Gravity

Filter this page

(Note: The process can take some time.)

EXPAND ALL
COMPRESS ALL

References

1 - Books

[1-1]
Gravitational Waves. Vol. 2: Astrophysics and Cosmology, Michele Maggiore, Oxford University Press, 2018. https://global.oup.com/academic/product/gravitational-waves-9780198570899?cc=de&lang=en&#.
[Maggiore:2018sht]
[1-2]
Gravitational Waves. Vol. 1: Theory and Experiments, Michele Maggiore, Oxford University Press, 2007. http://www.oup.com/uk/catalogue/?ci=9780198570745.
[Maggiore:2007ulw]
[1-3]
A First Course in General Relativity, B. F. Schutz, Cambridge University Press, 1985.
[Schutz:1985jx]
[1-4]
General Relativity, R. M. Wald, The University of Chicago Press, 1984.
[Wald:1984rg]
[1-5]
Gravitation and Spacetime, H.C. Ohanian, W.W. Norton and Company, 1976.
[Ohanian-Gravitation-and-Spacetime-1976]
[1-6]
Gravitation, C.W. Misner, K.S. Thorne, J.A. Wheeler, W.H. Freeman and Company, 1973.
[Misner:1973prb]
[1-7]
Gravitation and Cosmology, S. Weinberg, John Wiley, 1972.
[Weinberg-Gravitation-and-Cosmology-1972]

