Report of the Topical Group on Neutrino Properties for Snowmass 2021,
Carlo Giunti, Julieta Gruszko, Benjamin Jones, Lisa Kaufman, Diana Parno, Andrea Pocar,
arXiv:2209.03340, 2022. [Giunti:2022aea]
Direct Measurements of Neutrino Mass,
Joseph A. Formaggio, Andre Luiz C. de Gouvea, R. G. Hamish Robertson,
Phys.Rept. 914 (2021) 1-54,arXiv:2102.00594.
[Formaggio:2021nfz]
Neutrino Mass Ordering in 2018: Global Status,
P. F. de Salas, S. Gariazzo, O. Mena, C. A. Ternes, M. Tortola,
Front.Astron.Space Sci. 5 (2018) 36,arXiv:1806.11051.
[DeSalas:2018rby]
The use of low temperature detectors for direct measurements of the mass of the electron neutrino,
Angelo Nucciotti,
Adv. High Energy Phys. 2016 (2016) 9153024,arXiv:1511.00968.
[Nucciotti:2015rsl]
Searches for Active and Sterile Neutrinos in Beta-Ray Spectra,
Otokar Dragoun, Drahoslav Venos,
J. Phys. 3 (2016) 77-113,arXiv:1504.07496.
[Dragoun:2015oja]
Current direct neutrino mass experiments,
G. Drexlin, V. Hannen, S. Mertens, C. Weinheimer,
Adv. High Energy Phys. 2013 (2013) 293986,arXiv:1307.0101.
[Drexlin:2013lha]
Absolute values of neutrino masses: Status and prospects,
S. M. Bilenky, C. Giunti, J. A. Grifols, E. Masso,
Phys. Rep. 379 (2003) 69-148,arXiv:hep-ph/0211462.
[Bilenky:2002aw]
Neutrino mass measurements using cryogenic detectors,
Loredana Gastaldo,
J.Low Temp.Phys. 209 (2022) 804-814,arXiv:2203.01395.
19th International Workshop on Low Temperature Detectors (LTD19). [Gastaldo:2022uyk]
Direct Neutrino Mass Experiments,
Susanne Mertens,
J. Phys. Conf. Ser. 718 (2016) 022013,arXiv:1605.01579.
NuPhys2015 (London, 16-18 December 2015). [Mertens:2016ihw]
The Future of Neutrino Mass Measurements: Terrestrial, Astrophysical, and Cosmological Measurements in the Next Decade. Highlights of the NuMass 2013 Workshop. Milano, Italy, February 4 - 7, 2013,
G. J. Barker et al.,
arXiv:1309.7810, 2013. [Barker:2013kvg]
Neutrino Mass: Overview of $\beta\beta_{0\nu}$, Cosmology and Direct Measurements,
C. Giunti, 2012.Neutrino Town Meeting, European Strategy for Neutrino Oscillation Physics - II, 14-16 May 2012, CERN.http://www.to.infn.it/~giunti/slides/2012/giunti-120514-nutown.pdf.
[Giunti-NeutrinoTown2012]
Introduction to direct neutrino mass measurements and KATRIN,
Thomas Thummler(KATRIN),
Nucl. Phys. Proc. Suppl. 229-232 (2012) 146-151,arXiv:1012.2282.
XXIV International Conference on Neutrino Physics and Astrophysics, Neutrino 2010. [Thummler:2010tt]
Neutrino masses and Neutrinoless Double Beta Decay: Status and expectations,
Oliviero Cremonesi,
arXiv:1002.1437, 2010.'European Strategy for Future Neutrino Physics' Workshop, CERN October 1-3 2009. [Cremonesi:2010xs]
Direct determination of Neutrino Mass from Tritium Beta Spectrum,
C. Weinheimer,
Proc.Int.Sch.Phys.Fermi 170 (2009) 215-243,arXiv:0912.1619.
International School of Physics 'Enrico Fermi', CLXX course 'Measurements of Neutrino Mass', June 17-27, 2008, Varenna, Italy. [Weinheimer:2009cb]
Experiments for the absolute neutrino mass measurement,
Markus Steidl,
arXiv:0906.0454, 2009.Heavy Quarks and Leptons, Melbourne, 2008. [Steidl:2009hx]
Direct Measurement of Neutrino Mass,
R.G. Hamish Robertson,
J. Phys. Conf. Ser. 173 (2009) 012016,arXiv:0807.4258.
Carolina International Symposium on Neutrino Physics, Columbia, SC, May 15-17, 2008. [Robertson:2008sq]
Towards absolute neutrino masses,
Petr Vogel,
Nucl. Phys. Proc. Suppl. 168 (2007) 23-28,arXiv:hep-ph/0611210.
NOW2006 Workshop, Otranto, Italy, September 2006. [Vogel:2006cu]
Theory and phenomenology of neutrino mixing,
Carlo Giunti,
Nucl. Phys. Proc. Suppl. 169 (2007) 309-320,arXiv:hep-ph/0611125.
Tau06 (19-22 September 2006, Pisa, Italy) and HQL06 (16-20 October 2006, Munich, Germany). [Giunti:2006rs]
Absolute Neutrino Masses,
Carlo Giunti,
Acta Phys. Polon. B36 (2005) 3215,arXiv:hep-ph/0511131.
XXIX International Conference of Theoretical Physics 'Matter To The Deepest: Recent Developments In Physics Of Fundamental Interactions', 8-14 September 2005, Ustron, Poland. [Giunti:2005qd]
Neutrino mass and mixing parameters: A short review,
G.L. Fogli et al.,
arXiv:hep-ph/0506307, 2005.40th Rencontres de Moriond on Electroweak Interactions and Unified Theories, La Thuile, Aosta Valley, Italy, 5-12 Mar 2005. [Fogli:2005gs]
Double Beta Decay and the Absolute Neutrino Mass Scale,
Carlo Giunti,
Aip Conf. Proc. 721 (2004) 170,arXiv:hep-ph/0308206.
NuFact 03, 5th International Workshop on Neutrino Factories and Superbeams, 5-11 June 2003, Columbia University, New York.http://www.cap.bnl.gov/nufact03/WG1/6june/giunti.pdf.
[Giunti:2003kb]
The neutrino mass direct measurements,
Christian Weinheimer,
arXiv:hep-ex/0306057, 2003.10th Int. Workshop on Neutrino Telescopes, Venice/Italy March 2003. [Weinheimer:2003bh]
Determination of neutrino masses, present and future,
Jean-Luc Vuilleumier,
arXiv:hep-ex/0306010, 2003.XXXVIII Rencontres de Moriond, Electroweak interactions and Unified Theories, Les Arcs, March 15-22, 2003. [Vuilleumier:2003us]
The search for the neutrino mass by direct method in the tritium beta-decay and perspectives of study it in the project KATRIN,
V. M. Lobashev,
Nucl. Phys. A719 (2003) C153-C160.17th International Nuclear Physics Divisional Conference: Europhysics Conference on Nuclear Physics in Astrophysics (NPDC 17), Debrecen, Hungary, 30 Sep - 3 Oct 2002. [Lobashev:2003kt]
Direct neutrino mass search,
Christian Weinheimer,
arXiv:hep-ex/0210050, 2002.International School of Physics Enrico Fermi: Course 152: Neutrino Physics, Varenna, Lake Como, Italy, 23 Jul - 2 Aug 2002. [Weinheimer:2002rs]
Study of the tritium beta-spectrum in experiment 'Troitsk nu-mass',
V. M. Lobashev,
Prog. Part. Nucl. Phys. 48 (2002) 123-131.International School of Physics: 23rd Course: Neutrinos in Astro, Particle and Nuclear Physics, Erice, Italy, 18-26 Sep 2001. [Lobashev:2002jv]
Direct Neutrino Mass Experiments: Present and Future,
Ch. Weinheimer, 2002.XXth International Conference on Neutrino Physics and Astrophysics May 25 - 30, 2002, Munich, Germany.http://neutrino2002.ph.tum.de/pages/transparencies/weinheimer.
[Weinheimer-Nu2002]
Most stringent bound on electron neutrino mass obtained with a scalable low temperature microcalorimeter array,
B. K. Alpert et al.,
Phys.Rev.Lett. 135 (2025) 141801,arXiv:2503.19920.
[Alpert:2025tqq]
Tritium Beta Spectrum and Neutrino Mass Limit from Cyclotron Radiation Emission Spectroscopy,
A. Ashtari Esfahani et al.(Project 8),
Phys.Rev.Lett. 131 (2023) 102502,arXiv:2212.05048.
[Project8:2022hun]
Improved eV-scale Sterile-Neutrino Constraints from the Second KATRIN Measurement Campaign,
M. Aker et al.(KATRIN),
Phys.Rev.D 105 (2022) 072004,arXiv:2201.11593.
[KATRIN:2022ith]
First direct neutrino-mass measurement with sub-eV sensitivity,
M. Aker et al.(KATRIN),
Nature Phys. 18 (2022) 160-166,arXiv:2105.08533.
[KATRIN:2021uub]
Bound on 3+1 active-sterile neutrino mixing from the first four-week science run of KATRIN,
M. Aker et al.(KATRIN),
Phys.Rev.Lett. 126 (2021) 091803,arXiv:2011.05087.
[KATRIN:2020dpx]
An improved upper limit on the neutrino mass from a direct kinematic method by KATRIN,
M. Aker et al.(KATRIN),
Phys.Rev.Lett. 123 (2019) 221802,arXiv:1909.06048.
[KATRIN:2019yun]
Measurements with a TRISTAN prototype detector system at the 'Troitsk nu-mass' experiment in integral and differential mode,
Tim Brunst et al.,
JINST 14 (2019) P11013,arXiv:1909.02898.
[Brunst:2019aod]
Status of the HOLMES Experiment to Directly Measure the Neutrino Mass,
A. Nucciotti et al.,
J.Low.Temp.Phys. 193 (2018) 1137-1145,arXiv:1807.09269.
[Nucciotti:2018vyc]
First measeurements in search for keV-sterile neutrino in tritium beta-decay by Troitsk nu-mass experiment,
J.N. Abdurashitov et al.,
Pisma Zh.Eksp.Teor.Fiz. 105 (2017) 723-724,arXiv:1703.10779.
[Abdurashitov:2017kka]
Upper bound on neutrino mass based on T2K neutrino timing measurements,
K. Abe et al.(T2K),
Phys. Rev. D93 (2016) 012006,arXiv:1502.06605.
