Numerical recipes : the art of scientific computing,
William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery, Cambridge University Press, 2007.ISBN 9780521880688.http://www.nr.com/.
[NR-2007]
Modern Applied Statistics with S,
W. N. Venables, B. D. Ripley, Springer, New York, 2002.ISBN 9780387954578.http://www.stats.ox.ac.uk/pub/MASS4.
[Venables-Ripley-MASS-2002]
A Systematic Literature Review of Machine Learning Techniques for Observational Constraints in Cosmology,
Luis Rojas, Sebastian Espinoza, Esteban Gonzalez, Carlos Maldonado, Fei Luo,
Galaxies 13 (2025) 114,arXiv:2510.09876.
[Rojas:2025wdm]
Advances in Machine Learning: Where Can Quantum Techniques Help?,
Samarth Kashyap, Rohit K. Ramakrishnan, Kumari Jyoti, Apoorva D. Patel,
arXiv:2507.08379, 2025. [Kashyap:2025zyt]
Progress in ${\cal CP}$ violating top-Higgs coupling at the LHC with Machine Learning,
A. Hammad, Adil Jueid,
Nucl.Phys.B 1021 (2025) 117137,arXiv:2504.11791.
[Hammad:2025ewr]
The Critical Importance of Software for HEP,
Christina Agapopoulou et al.(HEP Software Foundation),
Eur.Phys.J.C 85 (2025) 1142,arXiv:2504.01050.
[HEPSoftwareFoundation:2025irs]
Interpretable Machine Learning in Physics: A Review,
Sebastian Johann Wetzel, Seungwoong Ha, Raban Iten, Miriam Klopotek, Ziming Liu,
arXiv:2503.23616, 2025. [Wetzel:2025uhj]
Interplay of Traditional Methods and Machine Learning Algorithms for Tagging Boosted Objects,
Camellia Bose, Amit Chakraborty, Shreecheta Chowdhury, Saunak Dutta,
Eur.Phys.J.ST 233 (2024) 2531-2558,arXiv:2408.01138.
[Bose:2024pwc]
Dawning of a New Era in Gravitational Wave Data Analysis: Unveiling Cosmic Mysteries via Artificial Intelligence - A Systematic Review,
Tianyu Zhao, Ruijun Shi, Yue Zhou, Zhoujian Cao, Zhixiang Ren,
Front.Phys.(Beijing) 20 (2025) 45301,arXiv:2311.15585.
[Zhao:2023tqr]
Transformers for scientific data: a pedagogical review for astronomers,
Dimitrios Tanoglidis, Bhuvnesh Jain, Helen Qu,
arXiv:2310.12069, 2023. [2310.12069]
Review of real-time data processing for collider experiments,
V.V. Gligorov, V. Rekovic,
Eur.Phys.J.Plus 138 (2023) 1005,arXiv:2310.04756.
[Gligorov:2023ezo]
Evolution of HEP Processing Frameworks,
Christopher D. Jones, Kyle Knoepfel, Paolo Calafiura, Charles Leggett, Vakhtang Tsulaia,
arXiv:2203.14345, 2022. [Jones:2022ycw]
Graph Neural Networks in Particle Physics: Implementations, Innovations, and Challenges,
Savannah Thais, Paolo Calafiura, Grigorios Chachamis, Gage DeZoort, Javier Duarte, Sanmay Ganguly, Michael Kagan, Daniel Murnane, Mark S. Neubauer, Kazuhiro Terao,
arXiv:2203.12852, 2022. [Thais:2022iok]
Data Storage for HEP Experiments in the Era of High-Performance Computing,
Amit Bashyal, Peter Van Gemmeren, Saba Sehrish, Kyle Knoepfel, Suren Byna, Qiao Kang,
arXiv:2203.07885, 2022. [Bashyal:2022dul]
Machine Learning in the Search for New Fundamental Physics,
Georgia Karagiorgi, Gregor Kasieczka, Scott Kravitz, Benjamin Nachman, David Shih,
arXiv:2112.03769, 2021. [Karagiorgi:2021ngt]
A survey of machine learning-based physics event generation,
Yasir Alanazi, N. Sato, Pawel Ambrozewicz, Astrid N. Hiller Blin, W. Melnitchouk, Marco Battaglieri, Tianbo Liu, Yaohang Li,
arXiv:2106.00643, 2021. [Alanazi:2021yuj]
Advances in Machine and Deep Learning for Modeling and Real-time Detection of Multi-Messenger Sources,
E. A. Huerta, Zhizhen Zhao,
arXiv:2105.06479, 2021. [Huerta:2021ybd]
Graph Neural Networks for Particle Tracking and Reconstruction,
Javier Duarte, Jean-Roch Vlimant,
arXiv:2012.01249, 2020.43 pages, 20 figures. Submitted for review. To appear in 'Artificial Intelligence for Particle Physics', World Scientific Publishing. [Duarte:2020ngm]
A Review on Machine Learning for Neutrino Experiments,
Fernanda Psihas, Micah Groh, Christopher Tunnell, Karl Warburton,
Int.J.Mod.Phys. A35 (2020) 2043005,arXiv:2008.01242.
[Psihas:2020pby]
21st Century Statistical and Computational Challenges in Astrophysics,
Eric D. Feigelson, Rafael S. de Souza, Emille E. O. Ishida, Gutti Jogesh Babu,
Ann.Rev.Stat.App. 8 (2021) 493-517,arXiv:2005.13025.
[Feigelson:2020hya]
Quantum Machine Learning in High Energy Physics,
Wen Guan, Gabriel Perdue, Arthur Pesah, Maria Schuld, Koji Terashi, Sofia Vallecorsa, Jean-Roch Vlimant,
Mach.Learn.Sci.Tech. 2 (2021) 011003,arXiv:2005.08582.
[Guan:2020bdl]
Machine and Deep Learning Applications in Particle Physics,
Dimitri Bourilkov,
Int.J.Mod.Phys. A34 (2020) 1930019,arXiv:1912.08245.
[Bourilkov:2019yoi]
A guide for deploying Deep Learning in LHC searches: How to achieve optimality and account for uncertainty,
Benjamin Nachman,
SciPost Phys. 8 (2020) 090,arXiv:1909.03081.
