Introduction to the Physics of Massive and Mixed Neutrinos,
Samoil Bilenky, Springer, 2018.Lecture Notes in Physics, Volume 947.https://doi.org/10.1007/978-3-319-74802-3.
[Bilenky:2018hbz]
The physics of neutrinos,
Vernon Barger, Danny Marfatia, Kerry Whisnant, Princeton University Press, 2012.ISBN 978-0691128535.http://press.princeton.edu/titles/9913.html.
[Barger:2012pxa]
Massive Neutrinos in Physics and Astrophysics,
R. N. Mohapatra, P. B. Pal, World Scientific, 2004.Third Edition, Lecture Notes in Physics, Vol. 72.http://www.worldscientific.com/books/physics/5024.html.
[Mohapatra-Pal:2004]
Stars as laboratories for fundamental physics: The astrophysics of neutrinos, axions, and other weakly interacting particles,
G.G. Raffelt, University of Chicago Press, 1996.ISBN 0-226-70272-3.http://wwwth.mpp.mpg.de/members/raffelt/pages/mybook.html.
[Raffelt:1996wa]
The Physics of massive neutrinos,
B. Kayser, F. Gibrat-Debu, F. Perrier,
World Sci.Lect.Notes Phys. 25 (1989) 1-117.World Sci.Lect.Notes Phys. 25. [Kayser:1987ism]
On Invariants of Quark and Lepton Mass Matrices in the Standard Model,
Cecilia Jarlskog,
Comptes Rendus Physique 13 (2012) 111-114,arXiv:1102.2823.
[Jarlskog:2011qa]
Neutrino Mass, Mixing, and Flavor Change,
B. Kayser,
Phys. Lett. B592 (2004).The Review of Particle Properties 2004.http://pdg.lbl.gov/2005/reviews/numixrpp.pdf.
[Kayser:2004pv]
Absolute values of neutrino masses: Status and prospects,
S. M. Bilenky, C. Giunti, J. A. Grifols, E. Masso,
Phys. Rep. 379 (2003) 69-148,arXiv:hep-ph/0211462.
[Bilenky:2002aw]
Lepton numbers in the framework of neutrino mixing,
S. M. Bilenky, C. Giunti,
Int. J. Mod. Phys. A16 (2001) 3931-3949,arXiv:hep-ph/0102320.
[Bilenky:2001yh]
Phenomenology of neutrino oscillations,
S. M. Bilenky, C. Giunti, W. Grimus,
Prog. Part. Nucl. Phys. 43 (1999) 1,arXiv:hep-ph/9812360.
[Bilenky:1998dt]
On the Origin of Majorana Neutrino Masses,
S. M. Bilenky,
arXiv:2010.05336, 2020.5-th International Conference on Particle Physics and Astrophysics, Moscow, Russia, 5-9 October 2020. [Bilenky:2020zdq]
Majorana Fermions in Particle Physics, Solid State and Quantum Information,
L. Borsten, M. J. Duff,
Subnucl.Ser. 53 (2017) 77-121,arXiv:1612.01371.
Erice International School of Subnuclear Physics, 53rd Course: 'The Future of Our Physics Including New Frontiers', and Celebration of the Triumph of Ettore Majorana, Erice, 24 June-3 July 2015. [Borsten:2016mfn]
Selected Topics in Majorana Neutrino Physics,
Luciano Maiani,
Riv.Nuovo Cim. 37 (2014) 417-466,arXiv:1406.5503.
Lectures Notes from the Ettore Majorana Lectures, Diaprtimento di Fisica, Universita' Federico II, Napoli, March 2014. Rivista del Nuovo Cimento, 2014. [Maiani:2014vqa]
The Physics of Neutrinos,
Renata Zukanovich Funchal, Benoit Schmauch, Gaelle Giesen,
arXiv:1308.1029, 2013.Course given at Institut de Physique Theorique of CEA/Saclay in January/February 2013. [ZukanovichFunchal:2013tdb]
Neutrino physics,
P. Hernandez,
arXiv:1010.4131, 2010.5th CERN-Latin-American School of High-Energy Physics, Recinto Quirama, Colombia, 15 - 28 Mar 2009. [Hernandez:2010mi]
Are neutrinos their own antiparticles?,
Boris Kayser,
J. Phys. Conf. Ser. 173 (2009) 012013,arXiv:0903.0899.
Carolina International Symposium on Neutrino Physics. [Kayser:2009zz]
Are Neutrinos Majorana Particles?,
G. Rajasekaran,
arXiv:0803.4387, 2008.Workshop on Neutrinoless Double Beta Decay (NDBD07) at Tata Institute of Fundamental Research, Mumbai, October 2007. [Rajasekaran:2008ct]
Observation of high-energy neutrino reactions and the existence of two kinds of neutrinos,
G. Danby et al.,
Phys. Rev. Lett. 9 (1962) 36-44. [Danby:1962nd]
Detection of the free anti-neutrino,
F. Reines, C. L. Cowan, F. B. Harrison, A. D. McGuire, H. W. Kruse,
Phys. Rev. 117 (1960) 159-173. [Reines:1960pr]
Helicity of neutrinos,
M. Goldhaber, L. Grodzins, A. W. Sunyar,
Phys. Rev. 109 (1958) 1015-1017. From the article:we find that the neutrino is left-handed, i.e. $ \mathbf{\sigma}_{\nu} \cdot \hat{\mathbf{p}}_{\nu} = - 1 $ (negative helicity). [Goldhaber:1958nb]
On the Mikheev-Smirnov-Wolfenstein (MSW) mechanism of amplification of neutrino oscillations in matter,
P. Langacker, S. T. Petcov, G. Steigman, S. Toshev,
Nucl. Phys. B282 (1987) 589. Comment:It is shown that the Dirac or Majorana nature of neutrinos cannot be distinguished in neutrino oscillations in matter, as well as in vacuum, because neutrino oscillations do not depend on the Majorana phases. [C.G.]. [Langacker:1986jv]
The phenomenology of neutrino oscillations,
I. Yu. Kobzarev, B. V. Martemyanov, L. B. Okun, M. G. Shchepkin,
Sov. J. Nucl. Phys. 32 (1980) 823. [Kobzarev:1980nk]
Some implications of the CP invariance for mixing of Majorana neutrinos,
S. M. Bilenky, N. P. Nedelcheva, S. T. Petcov,
Nucl. Phys. B247 (1984) 61. [Bilenky:1984fg]
CP violation in Majorana neutrinos,
M. Doi, T. Kotani, H. Nishiura, K. Okuda, E. Takasugi,
Phys. Lett. B102 (1981) 323. Comment:It is shown that the Dirac or Majorana nature of neutrinos cannot be distinguished in neutrino oscillations in vacuum, because neutrino oscillations in vacuum do not depend on the Majorana phases. [C.G.]. [Doi:1980yb]
On oscillations of neutrinos with Dirac and Majorana masses,
S. M. Bilenky, J. Hosek, S. T. Petcov,
Phys. Lett. B94 (1980) 495. Comment:It is shown that the Dirac or Majorana nature of neutrinos cannot be distinguished in neutrino oscillations in vacuum, because neutrino oscillations in vacuum do not depend on the Majorana phases. [C.G.]. [Bilenky:1980cx]
Neutrino mass and nature through its mediation in atomic clock interference,
Jose Bernabeu, Dylan O. Sabulsky, Federico Sanchez, Alejandro Segarra,
AVS Quantum Sci. 6 (2023) 014410,arXiv:2306.00767.
[Bernabeu:2023ulb]
Search for Majorana neutrinos in same-sign $WW$ scattering events from $pp$ collisions at $\sqrt{s}=13$ TeV,
Georges Aad et al.(ATLAS),
Eur.Phys.J.C 83 (2023) 824,arXiv:2305.14931.
[ATLAS:2023tkz]
Search for heavy Majorana neutrino in lepton number violating decays of D- > K pi e+ e+,
BESIII Collaboration et al.,
Phys.Rev. D99 (2019) 112002,arXiv:1902.02450.
[BESIII:2019oef]
Search for heavy Majorana neutrinos in same-sign dilepton channels in proton-proton collisions at $\sqrt{s} =$ 13 TeV,
Albert M Sirunyan et al.(CMS),
JHEP 1901 (2019) 122,arXiv:1806.10905.
[CMS:2018jxx]
Search for heavy Majorana neutrinos in $e^{\pm} e^{\pm} + \text{jets}$ and $e^{\pm} \mu^{\pm} + \text{jets}$ events in proton-proton collisions at $\sqrt{s} = 8 \, \text{TeV}$,
Vardan Khachatryan et al.(CMS),
JHEP 1604 (2016) 169,arXiv:1603.02248.