[T2K:2015sxa]
A search for an additional neutrino mass eigenstate in 2 to 100 eV region from 'Troitsk nu-mass' data - detailed analysis,
A.I. Belesev et al.,
J. Phys. G41 (2014) 015001,arXiv:1307.5687.
[Belesev:2013cba]
Measurement of masses in the $t \bar{t}$ system by kinematic endpoints in $pp$ collisions at $\sqrt{s}=7\,\text{TeV}$,
Serguei Chatrchyan et al.(CMS),
Eur.Phys.J. C73 (2013) 2494,arXiv:1304.5783.
[CMS:2013wbt]
An upper limit on additional neutrino mass eigenstate in 2 to 100 eV region from 'Troitsk nu-mass' data,
A.I. Belesev, A.I. Berlev, E.V. Geraskin, A.A. Golubev, N.A. Likhovid et al.,
JETP Lett. 97 (2013) 67-69,arXiv:1211.7193.
[Belesev:2012hx]
Limit on sterile neutrino contribution from the Mainz Neutrino Mass Experiment,
Christine Kraus, Andrej Singer, Kathrin Valerius, Christian Weinheimer,
Eur.Phys.J. C73 (2013) 2323,arXiv:1210.4194.
[Kraus:2012he]
Measurement of the electron antineutrino mass in tritium beta decay in the Troitsk nu-mass experiment,
V. N. Aseev et al.,
Phys. Atom. Nucl. 75 (2012) 464-478.[Yad. Fiz.75,500(2012)]. [Aseev:2012zz]
An upper limit on electron antineutrino mass from Troitsk experiment,
V.N. Aseev et al.(Troitsk),
Phys. Rev. D84 (2011) 112003,arXiv:1108.5034.
[Troitsk:2011cvm]
On the muon neutrino mass,
N. Angelov et al.,
Nucl. Phys. A780 (2006) 78-89,arXiv:nucl-ex/0605002. From the abstract:... we obtained an experimental upper limit for the muon neutrino mass: $m_{\nu} < 2.2 \, \text{MeV}$ at a 90\% confidence level. [Angelov:2006jn]
Final Results from phase II of the Mainz Neutrino Mass Search in Tritium $\beta$ Decay,
Ch. Kraus et al.,
Eur. Phys. J. C40 (2005) 447-468,arXiv:hep-ex/0412056.
[Kraus:2004zw]
New experimental limits on heavy neutrino mixing in B-8 decay obtained with the Borexino Counting Test Facility,
H. O. Back et al.,
JETP Lett. 78 (2003) 261-266. [Back:2003ae]
Limits on the mixing of tau neutrino to heavy neutrinos,
J. Orloff, Alexandre N. Rozanov, C. Santoni,
Phys. Lett. B550 (2002) 8-15,arXiv:hep-ph/0208075.
[Orloff:2002de]
Limits on the existence of heavy neutrinos in the range 50- eV - 1000-eV from the study of the Re-187 beta decay,
M. Galeazzi, F. Fontanelli, F. Gatti, S. Vitale,
Phys. Rev. Lett. 86 (2001) 1978-1981. [Galeazzi:2001py]
The beta-spectrum of S-35 and search for the admixture of heavy neutrinos,
E. Holzschuh, L. Palermo, H. Stussi, P. Wenk,
Phys. Lett. B482 (2000) 1-9. [Holzschuh:2000nj]
Direct search for the neutrino mass in the beta decay of tritium: Status of the 'Troitsk nu-mass' experiment,
V. M. Lobashev,
Phys. Atom. Nucl. 63 (2000) 962-968. [Lobashev:2000vb]
Search for heavy neutrinos in the beta-spectrum of Ni- 63,
E. Holzschuh, W. Kundig, L. Palermo, H. Stussi, P. Wenk,
Phys. Lett. B451 (1999) 247-255. [Holzschuh:1999vy]
High precision measurement of the tritium beta spectrum near its endpoint and upper limit on the neutrino mass,
C. Weinheimer et al.,
Phys. Lett. B460 (1999) 219-226. [Weinheimer:1999tn]
An upper limit on the tau neutrino mass from three- and five-prong tau decays,
R. Barate et al.(ALEPH),
Eur. Phys. J. C2 (1998) 395-406. [Barate:1998zg]
Upper limit of the muon-neutrino mass and charged pion mass from momentum analysis of a surface muon beam,
K. Assamagan et al.,
Phys. Rev. D53 (1996) 6065-6077. Comment:2 results for the squared muon-neutrino mass are obtained, according to 2 different choices (A or B) for the $\pi^-$ mass. They are respectively : $m^2_{\nu{\mu}} (A) = (-0.143\pm0.024) \, \mathrm{MeV}^2 $ and $m^2_{\nu{\mu}} (B) = (-0.016\pm0.023) \, \mathrm{MeV}^2 $. The first value is negative by six standard deviations and it is considered unphysical by the authors and therefore rejected. [M.L.]. [Assamagan:1996wb]
Results of the Troitsk experiment on the search for the electron anti-neutrino rest mass in tritium beta decay,
A. I. Belesev et al.,
Phys. Lett. B350 (1995) 263-272. [Belesev:1995sb]
Measurement of the muon momentum in pion decay at rest using a surface muon beam,
K. Assamagan et al.,
Phys. Lett. B335 (1994) 231-236. [Assamagan:1994mb]
New evidence against 17-keV neutrino emission in the beta decay momentum spectrum of S-35,
G. E. Berman, M. L. Pitt, F. P. Calaprice, M. M. Lowry,
Phys. Rev. C48 (1993) 1-4. [Berman:1993hg]
Improved limit on the electron anti-neutrino rest mass from tritium beta decay,
C. Weinheimer et al.,
Phys. Lett. B300 (1993) 210-216. [Weinheimer:1993pd]
High sensitivity search for a 17-keV neutrino: Negative indication with an upper limit of 0.1-percent,
H. Kawakami et al.,
Phys. Lett. B287 (1992) 45-50. [Kawakami:1992py]
New precision measurement of the muon momentum in pion decay at rest,
M. Daum, R. Frosch, D. Herter, M. Janousch, P. R. Kettle,
Phys. Lett. B265 (1991) 425-429. [Daum:1991km]
Limit on anti-electron-neutrino mass from observation of the beta decay of molecular tritium,
R. G. H. Robertson, T. J. Bowles, G. J. Stephenson, D. L. Wark, John F. Wilkerson, D. A. Knapp,
Phys. Rev. Lett. 67 (1991) 957-960. [Robertson:1991vn]
Searches for admixture of massive neutrinos into the electron flavor,
J. Deutsch, M. Lebrun, R. Prieels,
Nucl. Phys. A518 (1990) 149-155. [Deutsch:1990ut]
Upper limits on the mixing of heavy neutrinos in the beta decay of NI-63,
D. W. Hetherington, R. L. Graham, M. A. Lone, J. S. Geiger, G. E. Lee-Whiting,
Phys. Rev. C36 (1987) 1504-1513. [Hetherington:1987qr]
Measurement of the Neutrino Mass Using the Inner Bremsstrahlung Emitted in the Electron-Capture Decay of $^{163}$Ho,
P. T. Springer, C. L. Bennett, P. A. Baisden,
Phys. Rev. A35 (1987) 679-689. [Springer:1987zz]
Search for heavy neutrinos in the beta decay of S-35 an evidence against the 17-keV heavy neutrino,
T. Ohi et al.,
Phys. Lett. B160 (1985) 322. [Ohi:1985zi]
Search for mixing of heavy neutrinos in the beta+ and beta- spectra of the Cu-64 decay,
K. Schreckenbach, G. Colvin, F. Von Feilitzsch,
Phys. Lett. B129 (1983) 265-268. [Schreckenbach:1983cg]
Determination of an upper limit of the mass of the muonic neutrino from the pion decay in flight,
H. B. Anderhub et al.,
Phys. Lett. B114 (1982) 76-80. [Anderhub:1982ea]
An estimate of the electron - neutrino mass from the beta spectrum of tritium in the valine molecule,
V. A. Lyubimov, E. G. Novikov, V. Z. Nozik, E. F. Tretyakov, V. S. Kosik,
Phys. Lett. B94 (1980) 266-268. [Lyubimov:1980un]
Mass Difference T-He < sup > 3 < /sup > and the Mass of the Neutrino,
L. Friedman, L. G. Smith,
Phys. Rev. Lett. 109 (1958) 2214-2215. [Friedman-Smith-PR-109-2214-1958]
First Calorimetric Measurement of Electron Capture in ${}^{193}$Pt with a Transition Edge Sensor,
Katrina E. Koehler et al.,
J.Low.Temp.Phys. 193 (2018) 1151-1159,arXiv:1803.06370.
17th International Workshop on Low Temperature Detectors. [Koehler:2018hzx]
Status of the MARE Experiment,
M. Ribeiro Gomes, F. Gatti, A. Nucciotti, P. Manfrinetti, M. Galeazzi et al.,
IEEE Trans.Appl.Supercond. 23 (2013) 2101204. [RibeiroGomes:2013isn]
Neutrino mass calorimetric searches in the MARE experiment,
A. Nucciotti(MARE),
Nucl. Phys. Proc. Suppl. 229-232 (2012) 155-159,arXiv:1012.2290.
XXIV International Conference on Neutrino Physics and Astrophysics (Neutrino 2010), Athens, Greece, June 14-19, 2010. [Nucciotti:2012yqp]
The Microcalorimeter Arrays for a Rhenium Experiment (MARE): a next-generation calorimetric neutrino mass experiment,
A. Monfardini et al.(MARE),
Prog. Part. Nucl. Phys. 57 (2006) 68,arXiv:hep-ex/0509038.
LTD11, Tokyo 2005. [Monfardini:2005dk]
New limits from the Milano neutrino mass experiment with thermal microcalorimeters,
M. Sisti et al.,
Nucl. Instrum. Meth. A520 (2004) 125-131.10th International Workshop on Low Temperature Detectors (LTD-10), Genoa, Italy, 7-11 Jul 2003. [Sisti:2004iq]
Development of rhenium microcalorimeter for neutrino mass measurements with sensitivity in the sub-eV range,
M. Razeti, F. Gatti, D. Pergolesi,
AIP Conf. Proc. 605 (2002) 457-460. [Razeti:2002gy]
Status of the Milano neutrino mass experiment with arrays of AgReO-4 microcalorimeters,
M. Sisti et al.,
Nucl. Phys. Proc. Suppl. 110 (2002) 369-371. [Sisti:2002rr]
First results of the calorimetric spectrometer for the beta decay of rhenium-187,
F. Gatti, F. Fontanelli, M. Galeazzi, S. Vitale,
Nucl. Instrum. Meth. A444 (2000) 88-91. [Gatti:2000fn]
Experimental limits for heavy neutrino admixture deduced from Lu-177 beta decay and constraints on the life time of a radiative neutrino decay mode,
S. Schonert et al.,
Nucl. Phys. Proc. Suppl. 48 (1996) 201-203. [Schonert:1995xh]
High-precision direct decay energy measurements of the electron-capture decay of $^{97}$Tc,
Zhuang Ge et al.,
Phys.Rev.C 112 (2025) 035501,arXiv:2502.04490.
