United States Muon Collider Community White Paper for the European Strategy for Particle Physics Update,
M. Begel et al.,
arXiv:2503.23695, 2025. [Begel:2025ldu]
A Linear Collider Vision for the Future of Particle Physics,
C. Balazs et al.(Linear Collider Vision),
arXiv:2503.19983, 2025. [LinearColliderVision:2025hlt]
The science and technology of liquid argon detectors,
W. M. Bonivento, F. Terranova,
Rev.Mod.Phys. 96 (2024) 045001,arXiv:2405.01153.
[Bonivento:2024qpn]
Dual-phase xenon time projection chambers for rare-event searches,
Laura Baudis,
Phil.Trans.Roy.Soc.Lond.A 382 (2023) 0083,arXiv:2311.05320.
[Baudis:2023pzu]
Detection and Calibration of Low-Energy Nuclear Recoils for Dark Matter and Neutrino Scattering Experiments,
Jingke Xu, P. S. Barbeau, Ziqing Hong,
Ann. Rev. Nucl. Part. Sci. 73 (2023) 95-121,arXiv:2311.02257.
[Xu:2023rzm]
Review of Novel Approaches to Organic Liquid Scintillators in Neutrino Physics,
Stefan Schoppmann,
Symmetry 15 (2023) 11,arXiv:2212.11341.
[Schoppmann:2022hst]
Snowmass 2021 Underground Facilities and Infrastructure Overview Topical Report,
L. Baudis, J. Hall, K. T. Lesko, J. L. Orrell,
arXiv:2212.07037, 2022. [Baudis:2022pzb]
Snowmass 2021 Underground Facilities and Infrastructure Frontier Report,
Laura Baudis, Jeter Hall, Kevin T. Lesko, John L. Orrell,
arXiv:2211.13450, 2022. [Baudis:2022qjb]
A Review of NEST Models for Liquid Xenon and Exhaustive Comparison to Other Approaches,
M. Szydagis et al.,
Front.Detect.Sci.Tech. 2 (2024) 1480975,arXiv:2211.10726.
[Szydagis:2022ikv]
Snowmass 2021 Topical Report on Synergies in Research at Underground Facilities,
Catalina Curceanu, Derek Elsworth, Joe Formaggio, Jan Harms, Daniel Robertson, William Roggenthen, Herb Wang, Sijbrand de Jong, John L. Orrell,
arXiv:2210.03145, 2022. [Curceanu:2022zsg]
Report of the Instrumentation Frontier Working Group for Snowmass 2021,
Phil Barbeau et al.,
arXiv:2209.14111, 2022.2022 Snowmass Summer Study. [Barbeau:2022muf]
Snowmass Instrumentation Frontier IF02 Topical Group Report: Photon Detectors,
Carlos Escobar, Juan Estrada, Chris Rogan,
arXiv:2208.13051, 2022. [Escobar:2022jau]
Snowmass Instrumentation Frontier IF08 Topical Group Report: Noble Element Detectors,
Carl Eric Dahl, Roxanne Guenette, Jennifer L. Raaf,
arXiv:2208.11017, 2022. [Dahl:2022bst]
Snowmass 21 Discussions on Future Accelerator HEP Facilities,
Stephen Gourlay, Tor Raubenheimer, Vladimir Shiltsev,
arXiv:2208.09552, 2022. [Gourlay:2022ktb]
4D Tracking: Present Status and Perspective,
N. Cartiglia, R. Arcidiacono, M. Costa, M. Ferrero, G. Gioachin, M. Mandurrino, L. Menzio, F. Siviero, V. Sola, M. Tornago,
Nucl.Instrum.Meth.A 1040 (2022) 167228,arXiv:2204.06536.
[Cartiglia:2022ysm]
Key directions for research and development of superconducting radio frequency cavities,
S. Belomestnykh et al.,
arXiv:2204.01178, 2022. [Belomestnykh:2022scw]
Snowmass 2021 White Paper Instrumentation Frontier 05 - White Paper 1: MPGDs: Recent advances and current R&D,
K. Dehmelt et al.,
arXiv:2203.06562, 2022. [Dehmelt:2022inw]
A Review of Basic Energy Reconstruction Techniques in Liquid Xenon and Argon Detectors for Dark Matter and Neutrino Physics Using NEST,
M. Szydagis et al.,
Instruments 5 (2021) 13,arXiv:2102.10209.
[Szydagis:2021hfh]
Directional recoil detection,
Sven E. Vahsen, Ciaran A. J. O'Hare, Dinesh Loomba,
Ann.Rev.Nucl.Part.Sci. 71 (2021) 189-224,arXiv:2102.04596.
[Vahsen:2021gnb]
Wavelength shifters for applications in liquid argon detectors,
Marcin Kuzniak, Andrzej M. Szelc,
Instruments 5 (2021) 4,arXiv:2012.15626.
[Kuzniak:2020oka]
Calibration of calorimetric measurement in a liquid argon time projection chamber,
Tingjun Yang,
Instruments 5 (2020) 2,arXiv:2012.01319.
[Yang:2020any]
A Review on Machine Learning for Neutrino Experiments,
Fernanda Psihas, Micah Groh, Christopher Tunnell, Karl Warburton,
Int.J.Mod.Phys. A35 (2020) 2043005,arXiv:2008.01242.
[Psihas:2020pby]
HEP Software Foundation Community White Paper Working Group - Detector Simulation,
HEP Software Foundation,
arXiv:1803.04165, 2018. [HEPSoftwareFoundation:2018fmg]
Advances in pixel detectors for experiments with high rate and radiation,
Maurice Garcia-Sciveres, Norbert Wermes,
Rept.Prog.Phys. 81 (2018) 066101,arXiv:1705.10150.
[Garcia-Sciveres:2017ymt]
Status and New Ideas Regarding Liquid Argon Detectors,
Alberto Marchionni,
Ann.Rev.Nucl.Part.Sci. 63 (2013) 269-290,arXiv:1307.6918.
[Marchionni:2013tfa]
Metallic Magnetic Calorimeters,
A. Fleischmann, C. Enss, G.M. Seidel, 2005.In 'Cryogenic Particle Detection', edited by C. Enss, p.151-216.http://dx.doi.org/10.1007/10933596_4.
[Fleischmann2005]
A Review and Outlook for the Removal of Radon-Generated Po-210 Surface Contamination,
V.E. Guiseppe, C.D. Christofferson, K.R. Hair, F.M. Adams,
AIP Conf.Proc. 1921 (2018) 070003,arXiv:1712.08167.
Low Radioactivity Techniques (LRT) 2017, Seoul, South Korea, May 24-26, 2017. [Guiseppe:2017yah]
Proceedings of the CAS - CERN Accelerator School: Ion Sources, Senec, Slovakia, 29 May - 8 June 2012,
R. Bailey,
arXiv:1411.2445, 2014. [Bailey:2013rga]
The Sanford Underground Research Facility at Homestake,
J. Heise,
AIP Conf.Proc. 1604 (2014) 331-344,arXiv:1401.0861.
VII International Conference on Interconnections between Particle Physics and Cosmology (PPC2013), Deadwood, SD, July 8-13, 2013. [Heise:2014gta]
The ANDES Deep Underground Laboratory,
X. Bertou,
arXiv:1308.0059, 2013.33rd International Cosmic Ray Conference, Rio de Janeiro 2013. [Bertou:2013oda]
Acoustic Neutrino Detection in Ice: Past, Present, and Future,
Timo Karg,
AIP Conf.Proc. 1535 (2013) 162,arXiv:1210.7974.
5th International workshop on Acoustic and Radio EeV Neutrino detection Activities - ARENA 2012. [Karg:2012ua]
Gaseous Detectors: recent developments and applications,
Maxim Titov,
arXiv:1008.3736, 2010.2009 Trans-European School of High Energy Physics, Zakopane, Poland, July 8-14(2009). [Titov:2010br]
The Physics of Hanbury Brown-Twiss intensity interferometry: From stars to nuclear collisions,
Gordon Baym,
Acta Phys. Polon. B29 (1998) 1839-1884,arXiv:nucl-th/9804026.
37th Cracow School, Zakopane, Poland, May 30-June 10, 1997. [Baym:1997ce]
Calculating the Total Cherenkov Radiation Emitted by Low Energy Protons in Liquid Argon and Comparing with Argon Scintillation Light at 128 nm,
Hasan R. Rahman,
arXiv:2408.00817, 2024. [Rahman:2024zhp]
High Power Cyclotrons: The Bridge Between Beyond the Standard Model Physics, Computation, and Medical Applications,
Loyd Waites,
arXiv:2212.11114, 2022. [Waites:2022ick]
$^{42}$Ar Production and Injection to a Liquid Argon Environment for Background Mitigation Studies,
Mario Schwarz, Christoph Vogl, Niko N. P. N. Lay, Tommaso Comellato, Gunther Korschinek, Moritz Neuberger, Oskar Moras, Patrick Krause, Stefan Schonert,
arXiv:2511.05336, 2025. [Schwarz:2025nnq]
Pulse shape simulation for the reduced charge collection layer in p-type high-purity germanium detectors,
P. Zhang et al.,
arXiv:2511.02513, 2025. [Zhang:2025erx]
Gas Electroluminescence in a Dual Phase Xenon-Doped Argon Detector,
James W. Kingston, Jianyang Qi, Jingke Xu, Ethan P. Bernard, Adam D. Tidball, Alec W. Peck, Nathaniel S. Bowden, Mani Tripathi, Kaixuan Ni, Shawn Westerdale,
arXiv:2510.02261, 2025. [2510.02261]
Predicting the single-site and multi-site event discrimination power of dual-phase time projection chambers,
A.B.M.R. Sazzad et al.,
arXiv:2510.02258, 2025. [Sazzad:2025own]
Reconstruction of the Effective Energy-deposition Vertex of Muon Showers using PMT Waveform in a Large-scale Liquid Scintillator Detector,
Junwei Zhang, Yongpeng Zhang, Yongbo Huang, Jilei Xu, Junyou Chen, Yi Wang,
arXiv:2509.21935, 2025. [Zhang:2025dhu]
A 3D segmented Water-based Liquid Scintillator for high-precision detection of neutrinos in water,
Botao Li et al.,
arXiv:2508.11355, 2025. [Li:2025dff]
Fluorescence time profile measurement of LAB based liquid scintillator in response to medium relativistic ion particles,
Xiaojie Luo et al.,
JINST 20 (2025) P10042,arXiv:2508.08546.
[Luo:2025wyr]
Simulation-based inference for Precision Neutrino Physics through Neural Monte Carlo tuning,
A. Gavrikov et al.,
arXiv:2507.23297, 2025. [Gavrikov:2025rps]
CycleGAN-Driven Transfer Learning for Electronics Response Emulation in High-Purity Germanium Detectors,
Kevin Bhimani, Julieta Gruszko, Morgan Clark, John Wilkerson, Aobo Li,
arXiv:2507.09106, 2025. [Bhimani:2025fzb]
Ge-based Quantum Sensors for Low-Energy Physics,
D. -M. Mei, N. Budhathoki, S. A. Panamaldeniya, K. -M. Dong, S. Bhattarai, A. Warren, A. Prem, S. Chhetri,
arXiv:2507.01815, 2025. [Mei:2025fxj]
Algorithm to extract direction in 2D discrete distributions and a continuous Frobenius norm,
Jeffrey G. Yepez, Jackson D. Seligman, Max A. A. Dornfest, Brian C. Crow, John G. Learned, Viacheslav A. Li,
arXiv:2506.17360, 2025. [Yepez:2025llk]
Study on the impact of radioactive background on Dark Count Rate of 20-inch MCP-PMTs,
Zeyuan Feng, Zhaoyuan Peng, Haojie Dong, Yanfeng Li, Songyi Li, Xinzhou Guo, Wan Xie, Zhonghua Qin, Weiping Liu,
JINST 20 (2025) P10006,arXiv:2506.12470.
[Feng:2025qkt]
Impact of angle-dependent recombination on neutrino energy reconstruction in LArTPCs,
J. Vences, J. Maneira, C. Vilela,
JINST 20 (2025) P09026,arXiv:2506.10551.
[Vences:2025qjr]
Optimal Transport for $e/\pi^0$ Particle Classification in LArTPC Neutrino Experiments,
David Caratelli, Nathaniel Craig, Chuyue Fang, Jessica N. Howard,
arXiv:2506.09238, 2025. [Caratelli:2025bmu]
Measurement of cosmic muon-induced events in an HPGe detector using time-coincidence technique,
Roni Dey, Dipanwita Mondal, Sudipta Das, Varchaswi K. S. Kashyap, Bedangadas Mohanty,
arXiv:2505.20317, 2025. [Dey:2025bls]
Spontaneous generation of athermal phonons bursts within bulk silicon causing excess noise, low energy background events and quasiparticle poisoning in superconducting sensors,
C. L. Chang et al.,
arXiv:2505.16092, 2025. [Chang:2025gkn]
Detector Designs for Frontier Measurements in Neutrino and Collider Physics in the 21st Century,
Wonyong Chung,
arXiv:2505.10697, 2025. [Chung:2025ggh]
Demonstration of Efficient Radon Removal by Silver-Zeolite in a Dark Matter Detector,
Daniel Durnford, Yuqi Deng, Carter Garrah, Philippe Gros, Michel Gros, Jose Busto, Steven Kuznicki, Marie-Cecile Piro,
arXiv:2505.07979, 2025. [Durnford:2025iom]
Modeling the light response of an optically readout GEM based TPC for the CYGNO experiment,
Fernando Dominques Amaro et al.,
arXiv:2505.06362, 2025. [Amaro:2025pms]
Path to a Single-Stage, 100-GeV Electron Beam via a Flying-Focus-Driven Laser-Plasma Accelerator,
J. L. Shaw et al.,
Phys.Plasmas 32 (2025) 083107,arXiv:2505.00157.
[Shaw:2025jdn]
Enhancing Neutrino Reconstruction in Water-Cherenkov Air Shower Arrays Using Multi-Photosensors,
J. Alvarez-Muniz, R. Colalillo, R. Conceicao, B. S. Gonzalez, V. M. Grieco, F. Guarino, M. Pimenta, B. Tome, M. Waqas,
Eur.Phys.J.C 85 (2025) 842,arXiv:2504.08652.
