Quantum Theory

Filter this page

(Note: The process can take some time.)

EXPAND ALL
COMPRESS ALL

References

1 - Books

[1-1]
Density Matrix Theory and Applications, Karl Blum, Springer, Berlin, Heidelberg, 2012. ISBN 9783642205606, 9783642205613. http://dx.doi.org/10.1007/978-3-642-20561-3.
[Blum:2012eca]
[1-2]
Geometric and Algebraic Topological Methods in Quantum Mechanics, G. Giachetta, L. Mangiarotti, G. Sardanashvily, arXiv:math-ph/0410040, 2004.
[math-ph/0410040]
[1-3]
Quantum Mechanics, L. I. Schiff, McGraw-Hill, 1968. Third Edition.
[Schiff-QuantumMechanics-1968]

2 - Books - Quantum Optics

[2-1]
Fundamentals of Optics, F. A. Jenkins, H. E. White, McGraw-Hill, 1981.
[Jenkins-White-FundamentalsOfOptics-1981]
[2-2]
Principles of Optics, M. Born, E. Wolf, Pergamon Press, 1959.
[Born-Wolf-PrinciplesOfOptics-1959]

3 - Reviews

[3-1]
Quantum measurements in fundamental physics: a user's manual, Jacob Beckey, Daniel Carney, Giacomo Marocco, arXiv:2311.07270, 2023.
[Beckey:2023shi]
[3-2]
Quantum information and quantum simulation of neutrino physics, A. B. Balantekin, Michael J. Cervia, Amol V. Patwardhan, Ermal Rrapaj, Pooja Siwach, Eur.Phys.J.A 59 (2023) 186, arXiv:2305.01150.
[Balantekin:2023qvm]
[3-3]
Foundations and Applications of Quantum Kinetic Theory, Yoshimasa Hidaka, Shi Pu, Qun Wang, Di-Lun Yang, Prog.Part.Nucl.Phys. 127 (2022) 103989, arXiv:2201.07644.
[Hidaka:2022dmn]
[3-4]
Notes on basis-independent computations with the Dirac algebra, Walter Grimus, arXiv:2201.01802, 2022.
[Grimus:2021tql]
[3-5]
Tests of Fundamental Quantum Mechanics and Dark Interactions with Low Energy Neutrons - Extended Version, Stephan Sponar, Rene I.P. Sedmik, Mario Pitschmann, Hartmut Abele, Yuji Hasegawa, arXiv:2012.09048, 2020.
[Sponar:2020bhj]
[3-6]
Quantum-based vacuum metrology at NIST, Julia Scherschligt et al., arXiv:1805.06928, 2018.
[Scherschligt:2018vbr]
[3-7]
Randomness: quantum versus classical, Andrei Khrennikov, arXiv:1512.08852, 2015.
[1512.08852]
[3-8]
No Return to Classical Reality, David Jennings, Matthew Leifer, Contemp.Phys. 57 (2016) 60-82, arXiv:1501.03202.
[Jennings:2015xde]
[3-9]
Review of Quantum Algorithms for Systems of Linear Equations, Aram W. Harrow, arXiv:1501.00008, 2015.
[1501.00008]
[3-10]
Lecture Script: Introduction to Computational Quantum Mechanics, Roman Schmied, arXiv:1403.7050, 2014.
[1403.7050]
[3-11]
Gravitation and quantum interference experiments with neutrons, Hartmut Abele, Helmut Leeb, New J. Phys. 14 (2012) 055010, arXiv:1207.2953.
[Abele:2012dn]
[3-12]
Quantum Mechanics, is it magic, M. Ferrero, D. Salgado, J.L. Sanchez-Gomez, arXiv:0804.4216, 2008.
[0804.4216]
[3-13]
Elements of Group Theory, F. J. Yndurain, arXiv:0710.0468, 2007. lecture notes.
[Yndurain:2007nk]
[3-14]
CPT and Quantum Mechanics Tests with Kaons, Jose Bernabeu et al., Frascati Phys.Ser. 43 (2007) 39-83, arXiv:hep-ph/0607322.
[Bernabeu:2006st]
[3-15]
The Postulates of Quantum Mechanics, V. Dorobantu, arXiv:physics/0602145, 2006.
[Azimov:2006ef]
[3-16]
Quantum Mechanics: Foundations, R. Penrose, Academic Press, Oxford, 2006. Encyclopedia of Mathematical Physics. http://www.sciencedirect.com/science/article/pii/B0125126662004144.
[Penrose2006260]
[3-17]
Open Quantum Dynamics: Complete Positivity and Entanglement, F. Benatti, R. Floreanini, Int. J. Mod. Phys. B19 (2005) 3063, arXiv:quant-ph/0507271.
[Benatti:2005uq]
[3-18]
Generalizations of Quantum Mechanics, Philip Pearle, Antony Valentini, arXiv:quant-ph/0506115, 2005. Encyclopaedia of Mathematical Physics.
[Pearle:2005rc]
[3-19]
Between classical and quantum, N.P. Landsman, arXiv:quant-ph/0506082, 2005. Elsevier's Handbook of the Philosophy of Physics.
[Landsman:2005de]
[3-20]
Studies in the Theory of Quantum Games, Azhar Iqbal, arXiv:quant-ph/0503176, 2005.
[quant-ph/0503176]
[3-21]
The role of the rigged Hilbert space in Quantum Mechanics, R. de la Madrid, arXiv:quant-ph/0502053, 2005.
[quant-ph/0502053]
[3-22]
Tunnelling times: An elementary introduction, G. Privitera, G. Salesi, V.S. Olkhovsky, E. Recami, arXiv:quant-ph/0412146, 2004.
[quant-ph/0412146]
[3-23]
The Casimir effect: Recent controversies and progress, Kimball A. Milton, J. Phys. A37 (2004) R209, arXiv:hep-th/0406024.
[Milton:2004ya]
[3-24]
Noncommutative Spacetime and Quantum Mechanics, Jaroslaw Wawrzycki, arXiv:quant-ph/0404028, 2004.
[Wawrzycki:2004ff]
[3-25]
Quantum Gravity Phenomenology, Giovanni Amelino-Camelia, arXiv:physics/0311037, 2003.
[Amelino-Camelia:2003whp]
[3-26]
Quantum Beat Spectroscopy in Chemistry, R.T. Carter, J.R. Huber, Chem. Soc. Rev. 29 (2000) 305-314. http://www.rsc.org/ej/CS/2000/a900724e.pdf.
[Carter-Huber-2000]
[3-27]
The neutron interferometer as a device for illustrating the strange behavior of quantum systems, Daniel M. Greenberger, Rev. Mod. Phys. 55 (1983) 875-905.
[Greenberger:1983zz]
[3-28]
Experimental determinations of the hyperfine structure in the alkali atoms, E. Arimondo, M. Inguscio, P. Violino, Rev. Mod. Phys. 49 (1977) 31-75.
[Arimondo:1977zz]
[3-29]
Aharonov-bohm effect - quantum effects on charge particles in field-free regions, H. Erlichson, Am.J. Phys. 38 (1970) 162-173.
[Erlichson:1970ga]
[3-30]
Theory of Electron Interference Experiments, D. Gabor, Rev. Mod. Phys. 28 (1956) 260.
[Gabor-RMP28-260-1956]

4 - Reviews - Talks

[4-1]
Magic moments: A collaboration with John Bell, R. A. Bertlmann, arXiv:2302.05777, 2023. Quantum (Un)Speakables: Conference in Commemoration of John S. Bell.
[Bertlmann:2000vj]
[4-2]
Quantum Information for Particle Theorists, Joseph D. Lykken, PoS TASI2020 (2021) 010, arXiv:2010.02931. TASI 2020, 1-26 June 2020.
[Lykken:2020xtx]
[4-3]
Area laws for the entanglement entropy - a review, J. Eisert, M. Cramer, M.B. Plenio, Rev.Mod.Phys. 82 (2010) 277-306, arXiv:0808.3773.
[Eisert:2008ur]
[4-4]
Non-relativistic Quantum Mechanics versus Quantum Field Theories, Antonio Pineda, arXiv:0705.4224, 2007. 42nd Rencontres de Moriond on QCD and High-Energy Hadronic Interactions, La Thuile, March 2007.
[Pineda:2007vj]
[4-5]
Quantum Mechanics with Neutral Kaons, A. Bramon, G. Garbarino, B. C. Hiesmayr, Acta Phys. Polon. B38 (2007) 2763-2776, arXiv:hep-ph/0703152. Effective Theories of Colour and Flavour: from EURODAPHNE to EURIDICE, Kazimierz (Poland), August 24-27, 2006.
[Bramon:2007sy]
[4-6]
Two theorems of Jhon Bell and Communication Complexity, Guruprasad Kar, arXiv:quant-ph/0504191, 2005. Quantum Information,computation and Communication (QICC-2005), IIT Kharagpur,India,February 2005.
[quant-ph/0504191]
[4-7]
Foundations of Probability and Physics-3: Preface of Proceedings and Round Table on Quantum Foundations and Computing, Andrei Khrennikov, arXiv:quant-ph/0504109, 2005. AIP Conference.
[quant-ph/0504109]
[4-8]
Quantum thermodynamics: thermodynamics at the nanoscale, A.E. Allahverdyan, R. Balian, Th.M. Nieuwenhuizen, arXiv:cond-mat/0402387, 2004. Physics of Quantum Electronics (PQE2004), Snowbird.
[cond-mat/0402387]
[4-9]
Quantum Imaging and Metrology, Hwang Lee, Pieter Kok, Jonathan P. Dowling, arXiv:quant-ph/0306113, 2003. Sixth International Conference on Quantum Communication, Measurement and Computing.
[quant-ph/0306113]
[4-10]
Quantum logic. A brief outline, Karl Svozil, arXiv:quant-ph/9902042, 1999.
[Svozil:1999yx]
[4-11]
The Discovery of Squeezed States - In 1927, Michael Martin Nieto, arXiv:quant-ph/9708012, 1997. 5th International Conference on Squeezed States and Uncertainty Relations.
[Nieto:1997xf]

5 - Reviews - Interpretations

[5-1]
A Quantum Story, Stephen Boughn, arXiv:1801.06196, 2018.
[1801.06196]
[5-2]
Reflections on Zeilinger-Brukner information interpretation of quantum mechanics, Andrei Khrennikov, arXiv:1512.07976, 2015.
[1512.07976]
[5-3]
External observer reflections on QBism, Andrei Khrennikov, arXiv:1512.07195, 2015.
[1512.07195]
[5-4]
An Introduction to QBism with an Application to the Locality of Quantum Mechanics, Christopher A. Fuchs, N. David Mermin, Ruediger Schack, American Journal of Physics 82 (2014) 749, arXiv:1311.5253.
[1311.5253]
[5-5]
A Pedestrian Approach to the Measurement Problem in Quantum Mechanics, Stephen Boughn, Marcel Reginatto, European Physics Journal H (2013), arXiv:1309.0724.
[Boughn:2013fza]
[5-6]
Quantum-Bayesian Coherence: The No-Nonsense Version, Christopher A. Fuchs, Ruediger Schack, Rev.Mod.Phys. 85 (2013) 1693-1715, arXiv:1301.3274.
[1301.3274]
[5-7]
There are no particles, there are only fields, Art Hobson, American Journal of Physics 81 (2013) 211-223.
[Hobson-2013-AJP-81-211]
[5-8]
Interpretations of Quantum Mechanics and the measurement problem, M. Genovese, Adv.Sci.Lett. 3 (2010) 249-258, arXiv:1002.0990.
[Genovese:2010ie]
[5-9]
An Introduction to consistent quantum theory, Pierre C. Hohenberg, Rev.Mod.Phys. 82 (2010) 2835-2844, arXiv:0909.2359.
[Hohenberg:2010wmt]
[5-10]
Quantum mechanics: Myths and facts, Hrvoje Nikolic, Found. Phys. 37 (2007) 1563-1611, arXiv:quant-ph/0609163.
[Nikolic:2006az]
[5-11]
The transactional interpretation of quantum mechanics, John G. Cramer, Rev. Mod. Phys. 58 (1986) 647-687.
[Cramer:1986zz]
[5-12]
The Statistical Interpretation of Quantum Mechanics, L. E. Ballentine, Rev. Mod. Phys. 42 (1970) 358.
[Ballentine-RMP42-358-1970]

6 - Reviews - Interpretations - Talks

[6-1]
Delirium Quantum, Christopher A. Fuchs, arXiv:0906.1968, 2009. AIP Conference Proceedings 889, Foundations of Probability and Physics - 4.
[0906.1968]
[6-2]
Objective and Subjective Probabilities in Quantum Mechanics, Leslie Ballentine, arXiv:0710.5945, 2007. Vaxjo, Sweden, 11 June 2007.
[0710.5945]
[6-3]
What Connects Different Interpretations of Quantum Mechanics?, James B. Hartle, arXiv:quant-ph/0305089, 2003. Quo Vadis Quantum Mechanics, Center for Frontier Sciences, Temple University, Philadelphia, PA, September 24-27, 2002.
[Hartle:2003nr]

7 - Reviews - Entanglement

[7-1]
Quantum entanglement and Bell inequality violation at colliders, Alan J. Barr, Marco Fabbrichesi, Roberto Floreanini, Emidio Gabrielli, Luca Marzola, arXiv:2402.07972, 2024.
[Barr:2024djo]
[7-2]
Essential entanglement for atomic and molecular physics, Malte C. Tichy, Florian Mintert, Andreas Buchleitner, Journal of Physics B: Atomic, Molecular and Optical Physics 44 (2011) 192001.
[Tichy-Mintert-Buchleitner-2011-JPB-44-192001]
[7-3]
Realism and the physical world, A.J. Leggett, Rep. Prog. Phys. 71 (2008) 022001.
[Leggett-RPP-71-022001-2008]
[7-4]
Entanglement in many-body systems, Luigi Amico, Rosario Fazio, Andreas Osterloh, Vlatko Vedral, Rev. Mod. Phys. 80 (2008) 517-576, arXiv:quant-ph/0703044.
[Amico:2007ag]
[7-5]
Quantum entanglement, Ryszard Horodecki, Pawel Horodecki, Michal Horodecki, Karol Horodecki, Rev. Mod. Phys. 81 (2009) 865-942, arXiv:quant-ph/0702225.
[Horodecki:2009zz]
[7-6]
Reference frames, superselection rules, and quantum information, Stephen D. Bartlett, Terry Rudolph, Robert W. Spekkens, Rev. Mod. Phys. 79 (2007) 555-609.
[Bartlett-Rudolph-Spekkens-2007-RMP-79-555]

8 - Reviews - Decay Law

[8-1]
Neutrino-Induced Decay: A Critical Review of the Arguments, S. Pomme, K. Pelczar, Space Sci. Rev. 218 (2022) 64.
[Pomme:2022ead]
[8-2]
Temporal behavior of quantum mechanical systems, Hiromichi Nakazato, Mikio Namiki, Saverio Pascazio, Int.J.Mod.Phys. B10 (1996) 247-295, arXiv:quant-ph/9509016.
[Nakazato:1995cn]
[8-3]
Seeking non-exponential decay, P.T. Greenland, Nature 335 (1988) 298.
[Greenland-1988-Nature-335-298]
[8-4]
Decay Theory of Unstable Quantum Systems, L. Fonda, G. C. Ghirardi, A. Rimini, Rept. Prog. Phys. 41 (1978) 587-631.
[Fonda:1978dk]

9 - Reviews - Quantum Zeno Effect

[9-1]
Quantum Zeno Effect, Mikhail Lemeshko, Bretislav Friedrich, arXiv:0903.4560, 2009.
[0903.4560]
[9-2]
Zeno meets modern science, Z. K. Silagadze, Acta Phys. Polon. B36 (2005) 2887-2930, arXiv:physics/0505042.
[Silagadze:2005qj]

10 - Reviews - Quantum Zeno Effect - Talks

[10-1]
Perspectives on the quantum Zeno paradox, W. M. Itano, arXiv:quant-ph/0612187, 2006. Sudarshan Symposium, Univ. of Texas, November 2006.
[quant-ph/0612187]

11 - Reviews - Measurement Problem and Decoherence

[11-1]
Quantum Darwinism, Classical Reality, and the Randomness of Quantum Jumps, Wojciech H. Zurek, arXiv:1412.5206, 2014.
[1412.5206]
[11-2]
Quantum models of classical world, Petr Hajicek, Entropy 15 (2013) 789, arXiv:1212.2400.
[Hajicek:2012gu]
[11-3]
Models of Wave-function Collapse, Underlying Theories, and Experimental Tests, Angelo Bassi, Kinjalk Lochan, Seema Satin, Tejinder P. Singh, Hendrik Ulbricht, arXiv:1204.4325, 2012.
[Bassi:2012mx]
[11-4]
New wine in old bottles: Quantum measurement - direct, indirect, weak - with some applications, Bengt E. Y. Svensson, arXiv:1202.5148, 2012.
[1202.5148]
[11-5]
Weak measurements in quantum mechanics, Lajos Diosi, arXiv:quant-ph/0505075, 2005.
[quant-ph/0505075]
[11-6]
An introduction to entanglement measures, Martin B. Plenio, S. Virmani, Quant. Inf. Comput. 7 (2007) 1-51, arXiv:quant-ph/0504163.
[Plenio:2007zz]
[11-7]
How the Quantum Universe Became Classical, J.J. Halliwell, arXiv:quant-ph/0501119, 2005.
[quant-ph/0501119]
[11-8]
Decoherence, the Measurement Problem, and Interpretations of Quantum Mechanics, Maximilian Schlosshauer, Rev. Mod. Phys. 76 (2004) 1267, arXiv:quant-ph/0312059.
[Schlosshauer:2003zy]
[11-9]
Decoherence and the transition from quantum to classical - REVISITED, Wojciech H. Zurek, arXiv:quant-ph/0306072, 2003.
[quant-ph/0306072]
[11-10]
Dynamical Reduction Models, Angelo Bassi, Gian Carlo Ghirardi, Phys. Rep. 379 (2003) 257, arXiv:quant-ph/0302164.
[Bassi:2003gd]
[11-11]
Decoherence, einselection, and the quantum origins of the classical, Wojciech Hubert Zurek, Rev. Mod. Phys. 75 (2003) 715-775.
[Zurek:2003zz]
[11-12]
Collapse Models, Philip M. Pearle, Lect.Notes Phys. 526 (1999) 195, arXiv:quant-ph/9901077.
[Pearle:1999hs]
[11-13]
Consistent interpretations of quantum mechanics, R. Omnes, Rev. Mod. Phys. 64 (1992) 339-382.
[Omnes:1992ag]
[11-14]
The dissipative brain, Giuseppe Vitiello, arXiv:q-bio.OT/0409037, 20q-.
[q-bio-OT/0409037]

12 - Reviews - Measurement Problem and Decoherence - Talks

[12-1]
Entanglement, Bell Inequalities and Decoherence in Particle Physics, Reinhold A. Bertlmann, Lect. Notes Phys. 689 (2006) 1, arXiv:quant-ph/0410028. Quantum Coherence in Matter: from Quarks to Solids, 42. Internationale Universitatswochen fur Theoretische Physik, Schladming, Austria, Feb. 28 - March 6, 2004.
[Bertlmann:2004yg]

13 - Reviews - Quantum Computation and Cryptography

[13-1]
Quantum simulation of fundamental particles and forces, Christian W. Bauer, Zohreh Davoudi, Natalie Klco, Martin J. Savage, Nature Rev. Phys. 5 (2023) 420-432, arXiv:2404.06298.
[Bauer:2023qgm]
[13-2]
Quantum Simulation for High Energy Physics, Christian W. Bauer et al., PRX Quantum 4 (2023) 027001, arXiv:2204.03381.
[Bauer:2022hpo]
[13-3]
Some Open Problems in Quantum Information Theory, O. Krueger, R.F. Werner, arXiv:quant-ph/0504166, 2005. http://www.imaph.tu-bs.de/qi/problems/.
[quant-ph/0504166]
[13-4]
The Physics of Information, Christoph Adami, arXiv:quant-ph/0405005, 2004.
[Adami:2011aa]
[13-5]
Is Quantum Search Practical?, George F. Viamontes, Igor L. Markov, John P. Hayes, arXiv:quant-ph/0405001, 2004.
[quant-ph/0405001]
[13-6]
An Introduction to Logical Operations on Classical and Quantum Bits, F.L. Marquezino, R.R. Mello Junior, Stud.Hist.Philos.Mod.Phys. 36 (2005) 103-112, arXiv:physics/0404134.
[Goldstein:2004bn]
[13-7]
Considerations on Classical and Quantum Bits, F.L. Marquezino, R.R. Mello Junior, arXiv:physics/0404133, 2004.
[physics/0404133]
[13-8]
Introduction to Quantum Computation, Ashok Chatterjee, arXiv:quant-ph/0312111, 2003.
[quant-ph/0312111]
[13-9]
Dreams versus Reality: Plenary Debate Session on Quantum Computing, D. Abbott, arXiv:quant-ph/0310130, 2003.
[quant-ph/0310130]
[13-10]
Quantum Computation explained to my Mother, P. Arrighi, arXiv:quant-ph/0305045, 2003.
[quant-ph/0305045]
[13-11]
Quantum Computational Logics. A Survey, M. L. Dalla Chiara, R. Giuntini, R. Leporini, arXiv:quant-ph/0305029, 2003.
[quant-ph/0305029]
[13-12]
Decoherence, Control, and Symmetry in Quantum Computers, D. Bacon, arXiv:quant-ph/0305025, 2003. Ph.D. thesis, University of California, Berkeley, 2001.
[quant-ph/0305025]
[13-13]
Quantum Computing and Error Correction, A. M. Steane, arXiv:quant-ph/0304016, 2003.
[quant-ph/0304016]
[13-14]
Shor's Algorithm for Factoring Large Integers, C. Lavor, L. R. U. Manssur, R. Portugal, arXiv:quant-ph/0303175, 2003.
[quant-ph/0303175]
[13-15]
Mathematical Models of Contemporary Elementary Quantum Computing Devices, G. Chen, D. A. Church, B.-G. Englert, M. S. Zubairy, arXiv:quant-ph/0303163, 2003.
[quant-ph/0303163]

14 - Reviews - Quantum Computation and Cryptography - Talks

[14-1]
Illustrating the concept of quantum information, Richard Jozsa, arXiv:quant-ph/0305114, 2003. Charles H. Bennett 60th Birthday Symposium.
[quant-ph/0305114]
[14-2]
Introduction to Quantum Computers and Quantum Algorithms, Christof Zalka, arXiv:quant-ph/0305053, 2003. 'IX Seminaire Rhodanien de Physique' on 'Physics of Entangled States' in Dolomieu, France, February 26 - March 2 2001.
[quant-ph/0305053]

15 - Reviews - Quantum Optics

[15-1]
Coherence Properties of Optical Fields, L. Mandel, E. Wolf, Rev. Mod. Phys. 37 (1965) 231.
[Mandel-Wolf-RMP37-231-1965]
[15-2]
Line Shape, R. J. Breene Jr., Rev. Mod. Phys. 29 (1957) 94.
[Breene-57]

16 - Reviews - Quantum Optics - Talks

[16-1]
Introduction to Quantum Optics, V. I. Man'ko, AIP Conf.Proc. 365 (1996) 337, arXiv:quant-ph/9509018. Latin America Scool of Physics 1995.
[Manko:1995fm]

17 - Reviews - Quantum Field Theory

[17-1]
Symmetries in QFT, K. M. Hamilton, J. F. Wheater, arXiv:hep-ph/0310065, 2003.
[Hamilton:2002gy]

18 - Reviews - Quantum Gravity and Cosmology

[18-1]
Symmetry Reduced Loop Quantum Gravity: A Bird's Eye View, Abhay Ashtekar, Int.J.Mod.Phys. D25 (2016) 1642010, arXiv:1605.02648.
[Ashtekar:2016ecx]
[18-2]
What lattice theorists can do for quantum gravity, Masanori Hanada, Int.J.Mod.Phys. A31 (2016) 1643006, arXiv:1604.05421.
[Hanada:2016jok]
[18-3]
The Atoms Of Space, Gravity and the Cosmological Constant, T. Padmanabhan, Int.J.Mod.Phys. D25 (2016) 1630020, arXiv:1603.08658.
[Padmanabhan:2016eld]
[18-4]
The Holographic Universe, Jean-Pierre Luminet, Inference 2 (2016), arXiv:1602.07258.
[Luminet:2016cuw]
[18-5]
Conceptual issues in loop quantum cosmology, Aurelien Barrau, Boris Bolliet, Int.J.Mod.Phys. D25 (2016) 1642008, arXiv:1602.04452.
[Barrau:2016nwy]
[18-6]
Theory and Phenomenology of Spacetime Defects, Sabine Hossenfelder, Adv.High Energy Phys. 2014 (2014) 950672, arXiv:1401.0276.
[Hossenfelder:2014hha]
[18-7]
A review of Quantum Gravity at the Large Hadron Collider, Xavier Calmet, Mod. Phys. Lett. A25 (2010) 1553-1579, arXiv:1005.1805.
[Calmet:2010nt]
[18-8]
String Cosmology: A Review, Liam McAllister, Eva Silverstein, Gen. Rel. Grav. 40 (2008) 565-605, arXiv:0710.2951.
[McAllister:2007bg]
[18-9]
Loop Quantum Gravity: An Inside View, Thomas Thiemann, Lect. Notes Phys. 721 (2007) 185-263, arXiv:hep-th/0608210.
[Thiemann:2006cf]
[18-10]
Black Holes at Future Colliders and Beyond: a Topical Review, Greg Landsberg, J. Phys. G32 (2006) R337-R365, arXiv:hep-ph/0607297.
[Landsberg:2006mm]
[18-11]
Quantum Cosmology, Martin Bojowald, arXiv:gr-qc/0603110, 2006.
[Bojowald:2006nd]
[18-12]
Phenomenological Quantum Gravity, Dagny Kimberly, Joao Magueijo, Aip Conf. Proc. 782 (2005) 241, arXiv:gr-qc/0502110. Lectures given at XI BSCG.
[Kimberly:2005at]
[18-13]
How far are we from the quantum theory of gravity?, Lee Smolin, arXiv:hep-th/0303185, 2003.
[Smolin:2003rk]
[18-14]
Why the quantum must yield to gravity, Joy Christian, arXiv:gr-qc/9810078, 1998.
[Christian:1998ep]

19 - Reviews - Hidden Variables

[19-1]
Research on hidden variable theories: A review of recent progresses, Marco Genovese, Phys. Rept. 413 (2005) 319-396.
[Genovese:2005nw]
[19-2]
A Proposed Solution of the Measurement Problem in Quantum Mechanics by a Hidden Variable Theory, D. Bohm, J. Bub, Rev. Mod. Phys. 38 (1966) 453-469.
[Bohm:1966zz]

20 - Reviews - Alternative Models

[20-1]
Introduction to the Quantum Theory of Elementary Cycles: The Emergence of Space, Time and Quantum, Donatello Dolce, arXiv:1707.00677, 2017.
[Dolce:2017rat]

21 - Fundamental Papers

[21-1]
Significance of electromagnetic potentials in the quantum theory, Y. Aharonov, D. Bohm, Phys. Rev. 115 (1959) 485-491.
[Aharonov:1959fk]
[21-2]
The intrinsic parity of elementary particles, G. C. Wick, A. S. Wightman, E. P. Wigner, Phys. Rev. 88 (1952) 101-105.
[Wick:1952nb]
[21-3]
Can quantum mechanical description of physical reality be considered complete?, Albert Einstein, Boris Podolsky, Nathan Rosen, Phys. Rev. 47 (1935) 777-780.
[Einstein:1935rr]