[CMS:2016aro]
Search for heavy Majorana neutrinos with the ATLAS detector in $pp$ collisions at $\sqrt{s} = 8 \, \text{TeV}$,
(ATLAS),
JHEP 07 (2015) 162,arXiv:1506.06020.
[ATLAS:2015gtp]
Search for heavy Majorana neutrinos in $\mu^{\pm} \mu^{\pm} + \text{jets}$ events in proton-proton collisions at $\sqrt{s} = 8 \, \text{TeV}$,
Vardan Khachatryan et al.(CMS),
Phys. Lett. B748 (2015) 144-166,arXiv:1501.05566.
[CMS:2015qur]
Search for Majorana neutrinos in $B^- \to \pi^+\mu^-\mu^-$ decays,
Roel Aaij et al.(LHCb),
Phys. Rev. Lett. 112 (2014) 131802,arXiv:1401.5361.
[LHCb:2014osd]
Search for heavy Majorana neutrinos in $\mu^{\pm}\mu^{\pm} +$ jets and $e^{\pm}e^{\pm} +$ jets events in pp collisions at $\sqrt{s} =$ 7 TeV,
Serguei Chatrchyan et al.(CMS),
Phys. Lett. B717 (2012) 109-128,arXiv:1207.6079.
[CMS:2012wqj]
Search for heavy neutrinos and right-handed $W$ bosons in events with two leptons and jets in $pp$ collisions at $\sqrt{s}=7$ TeV with the ATLAS detector,
Georges Aad et al.(ATLAS),
Eur. Phys. J. C72 (2012) 2056,arXiv:1203.5420.
[ATLAS:2012ak]
Determination of the Michel parameters xi and delta in leptonic tau decays,
H. Albrecht et al.(ARGUS),
Phys. Lett. B349 (1995) 576-584. From the abstract:Simultaneously to the determination of the Michel parameters, a measurement of the $\tau$-neutrino helicity $h_{\nu_{\tau}}$ in the decay $ \tau^{\mp} \to \pi^{mp} \pi^{+} \pi^{-} \nu $ was obtained. We observed $ h_{\nu_{\tau}} = -0.85 {}^{+0.15}_{-0.17} $. [ARGUS:1995bpe]
Direct measurement of the helicity of the muonic neutrino,
L. P. Roesch, V. L. Telegdi, P. Truttmann, A. Zehnder, L. Grenacs, L. Palffy,
Am. J. Phys. 50 (1982) 931-935. From the abstract:We find $ h_{\nu_{\mu}} = -1.06 \pm 0.11 $. [Roesch:1982ry]
Average Polarization of ${}^{12}\text{B}$ in ${}^{12}\text{C} (\mu,\nu) {}^{12}\text{B(g.s.)}$ Reaction: Helicity of the pi Decay Muon and Nature of the Weak Coupling,
A. Possoz, P. Deschepper, L. Grenacs, P. Lebrun, J. Lehmann, L. Palffy, A. De Moura Goncalves, C. Samour, V. L. Telegdi,
Phys. Lett. 70B (1977) 265.[Erratum: Phys. Lett.73B,504(1978)]. Comment:$ h_{\bar\nu_{\mu}} = h_{\mu} = 1.0 \pm 0.1 $. [Possoz:1977jf]
Observation of high-energy neutrino reactions and the existence of two kinds of neutrinos,
G. Danby et al.,
Phys. Rev. Lett. 9 (1962) 36-44. [Danby:1962nd]
Helicity of $\mu^-$ Mesons from $\pi$-Meson Decay,
G. Backenstoss, B. D. Hyams, G. Knop, P. C. Marin, U. Stierlin,
Phys. Rev. Lett. 6 (1961) 415-416. From the article:$ h_{\mu} = 1.17 \pm 0.32 $. Comment:In $\pi^{-} \to \mu^{-} + \bar\nu_{\mu} $ we have $ h_{\bar\nu_{\mu}} = h_{\mu} $. [Backenstoss:1961zz]
Helicity of $\mu^-$ Mesons: Mott Scattering of Polarized Muons,
Marcel Bardon, Paolo Franzini, Juliet Lee,
Phys. Rev. Lett. 7 (1961) 23-25. From the article:it is concluded that the helicity of the $\mu^-$ meson in $\pi^{-} \to \mu^{-} + \bar\nu_{\mu} $ is positive (right-handed) in agreement with the V-A theory. Thus the anti-neutrino is also right-handed, and hence no evidence is deduced from this result for $\nu_{e}\neq\nu_{\mu}$. [Bardon:1961zz]
Detection of the free anti-neutrino,
F. Reines, C. L. Cowan, F. B. Harrison, A. D. McGuire, H. W. Kruse,
Phys. Rev. 117 (1960) 159-173. [Reines:1960pr]
Helicity of neutrinos,
M. Goldhaber, L. Grodzins, A. W. Sunyar,
Phys. Rev. 109 (1958) 1015-1017. From the article:we find that the neutrino is left-handed, i.e. $ \mathbf{\sigma}_{\nu} \cdot \hat{\mathbf{p}}_{\nu} = - 1 $ (negative helicity). [Goldhaber:1958nb]
Search for Heavy Neutrino in K- > mu nu_h(nu_h- > nu gamma) Decay at ISTRA+ Setup,
ISTRA+ collaboration et al.(ISTRA+),
Phys. Lett. B710 (2012) 307-317,arXiv:1110.1610.
QFTHEP-2011. [ISTRA:2011bgc]
Excited Fermions at H1,
E. Sauvan(H1),
J. Phys. Conf. Ser. 110 (2008) 072037,arXiv:0709.0673.
2007 Europhysics Conference on High Energy Physics, Manchester, England, 19-25 July 2007. [Sauvan:2007dm]
Measurement of the Z boson invisible width at $\sqrt{s}=13$ TeV with the ATLAS detector,
Georges Aad et al.(ATLAS),
Phys.Lett.B 854 (2024) 138705,arXiv:2312.02789.
[ATLAS:2023ynf]
Precision electroweak measurements on the Z resonance,
S. Schael et al.(ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group),
Phys. Rept. 427 (2006) 257,arXiv:hep-ex/0509008. From the abstract:The number of light neutrino species is determined to be $ 2.9840 \pm 0.0082 $. [ALEPH:2005ab]
Search for the Anomalous Production of Single Photons in $e^+ e^-$ Annihilation at $\sqrt{s}=29\,\text{GeV}$,
C. Hearty, J.E. Rothberg, K.K. Young, A.S. Johnson, John Scott Whitaker et al.,
Phys. Rev. D39 (1989) 3207. [Hearty:1989pq]
Neutrino Counting With the CELLO Detector and Search for Supersymmetric Particles,
H.J. Behrend et al.(CELLO),
Phys.Lett. B215 (1988) 186. [CELLO:1988wwh]
Intermediate vector boson cross-sections at the CERN Super Proton Synchrotron collider and the number of neutrino types,
C. Albajar et al.(UA1),
Phys. Lett. B198 (1987) 271. [UA1:1987dfv]
Can gravity distinguish between Dirac and Majorana Neutrinos?,
S. A. Alavi, A. Abbasnezhad,
Grav.Cosmol. 22 (2016) 288-298,arXiv:1201.4741.
[Alavi:2012np]
Rephasing Invariants of Quark and Lepton Mixing Matrices,
Elizabeth Jenkins, Aneesh V. Manohar,
Nucl. Phys. B792 (2008) 187-205,arXiv:0706.4313.
[Jenkins:2007ip]
Theory of neutral particles: McLennan-Case construct for neutrino, its generalization, and a fundamentally new wave equation,
D. V. Ahluwalia,
Int. J. Mod. Phys. A11 (1996) 1855-1874,arXiv:hep-th/9409134.
[Ahluwalia:1994uy]
On the Mikheev-Smirnov-Wolfenstein (MSW) mechanism of amplification of neutrino oscillations in matter,
P. Langacker, S. T. Petcov, G. Steigman, S. Toshev,
Nucl. Phys. B282 (1987) 589. Comment:It is shown that the Dirac or Majorana nature of neutrinos cannot be distinguished in neutrino oscillations in matter, as well as in vacuum, because neutrino oscillations do not depend on the Majorana phases. [C.G.]. [Langacker:1986jv]
General {CP} Properties of Neutrino Mass Eigenstates,
Simon Peter Rosen,
Phys. Rev. D29 (1984) 2535.[Erratum: Phys. Rev. D 30 (1984) 1995]. [Rosen:1984wtl]
Electromagnetic properties and decays of Dirac and Majorana neutrinos in a general class of gauge theories,
Robert E. Shrock,
Nucl. Phys. B206 (1982) 359. [Shrock:1982sc]
Neutrino masses, mixings and oscillations in SU(2) x U(1) models of electroweak interactions,
T. P. Cheng, Ling-Fong Li,
Phys. Rev. D22 (1980) 2860. [Cheng:1980qt]
The phenomenology of neutrino oscillations,
I. Yu. Kobzarev, B. V. Martemyanov, L. B. Okun, M. G. Shchepkin,
Sov. J. Nucl. Phys. 32 (1980) 823. [Kobzarev:1980nk]
Comments on Exploring Quantum Statistics for Dirac and Majorana Neutrinos using Spinor-Helicity technique (arXiv:2507.07180 [hep-ph]),
C. S. Kim, M. V. N. Murthy, Dibyakrupa Sahoo,
arXiv:2507.14463, 2025. [Kim:2025vnz]
Exploring Quantum Statistics for Dirac and Majorana Neutrinos using Spinor-Helicity techniques,
Innes Bigaran, Stephen J. Parke, Pedro Pasquini,
Phys.Rev.D 112 (2025) 053008,arXiv:2507.07180.
