXiv:0808.4136.
[Marek:2008qi]
[21-268]
GRB production and SN signatures in slowly rotating collapsars, Diego Lopez-Camara, William H. Lee, Enrico Ramirez-Ruiz, Astrophys. J. 692 (2009) 804-815, arXiv:0808.0462.
[Lopez-Camara:2008trf]
[21-269]
Dynamics and neutrino signal of black hole formation in non-rotating failed supernovae. II. progenitor dependence, K. Sumiyoshi, S. Yamada, H. Suzuki, Astrophys.J. 688 (2008) 1176, arXiv:0808.0384.
[Sumiyoshi:2008zw]
[21-270]
Criteria for Core-Collapse Supernova Explosions by the Neutrino Mechanism, Jeremiah W. Murphy, Adam Burrows, Astrophys.J. 688 (2008) 1159, arXiv:0805.3345.
[Murphy:2008dw]
[21-271]
2D Multi-Angle, Multi-Group Neutrino Radiation-Hydrodynamic Simulations of Postbounce Supernova Cores, Christian D. Ott, Adam Burrows, Luc Dessart, Eli Livne, Astrophys. J. 685 (2008) 1069, arXiv:0804.0239.
[Ott:2008jb]
[21-272]
Relativistic Radiation Magnetohydrodynamics in Dynamical Spacetimes: Numerical Methods and Tests, Brian D. Farris, Tsz Ka Li, Yuk Tung Liu, Stuart L. Shapiro, Phys. Rev. D78 (2008) 024023, arXiv:0802.3210.
[Farris:2008fe]
[21-273]
Special Relativistic Simulations of Magnetically-dominated Jets in Collapsing Massive Stars, Tomoya Takiwaki, Kei Kotake, Katsuhiko Sato, Astrophys. J. 691 (2009) 1360-1379, arXiv:0712.1949.
[Takiwaki:2007sf]
[21-274]
Neutrinos from Fallback onto Newly Formed Neutron Stars, Chris L. Fryer, Astrophys. J. 699 (2009) 409-420, arXiv:0711.0551.
[Fryer:2007cf]
[21-275]
Three-Dimensional Simulations of Standing Accretion Shock Instability in Core-Collapse Supernovae, Wakana Iwakami, Kei Kotake, Naofumi Ohnishi, Shoichi Yamada, Keisuke Sawada, Astrophys.J. (2007), arXiv:0710.2191.
[Iwakami:2007ie]
[21-276]
Magnetohydrodynamics of Neutrino-Cooled Accretion Tori around a Rotating Black Hole in General Relativity, M. Shibata, Y. Sekiguchi, R. Takahashi, Prog.Theor.Phys. 118 (2007) 257, arXiv:0709.1766.
[Shibata:2007gp]
[21-277]
Ascertaining the Core Collapse Supernova Mechanism: An Emerging Picture?, A. Mezzacappa, S.W. Bruenn, J.M. Blondin, W.R. Hix, O.E.B. Messer, AIP Conf.Proc. 924 (2007) 234-242, arXiv:0709.1484.
[Mezzacappa:2007ad]
[21-278]
Gravitational waves from 3D MHD core collapse simulations, S.Scheidegger, T.Fischer, M.Liebendoerfer, Astron.Astrophys. (2007), arXiv:0709.0168.
[Scheidegger:2007nk]
[21-279]
Delayed neutrino-driven supernova explosions aided by the standing accretion-shock instability, A. Marek, H.-Th. Janka, Astrophys. J. 694 (2009) 664-696, arXiv:0708.3372.
[Marek:2007gr]
[21-280]
Multi-Dimensional Simulations for Early Phase Spectra of Aspherical Hypernovae: SN 1998bw and Off-Axis Hypernovae, Masaomi Tanaka, Keiichi Maeda, Paolo A. Mazzali, Ken'ichi Nomoto, Astrophys.J. 668 (2007) L19, arXiv:0708.3242.
[Tanaka:2007ej]
[21-281]
Dynamics and neutrino signal of black hole formation in non-rotating failed supernovae. I. EOS dependence, K. Sumiyoshi, S. Yamada, H. Suzuki, Astrophys. J. 667 (2007) 382-394, arXiv:0706.3762.
[Sumiyoshi:2007pp]
[21-282]
Numerical Study on Stellar Core Collapse and Neutrino Emission: Probe into the Spherically Symmetric Black Hole Progenitors with 3 - 30Msun Iron Cores, Ken'ichiro Nakazato, Kohsuke Sumiyoshi, Shoichi Yamada, Astrophys. J. 666 (2007) 1140-1151, arXiv:0705.4350.
[Nakazato:2007yd]
[21-283]
Multidimensional supernova simulations with approximative neutrino transport. II. Convection and the advective-acoustic cycle in the supernova core, L. Scheck, H.-Th. Janka, T. Foglizzo, K. Kifonidis, Astron. Astrophys. 477 (2008) 931, arXiv:0704.3001.
[Scheck:2007gw]
[21-284]
Magnetorotational Collapse of Population III Stars, Yudai Suwa, Tomoya Takiwaki, Kei Kotake, Katsuhiko Sato, Publ. Astron. Soc. Jap. 59 (2007) 771-785, arXiv:0704.1945.
[Suwa:2007nq]
[21-285]
Simulations of Magnetically-Driven Supernova and Hypernova Explosions in the Context of Rapid Rotation, Adam Burrows et al., Astrophys. J. 664 (2007) 416-434, arXiv:astro-ph/0702539.
[Burrows:2007yx]
[21-286]
Supernova Nucleosynthesis in Population III 13 - 50 $M_{\odot}$ Stars and Abundance Patterns of Extremely Metal-Poor Stars, Nozomu Tominaga, Hideyuki Umeda, Ken'ichi Nomoto, Astrophys. J. 660 (2007) 516-540, arXiv:astro-ph/0701381.
[Tominaga:2007pb]
[21-287]
Nucleosynthesis-relevant conditions in neutrino-driven supernova outflows. I. Spherically symmetric hydrodynamic simulations, A. Arcones, H.-Th. Janka, L. Scheck, Astron.Astrophys. (2006), arXiv:astro-ph/0612582.
[Arcones:2006uq]
[21-288]
Features of the Acoustic Mechanism of Core-Collapse Supernova Explosions, A. Burrows et al., Astrophys. J. 655 (2007) 416-433, arXiv:astro-ph/0610175.
[Burrows:2006uh]
[21-289]
Collapsars in Three Dimensions, Gabriel Rockefeller, Christopher L. Fryer, Hui Li, Astrophys.J. (2006), arXiv:astro-ph/0608028.
[Rockefeller:2006ep]
[21-290]
A Numerical Algorithm for Modeling Multigroup Neutrino-Radiation Hydrodynamics in Two Spatial Dimensions, F. Douglas Swesty, Eric S. Myra, arXiv:astro-ph/0607281, 2006.
[Swesty:2006fb]
[21-291]
Multi-Dimensional Simulations of the Accretion-Induced Collapse of White Dwarfs to Neutron Stars, Luc Dessart et al., Astrophys. J. 644 (2006) 1063-1084, arXiv:astro-ph/0601603.
[Dessart:2006gd]
[21-292]
Multidimensional Supernova Simulations with Approximative Neutrino Transport I. Neutron Star Kicks and the Anisotropy of Neutrino-Driven Explosions in Two Spatial Dimensions, L. Scheck, K. Kifonidis, H.-Th. Janka, E. Mueller, Astron.Astrophys. (2006), arXiv:astro-ph/0601302.
[Scheck:2006rw]
[21-293]
Two-Dimensional Hydrodynamic Core-Collapse Supernova Simulations with Spectral Neutrino Transport II. Models for Different Progenitor Stars, R. Buras, Hans-Thomas Janka, M. Rampp, K. Kifonidis, Astron. Astrophys. 457 (2005) 281-308, arXiv:astro-ph/0512189.
[Buras:2005tb]
[21-294]
Explosions of O-Ne-Mg Cores, the Crab Supernova, and Subluminous Type II-P Supernovae, F.S. Kitaura, H.-Th. Janka, W. Hillebrandt, Astron. Astrophys. 450 (2006) 345-350, arXiv:astro-ph/0512065.
[Kitaura:2005bt]
[21-295]
Non-Spherical Core-Collapse Supernovae II. Late-Time Evolution of Globally Anisotropic Neutrino-Driven Explosions and Implications for SN 1987A, K. Kifonidis et al., Astron.Astrophys. (2005), arXiv:astro-ph/0511369.
[Kifonidis:2005yj]
[21-296]
A New Mechanism for Core-Collapse Supernova Explosions, Adam Burrows, Eli Livne, Luc Dessart, Christian Ott, Jeremiah Murphy, Astrophys. J. 640 (2006) 878-890, arXiv:astro-ph/0510687.
[Burrows:2005dv]
[21-297]
Gravitational Collapse and Neutrino Emission of Population III Massive Stars, Ken'ichiro Nakazato, Kohsuke Sumiyoshi, Shoichi Yamada, Astrophys. J. 645 (2006) 519-533, arXiv:astro-ph/0509868.
[Nakazato:2005ek]
[21-298]
Numerical Analysis on Standing Accretion Shock Instability with Neutrino Heating in the Supernova Cores, Naofumi Ohnishi, Kei Kotake, Shoichi Yamada, Astrophys. J. 641 (2006) 1018-1028, arXiv:astro-ph/0509765.
[Ohnishi:2005cv]
[21-299]
Neutrino-driven convection versus advection in core collapse supernovae, T. Foglizzo, L. Scheck, H.-Th. Janka, Astrophys. J. 652 (2006) 1436-1450, arXiv:astro-ph/0507636.
[Foglizzo:2005xr]
[21-300]
Core-Collapse Very Massive Stars: Evolution, Explosion, and Nucleosynthesis of Population III 500 - 1000 $M_{\odot}$ Stars, T. Ohkubo et al., Astrophys. J. 645 (2006) 1352-1372, arXiv:astro-ph/0507593.
[Ohkubo:2005pu]
[21-301]
Two-dimensional hydrodynamic core-collapse supernova simulations with spectral neutrino transport. I. Numerical method and results for a 15 $M_\text{sun}$ star, Robert Buras, M. Rampp, H. -Th. Janka, K. Kifonidis, Astron. Astrophys. 447 (2006) 1049-1092, arXiv:astro-ph/0507135.
[Buras:2005rp]
[21-302]
Postbounce evolution of core-collapse supernovae: Long-term effects of equation of state, K. Sumiyoshi et al., Astrophys. J. 629 (2005) 922, arXiv:astro-ph/0506620.
[Sumiyoshi:2005ri]
[21-303]
Core Collapse via Coarse Dynamic Renormalization, Andras Szell, David Merritt, Ioannis G. Kevrekidis, Phys. Rev. Lett. 95 (2005) 081102, arXiv:astro-ph/0504546.
[Szell:2005dw]
[21-304]
Exploring the relativistic regime with Newtonian hydrodynamics: An improved effective gravitational potential for supernova simulations, A. Marek et al., Astron. Astrophys. 445 (2006) 273, arXiv:astro-ph/0502161.
[Marek:2005if]
[21-305]
Effects of rotation on the revival of a stalled shock in supernova explosions, T. Yamasaki, S. Yamada, Astrophys. J. 623 (2005) 1000, arXiv:astro-ph/0412625.
[Yamasaki:2004xy]
[21-306]
Anisotropies in the Neutrino Fluxes and Heating Profiles in Two-dimensional, Time-dependent, Multi-group Radiation Hydrodynamics Simulations of Rotating Core-Collapse Supernovae, R. Walder et al., Astrophys. J. 626 (2005) 317, arXiv:astro-ph/0412187.
[Walder:2004ym]
[21-307]
Nuclear Input for Core-collapse Models, G. Martinez-Pinedo, M. Liebendoerfer, D. Frekers, Nucl. Phys. A777 (2006) 395-423, arXiv:astro-ph/0412091.
[Martinez-Pinedo:2004zid]
[21-308]
Neutrino Opacities in Nuclear Matter, Adam Burrows, Sanjay Reddy, Todd A. Thompson, Nucl. Phys. A777 (2006) 356-394, arXiv:astro-ph/0404432.
[Burrows:2004vq]
[21-309]
Fluid Stability Below the Neutrinospheres of Supernova Progenitors and the Dominant Role of Lepto-Entropy Fingers, S. W. Bruenn, E. A. Raley, A. Mezzacappa, arXiv:astro-ph/0404099, 2004.
[Bruenn:2004dw]
[21-310]
Two-dimensional, Time-dependent, Multi-group, Multi-angle Radiation Hydrodynamics Test Simulation in the Core- Collapse Supernova Context, Eli Livne, Adam Burrows, Rolf Walder, Itamar Lichtenstadt, Todd A. Thompson, Astrophys. J. 609 (2004) 277, arXiv:astro-ph/0312633.
[Livne:2003ai]
[21-311]
Supernova Simulations with Boltzmann Neutrino Transport: A Comparison of Methods, M. Liebendoerfer, M. Rampp, H.-Th. Janka, A. Mezzacappa, Astrophys. J. 620 (2005) 840, arXiv:astro-ph/0310662.
From the abstract: Accurate neutrino transport has been built into spherically symmetric simulations of stellar core collapse and postbounce evolution. The results of such simulations agree that spherically symmetric models with standard microphysical input fail to explode by the delayed, neutrino-driven mechanism.
[Liebendoerfer:2003es]
[21-312]
Core-Collapse Supernova Mechanism - Importance of Rotation, A. Odrzywolek, M. Kutschera, M. Misiaszek, K. Grotowski, Acta Phys.Polon.34:2791 (2003), arXiv:astro-ph/0310047.
[Odrzywolek:2003qc]
[21-313]
3-Dimensional Core-Collapse, Chris L. Fryer, Michael S. Warren, Astrophys. J. 601 (2004) 391-404, arXiv:astro-ph/0309539.
[Fryer:2003jj]
[21-314]
Pulsar Recoil by Large-Scale Anisotropies in Supernova Explosions, L. Scheck, T. Plewa, Hans-Thomas Janka, K. Kifonidis, E. Mueller, Phys. Rev. Lett. 92 (2004) 011103, arXiv:astro-ph/0307352.
[Scheck:2003rw]
[21-315]
Evolution, Explosion and Nucleosynthesis of Core Collapse Supernovae, M. Limongi, A. Chieffi, Astrophys. J. 592 (2003) 404, arXiv:astro-ph/0304185.
[Limongi:2003ui]
[21-316]
Improved Models of Stellar Core Collapse and Still no Explosions: What is Missing?, R. Buras, M. Rampp, H.-Th. Janka, K. Kifonidis, Phys. Rev. Lett. 90 (2003) 241101, arXiv:astro-ph/0303171.
[Buras:2003sn]
[21-317]
Electron capture rates on nuclei and implications for stellar core collapse, K. Langanke et al., Phys. Rev. Lett. 90 (2003) 241102, arXiv:astro-ph/0302459.
[Langanke:2003ii]
[21-318]
Non-spherical Core Collapse Supernovae I. Neutrino-Driven Convection, Rayleigh-Taylor Instabilities, and the Formation and Propagation of Metal Clumps, K. Kifonidis, T. Plewa, H.-Th. Janka, E. Mueller, Astron. Astrophys. 408 (2003) 621, arXiv:astro-ph/0302239.
[Kifonidis:2003fv]
[21-319]
Shock breakout in core-collapse supernovae and its neutrino signature, Todd A. Thompson, Adam Burrows, Philip A. Pinto, Astrophys. J. 592 (2003) 434, arXiv:astro-ph/0211194.
[Thompson:2002mw]
[21-320]
Stability of Standing Accretion Shocks, With an Eye Toward Core Collapse Supernovae, J. M. Blondin, A. Mezzacappa, C. DeMarino, Astrophys. J. 584 (2003) 971, arXiv:astro-ph/0210634.
[Blondin:2002sm]
[21-321]
A finite difference representation of neutrino radiation hydrodynamics for spherically symmetric general relativistic supernova simulations, M. Liebendoerfer et al., Astrophys. J. Suppl. 150 (2004) 263, arXiv:astro-ph/0207036.
[Liebendoerfer:2002xn]
[21-322]
Modeling Core-Collapse Supernovae in Three Dimensions, C.L. Fryer, M.S. Warren, Astrophys. J. 574 (2002) L65-L68, arXiv:astro-ph/0206017.
[Fryer:2002zw]
[21-323]
Radiation hydrodynamics with neutrinos: Variable Eddington factor method for core-collapse supernova simulations, H.-T. Janka M. Rampp, Astron. Astrophys. 396 (2002) 361, arXiv:astro-ph/0203101.
[Rampp:2002bq]
[21-324]
NewtonPlus: Approximate Relativity for Supernova Simulations, Christian Y. Cardall, Anthony Mezzacappa, Matthias Liebendorfer, Phys. Rev.D (2001), arXiv:astro-ph/0106105.
[Cardall:2001fu]
[21-325]
Spherical collapse of supermassive stars: neutrino emission and gamma-ray bursts, Felix Linke, Jose A. Font, Hans-Thomas Janka, E. Mueller, Philippos Papadopoulos, Astron.Astrophys. (2001), arXiv:astro-ph/0103144.
[Linke:2001mq]
[21-326]
General Relativistic Effects in the Core Collapse Supernova Mechanism, S. W. Bruenn, K. R. De Nisco, A. Mezzacappa, Astrophys. J. 560 (2001) 326, arXiv:astro-ph/0101400.
[Bruenn:2001vu]
[21-327]
Conservative General Relativistic Radiation Hydrodynamics in Spherical Symmetry and Comoving Coordinates, Matthias Liebendorfer, Anthony Mezzacappa, Friedrich-Karl Thielemann, Phys. Rev. D63 (2001) 104003, arXiv:astro-ph/0012201.
[Liebendoerfer:2000fw]
[21-328]
Conditions for Shock Revival by Neutrino Heating in Core-Collapse Supernovae, H.-Th. Janka, Astron. Astrophys. 368 (2000) 527-560, arXiv:astro-ph/0008432.
[Janka:2000bt]
[21-329]
Probing the gravitational well: No supernova explosion in spherical symmetry with general relativistic Boltzmann neutrino transport, Matthias Liebendorfer et al., Phys. Rev. D63 (2001) 103004, arXiv:astro-ph/0006418.
From the article: We investigate the confluence of (i) matter and radiation in a deeper effective gravitational potential, (ii) a GR core hydrodynamic structure that acts as a more intense neutrino source, and (iii) an increased heating efficiency obtained from accurate three-flavor Boltzmann neutrino transport. However, we find that the combination of these ingredients does not result in a supernova explosion. Our model shares this outcome with recent simulations that investigated a subset of these issues (Rampp and Janka [21-330], Mezzacappa and others [21-331], Bruenn and others [21-326]).
[Liebendoerfer:2000cq]
[21-330]
Spherically symmetric simulation with Boltzmann neutrino transport of core collapse and post-bounce evolution of a 15 solar mass star, Markus Rampp, H. Thomas Janka, Astrophys. J. 539 (2000) L33-L36, arXiv:astro-ph/0005438.
[Rampp:2000ws]
[21-331]
The Simulation of a Spherically Symmetric Supernova of a 13 Solar Mass Star with Boltzmann Neutrino Transport, and Its Implications for the Supernova Mechanism, Anthony Mezzacappa et al., Phys. Rev. Lett. 86 (2001) 1935-1938, arXiv:astro-ph/0005366.
From the abstract: In this model, a supernova explosion is not obtained.
[Mezzacappa:2000jb]
[21-332]
A new algorithm for supernova neutrino transport and some applications, A. Burrows, T. Young, P. Pinto, R. Eastman, T. A. Thompson, Astrophys. J. 539 (2000) 865-887.
[Burrows:2000xsm]
[21-333]
Future detection of supernova neutrino burst and explosion mechanism, T. Totani, K. Sato, H. E. Dalhed, J. R. Wilson, Astrophys. J. 496 (1998) 216-225, arXiv:astro-ph/9710203.
From the abstract: We mainly discuss the detectability of the signatures of the delayed explosion mechanism in the time evolution of the $\bar\nu_e$ luminosity and spectrum.
[Totani:1997vj]
[21-334]
An investigation of neutrino-driven convection and the core collapse supernova mechanism using multigroup neutrino transport, A. Mezzacappa et al., Astrophys.J.Lett. (1996), arXiv:astro-ph/9612107.
[Mezzacappa:1996ae]
[21-335]
On the nature of core collapse supernova explosions, Adam Burrows, John Hayes, Bruce A. Fryxell, Astrophys. J. 450 (1995) 830, arXiv:astro-ph/9506061.
[Burrows:1995ww]
[21-336]
Neutrino Emission from Type II Supernovae: The First 100 Milliseconds, E. Myra, A. Burrows, Astrophys. J. 364 (1989) 222.
[Myra-Burrows-ApJ364-222-1989]
[21-337]
The Hydrodynamic Behavior of Supernovae Explosions, S. A. Colgate, R. H. White, Astrophys. J. 143 (1966) 626-681.
[Colgate-White-ApJ143-1966]