2 - Reviews

[2-1]
Compact Objects in close orbits as Gravitational Wave Sources: Formation Scenarios and Properties, Zhenwei Li, Xuefei Chen, Results Phys. 59 (2024) 107568, arXiv:2403.06358.
[Li:2024kyh]
[2-2]
Multi-messenger Astrophysics of Black Holes and Neutron Stars as Probed by Ground-based Gravitational Wave Detectors: From Present to Future, Alessandra Corsi et al., arXiv:2402.13445, 2024.
[Corsi:2024vvr]
[2-3]
Inferring Binary Properties from Gravitational Wave Signals, Javier Roulet, Tejaswi Venumadhav, arXiv:2402.11439, 2024.
[Roulet:2024cvl]
[2-4]
Primordial black hole formation during slow-reheating: A review, Luis E. Padilla, Juan Carlos Hidalgo, Tadeo D. Gomez-Aguilar, Karim A. Malik, Gabriel German, Front.Astron.Space Sci. 11 (2024) 1361399, arXiv:2402.03542.
[Padilla:2024iyr]
[2-5]
A Beginner's Guide to Black Hole Imaging and Associated Tests of General Relativity, Alexandru Lupsasca, Daniel R. Mayerson, Bart Ripperda, Seppe Staelens, arXiv:2402.01290, 2024.
[Lupsasca:2024wkp]
[2-6]
Probing Primordial Black Hole Scenarios with Terrestrial Gravitational Wave Detectors, Guillem Domenech, Misao Sasaki, arXiv:2401.07615, 2024.
[Domenech:2024cjn]
[2-7]
Gravitational waves from neutron-star mountains, Fabian Gittins, Class.Quant.Grav. 41 (2024) 043001, arXiv:2401.01670.
[Gittins:2024zbg]
[2-8]
Accretion, emission, mass and spin evolution, Valerio De Luca, Nicola Bellomo, arXiv:2312.14097, 2023.
[DeLuca:2023bcr]
[2-9]
Microlensing of strongly lensed quasars, G. Vernardos et al., arXiv:2312.00931, 2023.
[2312.00931]
[2-10]
Dawning of a New Era in Gravitational Wave Data Analysis: Unveiling Cosmic Mysteries via Artificial Intelligence - A Systematic Review, Tianyu Zhao, Ruijun Shi, Yue Zhou, Zhoujian Cao, Zhixiang Ren, arXiv:2311.15585, 2023.
[Zhao:2023tqr]
[2-11]
Everything You Always Wanted to Know About How Causal Set Theory Can Help with Open Questions in Cosmology, but Were Afraid to Ask, Yasaman K. Yazdi, Mod.Phys.Lett.A 39 (2024) 2330003, arXiv:2311.14881.
[Yazdi:2023scl]
[2-12]
The Scale Invariant Vacuum Paradigm: Main Results and Current Progress Review (Part II), Vesselin G. Gueorguiev, Andre Maeder, arXiv:2311.14569, 2023.
[Gueorguiev:2023mcy]
[2-13]
Detecting Wandering Intermediate-Mass Black Holes with AXIS in the Milky Way and Local Massive Galaxies, Fabio Pacucci, Bryan Seepaul, Yueying Ni, Nico Cappelluti, Adi Foord, arXiv:2311.08448, 2023.
[Pacucci:2023sff]
[2-14]
Primordial black holes and their gravitational-wave signatures, Eleni Bagui et al. (LISA Cosmology Working Group), arXiv:2310.19857, 2023.
[LISACosmologyWorkingGroup:2023njw]
[2-15]
Review on $f(Q)$ Gravity, Lavinia Heisenberg, Phys.Rept. 1066 (2024) 2310, arXiv:2309.15958.
[Heisenberg:2023lru]
[2-16]
Tests of Classical Gravity with Radio Pulsars, Zexin Hu, Xueli Miao, Lijing Shao, arXiv:2303.17185, 2023.
[Hu:2023vsq]
[2-17]
Implications of Palatini gravity for inflation and beyond, Ioannis D. Gialamas, Alexandros Karam, Thomas D. Pappas, Eemeli Tomberg, Int.J.Geom.Meth.Mod.Phys. (2023), arXiv:2303.14148.
[Gialamas:2023flv]
[2-18]
Colloquium: Gravitational Form Factors of the Proton, V. D. Burkert, L. Elouadrhiri, F. X. Girod, C. Lorce, P. Schweitzer, P. E. Shanahan, Rev.Mod.Phys. 95 (2023) 041002, arXiv:2303.08347.
[Burkert:2023wzr]
[2-19]
Dark Stars and Gravitational Waves: Topical Review, Kilar Zhang, Ling-Wei Luo, Jie-Shiun Tsao, Chian-Shu Chen, Feng-Li Lin, Results Phys. 53 (2023) 106967, arXiv:2303.03266.
[Zhang:2023hxd]
[2-20]
Black Holes in Asymptotically Safe Gravity, Alessia Platania, arXiv:2302.04272, 2023.
[Platania:2023srt]
[2-21]
The Galactic Black Hole, Mark R. Morris, arXiv:2302.02431, 2023.
[Morris:2023bdl]
[2-22]
Strong gravitational lensing and microlensing of supernovae, Sherry H. Suyu, Ariel Goobar, Thomas Collett, Anupreeta More, Giorgos Vernardos, Space Sci.Rev. 220 (2024) 13, arXiv:2301.07729.
[Suyu:2023jue]
[2-23]
Black hole images: A Review, Songbai Chen, Jiliang Jing, Wei-Liang Qian, Bin Wang, Sci.China Phys.Mech.Astron. 66 (2023) 260401, arXiv:2301.00113.
[Chen:2022scf]
[2-24]
The Effective Fluid approach for Modified Gravity and its applications, Savvas Nesseris, Universe 9 (2023) 2022, arXiv:2212.12768.
[Nesseris:2022hhc]
[2-25]
Effective Field Theory for Compact Binary Dynamics, Walter D. Goldberger, arXiv:2212.06677, 2022.
[Goldberger:2022rqf]
[2-26]
Quantum General Relativity and Effective Field Theory, John F. Donoghue, arXiv:2211.09902, 2022.
[Donoghue:2022eay]
[2-27]
Testing Gravity with Black Hole X-Ray Data, Cosimo Bambi, arXiv:2210.05322, 2022.
[Bambi:2022dtw]
[2-28]
Compact Binary Coalescences: Astrophysical Processes and Lessons Learned, Mario Spera, Alessandro Alberto Trani, Mattia Mencagli, Galaxies 10 (2022) 76, arXiv:2206.15392.
[Spera:2022byb]
[2-29]
Black holes: Timing and spectral properties and evolution, Emrah Kalemci, Erin Kara, John A. Tomsick, arXiv:2206.14410, 2022.
[Kalemci:2022fqq]
[2-30]
Searches for Continuous-Wave Gravitational Radiation, Keith Riles, Living Rev.Rel. 26 (2023) 3, arXiv:2206.06447.
[Riles:2022wwz]
[2-31]
Probing Spacetime Foam with Extragalactic Sources of High-Energy Photons, Y. Jack Ng, Eric S. Perlman, Universe 8 (2022) 382, arXiv:2205.12852.
[Ng:2022sjc]
[2-32]
Chaotic Shadows of Black Holes: A Short Review, Mingzhi Wang, Songbai Chen, Jiliang Jing, Commun.Theor.Phys. 74 (2022) 097401, arXiv:2205.05855.
[Wang:2022kvg]
[2-33]
Snowmass 2021 White Paper: Observational Signatures of Quantum Gravity, Kathryn M. Zurek, arXiv:2205.01799, 2022.
[Zurek:2022xzl]
[2-34]
Introduction to Quantization of Conformal Gravity, Leslaw Rachwal, arXiv:2204.13856, 2022.
[2204.13856]
[2-35]
Modified theories of Gravity: Why, How and What?, S. Shankaranarayanan, Joseph P Johnson, Gen.Rel.Grav. 54 (2022) 44, arXiv:2204.06533.
[Shankaranarayanan:2022wbx]
[2-36]
Gravitational Waves and Electromagnetic Transients, Akshat Singhal, Sourav Palit, Suman Bala, Gaurav Waratkar, Harsh Kumar, Varun Bhalerao, J.Astrophys.Astron. 43 (2022) 53, arXiv:2204.05648.
[Singhal:2022pdr]
[2-37]
Spectrum of Primordial Gravitational Waves in Modified Gravities: A Short Overview, S.D. Odintsov, V.K. Oikonomou, R. Myrzakulov, Symmetry 14 (2022) 729, arXiv:2204.00876.
[Odintsov:2022cbm]
[2-38]
Snowmass White Paper: Precision Studies of Spacetime Symmetries and Gravitational Physics, Eric Adelberger et al., arXiv:2203.09691, 2022.
[Adelberger:2022sve]
[2-39]
Detection of Early-Universe Gravitational Wave Signatures and Fundamental Physics, Robert Caldwell et al., Gen.Rel.Grav. 54 (2022) 156, arXiv:2203.07972.
[Caldwell:2022qsj]
[2-40]
Snowmass White Paper: Implications of Quantum Gravity for Particle Physics, Patrick Draper, Isabel Garcia Garcia, Matthew Reece, arXiv:2203.07624, 2022.
[Draper:2022pvk]
[2-41]
Probing heavy-flavor parton distribution functions at hadron colliders, Keping Xie, Marco Guzzi, Pavel Nadolsky, arXiv:2203.06207, 2022.
[Xie:2022sqa]
[2-42]
Astrophysics with the Laser Interferometer Space Antenna, Pau Amaro-Seoane et al., Living Rev.Rel. 26 (2023) 2, arXiv:2203.06016.
[LISA:2022yao]
[2-43]
The 4D Einstein-Gauss-Bonnet Theory of Gravity: A Review, Pedro G. S. Fernandes, Pedro Carrilho, Timothy Clifton, David J. Mulryne, Class.Quant.Grav. 39 (2022) 063001, arXiv:2202.13908.
[Fernandes:2022zrq]
[2-44]
The Scale Invariant Vacuum Paradigm: Main Results and Current Progress, Vesselin G. Gueorguiev, Andre Maeder, Universe 8 (2022) 213, arXiv:2202.08412.
[Gueorguiev:2022wit]
[2-45]
The deepest problem: some perspectives on quantum gravity, Steven B. Giddings, arXiv:2202.08292, 2022.
[2202.08292]
[2-46]
When models fail: an introduction to posterior predictive checks and model misspecification in gravitational-wave astronomy, Isobel M. Romero-Shaw, Eric Thrane, Paul D. Lasky, Publ.Astron.Soc.Austral. 39 (2022) e025, arXiv:2202.05479.
[Romero-Shaw:2022ctb]
[2-47]
Gravitational-Wave and X-ray Probes of the Neutron Star Equation of State, Nicolas Yunes, M. Coleman Miller, Kent Yagi, Nature Rev.Phys. 4 (2022) 237-246, arXiv:2202.04117.
[Yunes:2022ldq]
[2-48]
Review of the Advanced LIGO gravitational wave observatories leading to observing run four, Craig Cahillane, Georgia Mansell, Galaxies 10 (2022) 36, arXiv:2202.00847.
[Cahillane:2022pqm]
[2-49]
Testing Screened Modified Gravity, Philippe Brax, Santiago Casas, Harry Desmond, Benjamin Elder, Universe 8 (2021) 11, arXiv:2201.10817.
[Brax:2021wcv]
[2-50]
The Weak Gravity Conjecture: A Review, Daniel Harlow, Ben Heidenreich, Matthew Reece, Tom Rudelius, arXiv:2201.08380, 2022.
[Harlow:2022gzl]
[2-51]
Cosmological Tests of Gravity: A Future Perspective, Matteo Martinelli, Santiago Casas, Universe 7 (2021) 506, arXiv:2112.10675.
[Martinelli:2021hir]
[2-52]
Quantum gravity phenomenology at the dawn of the multi-messenger era - A review, A. Addazi et al., Prog.Part.Nucl.Phys. 103948 () 2022, arXiv:2111.05659.
[Addazi:2021xuf]
[2-53]
Coalescence of black hole-neutron star binaries, Koutarou Kyutoku, Masaru Shibata, Keisuke Taniguchi, Living Rev.Rel. 24 (2021) 5, arXiv:2110.06218.
[Kyutoku:2021icp]
[2-54]
Probing Quantum Gravity with Imaging Atmospheric Cherenkov Telescopes, Tomislav Terzic, Daniel Kerszberg, Jelena Striskovic, Universe 7 (2021) 345, arXiv:2109.09072.
[Terzic:2021rlx]
[2-55]
Scalar induced gravitational waves review, Guillem Domenech, Universe 7 (2021) 398, arXiv:2109.01398.
[Domenech:2021ztg]
[2-56]
Gravitational-wave searches in the era of Advanced LIGO and Virgo, Sarah Caudill, Shivaraj Kandhasamy, Claudia Lazzaro, Andrew Matas, Magdalena Sieniawska, Amber L. Stuver, Mod.Phys.Lett.A (), arXiv:2108.01184.
[Caudill:2021afu]
[2-57]
Big and young supermassive black holes in the early Universe, Tullia Sbarrato, arXiv:2107.09940, 2021.
[Sbarrato:2021fjo]
[2-58]
Formation channels of single and binary stellar-mass black holes, Michela Mapelli, arXiv:2106.00699, 2021.
[Mapelli:2021taw]
[2-59]
Binary black hole mergers: formation and populations, Michela Mapelli, arXiv:2105.12455, 2021.
[2105.12455]
[2-60]
Black hole science with the Laser Interferometer Space Antenna, Alberto Sesana, Front.Astron.Space Sci. 0 (2021) 7, arXiv:2105.11518.
[Sesana:2021jfh]
[2-61]
Implication of Pulsar Timing Array Experiments on Cosmological Gravitational Wave Detection, Jun'ichi Yokoyama, AAPPS Bull. 31 (2021) 17, arXiv:2105.07629.
[Yokoyama:2021hsa]
[2-62]
The double copy: from optics to quantum gravity, Chris D. White, J.Opt.Soc.Am.B 38 (2021) 3319-3330, arXiv:2105.06809.
[White:2021gvv]
[2-63]
Progress in Constraining Nuclear Symmetry Energy Using Neutron Star Observables since GW170817, Bao-An Li, Bao-Jun Cai, Wen-Jie Xie, Nai-Bo Zhang, Universe 7 (2021) 182, arXiv:2105.04629.
[Li:2021thg]
[2-64]
Hierarchical mergers of stellar-mass black holes and their gravitational-wave signatures, Davide Gerosa, Maya Fishbach, Nature Astron. 5 (2021) 749-760, arXiv:2105.03439.
[Gerosa:2021mno]
[2-65]
Gravitational Wave Physics and Astronomy in the nascent era, Makoto Arimoto et al., arXiv:2104.02445, 2021.
[Arimoto:2021cwc]
[2-66]
Noether's Theorems and Energy in General Relativity, Sebastian De Haro, arXiv:2103.17160, 2021.
[DeHaro:2021gdv]
[2-67]
To conserve, or not to conserve: A review of nonconservative theories of gravity, Hermano Velten, Thiago R. P. Carames, Universe 7 (2021) 38, arXiv:2102.03457.
[Velten:2021xxw]
[2-68]
Reduced Order and Surrogate Models for Gravitational Waves, Manuel Tiglio, Aaron Villanueva, Living Rev.Rel. 25 (2022) 2, arXiv:2101.11608.
[Tiglio:2021ysj]
[2-69]
Black hole perturbation theory and gravitational self-force, Adam Pound, Barry Wardell, arXiv:2101.04592, 2021.
[Pound:2021qin]
[2-70]
Dimensional Transmutation in Gravity and Cosmology, Alberto Salvio, Int.J.Mod.Phys. A36 (2021) 2130006, arXiv:2012.11608.
[Salvio:2020axm]
[2-71]
Quantum gravity and gravitational-wave astronomy, Gianluca Calcagni, arXiv:2012.08251, 2020.
[Calcagni:2020ume]
[2-72]
Fundamental Symmetries and Spacetime Geometries in Gauge Theories of Gravity: Prospects for Unified Field Theories, Francisco Cabral, Francisco S. N. Lobo, Diego Rubiera-Garcia, Universe 6 (2020) 238, arXiv:2012.06356.
[Cabral:2020fax]
[2-73]
The origin of the elements and other implications of gravitational wave detection for nuclear physics, David Lunney, 4open 3 (2020) 14, arXiv:2011.08645.
[Lunney:2020gjj]
[2-74]
Basics of General Theory of Relativity for Beginners, S.M. Bilenky, arXiv:2010.11823, 2020.
[Bilenky:2020efn]
[2-75]
Gravitational Waves from Core-Collapse Supernovae, Ernazar Abdikamalov, Giulia Pagliaroli, David Radice, arXiv:2010.04356, 2020.
[Abdikamalov:2020jzn]
[2-76]
Introduction to Numerical Relativity, Carlos Palenzuela, Front.Astron.Space Sci. 7 (2020) 58, arXiv:2008.12931.
[Palenzuela:2020tga]
[2-77]
General relativity and precision tests of fundamental symmetries, N.N. Nikolaev, S.N. Vergeles, arXiv:2008.02668, 2020.
[Nikolaev:2020hxz]
[2-78]
Beyond Einstein's General Relativity: Hybrid metric-Palatini gravity and curvature-matter couplings, Tiberiu Harko, Francisco S. N. Lobo, Int.J.Mod.Phys. D29 (2020) 2030008, arXiv:2007.15345.
[Harko:2020ibn]
[2-79]
Cluster-Galaxy Weak Lensing, Keiichi Umetsu, Astron.Astrophys.Rev. 28 (2020) 7, arXiv:2007.00506.
[Umetsu:2020wlf]
[2-80]
Non-Canonical Volume-Form Formulation of Modified Gravity Theories and Cosmology, David Benisty, Eduardo I. Guendelman, Alexander Kaganovich, Emil Nissimov, Sventlana Pacheva, Eur.Phys.J.Plus 136 (2021) 46, arXiv:2006.04063.
[Bensity:2020sfu]
[2-81]
Neutron star tidal deformability and equation of state constraints, Katerina Chatziioannou, Gen.Rel.Grav. 52 (2020) 109, arXiv:2006.03168.
[Chatziioannou:2020pqz]
[2-82]
Editorial to the special issue 'probing new physics with black holes', Aurelien Barrau, Universe 6 (2020) 58, arXiv:2004.08855.
[Barrau:2020ixa]
[2-83]
Interpreting Binary Neutron Star Mergers: Describing the Binary Neutron Star Dynamics, Modelling Gravitational Waveforms, and Analyzing Detections, Tim Dietrich, Tanja Hinderer, Anuradha Samajdar, Gen.Rel.Grav. 53 (2021) 27, arXiv:2004.02527.
[Dietrich:2020eud]
[2-84]
The Dynamics of Binary Neutron Star Mergers and of GW170817, David Radice, Sebastiano Bernuzzi, Albino Perego, Ann.Rev.Nucl.Part.Sci. 70 (2020) 95-119, arXiv:2002.03863.
[Radice:2020ddv]
[2-85]
Ground Based Gravitational Wave Astronomy in the Asian Region, Vaishali Adya et al., AAPPS Bull. 30 (2020) 47-57, arXiv:2002.02637.
[Adya:2020pjl]
[2-86]
Quantum Black Holes in the Sky, Jahed Abedi, Niayesh Afshordi, Naritaka Oshita, Qingwen Wang, Universe 6 (2020) 43, arXiv:2001.09553.
[Abedi:2020ujo]
[2-87]
Supermassive Black Holes in the Early Universe, Jose Antonio de Freitas Pacheco, arXiv:2001.08420, 2020.
[deFreitasPacheco:2020lyo]
[2-88]
Probing the equation of state of neutron star matter with gravitational waves from binary inspirals in light of GW170817: a brief review, Andreas Guerra Chaves, Tanja Hinderer, J.Phys. G46 (2019) 123002, arXiv:1912.01461.
[GuerraChaves:2019foa]
[2-89]
Intermediate-Mass Black Holes, Jenny E. Greene, Jay Strader, Luis C. Ho, Ann.Rev.Astron.Astrophys. 58 (2020) 257-312, arXiv:1911.09678.
[Greene:2019vlv]
[2-90]
Silhouettes of invisible black holes, Vyacheslav I. Dokuchaev, Natalia O. Nazarova, Usp.Fiz.Nauk 190 (2020) 627-647, arXiv:1911.07695.
[Dokuchaev:2019jqq]
[2-91]
The Assembly of the First Massive Black Holes, Kohei Inayoshi, Eli Visbal, Zoltan Haiman, Ann.Rev.Astron.Astrophys. 58 (2020) 27-97, arXiv:1911.05791.
[Inayoshi:2019fun]
[2-92]
Astrophysical Black Holes, Andrew C. Fabian, Anthony N. Lasenby, arXiv:1911.04305, 2019.
[Fabian:2019sxb]
[2-93]
The hole picture, Vitor Cardoso, arXiv:1910.04173, 2019.
[Cardoso:2019qps]
[2-94]
Continuous gravitational waves from neutron stars: current status and prospects, Magdalena Sieniawska, Michal Bejger, Universe 5 (2019) 217, arXiv:1909.12600.
[Sieniawska:2019hmd]
[2-95]
Gravity and Quantum Theory: Domains of Conflict and Contact, T. Padmanabhan, Int.J.Mod.Phys. D29 (2019) 2030001, arXiv:1909.02015.
[Padmanabhan:2019art]
[2-96]
Parametrizations for tests of gravity, Lucas Lombriser, Int.J.Mod.Phys. D27 (2018) 1848002, arXiv:1908.07892.
[Lombriser:2018guo]
[2-97]
The Novel Probes Project - Tests of Gravity on Astrophysical Scales, Tessa Baker et al., Rev.Mod.Phys. 93 (2021) 015003, arXiv:1908.03430.
[Baker:2019gxo]
[2-98]
Approaching the black hole by numerical simulations, Christian Fendt, arXiv:1907.12789, 2019.
[Fendt:2019znd]
[2-99]
Hadron matter in neutron stars in view of gravitational wave observations, Felipe J. Llanes-Estrada, Eva Lope-Oter, Prog.Part.Nucl.Phys. 109 (2019) 103715, arXiv:1907.12760.
[Llanes-Estrada:2019wmz]
[2-100]
High-Energy Multi-Messenger Transient Astrophysics, Kohta Murase, Imre Bartos, arXiv:1907.12506, 2019.
[Murase:2019fqk]
[2-101]
Gravitational waves from neutron star mergers and their relation to the nuclear equation of state, Luca Baiotti, Prog.Part.Nucl.Phys. 109 (2019) 103714, arXiv:1907.08534.
[Baiotti:2019sew]
[2-102]
Strong gravitational lensing of explosive transients, Masamune Oguri, Rept.Prog.Phys. 82 (2019) 126901, arXiv:1907.06830.
[Oguri:2019fix]
[2-103]
A model-independent characterisation of strong gravitational lensing by observables, Jenny Wagner, Universe 5 (2019) 177, arXiv:1906.05285.
[Wagner:2019orn]
[2-104]
An introduction to astrophysical observables in gravitational wave detections, Maurizio Spurio, arXiv:1906.03643, 2019.
[Spurio:2019xej]
[2-105]
Gravitational Lensing in presence of Plasma: Strong Lens Systems, Black Hole Lensing and Shadow, Gennady S. Bisnovatyi-Kogan, Oleg Yu. Tsupko, Universe 3 (2017) 57, arXiv:1905.06615.
[Bisnovatyi-Kogan:2017kii]
[2-106]
Hints of Modified Gravity in Cosmos and in the Lab?, Leandros Perivolaropoulos, Lavrentios Kazantzidis, Int.J.Mod.Phys. D28 (2019) 1942001, arXiv:1904.09462.
[Perivolaropoulos:2019vkb]
[2-107]
Testing the nature of dark compact objects: a status report, Vitor Cardoso, Paolo Pani, Living Rev.Rel. 22 (2019) 4, arXiv:1904.05363.
[Cardoso:2019rvt]
[2-108]
Extragalactic Proper Motions: Gravitational Waves and Cosmology, Jeremy Darling, Alexandra Truebenbach, Jennie Paine, arXiv:1904.00802, 2019.
[Darling:2019dat]
[2-109]
Observing Black Holes Spin, Christopher S. Reynolds, Nat.Astron. 3 (2019) 41-47, arXiv:1903.11704.
[Reynolds:2019uxi]
[2-110]
Multimessenger Universe with Gravitational Waves from Binaries, B.S. Sathyaprakash et al., arXiv:1903.09277, 2019.
[Sathyaprakash:2019rom]
[2-111]
The Yet-Unobserved Multi-Messenger Gravitational-Wave Universe, Vassiliki Kalogera et al., arXiv:1903.09224, 2019.
[Kalogera:2019bdd]
[2-112]
Astro2020 Decadal Science White Paper: The state of gravitational-wave astrophysics in 2020, Sean T. McWilliams, Robert Caldwell, Kelly Holley-Bockelmann, Shane L. Larson, Michele Vallisneri, arXiv:1903.04592, 2019.
[McWilliams:2019fng]
[2-113]
Cosmological Tests of Gravity, Pedro G. Ferreira, Ann.Rev.Astron.Astrophys. 57 (2019) 335-374, arXiv:1902.10503.
[Ferreira:2019xrr]
[2-114]
Tests of Gravity with Galaxy Clusters, Matteo Cataneo, David Rapetti, Int.J.Mod.Phys. D27 (2018) 1848006, arXiv:1902.10124.
[Cataneo:2018mil]
[2-115]
Analyzing Gravitational Waves with General Relativity, Luc Blanchet, Comptes Rendus Physique 20 (2019) 507-520, arXiv:1902.09801.
[Blanchet:2019zlt]
[2-116]
Measuring gravity at cosmological scales, Luca Amendola, Dario Bettoni, Ana Marta Pinho, Santiago Casas, Universe 6 (2020) 20, arXiv:1902.06978.
[Amendola:2019laa]
[2-117]
Selected topics in scalar-tensor theories and beyond, Israel Quiros, Int.J.Mod.Phys. D28 (2019) 1930012, arXiv:1901.08690.
[Quiros:2019ktw]
[2-118]
Horndeski theory and beyond: a review, Tsutomu Kobayashi, Rept.Prog.Phys. 82 (2019) 086901, arXiv:1901.07183.
[Kobayashi:2019hrl]
[2-119]
Dark Energy and Modified Gravity in Degenerate Higher-Order Scalar-Tensor (DHOST) theories: a review, David Langlois, Int.J.Mod.Phys.D 28 (2019) 1942006, arXiv:1811.06271.
[Langlois:2018dxi]
[2-120]
Long Journey toward the Detection of Gravitational Waves and New Era of Gravitational Wave Astrophysics, Hyung Mok Lee, J.Korean Phys.Soc. 73 (2018) 684-700, arXiv:1810.10674.
[Lee:2018kvh]
[2-121]
An asymptotically safe guide to quantum gravity and matter, Astrid Eichhorn, Front.Astron.Space Sci. 5 (2019) 47, arXiv:1810.07615.
[Eichhorn:2018yfc]
[2-122]
Gravitational Lenses as High-Resolution Telescopes, Anna Barnacka, Phys.Rept. 778-779 (2018) 1-46, arXiv:1810.07265.
[Barnacka:2018cim]
[2-123]
A status report on the phenomenology of black holes in loop quantum gravity: Evaporation, tunneling to white holes, dark matter and gravitational waves, Aurelien Barrau, Killian Martineau, Flora Moulin, Universe 4 (2018) 102, arXiv:1808.08857.
[Barrau:2018rts]
[2-124]
Binary neutron star and short gamma-ray burst simulations in light of GW170817, Antonios Nathanail, Galaxies 6 (2018) 119, arXiv:1808.05794.
[Nathanail:2018jpu]
[2-125]
A Review of Compact Interferometers, Jennifer Watchi, Sam Cooper, Binlei Ding, Conor M. Mow-Lowry, Christophe Collette, arXiv:1808.04175, 2018.
[Watchi:2018eem]
[2-126]
A systematic approach to generalisations of General Relativity and their cosmological implications, Lavinia Heisenberg, Phys.Rept. 796 (2019) 1-113, arXiv:1807.01725.
[Heisenberg:2018vsk]
[2-127]
Effective Field Theories of Post-Newtonian Gravity, Michele Levi, Rept.Prog.Phys. 83 (2020) 075901, arXiv:1807.01699.
[Levi:2018nxp]
[2-128]
Testing General Relativity in Cosmology, Mustapha Ishak, Living Rev.Rel. 22 (2019) 1, arXiv:1806.10122.
[Ishak:2018his]
[2-129]
Testing General Relativity with the Event Horizon Telescope, Dimitrios Psaltis, Gen.Rel.Grav. 51 (2019) 137, arXiv:1806.09740.
[Psaltis:2018xkc]
[2-130]
Self-force and radiation reaction in general relativity, Leor Barack, Adam Pound, Rept.Prog.Phys. 82 (2019) 016904, arXiv:1805.10385.
[Barack:2018yvs]
[2-131]
Primordial Black Holes - Perspectives in Gravitational Wave Astronomy -, Misao Sasaki, Teruaki Suyama, Takahiro Tanaka, Shuichiro Yokoyama, Class.Quant.Grav. 35 (2018) 063001, arXiv:1801.05235.
[Sasaki:2018dmp]
[2-132]
Cosmological Backgrounds of Gravitational Waves, Chiara Caprini, Daniel G. Figueroa, Class.Quant.Grav. 35 (2018) 163001, arXiv:1801.04268.
[Caprini:2018mtu]
[2-133]
Extreme Gravity Tests with Gravitational Waves from Compact Binary Coalescences: (II) Ringdown, Emanuele Berti, Kent Yagi, Huan Yang, Nicolas Yunes, Gen.Rel.Grav. 50 (2018) 49, arXiv:1801.03587.
[Berti:2018vdi]
[2-134]
Imaging black holes: past, present and future, Heino Falcke, J.Phys.Conf.Ser. 942 (2017) 012001, arXiv:1801.03298.
[Falcke:2017ukt]
[2-135]
Extreme Gravity Tests with Gravitational Waves from Compact Binary Coalescences: (I) Inspiral-Merger, Emanuele Berti, Kent Yagi, Nicolas Yunes, Gen.Rel.Grav. 50 (2018) 46, arXiv:1801.03208.
[Berti:2018cxi]
[2-136]
Recent progress on the description of relativistic spin: vector model of spinning particle and rotating body with gravimagnetic moment in General Relativity, Alexei A. Deriglazov, Walberto Guzman Ramirez, Adv.Math.Phys. 2017 (2017) 7397159, arXiv:1710.07135.
[Deriglazov:2017jub]
[2-137]
Tests of Chameleon Gravity, Clare Burrage, Jeremy Sakstein, Living Rev.Rel. 21 (2018) 1, arXiv:1709.09071.
[Burrage:2017qrf]
[2-138]
Universal Relations and Alternative Gravity Theories, Daniela D. Doneva, George Pappas, Astrophys.Space Sci.Libr. 457 (2018) 737-806, arXiv:1709.08046.
[Doneva:2017jop]
[2-139]
The observational evidence for horizons: from echoes to precision GW physics, Vitor Cardoso, Paolo Pani, arXiv:1707.03021, 2017.
[Cardoso:2017njb]
[2-140]
A review of pulsar timing array gravitational wave research, George Hobbs, Shi Dai, Natl.Sci.Rev. 4 (2017) 707-717, arXiv:1707.01615.
[Hobbs:2017oam]
[2-141]
Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution, S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Phys.Rept. 692 (2017) 1-104, arXiv:1705.11098.
[Nojiri:2017ncd]
[2-142]
Observational evidence for intermediate-mass black holes, Mar Mezcua, Int.J.Mod.Phys. D26 (2017) 1730021, arXiv:1705.09667.
[Mezcua:2017npy]
[2-143]
Testing different approaches to quantum gravity with cosmology: An overview, Aurelien Barrau, Comptes Rendus Physique 18 (2017) 189-199, arXiv:1705.01597.
[Barrau:2017tcd]
[2-144]
Born-Infeld inspired modifications of gravity, Jose Beltran Jimenez, Lavinia Heisenberg, Gonzalo J. Olmo, Diego Rubiera-Garcia, Phys.Rept. 727 (2018) 1-129, arXiv:1704.03351.
[BeltranJimenez:2017doy]
[2-145]
Black Holes in Loop Quantum Gravity, Alejandro Perez, Rept.Prog.Phys. 80 (2017) 126901, arXiv:1703.09149.
[Perez:2017cmj]
[2-146]
The Gravitational Wave Physics, Rong-Gen Cai, Zhoujian Cao, Zong-Kuan Guo, Shao-Jiang Wang, Tao Yang, Natl.Sci.Rev. 4 (2017) 687-706, arXiv:1703.00187.
[Cai:2017cbj]
[2-147]
Weak gravitational lensing, Matthias Bartelmann, Matteo Maturi, arXiv:1612.06535, 2016. Invited and refereed contribution to Scholarpedia.
[Bartelmann:2016dvf]
[2-148]
Multifractional theories: an unconventional review, Gianluca Calcagni, JHEP 1703 (2017) 138, arXiv:1612.05632.
[Calcagni:2016azd]
[2-149]
Rotating Stars in Relativity, Vasileios Paschalidis, Nikolaos Stergioulas, Living Rev.Rel. 20 (2017) 7, arXiv:1612.03050.
[Paschalidis:2016vmz]
[2-150]
Solar-system tests of the relativistic gravity, Wei-Tou Ni, Int.J.Mod.Phys. D25 (2016) 1630003, arXiv:1611.06025.
[Ni:2016dwy]
[2-151]
The Standard-Model Extension and Gravitational Tests, Jay D. Tasson, Symmetry 8 (2016) 111, arXiv:1610.05357.
[Tasson:2016xib]
[2-152]
Tests of Lorentz symmetry in the gravitational sector, Aurelien Hees et al., Universe 2 (2016) 30, arXiv:1610.04682.
[Hees:2016lyw]
[2-153]
General Relativity and Cosmology: Unsolved Questions and Future Directions, Ivan Debono, George F. Smoot, Universe 2 (2016) 23, arXiv:1609.09781.
[Debono:2016vkp]
[2-154]
A Brief History of Gravitational Waves, Jorge L. Cervantes-Cota, Salvador Galindo-Uribarri, George F. Smoot, Universe 2 (2016) 22, arXiv:1609.09400.
[Cervantes-Cota:2016zjc]
[2-155]
The Bondi-Sachs Formalism, Thomas Madler, Jeffrey Winicour, Scholarpedia 11 (2016) 33528, arXiv:1609.01731.
[Madler:2016xju]
[2-156]
Binary neutron-star mergers: a review of Einstein's richest laboratory, Luca Baiotti, Luciano Rezzolla, Rept.Prog.Phys. 80 (2017) 096901, arXiv:1607.03540.
[Baiotti:2016qnr]
[2-157]
BlackHoleCam: fundamental physics of the Galactic center, C. Goddi et al., Int.J.Mod.Phys. D26 (2016) 1730001, arXiv:1606.08879.
[Goddi:2016jrs]
[2-158]
Graviton Mass Bounds, Claudia de Rham, J. Tate Deskins, Andrew J. Tolley, Shuang-Yong Zhou, Rev.Mod.Phys. 89 (2017) 025004, arXiv:1606.08462.
[deRham:2016nuf]
[2-159]
Implications of the Gravitational Wave Event GW150914, M. Coleman Miller, Gen.Rel.Grav. 48 (2016) 95, arXiv:1606.06526.
[ColemanMiller:2016tcl]
[2-160]
Time Delay Cosmography, Tommaso Treu, Philip J. Marshall, Astron.Astrophys.Rev. 24 (2016) 11, arXiv:1605.05333.
[Treu:2016ljm]
[2-161]
Symmetry Reduced Loop Quantum Gravity: A Bird's Eye View, Abhay Ashtekar, Int.J.Mod.Phys. D25 (2016) 1642010, arXiv:1605.02648.
[Ashtekar:2016ecx]
[2-162]
Gravitational waves from inflation, Maria Chiara Guzzetti, Nicola Bartolo, Michele Liguori, Sabino Matarrese, Riv.Nuovo Cim. 39 (2016) 1, arXiv:1605.01615.
[Guzzetti:2016mkm]
[2-163]
What lattice theorists can do for quantum gravity, Masanori Hanada, Int.J.Mod.Phys. A31 (2016) 1643006, arXiv:1604.05421.
[Hanada:2016jok]
[2-164]
Tests of Gravitational Symmetries with Radio Pulsars, Lijing Shao, Norbert Wex, Astronomy 59 (2016) 699501, arXiv:1604.03662.
[Shao:2016ezh]
[2-165]
Thermodynamic properties of modified gravity theories, Kazuharu Bamba, Int.J.Geom.Meth.Mod.Phys. 13 (2016) 1630007, arXiv:1604.02632.
[Bamba:2016aoo]
[2-166]
The Atoms Of Space, Gravity and the Cosmological Constant, T. Padmanabhan, Int.J.Mod.Phys. D25 (2016) 1630020, arXiv:1603.08658.
[Padmanabhan:2016eld]
[2-167]
Testing the No-Hair Theorem with Observations of Black Holes in the Electromagnetic Spectrum, Tim Johannsen, Class.Quant.Grav. 33 (2016) 124001, arXiv:1602.07694.
[Johannsen:2016uoh]
[2-168]
The Holographic Universe, Jean-Pierre Luminet, Inference 2 (2016), arXiv:1602.07258.
[Luminet:2016cuw]
[2-169]
Gravitational wave astrophysics, data analysis and multimessenger astronomy, Hyung Mok Lee et al., Sci. China Phys. Mech. Astron. 58 (2015) 120403, arXiv:1602.05573.
[Lee:2015esy]
[2-170]
Technology for the next gravitational wave detectors, Valery P. Mitrofanov et al., Sci. China Phys. Mech. Astron. 58 (2015) 120404, arXiv:1602.05021.
[Mitrofanov:2015maz]
[2-171]
Conceptual issues in loop quantum cosmology, Aurelien Barrau, Boris Bolliet, Int.J.Mod.Phys. D25 (2016) 1642008, arXiv:1602.04452.
[Barrau:2016nwy]
[2-172]
Black Hole Based Tests of General Relativity, Kent Yagi, Leo C. Stein, Class. Quant. Grav. 33 (2016) 054001, arXiv:1602.02413.
[Yagi:2016jml]
[2-173]
Roadmap for gravitational wave detection in space - a preliminary study, Wei Gao et al., arXiv:1601.07050, 2016.
[Gao:2016tzv]
[2-174]
Lectures on General Theory of Relativity, Emil T. Akhmedov, arXiv:1601.04996, 2016.
[Akhmedov:2016ati]
[2-175]
The Effective Field Theorist's Approach to Gravitational Dynamics, Rafael A. Porto, Phys.Rept. 633 (2016) 1-104, arXiv:1601.04914.
[Porto:2016pyg]
[2-176]
Electromagnetic Signatures of Neutron Star Mergers in the Advanced LIGO Era, Rodrigo Fernandez, Brian D. Metzger, Ann.Rev.Nucl.Part.Sci. 66 (2016) 2115, arXiv:1512.05435.
[Fernandez:2015use]
[2-177]
Sgr A* and General Relativity, Tim Johannsen, Class.Quant.Grav. 33 (2016) 113001, arXiv:1512.03818.
[Johannsen:2015mdd]
[2-178]
Gravitational-Wave Detection and Astrophysics with Pulsar Timing Arrays, Sarah Burke-Spolaor, arXiv:1511.07869, 2015.
[Burke-Spolaor:2015xpf]
[2-179]
f(T) teleparallel gravity and cosmology, Yi-Fu Cai, Salvatore Capozziello, Mariafelicia De Laurentis, Emmanuel N. Saridakis, Rept.Prog.Phys. 79 (2016) 106901, arXiv:1511.07586.
[Cai:2015emx]
[2-180]
Hunting Gravitational Waves with Multi-Messenger Counterparts: Australia's Role, E. J. Howell et al., Publ. Astron. Soc. Austral. 32 (2015) 46, arXiv:1511.02959.
[Howell:2015xzw]
[2-181]
General relativity and cosmology, Martin Bucher, Wei-Tou Ni, Int. J. Mod. Phys. D24 (2015) 1530030, arXiv:1509.04497.
[Bucher:2015ria]
[2-182]
General Relativity, V. Canuto, I. Goldman, arXiv:1509.01243, 2015.
[Canuto:2015jya]
[2-183]
Testing General Relativity with Present and Future Astrophysical Observations, Emanuele Berti et al., Class. Quant. Grav. 32 (2015) 243001, arXiv:1501.07274.
[Berti:2015itd]
[2-184]
Sources of Gravitational Waves: Theory and Observations, Alessandra Buonanno, B.S. Sathyaprakash, arXiv:1410.7832, 2014.
[Buonanno:2014aza]
[2-185]
Review of short-range gravity experiments in the LHC era, Jiro Murata, Saki Tanaka, Class.Quant.Grav. 32 (2015) 033001, arXiv:1408.3588.
[Murata:2014nra]
[2-186]
Theory and Phenomenology of Spacetime Defects, Sabine Hossenfelder, Adv.High Energy Phys. 2014 (2014) 950672, arXiv:1401.0276.
[Hossenfelder:2014hha]
[2-187]
Gravitation and quantum interference experiments with neutrons, Hartmut Abele, Helmut Leeb, New J. Phys. 14 (2012) 055010, arXiv:1207.2953.
[Abele:2012dn]
[2-188]
Extended Theories of Gravity, Salvatore Capozziello, Mariafelicia De Laurentis, Phys. Rept. 509 (2011) 167-321, arXiv:1108.6266.
[Capozziello:2011et]
[2-189]
A review of Quantum Gravity at the Large Hadron Collider, Xavier Calmet, Mod. Phys. Lett. A25 (2010) 1553-1579, arXiv:1005.1805.
[Calmet:2010nt]
[2-190]
Physics, Astrophysics and Cosmology with Gravitational Waves, B. S. Sathyaprakash, B. F. Schutz, Living Rev. Rel. 12 (2009) 2, arXiv:0903.0338.
[Sathyaprakash:2009xs]
[2-191]
Advances in the measurement of the Lense-Thirring effect with Satellite Laser Ranging in the gravitational field of the Earth, Lorenzo Iorio, arXiv:0808.0658, 2008.
[Iorio:2008ga]
[2-192]
Dark Energy and Dark Gravity, Ruth Durrer, Roy Maartens, Gen. Rel. Grav. 40 (2008) 301-328, arXiv:0711.0077.
[Durrer:2007re]
[2-193]
String Cosmology: A Review, Liam McAllister, Eva Silverstein, Gen. Rel. Grav. 40 (2008) 565-605, arXiv:0710.2951.
[McAllister:2007bg]
[2-194]
Theory of gravitation theories: a no-progress report, Thomas P Sotiriou, Valerio Faraoni, Stefano Liberati, Int. J. Mod. Phys. D17 (2008) 399-423, arXiv:0707.2748.
[Sotiriou:2007zu]
[2-195]
Dark Energy and Gravity, T. Padmanabhan, Gen. Rel. Grav. 40 (2008) 529-564, arXiv:0705.2533.
[Padmanabhan:2007xy]
[2-196]
Supermassive Black Holes, Fulvio Melia, arXiv:0705.1537, 2007.
[Melia:2007vt]
[2-197]
Current status of Japanese detectors, Daisuke Tatsumi et al., Class. Quant. Grav. 24 (2007) S399-S404, arXiv:0704.2881.
[Tatsumi:2007fc]
[2-198]
Loop Quantum Gravity: An Inside View, Thomas Thiemann, Lect. Notes Phys. 721 (2007) 185-263, arXiv:hep-th/0608210.
[Thiemann:2006cf]
[2-199]
Black Holes at Future Colliders and Beyond: a Topical Review, Greg Landsberg, J. Phys. G32 (2006) R337-R365, arXiv:hep-ph/0607297.
[Landsberg:2006mm]
[2-200]
Einstein-Cartan Theory, Andrzej Trautman, arXiv:gr-qc/0606062, 2006.
[Trautman:2006fp]
[2-201]
Quantum Cosmology, Martin Bojowald, arXiv:gr-qc/0603110, 2006.
[Bojowald:2006nd]
[2-202]
Gravitational waves and fundamental physics, Michele Maggiore, Mem.Soc.Ast.It. 83 (2012) 225, arXiv:gr-qc/0602057.
[DeLaurentis:2011tb]
[2-203]
Quantum field theory in curved spacetime, Bernard S. Kay, arXiv:gr-qc/0601008, 2006. Encyclopedia of Mathematical Physics.
[Kay:2006jn]
[2-204]
The Confrontation between General Relativity and Experiment, Clifford M. Will, Living Rev. Rel. 9 (2012) 3, arXiv:gr-qc/0510072.
[Boom:2012bc]
[2-205]
Black Holes in Astrophysics, Ramesh Narayan, New J. Phys. 7 (2005) 199, arXiv:gr-qc/0506078.
[Narayan:2005ie]
[2-206]
Empirical Foundations of Relativistic Gravity, Wei-Tou Ni, Int. J. Mod. Phys. D14 (2005) 901, arXiv:gr-qc/0504116.
[Ni:2005ej]
[2-207]
Astrophysical Observations: Lensing and Eclipsing Einstein's Theories, Charles L. Bennett, Science 307 (2005) 879, arXiv:astro-ph/0503315.
[Bennett:2005ju]
[2-208]
Phenomenological Quantum Gravity, Dagny Kimberly, Joao Magueijo, Aip Conf. Proc. 782 (2005) 241, arXiv:gr-qc/0502110. Lectures given at XI BSCG.
[Kimberly:2005at]
[2-209]
Astrometry and Relativity, Costantino Sigismondi, Nuovo Cim. 120B (2005) 1169, arXiv:astro-ph/0501319.
[Sigismondi:2005nk]
[2-210]
The basics of gravitational wave theory, Eanna E. Flanagan, Scott A. Hughes, New J. Phys. 7 (2010) 204, arXiv:gr-qc/0501041.
[DeLaurentis:2010bv]
[2-211]
What Black Holes Can Teach Us, Sabine Hossenfelder, arXiv:hep-ph/0412265, 2004.
[Hossenfelder:2004af]
[2-212]
Black Hole Paradoxes, Mario Rabinowitz, arXiv:astro-ph/0412101, 2004.
[Rabinowitz:2004mv]
[2-213]
Millisecond Pulsars as Tools of Fundamental Physics, Michael Kramer, Lect. Notes Phys. 648 (2004) 33, arXiv:astro-ph/0405178.
[Kramer:2004gi]
[2-214]
The Dynamics of General Relativity, R. Arnowitt, S. Deser, C. W. Misner, Gen. Rel. Grav. 40 (2008) 1997-2027, arXiv:gr-qc/0405109.
[Arnowitt:1962hi]
[2-215]
Black Holes in Theories with Large Extra Dimensions: a Review, Panagiota Kanti, Int. J. Mod. Phys. A19 (2004) 4899, arXiv:hep-ph/0402168.
[Kanti:2004nr]
[2-216]
Black holes and information theory, J. D. Bekenstein, Contemp. Phys. 45 (2003) 31, arXiv:quant-ph/0311049.
[Bekenstein:2003dt]
[2-217]
Quantum Gravity Phenomenology, G. Amelino-Camelia, arXiv:physics/0311037, 2003.
[Amelino-Camelia:2003whp]
[2-218]
Gravitoelectromagnetism: A Brief Review, B. Mashhoon, arXiv:gr-qc/0311030, 2003.
[Mashhoon:2003ax]
[2-219]
Testing General Relativity with Pulsar Timing, Ingrid H. Stairs, Living Rev. Rel. 6 (2003) 5, arXiv:astro-ph/0307536.
[Stairs:2003eg]
[2-220]
Tests of the gravitational inverse-square law, E. G. Adelberger, B. R. Heckel, A. E. Nelson, Ann. Rev. Nucl. Part. Sci. 53 (2003) 77, arXiv:hep-ph/0307284.
[Adelberger:2003zx]
[2-221]
Astronomical Tests of the Einstein Equivalence Principle, O. Preuss, arXiv:gr-qc/0305083, 2003.
[Preuss:2002dg]
[2-222]
Update on gravitational-wave research, L. P. Grishchuk, arXiv:gr-qc/0305051, 2003.
[Grishchuk:2003uh]
[2-223]
The First Heroic Decade of Microlensing, N.W. Evans, arXiv:astro-ph/0304252, 2003.
[Evans:2003ej]
[2-224]
Formation of Supermassive Black Holes: Simulations in General Relativity, Stuart L. Shapiro, arXiv:astro-ph/0304202, 2003. To appear in 'Carnegie Observatories Astrophysics Series, Vol. 1: Coevolution of Black Holes and Galaxies,' ed. L. C. Ho (Cambridge: Cambridge Univ. Press). (17 pages, 8 figures).
[Shapiro:2003xe]
[2-225]
Do black holes radiate?, Adam D. Helfer, Rept. Prog. Phys. 66 (2003) 943, arXiv:gr-qc/0304042.
[Helfer:2003va]
[2-226]
How far are we from the quantum theory of gravity?, Lee Smolin, arXiv:hep-th/0303185, 2003.
[Smolin:2003rk]
[2-227]
Classical geometry of de Sitter spacetime: An introductory review, Yoonbai Kim, Chae Young Oh, Namil Park, arXiv:hep-th/0212326, 2002.
[Kim:2002uz]
[2-228]
Resource Letter GrW-1: Gravitational Waves, Joan M. Centrella, Am. J. Phys. 71 (2003) 520, arXiv:gr-qc/0211084.
[Centrella:2002fv]
[2-229]
Gravitational waves from instabilities in relativistic stars, N. Andersson, Class. Quant. Grav. 20 (2003) R105, arXiv:astro-ph/0211057.
[Andersson:2002ch]
[2-230]
Numerical Relativity and Compact Binaries, Thomas W. Baumgarte, Stuart L. Shapiro, Phys. Rep. 376 (2003) 41, arXiv:gr-qc/0211028.
[Baumgarte:2002jm]
[2-231]
Listening to the Universe with Gravitational-Wave Astronomy, Scott A. Hughes, Annals Phys. 303 (2003) 142, arXiv:astro-ph/0210481.
[Hughes:2002yy]
[2-232]
Gravitomagnetic effects, Angelo Tartaglia Matteo Luca Ruggiero, Nuovo Cim. 117B (2002) 743, arXiv:gr-qc/0207065.
[Ruggiero:2002hz]
[2-233]
Gravitational Waves from Gravitational Collapse, Kimberly C. B. New, Living Rev. Rel. 6 (2003) 2, arXiv:gr-qc/0206041.
[New:2002ew]
[2-234]
Gravitational radiation, Bernard F. Schutz, arXiv:gr-qc/0003069, 2000.
[Schutz:2000vj]
[2-235]
Astrophysical evidence for the existence of black holes, Annalisa Celotti, John C. Miller, Dennis W. Sciama, Class. Quant. Grav. 16 (1999) A3, arXiv:astro-ph/9912186.
[Celotti:1999tg]
[2-236]
Gravitational wave astronomy, B. F. Schutz, Class. Quant. Grav. 16 (1999) A131-A156, arXiv:gr-qc/9911034.
[Schutz:1999xj]
[2-237]
Why the quantum must yield to gravity, Joy Christian, arXiv:gr-qc/9810078, 1998.
[Christian:1998ep]
[2-238]
Lecture notes on general relativity, Sean M. Carroll, arXiv:gr-qc/9712019, 1997.
[Carroll:1997ar]