[Alvarez-Muniz:2025rct]
Particle Hit Clustering and Identification Using Point Set Transformers in Liquid Argon Time Projection Chambers,
Edgar E. Robles, Alejando Yankelevich, Wenjie Wu, Jianming Bian, Pierre Baldi,
JINST 20 (2025) P07030,arXiv:2504.08182.
[Robles:2025okm]
Improved sensitivity in the search for rare decays of Gd isotopes,
B. Lehnert, S. S. Nagorny, M. Thiesse, F. Ferella, M. Laubenstein, E. Meehan, S. Nisi, P. R. Scovell,
Eur.Phys.J.C 85 (2025) 659,arXiv:2503.01641.
[Lehnert:2025bds]
Contrastive Learning for Robust Representations of Neutrino Data,
Alex Wilkinson, Radi Radev, Saul Alonso-Monsalve,
Phys.Rev.D 111 (2025) 092011,arXiv:2502.07724.
[Wilkinson:2025nxv]
Exploration of optimized front-end readout circuit for time measurement of large-area SiPM arrays,
M. X. Wang, Y. Liu, Y. Q. Tan, J. N. Tang, W. H. Wu, D. L. Xu, W. Zhi, Z. Z. Zhou,
JINST 20 (2025) T08002,arXiv:2502.02999.
[Wang:2025wqv]
Measurement of Radon-222 concentration in N2 using an activated charcoal trap,
N. Fatemighomi, Y. Ahmed, S. M. A. Hussain, J. Lu, A. Pearson, J. Suys,
Nucl.Instrum.Meth.A 1076 (2025) 170422,arXiv:2501.14559.
[Fatemighomi:2025gqd]
On the Utility Function of Experiments in Fundamental Science,
Tommaso Dorigo, Michele Doro, Max Aehle, Nicolas R. Gauger, Muhammad Awais, Rafael Izbicki, Jan Kieseler, Luca Masserano, Federico Nardi, Luis Recabarren Vergara,
Phys.Open 23 (2025) 100270,arXiv:2501.13544.
[Dorigo:2025odo]
Characterization of a fiber laser hydrophone for acoustic neutrino detection,
E. J. Buis, A. M. von Benda-Beckmann, E. Doppenberg, J. Dorant, T. H. Jansen, P. Toet, P. Verhooren, J. de Vreugd,
Astropart.Phys. 170 (2025) 103109,arXiv:2501.12999.
[Buis:2025jde]
Gas contamination and mitigation in a 100 m$^3$ / 10 bar argon TPC with optical readout: a viability study,
D. J. Fernandez-Posada, D. Gonzalez-Diaz, J. Baldonedo, J. Collazo, E. Casarejos, P. Hamacher-Baumann, P. Amedo, J. Llerena,
JINST 20 (2025) P05013,arXiv:2501.05791.
[Fernandez-Posada:2025yvs]
Modification on thermal motion in Geant4 for neutron capture simulation in Gadolinium loaded water,
Y. Hino et al.,
PTEP 2025 (2025) 013C01,arXiv:2412.04186.
[Hino:2024mbb]
Novel Application of Neutrinos to Evaluate U.S. Nuclear Weapons Performance,
J. R. Distel et al.,
Rev.Sci.Instrum. 96 (2025) 103302,arXiv:2411.11804.
[Distel:2024qzg]
Uncertainty Propagation within Chained Models for Machine Learning Reconstruction of Neutrino-LAr Interactions,
D. Douglas, A. Mishra, D. Ratner, F. Petersen,
arXiv:2411.09864, 2024. [Douglas:2024tnl]
Investigation and optimization of the deconvolution method for PMT waveform reconstruction,
Jingzhe Tang, Tianying Xiao, Xuan Tang, Yongbo Huang,
JINST 20 (2025) P03019,arXiv:2411.07620.
[Tang:2024jfs]
PICOSEC-Micromegas Detector, an innovative solution for Lepton Time Tagging,
A. Kallitsopoulou et al.,
Nucl. Instrum. Meth. A 1069 (2024) 169920,arXiv:2411.02532.
[Kallitsopoulou:2024dmk]
Time Slicing of Neutrino Fluxes in Oscillation Experiments at Fermilab,
Sudeshna Ganguly, Katsuya Yonehara, Chandrashekhara M. Bhat, A. Kent Triplett, Robert Ainsworth, Clara Hinds, Maan Abdelhamid,
arXiv:2410.18256, 2024. [Ganguly:2024lqh]
Towards Designing Scalable Quantum-Enhanced Generative Networks for Neutrino Physics Experiments with Liquid Argon Time Projection Chambers,
Andrea Delgado, Diego Venegas-Vargas, Adam Huynh, Kevon Carroll,
arXiv:2410.12650, 2024. [Delgado:2024vne]
Improvement and Characterisation of the ArCLight Large Area Dielectric Light Detector for Liquid Argon TPCs,
Jonas Burgi, Livio Calivers, Richard Diurba, Fabian Frieden, Anja Gauch, Laura Francesca Iacob, Igor Kreslo, Jan Kunzmann, Saba Parsa, Michele Weber,
Instruments 8 (2024) 48,arXiv:2409.13613.
[Burgi:2024coo]
Neutrino yield and neutron shielding calculations for a high-power target installed in an underground setting,
Adriana Bungau, Jose Alonso, Roger Barlow, Larry Bartozsek, Janet Conrad, Michael Shaevitz, Joshua Spitz, Daniel Winklehner,
arXiv:2409.10211, 2024. [Bungau:2024rzk]
Measurements of Pion and Muon Nuclear Capture at Rest on Argon in the LArIAT Experiment,
M. A. Hernandez-Morquecho et al.,
Phys.Rev.Lett. 134 (2025) 131801,arXiv:2408.05133.
[LArIAT:2024otd]
A camera system for real-time optical calibration of water-based neutrino telescopes,
Wei Tian et al.,
Nucl.Instrum.Meth.A 1076 (2025) 170489,arXiv:2407.19111.
[T-REX:2024qfj]
Study of charging-up of PCB planes for neutrino experiment readout,
B. Baibussinov et al.,
JINST 19 (2024) P11012,arXiv:2407.19105.
[Baibussinov:2024yan]
Single photon performance characterisation of a Generation I Large Area Picosecond PhotoDetector,
Robert Foster, Andrew Scarff, Matthew Malek,
arXiv:2407.16335, 2024. [Foster:2024tgq]
A Hybrid Approach to Event Reconstruction for Atmospheric Cherenkov Telescopes Combining Machine Learning and Likelihood Fitting,
Georg Schwefer, Robert Parsons, Jim Hinton,
Astropart.Phys. 163 (2024) 103008,arXiv:2406.17502.
[Schwefer:2024bsx]
Performance of the plastic scintillator modules for the top veto tracker of the Taishan Antineutrino Observatory,
Guang Luo et al.,
Nucl.Sci.Tech. 36 (2025) 91,arXiv:2406.15973.
[Luo:2024xir]
Fluorescence Imaging of Individual Ions and Molecules in Pressurized Noble Gases for Barium Tagging in $^{136}$Xe,
N. Byrnes et al.(NEXT),
Nature Commun. 15 (2024) 10595,arXiv:2406.15422.
[NEXT:2024tbp]
Interpretable machine learning approach for electron antineutrino selection in a large liquid scintillator detector,
A. Gavrikov et al.,
Phys.Lett.B 860 (2025) 139141,arXiv:2406.12901.
[Gavrikov:2024rso]
Comprehensive Machine Learning Model Comparison for Cherenkov and Scintillation Light Separation due to Particle Interactions,
Emrah Tiras, Merve Tas, Dilara Kizilkaya, Muhammet Anil Yagiz, Mustafa Kandemir,
arXiv:2406.09191, 2024. [Tiras:2024yzr]
Transforming a rare event search into a not-so-rare event search in real-time with deep learning-based object detection,
J. Schueler et al.,
Phys.Rev.D 111 (2025) 072004,arXiv:2406.07538.
[MIGDAL:2024alc]
A novel mechanical design of a bolometric array for the CROSS double-beta decay experiment,
D. Auguste et al.,
JINST 19 (2024) P09014,arXiv:2405.18980.
[Auguste:2024xrg]
Quantum Parity Detectors: a qubit based particle detection scheme with meV thresholds for rare-event searches,
Karthik Ramanathan, John E. Parker, Lalit M. Joshi, Andrew D. Beyer, Pierre M. Echternach, Serge Rosenblum, Brandon J. Sandoval, Sunil R. Golwala,
arXiv:2405.17192, 2024. [Ramanathan:2024hsf]
Improving Neutrino Energy Reconstruction with Machine Learning,
Joachim Kopp, Pedro Machado, Margot MacMahon, Ivan Martinez-Soler,
arXiv:2405.15867, 2024. [Kopp:2024lch]
Performance evaluation of electron multiplier tubes as a high-intensity muon beam monitor,
Takashi Honjo et al.,
PTEP 2024 () 123,arXiv:2405.05877.
[Honjo:2024zak]
Development, Characterization and Production of a novel Water-based Liquid Scintillator based on the Surfactant TRITON X-100,
Hans Th. J. Steiger, Manuel Bohles, Matthias Raphael Stock, Michael Wurm, David Dorflinger, Ulrike Fahrendholz, Anastasia Mpoukouvalas, Lothar Oberauer, Andreas Steiger, Dorina Zundel,
JINST 19 (2024) P09008,arXiv:2405.05743.
[Steiger:2024zcc]
Development of a Bi-solvent Liquid Scintillator with Slow Light Emission,
Hans Th. J. Steiger et al.,
JINST 19 (2024) P09015,arXiv:2405.01100.
[Steiger:2024nes]
Perspectives of a single-anode cylindrical chamber operating in ionization mode and high gas pressure,
R. Bouet et al.,
Eur.Phys.J.C 84 (2024) 512,arXiv:2404.19374.
[Bouet:2024njk]
First measurement of Gallium Arsenide as a low-temperature calorimeter,
D. L. Helis et al.,
Eur.Phys.J.C 84 (2024) 749,arXiv:2404.15741.
[Helis:2024vhr]
The environmental low-frequency background for macro-calorimeters at the millikelvin scale,
L. Aragao et al.,
Eur.Phys.J.C 84 (2024) 728,arXiv:2404.13602.
[Aragao:2024ijn]
A Kalman Filter for track reconstruction in very large time projection chambers,
Federico Battisti, Marian Ivanov, Xianguo Lu,
Comput.Phys.Commun. 308 (2025) 109443,arXiv:2404.08614.
[Battisti:2024nqq]
Design, construction, and operation of a 1-ton Water-based Liquid scintillator detector at Brookhaven National Laboratory,
X. Xiang et al.,
JINST 19 (2024) P06033,arXiv:2403.13231.
[Xiang:2024jfp]
Validation of electrodeposited 241Am alpha-particle sources for use in liquified gas detectors at cryogenic temperatures,
E. Calvo Alamillo et al.,
Appl.Radiat.Isot. 200 (2023) 110913,arXiv:2403.07539.
[CalvoAlamillo:2023olz]
Using Machine Learning to Separate Cherenkov and Scintillation Light in Hybrid Neutrino Detector,
Ayse Bat,
JINST 19 (2024) P04027,arXiv:2403.05184.
[Bat:2024gln]
Collective excitations and low-energy ionization signatures of relativistic particles in silicon detectors,
Rouven Essig, Ryan Plestid, Aman Singal,
Commun.Phys. 7 (2024) 416,arXiv:2403.00123.
[Essig:2024ebk]
Waveform Simulation for Scintillation Characteristics of NaI(Tl) Crystal,
J. J. Choi et al.,
Nucl.Instrum.Meth.A 1065 (2024) 169489,arXiv:2402.17125.
[Choi:2024ziz]
Measurements of low energy nuclear recoil quenching factors for Na and I recoils in the NaI(Tl) scintillator,
S. H. Lee et al.,
Phys.Rev.C 110 (2024) 014614,arXiv:2402.15122.
[Lee:2024unz]
Mechanical detection of nuclear decays,
Jiaxiang Wang, T. W. Penny, Juan Recoaro, Benjamin Siegel, Yu-Han Tseng, David C. Moore,
Phys.Rev.Lett. 133 (2024) 023602,arXiv:2402.13257.
[Wang:2024pnc]
A measurement of the sodium and iodine scintillation quenching factors across multiple NaI(Tl) detectors to identify systematics,
D. Cintas et al.,
Phys.Rev.C 110 (2024) 014613,arXiv:2402.12480.
[Cintas:2024pdu]
PocketWATCH: Design and operation of a multi-use test bed for water Cherenkov detector components in pure and gadolinium loaded water,
Matthew Thiesse, Stephen T. Wilson, Jack Fannon, Matthew Malek, Jordan McElwee, Andrew Scarff, Lee F. Thompson,
JINST 19 (2024) T05005,arXiv:2402.06565.
[Thiesse:2024vap]
Directional Response of Several Geometries for Reactor-Neutrino Detectors,
Mark J. Duvall, Brian C. Crow, Max A. A. Dornfest, John G. Learned, Marc F. Bergevin, Steven A. Dazeley, Viacheslav A. Li,
Phys.Rev.Applied 22 (2024) 054030,arXiv:2402.01636.
[Duvall:2024cae]
Measurement of the Photon Detection Efficiency of Hamamatsu VUV4 SiPMs at Cryogenic Temperature,
Rodrigo Alvarez-Garrote et al.,
Nucl.Instrum.Meth.A 1064 (2024) 169347,arXiv:2402.01584.
[Alvarez-Garrote:2024byb]
On the determination of the interaction time of GeV neutrinos in large argon gas TPCs,
A. Saa-Hernandez et al.,
Eur.Phys.J.C 85 (2025) 549,arXiv:2401.09920.
[Saa-Hernandez:2024tvl]
Characterization of the scintillation response of water-based liquid scintillator to alpha particles, and implications for particle identification,
E. J. Callaghan, T. Kaptanoglu, M. Smiley, M. Yeh, G. D. Orebi Gann,
Eur.Phys.J.C 83 (2023) 1094,arXiv:2311.16288.
[Callaghan:2023oyu]
A novel cryogenic VUV spectrofluorometer for the characterization of wavelength shifters,
A. Leonhardt, M. Goldbrunner, B. Hackett, S. Schonert,
JINST 19 (2024) C05020,arXiv:2311.15901.
