Neutrino Oscillations

Filter this page

EXPAND ALL
COMPRESS ALL

References

1 - Books

[1-1]
Introduction to the Physics of Massive and Mixed Neutrinos, Samoil Bilenky, Springer, 2018. Lecture Notes in Physics, Volume 947. https://doi.org/10.1007/978-3-319-74802-3.
[Bilenky:2018hbz]
[1-2]
Fundamentals of Neutrino Physics and Astrophysics, C. Giunti, C. W. Kim, Oxford University Press, Oxford, UK, 2007. ISBN 978-0-19-850871-7. https://global.oup.com/academic/product/fundamentals-of-neutrino-physics-and-astrophysics-9780198508717.
[Giunti:2007ry]
[1-3]
Neutrinos in Physics and Astrophysics, C. W. Kim, A. Pevsner, Harwood Academic Press, 1993. Contemporary Concepts in Physics, Vol. 8.
[CWKim-book]

2 - Reviews

[2-1]
The formalism of neutrino oscillations: an introduction, Guido Fantini, Andrea Gallo Rosso, Francesco Vissani, Vanessa Zema, Adv.Ser.Direct.High Energy Phys. 28 (2018) 37-119, arXiv:1802.05781.
[Fantini:2018itu]
[2-2]
Solar neutrinos: Oscillations or No-oscillations?, A. Yu. Smirnov, arXiv:1609.02386, 2016.
[Smirnov:2016xzf]
[2-3]
Nobel Lecture: Discovery of atmospheric neutrino oscillations, Takaaki Kajita, Rev. Mod. Phys. 88 (2016) 030501.
[Kajita:2016cak]
[2-4]
Nobel Lecture: The Sudbury Neutrino Observatory: Observation of flavor change for solar neutrinos, Arthur B. McDonald, Rev. Mod. Phys. 88 (2016) 030502.
[McDonald:2016ixn]
[2-5]
Neutrino Quantum Kinetic Equations, Cristina Volpe, Int. J. Mod. Phys. E24 (2015) 1541009, arXiv:1506.06222.
[Volpe:2015rla]
[2-6]
Field theory description of neutrino oscillations, Maxim Dvornikov, arXiv:1011.4300, 2010. In 'Neutrinos: Properties, Sources and Detection', ed by. J.P.Greene, (NOVA Science Publishers).
[Dvornikov:2010dc]
[2-7]
Neutrinos in cosmology, A. D. Dolgov, Phys. Rep. 370 (2002) 333-535, arXiv:hep-ph/0202122.
[Dolgov:2002wy]
[2-8]
Oscillations of neutrinos and mesons in quantum field theory, M. Beuthe, Phys. Rep. 375 (2003) 105-218, arXiv:hep-ph/0109119.
[Beuthe:2001rc]
[2-9]
Lepton numbers in the framework of neutrino mixing, S. M. Bilenky, C. Giunti, Int. J. Mod. Phys. A16 (2001) 3931-3949, arXiv:hep-ph/0102320.
[Bilenky:2001yh]
[2-10]
From kaons to neutrinos: Quantum mechanics of particle oscillations, M. Zralek, Acta Phys. Polon. B29 (1998) 3925, arXiv:hep-ph/9810543.
[Zralek:1998rp]
[2-11]
Lepton mixing and neutrino oscillations, S. M. Bilenky, B. Pontecorvo, Phys. Rep. 41 (1978) 225.
[Bilenky:1978nj]

3 - Reviews - Talks

[3-1]
Neutrino oscillations unlocked, Alexei Y. Smirnov, PoS NOW2022 (2023) 001, arXiv:2212.10242. Neutrino Oscillation Workshop - NOW 2022, 4 - 11 September, 2022, Ostuni Italy.
[Smirnov:2022aab]
[3-2]
Neutrino oscillations: brief history and present status, S.M. Bilenky, arXiv:1408.2864, 2014.
[Bilenky:2014eza]
[3-3]
The Physics of Neutrinos, Renata Zukanovich Funchal, Benoit Schmauch, Gaelle Giesen, arXiv:1308.1029, 2013. Course given at Institut de Physique Theorique of CEA/Saclay in January/February 2013.
[ZukanovichFunchal:2013tdb]
[3-4]
Neutrino Oscillation Physics, Boris Kayser, arXiv:1206.4325, 2012. ISAPP 2011 and ESHEP 2011.
[Kayser:2012ce]
[3-5]
On the theory of neutrino mixing and oscillations, S. M. Bilenky, Phys. Part. Nucl. 42 (2011) 515-527, arXiv:1012.4966. IVth International Pontecorvo Neutrino Physics School (26.09-06.10, 2010, Alushta, Crimea, Ukraine.
[Bilenky:2010gb]
[3-6]
Neutrino Flavor States and the Quantum Theory of Neutrino Oscillations, C. Giunti, 2010. IPN, Orsay, 25 November 2010. http://personalpages.to.infn.it/~giunti/slides/2010/giunti-101125-ipn.pdf.
[giunti-2010-ipn]
[3-7]
Neutrino Oscillation Phenomenology, Boris Kayser, arXiv:0804.1121, 2008.
[Kayser:2008ev]
[3-8]
Neutrino Flavor States and the Quantum Theory of Neutrino Oscillations, C. Giunti, 2008. Tubingen, 22 April 2008. http://personalpages.to.infn.it/~giunti/slides/2008/giunti-2008-tubingen-tno.pdf.
[giunti-2008-tubingen-tno]
[3-9]
Neutrino Flavor States and the Quantum Theory of Neutrino Oscillations, C. Giunti, 2007. Padova, 23 May 2007. http://personalpages.to.infn.it/~giunti/slides/2007/giunti-2007-padova.pdf.
[Giunti-Padova-07-05-23]
[3-10]
Neutrino Flavor States and the Quantum Theory of Neutrino Oscillations, C. Giunti, 2007. XI Mexican Workshop on Particles and Fields, 7-12 November 2007, Tuxtla Gutierrez, Chiapas, Mexico. http://personalpages.to.infn.it/~giunti/slides/2007/giunti-2007-mex-osc.pdf.
[Giunti-mex-osc-07-11-12]
[3-11]
Neutrino oscillations, a historical overview and its projection, Peter Minkowski, arXiv:hep-ph/0505049, 2005. XI International Workshop "Neutrino Telescopes in Venice", 22.-25. February 2005, Venice, Italy.
[Minkowski:2005fp]
[3-12]
Theory of Neutrino Oscillations, C. Giunti, 2004. Bern, 3 February 2004. http://personalpages.to.infn.it/~giunti/slides/2004/giunti-2004-bern.pdf.
[Giunti-Bern-04-02-03]
[3-13]
Neutrino Physics - Theory, W. Grimus, Lect. Notes Phys. 629 (2004) 169, arXiv:hep-ph/0307149. 41 Internationale Universitatswochen fur Theoretische Physik, Flavour Physics, Schladming, Styria, Austria, February 22-28, 2003.
[Grimus:2003es]

4 - Reviews - Alternative Models

[4-1]
A neutrino's wobble?, P.M. Walker, Nature 453 (2008) 864-865. http://www.nature.com/nature/journal/v453/n7197/full/453864a.html.
[Walker-Nature-453-864-2008]
[4-2]
Aspects of particle mixing in quantum field theory, Antonio Capolupo, arXiv:hep-th/0408228, 2004.
[Capolupo:2004av]

5 - Experiment

[5-1]
Direct Experimental Constraints on the Spatial Extent of a Neutrino Wavepacket, Joseph Smolsky et al., arXiv:2404.03102, 2024.
[Smolsky:2024uby]
[5-2]
Study of the wave packet treatment of neutrino oscillation at Daya Bay, F.P. An et al. (Daya Bay), Eur.Phys.J. C77 (2017) 606, arXiv:1608.01661.
[DayaBay:2016ouy]
[5-3]
Evidence for an oscillatory signature in atmospheric neutrino oscillation, Y. Ashie et al. (Super-Kamiokande), Phys. Rev. Lett. 93 (2004) 101801, arXiv:hep-ex/0404034.
From the abstract: Muon neutrino disappearance probability as a function of neutrino flight length $L$ over neutrino energy $E$ was studied.
A dip in the $L/E$ distribution was observed in the data, as predicted from the sinusoidal flavor transition probability of neutrino oscillation.
The observed $L/E$ distribution constrained $\nu_\mu \leftrightarrow \nu_\tau$ neutrino oscillation parameters; $1.9 \times 10^{-3} < \Delta m^2 < 3.0 \times 10^{-3} \, \mathrm{eV}^2$ and $\sin^22\theta > 0.90$ at 90% confidence level.

[Super-Kamiokande:2004orf]

6 - Experiment - Non-Standard Interactions

[6-1]
Search for CP-violating Neutrino Non-Standard Interactions with the NOvA Experiment, M. A. Acero et al. (NOvA), arXiv:2403.07266, 2024.
[NOvA:2024lti]
[6-2]
Testing Non-Standard Interactions Between Solar Neutrinos and Quarks with Super-Kamiokande, P. Weatherly et al. (Super-Kamiokande), arXiv:2203.11772, 2022.
[Super-Kamiokande:2022lyl]
[6-3]
Strong constraints on neutrino nonstandard interactions from TeV-scale $\nu_\mu$ disappearance at IceCube, R. Abbasi et al. (IceCube), Phys.Rev.Lett. 129 (2022) 011804, arXiv:2201.03566.
[IceCube:2022ubv]
[6-4]
Search for non-standard neutrino interactions with 10 years of ANTARES data, A. Albert et al. (ANTARES), JHEP 07 (2022) 048, arXiv:2112.14517.
[ANTARES:2021crm]
[6-5]
All-flavor constraints on nonstandard neutrino interactions and generalized matter potential with three years of IceCube DeepCore data, R. Abbasi et al. (IceCube), Phys.Rev.D 104 (2021) 072006, arXiv:2106.07755.
[IceCubeCollaboration:2021euf]
[6-6]
Search for Nonstandard Neutrino Interactions with IceCube DeepCore, M. G. Aartsen et al. (IceCube), Phys.Rev. D97 (2018) 072009, arXiv:1709.07079.
[IceCube:2017zcu]
[6-7]
A search for flavor-changing non-standard neutrino interactions using $\nu_{e}$ appearance in MINOS, P. Adamson et al. (MINOS), Phys. Rev. D95 (2017) 012005, arXiv:1605.06169.
[MINOS:2016sbv]
[6-8]
A search for flavor-changing non-standard neutrino interactions by MINOS, P. Adamson et al. (MINOS), Phys. Rev. D88 (2013) 072011, arXiv:1303.5314.
[MINOS:2013hmj]
[6-9]
Study of Non-Standard Neutrino Interactions with Atmospheric Neutrino Data in Super-Kamiokande I and II, G. Mitsuka et al. (Kamiokande), Phys. Rev. D84 (2011) 113008, arXiv:1109.1889.
[Super-Kamiokande:2011dam]
[6-10]
Constraints on Non-Standard Neutrino Interactions and Unparticle Physics with Neutrino-Electron Scattering at the Kuo-Sheng Nuclear Power Reactor, M. Deniz er al. (TEXONO), Phys. Rev. D82 (2010) 033004, arXiv:1006.1947.
[TEXONO:2010tnr]

7 - Experiment - Non-Standard Interactions - Talks

[7-1]
Search for Non-standard Interactions with the MINOS Experiment, Zeynep Isvan (MINOS), arXiv:1110.1900, 2011. DPF 2011.
[Isvan:2011fa]

8 - Experiment - GSI Anomaly

[8-1]
Heavy-Ion Storage Rings and Their Use in Precision Experiments with Highly Charged Ions, Markus Steck, Yuri A. Litvinov, Prog. Part. Nucl. Phys. 115 (2020) 103811, arXiv:2003.05201.
[Steck:2020hsx]
[8-2]
New test of modulated electron capture decay of hydrogen-like $^{142}$Pm ions: precision measurement of purely exponential decay, F. C. Ozturk et al. (FRS-ESR, ILIMA, SPARC, TBWD), Phys. Lett. B 797 (2019) 134800, arXiv:1907.06920.
[FRS-ESR:2019pha]
[8-3]
High-resolution measurement of the time-modulated orbital electron capture and of the $\beta^+$ decay of hydrogen-like $^{142}$Pm$^{60+}$ ions, P. Kienle et al. (Two-Body-Weak-Decays), Phys.Lett. B726 (2013) 638-645, arXiv:1309.7294.
[Two-Body-Weak-Decays:2013ygn]
[8-4]
Could the GSI Oscillations be Observed in a Standard Electron Capture Decay Experiment?, Thomas Faestermann et al., Phys. Lett. B672 (2009) 227-229, arXiv:0807.3297.
[Faestermann:2008jt]
[8-5]
Search for Oscillation of the Electron-Capture Decay Probability of $^{142}$Pm, P. A. Vetter et al., Phys. Lett. B670 (2008) 196-199, arXiv:0807.0649.
From the abstract: We observed no oscillatory modulation at the proposed frequency at a level 31 times smaller than that reported by Litvinov et al. (Phys. Lett. B 664 (2008) 162; arXiv:0801.2079 [nucl-ex]).
[Vetter:2008ne]

9 - Experiment - GSI Anomaly - Talks

[9-1]
Lifetime measurements of nuclei in few-electron ions, Thomas Faestermann, Phys. Scripta T166 (2015) 014003, arXiv:1512.00431. STORI'14.
[Faestermann:2015mdp]
[9-2]
Time-modulation of entangled two-body weak decays with massive neutrinos, P. Kienle, Prog. Part. Nucl. Phys. 64 (2010) 439-444. 10th International Spring Seminar On Nuclear Physics: New Quests In Nuclear Structure, 21-25 May 2010, Vietri sul Mare, Salerno, Italy [J. Phys. Conf. Ser.267,012056(2011)].
[Kienle:2010zz]
[9-3]
Time-modulation of orbital electron capture decays by mixing of massive neutrinos, P. Kienle, Nucl. Phys. A827 (2009) 510C-517C. 18th International Conference on Particles and Nuclei (PANIC 08), 9-14 Nov 2008, Eilat, Israel.
[Kienle:2009zz]
[9-4]
Two-body weak decay studies in an ion storage ring, Paul Kienle, J. Phys. Conf. Ser. 171 (2009) 012065. DISCRETE'08: Symposium on Prospects in the Physics of Discrete Symmetries, 11-16 Dec 2008, Valencia, Spain.
[Kienle:2009zza]
[9-5]
Observation of non-exponential Decays of Hydrogen-like 140Pr and 124Pm Ions, F. Bosch, 2008. PMN08, Symposion on 'Physics of Massive Neutrinos', 20-22 May 2008, Milos Island, Greece. http://www.uni-tuebingen.de/ilias-dbd/PMN08/src/Melos-Talks/Bosch-Milos-Symposion.ppt.
[Bosch-2008-PMN]
[9-6]
Observation of Non-Exponential Orbital Electron Capture Decays of Hydrogen-Like $^{140}$Pr and $^{142}$Pm Ions and possible implications for the neutrino masses, F. Bosch, 2008. Warsaw University, May 14, 2008. http://zsj.fuw.edu.pl/index_seminars_download.php?semid=10.
[Bosch-2008-Warsaw]
[9-7]
Search for Oscillation of the Electron-Capture Decay Probability of 142Pm, Stuart Freedman, 2008. PANIC08, 9-14 November 2008, Eilat, Israel. http://www.weizmann.ac.il/MaKaC/contributionDisplay.py?contribId=358&sessionId=70&confId=0.
[Freedman-PANIC08]
[9-8]
The GSI oscillations, Yu.A. Litvinov, 2008. NPNAP2008, 16-21 November 2008, ECT', Trento, Italy. http://www.uni-tuebingen.de/ilias-dbd/Trento08/src/talks/2ndDAY/YLitvinov_20081118_Trento.pdf.
[Litvinov-2008-ECT]
[9-9]
Non-Exponential Orbital Electron Capture Decays of Hydrogen-Like 140Pr and 142Pm Ions, Yu.A. Litvinov, 2008. NO-VE 08, 15-18 April 2008, Venice, Italy. http://neutrino.pd.infn.it/NO-VE2008/Talks/Litvinov.ppt.
[Litvinov-2008-NOVE]

10 - Theory

[10-1]
Toward a quantum field theoretical description of oscillation effects, Maxim Libanov, arXiv:2406.10799, 2024.
[Libanov:2024ukn]
[10-2]
Neutrino Oscillations in Finite Time Path Out-of-Equilibrium Thermal Field Theory, Ivan Dadic, Dubravko Klabucar, Symmetry 2023 (1970) 15, arXiv:2311.11875.
[Dadic:2023tuc]
[10-3]
Yet another QFT model of neutrino oscillations, W. Grimus, arXiv:2303.16655, 2023.
[Grimus:2023ktd]
[10-4]
Mixed states for neutral current neutrino oscillation, M. M. Ettefaghi, Z. Askaripour Ravari, Nucl. Phys. B 987 (2023) 116082, arXiv:2301.07689.
[Ettefaghi:2023uxu]
[10-5]
Virtual neutrino propagation at short baselines, Vadim A. Naumov, Dmitry S. Shkirmanov, arXiv:2208.02621, 2022.
[Naumov:2022kwz]
[10-6]
An on-shell perspective on neutrino oscillations and non-standard interactions, Gustavo F. S. Alves, Enrico Bertuzzo, Gabriel M. Salla, Phys.Rev.D 106 (2022) 036028, arXiv:2103.16362.
[Alves:2021rjc]
[10-7]
Time Evolution of Lepton Number Carried by Majorana Neutrinos, Apriadi Salim Adam, Nicholas J. Benoit, Yuta Kawamura, Yamato Matsuo, Takuya Morozumi, Yusuke Shimizu, Yuya Tokunaga, Naoya Toyota, PTEP 2021 (2021) 5, arXiv:2101.07751.
[Adam:2021qiq]
[10-8]
Plane-wave model of neutrino oscillations revisited, Winfried A. Mitaroff, arXiv:2012.05807, 2020.
[Mitaroff:2020aqa]
[10-9]
Neutrino Flavor Oscillations without Flavor States, Bruno de S. L. Torres, T. Rick Perche, Andre G. S. Landulfo, George E. A. Matsas, Phys.Rev. D102 (2020) 093003, arXiv:2009.10165.
[Torres:2020gzm]
[10-10]
Path integral of neutrino oscillations, Kazuo Fujikawa, arXiv:2009.08082, 2020.
[Fujikawa:2020mei]
[10-11]
Mixed state geometric phase for neutrino oscillations, Sandeep Joshi, Phys.Lett. B809 (2020) 135766, arXiv:2008.07952.
[Joshi:2020djx]
[10-12]
Approximate Neutrino Oscillations in the Vacuum, Emilio Ciuffoli, Jarah Evslin, Hosam Mohammed, Eur.Phys.J. C81 (2021) 325, arXiv:2001.03287.
[Ciuffoli:2020flo]
[10-13]
Revisiting the quantum field theory of neutrino oscillations in vacuum, Walter Grimus, J.Phys. G47 (2020) 085004, arXiv:1910.13776.
[Grimus:2019hlq]
[10-14]
Neutrino Oscillations in the Vacuum, Emilio Ciuffoli, Jarah Evslin, Hosam Mohammed, Nucl.Phys.B 958 (2020) 115113, arXiv:1909.13529.
[Mohammed:2019svq]
[10-15]
Probing inequivalent forms of Legget-Garg inequality in subatomic systems, Javid Naikoo, Swati Kumari, Subhashish Banerjee, A. K. Pan, Physics 47 (2020) 095004, arXiv:1906.05995.
[Naikoo:2019gme]
[10-16]
Neutrino oscillations in a trapping potential, Lucas Johns, Int.J.Mod.Phys. A34 (2019) 1950160, arXiv:1906.01673.
[Johns:2019amh]
[10-17]
Wave Packets Losing Their Covariance, Emilio Ciuffoli, Jarah Evslin, Hosam Mohammed, Nucl.Phys. B953 (2020) 114972, arXiv:1905.09004.
[Mohammed:2019ukx]
[10-18]
Entangled Neutrino States in a Toy Model QFT, Emilio Ciuffoli, Jarah Evslin, Hosam Mohammed, Yao Zhou, Eur.Phys.J. C79 (2019) 491, arXiv:1902.03934.
[Evslin:2019amm]
[10-19]
Interpolating wave packets in QFT and neutrino oscillation problem, S. E. Korenblit, D. V. Taychenachev, arXiv:1712.06641, 2017.
[Korenblit:2017pto]
[10-20]
Exotic Trajectories Effects on Neutrino Oscillations, Jonathan Miller, Roman Pasechnik, arXiv:1707.09089, 2017.
[Miller:2017ywg]
[10-21]
Do non-relativistic neutrinos oscillate?, Evgeny Akhmedov, JHEP 1707 (2017) 070, arXiv:1703.08169.
[Akhmedov:2017xxm]
[10-22]
Quantum field-theoretical description of neutrino and neutral kaon oscillations, Igor P. Volobuev, Int.J.Mod.Phys. A33 (2018) 1850075, arXiv:1703.08070.
[Volobuev:2017izt]
[10-23]
Collective neutrino oscillations and neutrino wave packets, Evgeny Akhmedov, Joachim Kopp, Manfred Lindner, JCAP 1709 (2017) 017, arXiv:1702.08338.
[Akhmedov:2017mcc]
[10-24]
The Liouville equation for flavour evolution of neutrinos and neutrino wave packets, Rasmus Sloth Lundkvist Hansen, Alexei Yu. Smirnov, JCAP 1612 (2016) 019, arXiv:1610.00910.
[Hansen:2016klk]
[10-25]
Parameterized Relativistic Dynamical Formalism for Transitions between Three Flavor States, John R. Fanchi, arXiv:1604.02001, 2016.
[Fanchi:2016bbn]
[10-26]
Reproducing sterile neutrinos and the behavior of flavor oscillations with superconducting-magnetic proximity effects, Thomas E. Baker, arXiv:1601.00913, 2016.
[Baker:2016ohg]
[10-27]
Neutral current neutrino oscillation via quantum field theory approach, M. M. Ettefaghi, Z. Askaripour Ravari, Phys.Lett. B747 (2015) 59-63, arXiv:1505.07078.
[Ettefaghi:2015ioa]
[10-28]
Dynamical Pion Collapse and the Coherence of Conventional Neutrino Beams, B.J.P. Jones, Phys. Rev. D91 (2015) 053002, arXiv:1412.2264.
[Jones:2014sfa]
[10-29]
Covariant asymmetric wave packet for a field-theoretical description of neutrino oscillations, V.A. Naumov, D.S. Shkirmanov, Mod. Phys. Lett. A30 (2015) 1550110, arXiv:1409.4669.
[Naumov:2014jpa]
[10-30]
Expectation values of flavor-neutrino numbers with respect to neutrino-source hadron states -Neutrino oscillations and decay probabilities-, Kanji Fujii, Norihito Toyota, PTEP 2015 (2014) 023B01, arXiv:1408.1518.
[Fujii:2014vaa]
[10-31]
Improved Theory of Neutrino Oscillations in Matter, Leonard S. Kisslinger, Mod.Phys.Lett. A30 (2015) 1550014, arXiv:1408.0310.
[Kisslinger:2014jha]
[10-32]
Non-Unitary Neutrino Propagation, Jeffrey M. Berryman, Andre de Gouvea, Daniel Hernandez, Roberto L. N. Oliviera, Phys.Lett. B742 (2015) 74-79, arXiv:1407.6631.
[Berryman:2014yoa]
[10-33]
Optical simulation of neutrino oscillations in binary waveguide arrays, Andrea Marini, Stefano Longhi, Fabio Biancalana, Phys. Rev. Lett. 113 (2014) 150401, arXiv:1405.1290.
[Marini:2014xda]
[10-34]
Quantum kinetic description of neutrino oscillations, Alexander Kartavtsev, JHEP 2001 (2020) 138, arXiv:1404.5626.
[Kartavtsev:2014mea]
[10-35]
Influence of flavor oscillations on neutrino beam instabilities, Jose Tito Mendonca, Fernando Haas, Antoine Bret, arXiv:1404.3436, 2014.
[Mendonca:2014lya]
[10-36]
A quantum field theoretical model of neutrino oscillation without external wave packets, Z.Y. Law, A.H. Chan, C.H. Oh, arXiv:1401.6747, 2014.
[Law:2014tva]
[10-37]
Extension of Grimus-Stockinger formula from operator expansion of free Green function, S. E. Korenblit, D. V. Taychenachev, Mod. Phys. Lett. A30 (2015) 1550074, arXiv:1401.4031.
[Korenblit:2014uka]
[10-38]
On the Theory of Wave Packets, D.V. Naumov, Int.J. Phys.Sci. 7 (2012) 1741-1745, arXiv:1309.1717.
[Shalaby:2012hqh]
[10-39]
Extended Grimus-Stockinger theorem and inverse square law violation in quantum field theory, Vadim A. Naumov, Dmitry S. Shkirmanov, Eur. Phys. J. C73 (2013) 22627, arXiv:1309.1011.
[Naumov:2013bea]
[10-40]
Are collapse models testable with quantum oscillating systems? The case of neutrinos, kaons, chiral molecules, M. Bahrami et al., Sci.Rep. Nature (2013) Scientific Reports 3, arXiv:1305.6168.
[Bahrami:2013hta]
[10-41]
Higher order corrections to the Grimus-Stockinger formula, S. E. Korenblit, D. V. Taychenachev, Phys. Part. Nucl. Lett. 10 (2013) 610-614, arXiv:1304.5192.
[Korenblit:2013tya]
[10-42]
Spreading of wave packets for Majorana neutrino oscillations in vacuum, Y. F. Perez, C. J. Quimbay, Int.J.Mod.Phys. A29 (2014) 1450007, arXiv:1304.4186.
[Perez:2013uca]
[10-43]
Charged lepton mixing via heavy sterile neutrinos, Louis Lello, Daniel Boyanovsky, Nucl. Phys. B880 (2014) 109-133, arXiv:1212.4167.
[Lello:2012in]
[10-44]
Phenomenology from relativistic Levy-Schroedinger equations: Application to neutrinos, Nicola Cufaro Petroni, Modesto Pusterla, arXiv:1209.6259, 2012.
[Petroni:2012qj]
[10-45]
Neutrino oscillations in the front form of Hamiltonian dynamics, Stanislaw D. Glazek, Arkadiusz P. Trawinski, Phys. Rev. D87 (2013) 025002, arXiv:1208.5255.
[Glazek:2012wp]
[10-46]
On the phenomenology of neutrino oscillations in vacuum, S.M. Bilenky, arXiv:1208.2497, 2012.
[Bilenky:2012zp]
[10-47]
The effect of spontaneous collapses on neutrino oscillations, S. Donadi, A. Bassi, C. Curceanu, L. Ferialdi, Foundations of Physics 43, 1066-1089 (2013), arXiv:1207.5997.
[Donadi:2012idr]
[10-48]
Wave-Packet Treatment of Neutrino Oscillation Based on the Solution to Dirac Equation, Kelin Wang, Zexian Cao, arXiv:1207.5207, 2012.
[Wang:2012awb]
[10-49]
Wave Packet Approach to Neutrino Oscillations with Matter Effects, Nan Qin, Bo-Qiang Ma, arXiv:1206.0812, 2012.
[Qin:2012su]
[10-50]
Quantum field theoretic approach to neutrino oscillations in matter, Evgeny Kh. Akhmedov, Alina Wilhelm, JHEP 1301 (2013) 165, arXiv:1205.6231.
[Akhmedov:2012mk]
[10-51]
Neutrino oscillations in the formal theory of scattering, Stanislaw D. Glazek, Arkadiusz P. Trawinski, Phys. Rev. D85 (2012) 125001, arXiv:1204.6007.
[Glazek:2012pd]
[10-52]
Secret of Neutrino Oscillations, Dmitry Zhuridov, arXiv:1202.3058, 2012.
[1202.3058]
[10-53]
Neutrino Velocity and Neutrino Oscillations, H. Minakata, A. Yu. Smirnov, Phys. Rev. D85 (2012) 113006, arXiv:1202.0953.
[Minakata:2012kg]
[10-54]
Neutrino production coherence and oscillation experiments, E. Kh. Akhmedov, D. Hernandez, A. Yu. Smirnov, JHEP 04 (2012) 052, arXiv:1201.4128.
[Akhmedov:2012uu]
[10-55]
Spatial entanglement and massive neutrino oscillations produced by orbital electron capture decay, I. M. Pavlichenkov, Phys. Rev. D84 (2011) 073005, arXiv:1108.3504.
[Pavlichenkov:2011vk]
[10-56]
Meaning of flavor-weighted energies in the framework of composite quantum systems, Alex E. Bernardini, Astropart.Phys. 41 (2013) 31-37, arXiv:1104.3120.
[Bernardini:2012uf]
[10-57]
Flavor Oscillation from the Two-Point Function, Mario Martone, Dean J. Robinson, Phys. Rev. D85 (2012) 045006, arXiv:1103.3486.
[Martone:2011kh]
[10-58]
Majorana neutrino oscillations in vacuum, Y. F. Perez, C. J. Quimbay, J. Mod. Phys. 3 (2012) 803-814, arXiv:1103.2781.
[Perez:2011wq]
[10-59]
Neutrino oscillations and uncertainty relations, S.M. Bilenky, F. von Feilitzsch, W. Potzel, J. Phys. G38 (2011) 115002, arXiv:1102.2770.
[Bilenky:2011pk]
[10-60]
Note on a Pattern from CP Violation in Neutrino Oscillations, R. G. Moorhouse, arXiv:1010.0931, 2010.
[Moorhouse:2010yg]
[10-61]
On the evolution of an entangled lepton-neutrino pair, Balazs Meszena, Andras Patkos, Mod. Phys. Lett. A26 (2011) 101-107, arXiv:1009.5923.
[Meszena:2010xb]
[10-62]
Neutrino oscillations: Entanglement, energy-momentum conservation and QFT, E. Kh. Akhmedov, A. Yu. Smirnov, Found. Phys. 41 (2011) 1279-1306, arXiv:1008.2077.
[Akhmedov:2010ua]
[10-63]
A diagrammatic treatment of neutrino oscillations, Dmitry V. Naumov, Vadim A. Naumov, J. Phys. G37 (2010) 105014, arXiv:1008.0306.
[Naumov:2010um]
[10-64]
On a theory of neutrino oscillations with entanglement, Boris Kayser, Joachim Kopp, R. G. Hamish Roberston, Petr Vogel, Phys. Rev. D82 (2010) 093003, arXiv:1006.2372.
[Kayser:2010bj]
[10-65]
Interdisciplinary Physics needed to treat $\nu$ oscillations - Relativistic quantum field theory is useless, Harry J. Lipkin, arXiv:1005.4183, 2010.
[Lipkin:2010qp]
[10-66]
Testing the wave packet approach to neutrino oscillations in future experiments, Boris Kayser, Joachim Kopp, arXiv:1005.4081, 2010.
[Kayser:2010pr]
[10-67]
Dynamics of disentanglement, density matrix and coherence in neutrino oscillations, Jun Wu, Jimmy A. Hutasoit, Daniel Boyanovsky, Richard Holman, Phys. Rev. D82 (2010) 013006, arXiv:1005.3260.
[Wu:2010tr]
[10-68]
Quantum flavor oscillations extended to the Dirac theory, Alex E. Bernardini, Marcelo M. Guzzo, Celso C. Nishi, Fortschritte der PHYSIK59 (2011) 372, arXiv:1004.0734.
[Bernardini:2010zba]
[10-69]
Macroscopic Interferences of Neutrino Waves, K. Ishikawa, Y. Tobita, arXiv:1003.1838, 2010.
[Ishikawa:2010eh]
[10-70]
Neutrino oscillations: Quantum mechanics vs. quantum field theory, Evgeny Kh. Akhmedov, Joachim Kopp, JHEP 04 (2010) 008, arXiv:1001.4815.
[Akhmedov:2010ms]
[10-71]
On coherence lengths of wave packets II: High energy neutrino, K. Ishikawa, Y. Tobita, arXiv:0911.0575, 2009.
[Ishikawa:2009ka]
[10-72]
Relativistic quantum theories and neutrino oscillations, B. D. Keister, W. N. Polyzou, Phys. Scripta 81 (2010) 055102, arXiv:0908.1404.
[Keister:2009qn]
[10-73]
Paradoxes of neutrino oscillations, Evgeny Kh. Akhmedov, Alexei Yu. Smirnov, Phys. Atom. Nucl. 72 (2009) 1363-1381, arXiv:0905.1903.
[Akhmedov:2009rb]
[10-74]
The Quantum Mechanics of Relic Neutrinos, George M. Fuller, Chad T. Kishimoto, Phys. Rev. Lett. 102 (2009) 201303, arXiv:0811.4370.
[Fuller:2008nt]
[10-75]
Disentangling Neutrino Oscillations, Andrew G. Cohen, Sheldon L. Glashow, Zoltan Ligeti, Phys. Lett. B678 (2009) 191-196, arXiv:0810.4602.
[Cohen:2008qb]
[10-76]
Coherence and oscillations of cosmic neutrinos, Yasaman Farzan, Alexei Yu Smirnov, Nucl. Phys. B805 (2008) 356-376, arXiv:0803.0495.
[Farzan:2008eg]
[10-77]
Liouville equations for neutrino distribution matrices, Christian Y. Cardall, Phys. Rev. D78 (2008) 085017, arXiv:0712.1188.
[Cardall:2007zw]
[10-78]
Influence of second-order corrections to the energy-dependence of neutrino flavor conversion formulae, Alex E. Bernardini, Marcelo M. Guzzo, Mod. Phys. Lett. A23 (2008) 1949-1960, arXiv:0706.3925.
[Bernardini:2007ue]
[10-79]
Do charged leptons oscillate?, Evgeny Kh. Akhmedov, JHEP 09 (2007) 116, arXiv:0706.1216.
[Akhmedov:2007fk]
[10-80]
Second-order corrections to neutrino two-flavor oscillation parameters in the wave packet approach, Alex E. Bernardini, Marcelo M. Guzzo, Fernando R. Torres, Eur. Phys. J. C48 (2006) 613, arXiv:hep-ph/0612001.
[Bernardini:2006ak]
[10-81]
Time-to-space conversion in neutrino oscillations, Mikhail I. Shirokov, Vadim A. Naumov, Concepts Phys. 4 (2007) 103-119, arXiv:hep-ph/0611202.
[Shirokov:2006yf]
[10-82]
Evolution of Mixed Particles Interacting with Classical Sources, Maxim Dvornikov, Phys. Atom. Nucl. 72 (2009) 116-127, arXiv:hep-ph/0610047.
[Dvornikov:2006gy]
[10-83]
On Neutrino Oscillations and Time-Energy Uncertainty Relation, S. M. Bilenky, M. D. Mateev, Phys. Part. Nucl. 38 (2007) 117-128, arXiv:hep-ph/0604044.
[Bilenky:2006zq]
[10-84]
Neutrino Oscillations and Time-Energy Uncertainty Relation, S. M. Bilenky, arXiv:hep-ph/0512215, 2005.
[Bilenky:2005hv]
[10-85]
Neutrino wave function and oscillation suppression, A.D. Dolgov et al., Eur. Phys. J. C44 (2005) 431, arXiv:hep-ph/0506203.
[Dolgov:2005vj]
[10-86]
First quantized approaches to neutrino oscillations and second quantization, C. C. Nishi, Phys. Rev. D73 (2006) 053013, arXiv:hep-ph/0506109.
[Nishi:2005dc]
[10-87]
Oscillations of neutrinos produced and detected in crystals, A. D. Dolgov et al., Nucl. Phys. B729 (2005) 79, arXiv:hep-ph/0505251.
[Dolgov:2005nb]
[10-88]
Quantum Theory of Neutrino Oscillations for Pedestrians - Simple Answers to Confusing Questions, Harry J. Lipkin, Phys. Lett. B642 (2006) 366-371, arXiv:hep-ph/0505141.
Comment: As usual [10-102], [10-98], [10-93], many unclear statements without any proof. Where is the 'detailed rigorous calculation' in Section IV? [C.G.].
[Lipkin:2005kg]
[10-89]
Unitarity triangle test of the extra factor of two in particle oscillation phases, Samoil M. Bilenky, Walter Grimus, Thomas Schwetz, Eur. Phys. J. C41 (2005) 153, arXiv:hep-ph/0502170.
[Bilenky:2005ei]
[10-90]
A Remark on Neutrino Oscillations and Time-Energy Uncertainty Relation, S. M. Bilenky, arXiv:hep-ph/0411117, 2004.
[Bilenky:2004xz]
[10-91]
Oscillations of neutrinos produced by a beam of electrons, A. D. Dolgov, L. B. Okun, M. V. Rotaev, M. G. Schepkin, arXiv:hep-ph/0407189, 2004.
[Dolgov:2004ut]
[10-92]
Flavor Neutrinos States, Carlo Giunti, arXiv:hep-ph/0402217, 2004.
[Giunti:2004zf]
[10-93]
Quantum Mechanics of Neutrino Detectors Determine Coherence and Phases in Oscillation Experiments, Harry J. Lipkin, arXiv:hep-ph/0312292, 2003.
Comment: Same as [10-102] and [10-98]. See the discussion in [10-101]. [C.G.].
[Lipkin:2003st]
[10-94]
Plane waves and wave packets in particle oscillations, L. B. Okun, M. V. Rotaev, M. G. Schepkin, I. S. Tsukerman, arXiv:hep-ph/0312280, 2003.
Comment: Reply to the reply [10-95] to [10-96], which criticized ref.[11-14].
These authors seem to have problems with elementary logical reasoning and elementary calculations.
Elementary Logic:
$t=x$ is justified by a wave packet treatment. Once this is accepted, wave packets are not needed for the calculation of the phase at leading order in the neutrino mass contribution.
Elementary Calculation:
$ \left( E_k - E_j \right) x \frac{\overline{m^2}}{2E^2} \sim \frac{\Delta{m}^2_{kj}x}{2E} \, \frac{\overline{m^2}}{2E^2} \ll \frac{\Delta{m}^2_{kj}x}{2E} $
How is it possible that 'As emphasized in ref.[10-96], such corrections are of the same order as the standard oscillation phase and as such are used from time to time in the literature to modify the standard phase by the notorious factor of 2.'?
The factor of two mistake is not due to a correction to the time at which interference is calculated, but to a calculation of interference for different propagation times of the different massive neutrinos (see [10-106]).
[C.G.].