3 - Reviews - Talks

[3-1]
MOND vs. dark matter in light of historical parallels, Mordehai Milgrom, Stud.Hist.Phil.Sci.B 71 (2020) 170-195, arXiv:1910.04368. Dark Matter and Modified Gravity, Aachen, February 2019.
[Milgrom:2019cle]
[3-2]
Gravitation: from Newton to Einstein, Pierre Fleury, arXiv:1902.07287, 2019.
[Fleury:2019ter]
[3-3]
Tests of gravity theories with Galactic Center observations, Alexander F. Zakharov, Int.J.Mod.Phys. D28 (2019) 1941003, arXiv:1901.08343. Fourth International Conference on Particle Physics and Astrophysics (ICPPA-2018).
[Zakharov:2019jio]
[3-4]
Relatively complicated? Using models to teach general relativity at different levels, Markus Possel, arXiv:1812.11589, 2018. Spring Meeting 2017 of the German Physical Society (DPG), Bremen, 16 March 2017.
[Possel:2018mnd]
[3-5]
Gravitational waves from a first order electroweak phase transition: a review, David J. Weir, Phil.Trans.Roy.Soc.Lond. A376 (2018) 20170126, arXiv:1705.01783. Theo Murphy scientific meeting on Higgs cosmology, 28 March 2017.
[Weir:2017wfa]
[3-6]
Numerical Relativity and High Energy Physics: Recent Developments, Emanuele Berti, Vitor Cardoso, Luis C. B. Crispino, Leonardo Gualtieri, Carlos Herdeiro, Ulrich Sperhake, Int.J.Mod.Phys. D25 (2016) 1641022, arXiv:1603.06146. III Amazonian Symposium on Physics.
[Berti:2016rij]
[3-7]
Cosmological constant and vacuum energy: old and new ideas, Joan Sola, J. Phys. Conf. Ser. 453 (2013) 012015, arXiv:1306.1527. 15th Conference on Recent Developments in Gravity (NEB 15): Chania, Crete, Greece, June 20-23, 2012.
[Sola:2013gha]
[3-8]
Three little pieces for computer and relativity, Luciano Rezzolla, Fundam. Theor. Phys. 177 (2014) 391-425, arXiv:1303.6464. Relativity and Gravitation: 100 Years after Einstein in Prague, June 25 - 29, 2012, Prague, Czech Republic.
[Rezzolla:2013gwa]
[3-9]
Joint searches between gravitational-wave interferometers and high-energy neutrino telescopes: science reach and analysis strategies, V. Van Elewyck et al., Int. J. Mod. Phys. D18 (2009) 1655-1659, arXiv:0906.4957. 2d Heidelberg Workshop: 'High-Energy Gamma-rays and Neutrinos from Extra-Galactic Sources', Heidelberg (Germany), January 13-16, 2009.
[VanElewyck:2009pf]
[3-10]
From dark matter to MOND, R.H. Sanders, arXiv:0806.2585, 2008. XX Rencontres de Blois, Astroparticle physics.
[Sanders:2008iy]
[3-11]
Recent Developments in Gravitational Microlensing, Andrew Gould, ASP Conf.Ser. 403 (2009) 86, arXiv:0803.4324. The Variable Universe: A Celebration of Bohdan Paczynski, 29 Sept 2007.
[Gould:2008zu]
[3-12]
Gamma-Ray, Neutrino and Gravitational Wave Detection: OG 2.5,2.6,2.7 Rapporteur, G. Rowell, arXiv:0801.3886, 2008. 30th ICRC (Merida, Mexico, 2007).
[Rowell:2008nj]
[3-13]
The MOND paradigm, Mordehai Milgrom, arXiv:0801.3133, 2008. XIX Rencontres de Blois 'Matter and energy in the Universe: from nucleosynthesis to cosmology', May 2007.
[Milgrom:2008rv]
[3-14]
Einstein-aether gravity: a status report, Ted Jacobson, PoS QG-PH (2007) 020, arXiv:0801.1547. From Quantum to Emergent Gravity: Theory and Phenomenology, June 11-15 2007, SISSA; Trieste, Italy.
[Jacobson:2007veq]
[3-15]
LISA sources and science, Scott A. Hughes, arXiv:0711.0188, 2007. 7th Edoardo Amaldi Conference on Gravitational Waves.
[Hughes:2007xm]
[3-16]
Gravitational waves, Alessandra Buonanno, arXiv:0709.4682, 2007. Les Houches Summer School, Particle Physics and Cosmology: The Fabric of Spacetime, Les Houches, France, 31 Jul - 25 Aug 2006.
[Buonanno:2007yg]
[3-17]
Gravitational lensing, Olaf Wucknitz, arXiv:0709.4005, 2007. 8th EVN symposium held in Torun, Poland, September 2006.
[Wucknitz:2007wc]
[3-18]
The New Science of Gravitational Waves, Craig J. Hogan, ASP Conf.Ser. 395 (2008) 239, arXiv:0709.0608. Frontiers of Astrophysics: A Celebration of NRAO's 50th Anniversary.
[Hogan:2007cg]
[3-19]
General Relativity Today, Thibault Damour, Prog.Math.Phys. 52 (2007) 1-49, arXiv:0704.0754.
[Damour:2007uh]
[3-20]
Massive Black Holes: formation and evolution, Martin J. Rees, Marta Volonteri, IAU Symp. 238 (2007) 51, arXiv:astro-ph/0701512. IAU Symp. 238, 'Black Holes: from stars to galaxies - across the range of masses'.
[Rees:2007nc]
[3-21]
Experimental Evidence of Black Holes, Andreas Mueller, PoS P2GC (2006) 017, arXiv:astro-ph/0701228. School on Particle Physics, Gravity and Cosmology, Dubrovnik, 21 Aug - 2 Sep 2006.
[Mueller:2006air]
[3-22]
Les Houches Lectures on Effective Field Theories and Gravitational Radiation, Walter D. Goldberger, arXiv:hep-ph/0701129, 2007. Les Houches 2006.
[Goldberger:2007hy]
[3-23]
An introduction to Gravitational Lensing in TeVeS gravity, HongSheng Zhao, Mon.Not.Roy.Astron.Soc (2006), arXiv:astro-ph/0611777. Sicily Gravitational Lensing School, Oct 29-Nov 3.
[Zhao:2006ve]
[3-24]
Black-Hole Phenomenology, Neven Bilic, PoS P2GC (2006) 004, arXiv:astro-ph/0610657. School on Particle Physics, Gravity and Cosmology, Dubrovnik, 21 Aug - 2 Sept 2006.
[Bilic:2006bh]
[3-25]
Singularity Theorems in General Relativity: Achievements and Open Questions, Jose M.M. Senovilla, Einstein Stud. 12 (2012) 305-316, arXiv:physics/0605007. 7th International Conference on the History of General Relativity (HGR7), 'Einstein and the Changing World View of Physics, 1905-2005'.
[Senovilla:2006db]
[3-26]
Gravitational Microlensing, Joachim Wambsganss, arXiv:astro-ph/0604278, 2006. 'Gravitational Lensing: Strong, Weak and Micro', 33rd Saas-Fee Advanced Course.
[Wambsganss:2006nj]
[3-27]
Trust but verify: The case for astrophysical black holes, Scott A. Hughes, eConf C0507252 (2005) L006, arXiv:hep-ph/0511217. 2005 SLAC Summer Institute.
[Hughes:2005wj]
[3-28]
Applications of the Gauge Principle to Gravitational Interactions, Ali H. Chamseddine, Int. J. Geom. Meth. Mod. Phys. 3 (2006) 149, arXiv:hep-th/0511074.
[Chamseddine:2005td]
[3-29]
Lensing Magnification and QSO-Galaxy Cross-Correlations: Observations, Theory and Simulations, Antonio C. C. Guimarães, Braz. J. Phys. 35 (2005) 1179, arXiv:astro-ph/0510719. '100 years of relativity - international conference on classical and quantum aspects of gravity and cosmology', 2005.
[Guimaraes:2005is]
[3-30]
General Covariance and its Implications for Einstein's Space-Times, Luca Lusanna, J. Phys. Conf. Ser. 33 (2006) 107-117, arXiv:gr-qc/0510024.
[Lusanna:2005cn]
[3-31]
Weak Gravitational Lensing, Peter Schneider, arXiv:astro-ph/0509252, 2005. 33rd Advanced Saas Fee Course on Gravitational Lensing: Strong, Weak, and Micro, Les Diablerets, Switzerland, 7-12 Apr 2003.
[Schneider:2005ka]
[3-32]
Lunar Laser Ranging Contributions to Relativity and Geodesy, Juergen Mueller, James G. Williams, Slava G. Turyshev, Astrophys.Space Sci.Libr. 349 (2008) 457-472, arXiv:gr-qc/0509114. 359th WE-Heraeus Seminar on 'Lasers, Clocks, and Drag-Free: Technologies for Future Exploration in Space and Tests of Gravity,' ZARM, Bremen, Germany, May 30-June 1, 2005.
[Muller:2005sr]
[3-33]
Numerical Relativity at the Frontier, Stuart L. Shapiro, Prog. Theor. Phys. Suppl. 163 (2006) 100-119, arXiv:gr-qc/0509094. YKIS 2005, Kyoto.
[Shapiro:2005dc]
[3-34]
Black holes and fundamental physics, José P. S. Lemos, arXiv:gr-qc/0507101, 2005. Fifth International Workshop on New Worlds in Astroparticle Physics, University of the Algarve, Faro, Portugal, January 8-10, 2005.
[Lemos:2005jx]
[3-35]
Relic Gravitational Waves and Cosmology, L. P. Grishchuk, Phys. Usp. 48 (2005) 1235-1247, arXiv:gr-qc/0504018. `Zeldovich-90', Moscow, December 2004.
[Grishchuk:2005qe]
[3-36]
The Significance of the General Principle of Relativity, Sanjay M Wagh, Phys.Rev.A 72 (2005) 013818, arXiv:physics/0502088. IAGRG Conference, Jaipur, India, December 2004.
[Corbitt:2005qv]
[3-37]
Gravitational Lensing by Large Scale Structures: A Review, L. Van Waerbeke, Y. Mellier, arXiv:astro-ph/0305089, 2003. Aussois winter school, january 2003.
[VanWaerbeke:2003uq]
[3-38]
Quasar Lensing: the Observer's Point of View, F. Courbin, arXiv:astro-ph/0304497, 2003. 'Gravitational Lensing: a unique tool for cosmology', Aussois, France, January 2003.
[Courbin:2003ip]
[3-39]
The Basics of Lensing, Konrad Kuijken, arXiv:astro-ph/0304438, 2003. 'Gravitational Lensing: a unique tool for cosmology', Aussois, France, January 2003.
[Kuijken:2003xz]
[3-40]
Numerical Methods in Gravitational Lensing, Matthias Bartelmann, arXiv:astro-ph/0304162, 2003. Gravitational Lensing Winter School, Aussois, 2003.
[Bartelmann:2003ki]
[3-41]
An overview of gravitational-wave sources, Curt Cutler, Kip S. Thorne, arXiv:gr-qc/0204090, 2002. 16th International Conference on General Relativity and Gravitation (GR16), Durban, South Africa, 15-21 Jul 2001.
[Cutler:2002me]
[3-42]
Lectures on gravitational lensing, Ramesh Narayan, Matthias Bartelmann, arXiv:astro-ph/9606001, 1996.
[Narayan:1996ba]

4 - Habilitation, PhD and Master Theses

[4-1]
Gravitational Waves and the Galactic Potential, Francisco Duque, arXiv:2308.03850, 2023.
[Duque:2023nrf]
[4-2]
Gravitational Waves from Cosmological Phase Transitions, Moritz Breitbach, arXiv:2204.09661, 2022.
[Breitbach:2018kma]
[4-3]
Probing Particle Physics with Gravitational Waves, Horng Sheng Chia, arXiv:2012.09167, 2020.
[Chia:2020dye]

5 - Fundamental Papers - Experiment

[5-1]
Observation of Gravitational Waves from a Binary Black Hole Merger, B. P. Abbott et al. (LIGO and VIRGO), Phys. Rev. Lett. 116 (2016) 061102, arXiv:1602.03837.
[LIGOScientific:2016aoc]

6 - Fundamental Papers - Theory

[6-1]
The Foundation of the General Theory of Relativity, Albert Einstein, Annalen Phys. 49 (1916) 769-822.
[Einstein:1916vd]
[6-2]
The Speed of Light and the Statics of the Gravitational Field, Albert Einstein, Annalen Phys. 38 (1912) 355-369.
[Einstein:1912bi]
[6-3]
On the Theory of the Static Gravitational Field, Albert Einstein, Annalen Phys. 38 (1912) 443-458.
[Einstein:1912bj]
[6-4]
On The influence of gravitation on the propagation of light, Albert Einstein, Annalen Phys. 35 (1911) 898-908.
[Einstein:1911vc]

7 - Fundamental Papers - Theory - Alternative Models

[7-1]
Mach's principle and a relativistic theory of gravitation, C. Brans, R. H. Dicke, Phys. Rev. 124 (1961) 925-935.
[Brans:1961sx]