22 - Phenomenology - Type II - Simulations - Talks

[22-1]
Core-Collapse Supernova Simulations including Neutrino Interactions from the Virial EOS, Evan O'Connor, C.J. Horowitz, Zidu Lin, Sean Couch, IAU Symp. 331 (2017) 107-112, arXiv:1712.08253. IAU Symposium 331, SN 1987A, 30 years later - Cosmic Rays and Nuclei from Supernovae and Their Aftermaths.
[OConnor:2017ftn]
[22-2]
Gravitational wave signals from multi-dimensional core-collapse supernova explosion simulations, K.N. Yakunin et al., arXiv:1710.08372, 2017. 52nd Rencontres de Moriond.
[Yakunin:2017sls]
[22-3]
Simulations of Electron Capture and Low-Mass Iron Core Supernovae, B. Muller et al., Mem.Soc.Ast.It. 88 (2017) 288, arXiv:1710.02641. The AGB-Supernova Mass Transition.
[Muller:2017gyq]
[22-4]
Spatial distribution of radionuclides in 3D models of SN 1987A and Cas A, H.-Thomas Janka, Michael Gabler, Annop Wongwathanarat, IAU Symp. 324 (2017) 148-156, arXiv:1705.01159. SN 1987A, 30 years later, IAU Symposium No. 331, 2017.
[Janka:2017nhh]
[22-5]
Multi-dimensional Core-Collapse Supernova Simulations with Neutrino Transport, Kuo-Chuan Pan, Matthias Liebendorfer, Matthias Hempel, Friedrich-Karl Thielemann, JPS Conf.Proc. 14 (2017) 020703, arXiv:1701.06701. Nuclei in the Cosmos XIV, Niigata, Japan (2016).
[Pan:2017nzj]
[22-6]
PUSHing Core-Collapse Supernovae to Explosions in Spherical Symmetry: Nucleosynthesis Yields, Sanjana Sinha, Carla Frohlich, Kevin Ebinger, Albino Perego, Matthias Hempel, Marius Eichler, Matthias Liebendorfer, Friedrich-Karl Thielemann, JPS Conf.Proc. 14 (2017) 020608, arXiv:1701.05203. 14th International Symposium on Nuclei in the Cosmos (NIC-XIV).
[Sinha:2017hnn]
[22-7]
Constraining the supersaturation density equation of state from core-collapse supernova simulations - Excluded volume extension of the baryons, Tobias Fischer, Eur.Phys.J. A52 (2016) 54, arXiv:1604.01629. EPJA topical issue 'Exotic Matter in Neutron Stars'.
[Fischer:2016jkc]
[22-8]
Expected impact from weak reactions with light nuclei in core-collapse supernova simulations, T. Fischer et al., EPJ Web Conf. 109 (2016) 06002, arXiv:1512.00193. OMEG 2015.
[Fischer:2015sll]
[22-9]
Multimessengers from 3D Core-Collapse Supernovae, Konstantin N. Yakunin et al., arXiv:1507.05901, 2015. 50th Rencontres de Moriond on Gravitation: La Thuile, Italy, March 21-28, 2014.
[Yakunin:2015nma]
[22-10]
A Neutrino-Driven Core Collapse Supernova Explosion of a 15 M Star, Anthony Mezzacappa et al., arXiv:1507.05680, 2015. ASTRONUM 2014.
[Mezzacappa:2015bma]
[22-11]
Two- and Three-Dimensional Multi-Physics Simulations of Core Collapse Supernovae: A Brief Status Report and Summary of Results from the 'Oak Ridge' Group, Anthony Mezzacappa et al., ASP Conf.Ser. 488 (2014) 102, arXiv:1405.7075. ASTRONUM 2013.
[Mezzacappa:2014era]
[22-12]
Towards Petaflops Capability of the VERTEX Supernova Code, Andreas Marek, Markus Rampp, Florian Hanke, Hans-Thomas Janka, arXiv:1404.1719, 2014.
[1404.1719]
[22-13]
Two- and three-dimensional simulations of core-collapse supernovae with CHIMERA, Eric J. Lentz et al., PoS NICXII NICXII (2012) 208, arXiv:1301.1326. 12th Symposium on Nuclei in the Cosmos. 5-12 August 2012.
[Lentz:2012tel]
[22-14]
Numerical modeling of core-collapse supernovae and compact objects, K. Sumiyoshi, IAU Symp. 291 (2013) 67, arXiv:1212.6131. IAUS 291 'Neutron Stars and Pulsars: Challenges and Opportunities after 80 years'.
[Sumiyoshi:2012un]
[22-15]
Exploding SNe with jets: time-scales, Oded Papish, Noam Soker, IAU Symp. 279 (2012) 377, arXiv:1204.2560. IAU Symposium No. 279, 2012.
[Papish:2012qx]
[22-16]
General Relativistic Explosion Models of Core-Collapse Supernovae, Bernhard Mueller, Andreas Marek, Hans-Thomas Janka, Harald Dimmelmeier, ASP Conf.Ser. 459 (2012) 137, arXiv:1112.1920.
[Mueller:2011aa]
[22-17]
Studies of Stellar Collapse and Black Hole Formation with the Open-Source Code GR1D, Christian D. Ott, Evan O'Connor, AIP Conf. Proc. 1269 (2010) 166-173, arXiv:1011.0005. OMEG10 Symposium, Osaka, Japan, March 8-10, 2010.
[Ott:2010mk]
[22-18]
Mechanisms of Core-Collapse Supernovae $\text{\&}$ Simulation Results from the CHIMERA Code, S. W. Bruenn et al., AIP Conference Proceedings 1111 (2010) 593-601, arXiv:1002.4909. Probing Stellar Populations Out To The Distant Universe: Cefalu 2008.
[Bruenn:2009mgs]
[22-19]
PoS NICXI (2010) 082.
[Arcones:2010nj]
[22-20]
Computational Models of Stellar Collapse and Core-Collapse Supernovae, C. D. Ott et al., J. Phys. Conf. Ser. 180 (2009) 012022, arXiv:0907.4043. DOE/SciDAC 2009.
[Ott:2009ii]
[22-21]
Nucleosynthesis Calculations from Core-Collapse Supernovae, Christopher L. Fryer et al. (The NuGrid), arXiv:0811.4648, 2008. 10th Symposium on Nuclei in the Cosmos (NIC X), July 27 - August 1 2008, Mackinack Island, Michigan, USA.
[NuGrid:2008iti]
[22-22]
Supernova explosions and the birth of neutron stars, H.-Th. Janka, A. Marek, B. Mueller, L. Scheck, AIP Conf. Proc. 983 (2008) 369-378, arXiv:0712.3070. 40 Years of Pulsars: Millisecond Pulsars, Magnetars, and More, August 12-17, 2007, McGill Univ., Montreal, Canada.
[Janka:2007hi]
[22-23]
Nuclear physics with spherically symmetric supernova models, M. Liebendoerfer, T. Fischer, C. Frohlich, F.-K. Thielemann, S. Whitehouse, J. Phys. G35 (2008) 014056, arXiv:0708.4296. NPA III, Dresden 2007.
[Liebendoerfer:2007hq]
[22-24]
Multi-Dimensional Explorations in Supernova Theory, Adam Burrows, Luc Dessart, Christian D. Ott, Eli Livne, Phys. Rept. 442 (2007) 23-37, arXiv:astro-ph/0612460. Centennial Festschrift for Hans Bethe, 2006.
[Burrows:2006ci]
[22-25]
Collapse and black hole formation in magnetized, differentially rotating neutron stars, Branson C. Stephens et al., Class. Quant. Grav. 24 (2007) S207-S220, arXiv:gr-qc/0610103. New Frontiers in Numerical Relativity, the Albert Einstein Institute, Potsdam, July 17-21, 2006.
[Stephens:2006cn]
[22-26]
Efficient approximations of neutrino physics for three-dimensional simulations of stellar core collapse, M. Liebendoerfer, U.-L. Pen, C. Thompson, PoS NIC-IX (2006) 132, arXiv:astro-ph/0609651. Nuclei in the Cosmos IX, Geneva, June 25-30.
[Liebendorfer:2006et]
[22-27]
Toward Radiation-Magnetohydrodynamic Simulations in Core-Collapse Supernovae, Kei Kotake, Naofumi Ohnishi, Shoichi Yamada, Katsuhiko Sato, J. Phys. Conf. Ser. 31 (2006) 95, arXiv:astro-ph/0511826. Third 21COE Symposium : Astrophysics as Interdisciplinary Science, Waseda University, Japan, September 1-3, 2005.
[Kotake:2005ng]
[22-28]
Toward Five-dimensional Core-collapse Supernova Simulations, Christian Y. Cardall et al., J. Phys. Conf. Ser. 16 (2005) 390, arXiv:astro-ph/0510706. SciDAC 2005, Scientific Discovery through Advanced Computing, San Francisco, CA, 26-30 June 2005.
[Cardall:2005id]
[22-29]
The Long Term: Six-dimensional Core-collapse Supernova Models, Christian Y. Cardall, Alexei O. Razoumov, Eirik Endeve, Anthony Mezzacappa, arXiv:astro-ph/0510704, 2005. Open Issues in Understanding Core Collapse Supernovae, National Institute for Nuclear Theory, University of Washington, 22-24 June 2004.
[Cardall:2005ib]
[22-30]
Multigroup Models of the Convective Epoch in Core Collapse Supernovae, F. Douglas Swesty, Eric S. Myra, J. Phys. Conf. Ser. 16 (2005) 380, arXiv:astro-ph/0507294. SciDAC 2005, San Francisco, CA, USA, 26-30 June 2005.
[Swesty:2005jv]
[22-31]
An approach toward the successful supernova explosion by physics of unstable nuclei, K. Sumiyoshi et al., Nucl. Phys. A758 (2005) 63, arXiv:astro-ph/0506619. Nuclei in the Cosmos 8.
[Sumiyoshi:2005rh]
[22-32]
Issues with Core-Collapse Supernova Progenitor Models, Stephen W. Bruenn, arXiv:astro-ph/0506313, 2005. Workshop on Open Issues in Understanding Core Collapse Supernovae, Seattle, Washington, 22-24 June 2004.
[Bruenn:2005hv]
[22-33]
Magnetic Fields in Core Collapse Supernovae: Possibilities and Gaps, J. Craig Wheeler, Shizuka Akiyama, arXiv:astro-ph/0412382, 2004. INT workshop 'Open Issues in Understanding Core Collapse Supernovae,' Seattle, 2004.
[Wheeler:2004ff]
[22-34]
Neutrino-Driven Supernovae: an Accretion Instability in a Nuclear Physics Controlled Environment, Hans-Thomas Janka et al., Nucl. Phys. A758 (2005) 19, arXiv:astro-ph/0411347. 8th Symposium on Nuclei in the Cosmos, Vancouver, BC, Canada, 19-23 Jul 2004.
[Janka:2004an]
[22-35]
Magnetorotational supernova simulations, S.G. Moiseenko, G.S. Bisnovatyi-Kogan, N.V. Ardeljan, ASP Conf.Ser. (2004), arXiv:astro-ph/0410330. International Conference '1604-2004 Supernovae as Cosmological Lighthouses' (Padova, Italy, June 16-19, 2004).
[Moiseenko:2004vg]
[22-36]
The Core Collapse Supernova Mechanism: Current Models, Gaps, and the Road Ahead, Anthony Mezzacappa, ASP Conf.Ser. 342 (2005) 175, arXiv:astro-ph/0410085. Supernovae as Cosmological Lighthouses, Padua, Italy, June 16-19, 2004.
[Mezzacappa:2004ic]
[22-37]
Early Spectra of Supernovae, E. Baron, Peter Nugent, David Branch, Peter H. Hauschildt, ASP Conf.Ser. (2004), arXiv:astro-ph/0409659. 1604-2004 Supernovae As Cosmological Lighthouses, San Francisco.
[Baron:2004nw]
[22-38]
Rotating Core Collapse and Bipolar Supernova Explosions, Adam Burrows, Rolf Walder, Christian D. Ott, Eli Livne, ASP Conf.Ser. (2004), arXiv:astro-ph/0409035. Fate of the Most Massive Stars, Grand Teton National Park, Wyoming, 23-28 May 2004.
[Burrows:2004va]
[22-39]
Understanding Core-Collapse Supernovae, Adam Burrows, arXiv:astro-ph/0405427, 2004. Twelfth Workshop on 'Nuclear Astrophysics,' a Tribute to an Explosive Astrophysicist, Wolfgang Hillebrandt, on the occasion of his 60th Birthday, Ringberg Castle, Lake Tegernsee, Germany, March 22 - 27, 2004.
[Burrows:2004pu]
[22-40]
Core-Collapse Supernovae: Modeling between Pragmatism and Perfectionism, H.-Th. Janka et al., arXiv:astro-ph/0405289, 2004. 12th Workshop on Nuclear Astrophysics, Ringberg Castle, March 22-27, 2004.
[Janka:2004tt]
[22-41]
Fifty-Nine Reasons for a Supernova to not Explode, M. Liebendoerfer, arXiv:astro-ph/0405029, 2004. 12th Workshop on 'Nuclear Astrophysics', Ringberg Castle, March 22-27, 2004.
[Liebendoerfer:2004fk]
[22-42]
An Approach to Neutrino Radiative Transfer in Supernova Simulations, Christian Y. Cardall, arXiv:astro-ph/0404401, 2004. Numerical Methods for Multidimensional Radiative Transfer Problems (RadConf2003), Heidelberg, Germany, 24-26 September 2003.
[Cardall:2004nd]
[22-43]
Synthetic Spectrum Methods for Three-Dimensional Supernova Models, R. C. Thomas, arXiv:astro-ph/0310619, 2003. '3-D Signatures in Stellar Explosions', Austin, Texas.
[Thomas:2003ue]
[22-44]
Effects of Small-Scale Fluctuations of Neutrino Flux in Supernova Explosions, H. Madokoro, T. Shimizu, Y. Motizuki, Springer Proc.Phys. 99 (2005) 309-314, arXiv:astro-ph/0310481. IAU Colloquium 192, SUPERNOVAE (10 years of SN1993J), Valencia, Spain.
[Madokoro:2003hh]
[22-45]
Topics in Core-Collapse Supernova Theory, A. Burrows, C. D. Ott, C. Meakin, arXiv:astro-ph/0309684, 2003. 3-D Signatures in Stellar Explosions: A Workshop honoring J. Craig Wheeler's 60th birthday, June 10-13, 2003, Austin, Texas, USA.
[Burrows:2003br]
[22-46]
The Status of Core-collapse Supernova Simulations, C. Y. Cardall, arXiv:astro-ph/0212438, 2002. 4th International Workshop on the Identification of Dark Matter (IDM2002), York, England 2-6 September 2002.
[Cardall:2002sq]
[22-47]
The Mechanism of Core-Collapse Supernova Explosions: A Status Report, A. Burrows, T. A. Thompson, arXiv:astro-ph/0210212, 2002. ESO/MPA/MPE Workshop (an ESO Astrophysics Symposium) 'From Twilight to Highlight: The Physics of Supernovae', Garching bei Munchen, Germany, July 29-31, 2002.
[Burrows:2002bz]
[22-48]
The importance of neutrino opacities for the accretion luminosity in spherically symmetric supernova models, M. Liebendorfer et al., arXiv:astro-ph/0203260, 2002. 11th Workshop on Nuclear Astrophysics, Ringberg Caste, Lake Tegernsee, Germany, 11-16 Feb 2002.
[Liebendoerfer:2002ef]
[22-49]
Neutrinos from supernovae: experimental status and perspectives, F. Cei, Int. J. Mod. Phys. A17 (2002) 1765-1776, arXiv:hep-ex/0202043. Second International Workshop on Matter, Anti-Matter and Dark Matter, Trento (Italy), 29-30 October 2001.
[Cei:2002mq]
[22-50]
Toward a Standard Model of Core Collapse Supernovae, A. Mezzacappa, Nucl. Phys. A688 (2001) 158, arXiv:astro-ph/0010580. Nuclei in the Cosmos 2000, University of Aarhus, Aarhus, Denmark, June 27-July 1, 2000.
[Mezzacappa:2000jj]

