Report of the Topical Group on Neutrino Properties for Snowmass 2021,
Carlo Giunti, Julieta Gruszko, Benjamin Jones, Lisa Kaufman, Diana Parno, Andrea Pocar,
arXiv:2209.03340, 2022. [Giunti:2022aea]
Electromagnetic neutrinos in terrestrial experiments and astrophysics,
Carlo Giunti, Konstantin A. Kouzakov, Yu-Feng Li, Alexey V. Lokhov, Alexander I. Studenikin et al.,
Annalen Phys. 528 (2016) 198-215,arXiv:1506.05387.
[Giunti:2015gga]
Neutrino electromagnetic interactions: a window to new physics,
Carlo Giunti, Alexander Studenikin,
Rev.Mod.Phys. 87 (2015) 531,arXiv:1403.6344.
[Giunti:2014ixa]
Electromagnetic Properties of Neutrinos,
C. Broggini, C. Giunti, A. Studenikin,
Adv. High Energy Phys. 2012 (2012) 459526,arXiv:1207.3980.
[Broggini:2012df]
Light, Unstable Sterile Neutrinos: Phenomenology, a Search in the IceCube Experiment, and a Global Picture,
Marjon H. Moulai,
arXiv:2110.02351, 2021. [Moulai:2021zey]
Probing invisible neutrino decay with the first six detection units of KM3NeT/ORCA,
S. Aiello et al.(KM3NeT),
JHEP 04 (2025) 105,arXiv:2501.11336.
[KM3NeT:2025tiq]
First Search for Unstable Sterile Neutrinos with the IceCube Neutrino Observatory,
R. Abbasi et al.(IceCube),
Phys.Rev.Lett. 129 (2022) 151801,arXiv:2204.00612.
[IceCubeCollaboration:2022tso]
Constraints on Neutrino Lifetime from the Sudbury Neutrino Observatory,
B. Aharmim et al.(SNO),
Phys.Rev. D99 (2019) 032013,arXiv:1812.01088.
[SNO:2018pvg]
Search for Heavy Neutrino in $K \to \mu \nu_h$ ($\nu_h \to \nu \gamma$) Decay at ISTRA+ Setup,
ISTRA+ collaboration et al.(ISTRA+),
Phys. Lett. B710 (2012) 307-317,arXiv:1110.1610.
QFTHEP-2011. [ISTRA:2011bgc]
Search for possible solar neutrino radiative decays during total solar eclipses,
S. Cecchini et al.,
arXiv:hep-ex/0606037, 2006.SPSE2006, Waw an Namos, Libya, 27-29 March 2006. [Cecchini:2006fz]
Search for neutrino radiative decays during a total solar eclipse,
V. Popa,
PoS AHEP2003 (2003) AHEP2003/068,arXiv:hep-ex/0402014.
AHEP2003, Valencia. [Popa:2003mjo]
Revisiting series expansions of neutrino oscillation and decay probabilities in matter,
Jesper Gronroos, Tommy Ohlsson, Sampsa Vihonen,
Phys.Rev.D 111 (2025) 035003,arXiv:2401.16864.
[Gronroos:2024jbs]
Neutrino propagation when mass eigenstates and decay eigenstates mismatch,
Dibya S. Chattopadhyay, Kaustav Chakraborty, Amol Dighe, Srubabati Goswami, S. M. Lakshmi,
Phys.Rev.Lett. 129 (2022) 011802,arXiv:2111.13128.
[Chattopadhyay:2021eba]
Three-Body Decays of Heavy Dirac and Majorana Fermions,
Andre de Gouvea, Patrick J. Fox, Boris J. Kayser, Kevin J. Kelly,
Phys.Rev.D 104 (2021) 015038,arXiv:2104.05719.
[deGouvea:2021ual]
Non-Unitary Neutrino Propagation,
Jeffrey M. Berryman, Andre de Gouvea, Daniel Hernandez, Roberto L. N. Oliviera,
Phys.Lett. B742 (2015) 74-79,arXiv:1407.6631.
[Berryman:2014yoa]
High energy neutrino absorption by W production in a strong magnetic field,
A.V. Kuznetsov, N.V. Mikheev, A. V. Serghienko,
Phys. Lett. B690 (2010) 386-389,arXiv:1002.3804.
[Kuznetsov:2010sn]
Angular momentum non-conserving decays in isotropic media,
Jose F. Nieves, Palash B. Pal,
Eur. Phys. J. C63 (2009) 331-342,arXiv:0907.3000.
[Nieves:2009by]
Neutrino absorption by W production in the presence of a magnetic field,
Kaushik Bhattacharya, Sarira Sahu,
Eur. Phys. J. C62 (2009) 481-489,arXiv:0811.1692.
