Filter this page

(Note: The process can take some time.)



1 - Books

Neutrinos in particle physics, astronomy and cosmology, Zhi-zhong Xing, Shun Zhou, Zhejiang University Press, Hangzhou, 2011. ISBN: 978-7308080248.
Fundamentals of Neutrino Physics and Astrophysics, C. Giunti, C. W. Kim, Oxford University Press, Oxford, UK, 2007. ISBN 978-0-19-850871-7.
Stars as laboratories for fundamental physics: The astrophysics of neutrinos, axions, and other weakly interacting particles, G.G. Raffelt, University of Chicago Press, 1996. ISBN 0-226-70272-3.
Neutrino Astrophysics, J. N. Bahcall, Cambridge University Press, 1989.
Black Holes, White Dwarfs, and Neutron Stars: the Physics of Compact Objects, S. L. Shapiro, S. A. Teukolsky, John Wiley, 1983.
An Introduction to the Study of Stellar Structure, S. Chandrasekhar, University of Chicago Press, 1938.

2 - Reviews

Nuclear Equation of state for Compact Stars and Supernovae, G. Fiorella Burgio, Anthea F. Fantina, arXiv:1804.03020, 2018.
The Morphologies and Kinematics of Supernova Remnants, Laura A. Lopez, Robert A. Fesen, arXiv:1804.00024, 2018.
Superluminous supernovae, Takashi J. Moriya, Elena I. Sorokina, Roger A. Chevalier, Space Sci.Rev. 214 (2018) 59, arXiv:1803.01875.
On the Progenitors of Type Ia Supernovae, Mario Livio, Paolo Mazzali, Phys.Rept. 736 (2018) 1-23, arXiv:1802.03125.
Neutrinos, supernovae, and the origin of the heavy elements, Yong-Zhong Qian, Sci.China Phys.Mech.Astron. 61 (2018) 049501, arXiv:1801.09554.
Mass-accreting white dwarfs and type Ia supernovae, Bo Wang, Res.Astron.Astrophys. 18 (2018) 49, arXiv:1801.04031.
Circumstellar interaction in supernovae in dense environments - an observational perspective, Poonam Chandra, Space Sci.Rev. 214 (2018) 27, arXiv:1712.07405.
Infrared Emission from Supernova Remnants: Formation and Destruction of Dust, Brian J. Williams, Tea Temim, arXiv:1711.01002, 2017.
Turbulence in Core-Collapse Supernovae, David Radice et al., J.Phys. G45 (2018) 053003, arXiv:1710.01282.
What can be learned from a future supernova neutrino detection?, Shunsaku Horiuchi, James P Kneller, J.Phys. G45 (2018) 043002, arXiv:1709.01515.
Dynamical Evolution and Radiative Processes of Supernova Remnants, Stephen P. Reynolds, arXiv:1708.05386, 2017.
Supernova Signatures of Neutrino Mass Ordering, Kate Scholberg, J.Phys. G45 (2018) 014002, arXiv:1707.06384.
Supernovae from massive stars, Marco Limongi, arXiv:1706.01913, 2017.
Nucleosynthesis in thermonuclear supernovae, Ivo R. Seitenzahl, Dean M. Townsley, arXiv:1704.00415, 2017.
Combustion in thermonuclear supernova explosions, Friedrich K. Roepke, arXiv:1703.09274, 2017.
Neutrino-driven Explosions, H.-Th. Janka, arXiv:1702.08825, 2017.
Neutrino Emission from Supernovae, H.-Th. Janka, arXiv:1702.08713, 2017.
Spectra of supernovae in the nebular phase, A. Jerkstrand, arXiv:1702.06702, 2017.
Supernova Remnants as Clues to Their Progenitors, Daniel Patnaude, Carles Badenes, arXiv:1702.03228, 2017.
Supernova of 1006 (G327.6+14.6), Satoru Katsuda, arXiv:1702.02054, 2017.
Thermal and non-thermal emission from circumstellar interaction, Roger A. Chevalier, Claes Fransson, arXiv:1612.07459, 2016.
The effects of supernovae on the dynamical evolution of binary stars and star clusters, Richard J. Parker, arXiv:1609.05908, 2016.
Massive Computation for Understanding Core-Collapse Supernova Explosions, Christian D. Ott, arXiv:1608.08069, 2016.
The Status of Multi-Dimensional Core-Collapse Supernova Models, B. Muller, Publ.Astron.Soc.Austral. 33 (2016) 48, arXiv:1608.03274.
Shock breakout theory, Eli Waxman, Boaz Katz, arXiv:1607.01293, 2016.
Frontiers in Nuclear Astrophysics, Carlos A. Bertulani, Toshitaka Kajino, Prog.Part.Nucl. Phys. 89 (2016) 56-100, arXiv:1604.03197.
A review of the impact of sterile neutrino dark matter on core-collapse supernovae, MacKenzie Warren, Grant J. Mathews, Matthew Meixner, Jun Hidaka, Toshitaka Kajino, Int.J.Mod.Phys. A31 (2016) 1650137, arXiv:1603.05503.
Physics of Core-Collapse Supernovae in Three Dimensions: a Sneak Preview, H.-Thomas Janka, Tobias Melson, Alexander Summa, Ann.Rev.Nucl.Part.Sci. 66 (2016) 341-375, arXiv:1602.05576.
The Equation of State of Hot, Dense Matter and Neutron Stars, James M. Lattimer, M. Prakash, Phys.Rept. 621 (2016) 127-164, arXiv:1512.07820.
Supernova Neutrinos: Production, Oscillations and Detection, Alessandro Mirizzi et al., Riv. Nuovo Cim. 39 (2016) 1, arXiv:1508.00785.
Observational constraints on the progenitors of core-collapse supernovae : the case for missing high mass stars, S. J. Smartt, Publ.Astron.Soc.Austral. 32 (2015) e016, arXiv:1504.02635.
Neutrino-nucleus reactions and their role for supernova dynamics and nucleosynthesis, K. G. Balasi, K. Langanke, G. Martinez-Pinedo, Prog. Part. Nucl. Phys. 85 (2015) 33-81, arXiv:1503.08095.
The explosion mechanism of core-collapse supernovae: progress in supernova theory and experiments, Thierry Foglizzo et al., Publ.Astron.Soc.Austral. 32 (2015) 9, arXiv:1501.01334.
Supernovae and the Galactic Ecosystem, Q. Daniel Wang, IAU Symp. 296 (2014) 273, arXiv:1401.6209.
Diverse, massive-star-associated sources for elements heavier than Fe and the roles of neutrinos, Yong-Zhong Qian, J. Phys. G41 (2014) 044002, arXiv:1310.4462.
Neutrinos in Cosmology and Astrophysics, A.B. Balantekin, G. M. Fuller, Prog.Part.Nucl. Phys. 71 (2013) 162-166, arXiv:1303.3874.
Neutrino astrophysics, Cristina Volpe, Ann.Phys.(Berlin) 525 (2013) 588-599, arXiv:1303.1681.
Neutrino Astrophysics, W. C. Haxton, arXiv:1209.3743, 2012.
Explosion Mechanisms of Core-Collapse Supernovae, H.-Thomas Janka, Ann. Rev. Nucl. Part. Sci. 62 (2012) 407-451, arXiv:1206.2503.
Supernova Neutrino Detection, Kate Scholberg, J. Phys. Conf. Ser. 375 (2012) 042036, arXiv:1205.6003.
Equation of State for Proto-Neutron Star, Gang Shen, arXiv:1202.5791, 2012.
Massive Stars and their Supernovae, Friedrich-Karl Thielemann, Raphael Hirschi, Matthias Liebendorfer, Roland Diehl, Lect.Notes Phys. 812 (2011) 153, arXiv:1008.2144.
Diffuse supernova neutrinos at underground laboratories, Cecilia Lunardini, Astropart.Phys. 79 (2016) 49-77, arXiv:1007.3252.
The Diffuse Supernova Neutrino Background, John F. Beacom, Ann. Rev. Nucl. Part. Sci. 60 (2010) 439, arXiv:1004.3311.
Low energy neutrino scattering measurements at future Spallation Source facilities, R. Lazauskas, C. Volpe, J. Phys. G37 (2010) 125101, arXiv:1004.0310.
Collective Neutrino Oscillations, Huaiyu Duan, George M. Fuller, Yong-Zhong Qian, Ann. Rev. Nucl. Part. Sci. 60 (2010) 569-594, arXiv:1001.2799.
Search for CP violation in the lepton sector, Cristina Volpe, Prog. Part. Nucl. Phys. 64 (2010) 325-333, arXiv:0911.4314.
Neutrino flavour transformation in supernovae, Huaiyu Duan, James P Kneller, J. Phys. G36 (2009) 113201, arXiv:0904.0974.
The Gravitational Wave Signature of Core-Collapse Supernovae, Christian D. Ott, Class. Quant. Grav. 26 (2009) 063001, arXiv:0809.0695.
The r-process of stellar nucleosynthesis: Astrophysics and nuclear physics achievements and mysteries, M. Arnould, S. Goriely, K. Takahashi, Phys. Rept. 450 (2007) 97-213, arXiv:0705.4512.
Supernova neutrinos, from back of the envelope to supercomputer, Christian Y. Cardall, arXiv:astro-ph/0701831, 2007.
Theory of Core-Collapse Supernovae, H.-Th. Janka et al., Phys. Rept. 442 (2007) 38-74, arXiv:astro-ph/0612072.
The Supernova - Gamma-Ray Burst Connection, S. E. Woosley, J. S. Bloom, Ann. Rev. Astron. Astrophys. 44 (2006) 507-556, arXiv:astro-ph/0609142.
The Physics of Core-Collapse Supernovae, S. Woosley, H.-T. Janka, Nature Phys. 1 (2006) 147-154, arXiv:astro-ph/0601261.
The physics of dense hadronic matter and compact stars, Armen Sedrakian, Prog. Part. Nucl. Phys. 58 (2007) 168-246, arXiv:nucl-th/0601086.
Six Years of Chandra Observations of Supernova Remnants, Martin C. Weisskopf, John P. Hughes, arXiv:astro-ph/0511327, 2005.
Explosion Mechanism, Neutrino Burst, and Gravitational Wave in Core-Collapse Supernovae, Kei Kotake, Katsuhiko Sato, Keitaro Takahashi, Rept. Prog. Phys. 69 (2006) 971, arXiv:astro-ph/0509456.
Supernovae: Explosions in the Cosmos, Paingalil Kunjan Suresh, V. H. Satheesh Kumar, Science Reporter 42 (2005) 20, arXiv:astro-ph/0504597.
Progenitors of Core-Collapse Supernovae, John J. Eldridge, arXiv:astro-ph/0502046, 2005.
Type Ia Supernovae and Cosmology, Alexei V. Filippenko, Astrophys.Space Sci.Libr. 332 (2005) 97, arXiv:astro-ph/0410609.
Relic neutrino background from cosmological supernovae, Shin'ichiro Ando, Katsuhiko Sato, New J. Phys. 6 (2004) 170, arXiv:astro-ph/0410061.
The Physics of Neutron Stars, J.M. Lattimer, M. Prakash, Science 304 (2004) 536-542, arXiv:astro-ph/0405262.
Astrophysical Neutrino Telescopes, A. B. McDonald et al., Rev. Sci. Instrum. 75 (2004) 293, arXiv:astro-ph/0311343.
Supernova Science at Spallation Neutron Sources, W. R. Hix, A. Mezzacappa, O. E. B. Messer, S. W. Bruenn, J. Phys. G29 (2003) 2523, arXiv:astro-ph/0310763.
Advances in r-Process Nucleosynthesis, John J. Cowan, Christopher Sneden, arXiv:astro-ph/0309802, 2003.
The Accelerating Universe and Dark Energy: Evidence from Type Ia Supernovae, A. V. Filippenko, Lect. Notes Phys. 646 (2004) 191, arXiv:astro-ph/0309739.
Supernova Neutrino-Nucleus Astrophysics, A. B. Balantekin, G. M. Fuller, J. Phys. G29 (2003) 2513, arXiv:astro-ph/0309519.
Shocks and Particle Acceleration in Supernova Remnants: Observational Features, Jacco Vink, Adv.Space Res. 33 (2004) 356, arXiv:astro-ph/0304176.
Optical Light Curves of Supernovae, Bruno Leibundgut, Nicholas B.Suntzeff, Lect.Notes Phys. (2003), arXiv:astro-ph/0304112.
Measuring Cosmology with Supernovae, Saul Perlmutter, Brian P. Schmidt, Lect. Notes Phys. 598 (2003) 195-217, arXiv:astro-ph/0303428.
The Historical Supernovae, D. A. Green, F. R. Stephenson, Lect.Notes.Phys. (2003), arXiv:astro-ph/0301603.
The Origin of the Heavy Elements: Recent Progress in the Understanding of the r-Process, Yong-Zhong Qian, Prog. Part. Nucl. Phys. 50 (2003) 153, arXiv:astro-ph/0301422.
Physics of SNeIa and Cosmology, P. Hoeflich, C. Gerardy, E. Linder, H. Marion, Lect.Notes Phys. 635 (2003) 203, arXiv:astro-ph/0301334.
Classification of Supernovae, Massimo Turatto, Lect.Notes Phys. 598 (2003) 21, arXiv:astro-ph/0301107.
Explosion Mechanisms of Massive Stars, H.-Th. Janka et al., arXiv:astro-ph/0212314, 2002.
Absolute values of neutrino masses: Status and prospects, S. M. Bilenky, C. Giunti, J. A. Grifols, E. Masso, Phys. Rep. 379 (2003) 69-148, arXiv:hep-ph/0211462.
Neutrino-Matter Interaction Rates in Supernovae: The Essential Microphysics of Core Collapse, A. Burrows, T. A. Thompson, arXiv:astro-ph/0211404, 2002.
Supernova remnants and gamma-ray sources, Diego F. Torres, Gustavo E. Romero, Thomas M. Dame, Jorge A. Combi, Yousaf M. Butt, Phys. Rep. 382 (2003) 303, arXiv:astro-ph/0209565.
Observations and Theory of Supernovae, J. Craig Wheeler, Am. J. Phys. 71 (2003) 11, arXiv:astro-ph/0209514.
Nuclear weak interaction processes in stars, K. Langanke, G. Martinez-Pinedo, Rev. Mod. Phys. 75 (2003) 819-862, arXiv:nucl-th/0203071.
The evolution and explosion of massive stars, S. E. Woosley, A. Heger, T. A. Weaver, Rev. Mod. Phys. 74 (2002) 1015-1071.
Element Synthesis in Stars, F. K. Thielemann et al., Prog. Part. Nucl. Phys. 46 (2001) 5-22, arXiv:astro-ph/0101476.
Neutrino astronomy, Y. Totsuka, Rept. Prog. Phys. 55 (1992) 377-430.
Observational neutrino astrophysics, M. Koshiba, Phys. Rep. 220 (1992) 229-381.
Galactic and extragalactic supernova rates, S. van den Bergh, G. A. Tammann, Ann. Rev. Astron. Astrophys. 29 (1991) 363-407.
The number of neutrino species, D. Denegri, B. Sadoulet, M. Spiro, Rev. Mod. Phys. 62 (1990) 1.
Supernova mechanisms, H. A. Bethe, Rev. Mod. Phys. 62 (1990) 801-866.
1987A: The greatest supernova since Kepler, V. Trimble, Rev. Mod. Phys. 60 (1988) 859-871.
1987A: The greatest supernova since Kepler, V. Trimble, Rev. Mod. Phys. 60 (1988) 859-871.
The Physics of supernova explosions, S. E. Woosley, T. A. Weaver, Ann. Rev. Astron. Astrophys. 24 (1986) 205.
Supernovae. Part II: the aftermath, V. Trimble, Rev. Mod. Phys. 55 (1983) 511-563.
Supernovae. Part I: the events, V. Trimble, Rev. Mod. Phys. 54 (1982) 1183-1224.
The Weak Neutral Current and Its Effects in Stellar Collapse, Daniel Z. Freedman, David N. Schramm, David L. Tubbs, Ann. Rev. Nucl. Part. Sci. 27 (1977) 167-207.
Synthesis of the Elements in Stars, E. Margaret Burbidge, G. R. Burbidge, William A. Fowler, F. Hoyle, Rev. Mod. Phys. 29 (1957) 547.

3 - Reviews - Conference Proceedings

Neutrino astrophysics and its connections to nuclear physics, Maria Cristina Volpe, arXiv:1802.07478, 2018. Conference on Neutrino and Nuclear Physics (CNNP2017), 15-21 October, Catania.
Supernovae in SuperK-Gd and other experiments, Lluis Marti-Magro, arXiv:1705.00675, 2017. NuPhys2016 (London, 12-14 December 2016).
The Core-Collapse Supernova Explosion Mechanism, B. Muller, IAU Symp. 324 (2016) 17-24, arXiv:1702.06940.
Neutrino Astrophysics, Cristina Volpe, Acta Phys.Polon.Supp. 9 (2016) 769, arXiv:1609.06747. 52th Winter School of Theoretical Physics, Ladek Zdroj, 14-21 February 2016.
Nuclear Physics and Astrophysics of Neutrino Oscillations, A.B. Balantekin, JPS Conf.Proc. 14 (2017) 010701, arXiv:1609.02207. NIC 2016.
Detection of Supernova Neutrinos, Ines Gil-Botella, arXiv:1605.02204, 2016. NuPhys2015 (London, 16-18 December 2015).
Supernova Neutrinos: Theory, Irene Tamborra, arXiv:1604.07332, 2016. NuPhys2015 (London, 16-18 December 2015).
Neutrino astrophysics : recent advances and open issues, Cristina Volpe, J. Phys. Conf. Ser. 631 (2015) 012048, arXiv:1503.01355. DISCRETE 2014.
Recent advances in neutrino astrophysics, Cristina Volpe, PoS FFP14 (2016) 127, arXiv:1411.6533. Frontiers of Fundamental Physics 2014, July 15-18, Marseille.
Current and Future Liquid Argon Neutrino Experiments, Georgia Karagiorgi, AIP Conf.Proc. 1663 (2015) 100001, arXiv:1304.2083. NuInt'12.
Review of Multi-messenger observations of neutron rich matter, C. J. Horowitz, arXiv:1212.6405, 2012. Xth Quark Confinement and the Hadron Spectrum, Munich.
Core-Collapse Supernovae, Neutrinos, and Gravitational Waves, C. D. Ott et al., Nucl. Phys. Proc. Suppl. 235-236 (2013) 381-387, arXiv:1212.4250. Neutrino 2012, Kyoto, Japan.
Neutrino flavour conversion and supernovae, Cristina Volpe, AIP Conf.Proc. 1560 (2013) 306-313, arXiv:1210.0176. CIPANP 2012, May 29 to June 3, Florida.
Neutrinos and the stars, Georg Raffelt, Proc.Int.Sch.Phys.Fermi 182 (2012) 61-143, arXiv:1201.1637. ISAPP School 'Neutrino Physics and Astrophysics', 26 July-5 August 2011, Villa Monastero, Varenna, Italy.
Neutrinos and core-collapse supernovae, Cristina Volpe, arXiv:1108.6285, 2011. XIV International Workshop on 'Neutrino Telescopes', March 15-18, 2011, Venice.
Physics and Astrophysics Opportunities with Supernova Neutrinos, Basudeb Dasgupta, PoS ICHEP2010 (2010) 294, arXiv:1005.2681. Electroweak Session of Rencontres de Moriond 2010.
Significance of neutrino cross-sections for astrophysics, A.B. Balantekin, AIP Conf. Proc. 1189 (2009) 11-15, arXiv:0909.0226. NUINT2009 (6th International Workshop on Neutrino-Nucleus Interactions in the Few-GeV Region), May 18-22, 2009, Sitges, Barcelona, Spain.
Massive stars as thermonuclear reactors and their explosions following core collapse, Alak Ray, arXiv:0907.5407, 2009. Kodai School on Synthesis of Elements in Stars.
Opportunities for Neutrino Physics at the Spallation Neutron Source (SNS), Yu Efremenko, W R Hix, J. Phys. Conf. Ser. 173 (2009) 012006, arXiv:0807.2801. 2008 Carolina International Symposium on Neutrino Physics.
Physics of Supernovae: theory, observations, unresolved problems, D. K. Nadyozhin, arXiv:0804.4350, 2008. Baikal Young Scientists' International School (BAYSIS), 17-22 September 2007, Irkutsk, Russia.
Neutrinos from a core collapse supernova, Amol Dighe, AIP Conf. Proc. 981 (2008) 75-79, arXiv:0712.4386. NuFact07.
Neutrino-driven explosions twenty years after SN1987A, H. -Th. Janka, A. Marek, F. -S. Kitaura, AIP Conf. Proc. 937 (2007) 144-154, arXiv:0706.3056. Supernova 1987A: 20 Years After: Supernovae and Gamma-Ray Bursters.
Supernova neutrinos, Christian Y. Cardall, Nucl. Phys. Proc. Suppl. 168 (2007) 96-102, arXiv:astro-ph/0703334. NOW2006, Conca Specchiulla, Italy, September 9-16, 2006.
Supernova neutrino observations: What can we learn?, Georg G. Raffelt, Nucl. Phys. Proc. Suppl. 221 (2011) 218-229, arXiv:astro-ph/0701677. ]Neutrino 2006.
Supernova neutrino detection, K. Scholberg, Nucl. Phys. Proc. Suppl. 221 (2011) 248-253, arXiv:astro-ph/0701081. Neutrino 2006, Santa Fe.
Nuclear Astrophysics: CIPANP 2006, W. C. Haxton, AIP Conf. Proc. 870 (2006) 33-43, arXiv:nucl-th/0609006. CIPANP 2006.
Nucleosynthesis in neutrino heated matter: The vp-process and the r-process, G. Martinez-Pinedo et al., PoS NIC-IX (2006) 064, arXiv:astro-ph/0608490. NIC-IX, International Symposium on Nuclear Astrophysics - Nuclei in the Cosmos - IX, CERN, Geneva, Switzerland, 25-30 June, 2006.
From progenitor to afterlife, Roger A. Chevalier, arXiv:astro-ph/0607422, 2006. 2006 STScI May Symposium on Massive Stars.
Supernova and GRB connection: Observations and Questions, Massimo Della Valle, AIP Conf. Proc. 836 (2006) 367-379, arXiv:astro-ph/0604110. 16th Annual October Astrophysics Conference in Maryland, 'Gamma Ray Bursts in the Swift Era'.
The Cosmic Stellar Birth and Death Rates, John F. Beacom, New Astron. Rev. 50 (2006) 561-565, arXiv:astro-ph/0602101. Astronomy with Radioactivities V, Clemson Univ., Sept. 2005.
Supernovae Shedding Light on Gamma-Ray Bursts, M. Della Valle, Nuovo Cim. 28C (2005) 563, arXiv:astro-ph/0504517. 4th Workshop Gamma-Ray Bursts in the Afterglow Era, Rome,18-22 October 2004.
High Redshift Supernovae: Cosmological Implications, Nino Panagia, Nuovo Cim. B120 (2005) 667, arXiv:astro-ph/0502247. Vulcano Workshop 2004, Frontier Objects in Astrophysics and Particle Physics.
Supernova neutrino challenges, Christian Y. Cardall, Nucl. Phys. Proc. Suppl. 145 (2005) 295, arXiv:astro-ph/0502232. NOW2004, Conca Specchiulla (Otranto, Italy), September 11-17, 2004.
Supernova Neutrino Oscillations, Georg G. Raffelt, Phys. Scripta T121 (2005) 102, arXiv:hep-ph/0501049. Nobel Symposium 129 - Neutrino Physics, Haga Slott, Enkoping, Sweden, August 19-24, 2004.
Physics of Supernovae, Dmitrij K. Nadyozhin, V. S. Imshennik, Int. J. Mod. Phys. A20 (2005) 6597, arXiv:astro-ph/0501002. 19th European Cosmic Ray Symposium (ECRS 2004), Florence, Italy, 30 Aug - 3 Sep 2004.
Supernova neutrino detection, M. Selvi, Nucl. Phys. Proc. Suppl. 145 (2005) 339-342.
Supernovae and Their Massive Star Progenitors, Alexei V. Filippenko, Publ.Astron.Soc.Pac. (2004), arXiv:astro-ph/0412029. Science Symposium on the Fate of the Most Massive Stars, Grand Teton National Park, Wyoming, 23-28 May 2004.
Three-flavour effects and CP- and T-violation in neutrino oscillations, Evgeny Akhmedov, Phys. Scripta T121 (2005) 65, arXiv:hep-ph/0412029. Nobel Symposium 129 - Neutrino Physics, Haga Slott, Enkoping, Sweden, August 19-24, 2004.
The Supernovae Associated with Gamma-Ray Bursts, Thomas Matheson, ASP Conf.Ser. (2004), arXiv:astro-ph/0410668. Supernovae as Cosmological Lighthouses, Padua, 2004.
Stellar explosions: from supernovae to gamma-ray bursts, Konstantin Postnov, NATO Adv.Study Inst.Ser.C.Math.Phys.Sci. (2004) 95-117, arXiv:astro-ph/0410349. ISCRA 14th School Neutrinos and Explosive Events in the Universe, Erice, Italy, July 2004.
Kepler's Supernova Remnant: The view at 400 Years, W. P. Blair, ASP Conf.Ser. (2004), arXiv:astro-ph/0410081. 1604-2004: Supernovae as Cosmological Lighthouses.
Spectropolarimetry of Core-Collapse Supernovae, Douglas C. Leonard, Alexei V. Filippenko, ASP Conf.Ser. (2004), arXiv:astro-ph/0409518. Supernovae as Cosmological Lighthouses, 16-19 June, Padua, Italy.
Supernova neutrinos: production, propagation and oscillations, Amol Dighe, Nucl. Phys. Proc. Suppl. 143 (2005) 449, arXiv:hep-ph/0409268. Neutrino 2004, Paris.
Neutrinos: '...annus mirabilis', A. Yu. Smirnov, arXiv:hep-ph/0402264, 2004. 2nd Int. Workshop on Neutrino oscillations in Venice (NOVE) December 3-5, 2003, Venice, Italy.
Spectropolarimetric Observations of Supernovae, Alexei V. Filippenko, Douglas C. Leonard, arXiv:astro-ph/0312500, 2003. 3-D Signatures in Stellar Explosions, 10-13 June, 2003.
A Review of X-ray Observations of Supernova Remnants, Jacco Vink, Nucl. Phys. Proc. Suppl. 132 (2004) 21, arXiv:astro-ph/0311406. The restless high energy universe, Amsterdam, May 2003.
Neutrinos as astrophysical probes, F. Cavanna, M. L. Costantini, O. Palamara, F. Vissani, Surveys High Energ. Phys. 19 (2004) 35, arXiv:astro-ph/0311256. ICTP Summer School on Astroparticle Physics and Cosmology, Trieste, Italy, 17 June - 5 Jul 2002.
Supernova Spectra, M. Turatto, Springer Proc.Phys. 99 (2005) 151-160, arXiv:astro-ph/0310837. IAU Colloquium 192, Supernovae: 10 Years of 1993J Valencia, Spain 22-26 April 2003.
Observations of Type Ia Supernovae, and Challenges for Cosmology, W. Li, A. V. Filippenko, Springer Proc.Phys. 99 (2005) 525-533, arXiv:astro-ph/0310529. IAU Colloquium 192, Supernovae: 10 Years of 1993J Valencia, Spain 22-26 April 2003.
The Infrared Supernova Rate, F. Mannucci, G. Cresci, R. Maiolino, M. Della Valle, Springer Proc.Phys. 99 (2005) 355-359, arXiv:astro-ph/0310210. IAU Colloquium 192: Supernovae (10 Years after SN1993J), Valencia, Spain, 22-26 Apr 2003.
Evidence from Type Ia Supernovae for an Accelerating Universe and Dark Energy, A. V. Filippenko, arXiv:astro-ph/0307139, 2003.
Neutrino Physics after KamLAND, Alexei Yu. Smirnov, arXiv:hep-ph/0306075, 2003. 4th Workshop on 'Neutrino Oscillations and their Origin' (NOON2003), February 10-14, 2003, Ishikawa Kousei Nenkin Kaikan, Kanazawa, Japan.
Cosmology with Supernovae, P. Ruiz-Lapuente, Astrophys. Space Sci. 290 (2004) 43, arXiv:astro-ph/0304108. JENAM 2002 (Porto, Portugal).
Review on the Observed and Physical Properties of Core Collapse Supernovae, Mario Hamuy, arXiv:astro-ph/0301006, 2003. 2003 Aspen Summer Workshop on the Nuclear Physics of Core Collapse Supernovae, Aspen, Colorado, 26 May - 8 June 2003.
Supernova Neutrinos and Particle-Physics Applications, G. Raffelt, 2003. Lectures given at ISAPP 2003 - International School on AstroParticle Physics, 14-19 July 2003, Madonna di Campiglio, Italy.
Bolometric Light Curves of Supernovae, N. B. Suntzeff, arXiv:astro-ph/0212561, 2002. From Twilight to Highlight - The Physics of Supernovae ESO/MPA/MPE Workshop, Garching, July 29 - 31, 2002.
Type Ia Supernova models: latest developments, S. Blinnikov, E. Sorokina, Astrophys. Space Sci. 290 (2004) 13, arXiv:astro-ph/0212530. JENAM-2002 meeting (Porto, Portugal, September, 3-8).
Neutrinos from supernovae, Sandhya Choubey, Kamales Kar, Proc.Indian Natl.Sci.Acad. 70A (2004) 123, arXiv:hep-ph/0212326. INSA Proceedings.
Core Collapse and Then? The Route to Massive Star Explosions, H.-Th. Janka et al., arXiv:astro-ph/0212316, 2002. From Twilight to Highlight: The Physics of Supernovae, ESO Astrophysics Symposia.
Astrophysical and Cosmological Neutrinos, G. G. Raffelt, Proc.Int.Sch.Phys.Fermi 152 (2003) 161-181, arXiv:hep-ph/0208024. International School of Physics 'Enrico Fermi,' CLII Course 'Neutrino Physics,' 23 July-2 August 2002, Varenna, Lake Como, Italy.
Neutrino masses in astroparticle physics, G. G. Raffelt, New Astron. Rev. 46 (2002) 699-708, arXiv:astro-ph/0207220. Dennis Sciama Memorial Volume of NAR.
Neutrinos from supernovae: experimental status and perspectives, Fabrizio Cei, Int. J. Mod. Phys. A17 (2002) 1765-1776, arXiv:hep-ex/0202043. Second International Workshop on Matter, Anti-Matter and Dark Matter, Trento (Italy), 29-30 October 2001.
Physics with supernovae, Georg. G. Raffelt, Nucl. Phys. Proc. Suppl. 110 (2012) 254-267, arXiv:hep-ph/0201099. TAUP 2001: Topics in Astroparticle and Underground Physics, Assergi, Italy, 8-12 Sep 2001.
Supernovae : Theory, expected Rates, Energy Spectrum, Flavor Composition, Time Structure, G. Raffelt, 2002. Workshop on Large Detectors for proton decay, supernovae, and atmospheric neutrinos, and low energy neutrinos from high intensity beams, NNN02, CERN, 16-18 January 2002.
Supernova types and rates, E. Cappellaro, M. Turatto, Astrophys.Space Sci.Libr. 264 (2001) 199, arXiv:astro-ph/0012455. The Influence of Binaries on Stellar Population Studies, Brussels 21-25 Aug. 2000.
Supernova and Cosmology, M. Signore, D. Puy, New Astron. Rev. 45 (2001) 409, arXiv:astro-ph/0010634.
Massive neutrinos in astrophysics, Georg G. Raffelt, Werner Rodejohann, arXiv:hep-ph/9912397, 1999. 4th National Summer School for German-speaking Graduate Students of Theoretical Physics, Saalburg, Germany, 31 Aug - 11 Sep 1998.
Supernova 1987A - A review, Bhattacharya D., Bulletin of the Astronomical Society of India 16 (1988) 57-66. Astronomical Society of India, Meeting, 12th, Raipur, India, Dec. 1987.
Supernova models, S. E. Woosley, T. A. Weaver, New York Academy Sciences Annals 375 (1981) 357-380.
Evolution and explosion of massive stars, S. E. Woosley, T. A. Weaver, Ninth Texas Symposium on Relativistic Astrophysics. 335-357 (1980).