[Nachman:2019dol]
Supervised deep learning in high energy phenomenology: a mini review,
Murat Abdughani, Jie Ren, Lei Wu, Jin Min Yang, Jun Zhao,
Commun.Theor.Phys. 71 (2019) 955,arXiv:1905.06047.
[Abdughani:2019wuv]
Deep Learning and its Application to LHC Physics,
Dan Guest, Kyle Cranmer, Daniel Whiteson,
Ann.Rev.Nucl.Part.Sci. 68 (2018) 161-181,arXiv:1806.11484.
[Guest:2018yhq]
A high-bias, low-variance introduction to Machine Learning for physicists,
Pankaj Mehta et al.,
Phys.Rept. 810 (2019) 1-124,arXiv:1803.08823.
[Mehta:2018dln]
Markov Chain Monte Carlo Methods for Bayesian Data Analysis in Astronomy,
Sanjib Sharma,
Ann.Rev.Astron.Astrophys. 55 (2017) 213,arXiv:1706.01629.
[Sharma:2017wfu]
The Convergence of Markov chain Monte Carlo Methods: From the Metropolis method to Hamiltonian Monte Carlo,
Michael Betancourt,
arXiv:1706.01520, 2017. [1706.01520]
Artificial intelligence in creating, representing or expressing an immersive soundscape,
Rima Ayoubi, Laurent Lescop, Sang Bum Park,
arXiv:2504.07153, 2025.Internoise 2024: 53rd International Congress and Exposition on Noise Control Engineering, Aug 2024, Nantes, France. [2504.07153]
Analyzing Astronomical Data with Machine Learning Techniques,
Mohammad H. Zhoolideh Haghighi,
arXiv:2302.11573, 2023.Hands-on workshop of the ICRANet-ISFAHAN Astronomy Meeting. [2302.11573]
Introduction of Machine Learning for Astronomy (Hands-on Workshop),
Yu Wang, Rahim Moradi, Mohammad H. Zhoolideh Haghighi, Fatemeh Rastegarnia,
arXiv:2302.06475, 2023.Hands-on workshop of the ICRANet-ISFAHAN Astronomy Meeting. [Wang:2023rym]
Software Sustainability & High Energy Physics,
Daniel S. Katz et al.,
arXiv:2010.05102, 2020.'Sustainable Software in HEP' IRIS-HEP blueprint workshop. [Katz:2020bvz]
Machine Learning in High Energy Physics Community White Paper,
Kim Albertsson et al.,
J.Phys.Conf.Ser. 1085 (2018) 022008,arXiv:1807.02876.
[Albertsson:2018maf]
Machine learning challenges in theoretical HEP,
Stefano Carrazza,
J.Phys.Conf.Ser. 1085 (2018) 022003,arXiv:1711.10840.
18th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2017). [Carrazza:2017qro]
A brief history of the introduction of generalized ensembles to Markov chain Monte Carlo simulations,
Bernd A Berg,
Eur.Phys.J.ST 226 (2017) 551-565,arXiv:1612.04270.
Conference on Phase Transitions and Critical Phenomena, Coventry, April 6-8, 2016. [Berg:2016fos]
The Tools and Monte Carlo Working Group Summary Report from the Les Houches 2009 Workshop on TeV Colliders,
J. M. Butterworth et al.,
arXiv:1003.1643, 2010. [Butterworth:2010ym]
Monte Carlo Tools,
Torbjorn Sjostrand,
arXiv:0911.5286, 2009.65th Scottish Universities Summer School in Physics: LHC Physics, St Andrews, 16 - 29 August 2009. [Sjostrand:2009ad]
Emerging Computing Technologies in High Energy Physics,
Amir Farbin,
arXiv:0910.3440, 2009.DPF-2009, Detroit, MI, July 2009, eConf C090726. [Farbin:2009qx]
Monte Carlo Generators,
Torbjörn Sjöstrand,
arXiv:hep-ph/0611247, 2006.2006 European School of High-Energy Physics, Aronsborg, Sweden, 18 June - 1 July 2006. [Sjostrand:2006su]
The Future of Computation,
Apoorva Patel,
arXiv:quant-ph/0503068, 2005.Workshop on Quantum Information, Computation and Communication (QICC-2005), IIT Kharagpur, India, February 2005. [quant-ph/0503068]
Review of Monte Carlo methods for particle multiplicity evaluation,
N. Armesto,
J. Phys. Conf. Ser. 5 (2005) 219,arXiv:hep-ph/0410161.
Focus on MULTIPLICITY: International Workshop on Particle Multiplicity in Relativistic Heavy Ion Collisions, Bari, Italy, June 17th-19th 2004. [Armesto:2004sa]
StatTestCalculator: A New General Tool for Statistical Analysis in High Energy Physics,
Emil Abasov, Lev Dudko, Daniil Gorin, Oleg Vasilevskii,
arXiv:2510.11637, 2025. [Abasov:2025hsy]
NuGraph2 with Explainability: Post-hoc Explanations for Geometric Neural Network Predictions,
Margaret Voetberg, Vitor F. Grizzi, Giuseppe Cerati, Hadi Meidani,
arXiv:2509.10676, 2025. [Voetberg:2025fix]
RESuM: Rare Event Surrogate Model for Physics Detector Design,
Ann-Kathrin Schuetz, Alan W. P. Poon, Aobo Li,
arXiv:2410.03873, 2024. [Schuetz:2024vug]
ForestFlow: cosmological emulation of Lyman-$\alpha$ forest clustering from linear to nonlinear scales,
J. Chaves-Montero et al.,
Astron.Astrophys. 694 (2025) A187,arXiv:2409.05682.
[Chaves-Montero:2024gnz]
New Pathways in Neutrino Physics via Quantum-Encoded Data Analysis,
Jeffrey Lazar, Santiago Giner Olavarrieta, Giancarlo Gatti, Carlos A. Arguelles, Mikel Sanz,
arXiv:2402.19306, 2024. [2402.19306]
nuOscillation: a software package for computation and simulation of neutrino propagation and interaction,
Seonghyeok Jang, Eunju Jeon, Eunil Won, Young Ju Ko, Kyungmin Lee,
J.Korean Phys.Soc. 85 (2024) 381-388,arXiv:2401.13215.