[Bhattacharya:2008px]
Radiative neutrino decays in very strong magnetic fields,
M. Kachelriess, G. Wunner,
Phys.Lett. B390 (1997) 263-267,arXiv:hep-ph/9610439.
[Kachelriess:1996up]
The Radiative decay of the massive neutrino in the external electromagnetic fields,
A.A. Gvozdev, N.V. Mikheev, L.A. Vasilevskaya,
Phys. Rev. D54 (1996) 5674-5685,arXiv:hep-ph/9610219.
[Gvozdev:1996kx]
Radiative decay of a massive neutrino in the Weinberg-Salam model with mixing in a constant uniform magnetic field,
V. Ch. Zhukovsky, P.A. Eminov, A.E. Grigoruk,
Mod.Phys.Lett. A11 (1996) 3119-3126. [Zhukovsky:1996bi]
Radiative transition of a massive neutrino in the field of an intense electromagnetic wave,
L.A. Vasilevskaya, A.A. Gvozdev, N.V. Mikheev,
Phys.Atom.Nucl. 58 (1995) 654-659. [Vasilevskaya:1995bi]
Electromagnetic catalysis of the radiative transitions of $\nu_{i}\to\nu_{j}\gamma$ type in the field of an intense monochromatic wave,
A.A. Gvozdev, N.V. Mikheev, L.A. Vasilevskaya,
Phys.Lett. B321 (1994) 108-112,arXiv:hep-ph/9404290.
[Gvozdev:1993js]
The Radiative decay of a high-energy neutrino in the Coulomb field of a nucleus,
A.A. Gvozdev, N.V. Mikheev, L.A. Vasilevskaya,
Phys.Lett. B323 (1994) 179-181,arXiv:hep-ph/9404289.
[Gvozdev:1993jr]
The Radiative decay $\nu_{i}\to\nu_{j}\gamma$ ($i \neq j$) of a massive neutrino in the field of an intensive electromagnetic wave,
A.A. Gvozdev, N.V. Mikheev, L.A. Vasilevskaya,
Phys.Lett. B313 (1993) 161-164. [Gvozdev:1993rh]
The Magnetic catalysis of the radiative decay of a massive neutrino in the standard model with lepton mixing,
A.A. Gvozdev, N.V. Mikheev, L.A. Vasilevskaya,
Phys.Lett. B289 (1992) 103-108. [Gvozdev:1992np]
Limits on the Mass of the Muon-neutrino in the Absence of Muon Lepton Number Conservation,
J. Terrance Goldman, Jr. Stephenson, G.J.,
Phys. Rev. D16 (1977) 2256. [Goldman:1977jx]
The Processes $\mu \to e \gamma$, $\mu \to e e \bar{e}$, $\nu' \to \nu \gamma$ in the Weinberg-Salam Model with Neutrino Mixing,
S.T. Petcov,
Sov. J. Nucl. Phys. 25 (1977) 340.Errata: ibid 25 (1977) 698; ibid 25 (1977) 1336. [Petcov:1976ff]
Flavor neutrinos as unstable particles: an interaction picture view,
M. Blasone, F. Giacosa, L. Smaldone, G. Torrieri,
J.Phys.Conf.Ser. 2883 (2024) 012012,arXiv:2406.05158.
Symmetries in Science Symposium XIX. [Blasone:2024zsn]
Addressing the Majorana vs. Dirac Question Using Neutrino Decays,
Boris Kayser,
arXiv:1805.07523, 2018.53rd Rencontres de Moriond Electroweak session of March 2018. [Kayser:2018mot]
A decay of the ultra-high-energy neutrino $\nu_e \to e^- W^+$ in a magnetic field and its influence on the shape of the neutrino spectrum,
A.V. Kuznetsov, N.V. Mikheev, A.V. Serghienko,
arXiv:1010.0582, 2010.XVI International Seminar Quarks'2010, Kolomna, Moscow Region, June 6-12, 2010. [Kuznetsov:2010rg]
Spin light mode of massive neutrino radiative decay in matter,
Alexander Grigoriev, Alexey Lokhov, Alexander Studenikin,
arXiv:1001.0101, 2010.21st Rencontres de Blois (France), June 21-26, 2009. [Grigoriev:2010ti]
Neutrino decay as a possible interpretation to the MiniBooNE observation with unparticle scenario,
Xue-Qian Li, Yong Liu, Zheng-Tao Wei,
Eur. Phys. J. C56 (2008) 97-103,arXiv:0707.2285.