[Okun:2003im]
[10-95]
Reply to 'A Remark on the 'Theory of neutrino oscillations', Carlo Giunti, arXiv:hep-ph/0312180, 2003.
[Giunti:2003ga]
[10-96]
A Remark on the 'Theory of neutrino oscillations', L.B Okun, M.V. Rotaev, M.G. Schepkin, I.S. Tsukerman, arXiv:hep-ph/0312151, 2003.
[Okun:2003yb]
[10-97]
Lorentz Invariance of Neutrino Oscillations, C. Giunti, Am. J. Phys. 72 (2004) 699-700, arXiv:physics/0305122.
[Giunti:2003ku]
[10-98]
What is coherent in neutrino oscillations, Harry J. Lipkin, Phys. Lett. B579 (2004) 355-360, arXiv:hep-ph/0304187.
Comment: Nothing is easier than self-deceit. For what each man wishes, that he also believes to be true. [Demosthenes, Third Olynthiac]
Same as [10-102]. See the discussion in [10-101]. [C.G.].

[Lipkin:2003hj]
[10-99]
The wavelength of neutrino and neutral kaon oscillations, H. Burkhardt, J. Lowe, G. J. Stephenson, T. Goldman, Phys. Lett. B566 (2003) 137, arXiv:hep-ph/0302084.
From the abstract: Here, we point out that the mass eigenstates need have neither equal momentum nor equal energy, contrary to what is sometimes assumed. We show that the mass eigenstates, in spite of having different energies, can nevertheless be coherent, and that a correct treatment of the kinematics recovers the usual result for the wavelength of the flavor oscillations.
[Burkhardt:2003cz]
[10-100]
Coherence in Neutrino Interactions, C. Giunti, arXiv:hep-ph/0302045, 2003.
From the abstract: The claim in [29-83] is refuted in a pedagogical way.
[Field:2003sp]
[10-101]
Coherence and Wave Packets in Neutrino Oscillations, C. Giunti, Found. Phys. Lett. 17 (2004) 103-124, arXiv:hep-ph/0302026. http://journals.kluweronline.com/article.asp?PIPS=486121.
From the abstract: General arguments in favor of the necessity of a wave packet description of neutrino oscillations are presented, drawing from analogies with other wave phenomena. We present a wave packet description of neutrino oscillations in stationary beams using the density matrix formalism. Recent claims of the necessity of an equal energy of different massive neutrinos are refuted.
[Giunti:2003ax]
[10-102]
Stodolsky's Theorem and Neutrino Oscillation Phases - for pedestrians, H. J. Lipkin, arXiv:hep-ph/0212093, 2002.
Comment: See [10-101]. [C.G.].
[Lipkin:2002sq]
[10-103]
On the extra factor of two in the phase of neutrino oscillations, L.B. Okun, M.G. Schepkin, I.S. Tsukerman, Nucl. Phys. B650 (2003) 443, arXiv:hep-ph/0211241.
Comment: See also [10-106], where, in my opinion, the correctness of the standard phase is shown in a simple way and without any doubt.
The claim 'We are unaware of any consistent derivation of the standard expression for $\phi$ in the framework of quantum field theory.' is, putting it mildly, surprising, in view of the many references in this web page on this topic ([10-141], [10-129], [16-12], [10-137], [10-123], [29-109], [29-107], [29-102], [29-101], [29-98], [29-89], [10-116] [10-105], [2-8]), and the citation of [2-8] in the paper.
[C.G.].

[DeLeo:2003fk]
[10-104]
Neutrino wave packets in quantum field theory, C. Giunti, JHEP 11 (2002) 017, arXiv:hep-ph/0205014.
From the abstract: We present a model of neutrino oscillations in the framework of quantum field theory in which the propagating neutrino and the particles participating to the production and detection processes are described by wave packets.
[Giunti:2002xg]
[10-105]
Towards a unique formula for neutrino oscillations in vacuum, M. Beuthe, Phys. Rev. D66 (2002) 013003, arXiv:hep-ph/0202068.
From the abstract: We show that all correct results obtained by applying quantum field theory to neutrino oscillations can be understood in terms of a single oscillation formula. In particular, the model proposed by Grimus and Stockinger is shown to be a subcase of the model proposed by Giunti, Kim and Lee,... Finally, we insist on the wave packet interpretation of the quantum field treatments of oscillations.
[Beuthe:2002ej]
[10-106]
The phase of neutrino oscillations, C. Giunti, Physica Scripta 67 (2003) 29-33, arXiv:hep-ph/0202063.
Comment: It is shown that the standard phase of neutrino oscillations is correct, refuting the claims of a factor of two correction presented in [29-99], [29-93], [29-92].
The wave packet treatment of neutrino oscillations presented in [10-146], [10-126] is improved taking into account explicitly the finite coherence time of the detection process.
[C.G.].

[Giunti:2002ee]
[10-107]
Energy and momentum of oscillating neutrinos, C. Giunti, Mod. Phys. Lett. A16 (2001) 2363, arXiv:hep-ph/0104148.
Comment: It is proved that the equal-energy [10-135], [10-115], [10-125] and equal-momentum [2-11] assumptions are incompatible with Lorentz invariance and therefore they do not correspond to reality. [C.G.].
[Giunti:2001kj]
[10-108]
Do neutrino oscillations allow an extra phenomenological parameter?, I. S. Tsukerman, JETP Lett. 73 (2001) 380, arXiv:hep-ph/0103109. [Pisma Zh. Eksp. Teor. Fiz. 73, 424 (2001); Erratum, ibid. 74, 442 (2001)].
Comment: The author uses some of the reasoning and equations written in [10-111] to argue something that is already evident from that paper.
In [10-111] it is written explicitely that $\xi$ is determined by the production process. It is clear that if $\xi=0.8$ in pion decay, in general it is different from 0 or 1.
The claim that $\xi$ was considered as a 'free parameter' in [10-111] is false.
Notice that $\xi$ (or $1-\xi$) was introduced by the authors of [10-111] many years before in [10-146] as 'a dimensionless quantity that depends on the production process', and used in several following papers.
[C.G.].

[Tsukerman:2001nq]
[10-109]
Two particle states, lepton mixing and oscillations, M. Kachelriess, E. Resconi, S. Schoenert, arXiv:physics/0102031, 2001.
[Kachelriess:2001rf]
[10-110]
On the group velocity of oscillating neutrino states and the equal velocity assumption, J. M. Levy, arXiv:hep-ph/0012285, 2000.
Comment: Confused discussion of the equal momentum, equal energy and equal velocity assumptions.
It seems to claim support of the equal velocity assumption, which was shown to be unrealistic in [10-112].
[C.G.].

[Levy:2000qx]
[10-111]
Quantum mechanics of neutrino oscillations, C. Giunti, C. W. Kim, Found. Phys. Lett. 14 (2001) 213-229, arXiv:hep-ph/0011074.
Comment: It is shown that the equal-energy [10-135], [10-115], [10-125] and equal-momentum [2-11] assumptions are incompatible with energy-momentum conservation and therefore they do not correspond to reality.
It is proved that the 'factor of two ambiguity' claimed in [10-135], [29-99] does not exist.
It is shown that charged leptons do not oscillate [29-108], [29-104], [29-103], in agreement with [10-131].
It is argued that a wave packet treatment is necessary in order to understand the physics of neutrino oscillations, in disagreement with [10-125].
[C.G.].

[Giunti:2000kw]
[10-112]
Comment on Equal velocity assumption for neutrino oscillations, L. B. Okun, I. S. Tsukerman, Mod. Phys. Lett. A15 (2000) 1481-1482, arXiv:hep-ph/0007262.
Comment: It is proved that in general the equal-velocity assumption [10-121], [29-99] does not correspond to reality. [C.G.].
[Okun:2000gc]
[10-113]
How do neutrinos propagate? Wave packet treatment of neutrino oscillation, Y. Takeuchi, Y. Tazaki, S. Y. Tsai, T. Yamazaki, Prog. Theor. Phys. 105 (2001) 471-482, arXiv:hep-ph/0006334.
[Takeuchi:2000fz]
[10-114]
Exercises with the neutrino oscillation length formula, Jean-Michel Levy, arXiv:hep-ph/0004221, 2000.
[Levy:2000nv]
[10-115]
Neutrino oscillations as two-slit experiments in momentum space, H. J. Lipkin, Phys. Lett. B477 (2000) 195.
Comment: The equal-energy assumption claimed in this paper has been shown to be incompatible with energy-momentum conservation in [10-111] and with Lorentz invariance in [10-107]. [C.G.].
[Lipkin-slit-00]
[10-116]
Coherence of neutrino flavor mixing in quantum field theory, C. Y. Cardall, Phys. Rev. D61 (2000) 073006, arXiv:hep-ph/9909332.
[Cardall:1999ze]
[10-117]
Neutrino oscillations and the effect of the finite lifetime of the neutrino source, W. Grimus, S. Mohanty, P. Stockinger, Phys. Rev. D61 (2000) 033001, arXiv:hep-ph/9904285.
[Grimus:1999ra]
[10-118]
Quantum mechanics of neutrino oscillations: Hand waving for pedestrians, Harry J. Lipkin, arXiv:hep-ph/9901399, 1999.
[Lipkin:1999nb]
[10-119]
Neutrino oscillations: A relativistic example of a two-level system, E. Sassaroli, Am. J. Phys. 67 (1999) 869-875.
[Sassaroli:1999cf]
[10-120]
Correlated wave packet treatment of neutrino and neutral meson oscillations, M. Nauenberg, Phys. Lett. B447 (1999) 23-30, arXiv:hep-ph/9812441.
[Nauenberg:1998vy]
[10-121]
Wave packet approach to the equal-energy / momentum / velocity prescriptions of neutrino oscillation, Y. Takeuchi, Y. Tazaki, S. Y. Tsai, T. Yamazaki, Mod. Phys. Lett. A14 (1998) 2329, arXiv:hep-ph/9809558.
Comment: The equal-velocity assumption proposed in this paper has been proved to be unreal in [10-112]. [C.G.].
[Takeuchi:1998kx]
[10-122]
Neutrino oscillations in space within a solvable model, A. Ioannisian, A. Pilaftsis, Phys. Rev. D59 (1999) 053003, arXiv:hep-ph/9809503.
[Ioannisian:1998ch]
[10-123]
The field-theoretical approach to coherence in neutrino oscillations, W. Grimus, P. Stockinger, S. Mohanty, Phys. Rev. D59 (1999) 013011, arXiv:hep-ph/9807442.
[Grimus:1998uh]
[10-124]
Oscillations of recoil particles against mixed states, H. Burkhardt, J. Lowe, G. J. Stephenson, T. Goldman, Phys. Rev. D59 (1999) 054018, arXiv:hep-ph/9803365.
[Burkhardt:1998zj]
[10-125]
When the wavepacket is unnecessary, L. Stodolsky, Phys. Rev. D58 (1998) 036006, arXiv:hep-ph/9802387.
Comment: It is shown that for stationary beams the decoherence of neutrino oscillations due to wave packet separation and that due to incoherent average over the energy spectrum are indistinguishable, as already noted in [18-8].
It is not clear if the purpose of this paper is to show that neutrinos are not described by wave packets.
An interpretation of this paper as a proof that neutrinos are not described by wave packets stems from a confusion between microscopic and macroscopic stationarity [10-116], [10-111], [2-8], [10-101].
The microscopic process of neutrino production are certainly not stationary.
See [10-151], [10-116], [10-111], [2-8], [10-101] for discussions of the necessity of a wave packet treatment of neutrino oscillations.
The equal-energy assumption used in this paper has been shown to be incompatible with energy-momentum conservation in [10-111] and with Lorentz invariance in [10-107], and further refuted in [10-101].
[C.G.].

[Stodolsky:1998tc]
[10-126]
Coherence of neutrino oscillations in the wave packet approach, C. Giunti, C. W. Kim, Phys. Rev. D58 (1998) 017301, arXiv:hep-ph/9711363.
[Giunti:1997wq]
[10-127]
Neutrino oscillations in a model with a source and detector, Ken Kiers, Nathan Weiss, Phys. Rev. D57 (1998) 3091-3105, arXiv:hep-ph/9710289.
[Kiers:1997pe]
[10-128]
Two component theory of neutrino flavor mixing, Elisabetta Sassaroli, arXiv:hep-ph/9710239, 1997.
[Sassaroli:1997gq]
[10-129]
When do neutrinos cease to oscillate?, C. Giunti, C. W. Kim, U. W. Lee, Phys. Lett. B421 (1998) 237-244, arXiv:hep-ph/9709494.
[Giunti:1997sk]
[10-130]
Space-time description of neutrino flavour oscillations, Yu. V. Shtanov, Phys. Rev. D57 (1998) 4418-4428, arXiv:hep-ph/9706378.
[Shtanov:1998id]
[10-131]
Do muons oscillate?, A. D. Dolgov, A. Yu. Morozov, L. B. Okun, M. G. Shchepkin, Nucl. Phys. B502 (1997) 3, arXiv:hep-ph/9703241.
Comment: It is proved that charged leptons do not oscillate, refuting the claims in [29-108], [29-104], [29-103]. [C.G.].
[Dolgov:1997xr]
[10-132]
Neutrino oscillations from pion decay in flight, J. E. Campagne, Phys. Lett. B400 (1997) 135-144.
[Campagne-97]
[10-133]
The frequency of neutral meson and neutrino oscillation, Boris Kayser, 1997. SLAC-PUB-7123. http://www.slac.stanford.edu/pubs/slacpubs/7000/slac-pub-7123.html.
[Kayser:1997fr]
[10-134]
Flavor oscillations in field theory, E. Sassaroli, arXiv:hep-ph/9609476, 1996.
[Sassaroli:1996ee]
[10-135]
Flavor oscillations from a spatially localized source: A simple general treatment, Yuval Grossman, Harry J. Lipkin, Phys. Rev. D55 (1997) 2760-2767, arXiv:hep-ph/9607201.
Comment: The equal-energy assumption claimed in this paper has been shown to be incompatible with energy-momentum conservation in [10-111] and with Lorentz invariance in [10-107]. The 'factor of two ambiguity' claimed in this paper has been refuted in [10-111]. [C.G.].
[Grossman:1996eh]
[10-136]
Source Dependence of Neutrino Oscillations, T. Goldman, Mod. Phys. Lett. A25 (2010) 479, arXiv:hep-ph/9604357.
[Goldman:1996yq]
[10-137]
Real Oscillations of Virtual Neutrinos, W. Grimus, P. Stockinger, Phys. Rev. D54 (1996) 3414-3419, arXiv:hep-ph/9603430.
[Grimus:1996av]
[10-138]
Quantum Interference: From Kaons to Neutrinos (with Quantum Beats in between), Michael Martin Nieto, Hyperfine Interact. 100 (1996) 193, arXiv:hep-ph/9509370.
[Nieto:1995yh]
[10-139]
Coherence effects in neutrino oscillations, Ken Kiers, Shmuel Nussinov, Nathan Weiss, Phys. Rev. D53 (1996) 537-547, arXiv:hep-ph/9506271.
Comment: This paper is very important, because it discusses for the first time the effects of the detection process on the coherence of neutrino oscillations.
It is also shown that 'under very general assumptions it is not possible to distinguish experimentally neutrinos produced in some region of space as wave packets from those produced in the same region of space as plane waves with the same energy distribution'.
[C.G.].

[Kiers:1995zj]
[10-140]
EPR experiments without 'collapse of the wave function', B. Kayser, L. Stodolsky, Phys. Lett. B359 (1995) 343-350.
[Kayser:1995bw]
[10-141]
Treatment of neutrino oscillations without resort to weak eigenstates, C. Giunti, C. W. Kim, J. A. Lee, U. W. Lee, Phys. Rev. D48 (1993) 4310-4317, arXiv:hep-ph/9305276.
[Giunti:1993se]
[10-142]
The Quantum mechanics of neutrino oscillations, J. Rich, Phys. Rev. D48 (1993) 4318-4325.
[Rich-93]
[10-143]
Comments on the weak states of neutrinos, C. Giunti, C. W. Kim, U. W. Lee, Phys. Rev. D45 (1992) 2414-2420.
[Giunti:1991cb]
[10-144]
Coherence of neutrino oscillations in vacuum and matter in the wave packet treatment, C. Giunti, C. W. Kim, U. W. Lee, Phys. Lett. B274 (1992) 87-94.
[Giunti:1991sx]
[10-145]
Can the neutrinos from Z0 decay oscillate?, A. Yu. Smirnov, G. T. Zatsepin, Mod. Phys. Lett. A7 (1992) 1272-1280.
[Smirnov:1991eg]
[10-146]
When do neutrinos really oscillate?: Quantum mechanics of neutrino oscillations, C. Giunti, C. W. Kim, U. W. Lee, Phys. Rev. D44 (1991) 3635-3640.
[Giunti:1991ca]
[10-147]
Neutrino oscillations in an inhomogeneous medium: adiabatic regime, S. P. Mikheev, A. Yu. Smirnov, Sov. Phys. JETP 65 (1987) 230-236.
[Mikheev:1987jp]
[10-148]
Sum rules for neutrino oscillations, I. Yu. Kobzarev, B. V. Martemyanov, L. B. Okun, M. G. Shchepkin, Sov. J. Nucl. Phys. 35 (1982) 708.
[Kobzarev:1982ra]
[10-149]
Physical processes involving Majorana neutrinos, L. F. Li, Frank Wilczek, Phys. Rev. D25 (1982) 143.
[Li:1982um]
[10-150]
CP violation in Majorana neutrinos, M. Doi, T. Kotani, H. Nishiura, K. Okuda, E. Takasugi, Phys. Lett. B102 (1981) 323.
Comment: It is shown that the Dirac or Majorana nature of neutrinos cannot be distinguished in neutrino oscillations in vacuum, because neutrino oscillations in vacuum do not depend on the Majorana phases. [C.G.].
[Doi:1980yb]
[10-151]
On the quantum mechanics of neutrino oscillation, Boris Kayser, Phys. Rev. D24 (1981) 110.
[Kayser:1981ye]
[10-152]
Charged lepton oscillations, Sandip Pakvasa, Nuovo Cim. Lett. 31 (1981) 497.
[Pakvasa:1981ci]
[10-153]
Neutrino oscillation kinematics, R. G. Winter, Lett. Nuovo Cim. 30 (1981) 101-104.
[Winter:1981kj]
[10-154]
On oscillations of neutrinos with Dirac and Majorana masses, S. M. Bilenky, J. Hosek, S. T. Petcov, Phys. Lett. B94 (1980) 495.
Comment: It is shown that the Dirac or Majorana nature of neutrinos cannot be distinguished in neutrino oscillations in vacuum, because neutrino oscillations in vacuum do not depend on the Majorana phases. [C.G.].
[Bilenky:1980cx]
[10-155]
Structure of the vacuum and neutron and neutrino oscillations, Lay-Nam Chang, Ngee-Pong Chang, Phys. Rev. Lett. 45 (1980) 1540.
[Chang:1980qw]
[10-156]
Neutrino masses in SU(2) x U(1) theories, J. Schechter, J. W. F. Valle, Phys. Rev. D22 (1980) 2227.
[Schechter:1980gr]
[10-157]
The lepton-quark analogy and muonic charge, S. M. Bilenky, B. Pontecorvo, Sov. J. Nucl. Phys. 24 (1976) 316-319. [Yad. Fiz. 24 (1976) 603]. http://personalpages.to.infn.it/~giunti/slides/bilenky/BP-YF24-603-1976.pdf.
[Bilenky:1976cw]
[10-158]
Quark-lepton analogy and neutrino oscillations, S. M. Bilenky, B. Pontecorvo, Phys. Lett. B61 (1976) 248.
[Bilenky:1976tb]
[10-159]
Again on neutrino oscillations, S. M. Bilenky, B. Pontecorvo, Nuovo Cim. Lett. 17 (1976) 569.
[Bilenky:1976yj]
[10-160]
Experimental consequences of electron neutrino - muon neutrino mixing in neutrino beams, Shalom Eliezer, Arthur R. Swift, Nucl. Phys. B105 (1976) 45.
[Eliezer:1976ja]
[10-161]
Vector - like weak currents, massive neutrinos, and neutrino beam oscillations, Harald Fritzsch, Peter Minkowski, Phys. Lett. B62 (1976) 72.
[Fritzsch:1976rz]
[10-162]
Solar neutrinos and neutrino mixing, S. Nussinov, Phys. Lett. B63 (1976) 201-203.
Comment: This is the paper in which a wave packet description of neutrino oscillation is proposed and the existence of a coherence length is inferred. [C.G.].
[Nussinov:1976uw]
[10-163]
Neutrino astronomy and lepton charge, V. N. Gribov, B. Pontecorvo, Phys. Lett. B28 (1969) 493.
[Gribov:1968kq]
[10-164]
Neutrino experiments and the question of leptonic-charge conservation, B. Pontecorvo, Sov. Phys. JETP 26 (1968) 984-988. [Zh. Eksp. Teor. Fiz. 53, 1717 (1967)].
[Pontecorvo:1967fh]
[10-165]
Remarks on the unified model of elementary particles, Z. Maki, M. Nakagawa, S. Sakata, Prog. Theor. Phys. 28 (1962) 870.
[Maki:1962mu]
[10-166]
Inverse beta processes and nonconservation of lepton charge, B. Pontecorvo, Sov. Phys. JETP 7 (1958) 172-173. [Zh. Eksp. Teor. Fiz. 34, 247 (1958)].
[Pontecorvo:1957qd]
[10-167]
Mesonium and antimesonium, B. Pontecorvo, Sov. Phys. JETP 6 (1957) 429. [Zh. Eksp. Teor. Fiz. 33, 549 (1957)].
[Pontecorvo:1957cp]

11 - Theory - Talks

[11-1]
Quantum simulation of oscillating neutrinos, Abhishek Kumar Jha, Akshay Chatla, Bindu A. Bambah, arXiv:2010.06458, 2020. 5th International Conference on Particle Physics and Astrophysics (ICPPA-2020), Moscow, Russia, 5th-9th October,2020.
[Jha:2020qea]
[11-2]
Quantum mechanics aspects and subtleties of neutrino oscillations, Evgeny Akhmedov, arXiv:1901.05232, 2019. International Conference on the History of the Neutrino, Paris, France, September 5-7, 2018.
[Akhmedov:2019iyt]
[11-3]
Do Neutrino Wave Functions Overlap and Does it Matter?, Cheng-Hsien Li, Yong-Zhong Qian, arXiv:1605.00344, 2016. NuPhys2015 (London, 16-18 December 2015).
[Li:2016eba]
[11-4]
A Pedagogical Discussion on Neutrino Wave-Packet Evolution, Cheng-Hsien Li, Yong-Zhong Qian, Phys.Procedia 61 (2015) 724-728, arXiv:1404.1408. TAUP 2013.
[Li:2014nqa]
[11-5]
On particle oscillations, Marek Gozdz, Andrzej Gozdz, Phys.Scripta 89 (2014) 054010, arXiv:1312.2178. XX Nuclear Physics Workshop.
[Gozdz:2013oga]
[11-6]
Quantum Gravity signals in neutrino oscillations, Martin Sprenger, Piero Nicolini, Marcus Bleicher, Int. J. Mod. Phys. E20 (2011) 1-6, arXiv:1111.2341. First Caribbean Symposium on Nuclear and Astroparticle Physics - STARS2011, La Habana, Cuba, 2011.
[Sprenger:2011jc]
[11-7]
B-Meson and Neutrino Oscillation: A Unified Treatment, Boris Kayser, arXiv:1110.3047, 2011. Ninth International Conference on Flavor Physics and CP Violation (FPCP 2011) Maale Hachamisha, Israel, May 23-27, 2011.
[Kayser:2011jn]
[11-8]
New Physics and Neutrino Oscillation, M. Ochman, R. Szafron, M. Zralek, Nucl. Phys. Proc. Suppl. 217 (2011) 347-349, arXiv:1012.4123. NOW 2010: Neutrino Oscillation Workshop, Conca Specchiulla (Otranto), Lecce, Italy, 4-11 Sep 2010.
[Ochman:2010nv]
[11-9]
Neutrino oscillations: deriving the plane-wave approximation in the wave-packet approach, Oleg Lychkovskiy, Phys. Atom. Nucl. 72 (2009) 1557-1559, arXiv:0901.1198. 36th ITEP Winter School of Physics, session 'Particle Physics', February 8-16, 2008, Otradnoe, Russia.
[Lychkovskiy:2009uj]
[11-10]
Neutrino Flavor States and the Quantum Theory of Neutrino Oscillations, Carlo Giunti, AIP Conf. Proc. 1026 (2008) 3-19, arXiv:0801.0653. XI Mexican Workshop on Particles and Fields, 7-12 November 2007, Tuxtla Gutierrez, Chiapas, Mexico.
[Giunti:2008cf]
[11-11]
Flavor Neutrino Oscillations and Time-Energy Uncertainty Relation, S. M. Bilenky, Phys. Scripta T127 (2006) 8-9, arXiv:hep-ph/0605228. 2nd Scandinavian Neutrino Workshop, SNOW 2006, Stockholm, May 2-6, 2006.
[Bilenky:2006xn]
[11-12]
Theory of Neutrino Oscillations, Carlo Giunti, arXiv:hep-ph/0409230, 2004. IFAE 2004, 14-16 April 2004, Torino, Italy. http://agenda.cern.ch/askArchive.php?base=agenda&categ=a041654&id=a041654s5t3/transparencies. http://www.ph.unito.it/ifae/Proceedings/Sessioni/Neutrinos.pdf.
[Giunti:2004yg]
[11-13]
Theory of Neutrino Oscillations, Carlo Giunti, arXiv:hep-ph/0401244, 2004. 11th Lomonosov Conference on Elementary Particle Physics, 21-27 August 2003, Moscow State University, Moscow, Russia.
[Giunti:2004pd]
[11-14]
Theory of neutrino oscillations, Carlo Giunti, arXiv:hep-ph/0311241, 2003. IFAE 2003, Lecce, 23-26 April 2003.
[Giunti:2003tp]
[11-15]
Theory of Neutrino Oscillations, Carlo Giunti, arXiv:hep-ph/0311241, 2003. IFAE 2003, Lecce, 23-26 April 2003. http://www.le.infn.it/ifae/PDF/Giunti.pdf.
[Okun:2003im]
[11-16]
Theory of Neutrino Oscillations, Carlo Giunti, 2003. Neutrino Physics, Second International Summer Student School in Memory of Bruno Pontecorvo, 7-18 September 2003, Alushta, Crimea, Ukraine. http://personalpages.to.infn.it/~giunti/slides/2003/giunti-2003-krim-tno.pdf.
[Giunti-Krim-tno-03]
[11-17]
Lessons of coherence and decoherence: From neutrinos to SQUIDS, L. Stodolsky, arXiv:cond-mat/0203017, 2002. 22nd International Solvay Conference in Physics: The Physics of Communication, Delphi and Lamia, Greece, 24-30 Nov 2001.
[Stodolsky:2002bd]
[11-18]
Wave Packet Treatment of Neutrino Oscillations, C. Giunti, 2002. New Dimensions in Astroparticle Physics, 8th Summer Institute at Gran Sasso National Laboratory, 7-19 July 2002, Assergi, Italy. http://personalpages.to.infn.it/~giunti/slides/2002/giunti-2002-gs.ps.gz.
[Giunti-GS-02]
[11-19]
Neutrino Wave Packets in Quantum Field Theory, C. Giunti, 2002. Quantum Field Theory of Particle Mixing and Oscillations, 13-15 June 2002, Vietri sul Mare (SA), Italy. http://personalpages.to.infn.it/~giunti/slides/2002/giunti-2002-vietri.ps.gz.
[Giunti-Vietri-02]
[11-20]
Quantum Mechanics of Neutrino Oscillations, C. Giunti, arXiv:hep-ph/0105319, 2001. XIth International School 'PARTICLES and COSMOLOGY', 18-24 April 2001, Baksan Valley, Kabardino-Balkaria, Russian Federation.
[Giunti:2001nd]
[11-21]
Neutrino oscillations and cosmology, A. D. Dolgov, arXiv:hep-ph/0004032, 2000. International School of Astrophysics, Daniel Chalonge: 7th Course: Current Topics in Astrofundamental Physics (A NATO Advanced Study Institute Euroconference), Erice, Italy, 5-16 Dec 1999.
[Dolgov:1999sp]
[11-22]
On Neutrino Oscillations, L. B. Okun, Surveys High Energy Physics 15 (2000) 75. ITEP International Winter School, Snegiri, February 1999. http://personalpages.to.infn.it/~giunti/slides/okun/okun-snegiri-99.ps.gz.
[Okun:2000-SNEGIRI]
[11-23]
Field theoretical treatment of neutrino oscillations: The strength of the canonical oscillation formula, W. Grimus, S. Mohanty, P. Stockinger, arXiv:hep-ph/9909341, 1999.
[Grimus:1999zp]
[11-24]
Neutrino flavor mixing and oscillations in field theory, Elisabetta Sassaroli, arXiv:hep-ph/9805480, 1998.
[Sassaroli:1998uh]
[11-25]
Oscillations of non-relativistic neutrinos, C. W. Kim, C. Giunti, U. W. Lee, Nucl. Phys. Proc. Suppl. 28A (1992) 172-175.
[Kim:1992aaa]
[11-26]
When do neutrinos really oscillate?: Coherence of neutrino oscillations in the wave packet treatment, C. Giunti, C. W. Kim, U. W. Lee, 1991. $15^{\mathrm{th}}$ \textit{Johns Hopkins Workshop on Current Problems in Particle Physics}, Baltimore, 1991, pag. 131.
[Giunti:1991sw]

12 - Theory - Mossbauer Neutrinos

[12-1]
Mossbauer Antineutrinos: Recoilless Resonant Emission and Absorption of Electron Antineutrinos, Walter Potzel, Phys. Part. Nucl. 42 (2011) 661-666, arXiv:1012.5000.
[Potzel:2010rxg]
[12-2]
Comment on 'Hypersharp Resonant Capture of Neutrinos as a Laboratory Probe of the Planck Length', W. Potzel, F. E. Wagner, Phys. Rev. Lett. 103 (2009) 099101, arXiv:0908.3985.
[Potzel:2009qe]
[12-3]
Why Neutrino Lines are Hypersharp, R. S. Raghavan, arXiv:0908.2980, 2009.
[Raghavan:2009sf]
[12-4]
Time-Energy Uncertainty in Neutrino Resonance: Quest for the Limit of Validity of Quantum Mechanics, R. S. Raghavan, arXiv:0907.0878, 2009.
[Raghavan:2009dk]
[12-5]
Difficulties in using the sharp neutrino spectrum at short times, Harry J. Lipkin, arXiv:0904.4913, 2009.
[Lipkin:2009uq]
[12-6]
Mossbauer neutrinos in quantum mechanics and quantum field theory, Joachim Kopp, JHEP 06 (2009) 049, arXiv:0904.4346.
[Kopp:2009fa]
[12-7]
Hypersharp Resonant Capture of Neutrinos as a Laboratory Probe of the Planck Length, R. S. Raghavan, Phys. Rev. Lett. 102 (2009) 091804, arXiv:0903.0787.
[Raghavan:2009hj]
[12-8]
Reply to 'Comment on 'Hypersharp Resonant Capture of Neutrinos as a Laboratory Probe of the Planck Length', R. S. Raghavan, Phys. Rev. Lett. 103 (2009) 099103.
[Raghavan:2009zz]
[12-9]
Comment on 'Hypersharp Resonant Capture of Neutrinos as a Laboratory Probe of the Planck Length', J. P. Schiffer, Phys. Rev. Lett. 103 (2009) 099102.
[Schiffer:2009zz]
[12-10]
Different Schemes of Neutrino Oscillations in Mossbauer Neutrino Experiment, S. M. Bilenky, F. von Feilitzsch, W. Potzel, arXiv:0804.3409, 2008.
[Bilenky:2008dk]
[12-11]
On application of the time-energy uncertainty relation to Mossbauer neutrino experiments, Evgeny Kh. Akhmedov, Joachim Kopp, Manfred Lindner, J. Phys. G36 (2009) 078001, arXiv:0803.1424.
[Akhmedov:2008zz]
[12-12]
Time-Energy Uncertainty Relations for Neutrino Oscillation and Mossbauer Neutrino Experiment, S. M. Bilenky, F. von Feilitzsch, W. Potzel, J. Phys. G35 (2008) 095003, arXiv:0803.0527.
[Bilenky:2008ez]
[12-13]
Oscillations of Mossbauer neutrinos, Evgeny Kh. Akhmedov, Joachim Kopp, Manfred Lindner, JHEP 05 (2008) 005, arXiv:0802.2513.
[Akhmedov:2008jn]
[12-14]
Recoilless Resonance Absorption of Tritium Antineutrinos and Time-Energy Uncertainty Relation, S. M. Bilenky, arXiv:0708.0260, 2007.
[Bilenky:2007vs]
[12-15]
Recoilless resonant neutrino capture and basics of neutrino oscillations, S. M. Bilenky, F. von Feilitzsch, W. Potzel, J. Phys. G34 (2007) 987, arXiv:hep-ph/0611285.
[Bilenky:2006hk]