[Leonhardt:2023yiu]
Demonstrating the Q-Pix front-end using discrete OpAmp and CMOS transistors,
Peng Miao, Jonathan Asaadi, James B. R. Battat, Mikyung Han, Kevin Keefe, S. Kohani, Austin D. McDonald, David Nygren, Olivia Seidel, Yuan Mei,
arXiv:2311.09568, 2023. [Miao:2023ivo]
A new cleaner and higher rate techniques for anti-neutrino detection using Tungsten 183 Isotope,
Jarred Novak, Nickolas Solomey, Brooks Hartsock, Brian Doty, Jonathan Folkerts,
JINST 19 (2024) P06037,arXiv:2311.08418.
[Novak:2023wqt]
NuHepMC: A standardized event record format for neutrino event generators,
S. Gardiner, J. Isaacson, L. Pickering,
SciPost Phys.Codeb. 57 (2025) 1,arXiv:2310.13211.
[Gardiner:2023ejq]
Subsurface cosmogenic and radiogenic production of $^{42}\text{Ar}$,
Sagar S. Poudel, Ben Loer, Richard Saldanha, Brianne R. Hackett, Henning O. Back,
Phys.Rev.D 110 (2024) 082010,arXiv:2309.16169.
[Poudel:2023mtx]
Benchmarking GEANT4 simulation of mini-Iron Calorimeter for cosmic ray muon studies,
J. M. John, G. Majumder, S. Pethuraj,
JINST 18 (2023) P11023,arXiv:2309.00992.
[John:2023zqj]
Projections of Discovery Potentials from Expected Background,
M. K. Singh, H. B. Li, H. T. Wong, V. Sharma, L. Singh,
Phys.Rev.D 109 (2024) 032001,arXiv:2308.07049.
[Singh:2023baw]
DISCO: An optical instrument to calibrate neutrino detection in complex media,
Carsten Rott, Segev BenZvi, Mike DuVernois, Kenneth Golden, Benjamin JONES, Christoph Toennis,
PoS ICRC2023 (2023) 1139,arXiv:2308.02830.
[Rott:2023xtj]
The intelligent Photomultiplier Tubes for OSIRIS,
Feng Gao, Tim Kuhlbusch, Achim Stahl, Jochen Steinmann, Cornelius Vollbrecht, Christian Wysotzki,
JINST 18 (2023) P11027,arXiv:2307.16569.
[Gao:2023tfr]
Study of collision and $\gamma$-cascade times following neutron-capture processes in cryogenic detectors,
G. Soum-Sidikov et al.(CRAB),
Phys.Rev.D 108 (2023) 072009,arXiv:2305.10139.
[CRAB:2023kuz]
Sensitivity of Transition-Edge Sensors to Strong DC Electric Fields,
K. M. Patel, D. J. Goldie, S. Withington, C. N. Thomas,
arXiv:2305.06032, 2023. [Patel:2023sbk]
Treating Detector Systematics via a Likelihood Free Inference Method,
Leander Fischer, Richard Naab, Alexandra Trettin,
JINST 18 (2023) P10019,arXiv:2305.02257.
[Fischer:2023dbo]
Unsupervised Domain Transfer for Science: Exploring Deep Learning Methods for Translation between LArTPC Detector Simulations with Differing Response Models,
Yi Huang, Dmitrii Torbunov, Brett Viren, Haiwang Yu, Jin Huang, Meifeng Lin, Yihui Ren,
Mach.Learn.Sci.Tech. 5 (2024) 045021,arXiv:2304.12858.
[Huang:2023kgs]
A Hybrid 3D/2D Field Response Calculation for Liquid Argon Detectors with PCB Based Anode Plane,
S. Martynenko et al.,
JINST 18 (2023) P04033,arXiv:2303.10224.
[Martynenko:2023bpe]
Performance of a liquid nitrogen cryostat for the study of nuclear recoils in undoped CsI crystals,
K. Ding, J. Liu, Y. Yang, K. Scholberg, D.M. Markoff,
Nucl.Instrum.Meth.A 1063 (2024) 169283,arXiv:2303.05437.
[Ding:2023pqe]
Restoring the saturation response of a PMT using pulse-shape and artificial-neural-networks,
Hyun-Gi Lee, Jungsic Park, Byeongsu Yang,
arXiv:2302.06170, 2023. [Lee:2023jew]
A portable and high intensity 24 keV neutron source based on $^{124}$Sb-$^{9}$Be photoneutrons and an iron filter,
A. Biekert et al.(SPICE/HeRALD),
JINST 18 (2023) P07018,arXiv:2302.03869.
[SPICEHeRALD:2023fzk]
A platform for trapped cryogenic electrons, anions and cations for fundamental physics and chemical studies,
Levi O. A. Azevedo, Rodolfo J. S. Costa, Wania Wolff, Alvaro N. Oliveira, Rodrigo L. Sacramento, Daniel M. Silveira, Claudio L. Cesar,
Commun.Phys. 6 (2023) 112,arXiv:2301.13248.
[Azevedo:2023kgf]
Low Energy Electronic Recoils and Single Electron Detection with a Liquid Xenon Proportional Scintillation Counter,
Jianyang Qi, Noah Hood, Abigail Kopec, Yue Ma, Haiwen Xu, Min Zhong, Kaixuan Ni,
JINST 18 (2023) P07027,arXiv:2301.12296.
[Qi:2023bof]
Radiation Shielding Analysis for the PIP-II Linac at Fermilab,
Igor Rakhno, Nikolai Mokhov, Igor Tropin, Sergei Striganov, Yury Eidelman,
arXiv:2301.08339, 2023. [Rakhno:2023qyk]
5-138.
Meld: Exploring the Feasibility of a Framework-less Framework, 2023. [2308.16710]
Developing a single phase liquid argon detector with SiPM readout,
L. Wang, Y. Lei, T. A. Wang, C. Guo, K. K. Zhao, X. H. Liang, S. B. Wang, R. D. Chen,
Eur.Phys.J.Plus 138 (2023) 629,arXiv:2212.13054.
[Wang:2022wkj]
Reactor neutrino physics potentials of cryogenic pure-CsI crystal,
L. Wang, G. d. Li, Z. Y. Yu, X. H. Liang, T. A. Wang, X. L. Sun, C. Gu,
Eur.Phys.J.C 84 (2024) 440,arXiv:2212.11515.
[Wang:2022ekc]
TRANSLATE - A Monte Carlo Simulation of Electron Transport in Liquid Argon,
Zach Beever, David Caratelli, Angela Fava, Francesco Pietropaolo, Francesca Stocker, Jacob Zettlemoyer,
Comput.Phys.Commun. 297 (2024) 109056,arXiv:2211.12645.
[Beever:2022cwf]
Characterization of the TruSense S310 Laser Range System for Contact-less Measurement of Liquid Levels in Large-Volume Neutrino Detectors,
H. Th. J. Steiger, E. Theisen, L. Oberauer, O. Pilarczyk, M. Wurm,
arXiv:2210.09415, 2022. [Steiger:2022xos]
Measurement of proton light yield of water-based liquid scintillator,
E. J. Callaghan, B. L. Goldblum, J. A. Brown, T. A. Laplace, J. J. Manfredi, M. Yeh, G. D. Orebi Gann,
Eur.Phys.J.C 83 (2023) 134,arXiv:2210.03876.
[Callaghan:2022ahi]
Reduction of $^{222}$Rn-induced Backgrounds in a Hermetic Dual-Phase Xenon Time Projection Chamber,
Julia Dierle, Adam Brown, Horst Fischer, Robin Glade-Beucke, Jaron Grigat, Fabian Kuger, Sebastian Lindemann, Mariana Rajado Silva, Marc Schumann,
Eur.Phys.J.C 83 (2023) 9,arXiv:2209.00362.
[Dierle:2022zzh]
Simulation of deflection uncertainties on directional reconstructions of muons using PROPOSAL,
Pascal Gutjahr et al.,
Eur. Phys. J. C 82 (2022) 1143,arXiv:2208.11902.
[Erratum: Eur.Phys.J.C 83, 12 (2023)]. [Gutjahr:2022quk]
Development of the Scintillating Fiber Timing Detector for the Mu3e Experiment,
A. Bravar, A. Buonaura, S. Corrodi, A. Damyanova, Y. Demets, L. Gerritzen, Ch. Grab, C. Martin Perez, A. Papa,
Nucl.Instrum.Meth.A 1058 (2024) 168766,arXiv:2208.09906.
[Bravar:2022qnf]
Skipper-CCDs: current applications and future,
B. A. Cervantes-Vergara, S. Perez, J. C. D'Olivo, J. Estrada, D. J. Grimm, S. Holland, M. Sofo-Haro, W. Wong,
Nucl.Instrum.Meth.A 1046 (2023) 167681,arXiv:2208.05434.
[Cervantes-Vergara:2022ccu]
Study on SiPM performance at low temperatures,
C. Zhong, F. J. Luo, B. Zheng, X. D. Wang, M. Y. Bu, J. Zhou, M. N. Deng,
JINST 17 (2022) T11003,arXiv:2207.06151.
[Zhong:2022jmk]
Neutrino Characterisation using Convolutional Neural Networks in CHIPS water Cherenkov detectors,
Josh Tingey et al.,
JINST 18 (2023) P06032,arXiv:2206.14904.
[Tingey:2022evd]
Using Machine Learning to Improve Neutron Identification in Water Cherenkov Detectors,
Blair Jamieson, Matt Stubbs, Sheela Ramanna, John Walker, Nick Prouse, Ryosuke Akutsu, Patrick de Perio, Wojciech Fedorko,
Front.Big Data 5 (2022) 978857,arXiv:2206.12954.
[Jamieson:2022scv]
Deep learning for improved keV-scale recoil identification in high resolution gas time projection chambers,
J. Schueler, M. Ghrear, S. E. Vahsen, P. Sadowski, C. Deaconu,
arXiv:2206.10822, 2022. [Schueler:2022lvr]
Energy reconstruction for large liquid scintillator detectors with machine learning techniques: aggregated features approach,
Arsenii Gavrikov, Yury Malyshkin, Fedor Ratnikov,
Eur.Phys.J.C 82 (2022) 1021,arXiv:2206.09040.
[Gavrikov:2022kok]
Safe liquid scintillators for large scale detectors,
A. Bonhomme, C. Buck, B. Gramlich, M. Raab,
JINST 17 (2022) P11025,arXiv:2205.15046.
[Bonhomme:2022xcg]
A method for determining the transition energies of $^{\mathrm{83m}}$Kr at the KATRIN experiment,
C. Rodenbeck,
arXiv:2205.01484, 2022. [Rodenbeck:2022fxc]
Improvement in light collection of a photomultiplier tube using a wavelength-shifting plate,
Austin Mullen, Oluwatomi Akindele, Marc Bergevin, Adam Bernstein, Steven Dazeley,
arXiv:2204.05534, 2022. [Mullen:2022nwg]
A New Optical Model for Photomultiplier Tubes,
Yaoguang Wang, Guofu Cao, Liangjian Wen, Yifang Wang,
Eur.Phys.J.C 82 (2022) 329,arXiv:2204.02703.
[Wang:2022tij]
Novel Low Workfunction Semiconductors for Calorimetry and Detection: High Energy, Dark Matter and Neutrino Phenomena,
David R Winn,
arXiv:2203.09939, 2022. [Winn:2022zyd]
Deep learning applications for quality control in particle detector construction,
N. Akchurin, J. Damgov, S. Dugad, P. G C, S. Gronroos, K. Lamichhane, J. Martinez, T. Quast, S. Undleeb, A. Whitbeck,
arXiv:2203.08969, 2022. [Akchurin:2022apq]
A novel active veto prototype detector with an inner target for improved rare event searches,
M. Chaudhuri et al.,
Nucl.Instrum.Meth.A 1039 (2022) 167150,arXiv:2202.11004.
[Chaudhuri:2022acy]
Study of visible light scintillations in liquid argon and its mixtures with methane,
A. Bondar, E. Borisova, A. Buzulutskov, E. Frolov, V. Nosov, V. Oleynikov, A. Sokolov,
arXiv:2202.09154, 2022. [Bondar:2022kgx]
Cryogenic digital data links for the liquid argon time projection chamber,
Tiankuan Liu, Datao Gong, Suen Hou, Chonghan Liu, Da-Shung Su, Ping-kun Teng, Annie C. Xiang, Jingbo Ye,
JINST 7 (2012) C01091,arXiv:2202.05103.
[Liu:2012zzc]
Muon Track Reconstruction in a Segmented Bolometric Array Using Multi-Objective Optimization,
J. Yocum, D. Mayer, J. L. Ouellet, L. Winslow,
JINST 17 (2022) P07004,arXiv:2202.03194.
[Yocum:2022hum]
Maximum likelihood reconstruction of water Cherenkov events with deep generative neural networks,
Mo Jia, Karan Kumar, Liam S. Mackey, Alexander Putra, Cristovao Vilela, Michael J. Wilking, Junjie Xia, Chiaki Yanagisawa, Karan Yang,
Front.Big Data 5 (2022) 868333,arXiv:2202.01276.
[Jia:2022ulh]
Adversarial methods to reduce simulation bias in neutrino interaction event filtering at Liquid Argon Time Projection Chambers,
Marta Babicz, Saul Alonso-Monsalve, Stephen Dolan, Kazuhiro Terao,
Phys.Rev.D 105 (2022) 112009,arXiv:2201.11009.
[Babicz:2022zgm]
Accelerating Deep Neural Networks for Real-time Data Selection for High-resolution Imaging Particle Detectors,
Yeon-Jae Jwa, Giuseppe Di Guglielmo, Luca P. Carloni, Georgia Karagiorgi,
arXiv:2201.04740, 2022. [Jwa:2019zlh]
NuSD: A Geant4 based simulation framework for segmented anti-neutrino detectors,
Mustafa Kandemir, Emrah Tiras, Vincent Fischer,
Comput.Phys.Commun. 277 (2022) 108387,arXiv:2201.03689.
[Kandemir:2022ftk]
First measurement of the positive volume charge in a 1 litre dual-phase argon detector,
Luciano Romero et al.,
Universe 8 (2022) 134,arXiv:2112.14725.
[Romero:2021lsj]
Non-Parametric Data-Driven Background Modelling using Conditional Probabilities,
A. Chisholm, T. Neep, K. Nikolopoulos, R. Owen, E. Reynolds, J. Silva,
JHEP 10 (2022) 001,arXiv:2112.00650.
