WMAP

(Wilkinson Microwave Anisotropy Probe)

Other Web pages: INSPIRE

Filter this page

(Note: The process can take some time.)

EXPAND ALL
COMPRESS ALL

References

1 - Reviews

[1-1]
The Wilkinson Microwave Anisotropy Probe, Lyman Page, arXiv:astro-ph/0306381, 2003. Carnegie Observatories Astrophysics Series, Vol. 2: Measuring and Modeling the Universe.
[Page:2003pn]

2 - Articles

[2-1]
Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Are There Cosmic Microwave Background Anomalies?, C. L. Bennett et al., Astrophys. J. Suppl. 192 (2011) 17, arXiv:1001.4758.
[Bennett:2010jb]
[2-2]
Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results, N. Jarosik et al., Astrophys. J. Suppl. 192 (2011) 14, arXiv:1001.4744.
[Jarosik:2010iu]
[2-3]
Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Planets and Celestial Calibration Sources, J. L. Weiland et al., Astrophys. J. Suppl. 192 (2011) 19, arXiv:1001.4731.
[Weiland:2010ij]
[2-4]
Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Power Spectra and WMAP-Derived Parameters, D. Larson et al., Astrophys. J. Suppl. 192 (2011) 16, arXiv:1001.4635.
[Larson:2010gs]
[2-5]
Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Galactic Foreground Emission, B. Gold et al., Astrophys. J. Suppl. 192 (2011) 15, arXiv:1001.4555.
[Gold:2010fm]
[2-6]
Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, E. Komatsu et al. (WMAP), Astrophys. J. Suppl. 192 (2011) 18, arXiv:1001.4538.
From the abstract: Notable examples of improved parameters are the total mass of neutrinos, $\sum m_\nu < 0.58 \, \text{eV} \quad \text{(95\% CL)}$, and the effective number of neutrino species, $N_{\text{eff}} = 4.34^{+ 0.86}_{- 0.88} \quad \text{(68\%~CL)}$, which benefit from better determinations of the third peak and $H_0$.
[Komatsu:2010fb]
[2-7]
Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, and Basic Results, G. Hinshaw et al. (WMAP), Astrophys. J. Suppl. 180 (2009) 225-245, arXiv:0803.0732.
[Hinshaw:2008kr]
[2-8]
Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Galactic Foreground Emission, B. Gold et al. (WMAP), Astrophys. J. Suppl. 180 (2009) 265-282, arXiv:0803.0715.
[Gold:2008kp]
[2-9]
Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Angular Power Spectra, M. R. Nolta et al. (WMAP), Astrophys. J. Suppl. 180 (2009) 296-305, arXiv:0803.0593.
[Nolta:2008ih]
[2-10]
Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Likelihoods and Parameters from the WMAP data, J. Dunkley et al. (WMAP), Astrophys. J. Suppl. 180 (2009) 306-329, arXiv:0803.0586.
[Dunkley:2008ie]
[2-11]
Five-Year Wilkinson Microwave Anisotropy Probe (WMAP)Observations: Beam Maps and Window Functions, R. S. Hill et al. (WMAP), Astrophys. J. Suppl. 180 (2009) 246-264, arXiv:0803.0570.
[Hill:2008hx]
[2-12]
Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, E. Komatsu et al. (WMAP), Astrophys. J. Suppl. 180 (2009) 330-376, arXiv:0803.0547.
From the abstract: The WMAP 5-year data provide stringent limits on deviations from the minimal, 6-parameter $\Lambda\text{CDM}$ model.... We detect no convincing deviations from the minimal model....
$\Omega_\Lambda = 0.721\pm 0.015$,..., $H_0 = 70.1\pm 1.3 \, \text{km} \, \text{s}^{-1} \, \text{Mpc}^{-1}$, $\Omega_b = 0.0462\pm 0.0015$, $\Omega_c = 0.233\pm 0.013$,...
We obtain tight, simultaneous limits on the (constant) equation of state of dark energy and the spatial curvature of the universe: $-0.11<1+w<0.14\, \text{(95\% CL)}$ and $-0.0175<\Omega_k<0.0085\, \text{(95\% CL)}$....
We find the limit on the total mass of massive neutrinos of $\sum m_\nu < 0.61 \, \text{eV}\, \text{(95\% CL)}$, which is free from the uncertainty in the normalization of the large-scale structure data. The number of relativistic degrees of freedom, expressed in units of the effective number of neutrino species, is constrained as $N_{\rm eff} = 4.4\pm 1.5$ (68\%), consistent with the standard value of 3.04.