4 - PhD Theses

Early evolution of newly born proto-neutron stars, Giovanni Camelio, arXiv:1801.01350, 2018.
Detecting Fast Time Variations in the Supernova Neutrino Flux with Hyper-Kamiokande, Jost Migenda, arXiv:1609.04286, 2016.
Neutrino interactions in neutron matter, Andrea Cipollone, arXiv:1212.5849, 2012.
Supernovae as laboratories for neutrino properties, Andreu Esteban-Pretel, arXiv:0912.1616, 2009.
Construction and Analysis of a Many-Body Neutrino model, Ivona Okuniewicz, arXiv:0903.2996, 2009.
The Evolution of Low Mass Helium Stars towards Supernova Type I Explosion, Roni Waldman, Zalman Barkat, arXiv:astro-ph/0605692, 2006.
Supernova neutrino spectra and applications to flavor oscillations, Mathias Thorsten Keil, arXiv:astro-ph/0308228, 2003.
A Search for Supernova Neutrinos with the Sudbury Neutrino Observatory, Jaret Heise, 2001. University of British Columbia, Vancouver BC, December 2001.

5 - Experiment - Type II

Detection of a Type IIn Supernova in Optical Follow-up Observations of IceCube Neutrino Events, M. G. Aartsen et al. (IceCube), Astrophys. J. 811 (2015) 52, arXiv:1506.03115.
Implication on the core collapse supernova rate from 21 years of data of the Large Volume Detector, N.Y. Agafonova et al. (LVD), Astrophys.J. 802 (2015) 47, arXiv:1411.1709.
Supernova Relic Neutrino Search with Neutron Tagging at Super-Kamiokande-IV, H. Zhang et al. (Super-Kamiokande), Astropart.Phys. 60 (2015) 41, arXiv:1311.3738.
Searching for soft relativistic jets in Core-collapse Supernovae with the IceCube Optical Follow-up Program, R. Abbasi et al. (IceCube), Astron. Astrophys. 539 (2012) A60, arXiv:1111.7030.
Supernova Relic Neutrino Search at Super-Kamiokande, K. Bays et al. (Super-Kamiokande), Phys. Rev. D85 (2012) 052007, arXiv:1111.5031.
IceCube Sensitivity for Low-Energy Neutrinos from Nearby Supernovae, R. Abbasi et al. (IceCube), Astron. Astrophys. 535 (2011) A109, arXiv:1108.0171.
Low Multiplicity Burst Search at the Sudbury Neutrino Observatory, B. Aharmim et al. (SNO), Astrophys. J. 728 (2011) 83, arXiv:1011.5436.
A Search for Core-Collapse Supernovae using the MiniBooNE Neutrino Detector, A. A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Rev. D81 (2010) 032001, arXiv:0910.3182.
An Extremely Luminous X-ray Outburst Marking the Birth of a Normal Supernova, A. M. Soderberg et al., Nature. 453 (2008) 469-474, arXiv:0802.1712.
Search for Supernova Neutrino Bursts at Super-Kamiokande, M. Ikeda, A. Takeda, Y. Fukuda, M. R. Vagins, M. Sakuda (Super-Kamiokande), Astrophys. J. 669 (2007) 519-524, arXiv:0706.2283.
A Search for Neutrinos from the Solar hep Reaction and the Diffuse Supernova Neutrino Background with the Sudbury Neutrino Observatory, B. Aharmim et al. (SNO), Astrophys. J. 653 (2006) 1545-1551, arXiv:hep-ex/0607010.
Gamma-Ray Burst associated Supernovae: Outliers become Mainstream, E. Pian et al., Nature 442 (2006) 1011-1013, arXiv:astro-ph/0603530.
Discovery of 35 New Supernova Remnants in the Inner Galaxy, C. L. Brogan et al., Astrophys. J. 639 (2006) L25, arXiv:astro-ph/0601451.
Echoes from Ancient Supernovae in the Large Magellanic Cloud, A. Rest et al., Nature (2005), arXiv:astro-ph/0510738.
Discovery of X-Ray Emission from Supernova 1970G with Chandra: Filling the Void between Supernovae and Supernova Remnants, Stefan Immler, K. D. Kuntz, Astrophys. J. 632 (2005) L99, arXiv:astro-ph/0506023.
Late-time X-Ray, UV and Optical Monitoring of Supernova 1979C, Stefan Immler et al., Astrophys. J. 632 (2005) 283, arXiv:astro-ph/0503678.
Hubble Space Telescope imaging of the progenitor sites of six nearby core-collapse supernovae, Justyn R. Maund, Stephen J. Smartt, Mon. Not. Roy. Astron. Soc. 360 (2005) 288, arXiv:astro-ph/0501323.
SN Ib 1990I: Clumping and Dust in the Ejecta?, Abouazza Elmhamdi et al., Astron. Astrophys. 426 (2004) 963-977, arXiv:astro-ph/0407145.
SNEWS: The SuperNova Early Warning System, P. Antonioli et al., New J. Phys. 6 (2004) 114, arXiv:astro-ph/0406214.
The type IIn supernova 1994W: evidence for the explosive ejection of a circumstellar envelope, Nikolai N. Chugai et al., Mon. Not. Roy. Astron. Soc. 352 (2004) 1213, arXiv:astro-ph/0405369.
XMM-Newton observation of Kepler's supernova remnant, G. Cassam-Chenai et al., Astron.Astrophys. (2003), arXiv:astro-ph/0310687.
Twenty Years of Galactic Observations in Searching for Bursts of Collapse Neutrinos with the Baksan Underground Scintillation Telescope, E.N.Alexeyev, L.N.Alexeyeva, J. Exp. Theor. Phys. 95 (2002) 5, arXiv:astro-ph/0212499.
Search for supernova relic neutrinos at Super-Kamiokande, M. Malek et al. (Super-Kamiokande), Phys. Rev. Lett. 90 (2003) 061101, arXiv:hep-ex/0209028.
The Asiago Supernova Catalogue - 10 years after, R. Barbon, V. Buondi, E. Cappellaro, M. Turatto, Astron. Astrophys. 139 (1999) 531-536.

6 - Experiment - Type II - Conference Proceedings

Improved Detection of Supernovae with the IceCube Observatory, Lutz Kopke (IceCube), arXiv:1704.03823, 2017. 8th international symposium on large TPCs for low-energy rare event detection, Paris, Dec. 5-7, 2016.
The core collapse supernova rate from 24 years of data of the Large Volume Detector, G. Bruno, A. Molinario, W. Fulgione, C. Vigorito (LVD), J.Phys.Conf.Ser. 888 (2017) 012256, arXiv:1701.06765. XXV ECRS 2016.
The IceCube Neutrino Observatory Part V: Neutrino Oscillations and Supernova Searches, M. G. Aartsen et al. (IceCube), arXiv:1309.7008, 2013. 33nd International Cosmic Ray Conference, Rio de Janeiro 2013.
Supernova Detection in IceCube: Status and Future, Ronald Bruijn (IceCube), Nucl. Phys.B, Proc.Suppl.237-238 2013 (2013) 94-97, arXiv:1302.2040. NOW 2012.
The IceCube Neutrino Observatory VI: Neutrino Oscillations, Supernova Searches, Ice Properties, R. Abbasi et al. (IceCube), arXiv:1111.2731, 2011. 32nd International Cosmic Ray Conference, Beijing 2011.
Low Energy Neutrino Astronomy in Super-Kamiokande, Michael Smy, arXiv:1110.0012, 2011. DPF 2011.
Search for neutrino bursts from core collapse supernovae at the Baksan Underground Scintillation Telescope, R.V. Novoseltseva et al., arXiv:0910.0738, 2009. 31 International Cosmic Ray Conference, Lodz, Poland, July 7-15, 2009.
Supernova Search with the AMANDA / IceCube Detectors, Thomas Kowarik, Timo Griesel, Alexander Piegsa (Icecube), arXiv:0908.0441, 2009. 31st ICRC, Lodz, Poland, July 2009.
Search for High Energetic Neutrinos from Supernova Explosions with AMANDA, Dirk Lennarz, Jan-Patrick Huls, Christopher Wiebusch (IceCube), arXiv:0907.4621, 2009. 31st ICRC, Lodz, Poland, July 2009.
Recent Type II Radio Supernovae, Christopher J. Stockdale et al., AIP Conf. Proc. 937 (2007) 264-268, arXiv:0708.1182. Supernova 1987A: 20 Years After: Supernovae and Gamma-Ray Bursters.
LVD highlights, Marco Selvi et al. (LVD), arXiv:hep-ex/0608061, 2006. Vulcano Workshop 2006 'Frontier Objects in Astrophysics and Particle Physics'.
SNLS - the Supernova Legacy Survey, C.J. Pritchet, SNLS (SNLS), ASP Conf.Ser. (2004), arXiv:astro-ph/0406242. Observing Dark Energy (NOAO/Tucson proceedings).
Evidence for Core Collapse in the Type Ib/c SN 1999ex, Mario Hamuy et al., arXiv:astro-ph/0212368, 2002. From Twilight to Highlight: The Physics of Supernovae, ESO Astrophysics Symposia.
The dusty type IIn Supernova 1998S, Peter Meikle et al., arXiv:astro-ph/0211144, 2002. ESO/MPA/MPE Workshop 'From Twilight to Highlight: The Physics of Supernovae', Garching, Germany, 29-31 July 2002.
A Search for Core-Collapse Supernova Progenitors In Hubble Space Telescope Images, Schuyler D. Van Dyk, Weidong Li, Alexei V. Filippenko, Publ.Astron.Soc.Pac. (2002), arXiv:astro-ph/0210347. PASP (2003 Jan).
An Intermediate Redshift Supernova Search at ESO: Reduction Tools and Efficiency Tests, M. Riello et al., arXiv:astro-ph/0210265, 2002. ESO/MPA/MPE Workshop 'From Twilight to Highlight, The Physics of Supernovae', Garching, Jul 29-31, 2002.
Search for double degenerate progenitors of supernovae type Ia with SPY, R. Napiwotzki, H. Drechsel, U. Heber, C. Karl, E.-M. Pauli et al., others, others, others, others, others, others, others, others, others, others, arXiv:astro-ph/0210155, 2002. 'White Dwarfs', Proc. XIII Workshop on White Dwarfs.

7 - Experiment - Type Ia

Cosmological Constraints from Measurements of Type Ia Supernovae discovered during the first 1.5 years of the Pan-STARRS1 Survey, A. Rest et al., Astrophys.J. 795 (2014) 44, arXiv:1310.3828.
Systematic Uncertainties Associated with the Cosmological Analysis of the First Pan-STARRS1 Type Ia Supernova Sample, D. Scolnic et al., Astrophys.J. 795 (2014) 45, arXiv:1310.3824.
The Carnegie Supernova Project: Analysis of the First Sample of Low-Redshift Type-Ia Supernovae, Gaston Folatelli et al., Astron. J. 139 (2010) 120-144, arXiv:0910.3317.
Asymmetric Explosion of Type Ia Supernovae as Seen from Near Infrared Observations, K. Motohara et al., Astrophys. J. 652 (2006) L101-L104, arXiv:astro-ph/0610303.
The Rise Time of Type Ia Supernovae from the Supernova Legacy Survey, A. Conley et al. (SNLS), Astron. J. 132 (2006) 1707-1713, arXiv:astro-ph/0607363.
Nonlinear Decline-Rate Dependence and Intrinsic Variation of Type Ia Supernova Luminosities, Lifan Wang et al., Astrophys. J. 641 (2006) 50-69, arXiv:astro-ph/0512370.
The Supernova Legacy Survey: Measurement of $\Omega_\text{M}$, $\Omega_{\Lambda}$ and $w$ from the First Year Data Set, P. Astier et al. (SNLS), Astron. Astrophys. 447 (2006) 31, arXiv:astro-ph/0510447.
From the abstract: With this data set, we have built a Hubble diagram extending to $z=1$, with all distance measurements involving at least two bands.... Cosmological fits to this first year SNLS Hubble diagram give the following results: $ \Omega_{\text{M}} = 0.263 \pm 0.042 \pm 0.032 $ for a flat $\Lambda\text{CDM}$; and $w = -1.023 \pm 0.090 \pm 0.054 $ for a flat cosmology with constant equation of state $w$ when combined with the constraint from the recent Sloan Digital Sky Survey measurement of baryon acoustic oscillations.
Hubble Space Telescope and Ground-Based Observations of Type Ia Supernovae at Redshift 0.5: Cosmological Implications, A. Clocchiatti et al. (High Z SN Search), Astrophys. J. 642 (2006) 1-21, arXiv:astro-ph/0510155.
Spectroscopy of twelve Type Ia supernovae at intermediate redshift, C. Balland et al., Astron.Astrophys. (2005), arXiv:astro-ph/0507703.
First results from the Canada-France High-z Quasar Survey: Constraints on the z=6 quasar luminosity function and the quasar contribution to reionization, Chris J. Willott et al., Astrophys. J. 633 (2005) 630, arXiv:astro-ph/0507183.
Evidence for Spectropolarimetric Diversity in Type Ia Supernovae, Douglas C. Leonard et al., Astrophys. J. 632 (2005) 450, arXiv:astro-ph/0506470.
A Definitive Measurement of Time Dilation in the Spectral Evolution of the Moderate-Redshift Type Ia Supernova 1997ex, R. J. Foley et al., Astrophys. J. 626 (2005) L11, arXiv:astro-ph/0504481.
Restframe I-band Hubble diagram for type Ia supernovae up to redshift $z \sim 0.5$, Serena Nobili et al. (Supernova Cosmology Project), Astron.Astrophys. (2005), arXiv:astro-ph/0504139.
Cepheid Calibrations from the Hubble Space Telescope of the Luminosity of Two Recent Type Ia Supernovae and a Re-determination of the Hubble Constant, Adam G. Riess et al., Astrophys. J. 627 (2005) 579, arXiv:astro-ph/0503159.
From the abstract: $H_0 = 73 +\pm 4 \pm 5 \, \text{km} \, \text{s}^{-1} \, \text{Mps}^{-1}$.
The Deepest Supernova Search is Realized in the Hubble Ultra Deep Field Survey, Louis-Gregory Strolger, Adam G. Riess, Astron. J. 131 (2006) 1629-1638, arXiv:astro-ph/0503093.
Spectroscopic confirmation of high-redshift supernovae with the ESO VLT, C. Lidman et al. (Supernova Cosmology Project), Astron.Astrophys. (2004), arXiv:astro-ph/0410506.
The Hubble Higher-Z Supernova Search: Supernovae to z=1.6 and Constraints on Type Ia Progenitor Models, L. G. Strolger et al., Astrophys. J. 613 (2004) 200-223, arXiv:astro-ph/0406546.
Type Ia supernova rate at a redshift of ~ 0.1, Guillaume Blanc et al. (EROS), Astron. Astrophys. 423 (2004) 881, arXiv:astro-ph/0405211.
Spectroscopic Observations and Analysis of the Peculiar SN 1999aa, Gabriele Garavini et al. (The Supernova Cosmology Project), Mon. Not. Roy. Astron. Soc. 356 (2004) 456, arXiv:astro-ph/0404393.
Type Ia Supernova Discoveries at z > 1 From the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution, Adam G. Riess et al. (Supernova Search Team), Astrophys. J. 607 (2004) 665, arXiv:astro-ph/0402512.
From the abstract: We have discovered 16 Type Ia supernovae (SNe Ia) with the Hubble Space Telescope (HST) and have used them to provide the first conclusive evidence for cosmic deceleration that preceded the current epoch of cosmic acceleration.
A purely kinematic interpretation of the SN Ia sample provides evidence at the > 99\% confidence level for a transition from deceleration to acceleration or similarly, strong evidence for a cosmic jerk. Using a simple model of the expansion history, the transition between the two epochs is constrained to be at $z=0.46 \pm 0.13$.
The data are consistent with the cosmic concordance model of $\Omega_M \approx 0.3, \Omega_\Lambda \approx 0.7$ ($\chi^2_{dof}=1.06$), and are inconsistent with a simple model of evolution or dust as an alternative to dark energy.
For a flat Universe with a cosmological constant, we measure $\Omega_M = 0.29 {}^{+0.05}_{-0.03}$ (equivalently, $\Omega_\Lambda=0.71$). When combined with external flat-Universe constraints including the cosmic microwave background and large-scale structure, we find $w = -1.02 {}^{+0.13}_{-0.19}$ (and $w<-0.76$ at the 95\% confidence level) for an assumed static equation of state of dark energy, $P = w\rho c^2$.
Our constraints are consistent with the static nature of and value of $w$ expected for a cosmological constant (i.e., $w_0 = -1.0$, $dw/dz = 0$), and are inconsistent with very rapid evolution of dark energy.

23 High Redshift Supernovae from the IfA Deep Survey: Doubling the SN Sample at $z > 0.7$, Brian J. Barris et al., Astrophys. J. 602 (2004) 571, arXiv:astro-ph/0310843.
From the abstract: This sample of 23 high-redshift supernovae includes 15 at $z\geq0.7$, doubling the published number of objects at these redshifts, and indicates that the evidence for acceleration of the universe is not due to a systematic effect proportional to redshift. In combination with the recent compilation of Tonry and others (2003), we calculate cosmological parameter density contours which are consistent with the flat universe indicated by the CMB [Go]. Adopting the constraint that $\Omega_{total} = 1.0$, we obtain best-fit values of ($\Omega_{m}$,$\Omega_{\Lambda}$)=(0.33, 0.67) using 22 SNe from this survey augmented by the literature compilation.
New Constraints on $\Omega_M$, $\Omega_\Lambda$, and $w$ from an Independent Set of Eleven High-Redshift Supernovae Observed with HST, Robert A. Knop et al. (The Supernova Cosmology Project), Astrophys. J. 598 (2003) 102, arXiv:astro-ph/0309368.
From the abstract: We report measurements of $\Omega_{\mathrm{M}}$, $\Omega_{\Lambda}$, and $w$ from eleven supernovae at $z=0.36$-$0.86$ with high-quality lightcurves measured using WFPC2 on the HST. This is an independent set of high-redshift supernovae that confirms previous supernova evidence for an accelerating Universe. The high-quality lightcurves available from photometry on \wfpc\ make it possible for these eleven supernovae alone to provide measurements of the cosmological parameters comparable in statistical weight to the previous results. Combined with earlier Supernova Cosmology Project data, the new supernovae yield a measurement of the mass density $\Omega_{\mathrm{M}}=0.25^{+0.07}_{-0.06}$ (statistical) $\pm0.04$ (identified systematics), or equivalently, a cosmological constant of $\Omega_{\Lambda}=0.75^{+0.06}_{-0.07}$ (statistical) $\pm0.04$ (identified systematics), under the assumptions of a flat universe and that the dark energy equation of state parameter has a constant value $w=-1$. When the supernova results are combined with independent flat-universe measurements of $\Omega_{\mathrm{M}}$ from CMB and galaxy redshift distortion data, they provide a measurement of $w=-1.05^{+0.15}_{-0.20}$ (statistical) $\pm0.09$ (identified systematic), if $w$ is assumed to be constant in time.... dark energy is required with $P(\Omega_{\Lambda}>0)>0.99$.
Cosmological Results from High-z Supernovae, John L. Tonry et al. (Supernova Search Team), Astrophys. J. 594 (2003) 1, arXiv:astro-ph/0305008.
From the abstract: The High-$ z$ Supernova Search Team has discovered and observed 8 new supernovae in the redshift interval $ z=0.3-1.2$. These independent observations, analyzed by similar but distinct methods, confirm the result of Riess and others (1998a) and Perlmutter and others (1999) that supernova luminosity distances imply an accelerating universe. More importantly, they extend the redshift range of consistently observed SN Ia to $ z\approx 1$, where the signature of cosmological effects has the opposite sign of some plausible systematic effects.... if the equation of state parameter of the dark energy is $ w=-1$, then $ H_0\,t_0 = 0.96\pm0.04$, and $ \Omega_\Lambda-1.4\Omega_M=0.35\pm0.14$. Including the constraint of a flat Universe, we find $ \Omega_M=0.28\pm0.05$, independent of any large-scale structure measurements. Adopting a prior based on the 2dF redshift survey constraint on $ \Omega_M$ and assuming a flat universe, we find that the equation of state parameter of the dark energy lies in the range $ -1.48-1$, we obtain $ w<-0.73$ at 95% confidence.
SN 2002cx: The Most Peculiar Known Type Ia Supernova, Weidong Li et al., Publ. Astron. Soc. Pac. 115 (2003) 453-473, arXiv:astro-ph/0301428.
Optical and Infrared Photometry of the Nearby Type Ia Supernova 2001el, Kevin Krisciunas et al., Astron. J. 125 (2003) 166, arXiv:astro-ph/0210327.
The Type la Supernova 2001V in NGC 3987, J. Vinko et al., Astron. Astrophys. 397 (2003) 115, arXiv:astro-ph/0210186.
The distant Type Ia supernova rate, R. Pain et al. (Supernova Cosmology Project), Astrophys. J. 577 (2002) 120, arXiv:astro-ph/0205476.
The Farthest Known Supernova: Support for an Accelerating Universe and a Glimpse of the Epoch of Deceleration, Adam G. Riess et al. (Supernova Search Team), Astrophys. J. 560 (2001) 49-71, arXiv:astro-ph/0104455.
Measurements of Omega and Lambda from 42 High-Redshift Supernovae, S. Perlmutter et al. (Supernova Cosmology Project), Astrophys. J. 517 (1999) 565-586, arXiv:astro-ph/9812133.
From the abstract: The measurement yields a joint probability distribution of the cosmological parameters that is approximated by the relation $0.8 \,\Omega_{\rm M}- 0.6\,\Omega_\Lambda \approx -0.2 \pm 0.1$ in the region of interest ($\Omega_{\rm M} \lesssim 1.5$). For a flat ($\Omega_{\rm M}+\Omega_\Lambda = 1$) cosmology we find $\Omega_{\rm M}^{\rm flat} = 0.28^{+0.09}_{-0.08}$ (1$\sigma$ statistical) $^{+0.05}_{-0.04}$ (identified systematics). The data are strongly inconsistent with a $\Lambda = 0$ flat cosmology, the simplest inflationary universe model. An open, $\Lambda = 0$ cosmology also does not fit the data well: the data indicate that the cosmological constant is non-zero and positive, with a confidence of $P(\Lambda > 0) = 99$\%, including the identified systematic uncertainties. The best-fit age of the universe relative to the Hubble time is $t_0^{\rm flat}=14.9^{+1.4}_{-1.1}\,(0.63/h)$ Gyr for a flat cosmology.
Supernova Limits on the Cosmic Equation of State, Peter M. Garnavich et al. (Supernova Search Team), Astrophys. J. 509 (1998) 74-79, arXiv:astro-ph/9806396.
Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant, Adam G. Riess et al. (Supernova Search Team), Astron. J. 116 (1998) 1009-1038, arXiv:astro-ph/9805201.

8 - Experiment - Type Ia - Conference Proceedings

Exploring the Physics of Type Ia Supernovae Through the X-ray Spectra of their Remnants, C. Badenes et al., Mem.Soc.Ast.It. (2005), arXiv:astro-ph/0506576. "Stellar end products" workshop, 13-15 April 2005, Granada, Spain.
The Fall 2004 SDSS Supernova Survey, Masao Sako et al. (The SDSS), eConf C041213 (2004) 1424, arXiv:astro-ph/0504455. 22nd Texas Symposium on Relativistic Astrophysics.

9 - Experiment - Type II - Supernova Remnant

A 'Missing' Supernova Remnant revealed by the 21-cm Line of Atomic Hydrogen, B-C Koo, J-h Kang, C.J. Salter, Astrophys. J. 643 (2006) L49-L52, arXiv:astro-ph/0604186.

10 - Experiment - Type II - SN1987A

Time evolution of the line emission from the inner circumstellar ring of SN 1987A and its hot spots, Per Groeningsson et al., Astron.Astrophys. 492 (2008) 481, arXiv:0810.2661.
Chandra HETG Spectra of SN 1987A at 20 years, D. Dewey, S. A. Zhekov, R. McCray, C. R. Canizares, Astrophys.J. 676 (2008) L131, arXiv:0802.2340.
Infrared Integral Field Spectroscopy of SN 1987A, Karina Kjaer et al., AIP Conf. Proc. 937 (2007) 76-80, arXiv:astro-ph/0703720.
Discovery of a nearby twin of SN1987A's nebula around the luminous blue variable HD168625: Was Sk-69 202 an LBV?, Nathan Smith, Astron. J. 133 (2007) 1034-1040, arXiv:astro-ph/0611544.
On the Progenitor of Supernova 1987A, M. Parthasarathy, David Branch, E. Baron, David J. Jeffery, Bull.Astron.Soc.India (2006), arXiv:astro-ph/0611033.
Evolutionary Status of SNR 1987A at the Age of Eighteen, Sangwook Park et al., Astrophys. J. 646 (2006) 1001-1008, arXiv:astro-ph/0604201.
Coronal emission from the shocked circumstellar ring of SN 1987A, Per Groningsson et al., Astron.Astrophys. (2006), arXiv:astro-ph/0603815.
SN 1987A After 18 Years: Mid-Infrared GEMINI and SPITZER Observations of the Remnant, Patrice Bouchet et al., Astrophys. J. 650 (2006) 212-227, arXiv:astro-ph/0601495.
The reverse shock of SNR1987A at 18 years after outburst, Nathan Smith et al., Astrophys. J. 635 (2005) L41, arXiv:astro-ph/0510835.
Supernova Remnant 1987A: Opening the Future by Reaching the Past, Sangwook Park, Svetozar A. Zhekov, David N. Burrows, Richard McCray, Astrophys. J. 634 (2005) L73, arXiv:astro-ph/0510442.
Imaging of the Radio Remnant of SN 1987A at 12 mm Wavelength, R. N. Manchester et al., Astrophys. J. 628 (2005) L131, arXiv:astro-ph/0506475.
Chandra Observations of Shock Kinematics in Supernova Remnant 1987A, S.A. Zhekov et al., Astrophys. J. 628 (2005) L127, arXiv:astro-ph/0506443.
Limits from the Hubble Space Telescope on a Point Source in SN 1987A, G. J. M. Graves et al., Astrophys. J. 629 (2005) 944, arXiv:astro-ph/0505066.
A New View of the Circumstellar Environment of SN 1987A, Ben E. K. Sugerman et al., Astrophys. J. 627 (2005) 888, arXiv:astro-ph/0502268.
Supernova Remnant 1987A: The Latest Report from the Chandra X-Ray Observatory, Sangwook Park et al., Adv. Space Res. 35 (2005) 991-995, arXiv:astro-ph/0501561.
Constraints on the luminosity of the stellar remnant in SNR1987A, P. Shtykovskiy, A. Lutovinov, M. Gilfanov, R. Sunyaev, Astron. Lett. 31 (2005) 258, arXiv:astro-ph/0411731.
High Resolution Imaging of SN 1987A at 10 micron, P. Bouchet et al., Astrophys. J. 611 (2004) 394, arXiv:astro-ph/0312240.
The X-ray Remnant of SN1987A, David N. Burrows et al., Astrophys. J. 543 (2000) L149-L152, arXiv:astro-ph/0009265.
Young Stellar Populations Around SN1987A, Nino Panagia, Martino Romaniello, Salvatore Scuderi, Robert P. Kirshner, Astrophys. J. 539 (2000) 197-208, arXiv:astro-ph/0001476.
A Second Bright Source Detected Near SN1987A, Peter Nisenson, Costas Papaliolios, Astrophys.J. 518 (1999) L29, arXiv:astro-ph/9904109.
The X-ray lightcurve of SN 1987A, G. Hasinger, B. Aschenbach, J. Trumper, Astron. Astrophys. 312 (1996) L9-L12, arXiv:astro-ph/9606149.
The progenitor of SN 1987A - Spatially resolved ultraviolet spectroscopy of the supernova field, George Sonneborn, Bruce Altner, Robert P. Kirshner, Astrophys. J. 323 (1987) L35-L39.
Ultraviolet observations of SN 1987A, Robert P. Kirshner, George Sonneborn, D. Michael Crenshaw, George E. Nassiopoulos, Astrophys. J. 320 (1987) 602-608.

11 - Experiment - Type II - SN1987A - Conference Proceedings

SN1987A: Revisiting the Data and the Correlation between Neutrino and Gravitational Detectors, P. Galeotti, G. V. Pallottino, G. Pizzella, arXiv:0810.3759, 2008. Vulcano Wokshop 2008, Frontier Objects in Astrophysics and Particle Physics, May 26-31.
Chandra Observations of Supernova 1987A, Sangwook Park et al., AIP Conf. Proc. 937 (2007) 43-50, arXiv:0704.0209. Supernova 1987A: 20 Years after Supernovae and Gamma-Ray Bursters, Aspen, CO, USA, Feb 19-23, 2007.
Supernova Remnant 1987A: High Resolution Images and Spectrum from Chandra Observations, Sangwook Park et al., ESA Spec.Publ. 604 (2006) 335, arXiv:astro-ph/0511355. The X-Ray Universe 2005, Sept 26-30, 2005, El Escorial, Madrid, Spain.
A 2.14 ms Candidate Optical Pulsar in SN1987A, J. Middleditch et al., arXiv:astro-ph/0010044, 2000. 5th CTIO/ESO Workshop and 1st CTIO/ESO/LCO Workshop: SN 1987A: Ten Years After, La Serena, Chile, 22-28 Feb 1997.

12 - Experiment - Type II - SN1987A - Baksan

DETECTION OF THE NEUTRINO SIGNAL FROM SN1987A IN THE LMC USING THE INR BAKSAN UNDERGROUND SCINTILLATION TELESCOPE, E. N. Alekseev, L. N. Alekseeva, I. V. Krivosheina, V. I. Volchenko, Phys. Lett. B205 (1988) 209-214.
POSSIBLE DETECTION OF A NEUTRINO SIGNAL ON 23 FEBRUARY 1987 AT THE BAKSAN UNDERGROUND SCINTILLATION TELESCOPE OF THE INSTITUTE OF NUCLEAR RESEARCH, E. N. Alekseev, L. N. Alekseeva, V. I. Volchenko, I. V. Krivosheina, JETP Lett. 45 (1987) 589-592. [Pisma Zh. Eksp. Teor. Fiz. 45, 461-464 (1987)].
CHARACTERISTICS OF THE NEUTRINO EMISSION FROM SUPERNOVA SN1987A, A. E. Chudakov, Ya. S. Elensky, S. P. Mikheev, JETP Lett. 46 (1987) 373-377. [Pisma Zh. Eksp. Teor. Fiz. 46, 297 (1987)].

13 - Experiment - Type II - SN1987A - IMB

ANGULAR DISTRIBUTION OF EVENTS FROM SN1987A, C. B. Bratton et al. (IMB), Phys. Rev. D37 (1988) 3361.
NEUTRINOS FROM SN1987A IN THE IMB DETECTOR, J. C. Van Der Velde et al. (IMB), Nucl. Instrum. Meth. A264 (1988) 28-31.

