Neutrino at different epochs of the Friedmann Universe,
A. V. Ivanchik, O. A. Kurichin, V. Yu. Yurchenko,
Universe 10 (2024) 169,arXiv:2404.07081.
[Ivanchik:2024mqq]
Neutrino Frontier Topical Group Report (NF03): Physics Beyond the Standard Model,
Pilar Coloma, Lisa W. Koerner, Ian M. Shoemaker, Jaehoon Yu,
arXiv:2209.10362, 2022. [Coloma:2022dng]
Snowmass Neutrino Frontier: NF02 Topical Group Report on Understanding Experimental Neutrino Anomalies,
G. Karagiorgi, B. R. Littlejohn, P. Machado, A. Sousa,
arXiv:2209.05352, 2022. [Karagiorgi:2022fgf]
White Paper on Light Sterile Neutrino Searches and Related Phenomenology,
M. A. Acero et al.,
J.Phys.G 51 (2024) 120501,arXiv:2203.07323.
[Acero:2022wqg]
Two sides of the same coin: sterile neutrinos and dark radiation. Status and perspectives,
Maria Archidiacono, Stefano Gariazzo,
Universe 8 (2022) 175,arXiv:2201.10319.
[Archidiacono:2022ich]
Neutrino Interactions with Matter and the MiniBooNE anomaly,
Luis Alvarez-Ruso, Eduardo Saul-Sala,
Eur.Phys.J.ST 230 (2021) 4373-4389,arXiv:2111.02504.
[Alvarez-Ruso:2021dna]
Brief Review of Recent Advances in Understanding Dark Matter and Dark Energy,
Eugene Oks,
New Astron.Rev. 93 (2021) 101632,arXiv:2111.00363.
[Oks:2021hef]
A Decade of Discoveries by the Daya Bay Reactor Neutrino Experiment,
David E. Jaffe,
Mod.Phys.Lett.A 36 (2021) 2130021,arXiv:2106.07700.
[Jaffe:2021wgf]
Recent probes of standard and non-standard neutrino physics with nuclei,
D.K. Papoulias, T.S. Kosmas, Y. Kuno,
Front.in Phys. 7 (2019) 191,arXiv:1911.00916.
[Papoulias:2019xaw]
Status of Light Sterile Neutrino Searches,
Sebastian Boser, Christian Buck, Carlo Giunti, Julien Lesgourgues, Livia Ludhova, Susanne Mertens, Anne Schukraft, Michael Wurm,
Prog.Part.Nucl.Phys. 111 (2020) 103736,arXiv:1906.01739.
[Boser:2019rta]
Where Are We With Light Sterile Neutrinos?,
A. Diaz, C.A. Arguelles, G.H. Collin, J.M. Conrad, M.H. Shaevitz,
Phys.Rept. 884 (2020) 1-59,arXiv:1906.00045.
[Diaz:2019fwt]
The Short-Baseline Neutrino Program at Fermilab,
Pedro A. N. Machado, Ornella Palamara, David W. Schmitz,
Ann.Rev.Nucl.Part.Sci. 69 (2019) 363-387,arXiv:1903.04608.
[Machado:2019oxb]
Neutrino physics with dark matter detectors,
Bhaskar Dutta, Louis E. Strigari,
Ann.Rev.Nucl.Part.Sci. 69 (2019) 137-161,arXiv:1901.08876.
[Dutta:2019oaj]
Sterile Neutrino Dark Matter,
A. Boyarsky, M. Drewes, T. Lasserre, S. Mertens, O. Ruchayskiy,
Prog.Part.Nucl.Phys. 104 (2019) 1-45,arXiv:1807.07938.
[Boyarsky:2018tvu]
Neutrino Mass Ordering in 2018: Global Status,
P. F. de Salas, S. Gariazzo, O. Mena, C. A. Ternes, M. Tortola,
Front.Astron.Space Sci. 5 (2018) 36,arXiv:1806.11051.
[DeSalas:2018rby]
Status of neutrino properties and future prospects - Cosmological and astrophysical constraints,
Martina Gerbino, Massimiliano Lattanzi,
Front.in Phys. 5 (2018) 70,arXiv:1712.07109.
[Lattanzi:2017ubx]
Sterile Neutrinos: An Introduction to Experiments,
J. M. Conrad, M. H. Shaevitz,
Adv.Ser.Direct.High Energy Phys. 28 (2018) 391-442,arXiv:1609.07803.
[Conrad:2016sve]
A review of the impact of sterile neutrino dark matter on core-collapse supernovae,
MacKenzie Warren, Grant J. Mathews, Matthew Meixner, Jun Hidaka, Toshitaka Kajino,
Int.J.Mod.Phys. A31 (2016) 1650137,arXiv:1603.05503.
[Warren:2016slz]
Review of Neutrino Oscillations With Sterile and Active Neutrinos,
Leonard S. Kisslinger,
Int.J.Mod.Phys. A31 (2016) 1630037,arXiv:1601.05391.
[Kisslinger:2016dge]
Observation of the new line at ~3.55 keV in X-ray spectra of galaxies and galaxy clusters,
Dmytro Iakubovskyi,
Adv.Astron.Space Phys. 6 (2016) 3-15,arXiv:1510.00358.
[Iakubovskyi:2015wma]
Searches for Active and Sterile Neutrinos in Beta-Ray Spectra,
Otokar Dragoun, Drahoslav Venos,
J. Phys. 3 (2016) 77-113,arXiv:1504.07496.
[Dragoun:2015oja]
Neutrinos and Collider Physics,
Frank F. Deppisch, P. S. Bhupal Dev, Apostolos Pilaftsis,
New J. Phys. 17 (2015) 075019,arXiv:1502.06541.
[Deppisch:2015qwa]
Beyond Standard Model Searches in the MiniBooNE Experiment,
Teppei Katori, Janet Conrad,
Adv.High Energy Phys. 2015 (2015) 362971,arXiv:1404.7759.
[Katori:2014qta]
Cosmic dark radiation and neutrinos,
Maria Archidiacono, Elena Giusarma, Steen Hannestad, Olga Mena,
Adv.High Energy Phys. 2013 (2013) 191047,arXiv:1307.0637.
[Archidiacono:2013fha]
The LSND and MiniBooNE Oscillation Searches at High $\Delta{m}^2$,
Janet M. Conrad, William C. Louis, Michael H. Shaevitz,
Ann.Rev.Nucl.Part.Sci. 63 (2013) 45,arXiv:1306.6494.
[Conrad:2013mka]
What is half a neutrino? Reviewing cosmological constraints on neutrinos and dark radiation,
Signe Riemer-Sorensen, David Parkinson, Tamara M. Davis,
Publ.Astron.Soc.Austral. 30 (2013) e029,arXiv:1301.7102.
[Riemer-Sorensen:2013iql]
Search for GeV-scale sterile neutrinos responsible for active neutrino oscillations and baryon asymmetry of the Universe,
S. N. Gninenko, D. S. Gorbunov, M. E. Shaposhnikov,
Adv.High Energy Phys. 2012 (2012) 718259,arXiv:1301.5516.
[Gninenko:2012anz]
Big Bang Nucleosynthesis as a Probe of New Physics,
Maxim Pospelov, Josef Pradler,
Ann. Rev. Nucl. Part. Sci. 60 (2010) 539-568,arXiv:1011.1054.
[Pospelov:2010hj]
Dark Matter Candidates from Particle Physics and Methods of Detection,
Jonathan L. Feng,
Ann. Rev. Astron. Astrophys. 48 (2010) 495,arXiv:1003.0904.
[Feng:2010gw]
Signatures of Singlet Neutrinos in Large Extra Dimensions at the LHC,
Douglas M. Gingrich,
Int. J. Mod. Phys. A24 2009 (2009) 5173-5215,arXiv:0907.1878.
[Gingrich:2009az]
The role of sterile neutrinos in cosmology and astrophysics,
Alexey Boyarsky, Oleg Ruchayskiy, Mikhail Shaposhnikov,
Ann. Rev. Nucl. Part. Sci. 59 (2009) 191-214,arXiv:0901.0011.
[Boyarsky:2009ix]
Status of global fits to neutrino oscillations,
M. Maltoni, T. Schwetz, M.A. Tortola, J.W.F. Valle,
New J. Phys. 6 (2004) 122,arXiv:hep-ph/0405172.
[Maltoni:2004ei]
Phenomenology of neutrino oscillations,
S. M. Bilenky, C. Giunti, W. Grimus,
Prog. Part. Nucl. Phys. 43 (1999) 1,arXiv:hep-ph/9812360.
[Bilenky:1998dt]
Experimental Searches For Heavy Neutral Leptons,
Sophie Middleton,
arXiv:2206.11422, 2022.FPCP 2022, 20th Conference on Flavor Physics and CP Violation~. [Middleton:2022dio]
Sterile Neutrinos as Dark Matter Candidates,
Joachim Kopp,
SciPost Phys.Lect.Notes 36 (2022) 1,arXiv:2109.00767.
10 pages, 2 figures; submitted to SciPost Physics Lecture Notes, Les Houches Summer School Series. [Kopp:2021jlk]
Results of STEREO and PROSPECT, and status of sterile neutrino searches,
Matthieu Licciardi,
arXiv:2105.13776, 2021.2021 EW session of the 55th Rencontres de Moriond. [Licciardi:2021hyi]
Neutrinos in Astrophysics and Cosmology: Theoretical Advanced Study Institute (TASI) 2020 Lectures,
Kevork N. Abazajian,
arXiv:2102.10183, 2021. [Abazajian:2021zui]
Review of Sterile Neutrino Experiments,
Seon-Hee Seo,
arXiv:2001.03349, 2020.19th Lomonosov Conference on Elementary Particle Physics (Moscow State University, August 22-28, 2019). [Seo:2020ehv]
Light sterile neutrinos: the current picture from neutrino oscillations,
S. Gariazzo,
J.Phys.Conf.Ser. 1468 (2020) 012120,arXiv:1911.03463.
TAUP 2019, Toyama, Japan, September 9-13, 2019. [Gariazzo:2019cym]
Light sterile neutrinos: oscillations and cosmology,
S. Gariazzo,
Acta Phys.Polon. B50 (2019) 1719,arXiv:1910.13172.
Matter To The Deepest, XLIII International Conference of Theoretical Physics, Katowice/Chorzow, Poland, 1-6 September 2019. [Gariazzo:2019vdj]
Searches for sterile neutrinos at very short baseline reactor experiments,
Mikhail Danilov,
J.Phys.Conf.Ser. 1390 (2019) 012049,arXiv:1812.04085.
4th International Conference on Particle Physics and Astrophysics (ICPPA-2018), Moscow, Russia. [Danilov:2018dme]
Neutrino Physics with Reactors,
Bedrich Roskovec,
arXiv:1812.03206, 2018.PIC2018: XXXVIII International Symposium on Physics in Collision, Bogota, Colombia, 2018. [Roskovec:2018jfn]
The interplay between cosmology, particle physics and astrophysics,
Aaron C. Vincent,
PoS EDSU2018 (2018) 007,arXiv:1811.04148.
2nd World Summit on Exploring the Dark Side of the Universe (25-29 June 2018, Pointe-a-Pitre). [Vincent:2018vng]
Phenomenology of light sterile neutrinos,
Antonio Palazzo,
PoS NEUTEL2017 (2018) 040.17th International Workshop on Neutrino Telescopes (Neutel 2017): Venice, Italy, March 13-17, 2017. [Palazzo:2017nqu]
Short- and long-baseline sterile neutrino phenomenology,
Antonio Palazzo,
arXiv:1705.01592, 2017.NuPhys2016 (London, 12-14 December 2016). [Palazzo:2017wju]
Status of Dark Matter in the Universe,
Katherine Freese,
Int.J.Mod.Phys. D26 (2017) 1730012,arXiv:1701.01840.
14th Marcel Grossman Meeting, MG14, University of Rome 'La Sapienza', Rome, July 2015. [Freese:2017idy]
Light sterile neutrinos and neutrinoless double-beta decay,
Carlo Giunti,
AIP Conf. Proc. 1894 (2017) 020009.Matrix Elements for the Double beta decay Experiments (MEDEX'17): Prague, Czech Republic. [Giunti:2017doy]
Sterile Neutrino Searches: Experiment and Theory,
Carlo Giunti,
Nucl. Part. Phys. Proc. 287-288 (2017) 133-138.14th International Workshop on Tau Lepton Physics (TAU 2016): Beijing, China, September 19-23, 2016. [Giunti:2017jav]
A Review on Present Status of Neutrino Mixings and Oscillations,
Carlo Giunti, 2017.17th Lomonosov Conference on Elementary Particle Physics: Moscow, Russia, August 20-26, 2015. [Giunti:2017kun]
Status of Light Sterile Neutrinos,
Carlo Giunti,
PoS EPS-HEP2017 (2017) 110.2017 European Physical Society Conference on High Energy Physics (EPS-HEP 2017): Venice, Italy, July 5-12, 2017. [Giunti:2017rni]
Long baseline experiments: a new window on sterile neutrinos,
Antonio Palazzo,
PoS EPS-HEP2017 (2017) 126.2017 European Physical Society Conference on High Energy Physics (EPS-HEP 2017): Venice, Italy, July 5-12, 2017. [Palazzo:2017dww]
Phenomenology of light sterile neutrinos,
A. Palazzo,
Nuovo Cim. C40 (2017) 53.15th Incontri di Fisica delle Alte Energie (IFAE 2016): Genoa, Italy, March 30-April 1, 2016. [Palazzo:2017ttg]
Oscillations Beyond Three-Neutrino Mixing,
Carlo Giunti,
J. Phys. Conf. Ser. 888 (2017) 012019,arXiv:1609.04688.
Neutrino 2016, XXVII International Conference on Neutrino Physics and Astrophysics, 4-9 July 2016, London, UK. [Giunti:2016oan]
Search for Sterile Neutrinos at Long and Short Baselines,
Luca Stanco,
arXiv:1604.06769, 2016.NuPhys2015 (London, 16-18 December 2015). [Stanco:2016gnl]
Sterile Neutrinos,
Antonio Palazzo,
J. Phys. Conf. Ser. 718 (2016) 022015.14th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2015): Torino, Italy, September 7-11, 2015. [Palazzo:2016upt]
Accelerator-based Short-baseline Neutrino Oscillation Experiments,
Sowjanya Gollapinni(MicroBooNE),
arXiv:1510.04412, 2015.Twelfth Conference on the Intersections of Particle and Nuclear Physics, Vail, Colorado, May 19-24, 2015. [Gollapinni:2015lca]
Constraining right-handed neutrinos,
F. J. Escrihuela, D. V. Forero, O. G. Miranda, M. Tortola, J. W. F. Valle,
Nucl.Part.Phys.Proc. 273-275 (2016) 1909-1914,arXiv:1505.01097.
ICHEP14. [Escrihuela:2015jaa]
Future short baseline neutrino searches with nuclear decays,
Barbara Caccianiga,
AIP Conf. Proc. 1666 (2015) 180002.Proceedings, 26th International Conference on Neutrino Physics and Astrophysics (Neutrino 2014). [Caccianiga:2015ega]
Future short-baseline sterile neutrino searches with reactors,
D. Lhuillier,
AIP Conf. Proc. 1666 (2015) 180003.Proceedings, 26th International Conference on Neutrino Physics and Astrophysics (Neutrino 2014). [Lhuillier:2015fga]
Future short-baseline sterile neutrino searches with accelerators,
J. Spitz,
AIP Conf. Proc. 1666 (2015) 180004.Proceedings, 26th International Conference on Neutrino Physics and Astrophysics (Neutrino 2014). [Spitz:2015gga]
How many new particles do we need after the Higgs boson?,
Marco Drewes,
arXiv:1405.2931, 2014.49th Rencontres de Moriond on Electroweak Interactions and Unified Theories (2014). [Drewes:2014vaa]
Status of Neutrino Mass and Mixing,
Guido Altarelli,
Int.J.Mod.Phys. A29 (2014) 1444002,arXiv:1404.3859.
International Conference on Flavor Physics and Mass Generation, Singapore, February 2014. [Altarelli:2014dca]
Are There Sterile Neutrinos?,
Boris Kayser,
AIP Conf.Proc. 1604 (2014) 201-203,arXiv:1402.3028.
CETUP Workshop on Neutrino Physics and Astrophysics. [Kayser:2014tia]
Phenomenology of neutrino oscillations and mixing,
M. Laveder, C. Giunti,
Acta Phys.Polon. B44 (2013) 2323-2330,arXiv:1310.7478.
XXXVII International Conference of Theoretical Physics 'Matter to the deepest', Ustron, 1-6 September 2013. [Laveder:2013cja]
Towards the Chalonge Meudon Workshop 2013. Highlights and Conclusions of the Chalonge Meudon workshop 2012: warm dark matter galaxy formation in agreement with observations,
P.L. Biermann, H.J. de Vega, N.G. Sanchez,
arXiv:1305.7452, 2013. [deVega:2013hpa]
Neutrino 2012: Outlook - theory,
A. Yu. Smirnov,
Nucl. Phys. Proc. Suppl. 235-236 (2013) 431-440,arXiv:1210.4061.
XXV International Conference on Neutrino Physics and Astrophysics, June 3 - 9, 2012, Kyoto, Japan. [Smirnov:2012ei]
keV sterile Neutrino Dark Matter and Neutrino Model Building,
Alexander Merle,
J. Phys. Conf. Ser. 375 (2012) 012047,arXiv:1201.0881.
TAUP 2011. [Merle:2012ya]
Neutrinos and the Universe,
Nick E. Mavromatos,
J. Phys. Conf. Ser. 408 (2013) 012003,arXiv:1110.3729.
Nufact 11, CERN and U. of Geneva, 1-6 August 2011. [Mavromatos:2011ur]
Perspectives in Neutrino Physics,
Guido Altarelli,
arXiv:1107.1980, 2011.XIV International Workshop on 'Neutrino Telescopes' Venice, Italy, March 15-18, 2011. [Altarelli:2011rv]
Lectures on neutrino phenomenology,
Walter Winter,
Nucl. Phys. B, Proc. Suppl. 203-204 2010 (2010) 45-81,arXiv:1004.4160.
Schladming Winter School 2010 'Masses and Constants'. [Winter:2010hb]
Dark Matter Astrophysics,
Guido D'Amico, Marc Kamionkowski, Kris Sigurdson,
arXiv:0907.1912, 2009.Villa Olmo School on 'The Dark Side of the Universe,' 14-18 May 2007 and XIX Heidelberg Physics Graduate Days, 8-12 October 2007. [DAmico:2009tep]
Searching for physics beyond the standard model with accelerator neutrino experiments,
William C. Louis,
J. Phys. Conf. Ser. 173 (2009) 012017. [Louis:2009zzb]
Bounds on Light Dark Matter,
Alexey Boyarsky, Oleg Ruchayskiy,
arXiv:0811.2385, 2008.4th Patras Workshop on Axions, WIMPs and WISPs, DESY, Hamburg, Germany, 18-21 June 2008. [Boyarsky:2008mx]
Neutrino oscillations: present status and outlook,
Thomas Schwetz,
AIP Conf. Proc. 981 (2008) 8-12,arXiv:0710.5027.
NuFact07, Okayama, Japan. [Schwetz:2007my]
Radiochemical solar neutrino experiments,
V. N. Gavrin, B. T. Cleveland,
Nucl. Phys. Proc. Suppl. 221 (2011) 90-97,arXiv:nucl-ex/0703012.
XXII Int. Conf. on Neutrino Physics and Astrophysics, Santa Fe, 13-19 June 2006. [Gavrin:2007wc]
Solar Neutrinos (with a tribute to John. N. Bahcall),
G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo,
arXiv:hep-ph/0605186, 2006.3rd International Workshop on NO-VE: Neutrino Oscillations in Venice: 50 Years after the Neutrino Experimental Discovery, Venice, Italy, 7-10 Feb 2006. [Fogli:2006fu]
Physics of Massive Neutrinos,
J. W. F. Valle,
Nucl. Phys. Proc. Suppl. 149 (2005) 3,arXiv:hep-ph/0410103.
Sixth International Conf. on Neutrino Factories and SuperBeams (NuFact04) Osaka, Japan, July 26-August 1, 2004. [Valle:2004cr]
Global Analysis of Neutrino Data,
M. C. Gonzalez-Garcia,
Phys. Scripta T121 (2005) 72,arXiv:hep-ph/0410030.
Nobel Symposium on Neutrino Physics, Haga Slott, Enkoping, Sweden. [Gonzalez-Garcia:2004oyj]
Neutrino Physics: Open Theoretical Questions,
A. Yu. Smirnov,
Int. J. Mod. Phys. A19 (2004) 1180,arXiv:hep-ph/0311259.
Lepton Photon 2003, 11-16 August 2003, Fermi National Accelerator Laboratory, Batavia, Illinois USA.http://conferences.fnal.gov/lp2003/program/S12/smirnov_s12_winversion.pdf. Comment:The figure in slide n.13 shows the sensitivity of MiniBoone in the $\nu_{\mu} \to \nu_{\mu}$ channel together with the predictions of a combined fit of LSND and null short-baseline experiments. [M.L.]. [Smirnov:2003xe]
Brief Neutrino Physics Update,
J. W. F. Valle,
arXiv:hep-ph/0310125, 2003.String Phenomenology Workshop held at Durham, July 29 - August 4, 2003. [Valle:2003jj]
Neutrino masses twenty-five years later,
J. W. F. Valle,
Aip Conf. Proc. 687 (2003) 16,arXiv:hep-ph/0307192.
MRST'03 (Joe-Fest), Syracuse, NY, May 2003. [Valle:2003rh]
Light, Unstable Sterile Neutrinos: Phenomenology, a Search in the IceCube Experiment, and a Global Picture,
Marjon H. Moulai,
arXiv:2110.02351, 2021. [Moulai:2021zey]
Theoretical and phenomenological consequences of active and sterile neutrino within Beyond Standard Model framework,
Pritam Das,
arXiv:2107.10622, 2021. [Das:2021xat]
Dark Matter Phenomenology: Sterile Neutrino Portal and Gravitational Portal in Extra-Dimensions,
Miguel G. Folgado,
arXiv:2104.13442, 2021. [GarciaFolgado:2021fsd]
Search for an eV-scale sterile neutrino with the first six detection units of KM3NeT/ORCA,
O. Adriani et al.(KM3NeT),
arXiv:2510.07360, 2025. [KM3NeT:2025iar]
Search for an Anomalous Production of Charged-Current $\nu_e$ Interactions Without Visible Pions Across Multiple Kinematic Observables,
P. Abratenko et al.(MicroBooNE),
Phys.Rev.Lett. 135 (2025) 081802,arXiv:2412.14407.
[MicroBooNE:2024tym]
Dual-Baseline Search for Active-to-Sterile Neutrino Oscillations in NOvA,
M. A. Acero et al.(NOvA),
Phys.Rev.Lett. 134 (2025),arXiv:2409.04553.
[NOvA:2024imi]
Search for Very-Short-Baseline Oscillations of Reactor Antineutrinos with the SoLid Detector,
Y. Abreu et al.(SoLid),
Phys.Rev.D 111 (2025) 072005,arXiv:2407.14382.
[SoLid:2024fgw]
Search for a light sterile neutrino with 7.5 years of IceCube DeepCore data,
R. Abbasi et al.,
Phys.Rev.D 110 (2024) 072007,arXiv:2407.01314.
[IceCube:2024dlz]
Methods and stability tests associated with the sterile neutrino search using improved high-energy $\nu_\mu$ event reconstruction in IceCube,
R. Abbasi et al.(IceCube),
Phys.Rev.D 110 (2024) 092009,arXiv:2405.08077.
[IceCubeCollaboration:2024dxk]
A search for an eV-scale sterile neutrino using improved high-energy $\nu_\mu$ event reconstruction in IceCube,
R. Abbasi et al.(IceCube),
Phys.Rev.Lett. 133 (2024) 201804,arXiv:2405.08070.
[IceCubeCollaboration:2024nle]
Search for a sub-eV sterile neutrino using Daya Bay's full dataset,
F. P. An et al.(Daya Bay),
Phys.Rev.Lett. 133 (2024) 051801,arXiv:2404.01687.
[DayaBay:2024nip]
On the half life of $^{71}$Ge and the Gallium Anomaly,
E. B. Norman, A. Drobizhev, N. Gharibyan, K. E. Gregorich, Yu. G. Kolomensky, B. N. Sammis, N. D. Scielzo, J. A. Shusterman, K. J. Thomas,
Phys.Rev.C 109 (2024) 055501,arXiv:2401.15286.
[Norman:2024hki]
New Measurements of $^{71}$Ge Decay: Impact on the Gallium Anomaly,
J. I. Collar, S. G. Yoon,
Phys.Rev.C 108 (2023) L021602,arXiv:2307.05353.
[Collar:2023yew]
Updated constraints on sterile neutrino mixing in the OPERA experiment using a new $\nu_e$ identification method,
N. Agafonova et al.,
PTEP 2023 (2023) 033C01,arXiv:2211.04636.
[OPERA:2022svg]
First constraints on light sterile neutrino oscillations from combined appearance and disappearance searches with the MicroBooNE detector,
P. Abratenko et al.(MicroBooNE),
Phys.Rev.Lett. 130 (2023) 011801,arXiv:2210.10216.
[MicroBooNE:2022sdp]
Search for exotic physics in double-$\beta$ decays with GERDA Phase II,
M. Agostini et al.(GERDA),
JCAP 12 (2022) 012,arXiv:2209.01671.
[GERDA:2022ffe]
First Search for Unstable Sterile Neutrinos with the IceCube Neutrino Observatory,
R. Abbasi et al.(IceCube),
Phys.Rev.Lett. 129 (2022) 151801,arXiv:2204.00612.
[IceCubeCollaboration:2022tso]
Improved eV-scale Sterile-Neutrino Constraints from the Second KATRIN Measurement Campaign,
M. Aker et al.(KATRIN),
Phys.Rev.D 105 (2022) 072004,arXiv:2201.11593.
[KATRIN:2022ith]
A Search for Electron Neutrino Transitions to Sterile States in the BEST Experiment,
V.V. Barinov et al.(BEST),
Phys.Rev.C 105 (2022) 065502,arXiv:2201.07364.
[Barinov:2022wfh]
MiniBooNE and MicroBooNE Joint Fit to a 3+1 Sterile Neutrino Scenario,
A. A. Aguilar-Arevalo et al.(MiniBooNE),
Phys.Rev.Lett. 129 (2022) 201801,arXiv:2201.01724.
[MiniBooNE:2022emn]
Search for an anomalous excess of charged-current quasi-elastic $\nu_e$ interactions with the MicroBooNE experiment using Deep-Learning-based reconstruction,
P. Abratenko et al.(MicroBooNE),
Phys.Rev.D 105 (2022) 112003,arXiv:2110.14080.
[MicroBooNE:2021pvo]
Search for an anomalous excess of charged-current $\nu_e$ interactions without pions in the final state with the MicroBooNE experiment,
P. Abratenko et al.(MicroBooNE),
Phys.Rev.D 105 (2022) 112004,arXiv:2110.14065.
[MicroBooNE:2021wad]
Search for an Excess of Electron Neutrino Interactions in MicroBooNE Using Multiple Final State Topologies,
P. Abratenko et al.(MicroBooNE),
Phys.Rev.Lett. 128 (2022) 241801,arXiv:2110.14054.
[MicroBooNE:2021tya]
Search for an anomalous excess of inclusive charged-current $\nu_e$ interactions in the MicroBooNE experiment using Wire-Cell reconstruction,
P. Abratenko et al.(MicroBooNE),
Phys.Rev.D 105 (2022) 112005,arXiv:2110.13978.
[MicroBooNE:2021nxr]
Results from the Baksan Experiment on Sterile Transitions (BEST),
V.V. Barinov et al.(BEST),
Phys.Rev.Lett. 128 (2022) 232501,arXiv:2109.11482.
[Barinov:2021asz]
Search for active-sterile antineutrino mixing using neutral-current interactions with the NOvA experiment,
M. A. Acero et al.,
Phys.Rev.Lett. 127 (2021) 201801,arXiv:2106.04673.
[NOvA:2021smv]
Bound on 3+1 active-sterile neutrino mixing from the first four-week science run of KATRIN,
M. Aker et al.(KATRIN),
Phys.Rev.Lett. 126 (2021) 091803,arXiv:2011.05087.
[KATRIN:2020dpx]
Search for sterile neutrino oscillations using RENO and NEOS data,
Z. Atif et al.(RENO, NEOS),
Phys. Rev. D 105 (2022) L111101,arXiv:2011.00896.
[RENO:2020hva]
Search for Signatures of Sterile Neutrinos with Double Chooz,
T. Abrahao et al.(Double Chooz),
Eur.Phys.J.C 81 (2021) 775,arXiv:2009.05515.
[DoubleChooz:2020pnv]
Updated MiniBooNE Neutrino Oscillation Results with Increased Data and New Background Studies,
A.A. Aguilar-Arevalo et al.(MiniBooNE),
Phys.Rev. D103 (2021) 052002,arXiv:2006.16883.
[MiniBooNE:2020pnu]
Improved Short-Baseline Neutrino Oscillation Search and Energy Spectrum Measurement with the PROSPECT Experiment at HFIR,
M. Andriamirado et al.(PROSPECT),
Phys.Rev. D103 (2021) 032001,arXiv:2006.11210.
[PROSPECT:2020sxr]
Searching for eV-scale sterile neutrinos with eight years of atmospheric neutrinos at the IceCube neutrino telescope,
M. G. Aartsen et al.(IceCube),
Phys.Rev. D102 (2020) 052009,arXiv:2005.12943.
[IceCube:2020tka]
An eV-scale sterile neutrino search using eight years of atmospheric muon neutrino data from the IceCube Neutrino Observatory,
M. G. Aartsen et al.(IceCube),
Phys.Rev.Lett. 125 (2020) 141801,arXiv:2005.12942.
[IceCube:2020phf]
Preparation of the Neutrino-4 experiment on search for sterile neutrino and the obtained results of measurements,
A.P. Serebrov et al.,
Phys.Rev.D 104 (2021) 032003,arXiv:2005.05301.
[Serebrov:2020kmd]
The analysis of the results of the Neutrino-4 experiment on search for sterile neutrino and comparison with results of other experiments,
A.P. Serebrov, R.M. Samoilov,
Pisma Zh.Eksp.Teor.Fiz. 112 (2020) 211-225,arXiv:2003.03199.
[Serebrov:2020rhy]
Improved Constraints on Sterile Neutrino Mixing from Disappearance Searches in the MINOS, MINOS+, Daya Bay, and Bugey-3 Experiments,
P. Adamson et al.(MINOS+, Daya Bay),
Phys. Rev. Lett. 125 (2020) 071801,arXiv:2002.00301.
[MINOS:2020iqj]
Improved Sterile Neutrino Constraints from the STEREO Experiment with 179 Days of Reactor-On Data,
Helena Almazan Molina et al.(STEREO),
Phys.Rev. D102 (2020) 052002,arXiv:1912.06582.
[STEREO:2019ztb]
Final results on neutrino oscillation parameters from the OPERA experiment in the CNGS beam,
N. Agafonova et al.(OPERA),
Phys.Rev. D100 (2019) 051301,arXiv:1904.05686.
[OPERA:2019kzo]
Search for light sterile neutrinos with the T2K far detector Super-Kamiokande at a baseline of 295 km,
K. Abe et al.(T2K),
Phys.Rev. D99 (2019) 071103,arXiv:1902.06529.
[T2K:2019efw]
Measuring the atmospheric neutrino oscillation parameters and constraining the 3+1 neutrino model with ten years of ANTARES data,
A. Albert et al.(ANTARES),
JHEP 1906 (2019) 113,arXiv:1812.08650.
[ANTARES:2018rtf]
The first observation of effect of oscillation in Neutrino-4 experiment on search for sterile neutrino,
A.P. Serebrov et al.(Neutrino-4),
Pisma Zh.Eksp.Teor.Fiz. 109 (2019) 209-218,arXiv:1809.10561.
[NEUTRINO-4:2018huq]
First search for short-baseline neutrino oscillations at HFIR with PROSPECT,
J. Ashenfelter et al.(PROSPECT),
Phys.Rev.Lett. 121 (2018) 251802,arXiv:1806.02784.
[PROSPECT:2018dtt]
Sterile neutrino exclusion from the STEREO experiment with 66 days of reactor-on data,
H. Almazan et al.(STEREO),
Phys.Rev.Lett. 121 (2018) 161801,arXiv:1806.02096.
[STEREO:2018rfh]
Fuel-composition dependent reactor antineutrino yield and spectrum at RENO,
G. Bak et al.(RENO),
Phys.Rev.Lett. 122 (2019) 232501,arXiv:1806.00574.
[RENO:2018pwo]
Observation of a Significant Excess of Electron-Like Events in the MiniBooNE Short-Baseline Neutrino Experiment,
A. A. Aguilar-Arevalo et al.(MiniBooNE),
Phys.Rev.Lett. 121 (2018) 221801,arXiv:1805.12028.
[MiniBooNE:2018esg]
Final results of the search for $\nu_\mu \to \nu_{e}$ oscillations with the OPERA detector in the CNGS beam,
N. Agafonova et al.(OPERA),
JHEP 06 (2018) 151,arXiv:1803.11400.
[OPERA:2018ksq]
Search for sterile neutrinos in MINOS and MINOS+ using a two-detector fit,
P. Adamson et al.(MINOS),
Phys.Rev.Lett. 122 (2019) 091803,arXiv:1710.06488.
[MINOS:2017cae]
Search for active-sterile neutrino mixing using neutral-current interactions in NOvA,
P. Adamson et al.(NOvA),
Phys.Rev. D96 (2017) 072006,arXiv:1706.04592.
[NOvA:2017geg]
Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay,
F. P. An et al.(Daya Bay),
Phys.Rev.Lett. 118 (2017) 251801,arXiv:1704.01082.
[DayaBay:2017jkb]
Search for sterile neutrino mixing using three years of IceCube DeepCore data,
M. G. Aartsen et al.(IceCube),
Phys.Rev. D95 (2017) 112002,arXiv:1702.05160.
[IceCube:2017ivd]
Search for sterile neutrinos in the neutrino-4 experiment,
A. P. Serebrov et al.(Neutrino-4),
JETP Lett. 105 (2017) 347-351.[Zh. Eksp. Teor. Fiz.105,329(2017)]. [Serebrov:2017bwe]
Improved Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay,
F.P. An et al.(Daya Bay),
Chin.Phys. C41 (2017) 013002,arXiv:1607.05378.
[DayaBay:2016ssb]
Limits on Active to Sterile Neutrino Oscillations from Disappearance Searches in the MINOS, Daya Bay, and Bugey-3 Experiments,
P. Adamson et al.(MINOS, Daya Bay),
Phys.Rev.Lett. 117 (2016) 151801,arXiv:1607.01177.
[DayaBay:2016lkk]
A search for sterile neutrinos mixing with muon neutrinos in MINOS,
P. Adamson et al.(MINOS),
Phys. Rev. Lett. 117 (2016) 151803,arXiv:1607.01176.
[MINOS:2016viw]
Improved Search for a Light Sterile Neutrino with the Full Configuration of the Daya Bay Experiment,
F.P. An et al.(Daya Bay),
Phys. Rev. Lett. 117 (2016) 151802,arXiv:1607.01174.
[DayaBay:2016qvc]
Searches for Sterile Neutrinos with the IceCube Detector,
M. G. Aartsen et al.(IceCube),
Phys. Rev. Lett. 117 (2016) 071801,arXiv:1605.01990.
[IceCube:2016rnb]
Online Monitoring of the Osiris Reactor with the Nucifer Neutrino Detector,
G. Boireau et al.(NUCIFER),
Phys. Rev. D93 (2016) 112006,arXiv:1509.05610.
[NUCIFER:2015hdd]
Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay,
F. P. An et al.(Daya Bay),
Phys. Rev. Lett. 116 (2016) 061801,arXiv:1508.04233.
[DayaBay:2015lja]
Limits on muon-neutrino to tau-neutrino oscillations induced by a sterile neutrino state obtained by OPERA at the CNGS beam,
N. Agafonova et al.(OPERA),
JHEP 1506 (2015) 069,arXiv:1503.01876.
[OPERA:2015zci]
Some conclusive considerations on the comparison of the ICARUS $\nu_\mu \to \nu_e$ oscillation search with the MiniBooNE low-energy event excess,
M. Antonello et al.,
arXiv:1502.04833, 2015. [Antonello:2015jxa]
Search for short baseline $\nu_e$ disappearance with the T2K near detector,
K. Abe et al.(T2K),
Phys. Rev. D91 (2015) 051102,arXiv:1410.8811.
[T2K:2014xvp]
Limits on Sterile Neutrino Mixing using Atmospheric Neutrinos in Super-Kamiokande,
K. Abe et al.(Super-Kamiokande),
Phys. Rev. D91 (2015) 052019,arXiv:1410.2008.
[Super-Kamiokande:2014ndf]
A search for an additional neutrino mass eigenstate in 2 to 100 eV region from 'Troitsk nu-mass' data - detailed analysis,
A.I. Belesev et al.,
J. Phys. G41 (2014) 015001,arXiv:1307.5687.
[Belesev:2013cba]
Search for anomalies in the $\nu_e$ appearance from a $\nu_\mu$ beam,
M. Antonello et al.(ICARUS),
Eur.Phys.J. C73 (2013) 2599,arXiv:1307.4699.
[ICARUS:2013cwr]
Search for $\nu_\mu\to\nu_e$ oscillations with the OPERA experiment in the CNGS beam,
N. Agafonova et al.(OPERA),
JHEP 1307 (2013) 004,arXiv:1303.3953.
[OPERA:2013wvp]
Improved Search for $\bar\nu_\mu \to \bar\nu_e$ Oscillations in the MiniBooNE Experiment,
A.A. Aguilar-Arevalo et al.(MiniBooNE),
Phys. Rev. Lett. 110 (2013) 161801,arXiv:1303.2588.
[MiniBooNE:2013uba]
An upper limit on additional neutrino mass eigenstate in 2 to 100 eV region from 'Troitsk nu-mass' data,
A.I. Belesev, A.I. Berlev, E.V. Geraskin, A.A. Golubev, N.A. Likhovid et al.,
JETP Lett. 97 (2013) 67-69,arXiv:1211.7193.
[Belesev:2012hx]
Limit on sterile neutrino contribution from the Mainz Neutrino Mass Experiment,
Christine Kraus, Andrej Singer, Kathrin Valerius, Christian Weinheimer,
Eur.Phys.J. C73 (2013) 2323,arXiv:1210.4194.
[Kraus:2012he]
Experimental search for the LSND anomaly with the ICARUS detector in the CNGS neutrino beam,
M Antonello, B Baibussinov, P Benetti, E Calligarich, N Canci et al.(ICARUS),
Eur.Phys.J. C73 (2013) 2345,arXiv:1209.0122.
[Antonello:2012pq]
A Combined $\nu_\mu \to \nu_e$ and $\bar\nu_\mu \to \bar\nu_e$ Oscillation Analysis of the MiniBooNE Excesses,
A.A. Aguilar-Arevalo et al.(MiniBooNE),
arXiv:1207.4809, 2012. [MiniBooNE:2012maf]
Test of Lorentz and CPT violation with Short Baseline Neutrino Oscillation Excesses,
A. A. Aguilar-Arevalo et al.(MiniBooNE),
Phys. Lett. B718 (2013) 1303-1308,arXiv:1109.3480.
[MiniBooNE:2011pix]
Dual baseline search for muon neutrino disappearance at $0.5 < \Delta{m}^2 < 40 \, \text{eV}^2$,
K. B. M. Mahn et al.(SciBooNE-MiniBooNE),
Phys. Rev. D85 (2012) 032007,arXiv:1106.5685.
[SciBooNE:2011qyf]
Active to sterile neutrino mixing limits from neutral-current interactions in MINOS,
P. Adamson et al.(MINOS),
Phys. Rev. Lett. 107 (2011) 011802,arXiv:1104.3922.
[MINOS:2011ysd]
Observed Event Excess in the MiniBooNE Search for $\bar\nu_{\mu} \rightarrow \bar\nu_e$ Oscillations,
A. A. Aguilar-Arevalo et al.(MiniBooNE),
Phys. Rev. Lett. 105 (2010) 181801,arXiv:1007.1150.
[MiniBooNE:2010idf]
Reanalysis of the GALLEX solar neutrino flux and source experiments,
F. Kaether, W. Hampel, G. Heusser, J. Kiko, T. Kirsten,
Phys. Lett. B685 (2010) 47-54,arXiv:1001.2731.
[Kaether:2010ag]
Search for sterile neutrino mixing in the MINOS long- baseline experiment,
P. Adamson et al.(MINOS),
Phys. Rev. D81 (2010) 052004,arXiv:1001.0336.
[MINOS:2010fgd]
Measurement of the solar neutrino capture rate with Gallium metal, Part III,
J. N. Abdurashitov et al.(SAGE),
Phys. Rev. C80 (2009) 015807,arXiv:0901.2200.
[SAGE:2009eeu]
A Search for Electron Neutrino Appearance at the $ \Delta{m}^{2} \sim 1 \, \text{eV}^{2} $ Scale,
A. A. Aguilar-Arevalo et al.(MiniBooNE),
Phys. Rev. Lett. 98 (2007) 231801,arXiv:0704.1500.
[MiniBooNE:2007uho]
Measurement of the response of a Ga solar neutrino experiment to neutrinos from an Ar-37 source,
J. N. Abdurashitov et al.(SAGE),
Phys. Rev. C73 (2006) 045805,arXiv:nucl-ex/0512041. From the abstract:The measured production rate was $ 11.0 {}^{+1.0}_{-0.9} \text{(stat)} \pm 0.6 \text{(syst)} $ atoms of 71Ge/d, which is $ 0.79 {}^{+0.09}_{-0.10} $ of the theoretically calculated production rate. [Abdurashitov:2005tb]
Evidence for neutrino oscillations from the observation of $\bar\nu_e$ appearance in a $\bar\nu_\mu$ beam,
A. Aguilar et al.(LSND),
Phys. Rev. D64 (2001) 112007,arXiv:hep-ex/0104049.
[LSND:2001aii]
Limits on the existence of heavy neutrinos in the range 50- eV - 1000-eV from the study of the Re-187 beta decay,
M. Galeazzi, F. Fontanelli, F. Gatti, S. Vitale,
Phys. Rev. Lett. 86 (2001) 1978-1981. [Galeazzi:2001py]
A high statistics search for $\nu_e (\bar\nu_e) \to \nu_\tau (\bar\nu_\tau)$ oscillations,
D. Naples et al.(CCFR/NuTeV),
Phys. Rev. D59 (1999) 031101,arXiv:hep-ex/9809023.
[CCFRNuTeV:1998gjj]
Measurement of the response of the Russian-American gallium experiment to neutrinos from a Cr-51 source,
J. N. Abdurashitov et al.(SAGE),
Phys. Rev. C59 (1999) 2246-2263,arXiv:hep-ph/9803418. From the abstract:The ratio of the measured rate of production of 71Ge to the rate anticipated from the source activity was $ 0.95 {}^{+0.11}_{-0.10} \text{(stat)} {}^{+0.06}_{-0.05} \text{(syst)} {}^{+0.035}_{-0.027} \text{(theory)} $. [SAGE:1998fvr]
Final results of the Cr-51 neutrino source experiments in GALLEX,
W. Hampel et al.(GALLEX),
Phys. Lett. B420 (1998) 114-126. From the abstract:The ratio $R$ of the neutrino source strength derived from the measured rate of 71Ge production, divided by the directly determined source strength is $R = 1.01 {}^{+0.12}_{-0.11}$ for the first source and $R = 0.84 {}^{+0.12}_{-0.11}$ for the second one. The combined value of $R$ for the two source experiments is $R = 0.93 \pm 0.08$. From the article:Update limits on short-baseline $\nu_e$ disappearance. See also [Go]. Comment:In reality, limits are relaxed in the high $\Delta m^2$ region, due to the result of the second source run, to the value $ \sin^2 2 \theta < 0.4 $ at 90\% CL. [M.L.]. [GALLEX:1997lja]
Evidence for $\nu_\mu \to \nu_e$ neutrino oscillations from LSND,
C. Athanassopoulos et al.(LSND),
Phys. Rev. Lett. 81 (1998) 1774-1777,arXiv:nucl-ex/9709006.
[LSND:1997vun]
Evidence for $\nu_\mu \to \nu_e$ oscillations from pion decay in flight neutrinos,
C. Athanassopoulos et al.(LSND),
Phys. Rev. C58 (1998) 2489-2511,arXiv:nucl-ex/9706006.
[LSND:1997vqj]
Evidence for $\bar\nu_\mu \to \bar\nu_e$ oscillation from the LSND experiment at the Los Alamos Meson Physics Facility,
C. Athanassopoulos et al.(LSND),
Phys. Rev. Lett. 77 (1996) 3082-3085,arXiv:nucl-ex/9605003.
[LSND:1996ubh]
Evidence for neutrino oscillations from muon decay at rest,
C. Athanassopoulos et al.(LSND),
Phys. Rev. C54 (1996) 2685-2708,arXiv:nucl-ex/9605001.
[LSND:1996vlr]
Candidate events in a search for $\bar\nu_\mu \to \bar\nu_e$ oscillations,
C. Athanassopoulos et al.(LSND),
Phys. Rev. Lett. 75 (1995) 2650-2653,arXiv:nucl-ex/9504002.
[LSND:1995lje]
New results from the DANSS experiment,
Mikhail Danilov,
PoS ICHEP2022 () 616,arXiv:2211.01208.
The International Conference on High Energy Physics (ICHEP 2022), 6-13 July 2022, Bologna, Italy. [Danilov:2022bss]
New results from the DANSS experiment,
Mikhail Danilov, Nataliya Skrobova(DANSS),
PoS EPS-HEP2021 (2022) 241,arXiv:2112.13413.
The European Physical Society Conference on High Energy Physics (EPS-HEP2021). [Danilov:2021oop]
New results from the DANSS experiment,
Mikhail Danilov,
PoS ICHEP2020 (2021) 121,arXiv:2012.10255.
40th International Conference on High Energy physics (ICHEP2020), July 28 - August 6, 2020, Prague, Czech Republic. [Danilov:2020ucs]
MiniBooNE Neutrino Oscillation Search Results and Predicted Background Events,
Teppei Katori(MiniBooNE),
arXiv:2010.06015, 2020.3rd World Summit on Exploring the Dark Side of the Universe, Guadeloupe Islands, March 9-13 2020. [Katori:2020tvv]
Recent results of the DANSS experiment,
Mikhail Danilov(DANSS),
PoS EPS-HEP2019 (2020) 401,arXiv:1911.10140.
European Physical Society Conference on High Energy Physics, EPS-HEP2019, 10-17 July 2019, Ghent, Belgium. [Danilov:2019aef]
A Search for Sterile Neutrinos with PROSPECT,
Olga Kyzylova(PROSPECT),
arXiv:1910.06314, 2019.2019 Meeting of the Division of Particles and Fields of the American Physical Society (DPF2019), July 29 - August 2, 2019, Northeastern University, Boston. [Kyzylova:2019ogb]
Search for eV Sterile Neutrinos - The STEREO Experiment [Blois 2019],
Stefan Schoppmann,
arXiv:1909.01017, 2019.Rencontres de Blois 2019. [Schoppmann:2019sys]
Results from the STEREO Experiment with 119 days of Reactor-on Data,
Laura Bernard(STEREO),
arXiv:1905.11896, 2019.2019 EW/QCD/Gravitation session of the 54th Rencontres de Moriond. [Bernard:2019jli]
Improved Search for Heavy Neutrinos and a Test of Lepton Universality in the Decay $\pi^+ \rightarrow \mbox{e}^+ \nu$,
R.E. Mischke et al.,
arXiv:1809.10314, 2018.CIPANP2018. [PiENu:2018lsf]
Heavy neutrino searches and NA62 status,
Nicolas Lurkin,
arXiv:1808.00827, 2018.52nd Rencontres de Moriond (EW session), La Thuile, 18-25 March 2017. [NA62:2017xeg]
Search for heavy neutral leptons with the CMS detector,
Willem Verbeke,
arXiv:1805.05084, 2018.53rd Rencontres de Moriond 2018: Electroweak Interactions and Unified Theories. [Verbeke:2018dyv]
Sterile Neutrino Search in the Neutrino-4 Experiment at the SM-3 Reactor,
A. P. Serebrov et al.,
Phys. Part. Nucl. 49 (2018) 701-708.International Session-Conference 'Physics of Fundamental Interactions', Nalchik, Russia, June 6-8, 2017. [Serebrov:2018oyd]
Sterile neutrino search in the NOvA Far Detector,
Sijith Edayath et al.,
arXiv:1710.01280, 2017.APS Division of Particles and Fields Meeting (DPF 2017), July 31-August 4, 2017, Fermilab. [Edayath:2017cpi]
NOvA Short-Baseline Tau Neutrino Appearance Search,
Rijeesh Keloth et al.,
arXiv:1710.00295, 2017.APS Division of Particles and Fields Meeting (DPF 2017), July 31-August 4, 2017, Fermilab. [Keloth:2017vdp]
Atmospheric neutrinos and new physics,
Nuria Rius(IceCube),
arXiv:1705.09140, 2017.Talk presented at NuPhys2016 (London, 12-14 December 2016). [Rius:2017hsc]
New Constraints on Sterile Neutrinos with MINOS/MINOS+ and Daya Bay,
Thomas Joseph Carroll,
arXiv:1705.05064, 2017.52nd Rencontres de Moriond EW 2017. [Carroll:2017xps]
Recent results from NA48/2 and NA62 experiments at CERN,
Nicolas Lurkin,
PoS HQL2016 (2017) 033,arXiv:1701.06979.
HQL 2016, Blacksburg, 22-27 May 2016. [Lurkin:2016vlh]
Status of Experiment NEUTRINO-4 Search for Sterile Neutrino,
A. Serebrov et al.(Neutrino-4),
J.Phys.Conf.Ser. 798 (2017) 012116,arXiv:1611.05245.
[Serebrov:2016bch]
Results from the OPERA experiment,
Donato Di Ferdinando(OPERA),
arXiv:1608.01595, 2016.NuPhys2015 (London, 16-18 December 2015). [DiFerdinando:2016wbk]
Results and Prospects from the Daya Bay Reactor Neutrino Experiment,
A. Higuera(Daya Bay),
arXiv:1607.07324, 2016.Seventh Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, June 20-24, 2016. [Higuera:2016vcm]
Neutrino-4 experiment on search for sterile neutrino with multi-section model of detector,
A. P. Serebrov et al.(Neutrino-4),
J.Phys.Conf.Ser. 888 (2017) 012089,arXiv:1605.05909.
[Serebrov:2016wzv]
First Results from Searches for Active to Sterile Neutrino Oscillations with NOvA,
Gavin Davies, 2016.Fermilab Joint Experimental-Theoretical Physics Seminar, 29 July 2016.http://theory.fnal.gov/jetp/talks/jetp_gsdavies_nova-2.pdf.
[NOVA-Fermilab-160729]
Search for exotic transitions of muon neutrinos to electron neutrinos with MINOS,
Marianna Gabrielyan(MINOS),
arXiv:1511.00179, 2015.DPF 2015 Meeting of the American Physical Society Division of Particles and Fields, Ann Arbor, Michigan, August 4-8, 2015. [Gabrielyan:2015hnc]
Search for Sterile Neutrinos at OPERA and other Long-Baseline Experiments,
Luca Stanco,
PoS EPS-HEP2015 (2016) 057,arXiv:1510.04151.
EPS2015, Vienna 22-29 July 2015. [Stanco:2015sua]
Searches for sterile neutrinos using the T2K off-axis near detector,
Debra Dewhurst(T2K),
arXiv:1504.08237, 2015.Prospects in Neutrino Physics Conference, 15 - 17 December, 2014, Queen Mary University of London, UK. [Dewhurst:2015aba]
Updated Search for Electron Antineutrino Appearance at MiniBooNE,
E. D. Zimmerman(MiniBooNE),
AIP Conf. Proc. 1441 (2012) 458-460,arXiv:1111.1375.
PANIC 2011. [Zimmerman:2011hy]
Analysis of Neutral Current Interactions in MINOS: A Search for Sterile Neutrinos,
Alexandre Sousa(MINOS),
arXiv:0910.1369, 2009.DPF-2009, Detroit, MI, July 2009. [Sousa:2009wp]
Neutrino Oscillation Results from MiniBooNE,
R. Tayloe(MiniBooNE), 2007.Lepton-Photon 2007, 12-18 August 2007, Daegu, Korea.http://chep.knu.ac.kr/lp07/htm/S4/S04_12.pdf.
[Tayloe-LP07]
Results of the MiniBooNE neutrino oscillation search,
E. D. Zimmerman(MiniBooNE), 2007.American Physical Society Meeting, Jacksonville, 16 April 2007.http://hep-neutrino.colorado.edu/edz/talkscans/aps.pdf.