[Ge:2025jom]
Ultra-low $Q_\beta$ value for the allowed decay of $^{110}$Ag$^m$ confirmed via mass measurements,
J. Ruotsalainen, M. Stryjczyk, M. Ramalho, T. Eronen, Z. Ge, A. Kankainen, M. Mougeot, J. Suhonen,
Phys.Rev.Lett. 134 (2025) 172501,arXiv:2409.11203.
[Ruotsalainen:2024gxu]
High-precision measurements of the atomic mass and electron-capture decay $Q$ value of $^{95}$Tc,
Zhuang Ge et al.,
Phys.Lett.B 859 (2024) 139094,arXiv:2406.05273.
[Ge:2024ziu]
Penning-trap measurement of the $Q$-value of the electron capture in $^{163}\mathrm{Ho}$ for the determination of the electron neutrino mass,
Christoph Schweiger et al.,
Nature Phys. 20 (2024) 921-927,arXiv:2402.06464.
[PENTATRAP:2024aed]
Direct determination of the atomic mass difference of Re187 and Os187 for neutrino physics and cosmochronology,
D.A. Nesterenko et al.,
Phys. Rev. C90 (2014) 042501,arXiv:1604.04394.
[Nesterenko:2014sma]
Direct Measurement of the Mass Difference of Ho163 and Dy163 Solves the Q-Value Puzzle for the Neutrino Mass Determination,
S. Eliseev et al.,
Phys. Rev. Lett. 115 (2015) 062501,arXiv:1604.04210.
[ECHo:2015qgh]
End-point energy and half-life of the Re-187 beta decay,
M. Galeazzi, F. Fontanelli, F. Gatti, S. Vitale,
Phys. Rev. C63 (2001) 014302. [Galeazzi:2001ih]
Using krypton-83m to determine the neutrino-mass bias caused by a non-constant electric potential of the KATRIN source,
Moritz Machatschek,
arXiv:2506.13829, 2025. [Machatschek:2025xkm]
The $\beta$-decay spectrum of Tritiated graphene: combining nuclear quantum mechanics with Density Functional Theory,
Andrea Casale, Angelo Esposito, Guido Menichetti, Valentina Tozzini,
arXiv:2504.13259, 2025. [Casale:2025vgd]
Comparison of the detector response and calibration function of metallic microcalorimeters for X-ray photons and external electrons,
Neven Kovac, Fabienne Adam, Sebastian Kempf, Marie-Christin Langer, Michael Muller, Rudolf Sack, Magnus Schlosser, Markus Steidl, Kathrin Valerius,
Nucl.Instrum.Meth.A 1080 (2025) 170662,arXiv:2502.05975.
[Kovac:2025itc]
Dynamics of Magnetic Evaporative Beamline Cooling for Preparation of Cold Atomic Beams,
A. Ashtari Esfahani et al.,
Phys.Rev.A 112 (2025) 033311,arXiv:2502.00188.
[Project8:2025pjn]
Deep Learning Based Event Reconstruction for Cyclotron Radiation Emission Spectroscopy,
A. Ashtari Esfahani et al.,
Mach.Learn.Sci.Tech. 5 (2024) 025026,arXiv:2402.13256.
[AshtariEsfahani:2024akk]
A method for determining the transition energies of $^{\mathrm{83m}}$Kr at the KATRIN experiment,
C. Rodenbeck,
Eur.Phys.J.C 82 (2022) 700,arXiv:2205.01484.
[Rodenbeck:2022fxc]
Time-Focusing Time-of-Flight, a new method to turn a MAC-E-filter into a quasi-differential spectrometer,
Alexander Fulst, Alexey Lokhov, Mariia Fedkevych, Nicholas Steinbrink, Christian Weinheimer,
Eur.Phys.J. C80 (2020) 956,arXiv:2007.01020.
[Fulst:2020boz]
Shakeup and shakeoff satellite structure in the electron spectrum of $^{83}$Kr$^m$,
R. G. Hamish Robertson, Vedantha Venkatapathy,
Phys.Rev. C102 (2020) 035502,arXiv:2003.12952.
[Robertson:2020boa]
Ultracold Neutron Storage Simulation Using the Kassiopeia Software Package,
Z. Bogorad, P.M. Murthy, J.A. Formaggio,
New J.Phys. 24 (2022) 023007,arXiv:1811.05972.
[Bogorad:2018tcz]
The role of electron scattering from registration detector in a MAC-E type spectrometer,
P.V. Grigorieva, A.A. Nozik, V.S. Pantuev, A.K. Skasyrskaya,
Nucl.Instrum.Meth. A832 (2016) 15-20,arXiv:1511.06129.
[Grigorieva:2015wkq]
Development of holmium-163 electron-capture spectroscopy with transition-edge sensors,
M. P. Croce et al.,
J.Low.Temp.Phys. 184 (2016) 958-968,arXiv:1510.03874.
[Croce:2015kwa]
Validation of a model for Radon-induced background processes in electrostatic spectrometers,
N. Wandkowsky et al.,
J. Phys. G40 (2013) 085102,arXiv:1304.1379.
[Wandkowsky:2013vna]
Modeling of electron emission processes accompanying Radon-$\alpha$-decays within electrostatic spectrometers,
N. Wandkowsky et al.,
New J. Phys. 15 (2013) 083040,arXiv:1304.1375.
[Wandkowsky:2013una]
Data analysis in beta-spectroscopy with criogenic detectors,
F. Fontanelli, M. Galeazzi, F. Gatti, A.M. Swift, S. Vitale,
Nucl. Instrum. Meth. A421 (1999) 464-470. [Fontanelli:1999]
Anomalous Structure in the Beta Decay of Gaseous Molecular Tritium,
Wolfgang Stoeffl, Daniel J. Decman,
Phys. Rev. Lett. 75 (1995) 3237-3240. [Stoeffl:1995wm]
Contribution of Subthreshold States to the Residual Energy Distribution of $^{159}$Dy,
Tadafumi Kishimoto, Toru Sato,
Phys.Rev.Lett. 135 (2025) 112502,arXiv:2508.18562.
[Kishimoto:2025crj]
Radiative neutrino masses and the Cohen-Kaplan-Nelson bound,
Patrick Adolf, Martin Hirsch, Heinrich Pas,
JHEP 11 (2023) 078,arXiv:2306.15313.
[Adolf:2023wfw]
$1/2^+ \to 1/2^+$ beta decay with neutrino mass effects in the elementary particle treatment of weak interactions,
Chong-En Wu, W. W. Repko,
Phys. Rev. C27 (1983) 1754-1760. [Wu:1983sz]
General Theory of Weak Leptonic and Semileptonic Decays. 1. Leptonic Pseudoscalar Meson Decays, with Associated Tests For, and Bounds on, Neutrino Masses and Lepton Mixing,
Robert E. Shrock,
Phys. Rev. D24 (1981) 1232. [Shrock:1980ct]
The phenomenology of neutrino oscillations,
I. Yu. Kobzarev, B. V. Martemyanov, L. B. Okun, M. G. Shchepkin,
Sov. J. Nucl. Phys. 32 (1980) 823. [Kobzarev:1980nk]
On the Fermi Theory of Beta Radioactivity. II. The Forbidden Spectra,
E. J. Konopinski, G. E. Uhlenbeck,
Phys. Rev. 60 (1941) 308-320.http://prola.aps.org/pdf/PR/v60/i4/p308_1.
[Konopinski:1941]
On the Fermi Theory of Beta Radioactivity,
E. J. Konopinski, G. E. Uhlenbeck,
Phys. Rev. 48 (1935) 7-12.http://prola.aps.org/pdf/PR/v48/i1/p7_1.
[Konopinski:1935]
Constraining the mass-spectra in the presence of a light sterile neutrino from absolute mass-related observables,
Srubabati Goswami, Debashis Pachhar, Supriya Pan,
Phys.Rev.D 110 (2024) 015028,arXiv:2405.04176.
[Goswami:2024ahm]
Testing the Origins of Neutrino Mass with Supernova Neutrino Time Delay,
Shao-Feng Ge, Chui-Fan Kong, Alexei Y. Smirnov,
Phys.Rev.Lett. 133 (2024) 121802,arXiv:2404.17352.
[Ge:2024ftz]
Absolutely Scintillating: constraining $\nu$ mass with black hole-forming supernovae,
George Parker, Michael Wurm,
Phys.Rev.D 109 (2024) 083041,arXiv:2311.10682.
[Parker:2023cos]
Neutrino mass matrix in neutrino-related processes,
M. I. Krivoruchenko, F. Simkovic,
Phys.Atom.Nucl. 86 (2023) 709-724,arXiv:2305.12378.
[Krivoruchenko:2023npj]
Sensitivity of Future Tritium Decay Experiments to New Physics,
James A. L. Canning, Frank F. Deppisch, Wenna Pei,
JHEP 03 (2023) 144,arXiv:2212.06106.
[Canning:2022nye]
A study of the relativistic corrections to tritium $\beta$-decay,
Gianluca Cavoto, Angelo Esposito, Guglielmo Papiri, Antonio Davide Polosa,
Phys.Rev.C 107 (2023) 064603,arXiv:2211.13247.
[Cavoto:2022xwo]
Gallium Anomaly: Critical View from the Global Picture of $\nu_{e}$ and $\bar\nu_{e}$ Disappearance,
C. Giunti, Y. F. Li, C. A. Ternes, O. Tyagi, Z. Xin,
JHEP 10 (2022) 164,arXiv:2209.00916.
[Giunti:2022btk]
Michel parameters in the presence of massive Dirac and Majorana neutrinos,
Juan Manuel Marquez, Gabriel Lopez Castro, Pablo Roig,
JHEP 11 (2022) 117,arXiv:2208.01715.
[Marquez:2022bpg]
Plutonium-241 as a possible isotope for neutrino mass measurement and capture,
Nicolo de Groot,
J.Phys.G 50 (2023) 055106,arXiv:2203.01708.
[deGroot:2022tbi]
An absolute $\nu$ mass measurement with the DUNE experiment,
Federica Pompa, Francesco Capozzi, Olga Mena, Michel Sorel,
Phys.Rev.Lett. 129 (2022) 121802,arXiv:2203.00024.
[Pompa:2022cxc]
Tritium beta decay with modified neutrino dispersion relations: KATRIN in the dark sea,
Guo-yuan Huang, Werner Rodejohann,
Nucl.Phys.B 993 (2023) 116262,arXiv:2110.03718.