14 - Experiment - Type II - SN1987A - Kamiokande

Observation in the Kamiokande-II detector of the neutrino burst from supernova SN1987A, K. S. Hirata et al. (Kamiokande), Phys. Rev. D38 (1988) 448-458.
Observation of a neutrino burst from the supernova SN1987a, K. Hirata et al. (Kamiokande), Phys. Rev. Lett. 58 (1987) 1490-1493.
A search for high-energy neutrinos from SN1987a: first six months, Y. Oyama et al. (Kamiokande), Phys. Rev. Lett. 59 (1987) 2604.

15 - Experiment - Type II - SN1987A - LSD

Correlations between low-energy and high-energy pulses detected by the LSD installation under Mt. Blanc from 10 February 1987 to 1 July 1987, V. L. Dadykin et al., JETP Lett. 56 (1992) 426-429.
Correlations of the low-energy pulses and muons recorded at the Mont Blanc LSD apparatus between 10 February and 1 July 1987, V. L. Dadykin et al., Bull. Russ. Acad. Sci. Phys. 55 (1991) 4129.
Coincidences among the data recorded by the Baksan, Kamioka and Mont Blanc underground neutrino detectors, and by the Maryland and Rome gravitational wave detectors during supernova SN1987A, M. Aglietta et al., Nuovo Cim. C14 (1991) 171-193.
Correlation between the Maryland and Rome gravitational wave detectors and the Mont Blanc, Kamioka and IMB particle detectors during SN1987A, M. Aglietta et al., Nuovo Cim. B106 (1991) 1257-1269.
Neutrino astrophysics and SN1987A, M. Aglietta et al., Nuovo Cim. C13 (1990) 365-374.
NEUTRINO OBSERVATIONS FROM SUPERNOVA SN1987A, P. Galeotti et al., Helv. Phys. Acta 60 (1987) 619-628.