[Li:2007kj]
Neutrino Decays and Neutrino Electron Elastic Scattering in Unparticle Physics,
Shun Zhou,
Phys. Lett. B659 (2008) 336-340,arXiv:0706.0302.
[Zhou:2007zq]
Radiative neutrino decay and CP-violation in R-parity violating supersymmetry,
Gautam Bhattacharyya, Palash B. Pal, Heinrich Päs, Thomas J. Weiler,
Phys. Rev. D74 (2006) 053006,arXiv:hep-ph/0608131.
[Bhattacharyya:2006cq]
Neutrino Decay and Neutrinoless Double Beta Decay in a 3-3- 1 Model,
Alex G. Dias, A. Doff, C. A. de S. Pires, P. S. Rodrigues da Silva,
Phys. Rev. D72 (2005) 035006,arXiv:hep-ph/0503014.
[Dias:2005jm]
Search for the radiative decay of the cosmic neutrino background through spectral measurements of the cosmic infrared background using PRIMA,
Yuji Takeuchi, Shuji Matsuura, Shinhong Kim, Takashi Iida,
arXiv:2508.18590, 2025. [Takeuchi:2025vzv]
Testing the heavy decaying sterile neutrino hypothesis at the DUNE near detector,
Sabya Sachi Chatterjee, Stephane Lavignac, O. G. Miranda,
arXiv:2508.15888, 2025. [Chatterjee:2025sjp]
Quantum Sensing Radiative Decays of Neutrinos and Dark Matter Particles,
Zhongtian Dong, Doojin Kim, Kyoungchul Kong, Myeonghun Park, Miguel A. Soto Alcaraz,
arXiv:2508.09139, 2025. [Dong:2025mdk]
Early Universe production of $W$ bosons in neutrino decays,
Amalia Dariana Fodor, Andru Mihai Buga, Cosmin Crucean,
arXiv:2505.11544, 2025. [Fodor:2025iwa]
Effect of invisible neutrino decay on the neutrino oscillation at long-baselines,
Animesh Chatterjee, Srubabati Goswami, Supriya Pan, Paras Thacker,
arXiv:2411.09677, 2024. [Chatterjee:2024ekn]
Study of large extra dimension and neutrino decay at P2SO experiment,
Papia Panda, Priya Mishra, Samiran Roy, Monojit Ghosh, Rukmani Mohanta,
JHEP 05 (2025) 018,arXiv:2411.09628.
[Panda:2024ioo]
Distinguishing Beyond-Standard Model Effects in Neutrino Oscillation,
A. Calatayud-Cadenillas, A. Perez-G, A. M. Gago,
Phys.Lett.B 863 (2025) 139377,arXiv:2408.04234.
[Calatayud-Cadenillas:2024wdw]
Decaying sterile neutrinos at short baselines,
Matheus Hostert, Kevin J. Kelly, Tao Zhou,
Phys.Rev.D 110 (2024) 075002,arXiv:2406.04401.
[Hostert:2024etd]
New limits on neutrino decay from high-energy astrophysical neutrinos,
Victor B. Valera, Damiano F. G. Fiorillo, Ivan Esteban, Mauricio Bustamante,
Phys.Rev.D 110 (2024) 043004,arXiv:2405.14826.
[Valera:2024buc]
The Sun and core-collapse supernovae are leading probes of the neutrino lifetime,
Pablo Martinez-Mirave, Irene Tamborra, Mariam Tortola,
JCAP 05 (2024) 002,arXiv:2402.00116.
[Martinez-Mirave:2024hfd]
Relic neutrino decay solution to the excess radio background,
P. S. Bhupal Dev, Pasquale Di Bari, Ivan Martinez-Soler, Rishav Roshan,
JCAP 04 (2024) 046,arXiv:2312.03082.
[Dev:2023wel]
Confronting solutions of the Gallium Anomaly with reactor rate data,
Carlo Giunti, Christoph A. Ternes,
Phys.Lett.B 849 (2024) 138436,arXiv:2312.00565.
[Giunti:2023kyo]
Constraining axion-like particles with invisible neutrino decay using the IceCube observations of NGC 1068,
Bhanu Prakash Pant,
Phys.Rev.D 109 (2024) 063002,arXiv:2311.14597.
[Pant:2023lnz]
Solar neutrinos and $\nu_2$ visible decays to $\nu_1$,
Andre de Gouvea, Jean Weill, Manibrata Sen,
Phys.Rev.D 109 (2024) 013003,arXiv:2308.03838.
[deGouvea:2023jxn]
Do Neutrinos Become Flavor Unstable Due to Collisions with Matter in the Supernova Decoupling Region?,
Shashank Shalgar, Irene Tamborra,
Phys.Rev.D 109 (2024) 103011,arXiv:2307.10366.