13 - Theory - Mossbauer Neutrinos - Talks

[13-1]
Moessbauer antineutrinos: some basic considerations, Walter Potzel, Acta Phys.Polon. B40 (2009) 3033-3039, arXiv:0912.2221. XXXIII International Conference of Theoretical Physics, Matter To The Deepest: Recent Developments in Physics of Fundamental Interactions, Ustron, Poland, September 11-16, 2009.
[Potzel:2009pr]
[13-2]
Are Neutrino Oscillations a Non-stationary Phenomenon?, S. M. Bilenky, F. von Feilitzsch, W. Potzel, arXiv:0903.5234, 2009. XIII International workshop on 'Neutrino Telescopes', Venice, March 10-13.
[Bilenky:2009uv]
[13-3]
Neutrino oscillations and time-energy uncertainty relation, S. Bilenky, 2008. NPNAP2008, 16-21 November 2008, ECT', Trento, Italy. http://www.uni-tuebingen.de/ilias-dbd/Trento08/src/talks/2ndDAY/Bilenkytrento_08.pdf.
[Bilenky-2008-ECT]
[13-4]
Moessbauer neutrinos, J. Kopp, 2008. NPNAP2008, 16-21 November 2008, ECT', Trento, Italy. http://www.uni-tuebingen.de/ilias-dbd/Trento08/src/talks/2ndDAY/Kopp_Moessbauer.pdf.
[Kopp-2008-ECT]
[13-5]
Recoilless resonant neutrino experiment and origin of neutrino oscillations, S. M. Bilenky, F. von Feilitzsch, W. Potzel, AIP Conf. Proc. 944 (2007) 119-129, arXiv:0705.0345. Next Generation Nucleon Decay and Neutrino Detectors, NNN06, September 21-23, 2006, University of Washington, Seattle, USA.
[Bilenky:2007ii]

14 - Theory - Single-Particle Entanglement

[14-1]
Quantum entanglement between neutrino eigenstates in the presence of the subsequent phase shift of the neutrino oscillations, Hoda Abdolalizade, Ekrem Aydiner, EPL 146 (2024) 54002, arXiv:2405.12239.
[Abdolalizadeh:2024sxp]
[14-2]
Quantum Correlations in Neutrino Oscillation: Coherence and Entanglement, M. M. Ettefaghi, Z. S. Tabatabaei Lotfi, R. Ramezani Arani, EPL 132 (2020) 31002, arXiv:2011.13010.
[Ettefaghi:2020otb]
[14-3]
Tri-Partite entanglement in Neutrino Oscillations, Abhishek Kumar Jha, Supratik Mukherjee, Bindu A. Bambah, Mod.Phys.Lett.A 36 (2021) 2150056, arXiv:2004.14853.
[KumarJha:2020pke]
[14-4]
A quantum information theoretic analysis of three flavor neutrino oscillations, Subhashish Banerjee, Ashutosh Kumar Alok, R. Srikanth, Beatrix C. Hiesmayr, Eur. Phys. J. C75 (2015) 487, arXiv:1508.03480.
[Banerjee:2015mha]
[14-5]
Quantum correlations in two-flavour neutrino oscillations, Ashutosh Kumar Alok, Subhashish Banerjee, S. Uma Sankar, Nucl. Phys. B909 (2016) 65-72, arXiv:1411.5536.
[Alok:2014gya]
[14-6]
Maximal correlation between flavor entanglement and oscillation damping due to localization effects, Victor A. S. V. Bittencourt, Celso J. Villas-Boas, Alex E. Bernardini, Europhys.Lett. 108 (2014) 50005, arXiv:1411.3634.
[Bittencourt:2014pda]
[14-7]
A field-theoretical approach to entanglement in neutrino mixing and oscillations, M. Blasone, F. Dell'Anno, S. De Siena, F. Illuminati, Europhys.Lett. 106 (2014) 30002, arXiv:1401.7793.
[Blasone:2014jea]
[14-8]
Entanglement in a QFT Model of Neutrino Oscillations, M. Blasone, F. Dell'Anno, S. De Siena, F. Illuminati, Adv. High Energy Phys. 2014 (2014) 359168.
[Blasone:2014cub]
[14-9]
Multipartite entangled states in particle mixing, M. Blasone, F. Dell'Anno, S. De Siena, M. Di Mauro, F. Illuminati, Phys. Rev. D77 (2008) 096002, arXiv:0711.2268.
[Blasone:2007wp]
[14-10]
Entanglement in neutrino oscillations, Massimo Blasone, Fabio Dell'Anno, Silvio De Siena, Fabrizio Illuminati, Europhys.Lett. 85 (2009) 0002, arXiv:0707.4476.
[Blasone:2007vw]

15 - Theory - Single-Particle Entanglement - Talks

[15-1]
On entanglement in neutrino mixing and oscillations, M. Blasone, F. Dell'Anno, S. De Siena, F. Illuminati, J. Phys. Conf. Ser. 237 (2010) 012007, arXiv:1003.5486. Symmetries in Science Symposium, Bregenz 2009.
[Blasone:2010ta]

16 - Theory - Flavor States

[16-1]
Mixed states for mixing neutrinos, Gabriel Cozzella, Carlo Giunti, Phys.Rev. D98 (2018) 096010, arXiv:1804.00184.
[Cozzella:2018zwm]
[16-2]
Remark on Structure of Expectation Values of Flavor-Lepton Numbers with respect to Neutrino-Source Hadron States: Deviation from Fermi's Golden Relatio, Kanji Fujii, Norihito Toyota, arXiv:1604.03255, 2016.
[Fujii:2016rgd]
[16-3]
On Neutrino Flavor States, Chiu Man Ho, JHEP 1212 (2012) 022, arXiv:1209.3453.
[Ho:2012yja]
[16-4]
Long range spatial correlation of neutrino in pion decay, K. Ishikawa, Y. Tobita, arXiv:1102.0644, 2011.
[Ishikawa:2011ur]
[16-5]
Neutrino production states and NSI, Robert Szafron, Marek Zralek, arXiv:1010.6034, 2010.
[Szafron:2010fu]
[16-6]
Flavor mixing in a Lee-type model, C. C. Nishi, M. M. Guzzo, Phys. Rev. D78 (2008) 033008, arXiv:0803.1422.
[Nishi:2008zx]
[16-7]
Quantum Entanglement of Neutrino Pairs, Junli Li, Cong-Feng Qiao, arXiv:0708.0291, 2007.
[Li:2007bm]
[16-8]
Neutrino production states in oscillation phenomena: Are they pure or mixed?, Michal Ochman, Robert Szafron, Marek Zralek, J. Phys. G35 (2008) 065003, arXiv:0707.4089.
[Ochman:2007vn]
[16-9]
The construction of Dirac wave packets for a fermionic particle non-minimally coupling with an external magnetic field, Alex E. Bernardini, Int. J. Theor. Phys. 46 (2007) 1562, arXiv:hep-ph/0611342.
[Bernardini:2006cn]
[16-10]
Neutrino Flavor States and the Quantum Theory of Neutrino Oscillations, Carlo Giunti, J. Phys. G: Nucl. Part. Phys. 34 (2007) R93-R109, arXiv:hep-ph/0608070. http://www.iop.org/EJ/abstract/0954-3899/34/2/R02/.
[Giunti:2006fr]
[16-11]
Flavor Neutrinos States, Carlo Giunti, arXiv:hep-ph/0402217, 2004.
[Giunti:2004zf]
[16-12]
Neutrino wave packets in quantum field theory, C. Giunti, JHEP 11 (2002) 017, arXiv:hep-ph/0205014.
From the abstract: We present a model of neutrino oscillations in the framework of quantum field theory in which the propagating neutrino and the particles participating to the production and detection processes are described by wave packets.
[Giunti:2002xg]
[16-13]
Lepton numbers in the framework of neutrino mixing, S. M. Bilenky, C. Giunti, Int. J. Mod. Phys. A16 (2001) 3931-3949, arXiv:hep-ph/0102320.
[Bilenky:2001yh]
[16-14]
Comments on the weak states of neutrinos, C. Giunti, C. W. Kim, U. W. Lee, Phys. Rev. D45 (1992) 2414-2420.
[Giunti:1991cb]
[16-15]
Muon and electron number nonconservation in a V-A six quark model, B. W. Lee, S. Pakvasa, R. E. Shrock, H. Sugawara, Phys. Rev. Lett. 38 (1977) 937.
[Lee:1977qz]

17 - Theory - Flavor States - Talks

[17-1]
Non-standard interactions, density matrix and neutrino oscillations, Robert Szafron, Marek Zralek, Acta Phys. Polon. B42 (2011) 2501-2508. Matter to the deepest: Recent developments in physics of fundamental interactions. Proceedings, 35th International Conference of Theoretical Physics, Ustron'11, Ustron, Poland, September 12-18.
[Szafron:2011zz]
[17-2]
Neutrinos, Sandip Pakvasa, 1989. Phenomenology of the Standard Model and Beyond, Workshop on High Energy Physics Phenomenology, Bombay, India, 2-15 Jan 1989.
[Pakvasa:1989nb]
[17-3]
Low-energy weak interactions: theory, Sandip Pakvasa, AIP Conf. Proc. 68 (1980) 1164.
[Pakvasa:1980bz]

18 - Theory - Size of Neutrino Wave Packets

[18-1]
The Width of an Electron-Capture Neutrino Wave Packet, B. J. P. Jones, E. Marzec, J. Spitz, arXiv:2404.19746, 2024.
[Jones:2024jnp]
[18-2]
The Width of a Beta-decay-induced Antineutrino Wavepacket, B. J. P. Jones, E. Marzec, J. Spitz, Phys.Rev.D 107 (2023) 013008, arXiv:2211.00026.
[Jones:2022hme]
[18-3]
Reply to 'Comment on 'Damping of neutrino oscillations, decoherence and the lengths of neutrino wave packets'', Evgeny Akhmedov, Alexei Y. Smirnov, arXiv:2210.01547, 2022.
[Akhmedov:2022mal]
[18-4]
Comment on 'Damping of neutrino oscillations, decoherence and the lengths of neutrino wave packets', B. J. P. Jones, arXiv:2209.00561, 2022.
[Jones:2022cvh]
[18-5]
Damping of neutrino oscillations, decoherence and the lengths of neutrino wave packets, Evgeny Akhmedov, Alexei Y. Smirnov, JHEP 11 (2022) 082, arXiv:2208.03736.
[Akhmedov:2022bjs]
[18-6]
Hypersharp Neutrino Lines, R. S. Raghavan, Phys. Rev. Lett. 102 (2008) 091804, arXiv:0805.4155.
[Raghavan:2008tb]
[18-7]
Effect of Coulomb collisions on time variations of the solar neutrino flux, Leonid Malyshkin, Russell Kulsrud, Mon. Not. Roy. Astron. Soc. 316 (2000) 249-266, arXiv:astro-ph/9901015.
[Malyshkin:1999ei]
[18-8]
Coherence effects in neutrino oscillations, Ken Kiers, Shmuel Nussinov, Nathan Weiss, Phys. Rev. D53 (1996) 537-547, arXiv:hep-ph/9506271.
[Kiers:1995zj]
[18-9]
Coherence condition for resonant neutrino oscillations, Hajime Anada, Haruhiko Nishimura, Phys. Rev. D41 (1990) 2379.
[Anada:1990fk]
[18-10]
Collisional incoherence in neutrino line emission, Abraham Loeb, Phys. Rev. D39 (1989) 1009.
[Loeb:1989av]
[18-11]
Neutrino vacuum oscillation and neutrino burst from SN1987a, H. Anada, H. Nishimura, Phys. Rev. D37 (1988) 552.
[Anada:1988aw]
[18-12]
Solar neutrino oscillations, Lawrence Krauss, Frank Wilczek, Phys. Rev. Lett. 55 (1985) 122-125.
[Krauss:1985pf]
[18-13]
Solar neutrinos and neutrino mixing, S. Nussinov, Phys. Lett. B63 (1976) 201-203.
Comment: The size of solar neutrino wave packets is estimated to be due to pressure broadening (also known as collisional broadening), i.e. to the interruption of coherent emission by the collisions of the emitting nucleus with the surrounding nuclei in the plasma.
[Nussinov-76]

19 - Theory - Quantum Information

[19-1]
Qutrit and Qubit Circuits for Three-Flavor Collective Neutrino Oscillations, Francesco Turro, Ivan A. Chernyshev, Ramya Bhaskar, Marc Illa, arXiv:2407.13914, 2024.
[Turro:2024shh]
[19-2]
Quantum Spread Complexity in Neutrino Oscillations, Khushboo Dixit, S. Shajidul Haque, Soebur Razzaque, Eur.Phys.J.C 84 (2024) 260, arXiv:2305.17025.
[Dixit:2023fke]
[19-3]
Quantum mismatch: a powerful measure of 'quantumness' in neutrino oscillations, Dibya S. Chattopadhyay, Amol Dighe, Phys.Rev.D 108 (2023) 112013, arXiv:2304.02475.
[Chattopadhyay:2023xwr]
[19-4]
Nonlocality and entropic uncertainty relations in neutrino oscillations, Massimo Blasone, Silvio De Siena, Cristina Matrella, Eur.Phys.J.Plus 137 (2022) 1272, arXiv:2206.13218.
[Blasone:2022ete]
[19-5]
Complete complementarity relations for quantum correlations in neutrino oscillations, V.A.S.V. Bittencourt, M. Blasone, S. De Siena, C. Matrella, Eur.Phys.J.C 82 (2022) 566, arXiv:2205.01601.
[Bittencourt:2022tcl]
[19-6]
Neutrinos as Qubits and Qutrits, Abhishek Kumar Jha, Akshay Chatla, Bindu A. Bambah, Eur.Phys.J.Plus 139 (2024) 68, arXiv:2203.13485.
[Jha:2022yik]
[19-7]
Scalable Qubit Representations of Neutrino Mixing Matrices, M.J. Molewski, B.J.P. Jones, Phys.Rev.D 105 (2022) 056024, arXiv:2111.05401.
[Molewski:2021ogs]
[19-8]
Neutrino Oscillations in a Quantum Processor, C.A. Arguelles, B.J.P. Jones, Phys.Rev.Research. 1 (2019) 033176, arXiv:1904.10559.
[Arguelles:2019phs]
[19-9]
Study of coherence and mixedness in meson and neutrino systems, Khushboo Dixit, Javid Naikoo, Subhashish Banerjee, Ashutosh Kumar Alok, Eur.Phys.J. C79 (2019) 96, arXiv:1809.09947.
[Dixit:2018gjc]
[19-10]
Quantum Walks as simulators of neutrino oscillations in vacuum and matter, Giuseppe Di Molfetta, Armando Perez, New J. Phys. 18 (2016) 103038, arXiv:1607.00529.
[DiMolfetta:2016gzc]

20 - Theory - Neutrino-Antineutrino Transitions

[20-1]
Heavy Neutrino-Antineutrino Oscillations in Quantum Field Theory, Stefan Antusch, Johannes Rosskopp, JHEP 2103 (2021) 170, arXiv:2012.05763.
[Antusch:2020pnn]
[20-2]
Properties of CP Violation in Neutrino-Antineutrino Oscillations, Zhi-zhong Xing, Phys. Rev. D87 (2013) 053019, arXiv:1301.7654.
[Xing:2013ty]
[20-3]
Manifest CP Violation from Majorana Phases, A. de Gouvea, B. Kayser, R. Mohapatra, Phys. Rev. D67 (2003) 053004, arXiv:hep-ph/0211394.
[deGouvea:2002gf]
[20-4]
Neutrino anti-neutrino transitions, Paul Langacker, Jing Wang, Phys. Rev. D58 (1998) 093004, arXiv:hep-ph/9802383.
[Langacker:1998pv]
[20-5]
CP properties of the leptonic sector for Majorana neutrinos, J. Bernabeu, P. Pascual, Nucl. Phys. B228 (1983) 21.
[Bernabeu:1983vi]
[20-6]
Neutrino Oscillation Thought Experiment, J. Schechter, J. W. F. Valle, Phys. Rev. D23 (1981) 1666.
[Schechter:1980gk]
[20-7]
The phenomenology of neutrino oscillations, I. Yu. Kobzarev, B. V. Martemyanov, L. B. Okun, M. G. Shchepkin, Sov. J. Nucl. Phys. 32 (1980) 823.
[Kobzarev:1980nk]
[20-8]
Neutrino - anti-neutrino oscillation, Dan-di Wu, Phys. Lett. B96 (1980) 311.
[Wu:1980px]
[20-9]
Neutrino - anti-neutrinos oscillations, John N. Bahcall, H. Primakoff, Phys. Rev. D18 (1978) 3463-3466.
[Bahcall:1978jn]