8 - Experiment

[8-1]
Testing the Strong Equivalence Principle: Detection of the External Field Effect in Rotationally Supported Galaxies, Kyu-Hyun Chae, Federico Lelli, Harry Desmond, Stacy S. McGaugh, Pengfei Li, James M. Schombert, Astrophys. J. 904 (2020) 51, arXiv:2009.11525.
[Chae:2020omu]
[8-2]
Observation of Gravitational Waves from a Binary Black Hole Merger, B. P. Abbott et al. (LIGO and VIRGO), Phys. Rev. Lett. 116 (2016) 061102, arXiv:1602.03837.
[LIGOScientific:2016aoc]
[8-3]
LARES succesfully launched in orbit: satellite and mission description, Antonio Paolozzi, Ignazio Ciufolini, Acta Astronaut. 91 (2013) 313, arXiv:1305.6823.
[Paolozzi:2013bla]
[8-4]
Anomalous Orbital-Energy Changes Observed during Spacecraft Flybys of Earth, John D. Anderson, James K. Campbell, John E. Ekelund, Jordan Ellis, James F. Jordan, Phys. Rev. Lett. 100 (2008) 091102.
[Anderson:2008zz]
[8-5]
Tests of the Gravitational Inverse-Square Law below the Dark-Energy Length Scale, D.J. Kapner et al., Phys. Rev. Lett. 98 (2007) 021101, arXiv:hep-ph/0611184.
[Kapner:2006si]
[8-6]
Tests of general relativity from timing the double pulsar, M. Kramer et al., Science 314 (2006) 97-102, arXiv:astro-ph/0609417.
[Kramer:2006nb]
[8-7]
A Measurement of Newton's Gravitational Constant, St. Schlamminger et al., Phys. Rev. D74 (2006) 082001, arXiv:gr-qc/0609027.
[Schlamminger:2006km]
[8-8]
Sub-millimeter Tests of the Gravitational Inverse-square Law, C.D. Hoyle et al., Phys. Rev. D70 (2004) 042004, arXiv:hep-ph/0405262.
[Hoyle:2004cw]
[8-9]
Cold Atom Clocks, Precision Oscillators and Fundamental Tests, S. Bize et al., Lect. Notes Phys. 648 (2004) 189, arXiv:astro-ph/0310112.
[Bize:2003ds]
[8-10]
Quantum states of neutrons in the gravitational field and limits for non-Newtonian interaction in the range between 1 micron and 10 microns, Hartmut Abele, Stefan Baessler, Alexander Westphal, Lect. Notes Phys. 631 (2003) 355, arXiv:hep-ph/0301145.
[Abele:2003ga]

9 - Experiment - Talks

[9-1]
A Gravity of Earth Measurement with a qBOUNCE Experiment, G. Cronenberg et al., PoS EPS-HEP2015 (2016) 408, arXiv:1512.09134. EPS Conference on High Energy Physics 2015.
[Cronenberg:2015bol]

10 - Experiment - Gravitational Lensing

[10-1]
COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses III. Redshift of the lensing galaxy in seven gravitationally lensed quasars, A. Eigenbrod et al., Astron.Astrophys. (2005), arXiv:astro-ph/0511026.
[Eigenbrod:2005ub]
[10-2]
A Search for Radio Gravitational Lenses, Using the Sloan Digital Sky Survey and the Very Large Array, Edward R. Boyce et al., Astrophys. J. 640 (2006) 42, arXiv:astro-ph/0510124.
[Boyce:2005mj]
[10-3]
Sloan Digital Sky Survey Spectroscopic Lens Search: I. Discovery of Intermediate-Redshift Star-Forming Galaxies Behind Foreground Luminous Red Galaxies, A. S. Bolton et al., Astron. J. 127 (2004) 1860, arXiv:astro-ph/0311055.
[Bolton:2003cw]
[10-4]
SDSS J0903+5028: A New Gravitational Lens, D. E. Johnston et al. (SDSS), Astron. J. 126 (2003) 2281, arXiv:astro-ph/0307371.
[SDSS:2003pzy]
[10-5]
Microlensing limits on numbers and orbits of extra-solar planets from the 1998-2000 OGLE events, Y. Tsapras, K. Horne, S. Kane, R. Carson, Mon. Not. Roy. Astron. Soc. 343 (2003) 1131, arXiv:astro-ph/0304284.
[Tsapras:2003hv]
[10-6]
Chandra Observations of QSO 2237+0305, X. Dai et al., Astrophys. J. 589 (2003) 100, arXiv:astro-ph/0301592.
[Dai:2003ie]
[10-7]
The Optical Gravitational Lensing Experiment. BVI Maps of Dense Stellar Regions. III. The Galactic Bulge, A. Udalski et al., Acta Astron. 52 (2002) 217, arXiv:astro-ph/0210278.
[Udalski:2002kh]

11 - Experiment - Gravitational Waves

[11-1]
An Optically Targeted Search for Gravitational Waves emitted by Core-Collapse Supernovae during the First and Second Observing Runs of Advanced LIGO and Advanced Virgo, B. P. Abbott et al. (LIGO Scientific, Virgo), Phys.Rev. D101 (2020) 084002, arXiv:1908.03584.
[LIGOScientific:2019ryq]
[11-2]
Low-Latency Gravitational Wave Alerts for Multi-Messenger Astronomy During the Second Advanced LIGO and Virgo Observing Run, LIGO Scientific Collaboration, Virgo Collaboration, Astrophys.J. 875 (2019) 161, arXiv:1901.03310.
[LIGOScientific:2019gag]
[11-3]
Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory, A. Albert et al. (Virgo, IceCube, Pierre Auger, ANTARES, LIGO Scientific), Astrophys.J. 850 (2017) L35, arXiv:1710.05839.
[ANTARES:2017bia]
[11-4]
Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A, B. P. Abbott et al. (Virgo, Fermi-GBM, INTEGRAL, LIGO Scientific), Astrophys. J. 848 (2017) L13, arXiv:1710.05834.
[LIGOScientific:2017zic]
[11-5]
Multi-messenger Observations of a Binary Neutron Star Merger, GROND, SALT Group, OzGrav, DFN, INTEGRAL, Virgo, Insight-Hxmt, MAXI Team, Fermi-LAT, J-GEM, RATIR, ATLAS, IceCube, CAASTRO, LWA, ePESSTO, GRAWITA, RIMAS, SKA South Africa/MeerKAT, H.E.S.S., 1M2H Team, IKI-GW Follow-up, Fermi GBM, Pi of Sky, DWF (Deeper Wider Faster Program), Dark Energy Survey, MASTER, AstroSat Cadmium Zinc Telluride Imager Team, Swift, Pierre Auger, ASKAP, VINROUGE, JAGWAR, Chandra Team at McGill University, TTU-NRAO, GROWTH, AGILE Team, MWA, ATCA, AST3, TOROS, Pan-STARRS, NuSTAR, BOOTES, CaltechNRAO, LIGO Scientific, High Time Resolution Universe Survey, Nordic Optical Telescope, Las Cumbres Observatory Group, TZAC Consortium, LOFAR, IPN, DLT40, Texas Tech University, HAWC, ANTARES, KU, Dark Energy Camera GW-EM, CALET, Euro VLBI Team, ALMA, Astrophys. J. 848 (2017) L12, arXiv:1710.05833.
[LIGOScientific:2017ync]
[11-6]
GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Benjamin P. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev. Lett. 119 (2017) 161101, arXiv:1710.05832.
[LIGOScientific:2017vwq]
[11-7]
GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence, Benjamin P. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev. Lett. 119 (2017) 141101, arXiv:1709.09660.
[LIGOScientific:2017ycc]
[11-8]
Search for Neutrinos in Super-Kamiokande associated with Gravitational Wave Events GW150914 and GW151226, K. Abe et al. (Super-Kamiokande), Astrophys.J.Lett. 830 (2016) L11, arXiv:1608.08745.
[Super-Kamiokande:2016jsv]
[11-9]
Search for electron antineutrinos associated with gravitational wave events GW150914 and GW151226 using KamLAND, A. Gando et al. (KamLAND), Astrophys.J. 829 (2016) L34, arXiv:1606.07155.
[KamLAND:2016wvk]
[11-10]
High-energy Neutrino follow-up search of Gravitational Wave Event GW150914 with ANTARES and IceCube, S. Adrian-Martinez et al. (Virgo, IceCube, ANTARES, LIGO), Phys. Rev. D93 (2016) 122010, arXiv:1602.05411.
[ANTARES:2016qdk]
[11-11]
GW150914: Implications for the stochastic gravitational wave background from binary black holes, B. P. Abbott et al. (LIGO and VIRGO), Phys. Rev. Lett. 116 (2016) 131102, arXiv:1602.03847.
[LIGOScientific:2016fpe]
[11-12]
Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914, B. P. Abbott (LIGO), Phys.Rev. D95 (2017) 062003, arXiv:1602.03845.
[LIGOScientific:2016xax]
[11-13]
Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914, B. P. Abbott et al. (LIGO and VIRGO), Class.Quant.Grav. 33 (2016) 134001, arXiv:1602.03844.
[LIGOScientific:2016gtq]
[11-14]
Observing gravitational-wave transient GW150914 with minimal assumptions, LIGO, Virgo, Phys. Rev. D93 (2016) 122004, arXiv:1602.03843.
[LIGOScientific:2016fbo]
[11-15]
Properties of the binary black hole merger GW150914, LIGO, Virgo, Phys. Rev. Lett. 116 (2016) 241102, arXiv:1602.03840.
[LIGOScientific:2016vlm]
[11-16]
GW150914: First results from the search for binary black hole coalescence with Advanced LIGO, B. P. Abbott et al. (LIGO and VIRGO), Phys. Rev. D93 (2016) 122003, arXiv:1602.03839.
[LIGOScientific:2016vbw]
[11-17]
GW150914: The Advanced LIGO Detectors in the Era of First Discoveries, B. P. Abbott et al. (LIGO and VIRGO), Phys. Rev. Lett. 116 (2016) 131103, arXiv:1602.03838.
[LIGOScientific:2016emj]
[11-18]
Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009-2010 LIGO and Virgo Data, J. Aasi et al. (LIGO and Virgo), Phys. Rev. Lett. 113 (2014) 231101, arXiv:1406.4556.
[LIGOScientific:2014gqo]
[11-19]
Setup OGRAN as a high frequency resonance gravity gradiometer, Bagaev S.N. et al., arXiv:1403.0827, 2014.
[Bagaev:2014xdb]
[11-20]
A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007, S. Adrian-Martinez et al. (Antares), JCAP 1306 (2013) 008, arXiv:1205.3018.
[LIGOScientific:2012bvo]
[11-21]
Beating the spin-down limit on gravitational wave emission from the Crab pulsar, : B. Abbott (The LIGO Scientific), Astrophys. J. 683 (2008) L45-L50, arXiv:0805.4758.
[LIGOScientific:2008hfq]
[11-22]
Coherent searches for periodic gravitational waves from unknown isolated sources and Scorpius X-1: results from the second LIGO science run, LIGO (LIGO), Phys. Rev. D76 (2007) 082001, arXiv:gr-qc/0605028.
[LIGOScientific:2006jsu]
[11-23]
Upper Limits on a Stochastic Background of Gravitational Waves, B. Abbott et al. (LIGO), Phys. Rev. Lett. 95 (2005) 221101, arXiv:astro-ph/0507254.
[LIGOScientific:2005cjh]
[11-24]
Limits on gravitational wave emission from selected pulsars using LIGO data, B. Abbott et al. (LIGO), Phys. Rev. Lett. 94 (2005) 181103, arXiv:gr-qc/0410007.
[LIGOScientific:2004sbr]
[11-25]
Study of the coincidences between the gravitational wave detectors EXPLORER and NAUTILUS in 2001, P. Astone et al., Class. Quant. Grav. 19 (2002) 5449-5463, arXiv:gr-qc/0210053.
[Astone:2002ra]

12 - Theory

[12-1]
What if gravity becomes really repulsive in the future?, Imanol Albarran, Mariam Bouhmadi-Lopez, Joao Morais, Eur.Phys.J. C78 (2018) 260, arXiv:1706.01484.
[Albarran:2017kzf]
[12-2]
No repulsive force in General Relativity, M. A. Abramowicz, J. -P. Lasota, arXiv:1608.02882, 2016.
[Abramowicz:2016ksa]
[12-3]
Emergent Spacetime: Reality or Illusion?, Hyun Seok Yang, arXiv:1504.00464, 2015.
[Yang:2015yga]
[12-4]
A Gravitational Origin of the Arrows of Time, Julian Barbour, Tim Koslowski, Flavio Mercati, arXiv:1310.5167, 2013.
[Barbour:2013jya]
[12-5]
Conservative 3+1 General Relativistic Boltzmann Equation, Christian Y. Cardall, Eirik Endeve, Anthony Mezzacappa, Phys. Rev. D88 (2013) 023011, arXiv:1305.0037.
[Cardall:2013kwa]
[12-6]
Truncated Moment Formalism for Radiation Hydrodynamics in Numerical Relativity, Masaru Shibata, Kenta Kiuchi, Yu-ichiro Sekiguchi, Yudai Suwa, Prog. Theor. Phys. 125 (2011) 1255-1287, arXiv:1104.3937.
[Shibata:2011kx]
[12-7]
Classical Gravity Does Not Refract Negatively, Martin W. McCall, Phys. Rev. Lett. 98 (2007) 091102.
[McCall-PRL-98-091102-2007]
[12-8]
Censorship of Chronological Violations, Hunter Monroe, arXiv:gr-qc/0607134, 2006.
[Monroe:2006zt]
[12-9]
Graviton Physics, Barry R. Holstein, Am. J. Phys. 74 (2006) 1002-1011, arXiv:gr-qc/0607045.
[Holstein:2006bh]
[12-10]
Einstein equations: exact solutions, Jiri Bicak, arXiv:gr-qc/0604102, 2006.
[Bicak:2006bw]
[12-11]
Black Hole Radiation and Volume Statistical Entropy, Mario Rabinowitz, Int. J. Theor. Phys. 45 (2006) 851-858, arXiv:physics/0506029.
[Rabinowitz:2005vn]
[12-12]
Whitehead's Principle of Relativity - Unpublished Lectures by J. L. Synge, FRS, John Coleman, arXiv:physics/0505027, 2005.
[Synge:2005yh]
[12-13]
Simple Analytic Models of Gravitational Collapse, R. J. Adler, J. D. Bjorken, P. Chen, J. S. Liu, Am. J. Phys. 73 (2005) 1148, arXiv:gr-qc/0502040.
[Adler:2005vn]
[12-14]
Applications of geometric algebra to physics: Theoretical framework, cosmological Hawking radiation and Unruh effect, S. Setiawan, arXiv:physics/0412070, 2004.
[Setiawan:2004dq]
[12-15]
Are there hyperentropic objects ?, Jacob D. Bekenstein, Phys. Rev. D70 (2004) 121502, arXiv:hep-th/0410106.
[Bekenstein:2004ni]
[12-16]
Discrete symmetries in general relativity: The dark side of gravity, Frederic Henry-Couannier, Int. J. Mod. Phys. A20 (2005) 2341-2346, arXiv:gr-qc/0410055.
[Henry-Couannier:2005uhc]
[12-17]
What is a particle?, Daniele Colosi, Carlo Rovelli, Class.Quant.Grav. 26 (2009) 025002, arXiv:gr-qc/0409054.
[Colosi:2004vw]
[12-18]
On the Clock Paradox in the case of circular motion of the moving clock, Lorenzo Iorio, Eur.J. Phys. 26 (2005) 535, arXiv:physics/0406139.
[Iorio:2004dw]
[12-19]
An easy way to Gravimagnetism, Claus W. Turtur, arXiv:physics/0406078, 2004.
[physics/0406078]
[12-20]
On the thermodynamic origin of the Hawking entropy and a measurement of the Hawking temperature, Michael Petri, arXiv:gr-qc/0405008, 2004.
[Petri:2004ge]
[12-21]
The Chrono'Geometrical Structure of Special and General Relativity: Towards a Background-Independent Description of the Gravitational Field and Elementary Particles, Luca Lusanna, arXiv:gr-qc/0404122, 2004.
[Lusanna:2004yj]
[12-22]
A General Relativistic Model of Light Propagation in the Gravitational Field of the Solar System: the Static Case, F. de Felice et al., Astrophys. J. 607 (2004) 580, arXiv:astro-ph/0401637.
[deFelice:2004nf]
[12-23]
How far can the generalized second law be generalized?, P. C. W. Davies, T. M. Davis, Found. Phys. 32(12) (2002) 1877, arXiv:astro-ph/0310522.
[Davies:2002eqi]
[12-24]
Exact calculation of the Perihelion Precession of Mercury in General Relativity, the Cosmological Constant and Jacobi's Inversion problem, G. V. Kraniotis, S. B. Whitehouse, Class. Quant. Grav. 20 (2003) 4817, arXiv:astro-ph/0305181.
[Kraniotis:2003ig]
[12-25]
Semiclassical quantization of gravity I: Entropy of horizons and the area spectrum, T. Padmanabhan, A. Patel, arXiv:hep-th/0305165, 2003.
[Padmanabhan:2003qq]
[12-26]
A Nonlocal Metric Formulation of MOND, M. E. Soussa, R. P. Woodard, Class. Quant. Grav. 20 (2003) 2737, arXiv:astro-ph/0302030.
[Soussa:2003vv]
[12-27]
On the Gravitomagnetic Time Delay, I. Ciufolini, S. Kopeikin, B. Mashhoon, F. Ricci, Phys. Lett. A308 (2003) 101, arXiv:gr-qc/0210015.
[Ciufolini:2002iq]
[12-28]
The equivalence principle and the bending of light, R. Ferraro, Am. J. Phys. 71 (2003) 168-170, arXiv:gr-qc/0209028.
[Ferraro:2002uw]
[12-29]
General Relativity, Cosmological Constant and Modular Forms, G. V. Kraniotis, S. B. Whitehouse, Class. Quant. Grav. 19 (2002) 5073-5100, arXiv:gr-qc/0105022.
[Kraniotis:2001py]
[12-30]
Spinor algebra transformations as gauge symmetry: Limit to Einstein gravity, V. V. Kiselev, arXiv:hep-ph/0104222, 2001.
[Kiselev:2001xu]
[12-31]
The Equivalence of inertial and passive gravitational mass, P. G. Roll, R. Krotkov, R. H. Dicke, Ann. Phys. 26 (1964) 442-517.
[Roll:1964rd]
[12-32]
Mach's principle and invariance under transformation of units, R. H. Dicke, Phys. Rev. 125 (1962) 2163-2167.
[Dicke:1961gz]
[12-33]
The Foundation of the General Theory of Relativity, Albert Einstein, Annalen Phys. 49 (1916) 769-822.
[Einstein:1916vd]
[12-34]
The Speed of Light and the Statics of the Gravitational Field, Albert Einstein, Annalen Phys. 38 (1912) 355-369.
[Einstein:1912bi]
[12-35]
On the Theory of the Static Gravitational Field, Albert Einstein, Annalen Phys. 38 (1912) 443-458.
[Einstein:1912bj]
[12-36]
On The influence of gravitation on the propagation of light, Albert Einstein, Annalen Phys. 35 (1911) 898-908.
[Einstein:1911vc]

13 - Theory - Talks

[13-1]
Gravity as an emergent phenomenon: A conceptual description, T. Padmanabhan, AIP Conf. Proc. 939 (2007) 114-123, arXiv:0706.1654.
[Padmanabhan:2007tm]
[13-2]
Finding and using exact solutions of the Einstein equations, M. A. H. MacCallum, AIP Conf. Proc. 841 (2006) 129-143, arXiv:gr-qc/0601102. ERE05, Oviedo, September 2005.
[MacCallum:2006mf]