[Shalgar:2023aca]
New Clues About Light Sterile Neutrinos: Preference for Models with Damping Effects in Global Fits,
J. M. Hardin, I. Martinez-Soler, A. Diaz, M. Jin, M. W. Kamp, C. A. Arguelles, J. M. Conrad, M. H. Shaevitz,
JHEP 09 (2023) 058,arXiv:2211.02610.
[Hardin:2022muu]
Visible Neutrino Decays and the Impact of the Daughter-Neutrino Mass,
Andre de Gouvea, Manibrata Sen, Jean Weill,
Phys.Rev.D 106 (2022) 013005,arXiv:2203.14976.
[deGouvea:2022cmo]
Weaker yet again: mass spectrum-consistent cosmological constraints on the neutrino lifetime,
Joe Zhiyu Chen, Isabel M. Oldengott, Giovanni Pierobon, Yvonne Y. Y. Wong,
Eur.Phys.J.C 82 (2022) 640,arXiv:2203.09075.
[Chen:2022idm]
Updating $\nu_{3}$ lifetime from solar antineutrino spectra,
R. Picoreti, D. Pramanik, O.L.G. Peres, P.C.D. Holanda,
Phys.Rev.D 106 (2022) 015025,arXiv:2109.13272.
[Picoreti:2021yct]
Characterizing Heavy Neutral Fermions via their Decays,
Andre de Gouvea, Patrick J. Fox, Boris J. Kayser, Kevin J. Kelly,
Phys.Rev.D 105 (2022) 015019,arXiv:2109.10358.
[deGouvea:2021rpa]
Probing neutrino decay scenarios by using the Earth matter effects on supernova neutrinos,
Edwin A. Delgado, Hiroshi Nunokawa, Alexander A. Quiroga,
JCAP 01 (2022) 003,arXiv:2109.02737.
[Delgado:2021vha]
Explaining the MiniBooNE Excess Through a Mixed Model of Oscillation and Decay,
Stefano Vergani, Nicholas W. Kamp, Alejandro Diaz, Carlos A. Arguelles, Janet M. Conrad, Mike H. Shaevitz, Melissa A. Uchida,
Phys.Rev.D 104 (2021) 095005,arXiv:2105.06470.
[Vergani:2021tgc]
Detecting the radiative decay of the cosmic neutrino background with line-intensity mapping,
Jose Luis Bernal, Andrea Caputo, Francisco Villaescusa-Navarro, Marc Kamionkowski,
Phys.Rev.Lett. 127 (2021) 131102,arXiv:2103.12099.
[Bernal:2021ylz]
Searching for Physics Beyond the Standard Model in an Off-Axis DUNE Near Detector,
Moritz Breitbach, Luca Buonocore, Claudia Frugiuele, Joachim Kopp, Lukas Mittnacht,
JHEP 01 (2022) 048,arXiv:2102.03383.
[Breitbach:2021gvv]
Invisible neutrino decay in precision cosmology,
Gabriela Barenboim, Joe Zhiyu Chen, Steen Hannestad, Isabel M. Oldengott, Thomas Tram, Yvonne Y. Y. Wong,
JCAP 2103 (2021) 087,arXiv:2011.01502.
[Barenboim:2020vrr]
Probing the sensitivity to leptonic $\delta_{CP}$ in presence of invisible decay of $\nu_3$ using atmospheric neutrinos,
Lakshmi.S.Mohan,
J.Phys. G47 (2020) 115004,arXiv:2006.04233.
[LakshmiSMohan:2020khn]
Visible Decay of Astrophysical Neutrinos at IceCube,
Asli Abdullahi, Peter B. Denton,
Phys.Rev. D102 (2020) 023018,arXiv:2005.07200.
[Abdullahi:2020rge]
New limits on neutrino decay from the Glashow resonance of high-energy cosmic neutrinos,
Mauricio Bustamante,
arXiv:2004.06844, 2020. [Bustamante:2020niz]
Neutrino Invisible Decay at DUNE: a multi-channel analysis,
A. Ghoshal, A. Giarnetti, D. Meloni,
J.Phys. G48 (2021) 055004,arXiv:2003.09012.
[Ghoshal:2020hyo]
On The Decaying-Sterile Neutrino Solution to the Electron (Anti)Neutrino Appearance Anomalies,
Andre de Gouvea, O. L. G. Peres, Suprabh Prakash, G. V. Stenico,
JHEP 2007 (2020) 141,arXiv:1911.01447.