22 - Experiment

[22-1]
Direct Experimental Constraints on the Spatial Extent of a Neutrino Wavepacket, Joseph Smolsky et al., arXiv:2404.03102, 2024.
[Smolsky:2024uby]
[22-2]
Quantum sensing for particle physics, Steven D. Bass, Michael Doser, Nature Rev.Phys. (2024), arXiv:2305.11518.
[Bass:2023hoi]
[22-3]
Double-slit time diffraction at optical frequencies, Romain Tirole, Stefano Vezzoli, Emanuele Galiffi, Iain Robertson, Dries Maurice, Benjamin Tilmann, Stefan A. Maier, John B. Pendry, Riccardo Sapienza, Nature Phys. 19 (2023) 999-1002, arXiv:2206.04362.
[Tirole:2022gpl]
[22-4]
A Search for Spontaneous Radiation from Wavefunction Collapse in the Majorana Demonstrator, I.J. Arnquist et al., arXiv:2202.01343, 2022.
[@Article{2202.01343]
[22-5]
Search for Pauli Exclusion Principle Violating Atomic Transitions and Electron Decay with a P-type Point Contact Germanium Detector, N. Abgrall et al., Eur.Phys.J. C76 (2016) 619, arXiv:1610.06141.
[MAJORANA:2016ark]
[22-6]
Experimental Proof of Nonlocal Wavefunction Collapse for a Single Particle Using Homodyne Measurement, Maria Fuwa, Shuntaro Takeda, Marcin Zwierz, Howard M. Wiseman, Akira Furusawa, Nature Commun. 6 (2015) 6665, arXiv:1412.7790.
[Fuwa:2014cra]
[22-7]
Teleportation of entanglement over 143 km, Thomas Herbst et al., arXiv:1403.0009, 2014.
[1403.0009]
[22-8]
First observation of quantum interference in the process $ \phi \to K_S K_L \to \pi^+ \pi^- \pi^+ \pi^- $: a test of quantum mechanics and CPT symmetry, KLOE (KLOE), Phys. Lett. B642 (2006) 315-321, arXiv:hep-ex/0607027.
[KLOE:2006iuj]
[22-9]
Robust entanglement, H. Haeffner et al., arXiv:quant-ph/0508021, 2005.
[quant-ph/0508021]

23 - Experiment - Entanglement

[23-1]
Experimental rejection of observer-independence in the quantum world, Massimiliano Proietti, Alexander Pickston, Francesco Graffitti, Peter Barrow, Dmytro Kundys, Cyril Branciard, Martin Ringbauer, Alessandro Fedrizzi, arXiv:1902.05080, 2019.
[1902.05080]
[23-2]
A simple approach to test Leggett's model of nonlocal quantum correlations, Cyril Branciard et al., Annals Phys. 323 (2008) 2241-2252, arXiv:0801.2241.
From the abstract: We present new inequalities for testing Leggett's model [41-35] of non-local quantum correlations.... The simplest of these inequalities is experimentally violated.
[Ho:2008iy]
[23-3]
Experimental test of nonlocal realistic theories without the rotational symmetry assumption, Tomasz Paterek et al., Phys. Rev. Lett. 99 (2007) 210406, arXiv:0708.0813.
From the abstract: We analyze the class of nonlocal realistic theories that was originally considered by Leggett [41-35] and tested by us in a recent experiment [23-5].... Using polarization-entangled photon pairs, we exclude this broader class of nonlocal realistic models by experimentally violating a new Leggett-type inequality by 80 standard deviations.
[0708.0813]
[23-4]
Experimental Falsification of Leggett's Non-Local Variable Model, Cyril Branciard et al., Phys. Rev. Lett. 99 (2007) 210407, arXiv:0708.0584.
From the abstract: Our experimental data falsify Leggett's model and are in agreement with quantum predictions.
[0708.0584]
[23-5]
An experimental test of non-local realism, Simon Groeblacher et al., Nature 446 (2007) 871-875, arXiv:0704.2529.
From the abstract: In the experiment, we measure previously untested correlations between two entangled photons, and show that these correlations violate an inequality proposed by Leggett for non-local realistic theories. Our result suggests that giving up the concept of locality is not sufficient to be consistent with quantum experiments, unless certain intuitive features of realism are abandoned.
[0704.2529]
[23-6]
Measurement of EPR-type flavour entanglement in Upsilon(4S)- > B0 B0bar decays, A. Go et al. (Belle), Phys. Rev. Lett. 99 (2007) 131802, arXiv:quant-ph/0702267.
[Santos:2007fj]
[23-7]
Realisation of Hardy's Thought Experiment, William T.M. Irvine, Juan F. Hodelin, Christoph Simon, Dirk Bouwmeester, arXiv:quant-ph/0410160, 2004.
From the article: We find a violation of the LHV (Local Hidden Variables) inequality by 12 standard deviations.
[quant-ph/0410160]
[23-8]
Experimental Bell Inequality Violation with an Atom and a Photon, D. L. Moehring, M. J. Madsen, B. B. Blinov, C. Monroe, arXiv:quant-ph/0406048, 2004.
[quant-ph/0406048]
[23-9]
Observation of Bell Inequality violation in B mesons, A. Go (Belle), J.Mod.Opt. 51 (2004) 991, arXiv:quant-ph/0310192. Garda Lake Workshop 2003 'Mysteries, Puzzles and Paradoxes in Quantum Mechanics'.
[Go:2003tx]
[23-10]
A first experimental test of de Broglie-Bohm theory against standard quantum mechanics, C. Novero G. Brida, E. Cagliero, G. Falzetta, M.Genovese, M. Gramegna, J. Phys. B. At. Mol. Opt. Phys. 35 (2002) 4751, arXiv:quant-ph/0206196.
From the abstract: Our results confirm Quantum Mechanics contradicting De Broglie - Bohm predictions.
[Brida:2002mf]

24 - Experiment - Decay Law

[24-1]
Decay rate measurements $^{137}$Cs at Janossy Underground Research Laboratory, Edit Fenyvesi, Gergely Gabor Barnafoldi, Gabor Gyula Kiss, Denes Molnar, PoS TAUP2023 (2024) 347, arXiv:2402.07761.
[Fenyvesi:2024sxi]
[24-2]
Measurement of the 22Na half-life and evidence supporting the exponential-decay law, S. Pomme, H. Stroh, J. Paepen, Nucl. Data Sheets 193 (2024) 79-87.
[Pomme:2024stg]
[24-3]
Search for variations of $^{22}$Na decay constant, Jovana Knezevic, Dusan Mrdja, Kristina Bikit-Schroeder, Jan Hansman, Istvan Bikit, Jaroslav Slivka, Appl. Radiat. Isot. 163 (2020) 109178.
[Knezevic:2020qsf]
[24-4]
No correlation between Solar flares and the decay rate of several $\beta$-decaying isotopes, J.R. Angevaare et al., Astropart.Phys. 103 (2018) 62-66, arXiv:1806.03202.
[Angevaare:2018rto]
[24-5]
A Precision Experiment to Investigate Long-Lived Radioactive Decays, J. R. Angevaare et al., JINST 13 (2018) P07011, arXiv:1804.02765.
[Angevaare:2018aka]
[24-6]
2.7 years of beta-decay-rate ratio measurements in a controlled environment, E. McKnight, Q. McKnight, S. D. Bergeson, J. Peatross, M. J. Ware, Appl. Radiat. Isot. 142 (2018) 113-119.
[McKnight:2018ykd]
[24-7]
First observation of a reactor-status effect on the beta+ decay rate of 22Na, Robert de Meijer et al., arXiv:1610.01332, 2016.
[deMeijer:2016vmy]
[24-8]
Precise measurement of the $^{222}$Rn half-life: A probe to monitor the stability of radioactivity, E. Bellotti, C. Broggini, G. Di Carlo, M. Laubenstein, R. Menegazzo, Phys.Lett. B743 (2015) 526-530, arXiv:1501.07757.
[Bellotti:2015toa]
[24-9]
Disproof of solar influence on the decay rates of $^{90}$Sr/$^{90}$Y, Karsten Kossert, Ole J. Nahle, Astropart.Phys. 69 (2015) 18-23, arXiv:1407.2493.
[Kossert:2014wda]
[24-10]
Search for time modulations in the decay rate of $^{40}$K and $^{232}$Th, E. Bellotti, C. Broggini, G. Di Carlo, M. Laubenstein, R. Menegazzo et al., Astropart.Phys. 61 (2015) 82-87, arXiv:1311.7043.
[Bellotti:2013bka]
[24-11]
Search for correlations between solar flares and decay rate of radioactive nuclei, E. Bellotti, C. Broggini, G. Di Carlo, M. Laubenstein, R. Menegazzo, Phys.Lett. B720 (2013) 116-119, arXiv:1302.0970.
[Bellotti:2013js]
[24-12]
Search for the time dependence of the 137Cs decay constant, E. Bellotti, C. Broggini, G. Di Carlo, M. Laubenstein, R. Menegazzo, Phys.Lett. B710 (2012) 114-117, arXiv:1202.3662.
[Bellotti:2012if]
[24-13]
Experimental test of the time stability of the half-life of alpha-decay Po-214 nuclei, E.N. Alexeyev, Ju.M. Gavriljuk, A.M. Gangapshev, A.M. Gezhaev, V.V. Kazalov et al., Astropart.Phys. 46 (2013) 23-28, arXiv:1112.4362.
[Alexeyev:2011rw]
[24-14]
Do radioactive half-lives vary with the Earth-to-Sun distance?, J.C. Hardy, J.R. Goodwin, V.E. Iacob, Appl.Radiat.Isot. 70 (2012) 1931-1933, arXiv:1108.5326.
[Hardy:2011ku]
[24-15]
Researches of alpha and beta radioactivity at long-term observations, A.G. Parkhomov, arXiv:1004.1761, 2010.
[Parkhomov:2010as]
[24-16]
Searching for modifications to the exponential radioactive decay law with the Cassini spacecraft, Peter S. Cooper, Astroparticle Physics 31 (2009) 267-269.
[Cooper2009267]
[24-17]
Evidence of correlations between nuclear decay rates and Earth-Sun distance, Jere H. Jenkins, Ephraim Fischbach, John B. Buncher, John T. Gruenwald, Dennis E. Krause, Joshua J. Mattes, Astroparticle Physics 32 (2009) 42 - 46.
[Jenkins200942]
[24-18]
Evidence against correlations between nuclear decay rates and Earth-Sun distance, Eric B. Norman, Edgardo Browne, Howard A. Shugart, Tenzing H. Joshi, Richard B. Firestone, Astroparticle Physics 31 (2009) 135 - 137.
[Norman2009135]
[24-19]
Experimental evidence for non-exponential decay in quantum tunnelling, S. R. Wilkinson et al., Nature 387 (1997) 575-577. http://www.ph.utexas.edu/~quantopt/papers/tunnelling.pdf.
[Wilkinson-etal-Nature-387-575-1997]
[24-20]
Tests of the Exponential Decay Law at Short and Long Times, Eric B. Norman, Stuart B. Gazes, Stephanie G. Crane, Dianne A. Bennett, Phys. Rev. Lett. 60 (1988) 2246-2249.
[Norman:1988zz]
[24-21]
Experiments on Cosmic-Ray Mesons and Protons at Several Altitudes and Latitudes, Marcello Conversi, Phys. Rev. 79 (1950) 749-767.
[Conversi:1950zz]
[24-22]
Further Measurements on the Disintegration Curve of Mesotrons, N. Nereson, B. Rossi, Phys. Rev. 64 (1943) 199-201.
[Nereson:1943if]
[24-23]
Experimental Determination of the Disintegration Curve of Mesotrons, Bruno Rossi, Norris Nereson, Phys. Rev. 62 (1942) 417-422. http://link.aps.org/doi/10.1103/PhysRev.62.417.
[Rossi-PhysRev.62.417-1942]

25 - Experiment - Decay Law - Talks

[25-1]
Lifetime measurements of nuclei in few-electron ions, Thomas Faestermann, Phys. Scripta T166 (2015) 014003, arXiv:1512.00431. 9th International Conference on Nuclear Physics at Storage Rings STORI'14.
[Faestermann:2015mdp]
[25-2]
Results of a search for daily and annual variations of the Po-214 half-life at the two year observation period, E.N. Alexeyev et al., Phys.Part.Nucl. 47 (2016) 986-994, arXiv:1505.01752. International Workshop on Prospects of Particle Physics: 'Neutrino Physics and Astrophysics' February 1 - Ferbuary 8, 2015, Valday, Russia.
[Alexeyev:2015ypa]

26 - Experiment - Quantum Zeno Effect

[26-1]
Experimental demonstration of the quantum Zeno effect in NMR with entanglement-based measurements, Wenqiang Zheng, D. Z. Xu, Xinhua Peng, Xianyi Zhou, Jiangfeng Du, C. P. Sun, Phys. Rev. A 87 (2013) 032112, arXiv:1303.2428. http://link.aps.org/doi/10.1103/PhysRevA.87.032112.
[PhysRevA.87.032112]
[26-2]
Zeno and Anti-Zeno Polarization Control of Spin Ensembles by Induced Dephasing, Gonzalo A. Alvarez, D. D. Bhaktavatsala Rao, Lucio Frydman, Gershon Kurizki, Phys. Rev. Lett. 105 (2010) 160401, arXiv:1008.5122. http://link.aps.org/doi/10.1103/PhysRevLett.105.160401.
[PhysRevLett.105.160401]
[26-3]
Freezing Coherent Field Growth in a Cavity by the Quantum Zeno Effect, J. Bernu, S. Deleglise, C. Sayrin, S. Kuhr, I. Dotsenko, M. Brune, J. M. Raimond, S. Haroche, Phys. Rev. Lett. 101 (2008) 180402, arXiv:0809.4388. http://link.aps.org/doi/10.1103/PhysRevLett.101.180402.
[PhysRevLett.101.180402]
[26-4]
Continuous and Pulsed Quantum Zeno Effect, Erik W. Streed, Jongchul Mun, Micah Boyd, Gretchen K. Campbell, Patrick Medley, Wolfgang Ketterle, David E. Pritchard, Phys. Rev. Lett. 97 (2006) 260402, arXiv:cond-mat/0606430. http://link.aps.org/doi/10.1103/PhysRevLett.97.260402.
[PhysRevLett.97.260402]
[26-5]
NMR analogues of the quantum Zeno effect, Li Xiao, Jonathan A. Jones, Physics Letters A 359 (2006) 424-427, arXiv:quant-ph/0506235. http://www.sciencedirect.com/science/article/pii/S0375960106010802.
[Xiao2006424]
[26-6]
Observation of the Quantum Zeno and Anti-Zeno effects in an unstable system, M. C. Fischer, B. Gutierrez-Medina, M. G. Raizen, Phys. Rev. Lett. 87 (2001) 040402, arXiv:quant-ph/0104035.
[quant-ph/0104035]
[26-7]
Quantum Zeno effect, W.M. Itano, D.J. Heinzen, J.J. Bollinger, D.J. Wineland, Phys. Rev. A41 (1990) 2295-2300.
[Itano-Heinzen-Bollinger-Wineland-PRA-41-1990]

27 - Experiment - GSI Anomaly

[27-1]
Heavy-Ion Storage Rings and Their Use in Precision Experiments with Highly Charged Ions, Markus Steck, Yuri A. Litvinov, Prog. Part. Nucl. Phys. 115 (2020) 103811, arXiv:2003.05201.
[Steck:2020hsx]
[27-2]
New test of modulated electron capture decay of hydrogen-like $^{142}$Pm ions: precision measurement of purely exponential decay, F. C. Ozturk et al. (FRS-ESR, ILIMA, SPARC, TBWD), Phys. Lett. B 797 (2019) 134800, arXiv:1907.06920.
[FRS-ESR:2019pha]
[27-3]
High-resolution measurement of the time-modulated orbital electron capture and of the $\beta^+$ decay of hydrogen-like $^{142}$Pm$^{60+}$ ions, P. Kienle et al. (Two-Body-Weak-Decays), Phys.Lett. B726 (2013) 638-645, arXiv:1309.7294.
[Two-Body-Weak-Decays:2013ygn]
[27-4]
Could the GSI Oscillations be Observed in a Standard Electron Capture Decay Experiment?, Thomas Faestermann et al., Phys. Lett. B672 (2009) 227-229, arXiv:0807.3297.
[Faestermann:2008jt]
[27-5]
Search for Oscillation of the Electron-Capture Decay Probability of $^{142}$Pm, P. A. Vetter et al., Phys. Lett. B670 (2008) 196-199, arXiv:0807.0649.
From the abstract: We observed no oscillatory modulation at the proposed frequency at a level 31 times smaller than that reported by Litvinov et al. (Phys. Lett. B 664 (2008) 162; arXiv:0801.2079 [nucl-ex]).
[Vetter:2008ne]

28 - Experiment - GSI Anomaly - Talks

[28-1]
Lifetime measurements of nuclei in few-electron ions, Thomas Faestermann, Phys. Scripta T166 (2015) 014003, arXiv:1512.00431. STORI'14.
[Faestermann:2015mdp]
[28-2]
Time-modulation of entangled two-body weak decays with massive neutrinos, P. Kienle, Prog. Part. Nucl. Phys. 64 (2010) 439-444. 10th International Spring Seminar On Nuclear Physics: New Quests In Nuclear Structure, 21-25 May 2010, Vietri sul Mare, Salerno, Italy [J. Phys. Conf. Ser.267,012056(2011)].
[Kienle:2010zz]
[28-3]
Time-modulation of orbital electron capture decays by mixing of massive neutrinos, P. Kienle, Nucl. Phys. A827 (2009) 510C-517C. 18th International Conference on Particles and Nuclei (PANIC 08), 9-14 Nov 2008, Eilat, Israel.
[Kienle:2009zz]
[28-4]
Two-body weak decay studies in an ion storage ring, Paul Kienle, J. Phys. Conf. Ser. 171 (2009) 012065. DISCRETE'08: Symposium on Prospects in the Physics of Discrete Symmetries, 11-16 Dec 2008, Valencia, Spain.
[Kienle:2009zza]
[28-5]
Observation of non-exponential Decays of Hydrogen-like 140Pr and 124Pm Ions, F. Bosch, 2008. PMN08, Symposion on 'Physics of Massive Neutrinos', 20-22 May 2008, Milos Island, Greece. http://www.uni-tuebingen.de/ilias-dbd/PMN08/src/Melos-Talks/Bosch-Milos-Symposion.ppt.
[Bosch-2008-PMN]
[28-6]
Observation of Non-Exponential Orbital Electron Capture Decays of Hydrogen-Like $^{140}$Pr and $^{142}$Pm Ions and possible implications for the neutrino masses, F. Bosch, 2008. Warsaw University, May 14, 2008. http://zsj.fuw.edu.pl/index_seminars_download.php?semid=10.
[Bosch-2008-Warsaw]
[28-7]
Search for Oscillation of the Electron-Capture Decay Probability of 142Pm, Stuart Freedman, 2008. PANIC08, 9-14 November 2008, Eilat, Israel. http://www.weizmann.ac.il/MaKaC/contributionDisplay.py?contribId=358&sessionId=70&confId=0.
[Freedman-PANIC08]
[28-8]
The GSI oscillations, Yu.A. Litvinov, 2008. NPNAP2008, 16-21 November 2008, ECT', Trento, Italy. http://www.uni-tuebingen.de/ilias-dbd/Trento08/src/talks/2ndDAY/YLitvinov_20081118_Trento.pdf.
[Litvinov-2008-ECT]
[28-9]
Non-Exponential Orbital Electron Capture Decays of Hydrogen-Like 140Pr and 142Pm Ions, Yu.A. Litvinov, 2008. NO-VE 08, 15-18 April 2008, Venice, Italy. http://neutrino.pd.infn.it/NO-VE2008/Talks/Litvinov.ppt.
[Litvinov-2008-NOVE]

29 - Experiment - Quantum Computation and Cryptography

[29-1]
Unconditionally secure quantum key distribution over 50km of standard telecom fibre, C. Gobby, Z. L. Yuan, A. J. Shields, arXiv:quant-ph/0412173, 2004.
[quant-ph/0412173]
[29-2]
Quantum key distribution over 122 km of standard telecom fiber, C. Gobby, Z. L. Yuan, A. J. Shields, arXiv:quant-ph/0412171, 2004.
[quant-ph/0412171]

30 - Experiment - Single-Particle Entanglement

[30-1]
Characterization of Multipartite Entanglement for One Photon Shared Among Four Optical Modes, Scott B. Papp, Kyung Soo Choi, Hui Deng, Pavel Lougovski, S. J. van Enk, H. J. Kimble, Science 324 (2009) 764-768.
[Papp-Choi-Deng-Lougovski-vanEnk-Kimble-2009-Science-324-764]
[30-2]
Tomographic test of Bell's inequality for a time-delocalized single photon, Milena D'Angelo, Alessandro Zavatta, Valentina Parigi, Marco Bellini, Phys. Rev. A 74 (2006) 052114.
[DAngelo-Zavatta-Parigi-Bellini-2006-PRA-74-052114]
[30-3]
Homodyne Tomography Characterization and Nonlocality of a Dual-Mode Optical Qubit, S. A. Babichev, J. Appel, A. I. Lvovsky, Phys. Rev. Lett. 92 (2004) 193601.
[Babichev-Appel-Lvovsky-2004-PRL-92-193601]
[30-4]
Experimental Demonstration of Single Photon Nonlocality, Bjorn Hessmo, Pavel Usachev, Hoshang Heydari, Gunnar Bjork, Phys. Rev. Lett. 92 (2004) 180401.
[Hessmo-Usachev-Heydari-Bjork-2004-PRL-92-180401]
[30-5]
Teleportation of a Vacuum-One-Photon Qubit, Egilberto Lombardi, Fabio Sciarrino, Sandu Popescu, Francesco De Martini, Phys. Rev. Lett. 88 (2002) 070402.
[Lombardi-Sciarrino-Popescu-DeMartini-2002-PRL-88-070402]