[Zimmerman-07-04-16]
Measurement of the SAGE Response to Neutrinos from Ar37 Source,
V.N. Gavrin(SAGE), 2005.XI International Workshop on Neutrino Telescopes, February 22-25, 2005, Venice, Italy.http://www.pd.infn.it/~laveder/unbound/talks/exp/sage/VE05-Gavrin.pdf. Comment:The ratio of the production rate (MEASURED/PREDICTED) is $0.79 +0.09 -0.10$. [Gavrin:Venice2005]
MiniBooNE : Status and Plans,
A. Bazarko, 2002.19th International Workshop on Weak Interactions and Neutrinos, WIN2003, October 6-11, Lake Geneva, Wisconsin U.S.A.http://conferences.fnal.gov/win03/Talks/Andrew%20Bazarko.pdf. Comment:The figure in slide n.27 shows the MiniBoone $ 90 \% $ C.L. sensitivity for $\nu_\mu \rightarrow \nu_\mu$ oscillations. [M.L.]. [Bazarko:WIN2003]
Final Neutrino Oscillation Results from LSND and Karmen,
G. Drexlin, 2002.XXth International Conference on Neutrino Physics and Astrophysics May 25 - 30, 2002, Munich, Germany.http://neutrino2002.ph.tum.de/pages/transparencies/drexlin.
[Drexlin-talk:2002a]
XRISM constraints on unidentified X-ray emission lines, including the 3.5 keV line, in the stacked spectrum of ten galaxy clusters,
Marc Audard et al.(XRISM),
arXiv:2510.24560, 2025. [XRISM:2025lzv]
First Dark Matter Search Results From Coherent CAPTAIN-Mills,
A. A. Aguilar-Arevalo et al.,
Phys.Rev.D 106 (2022) 012001,arXiv:2105.14020.
[CCM:2021leg]
A Search for the 3.5 keV Line from the Milky Way's Dark Matter Halo with HaloSat,
E.M. Silich, K. Jahoda, L. Angelini, P. Kaaret, A. Zajczyk, D.M. LaRocca, R. Ringuette, J. Richardson,
Astrophys.J. 916 (2021) 2,arXiv:2105.12252.
[Silich:2021sra]
An X-ray spectroscopic search for dark matter and unidentified line signatures in the Perseus cluster with Hitomi,
Takayuki Tamura et al.,
Publ.Astron.Soc.Jap. 71 (2019) Publications of the Astronomical Society of Japan, Volume 71, Issue 3, June 2019, 50, https://doi.org/10.1093/pasj/psz023,arXiv:1811.05767.
[Tamura:2018scp]
First measeurements in search for keV-sterile neutrino in tritium beta-decay by Troitsk nu-mass experiment,
J.N. Abdurashitov et al.,
Pisma Zh.Eksp.Teor.Fiz. 105 (2017) 723-724,arXiv:1703.10779.
[Abdurashitov:2017kka]
Searching for the 3.5 keV Line in the Deep Fields with Chandra: the 10 Ms observations,
Nico Cappelluti, Esra Bulbul, Adam Foster, Priyamvada Natarajan, Megan C. Urry, Mark W. Bautz, Francesca Civano, Eric Miller, Randall K. Smith,
Astrophys.J. 854 (2018) 179,arXiv:1701.07932.
[Cappelluti:2017ywp]
(Almost) Closing the Sterile Neutrino Dark Matter Window with NuSTAR,
Kerstin Perez et al.,
Phys.Rev. D95 (2017) 123002,arXiv:1609.00667.
[Perez:2016tcq]
7.1 keV sterile neutrino constraints from X-ray observations of 33 clusters of galaxies with Chandra ACIS,
F. Hofmann, J. S. Sanders, K. Nandra, N. Clerc, M. Gaspari,
Astron.Astrophys. 592 (2016) A112,arXiv:1606.04091.
[Hofmann:2016urz]
Searching for the 3.5 keV Line in the Stacked Suzaku Observations of Galaxy Clusters,
Esra Bulbul et al.,
Astrophys.J. 831 (2016) 55,arXiv:1605.02034.
[Bulbul:2016yop]
Dark matter line emission constraints from NuSTAR observations of the Bullet Cluster,
S. Riemer-Sorensen et al.,
Astrophys. J. 810 (2015) 48,arXiv:1507.01378.
[Riemer-Sorensen:2015kqa]
Searching for keV Sterile Neutrino Dark Matter with X-ray Microcalorimeter Sounding Rockets,
Enectali Figueroa-Feliciano et al.,
Astrophys. J. 814 (2015) 82,arXiv:1506.05519.
[XQC:2015mwy]
The role of eROSITA all-sky survey in searches for sterile neutrino dark matter,
Fabio Zandanel, Christoph Weniger, Shin'ichiro Ando,
JCAP 1509 (2015) 060,arXiv:1505.07829.
[Zandanel:2015xca]
Improved Limits on Sterile Neutrino Dark Matter using Full-Sky Fermi-GBM Data,
Kenny C. Y. Ng, Shunsaku Horiuchi, Jennifer M. Gaskins, Miles Smith, Robert Preece,
Phys. Rev. D92 (2015) 043503,arXiv:1504.04027.
[Ng:2015gfa]
A Search for a keV Signature of Radiatively Decaying Dark Matter with Suzaku XIS Observations of the X-ray Diffuse Background,
Norio Sekiya, Noriko Y. Yamasaki, Kazuhisa Mitsuda,
Publ. Astron. Soc. Jap. (2015),arXiv:1504.02826.
[Sekiya:2015jsa]
An X-ray Spectroscopic Search for Dark Matter in the Perseus Cluster with Suzaku,
Takayuki Tamura, Ryo Iizuka, Yoshitomo Maeda, Kazuhisa Mitsuda, Noriko Y. Yamasaki,
Publ.Astron.Soc.Jap. 67 (2015) 23,arXiv:1412.1869.
[Tamura:2014mta]
An unidentified line in X-ray spectra of the Andromeda galaxy and Perseus galaxy cluster,
Alexey Boyarsky, Oleg Ruchayskiy, Dmytro Iakubovskyi, Jeroen Franse,
Phys. Rev. Lett. 113 (2014) 251301,arXiv:1402.4119.
[Boyarsky:2014jta]
Detection of An Unidentified Emission Line in the Stacked X-ray spectrum of Galaxy Clusters,
Esra Bulbul et al.,
Astrophys.J. 789 (2014) 13,arXiv:1402.2301.
[Bulbul:2014sua]
Dark Matter Search Using XMM-Newton Observations of Willman 1,
Michael Loewenstein, Alexander Kusenko,
Astrophys. J. 751 (2012) 82,arXiv:1203.5229.
[Loewenstein:2012px]
Swift observation of Segue 1: constraints on sterile neutrino parameters in the darkest galaxy,
N. Mirabal,
Mon.Not.Roy.Astron.Soc. 409 (2010) 128,arXiv:1010.4706.
[Mirabal:2010an]
Improved limits on sterile neutrino dark matter from full-sky observations by the Fermi-GBM,
Shunsaku Horiuchi, Kenny C. Y. Ng, Jennifer M. Gaskins, Miles Smith, Robert Preece,
arXiv:1502.03399, 2015.2014 Fermi Symposium. [Horiuchi:2015pda]
Search for heavy neutral leptons in decays of W bosons produced in 13 TeV $pp$ collisions using prompt signatures in the ATLAS detector,
Georges Aad et al.(ATLAS),
arXiv:2508.20929, 2025. [ATLAS:2025lva]
Search for heavy right-handed Majorana neutrinos in the decay of top quarks produced in proton$-$proton collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector,
Georges Aad et al.(ATLAS),
Phys.Rev.D 110 (2024) 112004,arXiv:2408.05000.
[ATLAS:2024fcs]
Search for heavy Majorana neutrinos in $e^{\pm} e^{\pm}$ and $e^{\pm} \mu^{\pm}$ final states via WW scattering in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector,
Georges Aad et al.(ATLAS),
arXiv:2403.15016, 2024. [2403.15016]
Search for long-lived heavy neutrinos in the decays of B mesons produced in proton-proton collisions at $\sqrt{s}$ =13 TeV,
Aram Hayrapetyan et al.(CMS),
JHEP 06 (2024) 183,arXiv:2403.04584.
[CMS:2024ita]
Search for heavy neutral leptons in final states with electrons, muons, and hadronically decaying tau leptons in proton-proton collisions at $\sqrt{s}$ =13 TeV,
Aram Hayrapetyan et al.(CMS),
JHEP 06 (2024) 123,arXiv:2403.00100.
[CMS:2024xdq]
Search for a heavy neutral lepton that mixes predominantly with the tau neutrino,
M. Nayak et al.(Belle),
Phys.Rev.D 109 (2024) L111102,arXiv:2402.02580.
[Belle:2024wyk]
Search for heavy neutral leptons in electron-positron and neutral-pion final states with the MicroBooNE detector,
P. Abratenko et al.(MicroBooNE),
Phys.Rev.Lett. 132 (2024) 041801,arXiv:2310.07660.
[MicroBooNE:2023eef]
Search for Z' bosons decaying to pairs of heavy Majorana neutrinos in proton-proton collisions at $\sqrt{s}$ = 13 TeV,
Armen Tumasyan et al.(CMS),
JHEP 11 (2023) 181,arXiv:2307.06959.
[CMS:2023ooo]
Search for heavy Majorana or Dirac neutrinos and right-handed $W$ gauge bosons in final states with charged leptons and jets in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector,
Georges Aad et al.(ATLAS),
Eur.Phys.J.C 83 (2023) 1164,arXiv:2304.09553.
[ATLAS:2023cjo]
Search for a heavy composite Majorana neutrino in events with dilepton signatures from proton-proton collisions at $\sqrt{s}$ = 13 TeV,
CMS,
arXiv:2210.03082, 2022. [CMS:2022cfk]
Probing heavy Majorana neutrinos and the Weinberg operator through vector boson fusion processes in proton-proton collisions at $\sqrt{s}$ = 13 TeV,
CMS,
arXiv:2206.08956, 2022. [CMS:2022rqc]
Search for type-III seesaw heavy leptons in leptonic final states in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector,
Georges Aad et al.(ATLAS),
Eur.Phys.J.C 82 (2022) 988,arXiv:2202.02039.
[ATLAS:2022yhd]
Search for long-lived heavy neutral leptons with displaced vertices in proton-proton collisions at $\sqrt{s}$ =13 TeV,
Armen Tumasyan et al.(CMS),
JHEP 07 (2022) 081,arXiv:2201.05578.
[CMS:2022fut]
New constraints on tau-coupled Heavy Neutral Leptons with masses $m_N = 280-970$ MeV,
R. Acciarri et al.(ArgoNeuT),
Phys.Rev.Lett. 127 (2021) 121801,arXiv:2106.13684.
[ArgoNeuT:2021clc]
Search for $K^+$ decays to a muon and invisible particles,
Eduardo Cortina Gil et al.(NA62),
Phys.Lett. B816 (2021) 136259,arXiv:2101.12304.
[NA62:2021bji]
Search for heavy neutral leptons in $W^+\to\mu^{+}\mu^{\pm}\text{jet}$ decays,
Roel Aaij et al.(LHCb),
Eur. Phys. J. C 81 (2021) 248,arXiv:2011.05263.
[LHCb:2020wxx]
Limits on the Existence of sub-MeV Sterile Neutrinos from the Decay of $^7$Be in Superconducting Quantum Sensors,
S. Friedrich et al.,
Phys.Rev.Lett. 126 (2021) 021803,arXiv:2010.09603.
[Friedrich:2020nze]
Search for heavy neutral lepton production in $K^+$ decays to positrons,
E. Cortina Gil et al.(NA62),
Phys.Lett. BB807 (2020) 135599,arXiv:2005.09575.
[NA62:2020mcv]
Search for heavy neutral leptons decaying into muon-pion pairs in the MicroBooNE detector,
P. Abratenko et al.,
Phys.Rev. D101 (2020) 052001,arXiv:1911.10545.
[MicroBooNE:2019izn]
Search for heavy neutral leptons in decays of $W$ bosons produced in 13 TeV $pp$ collisions using prompt and displaced signatures with the ATLAS detector,
Georges Aad et al.(ATLAS),
JHEP 1910 (2019) 265,arXiv:1905.09787.
[ATLAS:2019kpx]
Search for a right-handed gauge boson decaying into a high-momentum heavy neutrino and a charged lepton in $pp$ collisions with the ATLAS detector at $\sqrt{s}=13$ TeV,
Morad Aaboud et al.(ATLAS),
Phys.Lett. B798 (2019) 134942,arXiv:1904.12679.
[ATLAS:2019isd]
Search for heavy Majorana or Dirac neutrinos and right-handed $W$ gauge bosons in final states with two charged leptons and two jets at $\sqrt{s}$ = 13 TeV with the ATLAS detector,
Morad Aaboud et al.(ATLAS),
JHEP 1901 (2019) 016,arXiv:1809.11105.
[ATLAS:2018dcj]
Search for heavy neutral leptons in events with three charged leptons in proton-proton collisions at $\sqrt{s} =$ 13 TeV,
Albert M Sirunyan et al.(CMS),
Phys. Rev. Lett. 120 (2018) 221801,arXiv:1802.02965.
[CMS:2018iaf]
Improved Search for Heavy Neutrinos in the Decay $\pi\rightarrow e\nu$,
A. Aguilar-Arevalo et al.,
Phys.Rev. D97 (2018) 072012,arXiv:1712.03275.
[PIENU:2017wbj]
Search for Heavy Neutrinos in $K^+ \rightarrow \mu^+ \nu_{\mu}$ Decays,
Cristina Lazzeroni et al.(NA62),
Phys.Lett. B772 (2017) 712-718,arXiv:1705.07510.
[NA62:2017ynf]
Search for a heavy right-handed W boson and a heavy neutrino in events with two same-flavor leptons and two jets at sqrt(s)=13 TeV,
CMS Collaboration, 2017.CMS-PAS-EXO-17-011. [CMS:2017ilm]
Search for heavy neutrinos and $\mathrm{W}$ bosons with right handed couplings in proton-proton collisions at $\sqrt{s} = 13~\mathrm{TeV}$,
CMS Collaboration, 2017.CMS-PAS-EXO-16-045. [CMS:2017uoz]
Search for heavy Majorana neutrinos with the ATLAS detector in pp collisions at $\sqrt{s} = 8$ TeV,
(ATLAS),
JHEP 07 (2015) 162,arXiv:1506.06020.
[ATLAS:2015gtp]
Search for heavy Majorana neutrinos in $\mu^{\pm} \mu^{\pm} + \text{jets}$ events in proton-proton collisions at $\sqrt{s} = 8 \, \text{TeV}$,
Vardan Khachatryan et al.(CMS),
Phys. Lett. B748 (2015) 144-166,arXiv:1501.05566.
[CMS:2015qur]
New limits on heavy sterile neutrino mixing in ${^{8}\rm{B}}$-decay obtained with the Borexino detector,
G. Bellini et al.(Borexino),
Phys. Rev. D 88, 072010 (2013) 072010,arXiv:1311.5347.
[Borexino:2013bot]
Search for Heavy Neutrino in K- > mu nu_h(nu_h- > nu gamma) Decay at ISTRA+ Setup,
V. A. Duk et al.(ISTRA+),
Phys. Lett. B710 (2012) 307-317,arXiv:1110.1610.
[ISTRA:2011bgc]
New experimental limits on heavy neutrino mixing in B-8 decay obtained with the Borexino Counting Test Facility,
H. O. Back et al.,
JETP Lett. 78 (2003) 261-266. [Back:2003ae]
Searches for heavy neutral leptons with machine learning at the CMS experiment,
Joscha Knolle(CMS),
PoS LHCP2024 (2025) 276,arXiv:2412.06298.
12th Large Hadron Collider Physics Conference. [Knolle:2024eys]
Constraints on active-sterile neutrino transition magnetic moments from low-energy electronic recoils at direct detection experiments,
M. F. Mustamin, M. Demirci,
arXiv:2511.00701, 2025. [Mustamin:2025cpp]
Extra Radiation Cosmologies: Implications of the Hubble Tension for eV-scale Neutrinos,
Helena Garcia Escudero, Kevork N. Abazajian,
arXiv:2509.25478, 2025. [2509.25478]
Searching for sub-eV Sterile Neutrinos in Neutrino Telescopes,
Emilse Cabrera, Miaochen Jin, Carlos A. Arguelles, Arman Esmaili,
arXiv:2509.20442, 2025. [Cabrera:2025fmj]
Prospects for searching for sterile neutrinos in dynamical dark energy cosmologies using joint observations of gravitational waves and $\gamma$-ray bursts,
Lu Feng, Tao Han, Jing-Fei Zhang, Xin Zhang,
Chin.Phys.C 50 (2026) 015105,arXiv:2507.17315.
[Feng:2025wbz]
Reassessing the gallium anomaly using exact electron wave functions,
M. Cadeddu, N. Cargioli, G. Carotenuto, F. Dordei, L. Ferro, C. Giunti,
arXiv:2507.13103, 2025. [Cadeddu:2025pue]
A Frequentist Simulation-Based Inference Treatment of Sterile Neutrino Global Fits,
Joshua Villarreal, Julia Woodward, John Hardin, Janet Conrad,
Mach.Learn.Sci.Tech. 6 (2025) 035053,arXiv:2507.01153.
[Villarreal:2025ged]
Impact of improved energy resolution on DUNE sensitivity in presence of a light sterile neutrino,
Sabila Parveen, Jogesh Rout, Poonam Mehta,
arXiv:2506.10767, 2025. [Parveen:2025rbh]
Low-energy neutrino responses for 71Ga by electron capture rates, charge exchange reactions and shell model calculations,
Yoritaka Iwata, Hiroyasu Ejiri, Shahariar Sarkar,
arXiv:2504.11736, 2025. [Iwata:2025tzk]
Towards a Robust Exclusion of the Sterile-Neutrino Explanation of Short-Baseline Anomalies,
Ohana Benevides Rodrigues, Matheus Hostert, Kevin J. Kelly, Bryce Littlejohn, Pedro A. N. Machado, Ibrahim Safa, Tao Zhou,
Phys.Rev.Lett. 135 (2025) 081801,arXiv:2503.13594.
[Rodrigues:2025tha]
A search for sterile neutrinos in interacting dark energy models using DESI baryon acoustic oscillations and DES supernovae data,
Lu Feng, Tian-Nuo Li, Guo-Hong Du, Jing-Fei Zhang, Xin Zhang,
Phys.Dark Univ. 48 (2025) 101935,arXiv:2503.10423.
[Feng:2025mlo]
Feldman-Cousins' ML Cousin: Sterile Neutrino Global Fits using Simulation-Based Inference,
Joshua Villarreal, John M. Hardin, Janet M. Conrad,
arXiv:2501.08988, 2025. [Villarreal:2025mhv]
Neutrino electromagnetic properties and sterile dipole portal in light of the first solar CE$\nu$NS data,
Valentina De Romeri, Dimitrios K. Papoulias, Gonzalo Sanchez Garcia, Christoph A. Ternes, Mariam Tortola,
JCAP 05 (2025) 080,arXiv:2412.14991.
[DeRomeri:2024hvc]
Probing neutrino mass ordering with supernova neutrinos at NO$\nu$A including the effect of sterile neutrinos,
Papia Panda, Rukmani Mohanta,
Nucl.Phys.B 1018 (2025) 117002,arXiv:2412.05213.
[Panda:2024avc]
Solar Model Independent Constraints on the Sterile Neutrino Interpretation of the Gallium Anomaly,
M. C. Gonzalez-Garcia, Michele Maltoni, Joao Paulo Pinheiro,
Phys.Lett.B 862 (2025) 139297,arXiv:2411.16840.
[Gonzalez-Garcia:2024hmf]
New parameter region in sterile neutrino searches: a scenario to alleviate cosmological neutrino mass bound and its testability at oscillation experiments,
Toshihiko Ota,
JHEP 03 (2025) 023,arXiv:2411.16356.
[Ota:2024byu]
Long-lived sterile neutrinos from an axionlike particle at Belle II,
Zeren Simon Wang, Yu Zhang, Wei Liu,
Phys.Rev.D 111 (2025) 035010,arXiv:2410.00491.
[Wang:2024prt]
Sterile sector impacting the correlations and degeneracies among mixing parameters at the Deep Underground Neutrino Experiment,
Sabila Parveen, Mehedi Masud, Mary Bishai, Poonam Mehta,
JHEP 01 (2025) 139,arXiv:2409.17878.
[Parveen:2024bcc]
Prospects for searching for sterile neutrinos with gravitational wave and $\gamma$-ray burst joint observations,
Lu Feng, Tao Han, Jing-Fei Zhang, Xin Zhang,
Commun.Theor.Phys. 77 (2025) 065403,arXiv:2409.04453.
[Feng:2024mfx]
Probing light sterile neutrinos in left-right symmetric models with displaced vertices and neutrinoless double beta decay,
Jordy de Vries, Herbi K. Dreiner, Jelle Groot, Julian Y. Gunther, Zeren Simon Wang,
JHEP 04 (2025) 007,arXiv:2406.15091.
[deVries:2024mla]
Decaying sterile neutrinos at short baselines,
Matheus Hostert, Kevin J. Kelly, Tao Zhou,
Phys.Rev.D 110 (2024) 075002,arXiv:2406.04401.
[Hostert:2024etd]
Effects of Neutrino-Ultralight Dark Matter Interaction on the Cosmic Neutrino Background,
Pablo Martinez-Mirave, Yuber F. Perez-Gonzalez, Manibrata Sen,
Phys.Rev.D 110 (2024) 055005,arXiv:2406.01682.
[Martinez-Mirave:2024dmw]
Exploration of mass splitting and muon/tau mixing parameters for an eV-scale sterile neutrino with IceCube,
R. Abbasi et al.,
Phys.Lett.B 858 (2024) 139077,arXiv:2406.00905.
[IceCube:2024pky]
Resonant Neutrino Flavor Conversion in the Atmosphere,
Connor Sponsler, Matheus Hostert, Ivan Martinez-Soler, Carlos A. Arguelles,
arXiv:2405.12140, 2024. [Sponsler:2024iej]
Limits on the parameter space of (3+2) sterile neutrino scenario by IceCube data,
Emilse Cabrera, Arman Esmaili, Alexander A. Quiroga,
JCAP 11 (2024) 059,arXiv:2405.10419.
[Cabrera:2024rgi]
Solar neutrinos and leptonic spin forces,
Saeed Ansarifard, M. C. Gonzalez-Garcia, Michele Maltoni, Joao Paulo Pinheiro,
JHEP 07 (2024) 172,arXiv:2405.05340.
[Ansarifard:2024zxm]
Constraining the mass-spectra in the presence of a light sterile neutrino from absolute mass-related observables,
Srubabati Goswami, Debashis Pachhar, Supriya Pan,
Phys.Rev.D 110 (2024) 015028,arXiv:2405.04176.
[Goswami:2024ahm]
The role of the Look Elsewhere Effect in determining the significance of an oscillation disappearance search for a light sterile neutrino,
Gioacchino Ranucci,
arXiv:2403.17228, 2024. [Ranucci:2024bgx]
Probing the mixing between sterile and tau neutrinos in the SHiP experiment,
Ki-Young Choi, Sung Hyun Kim, Yeong Gyun Kim, Kang Young Lee, Kyong Sei Lee, Byung Do Park, Jong Yoon Sohn, Seong Moon Yoo, Chun Sil Yoon,
JHEP 24 (2020) 166,arXiv:2403.04191.
[Choi:2024ips]
Neutrinoless double beta decay rates in the presence of light sterile neutrinos,
W. Dekens, J. de Vries, D. Castillo, J. Menendez, E. Mereghetti, V. Plakkot, P. Soriano, G. Zhou,
JHEP 09 (2024) 201,arXiv:2402.07993.
[Dekens:2024hlz]
nuOscillation: a software package for computation and simulation of neutrino propagation and interaction,
Seonghyeok Jang, Eunju Jeon, Eunil Won, Young Ju Ko, Kyungmin Lee,
J.Korean Phys.Soc. 85 (2024) 381-388,arXiv:2401.13215.
[Jang:2024mfr]
Confronting solutions of the Gallium Anomaly with reactor rate data,
Carlo Giunti, Christoph A. Ternes,
Phys.Lett.B 849 (2024) 138436,arXiv:2312.00565.
[Giunti:2023kyo]
Search for Hidden Neutrinos at the European Spallation Source: the SHiNESS experiment,
Stefano Roberto Soleti, Pilar Coloma, Juan Jose Gomez Cadenas,
JHEP 03 (2024) 148,arXiv:2311.18509.
[Soleti:2023hlr]
Constraints on metastable superheavy dark matter coupled to sterile neutrinos with the Pierre Auger Observatory,
Adila Abdul Halim et al.(Pierre Auger),
Phys.Rev.D 109 (2024) L081101,arXiv:2311.14541.
[PierreAuger:2023vql]
Broad Sterile Neutrinos & the Reactor/Gallium Tension,
Hannah Banks, Kevin J. Kelly, Matthew McCullough, Tao Zhou,
JHEP 04 (2024) 096,arXiv:2311.06352.
[Banks:2023qgd]
Shedding light on the MiniBoone Excess with Searches at the LHC,
Christian Herwig, Joshua Isaacson, Bo Jayatilaka, Pedro A. N. Machado, Allie Reinsvold Hall, Murtaza Safdari,
Phys.Rev.D 109 (2024) 075049,arXiv:2310.13042.
[Herwig:2023bnr]
Probing mass orderings in presence of a very light sterile neutrino in a liquid argon detector,
Animesh Chatterjee, Srubabati Goswami, Supriya Pan,
Nucl.Phys.B 996 (2023) 116370,arXiv:2307.12885.
[Chatterjee:2023qyr]
Light Sterile Neutrinos in the Early Universe: Effects of Altered Dispersion Relations and a coupling to Axion-Like Dark Matter,
Dominik Hellmann, Heinrich Pas,
JCAP 11 (2023) 056,arXiv:2307.12118.
[Hellmann:2023ymj]
The result of the Neutrino-4 experiment, sterile neutrinos, dark matter and the Standard Model,
A. P. Serebrov, R. M. Samoilov, O. M. Zherebtsov,
arXiv:2306.09962, 2023. [Serebrov:2023vfo]
Evolution of Tau-Neutrino Lepton Number in Protoneutron Stars due to Active-Sterile Neutrino Mixing,
Anupam Ray, Yong-Zhong Qian,
Phys.Rev.D 108 (2023) 063025,arXiv:2306.08209.
[Ray:2023gtu]
CP and T violation effects in presence of an $\mbox{eV}$ scale sterile neutrino at long baseline neutrino experiments,
Sabila Parveen, Kiran Sharma, Sudhanwa Patra, Poonam Mehta,
Eur.Phys.J.C 85 (2025) 181,arXiv:2305.16824.
[Parveen:2023ixk]
Sterile neutrino searches with reactor antineutrinos using coherent neutrino-nucleus scattering experiments,
S. P. Behera, D. K. Mishra, P. K. Netrakanti, R. Sehgal, R. Dey, V. Jha,
Phys.Rev.D 108 (2023) 113002,arXiv:2304.00912.
[Behera:2023llq]
The Gallium Neutrino Absorption Cross Section and its Uncertainty,
W. C. Haxton, E. J. Rule, S. R. Elliott, V. N. Gavrin, T. V. Ibragimova,
Phys.Rev.C 108 (2023) 035502,arXiv:2303.13623.
[Elliott:2023xkb]
The result of the Neutrino-4 experiment, sterile neutrinos and dark matter, the fourth neutrino and the Hubble constant,
A. P. Serebrov, R. M. Samoilov, M. E. Chaikovskii, O. M. Zherebtsov,
arXiv:2302.09958, 2023. [Serebrov:2023onj]
Improved sensitivities of ESS$\nu$SB from a two-detector fit,
F. Capozzi, C. Giunti, C. A. Ternes,
JHEP 04 (2023) 130,arXiv:2302.07154.
[Capozzi:2023ltl]
The influence of the effective number of active and sterile neutrinos on the determination of the values of cosmological parameters,
P. A. Chernikov, A. V. Ivanchik,
Astron.Lett. 48 (2022) 689-701,arXiv:2302.05251.
[Chernikov:2022mdn]
Implications of MicroBooNE's low sensitivity to electron antineutrino interactions in the search for the MiniBooNE excess,
Nicholas W. Kamp, Matheus Hostert, Carlos A. Arguelles, Janet M. Conrad, Michael H. Shaevitz,
Phys.Rev.D 107 (2023) 092002,arXiv:2301.12573.
[Kamp:2023mjn]
Impact of CP violation searches at MOMENT experiment with sterile neutrinos,
Kiran Sharma, Sudhanwa Patra,
JHEP 08 (2023) 100,arXiv:2301.00390.
[Sharma:2023jzg]
Inspection of the detection cross section dependence of the Gallium Anomaly,
C. Giunti, Y.F. Li, C.A. Ternes, Z. Xin,
Phys.Lett.B 842 (2023) 137983,arXiv:2212.09722.
[Giunti:2022xat]
Flux-integrated semiexclusive cross sections for charged-current quasielastic and neutral-current elastic neutrino scattering off $^{40}\text{Ar}$ and a sterile neutrino oscillation study,
A. V. Butkevich,
Phys.Rev.D 107 (2023) 073001,arXiv:2212.09300.
[Butkevich:2022pzd]
Sensitivity of Future Tritium Decay Experiments to New Physics,
James A. L. Canning, Frank F. Deppisch, Wenna Pei,
JHEP 03 (2023) 144,arXiv:2212.06106.
[Canning:2022nye]
Matter effect in presence of a sterile neutrino and resolving the octant degeneracy using liquid argon detector in DUNE,
Animesh Chatterjee, Srubabati Goswami, Supriya Pan,
Phys.Rev.D 108 (2023),arXiv:2212.02949.
[Chatterjee:2022pqg]
New Clues About Light Sterile Neutrinos: Preference for Models with Damping Effects in Global Fits,
J. M. Hardin, I. Martinez-Soler, A. Diaz, M. Jin, M. W. Kamp, C. A. Arguelles, J. M. Conrad, M. H. Shaevitz,
JHEP 09 (2023) 058,arXiv:2211.02610.
[Hardin:2022muu]
The impact of neutrino-nucleus interaction modeling on new physics searches,
Nina M. Coyle, Shirley Weishi Li, Pedro A. N. Machado,
JHEP 12 (2022) 166,arXiv:2210.03753.
[Coyle:2022bwa]
Light sterile neutrinos effects in processes with electron and muon neutrinos,
V. V. Khruschov, S. V. Fomichev,
arXiv:2210.03359, 2022. [Khruschov:2022bqa]
How to Identify Different New Neutrino Oscillation Physics Scenarios at DUNE,
Peter B. Denton, Alessio Giarnetti, Davide Meloni,
JHEP 02 (2023) 210,arXiv:2210.00109.
[Denton:2022pxt]
Gallium Anomaly: Critical View from the Global Picture of $\nu_{e}$ and $\bar\nu_{e}$ Disappearance,
C. Giunti, Y. F. Li, C. A. Ternes, O. Tyagi, Z. Xin,
JHEP 10 (2022) 164,arXiv:2209.00916.
[Giunti:2022btk]
Addressing the Short-Baseline Neutrino Anomalies with Energy-Dependent Mixing Parameters,
K. S. Babu, Vedran Brdar, Andre de Gouvea, Pedro A. N. Machado,
Phys.Rev.D 107 (2023) 015017,arXiv:2209.00031.
[Babu:2022non]
Study of matter effects in the presence of sterile neutrino using OMSD approximation,
Kiran Sharma, Sudhanwa Patra,
arXiv:2207.03249, 2022. [Sharma:2022qeo]
Large Extra Dimensions and neutrino experiments,
D. V. Forero, C. Giunti, C. A. Ternes, O. Tyagi,
Phys.Rev.D 106 (2022) 035027,arXiv:2207.02790.
[Forero:2022skg]
Dipole-Coupled Neutrissimo Explanations of the MiniBooNE Excess Including Constraints from MINERvA Data,
Nicholas W. Kamp, Matheus Hostert, Austin Schneider, Stefano Vergani, Carlos A. Arguelles, Janet M. Conrad, Michael H. Shaevitz, Melissa A. Uchida,
Phys.Rev.D 107 (2023) 055009,arXiv:2206.07100.
[Kamp:2022bpt]
Very Light Sterile Neutrinos at NOvA and T2K,
Andre de Gouvea, Giancarlo Jusino Sanchez, Kevin J. Kelly,
Phys.Rev.D 106 (2022) 055025,arXiv:2204.09130.
[deGouvea:2022kma]
Requirements on common solutions to the LSND and MiniBooNE excesses: a post-MicroBooNE study,
Waleed Abdallah, Raj Gandhi, Samiran Roy,
JHEP 06 (2022) 160,arXiv:2202.09373.
[Abdallah:2022grs]
Impact of Wave Package Separation in Low-Energy Sterile Neutrino Searches,
Carlos A. Arguelles, Toni Bertolez-Martinez, Jordi Salvado,
Phys.Rev.D 107 (2023) 036004,arXiv:2201.05108.
[Arguelles:2022bvt]
Quasi-Sterile Neutrinos from Dark Sectors I. BSM matter effects in neutrino oscillations and the short-baseline anomalies,
Daniele S. M. Alves, William C. Louis, Patrick G. deNiverville,
JHEP 08 (2022) 034,arXiv:2201.00876.
[Alves:2022vgn]
Analysis of the result of the Neutrino-4 experiment in conjunction with other experiments on the search for sterile neutrinos within the framework of the 3 + 1 neutrino model,
A. P. Serebrov, R. M. Samoilov, M. E. Chaikovskii,
arXiv:2112.14856, 2021. [Serebrov:2021ndf]
Solar Active-Sterile Neutrino Conversion with Atomic Effects at Dark Matter Direct Detection Experiments,
Shao-Feng Ge, Pedro Pasquini, Jie Sheng,
JHEP 05 (2022) 088,arXiv:2112.05560.
[Ge:2021snv]
Statistical significance of the sterile-neutrino hypothesis in the context of reactor and gallium data,
Jeffrey M. Berryman, Pilar Coloma, Patrick Huber, Thomas Schwetz, Albert Zhou,
JHEP 02 (2022) 055,arXiv:2111.12530.
[Berryman:2021yan]
MicroBooNE and the $\nu_e$ Interpretation of the MiniBooNE Low-Energy Excess,
C. A. Arguelles, I. Esteban, M. Hostert, K. J. Kelly, J. Kopp, P. A. N. Machado, I. Martinez-Soler, Y. F. Perez-Gonzalez,
Phys.Rev.Lett. 128 (2022) 241802,arXiv:2111.10359.
[Arguelles:2021meu]
Cascade Appearance Signatures of Sterile Neutrinos at 1-100 TeV,
Benjamin R. Smithers, Benjamin J. P. Jones, Carlos A. Arguelles, Janet M. Conrad, Alejandro Diaz,
Phys.Rev.D 105 (2022) 052001,arXiv:2111.08722.
[Smithers:2021orb]
Sterile Neutrino Searches with MicroBooNE: Electron Neutrino Disappearance,
Peter B. Denton,
Phys.Rev.Lett. 129 (2022) 061801,arXiv:2111.05793.
[Denton:2021czb]
Reactor antineutrino anomaly in light of recent flux model refinements,
C. Giunti, Y.F. Li, C.A. Ternes, Z. Xin,
Phys.Lett.B 829 (2022) 137054,arXiv:2110.06820.
[Giunti:2021kab]
Updated sensitivity of DUNE in 3+1 scenario with far and near detectors,
Monojit Ghosh, Rukmani Mohanta,
Eur.Phys.J.ST 231 (2022) 137-140,arXiv:2110.05767.
[Ghosh:2021rtn]
Hints of dark matter-neutrino interactions in Lyman-$\alpha$ data,
Deanna C. Hooper, Matteo Lucca,
Phys.Rev.D 105 (2022) 103504,arXiv:2110.04024.
[Hooper:2021rjc]
Minimal dark energy: key to sterile neutrino and Hubble constant tensions?,
Eleonora Di Valentino, Stefano Gariazzo, Carlo Giunti, Olga Mena, Supriya Pan, Weiqiang Yang,
Phys.Rev.D 105 (2022) 103511,arXiv:2110.03990.
[DiValentino:2021rjj]
Probing Active-Sterile Neutrino Transition Magnetic Moments with Photon Emission from CE$\nu$NS,
Patrick D. Bolton, Frank F. Deppisch, Kare Fridell, Julia Harz, Chandan Hati, Suchita Kulkarni,
Phys.Rev.D 106 (2022) 035036,arXiv:2110.02233.
[Bolton:2021pey]
Testing sterile neutrino mixing with present and future solar neutrino data,
Kim Goldhagen, Michele Maltoni, Shayne Reichard, Thomas Schwetz,
Eur.Phys.J.C 82 (2022) 116,arXiv:2109.14898.
[Goldhagen:2021kxe]
Experimental indications of the 3+1 neutrino model with one sterile neutrino,
A. Serebrov, R. Samoilov, M. Chaikovskii,
arXiv:2109.12385, 2021. [Serebrov:2021zuh]
Effects of an Intermediate Mass Sterile Neutrino Population on the Early Universe,
Hannah Rasmussen, Alex McNichol, George M. Fuller, Chad T. Kishimoto,
Phys.Rev.D 105 (2022) 083513,arXiv:2109.11176.
[Rasmussen:2021kbf]
Low-energy probes of sterile neutrino transition magnetic moments,
O. G. Miranda, D. K. Papoulias, O. Sanders, M. Tortola, J. W. F. Valle,
JHEP 12 (2021) 191,arXiv:2109.09545.
[Miranda:2021kre]
Probing Neutrino Dipole Portal at COHERENT Experiment,
Jihn E. Kim, Arnab Dasgupta, Sin Kyu Kang,
JHEP 11 (2021) 120,arXiv:2108.12998.
[Dasgupta:2021fpn]
New physics from oscillations at the DUNE near detector, and the role of systematic uncertainties,
Pilar Coloma, Jacobo Lopez-Pavon, Salvador Rosauro-Alcaraz, Salvador Urrea,
JHEP 08 (2021) 065,arXiv:2105.11466.
[Coloma:2021uhq]
Explaining the MiniBooNE Excess Through a Mixed Model of Oscillation and Decay,
Stefano Vergani, Nicholas W. Kamp, Alejandro Diaz, Carlos A. Arguelles, Janet M. Conrad, Mike H. Shaevitz, Melissa A. Uchida,
Phys.Rev.D 104 (2021) 095005,arXiv:2105.06470.
[Vergani:2021tgc]
Limits on active-sterile neutrino mixing parameters using heavy nuclei abundances,
M. M. Saez, K. J. Fushimi, M. E. Mosquera, O. Civitarese,
Int.J.Mod.Phys. E30 (2021) 2150028,arXiv:2105.03202.
[Saez:2021rxq]
Hubble tension in lepton asymmetric cosmology with an extra radiation,
Osamu Seto, Yo Toda,
Phys.Rev.D 104 (2021) 063019,arXiv:2104.04381.
[Seto:2021tad]
Sterile neutrinos with non-standard interactions in $\beta$- and $0\nu\beta\beta$-decay experiments,
Wouter Dekens, Jordy de Vries, Tom Tong,
JHEP 08 (2021) 128,arXiv:2104.00140.
[Dekens:2021qch]
Future Searches for Light Sterile Neutrinos at Nuclear Reactors,
Jeffrey M. Berryman, Luis A. Delgadillo, Patrick Huber,
Phys.Rev.D 105 (2022) 035002,arXiv:2104.00005.
[Berryman:2021xsi]
Sterile Neutrino Search at the Short-Baseline Neutrino Program via Neutral Current Disappearance,
Andrew Furmanski, Christopher Hilgenberg,
Phys.Rev.D 103 (2021) 112011,arXiv:2012.09788.
[Furmanski:2020smg]
Two-Neutrino Double Beta Decay with Sterile Neutrinos,
Patrick D. Bolton, Frank F. Deppisch, Lukas Graf, Fedor Simkovic,
Phys.Rev. D103 (2021) 055019,arXiv:2011.13387.
[Bolton:2020ncv]
The study of two quasi-degenerate heavy sterile neutrinos in rare meson decays,
Jiabao Zhang, Tianhong Wang, Geng Li, Yue Jiang, Guo-Li Wang,
Phys.Rev. D103 (2021) 035015,arXiv:2010.13286.
[Zhang:2020hwj]
Long-lived Sterile Neutrinos at the LHC in Effective Field Theory,
Jordy de Vries, Herbert K. Dreiner, Julian Y. Gunther, Zeren Simon Wang, Guanghui Zhou,
JHEP 2103 (2021) 148,arXiv:2010.07305.
[DeVries:2020jbs]
Flavors of Astrophysical Neutrinos with Active-Sterile Mixing,
Markus Ahlers, Mauricio Bustamante, Niels Gustav Nortvig Willesen,
JCAP 07 (2021) 029,arXiv:2009.01253.
[Ahlers:2020miq]
Statistical interpretation of sterile neutrino oscillation searches at reactors,
Pilar Coloma, Patrick Huber, Thomas Schwetz,
Eur.Phys.J. C81 (2021) 2,arXiv:2008.06083.
[Coloma:2020ajw]
Future CEvNS experiments as probes of lepton unitarity and light-sterile neutrinos,
O. G. Miranda, D. K. Papoulias, O. Sanders, M. Tortola, J. W. F. Valle,
Phys. Rev. D 102 (2020) 113014,arXiv:2008.02759.
[Miranda:2020syh]
The Neutrino Magnetic Moment Portal: Cosmology, Astrophysics, and Direct Detection,
Vedran Brdar, Admir Greljo, Joachim Kopp, Toby Opferkuch,
JCAP 01 (2021) 039,arXiv:2007.15563.
[Brdar:2020quo]
Constraints on the charged currents in general neutrino interactions with sterile neutrinos,
Tong Li, Xiao-Dong Ma, Michael A. Schmidt,
JHEP 2010 (2020) 115,arXiv:2007.15408.
[Li:2020wxi]
Observable features in (ultra)high energy neutrinos due to active-sterile secret interactions,
Damiano F. G. Fiorillo, Stefano Morisi, Gennaro Miele, Ninetta Saviano,
Phys.Rev. D102 (2020) 083014,arXiv:2007.07866.
[Fiorillo:2020zzj]
An Active-to-Sterile Neutrino Transition Dipole Moment and the XENON1T Excess,
Ian M. Shoemaker, Yu-Dai Tsai, Jason Wyenberg,
Phys.Rev.D 104 (2021) 115026,arXiv:2007.05513.
[Shoemaker:2020kji]
Active-sterile neutrino mixing constraint using reactor antineutrinos with the ISMRAN set-up,
S. P. Behera, D. K. Mishra, L. M. Pant,
Phys.Rev. D102 (2020) 013002,arXiv:2007.00392.
[Behera:2020qwf]
Solar Neutrino Scattering with Electron into Massive Sterile Neutrino,
Shao-Feng Ge, Pedro Pasquini, Jie Sheng,
Phys.Lett. B810 (2020) 135787,arXiv:2006.16069.
[Ge:2020jfn]
A Comment on the note arXiv:2006.13147 on arXiv:2005.05301, 'Preparation of the Neutrino-4 experiment on search for sterile neutrino and the obtained results of measurements',
A.P. Serebrov, R.M. Samoilov(Neutrino-4),
arXiv:2006.13639, 2020. [Serebrov:2020yvp]
Note on arXiv:2005.05301, 'Preparation of the Neutrino-4 experiment on search for sterile neutrino and the obtained results of measurements',
H. Almazan et al.,
arXiv:2006.13147, 2020. [PROSPECT:2020raz]
Note on Thermalization of Non-resonantly Produced Sterile Neutrinos,
Graciela B. Gelmini, Philip Lu, Volodymyr Takhistov,
JCAP 2010 (2020) A01,arXiv:2006.09553.
[Gelmini:2020duq]
Interpreting NO$\nu$A and T2K data in the presence of a light sterile neutrino,
Sabya Sachi Chatterjee, Antonio Palazzo,
arXiv:2005.10338, 2020. [Chatterjee:2020yak]
Big Bang Nucleosynthesis constraints on sterile neutrino and lepton asymmetry of the Universe,
Graciela B. Gelmini, Masahiro Kawasaki, Alexander Kusenko, Kai Murai, Volodymyr Takhistov,
JCAP 2009 (2020) 051,arXiv:2005.06721.
[Gelmini:2020ekg]
Sterile Neutrinos and the Global Reactor Antineutrino Dataset,
Jeffrey M. Berryman, Patrick Huber,
JHEP 2101 (2021) 167,arXiv:2005.01756.
[Berryman:2020agd]
Generic neutrino interactions with sterile neutrinos in light of neutrino-nucleus coherent scattering and meson invisible decays,
Tong Li, Xiao-Dong Ma, Michael A. Schmidt,
JHEP 2007 (2020) 152,arXiv:2005.01543.
[Li:2020lba]
MeV-scale reheating temperature and cosmological production of light sterile neutrinos,
Takuya Hasegawa, Nagisa Hiroshima, Kazunori Kohri, Rasmus S. L. Hansen, Thomas Tram, Steen Hannestad,
JCAP 2008 (2020) 015,arXiv:2003.13302.
[Hasegawa:2020ctq]
Active neutrino oscillations and double beta decay characteristics with sterile neutrinos contributions,
V. V. Khruschov, S. V. Fomichev, S. V. Semenov,
Phys.At.Nucl. 84 (2021) 328-338,arXiv:2003.06145.
[Khruschov:2020hah]
Bounds on light sterile neutrino mass and mixing from cosmology and laboratory searches,
Steffen Hagstotz, Pablo F. de Salas, Stefano Gariazzo, Martina Gerbino, Massimiliano Lattanzi, Sunny Vagnozzi, Katherine Freese, Sergio Pastor,
Phys.Rev.D 104 (2021) 123524,arXiv:2003.02289.
[Hagstotz:2020ukm]
Cosmogenic neutrino fluxes under the effect of active-sterile secret interactions,
Damiano F. G. Fiorillo, Gennaro Miele, Stefano Morisi, Ninetta Saviano,
Phys.Rev. D101 (2020) 083024,arXiv:2002.10125.
[Fiorillo:2020jvy]
Direct comparison of sterile neutrino constraints from cosmological data, $\nu_{e}$ disappearance data and $\nu_\mu\rightarrow\nu_{e}$ appearance data in a $3+1$ model,
Matthew Adams, Fedor Bezrukov, Jack Elvin-Poole, Justin J. Evans, Pawel Guzowski, Brian O Fearraigh, Stefan Soldner-Rembold,
Eur.Phys.J. C80 (2020) 758,arXiv:2002.07762.
[Adams:2020nue]
Sterile neutrinos and neutrinoless double beta decay in effective field theory,
W. Dekens, J. de Vries, K. Fuyuto, E. Mereghetti, G. Zhou,
JHEP 2006 (2020) 097,arXiv:2002.07182.
[Dekens:2020ttz]
Comment on 'Analysis of the Results of the Neutrino-4 Experiment on the Search for the Sterile Neutrino and Comparison with Results of Other Experiments' (JETP Letters 112, 199 (2020)),
M. V. Danilov, N. A. Skrobova,
JETP Lett. 112 (2020) 452-454.[Pisma Zh. Eksp. Teor. Fiz. 112, 484 (2020)]. [Danilov:2020rax]
KATRIN bound on 3+1 active-sterile neutrino mixing and the reactor antineutrino anomaly,
C. Giunti, Y.F. Li, Y.Y. Zhang,
JHEP 2005 (2020) 061,arXiv:1912.12956.
[Giunti:2019fcj]
Sensitivity to light sterile neutrinos at ESSnuSB,
Monojit Ghosh, Tommy Ohlsson, Salvador Rosauro-Alcaraz,
JHEP 2003 (2020) 026,arXiv:1912.10010.
[Ghosh:2019zvl]
Cosmological Dependence of Resonantly Produced Sterile Neutrinos,
Graciela B. Gelmini, Philip Lu, Volodymyr Takhistov,
JCAP 2006 (2020) 008,arXiv:1911.03398.
[Gelmini:2019clw]
Sterile neutrinos with altered dispersion relations revisited,
G. Barenboim, P. Martinez-Mirave, C. A. Ternes, M. Tortola,
JHEP 2003 (2020) 070,arXiv:1911.02329.
[Barenboim:2019hso]
On The Decaying-Sterile Neutrino Solution to the Electron (Anti)Neutrino Appearance Anomalies,
Andre de Gouvea, O. L. G. Peres, Suprabh Prakash, G. V. Stenico,
JHEP 2007 (2020) 141,arXiv:1911.01447.
[deGouvea:2019qre]
Decaying Sterile Neutrinos and the Short Baseline Oscillation Anomalies,
Mona Dentler, Ivan Esteban, Joachim Kopp, Pedro Machado,
Phys.Rev. D101 (2020) 115013,arXiv:1911.01427.
[Dentler:2019dhz]
The impact of the locally measured Hubble parameter on the mass of Sterile neutrino,
M. Ebadinejad,
Mon.Not.Roy.Astron.Soc. 488 (2019) 5763-5770,arXiv:1910.08046.
[Ebadinejad:2019acq]
The viability of the 3+1 neutrino model in the supernova neutrino process,
Heamin Ko, Dukjae Jang, Motohiko Kusakabe, Myung-Ki Cheoun,
Astrophys.J. 894 (2020) 99,arXiv:1910.04984.
[Ko:2019asm]
The Dodelson-Widrow Mechanism In the Presence of Self-Interacting Neutrinos,
Andre de Gouvea, Manibrata Sen, Walter Tangarife, Yue Zhang,
Phys.Rev.Lett. 124 (2020) 081802,arXiv:1910.04901.
[DeGouvea:2019wpf]
Constraints on active and sterile neutrinos in an interacting dark energy cosmology,
Lu Feng, Dong-Ze He, Hai-Li Li, Jing-Fei Zhang, Xin Zhang,
Sci.China Phys.Mech.Astron. 63 (2020) 290404,arXiv:1910.03872.
[Feng:2019jqa]
Physics potential of ESS$\nu$SB in the presence of a Light Sterile Neutrino,
Sanjib Kumar Agarwalla, Sabya Sachi Chatterjee, Antonio Palazzo,
JHEP 12 (2019) 174,arXiv:1909.13746.
[KumarAgarwalla:2019blx]
Cosmological Dependence of Non-resonantly Produced Sterile Neutrinos,
Graciela B. Gelmini, Philip Lu, Volodymyr Takhistov,
JCAP 12 (2019) 047,arXiv:1909.13328.
[Gelmini:2019wfp]
Constraints on Sterile Neutrinos in the MeV to GeV Mass Range,
D. A. Bryman, R. Shrock,
Phys.Rev. D100 (2019) 073011,arXiv:1909.11198.
[Bryman:2019bjg]
Explaining the MiniBooNE excess by a decaying sterile neutrino with mass in the 250 MeV range,
Oliver Fischer, Alvaro Hernandez-Cabezudo, Thomas Schwetz,
Phys.Rev. D101 (2020) 075045,arXiv:1909.09561.
[Fischer:2019fbw]
Implications of the Dark LMA solution and Fourth Sterile Neutrino for Neutrino-less Double Beta Decay,
K. N. Deepthi, Srubabati Goswami, Vishnudath K. N., Tanmay Kumar Poddar,
Phys.Rev. D102 (2020) 015020,arXiv:1909.09434.
[Deepthi:2019ljo]
Resonance production of keV sterile neutrinos in core-collapse supernovae and lepton number diffusion,
Vsevolod Syvolap, Oleg Ruchayskiy, Alexey Boyarsky,
Phys.Rev.D 106 (2022) 015017,arXiv:1909.06320.
[Syvolap:2019dat]
Higgs phenomenology as a probe of sterile neutrinos,
Jonathan M. Butterworth, Mikael Chala, Christoph Englert, Michael Spannowsky, Arsenii Titov,
Phys.Rev. D100 (2019) 115019,arXiv:1909.04665.
[Butterworth:2019iff]
Visible Sterile Neutrinos as the Earliest Relic Probes of Cosmology,
Graciela B. Gelmini, Philip Lu, Volodymyr Takhistov,
Phys.Lett. B800 (2019) 135113,arXiv:1909.04168.
[Gelmini:2019esj]
Searching for a Sterile Neutrino in Tau Decays at B-factories,
C.O. Dib, J.C. Helo, M. Nayak, N.A. Neill, A. Soffer, J. Zamora-Saa,
arXiv:1908.09719, 2019. [Dib:2019hzw]
A frequentist analysis of three right-handed neutrinos with GAMBIT,
Marcin Chrzaszcz, Marco Drewes, Tomas Gonzalo, Julia Harz, Suraj Krishnamurthy, Christoph Weniger,
Eur.Phys.J. C80 (2020) 569,arXiv:1908.02302.
[Chrzaszcz:2019inj]
Probing sterile neutrino in meson decays with and without sequential neutrino decay,
C. S. Kim, Dong Hun Lee, Sechul Oh, Dibyakrupa Sahoo,
Eur.Phys.J. C80 (2020) 730,arXiv:1908.00376.
[Kim:2019xqj]
Ultra-light dark matter saving the 3+1 neutrino scheme from the cosmological bounds,
Yasaman Farzan,
Phys.Lett. B797 (2019) 134911,arXiv:1907.04271.
[Farzan:2019yvo]
The gallium anomaly revisited,
Joel Kostensalo, Jouni Suhonen, Carlo Giunti, Praveen C. Srivastava,
Phys.Lett. B795 (2019) 542-547,arXiv:1906.10980.