23 - Phenomenology - Type II - Flavor Conversion

[23-1]
Fast neutrino flavor conversions in a supernova: emergence, evolution, and effects, Zewei Xiong, Meng-Ru Wu, Manu George, Chun-Yu Lin, Noshad Khosravi Largani, Tobias Fischer, Gabriel Martinez-Pinedo, arXiv:2402.19252, 2024.
[Xiong:2024tac]
[23-2]
Application of Neural Networks for the Reconstruction of Supernova Neutrino Energy Spectra Following Fast Neutrino Flavor Conversions, Sajad Abbar, Meng-Ru Wu, Zewei Xiong, Phys.Rev.D 109 (2024) 083019, arXiv:2401.17424.
[Abbar:2024ynh]
[23-3]
Machine Learning-Based Detection of Non-Axisymmetric Fast Neutrino Flavor Instabilities in Core-Collapse Supernovae, Sajad Abbar, Akira Harada, Hiroki Nagakura, arXiv:2401.10915, 2024.
[Abbar:2024chh]
[23-4]
Collisional flavor pendula and neutrino quantum thermodynamics, Lucas Johns, Santiago Rodriguez, arXiv:2312.10340, 2023.
[Johns:2023xae]
[23-5]
Collisions and collective flavor conversion: Integrating out the fast dynamics, Damiano F. G. Fiorillo, Ian Padilla-Gay, Georg G. Raffelt, Phys.Rev.D 109 (2024) 063021, arXiv:2312.07612.
[Fiorillo:2023ajs]
[23-6]
Fast Conversion of Neutrinos: Energy Dependence of Flavor Instabilities, Pedro Dedin Neto, Irene Tamborra, Shashank Shalgar, arXiv:2312.06556, 2023.
[DedinNeto:2023ykt]
[23-7]
Perturbing Fast Neutrino Flavor Conversion, Marie Cornelius, Shashank Shalgar, Irene Tamborra, JCAP 02 (2024) 038, arXiv:2312.03839.
[Cornelius:2023eop]
[23-8]
Physics-Informed Neural Networks for Predicting the Asymptotic Outcome of Fast Neutrino Flavor Conversions, Sajad Abbar, Meng-Ru Wu, Zewei Xiong, Phys.Rev.D 109 (2024) 043024, arXiv:2311.15656.
[Abbar:2023ltx]
[23-9]
Fast neutrino-flavor swap in high-energy astrophysical environments, Masamichi Zaizen, Hiroki Nagakura, arXiv:2311.13842, 2023.
[Zaizen:2023wht]
[23-10]
Collisional and Fast Neutrino Flavor Instabilities in Two-dimensional Core-collapse Supernova Simulation with Boltzmann Neutrino Transport, Ryuichiro Akaho, Jiabao Liu, Hiroki Nagakura, Masamichi Zaizen, Shoichi Yamada, Phys.Rev.D 109 (2024) 023012, arXiv:2311.11272.
[Akaho:2023brj]
[23-11]
Collective neutrino oscillations and heavy-element nucleosynthesis in supernovae: exploring potential effects of many-body neutrino correlations, A. Baha Balantekin, Michael J. Cervia, Amol V. Patwardhan, Rebecca Surman, Xilu Wang, arXiv:2311.02562, 2023.
[Balantekin:2023ayx]
[23-12]
Universality of the Neutrino Collisional Flavor Instability in Core Collapse Supernovae, Jiabao Liu, Hiroki Nagakura, Ryuichiro Akaho, Akira Ito, Masamichi Zaizen, Shoichi Yamada, Phys.Rev.D 108 (2023) 123024, arXiv:2310.05050.
[Liu:2023vtz]
[23-13]
Detecting Fast Neutrino Flavor Conversions with Machine Learning, Sajad Abbar, Hiroki Nagakura, Phys.Rev.D 109 (2024) 023033, arXiv:2310.03807.
[Abbar:2023zkm]
[23-14]
On the Effects of Quantum Decoherence in a Future Supernova Neutrino Detection, Marcos V. dos Santos, Pedro C. de Holanda, Pedro Dedin Neto, Ernesto Kemp, Phys.Rev.D 108 (2023) 103032, arXiv:2306.17591.
[dosSantos:2023skk]
[23-15]
Fast Neutrino Flavor Conversions can Help and Hinder Neutrino-Driven Explosions, Jakob Ehring, Sajad Abbar, Hans-Thomas Janka, Georg Raffelt, Irene Tamborra, Phys.Rev.Lett. 131 (2023) 061401, arXiv:2305.11207.
[Ehring:2023abs]
[23-16]
Applications of Machine Learning to Detecting Fast Neutrino Flavor Instabilities in Core-Collapse Supernova and Neutron Star Merger Models, Sajad Abbar, Phys.Rev.D 107 (2023) 103006, arXiv:2303.05560.
[Abbar:2023kta]
[23-17]
Fast Neutrino Flavor Conversion in Core-Collapse Supernovae: A Parametric Study in 1D Models, Jakob Ehring, Sajad Abbar, Hans-Thomas Janka, Georg Raffelt, Phys.Rev.D 107 (2023) 103034, arXiv:2301.11938.
[Ehring:2023lcd]
[23-18]
Roles of fast neutrino-flavor conversion on the neutrino-heating mechanism of core-collapse supernova, Hiroki Nagakura, Phys.Rev.Lett. 130 (2023) 211401, arXiv:2301.10785.
[Nagakura:2023mhr]
[23-19]
Collisional flavor instability in dense neutrino gases, Zewei Xiong, Lucas Johns, Meng-Ru Wu, Huaiyu Duan, Phys.Rev.D 108 (2023) 083002, arXiv:2212.03750.
[Xiong:2022zqz]
[23-20]
Simple method for determining asymptotic states of fast neutrino-flavor conversion, Masamichi Zaizen, Hiroki Nagakura, Phys.Rev.D 107 (2023) 103022, arXiv:2211.09343.
[Zaizen:2022cik]
[23-21]
Connecting small-scale to large-scale structures of fast neutrino-flavor conversion, Hiroki Nagakura, Masamichi Zaizen, Phys.Rev.D 107 (2023) 063033, arXiv:2211.01398.
[Nagakura:2022xwe]
[23-22]
Evolution of collisional neutrino flavor instabilities in spherically symmetric supernova models, Zewei Xiong, Meng-Ru Wu, Gabriel Martinez-Pinedo, Tobias Fischer, Manu George, Chun-Yu Lin, Lucas Johns, Phys.Rev.D 107 (2023) 083016, arXiv:2210.08254.
[Xiong:2022vsy]
[23-23]
Explosive nucleosynthesis with fast neutrino-flavor conversion in core-collapse supernovae, Shin-ichiro Fujimoto, Hiroki Nagakura, Mon.Not.Roy.Astron.Soc. 519 (2022) 2623-2629, arXiv:2210.02106.
[Fujimoto:2022njj]
[23-24]
Collisional instabilities of neutrinos and their interplay with fast flavor conversion in compact objects, Lucas Johns, Zewei Xiong, Phys.Rev.D 106 (2022) 103029, arXiv:2208.11059.
[Johns:2022yqy]
[23-25]
Spin-Flavor Precession Phase Effects in Supernova, T. Bulmus, Y. Pehlivan, arXiv:2208.06926, 2022.
[Bulmus:2022gyz]
[23-26]
Non-Standard Neutrino Self-Interactions Can Cause Neutrino Flavor Equipartition Inside the Supernova Core, Sajad Abbar, Phys.Rev.D 107 (2023) 103002, arXiv:2208.06023.
[Abbar:2022jdm]
[23-27]
The Fast Flavor Instability in Hypermassive Neutron Star Disk Outflows, Rodrigo Fernandez, Sherwood Richers, Nicole Mulyk, Steven Fahlman, Phys.Rev.D 106 (2022) 103003, arXiv:2207.10680.
[Fernandez:2022yyv]
[23-28]
Effects of energy-dependent scatterings on fast neutrino flavor conversions, Chinami Kato, Hiroki Nagakura, Phys.Rev.D 106 (2022) 123013, arXiv:2207.09496.
[Kato:2022vsu]
[23-29]
Neutrino-anti-neutrino instability in dense neutrino systems, with applications to the early universe and to supernovae, R. F. Sawyer, arXiv:2206.09290, 2022.
[Sawyer:2022ugt]
[23-30]
Time-dependent, quasi-steady, and global features of fast neutrino-flavor conversion, Hiroki Nagakura, Masamichi Zaizen, Phys.Rev.Lett. 129 (2022) 261101, arXiv:2206.04097.
[Nagakura:2022kic]
[23-31]
Supernova Neutrino Decoupling Is Altered by Flavor Conversion, Shashank Shalgar, Irene Tamborra, Phys.Rev.D 108 (2023) 043006, arXiv:2206.00676.
[Shalgar:2022rjj]
[23-32]
Code Comparison for Fast Flavor Instability Simulation, Sherwood Richers, Huaiyu Duan, Meng-Ru Wu, Soumya Bhattacharyya, Masamichi Zaizen, Manu George, Chun-Yu Lin, Zewei Xiong, Phys.Rev.D 106 (2022) 043011, arXiv:2205.06282.
[Richers:2022bkd]
[23-33]
Supernova Fast Flavor Conversions in 1+1 D : Influence of Mu-tau neutrinos, Francesco Capozzi, Madhurima Chakraborty, Sovan Chakraborty, Manibrata Sen, Phys.Rev.D 106 (2022) 083011, arXiv:2205.06272.
[Capozzi:2022dtr]
[23-34]
Collisional dilemma: Enhancement or damping of fast flavor conversion of neutrinos, Rasmus S. L. Hansen, Shashank Shalgar, Irene Tamborra, Phys.Rev.D 105 (2022) 123003, arXiv:2204.11873.
[Hansen:2022xza]
[23-35]
Impact of hypermagnetic fields on relic gravitational waves, neutrino oscillations and baryon asymmetry, Maxim Dvornikov, Int.J.Mod.Phys.D 32 (2023) 2250141, arXiv:2203.00530.
[Dvornikov:2022gkf]
[23-36]
Inference of bipolar neutrino flavor oscillations near a core-collapse supernova, based on multiple measurements at Earth, Eve Armstrong, Amol V. Patwardhan, A.A. Ahmetaj, M. Margarette Sanchez, Sophia Miskiewicz, Marcus Ibrahim, Ishaan Singh, Phys.Rev.D 105 (2022) 103003, arXiv:2201.08505.
[Armstrong:2022tsj]
[23-37]
Suppression of Scattering-Induced Fast Neutrino Flavor Conversions in Core-Collapse Supernovae, Sajad Abbar, Francesco Capozzi, JCAP 03 (2022) 051, arXiv:2111.14880.
[Abbar:2021lmm]
[23-38]
Neutrino flavor mixing with moments, McKenzie Myers, Theo Cooper, MacKenzie Warren, Jim Kneller, Gail McLaughlin, Sherwood Richers, Evan Grohs, Carla Frohlich, Phys.Rev.D 105 (2022) 123036, arXiv:2111.13722.
[Myers:2021hnp]
[23-39]
Prospects of fast flavor neutrino conversion in rotating core-collapse supernovae, Akira Harada, Hiroki Nagakura, arXiv:2110.08291, 2021.
[2110.08291]
[23-40]
Conversions of propagation eigenstates of supernova neutrinos by atomic electrons, Motohiko Kusakabe, arXiv:2109.11942, 2021.
[Kusakabe:2021ric]
[23-41]
Spectral splits and entanglement entropy in collective neutrino oscillations, Amol V. Patwardhan, Michael J. Cervia, A. B. Balantekin, Phys.Rev.D 104 (2021) 123035, arXiv:2109.08995.
[Patwardhan:2021rej]
[23-42]
The Neutrino Fast Flavor Instability in Three Dimensions, Sherwood Richers, Donald Willcox, Nicole Ford, Phys.Rev.D 104 (2021) 103023, arXiv:2109.08631.
[Richers:2021xtf]
[23-43]
Collective fast neutrino flavor conversions in an 1D box: (I) initial condition and long-term evolution, Meng-Ru Wu, Manu George, Chun-Yu Lin, Zewei Xiong, Phys.Rev.D 104 (2021) 103003, arXiv:2108.09886.
[Wu:2021uvt]
[23-44]
Where, when and why: occurrence of fast-pairwise collective neutrino oscillation in three-dimensional core-collapse supernova models, Hiroki Nagakura, Lucas Johns, Adam Burrows, George M. Fuller, Phys.Rev.D 104 (2021) 083025, arXiv:2108.07281.
[Nagakura:2021hyb]
[23-45]
Fast flavor conversion of neutrinos in presence of matter bulk velocity, Ian Padilla-Gay, Shashank Shalgar, arXiv:2108.00012, 2021.
[Padilla-Gay:2021ywy]
[23-46]
A new method for detecting fast neutrino flavor conversions in core-collapse supernova models with two-moment neutrino transport, Hiroki Nagakura, Lucas Johns, Phys.Rev.D 104 (2021) 063014, arXiv:2106.02650.
[Nagakura:2021suv]
[23-47]
Spin Flavor Spectral Splits of Supernova Neutrino Flavor Conversions, Ziyi Yuan, Yu-Feng Li, Xiang Zhou, arXiv:2105.07928, 2021.
[Yuan:2021exm]
[23-48]
Limits on active-sterile neutrino mixing parameters using heavy nuclei abundances, M. M. Saez, K. J. Fushimi, M. E. Mosquera, O. Civitarese, Int.J.Mod.Phys. E30 (2021) 2150028, arXiv:2105.03202.
[Saez:2021rxq]
[23-49]
Collisional flavor instabilities of supernova neutrinos, Lucas Johns, Phys.Rev.Lett. 130 (2023) 191001, arXiv:2104.11369.
[Johns:2021qby]
[23-50]
Nonlinear evolution of fast neutrino flavor conversion in the preshock region of core-collapse supernovae, Masamichi Zaizen, Taiki Morinaga, Phys.Rev.D 104 (2021) 083035, arXiv:2104.10532.
[Zaizen:2021wwl]
[23-51]
Fast flavor instabilities and the search for neutrino angular crossings, Lucas Johns, Hiroki Nagakura, Phys.Rev. D103 (2021) 123012, arXiv:2104.04106.
[Johns:2021taz]
[23-52]
Dynamical Phase Transitions in models of Collective Neutrino Oscillations, Alessandro Roggero, Phys.Rev.D 104 (2021) 123023, arXiv:2103.11497.
[Roggero:2021fyo]
[23-53]
Coherence of oscillations in matter and supernova neutrinos, Yago P. Porto-Silva, Alexei Yu. Smirnov, JCAP 2106 (2021) 029, arXiv:2103.10149.
[Porto-Silva:2021ael]
[23-54]
Particle-in-cell Simulation of the Neutrino Fast Flavor Instability, Sherwood Richers, Don E. Willcox, Nicole M. Ford, Andrew Myers, Phys.Rev. D103 (2021) 083013, arXiv:2101.02745.
[Richers:2021nbx]
[23-55]
Fast flavor oscillations in dense neutrino media with collisions, Joshua D. Martin, J. Carlson, Vincenzo Cirigliano, Huaiyu Duan, Phys.Rev. D103 (2021) 063001, arXiv:2101.01278.
[Martin:2021xyl]
[23-56]
Fast neutrino flavor conversions in one-dimensional core-collapse supernova models with and without muon creation, Francesco Capozzi, Sajad Abbar, Robert Bollig, H.-Thomas Janka, Phys.Rev. D103 (2021) 063013, arXiv:2012.08525.
[Capozzi:2020syn]
[23-57]
On the characteristics of fast neutrino flavor instabilities in three-dimensional core-collapse supernova models, Sajad Abbar, Francesco Capozzi, Robert Glas, H.-Thomas Janka, Irene Tamborra, Phys.Rev. D103 (2021) 063033, arXiv:2012.06594.
[Abbar:2020qpi]
[23-58]
Three-flavor collective neutrino conversions with multi-azimuthal-angle instability in an electron-capture supernova model, Masamichi Zaizen, Shunsaku Horiuchi, Tomoya Takiwaki, Kei Kotake, Takashi Yoshida, Hideyuki Umeda, John F. Cherry, Phys.Rev. D103 (2021) 063008, arXiv:2011.09635.
[Zaizen:2020xum]
[23-59]
A change of direction in pairwise neutrino conversion physics: The effect of collisions, Shashank Shalgar, Irene Tamborra, Phys.Rev. D103 (2021) 063002, arXiv:2011.00004.
[Shalgar:2020wcx]
[23-60]
Inference of neutrino flavor evolution through data assimilation and neural differential equations, Ermal Rrapaj, Amol V. Patwardhan, Eve Armstrong, George Fuller, Phys.Rev. D103 (2021) 043006, arXiv:2010.00695.
[Rrapaj:2020lmx]
[23-61]
Fast oscillations, collisionless relaxation, and spurious evolution of supernova neutrino flavor, Lucas Johns, Hiroki Nagakura, George M. Fuller, Adam Burrows, Phys.Rev. D102 (2020) 103017, arXiv:2009.09024.
[Johns:2020qsk]
[23-62]
Fast Flavor Depolarization of Supernova Neutrinos, Soumya Bhattacharyya, Basudeb Dasgupta, Phys.Rev.Lett. 126 (2021) 061302, arXiv:2009.03337.
[Bhattacharyya:2020jpj]
[23-63]
Turbulence Fingerprint on Collective Oscillations of Supernova Neutrinos, Sajad Abbar, Phys.Rev. D103 (2021) 045014, arXiv:2007.13655.
[Abbar:2020ror]
[23-64]
Potential Impact of Fast Flavor Oscillations on Neutrino-driven Winds and Their Nucleosynthesis, Zewei Xiong, Andre Sieverding, Manibrata Sen, Yong-Zhong Qian, Astrophys.J. 900 (2020) 144, arXiv:2006.11414.
[Xiong:2020ntn]
[23-65]
Fast flavor conversions in supernovae: the rise of mu-tau neutrinos, Francesco Capozzi, Madhurima Chakraborty, Sovan Chakraborty, Manibrata Sen, Phys.Rev.Lett. 125 (2020) 251801, arXiv:2005.14204.
[Capozzi:2020kge]
[23-66]
Searching for Fast Neutrino Flavor Conversion Modes in Core-collapse Supernova Simulations, Sajad Abbar, JCAP 2005 (2020) 027, arXiv:2003.00969.
[Abbar:2020fcl]
[23-67]
Testing MSW effect in Supernova Explosion with Neutrino event rates, Kwang-Chang Lai, C. S. Jason Leung, Guey-Lin Lin, Phys.Rev.D 107 (2023) 043017, arXiv:2001.08543.
[Lai:2020sdv]
[23-68]
Fast Neutrino Flavor Instability in the Neutron-star Convection Layer of Three-dimensional Supernova Models, Robert Glas, H.-Thomas Janka, Francesco Capozzi, Manibrata Sen, Basudeb Dasgupta, Alessandro Mirizzi, Guenter Sigl, Phys.Rev. D101 (2020) 063001, arXiv:1912.00274.
[Glas:2019ijo]
[23-69]
Spectral swaps in a two-dimensional neutrino ring model, Joshua D. Martin, J. Carlson, Huaiyu Duan, Phys.Rev. D101 (2020) 023007, arXiv:1911.09772.
[Martin:2019dof]
[23-70]
Neutrino propagation hinders fast pairwise flavor conversions, Shashank Shalgar, Ian Padilla-Gay, Irene Tamborra, JCAP 2006 (2020) 048, arXiv:1911.09110.
[Shalgar:2019qwg]
[23-71]
Fast Neutrino Flavor Conversion Modes in Multidimensional Core-collapse Supernova Models: the Role of the Asymmetric Neutrino Distributions, Sajad Abbar, Huaiyu Duan, Kohsuke Sumiyoshi, Tomoya Takiwaki, Maria Cristina Volpe, Phys.Rev. D101 (2020) 043016, arXiv:1911.01983.
[Abbar:2019zoq]
[23-72]
Fast collective neutrino oscillations inside the neutrino sphere in core-collapse supernovae, Milad Delfan Azari, Shoichi Yamada, Taiki Morinaga, Hiroki Nagakura, Shun Furusawa, Akira Harada, Hirotada Okawa, Wakana Iwakami, Kohsuke Sumiyoshi, Phys.Rev. D101 (2020) 023018, arXiv:1910.06176.
[DelfanAzari:2019tez]
[23-73]
Neutrino oscillations in supernovae: angular moments and fast instabilities, Lucas Johns, Hiroki Nagakura, George M. Fuller, Adam Burrows, Phys.Rev. D101 (2020) 043009, arXiv:1910.05682.
[Johns:2019izj]
[23-74]
The viability of the 3+1 neutrino model in the supernova neutrino process, Heamin Ko, Dukjae Jang, Motohiko Kusakabe, Myung-Ki Cheoun, Astrophys.J. 894 (2020) 99, arXiv:1910.04984.
[Ko:2019asm]
[23-75]
Fast-pairwise collective neutrino oscillations associated with asymmetric neutrino emissions in core-collapse supernova, Hiroki Nagakura, Taiki Morinaga, Chinami Kato, Shoichi Yamada, arXiv:1910.04288, 2019.
[Nagakura:2019sig]
[23-76]
A new possibility of the fast neutrino-flavor conversion in the pre-shock region of core-collapse supernova, Taiki Morinaga, Hiroki Nagakura, Chinami Kato, Shoichi Yamada, Phys.Rev.Res. 2 (2020) 012046, arXiv:1909.13131.
[Morinaga:2019wsv]
[23-77]
Three flavor neutrino conversions in supernovae: Slow $\&$ Fast instabilities, Madhurima Chakraborty, Sovan Chakraborty, JCAP 2001 (2020) 005, arXiv:1909.10420.
[Chakraborty:2019wxe]
[23-78]
Neutrino halo effect on collective neutrino oscillation in iron core-collapse supernova model of a 9.6 $M_{\odot}$ star, Masamichi Zaizen, John F. Cherry, Tomoya Takiwaki, Shunsaku Horiuchi, Kei Kotake, Hideyuki Umeda, Takashi Yoshida, JCAP 2006 (2020) 011, arXiv:1908.10594.
[Zaizen:2019ufj]
[23-79]
Detectability of Collective Neutrino Oscillation Signatures in the Supernova Explosion of a 8.8 $M_\odot$ star, Hirokazu Sasaki, Tomoya Takiwaki, Shio Kawagoe, Shunsaku Horiuchi, Koji Ishidoshiro, Phys.Rev. D101 (2020) 063027, arXiv:1907.01002.
[Sasaki:2019jny]
[23-80]
Fast Neutrino Flavor Conversion: Collective Motion vs. Decoherence, Francesco Capozzi, Georg Raffelt, Tobias Stirner, JCAP 1909 (2019) 002, arXiv:1906.08794.
[Capozzi:2019lso]
[23-81]
Effect of extended neutrino production region on collective oscillations in supernovae, Rasmus S. L. Hansen, Alexei Yu. Smirnov, JCAP 10 (2019) 027, arXiv:1905.13670.
[Hansen:2019iop]
[23-82]
Exact solution of quantum many-body collective neutrino flavor oscillations, Ermal Rrapaj, Phys.Rev. C101 (2020) 065805, arXiv:1905.13335.
[Rrapaj:2019pxz]
[23-83]
Eigenvalues and eigenstates of the many-body collective neutrino oscillation problem, Amol V. Patwardhan, Michael J. Cervia, A. Baha Balantekin, Phys.Rev. D99 (2019) 123013, arXiv:1905.04386.
[Patwardhan:2019zta]
[23-84]
Stability of three neutrino flavor conversion in supernovae, Christian Doring, Rasmus S. L. Hansen, Manfred Lindner, JCAP 2019 (2019) 003, arXiv:1905.03647.
[Doring:2019axc]
[23-85]
Active-sterile Neutrino Oscillations in Neutrino-driven Winds: Implications for Nucleosynthesis, Zewei Xiong, Meng-Ru Wu, Yong-Zhong Qian, arXiv:1904.09371, 2019.
[Xiong:2019nvw]
[23-86]
Nonlinear flavor development of a two-dimensional neutrino gas, Joshua D. Martin, Sajad Abbar, Huaiyu Duan, Phys.Rev. D100 (2019) 023016, arXiv:1904.08877.
[Martin:2019kgi]
[23-87]
Neutrino Quantum Kinetics in Compact Objects, Sherwood A. Richers, Gail C. McLaughlin, James P. Kneller, Alexey Vlasenko, Phys.Rev. D99 (2019) 123014, arXiv:1903.00022.
[Richers:2019grc]
[23-88]
Linear Analysis of Fast-Pairwise Collective Neutrino Oscillations in Core-Collapse Supernovae based on the Results of Boltzmann Simulations, Milad Delfan Azari, Shoichi Yamada, Taiki Morinaga, Wakana Iwakami, Hiroki Nagakura, Kohsuke Sumiyoshi, Phys.Rev. D99 (2019) 103011, arXiv:1902.07467.
[DelfanAzari:2019epo]
[23-89]
Neutrino spin oscillations in polarized matter, A. Grigoriev, E. Kupcheva, A. Ternov, Phys.Lett. B797 (2019) 134861, arXiv:1812.08635.
[Grigoriev:2018cvo]
[23-90]
On the occurrence of fast neutrino flavor conversions in multidimensional supernova models, Sajad Abbar, Huaiyu Duan, Kohsuke Sumiyoshi, Tomoya Takiwaki, Maria Cristina Volpe, Phys.Rev. D100 (2019) 043004, arXiv:1812.06883.
[Abbar:2018shq]
[23-91]
On Fast Neutrino Flavor Conversion Modes in the Nonlinear Regime, Sajad Abbar, Maria Cristina Volpe, Phys.Lett. B790 (2019) 545-550, arXiv:1811.04215.
[Abbar:2018beu]
[23-92]
Collective neutrino oscillations and detectabilities in failed supernovae, Masamichi Zaizen, Takashi Yoshida, Kohsuke Sumiyoshi, Hideyuki Umeda, Phys.Rev. D98 (2018) 103020, arXiv:1811.03320.
[Zaizen:2018wfg]
[23-93]
Normal-mode Analysis for Collective Neutrino Oscillations, Sagar Airen et al., JCAP 1812 (2018) 019, arXiv:1809.09137.
[Airen:2018nvp]
[23-94]
Effects of neutrino mixing upon electron fraction in core collapse supernovae, M.M. Saez, M.E. Mosquera, O. Civitarese, arXiv:1809.01063, 2018.
[Saez:2018pxb]
[23-95]
Collisional triggering of fast flavor conversions of supernova neutrinos, Francesco Capozzi, Basudeb Dasgupta, Alessandro Mirizzi, Manibrata Sen, Gunter Sigl, Phys.Rev.Lett. 122 (2019) 091101, arXiv:1808.06618.
[Capozzi:2018clo]
[23-96]
Collective neutrino oscillations with the halo effect in single-angle approximation, Vincenzo Cirigliano, Mark Paris, Shashank Shalgar, JCAP 1811 (2018) 019, arXiv:1807.07070.
[Cirigliano:2018rst]
[23-97]
A few moments to diagnose fast flavor conversions of supernova neutrinos, Basudeb Dasgupta, Alessandro Mirizzi, Manibrata Sen, Phys.Rev. D98 (2018) 103001, arXiv:1807.03322.
[Dasgupta:2018ulw]
[23-98]
Model-independent diagnostic of self-induced spectral equalization versus ordinary matter effects in supernova neutrinos, Francesco Capozzi, Basudeb Dasgupta, Alessandro Mirizzi, Phys.Rev. D98 (2018) 063013, arXiv:1807.00840.
[Capozzi:2018rzl]
[23-99]
Neutrino Spectral Split in the Exact Many Body Formalism, Savas Birol, Y. Pehlivan, A. B. Balantekin, T. Kajino, Phys.Rev. D98 (2018) 083002, arXiv:1805.11767.
[Birol:2018qhx]
[23-100]
Towards an effective theory of collective oscillations: Neutrino conversion in a neutrino flux, Rasmus S. L. Hansen, Alexei Yu. Smirnov, JCAP 1804 (2018) 057, arXiv:1801.09751.
[Hansen:2018apu]
[23-101]
Neutrino Oscillations Within the Induced Gravitational Collapse Paradigm of Long Gamma-Ray Bursts, Laura Becerra et al., Astrophys.J. 852 (2018) 120, arXiv:1712.07210.
[Becerra:2017olp]
[23-102]
Fast neutrino flavor conversion: roles of dense matter and spectrum crossing, Sajad Abbar, Huaiyu Duan, Phys.Rev. D98 (2018) 043014, arXiv:1712.07013.
[Abbar:2017pkh]
[23-103]
Non-standard neutrino self-interactions in a supernova and fast flavor conversions, Amol Dighe, Manibrata Sen, Phys.Rev. D97 (2018) 043011, arXiv:1709.06858.
[Dighe:2017sur]
[23-104]
Possible effects of collective neutrino oscillations in the three flavor multi-angle simulations on supernova $\nu p$ process, H. Sasaki, T. Kajino, T. Takiwaki, T. Hayakawa, A. B. Balantekin, Y. Pehlivan, Phys.Rev. D96 (2017) 043013, arXiv:1707.09111.
[Sasaki:2017jry]
[23-105]
Fast flavor conversions of supernova neutrinos: Classifying instabilities via dispersion relations, Francesco Capozzi, Basudeb Dasgupta, Eligio Lisi, Antonio Marrone, Alessandro Mirizzi, Phys.Rev. D96 (2017) 043016, arXiv:1706.03360.
[Capozzi:2017gqd]
[23-106]
GR Effects in Supernova Neutrino Flavor Transformation, Yue Yang, James P. Kneller, Phys.Rev. D96 (2017) 023009, arXiv:1705.09723.
[Yang:2017asl]
[23-107]
New effects of non-standard self-interactions of neutrinos in a supernova, Anirban Das, Amol Dighe, Manibrata Sen, JCAP 1705 (2017) 051, arXiv:1705.00468.
[Das:2017iuj]
[23-108]
Collective neutrino oscillations and neutrino wave packets, Evgeny Akhmedov, Joachim Kopp, Manfred Lindner, JCAP 1709 (2017) 017, arXiv:1702.08338.
[Akhmedov:2017mcc]
[23-109]
Coupling between Ion-Acoustic Waves and Neutrino Oscillations, Fernando Haas, Kellen Alves Pascoal, Jose Tito Mendonca, Phys. Rev. E95 (2017) 013207, arXiv:1701.01681.
[Haas:2017qtj]
[23-110]
An optimization-based approach to neutrino flavor evolution, Eve Armstrong et al., Phys.Rev. D96 (2017) 083008, arXiv:1612.03516.
[Armstrong:2016mnt]
[23-111]
Fast Pairwise Conversion of Supernova Neutrinos: Dispersion-Relation Approach, Ignacio Izaguirre, Georg Raffelt, Irene Tamborra, Phys. Rev. Lett. 118 (2017) 021101, arXiv:1610.01612.
[Izaguirre:2016gsx]
[23-112]
Astrophysical Neutrinos and Flavor Evolution With Self Interaction, T. Bulmus, Y. Pehlivan, JPS Conf.Proc. 14 (2017) 020709, arXiv:1609.08862.
[Bulmus:2016gyr]
[23-113]
Fast neutrino flavor conversions near the supernova core with realistic flavor-dependent angular distributions, Basudeb Dasgupta, Alessandro Mirizzi, Manibrata Sen, JCAP 1702 (2017) 019, arXiv:1609.00528.
[Dasgupta:2016dbv]
[23-114]
Spectral splits of neutrinos as a BCS-BEC crossover type phenomenon, Y. Pehlivan, A. L. Subasi, N. Ghazanfari, S. Birol, H. Yuksel, Phys.Rev. D95 (2017) 063022, arXiv:1603.06360.
[Pehlivan:2016lxx]
[23-115]
Collective neutrino flavor conversion: Recent developments, Sovan Chakraborty, Rasmus Sloth Hansen, Ignacio Izaguirre, Georg Raffelt, Nucl. Phys. B (2016), arXiv:1602.02766.
[Chakraborty:2016yeg]
[23-116]
Self-induced neutrino flavor conversion without flavor mixing, Sovan Chakraborty, Rasmus Sloth Hansen, Ignacio Izaguirre, Georg Raffelt, JCAP 1603 (2016) 042, arXiv:1602.00698.
[Chakraborty:2016lct]
[23-117]
Another look at synchronized neutrino oscillations, Evgeny Akhmedov, Alessandro Mirizzi, Nucl. Phys. B908 (2016) 382-407, arXiv:1601.07842.
[Akhmedov:2016gzx]
[23-118]
Decoherence and oscillations of supernova neutrinos, Joern Kersten, Alexei Yu. Smirnov, Eur.Phys.J. C76 (2016) 339, arXiv:1512.09068.
[Kersten:2015kio]
[23-119]
Uncovering the Matter-Neutrino Resonance, D. Vaananen, G. C. McLaughlin, Phys. Rev. D93 (2016) 105044, arXiv:1510.00751.
[Vaananen:2015hfa]
[23-120]
Physics of neutrino flavor transformation through matter-neutrino resonances, Meng-Ru Wu, Huaiyu Duan, Yong-Zhong Qian, Phys. Lett. B752 (2016) 89-94, arXiv:1509.08975.
[Wu:2015fga]
[23-121]
Hybrid method to resolve the neutrino mass hierarchy by supernova (anti)neutrino induced reactions, D. Vale, T. Rauscher, N. Paar, JCAP 1602 (2016) 007, arXiv:1509.07342.
[Vale:2015pca]
[23-122]
Neutrino cloud instabilities just above the neutrino sphere of a supernova, R. F. Sawyer, Phys. Rev. Lett. 116 (2016) 081101, arXiv:1509.03323.
[Sawyer:2015dsa]
[23-123]
Temporal instability enables neutrino flavor conversions deep inside supernovae, Basudeb Dasgupta, Alessandro Mirizzi, Phys. Rev. D92 (2015) 125030, arXiv:1509.03171.
[Dasgupta:2015iia]
[23-124]
Neutrino flavor instabilities in a time-dependent supernova model, Sajad Abbar, Huaiyu Duan, Phys. Lett. B751 (2015) 43-47, arXiv:1509.01538.
[Abbar:2015fwa]
[23-125]
Self-induced flavor conversion of supernova neutrinos on small scales, Sovan Chakraborty, Rasmus Sloth Hansen, Ignacio Izaguirre, Georg Raffelt, JCAP 1601 (2016) 028, arXiv:1507.07569.
[Chakraborty:2015tfa]
[23-126]
Breaking the symmetries of the bulb model in two-dimensional self-induced supernova neutrino flavor conversions, Alessandro Mirizzi, Phys. Rev. D92 (2015) 105020, arXiv:1506.06805.
[Mirizzi:2015hwa]
[23-127]
Self-induced flavor instabilities of a dense neutrino stream in a two-dimensional model, Alessandro Mirizzi, Gianpiero Mangano, Ninetta Saviano, Phys. Rev. D92 (2015) 021702, arXiv:1503.03485.
[Mirizzi:2015fva]
[23-128]
Effects of Shock Waves on Neutrino Oscillations in Three Supernova Models, Jing Xu, Li-Jun Hu, Rui-Cheng Li, Xin-Heng Guo, Bing-Lin Young, arXiv:1412.7240, 2014.
[Xu:2014tka]
[23-129]
The onset of the bipolar flavor conversion of supernova neutrinos, Indranath Bhattacharyya, Fund.J.Mod.Phys. 7 (2014) 91-110, arXiv:1412.2157.
[Bhattacharyya:2013kka]
[23-130]
Supernova deleptonization asymmetry: Impact on self-induced flavor conversion, Sovan Chakraborty, Georg Raffelt, Hans-Thomas Janka, Bernhard Mueller, Phys. Rev. D92 (2015) 105002, arXiv:1412.0670.
[Chakraborty:2014lsa]
[23-131]
Neutrino-antineutrino correlations in dense anisotropic media, Julien Serreau, Cristina Volpe, Phys. Rev. D90 (2014) 125040, arXiv:1409.3591.
[Serreau:2014cfa]
[23-132]
Multipole expansion method for supernova neutrino oscillations, Huaiyu Duan, Shashank Shalgar, JCAP 1410 (2014) 084, arXiv:1407.7861.
[Duan:2014mfa]
[23-133]
Stimulated neutrino transformation through turbulence on a changing density profile and application to supernovae, Kelly M. Patton, James P. Kneller, Gail C. McLaughlin, Phys. Rev. D91 (2015) 025001, arXiv:1407.7835.
[Patton:2014lza]
[23-134]
Prospects for Neutrino-Antineutrino Transformation in Astrophysical Environments, Alexey Vlasenko, George M. Fuller, Vincenzo Cirigliano, arXiv:1406.6724, 2014.
[Vlasenko:2014bva]
[23-135]
Neutrino Magnetic Moment, CP Violation and Flavor Oscillations in Matter, Y. Pehlivan, A. B. Balantekin, Toshitaka Kajino, Phys. Rev. D90 (2014) 065011, arXiv:1406.5489.
[Pehlivan:2014zua]
[23-136]
Impact of neutrino flavor oscillations on the neutrino-driven wind nucleosynthesis of an electron-capture supernova, Else Pllumbi, Irene Tamborra, Shinya Wanajo, H.-Thomas Janka, Lorenz Huedepohl, Astrophys. J. 808 (2015) 188, arXiv:1406.2596.
