Gravity

Filter this page

(Note: The process can take some time.)

EXPAND ALL
COMPRESS ALL

References

1 - Books

[1-1]
A First Course in General Relativity, B. F. Schutz, Cambridge University Press, 1985.
[Schutz:1985jx]
[1-2]
General Relativity, R. M. Wald, The University of Chicago Press, 1984.
[Wald:1984rg]
[1-3]
Gravitation and Spacetime, H.C. Ohanian, W.W. Norton and Company, 1976.
[Ohanian-Gravitation-and-Spacetime-1976]
[1-4]
Gravitation, C.W. Misner, K.S. Thorne, J.A. Wheeler, W.H. Freeman and Company, 1973.
[Misner:1974qy]
[1-5]
Gravitation and Cosmology, S. Weinberg, John Wiley, 1972.
[Weinberg-Gravitation-and-Cosmology-1972]

2 - Reviews

[2-1]
Rotating Stars in Relativity, Vasileios Paschalidis, Nikolaos Stergioulas, arXiv:1612.03050, 2016.
[Paschalidis:2016vmz]
[2-2]
Solar-system tests of the relativistic gravity, Wei-Tou Ni, Int.J.Mod.Phys. D25 (2016) 1630003, arXiv:1611.06025.
[Ni:2016dwy]
[2-3]
The Standard-Model Extension and Gravitational Tests, Jay D. Tasson, Symmetry 8 (2016) 111, arXiv:1610.05357.
[Tasson:2016xib]
[2-4]
Tests of Lorentz symmetry in the gravitational sector, Aurelien Hees et al., Universe 2 (2016) 30, arXiv:1610.04682.
[Hees:2016lyw]
[2-5]
General Relativity and Cosmology: Unsolved Questions and Future Directions, Ivan Debono, George F. Smoot, arXiv:1609.09781, 2016.
[1609.09781]
[2-6]
The Bondi-Sachs Formalism, Thomas Madler, Jeffrey Winicour, Scholarpedia 11 (2016) 33528, arXiv:1609.01731.
[Madler:2016xju]
[2-7]
Binary neutron-star mergers: a review of Einstein's richest laboratory, Luca Baiotti, Luciano Rezzolla, arXiv:1607.03540, 2016.
[Baiotti:2016qnr]
[2-8]
BlackHoleCam: fundamental physics of the Galactic center, C. Goddi et al., Int.J.Mod.Phys. D26 (2016) 1730001, arXiv:1606.08879.
[Goddi:2016jrs]
[2-9]
Graviton Mass Bounds, Claudia de Rham, J. Tate Deskins, Andrew J. Tolley, Shuang-Yong Zhou, arXiv:1606.08462, 2016.
[deRham:2016nuf]
[2-10]
Graviton Mass Bounds, Claudia de Rham, J. Tate Deskins, Andrew J. Tolley, Shuang-Yong Zhou, arXiv:1606.08462, 2016.
[1606.08462]
[2-11]
Time Delay Cosmography, Tommaso Treu, Philip J. Marshall, Astron.Astrophys.Rev. 24 (2016) 11, arXiv:1605.05333.
[Treu:2016ljm]
[2-12]
Tests of Gravitational Symmetries with Radio Pulsars, Lijing Shao, Norbert Wex, Astronomy 59 (2016) 699501, arXiv:1604.03662.
[Shao:2016ezh]
[2-13]
Thermodynamic properties of modified gravity theories, Kazuharu Bamba, Int.J.Geom.Meth.Mod.Phys. 13 (2016) 1630007, arXiv:1604.02632.
[Bamba:2016aoo]
[2-14]
Testing the No-Hair Theorem with Observations of Black Holes in the Electromagnetic Spectrum, Tim Johannsen, Class.Quant.Grav. 33 (2016) 124001, arXiv:1602.07694.
[Johannsen:2016uoh]
[2-15]
Lectures on General Theory of Relativity, Emil T. Akhmedov, arXiv:1601.04996, 2016.
[Akhmedov:2016ati]
[2-16]
The Effective Field Theorist's Approach to Gravitational Dynamics, Rafael A. Porto, Phys.Rept. 633 (2016) 1-104, arXiv:1601.04914.
[Porto:2016pyg]
[2-17]
Sgr A* and General Relativity, Tim Johannsen, Class.Quant.Grav. 33 (2016) 113001, arXiv:1512.03818.
[Johannsen:2015mdd]
[2-18]
f(T) teleparallel gravity and cosmology, Yi-Fu Cai, Salvatore Capozziello, Mariafelicia De Laurentis, Emmanuel N. Saridakis, Rept.Prog.Phys. 79 (2016) 106901, arXiv:1511.07586.
[Cai:2015emx]
[2-19]
General relativity and cosmology, Martin Bucher, Wei-Tou Ni, Int. J. Mod. Phys. D24 (2015) 1530030, arXiv:1509.04497.
[Bucher:2015ria]
[2-20]
General Relativity, V. Canuto, I. Goldman, arXiv:1509.01243, 2015.
[Canuto:2015jya]
[2-21]
Testing General Relativity with Present and Future Astrophysical Observations, Emanuele Berti et al., Class. Quant. Grav. 32 (2015) 243001, arXiv:1501.07274.
[Berti:2015itd]
[2-22]
Review of short-range gravity experiments in the LHC era, Jiro Murata, Saki Tanaka, Class.Quant.Grav. 32 (2015) 033001, arXiv:1408.3588.
[Murata:2014nra]
[2-23]
Gravitation and quantum interference experiments with neutrons, Hartmut Abele, Helmut Leeb, New J. Phys. 14 (2012) 055010, arXiv:1207.2953.
[Abele:2012dn]
[2-24]
Extended Theories of Gravity, Salvatore Capozziello, Mariafelicia De Laurentis, Phys. Rept. 509 (2011) 167-321, arXiv:1108.6266.
[Capozziello:2011et]
[2-25]
Advances in the measurement of the Lense-Thirring effect with Satellite Laser Ranging in the gravitational field of the Earth, Lorenzo Iorio, arXiv:0808.0658, 2008.
[Iorio:2008ga]
[2-26]
Dark Energy and Dark Gravity, Ruth Durrer, Roy Maartens, Gen. Rel. Grav. 40 (2008) 301-328, arXiv:0711.0077.
[Durrer:2007re]
[2-27]
Theory of gravitation theories: a no-progress report, Thomas P Sotiriou, Valerio Faraoni, Stefano Liberati, Int. J. Mod. Phys. D17 (2008) 399-423, arXiv:0707.2748.
[Sotiriou:2007zu]
[2-28]
Dark Energy and Gravity, T. Padmanabhan, Gen. Rel. Grav. 40 (2008) 529-564, arXiv:0705.2533.
[Padmanabhan:2007xy]
[2-29]
Supermassive Black Holes, Fulvio Melia, arXiv:0705.1537, 2007.
[Melia:2007vt]
[2-30]
Einstein-Cartan Theory, Andrzej Trautman, arXiv:gr-qc/0606062, 2006.
[Trautman:2006fp]
[2-31]
Quantum field theory in curved spacetime, Bernard S. Kay, arXiv:gr-qc/0601008, 2006. Encyclopedia of Mathematical Physics.
[Kay:2006jn]
[2-32]
The Confrontation between General Relativity and Experiment, Clifford M. Will, Living Rev. Rel. 9 (2012) 3, arXiv:gr-qc/0510072.
[Boom:2012bc]
[2-33]
Black Holes in Astrophysics, Ramesh Narayan, New J. Phys. 7 (2005) 199, arXiv:gr-qc/0506078.
[Narayan:2005ie]
[2-34]
Empirical Foundations of Relativistic Gravity, Wei-Tou Ni, Int. J. Mod. Phys. D14 (2005) 901, arXiv:gr-qc/0504116.
[Ni:2005ej]
[2-35]
Astrophysical Observations: Lensing and Eclipsing Einstein's Theories, Charles L. Bennett, Science 307 (2005) 879, arXiv:astro-ph/0503315.
[Bennett:2005ju]
[2-36]
Astrometry and Relativity, Costantino Sigismondi, Nuovo Cim. 120B (2005) 1169, arXiv:astro-ph/0501319.
[Sigismondi:2005nk]
[2-37]
What Black Holes Can Teach Us, Sabine Hossenfelder, arXiv:hep-ph/0412265, 2004.
[Hossenfelder:2004af]
[2-38]
Black Hole Paradoxes, Mario Rabinowitz, arXiv:astro-ph/0412101, 2004.
[Rabinowitz:2004mv]
[2-39]
Millisecond Pulsars as Tools of Fundamental Physics, Michael Kramer, Lect. Notes Phys. 648 (2004) 33, arXiv:astro-ph/0405178.
[Kramer:2004gi]
[2-40]
The Dynamics of General Relativity, R. Arnowitt, S. Deser, C. W. Misner, Gen. Rel. Grav. 40 (2008) 1997-2027, arXiv:gr-qc/0405109.
[Arnowitt:1962hi]
[2-41]
Black Holes in Theories with Large Extra Dimensions: a Review, Panagiota Kanti, Int. J. Mod. Phys. A19 (2004) 4899, arXiv:hep-ph/0402168.
[Kanti:2004nr]
[2-42]
Black holes and information theory, J. D. Bekenstein, Contemp. Phys. 45 (2003) 31, arXiv:quant-ph/0311049.
[Bekenstein:2003dt]
[2-43]
Quantum Gravity Phenomenology, G. Amelino-Camelia, arXiv:physics/0311037, 2003.
[AmelinoCamelia:2003dr]
[2-44]
Gravitoelectromagnetism: A Brief Review, B. Mashhoon, arXiv:gr-qc/0311030, 2003.
[Mashhoon:2003ax]
[2-45]
Tests of the gravitational inverse-square law, E. G. Adelberger, B. R. Heckel, A. E. Nelson, Ann. Rev. Nucl. Part. Sci. 53 (2003) 77, arXiv:hep-ph/0307284.
[Adelberger:2003zx]
[2-46]
Astronomical Tests of the Einstein Equivalence Principle, O. Preuss, arXiv:gr-qc/0305083, 2003.
[Preuss:2002dg]
[2-47]
Formation of Supermassive Black Holes: Simulations in General Relativity, Stuart L. Shapiro, arXiv:astro-ph/0304202, 2003. To appear in 'Carnegie Observatories Astrophysics Series, Vol. 1: Coevolution of Black Holes and Galaxies,' ed. L. C. Ho (Cambridge: Cambridge Univ. Press). (17 pages, 8 figures).
[Shapiro:2003xe]
[2-48]
Do black holes radiate?, Adam D. Helfer, Rept. Prog. Phys. 66 (2003) 943, arXiv:gr-qc/0304042.
[Helfer:2003va]
[2-49]
Classical geometry of de Sitter spacetime: An introductory review, Yoonbai Kim, Chae Young Oh, Namil Park, arXiv:hep-th/0212326, 2002.
[Kim:2002uz]
[2-50]
Gravitomagnetic effects, Angelo Tartaglia Matteo Luca Ruggiero, Nuovo Cim. 117B (2002) 743, arXiv:gr-qc/0207065.
[Ruggiero:2002hz]
[2-51]
Astrophysical evidence for the existence of black holes, Annalisa Celotti, John C. Miller, Dennis W. Sciama, Class. Quant. Grav. 16 (1999) A3, arXiv:astro-ph/9912186.
[Celotti:1999tg]
[2-52]
Lecture notes on general relativity, Sean M. Carroll, arXiv:gr-qc/9712019, 1997.
[Carroll:1997ar]

3 - Reviews - Conference Proceedings

[3-1]
Numerical Relativity and High Energy Physics: Recent Developments, Emanuele Berti, Vitor Cardoso, Luis C. B. Crispino, Leonardo Gualtieri, Carlos Herdeiro, Ulrich Sperhake, Int.J.Mod.Phys. D25 (2016) 1641022, arXiv:1603.06146. III Amazonian Symposium on Physics.
[Berti:2016rij]
[3-2]
Three little pieces for computer and relativity, Luciano Rezzolla, Fundam. Theor. Phys. 177 (2014) 391-425, arXiv:1303.6464. Relativity and Gravitation: 100 Years after Einstein in Prague, June 25 - 29, 2012, Prague, Czech Republic.
[Rezzolla:2013gwa]
[3-3]
General Relativity Today, Thibault Damour, Prog.Math.Phys. 52 (2007) 1-49, arXiv:0704.0754.
[Damour:2007uh]
[3-4]
Massive Black Holes: formation and evolution, Martin J. Rees, Marta Volonteri, IAU Symp. 238 (2007) 51, arXiv:astro-ph/0701512. IAU Symp. 238, 'Black Holes: from stars to galaxies - across the range of masses'.
[Rees:2007nc]
[3-5]
Experimental Evidence of Black Holes, Andreas Mueller, PoS P2GC (2006) 017, arXiv:astro-ph/0701228. School on Particle Physics, Gravity and Cosmology, Dubrovnik, 21 Aug - 2 Sep 2006.
[Mueller:2007rz]
[3-6]
Black-Hole Phenomenology, Neven Bilic, PoS P2GC (2006) 004, arXiv:astro-ph/0610657. School on Particle Physics, Gravity and Cosmology, Dubrovnik, 21 Aug - 2 Sept 2006.
[Bilic:2006bh]
[3-7]
Singularity Theorems in General Relativity: Achievements and Open Questions, Jose M.M. Senovilla, Einstein Stud. 12 (2012) 305-316, arXiv:physics/0605007. 7th International Conference on the History of General Relativity (HGR7), 'Einstein and the Changing World View of Physics, 1905-2005'.
[Senovilla:2006db]
[3-8]
Trust but verify: The case for astrophysical black holes, Scott A. Hughes, eConf C0507252 (2005) L006, arXiv:hep-ph/0511217. 2005 SLAC Summer Institute.
[Hughes:2005wj]
[3-9]
Applications of the Gauge Principle to Gravitational Interactions, Ali H. Chamseddine, Int. J. Geom. Meth. Mod. Phys. 3 (2006) 149, arXiv:hep-th/0511074.
[Chamseddine:2005td]
[3-10]
General Covariance and its Implications for Einstein's Space-Times, Luca Lusanna, J. Phys. Conf. Ser. 33 (2006) 107-117, arXiv:gr-qc/0510024.
[Lusanna:2005cn]
[3-11]
Lunar Laser Ranging Contributions to Relativity and Geodesy, Juergen Mueller, James G. Williams, Slava G. Turyshev, Astrophys.Space Sci.Libr. 349 (2008) 457-472, arXiv:gr-qc/0509114. 359th WE-Heraeus Seminar on 'Lasers, Clocks, and Drag-Free: Technologies for Future Exploration in Space and Tests of Gravity,' ZARM, Bremen, Germany, May 30-June 1, 2005.
[Muller:2005sr]
[3-12]
Numerical Relativity at the Frontier, Stuart L. Shapiro, Prog. Theor. Phys. Suppl. 163 (2006) 100-119, arXiv:gr-qc/0509094. YKIS 2005, Kyoto.
[Shapiro:2005dc]
[3-13]
Black holes and fundamental physics, José P. S. Lemos, arXiv:gr-qc/0507101, 2005. Fifth International Workshop on New Worlds in Astroparticle Physics, University of the Algarve, Faro, Portugal, January 8-10, 2005.
[Lemos:2005jx]
[3-14]
The Significance of the General Principle of Relativity, Sanjay M Wagh, arXiv:physics/0502088, 2005. IAGRG Conference, Jaipur, India, December 2004.
[Corbitt:2005qv]
[3-15]
Lectures on gravitational lensing, Ramesh Narayan, Matthias Bartelmann, arXiv:astro-ph/9606001, 1996.
[Narayan:1996ba]

