(Jiangmen Uunderground Neutrino Observatory)

Other Web pages: INSPIRE, WikipediA

Filter this page

(Note: The process can take some time.)



1 - Reviews

JUNO Conceptual Design Report, T. Adam et al. (JUNO), arXiv:1508.07166, 2015.
Neutrino Physics with JUNO, Fengpeng An et al. (JUNO), J. Phys. G43 (2016) 030401, arXiv:1507.05613.

2 - Physics

Measurements of the Lifetime of Orthopositronium in the LAB-Based Liquid Scintillator of JUNO, Mario Schwarz et al., Nucl.Instrum.Meth. A922 (2019) 64-70, arXiv:1804.09456.

3 - Detector

Developing the radium measurement system for JUNO's water Cherenkov detector, Lifei Xie, Jinchang Liu, Shoukang Qiu, Cong Guo, Quan Tang, Yongpeng Zhang, Peng Zhang, Changgen Yang, arXiv:1906.06895, 2019.
Muon reconstruction with a geometrical model in JUNO, Christoph Genster, Michaela Schever, Livia Ludhova, Michael Soiron, Achim Stahl, Christopher Wiebusch, JINST 13 (2018) T03003, arXiv:1906.01912.
Comparison on PMT Waveform Reconstructions with JUNO Prototype, H.Q. Zhang et al., arXiv:1905.03648, 2019.
Design of Guide Tube Calibration System for JUNO Experiment, Yuhang Guo, Qingmin Zhang, Feiyang Zhang, Mengjiao Xiao, Jianglai Liu, Eryuan Qu, arXiv:1905.02077, 2019.
PMT choices for large detectors, Liang-Jian Wen, Miao He, Yi-Fang Wang, Jun Cao, Shu-Lin Liu, Yue-Kun Heng, Zhong-Hua Qin, arXiv:1903.12595, 2019.
Distillation and stripping pilot plants for the JUNO neutrino detector: design, operations and reliability, P. Lombardi et al., Nucl.Instrum.Meth. A925 (2019) 6-17, arXiv:1902.05288.
A method of detector and event visualization with Unity in JUNO, Jiang Zhu, Zhengyun You, Yumei Zhang, Ziyuan Li, Shu Zhang, Tao Lin, Weidong Li, JINST 14 (2019) T01007, arXiv:1812.05304.
Laser Calibration System in JUNO, Yuanyuan Zhang, Jianglai Liu, Mengjiao Xiao, Feiyang Zhang, Tao Zhang, JINST 14 (2019) P01009, arXiv:1811.00354.
The water system and radon measurement system of Jiangmen Underground Neutrino Observatory, C.Guo, Y.P.Zhang, J.C.Liu, C.G.Yang, P.Zhang, arXiv:1806.11105, 2018.
Design of a common verification board for different back-end electronics options of the JUNO experiment, Yifan Yang, Barbara Clerbaux, arXiv:1806.09698, 2018.
Muon Tracking with the fastest light in the JUNO Central Detector, Kun Zhang, Miao He, Weidong Li, Jilei Xu, arXiv:1803.10407, 2018.
A vertex reconstruction algorithm in the central detector of JUNO, Qin Liu, Miao He, Xuefeng Ding, Liangjian Wen, Weidong Li, Haiping Peng, JINST 13 (2018) T09005, arXiv:1803.09394.
Signal Optimization with HV divider of MCP-PMT for JUNO, Fengjiao Luo, Zhimin Wang, Zhonghua Qin, Yuekun Heng, Springer Proc.Phys. 213 (2018) 309-314, arXiv:1803.03746.
Event Display in the JUNO Experiment, Jiang Zhu, Zhengyun You, Yumei Zhang, J.Phys.Conf.Ser. 1085 (2018) 032038, arXiv:1803.01148.
Light Absorption Properties of the High Quality Linear Alkylbenzene for the JUNO Experiment, De-Wen Cao et al., Nucl.Instrum.Meth. A927 (2019) 230-235, arXiv:1801.08363.
Quenching of fluorescence for linear alkylbenzene, Wentai Luo et al., arXiv:1801.04432, 2018.
A ROOT Based Event Display Software for JUNO, Zhengyun You et al., JINST 13 (2018) T02002, arXiv:1712.07603.
Study on the large area MCP-PMT glass radioactivity reduction, Xuantong Zhang et al., Nucl.Instrum.Meth. A898 (2018) 67-71, arXiv:1710.09965.
Light Attenuation Length of High Quality Linear Alkyl Benzene as Liquid Scintillator Solvent for the JUNO Experiment, Hai-Bo Yang et al., JINST 12 (2017) T11004, arXiv:1703.01867.
Design and Development of JUNO Event Data Model, Teng Li et al., Chin.Phys. C41 (2017) 066201, arXiv:1702.04100.
Discrimination in Liquid Scintillator and Its Usage to Suppress $^{8}$He/$^{9}$Li Backgrounds, Ya-Ping Cheng, Liang-Jian Wen, Peng Zhang, Xing-Zhong Cao, Chin.Phys. C41 (2017) 016101, arXiv:1605.00941.
PMT overshoot study for JUNO prototype detector, F. J. Luo et al., Chin.Phys. C40 (2016) 096002, arXiv:1602.06080.
Fast Muon Simulation in the JUNO Central Detector, Tao Lin et al., Chin.Phys. C40 (2016) 086201, arXiv:1602.00056.
The efficiency study of different purification methods for liquid scintillator, Wei Hu et al., Chin.Phys. C40 (2016) 096202, arXiv:1601.02780.
Preliminary study of light yield dependence on LAB liquid scintillator composition, Xing-Chen Ye et al., Chin. Phys. C39 (2015) 096003, arXiv:1506.00237.
Simulation of natural radioactivity backgrounds in the central detector, Xinying Li et al., Chin.Phys. C40 (2016) 026001, arXiv:1505.03215.
Some new progress on the light absorption properties of linear alkyl benzene solvent, Guang-You Yu et al., Chin. Phys. C40 (2016) 016002, arXiv:1504.05444.
Performance Research of New Large Area Dynode PMT with High Quantum Efficiency, Xiang-Cui Lei et al., Chin.Phys. C40 (2016) 026002, arXiv:1504.03174.
Rayleigh scattering and depolarization ratio in linear alkylbenzene, Qian Liu et al., Nucl.Instrum.Meth. A795 (2015) 284-287, arXiv:1504.01001.
Rayleigh scattering of linear alkylbenzene in large liquid scintillator detectors, Xiang Zhou et al., Rev. Sci. Instrum. 86 (2015) 073310, arXiv:1504.00987.
Measurement of the depolarization ratio of linear alkylbenzene for liquid scintillator neutrino detectors, Xiang Zhou et al., Eur. Phys. J. C75 (2015) 545, arXiv:1504.00986.
A new type of RPC for the VETO of JUNO, B. Xie, Y. Wang, B. Guo, W. Zhu, Y. Li et al., JINST 9 (2014) C10005.