[Kostensalo:2019vmv]
Hints of Sterile Neutrinos in Recent Measurements of the Hubble Parameter,
Graciela B. Gelmini, Alexander Kusenko, Volodymyr Takhistov,
JCAP 2106 (2021) 002,arXiv:1906.10136.
[Gelmini:2019deq]
A new analytical approximation for a light sterile neutrino oscillation in matter,
Baobiao Yue, Wei Li, Jiajie Ling, Fanrong Xu,
Chin.Phys. C44 (2020) 103001,arXiv:1906.03781.
[Yue:2019qat]
Thermalisation of sterile neutrinos in the early Universe in the 3+1 scheme with full mixing matrix,
S. Gariazzo, P. F. de Salas, S. Pastor Carpi,
JCAP 1907 (2019) 014,arXiv:1905.11290.
[Gariazzo:2019gyi]
Compact Perturbative Expressions for Oscillations with Sterile Neutrinos in Matter,
Stephen J. Parke, Xining Zhang,
Phys.Rev. D101 (2020) 056005,arXiv:1905.01356.
[Parke:2019jyu]
Improved Constraints on Sterile Neutrinos in the MeV to GeV Mass Range,
D. A. Bryman, R. Shrock,
Phys.Rev. D100 (2019) 053006,arXiv:1904.06787.
[Bryman:2019ssi]
Search of light sterile neutrinos from $W^\pm$ decays,
Claudio O. Dib, Choong Sun Kim, Sebastian Tapia Araya,
Phys.Rev. D101 (2020) 035022,arXiv:1903.04905.
[Dib:2019ztn]
Testing new physics with future COHERENT experiments,
O. G. Miranda, G. Sanchez Garcia, O. Sanders,
Adv.High Energy Phys. 2019 (2019) 3902819,arXiv:1902.09036.
[Miranda:2019skf]
Constraining the Effective Mass of Majorana Neutrino with Sterile Neutrino Mass for Inverted Ordering Spectrum,
Jaydip Singh,
Adv.High Energy Phys. 2019 (2019) 4863620,arXiv:1902.08575.
[Singh:2019qra]
Impact of an eV-mass sterile neutrino on the neutrinoless double-beta decays: a Bayesian analysis,
Guo-yuan Huang, Shun Zhou,
Nucl.Phys. B (2019) 114691,arXiv:1902.03839.
[Huang:2019qvq]
The Neutrino Puzzle: Anomalies, Interactions, and Cosmological Tensions,
Christina D. Kreisch, Francis-Yan Cyr-Racine, Olivier Dore,
Phys.Rev. D101 (2020) 123505,arXiv:1902.00534.
[Kreisch:2019yzn]
Constraining Sterile Neutrino Interpretations of the LSND and MiniBooNE Anomalies with Coherent Neutrino Scattering Experiments,
Carlos Blanco, Dan Hooper, Pedro Machado,
Phys.Rev. D101 (2020) 075051,arXiv:1901.08094.
[Blanco:2019vyp]
Sensitivity to sterile neutrino mixing using reactor antineutrinos,
S. P. Behera, D. K. Mishra, L. M. Pant,
Eur.Phys.J. C79 (2019) 86,arXiv:1901.04746.
[Behera:2019hfs]
Diagnosing the Reactor Antineutrino Anomaly with Global Antineutrino Flux Data,
C. Giunti, Y. F. Li, B. R. Littlejohn, P. T. Surukuchi,
Phys.Rev. D99 (2019) 073005,arXiv:1901.01807.
[Giunti:2019qlt]
Effects of Violation of Equivalence Principle on UHE Neutrinos at IceCube in 4 Flavour Scenario,
Madhurima Pandey,
arXiv:1812.11570, 2018. [Pandey:2018znw]
The Sterile-Active Neutrino Flavor Model: the Imprint of Dark Matter on the Electron Neutrino Spectra,
Ilidio Lopes,
Astrophys.J. 869 (2018) 112,arXiv:1812.07182.
[Lopes:2018ojq]
Is the $H_0$ tension suggesting a 4th neutrino's generation?,
S. Carneiro, P. C. de Holanda, C. Pigozzo, F. Sobreira,
Phys.Rev. D100 (2019) 023505,arXiv:1812.06064.
[Carneiro:2018xwq]
Cosmological constraints on sterile neutrino oscillations from Planck,
Alan M. Knee, Dagoberto Contreras, Douglas Scott,
JCAP 2019 (2019) 039,arXiv:1812.02102.
[Knee:2018rvj]
Revisiting constraints on 3+1 active-sterile neutrino mixing using IceCube data,
Luis Salvador Miranda, Soebur Razzaque,
JHEP 1903 (2019) 203,arXiv:1812.00831.
[Miranda:2018buo]
Neutrinoless Double Beta Decay and Light Sterile Neutrino,
C. H. Jang, B. J. Kim, Y. J. Ko, K. Siyeon,
J.Korean Phys.Soc. 73 (2018) 1625-1630,arXiv:1811.09957.
[Jang:2018zug]
Exploring a New Degeneracy in the Sterile Neutrino Sector at Long-Baseline Experiments,
Sandhya Choubey, Debajyoti Dutta, Dipyaman Pramanik,
Eur.Phys.J. C79 (2019) 968,arXiv:1811.08684.
[Choubey:2018kqq]
Probing right handed neutrinos at the LHeC and lepton colliders using fat jet signatures,
Arindam Das, Sudip Jana, Sanjoy Mandal, S. Nandi,
Phys.Rev. D99 (2019) 055030,arXiv:1811.04291.
[Das:2018usr]
Activating the 4th Neutrino of the 3+1 Scheme,
Peter B. Denton, Yasaman Farzan, Ian M. Shoemaker,
Phys.Rev. D99 (2019) 035003,arXiv:1811.01310.
[Denton:2018dqq]
On the robustness of IceCube's bound on sterile neutrinos in the presence of non-standard interactions,
Arman Esmaili, Hiroshi Nunokawa,
Eur.Phys.J. C79 (2019) 70,arXiv:1810.11940.
[Esmaili:2018qzu]
Constraints on a sub-eV scale sterile neutrino from non-oscillation measurements,
C. S. Kim, G. Lopez Castro, Dibyakrupa Sahoo,
Phys.Rev. D98 (2018) 115021,arXiv:1809.02265.
[Kim:2018uht]
A charmed search of lepton-number-violation at the LHCb experiment,
Diego Milanes, Nestor Quintero,
Phys.Rev. D98 (2018) 096004,arXiv:1808.06017.
[Milanes:2018aku]
Neutrino induced reactions in core-collapse supernovae: effects on the electron fraction,
M. M. Saez, O. Civitarese, M. E. Mosquera,
Int.J.Mod.Phys. D27 (2018) 1850116,arXiv:1808.03249.
[Saez:2018zsb]
Combined explanations of B-physics anomalies: the sterile neutrino solution,
Aleksandr Azatov, Daniele Barducci, Diptimoy Ghosh, David Marzocca, Lorenzo Ubaldi,
JHEP 1810 (2018) 092,arXiv:1807.10745.
[Azatov:2018kzb]
Sterile neutrinos influence on oscillation characteristics of active neutrinos at short distances in the generalized model of neutrino mixing,
V. V. Khruschov, S. V. Fomichev,
Int.J.Mod.Phys. A34 (2019) 1950175,arXiv:1806.05922.
[Khruschov:2018uip]
Displaced vertices as probes of sterile neutrino mixing at the LHC,
Giovanna Cottin, Juan Carlos Helo, Martin Hirsch,
Phys.Rev. D98 (2018) 035012,arXiv:1806.05191.
[Cottin:2018nms]
Lepton Flavor Violating Dilepton Dijet Signatures from Sterile Neutrinos at Proton Colliders,
Stefan Antusch, Eros Cazzato, Oliver Fischer, A. Hammad, Kechen Wang,
JHEP 1810 (2018) 067,arXiv:1805.11400.
[Antusch:2018bgr]
The spectroscopy of solar sterile neutrinos,
Ilidio Lopes,
Eur.Phys.J. C78 (2018) 4,arXiv:1804.08344. Comment:Nice calculation, but unfortunately sterile neutrinos cannot be detected. [Lopes:2018vec]
Sterile neutrinos as a possible explanation for the upward air shower events at ANITA,
Guo-yuan Huang,
Phys.Rev. D98 (2018) 043019,arXiv:1804.05362.
[Huang:2018als]
The Effect of a Light Sterile Neutrino at NO$\nu$A and DUNE,
Shivani Gupta, Zachary M. Matthews, Pankaj Sharma, Anthony G. Williams,
Phys.Rev. D98 (2018) 035042,arXiv:1804.03361.
[Gupta:2018qsv]
Degeneracy resolution capabilities of NO$\nu$A and DUNE in the presence of light sterile neutrino,
Akshay Chatla, Sahithi Rudrabhatla, Bindu A. Bambah,
Adv.High Energy Phys. 2018 (2018) 2547358,arXiv:1804.02818.
[Chatla:2018sos]
Updated global analysis of neutrino oscillations in the presence of eV-scale sterile neutrinos,
Mona Dentler, Alvaro Hernandez-Cabezudo, Joachim Kopp, Pedro A. N. Machado, Michele Maltoni, Ivan Martinez-Soler, Thomas Schwetz,
JHEP 1808 (2018) 010,arXiv:1803.10661.
[Dentler:2018sju]
Probing secret interactions of eV-scale sterile neutrinos with the diffuse supernova neutrino background,
Yu Seon Jeong, Sergio Palomares-Ruiz, Mary Hall Reno, Ina Sarcevic,
JCAP 1806 (2018) 019,arXiv:1803.04541.
[Jeong:2018yts]
Neutrino oscillations: ILL experiment revisited,
B. K. Cogswell, D. J. Ernst, K. T. L. Ufheil, J. T. Gaglione, J. M. Malave,
Phys.Rev. D99 (2019) 053003,arXiv:1802.07763.
[Cogswell:2018auu]
Neutron lifetime, dark matter and search for sterile neutrino,
A. P. Serebrov, R. M. Samoilov, I. A. Mitropolsky, A. M. Gagarsky,
arXiv:1802.06277, 2018. [Serebrov:2018mva]
Exploring the Potential of Short-Baseline Physics at Fermilab,
O. G. Miranda, Pedro Pasquini, M. Tortola, J. W. F. Valle,
Phys.Rev. D97 (2018) 095026,arXiv:1802.02133.
[Miranda:2018yym]
A Sterile Neutrino Origin for the Upward Directed Cosmic Ray Shower Detected by ANITA,
John F. Cherry, Ian Shoemaker,
Phys.Rev. D99 (2019) 063016,arXiv:1802.01611.
[Cherry:2018rxj]
Model-Independent $\bar\nu_{e}$ Short-Baseline Oscillations from Reactor Spectral Ratios,
S. Gariazzo, C. Giunti, M. Laveder, Y. F. Li,
Phys.Lett. B782 (2018) 13-21,arXiv:1801.06467.
[Gariazzo:2018mwd]
Search for sterile neutrinos decaying into pions at the LHC,
Claudio O. Dib, C.S. Kim, Nicolas A. Neill, Xing-Bo Yuan,
Phys.Rev. D97 (2018) 035022,arXiv:1801.03624.
[Dib:2018iyr]
Searches for light sterile neutrinos with multitrack displaced vertices,
Giovanna Cottin, Juan Carlos Helo, Martin Hirsch,
Phys.Rev. D97 (2018) 055025,arXiv:1801.02734.
[Cottin:2018kmq]
Constraining sterile neutrino cosmologies with strong gravitational lensing observations at redshift z~0.2,
S. Vegetti, G. Despali, M. R. Lovell, W. Enzi,
Mon.Not.Roy.Astron.Soc. 481 (2018) 3661-3669,arXiv:1801.01505.
[Vegetti:2018dly]
Bounds on Resonantly-Produced Sterile Neutrinos from Phase Space Densities of Milky Way Dwarf Galaxies,
Mei-Yu Wang, John F. Cherry, Shunsaku Horiuchi, Louis E. Strigari,
arXiv:1712.04597, 2017. [Wang:2017hof]
Effective Majorana mass matrix from tau and pseudoscalar meson lepton number violating decays,
Asmaa Abada, Valentina De Romeri, Michele Lucente, Ana M. Teixeira, Takashi Toma,
JHEP 1802 (2018) 169,arXiv:1712.03984.
[Abada:2017jjx]
Prospects for detecting eV-scale sterile neutrinos from a galactic supernova,
Tarso Franarin, Jonathan H. Davis, Malcolm Fairbairn,
JCAP 1809 (2018) 002,arXiv:1712.03836.
[Franarin:2017jnd]
Search for sterile neutrinos in a universe of vacuum energy interacting with cold dark matter,
Lu Feng, Jing-Fei Zhang, Xin Zhang,
Phys.Dark Univ. 23 (2019) 100261,arXiv:1712.03148.
[Feng:2017usu]
COHERENT constraints to conventional and exotic neutrino physics,
D. K. Papoulias, T. S. Kosmas,
Phys.Rev. D97 (2018) 033003,arXiv:1711.09773.
[Papoulias:2017qdn]
Exploring a Non-Minimal Sterile Neutrino Model Involving Decay at IceCube and Beyond,
Zander Moss, Marjon H. Moulai, Carlos A. Arguelles, Janet M. Conrad,
Phys.Rev. D97 (2018) 055017,arXiv:1711.05921.
[Moss:2017pur]
Probing a Four Flavour vis-a-vis Three Flavour Neutrino Mixing for UHE Neutrino Signals at a 1 ${\rm Km}^2$ Detector,
Madhurima Pandey, Debasish Majumdar, Amit Dutta Banik,
Phys.Rev. D97 (2018) 103015,arXiv:1711.05018.
[Pandey:2017zyz]
Another look at the impact of an eV-mass sterile neutrino on the effective neutrino mass of neutrinoless double-beta decays,
Jun-Hao Liu, Shun Zhou,
Int.J.Mod.Phys. A33 (2018) 1850014,arXiv:1710.10359.
[Liu:2017ago]
Revised neutrino-gallium cross section and prospects of BEST in resolving the Gallium anomaly,
Vladislav Barinov, Bruce Cleveland, Vladimir Gavrin, Dmitry Gorbunov, Tatiana Ibragimova,
Phys.Rev. D97 (2018) 073001,arXiv:1710.06326.
[Barinov:2017ymq]
keV-Scale Sterile Neutrino Sensitivity Estimation with Time-Of-Flight Spectroscopy in KATRIN using Self Consistent Approximate Monte Carlo,
Nicholas M.N. Steinbrink, Jan D. Behrens, Susanne Mertens, Philipp C.-O. Ranitzsch, Christian Weinheimer,
Eur.Phys.J. C78 (2018) 212,arXiv:1710.04939.
[Steinbrink:2017ung]
Measuring growth index in a universe with massive neutrinos: A revisit of the general relativity test with the latest observations,
Ming-Ming Zhao, Jing-Fei Zhang, Xin Zhang,
Phys.Lett. B779 (2018) 473-478,arXiv:1710.02391.
[Zhao:2017jma]
Sterile Neutrinos or Flux Uncertainties? - Status of the Reactor Anti-Neutrino Anomaly,
Mona Dentler, Alvaro Hernandez-Cabezudo, Joachim Kopp, Michele Maltoni, Thomas Schwetz,
JHEP 1711 (2017) 099,arXiv:1709.04294.
[Dentler:2017tkw]
Decoherence effect in neutrinos produced in micro-quasar jets,
M. E. Mosquera, O. Civitarese,
JCAP 1804 (2018) 036,arXiv:1708.09714.
[Mosquera:2017vir]
The reactor antineutrino anomaly and low energy threshold neutrino experiments,
B. C. Canas, E. A. Garces, O. G. Miranda, A. Parada,
Phys.Lett. B776 (2018) 451-456,arXiv:1708.09518.
[Canas:2017umu]
A novel approach to neutrino mixing analysis based on singular values,
K. Bielas, W. Flieger, J. Gluza, M. Gluza,
Phys.Rev. D98 (2018) 053001,arXiv:1708.09196.
[Bielas:2017lok]
Reactor Fuel Fraction Information on the Antineutrino Anomaly,
C. Giunti, X. P. Ji, M. Laveder, Y. F. Li, B. R. Littlejohn,
JHEP 1710 (2017) 143,arXiv:1708.01133.
[Giunti:2017yid]
DUNE Sensitivities to the Mixing between Sterile and Tau Neutrinos,
Pilar Coloma, David V. Forero, Stephen J. Parke,
JHEP 07 (2018) 079,arXiv:1707.05348.
[Coloma:2017ptb]
Constraining sterile neutrino and dark energy with the latest cosmological observations,
Lu Feng, Jing-Fei Zhang, Xin Zhang,
Sci.China Phys.Mech.Astron. 61 (2018) 050411,arXiv:1706.06913.
[Feng:2017mfs]
Combining $\nu_e$ Appearance and $\nu_\mu$ Disappearance Channels in Light Sterile Neutrino Oscillation Searches at Fermilab's Short-Baseline Neutrino Facility,
William G. S. Vinning, Andrew Blake,
arXiv:1705.06561, 2017. [Vinning:2017izb]
Study of parameter degeneracy and hierarchy sensitivity of NO$\nu$A in presence of sterile neutrino,
Monojit Ghosh, Shivani Gupta, Zachary M. Matthews, Pankaj Sharma, Anthony G. Williams,
Phys.Rev. D96 (2017) 075018,arXiv:1704.04771.
[Ghosh:2017atj]
Cosmic microwave background constraints on secret interactions among sterile neutrinos,
Francesco Forastieri et al.,
JCAP 1707 (2017) 038,arXiv:1704.00626.
[Forastieri:2017oma]
A search for sterile neutrinos in holographic dark energy cosmology: Reconciling Planck observation with the local measurement of Hubble constant,
Ming-Ming Zhao, Dong-Ze He, Jing-Fei Zhang, Xin Zhang,
Phys.Rev. D96 (2017) 043520,arXiv:1703.08456.
[Zhao:2017urm]
Statistical sensitivity on right-handed currents in presence of eV scale sterile neutrinos with KATRIN,
Nicholas M. N. Steinbrink et al.,
JCAP 1706 (2017) 015,arXiv:1703.07667.
[Steinbrink:2017uhw]
GeV-scale hot sterile neutrino oscillations: a derivation of evolution equations,
J. Ghiglieri, M. Laine,
JHEP 1705 (2017) 132,arXiv:1703.06087.
[Ghiglieri:2017gjz]
A search for sterile neutrinos with the latest cosmological observations,
Lu Feng, Jing-Fei Zhang, Xin Zhang,
Eur.Phys.J. C77 (2017) 418,arXiv:1703.04884.
[Feng:2017nss]
Updated Global 3+1 Analysis of Short-BaseLine Neutrino Oscillations,
S. Gariazzo, C. Giunti, M. Laveder, Y. F. Li,
JHEP 1706 (2017) 135,arXiv:1703.00860.
[Gariazzo:2017fdh]
Probing light sterile neutrino signatures at reactor and Spallation Neutron Source neutrino experiments,
T. S. Kosmas, D. K. Papoulias, M. Tortola, J.W.F. Valle,
Phys.Rev. D96 (2017) 063013,arXiv:1703.00054.
[Kosmas:2017zbh]
The Dark Side of MSW: Solar Neutrinos as a Probe of Dark Matter-Neutrino Interactions,
Francesco Capozzi, Ian M. Shoemaker, Luca Vecchi,
JCAP 1707 (2017) 021,arXiv:1702.08464.
[Capozzi:2017auw]
Search for right-handed neutrinos from dark matter annihilation with gamma-rays,
Miguel D. Campos, Farinaldo S. Queiroz, Carlos E. Yaguna, Christoph Weniger,
JCAP 1707 (2017) 016,arXiv:1702.06145.
[Campos:2017odj]
Anomalies in (Semi)-Leptonic $B$ Decays $B^{\pm} \to \tau^{\pm} \nu$, $B^{\pm} \to D \tau^{\pm} \nu$ and $B^{\pm} \to D^* \tau^{\pm} \nu$, and Possible Resolution with Sterile Neutrino,
G. Cvetic, Francis Halzen, C. S. Kim, Sechul Oh,
Chin.Phys. C41 (2017) 113102,arXiv:1702.04335.
[Cvetic:2017gkt]
Prospects of Light Sterile Neutrino Oscillation and CP Violation Searches at the Fermilab Short Baseline Neutrino Facility,
Davio Cianci, Andy Furmanski, Georgia Karagiorgi, Mark Ross-Lonergan,
Phys.Rev. D96 (2017) 055001,arXiv:1702.01758.
[Cianci:2017okw]
Neutrino fluxes from a core-collapse supernova in a model with three sterile neutrinos,
A. V. Yudin, D. K. Nadyozhin, V. V. Khruschov, S. V. Fomichev,
Astron. Lett. 42 (2016) 800-814,arXiv:1701.04713.
[Yudin:2016zqp]
Joint short- and long-baseline constraints on light sterile neutrinos,
Francesco Capozzi, Carlo Giunti, Marco Laveder, Antonio Palazzo,
Phys.Rev. D95 (2017) 033006,arXiv:1612.07764.
[Capozzi:2016vac]
Oscillation characteristics of active and sterile neutrinos and neutrino anomalies at short distances,
V. V. Khruschov, S. V. Fomichev, O. A. Titov,
Phys.Atom.Nucl. 79 (2016) 708-720,arXiv:1612.06544.
[Khruschov:2016sjl]
Projection effects in the strong lensing study of subhaloes,
Ran Li, Carlos S. Frenk, Shaun Cole, Qiao Wang, Liang Gao,
Mon.Not.Roy.Astron.Soc. 468 (2017) 1426,arXiv:1612.06227.
[Li:2016afu]
In-flight cLFV conversion: $e-\mu$, $e-\tau$ and $\mu-\tau$ in minimal extensions of the Standard Model with sterile fermions,
A. Abada, V. De Romeri, J. Orloff, A.M. Teixeira,
Eur.Phys.J. C77 (2017) 304,arXiv:1612.05548.
[Abada:2016vzu]
Sterile neutrino searches at future $e^-e^+$, $pp$, and $e^-p$ colliders,
Stefan Antusch, Eros Cazzato, Oliver Fischer,
Int.J.Mod.Phys. A32 (2017) 1750078,arXiv:1612.02728.
[Antusch:2016ejd]
On the IceCube Result on $\bar\nu_\mu \to \bar\nu_{s}$ Oscillations,
S. T. Petcov,
Int.J.Mod.Phys. A32 (2017) 1750018,arXiv:1611.09247.
[Petcov:2016iiu]
Discriminating sterile neutrinos and unitarity violation with CP invariants,
Heinrich Pas, Philipp Sicking,
Phys.Rev. D95 (2017) 075004,arXiv:1611.08450.
[Pas:2016qbg]
A sensitive search for unknown spectral emission lines in the diffuse X-ray background with XMM-Newton,
A. Gewering-Peine, D. Horns, J.H.M.M. Schmitt,
JCAP 1706 (2017) 036,arXiv:1611.01733.
[Gewering-Peine:2016yoj]
How Zwicky already ruled out modified gravity theories without dark matter,
Theodorus Maria Nieuwenhuizen,
Fortsch.Phys. 65 (2017) 1600050,arXiv:1610.01543.
[Nieuwenhuizen:2016uxv]
Probing nonstandard neutrino cosmology with terrestrial neutrino experiments,
Akshay Ghalsasi, David McKeen, Ann E. Nelson,
Phys.Rev. D95 (2017) 115039,arXiv:1609.06326.
[Ghalsasi:2016pcj]
Capabilities of long-baseline experiments in the presence of a sterile neutrino,
Debajyoti Dutta, Raj Gandhi, Boris Kayser, Mehedi Masud, Suprabh Prakash,
JHEP 1611 (2016) 122,arXiv:1607.02152.
[Dutta:2016glq]
A Combined View of Sterile-Neutrino Constraints from CMB and Neutrino Oscillation Measurements,
Sarah Bridle et al.,
Phys.Lett. B764 (2017) 322-327,arXiv:1607.00032.
[Bridle:2016isd]
First Constraints on the Complete Neutrino Mixing Matrix with a Sterile Neutrino,
G.H. Collin, C.A. Arguelles, J.M. Conrad, M.H. Shaevitz,
Phys. Rev. Lett. 117 (2016) 221801,arXiv:1607.00011.
[Collin:2016aqd]
Pseudoscalar - sterile neutrino interactions: reconciling the cosmos with neutrino oscillations,
Maria Archidiacono et al.,
JCAP 1608 (2016) 067,arXiv:1606.07673.
[Archidiacono:2016kkh]
Big Bang Nucleosynthesis in the presence of sterile neutrinos with altered dispersion relations,
Elke Aeikens, Heinrich Pas, Sandip Pakvasa, Thomas J. Weiler,
Phys. Rev. D94 (2016) 113010,arXiv:1606.06695.
[Aeikens:2016rep]
Constraint on Matter Power Spectrum on $10^6-10^9M_\odot$ Scales from ${\large\tau_e}$,
Renyue Cen,
Astrophys.J. 836 (2017) 217,arXiv:1606.05930.
[Cen:2016htm]
Search for the sterile neutrino mixing with the ICAL detector at INO,
S. P. Behera et al.,
Eur.Phys.J. C77 (2017) 307,arXiv:1605.08607.
[Behera:2016kwr]
Short-baseline neutrino oscillations, Planck, and IceCube,
John F. Cherry, Alexander Friedland, Ian M. Shoemaker,
arXiv:1605.06506, 2016. [Cherry:2016jol]
Light sterile neutrino sensitivity of 163Ho experiments,
L. Gastaldo, C. Giunti, E. M. Zavanin,
JHEP 1606 (2016) 061,arXiv:1605.05497.
[Gastaldo:2016kak]
Octant of $\theta_{23}$ in danger with a light sterile neutrino,
Sanjib Kumar Agarwalla, Sabya Sachi Chatterjee, Antonio Palazzo,
Phys. Rev. Lett. 118 (2017) 031804,arXiv:1605.04299.
[Agarwalla:2016xlg]
Reionization and dark matter decay,
Isabel M. Oldengott, Daniel Boriero, Dominik J. Schwarz,
JCAP 1608 (2016) 054,arXiv:1605.03928.
[Oldengott:2016yjc]
Light Sterile Neutrinos, Lepton Number Violating Interactions and the LSND Anomaly,
K. S. Babu, Douglas W. McKay, Irina Mocioiu, Sandip Pakvasa,
Phys. Rev. D93 (2016) 113019,arXiv:1605.03625.
[Babu:2016fdt]
Reionisation in sterile neutrino cosmologies,
Sownak Bose, Carlos S. Frenk, Hou Jun, Cedric G. Lacey, Mark R. Lovell,
Mon.Not.Roy.Astron.Soc. 463 (2016) 3848-3859,arXiv:1605.03179.
[Bose:2016hlz]
A new scheme for short baseline electron antineutrino disappearance study,
Jae Won Shin, Myung-Ki Cheoun, Toshitaka Kajino,
J.Phys. G44 (2017) 09LT01,arXiv:1605.00642.
[Shin:2016mem]
Impact of nonstandard interactions on sterile neutrino searches at IceCube,
Jiajun Liao, Danny Marfatia,
Phys. Rev. Lett. 117 (2016) 071802,arXiv:1602.08766.
[Liao:2016reh]
Neutrino oscillations in the presence of super-light sterile neutrinos,
P. C. Divari, J. D. Vergados,
Int.J.Mod.Phys. A31 (2016) 1650123,arXiv:1602.08690.
[Divari:2016jos]
Assessing the role of nuclear effects in the interpretation of the MiniBooNE low-energy anomaly,
M. Ericson, M. V. Garzelli, C. Giunti, M. Martini,
Phys. Rev. D93 (2016) 073008,arXiv:1602.01390.
[Ericson:2016yjn]
Sterile Neutrino Fits to Short Baseline Data,
G. H. Collin, C. A. Arguelles, J. M. Conrad, M. H. Shaevitz,
Nucl. Phys. B908 (2016) 354-365,arXiv:1602.00671.
[Collin:2016rao]
Discovery Potential of T2K and NOvA in the Presence of a Light Sterile Neutrino,
Sanjib Kumar Agarwalla, Sabya Sachi Chatterjee, Arnab Dasgupta, Antonio Palazzo,
JHEP 02 (2016) 111,arXiv:1601.05995.
[Agarwalla:2016mrc]
Higgs production from sterile neutrinos at future lepton colliders,
Stefan Antusch, Eros Cazzato, Oliver Fischer,
JHEP 1604 (2016) 189,arXiv:1512.06035.
[Antusch:2015gjw]
Neutrinos secretly converting to lighter particles to please both KATRIN and the cosmos,
Yasaman Farzan, Steen Hannestad,
JCAP 1602 (2016) 058,arXiv:1510.02201.
[Farzan:2015pca]
Discovering sterile Neutrinos ligther than $M_W$ at the LHC,
Claudio O. Dib, Choong Sun Kim,
Phys. Rev. D92 (2015) 093009,arXiv:1509.05981.
[Dib:2015oka]
3-flavor and 4-flavor implications of the latest T2K and NO$\nu$A electron (anti-)neutrino appearance results,
Antonio Palazzo,
Phys.Lett. B757 (2016) 142-147,arXiv:1509.03148.
[Palazzo:2015gja]
Limits on sterile neutrino contributions to neutrinoless double beta decay,
J. Barea, J. Kotila, F. Iachello,
Phys. Rev. D92 (2015) 093001,arXiv:1509.01925.
[Barea:2015zfa]
The impact of sterile neutrinos on CP measurements at long baselines,
Raj Gandhi, Boris Kayser, Mehedi Masud, Suprabh Prakash,
JHEP 11 (2015) 039,arXiv:1508.06275.
[Gandhi:2015xza]
Appearance-Disappearance Relation in 3+$N_{s}$ Short-Baseline Neutrino Oscillations,
C. Giunti, E. M. Zavanin,
Mod. Phys. Lett. A31 (2016) 1650003,arXiv:1508.03172.
[Giunti:2015mwa]
Neutrino Oscillations With Three Active and Three Sterile Neutrinos,
Leonard S. Kisslinger,
Int.J.Theor.Phys. 55 (2016) 3274-3279,arXiv:1508.03027.
[Kisslinger:2015ita]
Secret Interactions of Sterile Neutrinos and MeV-scale gauge boson,
Zahra Tabrizi, O. L. G. Peres,
Phys. Rev. D93 (2016) 053003,arXiv:1507.06486.
[Tabrizi:2015bba]
A Sterile Neutrino at DUNE,
Jeffrey M. Berryman, Andre de Gouvea, Kevin J. Kelly, Andrew Kobach,
Phys. Rev. D92 (2015) 073012,arXiv:1507.03986.
[Berryman:2015nua]
Active-sterile neutrino oscillations in the early Universe with full collision terms,
Steen Hannestad, Rasmus Sloth Hansen, Thomas Tram, Yvonne Y. Y. Wong,
JCAP 1508 (2015) 019,arXiv:1506.05266.
[Hannestad:2015tea]
Neutrino pair and gamma beams from circulating excited ions,
M. Yoshimura, N. Sasao,
Phys. Rev. D92 (2015) 073015,arXiv:1505.07572.
[Yoshimura:2015rva]
On the search for CPT violation in the leptonic sector by means of neutrino oscillometry,
Michail V Smirnov, Kai K Loo, Yuri N Novikov, Wladyslaw H Trzaska, Michael Wurm,
Nucl. Phys. B900 (2015) 104-114,arXiv:1505.02550.
[Smirnov:2015rha]
Predictions for Neutrinoless Double-Beta Decay in the 3+1 Sterile Neutrino Scenario,
C. Giunti, E. M. Zavanin,
JHEP 07 (2015) 171,arXiv:1505.00978.
[Giunti:2015kza]
Constraints on secret neutrino interactions after Planck,
Francesco Forastieri, Massimiliano Lattanzi, Paolo Natoli,
JCAP 1507 (2015) 014,arXiv:1504.04999.
[Forastieri:2015paa]
Low reheating temperatures in monomial and binomial inflationary potentials,
Thomas Rehagen, Graciela B. Gelmini,
JCAP 1506 (2015) 039,arXiv:1504.03768.
[Rehagen:2015zma]
A Combined Limit on the Neutrino Mass from Neutrinoless Double-Beta Decay and Constraints on Sterile Majorana Neutrinos,
Pawel Guzowski et al.,
Phys. Rev. D92 (2015) 012002,arXiv:1504.03600.
[Guzowski:2015saa]
Multilepton and Lepton Jet Probes of Sub-Weak-Scale Right-Handed Neutrinos,
Eder Izaguirre, Brian Shuve,
Phys. Rev. D91 (2015) 093010,arXiv:1504.02470.
[Izaguirre:2015pga]
Consistent analysis of the $\nu_\mu\to \nu_e$ sterile neutrinos searches of ICARUS and OPERA,
Antonio Palazzo,
Phys. Rev. D91 (2015) 091301,arXiv:1503.03966.
[Palazzo:2015wea]
Some comments on high precision study of neutrino oscillations,
S.M. Bilenky,
Phys. Part. Nucl. Lett. 12 (2015) 453-461,arXiv:1502.06158.
[Bilenky:2015xwa]
Confronting the Stochastic Neutrino Mixing Mechanism and the sterile neutrino hypothesis as a solution to the short baseline neutrino anomalies,
E. M. Zavanin, M. M. Guzzo, P. C. de Holanda, O. L. G. Peres,
Phys. Rev. D91 (2015) 113009,arXiv:1502.05948.
[Zavanin:2015oia]
Effect of cross-section models on the validity of sterile neutrino mixing limits,
Patrick Stowell, Callum Wilkinson, Susan Cartwright,
arXiv:1501.02142, 2015. [Stowell:2015ska]
More Is Different: Reconciling eV Sterile Neutrinos and Cosmological Mass Bounds,
Yong Tang,
Phys. Lett. B750 (2015) 201-208,arXiv:1501.00059.
[Tang:2014yla]
Indirect searches for sterile neutrinos at a high-luminosity Z-factory,
A. Abada, V. De Romeri, S. Monteil, J. Orloff, A. M. Teixeira,
JHEP 1504 (2015) 051,arXiv:1412.6322.
[Abada:2014cca]
Enhancement of the sterile neutrinos yield at high matter density and at increasing the medium neutronization,
V. V. Khruschov, A. V. Yudin, D. K. Nadyozhin, S. V. Fomichev,
Astron. Lett. 41 (2015) 260-266,arXiv:1412.6262.
[Khruschov:2014xza]
Cosmology based on $f(R)$ gravity with ${\cal O}(1)$ eV sterile neutrino,
A. S. Chudaykin, D. S. Gorbunov, A. A. Starobinsky, R. A. Burenin,
JCAP 1505 (2015) 004,arXiv:1412.5239.
[Chudaykin:2014oia]
CP-Invariance Violation at Short-Baseline Experiments in 3+1 Scenarios,
Andre de Gouvea, Kevin J. Kelly, Andrew Kobach,
Phys. Rev. D91 (2015) 053005,arXiv:1412.1479.
[deGouvea:2014aoa]
Majorana Neutrinos Production at LHeC in an Effective Approach,
Lucia Duarte, Gabriel A. Gonzalez-Sprinberg, Oscar Alfredo Sampayo,
Phys. Rev. D91 (2015) 053007,arXiv:1412.1433.
[Duarte:2014zea]
Radiative Emission of Neutrino Pairs in Atoms and Light Sterile Neutrinos,
D. N. Dinh, S. T. Petcov,
Phys.Lett. B742 (2015) 107-116,arXiv:1411.7459.
[Dinh:2014toa]
Probing new physics scenarios in accelerator and reactor neutrino experiments,
A. Di Iura, I. Girardi, D. Meloni,
J. Phys. G42 (2015) 065003,arXiv:1411.5330.
[DiIura:2014csa]
Wavelet Approach to Search for Sterile Neutrinos in Tritium $\beta$-Decay Spectra,
S. Mertens et al.,
Phys. Rev. D91 (2015) 042005,arXiv:1410.7684.
[Mertens:2014osa]
Tension between the power spectrum of density perturbations measured on large and small scales,
Richard A. Battye, Tom Charnock, Adam Moss,
Phys. Rev. D91 (2015) 103508,arXiv:1409.2769.
[Battye:2014qga]
Sensitivity of Next-Generation Tritium Beta-Decay Experiments for keV-Scale Sterile Neutrinos,
S. Mertens et al.,
JCAP 1502 (2015) 020,arXiv:1409.0920.
[Mertens:2014nha]
Solar neutrino physics with low-threshold dark matter detectors,
J. Billard, L. Strigari, E. Figueroa-Feliciano,
Phys. Rev. D91 (2015) 095023,arXiv:1409.0050.
[Billard:2014yka]
Cosmic Discordance: Are Planck CMB and CFHTLenS weak lensing measurements out of tune?,
Niall MacCrann, Joe Zuntz, Sarah Bridle, Bhuvnesh Jain, Matthew R. Becker,
Mon.Not.Roy.Astron.Soc. 451 (2015) 2877,arXiv:1408.4742.
[MacCrann:2014wfa]
Measuring growth index in a universe with sterile neutrinos,
Jing-Fei Zhang, Yun-He Li, Xin Zhang,
Phys.Lett. B739 (2014) 102-105,arXiv:1408.4603.
[Zhang:2014lfa]
Non-Detection of X-Ray Emission From Sterile Neutrinos in Stacked Galaxy Spectra,
Michael E. Anderson, Eugene Churazov, Joel N. Bregman,
Mon. Not. Roy. Astron. Soc. 452 (2015) 3905,arXiv:1408.4115.
[Anderson:2014tza]
Four-Neutrino Analysis of 1.5 km Baseline Reactor Antineutrino Oscillations,
Sin Kyu Kang, Yeong-Duk Kim, Young-Ju Ko, Kim Siyeon,
Adv.High Energy Phys. 2013 (2013) 138109,arXiv:1408.3211.
[Kang:2013zma]
Neutrinos and dark energy after Planck and BICEP2: data consistency tests and cosmological parameter constraints,
Jing-Fei Zhang, Jia-Jia Geng, Xin Zhang,
JCAP 1410 (2014) 044,arXiv:1408.0481.
[Zhang:2014ifa]
The Not-So-Sterile 4th Neutrino: Constraints on New Gauge Interactions from Neutrino Oscillation Experiments,
Joachim Kopp, Johannes Welter,
JHEP 1412 (2014) 104,arXiv:1408.0289.
[Kopp:2014fha]
Non-unitarity of the leptonic mixing matrix: Present bounds and future sensitivities,
Stefan Antusch, Oliver Fischer,
JHEP 1410 (2014) 94,arXiv:1407.6607.
[Antusch:2014woa]
Single photon events from neutral current interactions at MiniBooNE,
E. Wang, L. Alvarez-Ruso, J. Nieves,
Phys.Lett. B740 (2015) 16-22,arXiv:1407.6060.
[Wang:2014nat]
CL$_s$ Method at Gaussian Limit to Present Searches,
X. Qian, A. Tan, J. J. Ling, Y. Nakajima, C. Zhang,
Nucl.Instrum.Meth. A827 (2016) 63,arXiv:1407.5052.
[Qian:2014nha]
Statistical tests of sterile neutrinos using cosmology and short-baseline data,
Johannes Bergstrom, M. C. Gonzalez-Garcia, V. Niro, J. Salvado,
JHEP 1410 (2014) 104,arXiv:1407.3806.
[Bergstrom:2014fqa]
Effect of steriles states on lepton magnetic moments and neutrinoless double beta decay,
A. Abada, V. De Romeri, A.M. Teixeira,
JHEP 1409 (2014) 074,arXiv:1406.6978.
[Abada:2014nwa]
Helicitogenesis: WIMPy baryogenesis with sterile neutrinos and other realizations,
J. Racker, N. Rius,
JHEP 1411 (2014) 163,arXiv:1406.6105.
[Racker:2014uga]
Combining dark matter detectors and electron-capture sources to hunt for new physics in the neutrino sector,
Pilar Coloma, Patrick Huber, Jonathan M. Link,
JHEP 1411 (2014) 042,arXiv:1406.4914.
[Coloma:2014hka]
The quest for neutrinoless double beta decay: Pseudo-Dirac, Majorana and sterile neutrinos,
A. Meroni, E. Peinado,
Phys. Rev. D90 (2014) 053002,arXiv:1406.3990.
[Meroni:2014tba]
Sterile neutrino oscillations in core-collapse supernova simulations,
MacKenzie L. Warren, Matthew Meixner, Grant Mathews, Jun Hidaka, Toshitaka Kajino,
Phys. Rev. D90 (2014) 103007,arXiv:1405.6101.
[Warren:2014qza]
No new cosmological concordance with massive sterile neutrinos,
Boris Leistedt, Hiranya V. Peiris, Licia Verde,
Phys. Rev. Lett. 113 (2014) 041301,arXiv:1404.5950.
[Leistedt:2014sia]
Cosmology with self-interacting sterile neutrinos and dark matter - A pseudoscalar model,
Maria Archidiacono, Steen Hannestad, Rasmus Sloth Hansen, Thomas Tram,
Phys. Rev. D91 (2015) 065021,arXiv:1404.5915.
[Archidiacono:2014nda]
Light sterile neutrinos after BICEP-2,
Maria Archidiacono, Nicolao Fornengo, Stefano Gariazzo, Carlo Giunti, Steen Hannestad, Marco Laveder,
JCAP 1406 (2014) 031,arXiv:1404.1794.
[Archidiacono:2014apa]
Neutrinos help reconcile Planck measurements with both Early and Local Universe,
Cora Dvorkin, Mark Wyman, Douglas H. Rudd, Wayne Hu,
Phys. Rev. D90 (2014) 083503,arXiv:1403.8049.
[Dvorkin:2014lea]
Constraining new physics scenarios in neutrino oscillations from Daya Bay data,
I. Girardi, D. Meloni,
Phys. Rev. D90 (2014) 073011,arXiv:1403.5507.
[Girardi:2014gna]
Relic Neutrinos, thermal axions and cosmology in early 2014,
Elena Giusarma, Eleonora Di Valentino, Massimiliano Lattanzi, Alessandro Melchiorri, Olga Mena,
Phys. Rev. D90 (2014) 043507,arXiv:1403.4852.
[Giusarma:2014zza]
Comment on lifetime of sterile neutrinos and the effect on detection of rare meson decays $M^+ \to {M'}^- \ell^+ \ell^+$,
Claudio O. Dib, C.S. Kim,
Phys. Rev. D89 (2014) 077301,arXiv:1403.1985.
[Dib:2014iga]
Impact of sterile neutrinos on the early time flux from a galactic supernova,
Arman Esmaili, O. L. G. Peres, Pasquale Dario Serpico,
Phys. Rev. D90 (2014) 033013,arXiv:1402.1453.
[Esmaili:2014gya]
Effects of kination and scalar-tensor cosmologies on sterile neutrinos,
Thomas Rehagen, Graciela B. Gelmini,
JCAP 1406 (2014) 044,arXiv:1402.0607.
[Rehagen:2014vna]
Mass characteristics of active and sterile neutrinos in a phenomenological (3+1+2)-model,
N. Yu. Zysina, S. V. Fomichev, V. V. Khruschov,
Phys.Atom.Nucl. 77 (2014) 890-900,arXiv:1401.6306.
[Zysina:2014kqa]
Sterile neutrinos in leptonic and semileptonic decays,
A. Abada, A.M. Teixeira, A. Vicente, C. Weiland,
JHEP 1402 (2014) 091,arXiv:1311.2830.
[Abada:2013aba]
Low-scale seesaw models versus $N_{\rm eff}$,
P. Hernandez, M. Kekic, J. Lopez-Pavon,
Phys. Rev. D89 (2014) 073009,arXiv:1311.2614.
[Hernandez:2013lza]
A menage a trois of eV-scale sterile neutrinos, cosmology, and structure formation,
Basudeb Dasgupta, Joachim Kopp,
Phys. Rev. Lett. 112 (2014) 031803,arXiv:1310.6337.
[Dasgupta:2013zpn]
How secret interactions can reconcile sterile neutrinos with cosmology,
Steen Hannestad, Rasmus Sloth Hansen, Thomas Tram,
Phys. Rev. Lett. 112 (2014) 031802,arXiv:1310.5926.
[Hannestad:2013ana]
Active and sterile neutrino oscillations inside the Sun in a phenomenological (3+1+2)-model,
V. V. Khruschov, S. V. Fomichev,
arXiv:1310.5817, 2013. [Khruschov:2013rma]
Sterile Plus Active Neutrinos and Neutrino Oscillations,
Leonard S. Kisslinger,
Int.J.Theor.Phys. 53 (2014) 3201-3207,arXiv:1309.4983.
[Kisslinger:2013sba]
Reanalysis of the Reactor Neutrino Anomaly,
A.C. Hayes, J.L. Friar, G.T. Garvey, Guy Jonkmans,
Phys. Rev. Lett. 112 (2014) 202501,arXiv:1309.4146.
[Hayes:2013wra]
Light Sterile Neutrinos in Cosmology and Short-Baseline Oscillation Experiments,
S. Gariazzo, C. Giunti, M. Laveder,
JHEP 1311 (2013) 211,arXiv:1309.3192.
[Gariazzo:2013gua]
Using MiniBooNE neutral current elastic cross section results to constrain 3+1 sterile neutrino models,
Callum Wilkinson, Susan Cartwright, Lee Thompson,
JHEP 1401 (2014) 064,arXiv:1309.1081.
[Wilkinson:2013mda]
Probing light sterile neutrinos in medium baseline reactor experiments,
Arman Esmaili, Ernesto Kemp, O. L. G. Peres, Zahra Tabrizi,
Phys. Rev. D88 (2013) 073012,arXiv:1308.6218.
[Esmaili:2013yea]
Constraints on very light sterile neutrinos from $\theta_{13}$-sensitive reactor experiments,
Antonio Palazzo,
JHEP 1310 (2013) 172,arXiv:1308.5880.
[Palazzo:2013bsa]
Evidence for massive neutrinos from CMB and lensing observations,
Richard A. Battye, Adam Moss,
Phys. Rev. Lett. 112 (2014) 051303,arXiv:1308.5870.
[Battye:2013xqa]
Neutrinoless Double Beta Decay in the Presence of Light Sterile Neutrinos,
Ivan Girardi, Aurora Meroni, S. T. Petcov,
JHEP 1311 (2013) 146,arXiv:1308.5802.
[Girardi:2013zra]
A Pragmatic View of Short-Baseline Neutrino Oscillations,
C. Giunti, M. Laveder, Y. F. Li, H.W. Long,
Phys. Rev. D88 (2013) 073008,arXiv:1308.5288.
[Giunti:2013aea]
A new life for sterile neutrinos: resolving inconsistencies using hot dark matter,
Jan Hamann, Jasper Hasenkamp,
JCAP 1310 (2013) 044,arXiv:1308.3255.
[Hamann:2013iba]
Precision measures of the primordial abundance of deuterium,
Ryan Cooke, Max Pettini, Regina A. Jorgenson, Michael T. Murphy, Charles C. Steidel,
Astrophys. J. 781 (2014) 31,arXiv:1308.3240.
[Cooke:2013cba]
Primordial 4He abundance: a determination based on the largest sample of HII regions with a methodology tested on model HII regions,
Y.I. Izotov, G. Stasinska, N.G. Guseva,
Mon.Not.Roy.Astron.Soc. 445 (2014) 778-793,arXiv:1308.2100.
[Izotov:2014fga]
Sterile neutrinos, dark matter, and resonant effects in ultra high energy regimes,
O. G. Miranda, C. A. Moura, A. Parada,
Phys.Lett. B744 (2015) 55,arXiv:1308.1408.
[Miranda:2013wla]
Contamination of Dark Matter Experiments from Atmospheric Magnetic Dipoles,
A. Bueno, M. Masip, P. Sanchez-Lucas, N. Setzer,
Phys. Rev. D88 (2013) 073010,arXiv:1308.0011.
[Bueno:2013mfa]
$\nu\Lambda$CDM: Neutrinos reconcile Planck with the Local Universe,
Mark Wyman, Douglas H. Rudd, R. Ali Vanderveld, Wayne Hu,
Phys. Rev. Lett. 112 (2014) 051302,arXiv:1307.7715.
[Wyman:2013lza]
(Lack of) Cosmological evidence for dark radiation after Planck,
Licia Verde, Stephen M. Feeney, Daniel J. Mortlock, Hiranya V. Peiris,
JCAP 1309 (2013) 013,arXiv:1307.2904.
[Verde:2013cqa]
Multiple Detectors for a Short-Baseline Neutrino Oscillation Search Near Reactors,
K. M. Heeger, B. R. Littlejohn, H. P. Mumm,
arXiv:1307.2859, 2013. [Heeger:2013ema]
Day-Night Asymmetries in Active-Sterile Solar Neutrino Oscillations,
H.W. Long, Y. F. Li, C. Giunti,
JHEP 1308 (2013) 056,arXiv:1306.4051.
[Long:2013ota]
Deficit of reactor antineutrinos at distances smaller than 100 m and inverse beta-decay,
A. N. Ivanov et al.,
Phys. Rev. C88, 055501 (2013) 055501,arXiv:1306.1995.
[Ivanov:2013cga]
Implication of a vanishing element in 3+1 Scenario,
Monojit Ghosh, Srubabati Goswami, Shivani Gupta, C. S. Kim,
Phys. Rev. D88 (2013) 033009,arXiv:1305.0180.
[Ghosh:2013nya]
Dark Radiation candidates after Planck,
Eleonora Di Valentino, Alessandro Melchiorri, Olga Mena,
JCAP 1311 (2013) 018,arXiv:1304.5981.
[Valentino:2013wha]
CP-violating Phases in Active-Sterile Solar Neutrino Oscillations,
H.W. Long, Y. F. Li, C. Giunti,
Phys. Rev. D 87, 113004 (2013) 113004,arXiv:1304.2207.
[Long:2013hwa]
Sterile neutrinos: the necessity for a 5 sigma definitive clarification,
Carlo Rubbia, Alberto Guglielmi, Francesco Pietropaolo, Paola Sala,
arXiv:1304.2047, 2013. [Rubbia:2013ywa]
Testing lepton flavor universality in terms of data of BES III and charm-tau factory,
Bin Wang, Ming-Gang Zhao, Ke-Sheng Sun, Xue-Qian Li,
Chin.Phys. C37 (2013) 073101,arXiv:1304.1290.
[Wang:2013hka]
Dark Radiation or Warm Dark Matter from long lived particle decays in the light of Planck,
Pasquale Di Bari, Stephen F. King, Alexander Merle,
Phys.Lett. B724 (2013) 77-83,arXiv:1303.6267.
[DiBari:2013dna]
The importance of local measurements for cosmology,
Licia Verde, Raul Jimenez, Stephen Feeney,
Phys.Dark Univ. 2 (2013) 65-71,arXiv:1303.5341.
[Verde:2013fva]
Cosmology with sterile neutrino masses from oscillation experiments,
Jostein R. Kristiansen, Oystein Elgaroy, Carlo Giunti, Marco Laveder,
arXiv:1303.4654, 2013. [Kristiansen:2013mza]
Constraints on electromagnetic properties of sterile neutrinos from MiniBooNE results,
Alexander Radionov,
Phys. Rev. D88 (2013) 015016,arXiv:1303.4587.
[Radionov:2013mca]
Exploring $\nu_{\tau}-\nu_{s}$ mixing with cascade events in DeepCore,
Arman Esmaili, Francis Halzen, O. L. G. Peres,
JCAP 1307 (2013) 048,arXiv:1303.3294.
[Esmaili:2013cja]
Sterile Neutrino Oscillations: The Global Picture,
Joachim Kopp, Pedro A. N. Machado, Michele Maltoni, Thomas Schwetz,
JHEP 1305 (2013) 050,arXiv:1303.3011.
[Kopp:2013vaa]
A potential sterile neutrino search using a two-reactor/one-detector configuration,
M. Bergevin, C. Grant, R. Svoboda,
arXiv:1303.0310, 2013. [Bergevin:2013nea]
Can active-sterile neutrino oscillations lead to chaotic behavior of the cosmological lepton asymmetry?,
Steen Hannestad, Rasmus Sloth Hansen, Thomas Tram,
JCAP 1304 (2013) 032,arXiv:1302.7279.
[Hannestad:2013pha]
Influence of a keV sterile neutrino on neutrino-less double beta decay - how things changed in the recent years,
Alexander Merle, Viviana Niro,
Phys. Rev. D88 (2013) 113004,arXiv:1302.2032.
[Merle:2013ibc]
Multi-momentum and multi-flavour active-sterile neutrino oscillations in the early universe: role of neutrino asymmetries and effects on nucleosynthesis,
Ninetta Saviano et al.,
Phys. Rev. D87 (2013) 073006,arXiv:1302.1200.
[Saviano:2013ktj]
Is there evidence for additional neutrino species from cosmology?,
Stephen M. Feeney, Hiranya V. Peiris, Licia Verde,
JCAP 1304 (2013) 036,arXiv:1302.0014.
[Feeney:2013wp]
Tickling the CMB damping tail: scrutinizing the tension between the ACT and SPT experiments,
Eleonora Di Valentino et al.,
Phys. Rev. D88 (2013) 023501,arXiv:1301.7343.