[Huang:2021zzz]
The unfinished fabric of the three neutrino paradigm,
Francesco Capozzi, Eleonora Di Valentino, Eligio Lisi, Antonio Marrone, Alessandro Melchiorri, Antonio Palazzo,
Phys.Rev.D 104 (2021) 083031,arXiv:2107.00532.
[Capozzi:2021fjo]
Heisenberg's uncertainty as a limiting factor for neutrino mass detection in $\beta$-decay,
Yevheniia Cheipesh, Vadim Cheianov, Alexey Boyarsky,
Phys.Rev.D 104 (2021) 116004,arXiv:2101.10069.
[Cheipesh:2021fmg]
Addendum to: Global constraints on absolute neutrino masses and their ordering,
Francesco Capozzi, Eleonora Di Valentino, Eligio Lisi, Antonio Marrone, Alessandro Melchiorri, Antonio Palazzo,
Phys.Rev. D101 (2020) 116013,arXiv:2003.08511.
[Capozzi:2017ipn]
Bounds on light sterile neutrino mass and mixing from cosmology and laboratory searches,
Steffen Hagstotz, Pablo F. de Salas, Stefano Gariazzo, Martina Gerbino, Massimiliano Lattanzi, Sunny Vagnozzi, Katherine Freese, Sergio Pastor,
Phys.Rev.D 104 (2021) 123524,arXiv:2003.02289.
[Hagstotz:2020ukm]
KATRIN bound on 3+1 active-sterile neutrino mixing and the reactor antineutrino anomaly,
C. Giunti, Y.F. Li, Y.Y. Zhang,
JHEP 2005 (2020) 061,arXiv:1912.12956.
[Giunti:2019fcj]
QED background against atomic neutrino process with initial spatial phase,
Minoru Tanaka, Koji Tsumura, Noboru Sasao, Satoshi Uetake, Motohiko Yoshimura,
Eur.Phys.J.Plus 135 (2020) 283,arXiv:1912.02475.
[Tanaka:2019blr]
Comment on 'An improved upper limit on the neutrino mass from a direct kinematic method by KATRIN',
Alan Chodos,
arXiv:1909.08207, 2019. [Chodos:2019wtw]
Tritium beta decay with additional emission of new light bosons,
Giorgio Arcadi, Julian Heeck, Florian Heizmann, Susanne Mertens, Farinaldo S. Queiroz, Werner Rodejohann, Martin Slezak, Kathrin Valerius,
JHEP 1901 (2019) 206,arXiv:1811.03530.
[Arcadi:2018xdd]
Neutrino mass from bremsstrahlung endpoint in coherent scattering on nuclei,
Alexander Millar, Georg Raffelt, Leo Stodolsky, Edoardo Vitagliano,
Phys.Rev. D98 (2018) 123006,arXiv:1810.06584.
[Millar:2018hkv]
Shining Light on the Mass Scale and Nature of Neutrinos with $e\gamma \to e\nu\overline\nu$,
Jeffrey M. Berryman, Andre de Gouvea, Kevin J. Kelly, Michael Schmitt,
Phys.Rev. D98 (2018) 016009,arXiv:1805.10294.
[Berryman:2018qxn]
Current unknowns in the three neutrino framework,
F. Capozzi, E. Lisi, A. Marrone, A. Palazzo,
Prog.Part.Nucl.Phys. 102 (2018) 48-72,arXiv:1804.09678.
[Capozzi:2018ubv]
$\textit{Ab initio}$ calculation of the calorimetric electron capture spectrum of $^{163}$Holmium: Intra-atomic decay into bound-states,
M. Bras, C. Enss, L. Gastaldo, M.W. Haverkort,
Phys.Rev. C97 (2018) 054620,arXiv:1711.10309.
[Brass:2017kov]
keV-Scale Sterile Neutrino Sensitivity Estimation with Time-Of-Flight Spectroscopy in KATRIN using Self Consistent Approximate Monte Carlo,
Nicholas M.N. Steinbrink, Jan D. Behrens, Susanne Mertens, Philipp C.-O. Ranitzsch, Christian Weinheimer,
Eur.Phys.J. C78 (2018) 212,arXiv:1710.04939.
[Steinbrink:2017ung]
Statistical sensitivity on right-handed currents in presence of eV scale sterile neutrinos with KATRIN,
Nicholas M. N. Steinbrink et al.,
JCAP 1706 (2017) 015,arXiv:1703.07667.
[Steinbrink:2017uhw]
Probability Densities of the effective neutrino masses $m_{\beta}$ and $m_{\beta\beta}$,
Andrea Di Iura, Davide Meloni,
Nucl.Phys. B921 (2017) 829-840,arXiv:1612.05453.
[DiIura:2016zsx]
Impact of ADC non-linearities on the sensitivity to sterile keV neutrinos with a KATRIN-like experiment,
K. Dolde, S. Mertens, D. Radford, T. Bode, A. Huber, M. Korzeczek, T. Lasserre, M. Slezak,
Nucl.Instrum.Meth. A848 (2017) 127-136,arXiv:1608.03158.
[Dolde:2016wnv]
Warm dark matter sterile neutrinos in electron capture and beta decay spectra,
O. Moreno, E. Moya de Guerra, M. Ramon Medrano,
Adv.High Energy Phys. 2016 (2016) 6318102,arXiv:1607.02931.
[Moreno:2016hrs]
Anharmonicity of internal atomic oscillation and effective antineutrino mass evaluation from gaseous molecular tritium $\beta$-decay,
Alexey V. Lokhov, Nikita A. Titov,
J. Phys. G43 (2016) 075102,arXiv:1606.02746.
[Lokhov:2016gtr]
Light sterile neutrino sensitivity of 163Ho experiments,
L. Gastaldo, C. Giunti, E. M. Zavanin,
JHEP 1606 (2016) 061,arXiv:1605.05497.
[Gastaldo:2016kak]
Direct Neutrino Mass Experiments and Exotic Charged Current Interactions,
Patrick Otto Ludl, Werner Rodejohann,
JHEP 1606 (2016) 040,arXiv:1603.08690.
[Ludl:2016ane]
The calorimetric spectrum of the electron-capture decay of $^{163}$Ho. The spectral endpoint region,
A. De Rujula, M. Lusignoli,
JHEP 1605 (2016) 015,arXiv:1601.04990.
[DeRujula:2016fdu]
The calorimetric spectrum of the electron-capture decay of $^{163}$Ho. A preliminary analysis of the preliminary data,
A. De Rujula, M. Lusignoli,
arXiv:1510.05462, 2015. [DeRujula:2015lya]
Neutrinos secretly converting to lighter particles to please both KATRIN and the cosmos,
Yasaman Farzan, Steen Hannestad,
JCAP 1602 (2016) 058,arXiv:1510.02201.
[Farzan:2015pca]
Conditions for Statistical Determination of the Neutrino Mass Spectrum in Radiative Emission of Neutrino Pairs in Atoms,
Ningqiang Song et al.,
Phys.Rev. D93 (2016) 013020,arXiv:1510.00421.
[Song:2015xaa]
Majorana/Dirac distinction and neutrino mass determination using circulating heavy ions,
M. Yoshimura,
Phys. Rev. D93 (2016) 013016,arXiv:1508.02795.
[Yoshimura:2015wsa]
The $\nu$ generation: present and future constraints on neutrino masses from cosmology and laboratory experiments,
Martina Gerbino, Massimiliano Lattanzi, Alessandro Melchiorri,
Phys. Rev. D93 (2016) 033001,arXiv:1507.08614.
[Gerbino:2015ixa]
Determination of the neutrino mass by electron capture in 163 Holmium and the role of the three-hole states in 163 Dysprosium,
Amand Faessler, Christian Enss, Loredana Gastaldo, F. Simkovic,
Phys. Rev. C91 (2015) 064302,arXiv:1503.02282.
[Faessler:2015txa]
Improved Description of One- and Two-Hole States after Electron Capture in 163 Holmium and the Determination of the Neutrino Mass,
Amand Faessler, Fedor Simkovic,
Phys. Rev. C91 (2015) 045505,arXiv:1501.04338.
[Faessler:2015pka]
Boundaries on Neutrino Mass from Supernovae Neutronization Burst by Liquid Argon Experiments,
F. Rossi-Torres, M. M. Guzzo, E. Kemp,
arXiv:1501.00456, 2015. [Rossi-Torres:2015rla]
Majorana Neutrinos Production at LHeC in an Effective Approach,
Lucia Duarte, Gabriel A. Gonzalez-Sprinberg, Oscar Alfredo Sampayo,
Phys. Rev. D91 (2015) 053007,arXiv:1412.1433.
[Duarte:2014zea]
Radiative Emission of Neutrino Pairs in Atoms and Light Sterile Neutrinos,
D. N. Dinh, S. T. Petcov,
Phys.Lett. B742 (2015) 107-116,arXiv:1411.7459.
[Dinh:2014toa]
Examination of the calorimetric spectrum to determine the neutrino mass in low-energy electron capture decay,
R. G. H. Robertson,
Phys. Rev. C 91 (2015) 035504,arXiv:1411.2906.
[Robertson:2014fka]
Wavelet Approach to Search for Sterile Neutrinos in Tritium $\beta$-Decay Spectra,
S. Mertens et al.,
Phys. Rev. D91 (2015) 042005,arXiv:1410.7684.
[Mertens:2014osa]
Sensitivity of Next-Generation Tritium Beta-Decay Experiments for keV-Scale Sterile Neutrinos,
S. Mertens et al.,
JCAP 1502 (2015) 020,arXiv:1409.0920.
[Mertens:2014nha]
Electron Capture in 163Ho and Overlap plus Exchange Corrections and the Neutrino Mass,
Amand Faessler, Loredana Gastaldo, M.F. Simkovic,
J. Phys. G42 (2015) 015108,arXiv:1407.6504.
[Faessler:2014xpa]
Statistical sensitivity of 163-Ho electron capture neutrino mass experiments,
A. Nucciotti,
Eur.Phys.J. C74 (2014) 3161,arXiv:1405.5060.
[Nucciotti:2014raa]
Mass characteristics of active and sterile neutrinos in a phenomenological (3+1+2)-model,
N. Yu. Zysina, S. V. Fomichev, V. V. Khruschov,
Phys.Atom.Nucl. 77 (2014) 890-900,arXiv:1401.6306.