4 - Reviews - Gravitational Lensing

[4-1]
Weak gravitational lensing, Matthias Bartelmann, Matteo Maturi, arXiv:1612.06535, 2016. Invited and refereed contribution to Scholarpedia.
[Bartelmann:2016dvf]
[4-2]
The First Heroic Decade of Microlensing, N.W. Evans, arXiv:astro-ph/0304252, 2003.
[Evans:2003ej]

5 - Reviews - Gravitational Lensing - Conference Proceedings

[5-1]
Recent Developments in Gravitational Microlensing, Andrew Gould, ASP Conf.Ser. 403 (2009) 86, arXiv:0803.4324. The Variable Universe: A Celebration of Bohdan Paczynski, 29 Sept 2007.
[Gould:2008zu]
[5-2]
Gravitational lensing, Olaf Wucknitz, arXiv:0709.4005, 2007. 8th EVN symposium held in Torun, Poland, September 2006.
[Wucknitz:2007wc]
[5-3]
An introduction to Gravitational Lensing in TeVeS gravity, HongSheng Zhao, Mon.Not.Roy.Astron.Soc (2006), arXiv:astro-ph/0611777. Sicily Gravitational Lensing School, Oct 29-Nov 3.
[Zhao:2006ve]
[5-4]
Gravitational Microlensing, Joachim Wambsganss, arXiv:astro-ph/0604278, 2006. 'Gravitational Lensing: Strong, Weak and Micro', 33rd Saas-Fee Advanced Course.
[Wambsganss:2006nj]
[5-5]
Lensing Magnification and QSO-Galaxy Cross-Correlations: Observations, Theory and Simulations, Antonio C. C. Guimarães, Braz. J. Phys. 35 (2005) 1179, arXiv:astro-ph/0510719. '100 years of relativity - international conference on classical and quantum aspects of gravity and cosmology', 2005.
[Guimaraes:2005is]
[5-6]
Weak Gravitational Lensing, Peter Schneider, arXiv:astro-ph/0509252, 2005. 33rd Advanced Saas Fee Course on Gravitational Lensing: Strong, Weak, and Micro, Les Diablerets, Switzerland, 7-12 Apr 2003.
[Schneider:2005ka]
[5-7]
Gravitational Lensing by Large Scale Structures: A Review, L. Van Waerbeke, Y. Mellier, arXiv:astro-ph/0305089, 2003. Aussois winter school, january 2003.
[VanWaerbeke:2003uq]
[5-8]
Quasar Lensing: the Observer's Point of View, F. Courbin, arXiv:astro-ph/0304497, 2003. 'Gravitational Lensing: a unique tool for cosmology', Aussois, France, January 2003.
[Courbin:2003ip]
[5-9]
The Basics of Lensing, Konrad Kuijken, arXiv:astro-ph/0304438, 2003. 'Gravitational Lensing: a unique tool for cosmology', Aussois, France, January 2003.
[Kuijken:2003xz]
[5-10]
Numerical Methods in Gravitational Lensing, Matthias Bartelmann, arXiv:astro-ph/0304162, 2003. Gravitational Lensing Winter School, Aussois, 2003.
[Bartelmann:2003ki]

6 - Reviews - Gravitational Waves

[6-1]
The Gravitational Wave Physics, Rong-Gen Cai, Zhoujian Cao, Zong-Kuan Guo, Shao-Jiang Wang, Tao Yang, arXiv:1703.00187, 2017.
[Cai:2017cbj]
[6-2]
A Brief History of Gravitational Waves, Jorge L. Cervantes-Cota, Salvador Galindo-Uribarri, George F. Smoot, Universe 2 (2016) 22, arXiv:1609.09400.
[Cervantes-Cota:2016zjc]
[6-3]
Implications of the Gravitational Wave Event GW150914, M. Coleman Miller, Gen.Rel.Grav. 48 (2016) 95, arXiv:1606.06526.
[Miller:2016krr]
[6-4]
Gravitational waves from inflation, Maria Chiara Guzzetti, Nicola Bartolo, Michele Liguori, Sabino Matarrese, Riv.Nuovo Cim. 39 (2016) 1, arXiv:1605.01615.
[Guzzetti:2016mkm]
[6-5]
Gravitational wave astrophysics, data analysis and multimessenger astronomy, Hyung Mok Lee et al., Sci. China Phys. Mech. Astron. 58 (2015) 120403, arXiv:1602.05573.
[Lee:2015esy]
[6-6]
Technology for the next gravitational wave detectors, Valery P. Mitrofanov et al., Sci. China Phys. Mech. Astron. 58 (2015) 120404, arXiv:1602.05021.
[Mitrofanov:2015maz]
[6-7]
Black Hole Based Tests of General Relativity, Kent Yagi, Leo C. Stein, Class. Quant. Grav. 33 (2016) 054001, arXiv:1602.02413.
[Yagi:2016jml]
[6-8]
Roadmap for gravitational wave detection in space - a preliminary study, Wei Gao et al., arXiv:1601.07050, 2016.
[Gao:2016tzv]
[6-9]
Electromagnetic Signatures of Neutron Star Mergers in the Advanced LIGO Era, Rodrigo Fernandez, Brian D. Metzger, Ann.Rev.Nucl.Part.Sci. 66 (2016) 2115, arXiv:1512.05435.
[Fernandez:2015use]
[6-10]
Gravitational-Wave Detection and Astrophysics with Pulsar Timing Arrays, Sarah Burke-Spolaor, arXiv:1511.07869, 2015.
[Burke-Spolaor:2015xpf]
[6-11]
Hunting Gravitational Waves with Multi-Messenger Counterparts: Australia's Role, E. J. Howell et al., Publ. Astron. Soc. Austral. 32 (2015) 46, arXiv:1511.02959.
[Howell:2015xzw]
[6-12]
Sources of Gravitational Waves: Theory and Observations, Alessandra Buonanno, B.S. Sathyaprakash, arXiv:1410.7832, 2014.
[Buonanno:2014aza]
[6-13]
Physics, Astrophysics and Cosmology with Gravitational Waves, B. S. Sathyaprakash, B. F. Schutz, Living Rev. Rel. 12 (2009) 2, arXiv:0903.0338.
[Sathyaprakash:2009xs]
[6-14]
Current status of Japanese detectors, Daisuke Tatsumi et al., Class. Quant. Grav. 24 (2007) S399-S404, arXiv:0704.2881.
[Tatsumi:2007fc]
[6-15]
Gravitational waves and fundamental physics, Michele Maggiore, Mem.Soc.Ast.It. 83 (2012) 225, arXiv:gr-qc/0602057.
[DeLaurentis:2011tb]
[6-16]
The basics of gravitational wave theory, Eanna E. Flanagan, Scott A. Hughes, New J. Phys. 7 (2010) 204, arXiv:gr-qc/0501041.
[DeLaurentis:2010bv]
[6-17]
Testing General Relativity with Pulsar Timing, Ingrid H. Stairs, Living Rev. Rel. 6 (2003) 5, arXiv:astro-ph/0307536.
[Stairs:2003eg]
[6-18]
Update on gravitational-wave research, L. P. Grishchuk, arXiv:gr-qc/0305051, 2003.
[Grishchuk:2003uh]
[6-19]
Resource Letter GrW-1: Gravitational Waves, Joan M. Centrella, Am. J. Phys. 71 (2003) 520, arXiv:gr-qc/0211084.
[Centrella:2002fv]
[6-20]
Gravitational waves from instabilities in relativistic stars, N. Andersson, Class. Quant. Grav. 20 (2003) R105, arXiv:astro-ph/0211057.
[Andersson:2002ch]
[6-21]
Numerical Relativity and Compact Binaries, Thomas W. Baumgarte, Stuart L. Shapiro, Phys. Rep. 376 (2003) 41, arXiv:gr-qc/0211028.
[Baumgarte:2002jm]
[6-22]
Listening to the Universe with Gravitational-Wave Astronomy, Scott A. Hughes, Annals Phys. 303 (2003) 142, arXiv:astro-ph/0210481.
[Hughes:2002yy]
[6-23]
Gravitational Waves from Gravitational Collapse, Kimberly C. B. New, Living Rev. Rel. 6 (2003) 2, arXiv:gr-qc/0206041.
[New:2002ew]
[6-24]
Gravitational radiation, Bernard F. Schutz, arXiv:gr-qc/0003069, 2000.
[Schutz:2000vj]
[6-25]
Gravitational wave astronomy, B. F. Schutz, Class. Quant. Grav. 16 (1999) A131-A156, arXiv:gr-qc/9911034.
[Schutz:1999xj]

7 - Reviews - Gravitational Waves - Conference Proceedings

[7-1]
Joint searches between gravitational-wave interferometers and high-energy neutrino telescopes: science reach and analysis strategies, V. Van Elewyck et al., Int. J. Mod. Phys. D18 (2009) 1655-1659, arXiv:0906.4957. 2d Heidelberg Workshop: 'High-Energy Gamma-rays and Neutrinos from Extra-Galactic Sources', Heidelberg (Germany), January 13-16, 2009.
[VanElewyck:2009pf]
[7-2]
Gamma-Ray, Neutrino and Gravitational Wave Detection: OG 2.5,2.6,2.7 Rapporteur, G. Rowell, arXiv:0801.3886, 2008. 30th ICRC (Merida, Mexico, 2007).
[Rowell:2008nj]
[7-3]
LISA sources and science, Scott A. Hughes, arXiv:0711.0188, 2007. 7th Edoardo Amaldi Conference on Gravitational Waves.
[Hughes:2007xm]
[7-4]
Gravitational waves, Alessandra Buonanno, arXiv:0709.4682, 2007. Les Houches Summer School, Particle Physics and Cosmology: The Fabric of Spacetime, Les Houches, France, 31 Jul - 25 Aug 2006.
[Buonanno:2007yg]
[7-5]
The New Science of Gravitational Waves, Craig J. Hogan, ASP Conf.Ser. 395 (2008) 239, arXiv:0709.0608. Frontiers of Astrophysics: A Celebration of NRAO's 50th Anniversary.
[Hogan:2007cg]
[7-6]
Les Houches Lectures on Effective Field Theories and Gravitational Radiation, Walter D. Goldberger, arXiv:hep-ph/0701129, 2007. Les Houches 2006.
[Goldberger:2007hy]
[7-7]
Relic Gravitational Waves and Cosmology, L. P. Grishchuk, Phys. Usp. 48 (2005) 1235-1247, arXiv:gr-qc/0504018. `Zeldovich-90', Moscow, December 2004.
[Grishchuk:2005qe]
[7-8]
An overview of gravitational-wave sources, Curt Cutler, Kip S. Thorne, arXiv:gr-qc/0204090, 2002. 16th International Conference on General Relativity and Gravitation (GR16), Durban, South Africa, 15-21 Jul 2001.
[Cutler:2002me]

8 - Reviews - Quantum Gravity and Cosmology

[8-1]
Multifractional theories: an unconventional review, Gianluca Calcagni, arXiv:1612.05632, 2016.
[Calcagni:2016azd]
[8-2]
Symmetry Reduced Loop Quantum Gravity: A Bird's Eye View, Abhay Ashtekar, Int.J.Mod.Phys. D25 (2016) 1642010, arXiv:1605.02648.
[Ashtekar:2016ecx]
[8-3]
What lattice theorists can do for quantum gravity, Masanori Hanada, Int.J.Mod.Phys. A31 (2016) 1643006, arXiv:1604.05421.
[Hanada:2016jok]
[8-4]
The Atoms Of Space, Gravity and the Cosmological Constant, T. Padmanabhan, Int.J.Mod.Phys. D25 (2016) 1630020, arXiv:1603.08658.
[Padmanabhan:2016eld]
[8-5]
The Holographic Universe, Jean-Pierre Luminet, arXiv:1602.07258, 2016.
[Luminet:2016cuw]
[8-6]
Conceptual issues in loop quantum cosmology, Aurelien Barrau, Boris Bolliet, Int.J.Mod.Phys. D25 (2016) 1642008, arXiv:1602.04452.
[Barrau:2016nwy]
[8-7]
Theory and Phenomenology of Spacetime Defects, Sabine Hossenfelder, Adv.High Energy Phys. 2014 (2014) 950672, arXiv:1401.0276.
[Hossenfelder:2014hha]
[8-8]
A review of Quantum Gravity at the Large Hadron Collider, Xavier Calmet, Mod. Phys. Lett. A25 (2010) 1553-1579, arXiv:1005.1805.
[Calmet:2010nt]
[8-9]
String Cosmology: A Review, Liam McAllister, Eva Silverstein, Gen. Rel. Grav. 40 (2008) 565-605, arXiv:0710.2951.
[McAllister:2007bg]
[8-10]
Loop Quantum Gravity: An Inside View, Thomas Thiemann, Lect. Notes Phys. 721 (2007) 185-263, arXiv:hep-th/0608210.
[Thiemann:2006cf]
[8-11]
Black Holes at Future Colliders and Beyond: a Topical Review, Greg Landsberg, J. Phys. G32 (2006) R337-R365, arXiv:hep-ph/0607297.
[Landsberg:2006mm]
[8-12]
Quantum Cosmology, Martin Bojowald, arXiv:gr-qc/0603110, 2006.
[Bojowald:2006nd]
[8-13]
Phenomenological Quantum Gravity, Dagny Kimberly, Joao Magueijo, Aip Conf. Proc. 782 (2005) 241, arXiv:gr-qc/0502110. Lectures given at XI BSCG.
[Kimberly:2005at]
[8-14]
How far are we from the quantum theory of gravity?, Lee Smolin, arXiv:hep-th/0303185, 2003.
[Smolin:2003rk]
[8-15]
Why the quantum must yield to gravity, Joy Christian, arXiv:gr-qc/9810078, 1998.
[Christian:1998ep]

9 - Reviews - Quantum Gravity and Cosmology - Conference Proceedings

[9-1]
Gravitons in Kaluza-Klein Theory, V H Satheesh Kumar, P K Suresh, arXiv:gr-qc/0605016, 2006.
[SatheeshKumar:2006bu]
[9-2]
Gravity, Geometry and the Quantum, Abhay Ashtekar, AIP Conf. Proc. 861 (2006) 3-14, arXiv:gr-qc/0605011. `Einstein Century' Conference, 15-22 July, Paris.
[Ashtekar:2006bp]

10 - Reviews - Alternative Models - Conference Proceedings

[10-1]
Einstein-aether gravity: a status report, Ted Jacobson, PoS QG-PH (2007) 020, arXiv:0801.1547. From Quantum to Emergent Gravity: Theory and Phenomenology, June 11-15 2007, SISSA; Trieste, Italy.
[Jacobson:2008aj]

11 - Fundamental Papers - Experiment

[11-1]
Observation of Gravitational Waves from a Binary Black Hole Merger, B. P. Abbott et al. (LIGO and VIRGO), Phys. Rev. Lett. 116 (2016) 061102, arXiv:1602.03837.
[Abbott:2016blz]