[Jang:2024mfr]
Evaluating Portable Parallelization Strategies for Heterogeneous Architectures in High Energy Physics,
Mohammad Atif et al.,
arXiv:2306.15869, 2023. [Atif:2023zcw]
PEANUTS: a software for the automatic computation of solar neutrino flux and its propagation within Earth,
Tomas E. Gonzalo, Michele Lucente,
Eur.Phys.J.C 84 (2024) 119,arXiv:2303.15527.
[Gonzalo:2023mdh]
Minimally implicit methods for the numerical integration of the neutrino transport equations,
Samuel Santos-Perez, Martin Obergaulinger, Isabel Cordero-Carrion,
arXiv:2302.12089, 2023. [Santos-Perez:2025rlo]
4-16.
Meld: Exploring the Feasibility of a Framework-less Framework, 2023. [2308.16710]
ACHILLES: A novel event generator for electron- and neutrino-nucleus scattering,
Joshua Isaacson, William I. Jay, Alessandro Lovato, Pedro A. N. Machado, Noemi Rocco,
Phys.Rev.D 107 (2023) 033007,arXiv:2205.06378.
[Isaacson:2022cwh]
Exploring phase space with Nested Sampling,
David Yallup, Timo Jansen, Steffen Schumann, Will Handley,
Eur.Phys.J.C 82 (2022) 8,arXiv:2205.02030.
[Yallup:2022yxe]
EpIC: novel Monte Carlo generator for exclusive processes,
E.C. Aschenauer, V. Batozskaya, S. Fazio, K. Gates, H. Moutarde, D. Sokhan, H. Spiesberger, P. Sznajder, K. Tezgin,
Eur.Phys.J.C 82 (2022) 819,arXiv:2205.01762.
[Aschenauer:2022aeb]
COSE$\nu$: A Collective Oscillation Simulation Engine for Neutrinos,
Manu George, Chun-Yu Lin, Meng-Ru Wu, Tony G. Liu, Zewei Xiong,
Comput.Phys.Commun. 283 (2023) 108588,arXiv:2203.12866.
[George:2022lwg]
Basic Elements for Simulations of Standard Model Physics with Quantum Annealers: Multigrid and Clock States,
Marc Illa, Martin J. Savage,
Phys.Rev.A 106 (2022) 052605,arXiv:2202.12340.
[Illa:2022jqb]
nuSQuIDS: A toolbox for neutrino propagation,
Carlos A. Arguelles, Jordi Salvado, Christopher N. Weaver,
Comput.Phys.Commun. 277 (2022) 108346,arXiv:2112.13804.
[Arguelles:2021twb]
Home on the (HEALPix) Range: Fast All-Sky Geometry and Image Arithmetic in a Relational Database for Multi-Messenger Astronomy Brokers,
Leo P. Singer, B. Parazin, Michael W. Coughlin, Joshua S. Bloom, Arien Crellin-Quick, Daniel A. Goldstein, Stefan van der Walt,
Astron.J. 163 (2022) 209,arXiv:2112.06947.
[Singer:2021rdr]
Nested sampling for frequentist computation: fast estimation of small $p$-values,
Andrew Fowlie, Sebastian Hoof, Will Handley,
Phys.Rev.Lett. 128 (2022) 021801,arXiv:2105.13923.
[Fowlie:2021gmr]
Geant4Reweight: a framework for evaluating and propagating hadronic interaction uncertainties in GEANT4,
J. Calcutt, C. Thorpe, K. Mahn, Laura Fields,
JINST 16 (2021) P08042,arXiv:2105.01744.
[Calcutt:2021zck]
An Error Analysis Toolkit for Binned Counting Experiments,
B. Messerly et al.(MINERvA),
EPJ Web Conf. 251 (2021) 03046,arXiv:2103.08677.
[MINERvA:2021ddh]
RGBeta: A Mathematica Package for the Evaluation of Renormalization Group $ \beta$-Functions,
Anders Eller Thomsen,
Eur.Phys.J. C81 (2021) 408,arXiv:2101.08265.
[Thomsen:2021ncy]
BAT.jl - A Julia-based tool for Bayesian inference,
Oliver Schulz, Frederik Beaujean, Allen Caldwell, Cornelius Grunwald, Vasyl Hafych, Kevin Kroninger, Salvatore La Cagnina, Lars Rohrig, Lolian Shtembari,
SN Comput.Sci. 2 (2021) 1-17,arXiv:2008.03132.
[Schulz:2020ebm]
DiffExp, a Mathematica package for computing Feynman integrals in terms of one-dimensional series expansions,
Martijn Hidding,
Comput.Phys.Commun. 269 (2021) 108125,arXiv:2006.05510.
[Hidding:2020ytt]
FPGA-accelerated machine learning inference as a service for particle physics computing,
Javier Duarte et al.,
Comput.Softw.Big Sci. 3 (2019) 13,arXiv:1904.08986.
[Duarte:2019fta]
TURTLE: A C library for an optimistic stepping through a topography,
Valentin Niess, Anne Barnoud, Cristina Carloganu, Olivier Martineau-Huynh,
Comput.Phys.Commun. (2019) 106952,arXiv:1904.03435.
[Niess:2019hdn]
SmeftFR - Feynman rules generator for the Standard Model Effective Field Theory,
A. Dedes, M. Paraskevas, J. Rosiek, K. Suxho, L. Trifyllis,
Comput.Phys.Commun. 247 (2020) 106931,arXiv:1904.03204.
[Dedes:2019uzs]
RADIAL: A Fortran subroutine package for the solution of the radial Schrodinger and Dirac wave equations,
Francesc Salvat, Jose M. Fernandez-Varea,
Comput. Phys. Commun. 240 (2019) 165-177. [SALVAT2019165]
Architecture of Distributed Data Storage for Astroparticle Physics,
Alexander Kryukov, Andrey Demichev,
Lobachevskii J.Math. 39 (2018) 1206,arXiv:1811.02403.
[Kryukov:2018qfn]
flavio: a Python package for flavour and precision phenomenology in the Standard Model and beyond,
David M. Straub,
arXiv:1810.08132, 2018. [Straub:2018kue]
MadDM v.3.0: a Comprehensive Tool for Dark Matter Studies,
Federico Ambrogi et al.,
Phys.Dark Univ. 24 (2019) 100249,arXiv:1804.00044.
[Ambrogi:2018jqj]
Computational Techniques for the Analysis of Small Signals in High-Statistics Neutrino Oscillation Experiments,
M. G. Aartsen et al.(IceCube-Gen2),
Nucl.Instrum.Meth. A977 (2020) 164332,arXiv:1803.05390.