[Zysina:2014kqa]
Neutrino mass and Extreme Value Distributions in $\beta$-decay,
J. G. Esteve, Fernando Falceto,
J. Phys. G41 (2014) 055011,arXiv:1401.1644.
[Esteve:2014tfa]
Parity violation in radiative emission of neutrino pair from metastable states of heavy alkaline earth atoms,
M. Yoshimura, N. Sasao, S. Uetake,
Phys. Rev. D90 (2014) 013022,arXiv:1312.6758.
[Yoshimura:2014lja]
I$_{2}$ molecule for neutrino mass spectroscopy: ab initio calculation of spectral rate,
Motomichi Tashiro et al.,
PTEP (2014) 013B02,arXiv:1310.7342.
[Tashiro:2013vja]
Thorium isomer for radiative emission of neutrino pair,
N. Sasao, S. Uetake, A. Yoshimi, K. Yoshimura, M. Yoshimura,
arXiv:1310.7341, 2013. [Sasao:2013wia]
Neutrino mass sensitivity by MAC-E-Filter based time-of-flight spectroscopy with the example of KATRIN,
Nicholas Steinbrink et al.,
New J. Phys. 15 (2013) 113020,arXiv:1308.0532.
[Steinbrink:2013ska]
Short-Baseline Electron Neutrino Oscillation Length After Troitsk,
C. Giunti, M. Laveder, Y. F. Li, H.W. Long,
Phys. Rev. D87 (2013) 013004,arXiv:1212.3805.
[Giunti:2012bc]
Observables in Neutrino Mass Spectroscopy Using Atoms,
D. N. Dinh, S. T. Petcov, N. Sasao, M. Tanaka, M. Yoshimura,
Phys. Lett. B719 (2013) 154-163,arXiv:1209.4808.
[Dinh:2012qb]
Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP violation searches,
G.L. Fogli et al.,
Phys. Rev. D86 (2012) 013012,arXiv:1205.5254.
[Fogli:2012ua]
A systematic search for step-like anomalies in the tritium beta-decay spectrum in the Troitsk-nu-mass experiment,
A. V. Lokhov, F. V. Tkachov, P. S. Trukhanov,
Nucl. Phys. A897 (2013) 218-228,arXiv:1204.1908.
[Lokhov:2012yg]
KATRIN Sensitivity to Sterile Neutrino Mass in the Shadow of Lightest Neutrino Mass,
Arman Esmaili, Orlando L. G. Peres,
Phys. Rev. D85 (2012) 117301,arXiv:1203.2632.
[Esmaili:2012vg]
Implications of 3+1 Short-Baseline Neutrino Oscillations,
Carlo Giunti, Marco Laveder,
Phys. Lett. B706 (2011) 200-207,arXiv:1111.1069.
[Giunti:2011cp]
Analysis of KATRIN data using Bayesian inference,
Anna Sejersen Riis, Steen Hannestad, Christian Weinheimer,
Phys. Rev. C84 (2011) 045503,arXiv:1105.6005.
[SejersenRiis:2011sj]
Resolving the Reactor Neutrino Anomaly with the KATRIN Neutrino Experiment,
J. A. Formaggio, J. Barrett,
Phys. Lett. B706 (2011) 68-71,arXiv:1105.1326.
[Formaggio:2011jg]
Prediction for the neutrino mass in the KATRIN experiment from lensing by the galaxy cluster A1689,
Theo M. Nieuwenhuizen, Andrea Morandi,
J.Cosmol. 15 (2011) 6005,arXiv:1103.6270.
[Nieuwenhuizen:2011yg]
The absolute mass of neutrino and the first unique forbidden beta-decay of 187Re,
Rastislav Dvornicky, Kazuo Muto, Fedor Simkovic, Amand Faessler,
Phys. Rev. C83 (2011) 045502,arXiv:1101.3413.
[Dvornicky:2011fm]
Direct Detection of the Cosmic Neutrino Background Including Light Sterile Neutrinos,
Y. F. Li, Shu Luo, Zhi-zhong Xing,
Phys.Lett. B692 (2010) 261-267,arXiv:1007.0914.
[Li:2010sn]
Robust Cosmological Bounds on Neutrinos and their Combination with Oscillation Results,
M. C. Gonzalez-Garcia, Michele Maltoni, Jordi Salvado,
JHEP 08 (2010) 117,arXiv:1006.3795.
[Gonzalez-Garcia:2010keg]
Sensitivity of Neutrino Mass Experiments to the Cosmic Neutrino Background,
A. Kaboth, J. A. Formaggio, B. Monreal,
Phys. Rev. D82 (2010) 062001,arXiv:1006.1886.
[Kaboth:2010kf]
Expectations for a new calorimetric neutrino mass experiment,
A. Nucciotti, E. Ferri, O. Cremonesi,
Astropart. Phys. 34 (2010) 80-89,arXiv:0912.4638.
[Nucciotti:2009wq]
A New Proposal for Neutrino Mass and |V(ud)| Measurements,
Akihiro Matsuzaki, Hidekazu Tanaka,
Prog. Theor. Phys. 123 (2010) 1003-1012,arXiv:0908.4163.
[Matsuzaki:2009vf]
Relativistic Cyclotron Radiation Detection of Tritium Decay Electrons as a New Technique for Measuring the Neutrino Mass,
Benjamin Monreal, Joseph A. Formaggio,
Phys. Rev. D80 (2009) 051301,arXiv:0904.2860.
[Monreal:2009za]
Measuring neutrino mass with radioactive ions in a storage ring,
Mats Lindroos, Bob McElrath, Christopher Orme, Thomas Schwetz,
Eur. Phys. J. C64 (2009) 549-560,arXiv:0904.1089.
[Lindroos:2009mx]
Statistical Analysis of future Neutrino Mass Experiments including Neutrino-less Double Beta Decay,
Werner Maneschg, Alexander Merle, Werner Rodejohann,
Europhys. Lett. 85 (2009) 51002,arXiv:0812.0479.
[Maneschg:2008sf]
Prospects for cosmic neutrino detection in tritium experiments in the case of hierarchical neutrino masses,
Mattias Blennow,
Phys. Rev. D77 (2008) 113014,arXiv:0803.3762.
[Blennow:2008fh]
Lorentz violating extension of the Standard Model and the $\beta$-decay end-point,
Alex E. Bernardini, O. Bertolami,
Phys. Rev. D77 (2008) 085032,arXiv:0802.2199.
[Bernardini:2008ef]
MiniBooNE Results and Neutrino Schemes with 2 sterile Neutrinos: Possible Mass Orderings and Observables related to Neutrino Masses,
Srubabati Goswami, Werner Rodejohann,
JHEP 10 (2007) 073,arXiv:0706.1462.
[Goswami:2007kv]
The KATRIN sensitivity to the neutrino mass and to right- handed currents in beta decay,
J. Bonn, K. Eitel, F. Gluck, D. Sevilla-Sanchez, N. Titov,
Phys. Lett. B703 (2011) 310-312,arXiv:0704.3930.
[Bonn:2007su]
Is it possible to observe a suppressing of $\beta$-decay caused by an atomic substance - plasma transition ?,
B. V. Vasiliev,
arXiv:nucl-ex/0604015, 2006. [Vasiliev:2006ec]
A Comment on the Measurement of Neutrino Masses in Beta-Decay Experiments,
S. M. Bilenky, M. D. Mateev, S. T. Petcov,
Phys. Lett. B639 (2006) 312-317,arXiv:hep-ph/0603178.
[Bilenky:2006zd]
Non-Oscillation Probes of the Neutrino Mass Hierarchy and Vanishing $U_{e3}$,
Andre de Gouvea, James Jenkins,
arXiv:hep-ph/0507021, 2005. [deGouvea:2005hj]
Possible new interactions of neutrino and the KATRIN experiment,
A.Yu. Ignatiev, B.H.J. McKellar,
Phys. Lett. B633 (2006) 89,arXiv:hep-ph/0506246.
[Ignatiev:2005nu]
The Absolute Neutrino Mass Scale, Neutrino Mass Spectrum, Majorana CP-Violation and Neutrinoless Double-Beta Decay,
S. Pascoli, S. T. Petcov, T. Schwetz,
Nucl. Phys. B734 (2006) 24,arXiv:hep-ph/0505226.
[Pascoli:2005zb]
Fine structure of beta decay endpoint spectrum,
Samina S. Masood, Salah Nasri, Joseph Schechter,
Int. J. Mod. Phys. A21 (2006) 517-532,arXiv:hep-ph/0505183.
[Masood:2005aj]
Daemons, the "Troitsk anomaly" in tritium beta spectrum, and the KATRIN experiment,
E.M.Drobyshevski,
arXiv:hep-ph/0502056, 2005. [Drobyshevski:2005ej]
Observables sensitive to absolute neutrino masses: Constraints and correlations from world neutrino data,
G. L. Fogli et al.,
Phys. Rev. D70 (2004) 113003,arXiv:hep-ph/0408045.
[Fogli:2004as]
Radiative tritium beta-decay and the neutrino mass,
S. Gardner, V. Bernard, U.-G. Meisner,
Phys. Lett. B598 (2004) 188,arXiv:hep-ph/0407077.
[Gardner:2004ib]
Effect of energy scale imperfections on results of neutrino mass measurements from beta-decay,
J. Kaspar, M. Rysavy, A. Spalek, O. Dragoun,
Nucl. Instrum. Meth. A527 (2004) 423-431. [Kaspar:2004zg]
No Hope to Kinematically Detect the Effective Masses of Muon and Tau Neutrinos,
Zhi-zhong Xing,
High Energy Phys. Nucl. Phys. 27 (2003) 841,arXiv:hep-ph/0303178.
[Xing:2003tp]
Possible improvements on the mass of nu/tau neutrino using leptonic D/s+- decays,
S. Pakvasa, K. Zuber,
Phys. Lett. B566 (2003) 207,arXiv:hep-ph/0212051.
[Pakvasa:2002qq]
On the Effective Mass of the Electron Neutrino in Beta Decay,
Y. Farzan, A. Yu. Smirnov,
Phys. Lett. B557 (2003) 224,arXiv:hep-ph/0211341.
[Farzan:2002zq]
The SNO Solar Neutrino Data, Neutrinoless Double-Beta Decay and Neutrino Mass Spectrum,
S. Pascoli, S. T. Petcov,
Phys. Lett. B544 (2004) 239-250,arXiv:hep-ph/0205022.
[Pascoli:2003ke]
Neutrino mass spectrum and future beta decay experiments,
Y. Farzan, O. L. G. Peres, A. Yu. Smirnov,
Nucl. Phys. B612 (2001) 59-97,arXiv:hep-ph/0105105.
[Farzan:2001cj]
Majorana neutrinos, neutrino mass spectrum, CP-violation and neutrinoless double beta-decay. II: Mixing of four neutrinos,
Samoil M. Bilenky, S. Pascoli, S. T. Petcov,
Phys. Rev. D64 (2001) 113003,arXiv:hep-ph/0104218.