12 - Fundamental Papers - Theory

[12-1]
The Foundation of the General Theory of Relativity, Albert Einstein, Annalen Phys. 49 (1916) 769-822.
[Einstein:1916vd]
[12-2]
The Speed of Light and the Statics of the Gravitational Field, Albert Einstein, Annalen Phys. 38 (1912) 355-369.
[Einstein:1912bi]
[12-3]
On the Theory of the Static Gravitational Field, Albert Einstein, Annalen Phys. 38 (1912) 443-458.
[Einstein:1912bj]
[12-4]
On The influence of gravitation on the propagation of light, Albert Einstein, Annalen Phys. 35 (1911) 898-908.
[Einstein:1911vc]

13 - Fundamental Papers - Theory - Alternative Models

[13-1]
Mach's principle and a relativistic theory of gravitation, C. Brans, R. H. Dicke, Phys. Rev. 124 (1961) 925-935.
[Brans:1961sx]

14 - Experiment

[14-1]
LARES succesfully launched in orbit: satellite and mission description, Antonio Paolozzi, Ignazio Ciufolini, Acta Astronaut. 91 (2013) 313, arXiv:1305.6823.
[Paolozzi:2013bla]
[14-2]
Anomalous Orbital-Energy Changes Observed during Spacecraft Flybys of Earth, John D. Anderson, James K. Campbell, John E. Ekelund, Jordan Ellis, James F. Jordan, Phys. Rev. Lett. 100 (2008) 091102.
[Anderson:2008zz]
[14-3]
Tests of the Gravitational Inverse-Square Law below the Dark-Energy Length Scale, D.J. Kapner et al., Phys. Rev. Lett. 98 (2007) 021101, arXiv:hep-ph/0611184.
[Kapner:2006si]
[14-4]
Tests of general relativity from timing the double pulsar, M. Kramer et al., Science 314 (2006) 97-102, arXiv:astro-ph/0609417.
[Kramer:2006nb]
[14-5]
A Measurement of Newton's Gravitational Constant, St. Schlamminger et al., Phys. Rev. D74 (2006) 082001, arXiv:gr-qc/0609027.
[Schlamminger:2006km]
[14-6]
Sub-millimeter Tests of the Gravitational Inverse-square Law, C.D. Hoyle et al., Phys. Rev. D70 (2004) 042004, arXiv:hep-ph/0405262.
[Hoyle:2004cw]
[14-7]
Cold Atom Clocks, Precision Oscillators and Fundamental Tests, S. Bize et al., Lect. Notes Phys. 648 (2004) 189, arXiv:astro-ph/0310112.
[Bize:2003ds]
[14-8]
Quantum states of neutrons in the gravitational field and limits for non-Newtonian interaction in the range between 1 micron and 10 microns, Hartmut Abele, Stefan Baessler, Alexander Westphal, Lect. Notes Phys. 631 (2003) 355, arXiv:hep-ph/0301145.
[Abele:2003ga]

15 - Experiment - Conference Proceedings

[15-1]
A Gravity of Earth Measurement with a qBOUNCE Experiment, G. Cronenberg et al., PoS EPS-HEP2015 (2016) 408, arXiv:1512.09134. EPS Conference on High Energy Physics 2015.
[Cronenberg:2015bol]

16 - Experiment - Gravitational Lensing

[16-1]
COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses III. Redshift of the lensing galaxy in seven gravitationally lensed quasars, A. Eigenbrod et al., Astron.Astrophys. (2005), arXiv:astro-ph/0511026.
[Eigenbrod:2005ub]
[16-2]
A Search for Radio Gravitational Lenses, Using the Sloan Digital Sky Survey and the Very Large Array, Edward R. Boyce et al., Astrophys. J. 640 (2006) 42, arXiv:astro-ph/0510124.
[Boyce:2005mj]
[16-3]
Sloan Digital Sky Survey Spectroscopic Lens Search: I. Discovery of Intermediate-Redshift Star-Forming Galaxies Behind Foreground Luminous Red Galaxies, A. S. Bolton et al., Astron. J. 127 (2004) 1860, arXiv:astro-ph/0311055.
[Bolton:2003cw]
[16-4]
SDSS J0903+5028: A New Gravitational Lens, D. E. Johnston et al. (SDSS), Astron. J. 126 (2003) 2281, arXiv:astro-ph/0307371.
[Johnston:2003vs]
[16-5]
Microlensing limits on numbers and orbits of extra-solar planets from the 1998-2000 OGLE events, Y. Tsapras, K. Horne, S. Kane, R. Carson, Mon. Not. Roy. Astron. Soc. 343 (2003) 1131, arXiv:astro-ph/0304284.
[Tsapras:2003hv]
[16-6]
Chandra Observations of QSO 2237+0305, X. Dai et al., Astrophys. J. 589 (2003) 100, arXiv:astro-ph/0301592.
[Dai:2003ie]
[16-7]
The Optical Gravitational Lensing Experiment. BVI Maps of Dense Stellar Regions. III. The Galactic Bulge, A. Udalski et al., Acta Astron. 52 (2002) 217, arXiv:astro-ph/0210278.
[Udalski:2002kh]

17 - Experiment - Gravitational Waves

[17-1]
Search for Neutrinos in Super-Kamiokande associated with Gravitational Wave Events GW150914 and GW151226, K. Abe et al. (Super-Kamiokande), arXiv:1608.08745, 2016.
[1608.08745]
[17-2]
Search for electron antineutrinos associated with gravitational wave events GW150914 and GW151226 using KamLAND, A. Gando et al. (KamLAND), Astrophys.J. 829 (2016) L34, arXiv:1606.07155.
[Gando:2016zhq]
[17-3]
High-energy Neutrino follow-up search of Gravitational Wave Event GW150914 with ANTARES and IceCube, S. Adrian-Martinez et al. (Virgo, IceCube, ANTARES, LIGO), Phys. Rev. D93 (2016) 122010, arXiv:1602.05411.
[Adrian-Martinez:2016xgn]
[17-4]
GW150914: Implications for the stochastic gravitational wave background from binary black holes, B. P. Abbott et al. (LIGO and VIRGO), Phys. Rev. Lett. 116 (2016) 131102, arXiv:1602.03847.
[TheLIGOScientific:2016wyq]
[17-5]
Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914, B. P. Abbott (LIGO), arXiv:1602.03845, 2016.
[Abbott:2016jsd]
[17-6]
Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914, B. P. Abbott et al. (LIGO and VIRGO), Class.Quant.Grav. 33 (2016) 134001, arXiv:1602.03844.
[TheLIGOScientific:2016zmo]
[17-7]
Observing gravitational-wave transient GW150914 with minimal assumptions, LIGO, Virgo, Phys. Rev. D93 (2016) 122004, arXiv:1602.03843.
[TheLIGOScientific:2016uux]
[17-8]
Properties of the binary black hole merger GW150914, LIGO, Virgo, Phys. Rev. Lett. 116 (2016) 241102, arXiv:1602.03840.
[TheLIGOScientific:2016wfe]
[17-9]
GW150914: First results from the search for binary black hole coalescence with Advanced LIGO, B. P. Abbott et al. (LIGO and VIRGO), Phys. Rev. D93 (2016) 122003, arXiv:1602.03839.
[TheLIGOScientific:2016qqj]
[17-10]
GW150914: The Advanced LIGO Detectors in the Era of First Discoveries, B. P. Abbott et al. (LIGO and VIRGO), Phys. Rev. Lett. 116 (2016) 131103, arXiv:1602.03838.
[TheLIGOScientific:2016agk]
[17-11]
Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009-2010 LIGO and Virgo Data, J. Aasi et al. (LIGO and Virgo), Phys. Rev. Lett. 113 (2014) 231101, arXiv:1406.4556.
[Aasi:2014zwg]
[17-12]
Setup OGRAN as a high frequency resonance gravity gradiometer, Bagaev S.N. et al., arXiv:1403.0827, 2014.
[N.:2014xwa]
[17-13]
A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007, S. Adrian-Martinez et al. (Antares), JCAP 1306 (2013) 008, arXiv:1205.3018.
[AdrianMartinez:2012tf]
[17-14]
Beating the spin-down limit on gravitational wave emission from the Crab pulsar, : B. Abbott (The LIGO Scientific), Astrophys. J. 683 (2008) L45-L50, arXiv:0805.4758.
[Abbott:2008fx]
[17-15]
Coherent searches for periodic gravitational waves from unknown isolated sources and Scorpius X-1: results from the second LIGO science run, LIGO (LIGO), Phys. Rev. D76 (2007) 082001, arXiv:gr-qc/0605028.
[Abbott:2006vg]
[17-16]
Upper Limits on a Stochastic Background of Gravitational Waves, B. Abbott et al. (LIGO), Phys. Rev. Lett. 95 (2005) 221101, arXiv:astro-ph/0507254.
[Abbott:2005ez]
[17-17]
Limits on gravitational wave emission from selected pulsars using LIGO data, B. Abbott et al. (LIGO), Phys. Rev. Lett. 94 (2005) 181103, arXiv:gr-qc/0410007.
[Abbott:2004ig]
[17-18]
Study of the coincidences between the gravitational wave detectors EXPLORER and NAUTILUS in 2001, P. Astone et al., Class. Quant. Grav. 19 (2002) 5449-5463, arXiv:gr-qc/0210053.
[Astone:2002ra]

18 - Theory

[18-1]
No repulsive force in General Relativity, M. A. Abramowicz, J. -P. Lasota, arXiv:1608.02882, 2016.
[Abramowicz:2016ksa]
[18-2]
Emergent Spacetime: Reality or Illusion?, Hyun Seok Yang, arXiv:1504.00464, 2015.
[Yang:2015yga]
[18-3]
A Gravitational Origin of the Arrows of Time, Julian Barbour, Tim Koslowski, Flavio Mercati, arXiv:1310.5167, 2013.
[Barbour:2013jya]
[18-4]
Conservative 3+1 General Relativistic Boltzmann Equation, Christian Y. Cardall, Eirik Endeve, Anthony Mezzacappa, Phys. Rev. D88 (2013) 023011, arXiv:1305.0037.
[Cardall:2013kwa]
[18-5]
Truncated Moment Formalism for Radiation Hydrodynamics in Numerical Relativity, Masaru Shibata, Kenta Kiuchi, Yu-ichiro Sekiguchi, Yudai Suwa, Prog. Theor. Phys. 125 (2011) 1255-1287, arXiv:1104.3937.
[Shibata:2011kx]
[18-6]
Classical Gravity Does Not Refract Negatively, Martin W. McCall, Phys. Rev. Lett. 98 (2007) 091102.
[McCall-PRL-98-091102-2007]
[18-7]
Censorship of Chronological Violations, Hunter Monroe, arXiv:gr-qc/0607134, 2006.
[Monroe:2006zt]
[18-8]
Graviton Physics, Barry R. Holstein, Am. J. Phys. 74 (2006) 1002-1011, arXiv:gr-qc/0607045.
[Holstein:2006bh]
[18-9]
Einstein equations: exact solutions, Jiri Bicak, arXiv:gr-qc/0604102, 2006.
[Bicak:2006bw]
[18-10]
Black Hole Radiation and Volume Statistical Entropy, Mario Rabinowitz, Int. J. Theor. Phys. 45 (2006) 851-858, arXiv:physics/0506029.
[Rabinowitz:2005vn]
[18-11]
Whitehead's Principle of Relativity - Unpublished Lectures by J. L. Synge, FRS, John Coleman, arXiv:physics/0505027, 2005.
[Synge:2005yh]
[18-12]
Simple Analytic Models of Gravitational Collapse, R. J. Adler, J. D. Bjorken, P. Chen, J. S. Liu, Am. J. Phys. 73 (2005) 1148, arXiv:gr-qc/0502040.
[Adler:2005vn]
[18-13]
Applications of geometric algebra to physics: Theoretical framework, cosmological Hawking radiation and Unruh effect, S. Setiawan, arXiv:physics/0412070, 2004.
[Setiawan:2004dq]
[18-14]
Are there hyperentropic objects ?, Jacob D. Bekenstein, Phys. Rev. D70 (2004) 121502, arXiv:hep-th/0410106.
[Bekenstein:2004ni]
[18-15]
Discrete symmetries in general relativity: The dark side of gravity, Frederic Henry-Couannier, Int. J. Mod. Phys. A20 (2005) 2341-2346, arXiv:gr-qc/0410055.
[HenryCouannier:2005re]
[18-16]
What is a particle?, Daniele Colosi, Carlo Rovelli, Class.Quant.Grav. 26 (2009) 025002, arXiv:gr-qc/0409054.
[Colosi:2004vw]
[18-17]
On the Clock Paradox in the case of circular motion of the moving clock, Lorenzo Iorio, Eur.J. Phys. 26 (2005) 535, arXiv:physics/0406139.
[Iorio:2004dw]
[18-18]
An easy way to Gravimagnetism, Claus W. Turtur, arXiv:physics/0406078, 2004.
[physics/0406078]
[18-19]
On the thermodynamic origin of the Hawking entropy and a measurement of the Hawking temperature, Michael Petri, arXiv:gr-qc/0405008, 2004.
[Petri:2004ge]
[18-20]
The Chrono'Geometrical Structure of Special and General Relativity: Towards a Background-Independent Description of the Gravitational Field and Elementary Particles, Luca Lusanna, arXiv:gr-qc/0404122, 2004.
[Lusanna:2004yj]
[18-21]
A General Relativistic Model of Light Propagation in the Gravitational Field of the Solar System: the Static Case, F. de Felice et al., Astrophys. J. 607 (2004) 580, arXiv:astro-ph/0401637.
[deFelice:2004nf]
[18-22]
How far can the generalized second law be generalized?, P. C. W. Davies, T. M. Davis, Found. Phys. 32(12) (2002) 1877, arXiv:astro-ph/0310522.
[Davies:2003me]
[18-23]
Exact calculation of the Perihelion Precession of Mercury in General Relativity, the Cosmological Constant and Jacobi's Inversion problem, G. V. Kraniotis, S. B. Whitehouse, Class. Quant. Grav. 20 (2003) 4817, arXiv:astro-ph/0305181.
[Kraniotis:2003ig]
[18-24]
Semiclassical quantization of gravity I: Entropy of horizons and the area spectrum, T. Padmanabhan, A. Patel, arXiv:hep-th/0305165, 2003.
[Padmanabhan:2003qq]
[18-25]
A Nonlocal Metric Formulation of MOND, M. E. Soussa, R. P. Woodard, Class. Quant. Grav. 20 (2003) 2737, arXiv:astro-ph/0302030.
[Soussa:2003vv]
[18-26]
On the Gravitomagnetic Time Delay, I. Ciufolini, S. Kopeikin, B. Mashhoon, F. Ricci, Phys. Lett. A308 (2003) 101, arXiv:gr-qc/0210015.
[Ciufolini:2002iq]
[18-27]
The equivalence principle and the bending of light, R. Ferraro, Am. J. Phys. 71 (2003) 168-170, arXiv:gr-qc/0209028.
[Ferraro:2002uw]
[18-28]
General Relativity, Cosmological Constant and Modular Forms, G. V. Kraniotis, S. B. Whitehouse, Class. Quant. Grav. 19 (2002) 5073-5100, arXiv:gr-qc/0105022.
[Kraniotis:2001py]
[18-29]
Spinor algebra transformations as gauge symmetry: Limit to Einstein gravity, V. V. Kiselev, arXiv:hep-ph/0104222, 2001.
[Kiselev:2001xu]
[18-30]
The Equivalence of inertial and passive gravitational mass, P. G. Roll, R. Krotkov, R. H. Dicke, Ann. Phys. 26 (1964) 442-517.
[Roll:1964rd]
[18-31]
Mach's principle and invariance under transformation of units, R. H. Dicke, Phys. Rev. 125 (1962) 2163-2167.
[Dicke:1961gz]