[deGouvea:2019qre]
Decaying Sterile Neutrinos and the Short Baseline Oscillation Anomalies,
Mona Dentler, Ivan Esteban, Joachim Kopp, Pedro Machado,
Phys.Rev. D101 (2020) 115013,arXiv:1911.01427.
[Dentler:2019dhz]
On the Impact of Neutrino Decays on the Supernova Neutronization-Burst Flux,
Andre de Gouvea, Ivan Martinez-Soler, Manibrata Sen,
Phys.Rev. D101 (2020) 043013,arXiv:1910.01127.
[deGouvea:2019goq]
Explaining the MiniBooNE excess by a decaying sterile neutrino with mass in the 250 MeV range,
Oliver Fischer, Alvaro Hernandez-Cabezudo, Thomas Schwetz,
Phys.Rev. D101 (2020) 075045,arXiv:1909.09561.
[Fischer:2019fbw]
Constraining the invisible neutrino decay with KM3NeT-ORCA,
P.F. de Salas, S. Pastor, C.A. Ternes, T. Thakore, M. Tortola,
Phys.Lett. B789 (2019) 472-479,arXiv:1810.10916.
[deSalas:2018kri]
Constraining Neutrino Lifetimes and Magnetic Moments via Solar Neutrinos in the Large Xenon Detectors,
Guo-yuan Huang, Shun Zhou,
JCAP 1902 (2019) 024,arXiv:1810.03877.
[Huang:2018nxj]
Addressing the Majorana vs. Dirac Question with Neutrino Decays,
A. Baha Balantekin, Andre de Gouvea, Boris Kayser,
Phys.Lett.B 789 (2019) 488-495,arXiv:1808.10518.
[Balantekin:2018ukw]
Matter effects in neutrino visible decay at future long-baseline experiments,
M. V. Ascencio-Sosa, A. M. Calatayud-Cadenillas, A. M. Gago, J. Jones-Perez,
Eur.Phys.J. C78 (2018) 809,arXiv:1805.03279.
[Ascencio-Sosa:2018lbk]
Invisible neutrino decay in the light of NOvA and T2K data,
Sandhya Choubey, Debajyoti Dutta, Dipyaman Pramanik,
JHEP 1808 (2018) 141,arXiv:1805.01848.
[Choubey:2018cfz]
Precision constraints on radiative neutrino decay with CMB spectral distortion,
Jelle L. Aalberts et al.,
Phys.Rev. D98 (2018) 023001,arXiv:1803.00588.
[Aalberts:2018obr]
Exploring a Non-Minimal Sterile Neutrino Model Involving Decay at IceCube and Beyond,
Zander Moss, Marjon H. Moulai, Carlos A. Arguelles, Janet M. Conrad,
Phys.Rev. D97 (2018) 055017,arXiv:1711.05921.
[Moss:2017pur]
Sensitivity to neutrino decay with atmospheric neutrinos at INO,
Sandhya Choubey, Srubabati Goswami, Chandan Gupta, S. M. Lakshmi, Tarak Thakore,
Phys.Rev.D 97 (2018) 033005,arXiv:1709.10376.
[Choubey:2017eyg]
A Study of Invisible Neutrino Decay at DUNE and its Effects on $\theta_{23}$ Measurement,
Sandhya Choubey, Srubabati Goswami, Dipyaman Pramanik,
JHEP 1802 (2018) 055,arXiv:1705.05820.
[Choubey:2017dyu]
Circular polarisation: a new probe of dark matter and neutrinos in the sky,
Celine Bohm, Celine Degrande Olivier Mattelaer, Aaron C. Vincent,
JCAP 1705 (2017) 043,arXiv:1701.02754.
[Boehm:2017nrl]
Testing decay of astrophysical neutrinos with incomplete information,
Mauricio Bustamante, John F. Beacom, Kohta Murase,
Phys.Rev. D95 (2017) 063013,arXiv:1610.02096.
[Bustamante:2016ciw]
Neutrino Decay and Solar Neutrino Seasonal Effect,
R. Picoreti, M. M. Guzzo, P. C. de Holanda, O. L. G. Peres,
Phys.Lett. B761 (2016) 70-73,arXiv:1506.08158.
[Picoreti:2015ika]
Solar Neutrinos and the Decaying Neutrino Hypothesis,
Jeffrey M. Berryman, Andre de Gouvea, Daniel Hernandez,
Phys. Rev. D92 (2015) 073003,arXiv:1411.0308.
[Berryman:2014qha]
Nearly degenerate heavy sterile neutrinos in cascade decay: mixing and oscillations,
Daniel Boyanovsky,
Phys. Rev. D90 (2014) 105024,arXiv:1409.4265.