4 - Phenomenology

JULOC: A Local 3-D Refined Crust Model for the Geoneutrino Measurement at JUNO, Ruohan Gao, Zhiwei Li, Ran Han, Andong Wang, Yu-Feng Li, Yufei Xi, Jingao Liu, Xin Mao, Yao Sun, Ya Xu, arXiv:1903.11871, 2019.
Explore nuclearites in a large liquid scintillator neutrino detector, Wan-Lei Guo, Cheng-Jun Xia, Tao Lin, Zhi-Min Wang, Phys. Rev. D95 (2017) 015010, arXiv:1611.00166.
Physics potential of searching for $0\nu\beta\beta$ decays in JUNO, Jie Zhao, Liang-Jian Wen, Yi-Fang Wang, Jun Cao, Chin.Phys. C41 (2017) 053001, arXiv:1610.07143.
Detecting electron neutrinos from solar dark matter annihilation by JUNO, Wan-Lei Guo, JCAP 1601 (2016) 039, arXiv:1511.04888.
Potential of Geo-neutrino Measurements at JUNO, Ran Han, Yu-Feng Li, Liang Zhan, William F McDonough, Jun Cao, Chin. Phys. C40 (2016) 033003, arXiv:1510.01523.

5 - Phenomenology - Conference Proceedings

Solar, supernova, atmospheric and geo neutrino studies using JUNO detector, Wan-lei Guo, Ran Han, Yufeng Li, Giuseppe Salamanna, PoS ICHEP2016 (2017) 1239, arXiv:1610.09508. ICHEP 2016.