31 - Theory

[31-1]
Quantum mismatch: a powerful measure of 'quantumness' in neutrino oscillations, Dibya S. Chattopadhyay, Amol Dighe, Phys.Rev.D 108 (2023) 112013, arXiv:2304.02475.
[Chattopadhyay:2023xwr]
[31-2]
Neutrinos as Qubits and Qutrits, Abhishek Kumar Jha, Akshay Chatla, Bindu A. Bambah, Eur.Phys.J.Plus 139 (2024) 68, arXiv:2203.13485.
[Jha:2022yik]
[31-3]
Mass and width of an unstable particle, Scott Willenbrock, arXiv:2203.11056, 2022.
[Willenbrock:2022smq]
[31-4]
Uncertainty relations: curiosities and inconsistencies, Krzysztof Urbanowski, Symmetry 12 (2020) 1640, arXiv:2010.08339.
[Urbanowski:2020bxg]
[31-5]
Density Formalism for Quantum Theory, Roderick Sutherland, Found.Phys. 28 (1998) 1157-1190, arXiv:2001.05869.
[Sutherland:1998ij]
[31-6]
Probing inequivalent forms of Legget-Garg inequality in subatomic systems, Javid Naikoo, Swati Kumari, Subhashish Banerjee, A. K. Pan, Physics 47 (2020) 095004, arXiv:1906.05995.
[Naikoo:2019gme]
[31-7]
Remarks on the time-energy uncertainty relation, K. Urbanowski, Mod.Phys.Lett. A35 (2020) 2050219, arXiv:1810.11462.
[Urbanowski:2018ode]
[31-8]
Evolution without evolution and without ambiguities, C. Marletto, V. Vedral, Phys. Rev. D95 (2017) 043510, arXiv:1610.04773.
[Marletto:2016gwv]
[31-9]
Refined Applications of the 'Collapse of the Wavefunction', Leo Stodolsky, Phys. Rev. D91 (2015) 096008, arXiv:1412.7353.
[Stodolsky:2014uma]
[31-10]
Consciousness as a State of Matter, Max Tegmark, New Scientist (2014) 28-31, arXiv:1405.0493.
[Tegmark:2014kna]
[31-11]
Equivalence of wave-particle duality to entropic uncertainty, Patrick J. Coles, Jedrzej Kaniewski, Stephanie Wehner, Nature Commun. 5 (2014) 5814, arXiv:1403.4687.
[Coles:2014afc]
[31-12]
Consciousness as a State of Matter, Max Tegmark, Chaos Solitons Fractals 76 (2015) 238-270, arXiv:1401.1219.
[Tegmark:2014kka]
[31-13]
Applying quantum mechanics to macroscopic and mesoscopic systems, N. Poveda T., N. Vera-Villamizar, Eur.Phys.J. C72 (2012) 1876, arXiv:1202.1876.
[Sharif:2012ca]
[31-14]
Solving the radial Dirac equations: a numerical odyssey, Richard R. Silbar, T. Goldman, Eur. J. Phys. 32 (2011) 217-233, arXiv:1001.2514.
[Silbar:2010wx]
[31-15]
Consequences of Dirac's theory of positrons, W. Heisenberg, H. Euler, Z. Phys. 98 (1936) 714-732, arXiv:physics/0605038.
[Heisenberg:1936nmg]
[31-16]
Reversibility and Irreversibility within the Quantum Formalism, Tim Jacobs, Christian Maes, arXiv:quant-ph/0508041, 2005.
[quant-ph/0508041]
[31-17]
Can We Believe in a Purely Unitary Quantum Dynamics?, Fedor Herbut, arXiv:quant-ph/0507218, 2005.
[quant-ph/0507218]
[31-18]
Quantum Theory in Accelerated Frames of Reference, Bahram Mashhoon, Lect. Notes Phys. 702 (2006) 112-132, arXiv:hep-th/0507157.
[Mashhoon:2005fe]
[31-19]
A Spacetime path formalism for relativistic quantum physics, Ed Seidewitz, J. Math. Phys. 47 (2006) 112302, arXiv:quant-ph/0507115.
[Seidewitz:2005wd]
[31-20]
Comment on 'Quantum Theory Looks at Time Travel' by D. Greenberger and K. Svozil, John S. Wykes, arXiv:quant-ph/0507052, 2005.
[quant-ph/0507052]
[31-21]
Another Look at Quantum Teleportation, L. Vaidman, N. Erez, A. Retzker, arXiv:quant-ph/0507051, 2005.
[quant-ph/0507051]
[31-22]
Quantum mechanics and the time travel paradox, David T. Pegg, arXiv:quant-ph/0506141, 2005.
[quant-ph/0506141]
[31-23]
Entanglement from the Cosmic Microwave Background, Daniel Braun, arXiv:quant-ph/0505082, 2005.
[quant-ph/0505082]
[31-24]
Review of Equation of Motion in the Static Casimir Effect, Mohammad Mansouryar, Eur.Phys.J. C43 (2005) 375-380, arXiv:physics/0504144.
[Blaizot:2005mj]
[31-25]
Coherence phenomena, V.I. Yukalov, arXiv:cond-mat/0504068, 2005.
[cond-mat/0504068]
[31-26]
The Aharonov-Bohm Effect in the Momentum Space, D. Dragoman, S. Bogdan, arXiv:quant-ph/0503172, 2005.
[quant-ph/0503172]
[31-27]
Postulates of quantum mechanics and phenomenology, D.A. Slavnov, arXiv:quant-ph/0503008, 2005.
[Slavnov:2005rz]
[31-28]
Geometry of an Adiabatic Passage at a Level Crossing, Mateusz Cholascinski, arXiv:quant-ph/0502128, 2005.
[quant-ph/0502128]
[31-29]
Time reversal noninvariance in quantum mechanics and in nonlinear optics, V.A. Kuzmenko, arXiv:physics/0502110, 2005.
[Kuzmenko:2005aom]
[31-30]
Coupled oscillators, entangled oscillators, and Lorentz-covariant harmonic oscillato, Y. S. Kim, Marilyn E. Noz, J. Opt. B Quant. Semiclass. Opt. 7 (2007) S458-S467, arXiv:quant-ph/0502096.
[Kim:2005nua]
[31-31]
Note on Possibility of obtaining a non-relativistic proof of the spin-statistics theorem in the Galilean frame, Gabriel D. Puccini, Hector Vucetich, arXiv:quant-ph/0502048, 2005.
[quant-ph/0502048]
[31-32]
Second quantized formulation of geometric phases, Shinichi Deguchi, Kazuo Fujikawa, Phys. Rev. A72 (2005) 012111, arXiv:hep-th/0501166.
[Deguchi:2005pc]
[31-33]
Multi-Instantons and Exact Results II: Specific Cases, Higher-Order Effects, and Numerical Calculations, Jean Zinn-Justin, Ulrich D. Jentschura, Annals Phys. 313 (2004) 269, arXiv:quant-ph/0501137.
[Zinn-Justin:2004qzw]
[31-34]
Multi-Instantons and Exact Results I: Conjectures, WKB Expansions, and Instanton Interactions, Jean Zinn-Justin, Ulrich D. Jentschura, Annals Phys. 313 (2004) 197, arXiv:quant-ph/0501136.
[Zinn-Justin:2004vcw]
[31-35]
Spin and Statistics in Nonrelativistic Quantum Mechanics, II, Bernd Kuckert, Jens Mund, arXiv:quant-ph/0411197, 2004.
[quant-ph/0411197]
[31-36]
Comparing causality principles, Joe Henson, Stud. Hist. Philos. Mod. Phys. 36 (2005) 519, arXiv:quant-ph/0410051.
[Henson:2005wb]
[31-37]
Note on Non-relativistic proof of the spin-statistics connection in the Galilean frame, E. C. G. Sudarshan, Anil Shaji, arXiv:quant-ph/0409205, 2004.
[Sudarshan:2004ke]
[31-38]
Einstein's Boxes: Quantum Mechanical Solution, E.Yu. Bunkova, O.A. Khrustalev, O.D. Timofeevskaya, arXiv:quant-ph/0409126, 2004.
[quant-ph/0409126]
[31-39]
Clebsch-Gordan Coefficients for the Extended Quantum-Mechanical Poincare Group and Angular Correlations of Decay Products, N.L. Harshman, N. Licata, Annals Phys. 317 (2005) 182, arXiv:hep-ph/0407299.
[Harshman:2004bw]
[31-40]
Helicity Basis for Spin 1/2 and 1, Valeri V. Dvoeglazov, J. L. Quintanar Gonzalez, Lect. Notes Pure Appl. Math. 246 (2005) 137, arXiv:physics/0406033.
[Dvoeglazov:2004cb]
[31-41]
Quantum Mechanics without amplitudes, J. M. A. Figueiredo, arXiv:quant-ph/0406005, 2004.
[quant-ph/0406005]
[31-42]
Analytic Representation of The Dirac Equation, T. L. Gill, W. W. Zachary, arXiv:quant-ph/0405151, 2004.
[quant-ph/0405151]
[31-43]
Computing the wavefunction from trajectories: particle and wave pictures in quantum mechanics and their relation, Peter Holland, arXiv:quant-ph/0405145, 2004.
[quant-ph/0405145]
[31-44]
On the principles of quantum mechanics, Eijiro Sakai, arXiv:quant-ph/0405069, 2004.
[quant-ph/0405069]
[31-45]
Quantum Mechanics Another Way, J. Hancock, M. A. Walton, B. Wynder, Eur.J. Phys. 25 (2004) 525-534, arXiv:physics/0405029.
[Hancock:2004ac]
[31-46]
Time as an operator/observable in nonrelativistic quantum mechanics, G. E. Hahne, J. Phys. A35 (2002) 7101-7123, arXiv:quant-ph/0404012.
[Hahne:2002gw]
[31-47]
Dramatic problems of Scattering Theory, Vladimir K. Ignatovich, arXiv:quant-ph/0403067, 2004.
[quant-ph/0403067]
[31-48]
Comment on 'A mathematical theorem as a basis for the second law: Thomson's formulation applied to equilibruim', Dan Solomon, arXiv:quant-ph/0403040, 2004.
[Solomon:2004va]
[31-49]
Magneto-electro-optical properties of the quantum vacuum and Lorentz invariance, C Rizzo, G.L.J.A. Rikken, arXiv:physics/0403036, 2004.
[physics/0403036]
[31-50]
Quantum mechanics and the equivalence principle, P. C. W. Davies, arXiv:quant-ph/0403027, 2004.
[quant-ph/0403027]
[31-51]
From Heisenberg to Goedel via Chaitin, C.S. Calude, M.A. Stay, arXiv:quant-ph/0402197, 2004.
[quant-ph/0402197]
[31-52]
Quantum mechanics from two physical postulates, Mohammad Mehrafarin, arXiv:quant-ph/0402153, 2004.
[quant-ph/0402153]
[31-53]
Some Novel Thought Experiments Involving Foundations of Quantum Mechanics and Quantum Information, Omid Akhavan, arXiv:quant-ph/0402141, 2004.
[Akhavan:2003wz]
[31-54]
Reply to 'Non-relativistic proofs of the spin-statistics connection,' by Shaji and Sudarshan, Murray Peshkin, arXiv:quant-ph/0402118, 2004.
[quant-ph/0402118]
[31-55]
Proper and Improper Separability, Christopher G. Timpson, Harvey R. Brown, arXiv:quant-ph/0402094, 2004.
[quant-ph/0402094]
[31-56]
An Elementary Derivation of the Harmonic Oscillator Propagator, L. Moriconi, Phys. Rev. C70 (2004) 024607, arXiv:physics/0402069.
[Amos:2004aa]
[31-57]
Quantum time ordering and degeneracy. I: Time ordering in quantum mechanics, J. H. McGuire et al., arXiv:quant-ph/0312179, 2003.
[quant-ph/0312179]
[31-58]
Quantum coherence: myth or fact?, Kae Nemoto, Samuel L. Braunstein, arXiv:quant-ph/0312108, 2003.
[quant-ph/0312108]
[31-59]
On Zurek's derivation of the Born rule, Maximilian Schlosshauer, Arthur Fine, Class.Quant.Grav. 21 (2004) L11-L16, arXiv:quant-ph/0312058.
[Matsuda:2003vj]
[31-60]
Uncertainties in the Measurement of the Momentum and Position of an Electron, Kirk T. McDonald, arXiv:quant-ph/0312036, 2003.
[quant-ph/0312036]
[31-61]
Clock Synchronization based on Second-Order Quantum Coherence of Entangled Photons, Thomas B. Bahder, William M. Golding, arXiv:quant-ph/0311162, 2003.
[quant-ph/0311162]
[31-62]
A new way of defining unstable states, S. Kim, G. Ordonez, arXiv:physics/0311048, 2003.
[Bedjidian:2004gd]
[31-63]
The Equation of Motion of an Electron, R. F. O'Connell, arXiv:quant-ph/0311021, 2003.
[quant-ph/0311021]
[31-64]
Quantum Theory of Two-Photon Wavepacket Interference in a Beam Splitter, K. Wang, arXiv:quant-ph/0311011, 2003.
[quant-ph/0311011]
[31-65]
Quantum algorithms in group theory, M. Batty, S. L. Braunstein, A. J. Duncan, S. Rees, arXiv:quant-ph/0310133, 2003. To appear in 'Interactions Between Logic, Group Theory and Computer Science', AMS Contemporary Math.
[quant-ph/0310133]
[31-66]
The Contextual Quantization and the Principle of Complementarity of Probabilities, A. Khrennikov, S. Kozyrev, arXiv:quant-ph/0310114, 2003.
[quant-ph/0310114]
[31-67]
Probabilities as Measures of Information, F. G. Perey, arXiv:quant-ph/0310073, 2003.
[quant-ph/0310073]
[31-68]
Rotational invariance and the spin-statistics theorem, P. O'Hara, Found. Phys. 33 (2003) 1349, arXiv:quant-ph/0310016.
[OHara:2003ell]
[31-69]
Objectivity versus Completeness in Quantum Mechanics, C. Garola, S. Sozzo, arXiv:quant-ph/0309221, 2003.
[quant-ph/0309221]
[31-70]
Winning Vaidman's game without unspeakable information, A. Cabello, arXiv:quant-ph/0306075, 2003.
[quant-ph/0306075]
[31-71]
Schroedinger's cat and the clock: Lessons for quantum gravity, Robert Oeckl, Class. Quant. Grav. 20 (2003) 5371, arXiv:gr-qc/0306007.
[Oeckl:2003pw]
[31-72]
Why can states and measurement outcomes be represented as vectors?, P. G. L. Mana, arXiv:quant-ph/0305117, 2003.
[quant-ph/0305117]
[31-73]
The Schrodinger-HJW Theorem, K. A. Kirkpatrick, arXiv:quant-ph/0305068, 2003.
[quant-ph/0305068]
[31-74]
Is quantum entanglement invariant in special relativity?, D. Ahn, H. J. Lee, S. W. Hwang, M. S. Kim, arXiv:quant-ph/0304119, 2003.
[quant-ph/0304119]
[31-75]
Orderings of Operators in Quantum Physics, K. Fujii, T. Suzuki, Mod. Phys. Lett. A19 (2004) 827-840, arXiv:quant-ph/0304094.
[Fujii:2003ax]
[31-76]
No spin-statistics connection in nonrelativistic quantum mechanics, R. E. Allen, A. R. Mondragon, arXiv:quant-ph/0304088, 2003.
[quant-ph/0304088]
[31-77]
A new method for the solution of the Schrodinger equation, P. Amore, A. Aranda, A. De Pace, arXiv:quant-ph/0304043, 2003.
[quant-ph/0304043]
[31-78]
Unambiguous discrimination of mixed states, T. Rudolph, R. W. Spekkens, P. S. Turner, arXiv:quant-ph/0303071, 2003.
[quant-ph/0303071]
[31-79]
Everettian Rationality: defending Deutsch's approach to probability in the Everett interpretation, D. Wallace, arXiv:quant-ph/0303050, 2003.
[quant-ph/0303050]
[31-80]
An invitation to quantum tomography, Richard Gill, Madalin Guta, arXiv:quant-ph/0303020, 2003.
[quant-ph/0303020]
[31-81]
Relativistic, Causal Description of Quantum Entanglement and Gravity Theory, J. W. Moffat, Int. J. Mod. Phys. D13 (2004) 75, arXiv:quant-ph/0302061.
[Moffat:2003dv]
[31-82]
Quantum mechanics of damped systems, D. Chruscinski, arXiv:math-ph/0301024, 2003.
[math-ph/0301024]
[31-83]
Measurement and Physical Content of Quantum Information, B. A. Grishanin, V. N. Zadkov, arXiv:quant-ph/0210190, 2002.
[quant-ph/0210190]
[31-84]
Conditional Density Matrix: Systems and Subsystems in Quantum Mechanics, V. V. Belokurov, O. A. Khrustalev, V. A. Sadovnichy, O. D. Timofeevskaya, arXiv:quant-ph/0210149, 2002.
[quant-ph/0210149]
[31-85]
Entanglement properties of composite quantum systems, K. Eckert et al., arXiv:quant-ph/0210107, 2002.
[quant-ph/0210107]
[31-86]
Open environments for quantum open systems, M. R. Gallis, arXiv:quant-ph/0210054, 2002.
[quant-ph/0210054]
[31-87]
Spin \& Statistics in Nonrelativistic Quantum Mechanics, I, B. Kuckert, Phys. Lett. A322 (2004) 47, arXiv:quant-ph/0208151.
[Kuckert:2002yu]
[31-88]
On Spin and Statistics in Quantum Mechanics, M. Peshkin, Phys. Rev. A67 (2003) 042102, arXiv:quant-ph/0207017.
[Peshkin:2002ny]
[31-89]
Which causality? Differences between the trajectory and Copenhagen analyses of an impulsive perturbation, E. R. Floyd, Int. J. Mod. Phys. A14 (1999) 1111, arXiv:quant-ph/9708026.
[Floyd:1997mu]
[31-90]
Barrier interaction time in tunneling, R. Landauer, Th. Martin, Rev. Mod. Phys. 66 (1994) 217-228.
[Landauer:1994zz]
[31-91]
Measurement of Longitudinal Coherence Lenghts in Particle Beams, H. J. Bernstein, F. E. Low, Phys. Rev. Lett. 59 (1987) 951.
[Bernstein-Low-PRL59-951-1987]
[31-92]
Superselection rule for charge, G. C. Wick, A. S. Wightman, Eugene P. Wigner, Phys. Rev. D1 (1970) 3267-3269.
[Wick:1970bd]
[31-93]
Further Discussion of the Role of Electromagnetic Potentials in the Quantum Theory, Y. Aharonov, D. Bohm, Phys. Rev. 130 (1963) 1625-1632.
[Aharonov:1963zz]
[31-94]
Photon correlations, Roy J. Glauber, Phys. Rev. Lett. 10 (1963) 84-86.
[Glauber:1962tt]
[31-95]
The Quantum theory of optical coherence, Roy J. Glauber, Phys. Rev. 130 (1963) 2529-2539.
[Glauber:1963fi]
[31-96]
Coherent and incoherent states of the radiation field, Roy J. Glauber, Phys. Rev. 131 (1963) 2766-2788.
[Glauber:1963tx]
[31-97]
Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams, E. C. G. Sudarshan, Phys. Rev. Lett. 10 (1963) 277-279.
[Sudarshan:1963ts]
[31-98]
Remarks on the possibility of quantum electrodynamics without potentials, Y. Aharonov, D. Bohm, Phys. Rev. 125 (1962) 2192-2193.
[Aharonov:1961jg]
[31-99]
Further Considerations on Electromagnetic Potentials in the Quantum Theory, Y. Aharonov, D. Bohm, Phys. Rev. 123 (1961) 1511-1524.
[Aharonov:1961zz]
[31-100]
Significance of electromagnetic potentials in the quantum theory, Y. Aharonov, D. Bohm, Phys. Rev. 115 (1959) 485-491.
[Aharonov:1959fk]
[31-101]
The intrinsic parity of elementary particles, G. C. Wick, A. S. Wightman, E. P. Wigner, Phys. Rev. 88 (1952) 101-105.
[Wick:1952nb]
[31-102]
Forms of Relativistic Dynamics, Paul A.M. Dirac, Rev.Mod.Phys. 21 (1949) 392-399.
[Dirac:1949cp]
[31-103]
Localized States for Elementary Systems, T.D. Newton, Eugene P. Wigner, Rev.Mod.Phys. 21 (1949) 400-406.
[Newton:1949cq]
[31-104]
Quantized Singularities in the Electromagnetic Field, Paul A.M. Dirac, Proc.Roy.Soc.Lond. A133 (1931) 60-72.
[Dirac:1931kp]
[31-105]
The Uncertainty Principle, H. P. Robertson, Phys. Rev. 34 (1929) 163-164.
[Robertson:1929zz]

32 - Theory - Talks

[32-1]
Critical look at the time-energy uncertainty relations, K. Urbanowski, Acta Phys.Polon. B51 (2020) 71, arXiv:1908.05273. 3rd Jagiellonian Symposium on Fundamental and Applied Subatomic Physics, 2019, Krakow, Poland.
[Urbanowski:2019ixf]
[32-2]
Feynman and Squeezed States, Y. S. Kim, Astrophys.J. 707 (2009) 1578-1587, arXiv:0909.1578. 4th Feynman Festival and the 10th International Conference on Squeezed States and Uncertainty Relations (Olomouc, Czech Republic, June 2009).
[Kochanek:2009fc]
[32-3]
Can quantum mechanics be an emergent phenomenon?, Massimo Blasone, Petr Jizba, Fabio Scardigli, J. Phys. Conf. Ser. 174 (2009) 012034, arXiv:0901.3907. 4th International Workshop DICE2008: From Quantum Mechanics through Complexity to Spacetime: The Role of Emergent Dynamical Structures, Castiglioncello, Italy, 22-26 Sep 2008.
[Blasone:2009yp]
[32-4]
Path Integrals, and Classical and Quantum Constraints, John R. Klauder, arXiv:quant-ph/0507222, 2005. PI2005.
[quant-ph/0507222]
[32-5]
Quantum information-flow, concretely, and axiomatically, Bob Coecke, arXiv:quant-ph/0506132, 2005. QPLII (2004) and QI-SPIE-2 (2004).
[quant-ph/0506132]
[32-6]
Chaos and Quantum Mechanics, Salman Habib et al., arXiv:quant-ph/0505085, 2005. 16th Florida Workshop in Nonlinear Astronomy and Physics.
[quant-ph/0505085]
[32-7]
Physical Principles and Properties of Unstable States, Piotr Kielanowski, arXiv:quant-ph/0312178, 2003. CFIF Workshop on Time Asymmetric Quantum Theory, July 23-26, 2003, Lisbon, Portugal.
[quant-ph/0312178]
[32-8]
Time of arrival with resonances: Beyond scattering states, Lucas Lamata, Juan Leon, arXiv:quant-ph/0312034, 2003. CFIF Workshop:' Time asymmetric quantum theory: The theory of resonances'. Lisbon, July 2003.
[quant-ph/0312034]
[32-9]
Laws, Symmetries, and Reality, Jeeva Anandan, Int. J. Theor. Phys. 42 (2003) 1943, arXiv:quant-ph/0304109. Wigner Centennial Conference, Pecs, Hungary, 8-12 July, 2002.
[Anandan:2003ay]
[32-10]
Entanglement Criteria - Quantum and Topological, Louis H. Kauffman, Samuel J. Lomonaco Jr, arXiv:quant-ph/0304091, 2003. Spie Conference, Orlando, Fla, April 2003.
[quant-ph/0304091]
[32-11]
Coherence and the Clock, L. Stodolsky, arXiv:quant-ph/0303024, 2003. Time and Matter: An International Colloquium on the Science of Time (TAM 2002), Venice, Italy, 11-17 Aug 2002.
[Stodolsky:2003kc]
[32-12]
Lessons of coherence and decoherence: From neutrinos to SQUIDS, L. Stodolsky, arXiv:cond-mat/0203017, 2002. 22nd International Solvay Conference in Physics: The Physics of Communication, Delphi and Lamia, Greece, 24-30 Nov 2001.
[Stodolsky:2002bd]
[32-13]
Decoherence - Fluctuation Relation and Measurement Noise, L. Stodolsky, Phys. Rep. 320 (1999) 51, arXiv:quant-ph/9903072.
[Stodolsky:1999ju]

33 - Theory - Interpretations

[33-1]
On playing gods: The fallacy of the many-worlds interpretation, Luis C. Barbado, Flavio Del Santo, arXiv:2311.03467, 2023.
[Barbado:2023uac]
[33-2]
The Construction Interpretation: a Conceptual Road to Quantum Gravity, Lucien Hardy, arXiv:1807.10980, 2018.
[Hardy:2018kbp]
[33-3]
Making Sense of the Many Worlds Interpretation, Stephen Boughn, arXiv:1801.08587, 2018.
[Boughn:2018spz]
[33-4]
Notwithstanding Bohr, the Reasons for QBism, Christopher A. Fuchs, arXiv:1705.03483, 2017.
[1705.03483]
[33-5]
Ockham's razor and the interpretations of quantum mechanics, Gerd Ch. Krizek, arXiv:1701.06564, 2017.
[1701.06564]
[33-6]
EPR program: a local interpretation of QM, Carlos Lopez, arXiv:1412.5612, 2014.
[1412.5612]
[33-7]
Relative information at the foundation of physics, Carlo Rovelli, arXiv:1311.0054, 2013.
[Rovelli:2013vka]
[33-8]
Reality, No Matter How You Slice It, Ken Wharton, arXiv:1311.0001, 2013.
[1311.0001]
[33-9]
Quantum Objects, Alireza Mansouri, Mehdi Golshani, Amir Ehsan Karbasizadeh, arXiv:1305.6940, 2013.
[1305.6940]
[33-10]
The strange (hi)story of particles and waves, H. Dieter Zeh, Z.Naturforsch. 71 (2016) 195-212, arXiv:1304.1003.
[Zeh:2013oka]
[33-11]
How Free Will Could Will, George Svetlichny (ANTARES), Astrophys.J. 774 (2013) 19, arXiv:1202.2007.
[ANTARES:2012uba]
[33-12]
Quantum magic: A Skeptical perspective, Giorgio Torrieri, arXiv:1107.3800, 2011.
[Torrieri:2011xt]
[33-13]
Quantum Theory: Exact or Approximate?, Stephen L. Adler, Angelo Bassi, Astrophys.J. 715 (2010) 458-467, arXiv:0912.2211.
[Torres:2010xa]
[33-14]
Quantum discreteness is an illusion, H. Dieter Zeh, Found. Phys. 40 (2010) 1476-1493, arXiv:0809.2904.
[Zeh:2008fu]
[33-15]
Difficulties with Collapse Interpretations of Quantum Mechanics, Casey Blood, arXiv:0808.3699, 2008.
[0808.3699]
[33-16]
No Evidence for Particles, C. Blood, arXiv:0807.3930, 2008.
[0807.3930]
[33-17]
Relational EPR, Matteo Smerlak, Carlo Rovelli, Found.Phys. 37 (2007) 427-445, arXiv:quant-ph/0604064.
[Smerlak:2006gi]
[33-18]
Comment on 'Copenhagen Interpretation of Quantum Mechanics Is Incorrect', Markus Bier, arXiv:quant-ph/0509130, 2005.
[quant-ph/0509130]
[33-19]
Copenhagen Interpretation of Quantum Mechanics Is Incorrect, Guang-Liang Li, Victor O. K. Li, arXiv:quant-ph/0509089, 2005.
[quant-ph/0509089]
[33-20]
Orthodox Quantum Mechanics Free from Paradoxes, Rodrigo Medina, arXiv:quant-ph/0508014, 2005.
[quant-ph/0508014]
[33-21]
Two-time interpretation of quantum mechanics, Yakir Aharonov, Eyal Y. Gruss, arXiv:quant-ph/0507269, 2005.
[quant-ph/0507269]
[33-22]
Dialogue Concerning Two Views on Quantum Coherence: Factist and Fictionist, Stephen D. Bartlett, Terry Rudolph, Robert W. Spekkens, arXiv:quant-ph/0507214, 2005.
[quant-ph/0507214]
[33-23]
Without the Born Rule, Richard A Mould, arXiv:quant-ph/0507170, 2005.
[quant-ph/0507170]
[33-24]
A Pragmatic Interpretation of Quantum Logic, Claudio Garola, arXiv:quant-ph/0507122, 2005.
[quant-ph/0507122]
[33-25]
Complementary Descriptions (PART II): A Set of Ideas Regarding the Interpretation of Quantum Mechanics, Christian de Ronde, arXiv:quant-ph/0507114, 2005.
[quant-ph/0507114]
[33-26]
Complementary Descriptions (PART I): A Set of Ideas Regarding the Interpretation of Quantum Mechanics, Christian de Ronde, arXiv:quant-ph/0507105, 2005.
[quant-ph/0507105]
[33-27]
Observables, Hans F. de Groote, arXiv:math-ph/0507019, 2005.
[math-ph/0507019]
[33-28]
The Arrow of Time in Rigged Hilbert Space Quantum Mechanics, Robert C. Bishop, arXiv:quant-ph/0506184, 2005.
[quant-ph/0506184]
[33-29]
There is Neither Classical Bug with a Superluminal Shadow Nor Quantum Absolute Collapse Nor (Subquantum) Superluminal Hidden Variable, Vladan Pankovic, Milan Predojevic, Miodrag Krmar, Milan Radovanovic, arXiv:quant-ph/0504071, 2005.
[quant-ph/0504071]
[33-30]
On the uncertainty relations and quantum measurements: conventionalities, shortcomings, reconsiderations, S. Dumitru, arXiv:quant-ph/0504058, 2005.
[quant-ph/0504058]
[33-31]
On Wave-Particle Duality, W. De Baere, J.Math.Phys. 46 (2005) 082702, arXiv:physics/0504043.
[Das:2005sq]
[33-32]
Complementarity and Scientific Rationality, Simon Saunders, arXiv:quant-ph/0412195, 2004.
[quant-ph/0412195]
[33-33]
The Pondicherry interpretation of quantum mechanics: An overview, Ulrich Mohrhoff, arXiv:quant-ph/0412182, 2004.
[quant-ph/0412182]
[33-34]
Quantum mechanics needs no interpretation, L. Skala, V. Kapsa, arXiv:quant-ph/0412175, 2004.
[quant-ph/0412175]
[33-35]
Are atoms waves or particles?, Trevor W. Marshall, arXiv:quant-ph/0409203, 2004.
[quant-ph/0409203]
[33-36]
On the Complementarity Principle and the Uncertainty Principle, E. S. Guerra, arXiv:quant-ph/0409172, 2004.
[quant-ph/0409172]
[33-37]
Why Should we Interpret Quantum Mechanics?, Louis Marchildon, arXiv:quant-ph/0405126, 2004.
[quant-ph/0405126]
[33-38]
What object does the wave function describe?, Yuri A. Rylov, arXiv:physics/0405117, 2004.
[physics/0405117]
[33-39]
Observing Quantum Systems, Gerhard Groessing, arXiv:quant-ph/0404030, 2004.
[quant-ph/0404030]
[33-40]
Consciousness and the Wigner's friend problem, Bernard d'Espagnat, arXiv:quant-ph/0402121, 2004.
[quant-ph/0402121]
[33-41]
Hydrodynamical interpretation of quantum mechanics: the momentum distribution, Yuri A. Rylov, Phys. Rev. C71 (2005) 011601, arXiv:physics/0402068.
[Samaddar:2004zz]
[33-42]
Phase Space Formulation of Quantum Mechanics. Insight into the Measurement Problem, Daniela Dragoman, arXiv:quant-ph/0402021, 2004.
[quant-ph/0402021]
[33-43]
Probabilities from envariance?, Ulrich Mohrhoff, arXiv:quant-ph/0401180, 2004.
[quant-ph/0401180]
[33-44]
This elusive objective existence, Ulrich Mohrhoff, Class.Quant.Grav. 21 (2004) 4557-4566, arXiv:quant-ph/0401179.
[Nesvizhevsky:2004qb]
[33-45]
Understanding Deutsch's probability in a deterministic multiverse, Hilary Greaves, arXiv:quant-ph/0312136, 2003.
[quant-ph/0312136]
[33-46]
Does Consciousness Collapse the Wave Function, Dick J. Bierman, arXiv:physics/0312115, 2003.
[physics/0312115]
[33-47]
There Is No Basis Ambiguity in Everett Quantum Mechanics, M. A. Rubin, arXiv:quant-ph/0310186, 2003.
[quant-ph/0310186]
[33-48]
Understanding Time and Causality is the Key to Understanding Quantum Mechanics, W. R. Wharton, arXiv:quant-ph/0310131, 2003.
[quant-ph/0310131]
[33-49]
There is no first quantization - except in the de Broglie-Bohm interpretation, Hrvoje Nikolic, arXiv:quant-ph/0307179, 2003.
[Nikolic:2006vk]
[33-50]
There is no 'first' quantization, H. D. Zeh, Phys. Lett. A309 (2003) 329-334, arXiv:quant-ph/0210098.
[Zeh:2003kd]
[33-51]
Reality, measurement and locality in quantum field theory, Daniele Tommasini, JHEP 07 (2002) 039, arXiv:hep-th/0205105.
[Tommasini:2002np]
[33-52]
Preparation and measurement: two independent sources of uncertainty in quantum mechanics, Willem M. de Muynck, Found. Phys. 30 (2000) 205-225, arXiv:quant-ph/9901010.
[deMuynck:1999ru]
[33-53]
Interpreting the Quantum World, Asher Peres, Stud. Hist. Philos. Mod. Phys. 29 (1998) 611, arXiv:quant-ph/9711003.
[Peres:1997yx]
[33-54]
Relational quantum mechanics, Carlo Rovelli, Int.J.Theor.Phys. 35 (1996) 1637-1678, arXiv:quant-ph/9609002.
[Rovelli:1995fv]
[33-55]
On quantum mechanics, Carlo Rovelli, arXiv:hep-th/9403015, 1994.
[Rovelli:1993sc]
[33-56]
The uncertainty principle and the statistical interpretation of quantum mechanics, L.E. Ballentine, Can.J. Phys. 47 (1969) 2417-2419.
[Ballentine:1969ky]

