DUNE

(Deep Underground Neutrino Experiment)

Other Web pages: INSPIRE, WikipediA

Filter this page

(Note: The process can take some time.)

EXPAND ALL
COMPRESS ALL

References

1 - Proposal and Potential

[1-1]
DUNE Offline Computing Conceptual Design Report, Adam Abed Abud et al. (DUNE), arXiv:2210.15665, 2022.
[DUNE:2022fcw]
[1-2]
Snowmass Neutrino Frontier: DUNE Physics Summary, A. Abed Abud et al. (DUNE), arXiv:2203.06100, 2022.
[DUNE:2022aul]
[1-3]
Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment, A. Abed Abud et al. (DUNE), Phys.Rev.D 105 (2022) 072006, arXiv:2109.01304.
[DUNE:2021mtg]
[1-4]
Searching for Solar KDAR with DUNE, A. Abed Abud et al. (DUNE), JCAP 10 (2021) 065, arXiv:2107.09109.
[DUNE:2021gbm]
[1-5]
Deep Underground Neutrino Experiment (DUNE) Near Detector Conceptual Design Report, A. Abed Abud et al., Instruments 5 (2021) 31, arXiv:2103.13910.
[DUNE:2021tad]
[1-6]
Experiment Simulation Configurations Approximating DUNE TDR, B. Abi et al. (DUNE), arXiv:2103.04797, 2021.
[DUNE:2021cuw]
[1-7]
Prospects for Beyond the Standard Model Physics Searches at the Deep Underground Neutrino Experiment, B. Abi et al. (DUNE), Eur.Phys.J. C81 (2021) 322, arXiv:2008.12769.
[DUNE:2020fgq]
[1-8]
Long-baseline neutrino oscillation physics potential of the DUNE experiment, B. Abi et al. (DUNE), Eur.Phys.J. C80 (2020) 978, arXiv:2006.16043.
[DUNE:2020jqi]
[1-9]
The Single-Phase ProtoDUNE Technical Design Report, B. Abi et al. (DUNE), arXiv:1706.07081, 2017.
[DUNE:2017pqt]
[1-10]
Experiment Simulation Configurations Used in DUNE CDR, T. Alion et al., arXiv:1606.09550, 2016.
[DUNE:2016ymp]
[1-11]
Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 3: Long-Baseline Neutrino Facility for DUNE June 24, 2015, James Strait et al. (DUNE), arXiv:1601.05823, 2016.
[DUNE:2016evb]
[1-12]
Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 1: The LBNF and DUNE Projects, R. Acciarri et al. (DUNE), arXiv:1601.05471, 2016.
[DUNE:2016hlj]
[1-13]
Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report, Volume 4 The DUNE Detectors at LBNF, R.Acciarri et al. (DUNE), arXiv:1601.02984, 2016.
[DUNE:2016rla]
[1-14]
Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF, R.Acciarri et al. (DUNE), arXiv:1512.06148, 2015.
[DUNE:2015lol]
[1-15]
Scientific Opportunities with the Long-Baseline Neutrino Experiment, C. Adams et al. (LBNE), arXiv:1307.7335, 2013.
[LBNE:2013dhi]

2 - Habilitation, PhD and Master Theses

[2-1]
Deep Learning Applications to Particle Physics: from Monte Carlo simulation acceleration to ProtoDUNE reconstruction, Marco Rossi, arXiv:2302.03343, 2023.
[Rossi:2023qvf]
[2-2]
ARAPUCA, light trapping device for the DUNE experiment, H. V. Souza, arXiv:2112.02967, 2021.
[Souza:2021xvk]
[2-3]
Design of a Gas Monitoring Chamber for High Pressure Applications, Philip Hamacher-Baumann, arXiv:1911.04846, 2019.
[Hamacher-Baumann:2017dhr]