19 - Theory - Conference Proceedings

[19-1]
Gravity as an emergent phenomenon: A conceptual description, T. Padmanabhan, AIP Conf. Proc. 939 (2007) 114-123, arXiv:0706.1654.
[Padmanabhan:2007tm]
[19-2]
Finding and using exact solutions of the Einstein equations, M. A. H. MacCallum, AIP Conf. Proc. 841 (2006) 129-143, arXiv:gr-qc/0601102. ERE05, Oviedo, September 2005.
[MacCallum:2006mf]

20 - Theory - Black Holes

[20-1]
Classical Black Holes Are Hot, Erik Curiel, arXiv:1408.3691, 2014.
[Curiel:2014zua]
[20-2]
Information Preservation and Weather Forecasting for Black Holes, S.W. Hawking, arXiv:1401.5761, 2014.
[Hawking:2014tga]
[20-3]
Astrophysical black holes may radiate, but they do not evaporate, George F R Ellis, arXiv:1310.4771, 2013.
[Ellis:2013epa]
[20-4]
Black Holes: Complementarity or Firewalls?, Ahmed Almheiri, Donald Marolf, Joseph Polchinski, James Sully, JHEP 1302 (2013) 062, arXiv:1207.3123.
[Almheiri:2012rt]
[20-5]
Black Holes with Flavors of Quantum Hair?, Gia Dvali, arXiv:hep-th/0607144, 2006.
[Dvali:2006nh]
[20-6]
On the Mechanism of Hawking Radiation, V.A. Berezin, A. Boyarsky, A.Yu. Neronov, Gravitation & (1999) Vol, arXiv:gr-qc/0605099.
[Berezin:1999nn]
[20-7]
Strings, Black Holes, and Quantum Information, Renata Kallosh, Andrei Linde, Phys. Rev. D73 (2006) 104033, arXiv:hep-th/0602061.
[Kallosh:2006zs]
[20-8]
Backreaction of the Hawking radiation, G. A. Vilkovisky, Phys. Lett. B638 (2006) 523-525, arXiv:hep-th/0511184.
[Vilkovisky:2005db]
[20-9]
Spin-1 Amplitudes in Black-Hole Evaporation, A.N.St.J. Farley, P.D. D'Eath, arXiv:gr-qc/0510030, 2005.
[Farley:2005cu]
[20-10]
Quantum Amplitudes in Black-Hole Evaporation II. Spin-0 Amplitude, A.N.St.J. Farley, P.D. D'Eath, arXiv:gr-qc/0510029, 2005.
[Farley:2005ct]
[20-11]
Quantum Amplitudes in Black-Hole Evaporation I. Complex Approach, A.N.St.J. Farley, P.D. D'Eath, arXiv:gr-qc/0510028, 2005.
[Farley:2005cs]
[20-12]
Horizon Mass Theorem, Yuan K. Ha, Int. J. Mod. Phys. D14 (2005) 2219, arXiv:gr-qc/0509063.
[Ha:2005ap]
[20-13]
Stable dark energy stars, Francisco S. N. Lobo, Class. Quant. Grav. 23 (2006) 1525, arXiv:gr-qc/0508115.
[Lobo:2005uf]
[20-14]
Information loss in black holes, S.W. Hawking, Phys. Rev. D72 (2005) 084013, arXiv:hep-th/0507171.
[Hawking:2005kf]
[20-15]
Where has all the information gone?, H. D. Zeh, Phys. Lett. A347 (2005) 1, arXiv:gr-qc/0507051.
[Zeh:2005ka]
[20-16]
Comments on the proposal of Dark Energy Stars by Chapline, Abhas Mitra, arXiv:astro-ph/0504384, 2005.
[Mitra:2005js]
[20-17]
Final State of Hawking Radiation in Quantum General Relativity, B.F.L. Ward, Acta Phys. Polon. B37 (2006) 347, arXiv:hep-ph/0503189.
[Ward:2005jh]
[20-18]
Gravitational vacuum condensate stars, Pawel O. Mazur, Emil Mottola, Proc. Nat. Acad. Sci. 111 (2004) 9545-9550, arXiv:gr-qc/0407075.
[Mazur:2004fk]
[20-19]
Black holes radiate but do not evaporate, H. Nikolic, Int. J. Mod. Phys. D14 (2005) 2257, arXiv:hep-th/0402145.
[Nikolic:2004wu]
[20-20]
Stable gravastars - an alternative to black holes?, Matt Visser, David L. Wiltshire, Class. Quant. Grav. 21 (2004) 1135-1152, arXiv:gr-qc/0310107.
[Visser:2003ge]
[20-21]
Little Black Holes:Dark Matter And Ball Lightning, Mario Rabinowitz, Astrophys. Space Sci. 262 (1999) 391-410, arXiv:astro-ph/0212251.
[Rabinowitz:2002gy]
[20-22]
Gravitational Tunneling Radiation, Mario Rabinowitz, Phys. Essays 12 (1999) 346-357, arXiv:astro-ph/0212249.
[Rabinowitz:2002gw]
[20-23]
Varying alpha and black hole entropy, Malcolm Fairbairn, Michel H.G. Tytgat, JHEP 0302 (2003) 005, arXiv:hep-th/0212105.
[Fairbairn:2002ew]
[20-24]
Black Uniqueness Theorems, Pawel O. Mazur, arXiv:hep-th/0101012, 2001.
[Mazur:2000pn]
[20-25]
Quantum phase transitions and the breakdown of classical general relativity, G. Chapline, E. Hohlfeld, R. B. Laughlin, D. I. Santiago, Int. J. Mod. Phys. A18 (2003) 3587-3590, arXiv:gr-qc/0012094.
[Chapline:2000en]
[20-26]
Breakdown of Predictability in Gravitational Collapse, S.W. Hawking, Phys. Rev. D14 (1976) 2460-2473.
[Hawking:1976ra]

21 - Theory - Black Holes - Conference Proceedings

[21-1]
Phenomenology of black hole evaporation with a cosmological constant, J. Labbe, A. Barrau, J. Grain, PoS HEP2005 (2006) 013, arXiv:hep-ph/0511211. HEP2005.
[Labbe:2005wd]
[21-2]
Dark energy and condensate stars: Casimir energy in the large, Pawel O. Mazur, Emil Mottola, arXiv:gr-qc/0405111, 2004. Sixth Workshop on Quantum Field Theory under the Influence of External Conditions (QFEXT03), Norman, Oklahoma, 15-19 Sep 2003.
[Mazur:2004ku]
[21-3]
The final parsec problem, Milos Milosavljevic, David Merritt, Aip Conf. Proc. 686 (2003) 201, arXiv:astro-ph/0212270. 4th LISA Symposium, State College, PA, July 2002.
[Milosavljevic:2002ht]
[21-4]
n-dimensional gravity: Little black holes, dark matter, and ball lightning, Mario Rabinowitz, Int. J. Theor. Phys. 40 (2001) 875-901, arXiv:astro-ph/0104026. 5th International Conference on Clifford Algebras and their Applications in Mathematical Physics, Ixtapa-Zihuatanejo, Mexico, 27 June - 4 Jul 1999.
[Rabinowitz:2001ag]

22 - Theory - Gravitational Lensing

[22-1]
Gravitational lensing in metric theories of gravity, M. Sereno, Phys. Rev. D67 (2003) 064007, arXiv:astro-ph/0301290.
[Sereno:2003tk]

23 - Theory - Gravitational Waves

[23-1]
Gravitational Wave - Gauge Field Oscillations, R. R. Caldwell, C. Devulder, N. A. Maksimova, arXiv:1604.08939, 2016.
[1604.08939]
[23-2]
Theory and Numerics of Gravitational Waves from Preheating after Inflation, Jean Francois Dufaux, Amanda Bergman, Gary N. Felder, Lev Kofman, Jean-Philippe Uzan, Phys. Rev. D76 (2007) 123517, arXiv:0707.0875.
[Dufaux:2007pt]
[23-3]
On the frequency of gravitational waves, Chiara Caprini, Ruth Durrer, Riccardo Sturani, Phys. Rev. D74 (2006) 127501, arXiv:astro-ph/0607651.
[Caprini:2006rd]
[23-4]
Improved Calculation of the Primordial Gravitational Wave Spectrum in the Standard Model, Yuki Watanabe, Eiichiro Komatsu, Phys. Rev. D73 (2006) 123515, arXiv:astro-ph/0604176.
[Watanabe:2006qe]
[23-5]
Properties of gravitational waves in Cosmological General Relativity, John G. Hartnett, Michael E. Tobar, Int. J. Theor. Phys. 45 (2006) 2181-2190, arXiv:gr-qc/0603067.
[Hartnett:2006gi]
[23-6]
Three-Body Dynamics with Gravitational Wave Emission, Kayhan Gultekin, M. Coleman Miller, Douglas P. Hamilton, Astrophys. J. 640 (2006) 156-166, arXiv:astro-ph/0509885.
[Gultekin:2005fd]
[23-7]
Relic Gravitational Waves and the Evolution of the Universe, W Zhao, arXiv:astro-ph/0505588, 2005.
[Zhao:2005kf]
[23-8]
Gravitational-Wave Emission from Rotating Gravitational Collapse in three Dimensions, L. Baiotti, I. Hawke, L. Rezzolla, E. Schnetter, Phys. Rev. Lett. 94 (2005) 131101, arXiv:gr-qc/0503016.
[Baiotti:2005vi]
[23-9]
Background-Independent Gravitational Waves, Juri Agresti, Roberto De Pietri, Luca Lusanna, Luca Martucci, arXiv:gr-qc/0302085, 2003.
[Agresti:2003fm]

24 - Theory - Gravitational Waves - Models

[24-1]
Thermodynamics of the Transformation of Gravitational Waves into Matter Quantums for a Vacuum Space Model, J. A. Montemayor-Aldrete et al., arXiv:physics/0509047, 2005.
[MontemayorAldrete:2005ft]