21 - Theory - Matter Effects

[21-1]
Phase-Space methods for neutrino oscillations: extension to multi-beams, Denis Lacroix, Angel Bauge, Bulent Yilmaz, Mariane Mangin-Brinet, Alessandro Roggero, A. Baha Balantekin, arXiv:2409.20215, 2024.
[Lacroix:2024pbb]
[21-2]
Quantum maximum entropy closure for small flavor coherence, Julien Froustey, James P. Kneller, Gail C. McLaughlin, arXiv:2409.05807, 2024.
[Froustey:2024sgz]
[21-3]
The case for adopting the sequential Jacobi's diagonalization algorithm in neutrino oscillation physics, Gustavo A. Valdiviesso, arXiv:2407.17188, 2024.
[Valdiviesso:2024dkm]
[21-4]
Muon-induced collisional flavor instability in core-collapse supernova, Jiabao Liu, Hiroki Nagakura, Ryuichiro Akaho, Akira Ito, Masamichi Zaizen, Shun Furusawa, Shoichi Yamada, Phys.Rev.D 110 (2024) 043039, arXiv:2407.10604.
[Liu:2024wzd]
[21-5]
Neutrino quantum kinetics in two spatial dimensions, Marie Cornelius, Shashank Shalgar, Irene Tamborra, arXiv:2407.04769, 2024.
[Cornelius:2024zsb]
[21-6]
Neutrino many-body flavor evolution: the full Hamiltonian, Vincenzo Cirigliano, Srimoyee Sen, Yukari Yamauchi, arXiv:2404.16690, 2024.
[Cirigliano:2024pnm]
[21-7]
Revisiting series expansions of neutrino oscillation and decay probabilities in matter, Jesper Gronroos, Tommy Ohlsson, Sampsa Vihonen, arXiv:2401.16864, 2024.
[Gronroos:2024jbs]
[21-8]
Perturbing Fast Neutrino Flavor Conversion, Marie Cornelius, Shashank Shalgar, Irene Tamborra, JCAP 02 (2024) 038, arXiv:2312.03839.
[Cornelius:2023eop]
[21-9]
Detecting Fast Neutrino Flavor Conversions with Machine Learning, Sajad Abbar, Hiroki Nagakura, Phys.Rev.D 109 (2024) 023033, arXiv:2310.03807.
[Abbar:2023zkm]
[21-10]
From ray to spray: augmenting amplitudes and taming fast oscillations in fully numerical neutrino codes, Michele Maltoni, JHEP 11 (2023) 033, arXiv:2308.00037.
[Maltoni:2023cpv]
[21-11]
Equilibration of quantum many-body fast neutrino flavor oscillations, Joshua D. Martin, Duff Neill, A. Roggero, Huaiyu Duan, J. Carlson, Phys.Rev.D 108 (2023) 123010, arXiv:2307.16793.
[Martin:2023gbo]
[21-12]
Evaluating approximate asymptotic distributions for fast neutrino flavor conversions in a periodic 1D box, Zewei Xiong, Meng-Ru Wu, Sajad Abbar, Soumya Bhattacharyya, Manu George, Chun-Yu Lin, Phys.Rev.D 108 (2023) 063003, arXiv:2307.11129.
[Xiong:2023vcm]
[21-13]
Holographic neutrino transport in dense strongly-coupled matter, M. Jarvinen, E. Kiritsis, F. Nitti, E. Preau, JHEP 11 (2023) 139, arXiv:2306.00192.
[Jarvinen:2023xrx]
[21-14]
Quantum coherence and entanglement in neutral-current neutrino oscillation in matter, M. M. Ettefaghi, Z. Askaripour Ravari, Eur. Phys. J. C 83 (2023) 417, arXiv:2305.12194.
[Ettefaghi:2023zsh]
[21-15]
Neutrino many-body correlations, Lucas Johns, arXiv:2305.04916, 2023.
[Johns:2023ewj]
[21-16]
Do we have enough evidence to invalidate the mean-field approximation adopted to model collective neutrino oscillations?, Shashank Shalgar, Irene Tamborra, Phys.Rev.D 107 (2023) 123004, arXiv:2304.13050.
[Shalgar:2023ooi]
[21-17]
Characterizing quasi-steady states of fast neutrino-flavor conversion by stability and conservation laws, Masamichi Zaizen, Hiroki Nagakura, Phys.Rev.D 107 (2023) 123021, arXiv:2304.05044.
[Zaizen:2023ihz]
[21-18]
Fast flavor evolution in dense neutrino systems, as described in quantum field theory, R. F. Sawyer, Phys.Rev.D 108 (2023) 093001, arXiv:2304.01987.
[Sawyer:2023dov]
[21-19]
Flavor conversions with energy-dependent neutrino emission and absorption, Chinami Kato, Hiroki Nagakura, Masamichi Zaizen, Phys.Rev.D 108 (2023) 023006, arXiv:2303.16453.
[Kato:2023dcw]
[21-20]
Symmetry and bipolar motion in collective neutrino flavor oscillations, Zewei Xiong, Meng-Ru Wu, Yong-Zhong Qian, Phys.Rev.D 108 (2023) 043007, arXiv:2303.05906.
[Xiong:2023upa]
[21-21]
Slow and fast collective neutrino oscillations: Invariants and reciprocity, Damiano F. G. Fiorillo, Georg G. Raffelt, Phys.Rev.D 107 (2023) 043024, arXiv:2301.09650.
[Fiorillo:2023mze]
[21-22]
Neutrino Oscillations in Matter using the Adjugate of the Hamiltonian, Asli Mohamed Abdullahi, Stephen J. Parke, Eur.Phys.J.C 84 (2024) 707, arXiv:2212.12565.
[Abdullahi:2022fkh]
[21-23]
Nonadiabatic Level Crossing in Resonant Neutrino Oscillations, Stephen J. Parke, Phys. Rev. Lett. 57 (1986) 1275-1278, arXiv:2212.06978.
[Parke:1986jy]
[21-24]
Collisional flavor instability in dense neutrino gases, Zewei Xiong, Lucas Johns, Meng-Ru Wu, Huaiyu Duan, Phys.Rev.D 108 (2023) 083002, arXiv:2212.03750.
[Xiong:2022zqz]
[21-25]
Simple method for determining asymptotic states of fast neutrino-flavor conversion, Masamichi Zaizen, Hiroki Nagakura, Phys.Rev.D 107 (2023) 103022, arXiv:2211.09343.
[Zaizen:2022cik]
[21-26]
Entanglement in three-flavor collective neutrino oscillations, Pooja Siwach, Anna M. Suliga, A. Baha Balantekin, Phys.Rev.D 107 (2023) 023019, arXiv:2211.07678.
[Siwach:2022xhx]
[21-27]
Symmetry in neutrino oscillation in matter: New picture and the $\nu$SM - non-unitarity interplay, Hisakazu Minakata, Symmetry 14 (2022) 2581, arXiv:2210.09453.
[Minakata:2022yvs]
[21-28]
Analytic Neutrino Oscillation Probabilities, Chee Sheng Fong, SciPost Phys. 15 (2023) 013, arXiv:2210.09436.
[Fong:2022oim]
[21-29]
Multi-Neutrino Entanglement and Correlations in Dense Neutrino Systems, Marc Illa, Martin J. Savage, Phys.Rev.Lett. 130 (2023) 221003, arXiv:2210.08656.
[Illa:2022zgu]
[21-30]
Neutrino Fast Flavor Pendulum. Part 2: Collisional Damping, Ian Padilla-Gay, Irene Tamborra, Georg G. Raffelt, Phys.Rev.D 106 (2022) 103031, arXiv:2209.11235.
[Padilla-Gay:2022wck]
[21-31]
One-loop radiative correction to the Toshev relation for neutrino oscillations in matter, Zhi-zhong Xing, Jun-yu Zhu, arXiv:2208.03488, 2022.
[Xing:2022efm]
[21-32]
Neutrino Flavor Conversion, Advection, and Collisions: The Full Solution, Shashank Shalgar, Irene Tamborra, Phys.Rev.D 107 (2023) 063025, arXiv:2207.04058.
[Shalgar:2022lvv]
[21-33]
Neutrino-anti-neutrino instability in dense neutrino systems, with applications to the early universe and to supernovae, R. F. Sawyer, arXiv:2206.09290, 2022.
[Sawyer:2022ugt]
[21-34]
Self-consistency in models of neutrino scattering and fast flavor conversion, Lucas Johns, Hiroki Nagakura, Phys.Rev.D 106 (2022) 043031, arXiv:2206.09225.
[Johns:2022bmu]
[21-35]
Role of non-gaussian quantum fluctuations in neutrino entanglement, Denis Lacroix, A. B. Balantekin, Michael J. Cervia, Amol V. Patwardhan, Pooja Siwach, Phys.Rev.D 106 (2022) 123006, arXiv:2205.09384.
[Lacroix:2022krq]
[21-36]
Elaborating the Ultimate Fate of Fast Collective Neutrino Flavor Oscillations, Soumya Bhattacharyya, Basudeb Dasgupta, Phys.Rev.D 106 (2022) 103039, arXiv:2205.05129.
[Bhattacharyya:2022eed]
[21-37]
Analytic treatment of 3-flavor neutrino oscillation and decay in matter, Dibya S. Chattopadhyay, Kaustav Chakraborty, Amol Dighe, Srubabati Goswami, JHEP 01 (2023) 051, arXiv:2204.05803.
[Chattopadhyay:2022ftv]
[21-38]
Entanglement and correlations in fast collective neutrino flavor oscillations, Alessandro Roggero, Ermal Rrapaj, Zewei Xiong, Phys.Rev.D 106 (2022) 043022, arXiv:2203.02783.
[Roggero:2022hpy]
[21-39]
Collective neutrino oscillations with tensor networks using a time-dependent variational principle, Michael J. Cervia, Pooja Siwach, Amol V. Patwardhan, A. B. Balantekin, S. N. Coppersmith, Calvin W. Johnson, Phys.Rev.D 105 (2022) 123025, arXiv:2202.01865.
[Cervia:2022pro]
[21-40]
Classical and Quantum Evolution in a Simple Coherent Neutrino Problem, Joshua D. Martin, A. Roggero, Huaiyu Duan, J. Carlson, V. Cirigliano, Phys.Rev.D 105 (2022) 083020, arXiv:2112.12686.
[Martin:2021bri]
[21-41]
Many-body effects of collective neutrino oscillations, Zewei Xiong, Phys.Rev.D 105 (2022) 103002, arXiv:2111.00437.
[Xiong:2021evk]
[21-42]
Flavor isospin waves in one-dimensional axisymmetric neutrino gases, Huaiyu Duan, Joshua D. Martin, Sivaprasad Omanakuttan, Phys.Rev.D 104 (2021) 123026, arXiv:2110.02286.
[Duan:2021woc]
[21-43]
Collective Neutrino Flavor Instability Requires Spectral Crossing, Basudeb Dasgupta, Phys.Rev.Lett. 128 (2022) 081102, arXiv:2110.00192.
[Dasgupta:2021gfs]
[21-44]
Neutrino flavor pendulum reloaded: The case of fast pairwise conversion, Ian Padilla-Gay, Irene Tamborra, Georg G. Raffelt, Phys.Rev.Lett. 128 (2022) 121102, arXiv:2109.14627.
[Padilla-Gay:2021haz]
[21-45]
Dynamics of fast neutrino flavor conversions with scattering effects: a detailed analysis, Hirokazu Sasaki, Tomoya Takiwaki, arXiv:2109.14011, 2021.
[Sasaki:2021zld]
[21-46]
Spectral splits and entanglement entropy in collective neutrino oscillations, Amol V. Patwardhan, Michael J. Cervia, A. B. Balantekin, Phys.Rev.D 104 (2021) 123035, arXiv:2109.08995.
[Patwardhan:2021rej]
[21-47]
Simulations of Fast Neutrino Flavor Conversions with Interactions in Inhomogeneous Media, Guenter Sigl, Phys.Rev.D 105 (2022) 043005, arXiv:2109.00091.
[Sigl:2021tmj]
[21-48]
Symmetry breaking induced by pairwise conversion of neutrinos in compact sources, Shashank Shalgar, Irene Tamborra, Phys.Rev.D 105 (2022) 043018, arXiv:2106.15622.
[Shalgar:2021oko]
[21-49]
Stationary solutions for fast flavor oscillations of a homogeneous dense neutrino gas, Zewei Xiong, Yong-Zhong Qian, Phys.Lett.B 820 (2021) 136550, arXiv:2104.05618.
[Xiong:2021dex]
[21-50]
Collective neutrino oscillations on a quantum computer, Kubra Yeter-Aydeniz, Shikha Bangar, George Siopsis, Raphael C. Pooser, Quant. Inf. Proc. 21 (2022) 84, arXiv:2104.03273.
[Yeter-Aydeniz:2021olz]
[21-51]
Fast neutrino flavor instability and neutrino flavor lepton number crossings, Taiki Morinaga, Phys.Rev.D 105 (2022) L101301, arXiv:2103.15267.
[Morinaga:2021vmc]
[21-52]
Spatiotemporal linear instability analysis of collective neutrino flavor conversion in 4-dimensional spacetime, Taiki Morinaga, Phys.Rev. D103 (2021) 083014, arXiv:2103.14308.
[Morinaga:2021zib]
[21-53]
The three flavor revolution in fast pairwise neutrino conversion, Shashank Shalgar, Irene Tamborra, Phys.Rev.D 104 (2021) 023011, arXiv:2103.12743.
[Shalgar:2021wlj]
[21-54]
Dynamical Phase Transitions in models of Collective Neutrino Oscillations, Alessandro Roggero, Phys.Rev.D 104 (2021) 123023, arXiv:2103.11497.
[Roggero:2021fyo]
[21-55]
Coherence of oscillations in matter and supernova neutrinos, Yago P. Porto-Silva, Alexei Yu. Smirnov, JCAP 2106 (2021) 029, arXiv:2103.10149.
[Porto-Silva:2021ael]
[21-56]
Simulation of collective neutrino oscillations on a quantum computer, Benjamin Hall, Alessandro Roggero, Alessandro Baroni, Joseph Carlson, Phys. Rev. D 104 (2021) 063009, arXiv:2102.12556.
[Hall:2021rbv]
[21-57]
Entanglement and Many-Body effects in Collective Neutrino Oscillations, Alessandro Roggero, Phys.Rev.D 104 (2021) 103016, arXiv:2102.10188.
[Roggero:2021asb]
[21-58]
Neutrino oscillations in matter: from microscopic to macroscopic description, Evgeny Akhmedov, JHEP 2102 (2021) 107, arXiv:2010.07847.
[Akhmedov:2020vua]
[21-59]
Accounting for the Heisenberg and Pauli principles in the kinetic approach to neutrino oscillations, A. Kartavtsev, JHEP 2011 (2020) 135, arXiv:2007.13736.
[Kartavtsev:2020nut]
[21-60]
Fast Neutrino Flavor Conversion at Late Time, Soumya Bhattacharyya, Basudeb Dasgupta, Phys.Rev. D102 (2020) 063018, arXiv:2005.00459.
[Bhattacharyya:2020dhu]
[21-61]
Neutrino Oscillations in Dark Matter, Ki-Young Choi, Eung Jin Chun, Jongkuk Kim, Phys.Dark Univ. 30 (2020) 100606, arXiv:1909.10478.
[Choi:2019zxy]
[21-62]
Dynamic fast flavor oscillation waves in dense neutrino gases, Joshua D. Martin, Changhao Yi, Huaiyu Duan, Phys.Lett. B800 (2020) 135088, arXiv:1909.05225.
[Martin:2019gxb]
[21-63]
Fibonacci Fast Convergence for Neutrino Oscillations in Matter, Peter B. Denton, Stephen J. Parke, Xining Zhang, Phys.Lett. B807 (2020) 135592, arXiv:1909.02009.
[Denton:2019qzn]
[21-64]
On the Properties of the Effective Jarlskog Invariant for Three-flavor Neutrino Oscillations in Matter, Xin Wang, Shun Zhou, Nucl.Phys. B950 (2020) 114867, arXiv:1908.07304.
[Wang:2019dal]
[21-65]
Entanglement and Collective Neutrino Oscillations, Michael J. Cervia, Amol V. Patwardhan, A. B. Balantekin, S. N. Coppersmith, Calvin W. Johnson, Phys.Rev. D100 (2019) 083001, arXiv:1908.03511.
[Cervia:2019res]
[21-66]
Eigenvalues: the Rosetta Stone for Neutrino Oscillations in Matter, Peter B. Denton, Stephen J. Parke, Xining Zhang, Phys.Rev. D101 (2020) 093001, arXiv:1907.02534.
[Denton:2019ovn]
[21-67]
Neutrino flavor oscillations and spin rotation in matter and electromagnetic field, A. V. Chukhnova, A. E. Lobanov, Phys.Rev. D101 (2020) 013003, arXiv:1906.09351.
[Chukhnova:2019oum]
[21-68]
Fast Neutrino Flavor Conversion: Collective Motion vs. Decoherence, Francesco Capozzi, Georg Raffelt, Tobias Stirner, JCAP 1909 (2019) 002, arXiv:1906.08794.
[Capozzi:2019lso]
[21-69]
A new analytical approximation for a light sterile neutrino oscillation in matter, Baobiao Yue, Wei Li, Jiajie Ling, Fanrong Xu, Chin.Phys. C44 (2020) 103001, arXiv:1906.03781.
[Yue:2019qat]
[21-70]
Exact solution of quantum many-body collective neutrino flavor oscillations, Ermal Rrapaj, Phys.Rev. C101 (2020) 065805, arXiv:1905.13335.
[Rrapaj:2019pxz]
[21-71]
Sum rules and asymptotic behaviors of neutrino mixing in dense matter, Zhi-zhong Xing, Jing-yu Zhu, Nucl.Phys. B949 (2019) 114803, arXiv:1905.08644.
[Xing:2019owb]
[21-72]
Eigenvalues and eigenstates of the many-body collective neutrino oscillation problem, Amol V. Patwardhan, Michael J. Cervia, A. Baha Balantekin, Phys.Rev.D 99 (2019) 123013, arXiv:1905.04386.
[Patwardhan:2019zta]
[21-73]
Simple Factorization of the Jarlskog Invariant for Neutrino Oscillations in Matter, Peter B. Denton, Stephen J. Parke, Phys.Rev. D100 (2019) 053004, arXiv:1902.07185.
[Denton:2019yiw]
[21-74]
Do T asymmetries for neutrino oscillations in uniform matter have a CP-even component?, Jose Bernabeu, Alejandro Segarra, JHEP 1903 (2019) 103, arXiv:1901.02761.
[Bernabeu:2019npc]
[21-75]
The dispersion relation of the fast neutrino oscillation wave, Changhao Yi, Lei Ma, Joshua D. Martin, Huaiyu Duan, Phys.Rev. D99 (2019) 063005, arXiv:1901.01546.
[Yi:2019hrp]
[21-76]
On Fast Neutrino Flavor Conversion Modes in the Nonlinear Regime, Sajad Abbar, Maria Cristina Volpe, Phys.Lett. B790 (2019) 545-550, arXiv:1811.04215.
[Abbar:2018beu]
[21-77]
Normal-mode Analysis for Collective Neutrino Oscillations, Sagar Airen et al., JCAP 1812 (2018) 019, arXiv:1809.09137.
[Airen:2018nvp]
[21-78]
Stationary and non-stationary solutions of the evolution equation for neutrino in matter, A. V. Chukhnova, A. E. Lobanov, EPJ Web Conf. 191 (2018) 03002, arXiv:1808.07926.
[Chukhnova:2018ddf]
[21-79]
Matter Effect of Light Sterile Neutrino: An Exact Analytical Approach, Wei Li, Jiajie Ling, Fanrong Xu, Baobiao Yue, JHEP 1810 (2018) 021, arXiv:1808.03985.
[Li:2018ezt]
[21-80]
Matter parametric neutrino flavor transformation through Rabi resonances, Lei Ma, Shashank Shalgar, Huaiyu Duan, Phys.Rev. D98 (2018) 103011, arXiv:1807.10219.
[Ma:2018key]
[21-81]
Rotations Versus Perturbative Expansions for Calculating Neutrino Oscillation Probabilities in Matter, Peter B. Denton, Stephen J. Parke, Xining Zhang, Phys.Rev. D98 (2018) 033001, arXiv:1806.01277.
[Denton:2018fex]
[21-82]
On the MSW neutrino mixing effects in atomic weak interactions and double beta decays, Mihai Horoi, Eur.Phys.J. A56 (2020) 39, arXiv:1803.06332.
[Horoi:2018jyt]
[21-83]
Linear stability analysis of collective neutrino oscillations without spurious modes, Taiki Morinaga, Shoichi Yamada, Phys.Rev. D97 (2018) 023024, arXiv:1803.05913.
[Morinaga:2018aug]
[21-84]
Liouville term for neutrinos: Flavor structure and wave interpretation, Tobias Stirner, Gunter Sigl, Georg Raffelt, JCAP 1805 (2018) 016, arXiv:1803.04693.
[Stirner:2018ojk]
[21-85]
Three Neutrino Oscillations in Matter, Ara Ioannisian, Stefan Pokorski, Phys.Lett. B782 (2018) 641-645, arXiv:1801.10488.
[Ioannisian:2018qwl]
[21-86]
Towards an effective theory of collective oscillations: Neutrino conversion in a neutrino flux, Rasmus S. L. Hansen, Alexei Yu. Smirnov, JCAP 1804 (2018) 057, arXiv:1801.09751.
[Hansen:2018apu]
[21-87]
Matter-neutrino resonance in a multi-angle neutrino bulb model, A. Vlasenko, G. C. McLaughlin, Phys.Rev. D97 (2018) 083011, arXiv:1801.07813.
[Vlasenko:2018irq]
[21-88]
Compact Perturbative Expressions for Neutrino Oscillations in Matter: II, Peter B. Denton, Hisakazu Minakata, Stephen J. Parke, JHEP 1806 (2018) 109, arXiv:1801.06514.
[Denton:2018hal]
[21-89]
Non-unitary evolution of neutrinos in matter and the leptonic unitarity test, Chee Sheng Fong, Hisakazu Minakata, Hiroshi Nunokawa, JHEP 1902 (2019) 015, arXiv:1712.02798.
[Fong:2017gke]
[21-90]
Revisiting quantum decoherence in the matter neutrino oscillation framework, J.A. Carpio, E. Massoni, A.M. Gago, Phys.Rev. D97 (2018) 115017, arXiv:1711.03680.
[Carpio:2017nui]
[21-91]
Fast Neutrino Flavor Conversion as Oscillations in a Quartic Potential, Basudeb Dasgupta, Manibrata Sen, Phys.Rev. D97 (2018) 023017, arXiv:1709.08671.
[Dasgupta:2017oko]
[21-92]
Collective neutrino oscillations and neutrino wave packets, Evgeny Akhmedov, Joachim Kopp, Manfred Lindner, JCAP 1709 (2017) 017, arXiv:1702.08338.
[Akhmedov:2017mcc]
[21-93]
An Effective Two-Flavor Approximation for Neutrino Survival Probabilities in Matter, Hisakazu Minakata, JHEP 1705 (2017) 043, arXiv:1702.03332.
[Minakata:2017ahk]
[21-94]
Symmetric formulation of neutrino oscillations in matter and its intrinsic connection to renormalization-group equations, Shun Zhou, J.Phys. G44 (2017) 044006, arXiv:1612.03537.
[Zhou:2016luk]
[21-95]
Looking into Analytical Approximations for Three-flavor Neutrino Oscillation Probabilities in Matter, Yu-Feng Li, Jue Zhang, Shun Zhou, Jing-yu Zhu, JHEP 1612 (2016) 109, arXiv:1610.04133.
[Li:2016pzm]
[21-96]
Quantum Walks as simulators of neutrino oscillations in vacuum and matter, Giuseppe Di Molfetta, Armando Perez, New J. Phys. 18 (2016) 103038, arXiv:1607.00529.
[DiMolfetta:2016gzc]
[21-97]
Atmospheric neutrinos, $\nu_e-\nu_s$ oscillations, and a novel neutrino evolution equation, Evgeny Akhmedov, JHEP 1608 (2016) 153, arXiv:1606.07391.
[Akhmedov:2016hcb]
[21-98]
Neutrino Quantum Kinetic Equations: The Collision Term, Daniel N. Blaschke, Vincenzo Cirigliano, Phys. Rev. D94 (2016) 033009, arXiv:1605.09383.
[Blaschke:2016xxt]
[21-99]
Simplified Theory of Neutrino Oscillations in Matter with CP violation, Mikkel B. Johnson, Leonard S. Kisslinger, arXiv:1604.08233, 2016.
[Johnson:2016tzb]
[21-100]
Compact Perturbative Expressions For Neutrino Oscillations in Matter, Peter B. Denton, Hisakazu Minakata, Stephen J. Parke, JHEP 1606 (2016) 051, arXiv:1604.08167.
[Denton:2016wmg]
[21-101]
Parametric Resonance in Neutrino Oscillation: A Guide to Control the Effects of Inhomogeneous Matter Density, Masafumi Koike, Toshihiko Ota, Masako Saito, Joe Sato, Phys.Lett. B759 (2016) 266-271, arXiv:1603.09172.
[Koike:2016jrb]
[21-102]
Spectral splits of neutrinos as a BCS-BEC crossover type phenomenon, Y. Pehlivan, A. L. Subasi, N. Ghazanfari, S. Birol, H. Yuksel, Phys.Rev. D95 (2017) 063022, arXiv:1603.06360.
[Pehlivan:2016lxx]
[21-103]
Self-induced temporal instability from a neutrino antenna, Francesco Capozzi, Basudeb Dasgupta, Alessandro Mirizzi, JCAP 1604 (2016) 043, arXiv:1603.03288.
[Capozzi:2016oyk]
[21-104]
Collective neutrino flavor conversion: Recent developments, Sovan Chakraborty, Rasmus Sloth Hansen, Ignacio Izaguirre, Georg Raffelt, Nucl. Phys. B (2016), arXiv:1602.02766.
[Chakraborty:2016yeg]
[21-105]
Self-induced neutrino flavor conversion without flavor mixing, Sovan Chakraborty, Rasmus Sloth Hansen, Ignacio Izaguirre, Georg Raffelt, JCAP 1603 (2016) 042, arXiv:1602.00698.
[Chakraborty:2016lct]
[21-106]
Another look at synchronized neutrino oscillations, Evgeny Akhmedov, Alessandro Mirizzi, Nucl. Phys. B908 (2016) 382-407, arXiv:1601.07842.
[Akhmedov:2016gzx]
[21-107]
Decoherence and oscillations of supernova neutrinos, Joern Kersten, Alexei Yu. Smirnov, Eur.Phys.J. C76 (2016) 339, arXiv:1512.09068.
[Kersten:2015kio]
[21-108]
Constant matter neutrino oscillations in a parametrization-free formulation, L. J. Flores, O. G. Miranda, Phys. Rev. D93 (2016) 033009, arXiv:1511.03343.
[Flores:2015mah]
[21-109]
Non-Hermitian Neutrino Oscillations in Matter with PT Symmetric Hamiltonians, Tommy Ohlsson, Europhys.Lett. 113 (2016) 61001, arXiv:1509.06452.
[Ohlsson:2015xsa]
[21-110]
Neutrino Oscillation Probabilities in Matter with Direct and Indirect Unitarity Violation in the Lepton Mixing Matrix, Yu-Feng Li, Shu Luo, Phys. Rev. D93 (2016) 033008, arXiv:1508.00052.
[Li:2015oal]
[21-111]
Flavor instabilities in the multi-angle neutrino line model, Sajad Abbar, Huaiyu Duan, Shashank Shalgar, Phys. Rev. D92 (2015) 065019, arXiv:1507.08992.
[Abbar:2015mca]
[21-112]
Regions of Applicability of Approximate Formulations of Neutrino Oscillations in Matter, Mikkel B. Johnson, Ernest M. Henley, Leonard S. Kisslinger, arXiv:1507.07836, 2015.
[Johnson:2015iia]
[21-113]
Collective neutrino oscillations and spontaneous symmetry breaking, Huaiyu Duan, Int. J. Mod. Phys. E24 (2015) 1541008, arXiv:1506.08629.
[Duan:2015cqa]
[21-114]
Breaking the symmetries of the bulb model in two-dimensional self-induced supernova neutrino flavor conversions, Alessandro Mirizzi, Phys. Rev. D92 (2015) 105020, arXiv:1506.06805.
[Mirizzi:2015hwa]
[21-115]
Simple and Compact Expressions for Neutrino Oscillation Probabilities in Matter, Hisakazu Minakata, Stephen J Parke, JHEP 01 (2016) 180, arXiv:1505.01826.
[Minakata:2015gra]
[21-116]
Neutrino propagation in media: Flavor-, helicity-, and pair correlations, A. Kartavtsev, G. Raffelt, H. Vogel, Phys. Rev. D91 (2015) 125020, arXiv:1504.03230.
[Kartavtsev:2015eva]
[21-117]
Self-induced flavor instabilities of a dense neutrino stream in a two-dimensional model, Alessandro Mirizzi, Gianpiero Mangano, Ninetta Saviano, Phys. Rev. D92 (2015) 021702, arXiv:1503.03485.
[Mirizzi:2015fva]
[21-118]
Why Is The Neutrino Oscillation Formula Expanded In $\Delta m_{21}^{2}/\Delta m_{31}^{2}$ Still Accurate Near The Solar Resonance In Matter?, Xun-Jie Xu, JHEP 10 (2015) 090, arXiv:1502.02503.
[Xu:2015kma]
[21-119]
Analytical Theory of Neutrino Oscillations in Matter with CP violation, Mikkel B. Johnson, Ernest M. Henley, Leonard S. Kisslinger, Phys. Rev. D91 (2015) 076005, arXiv:1501.04093.
[Johnson:2015psa]
[21-120]
Spontaneous breaking of spatial symmetries in collective neutrino oscillations, Huaiyu Duan, Shashank Shalgar, Phys.Lett. B747 (2015) 139, arXiv:1412.7097.
[Duan:2014gfa]
[21-121]
Parametric enhancement of flavor oscillation in a three-neutrino framework, Kara M. Merfeld, David C. Latimer, Phys. Rev. C90 (2014) 065502, arXiv:1412.2728.
[Merfeld:2014cha]
[21-122]
Prospects for Neutrino-Antineutrino Transformation in Astrophysical Environments, Alexey Vlasenko, George M. Fuller, Vincenzo Cirigliano, arXiv:1406.6724, 2014.
[Vlasenko:2014bva]
[21-123]
A New Spin on Neutrino Quantum Kinetics, Vincenzo Cirigliano, George M. Fuller, Alexey Vlasenko, Phys.Lett. B747 (2015) 27-35, arXiv:1406.5558.
[Cirigliano:2014aoa]
[21-124]
Neutrino Magnetic Moment, CP Violation and Flavor Oscillations in Matter, Y. Pehlivan, A. B. Balantekin, Toshitaka Kajino, Phys. Rev. D90 (2014) 065011, arXiv:1406.5489.
[Pehlivan:2014zua]
[21-125]
Decoherence by wave packet separation and collective neutrino oscillations, Evgeny Akhmedov, Joachim Kopp, Manfred Lindner, arXiv:1405.7275, 2014.
[Akhmedov:2014ssa]
[21-126]
Chaotic flavor evolution in an interacting neutrino gas, Rasmus Sloth Hansen, Steen Hannestad, Phys. Rev. D90 (2014) 025009, arXiv:1404.3833.
[Hansen:2014paa]
[21-127]
Effect of interaction with neutrons in matter on flavor conversion of super-light sterile neutrino with active neutrino, Wei Liao, Yuchen Luo, Xiao-Hong Wu, JHEP 1406 (2014) 069, arXiv:1403.2559.
[Liao:2014ola]
[21-128]
Damping the neutrino flavor pendulum by breaking homogeneity, Gianpiero Mangano, Alessandro Mirizzi, Ninetta Saviano, Phys. Rev. D89 (2014) 073017, arXiv:1403.1892.
[Mangano:2014zda]
[21-129]
On nonadiabatic contributions to the neutrino oscillation probability and the formalism by Kimura, Takamura and Yokomakura, Osamu Yasuda, Phys. Rev. D89 (2014) 093023, arXiv:1402.5569.
[Yasuda:2014hwa]
[21-130]
Transport Equations for Oscillating Neutrinos, Yunfan Zhang, Adam Burrows, Phys. Rev. D88 (2013) 105009, arXiv:1310.2164.
[Zhang:2013lka]
[21-131]
Flavor Oscillation Modes In Dense Neutrino Media, Huaiyu Duan, Phys. Rev. D88 (2013) 125008, arXiv:1309.7377.
[Duan:2013kba]
[21-132]
Neutrino Quantum Kinetics, Alexey Vlasenko, George M. Fuller, Vincenzo Cirigliano, Phys. Rev. D89 (2014) 105004, arXiv:1309.2628.
[Vlasenko:2013fja]
[21-133]
Neutrino oscillations in a turbulent plasma, Jose Tito Mendonca, Fernando Haas, Physics of Plasmas v. 20, p. 072107 (2013), arXiv:1307.8145.
[Mendonca:2013sma]
[21-134]
Exact solution to neutrino-plasma two-flavor dynamics, Fernando Haas, Jose Tito Mendonca, J.Plasma Phys. 79 (2013) 991, arXiv:1307.8141.
[Haas:2013rma]
[21-135]
Extended evolution equations for neutrino propagation in astrophysical and cosmological environments, Cristina Volpe, Daavid Vaananen, Catalina Espinoza, Phys. Rev. D87 (2013) 113010, arXiv:1302.2374.
[Volpe:2013uxl]
[21-136]
Implications of the Dirac CP phase upon parametric resonance for sub-GeV neutrinos, Edouard A. Hay, David C. Latimer, Phys. Rev. C86 (2012) 035501, arXiv:1207.5694.
[Hay:2012hw]
[21-137]
Wave Packet Approach to Neutrino Oscillations with Matter Effects, Nan Qin, Bo-Qiang Ma, arXiv:1206.0812, 2012.
[Qin:2012su]
[21-138]
Quantum field theoretic approach to neutrino oscillations in matter, Evgeny Kh. Akhmedov, Alina Wilhelm, JHEP 01 (2013) 165, arXiv:1205.6231.
[Akhmedov:2012mk]
[21-139]
Lepton number violating effects in neutrino oscillations, Sebastian Hollenberg, Octavian Micu, Palash B. Pal, Phys. Rev. D85 (2012) 053004, arXiv:1112.1523.
[Hollenberg:2011aa]
[21-140]
Invariants of Collective Neutrino Oscillations, Y. Pehlivan, A. B. Balantekin, Toshitaka Kajino, Takashi Yoshida, Phys. Rev. D84 (2011) 065008, arXiv:1105.1182.
[Pehlivan:2011hp]
[21-141]
Neutrino oscillations in nuclear media, Iman Motie, She-Sheng Xue, arXiv:1104.2837, 2011.
[Motie:2011nw]
[21-142]
Adiabatic $\text{\&}$ non-adiabatic perturbation theory for coherence vector description of neutrino oscillations, Sebastian Hollenberg, Heinrich Pas, Phys. Rev. D85 (2012) 013013, arXiv:1103.5949.
[Hollenberg:2011tc]
[21-143]
N-mode coherence in collective neutrino oscillations, Georg G. Raffelt, Phys. Rev. D83 (2011) 105022, arXiv:1103.2891.
[Raffelt:2011yb]
[21-144]
The neutrino-neutrino interaction effects in supernovae: the point of view from the matter basis, S. Galais, J. Kneller, C. Volpe, J. Phys. G39 (2012) 035201, arXiv:1102.1471.
[Galais:2011jh]
[21-145]
On the evolution of an entangled lepton-neutrino pair, Balazs Meszena, Andras Patkos, Mod. Phys. Lett. A26 (2011) 101-107, arXiv:1009.5923.
[Meszena:2010xb]
[21-146]
Adiabatic Faraday effect in analogy to resonant neutrino oscillations, Basudeb Dasgupta, Georg G. Raffelt, Phys. Rev. D82 (2010) 123003, arXiv:1006.4158.
[Dasgupta:2010ck]
[21-147]
On the Observability of Collective Flavor Oscillations in Diffuse Supernova Neutrino Background, Sovan Chakraboty, Sandhya Choubey, Kamales Kar, Phys. Lett. B702 (2011) 209-215, arXiv:1006.3756.
[Chakraborty:2010fft]
[21-148]
Self-induced suppression of collective neutrino oscillations in a supernova, Huaiyu Duan, Alexander Friedland, Phys. Rev. Lett. 106 (2011) 091101, arXiv:1006.2359.
[Duan:2010bf]
[21-149]
Synchronization vs. decoherence of neutrino oscillations at intermediate densities, Georg G. Raffelt, Irene Tamborra, Phys. Rev. D82 (2010) 125004, arXiv:1006.0002.
[Raffelt:2010za]
[21-150]
A link between Random Matrix Theory and neutrino propagation in a turbulent medium, James P. Kneller, arXiv:1004.1288, 2010.
[Kneller:2010ky]
[21-151]
On the Independent Crossing Approximation in Three Flavor Neutrino Oscillations, K. Yamamoto, arXiv:1003.2853, 2010.
[Yamamoto:2010jc]
[21-152]
Rephasing invariance and neutrino mixing, S. H. Chiu, T. K. Kuo, JHEP 11 (2010) 080, arXiv:1003.1543.
[Chiu:2010xj]
[21-153]
Triggering collective oscillations by three-flavor effects, Basudeb Dasgupta, Georg G. Raffelt, Irene Tamborra, Phys. Rev. D81 (2010) 073004, arXiv:1001.5396.
[Dasgupta:2010ae]
[21-154]
Neutrino flavor oscillations in rotating matter, Maxim Dvornikov, Azerbaijan Astron.J. 6 (2011) 5-17, arXiv:1001.2516.
[Dvornikov:2010wc]
[21-155]
Neutrino mixing in matter, S. H. Chiu, T. K. Kuo, Lu-Xin Liu, Phys. Lett. B687 (2010) 184-187, arXiv:1001.1469.
[Chiu:2010da]
[21-156]
Matter Effects in Active-Sterile Solar Neutrino Oscillations, C. Giunti, Y. F. Li, Phys. Rev. D80 (2009) 113007, arXiv:0910.5856.
[Giunti:2009xz]
[21-157]
Geometric imprint of CP violation in two flavor neutrino oscillations, Poonam Mehta, Nucl. Phys. Proc. Suppl. 229-232 (2012) 467, arXiv:0907.0562.
[Mehta:2012bwa]
[21-158]
Three Flavor Neutrino Oscillations in Matter: Flavor Diagonal Potentials, the Adiabatic Basis and the CP phase, James P. Kneller, Gail C. McLaughlin, Phys. Rev. D80 (2009) 053002, arXiv:0904.3823.
[Kneller:2009vd]
[21-159]
Non-Boltzmann behaviour in models of interacting neutrinos, Bruce H. J. McKellar, Ivona Okuniewicz, James Quach, Int. J. Mod. Phys. A24 (2009) 1087-1096, arXiv:0903.3139.
[McKellar:2009py]
[21-160]
Fourier Analysis of the Parametric Resonance in Neutrino Oscillations, Masafumi Koike, Toshihiko Ota, Masako Saito, Joe Sato, Phys. Lett. B675 (2009) 69-72, arXiv:0902.1597.
[Koike:2009xf]
[21-161]
An accurate analytic description of neutrino oscillations in matter, E. Kh. Akhmedov, Viviana Niro, JHEP 12 (2008) 106, arXiv:0810.2679.
[Akhmedov:2008nq]
[21-162]
Self-induced parametric resonance in collective neutrino oscillations, Georg G. Raffelt, Phys. Rev. D78 (2008) 125015, arXiv:0810.1407.
[Raffelt:2008hr]
[21-163]
Neutrino Flavor Spin Waves, Huaiyu Duan, George M. Fuller, Yong-Zhong Qian, J. Phys. G36 (2009) 105003, arXiv:0808.2046.
[Duan:2008fd]
[21-164]
Collective neutrino oscillations in non-spherical geometry, Basudeb Dasgupta, Amol Dighe, Alessandro Mirizzi, Georg G. Raffelt, Phys. Rev. D78 (2008) 033014, arXiv:0805.3300.
[Dasgupta:2008cu]
[21-165]
Perturbative exponential expansion and matter neutrino oscillations, A. D. Supanitsky, J. C. D'Olivo, G. Medina-Tanco, Phys. Rev. D78 (2008) 045024, arXiv:0804.1105.
[Supanitsky:2008eq]
[21-166]
The multi-angle instability in dense neutrino systems, R. F. Sawyer, Phys. Rev. D79 (2009) 105003, arXiv:0803.4319.
[Sawyer:2008zs]
[21-167]
Simulating nonlinear neutrino flavor evolution, Huaiyu Duan, George M. Fuller, J. Carlson, Comput. Sci. Dis. 1 (2008) 015007, arXiv:0803.3650.
[Duan:2008eb]
[21-168]
Describing neutrino oscillations in matter with Magnus expansion, A. N. Ioannisian, A. Yu. Smirnov, Nucl. Phys. B816 (2009) 94-116, arXiv:0803.1967.
[Ioannisian:2008ve]
[21-169]
Stepwise Spectral Swapping with Three Neutrino Flavors, Huaiyu Duan, George M. Fuller, Yong-Zhong Qian, Phys. Rev. D77 (2008) 085016, arXiv:0801.1363.
[Duan:2008za]
[21-170]
Liouville equations for neutrino distribution matrices, Christian Y. Cardall, Phys. Rev. D78 (2008) 085017, arXiv:0712.1188.
[Cardall:2007zw]
[21-171]
Precise Formulation of Neutrino Oscillation in the Earth, Wei Liao, Phys. Rev. D77 (2008) 053002, arXiv:0710.1492.
[Liao:2007re]
[21-172]
On the exact formula for neutrino oscillation probability by Kimura, Takamura and Yokomakura, Osamu Yasuda, arXiv:0704.1531, 2007.
[Yasuda:2007jp]
[21-173]
Neutrino oscillations in medium with periodic square potential, N. A. Kazarian, M. A. Nalbandyan, arXiv:hep-ph/0703192, 2007.
[Kazarian:2007ci]
[21-174]
Aproximative solutions to the neutrino oscillation problem in matter, Verissimo M. de Aquino, J. S. S. de Oliveira, Phys. Scripta 77 (2008) 045101, arXiv:hep-ph/0703151.
[deAquino:2007sx]
[21-175]
Higher order correction to the neutrino self-energy in a medium and its astrophysical applications, Alberto Bravo Garcia, Sarira Sahu, Mod.Phys.Lett. A22 (2007) 213-225, arXiv:hep-ph/0702280.
[BravoGarcia:2007aqu]
[21-176]
Self-induced decoherence in dense neutrino gases, G.G. Raffelt, G. Sigl, Phys. Rev. D75 (2007) 083002, arXiv:hep-ph/0701182.
[Raffelt:2007yz]
[21-177]
Sterile neutrino production via active-sterile oscillations: the quantum Zeno effect, D. Boyanovsky, C. M. Ho, JHEP 07 (2007) 030, arXiv:hep-ph/0612092.
[Boyanovsky:2006it]
[21-178]
Neutrinos and electrons in background matter: a new approach, Alexander Studenikin, arXiv:hep-ph/0611100, 2006.
[Studenikin:2006jr]
[21-179]
Landau-Zener problem in a three-level neutrino system with non-linear time dependence, P. Keranen, J. Maalampi, M. Myyrylainen, J. Riittinen, Phys. Rev. D75 (2007) 033006, arXiv:hep-ph/0611037.
[Keranen:2006gd]
[21-180]
Non equilibrium dynamics of mixing, oscillations and equilibration: a model study, D. Boyanovsky, C. M. Ho, Phys. Rev. D75 (2007) 085004, arXiv:hep-ph/0610036.
[Boyanovsky:2006yg]
[21-181]
Parametric resonance for antineutrino conversions using LSND best-fit results with a 3+1 flavor scheme, J. Linder, Phys. Rev. D74 (2006) 053001, arXiv:hep-ph/0609022.
[Linder:2006yu]
[21-182]
Neutrino-Neutrino Interactions and Flavor Mixing in Dense Matter, A.B. Balantekin, Y. Pehlivan, J. Phys. G34 (2007) 47-66, arXiv:astro-ph/0607527.
[Balantekin:2006tg]
[21-183]
Space-time propagation of neutrino wave packets at high temperature and density, C. M. Ho, D. Boyanovsky, Phys. Rev. D73 (2006) 125014, arXiv:hep-ph/0604045.
[Ho:2006zr]
[21-184]
A Simple Parameterization of Matter Effects on Neutrino Oscillations, Minako Honda, Yee Kao, Naotoshi Okamura, Tatsu Takeuchi, arXiv:hep-ph/0602115, 2006.
[Honda:2006hp]
[21-185]
Monte Carlo Neutrino Oscillations, James P. Kneller, Gail C. McLaughlin, Phys. Rev. D73 (2006) 056003, arXiv:hep-ph/0509356.
[Kneller:2005hf]
[21-186]
Neutrino oscillations in the early universe: A real-time formulation, C. M. Ho, D. Boyanovsky, H. J. de Vega, Phys. Rev. D72 (2005) 085016, arXiv:hep-ph/0508294.
[Ho:2005vj]
[21-187]
Oscillations of high energy neutrinos in matter: Precise formalism and parametric resonance, E. Kh. Akhmedov, M. Maltoni, A. Yu. Smirnov, Phys. Rev. Lett. 95 (2005) 211801, arXiv:hep-ph/0506064.
[Akhmedov:2005yj]
[21-188]
Dissipative neutrino oscillations in randomly fluctuating matter, F. Benatti, R. Floreanini, Phys. Rev. D71 (2005) 013003, arXiv:hep-ph/0412311.
[Benatti:2004hn]
[21-189]
Exact series solution to the two flavor neutrino oscillation problem in matter, Mattias Blennow, Tommy Ohlsson, J. Math. Phys. 45 (2004) 4053, arXiv:hep-ph/0405033.
[Blennow:2004qd]
[21-190]
Neutrino oscillations in low density medium, A. N. Ioannisian, A. Yu. Smirnov, Phys. Rev. Lett. 93 (2004) 241801, arXiv:hep-ph/0404060.
[Ioannisian:2004jk]
[21-191]
Non-oscillating neutrinos in vacuum, Georgios Choudalakis, arXiv:hep-ph/0403283, 2004.
[Choudalakis:2004hj]
[21-192]
Do many-particle neutrino interactions cause a novel coherent effect?, Alexander Friedland, Cecilia Lunardini, JHEP 0310 (2003) 043, arXiv:hep-ph/0307140.
[Friedland:2003eh]
[21-193]
Exact Matter-Covariant Formulation of Neutrino Oscillation Probabilities, P.F. Harrison, W.G. Scott, T.J. Weiler, Phys. Lett. B565 (2003) 159, arXiv:hep-ph/0305175.
[Harrison:2003fi]
[21-194]
Quantum Field Theory Treatment of Neutrino Oscillations in Vacuum and in Matter, Diego Pallin, Hakan Snellman, arXiv:hep-ph/0303173, 2003.
[Pallin:2003qr]
[21-195]
Operator relation among neutrino fields and oscillation formulas in matter, Kanji Fujii, Chikage Habe, Massimo Blasone, arXiv:hep-ph/0212076, 2002.
[Fujii:2002mz]
[21-196]
Light neutrino propagation in matter without heavy neutrino decoupling, F. del Aguila, M. Zralek, Acta Phys. Polon. B33 (2002) 2585, arXiv:hep-ph/0207319. Contribution to Stefan Pokorski 60th birthday.
[delAguila:2002sx]
[21-197]
Exact Formulas and Simple CP dependence of Neutrino Oscillation Probabilities in Matter with Constant Density, Keiichi Kimura, Akira Takamura, Hidekazu Yokomakura, Phys. Rev. D66 (2002) 073005, arXiv:hep-ph/0205295.
[Kimura:2002wd]
[21-198]
Analytical treatment of neutrino asymmetry equilibration from flavour oscillations in the early universe, Yvonne Y. Y. Wong, Phys. Rev. D66 (2002) 025015, arXiv:hep-ph/0203180.
[Wong:2002fa]
[21-199]
Exact Formula of Probability and CP Violation for Neutrino Oscillations in Matter, K. Kimura, A. Takamura, H. Yokomakura, Phys. Lett. B537 (2002) 86-94, arXiv:hep-ph/0203099.
[Kimura:2002hb]
[21-200]
Neutrino Matter Effect Invariants and the Observables of Neutrino Oscillations, P. F. Harrison, W. G. Scott, Phys. Lett. B535 (2002) 229-235, arXiv:hep-ph/0203021.
[Harrison:2002ee]
[21-201]
Effect of Matter Motion and Polarization in Neutrino Flavour Oscillations, A. Grigoriev, A. Lobanov, A. Studenikin, Phys. Lett. B535 (2002) 187-192, arXiv:hep-ph/0202276.
[Grigoriev:2002zr]
[21-202]
The Mikheev-Smirnov-Wolfenstein effect in moving matter, A. Grigoriev, A. Lobanov, A. Studenikin, J. Phys.G (2001), arXiv:hep-ph/0112304.
[Grigoriev:2001jk]
[21-203]
High-energy neutrino oscillations in absorbing matter, Vadim A. Naumov, Phys. Lett. B529 (2002) 199-211, arXiv:hep-ph/0112249.
[Naumov:2001ci]
[21-204]
On equations for neutrino propagation in matter, Paul M. Fishbane, Stephen G. Gasiorowicz, Phys. Rev. D64 (2001) 113017, arXiv:hep-ph/0012230.
[Fishbane:2000dc]
[21-205]
Analytical description of quasivacuum oscillations of solar neutrinos, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, S. T. Petcov, Phys. Rev. D63 (2001) 093002, arXiv:hep-ph/0011306.
[Lisi:2000su]
[21-206]
On the evolution of the neutrino state inside the sun, Alexander Friedland, Phys. Rev. D64 (2001) 013008, arXiv:hep-ph/0010231.
[Friedland:2000rn]
[21-207]
Neutrino propagation in matter using the wave packet approach, J. T. Peltoniemi, V. Sipilainen, JHEP 06 (2000) 011, arXiv:hep-ph/0004162.
[Peltoniemi:2000nw]
[21-208]
MSW effects in vacuum oscillations, Alexander Friedland, Phys. Rev. Lett. 85 (2000) 936-939, arXiv:hep-ph/0002063.
[Friedland:2000cp]
[21-209]
Four-neutrino oscillation solutions of the solar neutrino problem, C. Giunti, M. C. Gonzalez-Garcia, Carlos Pena-Garay, Phys. Rev. D62 (2000) 013005, arXiv:hep-ph/0001101.
[Giunti:2000wt]
[21-210]
CP and T violation in neutrino oscillations and invariance of Jarlskog's determinant to matter effects, P. F. Harrison, W. G. Scott, Phys. Lett. B476 (2000) 349-355, arXiv:hep-ph/9912435.
[Harrison:1999df]
[21-211]
Matter effects in four-neutrino mixing, David Dooling, Carlo Giunti, Kyungsik Kang, Chung W. Kim, Phys. Rev. D61 (2000) 073011, arXiv:hep-ph/9908513.
[Dooling:1999sg]
[21-212]
The MSW effect in quantum field theory, Christian Y. Cardall, Daniel J. H. Chung, Phys. Rev. D60 (1999) 073012, arXiv:hep-ph/9904291.
[Cardall:1999bz]
[21-213]
Day-night and energy variations for maximal neutrino mixing angles, Alan H. Guth, Lisa Randall, Mario Serna, JHEP 08 (1999) 018, arXiv:hep-ph/9903464.
[Guth:1999pi]
[21-214]
Enhancing mechanisms of neutrino transitions in a medium of nonperiodic constant-density layers and in the earth, M. V. Chizhov, S. T. Petcov, Phys. Rev. D63 (2001) 073003, arXiv:hep-ph/9903424.
[Chizhov:1999he]
[21-215]
New conditions for a total neutrino conversion in a medium, M. V. Chizhov, S. T. Petcov, Phys. Rev. Lett. 83 (1999) 1096-1099, arXiv:hep-ph/9903399.
[Chizhov:1999az]
[21-216]
Coherence and the day - night asymmetry in the solar neutrino flux, Amol S. Dighe, Q. Y. Liu, Alexei \relax Yu. Smirnov, arXiv:hep-ph/9903329, 1999.
[Dighe:1999id]
[21-217]
Coherence conditions for the forward scattering of neutrinos, Jouni I Peltoniemi, Juha T Peltoniemi, JHEP 08 (1999) 008.
[Peltoniemi:1999eq]
[21-218]
Relic neutrino asymmetry evolution from first principles, Nicole F. Bell, Raymond R. Volkas, Yvonne Y. Y. Wong, Phys. Rev. D59 (1999) 113001, arXiv:hep-ph/9809363.
[Bell:1998ds]
[21-219]
Parametric resonance of neutrino oscillations and passage of solar and atmospheric neutrinos through the earth, E. K. Akhmedov, Nucl. Phys. B538 (1999) 25-51, arXiv:hep-ph/9805272.
[Akhmedov:1998ui]
[21-220]
Diffractive-like (or parametric-resonance-like?) enhancement of the earth (day-night) effect for solar neutrinos crossing the earth core, S. T. Petcov, Phys. Lett. B434 (1998) 321-332, arXiv:hep-ph/9805262.
[Petcov:1998su]
[21-221]
Parametric resonance in oscillations of atmospheric neutrinos?, Q. Y. Liu, S. P. Mikheyev, A. Yu. Smirnov, Phys. Lett. B440 (1998) 319-326, arXiv:hep-ph/9803415.
[Liu:1998nb]
[21-222]
Matter enhanced neutrino oscillations in the quasi-adiabatic limit, A. B. Balantekin, J. F. Beacom, J. M. Fetter, Phys. Lett. B427 (1998) 317-322, arXiv:hep-ph/9712390.
[Balantekin:1997fr]
[21-223]
Exact solutions for matter-enhanced neutrino oscillations, A. B. Balantekin, Phys. Rev. D58 (1998) 013001, arXiv:hep-ph/9712304.
[Balantekin:1997jp]
[21-224]
Earth regeneration effect in solar neutrino oscillations: An analytic approach, Eligio Lisi, Daniele Montanino, Phys. Rev. D56 (1997) 1792-1803, arXiv:hep-ph/9702343.
[Lisi:1997yc]
[21-225]
Semiclassical treatment of matter-enhanced neutrino oscillations for an arbitrary density profile, A. B. Balantekin, J. F. Beacom, Phys. Rev. D54 (1996) 6323-6337, arXiv:hep-ph/9606353.
[Balantekin:1996ag]
[21-226]
Oscillations of a neutrino background: A Field theoretic treatment, J. C. D'Olivo, J. F. Nieves, Int. J. Mod. Phys. A11 (1996) 141-159.
[DOlivo:1996pue]
[21-227]
Field theoretic treatment of mixed neutrinos in a neutrino and matter background, J. C. D'Olivo, Jose F. Nieves, arXiv:hep-ph/9501327, 1995.
[DOlivo:1995qgv]
[21-228]
Coherence of neutrino oscillations in vacuum and matter in the wave packet treatment, C. Giunti, C. W. Kim, U. W. Lee, Phys. Lett. B274 (1992) 87-94.
[Giunti:1991sx]
[21-229]
Dirac neutrinos in dense matter, James Pantaleone, Phys. Rev. D46 (1992) 510-523.
[Pantaleone:1992xh]
[21-230]
Solar neutrinos and the MSW effect for three neutrino mixing, X. Shi, David N. Schramm, Phys. Lett. B283 (1992) 305-312.
Comment: Three-neutrino MSW effect with one dominant $\Delta{m}^2$. [C.G.].
[Shi:1992zw]
[21-231]
Helicity formalism for Majorana neutrino fields in matter. 1. Theoretical formulation and the MSW effect, C. Giunti, C. W. Kim, U. W. Lee, W. P. Lam, 1991. JHU-TIPAC-9010, October 1990. http://personalpages.to.infn.it/~giunti/slides/1991/Giunti-Kim-Lee-Lam-JHU-TIPAC-901-1991.pdf.
[Giunti:1991qh]
[21-232]
On the matter enhanced transitions of solar neutrinos in the absence of neutrino mixing in vacuum, M. M. Guzzo, S. T. Petcov, Phys. Lett. B271 (1991) 172-178.
[Guzzo:1991cp]
[21-233]
On the MSW effect with massless neutrinos and no mixing in the vacuum, M. M. Guzzo, A. Masiero, S. T. Petcov, Phys. Lett. B260 (1991) 154-160.
[Guzzo:1991hi]
[21-234]
Neutrino oscillations in inhomogeneous matter, R. F. Sawyer, Phys. Rev. D42 (1990) 3908-3917.
[Sawyer:1990tw]
[21-235]
Mutual influence of resonant spin flavor precession and resonant neutrino oscillations, E. Kh. Akhmedov, Sov. Phys. JETP 68 (1989) 690-696.
[Akhmedov:1989df]
[21-236]
Parametric effects in neutrino oscillations, P. I. Krastev, A. Yu. Smirnov, Phys. Lett. B226 (1989) 341-346.
[Krastev:1989ix]
[21-237]
Nonadiabatic neutrino oscillations in matter, T. K. Kuo, James Pantaleone, Phys. Rev. D39 (1989) 1930.
[Kuo:1989pn]
[21-238]
The effects of averaging on the matter enhanced oscillations of solar neutrinos, S. T. Petcov, J. Rich, Phys. Lett. B224 (1989) 426.
[Petcov:1989du]
[21-239]
Resonant amplification of neutrino oscillations in longitudinal magnetic field, E. Kh. Akhmedov, M. Yu. Khlopov, Mod. Phys. Lett. A3 (1988) 451-457.
[Akhmedov:1988hd]
[21-240]
On neutrino oscillations in a nonhomogeneous medium, E. Kh. Akhmedov, Sov. J. Nucl. Phys. 47 (1988) 301-302.
[Akhmedov:1988kd]
[21-241]
Resonance enchancement of the neutrino spin precession in matter and the solar neutrino problem, E. Kh. Akhmedov, Sov. J. Nucl. Phys. 48 (1988) 382-383.
[Akhmedov:1988nc]
[21-242]
Resonant amplification of neutrino spin rotation in matter and the solar-neutrino problem, E. Kh. Akhmedov, Phys. Lett. B213 (1988) 64.
[Akhmedov:1988uk]
[21-243]
Analytical and semiclassical aspects of matter enhanced neutrino oscillations, A. B. Balantekin, S. H. Fricke, P. J. Hatchell, Phys. Rev. D38 (1988) 935.
[Balantekin:1988aq]
[21-244]
Matter oscillations: neutrino transformation in the sun and regeneration in the earth, A. J. Baltz, J. Weneser, Phys. Rev. D37 (1988) 3364.
[Baltz:1988sv]
[21-245]
Neutrino oscillation in matter induced by charged scalar particles, M. Fukugita, T. Yanagida, Phys. Lett. B206 (1988) 93.
[Fukugita:1988qe]
[21-246]
On analytic solution of resonant mixing for solar neutrino oscillations, Masatoshi Ito, Takao Kaneko, Masami Nakagawa, Prog. Theor. Phys. 79 (1988) 13.
[Ito:1987vy]
[21-247]
On the geometrical representation of neutrino oscillations in vacuum and matter, C. W. Kim, Jewan Kim, W. K. Sze, Phys. Rev. D37 (1988) 1072.
[Kim:1987bv]
[21-248]
On the analytic description of two neutrino transitions of solar neutrinos in the sun, P. I. Krastev, S. T. Petcov, Phys. Lett. B207 (1988) 64. [Erratum-ibid. B214, 661 (1988)].
[Krastev:1988ci]
[21-249]
Resonance amplification and T violation effects in three neutrino oscillations in the earth, P. I. Krastev, S. T. Petcov, Phys. Lett. B205 (1988) 84.
[Krastev:1988yu]
[21-250]
Resonant spin-flavor precession of solar and supernova neutrinos, Chong-Sa Lim, William J. Marciano, Phys. Rev. D37 (1988) 1368.
[Lim:1987tk]
[21-251]
Derivation of the formalism for neutrino matter oscillations from the neutrino relativistic field equations, Philip D. Mannheim, Phys. Rev. D37 (1988) 1935.
[Mannheim:1988ef]
[21-252]
On the oscillations of solar neutrinos in the sun, S. T. Petcov, Phys. Lett. B214 (1988) 139.
[Petcov:1988wv]
[21-253]
Exact analytic description of two neutrino oscillations in matter with exponentially varying density, S. T. Petcov, Phys. Lett. B200 (1988) 373-379.
[Petcov:1988zj]
[21-254]
Effect of transmission through the earth on neutrino oscillations, A. J. Baltz, J. Weneser, Phys. Rev. D35 (1987) 528.
[Baltz:1987hn]
[21-255]
Neutrino oscillations and the solar neutrino problem, A. Dar, A. Mann, Y. Melina, D. Zajfman, Phys. Rev. D35 (1987) 3607.
[Dar:1987pj]
[21-256]
Analytic treatments of matter enhanced solar neutrino oscillations, W. C. Haxton, Phys. Rev. D35 (1987) 2352.
[Haxton:1987bc]
[21-257]
Analytic solution for resonant mixing of solar neutrinos, T. Kaneko, Prog. Theor. Phys. 78 (1987) 532.
[Kaneko:1987zz]
[21-258]
Nonadiabatic resonant conversion of solar neutrinos in three generations, C. W. Kim, S. Nussinov, W. K. Sze, Phys. Lett. B184 (1987) 403.
[Kim:1986wg]
[21-259]
On neutrino oscillations and the Landau-Zener formula, C. W. Kim, W. K. Sze, Shmuel Nussinov, Phys. Rev. D35 (1987) 4014.
[Kim:1987ss]
[21-260]
Three neutrino oscillations and the solar neutrino experiments, T. K. Kuo, James Pantaleone, Phys. Rev. D35 (1987) 3432.
[Kuo:1987zx]
[21-261]
On the Mikheev-Smirnov-Wolfenstein (MSW) mechanism of amplification of neutrino oscillations in matter, P. Langacker, S. T. Petcov, G. Steigman, S. Toshev, Nucl. Phys. B282 (1987) 589.
Comment: It is shown that the Dirac or Majorana nature of neutrinos cannot be distinguished in neutrino oscillations in matter, as well as in vacuum, because neutrino oscillations do not depend on the Majorana phases. [C.G.].
[Langacker:1986jv]
[21-262]
Neutrino oscillations in an inhomogeneous medium: adiabatic regime, S. P. Mikheev, A. Yu. Smirnov, Sov. Phys. JETP 65 (1987) 230-236.
[Mikheev:1987jp]
[21-263]
Exact analytic solutions for Mikheev-Smirnov-Wolfenstein level crossings, Dirk Notzold, Phys. Rev. D36 (1987) 1625.
[Notzold:1987cq]
[21-264]
Three neutrino oscillations in matter: analytical results in the adiabatic approximation, S. T. Petcov, S. Toshev, Phys. Lett. B187 (1987) 120.
[Petcov:1987qg]
[21-265]
On the nonadiabatic neutrino oscillations in matter, S. T. Petcov, Phys. Lett. B191 (1987) 299.
[Petcov:1987xd]
[21-266]
Nonadiabatic level crossing in neutrino oscillations for an exponential solar density profile, P. Pizzochero, Phys. Rev. D36 (1987) 2293-2296.
[Pizzochero:1987fj]
[21-267]
On the treatment of neutrino oscillations in a thermal environment, L. Stodolsky, Phys. Rev. D36 (1987) 2273.
[Stodolsky:1986dx]
[21-268]
Resonant amplification of three neutrino oscillations in matter, S. Toshev, Phys. Lett. B185 (1987) 177.
[Toshev:1987fs]
[21-269]
Exact analytical solution of the two neutrino evolution equation in matter with exponentially varying density, S. Toshev, Phys. Lett. B196 (1987) 170.
[Toshev:1987jw]
[21-270]
Resonant oscillations of massless neutrinos in matter, J. W. F. Valle, Phys. Lett. B199 (1987) 432.
[Valle:1987gv]
[21-271]
Possible explanation of the solar-neutrino puzzle, H. A. Bethe, Phys. Rev. Lett. 56 (1986) 1305.
Comment: Clear explanation of the MSW effect. [C.G.].
[Bethe:1986ej]
[21-272]
Matter effects for solar neutrino oscillations, J. Bouchez et al., Z. Phys. C32 (1986) 499.
[Bouchez:1986kb]
[21-273]
MSW regeneration of solar electron-neutrino in the earth, M. Cribier, W. Hampel, J. Rich, D. Vignaud, Phys. Lett. B182 (1986) 89.
[Cribier:1986ak]
[21-274]
Neutrino oscillations in nonuniform matter, A. Halprin, Phys. Rev. D34 (1986) 3462-3466.
[Halprin:1986pn]
[21-275]
Adiabatic conversion of solar neutrinos, W. C. Haxton, Phys. Rev. Lett. 57 (1986) 1271-1274.
[Haxton:1986dm]
[21-276]
The solar neutrino problem and three neutrino oscillations, T. K. Kuo, James Pantaleone, Phys. Rev. Lett. 57 (1986) 1805-1808.
[Kuo:1986sk]
[21-277]
Neutrino oscillations in a variable-density medium and nu bursts due to the gravitational collapse of stars, S. P. Mikheev, A. Yu. Smirnov, Sov. Phys. JETP 64 (1986) 4-7.
Comment: First application of the MSW effect to supernova neutrinos. [C.G.].
[Mikheev:1986if]
[21-278]
Resonant amplification of neutrino oscillations in matter and solar neutrino spectroscopy, S. P. Mikheev, A. Yu. Smirnov, Nuovo Cim. C9 (1986) 17-26.
Comment: Western version of [Go]. (C.G.).
[Mikheev:1986wj]
[21-279]
Resonance enhancement of oscillations in matter and solar neutrino spectroscopy, S. P. Mikheev, A. Yu. Smirnov, Sov. J. Nucl. Phys. 42 (1985) 913-917.
[Mikheyev:1985zog]
[21-280]
On the detection of cosmological neutrinos by coherent scattering, Paul Langacker, Jacques P. Leveille, Jon Sheiman, Phys. Rev. D27 (1983) 1228.
Comment: First paper with correct sign of matter potential! [C.G.].
[Langacker:1982ih]
[21-281]
Matter effects on three-neutrino oscillations, V. D. Barger, K. Whisnant, S. Pakvasa, R. J. N. Phillips, Phys. Rev. D22 (1980) 2718.
Comment: Wrong sign of matter potential. [C.G.].
[Barger:1980tf]
[21-282]
Neutrino oscillations and stellar collapse, L. Wolfenstein, Phys. Rev. D20 (1979) 2634-2635.
Comment: Wrong sign of matter potential. [C.G.].
[Wolfenstein:1979ni]
[21-283]
Neutrino oscillations in matter, L. Wolfenstein, Phys. Rev. D17 (1978) 2369.
Comment: Unfortunately, wrong sign of matter potential. [C.G.].
[Wolfenstein:1977ue]