3 - Beam

[3-1]
Versatile Multi-MW Proton Facility with Synchrotron Upgrade of Fermilab Proton Complex, J. Eldred et al., arXiv:2203.08707, 2022.
[Eldred:2022iug]
[3-2]
PIP2-BD: GeV Proton Beam Dump at Fermilab's PIP-II Linac, M. Toups et al., arXiv:2203.08079, 2022.
[Toups:2022yxs]
[3-3]
Fermilab Proton Accelerator Complex Status and Improvement Plans, Vladimir Shiltsev, Mod.Phys.Lett. A32 (2017) 1730012, arXiv:1705.03075.
[Shiltsev:2017mle]
[3-4]
Current status of the LBNE neutrino beam, Craig Damon Moore et al., arXiv:1502.02014, 2015.
[Moore:2013gop]
[3-5]
Design of the LBNE Beamline, V. Papadimitriou et al., arXiv:1502.01636, 2015.
[Papadimitriou:2014ffw]

4 - Beam - Talks

[4-1]
Scintillation light detection in the long-drift ProtoDUNE-DP liquid argon TPC, C. Cuesta (DUNE), J.Phys.Conf.Ser. 2374 (2022) 012031, arXiv:2106.15334. TIPP 2021.
[Cuesta:2021uqp]
[4-2]
Design Of The LBNF Beamline, Vaia Papadimitriou et al., arXiv:1704.04471, 2017. 7th International Particle Accelerator Conference (IPAC 2016): Busan, Korea, May 8-13, 2016. https://inspirehep.net/record/1591653/files/arXiv:1704.04471.pdf.
[Papadimitriou:2016ksv]
[4-3]
Neutrinos from PIon Beam Line, nuPIL, J. B. Lagrange, J. Pasternak, A. Bross, A. Liu, 2016. 17th International Workshop on Neutrino Factories and Future Neutrino Facilities Search (NuFact15) Rio de Janeiro, Brazil, August 10-15, 2015.
[Lagrange:2015jyv]