[Pllumbi:2014saa]
[23-137]
Decoherence by wave packet separation and collective neutrino oscillations, Evgeny Akhmedov, Joachim Kopp, Manfred Lindner, arXiv:1405.7275, 2014.
[Akhmedov:2014ssa]
[23-138]
Sterile neutrino oscillations in core-collapse supernova simulations, MacKenzie L. Warren, Matthew Meixner, Grant Mathews, Jun Hidaka, Toshitaka Kajino, Phys. Rev. D90 (2014) 103007, arXiv:1405.6101.
[Warren:2014qza]
[23-139]
Chaotic flavor evolution in an interacting neutrino gas, Rasmus Sloth Hansen, Steen Hannestad, Phys. Rev. D90 (2014) 025009, arXiv:1404.3833.
[Hansen:2014paa]
[23-140]
Damping the neutrino flavor pendulum by breaking homogeneity, Gianpiero Mangano, Alessandro Mirizzi, Ninetta Saviano, Phys. Rev. D89 (2014) 073017, arXiv:1403.1892.
[Mangano:2014zda]
[23-141]
Turbulence patterns and neutrino flavor transitions in high-resolution supernova models, Enrico Borriello, Sovan Chakraborty, Hans-Thomas Janka, Eligio Lisi, Alessandro Mirizzi, JCAP 1411 (2014) 030, arXiv:1310.7488.
[Borriello:2013tha]
[23-142]
Transport Equations for Oscillating Neutrinos, Yunfan Zhang, Adam Burrows, Phys. Rev. D88 (2013) 105009, arXiv:1310.2164.
[Zhang:2013lka]
[23-143]
Flavor Oscillation Modes In Dense Neutrino Media, Huaiyu Duan, Phys. Rev. D88 (2013) 125008, arXiv:1309.7377.
[Duan:2013kba]
[23-144]
Self-induced spectral splits with multi-azimuthal-angle effects for different supernova neutrino fluxes, Alessandro Mirizzi, Phys. Rev. D90 (2014) 033004, arXiv:1308.5255.
[Chakraborty:2013wsu]
[23-145]
Multi-azimuthal-angle effects in self-induced supernova neutrino flavor conversions without axial symmetry, Alessandro Mirizzi, Phys. Rev. D 88, 073004 (2013) 073004, arXiv:1308.1402.
[Mirizzi:2013rla]
[23-146]
Neutrino flavor pendulum in both mass hierarchies, Georg Raffelt, David de Sousa Seixas, Phys. Rev. D 88, 045031 (2013) 045031, arXiv:1307.7625.
[Raffelt:2013isa]
[23-147]
Azimuth-angle flavor instability of supernova neutrino fluxes, Georg Raffelt, Srdjan Sarikas, David de Sousa Seixas, Phys. Rev. Lett. 111, 091101 (2013) 091101, arXiv:1305.7140.
[Raffelt:2013rqa]
[23-148]
Combining collective, MSW, and turbulence effects in supernova neutrino flavor evolution, Tina Lund, James P. Kneller, Phys. Rev. D88 (2013) 023008, arXiv:1304.6372.
[Lund:2013uta]
[23-149]
Detection of supernova neutrinos on the Earth for large $\theta_{13}$, Jing Xu, Ming-Yang Huang, Xin-Heng Guo, Bing-Lin Young, Commun. Theor. Phys. 61 (2014) 226-234, arXiv:1303.0611.
[Xu:2013nfa]
[23-150]
Finite size source effects and the correlation of neutrino transition probabilities through supernova turbulence, James P Kneller, Alex W Mauney, Phys. Rev. D88 (2013) 045020, arXiv:1302.6601.
[Kneller:2013baa]
[23-151]
The consequences of large $\theta_{13}$ for the turbulence signatures in supernova neutrinos, James P. Kneller, Alex W. Mauney, Phys. Rev. D88 (2013) 025004, arXiv:1302.3825.
[Kneller:2013ska]
[23-152]
Halo Modification of a Supernova Neutronization Neutrino Burst, John F. Cherry, J. Carlson, Alexander Friedland, George M. Fuller, Alexey Vlasenko, Phys. Rev. D87 (2013) 085037, arXiv:1302.1159.
[Cherry:2013mv]
[23-153]
Transition Magnetic Moments and Collective Neutrino Oscillations: Three-Flavor Effects and Detectability, Andre de Gouvea, Shashank Shalgar, JCAP 1304 (2013) 018, arXiv:1301.5637.
[deGouvea:2013zp]
[23-154]
Spurious instabilities in multi-angle simulations of collective flavor conversion, Srdjan Sarikas, David de Sousa Seixas, Georg Raffelt, Phys. Rev. D86 (2012) 125020, arXiv:1210.4557.
[Sarikas:2012ad]
[23-155]
Flavor stability analysis of dense supernova neutrinos with flavor-dependent angular distributions, Alessandro Mirizzi, Pasquale Dario Serpico, Phys. Rev. D86 (2012) 085010, arXiv:1208.0157.
[Mirizzi:2012wp]
[23-156]
(Down-to-)Earth matter effect in supernova neutrinos, Enrico Borriello, Sovan Chakraborty, Alessandro Mirizzi, Pasquale Dario Serpico, Irene Tamborra, Phys. Rev. D86 (2012) 083004, arXiv:1207.5049.
[Borriello:2012zc]
[23-157]
Effect of Transition Magnetic Moments on Collective Supernova Neutrino Oscillations, Andre de Gouvea, Shashank Shalgar, JCAP 1210 (2012) 027, arXiv:1207.0516.
[deGouvea:2012hg]
[23-158]
Diffuse supernova neutrinos: oscillation effects, stellar cooling and progenitor mass dependence, Cecilia Lunardini, Irene Tamborra, JCAP 1207 (2012) 012, arXiv:1205.6292.
[Lunardini:2012ne]
[23-159]
Neutrino flavor dynamics in post-bounce supernovae: the role of the electron component, Marcello Baldo, Vincenzo Palmisano, arXiv:1204.4575, 2012.
[Baldo:2012gz]
[23-160]
Supernova neutrino halo and the suppression of self-induced flavor conversion, Srdjan Sarikas, Irene Tamborra, Georg Raffelt, Lorenz Hudepohl, Hans-Thomas Janka, Phys. Rev. D85 (2012) 113007, arXiv:1204.0971.
[Sarikas:2012vb]
[23-161]
Neutrino scattering and flavor transformation in supernovae, John F. Cherry, J. Carlson, Alexander Friedland, George M. Fuller, Alexey Vlasenko, Phys. Rev. Lett. 108 (2012) 261104, arXiv:1203.1607.
[Cherry:2012zw]
[23-162]
Stability analysis of collective neutrino oscillations in the supernova accretion phase with realistic energy and angle distributions, Ninetta Saviano, Sovan Chakraborty, Tobias Fischer, Alessandro Mirizzi, Phys. Rev. D85 (2012) 113002, arXiv:1203.1484.
[Saviano:2012yh]
[23-163]
Stimulated Neutrino Transformation in Supernovae, J.P. Kneller, G.C. McLaughlin, K.M. Patton, J. Phys. G40 (2013) 055002, arXiv:1202.0776.
[Kneller:2012id]
[23-164]
Probing the neutrino mass hierarchy with the rise time of a supernova burst, Sovan Chakraborty et al., Phys. Rev. D85 (2012) 085031, arXiv:1111.4483.
[Serpico:2011ir]
[23-165]
Impact of eV-mass sterile neutrinos on neutrino-driven supernova outflows, Irene Tamborra, Georg G. Raffelt, Lorenz Huedepohl, Hans-Thomas Janka, JCAP 1201 (2012) 013, arXiv:1110.2104.
[Tamborra:2011is]
[23-166]
Instability in the dense supernova neutrino gas with flavor-dependent angular distributions, Alessandro Mirizzi, Pasquale D. Serpico, Phys. Rev. Lett. 108 (2012) 231102, arXiv:1110.0022.
[Mirizzi:2011tu]
[23-167]
Neutrino Luminosity and Matter-Induced Modification of Collective Neutrino Flavor Oscillations in Supernovae, John F. Cherry et al., Phys. Rev. D85 (2012) 125010, arXiv:1109.5195.
[Cherry:2011fn]
[23-168]
Flavor stability of a realistic accretion-phase supernova neutrino flux, Srdjan Sarikas, Georg G. Raffelt, Lorenz Hudepohl, Hans-Thomas Janka, Phys. Rev. Lett. 108 (2012) 061101, arXiv:1109.3601.
[Sarikas:2011am]
[23-169]
Density Fluctuation Effects on Collective Neutrino Oscillations in O-Ne-Mg Core-Collapse Supernovae, John F. Cherry et al., Phys. Rev. D84 (2011) 105034, arXiv:1108.4064.
[Cherry:2011fm]
[23-170]
Linearized flavor-stability analysis of dense neutrino streams, Arka Banerjee, Amol Dighe, Georg Raffelt, Phys. Rev. D84 (2011) 053013, arXiv:1107.2308.
[Banerjee:2011fj]
[23-171]
Effect of Collective Neutrino Oscillations on the Neutrino Mechanism of Core-Collapse Supernovae, Ondrej Pejcha, Basudeb Dasgupta, Todd A. Thompson, Mon. Not. Roy. Astron. Soc. 425 (2012) 1083, arXiv:1106.5718.
[Pejcha:2011en]
[23-172]
Impacts of Collective Neutrino Oscillations on Supernova Explosions, Yudai Suwa, Kei Kotake, Tomoya Takiwaki, Matthias Liebendoerfer, Katsuhiko Sato, Astrophys. J. 738 (2011) 165, arXiv:1106.5487.
[Suwa:2011ac]
[23-173]
The Role of Collective Neutrino Flavor Oscillations in Core-Collapse Supernova Shock Revival, Basudeb Dasgupta, Evan P. O'Connor, Christian D. Ott, Phys. Rev. D85 (2012) 065008, arXiv:1106.1167.
[Dasgupta:2011jf]
[23-174]
The neutrino signal at HALO: learning about the primary supernova neutrino fluxes and neutrino properties, Daavid Vaananen, Cristina Volpe, JCAP 1110 (2011) 019, arXiv:1105.6225.
[Vaananen:2011bf]
[23-175]
Resonances Driven by a Neutrino Gyroscope and Collective Neutrino Oscillations in Supernovae, Meng-Ru Wu, Yong-Zhong Qian, Phys. Rev. D84 (2011) 045009, arXiv:1105.2068.
[Wu:2011yi]
[23-176]
Analysis of matter suppression in collective neutrino oscillations during the supernova accretion phase, Sovan Chakraborty, Tobias Fischer, Alessandro Mirizzi, Ninetta Saviano, Ricard Tomas, Phys. Rev. D84 (2011) 025002, arXiv:1105.1130.
[Chakraborty:2011gd]
[23-177]
No collective neutrino flavor conversions during the supernova accretion phase, Sovan Chakraborty, Tobias Fischer, Alessandro Mirizzi, Ninetta Saviano, Ricard Tomas, Phys. Rev. Lett. 107 (2011) 151101, arXiv:1104.4031.
[Chakraborty:2011nf]
[23-178]
The neutrino spectral split in core-collapse supernovae: a magnetic resonance phenomenon, Sebastien Galais, Cristina Volpe, Phys. Rev. D84 (2011) 085005, arXiv:1103.5302.
[Galais:2011gh]
[23-179]
N-mode coherence in collective neutrino oscillations, Georg G. Raffelt, Phys. Rev. D83 (2011) 105022, arXiv:1103.2891.
[Raffelt:2011yb]
[23-180]
The neutrino-neutrino interaction effects in supernovae: the point of view from the matter basis, S. Galais, J. Kneller, C. Volpe, J. Phys. G39 (2012) 035201, arXiv:1102.1471.
[Galais:2011jh]
[23-181]
Multi-angle effects in self-induced oscillations for different supernova neutrino fluxes, Alessandro Mirizzi, Ricard Tomas, Phys. Rev. D84 (2011) 033013, arXiv:1012.1339.
[Mirizzi:2010uz]
[23-182]
The influence of collective neutrino oscillations on a supernova r-process, Huaiyu Duan, Alexander Friedland, Gail C. McLaughlin, Rebecca Surman, J. Phys. G38 (2011) 035201, arXiv:1012.0532.
[Duan:2010af]
[23-183]
Instabilities in neutrino systems induced by interactions with scalars, R. F. Sawyer, Phys. Rev. D83 (2011) 065023, arXiv:1011.4585.
[Sawyer:2010jk]
[23-184]
Signatures of collective and matter effects on supernova neutrinos at large detectors, Sandhya Choubey, Basudeb Dasgupta, Amol Dighe, Alessandro Mirizzi, arXiv:1008.0308, 2010.
[Choubey:2010up]
[23-185]
On the Observability of Collective Flavor Oscillations in Diffuse Supernova Neutrino Background, Sovan Chakraboty, Sandhya Choubey, Kamales Kar, Phys. Lett. B702 (2011) 209-215, arXiv:1006.3756.
[Chakraborty:2010fft]
[23-186]
Self-induced suppression of collective neutrino oscillations in a supernova, Huaiyu Duan, Alexander Friedland, Phys. Rev. Lett. 106 (2011) 091101, arXiv:1006.2359.
[Duan:2010bf]
[23-187]
Multi-Angle Simulation of Flavor Evolution in the Neutrino Neutronization Burst From an O-Ne-Mg Core-Collapse Supernova, John F. Cherry, George M. Fuller, Joe Carlson, Huaiyu Duan, Yong-Zong Qian, Phys. Rev. D82 (2010) 085025, arXiv:1006.2175.
[Cherry:2010yc]
[23-188]
Turbulence effects on supernova neutrinos, James P. Kneller, Cristina Volpe, Phys. Rev. D82 (2010) 123004, arXiv:1006.0913.
[Kneller:2010sc]
[23-189]
A link between Random Matrix Theory and neutrino propagation in a turbulent medium, James P. Kneller, arXiv:1004.1288, 2010.
[Kneller:2010ky]
[23-190]
Acquire information about neutrino parameters by detecting supernova neutrinos, Ming-Yang Huang, Xin-Heng Guo, Bing-Lin Young, Phys. Rev. D82 (2010) 033011, arXiv:1003.1197.
[Huang:2010qh]
[23-191]
Neutrino mass hierarchy and three-flavor spectral splits of supernova neutrinos, Basudeb Dasgupta, Alessandro Mirizzi, Irene Tamborra, Ricard Tomas, Phys. Rev. D81 (2010) 093008, arXiv:1002.2943.
[Dasgupta:2010cd]
[23-192]
Neutrino oscillation and expected event rate of supernova neutrinos in adiabatic explosion model, S.Kawagoe et al., Phys. Rev. D81 (2010) 123014, arXiv:1002.2315.
[Kawagoe:2010si]
[23-193]
Self-refraction of supernova neutrinos: mixed spectra and three-flavor instabilities, Alexander Friedland, Phys. Rev. Lett. 104 (2010) 191102, arXiv:1001.0996.
[Friedland:2010sc]
[23-194]
One-loop correction effects on supernova neutrino fluxes: a new possible probe for Beyond Standard Models, J. Gava, C.-C. Jean-Louis, JCAP 1005 (2010) 029, arXiv:0912.5206.
[Gava:2009ia]
[23-195]
Resonant Spin-Flavor Conversion of Supernova Neutrinos: Dependence on Electron Mole Fraction, T. Yoshida et al., Phys. Rev. D80 (2009) 125032, arXiv:0912.2851.
[Yoshida:2009ec]
[23-196]
Collective Flavor Oscillations Of Supernova Neutrinos and r-Process Nucleosynthesis, Sovan Chakraborty, Sandhya Choubey, Srubabati Goswami, Kamales Kar, JCAP 1006 (2010) 007, arXiv:0911.1218.
[Chakraborty:2009ej]
[23-197]
Obtaining supernova directional information using the neutrino matter oscillation pattern, Kate Scholberg, Armin Burgmeier, Roger Wendell, Phys. Rev. D81 (2010) 043007, arXiv:0910.3174.
[Scholberg:2009jr]
[23-198]
Interplay between collective effects and non-standard neutrino interactions of supernova neutrinos, A. Esteban-Pretel, R. Tomas, J. W. F. Valle, Phys. Rev. D81 (2010) 063003, arXiv:0909.2196.
[Esteban-Pretel:2009jqw]
[23-199]
Supernova neutrinos and antineutrinos: ternary luminosity diagram and spectral split patterns, Gianluigi Fogli, Eligio Lisi, Antonio Marrone, Irene Tamborra, JCAP 0910 (2009) 002, arXiv:0907.5115.
[Fogli:2009rd]
[23-200]
Flavour-dependent radiative correction to neutrino-neutrino refraction, Alessandro Mirizzi, Stefano Pozzorini, Georg G. Raffelt, Pasquale D. Serpico, JHEP 10 (2009) 020, arXiv:0907.3674.
[Mirizzi:2009td]
[23-201]
Neutrino oscillations in magnetically driven supernova explosions, Shio Kawagoe, Tomoya Takiwaki, Kei Kotake, JCAP 0909 (2009) 033, arXiv:0906.3180.
[Kawagoe:2009ac]
[23-202]
Supernova Neutrinos Detection On Earth, Xin-Heng Guo, Ming-Yang Huang, Bing-Lin Young, Chin.Phys. C34 (2010) 257-261, arXiv:0905.1534.
[Guo:2010zzr]
[23-203]
Multiple Spectral Splits of Supernova Neutrinos, Basudeb Dasgupta, Amol Dighe, Georg G. Raffelt, Alexei Yu. Smirnov, Phys. Rev. Lett. 103 (2009) 051105, arXiv:0904.3542.
[Dasgupta:2009mg]
[23-204]
Emission angle distribution and flavor transformation of supernova neutrinos, Wei Liao, arXiv:0904.2855, 2009.
[Liao:2009yz]
[23-205]
Moment equations of neutrinos in supernova, Wei Liao, arXiv:0904.0075, 2009.
[Liao:2009ic]
[23-206]
A dynamical collective calculation of supernova neutrino signals, J.Gava, J. Kneller, C. Volpe, G.C. McLaughlin, Phys. Rev. Lett. 103 (2009) 071101, arXiv:0902.0317.
[Gava:2009pj]
[23-207]
Resonant flavor conversion of supernova neutrinos and neutrino parameters, Shao-Hsuan Chiu, Mod. Phys. Lett. A24 (2009) 2741-2759, arXiv:0812.3467.
[Chiu:2008sa]
[23-208]
Supernova neutrino three-flavor evolution with dominant collective effects, Gianluigi Fogli, Eligio Lisi, Antonio Marrone, Irene Tamborra, JCAP 0904 (2009) 030, arXiv:0812.3031.
[Fogli:2008fj]
[23-209]
Oscillation and Future Detection of Failed Supernova Neutrinos from Black Hole Forming Collapse, Ken'ichiro Nakazato, Kohsuke Sumiyoshi, Hideyuki Suzuki, Shoichi Yamada, Phys. Rev. D78 (2008) 083014, arXiv:0810.3734.
[Nakazato:2008vj]
[23-210]
Neutrino Flavor Spin Waves, Huaiyu Duan, George M. Fuller, Yong-Zhong Qian, J. Phys. G36 (2009) 105003, arXiv:0808.2046.
[Duan:2008fd]
[23-211]
Low-energy spectral features of supernova (anti)neutrinos in inverted hierarchy, G.L. Fogli, E. Lisi, A. Marrone, A. Mirizzi, I. Tamborra, Phys. Rev. D78 (2008) 097301, arXiv:0808.0807.
[Fogli:2008pt]
[23-212]
Collective neutrinos oscillation in matter and CP-violation, Jerome Gava, Cristina Volpe, Phys. Rev. D78 (2008) 083007, arXiv:0807.3418.
[Gava:2008rp]
[23-213]
Realistic Earth matter effects and a method to measure small $\theta_{13}$ in the detection of supernova neutrinos, Xin-Heng Guo, Ming-Yang Huang, Bing-Lin Young, Phys. Rev. D79 (2009) 113007, arXiv:0806.2720.
[Guo:2008mma]
[23-214]
Collective neutrino oscillations in non-spherical geometry, Basudeb Dasgupta, Amol Dighe, Alessandro Mirizzi, Georg G. Raffelt, Phys. Rev. D78 (2008) 033014, arXiv:0805.3300.
[Dasgupta:2008cu]
[23-215]
Effect of Collective Flavor Oscillations on the Diffuse Supernova Neutrino Background, Sovan Chakraborty, Sandhya Choubey, Basudeb Dasgupta, Kamales Kar, JCAP 0809 (2008) 013, arXiv:0805.3131.
[Chakraborty:2008zp]
[23-216]
Untangling supernova-neutrino oscillations with beta-beam data, N. Jachowicz, G.C. McLaughlin, C. Volpe, Phys. Rev. C77 (2008) 055501, arXiv:0804.0360.
[Jachowicz:2008kx]
[23-217]
The multi-angle instability in dense neutrino systems, R. F. Sawyer, Phys. Rev. D79 (2009) 105003, arXiv:0803.4319.
[Sawyer:2008zs]
[23-218]
Simulating nonlinear neutrino flavor evolution, Huaiyu Duan, George M. Fuller, J. Carlson, Comput. Sci. Dis. 1 (2008) 015007, arXiv:0803.3650.
[Duan:2008eb]
[23-219]
Identifying neutrino mass hierarchy at extremely small theta(13) through Earth matter effects in a supernova signal, Basudeb Dasgupta, Amol Dighe, Alessandro Mirizzi, Phys. Rev. Lett. 101 (2008) 171801, arXiv:0802.1481.
[Dasgupta:2008my]
[23-220]
Spectral split in prompt supernova neutrino burst: Analytic three-flavor treatment, B. Dasgupta, A. Dighe, A. Mirizzi, G.G. Raffelt, Phys. Rev. D77 (2008) 113007, arXiv:0801.1660.
[Dasgupta:2008cd]
[23-221]
Collective three-flavor oscillations of supernova neutrinos, Basudeb Dasgupta, Amol Dighe, Phys. Rev. D77 (2008) 113002, arXiv:0712.3798.
[Dasgupta:2007ws]
[23-222]
Mu-tau neutrino refraction and collective three-flavor transformations in supernovae, Andreu Esteban-Pretel, Sergio Pastor, Ricard Tomas, Georg G. Raffelt, Gunter Sigl, Phys. Rev. D77 (2008) 065024, arXiv:0712.1137.
[Esteban-Pretel:2007ncu]
[23-223]
Possible CP-Violation effects in core-collapse Supernovae, A. B. Balantekin, J. Gava, C. Volpe, Phys. Lett. B662 (2008) 396-404, arXiv:0710.3112.
[Balantekin:2007es]
[23-224]
Flavor Evolution of the Neutronization Neutrino Burst from an O-Ne-Mg Core-Collapse Supernova, Huaiyu Duan, George M. Fuller, J. Carlson, Yong-Zhong Qian, Phys. Rev. Lett. 100 (2008) 021101, arXiv:0710.1271.
[Duan:2007sh]
[23-225]
Adiabaticity and spectral splits in collective neutrino transformations, Georg G. Raffelt, Alexei Yu. Smirnov, Phys. Rev. D76 (2007) 125008, arXiv:0709.4641.
[Raffelt:2007xt]
[23-226]
Sterile neutrino signals from supernovae, P. Keranen, J. Maalampi, M. Myyrylainen, J. Riittinen, Phys. Rev. D76 (2007) 125026, arXiv:0708.3337.
[Keranen:2007ga]
[23-227]
Collective neutrino flavor transitions in supernovae and the role of trajectory averaging, G.L. Fogli, E. Lisi, A. Marrone, A. Mirizzi, JCAP 0712 (2007) 010, arXiv:0707.1998.
[Fogli:2007bk]
[23-228]
Neutrino Mass Hierarchy and Stepwise Spectral Swapping of Supernova Neutrino Flavors, Huaiyu Duan, George M. Fuller, J. Carlson, Yong-Qian Zhong, Phys. Rev. Lett. 99 (2007) 241802, arXiv:0707.0290.
[Duan:2007bt]
[23-229]
A Simple Picture for Neutrino Flavor Transformation in Supernovae, Huaiyu Duan, George M. Fuller, Yong-Zhong Qian, Phys. Rev. D76 (2007) 085013, arXiv:0706.4293.
[Duan:2007fw]
[23-230]
Sterile Neutrino-Enhanced Supernova Explosions, Jun Hidaka, George M. Fuller, Phys. Rev. D76 (2007) 083516, arXiv:0706.3886.
[Hidaka:2007se]
[23-231]
Decoherence in supernova neutrino transformations suppressed by deleptonization, Andreu Esteban-Pretel et al., Phys. Rev. D76 (2007) 125018, arXiv:0706.2498.
[Esteban-Pretel:2007jwl]
[23-232]
Neutrino oscillations in a variable-density medium and $\nu$-bursts due to the gravitational collapse of stars, S. P. Mikheev, A. Yu. Smirnov, Sov. Phys. JETP 64 (1986) 4-7, arXiv:0706.0454.
[Mikheev:1986if]
[23-233]
Oscillation Effects and Time Variation of the Supernova Neutrino Signal, James P. Kneller, Gail C. McLaughlin, Justin Brockman, Phys. Rev. D77 (2008) 045023, arXiv:0705.3835.
[Kneller:2007kg]
[23-234]
Self-induced spectral splits in supernova neutrino fluxes, Georg G. Raffelt, Alexei Yu. Smirnov, Phys. Rev. D76 (2007) 081301, arXiv:0705.1830.
[Raffelt:2007cb]
[23-235]
Analysis of Collective Neutrino Flavor Transformation in Supernovae, Huaiyu Duan, George M. Fuller, J. Carlson, Yong-Zhong Qian, Phys. Rev. D75 (2007) 125005, arXiv:astro-ph/0703776.
[Duan:2007mv]
[23-236]
Determining Neutrino and Supernova Parameters with a Galactic Supernova, Solveig Skadhauge, Renata Zukanovich Funchal, JCAP 0704 (2007) 014, arXiv:hep-ph/0611194.
[Skadhauge:2006su]
[23-237]
Study of the effect of neutrino oscillations on the supernova neutrino signal in the LVD detector, N.Yu. Agafonova et al., Astropart. Phys. 27 (2007) 254-270, arXiv:hep-ph/0609305.
[Agafonova:2006fz]
[23-238]
Self-induced conversion in dense neutrino gases: Pendulum in flavour space, S. Hannestad, G.G. Raffelt, G. Sigl, Y.Y.Y. Wong, Phys. Rev. D74 (2006) 105010, arXiv:astro-ph/0608695.
[Hannestad:2006nj]
[23-239]
Coherent Development of Neutrino Flavor in the Supernova Environment, Huaiyu Duan, George M. Fuller, J. Carlson, Yong-Zhong Qian, Phys. Rev. Lett. 97 (2006) 241101, arXiv:astro-ph/0608050.
[Duan:2006jv]
[23-240]
Simulation of Coherent Non-Linear Neutrino Flavor Transformation in the Supernova Environment I: Correlated Neutrino Trajectories, Huaiyu Duan, George M. Fuller, J Carlson, Yong-Zhong Qian, Phys. Rev. D74 (2006) 105014, arXiv:astro-ph/0606616.
[Duan:2006an]
[23-241]
Probing neutrino oscillations from supernovae shock waves via the IceCube detector, Sandhya Choubey, N. P. Harries, G.G. Ross, Phys. Rev. D74 (2006) 053010, arXiv:hep-ph/0605255.
[Choubey:2006aq]
[23-242]
Earth Matter Effects in Detection of Supernova Neutrinos, X.-H. Guo, Bing-Lin Young, Phys. Rev. D73 (2006) 093003, arXiv:hep-ph/0605122.
[Guo:2006ap]
[23-243]
Earth matter effects in supernova neutrinos: Optimal detector locations, A. Mirizzi, G.G. Raffelt, P.D. Serpico, JCAP 0605 (2006) 012, arXiv:astro-ph/0604300.
[Mirizzi:2006xx]
[23-244]
Damping of supernova neutrino transitions in stochastic shock-wave density profiles, G.L. Fogli, E. Lisi, A. Mirizzi, D. Montanino, JCAP 0606 (2006) 012, arXiv:hep-ph/0603033.
[Fogli:2006xy]
[23-245]
Supernova Neutrino Nucleosynthesis of Light Elements with Neutrino Oscillations, T. Yoshida et al., Phys. Rev. Lett. 96 (2006) 091101, arXiv:astro-ph/0602195.
[Yoshida:2006qz]
[23-246]
Fission Cycling in Supernova Nucleosynthesis: Active-Sterile Neutrino Oscillations, J. Beun, G. C. McLaughlin, R. Surman, W. R. Hix, Phys. Rev. D73 (2006) 093007, arXiv:hep-ph/0602012.
[Beun:2006ka]
[23-247]
Supernova neutrinos and neutrino intrinsic properties, Shao-Hsuan Chiu, T. K. Kuo, arXiv:hep-ph/0511345, 2005.
[Chiu:2005px]
[23-248]
Collective Neutrino Flavor Transformation In Supernovae, Huaiyu Duan, George M. Fuller, Yong-Zhong Qian, Phys. Rev. D74 (2006) 123004, arXiv:astro-ph/0511275.
[Duan:2005cp]
[23-249]
Phase effects in neutrino conversions during a supernova shock wave, Basudeb Dasgupta, Amol Dighe, Phys. Rev. D75 (2007) 093002, arXiv:hep-ph/0510219.
[Dasgupta:2005wn]
[23-250]
An approximate solution for solar and supernova neutrino oscillation in matter, Rui Luo, arXiv:hep-ph/0506020, 2005.
[Luo:2005pg]
[23-251]
Simultaneous Flavor Transformation of Neutrinos and Antineutrinos with Dominant Potentials from Neutrino- Neutrino Forward Scattering, George M. Fuller, Yong-Zhong Qian, Phys. Rev. D73 (2006) 023004, arXiv:astro-ph/0505240.
[Fuller:2005ae]
[23-252]
Kinetics of Oscillating Neutrinos, P. Strack, arXiv:hep-ph/0505056, 2005.
[Strack:2005jj]
[23-253]
A generalized Boltzmann formalism for oscillating neutrinos, P. Strack, A. Burrows, Phys. Rev. D71 (2005) 093004, arXiv:hep-ph/0504035.
[Strack:2005ux]
[23-254]
Speed-up of neutrino transformations in a supernova environment, R. F. Sawyer, Phys. Rev. D72 (2005) 045003, arXiv:hep-ph/0503013.
[Sawyer:2005jk]
[23-255]
Supernova neutrinos can tell us the neutrino mass hierarchy independently of flux models, V. Barger, Patrick Huber, Danny Marfatia, Phys. Lett. B617 (2005) 167, arXiv:hep-ph/0501184.
[Barger:2005it]
[23-256]
Exploiting the neutronization burst of a galactic supernova, M. Kachelriess et al., Phys. Rev. D71 (2005) 063003, arXiv:astro-ph/0412082.
[Kachelriess:2004ds]
[23-257]
Probing supernova shock waves and neutrino flavor transitions in next-generation water-Cherenkov detectors, G.L. Fogli, E. Lisi, A. Mirizzi, D. Montanino, JCAP 0504 (2005) 002, arXiv:hep-ph/0412046.
[Fogli:2004ff]
[23-258]
Neutrino Mixing and Nucleosynthesis in Core-Collapse Supernovae, A.B. Balantekin, H. Yuksel, New J. Phys. 7 (2005) 51, arXiv:astro-ph/0411159.
[Balantekin:2004ug]
[23-259]
Decoupling supernova and neutrino oscillation physics with LAr TPC detectors, I. Gil-Botella, A. Rubbia, JCAP 0408 (2004) 001, arXiv:hep-ph/0404151.
[GilBotella:2004bv]
[23-260]
Neutrino oscillations and supernovae, D. V. Ahluwalia-Khalilova, Gen. Rel. Grav. 28 (1996) 1611, arXiv:astro-ph/0404055.
[Ahluwalia:1996fme]
[23-261]
Probing oscillations into sterile neutrinos with cosmology, astrophysics and experiments, Marco Cirelli, Guido Marandella, Alessandro Strumia, Francesco Vissani, Nucl. Phys. B708 (2005) 215, arXiv:hep-ph/0403158.
[Cirelli:2004cz]
[23-262]
Three-generation flavor transitions and decays of supernova relic neutrinos, G.L. Fogli, E. Lisi, A. Mirizzi, D. Montanino, Phys. Rev. D70 (2004) 013001, arXiv:hep-ph/0401227.
[Fogli:2004gy]
[23-263]
Signatures of supernova neutrino oscillations in the Earth mantle and core, A. S. Dighe, M. Kachelriess, G. G. Raffelt, R. Tomas, JCAP 0401 (2004) 004, arXiv:hep-ph/0311172.
[Dighe:2003vm]
[23-264]
Supernova prompt neutronization neutrinos and neutrino magnetic moments, E. Akhmedov, T. Fukuyama, JCAP 0312 (2003) 007, arXiv:hep-ph/0310119.
[Akhmedov:2003fu]
[23-265]
A comprehensive study of neutrino spin-flavor conversion in supernovae and the neutrino mass hierarchy, S. Ando, K. Sato, JCAP 0310 (2003) 001, arXiv:hep-ph/0309060.
[Ando:2003is]
[23-266]
Supernova Neutrino Spectrum with Matter and Spin Flavor Precession Effects, A. Ahriche, J. Mimouni, JCAP 0311 (2003) 004, arXiv:astro-ph/0306433.
[Ahriche:2003wt]
[23-267]
Resonant spin-flavor conversion of supernova neutrinos: Dependence on presupernova models and future prospects, S. Ando, K. Sato, Phys. Rev. D68 (2003) 023003, arXiv:hep-ph/0305052.
[Ando:2003pj]
[23-268]
Identifying Earth matter effects on supernova neutrinos at a single detector, A. S. Dighe, M. Th. Keil, G. G. Raffelt, JCAP 0306 (2003) 006, arXiv:hep-ph/0304150.
[Dighe:2003jg]
[23-269]
Probing the neutrino mass hierarchy and the 13-mixing with supernovae, C.Lunardini, A.Yu.Smirnov, JCAP 0306 (2003) 009, arXiv:hep-ph/0302033.
[Lunardini:2003eh]
[23-270]
Supernova neutrinos: difference of $\nu_\mu$ - $\nu_\tau$ fluxes and conversion effects, Evgeny K. Akhmedov, Cecilia Lunardini, Alexei Yu. Smirnov, Nucl. Phys. B643 (2002) 339-366, arXiv:hep-ph/0204091.
[Akhmedov:2002zj]
[23-271]
Earth effects on supernova neutrinos and their implications for neutrino parameters, Keitaro Takahashi, Katsuhiko Sato, Phys. Rev. D66 (2002) 033006, arXiv:hep-ph/0110105.
[Takahashi:2001dc]
[23-272]
Supernova neutrinos: Earth matter effects and neutrino mass spectrum, C. Lunardini, A. Yu. Smirnov, Nucl. Phys. B616 (2001) 307-348, arXiv:hep-ph/0106149.
[Lunardini:2001pb]
[23-273]
Effects of neutrino oscillation on the supernova neutrino spectrum, Keitaro Takahashi, Mariko Watanabe, Katsuhiko Sato, Tomonori Totani, Phys. Rev. D64 (2001) 093004, arXiv:hep-ph/0105204.
[Takahashi:2001ep]
[23-274]
The earth effects on the supernova neutrino spectra, Keitaro Takahashi, Mariko Watanabe, K. Sato, Phys. Lett. B510 (2001) 189-196, arXiv:hep-ph/0012354.
[Takahashi:2000it]
[23-275]
Identifying the neutrino mass spectrum from the neutrino burst from a supernova, Amol S. Dighe, Alexei Yu. Smirnov, Phys. Rev. D62 (2000) 033007, arXiv:hep-ph/9907423.
[Dighe:1999bi]
[23-276]
Prospects for detecting supernova neutrino flavor oscillations, George M. Fuller, Wick C. Haxton, Gail C. McLaughlin, Phys. Rev. D59 (1999) 085005, arXiv:astro-ph/9809164.
[Fuller:1998kb]
[23-277]
Resonant conversion of massless neutrinos in supernovae, H. Nunokawa, Y. Z. Qian, A. Rossi, J. W. F. Valle, Phys. Rev. D54 (1996) 4356-4363, arXiv:hep-ph/9605301.
[Nunokawa:1996tg]
[23-278]
Effects of random density fluctuations on matter enhanced neutrino flavor transitions in supernovae and implications for supernova dynamics and nucleosynthesis, F. N. Loreti, Y. Z. Qian, G. M. Fuller, A. B. Balantekin, Phys. Rev. D52 (1995) 6664-6670, arXiv:astro-ph/9508106.
[Loreti:1995ae]
[23-279]
Supernova neutrinos and their oscillations, T. K. Kuo, James T. Pantaleone, Phys. Rev. D37 (1988) 298.
[Kuo:1987qu]
[23-280]
Neutrino oscillations and stellar collapse, L. Wolfenstein, Phys. Rev. D20 (1979) 2634-2635.
[Wolfenstein:1979ni]