[Komatsu:2008hk]
[2-13]
Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Beam Profiles, Data Processing, Radiometer Characterization and Systematic Error Limits, N. Jarosik et al. (WMAP), Astrophys. J. Suppl. 170 (2007) 263, arXiv:astro-ph/0603452. http://lambda.gsfc.nasa.gov/product/map/dr2/pub_papers/threeyear/syserr/wmap_3yr_syserr.pdf.
[Jarosik:2006ib]
[2-14]
Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Temperature Results, G. Hinshaw et al. (WMAP), Astrophys. J. Suppl. 170 (2007) 288, arXiv:astro-ph/0603451. http://lambda.gsfc.nasa.gov/product/map/dr2/pub_papers/threeyear/temperature/wmap_3yr_temp.pdf.
[Hinshaw:2006ia]
[2-15]
Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Polarization Analysis, L. Page et al. (WMAP), Astrophys. J. Suppl. 170 (2007) 335, arXiv:astro-ph/0603450. http://lambda.gsfc.nasa.gov/product/map/dr2/pub_papers/threeyear/polarization/wmap_3yr_pol.pdf.
[Page:2006hz]
[2-16]
Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for Cosmology, D.N. Spergel et al. (WMAP), Astrophys. J. Suppl. 170 (2007) 377, arXiv:astro-ph/0603449. http://lambda.gsfc.nasa.gov/product/map/dr2/pub_papers/threeyear/parameters/wmap_3yr_param.pdf.
[Spergel:2006hy]
[2-17]
Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Three Year Explanatory Supplement, M. Limon et al. (WMAP), 2006. http://lambda.gsfc.nasa.gov/product/map/dr2/pub_papers/threeyear/supplement/wmap_3yr_supplement.pdf.
[WMAP-2006-Limon]
[2-18]
First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for Inflation, H. V. Peiris et al. (WMAP), Astrophys. J. Suppl. 148 (2003) 213, arXiv:astro-ph/0302225.
[Peiris:2003ff]
[2-19]
First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: On-Orbit Radiometer Characterization, N. Jarosik et al. (WMAP), Astrophys. J. Suppl. 148 (2003) 29, arXiv:astro-ph/0302224.
[Jarosik:2003fe]
[2-20]
First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Tests of Gaussianity, E. Komatsu et al. (WMAP), Astrophys. J. Suppl. 148 (2003) 119, arXiv:astro-ph/0302223.
[Komatsu:2003fd]
[2-21]
First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing Methods and Systematic Errors Limits, G. Hinshaw et al. (WMAP), Astrophys. J. Suppl. 148 (2003) 63, arXiv:astro-ph/0302222.
[Hinshaw:2003fc]
[2-22]
First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Interpretation of the TT and TE Angular Power Spectrum Peaks, L. Page et al. (WMAP), Astrophys. J. Suppl. 148 (2003) 233, arXiv:astro-ph/0302220.
[Page:2003fa]
[2-23]
First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Parameter Estimation Methodology, L. Verde et al. (WMAP), Astrophys. J. Suppl. 148 (2003) 195, arXiv:astro-ph/0302218.
[Verde:2003ey]
[2-24]
First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Angular Power Spectrum, G. Hinshaw et al. (WMAP), Astrophys. J. Suppl. 148 (2003) 135, arXiv:astro-ph/0302217.
[Hinshaw:2003ex]
[2-25]
First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Galactic Signal Contamination from Sidelobe Pickup, C. Barnes et al. (WMAP), Astrophys. J. Suppl. 148 (2003) 51, arXiv:astro-ph/0302215.
[Barnes:2003ev]
[2-26]
First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Beam Profiles and Window Functions, L. Page et al. (WMAP), Astrophys. J. Suppl. 148 (2003) 39, arXiv:astro-ph/0302214.
[Page:2003eu]
[2-27]
Wilkinson Microwave Anisotropy Probe (WMAP) First Year Observations: TE Polarization, A. Kogut et al. (WMAP), Astrophys. J. Suppl. 148 (2003) 161, arXiv:astro-ph/0302213.
[Kogut:2003et]
[2-28]
First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters, D. N. Spergel et al. (WMAP), Astrophys. J. Supp. Ser. 148 (2003) 175-194, arXiv:astro-ph/0302209.
From the abstract: By combining WMAP data with other astronomical data sets, we constrain the geometry of the universe: $\Omega_{tot} = 1.02 \pm 0.02$, the equation of state of the dark energy, $w < -0.78$ (95% confidence limit), and the energy density in neutrinos, $\Omega_\nu h^2 < 0.0076$ (95% confidence limit). For 3 degenerate neutrino species, this limit implies that their mass is less than 0.23 eV (95% confidence limit). The WMAP detection of early reionization rules out warm dark matter.
[Spergel:2003cb]
[2-29]
First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Foreground Emission, C. Bennett et al. (WMAP), Astrophys. J. Suppl. 148 (2003) 97, arXiv:astro-ph/0302208.
[Bennett:2003ca]
[2-30]
First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results, C. L. Bennett et al. (WMAP), Astrophys. J. Supp. Ser. 148 (2003) 1-27, arXiv:astro-ph/0302207.
From the abstract: A best-fit cosmological model to the CMB and other measures of large scale structure works remarkably well with only a few parameters. The age of the best-fit universe is $t_0 = 13.7 \pm 0.2 \text{ Gyr}$ old. Decoupling was $t_{dec} = 379^{+ 8}_{- 7} \text{ kyr}$ after the Big Bang at a redshift of $z_{dec} = 1089 \pm 1$. The thickness of the decoupling surface was $\Delta z_{dec} = 195 \pm 2$. The matter density of the universe is $\Omega_mh^2 = 0.135^{+ 0.008}_{- 0.009}$, the baryon density is $\Omega_bh^2 = 0.0224 \pm 0.0009$, and the total mass-energy of the universe is $\Omega_{tot} = 1.02 \pm 0.02$.... This flat universe model is composed of 4.4% baryons, 22% dark matter and 73% dark energy.... Inflation theory is supported with $n_s\approx 1$, $\Omega_{tot}\approx 1$, Gaussian random phases of the CMB anisotropy, and superhorizon fluctuations implied by the TE anticorrelations at decoupling.
[Bennett:2003bz]
[2-31]
Design, Implementation and Testing of the MAP Radiometers, N. Jarosik et al., Astrophys.J.Suppl. 145 (2003) 413, arXiv:astro-ph/0301164.
[Jarosik:2003xka]
[2-32]
The Optical Design and Characterization of the Microwave Anisotropy Probe, L. Page et al., Astrophys. J. 585 (2003) 566, arXiv:astro-ph/0301160.
[Page:2003bc]
[2-33]
The MAP Satellite Feed Horns, C. Barnes et al., Astrophys. J. Supp. 143 (2002) 567, arXiv:astro-ph/0301159.
[Barnes:2003bb]
[2-34]
The Microwave Anisotropy Probe (MAP) Mission, C. L. Bennett et al. (WMAP), Astrophys. J. 583 (2003) 1, arXiv:astro-ph/0301158.
[Bennett:2003ba]
[2-35]
CMB Anisotropy Correlation Function and Topology from Simulated Maps for MAP, Changbom Park et al., Astrophys. J. 506 (1998) 473-484, arXiv:astro-ph/9711057.
[Park:1997ad]