[Chisholm:2021pdn]
Photon detection probability prediction using one-dimensional generative neural network,
Wei Mu, Alexander I. Himmel, Bryan Ramson,
Mach.Learn.Sci.Tech. (),arXiv:2109.07277.
[Mu:2021nno]
Demonstrating a single-block 3D-segmented plastic-scintillator detector,
A. Boyarintsev et al.,
JINST 16 (2021) P12010,arXiv:2108.11897.
[Boyarintsev:2021uyw]
Characterization of Silicon-Photomultipliers for a Cosmic Muon Veto detector,
Mamta Jangra, Gobinda Majumder, Mandar Saraf, B. Satyanarayana, R.R. Shinde, Suresh S Upadhya, Vivek M Datar,
JINST 16 (2021) P11029,arXiv:2108.05638.
[Jangra:2021key]
Optimizing the Hit Finding Algorithm for Liquid Argon TPC Neutrino Detectors Using Parallel Architectures,
Sophie Berkman, Giuseppe Cerati, Kyle Knoepfel, Marc Mengel, Allison Reinsvold Hall, Michael Wang, Brian Gravelle, Boyana Norris,
JINST 17 (2022) P01026,arXiv:2107.00812.
[Berkman:2021ffy]
Extracting low energy signals from raw LArTPC waveforms using deep learning techniques - A proof of concept,
Lorenzo Uboldi, David Ruth, Michael Andrews, Michael H. L. S. Wang, Hans-Joachim Wenzel, Wanwei Wu, Tingjun Yang,
Nucl.Instrum.Meth.A (2022) 166371,arXiv:2106.09911.
[Uboldi:2021jyj]
Development of very-thick transparent GEMs with wavelength-shifting capability for noble element TPCs,
M. Kuzniak et al.,
Eur.Phys.J.C 81 (2021) 609,arXiv:2106.03773.
[Kuzniak:2021brl]
SANDD: A directional antineutrino detector with segmented 6Li-doped pulse-shape-sensitive plastic scintillator,
F. Sutanto, T. M. Classen, S. A. Dazeley, M. J. Duvall, I. Jovanovic, V. A. Li, A. N. Mabe, E. T. E. Reedy, T. Wu,
Nucl.Instrum.Meth. A1006 (2021) 165409,arXiv:2105.00083.
[Sutanto:2021xpo]
Segmentation of EM showers for neutrino experiments with deep graph neural networks,
Vladislav Belavin, Ekaterina Trofimova, Andrey Ustyuzhanin,
JINST 16 (2021) P12035,arXiv:2104.02040.
[Belavin:2021bxb]
Phonon-mediated crystal detectors with rejection capability of surface $\alpha$ and $\beta$ particles assisted by metallic film coating,
I.C. Bandac et al.,
Appl.Phys.Lett. 118 (2021) 184105,arXiv:2103.07181.
[Bandac:2021qco]
Correlated Single- and Few-Electron Backgrounds Milliseconds after Interactions in Dual-Phase Liquid Xenon Time Projection Chambers,
Abigail Kopec, Amanda L. Baxter, Michael Clark, Rafael F. Lang, Shengchao Li, Juehang Qin, Riya Singh,
JINST 16 (2021) P07014,arXiv:2103.05077.
[Kopec:2021ccm]
Wavelength-Shifting Performance of Polyethylene Naphthalate Films in a Liquid Argon Environment,
Y. Abraham et al.,
JINST 16 (2021) P07017,arXiv:2103.03232.
[Abraham:2021otn]
Event vertex and time reconstruction in large volume liquid scintillator detector,
Ziyuan Li et al.,
Nucl.Sci.Tech. 32 (2021) 49,arXiv:2101.08901.
[Li:2021oos]
Modelling the shape of thermal pulses from low temperature detectors,
Irene Nutini, Carlo Bucci, Oliviero Cremonesi,
arXiv:2101.05029, 2021. [Nutini:2021cjh]
A novel approach for nearly-coincident events rejection,
M. Borghesi, M. De Gerone, M. Faverzani, M. Fedkevych, E. Ferri, G. Gallucci, A. Giachero, A. Nucciotti, A. Puiu,
Eur.Phys.J. C81 (2021) 385,arXiv:2101.02705.
[Borghesi:2021fda]
Observables for Recoil Identification in Gas Time Projection Chambers,
Majd Ghrear, Sven E. Vahsen, Cosmin Deaconu,
JCAP 10 (2021) 005,arXiv:2012.13649.
[Ghrear:2020pzk]
CATIROC: an integrated chip for neutrino experiments using photomultiplier tubes,
Selma Conforti et al.,
JINST 16 (2021) P05010,arXiv:2012.01565.
[JUNO:2020orn]
Calibration of nuclear recoils at the 100 eV scale using neutron capture,
L. Thulliez et al.,
JINST 16 (2021) P07032,arXiv:2011.13803.
[Thulliez:2020esw]
Predicting Transport Effects of Scintillation Light Signals in Large-Scale Liquid Argon Detectors,
D. Garcia-Gamez, P. Green, A.M. Szelc,
Eur.Phys.J. C81 (2021) 349,arXiv:2010.00324.
[Garcia-Gamez:2020xrv]
A Kinetic Model for Xenon-Doped Liquid Argon Scintillation Light,
D.E. Fields, R. Gibbons, M. Gold, J.L. Thomas, N. McFadden, S.R. Elliott, R. Massarczyk, K. Rielage,
Nucl.Instrum.Meth.A 1046 (2023) 167707,arXiv:2009.10755.
[Fields:2020wge]
GPU-accelerated machine learning inference as a service for computing in neutrino experiments,
Michael Wang, Tingjun Yang, Maria Acosta Flechas, Philip Harris, Benjamin Hawks, Burt Holzman, Kyle Knoepfel, Jeffrey Krupa, Kevin Pedro, Nhan Tran,
Front.Big Data 3 (2021) 604083,arXiv:2009.04509.
[Wang:2020fjr]
High intensity H$_2^+$ beams from a filament-driven multicusp ion source,
Daniel Winklehner, Janet Conrad, Joseph Smolsky, Loyd Waites,
Rev.Sci.Instrum. 92 (2021) 123301,arXiv:2008.12292.
[Winklehner:2020itb]
Off-Axis Characterisation of the CERN T10 Beam for low Momentum Proton Measurements with a High Pressure Gas Time Projection Chamber,
S. B. Jones et al.,
Instruments 4 (2020) 21,arXiv:2007.15609.
[Jones:2020dyx]
MeV-scale performance of water-based and slow liquid scintillators,
B. J. Land, Z. Bagdasarian, J. Caravaca, M. Smiley, G. D. Orebi Gann,
Phys.Rev. D103 (2021) 052004,arXiv:2007.14999.
[Land:2020oiz]
Augmented Signal Processing in Liquid Argon Time Projection Chamber with Deep Neural Network,
Haiwang Yu et al.,
JINST 16 (2021) P01036,arXiv:2007.12743.
[Yu:2020wxu]
TITUS: Visualization of Neutrino Events in Liquid Argon Time Projection Chambers,
Corey Adams, Marco Del Tutto,
Instruments 4 (2020) 31,arXiv:2007.06517.
[Adams:2020uco]
Charge collection efficiency in back-illuminated Charge-Coupled Devices,
Guillermo Fernandez-Moroni, Kevin Andersson, Ana Botti, Juan Estrada, Dario Rodrigues, Javier Tiffenberg,
Phys.Rev.Applied 15 (2021) 064026,arXiv:2007.04201.
[Fernandez-Moroni:2020abn]
Scalable, Proposal-free Instance Segmentation Network for 3D Pixel Clustering and Particle Trajectory Reconstruction in Liquid Argon Time Projection Chambers,
Dae Heun Koh, Pierre Cote de Soux, Laura Domine, Francois Drielsma, Ran Itay, Qing Lin, Kazuhiro Terao, Ka Vang Tsang, Tracy Usher(DeepLearnPhysics),
arXiv:2007.03083, 2020. [Koh:2020snv]
Clustering of Electromagnetic Showers and Particle Interactions with Graph Neural Networks in Liquid Argon Time Projection Chambers Data,
Francois Drielsma, Qing Lin, Pierre Cote de Soux, Laura Domine, Ran Itay, Dae Heun Koh, Bradley J. Nelson, Kazuhiro Terao, Ka Vang Tsang, Tracy L. Usher,
Phys.Rev.D 104 (2021) 072004,arXiv:2007.01335.
[DeepLearnPhysics:2020hut]
Point Proposal Network for Reconstructing 3D Particle Positions with Sub-Pixel Precision in Liquid Argon Time Projection Chambers,
Laura Domine, Kazuhiro Terao,
Phys.Rev.D 104 (2021) 032004,arXiv:2006.14745.
[Domine:2020tlx]
Benefits of MeV-Scale Reconstruction Capabilities in Large Liquid Argon Time Projection Chambers,
W. Castiglioni, W. Foreman, I. Lepetic, B.R. Littlejohn, M. Malaker, A. Mastbaum,
Phys.Rev. D102 (2020) 092010,arXiv:2006.14675.
[Castiglioni:2020tsu]
Large-Scale, Precision Xenon Doping of Liquid Argon,
N. McFadden, S.R. Elliott, M. Gold, D.E. Fields, K. Rielage, R. Massarczyk, R. Gibbons,
Nucl.Instrum.Meth.A 1011 (2021) 165575,arXiv:2006.09780.
[McFadden:2020dxs]
Improving the light yield of NaI(Tl) crystal detectors,
J.J. Choi, B.J. Park, C. Ha, K.W. Kim, S.K. Kim, Y.D. Kim, Y.J. Ko, H.S. Lee, S.H. Lee, S.L. Olsen,
Nucl.Instrum.Meth. A981 (2020) 164556,arXiv:2006.02573.
[Choi:2020qcj]
A GEM-based Optically Readout Time Projection Chamber for charged particle tracking,
V. C. Antochi et al.,
Nucl.Instrum.Meth. A999 (2021) 165209,arXiv:2005.12272.
[Antochi:2020hfw]
Development of an ion exchange resin for gadolinium-loaded water,
V. Fischer, J. He, M. Irving, R. Svoboda,
JINST 15 (2020) P07004,arXiv:2004.04629.
[Fischer:2020hjj]
Measuring the Neutrino Event Time in Liquid Argon by a Post-Reconstruction One-parameter Fit,
Evan Angelico, Andrey Elagin, Henry J. Frisch, Matthew Wetstein,
arXiv:2004.00580, 2020. [Angelico:2020gyn]
A comparison between scintillation light Analog and Digital trigger for large volume Liquid Argon Time Projection Chambers,
O. Barnaba, A. Menegolli, R. Nardo, M. Pirola, M.C. Prata, G.L. Raselli, E. Romano, M. Rossella,
JINST 15 (2020) C04024,arXiv:2003.00258.
[Barnaba:2020aff]
Reconstruction for Liquid Argon TPC Neutrino Detectors Using Parallel Architectures,
Sophie Berkman, Giuseppe Cerati, Brian Gravelle, Boyana Norris, Allison Reinsvold Hall, Michael Wang,
EPJ Web Conf. 245 (2020) 02012,arXiv:2002.06291.
[Berkman:2020oyz]
Slow Fluors for Highly Effective Separation of Cherenkov Light in Liquid Scintillators,
Steven D. Biller, Edward J. Leming, Josephine J. Paton,
Nucl.Instrum.Meth. A972 (2020) 164106,arXiv:2001.10825.
[Biller:2020uoi]
Enhancing Neutrino Event Reconstruction with Pixel-Based 3D Readout for Liquid Argon Time Projection Chambers,
Corey Adams, Marco Del Tutto, Jonathan Asaadi, Madeline Bernstein, Eric Church, Roxanne Guenette, Jairo M. Rojas, Hunter Sullivan, Akshat Tripathi,
JINST 15 (2020) P04009,arXiv:1912.10133.
[Adams:2019uqx]
Pulse Shape Particle Identification by a Single Large Hemispherical Photo-Multiplier Tube,
S. Samani et al.,
JINST 15 (2020) T05002,arXiv:1912.03901.
[Samani:2019qtj]
Reliability studies of electronic components for the operation at cryogenic temperature,
N. Poonthottathil, F. Krennrich, J. Eisch, A. Weinstein, L.J Bond, D. Barnard, Z. Zhang, L Koester,
arXiv:1911.10285, 2019. [Poonthottathil:2019noe]
Spin coating TPB film on acrylics and measurement of its wavelength shifting efficiency,
Hang Yang, Zi-Feng Xu, Jian Tang, Yi Zhang,
Nucl.Sci.Tech. 31 (2020) 28,arXiv:1911.08897.
[Yang:2019zob]
Production of highly charged ions of rare species by laser-induced desorption inside an electron beam ion trap,
Christoph Schweiger et al.,
arXiv:1911.05519, 2019. [1911.05519]
The XBPF, a new multipurpose scintillating fibre monitor for the measurement of secondary beams at CERN,
I. Ortega, L. Fosse, J. Franchi, A. Frassier, J. Fullerton, J. Kral, J. Lauener, T. Schneider, G. Tranquille,
Nucl.Instrum.Meth. A951 (2020) 162996,arXiv:1910.12519.
[OrtegaRuiz:2019vmy]
A Method to Determine the Electric Field of Liquid Argon Time Projection Chambers Using a UV Laser System and its Application in MicroBooNE,
C. Adams et al.(MicroBooNE),
JINST 15 (2020) P07010,arXiv:1910.01430.
[MicroBooNE:2019koz]
Performance of Large Area Picosecond Photo-Detectors (LAPPD),
A. V. Lyashenko et al.,
Nucl.Instrum.Meth. A958 (2020) 162834,arXiv:1909.10399.
[Lyashenko:2019tdj]
Calorimetry for low-energy electrons using charge and light in liquid argon,
W. Foreman et al.,
Phys.Rev. D101 (2020) 012010,arXiv:1909.07920.
[LArIAT:2019gdz]
Modeling of a MeV-scale Particle Detector Based on Organic Liquid Scintillator,
Yu. M. Malyshkin et al.,
Nucl.Instrum.Meth. A951 (2020) 162920,arXiv:1909.03229.
[Malyshkin:2019xux]
Evaluation of Gadolinium's Action on Water Cherenkov Detector Systems with EGADS,
M. Ikeda et al.,
Nucl.Instrum.Meth.A 959 (2020) 163549,arXiv:1908.11532.