16 - Phenomenology - Type II

Production of Mo and Ru isotopes in neutrino-driven winds: implications for solar abundances and presolar grains, Julia Bliss, Almudena Arcones, Yong-Zhong Qian, arXiv:1804.03947, 2018.
Measuring the supernova unknowns at the next-generation neutrino telescopes through the diffuse neutrino background, Klaes Moller, Anna M. Suliga, Irene Tamborra, Peter B. Denton, arXiv:1804.03157, 2018.
Neutrino Signals of Core-Collapse Supernovae in Underground Detectors, Shaquann Seadrow, Adam Burrows, David Vartanyan, David Radice, M. Aaron Skinner, arXiv:1804.00689, 2018.
Neutrinos from Choked Jets Accompanied by Type-II Supernovae, Hao-Ning He, Alexander Kusenko, Shigehiro Nagataki, Yi-Zhong Fan, Da-Ming Wei, Astrophys.J. 856 (2018) 119, arXiv:1803.07478.
Probing secret interactions of eV-scale sterile neutrinos with the diffuse supernova neutrino background, Yu Seon Jeong, Sergio Palomares-Ruiz, Mary Hall Reno, Ina Sarcevic, arXiv:1803.04541, 2018.
Neutrino flavor transformation in supernova as a probe for nonstandard neutrino-scalar interactions, Yue Yang, James P. Kneller, arXiv:1803.04504, 2018.
Supernova Neutrino Neutrino Astronomy, Vedran Brdar, Manfred Lindner, Xun-Jie Xu, JCAP 1804 (2018) 025, arXiv:1802.02577.
Survey of astrophysical conditions in neutrino-driven supernova ejecta nucleosynthesis, Julia Bliss, Maximilian Witt, Almudena Arcones, Fernando Montes, Jorge Pereira, Astrophys.J. 855 (2018) 135, arXiv:1802.00737.
Neutrino-nucleon scattering in the neutrino-sphere, Paulo F. Bedaque, Sanjay Reddy, Srimoyee Sen, Neill C. Warrington, arXiv:1801.07077, 2018.
PeV neutrinos from wind breakouts of type II supernovae, Zhuo Li, arXiv:1801.04389, 2018.
Impact of Neutrino Opacities in Core-Collapse Supernova Simulations, Kei Kotake, Tomoya Takiwaki, Tobias Fischer, Ko Nakamura, Gabriel Martinez-Pinedo, Astrophys.J. 853 (2018) 170, arXiv:1801.02703.
Role of core-collapse supernovae in explaining Solar System abundances of p nuclides, C. Travaglio, T. Rauscher, A. Heger, M. Pignatari, C. West, arXiv:1801.01929, 2018.
The gravitational wave signal from core-collapse supernovae, Viktoriya Morozova, David Radice, Adam Burrows, David Vartanyan, arXiv:1801.01914, 2018.
Towards a complete reconstruction of supernova neutrino spectra in future large liquid-scintillator detectors, Hui-Ling Li, Yu-Feng Li, Meng Wang, Liang-Jian Wen, Shun Zhou, Phys.Rev. D97 (2018) 063014, arXiv:1712.06985.
What can we learn on supernova neutrino spectra with water Cherenkov detectors?, Andrea Gallo Rosso, Francesco Vissani, Maria Cristina Volpe, JCAP 1804 (2018) 040, arXiv:1712.05584.
Prospects for detecting eV-scale sterile neutrinos from a galactic supernova, Tarso Franarin, Jonathan H. Davis, Malcolm Fairbairn, arXiv:1712.03836, 2017.
Confronting Models of Massive Star Evolution and Explosions with Remnant Mass Measurements, Carolyn A. Raithel, Tuguldur Sukhbold, Feryal Ozel, Astrophys.J. 856 (2018) 35, arXiv:1712.00021.
Robust measurement of supernova $\nu_e$ spectra with future neutrino detectors, Alex Nikrant, Ranjan Laha, Shunsaku Horiuchi, Phys.Rev. D97 (2018) 023019, arXiv:1711.00008.
Intermediate-Mass-Elements in Young Supernova Remnants Reveal Neutron Star Kicks by Asymmetric Explosions, Satoru Katsuda et al., Astrophys.J. 856 (2018) 18, arXiv:1710.10372.
A physical model of mass ejection in failed supernovae, Eric R. Coughlin, Eliot Quataert, Rodrigo Fernandez, Daniel Kasen, arXiv:1710.01746, 2017.
Hydrogen-rich supernovae beyond the neutrino-driven core-collapse paradigm, G. Terreran et al., arXiv:1709.10475, 2017.
On the Possibility to Determine Neutrino Mass Hierarchy via Supernova Neutrinos with Short-Time Characteristics, Junji Jia, Yaoguang Wang, Shun Zhou, arXiv:1709.09453, 2017.
Measuring the Progenitor Mass and Dense Circumstellar Material of Type II Supernovae, Viktoriya Morozova, Anthony L. Piro, Stefano Valenti, arXiv:1709.04928, 2017.
Neutrinos from beta processes in a presupernova: probing the isotopic evolution of a massive star, Kelly M. Patton, Cecilia Lunardini, Robert J. Farmer, F. X. Timmes, Astrophys.J. 851 (2017) 6, arXiv:1709.01877.
Estimating the core compactness of massive stars with Galactic supernova neutrinos, Shunsaku Horiuchi, Ko Nakamura, Tomoya Takiwaki, Kei Kotake, J.Phys. G44 (2017) 114001, arXiv:1708.08513.
Magnetar-powered superluminous supernovae must first be exploded by jets, Noam Soker, Avishai Gilkis, Astrophys.J. 851 (2017) 95, arXiv:1708.08356.
Measuring the neutron star compactness and binding energy with supernova neutrinos, Andrea Gallo Rosso, Francesco Vissani, Maria Cristina Volpe, JCAP 1711 (2017) 036, arXiv:1708.00760.
Explosive nucleosynthesis of ultra-stripped Type Ic supernovae: application to light trans-iron elements, Takashi Yoshida, Yudai Suwa, Hideyuki Umeda, Masaru Shibata, Koh Takahashi, Mon.Not.Roy.Astron.Soc. 471 (2017) 4275, arXiv:1707.02685.
The Neutrino Signal From Pair Instability Supernovae, Warren P. Wright, Matthew S. Gilmer, Carla Frohlich, James P. Kneller, Phys.Rev. D96 (2017) 103008, arXiv:1706.08410.
Diffuse neutrino supernova background as a cosmological test, J. Barranco, Argelia Bernal, D. Delepine, J.Phys. G45 (2018) 055201, arXiv:1706.03834.
Constraining high-energy neutrino emission from choked jets in stripped-envelope supernovae, Nicholas Senno, Kohta Murase, Peter Meszaros, JCAP 1801 (2018) 025, arXiv:1706.02175.
Supernovae in compact star clusters as sources of high-energy cosmic rays and neutrinos, A. M. Bykov, D. C. Ellison, P. E. Gladilin, S. M. Osipov, arXiv:1706.01135, 2017.
Supernova Neutrino in a Strangeon Star Model, Mao Yuan, Jiguang Lu, Zhiliang Yang, Xiaoyu Lai, Renxin Xu, Res.Astron.Astrophys. 17 (2017) 092, arXiv:1705.08188.
Point-source and diffuse high-energy neutrino emission from Type IIn supernovae, Maria Petropoulou, Stefan Coenders, Georgios Vasilopoulos, Atish Kamble, Lorenzo Sironi, Mon.Not.Roy.Astron.Soc. 470 (2017) 1881, arXiv:1705.06752.
Detecting High-Energy Neutrinos from the Next Galactic Supernova, Kohta Murase, Phys.Rev. D97 (2018) 081301, arXiv:1705.04750.
Diffuse neutrinos from luminous and dark supernovae: prospects for upcoming detectors at the O(10) kt scale, Alankrita Priya, Cecilia Lunardini, JCAP 1711 (2017) 031, arXiv:1705.02122.
Neutrino emissions in all flavors up to the pre-bounce of massive stars and the possibility of their detections, Chinami Kato et al., Astrophys.J. 848 (2017) 48, arXiv:1704.05480.
Neutrino intensity interferometry: Measuring proto-neutron star radii during core-collapse supernovae, Warren P. Wright, James P. Kneller, Phys.Rev.Lett. 119 (2017) 051101, arXiv:1704.00010.
The Nickel Mass Distribution of Normal Type II Supernovae, Tomas Muller, Jose L. Prieto, Ondrej Pejcha, Alejandro Clocchiatti, Astrophys.J. 841 (2017) 127, arXiv:1702.00416.
Neutrino fluxes from a core-collapse supernova in a model with three sterile neutrinos, A. V. Yudin, D. K. Nadyozhin, V. V. Khruschov, S. V. Fomichev, Astron. Lett. 42 (2016) 800-814, arXiv:1701.04713.
Charged current neutrino interactions in hot and dense matter, Luke F. Roberts, Sanjay Reddy, Phys.Rev. C95 (2017) 045807, arXiv:1612.02764.
Impact of $(\alpha,n)$ reactions on neutrino-driven wind nucleosynthesis, Julia Bliss, Almudena Arcones, Fernando Montes, Jorge Pereira, J.Phys. G44 (2017) 054003, arXiv:1612.02435.
Nuclear pasta and supernova neutrinos at late times, C. J. Horowitz et al., arXiv:1611.10226, 2016.
Evidence from stable isotopes and Be-10 for solar system formation triggered by a low-mass supernova, Projjwal Banerjee, Yong-Zhong Qian, Alexander Heger, W. C. Haxton, Nature Commun. 7 (2016) 3639, arXiv:1611.07162.
Neutrino-nucleon scattering in supernova matter from the virial expansion, C.J. Horowitz, O. L. Caballero, Zidu Lin, Evan O'Connor, A. Schwenk, Phys. Rev. C95 (2017) 025801, arXiv:1611.05140.
Background Study on Supernova Relic Neutrinos Search in SuperK-Gd, Yang Zhang, arXiv:1610.09457, 2016.
Impact of new data for neutron-rich heavy nuclei on theoretical models for $r$-process nucleosynthesis, Toshitaka Kajino, Grant J. Mathews, Rept.Prog.Phys. 80 (2017) 084901, arXiv:1610.07929.
Inferring the core-collapse supernova explosion mechanism with gravitational waves, Jade Powell, Sarah Gossan, Joshua Logue, Ik Siong Heng, Phys. Rev. D94 (2016) 123012, arXiv:1610.05573.
Supernova Constraints on Massive (Pseudo)Scalar Coupling to Neutrinos, Lucien Heurtier, Yongchao Zhang, JCAP 1702 (2017) 042, arXiv:1609.05882.
Impact of Nucleon-Nucleon Bremsstrahlung Rates Beyond One-Pion Exchange, Alexander Bartl, Robert Bollig, Hans-Thomas Janka, Achim Schwenk, Phys. Rev. D94 (2016) 083009, arXiv:1608.05037.
Detecting supernova neutrinos with iron and lead detectors, Abhijit Bandyopadhyay, Pijushpani Bhattacharjee, Sovan Chakraborty, Kamales Kar, Satyajit Saha, Phys.Rev. D95 (2017) 065022, arXiv:1607.05591.
Detecting supernovae neutrino with Earth matter effect, Wei Liao, Phys. Rev. D94 (2016) 113016, arXiv:1607.03334.
Supernova neutrino physics with xenon dark matter detectors: A timely perspective, Rafael F. Lang, Christopher McCabe, Shayne Reichard, Marco Selvi, Irene Tamborra, Phys. Rev. D94 (2016) 103009, arXiv:1606.09243.
Presupernova neutrino events relating to the final evolution of massive stars, Takashi Yoshida, Ko Takahashi, Hideyuki Umeda, Koji Ishidoshiro, Phys. Rev. D93 (2016) 123012, arXiv:1606.04915.
Probing axions with the neutrino signal from the next galactic supernova, Tobias Fischer et al., Phys. Rev. D94 (2016) 085012, arXiv:1605.08780.
Getting the Most from Detection of Galactic Supernova Neutrinos in Future Large Scintillator Detectors, Jia-Shu Lu, Yu-Feng Li, Shun Zhou, Phys. Rev. D94 (2016) 023006, arXiv:1605.07803.
Supernova energy measurement with longitudinal gravitational memory effect, Darsh Kodwani, Ue-Li Pen, I-Sheng Yang, arXiv:1605.05399, 2016.
Non-Standard Neutrino Interactions in Supernovae, Charles J. Stapleford, Daavid J. Vaananen, James P. Kneller, Gail C. McLaughlin, Brandon T. Shapiro, Phys. Rev. D94 (2016) 093007, arXiv:1605.04903.
Neutrinos from Type Ia Supernovae I: The Deflagration-To-Detonation Transition Scenario, Warren P. Wright, Gautam Nagaraj, James P. Kneller, Kate Scholberg, Ivo R. Seitenzahl, Phys. Rev. D94 (2016) 025026, arXiv:1605.01408.
Production of keV Sterile Neutrinos in Supernovae: New Constraints and Gamma Ray Observables, Carlos A. Arguelles, Vedran Brdar, Joachim Kopp, arXiv:1605.00654, 2016.
How well can new particles interacting with neutrinos be constrained after a galactic supernova?, Jonathan H. Davis, arXiv:1605.00011, 2016.
Determination of the Neutron-Capture Rate of 17C for the R-process Nucleosynthesis, M. Heine et al., Phys. Rev. C95 (2017) 014613, arXiv:1604.05832.
Sterile neutrino dark matter and core-collapse supernovae, Grant J. Mathews, MacKenzie Warren, Jun Hidaka, Toshitaka Kajino, arXiv:1604.02431, 2016.
Solar r-process-constrained actinide production in neutrino-driven winds of supernovae, S. Goriely, H. -Th. Janka, Mon.Not.Roy.Astron.Soc. 459 (2016) 4174-4182, arXiv:1603.04282.
Neutral Current Coherent Cross Sections - Implications on Gaseous Spherical TPC's for detecting SN and Earth neutrinos, J. D. Vergados, Y. Giomataris, Int.J.Mod.Phys. E26 (2017) 1740030, arXiv:1603.03966.
Probing Neutrino Mass Hierarchy by Comparing the Charged-Current and Neutral-Current Interaction Rates of Supernova Neutrinos, Kwang-Chang Lai et al., JCAP 1607 (2016) 039, arXiv:1603.00692.
Multi-messenger signals of long-term core-collapse supernova simulations : synergetic observation strategies, Ko Nakamura, Shunsaku Horiuchi, Masaomi Tanaka, Kazuhiro Hayama, Tomoya Takiwaki, Kei Kotake, Mon.Not.Roy.Astron.Soc. 461 (2016) 3296-3313, arXiv:1602.03028.
Pulsar Acceleration Shifts from nearby Supernova Explosion, Darsh Kodwani, Ue-Li Pen, I-Sheng Yang, Phys. Rev. D93 (2016) 103006, arXiv:1601.03917.
Observing Gravitational Waves from Core-Collapse Supernovae in the Advanced Detector Era, S. E. Gossan et al., Phys. Rev. D93 (2016) 042002, arXiv:1511.02836.
Presupernova neutrinos: realistic emissivities from stellar evolution, Kelly M. Patton, Cecilia Lunardini, Astrophys.J. 840 (2017) 2, arXiv:1511.02820.
Supernova neutrino detection at spallation neutron sources, Huang Ming-Yang, Guo Xin-Heng, Young Bing-Lin, Chin.Phys. C40 (2016) 073102, arXiv:1511.00806.
Detecting the Supernova Breakout Burst in Terrestrial Neutrino Detectors, Joshua Wallace, Adam Burrows, Joshua C. Dolence, Astrophys. J. 817 (2016) 182, arXiv:1510.01338.
Nucleosynthesis of molybdenum in neutrino-driven winds, Julia Bliss, Almudena Arcones, arXiv:1509.07621, 2015.
The progenitors of core-collapse supernovae suggest thermonuclear origin for the explosions, Doron Kushnir, arXiv:1506.02655, 2015.
Pre-supernova neutrino emissions from ONe cores in the progenitors of core-collapse supernovae: are they distinguishable from those of Fe cores?, Chinami Kato, Milad Delfan Azari, Shoichi Yamada, Koh Takahashi, Hideyuki Umeda et al., Astrophys. J. 808 (2015) 168, arXiv:1506.02358.
Constraints on explosive silicon burning in core-collapse supernovae from measured Ni/Fe ratios, A. Jerkstrand et al., arXiv:1505.05323, 2015.
Relative contributions of the weak, main and fission-recycling r-process, S. Shibagaki et al., Astrophys. J. 816 (2016) 79, arXiv:1505.02257.
Neutrino Nucleosynthesis of radioactive nuclei in supernovae, A. Sieverding, L. Huther, K. Langanke, G. Martinez-Pinedo, A. Heger, arXiv:1505.01082, 2015.
Prompt directional detection of galactic supernova by combining large liquid scintillator neutrino detectors, V. Fischer et al., arXiv:1504.05466, 2015.
Spallation Backgrounds in Super-Kamiokande Are Made in Muon-Induced Showers, Shirley Weishi Li, John F. Beacom, Phys. Rev. D91 (2015) 105005, arXiv:1503.04823.
Spectrum of the Supernova Relic Neutrino Background and Metallicity Evolution of Galaxies, Ken'ichiro Nakazato, Eri Mochida, Yuu Niino, Hideyuki Suzuki, Astrophys.J. 804 (2015) 75, arXiv:1503.01236.
Diffuse neutrinos from extragalactic supernova remnants: Dominating the 100 TeV IceCube flux, Sovan Chakraborty, Ignacio Izaguirre, Phys.Lett. B745 (2015) 35-39, arXiv:1501.02615.
Boundaries on Neutrino Mass from Supernovae Neutronization Burst by Liquid Argon Experiments, F. Rossi-Torres, M. M. Guzzo, E. Kemp, arXiv:1501.00456, 2015.
Effects of neutrino oscillations on nucleosynthesis and neutrino signals for an 18 M supernova model, Meng-Ru Wu, Yong-Zhong Qian, Gabriel Martinez-Pinedo, Tobias Fischer, Lutz Huther, Phys. Rev. D91 (2015) 065016, arXiv:1412.8587.
New Power to Measure Supernova $\nu_e$ with Large Liquid Scintillator Detectors, Ranjan Laha, John F. Beacom, Sanjib Kumar Agarwalla, arXiv:1412.8425, 2014.
Constraining Absolute Neutrino Masses via Detection of Galactic Supernova Neutrinos at JUNO, Jia-Shu Lu, Jun Cao, Yu-Feng Li, Shun Zhou, JCAP 05 (2015) 044, arXiv:1412.7418.
Observational Signatures of SNIa Progenitors, as Predicted by Models, Yael Hillman, Dina Prialnik, Attay Kovetz, Michael M. Shara, arXiv:1411.0382, 2014.
Supernova neutrinos and the turbulence power spectrum: point source statistics, James P. Kneller, Neel V. Kabadi, Phys. Rev. D92 (2015) 013009, arXiv:1410.5698.
Probing Rotation of Core-collapse Supernova with Concurrent Analysis of Gravitational Waves and Neutrinos, Takaaki Yokozawa, Mitsuhiro Asano, Tsubasa Kayano, Yudai Suwa, Nobuyuki Kanda et al., Astrophys. J. 811 (2015) 86, arXiv:1410.2050.
Neutrino viscosity and drag: impact on the magnetorotational instability in proto-neutron stars, Jerome Guilet, Ewald Mueller, Hans-Thomas Janka, Mon.Not.Roy.Astron.Soc. 447 (2015) 3992, arXiv:1410.1874.
Detecting the Diffuse Supernova Neutrino Background with LENA, Randolph Mollenberg et al., Phys. Rev. D91 (2015) 032005, arXiv:1409.2240.
The Landscape of the Neutrino Mechanism of Core-Collapse Supernovae: Neutron Star and Black Hole Mass Functions, Explosion Energies and Nickel Yields, Ondrej Pejcha, Todd A. Thompson, Astrophys.J. 801 (2015) 90, arXiv:1409.0540.
Study of Gamow-Teller transitions in isotopes of titanium within the quasi particle random phase approximation, Sadiye Cakmak, Jameel-Un Nabi, Tahsin Babacan, Cevad Selam, Astrophys.Space Sci. 352 (2014) 645-663, arXiv:1408.4886.
How many nucleosynthesis processes exist at low metallicity?, C. J. Hansen, F. Montes, A. Arcones, Astrophys. J. 797 (2014) 123, arXiv:1408.4135.
Bayesian parameter estimation of core collapse supernovae using gravitational wave simulations, Matthew C. Edwards, Renate Meyer, Nelson Christensen, Inverse Prob. 30 (2014) 114008, arXiv:1407.7549.
Resolving neutrino mass hierarchy from supernova (anti)neutrino-nucleus reactions, Deni Vale, Nils Paar, AIP Conf. Proc. 1681 (2015) 050011, arXiv:1406.2584.
Neutrino emission characteristics and detection opportunities based on three-dimensional supernova simulations, Irene Tamborra, Georg Raffelt, Florian Hanke, Hans-Thomas Janka, Bernhard Mueller, Phys. Rev. D90 (2014) 045032, arXiv:1406.0006.
Supernova Relic Neutrinos and the Supernova Rate Problem: Analysis of Uncertainties and Detectability of ONeMg and Failed Supernovae, Grant J. Mathews, Jun Hidaka, Toshitaka Kajino, Jyutaro Suzuki, Astrophys.J. 790 (2014) 115, arXiv:1405.0458.
Spectrum of Supernova Neutrinos in Ultra-pure Scintillators, C. Lujan-Peschard, G. Pagliaroli, F. Vissani, JCAP 1407 (2014) 051, arXiv:1402.6953.
r-Java 2.0: the astrophysics, M. Kostka, N. Koning, Z. Shand, R. Ouyed, P. Jaikumar, arXiv:1402.3824, 2014.
Impact of sterile neutrinos on the early time flux from a galactic supernova, Arman Esmaili, O. L. G. Peres, Pasquale Dario Serpico, Phys. Rev. D90 (2014) 033013, arXiv:1402.1453.
Dips in the Diffuse Supernova Neutrino Background, Yasaman Farzan, Sergio Palomares-Ruiz, JCAP 1406 (2014) 014, arXiv:1401.7019.
Signatures of the neutrino mass hierarchy in supernova neutrinos, S. H. Chiu, Chu-Ching Huang, Kwang-Chang Lai, PTEP 2015 (2013) 063, arXiv:1312.4262.
Supernova Bounds on Weinberg's Goldstone Bosons, Wai-Yee Keung, Kin-Wang Ng, Huitzu Tu, Tzu-Chiang Yuan, Phys. Rev. D90 (2014) 075014, arXiv:1312.3488.
Nucleosynthesis of elements between Sr and Ag in neutron- and proton-rich neutrino-driven winds, A. Arcones, J. Bliss, J. Phys. G41 (2014) 044005, arXiv:1312.0434.
Gadolinium in water Cherenkov detectors improves detection of supernova $\nu_e$, Ranjan Laha, John F. Beacom, Phys. Rev. D89 (2014) 063007, arXiv:1311.6407.
Measuring the Angular Momentum Distribution in Core-Collapse Supernova Progenitors with Gravitational Waves, Ernazar Abdikamalov, Sarah Gossan, Alexandra M. DeMaio, Christian D. Ott, Phys. Rev. D90 (2014) 044001, arXiv:1311.3678.
Supernova neutrinos and nucleosynthesis, G. Martinez-Pinedo, T. Fischer, L. Huther, J. Phys. G41 (2014) 044008, arXiv:1309.5477.
Observing supernova neutrino light curve in future dark matter detectors, Sovan Chakraborty, Pijushpani Bhattacharjee, Kamales Kar, Phys. Rev. D89 (2014) 013011, arXiv:1309.4492.
How to see an antistar, A.D. Dolgov, V.A. Novikov, M.I. Vysotsky, JETP Lett. 98 (2013) 519-522, arXiv:1309.2746.
Neutrino-induced nucleosynthesis as a result of mixing between the He and C-O-Ne shells in core-collapse supernova, D.K. Nadyozhin, I.V. Panov, Mon.Not.Roy.Astron.Soc. 441 (2014) 733, arXiv:1308.4710.
Imprint of Explosion Mechanism on Supernova Relic Neutrinos, Ken'ichiro Nakazato, Phys. Rev. D88 (2013) 083012, arXiv:1306.4526.
Observing the Next Galactic Supernova, Scott M. Adams, C. S. Kochanek, John F. Beacom, Mark R. Vagins, K. Z. Stanek, Astrophys.J. 778 (2013) 164, arXiv:1306.0559.
Natal Kicks of Stellar-Mass Black Holes by Asymmetric Mass Ejection in Fallback Supernovae, H.-Thomas Janka, Mon.Not.Roy.Astron.Soc. 434 (2013) 1355, arXiv:1306.0007.
Supernova Explosions of Super-Asymptotic Giant Branch Stars: Multicolor Light Curves of Electron-Capture Supernovae, Nozomu Tominaga, Sergei I. Blinnikov, Ken'ichi Nomoto, Astrophys.J. 771 (2013) L12, arXiv:1305.6813.
Detectability of gravitational effects of supernova neutrino emission through pulsar timing, Ken D. Olum, Evan Pierce, Phys. Rev. D88 (2013) 043005, arXiv:1305.3881.
Are Light Sterile Neutrinos Consistent with Supernova Explosions?, Meng-Ru Wu, Tobias Fischer, Gabriel Martinez-Pinedo, Yong-Zhong Qian, Phys. Rev. D89 (2014) 061303, arXiv:1305.2382.
Nucleosynthesis in the accretion disks of Type II collapsars, Indrani Banerjee, Banibrata Mukhopadhyay, RAA 13 (2013) 1063-1074, arXiv:1305.1755.
The r-process in proto-neutron-star wind revisited, Shinya Wanajo, Astrophys.J. 770 (2013) L22, arXiv:1305.0371.
Revisiting the Triangulation Method for Pointing to Supernova and Failed Supernova with Neutrinos, T. Muhlbeier, H. Nunokawa, R. Zukanovich Funchal, Phys. Rev. D88 (2013) 085010, arXiv:1304.5006.
Detecting extra-galactic supernova neutrinos in the Antarctic ice, Sebastian Boser, Marek Kowalski, Lukas Schulte, Nora Linn Strotjohann, Markus Voge, Astropart.Phys. 62 (2015) 54-65, arXiv:1304.2553.
Could a reported 2007 analysis of Super-Kamiokande data have missed a detectable supernova signal from Andromeda?, Robert Ehrlich, ISRN High Energy Phys. 2014 (2014) 408508, arXiv:1301.3390.
Testing Lorentz Invariance with neutrino burst from supernova neutronization, Sovan Chakraborty, Alessandro Mirizzi, Gunter Sigl, Phys. Rev. D87 (2013) 017302, arXiv:1211.7069.
Tomography of Massive Stars from Core Collapse to Supernova Shock Breakout, Matthew D. Kistler, Wick C. Haxton, Hasan Yuksel, Astrophys. J. 778 (2013) 81, arXiv:1211.6770.
Neutrino-Induced Production of 9Be in Core-Collapse Supernovae, P. Banerjee, Y.-Z. Qian, W. C. Haxton, A. Heger, Phys. Rev. Lett. 110 (2013) 141101, arXiv:1211.5860.
High-resolution supernova neutrino spectra represented by a simple fit, Irene Tamborra, Bernhard Mueller, Lorenz Huedepohl, Hans-Thomas Janka, Georg Raffelt, Phys. Rev. D86 (2012) 125031, arXiv:1211.3920.
High energy neutrino and gamma ray transients from relativistic supernova shock breakouts, Kazumi Kashiyama, Kohta Murase, Shunsaku Horiuchi, Shan Gao, Peter Meszaros, Astrophys.J. 769 (2013) L6, arXiv:1210.8147.
Fast time variations of supernova neutrino signals from 3-dimensional models, Tina Lund, Annop Wongwathanarat, Hans-Thomas Janka, Ewald Muller, Georg Raffelt, Phys. Rev. D86 (2012) 105031, arXiv:1208.0043.
Neutrino-driven wind simulations and nucleosynthesis of heavy elements, A. Arcones, F.-K. Thielemann, J. Phys. G40 (2013) 013201, arXiv:1207.2527.
On the Importance of the Equation of State for the Neutrino-Driven Supernova Explosion Mechanism, Yudai Suwa et al., Astrophys. J. 764 (2013) 99, arXiv:1206.6101.
The Dependence of the Neutrino Mechanism of Core-Collapse Supernovae on the Equation of State, Sean M. Couch, Astrophys.J. 765 (2013) 29, arXiv:1206.4724.
Probing the Structure of Jet Driven Core-Collapse Supernova and Long Gamma Ray Burst Progenitors with High Energy Neutrinos, Imre Bartos, Basudeb Dasgupta, Szabolcs Marka, Phys. Rev. D86 (2012) 083007, arXiv:1206.0764.
Neutrinos decoupled from $beta$-processes and supernova explosion, R. Mohammadi, Remo Ruffini, She-Sheng Xue, arXiv:1206.0431, 2012.
Charged-current weak interaction processes in hot and dense matter and its impact on the spectra of neutrinos emitted from proto-neutron star cooling, G. Martinez-Pinedo, T. Fischer, A. Lohs, L. Huther, Phys. Rev. Lett. 109 (2012) 251104, arXiv:1205.2793.
Multimessengers from core-collapse supernovae: multidimensionality as a key to bridge theory and observation, Kei Kotake et al., Adv. Astron. 2012 (2012) 428757, arXiv:1204.2330.
R-process Nucleosynthesis during the Magnetohydrodynamics Explosions of a Massive Star, Motoaki Saruwatari, Masa-aki Hashimoto, Kei Kotake, Shoichi Yamada, arXiv:1204.1655, 2012.
Correlated Gravitational Wave and Neutrino Signals from General-Relativistic Rapidly Rotating Iron Core Collapse, C. D. Ott et al., Phys. Rev. D86 (2012) 024026, arXiv:1204.0512.
Magneto-rotationally driven Supernovae as the origin of early galaxy r-process elements?, Christian Winteler et al., Astrophys.J. 750 (2012) L22, arXiv:1203.0616.
Inferring Core-Collapse Supernova Physics with Gravitational Waves, J. Logue, C.D. Ott, I.S. Heng, P. Kalmus, J. Scargill, Phys. Rev. D86 (2012) 044023, arXiv:1202.3256.
Prospective Constraints on Neutrino Masses from a Core-Collapse Supernova, John Ellis, Hans-Thomas Janka, Nikolaos E. Mavromatos, Alexander S. Sakharov, Edward K. G. Sarkisyan, Phys. Rev. D85 (2012) 105028, arXiv:1202.0248.
Nucleosynthesis in core-collapse supernova explosions triggered by a quark-hadron phase transition, Nobuya Nishimura et al., Astrophys. J. 758 (2012) 9, arXiv:1112.5684.
Impact of supernova dynamics on the nup-process, A. Arcones, C. Frohlich, G. Martinez-Pinedo, Astrophys. J. 750 (2012) 18, arXiv:1112.4651.
Possible trace of neutrino nonstandard interactions in the supernova, C.R. Das, Joao Pulido, J. Phys. Conf. Ser. 375 (2012) 042040, arXiv:1111.6939. TAUP 2011, Munich, September 2011.
Study of Supernova nu-Nucleus Coherent Scattering Interactions, Carlos Martinez Amaya, Matteo Biassoni, Astropart.Phys. 36 (2012) 151-155, arXiv:1110.3536.
Supernova neutrino signals by liquid Argon detector and neutrino magnetic moment, Takashi Yoshida et al., Phys. Lett. B704 (2011) 108-112, arXiv:1109.2667.
Neutrino induced reactions related to the $\nu$-process nucleosynthesis of ${}^{92}$Nb and ${}^{98}$Tc, Myung-Ki Cheoun et al., Phys. Rev. C85 (2012) 065807, arXiv:1108.4229.
Evolution of Fluorine Abundances with the nu-Process, Chiaki Kobayashi et al., Astrophys.J. 739 (2011) L57, arXiv:1108.3030.
Preference for an Inverted Neutrino Mass Hierarchy from nu-Process Nucleosynthesis with Finite $\theta_{13}$ Mixing, G. J. Mathews, T. Kajino, W. Aoki, W. Fujiya, Phys. Rev. D85 (2012) 105023, arXiv:1108.0725.
The r-process in the neutrino-driven wind from a black-hole torus, Shinya Wanajo, Hans-Thomas Janka, Astrophys. J. 746 (2012) 180, arXiv:1106.6142.
Neutrino nonstandard interactions in the supernova, C.R. Das, Joao Pulido, Phys. Rev. D84 (2011) 105040, arXiv:1106.4268.
Explosive nucleosynthesis in the neutrino-driven aspherical supernova explosion of a non-rotating 15$M_{\odot}$ star with solar metallicity, Shin-ichiro Fujimoto, Kei Kotake, Masa-aki Hashimoto, Masaomi Ono, Naofumi Ohnishi, Astrophys. J. 738 (2011) 61, arXiv:1106.2606.
Multi-messenger observations of neutron rich matter, C. J. Horowitz, Int.J.Mod.Phys. E20 (2011) 1, arXiv:1106.1661.
Neutrino Spectra from Accretion Disks: Neutrino General Relativistic Effects and the Consequences for Nucleosynthesis, O.L Caballero, G.C. McLaughlin, R. Surman, Astrophys. J. 745 (2012) 170, arXiv:1105.6371.
Effect of collective neutrino flavor oscillations on vp-process nucleosynthesis, G. Martinez-Pinedo, B. Ziebarth, T. Fischer, K. Langanke, Eur. Phys. J. A47 (2011) 98, arXiv:1105.5304.
Revealing local failed supernovae with neutrino telescopes, Lili Yang, Cecilia Lunardini, Phys. Rev. D84 (2011) 063002, arXiv:1103.4628.
Reconstruction of supernova mu/tau-neutrino spectra at scintillator detectors, Basudeb Dasgupta, John. F. Beacom, Phys. Rev. D83 (2011) 113006, arXiv:1103.2768.
A Long, Cold, Early r-process? Neutrino-induced Nucleosynthesis in He Shells Revisited, P. Banerjee, W. C. Haxton, Y. -Z. Qian, Phys. Rev. Lett. 106 (2011) 201104, arXiv:1103.1193.
Supernova bound on keV-mass sterile neutrinos reexamined, Georg G. Raffelt, Shun Zhou, Phys. Rev. D83 (2011) 093014, arXiv:1102.5124.
11B and Constraints on Neutrino Oscillations and Spectra from Neutrino Nucleosynthesis, Sam M. Austin, Alex Heger, Clarisse Tur, Phys. Rev. Lett. 106 (2011) 152501, arXiv:1102.4858.
The Cosmic Core-collapse Supernova Rate does not match the Massive-Star Formation Rate, Shunsaku Horiuchi et al., Astrophys. J. 738 (2011) 154-169, arXiv:1102.1977.
The diffuse supernova neutrino background: Expectations and uncertainties derived from SN1987A, Francesco Vissani, Giulia Pagliaroli, Astronomy & Astrophy OPHYSICS (2011) L1, arXiv:1102.0447.
Evaluating nuclear physics inputs in core-collapse supernova models, Eric J. Lentz, W. Raphael Hix, Mark L. Baird, O. E. Bronson Messer, Anthony Mezzacappa, arXiv:1101.0156, 2011. 5 pages, 2 figures, presented at Nuclei in the Cosmos XI, Heidelberg, Germany.
Reanalysis of the (J = 5) state at 592 keV in 180Ta and its role in the neutrino-process nucleosynthesis of 180Ta in supernovae, T. Hayakawa, P. Mohr, T. Kajino, S. Chiba, G. J. Mathews, Phys. Rev. C82 (2010) 058801, arXiv:1012.5701.
New estimate for the time-dependent thermal nucleosynthesis of $^{180}$Ta$^m$, T. Hayakawa, T. Kajino, S. Chiba, G. J. Mathews, Phys. Rev. C81 (2010) 052801, arXiv:1012.5700.
Black Hole Formation in Failing Core-Collapse Supernovae, Evan O'Connor, Christian D. Ott, Astrophys. J. 730 (2011) 70, arXiv:1010.5550.
mu- > e gamma decay versus mu- > eee bound and lepton flavor violating processes in supernova, Oleg Lychkovskiy, Mikhail Vysotsky, J. Exp. Theor. Phys. 114 (2012) 382-391, arXiv:1010.1694.
Cooling rates of neutron stars and the young neutron star in the Cassiopeia A supernova remnant, Dmitry G. Yakovlev, Wynn C. G. Ho, Peter S. Shternin, Craig O. Heinke, Alexander Y. Potekhin, Mon. Not. Roy. Astron. Soc. 411 (2011) 1977-1988, arXiv:1010.1154.
Theoretical Support for the Hydrodynamic Mechanism of Pulsar Kicks, J. Nordhaus, T. D. Brandt, A. Burrows, E. Livne, C. D. Ott, Phys. Rev. D82 (2010) 103016, arXiv:1010.0674.
Probing Exotic Physics With Supernova Neutrinos, Chris Kelso, Dan Hooper, arXiv:1009.5996, 2010.
The Ubiquity of the Rapid Neutron-Capture Process, I.U. Roederer et al., Astrophys. J. 724 (2010) 975-993, arXiv:1009.4496.
Neutrino reactions via neutral and charged current by Quasi-particle Random Phase Approximation(QRPA), Myung-Ki Cheoun, Eunja Ha, K. S. Kim, Toshitaka Kajino, J. Phys. G37 (2010) 055101, arXiv:1009.3082.
Neutrino reactions on $^{138}$La and $^{180}$Ta via charged and neutral currents by the Quasi-particle Random Phase Approximation (QRPA), Myung-Ki Cheoun, Eunja Ha, T. Hayakawa, Toshitaka Kajino, Satoshi Chiba, Phys. Rev. C82 (2010) 035504, arXiv:1009.3079.
Statistical description of complex nuclear phases in supernovae and proto-neutron stars, Ad. R. Raduta, F. Gulminelli, Phys. Rev. C82 (2010) 065801, arXiv:1009.2226.
Boron Synthesis in Type Ic Supernovae, Ko Nakamura, Takashi Yoshida, Toshikazu Shigeyama, Toshitaka Kajino, Astrophys.J. 718 (2010) L137, arXiv:1007.0212.
Fast time variations of supernova neutrino fluxes and their detectability, Tina Lund, Andreas Marek, Cecilia Lunardini, Hans-Thomas Janka, Georg Raffelt, Phys. Rev. D82 (2010) 063007, arXiv:1006.1889.
Probing thermonuclear supernova explosions with neutrinos, A. Odrzywolek, T. Plewa, Astron.Astrophys. 529 (2011) A156, arXiv:1006.0490.
Gravitational Waves from Core Collapse Supernovae, Konstantin N Yakunin et al., Class. Quant. Grav. 27 (2010) 194005, arXiv:1005.0779.
Uncertainties in the nu p-process: supernova dynamics versus nuclear physics, Shinya Wanajo, Hans-Thomas Janka, Shigeru Kubono, Astrophys. J. 729 (2011) 46, arXiv:1004.4487.
Gravitational-Wave Signatures in Magnetically-driven Supernova Explosions, Tomoya Takiwaki, Kei Kotake, Astrophys. J. 743 (2011) 30, arXiv:1004.2896.
Searching for prompt signatures of nearby core-collapse supernovae by a joint analysis of neutrino and gravitational-wave data, I. Leonor et al., Class. Quant. Grav. 27 (2010) 084019, arXiv:1002.1511.
Multiflavor and multiband observations of neutrinos from core collapse supernovae, Ignacio Taboada, Phys. Rev. D81 (2010) 083011, arXiv:1002.0593.
Impact of Quarks and Pions on Dynamics and Neutrino Signal of Black Hole Formation in Non-rotating Stellar Core Collapse, Ken'ichiro Nakazato, Kohsuke Sumiyoshi, Shoichi Yamada, Astrophys. J. 721 (2010) 1284-1294, arXiv:1001.5084.
Supernovae and the Chirality of the Amino Acids, R.N. Boyd, T. Kajino, T. Onaka, Astrobiology 10 (2010) 561, arXiv:1001.3849.
Synoptic Sky Surveys and the Diffuse Supernova Neutrino Background: Removing Astrophysical Uncertainties and Revealing Invisible Supernovae, Amy Lien, Brian D. Fields, John F. Beacom, Phys. Rev. D81 (2010) 083001, arXiv:1001.3678.
The influence of model parameters on the prediction of gravitational wave signals from stellar core collapse, S. Scheidegger, R. Kaeppeli, S. C. Whitehouse, T. Fischer, M. Liebendoerfer, Astron.Astrophys. 514 (2010) A51, arXiv:1001.1570.
Detecting the QCD phase transition in the next Galactic supernova neutrino burst, Basudeb Dasgupta et al., Phys. Rev. D81 (2010) 103005, arXiv:0912.2568.
Ray-Tracing Analysis of Anisotropic Neutrino Radiation for Estimating Gravitational Waves in Core-Collapse Supernovae, Kei Kotake, Wakana Iwakami, Naofumi Ohnishi, Shoichi Yamada, Astrophys. J. 704 (2009) 951-963, arXiv:0909.3622.
Reconstructing the supernova bounce time with neutrinos in IceCube, Francis Halzen, Georg G. Raffelt, Phys. Rev. D80 (2009) 087301, arXiv:0908.2317.
Reexamination of a Bound on the Dirac Neutrino Magnetic Moment from the Supernova Neutrino Luminosity, A.V. Kuznetsov, N.V. Mikheev, A. A. Okrugin, Int. J. Mod. Phys. A24 (2009) 5977-5989, arXiv:0907.2905.
Shockwaves in Supernovae: New Implications on the Diffuse Supernova Neutrino Background, Sebastien Galais, James Kneller, Cristina Volpe, Jerome Gava, Phys. Rev. D81 (2010) 053002, arXiv:0906.5294.
Neutrino deuteron reaction in the heating mechanism of core-collapse supernovae, S. X. Nakamura, K. Sumiyoshi, T. Sato, Phys. Rev. C80 (2009) 035802, arXiv:0906.0856.
Spin flip of neutrinos with magnetic moment in core-collapse supernova, Oleg Lychkovskiy, Sergei Blinnikov, Phys.Atom.Nucl. 73 (2010) 614-624, arXiv:0905.3658.
Fingerprints of a Local Supernova, Oliver Manuel, Hilton Ratcliffe, arXiv:0905.0684, 2009.
Dirac-Neutrino Magnetic Moment and the Dynamics of a Supernova Explosion, A. V. Kuznetsov, N. V. Mikheev, A. A. Okrugin, JETP Lett. 89 (2009) 97-101, arXiv:0903.2321.
Neutrinos from Supernovae as a Trigger for Gravitational Wave Search, G. Pagliaroli, F. Vissani, E. Coccia, W. Fulgione, Phys. Rev. Lett. 103 (2009) 031102, arXiv:0903.1191.
Mimicking diffuse supernova antineutrinos with the Sun as a source, Georg Raffelt, Timur Rashba, Phys. Atom. Nucl. 73 (2010) 609-613, arXiv:0902.4832.
Comment on '138La-138Ce-136Ce nuclear cosmochronometer of the supernova neutrino process', P. von Neumann-Cosel, A. Richter, A. Byelikov, Phys. Rev. C79 (2009) 059801, arXiv:0902.1844.
Estimating the Explosion Time of Core-Collapse Supernovae from Their Optical Light Curves, D.F. Cowen, A. Franckowiak, M. Kowalski, Astropart. Phys. 33 (2010) 19-23, arXiv:0901.4877.
138La-138Ce-136Ce nuclear cosmochronometer of supernova neutrino process, Takehito Hayakawa, Toshiyuki Shizuma, Toshitaka Kajino, Kengo Ogawa, Hitoshi Nakada, Phys. Rev. C77 (2008) 065802, arXiv:0901.3593.
An 'archaeological' quest for galactic supernova neutrinos, Rimantas Lazauskas, Cecilia Lunardini, Cristina Volpe, JCAP 0904 (2009) 029, arXiv:0901.0581.
Diffuse neutrino flux from failed supernovae, Cecilia Lunardini, Phys. Rev. Lett. 102 (2009) 231101, arXiv:0901.0568.
The Diffuse Supernova Neutrino Background is detectable in Super-Kamiokande, Shunsaku Horiuchi, John F. Beacom, Eli Dwek, Phys. Rev. D79 (2009) 083013, arXiv:0812.3157.
Applying Bayesian Neural Network to Determine Neutrino Incoming Direction in Reactor Neutrino Experiments and Supernova Explosion Location by Scintillator Detectors, Weiwei Xu, Ye Xu, Yixiong Meng, Bin Wu, JINST 4 (2009) P01002, arXiv:0812.2713.
Core-Collapse Astrophysics with a Five-Megaton Neutrino Detector, Matthew D. Kistler, Hasan Yuksel, Shin'ichiro Ando, John F. Beacom, Yoichiro Suzuki, Phys. Rev. D83 (2011) 123008, arXiv:0810.1959.
Neutrino mass spectrum from gravitational waves generated by double neutrino spin-flip in supernovae, Herman J. Mosquera Cuesta, Gaetano Lambiase, Astrophys.J. 689 (2008) 371, arXiv:0809.0526.