[Bigaran:2025kod]
Comments on 'Can quantum statistics help distinguish Dirac from Majorana neutrinos?' (arXiv:2402.05172 [hep-ph]),
C. S. Kim, M. V. N. Murthy, Dibyakrupa Sahoo,
arXiv:2402.11386, 2024. [Kim:2024xof]
Can quantum statistics help distinguish Dirac from Majorana neutrinos?,
Evgeny Akhmedov, Andreas Trautner,
JHEP 05 (2024) 156,arXiv:2402.05172.
[Akhmedov:2024qpr]
Comments on 'On the Dirac-Majorana neutrinos distinction in four-body decays' (arXiv:2305.14140 [hep-ph]),
C. S. Kim, M. V. N. Murthy, Dibyakrupa Sahoo,
arXiv:2308.08464, 2023. [Kim:2023ohr]
On the Dirac-Majorana neutrinos distinction in four-body decays,
Juan Manuel Marquez, Diego Portillo-Sanchez, Gabriel Lopez Castro, Pablo Roig,
Phys.Rev.D 109 (2024) 033005,arXiv:2305.14140.
[Marquez:2023rpc]
Determination of Majorana type-phases from the time evolution of lepton numbers,
Nicholas J. Benoit, Yuta Kawamura, Saki Kawano, Takuya Morozumi, Yusuke Shimizu, Kei Yamamoto,
PTEP 2025 (2025) 043B02,arXiv:2212.00142.
[Benoit:2022qmt]
Three-Body Decays of Heavy Dirac and Majorana Fermions,
Andre de Gouvea, Patrick J. Fox, Boris J. Kayser, Kevin J. Kelly,
Phys.Rev.D 104 (2021) 015038,arXiv:2104.05719.
[deGouvea:2021ual]
The number of sufficient and necessary conditions for CP conservation with Majorana neutrinos: three or four?,
Bingrong Yu, Shun Zhou,
Phys.Lett. B800 (2020) 135085,arXiv:1908.09306.
[Yu:2019ihs]
An effective field theory for non-relativistic Majorana neutrinos,
Simone Biondini, Nora Brambilla, Miguel Angel Escobedo, Antonio Vairo,
JHEP 1312 (2013) 028,arXiv:1307.7680.
[Biondini:2013xua]
Oscillation of Dirac and Majorana neutrinos from muon decay in the case of a general interaction,
Robert Szafron, Marek Zralek,
Phys. Lett. B718 (2012) 113-116,arXiv:1210.2996.
[Szafron:2012mi]
The Physical Range of Majorana Neutrino Mixing Parameters,
Andre de Gouvea, James Jenkins,
Phys. Rev. D78 (2008) 053003,arXiv:0804.3627.
[deGouvea:2008nm]
Probing the quantum nature of the neutrino with two-particle interferometry,
Thomas D. Gutierrez,
Phys.Rev.Lett. 96 (2006) 121802,arXiv:nucl-th/0510069.
[Gutierrez:2006bm]
From transition magnetic moments to majorana neutrino masses,
Sacha Davidson, Martin Gorbahn, Arcadi Santamaria,
Phys. Lett. B626 (2005) 151,arXiv:hep-ph/0506085.
[Davidson:2005cs]
Beta decays with momentum space Majorana spinors,
M. Kirchbach, C. Compean, L. Noriega,
Eur. Phys. J. A22 (2004) 149,arXiv:hep-ph/0411316.
[Kirchbach:2004qn]
Extended set of Majorana spinors, a new dispersion relation, and a preferred frame,
D. V. Ahluwalia-Khalilova,
arXiv:hep-ph/0305336, 2003. [Ahluwalia:2003jt]
Manifest CP Violation from Majorana Phases,
A. de Gouvea, B. Kayser, R. Mohapatra,
Phys. Rev. D67 (2003) 053004,arXiv:hep-ph/0211394.
[deGouvea:2002gf]
CP-violating Majorana phases, lepton-conserving processes and final state interactions,
Jose F. Nieves, Palash B. Pal,
Phys. Rev. D67 (2003) 036005,arXiv:hep-ph/0210232.
[Nieves:2002vq]
Rephasing-invariant CP violating parameters with Majorana neutrinos,
Jose F. Nieves, Palash B. Pal,
Phys. Rev. D64 (2001) 076005,arXiv:hep-ph/0105305.
[Nieves:2001fc]
Unitarity triangles and geometrical description of CP violation with Majorana neutrinos,
J. A. Aguilar-Saavedra, G. C. Branco,
Phys. Rev. D62 (2000) 096009,arXiv:hep-ph/0007025.
[Aguilar-Saavedra:2000jom]
Quantization of electric charge from anomaly constraints and a Majorana neutrino,
K. S. Babu, Rabindra N. Mohapatra,
Phys. Rev. D41 (1990) 271. [Babu:1989ex]
A comment on the possibility of distinguishing between Dirac and Majorana neutrinos in $\nu_\mu - e$ scattering,
Stephen M. Barr, A. Halprin,
Phys. Lett. B202 (1988) 279. [Barr:1988ht]
Minimal rephasing invariant CP violating parameters with Dirac and Majorana fermions,
Jose F. Nieves, Palash B. Pal,
Phys. Rev. D36 (1987) 315. [Nieves:1987pp]
Some implications of the CP invariance for mixing of Majorana neutrinos,
S. M. Bilenky, N. P. Nedelcheva, S. T. Petcov,
Nucl. Phys. B247 (1984) 61. [Bilenky:1984fg]
CP violation in Majorana neutrinos,
M. Doi, T. Kotani, H. Nishiura, K. Okuda, E. Takasugi,
Phys. Lett. B102 (1981) 323. Comment:It is shown that the Dirac or Majorana nature of neutrinos cannot be distinguished in neutrino oscillations in vacuum, because neutrino oscillations in vacuum do not depend on the Majorana phases. [C.G.]. [Doi:1980yb]
On oscillations of neutrinos with Dirac and Majorana masses,
S. M. Bilenky, J. Hosek, S. T. Petcov,
Phys. Lett. B94 (1980) 495. Comment:It is shown that the Dirac or Majorana nature of neutrinos cannot be distinguished in neutrino oscillations in vacuum, because neutrino oscillations in vacuum do not depend on the Majorana phases. [C.G.]. [Bilenky:1980cx]
Addressing the Majorana vs. Dirac Question Using Neutrino Decays,
Boris Kayser,
arXiv:1805.07523, 2018.53rd Rencontres de Moriond Electroweak session of March 2018. [Kayser:2018mot]
Evidence for Majorana Neutrinos: Dawn of a new era in spacetime structure,
D. V. Ahluwalia,
arXiv:hep-ph/0212222, 2002.Beyond the Desert '02, June, 2002, Oulu, Finland. [Ahluwalia:2002nk]
An analytical treatment of the neutrino masses and mixings,
Renata Jora, Joseph Schechter, M. Naeem Shahid,
Mod.Phys.Lett. A28 (2013) 1350184,arXiv:1304.7899.
[Jora:2013kta]
Symmetrical Parametrizations of the Lepton Mixing Matrix,
W. Rodejohann, J. W. F. Valle,
Phys. Rev. D84 (2011) 073011,arXiv:1108.3484.
[Rodejohann:2011vc]
Plaquette Invariants and the Flavour Symmetric Description of Quark and Neutrino Mixings,
P.F. Harrison, D.R.J. Roythorne, W.G. Scott,
Phys. Lett. B657 (2007) 210-216,arXiv:0709.1439.
[Harrison:2007yn]
Real Invariant Matrices and Flavour-Symmetric Mixing Variables with Emphasis on Neutrino Oscillations,
P. F. Harrison, W. G. Scott, T. J. Weiler,
Phys. Lett. B641 (2006) 372-380,arXiv:hep-ph/0607335.
[Harrison:2006bj]
Neutrino spin evolution in presence of general external fields,
M. Dvornikov, A. Studenikin,
JHEP 09 (2002) 016,arXiv:hep-ph/0202113.