5 - Detector

[5-1]
LBNF/DUNE Cryostats and Cryogenics Infrastructure for the DUNE Far Detector, Design Report, M. Adamowski, J. Bremer, M. Delaney, R. Doubnik, D. Mladenov, D. Montanari, T. Nichols, A. Parchet, F. Resnati, I. Young (LBNF/DUNE), arXiv:2312.09104, 2023.
[LBNFDUNE:2023ljb]
[5-2]
The DUNE Far Detector Vertical Drift Technology, Technical Design Report, A. Abed Abud et al. (DUNE), arXiv:2312.03130, 2023.
[DUNE:2023nqi]
[5-3]
SPY: A Magnet System for a High-pressure Gaseous TPC Neutrino Detector, Andrea Bersani et al., arXiv:2311.16063, 2023.
[Bersani:2023rlw]
[5-4]
Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector, A. Abed Abud et al. (DUNE), Phys.Rev.D 107 (2023) 092012, arXiv:2211.01166.
[DUNE:2022meu]
[5-5]
Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network, Adam Abed Abud et al. (DUNE), Eur.Phys.J.C 82 (2022) 903, arXiv:2203.17053.
[DUNE:2022fiy]
[5-6]
Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC, Adam Abed Abud et al. (DUNE), Eur.Phys.J.C 82 (2022) 618, arXiv:2203.16134.
[DUNE:2022ctp]
[5-7]
The Sanford Underground Research Facility, Jaret Heise, J.Phys.Conf.Ser. 2156 (2021) 012172, arXiv:2203.08293.
[Heise:2021eym]
[5-8]
A Gaseous Argon-Based Near Detector to Enhance the Physics Capabilities of DUNE, A. Abed Abud et al., arXiv:2203.06281, 2022.
[DUNE:2022yni]
[5-9]
DUNE Software and High Performance Computing, Bonnie Fleming, Kyle Knoepfel, Meifeng Lin, Xin Qian, Yihui Ren, Brett Viren, Hanyu Wei, Shinjae Yoo, Haiwang Yu, arXiv:2203.06104, 2022.
[Fleming:2022nvv]
[5-10]
Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC, A. Abed Abud et al. (DUNE), JINST 17 (2022) P01005, arXiv:2108.01902.
[DUNE:2021hwx]
[5-11]
Radioactive background for ProtoDUNE detector, Mihaela Parvu, Ionel Lazanu, JCAP 08 (2021) 042, arXiv:2104.10604.
[Parvu:2021ezc]
[5-12]
Enhancement of the X-Arapuca photon detection device for the DUNE experiment, C. Brizzolari et al., JINST 16 (2021) P09027, arXiv:2104.07548.
[Brizzolari:2021akq]
[5-13]
ProtoDUNE-DP Light Acquisition and Calibration Software, D. Belver et al., IEEE Trans.Nucl.Sci. 68 (2021) 2334-2341, arXiv:2103.02415.
[Belver:2021drc]
[5-14]
A High Pressure Time Projection Chamber with Optical Readout, Alexander Deisting et al., Instruments 5 (2021) 22, arXiv:2102.06643.
[Deisting:2021htu]
[5-15]
GPU-accelerated machine learning inference as a service for computing in neutrino experiments, Michael Wang, Tingjun Yang, Maria Acosta Flechas, Philip Harris, Benjamin Hawks, Burt Holzman, Kyle Knoepfel, Jeffrey Krupa, Kevin Pedro, Nhan Tran, Front.Big Data 3 (2021) 604083, arXiv:2009.04509.
[Wang:2020fjr]
[5-16]
A measurement of absolute efficiency of the ARAPUCA photon detector in Liquid Argon, Dante Totani et al., JINST 15 (2020) T06003, arXiv:2008.05371.
[DUNE:2020vmp]
[5-17]
First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform, B. Abi et al., JINST 15 (2020) P12004, arXiv:2007.06722.
[DUNE:2020cqd]
[5-18]
Neutrino interaction classification with a convolutional neural network in the DUNE far detector, B. Abi et al. (DUNE), Phys.Rev. D102 (year) 092003, arXiv:2006.15052.
[DUNE:2020gpm]
[5-19]
First testing of the Hamamatsu R5912-02Mod photomultiplier tube at 4-bar pressure and cryogenic temperature, D. Belver et al., JINST 15 (2020) P09023, arXiv:2003.13463.
[Belver:2020qmf]
[5-20]
Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume IV Far Detector Single-phase Technology, B. Abi et al., JINST 15 (2020) T08010, arXiv:2002.03010.
[DUNE:2020txw]
[5-21]
Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume III DUNE Far Detector Technical Coordination, B. Abi et al., JINST 15 (2020) T08009, arXiv:2002.03008.
[DUNE:2020mra]
[5-22]
Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II DUNE Physics, B. Abi et al., arXiv:2002.03005, 2020.
[DUNE:2020ypp]
[5-23]
Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume 1 Introduction to DUNE, B. Abi et al., JINST 15 (2020) T08008, arXiv:2002.02967.
[DUNE:2020lwj]
[5-24]
The ProtoDUNE-SP LArTPC Electronics Production, Commissioning, and Performance, D. Adams et al., arXiv:2002.01782, 2020.
[Adams:2020zgj]
[5-25]
Cryogenic SiPM arrays for the DUNE photon detection system, A. Falcone et al., Nucl.Instrum.Meth. A985 (2021) 164648, arXiv:2001.09051.
[Falcone:2020nrk]
[5-26]
Design and performance of a 35-ton liquid argon time projection chamber as a prototype for future very large detectors, D. L. Adams et al., arXiv:1912.08739, 2019.
[Adams:2019zjr]
[5-27]
A New Concept for Kilotonne Scale Liquid Argon Time Projection Chambers, M. Auger et al., Instruments 4 (2020) 6, arXiv:1908.10956.
[Asaadi:2019kof]
[5-28]
A Light Calibration System for the ProtoDUNE-DP Detector, D. Belver et al., JINST 14 (2019) T04001, arXiv:1902.07127.
[Belver:2019lqm]
[5-29]
Charge and Light Production in the Charge Readout System of a Dual Phase LAr TPC, T. Lux, JINST 14 (2019) P03006, arXiv:1812.08700.
[Lux:2018zwd]
[5-30]
The DUNE Far Detector Interim Design Report, Volume 3: Dual-Phase Module, B. Abi et al. (DUNE), arXiv:1807.10340, 2018.
[DUNE:2018mlo]
[5-31]
The DUNE Far Detector Interim Design Report Volume 1: Physics, Technology and Strategies, B. Abi et al. (DUNE), arXiv:1807.10334, 2018.
[DUNE:2018tke]
[5-32]
The DUNE Far Detector Interim Design Report, Volume 2: Single-Phase Module, B. Abi et al. (DUNE), arXiv:1807.10327, 2018.
[DUNE:2018hrq]
[5-33]
Cryogenic R5912-20Mod Photomultiplier Tubes Characterization for the ProtoDUNE Dual Phase Experiment, D. Belver et al., JINST 13 (2018) T10006, arXiv:1806.04571.
[Belver:2018erf]
[5-34]
A 4 tonne demonstrator for large-scale dual-phase liquid argon time projection chambers, B. Aimard et al., JINST 13 (2018) P11003, arXiv:1806.03317.
[Aimard:2018yxp]
[5-35]
Liquid Argon test of the ARAPUCA device, E. Segreto et al., JINST 13 (2018) P08021, arXiv:1805.00382.
[Segreto:2018jdx]
[5-36]
Photon detector system performance in the DUNE 35-ton prototype liquid argon time projection chamber, D. L. Adams et al., JINST 13 (2018) P06022, arXiv:1803.06379.
[DUNE:2018jwf]
[5-37]
First Demonstration of a Pixelated Charge Readout for Single-Phase Liquid Argon Time Projection Chambers, J. Asaadi et al., Instruments 4 (2020) 9, arXiv:1801.08884.
[Asaadi:2018oxk]
[5-38]
SiPMs characterization and selection for the DUNE far detector photon detection system, Yujing Sun, Jelena Maricic, JINST 11 (2016) C01078, arXiv:1511.04756.
[Sun:2015pwr]