34 - Theory - Interpretations - Talks

[34-1]
Resonances, Unstable Systems and Irreversibility: Matter Meets Mind, Robert C. Bishop, arXiv:quant-ph/0506186, 2005. CFIF Workshop on TimeAsymmetric Quantum Theory: The Theory of Resonances, 23-26 July 2003, Instituto Superior Tecnico, Lisbon, Portugal and Quantum Structures Association Meeting, 7-22 July 2004, University of Denver.
[quant-ph/0506186]
[34-2]
The Ithaca interpretation of quantum mechanics, N. David Mermin, Pramana 51 (1998) 549-565, arXiv:quant-ph/9609013. Tata Institute Golden Jubilee Workshop on Foundations of Quantum Theory, Bombay, India, 9-12 Sep 1996.
[Mermin:1998cg]

35 - Theory - Quantum Probability

[35-1]
Quantum Spread Complexity in Neutrino Oscillations, Khushboo Dixit, S. Shajidul Haque, Soebur Razzaque, Eur.Phys.J.C 84 (2024) 260, arXiv:2305.17025.
[Dixit:2023fke]
[35-2]
Bell as the Copernicus of Probability, Andrei Khrennikov, arXiv:1412.6987, 2014.
[1412.6987]
[35-3]
Relationalism vs. Bayesianism, Thomas Marlow, arXiv:gr-qc/0603015, 2006.
[Marlow:2006dz]
[35-4]
Quantum Bayesian methods and subsequent measurements, Filippo Neri, arXiv:quant-ph/0508012, 2005.
[quant-ph/0508012]
[35-5]
A Subjective Approach to Quantum Probability, E. Lehrer, E. Shmaya, arXiv:quant-ph/0503066, 2005.
[quant-ph/0503066]
[35-6]
On the Probabilistic Compatibility of Special Relativity and Quantum Mechanics, Thomas Marlow, arXiv:quant-ph/0501131, 2005.
[quant-ph/0501131]
[35-7]
What is Probability?, Simon Saunders, arXiv:quant-ph/0412194, 2004.
[quant-ph/0412194]
[35-8]
Why are probabilistic laws governing quantum mechanics and neurobiology?, H. Kroger, Class.Quant.Grav. 21 (2004) 4209-4230, arXiv:quant-ph/0406098.
[Giovannini:2004ii]
[35-9]
Probabilities from Envariance, W. H. Zurek, arXiv:quant-ph/0405161, 2004.
[quant-ph/0405161]
[35-10]
Unknown Quantum States and Operations, a Bayesian View, Christopher A. Fuchs, Ruediger Schack, arXiv:quant-ph/0404156, 2004.
[quant-ph/0404156]
[35-11]
On probability, indeterminism and quantum paradoxes, Bruno Galvan, arXiv:quant-ph/0404130, 2004.
[quant-ph/0404130]
[35-12]
On the relation between quantum mechanical probabilities and event frequencies, Charis Anastopoulos, arXiv:quant-ph/0403207, 2004.
[quant-ph/0403207]
[35-13]
Compatibility and probability, K. A. Kirkpatrick, arXiv:quant-ph/0403021, 2004.
[quant-ph/0403021]
[35-14]
Quantum Mechanics as Quantum Information (and only a little more), Christopher A. Fuchs, arXiv:quant-ph/0205039, 2002.
[quant-ph/0205039]
[35-15]
Unknown Quantum States: the Quantum de Finetti Representation, Carlton M. Caves, Christopher A. Fuchs, Rudiger Schack, J. Math. Phys. 43 (2002) 4537.
[Caves-Fuchs-Schack-JMP43-4537-2002]
[35-16]
Quantum Probabilities as Bayesian Probabilities, Carlton M. Caves, Christopher A. Fuchs, Rudiger Schack, Phys. Rev. A65 (2002) 022305.
[Caves-Fuchs-Schack-PRA65-022305-2002]
[35-17]
Conditions for compatibility of quantum-state assignments, Carlton M. Caves, Christopher A. Fuchs, Rudiger Schack, Phys. Rev. A66 (2002) 062111.
[Caves-Fuchs-Schack-PRA66-062111-2002]
[35-18]
Notes on a Paulian Idea: Foundational, Historical, Anecdotal and Forward-Looking Thoughts on the Quantum, Christopher A. Fuchs, arXiv:quant-ph/0105039, 2001.
[quant-ph/0105039]
[35-19]
Quantum Probability from Decision Theory?, H. Barnum, C. M. Caves, J. Finkelstein, C. A. Fuchs, R. Schack, Proc. Roy. Soc. Lond. A456 (2000) 1175-1182, arXiv:quant-ph/9907024.
[Barnum:1999ew]
[35-20]
Quantum Theory of Probability and Decisions, David Deutsch, Proc.Roy.Soc.Lond. A455 (1999) 3129, arXiv:quant-ph/9906015.
[Deutsch:1999gs]

36 - Theory - Decay Law

[36-1]
Analysis of quantum decay law: Is quantum tunneling really exponential?, M. S. Hosseini-Ghalehni, B. Azadegan, S. A. Alavi, Eur.Phys.J.Plus 137 (2022) 1326, arXiv:2203.10134.
[Hosseini-Ghalehni:2022iva]
[36-2]
The true quantum face of the, K. Urbanowski, Eur.Phys.J.D 71 (2017) 118.
[Urbanowski:2016fdj]
[36-3]
Breit-Wigner approximation for propagators of mixed unstable states, Elina Fuchs, Georg Weiglein, JHEP 1709 (2017) 079, arXiv:1610.06193.
[Fuchs:2016swt]
[36-4]
Logarithmic decays of unstable states II, Filippo Giraldi, Eur. Phys. J. D70 (2016) 229.
[Giraldi:2016zom]
[36-5]
Decay law and time dilatation, Francesco Giacosa, Acta Phys.Polon. B47 (2016) 2135, arXiv:1512.00232.
[Giacosa:2015mpm]
[36-6]
Comments on 'Which is the Quantum Decay Law of Relativistic Particles?', K. Urbanowski, arXiv:1504.00794, 2015.
[Urbanowski:2015jsa]
[36-7]
Which is the Quantum Decay Law of Relativistic Particles?, S.A. Alavi, C. Giunti, Europhys.Lett. 109 (2015) 60001, arXiv:1412.3346.
[Alavi:2014mxa]
[36-8]
Energy uncertainty of the final state of a decay process, Francesco Giacosa, Phys. Rev. A88 (2013) 052131, arXiv:1305.4467.
[Giacosa:2013nva]
[36-9]
Spectral Content of 22Na/44Ti Decay Data: Implications for a Solar Influence, Daniel O'Keefe et al., Astrophys.Space Sci. 344 (2013) 297-303, arXiv:1212.2198.
[OKeefe:2012ioh]
[36-10]
Is Radioactive Decay Really Exponential?, Philip J. Aston, Europhys.Lett. 97 (2012) 52001, arXiv:1204.5953.
[Aston:2012ng]
[36-11]
Non-exponential decay in quantum field theory and in quantum mechanics: the case of two (or more) decay channels, Francesco Giacosa, Found.Phys. 42 (2012) 1262-1299, arXiv:1110.5923.
[Giacosa:2011xa]
[36-12]
Deviation from the exponential decay law in relativistic quantum field theory: the example of strongly decaying particles, Francesco Giacosa, Giuseppe Pagliara, Mod. Phys. Lett. A26 (2011) 2247-2259, arXiv:1005.4817.
[Giacosa:2010br]
[36-13]
Energy of unstable states at long times, K. Urbanowski, J. Piskorski, arXiv:0908.2219, 2009.
[Urbanowski:2009re]
[36-14]
Long time properties of the evolution of an unstable state, K. Urbanowski, Cent. Eur. J. Phys. 7 (2009) 696.
[Urbanowski-CentEurJPhys-7-696-2009]
[36-15]
To the Theory of Unstable States, Sergei G. Matinyan, Mark E. Perel'man, Phys. Lett. A 372 (2008) 6733-6734, arXiv:0809.2520.
[0809.2520]
[36-16]
Quantum decay cannot be completely reversed. The 5% rule, Robert Alicki, Int.J.Geom.Meth.Mod.Phys. 8 (2011) 1031-1077, arXiv:0807.2609.
[Roychowdhury:2009ub]
[36-17]
General properties of the evolution of unstable states at long times, K. Urbanowski, Eur. Phys. J. D 54 (2009) 25, arXiv:0803.3188.
[Urbanowski-EPJD-54-25-2009]
[36-18]
On the spectral functions of scalar mesons, Francesco Giacosa, Giuseppe Pagliara, Phys. Rev. C76 (2007) 065204, arXiv:0707.3594.
[Giacosa:2007bn]
[36-19]
Relativistic resonances: Their masses, widths, lifetimes, superposition, and causal evolution, Arno R. Bohm, Yoshihiro Sato, Phys. Rev. D71 (2005) 085018, arXiv:hep-ph/0412106.
[Bohm:2004zi]
[36-20]
Hidden evidence of non-exponential nuclear decay, N. G. Kelkar, M. Nowakowski, K. P. Khemchandani, Phys. Rev. C70 (2004) 024601, arXiv:nucl-th/0405043.
[Kelkar:2004zz]
[36-21]
Weisskopf-Wigner Decay Theory for the Energy-Driven Stochastic Schrodinger Equation, Stephen L. Adler, arXiv:quant-ph/0208123, 2002.
[quant-ph/0208123]
[36-22]
Van Hove's '$\lambda^2 t$' limit in nonrelativistic and relativistic field-theoretical models, P. Facchi, S. Pascazio, Chaos Solitons Fractals 12 (2001) 2777, arXiv:quant-ph/9910111.
[Facchi:1999ik]
[36-23]
The large time behaviour in quantum field theory and quantum chaos, I. Ya. Aref'eva, I. V. Volovich, Canadian Math. Soc. Conf. Proc. 29 (2000) 15-27, arXiv:quant-ph/9910109.
[Arefeva:1999nlz]
[36-24]
Quantum Decoherence and Higher Order Corrections to the Large Time Exponential Behaviour, I. Ya. Aref'eva, I. V. Volovich, Inf. Dim. Anal. Quant. Probab. Rel. Top. 3 (2000) 453-482, arXiv:quant-ph/9906022.
[Arefeva:1999gon]
[36-25]
Characterization of unstable particles, Decio Cocolicchio, Phys. Rev. D57 (1998) 7251-7261.
[Cocolicchio:1998zw]
[36-26]
Weisskopf-Wigner model for wave packet excitation, Asta Paloviita, Kalle-Antti Suominen, Stig Stenholm, J. Phys. B30 (1997) 2623, arXiv:quant-ph/9703011.
[Paloviita:1997bm]
[36-27]
Short time behavior of unstable systems in field theory and proton decay, C. Bernardini, L. Maiani, M. Testa, Phys. Rev. Lett. 71 (1993) 2687-2690.
[Bernardini:1993qj]
[36-28]
The Time evolution of unstable particles, Gi-Chol Cho, Hikoya Kasari, Yoshio Yamaguchi, Prog.Theor.Phys. 90 (1993) 803-816.
[Cho:1993xe]
[36-29]
Analytic continuation of quantum systems and their temporal evolution, E. C. G. Sudarshan, Charles B. Chiu, Phys. Rev. D47 (1993) 2602-2614.
[Sudarshan:1992pd]
[36-30]
Nonobservability of nonexponential decay, M. Danos, A. B. Johnson, Phys. Rev. D30 (1984) 2692-2694.
[Danos:1984saw]
[36-31]
Time scale of short time deviations from exponential decay, K. Grotz, H. V. Klapdor-Kleingrothaus, Phys. Rev. C30 (1984) 2098-3000.
[Grotz:1984tv]
[36-32]
Nonexponential decay and the effective proton lifetime, F. Miglietta, A. Rimini, Phys. Lett. B139 (1984) 353-356.
[Miglietta:1984uk]
[36-33]
The effective proton lifetime and nonexponential decay, Gordon N. Fleming, Phys. Lett. B125 (1983) 287.
[Fleming:1982sk]
[36-34]
On the proton decay, L. Fonda, G. C. Ghirardi, T. Weber, Phys. Lett. B131 (1983) 309.
[Fonda:1983qc]
[36-35]
The Proton Nonstability and the Nonexponentiality of the Decay Law, L.A. Khalfin, Phys.Lett. B112 (1982) 223-226.
[Khalfin:1981he]
[36-36]
Nonexponential decay law, Asher Peres, Ann. Phys. 129 (1980) 33.
[Peres:1980kp]
[36-37]
Quantum versus classical laws for sequential decay processes, G. C. Ghirardi, C. Omero, T. Weber, Nuovo Cim. A52 (1979) 443-457.
[Ghirardi:1979du]
[36-38]
Quantum theory of sequential decay processes, L. Fonda, G. C. Ghirardi, C. Omero, A. Rimini, T. Weber, Phys. Rev. D18 (1978) 4757.
[Fonda:1978df]
[36-39]
Decaying States as Complex Energy Eigenvectors in Generalized Quantum Mechanics, E. C. G. Sudarshan, C. B. Chiu, Vittorio Gorini, Phys. Rev. D18 (1978) 2914.
[Sudarshan:1977xd]
[36-40]
Pertinence of the Semigroup Law in the Theory of the Decay of an Unstable Elementary Particle, S. Twareque Ali, L. Fonda, G. C. Ghirardi, Nuovo Cim. A25 (1975) 134.
[TwarequeAli:1974xa]
[36-41]
On the quantum foundations of the exponential decay law, L. Fonda, G. C. Ghirardi, A. Rimini, T. Weber, Nuovo Cim. A15 (1973) 689-704.
[Fonda:1973xx]
[36-42]
Addendum to 'Some remarks on the origin of the deviations from the exponential decay law of an unstable particle', L. Fonda, G. C. Ghirardi, Nuovo Cim. A10 (1972) 850.
[Fonda:1972ep]
[36-43]
Some remarks on the origin of the deviations from the exponential decay law of an unstable particle, L. Fonda, G. C. Ghirardi, Nuovo Cim. A7 (1972) 180-184.
[Fonda:1972im]
[36-44]
Contribution to the decay theory of unstable quantum systems. 2, L. Fonda, G. C. Ghirardi, Nuovo Cim. A6 (1971) 553-558.
[Fonda:1971br]
[36-45]
Perturbation of a Decaying State, Richard M. More, Phys. Rev. A 3 (1971) 1217-1220.
[More-1971-PRA-3-1217]
[36-46]
Theory of Decaying States, R. M. More, Phys. Rev. A 4 (1971) 1782-1790.
[PhysRevA.4.1782]
[36-47]
Contribution to the decay theory of ustable quantum systems, L. Fonda, G. C. Ghirardi, Nuovo Cim. A67 (1970) 257-266.
[Fonda:1970ya]
[36-48]
Correspondence between unstable particles and poles in S matrix theory: The Exponential decay law, G. Calucci, G. C. Ghirardi, Phys. Rev. 169 (1968) 1339.
[Calucci:1968gy]
[36-49]
Admissible Mass Distributions of Unstable Particles, L.A. Khalfin, JETP Letters 7 (1968) 267.
[Khalfin-1968-JETPL-7-267]
[36-50]
Quantum Theory of Unstable Elementary Particles, L.A. Khalfin, Soviet Physics Doklady 6 (1962) 1010.
[Khalfin-1962-SPD-6-1010]
[36-51]
Mass and Lifetime of Unstable Particles, R. Jacob, R. G. Sachs, Phys. Rev. 121 (1961) 350-356.
[Jacob:1961zz]
[36-52]
Evolution of a Quasi-Stationary State, Rolf G. Winter, Phys. Rev. 123 (1961) 1503-1507.
[Winter:1961zz]
[36-53]
Relativistic theory of unstable particles. 2, P. T. Matthews, Abdus Salam, Phys. Rev. 115 (1959) 1079-1084.
[Matthews:1959sy]
[36-54]
Contribution to the Decay Theory of a Quasi-Stationary State, L.A. Khalfin, JETP 6 (1958) 1053.
[Khalfin-1958-JETP-6-1053]
[36-55]
Relativistic field theory of unstable particles, P. T. Matthews, Abdus Salam, Phys. Rev. 112 (1958) 283-287.
[Matthews:1958sc]
[36-56]
On the Theory of the Decay of a Quasi-Stationary State, L.A. Khalfin, Soviet Physics Doklady 2 (1957) 340.
[Khalfin-1957-SPD-2-340]
[36-57]
On the Uncertainty Relation between Time and Energy, V. Fock, N. Krylov, JETP 17 (1947) 93.
[Fock-Krylov-1947-JETP-17-93]
[36-58]
Quantum Mechanics and Radioactive Disintegration, R. W. Gurney, E. U. Condon, Phys. Rev. 33 (1929) 127-140.
[Gurney:1929zz]
[36-59]
Zur Quantentheorie des Atomkernes, G. Gamow, Z. Phys. 51 (1928) 204-212.
[Gamow:1928zz]
[36-60]
Wave Mechanics and Radioactive Disintegration, R. W. Gurney, E. U. Condon, Nature 122 (1928) 439.
[Gurney-Condon-1928-Nature-122-439]

37 - Theory - Decay Law - Talks

[37-1]
The Lee model: a tool to study decays, Francesco Giacosa, J.Phys.Conf.Ser. 1612 (2020) 012012, arXiv:2001.07781. Symmetries in Science, 4-9/8/2019, Bregenz, Austria.
[Giacosa:2020tha]
[37-2]
Time evolution of an unstable quantum system, Francesco Giacosa, Acta Phys.Polon. B48 (2017) 1831, arXiv:1708.02083. Second Jagiellonian Symposium of Fundamental and Applied Subatomic Physics, 4-9/6/2017, Krakow, Poland.
[Giacosa:2017yxh]
[37-3]
Non-exponential decay in Quantum Mechanics and Quantum Field Theory, Francesco Giacosa, J. Phys. Conf. Ser. 538 (2014) 012008, arXiv:1312.3315. Symmetries in Science, 21-26/7/2013, Bregenz (Austria).
[Giacosa:2013lza]
[37-4]
(Oscillating) non-exponential decays of unstable states, Francesco Giacosa, Giuseppe Pagliara, PoS BORMIO2012 (2012) 028, arXiv:1204.1896. 50th International Winter Meeting on Nuclear Physics, 23-27 January 2012, Bormio, Italy.
[Giacosa:2012yd]
[37-5]
Non exponential decays of hadrons, Giuseppe Pagliara, Francesco Giacosa, Acta Phys. Polon. Supp. 4 (2011) 753-758, arXiv:1108.2782. Excited QCD 2011, Les Houches (France), 20-25 February 2011.
[Pagliara:2011hh]
[37-6]
Long time deviations from the exponential decay law: possible effects in particle physics and cosmology, K. Urbanowski, arXiv:1007.1742, 2010. XXII Recontres de Blois: Particle Physics and Cosmology, Blois, France, 15-20 July 2010.
[Urbanowski:2010jw]
[37-7]
Long Tail of Quantum Decay from Scattering Data, M. Nowakowski, N.G. Kelkar, AIP Conf.Proc. 1030 (2008) 250-255, arXiv:0807.5103.
[Nowakowski:2008kd]

38 - Theory - Decay Law - Alternative Models

[38-1]
Decay Law of Relativistic Particles: Quantum Theory Meets Special Relativity, K. Urbanowski, Phys.Lett. B737 (2014) 346, arXiv:1408.6564.
[Urbanowski:2014gza]
[38-2]
Packet Spreading and Einstein Retardation, M.I. Shirokov, Concepts Phys. 6 (2009) 543, arXiv:0904.3180.
[Shirokov:2009pu]
[38-3]
Violations of Einstein's time dilation formula in particle decays, Eugene V. Stefanovich, arXiv:physics/0603043, 2006.
[physics/0603043]
[38-4]
Evolution in Time of Moving Unstable Systems, M. I. Shirokov, Concepts of Physics 3 (2006) 193-205, arXiv:quant-ph/0508087.
[quant-ph/0508087]
[38-5]
Relativistic Quantum Dynamics: A non-traditional perspective on space, time, particles, fields, and action-at-a-distance, Eugene V. Stefanovich, arXiv:physics/0504062, 2005.
[Stefanovich:2005ai]
[38-6]
Decay law of moving unstable particle, M.I. Shirokov, Int.J.Theor.Phys. 43 (2004) 1541-1553.
[Shirokov:2004gi]
[38-7]
On the Representations of Poincare Group Associated With Unstable Particles, P. Exner, Phys. Rev. D28 (1983) 2621.
[Exner:1983xu]

39 - Theory - Quantum Zeno Effect

[39-1]
Suppression of Higgs Mixing by Quantum Zeno Effect, Kodai Sakurai, Wen Yin, Eur.Phys.J.C 83 (2023) 498, arXiv:2204.01739.
[Sakurai:2022cki]
[39-2]
Quantum Zeno Effect, Kapitsa Pendulum and Spinning Top Principle. Comparative Analysis, Vyacheslav A. Buts, arXiv:1711.01071, 2017.
[1711.01071]
[39-3]
Pulsed and continuous measurements of exponentially decaying systems, Francesco Giacosa, Giuseppe Pagliara, Phys. Rev. A90 (2014) 052107, arXiv:1405.6882.
[Giacosa:2014joa]
[39-4]
Sufficient conditions for the anti-Zeno effect, Pavel Exner, arXiv:quant-ph/0502125, 2005.
[quant-ph/0502125]
[39-5]
General expression for the quantum Zeno and anti-Zeno effects, J. Ruseckas, B. Kaulakys, arXiv:quant-ph/0403123, 2004.
[quant-ph/0403123]
[39-6]
Zeno dynamics and constraints, P. Facchi, G. Marmo, S. Pascazio, A. Scardicchio, G. Sudarshan, J. Optics B6 (2004) S492-S501.
[Facchi:2004xa]
[39-7]
Mathematics of the Quantum Zeno Effect, A.U. Schmidt, arXiv:math-ph/0307044, 2003.
[math-ph/0307044]
[39-8]
Three different manifestations of the quantum Zeno effect, P. Facchi, S. Pascazio, arXiv:quant-ph/0303161, 2003.
[quant-ph/0303161]
[39-9]
Quantum Zeno Subspaces, P. Facchi, S. Pascazio, Phys. Rev. Lett. 89 (2002) 080401. http://link.aps.org/doi/10.1103/PhysRevLett.89.080401.
[Facchi-Pascazio-2002-PRL-89-080401]
[39-10]
From the Quantum Zeno to the Inverse Quantum Zeno Effect, P. Facchi, H. Nakazato, S. Pascazio, Phys. Rev. Lett. 86 (2001) 2699-2703. http://link.aps.org/doi/10.1103/PhysRevLett.86.2699.
[Facchi-Nakazato-Pascazio-2001-PRL-86-2699]
[39-11]
Simple computer model for the quantum Zeno effect, David Wallace, Phys. Rev. A 63 (2001) 022109, American Physical Society.
[PhysRevA.63.022109]
[39-12]
Quantum Zeno dynamics, P. Facchi, V. Gorini, G. Marmo, S. Pascazio, G. Sudarshan, Phys. Lett. A275 (2000) 12.
[Facchi:2000bs]
[39-13]
Temporal behavior and quantum Zeno time of an excited state of the hydrogen atom, P. Facchi, S. Pascazio, Phys. Lett. A241 (1998) 139-144, arXiv:quant-ph/9905017.
[Facchi:1998abc]
[39-14]
Reflection and transmission in a neutron-spin test of the quantum Zeno effect, Ken Machida, Hiromichi Nakazato, Saverio Pascazio, Helmut Rauch, Sixia Yu, Phys. Rev. A60 (1999) 3448, arXiv:quant-ph/9903009.
[Machida:1999id]
[39-15]
Quantum Zeno and quantum anti-Zeno effects, V. Gontis, B. Kaulakys, Lith. Phys. J. 38 (1998) 118-121, arXiv:quant-ph/9806015.
[Gontis:1998te]
[39-16]
Relevance for local realism, macroscopic realism, and non-invasive measurability at the macroscopic level, D. Home, M. A. B. Whitaker, Phys. Lett. A 239 (1998) 6-12.
[Home-Whitaker-PLA-239-6-1998]
[39-17]
A Conceptual Analysis of Quantum Zeno, D. Home, M. A. B. Whitaker, Ann. Phys. 258 (1997) 237-285.
[Home-Whitaker-AP-258-237-1997]
[39-18]
Understanding the quantum Zeno effect, Hiromichi Nakazato, Mikio Namiki, Saverio Pascazio, Helmut Rauch, Phys.Lett. A217 (1996) 203, arXiv:quant-ph/9605008.
[Nakazato:1996qa]
[39-19]
Strange properties of short time evolution of the projection of state vector, K. Urbanowski, Found. Phys. Lett. 7 (1994) 285.
[Urbanowski-FPL-7-285-1994]
[39-20]
Early time properties of quantum evolution, K. Urbanowski, Phys. Rev. A 50 (1994) 2847, American Physical Society.
[Urbanowski-PRA-50-2847-1994]
[39-21]
Comment on 'Quantum Zeno effect', L.E. Ballentine, Phys. Rev. A43 (1991) 5165-5167.
[Ballentine-PRA-43-5165-1991]
[39-22]
Possible consequences of the Zeno effect on nuclear double beta decay and a bound on $m_{\nu}$, Jacob Levitan, L. P. Horwitz, Europhys. Lett. 9 (1989) 761.
[Levitan:1989vd]
[39-23]
Time scale of short time deviations from exponential decay, K. Grotz, H. V. Klapdor-Kleingrothaus, Phys. Rev. C30 (1984) 2098-3000.
[Grotz:1984tv]
[39-24]
The time scale for quantum Zeno paradox and proton decay, C. B. Chiu, B. Misra, E. C. G. Sudarshan, Phys. Lett. B117 (1982) 34.
[Chiu:1982zb]
[39-25]
Zeno paradox in quantum theory, Asher Peres, Am. J. Phys. 48 (1980) 931-932.
[Peres:1980ux]
[39-26]
Small time behavior of quantum nondecay probability and Zeno's paradox in quantum mechanics, G. C. Ghirardi, C. Omero, A. Rimini, T. Weber, Nuovo Cim. A52 (1979) 421-442.
[Ghirardi:1979dt]
[39-27]
Time Evolution of Unstable Quantum States and a Resolution of Zeno's Paradox, C. B. Chiu, E. C. G. Sudarshan, B. Misra, Phys. Rev. D16 (1977) 520-529.
[Chiu:1977ds]
[39-28]
The Zeno's Paradox in Quantum Theory, B. Misra, E. C. G. Sudarshan, J. Math. Phys. 18 (1977) 756.
[Misra:1976by]

40 - Theory - Quantum Zeno Effect - Talks

[40-1]
Influence of the measurement on the decay law: the bang-bang case, Francesco Giacosa, Giuseppe Pagliara, EPJ Web Conf. 95 (2015) 04025, arXiv:1411.2255. 3rd International Conference on New Frontiers in Physics, ICNFP 2014, 31/7/2014-6/8/2014, Crete (Greece).
[Giacosa:2014mja]