14 - Theory - Black Holes

[14-1]
No space-time singularity in black-hole physics, Jose Bernabeu, arXiv:2312.09419, 2023.
[Bernabeu:2023uuc]
[14-2]
Black holes as tools for quantum computing by advanced extraterrestrial civilizations, Gia Dvali, Zaza N. Osmanov, Int.J.Astrobiol. 22 (2023) 617-640, arXiv:2301.09575.
[Dvali:2023msl]
[14-3]
Classical Black Holes Are Hot, Erik Curiel, arXiv:1408.3691, 2014.
[Curiel:2014zua]
[14-4]
Information Preservation and Weather Forecasting for Black Holes, S.W. Hawking, arXiv:1401.5761, 2014.
[Hawking:2014tga]
[14-5]
Astrophysical black holes may radiate, but they do not evaporate, George F R Ellis, arXiv:1310.4771, 2013.
[Ellis:2013epa]
[14-6]
Black Holes: Complementarity or Firewalls?, Ahmed Almheiri, Donald Marolf, Joseph Polchinski, James Sully, JHEP 1302 (2013) 062, arXiv:1207.3123.
[Almheiri:2012rt]
[14-7]
Black Holes with Flavors of Quantum Hair?, Gia Dvali, arXiv:hep-th/0607144, 2006.
[Dvali:2006nh]
[14-8]
On the Mechanism of Hawking Radiation, V.A. Berezin, A. Boyarsky, A.Yu. Neronov, Gravitation & (1999) Vol, arXiv:gr-qc/0605099.
[Berezin:1999nn]
[14-9]
Strings, Black Holes, and Quantum Information, Renata Kallosh, Andrei Linde, Phys. Rev. D73 (2006) 104033, arXiv:hep-th/0602061.
[Kallosh:2006zs]
[14-10]
Backreaction of the Hawking radiation, G. A. Vilkovisky, Phys. Lett. B638 (2006) 523-525, arXiv:hep-th/0511184.
[Vilkovisky:2005db]
[14-11]
Spin-1 Amplitudes in Black-Hole Evaporation, A.N.St.J. Farley, P.D. D'Eath, arXiv:gr-qc/0510030, 2005.
[Farley:2005cu]
[14-12]
Quantum Amplitudes in Black-Hole Evaporation II. Spin-0 Amplitude, A.N.St.J. Farley, P.D. D'Eath, arXiv:gr-qc/0510029, 2005.
[Farley:2005ct]
[14-13]
Quantum Amplitudes in Black-Hole Evaporation I. Complex Approach, A.N.St.J. Farley, P.D. D'Eath, arXiv:gr-qc/0510028, 2005.
[Farley:2005cs]
[14-14]
Horizon Mass Theorem, Yuan K. Ha, Int. J. Mod. Phys. D14 (2005) 2219, arXiv:gr-qc/0509063.
[Ha:2005ap]
[14-15]
Stable dark energy stars, Francisco S. N. Lobo, Class. Quant. Grav. 23 (2006) 1525, arXiv:gr-qc/0508115.
[Lobo:2005uf]
[14-16]
Information loss in black holes, S.W. Hawking, Phys. Rev. D72 (2005) 084013, arXiv:hep-th/0507171.
[Hawking:2005kf]
[14-17]
Where has all the information gone?, H. D. Zeh, Phys. Lett. A347 (2005) 1, arXiv:gr-qc/0507051.
[Zeh:2005ka]
[14-18]
Comments on the proposal of Dark Energy Stars by Chapline, Abhas Mitra, arXiv:astro-ph/0504384, 2005.
[Mitra:2005js]
[14-19]
Final State of Hawking Radiation in Quantum General Relativity, B.F.L. Ward, Acta Phys. Polon. B37 (2006) 347, arXiv:hep-ph/0503189.
[Ward:2005jh]
[14-20]
Gravitational vacuum condensate stars, Pawel O. Mazur, Emil Mottola, Proc. Nat. Acad. Sci. 111 (2004) 9545-9550, arXiv:gr-qc/0407075.
[Mazur:2004fk]
[14-21]
Black holes radiate but do not evaporate, H. Nikolic, Int. J. Mod. Phys. D14 (2005) 2257, arXiv:hep-th/0402145.
[Nikolic:2004wu]
[14-22]
Stable gravastars - an alternative to black holes?, Matt Visser, David L. Wiltshire, Class. Quant. Grav. 21 (2004) 1135-1152, arXiv:gr-qc/0310107.
[Visser:2003ge]
[14-23]
Little Black Holes:Dark Matter And Ball Lightning, Mario Rabinowitz, Astrophys. Space Sci. 262 (1999) 391-410, arXiv:astro-ph/0212251.
[Rabinowitz:1999smq]
[14-24]
Gravitational Tunneling Radiation, Mario Rabinowitz, Phys. Essays 12 (1999) 346-357, arXiv:astro-ph/0212249.
[Rabinowitz:1999seb]
[14-25]
Varying alpha and black hole entropy, Malcolm Fairbairn, Michel H.G. Tytgat, JHEP 0302 (2003) 005, arXiv:hep-th/0212105.
[Fairbairn:2002ew]
[14-26]
Black Uniqueness Theorems, Pawel O. Mazur, arXiv:hep-th/0101012, 2001.
[Mazur:2000pn]
[14-27]
Quantum phase transitions and the breakdown of classical general relativity, G. Chapline, E. Hohlfeld, R. B. Laughlin, D. I. Santiago, Int. J. Mod. Phys. A18 (2003) 3587-3590, arXiv:gr-qc/0012094.
[Chapline:2000en]
[14-28]
Breakdown of Predictability in Gravitational Collapse, S.W. Hawking, Phys. Rev. D14 (1976) 2460-2473.
[Hawking:1976ra]

15 - Theory - Black Holes - Talks

[15-1]
Phenomenology of black hole evaporation with a cosmological constant, J. Labbe, A. Barrau, J. Grain, PoS HEP2005 (2006) 013, arXiv:hep-ph/0511211. HEP2005.
[Labbe:2005wd]
[15-2]
Dark energy and condensate stars: Casimir energy in the large, Pawel O. Mazur, Emil Mottola, arXiv:gr-qc/0405111, 2004. Sixth Workshop on Quantum Field Theory under the Influence of External Conditions (QFEXT03), Norman, Oklahoma, 15-19 Sep 2003.
[Mazur:2004ku]
[15-3]
The final parsec problem, Milos Milosavljevic, David Merritt, Aip Conf. Proc. 686 (2003) 201, arXiv:astro-ph/0212270. 4th LISA Symposium, State College, PA, July 2002.
[Milosavljevic:2002ht]
[15-4]
n-dimensional gravity: Little black holes, dark matter, and ball lightning, Mario Rabinowitz, Int. J. Theor. Phys. 40 (2001) 875-901, arXiv:astro-ph/0104026. 5th International Conference on Clifford Algebras and their Applications in Mathematical Physics, Ixtapa-Zihuatanejo, Mexico, 27 June - 4 Jul 1999.
[Rabinowitz:2001ag]

16 - Theory - Gravitational Lensing

[16-1]
Gravitational lensing in metric theories of gravity, M. Sereno, Phys. Rev. D67 (2003) 064007, arXiv:astro-ph/0301290.
[Sereno:2003tk]

17 - Theory - Gravitational Waves

[17-1]
Gravitational wave signals in the deci-Hz range from neutrinos during the proto-neutron star cooling phase, Lei Fu, Shoichi Yamada, Phys.Rev.D 105 (2022) 123028, arXiv:2201.12774.
[Fu:2022bht]
[17-2]
Gravitational waves from mountains in newly born millisecond magnetars, Ankan Sur, Brynmor Haskell, Mon.Not.Roy.Astron.Soc. 502 (2021) 4680-4688, arXiv:2010.15574.
[Sur:2020imd]
[17-3]
Black hole hyperaccretion in collapsars. II. Gravitational waves, Yun-Feng Wei, Tong Liu, arXiv:1912.07785, 2019.
[Wei:2019ljb]
[17-4]
Neutrino Burst-Generated Gravitational Radiation From Collapsing Supermassive Stars, Jung-Tsung Li, George M. Fuller, Chad T. Kishimoto, Phys.Rev. D98 (2018) 023002, arXiv:1708.05292.
[Li:2017mfz]
[17-5]
Gravitational Wave - Gauge Field Oscillations, R. R. Caldwell, C. Devulder, N. A. Maksimova, Phys.Rev.D 94 (2016) 063005, arXiv:1604.08939.
[Caldwell:2016sut]
[17-6]
Theory and Numerics of Gravitational Waves from Preheating after Inflation, Jean Francois Dufaux, Amanda Bergman, Gary N. Felder, Lev Kofman, Jean-Philippe Uzan, Phys. Rev. D76 (2007) 123517, arXiv:0707.0875.
[Dufaux:2007pt]
[17-7]
On the frequency of gravitational waves, Chiara Caprini, Ruth Durrer, Riccardo Sturani, Phys. Rev. D74 (2006) 127501, arXiv:astro-ph/0607651.
[Caprini:2006rd]
[17-8]
Improved Calculation of the Primordial Gravitational Wave Spectrum in the Standard Model, Yuki Watanabe, Eiichiro Komatsu, Phys. Rev. D73 (2006) 123515, arXiv:astro-ph/0604176.
[Watanabe:2006qe]
[17-9]
Properties of gravitational waves in Cosmological General Relativity, John G. Hartnett, Michael E. Tobar, Int. J. Theor. Phys. 45 (2006) 2181-2190, arXiv:gr-qc/0603067.
[Hartnett:2006gi]
[17-10]
Three-Body Dynamics with Gravitational Wave Emission, Kayhan Gultekin, M. Coleman Miller, Douglas P. Hamilton, Astrophys. J. 640 (2006) 156-166, arXiv:astro-ph/0509885.
[Gultekin:2005fd]
[17-11]
Relic Gravitational Waves and the Evolution of the Universe, W Zhao, arXiv:astro-ph/0505588, 2005.
[Zhao:2005kf]
[17-12]
Gravitational-Wave Emission from Rotating Gravitational Collapse in three Dimensions, L. Baiotti, I. Hawke, L. Rezzolla, E. Schnetter, Phys. Rev. Lett. 94 (2005) 131101, arXiv:gr-qc/0503016.
[Baiotti:2005vi]
[17-13]
Background-Independent Gravitational Waves, Juri Agresti, Roberto De Pietri, Luca Lusanna, Luca Martucci, arXiv:gr-qc/0302085, 2003.
[Agresti:2003fm]

18 - Theory - Gravitational Waves - Models

[18-1]
Thermodynamics of the Transformation of Gravitational Waves into Matter Quantums for a Vacuum Space Model, J. A. Montemayor-Aldrete et al., arXiv:physics/0509047, 2005.
[Montemayor-Aldrete:2005eeb]

19 - Theory - Neutrino Oscillations

[19-1]
Quantum Gravity effect on neutrino oscillations in a strong gravitational field, Jonathan Miller, Roman Pasechnik, Adv. High Energy Phys. 2015 (2015) 381569, arXiv:1305.4430.
[Miller:2013wta]
[19-2]
Neutrino oscillations above black hole accretion disks: disks with electron-flavor emission, A. Malkus, J. P. Kneller, G. C. McLaughlin, R. Surman, Phys. Rev. D86 (2012) 085015, arXiv:1207.6648.
[Malkus:2012ts]
[19-3]
Neutrino spin oscillations in gravitational fields, S. A. Alavi, S. F. Hosseini, Grav.Cosmol. 19 (2013) 129-133, arXiv:1108.3593.
[Alavi:2011xd]
[19-4]
Neutrino oscillation phase dynamically induced by f(R)-gravity, S. Capozziello, M. De Laurentis, D. Vernieri, Mod. Phys. Lett. A25 (2010) 1163-1168, arXiv:1001.4173.
[Capozziello:2010yz]
[19-5]
Neutrino Oscillations in Gravitational Field, S. I. Godunov, G. S. Pastukhov, Phys. Atom. Nucl. 74 (2011) 302-305, arXiv:0906.5556.
[Godunov:2009ce]
[19-6]
Gravity induced neutrino-antineutrino oscillation: CPT and lepton number non-conservation under gravity, Banibrata Mukhopadhyay, Class. Quant. Grav. 24 (2007) 1433-1442, arXiv:gr-qc/0702062.
[Mukhopadhyay:2007vca]
[19-7]
Reply to Comment on 'Can gravity distinguish between Dirac and Majorana neutrinos?', Dinesh Singh, Nader Mobed, Giorgio Papini, Phys. Rev. Lett. 98 (2007) 069002, arXiv:gr-qc/0611016.
[Singh:2006fn]
[19-8]
Comment on 'Can gravity distinguish between Dirac and Majorana neutrinos?', Jose F. Nieves, Palash B. Pal, Phys. Rev. Lett. 98 (2007) 069001, arXiv:gr-qc/0610098.
[Nieves:2006tq]
[19-9]
General Relativistic Effects of Gravity in Quantum Mechanics - A Case of Ultra-Relativistic, Spin 1/2 Particles -, Kohkichi Konno, Masumi Kasai, Prog. Theor. Phys. 100 (1998) 1145, arXiv:gr-qc/0603035.
[Konno:1998kq]
[19-10]
Neutrino spin oscillations in gravitational fields, Maxim Dvornikov, Int. J. Mod. Phys. D15 (2006) 1017-1034, arXiv:hep-ph/0601095.
[Dvornikov:2006ji]
[19-11]
Neutrino optics and oscillations in gravitational fields, G. Lambiase, G. Papini, R. Punzi, G. Scarpetta, Phys. Rev. D71 (2005) 073011, arXiv:gr-qc/0503027.
[Lambiase:2005gt]
[19-12]
Neutrino Wave Packets in Weak Gravitational Fields, Dinesh Singh, Nader Mobed, Giorgio Papini, Phys. Lett. A351 (2006) 373, arXiv:gr-qc/0502098.
[Singh:2005ur]
[19-13]
Testing quantum gravity via cosmogenic neutrino oscillations, Joy Christian, Phys. Rev. D71 (2005) 024012, arXiv:gr-qc/0409077.
[Christian:2004xb]
[19-14]
Charge conjugation and Lense-Thirring Effect: A new Asymmetry, D. V. Ahluwalia-Khalilova, Gen. Rel. Grav. 36 (2004) 2581, arXiv:gr-qc/0405112.
[Ahluwalia:2004kv]
[19-15]
Neutrino oscillations in gravitational fields, Hisae Maiwa, Shigefumi Naka, arXiv:hep-ph/0401143, 2004.
[Maiwa:2004ym]
[19-16]
Neutrino Interferometry In Curved Spacetime, Roland M. Crocker, Carlo Giunti, Daniel J. Mortlock, Phys. Rev. D69 (2004) 063008, arXiv:hep-ph/0308168.
[Crocker:2003cw]
[19-17]
Cerenkov's effect and neutrino oscillations in loop quantum gravity, G. Lambiase, Mod. Phys. Lett. A18 (2003) 23-30, arXiv:gr-qc/0301058.
[Lambiase:2003bq]
[19-18]
General relativistic effects on quantum interference and the principle of equivalence, K. K. Nandi, Yuan-Zhong Zhang, Phys. Rev. D66 (2002) 063005, arXiv:gr-qc/0208050.
[Nandi:2002me]
[19-19]
Quantum phase shift and neutrino oscillations in a stationary, weak gravitational field, Pierre Teyssandier Bernard Linet, Mod. Phys. Lett. A26 (2011) 1737-1751, arXiv:gr-qc/0206056.
[Linet:2002wp]
[19-20]
Addendum on the mass neutrino oscillation in a gravitational field, J. G. Pereira, C. M. Zhang, Gen. Rel. Grav. 33 (2001) 2801, arXiv:gr-qc/0205030.
[Pereira:2001by]
[19-21]
Quantum systems in weak gravitational fields, G. Papini, NATO Sci.Ser.II 60 (2002) 317-338, arXiv:gr-qc/0110056.
[Papini:2001kb]
[19-22]
Neutrinos in a vacuum dominated cosmology, Manasse R. Mbonye, Gen. Rel. Grav. 34 (2002) 1865-1875, arXiv:astro-ph/0108167.
[Mbonye:2001rp]
[19-23]
Neutrino oscillations induced by gravitational recoil effects, G. Lambiase, Gen. Rel. Grav. 33 (2001) 2151-2156, arXiv:gr-qc/0107066.
[Lambiase:2001ib]
[19-24]
Matter waves in a gravitational field: An index of refraction for massive particles in general relativity, James C. Evans, Paul M. Alsing, Stefano Giorgetti, Kamal Kanti Nandi, Am. J. Phys. 69 (2001) 1103-1110, arXiv:gr-qc/0107063.
[Evans:2001hy]
[19-25]
Neutrino oscillations in Caianiello's quantum geometry model, V. Bozza, S. Capozziello, G. Lambiase, G. Scarpetta, Int. J. Theor. Phys. 40 (2001) 849-859, arXiv:hep-ph/0106234.
[Bozza:2001vc]
[19-26]
Quantum violations of the equivalence principle in a modified Schwarzschild geometry: Neutrino oscillations, V. Bozza, G. Lambiase, G. Papini, G. Scarpetta, Phys. Lett. A279 (2001) 163-168, arXiv:hep-ph/0012270.
[Bozza:2000mh]
[19-27]
Mass dependence of the gravitationally-induced wave- function phase, Jose Wudka, Phys. Rev. D64 (2001) 065009, arXiv:gr-qc/0010077.
[Wudka:2000rf]
[19-28]
The phase of a quantum mechanical particle in curved spacetime, P. M. Alsing, J. C. Evans, K. K. Nandi, Gen. Rel. Grav. 33 (2001) 1459-1487, arXiv:gr-qc/0010065.
[Alsing:2000ji]
[19-29]
The general treatment of high/low energy particle interference phase in a gravitational field, C. M. Zhang, Gen.Rel.Grav. 33 (2001) 1011-1025, arXiv:gr-qc/0004048.
[Zhang:2000mi]
[19-30]
On the Mass Neutrino Phase calculations along the geodesic line and the null line, C.M. Zhang, A. Beesham, Int.J.Mod.Phys. D12 (2003) 727-738, arXiv:gr-qc/0004047.
[Zhang:2003pn]
[19-31]
Some remarks on the neutrino oscillation phase in a gravitational field, J. G. Pereira, C. M. Zhang, Gen. Rel. Grav. 32 (2000) 1633-1637, arXiv:gr-qc/0002066.
[Pereira:2000kq]
[19-32]
Berry's phase of neutrino oscillations in the presence of torsion, S. Capozziello, G. Lambiase, Europhys. Lett. 52 (2000) 15-21.
[Capozziello:2000ue]
[19-33]
Neutrino oscillations in Brans-Dicke theory of gravity, S. Capozziello, G. Lambiase, Mod. Phys. Lett. A14 (1999) 2193, arXiv:gr-qc/9910026.
[Capozziello:1999qm]
[19-34]
Inertial effects on neutrino oscillations, S. Capozziello, G. Lambiase, Eur. Phys. J. C12 (2000) 343-347, arXiv:gr-qc/9910016.
[Capozziello:1999ww]
[19-35]
Interplay of gravitation and linear superposition of different mass eigenstates, D. V. Ahluwalia, C. Burgard, Phys. Rev. D57 (1998) 4724-4727, arXiv:gr-qc/9803013.
[Ahluwalia:1998jx]
[19-36]
Gravitational correction in neutrino oscillations, Yasufumi Kojima, Mod. Phys. Lett. A11 (1996) 2965-2970, arXiv:gr-qc/9612044.
[Kojima:1996vb]
[19-37]
Gravitational effects on the neutrino oscillation, N. Fornengo, C. Giunti, C. W. Kim, J. Song, Phys. Rev. D56 (1997) 1895-1902, arXiv:hep-ph/9611231.
[Fornengo:1996ef]
[19-38]
Neutrino oscillations in curved spacetime: An heuristic treatment, Christian Y. Cardall, George M. Fuller, Phys. Rev. D55 (1997) 7960-7966, arXiv:hep-ph/9610494.
[Cardall:1996cd]
[19-39]
Gravitationally induced neutrino oscillation phases in static space-times, Tanmoy Bhattacharya, Salman Habib, Emil Mottola, Phys. Rev. D59 (1996) 067301, arXiv:gr-qc/9605074.
[Bhattacharya:1996xb]
[19-40]
Neutrino Oscillations in Strong Gravitational Fields, Dardo Piriz, Mou Roy, Jose Wudka, Phys. Rev. D54 (1996) 1587-1599, arXiv:hep-ph/9604403.
[Piriz:1996mu]
[19-41]
Gravitationally Induced Quantum Mechanical Phases and Neutrino Oscillations in Astrophysical Environments, D. V. Ahluwalia, C. Burgard, Gen. Rel. Grav. 28 (1996) 1161-1170, arXiv:gr-qc/9603008.
[Ahluwalia:1996ev]
[19-42]
MATTER AND LIGHT WAVE INTERFEROMETRY IN GRAVITATIONAL FIELDS, L. Stodolsky, Gen. Rel. Grav. 11 (1979) 391-405.
[Stodolsky:1979ks]

20 - Theory - Quantum Gravity and Cosmology

[20-1]
Gravitationally induced decoherence vs space-time diffusion: testing the quantum nature of gravity, Jonathan Oppenheim, Carlo Sparaciari, Barbara Soda, Zachary Weller-Davies, Nature Commun. 14 (2023) 7910, arXiv:2203.01982.
[Oppenheim:2022xjr]
[20-2]
Towards a unitary, renormalizable and ultraviolet-complete quantum theory of gravity, Christian F. Steinwachs, arXiv:2004.07842, 2020.
[Steinwachs:2020jkj]
[20-3]
A Postquantum Theory of Classical Gravity?, Jonathan Oppenheim, Phys. Rev. X 13 (2023) 041040, arXiv:1811.03116.
[Oppenheim:2018igd]
[20-4]
The Construction Interpretation: a Conceptual Road to Quantum Gravity, Lucien Hardy, arXiv:1807.10980, 2018.
[Hardy:2018kbp]
[20-5]
Why we need to quantise everything, including gravity, Chiara Marletto, Vlatko Vedral, npj Quantum Inf. 3 (2017) 29, arXiv:1703.04325.
[Marletto:2017pjr]
[20-6]
Evolution without evolution and without ambiguities, C. Marletto, V. Vedral, Phys. Rev. D95 (2017) 043510, arXiv:1610.04773.
[Marletto:2016gwv]
[20-7]
Exact Quantum Loop Results in the Theory of General Relativity, B.F.L. Ward, Phys. Dark Universe 2 (2013) 97-109, arXiv:hep-ph/0607198.
[Ward:2010qs]
[20-8]
A lower limit to the scale of an effective theory of gravitation, Robert R. Caldwell, Daniel Grin, Phys. Rev. Lett. 100 (2008) 031301, arXiv:astro-ph/0606133.
[Caldwell:2006gu]
[20-9]
General Relativistic Effects of Gravity in Quantum Mechanics - A Case of Ultra-Relativistic, Spin 1/2 Particles -, Kohkichi Konno, Masumi Kasai, Prog. Theor. Phys. 100 (1998) 1145, arXiv:gr-qc/0603035.
[Konno:1998kq]
[20-10]
Quantum Nature of the Big Bang, Abhay Ashtekar, Tomasz Pawlowski, Parampreet Singh, Phys. Rev. Lett. 96 (2006) 141301, arXiv:gr-qc/0602086.
[Ashtekar:2006rx]
[20-11]
Observational Consequences of Quantum Cosmology, Qing-Guo Huang, Nucl. Phys. B777 (2007) 253-261, arXiv:hep-th/0510219.
[Huang:2005wq]
[20-12]
Beyond partial differential equations: A course on linear and quasi-linear abstract hyperbolic evolution equations, Horst R. Beyer, arXiv:gr-qc/0510097, 2005.
[Beyer:2005ef]
[20-13]
Tommy Gold revisited: Why does not the universe rotate?, George Chapline, Pawel O. Mazur, Aip Conf. Proc. 822 (2006) 160, arXiv:astro-ph/0509230.
[Chapline:2005hm]
[20-14]
A Proposed Test of the Local Causality of Spacetime, Adrian Kent, arXiv:gr-qc/0507045, 2005.
[Kent:2005fq]
[20-15]
A freely falling frame at the interface of gravitational and quantum realms, D. V. Ahluwalia-Khalilova, Class. Quant. Grav. 22 (2005) 1433-1450, arXiv:hep-th/0503141.
[Ahluwalia:2005jn]
[20-16]
The Computational Universe: Quantum gravity from quantum computation, Seth Lloyd, Science (2005), arXiv:quant-ph/0501135.
[Lloyd:2005js]
[20-17]
How does the entropy/information bound work ?, Jacob D. Bekenstein, Found. Phys. 35 (2005) 1805, arXiv:quant-ph/0404042.
[Bekenstein:2004sh]
[20-18]
Fundamental physics in space: A quantum-gravity perspective, Giovanni Amelino-Camelia, Gen. Rel. Grav. 36 (2004) 539-560, arXiv:astro-ph/0309174.
[Amelino-Camelia:2003ont]
[20-19]
Spacetime at the Planck Scale: The Quantum Computer View, Paola Zizzi, arXiv:gr-qc/0304032, 2003.
[Zizzi:2003dq]
[20-20]
Cosmological Perturbations from a New-Physics Hypersurface, V. Bozza, M. Giovannini, G. Veneziano, JCAP 0305 (2003) 001, arXiv:hep-th/0302184.
[Bozza:2003pr]
[20-21]
Experimental Challenges for Quantum Gravity, Robert C. Myers, Maxim Pospelov, Phys. Rev. Lett. 90 (2003) 211601, arXiv:hep-ph/0301124.
[Myers:2003fd]
[20-22]
An exactly soluble sector of quantum gravity, Joy Christian, Phys. Rev. D56 (1997) 4844-4877, arXiv:gr-qc/9701013.
[Christian:1997wj]
[20-23]
Gravitation, the Quantum, and Cosmological Constant, Pawel O. Mazur, Acta Phys. Polon. 27 (1996) 1849, arXiv:hep-th/9603014.
[Mazur:1996xy]