22 - Theory - Matter Effects - Talks

[22-1]
Neutrino propagation through Earth: modeling uncertainties using nuPyProp, Diksha Garg et al. (NuSpaceSim), PoS ICRC2023 (2023) 1115, arXiv:2308.13659.
[NuSpaceSim:2023ims]
[22-2]
Comparative study of the 1-2 exchange symmetries in neutrino frameworks with global and local validities, Hisakazu Minakata, Acta Phys.Polon.B 54 (2023) 3, arXiv:2212.06320.
[Minakata:2022pyr]
[22-3]
Collective neutrino oscillations accounting for neutrino quantum decoherence, Konstantin Stankevich, Alexander Studenikin, PoS ICHEP2020 (2021) 216, arXiv:2102.05138. 40th International Conference on High Energy Physics (ICHEP 2020), 28 July - 6 August 2020, Prague, Czech Republic.
[Stankevich:2020sja]
[22-4]
The effect of neutrino quantum decoherence, Konstantin Stankevich, Alexander Studenikin, PoS EPS-HEP2019 (2020) 424, arXiv:1912.13313. European Physical Society Conference on High Energy Physics - EPS-HEP2019, 10-17 July, 2019.
[Stankevich:2019zpf]
[22-5]
Neutrino evolution and quantum decoherence, Konstantin Stankevich, Alexander Studenikin, J.Phys.Conf.Ser. 1468 (2020) 012148, arXiv:1912.13311. 16th International Conference on Topics in Astroparticle and Underground Physics.
[Stankevich:2019wjz]
[22-6]
Novel matter effects on neutrino oscillations observables, Adam Zettel, Mihai Horoi, arXiv:1909.10585, 2019. 2019 Meeting of the Division of Particles and Fields of the American Physical Society (DPF2019), July 29 - August 2, 2019, Northeastern University, Boston.
[Zettel:2019ddm]
[22-7]
Three Neutrino Oscillations in Uniform Matter, Ara Ioannisian, Stefan Pokorski, PoS ICHEP2018 (2019) 405, arXiv:1812.00701. ICHEP2018.
[Ioannisian:2018bnr]
[22-8]
Analytic Neutrino Oscillation Probabilities in Matter: Revisited, Stephen J. Parke, Peter B. Denton, Hisakazu Minakata, PoS NuFact2017 (2018) 055, arXiv:1801.00752. NUFACT2017.
[Parke:2018brr]
[22-9]
Matter neutrino oscillations, an approximation in a parametrization-free framework, L. J. Flores, O. G. Miranda, J. Phys. Conf. Ser. 761 (2016) 012041, arXiv:1608.06597. XV Mexican Workshop on Particles and Fields and XXX Annual Meeting of the Division of Particles and Fields of the Mexican Physical Society.
[Flores:2016moy]
[22-10]
Theoretical developments in supernova neutrino physics: mass corrections and pairing correlators, Cristina Volpe, J. Phys. Conf. Ser. 718 (2016) 062068, arXiv:1601.05018. TAUP 2015.
[Volpe:2016xxd]
[22-11]
Flavor-Universal Form of Neutrino Oscillation Probabilities in Matter, Hisakazu Minakata, arXiv:1512.06913, 2015. NuFact15, 10-15 Aug 2015, Rio de Janeiro, Brazil.
[Minakata:2015myp]
[22-12]
The KTY formalism and nonadiabatic contributions to the neutrino oscillation probability, Osamu Yasuda, Nucl.Part.Phys.Proc. 273-275 (2016) 1789-1794, arXiv:1410.3279. ICHEP 2014.
[Yasuda:2014ifa]
[22-13]
Flavor oscillations of low energy neutrinos in the rotating neutron star, Maxim Dvornikov, Conf.Proc. C090819 (2009) 185-187, arXiv:1001.2690. 14th Lomonosov Conference on Elementary Particle Physics.
[Dvornikov:2009qyz]
[22-14]
Matter Effects in Solar Neutrino Active-Sterile Oscillations, Carlo Giunti, Yu-Feng Li, Prog. Part. Nucl. Phys. 64 (2010) 213-215, arXiv:0911.3934. Erice 2009 Neutrinos in Cosmology, in Astro-, Particle- and Nuclear Physics.
[Giunti:2009jf]
[22-15]
Fourier Analysis of the Parametric Resonance of the Neutrino Oscillation in the Presence of Inhomogeneous Matter, Joe Sato, Masafumi Koike, Toshihiko Ota, Masako Saito, PoS NUFACT08 (2008) 140, arXiv:0810.3104. 10th International Workshop on Neutrino Factories, Super beams and Beta beams (NuFACT08), June 30 - July 5, 2008, Valencia, Spain.
[Sato:2008ct]
[22-16]
Neutrino flavor oscillations in background matter, Maxim Dvornikov, J. Phys. Conf. Ser. 110 (2008) 082005, arXiv:0708.2975. 2007 Europhysics Conference on High Energy Physics, Manchester, England, 19-25 July 2007.
[Dvornikov:2007sd]
[22-17]
New effects in neutrino oscillations in matter and electromagnetic fields, Alexander Studenikin, arXiv:hep-ph/0306280, 2003. 4th International School Bruno Pontecorvo: Neutrino Oscillations, CP and CPT Violations: Three Windows for Physics Beyond the Standard Model, Capri, Italy, 26-29 May 2003.
[Studenikin:2003yn]
[22-18]
Magnus Expansion and Three-Neutrino Oscillations in Matter, Alexis A. Aguilar-Arevalo, L. G. Cabral-Rosetti, J. C. D'Olivo, J. Phys. Conf. Ser. 37 (2006) 161, arXiv:hep-ph/0302017. Mexican School of Astrophysics (EMA), Guanajuato, Mexico, July 31 - August 7, 2002.
[Aguilar-Arevalo:2003hty]
[22-19]
Relativistic treatment of neutrino oscillations in moving matter, A. I. Studenikin, arXiv:hep-ph/0205200, 2002. 37th Rencontres de Moriond on Electroweak Interactions and Unified Theories, Les Arcs, France, 9-16 Mar 2002.
[Studenikin:2002gw]

23 - Theory - Gravitational Effects

[23-1]
Probing the equation of state of neutron stars using neutrino oscillations, Siddhartha Bandyopadhyay, Golam Mortuza Hossain, arXiv:2409.16232, 2024.
[Bandyopadhyay:2024uld]
[23-2]
Neutrino Oscillations as a Gravitational Wave Detector?, Dominik Hellmann, Sara Krieg, Heinrich Pas, Mustafa Tabet, arXiv:2405.05000, 2024.
[Hellmann:2024zdq]
[23-3]
Effect of torsion in long-baseline neutrino oscillation experiments, Papia Panda, Dinesh Kumar Singha, Monojit Ghosh, Rukmani Mohanta, arXiv:2403.09105, 2024.
[Panda:2024qsh]
[23-4]
Neutrino spin oscillations in gravitational fields in noncommutative higher dimensions, S. A. Alavi, T. Fallahi Serish, arXiv:2312.13142, 2023.
[Alavi:2023ijy]
[23-5]
Neutrino spin oscillation in screening models revisited, Faycal Hammad, Nicolas Fleury, Parvaneh Sadeghi, Phys. Rev. D 108 (2023) 083025, arXiv:2312.11741.
[Hammad:2023kse]
[23-6]
Effect of spacetime geometry on neutrino oscillations, Riya Barick, Indrajit Ghose, Amitabha Lahiri, Eur.Phys.J.Plus 139 (2024) 461, arXiv:2302.10945.
[Barick:2023wxx]
[23-7]
Effects of gravitational lensing by Kaluza-Klein black holes on neutrino oscillations, Hrishikesh Chakrabarty, Auttakit Chatrabhuti, Daniele Malafarina, Bhuddhanubhap Silasan, Takol Tangphati, JCAP 08 (2023) 018, arXiv:2302.01564.
[Chakrabarty:2023kld]
[23-8]
Neutrino spin oscillations in gravitational fields in higher dimensions, S.A. Alavi, T. Fallahi.Serish, Mod.Phys.Lett.A 37 (2022) 2250200, arXiv:2206.01940.
[Alavi:2022kec]
[23-9]
Aspects of gravitational decoherence in neutrino lensing, Himanshu Swami, Kinjalk Lochan, Ketan M. Patel, Phys.Rev.D 104 (2021) 095007, arXiv:2106.07671.
[Swami:2021wbf]
[23-10]
Neutrino spin oscillations in conformally gravity coupling models and quintessence surrounding a black hole, Leonardo Mastrototaro, Gaetano Lambiase, Phys.Rev.D 104 (2021) 024021, arXiv:2106.07665.
[Mastrototaro:2021kmw]
[23-11]
Neutrino oscillations in gravitational and cosmological backgrounds, George Koutsoumbas, Dimitrios Metaxas, Gen.Rel.Grav. 52 (2020) 102, arXiv:1909.02735.
[Koutsoumbas:2019fkn]
[23-12]
Neutrino decoherence in presence of strong gravitational fields, Amelie Chatelain, Maria Cristina Volpe, Phys.Lett.B 801 (2020) 135150, arXiv:1906.12152.
[Chatelain:2019nkf]
[23-13]
Neutrino flavor oscillations in stochastic gravitational waves, Maxim Dvornikov, Phys.Rev. D100 (2019) 096014, arXiv:1906.06167.
[Dvornikov:2019jkc]
[23-14]
Neutrino oscillations in extended theories of gravity, Luca Buoninfante, Giuseppe Gaetano Luciano, Luciano Petruzziello, Luca Smaldone, Phys.Rev. D101 (2020) 024016, arXiv:1906.03131.
[Buoninfante:2019der]
[23-15]
Time-energy uncertainty relation for neutrino oscillations in curved spacetime, Massimo Blasone, Gaetano Lambiase, Giuseppe Gaetano Luciano, Luciano Petruzziello, Luca Smaldone, Class.Quant.Grav. 37 (2020) 155004, arXiv:1904.05261.
[Blasone:2019jtj]
[23-16]
Quantum correlations in neutrino oscillations in curved spacetime, Khushboo Dixit, Javid Naikoo, Banibrata Mukhopadhyay, Subhashish Banerjee, Phys.Rev. D100 (2019) 055021, arXiv:1903.05664.
[Dixit:2019lsg]
[23-17]
Neutrino spin oscillations in external fields in curved space-time, Maxim Dvornikov, Phys.Rev.D 99 (2019) 116021, arXiv:1902.11285.
[Dvornikov:2019sfo]
[23-18]
Three-generation neutrino oscillations in curved spacetime, Yu-Hao Zhang, Xue-Qian Li, Nucl. Phys. B911 (2016) 563-581, arXiv:1606.05960.
[Zhang:2016deq]
[23-19]
Quantum Gravity effect on neutrino oscillations in a strong gravitational field, Jonathan Miller, Roman Pasechnik, Adv. High Energy Phys. 2015 (2015) 381569, arXiv:1305.4430.
[Miller:2013wta]
[23-20]
Neutrino oscillations above black hole accretion disks: disks with electron-flavor emission, A. Malkus, J. P. Kneller, G. C. McLaughlin, R. Surman, Phys. Rev. D86 (2012) 085015, arXiv:1207.6648.
[Malkus:2012ts]
[23-21]
Neutrino spin oscillations in gravitational fields, S. A. Alavi, S. F. Hosseini, Grav.Cosmol. 19 (2013) 129-133, arXiv:1108.3593.
[Alavi:2011xd]
[23-22]
Neutrino oscillation phase dynamically induced by f(R)-gravity, S. Capozziello, M. De Laurentis, D. Vernieri, Mod. Phys. Lett. A25 (2010) 1163-1168, arXiv:1001.4173.
[Capozziello:2010yz]
[23-23]
Neutrino Oscillations in Gravitational Field, S. I. Godunov, G. S. Pastukhov, Phys. Atom. Nucl. 74 (2011) 302-305, arXiv:0906.5556.
[Godunov:2009ce]
[23-24]
Gravity induced neutrino-antineutrino oscillation: CPT and lepton number non-conservation under gravity, Banibrata Mukhopadhyay, Class. Quant. Grav. 24 (2007) 1433-1442, arXiv:gr-qc/0702062.
[Mukhopadhyay:2007vca]
[23-25]
Reply to Comment on 'Can gravity distinguish between Dirac and Majorana neutrinos?', Dinesh Singh, Nader Mobed, Giorgio Papini, Phys. Rev. Lett. 98 (2007) 069002, arXiv:gr-qc/0611016.
[Singh:2006fn]
[23-26]
Comment on 'Can gravity distinguish between Dirac and Majorana neutrinos?', Jose F. Nieves, Palash B. Pal, Phys. Rev. Lett. 98 (2007) 069001, arXiv:gr-qc/0610098.
[Nieves:2006tq]
[23-27]
General Relativistic Effects of Gravity in Quantum Mechanics - A Case of Ultra-Relativistic, Spin 1/2 Particles -, Kohkichi Konno, Masumi Kasai, Prog. Theor. Phys. 100 (1998) 1145, arXiv:gr-qc/0603035.
[Konno:1998kq]
[23-28]
Neutrino spin oscillations in gravitational fields, Maxim Dvornikov, Int. J. Mod. Phys. D15 (2006) 1017-1034, arXiv:hep-ph/0601095.
[Dvornikov:2006ji]
[23-29]
Neutrino optics and oscillations in gravitational fields, G. Lambiase, G. Papini, R. Punzi, G. Scarpetta, Phys. Rev. D71 (2005) 073011, arXiv:gr-qc/0503027.
[Lambiase:2005gt]
[23-30]
Neutrino Wave Packets in Weak Gravitational Fields, Dinesh Singh, Nader Mobed, Giorgio Papini, Phys. Lett. A351 (2006) 373, arXiv:gr-qc/0502098.
[Singh:2005ur]
[23-31]
Testing quantum gravity via cosmogenic neutrino oscillations, Joy Christian, Phys. Rev. D71 (2005) 024012, arXiv:gr-qc/0409077.
[Christian:2004xb]
[23-32]
Charge conjugation and Lense-Thirring Effect: A new Asymmetry, D. V. Ahluwalia-Khalilova, Gen. Rel. Grav. 36 (2004) 2581, arXiv:gr-qc/0405112.
[Ahluwalia:2004kv]
[23-33]
Neutrino oscillations in gravitational fields, Hisae Maiwa, Shigefumi Naka, arXiv:hep-ph/0401143, 2004.
[Maiwa:2004ym]
[23-34]
Neutrino Interferometry In Curved Spacetime, Roland M. Crocker, Carlo Giunti, Daniel J. Mortlock, Phys. Rev. D69 (2004) 063008, arXiv:hep-ph/0308168.
[Crocker:2003cw]
[23-35]
Cerenkov's effect and neutrino oscillations in loop quantum gravity, G. Lambiase, Mod. Phys. Lett. A18 (2003) 23-30, arXiv:gr-qc/0301058.
[Lambiase:2003bq]
[23-36]
General relativistic effects on quantum interference and the principle of equivalence, K. K. Nandi, Yuan-Zhong Zhang, Phys. Rev. D66 (2002) 063005, arXiv:gr-qc/0208050.
[Nandi:2002me]
[23-37]
Quantum phase shift and neutrino oscillations in a stationary, weak gravitational field, Pierre Teyssandier Bernard Linet, Mod. Phys. Lett. A26 (2011) 1737-1751, arXiv:gr-qc/0206056.
[Linet:2002wp]
[23-38]
Addendum on the mass neutrino oscillation in a gravitational field, J. G. Pereira, C. M. Zhang, Gen. Rel. Grav. 33 (2001) 2801, arXiv:gr-qc/0205030.
[Pereira:2001by]
[23-39]
Quantum systems in weak gravitational fields, G. Papini, NATO Sci.Ser.II 60 (2002) 317-338, arXiv:gr-qc/0110056.
[Papini:2001kb]
[23-40]
Neutrinos in a vacuum dominated cosmology, Manasse R. Mbonye, Gen. Rel. Grav. 34 (2002) 1865-1875, arXiv:astro-ph/0108167.
[Mbonye:2001rp]
[23-41]
Neutrino oscillations induced by gravitational recoil effects, G. Lambiase, Gen. Rel. Grav. 33 (2001) 2151-2156, arXiv:gr-qc/0107066.
[Lambiase:2001ib]
[23-42]
Matter waves in a gravitational field: An index of refraction for massive particles in general relativity, James C. Evans, Paul M. Alsing, Stefano Giorgetti, Kamal Kanti Nandi, Am. J. Phys. 69 (2001) 1103-1110, arXiv:gr-qc/0107063.
[Evans:2001hy]
[23-43]
Neutrino oscillations in Caianiello's quantum geometry model, V. Bozza, S. Capozziello, G. Lambiase, G. Scarpetta, Int. J. Theor. Phys. 40 (2001) 849-859, arXiv:hep-ph/0106234.
[Bozza:2001vc]
[23-44]
Quantum violations of the equivalence principle in a modified Schwarzschild geometry: Neutrino oscillations, V. Bozza, G. Lambiase, G. Papini, G. Scarpetta, Phys. Lett. A279 (2001) 163-168, arXiv:hep-ph/0012270.
[Bozza:2000mh]
[23-45]
Mass dependence of the gravitationally-induced wave- function phase, Jose Wudka, Phys. Rev. D64 (2001) 065009, arXiv:gr-qc/0010077.
[Wudka:2000rf]
[23-46]
The phase of a quantum mechanical particle in curved spacetime, P. M. Alsing, J. C. Evans, K. K. Nandi, Gen. Rel. Grav. 33 (2001) 1459-1487, arXiv:gr-qc/0010065.
[Alsing:2000ji]
[23-47]
The general treatment of high/low energy particle interference phase in a gravitational field, C. M. Zhang, Gen.Rel.Grav. 33 (2001) 1011-1025, arXiv:gr-qc/0004048.
[Zhang:2000mi]
[23-48]
On the Mass Neutrino Phase calculations along the geodesic line and the null line, C.M. Zhang, A. Beesham, Int.J.Mod.Phys. D12 (2003) 727-738, arXiv:gr-qc/0004047.
[Zhang:2003pn]
[23-49]
Some remarks on the neutrino oscillation phase in a gravitational field, J. G. Pereira, C. M. Zhang, Gen. Rel. Grav. 32 (2000) 1633-1637, arXiv:gr-qc/0002066.
[Pereira:2000kq]
[23-50]
Berry's phase of neutrino oscillations in the presence of torsion, S. Capozziello, G. Lambiase, Europhys. Lett. 52 (2000) 15-21.
[Capozziello:2000ue]
[23-51]
Neutrino oscillations in Brans-Dicke theory of gravity, S. Capozziello, G. Lambiase, Mod. Phys. Lett. A14 (1999) 2193, arXiv:gr-qc/9910026.
[Capozziello:1999qm]
[23-52]
Inertial effects on neutrino oscillations, S. Capozziello, G. Lambiase, Eur. Phys. J. C12 (2000) 343-347, arXiv:gr-qc/9910016.
[Capozziello:1999ww]
[23-53]
Interplay of gravitation and linear superposition of different mass eigenstates, D. V. Ahluwalia, C. Burgard, Phys. Rev. D57 (1998) 4724-4727, arXiv:gr-qc/9803013.
[Ahluwalia:1998jx]
[23-54]
Gravitational correction in neutrino oscillations, Yasufumi Kojima, Mod. Phys. Lett. A11 (1996) 2965-2970, arXiv:gr-qc/9612044.
[Kojima:1996vb]
[23-55]
Gravitational effects on the neutrino oscillation, N. Fornengo, C. Giunti, C. W. Kim, J. Song, Phys. Rev. D56 (1997) 1895-1902, arXiv:hep-ph/9611231.
[Fornengo:1996ef]
[23-56]
Neutrino oscillations in curved spacetime: An heuristic treatment, Christian Y. Cardall, George M. Fuller, Phys. Rev. D55 (1997) 7960-7966, arXiv:hep-ph/9610494.
[Cardall:1996cd]
[23-57]
Gravitationally induced neutrino oscillation phases in static space-times, Tanmoy Bhattacharya, Salman Habib, Emil Mottola, Phys. Rev. D59 (1996) 067301, arXiv:gr-qc/9605074.
[Bhattacharya:1996xb]
[23-58]
Neutrino Oscillations in Strong Gravitational Fields, Dardo Piriz, Mou Roy, Jose Wudka, Phys. Rev. D54 (1996) 1587-1599, arXiv:hep-ph/9604403.
[Piriz:1996mu]
[23-59]
Gravitationally Induced Quantum Mechanical Phases and Neutrino Oscillations in Astrophysical Environments, D. V. Ahluwalia, C. Burgard, Gen. Rel. Grav. 28 (1996) 1161-1170, arXiv:gr-qc/9603008.
[Ahluwalia:1996ev]
[23-60]
Neutrino Oscillations in the Presence of Torsion, V. De Sabbata, M. Gasperini, Nuovo Cim. A 65 (1981) 479-500.
[DeSabbata:1981ek]
[23-61]
MATTER AND LIGHT WAVE INTERFEROMETRY IN GRAVITATIONAL FIELDS, L. Stodolsky, Gen. Rel. Grav. 11 (1979) 391-405.
[Stodolsky:1979ks]

24 - Theory - Gravitational Effects - Talks

[24-1]
Spin oscillations in neutrino gravitational scattering, Mridupawan Deka, Maxim Dvornikov, Phys.Atom.Nucl. 87 (2024) 483-488, arXiv:2311.14475. XIX Workshop on High Energy Spin Physics, DSPIN-23 (September 4-8, 2023, JINR, Dubna, Russia).
[Deka:2023ljj]
[24-2]
Neutrino physics in slowly rotating black hole spacetime and nonlinear electrodynamics, H. Mosquera Cuesta, G. Lambiase, J.P. Pereira, arXiv:2004.04964, 2020. NuPhys2019: Prospects in Neutrino Physics-Cavendish Conference Centre, London, 16-18 December 2019.
[MosqueraCuesta:2020crv]
[24-3]
Neutrino oscillations in gravitational waves, Maxim Dvornikov, J.Phys.Conf.Ser. 1435 (2020) 012005, arXiv:1910.01415. DSPIN-2019 (JINR, Dubna, Russia, September 2-6 2019).
[Dvornikov:2019xok]
[24-4]
Neutrino Oscillations in Strong Gravitational Fields, Marek Gozdz, Marek Rogatko, Int. J. Mod. Phys. E20 (2011) 507, arXiv:1201.1249. Nuclear Physics Workshop in Kazimierz Dolny, Poland, 2010.
[Gozdz:2011zz]
[24-5]
Possible Neutrino-Antineutrino Oscillation Under Gravity and its Consequences, Banibrata Mukhopadhyay, arXiv:gr-qc/0701077, 2007. MG11 Meeting on General Relativity, Berlin, July 23-29, 2006.
[Mukhopadhyay:2007tv]