25 - Theory - Neutrino Oscillations

[25-1]
Quantum Gravity effect on neutrino oscillations in a strong gravitational field, Jonathan Miller, Roman Pasechnik, Adv. High Energy Phys. 2015 (2015) 381569, arXiv:1305.4430.
[Miller:2013wta]
[25-2]
Neutrino oscillations above black hole accretion disks: disks with electron-flavor emission, A. Malkus, J. P. Kneller, G. C. McLaughlin, R. Surman, Phys. Rev. D86 (2012) 085015, arXiv:1207.6648.
[Malkus:2012ts]
[25-3]
Neutrino spin oscillations in gravitational fields, S. A. Alavi, S. F. Hosseini, Grav.Cosmol. 19 (2013) 129-133, arXiv:1108.3593.
[Alavi:2011xd]
[25-4]
Neutrino oscillation phase dynamically induced by f(R)-gravity, S. Capozziello, M. De Laurentis, D. Vernieri, Mod. Phys. Lett. A25 (2010) 1163-1168, arXiv:1001.4173.
[Capozziello:2010yz]
[25-5]
Neutrino Oscillations in Gravitational Field, S. I. Godunov, G. S. Pastukhov, Phys. Atom. Nucl. 74 (2011) 302-305, arXiv:0906.5556.
[Godunov:2009ce]
[25-6]
Gravity induced neutrino-antineutrino oscillation: CPT and lepton number non-conservation under gravity, Banibrata Mukhopadhyay, Class. Quant. Grav. 24 (2007) 1433-1442, arXiv:gr-qc/0702062.
[Mukhopadhyay:2007vca]
[25-7]
Reply to Comment on 'Can gravity distinguish between Dirac and Majorana neutrinos?', Dinesh Singh, Nader Mobed, Giorgio Papini, Phys. Rev. Lett. 98 (2007) 069002, arXiv:gr-qc/0611016.
[Singh:2006fn]
[25-8]
Comment on 'Can gravity distinguish between Dirac and Majorana neutrinos?', Jose F. Nieves, Palash B. Pal, Phys. Rev. Lett. 98 (2007) 069001, arXiv:gr-qc/0610098.
[Nieves:2006tq]
[25-9]
General Relativistic Effects of Gravity in Quantum Mechanics - A Case of Ultra-Relativistic, Spin 1/2 Particles -, Kohkichi Konno, Masumi Kasai, Prog. Theor. Phys. 100 (1998) 1145, arXiv:gr-qc/0603035.
[Konno:1998kq]
[25-10]
Neutrino spin oscillations in gravitational fields, Maxim Dvornikov, Int. J. Mod. Phys. D15 (2006) 1017-1034, arXiv:hep-ph/0601095.
[Dvornikov:2006ji]
[25-11]
Neutrino optics and oscillations in gravitational fields, G. Lambiase, G. Papini, R. Punzi, G. Scarpetta, Phys. Rev. D71 (2005) 073011, arXiv:gr-qc/0503027.
[Lambiase:2005gt]
[25-12]
Neutrino Wave Packets in Weak Gravitational Fields, Dinesh Singh, Nader Mobed, Giorgio Papini, Phys. Lett. A351 (2006) 373, arXiv:gr-qc/0502098.
[Singh:2005ur]
[25-13]
Testing quantum gravity via cosmogenic neutrino oscillations, Joy Christian, Phys. Rev. D71 (2005) 024012, arXiv:gr-qc/0409077.
[Christian:2004xb]
[25-14]
Charge conjugation and Lense-Thirring Effect: A new Asymmetry, D. V. Ahluwalia-Khalilova, Gen. Rel. Grav. 36 (2004) 2581, arXiv:gr-qc/0405112.
[Ahluwalia:2004kv]
[25-15]
Neutrino oscillations in gravitational fields, Hisae Maiwa, Shigefumi Naka, arXiv:hep-ph/0401143, 2004.
[Maiwa:2004ym]
[25-16]
Neutrino Interferometry In Curved Spacetime, Roland M. Crocker, Carlo Giunti, Daniel J. Mortlock, Phys. Rev. D69 (2004) 063008, arXiv:hep-ph/0308168.
[Crocker:2003cw]
[25-17]
Cerenkov's effect and neutrino oscillations in loop quantum gravity, G. Lambiase, Mod. Phys. Lett. A18 (2003) 23-30, arXiv:gr-qc/0301058.
[Lambiase:2003bq]
[25-18]
General relativistic effects on quantum interference and the principle of equivalence, K. K. Nandi, Yuan-Zhong Zhang, Phys. Rev. D66 (2002) 063005, arXiv:gr-qc/0208050.
[Nandi:2002me]
[25-19]
Quantum phase shift and neutrino oscillations in a stationary, weak gravitational field, Pierre Teyssandier Bernard Linet, Mod. Phys. Lett. A26 (2011) 1737-1751, arXiv:gr-qc/0206056.
[Linet:2002wp]
[25-20]
Addendum on the mass neutrino oscillation in a gravitational field, J. G. Pereira, C. M. Zhang, Gen. Rel. Grav. 33 (2001) 2801, arXiv:gr-qc/0205030.
[Pereira:2001by]
[25-21]
Quantum systems in weak gravitational fields, G. Papini, NATO Sci.Ser.II 60 (2002) 317-338, arXiv:gr-qc/0110056.
[Papini:2001kb]
[25-22]
Neutrinos in a vacuum dominated cosmology, Manasse R. Mbonye, Gen. Rel. Grav. 34 (2002) 1865-1875, arXiv:astro-ph/0108167.
[Mbonye:2001rp]
[25-23]
Neutrino oscillations induced by gravitational recoil effects, G. Lambiase, Gen. Rel. Grav. 33 (2001) 2151-2156, arXiv:gr-qc/0107066.
[Lambiase:2001ib]
[25-24]
Matter waves in a gravitational field: An index of refraction for massive particles in general relativity, James C. Evans, Paul M. Alsing, Stefano Giorgetti, Kamal Kanti Nandi, Am. J. Phys. 69 (2001) 1103-1110, arXiv:gr-qc/0107063.
[Evans:2001hy]
[25-25]
Neutrino oscillations in Caianiello's quantum geometry model, V. Bozza, S. Capozziello, G. Lambiase, G. Scarpetta, Int. J. Theor. Phys. 40 (2001) 849-859, arXiv:hep-ph/0106234.
[Bozza:2001vc]
[25-26]
Quantum violations of the equivalence principle in a modified Schwarzschild geometry: Neutrino oscillations, V. Bozza, G. Lambiase, G. Papini, G. Scarpetta, Phys. Lett. A279 (2001) 163-168, arXiv:hep-ph/0012270.
[Bozza:2000mh]
[25-27]
Mass dependence of the gravitationally-induced wave- function phase, Jose Wudka, Phys. Rev. D64 (2001) 065009, arXiv:gr-qc/0010077.
[Wudka:2000rf]
[25-28]
The phase of a quantum mechanical particle in curved spacetime, P. M. Alsing, J. C. Evans, K. K. Nandi, Gen. Rel. Grav. 33 (2001) 1459-1487, arXiv:gr-qc/0010065.
[Alsing:2000ji]
[25-29]
The general treatment of high/low energy particle interference phase in a gravitational field, C. M. Zhang, Gen.Rel.Grav. 33 (2001) 1011-1025, arXiv:gr-qc/0004048.
[Zhang:2000mi]
[25-30]
On the Mass Neutrino Phase calculations along the geodesic line and the null line, C.M. Zhang, A. Beesham, arXiv:gr-qc/0004047, 2000.
[Zhang:2003pn]
[25-31]
Some remarks on the neutrino oscillation phase in a gravitational field, J. G. Pereira, C. M. Zhang, Gen. Rel. Grav. 32 (2000) 1633-1637, arXiv:gr-qc/0002066.
[Pereira:2000kq]
[25-32]
Berry's phase of neutrino oscillations in the presence of torsion, S. Capozziello, G. Lambiase, Europhys. Lett. 52 (2000) 15-21.
[Capozziello:2000ue]
[25-33]
Neutrino oscillations in Brans-Dicke theory of gravity, S. Capozziello, G. Lambiase, Mod. Phys. Lett. A14 (1999) 2193, arXiv:gr-qc/9910026.
[Capozziello:1999qm]
[25-34]
Inertial effects on neutrino oscillations, S. Capozziello, G. Lambiase, Eur. Phys. J. C12 (2000) 343-347, arXiv:gr-qc/9910016.
[Capozziello:1999ww]
[25-35]
Interplay of gravitation and linear superposition of different mass eigenstates, D. V. Ahluwalia, C. Burgard, Phys. Rev. D57 (1998) 4724-4727, arXiv:gr-qc/9803013.
[Ahluwalia:1998jx]
[25-36]
Gravitational correction in neutrino oscillations, Yasufumi Kojima, Mod. Phys. Lett. A11 (1996) 2965-2970, arXiv:gr-qc/9612044.
[Kojima:1996vb]
[25-37]
Gravitational effects on the neutrino oscillation, N. Fornengo, C. Giunti, C. W. Kim, J. Song, Phys. Rev. D56 (1997) 1895-1902, arXiv:hep-ph/9611231.
[Fornengo:1996ef]
[25-38]
Neutrino oscillations in curved spacetime: An heuristic treatment, Christian Y. Cardall, George M. Fuller, Phys. Rev. D55 (1997) 7960-7966, arXiv:hep-ph/9610494.
[Cardall:1996cd]
[25-39]
Gravitationally induced neutrino oscillation phases in static space-times, Tanmoy Bhattacharya, Salman Habib, Emil Mottola, Phys. Rev. D59 (1996) 067301, arXiv:gr-qc/9605074.
[Bhattacharya:1996xb]
[25-40]
Neutrino Oscillations in Strong Gravitational Fields, Dardo Piriz, Mou Roy, Jose Wudka, Phys. Rev. D54 (1996) 1587-1599, arXiv:hep-ph/9604403.
[Piriz:1996mu]
[25-41]
Gravitationally Induced Quantum Mechanical Phases and Neutrino Oscillations in Astrophysical Environments, D. V. Ahluwalia, C. Burgard, Gen. Rel. Grav. 28 (1996) 1161-1170, arXiv:gr-qc/9603008.
[Ahluwalia:1996ev]
[25-42]
MATTER AND LIGHT WAVE INTERFEROMETRY IN GRAVITATIONAL FIELDS, L. Stodolsky, Gen. Rel. Grav. 11 (1979) 391-405.
[Stodolsky:1979ks]

26 - Theory - Quantum Gravity and Cosmology

[26-1]
Exact Quantum Loop Results in the Theory of General Relativity, B.F.L. Ward, Phys. Dark Universe 2 (2013) 97-109, arXiv:hep-ph/0607198.
[Ward:2010qs]
[26-2]
A lower limit to the scale of an effective theory of gravitation, Robert R. Caldwell, Daniel Grin, Phys. Rev. Lett. 100 (2008) 031301, arXiv:astro-ph/0606133.
[Caldwell:2006gu]
[26-3]
General Relativistic Effects of Gravity in Quantum Mechanics - A Case of Ultra-Relativistic, Spin 1/2 Particles -, Kohkichi Konno, Masumi Kasai, Prog. Theor. Phys. 100 (1998) 1145, arXiv:gr-qc/0603035.
[Konno:1998kq]
[26-4]
Quantum Nature of the Big Bang, Abhay Ashtekar, Tomasz Pawlowski, Parampreet Singh, Phys. Rev. Lett. 96 (2006) 141301, arXiv:gr-qc/0602086.
[Ashtekar:2006rx]
[26-5]
Observational Consequences of Quantum Cosmology, Qing-Guo Huang, Nucl. Phys. B777 (2007) 253-261, arXiv:hep-th/0510219.
[Huang:2005wq]
[26-6]
Beyond partial differential equations: A course on linear and quasi-linear abstract hyperbolic evolution equations, Horst R. Beyer, arXiv:gr-qc/0510097, 2005.
[Beyer:2005ef]
[26-7]
Tommy Gold revisited: Why does not the universe rotate?, George Chapline, Pawel O. Mazur, Aip Conf. Proc. 822 (2006) 160, arXiv:astro-ph/0509230.
[Chapline:2005hm]
[26-8]
A Proposed Test of the Local Causality of Spacetime, Adrian Kent, arXiv:gr-qc/0507045, 2005.
[Kent:2005fq]
[26-9]
A freely falling frame at the interface of gravitational and quantum realms, D. V. Ahluwalia-Khalilova, Class. Quant. Grav. 22 (2005) 1433-1450, arXiv:hep-th/0503141.
[Ahluwalia:2005jn]
[26-10]
The Computational Universe: Quantum gravity from quantum computation, Seth Lloyd, Science (2005), arXiv:quant-ph/0501135.
[Lloyd:2005js]
[26-11]
How does the entropy/information bound work ?, Jacob D. Bekenstein, Found. Phys. 35 (2005) 1805, arXiv:quant-ph/0404042.
[Bekenstein:2004sh]
[26-12]
Fundamental physics in space: A quantum-gravity perspective, Giovanni Amelino-Camelia, Gen. Rel. Grav. 36 (2004) 539-560, arXiv:astro-ph/0309174.
[AmelinoCamelia:2003dg]
[26-13]
Spacetime at the Planck Scale: The Quantum Computer View, Paola Zizzi, arXiv:gr-qc/0304032, 2003.
[Zizzi:2003dq]
[26-14]
Cosmological Perturbations from a New-Physics Hypersurface, V. Bozza, M. Giovannini, G. Veneziano, JCAP 0305 (2003) 001, arXiv:hep-th/0302184.
[Bozza:2003pr]
[26-15]
Experimental Challenges for Quantum Gravity, Robert C. Myers, Maxim Pospelov, Phys. Rev. Lett. 90 (2003) 211601, arXiv:hep-ph/0301124.
[Myers:2003fd]
[26-16]
An exactly soluble sector of quantum gravity, Joy Christian, Phys. Rev. D56 (1997) 4844-4877, arXiv:gr-qc/9701013.
[Christian:1997wj]
[26-17]
Gravitation, the Quantum, and Cosmological Constant, Pawel O. Mazur, Acta Phys. Polon. 27 (1996) 1849, arXiv:hep-th/9603014.
[Mazur:1996xy]

27 - Theory - Quantum Gravity and Cosmology - Conference Proceedings

[27-1]
Lorentz violation as a quantum-gravity signature, Ralf Lehnert, Int. J. Mod. Phys. A20 (2005) 1303, arXiv:astro-ph/0508625. Coral Gables Conference on Launching of Belle Epoque in High-Energy Physics and Cosmology (CG 2003), Ft. Lauderdale, Florida, 17-21 Dec 2003.
[Lehnert:2005uh]
[27-2]
Dark Energy Stars, G. Chapline, eConf C041213 (2004) 0205, arXiv:astro-ph/0503200. Texas Conference on Relativistic Astrophysics, Stanford, CA, December, 2004.
[Chapline:2005ph]
[27-3]
Emergent relativity, R. B. Laughlin, Int. J. Mod. Phys. A18 (2003) 831-854, arXiv:gr-qc/0302028.
[Laughlin:2003yh]
[27-4]
Quantum-gravity phenomenology: Status and prospects, Giovanni Amelino-Camelia, Mod. Phys. Lett. A17 (2002) 899-922, arXiv:gr-qc/0204051. 1st IUCAA Workshop on Interface of Gravitational and Quantum Realms, Pune, India, 17-21 Dec 2001.
[AmelinoCamelia:2002vw]
[27-5]
Superfluid analogies of cosmological phenomena, G. E. Volovik, Phys. Rep. 351 (2001) 195-348, arXiv:gr-qc/0005091.
[Volovik:2000ua]

28 - Theory - Topology

[28-1]
The Copernican Principle in Compact Spacetimes, John D. Barrow, Janna Levin, Mon. Not. Roy. Astron. Soc. 346 (2003) 615, arXiv:gr-qc/0304038.
[Barrow:2003ma]
[28-2]
Preferred frame in brane world, Merab Gogberashvili, arXiv:hep-th/0207042, 2002.
[Gogberashvili:2002nk]
[28-3]
The twin paradox in compact spaces, John D. Barrow, Janna Levin, Phys. Rev. A63 (2001) 044104, arXiv:gr-qc/0101014.
[Barrow:2001rj]

29 - Theory - Alternative Models

[29-1]
Spacetime torsion as a possible remedy to major problems in gravity and cosmology, Nikodem J. Poplawski, Astron. Rev. 8, 108 (2013), arXiv:1106.4859.
[Poplawski:2011qr]
[29-2]
On a recently proposed metric linear extension of general relativity to explain the Pioneer anomaly, Lorenzo Iorio, arXiv:gr-qc/0608068, 2006.
[Iorio:2006gi]
[29-3]
Gravitation Revisited, B.G. Sidharth, arXiv:physics/0604044, 2006.
[Sidharth:2006rw]
[29-4]
Scalar-Tensor-Vector Gravity Theory, J. W. Moffat, JCAP 0603 (2006) 004, arXiv:gr-qc/0506021.
[Moffat:2005si]

30 - Theory - Electrodynamics

[30-1]
Equivalence principle and radiation by a uniformly accelerated charge, A. Shariati, M. Khorrami, Found.Phys.Lett. 12 (1999) 427-439, arXiv:gr-qc/0006037.
[Shariati:1999mn]
[30-2]
Radiation from a charge in a gravitational field, Amos Harpaz, Noam Soker, Gen.Rel.Grav. 36 (2004) 315-330, arXiv:physics/9910019.
[Harpaz:1999kn]
[30-3]
Radiation from a uniformly accelerated charge, Amos Harpaz, Noam Soker, Gen.Rel.Grav. 30 (1998) 1217-1227, arXiv:gr-qc/9805097.
[Harpaz:1998wd]

31 - Theory - Accelerated States

[31-1]
Neutrino oscillations in accelerated states, Dharam Vir Ahluwalia, Lance Labun, Giorgio Torrieri, arXiv:1508.03091, 2015.
[Ahluwalia:2015kxa]
[31-2]
Unruh effect for neutrinos interacting with accelerated matter, Maxim Dvornikov, JHEP 08 (2015) 151, arXiv:1507.01174.
[Dvornikov:2015eqa]
[31-3]
The Unruh effect and oscillating neutrinos, Dharam Vir Ahluwalia, Lance Labun, Giorgio Torrieri, J. Phys. Conf. Ser. 706 (2016) 042006, arXiv:1505.04082.
[Ahluwalia:2015wha]
[31-4]
On the physical meaning of the Unruh effect, Emil T. Akhmedov, Douglas Singleton, Pisma Zh. Eksp. Teor. Fiz. 86 (2007) 702-706, arXiv:0705.2525.
[Akhmedov:2007xu]
[31-5]
On the relation between Unruh and Sokolov-Ternov effects, Emil T. Akhmedov, Douglas Singleton, Int. J. Mod. Phys. A22 (2007) 4797-4823, arXiv:hep-ph/0610391.
[Akhmedov:2006nd]
[31-6]
Analytic evaluation of the decay rate for accelerated proton, Hisao Suzuki, Kunimasa Yamada, Phys. Rev. D67 (2003) 065002, arXiv:gr-qc/0211056.
[Suzuki:2002xg]
[31-7]
Decay of accelerated protons and the existence of the Fulling-Davies-Unruh effect, Daniel A. T. Vanzella, George E. A. Matsas, Phys. Rev. Lett. 87 (2001) 151301, arXiv:gr-qc/0104030.
[Vanzella:2001ec]
[31-8]
Weak decay of uniformly accelerated protons and related processes, Daniel A. T. Vanzella, George E. A. Matsas, Phys. Rev. D63 (2000) 014010, arXiv:hep-ph/0002010.
[Vanzella:2000jk]
[31-9]
The Unruh Effect and Quantum Fluctuations of Electrons in Storage Rings, J. S. Bell, J. M. Leinaas, Nucl. Phys. B284 (1987) 488.
[Bell:1986ir]
[31-10]
The Unruh Effect in Extended Thermometers, J. S. Bell, Richard J. Hughes, J. M. Leinaas, Z. Phys. C28 (1985) 75.
[Bell:1984sr]
[31-11]
Notes on black hole evaporation, W. G. Unruh, Phys. Rev. D14 (1976) 870.
[Unruh:1976db]
[31-12]
Scalar particle production in Schwarzschild and Rindler metrics, P. C. W. Davies, J. Phys. A8 (1975) 609-616.
[Davies:1974th]