41 - Theory - Entanglement

[41-1]
ER=EPR, GHZ, and the Consistency of Quantum Measurements, Leonard Susskind, Fortsch. Phys. 64 (2016) 72-83, arXiv:1412.8483.
[Susskind:2014yaa]
[41-2]
Detection of High-Dimensional Genuine Multipartite Entanglement of Mixed States, Marcus Huber, Florian Mintert, Andreas Gabriel, Beatrix C. Hiesmayr, Phys. Rev. Lett. 104 (2010) 210501.
[Huber-Mintert-Gabriel-Hiesmayr-2010-PRL-104-210501]
[41-3]
Experimentally friendly geometrical criteria for entanglement, P. Badziag, C. Brukner, W. Laskowski, T. Paterek, M. Zukowski, arXiv:0711.4282, 2007.
[0711.4282]
[41-4]
Are quantum correlations local elements of reality? A Bell inequality to test this, Michael Seevinck, arXiv:quant-ph/0508175, 2005.
[quant-ph/0508175]
[41-5]
Loophole-free Bell's experiment based on two-photon all-versus-nothing violation of local realism, Adan Cabello, arXiv:quant-ph/0507260, 2005.
[quant-ph/0507260]
[41-6]
Popper's Experiment and Superluminal Communication, Edward Gerjuoy, Andrew M. Sessler, arXiv:quant-ph/0507121, 2005.
[quant-ph/0507121]
[41-7]
Lorentz-covariant reduced spin density matrix and EPR-Bohm correlations, P. Caban, J. Rembielinski, arXiv:quant-ph/0507056, 2005.
[quant-ph/0507056]
[41-8]
A General Relativistic Generalization of Bell Inequality, Vladan Pankovic, arXiv:quant-ph/0506129, 2005.
[quant-ph/0506129]
[41-9]
An Entangled Web of Crime: Bell's Theorem as a Short Story, Kurt Jacobs, Howard Wiseman, arXiv:quant-ph/0504192, 2005.
[quant-ph/0504192]
[41-10]
Common Cause and Contextual Realization of Bell Correlation, A. Shafiee, R. Maleeh, M. Golshani, arXiv:quant-ph/0504121, 2005.
[quant-ph/0504121]
[41-11]
Lifting Bell inequalities, Stefano Pironio, arXiv:quant-ph/0503179, 2005.
[quant-ph/0503179]
[41-12]
Bell's Theorem: A Critique, Michael Clover, arXiv:quant-ph/0502016, 2005.
[quant-ph/0502016]
[41-13]
Popper's test of Quantum Mechanics, A. Bramon, R. Escribano, arXiv:quant-ph/0501134, 2005.
[Bramon:2005pz]
[41-14]
Overcoming the EPR paradox, Ghenadie N. Mardari, arXiv:quant-ph/0412160, 2004.
[quant-ph/0412160]
[41-15]
Bell's inequality tests: from photons to B-mesons, A. Bramon, R. Escribano, G. Garbarino, J. Mod. Opt. 52 (2005) 1681, arXiv:quant-ph/0410122.
[Bramon:2004pp]
[41-16]
Bell's theorem: Critique of proofs with and without inequalities, Karl Hess, Walter Philipp, arXiv:quant-ph/0410015, 2004.
[quant-ph/0410015]
[41-17]
Basis States for Relativistic, Dynamically-Entangled Particles, N.L. Harshman, arXiv:quant-ph/0409204, 2004.
[quant-ph/0409204]
[41-18]
How larger quantum correlations are than classical ones, Adan Cabello, arXiv:quant-ph/0409192, 2004.
[quant-ph/0409192]
[41-19]
Bell's theorem without inequalities and without unspeakable information, Adan Cabello, arXiv:quant-ph/0409190, 2004.
[quant-ph/0409190]
[41-20]
Reply to Marinatto's comment on 'Bell's theorem without inequalities and without alignments', Adan Cabello, arXiv:quant-ph/0409189, 2004.
[quant-ph/0409189]
[41-21]
Entanglement in relativistic quantum field theory, Yu Shi, Phys. Rev. D70 (2004) 105001, arXiv:hep-th/0408062.
[Shi:2004yt]
[41-22]
Counterfactual errors and state reduction in relativistic quantum physics, Jon Eakins, George Jaroszkiewicz, arXiv:quant-ph/0406097, 2004.
[quant-ph/0406097]
[41-23]
Complete Correlation, Detection loophole and Bell's Theorem, Afshin Shafiee, Mehdi Golshani, arXiv:quant-ph/0406042, 2004.
[quant-ph/0406042]
[41-24]
George Boole and the Bell inequalities, Elemer E Rosinger, arXiv:quant-ph/0406004, 2004.
[quant-ph/0406004]
[41-25]
Understanding Popper's Experiment, Tabish Qureshi, arXiv:quant-ph/0405057, 2004.
[quant-ph/0405057]
[41-26]
A remark about the Mermin-Squires Music Hall's inteludium, Gavriel Segre, arXiv:quant-ph/0403087, 2004.
[quant-ph/0403087]
[41-27]
Bell's inequality for conditional probabilities as a test for quantum-like behaviour of mind, Andrei Khrennikov, arXiv:quant-ph/0402169, 2004.
[quant-ph/0402169]
[41-28]
Quantum Entanglement in Time, Caslav Brukner, Samuel Taylor, Sancho Cheung, Vlatko Vedral, arXiv:quant-ph/0402127, 2004.
[quant-ph/0402127]
[41-29]
The structure of Bell inequalities, Guenter Schachner, arXiv:quant-ph/0312117, 2003.
[quant-ph/0312117]
[41-30]
On separability of quantum states and the violation of Bell-type inequalities, E. R. Loubenets, arXiv:quant-ph/0310116, 2003.
[quant-ph/0310116]
[41-31]
The Meaning of Bell's Theorem, A. Rizzi, arXiv:quant-ph/0310098, 2003.
[quant-ph/0310098]
[41-32]
Rotationally invariant proof of Bell's theorem without inequalities, A. Cabello, arXiv:quant-ph/0306073, 2003.
[quant-ph/0306073]
[41-33]
Symmetries of the Bell correlation inequalities, C. Sliwa, arXiv:quant-ph/0305190, 2003.
[quant-ph/0305190]
[41-34]
On the reality of EPR paradox, Janis Ruza, arXiv:quant-ph/0304014, 2003.
[quant-ph/0304014]
[41-35]
Nonlocal hidden-variable theories and quantum mechanics: An incompatibility theorem, A.J. Leggett, Found. Phys. 33 (2003) 1469-1493.
[Leggett-FoP-33-1469-2003]
[41-36]
Assumptions Underlying Bell's Inequalities, Angel G. Valdenebro, arXiv:quant-ph/0208161, 2002.
[quant-ph/0208161]
[41-37]
EPR experiments without 'collapse of the wave function', B. Kayser, L. Stodolsky, Phys. Lett. B359 (1995) 343-350.
[Kayser:1995bw]
[41-38]
Extreme quantum entanglement in a superposition of macroscopically distinct states, N. David Mermin, Phys. Rev. Lett. 65 (1990) 1838-1840.
[Mermin-1990-PRL-65-1838]
[41-39]
Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model, Reinhard F. Werner, Phys. Rev. A 40 (1989) 4277-4281.
[Werner-1989-PRA-40-4277]
[41-40]
Experiments of the EPR type involving CP violation do not allow faster than light communication between distant observers, G. C. Ghirardi, R. Grassi, A. Rimini, T. Weber, Europhys. Lett. 6 (1988) 95.
[Ghirardi:1988aj]
[41-41]
Discussion of Experimental Proof for the Paradox of Einstein, Rosen, and Podolsky, D. Bohm, Y. Aharonov, Phys. Rev. 108 (1957) 1070-1076.
[Bohm:1957zz]
[41-42]
Can quantum mechanical description of physical reality be considered complete?, Albert Einstein, Boris Podolsky, Nathan Rosen, Phys. Rev. 47 (1935) 777-780.
[Einstein:1935rr]

42 - Theory - Entanglement - Talks

[42-1]
Identical particles and entanglement, GianCarlo Ghirardi, Luca Marinatto, arXiv:quant-ph/0509195, 2005. International Conference on Quantum Optics 2004, Minsk, Belarus.
[quant-ph/0509195]
[42-2]
Quantum information and general relativity, Asher Peres, Fortsch. Phys. 52 (2004) 1052, arXiv:quant-ph/0405127. 'Quantum Optics for Quantum Information Processing', Rome, 7-8 May 2004.
[Peres:2004fw]

43 - Theory - Single-Particle Entanglement

[43-1]
Maximal correlation between flavor entanglement and oscillation damping due to localization effects, Victor A. S. V. Bittencourt, Celso J. Villas-Boas, Alex E. Bernardini, Europhys.Lett. 108 (2014) 50005, arXiv:1411.3634.
[Bittencourt:2014pda]
[43-2]
A field-theoretical approach to entanglement in neutrino mixing and oscillations, M. Blasone, F. Dell'Anno, S. De Siena, F. Illuminati, Europhys.Lett. 106 (2014) 30002, arXiv:1401.7793.
[Blasone:2014jea]
[43-3]
Entanglement in a QFT Model of Neutrino Oscillations, M. Blasone, F. Dell'Anno, S. De Siena, F. Illuminati, Adv. High Energy Phys. 2014 (2014) 359168.
[Blasone:2014cub]
[43-4]
Multipartite entangled states in particle mixing, M. Blasone, F. Dell'Anno, S. De Siena, M. Di Mauro, F. Illuminati, Phys. Rev. D77 (2008) 096002, arXiv:0711.2268.
[Blasone:2007wp]
[43-5]
Entanglement in neutrino oscillations, Massimo Blasone, Fabio Dell'Anno, Silvio De Siena, Fabrizio Illuminati, Europhys.Lett. 85 (2009) 0002, arXiv:0707.4476.
[Blasone:2007vw]
[43-6]
Single photon and nonlocality, Aurelien Drezet, Pramana 68 (2007) 389-396.
[Drezet-2007-Pramana-68-389]
[43-7]
Comment on 'Single-particle entanglement', Aurelien Drezet, Phys. Rev. A 74 (2006) 026301.
[Drezet-2006-PRA-74-026301]
[43-8]
Reply to 'Comment on `Single-particle entanglement' ', S. J. van Enk, Phys. Rev. A 74 (2006) 026302.
[VanEnk-2006-PRA-74-026302]
[43-9]
Single-particle entanglement, S. J. van Enk, Phys. Rev. A 72 (2005) 064306.
[VanEnk-2005-PRA-72-064306]
[43-10]
A Subsystem-Independent Generalization of Entanglement, Howard Barnum, Emanuel Knill, Gerardo Ortiz, Rolando Somma, Lorenza Viola, Phys. Rev. Lett. 92 (2004) 107902.
[Barnum:2004zz]
[43-11]
Entanglement of Indistinguishable Particles Shared between Two Parties, H. M. Wiseman, John A. Vaccaro, Phys. Rev. Lett. 91 (2003) 097902.
[Wiseman-Vaccaro-2003-PRL-91-097902]
[43-12]
Nonlocality of a Single Photon?, D. M. Greenberger, M. A. Horne, A. Zeilinger, Phys. Rev. Lett. 75 (1995) 2064-2064.
[Greenberger-Horne-Zeilinger-1995-PRL-75-2064]
43-13.
, 1995.
[Hardy-1995-PRL-75-2065]
43-14.
, 1995.
[Vaidman-1995-PRL-75-2063]
[43-15]
Nonlocality of a Single Photon Revisited, Lucien Hardy, Phys. Rev. Lett. 73 (1994) 2279-2283.
[Hardy-1994-PRL-73-2279]
[43-16]
Nonlocality of a single photon, S. M. Tan, D. F. Walls, M. J. Collett, Phys. Rev. Lett. 66 (1991) 252-255.
[Tan-Walls-Collett-1991-PRL-66-252]

44 - Theory - Measurement Problem and Decoherence

[44-1]
Quantum fluctuations, particles, entanglement and measurements, Kenichi Konishi, Int.J.Mod.Phys.A 37 (2022) 2250113, arXiv:2111.14723.
[Konishi:2021nnt]
[44-2]
Lindblad Decoherence in Atomic Clocks, Steven Weinberg, Phys. Rev. A94 (2016) 042117, arXiv:1610.02537.
[Weinberg:2016uml]
[44-3]
What Happens in a Measurement?, Steven Weinberg, Phys. Rev. A93 (2016) 032124, arXiv:1603.06008.
[Weinberg:2016axv]
[44-4]
The measure problem in no-collapse (many worlds) quantum mechanics, Stephen D.H. Hsu, Int.J.Mod.Phys. D26 (2016) 1730008, arXiv:1511.08881.
[Hsu:2015qev]
[44-5]
Consistent Quantum Measurements, Robert B. Griffiths, arXiv:1501.04813, 2015.
[1501.04813]
[44-6]
Interpretations of Quantum Theory in the Light of Modern Cosmology, Mario Castagnino, Sebastian Fortin, Roberto Laura, Daniel Sudarsky, Found.Phys. 47 (2017) 1387-1422, arXiv:1412.7576.
[Castagnino:2014cpa]
[44-7]
A Relativistic Dynamical Collapse Model, Philip Pearle, Phys. Rev. D91 (2015) 105012, arXiv:1412.6723.
[Pearle:2014tda]
[44-8]
Is the Preferred Basis selected by the environment?, Tian Wang, David Hobill, arXiv:1412.2852, 2014.
[Wang:2014cma]
[44-9]
Are collapse models testable with quantum oscillating systems? The case of neutrinos, kaons, chiral molecules, M. Bahrami et al., Sci.Rep. Nature (2013) Scientific Reports 3, arXiv:1305.6168.
[Bahrami:2013hta]
[44-10]
Are Collapse Models Testable via Flavor Oscillations?, Sandro Donadi, Angelo Bassi, Catalina Curceanu, Antonio Di Domenico, Beatrix C. Hiesmayr, Found.Phys. 43 (2013) 813-844, arXiv:1207.6000.
[Donadi:2012nv]
[44-11]
The effect of spontaneous collapses on neutrino oscillations, S. Donadi, A. Bassi, C. Curceanu, L. Ferialdi, Foundations of Physics 43, 1066-1089 (2013), arXiv:1207.5997.
[Donadi:2012idr]
[44-12]
Collapse of the State Vector, Steven Weinberg, Phys. Rev. A85 (2012) 062116, arXiv:1109.6462.
[Weinberg:2011jg]
[44-13]
Measuring measurement, J.S. Lundeen et al., arXiv:0807.2444, 2008.
[0807.2444]
[44-14]
Feynman's quantum theory, H. D. Zeh, Eur. Phys. J. H36 (2011) 147-158, arXiv:0804.3348.
[Zeh:2008dz]
[44-15]
Sequential products of quantum measurements, S. Gudder, Rept. Math. Phys. 60 (2007) 273-288.
[Gudder:2007]
[44-16]
Phase transitions and quantum measurements, Armen E. Allahverdyan, Roger Balian, Theo M. Nieuwenhuizen, arXiv:quant-ph/0508162, 2005.
[quant-ph/0508162]
[44-17]
Decoherence induced by a composite environment, Fernando C. Lombardo, Paula I. Villar, Phys. Rev. A72 (2005) 034103, arXiv:quant-ph/0508121.
[Lombardo:2005za]
[44-18]
An Exactly Solvable Model of an Avalanche-Type Measuring Device: Macroscopic Distinctiveness and Wavefunction Collapse, R. Merlin, arXiv:quant-ph/0507250, 2005.
[quant-ph/0507250]
[44-19]
Algebras of Measurements: the logical structure of Quantum Mechanics, Daniel Lehmann, Kurt Engesser, Dov M. Gabbay, arXiv:quant-ph/0507231, 2005.
[quant-ph/0507231]
[44-20]
Quantum mechanical description of measurement and the basic properties of state transformation, Iman Marvian, arXiv:quant-ph/0507230, 2005.
[quant-ph/0507230]
[44-21]
Completely Quantized Collapse and Consequences, Philip Pearle, arXiv:quant-ph/0506177, 2005.
[quant-ph/0506177]
[44-22]
On the Energy Increase in Space-Collapse Models, Angelo Bassi, Emiliano Ippoliti, Bassano Vacchini, arXiv:quant-ph/0506083, 2005.
[quant-ph/0506083]
[44-23]
On the Everett programme and the Born rule, Patrick Van Esch, arXiv:quant-ph/0505059, 2005.
[quant-ph/0505059]
[44-24]
Decoherence at absolute zero, Supurna Sinha, arXiv:quant-ph/0505056, 2005.
[quant-ph/0505056]
[44-25]
On the mathematical Structure of Quantum Measurement Theory, Geoffrey Sewell, arXiv:math-ph/0505032, 2005.
[math-ph/0505032]
[44-26]
Book Review: "Quantum Theory as an Emergent Phenomenon", by Stephen L. Adler, A. Bassi, arXiv:quant-ph/0504214, 2005.
[quant-ph/0504214]
[44-27]
Quantum measurement act as a 'speech act', Jean Schneider, arXiv:quant-ph/0504199, 2005.
[quant-ph/0504199]
[44-28]
Decoherent histories and generalized measurements, Seth Lloyd, arXiv:quant-ph/0504155, 2005.
[quant-ph/0504155]
[44-29]
Wave function collapse implies divergence of average displacement, A. Marchewka, Z. Schuss, arXiv:quant-ph/0504105, 2005.
[quant-ph/0504105]
[44-30]
The Quantum Mechanics of Hyperion, Nathan Wiebe, L.E. Ballentine, arXiv:quant-ph/0503170, 2005.
[quant-ph/0503170]
[44-31]
Testing Gravity-Driven Collapse of the Wavefunction via Cosmogenic Neutrinos, Joy Christian, Phys. Rev. Lett. 95 (2005) 160403, arXiv:quant-ph/0503001.
[Christian:2005qa]
[44-32]
Problems of Quantum Measurement, Joseph F. Johnson, arXiv:quant-ph/0502124, 2005.
[quant-ph/0502124]
[44-33]
Quantum chaos algorithms and dissipative decoherence with quantum trajectories, Jae Weon Lee, Dima L. Shepelyansky, arXiv:quant-ph/0501120, 2005.
[quant-ph/0501120]
[44-34]
A model of quantum reduction with decoherence, Roland Omnes, Phys. Rev. D71 (2005) 065011, arXiv:quant-ph/0411201.
[Omnes:2004qi]
[44-35]
Probing Quantum Decoherence with High-Energy Neutrinos, Dan Hooper, Dean Morgan, Elizabeth Winstanley, Phys. Lett. B609 (2005) 206, arXiv:hep-ph/0410094.
[Hooper:2004xr]
[44-36]
An alternative to complementarity, G. Mardari, arXiv:quant-ph/0409197, 2004.
[quant-ph/0409197]
[44-37]
Reply to Comment on 'Quantum Measurement and Decoherence', G.W.Ford, R.F.O'Connell, arXiv:quant-ph/0409178, 2004.
[quant-ph/0409178]
[44-38]
From Quantum To Classical Dynamics: A Landau Continuous Phase Transition With Spontaneous Superposition Breaking, Vladan Pankovic, Tristan Hubsch, Milan Predojevic, Miodrag Krmar, arXiv:quant-ph/0409010, 2004.
[quant-ph/0409010]
[44-39]
The quantum measurement process in an exactly solvable model, Armen E. Allahverdyan, Roger Balian, Theo M. Nieuwenhuizen, arXiv:cond-mat/0408316, 2004.
[cond-mat/0408316]
[44-40]
Highly Nonclassical Quantum States and Environment Induced Decoherence, Peter Foldi, arXiv:quant-ph/0406232, 2004.
[quant-ph/0406232]
[44-41]
Towards Quantum Superpositions of a Mirror: Stochastic Collapse Analysis, A. Bassi, E. Ippoliti, Stephen L. Adler, Phys. Rev. Lett. 94 (2005) 030401, arXiv:quant-ph/0406108.
[Bassi:2004eu]
[44-42]
A Relativistic Version of the Ghirardi-Rimini-Weber Model, Roderich Tumulka, arXiv:quant-ph/0406094, 2004.
[quant-ph/0406094]
[44-43]
Quantum Brains: The OnuRules, Richard A Mould (NA49), J. Phys. G30 (2004) S1325-S1328, arXiv:physics/0406016.
[Meurer:2004nr]
[44-44]
Quantum Brains: The NuRules, Richard A Mould, arXiv:physics/0406014, 2004.
[physics/0406014]
[44-45]
Initial states and decoherence of histories, Artur Scherer, Andrei N. Soklakov, arXiv:quant-ph/0405080, 2004.
[quant-ph/0405080]
[44-46]
Toward reconstruction of relative state formulation of quantum theory, Yukinari Kurita, arXiv:quant-ph/0404032, 2004.
[quant-ph/0404032]
[44-47]
Fully polarized states and decoherence, Marco Frasca, arXiv:cond-mat/0403678, 2004.
[Frasca:2004kd]
[44-48]
Decoherence in the thermodynamic limit: A general result, Marco Frasca, Mod. Phys. Lett. B20 (2006) 1059-1066, arXiv:quant-ph/0403111.
[Frasca:2004uh]
[44-49]
Quantum Models of Mind: Are They Compatible with Environment Decoherence?, Jean Faber, Luiz Pinguelli Rosa, arXiv:quant-ph/0403051, 2004.
[quant-ph/0403051]
[44-50]
Active and Passive Quantum Erasers for Neutral Kaons, A. Bramon, G. Garbarino, B.C. Hiesmayr, Phys. Rev. A69 (2004) 062111, arXiv:quant-ph/0402212.
[Bramon:2004zp]
[44-51]
Loss of quantum coherence in a system coupled to a zero-temperature environment, A. Ratchov, F. Faure, F. W. J. Hekking, arXiv:quant-ph/0402176, 2004.
[quant-ph/0402176]
[44-52]
Quantum Superposition of a Mirror and Relative Decoherence (as Spontaneous Superposition Breaking), V. Pankovic, M. Predojevic, M. Krmar, arXiv:quant-ph/0312015, 2003.
[quant-ph/0312015]
[44-53]
Effect of an External Field on Decoherence, R. F. O'Connell, J. Zuo, arXiv:quant-ph/0311020, 2003.
[quant-ph/0311020]
[44-54]
Decoherence at zero temperature, G. W. Ford, R. F. O'Connell, arXiv:quant-ph/0311019, 2003.
[quant-ph/0311019]
[44-55]
Conceptual analysis of quantum history theory, G. Nistico', arXiv:quant-ph/0310135, 2003.
[quant-ph/0310135]
[44-56]
Quantum Theory and Time Asymmetry, H. D. Zeh, arXiv:quant-ph/0307013, 2003.
[quant-ph/0307013]
[44-57]
Toward a Quantum Theory of Observation, H. D. Zeh, arXiv:quant-ph/0306151, 2003. Corrected version of a paper published in 1973.
[quant-ph/0306151]
[44-58]
Decoherence, irreversibility and the selection by decoherence of quantum states with definite probabilities, R. Omnes, arXiv:quant-ph/0304100, 2003.
[quant-ph/0304100]
[44-59]
From quantum to quantum via decoherence, Ph. Blanchard, P. Lugiewicz, R. Olkiewicz, arXiv:math-ph/0302065, 2003.
[math-ph/0302065]
[44-60]
Towards quantum superpositions of a mirror, W. Marshall, C. Simon, Roger Penrose, D. Bouwmeester, Phys. Rev. Lett. 91 (2003) 130401.
[Marshall:2002exi]
[44-61]
Quantum Statistics and Entanglement Problems, L. E. H. Trainor, C. J. Lumsden, arXiv:quant-ph/0210181, 2002.
[quant-ph/0210181]
[44-62]
Bohmian Histories and Decoherent Histories, James B. Hartle, Phys. Rev. A69 (2004) 042111, arXiv:quant-ph/0209104.
[Hartle:2002nq]
[44-63]
Curie-Weiss model of the quantum measurement process, Armen E. Allahverdyan, Roger Balian, Theo M. Nieuwenhuizen, Europhys. Lett. 61 (2003) 452-458, arXiv:cond-mat/0203460.
[Allahverdyan:2002hk]
[44-64]
Why Decoherence has not Solved the Measurement Problem: A Response to P. W. Anderson, Stephen L. Adler, Stud. Hist. Philos. Mod. Phys. 34 (2003) 135, arXiv:quant-ph/0112095.
[Adler:2001us]
[44-65]
Environmental Influence on the Measurement Process in Stochastic Reduction Models, Stephen L. Adler, arXiv:quant-ph/0109029, 2001.
[quant-ph/0109029]
[44-66]
Quantum measurement as driven phase transition: An exactly solvable model, Armen E. Allahverdyan, Roger Balian, Theo M. Nieuwenhuizen, arXiv:cond-mat/0102428, 2001.
[cond-mat/0102428]
[44-67]
A General Argument Against the Universal Validity of the Superposition Principle, Angelo Bassi, GianCarlo Ghirardi, Phys. Lett. A275 (2000) 373, arXiv:quant-ph/0009020.
[Bassi:2000fz]
[44-68]
About the Notion of Truth in the Decoherent Histories Approach: a reply to Griffiths, Angelo Bassi, GianCarlo Ghirardi, Phys. Lett. A265 (2000) 153, arXiv:quant-ph/9912065.
[Bassi:2000gf]
[44-69]
Decoherent Histories and Realism, Angelo Bassi, GianCarlo Ghirardi, J. Statist. Phys. 98 (2000) 457-494, arXiv:quant-ph/9912031.
[Bassi:2000ge]
[44-70]
Consistent histories, quantum truth functionals, and hidden variables, Robert B. Griffiths, Phys. Lett. A265 (2000) 12-19, arXiv:quant-ph/9909049.
[quant-ph/9909049]
[44-71]
More about Dynamical Reduction and the Enumeration Principle, Angelo Bassi, GianCarlo Ghirardi, Phil.Sci. 50 (1999) 719, arXiv:quant-ph/9907050.
[Bassi:1999py]
[44-72]
The Quantum brain, Max Tegmark, Phys. Rev. E61 (2000) 4194-4206, arXiv:quant-ph/9907009.
[Tegmark:1999yf]
[44-73]
Classical interventions in quantum systems. I. The measuring process, Asher Peres, Phys. Rev. A61 (2000) 022116, arXiv:quant-ph/9906023.
[Peres:1999kz]
[44-74]
Are Decoherent Histories logically consistent?, Angelo Bassi, GianCarlo Ghirardi, Phys. Lett. A257 (1999) 247, arXiv:gr-qc/9811050.
[Bassi:1998ra]
[44-75]
Why the quantum must yield to gravity, Joy Christian, arXiv:gr-qc/9810078, 1998.
[Christian:1998ep]
[44-76]
Do dynamical reduction models imply that arithmetic does not apply to ordinary macroscopic objects?, GianCarlo Ghirardi, Angelo Bassi, Brit.J.Phil.Sci. (1998), arXiv:quant-ph/9810041.
[Ghirardi:1998mr]
[44-77]
Quantum superpositions and definite perceptions: envisaging new feasible experimental tests, GianCarlo Ghirardi, Phys. Lett. A262 (1999) 1-14, arXiv:quant-ph/9810028.
[Ghirardi:1998ag]
[44-78]
Quantum computation, entanglement and state reduction, Roger Penrose, Phil.Trans.Roy.Soc.Lond. A356 (1998) 1927-1938.
[Penrose:1998dg]
[44-79]
Quantum Mechanics is Either Non-Linear Or Non-Introspective, Tristan Hubsch, Mod. Phys. Lett. A13 (1998) 2503-2512, arXiv:quant-ph/9712047.
[Hubsch:1997uj]
[44-80]
Quantum and classical descriptions of a measuring apparatus, Ori Hay, Asher Peres, Phys. Rev. A58 (1998) 116, arXiv:quant-ph/9712044.
[Hay:1997ug]
[44-81]
Choice of Consistent Family, and Quantum Incompatibility, Robert B. Griffiths, Phys. Rev. A57 (1998) 1604, arXiv:quant-ph/9708028.
[Griffiths:1997qi]
[44-82]
Against many worlds interpretations, Adrian Kent, Int. J. Mod. Phys. A5 (1990) 1745, arXiv:gr-qc/9703089.
[Kent:1989nm]
[44-83]
Consistent Sets Yield Contrary Inferences in Quantum Theory, Adrian Kent, Phys. Rev. Lett. 78 (1997) 2874-2877, arXiv:gr-qc/9604012.
[Kent:1996mr]
[44-84]
On gravity's role in quantum state reduction, Roger Penrose, Gen.Rel.Grav. 28 (1996) 581-600.
[Penrose:1996cv]
[44-85]
Decoherence: Basic Concepts and Their Interpretation, H. D. Zeh, arXiv:quant-ph/9506020, 1995.
[Zeh:1995jg]
[44-86]
Spontaneous wave packet reduction, GianCarlo Ghirardi, Annals N. Y. Acad. Sci. 755 (1995) 506-523.
[Ghirardi:1995er]
[44-87]
Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles, Gian Carlo Ghirardi, Philip M. Pearle, Alberto Rimini, Phys. Rev. A42 (1990) 78-79.
[Ghirardi:1989cn]
[44-88]
Spontaneous localization of a system of identical particles, G. C. Ghirardi, O. Nicrosini, A. Rimini, T. Weber, Nuovo Cim. B102 (1988) 383.
[Ghirardi:1988xh]
[44-89]
Quantum mechanics with spontaneous localization and the quantum theory of measurement, F. Benatti, G. C. Ghirardi, A. Rimini, T. Weber, Nuovo Cim. B100 (1987) 27.
[Benatti:1987jh]
[44-90]
On disentanglement of quantum wave functions: answer to a comment on 'unified dynamics for microscopic and macroscopic systems', G. C. Ghirardi, A. Rimini, T. Weber, Phys. Rev. D36 (1987) 3287.
[Ghirardi:1987ns]
[44-91]
A unified dynamics for micro and macro systems, G. C. Ghirardi, A. Rimini, T. Weber, Phys. Rev. D34 (1986) 470.
[Ghirardi:1986mt]
[44-92]
The Emergence of classical properties through interaction with the environment, E. Joos, H. D. Zeh, Z. Phys. B59 (1985) 223-243.
[Joos:1985uk]
[44-93]
Can we undo quantum measurements?, Asher Peres, Phys. Rev. D22 (1980) 879.
[Peres:1980uz]
[44-94]
The time of arrival in quantum mechanics I. formal considerations, G.R. Allcock, Annals Phys. 53 (1969) 253-285.
[Allcock:1969cq]
[44-95]
The time of arrival in quantum mechanics II. the individual measurement, G.R. Allcock, Annals Phys. 53 (1969) 286-310.
[Allcock:1969cr]
[44-96]
The time of arrival in quantum mechanics III. the measurement ensemble, G.R. Allcock, Annals Phys. 53 (1969) 311-348.
[Allcock:1969cs]