[Dvornikov:2002rs]
'Evaporation' of a flavor-mixed particle from a gravitational potential,
Mikhail V. Medvedev,
J. Phys. A 43 (2010) 372002,arXiv:1201.5697.
[Medvedev:2010csv]
On the existence of quaternion-handedness for the spinor solutions of the Dirac and Majorana neutrinos,
B. C. Chanyal, Sayyam Murari,
arXiv:2410.05337, 2024. [Chanyal:2024eqr]
Fermions and discrete symmetries in Quantum Field Theory. I. Generalities and the propagator for one flavor,
Quentin Duret, Bruno Machet,
Annals Phys. 325 (2010) 2041-2074,arXiv:0809.0431.
[Duret:2008zv]
Mixing angles of quarks and leptons in Quantum Field Theory,
Quentin Duret, Bruno Machet, M. I. Vysotsky,
Eur. Phys. J. C61 (2009) 247-278,arXiv:0805.4121.
[Duret:2009zce]
The neighborhood of the Standard Model: mixing angles and quark-lepton complementarity for three generations of non-degenerate coupled fermions,
Quentin Duret, Bruno Machet,
arXiv:0705.1237, 2007. [Duret:2007pr]
Mixing Angles and Non-Degenerate Systems of Particles,
Quentin Duret, Bruno Machet,
Phys. Lett. B643 (2006) 303-310,arXiv:hep-ph/0606303.
[Duret:2006ez]
Discriminating Majorana and Dirac heavy neutrinos at lepton colliders,
Krzysztof Mekala, Jurgen Reuter, Aleksander Filip Zarnecki,
JHEP 03 (2024) 075,arXiv:2312.05223.
[Mekala:2023kzo]
Inferring the nature of active neutrinos: Dirac or Majorana?,
C. S. Kim, M. V. N. Murthy, Dibyakrupa Sahoo,
Phys.Rev.D 105 (2022) 113006,arXiv:2106.11785.
[Kim:2021dyj]
Unraveling the Dirac Neutrino with Cosmological and Terrestrial Detectors,
Peter Adshead, Yanou Cui, Andrew J. Long, Michael Shamma,
Phys.Lett.B 823 (2021) 136736,arXiv:2009.07852.
[Adshead:2020ekg]
Distinguishing Dirac from Majorana neutrinos in a microwave cavity,
Mehdi Abdi, Roohollah Mohammadi, She-Sheng Xue, Moslem Zarei,
arXiv:1909.01536, 2019. [Abdi:2019hvx]
Distinguishing Dirac and Majorana neutrinos by their gravi-majoron decays,
Lena Funcke, Georg Raffelt, Edoardo Vitagliano,
Phys.Rev. D101 (2020) 015025,arXiv:1905.01264.
[Funcke:2019grs]
Addressing the Majorana vs. Dirac Question with Neutrino Decays,
A. Baha Balantekin, Andre de Gouvea, Boris Kayser,
Phys.Lett.B 789 (2019) 488-495,arXiv:1808.10518.
[Balantekin:2018ukw]
Shining Light on the Mass Scale and Nature of Neutrinos with $e\gamma \to e\nu\overline\nu$,
Jeffrey M. Berryman, Andre de Gouvea, Kevin J. Kelly, Michael Schmitt,
Phys.Rev. D98 (2018) 016009,arXiv:1805.10294.
[Berryman:2018qxn]
Can one ever prove that neutrinos are Dirac particles?,
Martin Hirsch, Rahul Srivastava, Jose W. F. Valle,
Phys.Lett. B781 (2018) 302-305,arXiv:1711.06181.
[Hirsch:2017col]
Distinguishing heavy Dirac and Majorana neutrinos through $\tau^- \to \pi^- \mu^- e^+ \nu(\text{or }\bar\nu)$ decay,
C. S. Kim, G. Lopez Castro, Dibyakrupa Sahoo,
Phys.Rev. D96 (2017) 075016,arXiv:1708.00802.
[Kim:2017pra]
Distinguishing between Dirac and Majorana neutrinos in the presence of general interactions,
Werner Rodejohann, Xun-Jie Xu, Carlos E. Yaguna,
JHEP 1705 (2017) 024,arXiv:1702.05721.
[Rodejohann:2017vup]
Probing neutrino nature at Borexino detector with chromium neutrino source,
W. Sobkow, A. Blaut,
Eur.Phys.J. C76 (2016) 550,arXiv:1607.03536.
[Sobkow:2016zsg]
Majorana/Dirac distinction and neutrino mass determination using circulating heavy ions,
M. Yoshimura,
Phys. Rev. D93 (2016) 013016,arXiv:1508.02795.
[Yoshimura:2015wsa]
Scattering processes could distinguish Majorana from Dirac neutrinos,
J. Barranco, D. Delepine, V. Gonzalez Macias, C. Lujan-Peschard, M. Napsuciale,
Phys.Lett. B739 (2014) 343-347,arXiv:1408.3219.
[Barranco:2014cda]
Radiative emission of neutrino pair from nucleus and inner core electrons in heavy atoms,
M. Yoshimura, N. Sasao,
Phys. Rev. D89 (2014) 053013,arXiv:1310.6472.
[Yoshimura:2013wva]
Observables in Neutrino Mass Spectroscopy Using Atoms,
D. N. Dinh, S. T. Petcov, N. Sasao, M. Tanaka, M. Yoshimura,
Phys. Lett. B719 (2013) 154-163,arXiv:1209.4808.
[Dinh:2012qb]
Proposition of direct experiment to study the properties of the neutrino with inverted helicity,
Raul Nakhmanson-Kulish,
arXiv:1208.1163, 2012. [Nakhmanson-Kulish:2012pvg]
Multi-Lepton Collider Signatures of Heavy Dirac and Majorana Neutrinos,
Chien-Yi Chen, P. S. Bhupal Dev,
Phys. Rev. D85 (2012) 093018,arXiv:1112.6419.
[Chen:2011hc]
Tevatron Discovery Potential for Fourth Generation Neutrinos: Dirac, Majorana and Everything in Between,
A. Rajaraman, D. Whiteson,
Phys. Rev. D82 (2010) 051702,arXiv:1005.4407.
[Rajaraman:2010ua]
Sterile Neutrinos in Light of Recent Cosmological and Oscillation Data: a Multi-Flavor Scheme Approach,
Alessandro Melchiorri et al.,
JCAP 0901 (2009) 036,arXiv:0810.5133.
[Melchiorri:2008gq]
Building the full PMNS Matrix from six independent Majorana-type phases,
Gustavo C. Branco, M. N. Rebelo,
Phys. Rev. D79 (2009) 013001,arXiv:0809.2799.
[Branco:2008ai]
Comment on 'Can gravity distinguish between Dirac and Majorana neutrinos?',
Jose F. Nieves, Palash B. Pal,
Phys. Rev. Lett. 98 (2007) 069001,arXiv:gr-qc/0610098.
[Nieves:2006tq]
New Method of Enhancing Lepton Number Nonconservation,
M. Ikeda, I. Nakano, M. Sakuda, R. Tanaka, M. Yoshimura,
arXiv:hep-ph/0506062, 2005. [Ikeda:2005yh]
Nuclear-atomic state degeneracy in neutrinoless double-electron capture: A unique test for a Majorana-neutrino,
D. Frekers,
Phys.Lett.B (2005),arXiv:hep-ex/0506002.
[Frekers:2005ze]
Neutrino statistics and big bang nucleosynthesis,
A. D. Dolgov, S. H. Hansen, A. Yu. Smirnov,
JCAP 0506 (2005) 004,arXiv:astro-ph/0503612.
[Dolgov:2005mi]
New Parameterization in Muon Decay and Type of Neutrino,
Masaru Doi, Tsuneyuki Kotani, Hiroyuki Nishiura,
Prog. Theor. Phys. 114 (2005) 845,arXiv:hep-ph/0502136.
[Doi:2005pm]
Possible violation of the spin-statistics relation for neutrinos: cosmological and astrophysical consequences,
A.D. Dolgov, A.Yu. Smirnov,
Phys. Lett. B621 (2005) 1,arXiv:hep-ph/0501066.
[Dolgov:2005qi]
A variety of lepton number violating processes related to Majorana neutrino masses,
C.S. Lim, E. Takasugi, M. Yoshimura,
Prog. Theor. Phys. 113 (2005) 1367,arXiv:hep-ph/0411139.
[Lim:2004tb]
What can we learn from neutrinoless double beta decay experiments?,
John N. Bahcall, Hitoshi Murayama, Carlos Pena-Garay,
Phys. Rev. D70 (2004) 033012,arXiv:hep-ph/0403167.