[Marti:2019dof]
Novel Opaque Scintillator for Neutrino Detection,
Christian Buck, Benjamin Gramlich, Stefan Schoppmann,
JINST 14 (2019) P11007,arXiv:1908.03334.
[Buck:2019tsa]
NuRadioMC: Simulating the radio emission of neutrinos from interaction to detector,
Christian Glaser et al.,
Eur.Phys.J. C80 (2020) 77,arXiv:1906.01670.
[Glaser:2019cws]
Development of a method for measuring rare earth elements in the environment for future experiments with gadolinium loaded detectors,
S. Ito, T. Okada, Y. Takaku, M. Harada, M. Ikdeda, Y. Kishimoto, Y. Koshio, M. Nakahata, Y. Nakajima, H. Sekiya,
PTEP 2019 (2019) 063H03,arXiv:1905.10962.
[Ito:2019jhr]
Energy and Flavor Discrimination Using Precision Time Structure in On-Axis Neutrino Beams,
Evan Angelico, Jonathan Eisch, Andrey Elagin, Henry Frisch, Sergei Nagaitsev, Matthew Wetstein,
Phys.Rev. D100 (2019) 032008,arXiv:1904.01611.
[Angelico:2019gyi]
Technique for Surface Background Rejection in Liquid Argon Dark Matter Detectors using Layered Wavelength-Shifting and Scintillating Thin Films,
M.G. Boulay, M. Kuzniak,
Nucl.Instrum.Meth. A968 (2020) 163631,arXiv:1903.00257.
[Boulay:2019eal]
Measurement of gamma-ray production via neutron-$^{16}$O reaction using a 77 MeV quasi-mono energetic neutron beam,
Y. Ashida et al.,
Phys.Rev.C 109 (2024) 014620,arXiv:1902.08964.
[Ashida:2019nhd]
Characterisation of the Hamamatsu R12199-01 HA MOD photomultiplier tube for low temperature applications,
M. A. Unland Elorrieta, L. Classen, J. Reubelt, S. Schmiemann, J. Schneider, A. Kappes,
JINST 14 (2019) P03015,arXiv:1902.01714.
[UnlandElorrieta:2019yhd]
Prototype Analog Front-end for Negative-ion Gas and Dual-phase Liquid-Ar TPCs,
Miki Nakazawa et al.,
JINST 14 (2019) T01008,arXiv:1901.02587.
[Nakazawa:2019hvo]
Energy and spatial resolution of a large volume liquid scintillator detector,
O. Smirnov,
Instrum.Exp.Tech. 46 (2003) 327-344,arXiv:1811.02321.
[Smirnov:2003pq]
Measurement of proton quenching in a LAB based liquid scintillator,
M. S. Yang, Z. Y. Yu, J. Cao, X. L. Sun, B. X. Yu, G. P. An,
Radiat.Detect.Technol.Methods 3 (2019) 3,arXiv:1809.03813.
[Yang:2018wje]
On the role of radiative losses in energy scale of large liquid scintillator and water Cerenkov detectors,
Andrey Formozov,
arXiv:1808.07458, 2018. [Formozov:2018liq]
LArPix: Demonstration of low-power 3D pixelated charge readout for liquid argon time projection chambers,
D. A. Dwyer et al.,
JINST 13 (2018) P10007,arXiv:1808.02969.
[Dwyer:2018phu]
High energy neutrino beam generation based on crystal optics,
Yu. A. Chesnokov, V.A. Maisheev,
Nucl.Instrum.Meth. A910 (2018) 9-14,arXiv:1807.02636.
[Chesnokov:2018ozr]
Polyethylene naphthalate film as a wavelength shifter in liquid argon detectors,
Marcin Kuzniak, Benjamin Broerman,
Eur.Phys.J. C79 (2019) 291,arXiv:1806.04020.
[Kuzniak:2018dcf]
Streamer studies in Resistive Plate Chambers,
A. Paoloni, A. Mengucci, M. Spinetti, M. Ventura, L. Votano,
JINST 14 (2019) C08007,arXiv:1806.03443.
[Paoloni:2018kgj]
Study of radon reduction in gases for rare event search experiments,
K.Pushkin et al.,
Nucl.Instrum.Meth. A903 (2018) 267-276,arXiv:1805.11306.
[Pushkin:2018wdl]
Characterization of a 109Cd gamma-ray source for the two-phase argon detector,
A. Bondar et al.,
Instrum.Exp.Tech. 62 (2019) 746-749,arXiv:1805.02839.
[Bondar:2018qaw]
Bright muon source driven by GeV electron beams from a compact laser wakefield accelerator,
Bobbili Sanyasi Rao, Jong Ho Jeon, Hyung Taek Kim, Chang Hee Nam,
Plasma Phys.Control.Fusion 60 (2018) 095002,arXiv:1804.03886.
[Rao:2018njj]
Increasing the efficiency of photon collection in LArTPCs: the ARAPUCA light trap,
G. Cancelo et al.,
JINST 13 (2018) C03040,arXiv:1802.09726.
[Cancelo:2018dnf]
Simulation and Efficiency Studies of Optical Photon Transportation and Detection with Plastic Antineutrino Detector Modules,
Altan Cakir, Mustafa Kandemir,
Nucl.Instrum.Meth. A898 (2018) 30-39,arXiv:1802.09202.
[Kandemir:2018zta]
Growth and characterization of a Li2Mg2(MoO4)3 scintillating bolometer,
F.A. Danevich et al.,
Nucl.Instrum.Meth. 889 (2018) 89-96,arXiv:1802.01888.
[Danevich:2018gyi]
Study and mitigation of spurious electron emission from cathodic wires in noble liquid time projection chambers,
A. Tomas et al.,
Astropart.Phys. 103 (2018) 49-61,arXiv:1801.07231.
[Tomas:2018pny]
Testbeam performance of a shashlik calorimeter with fine-grained longitudinal segmentation,
G. Ballerini et al.,
JINST 13 (2018) P01028,arXiv:1801.06167.
[Ballerini:2018hus]
The China Jinping Underground Laboratory and its Early Science,
Jian-Ping Cheng et al.,
Ann.Rev.Nucl.Part.Sci. 67 (2017) 231-251,arXiv:1801.00587.
[Cheng:2017usi]
A Dual-phase Xenon TPC for Scintillation and Ionisation Yield Measurements in Liquid Xenon,
Laura Baudis et al.,
Eur.Phys.J. C78 (2018) 351,arXiv:1712.08607.
[Baudis:2017xov]
Some considerations about cosmogenic production of radioactive isotopes in Ar as target for the next neutrino experiments,
Mihaela Parvu, I. Lazanu,
Radiat.Phys.Chem. 152 (2018) 129,arXiv:1712.04399.
[Parvu:2017xde]
A method to define the energy threshold depending on noise level for rare events searches,
M. Mancuso et al.,
Nucl.Instrum.Meth.A 940 (2019) 492-496,arXiv:1711.11459.
[Mancuso:2017ffg]
Deep learning for evaluating the effects of a layout of photon sensors on event reconstructions,
Chang-Wei Loh et al.,
Adv.High Energy Phys. 2018 (2018) 7024309,arXiv:1711.00607.
[Loh:2017dfu]
Beam Based RF Voltage Measurements and Longitudinal Beam Tomography at the Fermilab Booster,
C. M. Bhat, S. Bhat,
arXiv:1710.07372, 2017. [Bhat:2017nns]
Determination of Trace Levels of Uranium and Thorium in High Purity Gadolinium Sulfate Using ICP-MS with Solid-Phase Chromatographic Extraction Resin,
S. Ito, Y. Takaku, Y. Kishimoto, M. Ikeda,
PTEP 2017 (2017) 113H01,arXiv:1709.03417.
[Ito:2017zzt]
A fully active fine grained detector with three readout views,
D. Sgalaberna, A. Blondel, F. Cadoux, S. Fedotov, A. Korzenev, Y. Kudenko, A. Longhin, O. Mineev, E. Noah, N. Yershov,
JINST 13 (2018) P02006,arXiv:1707.01785.
[Blondel:2017orl]
Charged particle tracking without magnetic field: optimal measurement of track momentum by a Bayesian analysis of the multiple measurements of deflections due to multiple scattering,
Mikael Frosini, Denis Bernard,
Nucl.Instrum.Meth. A867 (2017) 182-194,arXiv:1706.05863.
[Frosini:2017ftq]
Assay of low-background stainless steel by smelting for the neutrino experiment at Jinping,
Ghulam Hussain et al.,
Nucl.Instrum.Meth. A881 (2018) 65-71,arXiv:1706.04506.
[Hussain:2017doz]
Single-electron and single-photon sensitivity with a silicon Skipper CCD,
Javier Tiffenberg et al.,
Phys.Rev.Lett. 119 (2017) 131802,arXiv:1706.00028.
[Tiffenberg:2017aac]
Nuclear emulsion readout system HTS aiming at scanning an area of one thousand square meters,
Masahiro Yoshimoto, Toshiyuki Nakano, Ryosuke Komatani, Hiroaki Kawahara,
PTEP 10 (2017) 103,arXiv:1704.06814.
[Yoshimoto:2017ufm]
First demonstration of emulsion multi-stage shifter for accelerator neutrino experiment in J-PARC T60,
K. Yamada et al.,
PTEP 2017 (2017) 063H02,arXiv:1703.03737.
[Yamada:2017qeg]
Integrable RCS as a proposed replacement for Fermilab Booster,
Jeffrey Eldred, Alexander Valishev,
AIP Conf.Proc. 1812 (2017) 100003,arXiv:1703.00952.
[Eldred:2017sqi]
Photon emission and atomic collision processes in two-phase argon doped with xenon and nitrogen,
A. Buzulutskov,
Europhys.Lett. 117 (2017) 39002,arXiv:1702.03612.
[Buzulutskov:2017wau]
New method of 85Kr reduction in a noble gas based low-background detector,
D.Yu. Akimov et al.,
JINST 12 (2017) P04002,arXiv:1611.07168.
[Akimov:2016yuf]
Bulk and Surface Event Identification in p-type Germanium Detectors,
L. T. Yang et al.,
Nucl.Instrum.Meth. A886 (2018) 13-23,arXiv:1611.03357.
[Yang:2016crf]
An Experiment to Demonstrate Cherenkov / Scintillation Signal Separation,
J. Caravaca et al.,
Phys.Rev. C95 (2017) 055801,arXiv:1610.02029.
[Caravaca:2016ryf]
Dynamics of the ions in Liquid Argon Detectors and electron signal quenching,
L. Romero, R. Santorelli, B. Montes,
Astropart.Phys. 92 (2017) 11-20,arXiv:1609.08984.
[Romero:2016tla]
Precision analysis of the photomultiplier response to ultra low signals,
Pavel Degtiarenko,
Nucl.Instrum.Meth. A872 (2017) 1-15,arXiv:1608.07525.
[Degtiarenko:2016qwv]
Reflectance dependence of polytetrafluoroethylene on thickness for xenon scintillation light,
Jonathan Haefner et al.,
Nucl.Instrum.Meth. A856 (2017) 86-91,arXiv:1608.01717.
[Haefner:2016ncn]
Low energy recoil detection with a spherical proportional counter,
I. Savvidis, I. Katsioulas, C. Eleftheriadis, I. Giomataris, T. Papaevangellou,
Nucl.Instrum.Meth. A877 (2018) 220-226,arXiv:1606.02146.
[Savvidis:2016wei]
Long Term Performance Studies of Large Oil-Free Bakelite Resistive Plate Chamber,
Rajesh Ganai et al.,
JINST 11 (2016) C09010,arXiv:1604.03668.
[Ganai:2016vqi]
Test of Topmetal-${II}^-$ In Liquid Nitrogen For Cryogenic Temperature TPCs,
Shuguang Zou et al.,
Nucl.Instrum.Meth. A830 (2016) 275-278,arXiv:1601.06955.
[Zou:2016mah]
The efficiency study of different purification methods for liquid scintillator,
Wei Hu et al.,
Chin.Phys. C40 (2016) 096202,arXiv:1601.02780.
[Hu:2016jwc]
Characterization of the ETEL D784UKFLB 11 inch Photomultiplier Tube,
N. Barros et al.,
Nucl.Instrum.Meth. A852 (2017) 15-19,arXiv:1512.06916.
[Barros:2015pjt]
Sub-Penning gas mixtures: new possibilities for ton- to kiloton-scale time projection chambers,
Benjamin Monreal, Luiz de Viveiros, William Luszczak,
arXiv:1512.04926, 2015. [Monreal:2015zmi]
Algorithms for Identification of Nearly-Coincident Events in Calorimetric Sensors,
B. Alpert et al.,
J.Low.Temp.Phys. 184 (2016) 263-273,arXiv:1512.01608.
[Alpert:2015mtu]
A search for cosmogenic production of $\beta$-neutron emitting radionuclides in water,
S. Dazeley et al.,
Nucl.Instrum.Meth. A821 (2016) 151-159,arXiv:1512.00794.
[Dazeley:2015uyd]
Results of measurements of an environment neutron background at BNO INR RAS objects with the helium proportional counter,
I.R. Barabanov et al.,
arXiv:1510.05109, 2015. [Barabanov:2015lza]
Cryogenic silicon detectors with implanted contacts for the detection of visible photons using the Neganov-Luke Effect,
X. Defay et al.,
J.Low.Temp.Phys. 184 (2016) 274-279,arXiv:1509.06266.
[Defay:2015oia]
Response of a proportional counter to $^{37}$Ar and $^{71}$Ge: real spectra versus GEANT4 simulation,
D. Abdurashitov, Yu. Malyshkin, V. Matushko, B. Suerfu,
Nucl. Instrum. Meth. B (2016),arXiv:1509.02669.
[Abdurashitov:2015eea]
Tagging Spallation Backgrounds with Showers in Water-Cherenkov Detectors,
Shirley Weishi Li, John F. Beacom,
Phys. Rev. D92 (2015) 105033,arXiv:1508.05389.
[Li:2015lxa]
Low emittance pion beams generation from bright photons and relativistic protons,
L. Serafini, C. Curatolo, V. Petrillo,
arXiv:1507.06626, 2015. [Serafini:2015zda]
First Demonstration of Imaging Cosmic Muons in a Two-Phase Liquid Argon TPC using an EMCCD Camera and a THGEM,
K. Mavrokoridis et al.,
JINST 10 (2015) P10004,arXiv:1507.06586.