45 - Theory - Measurement Problem and Decoherence - Talks

[45-1]
Realism in the Realized Popper's Experiment, Geoffrey Hunter, arXiv:quant-ph/0507009, 2005. MRST 2002.
[quant-ph/0507009]
[45-2]
A New Ontological View of the Quantum Measurement Problem, Xiaolei Zhang, arXiv:quant-ph/0506100, 2005. Albert Einstein Century conference, Paris, France, July 2005.
[quant-ph/0506100]
[45-3]
Statistical Mechanics of Amplifying Apparatus, Joseph Johnson, arXiv:quant-ph/0502044, 2005. VIII International Wigner Symposium, NY 2003.
[quant-ph/0502044]
[45-4]
Decoherence in Quantum Systems, R. F. O'Connell, arXiv:quant-ph/0501097, 2005. 2004 IEEE NTC Quantum Device Technology Workshop, IEEE Transactions on Nanotechnology, 4, 77, 2005.
[quant-ph/0501097]
[45-5]
Dynamics of a quantum measurement, Armen E. Allahverdyan, Roger Balian, Theo M. Nieuwenhuizen, arXiv:quant-ph/0412045, 2004.
[quant-ph/0412045]
[45-6]
Wigner Distribution Analysis of a Schrodinger Cat Superposition of Displaced Equilibrium Coherent States, G.W. Ford, R.F. O'Connell, arXiv:quant-ph/0409188, 2004. Wigner Centennial Conference.
[quant-ph/0409188]
[45-7]
The quantum measurement process: an exactly solvable model, A.E. Allahverdyan, R. Balian, Th.M. Nieuwenhuizen, arXiv:cond-mat/0309188, 2003. Anomalies and Strange Behavior in Physics: Challenging the conventional, Napels, April, 2003.
[cond-mat/0309188]
[45-8]
Feynman's decoherence, Y. S. Kim, Marilyn E. Noz, Opt.Spectrosc. 94 (2003) 733, arXiv:quant-ph/0206146. 9th Int'l Conference on Quantum Optics (Raubichi, Belarus, May 2002).
[Kim:2002pz]

46 - Theory - Hidden Variables

[46-1]
Position Measurements and the Empirical Status of Particles in Bohmian Mechanics, Dustin Lazarovici, arXiv:1903.04555, 2019.
[1903.04555]
[46-2]
Hidden Variables, Non Contextuality and Einstein-Locality in Quantum Mechanics, Virendra Singh, arXiv:quant-ph/0507182, 2005.
[quant-ph/0507182]
[46-3]
The de Broglie-Bohm pilot-wave interpretation of quantum theory, W. Struyve, arXiv:quant-ph/0506243, 2005.
[Struyve:2004xd]
[46-4]
The shadow of light: further experimental evidences, F. Cardone et al., Phys.Scripta T121 (2005) 94-101, arXiv:physics/0504166.
[Petcov:2005yq]
[46-5]
On a Density-of-States Approach to Bohmian Mechanics, Guy Potvin, arXiv:quant-ph/0504110, 2005.
[quant-ph/0504110]
[46-6]
On the Consequences of Retaining the General Validity of Locality in Physical Theory, W. De Baere, arXiv:quant-ph/0504030, 2005.
[quant-ph/0504030]
[46-7]
Bohmian trajectories and the ether: Where does the analogy fail?, Louis Marchildon, arXiv:quant-ph/0502049, 2005.
[quant-ph/0502049]
[46-8]
Quantum theory of microworld and the reality, Milos V. Lokajacek, arXiv:quant-ph/0501111, 2005.
[quant-ph/0501111]
[46-9]
Many-fingered time in quantum field theory, measurement, and the Bohmian interpretation, H. Nikolic, Phys. Lett. A348 (2006) 166, arXiv:hep-th/0501046.
[Nikolic:2005fi]
[46-10]
Pre- and Post-selection paradoxes and contextuality in quantum mechanics, M. S. Leifer, R. W. Spekkens, arXiv:quant-ph/0412178, 2004.
[quant-ph/0412178]
[46-11]
Why isn't every physicist a Bohmian?, Oliver Passon, arXiv:quant-ph/0412119, 2004.
[quant-ph/0412119]
[46-12]
Quantum physics with a hidden variable, Antonio Cassa, arXiv:quant-ph/0412074, 2004.
[quant-ph/0412074]
[46-13]
Time and Ensemble Averages in Bohmian Mechanics, Yakir Aharonov, Noam Erez, Marlan O. Scully, arXiv:quant-ph/0412068, 2004.
[quant-ph/0412068]
[46-14]
A Bohmian approach to quantum fractals, A. S. Sanz, arXiv:quant-ph/0412050, 2004.
[quant-ph/0412050]
[46-15]
Hidden Variables and Nonlocality in Quantum Mechanics, Douglas L. Hemmick, arXiv:quant-ph/0412011, 2004.
[quant-ph/0412011]
[46-16]
Proposal of Michelson-Morley experiment via single photon interferometer: Interpretation of Michelson-Morley experimental results using de Broglie-Bohm picture, Masanori Sato, JCAP 0502 (2005) 001, arXiv:physics/0411217.
[Greene:2004np]
[46-17]
Covariant canonical quantization of fields and Bohmian mechanics, H. Nikolic, Eur. Phys. J. C42 (2006) 365, arXiv:hep-th/0407228.
[Nikolic:2006fe]
[46-18]
A relativistically covariant version of Bohm's quantum field theory for the scalar field, George Horton, C Dewdney, J. Phys. A37 (2004) 11935, arXiv:quant-ph/0407089.
[Horton:2004mj]
[46-19]
Relativistic quantum mechanics and the Bohmian interpretation, H. Nikolic, Found. Phys. Lett. 18 (2005) 549, arXiv:quant-ph/0406173.
[Nikolic:2004tu]
[46-20]
The time evolution of the Bohmian Pilot Wave, Miroslaw Kozlowski, Janina Marciak-Kozlowska, arXiv:quant-ph/0406121, 2004.
[quant-ph/0406121]
[46-21]
Bohmian dwell times without trajectories, Sabine Kreidl, arXiv:quant-ph/0406045, 2004.
[quant-ph/0406045]
[46-22]
Are All Particles Identical?, Sheldon Goldstein, James Taylor, Roderich Tumulka, Nino Zanghi, J. Phys. A38 (2005) 1567, arXiv:quant-ph/0405039.
[Goldstein:2004yx]
[46-23]
Are All Particles Real?, Sheldon Goldstein, James Taylor, Roderich Tumulka, Nino Zanghi, Stud. Hist. Philos. Mod. Phys. 36 (2005) 103, arXiv:quant-ph/0404134.
[Goldstein:2004bn]
[46-24]
Understanding Quantum Theory in Terms of Geometry, Fatimah Shojai, Ali Shojai, arXiv:gr-qc/0404102, 2004.
[Shojai:2004ht]
[46-25]
The Statistical Interpretation of Entangled States, B. C. Sanctuary, arXiv:quant-ph/0404011, 2004.
[quant-ph/0404011]
[46-26]
Dynamical Origin of Quantum Probabilities, Antony Valentini, Hans Westman, Proc. Roy. Soc. Lond. A461 (2005) 253-272, arXiv:quant-ph/0403034.
[Valentini:2004yw]
[46-27]
All quantum observables in a hidden-variables model must commute simultaneously, James D. Malley, arXiv:quant-ph/0402126, 2004.
[quant-ph/0402126]
[46-28]
EPR-Bohm experiment and interference of probabilities, Andrei Khrennikov, arXiv:quant-ph/0402068, 2004.
[quant-ph/0402068]
[46-29]
The density matrix in the de Broglie-Bohm approach, O. J. E. Maroney, arXiv:quant-ph/0311149, 2003.
[quant-ph/0311149]
[46-30]
On the Role of Density Matrices in Bohmian Mechanics, Detlef Duerr, Sheldon Goldstein, Roderich Tumulka, Nino Zanghi, arXiv:quant-ph/0311127, 2003.
[quant-ph/0311127]
[46-31]
How can one find nonlocality in Bohmian mechanics?, A. Khrennikov, arXiv:quant-ph/0311108, 2003.
[quant-ph/0311108]
[46-32]
Entanglement and Time, A. Suarez, arXiv:quant-ph/0311004, 2003.
[quant-ph/0311004]
[46-33]
Grandma's local realistic theory for the Greenberger-Horne-Zeilinger experiment, B. L. Lan, arXiv:quant-ph/0310119, 2003.
[quant-ph/0310119]
[46-34]
A Bohmian view on quantum decoherence, A. S. Sanz, F. Borondo, Eur.Phys.J. D44 (2007) 319, arXiv:quant-ph/0310096.
[Sanz:2003wy]
[46-35]
Grandma's local realistic theory for the Einstein-Podolsky-Rosen-Bohm experiment, B. L. Lan, arXiv:quant-ph/0309219, 2003.
[quant-ph/0309219]
[46-36]
Reappraisal of the causal interpretation of quantum mechanics and of the quantum potential concept, R. H. Parmenter, A. L. DiRienzo, arXiv:quant-ph/0305183, 2003.
[quant-ph/0305183]
[46-37]
On compatibility of Bohmian mechanics with standard quantum mechanics, H. Nikolic, arXiv:quant-ph/0305131, 2003.
[Nikolic:2006vj]
[46-38]
About entanglement properties of kaons and tests of hidden variables models, M. Genovese, Phys. Rev. A69 (2004) 022103, arXiv:quant-ph/0305087.
[Genovese:2003dp]
[46-39]
Exclusion of Time in Mermin's Proof of Bell-Type Inequalities, K. Hess, W. Philipp, arXiv:quant-ph/0305037, 2003.
[quant-ph/0305037]
[46-40]
A de Broglie-Bohm Like Model for Dirac Equation, O. Chavoya-Aceves, arXiv:quant-ph/0304195, 2003.
[quant-ph/0304195]
[46-41]
The Innsbruck EPR Experiment: A Time-Retarded Local Description of Space-like Separated Correlations, M. Clover, arXiv:quant-ph/0304115, 2003.
[quant-ph/0304115]
[46-42]
A Bohmian Interpretation for Noncommutative Quantum Field Theory and Quantum Mechanics, G. D. Barbosa, arXiv:hep-th/0304105, 2003.
[DouradoBarbosa:2003wi]
[46-43]
A geometric proof of the Kochen-Specker no-go theorem, R. D. Gill, M. S. Keane, arXiv:quant-ph/0304013, 2003.
[quant-ph/0304013]
[46-44]
Bohmian Mechanics and Quantum Field Theory, D. Duerr, S. Goldstein, R. Tumulka, N. Zanghi, Phys. Rev. Lett. 93 (2004) 090402, arXiv:quant-ph/0303156.
[Durr:2003gu]
[46-45]
Local Hidden Variable Theories for Quantum States, B. M. Terhal, A. C. Doherty, D. Schwab, arXiv:quant-ph/0210053, 2002.
[quant-ph/0210053]
[46-46]
Violation of Bell inequalities for beables, P. Morgan, arXiv:quant-ph/0009087, 2000.
[quant-ph/0009087]
[46-47]
Bohmian Mechanics Revisited, E. Deotto, G. C. Ghirardi, Found. Phys. 28 (1998) 1-30, arXiv:quant-ph/9704021.
[Deotto:1997ci]
[46-48]
On the Impossible Pilot Wave, J. S. Bell, Found. Phys. 12 (1982) 989-999.
[Bell:1982xg]
[46-49]
A Suggested interpretation of the quantum theory in terms of hidden variables. 1, D. Bohm, Phys. Rev. 85 (1952) 166-179.
[Bohm:1952xw]

47 - Theory - Hidden Variables - Talks

[47-1]
Epistemological and Ontological Paraconsistency in Quantum Mechanics: For and Against Bohrian Philosophy, Christian de Ronde, arXiv:1412.6813, 2014.
[1412.6813]
[47-2]
Nonlocality without inequalities, GianCarlo Ghirardi, Luca Marinatto, arXiv:quant-ph/0509194, 2005. ICSSUR'05, Besancon, France, 2-6 May 2005.
[quant-ph/0509194]
[47-3]
Logical Pre- and Post-Selection paradoxes, measurement-disturbance and contextuality, M. S. Leifer, R. W. Spekkens, arXiv:quant-ph/0412179, 2004. Quantum Structures 2004.
[quant-ph/0412179]

48 - Theory - Quantum Computation and Cryptography

[48-1]
Generative Invertible Quantum Neural Networks, Armand Rousselot, Michael Spannowsky, arXiv:2302.12906, 2023.
[Rousselot:2023pcj]
[48-2]
Collective neutrino oscillations on a quantum computer, Kubra Yeter-Aydeniz, Shikha Bangar, George Siopsis, Raphael C. Pooser, Quant. Inf. Proc. 21 (2022) 84, arXiv:2104.03273.
[Yeter-Aydeniz:2021olz]
[48-3]
Simulation of collective neutrino oscillations on a quantum computer, Benjamin Hall, Alessandro Roggero, Alessandro Baroni, Joseph Carlson, Phys. Rev. D 104 (2021) 063009, arXiv:2102.12556.
[Hall:2021rbv]
[48-4]
Simulating Lattice Gauge Theories within Quantum Technologies, M. C. Banuls et al., Eur. Phys. J. D 74 (2020) 165, arXiv:1911.00003.
[Banuls:2019bmf]
[48-5]
Physical limits on information processing, Stephen D.H. Hsu, Phys. Lett. B641 (2006) 99-100, arXiv:hep-th/0607082.
[Hsu:2006hb]
[48-6]
A Study on the basics of Quantum Computing, Prashant, arXiv:quant-ph/0511061, 2005.
[quant-ph/0511061]
[48-7]
Jarlskog's Parametrization of Unitary Matrices and Qudit Theory, Kazuyuki Fujii, Kunio Funahashi, Takayuki Kobayashi, arXiv:quant-ph/0508006, 2005.
[quant-ph/0508006]
[48-8]
Fundamental gravitational limitations to quantum computing, Rodolfo Gambini, Rafael A. Porto, Jorge Pullin, arXiv:quant-ph/0507262, 2005.
[Gambini:2005pq]
[48-9]
Towards Large-Scale Quantum Computation, Austin G. Fowler, arXiv:quant-ph/0506126, 2005.
[quant-ph/0506126]
[48-10]
And what if Bohm was right? The fundamental problem of quantum cryptography and a way to circumvent it, Marek Czachor, Marcin Pawlowski, arXiv:quant-ph/0412212, 2004.
[quant-ph/0412212]
[48-11]
How to build a 300 bit, 1 Gop quantum computer, Andrew M. Steane, arXiv:quant-ph/0412165, 2004.
[quant-ph/0412165]
[48-12]
Limits on Efficient Computation in the Physical World, Scott Aaronson, arXiv:quant-ph/0412143, 2004.
[quant-ph/0412143]
[48-13]
Quantum Information Theory and the Foundations of Quantum Mechanics, Christopher Gordon Timpson, arXiv:quant-ph/0412063, 2004.
[quant-ph/0412063]
[48-14]
Complementarity and Entanglement in Quantum Information Theory, Tracey E. Tessier, arXiv:quant-ph/0412060, 2004.
[quant-ph/0412060]
[48-15]
The Fraunhofer Quantum Computing Portal - www.qc.fraunhofer.de - A web-based Simulator of Quantum Computing Processes, Helge Rose' et al., arXiv:quant-ph/0406089, 2004.
[quant-ph/0406089]
[48-16]
Universal Limits on Computation, Lawrence M. Krauss, Glenn D. Starkman, Phys. Rev. Lett. (2004), arXiv:astro-ph/0404510.
[Krauss:2004jy]
[48-17]
Finiteness of the universe and computation beyond Turing computability, Tien D. Kieu, arXiv:quant-ph/0403045, 2004.
[quant-ph/0403045]
[48-18]
Measurement-Based Quantum Turing Machines and Questions of Universalities, Simon Perdrix, Philippe Jorrand, arXiv:quant-ph/0402156, 2004.
[quant-ph/0402156]
[48-19]
Towards Linear Optical Quantum Computers, Jonathan P. Dowling, James D. Franson, Hwang Lee, Gerald J. Milburn, arXiv:quant-ph/0402090, 2004.
[quant-ph/0402090]
[48-20]
Multilinear Formulas and Skepticism of Quantum Computing, S. Aaronson, arXiv:quant-ph/0311039, 2003.
[quant-ph/0311039]
[48-21]
From Fermat's last theorem to the quantum computer, A.r Yu. Vlasov, arXiv:quant-ph/0307019, 2003.
[quant-ph/0307019]
[48-22]
Quaternionic Computing, J. M. Fernandez, W. A. Schneeberger, arXiv:quant-ph/0307017, 2003.
[quant-ph/0307017]
[48-23]
Remarks on the nature of quantum computation, R. Alicki, arXiv:quant-ph/0306103, 2003.
[quant-ph/0306103]
[48-24]
Vulnerabilities in Quantum Key Distribution Protocols, D. R. Kuhn, arXiv:quant-ph/0305076, 2003.
[quant-ph/0305076]
[48-25]
The Signals and Systems Approach to Quantum Computation, H. Gopalkrishna Gadiyar, K. M. Sangeeta Maini, R. Padma, H.S. Sharatchandra, arXiv:quant-ph/0305073, 2003.
[quant-ph/0305073]
[48-26]
The Semi-Quantum Computer, R. O. Vianna, W. R. M. Rabelo, C. H. Monken, arXiv:quant-ph/0304085, 2003.
[quant-ph/0304085]
[48-27]
Quantum vs classical computation: a proposal opening a new perspective, A. Bassi, G. C. Ghirardi, arXiv:quant-ph/0304074, 2003.
[Bassi:2003zd]
[48-28]
Quantum Simulations of Physics Problems, R. Somma, G. Ortiz, E. Knill, J. Gubernatis, arXiv:quant-ph/0304063, 2003.
[quant-ph/0304063]
[48-29]
Three Paradoxes of Quantum Information, Subhash Kak, arXiv:quant-ph/0304060, 2003.
[quant-ph/0304060]
[48-30]
Quantum Seals, H. Bechmann-Pasquinucci, arXiv:quant-ph/0303173, 2003.
[quant-ph/0303173]
[48-31]
Bell's theorem without inequalities and without alignments, Adan Cabello, arXiv:quant-ph/0303076, 2003.
[quant-ph/0303076]
[48-32]
Direction Cryptography in Quantum Communications, Walter Simmons, Sandip Pakvasa, arXiv:quant-ph/0302186, 2003.
[Simmons:2003wg]
[48-33]
Violation of Bell's inequality: criterion for quantum communication complexity advantage, Caslav Brukner, Marek Zukowski, Jian-Wei Pan, Anton Zeilinger, arXiv:quant-ph/0210114, 2002.
[quant-ph/0210114]
[48-34]
Quantum NP - A Survey, Dorit Aharonov, Tomer Naveh, arXiv:quant-ph/0210077, 2002.
[quant-ph/0210077]
[48-35]
Operation Time of Quantum Gates, Lev B. Levitin, Tommaso Toffoli, Zachary Walton, arXiv:quant-ph/0210076, 2002.
[quant-ph/0210076]
[48-36]
A Quantum Random Walk Search Algorithm, Neil Shenvi, Julia Kempe, K. Birgitta Whaley, arXiv:quant-ph/0210064, 2002.
[quant-ph/0210064]
[48-37]
Uncloneable Encryption, Daniel Gottesman, arXiv:quant-ph/0210062, 2002.
[quant-ph/0210062]
[48-38]
Quantum cloning with continuous variables, Nicolas J. Cerf, arXiv:quant-ph/0210061, 2002.
[quant-ph/0210061]
[48-39]
A single quantum cannot be teleported, Daniele Tommasini, arXiv:quant-ph/0210060, 2002.
[quant-ph/0210060]
[48-40]
Founding Mistrustful Quantum Cryptography on Coin Tossing?, Adrian Kent, arXiv:quant-ph/0111097, 2001.
[quant-ph/0111097]
[48-41]
A quantum computer only needs one universe, A. M. Steane, arXiv:quant-ph/0003084, 2000.
[quant-ph/0003084]

49 - Theory - Quantum Computation and Cryptography - Talks

[49-1]
Quantum Computing, Metrology, and Imaging, Hwang Lee, Pavel Lougovski, Jonathan P. Dowling, arXiv:quant-ph/0506150, 2005. SPIE: Fluctuations and Noise in Photonics and Quantum Optics III (2005).
[quant-ph/0506150]
[49-2]
The Future of Computation, Apoorva Patel, arXiv:quant-ph/0503068, 2005. Workshop on Quantum Information, Computation and Communication (QICC-2005), IIT Kharagpur, India, February 2005.
[quant-ph/0503068]
[49-3]
Does Quantum Mechanics allow for Infinite Parallelism?, Martin Ziegler, arXiv:quant-ph/0410141, 2004. Quantum Structure 2004 (Denver).
[quant-ph/0410141]
[49-4]
Physical-resource demands for scalable quantum computation, Carlton M. Caves, Ivan H. Deutsch, Robin Blume-Kohout, arXiv:quant-ph/0304083, 2003. SPIE Conference on Fluctuations and Noise in Photonics and Quantum Optics, Santa Fe, New Mexico, June 1-4, 2003.
[quant-ph/0304083]

50 - Theory - Berry Phase

[50-1]
A General Setting for Geometric Phase of Mixed States in Arbitrary Evolution, A. T. Rezakhani, P. Zanardi, arXiv:quant-ph/0507280, 2005.
[quant-ph/0507280]

51 - Theory - Wave Packets

[51-1]
On the Theory of Wave Packets, D.V. Naumov, Int.J. Phys.Sci. 7 (2012) 1741-1745, arXiv:1309.1717.
[Shalaby:2012hqh]
[51-2]
On coherence lengths of wave packets II: High energy neutrino, K. Ishikawa, Y. Tobita, arXiv:0911.0575, 2009.
[Ishikawa:2009ka]
[51-3]
On coherence lengths of wave packets, Kenzo Ishikawa, Yutaka Tobita, Phys. Rev. C85 (2012) 014321, arXiv:0906.3938.
[Bertulani:2011uf]
[51-4]
What Time an Incident Wave Packet is Reflected?, Khaled Saaidi, arXiv:quant-ph/0504128, 2005.
[quant-ph/0504128]
[51-5]
Simple examples of position-momentum correlated Gaussian free-particle wavepackets in one-dimension with the general form of the time-dependent spread in position, R. W. Robinett, M. A. Doncheski, L. C. Bassett, arXiv:quant-ph/0502097, 2005.
[quant-ph/0502097]
[51-6]
Non-classical properties of quantum wave packets propagating in a Kerr-like medium, C. Sudheesh, S. Lakshmibala, V. Balakrishnan, arXiv:quant-ph/0502046, 2005.
[quant-ph/0502046]
[51-7]
Spontaneous emission of a photon: wave packet structures and atom-photon entanglement, M.V. Fedorov et al., arXiv:quant-ph/0412107, 2004.
[quant-ph/0412107]
[51-8]
Initial wave packets and the various power-law decreases of scattered wave packets at long times, Manabu Miyamoto, arXiv:quant-ph/0404057, 2004.
[quant-ph/0404057]
[51-9]
Enhanced group velocity in metamaterials, T.G. Mackay, A. Lakhtakia, Nucl. Phys. Proc. Suppl. 128C (2004) 107-116, arXiv:physics/0402037.
[Kennedy:2004tj]
[51-10]
Classical aspects of ultracold atom wavepacket motion through microstructured waveguide bends, M. W. J. Bromley, B. D. Esry, arXiv:physics/0402032, 2004.
[physics/0402032]
[51-11]
Signatures of wave packet revival phenomena in the expectation values of observables, C. Sudheesh, S. Lakshmibala, V. Balakrishnan, arXiv:quant-ph/0401181, 2004.
[quant-ph/0401181]
[51-12]
Applications of the wave packet method to resonant transmission and reflection gratings, Andrei G. Borisov, Sergei V. Shabanov, arXiv:physics/0312103, 2003.
[Bojowald:2003ws]
[51-13]
Comment on 'Direct Measurement of the Longitudinal Coherence Length of a Thermal Neutron Beam', G. Comsa, Phys. Rev. Lett. 51 (1983) 1105.
[Comsa-PRL51-1105-1983]
[51-14]
Direct Measurement of the Longitudinal Coherence Length of a Thermal Neutron Beam, H. Kaiser, S. A. Werner, E. A. George, Phys. Rev. Lett. 50 (1983) 560.
[Kaiser-Werner-George-PRL50-560-1983]
[51-15]
Answer to Comsa's Comment, H. Kaiser, S. A. Werner, E. A. George, Phys. Rev. Lett. 51 (1983) 1106.
[Kaiser-Werner-George-PRL51-1106-1983]
[51-16]
Longitudinal Coherence in neutron Interferometry, A. G. Klein, G. I. Opat, W. A. Hamilton, Phys. Rev. Lett. 50 (1983) 563.
[Klein-Opat-Hamilton-PRL50-563-1983]
[51-17]
The Theory of Correlation Width and Collisional Damping, V.F. Weisskopf, Z. Physik 75 (1932) 287.
[Weisskopf-ZPhysik-75-287-1932]
[51-18]
On the Theory of the Correlation-Width, V.F. Weisskopf, Z. Physik 77 (1932) 398.
[Weisskopf-ZPhysik-77-398-1932]

52 - Theory - Wave Packets - Talks

[52-1]
Heisenberg's Introduction of the `Collapse of the Wavepacket' into Quantum Mechanics, R. Y. Chiao, P. G. Kwiat, arXiv:quant-ph/0201036, 2002. Heisenberg Centennial Symposium, Bamberg, Germany, Sept. 2001.
[quant-ph/0201036]

