Electro-Weak Interactions

Filter this page

(Note: The process can take some time.)

EXPAND ALL
COMPRESS ALL

References

1 - Books

[1-1]
Introduction to the Physics of Massive and Mixed Neutrinos, Samoil Bilenky, Springer, 2018. Lecture Notes in Physics, Volume 947. https://doi.org/10.1007/978-3-319-74802-3.
[Bilenky:2018hbz]
[1-2]
The Anomalous Magnetic Moment of the Muon, Friedrich Jegerlehner, Springer Tracts Mod.Phys. 274 (2017) pp.1-693, Springer. Springer Tracts Mod. Phys. 274.
[Jegerlehner:2017gek]
[1-3]
Fundamentals of Neutrino Physics and Astrophysics, C. Giunti, C. W. Kim, Oxford University Press, Oxford, UK, 2007. ISBN 978-0-19-850871-7. https://global.oup.com/academic/product/fundamentals-of-neutrino-physics-and-astrophysics-9780198508717.
[Giunti:2007ry]
[1-4]
CP Violation, Ikaros I. Y. Bigi, A. I. Sanda, Cambridge University Press, 2000. Camb.Monogr.Part.Phys.Nucl.Phys.Cosmol. 9.
[Bigi:2000yz]
[1-5]
Physics with tau leptons, A. Stahl, Springer, Berlin, Germany, 2000.
[Stahl-book-00]
[1-6]
The Standard Model in the Making: Precision Study of the Electroweak Interactions, Dmitri Yu. Bardin, G. Passarino, Oxford University Press, 1999. The International Series of Monographs on Physics, 104.
[Bardin:1999ak]
[1-7]
CP Violation, Gustavo C. Branco, Luis Lavoura, Joao P. Silva, Oxford University Press, 1999. The International Series of Monographs on Physics, 103.
[Branco:1999fs]
[1-8]
Electroweak and strong interactions: An introduction to theoretical particle physics, F. Scheck, Springer-Verlag, 1996.
[Scheck:1996ur]
[1-9]
Introduction to Feynman Diagrams and Electroweak Interactions Physics, S. M. Bilenky, Editions Frontieres, 1994.
[Bilenky:1995zq]
[1-10]
Gauge theory of weak interactions, W. Greiner, Berndt Muller, Springer, 1993. ISBN 978-3-540-87842-1. http://www.springer.com/physics/particle+and+nuclear+physics/book/978-3-540-87842-1.
[Greiner:1993qp]
[1-11]
Dynamics of the standard model, J.F. Donoghue, E. Golowich, Barry R. Holstein, Camb.Monogr.Part.Phys.Nucl.Phys.Cosmol. 2 (1992) 1-540, Cambridge University Press.
[Donoghue:1992dd]
[1-12]
Electroweak Interactions: an Introduction to the Physics of Quarks and Leptons, P. Renton, Cambridge University Press, 1990.
[Renton:1990td]
[1-13]
Quarks and Leptons: an Introductory Course in Modern Particle Physics, F. Halzen, Alan D. Martin, John Wiley, 1984.
[Halzen:1984mc]
[1-14]
Weak Interactions of Leptons and Quarks, E. D. Commins, P. H. Bucksbaum, Cambridge University Press, 1983.
[Commins:1983ns]
[1-15]
Introduction to the Physics of Electroweak Interactions, S. M. Bilenky, Pergamon Press, 1982.
[Bilenky-EW-1982]
[1-16]
Theory of Weak Interactions in Particle Physics, R. E. Marshak, Riazuddin, C. P. Ryan, Wiley-Interscience, 1969.
[Marshak-Riazuddin-Ryan-69]

2 - Reviews

[2-1]
Opportunities and open questions in modern $\beta$ decay, Leendert Hayen, arXiv:2403.08485, 2024.
[Hayen:2024xjf]
[2-2]
Detection and Calibration of Low-Energy Nuclear Recoils for Dark Matter and Neutrino Scattering Experiments, Jingke Xu, P. S. Barbeau, Ziqing Hong, Ann. Rev. Nucl. Part. Sci. 73 (2023) 95-121, arXiv:2311.02257.
[Xu:2023rzm]
[2-3]
Experimental neutrino physics in a nuclear landscape, D. S. Parno, A. W. P. Poon, V. Singh, arXiv:2310.06207, 2023.
[Parno:2023upv]
[2-4]
Recent Progress in Low Energy Neutrino Scattering Physics and Its Implications for the Standard and Beyond the Standard Model Physics, V. Pandey, Prog.Part.Nucl.Phys. 134 (2024) 104078, arXiv:2309.07840.
[Pandey:2023arh]
[2-5]
Lepton-Nucleus Interactions within Microscopic Approaches, Alexis Nikolakopoulos, Noah Steinberg, Alessandro Lovato, Noemi Rocco, Universe 9 (2023) 367, arXiv:2308.00736.
[Lovato:2023raf]
[2-6]
A view of Coherent Elastic Neutrino-Nucleus Scattering, M. Cadeddu, F. Dordei, C. Giunti, EPL 143 (2023) 34001, arXiv:2307.08842.
[Cadeddu:2023tkp]
[2-7]
Coherent Elastic Neutrino-Nucleus Scattering in the Standard Model and Beyond, Valentina De Romeri, LHEP 2023 (2023) 343.
[DeRomeri:2023dko]
[2-8]
Towards a Unified Model of Neutrino-Nucleus Interactions, Omar Benhar, Camillo Mariani, Eur.Phys.J.A 59 (2023) 85, arXiv:2212.11860.
[Benhar:2022hud]
[2-9]
SNOWMASS Neutrino Frontier NF10 Topical Group Report: Neutrino Detectors, Joshua R. Klein et al., arXiv:2211.09669, 2022.
[Klein:2022lrf]
[2-10]
Snowmass Neutrino Frontier Report, Patrick Huber et al., arXiv:2211.08641, 2022.
[Huber:2022lpm]
[2-11]
Neutrino Frontier Topical Group Report (NF03): Physics Beyond the Standard Model, Pilar Coloma, Lisa W. Koerner, Ian M. Shoemaker, Jaehoon Yu, arXiv:2209.10362, 2022.
[Coloma:2022dng]
[2-12]
Report of the Topical Group on Electroweak Precision Physics and Constraining New Physics for Snowmass 2021, Alberto Belloni et al., arXiv:2209.08078, 2022.
[Belloni:2022due]
[2-13]
Report of the Topical Group on Neutrino Applications for Snowmass 2021, N. S. Bowden, J. M. Link, W. Wang, arXiv:2209.07483, 2022.
[Bowden:2022rjt]
[2-14]
Snowmass Neutrino Frontier: Neutrino Interaction Cross Sections (NF06) Topical Group Report, A. B. Balantekin et al., arXiv:2209.06872, 2022.
[Balantekin:2022jrq]
[2-15]
Neutrinos and their interactions with matter, M. Sajjad Athar, A. Fatima, S. K. Singh, Prog.Part.Nucl.Phys. 129 (2023) 104019, arXiv:2206.13792.
[SajjadAthar:2022pjt]
[2-16]
Neutrino Properties and Interactions, Pedro A. N. Machado, arXiv:2206.13449, 2022.
[Machado:2022cmu]
[2-17]
Kinematic Variables and Feature Engineering for Particle Phenomenology, Roberto Franceschini, Doojin Kim, Kyoungchul Kong, Konstantin T. Matchev, Myeonghun Park, Prasanth Shyamsundar, Rev.Mod.Phys. 95 (2023) 045004, arXiv:2206.13431.
[Franceschini:2022vck]
[2-18]
Notes on QED Corrections in Weak Decays, Roman Zwicky, Symmetry 13 (2021) 2036, arXiv:2205.06194.
[Zwicky:2021olr]
[2-19]
The COHERENT Experimental Program, D. Akimov et al., arXiv:2204.04575, 2022.
[Akimov:2022oyb]
[2-20]
Neutrino Scattering Measurements on Hydrogen and Deuterium: A Snowmass White Paper, Luis Alvarez-Ruso et al., arXiv:2203.11298, 2022.
[Alvarez-Ruso:2022ctb]
[2-21]
Snowmass White Paper: Beyond the Standard Model effects on Neutrino Flavor, C. A. Arguelles et al., arXiv:2203.10811, 2022.
[Arguelles:2022xxa]
[2-22]
Theoretical tools for neutrino scattering: interplay between lattice QCD, EFTs, nuclear physics, phenomenology, and neutrino event generators, L. Alvarez Ruso et al., arXiv:2203.09030, 2022.
[Ruso:2022qes]
[2-23]
Coherent elastic neutrino-nucleus scattering: Terrestrial and astrophysical applications, M. Abdullah et al., arXiv:2203.07361, 2022.
[Abdullah:2022zue]
[2-24]
High Energy Physics Opportunities Using Reactor Antineutrinos, O. A. Akindele et al., arXiv:2203.07214, 2022.
[Akindele:2022dpr]
[2-25]
Electron Scattering and Neutrino Physics, A. M. Ankowski et al., J.Phys.G 50 (2023) 120501, arXiv:2203.06853.
[Ankowski:2022thw]
[2-26]
Neutrino Self-Interactions: A White Paper, Jeffrey M. Berryman et al., Phys.Dark Univ. 42 (2023) 101267, arXiv:2203.01955.
[Berryman:2022hds]
[2-27]
Low-Energy Physics in Neutrino LArTPCs, D. Caratelli et al., arXiv:2203.00740, 2022.
[Caratelli:2022llt]
[2-28]
Neutrinos at FPF, Ulrich Mosel, Kai Gallmeister, arXiv:2201.04008, 2022.
[Mosel:2022tqc]
[2-29]
Status of Lattice QCD Determination of Nucleon Form Factors and their Relevance for the Few-GeV Neutrino Program, Aaron S. Meyer, Andre Walker-Loud, Callum Wilkinson, Ann.Rev.Nucl.Part.Sci. 72 (2022) 205-232, arXiv:2201.01839.
[Meyer:2022mix]
[2-30]
Muonium Lamb shift: theory update and experimental prospects, Gianluca Janka, Ben Ohayon, Paolo Crivelli, EPJ Web Conf. 262 (2022) 01001, arXiv:2111.13951.
[Janka:2021xxr]
[2-31]
Mounting Evidence for the Violation of Lepton Flavor Universality, Andreas Crivellin, Martin Hoferichter, Science 374 (2021) 1051, arXiv:2111.12739.
[Crivellin:2021sff]
[2-32]
COHERENT at the Spallation Neutron Source, P. S. Barbeau, Yu. Efremenko, K. Scholberg, Ann.Rev.Nucl.Part.Sci. 73 (2023) 41-68, arXiv:2111.07033.
[Barbeau:2021exu]
[2-33]
Neutrino Interactions with Matter and the MiniBooNE anomaly, Luis Alvarez-Ruso, Eduardo Saul-Sala, Eur.Phys.J.ST 230 (2021) 4373-4389, arXiv:2111.02504.
[Alvarez-Ruso:2021dna]
[2-34]
Holographic QCD and the muon anomalous magnetic moment, Josef Leutgeb, Jonas Mager, Anton Rebhan, Eur.Phys.J.C 81 (2021) 1008, arXiv:2110.07458.
[Leutgeb:2021bpo]
[2-35]
A pedagogical review on muon $g-2$, Song Li, Yang Xiao, Jin Min Yang, Physics 4 (2021) 40-47, arXiv:2110.04673.
[Li:2021bbf]
[2-36]
Neutrino Interaction Physics in Neutrino Telescopes, Teppei Katori, Juan Pablo Yanez, Tianlu Yuan, Eur.Phys.J.ST 230 (2021) 4293-4308, arXiv:2109.04430.
[Katori:2021nwq]
[2-37]
A New Generation of Neutrino Cross Section Experiments: Challenges and Opportunities, A. Branca, G. Brunetti, A. Longhin, M. Martini, F. Pupilli, F. Terranova, Symmetry 13 (2021) 1625, arXiv:2108.12212.
[Branca:2021vis]
[2-38]
Radiative corrections to semileptonic beta decays: Progress and challenges, Chien-Yeah Seng, Particles 4 (2021) 397-467, arXiv:2108.03279.
[Seng:2021syx]
[2-39]
Exploring Neutrino-Nucleus Interactions in the GeV Regime using MINERvA, X.-G. Lu et al. (The MINERvA), Eur.Phys.J.ST (2021), arXiv:2107.02064.
[MINERvA:2021csy]
[2-40]
Recent highlights from GENIE v3, Luis Alvarez-Ruso et al. (GENIE), Eur.Phys.J.ST (2021), arXiv:2106.09381.
[GENIE:2021npt]
[2-41]
Muon $g-2$: current status, Alex Keshavarzi, Kim Siang Khaw, Tamaki Yoshioka, Nucl.Phys.B 975 (2022) 115675, arXiv:2106.06723.
[Keshavarzi:2021eqa]
[2-42]
Vector Boson Scattering Processes: Status and Prospects, Diogo Buarque Franzosi et al., Rev.Phys. 8 (2022) 100071, arXiv:2106.01393.
[BuarqueFranzosi:2021wrv]
[2-43]
Semitauonic $b$-hadron decays: A lepton flavor universality laboratory, Florian U. Bernlochner, Manuel Franco Sevilla, Dean J. Robinson, Guy Wormser, Rev.Mod.Phys. 94 (2022) 015003, arXiv:2101.08326.
[Bernlochner:2021vlv]
[2-44]
Nuclear matrix elements from lattice QCD for electroweak and beyond-Standard-Model processes, Zohreh Davoudi, William Detmold, Kostas Orginos, Assumpta Parreno, Martin J. Savage, Phiala Shanahan, Michael L. Wagman, Phys.Rept. 900 (2021) 1-74, arXiv:2008.11160.
[Davoudi:2020ngi]
[2-45]
Neutrino (Antineutrino)-Nucleus Interactions in the Shallow- and Deep-Inelastic Scattering Regions, M. Sajjad Athar, Jorge G. Morfin, J.Phys. G48 (2021) 034001, arXiv:2006.08603.
[SajjadAthar:2020nvy]
[2-46]
The anomalous magnetic moment of the muon in the Standard Model, T. Aoyama et al., Phys. Rept. 887 (2020) 1-166, arXiv:2006.04822.
[Aoyama:2020ynm]
[2-47]
Neutrino Long-Baseline Experiments and Nuclear Physics, Ulrich Mosel, Nucl. Phys. News 29 (2019) 10-14, arXiv:2004.06596.
[Mosel:2019mch]
[2-48]
Electron- versus neutrino-nucleus scattering, J.E. Amaro, M.B. Barbaro, J.A. Caballero, R. Gonzalez-Jimenez, G.D. Megias, I. Ruiz Simo, J.Phys. G47 (2020) 124001, arXiv:1912.10612.
[Amaro:2019zos]
[2-49]
Electroweak Radiative Corrections for Collider Physics, Ansgar Denner, Stefan Dittmaier, Phys.Rept. 864 (2020) 1-163, arXiv:1912.06823.
[Denner:2019vbn]
[2-50]
Recent probes of standard and non-standard neutrino physics with nuclei, D.K. Papoulias, T.S. Kosmas, Y. Kuno, Front.in Phys. 7 (2019) 191, arXiv:1911.00916.
[Papoulias:2019xaw]
[2-51]
The Partonic Content of Nucleons and Nuclei, Juan Rojo, Oxford Research Encyclopedia of Physics (2021), arXiv:1910.03408.
[Rojo:2019uip]
[2-52]
Neutral Current Neutrino-Nucleus Scattering. Theory, Carlotta Giusti, Martin V. Ivanov, J.Phys. G47 (2020) 024001, arXiv:1908.08603.
[Giusti:2019cup]
[2-53]
Probing high-energy interactions of atmospheric and astrophysical neutrinos, Spencer R. Klein, arXiv:1906.02221, 2019.
[Klein:2019nbu]
[2-54]
Neutrino generators: Foundation, Status and Future, U. Mosel, J.Phys. G46 (2019) 113001, arXiv:1904.11506.
[Mosel:2019vhx]
[2-55]
Lattice QCD and Neutrino-Nucleus Scattering, Andreas S. Kronfeld, David G. Richards, William Detmold, Rajan Gupta, Huey-Wen Lin, Keh-Fei Liu, Aaron S. Meyer, Raza Sufian, Sergey Syritsin, Eur.Phys.J. A55 (2019) 196, arXiv:1904.09931.
[Kronfeld:2019nfb]
[2-56]
Atomic parity violation and the standard model, Carl Wieman, Andrei Derevianko, arXiv:1904.00281, 2019.
[Wieman:2019vik]
[2-57]
The hadronic light-by-light contribution to the muon's anomalous magnetic moment, Igor Danilkin, Christoph Florian Redmer, Marc Vanderhaeghen, Prog.Part.Nucl.Phys. 107 (2019) 20-68, arXiv:1901.10346.
[Danilkin:2019mhd]
[2-58]
Theory of the Anomalous Magnetic Moment of the Electron, Tatsumi Aoyama, Toichiro Kinoshita, Makiko Nio, Atoms 7 (2019) 28.
[Aoyama:2019ryr]
[2-59]
Determination of the Proton's Weak Charge and Its Constraints on the Standard Model, Roger D. Carlini, Willem T. H. van Oers, Mark L. Pitt, Gregory R. Smith, Ann. Rev. Nucl. Part. Sci. 69 (2019) 191-217.
[Carlini:2019ksi]
[2-60]
Neutrino-nuclear responses for astro-neutrinos, single beta decays and double beta decays, H. Ejiri, J. Suhonen, K. Zuber, Phys. Rept. 797 (2019) 1-102.
[Ejiri:2019ezh]
[2-61]
COHERENT 2018 at the Spallation Neutron Source, D. Akimov et al. (COHERENT), arXiv:1803.09183, 2018.
[COHERENT:2018gft]
[2-62]
Progress in measurements of 0.1-10 GeV neutrino-nucleus scattering and anticipated results from future experiments, Kendall Mahn, Chris Marshall, Callum Wilkinson, Ann.Rev.Nucl.Part.Sci. 68 (2018) 105-129, arXiv:1803.08848.
[Mahn:2018mai]
[2-63]
New physics searches in nuclear and neutron $\beta$ decay, Martin Gonzalez-Alonso, Oscar Naviliat-Cuncic, Nathal Severijns, Prog.Part.Nucl.Phys. 104 (2019) 165-223, arXiv:1803.08732.
[Gonzalez-Alonso:2018omy]
[2-64]
Calculate like a Llewellyn, Anthony Mann, 2018. NOVA Document 28289-v2. http://nova-docdb.fnal.gov/cgi-bin/ShowDocument?docid=28289.
[Mann]
[2-65]
Program of Fundamental-Interaction Research for the Ultracold-Neutron Source at the the WWR-M Reactor, A. P. Serebrov, Phys. Atom. Nucl. 81 (2018) 214-221.
[Serebrov:2018lxv]
[2-66]
Precision Physics at LEP, Siegfried Bethke, arXiv:1712.03035, 2017.
[Bethke:2017qes]
[2-67]
Neutrino oscillations and Non-Standard Interactions, Y. Farzan, M. Tortola, Front.in Phys. 6 (2018) 10, arXiv:1710.09360.
[Farzan:2017xzy]
[2-68]
High precision analytical description of the allowed $\beta$ spectrum shape, Leendert Hayen, Nathal Severijns, Kazimierz Bodek, Dagmara Rozpedzik, Xavier Mougeot, Rev. Mod. Phys. 90 (2018) 015008, arXiv:1709.07530.
[Hayen:2017pwg]
[2-69]
Lectures on the Theory of the Weak Interaction, Michael E. Peskin, arXiv:1708.09043, 2017.
[Peskin:2017emn]
[2-70]
Nucleon Axial Radius and Muonic Hydrogen, Richard J. Hill, Peter Kammel, William J. Marciano, Alberto Sirlin, Rept.Prog.Phys. 81 (2018) 096301, arXiv:1708.08462.
[Hill:2017wgb]
[2-71]
NuSTEC White Paper: Status and Challenges of Neutrino-Nucleus Scattering, L. Alvarez-Ruso et al., Prog.Part.Nucl.Phys. 100 (2018) 1-68, arXiv:1706.03621.
[NuSTEC:2017hzk]
[2-72]
Roadmap for the international, accelerator-based neutrino programme, J. Cao et al., arXiv:1704.08181, 2017.
[Cao:2017hno]
[2-73]
Interactions relevant to the decoupling of the neutrini/antineutrini in the early Universe, Evangelos Matsinos, arXiv:1702.02872, 2017.
[Matsinos:2017gqr]
[2-74]
Neutrino-Nucleus Cross Sections for Oscillation Experiments, Teppei Katori, Marco Martini, J.Phys. G45 (2018) 013001, arXiv:1611.07770.
[Katori:2016yel]
[2-75]
Neutrino Interactions with Nucleons and Nuclei: Importance for Long Baseline Experiments, Ulrich Mosel, Ann.Rev.Nucl.Part.Sci. 66 (2016) 171, arXiv:1602.00696.
[Mosel:2016cwa]
[2-76]
Low-energy precision tests of the standard model: a snapshot, David W. Hertzog, Annalen Phys. 528 (2016) 115-122.
[Hertzog:2016lom]
[2-77]
Global Analyses of Neutrino Oscillation Experiments, M.C. Gonzalez-Garcia, Michele Maltoni, Thomas Schwetz, Nucl. Phys. B908 (2016) 199-217, arXiv:1512.06856.
[Gonzalez-Garcia:2015qrr]
[2-78]
Symmetry violations in nuclear and neutron $\beta$ decay, K.K. Vos, H.W. Wilschut, R.G.E. Timmermans, Rev. Mod. Phys. 87 (2015) 1483, arXiv:1509.04007.
[Vos:2015eba]
[2-79]
Particle Physics after the Higgs-Boson Discovery: Opportunities for the Large Hadron Collider, Chris Quigg, Contemp.Phys. 57 (2016) 177, arXiv:1507.02977.
[Quigg:2015qxa]
[2-80]
Electroweak phase transition and some related phenomena- a brief review, Buddhadeb Ghosh, Pramana 87 (2016) 43, arXiv:1507.01576.
[Ghosh:2015rsa]
[2-81]
On the Trail of the Higgs Boson, Michael E. Peskin, Annalen Phys. 528 (2016) 20-34, arXiv:1506.08185.
[Peskin:2015kka]
[2-82]
Precision Muon Physics, T.P. Gorringe, D.W. Hertzog, Prog. Part. Nucl. Phys. 84 (2015) 73-123, arXiv:1506.01465.
[Gorringe:2015cma]
[2-83]
Non standard neutrino interactions, O.G. Miranda, H. Nunokawa, New J. Phys. 17 (2015) 095002, arXiv:1505.06254.
[Miranda:2015dra]
[2-84]
Physics at the e+ e- Linear Collider, G. Moortgat-Pick et al., Eur. Phys. J. C75 (2015) 371, arXiv:1504.01726.
[Moortgat-Pick:2015lbx]
[2-85]
Neutrino-nucleus interactions and the determination of oscillation parameters, Omar Benhar, Patrick Huber, Camillo Mariani, Davide Meloni, Phys.Rept. 700 (2017) 1-47, arXiv:1501.06448.
[Benhar:2015wva]
[2-86]
Parity and Time-Reversal Violation in Atomic Systems, B. M. Roberts, V. A. Dzuba, V. V. Flambaum, Ann. Rev. Nucl. Part. Sci. 65 (2015) 63-86, arXiv:1412.6644.
[Roberts:2014bka]
[2-87]
Quantum Monte Carlo methods for nuclear physics, J. Carlson et al., Rev. Mod. Phys. 87 (2015) 1067, arXiv:1412.3081.
[Carlson:2014vla]
[2-88]
Charged Current Quasi-Elastic Cross Section Measurements in MiniBooNE, Joseph Grange, Teppei Katori, Mod.Phys.Lett. A29 (2014) 1430011, arXiv:1404.6484.
[Grange:2014tya]
[2-89]
Progress and open questions in the physics of neutrino cross sections, L. Alvarez-Ruso, Y. Hayato, J. Nieves, New J. Phys. 16 (2014) 075015, arXiv:1403.2673.
[Alvarez-Ruso:2014bla]
[2-90]
Weak Polarized Electron Scattering, Jens Erler, Charles J. Horowitz, Sonny Mantry, Paul A. Souder, Ann. Rev. Nucl. Part. Sci. 64 (2014) 269-298, arXiv:1401.6199.
[Erler:2014fqa]
[2-91]
The measurement and interpretation of superallowed $0^+ \to 0^+$ nuclear $\beta$ decay, J. C. Hardy, I. S. Towner, J. Phys. G 41 (2014) 114004, arXiv:1312.3587.
[Hardy:2013lga]
[2-92]
Precision Tau Physics, Antonio Pich, Prog.Part.Nucl. Phys. 75 (2014) 41-85, arXiv:1310.7922.
[Pich:2013lsa]
[2-93]
Neutrinos, A. de Gouvea et al. (Intensity Frontier Neutrino Working Group), arXiv:1310.4340, 2013.
[IntensityFrontierNeutrinoWorkingGroup:2013sdv]
[2-94]
Nuclear Effects in Neutrino Interactions and their Impact on the Determination of Oscillation Parameters, Omar Benhar, Noemi Rocco, Adv. High Energy Phys. 2013 (2013) 912702, arXiv:1310.3869.
[Benhar:2013bwa]
[2-95]
From eV to EeV: Neutrino Cross Sections Across Energy Scales, J.A. Formaggio, G.P. Zeller, Rev.Mod.Phys. 84 (2012) 1307, arXiv:1305.7513.
[Formaggio:2012cpf]
[2-96]
The Weak Neutral Current, Jens Erler, Shufang Su, Prog. Part. Nucl. Phys. 71 (2013) 119-149, arXiv:1303.5522.
[Erler:2013xha]
[2-97]
Collider Physics within the Standard Model: a Primer, Guido Altarelli, arXiv:1303.2842, 2013.
[Altarelli:2013tya]
[2-98]
Low Energy Measurements of the Weak Mixing Angle, K.S. Kumar, Sonny Mantry, W.J. Marciano, P.A. Souder, Ann. Rev. Nucl. Part. Sci. 63 (2013) 237-267, arXiv:1302.6263.
[Kumar:2013yoa]
[2-99]
Electroweak Symmetry Breaking and the Higgs Boson: Confronting Theories at Colliders, Aleksandr Azatov, Jamison Galloway, Int. J. Mod. Phys. A28 (2013) 1330004, arXiv:1212.1380.
[Azatov:2012qz]
[2-100]
Recent Developments in Neutrino/Antineutrino - Nucleus Interactions, Jorge G. Morfin, Juan Nieves, Jan T. Sobczyk, Adv. High Energy Phys. 2012 (2012) 934597, arXiv:1209.6586.
[Morfin:2012kn]
[2-101]
Status of non-standard neutrino interactions, Tommy Ohlsson, Rept. Prog. Phys. 76 (2013) 044201, arXiv:1209.2710.
[Ohlsson:2012kf]
[2-102]
Nuclear Shadowing in Electro-Weak Interactions, B. Z. Kopeliovich, J. G. Morfin, Ivan Schmidt, Prog. Part. Nucl. Phys. 68 (2013) 314, arXiv:1208.6541.
[Kopeliovich:2012kw]
[2-103]
Transport-theoretical Description of Nuclear Reactions, O. Buss et al., Phys. Rept. 512 (2012) 1-124, arXiv:1106.1344.
[Buss:2011mx]
[2-104]
The neutron and its role in cosmology and particle physics, Dirk Dubbers, Michael G. Schmidt, Rev. Mod. Phys. 83 (2011) 1111-1171, arXiv:1105.3694.
[Dubbers:2011ns]
[2-105]
The First Year of the Large Hadron Collider: A Brief Review, Gregor Herten, Mod. Phys. Lett. A26 (2011) 843-855, arXiv:1104.4205.
[Herten:2011qx]
[2-106]
Neutrino-nucleus interactions, H. Gallagher, G. Garvey, G.P. Zeller, Ann.Rev.Nucl.Part.Sci. 61 (2011) 355-378.
[Gallagher:2011zza]
[2-107]
Top Quark Physics at the Tevatron, Frederic Deliot, Douglas Glenzinski, Rev.Mod.Phys. 84 (2012) 211, arXiv:1010.1202.
[Deliot:2010ey]
[2-108]
Low energy neutrino scattering measurements at future Spallation Source facilities, R. Lazauskas, C. Volpe, J. Phys. G37 (2010) 125101, arXiv:1004.0310.
[Lazauskas:2010rh]
[2-109]
Tests of the Standard Electroweak Model at the Energy Frontier, John D. Hobbs, Mark S. Neubauer, Scott Willenbrock, Rev.Mod.Phys. 84 (2012) 1477-1526, arXiv:1003.5733.
[Hobbs:2010yg]
[2-110]
Unanswered Questions in the Electroweak Theory, Chris Quigg, Ann. Rev. Nucl. Part. Sci. 59 (2009) 505-555, arXiv:0905.3187.
[Quigg:2009vq]
[2-111]
The Muon g-2, Fred Jegerlehner, Andreas Nyffeler, Phys. Rept. 477 (2009) 1-110, arXiv:0902.3360.
[Jegerlehner:2009ry]
[2-112]
A Review of Target Mass Corrections, Ingo Schienbein et al., J. Phys. G35 (2008) 053101, arXiv:0709.1775.
[Schienbein:2007gr]
[2-113]
Muon Physics: A Pillar of the Standard Model, B. Lee Roberts, J. Phys. Soc. Jap. 76 (2007) 111009, arXiv:0704.2394.
[LeeRoberts:2007gf]
[2-114]
Spontaneous Symmetry Breaking as a Basis of Particle Mass, Chris Quigg, Rept. Prog. Phys. 70 (2007) 1019-1054, arXiv:0704.2232.
[Quigg:2007dt]
[2-115]
Tests of the standard electroweak model in beta decay, N. Severijns, M. Beck, O. Naviliat-Cuncic, Rev. Mod. Phys. 78 (2006) 991-1040, arXiv:nucl-ex/0605029.
[Severijns:2006dr]
[2-116]
Inclusive quasi-elastic electron-nucleus scattering, Omar Benhar, Donal day, Ingo Sick, Rev.Mod.Phys. 80 (2008) 189-224, arXiv:nucl-ex/0603029.
[Benhar:2006wy]
[2-117]
Hadroproduction experiments for precise neutrino beam calculations, M. Bonesini, A. Guglielmi, Phys. Rept. 433 (2006) 65-126.
[Bonesini:2006ik]
[2-118]
Precision electroweak measurements on the Z resonance, S. Schael et al. (ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group), Phys. Rept. 427 (2006) 257, arXiv:hep-ex/0509008.
From the abstract: The number of light neutrino species is determined to be $ 2.9840 \pm 0.0082 $.
[ALEPH:2005ab]
[2-119]
Analytical formulas for neutrino-electron scattering cross sections, J. Linder, arXiv:hep-ph/0505079, 2005.
[Linder:2005py]
[2-120]
Atomic parity violation: Principles, recent results, present motivations, Jocelyne Guena, Michel Lintz, Marie-Anne Bouchiat, Mod. Phys. Lett. A20 (2005) 375-390, arXiv:physics/0503143.
[Guena:2005uj]
[2-121]
Electroweak model and constraints on new physics, Jens Erler, Paul Langacker, Phys. Lett. B592 (2004), arXiv:hep-ph/0407097. The Review of Particle Properties 2004. http://pdg.lbl.gov/2004/reviews/stanmodelrpp.pdf.
[Erler:2004nh]
[2-122]
Neutrino-Electron Scattering Theory, William J. Marciano, Zohreh Parsa, J. Phys. G29 (2003) 2629, arXiv:hep-ph/0403168.
[Marciano:2003eq]
[2-123]
All electromagnetic form-factors, Marek Nowakowski, E.A. Paschos, J.M. Rodriguez, Eur.J. Phys. 26 (2005) 545-560, arXiv:physics/0402058.
[Nowakowski:2004cv]
[2-124]
Pseudoscalar-Meson Decay Constants, M. Suzuki, Phys. Lett. B592 (2004) 495-496. The Review of Particle Properties 2004. http://pdg.lbl.gov/2004/reviews/decaycons_s808.pdf.
[Suzuki:2004fr]
[2-125]
Supernova Science at Spallation Neutron Sources, W. R. Hix, A. Mezzacappa, O. E. B. Messer, S. W. Bruenn, J. Phys. G29 (2003) 2523, arXiv:astro-ph/0310763.
[Hix:2003vv]
[2-126]
The anomalous magnetic moment of the muon: A theoretical introduction, Marc Knecht, Lect. Notes Phys. 629 (2004) 37, arXiv:hep-ph/0307239.
[Knecht:2003kc]
[2-127]
Precision Electroweak Tests of the Standard Model, P B Renton, Rept. Prog. Phys. 65 (2002) 1271-1330, arXiv:hep-ph/0206231.
[Renton:2002wy]
[2-128]
Induced pseudoscalar coupling of the proton weak interaction, Tim Gorringe, Harold W. Fearing, Rev. Mod. Phys. 76 (2004) 31-91, arXiv:nucl-th/0206039.
[Gorringe:2002xx]
[2-129]
Nuclear weak interaction processes in stars, K. Langanke, G. Martinez-Pinedo, Rev. Mod. Phys. 75 (2003) 819-862, arXiv:nucl-th/0203071.
[Langanke:2002ab]
[2-130]
The Nucleon's mirror image: Revealing the strange and unexpected, R. D. McKeown, M. J. Ramsey-Musolf, Mod. Phys. Lett. A18 (2003) 75-84, arXiv:hep-ph/0203011. Few-body problems in physics. Proceedings, 2nd Asia Pacific Conference, APFB'02, Shanghai, P.R. China, August 27-30, 2002.
[McKeown:2002by]
[2-131]
Axial structure of the nucleon, Veronique Bernard, Latifa Elouadrhiri, Ulf. G. Meissner, J. Phys. G28 (2002) R1-R35, arXiv:hep-ph/0107088.
Comment: The axial form factor data were parameterized in terms of a dipole and the resulting world average is $M_A = 1.026 \pm 0.021$ GeV (neutrino scattering).
[Bernard:2001rs]
[2-132]
Parity violating electron scattering and nucleon structure, D. H. Beck, R. D. McKeown, Ann. Rev. Nucl. Part. Sci. 51 (2001) 189-217, arXiv:hep-ph/0102334.
[Beck:2001yx]
[2-133]
Strangeness in the nucleon: Neutrino nucleon and polarized electron nucleon scattering, W. M. Alberico, Samoil M. Bilenky, C. Maieron, Phys. Rep. 358 (2002) 227-308, arXiv:hep-ph/0102269.
[Alberico:2001sd]
[2-134]
Beta decay beyond the standard model, P. Herczeg, Prog. Part. Nucl. Phys. 46 (2001) 413-457.
[Herczeg:2001vk]
[2-135]
Study of nucleon structure by neutrinos, M. Diemoz, F. Ferroni, E. Longo, G. Martinelli, Cambridge Monogr. Part. Phys. Nucl. Phys. Cosmol. 14 (2000) 417-498.
[DFLM:2000]
[2-136]
Nuclear spin isospin responses for low-energy neutrinos, H. Ejiri, Phys. Rept. 338 (2000) 265-351.
[Ejiri:2000ps]
[2-137]
How many generations of fermions?, A. Blondel, D. Denegri, Cambridge Monogr. Part. Phys. Nucl. Phys. Cosmol. 14 (2000) 165-186.
[Maiani:2000]
[2-138]
Spin physics and polarized structure functions, Bodo Lampe, Ewald Reya, Phys. Rep. 332 (2000) 1-163, arXiv:hep-ph/9810270.
[Lampe:1998eu]
[2-139]
Precision measurements with high energy neutrino beams, Janet M. Conrad, Michael H. Shaevitz, Tim Bolton, Rev. Mod. Phys. 70 (1998) 1341-1392, arXiv:hep-ex/9707015.
[Conrad:1997ne]
[2-140]
Small x physics in deep inelastic lepton hadron scattering, B. Badelek, M. Krawczyk, K. Charchula, J. Kwiecinski, Rev. Mod. Phys. 64 (1992) 927-960.
[Badelek:1992gs]
[2-141]
High precision electroweak experiments: A Global search for new physics beyond the standard model, Paul Langacker, Ming-xing Luo, Alfred K. Mann, Rev. Mod. Phys. 64 (1992) 87-192.
[Langacker:1991zr]
[2-142]
The Lifetime of the free neutron, K. Schreckenbach, W. Mampe, J. Phys.G G18 (1992) 1-34.
[Schreckenbach:1992pf]
[2-143]
Deep inelastic scattering: Comparisons with the quark model, Jerome I. Friedman, Rev. Mod. Phys. 63 (1991) 615-629.
[Friedman:1991nq]
[2-144]
The number of neutrino species, D. Denegri, B. Sadoulet, M. Spiro, Rev. Mod. Phys. 62 (1990) 1.
[Denegri:1989if]
[2-145]
Radiative Corrections in the Standard Model and their Role for Precision Tests of the Electroweak Theory, W.F.L. Hollik, Fortsch. Phys. 38 (1990) 165-260.
[Hollik:1988ii]
[2-146]
Experiments with high-energy neutrino beams, J. Steinberger, Rev. Mod. Phys. 61 (1989) 533.
[Steinberger:1988zd]
[2-147]
Low-energy hadron physics from effective chiral lagrangians with vector mesons, Ulf G. Meissner, Phys. Rep. 161 (1988) 213.
[Meissner:1987ge]
[2-148]
The Electric Neutrality of Matter: A Summary, M. Marinelli, Giacomo Morpurgo, Phys.Lett. B137 (1984) 439.
[Marinelli:1983nd]
[2-149]
Glashow-Weinberg-Salam theory of electroweak interactions and the neutral currents, S. M. Bilenky, J. Hosek, Phys. Rep. 90 (1982) 73.
[Bilenky:1982ms]
[2-150]
A theoretical and experimental review of the weak neutral current: a determination of its structure and limits on deviations from the minimal $\text{SU}(2)_L \times \text{U}(1)$ electroweak theory, Jihn E. Kim, Paul Langacker, M. Levine, H. H. Williams, Rev. Mod. Phys. 53 (1981) 211.
[Kim:1980sa]
[2-151]
Asymptotic freedom in deep inelastic processes in the leading order and beyond, Andrzej J. Buras, Rev. Mod. Phys. 52 (1980) 199.
[Buras:1979yt]
[2-152]
Current Algebra Formulation of Radiative Corrections in Gauge Theories and the Universality of the Weak Interactions, A. Sirlin, Rev. Mod. Phys. 50 (1978) 573. [Erratum: Rev.Mod.Phys. 50, 905 (1978)].
[Sirlin:1977sv]
[2-153]
Orbital electron capture by the nucleus, W. Bambynek, H. Behrens, M. H. Chen, B. Crasemann, M. L. Fitzpatrick, K. W. D. Ledingham, H. Genz, M. Mutterer, R. L. Intemann, Rev. Mod. Phys. 49 (1977) 77-221. [Erratum: Rev. Mod. Phys.49,961(1977)].
[Bambynek:1977zz]
[2-154]
The Weak Neutral Current and Its Effects in Stellar Collapse, Daniel Z. Freedman, David N. Schramm, David L. Tubbs, Ann. Rev. Nucl. Part. Sci. 27 (1977) 167-207.
[Freedman:1977xn]
[2-155]
Weak and electromagnetic form-factors of hadrons, M. Gourdin, Phys. Rep. 11 (1974) 29.
[Gourdin:1974iq]
[2-156]
Neutrino reactions at accelerator energies, C. H. Llewellyn Smith, Phys. Rep. 3 (1972) 261.
[LlewellynSmith:1971zm]
[2-157]
Neutrino reactions on nuclear targets, R.A. Smith, E.J. Moniz, Nucl. Phys. B43 (1972) 605.
[Smith:1972xh]
[2-158]
Weak interactions at high energies, A. Pais, Annals Phys. 63 (1971) 361-392.
[Pais:1971er]
[2-159]
The physics of muons and muon neutrinos, Gerald Feinberg, Leon M. Lederman, Ann. Rev. Nucl. Part. Sci. 13 (1963) 431-504.
[Feinberg:1963xj]
[2-160]
Theory of Beta Decay, M. Morita, Prog. Theor. Phys. Suppl. 26 (1963) 1-63.
[Morita:1963zz]
[2-161]
The experimental clarification of the laws of beta- radioactivity, E. J. Konopinski, Ann. Rev. Nucl. Part. Sci. 9 (1959) 99-158.
[Konopinski:1959qr]
[2-162]
Electron scattering, form factors, vector mesons, A. Minten, 1959.
[Minten:1959sx]
[2-163]
Fermi's Theory of Beta Decay, E. J. Konopinski, Rev. Mod. Phys. 27 (1955) 254-257. http://prola.aps.org/pdf/RMP/v27/i3/p254_1.
[Konopinski:1955]
[2-164]
The experimental clarification of the theory of beta- decay, E. J. Konopinski, L. M. Langer, Ann. Rev. Nucl. Part. Sci. 2 (1953) 261-304.
[Konopinski:1953gv]
[2-165]
Beta Decay, E. J. Konopinski, Rev. Mod. Phys. 15 (1943) 209-245. http://prola.aps.org/pdf/RMP/v15/i4/p209_1.
[Konopinski:1953]