How precisely neutrino emission from supernova remnants can be constrained by gamma ray observations?, F.L. Villante, F. Vissani, Phys. Rev. D78 (2008) 103007, arXiv:0807.4151.
Neutrino-Nucleus Reaction Cross Sections for Light Element Synthesis in Supernova Explosions, T. Yoshida et al., Astrophys.J. 686 (2008) 448-466, arXiv:0807.2723.
Nonthermal neutrinos from supernovae leaving a magnetar, Shunsaku Horiuchi, Yudai Suwa, Hajime Takami, Shin'ichiro Ando, Katsuhiko Sato, Mon.Not.Roy.Astron.Soc. 391 (2008) 1893, arXiv:0807.0267.
Eosphoric sterile neutrinos, supernovae, and the galactic positrons, George M. Fuller, Alexander Kusenko, Kalliopi Petraki, Phys. Lett. B670 (2009) 281-284, arXiv:0806.4273.
Upper limits on the diffuse supernova neutrino flux from the SuperKamiokande data, Cecilia Lunardini, Orlando L. G. Peres, JCAP 0808 (2008) 033, arXiv:0805.4225.
Probing protoneutron star density profile from neutrino signals, M. Baldo, V. Palmisano, Phys. Rev. C78 (2008) 015807, arXiv:0804.3247.
Dirac neutrino magnetic moment and the shock wave revival in a supernova explosion, A.V. Kuznetsov, N.V. Mikheev, A. A. Okrugin, Phys. Atom. Nucl. 71 (2008) 2165-2168, arXiv:0804.1916.
Neutrino magnetic moment signatures in the supernova neutrino signal, Oleg Lychkovskiy, arXiv:0804.1005, 2008.
Astrophysical Implications of Equation of State for Hadron-Quark Mixed Phase: Compact Stars and Stellar Collapses, Ken'ichiro Nakazato, Kohsuke Sumiyoshi, Shoichi Yamada, Phys. Rev. D77 (2008) 103006, arXiv:0804.0661.
Parameter Degeneracy in Flavor-Dependent Reconstruction of Supernova Neutrino Fluxes, H. Minakata, H. Nunokawa, R. Tomas, J. W. F. Valle, JCAP 0812 (2008) 006, arXiv:0802.1489.
Learning more about what can be concluded from the observation of neutrinos from a galactic supernova, Solveig Skadhauge, Renata Zukanovich Funchal, arXiv:0802.1177, 2008.
Neutrino oscillation signatures of oxygen-neon-magnesium supernovae, C. Lunardini, B. Mueller, H. -Th. Janka, Phys. Rev. D78 (2008) 023016, arXiv:0712.3000.
Supernova Relic Electron Neutrinos and anti-Neutrinos in future Large-scale Observatories, C. Volpe, J. Welzel, arXiv:0711.3237, 2007.
The supernova rate in local galaxy clusters, F. Mannucci et al., Mon. Not. Roy. Astron. Soc. 383 (2008) 1121-1130, arXiv:0710.1094.
On-line recognition of supernova neutrino bursts in the LVD detector, N.Yu. Agafonova et al., Astropart. Phys. 28 (2008) 516-522, arXiv:0710.0259.
Neutrino-Induced Gamma-Ray Emission from Supernovae, Yu Lu, Yong-Zhong Qian, Phys. Rev. D76 (2007) 103002, arXiv:0709.0501.
New bounds on the neutrino magnetic moment from the plasma induced neutrino chirality flip in a supernova, Alexander V. Kuznetsov, Nickolay V. Mikheev, Journal of Cosmology and Astroparticle PHYSICS11 (2007) 031, arXiv:0709.0110.
Capability of multi-detector analyses on supernova neutrinos, Shao-Hsuan Chiu, Astron.Astrophys. 473 (2007) L9, arXiv:0708.1068.
The primary cosmic ray spectrum in supernova remnants from very high energy gamma-ray data, F.L. Villante, F. Vissani, Phys. Rev. D76 (2007) 125019, arXiv:0707.0471.
In which shell-type SNRs should we look for gamma-rays and neutrinos from p-p collisions?, Boaz Katz, Eli Waxman, JCAP 0801 (2008) 018, arXiv:0706.3485.
Impact of the Neutrino Magnetic Moment on Supernova r-process Nucleosynthesis, A.B. Balantekin, C. Volpe, J. Welzel, JCAP 0709 (2007) 016, arXiv:0706.3023.
Confusing Sterile Neutrinos with Deviation from Tribimaximal Mixing at Neutrino Telescopes, Ram Lal Awasthi, Sandhya Choubey, Phys. Rev. D76 (2007) 113002, arXiv:0706.0399.
On Possibilities of Studying of Supernova Neutrinos at BAKSAN, G.V. Domogatsky, V.I. Kopeikin, L.A. Mikaelyan, V.V. Sinev, Phys. Atom. Nucl. 70 (2007) 1081, arXiv:0705.1893.
High-energy Cosmic Rays and Neutrinos from Semi-relativistic Hypernovae, Xiang-Yu Wang, Soebur Razzaque, Peter Meszaros, Zi-Gao Dai, Phys. Rev. D76 (2007) 083009, arXiv:0705.0027.
Probing non-standard neutrino interactions with supernova neutrinos, A. Esteban-Pretel, R. Tomas, J. W. F. Valle, Phys. Rev. D76 (2007) 053001, arXiv:0704.0032.
Turbulent supernova shock waves and the sterile neutrino signature in megaton water detectors, Sandhya Choubey, N. P. Harries, G. G. Ross, Phys. Rev. D76 (2007) 073013, arXiv:hep-ph/0703092.
Detecting neutrino-transients with optical follow-up observations, Marek Kowalski, Anna Mohr, Astropart. Phys. 27 (2007) 533-538, arXiv:astro-ph/0701618.
On the Rates of Gamma Ray Bursts and Type Ib/c Supernovae, Dafne Guetta, Massimo Della Valle, Astrophys. J. Lett. 657 (2007) L73-L76, arXiv:astro-ph/0612194.
Gravitational Lensing of Supernova Neutrinos, Olga Mena, Irina Mocioiu, Chris Quigg, Astropart. Phys. 28 (2007) 348-356, arXiv:astro-ph/0610918.
Bayesian Single-Epoch Photometric Classification of Supernovae, Dovi Poznanski, Dan Maoz, Avishay Gal-Yam, Astron. J. 134 (2007) 1285-1297, arXiv:astro-ph/0610129.
A Probabilistic Approach to Classifying Supernovae Using Photometric Information, Natalia V. Kuznetsova, Brian M. Connolly, Astrophys. J. 659 (2007) 530-540, arXiv:astro-ph/0609637.
Neutrinos from supernova remnants after the first HESS observations, Francesco Vissani, arXiv:astro-ph/0609575, 2006. Vulcano Workshop 2006: Frontier Objects in Astrophysics and Particle Physics, Vulcano, Italy, 22-27 May 2006.
Cosmic Supernova Rates and the Hubble Sequence, F. Calura, F. Matteucci, Astrophys. J. 652 (2006) 889-901, arXiv:astro-ph/0607674.
Inverse Compton Emission from Galactic Supernova Remnants: Effect of the Interstellar Radiation Field, Troy A. Porter, Igor V. Moskalenko, Andrew W. Strong, Astrophys. J. 648 (2006) L29-L32, arXiv:astro-ph/0607344.
Neutrino signatures of supernova turbulence, Alexander Friedland, Andrei Gruzinov, arXiv:astro-ph/0607244, 2006.
Probing Dark Energy via Neutrino and Supernova Observatories, Lawrence J. Hall, Hitoshi Murayama, Michele Papucci, Gilad Perez, arXiv:hep-ph/0607109, 2006.
Supernova Neutrinos: The Accretion Disk Scenario, G. C. McLaughlin, R. Surman, Phys. Rev. D75 (2007) 023005, arXiv:astro-ph/0605281.
Supernova remnant energetics and magnetars: no evidence in favour of millisecond proto-neutron stars, Jacco Vink, Lucien Kuiper, Mon. Not. Roy. Astron. Soc. Lett. 370 (2006) L14-L18, arXiv:astro-ph/0604187.
Reconstructing supernova-neutrino spectra using low-energy beta-beams, N. Jachowicz, G. C. McLaughlin, Phys. Rev. Lett. 96 (2006) 172301, arXiv:nucl-th/0604046.
High energy diffuse gamma-ray emission of the galactic disk and Galactic Cosmic-Ray spectra, Thoudam Satyendra, Astropart. Phys. 25 (2006) 328-341, arXiv:astro-ph/0603599.
Towards a Cosmological Hubble Diagram for Type II-P Supernovae, Peter Nugent et al. (SNLS), Astrophys. J. 645 (2006) 841-850, arXiv:astro-ph/0603535.
Cosmological Gravitational Wave Background from Phase Transitions in Neutron Stars, Guenter Sigl, JCAP 0604 (2006) 002, arXiv:astro-ph/0602345.
TeV Gamma-Rays from Old Supernova Remnants, Ryo Yamazaki et al., Mon. Not. Roy. Astron. Soc. 371 (2006) 1975-1982, arXiv:astro-ph/0601704.
Study of core collapse neutrino signals and constraints on neutrino masses from a future Galactic Supernova, Jorge I. Zuluaga, arXiv:astro-ph/0511771, 2005.
Neutrino-induced nucleosynthesis of A > 64 nuclei: The nu p-process, C. Frohlich et al., Phys. Rev. Lett. 96 (2006) 142502, arXiv:astro-ph/0511376.
High energy neutrinos from a slow jet model of core collapse supernovae, Soebur Razzaque, Peter Meszaros, Eli Waxman, Mod. Phys. Lett. A20 (2005) 2351, arXiv:astro-ph/0509729.
Direct measurement of supernova neutrino emission parameters with a gadolinium enhanced Super-Kamiokande detector, Hasan Yuksel, Shin'ichiro Ando, John F. Beacom, Phys. Rev. C74 (2006) 015803, arXiv:astro-ph/0509297.
The diffuse supernova neutrino flux, star formation rate and SN1987A, Cecilia Lunardini, Astropart. Phys. 26 (2006) 190-201, arXiv:astro-ph/0509233.
Time-integrated supernova neutrino flux from a nearby cluster, Van. T. Nguyen, Calvin W. Johnson, Astropart. Phys. 27 (2007) 233-237, arXiv:astro-ph/0508267.
New Test of Supernova Electron Neutrino Emission using Sudbury Neutrino Observatory Sensitivity to the Diffuse Supernova Neutrino Background, John F. Beacom, Louis E. Strigari, Phys. Rev. C73 (2006) 035807, arXiv:hep-ph/0508202.
New Estimates of the Solar-Neighborhood Massive-Stars Birthrate and the Galactic Supernova Rate, B. Cameron Reed, Astronomical J. 130 (2005) 1652-1657, arXiv:astro-ph/0506708.
The supernova rate-velocity dispersion relation in the interstellar medium, Sami Dib, Eric Bell, Andreas Burkert, Astrophys. J. 638 (2006) 797, arXiv:astro-ph/0506339.
Rates of Neutrino Absorption on Nucleons and the Reverse Processes in Strong Magnetic Fields, Huaiyu Duan, Yong-Zhong Qian, Phys. Rev. D72 (2005) 023005, arXiv:astro-ph/0506033.
Iron Needles in Supernova Remnants?, H L Gomez, L Dunne, S Eales, E Gomez, M Edmunds, Mon.Not.Roy.Astron.Soc. (2005), arXiv:astro-ph/0505557.
Mini Z' Burst from Relic Supernova Neutrinos and Late Neutrino Masses, Haim Goldberg, Gilad Perez, Ina Sarcevic, JHEP 11 (2006) 023, arXiv:hep-ph/0505221.
Testing CPT Symmetry with Supernova Neutrinos, Hisakazu Minakata, Shoichi Uchinami, Phys. Rev. D72 (2005) 105007, arXiv:hep-ph/0505133.
Constraining the Spectrum of Supernova Neutrinos from Neutrino-Process-Induced Light-Element Synthesis, Takashi Yoshida, Toshitaka Kajino, Dieter H. Hartmann, Phys. Rev. Lett. 94 (2005) 231101, arXiv:astro-ph/0505043.
Probing the Origins of Neutrino Mass with Supernova Data, Hooman Davoudiasl, Patrick Huber, Phys. Rev. Lett. 95 (2005) 191302, arXiv:hep-ph/0504265.
Supernovae and Gamma-Ray Bursts Powered by Hot Neutrino-Cooled Coronae, Enrico Ramirez-Ruiz, Aristotle Socrates, Astrophys.J. (2005), arXiv:astro-ph/0504257.
Detection of Neutrinos from Supernovae in Nearby Galaxies, Shin'ichiro Ando, John F. Beacom, Hasan Yuksel, Phys. Rev. Lett. 95 (2005) 171101, arXiv:astro-ph/0503321.
Revealing the Supernova-Gamma-Ray Burst Connection with TeV Neutrinos, Shin'ichiro Ando, John F. Beacom, Phys. Rev. Lett. 95 (2005) 061103, arXiv:astro-ph/0502521.
Neutrino-Dominated Accretion and Supernovae, Kazunori Kohri, Ramesh Narayan, Tsvi Piran, Astrophys. J. 629 (2005) 341, arXiv:astro-ph/0502470.
Geotomography with solar and supernova neutrinos, E. Kh. Akhmedov, M. A. Tortola, J. W. F. Valle, JHEP 0506 (2005) 053, arXiv:hep-ph/0502154.
The Concordance Cosmic Star Formation Rate: Implications from and for the Supernova Neutrino and Gamma Ray Backgrounds, Louis E. Strigari, John F. Beacom, Terry P. Walker, Pengjie Zhang, JCAP 0504 (2005) 017, arXiv:astro-ph/0502150.
The Neutrino Bubble Instability: A Mechanism for Generating Pulsar Kicks, Aristotle Socrates, Omer Blaes, Aimee Hungerford, Chris L. Fryer, Astrophys. J. 632 (2005) 531, arXiv:astro-ph/0412144.
Constraints on neutrino masses from a Galactic supernova neutrino signal at present and future detectors, Enrico Nardi, Jorge I. Zuluaga, Nucl. Phys. B731 (2005) 140, arXiv:hep-ph/0412104.
Exploiting the neutronization burst of a galactic supernova, M. Kachelriess et al., Phys. Rev. D71 (2005) 063003, arXiv:astro-ph/0412082.
The supernova rate per unit mass, Filippo Mannucci et al., Astron. Astrophys. 433 (2005) 807-814, arXiv:astro-ph/0411450.
Pulsar Kicks Induced by Spin Flavor Oscillations of Neutrinos in Gravitational Fields, G. Lambiase, Mon. Not. Roy. Astron. Soc. 362 (2005) 867, arXiv:astro-ph/0411242.
Extracting clean supernova spectra, S. Blondin, J. R. Walsh, B. Leibundgut, G. Sainton, Astron. Astrophys. 431 (2005) 757, arXiv:astro-ph/0410406.
Type IIP Supernovae as Cosmological Probes: A SEAM Distance to SN 1999em, E. Baron, Peter Nugent, David Branch, Peter H. Hauschildt, Astrophys. J. 616 (2004) L91, arXiv:astro-ph/0410153.
Nucleosynthesis in the Hot Convective Bubble in Core-Collapse Supernovae, J. Pruet et al., Astrophys. J. 623 (2005) 325, arXiv:astro-ph/0409446.
Supernova relic neutrinos in liquid argon detectors, A. G. Cocco, A. Ereditato, G. Fiorillo, G. Mangano, V. Pettorino, JCAP 0412 (2004) 002, arXiv:hep-ph/0408031.
Death rate of massive stars at redshift $\sim0.3$, Enrico Cappellaro et al., Astron.Astrophys. (2004), arXiv:astro-ph/0407216.
Neutrino signatures of supernova shock and reverse shock propagation, R. Tomas et al., JCAP 0409 (2004) 015, arXiv:astro-ph/0407132.
High Redshift Supernova Rates, Tomas Dahlen et al., Astrophys. J. 613 (2004) 189-199, arXiv:astro-ph/0406547.
The Progenitors of Core-Collapse Supernovae, J. J. Eldridge, C. A. Tout, Mon. Not. Roy. Astron. Soc. 353 (2004) 87, arXiv:astro-ph/0405408.
Appearance of neutronization peak and decaying supernova neutrinos, Shin'ichiro Ando, Phys. Rev. D70 (2004) 033004, arXiv:hep-ph/0405200.
Neutrino Opacities in Nuclear Matter, Adam Burrows, Sanjay Reddy, Todd A. Thompson, Nucl. Phys. A777 (2006) 356-394, arXiv:astro-ph/0404432.
Viscosity and Rotation in Core-Collapse Supernovae, Todd A. Thompson, Eliot Quataert, Adam Burrows, Astrophys. J. 620 (2005) 861, arXiv:astro-ph/0403224.
Neutrino Interaction with Nucleons in the Envelope of a Collapsing Star with a Strong Magnetic Field, A. A. Gvozdev, I. S. Ognev, J. Exp. Theor. Phys. 94 (2002) 1043, arXiv:astro-ph/0403011.
Analytic Solutions for the Evolution of Radiative Supernova Remnants, R. Bandiera, O. Petruk, Astron. Astrophys. 419 (2004) 419, arXiv:astro-ph/0402598.
Redshift Accuracy Requirements for Future Supernova and Number Count Surveys, Dragan Huterer, Alex Kim, Lawrence M. Krauss, Tamara Broderick, Astrophys. J. 615 (2004) 595, arXiv:astro-ph/0402002.
Neutrino Processes in Strong Magnetic Fields and Implications for Supernova Dynamics, Huaiyu Duan, Yong-Zhong Qian, Phys. Rev. D69 (2004) 123004, arXiv:astro-ph/0401634.
Cosmic Star Formation History and the Future Observation of Supernova Relic Neutrinos, Shin'ichiro Ando, Astrophys. J. 607 (2004) 20, arXiv:astro-ph/0401531.
The Nearby Supernova Factory, W. M. Wood-Vasey et al., New Astron. Rev. 48 (2004) 637, arXiv:astro-ph/0401513.
Ion-Ion Correlation Effect on the Neutrino-Nucleus Scattering in Supernova Cores, Naoki Itoh, Ryohei Asahara, Nami Tomizawa, Shinya Wanajo, Satoshi Nozawa, Astrophys. J. 611 (2004) 1041, arXiv:astro-ph/0401488.
Effects of degenerate sterile neutrinos on the supernova neutrino flux, P. Keranen, J. Maalampi, M. Myyrylainen, J. Riittinen, Phys. Lett. B597 (2004) 374, arXiv:hep-ph/0401082.
Core-collapse supernovae and gravitational waves, Christian Y. Cardall, Nucl. Phys. Proc. Suppl. 138 (2005) 436, arXiv:astro-ph/0401060.
Magnetorotational effects on anisotropic neutrino emission and convection in core-collapse supernovae, K. Kotake, K. Sato, H. Sawai, S. Yamada, Astrophys. J. 608 (2004) 391-404.
nu/e (anti-nu/e) - Ar-40 absorption cross sections for supernova neutrinos, M. Sajjad Athar, S. K. Singh, Phys. Lett. B591 (2004) 69-75.
Asphericity Effects in Supernovae, P. Hoeflich, C. Gerardy, R. Quimby, arXiv:astro-ph/0312587, 2003.
Low-mass supernovae in the early Galactic halo: source of the double r/s-process enriched halo stars?, Albert A. Zijlstra, Mon. Not. Roy. Astron. Soc. 348 (2004) L23, arXiv:astro-ph/0312481.
Long and short gamma-ray bursts, and the pulsar kicks, Alexander Kusenko, Dmitry V. Semikoz, arXiv:astro-ph/0312399, 2003.
The Supernova Relic Neutrino Backgrounds at KamLAND and Super-Kamiokande, Louis E. Strigari, Manoj Kaplinghat, Gary Steigman, Terry P. Walker, JCAP 0403 (2004) 007, arXiv:astro-ph/0312346.
Prospects of probing $\theta_{13}$ and neutrino mass hierarchy by Supernova Neutrinos in KamLAND, Abhijit Bandyopadhyay, Sandhya Choubey, Srubabati Goswami, Kamales Kar, arXiv:hep-ph/0312315, 2003.
Formation rates of core collapse SNe and GRBs, Robert G. Izzard, Enrico Ramirez-Ruiz, Christopher A. Tout, Mon. Not. Roy. Astron. Soc. 348 (2004) 1215, arXiv:astro-ph/0311463.
Detection possibility of the pair-annihilation neutrinos from the neutrino-cooled pre-supernova star, A. Odrzywolek, M. Misiaszek, M. Kutschera, Astropart. Phys. 21 (2004) 303, arXiv:astro-ph/0311012.
The consequences of nuclear electron capture in core collapse supernovae, W. R. Hix et al., Phys. Rev. Lett. 91 (2003) 201102, arXiv:astro-ph/0310883.
Towards Gravitational Wave Signals from Realistic Core Collapse Supernova Models, E. Mueller et al., Astrophys. J. 603 (2004) 221, arXiv:astro-ph/0309833.
Gravitational Waves from a Pulsar Kick Caused by Neutrino Conversions, Lee C. Loveridge, Phys. Rev. D69 (2004) 024008, arXiv:astro-ph/0309362.
Neutrino signatures of the supernova - gamma ray burst relationship, Soebur Razzaque, Peter Meszaros, Eli Waxman, Phys. Rev. D69 (2004) 023001, arXiv:astro-ph/0308239.
Neutrino Nucleosynthesis, A. Heger et al., Phys. Lett. B606 (2005) 258, arXiv:astro-ph/0307546.
Decaying neutrinos and implications from the supernova relic neutrino observation, Shin'ichiro Ando, Phys. Lett. B570 (2003) 11, arXiv:hep-ph/0307169.
Supernova pointing with low- and high-energy neutrino detectors, R. Tomas et al., Phys. Rev. D68 (2003) 093013, arXiv:hep-ph/0307050.
Asymmetric neutrino emission due to neutrino-nucleon scatterings in supernova magnetic fields, Shin'ichiro Ando, Phys. Rev. D68 (2003) 063002, arXiv:astro-ph/0307006.
Theoretical Light Curves of Type II-P SNe and Applications to Cosmology, A. Chieffi et al., Mon. Not. Roy. Astron. Soc. 345 (2003) 111, arXiv:astro-ph/0306629.
Nucleosynthesis in Black-Hole-Forming Supernovae and Abundance Patterns of Extremely Metal-Poor Stars, K. Nomoto et al., Prog. Theor. Phys. Suppl. 151 (2003) 44, arXiv:astro-ph/0306412. 12 pages, 9 figures. To appear in 'Carnegie Observatories Astrophysics Series, Vol. 4: Origin and Evolution of the Elements, 2003, eds. A. McWilliam and M. Rauch (Pasadena: Carnegie Observatories).
Exploring the sub-eV neutrino mass range with supernova neutrinos, Enrico Nardi, Jorge I. Zuluaga, Phys. Rev. D69 (2004) 103002, arXiv:astro-ph/0306384.
Supernova Neutrinos, Neutrino Oscillations, and the Mass of the Progenitor Star, Keitaro Takahashi, Katsuhiko Sato, Adam Burrows, Todd A. Thompson, Phys. Rev. D68 (2003) 113009, arXiv:hep-ph/0306056.
Neutrino processes in the K0 condensed phase of color flavor locked quark matter, Sanjay Reddy, Mariusz Sadzikowski, Motoi Tachibana, Phys. Rev. D68 (2003) 053010, arXiv:nucl-th/0306015.
Nucleosynthesis of Light Elements and Heavy r-Process Elements through the nu-Process in Supernova Explosion, T. Yoshida, M. Terasawa, T. Kajino, K. Sumiyoshi, Astrophys. J. 600 (2004) 204, arXiv:astro-ph/0305555.
On the relative frequencies of core-collapse supernovae sub-types: the role of progenitor metallicity, Nikos Prantzos, Samuel Boissier, Astron. Astrophys. 406 (2003) 259, arXiv:astro-ph/0305376.
The First Supernova Explosions in the Universe, Volker Bromm, Naoki Yoshida, Lars Hernquist, Astrophys. J. 596 (2003) L135, arXiv:astro-ph/0305333.
Jets and Black Holes in Hypernova Explosions, K. Maeda, K. Nomoto, Prog. Theor. Phys. Suppl. 151 (2003) 211, arXiv:astro-ph/0305183.
A Two-Component Model for the Light Curves of Hypernovae, K. Maeda et al., Astrophys. J. 593 (2003) 931, arXiv:astro-ph/0305182.
Realistic Neutrino Opacities for Supernova Simulations With Correlations and Weak Magnetism, C. J. Horowitz, M.A. Perez-Garcia, Phys. Rev. C68 (2003) 025803, arXiv:astro-ph/0305138.
Supernovae and Light Neutralinos: SN1987A Bounds on Supersymmetry Revisited, H. K. Dreiner, C. Hanhart, U. Langenfeld, D. R. Phillips, Phys. Rev. D68 (2003) 055004, arXiv:hep-ph/0304289.
Bipolar Supernova Explosions: Nucleosynthesis and Implication on Abundances in Extremely Metal-Poor Stars, K. Maeda, K. Nomoto, Astrophys. J. 598 (2003) 1163, arXiv:astro-ph/0304172.
Light curves and $\mathrm{H}\alpha$ luminosities as indicators of $^{56}\mathrm{Ni}$ mass in type IIP supernovae, A. Elmhamdi, N. N. Chugai, I. J. Danziger, Astron. Astrophys. 404 (2003) 1077-1086, arXiv:astro-ph/0304144.
Analysis of energy- and time-dependence of supernova shock effects on neutrino crossing probabilities, G.L. Fogli, E. Lisi, A. Mirizzi, D. Montanino, Phys. Rev. D68 (2003) 033005, arXiv:hep-ph/0304056.
Supernova and neutron-star limits on large extra dimensions reexamined, S.Hannestad, G.G.Raffelt, Phys. Rev. D67 (2003) 125008, arXiv:hep-ph/0304029.
Neutrino driven explosions in GRBs and hypernovae, Chris L. Fryer, Peter Meszaros, Astrophys. J. 588 (2003) L25, arXiv:astro-ph/0303334.
Detecting the Neutrino Mass Hierarchy with a Supernova at IceCube, A.S.Dighe, M.T.Keil, G.G.Raffelt, JCAP 0306 (2003) 005, arXiv:hep-ph/0303210.
The infrared supernova rate in starburst galaxies, F. Mannucci et al., Astron. Astrophys. 401 (2003) 519, arXiv:astro-ph/0302323.
Signatures of Supernova Neutrino Oscillations into Extra Dimensions, Giacomo Cacciapaglia, Marco Cirelli, Andrea Romanino, Phys. Rev. D68 (2003) 033013, arXiv:hep-ph/0302246.
Precise quasielastic neutrino/nucleon cross section, Alessandro Strumia, Francesco Vissani, Phys. Lett. B564 (2003) 42, arXiv:astro-ph/0302055.
Global anisotropy vs small-scale fluctuation of neutrino flux in supernova explosions, Hideki Madokoro, Tetsuya Shimizu, Yuko Mochizuki, Astrophys. J. 592 (2003) 1035, arXiv:astro-ph/0302015.
Stellar Sources for Heavy r-Process Nuclei, Y.-Z. Qian, G. J. Wasserburg, Astrophys.J. (2003), arXiv:astro-ph/0301461.
Did Egret Detect Distant Supernova Remnants?, Diego F. Torres et al., Adv. Space Res. 33 (2004) 450, arXiv:astro-ph/0301424.
Effects of the Sound Speed of Quintessence on the Microwave Background and Large Scale Structure, Simon DeDeo, R.R. Caldwell, Paul J. Steinhardt, Phys. Rev. D67 (2003) 103509, arXiv:astro-ph/0301284.
Gamma-Ray Lines from Asymmetric Supernovae, A. L. Hungerford, C. L. Fryer, M. S. Warren, Astrophys. J. 594 (2003) 390, arXiv:astro-ph/0301120.
Anisotropic neutrino radiation in rotational core collapse, K. Kotake, K. Sato, S. Yamada, Astrophys. J. 595 (2003) 304-316.
How Massive Single Stars End their Life, A. Heger et al., Astrophys. J. 591 (2003) 288, arXiv:astro-ph/0212469.
Shock propagation and neutrino oscillation in supernova, K. Takahashi, K. Sato, H. E. Dalhed, J. R. Wilson, Astropart. Phys. 20 (2003) 189, arXiv:astro-ph/0212195.
Asymmetric Explosions of Thermonuclear Supernovae, C. R. Ghezzi, E. M. de Gouveia Dal Pino, J. E. Horvath, Mon. Not. Roy. Astron. Soc. 348 (2004) 451, arXiv:astro-ph/0211605.
Gravitational lens time delays for distant supernovae: break the degeneracy between radial mass profiles and the Hubble constant, Masamune Oguri, Yozo Kawano, Mon. Not. Roy. Astron. Soc. 338 (2003) L25-L29, arXiv:astro-ph/0211499.
SN1999E: Another piece in the SN-GRB connection puzzle, L. Rigon et al., Mon. Not. Roy. Astron. Soc. 340 (2003) 191, arXiv:astro-ph/0211432.
Massive galaxy clusters as gravitational telescopes for distant supernovae, Christofer Gunnarsson, Ariel Goobar, Astron. Astrophys. 405 (2003) 859, arXiv:astro-ph/0211401.
Bounds on the coupling of the Majoron to light neutrinos from supernova cooling, Yasaman Farzan, Phys. Rev. D67 (2003) 073015, arXiv:hep-ph/0211375.
Ozone Depletion from Nearby Supernovae, Neil Gehrels et al., Astrophys. J. 585 (2003) 1169, arXiv:astro-ph/0211361.
Three-generation study of neutrino spin-flavor conversion in supernova and implication for neutrino magnetic moment, Shin'ichiro Ando, Katsuhiko Sato, Phys. Rev. D67 (2003) 023004, arXiv:hep-ph/0211053.
Supernova relic neutrinos and observational implications for neutrino oscillation, Shin'ichiro Ando, Katsuhiko Sato, Phys. Lett. B559 (2003) 113, arXiv:astro-ph/0210502.
Mirror model for sterile neutrinos, Veniamin Berezinsky, Mohan Narayan, Francesco Vissani, Nucl. Phys. B658 (2003) 254, arXiv:hep-ph/0210204.
From the abstract: ... The considered subdominant neutrino oscillations (active <-> sterile) nu_a <-> nu_s can reveal itself as the big effects in observations of supernova neutrinos.
The high energy gamma-ray emission expected from Tycho's supernova remnant, H.J. Voelk, E.G. Berezhko, L.T. Ksenofontov, G.P. Rowell, Astron. Astrophys. 396 (2002) 649, arXiv:astro-ph/0210176.
Peculiar, Low Luminosity Type II Supernovae: Low Energy Explosions in Massive Progenitors?, L. Zampieri et al., Mon. Not. Roy. Astron. Soc. 338 (2003) 711, arXiv:astro-ph/0210171.
Gravitational Lensing Magnification and Time Delay Statistics for Distant Supernovae, Masamune Oguri, Yasushi Suto, Edwin L. Turner, Astrophys. J. 583 (2003) 584, arXiv:astro-ph/0210107.
Photometry and Spectroscopy of the Type IIP SN 1999em from Outburst to Dust Formation, A. Elmhamdi et al., Mon. Not. Roy. Astron. Soc. 338 (2003) 939-956, arXiv:astro-ph/0209623.
What Can Be Learned with a Lead-Based Supernova-Neutrino Detector?, J. Engel, G. C. McLaughlin, C. Volpe, Phys. Rev. D67 (2003) 013005, arXiv:hep-ph/0209267.
Observed and Physical Properties of Core-Collapse Supernovae, Mario Hamuy, Astrophys. J. 582 (2003) 905, arXiv:astro-ph/0209174.
Bulk neutrinos and core collapse supernovae, G. Cacciapaglia, M. Cirelli, Y. Lin, A. Romanino, Phys. Rev. D67 (2003) 053001, arXiv:hep-ph/0209063.
Monte Carlo study of supernova neutrino spectra formation, Mathias Th. Keil, Georg G. Raffelt, Hans-Thomas Janka, Astrophys.J. 590 (2003) 971-991, arXiv:astro-ph/0208035.
Flavor oscillations in the supernova hot bubble region: Nonlinear effects of neutrino background, Sergio Pastor, Georg Raffelt, Phys. Rev. Lett. 89 (2002) 191101, arXiv:astro-ph/0207281.
Tomography of the Earth's Core Using Supernova Neutrinos, Manfred Lindner, Tommy Ohlsson, Ricard Tomas, Walter Winter, Astropart. Phys. 19 (2003) 755, arXiv:hep-ph/0207238.
Neutrino oscillation mechanism for pulsar kicks revisited, M. Barkovich, J. C. D'Olivo, R. Montemayo, J. F. Zanella, Phys. Rev. D66 (2002) 123005, arXiv:astro-ph/0206471.
Connection between supernova shocks, flavor transformation, and the neutrino signal, Richard C. Schirato, George M. Fuller, arXiv:astro-ph/0205390, 2002.
Detection of supernova neutrinos by neutrino proton elastic scattering, John F. Beacom, Will M. Farr, Petr Vogel, Phys. Rev. D66 (2002) 033001, arXiv:hep-ph/0205220.
Effects of neutrino oscillation on supernova neutrino: inverted mass hierarchy, K. Takahashi, K. Sato, Prog. Theor. Phys. 109 (2003) 919, arXiv:hep-ph/0205070.
Potential for supernova neutrino detection in MiniBooNE, Matthew K. Sharp, John F. Beacom, Joseph A. Formaggio, Phys. Rev. D66 (2002) 013012, arXiv:hep-ph/0205035.
Electron neutrino pair annihilation: A New source for muon and tau neutrinos in supernovae, Robert Buras, Hans-Thomas Janka, Mathias T. Keil, Georg G. Raffelt, Markus Rampp, Astrophys.J. 587 (2003) 320-326, arXiv:astro-ph/0205006.
A supernova constraint on bulk majorons, Steen Hannestad, Petteri Keranen, Francesco Sannino, Phys. Rev. D66 (2002) 045002, arXiv:hep-ph/0204231.
Detectability of the supernova relic neutrinos and neutrino oscillation, S. Ando, K. Sato, T. Totani, Astropart. Phys. 18 (2003) 307, arXiv:astro-ph/0202450.
Revisiting nonstandard interaction effects on supernova neutrino flavor oscillations, Gian Luigi Fogli, E. Lisi, A. Mirizzi, D. Montanino, Phys. Rev. D66 (2002) 013009, arXiv:hep-ph/0202269.
Supernova-neutrino studies with Mo-100, H. Ejiri, J. Engel, N. Kudomi, Phys. Lett. B530 (2002) 27-32, arXiv:astro-ph/0112379.
Supernova Neutrinos and LSND, Michel Sorel, Janet Conrad, Phys. Rev. D66 (2002) 033009, arXiv:hep-ph/0112214.
Determining the supernova direction by its neutrinos, Shinichiro Ando, Katsuhiko Sato, Prog. Theor. Phys. 107 (2002) 957, arXiv:hep-ph/0110187.
Time Delay Between Gravitational Waves and Neutrino Burst From a Supernova Explosion: a Test for the Neutrino Mass, D. Fargion, Lett. Nuovo Cim. 31 (1981) 499-500, arXiv:hep-ph/0110061.
Gravity wave and neutrino bursts from stellar collapse: A sensitive test of neutrino masses, N. Arnaud et al., Phys. Rev. D65 (2002) 033010, arXiv:hep-ph/0109027.
Seeing double: strong gravitational lensing of high- redshift supernovae, Daniel E. Holz, Astrophys. J. 556 (2001) L71, arXiv:astro-ph/0104440.
Supernova neutrino detection in Borexino, L. Cadonati, F. P. Calaprice, M. C. Chen, Astropart. Phys. 16 (2002) 361-372, arXiv:hep-ph/0012082.
Black hole formation in core collapse supernovae and time- of-flight measurements of the neutrino masses, J. F. Beacom, R. N. Boyd, A. Mezzacappa, Phys. Rev. D63 (2001) 073011, arXiv:astro-ph/0010398.
Technique for direct eV scale measurements of the mu and tau neutrino masses using supernova neutrinos, J. F. Beacom, R. N. Boyd, A. Mezzacappa, Phys. Rev. Lett. 85 (2000) 3568, arXiv:hep-ph/0006015.
Discovering ultra high energy neutrinos by horizontal and upward tau air-showers: First evidences in terrestrial gamma flashes, D. Fargion, Astrophys. J. 570 (2002) 909-925, arXiv:astro-ph/0002453.
Right-handed neutrino production in dense and hot plasmas, Alejandro Ayala, Juan Carlos D'Olivo, Manuel Torres, Nucl. Phys. B564 (2000) 204-222, arXiv:hep-ph/9907398.
A new determination of supernova rates and a comparison with indicators for galactic star formation, E. Cappellaro, R. Evans, M. Turatto, Astron. Astrophys. 351 (1999) 459-466, arXiv:astro-ph/9904225.
Why are supernovae in our Galaxy so frequent?, P. M. Dragicevich, D. G. Blair, R. R Burman, Mon. Not. Roy. Astron. Soc. 302 (1999) 693-699.
Mass signature of supernova $\nu_\mu$ and $\nu_\tau$ neutrinos in the Sudbury neutrino observatory, J. F. Beacom, P. Vogel, Phys. Rev. D58 (1998) 093012, arXiv:hep-ph/9806311.
Bound on the neutrino magnetic moment from chirality flip in supernovae, Alejandro Ayala, Juan Carlos D'Olivo, Manuel Torres, Phys. Rev. D59 (1999) 111901, arXiv:hep-ph/9804230.
Electron neutrino mass measurement by supernova neutrino bursts and implications on hot dark matter, Tomonori Totani, Phys. Rev. Lett. 80 (1998) 2039-2042, arXiv:astro-ph/9801104.
Constraints from $^{26}$Al Measurements on the Galaxy's Recent Global Star Formation Rate and Core Collapse Supernovae Rate, F. X. Timmes, R. Diehl, D. H. Hartmann, Astrophys.J. 479 (1997) 760, arXiv:astro-ph/9701242.
Supernova neutrinos and the $\nu_\tau$ mass, Gianni Fiorentini, Camillo Acerbi, Astropart. Phys. 7 (1997) 245-262, arXiv:astro-ph/9701232.
The rate of Supernovae from the combined sample of five searches, E. Cappellaro et al., Astron. Astrophys. 322 (1997) 431-441, arXiv:astro-ph/9611191.
Resonant Neutrino Spin-Flavor Precession and Supernova Nucleosynthesis and Dynamics, H. Nunokawa, Y. Z. Qian, G. M. Fuller, Phys. Rev. D55 (1997) 3265-3275, arXiv:astro-ph/9610209.
Effects of neutrino oscillation on the supernova relic neutrino background, Tomonori Totani, Katsuhiko Sato, Int. J. Mod. Phys. D5 (1996) 519-528, arXiv:hep-ph/9609241.
Resonant spin-flavor conversion of supernova neutrinos and deformation of the electron antineutrino spectrum, Tomonori Totani, Katsuhiko Sato, Phys. Rev. D54 (1996) 5975-5992, arXiv:astro-ph/9609035.
Gravitational collapse of rotating stellar cores and supernovae, K. Sato, T. M. Shimizu, S. Yamada, Nucl. Phys. A606 (1996) 118-136.
Spectrum of the Supernova Relic Neutrino Background and Evolution of Galaxies, Tomonori Totani, Katsuhiko Sato, Yuzuru Yoshii, Astrophys. J. 460 (1996) 303-312, arXiv:astro-ph/9509130.
Effects of random density fluctuations on matter enhanced neutrino flavor transitions in supernovae and implications for supernova dynamics and nucleosynthesis, F. N. Loreti, Y. Z. Qian, G. M. Fuller, A. B. Balantekin, Phys. Rev. D52 (1995) 6664-6670, arXiv:astro-ph/9508106.
Cherenkov radiation by neutrinos in a supernova core, Subhendra Mohanty, Manoj K. Samal, Phys. Rev. Lett. 77 (1996) 806-809, arXiv:hep-ph/9506385.
Spectrum of the relic neutrino background from past supernovae and cosmological models, Tomonori Totani, Katsuhiko Sato, Astropart. Phys. 3 (1995) 367-376, arXiv:astro-ph/9504015.
Neutrino oscillations in the magnetic field of the sun, supernovae, and neutron stars, G.G. Likhachev, A.I. Studenikin, J.Exp.Theor.Phys. 81 (1995) 419-425.
Gravitational radiation from rotational collapse of a supernova core, S. Yamada, K. Sato, Astrophys. J. 450 (1995) 245-252.
Neutrino-neutrino scattering and matter enhanced neutrino flavor transformation in Supernovae, Yong Zhong Qian, George M. Fuller, Phys. Rev. D51 (1995) 1479-1494, arXiv:astro-ph/9406073.
The Galactic supernova rate, G. A. Tammann, W. Loeffler, A. Schroder, Astrophys. J. Suppl. 92 (1994) 487-493.
'Guest stars', sample completeness and the local supernova rate, R. G. Strom, Astron. Astrophys. 288 (1994) L1-L4.
The Detection of a cosmologically significant neutrino mass from the neutrino burst of a galactic supernova, D. B. Cline et al., Phys. Rev. D50 (1994) 720-729.
Signature of supernova neutrino flavor mixing in water Cerenkov detectors, Yong-Zhong Qian, George M. Fuller, Phys. Rev. D49 (1994) 1762-1770.
The Rate of Supernovae. II. the Selection Effects and the Frequencies Per Unit Blue Luminosity, E. Cappellaro et al., Astron. Astrophys. 273 (1993) 383, arXiv:astro-ph/9302017.
A Connection between flavor mixing of cosmologically significant neutrinos and heavy element nucleosynthesis in supernovae, Yong-Zhong Qian et al., Phys. Rev. Lett. 71 (1993) 1965-1968.
Convective instability in hot bubble in a delayed supernova explosion, Shoichi Yamada, Tetsuya Shimizu, Katsuhiko Sato, Prog. Theor. Phys. 89 (1993) 1175-1182.
The absolute magnitudes of Type IA supernovae, M. M. Phillips, Astrophys. J. 413 (1993) L105-L108.
How rare are supernovae?, S. van den Bergh, Comments on Astrophys. 17 (1993) 125-130.
The Future of supernova neutrino detection, Adam Burrows, David Klein, Raj Gandhi, Phys. Rev. D45 (1992) 3361-3385.
From the abstract: In this paper, we construct a detailed fiducial model of supernova neutrino bursts that incorporates the numerous emission features derived and predicted by supernova and protoneutron star theorists during the last decade.
High rate for Type IC supernovae, Richard A. Muller et al., Astrophys. J. 384 (1992) L9-L13.
The rate of stellar collapses in the galaxy, Kavan U. Ratnatunga, Sidney van den Bergh, Astrophys. J. 343 (1989) 713-717.
The modified correlation mass method for detecting neutrino mass from astrophysical neutrino bursts, K. L. Chan, H. Chiu, Y. Kondo, Astron. Astrophys. 215 (1989) 387-398.
Implications of the supernova SN1987a neutrino signals, I. Goldman, Y. Aharonov, G. Alexander, S. Nussinov, Phys. Rev. Lett. 60 (1988) 1789.
Neutral current reactions of solar and supernova neutrinos on deuterium, J. N. Bahcall, K. Kubodera, S. Nozawa, Phys. Rev. D38 (1988) 1030.
Neutronization neutrino pulses from supernovae and the triplet majoron model, Y. Aharonov, F. T. Avignone, S. Nussinov, Phys. Lett. B200 (1988) 122-124.
Resonant Helicity Flip of $\nu_e$ Due to Magnetic Moment and Dynamics of Supernova, M.B. Voloshin, Phys.Lett. B209 (1988) 360.
$\nu_e-\nu_e$ scattering and the possibility of a resonance change of neutrino helicity in the magnetic field of a supernova, L. B. Okun, Sov. J. Nucl. Phys. 48 (1988) 967-968.
Magnetic moments of neutrinos: particle and astrophysical aspects, Shmuel Nussinov, Yoel Rephaeli, Phys. Rev. D36 (1987) 2278.
Neutrino magnetic moment may solve the supernovae problem, Arnon Dar, 1987. Print-87-0178 (IAS, Princeton).
Supernova explosions and constraints on mass and lifetime of heavy neutrinos, M. Takahara, K. Sato, Phys. Lett. B174 (1986) 373-377.
Revival of a stalled supernova shock by neutrino heating, Hans A. Bethe, R. Wilson, James, Astrophys. J. 295 (1985) 14-23.
Accreting white dwarf models of Type I supernovae. III - Carbon deflagration supernovae, K. Nomoto, F.K. Thielemann, K. Yokoi, Astrophys. J. 286 (1984) 644-658.
Neutrino mass and detection of neutrino supernova bursts, T. Piran, Phys. Lett. B102 (1981) 299-302.
Neutrinos of Non-Zero Rest Mass, S. Pakvasa, K. Tennakone, Phys. Rev. Lett. 28 (1972) 1415.
G. T. Zatsepin, JETP Lett. 8 (1968) 205. [Zh. Eksp. Teor. Fiz. 8, 333 (1968)].
Remarks on Super-Novae and Cosmic Rays, W. Baade, F. Zwicky, Phys. Rev. 46 (1934) 76-77.