53 - Theory - Quantum Gravity and Cosmology

[53-1]
Visible Energy Alternative to Dark Energy, Maryam Roushan, Narges Rashidi, Kourosh Nozari, Chin.J.Phys. 77 (2022) 1827, arXiv:2204.07180.
[Roushan:2022abq]
[53-2]
Towards a unitary, renormalizable and ultraviolet-complete quantum theory of gravity, Christian F. Steinwachs, arXiv:2004.07842, 2020.
[Steinwachs:2020jkj]
[53-3]
The Construction Interpretation: a Conceptual Road to Quantum Gravity, Lucien Hardy, arXiv:1807.10980, 2018.
[Hardy:2018kbp]
[53-4]
Why we need to quantise everything, including gravity, Chiara Marletto, Vlatko Vedral, npj Quantum Inf. 3 (2017) 29, arXiv:1703.04325.
[Marletto:2017pjr]
[53-5]
Evolution without evolution and without ambiguities, C. Marletto, V. Vedral, Phys. Rev. D95 (2017) 043510, arXiv:1610.04773.
[Marletto:2016gwv]
[53-6]
Exact Quantum Loop Results in the Theory of General Relativity, B.F.L. Ward, Phys. Dark Universe 2 (2013) 97-109, arXiv:hep-ph/0607198.
[Ward:2010qs]
[53-7]
A lower limit to the scale of an effective theory of gravitation, Robert R. Caldwell, Daniel Grin, Phys. Rev. Lett. 100 (2008) 031301, arXiv:astro-ph/0606133.
[Caldwell:2006gu]
[53-8]
General Relativistic Effects of Gravity in Quantum Mechanics - A Case of Ultra-Relativistic, Spin 1/2 Particles -, Kohkichi Konno, Masumi Kasai, Prog. Theor. Phys. 100 (1998) 1145, arXiv:gr-qc/0603035.
[Konno:1998kq]
[53-9]
Quantum Nature of the Big Bang, Abhay Ashtekar, Tomasz Pawlowski, Parampreet Singh, Phys. Rev. Lett. 96 (2006) 141301, arXiv:gr-qc/0602086.
[Ashtekar:2006rx]
[53-10]
Observational Consequences of Quantum Cosmology, Qing-Guo Huang, Nucl. Phys. B777 (2007) 253-261, arXiv:hep-th/0510219.
[Huang:2005wq]
[53-11]
Beyond partial differential equations: A course on linear and quasi-linear abstract hyperbolic evolution equations, Horst R. Beyer, arXiv:gr-qc/0510097, 2005.
[Beyer:2005ef]
[53-12]
Tommy Gold revisited: Why does not the universe rotate?, George Chapline, Pawel O. Mazur, Aip Conf. Proc. 822 (2006) 160, arXiv:astro-ph/0509230.
[Chapline:2005hm]
[53-13]
A Proposed Test of the Local Causality of Spacetime, Adrian Kent, arXiv:gr-qc/0507045, 2005.
[Kent:2005fq]
[53-14]
A freely falling frame at the interface of gravitational and quantum realms, D. V. Ahluwalia-Khalilova, Class. Quant. Grav. 22 (2005) 1433-1450, arXiv:hep-th/0503141.
[Ahluwalia:2005jn]
[53-15]
The Computational Universe: Quantum gravity from quantum computation, Seth Lloyd, Science (2005), arXiv:quant-ph/0501135.
[Lloyd:2005js]
[53-16]
How does the entropy/information bound work ?, Jacob D. Bekenstein, Found. Phys. 35 (2005) 1805, arXiv:quant-ph/0404042.
[Bekenstein:2004sh]
[53-17]
Fundamental physics in space: A quantum-gravity perspective, Giovanni Amelino-Camelia, Gen. Rel. Grav. 36 (2004) 539-560, arXiv:astro-ph/0309174.
[Amelino-Camelia:2003ont]
[53-18]
Spacetime at the Planck Scale: The Quantum Computer View, Paola Zizzi, arXiv:gr-qc/0304032, 2003.
[Zizzi:2003dq]
[53-19]
Cosmological Perturbations from a New-Physics Hypersurface, V. Bozza, M. Giovannini, G. Veneziano, JCAP 0305 (2003) 001, arXiv:hep-th/0302184.
[Bozza:2003pr]
[53-20]
Experimental Challenges for Quantum Gravity, Robert C. Myers, Maxim Pospelov, Phys. Rev. Lett. 90 (2003) 211601, arXiv:hep-ph/0301124.
[Myers:2003fd]
[53-21]
An exactly soluble sector of quantum gravity, Joy Christian, Phys. Rev. D56 (1997) 4844-4877, arXiv:gr-qc/9701013.
[Christian:1997wj]
[53-22]
Gravitation, the Quantum, and Cosmological Constant, Pawel O. Mazur, Acta Phys. Polon. 27 (1996) 1849, arXiv:hep-th/9603014.
[Mazur:1996xy]

54 - Theory - Quantum Gravity and Cosmology - Talks

[54-1]
Lorentz violation as a quantum-gravity signature, Ralf Lehnert, Int. J. Mod. Phys. A20 (2005) 1303, arXiv:astro-ph/0508625. Coral Gables Conference on Launching of Belle Epoque in High-Energy Physics and Cosmology (CG 2003), Ft. Lauderdale, Florida, 17-21 Dec 2003.
[Lehnert:2005uh]
[54-2]
Dark Energy Stars, G. Chapline, eConf C041213 (2004) 0205, arXiv:astro-ph/0503200. Texas Conference on Relativistic Astrophysics, Stanford, CA, December, 2004.
[Chapline:2004jfp]
[54-3]
Emergent relativity, R. B. Laughlin, Int. J. Mod. Phys. A18 (2003) 831-854, arXiv:gr-qc/0302028.
[Laughlin:2003yh]
[54-4]
Quantum-gravity phenomenology: Status and prospects, Giovanni Amelino-Camelia, Mod. Phys. Lett. A17 (2002) 899-922, arXiv:gr-qc/0204051. 1st IUCAA Workshop on Interface of Gravitational and Quantum Realms, Pune, India, 17-21 Dec 2001.
[Amelino-Camelia:2002aqz]
[54-5]
Superfluid analogies of cosmological phenomena, G. E. Volovik, Phys. Rep. 351 (2001) 195-348, arXiv:gr-qc/0005091.
[Volovik:2000ua]

55 - Theory - Unruh Effect

[55-1]
On the physical meaning of the Unruh effect, Emil T. Akhmedov, Douglas Singleton, Pisma Zh. Eksp. Teor. Fiz. 86 (2007) 702-706, arXiv:0705.2525.
[Akhmedov:2007xu]
[55-2]
On the relation between Unruh and Sokolov-Ternov effects, Emil T. Akhmedov, Douglas Singleton, Int. J. Mod. Phys. A22 (2007) 4797-4823, arXiv:hep-ph/0610391.
[Akhmedov:2006nd]
[55-3]
The Unruh Effect and Quantum Fluctuations of Electrons in Storage Rings, J. S. Bell, J. M. Leinaas, Nucl. Phys. B284 (1987) 488.
[Bell:1986ir]
[55-4]
The Unruh Effect in Extended Thermometers, J. S. Bell, Richard J. Hughes, J. M. Leinaas, Z. Phys. C28 (1985) 75.
[Bell:1984sr]
[55-5]
Notes on black hole evaporation, W. G. Unruh, Phys. Rev. D14 (1976) 870.
[Unruh:1976db]
[55-6]
Scalar particle production in Schwarzschild and Rindler metrics, P. C. W. Davies, J. Phys. A8 (1975) 609-616.
[Davies:1974th]

56 - Theory - Quantum and Classical Physics

[56-1]
Is classical reality completely deterministic?, Boris Kosyakov, Found. Phys. 38 (2008) 76-88, arXiv:hep-th/0702185.
[Kosyakov:2007np]
[56-2]
Classical mechanics without determinism, H. Nikolic, Found. Phys. Lett. 19 (2006) 553-566, arXiv:quant-ph/0505143.
[Nikolic:2005ar]
[56-3]
Quantum mechanics as 'space-time statistical mechanics'?, Anders Mansson, arXiv:quant-ph/0501133, 2005.
[quant-ph/0501133]
[56-4]
Classical Physics revisited: Derivation and explanation of the quantum mechanical superposition principle and Born's rule, Gerhard Groessing, arXiv:quant-ph/0410236, 2004.
[quant-ph/0410236]
[56-5]
The Emergence of Classical Dynamics in a Quantum World, Tanmoy Bhattacharya, Salman Habib, Kurt Jacobs, arXiv:quant-ph/0407096, 2004.
[quant-ph/0407096]
[56-6]
Classical Physics and Quantum Loops, Barry R. Holstein, John F. Donoghue, Phys. Rev. Lett. 93 (2004) 201602, arXiv:hep-th/0405239.
[Holstein:2004dn]
[56-7]
On the notion of phase in mechanics, Maurice de Gosson, arXiv:quant-ph/0404072, 2004.
[quant-ph/0404072]
[56-8]
Does the wavefunction of the universe exist?, Thomas Kruger, arXiv:quant-ph/0404044, 2004.
[quant-ph/0404044]
[56-9]
A Classical Explanation of the Bohm-Aharonov Effect, O. Chavoya-Aceves, arXiv:physics/0404031, 2004.
[physics/0404031]
[56-10]
Zitterbewegung and semiclassical observables for the Dirac equation, Jens Bolte, Rainer Glaser, arXiv:quant-ph/0402154, 2004.
[quant-ph/0402154]
[56-11]
Is Fresnel Optics Quantum Mechanics in Phase Space?, O. Crasser, H. Mack, W. P. Schleich, arXiv:quant-ph/0402115, 2004.
[quant-ph/0402115]
[56-12]
Phase Space Correspondence between Classical Optics and Quantum Mechanics, Daniela Dragoman, arXiv:quant-ph/0402100, 2004.
[quant-ph/0402100]
[56-13]
Inconsistency of quantum-classical dynamics, and what it implies, Daniel R. Terno, Found. Phys. 36 (2006) 102, arXiv:quant-ph/0402092.
[Terno:2004ti]
[56-14]
Classical elementary particles, spin, zitterbewegung and all that, Martin Rivas, arXiv:physics/0312107, 2003.
[Rivas:2003fd]
[56-15]
On the connection between classical and quantum descriptions, I. D. Mandzhavidze, Sov. J. Nucl. Phys. 45 (1987) 442, arXiv:hep-ph/0311196.
[Mandzhavidze:1987yv]
[56-16]
From Classical Hamiltonian Flow to Quantum Theory: Derivation of the Schroedinger Equation, G. Groessing, arXiv:quant-ph/0311109, 2003.
[quant-ph/0311109]
[56-17]
Comparing classical and quantum probability distributions for an asymmetric infinite well, M. A. Doncheski, R. W. Robinett, arXiv:quant-ph/0307014, 2003.
[quant-ph/0307014]
[56-18]
Ensembles and experiments in classical and quantum physics, A. Neumaier, arXiv:quant-ph/0303047, 2003.
[quant-ph/0303047]

57 - Theory - Quantum and Classical Physics - Talks

[57-1]
't Hooft's quantum determinism - path integral viewpoint, Massimo Blasone, Petr Jizba, Hagen Kleinert, arXiv:quant-ph/0504047, 2005. Second International Workshop DICE2004, From Decoherence and Emergent Classicality to Emergent Quantum Mechanics Piombino (Tuscany), September 1-4, 2004.
[quant-ph/0504047]
[57-2]
Classical Extensions, Classical Representations and Bayesian Updating in Quantum Mechanics, Guido Bacciagaluppi, arXiv:quant-ph/0403055, 2004. 'Quantum Theory: Reconsideration of Foundations - 2', Vaexjoe, Sweden, June 2003.
[quant-ph/0403055]

58 - Theory - Extensions

[58-1]
Algorithmic approach to quantum physics, Yuri Ozhigov, arXiv:quant-ph/0412196, 2004.
[quant-ph/0412196]
[58-2]
On the Origin of Conceptual Difficulties of Quantum Mechanics, Volodymyr Krasnoholovets, Commun.Theor.Phys. 42 (2004) 664-668, arXiv:physics/0412122.
[Mohadesi:2004xa]
[58-3]
A New Approach to Quantising Space-Time: II. Quantising on a Category of Sets, C.J. Isham, Adv. Theor. Math. Phys. 7 (2004) 807, arXiv:gr-qc/0304077.
[Isham:2003kw]
[58-4]
Remarks on Mohrhoff's Interpretation of Quantum Mechanics, Louis Marchildon, arXiv:quant-ph/0303170, 2003.
[quant-ph/0303170]
[58-5]
Embedding QM into an objective framework, Claudio Garola, arXiv:quant-ph/0303017, 2003.
[quant-ph/0303017]
[58-6]
How to Complete the Quantum-Mechanical Description?, Timur F. Kamalov, arXiv:quant-ph/0212139, 2002.
[quant-ph/0212139]
[58-7]
Extending Heisenberg's measurement-disturbance relation to the twin-slit case, H.M. Wiseman, arXiv:quant-ph/0210065, 2002.
[quant-ph/0210065]
[58-8]
Can Quantum Mechanics be Cleared from Conceptual Difficulties?, Volodymyr Krasnoholovets, arXiv:quant-ph/0210050, 2002. 13 pages; report written for Wigner Centennial Conference (Pecs, Hungary, July, 2002).
[quant-ph/0210050]
[58-9]
The Heisenberg uncertainty relation: Limitation and reformulation, Masanao Ozawa, arXiv:quant-ph/0210044, 2002.
[quant-ph/0210044]
[58-10]
Extension of Quantum Mechanics to Individual Systems, James Ax, Simon Kochen, arXiv:quant-ph/9905077, 1999.
[Ax:1999yq]

59 - Phenomenology

[59-1]
Violation of LGtI inequalities in the light of NO$\nu$A and T2K anomaly, Lekhashri Konwar, Juhi Vardani, Bhavna Yadav, arXiv:2401.02886, 2024.
[Konwar:2024nwc]
[59-2]
Evaluation of the Leggett-Garg inequality by means of the neutrino oscillations observed in reactor and accelerator experiments, Ricardo Zamora Barrios, Mario A. Acero, arXiv:2401.00240, 2024.
[Barrios:2023yub]
[59-3]
New Test of Neutrino Oscillation Coherence with Leggett-Garg Inequality, Xing-Zhi Wang, Bo-Qiang Ma, Eur.Phys.J.C 82 (2022) 133, arXiv:2201.10597.
[Wang:2022tnr]
[59-4]
Neutrino Oscillations at JUNO, the Born Rule, and Sorkin's Triple Path Interference, Patrick Huber, Hisakazu Minakata, Djordje Minic, Rebekah Pestes, Tatsu Takeuchi, Phys.Rev.D 105 (2022) 115013, arXiv:2105.14061.
[Huber:2021xpx]
[59-5]
Quantum coherence to interstellar distances, Arjun Berera, Phys.Rev. D102 (2020) 063005, arXiv:2009.00356.
[Berera:2020rpl]
[59-6]
Quantifying Quantum Coherence in Experimentally-Observed Neutrino Oscillations, Xue-Ke Song, Yanqi Huang, Jiajie Ling, Man-Hong Yung, Phys.Rev. A98 (2018) 050302, arXiv:1806.00715.
[Song:2018bma]
[59-7]
Violation of the Leggett-Garg Inequality in Neutrino Oscillations, J. A. Formaggio, D. I. Kaiser, M. M. Murskyj, T. E. Weiss, Phys. Rev. Lett. 117 (2016) 050402, arXiv:1602.00041.
[Formaggio:2016cuh]
[59-8]
Inconstant Planck's constant, Gianpiero Mangano, Fedele Lizzi, Alberto Porzio, Int. J. Mod. Phys. A30 (2015) 1550209, arXiv:1509.02107.
[Mangano:2015pha]
[59-9]
Experimental Tests of the Projection Postulate, Edward J. Gillis, arXiv:1501.03198, 2015.
[1501.03198]
[59-10]
Quantum interference of particles and resonances, Ya. Azimov, J. Phys. G37 (2010) 023001, arXiv:0904.1376.
[Azimov:2009ta]
[59-11]
Quantum Entanglement of Neutrino Pairs, Junli Li, Cong-Feng Qiao, arXiv:0708.0291, 2007.
[Li:2007bm]
[59-12]
Astrophysical and Cosmological Tests of Quantum Theory, Antony Valentini, J. Phys. A40 (2007) 3285-3303, arXiv:hep-th/0610032.
[Valentini:2006yj]
[59-13]
Interference in Time: A Comment, Lawrence P. Horwitz, arXiv:quant-ph/0507044, 2005.
[quant-ph/0507044]
[59-14]
Testing QM : the Uncertainty Principle, Jiri Soucek, arXiv:quant-ph/0404094, 2004.
[quant-ph/0404094]
[59-15]
Detector Efficiency Limits on Quantum Improvement, Deborah J. Jackson, George M. Hockney, arXiv:quant-ph/0402201, 2004.
[quant-ph/0402201]
[59-16]
Quantitative duality and neutral kaon interferometry in CPLEAR experiments, A. Bramon, G. Garbarino, B.C. Hiesmayr, Eur. Phys. J. C32 (2004) 377, arXiv:hep-ph/0307047.
[Bramon:2003xj]
[59-17]
Quantum marking and quantum erasure for neutral kaons, A. Bramon, G. Garbarino, B. Hiesmayr, Phys. Rev. Lett. 92 (2004) 020405, arXiv:quant-ph/0306114.
[Bramon:2003bj]
[59-18]
Speed-up through entanglement - many-body effects in neutrino processes, Nicole F. Bell, Andrew A. Rawlinson, R. F. Sawyer, Phys. Lett. B573 (2003) 86, arXiv:hep-ph/0304082.
[Bell:2003mg]
[59-19]
Decoherence, fluctuations and Wigner function in neutron optics, P. Facchi, A. Mariano, S. Pascazio, M. Suda, arXiv:quant-ph/0210088, 2002.
[quant-ph/0210088]
[59-20]
Multibarrier tunneling, S. Esposito, Phys. Rev. E67 (2003) 016609, arXiv:quant-ph/0209018.
[Esposito:2002jk]

60 - Phenomenology - Talks

[60-1]
Using Neutrinos to test the Time-Energy Uncertainty Relation in an Extreme Regime, Ramaswamy S. Raghavan, Djordje Minic, Tatsu Takeuchi, Chia Hsiung Tze, arXiv:1210.5639, 2012. Virginia Tech Symposium on the Life and Science of Dr. Raju Raghavan.
[Raghavan:2012sy]
[60-2]
CPT and Quantum Mechanics Tests with Kaons: Theory, Nick E. Mavromatos, Nucl. Phys. Proc. Suppl. 167 (2007) 43-46, arXiv:hep-ph/0607320. BEACH2006 Conference (Lancaster Univ., UK, July 2-8 2006).
[Mavromatos:2006sr]
[60-3]
Is the concept of quantum probability consistent with Lorentz covariance?, Y. S. Kim, Marilyn E. Noz, arXiv:quant-ph/0301155, 2003. Second International Conference on Foundations of Probability in Physics (Vaxjo, Sweden, June 2002).
[Kim:2003tx]

61 - Phenomenology - Decay Law

[61-1]
Configuration mixing in particle decay and reaction, Elsayed K. Elmaghraby, Prog.Phys. 13 (2017) 150, arXiv:2204.11121.
[Elmaghraby:2017rar]
[61-2]
Neutrino-Flux Variability, Nuclear-Decay Variability, and Their Apparent Relationship, Peter A. Sturrock, Space Sci.Rev. 218 (2022) 23, arXiv:2203.05069.
[Sturrock:2022dgy]
[61-3]
Role of ambient humidity underestimated in research on correlation between radioactive decay rates and space weather, Stefaan Pomme, Krzysztof Pelczar, Sci. Rep. 12 (2022) 2527, arXiv:2108.00116.
[Pomme:2021xbw]
[61-4]
On the interpretation of annual oscillations in $^{32}$Si and $^{36}$Cl decay rate measurements, S. Pomme, K. Pelczar, K. Kossert, I. Kajan, Sci. Rep. 11 (2021) 16002.
[Pomme:2021frg]
[61-5]
Generalized Lomb-Scargle analysis of ${^{123}\mathrm{I}}$ and ${^{99\mathrm{m}}\mathrm{Tc}}$ decay rate measurements, Gautham Gururajan, Shantanu Desai, Eur. Phys. J. C 80 (2020) 1071, arXiv:2009.12906.
[Gururajan:2020iqs]
[61-6]
On the recent claim of correlation between radioactive decay rates and space weather, S. Pomme, K. Pelczar, Eur. Phys. J. C 80 (2020) 1093.
[Pomme:2020veo]
[61-7]
Generalized Lomb-Scargle analysis of $\rm{^{36}Cl}$ decay rate measurements at PTB and BNL, Akanksha Dhaygude, Shantanu Desai, Eur.Phys.J. C80 (2020) 96, arXiv:1912.06970.
[Dhaygude:2019hka]
[61-8]
An Oscillation Evident in Both Solar Neutrino Data and Radon Decay Data, P.A. Sturrock, E. Fischbach, O. Piatibratova, G. Steinitz, F. Scholkmann, arXiv:1907.11749, 2019.
[Sturrock:2019vzu]
[61-9]
Solar influence on radon decay rates: irradiance or neutrinos?, S. Pomme, Eur. Phys. J. C 79 (2019) 73.
[Pomme:2019mhq]
[61-10]
A reply to the rebuttal by Sturrock et al., S. Pomme, G. Lutter, M. Marouli, K. Kossert, O. Nahle, Astropart. Phys. 107 (2019) 22-25.
[Pomme:2019vvl]
[61-11]
Non-dependence of nuclear decay rates of 123 I and 99 m Tc on Earth-Sun distance, Joseph A. Borrello, Alan Wuosmaa, Mark Watts, Appl. Radiat. Isot. 132 (2018) 189-194.
[Borrello:2018fky]
[61-12]
Is decay constant?, S. Pomme et al., Appl. Radiat. Isot. 134 (2018) 6-12.
[Pomme:2018vgo]
[61-13]
On the claim of modulations in radon decay and their association with solar rotation, S. Pomme, G. Lutter, M. Marouli, K. Kossert, O. Nahle, Astropart. Phys. 97 (2018) 38-45.
[Pomme:2018vve]
[61-14]
Comparative analyses of 90Sr/90Y90 decay measurements at the Physikalisch-Technische Bundesanstalt and 222Rn decay measurements at the Geological Survey of Israel. Evidence of a solar influence, Peter Sturrock, Gideon Steinitz, Ephraim Fischbach, Alexander Parkhomov, Jeffrey Scargle, Astropart.Phys. 84 (2016) 8-14, arXiv:1605.03088.
[Sturrock:2016kry]
[61-15]
Comparative Analysis of Brookhaven National Laboratory Nuclear Decay Data and Super-Kamiokande Neutrino Data: Indication of a Solar Connection, P.A. Sturrock, E. Fischbach, arXiv:1511.08770, 2015.
[Sturrock:2015ivo]
[61-16]
Concerning the variability of beta-decay measurements, P.A. Sturrock, E. Fischbach, A. Parkhomov, J.D. Scargle, G. Steinitz, arXiv:1510.05996, 2015.
[Sturrock:2015wqa]
[61-17]
Properties of decaying relativistic particles: 'GSI anomaly' like effects, K. Urbanowski, Acta Phys.Polon. B48 (2017) 1411, arXiv:1506.05076.
[Urbanowski:2014tya]
[61-18]
Comment on 'Comparative study of beta-decay data for eight nuclides measured at the Physikalisch-Technische Bundesanstalt' [Astropart. Phys. 59 (2014) 47-58], Ole Nahle, Karsten Kossert, Astropart.Phys. 66 (2015) 8-10, arXiv:1408.5219.
[Nahle:2014eua]
[61-19]
Analysis of Beta-Decay Rates for $^{108}$Ag, $^{133}$Ba, $^{152}$Eu, $^{154}$Eu, $^{85}$Kr, $^{226}$Ra and $^{90}$Sr, Measured at the Physikalisch-Technische Bundesanstalt from 1990 to 1996, Peter A. Sturrock, Ephraim Fischbach, Jere Jenkins, Astrophys.J. 794 (2014) 42, arXiv:1408.3090.
[Sturrock:2014caa]
[61-20]
Comparative study of beta-decay data for eight nuclides measured at the Physikalisch-Technische Bundesanstalt, P.A. Sturrock, E. Fischbach, D. Javorsek, J.H. Jenkins, R.H. Lee et al., Astropart.Phys. 59 (2014) 47-58.
[Sturrock:2014oya]
[61-21]
Power spectrum analyses of nuclear decay rates, D. Javorsek II et al., Astroparticle Physics 34 (2010) 173 - 178.
[JavorsekII2010173]
[61-22]
Analysis of environmental influences in nuclear half-life measurements exhibiting time-dependent decay rates, Jere H. Jenkins, Daniel W. Mundy, Ephraim Fischbach, Nucl.Instrum.Meth. A620 (2010) 332 - 342.
[Jenkins2010332]
[61-23]
Evidence for Correlations Between Nuclear Decay Rates and Earth-Sun Distance, Jere H. Jenkins, Ephraim Fischbach, John B. Buncher, John T. Gruenwald, Dennis E. Krause et al., Astropart.Phys. 32 (2009) 42-46, arXiv:0808.3283.
[Jenkins:2008vn]
[61-24]
Hidden evidence of non-exponential nuclear decay, N. G. Kelkar, M. Nowakowski, K. P. Khemchandani, Phys. Rev. C70 (2004) 024601, arXiv:nucl-th/0405043.
[Kelkar:2004zz]
[61-25]
Testing the Weisskopf-Wigner approximation by using neutral meson anti-meson correlated states, G. V. Dass, W. Grimus, Phys. Lett. B521 (2001) 267-272, arXiv:hep-ph/0109049.
[Dass:2001yx]

62 - Phenomenology - Decay Law - Talks

[62-1]
Is there a signal for Lorentz non-invariance in existing radioactive decay data?, M. J. Mueterthies, D. E. Krause, A. Longman, V. E. Barnes, E. Fischbach, arXiv:1607.03541, 2016. Seventh Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, June 20-24, 2016.
[Mueterthies:2016hlg]
[62-2]
Evidence for Solar Influences on Nuclear Decay Rates, Ephraim Fischbach et al., arXiv:1007.3318, 2010. Fifth Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, June 28-July 2, 2010.
[Fischbach:2010ct]