[DiValentino:2013mt]
Possible indication for non-zero neutrino mass and additional neutrino species from cosmological observations,
R. A. Burenin,
Astron.Lett. 39 (2013) 357-366,arXiv:1301.4791.
[Burenin:2013wg]
Additional Light Sterile Neutrinos and Cosmology,
Thomas D. Jacques, Lawrence M. Krauss, Cecilia Lunardini,
Phys. Rev. D87 (2013) 083515,arXiv:1301.3119.
[Jacques:2013xr]
Dark Radiation and interacting scenarios,
Roberta Diamanti, Elena Giusarma, Olga Mena, Maria Archidiacono, Alessandro Melchiorri,
Phys. Rev. D87 (2013) 063509,arXiv:1212.6007.
[Diamanti:2012tg]
Short-Baseline Electron Neutrino Oscillation Length After Troitsk,
C. Giunti, M. Laveder, Y. F. Li, H.W. Long,
Phys. Rev. D87 (2013) 013004,arXiv:1212.3805.
[Giunti:2012bc]
Experimental Parameters for a Reactor Antineutrino Experiment at Very Short Baselines,
K. M. Heeger, B. R. Littlejohn, H. P. Mumm, M. N. Tobin,
Phys. Rev. D87 (2013) 073008,arXiv:1212.2182.
[Heeger:2012tc]
Testing standard and non-standard neutrino physics with cosmological data,
Elena Giusarma, Roland de Putter, Olga Mena,
Phys. Rev. D87 (2013) 043515,arXiv:1211.2154.
[Giusarma:2012ph]
Right-Handed Neutrinos as the Dark Radiation: Status and Forecasts for the LHC,
Luis A. Anchordoqui, Haim Goldberg, Gary Steigman,
Phys. Lett. B718 (2013) 1162-1165,arXiv:1211.0186.
[Anchordoqui:2012qu]
Conservative Constraints on Early Cosmology: an illustration of the Monte Python cosmological parameter inference code,
Benjamin Audren, Julien Lesgourgues, Karim Benabed, Simon Prunet,
JCAP 1302 (2013) 001,arXiv:1210.7183.
[Audren:2012wb]
Update of Short-Baseline Electron Neutrino and Antineutrino Disappearance,
C. Giunti, M. Laveder, Y. F. Li, Q.Y. Liu, H.W. Long,
Phys. Rev. D86 (2012) 113014,arXiv:1210.5715.
[Giunti:2012tn]
Can neutrino-induced photon production explain the low energy excess in MiniBooNE?,
Xilin Zhang, Brian D. Serot,
Phys. Lett. B719 (2013) 409-414,arXiv:1210.3610.
[Zhang:2012xn]
Towards testing the unitarity of the 3X3 lepton flavor mixing matrix in a precision reactor antineutrino oscillation experiment,
Zhi-zhong Xing,
Phys. Lett. B718 (2013) 1447-1453,arXiv:1210.1523.
[Xing:2012kh]
Searching for sterile neutrinos from $\pi$ and $K$ decays,
Louis Lello, Daniel Boyanovsky,
Phys. Rev. D87 (2013) 073017,arXiv:1208.5559.
[Lello:2012gi]
Testing 3+1 and 3+2 neutrino mass models with cosmology and short baseline experiments,
Maria Archidiacono, Nicolao Fornengo, Carlo Giunti, Alessandro Melchiorri,
Phys. Rev. D86 (2012) 065028,arXiv:1207.6515.
[Archidiacono:2012ri]
Sterile Neutrinos and Pulsar Velocities Revisited,,
Leonard S. Kisslinger, Mikkel B. Johnson,
Mod. Phys. Lett. A27 (2012) 1250215,arXiv:1207.2798.
[Kisslinger:2012br]
Constraining Sterile Neutrinos with AMANDA and IceCube Atmospheric Neutrino Data,
Arman Esmaili, Francis Halzen, O. L. G. Peres,
JCAP 1211 (2012) 041,arXiv:1206.6903.
[Esmaili:2012nz]
Cosmic Microwave Background constraints of decaying dark matter particle properties,
S. Yeung, M. H. Chan, M.-C. Chu,
Astrophys. J. 755 (2012) 108,arXiv:1206.4114.
[Yeung:2012ya]
The minimal 3+2 neutrino model versus oscillation anomalies,
A. Donini, P. Hernandez, J. Lopez-Pavon, M. Maltoni, T. Schwetz,
JHEP 07 (2012) 161,arXiv:1205.5230.
[Donini:2012tt]
Confronting MOND and TeVeS with strong gravitational lensing over galactic scales: an extended survey,
Ignacio Ferreras, Nick Mavromatos, Mairi Sakellariadou, Muhammad Furqaan Yusaf,
Phys. Rev. D86 (2012) 083507,arXiv:1205.4880.
[Ferreras:2012fg]
Neutrino Phenomenology in a 3+1+1 Framework,
Eric Kuflik, Samuel D. McDermott, Kathryn M. Zurek,
Phys. Rev. D86 (2012) 033015,arXiv:1205.1791.
[Kuflik:2012sw]
Thermalisation of light sterile neutrinos in the early universe,
Steen Hannestad, Irene Tamborra, Thomas Tram,
JCAP 1207 (2012) 025,arXiv:1204.5861.
[Hannestad:2012ky]
Optimization of a Very Low Energy Neutrino Factory for the Disappearance Into Sterile Neutrinos,
Walter Winter,
Phys. Rev. D85 (2012) 113005,arXiv:1204.2671.
[Winter:2012sk]
KATRIN Sensitivity to Sterile Neutrino Mass in the Shadow of Lightest Neutrino Mass,
Arman Esmaili, Orlando L. G. Peres,
Phys. Rev. D85 (2012) 117301,arXiv:1203.2632.
[Esmaili:2012vg]
Sterile neutrinos and indirect dark matter searches in IceCube,
Carlos A. Arguelles, Joachim Kopp,
JCAP JCAP07 (2012) 016,arXiv:1202.3431.
[Arguelles:2012cf]
Indirect Dark Matter Detection in the Light of Sterile Neutrinos,
Arman Esmaili, Orlando L.G. Peres,
JCAP 1205 (2012) 002,arXiv:1202.2869.
[Esmaili:2012ut]
Confronting the short-baseline oscillation anomalies with a single sterile neutrino and non-standard matter effects,
G. Karagiorgi, M. H. Shaevitz, J. M. Conrad,
arXiv:1202.1024, 2012. [Karagiorgi:2012kw]
New limits on radiative sterile neutrino decays from a search for single photons in neutrino interactions,
S. N. Gninenko,
Phys. Lett. B710 (2012) 86-90,arXiv:1201.5194.
[Gninenko:2012rw]
An estimate of $\vartheta_{14}$ independent of reactor antineutrino fluxes,
Antonio Palazzo,
Phys. Rev. D85 (2012) 077301,arXiv:1201.4280.
[Palazzo:2012yf]
Constraints on massive sterile plus active neutrino species in non minimal cosmologies,
Elena Giusarma, Maria Archidiacono, Roland de Putter, Alessandro Melchiorri, Olga Mena,
Phys. Rev. D85 (2012) 083522,arXiv:1112.4661.
[Giusarma:2011zq]
Reply to 'Corrections to the HARP-CDP Analysis of the LSND Neutrino Oscillation Backgrounds',
A. Bolshakova et al.,
arXiv:1112.3852, 2011. [Bolshakova:2011dc]
Corrections to the HARP-CDP Analysis of the LSND Neutrino Oscillation Backgrounds,
G. T. Garvey, W. C. Louis, G. B. Mills, D. H. White,
arXiv:1112.2181, 2011. [Garvey:2011aa]
Revisiting the 'LSND anomaly' II: critique of the data analysis,
A. Bolshakova et al.,
Phys. Rev. D85 (2012) 092009,arXiv:1112.0907.
[Bolshakova:2011ib]
Sensitivity to eV-scale Neutrinos of Experiments at a Very Low Energy Neutrino Factory,
Christopher D. Tunnell, John H. Cobb, Alan D. Bross,
arXiv:1111.6550, 2011. [Tunnell:2011ya]
First Double-Chooz Results and the Reactor Antineutrino Anomaly,
Carlo Giunti, Marco Laveder,
Phys. Rev. D85 (2012) 031301,arXiv:1111.5211.
[Giunti:2011vc]
Implications of sterile neutrinos for medium/long-baseline neutrino experiments and the determination of $\vartheta_{13}$,
Bhubanjyoti Bhattacharya, Arun M. Thalapillil, Carlos E. M. Wagner,
Phys. Rev. D85 (2012) 073004,arXiv:1111.4225.
[Bhattacharya:2011ee]
Implications of 3+1 Short-Baseline Neutrino Oscillations,
Carlo Giunti, Marco Laveder,
Phys. Lett. B706 (2011) 200-207,arXiv:1111.1069.
[Giunti:2011cp]
Vanishing effective mass of the neutrinoless double beta decay including light sterile neutrinos,
Y. F. Li, S. Liu,
Phys. Lett. B706 (2012) 406-411,arXiv:1110.5795.
[Li:2011ss]
Sterile Neutrino Production Through a Matter Effect Enhancement at Long Baselines,
Joseph Bramante,
Int.J.Mod.Phys. A28 (2013) 1350067,arXiv:1110.4871.
[Bramante:2011uu]
Revisiting the 'LSND anomaly' I: impact of new data,
A. Bolshakova et al.(HARP-CDP),
Phys. Rev. D85 (2012) 092008,arXiv:1110.4265.
[HARP-CDPGroup:2011hnr]
Is there evidence for sterile neutrinos in IceCube data?,
V. Barger, Y. Gao, D. Marfatia,
Phys. Rev. D85 (2012) 011302,arXiv:1109.5748.
[Barger:2011rc]
The Case for Dark Radiation,
Maria Archidiacono, Erminia Calabrese, Alessandro Melchiorri,
Phys. Rev. D84 (2011) 123008,arXiv:1109.2767.
[Archidiacono:2011gq]
Sterile neutrinos with eV masses in cosmology - how disfavoured exactly?,
Jan Hamann, Steen Hannestad, Georg G. Raffelt, Yvonne Y. Y. Wong,
JCAP 1109 (2011) 034,arXiv:1108.4136.
[Hamann:2011ge]
Testing Nonstandard Neutrino Properties with a Mossbauer Oscillation Experiment,
P.A.N. Machado, H. Nunokawa, F. A. Pereira dos Santos, R. Zukanovich Funchal,
JHEP 11 (2011) 136,arXiv:1108.3339.
[Machado:2011tn]
Sterile Neutrinos, Coherent Scattering and Oscillometry Measurements with Low-temperature Bolometers,
Joseph A. Formaggio, E. Figueroa-Feliciano, A.J. Anderson,
Phys. Rev. D85 (2012) 013009,arXiv:1107.3512.
[Formaggio:2011jt]
Sterile neutrino decay as a common origin for LSND/MiniBooNe and T2K excess events,
S.N. Gninenko,
Phys. Rev. D85 (2012) 051702,arXiv:1107.0279.
[Gninenko:2011hb]
Limits on Electron Neutrino Disappearance from the KARMEN and LSND electron neutrino - Carbon Cross Section Data,
J.M. Conrad, M.H. Shaevitz,
Phys. Rev. D85 (2012) 013017,arXiv:1106.5552.
[Conrad:2011ce]
Are priors responsible for cosmology favoring additional neutrino species?,
Alma X. Gonzalez-Morales, Robert Poltis, Blake D. Sherwin, Licia Verde,
arXiv:1106.5052, 2011. [Gonzalez-Morales:2011tyq]
Possible, alternative explanations of the T2K observation of the $\nu_e$ appearance from an initial $\nu_\mu$,
D.Gibin, A Guglielmi, F. Pietropaolo, C. Rubbia, P. Sala,
arXiv:1106.4417, 2011. [Gibin:2011hd]
Analysis of KATRIN data using Bayesian inference,
Anna Sejersen Riis, Steen Hannestad, Christian Weinheimer,
Phys. Rev. C84 (2011) 045503,arXiv:1105.6005.
[SejersenRiis:2011sj]
Active to sterile neutrino oscillations: Coherence and MINOS results,
Daniel Hernandez, A. Yu. Smirnov,
Phys. Lett. B706 (2012) 360-366,arXiv:1105.5946.
[Hernandez:2011rs]
Sterile neutrino decay explanation of LSND and MiniBooNE anomalies,
Claudio Dib, Juan Carlos Helo, Sergey Kovalenko, Ivan Schmidt,
Phys. Rev. D84 (2011) 071301,arXiv:1105.4664.
[Dib:2011jh]
On the search of sterile neutrinos by oscillometry measurements,
J.D. Vergados, Y. Giomataris, Yu. N. Novikov,
Phys. Rev. D85 (2012) 033003,arXiv:1105.3654.
[Vergados:2011na]
On sterile neutrino mixing with $\nu_{\tau}$,
Juan Carlos Helo, Sergey Kovalenko, Ivan Schmidt,
Phys. Rev. D84 (2011) 053008,arXiv:1105.3019.
[Helo:2011yg]
Testing the very-short-baseline neutrino anomalies at the solar sector,
Antonio Palazzo,
Phys. Rev. D83 (2011) 113013,arXiv:1105.1705.
[Palazzo:2011rj]
Resolving the Reactor Neutrino Anomaly with the KATRIN Neutrino Experiment,
J. A. Formaggio, J. Barrett,
Phys. Lett. B706 (2011) 68-71,arXiv:1105.1326.
[Formaggio:2011jg]
Captures of Hot and Warm Sterile Antineutrino Dark Matter on EC-decaying Ho-163 Nuclei,
Y. F. Li, Zhi-zhong Xing,
JCAP 1108 (2011) 006,arXiv:1104.4000.
[Li:2011mw]
Reactor sterile neutrinos, dark energy and the age of the universe,
Jostein R. Kristiansen, Oystein Elgaroy,
Astron.Astrophys. 532 (2011) A67,arXiv:1104.0704.
[Kristiansen:2011mp]
Probing the fourth neutrino existence by neutral current oscillometry in the spherical gaseous TPC,
J.D. Vergados, Y. Giomataris, Yu.N. Novikov,
Nucl. Phys. B854 (2012) 54-66,arXiv:1103.5307.
[Vergados:2011gia]
Are there sterile neutrinos at the eV scale?,
Joachim Kopp, Michele Maltoni, Thomas Schwetz,
Phys. Rev. Lett. 107 (2011) 091801,arXiv:1103.4570.
[Kopp:2011qd]
Neutrino Physics with Dark Matter Experiments and the Signature of New Baryonic Neutral Currents,
Maxim Pospelov,
Phys. Rev. D84 (2011) 085008,arXiv:1103.3261.
[Pospelov:2011ha]
A robust upper limit on $N_{\rm eff}$ from BBN, circa 2011,
Gianpiero Mangano, Pasquale D. Serpico,
Phys. Lett. B701 (2011) 296-299,arXiv:1103.1261.
[Mangano:2011ar]
Constraints on massive sterile neutrino species from current and future cosmological data,
Elena Giusarma et al.,
Phys. Rev. D83 (2011) 115023,arXiv:1102.4774.
[Giusarma:2011ex]
Testing for Large Extra Dimensions with Neutrino Oscillations,
P. A. N. Machado, H. Nunokawa, R. Zukanovich Funchal,
Phys. Rev. D84 (2011) 013003,arXiv:1101.0003.
[Machado:2011jt]
Solar neutrino spectrum, sterile neutrinos and additional radiation in the Universe,
P. C. de Holanda, A. Yu. Smirnov,
Phys. Rev. D83 (2011) 113011,arXiv:1012.5627.
[deHolanda:2010am]
A refined constrain on lepton number from Big Bang Nucleosynthesis,
G. Mangano, G. Miele, S. Pastor, O. Pisanti, S. Sarikas,
JCAP JCAP03 (2011) 035,arXiv:1011.0916.
[Mangano:2010ei]
Hint of CPT Violation in Short-Baseline Electron Neutrino Disappearance,
Carlo Giunti, Marco Laveder,
Phys. Rev. D82 (2010) 113009,arXiv:1008.4750.
[Giunti:2010zs]
MiniBooNE and LSND data: non-standard neutrino interactions in a (3+1) scheme versus (3+2) oscillations,
Evgeny Akhmedov, Thomas Schwetz,
JHEP 10 (2010) 115,arXiv:1007.4171.
[Akhmedov:2010vy]
Direct Detection of the Cosmic Neutrino Background Including Light Sterile Neutrinos,
Y. F. Li, Shu Luo, Zhi-zhong Xing,
Phys.Lett. B692 (2010) 261-267,arXiv:1007.0914.
[Li:2010sn]
Cosmology Favoring Extra Radiation and Sub-eV Mass Sterile Neutrinos as an Option,
Jan Hamann, Steen Hannestad, Georg G. Raffelt, Irene Tamborra, Yvonne Y. Y. Wong,
Phys. Rev. Lett. 105 (2010) 181301,arXiv:1006.5276.
[Hamann:2010bk]
Gallium experiments with artificial neutrino sources as a tool for investigation of transition to sterile states,
V. N. Gavrin, V. V. Gorbachev, E. P. Veretenkin, B. T. Cleveland,
arXiv:1006.2103, 2010. [Gavrin:2010qj]
Apparent CPT Violation in Neutrino Oscillation Experiments,
Netta Engelhardt, Ann E. Nelson, Jonathan R. Walsh,
Phys. Rev. D81 (2010) 113001,arXiv:1002.4452.
[Engelhardt:2010dx]
Updated global fit to three neutrino mixing: status of the hints of theta13 > 0,
M.C. Gonzalez-Garcia, Michele Maltoni, Jordi Salvado,
JHEP 04 (2010) 056,arXiv:1001.4524.
[Gonzalez-Garcia:2010zke]
The primordial abundance of 4He: evidence for non-standard big bang nucleosynthesis,
Y. I. Izotov, T. X. Thuan,
Astrophys. J. 710 (2010) L67-L71,arXiv:1001.4440.
[Izotov:2010ca]
Evidence for right-handed neutrinos at a neutrino factory,
F. del Aguila, J. de Blas, R. Szafron, J. Wudka, M. Zralek,
Phys. Lett. B683 (2010) 282-288,arXiv:0911.3158.
[delAguila:2009vv]
Short-Baseline Electron Neutrino Disappearance at a Neutrino Factory,
Carlo Giunti, Marco Laveder, Walter Winter,
Phys. Rev. D80 (2009) 073005,arXiv:0907.5487.
[Giunti:2009en]
Gravitational hydrodynamics of large scale structure formation,
Theo M. Nieuwenhuizen, Carl H. Gibson, Rudy E. Schild,
Europhys. Lett. 88 (2009) 49001,arXiv:0906.5087.
[Nieuwenhuizen:2009tz]
Large Mixing Angle Sterile Neutrinos and Pulsar Velocities,
Leonard S. Kisslinger, Ernest M. Henley, Mikkel B. Johnson,
Mod. Phys. Lett. A24 (2009) 2507-2516,arXiv:0906.2802.
[Kisslinger:2009rv]
Viability of $ \Delta m^2 \sim 1 \text{eV}^2 $ sterile neutrino mixing models in light of MiniBooNE electron neutrino and antineutrino data from the Booster and NuMI beamlines,
G. Karagiorgi, Z. Djurcic, J. Conrad, M. H. Shaevitz, M. Sorel,
Phys. Rev. D80 (2009) 073001,arXiv:0906.1997.
[Karagiorgi:2009nb]
Resonant active-sterile neutrino mixing in the presence of matter potentials and altered dispersion relations,
Sebastian Hollenberg, Heinrich Pas,
arXiv:0904.2167, 2009. [Hollenberg:2009bq]
Sterile Neutrinos in Light of Recent Cosmological and Oscillation Data: a Multi-Flavor Scheme Approach,
Alessandro Melchiorri et al.,
JCAP 0901 (2009) 036,arXiv:0810.5133.
[Melchiorri:2008gq]
The Existence of Sterile Neutrino Halos in Galactic Centers as an Explanation of the Black Hole mass - Velocity Dispersion Relation,
M. H. Chan, M. C. Chu,
Astrophys. J. 692 (2009) 212-216,arXiv:0810.4057.
[Chan:2008cr]
Semileptonic decays of charmed and beauty baryons with sterile neutrinos in the final state,
Sabir Ramazanov,
Phys. Rev. D79 (2009) 077701,arXiv:0810.0660.
[Ramazanov:2008ph]
Light Sterile Neutrino Effects at $\theta_{13}$-Sensitive Reactor Neutrino Experiments,
Andre de Gouvea, Thomas Wytock,
Phys. Rev. D79 (2009) 073005,arXiv:0809.5076.
[deGouvea:2008qk]
Chaos, Determinacy and Fractals in Active-Sterile Neutrino Oscillations in the Early Universe,
Kevork N. Abazajian, Prateek Agrawal,
JCAP 0810 (2008) 006,arXiv:0807.0456.
[Abazajian:2008dz]
Eosphoric sterile neutrinos, supernovae, and the galactic positrons,
George M. Fuller, Alexander Kusenko, Kalliopi Petraki,
Phys. Lett. B670 (2009) 281-284,arXiv:0806.4273.
[Fuller:2008erj]
Pulsar Kicks With Sterile Neutrinos and Landau Levels,
Leonard S. Kisslinger, Ernest M. Henley, Mikkel B. Johnson,
arXiv:0712.0197, 2007. [Kisslinger:2007uw]
Limits on $\nu_e$ and $\bar\nu_e$ disappearance from Gallium and reactor experiments,
Mario A. Acero, Carlo Giunti, Marco Laveder,
Phys. Rev. D78 (2008) 073009,arXiv:0711.4222.
[Acero:2007su]
LSND versus MiniBooNE: Sterile neutrinos with energy dependent masses and mixing?,
Thomas Schwetz,
JHEP 02 (2008) 011,arXiv:0710.2985.
[Schwetz:2007cd]
Signature of sterile species in atmospheric neutrino data at neutrino telescopes,
Sandhya Choubey,
JHEP 0712 (2007) 014,arXiv:0709.1937.
[Choubey:2007ji]
Sterile neutrino signals from supernovae,
P. Keranen, J. Maalampi, M. Myyrylainen, J. Riittinen,
Phys. Rev. D76 (2007) 125026,arXiv:0708.3337.
[Keranen:2007ga]
MiniBooNE Results and Neutrino Schemes with 2 sterile Neutrinos: Possible Mass Orderings and Observables related to Neutrino Masses,
Srubabati Goswami, Werner Rodejohann,
JHEP 10 (2007) 073,arXiv:0706.1462.
[Goswami:2007kv]
Invisible Z decay width bounds on active-sterile neutrino mixing in the (3+1) and (3+2) models,
C. A. de S. Pires,
Mod. Phys. Lett. A24 (2009) 475-483,arXiv:0706.1227.
[deSPires:2007wyk]
Right-Handed Neutrinos at LHC and the Mechanism of Neutrino Mass Generation,
Joern Kersten, Alexei Yu. Smirnov,
Phys. Rev. D76 (2007) 073005,arXiv:0705.3221.
[Kersten:2007vk]
Turbulent supernova shock waves and the sterile neutrino signature in megaton water detectors,
Sandhya Choubey, N. P. Harries, G. G. Ross,
Phys. Rev. D76 (2007) 073013,arXiv:hep-ph/0703092.
[Choubey:2007ga]
MiniBooNE and a $(CP)^2 = -1$ sterile neutrino,
D. V. Ahluwalia-Khalilova, Alex B. Nielsen,
Mod. Phys. Lett. A22 (2007) 1301-1307,arXiv:hep-ph/0702049.
[Ahluwalia:2007wxl]
Measuring the mass of a sterile neutrino with a very short baseline reactor experiment,
D. C. Latimer, J. Escamilla, D. J. Ernst,
Phys. Rev. C75 (2007) 042501,arXiv:hep-ex/0701004.
[Latimer:2007qe]
Probing active to sterile neutrino oscillations in the LENS detector,
Christian Grieb, Jonathan Link, R. S. Raghavan,
Phys. Rev. D75 (2007) 093006,arXiv:hep-ph/0611178.
[Grieb:2006mp]
Short-Baseline Active-Sterile Neutrino Oscillations?,
Carlo Giunti, Marco Laveder,
Mod. Phys. Lett. A22 (2007) 2499-2509,arXiv:hep-ph/0610352.
[Giunti:2006bj]
Leptonic CP violation studies at MiniBooNE in the (3+2) sterile neutrino oscillation hypothesis,
G. Karagiorgi et al.,
Phys. Rev. D75 (2007) 013011,arXiv:hep-ph/0609177.
[Karagiorgi:2006jf]
Parametric resonance for antineutrino conversions using LSND best-fit results with a 3+1 flavor scheme,
J. Linder,
Phys. Rev. D74 (2006) 053001,arXiv:hep-ph/0609022.
[Linder:2006yu]
Light Element Signatures of Sterile Neutrinos and Cosmological Lepton Numbers,
Christel J. Smith, George M. Fuller, Chad T. Kishimoto, Kevork N. Abazajian,
Phys. Rev. D74 (2006) 085008,arXiv:astro-ph/0608377.
[Smith:2006uw]
Sterile neutrinos, lepton asymmetries, primordial elements: how much of each?,
Yi-Zen Chu, Marco Cirelli,
Phys. Rev. D74 (2006) 085015,arXiv:astro-ph/0608206.
[Chu:2006ua]
Coherent Active-Sterile Neutrino Flavor Transformation in the Early Universe,
Chad T. Kishimoto, George M. Fuller, Christel J. Smith,
Phys. Rev. Lett. 97 (2006) 141301,arXiv:astro-ph/0607403.
[Kishimoto:2006zk]
Probing neutrino oscillations from supernovae shock waves via the IceCube detector,
Sandhya Choubey, N. P. Harries, G.G. Ross,
Phys. Rev. D74 (2006) 053010,arXiv:hep-ph/0605255.
[Choubey:2006aq]
On the hadronic contribution to sterile neutrino production,
Takehiko Asaka, Mikko Laine, Mikhail Shaposhnikov,
JHEP 06 (2006) 053,arXiv:hep-ph/0605209.
[Asaka:2006rw]
Cosmological parameters from combining the Lyman-alpha forest with CMB, galaxy clustering and SN constraints,
Uros Seljak, Anze Slosar, Patrick McDonald,
JCAP 0610 (2006) 014,arXiv:astro-ph/0604335.
[Seljak:2006bg]
Model Independent Constraints on Non-electronic Flavors in the Solar Boron Neutrino Flux,
S. Dev, Sanjeev Kumar, Surender Verma,
Mod. Phys. Lett. A21 (2006) 1761,arXiv:hep-ph/0512178.
[Dev:2005au]
Is cosmology compatible with sterile neutrinos?,
Scott Dodelson, Alessandro Melchiorri, Anze Slosar,
Phys. Rev. Lett. 97 (2006) 04301,arXiv:astro-ph/0511500.
[Dodelson:2005tp]
Explaining LSND by a decaying sterile neutrino,
Sergio Palomares-Ruiz, Silvia Pascoli, Thomas Schwetz,
JHEP 0509 (2005) 048,arXiv:hep-ph/0505216. Comment:The figure 3 (left panel) corresponds to neutrino oscillations in (3+1) mass scheme with the last NOMAD data included. [M.L.]. [Palomares-Ruiz:2005zbh]
Constraints on Weakly Mixed Sterile Neutrinos in the Light of SNO Salt Phase and 766.3 Ty KamLAND Data,
S. Dev, Sanjeev Kumar,
Mod. Phys. Lett. A20 (2005) 2957,arXiv:hep-ph/0504237.
[Dev:2005px]
Sterile-active neutrino oscillations and shortcuts in the extra dimension,
Heinrich Pas, Sandip Pakvasa, Thomas J. Weiler,
Phys. Rev. D72 (2005) 095017,arXiv:hep-ph/0504096.
[Pas:2005rb]
Can a 3+2 Oscillation Model Explain the NuTeV Electroweak Results?,
J. S. Ma, J. M. Conrad, M. Sorel, G. P. Zeller,
Phys. Rev. D73 (2006) 057302,arXiv:hep-ex/0501011.
[Ma:2005eh]
Cosmological lepton asymmetry, primordial nucleosynthesis, and sterile neutrinos,
Kevork Abazajian, Nicole F. Bell, George M. Fuller, Yvonne Y. Y. Wong,
Phys. Rev. D72 (2005) 063004,arXiv:astro-ph/0410175.
[Abazajian:2004aj]
New bounds on MeV sterile neutrinos based on the accelerator and Super-Kamiokande results,
Alexander Kusenko, Silvia Pascoli, Dmitry Semikoz,
JHEP 0511 (2005) 028,arXiv:hep-ph/0405198.
[Kusenko:2004qc]
Probing oscillations into sterile neutrinos with cosmology, astrophysics and experiments,
Marco Cirelli, Guido Marandella, Alessandro Strumia, Francesco Vissani,
Nucl. Phys. B708 (2005) 215,arXiv:hep-ph/0403158.
[Cirelli:2004cz]
Active-sterile neutrino oscillations and pulsar kicks,
M. Barkovich, J. C. D'Olivo, R. Montemayor,
Phys. Rev. D70 (2004) 043005,arXiv:hep-ph/0402259.
[Barkovich:2004jp]
Search for sterile neutrinos as another research objective of $\theta_{13}$ experiments at reactors,
V. Kopeikin, L. Mikaelyan, V. Sinev,
arXiv:hep-ph/0310246, 2003. [Kopeikin:2003uu]
LSND anomaly from CPT violation in four-neutrino models,
V. Barger, D. Marfatia, K. Whisnant,
Phys. Lett. B576 (2003) 303,arXiv:hep-ph/0308299.
[Barger:2003xm]
Homestake result, sterile neutrinos and low energy solar neutrino experiments,
P. C. de Holanda, A. Yu. Smirnov,
Phys. Rev. D69 (2004) 113002,arXiv:hep-ph/0307266.
[deHolanda:2003tx]
A combined analysis of short-baseline neutrino experiments in the (3+1) and (3+2) sterile neutrino oscillation hypotheses,
Michel Sorel, Janet Conrad, Michael Shaevitz,
Phys. Rev. D70 (2004) 073004,arXiv:hep-ph/0305255. From the article:(version v1) The best-fit point of a combined analysis of the NSBL and LSND data in (3+2) models would be interpreted in NOMAD as $\Delta{m}^2 \simeq 21.5 \, \mathrm{eV}^2$, $\sin^2 2\theta_{\mu e} \simeq 8 \times 10^{-4}$, which is compatible with the NOMAD limits [hep-ex/0306037]. Comment:(version v1) Figure 4 a) shows the allowed regions at 90\%, 95\% and 99\% CL for (3+1) schemes in $(\sin^2 2\theta_{\mu e},\Delta m^2)$ space, together with the best-fit point, indicated by the star. Figure 8 shows the Nomad excluded region at 90\% CL (2 d.o.f) in $(\sin^2 2\theta_{\mu e},\Delta m^2)$ space, together with results from other experiments. [M.L.]. [Sorel:2003hf]
Probing the LSND scale and four neutrino scenarios with a neutrino telescope,
H. Nunokawa, O. L. G. Peres, R. Zukanovich Funchal,
Phys. Lett. B562 (2003) 279,arXiv:hep-ph/0302039.
[Nunokawa:2003ep]
Mirror model for sterile neutrinos,
V. Berezinsky, M. Narayan, F. Vissani,
Nucl. Phys. B658 (2003) 254,arXiv:hep-ph/0210204. From the abstract:... The considered subdominant neutrino oscillations (active <-> sterile) nu_a <-> nu_s can reveal itself as the big effects in observations of supernova neutrinos. [Berezinsky:2002fa]
Constraining neutrino oscillation parameters with current solar and atmospheric data,
M. Maltoni, T. Schwetz, M. A. Tortola, J. W. F. Valle,
Phys. Rev. D67 (2003) 013011,arXiv:hep-ph/0207227.
[Maltoni:2002ni]
Ruling out four-neutrino oscillation interpretations of the LSND anomaly?,
M. Maltoni, T. Schwetz, M. A. Tortola, J. W. F. Valle,
Nucl. Phys. B643 (2002) 321-338,arXiv:hep-ph/0207157. From the abstract:... all four-neutrino descriptions of the LSND anomaly, both in (2+2) as well as (3+1) realizations, are highly disfavoured. Our analysis brings the LSND hint to a more puzzling status. From the article:The exclusion of four-neutrino oscillation schemes of the (2+2)-type is based on the improved sensitivity of solar and atmospheric neutrino experiments to oscillations into a sterile neutrino, thanks to recent experimental data. This is a very robust result, independent of whether the LSND experiment is confirmed or disproved. The exclusion of (3+1) schemes depends somehow on the used LSND data. Furthermore, it heavily relies on the results of negative SBL experiments, especially on the Bugey and CDHS disappearance experiments. [Maltoni:2002xd]
If sterile neutrinos exist, how can one determine the total B-8 and Be-7 solar neutrino fluxes?,
J. N. Bahcall, M. C. Gonzalez-Garcia, C. Pena-Garay,
Phys. Rev. C66 (2002) 035802,arXiv:hep-ph/0204194.
[Bahcall:2002zh]
Statistical Analysis of Different $\bar\nu_\mu\to\bar\nu_e$ Searches,
E. D. Church, K. Eitel, G. B. Mills, M. Steidl,
Phys. Rev. D66 (2002) 013001,arXiv:hep-ex/0203023. From the article:This paper describes a combined statistical analysis of the final LSND and KARMEN 2 results.... For both experiments, the data are analysed with a maximum likelihood analysis followed by the extraction of confidence levels in a unified approach.... There are two oscillation scenarios with either $\Delta m^2 \approx 7 \, \mathrm{eV}^2$ or $\Delta m^2 < 1 \, \mathrm{eV}^2$ compatible with both experiments. [Church:2002tc]
$\nu_e \to \nu_s$ oscillations with large neutrino mass in NuTeV?,
Carlo Giunti, Marco Laveder,
arXiv:hep-ph/0202152, 2002. From the abstract:We propose an explanation of NuTeV anomaly in terms of oscillations of electron neutrinos into sterile neutrinos with average probability $P_{\nu_e \rightarrow \nu_s} = 0.21 \pm 0.07$. [Giunti:2002nh]
Interpreting the LSND anomaly: Sterile neutrinos or CPT- violation or...?,
Alessandro Strumia,
Phys. Lett. B539 (2002) 91-101,arXiv:hep-ph/0201134. Comment:Table 2 in the Addendum about the first Kamland and WMAP data (20 feb 2003) collects all the interpretations of all experimental neutrino data together with the quality of their fits. Fig. 7b shows the 3+1 best fit solution including all data. Figure n.4 Left shows the best-fit regions at 90\% and 99\% CL (2 d.o.f.) in (3+1) schemes. The dotted lines show the regions suggested by only the LSND data. The dots show the best fit points. Constraints from cosmology are not included in this figure. [M.L.]. [Strumia:2002fw]
Oscillation Induced Neutrino Asymmetry Growth in the Early Universe,
Kimmo Kainulainen, Antti Sorri,
JHEP 02 (2002) 020,arXiv:hep-ph/0112158.
[Kainulainen:2001cb]
Blocking active-sterile neutrino oscillations in the early universe with a Majoron field,
Luis Bento, Zurab Berezhiani,
Phys. Rev. D64 (2001) 115015,arXiv:hep-ph/0108064.
[Bento:2001xi]
Matter effects in upward-going muons and sterile neutrino oscillations,
M. Ambrosio et al.(MACRO),
Phys. Lett. B517 (2001) 59-66,arXiv:hep-ex/0106049.
[MACRO:2001fie]
Neutrino asymmetry generation in the early universe (from $\nu_\alpha\leftrightarrows\nu_s$ oscillations),
P. Di Bari,
arXiv:hep-ph/0105133, 2001. [DiBari:2001im]
Majorana neutrinos, neutrino mass spectrum, CP-violation and neutrinoless double beta-decay. II: Mixing of four neutrinos,
Samoil M. Bilenky, S. Pascoli, S. T. Petcov,
Phys. Rev. D64 (2001) 113003,arXiv:hep-ph/0104218.
[Bilenky:2001xq]
Active-sterile neutrino oscillations in the early universe: Asymmetry generation at low $|\Delta{m}^2|$ and the Landau-Zener approximation,
P. Di Bari, R. Foot,
Phys. Rev. D65 (2002) 045003,arXiv:hep-ph/0103192.
[DiBari:2001jk]
4-neutrino mass schemes and the likelihood of (3+1)-mass spectra,
W. Grimus, T. Schwetz,
Eur. Phys. J. C20 (2001) 1-11,arXiv:hep-ph/0102252.
[Grimus:2001mn]
Sterile neutrinos in tau lepton decays,
Vladimir Gribanov, Sergey Kovalenko, Ivan Schmidt,
Nucl. Phys. B607 (2001) 355-368,arXiv:hep-ph/0102155.
[Gribanov:2001vv]
On the chaoticity of active-sterile neutrino oscillations in the early universe,
Poul-Erik N. Braad, Steen Hannestad,
arXiv:hep-ph/0012194, 2000. [Braad:2000zw]
Large $\nu_\mu \to \nu_\tau$ and $\nu_e \to \nu_\tau$ transitions in short baseline experiments?,
Carlo Giunti, Marco Laveder,
JHEP 02 (2001) 001,arXiv:hep-ph/0010009.
[Giunti:2000ur]
Maximum lepton asymmetry from active - sterile neutrino oscillations in the early universe,
R. Buras, D. V. Semikoz,
Phys. Rev. D64 (2001) 017302,arXiv:hep-ph/0009266.
[Buras:2000ah]
Tau neutrinos favored over sterile neutrinos in atmospheric muon neutrino oscillations,
S. Fukuda et al.(Super-Kamiokande),
Phys. Rev. Lett. 85 (2000) 3999-4003,arXiv:hep-ex/0009001.
[Super-Kamiokande:2000ywb]
Active-sterile neutrino oscillations and BBN + CMBR constraints,
P. Di Bari, R. Foot,
Phys. Rev. D63 (2001) 043008,arXiv:hep-ph/0008258.
[DiBari:2000wd]
Fate of the sterile neutrino,
V. D. Barger, B. Kayser, J. Learned, T. Weiler, K. Whisnant,
Phys. Lett. B489 (2000) 345-352,arXiv:hep-ph/0008019.
[Barger:2000ch]
Is the $\nu_\mu\to\nu_s$ oscillation solution to the atmospheric neutrino anomaly excluded by the superKamiokande data?,
R. Foot,
Phys. Lett. B496 (2000) 169-174,arXiv:hep-ph/0007065.
[Foot:2000bi]
Pulsar acceleration by asymmetric emission of sterile neutrinos,
Enrico Nardi, Jorge I. Zuluaga,
Astrophys. J. 549 (2001) 1076-1084,arXiv:astro-ph/0006285.
[Nardi:2000rr]
Four-neutrino oscillation solutions of the solar neutrino problem,
C. Giunti, M. C. Gonzalez-Garcia, Carlos Pena-Garay,
Phys. Rev. D62 (2000) 013005,arXiv:hep-ph/0001101.
[Giunti:2000wt]
On the sign of the neutrino asymmetry induced by active- sterile neutrino oscillations in the early universe,
P. Di Bari, R. Foot,
Phys. Rev. D61 (2000) 105012,arXiv:hep-ph/9912215.
[DiBari:1999vg]
Amplification of isocurvature perturbations induced by active-sterile neutrino oscillations,
P. Di Bari,
Phys. Lett. B482 (2000) 150-160,arXiv:hep-ph/9911214.
[DiBari:1999fz]
Sterile neutrinos and supernova nucleosynthesis,
David O. Caldwell, George M. Fuller, Yong-Zhong Qian,
Phys. Rev. D61 (2000) 123005,arXiv:astro-ph/9910175.
[Caldwell:1999zk]
Cosmological nucleosynthesis and active-sterile neutrino oscillations with small mass differences: The resonant case,
D. P. Kirilova, M. V. Chizhov,
Nucl. Phys. B591 (2000) 457-468,arXiv:hep-ph/9909408.
[Kirilova:1999xj]
Matter effects in four-neutrino mixing,
David Dooling, Carlo Giunti, Kyungsik Kang, Chung W. Kim,
Phys. Rev. D61 (2000) 073011,arXiv:hep-ph/9908513.
[Dooling:1999sg]
Constraints from neutrino oscillation experiments on the effective Majorana mass in neutrinoless double beta decay,
Samoil M. Bilenky, C. Giunti, W. Grimus, Boris Kayser, S. T. Petcov,
Phys. Lett. B465 (1999) 193-202,arXiv:hep-ph/9907234.
[Bilenky:1999wz]
Neutrino-mixing-generated lepton asymmetry and the primordial He-4 abundance,
X. Shi, G. M. Fuller, K. Abazajian,
Phys. Rev. D60 (1999) 063002,arXiv:astro-ph/9905259.
[Shi:1999kg]
Four-neutrino mass spectra and the Super-Kamiokande atmospheric up-down asymmetry,
Samoil M. Bilenky, C. Giunti, W. Grimus, T. Schwetz,
Phys. Rev. D60 (1999) 073007,arXiv:hep-ph/9903454.
[Bilenky:1999ny]
An Active-Sterile Neutrino Transformation Solution for r- Process Nucleosynthesis,
G. C. McLaughlin, J. M. Fetter, A. B. Balantekin, G. M. Fuller,
Phys. Rev. C59 (1999) 2873-2887,arXiv:astro-ph/9902106.
[McLaughlin:1999pd]
Relic neutrino asymmetries and big bang nucleosynthesis in a four neutrino model,
N. F. Bell, R. Foot, R. R. Volkas,
Phys. Rev. D58 (1998) 105010,arXiv:hep-ph/9805259.
[Bell:1998sr]
Four-neutrino mixing and big-bang nucleosynthesis,
Samoil M. Bilenky, C. Giunti, W. Grimus, T. Schwetz,
Astropart. Phys. 11 (1999) 413-428,arXiv:hep-ph/9804421.
[Bilenky:1998ne]
Long-baseline neutrino oscillation experiments and CP violation in the lepton sector,
Samoil M. Bilenky, C. Giunti, W. Grimus,
Phys. Rev. D58 (1998) 033001,arXiv:hep-ph/9712537.
[Bilenky:1997dd]
Bounds on long-baseline $\bar\nu_e\to\bar\nu_e$ and $\nu_{\mu}\to\nu_{e}$ ($\bar\nu_{\mu}\to\bar\nu_{e}$) transition probabilities,
Samoil M. Bilenky, C. Giunti, W. Grimus,
Phys. Rev. D57 (1998) 1920-1933,arXiv:hep-ph/9710209.
[Bilenky:1997zm]
Studies of neutrino asymmetries generated by ordinary sterile neutrino oscillations in the early universe and implications for big bang nucleosynthesis bounds,
R. Foot, R. R. Volkas,
Phys. Rev. D55 (1997) 5147-5176,arXiv:hep-ph/9610229.
[Foot:1996qc]
Neutrino mass spectrum from the results of neutrino oscillation experiments,
S. M. Bilenky, C. Giunti, W. Grimus,
Eur. Phys. J. C1 (1998) 247-253,arXiv:hep-ph/9607372.
[Bilenky:1996rw]
New supernova constraints on sterile-neutrino production,
Edward W. Kolb, Rabindra N. Mohapatra, Vigdor L. Teplitz,
Phys. Rev. Lett. 77 (1996) 3066-3069,arXiv:hep-ph/9605350.
[Kolb:1996pa]
Limits on Active-Sterile Neutrino Mixing and the Primordial Deuterium Abundance,
Christian Y. Cardall, George M. Fuller,
Phys. Rev. D54 (1996) 1260-1263,arXiv:astro-ph/9603105.
[Cardall:1996ka]
On the MSW $\nu_e \to \nu_s$ transition solution of the solar neutrino problem,
P. I. Krastev, S. T. Petcov, L. Qiuyu,
Phys. Rev. D54 (1996) 7057-7066,arXiv:hep-ph/9602333.
[Krastev:1996gc]
Can a 'natural' three generation neutrino mixing scheme satisfy everything?,
Christian Y. Cardall, George M. Fuller,
Phys. Rev. D53 (1996) 4421-4429,arXiv:astro-ph/9602104.
[Cardall:1996qk]
Reconciling sterile neutrinos with big bang nucleosynthesis,
Robert Foot, R. R. Volkas,
Phys. Rev. Lett. 75 (1995) 4350,arXiv:hep-ph/9508275.
[Foot:1995bm]
Results from the LSND neutrino oscillation search for anti- muon-neutrino $\to$ anti-electron-neutrino,
James E. Hill,
Phys. Rev. Lett. 75 (1995) 2654-2657,arXiv:hep-ex/9504009.
[Hill:1995gf]
Are there sterile neutrinos in the flux of solar neutrinos on the earth?,
S. M. Bilenky, C. Giunti,
Z. Phys. C68 (1995) 495-502,arXiv:hep-ph/9502263.
[Bilenky:1995fy]
A Model independent approach to future solar neutrino experiments,
S. M. Bilenky, C. Giunti,
Astropart. Phys. 2 (1994) 353-374,arXiv:hep-ph/9403345.
[Bilenky:1994xv]
Sterile-neutrinos and future solar neutrino experiments,
S. M. Bilenky, C. Giunti,
Phys. Lett. B320 (1994) 323-328,arXiv:hep-ph/9310314.
[Bilenky:1993yk]
A Standard Model explanation for the MiniBooNE anomaly,
Ara Ioannisian, Carlo Giunti, Gioacchino Ranucci,
PoS ICHEP2020 (2021) 142,arXiv:2012.06164.
ICHEP 2020, July 28-August 6, Prague, Czech Republic. [Ioannisian:2020wbm]
Effect of sterile phases on degeneracy resolution capabilities of LBL experiments,
Akshay Chatla, Bindu A. Bambah,
Phys.At.Nucl. 84 (2021) 377-380,arXiv:2010.06321.
5th international conference on particle physics and astrophysics, Moscow (05-09 October 2020). [Chatla:2020bqb]
Matrix norms and search for sterile neutrinos,
Wojciech Flieger, Franciszek Pindel, Kamil Porwit,
PoS CORFU2018 (2019) 050,arXiv:1904.10649.
Corfu Summer Institute 2018 'School and Workshops on Elementary Particle Physics and Gravity', 31 August-29 September 2018 Corfu, Greece. [Flieger:2019nsb]
Neutrino Properties and the Cosmological Tensions in the $\Lambda$CDM Model,
Stefano Gariazzo,
arXiv:1812.00638, 2018.15th Marcel Grossmann Meeting. [Gariazzo:2018zho]
Searching for MeV-scale Neutrinos with the DUNE Near Detector,
P. Ballett, T. Boschi, S. Pascoli,
arXiv:1803.10824, 2018.NuPhys2017 (London, 20-22 December 2017). [Ballett:2018fah]
Parameter degeneracy and hierarchy sensitivity of NO$\nu$A in presence of sterile neutrino,
Monojit Ghosh, Shivani Gupta, Zachary M. Matthews, Pankaj Sharma, Anthony G. Williams,
PoS NuFact2017 (2018) 133,arXiv:1712.06714.
19th international Workshop on Neutrinos from Accelerators (NuFact2017), 25-30 September 2017, Uppsala University, Uppsala, Sweden. [Ghosh:2017sli]
Status of Sterile Neutrino fits with Global Data,
Alejandro Diaz,
arXiv:1710.04360, 2017.APS Division of Particles and Fields Meeting (DPF 2017), July 31-August 4, 2017, Fermilab. [Diaz:2017mfd]
Searches for Sterile Neutrinos at Future Electron-Proton Colliders,
Stefan Antusch, Oliver Fischer,
PoS DIS2017 (2018) 090,arXiv:1709.00880.
DIS 2017. [Fischer:2017wkj]
Radiative decay of heavy neutrinos at MiniBooNE and MicroBooNE,
Luis Alvarez-Ruso, Eduardo Saul-Sala,
arXiv:1705.00353, 2017.NuPhys2016 (London, 12-14 December 2016). [Alvarez-Ruso:2017hdm]
Can we measure $\theta_{23}$ octant in 3+1 scheme?,
Sanjib Kumar Agarwalla, Sabya Sachi Chatterjee, Antonio Palazzo,
Springer Proc.Phys. 203 (2018) 235-237,arXiv:1704.07151.
XXII DAE-BRNS High Energy Physics Symposium 2016, University of Delhi, Delhi, India, 12-16 December, 2016. [Agarwalla:2017lle]
Direct detection of relic active and sterile neutrinos,
Yu-Feng Li,
J. Phys. Conf. Ser. 718 (2016) 062038,arXiv:1606.04734.
14th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2015). [Li:2016qsu]
Predictions for Neutrinoless Double-Beta Decay in the 3+1 Sterile Neutrino Scenario,
C. Giunti, E. M. Zavanin,
J. Phys. Conf. Ser. 718 (2016) 062074,arXiv:1511.03838.
TAUP 2015. [Giunti:2015iyr]
Indirect searches for sterile neutrinos at a high-luminosity Z-factory,
Valentina De Romeri, Asmaa Abada, Stephane Monteil, Jean Orloff, Ana M. Teixeira,
PoS EPS-HEP2015 (2015) 056,arXiv:1510.02598.
The European Physical Society Conference on High Energy Physics, 22-29 July 2015, Vienna (Austria). [DeRomeri:2015ipa]
Inverse-square law violation and reactor antineutrino anomaly,
D.V. Naumov, V.A. Naumov, D.S. Shkirmanov,
Phys.Part.Nucl. 48 (2017) 12-20,arXiv:1507.04573.
International Workshop on Prospects of Particle Physics: 'Neutrino Physics and Astrophysics', Valday, Russia, February 1-8, 2015. [Naumov:2015hba]
Using MiniBooNE NCEL and CCQE cross section results to constrain 3+1 sterile neutrino models,
Callum Wilkinson, Susan Cartwright, Lee Thompson,
J. Phys. Conf. Ser. 598 (2015) 012035,arXiv:1412.0461.
NuPhys2013, 19-20 December 2013, IOP, London. [Wilkinson:2014pca]
The Effect of Sterile States on the Magnetic Moments of Neutrinos,
A.B. Balantekin, N. Vassh,
AIP Conf.Proc. 1604 (2014) 150-155,arXiv:1404.1393.
CETUP' (Center for Theoretical Underground Physics and Related Areas) 2013 Summer Institute. [Balantekin:2014mqa]
A sterile neutrino at MiniBooNE and IceCube,
Manuel Masip,
AIP Conf.Proc. 1606 (2014) 59-65,arXiv:1402.0665.
II Russian-Spanish Congress: Particle and Nuclear Physics at all Scales, Saint-Petersburg, October 1-4, 2013. [Masip:2014xna]
Sterile neutrinos in the 3+s scenario and solar data,
Joao Pulido, C.R. Das,
PoS EPS-HEP2013 (2014) 527,arXiv:1310.0426.
EPS Conference on High Energy Physics-EPS-HEP2013, 18-24 July 2013, Stockholm, Sweden. [Pulido:2013sna]
Global Status of Sterile Neutrino Scenarios,
Joachim Kopp, Pedro A. N. Machado, Michele Maltoni, Thomas Schwetz,
PoS Neutel2013 (2013) 019.15th International Workshop on Neutrino Telescopes (Neutel 2013). [Kopp:2013uik]
Constraints on Neutrino Physics from Cosmology,
A. Melchiorri, 2013.The Future of Neutrino Mass Measurements: Terrestrial, Astrophysical, and Cosmological Measurements in the Next Decade, 4-7 February 2013, Milano, Italy.http://artico.mib.infn.it/numass2013/images/slides/workshop_melk.pdf.
[Melchiotti-numass-2012]
Neutrino Masses in Cosmology, Neutrinoless Double-Beta Decay and Direct Neutrino Masses,
C. Giunti, 2012.LIONeutrino2012, Neutrinos at the forefront of elementary particle physics and astrophysics 22-24 October 2012, Lyon, France.http://www.to.infn.it/~giunti/slides/2012/giunti-121024-lioneutrino.pdf.
[Giunti-LIONeutrino2012]
Neutrino Mass: Overview of $\beta\beta_{0\nu}$, Cosmology and Direct Measurements,
C. Giunti, 2012.Neutrino Town Meeting, European Strategy for Neutrino Oscillation Physics - II, 14-16 May 2012, CERN.http://www.to.infn.it/~giunti/slides/2012/giunti-120514-nutown.pdf.
[Giunti-NeutrinoTown2012]
Toward Solution of the MiniBooNE-LSND Anomalies,
G. Karagiorgi,
Nucl. Phys. Proc. Suppl. 229-232 (2012) 50-54.24th International Conference on Neutrino physics and astrophysics (Neutrino 2010). [Karagiorgi:2012usa]
Sterile Neutrinos and IceCube,
Francis Halzen,
J. Phys. Conf. Ser. 408 (2013) 012023,arXiv:1111.0918.
NUFACT 11, the XIIIth Intl. Workshop on Neutrino Factories, Super beams and Beta beams, 1-6 August 2011 at CERN and the University of Geneva, Switzerland. [Halzen:2011yq]
Phenomenology of Sterile Neutrinos,
Carlo Giunti,
J. Phys. Conf. Ser. 408 (2013) 012009,arXiv:1110.3914.
NUFACT 11, XIIIth International Workshop on Neutrino Factories, Super beams and Beta beams, 1-6 August 2011, CERN and University of Geneva. [Giunti:2011bx]
Search for sterile neutrinos at reactors with a small core,
Osamu Yasuda,
Acta Phys.Polon. B42 (2011) 2379,arXiv:1110.2579.