6 - Conference Proceedings

e-\mu Discrimination at High Energy in the JUNO Detector, Giulio Settanta, Stefano Maria Mari, Cristina Martellini, Paolo Montini, EPJ Web Conf. 209 (2019) 01011, arXiv:1901.10340. 7th Roma International Conference on AstroParticle Physics.
Solar neutrinos with the JUNO experiment, Giuseppe Salamanna, arXiv:1809.03821, 2018. 5th International Solar Neutrino Conference Dresden, Germany, June 11-14, 2018.
Status and perspectives of the JUNO experiment, Agnese Giaz, arXiv:1804.03575, 2018. NuPhys2017 (London, 20-22 December 2017).
Status and physics potential of the JUNO experiment, Giuseppe Salamanna (JUNO), arXiv:1801.05580, 2018. 18th Lomonosov Conference on Elementary Particle Physics, Moscow (Russia), 24-30 August, 2017.
Status and potentialities of the JUNO experiment, V. Antonelli, L. Miramonti (JUNO), PoS NEUTEL2017 (2018) 056, arXiv:1710.07401. XVII International Workshop on Neutrino Telescopes (Venice, 13-17 March 2017).
Parallelized JUNO simulation software based on SNiPER, Tao Lin et al. (JUNO), J.Phys.Conf.Ser. 1085 (2018) 032048, arXiv:1710.07150. 18th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2017).
Double Calorimetry System in JUNO, Miao He et al. (JUNO), arXiv:1706.08761, 2017. TIPP 2017.
Large photocathode 20-inch PMT testing methods for the JUNO experiment, N. Anfimov, JINST 12 (2017) C06017, arXiv:1705.05012. The International Conference 'Instrumentation for Colliding Beam Physics' (INSTR-17).
The Application of SNiPER to the JUNO Simulation, Tao Lin et al. (JUNO), J.Phys.Conf.Ser. 898 (2017) 042029, arXiv:1702.05275. 22nd International Conference on Computing in High Energy and Nuclear Physics (CHEP 2016).
The Jiangmen Underground Neutrino Observatory, Marco Grassi, PoS HQL2016 (2017) 073, arXiv:1609.01638. Conference on Heavy Quarks and Leptons 2016.
Jiangmen Underground Neutrino Observatory: Status and Prospectives, Yu-Feng Li (JUNO), arXiv:1606.04743, 2016. 17th Lomonosov Conference on Elementary Particle Physics.
JUNO: a General Purpose Experiment for Neutrino Physics, Marco Grassi (JUNO), PoS LeptonPhoton2015 (2016) 097, arXiv:1605.09118. 27th International Symposium on Lepton Photon Interactions at High Energies.
Neutrino mass hierarchy determination at reactor antineutrino experiments, Guang Yang, arXiv:1509.08747, 2015. CIPANP2015.
JUNO: A Next Generation Reactor Antineutrino Experiment, Liang Zhan, Nucl.Part.Phys.Proc. 273-275 (2016) 1825-1829, arXiv:1506.01152. ICHEP 2014.
Jiangmen Underground Neutrino Observatory, Miao He (JUNO), Nucl. Part. Phys. Proc. 265-266 (2015) 111-113, arXiv:1412.4195. NOW 2014.
Overview of the Jiangmen Underground Neutrino Observatory (JUNO), Yu-Feng Li, Int.J.Mod.Phys.Conf.Ser. 31 (2014) 1460300, arXiv:1402.6143.
JUNO: A Multi-Purpose LS-based Experiment, Yifang Wang, PoS Neutel2013 (2013) 030.

Search Neutrino Unbound

Cross search NU

It is possible to perform a cross search between the various pages of Neutrino Unbound.
This is useful if you want to show the common elements that appear in the listings of two (or more) different topics or experiments.

Go to the search form.

[Go to ...]

Neutrino Unbound Home

Stefano Gariazzo / gariazzo@ific.uv.es
Carlo Giunti / giunti@to.infn.it
Marco Laveder / marco.laveder@pd.infn.it
Last Update: Wed 19 Jun 2019, 09:09:05 UTC