32 - Phenomenology

[32-1]
Cosmological Hints of Modified Gravity?, Eleonora Di Valentino, Alessandro Melchiorri, Joseph Silk, Phys. Rev. D93 (2016) 023513, arXiv:1509.07501.
[DiValentino:2015bja]
[32-2]
Recent measurements of the gravitational constant as a function of time, S. Schlamminger, J.H. Gundlach, R.D. Newman, Phys. Rev. D91 (2015) 121101, arXiv:1505.01774.
[Schlamminger:2015hqa]
[32-3]
Constraining the Violation of Equivalence Principle with IceCube Atmospheric Neutrino Data, A. Esmaili et al., Phys. Rev. D89 (2014) 113003, arXiv:1404.3608.
[Esmaili:2014ota]
[32-4]
Accelerator experiments contradicting general relativity, Vahagn Gharibyan, arXiv:1401.3720, 2014.
[Gharibyan:2014mka]
[32-5]
Experimental constraints on the free fall acceleration of antimatter, Daniele S. M. Alves, Martin Jankowiak, Prashant Saraswat, arXiv:0907.4110, 2009.
[Alves:2009jx]
[32-6]
Cosmological tests of GR - a look at the principals, Gong-Bo Zhao, Levon Pogosian, Alessandra Silvestri, Joel Zylberberg, Phys. Rev. Lett. 103 (2009) 241301, arXiv:0905.1326.
[Zhao:2009fn]
[32-7]
On the recently determined anomalous perihelion precession of Saturn, Lorenzo Iorio, Astron.J. 137 (2009) 3615, arXiv:0811.0756.
[Iorio:2008sd]
[32-8]
Phenomenological constraints on low-scale gravity, Veniamin Berezinsky, Mohan Narayan, Phys. Rev. D75 (2007) 105001, arXiv:0705.0945.
[Berezinsky:2007dt]
[32-9]
Constraining a possible time variation of the gravitational constant G with terrestrial nuclear laboratory data, P. G. Krastev, B. A. Li, Phys. Rev. C76 (2007) 055804, arXiv:nucl-th/0702080.
[Krastev:2007en]
[32-10]
Testing General Relativity with Atom Interferometry, Savas Dimopoulos, Peter W. Graham, Jason M. Hogan, Mark A. Kasevich, Phys. Rev. Lett. 98 (2007) 111102, arXiv:gr-qc/0610047.
[Dimopoulos:2006nk]
[32-11]
The impact of the errors in the inclinations on the recent LAGEOS-LAGEOS II Lense-Thirring test, Lorenzo Iorio, J. Astrophys. Astron. 31 (2010) 147-153, arXiv:gr-qc/0607031.
[Iorio:2006sd]
[32-12]
Significant reduction of galactic dark matter by general relativity, H. Balasin, D. Grumiller, Int. J. Mod. Phys. D17 (2008) 475-488, arXiv:astro-ph/0602519.
[Balasin:2006cg]
[32-13]
Could the Pioneer anomaly have a gravitational origin?, Kjell Tangen, Phys. Rev. D76 (2007) 042005, arXiv:gr-qc/0602089.
[Tangen:2006sa]
[32-14]
First evidence of the general relativistic gravitomagnetic field of the Sun and new constraints on a Yukawa-like fifth force, Lorenzo Iorio, Planet. Space Sci. 55 (2007) 1290-1298, arXiv:gr-qc/0507041.
[Iorio:2005fk]
[32-15]
Cosmological Constraints on Newton's Constant, K. Umezu, K. Ichiki, M. Yahiro, Phys. Rev. D72 (2005) 044010, arXiv:astro-ph/0503578.
[Umezu:2005ee]
[32-16]
Little Black Holes as Dark Matter Candidates with Feasible Cosmic and Terrestrial Interactions, Mario Rabinowitz, arXiv:physics/0503079, 2005.
[Rabinowitz:2005ii]
[32-17]
On the unreliability of the so far performed tests for measuring the Lense-Thirring effect with the LAGEOS satellites, Lorenzo Iorio, New Astron. 10 (2005) 603, arXiv:gr-qc/0411024.
[Ciufolini:2006up]
[32-18]
On the Gravitational Field of Antimatter, Eduard Masso Francesc Rota, Phys. Lett. B600 (2004) 197, arXiv:astro-ph/0406660.
[Masso:2004by]
[32-19]
The double pulsar - A new testbed for relativistic gravity, M. Kramer et al., ASP Conf.Ser. (2004), arXiv:astro-ph/0405179. 6 pages, two figures, to appear in 'Binary Pulsars' Eds. Rasio and Stairs, PASP.
[Kramer:2004gj]
[32-20]
Limits on deviations from the inverse-square law on megaparsec scales, Carolyn Sealfon, Licia Verde, Raul Jimenez, Phys. Rev. D71 (2005) 083004, arXiv:astro-ph/0404111.
[Sealfon:2004gz]
[32-21]
Gravitational Thomas Precession and the Perihelion Advance of Mercury, Harihar Behera, arXiv:astro-ph/0306018, 2003.
[Behera:2003nk]
[32-22]
A new white dwarf constraint on the rate of change of the gravitational constant, Marek Biesiada, Beata Malec, Mon. Not. Roy. Astron. Soc. 350 (2004) 644, arXiv:astro-ph/0303489.
[Biesiada:2003sr]
[32-23]
Speed of Light in Gravitational Fields, Yukio Tomozawa, arXiv:astro-ph/0303047, 2003.
[Tomozawa:2003ts]
[32-24]
Testing general relativity by micro-arcsecond global astrometry, Alberto Vecchiato et al., Astron. Astrophys. 399 (2003) 337, arXiv:astro-ph/0301323.
[Vecchiato:2003av]
[32-25]
Propagation Speed of Gravity and the Relativistic Time Delay, Clifford M. Will, Astrophys. J. 590 (2003) 683, arXiv:astro-ph/0301145.
[Will:2003yj]
[32-26]
Standard Clocks, Orbital Precession and the Cosmological Constant, Andrew W. Kerr, John C. Hauck, Bahram Mashhoon, Class. Quant. Grav. 20 (2003) 2727, arXiv:gr-qc/0301057.
[Kerr:2003bp]
[32-27]
Solar quadrupole moment and purely relativistic gravitation contributions to Mercury's perihelion Advance, S. Pireaux, J.P. Rozelot, S. Godier, Astrophys. Space Sci. 284 (2003) 1159, arXiv:astro-ph/0109032.
[Pireaux:2001yk]

33 - Phenomenology - Conference Proceedings

[33-1]
Relativistic implications of solar astrometry, Costantino Sigismondi, Int. J. Mod. Phys. Conf. Ser. 03 (2011) 464-474, arXiv:1106.2202. Friedmann Seminar, CBPF Rio de Janeiro, Brasil, 30 May - 3 June 2011.
[Sigismondi:2011fr]
[33-2]
A cosmological test for general relativity, Vincent Boucher, Grav. Cosmol. 11 (2005) 71, arXiv:astro-ph/0509774. International Conference on Cosmoparticle Physics 'Cosmion-2004', 20-24 September 2004, Paris.
[Boucher:2005iz]
[33-3]
Precessions in Relativity, Costantino Sigismondi, arXiv:astro-ph/0501291, 2005. X Marcel Grossmann Meeting on General Relativity, Rio de Janeiro, July 20-26, 2003.
[Sigismondi:2005iz]
[33-4]
Evidence for the Black Hole Event Horizon, R. Narayan, Astron.Geophys. (2003), arXiv:astro-ph/0310692. George Darwin Lecture presented at the Royal Astronomical Society, London, 13 December 2002.
[Narayan:2003fy]

34 - Phenomenology - Black Holes

[34-1]
Primordial Black Holes, M. Yu. Khlopov, Res. Astron. Astrophys. 10 (2010) 495-528, arXiv:0801.0116.
[Khlopov:2008qy]
[34-2]
Neutrino-Cooled Accretion Disks around Spinning Black Hole, Wen-Xin Chen, Andrei M. Beloborodov, Astrophys. J. 657 (2007) 383-399, arXiv:astro-ph/0607145.
[Chen:2006rra]
[34-3]
On the Signatures of Gravitational Redshift: The Onset of Relativistic Emission Lines, Andreas Mueller, Margrethe Wold, Astron. Astrophys. 457 (2006) 485-492, arXiv:astro-ph/0607050.
[Mueller:2006dn]

35 - Phenomenology - Black Holes - Conference Proceedings

[35-1]
Black Holes and Nuclear Dynamics, David Merritt, Mem. Soc. Ast. It. 77 (2006) 750-758, arXiv:astro-ph/0602353. AGN and Galaxy Evolution, Specola Vaticana, Castel Gandolfo, Italy, 3 - 6 October 2005.
[Merritt:2006cr]

36 - Phenomenology - Gravitational Lensing

[36-1]
Gravitational Lensing Characteristics of the Transparent Sun, Bijunath Patla, Robert J. Nemiroff, Astrophys.J. 685 (2008) 1297, arXiv:0711.4811.
[Patla:2007ju]
[36-2]
Using Weak Lensing to find Halo Masses, Roland de Putter, Martin White, New Astron. 10 (2005) 676, arXiv:astro-ph/0412497.
[dePutter:2004xp]
[36-3]
Gravitational Lensing in Standard and Alternative Cosmologies, Margarita Safonova, arXiv:astro-ph/0401542, 2004.
[Safonova:2004sn]
[36-4]
The signature of CDM substructure on gravitational lensing, M. Bradac et al., Astron. Astrophys. 423 (2004) 797, arXiv:astro-ph/0306238.
[Bradac:2003hy]
[36-5]
Gravitational Lensing by CDM Halos: Singular versus Nonsingular Profiles, Hugo Martel, Paul R. Shapiro, Mon.Not.Roy.Astron.Soc. (2003), arXiv:astro-ph/0305174.
[Martel:2003hz]
[36-6]
Wave Effects in Gravitational Lensing of Gravitational Waves from Chirping Binaries, Ryuichi Takahashi, Takashi Nakamura, Astrophys. J. 595 (2003) 1039, arXiv:astro-ph/0305055.
[Takahashi:2003ix]
[36-7]
Gravitational Lensing by Cosmic Strings in the Era of Wide- Field Surveys, Dragan Huterer, Tanmay Vachaspati, Phys. Rev. D68 (2003) 041301, arXiv:astro-ph/0305006.
[Huterer:2003ze]
[36-8]
Gravitational Lensing by Burkert Halos, Yousin Park, Henry C. Ferguson, Astrophys. J. 589 (2003) L65, arXiv:astro-ph/0304317.
[Park:2003br]
[36-9]
Resolving the Microlens Mass Degeneracy for Earth-Mass Planets, Andrew Gould, B. Scott Gaudi, Cheongho Han, Astrophys. J. 591 (2003) L53, arXiv:astro-ph/0304314.
[Gould:2003bn]
[36-10]
Globular Clusters as Candidates for Gravitational Lenses to Explain Quasar-Galaxy Associations, Yu. L. Bukhmastova, Astron. Lett. 29 (2003) 214, arXiv:astro-ph/0304207.
[Bukhmastova:2003xj]
[36-11]
Qualitative Theory for Lensed QSOs, Prasenjit Saha, Liliya L.R. Williams, Astron.J. (2003), arXiv:astro-ph/0303261.
[Saha:2003hu]
[36-12]
Estimates of Confusion and Gravitational Lensing Limits in Sunyaev-Zel'dovich Increment Measurements, Michael Zemcov, Peter Newbury, Mark Halpern, Mon.Not.Roy.Astron.Soc. (2003), arXiv:astro-ph/0302471.
[Zemcov:2003mc]
[36-13]
Consequences of Gravitational Tunneling Radiation, Mario Rabinowitz, arXiv:astro-ph/0302469, 2003.
[Rabinowitz:2003ma]
[36-14]
Tests for Substructure in Gravitational Lenses, C.S. Kochanek, N. Dalal, Astrophys. J. 610 (2004) 69, arXiv:astro-ph/0302036.
[Kochanek:2003zc]
[36-15]
Separability of Rotational Effects on a Gravitational Lens, Hideki Asada, Masumi Kasai, Tatsuya Yamamoto, Phys. Rev. D67 (2003) 043006, arXiv:astro-ph/0301099.
[Asada:2003nf]
[36-16]
Neutrino Mass and Dark Energy from Weak Lensing, Kevork Abazajian, Scott Dodelson, Phys. Rev. Lett. 91 (2003) 041301, arXiv:astro-ph/0212216.
[Abazajian:2002ck]
[36-17]
On bending angles by gravitational lenses in motion, Simonetta Frittelli, Mon. Not. Roy. Astron. Soc. 340 (2003) 457, arXiv:astro-ph/0212207.
[Frittelli:2002yx]
[36-18]
Fitting Gravitational Lenses: Truth or Delusion, N. W. Evans, H. J. Witt, Mon. Not. Roy. Astron. Soc. 345 (2003) 1351, arXiv:astro-ph/0212013.
[Evans:2002ck]
[36-19]
The gravitomagnetic clock effect and its possible observation, Herbert I. M. Lichtenegger, Lorenzo Iorio, Barham Mashhoon, Annalen Phys. 15 (2006) 868-876, arXiv:gr-qc/0211108.
[Lichtenegger:2002af]
[36-20]
Proposed new test of general relativity, Joseph Samuel, Phys. Rev. Lett. (2002), arXiv:gr-qc/0211050.
[Samuel:2002fj]
[36-21]
Identifying Lensing by Substructure. I. Cusp Lenses, Charles R. Keeton, B. Scott Gaudi, A. O. Petters, Astrophys. J. 598 (2003) 138, arXiv:astro-ph/0210318.
[Keeton:2002qt]
[36-22]
Detection of weak gravitational lensing magnification from Galaxy-QSO cross-correlation in the SDSS, Enrique Gaztanaga, Astrophys. J. 589 (2003) 82, arXiv:astro-ph/0210311.
[Gaztanaga:2002qk]
[36-23]
Gravitational Lensing Magnification and Time Delay Statistics for Distant Supernovae, Masamune Oguri, Yasushi Suto, Edwin L. Turner, Astrophys. J. 583 (2003) 584, arXiv:astro-ph/0210107.
[Oguri:2002hv]
[36-24]
Seeing double: strong gravitational lensing of high- redshift supernovae, Daniel E. Holz, Astrophys. J. 556 (2001) L71, arXiv:astro-ph/0104440.
[Holz:2001zr]
[36-25]
Neutrino gravitational lensing, R. Escribano, J. M. Frere, D. Monderen, V. Van Elewyck, arXiv:hep-ph/9910510, 1999.
[Escribano:1999gy]
[36-26]
The Statistics of gravitational lenses: The Distributions of image angular separations and lens redshifts, Edwin L. Turner, Jeremiah P. Ostriker, III Gott, J. Richard, Astrophys. J. 284 (1984) 1-22.
[Turner:1984ch]

37 - Phenomenology - Gravitational Lensing - Conference Proceedings

[37-1]
New Dimensions in Cosmic Lensing, Andy Taylor, arXiv:astro-ph/0306239, 2003. Davis Inflation Meeting, 2003.
[Taylor:2003hz]
[37-2]
CDM Substructure in Gravitational Lenses: Tests and Results, C.S. Kochanek, N. Dalal, Aip Conf. Proc. 666 (2003) 103, arXiv:astro-ph/0212274. The Emergence of Cosmic Structure, the 13th Annual October Astrophysics Conference in Maryland.
[Kochanek:2002hx]
[37-3]
Gravitational Microlensing and Dark Matter Problem: Results and Perspectives, A. F. Zakharov, Publ. Astron. Obs. Belgrade 74 (2002) 1, arXiv:astro-ph/0212009. XIII National Conference of Yugoslav Astronomers, October 17, 2002, Belgrade.
[Zakharov:2002cg]