[Boyanovsky:2014una]
Constraints on neutrino decay lifetime using accelerator neutrino and anti-neutrino disappearance data,
R. A. Gomes, A. L. G. Gomes, O. L. G. Peres,
Phys.Lett. B740 (2015) 345-352,arXiv:1407.5640.
[Gomes:2014yua]
Neutrino Decays over Cosmological Distances and the Implications for Neutrino Telescopes,
Philipp Baerwald, Mauricio Bustamante, Walter Winter,
JCAP 1210 (2012) 020,arXiv:1208.4600.
[Baerwald:2012kc]
New limits on radiative sterile neutrino decays from a search for single photons in neutrino interactions,
S. N. Gninenko,
Phys. Lett. B710 (2012) 86-90,arXiv:1201.5194.
[Gninenko:2012rw]
Search for Radiative Decays of Cosmic Background Neutrino using Cosmic Infrared Background Energy Spectrum,
Shin-Hong Kim, Ken-ichi Takemasa, Yuji Takeuchi, Shuji Matsuura,
J. Phys. Soc Jap. 81 (2012) 024101,arXiv:1112.4568.
[Kim:2011ye]
Can the excess in the FeXXVI Ly gamma line from the Galactic Center provide evidence for 17 keV sterile neutrinos?,
D. A. Prokhorov, Joseph Silk,
Astrophys.J. 725 (2010) L131,arXiv:1001.0215.
[Prokhorov:2010us]
New Lower Limits on the Lifetime of Heavy Neutrino Radiative Decay,
S. Cecchini et al.,
Astropart. Phys. 34 (2011) 486-492,arXiv:0912.5086.
[Cecchini:2009fx]
Status of Oscillation plus Decay of Atmospheric and Long-Baseline Neutrinos,
M.C. Gonzalez-Garcia, M. Maltoni,
Phys. Lett. B663 (2008) 405-409,arXiv:0802.3699.
[Gonzalez-Garcia:2008mgl]
Investigating Possible Neutrino Decay in Long Baseline Experiment Using ICAL as Far end Detector,
Debasish Majumdar, Ambar Ghosal,
arXiv:0712.0697, 2007. [Majumdar:2007kn]
Heating the intergalactic medium by radiative decay of neutrinos,
M. H. Chan, M. -C. Chu,
Astrophys. J. 658 (2007) 859,arXiv:astro-ph/0609563.
[Chan:2006nw]
Explaining LSND by a decaying sterile neutrino,
Sergio Palomares-Ruiz, Silvia Pascoli, Thomas Schwetz,
JHEP 0509 (2005) 048,arXiv:hep-ph/0505216. Comment:The figure 3 (left panel) corresponds to neutrino oscillations in (3+1) mass scheme with the last NOMAD data included. [M.L.]. [Palomares-Ruiz:2005zbh]
Search for possible neutrino radiative decays during the 2001 total solar eclipse,
S. Cecchini et al.,
Astropart. Phys. 21 (2004) 183,arXiv:hep-ex/0402008.
[Cecchini:2004ym]
Three-generation flavor transitions and decays of supernova relic neutrinos,
G.L. Fogli, E. Lisi, A. Mirizzi, D. Montanino,
Phys. Rev. D70 (2004) 013001,arXiv:hep-ph/0401227.
[Fogli:2004gy]
Decaying neutrinos and implications from the supernova relic neutrino observation,
Shin'ichiro Ando,
Phys. Lett. B570 (2003) 11,arXiv:hep-ph/0307169.
[Ando:2003ie]
Improved treatment of cosmic microwave background fluctuations induced by a late decaying massive neutrino,
Manoj Kaplinghat, Robert E. Lopez, Scott Dodelson, Robert J. Scherrer,
Phys. Rev. D60 (1999) 123508,arXiv:astro-ph/9907388.
[Kaplinghat:1999xy]
Is neutrino decay really ruled out as a solution to the atmospheric neutrino problem from Super-Kamiokande data?,
Sandhya Choubey, Srubabati Goswami,
Astropart. Phys. 14 (2000) 67-78,arXiv:hep-ph/9904257.
[Choubey:1999ir]
Photon spectrum produced by the late decay of a cosmic neutrino background,
Eduard Masso, Ramon Toldra,
Phys. Rev. D60 (1999) 083503,arXiv:astro-ph/9903397.
[Masso:1999wj]
Super-Kamiokande data and atmospheric neutrino decay,
Gian Luigi Fogli, E. Lisi, A. Marrone, G. Scioscia,
Phys. Rev. D59 (1999) 117303,arXiv:hep-ph/9902267.