[Bilenky:2001xq]
Majorana neutrinos, neutrino mass spectrum, CP-violation and neutrinoless double beta-decay. I: The three-neutrino mixing case,
Samoil M. Bilenky, S. Pascoli, S. T. Petcov,
Phys. Rev. D64 (2001) 053010,arXiv:hep-ph/0102265.
[Bilenky:2001rz]
Measuring the neutrino mass using intense photon and neutrino beams,
Duane A. Dicus, Wayne W. Repko, Roberto Vega,
Phys. Rev. D62 (2000) 093027,arXiv:hep-ph/0006264.
[Dicus:2000uw]
Tritium beta decay, neutrino mass matrices and interactions beyond the standard model,
G. J. Stephenson, Jr., J. Terrance Goldman, B. H. J. McKellar,
Phys. Rev. D62 (2000) 093013,arXiv:hep-ph/0006095.
[Stephenson:2000mw]
Neutrino mass spectrum and neutrinoless double beta decay,
H. V. Klapdor-Kleingrothaus, H. Pas, A. Y. Smirnov,
Phys. Rev. D63 (2001) 073005,arXiv:hep-ph/0003219.
[Klapdor-Kleingrothaus:2000tjb]
Improved Molecular Final-State Distribution of $HeT+$ for the $\beta$-Decay Process of $T2$,
Alejandro Saenz, Svante Jonsell, Piotr Froelich,
Phys. Rev. Lett. 84 (2000) 242-245. [PhysRevLett.84.242]
Improved Molecular Final-State Distribution of $\text{HeT}^{+}$ for the $\beta$-Decay Process of $\text{T}_{2}$,
Alejandro Saenz, Svante Jonsell, Piotr Froelich,
Phys. Rev. Lett. 84 (2000) 242. [Saenz:2000dul]
A possible solution to the tritium endpoint problem,
Jr. Stephenson, G. J., T. Goldman,
Phys. Lett. B440 (1998) 89-93,arXiv:nucl-th/9807057.
[Stephenson:1998cx]
Limits on the Neutrino Mass and Mixing Angle from Pion and Lepton Decays,
A. Bottino, N. Fornengo, C. W. Kim, G. Mignola,
Phys. Rev. D53 (1996) 6361-6373,arXiv:hep-ph/9505394.
[Bottino:1995zz]
An Experiment to search for a massive admixed neutrino in nuclear beta decay by complete kinematic reconstruction of the final state,
Guido Finocchiaro, Robert E. Shrock,
Phys. Rev. D46 (1992) 888-891. [Finocchiaro:1992hy]
Single Electron Ejection in Electron Capture as a Tool to Measure the Electron Neutrino Mass,
A. De Rujula, Maurizio Lusignoli,
Nucl. Phys. B219 (1983) 277. [DeRujula:1982bq]
Calorimetric Measurements of $^{163}$Ho Decay as Tools to Determine the Electron Neutrino Mass,
A. De Rujula, Maurizio Lusignoli,
Phys. Lett. B118 (1982) 429. [DeRujula:1982qt]
General Theory of Weak Leptonic and Semileptonic Decays. 1. Leptonic Pseudoscalar Meson Decays, with Associated Tests For, and Bounds on, Neutrino Masses and Lepton Mixing,
Robert E. Shrock,
Phys. Rev. D24 (1981) 1232. [Shrock:1980ct]
The phenomenology of neutrino oscillations,
I. Yu. Kobzarev, B. V. Martemyanov, L. B. Okun, M. G. Shchepkin,
Sov. J. Nucl. Phys. 32 (1980) 823. [Kobzarev:1980nk]
Possible existence of a neutrino with mass and partial conservation of muon charge,
M. Nakagawa, H. Okonogi, S. Sakata, A. Toyoda,
Prog. Theor. Phys. 30 (1963) 727-729. [Nakagawa:1963uw]
On the Fermi Theory of Beta Radioactivity. II. The Forbidden Spectra,
E. J. Konopinski, G. E. Uhlenbeck,
Phys. Rev. 60 (1941) 308-320.http://prola.aps.org/pdf/PR/v60/i4/p308_1.
[Konopinski:1941]
On the Fermi Theory of Beta Radioactivity,
E. J. Konopinski, G. E. Uhlenbeck,
Phys. Rev. 48 (1935) 7-12.http://prola.aps.org/pdf/PR/v48/i1/p7_1.
[Konopinski:1935]
Statistical criteria for possible indications of new physics in tritium $\beta$-decay spectrum,
Aleksei Lokhov, Fyodor Tkachov,
arXiv:1411.6245, 2014.PANIC 2014 (Hamburg, Germany, 25-29 August 2014). [Lokhov:2014mga]
Mildly mixed coupled models vs. WMAP7 data,
Giuseppe La Vacca, Silvio A. Bonometto,
Nucl. Phys. Proc. Suppl. 217 (2011) 68-71,arXiv:1101.2155.
NOW2010, Conca Specchiulla, Italy, September 4-11, 2010. [LaVacca:2011dc]
Beyond the Standard Model interactions in beta-decay of tritium,
Rastislav Dvornicky, Fedor Simkovic, Amand Faessler,
Prog. Part. Nucl. Phys. 64 (2010) 303-305.International Workshop on Nuclear Physics, 31st Course, Erice, Italy, September 16-24, 2009. [Dvornicky:2010zz]
What we (would like to) know about the neutrino mass,
G. L. Fogli, E. Lisi, A. Marrone, A. Palazzo, A. M. Rotunno,
arXiv:0809.2936, 2008.NO-VE 2008, IV International Workshop on 'Neutrino Oscillations in Venice' (Venice, Italy, April 15-18, 2008). [Fogli:2008cx]
Beta decay of 115-In to the first excited level of 115-Sn: Potential outcome for neutrino mass,
C.M.Cattadori et al.,
Phys. Atom. Nucl. 70 (2007) 127-132,arXiv:nucl-ex/0509020.
NANP'05. [Cattadori:2005by]
Non-oscillation searches of neutrino mass in the age of oscillations,
Francesco Vissani,
Nucl. Phys. Proc. Suppl. 100 (2001) 273-275,arXiv:hep-ph/0012018.
Europhysics Neutrino Oscillation Workshop (NOW 2000), Conca Specchiulla, Otranto, Lecce, Ita, 9-16 Sep 2000. [Vissani:2000ci]
Determination of the $\nu_e$ Mass From Experiments on Electron Capture Beta Decay,
B. Jonson et al.,
Nucl. Phys. A396 (1983) 479.Nuclear Structure. Proceedings, International Conference (9th EPS Nuclear Physics Divisional Conference), Amsterdam, Netherlands, August 30 - September 3, 1982. [Jonson:1982gr]
First steps towards the measurement of neutrino masses in electron capture,
A. De Rujula,
Prog.Phys. 6 (1982) 269-288.Third Workshop on Grand Unification Chapel Hill, North Carolina, April 15-17, 1982. [DeRujula:1982xkc]
A short blanket for cosmology: the CMB lensing anomaly behind the preference for a negative neutrino mass,
Andrea Cozzumbo, Mattia Atzori Corona, Riccardo Murgia, Maria Archidiacono, Matteo Cadeddu,
arXiv:2511.01967, 2025. [Cozzumbo:2025ewt]
Constraints on neutrino mass and dark energy agnostic to the sound horizon,
Ravi Kumar Sharma, Julien Lesgourgues,
arXiv:2510.15835, 2025. [Sharma:2025iux]
Cosmological Constraints on Neutrino Masses in a Second-Order CPL Dark Energy Model,
Shubham Barua, Shantanu Desai,
arXiv:2508.16238, 2025. [Barua:2025adv]
From Theory to Forecast: Neutrino Mass Effects on Mode-Coupling Kernels and Their Observational Implications,
Farshad Kamalinejad, Zachary Slepian,
arXiv:2508.06759, 2025. [Kamalinejad:2025ipe]
Cosmological Preference for a Positive Neutrino Mass at 2.7$\sigma$: A Joint Analysis of DESI DR2, DESY5, and DESY1 Data,
Guo-Hong Du, Tian-Nuo Li, Peng-Ju Wu, Jing-Fei Zhang, Xin Zhang,
arXiv:2507.16589, 2025. [Du:2025xes]
J-PAS and PFS surveys in the era of dark energy and neutrino mass measurements,
Fuxing Qin, Yuting Wang, Gong-Bo Zhao,
arXiv:2505.04275, 2025. [Qin:2025nkk]
Turning a negative neutrino mass into a positive optical depth,
Tanisha Jhaveri, Tanvi Karwal, Wayne Hu,
Phys.Rev.D 112 (2025) 043541,arXiv:2504.21813.
[Jhaveri:2025neg]
Weighing neutrinos with 21cm Intensity Mapping at the SKAO,
Gabriele Autieri, Maria Berti, Marta Spinelli, Balakrishna Sandeep Haridasu, Matteo Viel,
arXiv:2504.18625, 2025. [Autieri:2025sxz]
Cosmological implications of DESI DR2 BAO measurements in light of the latest ACT DR6 CMB data,
C. Garcia-Quintero et al.(DESI),
Phys.Rev.D 112 (2025) 083529,arXiv:2504.18464.
[DESI:2025gwf]
Cosmology in Extended Parameter Space with DESI DR2 BAO: A 2$\sigma$+ Detection of Non-zero Neutrino Masses with an Update on Dynamical Dark Energy and Lensing Anomaly,
Shouvik Roy Choudhury,
Astrophys.J.Lett. 986 () L31,arXiv:2504.15340.
[RoyChoudhury:2025dhe]
Impacts of Dynamical Dark Energy on the Neutrino Mass Constraints,
Gabriel Rodrigues, Jamerson Rodrigues, Jailson Alcaniz,
JCAP 08 (2025) 016,arXiv:2503.00126.
[Rodrigues:2025hso]
Neutrino Mass Constraints from kSZ Tomography,
Avery J. Tishue, Selim C. Hotinli, Peter Adshead, Ely D. Kovetz, Mathew S. Madhavacheril,
Phys.Rev.D 111 (2025) 123556,arXiv:2502.05260.
[Tishue:2025zdw]
Neutrino masses from large-scale structures: future sensitivity and theory dependence,
Davide Racco, Pierre Zhang, Henry Zheng,
Phys.Dark Univ. 47 (2025) 101803,arXiv:2412.04959.
[Racco:2024lbu]
Towards a multi-tracer neutrino mass measurement with line-intensity mapping,
Gali Shmueli, Sarah Libanore, Ely D. Kovetz,
Phys.Rev.D 111 (2025) 063512,arXiv:2412.04071.