21 - Theory - Quantum Gravity and Cosmology - Talks

[21-1]
Lorentz violation as a quantum-gravity signature, Ralf Lehnert, Int. J. Mod. Phys. A20 (2005) 1303, arXiv:astro-ph/0508625. Coral Gables Conference on Launching of Belle Epoque in High-Energy Physics and Cosmology (CG 2003), Ft. Lauderdale, Florida, 17-21 Dec 2003.
[Lehnert:2005uh]
[21-2]
Dark Energy Stars, G. Chapline, eConf C041213 (2004) 0205, arXiv:astro-ph/0503200. Texas Conference on Relativistic Astrophysics, Stanford, CA, December, 2004.
[Chapline:2004jfp]
[21-3]
Emergent relativity, R. B. Laughlin, Int. J. Mod. Phys. A18 (2003) 831-854, arXiv:gr-qc/0302028.
[Laughlin:2003yh]
[21-4]
Quantum-gravity phenomenology: Status and prospects, Giovanni Amelino-Camelia, Mod. Phys. Lett. A17 (2002) 899-922, arXiv:gr-qc/0204051. 1st IUCAA Workshop on Interface of Gravitational and Quantum Realms, Pune, India, 17-21 Dec 2001.
[Amelino-Camelia:2002aqz]
[21-5]
Superfluid analogies of cosmological phenomena, G. E. Volovik, Phys. Rep. 351 (2001) 195-348, arXiv:gr-qc/0005091.
[Volovik:2000ua]

22 - Theory - Topology

[22-1]
The Copernican Principle in Compact Spacetimes, John D. Barrow, Janna Levin, Mon. Not. Roy. Astron. Soc. 346 (2003) 615, arXiv:gr-qc/0304038.
[Barrow:2003ma]
[22-2]
Preferred frame in brane world, Merab Gogberashvili, arXiv:hep-th/0207042, 2002.
[Gogberashvili:2002nk]
[22-3]
The twin paradox in compact spaces, John D. Barrow, Janna Levin, Phys. Rev. A63 (2001) 044104, arXiv:gr-qc/0101014.
[Barrow:2001rj]

23 - Theory - Alternative Models

[23-1]
Neutrino pair annihilation above black-hole accretion disks in modified gravity, G. Lambiase, L. Mastrototaro, arXiv:2205.09785, 2022.
[Lambiase:2022ywp]
[23-2]
Spacetime torsion as a possible remedy to major problems in gravity and cosmology, Nikodem J. Poplawski, Astron. Rev. 8, 108 (2013), arXiv:1106.4859.
[Poplawski:2011qr]
[23-3]
On a recently proposed metric linear extension of general relativity to explain the Pioneer anomaly, Lorenzo Iorio, arXiv:gr-qc/0608068, 2006.
[Iorio:2006gi]
[23-4]
Gravitation Revisited, B.G. Sidharth, arXiv:physics/0604044, 2006.
[Sidharth:2006rw]
[23-5]
Scalar-Tensor-Vector Gravity Theory, J. W. Moffat, JCAP 0603 (2006) 004, arXiv:gr-qc/0506021.
[Moffat:2005si]
[23-6]
Mach's principle and a relativistic theory of gravitation, C. Brans, R. H. Dicke, Phys. Rev. 124 (1961) 925-935.
[Brans:1961sx]

24 - Theory - Electrodynamics

[24-1]
Equivalence principle and radiation by a uniformly accelerated charge, A. Shariati, M. Khorrami, Found.Phys.Lett. 12 (1999) 427-439, arXiv:gr-qc/0006037.
[Shariati:1999mn]
[24-2]
Radiation from a charge in a gravitational field, Amos Harpaz, Noam Soker, Gen.Rel.Grav. 36 (2004) 315-330, arXiv:physics/9910019.
[Harpaz:1999kn]
[24-3]
Radiation from a uniformly accelerated charge, Amos Harpaz, Noam Soker, Gen.Rel.Grav. 30 (1998) 1217-1227, arXiv:gr-qc/9805097.
[Harpaz:1998wd]

25 - Theory - Accelerated States

[25-1]
Neutrino oscillations in accelerated states, Dharam Vir Ahluwalia, Lance Labun, Giorgio Torrieri, Eur.Phys.J. A52 (2016) 189, arXiv:1508.03091.
[Ahluwalia:2015kxa]
[25-2]
Unruh effect for neutrinos interacting with accelerated matter, Maxim Dvornikov, JHEP 08 (2015) 151, arXiv:1507.01174.
[Dvornikov:2015eqa]
[25-3]
The Unruh effect and oscillating neutrinos, Dharam Vir Ahluwalia, Lance Labun, Giorgio Torrieri, J. Phys. Conf. Ser. 706 (2016) 042006, arXiv:1505.04082.
[Ahluwalia:2015wha]
[25-4]
On the physical meaning of the Unruh effect, Emil T. Akhmedov, Douglas Singleton, Pisma Zh. Eksp. Teor. Fiz. 86 (2007) 702-706, arXiv:0705.2525.
[Akhmedov:2007xu]
[25-5]
On the relation between Unruh and Sokolov-Ternov effects, Emil T. Akhmedov, Douglas Singleton, Int. J. Mod. Phys. A22 (2007) 4797-4823, arXiv:hep-ph/0610391.
[Akhmedov:2006nd]
[25-6]
Analytic evaluation of the decay rate for accelerated proton, Hisao Suzuki, Kunimasa Yamada, Phys. Rev. D67 (2003) 065002, arXiv:gr-qc/0211056.
[Suzuki:2002xg]
[25-7]
Decay of accelerated protons and the existence of the Fulling-Davies-Unruh effect, Daniel A. T. Vanzella, George E. A. Matsas, Phys. Rev. Lett. 87 (2001) 151301, arXiv:gr-qc/0104030.
[Vanzella:2001ec]
[25-8]
Weak decay of uniformly accelerated protons and related processes, Daniel A. T. Vanzella, George E. A. Matsas, Phys. Rev. D63 (2000) 014010, arXiv:hep-ph/0002010.
[Vanzella:2000jk]
[25-9]
The Unruh Effect and Quantum Fluctuations of Electrons in Storage Rings, J. S. Bell, J. M. Leinaas, Nucl. Phys. B284 (1987) 488.
[Bell:1986ir]
[25-10]
The Unruh Effect in Extended Thermometers, J. S. Bell, Richard J. Hughes, J. M. Leinaas, Z. Phys. C28 (1985) 75.
[Bell:1984sr]
[25-11]
Notes on black hole evaporation, W. G. Unruh, Phys. Rev. D14 (1976) 870.
[Unruh:1976db]
[25-12]
Scalar particle production in Schwarzschild and Rindler metrics, P. C. W. Davies, J. Phys. A8 (1975) 609-616.
[Davies:1974th]

26 - Phenomenology

[26-1]
Constraints on quantum spacetime-induced decoherence from neutrino oscillations, Vittorio D'Esposito, Giulia Gubitosi, arXiv:2306.14778, 2023.
[DEsposito:2023psn]
[26-2]
Two Novel Observational Tests of General Relativity, Abraham Loeb, arXiv:2205.02746, 2022.
[Loeb:2022kql]
[26-3]
On the Gravitational Force on Anti-Matter, Allen Caldwell, Gia Dvali, Fortsch.Phys. 69 (2021) 2000092, arXiv:1903.09096.
[Caldwell:2019icl]
[26-4]
Effects of Violation of Equivalence Principle on UHE Neutrinos at IceCube in 4 Flavour Scenario, Madhurima Pandey, arXiv:1812.11570, 2018.
[Pandey:2018znw]
[26-5]
Limit on graviton mass from galaxy cluster Abell 1689, Shantanu Desai, Phys.Lett. B778 (2018) 325, arXiv:1708.06502.
[Desai:2018swo]
[26-6]
Cosmological Hints of Modified Gravity?, Eleonora Di Valentino, Alessandro Melchiorri, Joseph Silk, Phys. Rev. D93 (2016) 023513, arXiv:1509.07501.
[DiValentino:2015bja]
[26-7]
Recent measurements of the gravitational constant as a function of time, S. Schlamminger, J.H. Gundlach, R.D. Newman, Phys. Rev. D91 (2015) 121101, arXiv:1505.01774.
[Schlamminger:2015hqa]
[26-8]
Constraining the Violation of Equivalence Principle with IceCube Atmospheric Neutrino Data, A. Esmaili et al., Phys. Rev. D89 (2014) 113003, arXiv:1404.3608.
[Esmaili:2014ota]
[26-9]
Accelerator experiments contradicting general relativity, Vahagn Gharibyan, arXiv:1401.3720, 2014.
[Gharibyan:2014mka]
[26-10]
Experimental constraints on the free fall acceleration of antimatter, Daniele S. M. Alves, Martin Jankowiak, Prashant Saraswat, arXiv:0907.4110, 2009.
[Alves:2009jx]
[26-11]
Cosmological tests of GR - a look at the principals, Gong-Bo Zhao, Levon Pogosian, Alessandra Silvestri, Joel Zylberberg, Phys. Rev. Lett. 103 (2009) 241301, arXiv:0905.1326.
[Zhao:2009fn]
[26-12]
On the recently determined anomalous perihelion precession of Saturn, Lorenzo Iorio, Astron.J. 137 (2009) 3615, arXiv:0811.0756.
[Iorio:2008sd]
[26-13]
Phenomenological constraints on low-scale gravity, Veniamin Berezinsky, Mohan Narayan, Phys. Rev. D75 (2007) 105001, arXiv:0705.0945.
[Berezinsky:2007dt]
[26-14]
Constraining a possible time variation of the gravitational constant G with terrestrial nuclear laboratory data, P. G. Krastev, B. A. Li, Phys. Rev. C76 (2007) 055804, arXiv:nucl-th/0702080.
[Krastev:2007en]
[26-15]
Testing General Relativity with Atom Interferometry, Savas Dimopoulos, Peter W. Graham, Jason M. Hogan, Mark A. Kasevich, Phys. Rev. Lett. 98 (2007) 111102, arXiv:gr-qc/0610047.
[Dimopoulos:2006nk]
[26-16]
The impact of the errors in the inclinations on the recent LAGEOS-LAGEOS II Lense-Thirring test, Lorenzo Iorio, J. Astrophys. Astron. 31 (2010) 147-153, arXiv:gr-qc/0607031.
[Iorio:2006sd]
[26-17]
Significant reduction of galactic dark matter by general relativity, H. Balasin, D. Grumiller, Int. J. Mod. Phys. D17 (2008) 475-488, arXiv:astro-ph/0602519.
[Balasin:2006cg]
[26-18]
Could the Pioneer anomaly have a gravitational origin?, Kjell Tangen, Phys. Rev. D76 (2007) 042005, arXiv:gr-qc/0602089.
[Tangen:2006sa]
[26-19]
First evidence of the general relativistic gravitomagnetic field of the Sun and new constraints on a Yukawa-like fifth force, Lorenzo Iorio, Planet. Space Sci. 55 (2007) 1290-1298, arXiv:gr-qc/0507041.
[Iorio:2005fk]
[26-20]
Cosmological Constraints on Newton's Constant, K. Umezu, K. Ichiki, M. Yahiro, Phys. Rev. D72 (2005) 044010, arXiv:astro-ph/0503578.
[Umezu:2005ee]
[26-21]
Little Black Holes as Dark Matter Candidates with Feasible Cosmic and Terrestrial Interactions, Mario Rabinowitz, arXiv:physics/0503079, 2005.
[Rabinowitz:2005ii]
[26-22]
On the unreliability of the so far performed tests for measuring the Lense-Thirring effect with the LAGEOS satellites, Lorenzo Iorio, New Astron. 10 (2005) 603, arXiv:gr-qc/0411024.
[Ciufolini:2005fbc]
[26-23]
On the Gravitational Field of Antimatter, Eduard Masso Francesc Rota, Phys. Lett. B600 (2004) 197, arXiv:astro-ph/0406660.
[Masso:2004by]
[26-24]
The double pulsar - A new testbed for relativistic gravity, M. Kramer et al., ASP Conf.Ser. (2004), arXiv:astro-ph/0405179. 6 pages, two figures, to appear in 'Binary Pulsars' Eds. Rasio and Stairs, PASP.
[Kramer:2004gj]
[26-25]
Limits on deviations from the inverse-square law on megaparsec scales, Carolyn Sealfon, Licia Verde, Raul Jimenez, Phys. Rev. D71 (2005) 083004, arXiv:astro-ph/0404111.
[Sealfon:2004gz]
[26-26]
Gravitational Thomas Precession and the Perihelion Advance of Mercury, Harihar Behera, arXiv:astro-ph/0306018, 2003.
[Behera:2003nk]
[26-27]
A new white dwarf constraint on the rate of change of the gravitational constant, Marek Biesiada, Beata Malec, Mon. Not. Roy. Astron. Soc. 350 (2004) 644, arXiv:astro-ph/0303489.
[Biesiada:2003sr]
[26-28]
Speed of Light in Gravitational Fields, Yukio Tomozawa, arXiv:astro-ph/0303047, 2003.
[Tomozawa:2003ts]
[26-29]
Testing general relativity by micro-arcsecond global astrometry, Alberto Vecchiato et al., Astron. Astrophys. 399 (2003) 337, arXiv:astro-ph/0301323.
[Vecchiato:2003av]
[26-30]
Propagation Speed of Gravity and the Relativistic Time Delay, Clifford M. Will, Astrophys. J. 590 (2003) 683, arXiv:astro-ph/0301145.
[Will:2003yj]
[26-31]
Standard Clocks, Orbital Precession and the Cosmological Constant, Andrew W. Kerr, John C. Hauck, Bahram Mashhoon, Class. Quant. Grav. 20 (2003) 2727, arXiv:gr-qc/0301057.
[Kerr:2003bp]
[26-32]
Solar quadrupole moment and purely relativistic gravitation contributions to Mercury's perihelion Advance, S. Pireaux, J.P. Rozelot, S. Godier, Astrophys. Space Sci. 284 (2003) 1159, arXiv:astro-ph/0109032.
[Pireaux:2001yk]

27 - Phenomenology - Talks

[27-1]
Relativistic implications of solar astrometry, Costantino Sigismondi, Int. J. Mod. Phys. Conf. Ser. 03 (2011) 464-474, arXiv:1106.2202. Friedmann Seminar, CBPF Rio de Janeiro, Brasil, 30 May - 3 June 2011.
[Sigismondi:2011fr]
[27-2]
A cosmological test for general relativity, Vincent Boucher, Grav. Cosmol. 11 (2005) 71, arXiv:astro-ph/0509774. International Conference on Cosmoparticle Physics 'Cosmion-2004', 20-24 September 2004, Paris.
[Boucher:2005iz]
[27-3]
Precessions in Relativity, Costantino Sigismondi, arXiv:astro-ph/0501291, 2005. X Marcel Grossmann Meeting on General Relativity, Rio de Janeiro, July 20-26, 2003.
[Sigismondi:2005iz]
[27-4]
Evidence for the Black Hole Event Horizon, R. Narayan, Astron.Geophys. (2003), arXiv:astro-ph/0310692. George Darwin Lecture presented at the Royal Astronomical Society, London, 13 December 2002.
[Narayan:2003fy]

28 - Phenomenology - Black Holes

[28-1]
Primordial Black Holes, M. Yu. Khlopov, Res. Astron. Astrophys. 10 (2010) 495-528, arXiv:0801.0116.
[Khlopov:2008qy]
[28-2]
Neutrino-Cooled Accretion Disks around Spinning Black Hole, Wen-Xin Chen, Andrei M. Beloborodov, Astrophys. J. 657 (2007) 383-399, arXiv:astro-ph/0607145.
[Chen:2006rra]
[28-3]
On the Signatures of Gravitational Redshift: The Onset of Relativistic Emission Lines, Andreas Mueller, Margrethe Wold, Astron. Astrophys. 457 (2006) 485-492, arXiv:astro-ph/0607050.
[Mueller:2006dn]

29 - Phenomenology - Black Holes - Talks

[29-1]
Black Holes and Nuclear Dynamics, David Merritt, Mem. Soc. Ast. It. 77 (2006) 750-758, arXiv:astro-ph/0602353. AGN and Galaxy Evolution, Specola Vaticana, Castel Gandolfo, Italy, 3 - 6 October 2005.
[Merritt:2006cr]

30 - Phenomenology - Gravitational Lensing

[30-1]
Gravitational Lensing Characteristics of the Transparent Sun, Bijunath Patla, Robert J. Nemiroff, Astrophys.J. 685 (2008) 1297, arXiv:0711.4811.
[Patla:2007ju]
[30-2]
Using Weak Lensing to find Halo Masses, Roland de Putter, Martin White, New Astron. 10 (2005) 676, arXiv:astro-ph/0412497.
[dePutter:2004xp]
[30-3]
Gravitational Lensing in Standard and Alternative Cosmologies, Margarita Safonova, arXiv:astro-ph/0401542, 2004.
[Safonova:2004sn]
[30-4]
The signature of CDM substructure on gravitational lensing, M. Bradac et al., Astron. Astrophys. 423 (2004) 797, arXiv:astro-ph/0306238.
[Bradac:2003hy]
[30-5]
Gravitational Lensing by CDM Halos: Singular versus Nonsingular Profiles, Hugo Martel, Paul R. Shapiro, Mon.Not.Roy.Astron.Soc. (2003), arXiv:astro-ph/0305174.
[Martel:2003hz]
[30-6]
Wave Effects in Gravitational Lensing of Gravitational Waves from Chirping Binaries, Ryuichi Takahashi, Takashi Nakamura, Astrophys. J. 595 (2003) 1039, arXiv:astro-ph/0305055.
[Takahashi:2003ix]
[30-7]
Gravitational Lensing by Cosmic Strings in the Era of Wide- Field Surveys, Dragan Huterer, Tanmay Vachaspati, Phys. Rev. D68 (2003) 041301, arXiv:astro-ph/0305006.
[Huterer:2003ze]
[30-8]
Gravitational Lensing by Burkert Halos, Yousin Park, Henry C. Ferguson, Astrophys. J. 589 (2003) L65, arXiv:astro-ph/0304317.
[Park:2003br]
[30-9]
Resolving the Microlens Mass Degeneracy for Earth-Mass Planets, Andrew Gould, B. Scott Gaudi, Cheongho Han, Astrophys. J. 591 (2003) L53, arXiv:astro-ph/0304314.
[Gould:2003bn]
[30-10]
Globular Clusters as Candidates for Gravitational Lenses to Explain Quasar-Galaxy Associations, Yu. L. Bukhmastova, Astron. Lett. 29 (2003) 214, arXiv:astro-ph/0304207.
[Bukhmastova:2003xj]
[30-11]
Qualitative Theory for Lensed QSOs, Prasenjit Saha, Liliya L.R. Williams, Astron.J. (2003), arXiv:astro-ph/0303261.
[Saha:2003hu]
[30-12]
Estimates of Confusion and Gravitational Lensing Limits in Sunyaev-Zel'dovich Increment Measurements, Michael Zemcov, Peter Newbury, Mark Halpern, Mon.Not.Roy.Astron.Soc. (2003), arXiv:astro-ph/0302471.
[Zemcov:2003mc]
[30-13]
Consequences of Gravitational Tunneling Radiation, Mario Rabinowitz, arXiv:astro-ph/0302469, 2003.
[Rabinowitz:2003ma]
[30-14]
Tests for Substructure in Gravitational Lenses, C.S. Kochanek, N. Dalal, Astrophys. J. 610 (2004) 69, arXiv:astro-ph/0302036.
[Kochanek:2003zc]
[30-15]
Separability of Rotational Effects on a Gravitational Lens, Hideki Asada, Masumi Kasai, Tatsuya Yamamoto, Phys. Rev. D67 (2003) 043006, arXiv:astro-ph/0301099.
[Asada:2003nf]
[30-16]
Neutrino Mass and Dark Energy from Weak Lensing, Kevork Abazajian, Scott Dodelson, Phys. Rev. Lett. 91 (2003) 041301, arXiv:astro-ph/0212216.
[Abazajian:2002ck]
[30-17]
On bending angles by gravitational lenses in motion, Simonetta Frittelli, Mon. Not. Roy. Astron. Soc. 340 (2003) 457, arXiv:astro-ph/0212207.
[Frittelli:2002yx]
[30-18]
Fitting Gravitational Lenses: Truth or Delusion, N. W. Evans, H. J. Witt, Mon. Not. Roy. Astron. Soc. 345 (2003) 1351, arXiv:astro-ph/0212013.
[Evans:2002ck]
[30-19]
The gravitomagnetic clock effect and its possible observation, Herbert I. M. Lichtenegger, Lorenzo Iorio, Barham Mashhoon, Annalen Phys. 15 (2006) 868-876, arXiv:gr-qc/0211108.
[Lichtenegger:2002af]
[30-20]
Proposed new test of general relativity, Joseph Samuel, Phys. Rev. Lett. (2002), arXiv:gr-qc/0211050.
[Samuel:2002fj]
[30-21]
Identifying Lensing by Substructure. I. Cusp Lenses, Charles R. Keeton, B. Scott Gaudi, A. O. Petters, Astrophys. J. 598 (2003) 138, arXiv:astro-ph/0210318.
[Keeton:2002qt]
[30-22]
Detection of weak gravitational lensing magnification from Galaxy-QSO cross-correlation in the SDSS, Enrique Gaztanaga, Astrophys. J. 589 (2003) 82, arXiv:astro-ph/0210311.
[Gaztanaga:2002qk]
[30-23]
Gravitational Lensing Magnification and Time Delay Statistics for Distant Supernovae, Masamune Oguri, Yasushi Suto, Edwin L. Turner, Astrophys. J. 583 (2003) 584, arXiv:astro-ph/0210107.
[Oguri:2002hv]
[30-24]
Seeing double: strong gravitational lensing of high- redshift supernovae, Daniel E. Holz, Astrophys. J. 556 (2001) L71, arXiv:astro-ph/0104440.
[Holz:2001zr]
[30-25]
Neutrino gravitational lensing, R. Escribano, J. M. Frere, D. Monderen, V. Van Elewyck, arXiv:hep-ph/9910510, 1999.
[Escribano:1999gy]
[30-26]
The Statistics of gravitational lenses: The Distributions of image angular separations and lens redshifts, Edwin L. Turner, Jeremiah P. Ostriker, III Gott, J. Richard, Astrophys. J. 284 (1984) 1-22.
[Turner:1984ch]