35th International Conference of Theoretical Physics: Matter to the Deepest: Recent Development in Physics of Fundamental Interactions, Ustron, Poland, 12-18 Sep 2011. [Yasuda:2011wk]
Neutrino-triggered asymmetric magnetorotational mechanism for pulsar natal kick,
A.V. Kuznetsov, N.V. Mikheev,
arXiv:1110.1041, 2011.XV-th International School 'Particles and Cosmology', Troitsk, Moscow Region, May 26 - June 2, 2011, and XV-th Lomonosov Conference on Elementary Particle Physics, August 18-24, 2011, Moscow State University, Moscow. [Kuznetsov:2011ne]
Is there any 'LSND anomaly'?,
A. Bolshakova(HARP-CDP),
Phys. Part. Nucl. 42 (2011) 680-682.4th International Pontecorvo Neutrino physics School: Alushta, Crimea, Ukraine, September 26-October 6, 2010. [Bolshakova:2011zz]
Neutrino nuclear responses for beta and double-beta decays,
Hiro Ejiri, 2011.MEDEX'11, Matrix Elements for the Double-beta-decay EXperiments, 13-16 June 2011, Prague, Czechoslovakia.http://medex11.utef.cvut.cz/talks/Ejiri.pdf.
[Ejiri-MEDEX11]
Sterile Neutrinos and Short-Baseline Oscillations,
C. Giunti, 2011.Workshop on Sterile Neutrinos and the Reactor Antineutrino Anomaly, T.U.M, Garching, 8 February 2011.http://www.to.infn.it/~giunti/slides/2011/giunti-110208-tum.pdf.
[Giunti-110208-tum]
Antineutrino reactor anomaly,
T. Mueller, 2011.23rd Rencontres de Blois,Particle Physics and Cosmology, May 29-June 3, 2011, Chateau Royal de Blois France.http://blois.in2p3.fr/2011/transparencies/Nu/mueller.pdf.
[Mueller-Blois-2011]
Short-BaseLine Electron Neutrino Disappearance,
Carlo Giunti, Marco Laveder,
Nucl. Phys. Proc. Suppl. 217 (2011) 193-195,arXiv:1012.4356.
NOW 2010, 4-11 September 2010, Conca Specchiulla (Otranto, Lecce, Italy). [Giunti:2010rz]
Some attempts to explain MINOS anomaly,
Osamu Yasuda,
AIP Conf. Proc. 1382 (2011) 103-105,arXiv:1012.3478.
12th International Workshop on Neutrino Factories, Superbeams and Beta Beams (NuFact10), October 20-25, 2010, Mumbai, India. [Yasuda:2010aa]
Constraining sterile neutrinos with a low energy beta-beam,
Sanjib Kumar Agarwalla,
AIP Conf. Proc. 1222 (2010) 169-173,arXiv:1006.1640.
11th International Workshop on Neutrino Factories, Superbeams and Betabeams: NuFact09, Chicago, Illinois, 20-25 Jul 2009. [Agarwalla:2010dk]
Sensitivity to sterile neutrino mixings and the discovery channel at a neutrino factory,
Osamu Yasuda,
arXiv:1004.2388, 2010.Fifth International Conference on BEYOND THE STANDARD MODELS OF PARTICLE PHYSICS, COSMOLOGY AND ASTROPHYSICS, Cape Town, South Africa, 1 - 6 February, 2010. [Yasuda:2010rj]
Short-Baseline $\bar\nu_{\mu}\to\bar\nu_{e}$ Oscillations,
C. Giunti, M. Laveder, 2010.11th International Workshop on Next generation Nucleon Decay and Neutrino Detectors,14-16 December 2010, Toyama, Japan.http://www.pd.infn.it/~laveder/talks/Laveder-NNN2010.pdf.
[Laveder:NNN10]
Is there any 'LSND anomaly'?,
A. Zhemchugov(HARP-CDP),
PoS ICHEP2010 (2010) 334.35th International Conference on High energy physics (ICHEP 2010): Paris, France, July 22-28, 2010. [Zhemchugov:2010zz]
Matter Effects in Solar Neutrino Active-Sterile Oscillations,
Carlo Giunti, Yu-Feng Li,
Prog. Part. Nucl. Phys. 64 (2010) 213-215,arXiv:0911.3934.
Erice 2009 Neutrinos in Cosmology, in Astro-, Particle- and Nuclear Physics. [Giunti:2009jf]
The Gallium and reactor neutrinos anomaly,
Mario A. Acero, Carlo Giunti, Marco Laveder,
Nucl. Phys. Proc. Suppl. 188 (2009) 211-213.NOW 2008: Neutrino Oscillation Workshop, Conca Specchiulla (Otranto), Lecce, Italy, 6-13 Sep 2008. [Acero:2008zz]
Short Baseline Electron Neutrino Disappearance,
Marco Laveder, 2009.EUROnu, European Commission Framework Programme 7 Design Study to investigate second generation neutrino oscillation facilities in Europe, 23-27 March 2009, CERN, Geneva, Switzerland.http://indico.cern.ch/contributionDisplay.py?contribId=53&sessionId=16&confId=42846.
[Laveder:2009EURONU]
The LSND puzzle in the light of MiniBooNE results,
Thomas Schwetz,
arXiv:0805.2234, 2008.Rencontres de Moriond EW 2008, La Thuile, 1-8 March 2008. [Schwetz:2008cp]
Gallium and Reactor Neutrinos Anomaly,
Carlo Giunti, 2008.NO-VE 08, IV International Workshop on: 'Neutrino Oscillations in Venice', 16th of the series 'Un altro modo di guardare il cielo', 15-18 April 2008, Venice, Italy.http://neutrino.pd.infn.it/NO-VE2008/Talks/Giunti.pdf.
[Giunti-NoVE08]
Signatures of sterile neutrino oscillations in high-energy cosmic neutrino flux,
Osamu Yasuda, Andrea Donini,
PoS NUFACT08 (2008) 146.Proceedings, 10th International Workshop on Neutrino factories, super beams and beta beams (NuFact08). [Yasuda:2008zz]
Neutrino telescopes as a probe of active and sterile neutrino mixings,
Zhi-zhong Xing,
Nucl. Phys. B, Proc. Suppl. 175-176 (2008) 421-426,arXiv:0711.4163.
XIV International Symposium on Very High Energy Cosmic Ray Interactions, Weihai, China, August 15-22, 2006. [Xing:2007rz]
Sterile neutrinos after the first MiniBooNE results,
Michele Maltoni,
J. Phys. Conf. Ser. 110 (2008) 082011,arXiv:0711.2018.
The 2007 Europhysics Conference on High Energy Physics, Manchester, England, July 19-25, 2007. [Maltoni:2007ur]
Sterile neutrinos and structure formation,
Jaroslaw Stasielak, Peter L. Biermann, Alexander Kusenko,
Acta Phys. Polon. B38 (2007) 3869-3878,arXiv:0710.5431.
XLVII Cracow School of Theoretical Physics held in Zakopane, Poland, June 2007. [Stasielak:2007ex]
LENS as a Probe of Sterile Neutrino Mediated Oscillations,
C. Grieb et al.,
arXiv:0705.2769, 2007.12th International Workshop on Neutrinos Telescopes: Twenty Years after the Supernova 1987A Neutrino Bursts Discovery, Venice, Italy, 6-9 Mar 2007. [Grieb:2007jt]
Restrictions on sterile neutrino parameters from astrophysical observations,
Oleg Ruchayskiy,
arXiv:0704.3215, 2007.11th Marcel Grossmann meeting on general relativity, 23-29 July 2006, Berlin, Germany. [Ruchayskiy:2007pq]
Sterile Neutrinos as mirror matter,
Marco Laveder, 2007.Search for Baryon and Lepton Number Violations International Workshop, 20-22 September 2007,LBNL Berkeley, California, U.S.A.http://inpa.lbl.gov/blnv2/files/Friday/Session10/Laveder.pdf.
[Laveder:2007BLNV]
Sterile Neutrinos in astrophysical and cosmological sauce,
Marco Cirelli,
arXiv:astro-ph/0410122, 2004.10th International Symposium on Particles, Strings and Cosmology (PASCOS '04), August 2004, Boston, USA, and XVI Incontri sulla Fisica delle Alte Energie (IFAE), April 2004, Torino, Italy. [Cirelli:2004qs]
Sterile neutrinos: from cosmology to experiments,
Guido Marandella,
arXiv:hep-ph/0405090, 2004.39th Rencontres de Moriond on Electroweak Interactions and Unified Theories, La Thuile, Aosta Valley, Italy, 21-28 March 2004. [Marandella:2004xv]
Big Bang Nucleosynthesis and neutrinos,
F.L. Villante, A.D. Dolgov,
arXiv:hep-ph/0310138, 2003.Beyond the Desert '03, Ringberg, 11-15 July 2003. [Villante:2003jy]
Can four neutrinos explain global oscillation data including LSND and cosmology?,
M. Maltoni, T. Schwetz, M. A. Tortola, J. W. F. Valle,
arXiv:hep-ph/0305312, 2003.NOON 2003 workshop, February 10-14, 2003, Kanazawa, Japan. Comment:Figure 5 Left shows allowed regions at 90\% and 99\% CL for (3+1) schemes without (solid and dashed lines) and including data from cosmology (coloured regions). The grey region is the 99\% CL region of LSND. [M.L.]. [Maltoni:2003yr]
Can 4 neutrinos explain global oscillation data including LSND?,
T. Schwetz, 2003.4th Workshop on 'Neutrino Oscillations and their Origin' (NOON2003), February 10-14, 2003, Ishikawa Kousei Nenkin Kaikan, Kanazawa, Japan.http://www-sk.icrr.u-tokyo.ac.jp/noon2003/transparencies/10/Schwets.pdf.
[Schwetz:NOON2003]
Standard and Non-Standard Physics in Neutrino Oscillations,
M. Maltoni,
Nucl. Phys. Proc. Suppl. 114 (2003) 191-196,arXiv:hep-ph/0210111.
XXX International Meeting on Fundamental Physics (Jaca, Spain, 28/01-1/02/2002). [Maltoni:2002kq]
Global analysis of neutrino oscillation data in four-neutrino schemes,
M. Maltoni, T. Schwetz, M. A. Tortola, J. W. F. Valle,
Nucl. Phys. Proc. Suppl. 114 (2003) 203-207,arXiv:hep-ph/0209368.
XXX Int. Meeting on Fundamental Physics, Jaca, Spain, 28 Jan-1 Feb 2002. Comment:The figure n.4 shows the upper bound on $\sin^2 2\theta_{LSND}$ from SBL and atmospheric neutrino data in (3+1) schemes compared to LSND allowed region. [M.L.]. [Maltoni:2002ac]
Theory of Neutrino Masses and Mixings,
Hitoshi Murayama,
Int. J. Mod. Phys. A17 (2002) 3403-3420,arXiv:hep-ph/0201022.
20th International Symposium on Lepton and Photon Interactions at High Energies (LP 01), Rome, Italy, 23-28 Jul 2001. [Murayama:2002bj]
The cosmological information on neutrino mixing,
Pasquale Di Bari,
PoS HEP2001 (2001) hep2001/214,arXiv:hep-ph/0111056.
International Europhysics Conference on High-Energy Physics (HEP 2001), Budapest, Hungary, 12-18 Jul 2001. [DiBari:2001qd]
Update on solar and atmospheric four-neutrino oscillations,
M. C. Gonzalez-Garcia, M. Maltoni, Carlos Pena-Garay,
PoS HEP2001 (2001) hep2001/191,arXiv:hep-ph/0108073.
International Europhysics Conference on High-Energy Physics (HEP 2001), Budapest, Hungary, 12-18 Jul 2001. [Gonzalez-Garcia:2001gyi]
Physical reach of a neutrino factory in the 2+2 and 3+1 four-family scenario,
A. Donini, D. Meloni,
Nucl. Instrum. Meth. A503 (2001) 230,arXiv:hep-ph/0107274.
[Donini:2001qv]
Four-neutrino mixing solutions of the atmospheric neutrino anomaly,
A. Marrone,
Nucl. Phys. Proc. Suppl. 100 (2001) 264-266,arXiv:hep-ph/0103026.
[Marrone:2000kx]
Four neutrino oscillation analysis of atmospheric neutrino data and application to long baseline experiments,
Osamu Yasuda,
arXiv:hep-ph/0008256, 2000.$30^{\mathrm{th}}$ International Conference on High-Energy Physics (ICHEP 2000), Osaka, Japan, 27 Jul - 2 Aug 2000. [Yasuda:2000wb]
Update on four-family neutrino oscillations at nu-factory,
A. Donini, S. Rigolin,
arXiv:hep-ph/0007283, 2000.NuFACT'00: International Workshop on Muon Storage Ring for a Neutrino Factory, Monterey, California, 22-26 May 2000. [Donini:2000ma]
Four-neutrino oscillations and the solar neutrino problem,
C. Giunti, M. C. Gonzalez-Garcia, Carlos Pena-Garay,
Nucl. Instrum. Meth. A472 (2000) 364-370,arXiv:hep-ph/0007154.
NuFACT'00: International Workshop on Muon Storage Ring for a Neutrino Factory, Monterey, California, 22-26 May 2000. [Giunti:2000ye]
Analysis of the Superkamiokande atmospheric neutrino data in the framework of four neutrino mixings,
Osamu Yasuda,
Nucl. Instrum. Meth. A472 (2000) 343-347,arXiv:hep-ph/0007076.
NuFACT'00: International Workshop on Muon Storage Ring for a Neutrino Factory, Monterey, California, 22-26 May 2000. [Yasuda:2000dc]
What are sterile neutrinos good for?,
Mitesh Patel, George M. Fuller,
arXiv:hep-ph/0003034, 2000.American Physical Society (APS) Meeting of the Division of Particles and Fields (DPF 99), Los Angeles, California, 5-9 Jan 1999. [Patel:1999hm]
Four species neutrino oscillations at nu-factory: Sensitivity and CP-violation,
A. Donini, M. B. Gavela, P. Hernandez, S. Rigolin,
Nucl. Instrum. Meth. A451 (2000) 58,arXiv:hep-ph/9910516.
NuFACT'99, Lyon, France, 5-9 Jul 1999. [Donini:1999he]
Experimental constraints on four-neutrino mixing,
Carlo Giunti,
arXiv:hep-ph/9909465, 1999.Neutrino Mixing: Meeting in Honor of Samoil Bilenky's $70^{\mathrm{th}}$ Birthday, Turin, Italy, 25-27 Mar 1999. [Giunti:1999hb]
Four-neutrino mixing,
Carlo Giunti,
arXiv:hep-ph/9909395, 1999.Proc. of the $23^{\mathrm{rd}}$ Johns Hopkins Workshop on Current Problems in Particle Theory: Neutrinos in the Next Millennium, Baltimore, MD, 10-12 June 1999, edited by G. Domokos and S. Kovesi-Domokos, pag. 305. [Giunti:1999ww]
Four neutrino mixing,
C. Giunti,
arXiv:hep-ph/9907485, 1999.$10^{\mathrm{th}}$ International School on Particles and Cosmology, Karbardino-Balkaria, Russia, 19-25 Apr 1999. [Giunti:1999tz]
Sterile neutrinos?,
S. M. Bilenky, C. Giunti,
arXiv:hep-ph/9905246, 1999.$8^{\mathrm{th}}$ International Workshop on Neutrino Telescopes, Venice, Italy, 23-26 Feb 1999, vol. 2, p. 1. [Bilenky:1999hk]
Four-neutrino spectrum from oscillation data,
S. M. Bilenky, C. Giunti, W. Grimus, T. Schwetz,
arXiv:hep-ph/9904316, 1999.Proc. ot the $17^{\mathrm{th}}$ International Workshop on Weak Interactions and Neutrinos (WIN 99), Cape Town, South Africa, 24-30 Jan 1999, edited by C.A. Dominguez and R.D. Viollier, pag. 195. [Bilenky:1999ga]
Searches for sterile neutrinos at reactor experiments,
L. Mikaelyan, V. Sinev,
Phys. Atom. Nucl. 62 (1999) 2008-2012,arXiv:hep-ph/9811228.
[Mikaelyan:1998yg]
Four-neutrino mixing, oscillations and big-bang nucleosynthesis,
C. Giunti, S. M. Bilenky, W. Grimus, T. Schwetz,
arXiv:hep-ph/9809466, 1998.\textit{New Era in Neutrino Physics}, Proc. of the Satellite Symposium after Neutrino '98, Tokyo, Metropolitan University, Japan, 11-12 June 1998, edited by H. Minakata and O. Yasuda, Universal Academy Press, 1999, p. 179. [Giunti:1998vz]
Four-neutrino mixing, oscillations and BBN,
S. M. Bilenky, C. Giunti, W. Grimus, T. Schwetz,
arXiv:hep-ph/9807569, 1998.\textit{New Trends in Neutrino Physics}, Proc. of the Ringberg Euroconference, Tergernsee, Germany, 24-29 May 1998, edited by B.A. Kniehl, G.G. Raffelt and N. Schmitz, World Scientific, 1999, p. 117. [Bilenky:1998yq]
Neutrino mass spectrum and mixing from neutrino oscillation data,
S. M. Bilenky, C. Giunti, W. Grimus,
arXiv:hep-ph/9807568, 1998.\textit{New Trends in Neutrino Physics}, Proc. of the Ringberg Euroconference, Tergernsee, Germany, 24-29 May 1998, edited by B.A. Kniehl, G.G. Raffelt and N. Schmitz, World Scientific, 1999, p. 107. [Bilenky:1998yp]
Neutrino masses and mixing,
S. M. Bilenky, C. Giunti, W. Grimus,
arXiv:hep-ph/9805411, 1998.$12^{\mathrm{th}}$ \textit{Les Rencontre de Physique de la Vallee d'Aoste: Results and Perspectives in Particle Physics}, La Thuile, Aosta Valley, Italy, 1-7 Mar 1998. [Bilenky:1998id]
Four neutrino mixing and long baseline neutrino oscillation experiments,
S. M. Bilenky, C. Giunti, W. Grimus,
arXiv:hep-ph/9805387, 1998.$33^{\mathrm{rd}}$ \textit{Rencontres de Moriond: Electroweak Interactions and Unified Theories}, Les Arcs, France, 14-21 Mar 1998. [Bilenky:1988soz]
Neutrino masses and mixings in the light of experimental data,
S. M. Bilenky, C. Giunti, W. Grimus,
Pramana 51 (1998) 51,arXiv:hep-ph/9805368.
$5^{\mathrm{th}}$ Workshop on High-Energy Phenomenology (WHEPP 5), Pune, India, 12-26 Jan 1998. [Bilenky:1998cy]
Constraints on long baseline neutrino oscillations from the results of neutrino oscillation experiments,
S. M. Bilenky, C. Giunti, W. Grimus,
Nucl. Phys. Proc. Suppl. 70 (1999) 258,arXiv:hep-ph/9711432.
$5^{\mathrm{th}}$ International Workshop on Topics in Astroparticle and Underground Physics (TAUP 97), Gran Sasso, Italy, 7-11 Sep 1997. [Bilenky:1997hw]
Neutrino masses and mixing from neutrino oscillation experiments,
S. M. Bilenky, C. Giunti, W. Grimus,
arXiv:hep-ph/9711416, 1997.Proc. of the \textit{International Europhysics Conference on High-Energy Physics} (HEP 97), Jerusalem, Israel, 19-26 Aug 1997, Springer-Verlag 1999, pag. 815-820. [Bilenky:1997fa]
Schemes of neutrino mixing from the results of neutrino oscillation experiments,
S. M. Bilenky, C. Giunti, W. Grimus,
arXiv:hep-ph/9707372, 1997.Proc. of the $9^{\mathrm{th}}$ \textit{International School on Particles and Cosmology} (Baksan 97), Baksan, Russia, 15-22 Apr 1997, pag. 54-63. [Bilenky:1997fx]
Neutrino masses and mixing from neutrino oscillation data,
S. M. Bilenky, C. Giunti, W. Grimus,
Nucl. Phys. Proc. Suppl. 66 (1998) 404,arXiv:hep-ph/9707358.
$16^{\mathrm{th}}$ International Workshop on Weak Interactions and Neutrinos (WIN 97), Capri, Italy, 22-28 June 1997. [Bilenky:1997cc]
Neutrino masses and mixing from neutrino oscillation experiments,
S. M. Bilenky, C. Giunti, W. Grimus,
arXiv:hep-ph/9705436, 1997.Proc. of the \textit{Fourth International Solar Neutrino Conference}, Heidelberg, Germany, 8-11 Apr 1997, pag. 354-369. [Bilenky:1997wm]
Neutrino oscillation experiments and the neutrino mass spectrum,
S. M. Bilenky, C. Giunti, W. Grimus,
arXiv:hep-ph/9609343, 1996.Proc. of the $17^{\mathrm{th}}$ \textit{International Conference on Neutrino Physics and Astrophysics} (Neutrino '96), Helsinki, Finland, 13-20 June 1996, World Scientific 1997, pag. 174-181. [Bilenky:1996iw]
Resonant production of sterile neutrino dark matter with a refined numerical scheme,
Kentaro Kasai, Masahiro Kawasaki, Kai Murai,
arXiv:2510.01907, 2025. [2510.01907]
Cosmic Structure Strikes Back: The Elimination of Vector-Mediated Nonstandard Interaction Models as a Mechanism for Sterile Neutrino Dark Matter Production,
Cannon M. Vogel, Helena Garcia Escudero, Kevork N. Abazajian,
arXiv:2509.05631, 2025. [Vogel:2025gan]
Reheating after the Supercooled Phase Transitions with Radiative Symmetry Breaking,
Francesco Rescigno, Alberto Salvio,
arXiv:2507.21215, 2025. [Rescigno:2025ong]
Maximal parameter space of sterile neutrino dark matter with lepton asymmetries,
Kensuke Akita, Koichi Hamaguchi, Maksym Ovchynnikov,
arXiv:2507.20659, 2025. [Akita:2025txo]
Return of the Lepton Number: Sterile Neutrino Dark Matter Production and the Revival of the Shi-Fuller Mechanism,
Cannon M. Vogel, Helena Garcia Escudero, Julien Froustey, Kevork N. Abazajian,
arXiv:2507.18752, 2025. [Vogel:2025aut]
Multiple Populations of Same Sterile Neutrino as Dark Matter,
Muping Chen, Graciela B. Gelmini, Philip Lu, Volodymyr Takhistov,
arXiv:2507.17830, 2025. [Chen:2025sgd]
On the initial conditions of the $\nu $HDM cosmological model,
Nick Samaras, Sebastian Grandis, Pavel Kroupa,
arXiv:2506.19196, 2025. [Samaras:2025noi]
Opening up New Parameter Space for Sterile Neutrino Dark Matter,
P. S. Bhupal Dev, Bhaskar Dutta, Srubabati Goswami, Jianrong, Tang, Aaroodd Ujjayini Ramachandran,
arXiv:2505.22463, 2025. [Dev:2025sah]
Cosmological impact of $\nu$DM interactions enhanced in narrow redshift ranges,
Sebastian Trojanowski, Lei Zu,
arXiv:2505.20396, 2025. [Trojanowski:2025oro]
Playing with lepton asymmetry at the resonant production of sterile neutrino dark matter,
Dmitry Gorbunov, Dmitry Kalashnikov, George Krugan,
Phys.Lett.B 868 (2025) 139750,arXiv:2502.17374.
[Gorbunov:2025nqs]
Constraints on the properties of $\nu$MSM dark matter using the satellite galaxies of the Milky Way,
Oliver Newton, Mark R. Lovell, Carlos S. Frenk, Adrian Jenkins, John C. Helly, Shaun Cole, Andrew J. Benson,
Mon.Not.Roy.Astron.Soc. 3713 (2025) 3727,arXiv:2408.16042.
[Newton:2024jsy]
Old neutron stars as a new probe of relic neutrinos and sterile neutrino dark matter,
Saurav Das, P. S. Bhupal Dev, Takuya Okawa, Amarjit Soni,
Phys.Rev.D 111 (2025) 055035,arXiv:2408.01484.
[Das:2024thc]
Phasing out of Darkness: From Sterile Neutrino Dark Matter to Neutrino Masses via Time-Dependent Mixing,
Florian Goertz, Maya Hager, Giorgio Laverda, Javier Rubio,
JHEP 02 (2025) 213,arXiv:2407.04778.
[Goertz:2024gzw]
Strong limits on keV-scale galactic sterile neutrino dark matter with stray light from NuSTAR after 11 years of operation,
R. A. Krivonos, V. V. Barinov, A. A. Mukhin, D. S. Gorbunov,
Phys.Rev.Lett. 133 (2024) 261002,arXiv:2405.17861.
[Krivonos:2024yvm]
Heavy Neutrino as Dark Matter in a Neutrinophilic U(1) Model,
Waleed Abdallah, Anjan Kumar Barik, Santosh Kumar Rai, Tousik Samui,
Eur.Phys.J.C 84 (2024) 1087,arXiv:2405.15333.
[Abdallah:2024npf]
A Dark Matter Fermionic Quantum Fluid from Standard Model Dynamics,
Stephon Alexander, Heliudson Bernardo, Humberto Gilmer,
arXiv:2405.08874, 2024. [Alexander:2024qml]
Constraining dark matter model using 21cm line intensity mapping,
Koya Murakami, Kenji Kadota, Atsushi J. Nishizawa, Kentaro Nagamine, Ikkoh Shimizu,
Phys.Rev.D 110 (2024) 023526,arXiv:2403.06203.
[Murakami:2024jyi]
Dark population transfer mechanism for sterile neutrino dark matter,
George M. Fuller, Lukas Graf, Amol V. Patwardhan, Jacob Spisak,
Phys.Rev.Lett. 133 (2024) 181002,arXiv:2402.13878.
[Fuller:2024noz]
Primordial Black Hole Sterile Neutrinogenesis: Sterile Neutrino Dark Matter Production Independent of Couplings,
Muping Chen, Graciela B. Gelmini, Philip Lu, Volodymyr Takhistov,
JCAP 07 (2024) 059,arXiv:2312.12136.
[Chen:2023tzd]
Probing self-interacting sterile neutrino dark matter with the diffuse supernova neutrino background,
A. Baha Balantekin, George M. Fuller, Anupam Ray, Anna M. Suliga,
Phys.Rev.D 108 (2023) 123011,arXiv:2310.07145.
[Balantekin:2023jlg]
Primordial Black Hole Neutrinogenesis of Sterile Neutrino Dark Matter,
Muping Chen, Graciela B. Gelmini, Philip Lu, Volodymyr Takhistov,
Phys.Lett.B 852 (2024) 138609,arXiv:2309.12258.
[Chen:2023lnj]
Visible in the laboratory and invisible in cosmology: decaying sterile neutrinos,
Kevork N. Abazajian, Helena Garcia Escudero,
Phys.Rev.D 108 (2023) 123036,arXiv:2309.11492.
[Abazajian:2023reo]
Thermal effects in freeze-in neutrino dark matter production,
A. Abada, G. Arcadi, M. Lucente, G. Piazza, S. Rosauro-Alcaraz,
JHEP 11 (2023) 180,arXiv:2308.01341.
[Abada:2023mib]
Boosting the production of sterile neutrino dark matter with self-interactions,
Maria Dias Astros, Stefan Vogl,
JHEP 03 (2024) 032,arXiv:2307.15565.
[Astros:2023xhe]
Exploring resonantly produced mixed sterile neutrino dark matter models,
Emma L. Horner, Francisco Mungia Wulftange, Isabella A. Ianora, Chad T. Kishimoto,
Phys.Rev.D 108 (2023) 083503,arXiv:2306.16532.
[Horner:2023cmc]
Limits from the grave: resurrecting Hitomi for decaying dark matter and forecasting leading sensitivity for XRISM,
Christopher Dessert, Orion Ning, Nicholas L. Rodd, Benjamin R. Safdi,
Phys.Rev.Lett. 132 (2024) 211002,arXiv:2305.17160.
[Dessert:2023vyl]
Anticipating the XRISM search for the decay of resonantly produced sterile neutrino dark matter,
Mark R. Lovell,
Mon.Not.Roy.Astron.Soc. 524 (2023) 6345-6357,arXiv:2303.15513.
[Lovell:2023olv]
All-sky limits on Sterile Neutrino Galactic Dark Matter obtained with SRG/ART-XC after two years of operations,
E.I. Zakharov et al.,
Phys.Rev.D 109 (2024) L021301,arXiv:2303.12673.
[Zakharov:2023mnp]
KeV dark matter in minimal extended seesaw model and its predictions in neutrinoless double beta decay and baryogenesis,
Mayengbam Kishan Singh, S. Robertson Singh, N. Nimai Singh,
arXiv:2302.09840, 2023. [Singh:2023jll]
Can Neutrino Self-interactions Save Sterile Neutrino Dark Matter?,
Rui An, Vera Gluscevic, Ethan O. Nadler, Yue Zhang,
Astrophys.J.Lett. 954 (2023) L18,arXiv:2301.08299.
[An:2023mkf]
Shinning Light on Sterile Neutrino Portal Dark Matter from Cosmology and Collider,
Ang Liu, Feng-Lan Shao, Zhi-Long Han, Yi Jin, Honglei Li,
Phys.Rev.D 108 (2023) 115028,arXiv:2212.10043.
[Liu:2022cct]
Correlation Analysis of Decaying Sterile Neutrino Dark Matter in the Context of the SRG Mission,
V. V. Barinov,
JCAP 02 (2023) 055,arXiv:2211.05919.
[Barinov:2022kfp]
Gravitational scattering of the sterile neutrino halo dark matter,
Man Ho Chan,
Mon.Not.Roy.Astron.Soc. 517 (2022) L146-L149,arXiv:2210.11667.
[Chan:2022rsp]
Entering the Era of Measuring Sub-Galactic Dark Matter Structure: Accurate Transfer Functions for Axino, Gravitino \& Sterile Neutrino Thermal Warm Dark Matter,
Cannon M. Vogel, Kevork N. Abazajian,
Phys.Rev.D 108 (2023) 043520,arXiv:2210.10753.
[Vogel:2022odl]
Constraints on light decaying dark matter candidates from 16 years of INTEGRAL/SPI observations,
Francesca Calore, Ariane Dekker, Pasquale Dario Serpico, Thomas Siegert,
Mon.Not.Roy.Astron.Soc. 520 (2023) 4167-4172,arXiv:2209.06299.
[Calore:2022pks]
Core-collapse Supernova Constraint on the Origin of Sterile Neutrino Dark Matter via Neutrino Self-interactions,
Yu-Ming Chen, Manibrata Sen, Walter Tangarife, Douglas Tuckler, Yue Zhang,
JCAP 11 (2022) 014,arXiv:2207.14300.
[Chen:2022kal]
Improved cosmological bounds for a fine-tuned see-saw mechanism of keV sterile neutrinos,
M. N. Dubinin, D.M. Kazarkin,
arXiv:2206.05186, 2022. [Dubinin:2022axc]
Constraints on sterile neutrino models from strong gravitational lensing, Milky Way satellites, and Lyman-$\alpha$ forest,
Ioana A. Zelko, Tommaso Treu, Kevork N. Abazajian, Daniel Gilman, Andrew J. Benson, Simon Birrer, Anna M. Nierenberg, Alexander Kusenko,
Phys.Rev.Lett. 129 (2022) 191301,arXiv:2205.09777.
[Zelko:2022tgf]
Sterile neutrino production at small mixing in the early universe,
Gonzalo Alonso-Alvarez, James M. Cline,
Phys.Lett.B 833 (2022) 137278,arXiv:2204.04224.
[Alonso-Alvarez:2022uxp]
Freeze-In of radiative keV-scale neutrino dark matter from a new $\text{U}(1)_\text{B-L}$,
Maximilian Berbig,
JHEP 09 (2022) 101,arXiv:2203.04276.
[Berbig:2022nre]
Bounds on sterile neutrino lifetime and mixing angle with active neutrinos by global 21 cm signal,
Pravin Kumar Natwariya, Alekha C. Nayak,
Phys.Lett.B 827 (2022) 136955,arXiv:2202.06007.
[Natwariya:2022xlv]
Momentum distributions of cosmic relics: Improved analysis,
Kalle Ala-Mattinen, Matti Heikinheimo, Kimmo Kainulainen, Kimmo Tuominen,
Phys.Rev.D 105 (2022) 123005,arXiv:2201.06456.
[Ala-Mattinen:2022nuj]
Imprints of fermionic and bosonic mixed dark matter on the 21-cm signal at cosmic dawn,
Sambit K. Giri, Aurel Schneider,
Phys.Rev.D 105 (2022) 083011,arXiv:2201.02210.
[Giri:2022nxq]
Sterile neutrino dark matter production in presence of non-standard neutrino self-interactions: an EFT approach,
Cristina Benso, Werner Rodejohann, Manibrata Sen, Aaroodd Ujjayini Ramachandran,
Phys.Rev.D 105 (2022) 055016,arXiv:2112.00758.
[Benso:2021hhh]
Cosmological Dependence of Sterile Neutrino Dark Matter With Self-Interacting Neutrinos,
Carlos Chichiri, Graciela B. Gelmini, Philip Lu, Volodymyr Takhistov,
JCAP 09 (2022) 036,arXiv:2111.04087.
[Chichiri:2021wvw]
The Epoch of Reionization in Warm Dark Matter Scenarios,
Massimiliano Romanello, Nicola Menci, Marco Castellano,
Universe 7 (2021) 365,arXiv:2110.05262.
[Romanello:2021gnp]
Mirror Twin Higgs Cosmology: Constraints and a Possible Resolution to the $H_0$ and $S_8$ Tensions,
Saurabh Bansal, Jeong Han Kim, Christopher Kolda, Matthew Low, Yuhsin Tsai,
JHEP 05 (2022) 050,arXiv:2110.04317.
[Bansal:2021dfh]
Self-Interacting Dark Matter in Cosmology: accurate numerical implementation and observational constraints,
Rafael Yunis, Carlos R. Arguelles, Claudia G. Scoccola, Diana Lopez Nacir, Gaston Giordano,
JCAP 02 (2022) 024,arXiv:2108.02657.
[Yunis:2021fgz]
A model for mixed warm and hot right-handed neutrino dark matter,
Maira Dutra, Vinicius Oliveira, C. A. de S. Pires, Farinaldo S. Queiroz,
JHEP 10 (2021) 005,arXiv:2104.14542.
[Dutra:2021lto]
Freeze-in sterile neutrino dark matter in a class of U$(1)^\prime$ models with inverse seesaw,
Arindam Das, Srubabati Goswami, Vishnudath K.N., Tanmay Kumar Poddar,
Nucl.Phys.B 1004 (2024) 116568,arXiv:2104.13986.
[Das:2021nqj]
Decaying dark matter in dwarf spheroidal galaxies: Prospects for X-ray and gamma-ray telescopes,
Shin'ichiro Ando et al.,
Phys.Rev.D 104 (2021) 023022,arXiv:2103.13242.
[Ando:2021fhj]
Searches for sterile neutrinos and axionlike particles from the Galactic halo with eROSITA,
Ariane Dekker, Ebo Peerbooms, Fabian Zimmer, Kenny C. Y. Ng, Shin'ichiro Ando,
Phys.Rev.D 104 (2021) 023021,arXiv:2103.13241.
[Dekker:2021bos]
Rapid onset of the 21-cm signal suggests a preferred mass range for dark matter particle,
Venno Vipp, Andi Hektor, Gert Hutsi,
Phys.Rev. D103 (2021) 123002,arXiv:2103.07462.
[Vipp:2021obj]
A deep search for decaying dark matter with XMM-Newton blank-sky observations,
Joshua W. Foster, Marius Kongsore, Christopher Dessert, Yujin Park, Nicholas L. Rodd, Kyle Cranmer, Benjamin R. Safdi,
Phys.Rev.Lett. 127 (2021) 051101,arXiv:2102.02207.
[Foster:2021ngm]
Oscillations of sterile neutrinos from dark matter decay eliminates the IceCube-Fermi tension,
Luis A. Anchordoqui, Vernon Barger, Danny Marfatia, Mary Hall Reno, Thomas J. Weiler,
Phys.Rev. D103 (2021) 075022,arXiv:2101.09559.
[Anchordoqui:2021dls]
A massive blow for $\Lambda$CDM $-$ the high redshift, mass, and collision velocity of the interacting galaxy cluster El Gordo contradicts concordance cosmology,
E. Asencio, I. Banik, P. Kroupa,
Mon.Not.Roy.Astron.Soc. 500 (2021) 5249-5267,arXiv:2012.03950.
[Asencio:2020mqh]
Intimate Relationship Between Sterile Neutrino Dark Matter and $\Delta N_{\rm eff}$,
Kevin J. Kelly, Manibrata Sen, Yue Zhang,
Phys.Rev.Lett. 127 (2021) 041101,arXiv:2011.02487.
[Kelly:2020aks]
Joint constraints on thermal relic dark matter from a selection of astrophysical probes,
Wolfgang Enzi et al.,
Mon.Not.Roy.Astron.Soc. 506 (2021) 4,arXiv:2010.13802.
[Enzi:2020ieg]
Degeneracies between baryons and dark matter: the challenge of constraining the nature of dark matter with JWST,
Diana Khimey, Sownak Bose, Sandro Tacchella,
Mon.Not.Roy.Astron.Soc. 506 (2021) 4139-4150,arXiv:2010.10520.
[Khimey:2020shj]
New Constraints on the Mass of Fermionic Dark Matter from Dwarf Spheroidal Galaxies,
James Alvey, Nashwan Sabti, Victoria Tiki, Diego Blas, Kyrylo Bondarenko, Alexey Boyarsky, Miguel Escudero, Malcolm Fairbairn, Matthew Orkney, Justin I. Read,
Mon.Not.Roy.Astron.Soc. 501 (2021) 1,arXiv:2010.03572.
[Alvey:2020xsk]
The KBC void and Hubble tension contradict $\Lambda$CDM on a Gpc scale $-$ Milgromian dynamics as a possible solution,
Moritz Haslbauer, Indranil Banik, Pavel Kroupa,
Mon.Not.Roy.Astron.Soc. 499 (2020) 2845-2883,arXiv:2009.11292.
[Haslbauer:2020xaa]
The neutrino-floor in the presence of dark radation,
Marco Nikolic, Suchita Kulkarni, Josef Pradler,
Eur.Phys.J.C 82 (2022) 650,arXiv:2008.13557.
[Nikolic:2020fom]
Dark Matter EFT, the Third - Neutrino WIMPs,
Ingolf Bischer, Tilman Plehn, Werner Rodejohann,
SciPost Phys. 10 (2021) 039,arXiv:2008.04718.
[Bischer:2020sop]
Probing the Milky Way's Dark Matter Halo for the 3.5 keV Line,
Dominic Sicilian, Nico Cappelluti, Esra Bulbul, Francesca Civano, Massimo Moscetti, Christopher S. Reynolds,
arXiv:2008.02283, 2020. [Sicilian:2020ofh]
Boosted Neutrinos and Relativistic Dark Particles as Messengers from Reheating,
Joerg Jaeckel, Wen Yin,
JCAP 2102 (2021) 044,arXiv:2007.15006.
[Jaeckel:2020oet]
The XMM Cluster Survey: new evidence for the 3.5 keV feature in clusters is inconsistent with a dark matter origin,
S. Bhargava et al.,
Mon.Not.Roy.Astron.Soc. 497 (2020) 656-671,arXiv:2006.13955.
[Bhargava:2020fxr]
Degenerate dark matter micro-nuggets from $\rm{eV}$ sterile states and the Hubble tension,
Subinoy Das, Prolay Chanda,
Astrophys.J. 915 (2021) 132,arXiv:2005.11889.
[Gogoi:2020qif]
Origin of Sterile Neutrino Dark Matter via Vector Secret Neutrino Interactions,
Kevin J. Kelly, Manibrata Sen, Walter Tangarife, Yue Zhang,
Phys.Rev. D101 (2020) 115031,arXiv:2005.03681.
[Kelly:2020pcy]
Sterile neutrino dark matter: Impact of active-neutrino opacities,
Dietrich Bodeker, Alexander Klaus,
JHEP 2007 (2020) 218,arXiv:2005.03039.
[Bodeker:2020hbo]
Local Group star formation in warm and self-interacting dark matter cosmologies,
Mark R. Lovell, Wojciech Hellwing, Aaron Ludlow, Jesus Zavala, Andrew Robertson, Azadeh Fattahi, Carlos S. Frenk, Jennifer Hardwick,
Mon.Not.Roy.Astron.Soc. 498 (2020) 702-717,arXiv:2002.11129.
[Lovell:2020vlf]
Can EDGES observation favour any dark matter model?,
Anton Rudakovskyi, Denys Savchenko, Maxym Tsizh,
Mon.Not.Roy.Astron.Soc. 497 (2020) 3393-3399,arXiv:1909.06303.
[Rudakovskyi:2019cxt]
MeV neutrino dark matter: Relic density, electron recoil and lepton flavour violation,
J. Fiaschi, M. Klasen, M. Vargas, C. Weinheimer, S. Zeinstra,
JHEP 1911 (2019) 129,arXiv:1908.09882.
[Fiaschi:2019evv]
NuSTAR Tests of Sterile-Neutrino Dark Matter: New Galactic Bulge Observations and Combined Impact,
Brandon M. Roach, Kenny C. Y. Ng, Kerstin Perez, John F. Beacom, Shunsaku Horiuchi, Roman Krivonos, Daniel R. Wik,
arXiv:1908.09037, 2019. [Roach:2019kwx]
Hidden Treasures: sterile neutrinos as dark matter with miraculous abundance, structure formation for different production mechanisms, and a solution to the sigma-8 problem,
Kevork N. Abazajian, Alexander Kusenko,
Phys.Rev. D100 (2019) 103513,arXiv:1907.11696.
[Abazajian:2019ejt]
The lensing properties of subhaloes in massive elliptical galaxies in sterile neutrino cosmologies,
Giulia Despali, Mark Lovell, Simona Vegetti, Robert A. Crain, Benjamin D. Oppenheimer,
Mon.Not.Roy.Astron.Soc. 491 (2020) 1295-1310,arXiv:1907.06649.
[Despali:2019bhl]
7.1 keV sterile neutrino dark matter constraints from a deep Chandra X-ray observation of the Galactic bulge Limiting Window,
F. Hofmann, C. Wegg,
Astron.Astrophys. 625 (2019) L7,arXiv:1905.00916.
[Hofmann:2019ihc]
Self-interacting sterile neutrino dark matter: the heavy-mediator case,
Lucas Johns, George M. Fuller,
Phys.Rev. D100 (2019) 023533,arXiv:1903.08296.
[Johns:2019cwc]
New Constraints on Sterile Neutrino Dark Matter from $NuSTAR$ M31 Observations,
Kenny C. Y. Ng, Brandon M. Roach, Kerstin Perez, John F. Beacom, Shunsaku Horiuchi, Roman Krivonos, Daniel R. Wik,
Phys.Rev. D99 (2019) 083005,arXiv:1901.01262.
[Ng:2019gch]
Evidence against the decaying dark matter interpretation of the 3.5 keV line from blank sky observations,
Christopher Dessert, Nicholas L. Rodd, Benjamin R. Safdi,
Science 367 (2020) 1465,arXiv:1812.06976.
[Dessert:2018qih]
Dark matter model favoured by reionization data: 7 keV sterile neutrino vs cold dark matter,
Anton Rudakovskyi, Dmytro Iakubovskyi,
Mon.Not.Roy.Astron.Soc. 483 (2019) 4080-4084,arXiv:1811.02799.
[Rudakovskyi:2018jfc]
Dark Matter microphysics and 21 cm observations,
Laura Lopez-Honorez, Olga Mena, Pablo Villanueva-Domingo,
Phys.Rev. D99 (2019) 023522,arXiv:1811.02716.
[Lopez-Honorez:2018ipk]
New constraints on sterile neutrino dark matter from the Galactic Center,
R. Yunis, C. R. Arguelles, N. E. Mavromatos, A. Moline, A. Krut, J. A. Rueda, R. Ruffini,
arXiv:1810.05756, 2018. [Yunis:2018eux]
Induced resonance makes light sterile neutrino Dark Matter cool,
F. Bezrukov, A. Chudaykin, D. Gorbunov,
Phys.Rev. D99 (2019) 083507,arXiv:1809.09123.
[Bezrukov:2018wvd]
Explanation of the 511 keV line: Cascade annihilating dark matter with the $^8$Be anomaly,
Lian-Bao Jia,
Eur.Phys.J. C78 (2018) 112,arXiv:1710.03906.
[Jia:2017iyc]
Return of the X-rays: A New Hope for Fermionic Dark Matter at the keV Scale,
Vedran Brdar, Joachim Kopp, Jia Liu, Xiao-Ping Wang,
Phys.Rev.Lett. 120 (2018) 061301,arXiv:1710.02146.
[Brdar:2017wgy]
Universal subhalo accretion in cold and warm dark matter cosmologies,
Bogna Kubik et al.,
Mon.Not.Roy.Astron.Soc. 472 (2017) 4099,arXiv:1709.00884.
[Kubik:2017sxp]
Warm Dark Matter and Cosmic Reionization,
Pablo Villanueva-Domingo, Nickolay Y. Gnedin, Olga Mena,
Astrophys.J. 852 (2018) 139,arXiv:1708.08277.
[Villanueva-Domingo:2017lae]
Signatures of Compact Halos of Sterile-Neutrino Dark Matter,
Florian Kuhnel, Tommy Ohlsson,
Phys.Rev. D96 (2017) 103020,arXiv:1707.04493.
[Kuhnel:2017ofn]
Observing the very low-surface brightness dwarfs in a deep field in the VIRGO cluster: constraints on Dark Matter scenarios,
N. Menci et al.,
Astron.Astrophys. 604 (2017) A59,arXiv:1706.04360.
[Menci:2017mtz]
Constraints from Ly-$\alpha$ forests on non-thermal dark matter including resonantly-produced sterile neutrinos,
Julien Baur et al.,
JCAP 1712 (2017) 013,arXiv:1706.03118.
[Baur:2017stq]
'Non-cold' dark matter at small scales: a general approach,
Riccardo Murgia, Alexander Merle, Matteo Viel, Maximilian Totzauer, Aurel Schneider,
JCAP 1711 (2017) 046,arXiv:1704.07838.
[Murgia:2017lwo]
Constraints on warm dark matter from the ionization history of the Universe,
Laura Lopez-Honorez, Olga Mena, Sergio Palomares-Ruiz, Pablo Villanueva Domingo,
Phys.Rev. D96 (2017) 103539,arXiv:1703.02302.
[Lopez-Honorez:2017csg]
Closing in on Resonantly Produced Sterile Neutrino Dark Matter,
John F. Cherry, Shunsaku Horiuchi,
Phys.Rev. D95 (2017) 083015,arXiv:1701.07874.
[Cherry:2017dwu]
Properties of Local Group galaxies in hydrodynamical simulations of sterile neutrino dark matter cosmologies,
Mark R. Lovell et al.,
Mon.Not.Roy.Astron.Soc. 468 (2017) 4285,arXiv:1611.00010.
[Lovell:2016fec]
Addressing the too big to fail problem with baryon physics and sterile neutrino dark matter,
Mark R. Lovell, Violeta Gonzalez-Perez, Sownak Bose, Alexey Boyarsky, Shaun Cole, Carlos S. Frenk, Oleg Ruchayskiy,
Mon.Not.Roy.Astron.Soc. 468 (2017) 2836-2849,arXiv:1611.00005.
[Lovell:2016nkp]
keV Sterile Neutrino Dark Matter from Singlet Scalar Decays: The Most General Case,
Johannes Konig, Alexander Merle, Maximilian Totzauer,
JCAP 1611 (2016) 038,arXiv:1609.01289.
[Konig:2016dzg]
Impact of ADC non-linearities on the sensitivity to sterile keV neutrinos with a KATRIN-like experiment,
K. Dolde, S. Mertens, D. Radford, T. Bode, A. Huber, M. Korzeczek, T. Lasserre, M. Slezak,
Nucl.Instrum.Meth. A848 (2017) 127-136,arXiv:1608.03158.
[Dolde:2016wnv]
Warm dark matter sterile neutrinos in electron capture and beta decay spectra,
O. Moreno, E. Moya de Guerra, M. Ramon Medrano,
Adv.High Energy Phys. 2016 (2016) 6318102,arXiv:1607.02931.
[Moreno:2016hrs]
A Stringent Limit on the Warm Dark Matter Particle Masses from the Abundance of $z=6$ Galaxies in the Hubble Frontier Fields,
N. Menci, A. Grazian, M. Castellano, N.G. Sanchez,
Astrophys.J. 825 (2016) L1,arXiv:1606.02530.
[Menci:2016eui]
Testing keV sterile neutrino dark matter in future direct detection experiments,
Miguel D. Campos, Werner Rodejohann,
Phys. Rev. D94 (2016) 095010,arXiv:1605.02918.
[Campos:2016gjh]
Substructure and galaxy formation in the Copernicus Complexio warm dark matter simulations,
Sownak Bose et al.,
Mon.Not.Roy.Astron.Soc. 464 (2017) 4520-4533-4533,arXiv:1604.07409.
[Bose:2016irl]
Sterile neutrino dark matter and core-collapse supernovae,
Grant J. Mathews, MacKenzie Warren, Jun Hidaka, Toshitaka Kajino,
arXiv:1604.02431, 2016. [Mathews:2016xba]
Influence of 7 keV sterile neutrino dark matter on the process of reionization,
Anton Rudakovskiy, Dmytro Iakubovskyi,
JCAP 1606 (2016) 017,arXiv:1604.01341.
[Rudakovskiy:2016ngi]
Atomic ionization by sterile-to-active neutrino conversion and constraints on dark matter sterile neutrinos with germanium detectors,
Jiunn-Wei Chen et al.,
Phys. Rev. D93 (2016) 093012,arXiv:1601.07257.
[Chen:2016lyr]
Constraining the Warm Dark Matter Particle Mass through Ultra-Deep UV Luminosity Functions at z=2,
N. Menci, N.G. Sanchez, M. Castellano, A. Grazian,
Astrophys. J. 818 (2016) 90,arXiv:1601.01820.
[Menci:2016eww]
Constraints on the identity of the dark matter from strong gravitational lenses,
Ran Li et al.,
Mon.Not.Roy.Astron.Soc. 460 (2016) 363-372,arXiv:1512.06507.
[Li:2015xpc]
Dodelson-Widrow Production of Sterile Neutrino Dark Matter with Non-Trivial Initial Abundance,
Alexander Merle, Aurel Schneider, Maximilian Totzauer,
JCAP 1604 (2016) 003,arXiv:1512.05369.
[Merle:2015vzu]
Resonant Sterile Neutrino Dark Matter in the Local and High-z Universe,
Brandon Bozek et al.,
Mon.Not.Roy.Astron.Soc. 459 (2016) 1489,arXiv:1512.04544.
[Bozek:2015bdo]
Satellite galaxies in semi-analytic models of galaxy formation with sterile neutrino dark matter,
Mark R.Lovell et al.,
Mon.Not.Roy.Astron.Soc. 461 (2016) 60-72,arXiv:1511.04078.
[Lovell:2015psz]
Sterile neutrino dark matter: A tale of weak interactions in the strong coupling epoch,
Tejaswi Venumadhav, Francis-Yan Cyr-Racine, Kevork N. Abazajian, Christopher M. Hirata,
Phys. Rev. D94 (2016) 043515,arXiv:1507.06655.
[Venumadhav:2015pla]
The X-Ray Line Feature At 3.5 Kev In Galaxy Cluster Spectra,
K. J. H. Phillips, B. Sylwester, J. Sylwester,
Astrophys.J. 809 (2015) 50,arXiv:1507.04619.
[Phillips:2015wla]
keV Sterile Neutrino Dark Matter from Singlet Scalar Decays: Basic Concepts and Subtle Features,
Alexander Merle, Maximilian Totzauer,
JCAP 1506 (2015) 011,arXiv:1502.01011.
[Merle:2015oja]
Constrains on Dark Matter sterile neutrino resonant production in the light of Planck,
L. A. Popa, A. Caramete, D. Tonoiu,
JCAP 1509 (2015) 066,arXiv:1501.06355.
[Popa:2015eta]
Structure formation in a mixed dark matter model with decaying sterile neutrino: the 3.5 keV X-ray line and the Galactic substructure,
Akira Harada, Ayuki Kamada, Naoki Yoshida,
JCAP 1601 (2016) 031,arXiv:1412.1592.
[Harada:2014lma]
Spin mixing mechanism in amplitude analysis of $\pi^{-} p \to \pi^{-} \pi^{+} n$ and a new view of dark matter,
Miloslav Svec,
arXiv:1411.4468, 2014. [Svec:2014eea]
Cosmological Implications of Light Sterile Neutrinos produced after the QCD Phase Transition,
Louis Lello, Daniel Boyanovsky,
Phys. Rev. D91 (2015) 063502,arXiv:1411.2690.