25 - Theory - Decoherence

[25-1]
Collapse of Neutrino Wave Functions under Penrose Gravitational Reduction, B. J. P. Jones, O. H. Seidel, Phys.Rev.D 110 (2024) 016026, arXiv:2405.03954.
[Jones:2024qfr]
[25-2]
Decoherence in Neutrino Oscillation between 3D Gaussian Wave Packets, Haruhi Mitani, Kin-ya Oda, Phys.Lett.B 846 (2023) 138218, arXiv:2307.12230.
[Mitani:2023hpd]
[25-3]
Reply to 'Comment on 'Damping of neutrino oscillations, decoherence and the lengths of neutrino wave packets'', Evgeny Akhmedov, Alexei Y. Smirnov, arXiv:2210.01547, 2022.
[Akhmedov:2022mal]
[25-4]
Comment on 'Damping of neutrino oscillations, decoherence and the lengths of neutrino wave packets', B. J. P. Jones, arXiv:2209.00561, 2022.
[Jones:2022cvh]
[25-5]
Damping of neutrino oscillations, decoherence and the lengths of neutrino wave packets, Evgeny Akhmedov, Alexei Y. Smirnov, JHEP 11 (2022) 082, arXiv:2208.03736.
[Akhmedov:2022bjs]
[25-6]
Quantum coherence in neutrino oscillation in matter, Z. Askaripour Ravari, M. M. Ettefaghi, S. Miraboutalebi, Eur.Phys.J.Plus 137 (2022) 488, arXiv:2204.12332.
[Ravari:2022yfd]
[25-7]
Investigating Leggett-Garg inequality in neutrino oscillations - role of decoherence and decay, Sheeba Shafaq, Tanmay Khushwaha, Poonam Mehta, arXiv:2112.12726, 2021.
[Shafaq:2021lju]
[25-8]
Neutrino signals of lightcone fluctuations resulting from fluctuating space-time, Thomas Stuttard, Phys.Rev.D 104 (2021) 056007, arXiv:2103.15313.
[Stuttard:2021uyw]
[25-9]
Neutrino Decoherence in Simple Open Quantum Systems, Bin Xu, arXiv:2009.13471, 2020.
[Xu:2020pzr]
[25-10]
Neutrino decoherence from quantum gravitational stochastic perturbations, Thomas Stuttard, Mikkel Jensen, Phys.Rev. D102 (2020) 115003, arXiv:2007.00068.
[Stuttard:2020qfv]
[25-11]
Density Matrix Formalism for PT-Symmetric Non-Hermitian Hamiltonians with the Lindblad Equation, Tommy Ohlsson, Shun Zhou, Phys.Rev. A103 (2021) 022218, arXiv:2006.02445.
[Ohlsson:2020gxx]
[25-12]
Neutrino decoherence in an electron and nucleon background, Jose F. Nieves, Sarira Sahu, Phys.Rev. D102 (2020) 056007, arXiv:2002.08315.
[Nieves:2020jjg]
[25-13]
Neutrino quantum decoherence engendered by neutrino radiative decay, Konstantin Stankevich, Alexander Studenikin, Phys.Rev. D101 (2020) 056004, arXiv:2002.02621.
[Stankevich:2020icp]
[25-14]
Neutrino decoherence in a fermion and scalar background, Jose F. Nieves, Sarira Sahu, Phys.Rev. D100 (2019) 115049, arXiv:1909.11271.
[Nieves:2019izk]
[25-15]
Entropic Leggett-Garg inequality in neutrinos and B (K) meson systems, Javid Naikoo, Subhashish Banerjee, Eur.Phys.J. C78 (2018) 602, arXiv:1808.00365.
[Naikoo:2018amb]
[25-16]
Revisiting quantum decoherence in the matter neutrino oscillation framework, J.A. Carpio, E. Massoni, A.M. Gago, Phys.Rev. D97 (2018) 115017, arXiv:1711.03680.
[Carpio:2017nui]
[25-17]
Neutrino induced decoherence and variation in nuclear decay rates, Douglas Singleton, Nader Inan, Raymond Y. Chiao, Phys.Lett. A379 (2015) 941-946, arXiv:1501.07665.
[Singleton:2015dqa]
[25-18]
Liouville Decoherence in a Model of Flavour Oscillations in the presence of Dark Energy, Nick Mavromatos, Sarben Sarkar, Phys. Rev. D72 (2005) 065016, arXiv:hep-th/0506242.
[Mavromatos:2005bu]
[25-19]
Oscillations and evolution of a hot and dense gas of flavor neutrinos: A quantum field theory study, D. Boyanovsky, C. M. Ho, Phys. Rev. D69 (2004) 125012, arXiv:hep-ph/0403216.
[Boyanovsky:2004xz]
[25-20]
Open system approach to neutrino oscillations, F. Benatti, R. Floreanini, JHEP 02 (2000) 032, arXiv:hep-ph/0002221.
[Benatti:2000ph]
[25-21]
NonAbelian Boltzmann equation for mixing and decoherence, G. Raffelt, G. Sigl, L. Stodolsky, Phys. Rev. Lett. 70 (1993) 2363-2366, arXiv:hep-ph/9209276.
[Raffelt:1992uj]
[25-22]
On the treatment of neutrino oscillations in a thermal environment, L. Stodolsky, Phys. Rev. D36 (1987) 2273.
[Stodolsky:1987dx]

26 - Theory - Decoherence - Talks

[26-1]
Collective neutrino oscillations accounting for neutrino quantum decoherence, Konstantin Stankevich, Alexander Studenikin, PoS ICHEP2020 (2021) 216, arXiv:2102.05138. 40th International Conference on High Energy Physics (ICHEP 2020), 28 July - 6 August 2020, Prague, Czech Republic.
[Stankevich:2020sja]
[26-2]
The effect of neutrino quantum decoherence, Konstantin Stankevich, Alexander Studenikin, PoS EPS-HEP2019 (2020) 424, arXiv:1912.13313. European Physical Society Conference on High Energy Physics - EPS-HEP2019, 10-17 July, 2019.
[Stankevich:2019zpf]
[26-3]
Neutrino evolution and quantum decoherence, Konstantin Stankevich, Alexander Studenikin, J.Phys.Conf.Ser. 1468 (2020) 012148, arXiv:1912.13311. 16th International Conference on Topics in Astroparticle and Underground Physics.
[Stankevich:2019wjz]
[26-4]
Spacetime foam at a TeV, Luis A. Anchordoqui, J. Phys. Conf. Ser. 60 (2007) 191-194, arXiv:hep-ph/0610025. TeV Particle Astrophysics II (Madison WI, 28-31 August 2006).
[Anchordoqui:2006xv]

27 - Theory - Non-Standard Interactions

[27-1]
A model for Axial Non-Standard Interactions of neutrinos with quarks, S. Abbaslu, Yasaman Farzan, arXiv:2407.13834, 2024.
[Abbaslu:2024hep]
[27-2]
Nonstandard interactions of neutrinos with dense matter, Parada T. P. Hutauruk, arXiv:2403.16061, 2024.
[Hutauruk:2024yzc]
[27-3]
Probing new physics with polarized $\tau$ and $\Lambda_c$ in quasielastic $\nu_{\tau}\!+\!n\!\to\! \tau^-\!+\!\Lambda_c$ scattering process, Ya-Ru Kong, Li-Fen Lai, Xin-Qiang Li, Xin-Shuai Yan, Ya-Dong Yang, Phys.Rev.D 108 (2023) 095036, arXiv:2307.07239.
[Kong:2023kkd]
[27-4]
Angular instabilities of a homogeneous neutrino gas from (pseudo)scalar nonstandard self-interactions, Oleg G. Kharlanov, arXiv:2108.13037, 2021.
[Kharlanov:2021vdk]
[27-5]
An on-shell perspective on neutrino oscillations and non-standard interactions, Gustavo F. S. Alves, Enrico Bertuzzo, Gabriel M. Salla, Phys.Rev.D 106 (2022) 036028, arXiv:2103.16362.
[Alves:2021rjc]
[27-6]
Consistent QFT description of non-standard neutrino interactions, Adam Falkowski, Martin Gonzalez-Alonso, Zahra Tabrizi, JHEP 2011 (2020) 048, arXiv:1910.02971.
[Falkowski:2019kfn]
[27-7]
Charged lepton flavour change and Non-Standard neutrino Interactions, Sacha Davidson, Martin Gorbahn, Phys.Rev. D101 (2020) 015010, arXiv:1909.07406.
[Davidson:2019iqh]
[27-8]
Non-Standard Neutrino Interactions and Neutral Gauge Bosons, Julian Heeck, Manfred Lindner, Werner Rodejohann, Stefan Vogl, SciPost Phys. 6 (2019) 038, arXiv:1812.04067.
[Heeck:2018nzc]
[27-9]
Loop-induced Neutrino Non-Standard Interactions, Ingolf Bischer, Werner Rodejohann, Xun-Jie Xu, JHEP 1810 (2018) 096, arXiv:1807.08102.
[Bischer:2018zbd]
[27-10]
Neutrino production states and NSI, Robert Szafron, Marek Zralek, arXiv:1010.6034, 2010.
[Szafron:2010fu]
[27-11]
Interaction of Neutrinos with a Cosmological K-essence Scalar, Christopher S. Gauthier, Ryo Saotome, Ratindranath Akhoury, JHEP 07 (2010) 062, arXiv:0911.3168.
[Gauthier:2009wc]
[27-12]
Exact and Approximate Formulas for Neutrino Mixing and Oscillations with Non-Standard Interactions, Davide Meloni, Tommy Ohlsson, He Zhang, JHEP 04 (2009) 033, arXiv:0901.1784.
[Meloni:2009ia]
[27-13]
QFT results for neutrino oscillations and New Physics, David Delepine, Vannia Gonzalez Macias, Shaaban Khalil, Gabriel Lopez Castro, Phys. Rev. D79 (2009) 093003, arXiv:0901.1460.
[Delepine:2009am]
[27-14]
Large gauge invariant non-standard neutrino interactions, M. B. Gavela, D. Hernandez, T. Ota, W. Winter, Phys. Rev. D79 (2009) 013007, arXiv:0809.3451.
[Gavela:2008ra]
[27-15]
Perturbation Theory of Neutrino Oscillation with Nonstandard Neutrino Interactions, Takashi Kikuchi, Hisakazu Minakata, Shoichi Uchinami, JHEP 03 (2009) 114, arXiv:0809.3312.
[Kikuchi:2008vq]
[27-16]
Standard Model Gauging of the Wess-Zumino-Witten Term: Anomalies, Global Currents and pseudo-Chern-Simons Interactions, Jeffrey A. Harvey, Christopher T. Hill, Richard J. Hill, Phys. Rev. D77 (2008) 085017, arXiv:0712.1230.
[Harvey:2007ca]
[27-17]
Neutrino production states in oscillation phenomena: Are they pure or mixed?, Michal Ochman, Robert Szafron, Marek Zralek, J. Phys. G35 (2008) 065003, arXiv:0707.4089.
[Ochman:2007vn]

28 - Theory - Non-Standard Interactions - Talks

[28-1]
$ \nu e \to \nu e $ scattering with massive Dirac or Majorana neutrinos and general interactions, Juan Manuel Marquez, Pablo Roig, Monica Salinas, JHEP 05 (2024) 227, arXiv:2401.14305.
[Marquez:2024tjl]
[28-2]
Non-standard interactions, density matrix and neutrino oscillations, Robert Szafron, Marek Zralek, Acta Phys. Polon. B42 (2011) 2501-2508. Matter to the deepest: Recent developments in physics of fundamental interactions. Proceedings, 35th International Conference of Theoretical Physics, Ustron'11, Ustron, Poland, September 12-18.
[Szafron:2011zz]
[28-3]
New Physics and Neutrino Oscillation, M. Ochman, R. Szafron, M. Zralek, Nucl. Phys. Proc. Suppl. 217 (2011) 347-349, arXiv:1012.4123. NOW 2010: Neutrino Oscillation Workshop, Conca Specchiulla (Otranto), Lecce, Italy, 4-11 Sep 2010.
[Ochman:2010nv]

29 - Theory - Alternative Models

[29-1]
Comment on 'Neutrino oscillations originate from virtual excitation of $Z$ bosons' and 'Neutrinos produced from $\beta$ decays of neutrons cannot be in coherent superpositions of different mass eigenstates', James M. Cline, arXiv:2410.05826, 2024.
[Cline:2024iqp]
[29-2]
Neutrinos produced from $\beta$ decays of neutrons cannot be in coherent superpositions of different mass eigenstates, Shi-Biao Zheng, arXiv:2410.03133, 2024.
[Zheng:2024bnu]
[29-3]
Neutrino oscillations from the perspective of the quantum Yang-Baxter equations, Ivan Arraut, Enrique Arrieta-Diaz, arXiv:2409.00560, 2024.
[Arraut:2024dqw]
[29-4]
Chiral oscillations in quantum field theory, Victor Bittencourt, Massimo Blasone, Gennaro Zanfardino, arXiv:2408.16742, 2024.
[Bittencourt:2024yxi]
[29-5]
Neutrino oscillations originate from virtual excitation of Z bosons, Shi-Biao Zheng, arXiv:2407.00954, 2024.
[Zheng:2024wkp]
[29-6]
Neutrino oscillation with minimal length uncertainty relation via wave packet approach, M. M. Ettefaghi, Phys.Lett.B 854 (2024) 138761, arXiv:2406.00531.
[Ettefaghi:2024fpr]
[29-7]
Remark on neutrino oscillations, Kazuo Fujikawa, Eur.Phys.J.C 84 (2024) 531, arXiv:2405.03940.
[Fujikawa:2024zol]
[29-8]
Majorana Phase And Matter Effects In Neutrino Chiral Oscillation, Ming-Wei Li, Zhong-Lv Huang, Xiao-Gang He, Phys.Lett.B 855 (2024) 138778, arXiv:2307.12561.
[Li:2023iys]
[29-9]
Exploring Models with Modular Symmetry in Neutrino Oscillation Experiments, Priya Mishra, Mitesh Kumar Behera, Papia Panda, Monojit Ghosh, Rukmani Mohanta, JHEP 09 (2023) 144, arXiv:2305.08576.
[Mishra:2023ekx]
[29-10]
Neutrino oscillations in the interaction picture, Massimo Blasone, Francesco Giacosa, Luca Smaldone, Giorgio Torrieri, Eur.Phys.J.C 83 (2023) 736, arXiv:2305.07107.
[Blasone:2023brf]
[29-11]
Neutrino Oscillations by a Manifestly Coherent Mechanism and Massless vs. Massive Neutrinos, Anca Tureanu, Phys.Lett.B 843 (2023) 137996, arXiv:2304.13491.
[Tureanu:2023iaw]
[29-12]
Neutrino oscillations in Quantum Field Theory, Sergey Kovalenko, Fedor Simkovic, arXiv:2212.13635, 2022.
[Kovalenko:2022goz]
[29-13]
How Broad is a Neutrino?, Hannah Banks, Kevin J. Kelly, Matthew McCullough, JHEP 02 (2023) 136, arXiv:2209.11270.
[Banks:2022gwq]
[29-14]
Neutrino mixing and oscillations in quantum field theory: a comprehensive introduction, Luca Smaldone, Giuseppe Vitiello, Universe 7 (2021) 504, arXiv:2111.11809.
[Smaldone:2021mii]
[29-15]
Screening models and neutrino oscillations, H. Yazdani Ahmadabadi, H. Mohseni Sadjadi, Phys.Dark Univ. 37 (2022) 101067, arXiv:2111.03054.
[Ahmadabadi:2021yfk]
[29-16]
Seesaw, coherence and neutrino oscillations, Tomi Kupiainen, Anca Tureanu, Eur.Phys.J.C 81 (2021) 1092, arXiv:2109.02139.
[Kupiainen:2021agu]
[29-17]
Insight into neutrino mass phenomenology by exploring the non-relativistic regime in quantum field theory, Apriadi Salim Adam, Nicholas J. Benoit, Yuta Kawamura, Yamato Matsuo, Takuya Morozumi, Yusuke Shimizu, Naoya Toyota, Phys.Rev.D 108 (2023) 056009, arXiv:2106.02783.
[SalimAdam:2021suq]
[29-18]
Pancharatnam-Berry phase in neutrino mixing, Manosh T.M., N. Shaji, Ramesh Babu Thayyullathil, Titus K. Mathew, arXiv:2104.12632, 2021.
[Manosh:2021gze]
[29-19]
Natural Understanding of Sterile Neutrino by Relativistic Equation, Keiichi Kimura, Akira Takamura, arXiv:2101.05613, 2021.
[Kimura:2021ylh]
[29-20]
Exact Oscillation Probabilities of Neutrinos in Three generations derived from Relativistic Equation, Keiichi Kimura, Akira Takamura, arXiv:2101.05101, 2021.
[Kimura:2021dwt]
[29-21]
Unification of Neutrino-Neutrino and Neutrino-Antineutrino Oscillations, Keiichi Kimura, Akira Takamura, arXiv:2101.04509, 2021.
[Kimura:2021juc]
[29-22]
New CP Phase and Exact Oscillation Probabilities of Dirac Neutrino derived from Relativistic Equation, Keiichi Kimura, Akira Takamura, arXiv:2101.03555, 2021.
[Kimura:2021qlh]
[29-23]
Chiral oscillations in the non-relativistic regime, Victor A. S. V. Bittencourt, Alex E. Bernardini, Massimo Blasone, Eur.Phys.J. C81 (2021) 411, arXiv:2009.00084.
[Bittencourt:2020xen]
[29-24]
Neutrino oscillations as many-particle induced interference between distinguishable particles, Alejandro Cabo Montes de Oca, Nana Geraldine Cabo Bizet, arXiv:2005.07758, 2020.
[CaboMontesdeOca:2020xeq]
[29-25]
Comment on the Comment on the paper 'Can oscillating neutrino states be formulated universally?', Anca Tureanu, arXiv:2005.02219, 2020.
[Tureanu:2020odo]
[29-26]
Comment on 'Can oscillating neutrino states be formulated universally?', Massimo Blasone, Luca Smaldone, Mod.Phys.Lett. A35 (2020) 2050313, arXiv:2004.04739.
[Blasone:2020wer]
[29-27]
Neutrino Oscillations and Energy-Momentum Conservation, HoSeong La, arXiv:1910.07076, 2019.
[La:2019wfz]
[29-28]
Flavor neutrino states for pedestrians, Massimo Blasone, Luca Smaldone, Giuseppe Vitiello, J.Phys.Conf.Ser. 1275 (2019) 012023, arXiv:1903.01401.
[Blasone:2019rxl]
[29-29]
Coherence length of neutrino oscillations in quantum field-theoretical approach, Vadim O. Egorov, Igor P. Volobuev, Phys.Rev. D100 (2019) 033004, arXiv:1902.03602.
[Egorov:2019vqv]
[29-30]
Can Oscillating Neutrino States Be Formulated Universally?, Anca Tureanu, Eur.Phys.J. C80 (2020) 68, arXiv:1902.01232.
[Tureanu:2019pui]
[29-31]
Flavor Energy uncertainty relations for neutrino oscillations in quantum field theory, Massimo Blasone, Petr Jizba, Luca Smaldone, Phys.Rev. D99 (2019) 016014, arXiv:1810.01648.
[Blasone:2018ktu]
[29-32]
Neutrino oscillation processes with a change of lepton flavor in quantum field-theoretical approach, Vadim O. Egorov, Igor P. Volobuev, J.Exp.Theor.Phys. 128 (2019) 713-719, arXiv:1712.04335.
[Volobuev:2017rnb]
[29-33]
Neutrino Oscillation Measurements Computed in Quantum Field Theory, Andrew Kobach, Aneesh V. Manohar, John McGreevy, Phys.Lett. B783 (2018) 59-75, arXiv:1711.07491.
[Kobach:2017osm]
[29-34]
Neutrino oscillation processes in quantum field-theoretical approach, Vadim O. Egorov, Igor P. Volobuev, Phys.Rev. D97 (2018) 093002, arXiv:1709.09915.
[Egorov:2017qgk]
[29-35]
Neutrinos as generalised coherent states: Probing flavour oscillations in the sub-eV region, Cheng-Yang Lee, Mod.Phys.Lett. A35 (2020) 2030015, arXiv:1709.06306.
[Lee:2017cqf]
[29-36]
Correct $\Delta m^2_{ij}$ Dependence for Neutrino Oscillation Formulae, Randy A. Johnson, arXiv:1707.04807, 2017.
Comment: Again the factor of 2 mistake in the phase! This error has been explained in [10-111]. [C.G.].
[Johnson:2017uue]
[29-37]
Oscillating Flavors in Massless Neutrinos, Lester C. Welch, arXiv:1602.08339, 2016.
[1602.08339]
[29-38]
Particle quantum states with indefinite mass and neutrino oscillations, A. E. Lobanov, Annals Phys. 403 (2019) 82-105, arXiv:1507.01256.
[Lobanov:2015esa]
[29-39]
The model of neutrino vacuum flavour oscillations and quantum mechanics, Boris I. Goryachev, J. Mod. Phys. 6 (2015) 1942, arXiv:1506.07751.
Comment: This paper assumes in Eq.(35) a definite energy, ignoring energy uncertainty and the wide literature on the problem (see [1-2] and references therein). It is curious that from time to time somebody wakes up and makes odd claims on problems which have been studied and solved long before. [C.G.].
[Goryachev:2015uka]
[29-40]
Massless neutrino oscillations via quantum tunneling, Hai-Long Zhao, arXiv:1502.00691, 2015.
[Zhao:2015tka]
[29-41]
Reply to the comment on 'Topological phase in two flavor neutrino oscillations', Poonam Mehta, arXiv:1008.4543, 2010.
Comment: See [29-52] and [29-42].
[Mehta:2010tz]
[29-42]
Comment on 'Topological phase in two flavor neutrino oscillations', Rajendra Bhandari, arXiv:1006.5935, 2010.
Comment: Refers to [29-52].
[Bhandari:2010pd]
[29-43]
Intrinsic flavor violation in neutrinos produced through decays, C. C. Nishi, arXiv:1006.5634, 2010.
[Nishi:2010ie]
[29-44]
The quantum measurement approach to particle oscillations, C. Anastopoulos, N. Savvidou, arXiv:1005.4307, 2010.
[Anastopoulos:2010sf]
[29-45]
Neutrino Oscillations and Entanglement, R. G. Hamish Robertson, Phys. Rev. Lett. (2010), arXiv:1004.1847.
[HamishRobertson:2010xr]
[29-46]
Non-abelian gauge structure in neutrino mixing, Massimo Blasone, Marco Di Mauro, Giuseppe Vitiello, Phys. Lett. B697 (2011) 238-245, arXiv:1003.5812.
[Blasone:2010zn]
[29-47]
Neutrino oscillations, entanglement and coherence: a quantum field theory study in real time, Jun Wu, Jimmy A. Hutasoit, Daniel Boyanovsky, Richard Holman, Int. J. Mod. Phys. A26 (2011) 5261-5297, arXiv:1002.2649.
[Wu:2010yr]
[29-48]
No Effect of Majorana Phases in Neutrino Oscillations, Carlo Giunti, Phys. Lett. B686 (2010) 41-43, arXiv:1001.0760.
[Giunti:2010ec]
[29-49]
Neutrino oscillations: Inevitability of non-standard interactions or a sterile neutrino, D. V. Ahluwalia, D. Schritt, arXiv:0911.2965, 2009.
[Ahluwalia:2009rp]
[29-50]
Non-cyclic phases for neutrino oscillations in quantum field theory, Massimo Blasone, Antonio Capolupo, Enrico Celeghini, Giuseppe Vitiello, Phys. Lett. B674 (2009) 73-79, arXiv:0903.1578.
[Blasone:2009xk]
[29-51]
Muon Oscillations, John M. Losecco, arXiv:0902.2752, 2009.
[Losecco:2009zc]
[29-52]
Topological phase in two flavor neutrino oscillations, Poonam Mehta, Phys. Rev. D79 (2009) 096013, arXiv:0901.0790.
[Mehta:2009ea]
[29-53]
On ultra-relativistic approximations, unobservable phases and other hand-waving in the derivation of the neutrino oscillation length, Jean-Michel Levy, arXiv:0901.0408, 2009.
[Levy:2009uz]
[29-54]
Neutrino Oscillations and Decoherence, Luca Visinelli, Paolo Gondolo, arXiv:0810.4132, 2008.
[Visinelli:2008ds]
[29-55]
Intrinsic flavor violation for massive neutrinos, C. C. Nishi, Phys. Rev. D78 (2008) 113007, arXiv:0810.2812.
[Nishi:2008sc]
[29-56]
Theoretical correlation between possible evidences of neutrino chiral oscillations and polarization measurements, Alex E. Bernardini, Marcelo M. Guzzo, Mod. Phys. Lett. A23 (2008) 1141-1150, arXiv:0706.3926.
[Bernardini:2007uf]
[29-57]
Chiral oscillations in terms of the zitterbewegung effect, Alex E. Bernardini, Eur. Phys. J. C50 (2007) 673, arXiv:hep-th/0701091.
[Bernardini:2007ew]
[29-58]
Flavor charges and flavor states of mixed neutrinos, Massimo Blasone, Antonio Capolupo, Chueng-Ryong Ji, Giuseppe Vitiello, Int. J. Mod. Phys. A25 (2010) 4179-4194, arXiv:hep-ph/0611106.
[Blasone:2006jx]
[29-59]
A Paradox on Quantum Field Theory of Neutrino Mixing and Oscillations, Y. F. Li, Q.Y. Liu, JHEP 10 (2006) 048, arXiv:hep-ph/0604069.
[Li:2006qt]
[29-60]
Additional time-dependent phase in the flavor-conversion formulas, Alex E. Bernardini, Europhys. Lett. 73 (2006) 157-163, arXiv:hep-th/0601043.
[Bernardini:2006tc]
[29-61]
Lepton charge and neutrino mixing in decay processes, Massimo Blasone, Antonio Capolupo, Francesco Terranova, Giuseppe Vitiello, Phys. Rev. D72 (2005) 013003, arXiv:hep-ph/0505178.
[Blasone:2005ae]
[29-62]
Flavor and chiral oscillations with Dirac wave packets, Alex E. Bernardini, Stefano De Leo, Phys. Rev. D71 (2005) 076008, arXiv:hep-ph/0504239.
[Bernardini:2005wh]
[29-63]
The Meaning of Coherence in Weak Decay Processes: `Neutrino Oscillations' Reconsidered, J. H. Field, arXiv:hep-ph/0503034, 2005.
Comment: Same as previous papers by the same author. Mistakes explained in [10-106], [29-84], [16-11]. [C.G.].
[Field:2005sn]
[29-64]
Quantum Mechanics in Space-Time: the Feynman Path Amplitude Description of Physical Optics, de Broglie Matter Waves and Quark and Neutrino Flavour Oscillations, J. H. Field, Annals Phys. 321 (2006) 627, arXiv:quant-ph/0503026.
From the abstract: Except for neutrino oscillations, good agreement is otherwise found with previous calculations of spatially dependent quantum interference effects.
Comment: Again the factor of 2 mistake in the phase! This error has been explained in [10-111]. [C.G.].
[Field:2005tk]
[29-65]
Dirac Spinors and Flavor Oscillations, Alex E. Bernardini, Stefano De Leo, Eur. Phys. J. C37 (2004) 471, arXiv:hep-ph/0411153.
[Bernardini:2004wr]
[29-66]
An Analytic Approach to the Wave Packet Formalism in Oscillation Phenomena, Alex E. Bernardini, Stefano De Leo, Phys. Rev. D70 (2004) 053010, arXiv:hep-ph/0411134.
[Bernardini:2004sw]
[29-67]
Structures of expectation values of flavor neutrino charges with respect to neutrino-source hadrons, Kanji Fujii, Takashi Shimomura, Prog. Theor. Phys. 112 (2004) 901, arXiv:hep-ph/0408109.
[Fujii:2004yd]
[29-68]
Phenomenology of flavor oscillations with non-perturbative effects from quantum field theory, Antonio Capolupo, Chueng-Ryong Ji, Yuriy Mishchenko, Giuseppe Vitiello, Phys. Lett. B594 (2004) 135-140, arXiv:hep-ph/0407166.
[Capolupo:2004pt]
[29-69]
Neutrino Oscillations in Intermediate States.II - Wave Packets, A. Asahara, K. Ishikawa, T. Shimomura, T. Yabuki, Prog. Theor. Phys. 113 (2005) 385, arXiv:hep-ph/0406141.
[Asahara:2004mh]
[29-70]
Time-to-space conversion in quantum field theory of flavor mixing, Chueng-Ryong Ji, Yuriy Mishchenko, Annals Phys. 315 (2005) 488, arXiv:hep-ph/0403073.
[Ji:2004xb]
[29-71]
Expectation values of flavor-neutrino currents in field theoretical approach to oscillation problem - formulation, Kanji Fujii, Takashi Shimomura, arXiv:hep-ph/0402274, 2004.
[Fujii:2004px]
[29-72]
Remarks on: 'Theory of neutrino oscillations' (hep-ph/0311241) by C.Giunti, the comments by L.B.Okun and others in hep-ph/0312151, and Giunti's reply in hep-ph/0312180, J. H. Field, arXiv:hep-ph/0401051, 2004.
Comment: Although I do not agree with most of the claims in the paper, I think that it is an interesting reading. [C.G.].
[Field:2004iu]
[29-73]
Wave packets and quantum oscillations, S. De Leo, C. C. Nishi, P. P. Rotelli, Int. J. Mod. Phys. A19 (2004) 677-694.
[DeLeo:2004ab]
[29-74]
Fock States of Flavor Neutrinos are Unphysical, Carlo Giunti, Eur. Phys. J. C (2005) 377-382, arXiv:hep-ph/0312256.
[Giunti:2003dg]
[29-75]
Neutrino mixing and Lorentz invariance, Massimo Blasone, Joao Magueijo, Paulo Pires-Pacheco, Europhys. Lett. 70 (2005) 600, arXiv:hep-ph/0307205.
[Blasone:2003wf]
[29-76]
On some erroneous comments on the literature of neutrino oscillations in the website `Neutrino Unbound' of C.Giunti, J. H. Field, arXiv:hep-ph/0306300, 2003.
Comment: Sincere thanks for the advertisement of this website!
About the physics, I only wish to remark that I never assumed 'equal space-time velocities', whatever it means.
[C.G.].

[Field:2003cg]
[29-77]
Mixing and oscillations of neutral particles in Quantum Field Theory, M. Blasone, J. Palmer, Phys. Rev. D69 (2004) 057301, arXiv:hep-ph/0305257.
[Blasone:2003hh]
[29-78]
Flavor change of tachyonic neutrinos, P. Caban, J. Rembielinski, K. A. Smolinski, Z. Walczak, Found. Phys. Lett. 19 (2006) 619-623, arXiv:hep-ph/0304221.
Comment: Did anyone think that there is some new effect changing the sign of $\Delta{m}^2$? [C.G.].
[Caban:2003rb]
[29-79]
A comment on the paper `Coherence in Neutrino Oscillations' by C.Giunti. Either lepton flavour eigenstates or neutrino oscillations do not exist, J. H. Field, arXiv:hep-ph/0303241, 2003.
Comment: Ye shall know the truth, and the truth shall make you free. [Bible, John 8:32].
[Field:2003sp]
[29-80]
Reply to hep-ph/0211241 'On the extra factor of two in the phase of neutrino oscillations', S. De Leo, C. C. Nishi, P. Rotelli, arXiv:hep-ph/0303224, 2003.
Comment: The main misconception of these authors seems to be their different treatment of the production and detection processes.
Local quantum field theory implies that the production and detection interactions happen each at a single space-time point.
The wave packet nature of the particles participating to the production and detection processes allows coherent contributions from different space-time points without changing the local character of interactions (see [10-111]).
It is also not clear why these authors insist on useless discussions about the 'equal velocity assumption' shown to be unrealistic in [10-112].
[C.G.].

[DeLeo:2003fk]
[29-81]
Quantum interference effects in the detection probability of charged leptons produced in charged current weak interactions, J. H. Field, arXiv:hep-ph/0303152, 2003.
Comment: Same as [29-82]. [C.G.].
[Field:2003ig]
[29-82]
Spatially dependent quantum interference effects in the detection probability of charged leptons produced in neutrino interactions or weak decay processes, J. H. Field, Eur. Phys. J. C37 (2004) 359-377, arXiv:hep-ph/0303151.
Comment: Again the factor of 2 mistake in the phase! This error has been explained in [10-111]. [C.G.].
[Field:2003if]
[29-83]
Lepton flavor eigenstates do not exist if neutrinos are massive: `Neutrino oscillations' reconsidered, J.H. Field, arXiv:hep-ph/0301231, 2003.
[Field:2003tt]
[29-84]
Lepton flavour eigenstates do not exist if neutrinos are massive: 'Neutrino oscillations' reconsidered, J. H. Field, arXiv:hep-ph/0301231, 2003.
Comment: See [29-84]. [C.G.].
[Giunti:2003mv]
[29-85]
Neutrino oscillations from relativistic flavor currents, M. Blasone, P. P. Pacheco, H. W. C. Tseung, Phys. Rev. D67 (2003) 073011, arXiv:hep-ph/0212402.
[Blasone:2002wp]
[29-86]
A covariant path amplitude description of flavour oscillations: The Gribov-Pontecorvo phase for neutrino vacuum propagation is right, J. H. Field, Eur. Phys. J. C30 (2003) 305-325, arXiv:hep-ph/0211199.
Comment: Same as [29-93] and [29-92]. Mistake explained in [10-111] and [10-106].
The attribution of the 'factor of two' mistake to Gribov and Pontecorvo is an historical aberration.
The claim that the 'factor of two' discrepancy in the Gribov and Pontecorvo paper [10-163] was unnoticed before [29-93] is pure fantasy. The fact is that nobody speculated about it.
[C.G.].

[Field:2002gg]
[29-87]
Quantum oscillation phenomena, S. De Leo, C. C. Nishi, P. P. Rotelli, arXiv:hep-ph/0208086, 2002.
Comment: This paper shows that a mistake can be achieved in arbitrarily complicated ways.
Not happy with the well-known fact that a wave-packet treatment of neutrino oscillations gives the correct standard phase (see [10-106]), the authors stubbornly manage to obtain additional phase contributions considering two-peaked wave packets.
[C.G.].