[IceCube:2018ikn]
swordfish: Efficient Forecasting of New Physics Searches without Monte Carlo,
Thomas D. P. Edwards, Christoph Weniger,
arXiv:1712.05401, 2017. [Edwards:2017kqw]
MatchingTools: a Python library for symbolic effective field theory calculations,
Juan C. Criado,
Comput.Phys.Commun. 227 (2018) 42-50,arXiv:1710.06445.
[Criado:2017khh]
GAMBIT: The Global and Modular Beyond-the-Standard-Model Inference Tool,
Peter Athron et al.(GAMBIT),
Eur.Phys.J. C77 (2017) 784,arXiv:1705.07908.
[GAMBIT:2017yxo]
Kira - A Feynman Integral Reduction Program,
Philipp Maierhoefer, Johann Usovitsch, Peter Uwer,
Comput.Phys.Commun. 230 (2018) 99-112,arXiv:1705.05610.
[Maierhofer:2017gsa]
NUISANCE: a neutrino cross-section generator tuning and comparison framework,
P. Stowell et al.,
JINST 12 (2017) P01016,arXiv:1612.07393.
[Stowell:2016jfr]
FormTracer - A Mathematica Tracing Package Using FORM,
Anton K. Cyrol, Mario Mitter, Nils Strodthoff,
Comput.Phys.Commun. C219 (2017) 346-352,arXiv:1610.09331.
[Cyrol:2016zqb]
mr: a C++ library for the matching and running of the Standard Model parameters,
Bernd A. Kniehl, Andrey F. Pikelner, Oleg L. Veretin,
Comput.Phys.Commun. 206 (2016) 84-96,arXiv:1601.08143.
[Kniehl:2016enc]
Parameterized Machine Learning for High-Energy Physics,
Pierre Baldi, Kyle Cranmer, Taylor Faucett, Peter Sadowski, Daniel Whiteson,
Eur.Phys.J. C76 (2016) 235,arXiv:1601.07913.
[Baldi:2016fzo]
Performance and optimization of support vector machines in high-energy physics classification problems,
Mehmet Ozgur Sahin, Dirk Krucker, Isabell-Alissandra Melzer-Pellmann,
Nucl.Instrum.Meth. A838 (2016) 137-146,arXiv:1601.02809.
[Sahin:2016qgg]
FaRe: a Mathematica package for tensor reduction of Feynman integrals,
Michele Re Fiorentin,
Int. J. Mod. Phys. C27 (2015) 1650027,arXiv:1507.03527.
[ReFiorentin:2015kri]
Package-X: A Mathematica package for the analytic calculation of one-loop integrals,
Hiren H. Patel,
Comput. Phys. Commun. 197 (2015) 276-290,arXiv:1503.01469.
[Patel:2015tea]
A Simple Quantum Integro-Differential Solver (SQuIDS),
Carlos Alberto Arguelles Delgado, Jordi Salvado, Christopher N. Weaver,
Comput. Phys. Commun. 196 (2015) 569-591,arXiv:1412.3832.
[ArguellesDelgado:2014rca]
GoSam-2.0: a tool for automated one-loop calculations within the Standard Model and beyond,
G. Cullen et al.,
Eur.Phys.J. C74 (2014) 3001,arXiv:1404.7096.
[GoSam:2014iqq]
Accelerated Event-by-Event Neutrino Oscillation Reweighting with Matter Effects on a GPU,
R. G. Calland, A. C. Kaboth, D. Payne,
JINST 9 (2014) 04016,arXiv:1311.7579.
[Calland:2013vaa]
FeynRules 2.0 - A complete toolbox for tree-level phenomenology,
Adam Alloul, Neil D. Christensen, Celine Degrande, Claude Duhr, Benjamin Fuks,
Comput.Phys.Commun. 185 (2014) 2250-2300,arXiv:1310.1921.
[Alloul:2013bka]
Porting Large HPC Applications to GPU Clusters: The Codes GENE and VERTEX,
Tilman Dannert, Andreas Marek, Markus Rampp,
arXiv:1310.1485, 2013. [1310.1485]
CHIWEI: A code of goodness of fit tests for weighted and unweighed histograms,
Nikolai Gagunashvili,
Comput.Phys.Commun. 183 (2012) 418-421,arXiv:1104.3733.
[Gagunashvili:2011gx]
Evolution Strategies for Cosmology: A Comparison of Nested Sampling Methods,
M. Axiak, T. D. Kitching, J. I. van Hemert,
arXiv:1101.0717, 2011. [Axiak:2011wp]
R2SM: a package for the analytic computation of the R2 Rational terms in the Standard Model of the Electroweak interactions,
M.V. Garzelli, I. Malamos,
Eur. Phys. J. C71 (2011) 1605,arXiv:1010.1248.
[Garzelli:2010fq]
Data Preservation in High Energy Physics,
Dphep Study Group(DPHEP Study Group),
Eur. Phys. J. C68 (2009) 183-195,arXiv:0912.0255.
[DPHEPStudyGroup:2009gfj]
Limits, discovery and cut optimization for a Poisson process with uncertainty in background and signal efficiency: TRolke 2.0,
J. Lundberg, J. Conrad, W. Rolke, A. Lopez,
Comput. Phys. Commun. 181 (2010) 683-686,arXiv:0907.3450.
[Lundberg:2009iu]
JaxoDraw: A graphical user interface for drawing Feynman diagrams. Version 2.0 release notes,
D. Binosi, J. Collins, C. Kaufhold, L.Theussl,
Comput. Phys. Commun. 180 (2009) 1709-1715,arXiv:0811.4113.
[Binosi:2008ig]
FeynRules - Feynman rules made easy,
Neil D. Christensen, Claude Duhr,
Comput. Phys. Commun. 180 (2009) 1614-1641,arXiv:0806.4194.
[Christensen:2008py]
Sky in Google Earth: The Next Frontier in Astronomical Data Discovery and Visualization,
Ryan Scranton et al.,
arXiv:0709.0752, 2007. [Scranton:2007fs]
New features in the simulation of neutrino oscillation experiments with GLoBES 3.0,
Patrick Huber et al.,
Comput. Phys. Commun. 177 (2007) 432-438,arXiv:hep-ph/0701187.