3 - Reviews - Talks

[3-1]
Theory of Muon g-2, Bogdan Malaescu, JPS Conf.Proc. 37 (2022) 011003, arXiv:2206.05666. SPIN2021.
[Malaescu:2022qng]
[3-2]
Coherent elastic neutrino-nucleus scattering - First constraints/observations and future potential, Thomas Rink, arXiv:2205.06712, 2022. 2022 Electroweak session of the 56th Rencontres de Moriond.
[Rink:2022qjg]
[3-3]
EXCESS workshop: Descriptions of rising low-energy spectra, P. Adari et al., SciPost Phys.Proc. 9 (2022) 001, arXiv:2202.05097.
[Fuss:2022fxe]
[3-4]
Comparisons and challenges of modern neutrino-scattering experiments (TENSIONS 2019 report), M. Buizza Avanzini et al., Phys.Rev.D 105 (2022) 092004, arXiv:2112.09194.
[Avanzini:2021qlx]
[3-5]
Theory Closing Talk, Gian F. Giudice, PoS LHCP2021 (2021) 019, arXiv:2109.07176. LHCP2021.
[Giudice:2021zgc]
[3-6]
Global Vision of Precision Measurements, Jens Erler, arXiv:2105.00217, 2021. Les Rencontres de Physique de la Vallee d'Aoste (La Thuile 2021), March 9-11, 2021 and 2021 EW session of the 55th Rencontres de Moriond, March 21-27, 2021.
[Erler:2021eyn]
[3-7]
Summary of the NuSTEC Workshop on Neutrino-Nucleus Pion Production in the Resonance Region, L. Aliaga et al., arXiv:2011.07166, 2020.
[NuSTEC:2020nsl]
[3-8]
Summary of Workshop on Common Neutrino Event Generator Tools, Josh Barrow et al., arXiv:2008.06566, 2020.
[Barrow:2020gzb]
[3-9]
Proceedings of The Magnificent CE$\nu$NS Workshop 2018, D. Aristizabal Sierra et al., arXiv:1910.07450, 2019.
[Proceedings:2019mnq]
[3-10]
Summary of the NuSTEC Workshop on Shallow- and Deep-Inelastic Scattering, C. Andreopoulos et al., arXiv:1907.13252, 2019. NuSTEC workshop of Neutrino-Nucleus Scattering in the Shallow- and Deep-Inelastic Kinematic regime, GSSI, L'Aquila, Italy on October 11-13, 2018.
[NuSTEC:2019lqd]
[3-11]
Neutrino Non-Standard Interactions: A Status Report, P. S. Bhupal Dev et al., SciPost Phys.Proc. 2 (2019) 001, arXiv:1907.00991.
[Proceedings:2019qno]
[3-12]
Measurements of neutrino-nucleus scattering, Callum Wilkinson, PoS NOW2018 (2019) 032, arXiv:1903.09404. NOW 2018.
[Wilkinson:2019hru]
[3-13]
PHOTON-2017 conference proceedings, David d'Enterria et al., CERN Conf.Proc. 1 (2018) 1, arXiv:1812.08166.
[dEnterria:2018yor]
[3-14]
High-energy neutrino-nucleus interactions, S. Kumano, EPJ Web Conf. 208 (2019) 07003, arXiv:1810.07363. 20th International Symposium on Very High Energy Cosmic Ray Interactions, May 21-25, 2018, Nagoya University, Nagoya, Japan.
[Kumano:2018bwh]
[3-15]
Comparisons and challenges of modern neutrino scattering experiments (TENSIONS2016 report), M. Betancourt et al., Phys.Rept. 773-774 (2018) 1-28, arXiv:1805.07378.
[Betancourt:2018bpu]
[3-16]
The Muon g-2 in Progress, Fred Jegerlehner, Acta Phys.Polon. B49 (2018) 1157, arXiv:1804.07409. XXIV Cracow EPIPHANY Conference on Advances in Heavy Flavour Physics, 9-12 January 2018, Crakow, Poland.
[Jegerlehner:2018zrj]
[3-17]
Neutrino Cross Sections: Status and Prospects, M. F. Carneiro, arXiv:1804.03238, 2018. NuPhys2017 (London, 20-22 December 2017).
[Carneiro:2018rdm]
[3-18]
Facets of Neutrino-Nucleus Interactions, A.B. Balantekin, Acta Phys.Polon. B49 (2018) 221, arXiv:1711.03667. XXXV Mazurian Lakes Conference on Physics, Piaski, Poland, September 3-9, 2017.
[Balantekin:2017yyp]
[3-19]
Status and challenges of neutrino cross sections, Marco Martini, arXiv:1704.08903, 2017. NuPhys2016 (London, 12-14 December 2016).
[Martini:2017iax]
[3-20]
Recent status of the understanding of neutrino-nucleus cross section, H. Haider, M. Sajjad Athar, S. K. Singh, Springer Proc.Phys. 203 (2018) 43-47, arXiv:1703.02677. DAE-HEP Symposium, Delhi, 12-16 December, 2016.
[Haider:2017qmm]
[3-21]
Prospects for neutrino oscillation parameters, Patrick Huber, PoS NOW2016 (2017) 025, arXiv:1612.04843. NOW2016.
[Huber:2016mki]
[3-22]
Neutrino Interactions and Long-Baseline Experiments, Ulrich Mosel, PoS ICHEP2016 (2016) 504, arXiv:1611.00373. ICHEP 16, Chicago, Aug. 3-10, 2016.
[Mosel:2016inz]
[3-23]
Experimental status of neutrino scattering, Sara Bolognesi, arXiv:1610.04435, 2016. NuFact2015.
[Bolognesi:2016gui]
[3-24]
Recent Developments in Neutrino-Nucleus Scattering (Theory), Satoshi X. Nakamura, arXiv:1610.02639, 2016. 18th International Workshop on Neutrino Factories, Super beams and Beta beams (NuFact2016), August 21-27 2016, Quy Nhon, Vietnam.
[Nakamura:2016xjy]
[3-25]
The physics of neutrino cross sections: theoretical studies, Luis Alvarez-Ruso, arXiv:1605.04861, 2016. NuPhys2015 (London, 16-18 December 2015).
[Alvarez-Ruso:2016gcj]
[3-26]
Neutrino-nucleon cross sections at energies of Megaton-scale detectors, A. Gazizov, M. Kowalski, K. S. Kuzmin, V. A. Naumov, Ch. Spiering, EPJ Web Conf. 116 (2016) 08003, arXiv:1604.02092. VLVnT-2015.
[Gazizov:2016dhn]
[3-27]
Neutrino Cross section Future, Sowjanya Gollapinni, arXiv:1602.05299, 2016. NuPhys2015 (London, 16-18 December 2015). http://inspirehep.net/record/1422050/files/arXiv:1602.05299.pdf.
[Gollapinni:2016wfl]
[3-28]
Progress on nuclear modifications of structure functions, S. Kumano, EPJ Web Conf. 112 (2016) 03003, arXiv:1601.06499. Sixth International Conference on Physics Opportunities at an Electron-Ion Collider (POETIC6), Ecole Polytechnique, Palaiseau, France, September 7-11, 2015.
[Kumano:2016qkk]
[3-29]
The State of the Art of Neutrino Cross Section Measurements, Deborah A. Harris, arXiv:1506.02748, 2015. Prospects in Neutrino Physics Conference, 15 - 17 December, 2014, held at Queen Mary University of London, UK.
[Harris:2015mma]
[3-30]
Neutrino Interactions and Long Baseline Physics, Ulrich Mosel, arXiv:1504.08204, 2015. Prospects in Neutrino Physics Conference, 15 - 17 December, 2014, Queen Mary University of London, UK.
[Mosel:2015yaa]
[3-31]
Electroweak Corrections, Riccardo Barbieri, Adv.Ser.Direct.High Energy Phys. 26 (2016) 79-92, arXiv:1503.08153. The Standard Theory up to the Higgs discovery - 60 years of CERN.
[Barbieri:2015maa]
[3-32]
TASI-2013 Lectures on Flavor Physics, Benjamin Grinstein, arXiv:1501.05283, 2015.
[Grinstein:2015nya]
[3-33]
Recent Advances and Open Questions in Neutrino-induced Quasi-elastic Scattering and Single Photon Production, G. T. Garvey, D. A. Harris, H. A. Tanaka, R. Tayloe, G. P. Zeller, Phys.Rept. 580 (2015) 1-45, arXiv:1412.4294. Institute of Nuclear Theory workshop INT-13-54W.
[Garvey:2014exa]
[3-34]
TASI 2013 lectures on Higgs physics within and beyond the Standard Model, Heather E. Logan, arXiv:1406.1786, 2014.
[Logan:2014jla]
[3-35]
Charged Leptons, J. Albrecht et al. (C. R. Group), arXiv:1311.5278, 2013. 2013 Snowmass Community Summer Study Intensity Frontier Charged Lepton Working Group.
[IntensityFrontierChargedLeptonWorkingGroup:2013lml]
[3-36]
Introduction to the STANDARD MODEL of the Electro-Weak Interactions, Jean Iliopoulos, 2012 CERN Summer School of Particle Physics, Angers : France (2012), arXiv:1305.6779.
[Iliopoulos:2013rna]
[3-37]
The GIM Mechanism: origin, predictions and recent uses, Luciano Maiani, arXiv:1303.6154, 2013. Rencontres de Moriond, EW Interactions and Unified Theories, La Thuile, Valle d'Aosta, Italia, 2-9 March, 2013.
[Maiani:2013fpa]
[3-38]
Universality of the Weak Interactions, Cabibbo theory and where they led us, Luciano Maiani, Rivista del Nuovo Cimento, 34, 679 (2011) 679-692, arXiv:1303.5000.
[Maiani:2011zz]
[3-39]
Neutrino Cross Sections, L. Fields, arXiv:1212.0060, 2012. Physics in Collision, Slovakia, 2012.
[Fields:2012mi]
[3-40]
Neutrino-nucleus interactions, U. Mosel, O. Lalakulich, arXiv:1211.1977, 2012. NUFACT 2012. International Workshop on Neutrino Factories, Super Beams and Beta Beams, July 23-28, 2012. Williamsburg, VA US.
[Mosel:2012kt]
[3-41]
Higgs Physics: Theory, Abdelhak Djouadi, Pramana 79 (2012) 513-539, arXiv:1203.4199. XXV International Symposium on Lepton Photon Interactions at High Energies (Lepton Photon 11), 22-27 August 2011, Mumbai, India.
[Djouadi:2012ua]
[3-42]
Proceedings of the 2010 European School of High-energy Physics, Raseborg, Finland, 20 Jun - 3 Jul 2010, C. Grojean, M. Spiropulu, arXiv:1202.1629, 2012.
[Grojean:2012wp]
[3-43]
Neutrino Interactions, Ronald D. Ransome, arXiv:1111.1154, 2011. Particles in Collision 2011.
[Ransome:2011dx]
[3-44]
The Determination of $\sin^2 \theta_W$ in Neutrino Scattering: no more anomaly, A. W. Thomas, AIP Conf. Proc. 1418 (2011) 147-153, arXiv:1111.0122. Pacific Spin 2011, Cairns Australia.
[Thomas:2011cm]
[3-45]
Charged-Current and Neutral-Current Coherent Pion Productions -- Theoretical Status, Satoshi X. Nakamura, J. Phys. Conf. Ser. 408 (2013) 012043, arXiv:1109.4443. NUFACT 11, XIIIth International Workshop on Neutrino Factories, Super beams and Beta beams, 1-6 August 2011, CERN and University of Geneva.
[Nakamura:2011rt]
[3-46]
Quasi-elastic Neutrino Scattering - an Overwiew, Jan T. Sobczyk, AIP Conf. Proc. 1405 (2011) 59-64, arXiv:1108.0506. NuInt11 Workshop, Dehradun, March 7-11, 2011.
[Sobczyk:2011bi]
[3-47]
Recent Measurements of Neutrino-Nucleus Quasi-Elastic Scattering, M.O. Wascko, Nucl. Phys.B, Proc.Suppl.229-232 2012 (2012) 179-183, arXiv:1107.3400. Neutrino 2010.
[Wascko:2011hy]
[3-48]
Neutrino interactions: challenges in the current theoretical picture, Luis Alvarez-Ruso, Nucl. Phys. Proc. Suppl. 229-232 (2012) 167-173, arXiv:1012.3871. XXIV International Conference on Neutrino Physics and Astrophysics (Neutrino 2010), Athens, Greece, June 14-19, 2010.
[Alvarez-Ruso:2010fye]
[3-49]
The Challanges of Flavour Physics, Gino Isidori, PoS ICHEP2010 (2010) 543, arXiv:1012.1981. ICHEP 2010 (Paris, July 22-28, 2010).
[Isidori:2010je]
[3-50]
Novel QCD Phenomenology, Stanley J. Brodsky, arXiv:1010.1503, 2010. Gribov-80 Memorial Workshop on Quantum Chromodynamics and Beyond, May, 2010, Abdus Salam International Centre for Theoretical Physics. Trieste, Italy.
[Brodsky:2010mk]
[3-51]
TASI Lectures on Effective Field Theory and Precision Electroweak Measurements, Witold Skiba, arXiv:1006.2142, 2010. TASI 2009.
[Skiba:2010xn]
[3-52]
Recent developments in modeling neutrino interactions in 1 GeV energy region, Jan T. Sobczyk, Acta Phys. Polon. B41 (2010) 1491-1507, arXiv:1005.3401. Cracow Epiphany Conference, On Physics in Underground Laboratories and its Connection with LHC, Cracow, January 6-8, 2010.
[Sobczyk:2010zt]
[3-53]
Neutrino physics beyond neutrino masses, F. del Aguila, J. de Blas, A. Carmona, J. Santiago, Fortsch. Phys. 58 (2010) 675-681, arXiv:1003.5799. 9th Hellenic School and Workshops on Elementary Particle Physics and Gravity (CORFU2009), Corfu, Greece, August 30-September 20, 2009.
[delAguila:2010zh]
[3-54]
LHC Detectors and Early Physics, Guenther Dissertori, arXiv:1003.2222, 2010. 65th Scottish Universities Summer School in Physics: LHC Physics (16 August to 29 August 2009), St. Andrews.
[Dissertori:2010xe]
[3-55]
Higgs and Electroweak Physics, S. Heinemeyer, arXiv:0912.0361, 2009. SUSSP65, August 2009, St. Andrews, UK.
[Heinemeyer:2014uoa]
[3-56]
Non-standard Neutrino Interactions, D. Hernandez, arXiv:0911.4764, 2009. 44th Rencontres de Moriond on Electroweak Interactions and Unified Theories.
[Hernandez:2009fr]
[3-57]
Beyond the Standard Model for Montaneros, M. Bustamante, L. Cieri, John Ellis, arXiv:0911.4409, 2009. 2009 Latin-American CERN School of High-Energy Physics, Medellin, Colombia.
[Bustamante:2009us]
[3-58]
Theoretical highlights of neutrino-nucleus interactions, Luis Alvarez-Ruso, AIP Conf. Proc. 1222 (2010) 42-46, arXiv:0911.4112. NuFact09, Chicago, July 20-25, 2009.
[Alvarez-Ruso:2009ict]
[3-59]
A Pedagogical Review of Electroweak Symmetry Breaking Scenarios, Gautam Bhattacharyya, Rept. Prog. Phys. 74 (2011) 026201, arXiv:0910.5095.
[Bhattacharyya:2009gw]
[3-60]
Status of the global electroweak fit of the Standard Model, Andreas Hoecker (Gfitter), PoS EPS-HEP2009 (2009) 366, arXiv:0909.0961. 2009 Europhysics Conference on High Energy Physics, Krakow, Poland, July 16-22, 2009.
[Hoecker:2009gd]
[3-61]
Significance of neutrino cross-sections for astrophysics, A.B. Balantekin, AIP Conf. Proc. 1189 (2009) 11-15, arXiv:0909.0226. NUINT2009 (6th International Workshop on Neutrino-Nucleus Interactions in the Few-GeV Region), May 18-22, 2009, Sitges, Barcelona, Spain.
[Balantekin:2009qq]
[3-62]
Introduction to the Standard Model and Electroweak Physics, Paul Langacker, arXiv:0901.0241, 2009. TASI2008.
[Langacker:2009my]
[3-63]
Electroweak radiative corrections and heavy top, M. I. Vysotsky, arXiv:0812.2540, 2008. II Helmholtz International Summer School 'Heavy Quark Physics', Dubna, 11-21 August 2008.
[Vysotsky:2008wi]
[3-64]
Electroweak Physics, Jens Erler, Paul Langacker, Acta Phys. Polon. B39 (2008) 2595-2610, arXiv:0807.3023. XXXVI International Meeting on Fundamental Physics, Baeza, Spain, February 2008.
[Erler:2008ek]
[3-65]
Opportunities for Neutrino Physics at the Spallation Neutron Source (SNS), Yu Efremenko, W R Hix, J. Phys. Conf. Ser. 173 (2009) 012006, arXiv:0807.2801. 2008 Carolina International Symposium on Neutrino Physics.
[Efremenko:2008an]
[3-66]
Tau Physics: Theory Overview, A. Pich, Nucl. Phys. Proc. Suppl. 181-182 (2008) 300-305, arXiv:0806.2793. 2008 International Workshop on e+e- collisions from Phi to Psi (PhiPsi08, Frascati, Italy, 7-10 April 2008).
[Pich:2008ni]
[3-67]
Neutrino Interactions, Kevin McFarland, arXiv:0804.3899, 2008. 61st Scottish Universities Summer School in Physics.
[McFarland:2008xd]
[3-68]
Progress in measuring neutrino quasielastic interactions, Richard Gran, AIP Conf. Proc. 967 (2007) 141-148, arXiv:0711.3024. 5th International Workshop on Neutrino-Nucleus Interactions in the Few-GeV Region (NuInt07).
[Gran:2007kn]
[3-69]
Overview of progress in neutrino scattering measurements, M. Sorel, AIP Conf. Proc. 967 (2007) 17-24, arXiv:0710.3966. 5th International Workshop on Neutrino-Nucleus Interactions in the Few-GeV Region (NuInt07), Batavia, Illinois, 30 May - 3 Jun 2007.
[Sorel:2007iv]
[3-70]
Ten Lectures on the ElectroWeak Interactions, Riccardo Barbieri, arXiv:0706.0684, 2007.
[Barbieri:2007gi]
[3-71]
The Standard Model of Electroweak Interactions, Antonio Pich, arXiv:0705.4264, 2007. 2006 European School of High Energy Physics (Aronsborg, Sweden, 18 June - 1 July 2006) and 4th CERN - CLAF School of High Energy Physics (Vina del Mar, Chile, 18 February - 3 March 2007).
[Pich:2007vu]
[3-72]
Introduction to the Terascale, Guido Altarelli, arXiv:hep-ph/0611025, 2006. SLAC Summer Institute, July 2006.
[Altarelli:2006wv]
[3-73]
Electroweak Physics: Theoretical Overview, Doreen Wackeroth, arXiv:hep-ph/0610058, 2006. Hadron Collider Physics Symposium 2006 (HCP 2006) at Duke University, Durham, North Carolina.
[Wackeroth:2006pj]
[3-74]
Theoretical overview of atomic parity violation, Andrei Derevianko, Sergey G. Porsev, Eur. Phys. J. A32 (2007) 517-523, arXiv:hep-ph/0608178. 3rd International Workshop on From parity violation to hadronic structure and more (PAVI 2006), Milos, Greece, May 16-20, 2006.
[Derevianko:2006sf]
[3-75]
Electroweak Physics at LHC, Jens Erler, arXiv:hep-ph/0607323, 2006. 3rd International Workshop 'From Parity Violation to Hadronic Structure and more...' (PAVI06), Milos Island, Greece, May 16-20, 2006.
[Erler:2006su]
[3-76]
Electroweak physics and physics beyond the Standard Model, L. Bellagamba, E. Sauvan, H. Spiesberger, arXiv:hep-ph/0607273, 2006. XIV International Workshop on Deep Inelastic Scattering, DIS2006, Tsukuba, Japan, 2006, April 20 - 24.
[Bellagamba:2006ax]
[3-77]
NuInt05 Session Two Summary: New Experimental Results in Neutrino Scattering Physics, L. Ludovici, K.S. McFarland, M. Shiozawa, G.P. Zeller, Nucl. Phys. Proc. Suppl. 159 (2006) 35-37, arXiv:hep-ph/0603002. 4th International Workshop on Neutrino-Nucleus Interactions in the Few-GeV Region (NuInt05), Okayama, Japan, September 26-29, 2005.
[Ludovici:2006bm]
[3-78]
NuFact05 Working Group 2 Summary: Experimental Results in Neutrino Scattering Physics, G.P. Zeller, Nucl. Phys. Proc. Suppl. 155 (2006) 111, arXiv:hep-ph/0603001. 7th International Workshop on Neutrino Factories and Superbeams (NuFact05), Rome, Italy, June 21-26, 2005.
[Zeller:2006bk]
[3-79]
Low-Energy Hadron Production Data and Current Status of CERN Measurements, Giles Barr, Ralph Engel, Nucl. Phys. Proc. Suppl. 151 (2006) 175, arXiv:astro-ph/0504356. XIII ISVHECRI, Pylos (Greece), Sept. 2004.
[Barr:2005gd]
[3-80]
The LEP legacy, Giorgio Giacomelli, Roberto Giacomelli, arXiv:hep-ex/0503050, 2005.
[Giacomelli:2005sw]
[3-81]
Polarized structure functions with neutrino beams, Stefano Forte, arXiv:hep-ph/0501020, 2005. SPIN2004.
[Forte:2005pv]
[3-82]
Symmetries of the Standard Model, Scott Willenbrock, arXiv:hep-ph/0410370, 2004. TASI 2004.
[Willenbrock:2004hu]
[3-83]
Neutrino-nucleus interactions: open questions and future projects, Cristina Volpe, Nucl. Phys. Proc. Suppl. 143 (2005) 43, arXiv:hep-ph/0409249. Neutrino2004, 14-19 June 2004, Paris.
[Volpe:2004dg]
[3-84]
ElectroWeak Symmetry Breaking as of 2003, on the way to the Large Hadron Collider, Riccardo Barbieri, arXiv:hep-ph/0312253, 2003. Cargese School of Physics and Cosmology - August 2003 - Cargese - France.
[Barbieri:2003dd]
[3-85]
Lepton Dipole Moments, B. Lee Roberts, Aip Conf. Proc. 698 (2004) 13, arXiv:hep-ex/0309010. Conference on the Intersections of Particle And Nuclear Physics (CIPANP2003).
[Roberts:2003je]
[3-86]
Heavy flavour electroweak physics review, Wolfgang Liebig (DELPHI), arXiv:hep-ex/0307044, 2003. XXXVIII-th Rencontres de Moriond: Electroweak Interactions and Unified Theories.
[Liebig:2003vx]
[3-87]
Electroweak Physics, Martin W. Grunewald, Nucl. Phys. Proc. Suppl. 117 (2003) 280, arXiv:hep-ex/0210003. 31st ICHEP, Amsterdam, The Netherlands, July 24-31, 2002.
[Grunewald:2002wg]
[3-88]
Thirty Years of Precision Electroweak Physics, Alberto Sirlin, J. Phys. G29 (2003) 213, arXiv:hep-ph/0209079. J.J.Sakurai Prize Talk, APS Meeting, Albuquerque, N.M., April 2002.
[Sirlin:2002vp]
[3-89]
The Electroweak Theory, Chris Quigg, arXiv:hep-ph/0204104, 2002. Flavor Physics for the Millennium: TASI 2000.
[Quigg:2002td]
[3-90]
Coherent neutrino nucleus scattering, L. Oberauer, Prog. Part. Nucl. Phys. 48 (2002) 301-304. International School of Nuclear Physics, 23rd Course, Erice, Italy, September 18-26, 2001.
[Oberauer:2002kk]
[3-91]
Standard model: An introduction, S. F. Novaes, arXiv:hep-ph/0001283, 2000. 10th Jorge Andre Swieca Summer School: Particle and Fields, Sao Paulo, Brazil, 31 Jan - 12 Feb 1999.
[Novaes:1999yn]
[3-92]
The standard model and the neutron beta-decay, H. Abele, Nucl. Instrum. Meth. A440 (2000) 499-510. Workshop on Particle Physics with Slow Neutrons, Grenoble, France, 22-24 Oct 1998.
[Abele:2000ar]
[3-93]
A Practical introduction to electroweak radiative corrections, Manuel Drees, 1991. Workshop on High-energy Physics Phenomenology II Calcutta, India, January 2-15, 1991. http://www-library.desy.de/cgi-bin/showprep.pl?DESY-91-045.
[Drees:1991rd]