38 - Phenomenology - Gravitational Waves

[38-1]
Equation of State Effects on Gravitational Waves from Rotating Core Collapse, S. Richers, C. D. Ott, E. Abdikamalov, E. O'Connor, C. Sullivan, arXiv:1701.02752, 2017.
[Richers:2017joj]
[38-2]
Inferring the core-collapse supernova explosion mechanism with gravitational waves, Jade Powell, Sarah Gossan, Joshua Logue, Ik Siong Heng, Phys. Rev. D94 (2016) 123012, arXiv:1610.05573.
[Powell:2016wke]
[38-3]
New analysis for the correlation between gravitational waves and neutrino detectors during SN1987A, P. Galeotti, G. Pizzella, Eur.Phys.J. C76 (2016) 426, arXiv:1603.05076.
[Galeotti:2016uum]
[38-4]
Testing general relativity using golden black-hole binaries, Abhirup Ghosh et al., Phys. Rev. D94 (2016) 021101, arXiv:1602.02453.
[Ghosh:2016qgn]
[38-5]
Low Latency transient search of Gravitational Waves for the Advanced Detectors, Marco Drago, arXiv:1507.02871, 2015.
[Drago:2015lwa]
[38-6]
Probing Rotation of Core-collapse Supernova with Concurrent Analysis of Gravitational Waves and Neutrinos, Takaaki Yokozawa, Mitsuhiro Asano, Tsubasa Kayano, Yudai Suwa, Nobuyuki Kanda et al., Astrophys. J. 811 (2015) 86, arXiv:1410.2050.
[Yokozawa:2014tca]
[38-7]
Improved limits on short-wavelength gravitational waves from the cosmic microwave background, Irene Sendra, Tristan L. Smith, Phys. Rev. D85 (2012) 123002, arXiv:1203.4232.
[Sendra:2012wh]
[38-8]
A Model for Gravitational Wave Emission from Neutrino-Driven Core-Collapse Supernovae, Jeremiah W. Murphy, Christian D. Ott, Adam Burrows, Astrophys. J. 707 (2009) 1173-1190, arXiv:0907.4762.
[Murphy:2009dx]
[38-9]
Neutrinos from Supernovae as a Trigger for Gravitational Wave Search, G. Pagliaroli, F. Vissani, E. Coccia, W. Fulgione, Phys. Rev. Lett. 103 (2009) 031102, arXiv:0903.1191.
[Pagliaroli:2009qy]
[38-10]
Search method for coincident events from LIGO and IceCube detectors, Yoichi Aso et al., Class. Quant. Grav. 25 (2008) 114039, arXiv:0711.0107.
[Aso:2007wg]
[38-11]
Gravitational Wave Background from Population III Stars, Yudai Suwa, Tomoya Takiwaki, Kei Kotake, Katsuhiko Sato, Astrophys. J. 665 (2008) L43, arXiv:0706.3495.
[Suwa:2007du]
[38-12]
Analytic spectrum of relic gravitational waves modified by neutrino free streaming and dark energy, H.X.Miao, Y. Zhang, Phys. Rev. D75 (2007) 104009, arXiv:astro-ph/0703602.
[Miao:2007cw]
[38-13]
The Polarization of the Cosmic Microwave Background Due to Primordial Gravitational Waves, Brian G. Keating, Alexander G. Polnarev, Nathan J. Miller, Deepak Baskaran, Int. J. Mod. Phys. A21 (2006) 2459-2479, arXiv:astro-ph/0607208.
[Keating:2006zy]
[38-14]
Gravitational Waves from Warped Spacetime, Lisa Randall, Geraldine Servant, JHEP 05 (2007) 054, arXiv:hep-ph/0607158.
[Randall:2006py]
[38-15]
Non-linear Oscillations of Compact Stars and Gravitational Waves, Andrea Passamonti, arXiv:gr-qc/0607143, 2006.
[Passamonti:2005ac]
[38-16]
Gravitational Waves from Phase Transitions at the Electroweak Scale and Beyond, Christophe Grojean, Geraldine Servant, Phys. Rev. D75 (2007) 043507, arXiv:hep-ph/0607107.
[Grojean:2006bp]
[38-17]
Detection regimes of the cosmological gravitational wave background from astrophysical sources, David Coward, Tania Regimbau, New Astron. Rev. 50 (2006) 461-467, arXiv:astro-ph/0607043.
[Coward:2006df]
[38-18]
Gravitational Waves from the First Stars, Pearl Sandick, Keith A. Olive, Frederic Daigne, Elisabeth Vangioni, Phys. Rev. D73 (2006) 104024, arXiv:astro-ph/0603544.
[Sandick:2006sm]
[38-19]
Prospects for direct detection of primordial gravitational waves, Sirichai Chongchitnan, George Efstathiou, Phys. Rev. D73 (2006) 083511, arXiv:astro-ph/0602594.
[Chongchitnan:2006pe]
[38-20]
Contribution of Compact Mass Transferring Systems to the Galactic Gravitational Wave Background, Krzysztof Belczynski, Matthew Benacquista, Shane L. Larson, Ashley J. Ruiter, Astrophys.J. (2005), arXiv:astro-ph/0510718.
[Belczynski:2005ir]
[38-21]
The gravitational wave 'probability event horizon' for double neutron star mergers, D. M. Coward et al., Mon. Not. Roy. Astron. Soc. 364 (2005) 807, arXiv:astro-ph/0510203.
[Coward:2005bi]
[38-22]
On searches for gravitational waves from mini creation event by laser interferometric detectors, Bhim Prasad Sarmah, S.K. Banerjee, S.V. Dhurandhar, J.V. Narlikar, Mon. Not. Roy. Astron. Soc. 369 (2006) 89-96, arXiv:gr-qc/0510018.
[Sarmah:2005nq]
[38-23]
Gravitational Wave Background from Neutrino-Driven Gamma-Ray Bursts, Takashi Hiramatsu, Kei Kotake, Hideaki Kudoh, Atsushi Taruya, Mon. Not. Roy. Astron. Soc. 364 (2005) 1063, arXiv:astro-ph/0509787.
[Hiramatsu:2005jn]
[38-24]
Gravitational wave detection by a spherical antenna: the angular sensitivity of resonators in the TIGA configuration and its variation with sidereal time and galactic longitude, Maria Alice Gasparini, Phys. Rev. D72 (2005) 104012, arXiv:gr-qc/0509095.
[Gasparini:2005dd]
[38-25]
Bayesian estimation of pulsar parameters from gravitational wave data, Réjean J. Dupuis, Graham Woan, Phys. Rev. D72 (2005) 102002, arXiv:gr-qc/0508096.
[Dupuis:2005xv]
[38-26]
LISA Data Analysis using MCMC methods, Neil J. Cornish, Jeff Crowder, Phys. Rev. D72 (2005) 043005, arXiv:gr-qc/0506059.
[Cornish:2005qw]
[38-27]
Studying the coincidence excess between EXPLORER and NAUTILUS during 1998, D. Babusci et al., Astron.Astrophys. (2005), arXiv:astro-ph/0505600.
[Babusci:2005kt]
[38-28]
Numeric Spectrum of Relic Gravitational Waves in Accelerating Universe, Yang Zhang, Wen Zhao, Yefei Yuan, Tianyang Xia, Chin. Phys. Lett. 20 (2005) 1817, arXiv:astro-ph/0505589.
[Zhang:2005kg]
[38-29]
Using gravitational-wave standard sirens, Daniel E. Holz, Scott A. Hughes, Astrophys. J. 629 (2005) 15, arXiv:astro-ph/0504616.
[Holz:2005df]
[38-30]
Characterizing the Galactic Gravitational Wave Background with LISA, Seth E. Timpano, Louis J. Rubbo, Neil J. Cornish, Phys. Rev. D73 (2006) 122001, arXiv:gr-qc/0504071.
[Timpano:2005gm]
[38-31]
Cosmological Constraints on the Very Low Frequency Gravitational-Wave Background, Naoki Seto, Asantha Cooray, Phys. Rev. D73 (2006) 023005, arXiv:astro-ph/0502054.
[Seto:2005tq]
[38-32]
Relic Gravitational Waves in the Accelerating Universe, Yang Zhang, Yefei Yuan, Wen Zhao, Ying-Tian Chen, Class. Quant. Grav. 22 (2012) 1383, arXiv:astro-ph/0501329.
[Ghayour:2012nf]
[38-33]
May Gravity detect Tsunami?, D. Fargion, Chin. J. Astron. Astrophys. 6S1 (2006) 398-402, arXiv:astro-ph/0412647.
[Fargion:2004bv]
[38-34]
Sensitivity of a small matter-wave interferometer to gravitational waves, Stefano Foffa, Alice Gasparini, Michele Papucci, Riccardo Sturani, Phys. Rev. D73 (2006) 022001, arXiv:gr-qc/0407039.
[Foffa:2004up]
[38-35]
On the Rate of Detectability of Intermediate-Mass Black-Hole Binaries using LISA, Clifford M. Will, Astrophys. J. 611 (2004) 1080, arXiv:astro-ph/0403644.
[Will:2004fj]
[38-36]
LISA Measurement of Gravitational Wave Background Anisotropy: Hexadecapole Moment via a Correlation Analysis, Naoki Seto, Asantha Cooray, Phys. Rev. D70 (2004) 123005, arXiv:astro-ph/0403259.
[Seto:2004np]
[38-37]
On the amount of gravitational waves from inflation, L. Pilo, A. Riotto, A. Zaffaroni, Phys. Rev. Lett. 92 (2004) 201303, arXiv:astro-ph/0401302.
[Pilo:2004ke]
[38-38]
Core-collapse supernovae and gravitational waves, Christian Y. Cardall, Nucl. Phys. Proc. Suppl. 138 (2005) 436, arXiv:astro-ph/0401060.
[Cardall:2004qm]
[38-39]
Increase of the Number of Detectable Gravitational Waves Signals due to Gravitational Lensing, M. Arnaud-Varvella, M.-C. Angonin, Ph. Tourrenc, Gen. Rel. Grav. 36 (2004) 983, arXiv:gr-qc/0312028.
[ArnaudVarvella:2003va]
[38-40]
The Response of a Two-Element Radio Interferometer to Gravitational Waves, Kipp Cannon, arXiv:astro-ph/0311462, 2003.
[Cannon:2003uy]
[38-41]
Towards Gravitational Wave Signals from Realistic Core Collapse Supernova Models, Ewald Mueller et al., Astrophys. J. 603 (2004) 221, arXiv:astro-ph/0309833.
[Mueller:2003fs]
[38-42]
Gravitational Waves from a Pulsar Kick Caused by Neutrino Conversions, Lee C. Loveridge, Phys. Rev. D69 (2004) 024008, arXiv:astro-ph/0309362.
[Loveridge:2003fy]
[38-43]
Gravitational Waves from Axisymmetric, Rotational Stellar Core Collapse, Christian D. Ott, Adam Burrows, Eli Livne, Rolf Walder, Astrophys. J. 600 (2004) 834, arXiv:astro-ph/0307472.
[Ott:2003qg]
[38-44]
Loss cone: past, present and future, Steinn Sigurdsson, Class. Quant. Grav. 20 (2003) S45, arXiv:astro-ph/0304251.
[Sigurdsson:2003ei]
[38-45]
Swift Pointing and the Association Between Gamma-Ray Bursts and Gravitational-Wave Bursts, Lee Samuel Finn, Badri Krishnan, Patrick J. Sutton, Astrophys. J. 607 (2004) 384, arXiv:astro-ph/0304228.
[Finn:2003dj]
[38-46]
LISA observations of rapidly spinning massive black hole binary systems, Alberto Vecchio, Phys. Rev. D70 (2004) 042001, arXiv:astro-ph/0304051.
[Vecchio:2003tn]
[38-47]
Prospects for the detection of electromagnetic counterparts to gravitational wave events, Julien Sylvestre, Astrophys. J. 591 (2003) 1152, arXiv:astro-ph/0303512.
[Sylvestre:2003vc]
[38-48]
Galactic distribution of merging neutron stars and black holes - prospects for short GRB progenitors and LIGO/VIRGO, Rasmus Voss, Thomas M. Tauris, Mon. Not. Roy. Astron. Soc. 342 (2003) 1169, arXiv:astro-ph/0303227.
[Voss:2003ep]
[38-49]
Relic gravitational waves from colliding bubbles and cosmic turbulence, Alberto Nicolis, Class. Quant. Grav. 21 (2004) L27, arXiv:gr-qc/0303084.
[Nicolis:2003tg]
[38-50]
Gravitational waves from sub-lunar mass primordial black hole binaries: A new probe of extradimensions, Kaiki Taro Inoue, Takahiro Tanaka, Phys. Rev. Lett. 91 (2003) 021101, arXiv:gr-qc/0303058.
[Inoue:2003di]
[38-51]
LISA data analysis: Source identification and subtraction, Neil J. Cornish, Shane L. Larson, Phys. Rev. D67 (2003) 103001, arXiv:astro-ph/0301548.
[Cornish:2003vj]
[38-52]
No statistical excess in EXPLORER / NAUTILUS observations in the year 2001, Lee Samuel Finn, Class. Quant. Grav. 20 (2003) L37, arXiv:gr-qc/0301092.
[Finn:2003bd]
[38-53]
Solar System test for the existence of gravitational waves, Nicholas Ionescu-Pallas, Marius I. Piso, Silvia Onofrei, Rom. Astron. J. 4 (1994) 23, arXiv:gr-qc/0301033.
[IonescuPallas:1994zb]
[38-54]
Gravitational-wave standard candles, Daniel E. Holz, Scott A. Hughes, Class.Quant.Grav. 20 (2003) S65-S72, arXiv:astro-ph/0212218.
[Holz:2002cn]
[38-55]
Stellar collapse and gravitational waves, Chris L. Fryer, Daniel E. Holz, Scott A. Hughes, Michael S. Warren, Astrophys.Space Sci. (2002), arXiv:astro-ph/0211609.
[Fryer:2002ji]
[38-56]
Sidereal time analysis as a toll for the study of the space distribution of sources of gravitational waves, G. Paturel, Yu. B. Baryshev, Astron. Astrophys. 398 (2003) 377, arXiv:astro-ph/0211604.
[Paturel:2002jd]
[38-57]
Low-Frequency Gravitational Waves from Massive Black Hole Binaries: Predictions for LISA and Pulsar Timing Arrays, J. Stuart B. Wyithe, Abraham Loeb, Astrophys. J. 590 (2003) 691, arXiv:astro-ph/0211556.
[Wyithe:2002ep]
[38-58]
Gravitational waves from stars orbiting the massive black hole at the galactic center, Marc Freitag, Astrophys. J. 583 (2003) L21, arXiv:astro-ph/0211209.
[Freitag:2002nm]
[38-59]
Searching for Gravitational Waves from the Inspiral of Precessing Binary Systems: New Hierarchical Scheme using Spiky Templates, P. Grandclement, V. Kalogera, Phys. Rev. D67 (2003) 042003, arXiv:gr-qc/0211075.
[Grandclement:2002vx]
[38-60]
Proposed new test of general relativity, Joseph Samuel, Phys. Rev. Lett. (2002), arXiv:gr-qc/0211050.
[Samuel:2002fj]
[38-61]
Gravitational waves from newly born, hot neutron stars, Valeria Ferrari, Giovanni Miniutti, Jose' A. Pons, Mon. Not. Roy. Astron. Soc. 342 (2003) 629, arXiv:astro-ph/0210581.
[Ferrari:2002ut]
[38-62]
Gravitational Radiation from Gamma-Ray Burst Progenitors, Shiho Kobayashi, Peter Meszaros, Astrophys. J. 589 (2003) 861, arXiv:astro-ph/0210211.
[Kobayashi:2002by]
[38-63]
Storage rings as detectors for cosmic gravitational-wave background?, A. N. Ivanov, A. P. Kobushkin, arXiv:gr-qc/0210091, 2002.
[Ivanov:2002ng]
[38-64]
Ferromagnetic Antenna and its Application to Generation and Detection of Gravitational Radiation, Fran De Aquino, arXiv:physics/0210034, 2002.
[DeAquino:2002rq]
[38-65]
Effects of finite arm-length of LISA on analysis of gravitational waves from MBH binaries, Naoki Seto, Phys. Rev. D66 (2002) 122001, arXiv:gr-qc/0210028.
[Seto:2002uj]
[38-66]
Quasi-periodic accretion and gravitational waves from oscillating 'toroidal neutron stars' around a Schwarzschild black hole, O. Zanotti, L. Rezzolla, J. A. Font, Mon. Not. Roy. Astron. Soc. 341 (2003) 832, arXiv:gr-qc/0210018.
[Zanotti:2002it]
[38-67]
Improving the Sensitivity of LISA, K. Rajesh Nayak, A. Pai, S. V. Dhurandhar, J-Y. Vinet, Class. Quant. Grav. 20 (2003) 1217, arXiv:gr-qc/0210014.
[Nayak:2002ir]
[38-68]
LISA, binary stars, and the mass of the graviton, Shane L. Larson Curt Cutler, William A. Hiscock, Phys. Rev. D67 (2003) 024015, arXiv:gr-qc/0209101.
[Cutler:2002ef]
[38-69]
Phase transitions in neutron stars and gravitational wave emission, G. F. Marranghello, C. A. Z. Vasconcellos, J. A. de Freitas Pacheco, Phys. Rev. D66 (2002) 064027, arXiv:astro-ph/0208456.
[Marranghello:2002yx]
[38-70]
LIGO/VIRGO searches for gravitational radiation in hypernovae, Maurice H. P. M. van Putten, Astrophys. J. 575 (2002) L71-L74, arXiv:astro-ph/0207242.
[vanPutten:2002uf]
[38-71]
Gravitational radiation from highly magnetized nascent neutron stars in supernova remnants, Shin Yoshida, Mon. Not. Roy. Astron. Soc. 336 (2002) 957, arXiv:astro-ph/0207118.
[Yoshida:2002kh]
[38-72]
Searching for Gravitational Waves from the Inspiral of Precessing Binary Systems. I. Reduction of Detection Efficiency, P. Grandclement, V. Kalogera, A. Vecchio, Phys. Rev. D67 (2003) 042003, arXiv:gr-qc/0207062.
[Grandclement:2002dv]
[38-73]
Gravitational Waves from Spinning Compact Binaries, Neil J. Cornish, Janna Levin, arXiv:gr-qc/0207016, 2002.
[Cornish:2002eh]
[38-74]
Relic backgrounds of gravitational waves from cosmic turbulence, Alexander D. Dolgov, Dario Grasso, Alberto Nicolis, Phys. Rev. D66 (2002) 103505, arXiv:astro-ph/0206461.
From the abstract: We determine the spectrum of gravity waves which may have been produced by neutrino inhomogeneous diffusion and by a first order phase transition. We show that in both cases the expected signal may be in the sensitivity range of LISA.
[Dolgov:2002ra]
[38-75]
Search for correlation between GRB's detected by BeppoSAX and gravitational wave detectors EXPLORER and NAUTILUS, P. Astone et al., Phys. Rev. D66 (2002) 102002, arXiv:astro-ph/0206431.
[Astone:2002jz]
[38-76]
Generation of cosmic magnetic fields and gravitational waves at neutrino decoupling, Alexander D. Dolgov, Dario Grasso, Phys. Rev. Lett. 88 (2002) 011301, arXiv:astro-ph/0106154.
[Dolgov:2001nv]