[DeLeo:2002pc]
[29-88]
Fermion mixing in quasifree states, K. C. Hannabuss, D. C. Latimer, J. Phys. A36 (2003) L69, arXiv:hep-th/0207268.
[Hannabuss:2002cv]
[29-89]
Quantum field theory of three flavor neutrino mixing and oscillations with CP violation, M. Blasone, A. Capolupo, G. Vitiello, Phys. Rev. D66 (2002) 025033, arXiv:hep-th/0204184.
[Blasone:2002jv]
[29-90]
The general theory of quantum field mixing, C.-R. Ji, Y. Mishchenko, Phys. Rev. D65 (2002) 096015, arXiv:hep-ph/0201188.
[Ji:2002tx]
[29-91]
Neutrino oscillations in intermediate states. I: Plane waves, T. Yabuki, K. Ishikawa, Prog. Theor. Phys. 108 (2002) 347-362.
[Yabuki:2002hx]
[29-92]
A Covariant Feynman path amplitude calculation of neutrino and muon oscillations, J.H. Field, arXiv:hep-ph/0110066, 2001.
[Field:2001xh]
[29-93]
The Description of neutrino and muon oscillations by interfering amplitudes of classical space-time paths, J.H. Field, arXiv:hep-ph/0110064, 2001.
[Field:2001xf]
[29-94]
Comment on 'Remarks on flavor-neutrino propagators and oscillation formulae', M. Blasone, A. Capolupo, G. Vitiello, arXiv:hep-ph/0107183, 2001.
[Blasone:2001sr]
[29-95]
Remarks on flavor-neutrino propagators and oscillation formulae, K. Fujii, C. Habe, T. Yabuki, Phys. Rev. D64 (2001) 013011, arXiv:hep-ph/0102001.
[Fujii:2001zv]
[29-96]
The quantum field theory of fermion mixing, K. C. Hannabuss, D. C. Latimer, J. Phys. A33 (2000) 1369-1373.
[Hannabuss:2000hy]
[29-97]
The quantum field theory of fermion mixing, K. C. Hannabuss, D. C. Latimer, J. Phys. A33 (2000) 1369-1373.
[Hannabuss:2000hy-fla]
[29-98]
Remarks on the neutrino oscillation formula, M. Blasone, G. Vitiello, Phys. Rev. D60 (1999) 111302, arXiv:hep-ph/9907382.
[Blasone:1999jb]
[29-99]
Comments upon the mass oscillation formulas, S. De Leo, G. Ducati, P. Rotelli, Mod. Phys. Lett. A15 (2000) 2057-2068, arXiv:hep-ph/9906460.
Comment: The equal-velocity assumption discussed in this paper has been proved to be unreal in [10-112]. The 'factor of two ambiguity' claimed in this paper has been refuted in [10-111]. [C.G.].
[DeLeo:1999aa]
[29-100]
Neutrino mass difference induced oscillations in observed muon decays, Y. N. Srivastava, S. Palit, A. Widom, E. Sassaroli, arXiv:hep-ph/9807543, 1998.
Comment: Charged lepton oscillations have been refuted in [10-131], [10-111]. [C.G.].
[Srivastava:1998sy]
[29-101]
Note on the field theory of neutrino mixing, K. Fujii, C. Habe, T. Yabuki, Phys. Rev. D59 (1999) 113003, arXiv:hep-ph/9807266.
[Fujii:1998xa]
[29-102]
The exact formula for neutrino oscillations, M. Blasone, P. A. Henning, G. Vitiello, Phys. Lett. B451 (1999) 140, arXiv:hep-th/9803157.
[Blasone:1998hf]
[29-103]
Charged lepton and neutrino oscillations, Y. N. Srivastava, A. Widom, E. Sassaroli, Eur. Phys. J. C2 (1998) 769.
Comment: It is claimed that charged leptons oscillate. This has been refuted in [10-131], [10-111]. [C.G.].
[Srivastava:1998gi]
[29-104]
Of course muons can oscillate, Y. N. Srivastava, A. Widom, arXiv:hep-ph/9707268, 1997.
Comment: It is claimed that charged leptons oscillate. This has been refuted in [10-131], [10-111]. [C.G.].
[Srivastava:1997paa]
[29-105]
Neutrino flavor oscillations using the Dirac equation, A. Widom, Y. N. Srivastava, arXiv:hep-ph/9608476, 1996.
[Widom:1996bb]
[29-106]
Neutrino chiral oscillations, Stefano De Leo, Pietro Rotelli, Int. J. Theor. Phys. 37 (1998) 2193-2206, arXiv:hep-ph/9605255.
[DeLeo:1996gt]
[29-107]
Squeezed Neutrino Oscillations in Quantum Field Theory, E. Alfinito, M. Blasone, A. Iorio, G. Vitiello, Phys. Lett. B362 (1995) 91-96, arXiv:hep-ph/9510213.
[Alfinito:1995kx]
[29-108]
Charged Lepton Oscillations, E. Sassaroli, Y. N. Srivastava, A. Widom, arXiv:hep-ph/9509261, 1995.
Comment: It is claimed that charged leptons oscillate. This has been refuted in [10-131], [10-111]. [C.G.].
[Sassaroli:1995vf]
[29-109]
Quantum field theory of fermion mixing, M. Blasone, G. Vitiello, Ann. Phys. 244 (1995) 283-311, arXiv:hep-ph/9501263.
[Blasone:1995zc]

30 - Theory - Alternative Models - Talks

[30-1]
Intrinsic quantum coherence in particle oscillations, Anca Tureanu, PoS ICHEP2020 (2021) 672, arXiv:2012.14866. 40th International Conference on High Energy Physics, ICHEP 2020; Jul 28-Aug 6, 2020, Prague, Czech Republic.
[Tureanu:2020pea]
[30-2]
Neutrino nature, total and geometric phase, A. Capolupo, S.M. Giampaolo, J.Phys.Conf.Ser. 1275 (2019) 012053, arXiv:1904.11249. 9th International Conference DICE2018: Spacetime - Matter - Quantum Mechanics : From discrete structures and dynamics to top-down causation.
[Capolupo:2019tbk]
[30-3]
Total and geometric phases, Majorana and Dirac neutrinos, Antonio Capolupo, arXiv:1904.05888, 2019. NuPhys2018.
[Capolupo:2019lcd]
[30-4]
Quantization in relativistic classical mechanics: the Stueckelberg equation, neutrino oscillation and large-scale structure of the Universe, V.D. Rusov, D.S. Vlasenko, J. Phys. Conf. Ser. 361 (2012) 012033, arXiv:1202.1404. Heinz von Foerster Congress 2011.
[Rusov:2012sf]
[30-5]
Physical flavor neutrino states, Massimo Blasone, J. Phys. Conf. Ser. 306 (2011) 012037, arXiv:1107.5386. 5th International Workshop DICE2010: Space-Time-Matter - Current Issues in Quantum Mechanics and Beyond.
[Blasone:2011zz]
[30-6]
On flavor violation for massive and mixed neutrinos, M. Blasone, A. Capolupo, C.R. Ji, G. Vitiello, Nucl. Phys. Proc. Suppl. 188 (2009) 37-39, arXiv:0812.2133. NOW2008, Neutrino Oscillation Workshop Conca Specchiulla (Otranto, Lecce, Italy) September 6-13, 2008.
[Blasone:2008ii]
[30-7]
Neutrino mixing, flavor states and dark energy, M. Blasone, A. Capolupo, S. Capozziello, G. Vitiello, Nucl. Instrum. Meth. A588 (2008) 272-275, arXiv:0711.0939. Roma International Conference on Astro-Particle physics (RICAP'07), Roma, Italy, 20 - 22 June 2007.
[Blasone:2007jm]
[30-8]
Flavor states of mixed neutrinos, M.Blasone, A.Capolupo, C.R.Ji, G.Vitiello, AIP Conf. Proc. 957 (2007) 189-192, arXiv:0709.1384. 13th International Symposium on Particles, Strings and Cosmology, PASCOS-07, 2-7 July 2007, Imperial College London.
[Blasone:2007xq]
[30-9]
Quantum Field Theory of particle mixing and oscillations, Massimo Blasone, Giuseppe Vitiello, arXiv:hep-ph/0309202, 2003. Symmetries in Science XIII, Kloster Mehrerau, Bregenz, Austria - July 20-24, 2003.
[Blasone:2003eh]
[30-10]
Group theoretical aspects of neutrino mixing in Quantum Field Theory, M. Blasone, A. Capolupo, G. Vitiello, arXiv:hep-ph/0309201, 2003. XII International Baksan School 'Particles and Cosmology', Baksan Valley, Kabardino-Balkaria, Russian Federation - April 21 - 26, 2003.
[Blasone:2003eg]
[30-11]
Observables in the Quantum Field Theory of neutrino mixing and oscillations, M. Blasone, P. Jizba, G. Vitiello, arXiv:hep-ph/0308009, 2003. First Yamada Symposium on Neutrinos and Dark Matter in Nuclear Physics (NDM03).
[Blasone:2003sk]
[30-12]
Understanding flavor mixing in quantum field theory, M. Blasone, A. Capolupo, G. Vitiello, arXiv:hep-th/0107125, 2001. International Conference on Flavor Physics (ICFP 2001), Zhang-Jia-Jie City, Hunan, China, 31 May - 6 June 2001.
[Blasone:2001np]
[30-13]
Invalid approximations in the oscillation formula, P. Rotelli, Nucl. Phys. Proc. Suppl. 100 (2001) 270-272. Europhysics Neutrino Oscillation Workshop (NOW 2000), Conca Specchiulla, Otranto, Lecce, Italy, 9-16 Sep 2000.
[Rotelli:2001au]
[30-14]
Green's functions for neutrino mixing, M. Blasone, G. Vitiello, P. A. Henning, arXiv:hep-ph/9807370, 1998.
[Blasone:1998sx]
[30-15]
Mixing transformations in quantum field theory and neutrino oscillations, M. Blasone, P. A. Henning, G. Vitiello, Frascati Phys.Ser. 5 (1996) 139-152, arXiv:hep-ph/9605335.
[Blasone:1996pn]
[30-16]
Neutrino Mixing and Oscillations in Quantum Field Theory, E. Alfinito, M. Blasone, A. Iorio, G. Vitiello, Acta Phys. Polon. B27 (1996) 1493-1502, arXiv:hep-ph/9601354. 19th International Conference on Theoretical Physics: Particle Physics and Astrophysics in the Standard Model and Beyond, Szczyrk, Poland, 19-26 Sep 1995.
[Alfinito:1995wp]
[30-17]
Associated charged lepton oscillations, Y. N. Srivastava, A. Widom, E. Sassaroli, Frascati Phys.Ser. 5 (1996) 125-138. 10th Les Rencontres de Physique de la Vallee d'Aoste: Results and Perspectives in Particle Physics, La Thuile, Italy, 3-9 Mar 1996.
[Srivastava:1996gf]

31 - Phenomenology

[31-1]
Analysis of neutrino oscillation parameters in the light on quantum entanglement, Rajrupa Banerjee, Papia Panda, Rukmani Mohanta, Sudhanwa Patra, arXiv:2410.05727, 2024.
[Banerjee:2024lih]
[31-2]
nuOscillation: a software package for computation and simulation of neutrino propagation and interaction, Seonghyeok Jang, Eunju Jeon, Eunil Won, Young Ju Ko, Kyungmin Lee, J.Korean Phys.Soc. 85 (2024) 381-388, arXiv:2401.13215.
[Jang:2024mfr]
[31-3]
Evaluation of the Leggett-Garg inequality by means of the neutrino oscillations observed in reactor and accelerator experiments, Ricardo Zamora Barrios, Mario A. Acero, arXiv:2401.00240, 2024.
[Barrios:2023yub]
[31-4]
CP-Violation with Neutrino Disappearance, Phys.Rev.Lett. 133 (2024) 031801.
[Denton:2023qmd]
[31-5]
Sensitivity to CP Discovery in the Presence of Lorentz Invariance Violating Potential at T2HK/T2HKK, Supriya Pan, Srubabati Goswami, Kaustav Chakraborty, Eur.Phys.J.C 84 (2024) 354, arXiv:2308.07566.
[Pan:2023qln]
[31-6]
A Pythagoras-like theorem for CP violation in neutrino oscillations, Shu Luo, Zhi-zhong Xing, Phys.Lett.B 845 (2023) 138142, arXiv:2306.16231.
[Luo:2023xmv]
[31-7]
Neutrino mass matrix in neutrino-related processes, M. I. Krivoruchenko, F. Simkovic, Phys.Atom.Nucl. 86 (2023) 709-724, arXiv:2305.12378.
[Krivoruchenko:2023npj]
[31-8]
The CAFAna framework for neutrino analysis, C. Backhouse, arXiv:2203.13768, 2022.
[Backhouse:2022cgc]
[31-9]
New Test of Neutrino Oscillation Coherence with Leggett-Garg Inequality, Xing-Zhi Wang, Bo-Qiang Ma, Eur.Phys.J.C 82 (2022) 133, arXiv:2201.10597.
[Wang:2022tnr]
[31-10]
Impact of Wave Package Separation in Low-Energy Sterile Neutrino Searches, Carlos A. Arguelles, Toni Bertolez-Martinez, Jordi Salvado, Phys.Rev.D 107 (2023) 036004, arXiv:2201.05108.
[Arguelles:2022bvt]
[31-11]
Symmetries of neutrino oscillations in vacuum, matter, and approximation schemes, Peter B. Denton, Stephen J. Parke, Phys.Rev.D 105 (2022) 013002, arXiv:2106.12436.
[Denton:2021vtf]
[31-12]
Symmetry Finder: A method for hunting symmetry in neutrino oscillation, Hisakazu Minakata, Phys.Rev.D 104 (2021) 075024, arXiv:2106.11472.
[Minakata:2021dqh]
[31-13]
Wave packet approach to quantum correlations in neutrino oscillations, Massimo Blasone, Silvio De Siena, Cristina Matrella, Eur.Phys.J.C 81 (2021) 660, arXiv:2104.03166.
[Blasone:2021cau]
[31-14]
Studying the neutrino wave-packet effects at medium-baseline reactor neutrino oscillation experiments and the potential benefits of an extra detector, Zhaokan Cheng, Wei Wang, Chan Fai Wong, Jingbo Zhang, Nucl.Phys. B964 (2021) 115304, arXiv:2009.06450.
[Cheng:2020jje]
[31-15]
Quantification of quantumness in neutrino oscillations, Fei Ming, Xue-Ke Song, Jiajie Ling, Liu Ye, Dong Wang, Eur. Phys. J. C 80 (2020) 275.
[Ming:2020nyc]
[31-16]
Exact neutrino oscillation probabilities: a fast general-purpose computation method for two and three neutrino flavors, Mauricio Bustamante, arXiv:1904.12391, 2019.
[Bustamante:2019ggq]
[31-17]
Leggett-Garg inequality in the context of three flavour neutrino oscillation, Javid Naikoo, Ashutosh Kumar Alok, Subhashish Banerjee, S. Uma Sankar, Phys.Rev. D99 (2019) 095001, arXiv:1901.10859.
[Naikoo:2019eec]
[31-18]
Neutrino flavor-mass uncertainty relations and an entanglement-assisted determination of the PMNS matrix, Stefan Floerchinger, Jan-Markus Schwindt, Phys.Rev. D102 (2020) 093001, arXiv:1811.06403.
[Floerchinger:2018mla]
[31-19]
Testing Violation of the Leggett-Garg Inequality in Neutrino Oscillations of Daya Bay Experiment, Qiang Fu, Xurong Chen, Eur.Phys.J. C77 (2017) 775, arXiv:1705.08601.
[Fu:2017hky]
[31-20]
Attenuation effect and neutrino oscillation tomography, A. N. Ioannisian, A.Yu. Smirnov, Phys.Rev. D96 (2017) 083009, arXiv:1705.04252.
[Ioannisian:2017chl]
[31-21]
Violation of the Leggett-Garg Inequality in Neutrino Oscillations, J. A. Formaggio, D. I. Kaiser, M. M. Murskyj, T. E. Weiss, Phys. Rev. Lett. 117 (2016) 050402, arXiv:1602.00041.
[Formaggio:2016cuh]
[31-22]
Wave-packet treatment of neutrino oscillations and its implications on determining the neutrino mass hierarchy, Yat-Long Chan, M.-C.Chu, Ka Ming Tsui, Chan Fai Wong, Jianyi Xu, Eur.Phys.J. C76 (2016) 310, arXiv:1507.06421.
[Chan:2015mca]
[31-23]
Neutrino oscillation from the beam with Gaussian-like energy distribution, Rong-Sheng Han, Liang Chen, Ke-Lin Wang, arXiv:1506.06836, 2015.
[Han:2015iwa]
[31-24]
On the description of non-unitary neutrino mixing, F. J. Escrihuela, D. V. Forero, O. G. Miranda, M. Tortola, J. W. F. Valle, Phys. Rev. D92 (2015) 053009, arXiv:1503.08879.
[Escrihuela:2015wra]
[31-25]
Some comments on high precision study of neutrino oscillations, S.M. Bilenky, Phys. Part. Nucl. Lett. 12 (2015) 453-461, arXiv:1502.06158.
[Bilenky:2015xwa]
[31-26]
Impact of approximate oscillation probabilities in the analysis of three neutrino experiments, B. K. Cogswell, D. C. Latimer, D. J. Ernst, arXiv:1406.1478, 2014.
[Cogswell:2014kba]
[31-27]
Accelerated Event-by-Event Neutrino Oscillation Reweighting with Matter Effects on a GPU, R. G. Calland, A. C. Kaboth, D. Payne, JINST 9 (2014) 04016, arXiv:1311.7579.
[Calland:2013vaa]
[31-28]
A Critical Examination on L/E Analysis in the Underground Detectors with a Computer Numerical Experiment Part 1, E.Konishi et al., arXiv:1307.1239, 2013.
[Konishi:2013zoa]
[31-29]
Testing Localization in Neutrino Oscillations, Dmitry V. Zhuridov, arXiv:1203.2764, 2012.
[Zhuridov:2012wx]
[31-30]
Neutrino and antineutrino oscillations from decay of Z boson, I. M. Pavlichenkov, arXiv:1201.3103, 2012.
[Pavlichenkov:2012np]
[31-31]
Testing Nonstandard Neutrino Properties with a Mossbauer Oscillation Experiment, P.A.N. Machado, H. Nunokawa, F. A. Pereira dos Santos, R. Zukanovich Funchal, JHEP 11 (2011) 136, arXiv:1108.3339.
[Machado:2011tn]
[31-32]
Short baseline neutrino oscillations: when entanglement suppresses coherence, Daniel Boyanovsky, Phys. Rev. D84 (2011) 065001, arXiv:1106.6248.
[Boyanovsky:2011xq]
[31-33]
Neutrino oscillations with disentanglement of a neutrino from its partners, D. V. Ahluwalia, S. P. Horvath, Europhys. Lett. 95 (2011) 10007, arXiv:1102.0077.
[Ahluwalia:2011ea]
[31-34]
Neutrino Oscillations form Cosmic Sources: a Nu Window to Cosmology, D.J. Wagner, T.J. Weiler, Mod. Phys. Lett. A12 (1997) 2497, arXiv:1101.5677.
[Wagner:1997vn]
[31-35]
Astrophysical and Cosmological Tests of Quantum Theory, Antony Valentini, J. Phys. A40 (2007) 3285-3303, arXiv:hep-th/0610032.
[Valentini:2006yj]
[31-36]
Flavour transitions of Dirac-Majorana neutrinos, Salvatore Esposito, Nicola Tancredi, Eur. Phys. J. C4 (1998) 221-230, arXiv:hep-ph/9803471.
[Esposito:1998yd]

32 - Phenomenology - Talks

[32-1]
Collective Neutrino Oscillations and Nucleosynthesis, A.B. Balantekin, AIP Conf.Proc. 1947 (2018) 020012, arXiv:1710.04108. OMEG17.
[Balantekin:2017bau]
[32-2]
Inverse-square law violation and reactor antineutrino anomaly, D.V. Naumov, V.A. Naumov, D.S. Shkirmanov, Phys.Part.Nucl. 48 (2017) 12-20, arXiv:1507.04573. International Workshop on Prospects of Particle Physics: 'Neutrino Physics and Astrophysics', Valday, Russia, February 1-8, 2015.
[Naumov:2015hba]
[32-3]
Using Neutrinos to test the Time-Energy Uncertainty Relation in an Extreme Regime, Ramaswamy S. Raghavan, Djordje Minic, Tatsu Takeuchi, Chia Hsiung Tze, arXiv:1210.5639, 2012. Virginia Tech Symposium on the Life and Science of Dr. Raju Raghavan.
[Raghavan:2012sy]

33 - Phenomenology - Neutrino-Antineutrino Transitions

[33-1]
Discovering heavy neutrino-antineutrino oscillations at the $Z$-pole, Stefan Antusch, Jan Hajer, Bruno M. S. Oliveira, arXiv:2408.01389, 2024.
[Antusch:2024otj]
[33-2]
Majorana CP-violating phases in neutrino-antineutrino oscillations and other lepton-number-violating processes, Zhi-zhong Xing, Ye-Ling Zhou, Phys. Rev. D88 (2013) 033002, arXiv:1305.5718.
[Xing:2013woa]
[33-3]
Neutrino-antineutrino oscillations as a possible solution for the LSND and MiniBooNE anomalies?, Sebastian Hollenberg, Octavian Micu, Heinrich Pas, Phys. Rev. D80 (2009) 053010, arXiv:0906.5072.
[Hollenberg:2009tr]

34 - Phenomenology - Neutrino-Antineutrino Transitions - Talks

[34-1]
Majorana phases in neutrino-antineutrino oscillations, Ye-Ling Zhou, arXiv:1310.5843, 2013. NUFACT 2013.
[Zhou:2013eoa]

35 - Phenomenology - Decoherence

[35-1]
Unearthing Neutrino Decoherence from Quantum Spacetime: An Open Quantum Systems Perspective, Partha Nandi, Tiasha Bhattacharyya, arXiv:2410.03808, 2024.
[Nandi:2024wkm]
[35-2]
Search for quantum decoherence in neutrino oscillations with six detection units of KM3NeT/ORCA, S. Aiello et al., arXiv:2410.01388, 2024.
[KM3NeT:2024jji]
[35-3]
Addendum to `Combined Analysis of Neutrino Decoherence at Reactor Experiments', Andre de Gouvea, Valentina De Romeri, Christoph A. Ternes, arXiv:2410.01357, 2024.
[deGouvea:2024syg]
[35-4]
Potential of Neutrino Telescopes to Detect Quantum Gravity-Induced Decoherence in the Presence of Dark Fermions, Alba Domi, Thomas Eberl, Dominik Hellmann, Sara Krieg, Heinrich Pas, arXiv:2409.12633, 2024.
[Domi:2024muy]
[35-5]
Distinguishing Beyond-Standard Model Effects in Neutrino Oscillation, A. Calatayud-Cadenillas, A. Perez-G, A. M. Gago, arXiv:2408.04234, 2024.
[Calatayud-Cadenillas:2024wdw]
[35-6]
Study of quantum decoherence at Protvino to ORCA experiment, Chinmay Bera, K. N. Deepthi, Phys.Rev.D 110 (2024) 035035, arXiv:2405.03286.
[Bera:2024hhr]
[35-7]
Decoherence in Neutrino Oscillation at the ESSnuSB Experiment, J. Aguilar et al. (ESSnuSB), JHEP 08 (2024) 063, arXiv:2404.17559.
[ESSnuSB:2024yji]
[35-8]
Neutrinos as possible probes for quantum gravity, Marco Danilo Claudio Torri, Lino Miramonti, Class.Quant.Grav. 41 (2024) 153001, arXiv:2404.04076.
[Torri:2024jwc]
[35-9]
Understanding gravitationally induced decoherence parameters in neutrino oscillations using a microscopic quantum mechanical model, Alba Domi, Thomas Eberl, Max Joseph Fahn, Kristina Giesel, Lukas Hennig, Ulrich Katz, Roman Kemper, Michael Kobler, arXiv:2403.03106, 2024.
[Domi:2024ypm]
[35-10]
Quantum Decoherence effects on precision measurements at DUNE and T2HK, G. Barenboim, A. Calatayud-Cadenillas, A. M. Gago, C. A. Ternes, Phys.Lett.B 852 (2024) 138626, arXiv:2402.16395.
[Barenboim:2024wdn]
[35-11]
Searching for Decoherence from Quantum Gravity at the IceCube South Pole Neutrino Observatory, R. Abbasi et al., arXiv:2308.00105, 2023.
[IceCube:2023gzt]
[35-12]
Decoherence effects on lepton number violation from heavy neutrino-antineutrino oscillations, Stefan Antusch, Jan Hajer, Johannes Rosskopp, JHEP 11 (2023) 235, arXiv:2307.06208.
[Antusch:2023nqd]
[35-13]
On the Effects of Quantum Decoherence in a Future Supernova Neutrino Detection, Marcos V. dos Santos, Pedro C. de Holanda, Pedro Dedin Neto, Ernesto Kemp, Phys.Rev.D 108 (2023) 103032, arXiv:2306.17591.
[dosSantos:2023skk]
[35-14]
Constraints on quantum spacetime-induced decoherence from neutrino oscillations, Vittorio D'Esposito, Giulia Gubitosi, Phys.Rev.D 110 (2024) 026004, arXiv:2306.14778.
[DEsposito:2023psn]
[35-15]
Neutrino oscillation bounds on quantum decoherence, Valentina De Romeri, Carlo Giunti, Thomas Stuttard, Christoph A. Ternes, JHEP 09 (2023) 097, arXiv:2306.14699.
[DeRomeri:2023dht]
[35-16]
A decoherence explanation of the gallium neutrino anomaly, Yasaman Farzan, Thomas Schwetz, SciPost Phys. 15 (2023) 172, arXiv:2306.09422.
[Farzan:2023fqa]
[35-17]
Decoherence effects in reactor and Gallium neutrino oscillation experiments - a QFT approach, Raphael Krueger, Thomas Schwetz, Eur.Phys.J.C 83 (2023) 578, arXiv:2303.15524.
[Krueger:2023skk]
[35-18]
Exploring the nature of neutrinos in a dissipative environment, Chinmay Bera, K. N. Deepthi, arXiv:2301.06594, 2023.
[Bera:2023ksx]
[35-19]
Neutrino Decoherence from Generalised Uncertainty, Indra Kumar Banerjee, Ujjal Kumar Dey, Eur.Phys.J.C 83 (2023) 428, arXiv:2208.12062.
[Banerjee:2022slh]
[35-20]
Quantum Gravitational Decoherence in the 3 Neutrino Flavor Scheme, Dominik Hellmann, Heinrich Pas, Erika Rani, Phys.Rev.D 106 (2022) 083013, arXiv:2208.11754.
[Hellmann:2022cgt]
[35-21]
Neutrino Decoherence and the Mass Hierarchy in the JUNO Experiment, Eric Marzec, Joshua Spitz, Phys.Rev.D 106 (2022) 053007, arXiv:2208.04277.
[Marzec:2022mcz]
[35-22]
Where Neutrino Decoherence Lies, Emilio Ciuffoli, Jarah Evslin, Eur.Phys.J.C 82 (2022) 1097, arXiv:2205.05367.
[Ciuffoli:2022uzf]
[35-23]
Matter effects on flavor transitions of high-energy astrophysical neutrinos based on different decoherence schemes, Ding-Hui Xu, Shu-Jun Rong, arXiv:2205.03164, 2022.
[Xu:2022wzh]
[35-24]
Microscopic and Macroscopic Effects in the Decoherence of Neutrino Oscillations, Ting Cheng, Manfred Lindner, Werner Rodejohann, arXiv:2204.10696, 2022.
[Cheng:2022lys]
[35-25]
Damping signatures at JUNO, a medium-baseline reactor neutrino oscillation experiment, Jun Wang et al. (JUNO), JHEP 06 (2022) 062, arXiv:2112.14450.
[JUNO:2021ydg]
[35-26]
Combined analysis of neutrino decoherence at reactor experiments, Andre de Gouvea, Valentina De Romeri, Christoph A. Ternes, JHEP 2106 (2021) 042, arXiv:2104.05806.
[deGouvea:2021uvg]
[35-27]
Searching New Particles at Neutrino Telescopes with Quantum-Gravitational Decoherence, Dominik Hellmann, Heinrich Pas, Erika Rani, Phys.Rev.D 105 (2022) 055007, arXiv:2103.11984.
[Hellmann:2021jyz]
[35-28]
Probing neutrino quantum decoherence at reactor experiments, Andre de Gouvea, Valentina De Romeri, Christoph A. Ternes, JHEP 2008 (2020) 018, arXiv:2005.03022.
[deGouvea:2020hfl]
[35-29]
Quantum decoherence and relaxation in neutrinos using long-baseline data, A. L. G. Gomes, R. A. Gomes, O. L. G. Peres, JHEP 10 (2023) 035, arXiv:2001.09250.
[Gomes:2020muc]
[35-30]
Revealing neutrino nature and $CPT$ violation with decoherence effects, Luca Buoninfante, Antonio Capolupo, Salvatore M. Giampaolo, Gaetano Lambiase, Eur.Phys.J. C80 (2020) 1009, arXiv:2001.07580.
[Buoninfante:2020iyr]
[35-31]
Solar Neutrino Limits on Decoherence, Pedro Cunha de Holanda, JCAP 2003 (2020) 012, arXiv:1909.09504.
[deHolanda:2019tuf]
[35-32]
Testing quantum decoherence at DUNE, Jose Carpio, Eduardo Massoni, Alberto Gago, Phys.Rev. D100 (2019) 015035, arXiv:1811.07923.
[Carpio:2018gum]
[35-33]
Probing CPT breaking induced by quantum decoherence at DUNE, J.C. Carrasco, F.N. Diaz, A.M. Gago, Phys.Rev. D99 (2019) 075022, arXiv:1811.04982.
[Carrasco:2018sca]
[35-34]
Decoherence in neutrino oscillations: neutrino nature and CPT violation, A. Capolupo, S. M. Giampaolo, G. Lambiase, Phys.Lett. B792 (2019) 298-303, arXiv:1807.07823.
[Capolupo:2018hrp]
[35-35]
Decoherence-effects in the neutrino-mixing mechanism: active and sterile neutrinos in the three flavor scheme, M. Mosquera, O. Civitarese, arXiv:1807.03690, 2018.
[Mosquera:2018yar]
[35-36]
Quantifying Quantum Coherence in Experimentally-Observed Neutrino Oscillations, Xue-Ke Song, Yanqi Huang, Jiajie Ling, Man-Hong Yung, Phys.Rev. A98 (2018) 050302, arXiv:1806.00715.
[Song:2018bma]
[35-37]
Quantum Decoherence Effects in Neutrino Oscillations at DUNE, G. Balieiro Gomes, D. V. Forero, M. M. Guzzo, P. C. de Holanda, R. L. N. Oliveira, Phys.Rev. D100 (2019) 055023, arXiv:1805.09818.
[BalieiroGomes:2018gtd]
[35-38]
Decoherence in neutrino propagation through matter, and bounds from IceCube/DeepCore, Pilar Coloma, Jacobo Lopez-Pavon, Ivan Martinez-Soler, Hiroshi Nunokawa, Eur.Phys.J. C78 (2018) 614, arXiv:1803.04438.
[Coloma:2018idr]
[35-39]
Dissipative Effect in Long Baseline Neutrino Experiments, Roberto L. N. Oliveira, Eur.Phys.J. C76 (2016) 417, arXiv:1603.08065.
[Oliveira:2016asf]
[35-40]
Parameter Limits for Neutrino Oscillation with Decoherence in KamLAND, G. Balieiro Gomes, M. M. Guzzo, P. C. de Holanda, R. L. N. Oliveira, Phys.Rev. D95 (2017) 113005, arXiv:1603.04126.
[BalieiroGomes:2016ykp]
[35-41]
Decoherence and oscillations of supernova neutrinos, Joern Kersten, Alexei Yu. Smirnov, Eur.Phys.J. C76 (2016) 339, arXiv:1512.09068.
[Kersten:2015kio]
[35-42]
Quantum Dissipation in a Neutrino System Propagating in Vacuum and in Matter, Marcelo M. Guzzo, Pedro C. de Holanda, Roberto L. N. Oliveira, Nucl. Phys. B 908 (2016) 408-422, arXiv:1408.0823.
[Guzzo:2014jbp]
[35-43]
Quantum Dissipation and CP Violation in MINOS, R.L.N. de Oliveira, M. M. Guzzo, P. C. de Holanda, Phys. Rev. D89 (2014) 053002, arXiv:1401.0033.
[deOliveira:2013dia]
[35-44]
Neutrino oscillations in a Robertson-Walker Universe with space time foam, J. Alexandre, K. Farakos, N. E. Mavromatos, P. Pasipoularides, Phys. Rev. D79 (2009) 107701, arXiv:0902.3386.
[Alexandre:2009si]
[35-45]
Quantum-Gravity Decoherence Effects in Neutrino Oscillations: Expected Constraints From CNGS and J-PARC, Nick E. Mavromatos, Anselmo Meregaglia, Andre Rubbia, Alexander Sakharov, Sarben Sarkar, Phys. Rev. D77 (2008) 053014, arXiv:0801.0872.
[Mavromatos:2007hv]
[35-46]
Neutrino oscillations in a stochastic model for space-time foam, J. Alexandre, K. Farakos, N. E. Mavromatos, P. Pasipoularides, Phys. Rev. D77 (2008) 105001, arXiv:0712.1779.
[Alexandre:2007na]
[35-47]
Probing non-standard decoherence effects with solar and KamLAND neutrinos, G.L. Fogli et al., Phys. Rev. D76 (2007) 033006, arXiv:0704.2568.
[Fogli:2007tx]
[35-48]
Quantum decoherence and neutrino data, G. Barenboim, N.E. Mavromatos, S. Sarkar, A. Waldron-Lauda, Nucl. Phys. B758 (2006) 90-111, arXiv:hep-ph/0603028.
[Barenboim:2006xt]
[35-49]
Probing Planck scale physics with IceCube, Luis A. Anchordoqui et al., Phys. Rev. D72 (2005) 065019, arXiv:hep-ph/0506168.
[Anchordoqui:2005gj]
[35-50]
Damping signatures in future neutrino oscillation experiments, Mattias Blennow, Tommy Ohlsson, Walter Winter, JHEP 0506 (2005) 049, arXiv:hep-ph/0502147.
[Blennow:2005yk]
[35-51]
CPT Violating Decoherence and LSND: a possible window to Planck scale Physics, Gabriela Barenboim, Nick Mavromatos, JHEP 0501 (2005) 034, arXiv:hep-ph/0404014.
[Barenboim:2004wu]
[35-52]
Status of atmospheric $ \nu_\mu \to \nu_\tau $ oscillations and decoherence after the first K2K spectral data, G.L. Fogli, E. Lisi, A. Marrone, D. Montanino, Phys. Rev. D67 (2003) 093006, arXiv:hep-ph/0303064.
[Fogli:2003th]
[35-53]
A Study on quantum decoherence phenomena with three generations of neutrinos, A. M. Gago, E. M. Santos, W. J. C. Teves, R. Zukanovich Funchal, arXiv:hep-ph/0208166, 2002.
[Gago:2002na]
[35-54]
Massless neutrino oscillations, F. Benatti, R. Floreanini, Phys. Rev. D64 (2001) 085015, arXiv:hep-ph/0105303.
[Benatti:2001fa]
[35-55]
Comment on a proposed Super-Kamiokande test for quantum gravity induced decoherence effects, Stephen L. Adler, Phys. Rev. D62 (2000) 117901, arXiv:hep-ph/0005220.
[Adler:2000vfa]
[35-56]
Probing possible decoherence effects in atmospheric neutrino oscillations, E. Lisi, A. Marrone, D. Montanino, Phys. Rev. Lett. 85 (2000) 1166-1169, arXiv:hep-ph/0002053.
[Lisi:2000zt]
[35-57]
Possible effects of quantum mechanics violation induced by certain quantum gravity on neutrino oscillations, Chao-Hsi Chang, Wu-Sheng Dai, Xue-Qian Li, Yong Liu, Feng-Cai Ma, Zhi-jian Tao, Phys. Rev. D60 (1999) 033006, arXiv:hep-ph/9809371.
[Chang:1998ea]
[35-58]
Atmospheric $\nu_\mu$ deficit from decoherence, Y. Grossman, M. P. Worah, Phys.Lett.B (1998), arXiv:hep-ph/9807511.
[Grossman:1998jq]
[35-59]
The Effect of quantum mechanics violation on neutrino oscillation, Yong Liu, Liang-zhong Hu, Mo-Lin Ge, Phys. Rev. D56 (1997) 6648-6652.
[Liu:1997km]

36 - Phenomenology - Decoherence - Talks

[36-1]
New Results on Neutrino Magnetic Moments and on Democratic Neutrinos, Dmitry Zhuridov, arXiv:1309.2540, 2013. DPF 2013 Meeting of the American Physical Society Division of Particles and Fields, Santa Cruz, California, August 13-17, 2013.
[Zhuridov:2013ika]
[36-2]
Exploration of Possible Quantum Gravity Effects with Neutrinos I: Decoherence in Neutrino Oscillations Experiments, Alexander Sakharov, Nick Mavromatos, Anselmo Meregaglia, Andre Rubbia, Sarben Sarkar, J. Phys. Conf. Ser. 171 (2009) 012038, arXiv:0903.4985. DISCRETE'08, Valencia, Spain; December 2008.
[Sakharov:2009rn]
[36-3]
Probing Nonstandard Neutrino Physics at T2KK, N. Cipriano Ribeiro et al., arXiv:0801.4277, 2008. 3rd International Workshop on Far Detector in Korea for the J-PARC Neutrino Beam (T2KK).
[CiprianoRibeiro:2008ue]