4 - Habilitation, PhD and Master Theses - Experiment

[4-1]
Fermion mass hierarchies from vector-like families and possible explanations for the electron and muon anomalous magnetic moments, Huchan Lee, arXiv:2201.07658, 2022.
[Lee:2022kny]
[4-2]
Electroweak and Higgs Measurements Using Tau Final States with the LHCb Detector, Philip Ilten, arXiv:1401.4902, 2014.
[Ilten:2013yed]
[4-3]
A precision measurement of the muon decay parameter delta, Andrei Gaponenko, arXiv:1104.2914, 2011.
[Gaponenko:2005kq]

5 - Experiment

[5-1]
First measurement of the strange axial coupling constant using neutral-current quasi-elastic interactions of atmospheric neutrinos at KamLAND, S. Abe et al. (KamLAND), Phys.Rev.D 107 (2023) 072006, arXiv:2211.13911.
[KamLAND:2022ptk]
[5-2]
Precision measurement of the Z boson invisible width in pp collisions at $\sqrt{s}$ = 13 TeV, CMS (CMS), Phys.Lett.B 842 (2023) 137563, arXiv:2206.07110.
[CMS:2022ett]
[5-3]
Precision Determination of the Neutral Weak Form Factor of $^{48}$Ca, D. Adhikari et al. (CREX), Phys.Rev.Lett. 129 (2022) 042501, arXiv:2205.11593.
[CREX:2022kgg]
[5-4]
High-precision measurement of the $W$ boson mass with the CDF II detector, T. Aaltonen et al. (CDF), Science 376 (2022) 170-176.
[CDF:2022hxs]
[5-5]
Improved Neutron Lifetime Measurement with UCN$\tau$, F. M. Gonzalez et al. (UCN$\tau$), Phys. Rev. Lett. 127 (2021) 162501, arXiv:2106.10375.
[UCNt:2021pcg]
[5-6]
Accurate Determination of the Neutron Skin Thickness of $^{208}$Pb through Parity-Violation in Electron Scattering, D. Adhikari et al. (PREX), Phys. Rev. Lett. 126 (2021) 172502, arXiv:2102.10767.
[PREX:2021umo]
[5-7]
Neutron lifetime measurement with pulsed cold neutrons, K. Hirota et al., PTEP 2020 (2020) 123C02, arXiv:2007.11293.
[Hirota:2020mrd]
[5-8]
Precise $\beta$ branching-ratio measurement for the 0+\textrightarrow{}0+ superallowed decay of Ar34, V. E. Iacob, J. C. Hardy, H. I. Park, M. Bencomo, L. Chen, V. Horvat, N. Nica, B. T. Roeder, A. Saastamoinen, I. S. Towner, Phys. Rev. C 101 (2020) 045501.
[Iacob:2020mhu]
[5-9]
Determination of the fine-structure constant with an accuracy of 81 parts per trillion, Leo Morel, Zhibin Yao, Pierre Clade, Saida Guellati-Khelifa, Nature 588 (2020) 61-65.
[Morel:2020dww]
[5-10]
Intensity of a weak 519-keV $\gamma$ ray following $\beta$ decay of the superallowed emitter $^{34}$Ar determined via the $^{33}$S ( p,$\gamma$ ) $^{34}$Cl reaction, H. I. Park et al., Phys. Rev. C 102 (2020) 045502.
[Park:2020thq]
[5-11]
Precision measurement of the weak charge of the proton, D. Androic et al. (Qweak), Nature 557 (2018) 207-211, arXiv:1905.08283.
[Qweak:2018tjf]
[5-12]
Measurement of the fine-structure constant as a test of the Standard Model, Richard H. Parker, Chenghui Yu, Weicheng Zhong, Brian Estey, Holger Muller, Science 360 (2018) 191, arXiv:1812.04130.
[Parker:2018vye]
[5-13]
The open LPC Paul trap for precision measurements in beta decay, P. Delahaye et al., Eur.Phys.J. A55 (2019) 101, arXiv:1810.09246.
[Delahaye:2018nok]
[5-14]
Neutron lifetime measurements with a large gravitational trap for ultracold neutrons, A. P. Serebrov et al., Phys. Rev. C 97 (2018) 055503, arXiv:1712.05663.
[Serebrov:2017bzo]
[5-15]
New measurement of the neutron lifetime with a large gravitational trap, A. P. Serebrov et al., JETP Lett. 106 (2017) 623-629. [Pisma Zh. Eksp. Teor. Fiz.106,no.10,599(2017)].
[Serebrov:2017jvb]
[5-16]
Precision measurement of the radiative $\beta$ decay of the free neutron, M. J. Bales et al., Phys. Rev. Lett. 116 (2016) 242501, arXiv:1603.00243.
[RDKII:2016lpd]
[5-17]
Precise measurement of branching ratios in the $\beta$ decay of $^{38}$Ca, H. I. Park et al., Phys. Rev. C 92 (2015) 015502, arXiv:1503.01367.
[Park:2015paa]
[5-18]
Evidence for the 125 GeV Higgs boson decaying to a pair of tau leptons, Serguei Chatrchyan et al. (CMS), JHEP 1405 (2014) 104, arXiv:1401.5041.
[CMS:2014wdm]
[5-19]
Measurement of parity violation in electron-quark scattering, D. Wang et al. (PVDIS), Nature 506 (2014) 67-70.
[PVDIS:2014cmd]
[5-20]
Improved Determination of the Neutron Lifetime, A.T. Yue, M.S. Dewey, D.M. Gilliam, G.L. Greene, A.B. Laptev et al., Phys. Rev. Lett. 111, 222501 (2013) 222501, arXiv:1309.2623.
[Yue:2013qrc]
[5-21]
First Determination of the Weak Charge of the Proton, D. Androic et al. (Qweak), Phys. Rev. Lett. 111 (2013) 141803, arXiv:1307.5275.
[Qweak:2013zxf]
[5-22]
Measurement of the Neutron Radius of 208Pb Through Parity-Violation in Electron Scattering, S. Abrahamyan et al. (PREX), Phys. Rev. Lett. 108 (2012) 112502, arXiv:1201.2568.
[Abrahamyan:2012gp]
[5-23]
Search for narrow resonances in e+ e- annihilation between 1.85 and 3.1 GeV with the KEDR Detector, V. V. Anashin et al. (KEDR), Phys. Lett. B703 (2011) 543-546, arXiv:1107.2824.
[KEDR:2011orr]
[5-24]
Precise measurement of parity violation in polarized muon decay, J.F. Bueno et al. (TWIST), Phys. Rev. D84 (2011) 032005, arXiv:1104.3632.
[TWIST:2011egd]
[5-25]
Testing the neutrality of matter by acoustic means in a spherical resonator, G. Bressi, G. Carugno, F. Della valle, G. Galeazzi, G. Ruoso et al., Phys. Rev. A83 (2011) 052101, arXiv:1102.2766.
[Bressi:2011yfa]
[5-26]
New Experimental Constraints for the Standard Model from Muon Decay, R. Bayes et al. (TWIST), arXiv:1010.4998, 2010.
[TWIST:2010uqs]
[5-27]
Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant to Part-per-Million Precision, D.M. Webber et al. (MuLan), Phys. Rev. Lett. 106 (2011) 041803, arXiv:1010.0991.
[MuLan:2010shf]
[5-28]
Neutron lifetime measurement with the UCN trap-in-trap MAMBO II, A. Pichlmaier, V. Varlamov, K. Schreckenbach, P. Geltenbort, Phys. Lett. B 693 (2010) 221-226.
[Pichlmaier:2010zz]
[5-29]
Measurement of Neutrino-Electron Scattering Cross-Section with a CsI(Tl) Scintillating Crystal Array at the Kuo-Sheng Nuclear Power Reactor, M. Deniz et al. (TEXONO), Phys. Rev. D81 (2010) 072001, arXiv:0911.1597.
[TEXONO:2009knm]
[5-30]
Search for Second-Class Currents in $\tau^- \to \omega \pi^- \nu_\tau$, B. Aubert (BABAR), Phys. Rev. Lett. 103 (2009) 041802, arXiv:0904.3080.
[BaBar:2009jyj]
[5-31]
First Measurement of the Neutron $\beta$-Asymmetry with Ultracold Neutrons, Jr Pattie, R. W. (UCNA), Phys. Rev. Lett. 102 (2009) 012301, arXiv:0809.2941.
[UCNA:2008pxo]
[5-32]
A Precision Measurement of the Muon Decay Parameters $\rho$ and $\delta$, R. P. MacDonald, for the TWIST Collaboration (TWIST), Phys. Rev. D78 (2008) 032010, arXiv:0807.1125.
[TWIST:2008myj]
[5-33]
Measurement of the Beta-Neutrino Correlation of Sodium-21 using Shakeoff Electrons, P. A. Vetter, J. R. Abo-Shaeer, S. J. Freedman, R. Maruyama, Phys. Rev. C77 (2008) 035502, arXiv:0805.1212.
[Vetter:2008zz]
[5-34]
Measurement of the Proton Asymmetry Parameter C in Neutron Beta Decay, M. Schumann et al., Phys. Rev. Lett. 100 (2008) 151801, arXiv:0712.2442.
[Schumann:2007hz]
[5-35]
Precision Electroweak Measurements and Constraints on the Standard Model, J. Alcaraz et al. (LEP), arXiv:0712.0929, 2007.
[ALEPH:2007brf]
[5-36]
Measurement of Muon Neutrino Quasi-Elastic Scattering on Carbon, A. A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Rev. Lett. 100 (2008) 032301, arXiv:0706.0926.
From the abstract: ... effective axial mass $ M_A = 1.23 \pm 0.20 \text{GeV} $.
[MiniBooNE:2007iti]
[5-37]
Improved Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant, D.B. Chitwood et al. (MuLan), Phys. Rev. Lett. 99 (2007) 032001, arXiv:0704.1981.
From the abstract: The new world average $ \tau_{\mu} = 2.197 019(21) \mu\text{s} $ determines the Fermi constant $ G_{\text{F}} = 1.166 371(6) \times 10^{-5} \, \text{GeV}^{-2} $ (5 ppm).
[MuLan:2007qkz]
[5-38]
Neutron lifetime measurements using gravitationally trapped ultracold neutrons, A. P. Serebrov et al., Phys. Rev. C78 (2008) 035505, arXiv:nucl-ex/0702009.
From the abstract: The neutron lifetime obtained, $878.5\pm 0.7(stat) \pm 0.3(syst)$ s, is the most accurate one to date.
Comment: The measured value is 6.5 $\sigma$ away from the world averaged value (M.L.).
[Serebrov:2007ve]
[5-39]
The scattering of muons in low Z materials, MuScat (MuScat), Nucl. Instrum. Meth. B251 (2006) 41-55, arXiv:hep-ex/0512005.
[Attwood:2005zz]
[5-40]
Precision measurement of the weak mixing angle in Moller scattering, P. L. Anthony et al. (SLAC E158), Phys. Rev. Lett. 95 (2005) 081601, arXiv:hep-ex/0504049.
[SLACE158:2005uay]
[5-41]
Measurement of the parity violating 6S-7S transition amplitude in cesium achieved within $ 2 \times 10^{-13} $ atomic-unit accuracy by stimulated-emission detection, J. Guena, M. Lintz, M. A. Bouchiat, Phys. Rev. A71 (2005) 042108, arXiv:physics/0412017.
[Guena:2004sq]
[5-42]
Measurement of the neutron lifetime using a gravitational trap and a low-temperature Fomblin coating, A. Serebrov et al., Phys. Lett. B605 (2005) 72-78, arXiv:nucl-ex/0408009.
[Serebrov:2004zf]
[5-43]
Observation of Parity Nonconservation in Moller Scattering, SLAC-E158 (SLAC-E158), Phys. Rev. Lett. 92 (2004) 181602, arXiv:hep-ex/0312035.
[SLACE158:2003onx]
[5-44]
A Combination of Preliminary Electroweak Measurements and Constraints on the Standard Model, LEP Collaborations et al. (ALEPH), arXiv:hep-ex/0212036, 2002.
[ALEPH:2002aa]
[5-45]
Is the unitarity of the quark-mixing-CKM-matrix violated in neutron beta-decay?, H. Abele et al., Phys. Rev. Lett. 88 (2002) 211801, arXiv:hep-ex/0206058.
From the abstract: ..., we find a deviation from the unitarity condition for the first row of the CKM matrix of $\Delta$ = 0.0083(28), which is 3.0 times the stated error.
[Abele:2002wc]
[5-46]
Measurement of the $6S \to 7S$ transition polarizability in atomic cesium and an improved test of the Standard Model, S. C. Bennett, Carl E. Wieman, Phys. Rev. Lett. 82 (1999) 2484-2487, arXiv:hep-ex/9903022. [Erratum: Phys.Rev.Lett. 82, 4153 (1999), Erratum: Phys.Rev.Lett. 83, 889 (1999)].
[Bennett:1999pd]
[5-47]
Measurement of parity nonconservation and an anapole moment in cesium, C. S. Wood, S. C. Bennett, D. Cho, B. P. Masterson, J. L. Roberts, C. E. Tanner, Carl E. Wieman, Science 275 (1997) 1759-1763.
[Wood:1997zq]
[5-48]
Experimental Limit for the Charge of the Free Neutron, J. Baumann, J. Kalus, R. Gahler, W. Mampe, Phys. Rev. D37 (1988) 3107-3112.
[Baumann:1988ue]
[5-49]
The electric neutrality of matter: a summary, M. Marinelli, Giacomo Morpurgo, Phys. Lett. B137 (1984) 439.
[Marinelli:1983nd]
[5-50]
Helicity of the Electron and Positron in Muon Decay, P. C. Macq, K. M. Crowe, R. P. Haddock, Phys. Rev. 112 (1958) 2061-2071.
[Macq:1958dz]

6 - Experiment - Talks

[6-1]
Precise Neutron Lifetime Measurement Using Pulsed Neutron Beams at J-PARC, N. Sumi et al., JPS Conf.Proc. 33 (2021) 011056, arXiv:2102.09758. J-PARC Symposium 2019.
[Sumi:2021svn]
[6-2]
$\sin^2\theta^{\rm lept}_{\rm eff}$ and $M_W$(indirect) extracted from 9 fb$^{-1}$ $\mu^+\mu^-$ event sample at CDF, A. Bodek (CDF), Nucl.Part.Phys.Proc. 273-275 (2016) 2253-2258, arXiv:1411.5549. 37th International Conference on High-Energy Physics, ICHEP 2014.
[Bodek:2014vxa]
[6-3]
MuLan Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant, T.P. Gorringe, arXiv:1301.0504, 2013. CKM 2012.
[Gorringe:2013ry]
[6-4]
Precision Electroweak Measurements and Constraints on the Standard Model, ALEPH et al. (ALEPH), arXiv:1012.2367, 2010.
[ALEPH:2010aa]
[6-5]
Toward a sub-ppm measurement of the Fermi constant, David M. Webber (MuLan), arXiv:1006.3982, 2010. MORIOND Electroweak 2010 proceedings.
[Webber:2010xa]
[6-6]
Lepton universality test with Kl2 decays at NA62 experiment, Spasimir Balev, arXiv:1006.1201, 2010. Lake Louise Winter Institute 2010 proceedings.
[Balev:2010wu]
[6-7]
TWIST: Precision Measurement of the Muon Decay Parameters, R.E. Mischke (TWIST), J. Phys. Conf. Ser. 312 (2011) 102004, arXiv:0810.3181. ICHEP08.
[Mischke:2008ed]
[6-8]
Testing mu-e universality with Kl2 decays, Venelin Kozhuharov (NA48), PoS KAON (2008) 049, arXiv:0710.5867. Kaon International Conference (KAON'07), Frascati, Italy, 21-25 May 2007.
[Kozhuharov:2007fh]
[6-9]
Electroweak measurements at the Tevatron, Kristian Harder, CDF, D0 Collaborations (CDF), Frascati Phys.Ser. 44 (2007) 225-230, arXiv:0706.0851. Les Rencontres de Physique de La Vallee d'Aoste, La Thuile, 4-10 March 2007.
[Harder:2007jf]
[6-10]
Precision Measurements in Neutron Decay, Marc Schumann (PERKEO II), arXiv:0705.3769, 2007. XLIInd Rencontres de Moriond - Electroweak Interactions and Unified Theories, March 10-17 2007, La Thuile, Italy.
[Schumann:2007mu]
[6-11]
Evidence for B^+ - > omega l^+ nu, K. Abe et al. (Belle), arXiv:hep-ex/0307075, 2003.
[Belle:2003dbo]
[6-12]
New, high statistics measurement of the K+ - > pi0 e+ nu (K+(e3)) branching ratio, Julia A. Thompson, D. E. Kraus, A. Sher (E865), eConf C0304052 (2003) WG608, arXiv:hep-ex/0307053. Workshop on the CKM Unitarity Triangle, IPPP Durham, April 2003.
From the abstract: The result on BR(Ke3gamma) is ~ 2.3 sigma higher than the current Particle Data Group value.
[Thompson:2003jm]
[6-13]
A Search for B+ to mu+ $\nu_\mu$, B. Aubert (BABAR), arXiv:hep-ex/0307047, 2003. International Europhysics Conference on High-Energy Physics 2003.
[BaBar:2003bkt]
[6-14]
Tau physics at LEP, F. Matorras, eConf C0209101 (2002) TU02, arXiv:hep-ex/0211054. ISeventh International Workshop on Tau Lepton Physics (TAU02), Santa Cruz, Ca, USA, Sept 2002.
[Matorras:2002yx]