17 - Phenomenology - Type II - Conference Proceedings

Supernova Physics at DUNE, Artur Ankowski et al., arXiv:1608.07853, 2016. Summary of workshop 'Supernova Physics at DUNE', Virginia Tech.
Neutrino-Induced Nucleosynthesis in Helium Shells of Early Core-Collapse Supernovae, Projjwal Banerjee, Yong-Zhong Qian, Alexander Heger, Wick Haxton, arXiv:1512.01523, 2015. OMEG 2015.
Probing Efficient Cosmic-Ray Acceleration in Young Supernovae, Vikram V. Dwarkadas, M. Renaud, A. Marcowith, V. Tatischeff, PoS ICRC2015 (2016) 493, arXiv:1509.00879. 34th International Cosmic Ray Conference (ICRC).
The Physics Of Supernova Neutrino Oscillations, James P. Kneller, arXiv:1507.01434, 2015. CIPANP2015.
Type IIn supernovae as sources of high energy neutrinos, V.N. Zirakashvili, V.S. Ptuskin, PoS ICRC2015 (2016) 472, arXiv:1505.08144. 34th ICRC, Hague, Netherlands 30July-06Aug 2015.
Principal Physical Effects in Collapsing Stellar Cores, D.K. Nadyozhin, A.V. Yudin, arXiv:1308.4448, 2013. ICRANet Workshop 'From Nuclei to White Dwarfs and Neutron Stars', Les Houches, 3-8 April 2011.
A Critical Appraisal of Some Concepts Used in Neutrino Physics, Francesco Vissani, Manimala Mitra, Giulia Pagliaroli, Nuovo Cim. C36 (2013) 223-228, arXiv:1206.1466. IFAE 2012.
Estimations of the Distances of Stellar Collapses in the Galaxy by Analyzing the Energy Spectrum of Neutrino Bursts, Ernesto Kemp, Bruno Miguez, Walter Fulgione, Int.J.Mod.Phys. E20S2 (2011) 57-60, arXiv:1202.0181. SMFNS 2011.
Astrophysical Models of r-Process Nucleosynthesis: An Update, Yong-Zhong Qian, AIP Conf.Proc. 1484 (2012) 201, arXiv:1201.5112. 11th International Symposium on Origin of Matter and Evolution of Galaxies (OMEG11), Wako, Japan.
Core-Collapse Supernovae: Explosion Dynamics, Neutrinos and Gravitational Waves, Bernhard Mueller et al., arXiv:1112.1913, 2011. HANSE 2011.
Neutral Current Coherent Cross Sections- Implications on Gaseous Spherical TPC's for detecting SN and Earth neutrinos, J. D. Vergados, J. Phys. Conf. Ser. 309 (2011) 012031, arXiv:1103.1107. Fifth symposium on large TPCs for low energy rare event detection and workshop on neutrinos from Supernovae, Paris Dec. 14-18, 2010.
Explosive nucleosynthesis in core-collapse supernovae, A. Arcones, J. Phys. Conf. Ser. 312 (2011) 042005, arXiv:1012.4917. INPC 2010 Vancouver.
Lepton flavor violating New Physics and supernova explosion, Oleg Lychkovskiy, Sergei Blinnikov, Mikhail Vysotsky, arXiv:1010.0883, 2010. 16th International Seminar on High Energy Physics 'QUARKS-2010', Kolomna, Russia, 6-12 June, 2010.
Dirac neutrino magnetic moment and a possible time evolution of the neutrino signal from a supernova, R.A. Anikin, A.V. Kuznetsov, N.V. Mikheev, Astron.Lett. 36 (2010) 680, arXiv:1010.0583. XVI International Seminar Quarks'2010, Kolomna, Moscow Region, June 6-12, 2010.
Can a supernova bang twice?, Jurgen Schaffner-Bielich et al., Prog. Theor. Phys. Suppl. 186 (2010) 93-98, arXiv:1009.6096. Yukawa International Program for Quark-Hadron Sciences: New Frontiers in QCD 2010, Kyoto, Japan.
The r-Process in Black Hole Winds, Shinya Wanajo, Hans-Thomas Janka, AIP Conf. Proc. 1269 (2010) 120-125, arXiv:1006.2277. OMEG10, March 2010.
Using supernova neutrinos to monitor the collapse, to search for gravity waves and to probe neutrino masses, F. Vissani, G. Pagliaroli, F. Rossi-Torres, arXiv:1005.3682, 2010. Galileo-Xu Guangqi meeting: The Sun, the Stars, the Universe and General Relativity; October 26-30, 2009, Shanghai (China).
Implication of the Steady State Equilibrium Condition for Electron-Positron Gas in the Neutrino-driven Wind from Proto-Neutron Star, Men-Quan Liu, Ye-Fei Yuan, arXiv:1005.1845, 2010. Compact stars in the QCD phase diagram II (CSQCD II), May 20-24, 2009, Beijing, P. R. China.
Nucleosynthesis in neutrino-driven winds: influence of the nuclear physics input, Almudena Arcones, Gabriel Martinez-Pinedo, J. Phys. Conf. Ser. 202 (2010) 012007, arXiv:0909.1012. Nuclear Physics in Astrophysics IV.
Probing the Core-Collapse Supernova Mechanism with Gravitational Waves, C. D. Ott, Class. Quant. Grav. 26 (2009) 204015, arXiv:0905.2797. 13th Gravitational Wave Data Analysis Workshop.
The Strange Prospects for Astrophysics, Irina Sagert et al., J. Phys. G36 (2009) 064009, arXiv:0902.2084. International conference on strangeness in quark matter (SQM2008), Beijing, October 6-10, Beijing, China.
Physics potential of future supernova neutrino observations, Amol Dighe, J. Phys. Conf. Ser. 136 (2008) 022041, arXiv:0809.2977. Neutrino 2008, Christchurch, NZ.
Supernova neutrinos: Strong coupling effects of weak interactions, G. L. Fogli, E. Lisi, A. Marrone, A. Mirizzi, arXiv:0809.2940, 2008. NO-VE 2008, IV International Workshop on.
Formation of quark phases in compact stars and SN explosion, Alessandro Drago, Giuseppe Pagliara, Giulia Pagliaroli, Francesco Lorenzo Villante, Francesco Vissani, AIP Conf. Proc. 1056 (2008) 256-263, arXiv:0809.0518. 6th International Conference on Perspectives in Hadronic Physics, May 2008, Trieste.
Core-collapse supernova neutrinos and neutrino properties, J. Gava, C. Volpe, AIP Conf. Proc. 1038 (2008) 193-201, arXiv:0805.2717. Three days of Strong Interactions and Astrophysics HLPW08, 6-8 March 2008.
Nucleosynthesis in Early Neutrino Driven Winds, R.D. Hoffman et al., AIP Conf. Proc. 1005 (2008) 225-228, arXiv:0801.1828. CNR 2007 Compound-Nuclear Reactions and Related Topics Workshop.
Plasma induced neutrino spin-flip in a supernova and new bounds on the neutrino magnetic moment, A.V. Kuznetsov, N.V. Mikheev, arXiv:0708.2802, 2007. XIV International School 'Particles and Cosmology', Baksan Valley, Kabardino Balkaria, Russia, April 16-21, 2007.
Spectral Modeling of Type II Supernovae, E. Baron, AIP Conf. Proc. 924 (2007) 350-357, arXiv:astro-ph/0611545. The Multicoloured Landscape of Compact Objects and their Explosive Progenitors: Theory vs Observations.
The diffuse supernova neutrino flux, Cecilia Lunardini, Nucl. Phys. Proc. Suppl. 221 (2011) 160-165, arXiv:astro-ph/0610534. Neutrino 2006, Santa Fe, June 2006.
Time-dependence Effects in Photospheric-Phase Type II Supernova Spectra, Luc Dessart, John Hillier, AIP Conf.Proc. 924 (2007) 441, arXiv:astro-ph/0610136. The Multicoloured Landscape of Compact Objects and their Explosive Progenitors: Theory vs Observations, Cefalu, Sicily, June 11-24, 2006.
Neutrinos from supernova remnants after the first HESS observations, Francesco Vissani, arXiv:astro-ph/0609575, 2006. Vulcano Workshop 2006: Frontier Objects in Astrophysics and Particle Physics, Vulcano, Italy, 22-27 May 2006.
R-process Experimental Campaign at the National Superconducting Cyclotron Laboratory, J. Pereira et al., PoS NIC-IX (2006) 162, arXiv:astro-ph/0608582. PoS.
Thermal neutrinos from pre-supernova, A. Odrzywolek, M. Misiaszek, M. Kutschera, Nucl. Phys. Proc. Suppl. 221 (2011) 380, arXiv:astro-ph/0608492. Neutrino 2006.
Aspects of Neutrino Production in Supernovae, Todd A. Thompson, arXiv:astro-ph/0608231, 2006. International Workshop on the Energy Budget in the High Energy Universe, Kashiwa campus, Univ. of Tokyo, Chiba, Japan, Feb. 2006.
Neutrinos, Fisson Cycling, and the r-process, J. Beun, G. C. McLaughlin, R. Surman, W. R. Hix, PoS NIC-IX (2006) 140, arXiv:astro-ph/0607180. NIC-IX, International Symposium on Nuclear Astrophysics - Nuclei in the Cosmos - IX, CERN, Geneva, Switzerland, 25-30 June, 2006.
Neutrino chirality flip in a supernova and the bound on the neutrino magnetic moment, A.V. Kuznetsov, N.V. Mikheev, arXiv:hep-ph/0606261, 2006. XIV International Seminar Quarks'2006, St.-Petersburg, Repino, Russia, May 19-25, 2006.
The Supernova Gamma-Ray Burst Connection, Stan Woosley, Alexander Heger, AIP Conf. Proc. 836 (2006) 398-407, arXiv:astro-ph/0604131. AIP Conf. Proc. 'Gamma Ray Bursts in the Swift Era'.
Shell-type Supernova Remnants, Heinrich J. Volk, arXiv:astro-ph/0603502, 2006. Cherenkov 2005, Towards a Network of Atmospheric Cherenkov Detectors VII, Ecole Polytechnique, Palaiseau (France), April 27-29, 2005.
The Relic Neutrino Backround from the First Stars, Keith A. Olive, Pearl Sandick, arXiv:astro-ph/0603236, 2006. IIIrd International Workshop on: NO-VE 'Neutrino Oscillations in Venice', Venice Italy, February 2006.
Nucleosynthesis in Neutrino-Driven Supernovae, C. Froehlich et al., New Astron. Rev. 50 (2006) 496-499, arXiv:astro-ph/0511584. Astronomy with Radioactivities V, Clemson University, September 5-9, 2005.
Neutrinos from Supernovas and Supernova Remnants, Francesco Vissani, Maria Laura Costantini, Aip Conf. Proc. 794 (2005) 219, arXiv:astro-ph/0508152. IFAE, Catania 2005.
Nucleosynthesis of PopIII Core Collapse Supernovae and the Abundances of Extremely Metal Poor Stars, Marco Limongi, Alessandro Chieffi, IAU Symp. (2005), arXiv:astro-ph/0507340. 6IAU Symp. No. 228 'From Lithium to Uranium: Elemental Tracers of Early Cosmic Evolution'.
Neutrino Processes in Strong Magnetic Fields, Huaiyu Duan, Yong-Zhong Qian, arXiv:astro-ph/0506129, 2005. INT workshop.
SN/GRB connection: a statistical approach with BATSE and Asiago Catalogues, S. Valenti et al., Nuovo Cim. 28C (2005) 633, arXiv:astro-ph/0505052. 4th workshop on Gamma Ray Bursts in the Afterglow Era, Rome, 2004.
Supernova search at intermediate z. II. Host galaxy morphology, J. Mendez et al., ASP Conf.Ser. 342 (2005) 488, arXiv:astro-ph/0502397. 1604-2004: Supernovae as Cosmological Lighthouses.
Supernova search at intermediate z. I. Spectroscopic analysis, G. Altavilla et al., ASP Conf.Ser. 342 (2005) 486, arXiv:astro-ph/0502395. 1604-2004: Supernovae as Cosmological Lighthouses.
Supernova Rates in Galaxy Clusters, Dan Maoz, ASP Conf.Ser. (2005), arXiv:astro-ph/0501492. 1604-2004: Supernovae as Cosmological Lighthouses.
Searching for Progenitors of Core-Collapse Supernovae, Schuyler D. Van Dyk, ASP Conf.Ser. (2005), arXiv:astro-ph/0501363. 1604-2004: Supernovae as Cosmological Lighthouses.
Nuclear physics and astrophysics of the r-process, Y. -Z. Qian, Nucl. Phys. A752 (2005) 550, arXiv:astro-ph/0501237. International Nuclear Physics Conference (INPC2004).
IMF variations and their implications for Supernovae numbers, C. Weidner, P. Kroupa, Proc. Sci. BDMH2004 (2004) 063, arXiv:astro-ph/0412114. 'Baryons in Dark Matter Halos', Novigrad, Croatia, October 5-9, 2004.
Supernova Neutrinos and the absolute scale of neutrino masses - a Bayesian approach, Enrico Nardi, arXiv:hep-ph/0412024, 2004. Fifth Latin American Simposium on High Energy Physics (V-SILAFAE) Lima, Peru, July 12-17, 2004.
Supernova Neutrino Process and its Impact on the Galactic Chemical Evolution of the Light Elements, Takashi Yoshida, Toshitaka Kajino, Nucl. Phys. A758 (2005) 35, arXiv:astro-ph/0410651. Nuclei in the Cosmos VIII.
The r-process nucleosynthesis: a continued challenge for nuclear physics and astrophysics, S. Goriely et al., Nucl. Phys.A (2004), arXiv:astro-ph/0410429. Nuclei in the Cosmos.
Sterile Neutrinos in astrophysical and cosmological sauce, Marco Cirelli, arXiv:astro-ph/0410122, 2004. 10th International Symposium on Particles, Strings and Cosmology (PASCOS '04), August 2004, Boston, USA, and XVI Incontri sulla Fisica delle Alte Energie (IFAE), April 2004, Torino, Italy.
Parity Violation in Astrophysics, C. J. Horowitz, Eur. Phys. J. A24S2 (2005) 167, arXiv:nucl-th/0410074. PAVI04 conference in Grenoble, France.
Powerful gravitational-wave bursts from supernova neutrino oscillations, Herman J. Mosquera Cuesta, Karen Fiuza, Aip Conf. Proc. 739 (2005) 702, arXiv:astro-ph/0407526. 'Hadron Physics - RANP 2004', Angra dos Reis - Rio de Janeiro - Brazil, March 28 to April 03.
Neutrino Oscillations at Supernova Core Bounce Generate the Strongest Gravitational-Wave Bursts, Herman J. Mosquera Cuesta, Karen Fiuza, Int. J. Mod. Phys. D13 (2004) 1297, arXiv:astro-ph/0407184. International Workshop on Astronomy and Relativistic Astrophysics, Olinda (Brazil), October 12-16 (2003).
Core-Collapse Supernovae Induced by Anisotropic Neutrino Radiation, Yuko Motizuki, Hideki Madokoro, Tetsuya Shimizu, EAS Publ.Ser. 11 (2004) 163, arXiv:astro-ph/0406303. Int. conf. in hohour of the 60th birthday of Marcel Arnould, The Future Astronuclear Physics, From microscopic puzzles to macroscopic nightmares.
Supernova Neutrino-Nucleus Physics and the r-process, W. C. Haxton, arXiv:nucl-th/0406012, 2004. 'The r-process: The Astrophysical Origin of the Heavy Elements...'.
Global Anisotropies in Supernova Explosions and Pulsar Recoil, L. Scheck et al., arXiv:astro-ph/0405311, 2004. 12th Workshop on Nuclear Astrophysics, Ringberg Castle, March 22-27, 2004.
Decays of supernova relic neutrinos, G.L. Fogli, E. Lisi, A. Mirizzi, D. Montanino, arXiv:hep-ph/0405136, 2004. 39th Rencontres de Moriond on Electroweak Interactions and Unified Theories, La Thuile, Italy, 21-28 Mar 2004.
Sterile neutrinos: from cosmology to experiments, Guido Marandella, arXiv:hep-ph/0405090, 2004. 39th Rencontres de Moriond on Electroweak Interactions and Unified Theories, La Thuile, Aosta Valley, Italy, 21-28 March 2004.
Neutrinos from pre-supernova star, A. Odrzywolek, M. Misiaszek, M. Kutschera, Acta Phys. Polon. B35 (2004) 1981, arXiv:astro-ph/0405006. Epiphany Conference on Astroparticle Physics, 8-11 January 2004, Cracow, Poland.
An Approach to Neutrino Radiative Transfer in Supernova Simulations, Christian Y. Cardall, arXiv:astro-ph/0404401, 2004. Numerical Methods for Multidimensional Radiative Transfer Problems (RadConf2003), Heidelberg, Germany, 24-26 September 2003.
The Evolution of Supernovae in the Winds of Massive Stars, Vikram Dwarkadas, arXiv:astro-ph/0403195, 2004. Cosmic Explosions in Three Dimensions: Asymmetries in Supernovae and Gamma-Ray Bursts.
Detection of Supernova Neutrinos, B. Bekman, J. Holeczek, J. Kisiel, Acta Phys. Polon. B35 (2004) 1215, arXiv:hep-ph/0403117. XXVIII Mazurian Lakes School of Physics, Krzyze, Poland, August 31 - September 7, 2003.
Neutrino Processes in Supernovae and Neutrons Stars in Their Infancy and Old Age, M. Prakash, S. Ratkovic, S. I. Dutta, arXiv:astro-ph/0403038, 2004. KIAS-APCTP International Symposium in Astro-Hadron Physics, November 10-14, 2003.
Measuring neutrino masses with supernova neutrinos, Enrico Nardi, arXiv:astro-ph/0401624, 2004. X Marcel Grossmann Meeting, Rio de Janeiro, 20-26 July 2003.
Neutron Star Kicks and Supernova Asymmetry, Dong Lai, arXiv:astro-ph/0312542, 2003. 3D Signatures of Stellar Explosion, a workshop honoring J.C. Wheeler's 60th Birthday.
Low frequency radio and X-ray properties of core-collapse supernovae, A. Ray, P. Chandra, F. Sutaria, S. Bhatnagar, Springer Proc.Phys. 99 (2005) 145-150, arXiv:astro-ph/0311419. IAU Colloquium 192 'Supernovae (10 years of SN 1993J)', April 2003, Valencia, Spain.
Pulsar velocities and dark matter hint at a singlet neutrino, Alexander Kusenko, arXiv:astro-ph/0311240, 2003. Sixth RESCEU International Symposium 'Frontier in Astroparticle Physics and Cosmology', Tokyo, Japan, November 4 - 7, 2003.
Expected Changes of Supernovae with Redshift due to Evolution of their Progenitors, I. Dominguez et al., Springer Proc.Phys. 99 (2005) 567-572, arXiv:astro-ph/0311140. IAU Colloquium 192, 'Supernovae (10 years of 1993J)', Valencia, Spain 22-26 April 2003.
44Ti radioactivity in young supernova remnants: Cas A and SN 1987A, Y. Motizuki, S. Kumagai, New Astron. Rev. 48 (2004) 69, arXiv:astro-ph/0311080. 'Astronomy with Radioactivities IV', Seeon, Germany, June 2003.
Supernova Statistics, E. Cappellaro, R. Barbon, M. Turatto, Springer Proc.Phys. 99 (2005) 347-354, arXiv:astro-ph/0310859. IAU Colloquium 192, Supernovae: 10 Years of 1993J Valencia, Spain 22-26 April 2003.
Type Ia Supernovae: Spectroscopic Surprises, D. Branch, arXiv:astro-ph/0310685, 2003. 3-D Signatures of Stellar Explosions: A Workshop Honoring J. Craig Wheeler's 60th Birthday.
Effects of Small-Scale Fluctuations of Neutrino Flux in Supernova Explosions, H. Madokoro, T. Shimizu, Y. Motizuki, Springer Proc.Phys. 99 (2005) 309-314, arXiv:astro-ph/0310481. IAU Colloquium 192, SUPERNOVAE (10 years of SN1993J), Valencia, Spain.
Understanding Type II Supernovae, L. Zampieri, M. Ramina, A. Pastorello, Springer Proc.Phys. 99 (2005) 275-280, arXiv:astro-ph/0310057. IAU Colloquium 192, 'Supernovae (10 years of 1993J)', Valencia, Spain 22-26 April 2003.
Observational Properties of Type II Plateau Supernovae, A. Pastorello et al., Springer Proc.Phys. 99 (2005) 195-199, arXiv:astro-ph/0310056. IAU Colloquium 192, 'Supernovae (10 years of 1993J)', Valencia, Spain 22-26 April 2003.
Cosmic rays, stellar evolution, and supernova physics, P. L. Biermann, New Astron. Rev. 48 (2004) 41, arXiv:astro-ph/0309810. 'Astronomy With Radioactivities IV - Filling the Sensitivty Gap in MEV Astronomy', Seeon Conference, Bavaria, Germany, May 2003.
A Geometric Determination of the Distance to SN 1987A and the LMC, N. Panagia, Springer Proc.Phys. 99 (2005) 585-592, arXiv:astro-ph/0309416. IAU Colloquium 192 'Supernovae (10 years of SN1993J)', Valencia, Spain.
$^{56}\mathrm{Ni}$ mass in type IIP SNe: Light curves and H-alpha luminosities diagnostics, Abouazza Elmhamdi, N. N. Chugai, I. J. Danziger, Springer Proc.Phys. 99 (2005) 303-308, arXiv:astro-ph/0309286. IAU Colloquium 192: Supernovae (10 Years after SN1993J), Valencia, Spain, 22-26 Apr 2003.
Neutrinos and (anti)neutrinos from supernovae and from the earth in the Borexino detector, L. Miramonti, arXiv:hep-ex/0307029, 2003. 1st Yamada Symposium on Neutrinos and Dark Matter in Nuclear Physics June 9-14, 2003, Nara, Japan.
Neutrinos in Extra Dimensions and Supernovae, M. Cirelli, arXiv:hep-ph/0305141, 2003. 38th Rencontres de Moriond - Electroweak Interactions and Unified Theories, March 15-22, 2003, Les Arcs, France.
Supernova neutrinos: Flavor-dependent fluxes and spectra, G.G.Raffelt et al., arXiv:astro-ph/0303226, 2003. NOON 03, Kanazawa, 10-14 Feb 2003.
Neutrinos and Nucleosynthesis in Supernova, U. Solis, J. C. D'Olivo, L. G. Cabral-Rosetti, J. Phys. Conf. Ser. 37 (2006) 127-130, arXiv:hep-ph/0302015. Mexican School of Astrophysics (EMA), Guanajuato, Mexico, July 31 - August 7, 2002.
Supernova Explosions from Accretion Disk Winds, Andrew I. MacFadyen, arXiv:astro-ph/0301425, 2003. 'From Twilight to Highlight - The Physics of Supernovae' ESO/MPA/MPE Workshop, Garching July 2002.
Presupernova Evolution of Rotating Massive Stars and the Rotation Rate of Pulsars, A. Heger, S. E. Woosley, N. Langer, H. C. Spruit, IAU Symp. 215 (2004) 591, arXiv:astro-ph/0301374. IAU 215 'Stellar Rotation'.
Supernovae, Gamma-Ray Bursts, and Stellar Rotation, S. E. Woosley, A. Heger, IAU Symp. (2003), arXiv:astro-ph/0301373. IAU 215 'Stellar Rotation'.
Circumstellar Interaction Around Supernovae, Roger A. Chevalier, arXiv:astro-ph/0301368, 2003. 'From Twilight to Highlight - The Physics of Supernovae' ESO/MPA/MPE Workshop, Garching July 2002.
Supernova Neutrinos : oscillations and new interactions, D. Montanino, 2003. Seminar at Padua University, November 18, 2003, Padua, Italy.
Observable Effects of Shocks in Compact and Extended Presupernovae, S. Blinnikov et al., arXiv:astro-ph/0212569, 2002. ESO/MPA/MPE Workshop 'From Twilight to Highlight: The Physics of Supernovae', Garching, July 2002.
Light Curves of Type Ia Supernovae as a Probe for an Explosion Model, Elena Sorokina, Sergey Blinnikov, arXiv:astro-ph/0212527, 2002. From Twilight to Highlight: The Physics of Supernovae, ESO Astrophysics Symposia.
The Mechanism of Core-Collapse Supernovae and the Ejection of Heavy Elements, H.-Th. Janka, R. Buras, M. Rampp, Nucl. Phys. A718 (2003) 269, arXiv:astro-ph/0212317. NIC7, Fuji-Yoshida, Japan, July 8-12, 2002.
X-ray emission of young SN Ia remnants as a probe for an explosion model, D.I.Kosenko, E.I.Sorokina, S.I.Blinnikov, P. Lundqvist, arXiv:astro-ph/0212188, 2002. 34th COSPAR Sci. Assembly, Houston, 10-19 october 2002.
Energy exchange inside SN ejecta and light curves of SNe Ia, E.I.Sorokina, S.I.Blinnikov, arXiv:astro-ph/0212187, 2002. 11th Workshop on 'Nuclear Astrophysics', Ringberg Castle, Tegernsee, Germany, February 11-16, 2002.
Magnetic Field in Supernovae, Shizuka Akiyama, J. Craig Wheeler, arXiv:astro-ph/0211458, 2002. conference 'Core Collapse of Massive Stars'.
The Neutrino Signal in Stellar Core Collapse and Postbounce Evolution, M. Liebendoerfer et al., Nucl. Phys. A719 (2003) 144, arXiv:astro-ph/0211329. Nuclear Physics in Astrophysics Conference, Debrecen, Hungary, 2002.
Variety in Supernovae, Massimo Turatto, Stefano Benetti, Enrico Cappellaro, arXiv:astro-ph/0211219, 2002. ESO / MPA / MPE Workshop: From Twilight to Highlight: The Physics of Supernovae, Garching, Germany, 29-31 June 2002.
Synchronised neutrino oscillations from self interaction and associated applications, Yvonne Y. Y. W., Aip Conf. Proc. 655 (2003) 240, arXiv:hep-ph/0211045. 3rd Topical Workshop on Particle Physics and Cosmology: Neutrinos, Branes and Cosmology, San Juan, Puerto Rico, 19-24 Aug 2002.
Nucleosynthesis as a result of multiple delayed detonations in Type Ia Supernovae, Domingo Garcia-Senz, Eduardo Bravo, Nucl. Phys. A718 (2003) 563, arXiv:astro-ph/0210339. 'Nuclei in the Cosmos VII' 2002.
Neutrino-nucleon scattering rate in the relativistic random phase approximation, L. Mornas, Nucl. Phys. A721 (2003) 1040, arXiv:nucl-th/0210035. PANIC02 conference, 30 sept - 4 oct 2002, Osaka, Japan.
Supernovae and Neutrinos, John F. Beacom, Nucl. Phys. Proc. Suppl. 118 (2003) 307, arXiv:astro-ph/0209136. XXth International Conference on Neutrino Physics and Astrophysics (Neutrino 2002), Munich, Germany, May 25-30, 2002.
Neutron Stars, Pulsars and Supernova Remnants: concluding remarks, F. Pacini, arXiv:astro-ph/0208563, 2002. Proceedings of the 270. WE-Heraeus Seminar on Neutron Stars, Pulsars and Supernova Remnants, Jan. 21-25, 2002, Physikzentrum Bad Honnef.
Supernova neutrinos, LSND and MiniBooNE, Michel Sorel, arXiv:hep-ph/0205207, 2002. 37th Rencontres de Moriond on Electroweak Interactions and Unified Theories, Les Arcs, France, 9-16 Mar 2002.
Core-collapse supernova simulations: Variations of the input physics, M. Rampp, R. Buras, H.-Th. Janka, G. Raffelt, arXiv:astro-ph/0203493, 2002. Proceedings of the 11th Workshop on 'Nuclear Astrophysics' held at Ringberg Castle, February 11-16, 2002.
Neutrinos from SNR, T. Stanev, 2002. International Workshop on Neutrinos and Subterranean Science - NeSS 02, Washington, DC, September 19-21, 2002.
Supernova constraints on neutrino mass and mixing, Srubabati Goswami, Pramana 54 (2000) 173-184, arXiv:hep-ph/0104094. Meeting on Recent Developments in Neutrino Physics, Ahmedabad, India, 2-4 Feb 1999.
Supernova neutrinos and the neutrino masses, J. F. Beacom, Rev.Mex.Fis. 45 (1999) 36, arXiv:hep-ph/9901300. 22nd Symposium on Nuclear Physics, Oaxtepec, Morelos, Mexico, 5-8 Jan 1999.
Supernova Remnants - Part One - Historical Events, R. G. Strom, 1990. NATO Advanced Study Institute on Neutron Stars: Their Birth, Evolution, Radiation and Winds, Erice, Sicily, Italy, September 5-17, 1988, p. 253.
Supernova statistics and related problems, G. A. Tammann, 1982. Supernovae: a Survey of Current Research, Cambridge, England, June 29-July 10, 1981, p. 371-403.
N. Cabibbo, 1980. Proc. of 'Astrophysics and Elementary Particles, Common Problems', Rome, Italy, 21-23 February 1980, p. 209.