[Mavrokoridis:2015yda]
Electromagnetic modulation of monochromatic neutrino beams,
A. L. Barabanov, O. A. Titov,
Eur. Phys. J. A51 (2015) 96,arXiv:1506.07883.
[Barabanov:2015eka]
The Pandora Software Development Kit for Pattern Recognition,
J. S. Marshall, M. A. Thomson,
Eur. Phys. J. C75 (2015) 439,arXiv:1506.05348.
[Marshall:2015rfa]
A Study of Dielectric Breakdown Along Insulators Surrounding Conductors in Liquid Argon,
Sarah Lockwitz, Hans Jostlein,
JINST 11 (2016) P03026,arXiv:1506.04185.
[Lockwitz:2015qua]
Liquid Hole Multipliers: bubble-assisted electroluminescence in liquid xenon,
L. Arazi et al.,
JINST 10 (2015) P08015,arXiv:1505.02316.
[Arazi:2015uja]
Electron Neutrino Classification in Liquid Argon Time Projection Chamber Detector,
Piotr Plonski, Dorota Stefan, Robert Sulej, Krzysztof Zaremba,
arXiv:1505.00424, 2015. [Plonski:2015fva]
A new anti-neutrino detection technique based on positronium tagging with plastic scintillators,
G. Consolati et al.,
Nucl.Instrum.Meth. A795 (2015) 364-369,arXiv:1504.01884.
[Consolati:2015bma]
Compact Muon Production and Collection Scheme for High-Energy Physics Experiments,
Diktys Stratakis, David V. Neuffer,
J. Phys. G41 (2014) 125002,arXiv:1504.00380.
[Stratakis:2014wwa]
Enhanced UV light detection using wavelength-shifting properties of Silicon nanoparticles,
S. Magill et al.,
JINST 10 (2015) P05008,arXiv:1503.01383.
[Magill:2015zza]
Optimized Designs for Very Low Temperature Massive Calorimeters,
Matt Pyle, Enectali Feliciano-Figueroa, Bernard Sadoulet,
arXiv:1503.01200, 2015. [Pyle:2015pya]
Image Segmentation in Liquid Argon Time Projection Chamber Detector,
Piotr Plonski, Dorota Stefan, Robert Sulej, Krzysztof Zaremba,
arXiv:1502.08046, 2015. [Plonski:2015uja]
Acoustic signal detection through the cross-correlation method in experiments with different signal to noise ratio and reverberation conditions,
S. Adrian-Martinez et al.,
arXiv:1502.05038, 2015. [Adrian-Martinez:2015jza]
Index of refraction, Rayleigh scattering length, and Sellmeier coefficients in solid and liquid argon and xenon,
Emily Grace, James A. Nikkel,
Nucl.Instrum.Meth. A867 (2017) 204-208,arXiv:1502.04213.
[Grace:2015yta]
MPPC versus MRS APD in two-phase Cryogenic Avalanche Detectors,
A. Bondar, A. Buzulutskov, A. Dolgov, E. Shemyakina, A. Sokolov,
JINST 10 (2015) P04013,arXiv:1502.03663.
[Bondar:2015tna]
High Resolution Muon Computed Tomography at Neutrino Beam Facilities,
Burkhant Suerfu, Christopher G. Tully,
JINST 11 (2016) P02015,arXiv:1501.07238.
[Suerfu:2015lqa]
Electron muon identification by atmospheric shower and electron beam in a new concept of an EAS detector,
M. Iori, H. Denizli, A. Yilmaz, F. Ferrarotto, J. Russ,
Astrophys.J. 801 (2015) 140,arXiv:1501.03470.
[Iori:2015ida]
Thermo-acoustic Sound Generation in the Interaction of Pulsed Proton and Laser Beams with a Water Target,
R. Lahmann et al.,
Astropart.Phys. 65 (2014) 69-79,arXiv:1501.01494.
[Lahmann:2015cdb]
Automatic track recognition for large-angle minimum ionizing particles in nuclear emulsions,
T. Fukuda et al.,
JINST 9 (2014) P12017,arXiv:1412.4955.
[Fukuda:2014vda]
Extraction of Physics Signals Near Threshold with Germanium Detectors in Neutrino and Dark Matter Experiments,
A.K. Soma et al.(TEXONO),
Nucl.Instrum.Meth. A836 (2016) 67-82,arXiv:1411.4802.
[TEXONO:2014eky]
Underground physics without underground labs: large detectors in solution-mined salt caverns,
Benjamin Monreal,
arXiv:1410.0076, 2014. [Monreal:2014gda]
Advanced Scintillator Detector Concept (ASDC): A Concept Paper on the Physics Potential of Water-Based Liquid Scintillator,
J. R. Alonso et al.,
arXiv:1409.5864, 2014. [Alonso:2014fwf]
An in situ measurement of the radio-frequency attenuation in ice at Summit Station, Greenland,
J. Avva, J. M. Kovac, C. Miki, D. Saltzberg, A. G. Vieregg,
J. Glaciol. 61 (2015) 1005-1011,arXiv:1409.5413.
[Avva:2014ena]
Gaseous Detector with sub keV Threshold to Study Neutrino Scattering at Low Recoil Energies,
A.V. Kopylov, I.V. Orekhov, V.V. Petukhov, A.E. Solomatin,
Adv.High Energy Phys. 2014 (2014) 147046,arXiv:1409.4873.
[Kopylov:2014uia]
Improving Photoelectron Counting and Particle Identification in Scintillation Detectors with Bayesian Techniques,
M. Akashi-Ronquest et al.,
Astropart.Phys. 65 (2014) 40-54,arXiv:1408.1914.
[Akashi-Ronquest:2014jga]
A novel $^{83\mathrm{m}}$Kr tracer method for characterizing xenon gas and cryogenic distillation systems,
S. Rosendahl et al.,
JINST 9 (2014) P10010,arXiv:1407.3981.
[Rosendahl:2014qqa]
First working prototype of a steerable UV laser system for LArTPC calibrations,
A. Ereditato et al.,
JINST 9 (2014) T11007,arXiv:1406.6400.
[Ereditato:2014lra]
NaNet: a Low-Latency, Real-Time, Multi-Standard Network Interface Card with GPUDirect Features,
A. Lonardo et al.,
arXiv:1406.3568, 2014. [Lonardo:2014txa]
Proposal for SPS beam time for the baby MIND and TASD neutrino detector prototypes,
R. Asfandiyarov et al.,
arXiv:1405.6089, 2014. [Asfandiyarov:2014haa]
Performance of liquid argon neutrino detectors with enhanced sensitivity to scintillation light,
M. Sorel,
JINST 9 (2014) 10002,arXiv:1405.0848.
[Sorel:2014rka]
Low-Energy ( < 10 keV) Electron Ionization and Recombination Model for a Liquid Argon Detector,
Michael Foxe et al.,
Nucl.Instrum.Meth. A771 (2014) 88-92,arXiv:1403.3719.
[Foxe:2014fra]
Measurement of the liquid scintillator nonlinear energy response to electron,
Fei-Hong Zhang et al.,
Chin.Phys. C39 (2015) 016003,arXiv:1403.3257.
[Zhang:2014iza]
Temperature dependence of the light yield of the LAB-based and mesitylene-based liquid scintillators,
Xia DongMei et al.,
arXiv:1402.6871, 2014. [Xia:2014afa]
Thermal Model and Optimization of a Large Crystal Detector using a Metallic Magnetic Calorimeter,
G.B. Kim et al.,
J. Low. Temp. Phys. 176 (2014) 637-643,arXiv:1402.2334.
[Kim:2014kwa]
Optimization of light collection from crystal scintillators for cryogenic experiments,
F.A. Danevich et al.,
Nucl.Instrum.Meth. A744 (2014) 41-47,arXiv:1402.2241.
[Danevich:2014opa]
First measurement of the ionization yield of nuclear recoils in liquid argon,
T. H. Joshi et al.,
Phys. Rev. Lett. 112 (2014) 171303,arXiv:1402.2037.
[Joshi:2014fna]
${}^{13}\text{C}(\alpha,n){}^{16}\text{O}$ background in a liquid scintillator based neutrino experiment,
Jie Zhao et al.,
Chin.Phys. C38 (2014) 116201,arXiv:1312.6347.
[Zhao:2013mba]
Implementation of a local principal curves algorithm for neutrino interaction reconstruction in a liquid argon volume,
J.J. Back et al.,
Eur.Phys.J. C74 (2014) 2832,arXiv:1312.6059.
[Back:2013cva]
Measurement of Optical Attenuation in Acrylic Light Guides for a Dark Matter Detector,
M. Bodmer et al.,
JINST 9 (2014) 02002,arXiv:1310.6454.
[Bodmer:2013lua]
Effect of Correlations Between Model Parameters and Nuisance Parameters When Model Parameters are Fit to Data,
Byron Roe,
arXiv:1309.6146, 2013. [Roe:2013aza]
Characterization of positronium properties in doped liquid scintillators,
G. Consolati et al.,
Phys. Rev. C88 (2013) 065502,arXiv:1308.0493.
[Consolati:2013rka]
Liquid Argon Time Projection Chamber Research and Development in the United States,
C. Bromberg et al.,
JINST 9 (2014) T05005,arXiv:1307.8166.
[Baller:2013xui]
Optical Properties of Quantum-Dot-Doped Liquid Scintillators,
C. Aberle, J.J. Li, S. Weiss, L. Winslow,
JINST 8 (2013) P10015,arXiv:1307.4742.
[Aberle:2013zza]
Critical Temperature tuning of Ti/TiN multilayer films suitable for low temperature detectors,
A. Giachero et al.,
J. Low. Temp. Phys. 176 (2014) 155,arXiv:1307.3781.
[Giachero:2013gta]
The Fermilab Main Injector: high intensity operation and beam loss control,
Bruce C. Brown et al.,
Phys. Rev. ST Accel. Beams 16, 071001 (2013) 071001,arXiv:1307.2934.
[Brown:2013idd]
Design and operation of ARGONTUBE: a 5 m long drift liquid argon TPC,
A. Ereditato et al.,
JINST 1307 (2013) P07002,arXiv:1304.6961.
[Ereditato:2013xaa]
VUV-VIS optical characterization of Tetraphenyl-butadiene films on glass and specular reflector substrates from room to liquid Argon temperature,
R. Francini et al.,
arXiv:1304.6117, 2013. [Francini:2013lua]
Measuring Fast Neutrons with Large Liquid Scintillation Detector for Ultra-low Background Experiments,
C. Zhang, D.-M. Mei, P. Davis, B. Woltman, F. Gray,
Nucl.Instrum.Meth. A729 (2013) 138-146,arXiv:1304.4536.
[Zhang:2013hia]
Application of the Monte-Carlo refractive index matching (MCRIM) technique to the determination of the absolute light yield of a calcium molybdate scintillator,
V. Alenkov et al.,
JINST 8 (2013) P06002,arXiv:1303.5952.
[Alenkov:2013aqa]
Applications of an Y-88/Be photo-neutron calibration source to Dark Matter and Neutrino Experiments,
J.I. Collar,
Phys. Rev. Lett. 110 (2013) 211101,arXiv:1303.2686.
[Collar:2013xva]
Photodegradation Mechanisms of Tetraphenyl Butadiene Coatings for Liquid Argon Detectors,
B. J. P. Jones, J. K. VanGemert, J. M. Conrad, A. Pla-Dalmau,
JINST 8 (2013) P01013,arXiv:1211.7150.
[Jones:2012hm]
Design and characterization of 90 GHz feedhorn-coupled TES polarimeter pixels in the SPTpol camera,
J.T.Sayre et al.,
Proc. SPIE Int. Soc. Opt. Eng. 8452 (2012) 845239,arXiv:1210.4968.
[Sayre:2012fy]
Characterization of the Hamamatsu R11780 12 inch Photomultiplier Tube,
J. Brack et al.,
Nucl.Instrum.Meth. A712 (2013) 162-173,arXiv:1210.2765.
[Brack:2012ig]
A mobile antineutrino detector with plastic scintillators,
Yasuhiro Kuroda et al.,
Nucl. Instrum. Meth. A690 (2012) 41-47,arXiv:1206.6566.
[Kuroda:2012dw]
Performance of a 250L liquid Argon TPC for sub-GeV charged particle identification,
O. Araoka et al.(J-PARC T32),
Phys.Lett. B718 (2013) 1181-1185,arXiv:1206.1181.
[Lin:2012gs]
Working characteristics of the New Low-Background Laboratory (DULB-4900, Baksan Neutrino Observatory),
Ju.M. Gavriljuk et al.,
Nucl.Instrum.Meth. A729 (2013) 576-58-,arXiv:1204.6424.
[Gavriljuk:2012rik]
Study of infrared scintillations in gaseous and liquid argon - Part II: light yield and possible applications,
A. Bondar et al.,
JINST 7 (2012) P06014,arXiv:1204.0580.
[Bondar:2012mt]
Study of infrared scintillations in gaseous and liquid argon - Part I: methodology and time measurements,
A. Bondar et al.,
JINST 7 (2012) P06015,arXiv:1204.0180.
[Bondar:2012hz]
Position and energy-resolved particle detection using phonon-mediated microwave kinetic inductance detectors,
D. C. Moore et al.,
Appl. Phys. Lett. 100 (2012) 232601,arXiv:1203.4549.
[Moore:2012au]
A low-resolution, GSa/s streaming digitizer for a correlation-based trigger system,
Kurtis Nishimura et al.,
Conf.Proc.C120611.5X 2012 (2012) 1-6,arXiv:1203.4178.
[Nishimura:2012ts]
A Note on Neutron Capture Correlation Signals, Backgrounds, and Efficiencies,
N. S. Bowden, M. Sweany, S. Dazeley,
Nucl. Instrum. Meth. A693 (2012) 209-214,arXiv:1202.0512.
[Bowden:2012um]
Reconstruction efficiency and discovery potential of a Mediterranean neutrino telescope: A simulation study using the Hellenic Open University Simulation $\text{\&}$ Reconstruction (HOURS) package,
A. G. Tsirigotis, A. Leisos, S. E. Tzamarias(KM3NeT),
Nucl.Instrum.Meth. A725 (2013) 68-71,arXiv:1201.5079.