7 - Experiment - g-2 Anomalies

[7-1]
Detailed Report on the Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm, D. P. Aguillard et al. (Muon g-2), arXiv:2402.15410, 2024.
[Muong-2:2024hpx]
[7-2]
Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm, D. P. Aguillard et al. (Muon g-2), Phys.Rev.Lett. 131 (2023) 161802, arXiv:2308.06230.
[Muong-2:2023cdq]
[7-3]
Measurement of the Electron Magnetic Moment, X. Fan, T. G. Myers, B. A. D. Sukra, G. Gabrielse, Phys. Rev. Lett. 130 (2023) 071801, arXiv:2209.13084.
[Fan:2022eto]
[7-4]
Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm, B. Abi et al. (Muon g-2), Phys.Rev.Lett. 126 (2021) 141801, arXiv:2104.03281.
[Muong-2:2021ojo]
[7-5]
Measurement of the anomalous precession frequency of the muon in the Fermilab Muon g-2 experiment, T. Albahri et al. (Muon g-2), Phys. Rev. D 103 (2021) 072002, arXiv:2104.03247.
[Muong-2:2021vma]
[7-6]
Magnetic Field Measurement and Analysis for the Muon g-2 Experiment at Fermilab, T. Albahri et al. (Muon g-2), Phys. Rev. A 103 (2021) 042208, arXiv:2104.03201.
[Muong-2:2021ovs]
[7-7]
Precision Measurement of the Hadronic Contribution to the Muon Anomalous Magnetic Moment, T. Xiao, S. Dobbs, A. Tomaradze, Kamal K. Seth, G. Bonvicini, Phys.Rev. D97 (2018) 032012, arXiv:1712.04530.
[Xiao:2017dqv]
[7-8]
New Measurement of the Electron Magnetic Moment and the Fine Structure Constant, D. Hanneke, S. Fogwell, G. Gabrielse, Phys. Rev. Lett. 100 (2008) 120801, arXiv:0801.1134.
[Hanneke:2008tm]
[7-9]
Search for Lorentz and CPT Violation Effects in Muon Spin Precession, G. W. Bennett et al. (Muon g-2), Phys. Rev. Lett. 100 (2008) 091602, arXiv:0709.4670.
[Muong-2:2007ofc]
[7-10]
Measurement of the negative muon anomalous magnetic moment to 0.7-ppm, G. W. Bennett (Muon g-2), Phys. Rev. Lett. 92 (2004) 161802, arXiv:hep-ex/0401008.
[Muong-2:2004fok]
[7-11]
Measurement of the Positive Muon Anomalous Magnetic Moment to 0.7 ppm, G. W. Bennett et al. (Muon g-2), Phys. Rev. Lett. 89 (2002) 101804, arXiv:hep-ex/0208001.
From the abstract: A higher precision measurement of the anomalous $g$ value, $a_\mu = (g-2)/2$, for the positive muon has been made at the Brookhaven Alternating Gradient Synchrotron, based on data collected in the year 2000. The result $a_{\mu^+} = 11\,659\,204(7)(5) \times 10^{-10}$ (0.7 ppm) is in good agreement with previous measurements and has an error about one half that of the combined previous data. The present world average experimental value is $a_\mu(\mathrm{exp}) = 11\,659\,203(8) \times 10^{-10}$ (0.7 ppm).
From the article: The difference of $a_\mu(\mathrm{exp})$ and $a_\mu(\mathrm{SM})$ is 1.6 to 2.6 times the combined experimental and theoretical uncertainty.
[Muong-2:2002wip]

8 - Experiment - g-2 Anomalies - Talks

[8-1]
The Muon g-2 Experiment at Fermilab, K. R. Labe (Muon g-2), arXiv:2205.06336, 2022. 2022 EW session of the 56th Rencontres de Moriond.
[Labe:2022ant]
[8-2]
New Experiments to Measure the Muon Anomalous Gyromagnetic Moment, M. Eads, PoS FPCP2015 (2015) 046, arXiv:1512.07214. FPCP, May 2015, Nagoya, Japan.
[Eads:2015arb]
[8-3]
Latest on the muon g-2 from experiment, G. Venanzoni, J. Phys. Conf. Ser. 349 (2012) 012008, arXiv:1203.1501. Linear Collider 2011: Understanding QCD at Linear Colliders in searching for old and new physics, 12-16 September 2011, ECT', Trento, Italy.
[Venanzoni:2012yp]
[8-4]
Muon (g-2): Past, Present and Future, B. Lee Roberts (E821), Nucl. Phys. Proc. Suppl. 155 (2006) 372, arXiv:hep-ex/0510056. NuFact05.
[LeeRoberts:2005uy]
[8-5]
Measurement of the muon anomaly to high and even higher precision, David W. Hertzog (E821), Nucl. Phys. Proc. Suppl. 144 (2005) 191, arXiv:hep-ex/0501053. 8th International Workshop on Tau-Lepton Physics.
[Hertzog:2005mx]
[8-6]
Muon g-2, Ernst Sichtermann, g-2 (g-2), eConf C030626 (2003) SABT03, arXiv:hep-ex/0309008. XXIII Physics in Collision Conference (PIC03), Zeuthen, Germany, June 26-28 2003.
[Sichtermann:2003cc]
[8-7]
Experimental measurement of muon (g-2), F.E. Gray (Muon g-2), arXiv:hep-ex/0305043, 2003. XXXVIII Rencontres de Moriond, Electroweak Interactions and Unified Theories.
[Gray:2003fca]
[8-8]
New Results from the Muon g-2 Experiment, E.P. Sichtermann, Muon g-2 (Muon g-2), Aip Conf. Proc. 675 (2003) 13, arXiv:hep-ex/0301003. 15th International Spin Physics Symposium, SPIN 2002, September 9-14, 2002, Brookhaven National Laboratory, Upton, NY, USA.
[Muong-2:2003ppg]
[8-9]
Measurement of the Muon (g-2)-Value, B. Lee Roberts (Muon g-2), eConf C0209101 (2002) WE11, arXiv:hep-ex/0211067. 7th International Workshop on tau physics.
[Roberts:2002ta]
[8-10]
Precision Measurement of the Anomalous Magnetic Moment of the Muon, Cenap S. Ozben (Muon g-2), eConf C020805 (2002) TW08, arXiv:hep-ex/0211044.
[Muong-2:2002xmd]
[8-11]
Measurement of the Muon Anomalous Magnetic Moment to 0.7 ppm, Yannis K. Semertzidis (g-2), Nucl. Phys. Proc. Suppl. 117 (2003) 373, arXiv:hep-ph/0211038. ICHEP02, Amsterdam, 31 July 2002.
[Semertzidis:2002ws]
[8-12]
News from the muon (g-2) experiment at BNL, M. Deile (Muon g-2), Nucl. Phys. Proc. Suppl. 116 (2003) 215, arXiv:hep-ex/0211034. RADCOR - Loops and Legs 2002, Kloster Banz, Germany, September 8-13 2002.
[Muong-2:2002czd]
[8-13]
Overview of muon (g-2) and EDM experiments, B.L. Roberts, 2002. 2nd International Workshop on Nuclear and Particle Physics at 50-GeV PS, Kyoto University, Kyoto, Japan, September 27-29, 2002. http://www-nh.scphys.kyoto-u.ac.jp/NP02/transp/Sep27/Muon/Roberts1.pdf.
[Roberts-Kyoto2002]

9 - Experiment - Universality

[9-1]
Test of lepton universality and measurement of the form factors of $D^0\to K^{*}(892)^-\mu^+\nu_\mu$, M. Ablikim et al. (BESIII), arXiv:2403.10877, 2024.
[BESIII:2024jlj]
[9-2]
Test of lepton flavour universality using $B^0 \to D^{*-}\tau^+\nu_{\tau}$ decays with hadronic $\tau$ channels, Roel Aaij et al. (LHCb), Phys.Rev.D 108 (2023) 012018, arXiv:2305.01463.
[LHCb:2023uiv]
[9-3]
Test of lepton universality in beauty-quark decays, Roel Aaij et al. (LHCb), Nature Phys. 18 (2022) 277-282, arXiv:2103.11769.
[LHCb:2021trn]
[9-4]
Measurement of the $\pi \to e \nu$ branching ratio, A.Aguilar-Arevalo et al. (PiENu), Phys. Rev. Lett. 115 (2015) 071801, arXiv:1506.05845.
[PiENu:2015seu]

10 - Experiment - Universality - Talks

[10-1]
Test of lepton flavour universality in $b\to s\ell^+\ell^-$ decays, R.D. Moise (LHCb), arXiv:2105.06921, 2021. Electroweak session of the 55th Rencontres de Moriond, 21-27 March 2021.
[Moise:2021nje]
[10-2]
Measurements of |Vus| and Searches for Violation of Lepton Universality and CPT in Tau Decays at BaBar, Alberto Lusiani (BaBar), PoS ICHEP2010 (2010) 251, arXiv:1012.3734. 2010 ICHEP.
[Lusiani:2010eh]
[10-3]
Lepton flavour universality test at the CERN NA62 experiment, Evgueni Goudzovski (NA62), Nucl. Phys. Proc. Suppl. 210-211 (2011) 163-168, arXiv:1008.1219. BEACH 2010 (Perugia, June 2010).
[Goudzovski:2010uk]
[10-4]
Lepton universality test with Kl2 decays at NA62 experiment, Spasimir Balev, arXiv:1006.1201, 2010. Lake Louise Winter Institute 2010 proceedings.
[Balev:2010wu]
[10-5]
Tets of lepton universality and searches for lepton flavor violation at BaBar, Elisa Guido (BaBar), arXiv:1005.2333, 2010. 45th Rencontres de Moriond on Electroweak Interactions and Unified Theories, La Thuile, Italy, 06 - 13 Mar 2010.
[Guido:2010yn]
[10-6]
A Lepton Universality Test at CERN NA62 Experiment, Evgueni Goudzovski, arXiv:1005.1192, 2010. Moriond EW 2010, La Thuile, March 6-13, 2010.
[Goudzovski:2010sw]

11 - Theory

[11-1]
Kinetic theory formulation of the $P$- and $CP$-odd terms in the photon self-energy in a medium, Jose F. Nieves, John D. Verges, Phys.Rev.D 109 (2024) 056022, arXiv:2401.02522.
[Nieves:2024voa]
[11-2]
Chiral kinetic theory with self-energy corrections and neutrino spin Hall effect, Naoki Yamamoto, Di-Lun Yang, Phys.Rev.D 109 (2024) 056010, arXiv:2308.08257.
[Yamamoto:2023okm]
[11-3]
Predictions of the ratio and asymmetry probes of the invisible $Z$-boson decay, Kadir Saygin, Phys.Scripta 98 (2023) 085312, arXiv:2307.09875.
[Saygin:2023xae]
[11-4]
Ab initio calculation of the $\beta$ decay spectrum of $^6$He, Garrett B. King, Alessandro Baroni, Vincenzo Cirigliano, Stefano Gandolfi, Leendert Hayen, Emanuele Mereghetti, Saori Pastore, Maria Piarulli, Phys.Rev.C 107 (2023) 015503, arXiv:2207.11179.
[King:2022zkz]
[11-5]
Radiative corrections to neutron and nuclear $\beta$-decays: a serious kinematics problem in the literature, Ferenc Gluck, JHEP 09 (2023) 188, arXiv:2205.05042.
[Gluck:2022ogz]
[11-6]
A Way of Fast Calculating Lepton Magnetic Moments in Quantum Electrodynamics, Sergey Volkov, arXiv:2111.00291, 2021.
[Volkov:2021lun]
[11-7]
Theoretical description of the neutron beta decay in the standard model at the level of $10^{-5}$, A. N. Ivanov, R. Hollwieser, N. I. Troitskaya, M. Wellenzohn, Ya. A. Berdnkov, Phys.Rev.D 104 (2021) 033006, arXiv:2104.11080.
[Ivanov:2021lji]
[11-8]
Beta-decay formulas revisited (I): Gamow-Teller and spin-dipole contributions to allowed and first-forbidden transitions, W. Horiuchi, T. Sato, Y. Uesaka, K. Yoshida, PTEP 2021 (2021) 103D03, arXiv:2103.16815.
[Horiuchi:2021pup]
[11-9]
Dispersive Evaluation of the Inner Radiative Correction in Neutron and Nuclear $\beta$-decay, Chien Yeah Seng, Mikhail Gorchtein, Michael J. Ramsey-Musolf, Phys.Rev. D100 (2019) 013001, arXiv:1812.03352.
[Seng:2018qru]
[11-10]
Next-to-leading order prediction for the decay $\mu\to e \, (e^+e^-) \, \nu\bar\nu$, M. Fael, C. Greub, JHEP 1701 (2017) 084, arXiv:1611.03726.
[Fael:2016yle]
[11-11]
Fully differential NLO predictions for the rare muon decay, G. M. Pruna, A. Signer, Y. Ulrich, Phys.Lett. B765 (2017) 280-284, arXiv:1611.03617.
[Pruna:2016spf]
[11-12]
Electrodynamics of massless charged particles, Kurt Lechner, J. Math. Phys. 56 (2015) 022901, arXiv:1405.4805.
[Lechner:2014kua]
[11-13]
Muon decay spin asymmetry, Fabrizio Caola, Andrzej Czarnecki, Yi Liang, Kirill Melnikov, Robert Szafron, Phys. Rev. D90 (2014) 053004, arXiv:1403.3386.
[Caola:2014daa]
[11-14]
The Electroweak Vacuum Angle, Pavel Fileviez Perez, Hiren H. Patel, Phys.Lett. B732 (2014) 241, arXiv:1402.6340.
[FileviezPerez:2014xju]
[11-15]
On the positronium contribution to the electron g-2, M. Fael, M. Passera, Phys. Rev. D90 (2014) 056004, arXiv:1402.1575.
[Fael:2014nha]
[11-16]
Observations on the radiative corrections to pion beta-decay, M. Passera, K. Philippides, A. Sirlin, Phys. Rev. D84 (2011) 094030, arXiv:1109.1069.
[Passera:2011ae]
[11-17]
High energy neutrino-photon interactions in the standard model revisited, I. Alikhanov, Phys.Lett. B710 (2012) 149-153, arXiv:1106.5414.
[Alikhanov:2011zf]
[11-18]
Tenth-order lepton g-2: Contribution of some fourth-order radiative corrections to the sixth-order g-2 containing light-by-light-scattering subdiagrams, T. Aoyama, M. Hayakawa, T. Kinoshita, M. Nio, Phys. Rev. D82 (2010) 113004, arXiv:1009.3077.
[Aoyama:2010pk]
[11-19]
Electro-Weak Interactions in Light Nuclei, Doron Gazit, arXiv:0807.0216, 2008.
[Gazit:2007sri]
[11-20]
Revised value of the eighth-order electron g-2, T. Aoyama, M. Hayakawa, T. Kinoshita, M. Nio, Phys. Rev. Lett. 99 (2007) 110406, arXiv:0706.3496.
[Aoyama:2007dv]
[11-21]
Pair production with neutrinos in an intense background magnetic field, Duane A. Dicus, Wayne W. Repko, Todd M. Tinsley, Phys. Rev. D76 (2007) 025005, arXiv:0704.1695.
[Dicus:2007gb]
[11-22]
How Large is the 'Natural' Magnetic Moment?, Barry R. Holstein, Am. J. Phys. 74 (2006) 1104-1111, arXiv:hep-ph/0607187.
[Holstein:2006wi]
[11-23]
The electroweak form factor $\hat{\kappa}(q^2)$ and the running of $\sin^2 \hat{\theta}_W$, A. Ferroglia, G. Ossola, A. Sirlin, Eur. Phys. J. C34 (2004) 165, arXiv:hep-ph/0307200.
[Ferroglia:2003wa]
[11-24]
Generalized Fierz identities, Jose F. Nieves, Palash B. Pal, Am. J. Phys. 72 (2004) 1100, arXiv:hep-ph/0306087.
[Nieves:2003in]
[11-25]
On the asymmetry of Gamow-Teller beta decay rates in mirror nuclei in relation with second class currents, N.A. Smirnova, C. Volpe, Nucl. Phys. A714 (2003) 441-462, arXiv:nucl-th/0207078.
[Smirnova:2002ub]
[11-26]
A Comment on Anomaly Cancellation in the Standard Model, J.A. Minahan, Pierre Ramond, R.C. Warner, Phys. Rev. D41 (1990) 715.
[Minahan:1989vd]
[11-27]
On electroweak magnetism, Jan Ambjorn, P. Olesen, Nucl. Phys. B315 (1989) 606.
[Ambjorn:1988tm]
[11-28]
Uniqueness of Quark and Lepton Representations in the Standard Model From the Anomalies Viewpoint, C.Q. Geng, R.E. Marshak, Phys. Rev. D39 (1989) 693.
[Geng:1989tcu]
[11-29]
Radiative Corrections to Neutrino-Lepton Scattering in the $\text{SU(2)}_{L} \times \text{U(1)}$ Theory, S. Sarantakos, A. Sirlin, W.J. Marciano, Nucl. Phys. B217 (1983) 84.
[Sarantakos:1982bp]
[11-30]
Radiative Corrections to the Neutral Current Interactions in the {Weinberg-Salam} Model, S. Sakakibara, Phys. Rev. D24 (1981) 1149.
[Sakakibara:1980hw]
[11-31]
Static quantities in Weinberg's model of weak and electromagnetic interactions, William A. Bardeen, R. Gastmans, B.E. Lautrup, Nucl. Phys. B46 (1972) 319-331.
[Bardeen:1972vi]
[11-32]
Higher-order corrections to leptonic processes and the renormalization of Weinberg's theory of weak interactions in the unitary gauge, S. Y. Lee, Phys. Rev. D6 (1972) 1701-1717.
[Lee:1972tnf]
[11-33]
Overlap and Exchange Effects in Beta Decay, John N. Bahcall, Phys. Rev. 129 (1963) 2683-2694.
[Bahcall:1963zz]
[11-34]
Electron Capture and Nuclear Matrix Elements of Be-7, John N. Bahcall, Phys. Rev. 128 (1962) 1297-1301.
[Bahcall:1962zz]
[11-35]
Beta Decay in Stellar Interiors, John N. Bahcall, Phys. Rev. 126 (1962) 1143-1149.
[Bahcall:1962zza]
[11-36]
Can Massless Particles be Charged?, K. M. Case, S. G. Gasiorowicz, Phys. Rev. 125 (1962) 1055-1058.
[Case:1962zz]
[11-37]
Theory of Bound-State Beta Decay, John N. Bahcall, Phys. Rev. 124 (1961) 495-499.
[Bahcall:1961zz]
[11-38]
Electromagnetic interaction with parity violation, Ya.B. Zel'dovich, Sov. Phys. JETP 6 (1958) 1184. [Zh. Eksp. Teor. Fiz. 33, 1531 (1957)].
[Zeldovich:1957zl]
[11-39]
On the Fermi Theory of beta-Radioactivity, E. J. Konopinski, G. E. Uhlenbeck, Phys. Rev. 48 (1935) 7-12.
[Konopinski:1935zz]

12 - Theory - Talks

[12-1]
Reconsidered estimates of the 10th order QED contributions to the muon anomaly, A.L. Kataev, Phys. Rev. D74 (2006) 073011, arXiv:hep-ph/0608120. AXODRAW.
[Kataev:2006yh]
[12-2]
Radiative Corrections and the Universality of the Weak Interactions, Alberto Sirlin, Aip Conf. Proc. 698 (2004) 385, arXiv:hep-ph/0309187. 8th Conference on the Intersections of Particle and Nuclear Physics (CIPANP 2003), New York, New York, 19-24 May 2003.
[Sirlin:2003ds]

13 - Theory - g-2 Anomalies

[13-1]
Corrected Calculation for the Non-local Solution to the g-2 Anomaly and Novel Results in Non-local QED, Fayez Abu-Ajamieh, Nobuchika Okada, Sudhir K. Vempati, JHEP 01 (2024) 015, arXiv:2309.08417.
[Abu-Ajamieh:2023txh]
[13-2]
Semi-visible dark photon in a model with vector-like leptons for the $(g-2)_{e,\mu}$ and $W$-boson mass anomalies, Waleed Abdallah, Mustafa Ashry, Junichiro Kawamura, Ahmad Moursy, Phys.Rev.D 109 (2024) 015031, arXiv:2308.05691.
[Abdallah:2023pbl]
[13-3]
Correlating the CDF $W$-mass shift with the muon $g-2$ and the $b \to s \ell^+ \ell^-$ transitions, Xin-Qiang Li, Ze-Jun Xie, Ya-Dong Yang, Xing-Bo Yuan, arXiv:2307.05290, 2023.
[Li:2023mrw]
[13-4]
Data-driven evaluations of Euclidean windows to scrutinize hadronic vacuum polarization, G. Colangelo, A. X. El-Khadra, M. Hoferichter, A. Keshavarzi, C. Lehner, P. Stoffer, T. Teubner, Phys.Lett.B 833 (2022) 137313, arXiv:2205.12963.
[Colangelo:2022vok]
[13-5]
Hadronic vacuum polarization contributions to the muon $g$-2 in the space-like region, Elisa Balzani, Stefano Laporta, Massimo Passera, Phys.Lett.B 834 (2022) 137462, arXiv:2112.05704.
[Balzani:2021del]
[13-6]
Chiral extrapolation of hadronic vacuum polarization, Gilberto Colangelo, Martin Hoferichter, Bastian Kubis, Malwin Niehus, Jacobo Ruiz de Elvira, Phys.Lett.B 825 (2022) 136852, arXiv:2110.05493.
[Colangelo:2021moe]
[13-7]
Leading hadronic contribution to the muon magnetic moment from lattice QCD, Sz. Borsanyi et al., Nature 593 (2021) 51-55, arXiv:2002.12347.
[Borsanyi:2020mff]
[13-8]
Muon $g-2$ Theory: the Hadronic Part, Fred Jegerlehner, EPJ Web Conf. 166 (2018) 00022, arXiv:1705.00263.
[Jegerlehner:2017lbd]
[13-9]
New formulation of $(g-2)_\mu$ hadronic contribution, Yu. M. Bystritskiy et al., JETP Lett. B83 (2006) 51-53, arXiv:hep-ph/0506317.
[Bystritskiy:2005ry]
[13-10]
Constraints on the $I=1$ hadronic $\tau$ decay and $ e^+ e^- \to \text{hadrons} $ data sets and implications for $(g-2)_\mu$, Kim Maltman, Phys. Lett. B633 (2006) 512, arXiv:hep-ph/0504201.
[Maltman:2005yk]
[13-11]
Physics Beyond the Standard Model: Focusing on the Muon Anomaly, H. Chavez, C. N. Ferreira, J.A. Helayel-Neto, Phys. Rev. D74 (2006) 033006, arXiv:hep-ph/0410373.
[Chavez:2004nr]
[13-12]
Electroweak and supersymmetric two-loop corrections to $(g-2)_\mu$, Sven Heinemeyer, Dominik Stöckinger, Georg Weiglein, Nucl. Phys. B699 (2004) 103, arXiv:hep-ph/0405255.
[Heinemeyer:2004yq]
[13-13]
Improved $\alpha^4$ Term of the Muon Anomalous Magnetic Moment, T. Kinoshita, M. Nio, Phys. Rev. D70 (2004) 113001, arXiv:hep-ph/0402206.
[Kinoshita:2004wi]
[13-14]
Two-Loop SUSY Corrections to the Anomalous Magnetic Moment of the Muon, S. Heinemeyer, D. Stockinger, G. Weiglein, Nucl. Phys. B690 (2004) 62, arXiv:hep-ph/0312264.
[Heinemeyer:2003dq]
[13-15]
Comment on the pion pole part of the light-by-light contribution to the muon g-2, Johan Bijnens, Elisabetta Pallante, Joaquim Prades, Nucl. Phys. B626 (2002) 410-411, arXiv:hep-ph/0112255.
[Bijnens:2001cq]
[13-16]
The Second Order Weak Correction to $(g-2)$ of the Muon in Arbitrary Gauge Models, Jacques P. Leveille, Nucl. Phys. B 137 (1978) 63-76.
[Leveille:1977rc]

14 - Theory - g-2 Anomalies - Talks

[14-1]
Mini-Proceedings of the STRONG2020 Virtual Workshop on 'Space-like and Time-like determination of the Hadronic Leading Order contribution to the Muon $g-2$', G. Abbiendi et al., arXiv:2201.12102, 2022.
[Abbiendi:2022liz]
[14-2]
The standard model prediction for muon g-2, Joaquim Prades, arXiv:hep-ph/0108192, 2001. KAON2001: International Conference on CP Violation, Pisa, Italy, 12-17 June 2001.
[Prades:2001zv]