[Huber:2007ji]
CRPropa: A Numerical Tool for the Propagation of UHE Cosmic Rays, Gamma-rays and Neutrinos,
E. Armengaud, G. Sigl, T. Beau, F. Miniati,
Astropart. Phys. 28 (2007) 463-471,arXiv:astro-ph/0603675.
[Armengaud:2006fx]
GalaxyCount: a JAVA calculator of galaxy counts and variances in magnitude-limited wide-field surveys down to B=28 mag,
S.C. Ellis, J. Bland-Hawthorn,
Mon. Not. Roy. Astron. Soc. 377 (2007) 815-828,arXiv:astro-ph/0602573.
[Ellis:2006nh]
NMHDECAY 2.0: An updated program for Sparticle masses, Higgs masses, couplings and decay widths in the NMSSM,
Ulrich Ellwanger, Cyril Hugonie,
Comput. Phys. Commun. 175 (2006) 290-303,arXiv:hep-ph/0508022.
[Ellwanger:2005dv]
ZFITTER: a semi-analytical program for fermion pair production in e+e- annihilation, from version 6.21 to version 6.42,
A. B. Arbuzov et al.,
Comput. Phys. Commun. 174 (2006) 728,arXiv:hep-ph/0507146.
[Arbuzov:2005ma]
HypExp, a Mathematica package for expanding hypergeometric functions around integer-valued parameters,
T. Huber, D. Maitre,
Comput. Phys. Commun. 175 (2006) 122-144,arXiv:hep-ph/0507094.
[Huber:2005yg]
Package for Calculations and Simplifications of Expressions with Dirac Matrixes (MatrixExp),
V. A. Poghosyan,
Comput. Phys. Commun. 170 (2005) 287,arXiv:hep-ph/0507080.
[Poghosyan:2005xs]
LevelScheme: A level scheme drawing and scientific figure preparation system for Mathematica,
M. A. Caprio,
Comput. Phys. Commun. 171 (2005) 107,arXiv:physics/0505065.
[Caprio:2005dm]
Therminator: Thermal heavy-Ion generator,
Adam Kisiel, Tomasz Taluc, Wojciech Broniowski, Wojciech Florkowski,
Comput. Phys. Commun. 174 (2006) 669,arXiv:nucl-th/0504047.
[Kisiel:2005hn]
BCVEGPY2.0: A upgrade version of the generator BCVEGPY with an addendum about hadroproduction of the P-wave B_c states,
Chao-Hsi Chang, Jian-Xiong Wang, Xing-Gang Wu,
Comput. Phys. Commun. 174 (2006) 241,arXiv:hep-ph/0504017.
[Chang:2005hq]
Application of Genetic Programming to High Energy Physics Event Selection,
J. M. Link(FOCUS),
Nucl. Instrum. Meth. A551 (2005) 504,arXiv:hep-ex/0503007.
[FOCUS:2005snk]
Automated computation of one-loop integrals in massless theories,
Andre van Hameren, Jens Vollinga, Stefan Weinzierl,
Eur. Phys. J. C41 (2005) 361,arXiv:hep-ph/0502165.
[vanHameren:2005ed]
CalcHEP 3.2: MSSM, structure functions, event generation, batchs, and generation of matrix elements for other packages,
A. Pukhov,
arXiv:hep-ph/0412191, 2004. [Pukhov:2004ca]
Fittino, a program for determining MSSM parameters from collider observables using an iterative method,
Philip Bechtle, Klaus Desch, Peter Wienemann,
Comput. Phys. Commun. 174 (2006) 47,arXiv:hep-ph/0412012.
[Bechtle:2004pc]
LSJK - a C++ library for arbitrary-precision numeric evaluation of the generalized log-sine functions,
M.Yu. Kalmykov, A. Sheplyakov,
Comput. Phys. Commun. 172 (2005) 45,arXiv:hep-ph/0411100.
[Kalmykov:2004xg]
The Cyborg astrobiologist: First field experience,
Patrick C. McGuire, Jens Ormo, Enrique Diaz Martinez, Jose Antonio Rodriguez Manfredi, Javier Gomez Elvira, Helge Ritter, Markus Oesker, Joerg Ontrup,
Int. J. Astrobiol. 3 (2004) 189-207,arXiv:cs/0410071.
[McGuire:2004mt]
Adaptive scanning - a proposal how to scan theoretical predictions over a multi-dimensional parameter space efficiently,
Oliver Brein,
Comput. Phys. Commun. 170 (2005) 42,arXiv:hep-ph/0407340.
[Brein:2004kh]
Simulation of long-baseline neutrino oscillation experiments with GLoBES,
P. Huber, M. Lindner, W. Winter,
Comput. Phys. Commun. 167 (2005) 195,arXiv:hep-ph/0407333.
[Huber:2004ka]
NMHDECAY: A Fortran Code for the Higgs Masses, Couplings and Decay Widths in the NMSSM,
Ulrich Ellwanger, John F. Gunion, Cyril Hugonie,
JHEP 0502 (2005) 066,arXiv:hep-ph/0406215.
[Ellwanger:2004xm]
Program to calculate pure angular momentum coefficients in jj-coupling,
G. Gaigalas, S. Fritzsche, I.P. Grant,
J. Phys. A39 (2006) R315-R392,arXiv:physics/0405129.
[Eto:2006pg]
Calculation of reduced coefficients and matrix elements in jj-coupling,
G. Gaigalas, S. Fritzsche,
Phys. Rev. D70 (2004) 111901,arXiv:physics/0405128.
[Achasov:2004uq]
The library of subroutines for calculation of matrix elements of two-particle operators for many-electron atoms,
G. Gaigalas,
JHEP 0701 (2007) 080,arXiv:physics/0405072.
[Bock:2004xz]
The library of subroutines for calculating standard quantities in atomic structure theory,
G. Gaigalas(BaBar),
Phys. Rev. Lett. 93 (2004) 091802,arXiv:physics/0405071.
[BaBar:2004oae]
BRANECODE: A Program for Simulations of Braneworld Dynamics,
Johannes Martin et al.,
Comput. Phys. Commun. 171 (2005) 69,arXiv:hep-ph/0404141.