24 - Phenomenology - Type II - Flavor Conversion - Talks

[24-1]
Neutrino flavor evolution in dense environments and the r-process, Maria Cristina Volpe, PoS PANIC2021 (2022) 312, arXiv:2111.08250. Particles and Nuclei International Conference~.
[Volpe:2021mme]
[24-2]
Supernova neutrinos: fast flavor conversions near the core, Manibrata Sen, Springer Proc.Phys. 203 (2018) 533-537, arXiv:1702.06836. XXII DAE-BRNS HEP Symposium.
[Sen:2017ogt]
[24-3]
Theoretical developments in supernova neutrino physics: mass corrections and pairing correlators, Cristina Volpe, J. Phys. Conf. Ser. 718 (2016) 062068, arXiv:1601.05018. TAUP 2015.
[Volpe:2016xxd]
[24-4]
Linking neutrino oscillations to the nucleosynthesis of elements, Meng-Ru Wu, Gabriel Martinez-Pinedo, Yong-Zhong Qian, EPJ Web Conf. 109 (2016) 06005, arXiv:1512.03630. OMEG 2015.
[Wu:2015glr]
[24-5]
Flavor Oscillations in Core-Collapse Supernovae, A.B. Balantekin, Nucl. Phys. Proc. Suppl. 235-236 (2013) 388-394, arXiv:1209.5894. Neutrino 2012, Kyoto, Japan, June 3-9, 2012.
[Balantekin:2012id]
[24-6]
Long-term evolution of massive star explosions, T. Fischer et al., arXiv:1112.5528, 2011. HANSE 2011.
[Fischer:2011wd]
[24-7]
Supernova neutrino flavor evolution at high densities, A. B. Balantekin, arXiv:1111.2282, 2011. HAmburg neutrinos from Supernova Explosions (HANSE 2011), DESY, Hamburg Site (Germany), 19-23 July 2011.
[Balantekin:2011hm]
[24-8]
Flavor stability analysis of supernova neutrino fluxes compared with simulations, Srdjan Sarikas, Georg Raffelt, arXiv:1110.5572, 2011. HANSE 2011.
[Sarikas:2011jc]
[24-9]
Supernova neutrino oscillations: what do we understand?, Amol Dighe, J. Phys. Conf. Ser. 203 (2010) 012015, arXiv:0912.4167. TAUP 2009, Rome, July 2009.
[Dighe:2009nr]
[24-10]
A simple model for spectral swapping of supernova neutrinos, Huaiyu Duan, AIP Conf. Proc. 1182 (2009) 36-39, arXiv:0907.0251. CIPANP 09, San Diego, USA, March 26-31, 2009.
[Duan:2009rp]
[24-11]
Collective flavour transitions of supernova neutrinos, Irene Tamborra, arXiv:0905.2577, 2009. XLIVth Rencontres de Moriond: Electroweak Interactions and Unified Theories, La Thuile, Italy, 7-14 Mar 2009.
[Tamborra:2009tb]
[24-12]
Collective flavor transitions of supernova neutrinos, Guenter Sigl et al., Nucl. Phys. Proc. Suppl. 188 (2009) 101-106, arXiv:0901.0725. NOW2008, Conca Specchiulla, Otranto, Italy, September 2008.
[Sigl:2009cw]
[24-13]
Neutrinos self interactions in Supernovae, Gianluigi Fogli, Eligio Lisi, Antonio Marrone, Alessandro Mirizzi, arXiv:0805.2530, 2008. 43rd Rencontres de Moriond EW session, La Thuile, Italy, 1-8 March 2008.
[Fogli:2008im]
[24-14]
Multi-angle effects in collective supernova neutrino oscillations, Andreu Esteban-Pretel, Sergio Pastor, Ricard Tomas, Georg Raffelt, Gunter Sigl, J. Phys. Conf. Ser. 120 (2008) 052021, arXiv:0712.2176. TAUP 07, Sendai, Japan.
[Esteban-Pretel:2007all]
[24-15]
Identifying the neutrino mass hierarchy with supernova neutrinos, R. Tomas, ECONF C0605151 (2006) 0006, arXiv:hep-ph/0701060. IPM Conference on Lepton and Hadron Physics, Tehran, Iran, May 15-20, 2006; PSN: IPM-LHP06-19May.
[Tomas:2006awg]
[24-16]
Identifying the neutrino mass hierarchy with supernova neutrinos, M. Kachelriess, R. Tomas, arXiv:hep-ph/0412100, 2004. Quarks04 and 5th Rencontres du Vietnam.
[Kachelriess:2004vs]
[24-17]
Study of the effect of neutrino oscillation on the supernova neutrino signal with the LVD detector, M. Aglietta et al. (LVD), Nucl. Phys. Proc. Suppl. 138 (2005) 115, arXiv:hep-ph/0307287. ICRC 2003.
[LVD:2003apg]
[24-18]
Physics of supernova neutrinos: Flavor conversion effects, Cecilia Lunardini, arXiv:hep-ph/0307257, 2003. SUSY 2003 conference, Tucson, Arizona, June 5-10 2003.
[Lunardini:2003tn]

25 - Phenomenology - Type II - Neutrino Models

[25-1]
Gravitational memory signal from neutrino self-interactions in supernova, Soumya Bhattacharya, Debanjan Bose, Indranil Chakraborty, Arpan Hait, Subhendra Mohanty, arXiv:2311.03315, 2023.
[Bhattacharya:2023wzl]
[25-2]
Multimessenger search for electrophilic feebly interacting particles from supernovae, Pedro De la Torre Luque, Shyam Balaji, Pierluca Carenza, arXiv:2307.13731, 2023.
[DelaTorreLuque:2023huu]
[25-3]
Breaking the conformal freedom of spacetime with supernova neutrino imaging, Joonas Ilmavirta, Gunther Uhlmann, arXiv:2112.07543, 2021.
[Ilmavirta:2021wci]
[25-4]
Medium effects in supernovae constraints on light mediators, David G. Cerdeno, Marina Cermeno, M. Angeles Perez-Garcia, Elliott Reid, Phys.Rev.D 104 (2021) 063013, arXiv:2106.11660.
[Cerdeno:2021cdz]
[25-5]
Impact of a light stabilized radion in supernovae cooling, Prasanta Kumar Das, J. R. Selvaganapathy, Chandradew Sharma, Tarun Kumar Jha, V. Sunil Kumar, arXiv:1210.7407, 2012.
[Das:2012zk]
[25-6]
Emissivity of neutrinos in supernova in a left-right symmetric model, A. Gutierrez-Rodriguez, E. Torres-Lomas, A. Gonzalez-Sanchez, Int. J. Mod. Phys. A25 (2010) 2551-2560, arXiv:1001.0400.
[Gutierrez-Rodriguez:2010iix]
[25-7]
TeV-scale bileptons, see-saw type II and lepton flavor violation in core-collapse supernova, Oleg Lychkovskiy, Sergei Blinnikov, Mikhail Vysotsky, Eur. Phys. J. C67 (2010) 213, arXiv:0912.1395.
[Lychkovskiy:2010ue]
[25-8]
Dark matter sterile neutrinos in stellar collapse: Alteration of energy/lepton number transport and a mechanism for supernova explosion enhancement, June Hidaka, George M. Fuller, Phys. Rev. D74 (2006) 125015, arXiv:astro-ph/0609425.
[Hidaka:2006sg]
[25-9]
Probing Late Neutrino Mass Properties with Supernova Neutrinos, J. Baker, H. Goldberg, G. Perez, I. Sarcevic, Phys. Rev. D76 (2007) 063004, arXiv:hep-ph/0607281.
[Baker:2006gm]

26 - Phenomenology - Type Ia

[26-1]
The low multipoles in the Pantheon+SH0ES data, Francesco Sorrenti, Ruth Durrer, Martin Kunz, arXiv:2403.17741, 2024.
[Sorrenti:2024ztg]
[26-2]
Constraining neutrino mass and dark energy with peculiar velocities and lensing dispersions of Type Ia supernovae, Aniket Agrawal, Teppei Okumura, Toshifumi Futamase, Phys.Rev. D100 (2019) 063534, arXiv:1907.02328.
[Agrawal:2019yed]
[26-3]
Using Gamma Ray Monitoring to Avoid Missing the Next Milky Way Type Ia Supernova, Xilu Wang, Brian D. Fields, Amy Yarleen Lien, Mon.Not.Roy.Astron.Soc. 486 (2019) 2910-2918, arXiv:1904.04310.
[Wang:2019zsk]
[26-4]
SuperNNova: an open-source framework for Bayesian, Neural Network based supernova classification, Anais Moller, Thibault de Boissiere, arXiv:1901.06384, 2019.
[1901.06384]
[26-5]
The Antesonic Condition for the Explosion of Core-Collapse Supernovae I: Spherically Symmetric Polytropic Models: Stability $\text{\&}$ Wind Emergence, Matthias J. Raives, Sean M. Couch, Johnny P. Greco, Ondrrej Pejcha, Todd A. Thompson, Mon.Not.Roy.Astron.Soc. 481 (2018) 3293-3304, arXiv:1801.02626.
[Raives:2018fxt]
[26-6]
Neutrinos from Type Ia Supernovae: The Gravitationally Confined Detonation Scenario, Warren P. Wright et al., Phys.Rev. D95 (2017) 043006, arXiv:1609.07403.
[Wright:2016gar]
[26-7]
Neutrinos from Type Ia Supernovae I: The Deflagration-To-Detonation Transition Scenario, Warren P. Wright, Gautam Nagaraj, James P. Kneller, Kate Scholberg, Ivo R. Seitenzahl, Phys. Rev. D94 (2016) 025026, arXiv:1605.01408.
[Wright:2016xma]
[26-8]
Neutrino and gravitational wave signal of a delayed-detonation model of Type Ia supernovae, Ivo R. Seitenzahl et al., Phys. Rev. D92 (2015) 124013, arXiv:1511.02542.
[Seitenzahl:2015mdy]
[26-9]
Supernovae in Low-Redshift Galaxy Clusters: the Type-Ia Supernova Rate, Keren Sharon et al., Astrophys. J. 660 (2007) 1165-1175, arXiv:astro-ph/0610228.
[Sharon:2006ab]
[26-10]
A new formulation of the Type Ia SN rate and its consequences on galactic chemical evolution, F. Matteucci et al., Mon. Not. Roy. Astron. Soc. 372 (2006) 265-275, arXiv:astro-ph/0607504.
[Matteucci:2006qe]
[26-11]
Rates and properties of type Ia supernovae as a function of mass and star-formation in their host galaxies, M. Sullivan et al. (SNLS), Astrophys. J. 648 (2006) 868-883, arXiv:astro-ph/0605455.
[SNLS:2006plv]
[26-12]
The Type-Ia Supernova Rate in z < 1 Galaxy Clusters: Implications for Progenitors and the Source of Cluster Iron, D. Maoz, A. Gal-Yam, Mon. Not. Roy. Astron. Soc. 347 (2004) 951, arXiv:astro-ph/0309797.
[Maoz:2003ee]
[26-13]
The Redshift Distribution of Type-Ia Supernovae: Constraints on Progenitors and Cosmic Star Formation History, A. Gal-Yam, D. Maoz, Mon. Not. Roy. Astron. Soc. 347 (2004) 942, arXiv:astro-ph/0309796.
[Gal-Yam:2003ftk]

27 - Phenomenology - Type Ia - Simulations

[27-1]
Don't forget the electrons: extending moderately-sized nuclear networks for multidimensional hydrodynamic codes, Domingo Garcia-Senz, Ruben M. Cabezon, Moritz Reichert, Axel Sanz, Jose A. Escartin, Athanasios Psaltis, Almudena Arcones, Friedrich-Karl Thielemann, arXiv:2403.03743, 2024.
[Garcia-Senz:2024jjt]
[27-2]
Three-Dimensional Simulations of the Deflagration Phase of the Gravitationally Confined Detonation Model of Type Ia Supernovae, G C Jordan IV et al., Astrophys.J. 681 (2008) 1448-1457, arXiv:astro-ph/0703573.
[Jordan:2007yv]
[27-3]
Capturing the Fire: Flame Energetics and Neutronizaton for Type Ia Supernova Simulations, A. C. Calder et al., Astrophys. J. 656 (2007) 313-332, arXiv:astro-ph/0611009.
[Calder:2006ir]
[27-4]
C+O detonations in thermonuclear supernovae: Interaction with previously burned material, A. Maier, J.C. Niemeyer, Astron.Astrophys. (2006), arXiv:astro-ph/0605293.
[Maier:2006zk]
[27-5]
Type Ia supernova diversity in three-dimensional models, F. K. Roepke et al., Astron.Astrophys. (2005), arXiv:astro-ph/0506107.
[Ropke:2005rq]
[27-6]
Three-dimensional modeling of Type Ia supernovae - The power of late time spectra, Cecilia Kozma et al., Astron.Astrophys. (2005), arXiv:astro-ph/0504317.
[Kozma:2005vx]
[27-7]
The distributed burning regime in Type Ia supernova models, F. K. Roepke, W. Hillebrandt, Astron. Astrophys. 429 (2005) L29-L32, arXiv:astro-ph/0411667.
[Ropke:2004pu]
[27-8]
Three-Dimensional Delayed-Detonation Model of Type Ia Supernova, Vadim N. Gamezo, Alexei M. Khokhlov, Elaine S. Oran, Astrophys. J. 623 (2005) 337, arXiv:astro-ph/0409598.
[Gamezo:2004hc]
[27-9]
Simulations of Turbulent Thermonuclear Burning in Type Ia Supernovae, W. Hillebrandt et al., arXiv:astro-ph/0405209, 2004.
[Hillebrandt:2004wq]
[27-10]
Direct Numerical Simulations of Type Ia Supernovae Flames I: The Landau-Darrieus Instability, J. B. Bell et al., Astrophys. J. 606 (2004) 1029, arXiv:astro-ph/0311543.
[Bell:2003ez]
[27-11]
Carbon Ignition in Type Ia Supernovae: An Analytic Model, S. E. Woosely, S. Wunsch, M. Kuhlen, Astrophys.J. 607 (2004) 921, arXiv:astro-ph/0307565.
[Woosely:2003ng]

28 - Phenomenology - Type Ia - Simulations - Talks

[28-1]
Cosmic Chandlery with Thermonuclear Supernovae, Alan C. Calder et al., J.Phys.Conf.Ser. 837 (2017) 012005, arXiv:1612.01915. Astronum2016 - 11th International Conference on Numerical Modeling of Space Plasma Flows, June 6-10, 2016.
[Calder:2016qcx]
[28-2]
Three-dimensional Modeling of Type Ia Supernova Explosions, F. K. Roepke, W. Hillebrandt, AIP Conf. Proc. 847 (2006) 190-195, arXiv:astro-ph/0610199. International Symposium of Origin of Matter and Evolution of Galaxies 2005.
[Ropke:2006vh]
[28-3]
Surface detonation in type Ia supernova explosions?, F. K. Roepke, S. E. Woosley, J. Phys. 46 (2006) 413-417, arXiv:astro-ph/0609691. SciDAC 2006 Meeting, Denver June 25-26 2006.
[Ropke:2006qk]
[28-4]
Numerical Simulations of Type Ia Supernova Explosions, Friedrich K. Ropke, W. Hillebrandt, M. Gieseler, M. Reinecke, C. Travaglio, arXiv:astro-ph/0609456, 2006. 12th Workshop on Nuclear Astrophysics, Ringberg Castle, Germany, 2004.
[Ropke:2006vw]
[28-5]
Type Ia Supernovae: Simulations and Nucleosynthesis, E. F. Brown et al., Nucl. Phys.A. (2005), arXiv:astro-ph/0505417. Nuclei in the Cosmos 8.
[Brown:2005wu]
[28-6]
Thermonuclear supernova models, and observations of Type Ia supernovae, E. Bravo, C. Badenes, D. Garcia-Senz, Aip Conf. Proc. 797 (2005) 453, arXiv:astro-ph/0412155. Conference on Interacting Binaries: Accretion, Evolution and Outcomes, Cefalu, Italy, July 2004.
[Bravo:2004ue]