3 - Detector

[3-1]
First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Explanatory Supplement, M. Limon et al., 2003. http://lambda.gsfc.nasa.gov/product/map/pub_papers/firstyear/supplement/WMAP_supplement.pdf.
[Limon-WMAP-2003]

4 - Conference Proceedings

[4-1]
Comparing and combining Wilkinson Microwave Anisotropy (WMAP) probe results and Large Scale Structure, Licia verde, arXiv:astro-ph/0306272, 2003. Davis Inflation Meeting, 2003.
[Verde:2003rj]
[4-2]
WMAP First Year Results, E. L. Wright, New Astron.Rev. (2003), arXiv:astro-ph/0306132. The Cosmic Microwave Background and its Polarization, New Astronomy Reviews.
[Wright:2003qm]
[4-3]
WMAP Polarization Results, A. Kogut, New Astron.Rev. (2003), arXiv:astro-ph/0306048. 'The Cosmic Microwave Background and its Polarization', New Astronomy Reviews.
[Kogut:2003td]
[4-4]
Future Cosmic Microwave Background Experiments, Mark Halpern, Douglas Scott, arXiv:astro-ph/9904188, 1999. ASP, San Francisco, 1999.
[Halpern:1999ng]

Search Neutrino Unbound

Cross search NU

It is possible to perform a cross search between the various pages of Neutrino Unbound.
This is useful if you want to show the common elements that appear in the listings of two (or more) different topics or experiments.

Go to the search form.

[Go to ...]

Neutrino Unbound Home

[empty]
Authors:
Stefano Gariazzo / gariazzo@to.infn.it
Carlo Giunti / giunti@to.infn.it
Marco Laveder / marco.laveder@pd.infn.it
Last Update: Wed 20 Sep 2017, 09:49:00 UTC