[Martin:2004bj]
ISAJET 7.69: A Monte Carlo Event Generator for $pp$, $\bar pp$, and $e^+e^-$ Reactions,
Howard Baer, Frank E. Paige, Serban D. Protopescu, Xerxes Tata,
arXiv:hep-ph/0312045, 2003. [Paige:2003mg]
Parallel Computation of Feynman diagrams with DIANA,
M. Tentyukov, J. Fleischer,
Comput. Phys. Commun. 160 (2004) 167,arXiv:hep-ph/0311111.
[Tentyukov:2003bx]
An Algorithm for optimal partitioning of data on an interval,
Brad Jackson, Jeffrey D. Scargle, David Barnes, Sundararajan Arabhi, Alina Alt, Peter Gioumousis, Elyus Gwin, Paungkaew Sangtrakulcharoen, Linda Tan, Tun Tao Tsai,
IEEE Signal Process.Lett. 12 (2005) 105,arXiv:math/0309285.
[Jackson:2003mj]
JaxoDraw: A graphical user interface for drawing Feynman diagrams,
D. Binosi, L. Theussl,
Comput. Phys. Commun. 161 (2004) 76,arXiv:hep-ph/0309015.
[Binosi:2003yf]
Super computers in astrophysics and High Performance simulations of self-gravitating systems,
R. Capuzzo-Dolcetta, P. Di Matteo, P. Miocchi,
Mem. Soc. Ast. It. 73 (2002) 23,arXiv:astro-ph/0307313.
SAIt 2003 national meeting (Trieste, Italy, 14 - 17 aprile 2003). [Capuzzo-Dolcetta:2003ihn]
Automatic classification using selforganizing neural networks in astrophysical experiments,
Praveen Boinee, Alessandro De Angelis, Edoardo Milotti,
arXiv:cs/0307031, 2003.Proceedings, 1st Workshop on Science with the New Generation of High Energy Gamma-ray Experiments : Between Astrophysics and Astroparticle Physics. (SceNeGHE 2003). [Boinee:2003ve]
Tree-Particle-Mesh: an adaptive, efficient, and parallel code for collisionless cosmological simulation,
Paul Bode, Jeremiah P. Ostriker,
Astrophys. J. Supp. 145 (2003) 1,arXiv:astro-ph/0302065.
[Bode:2003ct]
SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e+ e- colliders,
Werner Porod,
Comput. Phys. Commun. 153 (2003) 275,arXiv:hep-ph/0301101.
[Porod:2003um]
SuSpect: a Fortran Code for the Supersymmetric and Higgs Particle Spectrum in the MSSM,
Abdelhak Djouadi, Jean-Loic Kneur, Gilbert Moultaka,
Comput. Phys. Commun. 176 (2007) 426-455,arXiv:hep-ph/0211331.
[Djouadi:2002ze]
Calculating two- and three-body decays with FeynArts and FormCalc,
Michael Klasen,
Int. J. Mod. Phys. C14 (2003) 1273,arXiv:hep-ph/0210426.
[Klasen:2002xi]
JetWeb: A WWW Interface and Database for Monte Carlo Tuning and Validation,
J. M. Butterworth, S. Butterworth,
Comput. Phys. Commun. 153 (2003) 164,arXiv:hep-ph/0210404.
[Butterworth:2002ts]
$\nu$SpaceSim: An end-to-end simulation package to model the sensitivity of UHECR experiments to upward-moving extensive air showers sourced by cosmic neutrinos interacting in the Earth,
Jorge Caraca-Valente Barrera(NuSpaceSim),
PoS UHECR2024 (2025) 074,arXiv:2502.08890.
7th International Symposium on Ultra High Energy Cosmic Rays (UHECR2024). [Barrera:2025ugi]
Towards enhanced databases for High Energy Physics,
Andrea Ceccarelli, Andrea Cioni, Maria Vittoria Garzelli, Piergiulio Lenzi, Laura Redapi,
arXiv:1907.11772, 2019.XXVII International Workshop on Deep Inelastic Scattering and Related Subjects, Torino Italy, 8 - 12 April 2019. [Ceccarelli:2019oll]
The Scikit-HEP Project,
Eduardo Rodrigues,
EPJ Web Conf. 214 (2019) 06005,arXiv:1905.00002.
23rd International Conference on Computing in High Energy and Nuclear Physics (CHEP 2018), 9-13 July 2018. [Rodrigues:2019nct]
HEPData: a repository for high energy physics data,
Eamonn Maguire, Lukas Heinrich, Graeme Watt,
J.Phys.Conf.Ser. 898 (2017) 102006,arXiv:1704.05473.
22nd International Conference on Computing in High Energy and Nuclear Physics, CHEP 2016, 10-14 October 2016, San Francisco. [Maguire:2017ypu]
FORM, Diagrams and Topologies,
Franz Herzog, Ben Ruijl, Takahiro Ueda, J.A.M. Vermaseren, Andreas Vogt,
PoS LL2016 (2016) 073,arXiv:1608.01834.
Loops $\text{\&}$ Legs 2016, Leipzig (Germany), April 2016. [Herzog:2016qas]
The NIFTY way of Bayesian signal inference,
Marco Selig,
arXiv:1412.7160, 2014.33rd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2013). [1412.7160]
A comparison of Monte Carlo generators,
Tomasz Golan,
AIP Conf.Proc. 1663 (2015) 030003,arXiv:1402.1608.
NUINT12: Eighth International Workshop on Neutrino-Nucleus Interactions in the Few-GeV Region, October 22-27, 2012, Rio de Janeiro, Brasil. [Golan:2014qha]
FormCalc 8: Better Algebra and Vectorization,
B. Chokoufe Nejad, T. Hahn, J.-N. Lang, E. Mirabella,
J. Phys. Conf. Ser. 523 (2014) 012050,arXiv:1310.0274.
ACAT 2013, Beijing, China, 16-21 May 2013. [ChokoufeNejad:2013xjv]
Data Preservation in High Energy Physics,
Roman Kogler, David M. South, Michael Steder,
J. Phys. Conf. Ser. 368 (2012) 012026,arXiv:1111.2788.
ACAT 2011. [Kogler:2011sn]
Data Preservation in High Energy Physics - why, how and when?,
Siegfried Bethke,
Nucl. Phys. B, Proc. Suppl. 207-208 2010 (2010) 156-159,arXiv:1009.3763.