[Fogli:1999qt]
On exotic solutions of the atmospheric neutrino problem,
Paolo Lipari, Maurizio Lusignoli,
Phys. Rev. D60 (1999) 013003,arXiv:hep-ph/9901350.
[Lipari:1999vh]
Neutrino decay as an explanation of atmospheric neutrino observations,
Vernon D. Barger, J. G. Learned, S. Pakvasa, Thomas J. Weiler,
Phys. Rev. Lett. 82 (1999) 2640-2643,arXiv:astro-ph/9810121.
[Barger:1998xk]
Comment on neutrino radiative decay limits from the infrared background,
Georg G. Raffelt,
Phys. Rev. Lett. 81 (1998) 4020,arXiv:astro-ph/9808299.
[Raffelt:1998xu]
Probing unstable massive neutrinos with current cosmic microwave background observations,
Robert E. Lopez, Scott Dodelson, Robert J. Scherrer, Michael S. Turner,
Phys. Rev. Lett. 81 (1998) 3075-3078,arXiv:astro-ph/9806116.
[Lopez:1998jt]
New limits to the IR background: Bounds on radiative neutrino decay and on VMO contributions to the dark matter problem,
S.D. Biller, J. Buckley, A. Burdett, J. Bussons Gordo, D.A. Carter-Lewis et al.,
Phys. Rev. Lett. 80 (1998) 2992-2995,arXiv:astro-ph/9802234.
[Biller:1998nc]
Neutrino transitions $\nu \to \nu \gamma$, $\nu \to \nu e^{+} e^{-}$ in a strong magnetic field as a possible origin of cosmological gamma burst,
A.A. Gvozdev, A.V. Kuznetsov, N.V. Mikheev, L.A. Vassilevskaya,
Phys.Atom.Nucl. 61 (1998) 1031-1034,arXiv:hep-ph/9710219.
[Gvozdev:1997bs]
An updated precision estimate of the Hubble constant and the age and density of the universe in the decaying neutrino theory,
D. W. Sciama,
Mon.Not.Roy.Astron.Soc. (1997),arXiv:astro-ph/9703068.
[Sciama:1997kg]
Gamma-rays and the decay of neutrinos from SN1987A,
Andrew H. Jaffe, Michael S. Turner,
Phys. Rev. D55 (1997) 7951-7959,arXiv:astro-ph/9601104.
[Jaffe:1995sw]
Theoretical possibilities and observational constraints for radiatively decaying neutrinos with mass near 30-eV,
S. Bowyer, M. Lampton, J. T. Peltoniemi, M. Roos,
Phys. Rev. D52 (1995) 3214-3225. [Bowyer:1994by]
Structure formation with decaying neutrinos,
Martin J. White, G. Gelmini, J. Silk,
Phys. Rev. D51 (1995) 2669-2676,arXiv:astro-ph/9411098.
[White:1994as]
Dark matter and structure formation with late decaying particles,
Hang Bae Kim, Jihn E. Kim,
Nucl. Phys. B433 (1995) 421-434,arXiv:hep-ph/9405385.
[Kim:1994ub]
Is a massive tau-neutrino just what cold dark matter needs?,
Scott Dodelson, Geza Gyuk, Michael S. Turner,
Phys. Rev. Lett. 72 (1994) 3754-3757,arXiv:astro-ph/9402028.
[Dodelson:1994it]
Primordial nucleosynthesis with a decaying tau-neutrino,
Scott Dodelson, Geza Gyuk, Michael S. Turner,
Phys. Rev. D49 (1994) 5068-5079,arXiv:astro-ph/9312062.