[Bahcall:2004ip]
A potential test of the CP properties and Majorana nature of neutrinos,
S. Pastor, J. Segura, V. B. Semikoz, J. W. F. Valle,
Nucl. Phys. B566 (2000) 92-102,arXiv:hep-ph/9905405.
[Pastor:1999iw]
Remarks on neutrino tests of special relativity,
S. L. Glashow, A. Halprin, P. I. Krastev, C. N. Leung, J. Pantaleone,
Phys. Rev. D56 (1997) 2433-2434,arXiv:hep-ph/9703454.
[Glashow:1997gx]
Implications of a nonzero neutrino mass for the process $\gamma \gamma \to \nu \bar\nu$,
E. Fischbach et al.,
Phys. Rev. D16 (1977) 2377-2378. [Fischbach:1977qp]
Proposed Experiment to Determine the Direction of $\mu$-Meson Polarization in Pion Decay,
J. D. Jackson, S. B. Treiman, H. W. Wyld,
Phys. Rev. 107 (1957) 327-328. [Jackson-Treiman-Wyld-1957-PR-107-327]
Constraints on fourth generation Majorana neutrinos,
Alexander Lenz, Heinrich Pas, Dario Schalla,
J. Phys. Conf. Ser. 259 (2010) 012096,arXiv:1010.3883.
16th International Symposium on Particles, Strings and Cosmology (PASCOS2010), Valencia (Spain), July 19th - 23rd, 2010. [Lenz:2010ha]
Majorana Neutrinos in Muon Decay,
Hiroyuki Nishiura,
arXiv:hep-ph/0601231, 2006.NNR05 workshop on Neutrino Nuclear Responses in Double Beta Decays and Low-energy Astro-neutrinos, CAST and SPring-8, Japan, 2-4 December 2005. [Nishiura:2006kt]
Neutrino, Cosmos, and New Physics,
A.D. Dolgov,
arXiv:hep-ph/0504238, 2005.Neutrino Telescopes, Venice, 22/02-25/02, 2005 and Rencontre LaThuile-05, 27/02-05/03, 2005. [Dolgov:2005py]
Lattice Calculation of Short-Range Contributions to Neutrinoless Double-Beta Decay $\pi ^-\to\pi ^+ ee$ at Physical Pion Mass,
Peter Boyle, Felix Erben, Xu Feng, Jonathan M. Flynn, Nicolas Garron, Taku Izubuchi, Luchang Jin, Rajnandini Mukherjee, J. Tobias Tsang, Xin-Yu Tuo,
arXiv:2508.01900, 2025. [Boyle:2025vwt]
Invisible decays of vector Charmonia and Bottomonia,
G. Hernandez-Tome, C. S. Kim, G. Lopez Castro,
Eur.Phys.J.C 85 (2025) 686,arXiv:2411.09124.
[Hernandez-Tome:2024oxb]
Searching for signatures of new physics in $B \to K \, u \, \overline{u}$ to distinguish between Dirac and Majorana neutrinos,
C. S. Kim, Dibyakrupa Sahoo, K. N. Vishnudath,
Eur.Phys.J.C 84 (2024) 882,arXiv:2405.17341.
[Kim:2024tsm]
From Dirac to Majorana: the Cosmic Neutrino Background capture rate in the minimally extended Standard Model,
Yuber F. Perez-Gonzalez, Manibrata Sen,
Phys.Rev.D 109 (2024) 023022,arXiv:2308.05147.
[Perez-Gonzalez:2023llw]
Towards distinguishing Dirac from Majorana neutrino mass with gravitational waves,
Stephen F. King, Danny Marfatia, Moinul Hossain Rahat,
Phys.Rev.D 109 (2024) 035014,arXiv:2306.05389.
[King:2023cgv]
Dirac-Majorana neutrino type conversion induced by an oscillating scalar dark matter,
YeolLin ChoeJo, Yechan Kim, Hye-Sung Lee,
Phys.Rev.D 108 (2023) 095028,arXiv:2305.16900.
[ChoeJo:2023ffp]
$\Delta$L=2 hyperon decays induced by Majorana neutrinos and doubly-charged scalars,
G. Hernandez-Tome, G. Lopez-Castro, D. Portillo-Sanchez,
Phys.Rev.D 105 (2022) 113001,arXiv:2112.02227.
[Hernandez-Tome:2021byt]
Z-Boson Decays into Majorana or Dirac (Heavy) Neutrinos,
Alain Blondel, Andre de Gouvea, Boris Kayser,
Phys.Rev.D 104 (2021) 055027,arXiv:2105.06576.
[Blondel:2021mss]
General parametrization of Majorana neutrino mass models,
Isabel Cordero-Carrion, Martin Hirsch, Avelino Vicente,
Phys.Rev. D101 (2020) 075032,arXiv:1912.08858.
[Cordero-Carrion:2019qtu]
Top quark as a probe of heavy Majorana neutrino at the LHC and future collider,
Ning Liu, Zong-guo Si, Lei Wu, Hang Zhou, Bin Zhu,
Phys.Rev. D101 (2020) 071701,arXiv:1910.00749.
[Liu:2019qfa]
Empirical inference on the Majorana mass of the ordinary neutrinos,
Stefano Dell'Oro, Simone Marcocci, Francesco Vissani,
Phys.Rev. D100 (2019) 073003,arXiv:1909.05381.
[DellOro:2019pqi]
A charmed search of lepton-number-violation at the LHCb experiment,
Diego Milanes, Nestor Quintero,
Phys.Rev. D98 (2018) 096004,arXiv:1808.06017.
[Milanes:2018aku]
Decoherence in neutrino oscillations: neutrino nature and CPT violation,
A. Capolupo, S. M. Giampaolo, G. Lambiase,
Phys.Lett. B792 (2019) 298-303,arXiv:1807.07823.
[Capolupo:2018hrp]
A potential scenario for the Majorana neutrino detection at future lepton colliders,
Yang Zhang, Bin Zhang,
JHEP 1902 (2019) 175,arXiv:1805.09520.
[Zhang:2018rtr]
Heavy neutrino-antineutrino oscillations at colliders,
Stefan Antusch, Eros Cazzato, Oliver Fischer,
Mod.Phys.Lett. A34 (2019) 1950061,arXiv:1709.03797.
[Antusch:2017ebe]
Lepton number violation in $B_s$ meson decays induced by an on-shell Majorana neutrino,
Jhovanny Mejia-Guisao, Diego Milanes, Nestor Quintero, Jose D. Ruiz-Alvarez,
Phys.Rev. D97 (2018) 075018,arXiv:1708.01516.
[Mejia-Guisao:2017gqp]
Not-that-heavy Majorana neutrino signals at the LHC,
Lucia Duarte, Javier Peressutti, Oscar A. Sampayo,
J.Phys. G45 (2018) 025001,arXiv:1610.03894.
[Duarte:2016caz]
Distinguishing Dirac/Majorana Sterile Neutrinos at the LHC,
Claudio O. Dib, C. S. Kim, Kechen Wang, Jue Zhang,
Phys. Rev. D94 (2016) 013005,arXiv:1605.01123.
[Dib:2016wge]
Sensitivity to Majorana neutrinos in $\DeltaL=2$ decays of $B_c$ meson at LHCb,
Diego Milanes, Nestor Quintero, Carlos E. Vera,
Phys. Rev. D93 (2016) 094026,arXiv:1604.03177.
[Milanes:2016rzr]
Probing the Majorana neutrinos and their CP violation in decays of charged scalar mesons $\pi, K, D, D_s, B, B_c$,
Gorazd Cvetic, Claudio Dib, C. S. Kim, Jilberto Zamora-Saa,
Symmetry 7 (2015) 726-773,arXiv:1503.01358.
[Cvetic:2015naa]
Bounding resonant Majorana neutrinos from four-body B and D decays,
Gabriel Lopez Castro, Nestor Quintero,
Phys. Rev. D87 (2013) 077901,arXiv:1302.1504.
[Castro:2013jsn]
Lepton Number Violation and W' Chiral Couplings at the LHC,
Tao Han, Ian Lewis, Richard Ruiz, Zong-guo Si,
Phys. Rev. D87 (2013) 035011,arXiv:1211.6447.
[Han:2012vk]
Lepton number violation in top quark and neutral B meson decays,
D. Delepine, G. Lopez Castro, N. Quintero,
Phys. Rev. D84 (2011) 096011,arXiv:1108.6009.
[Quintero:2011yh]
Probing Majorana neutrinos in rare $K$ and $D$, $D_s$, $B$, $B_c$ meson decays,
G. Cvetic, Claudio Dib, Sin Kyu Kang, C. S. Kim,
Phys. Rev. D82 (2010) 053010,arXiv:1005.4282.