39 - Phenomenology - Gravitational Waves - Conference Proceedings

[39-1]
Probing the Core-Collapse Supernova Mechanism with Gravitational Waves, C. D. Ott, Class. Quant. Grav. 26 (2009) 204015, arXiv:0905.2797. 13th Gravitational Wave Data Analysis Workshop.
[Ott:2009bw]
[39-2]
Supermassive black hole mergers and cosmological structure formation, Marta Volonteri, AIP Conf. Proc. 873 (2006) 61-69, arXiv:astro-ph/0609741. Sixth International LISA Symposium.
[Volonteri:2006vp]
[39-3]
Multi-band Astronomy with LISA, G. Branduardi-Raymont et al., AIP Conf. Proc. 873 (2006) 460-464, arXiv:astro-ph/0609114. Sixth International LISA Symposium.
[BranduardiRaymont:2006ca]
[39-4]
A brief survey of LISA sources and science, Scott A. Hughes, AIP Conf. Proc. 873 (2006) 13-20, arXiv:gr-qc/0609028. Sixth International LISA Symposium.
[Hughes:2006kn]
[39-5]
Gravitational Wave Sources from New Physics, Craig J. Hogan, AIP Conf. Proc. 873 (2006) 30-40, arXiv:astro-ph/0608567. Sixth International LISA Symposium.
[Hogan:2006va]
[39-6]
Testing general relativity and probing the merger history of massive black holes with LISA, Emanuele Berti, Alessandra Buonanno, Clifford M. Will, Class. Quant. Grav. 22 (2005) S943, arXiv:gr-qc/0504017. GWDAW 9.
[Berti:2005qd]
[39-7]
Powerful gravitational-wave bursts from supernova neutrino oscillations, Herman J. Mosquera Cuesta, Karen Fiuza, Aip Conf. Proc. 739 (2005) 702, arXiv:astro-ph/0407526. 'Hadron Physics - RANP 2004', Angra dos Reis - Rio de Janeiro - Brazil, March 28 to April 03.
[MosqueraCuesta:2004xd]
[39-8]
What can we learn about cosmic structure from gravitational waves?, Joan M. Centrella, Aip Conf. Proc. 666 (2003) 337, arXiv:astro-ph/0302125. 13th Annual Astrophysics Conference in Maryland, 2003.
[Centrella:2003ma]

40 - Phenomenology - Quantum Gravity and Cosmology

[40-1]
Prospects for constraining quantum gravity dispersion with near term observations, Giovanni Amelino-Camelia, Lee Smolin, Phys. Rev. D80 (2009) 084017, arXiv:0906.3731.
[AmelinoCamelia:2009pg]
[40-2]
Gamma Ray Burst Neutrinos Probing Quantum Gravity, M.C. Gonzalez-Garcia, F. Halzen, JCAP 0702 (2007) 008, arXiv:hep-ph/0611359.
[GonzalezGarcia:2006na]

41 - Phenomenology - Quantum Gravity and Cosmology - Conference Proceedings

[41-1]
Exploration of Possible Quantum Gravity Effects with Neutrinos I: Decoherence in Neutrino Oscillations Experiments, Alexander Sakharov, Nick Mavromatos, Anselmo Meregaglia, Andre Rubbia, Sarben Sarkar, J. Phys. Conf. Ser. 171 (2009) 012038, arXiv:0903.4985. DISCRETE'08, Valencia, Spain; December 2008.
[Sakharov:2009rn]

42 - Phenomenology - Alternative Models

[42-1]
Testing alternative theories of gravity using the Sun, Jordi Casanellas, Paolo Pani, Ilidio Lopes, Vitor Cardoso, Astrophys. J. 745 (2012) 15, arXiv:1109.0249.
[Casanellas:2011kf]
[42-2]
Gravity Gets There First with Dark Matter Emulators, S. Desai, E. O. Kahya, R. P. Woodard, Phys. Rev. D77 (2008) 124041, arXiv:0804.3804.
[Desai:2008vj]
[42-3]
A Decisive test to confirm or rule out existence of dark matter using gravitational wave observations, E. O. Kahya, Class. Quant. Grav. 25 (2008) 184008, arXiv:0801.1984.
[Kahya:2008pp]
[42-4]
MOND rotation curves of very low mass spiral galaxies, Mordehai Milgrom, Robert H. Sanders, Astrophys. J. Lett. 658 (2007) L17, arXiv:astro-ph/0611494.
[Milgrom:2006xn]
[42-5]
Solar System tests DO rule out 1/R gravity, Adrienne L. Erickcek, Tristan L. Smith, Marc Kamionkowski, Phys. Rev. D74 (2006) 121501, arXiv:astro-ph/0610483.
[Erickcek:2006vf]
[42-6]
Testing Bekenstein's Relativistic MOND gravity with Gravitational Lensing, HongSheng Zhao, David J. Bacon, Andy N. Taylor, Keith Horne, Mon. Not. Roy. Astron. Soc. 368 (2006) 171, arXiv:astro-ph/0509590.
[Zhao:2005za]

43 - History

[43-1]
Einstein's 1917 Static Model of the Universe: A Centennial Review, Cormac O'Raifeartaigh, Michael O'Keeffe, Werner Nahm, Simon Mitton, arXiv:1701.07261, 2017.
[ORaifeartaigh:2017uct]
[43-2]
Life and space dimensionality: A brief review of old and new entangled arguments, Francisco Caruso, arXiv:1608.05298, 2016.
[1608.05298]
[43-3]
1974: the discovery of the first binary pulsar, Thibault Damour, Class.Quant.Grav. 32 (2015) 124009, arXiv:1411.3930.
[Damour:2014tpa]
[43-4]
On the discovery of Birkhoff's theorem, Nils Voje Johansen, Finn Ravndal, Gen. Rel. Grav. 38 (2006) 537, arXiv:physics/0508163.
[VojeJohansen:2005nd]
[43-5]
Einstein and Hilbert: The Creation of General Relativity, Ivan T. Todorov, arXiv:physics/0504179, 2005. Colloquium talk; 15 pages.
[Todorov:2005rh]
[43-6]
Mach's Principle, Herbert Lichtenegger, Bahram Mashhoon, arXiv:physics/0407078, 2004.
[Lichtenegger:2004re]
[43-7]
Hilbert's 'World Equations' and His Vision of a Unified Science, Ulrich Majer, Tilman Sauer, Einstein Stud. 11 (2005) 259-276, arXiv:physics/0405110.
[Majer:2004wd]
[43-8]
How Were the Hilbert-Einstein Equations Discovered?, A. A. Logunov, M.A.Mestvirishvili, V.A. Petrov, Phys. Usp. 47 (2004) 607, arXiv:physics/0405075.
[Logunov:2004ad]
[43-9]
Albert Einstein's 1916 Review Article on General Relativity, Tilman Sauer, arXiv:physics/0405066, 2004.
[Sauer:2004ac]
[43-10]
A Word from a Black Female Relativistic Astrophysicist: Setting the Record Straight on Black Holes, Reva Kay Williams, arXiv:physics/0404029, 2004.
[Williams:2004sf]
[43-11]
David Hilbert and the origin of the 'Schwarzschild solution', S. Antoci, arXiv:physics/0310104, 2003.
[Antoci:2003hq]

44 - History - Conference Proceedings

[44-1]
From Einstein's Hole Argument to Dirac and Bergmann Observables, Luca Lusanna, arXiv:gr-qc/0302089, 2003. General Relativity and Gravitational Physics, Villa Mondragone (Roma), September 6-10, 2002.
[Lusanna:2003im]

45 - Education

[45-1]
How Einstein Got His Field Equations, Sam Walters, arXiv:1608.05752, 2016.
[Walters:2016vub]
[45-2]
Teaching General Relativity, Robert M. Wald, Am.J. Phys. (2005), arXiv:gr-qc/0511073.
[Wald:2005aq]
[45-3]
A tool for teaching General Relativity, Kayll Lake, arXiv:physics/0509108, 2005.
[Lake:2005pp]
[45-4]
General Relativity in the Undergraduate Physics Curriculum, James B. Hartle, Am. J. Phys. 74 (2006) 14, arXiv:gr-qc/0506075.
[Hartle:2005cq]

46 - Future Experiments

[46-1]
The Gravitational Universe, K. Danzmann et al. (eLISA), arXiv:1305.5720, 2013.
[Seoane:2013qna]
[46-2]
APSIS - an Artificial Planetary System in Space to probe extra-dimensional gravity and MOND, Varun Sahni, Yuri Shtanov, Int. J. Mod. Phys. D17 (2008) 453-466, arXiv:gr-qc/0606063.
[Sahni:2006fq]

47 - Future Experiments - Gravitational Waves

[47-1]
New ways to catch a wave, Neil J. Cornish, Edward K. Porter, Phys. Rev. D75 (2007) 021301, arXiv:gr-qc/0605135.
[Cornish:2006dt]
[47-2]
Towards MIGO, the matter-wave interferometric gravitational-wave observatory, and the intersection of quantum mechanics with general relativity, Raymond Y. Chiao, Achilles D. Speliotopoulos, J.Mod.Opt. (2003), arXiv:gr-qc/0312096.
[Chiao:2003sa]
[47-3]
Special Purpose Pulsar Telescope for the Detection of Cosmic Gravitational Waves, Shou-Guan Wang, Zong-Hong Zhu, Zhen-Long Zou, Yuan-Zhong Zhang, Int. J. Mod. Phys. D11 (2002) 1061, arXiv:astro-ph/0212191.
[Wang:2002ch]

48 - Future Experiments - Gravitational Waves - Conference Proceedings

[48-1]
A brief survey of LISA sources and science, Scott A. Hughes, AIP Conf. Proc. 873 (2006) 13-20, arXiv:gr-qc/0609028. Sixth International LISA Symposium.
[Hughes:2006kn]
[48-2]
A crystal-based matter-wave interferometric gravitational- wave observatory, Raymond Y. Chiao, A. D. Speliotiotopoulos, arXiv:gr-qc/0312100, 2003. Quantum Aspects of Beam Physics.
[Chiao:2003se]
[48-3]
The GEO600 Gravitational Wave Detector - Pulsar Prospects, G. Woan, for the GEO (GEO), ASP Conf.Ser. 302 (2003) 351, arXiv:astro-ph/0210649. ASP Conf. Ser., Radio Pulsars (proceedings of August 2002 meeting in Crete).
[Woan:2002vs]

Search Neutrino Unbound

Cross search NU

It is possible to perform a cross search between the various pages of Neutrino Unbound.
This is useful if you want to show the common elements that appear in the listings of two (or more) different topics or experiments.

Go to the search form.

[Go to ...]

Neutrino Unbound Home

[empty]
Authors:
Stefano Gariazzo / gariazzo@to.infn.it
Carlo Giunti / giunti@to.infn.it
Marco Laveder / marco.laveder@pd.infn.it
Last Update: Fri 17 Mar 2017, 09:08:42 UTC