29 - Theory - Type II

[29-1]
Proto-Neutron Star Convection and the Neutrino-Driven Wind: Implications for the $\nu$p-Process, Brian Nevins, Luke F. Roberts, arXiv:2404.07324, 2024.
[Nevins:2024dkr]
[29-2]
Equation of State of Hot Neutron Star Matter using Finite Range Simple Effective Interaction, T. R. Routray, S. Sahoo, X. Vinas, D. N. Basu, M. Centelles, arXiv:2404.05910, 2024.
[Routray:2024kgv]
[29-3]
Collapsar disk outflows I: Viscous hydrodynamic evolution in axisymmetry, Coleman Dean, Rodrigo Fernandez, Phys.Rev.D 109 (2024) 083010, arXiv:2403.08877.
[Dean:2024hhu]
[29-4]
Neutrino-Neutron Scattering Opacities in Supernova Matter, Gang Guo, Gabriel Martinez-Pinedo, Meng-Ru Wu, arXiv:2401.10737, 2024.
[Guo:2024opk]
[29-5]
Waveform Reconstruction of Core-Collapse Supernovae Gravitational-Waves with Ensemble Empirical Mode Decomposition, Yong Yuan, Xi-Long Fan, Hou-Jun Lv, Yang-Yi Sun, Kai Lin, Mon.Not.Roy.Astron.Soc. 529 (2024) 3235-3243, arXiv:2309.06011.
[Yuan:2023umh]
[29-6]
Collisional flavor swap with neutrino self-interactions, Chinami Kato, Hiroki Nagakura, Lucas Johns, arXiv:2309.02619, 2023.
[Kato:2023cig]
[29-7]
Failed supernova simulations beyond black hole formation, Takami Kuroda, Masaru Shibata, Mon.Not.Roy.Astron.Soc. 526 (2023) 152-159, arXiv:2307.06192.
[Kuroda:2023mzi]
[29-8]
Neutrino-driven massive stellar explosions in 3D fostered by magnetic fields via turbulent $\alpha$-effect, Jin Matsumoto, Tomoya Takiwaki, Kei Kotake, Mon.Not.Roy.Astron.Soc. 528 (2023) L96-L101, arXiv:2307.03400.
[Matsumoto:2023noc]
[29-9]
Effects of Hoyle state de-excitation on $u p$-process nucleosynthesis and Galactic chemical evolution, Hirokazu Sasaki, Yuta Yamazaki, Toshitaka Kajino, Grant J. Mathews, Phys.Lett.B 851 (2024) 138581, arXiv:2307.02785.
[Sasaki:2023ysp]
[29-10]
Neutrino spectrum and energy loss rates due to weak processes on hot $^{56}$Fe in pre-supernova environment, Alan A. Dzhioev, A. V. Yudin, N. V. Dunina-Barkovskaya, A. I. Vdovin, Particles 6 (2023) 682-692, arXiv:2306.16055.
[Dzhioev:2023yka]
[29-11]
Neutrino-Driven Winds in Three-Dimensional Core-Collapse Supernova Simulations, Tianshu Wang, Adam Burrows, Astrophys.J. 954 (2023) 114, arXiv:2306.13712.
[Wang:2023vkk]
[29-12]
Gravitational Wave Eigenfrequencies from Neutrino-Driven Core-Collapse Supernovae, Noah E. Wolfe, Carla Frohlich, Jonah M. Miller, Alejandro Torres-Forne, Pablo Cerda-Duran, Astrophys.J. 954 (2023) 161, arXiv:2303.16962.
[Wolfe:2023rfx]
[29-13]
General-relativistic simulations of the formation of a magnetized hybrid star, Anson Ka Long Yip, Patrick Chi-Kit Cheong, Tjonnie Guang Feng Li, arXiv:2303.16820, 2023.
[Yip:2023hmo]
[29-14]
Spontaneous Scalarization in Proto-neutron Stars, Fahimeh Rahimi, Zeinab Rezaei, Eur.Phys.J.C 83 (2023) 289, arXiv:2303.16630.
[Rahimi:2023mgu]
[29-15]
The Force Explosion Condition is Consistent with Spherically Symmetric CCSN Explosions, Mariam Gogilashvili, Jeremiah W. Murphy, Evan P. O'Connor, Mon.Not.Roy.Astron.Soc. 524 (2023) 4109-4115, arXiv:2302.04890.
[Gogilashvili:2023ujk]
[29-16]
Effect of stellar rotation on the development of post-shock instabilities during core-collapse supernovae, A. -C. Buellet, T. Foglizzo, J. Guilet, E. Abdikamalov, Astron.Astrophys. 674 (2023) A205, arXiv:2301.01962.
[Buellet:2023rvu]
[29-17]
Light Curves of Type IIP Supernovae from Neutrino-driven Explosions of Red Supergiants Obtained by a Semi-analytic Approach, Shuai Zha, Bernhard Muller, Amy Weir, Alexander Heger, Astrophys.J. 952 (2023) 155, arXiv:2301.00359.
[Zha:2023fmu]
[29-18]
Stalled Accretion Shock Instability in the Collapse of a Rotating Stellar Core, Laurie Walk, Thierry Foglizzo, Irene Tamborra, Phys.Rev.D 107 (2023) 063014, arXiv:2212.07467.
[Walk:2022eld]
[29-19]
Powering luminous core collapse supernovae with jets, Noam Soker, arXiv:2205.09560, 2022.
[Soker:2022agk]
[29-20]
Constraining nucleosynthesis in neutrino-driven winds: observations, simulations and nuclear physics, A. Psaltis, A. Arcones, F. Montes, P. Mohr, C.J. Hansen, M. Jacobi, H. Schatz, Astrophys.J. 935 (2022) 27, arXiv:2204.07136.
[Psaltis:2022jgr]
[29-21]
Chiral plasma instability and inverse cascade from nonequilibrium left-handed neutrinos in core-collapse supernovae, Jin Matsumoto, Naoki Yamamoto, Di-Lun Yang, Phys.Rev.D 105 (2022) 123029, arXiv:2202.09205.
[Matsumoto:2022lyb]
[29-22]
Boosting jittering jets by neutrino heating in core collapse supernovae, Noam Soker, arXiv:2202.05556, 2022.
[Soker:2022qxu]
[29-23]
A Force Explosion Condition for Spherically Symmetric Core-collapse Supernovae, Mariam Gogilashvili, Jeremiah W. Murphy, Mon.Not.Roy.Astron.Soc. 515 (2022) 1610-1623, arXiv:2110.10173.
[Gogilashvili:2021xfe]
[29-24]
Supernova Fallback as Origin of Neutron Star Spins and Spin-kick Alignment, H.-Thomas Janka, Annop Wongwathanarat, Michael Kramer, Astrophys.J. 926 (2022) 9, arXiv:2104.07493.
[Janka:2021deg]
[29-25]
Magnetic field induced neutrino chiral transport near equilibrium, Naoki Yamamoto, Di-Lun Yang, Phys.Rev.D 104 (2021) 123019, arXiv:2103.13159.
[Yamamoto:2021hjs]
[29-26]
Nucleosynthesis signatures of neutrino-driven winds from proto-neutron stars: a perspective from chemical evolution models, Fiorenzo Vincenzo, Todd A. Thompson, David H. Weinberg, Emily J. Griffith, James W. Johnson, Jennifer A. Johnson, Mon.Not.Roy.Astron.Soc. 508 (2021) 3499-3507, arXiv:2102.04920.
[Vincenzo:2021rvw]
[29-27]
Ultra-delayed neutrino-driven explosion of rotating massive-star collapse, Sho Fujibayashi, Koh Takahashi, Yuichiro Sekiguchi, Masaru Shibata, Astrophys.J. 919 (2021) 80, arXiv:2102.04467.
[Fujibayashi:2021wvv]
[29-28]
The Antesonic Condition for the Explosion of Core-Collapse Supernovae II: Rotation and Turbulence, Matthias J. Raives, Todd A. Thompson, Sean M. Couch, Mon.Not.Roy.Astron.Soc. 502 (2021) 4125-4136, arXiv:2009.04478.
[Raives:2020ahw]
[29-29]
Chiral Radiation Transport Theory of Neutrinos, Naoki Yamamoto, Di-Lun Yang, Astrophys.J. 895 (2020) 1, arXiv:2002.11348.
[Yamamoto:2020zrs]
[29-30]
Equation of State and Progenitor Dependence of Stellar-Mass Black-Hole Formation, A.S. Schneider, E. O'Connor, E. Granqvist, A. Betranhandy, S.M. Couch, Astrophys.J. 894 (2020) 4, arXiv:2001.10434.
[daSilvaSchneider:2020ddu]
[29-31]
Nonequilibrium Layer in the Crust of Neutron Stars and Nonequilibrium Beta-Processes in Astrophysics, G. S. Bisnovatyi-Kogan, J.Exp.Theor.Phys. 129 (2019) 503-510, arXiv:2001.03978.
[Bisnovatyi-Kogan:2019ffh]
[29-32]
Wave heating from proto-neutron star convection and the core-collapse supernova explosion mechanism, Sarah E. Gossan, Jim Fuller, Luke F. Roberts, Mon.Not.Roy.Astron.Soc. 491 (2020) 5376-5391, arXiv:1910.07599.
[Gossan:2019uzp]
[29-33]
The impact of non-dipolar magnetic fields in core-collapse supernovae, M. Bugli, J. Guilet, M. Obergaulinger, P. Cerda-Duran, M. A. Aloy, Mon.Not.Roy.Astron.Soc. 492 (2020) 58-71, arXiv:1909.02824.
[Bugli:2019rax]
[29-34]
Structure Factors of The Unitary Gas Under Supernova Conditions, Andrei Alexandru, Paulo F. Bedaque, Neill C. Warrington, Phys.Rev. C101 (2020) 045805, arXiv:1907.03914.
[Alexandru:2019gmp]
[29-35]
Equation of state effects in the core collapse of a $20$-$M_\odot$ star, A. S. Schneider, L. F. Roberts, C. D. Ott, E. O'connor, Phys.Rev. C100 (2019) 055802, arXiv:1906.02009.
[Schneider:2019shi]
[29-36]
Chiral effective field theory description of neutrino nucleon-nucleon Bremsstrahlung in supernova matter, Gang Guo, Gabriel Martinez-Pinedo, Astrophys.J. 887 (2019) 58, arXiv:1905.13634.
[Guo:2019cvs]
[29-37]
Criteria for the occurrence of Crossings Between the Angular Distributions of Electron Neutrinos and Antineutrinos in the Supernova Core, Shashank Shalgar, Irene Tamborra, Astrophys.J. 883 (2019) 80, arXiv:1904.07236.
[Shalgar:2019kzy]
[29-38]
Kompaneets equation for neutrinos: Application to neutrino heating in supernova explosions, Yudai Suwa, Hiroaki W. H. Tahara, Eiichiro Komatsu, arXiv:1904.05047, 2019.
[Suwa:2019nwo]
[29-39]
Magnetorotational Mechanism of the Explosion of Core-Collapse Supernovae, G. S. Bisnovatyi-Kogan, S. G. Moiseenko, N. V. Ardelyan, Phys.Atom.Nucl. 81 (2018) 266-278, arXiv:1903.12628.
[Bisnovatyi-Kogan:2018vvk]
[29-40]
Linear Analysis of the Shock Instability in Core-collapse Supernovae: Influences of Acoustic Power and Fluctuations of Neutrino Luminosity, Ken'ichi Sugiura, Kazuya Takahashi, Shoichi Yamada, Astrophys.J. 874 (2019) 28, arXiv:1903.00480.
[Sugiura:2019xuv]
[29-41]
The APR equation of state for simulations of supernovae, neutron stars and binary mergers, A. S. Schneider, C. Constantinou, B. Muccioli, M. Prakash, Phys.Rev. C100 (2019) 025803, arXiv:1901.09652.
[Schneider:2019vdm]
[29-42]
Supernova Neutrino Process of Li and B Revisited, Motohiko Kusakabe, Myung-Ki Cheoun, K. S. Kim, Masa-aki Hashimoto, Masaomi Ono, Ken'ichi Nomoto, Toshio Suzuki, Toshitaka Kajino, Grant J. Mathews, Astrophys.J. 872 (2019) 164, arXiv:1901.01715.
[Kusakabe:2019znq]
[29-43]
On the importance of progenitor asymmetry to shock revival in core-collapse supernovae, Hiroki Nagakura, Kazuya Takahashi, Yu Yamamoto, Mon.Not.Roy.Astron.Soc. 483 (2019) 208, arXiv:1811.05515.
[Nagakura:2018eme]
[29-44]
Reviving the stalled shock by jittering jets in core collapse supernovae: jets from the standing accretion shock instability, Noam Soker, Res.Astron.Astrophys. 19 (2019) 095, arXiv:1810.09074.
[Soker:2018fiu]
[29-45]
Realizability-Preserving DG-IMEX Method for the Two-Moment Model of Fermion Transport, Ran Chu, Eirik Endeve, Cory Hauck, Anthony Mezzacappa, arXiv:1809.06949, 2018.
[1809.06949]
[29-46]
Dynamics of supernova bounce in laboratory, S.I.Blinnikov et al., Phys.Rev. E99 (2019) 033102, arXiv:1806.05398.
[Blinnikov:2018ztq]
[29-47]
Self-similar, weak shock propagation and accretion in failed supernovae, Eric R. Coughlin, Eliot Quataert, Stephen Ro, Astrophys.J. 863 (2018) 158, arXiv:1805.06456.
[Coughlin:2018mlu]
[29-48]
Turbulence Generation by Shock-Acoustic-Wave Interaction in Core-Collapse Supernovae, E. Abdikamalov, C. Huete, A. Nussupbekov, S. Berdibek, Particles 1 (2018) 97-110, arXiv:1805.03957.
[Abdikamalov:2018myu]
[29-49]
The necessity of including magnetic fields in simulating core collapse supernovae, Noam Soker, arXiv:1805.03447, 2018.
[Soker:2018ttz]
[29-50]
PUSHing Core-Collapse Supernovae to Explosions in Spherical Symmetry III: Nucleosynthesis Yields, Sanjana Curtis et al., Astrophys.J. 870 (2019) 2, arXiv:1805.00498.
[Curtis:2018vkh]
[29-51]
High-density phase transition paves the way for supernova explosions of massive blue-supergiant stars, Tobias Fischer et al., Nat.Astron. 2 (2018) 980-986, arXiv:1712.08788.
[Fischer:2017lag]
[29-52]
Collisional Effects, Ion-Acoustic Waves and Neutrino Oscillations, Fernando Haas, Kellen Alves Pascoal, Jose Tito Mendonca, Phys.Plasmas 24 (2017) 052115, arXiv:1712.05345.
[Haas:2017dwr]
[29-53]
Instabilities and propagation of neutrino magnetohydrodynamic waves in arbitrary direction, Fernando Haas, Kellen Alves Pascoal, Phys.Plasmas 24 (2017) 092109, arXiv:1712.05328.
[Haas:2017ysk]
[29-54]
Direct URCA Processes in Supernovae and Accretion Disks with Arbitrary Magnetic Field, Igor Ognev, EPJ Web Conf. 158 (2017) 05004, arXiv:1711.06083.
[Ognev:2017qyv]
[29-55]
Heavy Nuclei as Thermal Insulation for Proto-Neutron Stars, Ken'ichiro Nakazato, Hideyuki Suzuki, Hajime Togashi, Phys.Rev. C97 (2018) 035804, arXiv:1710.10441.
[Nakazato:2017ynw]
[29-56]
Nuclear pasta in hot dense matter and its implications for neutrino scattering, Alessandro Roggero, Jerome Margueron, Luke F. Roberts, Sanjay Reddy, Phys.Rev. C97 (2018) 045804, arXiv:1710.10206.
[Roggero:2017pag]
[29-57]
The impact of vorticity waves on the shock dynamics in core-collapse supernovae, Cesar Huete, Ernazar Abdikamalov, David Radice, Mon.Not.Roy.Astron.Soc. 475 (2018) 3305, arXiv:1709.07363.
[Huete:2017gxn]
[29-58]
Heavy element nucleosynthesis in high-entropy ejections from magnetized proto-neutron star winds, Todd A. Thompson, Asif ud-Doula, Mon.Not.Roy.Astron.Soc. 476 (2018) 5502-5515, arXiv:1709.03997.
[Thompson:2017exj]
[29-59]
Neutrino Spectra from Nuclear Weak Interactions in $sd$-Shell Nuclei Under Astrophysical Conditions, G. Wendell Misch, Yang Sun, George M. Fuller, Astrophys.J. 852 (2018) 43, arXiv:1708.08792.
[Misch:2017sgh]
[29-60]
Monte-Carlo closure for moment-based transport schemes in general relativistic radiation hydrodynamics simulations, Francois Foucart, Mon.Not.Roy.Astron.Soc. 475 (2018) 4186-4207, arXiv:1708.08452.
[Foucart:2017mbt]
[29-61]
Neutrino scattering in supernovae and spin correlations of a unitary gas, Zidu Lin, C. J. Horowitz, Phys.Rev. C96 (2017) 055804, arXiv:1708.01788.
[Lin:2017spm]
[29-62]
Muon Creation in Supernova Matter Facilitates Neutrino-driven Explosions, R. Bollig et al., Phys.Rev.Lett. 119 (2017) 242702, arXiv:1706.04630.
[Bollig:2017lki]
[29-63]
How Turbulence Enables Core-Collapse Supernova Explosions, Quintin Mabanta, Jeremiah W. Murphy, Astrophys.J. 856 (2018) 22, arXiv:1706.00072.
[Mabanta:2017kyb]
[29-64]
The imprints of the last jets in core collapse supernovae, Ealeal Bear, Aldana Grichener, Noam Soker, Mon.Not.Roy.Astron.Soc. 472 (2017) 1770-1777, arXiv:1706.00003.
[Bear:2017yve]
[29-65]
Relativistic Jets in Core Collapse Supernovae, Tsvi Piran, Ehud Nakar, Paolo Mazzali, Elena Pian, Astrophys.J. 871 (2019) L25, arXiv:1704.08298.
[Piran:2017owm]
[29-66]
Importance of $^{56}$Ni production on diagnosing explosion mechanism of core-collapse supernova, Yudai Suwa, Nozomu Tominaga, Keiichi Maeda, arXiv:1704.04780, 2017.
[Suwa:2017kfx]
[29-67]
Protomagnetar and black hole formation in high-mass stars, Martin Obergaulinger, Miguel Angel Aloy, Mon.Not.Roy.Astron.Soc. 469 (2017) L43-L47, arXiv:1703.09893.
[Obergaulinger:2017qno]
[29-68]
Dependence of Weak Interaction Rates on Nuclear Composition during Stellar Core Collapse, Shun Furusawa, Hiroki Nagakura, Kohsuke Sumiyoshi, Chinami Kato, Shoichi Yamada, Phys.Rev. C95 (2017) 025809, arXiv:1701.08414.
[Furusawa:2017esp]
[29-69]
The magnetar model of the superluminous supernova GAIA16apd and the explosion jet feedback mechanism (JFM), Noam Soker, Astrophys.J. 839 (2017) L6, arXiv:1612.01912.
[Soker:2016qtg]
[29-70]
Supernova equations of state including full nuclear ensemble with in-medium effects, Shun Furusawa, Kohsuke Sumiyoshi, Shoichi Yamada, Hideyuki Suzuki, Nucl. Phys. A957 (2017) 188-207, arXiv:1612.01852.
[Furusawa:2016tdj]
[29-71]
Neutron star kicks by the gravitational tug-boat mechanism in asymmetric supernova explosions: progenitor and explosion dependence, H.-Th. Janka, Astrophys.J. 837 (2017) 84, arXiv:1611.07562.
[Janka:2016nak]
[29-72]
The intermediate r-process in core-collapse supernovae driven by the magneto-rotational instability, Nobuya Nishimura, Hidetomo Sawai, Tomoya Takiwaki, Shoichi Yamada, Friedrich-Karl Thielemann, Astrophys.J. 836 (2017) L21, arXiv:1611.02280.
[Nishimura:2016hak]
[29-73]
Core collapse supernova remnants with ears, Aldana Grichener, Noam Soker, Mon.Not.Roy.Astron.Soc. 468 (2017) 1226, arXiv:1610.09647.
[Grichener:2016akq]
[29-74]
Prospects for Neutrino Spin Coherence in Supernovae, James Tian, George Fuller, Phys.Rev. D95 (2017) 063004, arXiv:1610.08586.
[Tian:2016hec]
[29-75]
Neutrino induced vorticity, Alfven waves and the normal modes, Jitesh R. Bhatt, Manu George, Eur.Phys.J. C77 (2017) 539, arXiv:1608.05558.
[Bhatt:2016irk]
[29-76]
Asymmetric core-collapse of rapidly-rotating massive star, Avishai Gilkis, IAU Symp. 324 (2016) 400, arXiv:1608.05320.
[Gilkis:2016zmn]
[29-77]
Neutrino Quantum Kinetic Equations: The Collision Term, Daniel N. Blaschke, Vincenzo Cirigliano, Phys. Rev. D94 (2016) 033009, arXiv:1605.09383.
[Blaschke:2016xxt]
[29-78]
Shock-Turbulence Interaction in Core-Collapse Supernovae, Ernazar Abdikamalov, Azamat Zhaksylykov, David Radice, Shapagat Berdibek, Mon.Not.Roy.Astron.Soc. 461 (2016) 3864-3876, arXiv:1605.09015.
[Abdikamalov:2016bzh]
[29-79]
Magnetar-Powered Supernovae in Two Dimensions. I. Superluminous Supernovae, Ke-Jung Chen, S. E. Woosley, Tuguldur Sukhbold, Astrophys.J. 832 (2016) 73, arXiv:1604.07989.
[Chen:2016sra]
[29-80]
Scaling laws in chiral hydrodynamic turbulence, Naoki Yamamoto, Phys. Rev. D93 (2016) 125016, arXiv:1603.08864.
[Yamamoto:2016xtu]
[29-81]
A Simple Approach to the Supernova Progenitor-Explosion Connection, B. Muller, A. Heger, D. Liptai, J.B. Cameron, Mon.Not.Roy.Astron.Soc. 460 (2016) 742-764, arXiv:1602.05956.
[Muller:2016ujh]
[29-82]
The Role of Nucleon Strangeness in Supernova Explosions, T. J. Hobbs, Mary Alberg, Gerald A. Miller, Phys. Rev. C93 (2016) 052801, arXiv:1601.01729.
[Hobbs:2016xlg]
[29-83]
Chiral transport of neutrinos in supernovae: neutrino-induced fluid helicity and helical plasma instability, Naoki Yamamoto, Phys. Rev. D93 (2016) 065017, arXiv:1511.00933.
[Yamamoto:2015gzz]
[29-84]
Shock Revival in Core-Collapse Supernovae: A Phase-Diagram Analysis, Daniel Gabay, Shmuel Balberg, Uri Keshet, Astrophys. J. 815 (2015) 37, arXiv:1508.03640.
[Gabay:2015fma]
[29-85]
An Integral Condition for Core-Collapse Supernova Explosions, Jeremiah W. Murphy, Joshua C. Dolence, Astrophys.J. 834 (2017) 183, arXiv:1507.08314.
[Murphy:2015uwa]
[29-86]
The Evolution and Impacts of Magnetorotational Instability in Magnetized Core-Collapse Supernovae, Hidetomo Sawai, Shoichi Yamada, Astrophys. J. 817 (2016) 153, arXiv:1504.03035.
[Sawai:2015tsa]
[29-87]
A two-parameter criterion for classifying the explodability of massive stars by the neutrino-driven mechanism, T. Ertl, H.-Th. Janka, S.E. Woosley, T. Sukhbold, M. Ugliano, Astrophys. J. 818 (2016) 124, arXiv:1503.07522.
[Ertl:2015rga]
[29-88]
Thermonuclear explosion of rotating massive stars could explain core-collapse supernovae, Doron Kushnir, arXiv:1502.03111, 2015.
[Kushnir:2015mca]
[29-89]
Hypercritical Accretion, Induced Gravitational Collapse, and Binary-Driven Hypernovae, Chris L. Fryer, Jorge A. Rueda, Remo Ruffini, Astrophys.J. 793 (2014) L36, arXiv:1409.1473.
[Fryer:2014uka]
[29-90]
Some Aspects of Supernova Neutrino Optics, B. D. Keister, Phys.Scripta 90 (2015) 088008, arXiv:1408.4729.
[Keister:2014ufa]
[29-91]
Nuclear inputs of key iron isotopes for core-collapse modeling and simulation, Jameel-Un Nabi, Abdel Nasser Tawfik, Phys.Scripta 89 (2014) 084005, arXiv:1408.4534.
[Nabi:2014ifa]
[29-92]
Neutrino and anti-neutrino energy loss rates due to iron isotopes suitable for core-collapse simulations, Jameel-Un Nabi, J. Phys. 57 (2012) 1211-1221, arXiv:1408.4321.
[Nabi:2012upx]
[29-93]
Electron and Positron Capture Rates on $\bf{^{55}}$Co in Stellar Matter, Jameel-Un Nabi, Muneeb-Ur Rahman, Muhammad Sajjad, Braz. J. Phys. 37 (2007) 1238-1245, arXiv:1408.3492.
[Nabi:2007vou]
[29-94]
Charged-current reactions in the supernova neutrino-sphere, Ermal Rrapaj, J.W. Holt, Alexander Bartl, Sanjay Reddy, A. Schwenk, Phys. Rev. C91 (2015) 035806, arXiv:1408.3368.
[Rrapaj:2014yba]
[29-95]
Magnetic field amplification and magnetically supported explosions of collapsing, non-rotating stellar cores, Martin Obergaulinger, Thomas Janka, Miguel Angel Aloy Toras, arXiv:1405.7466, 2014.
[1405.7466]
[29-96]
Critical Surface for Explosions of Rotational Core-Collapse Supernovae, Wakana Iwakami, Hiroki Nagakura, Shoichi Yamada, Astrophys.J. 793 (2014) 5, arXiv:1404.2646.
[Iwakami:2014jba]
[29-97]
Supernova matter at subnuclear densities as a resonant Fermi gas: Enhancement of neutrino rates, A. Bartl, C.J. Pethick, A. Schwenk, Phys. Rev. Lett. 113 (2014) 081101, arXiv:1403.4114.
[Bartl:2014hoa]
[29-98]
Magnetorotational Core-Collapse Supernovae in Three Dimensions, P. Mosta et al., Astrophys.J. 785 (2014) L29, arXiv:1403.1230.
[Mosta:2014jaa]
[29-99]
Effective Helium Burning Rates and the Production of the Neutrino Nuclei, Sam M. Austin, Christopher West, Alexander Heger, Phys. Rev. Lett. 112 (2014) 111101, arXiv:1402.6676.
[Austin:2014aia]
[29-100]
Self-sustained asymmetry of lepton-number emission: A new phenomenon during the supernova shock-accretion phase in three dimensions, Irene Tamborra et al., Astrophys.J. 792 (2014) 96, arXiv:1402.5418.
[Tamborra:2014aua]
[29-101]
Problems with neutrino-driven core-collapse supernova mechanisms, Oded Papish, Jason Nordhaus, Noam Soker, Mon.Not.Roy.Astron.Soc. 448 (2015) 2362, arXiv:1402.4362.
[Papish:2014tya]
[29-102]
Suppression of the multi-azimuthal-angle instability in dense neutrino gas during supernova accretion phase, Sovan Chakraborty, Alessandro Mirizzi, Ninetta Saviano, David de Sousa Seixas, Phys. Rev. D89 (2014) 093001, arXiv:1402.1767.
[Chakraborty:2014nma]
[29-103]
Neutrino Emissivities from Deuteron-Breakup and Formation in Supernovae, S. Nasu et al., Astrophys.J. 801 (2015) 78, arXiv:1402.0959.
[Nasu:2014mta]
[29-104]
Influence of Magnetorotational Instability on Neutrino Heating: A New Mechanism for Weakly Magnetized Core-Collapse Supernovae, Hidetomo Sawai, Shoichi Yamada, Astrophys.J. 784 (2014) L10, arXiv:1402.0513.
[Sawai:2014ina]
[29-105]
The Fallback Mechanisms in Core-Collapse Supernovae, Tsing-Wai Wong, Christopher L. Fryer, Carola I. Ellinger, Gabriel Rockefeller, Vassiliki Kalogera, arXiv:1401.3032, 2014.
[Wong:2014tca]
[29-106]
Toward connecting core-collapse supernova theory with observations: I. Shock revival in a 15 Msun blue supergiant progenitor with SN 1987A energetics, Timothy Handy, Tomasz Plewa, Andrzej Odrzywolek, arXiv:1312.3658, 2013.
[1312.3658]
[29-107]
The Compactness of Presupernova Stellar Cores, Tuguldur Sukhbold, Stan Woosley, Astrophys.J. 783 (2014) 10, arXiv:1311.6546.
[Sukhbold:2013yca]
[29-108]
Neutrino scattering from hydrodynamic modes in hot and dense neutron matter, Gang Shen, Sanjay Reddy, Phys. Rev. C89 (2014) 032802, arXiv:1311.6096.
[Shen:2013kxa]
[29-109]
Neutrino Quantum Kinetics, Alexey Vlasenko, George M. Fuller, Vincenzo Cirigliano, Phys. Rev. D89 (2014) 105004, arXiv:1309.2628.
[Vlasenko:2013fja]
[29-110]
Parametric Study of Flow Patterns behind the Standing Accretion Shock Wave for Core-Collapse Supernovae, Wakana Iwakami, Hiroki Nagakura, Shoichi Yamada, Astrophys.J. 786 (2014) 118-140, arXiv:1308.0829.
[Iwakami:2013bra]
[29-111]
Neutrino pair emission from thermally excited nuclei in stellar collapse, Alan A. Dzhioev, A. I. Vdovin, Phys.Atom.Nucl. 77 (2014) 1166-1172, arXiv:1307.4011.
[Dzhioev:2013gfa]
[29-112]
Radiation Transport for Explosive Outflows: A Multigroup Hybrid Monte Carlo Method, Ryan T. Wollaeger et al., Astrophys.J.Suppl. 209 (2013) 36, arXiv:1306.5700.
[Wollaeger:2013sta]
[29-113]
Influences of inelastic neutrino reactions with light nuclei on standing accretion shock instability in core collapse supernovae, Shun Furusawa, Hiroki Nagakura, Kohsuke Sumiyoshi, Shoichi Yamada, Astrophys.J. 774 (2013) 78, arXiv:1305.1510.
[Furusawa:2013tta]
[29-114]
New equations of state based on liquid drop model of heavy nuclei and quantum approach to light nuclei for core-collapse supernova simulations, Shun Furusawa, Kohsuke Sumiyoshi, Shoichi Yamada, Hideyuki Suzuki, Astrophys.J. 772 (2013) 95, arXiv:1305.1508.
[Furusawa:2013rta]
[29-115]
Conservative 3+1 General Relativistic Boltzmann Equation, Christian Y. Cardall, Eirik Endeve, Anthony Mezzacappa, Phys. Rev. D88 (2013) 023011, arXiv:1305.0037.
[Cardall:2013kwa]
[29-116]
Extended evolution equations for neutrino propagation in astrophysical and cosmological environments, Cristina Volpe, Daavid Vaananen, Catalina Espinoza, Phys. Rev. D87 (2013) 113010, arXiv:1302.2374.
[Volpe:2013uxl]
[29-117]
Neutrino Pair Emission from Hot Nuclei During Stellar Collapse, G. Wendell Misch, B. Alex Brown, George M. Fuller, Phys. Rev. C88 (2013) 015807, arXiv:1301.7042.
[Misch:2013aq]
[29-118]
Conservative Moment Equations for Neutrino Radiation Transport with Limited Relativity, Eirik Endeve, Christian Y. Cardall, Anthony Mezzacappa, arXiv:1212.4064, 2012.
[Endeve:2012dt]
[29-119]
Derivation of the Isotropic Diffusion Source Approximation (IDSA) for Supernova Neutrino Transport by Asymptotic Expansions, Heiko Berninger, Emmanuel Frenod, Martin Gander, Mathias Liebendorfer, Jerome Michaud, SIAM J.Math.Anal. 45 (2013) 3229-3265, arXiv:1212.1623.
[Berninger:2012ts]
[29-120]
A Mathematical Description of the IDSA for Supernova Neutrino transport, its discretization and a comparison with a finite volume scheme for Boltzmann's Equation, Heiko Berninger et al., arXiv:1211.6901, 2012.
[Berninger:2012cs]
[29-121]
Dynamics of neutrino-driven winds: inclusion of accurate weak interaction rates in strong magnetic fields, Men-Quan Liu, Zhong-Xiang Wang, Res. Astron. Astrophys. 13 (2013) 207-214, arXiv:1210.3452.
[Liu:2012vf]
[29-122]
Large-scale calculations of supernova neutrino-induced reactions in Z=8-82 target nuclei, N. Paar, H. Tutman, T. Marketin, T. Fischer, Phys. Rev. C87 (2013) 025801, arXiv:1210.2655.
[Paar:2012dj]
[29-123]
Semi-dynamical approach to the shock revival in core-collapse supernovae, Hiroki Nagakura, Yu Yamamoto, Shoichi Yamada, Astrophys.J. 765 (2013) 123, arXiv:1209.0596.
[Nagakura:2012xx]
[29-124]
Impacts of Nuclear Burning on Reviving Weak Shocks of Neutrino-Driven Supernova Explosions, Ko Nakamura, Tomoya Takiwaki, Kei Kotake, Nobuya Nishimura, Astrophys.J. 782 (2014) 91, arXiv:1207.5955.
[Nakamura:2012cgz]
[29-125]
Core-collapse supernova equations of state based on neutron star observations, Andrew W. Steiner, Matthias Hempel, Tobias Fischer, Astrophys.J. 774 (2013) 17, arXiv:1207.2184.
[Steiner:2012rk]
[29-126]
Spin Response and Neutrino Emissivity of Dense Neutron Matter, G. Shen, S. Gandolfi, S. Reddy, J. Carlson, Phys. Rev. C87 (2013) 025802, arXiv:1205.6499.
[Shen:2012sa]
[29-127]
Medium modification of the charged current neutrino opacity and its implications, Luke F. Roberts, Sanjay Reddy, Phys. Rev. C86 (2012) 065803, arXiv:1205.4066.
[Roberts:2012um]
[29-128]
Neutrino cooling rates due to $^{54,55,56}$Fe for presupernova evolution of massive stars, Jameel-Un Nabi, Adv.Space Res. 48 (2011) 985-997, arXiv:1203.4344.
[Nabi:2011hqf]
[29-129]
On the Requirements for Realistic Modeling of Neutrino Transport in Simulations of Core-Collapse Supernovae, Eric J. Lentz et al., Astrophys. J. 747 (2012) 73, arXiv:1112.3595.
[Lentz:2011aa]
[29-130]
Hydrodynamics of Core-Collapse Supernovae at the Transition to Explosion. I. Spherical Symmetry, Rodrigo Fernandez, Astrophys. J. 749 (2012) 142, arXiv:1111.0665.
[Fernandez:2011un]
[29-131]
Neutrino energy loss rates and positron capture rates on $^{55}$Co for presupernova and supernova physics, Jameel-Un Nabi, Muhammad Sajjad, Phys. Rev. C77 (2008) 055802, arXiv:1108.0826.
[Nabi:2008zza]
[29-132]
Stellar neutrino energy loss rates due to $^{24}$Mg suitable for O+Ne+Mg core simulations, Jameel-Un Nabi, Phys. Rev. C78 (2008) 045801, arXiv:1108.0511.
[Nabi:2008zz]
[29-133]
A new baryonic equation of state at sub-nuclear densities for core-collapse simulations, Shun Furusawa, Shoichi Yamada, Kohsuke Sumiyoshi, Hideyuki Suzuki, Astrophys. J. 738 (2011) 178, arXiv:1103.6129.
[Furusawa:2011wh]
[29-134]
The Physics of the Neutrino Mechanism of Core-Collapse Supernovae, Ondrej Pejcha, Todd A. Thompson, Astrophys. J. 746 (2012) 106, arXiv:1103.4864.
[Pejcha:2011az]
[29-135]
Core collapse supernovae in the QCD phase diagram, T. Fischer et al., Phys. Atom. Nucl. 75 (2012) 613-620, arXiv:1103.3004. 19 pages, 4 figures, CPOD2010 conference proceeding.
[Fischer:2011zj]
[29-136]
Dynamics of an Alfven surface in core collapse supernovae, Jerome Guilet, Thierry Foglizzo, Sebastien Fromang, Astrophys. J. 729 (2011) 71, arXiv:1006.4697.
[Guilet:2010mq]
[29-137]
Triggering collective oscillations by three-flavor effects, Basudeb Dasgupta, Georg G. Raffelt, Irene Tamborra, Phys. Rev. D81 (2010) 073004, arXiv:1001.5396.
[Dasgupta:2010ae]
[29-138]
Non-Boltzmann behaviour in models of interacting neutrinos, Bruce H. J. McKellar, Ivona Okuniewicz, James Quach, Int. J. Mod. Phys. A24 (2009) 1087-1096, arXiv:0903.3139.
[McKellar:2009py]
[29-139]
Proof Of The Invalidity Of The Boltzmann Property In The FMO Many-Body Neutrino Model, James Quach, arXiv:0903.1410, 2009.
[Quach:2009vh]
[29-140]
The isotropic diffusion source approximation for supernova neutrino transport, M. Liebendoerfer, S. C. Whitehouse, T. Fischer, Astrophys. J. 698 (2009) 1174-1190, arXiv:0711.2929.
[Liebendoerfer:2007dz]
[29-141]
Self-induced decoherence in dense neutrino gases, G.G. Raffelt, G. Sigl, Phys. Rev. D75 (2007) 083002, arXiv:hep-ph/0701182.
[Raffelt:2007yz]
[29-142]
Construction and analysis of a simplified many-body neutrino model, Alexander Friedland, Bruce H.J. McKellar, Ivona Okuniewicz, Phys. Rev. D73 (2006) 093002, arXiv:hep-ph/0602016.
[Friedland:2006ke]
[29-143]
Influence of a strong magnetic field on the neutrino heating of a supernova shock, A.A. Gvozdev, I.S. Ognev, Astron.Lett. 31 (2005) 442-445.
[Gvozdev:2005hz]
[29-144]
Neutrino interaction with nucleons in the envelope of a collapsing star with a strong magnetic field, A.A. Gvozdev, I.S. Ognev, J.Exp.Theor.Phys. 94 (2002) 1043-1056, arXiv:astro-ph/0403011.
[Gvozdev:2002nu]
[29-145]
Speed-up through entanglement - many-body effects in neutrino processes, Nicole F. Bell, Andrew A. Rawlinson, R. F. Sawyer, Phys. Lett. B573 (2003) 86, arXiv:hep-ph/0304082.
[Bell:2003mg]
[29-146]
Neutrino flavor conversion in a neutrino background: single- versus multi-particle description, Alexander Friedland, Cecilia Lunardini, Phys. Rev. D68 (2003) 013007, arXiv:hep-ph/0304055.
[Friedland:2003dv]
[29-147]
On the possible enhancement of the magnetic field by neutrino reemission processes in the mantle of a supernova, A.A. Gvozdev, I.S. Ognev, JETP Lett. 69 (1999) 365-370, arXiv:astro-ph/9909154.
[Gvozdev:1999md]