63 - Phenomenology - GSI Anomaly

[63-1]
Non-exponential and oscillatory decays in quantum mechanics, Murray Peshkin, Alexander Volya, Vladimir Zelevinsky, EPL 107 (2014) 40001, arXiv:1703.05238.
[Peshkin:2014jdw]
[63-2]
Neutrino oscillations and electron-capture storage-ring experiments, Walter Potzel, arXiv:1412.7328, 2014.
[Potzel:2014tma]
[63-3]
Neutrino signals in electron-capture storage-ring experiments, Avraham Gal, Symmetry 8 (2016) 49, arXiv:1407.1789.
[Gal:2014zqa]
[63-4]
GSI Oscillations as Interference of Neutrino Flavour Mass-Eigenstates and Measuring Process, A. N. Ivanov, P. Kienle, arXiv:1406.2450, 2014.
[Ivanov:2014dca]
[63-5]
Oscillating Decay Rate in Electron Capture and the Neutrino Mass Difference, Murray Peshkin, Phys. Rev. C 91 (2015) 042501, arXiv:1403.4292.
[Peshkin:2014ina]
[63-6]
GSI Oscillations as Laboratory for Testing of New Physics, A. N. Ivanov, P. Kienle, arXiv:1312.5206, 2013.
[Ivanov:2013isa]
[63-7]
GSI anomaly and spin-rotation coupling, G. Lambiase, G. Papini, G. Scarpetta, Phys. Lett. B718 (2013) 998-1001, arXiv:1205.0684.
[Lambiase:2012yi]
[63-8]
Oscillations in the decay law: A possible quantum mechanical explanation of the anomaly in the experiment at the GSI facility, Francesco Giacosa, Giuseppe Pagliara, Quant. Matt. 2 (2013) 54-59, arXiv:1110.1669.
[Giacosa:2011cg]
[63-9]
Time Modulation of K-Shell Electron Capture Decay Rates of H-Like Heavy Ions and Neutrino Masses, R. Hoellwieser, A. N. Ivanov, P. Kienle, M. Pitschmann, arXiv:1102.2519, 2011.
[Hollwieser:2011nut]
[63-10]
Is the GSI anomaly due to neutrino oscillations? - A real time perspective -, Jun Wu, Jimmy Hutasoit, Daniel Boyanovsky, Richard Holman, Phys. Rev. D82 (2010) 045027, arXiv:1006.5732.
[Wu:2010ke]
[63-11]
Neutrino magnetic moment effects in electron-capture measurements at GSI, Avraham Gal, Nucl. Phys. A842 (2010) 102-112, arXiv:1004.4098.
[Gal:2008fgf]
[63-12]
Quantum-Mechanics of $\nu$ and GSI oscillations for pedestrians : Relativistic quantum field theory is useless, Harry J. Lipkin, arXiv:1003.4023, 2010.
[Lipkin:2010qd]
[63-13]
Theoretical Analysis Supports Darmstadt Oscillations Crucial Roles of Wave Function Collapse and Dicke Superradiance, Harry J. Lipkin, arXiv:0910.5049, 2009.
[Lipkin:2009ge]
[63-14]
Time Modulation of Orbital Electron Capture Decays of H-like Heavy Ions, A. N. Ivanov, P. Kienle, arXiv:0909.1287, 2009.
[Ivanov:2009ku]
[63-15]
Reply on "Comments on 'Time modulation of the K-shell electron capture decay rates of H-like heavy ions at GSI experiments'", A. N. Ivanov, P. Kienle, Phys. Rev. Lett. 104 (2010) 159202, arXiv:0909.1285.
[Ivanov:2009kt]
[63-16]
Comment on `Time modulation of the K-shell electron capture decay rates of H-like heavy ions at GSI experiments', V.V. Flambaum, Phys. Rev. Lett. 104 (2010) 159201, arXiv:0908.2039.
[Flambaum:2009di]
[63-17]
Why a splitting in the final state cannot explain the GSI-Oscillations, Alexander Merle, Phys. Rev. C80 (2009) 054616, arXiv:0907.3554.
[Merle:2009re]
[63-18]
Can Hyperfine Excitation explain the Observed Oscillation- Puzzle of Nuclear Orbital Electron Capture of Hydrogen-like Ions?, Nicolas Winckler et al., Phys. Rev. C84 (2011) 014301, arXiv:0907.2277.
[Winckler:2009jm]
[63-19]
Comment on 'Spin-rotation coupling in non-exponential decay of hydrogenlike heavy ions' by G. Lambiase et al, Thomas Faestermann, arXiv:0907.1557, 2009.
[Faestermann:2009tj]
[63-20]
On the possible mixing of the electron capture and the positron emission channels in nuclear decay, V. I. Isakov, arXiv:0906.4219, 2009.
[Isakov:2009yr]
[63-21]
On the influence of the magnetic field of the GSI experimental storage ring on the time-modulation of the EC- decay rates of the H-like mother ions, M. Faber, A. N. Ivanov, P. Kienle, M. Pitschmann, N. I. Troitskaya, J. Phys.G 37 (2010) 015102, arXiv:0906.3617.
[Faber:2009mg]
[63-22]
Theory of neutrino oscillations using condensed matter physics Including production process and energy-time uncertainty, Harry J. Lipkin, arXiv:0905.1216, 2009.
[Lipkin:2009zy]
[63-23]
Comment on 'The GSI method for studying neutrino mass differences - For Pedestrians', Murray Peshkin, arXiv:0811.1765, 2008.
[Peshkin:2008qz]
[63-24]
Can the 'Darmstadt oscillations' be treated as two closely spaced mass-eigenstates of the H-like mother ions ?, M. Faber et al., arXiv:0811.0922, 2008.
[Faber:2008yb]
[63-25]
Hyperfine Level Splitting for Hydrogen-Like Ions due to Rotation-Spin Coupling, Igor M. Pavlichenkov, Europhys. Lett. 85 (2009) 40008, arXiv:0810.2898.
[Pavlichenkov:2008tm]
[63-26]
Comment on 'A neutrino's wobble?', Carlo Giunti, arXiv:0807.3818, 2008.
[Giunti:2008eb]
[63-27]
Comments on 'Rates of processes with coherent production of different particles and the GSI time anomaly'by C. Giunti, Phys. Lett. B 665, 92 (2008), 0805.0431, A. N. Ivanov, E. L. Kryshen, M. Pitschmann, P. Kienle, arXiv:0807.2750, 2008.
[Ivanov:2008zn]
[63-28]
Comment on the paper 'Search for oscillation of the electron-capture decay probability of $^{142}$Pm' at arXiv:0807.0649v1, Yu. A. Litvinov et al., arXiv:0807.2308, 2008.
[Litvinov:2008hf]
[63-29]
On the Time-Modulation of the $\beta^+$-Decay Rate of H-like ${^{140}}{\rm Pr}^{58+}$ Ion, A. N. Ivanov, E. L. Kryshen, M. Pitschmann, P. Kienle, Phys. Rev. Lett. 101 (2008) 182501, arXiv:0806.2543.
[Ivanov:2008ig]
[63-30]
Rates of Processes with Coherent Production of Different Particles and the GSI Time Anomaly, Carlo Giunti, Phys.Lett. B665 (2008) 92-94, arXiv:0805.0431.
[Giunti:2008im]
[63-31]
Comment on 'New method for studying neutrino mixing and mass differences', Murray Peshkin, arXiv:0804.4891, 2008.
[Peshkin:2008vk]
[63-32]
Neutrino masses from the Darmstadt oscillations, A. N. Ivanov, E. L. Kryshen, M. Pitschmann, P. Kienle, arXiv:0804.1311, 2008.
[Ivanov:2008nb]
[63-33]
Oscillations in the GSI electron capture experiment, H. Burkhardt, J. Lowe, G. J. Stephenson, Jr., T. Goldman, Bruce H. J. McKellar, arXiv:0804.1099, 2008.
[Burkhardt:2008ek]
[63-34]
Neutrino-Pulsating Vacuum and Neutrino Mass Difference, H. Kleinert, P. Kienle, Electron. J. Theor. Phys. 6 (2009) 107, arXiv:0803.2938.
[Kleinert:2008ps]
[63-35]
Reply on 'Comment on neutrino-mixing interpretation of the GSI time anomaly' by C. Giunti, arXiv:0801.4639 [nucl-th], A. N. Ivanov, R. Reda, P. Kienle, arXiv:0803.1289, 2008.
[Ivanov:2008xw]
[63-36]
Unitarity Constraint upon Kinematical Analyses of the GSI Time-Modulated Radioactive Decay Experiment, Murray Peshkin, arXiv:0803.0935, 2008.
[Peshkin:2008qj]
[63-37]
Comment on the Neutrino-Mixing Interpretation of the GSI Time Anomaly, Carlo Giunti, arXiv:0801.4639, 2008.
[Giunti:2008ex]
[63-38]
Kinematics and Quantum Field Theory of the Neutrino Oscillations Observed in the Time-modulated Orbital Electron Capture Decay in an Ion Storage Ring, Manfried Faber, arXiv:0801.3262, 2008.
[Faber:2008tu]
[63-39]
On the time-modulation of the K-shell electron capture decay of H-like ${^{140}}{\rm Pr}^{58+}$ ions produced by neutrino-flavour mixing, A. N. Ivanov, R. Reda, P. Kienle, arXiv:0801.2121, 2008.
[Ivanov:2008sd]

64 - Phenomenology - GSI Anomaly - Talks

[64-1]
Neutrino signals in GSI two-body EC rates, Avraham Gal, Symmetry 8 (2016) 49, arXiv:1407.1789. EMMI-RRTF Workshop, Jena/Dornburg, July 6-9 2014.
[Gal:2014zqa]
[64-2]
(Oscillating) non-exponential decays of unstable states, Francesco Giacosa, Giuseppe Pagliara, PoS BORMIO2012 (2012) 028, arXiv:1204.1896. 50th International Winter Meeting on Nuclear Physics, 23-27 January 2012, Bormio, Italy.
[Giacosa:2012yd]
[64-3]
The GSI oscillation mystery, Alexander Merle, Prog. Part. Nucl. Phys. 64 (2010) 445-447, arXiv:1004.2347. International School of Nuclear Physics, 31st Course, Neutrinos in Cosmology, in Astro-, Particle- and Nuclear Physics, Erice, Italy, 16 - 24 September 2009.
[Merle:2010qq]
[64-4]
The GSI Time Anomaly: Facts and Fiction, Carlo Giunti, Il Nuovo Cimento 32 (2009) 83-90, arXiv:0905.4620. La Thuile 2009, 1-7 March 2009, La Thuile, Italy.
[Giunti:2009ds]
[64-5]
The GSI Time Anomaly: Facts and Fiction, C. Giunti, 2009. 14th Lomonosov Conference on Elementary Particle Physics 19-25 August 2009, Moscow State University, Moscow, Russia. http://personalpages.to.infn.it/~giunti/slides/2009/giunti-090820-lomonosov-moscow.pdf.
[giunti-090820-lomonosov-moscow]
[64-6]
The GSI Time Anomaly: Facts and Fiction, Carlo Giunti, Nucl. Phys. Proc. Suppl. 188 (2009) 43-45, arXiv:0812.1887. NOW 2008, 6-13 September 2008, Conca Specchiulla, Italy.
[Giunti:2008db]
[64-7]
The GSI anomaly, Hendrik Kienert, Joachim Kopp, Manfred Lindner, Alexander Merle, J. Phys. Conf. Ser. 136 (2008) 022049, arXiv:0808.2389. Neutrino 2008. http://www2.phys.canterbury.ac.nz/~jaa53/abstract/gsi-poster-a4.pdf.
[Kienert:2008nz]
[64-8]
A critical view of the GSI anomaly, C. Giunti, 2008. NPNAP2008, 16-21 November 2008, ECT', Trento, Italy. http://www.uni-tuebingen.de/ilias-dbd/Trento08/src/talks/2ndDAY/giunti-2008-ect.pdf.
[Giunti-2008-ECT]
[64-9]
The GSI Time Anomaly: Facts and Fiction, C. Giunti, 2008. NOW 2008, 6-13 September 2008, Conca Specchiulla, Italy. http://www.ba.infn.it/%7enow/now2008/now2008talks/1SUNDAY/1PARALLEL/giunti.pdf.
[Giunti-2008-NOW]
[64-10]
Can the GSI Time Anomaly be due to Neutrino Mixing?, C. Giunti, 2008. PMN08, Symposion on 'Physics of Massive Neutrinos', 20-22 May 2008, Milos Island, Greece. http://www.uni-tuebingen.de/ilias-dbd/PMN08/src/Melos-Talks/giunti-2008-milos.pdf.
[Giunti-2008-PMN]
[64-11]
Can the GSI Time Anomaly be due to Neutrino Mixing?, C. Giunti, 2008. Tubingen, 24 April 2008. http://personalpages.to.infn.it/~giunti/slides/2008/giunti-2008-tubingen-gsi.pdf.
[Giunti-2008-Tubingen-GSI]
[64-12]
Darmstadt oscillations and time dependence of the positron decay rate of the H-like heavy ion and the physics of heavy neutrinos, A. Ivanov, 2008. NPNAP2008, 16-21 November 2008, ECT', Trento, Italy. http://www.uni-tuebingen.de/ilias-dbd/Trento08/src/talks/2ndDAY/IvanovTrento08.pdf.
[Ivanov-2008-ECT]
[64-13]
Massive neutrinos and Darmstadt oscillations, A. Ivanov, 2008. PMN08, Symposion on 'Physics of Massive Neutrinos', 20-22 May 2008, Milos Island, Greece. http://www.uni-tuebingen.de/ilias-dbd/PMN08/src/Melos-Talks/Ivanov_milos08.pdf.
[Ivanov-2008-PMN]
[64-14]
Time Modulation of the Electron Capture Decay due to Neutrino Mixing, P. Kienle, 2008. PMN08, Symposion on 'Physics of Massive Neutrinos', 20-22 May 2008, Milos Island, Greece. http://www.uni-tuebingen.de/ilias-dbd/PMN08/src/Melos-Talks/Kienle.pdf.
[Kienle-2008-PMN]
[64-15]
Time-Modulation of Orbital Electron Capture Decays by Mixing of Massive Neutrinos, Paul Kienle, 2008. PANIC08, 9-14 November 2008, Eilat, Israel. http://www.weizmann.ac.il/MaKaC/contributionDisplay.py?contribId=357&sessionId=70&confId=0.
[Kienle-PANIC08]
[64-16]
A novel type of neutrino oscillation, H.J. Lipkin, 2008. CERN, 25 June 2008. http://indico.cern.ch/conferenceDisplay.py?confId=32006.
[Lipkin-2008-CERN]
[64-17]
The GSI anomaly, A. Merle, 2008. NPNAP2008, 16-21 November 2008, ECT', Trento, Italy. http://www.uni-tuebingen.de/ilias-dbd/Trento08/src/talks/2ndDAY/Merle_Trento.ppt.
[Merle-2008-ECT]
[64-18]
The GSI Time Anomaly: Facts and Fiction, C. Giunti, 2008. La Thuile 2009, Les Rencontres de Physique de La Vallee d'Aoste, 1-7 March 2009, La Thuile, Aosta Valley, Italy. http://personalpages.to.infn.it/~giunti/slides/2009/giunti-090303-lathuile.pdf.
[giunti-090303-lathuile]
[64-19]
The GSI Time Anomaly: Facts and Fiction, C. Giunti, 2008. IFIC, Valencia, 3 December 2008. http://www.nu.to.infn.it/pap/2008/giunti-081203-ific.pdf.
[giunti-2008-ific]

65 - Phenomenology - Entanglement

[65-1]
NSI effects on tripartite entanglement in neutrino oscillations, Lekhashri Konwar, Bhavna Yadav, arXiv:2402.09952, 2024.
[Konwar:2024nrd]
[65-2]
The EPR paradox and quantum entanglement at sub-nucleonic scales, Zhoudunming Tu, Dmitri Kharzeev, Thomas Ullrich, Phys.Rev.Lett. 124 (2020) 062001, arXiv:1904.11974.
[Tu:2019ouv]
[65-3]
Testing Violation of the Leggett-Garg Inequality in Neutrino Oscillations of Daya Bay Experiment, Qiang Fu, Xurong Chen, Eur.Phys.J. C77 (2017) 775, arXiv:1705.08601.
[Fu:2017hky]
[65-4]
Testing Bell's Inequality with Cosmic Photons: Closing the Setting-Independence Loophole, Jason Gallicchio, Andrew S. Friedman, David I. Kaiser, Phys. Rev. Lett. 112 (2014) 110405, arXiv:1310.3288.
[Gallicchio:2013iva]
[65-5]
Testing the Bell Inequality at Experiments of High Energy Physics, Xi-Qing Hao, Hong-Wei Ke, Yi-Bing Ding, Peng-Nian Shen, Xue-Qian Li, Chin. Phys. C (HEP $\text{\&}$ NP) 34 (2010) 311-318, arXiv:0904.1000.
[Hao:2009kj]
[65-6]
Comments on 'An experimental test of non-local realism' by S. Groeblacher, T. Paterek, R. Kaltenbaek, C. Brukner, M. Zukowski, M. Aspelmeyer, and A. Zeilinger, Nature 446 (2007), 871-875, Stephen Parrott, arXiv:0707.3296, 2007.
[0707.3296]
[65-7]
Bell Inequalities in High Energy Physics, Yi-Bing Ding, Junli Li, Cong-Feng Qiao, arXiv:hep-ph/0702271, 2007.
[Ding:2007mk]
[65-8]
Bell inequality with an arbitrary number of settings and its applications, Koji Nagata, Wieslaw Laskowski, Tomasz Paterek, arXiv:quant-ph/0601107, 2006.
[quant-ph/0601107]

66 - Phenomenology - Quantum Gravity and Cosmology

[66-1]
Neutrinos as possible probes for quantum gravity, Marco Danilo Claudio Torri, Lino Miramonti, arXiv:2404.04076, 2024.
[Torri:2024jwc]
[66-2]
An entanglement-based test of quantum gravity using two massive particles, Chiara Marletto, Vlatko Vedral, Phys.Rev.Lett. 119 (2017) 240402, arXiv:1707.06036.
[Marletto:2017kzi]
[66-3]
Prospects for constraining quantum gravity dispersion with near term observations, Giovanni Amelino-Camelia, Lee Smolin, Phys. Rev. D80 (2009) 084017, arXiv:0906.3731.
[Amelino-Camelia:2009imt]
[66-4]
Gamma Ray Burst Neutrinos Probing Quantum Gravity, M.C. Gonzalez-Garcia, F. Halzen, JCAP 0702 (2007) 008, arXiv:hep-ph/0611359.
[Gonzalez-Garcia:2006koj]

67 - Phenomenology - Quantum Gravity and Cosmology - Talks

[67-1]
Exploration of Possible Quantum Gravity Effects with Neutrinos I: Decoherence in Neutrino Oscillations Experiments, Alexander Sakharov, Nick Mavromatos, Anselmo Meregaglia, Andre Rubbia, Sarben Sarkar, J. Phys. Conf. Ser. 171 (2009) 012038, arXiv:0903.4985. DISCRETE'08, Valencia, Spain; December 2008.
[Sakharov:2009rn]

68 - Philosophy

[68-1]
Philosophical foundations of interpretations of quantum mechanics, Evgeny Bezlepkin, arXiv:1602.02253, 2016.
[Bezlepkin:2016sfa]
[68-2]
Anthropic decision theory, Stuart Armstrong, arXiv:1110.6437, 2011.
[Armstrong:2011qa]
[68-3]
Schrodinger's cat versus Darwin, Z.K. Silagadze, Electron. J. Theor. Phys. 7N24 (2010) 1-56, arXiv:0903.5539.
[Silagadze:2009mi]
[68-4]
A Tempt To Measure Reality, Bhag C. Chauhan, arXiv:physics/0602051, 2006.
[Fuchs:2006nx]
[68-5]
Philosophy Enters the Optics Laboratory: Bell's Theorem and its First Experimental Tests (1965-1982), Olival Freire Jr, Phys. Rev. A67 (2003) 022103, arXiv:physics/0508180.
[Alves:2003kbg]
[68-6]
When champions meet: Rethinking the Bohr-Einstein debate, N.P. Landsman, arXiv:quant-ph/0507220, 2005.
[quant-ph/0507220]
[68-7]
Renninger's Thought Experiment: Implications for Quantum Ontology and for Quantum Mechanic's Interpretation, W. De Baere, arXiv:quant-ph/0504031, 2005.
[quant-ph/0504031]
[68-8]
Forms of Quantum Nonseparability and Related Philosophical Consequences, Vassilios Karakostas, arXiv:quant-ph/0502099, 2005.
[quant-ph/0502099]
[68-9]
Quantum Mechanics and Reality, Virendra Singh, arXiv:quant-ph/0412148, 2004.
[quant-ph/0412148]
[68-10]
Why the quantum?, Jeffrey Bub, arXiv:quant-ph/0402149, 2004.
[quant-ph/0402149]
[68-11]
Holism, Physical Theories and Quantum Mechanics, M.P. Seevinck, arXiv:quant-ph/0402047, 2004.
[quant-ph/0402047]
[68-12]
On the Work of Henry P. Stapp, Matthew J. Donald, arXiv:quant-ph/0311158, 2003.
[quant-ph/0311158]

69 - History

[69-1]
Niels Bohr, objectivity, and the irreversibility of measurements, Ulrich J. Mohrhoff, arXiv:2011.12959, 2020.
[2011.12959]
[69-2]
The Stern-Gerlach Experiment and the Electron Spin, Sandip Pakvasa, arXiv:1805.09412, 2018.
[Pakvasa:2018xlz]
[69-3]
On The Pauli-Weisskopf Anti-Dirac Paper, Walter Dittrich, Eur.Phys.J. H40 (2015) 261-278, arXiv:1501.07144.
[Dittrich:2015kra]
[69-4]
Historical Parallels between, and Modal Realism underlying Einstein and Everett Relativities, Sascha Vongehr, arXiv:1301.1972, 2013.
[Kogitz:1972zz]
[69-5]
Sir Arthur Eddington and the Foundations of Modern Physics, I. T. Durham, arXiv:quant-ph/0603146, 2006.
[Durham:2004kv]
[69-6]
Einstein and the Quantum, Virendra Singh, arXiv:quant-ph/0510180, 2005.
[quant-ph/0510180]
[69-7]
From Einstein's Theorem to Bell's Theorem: A History of Quantum Nonlocality, H. M. Wiseman, arXiv:quant-ph/0509061, 2005.
[quant-ph/0509061]
[69-8]
The conservation laws in the field theoretical representation of Dirac's theory, Cornelius Lanczos, Z. Phys. 57 (1929) 474, arXiv:physics/0508013.
[Lanczos:1929okc]
[69-9]
On the covariant formulation of Dirac's equation, Cornelius Lanczos, Z.Phys. 57 (1929) 474-483, arXiv:physics/0508012.
[Lanczos:1929urv]
[69-10]
Dirac's wave mechanical theory of the electron and its field theoretical interpretation, Cornelius Lanczos, Phys. Z. 31 (1930) 120, arXiv:physics/0508009. Lecture held at the meeting of the Berlin Physical Society, October 25, 1929.
[Lanczos:1930dqj]
[69-11]
Fermi, Majorana and the statistical model of atoms, E. Di Grezia, S. Esposito, Found. Phys. 34 (2004) 1431, arXiv:physics/0406030.
[DiGrezia:2004fu]
[69-12]
Einstein's Boxes, Travis Norsen, arXiv:quant-ph/0404016, 2004.
[quant-ph/0404016]
[69-13]
Understanding Heisenberg's 'Magical' Paper of July 1925: a New Look at the Calculational Details, Ian J. R. Aitchison, David A. MacManus, Thomas M. Snyder, arXiv:quant-ph/0404009, 2004.
[quant-ph/0404009]
[69-14]
Translation of Luders' 'Uber die Zustandsanderung durch den Messprozess', K. A. Kirkpatrick, arXiv:quant-ph/0403007, 2004.
[quant-ph/0403007]
[69-15]
Pascual Jordan, glory and demise and his legacy in contemporary local quantum physics, Bert Schroer, arXiv:hep-th/0303241, 2003.
[Schroer:2003px]
[69-16]
The Feynman Path Integral: An Historical Slice, John R. Klauder, arXiv:quant-ph/0303034, 2003.
[quant-ph/0303034]
[69-17]
On the interpretation of quantum theory - from Copenhagen to the present day, Claus Kiefer, arXiv:quant-ph/0210152, 2002. Festschrift in honour of C.F. von Weizsaecker's 90th birthday.
[quant-ph/0210152]
[69-18]
Bohr's Conception of the Quantum Mechanical State of a System and Its Role in the Framework of Complementarity, Henry J. Folse, arXiv:quant-ph/0210075, 2002. 'Quantum Theory: Reconsideration of Foundations,' edited by A. Khrennikov.
[quant-ph/0210075]
[69-19]
Einstein and the quantum theory, A. Pais, Rev. Mod. Phys. 51 (1979) 861.
[Pais:1979vn]

70 - History - Talks

[70-1]
Majorana and the path-integral approach to Quantum Mechanics, S. Esposito, arXiv:physics/0603140, 2006. Centenary of the birth of Ettore Majorana.
[Esposito:2006wf]
[70-2]
Einstein's contributions to quantum theory, Norbert Straumann, Springer Proc.Phys. 108 (2006) 322-327, arXiv:hep-ph/0508131. =Hadron Collider Physics Symposium (HCP2005) July 4-9 2005, Les Diablerets, Switzerland.
[Straumann:2005em]
[70-3]
The Role of the Exclusion Principle for Atoms to Stars: A Historical Account, Norbert Straumann, arXiv:quant-ph/0403199, 2004. 12th Workshop on Nuclear Astrophysics, March 22-27, 2004, Ringberg Castle, Germany.
[quant-ph/0403199]
[70-4]
Copenhagen Computation: How I Learned to Stop Worrying and Love Bohr, N. David Mermin, arXiv:quant-ph/0305088, 2003. Charles H. Bennett 60th Birthday Symposium, 8-9 May, 2003.
[quant-ph/0305088]
[70-5]
Einstein, Wigner, and Feynman: From E = mc^{2} to Feynman's decoherence via Wigner's little groups, Y. S. Kim, Acta Phys. Hung. A19 (2004) 317, arXiv:quant-ph/0304097. Wigner Centennial Conference, Pecs, Hungary (July 2002).
[Kim:2003mb]

71 - Education

[71-1]
Developing and evaluating a tutorial on the double-slit experiment, Ryan Sayer, Alexandru Maries, Chandralekha Singh, arXiv:1509.07740, 2015.
[1509.07740]
[71-2]
Why now is the right time to study quantum computing, Aram W. Harrow, arXiv:1501.00011, 2015.
[1501.00011]
[71-3]
The symmetry and simplicity of the laws of physics and the Higgs boson, Juan Maldacena, Eur. J. Phys. 37 (2016) 015802, arXiv:1410.6753.
[Maldacena:2014uaa]
[71-4]
Representation-independent manipulations with Dirac spinors, Palash B. Pal, arXiv:physics/0703214, 2007.
[Pal:2007dc]
[71-5]
How to Derive the Schrodinger Equation, David W. Ward, Sabine M. Volkmer, arXiv:physics/0610121, 2006.
[Page:2002wr]
[71-6]
Interpretation of Electron Tunneling from Uncertainty Principle, Angik Sarkar, T.K.Bhattacharyya, arXiv:quant-ph/0507239, 2005.
[quant-ph/0507239]
[71-7]
Conceptual and Epistemological discussions on Quantum Mechanics in a Virtual Laboratory, F. Ostermann, S.D. Prado, Phys.Lett. B638 (2006) 153-159, arXiv:physics/0507064.
[Horowitz:2005zv]

72 - Education - Talks

[72-1]
Kindergarten Quantum Mechanics, Bob Coecke, arXiv:quant-ph/0510032, 2005. Quantum Information, Computation and Logic (Perimeter Institute), QTRF-III (Vaxjo), and Google (Silicon Valley) and Kestrel Institute (Silicon Valley).
[quant-ph/0510032]

73 - Popular Articles

[73-1]
Parallel Universes, Max Tegmark, arXiv:astro-ph/0302131, 2003.
[Tegmark:2003sr]
[73-2]
100 years of the quantum, Max Tegmark, John Archibald Wheeler, Sci. Am. 284 (2001) 68-75, arXiv:quant-ph/0101077. An abbreviated version of this article, with much better graphic, was published in the February 2001 issue of Scientific American, p.68-75.
[Tegmark:2001qh]
[73-3]
Decoherence and the transition from quantum to classical, Wojciech H. Zurek, Phys. Today 44 (1991) 36-44.
[Zurek:1991vd]

Search Neutrino Unbound

Cross search NU

It is possible to perform a cross search between the various pages of Neutrino Unbound.
This is useful if you want to show the common elements that appear in the listings of two (or more) different topics or experiments.

Go to the search form.

[Go to ...]

Neutrino Unbound Home

Authors:
Stefano Gariazzo / gariazzo@to.infn.it
Carlo Giunti / giunti@to.infn.it
Marco Laveder / marco.laveder@pd.infn.it
Last Update: Thu 18 Apr 2024, 14:56:21 CET