[Cvetic:2010rw]
Experimental Sensitivity for Majorana Neutrinos Produced via a Z Boson at Hadron Colliders,
Arvind Rajaraman, Daniel Whiteson,
Phys. Rev. D81 (2010) 071301,arXiv:1001.1229.
[Rajaraman:2010wk]
A new strategy for probing the Majorana neutrino CP violating phases and masses,
David Delepine, Vannia Gonzalez Macias, Shaaban Khalil, Gabriel Lopez Castro,
AIP Conf. Proc. 1361 (2011) 395-397,arXiv:0908.2158.
[Delepine:2009as]
Neutrinoless double beta decays of the top quark and other effects of heavy Majorana neutrinos,
Gad Eilam,
PoS 2008LHC (2008) 061,arXiv:0902.4622.
[Eilam:2008qtl]
Analog of the Michel Parameter for Neutrino - Electron Scattering: A Test for Majorana Neutrinos,
Simon Peter Rosen,
Phys. Rev. Lett. 48 (1982) 842. [Rosen:1982pj]
Stimulated X-rays in resonant atom Majorana mixing,
A. Segarra, J. Bernabeu,
J.Phys.Conf.Ser. 1342 (2020) 012100,arXiv:1711.04251.
TAUP 2017. [Segarra:2017jzz]
Pseudo-Dirac Neutrinos and Relic Neutrino Matter Effect on the High-energy Neutrino Flavor Composition,
P. S. Bhupal Dev, Pedro A. N. Machado, Ivan Martinez-Soler,
Phys.Lett.B 862 (2025) 139306,arXiv:2406.18507.
[Dev:2024yrg]
Searching for Pseudo-Dirac neutrinos from Astrophysical sources in IceCube data,
Khushboo Dixit, Luis Salvador Miranda, Soebur Razzaque,
arXiv:2406.06476, 2024. [Dixit:2024ldv]
JUNO as a Probe of the Pseudo-Dirac Nature using Solar Neutrinos,
Jack Franklin, Yuber F. Perez-Gonzalez, Jessica Turner,
Phys.Rev.D 108 (2023) 035010,arXiv:2304.05418.
[Franklin:2023diy]
Probing Pseudo-Dirac Neutrinos with Astrophysical Sources at IceCube,
Kiara Carloni, Ivan Martinez-Soler, Carlos A. Arguelles, K. S. Babu, P. S. Bhupal Dev,
PoS ICRC2023 (2023) 1040,arXiv:2212.00737.
[Carloni:2022cqz]
Constraints on pseudo-Dirac neutrinos using high-energy neutrinos from NGC 1068,
Thomas Rink, Manibrata Sen,
Phys.Lett.B 851 (2024) 138558,arXiv:2211.16520.
[Rink:2022nvw]
Revisiting pseudo-Dirac neutrino scenario after recent solar neutrino data,
S. Ansarifard, Y. Farzan,
Phys.Rev.D 107 (2023) 075029,arXiv:2211.09105.
[Ansarifard:2022kvy]
Simulating lepton number violation induced by heavy neutrino-antineutrino oscillations at colliders,
Stefan Antusch, Jan Hajer, Johannes Rosskopp,
JHEP 03 (2023) 110,arXiv:2210.10738.
[Antusch:2022ceb]
SN1987A still shining: A Quest for Pseudo-Dirac Neutrinos,
Ivan Martinez-Soler, Yuber F. Perez-Gonzalez, Manibrata Sen,
Phys.Rev.D 105 (2022) 095019,arXiv:2105.12736.
[Martinez-Soler:2021unz]
Quasi-Dirac neutrinos in the linear seesaw model,
Carolina Arbelaez, Claudio Dib, Kevin Monsalvez-Pozo, Ivan Schmidt,
JHEP 07 (2021) 154,arXiv:2104.08023.
[Arbelaez:2021chf]
Quasi-Dirac neutrino oscillations at DUNE and JUNO,
G. Anamiati, V. De Romeri, M. Hirsch, C. A. Ternes, M. Tortola,
Phys.Rev. D100 (2019) 035032,arXiv:1907.00980.
[Anamiati:2019maf]
Majorana vs Pseudo-Dirac Neutrinos at the ILC,
P. Hernandez, J. Jones-Perez, O. Suarez-Navarro,
Eur.Phys.J. C79 (2019) 220,arXiv:1810.07210.
[Hernandez:2018cgc]
Quasi-Dirac neutrinos and solar neutrino data,
F. Rossi-Torres, A.C.B. Machado, V. Pleitez,
Eur.Phys.J. C73 (2013) 2596,arXiv:1302.5590.
[Rossi-Torres:2013dya]
Implications of the Pseudo-Dirac Scenario for Ultra High Energy Neutrinos from GRBs,
Arman Esmaili, Yasaman Farzan,
JCAP 1212 (2012) 014,arXiv:1208.6012.
[Esmaili:2012ac]
Pseudo-Dirac Neutrinos in the New Standard Model,
Andre de Gouvea, Wei-Chih Huang, James Jenkins,
Phys. Rev. D80 (2009) 073007,arXiv:0906.1611.
[deGouvea:2009fp]
Probing Pseudo-Dirac Neutrino through Detection of Neutrino Induced Muons from GRB Neutrinos,
Debasish Majumdar,
Pramana 70 (2008) 51-60,arXiv:hep-ph/0607344.
[Majumdar:2006bu]
Pseudo-Dirac Neutrinos, a Challenge for Neutrino Telescopes,
J. F. Beacom et al.,
Phys. Rev. Lett. 92 (2004) 011101,arXiv:hep-ph/0307151.
[Beacom:2003eu]
Phenomenology of pseudo Dirac neutrinos,
Anjan S. Joshipura, Saurabh D. Rindani,
Phys. Lett. B494 (2000) 114-123,arXiv:hep-ph/0007334.
[Joshipura:2000ts]
Pseudo-Dirac neutrinos as a potential complete solution to the neutrino oscillation puzzle,
A. Geiser,
Phys. Lett. B444 (1999) 358,arXiv:hep-ph/9901433.
[Geiser:1998mr]
Oscillations of pseudo-Dirac neutrinos and the solar neutrino problem,
C. Giunti, C. W. Kim, U. W. Lee,
Phys. Rev. D46 (1992) 3034-3039,arXiv:hep-ph/9205214.
[Giunti:1992hk]
The solar neutrino puzzle, the Mikheev-Smirnov-Wolfenstein mechanism and the pseudo-Dirac neutrino,
S. Toshev,
Phys. Lett. B180 (1986) 285-289. [Toshev:1986yp]
Precision calculation of $N_{\text{eff}}$ with Neutrino Direct Simulation Monte Carlo,
Oleksii Ihnatenko, Maksym Ovchynnikov,
arXiv:2508.08379, 2025. [Ihnatenko:2025kew]
Towards a precision calculation of N $_{eff}$ in the Standard Model. Part III. Improved estimate of NLO contributions to the collision integral,
Marco Drewes, Yannis Georis, Michael Klasen, Luca Paolo Wiggering, Yvonne Y. Y. Wong,
JCAP 06 (2024) 032,arXiv:2402.18481.
[Drewes:2024wbw]
Neff in the Standard Model at NLO is 3.043,
Mattia Cielo, Miguel Escudero, Gianpiero Mangano, Ofelia Pisanti,
Phys. Rev. D 108 (2023) L121301,arXiv:2306.05460.
[Cielo:2023bqp]
Towards a precision calculation of $N_{\rm eff}$ in the Standard Model II: Neutrino decoupling in the presence of flavour oscillations and finite-temperature QED,
Jack J. Bennett, Gilles Buldgen, Pablo F. De Salas, Marco Drewes, Stefano Gariazzo, Sergio Pastor, Yvonne Y. Y. Wong,
JCAP 04 (2021) 073,arXiv:2012.02726.
[Bennett:2020zkv]
Improved Bhabha cross section at LEP and the number of light neutrino species,
Patrick Janot, Stanislaw Jadach,
Phys.Lett. B803 (2020) 135319,arXiv:1912.02067.
[Janot:2019oyi]
Towards a precision calculation of the effective number of neutrinos $N_{\rm eff}$ in the Standard Model I: the QED equation of state,
Jack J. Bennett, Gilles Buldgen, Marco Drewes, Yvonne Y. Y. Wong,
JCAP 03 (2020) 003,arXiv:1911.04504.
[Addendum: JCAP 03, A01 (2021)]. [Bennett:2019ewm]
Beam-beam effects on the luminosity measurement at LEP and the number of light neutrino species,
Georgios Voutsinas, Emmanuel Perez, Mogens Dam, Patrick Janot,
Phys.Lett. B800 (2020) 135068,arXiv:1908.01704.
[Voutsinas:2019hwu]
Relic neutrino decoupling with flavour oscillations revisited,
Pablo F. de Salas, Sergio Pastor,
JCAP 07 (2016) 051,arXiv:1606.06986.