31 - Phenomenology - Gravitational Lensing - Talks

[31-1]
New Dimensions in Cosmic Lensing, Andy Taylor, arXiv:astro-ph/0306239, 2003. Davis Inflation Meeting, 2003.
[Taylor:2003hz]
[31-2]
CDM Substructure in Gravitational Lenses: Tests and Results, C.S. Kochanek, N. Dalal, Aip Conf. Proc. 666 (2003) 103, arXiv:astro-ph/0212274. The Emergence of Cosmic Structure, the 13th Annual October Astrophysics Conference in Maryland.
[Kochanek:2002hx]
[31-3]
Gravitational Microlensing and Dark Matter Problem: Results and Perspectives, A. F. Zakharov, Publ. Astron. Obs. Belgrade 74 (2002) 1, arXiv:astro-ph/0212009. XIII National Conference of Yugoslav Astronomers, October 17, 2002, Belgrade.
[Zakharov:2002cg]

32 - Phenomenology - Gravitational Waves

[32-1]
Gravitational Waves from Neutrino-Driven Core Collapse Supernovae: Predictions, Detection, and Parameter Estimation, Anthony Mezzacappa, Michele Zanolin, arXiv:2401.11635, 2024.
[Mezzacappa:2024zph]
[32-2]
Determining the core-collapse supernova explosion mechanism with current and future gravitational-wave observatories, Jade Powell, Alberto Iess, Miquel Llorens-Monteagudo, Martin Obergaulinger, Bernhard Muller, Alejandro Torres-Forne, Elena Cuoco, Jose A. Font, Phys.Rev.D 109 (2024) 063019, arXiv:2311.18221.
[Powell:2023bex]
[32-3]
Predicting gravitational waves from jittering-jets-driven core collapse supernovae, Noam Soker, Res.Astron.Astrophys. 23 (2023) 121001, arXiv:2308.04329.
[Soker:2023wib]
[32-4]
Long-term gravitational wave asteroseismology of supernova: from core collapse to 20 seconds postbounce, Masamitsu Mori, Yudai Suwa, Tomoya Takiwaki, Phys.Rev.D 107 (2023) 083015, arXiv:2302.00292.
[Mori:2023vhr]
[32-5]
Characterizing a supernova's Standing Accretion Shock Instability with neutrinos and gravitational waves, Zidu Lin, Abhinav Rijal, Cecilia Lunardini, Manuel D. Morales, Michele Zanolin, Phys.Rev.D 107 (2023) 083017, arXiv:2211.07878.
[Lin:2022jea]
[32-6]
Probing neutrino interactions and dark radiation with gravitational waves, Marilena Loverde, Zachary J. Weiner, JCAP 02 (2023) 064, arXiv:2208.11714.
[Loverde:2022wih]
[32-7]
Impacts of gravitational-wave standard siren observations from Einstein Telescope and Cosmic Explorer on weighing neutrinos in interacting dark energy models, Shang-Jie Jin, Rui-Qi Zhu, Ling-Feng Wang, Hai-Li Li, Jing-Fei Zhang, Xin Zhang, Commun.Theor.Phys. 74 (2022) 105404, arXiv:2204.04689.
[Jin:2022tdf]
[32-8]
Precision Early Universe Cosmology from Stochastic Gravitational Waves, Dawid Brzeminski, Anson Hook, Gustavo Marques-Tavares, JHEP 11 (2022) 061, arXiv:2203.13842.
[Brzeminski:2022haa]
[32-9]
Impact of hypermagnetic fields on relic gravitational waves, neutrino oscillations and baryon asymmetry, Maxim Dvornikov, Int.J.Mod.Phys.D 32 (2023) 2250141, arXiv:2203.00530.
[Dvornikov:2022gkf]
[32-10]
Inferring Astrophysical Parameters of Core-Collapse Supernovae from their Gravitational-Wave Emission, Jade Powell, Bernhard Muller, Phys.Rev.D 105 (2022) 063018, arXiv:2201.01397.
[Powell:2022nrs]
[32-11]
Relationships among detector signals recorded during events SN1987A and GW170817, N. Agafonova, A. Malgin, E. Fischbach, arXiv:2107.00265, 2021.
[Agafonova:2021tgr]
[32-12]
Detecting and reconstructing gravitational waves from the next Galactic core-collapse supernova in the Advanced Detector Era, Marek Szczepanczyk et al., Phys.Rev.D 104 (2021) 102002, arXiv:2104.06462.
[Szczepanczyk:2021bka]
[32-13]
Prospects of gravitational waves in the minimal left-right symmetric model, Mingqiu Li, Qi-Shu Yan, Yongchao Zhang, Zhijie Zhao, JHEP 2103 (2021) 267, arXiv:2012.13686.
[Li:2020eun]
[32-14]
Neutrino masses and gravitational wave background, Takehiko Asaka, Hisashi Okui, Phys.Lett. B814 (2021) 136074, arXiv:2012.13527.
[Asaka:2020wcr]
[32-15]
Deep learning for multimessenger core-collapse supernova detection, M. Lopez Portilla, I. Di Palma, M. Drago, P. Cerda-Duran, F. Ricci, Phys.Rev. D103 (2021) 063011, arXiv:2011.13733.
[LopezPortilla:2020odz]
[32-16]
Gravitational waves in neutrino plasma and NANOGrav signal, Arun Kumar Pandey, Eur.Phys.J. C81 (2021) 399, arXiv:2011.05821.
[Pandey:2020gjy]
[32-17]
Primordial gravitational waves in a minimal model of particle physics and cosmology, Andreas Ringwald, Ken'ichi Saikawa, Carlos Tamarit, arXiv:2009.02050, 2020.
[Ringwald:2020vei]
[32-18]
Gravitational wave signatures from discrete flavor symmetries, Graciela B. Gelmini, Silvia Pascoli, Edoardo Vitagliano, Ye-Ling Zhou, JCAP 2102 (2021) 032, arXiv:2009.01903.
[Gelmini:2020bqg]
[32-19]
Gravitational Waves from Neutrino Asymmetries in Core-Collapse Supernovae, David Vartanyan, Adam Burrows, Astrophys.J. 901 (2020) 108, arXiv:2007.07261.
[Vartanyan:2020nmt]
[32-20]
Gravitational-wave Signature of a First-order Quantum Chromodynamics Phase Transition in Core-Collapse Supernovae, Shuai Zha, Evan P. O'Connor, Ming-chung Chu, Lap-Ming Lin, Sean M. Couch, Phys.Rev.Lett. 125 (2020) 051102, arXiv:2007.04716.
[Zha:2020gjw]
[32-21]
Constraints on primordial gravitational waves from the Cosmic Microwave Background, Thomas J. Clarke, Edmund J. Copeland, Adam Moss, JCAP 2010 (2020) 002, arXiv:2004.11396.
[Clarke:2020bil]
[32-22]
Core-Collapse Supernova Gravitational-Wave Search and Deep Learning Classification, Alberto Iess, Elena Cuoco, Filip Morawski, Jade Powell, arXiv:2001.00279, 2020.
[Iess:2020yqj]
[32-23]
High accuracy on $H_0$ constraints from gravitational wave lensing events, Paolo Cremonese, Vincenzo Salzano, Phys.Dark Univ. 28 (2020) 100517, arXiv:1911.11786.
[Cremonese:2019tgb]
[32-24]
Gravitational footprints of massive neutrinos and lepton number breaking, Andrea Addazi, Antonino Marciano, Antonio P. Morais, Roman Pasechnik, Rahul Srivastava, Jose W. F. Valle, Phys.Lett. B807 (2020) 135577, arXiv:1909.09740.
[Addazi:2019dqt]
[32-25]
Astrophysics with core-collapse supernova gravitational wave signals in the next generation of gravitational wave detectors, Vincent Roma, Jade Powell, Ik Siong Heng, Ray Frey, Phys.Rev. D99 (2019) 063018, arXiv:1901.08692.
[Roma:2019kcd]
[32-26]
Particle Physics with Gravitational Wave Detector Technology, Christoph Englert, Stefan Hild, Michael Spannowsky, EPL 123 (2018) 41001, arXiv:1712.04481.
[Englert:2017det]
[32-27]
Anisotropic emission of neutrino and gravitational-wave signals from rapidly rotating core-collapse supernovae, Tomoya Takiwaki, Kei Kotake, Mon.Not.Roy.Astron.Soc. 475 (2018) L91-L95, arXiv:1711.01905.
[Takiwaki:2017tpe]
[32-28]
Comparison of gravitational waves from central engines of gamma-ray bursts: neutrino-dominated accretion flows, Blandford-Znajek mechanisms, and millisecond magnetars, Tong Liu, Chao-Yang Lin, Cui-Ying Song, Ang Li, Astrophys.J. 850 (2017) 30, arXiv:1709.09810.
[Liu:2017nec]
[32-29]
Correlated Signatures of Gravitational-Wave and Neutrino Emission in Three-Dimensional General-Relativistic Core-Collapse Supernova Simulations, Takami Kuroda, Kei Kotake, Kazuhiro Hayama, Tomoya Takiwaki, Astrophys.J. 851 (2017) 62, arXiv:1708.05252.
[Kuroda:2017trn]
[32-30]
Equation of State Effects on Gravitational Waves from Rotating Core Collapse, S. Richers, C. D. Ott, E. Abdikamalov, E. O'Connor, C. Sullivan, Phys.Rev. D95 (2017) 063019, arXiv:1701.02752.
[Richers:2017joj]
[32-31]
Inferring the core-collapse supernova explosion mechanism with gravitational waves, Jade Powell, Sarah Gossan, Joshua Logue, Ik Siong Heng, Phys. Rev. D94 (2016) 123012, arXiv:1610.05573.
[Powell:2016wke]
[32-32]
New analysis for the correlation between gravitational waves and neutrino detectors during SN1987A, P. Galeotti, G. Pizzella, Eur.Phys.J. C76 (2016) 426, arXiv:1603.05076.
[Galeotti:2016uum]
[32-33]
Testing general relativity using golden black-hole binaries, Abhirup Ghosh et al., Phys. Rev. D94 (2016) 021101, arXiv:1602.02453.
[Ghosh:2016qgn]
[32-34]
Low Latency transient search of Gravitational Waves for the Advanced Detectors, Marco Drago, arXiv:1507.02871, 2015.
[Drago:2015lwa]
[32-35]
Probing Rotation of Core-collapse Supernova with Concurrent Analysis of Gravitational Waves and Neutrinos, Takaaki Yokozawa, Mitsuhiro Asano, Tsubasa Kayano, Yudai Suwa, Nobuyuki Kanda et al., Astrophys. J. 811 (2015) 86, arXiv:1410.2050.
[Yokozawa:2014tca]
[32-36]
Improved limits on short-wavelength gravitational waves from the cosmic microwave background, Irene Sendra, Tristan L. Smith, Phys. Rev. D85 (2012) 123002, arXiv:1203.4232.
[Sendra:2012wh]
[32-37]
Inference of the cosmological parameters from gravitational waves: application to second generation interferometers, Walter Del Pozzo, Phys. Rev. D86 (2012) 043011, arXiv:1108.1317.
[DelPozzo:2011vcw]
[32-38]
A Model for Gravitational Wave Emission from Neutrino-Driven Core-Collapse Supernovae, Jeremiah W. Murphy, Christian D. Ott, Adam Burrows, Astrophys. J. 707 (2009) 1173-1190, arXiv:0907.4762.
[Murphy:2009dx]
[32-39]
Neutrinos from Supernovae as a Trigger for Gravitational Wave Search, G. Pagliaroli, F. Vissani, E. Coccia, W. Fulgione, Phys. Rev. Lett. 103 (2009) 031102, arXiv:0903.1191.
[Pagliaroli:2009qy]
[32-40]
Search method for coincident events from LIGO and IceCube detectors, Yoichi Aso et al., Class. Quant. Grav. 25 (2008) 114039, arXiv:0711.0107.
[Aso:2007wg]
[32-41]
Gravitational Wave Background from Population III Stars, Yudai Suwa, Tomoya Takiwaki, Kei Kotake, Katsuhiko Sato, Astrophys. J. 665 (2008) L43, arXiv:0706.3495.
[Suwa:2007du]
[32-42]
Analytic spectrum of relic gravitational waves modified by neutrino free streaming and dark energy, H.X.Miao, Y. Zhang, Phys. Rev. D75 (2007) 104009, arXiv:astro-ph/0703602.
[Miao:2007cw]
[32-43]
The Polarization of the Cosmic Microwave Background Due to Primordial Gravitational Waves, Brian G. Keating, Alexander G. Polnarev, Nathan J. Miller, Deepak Baskaran, Int. J. Mod. Phys. A21 (2006) 2459-2479, arXiv:astro-ph/0607208.
[Keating:2006zy]
[32-44]
Gravitational Waves from Warped Spacetime, Lisa Randall, Geraldine Servant, JHEP 05 (2007) 054, arXiv:hep-ph/0607158.
[Randall:2006py]
[32-45]
Non-linear Oscillations of Compact Stars and Gravitational Waves, Andrea Passamonti, arXiv:gr-qc/0607143, 2006.
[Passamonti:2005ac]
[32-46]
Gravitational Waves from Phase Transitions at the Electroweak Scale and Beyond, Christophe Grojean, Geraldine Servant, Phys. Rev. D75 (2007) 043507, arXiv:hep-ph/0607107.
[Grojean:2006bp]
[32-47]
Detection regimes of the cosmological gravitational wave background from astrophysical sources, David Coward, Tania Regimbau, New Astron. Rev. 50 (2006) 461-467, arXiv:astro-ph/0607043.
[Coward:2006df]
[32-48]
Gravitational Waves from the First Stars, Pearl Sandick, Keith A. Olive, Frederic Daigne, Elisabeth Vangioni, Phys. Rev. D73 (2006) 104024, arXiv:astro-ph/0603544.
[Sandick:2006sm]
[32-49]
Prospects for direct detection of primordial gravitational waves, Sirichai Chongchitnan, George Efstathiou, Phys. Rev. D73 (2006) 083511, arXiv:astro-ph/0602594.
[Chongchitnan:2006pe]
[32-50]
Contribution of Compact Mass Transferring Systems to the Galactic Gravitational Wave Background, Krzysztof Belczynski, Matthew Benacquista, Shane L. Larson, Ashley J. Ruiter, Astrophys.J. (2005), arXiv:astro-ph/0510718.
[Belczynski:2005ir]
[32-51]
The gravitational wave 'probability event horizon' for double neutron star mergers, D. M. Coward et al., Mon. Not. Roy. Astron. Soc. 364 (2005) 807, arXiv:astro-ph/0510203.
[Coward:2005bi]
[32-52]
On searches for gravitational waves from mini creation event by laser interferometric detectors, Bhim Prasad Sarmah, S.K. Banerjee, S.V. Dhurandhar, J.V. Narlikar, Mon. Not. Roy. Astron. Soc. 369 (2006) 89-96, arXiv:gr-qc/0510018.
[Sarmah:2005nq]
[32-53]
Gravitational Wave Background from Neutrino-Driven Gamma-Ray Bursts, Takashi Hiramatsu, Kei Kotake, Hideaki Kudoh, Atsushi Taruya, Mon. Not. Roy. Astron. Soc. 364 (2005) 1063, arXiv:astro-ph/0509787.
[Hiramatsu:2005jn]
[32-54]
Gravitational wave detection by a spherical antenna: the angular sensitivity of resonators in the TIGA configuration and its variation with sidereal time and galactic longitude, Maria Alice Gasparini, Phys. Rev. D72 (2005) 104012, arXiv:gr-qc/0509095.
[Gasparini:2005dd]
[32-55]
Bayesian estimation of pulsar parameters from gravitational wave data, Réjean J. Dupuis, Graham Woan, Phys. Rev. D72 (2005) 102002, arXiv:gr-qc/0508096.
[Dupuis:2005xv]
[32-56]
LISA Data Analysis using MCMC methods, Neil J. Cornish, Jeff Crowder, Phys. Rev. D72 (2005) 043005, arXiv:gr-qc/0506059.
[Cornish:2005qw]
[32-57]
Studying the coincidence excess between EXPLORER and NAUTILUS during 1998, D. Babusci et al., Astron.Astrophys. (2005), arXiv:astro-ph/0505600.
[Babusci:2005kt]
[32-58]
Numeric Spectrum of Relic Gravitational Waves in Accelerating Universe, Yang Zhang, Wen Zhao, Yefei Yuan, Tianyang Xia, Chin. Phys. Lett. 20 (2005) 1817, arXiv:astro-ph/0505589.
[Zhang:2005kg]
[32-59]
Using gravitational-wave standard sirens, Daniel E. Holz, Scott A. Hughes, Astrophys. J. 629 (2005) 15, arXiv:astro-ph/0504616.
[Holz:2005df]
[32-60]
Characterizing the Galactic Gravitational Wave Background with LISA, Seth E. Timpano, Louis J. Rubbo, Neil J. Cornish, Phys. Rev. D73 (2006) 122001, arXiv:gr-qc/0504071.
[Timpano:2005gm]
[32-61]
Cosmological Constraints on the Very Low Frequency Gravitational-Wave Background, Naoki Seto, Asantha Cooray, Phys. Rev. D73 (2006) 023005, arXiv:astro-ph/0502054.
[Seto:2005tq]
[32-62]
Relic Gravitational Waves in the Accelerating Universe, Yang Zhang, Yefei Yuan, Wen Zhao, Ying-Tian Chen, Class. Quant. Grav. 22 (2012) 1383, arXiv:astro-ph/0501329.
[Ghayour:2012nf]
[32-63]
May Gravity detect Tsunami?, D. Fargion, Chin. J. Astron. Astrophys. 6S1 (2006) 398-402, arXiv:astro-ph/0412647.
[Fargion:2004bv]
[32-64]
Sensitivity of a small matter-wave interferometer to gravitational waves, Stefano Foffa, Alice Gasparini, Michele Papucci, Riccardo Sturani, Phys. Rev. D73 (2006) 022001, arXiv:gr-qc/0407039.
[Foffa:2004up]
[32-65]
On the Rate of Detectability of Intermediate-Mass Black-Hole Binaries using LISA, Clifford M. Will, Astrophys. J. 611 (2004) 1080, arXiv:astro-ph/0403644.
[Will:2004fj]
[32-66]
LISA Measurement of Gravitational Wave Background Anisotropy: Hexadecapole Moment via a Correlation Analysis, Naoki Seto, Asantha Cooray, Phys. Rev. D70 (2004) 123005, arXiv:astro-ph/0403259.
[Seto:2004np]
[32-67]
On the amount of gravitational waves from inflation, L. Pilo, A. Riotto, A. Zaffaroni, Phys. Rev. Lett. 92 (2004) 201303, arXiv:astro-ph/0401302.
[Pilo:2004ke]
[32-68]
Core-collapse supernovae and gravitational waves, Christian Y. Cardall, Nucl. Phys. Proc. Suppl. 138 (2005) 436, arXiv:astro-ph/0401060.
[Cardall:2004qm]
[32-69]
Increase of the Number of Detectable Gravitational Waves Signals due to Gravitational Lensing, M. Arnaud-Varvella, M.-C. Angonin, Ph. Tourrenc, Gen. Rel. Grav. 36 (2004) 983, arXiv:gr-qc/0312028.
[Arnaud-Varvella:2003qqf]
[32-70]
The Response of a Two-Element Radio Interferometer to Gravitational Waves, Kipp Cannon, arXiv:astro-ph/0311462, 2003.
[Cannon:2003uy]
[32-71]
Towards Gravitational Wave Signals from Realistic Core Collapse Supernova Models, Ewald Mueller et al., Astrophys. J. 603 (2004) 221, arXiv:astro-ph/0309833.
[Mueller:2003fs]
[32-72]
Gravitational Waves from a Pulsar Kick Caused by Neutrino Conversions, Lee C. Loveridge, Phys. Rev. D69 (2004) 024008, arXiv:astro-ph/0309362.
[Loveridge:2003fy]
[32-73]
Gravitational Waves from Axisymmetric, Rotational Stellar Core Collapse, Christian D. Ott, Adam Burrows, Eli Livne, Rolf Walder, Astrophys. J. 600 (2004) 834, arXiv:astro-ph/0307472.
[Ott:2003qg]
[32-74]
Loss cone: past, present and future, Steinn Sigurdsson, Class. Quant. Grav. 20 (2003) S45, arXiv:astro-ph/0304251.
[Sigurdsson:2003ei]
[32-75]
Swift Pointing and the Association Between Gamma-Ray Bursts and Gravitational-Wave Bursts, Lee Samuel Finn, Badri Krishnan, Patrick J. Sutton, Astrophys. J. 607 (2004) 384, arXiv:astro-ph/0304228.
[Finn:2003dj]
[32-76]
LISA observations of rapidly spinning massive black hole binary systems, Alberto Vecchio, Phys. Rev. D70 (2004) 042001, arXiv:astro-ph/0304051.
[Vecchio:2003tn]
[32-77]
Prospects for the detection of electromagnetic counterparts to gravitational wave events, Julien Sylvestre, Astrophys. J. 591 (2003) 1152, arXiv:astro-ph/0303512.
[Sylvestre:2003vc]
[32-78]
Galactic distribution of merging neutron stars and black holes - prospects for short GRB progenitors and LIGO/VIRGO, Rasmus Voss, Thomas M. Tauris, Mon. Not. Roy. Astron. Soc. 342 (2003) 1169, arXiv:astro-ph/0303227.
[Voss:2003ep]
[32-79]
Relic gravitational waves from colliding bubbles and cosmic turbulence, Alberto Nicolis, Class. Quant. Grav. 21 (2004) L27, arXiv:gr-qc/0303084.
[Nicolis:2003tg]
[32-80]
Gravitational waves from sub-lunar mass primordial black hole binaries: A new probe of extradimensions, Kaiki Taro Inoue, Takahiro Tanaka, Phys. Rev. Lett. 91 (2003) 021101, arXiv:gr-qc/0303058.
[Inoue:2003di]
[32-81]
LISA data analysis: Source identification and subtraction, Neil J. Cornish, Shane L. Larson, Phys. Rev. D67 (2003) 103001, arXiv:astro-ph/0301548.
[Cornish:2003vj]
[32-82]
No statistical excess in EXPLORER / NAUTILUS observations in the year 2001, Lee Samuel Finn, Class. Quant. Grav. 20 (2003) L37, arXiv:gr-qc/0301092.
[Finn:2003bd]
[32-83]
Solar System test for the existence of gravitational waves, Nicholas Ionescu-Pallas, Marius I. Piso, Silvia Onofrei, Rom. Astron. J. 4 (1994) 23, arXiv:gr-qc/0301033.
[Ionescu-Pallas:1994ypz]
[32-84]
Gravitational-wave standard candles, Daniel E. Holz, Scott A. Hughes, Class.Quant.Grav. 20 (2003) S65-S72, arXiv:astro-ph/0212218.
[Hughes:2003peq]
[32-85]
Stellar collapse and gravitational waves, Chris L. Fryer, Daniel E. Holz, Scott A. Hughes, Michael S. Warren, Astrophys.Space Sci. (2002), arXiv:astro-ph/0211609.
[Fryer:2002ji]
[32-86]
Sidereal time analysis as a toll for the study of the space distribution of sources of gravitational waves, G. Paturel, Yu. B. Baryshev, Astron. Astrophys. 398 (2003) 377, arXiv:astro-ph/0211604.
[Paturel:2002jd]
[32-87]
Low-Frequency Gravitational Waves from Massive Black Hole Binaries: Predictions for LISA and Pulsar Timing Arrays, J. Stuart B. Wyithe, Abraham Loeb, Astrophys. J. 590 (2003) 691, arXiv:astro-ph/0211556.
[Wyithe:2002ep]
[32-88]
Gravitational waves from stars orbiting the massive black hole at the galactic center, Marc Freitag, Astrophys. J. 583 (2003) L21, arXiv:astro-ph/0211209.
[Freitag:2002nm]
[32-89]
Searching for Gravitational Waves from the Inspiral of Precessing Binary Systems: New Hierarchical Scheme using Spiky Templates, P. Grandclement, V. Kalogera, Phys. Rev. D67 (2003) 042003, arXiv:gr-qc/0211075.
[Grandclement:2002vx]
[32-90]
Proposed new test of general relativity, Joseph Samuel, Phys. Rev. Lett. (2002), arXiv:gr-qc/0211050.
[Samuel:2002fj]
[32-91]
Gravitational waves from newly born, hot neutron stars, Valeria Ferrari, Giovanni Miniutti, Jose' A. Pons, Mon. Not. Roy. Astron. Soc. 342 (2003) 629, arXiv:astro-ph/0210581.
[Ferrari:2002ut]
[32-92]
Gravitational Radiation from Gamma-Ray Burst Progenitors, Shiho Kobayashi, Peter Meszaros, Astrophys. J. 589 (2003) 861, arXiv:astro-ph/0210211.
[Kobayashi:2002by]
[32-93]
Storage rings as detectors for cosmic gravitational-wave background?, A. N. Ivanov, A. P. Kobushkin, arXiv:gr-qc/0210091, 2002.
[Ivanov:2002ng]
[32-94]
Ferromagnetic Antenna and its Application to Generation and Detection of Gravitational Radiation, Fran De Aquino, arXiv:physics/0210034, 2002.
[DeAquino:2002rq]
[32-95]
Effects of finite arm-length of LISA on analysis of gravitational waves from MBH binaries, Naoki Seto, Phys. Rev. D66 (2002) 122001, arXiv:gr-qc/0210028.
[Seto:2002uj]
[32-96]
Quasi-periodic accretion and gravitational waves from oscillating 'toroidal neutron stars' around a Schwarzschild black hole, O. Zanotti, L. Rezzolla, J. A. Font, Mon. Not. Roy. Astron. Soc. 341 (2003) 832, arXiv:gr-qc/0210018.
[Zanotti:2002it]
[32-97]
Improving the Sensitivity of LISA, K. Rajesh Nayak, A. Pai, S. V. Dhurandhar, J-Y. Vinet, Class. Quant. Grav. 20 (2003) 1217, arXiv:gr-qc/0210014.
[Nayak:2002ir]
[32-98]
LISA, binary stars, and the mass of the graviton, Shane L. Larson Curt Cutler, William A. Hiscock, Phys. Rev. D67 (2003) 024015, arXiv:gr-qc/0209101.
[Cutler:2002ef]
[32-99]
Phase transitions in neutron stars and gravitational wave emission, G. F. Marranghello, C. A. Z. Vasconcellos, J. A. de Freitas Pacheco, Phys. Rev. D66 (2002) 064027, arXiv:astro-ph/0208456.
[Marranghello:2002yx]
[32-100]
LIGO/VIRGO searches for gravitational radiation in hypernovae, Maurice H. P. M. van Putten, Astrophys. J. 575 (2002) L71-L74, arXiv:astro-ph/0207242.
[vanPutten:2002uf]
[32-101]
Gravitational radiation from highly magnetized nascent neutron stars in supernova remnants, Shin Yoshida, Mon. Not. Roy. Astron. Soc. 336 (2002) 957, arXiv:astro-ph/0207118.
[Yoshida:2002kh]
[32-102]
Searching for Gravitational Waves from the Inspiral of Precessing Binary Systems. I. Reduction of Detection Efficiency, P. Grandclement, V. Kalogera, A. Vecchio, Phys. Rev. D67 (2003) 042003, arXiv:gr-qc/0207062.
[Grandclement:2002dv]
[32-103]
Gravitational Waves from Spinning Compact Binaries, Neil J. Cornish, Janna Levin, arXiv:gr-qc/0207016, 2002.
[Cornish:2002eh]
[32-104]
Relic backgrounds of gravitational waves from cosmic turbulence, Alexander D. Dolgov, Dario Grasso, Alberto Nicolis, Phys. Rev. D66 (2002) 103505, arXiv:astro-ph/0206461.
From the abstract: We determine the spectrum of gravity waves which may have been produced by neutrino inhomogeneous diffusion and by a first order phase transition. We show that in both cases the expected signal may be in the sensitivity range of LISA.
[Dolgov:2002ra]
[32-105]
Search for correlation between GRB's detected by BeppoSAX and gravitational wave detectors EXPLORER and NAUTILUS, P. Astone et al., Phys. Rev. D66 (2002) 102002, arXiv:astro-ph/0206431.
[Astone:2002jz]
[32-106]
Generation of cosmic magnetic fields and gravitational waves at neutrino decoupling, Alexander D. Dolgov, Dario Grasso, Phys. Rev. Lett. 88 (2002) 011301, arXiv:astro-ph/0106154.
[Dolgov:2001nv]
[32-107]
Determining the Hubble Constant from Gravitational Wave Observations, Bernard F. Schutz, Nature 323 (1986) 310-311.
[Schutz:1986gp]