37 - Phenomenology - Non-Standard Interactions

[37-1]
Neutrino Oscillations in Presence of Diagonal Elements of Scalar NSI: An Analytic Approach, Dharitree Bezboruah, Dibya S. Chattopadhyay, Abinash Medhi, Arnab Sarker, Moon Moon Devi, arXiv:2410.05250, 2024.
[Bezboruah:2024yhk]
[37-2]
Solar Neutrinos and the Strongest Oscillation Constraints on Scalar NSI, Peter B. Denton, Alessio Giarnetti, Davide Meloni, arXiv:2409.15411, 2024.
[Denton:2024upc]
[37-3]
Status of tension between NO$\nu$A and T2K after Neutrino 2024 and possible role of non-standard neutrino interactions, Sabya Sachi Chatterjee, Antonio Palazzo, arXiv:2409.10599, 2024.
[Chatterjee:2024kbn]
[37-4]
Influences of non-standard interactions on PeV neutrino events with and without a $L_{\alpha}-L_{\beta}$ symmetry, Qiu-Xia Yi, Ya-Ru Wang, Shu-Jun Rong, arXiv:2409.05313, 2024.
[Yi:2024yer]
[37-5]
Constraints on neutrino non-standard interactions from COHERENT and PandaX-4T, Gang Li, Chuan-Qiang Song, Feng-Jie Tang, Jiang-Hao Yu, arXiv:2409.04703, 2024.
[Li:2024iij]
[37-6]
Implications of first neutrino-induced nuclear recoil measurements in direct detection experiments, D. Aristizabal Sierra, N. Mishra, L. Strigari, arXiv:2409.02003, 2024.
[AristizabalSierra:2024nwf]
[37-7]
Neutrino Nonstandard Interactions and Lepton Flavor Universality violation at SND@LHC via charm production, Bhubanjyoti Bhattacharya, Alakabha Datta, Elena Graverini, Lopamudra Mukherjee, Divya Sachdeva, John Waite, arXiv:2408.11897, 2024.
[Bhattacharya:2024vfd]
[37-8]
Testing for coherence and nonstandard neutrino interactions in COHERENT data, Jiajun Liao, Danny Marfatia, Jiajie Zhang, Phys.Rev.D 110 (2024) 055040, arXiv:2408.06255.
[Liao:2024qoe]
[37-9]
Distinguishing Beyond-Standard Model Effects in Neutrino Oscillation, A. Calatayud-Cadenillas, A. Perez-G, A. M. Gago, arXiv:2408.04234, 2024.
[Calatayud-Cadenillas:2024wdw]
[37-10]
Non-Standard Interactions of Supernova Neutrinos and Mass Ordering Ambiguity at DUNE, Sudip Jana, Yago Porto, arXiv:2407.06251, 2024.
[Jana:2024lfm]
[37-11]
The Sensitivity of DUNE in Presence of Off-Diagonal Scalar NSI Parameters, Arnab Sarker, Dharitree Bezboruah, Abinash Medhi, Moon Moon Devi, arXiv:2406.15307, 2024.
[Sarker:2024ytu]
[37-12]
Exploring the sensitivity to non-standard and generalized neutrino interactions through coherent elastic neutrino-nucleus scattering with a NaI detector, Sabya Sachi Chatterjee, Stephane Lavignac, O. G. Miranda, G. Sanchez Garcia, arXiv:2402.16953, 2024.
[Chatterjee:2024vkd]
[37-13]
NSI effects on tripartite entanglement in neutrino oscillations, Lekhashri Konwar, Bhavna Yadav, Nucl.Phys.B 1002 (2024) 116544, arXiv:2402.09952.
[Konwar:2024nrd]
[37-14]
Unleashing the Power of EFT in Neutrino-Nucleus Scattering, Joachim Kopp, Noemi Rocco, Zahra Tabrizi, JHEP 08 (2024) 187, arXiv:2401.07902.
[Kopp:2024yvh]
[37-15]
Violation of LGtI inequalities in the light of NO$\nu$A and T2K anomaly, Lekhashri Konwar, Juhi Vardani, Bhavna Yadav, arXiv:2401.02886, 2024.
[Konwar:2024nwc]
[37-16]
Non-standard neutrino interactions mediated by a light scalar at DUNE, Bhaskar Dutta, Sumit Ghosh, Kevin J. Kelly, Tianjun Li, Adrian Thompson, Ankur Verma, JHEP 07 (2024) 213, arXiv:2401.02107.
[Dutta:2024hqq]
[37-17]
Study of Scalar Non Standard Interaction at Protvino to Super-ORCA experiment, Phys.Rev.D 109 (2024) 095038.
[Singha:2023set]
[37-18]
Searching for Axial Neutral Current Non-Standard Interactions of neutrinos by DUNE-like experiments, Saeed Abbaslu, Mehran Dehpour, Yasaman Farzan, Sahar Safari, JHEP 04 (2024) 038, arXiv:2312.12420.
[Abbaslu:2023vqk]
[37-19]
Probing nuclear properties and neutrino physics with current and future CEvNS experiments, R. R. Rossi, G. Sanchez Garcia, M. Tortola, Phys.Rev.D 109 (2024) 095044, arXiv:2311.17168.
[Rossi:2023brv]
[37-20]
Alleviating the present tension between T2K and NOvA with neutrino New Physics at source, Adriano Cherchiglia, Pedro Pasquini, O. L. G. Peres, F. F. Rodrigues, R. R. Rossi, E. S. Souza, arXiv:2310.18401, 2023.
[Cherchiglia:2023ojf]
[37-21]
Study of non-standard interaction mediated by a scalar field at ESSnuSB experiment, J. Aguilar et al. (ESSnuSB), Phys.Rev.D 109 (2024) 115010, arXiv:2310.10749.
[ESSnuSB:2023lbg]
[37-22]
Impact of scalar NSI on the neutrino mass hierarchy sensitivity at DUNE, T2HK and T2HKK, Arnab Sarker, Abinash Medhi, Dharitree Bezboruah, Moon Moon Devi, Debajyoti Dutta, JHEP 06 (2024) 128, arXiv:2309.12249.
[Sarker:2023qzp]
[37-23]
Shedding light on neutrino self-interactions with solar antineutrino searches, Quan-feng Wu, Xun-Jie Xu, JCAP 02 (2024) 037, arXiv:2308.15849.
[Wu:2023twu]
[37-24]
Muonic Force and Neutrino Non-Standard Interactions at Muon Colliders, Sudip Jana, Sophie Klett, arXiv:2308.07375, 2023.
[Jana:2023ogd]
[37-25]
Hunting Nonstandard Neutrino Interactions and Leptoquarks in Dark Matter Experiments, Thomas Schwemberger, Volodymyr Takhistov, Tien-Tien Yu, arXiv:2307.15736, 2023.
[Schwemberger:2023hee]
[37-26]
Scalar NSI: A unique tool for constraining absolute neutrino masses via $u$-oscillations, Abinash Medhi, Arnab Sarker, Moon Moon Devi, arXiv:2307.05348, 2023.
[Medhi:2023ebi]
[37-27]
Exploring Non-Standard Quark Interactions through Solar Neutrino Studies, Ilidio Lopes, Phys.Rev.D 108 (2023) 035028, arXiv:2307.04557.
[Lopes:2023stx]
[37-28]
Neutrino oscillation measurements with JUNO in the presence of scalar NSI, Aman Gupta, Debasish Majumdar, Suprabh Prakash, arXiv:2306.07343, 2023.
[Gupta:2023wct]
[37-29]
Probing Dual NSI and CP Violation in DUNE and T2HK, Barnali Brahma, Anjan Giri, arXiv:2306.05258, 2023.
[Brahma:2023pxj]
[37-30]
Probing Non-Standard Neutrino Interactions with Interference: Insights from Dark Matter and Neutrino Experiments, Jong-Chul Park, Gaurav Tomar, JCAP 08 (2023) 025, arXiv:2305.10836.
[Park:2023hsp]
[37-31]
Global constraints on non-standard neutrino interactions with quarks and electrons, Pilar Coloma, M. C. Gonzalez-Garcia, Michele Maltoni, Joao Paulo Pinheiro, Salvador Urrea, JHEP 08 (2023) 032, arXiv:2305.07698.
[Coloma:2023ixt]
[37-32]
Future leptonic CP phase determination in the presence of NSI, Luis A. Delgadillo, O. G. Miranda, Phys.Rev.D 108 (2023) 095024, arXiv:2304.05545.
[Delgadillo:2023lyp]
[37-33]
Testing generalized neutrino interactions with PTOLEMY, Indra Kumar Banerjee, Ujjal Kumar Dey, Newton Nath, Saadat Salman Shariff, JCAP 04 (2024) 002, arXiv:2304.02505.
[Banerjee:2023lrk]
[37-34]
Probing generalized neutrino interactions with DUNE Near Detector, Pantelis Melas, Dimitrios K. Papoulias, Niki Saoulidou, JHEP 07 (2023) 190, arXiv:2303.07094.
[Melas:2023olz]
[37-35]
A direct detection view of the neutrino NSI landscape, Dorian W. P. Amaral, David Cerdeno, Andrew Cheek, Patrick Foldenauer, JHEP 07 (2023) 071, arXiv:2302.12846.
[Amaral:2023tbs]
[37-36]
Discernible NSI Effects in Long-Baseline Neutrino Experiments, Barnali Brahma, Anjan Giri, arXiv:2302.09592, 2023.
[Brahma:2023wlf]
[37-37]
Improved sensitivities of ESS$\nu$SB from a two-detector fit, F. Capozzi, C. Giunti, C. A. Ternes, JHEP 04 (2023) 130, arXiv:2302.07154.
[Capozzi:2023ltl]
[37-38]
Constraining the parameter space of the super-weak extension of the standard model by limits on non-standard interactions and vice versa, Timo J. Karkkainen, Zoltan Trocsanyi, Phys.Rev.D 107 (2023) 115020, arXiv:2301.06621.
[Karkkainen:2023ozw]
[37-39]
Distinguishing Non-Standard Interaction and Lorentz Invariance Violation at Protvino to Super-ORCA experiment, Rudra Majhi, Dinesh Kumar Singha, Monojit Ghosh, Rukmani Mohanta, Phys.Rev.D 107 (2023) 075036, arXiv:2212.07244.
[Majhi:2022fed]
[37-40]
Neutrino Non-standard Interactions with arbitrary couplings to u and d quarks, Nicolas Bernal, Yasaman Farzan, Phys.Rev.D 107 (2023) 035007, arXiv:2211.15686.
[Bernal:2022qba]
[37-41]
Physics implications of a combined analysis of COHERENT CsI and LAr data, V. De Romeri, O. G. Miranda, D. K. Papoulias, G. Sanchez Garcia, M. Tortola, J. W. F. Valle, JHEP 04 (2023) 035, arXiv:2211.11905.
[DeRomeri:2022twg]
[37-42]
How to Identify Different New Neutrino Oscillation Physics Scenarios at DUNE, Peter B. Denton, Alessio Giarnetti, Davide Meloni, JHEP 02 (2023) 210, arXiv:2210.00109.
[Denton:2022pxt]
[37-43]
Non-standard neutrino interactions in light mediator models at reactor experiments, Bhaskar Dutta, Sumit Ghosh, Tianjun Li, Adrian Thompson, Ankur Verma, JHEP 03 (2023) 163, arXiv:2209.13566.
[Dutta:2022fdt]
[37-44]
Effect of non-unitary neutrino mixing in Lorentz violation and dark NSI, Trisha Sarkar, arXiv:2209.10233, 2022.
[Sarkar:2022ujy]
[37-45]
Probing the non-standard neutrino interactions using quantum statistics, C. S. Kim, Janusz Rosiek, Dibyakrupa Sahoo, Eur.Phys.J.C 83 (2023) 221, arXiv:2209.10110.
[Kim:2022xjg]
[37-46]
New constraints on the dark matter-neutrino and dark matter-photon scattering cross sections from TXS 0506+056, Francesc Ferrer, Gonzalo Herrera, Alejandro Ibarra, JCAP 05 (2023) 057, arXiv:2209.06339.
[Ferrer:2022kei]
[37-47]
Imprints of scalar NSI on the CP-violation sensitivity using synergy among DUNE, T2HK and T2HKK, Abinash Medhi, Moon Moon Devi, Debajyoti Dutta, JHEP 01 (2023) 079, arXiv:2209.05287.
[Medhi:2022qmu]
[37-48]
Blazar constraints on neutrino-dark matter scattering, James M. Cline, Shan Gao, Fangyi Guo, Zhongan Lin, Shiyan Liu, Matteo Puel, Phillip Todd, Tianzhuo Xiao, Phys.Rev.Lett. 130 (2023) 091402, arXiv:2209.02713.
[Cline:2022qld]
[37-49]
Neutrino decay in the presence of NSI, Ashutosh Kumar Alok, Neetu Raj Singh Chundawat, Arindam Mandal, J.Phys.G 51 (2024) 085006, arXiv:2208.14881.
[Alok:2022jxo]
[37-50]
Physics implications of recent Dresden-II reactor data, Anirban Majumdar, Dimitrios K. Papoulias, Rahul Srivastava, Jose W. F. Valle, Phys.Rev.D 106 (2022) 093010, arXiv:2208.13262.
[Majumdar:2022nby]
[37-51]
Implications of Recent KATRIN Results for Lower-Limits on Neutrino Masses, Ephraim Fischbach, Dennis E. Krause, Quan Le Thien, Carol Scarlett, arXiv:2208.03790, 2022.
[Fischbach:2022pxx]
[37-52]
Searching for the charged-current non-standard neutrino interactions at the $e^{-}p$ colliders, Chongxing Yue, Xuejia Cheng, Yueqi Wang, Yanyu Li, Nucl. Phys. B 982 (2022) 115894, arXiv:2207.06573.
[Yue:2022eac]
[37-53]
The Atacama Cosmology Telescope: The Persistence of Neutrino Self-Interaction in Cosmological Measurements, Christina D. Kreisch et al., Phys.Rev.D 109 (2024) 043501, arXiv:2207.03164.
[Kreisch:2022zxp]
[37-54]
Towards Powerful Probes of Neutrino Self-Interactions in Supernovae, Po-Wen Chang, Ivan Esteban, John F. Beacom, Todd A. Thompson, Christopher M. Hirata, Phys.Rev.Lett. 131 (2023) 071002, arXiv:2206.12426.
[Chang:2022aas]
[37-55]
Probing non-standard neutrino interactions with a light boson from next galactic and diffuse supernova neutrinos, Kensuke Akita, Sang Hui Im, Mehedi Masud, JHEP 12 (2022) 050, arXiv:2206.06852.
[Akita:2022etk]
[37-56]
Neutrino physics and non-standard interactions, Vicente Pleitez, arXiv:2206.04595, 2022.
[Pleitez:2022ido]
[37-57]
Non-Standard Interaction of atmospheric neutrino in future experiments, Pouya Bakhti, Meshkat Rajaee, Seodong Shin, Phys.Rev.D 106 (2022) 115029, arXiv:2206.02594.
[Bakhti:2022axo]
[37-58]
Core-passing atmospheric neutrinos: a unique probe to discriminate between Lorentz violation and non-standard interactions, Sadashiv Sahoo, Anil Kumar, Sanjib Kumar Agarwalla, Amol Dighe, arXiv:2205.05134, 2022.
[Sahoo:2022rns]
[37-59]
Vector leptoquark $U_3$ and CP violation at T2K, NOvA experiments, Rudra Majhi, Dinesh Kumar Singha, K. N. Deepthi, Rukmani Mohanta, Eur.Phys.J.C 82 (2022) 919, arXiv:2205.04269.
[Majhi:2022wyp]
[37-60]
New reactor data improves robustness of neutrino mass ordering determination, Peter B. Denton, Julia Gehrlein, Phys.Rev.D 106 (2022) 015022, arXiv:2204.09060.
[Denton:2022nol]
[37-61]
Constraining New Physics with Borexino Phase-II spectral data, Pilar Coloma, M.C. Gonzalez-Garcia, Michele Maltoni, Joao Paulo Pinheiro, Salvador Urrea, JHEP 07 (2022) 138, arXiv:2204.03011.
[Coloma:2022umy]
[37-62]
Probing light mediators and $(g - 2)_{\mu}$ through detection of coherent elastic neutrino nucleus scattering at COHERENT, M. Atzori Corona, M. Cadeddu, N. Cargioli, F. Dordei, C. Giunti, Y. F. Li, E. Picciau, C. A. Ternes, Y. Y. Zhang, JHEP 05 (2022) 109, arXiv:2202.11002.
[AtzoriCorona:2022moj]
[37-63]
Bounds on new physics with data of the Dresden-II reactor experiment and COHERENT, Pilar Coloma, Ivan Esteban, M. C. Gonzalez-Garcia, Leire Larizgoitia, Francesc Monrabal, Sergio Palomares-Ruiz, JHEP 05 (2022) 037, arXiv:2202.10829.
[Coloma:2022avw]
[37-64]
Implications of the first evidence for coherent elastic scattering of reactor neutrinos, Jiajun Liao, Hongkai Liu, Danny Marfatia, Phys.Rev.D 106 (2022) 031702, arXiv:2202.10622.
[Liao:2022hno]
[37-65]
NSI effects on the generation of microscopic black hole events, Ashutosh Kumar Alok, Trisha Sarkar, Shweta Yadav, Eur.Phys.J.C 82 (2022) 711, arXiv:2202.02775.
[Alok:2022xiy]
[37-66]
Can NSI affect measures of non-local correlations in neutrino oscillations?, Bhavna Yadav, Trisha Sarkar, Khushboo Dixit, Ashutosh Kumar Alok, Eur.Phys.J.C 82 (2022) 446, arXiv:2201.05580.
[Yadav:2022grk]
[37-67]
Non-standard neutrino interaction induced by conformal coupling, H. Yazdani Ahmadabadi, H. Mohseni Sadjadi, Phys.Lett.B 850 (2024) 138493, arXiv:2201.02927.
[YazdaniAhmadabadi:2022low]
[37-68]
On T violation in non-standard neutrino oscillation scenarios, Thomas Schwetz, Alejandro Segarra, Phys.Rev.D 105 (2022) 055001, arXiv:2112.08801.
[Schwetz:2021thj]
[37-69]
CE$\nu$NS as a probe of flavored generalized neutrino interactions, L. J. Flores, Newton Nath, Eduardo Peinado, Phys.Rev.D 105 (2022) 055010, arXiv:2112.05103.
[Flores:2021kzl]
[37-70]
Neutrino Transition in Dark Matter, Eung Jin Chun, arXiv:2112.05057, 2021.
[Chun:2021ief]
[37-71]
Optimal configuration of Protvino to ORCA experiment for hierarchy and non-standard interactions, Dinesh Kumar Singha, Monojit Ghosh, Rudra Majhi, Rukmani Mohanta, JHEP 05 (2022) 117, arXiv:2112.04876.
[Singha:2021jkn]
[37-72]
Exploring the effects of Scalar Non Standard Interactions on the CP violation sensitivity at DUNE, Abinash Medhi, Debajyoti Dutta, Moon Moon Devi, JHEP 06 (2022) 129, arXiv:2111.12943.
[Medhi:2021wxj]
[37-73]
Hadrophilic Dark Sectors at the Forward Physics Facility, Brian Batell, Jonathan L. Feng, Max Fieg, Ahmed Ismail, Felix Kling, Roshan Mammen Abraham, Sebastian Trojanowski, Phys.Rev.D 105 (2022) 075001, arXiv:2111.10343.
[Batell:2021snh]
[37-74]
Non-standard Neutrino and $Z'$ Interactions at the FASER$\nu$ and the LHC, Kingman Cheung, C. J. Ouseph, TseChun Wang, JHEP 12 (2021) 209, arXiv:2111.08375.
[Cheung:2021tmx]
[37-75]
Non-standard interactions from the future neutrino solar sector, P. Martinez-Mirave, S. Molina Sedgwick, M.Tortola, Phys.Rev.D 105 (2022) 035004, arXiv:2111.03031.
[Martinez-Mirave:2021cvh]
[37-76]
Supernova Preshock Neutronization Burst as a Probe of Non-Standard Neutrino Interactions, Xu-Run Huang, Shuai Zha, Lie-Wen Chen, Astrophys.J.Lett. 923 (2021) L26, arXiv:2110.07249.
[Huang:2021enl]
[37-77]
Probing Light Mediators in the Radiative Emission of Neutrino Pair, Shao-Feng Ge, Pedro Pasquini, Eur.Phys.J.C 82 (2022) 208, arXiv:2110.03510.
[Ge:2021lur]
[37-78]
The charged-current non-standard neutrino interactions at the LHC and HL-LHC, Chong-Xing Yue, Xue-Jia Cheng, Ji-Chong Yang, Chin.Phys.C 47 (2023) 043111, arXiv:2110.01204.
[Yue:2021snv]
[37-79]
Impact of COHERENT measurements, cross section uncertainties and new interactions on the neutrino floor, D. Aristizabal Sierra, V. De Romeri, L. J. Flores, D. K. Papoulias, JCAP 01 (2022) 055, arXiv:2109.03247.
[AristizabalSierra:2021kht]
[37-80]
$R^\nu_{K^{(*)}}$ and non-standard neutrino interactions, Xiao Gang He, German Valencia, Phys.Lett.B 821 (2021) 136607, arXiv:2108.05033.
[He:2021yoz]
[37-81]
Exploring SMEFT Induced Non-Standard Interactions from COHERENT to Neutrino Oscillations, Yong Du, Hao-Lin Li, Jian Tang, Sampsa Vihonen, Jiang-Hao Yu, Phys.Rev.D 105 (2022) 075022, arXiv:2106.15800.
[Du:2021rdg]
[37-82]
Testing non-standard neutrino interactions in (anti)-electron neutrino disappearance experiments, Mariano Chaves, Orlando Peres, Pedro de Holanda, JHEP 03 (2023) 180, arXiv:2106.15725.
[Chaves:2021kxe]
[37-83]
Impact of Improved Energy Resolution on DUNE sensitivity to Neutrino Non-Standard Interactions, Sabya Sachi Chatterjee, P. S. Bhupal Dev, Pedro A. N. Machado, JHEP 08 (2021) 163, arXiv:2106.04597.
[Chatterjee:2021wac]
[37-84]
New sources of leptonic CP violation at the DUNE neutrino experiment, A. Giarnetti, D. Meloni, arXiv:2106.00030, 2021.
[Giarnetti:2021aqe]
[37-85]
EFT at FASER$\nu$, Adam Falkowski, Martin Gonzalez-Alonso, Joachim Kopp, Yotam Soreq, Zahra Tabrizi, JHEP 10 (2021) 086, arXiv:2105.12136.
[Falkowski:2021bkq]
[37-86]
New physics from oscillations at the DUNE near detector, and the role of systematic uncertainties, Pilar Coloma, Jacobo Lopez-Pavon, Salvador Rosauro-Alcaraz, Salvador Urrea, JHEP 08 (2021) 065, arXiv:2105.11466.
[Coloma:2021uhq]
[37-87]
Constraining nonstandard neutrino interactions at electron colliders, Jiajun Liao, Yu Zhang, Phys.Rev.D 104 (2021) 035043, arXiv:2105.11215.
[Liao:2021rjw]
[37-88]
Cosmological radiation density with non-standard neutrino-electron interactions, Pablo F. de Salas, Stefano Gariazzo, Pablo Martinez-Mirave, Sergio Pastor, Mariam Tortola, Phys.Lett.B 820 (2021) 136508, arXiv:2105.08168.
[deSalas:2021aeh]
[37-89]
Global constraints on generalized neutrino interactions, F. J. Escrihuela, L. J. Flores, O. G. Miranda, Javier Rendon, JHEP 07 (2021) 061, arXiv:2105.06484.
[Escrihuela:2021mud]
[37-90]
CP-Violating and Charged Current Neutrino Non-standard Interactions in CE$\nu$NS, Amir N. Khan, Douglas W. McKay, Werner Rodejohann, Phys.Rev.D 104 (2021) 015019, arXiv:2104.00425.
[Khan:2021wzy]
[37-91]
Sterile neutrinos with non-standard interactions in $\beta$- and $0\nu\beta\beta$-decay experiments, Wouter Dekens, Jordy de Vries, Tom Tong, JHEP 08 (2021) 128, arXiv:2104.00140.
[Dekens:2021qch]
[37-92]
Evolution of Neutrino Mass-Mixing Parameters in Matter with Non-Standard Interactions, Sanjib Kumar Agarwalla, Sudipta Das, Mehedi Masud, Pragyanprasu Swain, JHEP 11 (2021) 094, arXiv:2103.13431.
[Agarwalla:2021zfr]
[37-93]
Non-standard neutrino oscillations: perspective from unitarity triangles, Mehedi Masud, Poonam Mehta, Christoph A. Ternes, Mariam Tortola, JHEP 2105 (2021) 171, arXiv:2103.11143.
[Masud:2021ves]
[37-94]
Probing $L_\mu-L_\tau$ models with CE$\nu$NS: A new look at the combined COHERENT CsI and Ar data, Heerak Banerjee, Bhaskar Dutta, Sourov Roy, Phys.Rev.D 104 (2021) 015015, arXiv:2103.10196.
[Banerjee:2021laz]
[37-95]
Sailing the CE$\nu$NS Seas of Non-Standard Neutrino Interactions with the Coherent CAPTAIN Mills Experiment, Ian M. Shoemaker, Eli Welch, arXiv:2103.08401, 2021.
[Shoemaker:2021hvm]
[37-96]
Resolving the LMA-dark NSI degeneracy with coherent neutrino-nucleus scattering, Mariano Esteves Chaves, Thomas Schwetz, JHEP 2105 (2021) 042, arXiv:2102.11981.
[Chaves:2021pey]
[37-97]
Neutrino non-standard interactions meet precision measurements of $N_{\rm eff}$, Yong Du, Jiang-Hao Yu, JHEP 2105 (2021) 058, arXiv:2101.10475.
[Du:2021idh]
[37-98]
A New Approach to Probe Non-Standard Interactions in Atmospheric Neutrino Experiments, Anil Kumar, Amina Khatun, Sanjib Kumar Agarwalla, Amol Dighe, JHEP 2104 (2021) 159, arXiv:2101.02607.
[Kumar:2021lrn]
[37-99]
Implications of the Dark-LMA solution for neutrino mass matrices, Monojit Ghosh, Srubabati Goswami, Ananya Mukherjee, Nucl.Phys.B 969 (2021) 115460, arXiv:2012.07925.
[Ghosh:2020fes]
[37-100]
Non-standard interactions in SMEFT confronted with terrestrial neutrino experiments, Yong Du, Hao-Lin Li, Jian Tang, Sampsa Vihonen, Jiang-Hao Yu, JHEP 2103 (2021) 019, arXiv:2011.14292.
[Du:2020dwr]
[37-101]
Astrophysical constraints on non-standard coherent neutrino-nucleus scattering, Anna M. Suliga, Irene Tamborra, Phys.Rev. D103 (2021) 083002, arXiv:2010.14545.
[Suliga:2020jfa]
[37-102]
Comprehensive analysis of beta decays within and beyond the Standard Model, Adam Falkowski, Martin Gonzalez-Alonso, Oscar Naviliat-Cuncic, JHEP 2104 (2021) 126, arXiv:2010.13797.
[Falkowski:2020pma]
[37-103]
Sensitivities of future reactor and long-baseline neutrino experiments to NSI, Pouya Bakhti, Meshkat Rajaee, Phys.Rev. D103 (2021) 075003, arXiv:2010.12849.
[Bakhti:2020fde]
[37-104]
Effects of nonstandard neutrino self-interactions and magnetic moment on collective Majorana neutrino oscillations, Oleg G. Kharlanov, Pavel I. Shustov, Phys.Rev. D103 (2021) 095004, arXiv:2010.05329.
[Kharlanov:2020cti]
[37-105]
New physics effects on temporal and spatial correlations in neutrino oscillations, Trisha Sarkar, Khushboo Dixit, Eur.Phys.J. C81 (2021) 88, arXiv:2010.02175.
[Sarkar:2020vob]
[37-106]
Neutrino Oscillation Constraints on U(1)' Models: from Non-Standard Interactions to Long-Range Forces, Pilar Coloma, M.C. Gonzalez-Garcia, Michele Maltoni, JHEP 2101 (2021) 114, arXiv:2009.14220.
[Coloma:2020gfv]
[37-107]
Enhanced violation of Leggett-Garg Inequality in three flavour neutrino oscillations via non-standard interactions, Sheeba Shafaq, Poonam Mehta, J.Phys. G48 (2021) 085002, arXiv:2009.12328.
[Shafaq:2020sqo]
[37-108]
Bounds on neutrino-scalar non-standard interactions from big bang nucleosynthesis, Jorge Venzor, Abdel Perez-Lorenzana, Josue De-Santiago, Phys.Rev. D103 (2021) 043534, arXiv:2009.08104.
[Venzor:2020ova]
[37-109]
Constraints on neutrino non-standard interactions from LHC data with large missing transverse momentum, DianYu Liu, ChuanLe Sun, Jun Gao, JHEP 2102 (2021) 033, arXiv:2009.06668.
[Liu:2020emq]
[37-110]
Constraints on General Light Mediators from PandaX-II Electron Recoil Data, Amir N. Khan, Phys.Lett. B819 (2021) 136415, arXiv:2008.10279.
[Khan:2020csx]
[37-111]
Constraints on the charged-current non-standard neutrino interactions induced by the gauge boson $W'$, ChongXing Yue, XueJia Cheng, Nucl.Phys. B963 (2021) 115280, arXiv:2008.10027.
[Yue:2020wkj]
[37-112]
A Statistical Analysis of the COHERENT Data and Applications to New Physics, Peter B. Denton, Julia Gehrlein, JHEP 2104 (2021) 266, arXiv:2008.06062.
[Denton:2020hop]
[37-113]
Constraints on light vector mediators through coherent elastic neutrino nucleus scattering data from COHERENT, M. Cadeddu, N. Cargioli, F. Dordei, C. Giunti, Y.F. Li, E. Picciau, Y.Y. Zhang, JHEP 2101 (2021) 116, arXiv:2008.05022.
[Cadeddu:2020nbr]
[37-114]
Non-standard neutrino interactions as a solution to the NO$\nu$A and T2K discrepancy, Sabya Sachi Chatterjee, Antonio Palazzo, Phys.Rev.Lett. 126 (2021) 051802, arXiv:2008.04161.
[Chatterjee:2020kkm]
[37-115]
CP-Violating Neutrino Non-Standard Interactions in Long-Baseline-Accelerator Data, Peter B. Denton, Julia Gehrlein, Rebekah Pestes, Phys.Rev.Lett. 126 (2021) 051801, arXiv:2008.01110.
[Denton:2020uda]
[37-116]
XENON1T constraints on neutrino non-standard interactions, Siddhartha Karmakar, Sujata Pandey, arXiv:2007.11892, 2020.
[Karmakar:2020rbi]
[37-117]
Sensitivity of reactor experiments to nonstandard neutrino interactions in beta decay rates, Andrew D. Santos, arXiv:2007.07409, 2020.
[Santos:2020dgs]
[37-118]
Probing Source and Detector NSI parameters at the DUNE Near Detector, Alessio Giarnetti, Davide Meloni, Phys.Rev.D 104 (2021) 015027, arXiv:2005.10272.
[Giarnetti:2020bmf]
[37-119]
Generic neutrino interactions with sterile neutrinos in light of neutrino-nucleus coherent scattering and meson invisible decays, Tong Li, Xiao-Dong Ma, Michael A. Schmidt, JHEP 2007 (2020) 152, arXiv:2005.01543.
[Li:2020lba]
[37-120]
On the effect of NSI in the present determination of the mass ordering, Ivan Esteban, M. C. Gonzalez-Garcia, Michele Maltoni, arXiv:2004.04745, 2020.
[Esteban:2020itz]
[37-121]
Testing Moduli and Flavon Dynamics with Neutrino Oscillations, Gui-Jun Ding, Ferruccio Feruglio, JHEP 2006 (2020) 134, arXiv:2003.13448.
[Ding:2020yen]
[37-122]
Sensitivities of future solar neutrino observatories to NSI, Pouya Bakhti, Meshkat Rajaee, Phys.Rev. D102 (2020) 035024, arXiv:2003.12984.
[Bakhti:2020hbz]
[37-123]
Neutrino Non-Standard Interactions: Complementarity Between LHC and Oscillation Experiments, K.S. Babu, Dorival Goncalves, Sudip Jana, Pedro A. N. Machado, Phys.Lett. B815 (2021) 136131, arXiv:2003.03383.
[Babu:2020nna]
[37-124]
A global analysis strategy to resolve neutrino NSI degeneracies with scattering and oscillation data, Bhaskar Dutta, Rafael F. Lang, Shu Liao, Samiran Sinha, Louis Strigari, Adrian Thompson, JHEP 2009 (2020) 106, arXiv:2002.03066.
[Dutta:2020che]
[37-125]
Neutrino Oscillations at low energy long baseline experiments in the presence of nonstandard interactions and parameter degeneracy, Osamu Yasuda, arXiv:2002.01616, 2020.
[Yasuda:2020svf]
[37-126]
Scalar Non-Standard Interactions of Neutrinos in Earth, Sun, Supernovae and Early Universe, K. S. Babu, Garv Chauhan, P. S. Bhupal Dev, Phys.Rev.D 101 (2020) 095029, arXiv:1912.13488.
[Babu:2019iml]
[37-127]
A model for lepton flavor violating non-standard neutrino interactions, Yasaman Farzan, Phys.Lett. B (2020) 135349, arXiv:1912.09408.
[Farzan:2019xor]
[37-128]
High-energy constraints from low-energy neutrino non-standard interactions, Jorge Terol-Calvo, Mariam Tortola, Avelino Vicente, Phys.Rev. D101 (2020) 095010, arXiv:1912.09131.
[Terol-Calvo:2019vck]
[37-129]
On Resolving the Dark LMA Solution at Neutrino Oscillation Experiments, Sandhya Choubey, Dipyaman Pramanik, JHEP 2012 (2020) 133, arXiv:1912.08629.
[Choubey:2019osj]
[37-130]
Bounds on non-standard interactions of neutrinos from IceCube DeepCore data, S.V. Demidov, JHEP 2003 (2020) 105, arXiv:1912.04149.
[Demidov:2019okm]
[37-131]
The interplay between non-standard and nuclear constraints in coherent elastic neutrino-nucleus scattering experiments, B. C. Canas, E. A. Garces, O. G. Miranda, A. Parada, G. Sanchez Garcia, Phys.Rev. D101 (2020) 035012, arXiv:1911.09831.
[Canas:2019fjw]
[37-132]
Improved global fit to Non-Standard neutrino Interactions using COHERENT energy and timing data, Pilar Coloma, Ivan Esteban, M. C. Gonzalez-Garcia, Michele Maltoni, JHEP 2002 (2020) 023, arXiv:1911.09109.
[Coloma:2019mbs]
[37-133]
Probing muonic charged current non-standard interactions at Muon Decay at Rest facility in conjunction with T2HK, Soumya C., Monojit Ghosh, Sushant K. Raut, Nita Sinha, Poonam Mehta, Phys.Rev. D101 (2020) 055009, arXiv:1911.05021.
[Soumya:2019kto]
[37-134]
Non-standard neutrino interactions and mu-tau reflection symmetry, Jiajun Liao, Newton Nath, TseChun Wang, Ye-Ling Zhou, Phys.Rev. D101 (2020) 095036, arXiv:1911.00213.
[Liao:2019qbb]
[37-135]
Nonstandard neutrino interactions at COHERENT, DUNE, T2HK and LHC, Tao Han, Jiajun Liao, Hongkai Liu, Danny Marfatia, JHEP 1911 (2019) 028, arXiv:1910.03272.
[Han:2019zkz]
[37-136]
Study of Nonstandard Interactions with Standard Model in Rare Decays of Hyprons with Missing Energy, Shakeel Mahmood, arXiv:1909.13572, 2019.
[Ahmed:2019vwr]
[37-137]
Non-standard interactions versus planet-scale neutrino oscillations, Wei-Jie Feng, Jian Tang, Tse-Chun Wang, Yi-Xing Zhou, Phys.Rev. D100 (2019) 115034, arXiv:1909.12674.
[Feng:2019mno]
[37-138]
Implications of the Dark LMA solution and Fourth Sterile Neutrino for Neutrino-less Double Beta Decay, K. N. Deepthi, Srubabati Goswami, Vishnudath K. N., Tanmay Kumar Poddar, Phys.Rev. D102 (2020) 015020, arXiv:1909.09434.
[Deepthi:2019ljo]
[37-139]
New physics effects on coherence in neutrino oscillations: A model independent analysis, Khushboo Dixit, Ashutosh Kumar Alok, Eur.Phys.J.Plus 136 (2021) 334, arXiv:1909.04887.
[Dixit:2019swl]
[37-140]
General COHERENT Constraints on Neutrino Non-Standard Interactions, C. Giunti, Phys.Rev. D101 (2020) 035039, arXiv:1909.00466.
[Giunti:2019xpr]
[37-141]
Neutrino mass ordering obscured by non-standard interactions, Francesco Capozzi, Sabya Sachi Chatterjee, Antonio Palazzo, Phys.Rev.Lett. 124 (2020) 111801, arXiv:1908.06992.
[Capozzi:2019iqn]
[37-142]
Zee-Burst: A New Probe of Neutrino Non-Standard Interactions at IceCube, K. S. Babu, P. S. Bhupal Dev, Sudip Jana, Yicong Sui, Phys.Rev.Lett. 124 (2020) 041805, arXiv:1908.02779.
[Babu:2019vff]
[37-143]
New physics from COHERENT data with an improved quenching factor, Amir N. Khan, Werner Rodejohann, Phys. Rev. D 100 (2019) 113003, arXiv:1907.12444.
[Khan:2019cvi]
[37-144]
COHERENT constraints after the Chicago-3 quenching factor measurement, Dimitrios K. Papoulias, Phys.Rev. D102 (2020) 113004, arXiv:1907.11644.
[Papoulias:2019txv]
[37-145]
Non-Standard Interactions in Radiative Neutrino Mass Models, K. S. Babu, P. S. Bhupal Dev, Sudip Jana, Anil Thapa, JHEP 2003 (2020) 006, arXiv:1907.09498.
[Babu:2019mfe]