[Tsirigotis:2012svr]
A reconstruction method for neutrino induced muon tracks taking into account the apriori knowledge of the neutrino source,
A.G. Tsirigotis, A. Leisos, S. E. Tzamarias(KM3NeT),
Nucl.Instrum.Meth. A725 (2013) 114-117,arXiv:1201.5050.
[Tsirigotis:2012zvl]
maXs: Microcalorimeter Arrays for High-Resolution X-Ray Spectroscopy at GSI/FAIR,
C. Pies et al.,
Journal of Low Temperature Physics (2012) 269-279. [Pies:2012nua]
Large scale Gd-beta-diketonate based organic liquid scintillator production for antineutrino detection,
C. Aberle et al.,
JINST 7 (2012) P06008,arXiv:1112.5941.
[Aberle:2011ar]
Single electron emission in two-phase xenon with application to the detection of coherent neutrino-nucleus scattering,
E. Santos et al.(ZEPLIN-III),
JHEP 12 (2011) 115,arXiv:1110.3056.
[ZEPLIN-III:2011qer]
PENTATRAP: A novel cryogenic multi-Penning trap experiment for high-precision mass measurements on highly charged ions,
J. Repp et al.,
arXiv:1110.2919, 2011. [PENTATRAP:2011mka]
Design and performance of the South Pole Acoustic Test Setup,
Yasser Abdou et al.,
Nucl. Instrum. Meth. A683 (2012) 78-90,arXiv:1105.4339.
[Abdou:2011cy]
Fluorescence Efficiency and Visible Re-emission Spectrum of Tetraphenyl Butadiene Films at Extreme Ultraviolet Wavelengths,
V. M. Gehman et al.,
Nucl. Instrum. Meth. A654 (2011) 116-121,arXiv:1104.3259.
[Gehman:2011xm]
A simulation toolkit for electroluminescence assessment in rare event experiments,
C. A. B. Oliveira et al.,
Phys. Lett. B703 (2011) 217-222,arXiv:1103.6237.
[Oliveira:2011xx]
Infrared scintillation yield in gaseous and liquid argon for rare-event experiments,
A. Buzulutskov, A. Bondar, A. Grebenuk,
Europhys. Lett. 94 (2011) 52001,arXiv:1102.1825.
[Buzulutskov:2011qw]
Lowering the energy threshold of large-mass bolometric detectors,
Sergio Di Domizio, Filippo Orio, Marco Vignati,
JINST 6 (2011) P02007,arXiv:1012.1263.
[DiDomizio:2010ph]
Time Projection Chambers for the T2K Near Detectors,
N. Abgrall et al.(T2K ND280 TPC),
Nucl. Instrum. Meth. A637 (2011) 25-46,arXiv:1012.0865.
[T2KND280TPC:2010nnd]
Positronium signature in organic liquid scintillators for neutrino experiments,
D. Franco, G. Consolati, D. Trezzi,
Phys. Rev. C83 (2011) 015504,arXiv:1011.5736.
[Franco:2010rs]
A hardware implementation of Region-of-Interest selection in LAr-TPC for data reduction and triggering,
B. Baibussinov et al.,
JINST 5 (2010) P12006,arXiv:1009.2262.
[Baibussinov:2010yu]
Energy Calibration of Underground Neutrino Detectors using a 100 MeV electron accelerator,
Sebastian White, Vitaly Yakimenko,
arXiv:1004.3068, 2010. [White:2010gg]
Optical Scattering Lengths in Large Liquid-Scintillator Neutrino Detectors,
Michael Wurm et al.,
Rev. Sci. Instrum. 81 (2010) 053301,arXiv:1004.0811.
[Wurm:2010ad]
Semi-empirical calculation of quenching factors for ions in scintillators,
V. I. Tretyak,
Astropart. Phys. 33 (2010) 40-53,arXiv:0911.3041.
[Tretyak:2009sr]
Remark on the studies of the muon-induced neutron background in the liquid scintillator detectors,
Karim Zbiri,
Nucl. Instrum. Meth. A615 (2010) 220-222,arXiv:0910.3714.
[Zbiri:2009xi]
XAX: a multi-ton, multi-target detection system for dark matter, double beta decay and pp solar neutrinos,
K. Arisaka et al.,
Astropart. Phys. 31 (2009) 63-74,arXiv:0808.3968.
[Arisaka:2008mb]
Applying Bayesian Neural Networks to Separate Neutrino Events from Backgrounds in Reactor Neutrino Experiments,
Ye Xu, Yixiong Meng, Weiwei Xu,
JINST 3 (2008) P08005,arXiv:0808.0240.
[Xu:2008xu]
Observation of Neutrons with a Gadolinium Doped Water Cerenkov Detector,
S. Dazeley, A. Bernstein, N. S. Bowden, R. Svoboda,
Nucl. Instrum. Meth. A607 (2009) 616-619,arXiv:0808.0219.
[Dazeley:2008xk]
Characterisation of a silicon photomultiplier device for applications in liquid argon based neutrino physics and dark matter searches,
P.K. Lightfoot, G.J. Barker, K. Mavrokoridis, Y.A. Ramachers, N.J.C. Spooner,
JINST 3 (2008) P10001,arXiv:0807.3220.
[Lightfoot:2008im]
Development of tin-loaded liquid scintillator for the double beta decay experiment,
M. J. Hwang et al.(KIMS),
Nucl. Instrum. Meth. A570 (2007) 454-458. [KIMS:2007syj]
A two-phase argon avalanche detector operated in a single electron counting mode,
A. Bondar et al.,
Nucl.Instrum.Meth. A574 (2007) 493-499,arXiv:physics/0611068.
[Bondar:2006ma]
Pulse shape analysis in segmented detectors as a technique for background reduction in Ge double-beta decay experiments,
S. R. Elliott et al.,
Nucl. Instrum. Meth. A558 (2006) 504,arXiv:nucl-ex/0509026.
[Elliott:2005at]
Destruction of Nuclear Bombs Using Ultra-High Energy Neutrino Beam,
Hirotaka Sugawara, Hiroyuki Hagura, Toshiya Sanami,
arXiv:hep-ph/0305062, 2003. From the article:We have shown that it is possible to eliminate the nuclear bombs from the surface of the earth utilizing the extremely high energy neutrino beam. When the neutrino beam hits a bomb, it will cause the fizzle explosion with 3\% of the full strength. It seems that it is not possible to decrease the magnitude of the explosion smaller than this number at this stage. It is important to decrease this number to destroy bombs safely. We are not sure what this means when the plutonium or uranium is used to ignite the hydrogen bomb. We may just break the bomb or may lead to a full explosion. ... We are certainly aware of the fact that this kind of device can not only target the nuclear bombs but other kinds of weapons of mass destruction and also, unfortunately, any kind of living object including human. But we should emphasize that the device itself is not a weapon of mass destruction. [Sugawara:2003wa]
Observation of Electronic Excitation by Extremely Slow Protons With Applications to the Detection of Supermassive Charged Particles,
D. J. Ficenec, S. P. Ahlen, A. A. Marin, J. A. Musser, G. Tarle,
Phys. Rev. D36 (1987) 311-314. [Ficenec:1987vy]
THE ANALYSIS OF RADIOACTIVE DECAY WITH A SMALL NUMBER OF COUNTS BY THE METHOD OF MAXIMUM LIKELIHOOD,
B. T. Cleveland,
Nucl. Instrum. Meth. 214 (1983) 451-458. [Cleveland:1983sd]
Mineral Detection of Neutrinos and Dark Matter 2025 Proceedings,
Shigenobu Hirose et al.,
arXiv:2508.20482, 2025.MDvDM'25, May 20-23 2025, Yokohama, Japan. [Hirose:2025jht]
Fiber-coupled Digital Photo Sensors for Large Time Projection Chambers,
Pieter Alexander Breur, Xavier Defay, David Jackson, James Robert Sinclair, Elizabeth Triller, Andrew Young,
JINST 20 (2025) C05019,arXiv:2502.09729.
PD24. [Breur:2025jjx]
Production of GEM-like structures using laser-cutting techniques,
L. M. Ramos, A. F. V. Cortez, M. Kuzniak, A. Gnat, M. Kuzwa, G. Nieradka, T. Sworobowicz, S. Westerdale,
arXiv:2411.08604, 2024.LRT2024. [Ramos:2024rbt]
Fermilab Main Injector and Recycler Operations in the Megawatt Era,
A. P. Schreckenberger,
JACoW HB2023 (2024) THBP50,arXiv:2310.02085.
HB 2023. [Schreckenberger:2023slu]
Graph Neural Network for Object Reconstruction in Liquid Argon Time Projection Chambers,
Jeremy Hewes et al.,
EPJ Web Conf. 251 (2021) 03054,arXiv:2103.06233.
25th International Conference on Computing in High-Energy and Nuclear Physics. [Hewes:2021heg]
AVOLAR. A high voltage generator for liquid argon time projection chambers,
L. Romero, J.M. Cela, E. Sanchez Garcia, M. Daniel, M. de Prado,
JINST 15 (2020) C03057,arXiv:2001.05268.
LIDINE 2019. [Romero:2020lwn]
The new Felsenkeller 5 MV underground accelerator,
Daniel Bemmerer et al.,
arXiv:1810.08201, 2018.5th International Solar Neutrino Conference, Dresden/Germany, 11-14 June 2018. [Bemmerer:2018zsh]
A novel water-Cherenkov detector design with retro-reflectors to produce antipodal rings,
Lukas Berns,
arXiv:1808.09623, 2018.XXVIII International Conference on Neutrino Physics and Astrophysics (Neutrino 2018). [Berns:2018inr]
Numerical characterization of the ARAPUCA: a new approach for LAr scintillation light detection,
F. Marinho, L. Paulucci, A.A. Machado, E. Segreto,
J.Phys.Conf.Ser. 1056 (2018) 012036,arXiv:1804.03764.
Conference on Neutrino and Nuclear Physics (CNNP2017). [Marinho:2018doi]
Impact of the positive ion current on large size neutrino detectors and delayed photon emission,
R. Santorelli et al.,
JINST 13 (2018) C04015,arXiv:1712.07971.
Lidine 2017. [Santorelli:2017aut]
Probing electron-argon scattering for liquid-argon based neutrino-oscillation program,
V. Pandey et al.,
arXiv:1711.01671, 2017.International Workshop on (e,e'p) Processes, July 2-6, 2017, Bled, Slovenia. [Pandey:2017cwd]
Measurement of the ionization yield of nuclear recoils in liquid argon using a two-phase detector with electroluminescence gap,
A. Bondar et al.,
JINST 12 (2017) C05010,arXiv:1705.05107.
Instrumentation for Colliding Beam Physics Conference (INSTR17). [Bondar:2017til]
Further studies of proportional electroluminescence in two-phase argon,
A. Bondar et al.,
JINST 12 (2017) C05016,arXiv:1705.05101.
Instrumentation for Colliding Beam Physics Conference (INSTR17). [Bondar:2017qkx]
Characterisation and testing of a prototype $6 \times 6$ cm$^2$ Argonne MCP-PMT,
Greig A. Cowan, Franz Muheim, Matthew Needham, Silvia Gambetta, Stephan Eisenhardt, Neil McBlane, Matthew Malek,
Nucl.Instrum.Meth. A876 (2017) 80-83,arXiv:1611.00185.
RICH 2016. [Cowan:2016xie]
Two-phase Cryogenic Avalanche Detector with electroluminescence gap operated in argon doped with nitrogen,
A. Bondar et al.,
Nucl.Instrum.Meth. A845 (2017) 206-209,arXiv:1605.08729.
Vienna Conference of Instrumentation (2016). [Bondar:2016lay]
Near-infrared scintillation of liquid argon,
T. Alexander, C. O. Escobar, W. H. Lippincott, P. Rubinov,
JINST 11 (2016) C03010,arXiv:1603.02290.
Light Detection in Noble Elements (LIDINE 2015). [Alexander:2016zpd]
Future HEP Accelerators: The US Perspective,
Pushpalatha Bhat, Vladimir Shiltsev,
arXiv:1511.00390, 2015.DPF 2015 Meeting of the American Physical Society Division of Particles and Fields, Ann Arbor, Michigan, August 4-8, 2015. [Bhat:2015ogg]
The origin of the background radioactive isotope Xe-127 in the sample of Xe enriched in Xe-124,
Yu.M. Gavrilyuk et al.,
Phys.Part.Nucl. 48 (2017) 42-46,arXiv:1507.04181.
International Workshop on Prospects of Particle Physics: 'Neutrino Physics and Astrophysics', Ferbuary 1 - 8, 2015, Valday, Russia. [Gavrilyuk:2015tva]
Measurement of scintillation and ionization yield with high-pressure gaseous mixtures of Xe and TMA for improved neutrinoless double beta decay and dark matter searches,
Y. Nakajima et al.,
J. Phys. Conf. Ser. 650 (2015) 012012,arXiv:1505.03585.
Seventh international symposium on large TPCs for low-energy rare event detection, Paris, December 15-17, 2014. [Nakajima:2015cva]
The Sanford Underground Research Facility at Homestake,
Jaret Heise,
J. Phys. Conf. Ser. 606 (2015) 012015,arXiv:1503.01112.
Workshop on Germanium-Based Detectors and Technology - 2014, Vermillion, SD, September 14-17, 2014. [Heise:2015vza]
Characterization of a Spherical Proportional Counter in argon-based mixtures,
F.J. Iguaz, A. Rodriguez, J.F. Castel, I.G. Irastorza,
PoS TIPP2014 (2014) 162,arXiv:1501.01626.
3rd International Conference on Technology and Instrumentation in Particle Physics (TIPP 2014). [Iguaz:2014alv]
Assembly and bench testing of a spiral fiber tracker for the J-PARC TREK/E36 experiment,
Makoto Tabata et al.,
JPS Conf. Proc. 8 (2015) 024001,arXiv:1412.0088.
2nd International Symposium on Science at J-PARC (J-PARC 2014). [Tabata:2014dca]
Front-End Board with Cyclone V as a Test High-Resolution Platform for the Auger-Beyond-2015 Front End Electronics,
Zbigniew Szadkowski(Pierre Auger),
IEEE Nucl.Sci.Symp.Conf.Rec. (2014) 1-4,arXiv:1406.1918.