[Lello:2014yha]
Where do the 3.5 keV photons come from? A morphological study of the Galactic Center and of Perseus,
Eric Carlson, Tesla Jeltema, Stefano Profumo,
JCAP 1502 (2015) 009,arXiv:1411.1758.
[Carlson:2014lla]
Excited dark matter reconciles conflicting observations of 3.5 keV X-rays,
James M. Cline, Andrew R. Frey,
Phys. Rev. D90 (2014) 123537,arXiv:1410.7766.
[Cline:2014vsa]
Constraints on 3.55 keV line emission from stacked observations of dwarf spheroidal galaxies,
D. Malyshev, A. Neronov, D. Eckert,
Phys. Rev. D90 (2014) 103506,arXiv:1408.3531.
[Malyshev:2014xqa]
Dark matter searches going bananas: the contribution of Potassium (and Chlorine) to the 3.5 keV line,
Tesla E. Jeltema, Stefano Profumo,
Mon.Not.Roy.Astron.Soc. 450 (2015) 2143-2152,arXiv:1408.1699.
[Jeltema:2014qfa]
Modified Baryonic Dynamics: two-component cosmological simulations with light sterile neutrinos,
Garry W. Angus, Antonaldo Diaferio, Benoit Famaey, Kurt J. van der Heyden,
JCAP 1410 (2014) 079,arXiv:1407.1207.
[Angus:2014kja]
3.5 keV X-rays as the '21 cm line' of dark atoms, and a link to light sterile neutrinos,
James M. Cline, Yasaman Farzan, Zuowei Liu, Guy D. Moore, Wei Xue,
Phys. Rev. D89 (2014) 121302,arXiv:1404.3729.
[Cline:2014eaa]
The High-$z$ Universe Confronts Warm Dark Matter: Galaxy Counts, Reionization and the Nature of Dark Matter,
Christian Schultz, Jose Onorbe, Kevork N. Abazajian, James S. Bullock,
Mon.Not.Roy.Astron.Soc. 442 (2014) 1597-1609,arXiv:1401.3769.
[Schultz:2014eia]
Electron events from the scattering with solar neutrinos in the search of keV scale sterile neutrino dark matter,
Wei Liao, Xiao-Hong Wu, Hang Zhou,
Phys. Rev. D89 (2014) 093017,arXiv:1311.6075.
[Liao:2013jwa]
Sterile neutrino dark matter bounds from galaxies of the Local Group,
Shunsaku Horiuchi et al.,
Phys. Rev. D89 (2014) 025017,arXiv:1311.0282.
[Horiuchi:2013noa]
Cosmological simulations in MOND: the cluster scale halo mass function with light sterile neutrinos,
Garry W. Angus, Antonaldo Diaferio, Benoit Famaey, Kurt J. van der Heyden,
Mon.Not.Roy.Astron.Soc. 436 (2013) 202,arXiv:1309.6094.
[Angus:2013sxa]
Constraining Light Dark Matter with Diffuse X-Ray and Gamma-Ray Observations,
Rouven Essig, Eric Kuflik, Samuel D. McDermott, Tomer Volansky, Kathryn M. Zurek,
JHEP 1311 (2013) 193,arXiv:1309.4091.
[Essig:2013goa]
Are observations of the galaxy cluster Abell 1689 consistent with a neutrino dark matter scenario?,
Theo M. Nieuwenhuizen, Andrea Morandi,
Mon.Not.Roy.Astron.Soc. 434 (2013) 2679,arXiv:1307.6788.
[Nieuwenhuizen:2013oza]
Dark matter mass profiles in the Milky Way and in galaxy clusters support a prior claim of 4.0 eV and 21.4 eV sterile neutrinos,
Man Ho Chan, Robert Ehrlich,
Astrophys.Space Sci. 349 (2014) 407-413,arXiv:1301.6640.
[Chan:2013pnj]
Typical density profile for warm dark matter haloes,
Jordi Vinas, Eduard Salvador-Sole, Alberto Manrique,
Mon. Not. Roy. Astron. Soc. 424 (2012) L6,arXiv:1202.2860.
[Vinas:2012uj]
The inner structure of haloes in Cold+Warm dark matter models,
Andrea V. Maccio', Oleg Ruchayskiy, Alexey Boyarsky, Juan C. Munoz-Cuartas,
Mon.Not.Roy.Astron.Soc. 428 (2013) 882-890,arXiv:1202.2858.
[Maccio:2012rjx]
Restrictions on the lifetime of sterile neutrinos from primordial nucleosynthesis,
Oleg Ruchayskiy, Artem Ivashko,
JCAP 1210 (2012) 014,arXiv:1202.2841.
[Ruchayskiy:2012si]
Constraining Sterile Neutrino Warm Dark Matter with Chandra Observations of the Andromeda Galaxy,
Casey R. Watson, Zhiyuan Li, Nicholas K. Polley,
JCAP 1203 (2012) 018,arXiv:1111.4217.
[Watson:2011dw]
Electron-positron Annihilation Lines and Decaying Sterile Neutrinos,
M. H. Chan, M.-C. Chu,
Astrophys. Space Sci. 338 (2012) 313-317,arXiv:1111.3216.
[Chan:2011yz]
Observational evidences for the existence of 17.4 keV decaying degenerate sterile neutrinos near the Galactic Center,
Man Ho Chan, Ming-Chung Chu,
Astrophys. J. 727 (2011) L47,arXiv:1009.5872.
[Chan:2010wa]
Possible Capture of keV Sterile Neutrino Dark Matter on Radioactive $\beta$-decaying Nuclei,
Y. F. Li, Zhi-zhong Xing,
Phys. Lett. B695 (2011) 205-210,arXiv:1009.5870.
[Li:2010vy]
Small scale aspects of warm dark matter : power spectra and acoustic oscillations,
Daniel Boyanovsky, Jun Wu,
Phys. Rev. D83 (2011) 043524,arXiv:1008.0992.
[Boyanovsky:2010pw]
Constraints on the Dark Matter Particle Mass from the Number of Milky Way Satellites,
Emil Polisensky, Massimo Ricotti,
Phys. Rev. D83 (2011) 043506,arXiv:1004.1459.
[Polisensky:2010rw]
Can the excess in the FeXXVI Ly gamma line from the Galactic Center provide evidence for 17 keV sterile neutrinos?,
D. A. Prokhorov, Joseph Silk,
Astrophys.J. 725 (2010) L131,arXiv:1001.0215.
[Prokhorov:2010us]
Dark Matter Search Using Chandra Observations of Willman 1, and a Spectral Feature Consistent with a Decay Line of a 5 keV Sterile Neutrino,
Michael Loewenstein, Alexander Kusenko,
Astrophys. J. 714 (2010) 652-662,arXiv:0912.0552.
[Boyarsky:2010ci]
Do non-relativistic neutrinos constitute the dark matter?,
Th. M. Nieuwenhuizen,
Europhys. Lett. 86 (2009) 59001,arXiv:0812.4552. From the abstract:A fit of Abell 1689 galaxy yields a relic neutrino mass of $1.445 \pm 0.030 \, \text{eV}$. [Nieuwenhuizen:2008pf]
Realistic sterile neutrino dark matter with keV mass does not contradict cosmological bounds,
Alexey Boyarsky, Julien Lesgourgues, Oleg Ruchayskiy, Matteo Viel,
Phys. Rev. Lett. 102 (2009) 201304,arXiv:0812.3256.
[Boyarsky:2008mt]
Cosmological constraints on a light non-thermal sterile neutrino,
Mario A. Acero, Julien Lesgourgues,
Phys. Rev. D79 (2009) 045026,arXiv:0812.2249.
[Acero:2008rh]
Constraining sterile neutrino dark matter by phase-space density observations,
D. Gorbunov, A. Khmelnitsky, V. Rubakov,
JCAP 0810 (2008) 041,arXiv:0808.3910.
[Gorbunov:2008ka]
Decaying Sterile Neutrinos as a Heating Source in the Milky Way Center,
M. H. Chan, M.-C. Chu,
Mon. Not. Roy. Astron. Soc. 389 (2008) 297-300,arXiv:0806.1311.
[Chan:2008wn]
Are sterile neutrinos consistent with clusters, the CMB and MOND?,
Garry W. Angus,
Mon.Not.Roy.Astron.Soc. 394 (2009) 527,arXiv:0805.4014.
[Angus:2008qz]
Lepton Number-Driven Sterile Neutrino Production in the Early Universe,
Chad T. Kishimoto, George M. Fuller,
Phys. Rev. D78 (2008) 023524,arXiv:0802.3377.
[Kishimoto:2008ic]
Neutrinos as galactic dark matter in the Ursa Major galaxy group?,
G. Gentile, H. S. Zhao, B. Famaey,
Mon.Not.Roy.Astron.Soc. 385 (2008) 68,arXiv:0712.1816.
[Gentile:2007pt]
Constraints on dark matter particles from theory, galaxy observations and N-body simulations,
D. Boyanovsky, H. J. de Vega, N. Sanchez,
Phys. Rev. D77 (2008) 043518,arXiv:0710.5180.
[Boyanovsky:2007ay]
Sterile neutrinos as subdominant warm dark matter,
A. Palazzo, D. Cumberbatch, A. Slosar, J. Silk,
Phys. Rev. D76 (2007) 103511,arXiv:0707.1495.
[Palazzo:2007gz]
Strong Upper Limits on Sterile Neutrino Warm Dark Matter,
Hasan Yuksel, John F. Beacom, Casey R. Watson,
Phys. Rev. Lett. 101 (2008) 121301,arXiv:0706.4084.
[Yuksel:2007xh]
Search for the light dark matter with an X-ray spectrometer,
Alexey Boyarsky, Jan Willem den Herder, Andrey Neronov, Oleg Ruchayskiy,
Astropart. Phys. 28 (2007) 303-311,arXiv:astro-ph/0612219.
[Boyarsky:2006hr]
Limits on the Radiative Decay of Sterile Neutrino Dark Matter from the Unresolved Cosmic and Soft X-ray Backgrounds,
Kevork N. Abazajian, Maxim Markevitch, Savvas M. Koushiappas, Ryan C. Hickox,
Phys. Rev. D75 (2007) 063511,arXiv:astro-ph/0611144.
[Abazajian:2006jc]
Constraints on the parameters of radiatively decaying dark matter from the dark matter halo of the Milky Way and Ursa Minor,
Alexey Boyarsky, Jukka Nevalainen, Oleg Ruchayskiy,
Astron. Astrophys. 471 (2007) 51-57,arXiv:astro-ph/0610961.
[Boyarsky:2006ag]
Probing the nature of dark matter with Cosmic X-rays: Constraints from 'Dark blobs' and grating spectra of galaxy clusters,
Signe Riemer-Sorensen, Kristian Pedersen, Steen H. Hansen, Haakon Dahle,
Phys. Rev. D76 (2007) 043524,arXiv:astro-ph/0610034.
[Riemer-Sorensen:2006pdg]
Heating the intergalactic medium by radiative decay of neutrinos,
M. H. Chan, M. -C. Chu,
Astrophys. J. 658 (2007) 859,arXiv:astro-ph/0609563.
[Chan:2006nw]
On the Law of Gravity, the Mass of Neutrinos and the Proof of Dark Matter,
Garry W. Angus, HuanYuan Shan, HongSheng Zhao, Benoit Famaey,
Astrophys. J. 654 (2007) L13-L16,arXiv:astro-ph/0609125.
[Angus:2006ev]
Intergalactic medium heating by dark matter,
E. Ripamonti, M. Mapelli, A. Ferrara,
Mon. Not. Roy. Astron. Soc. 374 (2007) 1067-1077,arXiv:astro-ph/0606482.
[Ripamonti:2006gq]
Can sterile neutrinos be ruled out as warm dark matter candidates?,
Matteo Viel et al.,
Phys. Rev. Lett. 97 (2006) 071301,arXiv:astro-ph/0605706.
[Viel:2006kd]
Direct X-ray Constraints on Sterile Neutrino Warm Dark Matter,
Casey R. Watson, John F. Beacom, Hasan Yuksel, Terry P. Walker,
Phys. Rev. D74 (2006) 033009,arXiv:astro-ph/0605424.
[Watson:2006qb]
The $\nu\text{MSM}$, Inflation, and Dark Matter,
Mikhail Shaposhnikov, Igor Tkachev,
Phys. Lett. B639 (2006) 414-417,arXiv:hep-ph/0604236.
[Shaposhnikov:2006xi]
Sterile neutrinos in the Milky Way: Observational constraints,
Signe Riemer-Sorensen, Steen H. Hansen, Kristian Pedersen,
Astrophys. J. 644 (2006) L33-L36,arXiv:astro-ph/0603661.
[Riemer-Sorensen:2006uyy]
Can sterile neutrinos be the dark matter?,
Uros Seljak, Alexey Makarov, Patrick McDonald, Hy Trac,
Phys. Rev. Lett. 97 (2006) 191303,arXiv:astro-ph/0602430.
[Seljak:2006qw]
Opening a new window for warm dark matter,
Takehiko Asaka, Alexander Kusenko, Mikhail Shaposhnikov,
Phys. Lett. B638 (2006) 401-406,arXiv:hep-ph/0602150.
[Asaka:2006ek]
Constraints on sterile neutrino as a dark matter candidate from the diffuse X-ray background,
A. Boyarsky, A. Neronov, O. Ruchayskiy, M. Shaposhnikov,
Mon. Not. Roy. Astron. Soc. 370 (2013) 213-218,arXiv:astro-ph/0512509.
[Rusov:2013uaa]
Nonthermal Production and Perturbation Evolution of Sterile Neutrino Dark Matter,
Kevork Abazajian,
Phys. Rev. D73 (2006) 063506,arXiv:astro-ph/0511630.
[Abazajian:2005gj]
Pulsar kicks from a dark-matter sterile neutrino,
G. M. Fuller, A. Kusenko, I. Mocioiu, S. Pascoli,
Phys. Rev. D68 (2003) 103002,arXiv:astro-ph/0307267.
[Fuller:2003gy]
Constraining the window on sterile neutrinos as warm dark matter,
Steen H. Hansen, Julien Lesgourgues, Sergio Pastor, Joseph Silk,
Mon. Not. Roy. Astron. Soc. 333 (2002) 544-546,arXiv:astro-ph/0106108.
[Hansen:2001zv]
A new dark matter candidate: Non-thermal sterile neutrinos,
Xiang-dong Shi, George M. Fuller,
Phys. Rev. Lett. 82 (1999) 2832-2835,arXiv:astro-ph/9810076.
[Shi:1998km]
Dark matter from sterile-sterile neutrino mixing,
Pasquale Di Bari,
PoS CORFsmblkcircle (2023) 065,arXiv:2305.03032.
CORFsmblkcircle : 22th Hellenic School and Workshops on Elementary Particle Physics and Gravity. [DiBari:2023nrd]
Sterile neutrino dark matter in a U(1) extension of the standard model,
Karoly Seller,
Acta Phys.Polon.Supp. 15 (2022) 1,arXiv:2112.00525.
Matter To The Deepest: Recent Developments In Physics Of Fundamental Interactions. XLIV International Conference of Theoretical Physics, 2021. [Seller:2021csy]
Testing the sterile neutrino dark matter paradigm with astrophysical observations,
Aurel Schneider,
PoS NOW2016 (2017) 093,arXiv:1704.01832.
NOW 2016. [Schneider:2017qdf]
Tracing the Interplay between Non-Thermal Dark Matter and Right-Handed Dirac Neutrinos with LHC Data,
Luis A. Anchordoqui, Haim Goldberg, Brian Vlcek,
Phys. Rev. D88 (2013) 043513,arXiv:1305.0146.
33rd International Cosmic Ray Conference (ICRC2013), Rio de Janeiro, Brazil, 2-9 July, 2013. [Anchordoqui:2013pta]
Accounting for the Unresolved X-ray Background with Sterile Neutrino Dark Matter,
Daniel Cumberbatch, Joseph Silk,
AIP Conf. Proc. 957 (2007) 375-378,arXiv:0709.0279.
13th International Symposium on Particles, Strings and Cosmology (PASCOS-07). [Cumberbatch:2007qq]
Limits on the dark matter particle mass from black hole growth in galaxies,
Faustin Munyaneza,
arXiv:astro-ph/0702167, 2007.11th Marcel Grossmann meeting on general relativity, 23-29 July 2006, Berlin, Germany. [Munyaneza:2007tn]
Sterile Neutrino as Dark Matter candidate from CMB alone,
L.A. Popa, A. Vasile,
arXiv:astro-ph/0701331, 2007.Eleventh Marcel Grossmann Meeting on General Relativity. [Popa:2007hw]
Detecting sterile dark matter in space,
Alexander Kusenko,
Int. J. Mod. Phys. D16 (2008) 2325-2335,arXiv:astro-ph/0608096.
From Quantum to Cosmos: fundametal physics research in space, Washington, DC, May 22-24, 2006. [Kusenko:2006wa]
Possible astrophysical clues of dark matter,
Alexander Kusenko,
New Astron. Rev. 49 (2005) 115,arXiv:astro-ph/0404568.
Sixth UCLA Symposium on Sources and Detection of Dark Matter and Dark Energy in the Universe (Dark Matter 2004), Marina del Rey, California, February 18-20, 2004. [Kusenko:2004xk]
Pulsar kicks and dark matter from a sterile neutrino,
Alexander Kusenko,
Int. J. Mod. Phys. A20 (2005) 1148,arXiv:astro-ph/0404483.
Coral Gables Conference (CG2003), Ft. Lauderdale, Florida, December 17-21, 2003. [Kusenko:2004gp]
Review of dark matter,
David O. Caldwell, 1993.Proc. of the $28^{\mathrm{th}}$ Rencontres de Moriond: \textit{Perspectives in Neutrinos, Atomic Physics and Gravitation}, Villars sur Ollon, Switzerland, 30 Jan - 6 Feb 1993 (Editions Frontieres, Gif-sur-Yvette, France, 1993), p. 187. Comment:First idea of Four-Neutrino Mixing to explain the solar and atmospheric deficits and have some hot dark matter (thanks to D.O. Caldwell for pointing it out). The idea was further developed in [21-129]. (C.G.). [Caldwell:1993kk]
Characterizing Heavy Neutral Leptons: Measuring Parameters, Discriminating Majorana versus Dirac, and Using FASER2 as a Trigger for ATLAS,
Jonathan L. Feng, Alec Hewitt, Daniel La Rocco, Daniel Whiteson,
arXiv:2510.16107, 2025. [Feng:2025adw]
Constraining Heavy Neutral Leptons Coupled to the Tau-Neutrino Flavor at the Large Hadron Collider,
Edis D. Tireli, Rikke S. Klausen, Oleg Ruchayskiy,
arXiv:2510.12248, 2025. [Tireli:2025pno]
Techniques for mass peak reconstruction in Searches for Long-Lived Heavy Neutral Leptons Decaying to a Lepton and a $\rho$ Meson,
Marzieh Bahmani, Alessandro Guida, Maral Khandan, Heiko Markus Lacker, Anupama Reghunath,
Physik J.C 85 (2025) 1197,arXiv:2509.01357.
[Bahmani:2025fqd]
Testing the heavy decaying sterile neutrino hypothesis at the DUNE near detector,
Sabya Sachi Chatterjee, Stephane Lavignac, O. G. Miranda,
arXiv:2508.15888, 2025. [Chatterjee:2025sjp]
Sensitivity of $W$-boson measurements to low-mass right-handed neutrinos,
Rodrigo Alonso, Sam Bates, Chris Hays, Chris Pollard, Michael Spannowsky,
arXiv:2508.08903, 2025. [Alonso:2025gzl]
No Hiding in the Dark: Cosmological Bounds on Heavy Neutral Leptons with Dark Decay Channels,
P. S. Bhupal Dev, Quan-feng Wu, Xun-Jie Xu,
arXiv:2507.12270, 2025. [Dev:2025pru]
Probing the 3+1 neutrino model in the SHiP experiment,
Ki-Young Choi, Yu Seon Jeong, Sung Hyun Kim, Yeong Gyun Kim, Kang Young Lee, Kyong Sei Lee, Byung Do Park, Jong Yoon Sohn, Seong Moon Yoo, Chun Sil Yoon,
Phys.Rev.D 112 (2025) 075040,arXiv:2505.12785.
[Choi:2025vby]
Lepton number violating/conserving heavy baryons four-body decays, in presence of two almost degenerated heavy neutrinos,
Fabiola Fortuna, Gerardo Hernandez-Tome, Diego Portillo-Sanchez, Genaro Toledo,
Phys.Rev.D 112 (2025) 015010,arXiv:2503.16293.
[Fortuna:2025lrx]
Supernova Gamma-Ray Constraints from Heavy Sterile Neutrino Decays,
Garv Chauhan, R. Andrew Gustafson, Ian M. Shoemaker,
JCAP 07 (2025) 012,arXiv:2503.13607.
[Chauhan:2025mnn]
Constraining the SMEFT Extended with Sterile Neutrinos at FCC-ee,
Patrick D. Bolton, Frank F. Deppisch, Suchita Kulkarni, Chayan Majumdar, Wenna Pei,
arXiv:2502.06972, 2025. [Bolton:2025tqw]
In-flight positron annihilation as a probe of feebly interacting particles,
Shyam Balaji, Pierluca Carenza, Pedro De la Torre Luque, Alessandro Lella, Leonardo Mastrototaro,
Phys.Rev.D 111 (2025) 083053,arXiv:2501.07725.
[Balaji:2025alr]
Probing Solar Heavy Neutrinos with Heliospheric Electrons,
Marco Drewes, Jan Heisig, Valentin Weber,
Phys.Rev.D 111 (2025) 095001,arXiv:2412.14752.
[Drewes:2024dem]
New Physics at the Muon (Synchrotron) Ion Collider: MuSIC for several scales,
Hooman Davoudiasl, Hongkai Liu, Roman Marcarelli, Yotam Soreq, Sokratis Trifinopoulos,
JHEP 03 (2025) 046,arXiv:2412.13289.
[Davoudiasl:2024fiz]
Low-scale seesaw with flavour and CP symmetries $\unicode{x2013}$ from colliders to leptogenesis,
Marco Drewes, Yannis Georis, Claudia Hagedorn, Juraj Klaric,
arXiv:2412.10254, 2024. [Drewes:2024pad]
Unveiling the Invisible: ALPs and Sterile Neutrinos at the LHC and HL-LHC,
Kingman Cheung, C. J. Ouseph, Sin Kyu Kang,
JHEP 04 (2025) 024,arXiv:2412.08212.
[Cheung:2024lhn]
Probing Lepton Number Violation at Same-Sign Lepton Colliders,
Carlos Henrique de Lima, David McKeen, John N. Ng, Michael Shamma, Douglas Tuckler,
Phys.Rev.D 111 (2025) 075002,arXiv:2411.15303.
[deLima:2024ohf]
Jet Substructure Analysis for Distinguishing Left- and Right-Handed Couplings of Heavy Neutrino in $W'$ Decay at the HL-LHC,
Songshaptak De, Atri Dey, Tousik Samui,
Phys.Rev.D 111 (2025) 075017,arXiv:2411.14910.
[De:2024puh]
Simulation of the process $e^+e^- \rightarrow W^+W^-$ with the heavy right-handed neutrino exchange at 1 TeV future lepton colliders,
A. Drutskoy, E. Vasenin,
Phys.Rev.D 111 (2025) 015025,arXiv:2411.09418.
[Drutskoy:2024hqx]
Model independent bounds on heavy sterile neutrinos from the angular distribution of $\mathbf{B\to D^*\ell\nu}$ decays,
Florian U. Bernlochner, Marco Fedele, Tim Kretz, Ulrich Nierste, Markus T. Prim,
JHEP 01 (2025) 040,arXiv:2410.11945.
[Bernlochner:2024xiz]
Relaxing Limits from Big Bang Nucleosynthesis on Heavy Neutral Leptons with Axion-like Particles,
Frank F. Deppisch, Tomas E. Gonzalo, Chayan Majumdar, Zhong Zhang,
JCAP 02 (2025) 054,arXiv:2410.06970.
[Deppisch:2024izn]
Searching for heavy neutral leptons coupled to axion-like particles at the LHC far detectors and SHiP,
Zeren Simon Wang, Yu Zhang, Wei Liu,
JHEP 01 (2025) 070,arXiv:2409.18424.
[Wang:2024mrc]
Bounds on heavy neutral leptons from tree level unitarity,
Kevin A. Urquia-Calderon, Inar Timiryasov, Oleg Ruchayskiy,
JHEP 07 (2025) 022,arXiv:2409.13412.
[Urquia-Calderon:2024rzc]
Mass Reconstruction of Heavy Neutral Leptons from Stopped Mesons,
Gustavo F. S. Alves, P. S. Bhupal Dev, Kevin J. Kelly, Pedro A. N. Machado,
Phys.Rev.D 111 (2025) 015017,arXiv:2409.04394.
[Alves:2024feq]
Heavy Neutral Lepton searches at an ICARUS-like detector using NuMI beam,
Animesh Chatterjee, Josu Hernandez-Garcia, Albert De Roeck,
arXiv:2408.03383, 2024. [Chatterjee:2024duf]
Constraints on the parameters of the neutrino extension of the Standard Model,
Volodymyr Gorkavenko, Oleksandr Khasai, Oleg Ruchayskiy, Mariia Tsarenkova,
Eur.Phys.J.C 85 (2025) 143,arXiv:2408.02107.
[Gorkavenko:2024bmj]
Discovering heavy neutrino-antineutrino oscillations at the $Z$-pole,
Stefan Antusch, Jan Hajer, Bruno M. S. Oliveira,
JHEP 11 (2024) 102,arXiv:2408.01389.
[Antusch:2024otj]
Revealing the Origin of Neutrino Masses through Displaced Shower Searches in the CMS Muon System,
Wei Liu, Suchita Kulkarni, Frank F. Deppisch,
Phys.Rev.D 111 (2025) 093003,arXiv:2407.20676.
[Liu:2024fey]
ALPs and HNLs at LHC and Muon Colliders: Uncovering New Couplings and Signals,
Marta Burgos Marcos, Arturo de Giorgi, Luca Merlo, Jean-Loup Tastet,
SciPost Phys. 18 (2025) 084,arXiv:2407.14970.
[Marcos:2024yfm]
Reconstructing a Heavy Neutral Lepton at the LHC,
Pablo de la Torre, Manuel Masip, Fuensanta Vilches,
JHEP 06 (2025) 129,arXiv:2407.04340.
[delaTorre:2024urj]
Probing Heavy Neutrino Magnetic Moments at the LHC using Long-Lived Particle Searches,
Rebeca Beltran, Patrick D. Bolton, Frank F. Deppisch, Chandan Hati, Martin Hirsch,
JHEP 07 (2024) 153,arXiv:2405.08877.
[Beltran:2024twr]
$\gamma$ rays from in-flight positron annihilation as a probe of new physics,
Pedro De la Torre Luque, Shyam Balaji, Pierluca Carenza, Leonardo Mastrototaro,
Phys.Rev.D 111 (2025) L061303,arXiv:2405.08482.
[DelaTorreLuque:2024zsr]
Simulating Heavy Neutral Leptons with General Couplings at Collider and Fixed Target Experiments,
Jonathan L. Feng, Alec Hewitt, Felix Kling, Daniel La Rocco,
Phys.Rev.D 110 (2024) 035029,arXiv:2405.07330.
[Feng:2024zfe]
Authentic Majorana versus singlet Dirac neutrino contributions to $\mu^-\mu^-\to \ell^-\ell^-$$(\ell=e,\tau)$ transitions,
Jorge Luis Gutierrez Santiago, G. Hernandez-Tome, Diego Portillo-Sanchez, Javier Rendon,
Phys.Rev.D 110 (2024) 053006,arXiv:2405.02819.
[Santiago:2024zpc]
Primordial black hole probes of heavy neutral leptons,
Valentina De Romeri, Yuber F. Perez-Gonzalez, Agnese Tolino,
JCAP 04 (2025) 018,arXiv:2405.00124.
[DeRomeri:2024zqs]
Up-scattering production of a sterile fermion at DUNE: complementarity with spallation source and direct detection experiments,
Pablo M. Candela, Valentina De Romeri, Pantelis Melas, Dimitrios K. Papoulias, Niki Saoulidou,
JHEP 10 (2024) 032,arXiv:2404.12476.
[Candela:2024ljb]
Neutrino dipole portal at a high energy $\mu$-collider,
Daniele Barducci, Alessandro Dondarini,
JHEP 10 (2024) 165,arXiv:2404.09609.
[Barducci:2024kig]
Prospects for Heavy Neutral Lepton Searches at Short and Medium Baseline Reactor Experiments,
N. van Remortel, M. Colomer Molla, B. Clerbeaux, A. De Roeck, M. Drewes, R. Keloth, H. Sfar, S. Vercaemer, M. Verstraeten,
JHEP 07 (2024) 128,arXiv:2403.04662.
[vanRemortel:2024wcf]
Probing the Sterile Neutrino Dipole Portal with SN1987A and Low-Energy Supernovae,
Garv Chauhan, Shunsaku Horiuchi, Patrick Huber, Ian M. Shoemaker,
Phys.Rev.D 110 (2024) 015007,arXiv:2402.01624.
[Chauhan:2024nfa]
Discriminating Majorana and Dirac heavy neutrinos at lepton colliders,
Krzysztof Mekala, Jurgen Reuter, Aleksander Filip Zarnecki,
JHEP 03 (2024) 075,arXiv:2312.05223.
[Mekala:2023kzo]
New physics at the Intensity Frontier: how much can we learn and how?,
Oleksii Mikulenko, Kyrylo Bondarenko, Alexey Boyarsky, Oleg Ruchayskiy,
arXiv:2312.00659, 2023. [Mikulenko:2023olf]
Search for Hidden Neutrinos at the European Spallation Source: the SHiNESS experiment,
Stefano Roberto Soleti, Pilar Coloma, Juan Jose Gomez Cadenas,
JHEP 03 (2024) 148,arXiv:2311.18509.
[Soleti:2023hlr]
Discovering Heavy Neutral Leptons with the Higgs Boson,
Nicolas Bernal, Kuldeep Deka, Marta Losada,
Phys.Rev.D 110 (2024) 055011,arXiv:2311.18033.
[Bernal:2023coo]
Heavy Neutral Leptons via Axion-Like Particles at Neutrino Facilities,
Asli M Abdullahi, Andre de Gouvea, Bhaskar Dutta, Ian M. Shoemaker, Zahra Tabrizi,
Phys.Rev.Lett. 133 (2024) 261802,arXiv:2311.07713.
[Abdullahi:2023gdj]
Long-lived HNLs at lepton colliders as a probe of left-right symmetric models,
Kevin A. Urquia-Calderon,
Phys.Rev.D 109 (2024) 055002,arXiv:2310.17406.
[Urquia-Calderon:2023dkf]
Long-lived neutral fermions at the DUNE near detector,
Julian Y. Gunther, Jordy de Vries, Herbi K. Dreiner, Zeren Simon Wang, Guanghui Zhou,
JHEP 01 (2024) 108,arXiv:2310.12392.
[Gunther:2023vmz]
Rare tau decays via exchange of on-shell almost degenerate Majorana neutrinos, $\tau^{\mp} \to \pi^{\mp} N_j \to \pi^{\mp} \mu^{\mp} \pi^{\pm}$ and $\tau^{\mp} \to \pi^{\mp} N_j \to \pi^{\mp} \mu^{\pm} \pi^{\mp}$,
Gorazd Cvetic, C. S. Kim,
JHEP 02 (2024) 215,arXiv:2309.14281.
[Cvetic:2023bwr]
Heavy neutral leptons from kaons in effective field theory,
Rebeca Beltran, Julian Gunther, Martin Hirsch, Arsenii Titov, Zeren Simon Wang,
Phys.Rev.D 109 (2024) 115014,arXiv:2309.11546.
[Beltran:2023ksw]
Low-Energy Supernovae Bounds on Sterile Neutrinos,
Garv Chauhan, Shunsaku Horiuchi, Patrick Huber, Ian M. Shoemaker,
JCAP 03 (2025) 052,arXiv:2309.05860.
[Chauhan:2023sci]
When Energy Goes Missing: New Physics in $b\to suu$ with Sterile Neutrinos,
Tobias Felkl, Anjan Giri, Rukmani Mohanta, Michael A. Schmidt,
Eur.Phys.J.C 83 (2023) 1135,arXiv:2309.02940.
[Felkl:2023ayn]
Monochromatic neutrinos from dark matter through the Higgs portal,
Pablo de la Torre, Miguel Gutierrez, Manuel Masip,
JCAP 11 (2023) 068,arXiv:2309.00374.
[delaTorre:2023nfk]
Probing the dipole portal to heavy neutral leptons via meson decays at the high-luminosity LHC,
Daniele Barducci, Wei Liu, Arsenii Titov, Zeren Simon Wang, Yu Zhang,
Phys.Rev.D 108 (2023) 115009,arXiv:2308.16608.
[Barducci:2023hzo]
Heavy neutrino-antineutrino oscillations at the FCC-ee,
Stefan Antusch, Jan Hajer, Bruno M. S. Oliveira,
JHEP 10 (2023) 129,arXiv:2308.07297.
[Antusch:2023jsa]
New limits on $W_R$ from meson decays,
Gustavo F. S. Alves, Chee Sheng Fong, Luighi P. S. Leal, Renata Zukanovich Funchal,
Phys.Rev.Lett. 133 (2024) 161802,arXiv:2307.04862.
[Alves:2023znq]
Long-Lived Particles and the Quiet Sun,
R. Andrew Gustafson, Ryan Plestid, Ian M. Shoemaker, Albert Zhou,
Phys.Rev.D 109 (2024) 015020,arXiv:2307.01856.
[Gustafson:2023hvm]
Pinning down the leptophobic $Z^\prime$ in leptonic final states with Deep Learning,
Tanumoy Mandal, Aniket Masaye, Subhadip Mitra, Cyrin Neeraj, Naveen Reule, Kalp Shah,
Phys.Lett.B 849 (2024) 138417,arXiv:2307.01118.
[Mandal:2023mck]
Searching for heavy neutral lepton and lepton number violation through VBS at high-energy muon colliders,
Tong Li, Chang-Yuan Yao, Man Yuan,
JHEP 09 (2023) 131,arXiv:2306.17368.
[Li:2023lkl]
Recasting Bounds on Long-lived Heavy Neutral Leptons in Terms of a Light Supersymmetric R-parity Violating Neutralino,
Herbi K. Dreiner, Dominik Kohler, Saurabh Nangia, Martin Schurmann, Zeren Simon Wang,
JHEP 08 (2023) 058,arXiv:2306.14700.
[Dreiner:2023gir]
Coleman-Weinberg dynamics of ultralight scalar dark matter and GeV-scale right-handed neutrinos,
Clara Murgui, Ryan Plestid,
JHEP 08 (2024) 168,arXiv:2306.13799.
[Murgui:2023kig]
Complementarity of $B\to K^{(*)} \mu \bar \mu$ and $B\to K^{(*)} + \mathrm{inv}$ for searches of GeV-scale Higgs-like scalars,
Maksym Ovchynnikov, Michael A. Schmidt, Thomas Schwetz,
Eur.Phys.J.C 83 (2023) 791,arXiv:2306.09508.
[Ovchynnikov:2023von]
Axion effective potentials induced by heavy sterile fermions,
Nick E. Mavromatos, Sarben sarkar,
Eur.Phys.J.C 83 (2023) 866,arXiv:2306.02122.
[Mavromatos:2023bdx]
Bounds on lepton non-unitarity and heavy neutrino mixing,
Mattias Blennow, Enrique Fernandez-Martinez, Josu Hernandez-Garcia, Jacobo Lopez-Pavon, Xabier Marcano, Daniel Naredo-Tuero,
JHEP 08 (2023) 030,arXiv:2306.01040.
[Blennow:2023mqx]
Hunting for Neutral Leptons with Ultra-High-Energy Cosmic Rays,
Robert Heighton, Lucien Heurtier, Michael Spannowsky,
Phys.Rev.D 108 (2023) 055009,arXiv:2303.11352.
[Heighton:2023qpg]
The Neutrino Magnetic Moment Portal and Supernovae: New Constraints and Multimessenger Opportunities,
Vedran Brdar, Andre de Gouvea, Ying-Ying Li, Pedro A. N. Machado,
Phys.Rev.D 107 (2023) 073005,arXiv:2302.10965.
[Brdar:2023tmi]
Testing Heavy Neutral Leptons in Cosmic Ray Beam Dump experiments,
Oliver Fischer, Baibhab Pattnaik, Jose Zurita,
JHEP 07 (2023) 193,arXiv:2301.07120.
[Fischer:2023bfn]
Testing heavy neutral leptons produced in the supernovae explosions with future neutrino detectors,
Vsevolod Syvolap,
arXiv:2301.07052, 2023. [Syvolap:2023trc]
Searching for Heavy Neutral Leptons at A Future Muon Collider,
Tsz Hong Kwok, Lingfeng Li, Tao Liu, Ariel Rock,
Phys.Rev.D 110 (2024) 075009,arXiv:2301.05177.
[Kwok:2023dck]
Can Sterile Neutrino Explain Very High Energy Photons from GRB221009A?,
Shu-Yuan Guo, Maxim Khlopov, Lei Wu, Bin Zhu,
Phys.Rev.D 108 (2023) L021302,arXiv:2301.03523.
[Guo:2023bpo]
Optimal search reach for heavy neutral leptons at a muon collider,
Krzysztof Mekala, Juergen Reuter, Aleksander Filip Zarnecki,
Phys.Lett.B 841 (2023) 137945,arXiv:2301.02602.
[Mekala:2023diu]
Probing the Nature of Heavy Neutral Leptons in Direct Searches and Neutrinoless Double Beta Decay,
Patrick D. Bolton, Frank F. Deppisch, Mudit Rai, Zhong Zhang,
Nucl.Phys.B 1010 (2025) 116785,arXiv:2212.14690.
[Bolton:2022tds]
Beyond lepton number violation at the HL-LHC: Resolving heavy neutrino-antineutrino oscillations,
Stefan Antusch, Jan Hajer, Johannes Rosskopp,
JHEP 09 (2023) 170,arXiv:2212.00562.
[Antusch:2022hhh]
Probing Left-handed Heavy Neutral Leptons on the Massive Vector Doublet Model,
Paulo Areyuna C., Jilberto Zamora-Saa, Alfonso R. Zerwekh,
JHEP 02 (2024) 153,arXiv:2211.09753.
[C:2022nuo]
GRB 221009A Gamma Rays from Radiative Decay of Heavy Neutrinos?,
Alexei Y. Smirnov, Andreas Trautner,
Phys.Rev.Lett. 131 (2023) 021002,arXiv:2211.00634.
[Smirnov:2022suv]
Search for heavy Majorana neutrinos in the $\tau$ final state at proton-electron colliders,
Haiyong Gu, Ying-nan Mao, Hao Sun, Kechen Wang,
JHEP 09 (2023) 152,arXiv:2210.17050.
[Gu:2022nlj]
Neutrinoless double-beta decay at colliders: interference between Majorana states,
Jonathan L. Schubert, Oleg Ruchayskiy,
arXiv:2210.11294, 2022. [Schubert:2022lcp]
Heavy Neutral Leptons at the Electron-Ion Collider,
Brian Batell, Tathagata Ghosh, Tao Han, Keping Xie,
JHEP 03 (2023) 020,arXiv:2210.09287.
[Batell:2022ogj]
Heavy Neutral Leptons Beyond Simplified Scenarios,
Gioacchino Piazza, Asmaa Abada, Pablo Escribano, Xabier Marcano,
arXiv:2209.14659, 2022.56th Rencontres de Moriond on Electroweak Interactions and Unified Theories. [Piazza:2022yrw]
Sensitivity to Heavy Neutral Leptons with the SAND detector at the DUNE ND complex,
Zahra Ghorbani Moghaddam(DUNE),
arXiv:2209.01899, 2022. [Moghaddam:2022tac]
Blast from the past II: Constraints on heavy neutral leptons from the BEBC WA66 beam dump experiment,
Ryan Barouki, Giacomo Marocco, Subir Sarkar,
SciPost Phys. 13 (2022) 118,arXiv:2208.00416.
[Barouki:2022bkt]
Charged Higgs induced 5 and 6 lepton signatures from heavy neutrinos at the LHC,
Arindam Das, Shinya Kanemura, Prasenjit Sanyal,
Eur.Phys.J.C 83 (2023) 454,arXiv:2207.13372.
[Das:2022cmv]
Right-handed Dirac and Majorana neutrinos at Belle II,
Tao Han, Jiajun Liao, Hongkai Liu, Danny Marfatia,
JHEP 04 (2023) 013,arXiv:2207.07029.
[Han:2022uho]
DarkNews: a Python-based event generator for heavy neutral lepton production in neutrino-nucleus scattering,
Asli M. Abdullahi, Jaime Hoefken Zink, Matheus Hostert, Daniele Massaro, Silvia Pascoli,
Comput.Phys.Commun. 297 (2024) 109075,arXiv:2207.04137.
[Abdullahi:2022cdw]
Improved constraints and the prospects of detecting TeV to PeV scale Heavy Neutral Leptons,
Kevin A. Urquia Calderon, Inar Timiryasov, Oleg Ruchayskiy,
JHEP 23 (2020) 167,arXiv:2206.04540.
[Urquia-Calderon:2022ufc]
A New Way To Seek Out Dark Neutrino Sectors And To Boldly Explore Multi-Dimensional Parameter Spaces,
Carlos A. Arguelles, Nicolo Foppiani, Matheus Hostert,
Phys.Rev.D 107 (2023) 035027,arXiv:2205.12273.
[Arguelles:2022lzs]
Neutrino Portals, Terrestrial Upscattering, and Atmospheric Neutrinos,
R. Andrew Gustafson, Ryan Plestid, Ian M. Shoemaker,
Phys.Rev.D 106 (2022) 095037,arXiv:2205.02234.
[Gustafson:2022rsz]
Probing Heavy Sterile Neutrinos at Ultrahigh Energy Neutrino Telescopes via the Dipole Portal,
Guo-yuan Huang, Sudip Jana, Manfred Lindner, Werner Rodejohann,
Phys.Lett.B 840 (2023) 137842,arXiv:2204.10347.
[Huang:2022pce]
Neutrino dipole portal at electron colliders,
Yu Zhang, Mao Song, Ran Ding, Liangwen Chen,
Phys.Lett.B 829 (2022) 137116,arXiv:2204.07802.
[Zhang:2022spf]
Sterile neutrino production at small mixing in the early universe,
Gonzalo Alonso-Alvarez, James M. Cline,
Phys.Lett.B 833 (2022) 137278,arXiv:2204.04224.
[Alonso-Alvarez:2022uxp]
Constraints on Heavy Neutral Leptons interacting with a singlet scalar,
James M. Cline, Guillermo Gambini,
Phys.Rev.D 105 (2022) 115035,arXiv:2203.08166.
[Cline:2022gcg]
Heavy Majorana neutrino pair production from $Z^\prime$ at hadron and lepton colliders,
Arindam Das, Sanjoy Mandal, Takaaki Nomura, Sujay Shil,
Phys.Rev.D 105 (2022) 095031,arXiv:2202.13358.
[Das:2022rbl]
Indirect search of Heavy Neutral Leptons using the DUNE Near Detector,
S. Carbajal, A. M. Gago,
Front.in Phys. 12 (2024) 1398070,arXiv:2202.09217.
[Carbajal:2022zlp]
Heavy Neutrinos at the FCC-hh in the $U(1)_{B-L}$ Model,
Wei Liu, Suchita Kulkarni, Frank F. Deppisch,
Phys.Rev.D 105 (2022) 095043,arXiv:2202.07310.
[Liu:2022kid]
Heavy neutrinos at future linear e$^+$e$^-$ colliders,
Krzysztof Mekala, Jurgen Reuter, Aleksander Filip Zarnecki,
JHEP 06 (2022) 010,arXiv:2202.06703.
[Mekala:2022cmm]
Long-lived Sterile Neutrinos at Belle II in Effective Field Theory,
Guanghui Zhou, Julian Y. Gunther, Zeren Simon Wang, Jordy de Vries, Herbi K. Dreiner,
JHEP 04 (2022) 057,arXiv:2111.04403.
[Zhou:2021ylt]
A Tale of Invisibility: Constraints on New Physics in $b\to s\nu\nu$,
Tobias Felkl, Sze Lok Li, Michael A. Schmidt,
JHEP 12 (2021) 118,arXiv:2111.04327.
[Felkl:2021uxi]
Complementarity between neutrinoless double beta decay and collider searches for heavy neutrinos in composite-fermion models,
S. Biondini, S. Dell'Oro, R. Leonardi, S. Marcocci, O. Panella, M. Presilla, F. Vissani,
arXiv:2111.01053, 2021. [Biondini:2021vip]
Long-lived heavy neutral leptons at the LHC: four-fermion single-$N_R$ operators,
Rebeca Beltran, Giovanna Cottin, Juan Carlos Helo, Martin Hirsch, Arsenii Titov, Zeren Simon Wang,
JHEP 01 (2022) 044,arXiv:2110.15096.
[Beltran:2021hpq]
Characterizing Heavy Neutral Fermions via their Decays,
Andre de Gouvea, Patrick J. Fox, Boris J. Kayser, Kevin J. Kelly,
Phys.Rev.D 105 (2022) 015019,arXiv:2109.10358.
[deGouvea:2021rpa]
Heavy neutral leptons below the kaon mass at hodoscopic detectors,
Carlos A. Arguelles, Nicolo Foppiani, Matheus Hostert,
Phys.Rev.D 105 (2022) 095006,arXiv:2109.03831.
[Arguelles:2021dqn]
The MicroBooNE Experiment, the NuMI Absorber, and Heavy Neutral Leptons,
Kevin J. Kelly, Pedro A.N. Machado,
Phys.Rev.D 104 (2021) 055015,arXiv:2106.06548.
[Kelly:2021xbv]
Heavy neutral leptons in effective field theory and the high-luminosity LHC,
Giovanna Cottin, Juan Carlos Helo, Martin Hirsch, Arsenii Titov, Zeren Simon Wang,
JHEP 09 (2021) 039,arXiv:2105.13851.
[Cottin:2021lzz]
Constraining active-sterile neutrino transition magnetic moments at DUNE near and far detectors,
Thomas Schwetz, Albert Zhou, Jing-Yu Zhu,
JHEP 21 (2020) 200,arXiv:2105.09699.
[Schwetz:2020xra]
Heavy Neutrino searches through Double-Bang Events at Super-Kamiokande, DUNE, and Hyper-Kamiokande,
Mack Atkinson, Pilar Coloma, Ivan Martinez-Soler, Noemi Rocco, Ian M. Shoemaker,
JHEP 04 (2022) 174,arXiv:2105.09357.
[Atkinson:2021rnp]
Searching for Physics Beyond the Standard Model in an Off-Axis DUNE Near Detector,
Moritz Breitbach, Luca Buonocore, Claudia Frugiuele, Joachim Kopp, Lukas Mittnacht,
JHEP 01 (2022) 048,arXiv:2102.03383.
[Breitbach:2021gvv]
Radiative decays of charged leptons as constraints of unitarity polygons for active-sterile neutrino mixing and CP violation,
Zhi-zhong Xing, Di Zhang,
Eur.Phys.J. C80 (2020) 1134,arXiv:2009.09717.
[Xing:2020ivm]
Analysis of published data of electron capture in 7Be in the search for a heavy neutrino in the mass range under 840 keV,
N.A. Likhovid, V.S. Pantuev,
arXiv:2009.04754, 2020. [Likhovid:2020tjv]
Model Independent Bounds on the Non-Oscillatory Explanations of the MiniBooNE Excess,
Vedran Brdar, Oliver Fischer, Alexei Yu. Smirnov,
Phys.Rev.D 103 (2021) 075008,arXiv:2007.14411.
[Brdar:2020tle]
Sensitivity Reach on the Heavy Neutral Leptons and $\tau$-Neutrino Mixing $|U_{\tauN}|^2 $ at the HL-LHC,
Kingman Cheung, Yi-Lun Chung, Hiroyuki Ishida, Chih-Ting Lu,
Phys.Rev. D102 (2020) 075038,arXiv:2004.11537.
[Cheung:2020buy]
Heavy Neutral Leptons from kaon decays in the SHiP experiment,
Dmitry Gorbunov, Igor Krasnov, Yury Kudenko, Sergey Suvorov,
Phys.Lett. B810 (2020) 135817,arXiv:2004.07974.
[Gorbunov:2020rjx]
Effects of heavy Majorana neutrinos on lepton flavor violating processes,
G. Hernandez-Tome, J. I. Illana, G. Lopez Castro, M. Masip, P. Roig,
Phys.Rev.D 101 (2020) 075020,arXiv:1912.13327.
[Hernandez-Tome:2019lkb]
Neutrinoless double beta decay versus other probes of heavy sterile neutrinos,
Patrick D. Bolton, Frank F. Deppisch, P. S. Bhupal Dev,
JHEP 2003 (2020) 170,arXiv:1912.03058.
[Bolton:2019pcu]
New constraints on Heavy Neutral Leptons from Super-Kamiokande data,
Pilar Coloma, Pilar Hernandez, Victor Munoz, Ian. M. Shoemaker,
Eur.Phys.J. C80 (2020) 235,arXiv:1911.09129.
[Coloma:2019htx]
Searching for Heavy Neutrinos with the MoEDAL-MAPP Detector at the LHC,
Mariana Frank, Marc de Montigny, Pierre-Philippe A. Ouimet, James Pinfold, Ameir Shaa, Michael Staelens,
Phys.Lett. B802 (2020) 135204,arXiv:1909.05216.
[Frank:2019pgk]
Sensitivity bounds on heavy neutrino mixing $|U_{\mu N}|^2$ and $|U_{\tau N}|^2$ from LHCb upgrade,
Gorazd Cvetic, C. S. Kim,
Phys.Rev. D100 (2019) 015014,arXiv:1904.12858.
[Cvetic:2019shl]
Direct Detection Experiments at the Neutrino Dipole Portal Frontier,
Ian M. Shoemaker, Jason Wyenberg,
Phys. Rev. D99 (2019) 075010,arXiv:1811.12435.
[Shoemaker:2018vii]
A Dark Neutrino Portal to Explain MiniBooNE,
Enrico Bertuzzo, Sudip Jana, Pedro A. N. Machado, Renata Zukanovich Funchal,
Phys.Rev.Lett. 121 (2018) 241801,arXiv:1807.09877.
[Bertuzzo:2018itn]
Dipole portal to heavy neutral leptons,
Gabriel Magill, Ryan Plestid, Maxim Pospelov, Yu-Dai Tsai,
Phys.Rev. D98 (2018) 115015,arXiv:1803.03262.
[Magill:2018jla]
Heavy neutral fermions at the high-luminosity LHC,
Juan Carlos Helo, Martin Hirsch, Zeren Simon Wang,
JHEP 1807 (2018) 056,arXiv:1803.02212.
[Helo:2018qej]
Sterile neutrino searches via displaced vertices at LHCb,
Stefan Antusch, Eros Cazzato, Oliver Fischer,
Phys.Lett. B774 (2017) 114-118,arXiv:1706.05990.
[Antusch:2017hhu]
Hiding an elephant: heavy sterile neutrino with large mixing angle does not contradict cosmology,
F. Bezrukov, A. Chudaykin, D. Gorbunov,
JCAP 1706 (2017) 051,arXiv:1705.02184.
[Bezrukov:2017ike]
Search for Heavy Sterile Neutrinos in Trileptons at the LHC,
Claudio O. Dib, C. S. Kim, Kechen Wang,
Chin.Phys. C41 (2017) 103103,arXiv:1703.01936.
[Dib:2017vux]
Search for Dirac and Majorana Sterile Neutrinos in Trilepton Events at the LHC,
Claudio O. Dib, C. S. Kim, Kechen Wang,
Phys.Rev. D95 (2017) 115020,arXiv:1703.01934.
[Dib:2017iva]
Production of heavy sterile neutrinos from vector boson decay at electroweak temperatures,
Louis Lello, Daniel Boyanovsky, Robert D. Pisarski,
Phys.Rev. D95 (2017) 043524,arXiv:1609.07647.
[Lello:2016rvl]
Distinguishing Dirac/Majorana Sterile Neutrinos at the LHC,
Claudio O. Dib, C. S. Kim, Kechen Wang, Jue Zhang,
Phys. Rev. D94 (2016) 013005,arXiv:1605.01123.
[Dib:2016wge]
Production of keV Sterile Neutrinos in Supernovae: New Constraints and Gamma Ray Observables,
Carlos A. Arguelles, Vedran Brdar, Joachim Kopp,
Phys.Rev. D99 (2019) 043012,arXiv:1605.00654.
[Arguelles:2016uwb]
Displaced vertex searches for sterile neutrinos at future lepton colliders,
Stefan Antusch, Eros Cazzato, Oliver Fischer,
JHEP 1612 (2016) 007,arXiv:1604.02420.
[Antusch:2016vyf]
Isocurvature Constraints on Portal Couplings,
Kimmo Kainulainen, Sami Nurmi, Tommi Tenkanen, Kimmo Tuominen, Ville Vaskonen,
JCAP 1606 (2016) 022,arXiv:1601.07733.