18 - Phenomenology - Type II - SN1987A

Can a bright and energetic X-ray pulsar be hiding amid the debris of SN 1987A?, P. Esposito et al., Astrophys.J. 857 (2018) 58, arXiv:1803.04692.
Explaining the morphology of supernova remnant (SNR) 1987A with the jittering jets explosion mechanism, Ealeal Bear, Noam Soker, arXiv:1803.03946, 2018.
Supernova 1987A Constraints on Sub-GeV Dark Sectors, Millicharged Particles, the QCD Axion, and an Axion-like Particle, Jae Hyeok Chang, Rouven Essig, Samuel D. McDermott, arXiv:1803.00993, 2018.
Interaction of the SN1987A Neutrino with the Galaxy, Kenzo Ishikawa, Terry Sloan, Yutaka Tobita, arXiv:1710.03441, 2017.
Updated Constraints on Self-Interacting Dark Matter from Supernova 1987A, Cameron Mahoney, Adam K. Leibovich, Andrew R. Zentner, Phys.Rev. D96 (2017) 043018, arXiv:1706.08871.
Evidence for two neutrinos bursts from SN1987A, R. Valentim, J. E. Horvath, E. M. Rangel, Int.J.Mod.Phys.Conf.Ser. 45 (2017) 1760040, arXiv:1706.07824.
Revisiting Supernova 1987A Constraints on Dark Photons, Jae Hyeok Chang, Rouven Essig, Samuel D. McDermott, JHEP 1701 (2017) 107, arXiv:1611.03864.
New analysis for the correlation between gravitational waves and neutrino detectors during SN1987A, P. Galeotti, G. Pizzella, Eur.Phys.J. C76 (2016) 426, arXiv:1603.05076.
The Mont Blanc mystery solved? A $m^2=-0.28 keV^2$ neutrino, Robert Ehrlich, Astropart.Phys. 85 (2016) 43-49, arXiv:1602.09043.
Neutrino Signal of Collapse-Induced Thermonuclear Supernovae: The Case for Prompt Black Hole Formation in SN1987A, Kfir Blum, Doron Kushnir, Astrophys.J. 828 (2016) 31, arXiv:1601.03422.
Nucleon-nucleon bremsstrahlung of dark gauge bosons and revised supernova constraints, Ermal Rrapaj, Sanjay Reddy, Phys. Rev. C94 (2016) 045805, arXiv:1511.09136.
Supernova 1987A: neutrino-driven explosions in three dimensions and light curves, Victor Utrobin, Annop Wongwathanarat, H.-Thomas Janka, Ewald Mueller, arXiv:1412.4122, 2014.
Revisiting the SN1987A gamma-ray limit on ultralight axion-like particles, Alexandre Payez et al., JCAP 1502 (2015) 006, arXiv:1410.3747.
Comparative analysis of SN1987A antineutrino fluence, Francesco Vissani, J. Phys. G42 (2015) 013001, arXiv:1409.4710.
Signatures of Neutrino Cooling in the SN1987A Scenario, Cristian G. Bernal, Nissim Fraija, Hidalgo-Gamez A. M, Mon.Not.Roy.Astron.Soc. 442 (2014) 239, arXiv:1402.6292.
Evidence for two neutrino mass eigenstates from SN 1987A and the possibility of superluminal neutrinos, Robert Ehrlich, Astropart.Phys. 35 (2012) 625-628, arXiv:1111.0502.
Neutrino mass bound in the standard scenario for supernova electronic antineutrino emission, Giulia Pagliaroli, Fernando Rossi-Torres, Francesco Vissani, Astropart. Phys. 33 (2010) 287-291, arXiv:1002.3349.
The likelihood for supernova neutrino analyses, A. Ianni et al., Phys. Rev. D80 (2009) 043007, arXiv:0907.1891.
Active and Sterile Neutrino Emission and SN1987A Pulsar Velocity, Leonard S Kisslinger, Sandip Pakvasa, arXiv:0906.4117, 2009.
Could the compact remnant of SN 1987A be a quark star?, T. C. Chan et al., Astrophys. J. 695 (2009) 732-746, arXiv:0902.0653.
Bounds on the Parameter of Noncommutativity from Supernova SN1987A, Mansour Haghighat, Phys. Rev. D79 (2009) 025011, arXiv:0901.1069.
Improved analysis of SN1987A antineutrino events, G. Pagliaroli, F. Vissani, M.L. Costantini, A. Ianni, Astropart.Phys. 31 (2009) 163-176, arXiv:0810.0466.
How much can we learn from SN1987A events? Or: An analysis with a two-Component model for the antineutrino signal, F. Vissani, G. Pagliaroli, arXiv:0807.1301, 2008.
Bounds on large extra dimensions from photon fusion process in SN1987A, V. H. Satheeshkumar, P. K. Suresh, JCAP 0806 (2008) 011, arXiv:0805.3429.
Analysis of Neutrino Signals from SN1987A, G. Pagliaroli, M.L. Costantini, F. Vissani, IFAE 2007 (2008) Proceedings. Edited by G. Carlino, arXiv:0804.4598.
SN1987A Pulsar Velocity From Modified URCA Processes and Landau Levels, Leonard S. Kisslinger, Sandip Pakvasa, arXiv:0802.1689, 2008.
Constraints on Astro-unparticle Physics from SN 1987A, Sukanta Dutta, Ashok Goyal, JCAP 0803 (2008) 027, arXiv:0712.0145.
Statistical analysis of neutrino events from SN1987A neutrino burst: estimation of the electron antineutrino mass, B. I. Goryachev, arXiv:0709.4627, 2007.
Unparticle constraints from SN1987A, Steen Hannestad, Georg Raffelt, Yvonne Y. Y. Wong, Phys. Rev. D76 (2007) 121701, arXiv:0708.1404.
Supernovae as Probes of Extra Dimensions, V. H. Satheesh Kumar, P. K. Suresh, P. K. Das, AIP Conf. Proc. 939 (2007) 258-262, arXiv:0706.3551.
The first second of SN1987A neutrino emission, G. Pagliaroli, M.L. Costantini, A. Ianni, F. Vissani, arXiv:0705.4032, 2007.
High resolution spectroscopy of the line emission from the inner circumstellar ring of SN 1987A and its hot spots, Per Groeningsson et al., Astron.Astrophys. (2007), arXiv:astro-ph/0703788.
Neutrino Spectrum from SN 1987A and from Cosmic Supernovae, Hasan Yuksel, John F. Beacom, Phys. Rev. D76 (2007) 083007, arXiv:astro-ph/0702613.
Magnetic field in supernova remnant SN 1987A, E.G. Berezhko, L.T. Ksenofontov, Astrophys. J. 650 (2006) L59-L62, arXiv:astro-ph/0608586.
Is there a problem with low energy SN1987A neutrinos?, Maria Laura Costantini, Aldo Ianni, Giulia Pagliaroli, Francesco Vissani, JCAP 0705 (2007) 014, arXiv:astro-ph/0608399.
Constraints on neutrino mixing angle $\theta_{13}$ and Supernova neutrino fluxes from the LSD neutrino signal from SN1987A, Oleg Lychkovskiy, arXiv:hep-ph/0604113, 2006.
Evolution of the Reverse Shock Emission from SNR 1987A, Kevin Heng et al., Astrophys. J. 644 (2006) 959-970, arXiv:astro-ph/0603151.
Lower neutrino mass bound from SN1987A data and quantum geometry, G. Lambiase, G. Papini, R. Punzi, G. Scarpetta, Class. Quant. Grav. 23 (2006) 1347-1358, arXiv:gr-qc/0512154.
New analysis of the SN 1987A neutrinos with a flexible spectral shape, Alessandro Mirizzi, Georg G. Raffelt, Phys. Rev. D72 (2005) 063001, arXiv:astro-ph/0508612.
The Three-Dimensional Circumstellar Environment of SN 1987A, Ben E. K. Sugerman et al., Astrophys. J. Suppl. 159 (2005) 60-99, arXiv:astro-ph/0502378.
The Light Curve of Supernova 1987A: The Structure of the Presupernova and Radioactive Nickel Mixing, V. P. Utrobin, Astron. Lett. 30 (2004) 293, arXiv:astro-ph/0406410.
SN1987A and the properties of neutrino burst, Maria Laura Costantini, Aldo Ianni, Francesco Vissani, Phys. Rev. D70 (2004) 043006, arXiv:astro-ph/0403436.
Constraints on a Putative Pulsar in SN 1987A, H. Ogelman, M.A. Alpar, Astrophys. J. 603 (2004) L33, arXiv:astro-ph/0402147.
Neutrinos from SN1987A: flavor conversion and interpretation of results, C. Lunardini, A. Yu. Smirnov, Astropart. Phys. 21 (2004) 703, arXiv:hep-ph/0402128.
A Rotating Collapsar and Possible Interpretation of the LSD Neutrino Signal from SN 1987A, V.S. Imshennik, O.G. Ryazhskaya, Astron. Lett. 30 (2004) 14, arXiv:astro-ph/0401613.
Evidence of non-zero mass features for the neutrinos emitted at Supernova LMC-'87A, Humiaki Huzita, arXiv:hep-ph/0212337, 2002.
Supernova 1987A did not test the neutrino mass hierarchy, V. Barger, D. Marfatia, B. P. Wood, Phys. Lett. B532 (2002) 19-28, arXiv:hep-ph/0202158.
SN1987A and the status of oscillation solutions to the solar neutrino problem, M. Kachelriess, A. Strumia, R. Tomas, J. W. F. Valle, Phys. Rev. D65 (2002) 073016, arXiv:hep-ph/0108100.
Bayesian analysis of neutrinos observed from supernova SN 1987A, Thomas J. Loredo, Don Q. Lamb, Phys. Rev. D65 (2002) 063002, arXiv:astro-ph/0107260.
From the abstract: We present a Bayesian analysis of the energies and arrival times of the neutrinos from supernova SN 1987A detected by the Kamiokande II, IMB, and Baksan detectors, and find strong evidence for two components in the neutrino signal: a long time scale component from thermal Kelvin-Helmholtz cooling of the nascent neutron star, and a brief ($\sim 1$ s), softer component similar to that expected from emission by accreting material in the delayed supernova scenario. In the context of this model, we show that the data constrain the electron antineutrino rest mass to be less than 5.7~eV with 95% probability.
Large lepton mixing and supernova 1987A, M. Kachelriess, R. Tomas, J. W. F. Valle, JHEP 01 (2001) 030, arXiv:hep-ph/0012134.
Inverted hierarchy of neutrino masses disfavored by supernova 1987A, Hisakazu Minakata, Hiroshi Nunokawa, Phys. Lett. B504 (2001) 301-308, arXiv:hep-ph/0010240.
Neutrinos from SN1987A, Earth matter effects and the LMA solution of the solar neutrino problem, C. Lunardini, A. Yu. Smirnov, Phys. Rev. D63 (2001) 073009, arXiv:hep-ph/0009356.
SN1987A: A testing ground for the KARMEN anomaly, I. Goldman, R. Mohapatra, S. Nussinov, Phys. Lett. B481 (2000) 151-159, arXiv:hep-ph/9912465.
Contact interactions involving right-handed neutrinos and SN 1987A, J. A. Grifols, E. Masso, R. Toldra, Phys. Rev. D57 (1998) 2005-2008, arXiv:hep-ph/9707531.
Gamma rays from SN1987A due to pseudoscalar conversion, J. A. Grifols, E. Masso, R. Toldra, Phys. Rev. Lett. 77 (1996) 2372-2375, arXiv:astro-ph/9606028.
Gamma-rays and the decay of neutrinos from SN1987A, Andrew H. Jaffe, Michael S. Turner, Phys. Rev. D55 (1997) 7951-7959, arXiv:astro-ph/9601104.
Bounds on the neutrino magnetic moment from SN1987A, A. Goyal, S. Dutta, S. R. Choudhury, Phys. Lett. B346 (1995) 312-316.
Testing special relativity with SN1987A neutrino pulses, E. Atzmon, S. Nussinov, Phys. Lett. B328 (1994) 103-108.
Constraints from nucleosynthesis and SN1987A on majoron emitting double beta decay, Sanghyeon Chang, Kiwoon Choi, Phys. Rev. D49 (1994) 12-15, arXiv:hep-ph/9303243.
Constraints to the decays of Dirac neutrinos from SN1987A, Scott Dodelson, Joshua A. Frieman, Michael S. Turner, Phys. Rev. Lett. 68 (1992) 2572-2575.
Massive Dirac neutrinos and SN1987A, Adam Burrows, Raj Gandhi, MIchael S. Turner, Phys. Rev. Lett. 68 (1992) 3834-3837.
Dirac neutrinos and SN1987A, Michael S. Turner, Phys. Rev. D45 (1992) 1066-1075.
E(6) models confront SN1987A, J. A. Grifols, E. Masso, T. G. Rizzo, Phys. Rev. D42 (1990) 3293-3296.
limits on the muon-neutrino and tau-neutrino masses from SN1987A, J. A. Grifols, E. Masso, Phys. Lett. B242 (1990) 77.
Massive Dirac neutrinos and the SN1987A signal, Raj Gandhi, Adam Burrows, Phys. Lett. B246 (1990) 149-155.
Charge radius of the neutrino: a limit from SN1987A, J. A. Grifols, E. Masso, Phys. Rev. D40 (1989) 3819.
Constraints on decaying right-handed majorana neutrinos from SN1987A observations, R. N. Mohapatra, S. Nussinov, Phys. Rev. D39 (1989) 1378-1385.
Limits to the Radiative Decays of Neutrinos and Axions from Gamma-Ray Observations of SN 1987a, Edward W. Kolb, Michael S. Turner, Phys. Rev. Lett. 62 (1989) 509.
Neutrino helicity flips via electroweak interactions and SN1987A, K. J. F. Gaemers, R. Gandhi, J. m. Lattimer, Phys. Rev. D40 (1989) 309.
comment on 'constraints on the majoron interactions from the supernova SN1987A.', Y. Aharonov, F. T. Avignone, S. Nussinov, Phys. Rev. D39 (1989) 985.
axions and SN1987A, Adam Burrows, Michael S. Turner, R. P. Brinkmann, Phys. Rev. D39 (1989) 1020.
Remarks on the first two events in the supernova burst observed by Kamiokande-ii, S. P. Rosen, Phys. Rev. D37 (1988) 1682.
implications of the triplet - majoron model for the supernova SN1987A, Y. Aharonov, F. T. Avignone, S. Nussinov, Phys. Rev. D37 (1988) 1360-1367.
bounds on exotic particle interactions from SN1987A, Georg Raffelt, David Seckel, Phys. Rev. Lett. 60 (1988) 1793.
neutrino masses and flavors emitted in the supernova SN1987A, R. Cowsik, Phys. Rev. D37 (1988) 1685.
From the abstract: The analysis of the energies and times of arrival of neutrino events in the Kamioka and IMB detectors yelds two mass groupings at $\sim 22 \, \mathrm{eV}$ and the other at $\sim 4 \, \mathrm{eV}$, if all neutrinos were released rapidly at the supernova.
Comment: The author assumed that electron antineutrinos are emitted from the supernova in a very short time, of the order of 0.1 sec. This assumption is contrary to the standard understanding of the core-collapse supernova mechanism, according to which electron antineutrinos are emitted during the cooling phase of the proto-neutron star on a time scale of about 10 sec (see Supernovae). Moreover, the existence of neutrinos with masses of about 4 eV and 22 eV which have large mixing with the electron antineutrino is excluded by the Tritium upper bound on the effective electron neutrino mass (see Neutrino Mass: Direct Measurements). (C.G.).
limits on the neutrino magnetic moment from SN1987A, J. M. Lattimer, J. Cooperstein, Phys. Rev. Lett. 61 (1988) 23-26.
New Bounds on Neutrino Magnetic Moments From Stellar Collapse, Dirk Notzold, Phys. Rev. D38 (1988) 1658.
constraints on the neutrino mass from the supernova data: a systematic analysis, L. F. Abbott, A. De Rujula, T. P. Walker, Nucl. Phys. B299 (1988) 734.
Statistical analysis of the neutrino burst from SN1987A, Hideyuki Suzuki, Katsuhiko Sato, Prog. Theor. Phys. 79 (1988) 725.
Correlation mass method for analysis of neutrinos from supernova 1987A, H. Chiu, K. L. Chan, Y. Kondo, Astrophys. J. 329 (1988) 326-334.
The magnetic moment of the neutrino and its implications for neutrino signal from SN1987A, Riccardo Barbieri, R. N. Mohapatra, T. Yanagida, Phys. Lett. B213 (1988) 69.
Neutrino mixing, decays and supernova SN1987a, Joshua A. Frieman, Howard E. Haber, Katherine Freese, Phys. Lett. B200 (1988) 115.
The mass of the electron-neutrino: monte carlo studies of SN1987A observations, David N. Spergel, J. N. Bahcall, Phys. Lett. B200 (1988) 366.
Limit on the magnetic moment of the neutrino from supernova SN1987A observations, Riccardo Barbieri, Rabindra N. Mohapatra, Phys. Rev. Lett. 61 (1988) 27.
Implications of the supernova SN1987A neutrino signals, I. Goldman, Y. Aharonov, G. Alexander, S. Nussinov, Phys. Rev. Lett. 60 (1988) 1789.
Supernova neutrinos and their oscillations, T. K. Kuo, James T. Pantaleone, Phys. Rev. D37 (1988) 298.
Upper limit on the mass of the electron-neutrino, J. N. Bahcall, S. L. Glashow, Nature 326 (1987) 476.
Total energy of neutrino burst from the supernova SN1987A and the mass of neutron star just born, Katsuhiko Sato, Hideyuki Suzuki, Phys. Lett. B196 (1987) 267.
constraints on the lifetime of massive neutrinos from SN1987A, Arnon Dar, Shlomo Dado, Phys. Rev. Lett. 59 (1987) 2368.
Neutrinos from supernova SN1987A, David N. Schramm, Comments Nucl. Part. Phys. 17 (1987) 239.
From the article: ... without making specific model assumptions, all that can be safely said is $m_{\bar\nu_e} < 30 \, \mathrm{eV}$.
Constraints on light particles from supernova SN1987A, John R. Ellis, Keith A. Olive, Phys. Lett. B193 (1987) 525.
Neutrino spectroscopy of the supernova SN1987A, Lawrence M. Krauss, Nature 329 (1987) 689-694.
Constraint on the mass and lifetime of heavy neutrinos from the supernova SN1987A in the Large Magellanic Cloud, Mariko Takahara, Katsuhiko Sato, Mod. Phys. Lett. A2 (1987) 293.
Neutrinos from the supernova in the LMC, J. N. Bahcall, A. Dar, T. Piran, Nature 326 (1987) 135.
A simple model for neutrino cooling of the LMC supernova, D. N. Spergel, T. Piran, A. Loeb, J. Goodman, J. N. Bahcall, Science 237 (1987) 1471.
Neutrino temperatures and fluxes from the LMC supernova, J. N. Bahcall, T. Piran, W. H. Press, D. N. Spergel, Nature 327 (1987) 682-685.
SN1987A: a black hole precursor?, S. Nussinov, I. Goldman, G. Alexander, Y. Aharonov, Nature 329 (1987) 134-135.
Neutrino mass limits from SN1987A, W. David Arnett, Jonathan L. Rosner, Phys. Rev. Lett. 58 (1987) 1906.
Analysis of neutrino burst from the supernova in LMC, Katsuhiko Sato, Hideyuki Suzuki, Phys. Rev. Lett. 58 (1987) 2722.
May a supernova bang twice?, A. De Rujula, Phys. Lett. B193 (1987) 514.
Electric Charge of the Neutrinos from SN1987A, G. Barbiellini, G. Cocconi, Nature 329 (1987) 21-22.
Neutrino mass speculation on the neutrino events from the supernova LMC 1987 A, H. Huzita, Mod. Phys. Lett. A2 (1987) 905-911.
From the abstract: ... time to energy correlation in Kamiokande detector has 2 separate groups. Each group correspond to non zero neutrino mass $3.4 \pm 0.6$ and $23 \pm 4$ eV.

19 - Phenomenology - Type II - SN1987A - Conference Proceedings

Neutrinos from SN 1987a. A Puzzle Revisited, Gerd Schatz, J. Phys. Conf. Ser. 632 (2015) 012024, arXiv:1507.07107. 24th European Cosmic Ray Symposium Kiel 2014.
Reexamination of a Bound on the Dirac Neutrino Magnetic Moment from the Supernova Neutrino Luminosity, A.V. Kuznetsov, N.V. Mikheev, A.A. Okrugin, arXiv:1011.2100, 2010. XVI International Seminar Quarks'2010, Kolomna, Moscow Region, June 6-12, 2010.
What is the issue with SN1987A neutrinos?, F. Vissani, M.L. Costantini, W. Fulgione, A. Ianni, G. Pagliaroli, arXiv:1008.4726, 2010. Vulcano Workshop 2010: Frontier Objects in Astrophysics and Particle Physics, Vulcano, Italy, May 24-29, 2010.
Analysis of the SN1987A two-stage explosion hypothesis with account for the MSW neutrino flavour conversion, Oleg Lychkovskiy, arXiv:0707.2508, 2007. Rencontres de Moriond EW 2007, 10-17 March 2007.
Neutrino events from SN1987A revisited, B. Bekman, J. Holeczek, J. Kisiel, Acta Phys. Polon. B37 (2006) 269, arXiv:hep-ph/0511271. XXIX Mazurian Lakes Conference on Physics, August 30 - September 6, 2005, Piaski, Poland.
SN 1987A: The Unusual Explosion of a Normal Type II Supernova, Nino Panagia, ASP Conf.Ser. (2004), arXiv:astro-ph/0410275. International Conference '1604-2004 Supernovae as Cosmological Lighthouses' (Padova, Italy, June 16-19, 2004).
SN1987A: Temporal Models, M.I.Wanas, M.Melek, M.E.Kahil, arXiv:gr-qc/0306086, 2003. MG IX (2002).
The precious information from supernova LMC-87A on the neutrino masses and neutrino mixing angles among the flavor states and the mass states, H. Huzita, Phys. Atom. Nucl. 63 (2000) 979-983. 2nd International Conference on Nonaccelerator New Physics (NANP 99), Dubna, Moscow Region, Russia, 28 June - 3 Jul 1999.
Comment: {Same as in [18-75].
Analysis of Neutrinos from Supernova 1987A, H. Y. Chiu, K. L. Chan, Y. Kondo, IAU Colloq. 108: Atmospheric Diagnostics of Stellar Evolution 422 (1988).
Mass determination of neutrinos, H. Y. Chiu, 1987. IN 'FAIRFAX 1987, PROCEEDINGS, SUPERNOVA 1987A IN THE LARGE MAGELLANIC CLOUD' 185-193.
Neutrino masses from SN1987a, Jerrold Franklin, 1987. IN 'FAIRFAX 1987, PROCEEDINGS, SUPERNOVA 1987A IN THE LARGE MAGELLANIC CLOUD' 197-199.