30 - Theory - Type II - Talks

[30-1]
Equilibrium constants of nuclear reactions in supernova explosions, Jorge A. Munoz, Marcos A. Garcia, Jorge A. Lopez, Int.J.Mod.Phys.E 31 (2022) 2250018, arXiv:2104.01658. XIII Latin American Symposium of Nuclear Physics and Applications.
[Munoz:2021cde]
[30-2]
A minority view on the majority: A personal meeting summary on the explosion mechanism of supernovae, Noam Soker, IAU Symp. 324 (2017) 131-140, arXiv:1703.03673. SN 1987A 30 Years Later.
[Soker:2017pxp]
[30-3]
Chiral transport of neutrinos in supernovae, Naoki Yamamoto, EPJ Web Conf. 137 (2017) 09013, arXiv:1611.06076. XIIth Quark Confinement and the Hadron Spectrum, Thessaloniki, Greece.
[Yamamoto:2016zut]
[30-4]
The Multi-Dimensional Character of Core-Collapse Supernovae, W. R. Hix, E. J. Lentz, S. W. Bruenn, A. Mezzacappa, O. E. B. Messer, E. Endeve, J. M. Blondin, J. A. Harris, P. Marronett, K. N. Yakunin, Acta Phys.Polon. B47 (2016) 645, arXiv:1602.05553. XXXIV Mazurian Lakes Conference on Physics. http://inspirehep.net/record/1422041/files/arXiv:1602.05553.pdf.
[Hix:2016qoa]
[30-5]
Neutrinos and rare isotopes, A.B. Balantekin, J. Phys. Conf. Ser. 445 (2013) 012022, arXiv:1304.1882. International Symposium 'Exotic Nuclear Structure From Nucleons' (ENSFN 2012).
[Balantekin:2013usa]
[30-6]
Updates of the nuclear equation of state for core-collapse supernovae and neutron Stars: effects of 3-body forces, QCD, and magnetic fields, G J Mathews et al., J. Phys. Conf. Ser. 445 (2013) 012023, arXiv:1302.5875. International Symposium 'Exotic Nuclear Structure From Nucleons' (ENSFN 2012).
[Mathews:2013esm]
[30-7]
Turbulence and magnetic field amplification from spiral SASI modes in core-collapse supernovae, E. Endeve, C. Y. Cardall, R. D. Budiardja, A. Mezzacappa, J. M. Blondin, Phys.Scripta 2013 (2013) 014022, arXiv:1203.3748. International Conference Turbulent Mixing and Beyond, 21 - 28 August, 2011, ICTP, Trieste, Italy.
[Endeve:2012mr]
[30-8]
Strange matter in core-collapse supernovae, I. Sagert et al., Acta Phys. Polon. B43 (2012) 741-748, arXiv:1112.6328. Strangeness in Quark Matter, 18-24 September 2011, Polish Academy of Arts and Sciences, Cracow, Poland.
[Sagert:2011fq]
[30-9]
New Aspects and Boundary Conditions of Core-Collapse Supernova Theory, C. D. Ott, E. P. O'Connor, B. Dasgupta, arXiv:1111.6282, 2011. HAmburg Neutrinos from Supernova Explosions (HANSE) 2011.
[Ott:2011uc]
[30-10]
Exploring the QCD phase transition in core collapse supernova simulations in spherical symmetry, T. Fischery et al., arXiv:1005.4479, 2010. Compact stars in the QCD phase diagram II (CSQCD II), May 20-24, 2009, KIAA at Peking University, Beijing - P. R. China.
[Fischery:2010vn]
[30-11]
Towards neutrino transport with flavor mixing in supernovae: the Liouville operator, Christian Y. Cardall, Nucl. Phys. Proc. Suppl. 188 (2009) 264, arXiv:0909.4028. NOW 2008.
[Cardall:2009zz]
[30-12]
Equation of state for supernova matter, Ch.C. Moustakidis, arXiv:0909.3739, 2009. 28th International Workshop on Nuclear Theory, Rila Mountains, Bulgaria, June 22-27, 2009.
[Moustakidis:2009tf]
[30-13]
Recent Progress in the Understanding of the r-Process, Yong-Zhong Qian, arXiv:0809.2826, 2008. 10th Symposium on Nuclei in the Cosmos.
[Qian:2008aw]
[30-14]
Homologous Core Collapse in a Massive Star and Self- Similar Evolution of Rebound Shocks, Yi Cao, Yu-Qing Lou, AIP Conf. Proc. 1065 (2008) 306-309, arXiv:0808.3523. 2008 Nanjing GRB conference, Nanjing, 23-27 June 2008.
[Cao:2008cs]
[30-15]
Neutrino heating of a shock wave within magnetorotational model, A. A. Gvozdev, I.S. Ognev, arXiv:astro-ph/0611785, 2006. XIV International Seminar Quarks'2006, St.-Petersburg, Repino, Russia, May 19-25, 2006.
[Gvozdev:2006vn]
[30-16]
Hydrodynamics of Supernova Evolution in the Winds of Massive Stars, Vikram V. Dwarkadas, Astrophys. Space Sci. 307 (2007) 153-158, arXiv:astro-ph/0608608. High Energy Density Lab Astrophysics Conference 6.
[Dwarkadas:2006zz]
[30-17]
A Broader Perspective on the GRB-SN Connection, A. M. Soderberg, AIP Conf. Proc. 836 (2006) 380-385, arXiv:astro-ph/0601693. 16th Annual October Astrophysics Conference in Maryland 'Gamma Ray Bursts in the Swift Era'.
[Soderberg:2006tu]
[30-18]
General Relativity and Neutrino-driven Supernova Winds, Christian Y. Cardall, arXiv:astro-ph/0409716, 2004. First Argonne/MSU/JINA/INT RIA Workshop, The r-process: the astrophysical origin of the heavy elements and related Rare Isotope Acclerator Physics, January 8-10, 2004, at the Institute for Nuclear Theory, Seattle, Washington.
[Cardall:2004uw]
[30-19]
(Two) Open Questions in Stellar Nuclear Physics, Moshe Gai, AIP Conf.Proc. 726 (2004) 109, arXiv:astro-ph/0405100. StuFiesta, Cocoyoc, Mexico, April 19-22, 2004.
[Gai:2004xi]

31 - Theory - Type II - SN1987A

[31-1]
SN 1987A - Presupernova Evolution and the Progenitor Star, S. E. Woosley, A. Heger, T. A. Weaver, N. Langer, arXiv:astro-ph/9705146, 1997.
[Woosley:1997eu]
[31-2]
Supernova 1987A: An Empirical and analytic approach, Hans A. Bethe, Astrophys. J. 412 (1993) 192-202.
[Bethe:1992fq]

32 - Theory - Type II - Models

[32-1]
Pulsar kicks in ultralight dark matter background induced by neutrino oscillation, Geatano Lambiase, Tanmay Kumar Poddar, JCAP 01 (2024) 069, arXiv:2307.05229.
[Lambiase:2023hpq]
[32-2]
Probing nonlinear electrodynamics in slowly rotating spacetimes through neutrino astrophysics, Herman J. Mosquera Cuesta, Gaetano Lambiase, Jonas P. Pereira, Phys. Rev. D95 (2017) 025011, arXiv:1701.00431.
[MosqueraCuesta:2017iln]
[32-3]
Dark Matter Balls Help Supernovae to Explode, Colin D. Froggatt, Holger B. Nielsen, Mod. Phys. Lett. A30 (2015) 1550195, arXiv:1503.01089.
[Froggatt:2015hua]
[32-4]
A Generic Test of Modified Gravity Models which Emulate Dark Matter, E. O. Kahya, R. P. Woodard, Phys. Lett. B652 (2007) 213-216, arXiv:0705.0153.
[Kahya:2007zy]
[32-5]
An optimal hydrodynamic model for the normal Type IIP supernova 1999em, V. P. Utrobin, Astron.Astrophys. (2006), arXiv:astro-ph/0609642.
[Utrobin:2006ei]
[32-6]
The Birth of Quark Stars: Photon-driven Supernovae?, Anbo Chen, Renxin Xu, Astrophys.J. 668 (2007) L55, arXiv:astro-ph/0605285.
[Chen:2006zc]

33 - Theory - Type II - Models - Talks

[33-1]
Core collapse supernovae. Magnetorotational explosion, G.S. Bisnovatyi-Kogan, S.G. Moiseenko, N.V. Ardeljan, arXiv:astro-ph/0511173, 2005. 'Gravity, Astrophysics and Strings at the Black Sea' June 13-20, 2005, Bulgaria.
[Bisnovatyi-Kogan:2005dia]

34 - Theory - Type II - Pre-Supernova

[34-1]
Neutrinos from pre-supernova in the framework of TQRPA method, A. A. Dzhioev, A. V. Yudin, N. V. Dunina-Barkovskaya, A. I. Vdovin, Mon. Not. Roy. Astron. Soc. 527 (2024) 7701, arXiv:2312.07988.
[Dzhioev:2023sod]
[34-2]
Weak-interaction mediated rates on iron isotopes for presupernova evolution of massive stars, Jameel-Un Nabi, Eur. Phys. J. A40 (2009) 223, arXiv:1108.0507.
[Nabi:2009twl]
[34-3]
Presupernova Evolution of Differentially Rotating Massive Stars Including Magnetic Fields, Alexander Heger, S. E. Woosley, H. C. Spruit, Astrophys. J. 626 (2005) 350, arXiv:astro-ph/0409422.
[Heger:2004qp]
[34-4]
Presupernova Evolution of Rotating Massive Stars and the Rotation Rate of Pulsars, A. Heger, S. E. Woosley, N. Langer, H. C. Spruit, IAU Symp. 215 (2004) 591, arXiv:astro-ph/0301374.
[Heger:2003nh]
[34-5]
How Massive Single Stars End their Life, Alexander Heger, C. L. Fryer, S. E. Woosley, N. Langer, D. H. Hartmann, Astrophys. J. 591 (2003) 288-300, arXiv:astro-ph/0212469.
[Heger:2002by]
[34-6]
Presupernova Evolution with Improved Rates for Weak Interactions, A. Heger, S. E. Woosley, G. Martinez-Pinedo, K. Langanke, Astrophys. J. 560 (2001) 307-325, arXiv:astro-ph/0011507.
[Heger:2001ax]
[34-7]
Presupernova Evolution of Rotating Massive Stars I: Numerical Method and Evolution of the Internal Stellar Structure, A. Heger, N. Langer, S. E. Woosley, Astrophys. J. 528 (2000) 368, arXiv:astro-ph/9904132.
[Heger:1999ax]
[34-8]
Evolution of 8-10 solar mass stars toward electron capture supernovae. II - Collapse of an O + NE + MG core, Nomoto K., Astrophys. J. 322 (1987) 206-214.
[Nomoto-1987ApJ-322-206N]
[34-9]
Evolution of 8-10 solar mass stars toward electron capture supernovae. I - Formation of electron-degenerate O + NE + MG cores, Nomoto K., Astrophys. J. 277 (1984) 791-805.
[Nomoto-1984ApJ-277-791N]

35 - Theory - Type II - Pre-Supernova - Talks

[35-1]
Yields of Population III Supernovae and the Abundance Patterns of Extremely Metal-Poor Stars, Ken'ichi Nomoto, Nozomu Tominaga, Hideyuki Umeda, Chiaki Kobayashi, IAU Symp. (2006), arXiv:astro-ph/0603433. IAU Symp. 228: From Lithium to Uranium: Elemental Tracers of Early Cosmic Evolution.
[Nomoto:2005ufs]

36 - Theory - Type II - Supernova Remnant

[36-1]
Anisotropic Thermal Conduction in Supernova Remnants: Relevance to Hot Gas Filling Factors in the Magnetized ISM, David A. Tilley, Dinshaw S. Balsara, Astrophys. J. 645 (2006) L49-L52, arXiv:astro-ph/0604117.
[Tilley:2006gg]
[36-2]
Long-Term Evolution of Supernova Remnants in Magnetized Interstellar Medium, Hidekazu Hanayama, Kohji Tomisaka, Astrophys. J. 641 (2006) 905-918, arXiv:astro-ph/0507421.
[Hanayama:2005qh]

37 - Theory - Type Ia

[37-1]
Nickel-Rich Outflows from Accretion Disks Formed by the Accretion-Induced Collapse of White Dwarfs, B. D. Metzger, A. L. Piro, E. Quataert, Mon.Not.Roy.Astron.Soc. 396 (2009) 1659, arXiv:0812.3656.
[Metzger:2008wj]
[37-2]
Neutronization During Type Ia Supernova Simmering, Anthony L. Piro, Lars Bildsten, Astrophys.J. (2007), arXiv:0710.1600.
[Piro:2007tq]
[37-3]
A Common Explosion Mechanism for Type Ia Supernovae, P. A. Mazzali, F. K. Roepke, S. Benetti, W. Hillebrandt, Science 315 (2007) 825, arXiv:astro-ph/0702351.
[Mazzali:2007et]
[37-4]
Detonating Failed Deflagration Model of Thermonuclear Supernovae I. Explosion Dynamics, Tomasz Plewa, Astrophys. J. 657 (2007) 942-960, arXiv:astro-ph/0611776.
[Plewa:2006vd]
[37-5]
Low Mach Number Modeling of Type Ia Supernovae. II. Energy Evolution, A. S. Almgren, J. B. Bell, C. A. Rendleman, M. Zingale, Astrophys. J. 649 (2006) 927-938, arXiv:astro-ph/0606496.
[Almgren:2006uv]
[37-6]
Thermal Stability of White Dwarfs Accreting Hydrogen-rich Matter and Progenitors of Type Ia Supernovae, Ken'ichi Nomoto, Hideyuki Saio, Mariko Kato, Izumi Hachisu, Astrophys. J. 663 (2007) 1269-1276, arXiv:astro-ph/0603351.
[Nomoto:2006yr]
[37-7]
Low Carbon Abundance in Type Ia Supernovae, G. H. Marion et al., Astrophys. J. 645 (2006) 1392-1401, arXiv:astro-ph/0601614.
[Marion:2006gq]
[37-8]
Reflections on Reflexions: II. Effects of Light Echoes on the luminosity and spectra of Type Ia Supernovae, F. Patat, S. Benetti, E. Cappellaro, M. Turatto, Mon. Not. Roy. Astron. Soc. 369 (2006) 1949-1960, arXiv:astro-ph/0512574.
[Patat:2005is]
[37-9]
Metallicity effect in multi-dimensional SNIa nucleosynthesis, C. Travaglio, W. Hillebrandt, M. Reinecke, Astron.Astrophys. (2005), arXiv:astro-ph/0507510.
[Travaglio:2005yt]
[37-10]
The Type Ia Supernova Rate, Evan Scannapieco, Lars Bildsten, Astrophys. J. 629 (2005) L85-L88, arXiv:astro-ph/0507456.
[Scannapieco:2005uh]
[37-11]
The rates of Type Ia Supernovae. I. Analytical Formulations, Laura Greggio, Astron. Astrophys. 441 (2005) 1055-1078, arXiv:astro-ph/0504376.
[Greggio:2005ji]

38 - Theory - Type Ia - Models

[38-1]
The ignition of thermonuclear flames in Type Ia supernovae, L. Iapichino, M. Brüggen, W. Hillebrandt, J.C. Niemeyer, Astron. Astrophys. 450 (2006) 655-666, arXiv:astro-ph/0512300.
[Iapichino:2005iz]
[38-2]
Type Ia Supernova Explosion: Gravitationally Confined Detonation, Tomasz Plewa, Alan Calder, Don Lamb, Astrophys. J. 612 (2004) L37, arXiv:astro-ph/0405163.
[Plewa:2004ft]
[38-3]
Type Ia Supernovae: An Asymmetric Deflagration Model, A. C. Calder et al., Astrophys.J.Lett. (2004), arXiv:astro-ph/0405162.
[Calder:2004fs]