6 - Detector - Talks

[6-1]
Neutrino energy scale measurements for final state interactions using advanced computing in DUNE, Aleena Rafique (DUNE), arXiv:2403.14858, 2024.
[Rafique:2024zem]
[6-2]
Deep Learning strategies for ProtoDUNE raw data denoising, Marco Rossi, Sofia Vallecorsa, Comput.Softw.Big Sci. 6 (2022) 2, arXiv:2103.01596. 25th International Conference on Computing in High-Energy and Nuclear Physics.
[Rossi:2021tjf]
[6-3]
Moveable Thermometer System in ProtoDUNE, R. Dharmapalan (DUNE), PoS ICHEP2020 (2021) 197, arXiv:2012.10567. 40th International Conference on High Energy physics - ICHEP2020 July 28 - August 6, 2020 Prague, Czech Republic (virtual meeting).
[Dharmapalan:2020alt]
[6-4]
Analysis of the light production and propagation in the 4-tonne dual-phase demonstrator, Chiara Lastoria (DUNE), JINST 15 (2020) C06029, arXiv:1911.06880.
[Lastoria:2019qiw]
[6-5]
Scintillation light production, propagation, and detection in the 4-ton dual-phase LAr-TPC demonstrator (data analysis and simulations), Chiara Lastoria (DUNE), PoS LeptonPhoton2019 (2019) 156, arXiv:1911.06874.
[Lastoria:2019ahv]
[6-6]
Light Detection in DUNE Dual-Phase, J. Soto-Oton (DUNE), PoS LeptonPhoton2019 (2019) 179, arXiv:1910.11786. XXIX International Symposium on Lepton Photon Interactions at High Energies - LeptonPhoton2019 August 5-10, 2019, Toronto, Canada.
[Soto-Oton:2019gop]
[6-7]
Status of ProtoDUNE Dual Phase, C. Cuesta, PoS EPS-HEP2019 (2020) 381, arXiv:1910.10115. EPS-HEP 2019.
[Cuesta:2019yeh]
[6-8]
Timing and Synchronization of the DUNE Neutrino Detector, David Cussans (DUNE), Nucl.Instrum.Meth. A958 (2020) 162143, arXiv:1905.00620.
[Cussans:2019cdj]
[6-9]
ProtoDUNE and a Dual-phase LArTPC, Andrea Scarpelli, PoS NOW2018 (2019) 036, arXiv:1902.04780. Neutrino Oscillation Workshop, Ostuni (IT), 9-16 September 2018.
[Scarpelli:2019kah]
[6-10]
Photon detection system for ProtoDUNE dual phase, Clara Cuesta, JINST 12 (2017) C12048, arXiv:1711.08307. LIDINE 2017.
[Cuesta:2017nrs]
[6-11]
The WA105-3x1x1 m3 dual phase LAr-TPC demonstrator, Sebastien Murphy (WA105), PoS ICHEP2016 (2016) 305, arXiv:1611.05846.
[Murphy:2016ged]
[6-12]
A pressurized argon gas TPC as DUNE near detector, J. Martin-Albo (DUNE), J.Phys.Conf.Ser. 888 (2017) 012154, arXiv:1610.07803. XXVII International Conference on Neutrino Physics and Astrophysics (Neutrino 2016).
[Martin-Albo:2016tfh]