15 - Phenomenology

[15-1]
Precision test of the weak interaction with slow muons, Xin Chen, Zhen Hu, Hui Li, Shaogang Peng, Yongcheng Wu, arXiv:2401.05945, 2024.
[Chen:2024qor]
[15-2]
A study of the measurement of the $\tau$ lepton anomalous magnetic moment in high energy lead-lead collisions at LHC, Monica Verducci, Natascia Vignaroli, Chiara Roda, Vincenzo Cavasinni, arXiv:2307.15160, 2023.
[Verducci:2023cgx]
[15-3]
Nuclear neutron radius and weak mixing angle measurements from latest COHERENT CsI and atomic parity violation Cs data, M. Atzori Corona, M. Cadeddu, N. Cargioli, F. Dordei, C. Giunti, G. Masia, Eur. Phys. J. C 83 (2023) 683, arXiv:2303.09360.
[AtzoriCorona:2023ktl]
[15-4]
Impact of the Dresden-II and COHERENT neutrino scattering data on neutrino electromagnetic properties and electroweak physics, M. Atzori Corona, M. Cadeddu, N. Cargioli, F. Dordei, C. Giunti, Y. F. Li, C. A. Ternes, Y. Y. Zhang, JHEP 09 (2022) 164, arXiv:2205.09484.
[AtzoriCorona:2022qrf]
[15-5]
Measurement of the effective weak mixing angle at the CEPC, Zhenyu Zhao, Siqi Yang, Manqi Ruan, Minghui Liu, Liang Han, Chin.Phys.C 47 (2023) 123002, arXiv:2204.09921.
[Zhao:2022lyl]
[15-6]
Flavorful Electroweak Precision Observables in the Standard Model Effective Field Theory, Sally Dawson, Pier Paolo Giardino, Phys.Rev.D 105 (2022) 073006, arXiv:2201.09887.
[Dawson:2022bxd]
[15-7]
Boosted tau lepton as a microscope and macroscope, Sitian Qian et al., Adv.High Energy Phys. 2022 (2022) 4931241, arXiv:2201.07808.
[Qian:2022owu]
[15-8]
Reply to Comment on 'New physics constraints from atomic parity violation in $^{133}$Cs', B. K. Sahoo, B. P. Das, H. Spiesberger, Phys.Rev.D 105 (2022) 018302, arXiv:2201.03851.
[Sahoo:2022qdu]
[15-9]
Incorporating the weak mixing angle dependence to reconcile the neutron skin measurement on Pb208 by PREX-II, Mattia Atzori Corona, Matteo Cadeddu, Nicola Cargioli, Paolo Finelli, Matteo Vorabbi, Phys. Rev. C 105 (2022) 055503, arXiv:2112.09717.
[Corona:2021yfd]
[15-10]
Constraints on subleading interactions in beta decay Lagrangian, Adam Falkowski, Martin Gonzalez-Alonso, Ajdin Palavric, Antonio Rodriguez-Sanchez, JHEP 02 (2024) 091, arXiv:2112.07688.
[Falkowski:2021vdg]
[15-11]
Global analysis of electroweak data in the Standard Model, J. de Blas, M. Ciuchini, E. Franco, A. Goncalves, S. Mishima, M. Pierini, L. Reina, L. Silvestrini, Phys.Rev.D 106 (2022) 033003, arXiv:2112.07274.
[deBlas:2021wap]
[15-12]
Parity-mixed coupled-cluster formalism for computing parity-violating amplitudes, H. B. Tran Tan, Di Xiao, A. Derevianko, arXiv:2112.04059, 2021.
[2112.04059]
[15-13]
Towards testing the magnetic moment of the tau at one part per million, Andreas Crivellin, Martin Hoferichter, J. Michael Roney, Phys.Rev.D 106 (2022) 093007, arXiv:2111.10378.
[Crivellin:2021spu]
[15-14]
Comment on 'New physics constraints from atomic parity violation in $^{133}$Cs', B. M. Roberts, J. S. M. Ginges, Phys.Rev.D 105 (2022) 018301, arXiv:2110.11621.
[Roberts:2021esp]
[15-15]
On the neutron lifetime anomaly, Paolo Cea, arXiv:2104.07265, 2021.
[Cea:2021osz]
[15-16]
New insights into nuclear physics and weak mixing angle using electroweak probes, M. Cadeddu, N. Cargioli, F. Dordei, C. Giunti, Y.F. Li, E. Picciau, C.A. Ternes, Y.Y. Zhang, Phys.Rev.C 104 (2021) 065502, arXiv:2102.06153.
[Cadeddu:2021ijh]
[15-17]
The Fermi constant from muon decay versus electroweak fits and CKM unitarity, Andreas Crivellin, Martin Hoferichter, Claudio Andrea Manzari, Phys.Rev.Lett. 127 (2021) 071801, arXiv:2102.02825.
[Crivellin:2021njn]
[15-18]
New physics constraints from atomic parity violation in Cs133, B. K. Sahoo, B. P. Das, H. Spiesberger, Phys. Rev. D 103 (2021) L111303, arXiv:2101.10095.
[Sahoo:2021thl]
[15-19]
Comprehensive analysis of beta decays within and beyond the Standard Model, Adam Falkowski, Martin Gonzalez-Alonso, Oscar Naviliat-Cuncic, JHEP 2104 (2021) 126, arXiv:2010.13797.
[Falkowski:2020pma]
[15-20]
Superallowed $0^+ \to 0^+$ nuclear $\beta$ decays: 2020 critical survey, with implications for V$_{ud}$ and CKM unitarity, J. C. Hardy, I. S. Towner, Phys. Rev. C 102 (2020) 045501.
[Hardy:2020qwl]
[15-21]
Probing the Glashow resonance at electron-positron colliders, I. Alikhanov, Mod.Phys.Lett. A35 (2020) 2050101, arXiv:1906.01557.
[Alikhanov:2019app]
[15-22]
Determination of the scalar and vector polarizabilities of the cesium $6s \ ^2S_{1/2} \rightarrow 7s \ ^2S_{1/2}$ transition and implications for atomic parity non-conservation, George Toh, Amy Damitz, Carol E. Tanner, W.R. Johnson, D.S. Elliott, Phys. Rev. Lett. 123 (2019) 073002, arXiv:1905.02768.
[Toh:2019iro]
[15-23]
Dependence of atomic parity-violation effects on neutron skins and new physics, A. V. Viatkina, D. Antypas, M. G. Kozlov, D. Budker, V. V. Flambaum, Phys. Rev. C100 (2019) 034318, arXiv:1903.00123.
[Viatkina:2019wsz]
[15-24]
Test of the Standard Model in Neutron Beta Decay with Polarized Electron and Unpolarized Neutron and Proton, A. N. Ivanov, R. Hollwieser, N. I. Troitskaya, M. Wellenzohn, Ya. A. Berdnikov, Phys.Rev. D99 (2019) 053004, arXiv:1811.04853.
[Ivanov:2018yir]
[15-25]
Precision electroweak shift of muonium hyperfine splitting, T. Asaka, M. Tanaka, K. Tsumura, M.Yoshimura, arXiv:1810.05429, 2018.
[Asaka:2018qfg]
[15-26]
Future perspectives for a weak mixing angle measurement in coherent elastic neutrino nucleus scattering experiments, B. C. Canas, E. A. Garces, O. G. Miranda, A. Parada, Phys.Lett. B784 (2018) 159-162, arXiv:1806.01310.
[Canas:2018rng]
[15-27]
Beta Spectrum Generator: High precision allowed $\beta$ spectrum shapes, Leendert Hayen, Nathal Severijns, Comput. Phys. Commun. 240 (2019) 152-164, arXiv:1803.00525.
[Hayen:2018lhg]
[15-28]
Search for the Electric Dipole Moment and anomalous magnetic moment of the tau lepton at tau factories, Xin Chen, Yongcheng Wu, JHEP 1910 (2019) 089, arXiv:1803.00501.
[Chen:2018cxt]
[15-29]
Neutron Lifetime and Axial Coupling Connection, Andrzej Czarnecki, William J. Marciano, Alberto Sirlin, Phys. Rev. Lett. 120 (2018) 202002, arXiv:1802.01804.
[Czarnecki:2018okw]
[15-30]
Weak Mixing Angle in the Thomson Limit, Jens Erler, Rodolfo Ferro-Hernandez, JHEP 03 (2018) 196, arXiv:1712.09146.
[Erler:2017knj]
[15-31]
$\sin ^{2}\theta_{W}$ estimate and neutrino electromagnetic properties from low-energy solar data, Amir N. Khan, J.Phys. G46 (2019) 035005, arXiv:1709.02930.
[Khan:2017djo]
[15-32]
$\tau^-\to\eta^{(\prime)}\pi^-\nu_\tau\gamma$ decays as backgrounds in the search for second class currents, A. Guevara, G. Lopez-Castro, P. Roig, Phys.Rev. D95 (2017) 054015, arXiv:1612.03291.
[Guevara:2016trs]
[15-33]
The weak mixing angle from low energy neutrino measurements: a global update, B. C. Canas, E. A. Garces, O. G. Miranda, M. Tortola, J. W. F. Valle, Phys.Lett. B761 (2016) 450-455, arXiv:1608.02671.
[Canas:2016vxp]
[15-34]
Michel parameters in radiative muon decay, A.B. Arbuzov, T.V. Kopylova, JHEP 1609 (2016) 109, arXiv:1605.06612.
[Arbuzov:2016ywn]
[15-35]
Concurrent tests of Lorentz invariance in $\beta$-decay experiments, K.K. Vos, H.W. Wilschut, R.G.E. Timmermans, Phys. Rev. C92 (2015) 052501, arXiv:1511.05400.
[Vos:2015fqi]
[15-36]
Theoretical corrections and world data for the superallowed ft values in the $\beta$ decays of $^{42}Ti, ^{46}Cr, ^{50}Fe$ and $^{54}Ni$, I. S. Towner, J. C. Hardy, Phys. Rev. C 92 (2015) 055505, arXiv:1510.03793.
[Towner:2015woa]
[15-37]
Low $Q^2$ weak mixing angle measurements and rare Higgs decays, Hooman Davoudiasl, Hye-Sung Lee, William J. Marciano, Phys. Rev. D92 (2015) 055005, arXiv:1507.00352.
[Davoudiasl:2015bua]
[15-38]
Parametrization of the statistical rate function for select superallowed transitions, I. S. Towner, J. C. Hardy, Phys. Rev. C 91 (2015) 015501, arXiv:1412.0727.
[Towner:2014uta]
[15-39]
Superallowed $0^+\to 0^+$ nuclear $\beta$ decays: 2014 critical survey, with precise results for $V_{ud}$ and CKM unitarity, J. C. Hardy, I. S. Towner, Phys. Rev. C91 (2015) 025501, arXiv:1411.5987.
[Hardy:2014qxa]
[15-40]
HepSim: a repository with predictions for high-energy physics experiments, S.V. Chekanov, Adv. High Energy Phys. 2015 (2015) 136093, arXiv:1403.1886.
[Chekanov:2014fga]
[15-41]
The Bound-State Beta Decay of the Neutron Revisited, A. N. Ivanov, M. Pitschmann, N. I. Troitskaya, Ya. A. Berdnikov, Phys. Rev. C89 (2014) 055502, arXiv:1401.7809.
[Ivanov:2014bya]
[15-42]
Precision tests of unitarity in leptonic mixing, Lorenzo Basso, Oliver Fischer, Jochum J. van der Bij, Europhys.Lett. 105 (2014) 11001, arXiv:1310.2057.
[Basso:2013jka]
[15-43]
Limits on Tensor Coupling from Neutron $beta$-Decay, Robert W. Pattie Jr, Kevin P. Hickerson, Albert R. Young, Phys. Rev. C88 (2013) 048501, arXiv:1309.2499.
[Pattie:2013gka]
[15-44]
Positron on Neutron capture reaction, radiative corrections and neutron EDM, Mikhail Khankhasayev, Carol Scarlett, arXiv:1305.6642, 2013.
[Khankhasayev:2013mna]
[15-45]
Maximum Likelihood Analysis of Neutron Beta Decay Observables to Resolve the Limits of the V-A Law, S. Gardner, B. Plaster, Phys. Rev. C 87, 065504 (2013) 065504, arXiv:1305.0014.
[Gardner:2013aya]
[15-46]
Improving Electro-Weak Fits with TeV-scale Sterile Neutrinos, Evgeny Akhmedov, Alexander Kartavtsev, Manfred Lindner, Lisa Michaels, Juri Smirnov, JHEP 1305 (2013) 081, arXiv:1302.1872.
[Akhmedov:2013hec]
[15-47]
Revisiting parity non-conservation in cesium, V. A. Dzuba, J. C. Berengut, V. V. Flambaum, B. Roberts, Phys. Rev. Lett. 109 (2012) 203003, arXiv:1207.5864.
[Dzuba:2012kx]
[15-48]
Updated Status of the Global Electroweak Fit and Constraints on New Physics, M. Baak et al., Eur. Phys. J. C72 (2012) 2003, arXiv:1107.0975.
[Baak:2011ze]
[15-49]
Low energy neutrino and dark matter physics with sub-keV germanium detectors, Henry T. Wong, Int.J.Mod.Phys. D20 (2011) 1463-1470.
[Wong:2011zzb]
[15-50]
Axial and Vector Structure Functions for Electron- and Neutrino- Nucleon Scattering Cross Sections at all $Q^2$ using Effective Leading order Parton Distribution Functions, Arie Bodek, Un-ki Yang, arXiv:1011.6592, 2010.
[Bodek:2010km]
[15-51]
Beta decay and other processes in strong electromagnetic fields, Evgeny Akhmedov, Phys. Atom. Nucl. 74 (2011) 1299-1315, arXiv:1011.3776.
[Akhmedov:2010ee]
[15-52]
R2SM: a package for the analytic computation of the R2 Rational terms in the Standard Model of the Electroweak interactions, M.V. Garzelli, I. Malamos, Eur. Phys. J. C71 (2011) 1605, arXiv:1010.1248.
[Garzelli:2010fq]
[15-53]
Vus and neutron beta decay, A. Garcia, G. Sanchez-Colon, Phys. Rev. D77 (2008) 073005, arXiv:1006.5421.
[Garcia:2008zza]
[15-54]
Evidence against manifest right-handed currents in neutron beta decay, A. Garcia, G. Sanchez-Colon, Phys. Rev. D81 (2010) 014030, arXiv:1006.5417.
[Garcia:2010zza]
[15-55]
Precision determination of weak charge of $^{133}$Cs from atomic parity violation, S. G. Porsev, K. Beloy, A. Derevianko, Phys. Rev. D82 (2010) 036008, arXiv:1006.4193.
[Porsev:2010de]
[15-56]
OPUCEM: A Library with Error Checking Mechanism for Computing Oblique Parameters, Ozgur Cobanoglu, Erkcan Ozcan, Saleh Sultansoy, Gokhan Unel, Comput. Phys. Commun. 182 (2011) 1732-1743, arXiv:1005.2784.
[Cobanoglu:2010ie]
[15-57]
Measurement of the Weinberg angle with neutrino-electron scattering at low energy, Sanjib Kumar Agarwalla, Patrick Huber, JHEP 08 (2011) 059, arXiv:1005.1254.
[Agarwalla:2010ty]
[15-58]
Parity violating observables in radiative neutrino pair emission from metastable atoms, M. Yoshimura, A.Fukumi, N. Sasao, T. Yamaguchi, Prog. Theor. Phys. 123 (2010) 523-532, arXiv:0907.0519.
[Yoshimura:2009wq]
[15-59]
Precision determination of electroweak parameters and the strange content of the proton from neutrino deep-inelastic scattering, Richard D.Ball et al. (NNPDF), Nucl. Phys. B823 (2009) 195-233, arXiv:0906.1958.
[Ball:2009mk]
[15-60]
Precision determination of electroweak coupling from atomic parity violation and implications for particle physics, S. G. Porsev, K. Beloy, A. Derevianko, Phys. Rev. Lett. 102 (2009) 181601, arXiv:0902.0335.
[Porsev:2009pr]
[15-61]
Superallowed $0^+ \to 0^+$ nuclear $\beta$ decays: A New survey with precision tests of the conserved vector current hypothesis and the standard model, J. C. Hardy, I. S. Towner, Phys. Rev. C 79 (2009) 055502, arXiv:0812.1202.
[Hardy:2008gy]
[15-62]
Gfitter - Revisiting the Global Electroweak Fit of the Standard Model and Beyond, Henning Flaecher et al., Eur. Phys. J. C60 (2009) 543-583, arXiv:0811.0009.
[Flacher:2008zq]
[15-63]
Muon decay in a laser field, Duane A. Dicus, Arsham Farzinnia, Wayne W. Repko, Todd M. Tinsley, Phys. Rev. D79 (2009) 013004, arXiv:0809.2367.
[Dicus:2008nw]
[15-64]
Parity Violating Effects in Elastic Electron Deuteron Scattering, S. Ahmad, S.K. Singh, H. Arenhoevel, Eur. Phys. J. A40 (2009) 151-170, arXiv:0808.1804.
[Ahmad:2009pgb]
[15-65]
Neutrino-induced threshold production of two pions and N$^*$(1440) electroweak form factors, E. Hernandez, J. Nieves, S.K. Singh, M. Valverde, M. J. Vicente-Vacas, Phys. Rev. D77 (2008) 053009, arXiv:0710.3562.
[Hernandez:2007ej]
[15-66]
Testing the Standard Model by precision measurement of the weak charges of quarks, R. D. Young, R. D. Carlini, A. W. Thomas, J. Roche, Phys. Rev. Lett. 99 (2007) 122003, arXiv:0704.2618.
[Young:2007zs]
[15-67]
Neutron beta-decay, standard model and cosmology, A. P. Serebrov, Phys. Lett. B650 (2007) 321-324, arXiv:nucl-ex/0611038.
[Serebrov:2006im]
[15-68]
Radiative Corrections to the $K_{e3}^{\pm}$ Decay Revised, V. Bytev, E. Kuraev, A. Baratt, J. Thompson, Eur. Phys. J. C27 (2003) 57, arXiv:hep-ph/0210049.
[Bytev:2002nx]
[15-69]
The SM prediction of g-2 of the muon, K. Hagiwara, A. D. Martin, Daisuke Nomura, T. Teubner, Phys. Lett. B557 (2003) 69, arXiv:hep-ph/0209187.
[Hagiwara:2002ma]
[15-70]
Electroweak data and the Higgs boson mass: A case for new physics, Michael S. Chanowitz, Phys. Rev. D66 (2002) 073002, arXiv:hep-ph/0207123.
[Chanowitz:2002cd]
[15-71]
Reevaluation of the role of nuclear uncertainties in experiments on atomic parity violation with isotopic chains, Andrei Derevianko, Sergey G. Porsev, Phys. Rev. A65 (2002) 052115, arXiv:physics/0112035.
[Derevianko:2001uq]
[15-72]
Correlated many-body treatment of the Breit interaction with application to cesium atomic properties and parity violation, A. Derevianko, Phys. Rev. A 65 (2001) 012106, arXiv:physics/0108033.
[Derevianko-2001-PRA-65-012106]
[15-73]
Reconciliation of the measurement of parity nonconservation in Cs with the standard model, A. Derevianko, Phys. Rev. Lett. 85 (2000) 1618-1621, arXiv:hep-ph/0005274.
[Derevianko:2000dt]
[15-74]
Effects of neutron spatial distributions on atomic parity nonconservation in cesium, S. J. Pollock, M. C. Welliver, Phys. Lett. B464 (1999) 177-182, arXiv:nucl-th/9904062.
[Pollock:1999ec]
[15-75]
Atomic parity nonconservation and neutron radii in cesium isotopes, B. Q. Chen, P. Vogel, Phys. Rev. C48 (1993) 1392-1400, arXiv:nucl-th/9303003.
[Chen:1993fw]
[15-76]
How effective is the weak mixing angle?, A. Olshevsky, P. N. Ratoff, P. B. Renton, Z. Phys. C 60 (1993) 643-658.
[Olshevsky:1993jx]
[15-77]
Atomic parity nonconservation: Electroweak parameters and nuclear structure, S. J. Pollock, E. N. Fortson, L. Wilets, Phys. Rev. C46 (1992) 2587-2600, arXiv:nucl-th/9211004.
[Pollock:1992mv]
[15-78]
Nuclear-structure effects in atomic parity nonconservation, E. N. Fortson, Y. Pang, L. Wilets, Phys. Rev. Lett. 65 (1990) 2857-2860.
[Fortson:1990zz]
[15-79]
Evaluation of beta-decay II. Finite mass and size effects, D.H. Wilkinson, Nucl.Instrum.Meth. A290 (1990) 509-515.
[Wilkinson-1990-NIMA-290-509]
[15-80]
Evaluation of beta-decay I. The traditional phase space factors, D.H. Wilkinson, Nucl.Instrum.Meth. A275 (1989) 378-386.
[Wilkinson-1989-NIMA-275-378]
[15-81]
A simple relation for the Fermi function, P. Venkataramaiah, K. Gopala, A. Basavaraju, S. S. Suryanarayana, H. Sanjeeviah, Journal of Physics G: Nuclear Physics 11 (1985) 359-364.
[Venkataramaiah-Gopala-Basavaraju-Suryanarayana-Sanjeeviah-1985-JPG-11-014]
[15-82]
Principles and Applications of a Neutral Current Detector for Neutrino Physics and Astronomy, A. Drukier, Leo Stodolsky, Phys. Rev. D30 (1984) 2295.
[Drukier:1984vhf]
[15-83]
A simple approximation of the fermi function in nuclear beta decay, G.K. Schenter, P. Vogel, Nucl. Sci. Eng. 83 (1983) 393.
[Schenter-Vogel-1983-NSE-83-393]
[15-84]
Coherent neutrino nucleus scattering as a probe of the weak neutral current, Daniel Z. Freedman, Phys. Rev. D9 (1974) 1389-1392.
[Freedman:1973yd]
[15-85]
Tests of the Conserved Vector Current and Partially Conserved Axial-Vector Current Hypotheses in High-Energy Neutrino Reactions, Stephen L. Adler, Phys. Rev. 135 (1964) B963-B966.
[Adler:1964yx]
[15-86]
On The Neutrinos emitted in $\beta$ decay and $\mu$ capture, Simon Peter Rosen, Phys. Rev. Lett. 4 (1960) 613-615.
[Rosen:1960ymn]
[15-87]
Test of the Nature of the Vector Interaction in beta Decay, Murray Gell-Mann, Phys. Rev. 111 (1958) 362-365.
[Gell-Mann:1958sai]
[15-88]
Proposed Experiment to Determine the Direction of $\mu$-Meson Polarization in Pion Decay, J. D. Jackson, S. B. Treiman, H. W. Wyld, Phys. Rev. 107 (1957) 327-328.
[Jackson-Treiman-Wyld-1957-PR-107-327]

16 - Phenomenology - Talks

[16-1]
Fully differential NLO predictions for rare and radiative lepton decays, Y. Ulrich, PoS NuFact2017 (2018) 124, arXiv:1712.05633. 19th International Workshop on Neutrinos from Accelerators (NUFACT 2017).
[Ulrich:2017adq]
[16-2]
The Puzzle of Neutron Lifetime, Stephan Paul, Nucl. Instrum. Meth. A611 (2009) 157-166, arXiv:0902.0169. International Workshop on Particle Physics with Slow Neutrons.
[Paul:2009md]
[16-3]
Electroweak Physics at the ILC, Georg Weiglein, J. Phys. Conf. Ser. 110 (2008) 042033, arXiv:0711.3003. EPS07.
[Weiglein:2007fp]
[16-4]
Combined Electroweak Analysis, Martin W. Grunewald, J. Phys. Conf. Ser. 110 (2008) 042008, arXiv:0709.3744. EPS HEP 2007.
[Grunewald:2007pm]
[16-5]
A Remarkable Relation in the Gauge Sector of Electroweakdynamics, Jean Pestieau, Aip Conf. Proc. 670 (2003) 184, arXiv:hep-ph/0301139. X Mexican School on Particles and Fields, Playa del Carmen, Mexico, 2002.
[Pestieau:2003fu]
[16-6]
Electroweak Standard Model and Precision Tests, Jens Erler, Aip Conf. Proc. 670 (2003) 227, arXiv:hep-ph/0212272. X Mexican School of Particles and Fields, Playa del Carmen, Mexico, 2002.
[Erler:2002ix]
[16-7]
Recent Developments in Precision Electroweak Physics, Paul Langacker, J. Phys. G29 (2003) 1, arXiv:hep-ph/0211065. Alberto Sirlin Symposium, New York University, October 2000.
[Langacker:2002sy]
[16-8]
Precision Electroweak Measurements Circa 2002, Paolo Gambino, Nucl.Phys.Proc.Suppl. 117 (2003) 211-215, arXiv:hep-ph/0211009. ICHEP, Amsterdam, 24-31 July 2002.
[Gambino:2002xp]
[16-9]
LEP, SLC and the Standard Model, D.G. Charlton, eConf C020805 (2002) TW05, arXiv:hep-ex/0211003. XXXth SLAC Summer Institute Topical Conference, Stanford, California, USA, August 2002.
[Charlton:2002vi]
[16-10]
Topics in Electroweak Physics, A. Sirlin, Nucl. Phys. Proc. Suppl. 116 (2003) 53, arXiv:hep-ph/0210361. International Symposium Radcor 2002, September 8-13, Kloster Banz, Germany.
[Sirlin:2002nt]
[16-11]
The Global Electroweak Fit, S. Villa, Italian Phys.Soc.Proc. 83 (2003) 81-86, arXiv:hep-ph/0209359. Proceedings of IFAE, Parma, April 2002.
[Villa:2002zt]
[16-12]
Precision tests of the electroweak interactions at LEP/SLC, Frederic Teubert, eConf C020620 (2002) SABT03, arXiv:hep-ph/0209163. 22nd Physics in Collision Conference (PIC 2002), Stanford, California, 20-22 June 2002.
[Teubert:2002ph]
[16-13]
Status of lepton-nucleon scattering, J. Stirling, 2002. Fourth NuFact '02 Workshop on Neutrino Factories based on Muon Storage Rings, Imperial College, London, 1-6 July 2002. http://www.hep.ph.ic.ac.uk/NuFact02/Scientific-programme/files/Monday/plenary/A09_stirling.ps.
[Stirling-talk:2002a]
[16-14]
CVC in particle physics, Anthony William Thomas, arXiv:nucl-th/9609052, 1996. International Symposium, NNDF'96, Osaka, Japan, September 2-5, 1996.
[Thomas:1996ap]