39 - Theory - Type Ia - Models - Talks

[39-1]
New Approaches for Modeling Type Ia Supernovae, M. Zingale et al., J. Phys. Conf. Ser. 46 (2006) 385-392, arXiv:astro-ph/0606692. SciDAC 2006.
[Zingale:2006rg]

40 - History

[40-1]
Comment on 'Observation of a Neutrino Burst from the Supernova SN1987A', Yuichi Oyama, Astrophys.J. 922 (2021) 223, arXiv:2108.01783.
[Oyama:2021oqp]
[40-2]
The Korean 1592-1593 Record of a Guest Star: An `impostor' of the Cassiopeia A Supernova?, Changbom Park, Sung-Chul Yoon, Bon-Chul Koo, arXiv:1611.03576, 2016.
[1611.03576]

41 - History - Talks

[41-1]
Supernovae astrophysics from Middle Age documents, Francesco Polcaro, Andrea Martocchia, IAU Symp. (2005), arXiv:astro-ph/0511187. IAU Symposium no.230, 'Populations of High Energy Sources in Galaxies', Dublin (Ireland), August 15-19, 2005.
[Polcaro:2005pw]

42 - Future Experiments

[42-1]
A newly developed multi-kilo-channel high-speed and precision waveform digitization system for neutrino experiments, H. Yang et al., arXiv:2404.10373, 2024.
[Yang:2024zwm]
[42-2]
Real-time Monitoring for the Next Core-Collapse Supernova in JUNO, Angel Abusleme et al., JCAP 01 (2024) 057, arXiv:2309.07109.
[JUNO:2023dnp]
[42-3]
Performance of the 1-ton Prototype Neutrino Detector at CJPL-I, Yiyang Wu et al., Nucl.Instrum.Meth.A 1054 (2023) 168400, arXiv:2212.13158.
[Wu:2022oxo]
[42-4]
Characterization of a large mass archaeological lead-based cryogenic detectors for the RES-NOVA experiment, J.W. Beeman et al., Appl.Radiat.Isot. 194 (2023) 110704, arXiv:2206.05116.
[Beeman:2022wun]
[42-5]
Prospects for Detecting the Diffuse Supernova Neutrino Background with JUNO, Angel Abusleme et al. (JUNO), JCAP 10 (2022) 033, arXiv:2205.08830.
[JUNO:2022lpc]
[42-6]
Online triggers for supernova and pre-supernova neutrino detection with cryogenic detectors, Philipp Eller, Nahuel Ferreiro Iachellini, Luca Pattavina, Lolian Shtembari, JCAP 10 (2022) 024, arXiv:2205.03350.
[Eller:2022ddl]
[42-7]
Enhanced Low-Energy Supernova Burst Detection in Large Liquid Argon Time Projection Chambers Enabled by Q-Pix, S. Kubota et al., Phys.Rev.D 106 (2022) 032011, arXiv:2203.12109.
[Q-Pix:2022zjm]
[42-8]
Low Background kTon-Scale Liquid Argon Time Projection Chambers, A. Avasthi et al., arXiv:2203.08821, 2022.
[Avasthi:2022tjr]
[42-9]
Radiopurity of a kg-scale PbWO$_4$ cryogenic detector produced from archaeological Pb for the RES-NOVA experiment, J.W. Beeman et al., arXiv:2203.07441, 2022.
[RES-NOVAgroupofinterest:2022pvc]
[42-10]
Measurement of Muon-induced Neutron Production at China Jinping Underground Laboratory, Lin Zhao et al., Chin.Phys.C 46 (2022) 085001, arXiv:2108.04010.
[JNE:2021cyb]
[42-11]
A deuterated liquid scintillator for supernova neutrino detection, Bhavesh Chauhan, Basudeb Dasgupta, Vivek Datar, JCAP 11 (2021) 005, arXiv:2106.10927.
[Chauhan:2021snf]
[42-12]
CNNs for enhanced background discrimination in DSNB searches in large-scale water-Gd detectors, David Maksimovic, Michael Nieslony, Michael Wurm, JCAP 11 (2021) 051, arXiv:2104.13426.
[Maksimovic:2021dmz]
[42-13]
RES-NOVA sensitivity to core-collapse and failed core-collapse supernova neutrinos, L. Pattavina et al., JCAP 10 (2021) 064, arXiv:2103.08672.
[RES-NOVA:2021gqp]
[42-14]
The KM3NeT potential for the next core-collapse supernova observation with neutrinos, S. Aiello et al. (KM3NeT), Eur.Phys.J. C81 (2021) 445, arXiv:2102.05977.
[KM3NeT:2021moe]
[42-15]
Supernova Model Discrimination with Hyper-Kamiokande, K. Abe et al. (Hyper-Kamiokande), Astrophys.J. 916 (2021) 15, arXiv:2101.05269.
[Hyper-Kamiokande:2021frf]
[42-16]
SNEWS 2.0: A Next-Generation SuperNova Early Warning System for Multi-messenger Astronomy, S. Al Kharusi et al., New J.Phys. 23 (2021) 031201, arXiv:2011.00035.
[SNEWS:2020tbu]
[42-17]
Supernova Neutrino Burst Detection with the Deep Underground Neutrino Experiment, B. Abi et al., Eur.Phys.J. C81 (2021) 423, arXiv:2008.06647.
[DUNE:2020zfm]
[42-18]
Muon Flux Measurement at China Jinping Underground Laboratory, Ziyi Guo et al., Chin.Phys.C 45 (2021) 025001, arXiv:2007.15925.
[JNE:2020bwn]
[42-19]
Detecting the Diffuse Supernova Neutrino Background in the future Water-based Liquid Scintillator Detector Theia, Julia Sawatzki, Michael Wurm, Daniel Kresse, Phys.Rev.D 103 (2021) 023021, arXiv:2007.14705.
[Sawatzki:2020mpb]
[42-20]
RES-NOVA: A revolutionary neutrino observatory based on archaeological lead, Luca Pattavina, Nahuel Ferreiro Iachellini, Irene Tamborra, Phys.Rev. D102 (2020) 063001, arXiv:2004.06936.
[Pattavina:2020cqc]
[42-21]
Theia: An advanced optical neutrino detector, M. Askins et al., Eur.Phys.J. C80 (2020) 416, arXiv:1911.03501.
[Theia:2019non]
[42-22]
Hyper-Kamiokande Design Report, K. Abe et al. (Hyper-Kamiokande Proto-), arXiv:1805.04163, 2018.
[Hyper-Kamiokande:2018ofw]
[42-23]
Supernova neutrino physics with a nuclear emulsion detector, Giovanni De Lellis, Antonia Di Crescenzo, Andrea Gallo Rosso, Francesco Vissani, JCAP 1808 (2018) 015, arXiv:1804.07735.
[DeLellis:2018vrt]
[42-24]
The Deep Underground Neutrino Experiment - DUNE: the precision era of neutrino physics, Ernesto Kemp, Astron.Nachr. 338 (2017) 993-999, arXiv:1709.09385.
[Kemp:2017kbm]
[42-25]
TITUS: the Tokai Intermediate Tank for the Unoscillated Spectrum, C. Andreopoulos et al., arXiv:1606.08114, 2016.
[Andreopoulos:2016rqc]
[42-26]
Detectability of galactic supernova neutrinos coherently scattered on xenon nuclei in XMASS, K. Abe et al. (XMASS), Astropart.Phys. 89 (2017) 51-56, arXiv:1604.01218.
[XMASS:2016cmy]
[42-27]
Neutrino Physics with JUNO, Fengpeng An et al. (JUNO), J. Phys. G43 (2016) 030401, arXiv:1507.05613.
[JUNO:2015zny]
[42-28]
Letter of Intent: The Precision IceCube Next Generation Upgrade (PINGU), M. G. Aartsen et al. (IceCube-PINGU), arXiv:1401.2046, 2014.
[IceCube-PINGU:2014okk]
[42-29]
Future large-scale water-Cherenkov detector, L. Agostino et al. (MEMPHYS), Phys. Rev. ST Accel. Beams 16, 061001 (2013) 061001, arXiv:1306.6865.
[Agostino:2013ilw]
[42-30]
Measurement of the proton light response of various LAB based scintillators and its implication for supernova neutrino detection via neutrino-proton scattering, B. von Krosigk, L. Neumann, R. Nolte, S. Rottger, K. Zuber, Eur. Phys. J. C (2013) 73 (2013) 2390, arXiv:1301.6403.
[vonKrosigk:2013sa]
[42-31]
Study of the performance of a large scale water-Cherenkov detector (MEMPHYS), L. Agostino et al. (MEMPHYS), JCAP 1301 (2013) 024, arXiv:1206.6665.
[MEMPHYS:2012bzz]
[42-32]
Letter of Intent: The Hyper-Kamiokande Experiment - Detector Design and Physics Potential, K. Abe et al., arXiv:1109.3262, 2011.
[Abe:2011ts]
[42-33]
Studies of a three-stage dark matter and neutrino observatory based on multi-ton combinations of liquid xenon and liquid argon detectors, K. Arisaka et al., Astropart. Phys. 36 (2012) 93-122, arXiv:1107.1295.
[Arisaka:2011eu]
[42-34]
The next-generation liquid-scintillator neutrino observatory LENA, Michael Wurm et al. (LENA), Astropart. Phys. 35 (2012) 685-732, arXiv:1104.5620.
[LENA:2011ytb]
[42-35]
Ultra low energy results and their impact to dark matter and low energy neutrino physics, E. Bougamont et al., arXiv:1010.4132, 2010.
[Bougamont:2010mj]
[42-36]
Research of the natural neutrino fluxes by use of large volume scintillation detector at Baksan, I. R. Barabanov, G. Ya. Novikova, V. V. Sinev, E. A. Yanovich, arXiv:0908.1466, 2009.
[Barabanov:2009rk]
[42-37]
Type Ia supernova science 2010-2020, D. A. Howell et al., arXiv:0903.1086, 2009.
[Howell:2009mt]
[42-38]
Detection potential for the diffuse supernova neutrino background in the large liquid-scintillator detector LENA, M. Wurm et al., Phys. Rev. D75 (2007) 023007, arXiv:astro-ph/0701305.
[Wurm:2007cy]
[42-39]
Probing Dark Energy via Weak Gravitational Lensing with the SuperNova Acceleration Probe (SNAP), J. Albert et al. (SNAP), arXiv:astro-ph/0507460, 2005.
[SNAP:2005xgf]
[42-40]
Supernova Acceleration Probe: Studying Dark Energy with Type Ia Supernovae, J. Albert et al. (SNAP), arXiv:astro-ph/0507459, 2005.
[SNAP:2005ubn]
[42-41]
Seeing the Nature of the Accelerating Physics: It's a SNAP, J. Albert et al. (SNAP), arXiv:astro-ph/0507458, 2005.
[SNAP:2005qor]
[42-42]
A Network of Neutral Current Spherical TPC's for Dedicated Supernova Detection, Y. Giomataris, J.D. Vergados, Phys. Lett. B634 (2006) 23, arXiv:hep-ex/0503029.
[Giomataris:2005fx]
[42-43]
Calculations of liquid helium and neon VUV emission spectra, self-absorption and scattering for a neutrino detector, I. M. Savukov, arXiv:physics/0411215, 2004.
[physics/0411215]
[42-44]
Supernova / Acceleration Probe: A Satellite Experiment to Study the Nature of the Dark Energy, G. Aldering et al. (SNAP), arXiv:astro-ph/0405232, 2004.
[SNAP:2004hke]
[42-45]
Neutrino Detection With CLEAN, D. N. McKinsey, K. J. Coakley, Astropart. Phys. 22 (2005) 355, arXiv:astro-ph/0402007.
[McKinsey:2004rk]
[42-46]
A design outline for a Cherenkoff neutrino observatory, E. P. Bonvin, S. T. Hatamian, arXiv:physics/0310160, 2003.
[Bonvin:1991hz]
[42-47]
GADZOOKS! Antineutrino Spectroscopy with Large Water Cerenkov Detectors, John F. Beacom, Mark R. Vagins, Phys. Rev. Lett. 93 (2004) 171101, arXiv:hep-ph/0309300.
[Beacom:2003nk]
[42-48]
Oscillation effects on supernova neutrino rates and spectra and detection of the shock breakout in a liquid argon TPC, I. Gil-Botella, A. Rubbia, JCAP 0310 (2003) 009, arXiv:hep-ph/0307244.
[GilBotella:2003sz]
[42-49]
Supernova neutrino detection in a liquid argon TPC, A. Bueno, I. Gil-Botella, A. Rubbia, arXiv:hep-ph/0307222, 2003.
[Bueno:2003ei]
[42-50]
Megaton Modular Multi-Purpose Neutrino Detector for a Program of Physics in the Homestake DUSEL, M. V. Diwan et al., arXiv:hep-ex/0306053, 2003.
[Diwan:2003uw]
[42-51]
Weak Lensing from Space I: Prospects for The Supernova/Acceleration Probe, Jason Rhodes, Alexandre Refregier, Richard Massey (SNAP), Astropart. Phys. 20 (2004) 377, arXiv:astro-ph/0304417.
[SNAP:2003aec]
[42-52]
Supernova Observation Via Neutrino-Nucleus Elastic Scattering in the CLEAN Detector, C. J. Horowitz, K. J. Coakley, D. N. McKinsey, Phys. Rev. D68 (2003) 023005, arXiv:astro-ph/0302071.
[Horowitz:2003cz]
[42-53]
Supernovae with 'Super-Hipparcos', V. Belokurov, N.W. Evans, Mon. Not. Roy. Astron. Soc. 341 (2003) 569, arXiv:astro-ph/0210570.
[Belokurov:2002rk]
[42-54]
Study of the backgrounds for the search for proton decay to 10**35-Y at the WIPP site with the LANNDD detector, David B. Cline, Kevin Lee, Youngho Seo, Peter F. Smith, arXiv:astro-ph/0208381, 2002.
[Cline:2002efa]
[42-55]
Lead perchlorate as a neutrino detection medium, M. K. Bacrania et al., Nucl. Instrum. Meth. A492 (2002) 43-48, arXiv:nucl-ex/0202013.
[Bacrania:2002jq]
[42-56]
LANNDD: A massive liquid argon detector for proton decay, supernova and solar neutrino studies, and a neutrino factory detector, David B. Cline, Franco Sergiampietri, John G. Learned, Kirk McDonald, Nucl. Instrum. Meth. A503 (2003) 136, arXiv:astro-ph/0105442.
[Cline:2001pt]
[42-57]
Measuring supernova neutrino temperatures using lead perchlorate, S. R. Elliott, Phys. Rev. C62 (2000) 065802, arXiv:astro-ph/0006041.
[Elliott:2000su]
[42-58]
A lead astronomical neutrino detector: LAND, C. K. Hargrove, I. Batkin, M. K. Sundaresan, J. Dubeau, Astropart. Phys. 5 (1996) 183-196.
[Hargrove:1996zv]

43 - Future Experiments - Talks

[43-1]
Theia: A multi-purpose water-based liquid scintillator detector, Vincent Fischer (Theia), arXiv:1809.05987, 2018. CIPANP2018.
[Fischer:2018zsr]
[43-2]
Supernova Burst Observations with DUNE, Jost Migenda (DUNE), arXiv:1804.01877, 2018. NuPhys2017 (London, 20-22 December 2017).
[Migenda:2018ljh]
[43-3]
Supernova Neutrino Detection in LZ, Dev Ashish Khaitan (LZ), JINST 13 (2018) C02024, arXiv:1801.05651. LIDINE 2017.
[Khaitan:2018wnf]
[43-4]
Astroparticle Physics in Hyper-Kamiokande, Jost Migenda, PoS EPS-HEP2017 (2017) 020, arXiv:1710.08345. EPS-HEP2017.
[Migenda:2017tej]
[43-5]
Observing the Next Galactic Supernova with the NOvA Detectors, Justin A. Vasel, Andrey Sheshukov, Alec Habig (the NOvA), arXiv:1710.00705, 2017. APS Division of Particles and Fields Meeting (DPF 2017), July 31-August 4, 2017, Fermilab.
[Vasel:2017egd]
[43-6]
Simulating fast time variations in the supernova neutrino flux in Hyper-Kamiokande, Jost Migenda (Hyper-Kamiokande), J.Phys.Conf.Ser. 888 (2017) 012255, arXiv:1610.00559. Neutrino 2016.
[Migenda:2016yka]
[43-7]
Underground physics with DUNE, Vitaly A. Kudryavtsev (DUNE), J. Phys. Conf. Ser. 718 (2016) 062032, arXiv:1601.03496. TAUP2015.
[Kudryavtsev:2016ybl]
[43-8]
Prospects of the search for neutrino bursts from Supernovae with Baksan Large Volume Scintillation Detector, V.B. Petkov, Phys.Part.Nucl. 47 (2016) 975-979, arXiv:1508.01389. International Workshop on Prospects of Particle Physics: 'Neutrino Physics and Astrophysics', Valday, Russia, January 1 - February 8, 2015. Accepted for publication in Physics of Elementary Particles and Atomic Nuclei.
[Petkov:2015sna]
[43-9]
Physics Potential of an Advanced Scintillation Detector: Introducing THEIA, Gabriel D. Orebi Gann, THEIA Interest Group (Group for the THEIA Interest), arXiv:1504.08284, 2015. Prospects in Neutrino Physics Conference, 15 - 17 December, 2014, held at Queen Mary University of London, UK.
[OrebiGann:2015gus]
[43-10]
TITUS: An Intermediate Distance Detector for the Hyper-Kamiokande Neutrino Beam, Pierre Lasorak, Nick Prouse (TIITUS Working Group), arXiv:1504.08272, 2015. Prospects in Neutrino Physics Conference, 15 - 17 December, 2014, held at Queen Mary University of London, UK.
[Lasorak:2015eba]
[43-11]
The Physics Potential of the LENA Detector, Michael Wurm et al., Acta Phys. Polon. B41 (2010) 1749-1764, arXiv:1004.3474. Cracow Epiphany Conference, 5-8 January 2010.
[Wurm:2010ny]
[43-12]
The LAGUNA design study- towards giant liquid based underground detectors for neutrino physics and astrophysics and proton decay searches, D. Angus et al. (LAGUNA), arXiv:1001.0077, 2010. Workshop 'European Strategy for Future Neutrino Physics', CERN, Oct. 2009.
[LAGUNA:2010zms]
[43-13]
Giant Liquid Argon Observatory for Proton Decay, Neutrino Astrophysics and CP-violation in the Lepton Sector (GLACIER), A. Badertscher et al., arXiv:1001.0076, 2010. Workshop 'European Strategy for Future Neutrino Physics', CERN, Oct. 2009.
[Badertscher:2010sy]
[43-14]
Gadolinium study for a water Cherenkov detector, Atsuko Kibayashi (Super-Kamiokande), arXiv:0909.5528, 2009. DPF-2009, Detroit, MI, July 2009.
[Kibayashi:2009ih]
[43-15]
Underground Neutrino Detectors for Particle and Astroparticle Science: the Giant Liquid Argon Charge Imaging ExpeRiment (GLACIER), A. Rubbia, J. Phys. Conf. Ser. 171 (2009) 012020, arXiv:0908.1286.
[Rubbia:2009md]
[43-16]
The SNO+ Experiment, Mark C. Chen, SNO+ (SNO+), arXiv:0810.3694, 2008. ICHEP08.
[Chen:2008un]
[43-17]
Review of Low Energy Neutrinos, J.D. Vergados, J. Phys. Conf. Ser. 65 (2007) 012002, arXiv:hep-ph/0702142. Third Symposium on Large TPC's for Low Energy Rare Event Detection, Paris, Dec. 11-12, 2006 and NUMMY07 ENTApP Network Meeting, Durham, Jan. 10-12, 2007.
[Vergados:2007gy]
[43-18]
Low energy neutrino astronomy with the large liquid scintillation detector LENA, T. Marrodan Undagoitia et al., Prog. Part. Nucl. Phys. 57 (2006) 283-289, arXiv:hep-ph/0605229. International School of Nuclear Physics, Neutrinos in Cosmology, in Astro, Particle and Nuclear Physics, Erice (SICILY) 16 - 24 Sept. 2005.
[MarrodanUndagoitia:2006re]
[43-19]
Supernova Detection via a Network of Neutral Current Spherical TPC's, J.D. Vergados, Y. Giomataris, AIP Conf. Proc. 847 (2006) 140-146, arXiv:hep-ph/0601093. International Symposium on Origin of Matter and Evolution of Galaxies (OMEG05)- New Horizon of Nuclear Astrophysics and Cosmology November 8-11, 2005, University of Tokyo, Tokyo, Japan.
[Vergados:2006jg]
[43-20]
Dedicated Supernova Detection by a Network of Neutral Current Spherical TPC's, J.D. Vergados, Y. Giomataris, Phys. Atom. Nucl. 70 (2007) 140-149, arXiv:astro-ph/0511470. NANP05, Dubna, Russia.
[Vergados:2005ny]
[43-21]
Supernova Legacy Survey (SNLS) : real time operations and photometric analysis, N. Palanque-Delabrouille, SNLS (SNLS), arXiv:astro-ph/0509425, 2005. SF2A workshop, Strasbourg, June 27 - July 1 2005.
[Palanque-Delabrouille:2005xqj]
[43-22]
Exploring Dark Energy with SNAP, G. Aldering, New Astron. Rev. 49 (2005) 346, arXiv:astro-ph/0507426. Wide-Field Imaging from Space.
[Aldering:2005qn]
[43-23]
UNO, R. Jeffrey Wilkes, arXiv:hep-ex/0507097, 2005. XI International Workshop on 'Neutrino Telescopes', Feb 22-25, 2005, Venice, Italy.
[Wilkes:2005rg]
[43-24]
The SNAP Strong Lens Survey, Phil Marshall, Roger Blandford, Masao Sako, New Astron. Rev. 49 (2005) 387, arXiv:astro-ph/0501328. Wide Field Imaging from Space.
[Marshall:2005nv]
[43-25]
The Carnegie Supernova Project, Wendy L. Freedman, Carnegie Supernova Project (The Carnegie Supernova Project), ASP Conf.Ser. 339 (2005) 50, arXiv:astro-ph/0411176. NOAO Workshop, Tucson, March, 2004, 'Observing Dark Energy'.
[Freedman:2004uz]
[43-26]
SNLS: Overview and High-z Spectroscopy, D. Andrew Howell et al. (SNLS), arXiv:astro-ph/0410595, 2004. '1604-2004: Supernovae as Cosmological Lighthouses', Padua, June 16-19 2004.
[Howell:2004tm]
[43-27]
The Supernova Legacy Survey, Mark Sullivan et al. (SNLS), ASP Conf. Ser. 342 (2005) 466-470, arXiv:astro-ph/0410594. '1604-2004: Supernovae as Cosmological Lighthouses', Padua, June 16-19 2004.
[Sullivan:2004tk]
[43-28]
The Caltech Core-Collapse Project (CCCP), A. Gal-Yam et al., ASP Conf. Ser. 342 (2005) 305, arXiv:astro-ph/0410038. 'Supernovae as Cosmological Lighthouses', Padua, 2004.
[Gal-Yam:2004hvi]
[43-29]
Probing Dark Energy with SNAP, Eric V. Linder, arXiv:astro-ph/0210217, 2002. 4th International Workshop on the Identification of Dark Matter (IDM2002), St. William's College, York Minster, York, England, September 2-6, 2002. http://www.shef.ac.uk/~phys/idm2002/talks/pdfs/linder.pdf.
[Linder:2002wx]
[43-30]
Wide-Field Surveys from the SNAP Mission, A. Kim (SNAP), Proc.SPIE Int.Soc.Opt.Eng. (2002), arXiv:astro-ph/0210077. SPIE Proceedings Vol. 4836.
[SNAP:2002glu]
[43-31]
Overview of the SuperNova/Acceleration Probe (SNAP), Greg Aldering (SNAP), Proc.SPIE Int.Soc.Opt.Eng. 4835 (2002) 146, arXiv:astro-ph/0209550. SPIE Proceedings Vol. 4835.
[SNAP:2002blf]
[43-32]
The SNAP Telescope, M.Lampton (SNAP), arXiv:astro-ph/0209549, 2002. SPIE Proceedings Vol. 4849.
[SNAP:2002zkn]
[43-33]
UNO: Underground Nucleon Decay and Neutrino Observatory, C. McGrew, 2002. International Workshop on Neutrinos and Subterranean Science - NeSS 02, Washington, DC, September 19-21, 2002. http://mocha.phys.washington.edu/~int_talk/WorkShops/Neutrino02/Working_Groups/People/McGrew_C/mcgrew_thurs_protondecaywg.pdf.
[McGrew-talk:2002b]
[43-34]
Future Supernova Neutrino Detector, K. Scholberg, 2002. International Workshop on Neutrinos andSubterranean Science - NeSS 02, Washington, DC, September 19-21, 2002. http://mocha.phys.washington.edu/~int_talk/WorkShops/Neutrino02/Working_Groups/People/Scholberg_K/scholberg_thurs_solarstellarwg.pdf.
[Scholberg-talk:2002a]
[43-35]
Feasibility of a next generation underground water Cherenkov detector: UNO, Chang Kee Jung, Aip Conf. Proc. 533 (2000) 29, arXiv:hep-ex/0005046. International Workshop on Next Generation Nucleon Decay and Neutrino Detector (NNN 99), Stony Brook, New York, 23-25 Sep 1999.
[Jung:1999jq]

Search Neutrino Unbound

Cross search NU

It is possible to perform a cross search between the various pages of Neutrino Unbound.
This is useful if you want to show the common elements that appear in the listings of two (or more) different topics or experiments.

Go to the search form.

[Go to ...]

Neutrino Unbound Home

Authors:
Stefano Gariazzo / gariazzo@to.infn.it
Carlo Giunti / giunti@to.infn.it
Marco Laveder / marco.laveder@pd.infn.it
Last Update: Fri 19 Apr 2024, 14:47:18 CET