[deSalas:2016ztq]
Neutrino mass and lepton mixing hierarchies and future oscillation experiments,
Samoil M. Bilenky, M. Fabbrichesi, S. T. Petcov,
Phys. Lett. B276 (1992) 223-230. [Bilenky:1991pk]
A Lower bound on the number of neutrino species measured at Z0 peak,
Samoil M. Bilenky, W. Grimus, H. Neufeld,
Phys. Lett. B252 (1990) 119-122. [Bilenky:1990tm]
Combined limits on the number of light neutrinos and the top mass from the measurement of $ R = \sigma (W \to \ell\nu) / \sigma (Z \to \ell \ell) $,
P. Colas, D. Denegri, C. Stubenrauch,
Z. Phys. C40 (1988) 527. [Colas:1988cs]
Unitarity test of lepton mixing via energy dependence of neutrino oscillation,
Ryuichiro Kitano, Joe Sato, Sho Sugama,
arXiv:2508.20389, 2025. [Kitano:2025wpc]
Big Bang Nucleosynthesis as a probe of non-standard neutrino interactions and non-unitary three-neutrino mixing,
Gabriela Barenboim, Stefano Gariazzo, Alberto Sanchez-Vargas,
JCAP 08 (2025) 005,arXiv:2503.21998.
[Barenboim:2025okj]
Misconceptions in Neutrino Oscillations in presence of a non-Unitary Mixing,
Mattias Blennow, Pilar Coloma, Enrique Fernandez-Martinez, Josu Hernandez-Garcia, Jacobo Lopez-Pavon, Xabier Marcano, Daniel Naredo-Tuero, Salvador Urrea,
Nucl.Phys.B 1017 (2025) 116944,arXiv:2502.19480.
[Blennow:2025qgd]
Impact of unitarity violation on sensitivity of the leptonic CP phase at Hyper-Kamiokande and DUNE,
Ana Maria Garcia Trzeciak, Hiroshi Nunokawa, Alexander Arguello Quiroga,
arXiv:2502.10873, 2025. [Trzeciak:2025hap]
Study of tau neutrinos and non-unitary neutrino mixing with the first six detection units of KM3NeT/ORCA,
S. Aiello et al.(KM3NeT),
JHEP 07 (2025) 213,arXiv:2502.01443.
[KM3NeT:2025ftj]
Non-unitary limits on different textures for low-scale seesaw models,
Jesus Miguel Celestino-Ramirez, G. Hernandez-Tome, O. G. Miranda, Eduardo Peinado,
Eur.Phys.J.C 85 (2025) 405,arXiv:2408.13232.
[Celestino-Ramirez:2024dek]
Constraints on non-unitary neutrino mixing in light of atmospheric and reactor neutrino data,
Tetiana Kozynets, Philipp Eller, Alan Zander, Manuel Ettengruber, D. Jason Koskinen,
JHEP 05 (2025) 130,arXiv:2407.20388.
[Kozynets:2024xgt]
$\nu_\mu$ and $\nu_\tau$ elastic scattering in Borexino,
Kevin J. Kelly, Nityasa Mishra, Mudit Rai, Louis E. Strigari,
Phys.Rev.D 110 (2024) 113004,arXiv:2407.03174.
[Kelly:2024tvh]
Search for Hidden Neutrinos at the European Spallation Source: the SHiNESS experiment,
Stefano Roberto Soleti, Pilar Coloma, Juan Jose Gomez Cadenas,
JHEP 03 (2024) 148,arXiv:2311.18509.
[Soleti:2023hlr]
Bounds on lepton non-unitarity and heavy neutrino mixing,
Mattias Blennow, Enrique Fernandez-Martinez, Josu Hernandez-Garcia, Jacobo Lopez-Pavon, Xabier Marcano, Daniel Naredo-Tuero,
JHEP 08 (2023) 030,arXiv:2306.01040.
[Blennow:2023mqx]
Improved sensitivities of ESS$\nu$SB from a two-detector fit,
F. Capozzi, C. Giunti, C. A. Ternes,
JHEP 04 (2023) 130,arXiv:2302.07154.
[Capozzi:2023ltl]
Non-unitary three-neutrino mixing in the early Universe,
Stefano Gariazzo, Pablo Martinez-Mirave, Olga Mena, Sergio Pastor, Mariam Tortola,
JCAP 03 (2023) 046,arXiv:2211.10522.
[Gariazzo:2022evs]
Non-Unitarity of the lepton mixing matrix at the European spallation source,
Sabya Sachi Chatterjee, O. G. Miranda, M. Tortola, J. W. F. Valle,
Phys.Rev.D 106 (2022) 075016,arXiv:2111.08673.
[Chatterjee:2021xyu]
Effect of non-unitary mixing on the mass hierarchy and CP violation determination at the Protvino to Orca experiment,
Daljeet Kaur, Nafis Rezwan Khan Chowdhury, Ushak Rahaman,
Eur.Phys.J.C 84 (2024) 118,arXiv:2110.02917.
[Kaur:2021rau]
Tau Neutrino Identification in Atmospheric Neutrino Oscillations Without Particle Identification or Unitarity,
Peter B. Denton,
Phys.Rev.D 104 (2021) 113003,arXiv:2109.14576.
[Denton:2021rsa]
New tau neutrino oscillation and scattering constraints on unitarity violation,
Peter B. Denton, Julia Gehrlein,
JHEP 06 (2022) 135,arXiv:2109.14575.
[Denton:2021mso]
New physics from oscillations at the DUNE near detector, and the role of systematic uncertainties,
Pilar Coloma, Jacobo Lopez-Pavon, Salvador Rosauro-Alcaraz, Salvador Urrea,
JHEP 08 (2021) 065,arXiv:2105.11466.
[Coloma:2021uhq]
Probing non-unitary neutrino mixing via long-baseline neutrino oscillation experiments based at J-PARC,
C Soumya,
Phys.Rev.D 105 (2022) 015012,arXiv:2104.04315.
[Soumya:2021dmy]
Non-unitary neutrino mixing in short and long-baseline experiments,
D.V. Forero, C. Giunti, C.A. Ternes, M. Tortola,
Phys.Rev.D 104 (2021) 075030,arXiv:2103.01998.
[Forero:2021azc]
Global oscillation data analysis on the $3\nu$ mixing without unitarity,
Zhuojun Hu, Jiajie Ling, Jian Tang, TseChun Wang,
JHEP 2101 (2021) 124,arXiv:2008.09730.
[Hu:2020oba]
Future CEvNS experiments as probes of lepton unitarity and light-sterile neutrinos,
O. G. Miranda, D. K. Papoulias, O. Sanders, M. Tortola, J. W. F. Valle,
Phys. Rev. D 102 (2020) 113014,arXiv:2008.02759.
[Miranda:2020syh]
Current and Future Neutrino Oscillation Constraints on Leptonic Unitarity,
Sebastian A. R. Ellis, Kevin J. Kelly, Shirley Weishi Li,
JHEP 2012 (2020) 068,arXiv:2008.01088.
[Ellis:2020hus]
Searching for non-unitary neutrino oscillations in the present T2K and NO$\nu$A data,
Luis Salvador Miranda, Pedro Pasquini, Ushak Rahaman, Soebur Razzaque,
Eur.Phys.J. C81 (2021) 444,arXiv:1911.09398.
[Miranda:2019ynh]
On the nature of correlation between neutrino-SM CP phase and unitarity violating new physics parameters,
Ivan Martinez-Soler, Hisakazu Minakata,
PTEP 2020 (2020) 113B01,arXiv:1908.04855.
[Martinez-Soler:2019noy]
Neutrino counting experiments and non-unitarity from LEP and future experiments,
F. J. Escrihuela, L. J. Flores, O. G. Miranda,
Phys.Lett. B802 (2020) 135241,arXiv:1907.12675.
[Escrihuela:2019mot]
Non Unitarity at DUNE and T2HK with Charged and Neutral Current Measurements,
Debajyoti Dutta, Samiran Roy,
J.Phys. G48 (2021) 045004,arXiv:1901.11298.
[Dutta:2019hmb]
Standard versus Non-Standard CP Phases in Neutrino Oscillation in Matter with Non-Unitarity,
Ivan Martinez-Soler, Hisakazu Minakata,
PTEP 2020 (2020) 063B01,arXiv:1806.10152.
[Martinez-Soler:2018lcy]
Exploring the Potential of Short-Baseline Physics at Fermilab,
O. G. Miranda, Pedro Pasquini, M. Tortola, J. W. F. Valle,
Phys.Rev. D97 (2018) 095026,arXiv:1802.02133.