[Shmueli:2024npx]
Revisiting the impact of neutrino mass hierarchies on neutrino mass constraints in light of recent DESI data,
Laura Herold, Marc Kamionkowski,
Phys.Rev.D 111 (2025) 083518,arXiv:2412.03546.
[Herold:2024nvk]
Origin of cosmological neutrino mass bounds: background $\textit{versus}$ perturbations,
Toni Bertolez-Martinez, Ivan Esteban, Rasmi Hajjar, Olga Mena, Jordi Salvado,
JCAP 06 (2025) 058,arXiv:2411.14524.
[Bertolez-Martinez:2024wez]
Cosmological limits on the neutrino mass sum for beyond-$\Lambda$CDM models,
Helen Shao, Jahmour J. Givans, Jo Dunkley, Mathew Madhavacheril, Frank Qu, Gerrit Farren, Blake Sherwin,
Phys.Rev.D 111 (2025) 083535,arXiv:2409.02295.
[Shao:2024mag]
Neutrino cosmology after DESI: tightest mass upper limits, preference for the normal ordering, and tension with terrestrial observations,
Jun-Qian Jiang, William Giare, Stefano Gariazzo, Maria Giovanna Dainotti, Eleonora Di Valentino, Olga Mena, Davide Pedrotti, Simony Santos da Costa, Sunny Vagnozzi,
JCAP 01 (2025) 153,arXiv:2407.18047.
[Jiang:2024viw]
Impacts of dark energy on weighing neutrinos after DESI BAO,
Guo-Hong Du, Peng-Ju Wu, Tian-Nuo Li, Xin Zhang,
Eur.Phys.J.C 85 (2025) 392,arXiv:2407.15640.
[Du:2024pai]
Living at the Edge: A Critical Look at the Cosmological Neutrino Mass Bound,
Daniel Naredo-Tuero, Miguel Escudero, Enrique Fernandez-Martinez, Xabier Marcano, Vivian Poulin,
Phys.Rev.D 110 (2024) 123537,arXiv:2407.13831.
[Naredo-Tuero:2024sgf]
Negative neutrino masses as a mirage of dark energy,
Willem Elbers, Carlos S. Frenk, Adrian Jenkins, Baojiu Li, Silvia Pascoli,
Phys.Rev.D 111 (2025) 063534,arXiv:2407.10965.
[Elbers:2024sha]
Unveiling Neutrino Masses: Insights from Robust (e)BOSS Data Analysis and Prospects for DESI and Beyond,
Hernan E. Noriega, Alejandro Aviles,
Phys.Rev.D 111 (2025) L061307,arXiv:2407.06117.
[Noriega:2024lzo]
Neutrino mass bounds from DESI 2024 are relaxed by Planck PR4 and cosmological supernovae,
Itamar J. Allali, Alessio Notari,
JCAP 12 (2024) 020,arXiv:2406.14554.
[Allali:2024aiv]
Toward the measurement of neutrino masses: Performance of cosmic magnification with submillimeter galaxies,
M. M. Cueli, S. R. Cabo, J. Gonzalez-Nuevo, L. Bonavera, A. Lapi, M. Viel, D. Crespo, J. M. Casas, R. Fernandez-Fernandez,
Astron.Astrophys. 687 (2024) A300,arXiv:2406.03236.
[Cueli:2024pms]
Updating neutrino mass constraints with Background measurements,
Deng Wang, Olga Mena, Eleonora Di Valentino, Stefano Gariazzo,
Phys.Rev.D 110 (2024) 103536,arXiv:2405.03368.
[Wang:2024hen]
Weighing neutrinos at the damping tail,
Eleonora Di Valentino, Stefano Gariazzo, William Giare, Olga Mena,
Phys.Rev.D 108 (2023) 083509,arXiv:2305.12989.
[DiValentino:2023fei]
Quantifying the tension between cosmological and terrestrial constraints on neutrino masses,
Stefano Gariazzo, Olga Mena, Thomas Schwetz,
Phys.Dark Univ. 40 (2023) 101226,arXiv:2302.14159.
[Gariazzo:2023joe]
Searching for a Dark Dimension Right-handed Neutrino in KATRIN,
Ignatios Antoniadis, Auttakit Chatrabhuti, Hiroshi Isono,
arXiv:2509.05233, 2025. [Antoniadis:2025rck]
Testing the dark origin of neutrino masses with oscillation experiments,
Andrew Cheek, Luca Visinelli, Hong-Yi Zhang,
Phys. Rev. Lett. June (2025),arXiv:2503.08439.
[Cheek:2025kks]
Prospects for weighing neutrinos in interacting dark energy models using joint observations of gravitational waves and $\gamma$-ray bursts,
Lu Feng, Tao Han, Jing-Fei Zhang, Xin Zhang,
Chin.Phys.C 48 (2024) 095104,arXiv:2404.19530.
[Feng:2024lzh]
Implications of Recent KATRIN Results for Lower-Limits on Neutrino Masses,
Ephraim Fischbach, Dennis E. Krause, Quan Le Thien, Carol Scarlett,
arXiv:2208.03790, 2022. [Fischbach:2022pxx]
Large Extra Dimensions and neutrino experiments,
D. V. Forero, C. Giunti, C. A. Ternes, O. Tyagi,
Phys.Rev.D 106 (2022) 035027,arXiv:2207.02790.
[Forero:2022skg]
Sterile neutrinos and right-handed currents in KATRIN,
James Barry, Julian Heeck, Werner Rodejohann,
JHEP 1407 (2014) 081,arXiv:1404.5955.
[Barry:2014ika]
Kinematical Test of Large Extra Dimension in Beta Decay Experiments,
Victor S. Basto-Gonzalez, Arman Esmaili, Orlando L. G. Peres,
Phys. Lett. B718 (2013) 1020-1023,arXiv:1205.6212.
[Basto-Gonzalez:2012nel]
Search of keV Sterile Neutrino Warm Dark Matter in the Rhenium and Tritium beta decays,
H.J. de Vega, O. Moreno, E. Moya de Guerra, M. Ramon Medrano, N. Sanchez,
Nucl. Phys. B866 (2013) 177-195,arXiv:1109.3452.
[deVega:2011xh]
Determination of the unknown absolute neutrino mass and MNS parameters at the LHC in the Higgs triplet model,
Hiroyuki Nishiura, Takeshi Fukuyama,
arXiv:0909.0595, 2009. [Nishiura:2009yd]
Measuring the lower bound of neutrino mass at LHC in Higgs Triplet Model,
Hiroyuki Nishiura, Takeshi Fukuyama,
Phys. Rev. D80 (2009) 017302,arXiv:0905.3963.
[Nishiura:2009jn]
Coupling between cold dark matter and dark energy from neutrino mass experiments,
J. R. Kristiansen, G. La Vacca, L. P. L. Colombo, S. A. Bonometto,
New Astron. 15 (2010) 609-613,arXiv:0902.2737.
[Kristiansen:2009yx]
Dark matter implications of the KATRIN neutrino mass experiment,
Thede de Boer, Michael Klasen, Caroline Rodenbeck, Sybrand Zeinstra,
arXiv:2104.10969, 2021.2021 EW session of the 55th Rencontres de Moriond. [DeBoer:2021lcv]
First results of the KATRIN neutrino mass experiment and their consistency with an exotic $3+3$ model,
Robert Ehrlich,
LHEP 2 (2019),arXiv:1910.06158.
[Ehrlich:2019ywc]
Comment on 'An improved upper limit on the neutrino mass from a direct kinematic method by KATRIN',
Alan Chodos,
arXiv:1909.08207, 2019. [Chodos:2019wtw]
Neutrino mass**2 inferred from the cosmic ray spectrum and tritium beta decay,
Robert Ehrlich,
Phys. Lett. B493 (2000) 229-232,arXiv:hep-ph/0009040.
[Ehrlich:2000sj]
Implications for the cosmic ray spectrum of a negative electron neutrino (mass)**2,
Robert Ehrlich,
Phys. Rev. D60 (1999) 17302,arXiv:astro-ph/9812336.
[Ehrlich:1999hz]
Are muon neutrinos faster than light particles?: possible consequences for neutrino oscillations,
E. Giannetto, G. D. Maccarrone, R. Mignani, E. Recami,
Phys. Lett. B178 (1986) 115. [Giannetto:1986rm]
Search for Dark Matter Scattering from Optically Levitated Nanoparticles,
Yu-Han Tseng, T. W. Penny, Benjamin Siegel, Jiaxiang Wang, David C. Moore,
arXiv:2508.00815, 2025. [Tseng:2025rlo]
Detector Designs for Frontier Measurements in Neutrino and Collider Physics in the 21st Century,
Wonyong Chung,
arXiv:2505.10697, 2025. [Chung:2025ggh]
Neutrino mass and nature through its mediation in atomic clock interference,
Jose Bernabeu, Dylan O. Sabulsky, Federico Sanchez, Alejandro Segarra,
AVS Quantum Sci. 6 (2023) 014410,arXiv:2306.00767.
[Bernabeu:2023ulb]
SYNCA: A Synthetic Cyclotron Antenna for the Project 8 Collaboration,
A. Ashtari Esfahani et al.,
JINST 18 (2023) P01034,arXiv:2212.08026.
[Project8:2022kxg]
Searches for massive neutrinos with mechanical quantum sensors,
Daniel Carney, Kyle G. Leach, David C. Moore,
PRX Quantum 4 (2023) 010315,arXiv:2207.05883.
[Carney:2022pku]
Heisenberg's uncertainty principle in the PTOLEMY project: a theory update,
A. Apponi et al.(PTOLEMY),
Phys.Rev.D 106 (2022) 053002,arXiv:2203.11228.
[PTOLEMY:2022ldz]
Progress in the development of TES microcalorimeter detectors suitable for neutrino mass measurement,
A. Giachero et al.,
IEEE Trans.Appl.Supercond. 31 (2021) 2100205,arXiv:2101.02578.
[Giachero:2021tli]
Characterization of a Silicon Drift Detector for High-Resolution Electron Spectroscopy,
Matteo Gugiatti et al.,
Nucl.Instrum.Meth. A979 (2020) 164474,arXiv:2006.13851.
[Gugiatti:2020wad]
Hunting keV sterile neutrinos with KATRIN: building the first TRISTAN module,
Thibaut Houdy et al.,
J.Phys.Conf.Ser. 1468 (2020) 012177,arXiv:2004.07693.
[Houdy:2020vhw]
Macro-coherent radiative emission of neutrino pair between parity-even atomic states,
M. Tashiro, B. P. Das, J. Ekman, P. Jonsson, N. Sasao, M. Yoshimura,
Eur.Phys.J. C79 (2019) 907,arXiv:1911.01639.