7 - Phenomenology

[7-1]
Impact of cross-section uncertainties on supernova neutrino spectral parameter fitting in the Deep Underground Neutrino Experiment, Adam Abed Abud et al. (DUNE), arXiv:2303.17007, 2023.
[2303.17007]

8 - Talks

[8-1]
Computing for the DUNE Long-Baseline Neutrino Oscillation Experiment, Heidi Schellman (DUNE), EPJ Web Conf. 245 (2020) 11002, arXiv:2004.09037. 24th Conference on Computing in High Energy Physics, November 4-8, Adelaide, Australia.
[Schellman:2020vdz]
[8-2]
Supernova Neutrino Detection in the Deep Underground Neutrino Experiment, A. Gallego-Ros (DUNE), PoS EPS-HEP2019 (2020) 413, arXiv:1910.11068. EPS-HEP 2019.
[Gallego-Ros:2019eiv]
[8-3]
DUNE: Status and Perspectives, D. Brailsford, arXiv:1804.04979, 2018. NuPhys2017 (London, 20-22 December 2017).
[Brailsford:2018dzn]
[8-4]
Supernova Burst Observations with DUNE, Jost Migenda (DUNE), arXiv:1804.01877, 2018. NuPhys2017 (London, 20-22 December 2017).
[Migenda:2018ljh]
[8-5]
Sensitivity of DUNE to long-baseline neutrino oscillation physics, Justo Martin-Albo (DUNE), PoS EPS-HEP2017 (2017) 122, arXiv:1710.08964. European Physical Society conference on High Energy Physics (EPS-HEP) 2017.
[Martin-Albo:2017vgg]
[8-6]
New Dark Matter Search Strategies at DUNE, Carsten Rott, Seongjin In, Jason Kumar, David Yaylali, J.Phys.Conf.Ser. 1342 (2020) 012004, arXiv:1710.03822. TAUP 2017.
[Rott:2017weo]
[8-7]
Supernova Physics at DUNE, Artur Ankowski et al., arXiv:1608.07853, 2016. Summary of workshop 'Supernova Physics at DUNE', Virginia Tech.
[Ankowski:2016lab]
[8-8]
Underground physics with DUNE, Vitaly A. Kudryavtsev (DUNE), J. Phys. Conf. Ser. 718 (2016) 062032, arXiv:1601.03496. TAUP2015.
[Kudryavtsev:2016ybl]

Search Neutrino Unbound

Cross search NU

It is possible to perform a cross search between the various pages of Neutrino Unbound.
This is useful if you want to show the common elements that appear in the listings of two (or more) different topics or experiments.

Go to the search form.

[Go to ...]

Neutrino Unbound Home

Authors:
Stefano Gariazzo / gariazzo@to.infn.it
Carlo Giunti / giunti@to.infn.it
Marco Laveder / marco.laveder@pd.infn.it
Last Update: Thu 18 Apr 2024, 14:48:38 CET