20 - Phenomenology - Type II - Simulations

The non-linear onset of neutrino-driven convection in two and three-dimensional core-collapse supernovae, Remi. Kazeroni, Brendan. K. Krueger, Jerome Guilet, Thierry Foglizzo, Daniel Pomarede, arXiv:1802.08125, 2018.
Hydrodynamical Neutron-star Kicks in Electron-capture Supernovae and Implications for the CRAB Supernova, Alexandra Gessner, Hans-Thomas Janka, arXiv:1802.05274, 2018.
$r$-Process Nucleosynthesis from Three-dimensional Jet-driven Core-Collapse Supernovae with Magnetic Misalignments, Goni Halevi, Philipp Mosta, arXiv:1801.08943, 2018.
Revival of the Fittest: Exploding Core-Collapse Supernovae from 12 to 25 M$_{\odot}$, David Vartanyan, Adam Burrows, David Radice, M. Aaron Skinner, Joshua Dolence, arXiv:1801.08148, 2018.
A full general relativistic neutrino radiation-hydrodynamics simulation of a collapsing very massive star and the formation of a black hole, Takami Kuroda, Kei Kotake, Tomoya Takiwaki, Friedrich-Karl Thielemann, arXiv:1801.01293, 2018.
R-process Nucleosynthesis from Three-Dimensional Magnetorotational Core-Collapse Supernovae, Philipp Mosta et al., arXiv:1712.09370, 2017.
The Progenitor Dependence of Three-Dimensional Core-Collapse Supernovae, C. D. Ott et al., Astrophys.J. 855 (2018) L3, arXiv:1712.01304.
Anisotropic emission of neutrino and gravitational-wave signals from rapidly rotating core-collapse supernovae, Tomoya Takiwaki, Kei Kotake, arXiv:1711.01905, 2017.
Emission line models for the lowest-mass core collapse supernovae. I: Case study of a 9 $M_\odot$ one-dimensional neutrino-driven explosion, A. Jerkstrand et al., Mon.Not.Roy.Astron.Soc. 475 (2018) 277, arXiv:1710.04508.
Mass Ejection in Failed Supernovae: Variation with Stellar Progenitor, Rodrigo Fernandez, Eliot Quataert, Kazumi Kashiyama, Eric R. Coughlin, arXiv:1710.01735, 2017.
Black hole formation and fallback during the supernova explosion of a $40 \,\mathrm{M}_\odot$ star, Conrad Chan, Bernhard Muller, Alexander Heger, Rudiger Pakmor, Volker Springel, Astrophys.J. 852 (2018) L19, arXiv:1710.00838.
Diffuse Supernova Neutrino Background from extensive core-collapse simulations of $8$-$100 {\rm M}_\odot$ progenitors, Shunsaku Horiuchi et al., Mon.Not.Roy.Astron.Soc. 475 (2018) 1363, arXiv:1709.06567.
Inferring the core-collapse supernova explosion mechanism with three-dimensional gravitational-wave simulations, Jade Powell, Marek Szczepanczyk, Ik Siong Heng, Phys.Rev. D96 (2017) 123013, arXiv:1709.00955.
Properties of Convective Oxygen and Silicon Burning Shells in Supernova Progenitors, C. Collins, B. Muller, A. Heger, arXiv:1709.00236, 2017.
Correlated Signatures of Gravitational-Wave and Neutrino Emission in Three-Dimensional General-Relativistic Core-Collapse Supernova Simulations, Takami Kuroda, Kei Kotake, Kazuhiro Hayama, Tomoya Takiwaki, Astrophys.J. 851 (2017) 62, arXiv:1708.05252.
Rotation-supported Neutrino-driven Supernova Explosions in Three Dimensions and the Critical Luminosity Condition, A. Summa, H. -Th. Janka, T. Melson, A. Marek, Astrophys.J. 852 (2018) 28, arXiv:1708.04154.
A Detailed Comparison of Multi-Dimensional Boltzmann Neutrino Transport Methods in Core-Collapse Supernovae, Sherwood Richers, Hiroki Nagakura, Christian D. Ott, Joshua Dolence, Kohsuke Sumiyoshi, Shoichi Yamada, Astrophys.J. 847 (2017) 133, arXiv:1706.06187.
Supernova Simulations from a 3D Progenitor Model - Impact of Perturbations and Evolution of Explosion Properties, B. Muller, T. Melson, A. Heger, H.-Th. Janka, Mon.Not.Roy.Astron.Soc. 472 (2017) 491, arXiv:1705.00620.
Light curve analysis of ordinary type IIP supernovae based on neutrino-driven explosion simulations in three dimensions, V. P. Utrobin, A. Wongwathanarat, H.-Th. Janka, E. Mueller, Astrophys.J. 846 (2017) 37, arXiv:1704.03800.
A Parametric Study of the Acoustic Mechanism for Core-Collapse Supernovae, A. Harada, H. Nagakura, W. Iwakami, S. Yamada, Astrophys.J. 839 (2017) 28, arXiv:1704.02984.
The effect upon neutrinos of core-collapse supernova accretion phase turbulence, James P. Kneller, Mithi de los Reyes, J.Phys. G44 (2017) 084008, arXiv:1702.06951.
Electron-Capture and Low-Mass Iron-Core-Collapse Supernovae: New Neutrino-Radiation-Hydrodynamics Simulations, David Radice, Adam Burrows, David Vartanyan, M. Aaron Skinner, Joshua C. Dolence, Astrophys.J. 850 (2017) 43, arXiv:1702.03927.
Six-Dimensional Simulations of Core-Collapse Supernovae with Full Boltzmann Neutrino Transport, Hiroki Nagakura et al., Astrophys.J. 854 (2018) 136, arXiv:1702.01752.
Flavor-dependent neutrino angular distribution in core-collapse supernovae, Irene Tamborra, Lorenz Huedepohl, Georg Raffelt, Hans-Thomas Janka, Astrophys.J. 839 (2017) 2, arXiv:1702.00060.
The Gravitational Wave Signal of a Core Collapse Supernova Explosion of a 15M$_\odot$ Star, Konstantin N. Yakunin et al., arXiv:1701.07325, 2017.
Nucleosynthesis in the Innermost Ejecta of Neutrino-Drive Supernova Explosions in Two Dimensions, Shinya Wanajo, Bernhard Muller, Hans-Thomas Janka, Alexander Heger, Astrophys.J. 852 (2018) 40, arXiv:1701.06786.
Crucial Physical Dependencies of the Core-Collapse Supernova Mechanism, Adam Burrows, David Vartanyan, Joshua C. Dolence, M. Aaron Skinner, David Radice, Space Sci.Rev. 214 (2018) 33, arXiv:1611.05859.
Production and Distribution of 44Ti and 56Ni in a Three-dimensional Supernova Model Resembling Cassiopeia A, A. Wongwathanarat, H.-Th. Janka, E. Mueller, E. Pllumbi, S. Wanajo, Astrophys.J. 842 (2017) 13, arXiv:1610.05643.
Gravitational Wave Signals from 3D Neutrino Hydrodynamics Simulations of Core-Collapse Supernovae, Haakon Andresen, Bernhard Mueller, Ewald Mueller, Hans-Thomas Janka, Mon.Not.Roy.Astron.Soc. 468 (2017) 2032-2051, arXiv:1607.05199.
A new gravitational-wave signature of SASI activities in non-rotating supernova cores, Takami Kuroda, Kei Kotake, Tomoya Takiwaki, Astrophys.J. 829 (2016) L14, arXiv:1605.09215.
Three-dimensional Boltzmann-Hydro code for core-collapse in massive stars II. The Implementation of moving-mesh for neutron star kicks, Hiroki Nagakura et al., Astrophys.J.Suppl. 229 (2017) 42, arXiv:1605.00666.
General Relativistic Three-Dimensional Multi-Group Neutrino Radiation-Hydrodynamics Simulations of Core-Collapse Supernovae, Luke F. Roberts et al., Astrophys.J. 831 (2016) 98, arXiv:1604.07848.
Parametric initial conditions for core-collapse supernova simulations, Yudai Suwa, Ewald Muller, Mon.Not.Roy.Astron.Soc. 460 (2016) 2664-2674, arXiv:1603.05578.
Three-dimensional hydrodynamics simulations of rapidly rotating core-collapse supernovae: finding a new class of rotation-aided explosions, Tomoya Takiwaki, Kei Kotake, Yudai Suwa, Mon.Not.Roy.Astron.Soc. 461 (2016) L112, arXiv:1602.06759.
Erratum: Progenitor-explosion connection and remnant birth masses for neutrino-driven supernovae of iron-core progenitors (2012, ApJ, 757, 69), Thomas Ertl, Marcella Ugliano, H.-Thomas Janka, Andreas Marek, Almudena Arcones, Astrophys.J. 821 (2016) 69, arXiv:1602.06327.
Progenitor-dependent Explosion Dynamics in Self-consistent, Axisymmetric Simulations of Neutrino-driven Core-collapse Supernovae, Alexander Summa et al., Astrophys.J. 825 (2016) 6, arXiv:1511.07871.
Two Dimensional Core-Collapse Supernova Explosions Aided by General Relativity with Multidimensional Neutrino Transport, Evan O'Connor, Sean Couch, Astrophys.J. 854 (2018) 63, arXiv:1511.07443.
Neutrino-Driven Convection in Core-Collapse Supernovae: High-Resolution Simulations, David Radice et al., Astrophys.J. 820 (2016) 76, arXiv:1510.05022.
Core-Collapse Supernovae from 9 to 120 Solar Masses Based on Neutrino-powered Explosions, Tuguldur Sukhbold, T. Ertl, S. E. Woosley, Justin M. Brown, H.-T. Janka, Astrophys.J. 821 (2016) 38, arXiv:1510.04643.
Quantum Simulations of Nuclei and Nuclear Pasta with the Multi-resolution Adaptive Numerical Environment for Scientific Simulations, I. Sagert, G. I. Fann, F. J. Fattoyev, S. Postnikov, C. J. Horowitz, Phys. Rev. C93 (2016) 055801, arXiv:1509.06671.
Stochasticity and efficiency of convection-dominated vs. SASI-dominated supernova explosions, Christian Y. Cardall, Reuben D. Budiardja, Astrophys. J. 813 (2015) L6, arXiv:1509.02494.
A Comparative study of hyperon equations of state in supernova simulations, Prasanta Char, Sarmistha Banik, Debades Bandyopadhyay, Astrophys. J. 809 (2015) 116, arXiv:1508.01854.
Jittering-jets explosion triggered by the standing accretion shock instability, Oded Papish, Avishai Gilkis, Noam Soker, arXiv:1508.00218, 2015.
Neutrino-driven explosions of ultra-stripped type Ic supernovae generating binary neutron stars, Yudai Suwa, Takashi Yoshida, Masaru Shibata, Hideyuki Umeda, Koh Takahashi, Mon. Not. Roy. Astron. Soc. 454 (2015) 3073-3081, arXiv:1506.08827.
The Dynamics of Neutrino-Driven Supernova Explosions after Shock Revival in 2D and 3D, Bernhard Muller, Mon. Not. Roy. Astron. Soc. 453 (2015) 287, arXiv:1506.05139.
Gravitational Wave Signatures of Ab Initio Two-Dimensional Core Collapse Supernova Explosion Models for 12-25 Solar Masses Stars, Konstantin N. Yakunin et al., Phys. Rev. D92 (2015) 084040, arXiv:1505.05824.
Three-dimensional core-collapse supernova simulated using a 15 $M_\odot$ projenitor, Eric J. Lentz et al., arXiv:1505.05110, 2015.
Two-Dimensional Core-Collapse Supernova Simulations with the Isotropic Diffusion Source Approximation for Neutrino Transport, Kuo-Chuan Pan, Matthias Liebendorfer, Matthias Hempel, Friedrich-Karl Thieleman, Astrophys. J. 817 (2016) 72, arXiv:1505.02513.
Three-Dimensional Simulations of SASI- and Convection-Dominated Core-Collapse Supernovae, Rodrigo Fernandez, Mon. Not. Roy. Astron. Soc. 452 (2015) 2071-2086, arXiv:1504.07996.
Neutrino-driven explosion of a 20 solar-mass star in three dimensions enabled by strange-quark contributions to neutrino-nucleon scattering, Tobias Melson et al., Astrophys. J. 808 (2015) L42, arXiv:1504.07631.
The Three Dimensional Evolution to Core Collapse of a Massive Star, Sean M. Couch, Emmanouil Chatzopoulos, W. David Arnett, F.X. Timmes, Astrophys. J. 808 (2015) L21, arXiv:1503.02199.
A New Multi-Energy Neutrino Radiation-Hydrodynamics Code in Full General Relativity and Its Application to Gravitational Collapse of Massive Stars, Takami Kuroda, Tomoya Takiwaki, Kei Kotake, Astrophys. J. Suppl. 222 (2016) 20, arXiv:1501.06330.
A new multidimensional, energy-dependent two-moment transport code for neutrino-hydrodynamics, Oliver Just, Martin Obergaulinger, H.-Thomas Janka, Mon. Not. Roy. Astron. Soc. 453 (2015) 3386-3413, arXiv:1501.02999.
Pushing 1D CCSNe to explosions: model and SN 1987A, A. Perego et al., Astrophys. J. 806 (2015) 275, arXiv:1501.02845.
Neutrino-driven supernova of a low-mass iron-core progenitor boosted by three-dimensional turbulent convection, Tobias Melson, Hans-Thomas Janka, Andreas Marek, Astrophys.J. 801 (2015) L24, arXiv:1501.01961.
Recent Progress on Ascertaining the Core Collapse Supernova Explosion Mechanism, Anthony Mezzacappa et al., arXiv:1501.01688, 2015.
Failure of a neutrino-driven explosion after core-collapse may lead to a thermonuclear supernova, Doron Kushnir, Boaz Katz, Astrophys. J. 811 (2015) 97, arXiv:1412.1096.
An Open-Source Neutrino Radiation Hydrodynamics Code for Core-Collapse Supernovae, Evan O'Connor, Astrophys. J. Suppl. 219 (2015) 24, arXiv:1411.7058.
Magnetohydrodynamic Turbulence Powered by Magnetorotational Instability in Nascent Proto-Neutron Stars, Youhei Masada, Tomoya Takiwaki, Kei Kotake, Astrophys.J. 798 (2015) L22, arXiv:1411.6705.
Neutrino-driven Turbulent Convection and Standing Accretion Shock Instability in Three-Dimensional Core-Collapse Supernovae, E. Abdikamalov et al., Astrophys. J. 808 (2015) 70, arXiv:1409.7078.
The Development of Explosions in Axisymmetric Ab Initio Core-Collapse Supernova Simulations of 12-25 $M_\odot$ Stars, Stephen W. Bruenn et al., Astrophys. J. 818 (2016) 123, arXiv:1409.5779.
Three-Dimensional Simulations of Core-Collapse Supernovae: From Shock Revival to Shock Breakout, Annop Wongwathanarat, Ewald Mueller, H.-Thomas Janka, Astron.Astrophys. 577 (2015) A48, arXiv:1409.5431.
Non-Radial Instabilities and Progenitor Asphericities in Core-Collapse Supernovae, B. Mueller, H.-Th. Janka, Mon.Not.Roy.Astron.Soc. 448 (2015) 2141, arXiv:1409.4783.
The Role of Turbulence in Neutrino-Driven Core-Collapse Supernova Explosions, Sean M. Couch, Christian D. Ott, Astrophys.J. 799 (2015) 5, arXiv:1408.1399.
Three-dimensional Boltzmann-Hydro code for core-collapse in massive stars I. special relativistic treatments, Hiroki Nagakura, Kohsuke Sumiyoshi, Shoichi Yamada, Astrophys.J.Suppl. 214 (2014) 16, arXiv:1407.5632.
The criterion of supernova explosion revisited: the mass accretion history, Yudai Suwa, Shoichi Yamada, Tomoya Takiwaki, Kei Kotake, Astrophys. J. 816 (2016) 43, arXiv:1406.6414.
Systematic Features of Axisymmetric Neutrino-Driven Core-Collapse Supernova Models in Multiple Progenitors, Ko Nakamura, Tomoya Takiwaki, Takami Kuroda, Kei Kotake, Publ.Astron.Soc.Jap. 67 (2015) 107, arXiv:1406.2415.
Impacts of Rotation on Three-dimensional Hydrodynamics of Core-collapse Supernovae, Ko Nakamura, Takami Kuroda, Tomoya Takiwaki, Kei Kotake, Astrophys.J. 793 (2014) 45, arXiv:1403.7290.
Two-Dimensional Core-Collapse Supernova Models with Multi-Dimensional Transport, Joshua C. Dolence, Adam Burrows, Weiqun Zhang, Astrophys.J. 800 (2015) 10, arXiv:1403.6115.
Multi-dimensional Features of Neutrino Transfer in Core-Collapse Supernovae, K. Sumiyoshi, T. Takiwaki, H. Matsufuru, S. Yamada, Astrophys.J.Suppl. 216 (2015) 5, arXiv:1403.4476.
MODA: a new algorithm to compute optical depths in multi-dimensional hydrodynamic simulations, A. Perego, E. Gafton, R. Cabezon, S. Rosswog, M. Liebendoerfer, Astron.Astrophys. 568 (2014) A11, arXiv:1403.1297.
A New Multi-Dimensional General Relativistic Neutrino Hydrodynamics Code for Core-Collapse Supernovae IV. The Neutrino Signal, B. Mueller, H.-Th. Janka, Astrophys.J. 788 (2014) 82, arXiv:1402.3415.
Application of the nuclear equation of state obtained by the variational method to core-collapse supernovae, H. Togashi, M. Takano, K. Sumiyoshi, K. Nakazato, PTEP 2014 (2014) 023D05, arXiv:1401.5579.
Chaos and Turbulent Nucleosynthesis Prior to a Supernova Explosion, W. David Arnett, Casey Meakin, Maxime Viallet, arXiv:1312.3279, 2013.
From supernovae to neutron stars, Yudai Suwa, Publ.Astron.Soc.Jap. 66 (2014) L1, arXiv:1311.7249.
Gravitational wave signatures in black-hole forming core collapse, Pablo Cerda-Duran, Nicolas DeBrye, Miguel A Aloy, Jose A Font, Martin Obergaulinger, Astrophys.J. 779 (2013) L18, arXiv:1310.8290.
High-Resolution Three-Dimensional Simulations of Core-Collapse Supernovae in Multiple Progenitors, Sean M. Couch, Evan P. O'Connor, Astrophys.J. 785 (2014) 123, arXiv:1310.5728.
Porting Large HPC Applications to GPU Clusters: The Codes GENE and VERTEX, Tilman Dannert, Andreas Marek, Markus Rampp, arXiv:1310.1485, 2013.
Characterizing SASI- and Convection-Dominated Core-Collapse Supernova Explosions in Two Dimensions, Rodrigo Fernandez, Bernhard Mueller, Thierry Foglizzo, Hans-Thomas Janka, Mon.Not.Roy.Astron.Soc. 440 (2014) 2763, arXiv:1310.0469.
Neutrino-pair emission from nuclear de-excitation in core-collapse supernova simulations, Tobias Fischer, Karlheinz Langanke, Gabriel Martinez-Pinedo, Phys. Rev. C88 (2013) 065804, arXiv:1309.4271.
A Comparison of Two- and Three-dimensional Neutrino-hydrodynamics simulations of Core-collapse Supernovae, Tomoya Takiwaki, Kei Kotake, Yudai Suwa, Astrophys.J. 786 (2014) 83, arXiv:1308.5755.
Neutrino signature of supernova hydrodynamical instabilities in three dimensions, Irene Tamborra, Florian Hanke, Bernhard Mueller, Hans-Thomas Janka, Georg Raffelt, Phys. Rev. Lett. 111 (2013) 121104, arXiv:1307.7936.
General relativistic neutrino transport using spectral methods, Bruno Peres, Andrew Jason Penner, Jerome Novak, Silvano Bonazzola, Class.Quant.Grav. 31 (2014) 045012, arXiv:1307.1666.
Gravitational Wave Signatures from Low-mode Spiral Instabilities in Rapidly Rotating Supernova Cores, Takami Kuroda, Tomoya Takiwaki, Kei Kotake, Phys. Rev. D89 (2014) 044011, arXiv:1304.4372.
SASI Activity in Three-Dimensional Neutrino-Hydrodynamics Simulations of Supernova Cores, F. Hanke, B. Mueller, A. Wongwathanarat, A. Marek, H.-Th. Janka, Astrophys.J. 770 (2013) 66, arXiv:1303.6269.
Very Low Energy Supernovae from Neutrino Mass Loss, Elizabeth Lovegrove, Stan Woosley, Astrophys.J. 769 (2013) 109, arXiv:1303.5055.
Axisymmetric Ab Initio Core-Collapse Supernova Simulations of 12-25 M_sol Stars, Stephen W. Bruenn et al., Astrophys.J. 767 (2013) L6, arXiv:1212.1747.
Core-Collapse Supernovae: Reflections and Directions, H.-Thomas Janka et al., PTEP 2012 (2012) 01A309, arXiv:1211.1378.
Three-dimensional neutrino-driven supernovae: Neutron star kicks, spins, and asymmetric ejection of nucleosynthesis products, A. Wongwathanarat, H.-Th. Janka, E. Mueller, A&A 552, A126 (2013), arXiv:1210.8148.
A New Multi-Dimensional General Relativistic Neutrino Hydrodynamics Code of Core-Collapse Supernovae III. Gravitational Wave Signals from Supernova Explosion Models, Bernhard Mueller, Hans-Thomas Janka, Andreas Marek, Astrophys.J. 766 (2013) 43, arXiv:1210.6984.
Post-shock-revival evolutions in the neutrino-heating mechanism of core-collapse supernovae, Yu Yamamoto, Shin-ichiro Fujimoto, Hiroki Nagakura, Shoichi Yamada, Astrophys.J. 771 (2013) 27, arXiv:1209.4824.
Current Status of Numerical-Relativity Simulations in Kyoto, Yuichiro Sekiguchi, Kenta Kiuchi, Koutarou Kyutoku, Masaru Shibata, PTEP 2012 (2012) 01A304, arXiv:1206.5927.
Interplay of Neutrino Opacities in Core-collapse Supernova Simulations, Eric J. Lentz, Anthony Mezzacappa, O.E. Bronson Messer, W. Raphael Hix, Stephen W. Bruenn, Astrophys.J. 760 (2012) 94, arXiv:1206.1086.
Core-Collapse Supernovae as Supercomputing Science: a status report toward 6D simulations with exact Boltzmann neutrino transport in full general relativity, Kei Kotake et al., PTEP 2012 (2012) 01A301, arXiv:1205.6284.
The Dominance of Neutrino-Driven Convection in Core-Collapse Supernovae, Jeremiah W. Murphy, Joshua C. Dolence, Adam Burrows, Astrophys.J. 771 (2013) 52, arXiv:1205.3491.
A New Code for Proto-Neutron Star Evolution, Luke F. Roberts, Astrophys. J. 755 (2012) 126, arXiv:1205.3228.
An Investigation into the Character of Pre-Explosion Core-Collapse Supernova Shock Motion, Adam Burrows, Joshua C. Dolence, Jeremiah W. Murphy, Astrophys. J. 759 (2012) 5, arXiv:1204.3088.
A New Monte Carlo Method for Time-Dependent Neutrino Radiation Transport, Ernazar Abdikamalov et al., Astrophys. J. 755 (2012) 111, arXiv:1203.2915.
Fully General Relativistic Simulations of Core-Collapse Supernovae with An Approximate Neutrino Transport, Takami Kuroda, Kei Kotake, Tomoya Takiwaki, Astrophys. J. 755 (2012) 11, arXiv:1202.2487.
A New Multi-Dimensional General Relativistic Neutrino Hydrodynamics Code for Core-Collapse Supernovae II. Relativistic Explosion Models of Core-Collapse Supernovae, B. Mueller, H.-Th. Janka, A. Marek, Astrophys. J. 756 (2012) 84, arXiv:1202.0815.
Neutrino Transfer in Three Dimensions for Core-Collapse Supernovae. I. Static Configurations, Kohsuke Sumiyoshi, Shoichi Yamada, Astrophys. J. Supp. 199 (2012) 17, arXiv:1201.2244.
Neutrino spectra evolution during proto-neutron star deleptonization, T. Fischer, G. Martinez-Piedo, M. Hempel, M. Liebendorfer, Phys. Rev. D85 (2012) 083003, arXiv:1112.3842.
Is Strong SASI Activity the Key to Successful Neutrino-Driven Supernova Explosions?, Florian Hanke, Andreas Marek, Bernhard Mueller, Hans-Thomas Janka, Astrophys. J. 755 (2012) 138, arXiv:1108.4355.
Three-dimensional Hydrodynamic Core-Collapse Supernova Simulations for an $11.2 M_{\odot}$ Star with Spectral Neutrino Transport, Tomoya Takiwaki, Kei Kotake, Yudai Suwa, Astrophys. J. 749 (2012) 98, arXiv:1108.3989.
Relativistic collapse and explosion of rotating supermassive stars with thermonuclear effects, Pedro J. Montero, Hans-Thomas Janka, Ewald Mueller, Astrophys. J. 749 (2012) 37, arXiv:1108.3090.
New equations of state in core-collapse supernova simulations, Matthias Hempel, Tobias Fischer, Jurgen Schaffner-Bielich, Matthias Liebendorfer, Astrophys. J. 748 (2012) 70, arXiv:1108.0848.
Parametrized 3D models of neutrino-driven supernova explosions: Neutrino emission asymmetries and gravitational-wave signals, E. Muller, H.-Th. Janka, A. Wongwathanarat, Astron.Astrophys. 537 (2012) A63, arXiv:1106.6301.
A Global Turbulence Model for Neutrino-Driven Convection in Core-Collapse Supernovae, Jeremiah W. Murphy, Casey Meakin, Astrophys. J. 742 (2011) 74, arXiv:1106.5496.
Effects of Rotation on Stochasticity of Gravitational Waves in Nonlinear Phase of Core-Collapse Supernovae, Kei Kotake, Wakana Iwakami Nakano, Naofumi Ohnishi, Astrophys. J. 736 (2011) 124, arXiv:1106.0544.
Solving the transport equation by the use of 6D spectral methods in spherical geometry, Silvano Bonazzola, Nicolas Vasset, arXiv:1104.5330, 2011.
Magnetic field amplification in collapsing, non-rotating stellar cores, Martin Obergaulinger, Hans-Thomas Janka, arXiv:1101.1198, 2011.
The revival of an explosion mechanism of massive stars - the quark hadron phase transition during the early post bounce phase of core collapse supernovae, T. Fischer et al., Astrophys. J. Supp. 194 (2011) 39, arXiv:1011.3409.
Induced Rotation in 3D Simulations of Core Collapse Supernovae: Implications for Pulsar Spins, E. Rantsiou, A. Burrows, J. Nordhaus, A. Almgren, Astrophys. J. 732 (2011) 57, arXiv:1010.5238.
Hydrodynamical Neutron Star Kicks in Three Dimensions, A. Wongwathanarat, H.-Th. Janka, E. Mueller, Astrophys.J. 725 (2010) L106-L110, arXiv:1010.0167.
Formation of black hole and accretion disk in collapsar, Yuichiro Sekiguchi, Masaru Shibata, Astrophys. J. 737 (2011) 6, arXiv:1009.5303.
Results From Core-Collapse Simulations with Multi-Dimensional, Multi-Angle Neutrino Transport, Timothy D. Brandt, Adam Burrows, Christian D. Ott, Astrophys. J. 728 (2011) 8, arXiv:1009.4654.
An implementation of the microphysics in full general relativity : General relativistic neutrino leakage scheme, Yuichiro Sekiguchi, Class.Quant.Grav. 27 (2010) 114107, arXiv:1009.3358.
Stellar core collapse in full general relativity with microphysics - Formulation and Spherical collapse test -, Yuichiro Sekiguchi, Prog. Theor. Phys. 124 (2010) 331-379, arXiv:1009.3320.
Dynamical r-process studies within the neutrino-driven wind scenario and its sensitivity to the nuclear physics input, A. Arcones, G. Martinez-Pinedo, Phys. Rev. C83 (2011) 045809, arXiv:1008.3890.
Nucleosynthesis-relevant conditions in neutrino-driven supernova outflows. II. The reverse shock in two-dimensional simulations, A. Arcones, H.-T. Janka, Astron.Astrophys. 526 (2011) A160, arXiv:1008.0882.
Production of Light Element Primary Process nuclei in neutrino-driven winds, A. Arcones, F. Montes, Astrophys. J. 731 (2011) 5, arXiv:1007.1275.
Dimension as a Key to the Neutrino Mechanism of Core-Collapse Supernova Explosions, J. Nordhaus, A. Burrows, A. Almgren, J. Bell, Astrophys. J. 720 (2010) 694-703, arXiv:1006.3792.
The Spiral Modes of the Standing Accretion Shock Instability in the Linear Phase, Rodrigo Fernandez, Astrophys. J. 725 (2010) 1563-1580, arXiv:1003.1730.
A new multi-dimensional general relativistic neutrino hydrodynamics code for core-collapse supernovae. I. Method and code tests in spherical symmetry, B. Mueller, H.-Th. Janka, H. Dimmelmeier, Astrophys. J. Suppl. 189 (2010) 104-133, arXiv:1001.4841.
A New Open-Source Code for Spherically-Symmetric Stellar Collapse to Neutron Stars and Black Holes, Evan O'Connor, Christian D. Ott, Class. Quant. Grav. 27 (2010) 114103, arXiv:0912.2393.
Gravitational waves from supernova matter, S. Scheidegger, S.C. Whitehouse, R. Kaeppeli, M. Liebendoerfer, Class. Quant. Grav. 27 (2010) 114101, arXiv:0912.1455.
Explosion geometry of a rotating 13 $M_{\odot}$ star driven by the SASI-aided neutrino-heating supernova mechanism, Yudai Suwa et al., Publ. Astron. Soc. Jap. 62 (2010) L49-L53, arXiv:0912.1157.
Neutrino Signal of Electron-Capture Supernovae from Core Collapse to Cooling, L. Huedepohl, B. Mueller, H.-Th. Janka, A. Marek, G.G Raffelt, Phys. Rev. Lett. 104 (2010) 251101, arXiv:0912.0260.
Three-Dimensional Simulations of Mixing Instabilities in Supernova Explosions, N.J. Hammer, H.-Th. Janka, E. Mueller, Astrophys. J. 714 (2010) 1371-1385, arXiv:0908.3474.
Protoneutron star evolution and the neutrino driven wind in general relativistic neutrino radiation hydrodynamics simulations, T. Fischer, S. C. Whitehouse, A. Mezzacappa, F. -K. Thielemann, M. Liebendorfer, Astron.Astrophys. 517 (2010) A80, arXiv:0908.1871.
A Model for Gravitational Wave Emission from Neutrino-Driven Core-Collapse Supernovae, Jeremiah W. Murphy, Christian D. Ott, Adam Burrows, Astrophys. J. 707 (2009) 1173-1190, arXiv:0907.4762.
Stochastic Nature of Gravitational Waves from Supernova Explosions with Standing Accretion Shock Instability, Kei Kotake, Wakana Iwakami, Naofumi Ohnishi, Shoichi Yamada, Astrophys. J. 697 (2009) L133-L136, arXiv:0904.4300.
Effects of Rotation on Standing Accretion Shock Instability in Nonlinear Phase for Core-Collapse Supernovae, Wakana Iwakami, Kei Kotake, Naofumi Ohnishi, Shoichi Yamada, Keisuke Sawada, Astrophys. J. 700 (2009) 232-242, arXiv:0811.0651.
Systematic thermal reduction of neutronization in core-collapse supernovae, A.F. Fantina, P. Donati, P.M. Pizzochero, Phys. Lett. B676 (2009) 140-145, arXiv:0811.0456.
The neutrino signal from protoneutron star accretion and black hole formation, T. Fischer, S.C. Whitehouse, A. Mezzacappa, F.-K. Thielemann, M. Liebendorfer, Astron.Astrophys. 499 (2009) 1, arXiv:0809.5129.
Equation-of-State Dependent Features in Shock-Oscillation Modulated Neutrino and Gravitational-Wave Signals from Supernovae, A. Marek, H. -Th. Janka, E. Mueller, Astron.Astrophys. 496 (2009) 475, arXiv:0808.4136.
GRB production and SN signatures in slowly rotating collapsars, Diego Lopez-Camara, William H. Lee, Enrico Ramirez-Ruiz, Astrophys. J. 692 (2009) 804-815, arXiv:0808.0462.
Dynamics and neutrino signal of black hole formation in non-rotating failed supernovae. II. progenitor dependence, K. Sumiyoshi, S. Yamada, H. Suzuki, Astrophys.J. 688 (2008) 1176, arXiv:0808.0384.
Criteria for Core-Collapse Supernova Explosions by the Neutrino Mechanism, Jeremiah W. Murphy, Adam Burrows, Astrophys.J. 688 (2008) 1159, arXiv:0805.3345.
2D Multi-Angle, Multi-Group Neutrino Radiation-Hydrodynamic Simulations of Postbounce Supernova Cores, Christian D. Ott, Adam Burrows, Luc Dessart, Eli Livne, Astrophys. J. 685 (2008) 1069, arXiv:0804.0239.
Relativistic Radiation Magnetohydrodynamics in Dynamical Spacetimes: Numerical Methods and Tests, Brian D. Farris, Tsz Ka Li, Yuk Tung Liu, Stuart L. Shapiro, Phys. Rev. D78 (2008) 024023, arXiv:0802.3210.
Special Relativistic Simulations of Magnetically-dominated Jets in Collapsing Massive Stars, Tomoya Takiwaki, Kei Kotake, Katsuhiko Sato, Astrophys. J. 691 (2009) 1360-1379, arXiv:0712.1949.
Neutrinos from Fallback onto Newly Formed Neutron Stars, Chris L. Fryer, Astrophys. J. 699 (2009) 409-420, arXiv:0711.0551.
Three-Dimensional Simulations of Standing Accretion Shock Instability in Core-Collapse Supernovae, Wakana Iwakami, Kei Kotake, Naofumi Ohnishi, Shoichi Yamada, Keisuke Sawada, Astrophys.J. (2007), arXiv:0710.2191.
Magnetohydrodynamics of Neutrino-Cooled Accretion Tori around a Rotating Black Hole in General Relativity, M. Shibata, Y. Sekiguchi, R. Takahashi, Prog.Theor.Phys. 118 (2007) 257, arXiv:0709.1766.
Ascertaining the Core Collapse Supernova Mechanism: An Emerging Picture?, A. Mezzacappa, S.W. Bruenn, J.M. Blondin, W.R. Hix, O.E.B. Messer, AIP Conf.Proc. 924 (2007) 234-242, arXiv:0709.1484.
Gravitational waves from 3D MHD core collapse simulations, S.Scheidegger, T.Fischer, M.Liebendoerfer, Astron.Astrophys. (2007), arXiv:0709.0168.
Delayed neutrino-driven supernova explosions aided by the standing accretion-shock instability, A. Marek, H.-Th. Janka, Astrophys. J. 694 (2009) 664-696, arXiv:0708.3372.
Multi-Dimensional Simulations for Early Phase Spectra of Aspherical Hypernovae: SN 1998bw and Off-Axis Hypernovae, Masaomi Tanaka, Keiichi Maeda, Paolo A. Mazzali, Ken'ichi Nomoto, Astrophys.J. 668 (2007) L19, arXiv:0708.3242.
Dynamics and neutrino signal of black hole formation in non-rotating failed supernovae. I. EOS dependence, K. Sumiyoshi, S. Yamada, H. Suzuki, Astrophys. J. 667 (2007) 382-394, arXiv:0706.3762.
Numerical Study on Stellar Core Collapse and Neutrino Emission: Probe into the Spherically Symmetric Black Hole Progenitors with 3 - 30Msun Iron Cores, Ken'ichiro Nakazato, Kohsuke Sumiyoshi, Shoichi Yamada, Astrophys. J. 666 (2007) 1140-1151, arXiv:0705.4350.
Multidimensional supernova simulations with approximative neutrino transport. II. Convection and the advective-acoustic cycle in the supernova core, L. Scheck, H.-Th. Janka, T. Foglizzo, K. Kifonidis, Astron. Astrophys. 477 (2008) 931, arXiv:0704.3001.
Magnetorotational Collapse of Population III Stars, Yudai Suwa, Tomoya Takiwaki, Kei Kotake, Katsuhiko Sato, Publ. Astron. Soc. Jap. 59 (2007) 771-785, arXiv:0704.1945.
Simulations of Magnetically-Driven Supernova and Hypernova Explosions in the Context of Rapid Rotation, Adam Burrows et al., Astrophys. J. 664 (2007) 416-434, arXiv:astro-ph/0702539.
Supernova Nucleosynthesis in Population III 13 - 50 $M_{\odot}$ Stars and Abundance Patterns of Extremely Metal-Poor Stars, Nozomu Tominaga, Hideyuki Umeda, Ken'ichi Nomoto, Astrophys. J. 660 (2007) 516-540, arXiv:astro-ph/0701381.
Nucleosynthesis-relevant conditions in neutrino-driven supernova outflows. I. Spherically symmetric hydrodynamic simulations, A. Arcones, H.-Th. Janka, L. Scheck, Astron.Astrophys. (2006), arXiv:astro-ph/0612582.
Features of the Acoustic Mechanism of Core-Collapse Supernova Explosions, A. Burrows et al., Astrophys. J. 655 (2007) 416-433, arXiv:astro-ph/0610175.
Collapsars in Three Dimensions, Gabriel Rockefeller, Christopher L. Fryer, Hui Li, Astrophys.J. (2006), arXiv:astro-ph/0608028.
A Numerical Algorithm for Modeling Multigroup Neutrino-Radiation Hydrodynamics in Two Spatial Dimensions, F. Douglas Swesty, Eric S. Myra, arXiv:astro-ph/0607281, 2006.
Multi-Dimensional Simulations of the Accretion-Induced Collapse of White Dwarfs to Neutron Stars, Luc Dessart et al., Astrophys. J. 644 (2006) 1063-1084, arXiv:astro-ph/0601603.
Multidimensional Supernova Simulations with Approximative Neutrino Transport I. Neutron Star Kicks and the Anisotropy of Neutrino-Driven Explosions in Two Spatial Dimensions, L. Scheck, K. Kifonidis, H.-Th. Janka, E. Mueller, Astron.Astrophys. (2006), arXiv:astro-ph/0601302.
Two-Dimensional Hydrodynamic Core-Collapse Supernova Simulations with Spectral Neutrino Transport II. Models for Different Progenitor Stars, R. Buras, Hans-Thomas Janka, M. Rampp, K. Kifonidis, Astron. Astrophys. 457 (2005) 281-308, arXiv:astro-ph/0512189.
Explosions of O-Ne-Mg Cores, the Crab Supernova, and Subluminous Type II-P Supernovae, F.S. Kitaura, H.-Th. Janka, W. Hillebrandt, Astron. Astrophys. 450 (2006) 345-350, arXiv:astro-ph/0512065.
Non-Spherical Core-Collapse Supernovae II. Late-Time Evolution of Globally Anisotropic Neutrino-Driven Explosions and Implications for SN 1987A, K. Kifonidis et al., Astron.Astrophys. (2005), arXiv:astro-ph/0511369.
A New Mechanism for Core-Collapse Supernova Explosions, Adam Burrows, Eli Livne, Luc Dessart, Christian Ott, Jeremiah Murphy, Astrophys. J. 640 (2006) 878-890, arXiv:astro-ph/0510687.
Gravitational Collapse and Neutrino Emission of Population III Massive Stars, Ken'ichiro Nakazato, Kohsuke Sumiyoshi, Shoichi Yamada, Astrophys. J. 645 (2006) 519-533, arXiv:astro-ph/0509868.
Numerical Analysis on Standing Accretion Shock Instability with Neutrino Heating in the Supernova Cores, Naofumi Ohnishi, Kei Kotake, Shoichi Yamada, Astrophys. J. 641 (2006) 1018-1028, arXiv:astro-ph/0509765.
Neutrino-driven convection versus advection in core collapse supernovae, T. Foglizzo, L. Scheck, H.-Th. Janka, Astrophys. J. 652 (2006) 1436-1450, arXiv:astro-ph/0507636.
Core-Collapse Very Massive Stars: Evolution, Explosion, and Nucleosynthesis of Population III 500 - 1000 $M_{\odot}$ Stars, T. Ohkubo et al., Astrophys. J. 645 (2006) 1352-1372, arXiv:astro-ph/0507593.
Two-dimensional hydrodynamic core-collapse supernova simulations with spectral neutrino transport. I. Numerical method and results for a 15 $M_\text{sun}$ star, Robert Buras, M. Rampp, H. -Th. Janka, K. Kifonidis, Astron. Astrophys. 447 (2006) 1049-1092, arXiv:astro-ph/0507135.
Postbounce evolution of core-collapse supernovae: Long-term effects of equation of state, K. Sumiyoshi et al., Astrophys. J. 629 (2005) 922, arXiv:astro-ph/0506620.
Core Collapse via Coarse Dynamic Renormalization, Andras Szell, David Merritt, Ioannis G. Kevrekidis, Phys. Rev. Lett. 95 (2005) 081102, arXiv:astro-ph/0504546.
Exploring the relativistic regime with Newtonian hydrodynamics: An improved effective gravitational potential for supernova simulations, A. Marek et al., Astron. Astrophys. 445 (2006) 273, arXiv:astro-ph/0502161.
Effects of rotation on the revival of a stalled shock in supernova explosions, T. Yamasaki, S. Yamada, Astrophys. J. 623 (2005) 1000, arXiv:astro-ph/0412625.
Anisotropies in the Neutrino Fluxes and Heating Profiles in Two-dimensional, Time-dependent, Multi-group Radiation Hydrodynamics Simulations of Rotating Core-Collapse Supernovae, R. Walder et al., Astrophys. J. 626 (2005) 317, arXiv:astro-ph/0412187.
Nuclear Input for Core-collapse Models, G. Martinez-Pinedo, M. Liebendoerfer, D. Frekers, Nucl. Phys. A777 (2006) 395-423, arXiv:astro-ph/0412091.
Neutrino Opacities in Nuclear Matter, Adam Burrows, Sanjay Reddy, Todd A. Thompson, Nucl. Phys. A777 (2006) 356-394, arXiv:astro-ph/0404432.
Fluid Stability Below the Neutrinospheres of Supernova Progenitors and the Dominant Role of Lepto-Entropy Fingers, S. W. Bruenn, E. A. Raley, A. Mezzacappa, arXiv:astro-ph/0404099, 2004.
Two-dimensional, Time-dependent, Multi-group, Multi-angle Radiation Hydrodynamics Test Simulation in the Core- Collapse Supernova Context, Eli Livne, Adam Burrows, Rolf Walder, Itamar Lichtenstadt, Todd A. Thompson, Astrophys. J. 609 (2004) 277, arXiv:astro-ph/0312633.
Supernova Simulations with Boltzmann Neutrino Transport: A Comparison of Methods, M. Liebendoerfer, M. Rampp, H.-Th. Janka, A. Mezzacappa, Astrophys. J. 620 (2005) 840, arXiv:astro-ph/0310662.
From the abstract: Accurate neutrino transport has been built into spherically symmetric simulations of stellar core collapse and postbounce evolution. The results of such simulations agree that spherically symmetric models with standard microphysical input fail to explode by the delayed, neutrino-driven mechanism.
Core-Collapse Supernova Mechanism - Importance of Rotation, A. Odrzywolek, M. Kutschera, M. Misiaszek, K. Grotowski, Acta Phys.Polon.34:2791 (2003), arXiv:astro-ph/0310047.
3-Dimensional Core-Collapse, Chris L. Fryer, Michael S. Warren, Astrophys. J. 601 (2004) 391-404, arXiv:astro-ph/0309539.
Pulsar Recoil by Large-Scale Anisotropies in Supernova Explosions, L. Scheck, T. Plewa, Hans-Thomas Janka, K. Kifonidis, E. Mueller, Phys. Rev. Lett. 92 (2004) 011103, arXiv:astro-ph/0307352.
Evolution, Explosion and Nucleosynthesis of Core Collapse Supernovae, M. Limongi, A. Chieffi, Astrophys. J. 592 (2003) 404, arXiv:astro-ph/0304185.
Improved Models of Stellar Core Collapse and Still no Explosions: What is Missing?, R. Buras, M. Rampp, H.-Th. Janka, K. Kifonidis, Phys. Rev. Lett. 90 (2003) 241101, arXiv:astro-ph/0303171.
Electron capture rates on nuclei and implications for stellar core collapse, K. Langanke et al., Phys. Rev. Lett. 90 (2003) 241102, arXiv:astro-ph/0302459.
Non-spherical Core Collapse Supernovae I. Neutrino-Driven Convection, Rayleigh-Taylor Instabilities, and the Formation and Propagation of Metal Clumps, K. Kifonidis, T. Plewa, H.-Th. Janka, E. Mueller, Astron. Astrophys. 408 (2003) 621, arXiv:astro-ph/0302239.
Shock breakout in core-collapse supernovae and its neutrino signature, Todd A. Thompson, Adam Burrows, Philip A. Pinto, Astrophys. J. 592 (2003) 434, arXiv:astro-ph/0211194.