[Tashiro:2019ghs]
Neutrino mass spectroscopy using Er$^{3+}$ ions placed at inversion center of host crystals,
H. Hara, N. Sasao, A. Yoshimi, M. Yoshimura,
arXiv:1910.14318, 2019. [Hara:2019wos]
Electron Radiated Power in Cyclotron Radiation Emission Spectroscopy Experiments,
A. Ashtari Esfahani et al.,
Phys.Rev. C99 (2019) 055501,arXiv:1901.02844.
[AshtariEsfahani:2019yva]
A novel detector system for KATRIN to search for keV-scale sterile neutrinos,
Susanne Mertens et al.,
J.Phys. G46 (2019) 065203,arXiv:1810.06711.
[KATRIN:2018oow]
A Design for an Electromagnetic Filter for Precision Energy Measurements at the Tritium Endpoint,
M.G. Betti et al.,
Prog.Part.Nucl.Phys. 106 (2019) 120-131,arXiv:1810.06703.
[Betti:2018bjv]
Determining the neutrino mass with Cyclotron Radiation Emission Spectroscopy - Project 8,
Ali Ashtari Esfahani et al.,
J.Phys. G44 (2017) 054004,arXiv:1703.02037.
[Project8:2017nal]
Measuring the electron neutrino mass with improved sensitivity: the HOLMES experiment,
A.Giachero et al.,
JINST 12 (2017) C02046,arXiv:1612.03947.
[HOLMES:2016spk]
Development of microwave-multiplexed superconductive detectors for the HOLMES experiment,
A. Giachero et al.,
J. Phys. Conf. Ser. 718 (2016) 062020,arXiv:1601.03970.
[Giachero:2016ehv]
Development of microwave superconducting microresonators for neutrino mass measurement in the HOLMES framework,
A. Giachero et al.,
J.Low.Temp.Phys. 184 (2016) 123-130,arXiv:1509.05237.
[Giachero:2015lva]
The current status of 'Troitsk nu-mass' experiment in search for sterile neutrino,
D.N. Abdurashitov et al.,
JINST 10 (2015) T10005,arXiv:1504.00544.
[Abdurashitov:2015jha]
Searches for a Sterile-Neutrino Admixture in Detecting Tritium Decays in a Proportional Counter: New Possibilities,
D.N. Abdurashitov, A.I. Berlev, N.A. Likhovid, A.V. Lokhov, I.I. Tkachev et al.,
Phys.Atom.Nucl. 78 (2015) 268-280. [Abdurashitov:2014vqa]
HOLMES - The Electron Capture Decay of 163Ho to Measure the Electron Neutrino Mass with sub-eV sensitivity,
B. Alpert et al.,
Eur.Phys.J. C75 (2015) 112,arXiv:1412.5060.
[Alpert:2014lfa]
First Calorimetric Measurement of OI-line in the Electron Capture Spectrum of $^{163}$Ho,
P. C.-O. Ranitzsch et al.,
arXiv:1409.0071, 2014. [Ranitzsch:2014kma]
Single electron detection and spectroscopy via relativistic cyclotron radiation,
D.M. Asner et al.,
Phys. Rev. Lett. 114 (2015) 162501,arXiv:1408.5362.
[Project8:2014ivu]
Project 8: Determining neutrino mass from tritium beta decay using a frequency-based method,
P.J. Doe et al.(Project 8),
arXiv:1309.7093, 2013. [Project8:2013trt]
Characterization of low temperature metallic magnetic calorimeters having gold absorbers with implanted $^{163}$Ho ions,
L. Gastaldo et al.,
Nucl. Instrum. Meth. A711 (2013) 150-159,arXiv:1206.5647.
[Gastaldo:2012nv]
The Electron Capture Decay of 163-Ho to Measure the Electron Neutrino Mass with sub-eV Accuracy and Beyond,
Flavio Gatti, Massimiliano Galeazzi, Maurizio Lusignoli, Angelo Nucciotti, Stefano Ragazzi,
arXiv:1202.4763, 2012. [Gatti:2012ii]
Development of Metallic Magnetic Calorimeters for High Precision Measurements of Calorimetric 187Re and 163Ho Spectra,
P.C.-O. Ranitzsch, J.-P. Porst, S. Kempf, C. Pies, S. Schafer, D. Hengstler, A. Fleischmann, C. Enss, L. Gastaldo,
Journal of Low Temperature Physics 167 (2012) 1004-1014. [Ranitzsch-2012-163Ho]
Development of Metallic Magnetic Calorimeters for High Precision Measurements of Calorimetric $^{187}$Re and $^{163}$Ho Spectra,
P. C.-O. Ranitzsch et al.,
Journal of Low Temperature Physics 167 (2012) 1004-1014. [Ranitzsch:2012nua]
Using Cold Atoms to Measure Neutrino Mass,
M. Jerkins, J. R. Klein, J. H. Majors, M. G. Raizen,
New J. Phys. 12 (2010) 043022,arXiv:0901.3111.
[Jerkins:2009tc]
An improved limit on the muon neutrino mass from pion decay in flight,
R.M. Carey et al.(NuMass), 2002.The NuMass Proposal presented to the BNL PAC (March 2000), http://www.hep.umn.edu/numass. [NuMass-00]
KATRIN: A next generation tritium beta decay experiment with sub-eV sensitivity for the electron neutrino mass,
A. Osipowicz et al.(KATRIN),
arXiv:hep-ex/0109033, 2001. [KATRIN:2001ttj]
Going Big for Phase III of the Project 8 Neutrino Mass Experiment,
Juliana Stachurska(Project 8),
PoS TAUP2023 (2024) 229,arXiv:2311.16415.
TAUP 2023. [Stachurska:2023ufl]
Zero-deadtime processing in beta spectroscopy for measurement of the non-zero neutrino mass,
Benjamin LaRoque(Project 8),
EPJ Web Conf. 245 (2020) 01014. [LaRoque:2020odr]
Distributed Computing for the Project 8 Experiment,
Malachi Schram, Mathew Thomas, Kevin Fox, Benjamin LaRoque, Brent VanDevender, Noah Oblath, David Cowley(Project 8),
EPJ Web Conf. 245 (2020) 03030. [Schram:2020uqj]
Project 8: Towards a Direct Measurement of the Neutrino Mass with Tritium Beta Decays,
Noah Oblath(Project 8),
PoS NEUTEL2017 (2018) 026. [Oblath:2017xma]
Overview of Project 8 and Progress Towards Tritium Operation,
Walter C. Pettus(Project 8),
J. Phys. Conf. Ser. 1342 (2020) 012040,arXiv:1710.01826.
[Pettus:2017sxd]
Project 8 detector upgrades for a tritium beta decay spectrum using cyclotron radiation,
A Ashtari Esfahani et al.(Project 8),
arXiv:1703.05761, 2017.Neutrino 2016, XXVII International Conference on Neutrino Physics and Astrophysics, 4-9 July 2016, London, UK. [AshtariEsfahani:2017ogc]
Results from the Project 8 phase-1 cyclotron radiation emission spectroscopy detector,
A Ashtari Esfahani et al.(Project 8),
J.Phys.Conf.Ser. 888 (2017) 012074,arXiv:1703.05760.
Neutrino 2016, XXVII International Conference on Neutrino Physics and Astrophysics, 4-9 July 2016, London, UK. [AshtariEsfahani:2017swz]
Project 8 Phase III Design Concept,
A Ashtari Esfahani et al.(Project 8),
J.Phys.Conf.Ser. 888 (2017) 012230,arXiv:1703.05759.
Neutrino 2016, XXVII International Conference on Neutrino Physics and Astrophysics, 4-9 July 2016, London, UK. [AshtariEsfahani:2017vkm]
Project 8: Using Radio-Frequency Techniques to Measure Neutrino Mass,
N. S. Oblath(Project 8),
arXiv:1310.0397, 2013.Meeting of the APS Division of Particles and Fields. [Oblath:2013rma]
Project 8: Determining neutrino mass from tritium beta decay using a frequency-based method,
P. J. Doe et al.(Project 8),
arXiv:1309.7093, 2013.Snowmass 2013}: {Snowmass on the Mississippi. [Project8:2013trt]
The Electron Capture $^{163}$Ho Experiment ECHo: an overview,
L. Gastaldo et al.,
J.Low Temp.Phys. 176 (2014) 876-884,arXiv:1309.5214.
LTD15. [Gastaldo:2013wha]
The KATRIN Experiment: Status and Outlook,
D.S. Parno(KATRIN),
arXiv:1307.5289, 2013.Sixth Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, June 17-21, 2013. [Parno:2013yqa]
Status of the KATRIN experiment with special emphasis on source-related issues,
Michael Sturm,
arXiv:1111.4773, 2011.PIC 2011, Vancouver, August/September 2011. [Sturm:2011ms]
KATRIN: an experiment to determine the neutrino mass,
F.M. Fraenkle(KATRIN),
arXiv:1110.0087, 2011.DPF-2011 Conference, Providence, RI, August 8-13, 2011. [Fraenkle:2011uu]
Project 8: Using Radio-Frequency Techniques to Measure Neutrino Mass,
J. A. Formaggio(Project 8),
Nucl. Phys. Proc. Supl. 229-232 (2012) 371-375,arXiv:1101.6077.
[Formaggio:2011ba]
The KATRIN Neutrino Mass Experiment,
J. Wolf, for the KATRIN collaboration(KATRIN),
Nucl. Instrum. Meth. A623 (2010) 442-444,arXiv:0810.3281.
ICHEP2008. [Wolf:2008hf]
KATRIN: an experiment to measure the neutrino mass,
R. G. H. Robertson(KATRIN),
J. Phys. Conf. Ser. 120 (2008) 052028,arXiv:0712.3893.
TAUP 2007. [Robertson:2007xx]
KATRIN: Direct measurement of neutrino masses in the sub- eV region,
Lutz Bornschein et al.(KATRIN),
eConf C030626 (2003) FRAP14,arXiv:hep-ex/0309007.
XIII Physics in Collision Conference(PIC03), Zeuthen, Germany, June 2003. [Bornschein:2003xi]
NUMASS experiment (BNL-E952),
B.L. Roberts, 2002.2nd International Workshop on Nuclear and Particle Physics at 50-GeV PS, Kyoto University, Kyoto, Japan, September 27-29, 2002.http://www-nh.scphys.kyoto-u.ac.jp/NP02/transp/Roberts2.pdf.
[Roberts-Kyoto2002]
It is possible to perform a cross search between the various pages of Neutrino Unbound.
This is useful if you want to show the common elements that appear
in the listings of two (or more) different topics or experiments.