QCD10, Montpellier, France, June 2010. [Bethke:2010ai]
HepData reloaded: reinventing the HEP data archive,
Andy Buckley, Mike Whalley,
PoS ACAT2010 (2010) 067,arXiv:1006.0517.
13th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2010), February 22-27, 2010, Jaipur, India. [Buckley:2010jn]
FLUKA as a new high energy cosmic ray generator,
Giuseppe Battistoni, Annarita Margiotta, Silvia Muraro, Maximiliano Sioli,
Nucl. Instrum. Meth. A626-627 (2011) S191-S192,arXiv:1002.4655.
Very Large Volume neutrino Telescope Workshop 2009 - VLVnT09, Athens, October 2009. [Battistoni:2010vf]
Data Preservation at LEP,
Andre G. Holzner et al.,
arXiv:0912.1803, 2009.First Workshop on Data Preservation and Long Term Analysis in HEP. [Holzner:2009ew]
Running Nuwro,
Cezary Juszczak,
Acta Phys. Polon. B40 (2009) 2507-2512,arXiv:0909.1492.
45th Winter School in Theoretical Physics 'Neutrino Interactions: from Theory to Monte Carlo Simulations', Ladek-Zdroj, Poland, February 2-11, 2009. [Juszczak:2009qa]
MUPAGE: a fast atmospheric MUon GEnerator for neutrino telescopes based on PArametric formulas,
G. Carminati et al.,
arXiv:0907.5563, 2009.31st ICRC, Lodz, Poland, 2009. [Carminati:2009fj]
Data Preservation and Long Term Analysis in High Energy Physics,
David M. South,
arXiv:0907.1586, 2009.44th Rencontres de Moriond on QCD and High Energy Interactions, La Thuile, Valle d'Aosta, Italy, 14-21 Mar 2009. [South:2009tu]
RooStatsCms: a tool for analyses modelling, combination and statistical studies,
D. Piparo, Dr. Gregory Schott, Prof. G. Quast,
Nucl. Phys. Proc. Suppl. 197 (2009) 95-98,arXiv:0812.2217.
11th Topical Seminar on Innovative Particle and Radiation Detectors. [Piparo:2008ka]
Herwig++,
Martyn Gigg, Peter Richardson,
arXiv:0706.2921, 2007.42nd Rencontres de Moriond on QCD and Hadronic Interactions, La Thuile, Italy, 17-24 Mar 2007. [Gigg:2007vr]
GiNaC - Symbolic computation with C++,
Jens Vollinga,
Nucl. Instrum. Meth. A559 (2006) 282,arXiv:hep-ph/0510057.
X International Workshop on Advanced Computing and Analysis Techniques in Physics Research, ACAT 2005, DESY-Zeuthen, Germany, 22-27 May 2005. [Vollinga:2005pk]
Precision Higgs Masses with FeynHiggs 2.2,
T. Hahn, S. Heinemeyer, W. Hollik, G. Weiglein,
eConf C050318 (2005) 0106,arXiv:hep-ph/0507009.
2005 International Linear Collider Workshop (LCWS 2005), Stanford, California, 18-22 Mar 2005. [Hahn:2005cu]
New Developments in FormCalc 4.1,
T. Hahn,
eConf C050318 (2005) 0604,arXiv:hep-ph/0506201.
2005 International Linear Collider Workshop (LCWS 2005), Stanford, California, 18-22 Mar 2005. [Hahn:2005vh]
Virtual Astronomy, Information Technology, and the New Scientific Methodology,
S. G. Djorgovski,
IEEE Proc. (2005),arXiv:astro-ph/0504651.
IEEE Proc. of CAMP05, "Computer Architectures for Machine Perception". [Djorgovski:2005ie]
The CEDAR Project,
J. M. Butterworth et al.,
arXiv:hep-ph/0412139, 2004.Computing in High-Energy Physics (CHEP'04), Interlaken, Switzerland, 27th September - 1st October 2004. [Butterworth:2004mu]
TAUOLA as tau Monte Carlo for future applications,
Z. Was, P. Golonka,
Nucl. Phys. Proc. Suppl. 144 (2005) 88,arXiv:hep-ph/0411377.
International workshop on Tau Lepton Physics, TAU04 Nara, Japan September 14-17,2004. [Was:2004dg]
Multi-Terabyte EIDE Disk Arrays running Linux RAID5,
D. A. Sanders et al.,
arXiv:physics/0411188, 2004.2004 Computing in High Energy and Nuclear Physics (CHEP04), Interlaken, Switzerland, 27th September - 1st October 2004. [Sanders:2004fs]
The Inconstancy of the Fundamental Physical Constants: Computational Status,
V.V. Ezhela, Yu.V. Kuyanov, V.N. Larin, A.S. Siver,
arXiv:physics/0409117, 2004.'Conference on Fundamental Symmetries and Fundamental Constants' (Trieste, 2004). [Ezhela:2004zn]
Automated calculations for massive fermion production with aITALC,
A. Lorca, T. Riemann,
Nucl. Phys. Proc. Suppl. 135 (2004) 328,arXiv:hep-ph/0407149.
'Loops and Legs in Quantum Field Theory 2004', Zinnowitz, Usedom Island, Germany, April 2004. [Lorca:2004dk]
Cosmological Markov Chain Monte Carlo simulation with Cmbeasy,
Christian M. Mueller,
arXiv:astro-ph/0406206, 2004.XXXIX Rencontres de Moriond 'Exploring the Universe'. [Mueller:2004se]
Formulae for a numerical computation of one-loop tensor integrals,
R. Pittau,
arXiv:hep-ph/0406105, 2004.LCWS2004, Paris, France, April 2004. [Pittau:2004bc]
Les Houches Guidebook to Monte Carlo Generators for Hadron Collider Physics,
H. Baer et al.,
arXiv:hep-ph/0403045, 2004.Workshop 'Physics at TeV Colliders', Les Houches, France, May 2003. [Dobbs:2004qw]
Event Generator for Particle Production in High-Energy Collisions,
A. Schaelicke et al.,
Prog. Part. Nucl. Phys. 53 (2004) 329,arXiv:hep-ph/0311270.
25th Course of the International School on Nuclear Physics. [Schaelicke:2003bf]
The physics models of FLUKA: status and recent development,
A. Fasso' et al.,
eConf C0303241 (2003) MOMT005,arXiv:hep-ph/0306267.