[Dodelson:1993ms]
A Neutrino decay model, solar anti-neutrinos and atmospheric neutrinos,
Andy Acker, Anjan Joshipura, Sandip Pakvasa,
Phys. Lett. B285 (1992) 371-375. [Acker:1992eh]
Constraints to the decays of Dirac neutrinos from SN1987A,
Scott Dodelson, Joshua A. Frieman, Michael S. Turner,
Phys. Rev. Lett. 68 (1992) 2572-2575. [Dodelson:1992tv]
The Grand Unified Photon Spectrum: A Coherent View of the Diffuse Extragalactic Background Radiation,
M. Ted Ressell, Michael S. Turner,
Comments Astrophys. 14 (1990) 323. [Ressell:1989rz]
Precision estimate of cosmological and particle parameters in the decaying dark matter hypothesis,
D. W. Sciama,
Phys. Rev. Lett. 65 (1990) 2839-2841. [Sciama:1990as]
Limits to the Radiative Decays of Neutrinos and Axions from Gamma-Ray Observations of SN 1987a,
Edward W. Kolb, Michael S. Turner,
Phys. Rev. Lett. 62 (1989) 509. [Kolb:1988pe]
Big Bang Photosynthesis and Pregalactic Nucleon Synthesis of Light Elements,
J. Audouze, D. Lindley, J. Silk,
Astrophys.J. 293 (1985) L53-L57. [Audouze:1985be]
Astrophysical constraints on the radiative lifetime of neutrinos with mass between 10-eV and 100-eV,
Randy Kimble, Stuart Bowyer, Peter Jakobsen,
Phys. Rev. Lett. 46 (1981) 80. [Kimble:1980vz]
Limits from Primordial Nucleosynthesis on the Properties of Massive Neutral Leptons,
D.A. Dicus, Edward W. Kolb, V.L. Teplitz, R.V. Wagoner,
Phys. Rev. D17 (1978) 1529-1538. [Dicus:1977av]
Cosmological Constraints on the Lifetime and the Mass of the Heavy Lepton Neutrino: Constraints From the Big Bang Nucleosynthesis,
Shoken Miyama, Katsuhiko Sato,
Prog.Theor.Phys. 60 (1978) 1703. [Miyama:1978mn]
Cosmological Constraints on the Mass and the Number of Heavy Lepton Neutrinos,
Katsuhiko Sato, Makoto Kobayashi,
Prog.Theor.Phys. 58 (1977) 1775. [Sato:1977ye]
Relic neutrino decay: a solution to the excess radio background,
Rishav Roshan,
arXiv:2406.01415, 2024.Cosmology session of the 58th Rencontres de Moriond. [Roshan:2024lez]
Neutrino nonradiative decay and the diffuse supernova neutrino background,
Pilar Ivanez-Ballesteros, M. Cristina Volpe,
PoS TAUP2023 (2024) 182,arXiv:2311.09725.
18th International Conference on Topics in Astroparticle and Underground Physics. [Ivanez-Ballesteros:2023lob]
Probing 21cm cosmology and radiative neutrino decays,
Kareem R. H. A. M. Farrag,
arXiv:1904.08217, 2019.Nuphys 2018, Prospects in Neutrino Physics, December 19-21, 2018. [Farrag:2019ovs]
Neutrino Decays and Neutrino Telescopes,
S. Pakvasa,
arXiv:hep-ph/0305317, 2003.Tenth International Conference on Neutrino Telescopes, Mar 11-14, 2003; Venice, Italy. [Pakvasa:2003db]
Lorentz Breaking and $SU(2)_L \times U(1)_Y$ Gauge Invariance for Neutrino Decays,
U. D. Jentschura, I. Nandori, G. Somogyi,
Int.J.Mod.Phys. E28 (2019) 1950072,arXiv:1908.01389.
[Jentschura:2019wsr]
U(1)' mediated decays of heavy sterile neutrinos in MiniBooNE,
Peter Ballett, Silvia Pascoli, Mark Ross-Lonergan,
Phys.Rev.D 99 (2019) 071701,arXiv:1808.02915.
[Ballett:2018ynz]
A Dark Neutrino Portal to Explain MiniBooNE,
Enrico Bertuzzo, Sudip Jana, Pedro A. N. Machado, Renata Zukanovich Funchal,
Phys.Rev.Lett. 121 (2018) 241801,arXiv:1807.09877.
[Bertuzzo:2018itn]
Visible neutrino decay in the light of appearance and disappearance long baseline experiments,
Alberto M. Gago, Ricardo A. Gomes, Abner L. G. Gomes, Joel Jones-Perez, Orlando L. G. Peres,
JHEP 1711 (2017) 022,arXiv:1705.03074.
[Gago:2017zzy]
Radiative Decays of Cosmic Background Neutrinos in Extensions of MSSM with a Vector Like Lepton Generation,
Amin Aboubrahim, Tarek Ibrahim, Pran Nath,
Phys. Rev. D88 (2013) 013019,arXiv:1306.2275.
[Aboubrahim:2013gfa]
Constraints on sub-GeV hidden sector gauge bosons from a search for heavy neutrino decays,
S. N. Gninenko,
Phys. Lett. B713 (2012) 244-248,arXiv:1204.3583.
[Gninenko:2012eq]
Remarks on the Zee Model of Neutrino Mixing ($\mu \to e + \gamma$, $\nu_{\text{H}} \to \nu_{\text{L}} + \gamma$, etc.),
S.T. Petcov,
Phys.Lett. B115 (1982) 401-406. [Petcov:1982en]
Search Neutrino Unbound
Cross search NU
It is possible to perform a cross search between the various pages of Neutrino Unbound.
This is useful if you want to show the common elements that appear
in the listings of two (or more) different topics or experiments.