[Miranda:2018yym]
A novel approach to neutrino mixing analysis based on singular values,
K. Bielas, W. Flieger, J. Gluza, M. Gluza,
Phys.Rev. D98 (2018) 053001,arXiv:1708.09196.
[Bielas:2017lok]
Determination of the $\theta_{23}$ octant in long baseline neutrino experiments within and beyond the Standard Model,
C.R. Das, Jukka Maalampi, Joao Pulido, Sampsa Vihonen,
Phys.Rev. D97 (2018) 035023,arXiv:1708.05182.
[Das:2017fcz]
What measurements of neutrino neutral current events can reveal,
Raj Gandhi, Boris Kayser, Suprabh Prakash, Samiran Roy,
JHEP 1711 (2017) 202,arXiv:1708.01816.
[Gandhi:2017vzo]
Can we probe intrinsic CP/T violation and non-unitarity at long baseline accelerator experiments?,
Jogesh Rout, Mehedi Masud, Poonam Mehta,
Phys.Rev. D95 (2017) 075035,arXiv:1702.02163.
[Rout:2017udo]
Probing CP violation with non-unitary mixing in long-baseline neutrino oscillation experiments: DUNE as a case study,
F. J. Escrihuela, D. V. Forero, O. G. Miranda, M. Tortola, J. W. F. Valle,
New J.Phys. 19 (2017) 093005,arXiv:1612.07377.
[Escrihuela:2016ube]
Discriminating sterile neutrinos and unitarity violation with CP invariants,
Heinrich Pas, Philipp Sicking,
Phys.Rev. D95 (2017) 075004,arXiv:1611.08450.
[Pas:2016qbg]
Octant of $\theta_{23}$ at long baseline neutrino experiments in the light of Non Unitary Leptonic mixing,
Debajyoti Dutta, Pomita Ghoshal, Sandeep K. Sehrawat,
Phys.Rev. D95 (2017) 095007,arXiv:1610.07203.
[Dutta:2016eks]
Effect of Non Unitarity on Neutrino Mass Hierarchy determination at DUNE, NO$\nu$A and T2K,
Debajyoti Dutta, Pomita Ghoshal, Samiran Roy,
Nucl.Phys. B920 (2017) 385-401,arXiv:1609.07094.
[Dutta:2016czj]
Probing CP violation with T2K, NO$\nu$A and DUNE in the presence of non-unitarity,
Debajyoti Dutta, Pomita Ghoshal,
JHEP 1609 (2016) 110,arXiv:1607.02500.
[Dutta:2016vcc]
Measuring the Leptonic CP Phase in Neutrino Oscillations with Non-Unitary Mixing,
Shao-Feng Ge, Pedro Pasquini, M. Tortola, J. W. F. Valle,
Phys.Rev. D95 (2017) 033005,arXiv:1605.01670.
[Ge:2016xya]
New ambiguity in probing CP violation in neutrino oscillations,
O. G. Miranda, M. Tortola, J. W. F. Valle,
Phys. Rev. Lett. 117 (2016) 061804,arXiv:1604.05690.
[Miranda:2016wdr]
Impact of sterile neutrinos on nuclear-assisted cLFV processes,
A. Abada, V. De Romeri, A. M. Teixeira,
JHEP 02 (2016) 083,arXiv:1510.06657.
[Abada:2015oba]
Unitarity and the three flavour neutrino mixing matrix,
Stephen Parke, Mark Ross-Lonergan,
Phys. Rev. D93 (2016) 113009,arXiv:1508.05095.
[Parke:2015goa]
On the description of non-unitary neutrino mixing,
F. J. Escrihuela, D. V. Forero, O. G. Miranda, M. Tortola, J. W. F. Valle,
Phys. Rev. D92 (2015) 053009,arXiv:1503.08879.
[Escrihuela:2015wra]
Testing sterile neutrino extensions of the Standard Model at future lepton colliders,
Stefan Antusch, Oliver Fischer,
JHEP 05 (2015) 053,arXiv:1502.05915.
[Antusch:2015mia]
Non-unitarity of the leptonic mixing matrix: Present bounds and future sensitivities,
Stefan Antusch, Oliver Fischer,
JHEP 10 (2014) 094,arXiv:1407.6607.
[Antusch:2014woa]
Sterile neutrinos in leptonic and semileptonic decays,
A. Abada, A. M. Teixeira, A. Vicente, C. Weiland,
JHEP 02 (2014) 091,arXiv:1311.2830.
[Abada:2013aba]
Precision tests of unitarity in leptonic mixing,
Lorenzo Basso, Oliver Fischer, Jochum J. van der Bij,
Europhys. Lett. 105 (2014) 11001,arXiv:1310.2057.
[Basso:2013jka]
Improving Electro-Weak Fits with TeV-scale Sterile Neutrinos,
E. Akhmedov, A. Kartavtsev, M. Lindner, L. Michaels, J. Smirnov,
JHEP 05 (2013) 081,arXiv:1302.1872.
[Akhmedov:2013hec]
Tree-level lepton universality violation in the presence of sterile neutrinos: impact for $R_K$ and $R_\pi$,
A. Abada, D. Das, A. M. Teixeira, A. Vicente, C. Weiland,
JHEP 02 (2013) 048,arXiv:1211.3052.
[Abada:2012mc]
Towards testing the unitarity of the 3X3 lepton flavor mixing matrix in a precision reactor antineutrino oscillation experiment,
Zhi-zhong Xing,
Phys. Lett. B718 (2013) 1447-1453,arXiv:1210.1523.
[Xing:2012kh]
Muon conversion to electron in nuclei in type-I seesaw models,
R. Alonso, M. Dhen, M. B. Gavela, T. Hambye,
JHEP 01 (2013) 118,arXiv:1209.2679.
[Alonso:2012ji]
A full parametrization of the 6 X 6 flavor mixing matrix in the presence of three light or heavy sterile neutrinos,
Zhi-zhong Xing,
Phys. Rev. D85 (2012) 013008,arXiv:1110.0083.
[Xing:2011ur]
Lepton flavor violation and non-unitary lepton mixing in low-scale type-I seesaw,
D. V. Forero, S. Morisi, M. Tortola, J. W. F. Valle,
JHEP 09 (2011) 142,arXiv:1107.6009.
[Forero:2011pc]
Correlation between the Charged Current Interactions of Light and Heavy Majorana Neutrinos,
Zhi-zhong Xing,
Phys. Lett. B660 (2008) 515-521,arXiv:0709.2220.
[Xing:2007zj]
CP-violation from non-unitary leptonic mixing,
E. Fernandez-Martinez, M.B. Gavela, J.Lopez-Pavon, O. Yasuda,
Phys. Lett. B649 (2007) 427-435,arXiv:hep-ph/0703098.
[Fernandez-Martinez:2007iaa]
Nondecoupling of heavy neutrinos and lepton flavor violation,
D. Tommasini, G. Barenboim, J. Bernabeu, C. Jarlskog,
Nucl. Phys. B444 (1995) 451-467,arXiv:hep-ph/9503228.
[Tommasini:1995ii]
Limits on neutrino mixing with new heavy particles,
Enrico Nardi, Esteban Roulet, Daniele Tommasini,
Phys. Lett. B327 (1994) 319-326,arXiv:hep-ph/9402224.
[Nardi:1994iv]
Seesaw type mixing and $\nu_{\mu}\to\nu_{\tau}$ oscillations,
Samoil M. Bilenky, C. Giunti,
Phys. Lett. B300 (1993) 137-140,arXiv:hep-ph/9211269.
[Bilenky:1992wv]
Possible Precise Neutrino Unitarity?,
Anatael Cabrera,
PoS EPS-HEP2019 (2020) 375,arXiv:1911.03686.
European Physical Society Conference on High Energy Physics - EPS-HEP2019 - 10-17 July, 2019. Ghent, Belgium. [Cabrera:2019xkf]
Beyond Standard Neutrino Theory,
Toshihiko Ota,
PoS NuFact2017 (2018) 026,arXiv:1712.06784.
19th International Workshop on Neutrinos from Accelerators (NUFACT 2017). [Ota:2017uae]
Completely general bounds on Non-Unitary leptonic mixing,
Josu Hernandez-Garcia,
arXiv:1611.07584, 2016.NuFact16 and ICHEP 2016. [Hernandez-Garcia:2016hyv]
Majorana, the Neutron, and the Neutrino: Some elementary historical remarks,
Erasmo Recami,
Hadronic J. 40 (2017) 149-185,arXiv:1712.02209.
[Recami:2017pfb]
The neutrino: From poltergeist to particle,
F. Reines,
Rev. Mod. Phys. 68 (1996) 317-327. [Reines:1996ia]
Search Neutrino Unbound
Cross search NU
It is possible to perform a cross search between the various pages of Neutrino Unbound.
This is useful if you want to show the common elements that appear
in the listings of two (or more) different topics or experiments.