[Kainulainen:2016vzv]
Oscillation of heavy sterile neutrino in decay of $B \to \mu e \pi$,
Gorazd Cvetic, C.S. Kim, Reinhart Kogerler, Jilberto Zamora-Saa,
Phys. Rev. D92 (2015) 013015,arXiv:1505.04749.
[Cvetic:2015ura]
Experimental and cosmological constraints on heavy neutrinos,
Marco Drewes, Bjorn Garbrecht,
Nucl.Phys. B921 (2017) 250-315,arXiv:1502.00477.
[Drewes:2015iva]
Calculation of primordial abundances of light nuclei including a heavy sterile neutrino,
M. Mosquera, O. Civitarese,
JCAP 1508 (2015) 038,arXiv:1411.4030.
[Mosquera:2014lpa]
Neutrino Portal Dark Matter: From Dwarf Galaxies to IceCube,
John F. Cherry, Alexander Friedland, Ian M. Shoemaker,
arXiv:1411.1071, 2014. [Cherry:2014xra]
Nearly degenerate heavy sterile neutrinos in cascade decay: mixing and oscillations,
Daniel Boyanovsky,
Phys. Rev. D90 (2014) 105024,arXiv:1409.4265.
[Boyanovsky:2014una]
Heavy neutrino searches at the LHC with displaced vertices,
Juan Helo, Martin Hirsch, Sergey Kovalenko,
Phys. Rev. D89 (2014) 073005,arXiv:1312.2900.
[Helo:2013esa]
Heavy sterile neutrinos, entropy and relativistic energy production, and the relic neutrino background,
George M. Fuller, Chad T. Kishimoto, Alexander Kusenko,
arXiv:1110.6479, 2011. [Fuller:2011qy]
Heavy Sterile Neutrinos in Tau Decays and the MiniBooNE Anomaly,
Claudio Dib, Juan Carlos Helo, Martin Hirsch, Sergey Kovalenko, Ivan Schmidt,
Phys. Rev. D85 (2012) 011301,arXiv:1110.5400.
[Dib:2011hc]
Effects of CP Violation from Neutral Heavy Fermions on Neutrino Oscillations, and the LSND/MiniBooNE Anomalies,
Ann E Nelson,
Phys. Rev. D84 (2011) 053001,arXiv:1010.3970.
[Nelson:2010hz]
A resolution of puzzles from the LSND, KARMEN, and MiniBooNE experiments,
Sergei Gninenko,
Phys. Rev. D83 (2011) 015015,arXiv:1009.5536.
[Gninenko:2010pr]
Signatures of heavy sterile neutrinos at long baseline experiments,
Amol Dighe, Shamayita Ray,
Phys. Rev. D76 (2007) 113001,arXiv:0709.0383.
[Dighe:2007uf]
May Heavy neutrinos solve underground and cosmic ray puzzles?,
K. Belotsky, D. Fargion, M. Khlopov, R.V. Konoplich,
Phys. Atom. Nucl. 71 (2008) 147-161,arXiv:hep-ph/0411093.
[Belotsky:2004st]
Do we need stars to reionize the universe at high redshifts? Early reionization by decaying heavy sterile neutrinos,
S. H. Hansen, Z. Haiman,
Astrophys. J. 600 (2004) 26,arXiv:astro-ph/0305126.
[Hansen:2003yj]
Heavy sterile neutrinos: Bounds from big-bang nucleosynthesis and SN 1987A,
A. D. Dolgov, S. H. Hansen, G. Raffelt, D. V. Semikoz,
Nucl. Phys. B590 (2000) 562-574,arXiv:hep-ph/0008138. Comment:Large $\nu_e \rightarrow \nu_s$ mixings of heavy (10-200 MeV) sterile neutrinos are allowed from analysis of BBN and SN1987A. [M.L.]. [Dolgov:2000jw]
Cosmological and astrophysical bounds on a heavy sterile neutrino and the KARMEN anomaly,
A. D. Dolgov, S. H. Hansen, G. Raffelt, D. V. Semikoz,
Nucl. Phys. B580 (2000) 331-351,arXiv:hep-ph/0002223.
[Dolgov:2000pj]
16 - Phenomenology - Heavy Neutral Leptons - Talks
New global bounds on heavy neutrino mixing,
Daniel Naredo-Tuero,
arXiv:2405.13760, 2024.58th Rencontres de Moriond on Electroweak Interactions and Unified Theories. [Naredo-Tuero:2024zrg]
$K\to\pi\nu\bar\nu$ spectra and NA62 interpretation,
Martin Gorbahn, Ulserik Moldanazarova, Kai Henryk Sieja, Emmanuel Stamou, Mustafa Tabet,
arXiv:2405.10905, 2024.2024 Electroweak session of the 58th Rencontres de Moriond. [Gorbahn:2024eil]
Probing the heavy neutrino hypothesis,
Xabier Marcano,
arXiv:2405.10840, 2024.2024 Electroweak session of the 58th Rencontres de Moriond. [Marcano:2024bjs]
Flavour bounds on axions, hidden photons and sterile neutrinos,
Martin Bauer,
arXiv:2404.01095, 2024.12th Workshop on the CKM Unitarity Triangle, Santiago de Compostela, 18-22 September 2023. [Bauer:2024ruf]
Cosmological constraints on heavy sterile neutrinos,
L. Mastrototaro,
J.Phys.Conf.Ser. 2156 (2021) 012009,arXiv:2202.11390.
17th International Conference on Topics in Astroparticle and Underground Physics. [Mastrototaro:2021kzm]
Sub-GeV Sterile Neutrino as a Probe of Neutrino Mass Generation in the Minimal Left-Right Symmetric Model,
Gang Li, Ying-Ying Li, Sida Lu, Ye-Ling Zhou,
arXiv:2508.15609, 2025. [Li:2025tmt]
New avenues for the neutrino dipole portal exploration at the energy frontier,
Natascia Vignaroli,
JHEP 10 (2025) 125,arXiv:2507.01130.
[Vignaroli:2025pwn]
Cosmological Histories in Neutrino Portal Dark Matter,
Amro E. B. Abdelrahim, Brian Batell, Joshua Berger, David McKeen, Barmak Shams Es Haghi,
arXiv:2506.09137, 2025. [Abdelrahim:2025fiz]
Collider Prospects for the Neutrino Magnetic Moment Portal,
Vedran Brdar, Ying-Ying Li, Samiur R. Mir, Yi-Lin Wang,
JHEP 10 (2025) 230,arXiv:2502.07024.
[Brdar:2025iua]
Implications of the first CONUS+ measurement of coherent elastic neutrino-nucleus scattering,
Valentina De Romeri, Dimitrios K. Papoulias, Gonzalo Sanchez Garcia,
Phys.Rev.D 111 (2025) 075025,arXiv:2501.17843.
[DeRomeri:2025csu]
Muon anomalous magnetic moment and Right handed sterile neutrino,
Iman Motie, S. Mahmoudi, Mahdi Sadegh, Jafar Khodagholizadeh, Alain Blanchard, She-Sheng Xue,
arXiv:2409.07184, 2024. [Motie:2024mtm]
Signatures of Bulk Neutrinos in the Early Universe,
David McKeen, John Ng, Michael Shamma,
Phys.Rev.D 110 (2024) 083507,arXiv:2406.05266.
[McKeen:2024fdl]
Heavy neutral lepton search and $\mu \to e \gamma$ constraints in case of type-I seesaw,
Stefano Morisi,
Symmetry 16 (2024) 843,arXiv:2403.00983.
[Morisi:2024yxi]
$B \to K \nu\bar\nu$, MiniBooNE and muon $g-2$ anomalies from a dark sector,
Alakabha Datta, Danny Marfatia, Lopamudra Mukherjee,
Phys.Rev.D 109 (2024) L031701,arXiv:2310.15136.
[Datta:2023iln]
Study of neutrinoless double beta decay in the Standard Model extended with sterile neutrinos,
Debashree Priyadarsini Das, Sasmita Mishra,
Eur.Phys.J.C 84 (2024) 683,arXiv:2310.13353.
[Das:2023aic]
Retrieving texture zeros in 3+1 active-sterile neutrino framework under the action of $A_4$ modular-invariants,
Maibam Ricky Devi,
arXiv:2303.04900, 2023. [Devi:2023vpe]
Sterile Neutrino Shape-shifting Caused by Dark Matter,
Hooman Davoudiasl, Peter B. Denton,
Phys.Rev.D 108 (2023) 035013,arXiv:2301.09651.
[Davoudiasl:2023uiq]
Simulating lepton number violation induced by heavy neutrino-antineutrino oscillations at colliders,
Stefan Antusch, Jan Hajer, Johannes Rosskopp,
JHEP 03 (2023) 110,arXiv:2210.10738.
[Antusch:2022ceb]
Light Sterile Neutrinos, Left-Right Symmetry, and $0\nu\beta\beta$ Decay,
Jordy de Vries, Gang Li, Michael J. Ramsey-Musolf, Juan Carlos Vasquez,
JHEP 11 (2022) 056,arXiv:2209.03031.
[deVries:2022nyh]
Implications of Recent KATRIN Results for Lower-Limits on Neutrino Masses,
Ephraim Fischbach, Dennis E. Krause, Quan Le Thien, Carol Scarlett,
arXiv:2208.03790, 2022. [Fischbach:2022pxx]
LSND and MiniBooNE as guideposts to understanding the muon $g-2$ results and the CDF II $W$ mass measurement,
Waleed Abdallah, Raj Gandhi, Samiran Roy,
Phys.Lett.B 840 (2023) 137841,arXiv:2208.02264.
[Abdallah:2022shy]
Phenomenological implications of sterile neutrinos in the $\mu\nu$SSM and dark matter,
Paulina Knees, Daniel E. Lopez-Fogliani, C. Munoz,
Astropart.Phys. 151 (2023) 102865,arXiv:2207.10689.
[Knees:2022wbt]
Fatjet signatures of heavy neutrinos and heavy leptons in a left-right model with universal seesaw at the HL-LHC,
Atri Dey, Rafiqul Rahaman, Santosh Kumar Rai,
Eur.Phys.J.C 84 (2024) 132,arXiv:2207.06857.
[Dey:2022tbp]
Large Extra Dimensions and neutrino experiments,
D. V. Forero, C. Giunti, C. A. Ternes, O. Tyagi,
Phys.Rev.D 106 (2022) 035027,arXiv:2207.02790.
[Forero:2022skg]
Constraining the Active-to-Heavy-Neutrino transitional magnetic moments associated with the $Z'$ interactions at FASER$\nu$,
Kingman Cheung, C.J. Ouseph,
Eur.Phys.J.C 83 (2023) 593,arXiv:2205.11077.
[Cheung:2022oji]
$Z'$s and sterile neutrinos from heterotic string models: exploring $Z'$ mass exclusion limits,
Alon E. Faraggi, Marco Guzzi,
Eur.Phys.J.C 82 (2022) 590,arXiv:2204.11974.
[Faraggi:2022emm]
A full parametrization of the $9\times 9$ active-sterile flavor mixing matrix in the inverse or linear seesaw scenario of massive neutrinos,
He-chong Han, Zhi-zhong Xing,
Nucl.Phys.B 973 (2021) 115609,arXiv:2110.12705.
[Han:2021qum]
The Dark $Z'$ and Sterile Neutrinos Behind Current Anomalies,
A. Hammad, Ahmed Rashed, S. Moretti,
Phys.Lett.B 827 (2022) 136945,arXiv:2110.08651.
[Hammad:2021mpl]
Roads for Right-handed Neutrino Dark Matter: Fast Expansion, Standard Freeze-out, and Early Matter Domination,
Giorgio Arcadi, Jacinto Paulo Neto, Farinaldo S. Queiroz, Clarissa Siqueira,
Phys.Rev.D 105 (2022) 035016,arXiv:2108.11398.
[Arcadi:2021doo]
Flavour and CP symmetries in the inverse seesaw,
C. Hagedorn, J. Kriewald, J. Orloff, A. M. Teixeira,
Eur.Phys.J.C 82 (2022) 194,arXiv:2107.07537.
[Hagedorn:2021ldq]
Sterile neutrino dark matter catalyzed by a very light dark photon,
Gonzalo Alonso-Alvarez, James M. Cline,
JCAP 10 (2021) 041,arXiv:2107.07524.
[Alonso-Alvarez:2021pgy]
Zooming in on eV-MeV Scale Sterile Neutrinos in light of Neutrinoless Double Beta Decay,
Tapoja Jha, Sarif Khan, Manimala Mitra, Ayon Patra,
Phys.Rev.D 105 (2022) 035001,arXiv:2107.03807.
[Jha:2021oxl]
Sterile neutrino dark matter in a U(1) extension of the standard model,
Sho Iwamoto, Karoly Seller, Zoltan Trocsanyi,
JCAP 01 (2022) 035,arXiv:2104.11248.
[Iwamoto:2021fup]
Minimal inverse-seesaw mechanism with Abelian flavour symmetries,
H. B. Camara, R. G. Felipe, F. R. Joaquim,
JHEP 2105 (2021) 021,arXiv:2012.04557.
[Camara:2020efq]
Effect of sterile neutrino on low energy processes in minimal extended seesaw with $\Delta(96)$ symmetry and $\text{TM}_{1}$ mixing,
Nayana Gautam, R. Krishnan, Mrinal Kumar Das,
Front.in Phys. 0 (2021) 417,arXiv:2011.05693.
[Gautam:2020bnx]
Phenomenology of vector-like leptons with Deep Learning at the Large Hadron Collider,
Felipe F. Freitas, Joao Goncalves, Antonio P. Morais, Roman Pasechnik,
JHEP 2101 (2021) 076,arXiv:2010.01307.
[Freitas:2020ttd]
Galactic Center constraints on self-interacting sterile neutrinos from fermionic dark matter ('ino') models,
R. Yunis, C. R. Arguelles, N. E. Mavromatos, A. Moline, A. Krut, M. Carinci, J. A. Rueda, R. Ruffini,
Phys.Dark Univ. 30 (2020) 100699,arXiv:2008.08464.
[Yunis:2020klk]
A Dark Seesaw Solution to Low Energy Anomalies: MiniBooNE, the muon $(g-2)$, and BaBar,
Asli Abdullahi, Matheus Hostert, Silvia Pascoli,
Phys.Lett.B 820 (2021) 136531,arXiv:2007.11813.
[Abdullahi:2020nyr]
Angular and polarization observables for Majorana-mediated B decays with effective interactions,
Lucia Duarte, Gabriel Zapata, O.A. Sampayo,
Eur.Phys.J. C80 (2020) 896,arXiv:2006.11216.
[Duarte:2020vgj]
Dark sector origin of the KOTO and MiniBooNE anomalies,
Alakabha Datta, Saeed Kamali, Danny Marfatia,
Phys.Lett. B807 (2020) 135579,arXiv:2005.08920.
[Datta:2020auq]
Sterile Neutrino Dark Matter in Left-Right Theories,
Jeff A. Dror, David Dunsky, Lawrence J. Hall, Keisuke Harigaya,
JHEP 2007 (2020) 168,arXiv:2004.09511.
[Dror:2020jzy]
A Model of Metastable EeV Dark Datter,
Emilian Dudas, Lucien Heurtier, Yann Mambrini, Keith A. Olive, Mathias Pierre,
Phys.Rev. D101 (2020) 115029,arXiv:2003.02846.
[Dudas:2020sbq]
Enhancement of Higgs Production Through Leptoquarks at the LHC,
Arvind Bhaskar, Debottam Das, Bibhabasu De, Subhadip Mitra,
Phys.Rev.D 102 (2020) 035002,arXiv:2002.12571.
[Bhaskar:2020kdr]
eXTP perspectives for the $\nu$MSM sterile neutrino dark matter model,
Denys Malyshev, Charles Thorpe-Morgan, Andrea Santangelo, Josef Jochum, Shuang-Nan Zhang,
Phys.Rev. D101 (2020) 123009,arXiv:2001.07014.
[Malyshev:2020hcc]
Search for Long-Lived Heavy Neutrinos at the LHC with a VBF Trigger,
J. Jones-Perez, J. Masias, J. D. Ruiz-Alvarez,
Eur.Phys.J. C80 (2020) 642,arXiv:1912.08206.
[Jones-Perez:2019plk]
LHC constraints on $W^\prime,~Z^\prime$ that couple mainly to third generation fermions,
Alper Hayreter, Xiao-Gang He, German Valencia,
Eur.Phys.J. C80 (2020) 912,arXiv:1912.06344.
[Hayreter:2019dzc]
Type-I Seesaw with eV-Scale Neutrinos,
G. C. Branco, J. T. Penedo, Pedro M. F. Pereira, M. N. Rebelo, J. I. Silva-Marcos,
JHEP 2007 (2020) 164,arXiv:1912.05875.
[Branco:2020yvs]
Charged scalar production at the Compact Linear Collider for the $S_3 \otimes \mathbb{Z}_2$ model,
G. De Conto, A. C. B. Machado, J. Montano, P. Chimenti,
Eur.Phys.J. C80 (2020) 1031,arXiv:1912.02294.
[DeConto:2019fpm]
A unified SU(4) theory for the $R_{D^{(*)}}$ and $R_{K^{(*)}}$ anomalies,
Shyam Balaji, Michael A. Schmidt,
Phys.Rev. D101 (2020) 015026,arXiv:1911.08873.
[Balaji:2019kwe]
Lepton-Trijet and Displaced Vertex Searches for Heavy Neutrinos at Future Electron-Proton Colliders,
Stefan Antusch, Oliver Fischer, A. Hammad,
JHEP 2003 (2020) 110,arXiv:1908.02852.
[Antusch:2019eiz]
A Supersymmetric Theory of Baryogenesis and Sterile Sneutrino Dark Matter from B Mesons,
Gonzalo Alonso-Alvarez, Gilly Elor, Ann E. Nelson, Huangyu Xiao,
JHEP 2003 (2020) 046,arXiv:1907.10612.
[Alonso-Alvarez:2019fym]
Dark matter mass from relic abundance, extra $U(1)$ Gauge boson and Active-Sterile Neutrino Mixing,
Imtiyaz Ahmad Bhat, Rathin Adhikari,
Phys.Rev. D101 (2020) 075030,arXiv:1906.10185.
[Bhat:2019yqo]
Exploring CP-Violating heavy neutrino oscillations in rare tau decays at Belle II,
Sebastian Tapia 'and' Jilberto Zamora-Saa,
Nucl.Phys. B952 (2020) 114936,arXiv:1906.09470.
[Tapia:2019coy]
Heavy neutrino production via $Z'$ at the lifetime frontier,
Frank F. Deppisch, Suchita Kulkarni, Wei Liu,
Phys.Rev. D100 (2019) 035005,arXiv:1905.11889.
[Deppisch:2019kvs]
Measuring the heavy neutrino oscillations in rare W boson decays at the Large Hadron Collider,
Gorazd Cvetic, Arindam Das, Sebastian Tapia, Jilberto Zamora-Saa,
J.Phys. G47 (2020) 015001,arXiv:1905.03097.
[Cvetic:2019rms]
Heavy Neutral Leptons from low-scale seesaws at the DUNE Near Detector,
Peter Ballett, Tommaso Boschi, Silvia Pascoli,
JHEP 2003 (2020) 111,arXiv:1905.00284.
[Ballett:2019bgd]
CP-Violation phase analysis via non-trivial correlation of quarks and leptons in 3+1 scenario,
Gazal Sharma, B. C. Chauhan,
Mod.Phys.Lett. A33 (2019) 1950316,arXiv:1904.02040.
[Sharma:2019tef]
Testing New Physics Explanations of MiniBooNE Anomaly at Neutrino Scattering Experiments,
Carlos A. Arguelles, Matheus Hostert, Yu-Dai Tsai,
Phys.Rev.Lett. 123 (2019) 261801,arXiv:1812.08768.
[Arguelles:2018mtc]
A Theory of $R(D^*,D)$ Anomaly With Right-Handed Currents,
K.S. Babu, Bhaskar Dutta, Rabindra N. Mohapatra,
JHEP 1901 (2019) 168,arXiv:1811.04496.
[Babu:2018vrl]
A Heavy Metal Path to New Physics,
Marco Drewes, Andrea Giammanco, Jan Hajer, Michele Lucente, Olivier Mattelaer,
PoS DIS2019 (2019) 090,arXiv:1810.09400.
[Drewes:2018xma]
Comment on 'keV Neutrino Dark Matter in a Fast Expanding Universe' by Biswas et al,
Nicolas Fernandez, Stefano Profumo,
Phys.Lett. B789 (2019) 603-604,arXiv:1810.06795.
[Fernandez:2018tfa]
keV Neutrino Dark Matter in a Fast Expanding Universe,
Anirban Biswas, Debasish Borah, Dibyendu Nanda,
Phys.Lett. B786 (2018) 364-372,arXiv:1809.03519.
[Biswas:2018iny]
Sterile Neutrinos with Altered Dispersion Relations as an Explanation for the MiniBooNE, LSND, Gallium and Reactor Anomalies,
Dominik Doring, Heinrich Pas, Philipp Sicking, Thomas J. Weiler,
Eur.Phys.J. C80 (2020) 1202,arXiv:1808.07460.
[Doring:2018cob]
A Short Travel for Neutrinos in Large Extra Dimensions,
G. V. Stenico, D. V. Forero, O. L. G. Peres,
JHEP 1811 (2018) 155,arXiv:1808.05450.
[Stenico:2018jpl]
U(1)' mediated decays of heavy sterile neutrinos in MiniBooNE,
Peter Ballett, Silvia Pascoli, Mark Ross-Lonergan,
Phys.Rev.D 99 (2019) 071701,arXiv:1808.02915.
[Ballett:2018ynz]
Investigating the sterile neutrino parameters with QLC in 3 + 1 scenario,
Gazal Sharma, B. C. Chauhan,
Adv.High Energy Phys. 2019 (2019) 4685198,arXiv:1807.05785.
[Sharma:2018fkr]
Numerical estimate of minimal active-sterile neutrino mixing for sterile neutrinos at GeV scale,
Igor Krasnov, Timofey Grigorin-Ryabov,
EPJ Web Conf. 191 (2018) 03003,arXiv:1802.04728.
[Krasnov:2018odt]
A new mechanism of sterile neutrino dark matter production,
Johannes Herms, Alejandro Ibarra, Takashi Toma,
JCAP 1806 (2018) 036,arXiv:1802.02973.
[Herms:2018ajr]
Probing the Light Sterile Neutrino Through the Heavy Charged Higgs Decay on the LHC,
Yi-Lei Tang,
Phys.Rev.D 98 (2018) 035043,arXiv:1712.10108.
[Tang:2017plx]
Non-universal Z' from SO(10) GUTs with vector-like family and the origin of neutrino masses,
Stefan Antusch, Christian Hohl, Steve F. King, Vasja Susic,
Nucl.Phys. B934 (2018) 578-605,arXiv:1712.05366.
[Antusch:2017tud]
Neutrinos in Large Extra Dimensions and Short-Baseline $\nu_e$ Appearance,
Marcela Carena, Ying-Ying Li, Camila S. Machado, Pedro A. N. Machado, Carlos E. M. Wagner,
Phys.Rev. D96 (2017) 095014,arXiv:1708.09548.
[Carena:2017qhd]
Double Bangs from New Physics in IceCube,
Pilar Coloma, Pedro A. N. Machado, Ivan Martinez-Soler, Ian M. Shoemaker,
Phys.Rev.Lett. 119 (2017) 201804,arXiv:1707.08573.
[Coloma:2017ppo]
LHC Search for Right-handed Neutrinos in $Z^\prime$ Models,
Peter Cox, Chengcheng Han, Tsutomu T. Yanagida,
JHEP 1801 (2018) 037,arXiv:1707.04532.
[Cox:2017eme]
Heavy stable charged tracks as signatures of non-thermal dark matter at the LHC : a study in some non-supersymmetric scenarios,
Avirup Ghosh, Tanmoy Mondal, Biswarup Mukhopadhyaya,
JHEP 1712 (2017) 136,arXiv:1706.06815.
[Ghosh:2017vhe]
Neutrino Mass and Neutrinoless double beta decay in SO(10) GUT with Pati-Salam symmetry,
M. Sruthilaya, Rukmani Mohanta, Sudhanwa Patra,
J.Phys. G45 (2018) 075004,arXiv:1705.04125.
[Sruthilaya:2017vui]
Constraining Sterile Neutrinos from Precision Higgs Data,
Arindam Das, P. S. Bhupal Dev, C. S. Kim,
Phys.Rev. D95 (2017) 115013,arXiv:1704.00880.
[Das:2017zjc]
Fuzzy Dark Matter from Infrared Confining Dynamics,
Hooman Davoudiasl, Christopher W. Murphy,
Phys.Rev.Lett. 118 (2017) 141801,arXiv:1701.01136.
[Davoudiasl:2017jke]
Effects of sterile neutrino and extra-dimension on big bang nucleosynthesis,
Dukjae Jang, Motohiko Kusakabe, Myung-Ki Cheoun,
Phys.Rev. D97 (2018) 043005,arXiv:1611.04472.
[Jang:2016rpi]
Phenomenological study of extended seesaw model for light sterile neutrino,
Newton Nath, Monojit Ghosh, Srubabati Goswami, Shivani Gupta,
JHEP 1703 (2017) 075,arXiv:1610.09090.
[Nath:2016mts]
Non-zero $\theta_{13}$ with Unbroken $\mu-\tau$ Symmetry of the Active Neutrino Mass Matrix in the Presence of a Light Sterile Neutrino,
Debasish Borah,
Phys.Rev. D95 (2017) 035016,arXiv:1607.05556.
[Borah:2016fqj]
Freeze-in Production of Sterile Neutrino Dark Matter in U(1)$_{\rm B-L}$ Model,
Anirban Biswas, Aritra Gupta,
JCAP 1609 (2016) 044,arXiv:1607.01469.
[Biswas:2016bfo]
Lepton number violating processes in the minimal 3-3-1 model with sterile neutrinos,
A. C. B. Machado, J. Montano, V. Pleitez,
J.Phys. G46 (2019) 115005,arXiv:1604.08539.
[Machado:2016jzb]
Large, Extra Dimensions at the Deep Underground Neutrino Experiment,
Jeffrey M. Berryman, Andre de Gouvea, Kevin J. Kelly, O.L.G. Peres, Zahra Tabrizi,
Phys. Rev. D94 (2016) 033006,arXiv:1603.00018.
[Berryman:2016szd]
Extension of $\nu$MSM model and possible explanations of recent astronomical and collider observations,
Krishna Kulkarni,
arXiv:1512.06836, 2015. [Kulkarni:2015gzu]
Three Twin Neutrinos: Evidence from LSND and MiniBooNE,
Yang Bai, Ran Lu, Sida Lu, Jordi Salvado, Ben A. Stefanek,
Phys. Rev. D93 (2016) 073004,arXiv:1512.05357.
[Bai:2015ztj]
Production of unstable heavy neutrinos in proto-neutron stars,
C. Albertus, M. Masip, M. A. Perez-Garcia,
Phys. Lett. B751 (2015) 209-214,arXiv:1509.03306.
[Albertus:2015xra]
Cosmological bounds of sterile neutrinos in a $SU(3)_C\otimes SU(3)_L\otimes SU(3)_R\otimes U(1)_N$ model as dark matter candidates,
Cesar P. Ferreira, Marcelo M. Guzzo, Pedro C. de Holanda,
Braz. J. Phys. 46 (2016) 453-461,arXiv:1509.02977.
[Ferreira:2015wja]
Toward the full test of the nuMSM sterile neutrino dark matter model with Athena,
A. Neronov, D. Malyshev,
Phys. Rev. D93 (2016) 063518,arXiv:1509.02758.
[Neronov:2015kca]
Sterile Neutrino Dark Matter Production in the Neutrino-phillic Two Higgs Doublet Model,
Adisorn Adulpravitchai, Michael A. Schmidt,
JHEP 12 (2015) 023,arXiv:1507.05694.
[Adulpravitchai:2015mna]
Decay of $B^\pm \to \tau^\pm +$ 'missing momentum' and direct measurement of the mixing parameter $U_{\tau N}$,
Gorazd Cvetic, C. S. Kim, Y.-J. Kwon, Y.-M. Yook,
Phys. Rev. D93 (2016) 013003,arXiv:1507.03822.
[Cvetic:2015roa]
Diluted Equilibrium Sterile Neutrino Dark Matter,
Amol V. Patwardhan, George M. Fuller, Chad T. Kishimoto, Alexander Kusenko,
Phys. Rev. D92 (2015) 103509,arXiv:1507.01977.
[Patwardhan:2015kga]
Search for Heavy Right-Handed Neutrinos at the LHC and Beyond in the Same-Sign Leptons Final State,
John N. Ng, Alejandro de la Puente, Bob Wei-Ping Pan,
JHEP 12 (2015) 172,arXiv:1505.01934.
[Ng:2015hba]
Higgs sector extension of the neutrino minimal standard model with thermal freeze-in production mechanism,
Hiroki Matsui, Mihoko Nojiri,
Phys. Rev. D92 (2015) 025045,arXiv:1503.01293.
[Matsui:2015maa]
Testing sterile neutrino extensions of the Standard Model at future lepton colliders,
Stefan Antusch, Oliver Fischer,
JHEP 1505 (2015) 053,arXiv:1502.05915.
[Antusch:2015mia]
Neutrino Masses and Sterile Neutrino Dark Matter from the PeV Scale,
Samuel B. Roland, Bibhushan Shakya, James D. Wells,
Phys. Rev. D92 (2015) 113009,arXiv:1412.4791.
[Roland:2014vba]
Flavor ratios of extragalactical neutrinos and neutrino shortcuts in extra dimensions,
Elke Aeikens, Heinrich Pas, Sandip Pakvasa, Philipp Sicking,
JCAP 1510 (2015) 005,arXiv:1410.0408.
[Aeikens:2014yga]
Production of Sterile Neutrino Dark Matter and the 3.5 keV line,
Alexander Merle, Aurel Schneider,
Phys. Lett. B749 (2015) 283-288,arXiv:1409.6311.
[Merle:2014xpa]
A Fresh Look at keV Sterile Neutrino Dark Matter from Frozen-In Scalars,
Adisorn Adulpravitchai, Michael A. Schmidt,
JHEP 1501 (2015) 006,arXiv:1409.4330.
[Adulpravitchai:2014xna]
Sterile Neutrino Dark Matter and Low Scale Leptogenesis from a Charged Scalar,
Michele Frigerio, Carlos E. Yaguna,
Eur.Phys.J. C75 (2015) 31,arXiv:1409.0659.
[Frigerio:2014ifa]
Determination of the mixing between active neutrinos and sterile neutrino through the quark-lepton complementarity and self-complementarity,
Hong-Wei Ke, Tan Liu, Xue-Qian Li,
Phys. Rev. D90 (2014) 053009,arXiv:1408.1315.
[Ke:2014hxa]
A new mechanism for dark energy: the adaptive screening,
Andi Hektor, Luca Marzola, Martti Raidal, Hardi Veermae,
JHEP 1501 (2015) 101,arXiv:1407.0389.
[Hektor:2014mqa]
$N_{\rm eff}$ in low-scale seesaw models versus the lightest neutrino mass,
P. Hernandez, M. Kekic, J. Lopez-Pavon,
Phys. Rev. D90 (2014) 065033,arXiv:1406.2961.
[Hernandez:2014fha]
Sterile neutrinos and right-handed currents in KATRIN,
James Barry, Julian Heeck, Werner Rodejohann,
JHEP 1407 (2014) 081,arXiv:1404.5955.
[Barry:2014ika]
Effective field theory and keV lines from dark matter,
Rebecca Krall, Matthew Reece, Thomas Roxlo,
JCAP 1409 (2014) 007,arXiv:1403.1240.
[Krall:2014dba]
Resonantly-Produced 7 keV Sterile Neutrino Dark Matter Models and the Properties of Milky Way Satellites,
Kevork N. Abazajian,
Phys. Rev. Lett. 112 (2014) 161303,arXiv:1403.0954.
[Abazajian:2014gza]
Common origin of reactor and sterile neutrino mixing,
Alexander Merle, Stefano Morisi, Walter Winter,
JHEP 1407 (2014) 039,arXiv:1402.6332.
[Merle:2014eja]
On the minimal active-sterile neutrino mixing in seesaw type I mechanism with sterile neutrinos at GeV scale,
Dmitry Gorbunov, Alexander Panin,
Phys. Rev. D89 (2014) 017302,arXiv:1312.2887.
[Gorbunov:2013dta]
Precision tests of unitarity in leptonic mixing,
Lorenzo Basso, Oliver Fischer, Jochum J. van der Bij,
Europhys.Lett. 105 (2014) 11001,arXiv:1310.2057.
[Basso:2013jka]
Longevity Problem of Sterile Neutrino Dark Matter,
Hiroyuki Ishida, Kwang Sik Jeong, Fuminobu Takahashi,
Phys.Lett. B731 (2014) 242-247,arXiv:1309.3069.
[Ishida:2013mva]
Supersymmetry at the LHC and The Theory of R-parity,
Pavel Fileviez Perez, Sogee Spinner,
Phys.Lett. B728 (2014) 489-495,arXiv:1308.0524.
[FileviezPerez:2013fsv]
New Production Mechanism for keV Sterile Neutrino Dark Matter by Decays of Frozen-In Scalars,
Alexander Merle, Viviana Niro, Daniel Schmidt,
JCAP 1403 (2014) 028,arXiv:1306.3996.
[Merle:2013wta]
Neutrino Mass Matrix Textures: A Data-driven Approach,
E. Bertuzzo, P. A. N. Machado, R. Zukanovich Funchal,
JHEP 1306 (2013) 097,arXiv:1302.0653.
[Bertuzzo:2013ew]
Majorana neutrino mass matrices with three texture zeros and the sterile neutrino,
Yongchao Zhang,
Phys. Rev. D87 (2013) 053020,arXiv:1301.7302.
[Zhang:2013mb]
Light and Superlight Sterile Neutrinos in the Minimal Radiative Inverse Seesaw Model,
P. S. Bhupal Dev, Apostolos Pilaftsis,
Phys. Rev. D87 (2013) 053007,arXiv:1212.3808.
[BhupalDev:2012jvh]
Tree-level lepton universality violation in the presence of sterile neutrinos: impact for $R_K$ and $R_pi$,
A. Abada, D. Das, A.M. Teixeira, A. Vicente, C. Weiland,
JHEP 1302 (2013) 048,arXiv:1211.3052.
[Abada:2012mc]
Left-Right Symmetry: from Majorana to Dirac,
Miha Nemevsek, Goran Senjanovic, Vladimir Tello,
Phys. Rev. Lett. 110 (2013) 151802,arXiv:1211.2837.
[Nemevsek:2012iq]
Neutrino mass characteristics in a phenomenological 3+2+1 model,
N. Yu. Zysina, S. V. Fomichev, V. V. Khruschov,
arXiv:1209.0545, 2012. [Zysina:2012wz]
Dark Matter, Baryogenesis and Neutrino Oscillations from Right Handed Neutrinos,
Laurent Canetti, Marco Drewes, Tibor Frossard, Mikhail Shaposhnikov,
Phys. Rev. D87 (2013) 093006,arXiv:1208.4607.
[Canetti:2012kh]
Limits on MeV Dark Matter from the Effective Number of Neutrinos,
Chiu Man Ho, Robert J. Scherrer,
Phys. Rev. D87 (2013) 023505,arXiv:1208.4347.
[Ho:2012ug]
Cosmology based on f(R) Gravity admits 1 eV Sterile Neutrinos,
Hayato Motohashi, Alexei A. Starobinsky, Jun'ichi Yokoyama,
Phys. Rev. Lett. 110 (2013) 121302,arXiv:1203.6828.
[Motohashi:2012wc]
Bulk Neutrinos as an Alternative Cause of the Gallium and Reactor Anti-neutrino Anomalies,
P. A. N. Machado, H. Nunokawa, F. A. Pereira dos Santos, R. Zukanovich Funchal,
Phys. Rev. D 85 (2012) 073012,arXiv:1107.2400.
[Machado:2011kt]
Late and early time phenomenology of Higgs-dependent cutoff,
F. Bezrukov, D. Gorbunov, M. Shaposhnikov,
JCAP 1110 (2011) 001,arXiv:1106.5019.
[Bezrukov:2011sz]
Deriving Models for keV sterile Neutrino Dark Matter with the Froggatt-Nielsen mechanism,
Alexander Merle, Viviana Niro,
JCAP 1107 (2011) 023,arXiv:1105.5136.
[Merle:2011yv]
Constraints on composite Dirac neutrinos from observations of galaxy clusters,
R. S. Hundi, Sourov Roy,
Phys. Lett. B702 (2011) 228-234,arXiv:1105.0291.
[Hundi:2011et]
Baryon Asymmetry of the Universe without Boltzmann or Kadanoff-Baym,
J. -S. Gagnon, M. Shaposhnikov,
Phys. Rev. D83 (2011) 065021,arXiv:1012.1126.
[Gagnon:2010kt]
WIMPs in a 3-3-1 model with heavy Sterile neutrinos,
J. K. Mizukoshi, C. A. de S. Pires, F. S. Queiroz, P. S. Rodrigues da Silva,
Phys. Rev. D83 (2011) 065024,arXiv:1010.4097.
[Mizukoshi:2010ky]
Substructure lensing in galaxy clusters as a constraint on low-mass sterile neutrinos in tensor-vector-scalar theory: The straight arc of Abell 2390,
Martin Feix, HongSheng Zhao, Cosimo Fedeli, Jose Luis Garrido Pestana, Henk Hoekstra,
Phys. Rev. D82 (2010) 124003,arXiv:1008.1963.
[Feix:2010pn]
Collider signatures of sterile neutrinos in models with a gauge-singlet Higgs,
Ian M. Shoemaker, Kalliopi Petraki, Alexander Kusenko,
JHEP 09 (2010) 060,arXiv:1006.5458.
[Shoemaker:2010fg]
Sterile neutrino dark matter, CDMS-II and a light Higgs boson,
F. S. Queiroz, C. A. de S. Pires, P. S. Rodrigues da Silva,
Phys. Rev. D82 (2010) 105014,arXiv:1002.4601.
[deSPires:2010ead]
Oscillation dynamics of active-unsterile neutrino mixing in a $2+\tilde{1}$ mixing scheme,
D. Boyanovsky, R. Holman, Jimmy A. Hutasoit,
Phys. Rev. D81 (2010) 033009,arXiv:0912.2093.
[Boyanovsky:2009mq]
Coupling active and sterile neutrinos in the cosmon plus seesaw framework,
Alex E. Bernardini,
Phys. Lett. B684 (2010) 162-166,arXiv:0911.0446.
[Bernardini:2009ij]
Gamma-ray detection from gravitino dark matter decay in the $\mu\nu$SSM,
Ki-Young Choi, Daniel E.Lopez-Fogliani, Carlos Munoz, Roberto Ruiz de Austri,
JCAP 1003 (2010) 028,arXiv:0906.3681.
[Choi:2009ng]
Unsterile-Active Neutrino Mixing: Consequences on Radiative Decay and Bounds from the X-ray Background,
D. Boyanovsky, R. Holman, Jimmy A. Hutasoit,
Phys. Rev. D80 (2009) 025012,arXiv:0905.4729.
[Boyanovsky:2009ke]
Sterile neutrinos produced near the EW scale I: mixing angles, MSW resonances and production rates,
Jun Wu, Chiu-Man Ho, Daniel Boyanovsky,
Phys. Rev. D80 (2009) 103511,arXiv:0902.4278.
[Wu:2009yr]
Sterile neutrino dark matter as a consequence of nuMSM-induced lepton asymmetry,
M. Laine, M. Shaposhnikov,
JCAP 0806 (2008) 031,arXiv:0804.4543.
[Laine:2008pg]
Sterile neutrino dark matter in B-L extension of the standard model and galactic 511 keV line,
Shaaban Khalil, Osamu Seto,
JCAP 0810 (2008) 024,arXiv:0804.0336.
[Khalil:2008kp]
Seesaw right handed neutrino as the sterile neutrino for LSND,
R. N. Mohapatra, S. Nasri, Hai-Bo Yu,
Phys. Rev. D72 (2005) 033007,arXiv:hep-ph/0505021.
[Mohapatra:2005wk]
Neutrino physics and the mirror world: How exact parity symmetry explains the solar neutrino deficit, the atmospheric neutrino anomaly and the LSND experiment,
Robert Foot, R. R. Volkas,
Phys. Rev. D52 (1995) 6595-6606,arXiv:hep-ph/9505359.
[Foot:1995pa]
Models of light singlet fermion and neutrino phenomenology,
E.J. Chun, Anjan S. Joshipura, A. Yu. Smirnov,
Phys.Lett. B357 (1995) 608-615,arXiv:hep-ph/9505275.
[Chun:1995js]
Majorana Neutrinos and the Production of the Right-handed Charged Gauge Boson,
Wai-Yee Keung, Goran Senjanovic,
Phys. Rev. Lett. 50 (1983) 1427. [Keung:1983uu]
Theoretical point of view on Cabibbo angle anomaly,
Teppei Kitahara,
Int.J.Mod.Phys.A 39 (2024) 2442011,arXiv:2407.00122.
2024 International Workshop on Future Tau Charm Facilities. [Kitahara:2024azt]
GeV-scale neutrinos: interactions with mesons and DUNE sensitivity,
Manuel Gonzalez-Lopez,
arXiv:2105.09318, 2021.2021 EW session of the 55th Rencontres de Moriond. [Gonzalez-Lopez:2021yss]
Sterile Neutrino Dark Matter and Leptogenesis in Left-Right Symmetric Theories,
David Dunsky, Lawrence J. Hall, Keisuke Harigaya,
arXiv:2105.08065, 2021.2021 EW session of the 55th Rencontres de Moriond. [Dunsky:2021yaj]
Perspectives to find heavy neutrinos with NA62,
Marco Drewes, Jan Hajer, Juraj Klaric, Gaia Lanfranchi,
arXiv:1806.00100, 2018.53rd Rencontres de Moriond on Electroweak Interactions and Unified Theories (2018). [Drewes:2018irr]
On the relation between the CP phases in the PMNS matrix, CP-violation with sterile neutrinos and leptogenesis,
Marco Drewes, Bjorn Garbrecht, Dario Gueter, Juraj Klaric,
arXiv:1611.04769, 2016.18th International Workshop on Neutrino Factories and Future Neutrino Facilities Search (NuFact16) Quy Nhon, Vietnam, August 21-27, 2016. [Drewes:2016blc]
Neutrino masses and mixing within a SU(3) family symmetry model with one or two light sterile neutrinos,
Albino Hernandez-Galeana,
Bled Workshops Phys. 14 (2013) 82-106,arXiv:1312.3403.
16th Workshop 'What Comes Beyond the Standard Models', 14-21 July, Bled, Slovenia. [Hernandez-Galeana:2013ifa]
Dark matter in galaxies: the dark matter particle mass is about 2 keV,
H. J. de Vega, N. G. Sanchez,
arXiv:1304.0759, 2013.NuMass 2013, Milano-Bicocca, Feb 2013, Cosmic Frontiers, SLAC, March 2013, Chalonge Torino Colloquium 2013, Apr 2013. [deVega:2013ysa]
Predictions for fermion masses and mixing from a low energy SU(3) flavor symmetry model with a Light Sterile Neutrino,
Albino Hernandez Galeana,
Bled Workshops Phys. 13 (2012) 28-46,arXiv:1111.7286.
14th Bled Workshop 'What Comes beyond the Standard Models', Bled 11-22 July 2011, Slovenia. [Hernandez-Galeana:2012wcc]
Probing Extra Dimensions with Neutrino Oscillations,
P. A. N. Machado, H. Nunokawa, R. Zukanovich Funchal,
Nucl. Phys. Proc. Suppl. 217 (2011) 357-359,arXiv:1101.1686.
NOW2010, Conca Specchiulla, Italy, September 4-11, 2010. [Machado:2011ug]
A New Lorentz-Violating Model of Neutrino Oscillations,
Kevin Labe,
arXiv:1008.0105, 2010.Fifth Meeting on CPT and Lorentz Violation, Bloomington, Indiana, June 28 - July 2, 2010. [Labe:2010ru]
Unsterile-Active Neutrino Mixing,
Jimmy A. Hutasoit,
J. Phys. Conf. Ser. 462 (2013) 012021,arXiv:1004.2705.
6th International Symposium on Quantum Theory and Symmetries. [Hutasoit:2010yv]
Analysis of the $\nu MSM$ theory equations,
V.M. Gorkavenko, S.I. Vilchynskiy,
Eur. Phys. J. C70 (2010) 1091-1098,arXiv:0907.4484.
Quark Matter 2009, March 30 - April 4, Knoxville, Tennessee. [Gorkavenko:2009vd]
Sterile neutrinos in cosmology and how to find them in the lab,
Mikhail Shaposhnikov,
J. Phys. Conf. Ser. 136 (2008) 022045,arXiv:0809.2028.
XXIII Int. Conf. on Neutrino Physics and Astrophysics, May 25-31, Christchurch, New Zealand. [Shaposhnikov:2008rc]
Dark matter's X-files,
Alexander Kusenko,
arXiv:0711.2823, 2007.Sixth international Heidelberg conference on dark matter in astrophysics and particle physics, Sydney, Australia, September 24-28, 2007. [Kusenko:2007ay]
nuMSM and its experimental tests,
F. Bezrukov,
J. Phys. Conf. Ser. 110 (2008) 082002,arXiv:0710.2501.
International Europhysics Conference on High Energy Physics (EPS-HEP2007), Manchester, England, 19-25 Jul 2007. [Bezrukov:2007qz]
How to find sterile neutrinos?,
Mikhail Shaposhnikov,
arXiv:0706.1894, 2007.12th International Workshop on Neutrinos Telescopes: Twenty Years after the Supernova 1987A Neutrino Bursts Discovery, Venice, Italy, 6-9 Mar 2007. [Shaposhnikov:2007cc]
Dark Matter: The Case of Sterile Neutrino,
Mikhail Shaposhnikov,
arXiv:astro-ph/0703673, 2007.11th Marcel Grossmann Meeting on General Relativity (Berlin, 23.7 - 29.7.2006), XXXIII International Conference on High Energy Physics (Moscow, 26.7-2.7.2006), 6th International Workshop on the Identification of Dark Matter (Rhodes, 11.9-16.9.2006). [Shaposhnikov:2007nf]
Sterile neutrinos,
Alexander Kusenko,
AIP Conf. Proc. 917 (2007) 58-68,arXiv:hep-ph/0703116.
'12th Mexican School on particles and fields' and the '6th Latin American Symposium on high energy physics' (VI-Silafae/XII-MSPF). [Kusenko:2007wv]
Dark Matter and Sterile Neutrinos,
Peter L. Biermann, Faustin Munyaneza,
arXiv:astro-ph/0702173, 2007.11th Marcel Grossmann Meeting on General Relativity, 23-29 July 2006, Berlin, Germany. [Biermann:2007ap]
The Nature of Dark Matter,
Peter L. Biermann, Faustin Munyaneza,
AIP Conf.Proc. 972 (2008) 39-52,arXiv:astro-ph/0702164.
International School of Astrophysics at Ultra-high Energies, 20-27 June 2006, Erice, Sicily, Italy. [Biermann:2007tj]
Thermal and chemical evolution of the primordial clouds in warm dark matter models with keV sterile neutrinos in one-zone approximation,
Jaroslaw Stasielak, Peter L. Biermann, Alexander Kusenko,
arXiv:astro-ph/0701585, 2007.11th Marcel Grossmann Meeting held in Berlin, Germany, July 2006. [Stasielak:2007vs]
Categorical Symmetry of the Standard Model from Gravitational Anomaly,
Pavel Putrov, Juven Wang,
Phys.Rev.D 110 (2024) 125028,arXiv:2302.14862.
[Putrov:2023jqi]
Long-lived heavy neutral leptons from mesons in effective field theory,
Rebeca Beltran, Giovanna Cottin, Juan Carlos Helo, Martin Hirsch, Arsenii Titov, Zeren Simon Wang,
JHEP 01 (2023) 015,arXiv:2210.02461.
[Beltran:2022ast]
Neutrino Mass Eigenvalues for Different Scheme within Four Flavor Neutrino framework,
Vivek Kumar Nautiyal, Bipin Singh Koranga,
arXiv:2106.04077, 2021. [KumarNautiyal:2021ndv]
Scalar induced resonant sterile neutrino production in the early Universe,
F. Bezrukov, A. Chudaykin, D. Gorbunov,
Phys.Rev. D101 (2020) 103516,arXiv:1911.08502.
[Bezrukov:2019mak]
Kinetic equations for sterile neutrinos from thermal fluctuations,
Dietrich Bodeker, Dennis Schroder,
JCAP 2002 (2020) 033,arXiv:1911.05092.
[Bodeker:2019rvr]
New limits on neutrino non-standard mixings based on prescribed singular values,
Wojciech Flieger, Janusz Gluza, Kamil Porwit,
JHEP 2003 (2020) 169,arXiv:1910.01233.
[Flieger:2019eor]
Circular polarization of cosmic photons due to their interactions with Sterile neutrino dark matter,
M. Haghighat, S. Mahmoudi, R. Mohammadi, S. Tizchang, S.S. Xue,
Phys.Rev. D101 (2020) 123016,arXiv:1909.03883.
[Haghighat:2019rht]
Derivation of the sterile neutrino Boltzmann equation from quantum kinetics,
Lucas Johns,
Phys.Rev. D100 (2019) 083536,arXiv:1908.04244.
[Johns:2019hjl]
Sterile neutrino Dark Matter production from scalar decay in a thermal bath,
Marco Drewes, Jin U Kang,
JHEP 1605 (2016) 051,arXiv:1510.05646.
[Drewes:2015eoa]
Radiative decay of keV-mass sterile neutrinos in a strongly magnetized plasma,
Alexandra A. Dobrynina, Nicolay V. Mikheev, Georg G. Raffelt,
Phys. Rev. D90 (2014) 113015,arXiv:1410.7915.
[Dobrynina:2014zza]
Space-time evolution of heavy sterile neutrinos in cascade decays,
Daniel Boyanovsky,
Phys.Rev. D90 (2014) 105024,arXiv:1406.5739.
[Boyanovsky:2014una]
A New Spin on Neutrino Quantum Kinetics,
Vincenzo Cirigliano, George M. Fuller, Alexey Vlasenko,
Phys.Lett. B747 (2015) 27-35,arXiv:1406.5558.
[Cirigliano:2014aoa]
Effect of interaction with neutrons in matter on flavor conversion of super-light sterile neutrino with active neutrino,
Wei Liao, Yuchen Luo, Xiao-Hong Wu,
JHEP 1406 (2014) 069,arXiv:1403.2559.
[Liao:2014ola]
Right-Handed Neutrino Production at Finite Temperature: Radiative Corrections, Soft and Collinear Divergences,
Bjorn Garbrecht, Frank Glowna, Matti Herranen,
JHEP 1304 (2013) 099,arXiv:1302.0743.
[Garbrecht:2013gd]
Cosmological evolution of warm dark matter fluctuations II: Solution from small to large scales and keV sterile neutrinos,
H. J. de Vega, N. G. Sanchez,
Phys. Rev. D85 (2012) 043517,arXiv:1111.0300.
[deVega:2011gs]
Cosmological evolution of warm dark matter fluctuations I: Efficient computational framework with Volterra integral equations,
H. J. de Vega, N. G. Sanchez,
Phys. Rev. D85 (2012) 043516,arXiv:1111.0290.
[deVega:2011gg]
The Physical Range of Majorana Neutrino Mixing Parameters,
Andre de Gouvea, James Jenkins,
Phys. Rev. D78 (2008) 053003,arXiv:0804.3627.
[deGouvea:2008nm]
Sterile neutrino production via active-sterile oscillations: the quantum Zeno effect,
D. Boyanovsky, C. M. Ho,
JHEP 07 (2007) 030,arXiv:hep-ph/0612092.
[Boyanovsky:2006it]
Sterile neutrinos: direct mixing effects versus induced mass matrix of active neutrinos,
Alexei Yu. Smirnov, Renata Zukanovich Funchal,
Phys. Rev. D74 (2006) 013001,arXiv:hep-ph/0603009.
[Smirnov:2006bu]
Low reheating temperature and the visible sterile neutrino,
G. Gelmini, S. Palomares-Ruiz, S. Pascoli,
Phys. Rev. Lett. 93 (2004) 081302,arXiv:astro-ph/0403323.
[Gelmini:2004ah]
Relic neutrino asymmetry evolution from first principles,
Nicole F. Bell, Raymond R. Volkas, Yvonne Y.Y. Wong,
Phys. Rev. D59 (1999) 113001,arXiv:hep-ph/9809363.
[Bell:1998ds]
Cosmology of 'Visible' Sterile Neutrinos,
Graciela B. Gelmini,
Int. J. Mod. Phys. A20 (2005) 4670,arXiv:hep-ph/0412304.