33 - Phenomenology - Gravitational Waves - Talks

[33-1]
Constraints and prospects on gravitational wave and neutrino emission using GW150914, Krijn D. de Vries, Gwenhael de Wasseige, Jean-Marie Frere, Matthias Vereecken, PoS ICRC2017 (2017) 959, arXiv:1709.04880. 35th International Cosmic Ray Conference (ICRC2017), Busan, Korea.
[deWasseige:2017dxe]
[33-2]
Probing the Core-Collapse Supernova Mechanism with Gravitational Waves, C. D. Ott, Class. Quant. Grav. 26 (2009) 204015, arXiv:0905.2797. 13th Gravitational Wave Data Analysis Workshop.
[Ott:2009bw]
[33-3]
Supermassive black hole mergers and cosmological structure formation, Marta Volonteri, AIP Conf. Proc. 873 (2006) 61-69, arXiv:astro-ph/0609741. Sixth International LISA Symposium.
[Volonteri:2006vp]
[33-4]
Multi-band Astronomy with LISA, G. Branduardi-Raymont et al., AIP Conf. Proc. 873 (2006) 460-464, arXiv:astro-ph/0609114. Sixth International LISA Symposium.
[Branduardi-Raymont:2006pzr]
[33-5]
A brief survey of LISA sources and science, Scott A. Hughes, AIP Conf. Proc. 873 (2006) 13-20, arXiv:gr-qc/0609028. Sixth International LISA Symposium.
[Hughes:2006kn]
[33-6]
Gravitational Wave Sources from New Physics, Craig J. Hogan, AIP Conf. Proc. 873 (2006) 30-40, arXiv:astro-ph/0608567. Sixth International LISA Symposium.
[Hogan:2006va]
[33-7]
Testing general relativity and probing the merger history of massive black holes with LISA, Emanuele Berti, Alessandra Buonanno, Clifford M. Will, Class. Quant. Grav. 22 (2005) S943, arXiv:gr-qc/0504017. GWDAW 9.
[Berti:2005qd]
[33-8]
Powerful gravitational-wave bursts from supernova neutrino oscillations, Herman J. Mosquera Cuesta, Karen Fiuza, Aip Conf. Proc. 739 (2005) 702, arXiv:astro-ph/0407526. 'Hadron Physics - RANP 2004', Angra dos Reis - Rio de Janeiro - Brazil, March 28 to April 03.
[MosqueraCuesta:2004xd]
[33-9]
What can we learn about cosmic structure from gravitational waves?, Joan M. Centrella, Aip Conf. Proc. 666 (2003) 337, arXiv:astro-ph/0302125. 13th Annual Astrophysics Conference in Maryland, 2003.
[Centrella:2003ma]

34 - Phenomenology - Quantum Gravity and Cosmology

[34-1]
Quantum Gravity Effects on Fermionic Dark Matter and Gravitational Waves, Stephen F. King, Rishav Roshan, Xin Wang, Graham White, Masahito Yamazak, arXiv:2311.12487, 2023.
[King:2023ztb]
[34-2]
Speed Variations of Cosmic Photons and Neutrinos from Loop Quantum Gravity, Hao Li, Bo-Qiang Ma, Phys.Lett.B 836 (2023) 137613, arXiv:2212.04220.
[Li:2022szn]
[34-3]
Probing Quantum Gravity with Elastic Interactions of Ultra-High-Energy Neutrinos, Alfonso Garcia Soto, Diksha Garg, Mary Hall Reno, Carlos A. Arguelles, Phys.Rev.D 107 (2023) 033009, arXiv:2209.06282.
[GarciaSoto:2022vlw]
[34-4]
An entanglement-based test of quantum gravity using two massive particles, Chiara Marletto, Vlatko Vedral, Phys.Rev.Lett. 119 (2017) 240402, arXiv:1707.06036.
[Marletto:2017kzi]
[34-5]
Prospects for constraining quantum gravity dispersion with near term observations, Giovanni Amelino-Camelia, Lee Smolin, Phys. Rev. D80 (2009) 084017, arXiv:0906.3731.
[Amelino-Camelia:2009imt]
[34-6]
Gamma Ray Burst Neutrinos Probing Quantum Gravity, M.C. Gonzalez-Garcia, F. Halzen, JCAP 0702 (2007) 008, arXiv:hep-ph/0611359.
[Gonzalez-Garcia:2006koj]

35 - Phenomenology - Quantum Gravity and Cosmology - Talks

[35-1]
Exploration of Possible Quantum Gravity Effects with Neutrinos I: Decoherence in Neutrino Oscillations Experiments, Alexander Sakharov, Nick Mavromatos, Anselmo Meregaglia, Andre Rubbia, Sarben Sarkar, J. Phys. Conf. Ser. 171 (2009) 012038, arXiv:0903.4985. DISCRETE'08, Valencia, Spain; December 2008.
[Sakharov:2009rn]

36 - Phenomenology - Alternative Models

[36-1]
Solar system relativity tests, formulas for light deflection by a central mass, and modification of the lens equation, for a Weyl scaling invariant dark energy, Stephen L. Adler, Gen.Rel.Grav. 55 (2023) 1, arXiv:2204.09132.
[Adler:2022pqw]
[36-2]
Testing alternative theories of gravity using the Sun, Jordi Casanellas, Paolo Pani, Ilidio Lopes, Vitor Cardoso, Astrophys. J. 745 (2012) 15, arXiv:1109.0249.
[Casanellas:2011kf]
[36-3]
Gravity Gets There First with Dark Matter Emulators, S. Desai, E. O. Kahya, R. P. Woodard, Phys. Rev. D77 (2008) 124041, arXiv:0804.3804.
[Desai:2008vj]
[36-4]
A Decisive test to confirm or rule out existence of dark matter using gravitational wave observations, E. O. Kahya, Class. Quant. Grav. 25 (2008) 184008, arXiv:0801.1984.
[Kahya:2008pp]
[36-5]
MOND rotation curves of very low mass spiral galaxies, Mordehai Milgrom, Robert H. Sanders, Astrophys. J. Lett. 658 (2007) L17, arXiv:astro-ph/0611494.
[Milgrom:2006xn]
[36-6]
Solar System tests DO rule out 1/R gravity, Adrienne L. Erickcek, Tristan L. Smith, Marc Kamionkowski, Phys. Rev. D74 (2006) 121501, arXiv:astro-ph/0610483.
[Erickcek:2006vf]
[36-7]
Testing Bekenstein's Relativistic MOND gravity with Gravitational Lensing, HongSheng Zhao, David J. Bacon, Andy N. Taylor, Keith Horne, Mon. Not. Roy. Astron. Soc. 368 (2006) 171, arXiv:astro-ph/0509590.
[Zhao:2005za]

37 - History

[37-1]
The Legacy of Einstein's Eclipse, Gravitational Lensing, Jorge L. Cervantes-Cota, Salvador Galindo-Uribarri, George F. Smoot, Universe 6 (2020) 9, arXiv:1912.07674.
[Cervantes-Cota:2019gei]
[37-2]
Shadow of the Moon and general relativity: Einstein, Dyson, Eddington and the 1919 light deflection, Jose P. S. Lemos, Rev.Bras.Ens.Fis. 41 (2019) e20190260, arXiv:1912.05587.
[Lemos:2019ekr]
[37-3]
Einstein's 1917 Static Model of the Universe: A Centennial Review, Cormac O'Raifeartaigh, Michael O'Keeffe, Werner Nahm, Simon Mitton, Eur.Phys.J. H42 (2017) 431-474, arXiv:1701.07261.
[ORaifeartaigh:2017uct]
[37-4]
Life and space dimensionality: A brief review of old and new entangled arguments, Francisco Caruso, arXiv:1608.05298, 2016.
[1608.05298]
[37-5]
1974: the discovery of the first binary pulsar, Thibault Damour, Class.Quant.Grav. 32 (2015) 124009, arXiv:1411.3930.
[Damour:2014tpa]
[37-6]
On the discovery of Birkhoff's theorem, Nils Voje Johansen, Finn Ravndal, Gen. Rel. Grav. 38 (2006) 537, arXiv:physics/0508163.
[VojeJohansen:2005nd]
[37-7]
Einstein and Hilbert: The Creation of General Relativity, Ivan T. Todorov, arXiv:physics/0504179, 2005. Colloquium talk; 15 pages.
[Todorov:2005rh]
[37-8]
Mach's Principle, Herbert Lichtenegger, Bahram Mashhoon, arXiv:physics/0407078, 2004.
[Lichtenegger:2004re]
[37-9]
Hilbert's 'World Equations' and His Vision of a Unified Science, Ulrich Majer, Tilman Sauer, Einstein Stud. 11 (2005) 259-276, arXiv:physics/0405110.
[Majer:2004wd]
[37-10]
How Were the Hilbert-Einstein Equations Discovered?, A. A. Logunov, M.A.Mestvirishvili, V.A. Petrov, Phys. Usp. 47 (2004) 607, arXiv:physics/0405075.
[Logunov:2004ad]
[37-11]
Albert Einstein's 1916 Review Article on General Relativity, Tilman Sauer, arXiv:physics/0405066, 2004.
[Sauer:2004ac]
[37-12]
A Word from a Black Female Relativistic Astrophysicist: Setting the Record Straight on Black Holes, Reva Kay Williams, arXiv:physics/0404029, 2004.
[Williams:2004sf]
[37-13]
David Hilbert and the origin of the 'Schwarzschild solution', S. Antoci, arXiv:physics/0310104, 2003.
[Antoci:2003hq]

38 - History - Talks

[38-1]
From Einstein's Hole Argument to Dirac and Bergmann Observables, Luca Lusanna, arXiv:gr-qc/0302089, 2003. General Relativity and Gravitational Physics, Villa Mondragone (Roma), September 6-10, 2002.
[Lusanna:2003im]

39 - Education

[39-1]
How Einstein Got His Field Equations, Sam Walters, arXiv:1608.05752, 2016.
[Walters:2016vub]
[39-2]
Teaching General Relativity, Robert M. Wald, Am.J. Phys. (2005), arXiv:gr-qc/0511073.
[Wald:2005aq]
[39-3]
A tool for teaching General Relativity, Kayll Lake, arXiv:physics/0509108, 2005.
[Lake:2005pp]
[39-4]
General Relativity in the Undergraduate Physics Curriculum, James B. Hartle, Am. J. Phys. 74 (2006) 14, arXiv:gr-qc/0506075.
[Hartle:2005cq]

40 - Future Experiments

[40-1]
The Gravitational Universe, K. Danzmann et al. (eLISA), arXiv:1305.5720, 2013.
[eLISA:2013xep]
[40-2]
APSIS - an Artificial Planetary System in Space to probe extra-dimensional gravity and MOND, Varun Sahni, Yuri Shtanov, Int. J. Mod. Phys. D17 (2008) 453-466, arXiv:gr-qc/0606063.
[Sahni:2006fq]

41 - Future Experiments - Gravitational Waves

[41-1]
Waveform Modelling for the Laser Interferometer Space Antenna, Niaesh Afshordi et al. (LISA Consortium Waveform Working Group), arXiv:2311.01300, 2023.
[LISAConsortiumWaveformWorkingGroup:2023arg]
[41-2]
New ways to catch a wave, Neil J. Cornish, Edward K. Porter, Phys. Rev. D75 (2007) 021301, arXiv:gr-qc/0605135.
[Cornish:2006dt]
[41-3]
Towards MIGO, the matter-wave interferometric gravitational-wave observatory, and the intersection of quantum mechanics with general relativity, Raymond Y. Chiao, Achilles D. Speliotopoulos, J.Mod.Opt. (2003), arXiv:gr-qc/0312096.
[Chiao:2003sa]
[41-4]
Special Purpose Pulsar Telescope for the Detection of Cosmic Gravitational Waves, Shou-Guan Wang, Zong-Hong Zhu, Zhen-Long Zou, Yuan-Zhong Zhang, Int. J. Mod. Phys. D11 (2002) 1061, arXiv:astro-ph/0212191.
[Wang:2002ch]

42 - Future Experiments - Gravitational Waves - Talks

[42-1]
Gravitational wave detector OGRAN as multi-messenger project of RAS-MSU, V. N. Rudenko, Yu. M. Gavrilyuk, A. V. Gusev, D. P. Krichevskiy, S. I. Oreshkin, S. M. Popov, I. S. Yudin, Int.J.Mod.Phys. A35 (2020) 2040007, arXiv:1911.03773. 10th Freedman Seminar Conference.
[Rudenko:2019iya]
[42-2]
A brief survey of LISA sources and science, Scott A. Hughes, AIP Conf. Proc. 873 (2006) 13-20, arXiv:gr-qc/0609028. Sixth International LISA Symposium.
[Hughes:2006kn]
[42-3]
A crystal-based matter-wave interferometric gravitational- wave observatory, Raymond Y. Chiao, A. D. Speliotiotopoulos, arXiv:gr-qc/0312100, 2003. Quantum Aspects of Beam Physics.
[Chiao:2003se]
[42-4]
The GEO600 Gravitational Wave Detector - Pulsar Prospects, G. Woan, for the GEO (GEO), ASP Conf.Ser. 302 (2003) 351, arXiv:astro-ph/0210649. ASP Conf. Ser., Radio Pulsars (proceedings of August 2002 meeting in Crete).
[GEO:2002jiw]

Search Neutrino Unbound

Cross search NU

It is possible to perform a cross search between the various pages of Neutrino Unbound.
This is useful if you want to show the common elements that appear in the listings of two (or more) different topics or experiments.

Go to the search form.

[Go to ...]

Neutrino Unbound Home

Authors:
Stefano Gariazzo / gariazzo@to.infn.it
Carlo Giunti / giunti@to.infn.it
Marco Laveder / marco.laveder@pd.infn.it
Last Update: Fri 29 Mar 2024, 11:22:31 CET