17 - Phenomenology - g-2 Anomalies

[17-1]
Electron and Muon $(g-2)_{e,\mu}$ Anomalous Magnetic Moment in $U(1)_{L_e-L_{\mu}}$ Symmetry Model, Rishu Verma, Ankush, B. C. Chauhan, arXiv:2404.13546, 2024.
[Verma:2024zav]
[17-2]
$(g-2)_{e,\mu}$ anomalies and decays $h, Z\to e_b e_a $ in 3-3-1 models with inverse seesaw neutrinos, T. T. Hong, L. T. T. Phuong, T. Phong Nguyen, N. H. T. Nha, L. T. Hue, arXiv:2404.05524, 2024.
[Hong:2024yhk]
[17-3]
Muon g-2 and lepton flavor violation in supersymmetric GUTs, Mario E. Gomez, Smaragda Lola, Qaisar Shafi, Cem Salih Un, arXiv:2404.02337, 2024.
[Gomez:2024dts]
[17-4]
Introducing scalar leptoquarks into a 3-3-1 model to solve the $(g-2)_\mu $ puzzle, A. Doff, C. A. de S. Pires, arXiv:2403.19338, 2024.
[Doff:2024cap]
[17-5]
Explaining ATOMKI, $(g-2)_\mu$, and MiniBooNE anomalies with light mediators in $U(1)_H$ extended model, Sumit Ghosh, Pyungwon Ko, arXiv:2311.14099, 2023.
[Ghosh:2023dgk]
[17-6]
Scotogenic $U(1)_{L_{\mu}-L_{\tau}}$ origin of $(g-2)_\mu$, W-mass anomaly and 95 GeV excess, Debasish Borah, Satyabrata Mahapatra, Partha Kumar Paul, Narendra Sahu, Phys.Rev.D 109 (2024) 055021, arXiv:2310.11953.
[Borah:2023hqw]
[17-7]
Singlet-doublet fermion dark matter with Dirac neutrino mass, $(g-2)_\mu$ and $\Delta N_{\rm eff}$, Debasish Borah, Satyabrata Mahapatra, Dibyendu Nanda, Sujit Kumar Sahoo, Narendra Sahu, arXiv:2310.03721, 2023.
[Borah:2023dhk]
[17-8]
Correlating neutrino millicharge and muon $(g-2)$ in an abelian $L_\mu-L_\tau$ model, Ashutosh Kumar Alok, Neetu Raj Singh Chundawat, Arindam Mandal, arXiv:2308.05720, 2023.
[Alok:2023bfk]
[17-9]
Intergenerational gauged $B-L$ model and its implication to muon $g-2$ anomaly and thermal dark matter, Nobuchika Okada, Osamu Seto, Phys.Rev.D 108 (2023) 083504, arXiv:2307.14053.
[Okada:2023mdv]
[17-10]
FCNCs, Proton Stability, $ g_{\mu}-2$ Discrepancy, Neutralino cold Dark Matter in Flipped $SU(5) \times U(1)_{\chi}$ from $F$ Theory based on $ A_{4} $ Symmetry, Gayatri Ghosh, arXiv:2307.09948, 2023.
[Ghosh:2023xcn]
[17-11]
Resolving the muon $g-2$ tension through $Z'$-induced modifications to $\sigma_{\mathrm{had}}$, Nina M. Coyle, Carlos E. M. Wagner, JHEP 12 (2023) 071, arXiv:2305.02354.
[Coyle:2023nmi]
[17-12]
Connecting $(g-2)_\mu$ to neutrino mass, A. L. Cherchiglia, G. De Conto, C. C. Nishi, JHEP 08 (2023) 170, arXiv:2304.00038.
[Cherchiglia:2023utd]
[17-13]
Muon $g-2$ and non-thermal leptogenesis in $U(1)_{L_{\mu}-L_{\tau}}$ model, Shintaro Eijima, Masahiro Ibe, Kai Murai, JHEP 05 (2023) 010, arXiv:2303.09751.
[Eijima:2023yiw]
[17-14]
An $SU(5)\times U(1)^\prime$ SUSY GUT with a 'vector-like chiral' fourth family to fit all low energy data, including the muon $g-2$, Harshal Kulkarni, Stuart Raby, JHEP 05 (2023) 152, arXiv:2303.07209.
[Kulkarni:2023fyq]
[17-15]
Impact of recent measurement of $(g-2)_\mu$, LHC search for supersymmetry, and LZ experiment on Minimal Supersymmetric Standard Model, Yangle He, Xinglong Jia, Lei Meng, Yuanfang Yue, Di Zhang, Phys.Rev.D 108 (2023) 115010, arXiv:2303.02360.
[He:2023lgi]
[17-16]
Lepton $g-2$ and $W$-boson mass anomalies in the DFSZ axion model, Moslem Ahmadvand, Fazlollah Hajkarim, Eur.Phys.J.C 83 (2023) 1021, arXiv:2302.09610.
[Ahmadvand:2023gse]
[17-17]
Dark Matter and $(g-2)_{e,\mu}$ in ISS(2,3) based Gauged $U(1)_{L_{e}-L{\mu}}$ Symmetric Model, Rishu Verma, Ankush, B. C. Chauhan, Phys.Dark Univ. 42 (2023) 101289, arXiv:2302.09282.
[Verma:2023ahz]
[17-18]
$(g-2)_{e, mu}$ and decays $e_b \to e_a \gamma$ in a $\text{SU(4)}_L \times \text{U(1)}_X$ model with inverse seesaw neutrinos, N. H. Thao, D. T. Binh, T. T. Hong, L. T. Hue, D. P. Khoi, PTEP 2023 (2023) 8, arXiv:2302.07576.
[Thao:2023gvs]
[17-19]
A hidden gauged $U(1)$ addressing radiative neutrino mass, dark matter, $(g-2)_{\mu}$, and $H_0$ tension, Ujjal Kumar Dey, Hiroshi Okada, arXiv:2302.07008, 2023.
[Dey:2023xfb]
[17-20]
Signals of a New Gauge Boson from IceCube and Muon $g-2$, Dan Hooper, Joaquim Iguaz Juan, Pasquale D. Serpico, Phys.Rev.D 108 (2023) 023007, arXiv:2302.03571.
[Hooper:2023fqn]
[17-21]
Neutrino phenomenology, W mass anomaly \& muon $(g-2)$ in minimal type-III seesaw using $T^\prime$ modular symmetry, Priya Mishra, Mitesh Kumar Behera, Rukmani Mohanta, Phys.Rev.D 107 (2023) 115004, arXiv:2302.00494.
[Mishra:2023cjc]
[17-22]
Fermion masses and mixings, FCNCs and $g-2$ muon anomaly in an extended 2HDM with $Q_6$ flavor symmetry, V. V. Vien, H. N. Long, A. E. Carcamo Hernandez, Juan Marchant Gonzalez, arXiv:2301.07811, 2023.
[Vien:2023zid]
[17-23]
Reconciling collider signals, dark matter, and the muon anomalous magnetic moment in the supersymmetric $ U(1)_{R}\times U(1)_{B-L}$ model, Parham Dehghani, Mariana Frank, JHEP 06 (2023) 001, arXiv:2301.05959.
[Dehghani:2023lde]
[17-24]
Width effects of broad new resonances in loop observables and application to $(g-2)_\mu$, Andreas Crivellin, Martin Hoferichter, Phys.Rev.D 108 (2023) 013005, arXiv:2211.12516.
[Crivellin:2022gfu]
[17-25]
Phenomenology of Scalar Leptoquarks at the LHC in Explaining the Radiative Neutrino Mass, Muon $g-2$ and Lepton Flavour Violating Observables, Snehashis Parashar, Anirban Karan, Avnish, Priyotosh Bandyopadhyay, Kirtiman Ghosh, Phys.Rev.D 106 (2022) 095040, arXiv:2209.05890.
[Parashar:2022wrd]
[17-26]
Neutrino masses, flavor anomalies and muon $\boldsymbol{g-2}$ from dark loops, Ricardo Cepedello, Pablo Escribano, Avelino Vicente, Phys.Rev.D 107 (2023) 035034, arXiv:2209.02730.
[Cepedello:2022xgb]
[17-27]
Muon $g-2$ with $SU(2)_L$ multiplets, Takaaki Nomura, Hiroshi Okada, arXiv:2208.08704, 2022.
[Nomura:2022wck]
[17-28]
LSND and MiniBooNE as guideposts to understanding the muon $g-2$ results and the CDF II $W$ mass measurement, Waleed Abdallah, Raj Gandhi, Samiran Roy, Phys.Lett.B 840 (2023) 137841, arXiv:2208.02264.
[Abdallah:2022shy]
[17-29]
Muon ($g-2$) and W-boson mass Anomaly in a Model Based on $Z_4$ Symmetry with Vector like Fermion, Simran Arora, Monal Kashav, Surender Verma, B. C. Chauhan, PTEP 2022 (2022) 113B06, arXiv:2207.08580.
[Arora:2022uof]
[17-30]
Gauged $U(1)_{L_{\mu}-L_{\tau}}$ Symmetry and two-zero Textures of Inverse Neutrino Mass Matrix in light of Muon ($g-2$), Labh Singh, Monal Kashav, Surender Verma, Mod.Phys.Lett.A 37 (2022) 2250202, arXiv:2207.08415.
[Singh:2022tvz]
[17-31]
Explaining anomalies of $B$-physics, muon $g-2$ and $W$ mass in $R$-parity violating MSSM with seesaw mechanism, Min-Di Zheng, Feng-Zhi Chen, Hong-Hao Zhang, Eur.Phys.J.C 82 (2022) 895, arXiv:2207.07636.
[Zheng:2022ssr]
[17-32]
Combined explanations of muon $g-2$ and $R_{K,K^*}$ anomalies in left-right model with inverse seesaw, M. Ashry, K. Ezzat, S. Khalil, Phys.Rev.D 107 (2023) 055044, arXiv:2207.05828.
[Ashry:2022maw]
[17-33]
Can the muon anomalous magnetic moment and the $B$ anomalies be simultaneously explained in a minimally extended $Z^{\prime}$ model?, H. Lee, A. E. Carcamo Hernandez, arXiv:2207.01710, 2022.
[Lee:2022sic]
[17-34]
Possibly heteroclite electron Yukawa coupling and small $\triangle a_\mu$ in a hidden Abelian gauge model for neutrino masses, We-Fu Chang, Shih-Hsien Kuo, arXiv:2206.14394, 2022.
[Chang:2022eft]
[17-35]
The muon g-2 and lattice QCD hadronic vacuum polarization may point to new, long-lived neutral hadrons, Glennys R. Farrar, arXiv:2206.13460, 2022.
[Farrar:2022vrs]
[17-36]
Muon ($g-2$) in $U(1)_{L_\mu-L_\tau}$ Scotogenic Model Extended with Vector like Fermion, Simran Arora, Monal Kashav, Surender Verma, B. C. Chauhan, Phys.Scripta 98 (2023) 025304, arXiv:2206.12828.
[Arora:2022hza]
[17-37]
Muon $g-2$ anomaly and non-locality, Antonio Capolupo, Gaetano Lambiase, Aniello Quaranta, Phys.Lett.B 829 (2022) 137128, arXiv:2206.06037.
[Capolupo:2022awe]
[17-38]
Combined explanations of $B$-physics anomalies, $(g-2)_{e, \mu}$ and neutrino masses by scalar leptoquarks, Shao-Long Chen, Wen-wen Jiang, Ze-Kun Liu, Eur.Phys.J.C 82 (2022) 959, arXiv:2205.15794.
[Chen:2022hle]
[17-39]
A bridge to new physics: proposing new - and reviving old - explanations of $a_\mu$, Guilherme Guedes, Pablo Olgoso, JHEP 09 (2022) 181, arXiv:2205.04480.
[Guedes:2022cfy]
[17-40]
The $SU(2)_D$ lepton portals for muon $g-2$, $W$ boson mass and dark matter, Seong-Sik Kim, Hyun Min Lee, Adriana Menkara, Kimiko Yamashita, Phys.Rev.D 106 (2022) 015008, arXiv:2205.04016.
[Kim:2022zhj]
[17-41]
Leptoquark-vectorlike quark model for $m_W$ (CDF), $(g-2)_\mu$, $R_{K^{(\ast)}}$ anomalies and neutrino mass, Talal Ahmed Chowdhury, Shaikh Saad, Phys.Rev.D 106 (2022) 055017, arXiv:2205.03917.
[Chowdhury:2022dps]
[17-42]
$W$ boson mass, dark matter and $(g-2)_\ell$ in ScotoZee neutrino mass model, Ritu Dcruz, Anil Thapa, Phys.Rev.D 107 (2023) 015002, arXiv:2205.02217.
[Dcruz:2022dao]
[17-43]
A leptoquark and vector-like quark extended model for the simultaneous explanation of the $W$ boson mass and muon $g-2$ anomalies, Shi-Ping He, Chin.Phys.C 47 (2023) 043102, arXiv:2205.02088.
[He:2022zjz]
[17-44]
Compatibility of muon $g-2$, $W$ mass anomaly in type-X 2HDM, Jongkuk Kim, Phys.Lett.B 832 (2022) 137220, arXiv:2205.01437.
[Kim:2022xuo]
[17-45]
Prospects for a flavour violating $Z^\prime$ explanation of $\Delta a_{\mu,e}$, J. Kriewald, J. Orloff, E. Pinsard, A. M. Teixeira, Eur.Phys.J.C 82 (2022) 844, arXiv:2204.13134.
[Kriewald:2022erk]
[17-46]
The CDF W-mass, muon g-2, and dark matter in a $U(1)_{L_\mu-L_\tau}$ model with vector-like leptons, Quan Zhou, Xiao-Fang Han, Eur.Phys.J.C 82 (2022) 1135, arXiv:2204.13027.
[Zhou:2022cql]
[17-47]
Lepton flavor violation, lepton $(g-2)_{\mu,\,e}$ and electron EDM in the modular symmetry, Tatsuo Kobayashi, Hajime Otsuka, Morimitsu Tanimoto, Kei Yamamoto, JHEP 08 (2022) 013, arXiv:2204.12325.
[Kobayashi:2022jvy]
[17-48]
Scotogenic Dirac neutrino model embedded with leptoquarks: one pathway to addressing all, Shao-Ping Li, Xin-Qiang Li, Xin-Shuai Yan, Ya-Dong Yang, Eur.Phys.J.C 82 (2022) 1078, arXiv:2204.09201.
[Li:2022chc]
[17-49]
Combined explanation of $W$-mass, muon $g-2$, $R_{K^{(*)}}$ and $R_{D^{(*)}}$ anomalies in a singlet-triplet scalar leptoquark model, Arvind Bhaskar, Anirudhan A. Madathil, Tanumoy Mandal, Subhadip Mitra, Phys.Rev.D 106 (2022) 115009, arXiv:2204.09031.
[Bhaskar:2022vgk]
[17-50]
The 2HD+a model for a combined explanation of the possible excesses in the CDF $\mathbf{M_W}$ measurement and $\mathbf{(g-2)_\mu}$ with Dark Matter, Giorgio Arcadi, Abdelhak Djouadi, Phys.Rev.D 106 (2022) 095008, arXiv:2204.08406.
[Arcadi:2022dmt]
[17-51]
$W$ boson mass shift and muon magnetic moment in the Zee model, Talal Ahmed Chowdhury, Julian Heeck, Shaikh Saad, Anil Thapa, Phys.Rev.D 106 (2022) 035004, arXiv:2204.08390.
[Chowdhury:2022moc]
[17-52]
Type III seesaw under $A_4$ modular symmetry with leptogenesis and muon $g-2$, Priya Mishra, Mitesh Kumar Behera, Papia Panda, Rukmani Mohanta, Eur.Phys.J.C 82 (2022) 1115, arXiv:2204.08338.
[Mishra:2022egy]
[17-53]
Axion-Like Particle Interpretation of Dark Matter and Muon $(g-2)$, Sougata Ganguly, Biswarup Mukhopadhyaya, Sourov Roy, arXiv:2204.07920, 2022.
[Ganguly:2022imo]
[17-54]
Iso-doublet Vector Leptoquark solution to the Muon $g-2$, $R_{K, K^*}$, $R_{D,D^*}$, and $W$-mass Anomalies, Kingman Cheung, Wai-Yee Keung, Po-Yan Tseng, Phys.Rev.D 106 (2022) 015029, arXiv:2204.05942.
[Cheung:2022zsb]
[17-55]
Resolving Muon $g-2$ Anomaly With Partial Compositeness, Shuai Xu, Sibo Zheng, Eur.Phys.J.C 82 (2022) 969, arXiv:2204.05456.
[Xu:2022one]
[17-56]
Correlating $W$-Boson Mass Shift with Muon \boldmath${g-2}$ in the 2HDM, K.S. Babu, Sudip Jana, Vishnu P.K., Phys.Rev.Lett. 129 (2022) 121803, arXiv:2204.05303.
[Babu:2022pdn]
[17-57]
A Model of Vector-like Leptons for the Muon $g-2$ and the $W$ Boson Mass, Hyun Min Lee, Kimiko Yamashita, Eur.Phys.J.C 82 (2022) 661, arXiv:2204.05024.
[Lee:2022nqz]
[17-58]
Muon $(g-2)$ and Thermal WIMP DM in ${\rm U(1)}_{L_\mu-L_\tau} $ Models, Seungwon Baek, Jongkuk Kim, P. Ko, arXiv:2204.04889, 2022.
[Baek:2022ozm]
[17-59]
The W boson mass weighs in on the non-standard Higgs, Giacomo Cacciapaglia, Francesco Sannino, Phys.Lett.B 832 (2022) 137232, arXiv:2204.04514.
[Cacciapaglia:2022xih]
[17-60]
NMSSM neutralino dark matter for $W$-boson mass and muon $g-2$ and the promising prospect of direct detection, Tian-Peng Tang, Murat Abdughani, Lei Feng, Yue-Lin Sming Tsai, Yi-Zhong Fan, Sci.China Phys.Mech.Astron. 66 (2023) 239512, arXiv:2204.04356.
[Tang:2022pxh]
[17-61]
Explaining The Muon $g-2$ Anomaly and New CDFII W-Boson Mass in the Framework of ExtraOrdinary Gauge Mediation, Xiao Kang Du, Zhuang Li, Fei Wang, Ying Kai Zhang, Nucl.Phys.B 989 (2023) 116151, arXiv:2204.04286.
[Du:2022pbp]
[17-62]
Low energy SUSY confronted with new measurements of W-boson mass and muon $g-2$, Jin Min Yang, Yang Zhang, Sci.Bull. 67 (2022) 1430-1436, arXiv:2204.04202.
[Yang:2022gvz]
[17-63]
The $W$ boson Mass and Muon $g-2$: Hadronic Uncertainties or New Physics?, Peter Athron, Andrew Fowlie, Chih-Ting Lu, Lei Wu, Yongcheng Wu, Bin Zhu, Nature Commun. 14 (2023) 659, arXiv:2204.03996.
[Athron:2022qpo]
[17-64]
Standard model anomalies: Lepton flavour non-universality and lepton $g-2$, Alessandra D'Alise et al., JHEP 08 (2022) 125, arXiv:2204.03686.
[DAlise:2022ypp]
[17-65]
Neutron Star Heating in Dark Matter Models for the Muon $g-2$ Discrepancy, Koichi Hamaguchi, Natsumi Nagata, Maura E. Ramirez-Quezada, JHEP 10 (2022) 088, arXiv:2204.02413.
[Hamaguchi:2022wpz]
[17-66]
The mass-degenerate SM-like Higgs and anomaly of $(g-2)_\mu$ in $\mu$-term extended NMSSM, Liangliang Shang, XiaoFeng Zhang, Zhaoxia Heng, JHEP 08 (2022) 147, arXiv:2204.00182.
[Shang:2022hbv]
[17-67]
Connection of GeV Dark Matter with $(g-2)_\mu$ Anomaly in $U(1)_{L_\mu-L_\tau}$, Kuldeep Deka, Soumya Sadhukhan, Manvinder Pal Singh, arXiv:2203.17122, 2022.
[Deka:2022ltk]
[17-68]
Marriage between neutrino mass and flavor anomalies, J. Julio, Shaikh Saad, Anil Thapa, Phys.Rev.D 106 (2022) 055003, arXiv:2203.15499.
[Julio:2022bue]
[17-69]
Dark Matter and $(g-2)_{\mu,e}$ in radiative Dirac neutrino mass models, Talal Ahmed Chowdhury, Md. Ehsanuzzaman, Shaikh Saad, JCAP 08 (2022) 076, arXiv:2203.14983.
[Chowdhury:2022jde]
[17-70]
Neutrino phenomenology, muon and electron $(g-2)$ under $U(1)$ gauged symmetries in an extended inverse seesaw model, Papia Panda, Priya Mishra, Mitesh Kumar Behera, Rukmani Mohanta, Phys.Rev.D 108 (2023) 035032, arXiv:2203.14536.
[Panda:2022kbn]
[17-71]
On $(g-2)_\mu$ From Gauged $\mathrm{U}(1)_X$, Admir Greljo, Peter Stangl, Anders Eller Thomsen, Jure Zupan, JHEP 07 (2022) 098, arXiv:2203.13731.
[Greljo:2022dwn]
[17-72]
Simulation Based Inference for Efficient Theory Space Sampling: an Application to Supersymmetric Explanations of the Anomalous Muon $(g-2)$, Logan Morrison, Stefano Profumo, John Tamanas, Phys.Rev.D 106 (2022) 115016, arXiv:2203.13403.
[Morrison:2022vqe]
[17-73]
The high-energy frontier of the muon $g-2$, Paride Paradisi, Olcyr Sumensari, Alessandro Valenti, Phys.Rev.D 106 (2022) 115038, arXiv:2203.06103.
[Paradisi:2022vqp]
[17-74]
Dark Matter and Muon $g-2$ Anomaly via Scale Symmetry Breaking, Parsa Ghorbani, JHEP 04 (2022) 170, arXiv:2203.03964.
[Ghorbani:2022muk]
[17-75]
Probing light mediators and $(g - 2)_{\mu}$ through detection of coherent elastic neutrino nucleus scattering at COHERENT, M. Atzori Corona, M. Cadeddu, N. Cargioli, F. Dordei, C. Giunti, Y. F. Li, E. Picciau, C. A. Ternes, Y. Y. Zhang, JHEP 05 (2022) 109, arXiv:2202.11002.
[AtzoriCorona:2022moj]
[17-76]
Muon $g-2$, Neutralino Dark Matter and Stau NLSP, Mario E. Gomez, Qaisar Shafi, Amit Tiwari, Cem Salih Un, Eur.Phys.J.C 82 (2022) 561, arXiv:2202.06419.
[Gomez:2022qrb]
[17-77]
The muon $g-2$ anomaly and dark sector via the leptonic scalar portal, S.N. Gninenko, N.V. Krasnikov, Phys.Rev.D 106 (2022) 015003, arXiv:2202.04410.
[Gninenko:2022ttd]
[17-78]
Monopoles, Exotic states and Muon $g-2$ in TeV scale Trinification, Digesh Raut, Qaisar Shafi, Anil Thapa, Eur.Phys.J.C 82 (2022) 803, arXiv:2201.11609.
[Raut:2022ryj]
[17-79]
Impact of recent $(g-2)_\mu$ measurement on the light CP-even Higgs scenario in general Next-to-Minimal Supersymmetric Standard Model, Junjie Cao, Jingwei Lian, Yusi Pan, Yuanfang Yue, Di Zhang, JHEP 03 (2022) 203, arXiv:2201.11490.
[Cao:2022chy]
[17-80]
Leptoquark and vector-like quark extended models as the explanation of the muon $g-2$ anomaly, Shi-Ping He, Phys.Rev.D 105 (2022) 035017, arXiv:2112.13490.
[He:2021yck]
[17-81]
Muon $g-2$ in a Type-X 2HDM assisted by inert scalars: probing at the LHC, Nabarun Chakrabarty, Phys.Rev.D 107 (2023) 075012, arXiv:2112.13126.
[Chakrabarty:2021ztf]
[17-82]
Shedding Flavor on Dark via Freeze-in: $U(1)_{B-3L_i}$ Gauged Extensions, Basabendu Barman, Purusottam Ghosh, Anish Ghoshal, Lopamudra Mukherjee, JCAP 08 (2022) 049, arXiv:2112.12798.
[Barman:2021yaz]
[17-83]
New fermions in the light of the $(g-2)_\mu$, J. C. Criado, A. Djouadi, N. Koivunen, K. Muursepp, M. Raidal, H.Veermae, Front.in Phys. 10 (2022) 964131, arXiv:2112.12502.
[Djouadi:2021wvb]
[17-84]
Widening the $U(1)_{L_\mu- L_\tau}$ $Z^\prime$ mass range for resolving the muon $g-2$ anomaly, Yu Cheng, Xiao-Gang He, Jin Sun, Phys.Lett.B 827 (2022) 136989, arXiv:2112.09920.
[Cheng:2021okr]
[17-85]
Muon and Electron $(g-2)$ Anomalies with Non-Holomorphic Interactions in MSSM, Md. Isha Ali, Manimala Chakraborti, Utpal Chattopadhyay, Samadrita Mukherjee, Eur.Phys.J.C 83 (2023) 60, arXiv:2112.09867.
[Ali:2021kxa]
[17-86]
The muon $g-2$ anomaly confronts new physics in Bhabha scattering, Luc Darme, Giovanni Grilli di Cortona, Enrico Nardi, JHEP 06 (2022) 122, arXiv:2112.09139.
[Darme:2021huc]
[17-87]
A Minimal Dark Matter Model for Muon $g-2$ with Scalar Lepton Partners up to the TeV Scale, Jan Tristram Acuna, Patrick Stengel, Piero Ullio, Phys.Rev.D 105 (2022) 075007, arXiv:2112.08992.
[Acuna:2021rbg]
[17-88]
Excess of Tau events at SND@LHC, FASER$\nu$ and FASER$\nu$2, Saeed Ansarifard, Yasaman Farzan, Eur.Phys.J.C 82 (2022) 568, arXiv:2112.08799.
[Ansarifard:2021dju]
[17-89]
$(g-2)_{e,\,\mu}$ and strongly interacting dark matter with collider implications, Anirban Biswas, Sarif Khan, JHEP 07 (2022) 037, arXiv:2112.08393.
[Biswas:2021dan]
[17-90]
Systematically Testing Singlet Models for $(g-2)_\mu$, Rodolfo Capdevilla, David Curtin, Yonatan Kahn, Gordan Krnjaic, JHEP 04 (2022) 129, arXiv:2112.08377.
[Capdevilla:2021kcf]
[17-91]
New physics behind the new muon $g-2$ puzzle?, Luca Di Luzio, Antonio Masiero, Paride Paradisi, Massimo Passera, Phys.Lett.B 829 (2022) 137037, arXiv:2112.08312.
[DiLuzio:2021uty]
[17-92]
Solution of lepton $g-2$ anomalies with nonlocal QED, Hang Li, P. Wang, J.Phys.G 50 (2023) 115001, arXiv:2112.02971.
[Li:2021wzv]
[17-93]
$(g-2)_\mu$ and SUSY Dark Matter: Direct Detection and Collider Search Complementarity, Manimala Chakraborti, Sven Heinemeyer, Ipsita Saha, Christian Schappacher, Eur.Phys.J.C 82 (2022) 483, arXiv:2112.01389.
[Chakraborti:2021mbr]
[17-94]
Non-minimal Lorentz invariance violation in light of muon anomalous magnetic moment and long-baseline neutrino oscillation data, Hai-Xing Lin, Pedro Pasquini, Jian Tang, Sampsa Vihonen, Phys.Rev.D 105 (2022) 096029, arXiv:2111.14336.
[Lin:2021cst]
[17-95]
Flavour alignment of New Physics in light of the $(g-2)_\mu$ anomaly, Gino Isidori, Julie Pages, Felix Wilsch, JHEP 03 (2022) 011, arXiv:2111.13724.
[Isidori:2021gqe]
[17-96]
Likelihood analysis of the flavour anomalies and $g-2$ in the general two Higgs doublet model, Peter Athron, Csaba Balazs, Tomas E. Gonzalo, Douglas Jacob, Farvah Mahmoudi, Cristian Sierra, JHEP 22 (2020) 037, arXiv:2111.10464.
[Athron:2021auq]
[17-97]
Muon $g-2$ and Screened Modified Gravity, Philippe Brax, Anne-Christine Davis, Benjamin Elder, Phys.Rev.D 106 (2022) 044040, arXiv:2111.01188.
[Brax:2021owd]
[17-98]
A $\nu$ scalar in the early universe and $(g-2)_\mu$, Jia Liu, Navin McGinnis, Carlos E.M. Wagner, Xiao-Ping Wang, Phys.Rev.D 105 (2022), arXiv:2110.14665.
[Liu:2021kug]
[17-99]
Muon $g-2$, $B\to K^{(*)}\mu^+ \mu^-$ anomalies, and leptophilic dark matter in $U(1)_{\mu-\tau}$ gauge symmetry, P. Ko, Takaaki Nomura, Hiroshi Okada, JHEP 05 (2022) 098, arXiv:2110.10513.
[Ko:2021lpx]
[17-100]
Scalar resonances in the hadronic light-by-light contribution to the muon $(g-2)$, Luigi Cappiello, Oscar Cata, Giancarlo D'Ambrosio, Phys.Rev.D 105 (2022) 056020, arXiv:2110.05962.
[Cappiello:2021vzi]
[17-101]
Almost relevant corrections for direct measurements of electron's g-factor, Benjamin Koch, Felipe Asenjo, Sergio Hojman, Phys.Rev.D 105 (2022) 053004, arXiv:2110.05506. arXiv paper pitch: Thursday 14.10.21 at 14:00 CEST (Vienna), Zoom Meeting ID: 974 7510 0243, passcode: gm2factor.
[Koch:2021adn]
[17-102]
Heavy singly charged Higgs bosons and inverse seesaw neutrinos as origins of large $(g-2)_{e,\mu}$ in two higgs doublet models, L. T. Hue, A. E. Carcamo Hernandez, H. N. Long, T. T.Hong, Nucl.Phys.B 984 (2022) 115962, arXiv:2110.01356.
[Hue:2021xzl]
[17-103]
On the measurement of the muon anomalous magnetic moment, Ara Ioannisian, arXiv:2109.09722, 2021.
[Ioannisian:2021atu]
[17-104]
Fermiophobic $Z'$ model for simultaneously explaining the muon anomalies $R_{K^{(*)}}$ and $(g-2)_\mu$, Mario Fernandez Navarro, Stephen F. King, Phys.Rev.D 105 (2022) 035015, arXiv:2109.08729.
[Navarro:2021sfb]
[17-105]
An explanation of experimental data of $(g-2)_{e,\mu}$ in 3-3-1 models with inverse seesaw neutrinos, L. T. Hue, Khiem Hong Phan, T. Phong Nguyen, H. N. Long, H. T. Hung, Eur.Phys.J.C 82 (2022) 722, arXiv:2109.06089.
[Hue:2021zyw]
[17-106]
Anomalous Magnetic Moment and Higgs Coupling of the Muon in a Sequential U(1) Gauge Model with Dark Matter, Rathin Adhikari, Imtiyaz Ahmad Bhat, Debasish Borah, Ernest Ma, Dibyendu Nanda, Phys.Rev.D 105 (2022) 035006, arXiv:2109.05417.
[Adhikari:2021yvx]
[17-107]
On a novel evalutation of the hadronic contribution to the muon's $g-2$ from QCD, Marco Frasca, Anish Ghoshal, Stefan Groote, Phys.Rev.D 104 (2021) 114036, arXiv:2109.05041.
[Frasca:2021yuu]
[17-108]
Lepton Anomalous Magnetic Moment with Singlet-Doublet Fermion Dark Matter in Scotogenic $U(1)_{L_\mu-L_\tau}$ Model, Debasish Borah, Manoranjan Dutta, Satyabrata Mahapatra, Narendra Sahu, Phys.Rev.D 105 (2022), arXiv:2109.02699.
[Borah:2021khc]
[17-109]
Leptonic $g-2$ anomaly in an extended Higgs sector with vector-like leptons, Hrishabh Bharadwaj, Sukanta Dutta, Ashok Goyal, JHEP 11 (2021) 056, arXiv:2109.02586.
[Bharadwaj:2021tgp]
[17-110]
General Kinetic Mixing in Gauged $U(1)_{L_\mu-L_\tau}$ Model for Muon $g-2$ and Dark Matter, Timothy Hapitas, Douglas Tuckler, Yue Zhang, Phys.Rev.D 105 (2022) 016014, arXiv:2108.12440.
[Hapitas:2021ilr]
[17-111]
Hadronic light-by-light contribution to the muon $g-2$ from holographic QCD with massive pions, Josef Leutgeb, Anton Rebhan, Phys.Rev.D 104 (2021) 094017, arXiv:2108.12345.
[Leutgeb:2021mpu]
[17-112]
Resolving the $(g-2)_\mu$ Discrepancy with $\cal{F}$-$SU$(5) Intersecting D-branes, Joseph L. Lamborn, Tianjun Li, James A. Maxin, Dimitri V. Nanopoulos, JHEP 11 (2021) 081, arXiv:2108.08084.
[Lamborn:2021snt]
[17-113]
Effective connections of $a_\mu$, Higgs physics, and the collider frontier, Anisha, Upalaparna Banerjee, Joydeep Chakrabortty, Christoph Englert, Michael Spannowsky, Panagiotis Stylianou, Phys.Rev.D 105 (2022) 016019, arXiv:2108.07683.
[Anisha:2021jlz]
[17-114]
Probing the muon $g-2$ with future beam dump experiments, Rupert Coy, Xun-Jie Xu, JHEP 10 (2021) 189, arXiv:2108.05147.
[Coy:2021wfs]
[17-115]
Muon $(g-2)$ and Flavor Puzzles in the $U(1)^{}_{X}$-gauged Leptoquark Model, Xin Wang, arXiv:2108.01279, 2021.
[Wang:2021uqz]
[17-116]
Constraining CP-phases in SUSY: an interplay of muon/electron $g-2$ and electron EDM, Song Li, Yang Xiao, Jin Min Yang, Nucl.Phys.B 974 (2022) 115629, arXiv:2108.00359.
[Li:2021xmw]
[17-117]
$U(1)_{L_\mu-L_\tau}$ for Light Dark Matter, $g_\mu-2$, the $511$ keV excess and the Hubble Tension, Manuel Drees, Wenbin Zhao, arXiv:2107.14528, 2021.
[2107.14528]
[17-118]
Charged lepton flavor violation in light of Muon $g-2$, Wei-Shu Hou, Girish Kumar, Eur.Phys.J.C 81 (2021) 1132, arXiv:2107.14114.
[Hou:2021qmf]
[17-119]
Non-Abelian Vector Dark Matter and Lepton $g-2$, Talal Ahmed Chowdhury, Shaikh Saad, JCAP 10 (2021) 014, arXiv:2107.11863.
[Chowdhury:2021tnm]
[17-120]
Supersymmetric Alignment Models for $(g-2)_\mu$, Yuichiro Nakai, Matthew Reece, Motoo Suzuki, JHEP 10 (2021) 068, arXiv:2107.10268.
[Nakai:2021mha]
[17-121]
Muon $g-2$ in $U(1)_{\mu-\tau}$ Symmetric Gauged Radiative Neutrino Mass Model, Dong Woo Kang, Jongkuk Kim, Hiroshi Okada, Phys.Lett.B 822 (2021) 136666, arXiv:2107.09960.
[Kang:2021jmi]
[17-122]
Study of pion vector form factor and its contribution to the muon $(g-2)$, Jing-Yu Yi, Zhong-Yu Wang, C. W. Xiao, Phys.Rev.D 104 (2021) 116017, arXiv:2107.09535.
[Yi:2021ccc]
[17-123]
The Simplest and Most Predictive Model of Muon $g-2$ and Thermal Dark Matter, Ian Holst, Dan Hooper, Gordan Krnjaic, Phys.Rev.Lett. 128 (2022) 141802, arXiv:2107.09067.
[Holst:2021lzm]
[17-124]
Singlet Scalars as Dark Matter and the Muon g-2 Anomaly, Bastian Diaz Saez, Karim Ghorbani, Phys.Lett.B 823 (2021) 136750, arXiv:2107.08945.
[Saez:2021qta]
[17-125]
Can electron and muon $g-2$ anomalies be jointly explained in SUSY?, Song Li, Yang Xiao, Jin Min Yang, Eur.Phys.J.C 82 (2022) 276, arXiv:2107.04962.
[Li:2021koa]
[17-126]
Electron and muon magnetic moments and implications for dark matter and model characterisation in non-universal $U(1)^\prime$ supersymmetric models, Mariana Frank, Yasar Hicylmaz, Subhadeep Mondal, Ozer Ozdal, Cem Salih Un, JHEP 10 (2021) 063, arXiv:2107.04116.
[Frank:2021nkq]
[17-127]
Study muon $g-2$ at two loop level in the $U(1)_X$SSM, Shu-Min Zhao, Lu-Hao Su, Xing-Xing Dong, Tong-Tong Wang, Tai-Fu Feng, JHEP 03 (2022) 101, arXiv:2107.03571.
[Zhao:2021eaa]
[17-128]
Flipped $g_\mu-2$, John Ellis, Jason L. Evans, Natsumi Nagata, Dimitri V. Nanopoulos, Keith A. Olive, Eur.Phys.J.C 81 (2021) 1079, arXiv:2107.03025.
[Ellis:2021zmg]
[17-129]
Effect of Systematic Uncertainty Estimation on the Muon $g-2$ Anomaly, Glen Cowan, EPJ Web Conf. 258 (2022) 09002, arXiv:2107.02652.
[Cowan:2021sdy]
[17-130]
The new $(g-2)_\mu$ and Right-Handed Sneutrino Dark Matter, Jong Soo Kim, Daniel E. Lopez-Fogliani, Andres D. Perez, Roberto Ruiz de Austri, Nucl.Phys.B 974 (2022) 115637, arXiv:2107.02285.