8th Workshop on Non-Perturbative Quantum Chromodynamics, June 7-11, 2004, Paris, France. [Gelmini:2004hf]
Right-handed neutrino dark matter consistent with the generation of baryon number asymmetry,
Daijiro Suematsu,
arXiv:2507.05957, 2025. [Suematsu:2025oqi]
Neutrino Portal to Extra Dimensions: Unified Origin of Dark Radiation, Dark Matter, and Neutrino Decay,
Arnab Chaudhuri,
arXiv:2506.15485, 2025. [Chaudhuri:2025ysf]
Quantum phase space symmetry and sterile neutrinos,
Ravo Tokiniaina Ranaivoson, Raoelina Andriambololona, Hanitriarivo Rakotoson, Roland Raboanary, Joel Rajaobelison, Philippe Manjakasoa Randriantsoa,
J. Subatomic Part. Cosmol. 3 (2025) 100039,arXiv:2502.16685.
[Ranaivoson:2025nll]
Leptoquark-induced radiative masses for active and sterile neutrinos within the framework of the 3-3-1 model,
A. Doff, Joao Paulo Pinheiro, C. A. de S. Pires,
Phys.Lett.B 863 (2025) 139375,arXiv:2412.15055.
[Doff:2024ovy]
wilson: A package for renormalization group running in the SMEFT with Sterile Neutrinos,
Jason Aebischer, Tejhas Kapoor, Jacky Kumar,
Eur.Phys.J.C 85 (2025) 501,arXiv:2411.07220.
[Aebischer:2024csk]
A Common Origin for the QCD Axion and Sterile Neutrinos from $SU(5)$ Strong Dynamics,
Peter Cox, Tony Gherghetta, Arpon Paul,
JHEP 12 (2023) 180,arXiv:2310.08557.
[Cox:2023dou]
Sensitivity prospects for lepton-trijet signals in the $\nu$SMEFT at the LHeC,
Gabriel Zapata, Tomas Urruzola, Oscar A. Sampayo, Lucia Duarte,
Eur.Phys.J.C 84 (2024) 326,arXiv:2305.16991.
[Zapata:2023wsz]
Active-Sterile neutrino masses and mixings in $A_4$ minimal extended seesaw mechanism,
M. Kishan Singh, S. Robertson Singh, N. Nimai Singh,
Int.J.Theor.Phys. 61 (2022) 228,arXiv:2204.03370.
[Singh:2022tge]
Light Sterile Neutrinos and a High-Quality Axion from a Holographic Peccei-Quinn Mechanism,
Peter Cox, Tony Gherghetta, Minh D. Nguyen,
Phys.Rev.D 105 (2022) 055011,arXiv:2107.14018.
[Cox:2021lii]
Sterile Neutrino Dark Matter and Leptogenesis in Left-Right Higgs Parity,
David Dunsky, Lawrence J. Hall, Keisuke Harigaya,
JHEP 2101 (2021) 125,arXiv:2007.12711.
[Dunsky:2020dhn]
Quantum breaks in a model for the evolution of neutrinos during their decoupling era in the big bang,
R. F. Sawyer,
arXiv:2007.12693, 2020. [Sawyer:2020oii]
Dynamical Majorana Neutrino Masses and Axions II: Inclusion of Axial Background and Anomaly Terms,
Nick E. Mavromatos, Alex Soto,
Nucl.Phys. B962 (2021) 115275,arXiv:2006.13616.
[Mavromatos:2020hfy]
Vacuum stability and spontaneous violation of the lepton number at low energy scale in a model for light sterile neutrinos,
Joao Paulo Pinheiro, C. A. de S. Pires,
Phys.Rev. D102 (2020) 015015,arXiv:2003.02350.
[Pinheiro:2020zde]
From Peccei Quinn symmetry to strong CP problem through hierarchical mass problem,
Y. A. Garnica, R. Martinez, H. Vargas,
J.Phys.G 48 (2021) 095002,arXiv:1911.05923.
[Garnica:2019hvn]
Baryon Number, Lepton Number, and Operator Dimension in the SMEFT with Flavor Symmetries,
Andreas Helset, Andrew Kobach,
Phys.Lett. B800 (2020) 135132,arXiv:1909.05853.
[Helset:2019eyc]
Sterile Neutrinos, Black Hole Vacuum and Holographic Principle,
Gabriela Barenboim, Christopher T. Hill,
Eur.Phys.J. C81 (2021) 150,arXiv:1909.01956.
[Barenboim:2019mcs]
$\psi'$MSSM: Light Sterile Neutrinos, Dark Matter, and New Resonances,
A. Hebbar, G. Lazarides, Q.Shafi,
Phys.Rev. D96 (2017) 055026,arXiv:1706.09630.
[Hebbar:2017fit]
Operators up to Dimension Seven in Standard Model Effective Field Theory Extended with Sterile Neutrinos,
Yi Liao, Xiao-Dong Ma,
Phys.Rev. D96 (2017) 015012,arXiv:1612.04527.
[Liao:2016qyd]
Sterile Neutrinos, Dominant Seesaw Mechanisms, Double Beta Decay, and Other Predictions,
M. K. Parida, Bidyut Prava Nayak,
Adv.High Energy Phys. 2017 (2017) 4023493,arXiv:1607.07236.
[Parida:2016asc]
Light Sterile Neutrino Mass Matrix with Texture Zero and a Vanishing Mass,
Newton Nath, Monojit Ghosh, Shivani Gupta,
Int.J.Mod.Phys. A31 (2016) 1650132,arXiv:1512.00635.
[Nath:2015emg]
New Chiral Fermions, a New Gauge Interaction, Dirac Neutrinos, and Dark Matter,
Andre de Gouvea, Daniel Hernandez,
JHEP 10 (2015) 046,arXiv:1507.00916.
[deGouvea:2015pea]
The hidden symmetries in the PMNS matrix and the light sterile neutrino(s),
Hong-Wei Ke, Jia-Hui Zhou, Shuai Chen, Tan Liu, Xue-Qian Li,
Mod. Phys. Lett. A30 (2015) 1550136,arXiv:1502.00875.
[Ke:2015xka]
Common Origin of Active and Sterile Neutrino Masses with Dark Matter,
Rathin Adhikari, Debasish Borah, Ernest Ma,
arXiv:1411.4602, 2014. [Adhikari:2014nea]
Common Radiative Origin of Active and Sterile Neutrino Masses,
Debasish Borah, Rathin Adhikari,
Phys.Lett. B729 (2014) 143,arXiv:1310.5419.
[Borah:2013waa]
A Naturally Light Sterile neutrino in an Asymmetric Dark Matter Model,
Yongchao Zhang, Xiangdong Ji, Rabindra N. Mohapatra,
JHEP 1310 (2013) 104,arXiv:1307.6178.
[Zhang:2013ama]
A Left-Right Symmetric Theory with Light Sterile Neutrinos,
Michael Duerr, Pavel Fileviez Perez, Manfred Lindner,
Phys. Rev. D88 (2013) 051701,arXiv:1306.0568.
[Duerr:2013opa]
Lorentz-Violating Regulator Gauge Fields as the Origin of Dynamical Flavour Oscillations,
Jean Alexandre, Julio Leite, Nick E. Mavromatos,
Phys. Rev. D87 (2013) 125029,arXiv:1304.7706.
[Alexandre:2013tya]
Sterile Neutrinos for Warm Dark Matter and the Reactor Anomaly in Flavor Symmetry Models,
James Barry, Werner Rodejohann, He Zhang,
JCAP 1201 (2012) 052,arXiv:1110.6382.
[Barry:2011fp]
Majorana Neutrinos from Inverse Seesaw in Warped Extra Dimension,
Chee Sheng Fong, Rabindra N. Mohapatra, Ilmo Sung,
Phys. Lett. B704 (2011) 171-178,arXiv:1107.4086.
[Fong:2011xh]
Schizophrenic active neutrinos and exotic sterile neutrinos,
A. C. B. Machado, V. Pleitez,
Phys. Lett. B698 (2011) 128-130,arXiv:1008.4572.
[Machado:2010ui]
$SU_{L}(4)\times U(1)$ model for electroweak unification and sterile neutrinos,
Riazuddin, Fayyazuddin,
Eur. Phys. J. C56 (2008) 389-394,arXiv:0803.4267.
[Riazuddin:2008yx]
Dark-matter sterile neutrinos in models with a gauge singlet in the Higgs sector,
Kalliopi Petraki, Alexander Kusenko,
Phys. Rev. D77 (2008) 065014,arXiv:0711.4646.
[Petraki:2007gq]
Production of a sterile species via active-sterile mixing: an exactly solvable model,
D. Boyanovsky,
Phys. Rev. D76 (2007) 103514,arXiv:0706.3167.
[Boyanovsky:2007as]
Thermal evolution of the primordial clouds in warm dark matter models with keV sterile neutrinos,
Jaroslaw Stasielak, Peter L. Biermann, Alexander Kusenko,
Astrophys. J. 654 (2007) 290-303,arXiv:astro-ph/0606435.
[Stasielak:2006br]
Active-sterile neutrino mixing in the absence of bare active neutrino mass,
Yi Liao,
Nucl. Phys. B749 (2006) 153-171,arXiv:hep-ph/0604016.
[Liao:2006rn]
Fixing the Solar Parameters with Sterile Neutrinos,
J.C. Gomez-Izquierdo, A. Perez-Lorenzana,
Phys. Rev. D74 (2006) 013005,arXiv:hep-ph/0601223.
[Gomez-Izquierdo:2006bwq]
Calculable lepton masses, seesaw relations and four neutrino mixings in a 3-3-1 model with extra U(1) symmetry,
Nelson V. Cortez, Mauro D. Tonasse,
Phys. Rev. D72 (2005) 073005,arXiv:hep-ph/0510143.
[Cortez:2005cp]
Constraint on the heavy sterile neutrino mixing angles in the SO(10) model with double see-saw mechanism,
Takeshi Fukuyama, Tatsuru Kikuchi, Koichi Matsuda,
Eur. Phys. J. C55 (2008) 623-628,arXiv:hep-ph/0510054.
[Fukuyama:2005ph]
Seesaw right handed neutrino as the sterile neutrino for LSND,
R. N. Mohapatra, S. Nasri, Hai-Bo Yu,
Phys. Rev. D72 (2005) 033007,arXiv:hep-ph/0505021.
[Mohapatra:2005wk]
Avoiding BBN Constraints on Mirror Models for Sterile Neutrinos,
R. N. Mohapatra, S. Nasri,
Phys. Rev. D71 (2005) 053001,arXiv:hep-ph/0407194.
[Mohapatra:2004uy]
Late Time Neutrino Masses, the LSND Experiment and the Cosmic Microwave Background,
Z. Chacko, Lawrence J. Hall, Steven J. Oliver, Maxim Perelstein,
Phys. Rev. Lett. 94 (2005) 111801,arXiv:hep-ph/0405067.
[Chacko:2004cz]
The Sterile Neutrino: First Hint of 4th Generation Fermions?,
Stephen Godfrey, Shouhua Zhu,
arXiv:hep-ph/0405006, 2004. Comment:No reasonable explanation why the left-handed Majorana mass term should be very large and the right-handed Majorana mass term should be zero, against well-known wisdom. [C.G.]. [Godfrey:2004gv]
Can one of three righthanded neutrinos be light enough to produce a small LSND effect?,
Wojciech Krolikowski,
Acta Phys. Polon. B35 (2004) 2241,arXiv:hep-ph/0404118.
[Krolikowski:2004nd]
Two light sterile neutrinos that mix maximally with each other and moderately with three active neutrinos,
Wojciech Krolikowski,
Acta Phys. Polon. B35 (2004) 1675,arXiv:hep-ph/0402183.
[Krolikowski:2004ru]
Fermion masses and mixing in extended technicolor models,
Thomas Appelquist, Maurizio Piai, Robert Shrock,
Phys. Rev. D69 (2004) 015002,arXiv:hep-ph/0308061.
[Appelquist:2003hn]
Neutrino Masses in Theories with Dynamical Electroweak Symmetry Breaking,
Thomas Appelquist, Robert Shrock,
Phys. Lett. B548 (2002) 204-214,arXiv:hep-ph/0204141.
[Appelquist:2002me]
A minimal three generation seesaw scenario for LSND,
Biswajoy Brahmachari, Sandhya Choubey, Rabindra N. Mohapatra,
Phys. Lett. B536 (2002) 94-100,arXiv:hep-ph/0204073. From the abstract:... a realistic 2+2 mixed scenario that fits all oscillation data. [Brahmachari:2002va]
Double threefold degeneracies for active and sterile neutrinos,
Ernest Ma, G. Rajasekaran,
Mod. Phys. Lett. A16 (2001) 2207-2212,arXiv:hep-ph/0109236.
[Ma:2001ch]
Small active and sterile neutrino masses from the TeV scale,
A. Perez-Lorenzana, C. A. De S. Pires,
Phys. Lett. B522 (2001) 297-303,arXiv:hep-ph/0108158.
[Perez-Lorenzana:2001tob]
Connecting bimaximal neutrino mixing to a light sterile neutrino,
R. N. Mohapatra,
Phys. Rev. D64 (2001) 091301,arXiv:hep-ph/0107264.
[Mohapatra:2001ns]
A light sterile neutrino based on the seesaw mechanism,
Daijiro Suematsu,
Prog. Theor. Phys. 106 (2001) 587-602,arXiv:hep-ph/0105223.
[Suematsu:2001ih]
A Model for Neutrino Warm Dark Matter and Neutrino Oscillations,
Chun Liu, Jeonghyeon Song,
Phys. Lett. B512 (2001) 247-251,arXiv:hep-ph/0102246.
[Liu:2001mg]
Scenario of light sterile neutrinos with a heavy tau- neutrino in a supersymmetric model,
Chun Liu, Jeonghyeon Song,
Nucl. Phys. B598 (2001) 3-12,arXiv:hep-ph/0101035.
[Liu:2001es]
Axino as a sterile neutrino and R parity violation,
Kiwoon Choi, Eung Jin Chun, Kyuwan Hwang,
Phys. Rev. D64 (2001) 033006,arXiv:hep-ph/0101026.
[Choi:2001cm]
Large lepton mixings induced by sterile neutrino,
K. R. S. Balaji, A. Perez-Lorenzana, A. Yu. Smirnov,
Phys. Lett. B509 (2001) 111-119,arXiv:hep-ph/0101005.
[Balaji:2001ns]
Light sterile neutrino from extra dimensions and four neutrino solutions to neutrino anomalies,
A. Ioannisian, J. W. F. Valle,
Phys. Rev. D63 (2001) 073002. [Ioannisian:2001mu]
Three active and two sterile neutrinos in an E(6) model of diquark baryogenesis,
Ernest Ma, Martti Raidal,
J. Phys. G28 (2002) 95-102,arXiv:hep-ph/0012366.
[Ma:2000jf]
Supersymmetric seesaw model for the (1+3)-scheme of neutrino masses,
F. Borzumati, K. Hamaguchi, T. Yanagida,
Phys. Lett. B497 (2001) 259-264,arXiv:hep-ph/0011141.
[Borzumati:2000fe]
Large extra dimensions, sterile neutrinos and solar neutrino data,
D. O. Caldwell, R. N. Mohapatra, S. J. Yellin,
Phys. Rev. Lett. 87 (2001) 041601,arXiv:hep-ph/0010353.
[Caldwell:2000zn]
Reconciling neutrino anomalies in a simple four-neutrino scheme with R-parity violation,
M. Hirsch, J. W. F. Valle,
Phys. Lett. B495 (2000) 121-130,arXiv:hep-ph/0009066.
[Hirsch:2000xe]
Light sterile neutrinos from large extra dimensions,
Ernest Ma, G. Rajasekaran, Utpal Sarkar,
Phys. Lett. B495 (2000) 363-368,arXiv:hep-ph/0006340.
[Ma:2000gf]
Small neutrino masses from supersymmetry breaking,
Nima Arkani-Hamed, Lawrence J. Hall, Hitoshi Murayama, David R. Smith, Neal Weiner,
Phys. Rev. D64 (2001) 115011,arXiv:hep-ph/0006312.
[Arkani-Hamed:2000oup]
Democratic universal seesaw model with three harmless sterile neutrinos,
Yoshio Koide, Ambar Ghosal,
Phys. Lett. B488 (2000) 344-350,arXiv:hep-ph/0006084.
[Koide:2000fg]
Two sterile neutrinos as a consequence of matter structure,
Wojciech Krolikowski,
Acta Phys. Polon. B31 (2000) 1913-1930,arXiv:hep-ph/0004222.
[Krolikowski:2000nw]
Neutrino oscillations in an SO(10) SUSY GUT with $\mathrm{U(2) \times U(1)^n}$ family symmetry,
T. Blazek, S. Raby, K. Tobe,
Phys. Rev. D62 (2000) 055001,arXiv:hep-ph/9912482.
[Blazek:1999hz]
Hierarchical four-neutrino oscillations with a decay option,
Ernest Ma, G. Rajasekaran, Ion Stancu,
Phys. Rev. D61 (2000) 071302,arXiv:hep-ph/9908489.
[Ma:1999im]
Sterile neutrinos in E(6) and a natural understanding of vacuum oscillation solution to the solar neutrino puzzle,
Z. Chacko, R. N. Mohapatra,
Phys. Rev. D61 (2000) 053002,arXiv:hep-ph/9905388.
[Chacko:1999aj]
Texture of a four neutrino mass matrix,
Subhendra Mohanty, D. P. Roy, Utpal Sarkar,
Phys. Lett. B445 (1998) 185-190,arXiv:hep-ph/9808451.
[Mohanty:1998js]
Radiative neutrino mass matrix for three active plus one sterile species,
Naveen Gaur, Ambar Ghosal, Ernest Ma, Probir Roy,
Phys. Rev. D58 (1998) 071301,arXiv:hep-ph/9806272.
[Gaur:1998uk]
Grand unification of the sterile neutrino,
Biswajoy Brahmachari, Rabindra N. Mohapatra,
Phys. Lett. B437 (1998) 100-106,arXiv:hep-ph/9805429.
[Brahmachari:1998kt]
A four-neutrino mixing scheme for observed neutrino data,
S. C. Gibbons, R. N. Mohapatra, S. Nandi, Amitava Raychaudhuri,
Phys. Lett. B430 (1998) 296-302,arXiv:hep-ph/9803299.
[Gibbons:1998pg]
Three neutrino Delta(m**2) scales and singular seesaw mechanism,
E. J. Chun, C. W. Kim, U. W. Lee,
Phys. Rev. D58 (1998) 093003,arXiv:hep-ph/9802209.
[Chun:1998qw]
Is Zee Model The Model of Neutrino Masses?,
Alexei Yu. Smirnov, Morimitsu Tanimoto,
Phys. Rev. D55 (1997) 1665-1671,arXiv:hep-ph/9604370.
[Smirnov:1996bv]
Reconciling dark matter, solar and atmospheric neutrinos,
J. T. Peltoniemi, J. W. F. Valle,
Nucl. Phys. B406 (1993) 409-422,arXiv:hep-ph/9302316.
[Peltoniemi:1993ec]
Neutrino mass explanations of solar and atmospheric neutrino deficits and hot dark matter,
David O. Caldwell, Rabindra N. Mohapatra,
Phys. Rev. D48 (1993) 3259-3263. Comment:See also [14-12]. (C.G.). [Caldwell:1993kn]
Quark and lepton masses and mixing from a gauged SU(3)_F family symmetry with a light O(eV) sterile Dirac neutrino,
Albino Hernandez-Galeana,
Physics 17 (2016) 36,arXiv:1612.07388.
19th Workshop 'What Comes Beyond the Standard Models', July 11-19, Bled, Slovenia. [Hernandez-Galeana:2016fdh]
Sterile Neutrinos in $E_{\rm 6}$,
Jonathan L. Rosner,
Mod. Phys. Lett. A30 (2015) 1530013,arXiv:1503.03854.
International Conference on Massive Neutrinos, Singapore, February 9-13, 2015. [Rosner:2015xwa]
General Majorana Neutrino Mass Matrix from a Low Energy SU(3) Family Symmetry with Sterile Neutrinos,
Albino Hernandez-Galeana,
Bled Workshops Phys. 15 (2014) 93-114,arXiv:1412.6708.
17th Bled Workshop 'What Comes Beyond the Standard Models', 20-28 July, Bled, Slovenia. [Hernandez-Galeana:2014gha]
Charged lepton and Neutrino masses from a low energy SU(3) flavour symmetry model,
Albino Hernandez-Galeana,
Bled Workshops Phys. 13 (2012) 28-46,arXiv:1212.4571.
15th Bled Workshop 'What Comes Beyond the Standard Models', DMFA - ZALOZNISTVO, December 2012. [Hernandez-Galeana:2012wcc]
Universal Extra Dimension models with right-handed neutrinos,
Shigeki Matsumoto, Joe Sato, Masato Senami, Masato Yamanaka,
AIP Conf. Proc. 1006 (2008) 122-125,arXiv:0810.0700.
UAE - CERN Workshop On High Energy Physics And Applications, 26-28 Nov 2007, Al Ain, Abu Dhabi, United Arab Emirates. [Matsumoto:2008zzb]
Sterile Neutrinos in a 6x6 Matrix Approach,
T. Goldman,
Int. J. Mod. Phys. A22 (2007) 4967-4978,arXiv:0804.0454.
Festschrift for B.H.J. McKellar and G. Joshi, U of Melbourne, 29-30 Nov. 2006. [Goldman:2007zz]
A see-saw mechanism with light sterile neutrinos,
B. H. J. McKellar, G. J. Stephenson, T. Goldman, M. Garbutt,
arXiv:hep-ph/0106121, 2001. [McKellar:2001hi]
Discriminating between $\nu_\mu$ < - > $\nu_\tau$ and $\nu_\mu$ < - > $\nu_s$ in atmospheric $\nu_\mu$ oscillations with the Super-Kamiokande detector,
A. Habig(Super-Kamiokande),
arXiv:hep-ex/0106025, 2001. [Habig:2001ej]
European Strategy for Particle Physics Update - PIONEER: a next generation rare pion decay experiment,
A. Adelmann et al.(PIONEER),
arXiv:2504.06375, 2025. [PIONEER:2025idw]
Neutrino yield and neutron shielding calculations for a high-power target installed in an underground setting,
Adriana Bungau, Jose Alonso, Roger Barlow, Larry Bartozsek, Janet Conrad, Michael Shaevitz, Joshua Spitz, Daniel Winklehner,
arXiv:2409.10211, 2024. [Bungau:2024rzk]
Measuring the Sterile Neutrino Mass in Spallation Source and Direct Detection Experiments,
David Alonso-Gonzalez, Dorian W. P. Amaral, Adriana Bariego-Quintana, David Cerdeno, Martin de los Rios,
JHEP 12 (2023) 096,arXiv:2307.05176.
[Alonso-Gonzalez:2023tgm]
Determination of Neutrino Oscillation Parameters of Transitions to Sterile States in the BEST-2 Experiment,
V. V. Gorbachev, V. N. Gavrin, T. V. Ibragimova,
Phys. Atom. Nucl. 86 (2023) 1385-1388. [Gorbachev:2023pes]
A lab scale experiment for keV sterile neutrino search,
Y. C. Lee, H. B. Kim, H. L. Kim, S. K. Kim, Y. H. Kim, D. H. Kwon, H. S. Lim, H. S. Park, K. R. Woo, Y. S. Yoon,
J.Low Temp.Phys. 209 (2022) 919-926,arXiv:2210.11108.
[Lee:2022eus]
Searches for massive neutrinos with mechanical quantum sensors,
Daniel Carney, Kyle G. Leach, David C. Moore,
PRX Quantum 4 (2023) 010315,arXiv:2207.05883.
[Carney:2022pku]
LANSCE-PSR Short-Pulse Upgrade for Improved Dark Sector Particle Searches with the Coherent Captain Mills Experiment,
R.G. Van de Water et al.,
arXiv:2204.01860, 2022. [VandeWater:2022qot]
Snowmass'21 Whitepaper - IsoDAR Overview,
Jose R. Alonso, Janet M. Conrad, Michael H. Shaevitz, Joshua Spitz, Daniel Winklehner,
arXiv:2203.08804, 2022. [Alonso:2022uar]
Heavy Neutral Lepton Searches at the Electron-Ion Collider: A Snowmass Whitepaper,
Brian Batell, Tathagata Ghosh, Keping Xie,
arXiv:2203.06705, 2022. [Batell:2022ubw]
The Forward Physics Facility at the High-Luminosity LHC,
Jonathan L. Feng et al.,
J.Phys.G 50 (2023) 030501,arXiv:2203.05090.
2022 Snowmass Summer Study. [Feng:2022inv]
IsoDAR@Yemilab: A Report on the Technology, Capabilities, and Deployment,
Jose R. Alonso et al.,
JINST 17 (2022) P09042,arXiv:2201.10040.
[Alonso:2022mup]
TRISTAN: A novel detector for searching keV-sterile neutrinos at the KATRIN experiment,
Korbinian Urban et al.,
JINST 17 (2022) C09020,arXiv:2111.14161.
[Urban:2021ink]
Neutrino Physics Opportunities with the IsoDAR Source at Yemilab,
J. Alonso, C.A. Arguelles, J.M. Conrad, Y.D. Kim, D. Mishins, S.H. Seo, M. Shaevitz, J. Spitz, D. Winklehner,
Phys.Rev.D 105 (2022) 052009,arXiv:2111.09480.
[Alonso:2021kyu]
IsoDAR@Yemilab: A Conceptual Design Report for the Deployment of the Isotope Decay-At-Rest Experiment in Korea's New Underground Laboratory, Yemilab,
J. R. Alonso et al.,
arXiv:2110.10635, 2021. [Alonso:2021jxx]
THESEUS Insights into ALP, Dark Photon and Sterile Neutrino Dark Matter,
Charles Thorpe-Morgan, Denys Malyshev, Andrea Santangelo, Josef Jochum, Barbara Jager, Manami Sasaki, Sara Saeedi,
Phys.Rev.D 102 (2020) 123003,arXiv:2008.08306.
[Thorpe-Morgan:2020rwc]
Characterization of Silicon Drift Detectors with Electrons for the TRISTAN Project,
T. Brunst et al.,
J.Phys. G48 (2021) 015008,arXiv:2007.07136.
[Mertens:2020mdv]
Hunting keV sterile neutrinos with KATRIN: building the first TRISTAN module,
Thibaut Houdy et al.,
J.Phys.Conf.Ser. 1468 (2020) 012177,arXiv:2004.07693.
[Houdy:2020vhw]
Far-forward neutrinos at the Large Hadron Collider,
Weidong Bai, Milind Diwan, Maria Vittoria Garzelli, Yu Seon Jeong, Mary Hall Reno,
JHEP 2006 (2020) 032,arXiv:2002.03012.
[Bai:2020ukz]
The Magnet of the Scattering and Neutrino Detector for the SHiP experiment at CERN,
C. Ahdida et al.(SHiP),
JINST 15 (2020) P01027,arXiv:1910.02952.
[SHiP:2019qbi]
Shielding Design for the ISODAR Neutrino Experiment,
Adriana Bungau, Jose Alonso, Larry Bartoszek, Janet M. Conrad, Edward Dunton, Michael H. Shaevitz,
JINST 15 (2020) T07002,arXiv:1909.08009.
[Bungau:2019brd]
Stainless steel tank production and tests for the $\text{JSNS}^{2}$ neutrino detector,
Y. Hino, H. Furuta, S. Hasegawa, T. Maruyama, K. Nishikawa, J. S. Park, F. Suekane, Y. Sugaya,
arXiv:1904.08674, 2019. [Hino:2019yxz]
Neutrino-Oscillation Searches in the Short-Baseline Gallium Experiment BEST-2 with a$^{65}$Zn Source,
V. N. Gavrin et al.,
Phys. Atom. Nucl. 82 (2019) 70-76. [Gavrin:2019rtr]
First Commissioning Results of the Multicusp Ion Source at MIT (MIST-1) for H$_2^+$,
Daniel Winklehner et al.,
AIP Conf.Proc. 2011 (2018) 030002,arXiv:1811.01868.
[Winklehner:2018fbq]
A novel detector system for KATRIN to search for keV-scale sterile neutrinos,
Susanne Mertens et al.,
J.Phys. G46 (2019) 065203,arXiv:1810.06711.
[KATRIN:2018oow]
Intensive electron antineutrino source with well defined hard spectrum on the base of nuclear reactor and 8-lithium transfer. The promising experiment for sterile neutrinos search,
V. I. Lyashuk,
JHEP 1906 (2019) 135,arXiv:1809.05949.
[Lyashuk:2018ard]
The PROSPECT Reactor Antineutrino Experiment,
J. Ashenfelter et al.(PROSPECT),
Nucl.Instrum.Meth. A922 (2019) 287-309,arXiv:1808.00097.
[PROSPECT:2018dnc]
High intensity cyclotrons for neutrino physics,
Daniel Winklehner et al.,
Nucl.Instrum.Meth. A907 (2018) 231-243,arXiv:1807.03759.
[Winklehner:2018kqi]
On the gallium experiment BEST-2 with a $^{65}$Zn source to search for neutrino oscillations on a short baseline,
V.N. Gavrin et al.,
arXiv:1807.02977, 2018. [Gavrin:2018zmf]
Racetrack FFAG muon decay ring for nuSTORM with triplet focusing,
J.-B. Lagrange, R.B. Appleby, J.M. Garland, J. Pasternak, S. Tygier,
JINST 13 (2018) P09013,arXiv:1806.02172.
[Lagrange:2018bck]
Spectral shape analysis for electron antineutrino oscillation study by using $^{8}$Li generator with $^{252}$Cf source,
Jae Won Shin, Myung-Ki Cheoun, Toshitaka Kajino, Takehito Hayakawa,
JCAP 1809 (2018) 024,arXiv:1804.08225.
[Shin:2018ujc]
Short-baseline electron antineutrino disappearance study by using neutrino sources from $^{13}$C + $^{9}$Be reaction,
Jae Won Shin, Myung-Ki Cheoun, Toshitaka Kajino, Takehito Hayakawa,
JCAP 1704 (2017) 044,arXiv:1702.08036.
[Shin:2017jii]
High flux lithium antineutrino source with variable hard spectrum. How to decrease the errors of the total spectrum ?,
V.I. Lyashuk,
arXiv:1612.08096, 2016. [Lyashuk:2016lpn]
Status Report (22th J-PARC PAC): Searching for a Sterile Neutrino at J-PARC MLF (E56, JSNS2),
M. Harada et al.,
arXiv:1610.08186, 2016. [JSNS2:2016cwv]
Lithium antineutrino source in the tandem scheme of the accelerator and neutron producting tungsten target,
V. I. Lyashuk,
arXiv:1609.02127, 2016. [Lyashuk:2016lxq]
Proposed experiments to detect keV range sterile neutrinos using energy-momentum reconstruction of beta decay or K-capture events,
Peter F Smith,
New J.Phys. 21 (2019) 053022,arXiv:1607.06876.
[Smith:2016vku]
DANSS: Detector of the reactor AntiNeutrino based on Solid Scintillator,
I. Alekseev et al.(DANSS),
JINST 11 (2016) P11011,arXiv:1606.02896.
[Alekseev:2016llm]
Status Report for the 21th J-PARC PAC : Searching for a Sterile Neutrino at J-PARC MLF (J-PARC E56, JSNS2),
M.Harada et al.,
arXiv:1601.01046, 2016. [JSNS2:2016zjj]
Development and Mass Production of a Mixture of LAB- and DIN-based Gadolinium-loaded Liquid Scintillator for the NEOS Short-baseline Neutrino Experiment,
Ba Ro Kim et al.(NEOS),
J.Radioanal.Nucl.Chem. 310 (2016) 311-316,arXiv:1511.05551.
[NEOS:2015dzs]
Sensitivity to oscillation with a sterile fourth generation neutrino from ultra-low threshold neutrino-nucleus coherent scattering,
Bhaskar Dutta et al.,
Phys. Rev. D94 (2016) 093002,arXiv:1511.02834.
[Dutta:2015nlo]
Light Collection and Pulse-Shape Discrimination in Elongated Scintillator Cells for the PROSPECT Reactor Antineutrino Experiment,
J. Ashenfelter et al.(PROSPECT),
JINST 10 (2015) P11004,arXiv:1508.06575.
[PROSPECT:2015rce]
Status Report for the 20th J-PARC PAC : A Search for Sterile Neutrino at J-PARC MLF (J-PARC E56, JSNS2),
M. Harada et al.(JSNS2),
arXiv:1507.07076, 2015. [JSNS2:2015ror]
A Decisive Disappearance Search at High-$\Delta m^2$ with Monoenergetic Muon Neutrinos,
S Axani et al.,
Phys. Rev. D92 (2015) 092010,arXiv:1506.05811.
[Axani:2015dha]
A facility to Search for Hidden Particles at the CERN SPS: the SHiP physics case,
Sergey Alekhin et al.(SHiP),
Rept.Prog.Phys. 79 (2016) 124201,arXiv:1504.04855.
[Alekhin:2015byh]
The current status of 'Troitsk nu-mass' experiment in search for sterile neutrino,
D.N. Abdurashitov et al.,
JINST 10 (2015) T10005,arXiv:1504.00544.
[Abdurashitov:2015jha]
Search for Sterile Neutrinos in the Muon Neutrino Disappearance Mode at FNAL,
A. Anokhina et al.,
Eur.Phys.J. C77 (2017) 23,arXiv:1503.07471.
[Anokhina:2015pga]
A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam,
R. Acciarri et al.(MicroBooNE, LAr1-ND, ICARUS-WA104),
arXiv:1503.01520, 2015. [MicroBooNE:2015bmn]
On-site Background Measurements for the J-PARC E56 Experiment: A Search for Sterile Neutrino at J-PARC MLF,
S. Ajimura et al.,
PTEP 2015 (2015) 063C01,arXiv:1502.06324.
[Ajimura:2015yux]
A new type of Neutrino Detector for Sterile Neutrino Search at Nuclear Reactors and Nuclear Nonproliferation Applications,
C. Lane et al.,
arXiv:1501.06935, 2015. [NuLat:2015wgu]
Creation of a neutrino laboratory for search for sterile neutrino at SM-3 reactor,
A. P. Serebrov et al.(Neutrino-4),
arXiv:1501.04740, 2015. [Serebrov:2015eta]
Experimental Parameters for a Cerium 144 Based Intense Electron Antineutrino Generator Experiment at Very Short Baselines,
J. Gaffiot et al.,
Phys. Rev. D91 (2015) 072005,arXiv:1411.6694.
[Gaffiot:2014aka]
Development of a gadolinium-loaded liquid scintillator for the Hanaro short baseline prototype detector,
In Sung Yeo, Kyung Kwang Joo, Sun Heang So, Sook Hyung Song, Hong Joo Kim et al.,
J.Korean Phys.Soc. 64 (2014) 377-381. [Yeo:2014spa]
CeLAND: search for a 4th light neutrino state with a 3 PBq 144Ce-144Pr electron antineutrino generator in KamLAND,
A. Gando et al.,
arXiv:1312.0896, 2013. [Gando:2013zoa]
On possibility of realization NEUTRINO-4 experiment on search for oscillations of the reactor antineutrino into a sterile state,
A. P. Serebrov et al.(Neutrino-4),
arXiv:1310.5521, 2013. [Serebrov:2013yaa]
Electron Antineutrino Disappearance at KamLAND and JUNO as Decisive Tests of the Short Baseline $\bar\nu_\mu \to \bar\nu_e$ Appearance Anomaly,
J.M. Conrad, M.H. Shaevitz,
Phys. Rev. D89 (2014) 057301,arXiv:1310.3857.
[Conrad:2013ova]
Proposal: A Search for Sterile Neutrino at J-PARC Materials and Life Science Experimental Facility,
M. Harada et al.(JSNS2),
arXiv:1310.1437, 2013. [JSNS2:2013jdh]
A new investigation of $\nu_\mu\to\nu_e$ oscillations with improved sensitivity in the MiniBooNE+ experiment,
R. Dharmapalan et al.(MiniBooNE+),
arXiv:1310.0076, 2013. [MiniBooNE:2013swv]
LAr1-ND: Testing Neutrino Anomalies with Multiple LArTPC Detectors at Fermilab,
B. Fleming, O. Palamara, D.Schmitz(LArTPC),
arXiv:1309.7987, 2013. [LArTPC:2013hbn]
PROSPECT - A Precision Reactor Oscillation and Spectrum Experiment at Short Baselines,
J. Ashenfelter et al.(PROSPECT),
arXiv:1309.7647, 2013. [PROSPECT:2013phf]
White paper: CeLAND - Investigation of the reactor antineutrino anomaly with an intense 144Ce-144Pr antineutrino source in KamLAND,
A. Gando et al.,
arXiv:1309.6805, 2013. [Gando:2013zla]
Enabling Intensity and Energy Frontier Science with a Muon Accelerator Facility in the U.S.: A White Paper Submitted to the 2013 U.S. Community Summer Study of the Division of Particles and Fields of the American Physical Society,
J-P. Delahaye et al.,
arXiv:1308.0494, 2013. [Delahaye:2013jla]
Development of a Relic Neutrino Detection Experiment at PTOLEMY: Princeton Tritium Observatory for Light, Early-Universe, Massive-Neutrino Yield,
S. Betts et al.,
arXiv:1307.4738, 2013. [Betts:2013uya]
An Appraisal of Muon Neutrino Disappearance at Short Baseline Neutrino Beams,
Luca Stanco, Stefano Dusini, Andrea Longhin, Alessandro Bertolin, Marco Laveder,
Adv.High Energy Phys. 2013 (2013) 948626,arXiv:1306.3455.
[Stanco:2013dha]
Registration of reactor neutrinos with the highly segmented plastic scintillator detector DANSSino,
V. Belov et al.(DANSS),
Phys.Part.Nucl.Lett. 11 (2014) 473-482,arXiv:1304.3696.
[Alekseev:2013dmu]
Letter of Intent: A new investigation of $\nu_\mu \to \nu_e$ oscillations with improved sensitivity in an enhanced MiniBooNE experiment,
A. A. Aguilar-Arevalo et al.(MiniBooNE),
arXiv:1210.2296, 2012. [MiniBooNE:2012jhj]
An Electron Antineutrino Disappearance Search Using High-Rate 8Li Production and Decay,
A. Bungau et al.,
Phys. Rev. Lett. 109 (2012) 141802,arXiv:1205.4419.
[Bungau:2012ys]
NEUTRINO-4 experiment: preparations for search for sterile neutrino at 100 MW reactor SM-3 at 6-12 meters,
A. P. Serebrov et al.(Neutrino-4),
arXiv:1205.2955, 2012. [Serebrov:2012sq]
Search for 'anomalies' from neutrino and anti-neutrino oscillations at $\Delta m^2 \sim 1 \text{eV}^2$ with muon spectrometers and large LAr-TPC imaging detectors,
M. Antonello et al.,
arXiv:1203.3432, 2012. [Antonello:2012hf]
Measuring Active-to-Sterile Neutrino Oscillations with Neutral Current Coherent Neutrino-Nucleus Scattering,
A. J. Anderson et al.,
Phys. Rev. D86 (2012) 013004,arXiv:1201.3805.
[Anderson:2012pn]
Search for Sterile Neutrinos with a Radioactive Source at Daya Bay,
D.A. Dwyer, K.M. Heeger, B.R. Littlejohn, P. Vogel,
Phys. Rev. D87 (2013) 093002,arXiv:1109.6036.
[Dwyer:2011xs]
A proposed search for a fourth neutrino with a PBq antineutrino source,
Michel Cribier et al.,
Phys. Rev. Lett. 107 (2011) 201801,arXiv:1107.2335.
[Cribier:2011fv]
Gallium experiments with artificial neutrino sources as a tool for investigation of transition to sterile states,
V. N. Gavrin, V. V. Gorbachev, E. P. Veretenkin, B. T. Cleveland,
arXiv:1006.2103, 2010. [Gavrin:2010qj]
Constraining sterile neutrinos with a low energy beta-beam,
Sanjib K. Agarwalla, Patrick Huber, Jonathan M. Link,
JHEP 01 (2010) 071,arXiv:0907.3145.
[Agarwalla:2009em]
Measuring active - sterile neutrino oscillations with a stopped pion neutrino source,
G. T. Garvey et al.,
Phys. Rev. D72 (2005) 092001,arXiv:hep-ph/0501013.
[Garvey:2005pn]
Test of non-standard neutrino properties with the BOREXINO source experiments,
A. Ianni, D. Montanino, G. Scioscia,
Eur. Phys. J. C8 (1999) 609-617,arXiv:hep-ex/9901012.
[Ianni:1999nk]
Monte-Carlo Simulations of Superconducting Tunnel Junction Quantum Sensors for the BeEST Experiment,
Connor E. Bray, Larry J. Hiller, Kyle G. Leach, Stephan Friedrich,
J.Low Temp.Phys. 209 (2022) 857-863,arXiv:2205.14113.
LTD19. [Bray:2022hdo]
The Short Baseline Neutrino Program at Fermilab,
M. Bonesini(SBN; Icarus, SBND, MicroBooNe),
PoS NuFact2021 (2021) 009,arXiv:2203.05814.
NuFact2021. [Bonesini:2022pwy]
The BeEST Experiment: Searching for Beyond Standard Model Neutrinos using $^7$Be Decay in STJs,
K.G. Leach, S. Friedrich,
J.Low Temp.Phys. 209 (2022) 796-803,arXiv:2112.02029.
19th International Conference on Low-Temperature Detectors (LTD-19). [Leach:2021bvh]
The SHiP experiment at CERN,
Markus Cristinziani,
arXiv:2009.06003, 2020.3rd World Summit on Exploring the Dark Side of the Universe, Guadeloupe Islands, March 9-13 2020. [Cristinziani:2020wvy]
Experiment BEST-2 with a source of $^{65}$Zn on gallium target for the search of neutrino oscillations on a short baseline,
V. V. Gorbachev, V. N. Gavrin, T. V. Ibragimova, V. N. Kornoukhov, A. A. Shikhin,
J. Phys. Conf. Ser. 1390 (2019) 012053. [Gorbachev:2019tbb]
Future Opportunities in Accelerator-based Neutrino Physics,
Andrea Dell'Acqua et al.,
arXiv:1812.06739, 2018.European Neutrino Town Meeting, Oct 22-24, CERN. [DellAcqua:2018lky]
The detectors of the SHiP experiment at CERN,
Elena Graverini,
Nucl.Instrum.Meth. A936 (2019) 724-725,arXiv:1809.00354.
14th Pisa meeting on Advanced Detectors. [Graverini:2018wcy]
SHiP: a new facility to search for long lived neutral particles and investigate the $\nu_\tau$ properties,
Elena Graverini,
arXiv:1807.11737, 2018.28$^{th}$ Rencontres de Blois conference (2016). [Graverini:2018bib]
nuSTORM FFAG Decay Ring,
J. B. Lagrange, J. Pasternak, R. B. Appleby, J. M. Garland, H. Owen, S. Tygier, A. Bross, A. Liu,
arXiv:1805.04159, 2018.7th International Particle Accelerator Conference (IPAC 2016): Busan, Korea, May 8-13, 2016.https://inspirehep.net/record/1672755/files/1805.04159.pdf.
[Lagrange:2016okg]
Detector Development for a Sterile Neutrino Search with the KATRIN Experiment,
Tim Brunst et al.,
arXiv:1801.08182, 2018.7th International Pontecorvo Neutrino Physics School. [Brunst:2018vka]
Hidden sector searches with SHiP and NA62,
P. Mermod(SHiP),
PoS NuFact2017 (2017) 139,arXiv:1712.01768.
19th International Workshop on Neutrinos from Accelerators (NUFACT2017), 25-30 September, Uppsala, Sweden. [Mermod:2017ceo]
Measurement of $^{144}\rm{Pr}$ beta-spectrum with Si(Li) detectors for the purpose of determining the spectrum of electron antineutrinos,
A.V. Derbin et al.,
arXiv:1711.06985, 2017.13th Patras Workshop on Axions, WIMPs and WISP, May 15th to 19th 2017, Thessaloniki, Greece. [Derbin:2017umv]
Status of the SoLid experiment: Search for sterile neutrinos at the SCK$\cdot$CEN BR2 reactor,
Luis Manzanillas,
J.Phys.Conf.Ser. 1342 (2020) 012034,arXiv:1710.07933.
[Manzanillas:2017vgo]
Search for eV Sterile Neutrinos - The Stereo Experiment,
Julia Haser,
PoS EPS-HEP2017 (2017) 113,arXiv:1710.06310.
EPS-HEP 2017, European Physical Society Conference on High Energy Physics (5-12 July 2017), Venice, Italy. [Haser:2017ppu]
Search for new physics with the SHiP experiment at CERN,
Oliver Lantwin,
PoS EPS-HEP2017 (2017) 304,arXiv:1710.03277.
EPS Conference on High Energy Physics (EPS-HEP), Venice, July 2017. [Lantwin:2017xtc]
Updated physics design of the DAEdALUS and IsoDAR coupled cyclotrons for high intensity H2+ beam production,
Daniel Winklehner(DAEdALUS),
arXiv:1708.06412, 2017. [Winklehner:2017kcf]
Developments for the IsoDAR@KamLAND and DAE$\delta$ALUS Decay-At-Rest Neutrino Experiments,
Jose R. Alonso(IsoDAR),
arXiv:1611.03548, 2016.NuFact 2016, Quy Nhon Vietnam, August 25 2016. [Alonso:2016adb]
SoLid: Search for Oscillation with a 6Li Detector at the BR2 research reactor,
Ianthe Michiels(SoLid),
arXiv:1605.00215, 2016.NuPhys2015 (London, 16-18 December 2015). [Michiels:2016qui]
Sterile neutrino search at the ILL nuclear reactor: the STEREO experiment,
V. Helaine(STEREO),
arXiv:1604.08877, 2016.NuPhys2015 (London, 16-18 December 2015). [Helaine:2016bmc]
An Intermediate Water Cherenkov Detector at J-PARC,
Mark Scott(NuPRISM,Hyper-K),
JPS Conf.Proc. 12 (2016) 010039,arXiv:1603.01251.
NuInt2015, Osaka, November 2015. [Scott:2016kdg]
Physics at the fcc-ee,
David d'Enterria,
arXiv:1602.05043, 2016.17th Lomonosov conference on Elementary Particle Physics, Moscow, Aug. 2015. [dEnterria:2016sca]
Search for a sterile neutrino with the STEREO detector at ILL,
Stephane Zsoldos,
arXiv:1602.00568, 2016.50th Rencontres de Moriond Electroweak Interactions and Unified Theories 2015. [Zsoldos:2015glq]
SOX: search for short baseline neutrino oscillations with Borexino,
M. Vivier et al.(Borexino),
J. Phys. Conf. Ser. 718 (2016) 062066.14th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2015). [Borexino:2016ses]
Search for eV sterile neutrinos at a nuclear reactor - the Stereo project,
J. Haser(Stereo),
J. Phys. Conf. Ser. 718 (2016) 062023.14th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2015). [Haser:2016xlb]
SOX: Short Distance Neutrino Oscillations with Borexino,
D. Bravo-Berguno et al.(SOX),
Nucl. Part. Phys. Proc. 273-275 (2016) 1760-1764.37th International Conference on High Energy Physics (ICHEP 2014). [SOX:2016rqv]
Technology of the SoLid detector and construction of the first submodule,
Celine Moortgat(SoLid),
PoS EPS-HEP2015 (2015) 080,arXiv:1511.07603.
EPS HEP, Vienna 22nd-29th July 2015. [Moortgat:2015bwg]
Sensitivity and Discovery Potential of the PROSPECT Experiment,
Karin Gilje(PROSPECT),
arXiv:1511.00177, 2015.DPF 2015 Meeting of the American Physical Society Division of Particles and Fields, Ann Arbor, Michigan, August 4-8, 2015. [Gilje:2015idp]
Development of PROSPECT detectors for precision antineutrino studies,
Danielle Norcini(PROSPECT),
arXiv:1510.09082, 2015.DPF 2015 Meeting of the American Physical Society Division of Particles and Fields, Ann Arbor, Michigan, August 4-8, 2015. [Norcini:2015ngg]
Trigger and readout electronics for the STEREO experiment,
O. Bourrion et al.,
JINST 11 (2016) C02078,arXiv:1510.08238.
Topical Workshop on Electronics for Particle Physics (TWEPP) 2015, Lisboa. [Bourrion:2015axa]
First results of the deployment of a SoLid detector module at the SCK-CEN BR2 reactor,
Nick Ryder(SoLid),
PoS EPS-HEP2015 (2015) 071,arXiv:1510.07835.
EPS HEP, Vienna 22nd-29th July 2015. [Ryder:2015sma]
KPipe: a decisive test for muon neutrino disappearance,
Spencer N. Axani et al.,
arXiv:1510.06994, 2015.DPF 2015 Meeting of the American Physical Society Division of Particles and Fields, Ann Arbor, Michigan, August 4-8, 2015. [Axani:2015zxa]
Search for New Physics in SHiP and at future colliders,
Elena Graverini, Nicola Serra, Barbara Storaci,
JINST 10 (2015) 7007,arXiv:1503.08624.
INFIERI 2014 School. [Graverini:2015dka]
PROSPECT - A precision oscillation and spectrum experiment,
T.J. Langford(PROSPECT),
Nucl. Part. Phys. Proc. 265-266 (2015) 123-125,arXiv:1501.00194.
NOW2014. [Langford:2014ola]
The SOX experiment in the neutrino physics,
L. Di Noto et al.,
Nuovo Cim. C038 (2015) 36.26th Conference on High Energy Physics (IFAE 2014). [DiNoto:2015tuv]
Current status of new SAGE project with $^{51}$Cr neutrino source,
V. Gavrin et al.,
Phys. Part. Nucl. 46 (2015) 131-137.International Workshop on Prospects of Particle Physics: Neutrino Physics and Astrophysics. [Gavrin:2015aca]
Search for Heavy Right Handed Neutrinos at the FCC-ee,
Alain Blondel, E. Gaverini, N. Serra, M. Shaposhnikov, FCC-ee study team(FCC-ee),
Nucl.Part.Phys.Proc. 273-275 (2016) 1883-1890,arXiv:1411.5230.
ICHEP 2014. [Blondel:2014bra]
The NESSiE way to searches for sterile neutrinos at FNAL,
L. Stanco et al.(NESSiE),
Nucl.Part.Phys.Proc. 273-275 (2016) 1740-1748,arXiv:1410.3980.
ICHEP2014, 2-7 July 2014, Valencia (Spain). [NESSiE:2014fqg]
Recent Borexino results and prospects for the near future,
D. D'Angelo et al.(Borexino),
EPJ Web Conf. 126 (2016) 02008,arXiv:1405.7919.
Rencontres de Moriond EW 2014. [Borexino:2014lrx]
Current status of SAGE new project with 51Cr neutrino source,
V. Gavrin, 2014.PPP 2014, 26 January - 2 Ferbuary 2014, Valday, Russia.http://www.inr.ac.ru/~school/talks/Gavrin.ppt.
[Gavrin-PPP2014]
MiniBooNE and the hunt for the low mass sterile neutrino,
H. Ray, 2014.PPP 2014, 26 January - 2 Ferbuary 2014, Valday, Russia.http://www.inr.ac.ru/~school/talks/HRay.pptx.
[Ray-PPP2014]
The NESSiE Concept for Sterile Neutrinos,
L. Stanco et al.(NESSiE),
PoS Neutel2013 (2014) 023,arXiv:1312.1227.
XV Workshop on Neutrino Telescopes, 11-15 March 2013, Venice, Italy. [NESSiE:2013nog]
Sensitivity of the DANSS detector to short range neutrino oscillations,
M. Danilov(DANSS),
PoS EPS-HEP2013 (2014) 493,arXiv:1311.2777.
European Physical Society Conference on High Energy Physics, 18-24 July, 2013, Stockholm, Sweden. [Danilov:2013caa]
NESSiE: The Experimental Sterile Neutrino Search in Short-Base-Line at CERN,
Umut Kose(NESSiE),
arXiv:1304.7127, 2013.Lake Louise Winter 2013 Conference, Banff, Alberta, Canada, 17-23 February 2013. [Kose:2013zsa]
Search for sterile neutrinos at radioactive ion beam facilities,
Catalina Espinoza, Rimantas Lazauskas, Cristina Volpe,
J. Phys. Conf. Ser. 447 (2013) 012063. [Espinoza:2013dsa]
Opportunities for Neutrino Physics at the Spallation Neutron Source: A White Paper,
A. Bolozdynya et al.,
arXiv:1211.5199, 2012.Workshop on Neutrinos at the Spallation Neutron Source, May 2012. [Bolozdynya:2012xv]
High Current H2+ Cyclotrons for Neutrino Physics: The IsoDAR and DAE deltaALUS Projects,
Jose R. Alonso(DAEdALUS),
AIP Conf.Proc. 1525 (2012) 480-486,arXiv:1210.3679.
22nd International Conference on the Application of Accelerators in Research and Industry (CAARI), Ft. Worth, TX, Aug 5-10 (2012). [Alonso:2012zv]
Search for anomalies in the neutrino sector with muon spectrometers and large LArTPC imaging detectors at CERN,
A. Antonello et al.,
arXiv:1208.0862, 2012.European Strategy for Particle Physics - Open Symposium Preparatory Group, Kracow 10-12 September 2012. [Antonello:2012qx]
It is possible to perform a cross search between the various pages of Neutrino Unbound.
This is useful if you want to show the common elements that appear
in the listings of two (or more) different topics or experiments.