IEEE Real Time Conference, Nara (Japan) May 25-30, 2014. [Szadkowski:2014lpa]
Artificial Neural Network as a FPGA Trigger for a Detection of Very Inclined Air Showers,
Zbigniew Szadkowski, K. Pytel(Pierre Auger),
IEEE Trans.Nucl.Sci. 62 (2015) 1002,arXiv:1406.1903.
IEEE Real Time Conference, Nara (Japan) May 25-30, 2014. [Szadkowski:2014zna]
Removal of long-lived $^{222}$Rn daughters by electropolishing thin layers of stainless steel,
R. W. Schnee et al.,
AIP Conf.Proc. 1549 (2013) 128-131,arXiv:1404.5843.
Low Radioactivity Techniques (LRT) 2013, Gran Sasso, Italy, April 10-12, 2013. [Schnee:2013osi]
Construction and measurements of a vacuum-swing-adsorption radon-mitigation system,
R. W. Schnee et al.,
AIP Conf.Proc. 1549 (2013) 116-119,arXiv:1404.5811.
Low Radioactivity Techniques (LRT) 2013, Gran Sasso, Italy, April 10-12, 2013. [Schnee:2013zes]
The BetaCage, an ultra-sensitive screener for surface contamination,
R. Bunker et al.,
AIP Conf.Proc. 1549 (2013) 132-135,arXiv:1404.5803.
Low Radioactivity Techniques (LRT) 2013, Gran Sasso, Italy, April 10-12, 2013. [Bunker:2013huy]
The second-phase development of the China JinPing underground Laboratory,
Jainmin Li, Xiangdong Ji, Wick Haxton, Joseph S.Y. Wang,
Phys.Procedia 61 (2015) 576-585,arXiv:1404.2651.
13th International Conference on Topics in Astroparticle and Underground Physics, TAUP 2013. [Li:2014rca]
Evidence of electric breakdown induced by bubbles in liquid argon,
F. Bay et al.,
arXiv:1401.2777, 2014.High Voltage in Noble Liquids (HVNL13) Workshop, FNAL, 8-9 November 2013. [Bay:2014jwa]
Using Fast Photosensors in Water Cherenkov Neutrino Detectors,
Ioana Anghel,
arXiv:1310.2654, 2013.DPF 2013 Meeting of the American Physical Society Division of Particles and Fields, Santa Cruz, California, August 13-17, 2013. [Anghel:2013zxa]
A large-area single photon sensor employing wavelength-shifting and light-guiding technology,
Lukas Schulte et al.,
arXiv:1307.6713, 2013.33rd International Cosmic Ray Conference, Rio de Janeiro, Brazil, July 2013. [Schulte:2013dza]
Measurement of ortho-Positronium Properties in Liquid Scintillators,
S. Perasso et al.,
JINST 9 (2014) C03028,arXiv:1306.6001.
Low Radioactivity Techniques 2013 Workshop at LNGS, Assergi (AQ), Italy, April 10-12 2013. [Perasso:2013zba]
Neutrino Detection, Position Calibration and Marine Science with Acoustic Arrays in the Deep Sea,
Robert Lahmann,
Nucl.Instrum.Meth. A725 (2013) 32-37,arXiv:1304.0697.
5th workshop on very large volume neutrino telescopes (VLVnT 11) in Erlangen, Germany, 12 -14 October 2011. [Lahmann:2013hya]
Simulation Chain for Acoustic Ultra-high Energy Neutrino Detectors,
M. Neff et al.,
AIP Conf.Proc. 1535 (2013) 204,arXiv:1304.0578.
VLVnT 2011. [Neff:2013xsa]
Acoustic Calibration for the KM3NeT Pre-Production Module,
Alexander Enzenhofer(KM3NeT),
Nucl.Instrum.Meth. A725 (2013) 211-214,arXiv:1303.6877.
VLVnT11 - Very Large Volume Neutrino Telescope Workshop (2011). [Enzenhofer:2013zba]
Micromegas-TPC operation at high pressure in Xenon-trimethylamine mixtures,
D. C. Herrera et al.,
J. Phys. Conf. Ser. 460 (2013) 012012,arXiv:1303.5790.
[Herrera:2013qda]
First demonstration of THGEM/GAPD-matrix optical readout in two-phase Cryogenic Avalanche Detector in Ar,
A. Bondar et al.,
Nucl.Instrum.Meth. A732 (2013) 213-216,arXiv:1303.4817.
Vienna Conference of Instrumentation (Feb 15-20, 2013, Vienna, Austria). [Bondar:2013sla]
Observation of Instabilities of Coherent Transverse Ocillations in the Fermilab Booster,
Y. Alexahin et al.,
Conf.Proc. C1205201 (2012) 3129-3131,arXiv:1301.7679.
3rd International Particle Accelerator Conference (IPAC 2012) 20-25 May 2012, New Orleans, Louisiana. [Alexahin:2012zzf]
The Six-Cavity Test - Demonstrated Acceleration of Beam with Multiple RF Cavities and a Single Klystron,
J. Steimel et al.,
Conf.Proc. C1205201 (2012) 3877-3879,arXiv:1301.7039.
3rd International Particle Accelerator Conference (IPAC 2012) 20-25 May 2012, New Orleans, Louisiana. [Steimel:2012wzs]
Fermilab PXIE Beam Diagnostics Development and Testing at the HINS Beam Facility,
V.A. Lebedev et al.,
Conf.Proc. C1205201 (2012) 954-956,arXiv:1301.6774.
3rd International Particle Accelerator Conference (IPAC 2012) 20-25 May 2012, New Orleans, Louisiana. [Scarpine:2012qgp]
Imaging with SiPMs in noble-gas detectors,
N. Yahlali, L. M. P. Fernandes, K. Gonzalez, A. N. C. Garcia, A. Soriano,
JINST 8 (2013) C01003,arXiv:1210.4746.
IWORID 2012. [Yahlali:2012cx]
Cryostat for Ultra-low-energy Threshold Germanium Spectrometers,
Craig E. Aalseth et al.,
IEEE Trans.Nucl.Sci. 60 (2013) 1168-1174,arXiv:1210.2347.
Symposium on Radiation Measurements and Applications (SORMA West) May 14-17, 2012. [Aalseth:2012xu]
Transverse beam shape measurements of intense proton beams using optical transition radiation,
Victor E. Scarpine,
Phys. Procedia 37 (2012) 2123-2128,arXiv:1210.1233.
2nd International Conference on Technology and Instrumentation in Particle Physics 2011: TIPP2011. 9-14 Jun 2011. Chicago, Illinois. [Scarpine:2012zz]
CW high intensity non-scaling FFAG proton drivers,
C. Johnstone, M. Berz, K. Makino, P. Snopok,
arXiv:1208.5798, 2012.Particle Accelerator, 24th Conference (PAC'11) 2011. 28 Mar - 1 Apr 2011. New York, USA. [Johnstone:2011zzc]
Ion source development for the proposed FNAL 750-keV injector upgrade,
D. S. Bollinger,
AIP Conf. Proc. 1390 (2011) 284-291,arXiv:1207.7049.
2nd International Symposium on Negative Ions, Beams and Sources: NIBS2010, 16-19 Nov 2010. Takayama, Japan. [Bollinger:2010zz]
Data Preservation and Long Term Analysis in High Energy Physics,
David M. South,
J. Phys. Conf. Ser. 396 (2012) 062018,arXiv:1206.5198.
2012 International Conference on Computing in High Energy and Nuclear Physics (CHEP 2012). [South:2012vf]
Studies of material properties under irradiation at BNL Linear Isotope Producer (BLIP),
N. Simos et al.,
arXiv:1202.3799, 2012.46th ICFA Advanced Beam Dynamics Workshop HB2010, Sep 27 - Oct 1 2010: Morschach, Switzerland. [Simos:2010zz]
JASMIN: Japanese-American study of muon interactions and neutron detection,
Hiroshi Nakashima et al.,
arXiv:1202.2098, 2012.10th Meeting of the Task-Force on Shielding Aspects of Accelerators, Targets and Irradiation Facilities (SATIF10), 2-4 Jun 2010: Geneva, Switzerland. [Nakashima:2010zz]
Experiences with the Fermilab HINS 325 MHz RFQ,
R. C. Webber et al.,
arXiv:1202.1550, 2012.25th International Linear Accelerator Conference (LINAC10) 12-17 Sep 2010: Tsukuba, Japan. [Webber:2010zz]
Research and Development for a Gadolinium Doped Water Cherenkov Detector,
Andrew Renshaw(Super-Kamiokande),
Phys.Procedia 37 (2012) 1249-1256,arXiv:1201.1017.
TIPP 2011. [Renshaw:2012np]
SciBath: A Novel Tracking Detector for Measuring Neutral Particles Underground,
R. Cooper et al.,
arXiv:1110.4432, 2011.DPF-2011 Conference, Providence, RI, August 8-13, 2011. [Cooper:2011kx]
Status of R&D on Micromegas for Rare Event Searches: The T-REX project,
I. G. Irastorza et al.,
EAS Publ.Ser. 53 (2012) 147-154,arXiv:1109.4021.
3rd International conference on Directional Detection of Dark Matter (CYGNUS 2011), Aussois, France, 8-10 June 2011. [Irastorza:2011hh]
Signal Classification for Acoustic Neutrino Detection,
M. Neff et al.,
Nucl. Instrum. Meth. A662 (2012) S242-S245,arXiv:1104.3248.
ARENA 2010. [Neff:2011xh]
Development of Combined Opto-Acoustical Sensor Modules,
A. Enzenhofer et al.,
Nucl. Instrum. Meth. A662 (2012) S203-S205,arXiv:1104.3061.
ARENA2010. [Enzenhofer:2011sy]
Feasibility of acoustic neutrino detection in ice: Design and performance of the South Pole Acoustic Test Setup (SPATS),
S. Boeser et al.,
arXiv:0807.4676, 2008.International Cosmic Ray Conference, 2007. [Descamps:2007opj]
Mass production test of Hamamatsu MPPC for T2K neutrino oscillation experiment,
M. Yokoyama et al.,
Nucl. Instrum. Meth. A610 (2009) 362-365,arXiv:0807.3147.
NDIP 2008, Aix-les-Bains, France, June 15-20, 2008. [Yokoyama:2008hq]
Application of Hamamatsu MPPC to T2K Neutrino Detectors,
M. Yokoyama et al.,
Nucl. Instrum. Meth. A610 (2009) 128-130,arXiv:0807.3145.
NDIP 2008, Aix-les-Bains, France, June 15-20, 2008. [Yokoyama:2008hn]
The lowest-radiation environments in the Solar System: new opportunities for underground rare-event searches,
Xilin Zhang, Jason Detwiler, Clint Wiseman,
arXiv:2411.09634, 2024. [Zhang:2024xrj]
Construction of Yemilab,
K. S. Park, Y. D. Kim, K. M. Bang, H. K. Park, M. H. Lee, J. H. Jang, J. H. Kim, J. So, S. H. Kim, S. B. Kim,
Front.in Phys. 12 (2024) 1323991,arXiv:2402.13708.
[Park:2024sio]
Physics Potential of a Few Kiloton Scale Neutrino Detector at a Deep Underground Lab in Korea,
Seon-Hee Seo et al.,
arXiv:2309.13435, 2023. [Seo:2023xku]
Readout for Calorimetry at Future Colliders: A Snowmass 2021 White Paper,
Timothy Andeen, Julia Gonski, James Hirschauer, James Hoff, Gabriel Matos, John Parsons,
arXiv:2204.00098, 2022. [Andeen:2022uut]
Photomultipliers as High Rate Radiation-Resistant In-Situ Sensors in Future Experiments,
David R Winn, Yasar Onel,
arXiv:2203.09941, 2022. [Winn:2022wcu]
Celeritas: GPU-accelerated particle transport for detector simulation in High Energy Physics experiments,
S. C. Tognini, P. Canal, T. M. Evans, G. Lima, A. L. Lund, S. R. Johnson, S. Y. Jun, V. R. Pascuzzi, P. K. Romano,
arXiv:2203.09467, 2022. [Tognini:2022nmd]
Report of the Snowmass'21 Workshop on High-Power Cyclotrons and FFAs,
Daniel Winklehner, Andreas Adelmann, Jose R. Alonso, Luciano Calabretta, Hiroki Okuno, Thomas Planche, Malek Haj Tahar,
arXiv:2203.07919, 2022. [Winklehner:2022rdu]
FNAL PIP-II Accumulator Ring,
William Pellico, Chandra Bhat, Jeffrey Eldred, Carol Johnstone, John Johnstone, Kiyomi Seiya, Cheng-Yang Tan, Matthew Toups, Richard Van De Water,
arXiv:2203.07339, 2022. [Pellico:2022dju]
High-pressure TPCs in pressurized caverns: opportunities in dark matter and neutrino physics,
Benjamin Monreal,
arXiv:2203.06262, 2022. [Monreal:2022crn]
Fast cycling HTS based superconducting accelerator magnets: Feasibility study and readiness demonstration program driven by neutrino physics and muon collider needs,
Henryk Piekarz, Bradley Claypool, Steven Hays, Matthew Kufer, Vladimir Shiltsev, Alexander Zlobin, Lucio Rossi,
arXiv:2203.06253, 2022. [Piekarz:2022fjq]
Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 10: Commuication, Education, and Outreach,
M. Bardeen et al.,
arXiv:1401.6119, 2014. [Bardeen:2013fta]
Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 9: Computing,
L. A. T. Bauerdick et al.,
arXiv:1401.6117, 2014. [Bauerdick:2014qka]
Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 8: Instrumentation Frontier,
M. Demarteau et al.,
arXiv:1401.6116, 2014. [Demarteau:2014pka]
Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 7: Underground Laboratory Capabilities,
M. G. Gilchriese et al.,
arXiv:1401.6115, 2014. [Gilchriese:2014oka]
Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 6: Accelerator Capabilities,
W. A. Barletta et al.,
arXiv:1401.6114, 2014. [Barletta:2014nka]
Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 2: Intensity Frontier,
J. L. Hewett et al.,
arXiv:1401.6077, 2014. [Hewett:2014qja]
Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 1: Summary,
J. L. Rosner et al.,
arXiv:1401.6075, 2014. [Rosner:2014pja]
Search Neutrino Unbound
Cross search NU
It is possible to perform a cross search between the various pages of Neutrino Unbound.
This is useful if you want to show the common elements that appear
in the listings of two (or more) different topics or experiments.