[Kim:2021suj]
[17-131]
Confronting the inverse seesaw mechanism with the recent muon $g-2$ result, Joao Paulo Pinheiro, C. A. de S. Pires, Farinaldo S. Queiroz, Yoxara S. Villamizar, Phys.Lett.B 823 (2021) 136764, arXiv:2107.01315.
[Pinheiro:2021mps]
[17-132]
Muon $g-2$ from Millicharged Hidden Confining Sector, Yang Bai, Seung J. Lee, Minho Son, Fang Ye, JHEP 11 (2021) 019, arXiv:2106.15626.
[Bai:2021nai]
[17-133]
TeV Scale Resonant Leptogenesis with $L_{\mu}-L_{\tau}$ Gauge Symmetry in the Light of Muon $(g-2)$, Debasish Borah, Arnab Dasgupta, Devabrat Mahanta, Phys.Rev.D 104 (2021) 075006, arXiv:2106.14410.
[Borah:2021mri]
[17-134]
Scalar dark matter and Muon $g-2$ in a $U(1)_{L_{\mu}-L_{\tau}}$ model, XinXin Qi, AiGeng Yang, Wei Liu, Hao Sun, Chin.Phys.C 46 (2022) 083102, arXiv:2106.14134.
[Qi:2021rhh]
[17-135]
Flavour anomalies and the muon $g-2$ from feebly interacting particles, Luc Darme, Marco Fedele, Kamila Kowalska, Enrico Maria Sessolo, JHEP 03 (2022) 085, arXiv:2106.12582.
[Darme:2021qzw]
[17-136]
Muon $g-2$ and a type-X two Higgs doublet scenario: some studies in high-scale validity, Atri Dey, Jayita Lahiri, Biswarup Mukhopadhyaya, Phys.Rev.D 106 (2022) 055023, arXiv:2106.01449.
[Dey:2021pyn]
[17-137]
Naturalness and the muon magnetic moment, Nima Arkani-Hamed, Keisuke Harigaya, JHEP 09 (2021) 025, arXiv:2106.01373.
[Arkani-Hamed:2021xlp]
[17-138]
Magnetic Moments of Leptons, Charged Lepton Flavor Violations and Dark Matter Phenomenology of a Minimal Radiative Dirac Neutrino Mass Model, Bibhabasu De, Debottam Das, Manimala Mitra, Nirakar Sahoo, JHEP 08 (2022) 202, arXiv:2106.00979.
[De:2021crr]
[17-139]
Dark leptophilic scalar with the updated muon $g-2$ anomaly, Lian-Bao Jia, Eur.Phys.J.C 82 (2022) 321, arXiv:2105.13805.
[Jia:2021mwk]
[17-140]
Leptonic anomalous magnetic moments in $\nu$SMEFT, Vincenzo Cirigliano, Wouter Dekens, Jordy de Vries, Kaori Fuyuto, Emanuele Mereghetti, Richard Ruiz, JHEP 08 (2021) 103, arXiv:2105.11462.
[Cirigliano:2021peb]
[17-141]
Collider Prospects for Muon $g-2$ in General Two Higgs Doublet Model, Wei-Shu Hou, Rishabh Jain, Chung Kao, Girish Kumar, Tanmoy Modak, Phys.Rev.D 104 (2021) 075036, arXiv:2105.11315.
[Hou:2021sfl]
[17-142]
Radiative neutrino masses, lepton flavor mixing and muon $g-2$ in a leptoquark model, Di Zhang, JHEP 07 (2021) 069, arXiv:2105.08670.
[Zhang:2021dgl]
[17-143]
Anomalous $Z^\prime$ bosons for anomalous $B$ decays, Joe Davighi, JHEP 08 (2021) 101, arXiv:2105.06918.
[Davighi:2021oel]
[17-144]
One colorful resolution to the neutrino mass generation, three lepton flavor universality anomalies, and the Cabibbo angle anomaly, We-Fu Chang, JHEP 09 (2021) 043, arXiv:2105.06917.
[Chang:2021axw]
[17-145]
A non-universal $U(1)_{X}$ extension to the Standard Model to study the $B$ meson anomaly and muon $g-2$, J. S. Alvarado, S. F. Mantilla, R. Martinez, F. Ochoa, Phys.Rev.D 108 (2023) 095040, arXiv:2105.04715.
[Alvarado:2021nxy]
[17-146]
Leptophilic U(1) Massive Vector Bosons from Large Extra Dimensions, Luis A. Anchordoqui, Ignatios Antoniadis, Xing Huang, Dieter Lust, Tomasz R. Taylor, Phys.Lett.B 820 (2021) 136585, arXiv:2105.02630.
[Anchordoqui:2021vrg]
[17-147]
Calculation of the contribution to muon $g-2$ due to the effective anomalous three boson interaction and the new experimental result, B.A. Arbuzov, I.V. Zaitsev, Int.J.Mod.Phys.A 36 (2021) 2150223, arXiv:2105.00903.
[Arbuzov:2021lob]
[17-148]
High-energy cosmic neutrinos as a probe of the vector mediator scenario in light of the muon $g-2$ anomaly and Hubble tension, Jose Alonso Carpio, Kohta Murase, Ian M. Shoemaker, Zahra Tabrizi, Phys.Rev.D 107 (2023) 103057, arXiv:2104.15136.
[Carpio:2021jhu]
[17-149]
Light vector dark matter with scalar mediator and muon $g-2$ anomaly, Karim Ghorbani, Phys.Rev.D 104 (2021) 115008, arXiv:2104.13810.
[Ghorbani:2021yiw]
[17-150]
Leptoquarks and Matter Unification: Flavor Anomalies and the Muon $g-2$, Pavel Fileviez Perez, Clara Murgui, Alexis D. Plascencia, Phys.Rev.D 104 (2021) 035041, arXiv:2104.11229.
[FileviezPerez:2021lkq]
[17-151]
Gauged Lepton Number, Dirac Neutrinos, Dark Matter, and Muon $g-2$, Ernest Ma, Phys.Lett. B819 (2021) 136402, arXiv:2104.10324.
[Ma:2021fre]
[17-152]
Comprehensive study of the Type-X two Higgs doublet model in light of the anomalous muon $g-2$, Adil Jueid, Jinheung Kim, Soojin Lee, Jeonghyeon Song, Phys.Rev.D 104 (2021) 095008, arXiv:2104.10175.
[Jueid:2021avn]
[17-153]
Yukawa coupling unification in an $\mathsf{SO(10)}$ model consistent with Fermilab $(g-2)_\mu$ result, Amin Aboubrahim, Pran Nath, Raza M. Syed, JHEP 2106 (2021) 002, arXiv:2104.10114.
[Aboubrahim:2021phn]
[17-154]
Neutrino mass and $(g-2)_\mu$ with dark $U(1)_D$ symmetry, Arnab Dasgupta, Sin Kyu Kang, Myeonghun Park, arXiv:2104.09205, 2021.
[Dasgupta:2021dnl]
[17-155]
Naturalness of lepton non-universality and muon $g-2$, Giacomo Cacciapaglia, Corentin Cot, Francesco Sannino, Phys.Lett.B (2022) 136864, arXiv:2104.08818.
[Cacciapaglia:2021gff]
[17-156]
The $(g-2)_\mu$ anomaly, Higgs bosons and heavy neutrinos, G.G. Boyarkina, O.M. Boyarkin, Phys.Rev. D67 (2003) 073023, arXiv:2104.08640.
[Boyarkina:2003lez]
[17-157]
Explaining $(g-2)_\mu$ with Multi-TeV Sleptons, Wolfgang Altmannshofer, Sri Aditya Gadam, Stefania Gori, Nick Hamer, JHEP 07 (2021) 118, arXiv:2104.08293.
[Altmannshofer:2021hfu]
[17-158]
A Custodial Symmetry for Muon $g-2$, Reuven Balkin, Cedric Delaunay, Michael Geller, Enrique Kajomovitz, Gilad Perez, Yogev Shpilman, Yotam Soreq, Phys.Rev.D 104 (2021) 053009, arXiv:2104.08289.
[Balkin:2021rvh]
[17-159]
Anomalous muon magnetic moment, supersymmetry, naturalness, LHC search limits and the landscape, Howard Baer, Vernon Barger, Hasan Serce, Phys.Lett.B 820 (2021) 136480, arXiv:2104.07597.
[Baer:2021aax]
[17-160]
Fermion mass hierarchy and $g-2$ anomalies in an extended 3HDM Model, A. E. Carcamo Hernandez, Sergey Kovalenko, M. Maniatis, Ivan Schmidt, JHEP 10 (2021) 036, arXiv:2104.07047.
[Hernandez:2021iss]
[17-161]
Neutrino Masses, Leptonic Flavor Mixing and Muon $(g-2)$ in the Seesaw Model with the $U(1)^{}_{L^{}_\mu-L^{}_\tau}$ Gauge Symmetry, Shun Zhou, Chin.Phys.C 46 (2022) 011001, arXiv:2104.06858.
[Zhou:2021vnf]
[17-162]
$(g-2)_\mu$ anomaly within the left-right symmetric model, O. M. Boyarkin, G. G. Boyarkina, V. V. Makhnach, Phys.Rev. D77 (2008) 033004, arXiv:2104.06320.
[Boyarkin:2008zz]
[17-163]
A vector leptoquark interpretation of the muon $g-2$ and $B$ anomalies, Mingxuan Du, Jinhan Liang, Zuowei Liu, Van Que Tran, arXiv:2104.05685, 2021.
[Du:2021zkq]
[17-164]
Muon $(g-2)$ and XENON1T Excess with Boosted Dark Matter in $L_\mu-L_\tau$ Model, Debasish Borah, Manoranjan Dutta, Satyabrata Mahapatra, Narendra Sahu, Phys.Lett.B 820 (2021) 136577, arXiv:2104.05656.
[Borah:2021jzu]
[17-165]
Flavor Specific $U(1)_{B_q-L_\mu}$ Gauge Model for Muon $g-2$ and $b \to s \bar \mu\mu$ Anomalies, Jian-Yong Cen, Yu Cheng, Xiao-Gang He, Jin Sun, arXiv:2104.05006, 2021.
[Cen:2021iwv]
[17-166]
Fermion masses and mixings and $g-2$ muon anomaly in a 3-3-1 model with $D_4$ family symmetry, A. E. Carcamo Hernandez, H. N. Long, M. L. Mora-Urrutia, N. H. Thao, V. V. Vien, Eur.Phys.J.C 82 (2022) 769, arXiv:2104.04559.
[Hernandez:2021mxo]
[17-167]
Shedding light on dark matter with recent muon $g-2$ and Higgs exotic decay measurements, Chih-Ting Lu, Raymundo Ramos, Yue-Lin Sming Tsai, JHEP 08 (2021) 073, arXiv:2104.04503.
[Lu:2021vcp]
[17-168]
Charged lepton flavor violation in light of the muon magnetic moment anomaly and colliders, Tong Li, Michael A. Schmidt, Chang-Yuan Yao, Man Yuan, Eur.Phys.J.C 81 (2021) 811, arXiv:2104.04494.
[Li:2021lnz]
[17-169]
GUT-constrained supersymmetry and dark matter in light of the new $(g-2)_\mu$ determination, Manimala Chakraborti, Leszek Roszkowski, Sebastian Trojanowski, JHEP 2105 (2021) 252, arXiv:2104.04458.
[Chakraborti:2021bmv]
[17-170]
A 2HDM for the $g-2$ and Dark Matter, Giorgio Arcadi, Alvaro S. de Jesus, Tessio B. de Melo, Farinaldo S. Queiroz, Yoxara S. Villamizar, Nucl.Phys.B 982 (2022) 115882, arXiv:2104.04456.
[Arcadi:2021yyr]
[17-171]
What does a 4.2$\sigma$ discrepancy mean? A brief remark on the statistics of the Muon $g-2$ Experiment, Oliver Passon, arXiv:2104.04404, 2021.
[Passon:2021opa]
[17-172]
Axion-like particles resolve the $B \to \pi K$ and $g-2$ anomalies, Bhubanjyoti Bhattacharya, Alakabha Datta, Danny Marfatia, Soumitra Nandi, John Waite, Phys.Rev.D 104 (2021) L051701, arXiv:2104.03947.
[Bhattacharya:2021shk]
[17-173]
What Fermilab $(g-2)_\mu$ experiment tells us about discovering SUSY at HL-LHC and HE-LHC, Amin Aboubrahim, Michael Klasen, Pran Nath, Phys.Rev.D 104 (2021) 035039, arXiv:2104.03839.
[Aboubrahim:2021xfi]
[17-174]
$\boldsymbol{(g-2)_{e,\mu}}$ in an extended inverse type-III seesaw, Pablo Escribano, Jorge Terol-Calvo, Avelino Vicente, Phys.Rev. D103 (2021) 115018, arXiv:2104.03705.
[Escribano:2021css]
[17-175]
Leptophilic bosons and muon $g-2$ at lepton colliders, Eung Jin Chun, Tanmoy Mondal, JHEP 07 (2021) 044, arXiv:2104.03701.
[Chun:2021rtk]
[17-176]
Flavor Anomalies Accommodated in A Flavor Gauged Two Higgs Doublet Model, Junmou Chen, Qiaoyi Wen, Fanrong Xu, Mengchao Zhang, arXiv:2104.03699, 2021.
[Chen:2021vzk]
[17-177]
New physics explanations of $a_\mu$ in light of the FNAL muon $g-2$ measurement, Peter Athron, Csaba Balazs, Douglas HJ Jacob, Wojciech Kotlarski, Dominik Stockinger, Hyejung Stockinger-Kim, JHEP 09 (2021) 080, arXiv:2104.03691.
[Athron:2021iuf]
[17-178]
Muon $(g-2)$ in the B-LSSM, Jin-Lei Yang, Hai-Bin Zhang, Chang-Xin Liu, Xing-Xing Dong, Tai-Fu Feng, JHEP 08 (2021) 086, arXiv:2104.03542.
[Yang:2021duj]
[17-179]
Probing new physics for $(g-2)_\mu$ and gravitational waves, Ruiyu Zhou, Ligong Bian, Jing Shu, arXiv:2104.03519, 2021.
[Zhou:2021cfu]
[17-180]
The Natural Explanation of the Muon Anomalous Magnetic Moment via the Electroweak Supersymmetry from the GmSUGRA in the MSSM, Waqas Ahmed, Imtiaz Khan, Jinmian Li, Tianjun Li, Shabbar Raza, Wenxing Zhang, Phys.Lett.B 827 (2022) 136879, arXiv:2104.03491.
[Ahmed:2021htr]
[17-181]
Muon anomalous magnetic dipole moment in the $\mu\nu$SSM, Hai-Bin Zhang, Chang-Xin Liu, Jin-Lei Yang, Tai-Fu Feng, Chin.Phys.C 46 (2022) 9, arXiv:2104.03489.
[Zhang:2021gun]
[17-182]
$(g-2)_\mu$ in the 2HDM and slightly beyond - an updated view, P.M. Ferreira, B. L. Goncalves, F. R. Joaquim, Marc Sher, Phys.Rev.D 104 (2021) 053008, arXiv:2104.03367.
[Ferreira:2021gke]
[17-183]
Axion-like particles, two-Higgs-doublet models, leptoquarks, and the electron and muon $g-2$, Wai-Yee Keung, Danny Marfatia, Po-Yan Tseng, LHEP 2021 (2021) 209, arXiv:2104.03341.
[Keung:2021rps]
[17-184]
Constraining $U(1)_{L_\mu-L_\tau}$ charged dark matter model for muon $g-2$ anomaly with AMS-02 electron and positron data, Lei Zu, Xu Pan, Lei Feng, Qiang Yuan, Yi-Zhong Fan, JCAP 08 (2022) 028, arXiv:2104.03340.
[Zu:2021odn]
[17-185]
Muon Anomalous Magnetic Moment and Higgs Potential Stability in the 331 Model from $E_6$, Tianjun Li, Junle Pei, Wenxing Zhang, Eur.Phys.J.C 81 (2021) 671, arXiv:2104.03334.
[Li:2021poy]
[17-186]
The Tiny $(g-2)$ Muon Wobble from Small-$\mu$ Supersymmetry, Sebastian Baum, Marcela Carena, Nausheen R. Shah, Carlos E. M. Wagner, JHEP 01 (2022) 025, arXiv:2104.03302.
[Baum:2021qzx]
[17-187]
Muon $g-2$ in Lepton Portal Dark Matter, Yang Bai, Joshua Berger, arXiv:2104.03301, 2021.
[Bai:2021bau]
[17-188]
Distinguishing $U(1)_{L_\mu-L_\tau}$ from $U(1)_{L_\mu}$ as a solution for $(g-2)_\mu$ with neutrinos, D.W.P. Amaral, D.G. Cerdeno, A. Cheek, P. Foldenauer, Eur.Phys.J.C 81 (2021) 861, arXiv:2104.03297.
[Amaral:2021rzw]
[17-189]
Implications of the Muon $g-2$ result on the flavour structure of the lepton mass matrix, Lorenzo Calibbi, M.L. Lopez-Ibanez, Aurora Melis, Oscar Vives, Eur.Phys.J.C 81 (2021) 929, arXiv:2104.03296.
[Calibbi:2021qto]
[17-190]
The new $(g-2)_\mu$ result and the $\mu\nu$SSM, Sven Heinemeyer, Essodjolo Kpatcha, Inaki Lara, Daniel E. Lopez-Fogliani, Carlos Munoz, Natsumi Nagata, Eur.Phys.J.C 81 (2021) 802, arXiv:2104.03294.
[Heinemeyer:2021opc]
[17-191]
Muon $g-2$ and CP violation in MSSM, Chengcheng Han, arXiv:2104.03292, 2021.
[Han:2021ify]
[17-192]
Muon ${g-2}$ Anomaly and Neutrino Magnetic Moments, K.S. Babu, Sudip Jana, Manfred Lindner, Vishnu P.K., JHEP 10 (2021) 240, arXiv:2104.03291.
[Babu:2021jnu]
[17-193]
Muon $g-2$ and Co-annihilating Dark Matter in the MSSM, Peter Cox, Chengcheng Han, Tsutomu T. Yanagida, Phys.Rev.D 104 (2021) 075035, arXiv:2104.03290.
[Cox:2021nbo]
[17-194]
Muon $g-2$ in Gauge Mediation without SUSY CP Problem, Masahiro Ibe, Shin Kobayashi, Yuhei Nakayama, Satoshi Shirai, JHEP (2021) 098, arXiv:2104.03289.
[Ibe:2021cvf]
[17-195]
The new 'MUON G-2' Result and Supersymmetry, Manimala Chakraborti, Sven Heinemeyer, Ipsita Saha, Eur.Phys.J.C 81 (2021) 1114, arXiv:2104.03287.
[Chakraborti:2021dli]
[17-196]
Imporved $(g-2)_\mu$ Measurement and Singlino dark matter in the general NMSSM, Junjie Cao, Jingwei Lian, Yusi Pan, Di Zhang, Pengxuan Zhu, JHEP 09 (2021) 175, arXiv:2104.03284.
[Cao:2021tuh]
[17-197]
Semi-secretly interacting ALP as an explanation of Fermilab muon $g-2$ measurement, Vedran Brdar, Sudip Jana, Jisuke Kubo, Manfred Lindner, Phys.Lett.B 820 (2021) 136529, arXiv:2104.03282.
[Brdar:2021pla]
[17-198]
Muon and electron $g-2$, proton and cesium weak charges implications on dark $\mathbf{Z_d}$ models, M. Cadeddu, N. Cargioli, F. Dordei, C. Giunti, E. Picciau, Phys.Rev.D 104 (2021) L011701, arXiv:2104.03280.
[Cadeddu:2021dqx]
[17-199]
Probing the Dark Axion Portal with Muon Anomalous Magnetic Moment, Shao-Feng Ge, Xiao-Dong Ma, Pedro Pasquini, Eur.Phys.J.C 81 (2021) 787, arXiv:2104.03276.
[Ge:2021cjz]
[17-200]
Muon $g-2$ in two-Higgs-doublet model with type-II seesaw mechanism, Chuan-Hung Chen, Cheng-Wei Chiang, Takaaki Nomura, Phys.Rev.D 104 (2021) 055011, arXiv:2104.03275.
[Chen:2021jok]
[17-201]
A common origin of muon $g-2$ anomaly, Galaxy Center GeV excess and AMS-02 anti-proton excess in the NMSSM, Murat Abdughani, Yi-Zhong Fan, Lei Feng, Yue-Lin Sming Tsai, Lei Wu, Qiang Yuan, Sci.Bull. 66 (2021) 2170-2174, arXiv:2104.03274.
[Abdughani:2021pdc]
[17-202]
The FIMP-WIMP dark matter and Muon $g-2$ in the extended singlet scalar model, Pritam Das, Mrinal Kumar Das, Najimuddin Khan, Nucl.Phys.B 975 (2022) 115677, arXiv:2104.03271.
[Das:2021zea]
[17-203]
Challenges for an axion explanation of the muon $g-2$ measurement, Manuel A. Buen-Abad, JiJi Fan, Matthew Reece, Chen Sun, JHEP 09 (2021) 101, arXiv:2104.03267.
[Buen-Abad:2021fwq]
[17-204]
GUT-scale constrained SUSY in light of E989 muon $g-2$ measurement, Fei Wang, Lei Wu, Yang Xiao, Jin Min Yang, Yang Zhang, Nucl.Phys.B 970 (2021) 115486, arXiv:2104.03262.
[Wang:2021bcx]
[17-205]
Muon $g-2$ Anomaly in Anomaly Mediation, Wen Yin, JHEP 2106 (2021) 029, arXiv:2104.03259.
[Yin:2021mls]
[17-206]
A fake doublet solution to the muon anomalous magnetic moment, Damiano Anselmi, Kristjan Kannike, Carlo Marzo, Luca Marzola, Aurora Melis, Kristjan Mursepp, Marco Piva, Martti Raidal, Phys.Rev.D 104 (2021) 035009, arXiv:2104.03249.
[Anselmi:2021chp]
[17-207]
Explanations for anomalies of muon anomalous magnetic dipole moment, $b\to s \mu\bar\mu$ and radiative neutrino masses in a leptoquark model, Takaaki Nomura, Hiroshi Okada, Phys.Rev.D 104 (2021) 035042, arXiv:2104.03248.
[Nomura:2021oeu]
[17-208]
Dark matter, fine-tuning and $(g-2)_\mu$ in the pMSSM, Melissa van Beekveld, Wim Beenakker, Marrit Schutten, Jeremy de Wit, SciPost Phys. 11 (2021) 049, arXiv:2104.03245.
[VanBeekveld:2021tgn]
[17-209]
Revisiting the $\mu$-$\tau$-philic Higgs doublet in light of the muon $g-2$ anomaly, $\tau$ decays, and multi-lepton searches at the LHC, Hong-Xin Wang, Lei Wang, Yang Zhang, Eur.Phys.J.C 81 (2021) 1007, arXiv:2104.03242.
[Wang:2021fkn]
[17-210]
Heavy Bino and Slepton for Muon $g-2$ Anomaly, Yuchao Gu, Ning Liu, Liangliang Su, Daohan Wang, Nucl.Phys.B 969 (2021) 115481, arXiv:2104.03239.
[Gu:2021mjd]
[17-211]
Probing light dark matter with scalar mediator: muon $(g-2)$ deviation, the proton radius puzzle, Bin Zhu, Xuewen Liu, Sci.China Phys.Mech.Astron. 65 (2022) 000000, arXiv:2104.03238.
[Zhu:2021vlz]
[17-212]
Confronting spin-3/2 and other new fermions with the muon $g-2$ measurement, Juan C. Criado, Abdelhak Djouadi, Niko Koivunen, Kristjan Muursepp, Martti Raidal, Hardi Veermae, Phys.Lett.B 820 (2021) 136491, arXiv:2104.03231.
[Criado:2021qpd]
[17-213]
Muon $g-2$ and $B$-anomalies from Dark Matter, Giorgio Arcadi, Lorenzo Calibbi, Marco Fedele, Federico Mescia, Phys.Rev.Lett. 127 (2021) 061802, arXiv:2104.03228.
[Arcadi:2021cwg]
[17-214]
Lepton-specific inert two-Higgs-doublet model confronted with the new results for muon and electron $g-2$ anomaly and multi-lepton searches at the LHC, Xiao-Fang Han, Tianjun Li, Hong-Xin Wang, Lei Wang, Yang Zhang, Phys.Rev.D 104 (2021) 115001, arXiv:2104.03227.
[Han:2021gfu]
[17-215]
Wino-Higgsino dark matter in the MSSM from the $g-2$ anomaly, Sho Iwamoto, Tsutomu T. Yanagida, Norimi Yokozaki, Phys.Lett.B 823 (2021) 136768, arXiv:2104.03223.
[Iwamoto:2021aaf]
[17-216]
Supersymmetric Interpretation of the Muon $g-2$ Anomaly, Motoi Endo, Koichi Hamaguchi, Sho Iwamoto, Teppei Kitahara, JHEP 07 (2021) 075, arXiv:2104.03217.
[Endo:2021zal]
[17-217]
Consequences of chirally enhanced explanations of $(g-2)_\mu$ for $h\to \mu\mu$ and $Z\to \mu\mu$, Andreas Crivellin, Martin Hoferichter, JHEP 07 (2021) 135, arXiv:2104.03202.
[Crivellin:2021rbq]
[17-218]
Fermion masses and mixings, dark matter, leptogenesis and $g-2$ muon anomaly in an extended 2HDM with inverse seesaw, A. E. Carcamo Hernandez, Catalina Espinoza, Juan Carlos Gomez-Izquierdo, Myriam Mondragon, Eur.Phys.J.Plus 137 (2022) 1224, arXiv:2104.02730.
[Hernandez:2021kju]
[17-219]
Large $(g-2)_\mu$ and signals of decays $e_b\rightarrow e_a\gamma$ in a 3-3-1 model with inverse seesaw neutrinos, L. T. Hue, H. T. Hung, N. T. Tham, H. N. Long, T.Phong Nguyen, Phys.Rev.D 104 (2021) 033007, arXiv:2104.01840.
[Hue:2021xap]
[17-220]
Solving the electron and muon $g-2$ anomalies in $Z'$ models, Arushi Bodas, Rupert Coy, Simon J. D. King, Eur.Phys.J.C 81 (2021) 1065, arXiv:2102.07781.
[Bodas:2021fsy]
[17-221]
The collider tests of a leptophilic scalar for the anomalous magnetic moments, Ning Chen, Bin Wang, Chang-Yuan Yao, arXiv:2102.05619, 2021.
[Chen:2021rnl]
[17-222]
Supersymmetric gauged $ \mathrm{U}{(1)}_{L_{\mu }-{L}_{\tau }} $ model for electron and muon $(g-2)$ anomaly, Heerak Banerjee, Bhaskar Dutta, Sourov Roy, JHEP 03 (2021) 211, arXiv:2011.05083.
[Banerjee:2020zvi]
[17-223]
Doubly charged scalars and vector-like leptons confronting the muon $g-2$ anomaly and Higgs vacuum stability, Nabarun Chakrabarty, Eur.Phys.J.Plus 136 (2021) 1183, arXiv:2010.05215.
[Chakrabarty:2020jro]
[17-224]
Scalar Dark Matter Candidates - Revisited, Celine Boehm, Xiaoyong Chu, Jui-Lin Kuo, Josef Pradler, Phys.Rev. D103 (2021) 075005, arXiv:2010.02954.
[Boehm:2020wbt]
[17-225]
Explaining muon $g-2$ anomaly in a non-universal $U(1)_{X}$ extended SUSY theory, J. S. Alvarado, M. A. Bulla, D. G. Martinez, R. Martinez, arXiv:2010.02373, 2020.
[Alvarado:2020hti]
[17-226]
$(g-2)$ anomalies and neutrino mass, Carolina Arbelaez, Ricardo Cepedello, Renato M. Fonseca, Martin Hirsch, Phys.Rev. D102 (2020) 075005, arXiv:2007.11007.
[Arbelaez:2020rbq]
[17-227]
Can a heavy $\mathrm{U}\left(1\right)_{\mathrm{B-L}}$ $Z^\prime$ boson explain the muon $\left(g-2\right)_\mu$ anomaly?, Antonio P. Morais, Roman Pasechnik, J. Pedro Rodrigues, Chin.Phys. C45 (2021) 013103, arXiv:1912.11882.
[Morais:2019aqz]
[17-228]
Revisiting the dark photon explanation of the muon anomalous magnetic moment, Gopolang Mohlabeng, Phys. Rev. D 99 (2019) 115001, arXiv:1902.05075.
[Mohlabeng:2019vrz]
[17-229]
Muon $g-2$ Theory: the Hadronic Part, Fred Jegerlehner, EPJ Web Conf. 166 (2018) 00022, arXiv:1705.00263.
[Jegerlehner:2017lbd]
[17-230]
FIMP and Muon ($g-2$) in a U$(1)_{L_\mu-L_\tau}$ Model, Anirban Biswas, Sandhya Choubey, Sarif Khan, JHEP 1702 (2017) 123, arXiv:1612.03067.
[Biswas:2016yjr]
[17-231]
Muon $g-2$ estimates: can one trust effective Lagrangians and global fits?, M. Benayoun, P. David, L. DelBuono, F. Jegerlehner, Eur. Phys. J. C75 (2015) 613, arXiv:1507.02943.
[Benayoun:2015gxa]
[17-232]
Muon $g-2$, rare kaon decays, and parity violation from dark bosons, Hooman Davoudiasl, Hye-Sung Lee, William J. Marciano, Phys. Rev. D 89 (2014) 095006, arXiv:1402.3620.
[Davoudiasl:2014kua]
[17-233]
The Muon (g-2) Theory Value: Present and Future, Thomas Blum et al., arXiv:1311.2198, 2013.
[Blum:2013xva]
[17-234]
Explanation of the Muon $g-2$ Anomaly with Vectorlike Leptons and its Implications for Higgs Decays, Radovan Dermisek, Aditi Raval, Phys. Rev. D88 (2013) 013017, arXiv:1305.3522.
[Dermisek:2013gta]
[17-235]
Testing new physics with the electron $g-2$, G. F. Giudice, P. Paradisi, M. Passera, JHEP 11 (2012) 113, arXiv:1208.6583.
[Giudice:2012ms]
[17-236]
Muon (g-2) from the bulk neutrino field in a warped extra dimensional model, R. S. Hundi, Sourov Roy, Soumitra SenGupta, Phys. Rev. D86 (2012) 036014, arXiv:1206.5137.
[Hundi:2012uf]
[17-237]
Muon Anomaly and Dark Parity Violation, Hooman Davoudiasl, Hye-Sung Lee, William J. Marciano, Phys. Rev. Lett. 109 (2012) 031802, arXiv:1205.2709.
[Davoudiasl:2012qa]
[17-238]
Muon $g-2$ and lepton flavor violation in a two Higgs doublets model for the fourth generation, Shaouly Bar-Shalom, Soumitra Nandi, Amarjit Soni, Phys. Lett. B709 (2012) 207-217, arXiv:1112.3661.
[Bar-Shalom:2011nek]
[17-239]
Anthropic solution to the magnetic muon anomaly: the charged see-saw, Kristjan Kannike, Martti Raidal, David M. Straub, Alessandro Strumia, JHEP 02 (2012) 106, arXiv:1111.2551.
[Kannike:2011ng]
[17-240]
Hadronic contribution to the muon $g-2$: a theoretical determination, S. Bodenstein, C. A. Dominguez, K. Schilcher, Phys. Rev. D85 (2012) 014029, arXiv:1106.0427.
[Bodenstein:2011qy]
[17-241]
Tenth-order lepton $g-2$: Contribution of some fourth-order radiative corrections to the sixth-order $g-2$ containing light-by-light-scattering subdiagrams, T. Aoyama, M. Hayakawa, T. Kinoshita, M. Nio, Phys. Rev. D82 (2010) 113004, arXiv:1009.3077.
[Aoyama:2010pk]
[17-242]
Hadronic Light-by-Light Scattering Contribution to the Muon Anomalous Magnetic Moment, Joaquim Prades, Eduardo de Rafael, Arkady Vainshtein, Adv.Ser.Direct.High Energy Phys. 20 (2009) 303-317, arXiv:0901.0306.
[Prades:2009tw]
[17-243]
Fourth Generation Leptons and Muon $g-2$, Wei-Shu Hou, Fei-Fan Lee, Chien-Yi Ma, Phys. Rev. D79 (2009) 073002, arXiv:0812.0064.
[Hou:2008yb]
[17-244]
Secluded U(1) below the weak scale, Maxim Pospelov, Phys. Rev. D 80 (2009) 095002, arXiv:0811.1030.
[Pospelov:2008zw]
[17-245]
The muon $g-2$ and the bounds on the Higgs boson mass, M. Passera, W.J. Marciano, A. Sirlin, Phys. Rev. D78 (2008) 013009, arXiv:0804.1142.
[Passera:2008jk]
[17-246]
A new test of the light dark matter hypothesis, Celine Boehm, Joseph Silk, Phys. Lett. B661 (2008) 287-289, arXiv:0708.2768.
[Boehm:2007na]
[17-247]
U-boson production in e+ e- annihilations, psi and Upsilon decays, and Light Dark Matter, Pierre Fayet, Phys. Rev. D 75 (2007) 115017, arXiv:hep-ph/0702176.
[Fayet:2007ua]
[17-248]
Muon Anomalous Magnetic Moment in a Supersymmetric U(1)' Model, Vernon Barger, Chung Kao, Paul Langacker, Hye-Sung Lee, Phys. Lett. B614 (2005) 67, arXiv:hep-ph/0412136.
[Barger:2004mr]
[17-249]
The Standard Model Prediction of the Muon Anomalous Magnetic Moment, M. Passera, J. Phys. G31 (2005) R75, arXiv:hep-ph/0411168.
[Passera:2004bj]
[17-250]
Implications of a new light gauge boson for neutrino physics, Celine Boehm, Phys. Rev. D70 (2004) 055007, arXiv:hep-ph/0405240.
[Boehm:2004uq]
[17-251]
Predictions for $g-2$ of the muon and $\alpha_{\text{QED}}(M_Z^2)$, K. Hagiwara, A. D. Martin, Daisuke Nomura, T. Teubner, Phys. Rev. D69 (2004) 093003, arXiv:hep-ph/0312250.
[Hagiwara:2003da]
[17-252]
Hadronic Part of the Muon $g-2$ Estimated on the $\sigma_{\text{tot}}^{2003}( e^+ e^- \to \text{hadrons}$) Evaluated Data Compilation, V. V. Ezhela, S. B. Lugovsky, O. V. Zenin, arXiv:hep-ph/0312114, 2003.
[Ezhela:2003pp]
[17-253]
Triangle Anomaly and the Muon $g-2$, A. Czarnecki, W. J. Marciano, A. Vainshtein, Acta Phys. Polon. B34 (2003) 5669, arXiv:hep-ph/0310276.
[Czarnecki:2003gr]
[17-254]
The anomalous magnetic moment of the muon: A theoretical introduction, M. Knecht, Lect. Notes Phys. 629 (2004) 37, arXiv:hep-ph/0307239.
[Knecht:2003kc]
[17-255]
Scalar Dark Matter candidates, C. Boehm, P. Fayet, Nucl. Phys. B683 (2004) 219, arXiv:hep-ph/0305261.
[Boehm:2003hm]
[17-256]
The more precise determination of hadronic contribution to muonic (g-2) factor and to alpha(M^2_z), B. V. Geshkenbein, arXiv:hep-ph/0301265, 2003.
[Geshkenbein:2003jx]
[17-257]
The anomalous lepton magnetic moment, LFV decays and the fourth generation, W. J. Huo, T. F. Feng, Mod.Phys.Lett. (2003), arXiv:hep-ph/0301153.
[Huo:2003pw]
[17-258]
Heavy mass expansion, light-by-light scattering and the anomalous magnetic moment of the muon, J. H. Kuhn, A. I. Onishchenko, A. A. Pivovarov, O. L. Veretin, Phys. Rev. D68 (2003) 033018, arXiv:hep-ph/0301151.
[Kuhn:2003pu]
[17-259]
Recent muon $g-2$ result in deflected anomaly-mediated supersymmetry breaking, N. Abe, M. Endo, Phys. Lett. B564 (2003) 73, arXiv:hep-ph/0212002.
[Abe:2002eq]
[17-260]
One-Loop Electroweak Corrections to the Muon Anomalous Magnetic Moment Using the Pinch Technique, L. G. Cabral-Rosetti, G. Lopez Castro, J. Pestieau, arXiv:hep-ph/0211437, 2002.
[Cabral-Rosetti:2002fzo]
[17-261]
Torsion constraints from the recent precision measurement of the muon anomaly, Prasanta Das, Uma Mahanta, Sreerup Raychaudhuri, arXiv:hep-ph/0211137, 2002.
[Das:2002qv]
[17-262]
The SM prediction of $g-2$ of the muon, K. Hagiwara, A. D. Martin, Daisuke Nomura, T. Teubner, Phys. Lett. B557 (2003) 69, arXiv:hep-ph/0209187.
[Hagiwara:2002ma]
[17-263]
Interpreting the New Brookhaven $g_\mu-2$ Result, Utpal Chattopadhyay, Pran Nath, Phys. Rev. D66 (2002) 093001, arXiv:hep-ph/0208012.
[Chattopadhyay:2002jx]
[17-264]
Suggested boson - lepton pair couplings and the anomalous magnetic moment of the muon, Stanley J. Brodsky, Eduardo De Rafael, Phys. Rev. 168 (1968) 1620-1622.
[Brodsky:1967sr]

18 - Phenomenology - g-2 Anomalies - Talks

[18-1]
Improved $(g-2)_\mu$ Measurements and Supersymmetry : Implications for $e^+e^-$ colliders, Manimala Chakraborti, Sven Heinemeyer, Ipsita Saha, arXiv:2105.06408, 2021. International Workshop on Future Linear Colliders (LCWS2021), 15-18 March 2021.
[Chakraborti:2021squ]
[18-2]
Update of the Electron and Muon g-Factors, Eduardo de Rafael, Nucl. Phys. Proc. Suppl. 234 (2013) 193-198, arXiv:1210.4705. QCD-12.
[deRafael:2012cg]
[18-3]
The muon g-2 discrepancy: new physics or a relatively light Higgs?, M. Passera, W.J. Marciano, A. Sirlin, Chin. Phys. C34 (2010) 735-740, arXiv:1001.4528. PHIPSI09 Workshop, Oct 13-16, 2009, Beijing, China.
[Passera:2010ev]
[18-4]
The Hadronic Light-by-Light Contribution to Muon g-2: A Short Review, Joaquim Prades, arXiv:0907.2938, 2009. Photon09, International Conference on the Structure and Interactions of the Photon, May 11-15 2009, DESY, Hamburg, Germany.
[Prades:2009aq]
[18-5]
The muon g-2 discrepancy: errors or new physics?, M. Passera, W.J. Marciano, A. Sirlin, AIP Conf. Proc. 1078 (2009) 378-381, arXiv:0809.4062. 16th International Conference on Supersymmetry and the Unification of Fundamental Interactions (SUSY08), June 16-21 2008, Seoul, Korea.
[Passera:2008hj]
[18-6]
Present Status of the Muon Anomalous Magnetic Moment, Eduardo De Rafael, Nucl. Phys. Proc. Suppl. 186 (2009) 211-217, arXiv:0809.3085. Montpellier 14th International Conference in QCD.
[DeRafael:2008iu]
[18-7]
Hadronic Light-by-Light Contribution to Muon g-2: Status and Prospects, Joaquim Prades, Nucl. Phys. Proc. Suppl. 181-182 (2008) 15-19, arXiv:0806.2250. PHIPSI08, International Conference on e+e- collisions from Phi to Psi, April 7-10 2008, Frascati, Italy.
[Prades:2008zz]
[18-8]
(g-2)_mu and supersymmetry: status and prospects, Dominik Stockinger, arXiv:0710.2429, 2007. SUSY07.
[Stockinger:2007pe]
[18-9]
The hadronic contribution to (g-2) of the muon, Michel Davier, Nucl. Phys. Proc. Suppl. 169 (2007) 288-296, arXiv:hep-ph/0701163. Tau06 International Workshop, Pisa, September 19-22 2006.
[Davier:2007ua]
[18-10]
PHOKHARA, the radiative return and the (g-2)_{\mu} puzzle, German Rodrigo, Nucl. Phys. Proc. Suppl. 169 (2007) 271-276, arXiv:hep-ph/0701152. 9th International Workshop on Tau Lepton Physics (Tau06), Pisa, Italy, 19-22 Sep 2006.
[Rodrigo:2007tp]
[18-11]
Why do we need the new BNL muon g-2 experiment now?, David W. Hertzog, Nucl. Phys. Proc. Suppl. 169 (2007) 255-264, arXiv:hep-ex/0611025. Tau-06.
[Hertzog:2006sc]
[18-12]
On the Leading ORder Hadronic Contribution to (g-2)_mu, Kim Maltman, AIP Conf. Proc. 842 (2006) 915-917, arXiv:hep-ph/0512331. PANIC'05.
[Maltman:2005uz]
[18-13]
The Hadronic Contribution to the Muon g-2, Andreas Hocker, arXiv:hep-ph/0410081, 2004. 32nd International Conference on High-Energy Physics (ICHEP'04), Beijing, China, August 2004.
[Hocker:2004xc]
[18-14]
Theoretical status of the muon g-2, Andreas Nyffeler, arXiv:hep-ph/0305135, 2003. 38th Rencontres de Moriond on Electroweak Interactions and Unified Theories, Les Arcs, France, 15-22 March 2003.
[Nyffeler:2003vb]
[18-15]
Is there any room for new physics in the muon g-2 problem?, E. Bartos et al., arXiv:hep-ph/0305051, 2003. International Conference Hadron Structure '02, September 23.-27., 2002, Herlany, Slovakia.
[Bartos:2003pi]
[18-16]
Dark Matter, Muon g - 2 And Other Accelerator Constraints, R. Arnowitt, B. Dutta, arXiv:hep-ph/0211417, 2002. Identification of Dark Matter (IDM 2002), September 2002.
[Arnowitt:2002he]
[18-17]
Correlation between LFV and muon (g-2) in MSSM, Xiao-June Bi, arXiv:hep-ph/0211265, 2002. National Conference on High Energy Physics, Oct. 29 - Nov. 3, Xinxiang, Henan, P.R.China.
[Bi:2002mb]
[18-18]
Hadronic light-by-light scattering contribution to g_{mu}-2, Andreas Nyffeler, Nucl. Phys. Proc. Suppl. 116 (2003) 225, arXiv:hep-ph/0210347. Sixth International Symposium on Radiative Corrections (RADCOR 2002) and the Sixth Zeuthen Workshop on Elementary Particle Theory (Loops and Legs in Quantum Field Theory), Kloster Banz, Germany, 8-13 September, 2002.
[Nyffeler:2002sm]
[18-19]
Hadronic light-by-light scattering contribution to the muon g-2, Andreas Nyffeler, Nucl. Phys. Proc. Suppl. 121 (2003) 187, arXiv:hep-ph/0209329. 9th International High-Energy Physics Conference in Quantum Chromodynamics (QCD 2002), Montpellier, France, 2-9 July 2002.
[Nyffeler:2002cf]
[18-20]
The muon g-2 revisited, Eduardo de Rafael, Frascati Phys.Ser. 27 (2002) 311-328, arXiv:hep-ph/0208251. 16th Les Rencontres de Physique de la Vallee d'Aoste: Results and Perspectives in Particle Physics, La Thuile, Aosta Valley, Italy, 3-9 Mar 2002.
[deRafael:2002xy]

19 - Phenomenology - Universality

[19-1]
Lepton universality violation in the MF331 model, P. N. Thu, N. T. Duy, A. E. Carcamo Hernandez, D. T. Huong, PTEP 2023 (2023) 123B01, arXiv:2304.03003.
[Thu:2023xai]
[19-2]
New Perspectives for Testing Electron-Muon Universality, Robert Fleischer, Eleftheria Malami, Anders Rehult, K. Keri Vos, JHEP 06 (2023) 033, arXiv:2303.08764.
[Fleischer:2023zeo]
[19-3]
Testing Lepton Flavor Universality at Future $Z$ Factories, Tin Seng Manfred Ho, Xu-Hui Jiang, Tsz Hong Kwok, Lingfeng Li, Tao Liu, arXiv:2212.02433, 2022.
[Ho:2022ipo]
[19-4]
Interplay of dineutrino modes with semileptonic rare $\boldsymbol{B}$-decays, Rigo Bause, Hector Gisbert, Marcel Golz, Gudrun Hiller, JHEP 12 (2021) 061, arXiv:2109.01675.
[Bause:2021cna]
[19-5]
More Indications for Lepton Nonuniversality in $b \to s \ell^+ \ell^-$, T. Hurth, F. Mahmoudi, D. Martinez Santos, S. Neshatpour, Phys.Lett.B 824 (2022) 136838, arXiv:2104.10058.
[Hurth:2021nsi]
[19-6]
On the significance of new physics in $b\to s\ell^+\ell^-$ decays, Davide Lancierini, Gino Isidori, Patrick Owen, Nicola Serra, Phys.Lett.B 822 (2021) 136644, arXiv:2104.05631.
[Isidori:2021vtc]
[19-7]
On Lepton Flavor Universality in Top Quark Decays, Jernej F. Kamenik, Andrey Katz, Daniel Stolarski, JHEP 1901 (2019) 032, arXiv:1808.00964.
[Kamenik:2018nxv]
[19-8]
Probing Lepton Flavour Universality with $K \to \pi\nu\bar\nu$ decays, Marzia Bordone, Dario Buttazzo, Gino Isidori, Joachim Monnard, Eur.Phys.J. C77 (2017) 618, arXiv:1705.10729.
[Bordone:2017lsy]
[19-9]
Lepton universality violation and lepton flavor conservation in $B$-meson decays, Rodrigo Alonso, Benjamin Grinstein, Jorge Martin Camalich, JHEP 10 (2015) 184, arXiv:1505.05164.
[Alonso:2015sja]
[19-10]
Probing lepton non-universality in tau neutrino Scattering, Hongkai Liu, Ahmed Rashed, Alakabha Datta, Phys. Rev. D92 (2015) 073016, arXiv:1505.04594.
[Liu:2015rqa]
[19-11]
Tests of flavor universality for neutrino-Z couplings in future neutrino experiments, A.B. Balantekin, I. Sahin, B. Sahin, Phys. Rev. D78 (2008) 073003, arXiv:0807.3385.
[Balantekin:2008rc]
[19-12]
On the Connection Between Neutrino Oscillations and Pion Decay, John N. Ng, Phys. Lett. B99 (1981) 53-57.
[Ng:1980qs]
[19-13]
Interaction of mesons with nucleons and light particles, T. D. Lee, M. Rosenbluth, C. N. Yang, Phys. Rev. 75 (1949) 905.
[Lee:1949qk]
[19-14]
Energy Spectrum of Electrons from Meson Decay, J. Tiomno, J. A. Wheeler, Rev. Mod. Phys. 21 (1949) 144.
[Tiomno-Wheeler-RMP-21-144-1949]
[19-15]
Charge-Exchange Reaction of the $\mu$-Meson with the Nucleus, J. Tiomno, J. A. Wheeler, Rev. Mod. Phys. 21 (1949) 153.
[Tiomno-Wheeler-RMP-21-153-1949]
[19-16]
Oskar Klein, Nature 161 (1948) 897.
[Klein-Nature161-897-1948]
[19-17]
On mesons in cosmic radiation, G. Puppi, Lett. Nuovo Cim. 5 (1948) 587-588. In Italian.
[Puppi:1948qy]
[19-18]
Nuclear capture of mesons and the meson decay, B. Pontecorvo, Phys. Rev. 72 (1947) 246.
[Pontecorvo:1947vp]
[19-19]
The 'neutrino', H. Bethe, R. Peierls, Nature 133 (1934) 532.
[Bethe:1934qn]

20 - History

[20-1]
Electroweak Symmetry Breaking in Historical Perspective, Chris Quigg, Ann.Rev.Nucl.Part.Sci. (2015), arXiv:1503.01756.
[Quigg:2015cfa]
[20-2]
Fifty years of Yang-Mills Theories: a phenomenological point of view, Alvaro De Rujula, arXiv:hep-ph/0404215, 2004.
[DeRujula:2004am]
[20-3]
The making of the standard model, Steven Weinberg, Eur. Phys. J. C34 (2004) 5, arXiv:hep-ph/0401010. CERN, 16 Septembr 2003.
[Weinberg:2004kv]
[20-4]
The neutrino: From poltergeist to particle, F. Reines, Rev. Mod. Phys. 68 (1996) 317-327.
[Reines:1996ia]
[20-5]
Weak interaction Physics: From its Birth to the Electroweak Model, Jose Leite Lopes, Quimica Nova 11 (1988) 146-163. http://www4.prossiga.br/lopes/prodcien/birth/Birth.html.
[Lopes-birth-88]

21 - History - Talks

[21-1]
The History of the Muon (g-2) Experiments, B. Lee Roberts, SciPost Phys.Proc. 1 (2019) 032, arXiv:1811.06974. 15th International Workshop on Tau Lepton Physics.
[Roberts:2018vsx]
[21-2]
Uncovering the Nature of the Weak Interaction, Jonathan L. Rosner, arXiv:hep-ph/0610100, 2006. Jim Cronin's 75th birthday celebration, Chicago, September 8-9, 2006.
[Rosner:2006dk]

22 - Future Experiments

[22-1]
Status of the muEDM experiment at PSI, Kim Siang Khaw, Cheng Chen, Massimo Giovannozzi, Tianqi Hu, Meng Lv, Jun Kai Ng, Angela Papa, Philipp Schmidt-Wellenburg, Bastiano Vitali, Guan Ming Wong (PSI muEDM), Phys.Sci.Forum 8 (2023) 50, arXiv:2307.01535.
[PSImuEDM:2023dsd]
[22-2]
NaNu: Proposal for a Neutrino Experiment at the SPS Collider located at the North Area of CERN, Friedemann Neuhaus, Matthias Schott, Rainer Wanke, Nucl.Instrum.Meth.A 1064 (2024) 169327, arXiv:2210.15532.
[Chouhan:2022jvu]
[22-3]
Higgs Factory Considerations, J.A. Bagger et al., arXiv:2203.06164, 2022.
[Bagger:2022zyy]
[22-4]
Neutrino Physics Opportunities with the IsoDAR Source at Yemilab, J. Alonso, C.A. Arguelles, J.M. Conrad, Y.D. Kim, D. Mishins, S.H. Seo, M. Shaevitz, J. Spitz, D. Winklehner, Phys.Rev.D 105 (2022) 052009, arXiv:2111.09480.
[Alonso:2021kyu]
[22-5]
Prospects in the search for a new light $Z'$ boson with the NA64$\mu$ experiment at the CERN SPS, H. Sieber, D. Banerjee, P. Crivelli, E. Depero, S. N. Gninenko, D. V. Kirpichnikov, M. M. Kirsanov, V. Poliakov, L. Molina Bueno, Phys.Rev.D 105 (2022) 052006, arXiv:2110.15111.
[Sieber:2021fue]
[22-6]
The P2 experiment, Dominik Becker et al., Eur. Phys. J. A 54 (2018) 208, arXiv:1802.04759.
[Becker:2018ggl]
[22-7]
The MOLLER Experiment: An Ultra-Precise Measurement of the Weak Mixing Angle Using Moller Scattering, J. Benesch et al. (MOLLER), arXiv:1411.4088, 2014.
[MOLLER:2014iki]

23 - Future Experiments - Talks

[23-1]
Status of the MUonE experiment, Giovanni Abbiendi, Phys.Scripta 97 (2022) 054007, arXiv:2201.13177. 10th International Conference on New Frontiers in Physics (ICNFP 2021), 23 August-7 October 2021, Crete, Greece.
[Abbiendi:2022oks]
[23-2]
Recent design studies for the novel momentum spectrometer NoMoS, Daniel Moser, Waleed Khalid, Raluca Jiglau, Torsten Soldner Manfred Valentan, Johann Zmeskal, Gertrud Konrad, arXiv:2005.06466, 2020. INPC 2019.
[Moser:2020unj]
[23-3]
NoMoS: An $R \times B$ Drift Momentum Spectrometer for Beta Decay Studies, Daniel Moser, Hartmut Abele, Joachim Bosina, Harald Fillunger, Torsten Soldner, Xiangzun Wang, Johann Zmeskal, Gertrud Konrad, EPJ Web Conf. 219 (2019) 04003, arXiv:1906.04511. International Workshop on Particle Physics at Neutron Sources PPNS 2018, Grenoble, France, May 24-26, 2018.
[Moser:2019kjd]
[23-4]
PEN experiment: a precise test of lepton universality, C.J. Glaser et al., arXiv:1812.00782, 2018. CIPANP2018.
[PEN:2018kgj]
[23-5]
The Muon g-2 Experiment Overview and Status, J. L. Holzbauer, on behalf of the Muon g-2 collaboration, PoS NuFact2017 (2018) 116, arXiv:1712.05980. NUFACT 2017.
[Holzbauer:2017ntd]

Search Neutrino Unbound

Cross search NU

It is possible to perform a cross search between the various pages of Neutrino Unbound.
This is useful if you want to show the common elements that appear in the listings of two (or more) different topics or experiments.

Go to the search form.

[Go to ...]

Neutrino Unbound Home

Authors:
Stefano Gariazzo / gariazzo@to.infn.it
Carlo Giunti / giunti@to.infn.it
Marco Laveder / marco.laveder@pd.infn.it
Last Update: Tue 23 Apr 2024, 17:17:10 CET