2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003. [Fasso:2003xz]
The FLUKA code: present applications and future developments,
A. Fasso' et al.,
eConf C0303241 (2003) MOMT004,arXiv:physics/0306162.
2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003. [Fasso:2003bh]
Physics Analysis Expert PAX: First Applications,
M. Erdmann et al.,
eConf C0303241 (2003) THLT008,arXiv:physics/0306085.
2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003. [Erdmann:2003ke]
A Review Of Two Novel Numerical Methods in QFT,
R. Easther, D. D. Ferrante, G. S. Guralnik, D. Petrov,
arXiv:hep-lat/0306038, 2003.Seventh Workshop on Quantum Chromodynamics, 6-10 January 2003. [Easther:2003xx]
The Event as an Object-Relational Database: Avoiding the Dependency Nightmare,
C. D. Jones,
eConf C0303241 (2003) MOJT011,arXiv:hep-ex/0305091.
2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003. [Jones:2003xv]
Reconstruction and Analysis on Demand: A Success Story,
C. D. Jones,
eConf C0303241 (2003) THJT002,arXiv:hep-ex/0305090.
2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003. [Jones:2003xu]
ATLAS Commander: an ATLAS production tool,
V. Berten, L. Goossens, C. L. Tan,
eConf C0303241 (2003) MONT002,arXiv:hep-ex/0305089.
2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003. [Berten:2003xt]
NICOS System of Nightly Builds for Distributed Development,
A. Undrus,
eConf C0303241 (2003) TUJT006,arXiv:hep-ex/0305087.
2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003. [Undrus:2003xr]
A Web Based Document Database,
E. W. Vaandering,
eConf C0303241 (2003) MONT007,arXiv:hep-ex/0305086.
2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003. [Vaandering:2003xq]
AMANDA - first running experiment to use GRID in production,
T. Harenberg, K.-H. Becker, W. Rhode, C. Schmitt,
eConf C0303241 (2003) MOAT010,arXiv:physics/0305081.
2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003. [Harenberg:2003rv]
Predictive Mining of Time Series Data in Astronomy,
E. Perlman, A. Java,
ASP Conf.Ser. 295 (2003) 431,arXiv:astro-ph/0212413.
Astronomy Data Analysis and Software Systems meeting, Baltimore 2002. [Perlman:2002hq]
Status report on TAUOLA, its environment, and its applications,
Z. Was,
eConf C0209101 (2002) FR01,arXiv:hep-ph/0210386.
Seventh International Workshop on Tau Lepton Physics (TAU02), Santa Cruz, Ca, USA, Sept 2002. [Was:2002pu]
Foam: A General purpose Monte Carlo Cellular Algorithm,
S. Jadach(NuTeV),
J. Phys. G29 (2003) 1919-1924,arXiv:physics/0210061.
ICHEP 2002. [Bernstein:2002sa]
XML-Based Formulation of Field Theoretical Models. A Proposal for a Future Standard and Data Base for Model Storage, Exchange and Cross-checking of Results,
A.Rodionov A.Demichev, A.Kryukov,
arXiv:hep-ph/0203102, 2002.International Workshop 'Automatic Calculation for Future Colliders' (CPP2001), November 28-30, 2001, Tokyo, Japan. [Demichev:2002he]
Big Science with a Small Budget: Non-Embarrassingly Parallel Applications in a Non-Dedicated Network of Workstations,
Angel de Vicente, Nayra Rodriguez,
arXiv:cs.DC/0510094, 20cs.ADASS XV. [cs-DC/0510094]
Unbiased Elimination of Negative Weights in Monte Carlo Samples,
Jeppe R. Andersen, Andreas Maier,
Eur.Phys.J.C 82 (2022) 433,arXiv:2109.07851.
[Andersen:2021mvw]
Exploring Theory Space with Monte Carlo Reweighting,
James S. Gainer, Joseph Lykken, Konstantin T. Matchev, Stephen Mrenna, Myeonghun Park,
JHEP 1410 (2014) 78,arXiv:1404.7129.
[Gainer:2014bta]
MC-TESTER v. 1.23: a universal tool for comparisons of Monte Carlo predictions,
N. Davidson, P. Golonka, T. Przedzinski, Z. Was,
Comput. Phys. Commun. 182 (2011) 779-789,arXiv:0812.3215.
[Davidson:2008ma]
MINT: a Computer Program for Adaptive Monte Carlo Integration and Generation of Unweighted Distributions,
P. Nason,
arXiv:0709.2085, 2007. [Nason:2007vt]
Multimodal nested sampling: an efficient and robust alternative to MCMC methods for astronomical data analysis,
Farhan Feroz, M.P. Hobson,
Mon.Not.Roy.Astron.Soc. 384 (2008) 449,arXiv:0704.3704.
[Feroz:2007kg]
Error in Monte Carlo, quasi-error in Quasi-Monte Carlo,
R.H. Kleiss, A. Lazopoulos,
Comput. Phys. Commun. 175 (2006) 93-115,arXiv:hep-ph/0504085.
[Kleiss:2005du]
Progress in ${\cal CP}$ violating top-Higgs coupling at the LHC with Machine Learning,
A. Hammad, Adil Jueid,
Nucl.Phys.B 1021 (2025) 117137,arXiv:2504.11791.
[Hammad:2025ewr]
Particle Hit Clustering and Identification Using Point Set Transformers in Liquid Argon Time Projection Chambers,
Edgar E. Robles, Alejando Yankelevich, Wenjie Wu, Jianming Bian, Pierre Baldi,
JINST 20 (2025) P07030,arXiv:2504.08182.
[Robles:2025okm]
Generative adversarial neural networks for simulating neutrino interactions,
Jose L. Bonilla, Krzysztof M. Graczyk, Artur M. Ankowski, Rwik Dharmapal Banerjee, Beata E. Kowal, Hemant Prasad, Jan T. Sobczyk,
Phys.Rev.D 112 (2025) 013007,arXiv:2502.20244.
[Bonilla:2025wir]
Contrastive Learning for Robust Representations of Neutrino Data,
Alex Wilkinson, Radi Radev, Saul Alonso-Monsalve,
Phys.Rev.D 111 (2025) 092011,arXiv:2502.07724.
[Wilkinson:2025nxv]
The machine learning platform for developers of large systems,
Alexey Naikov, Anatoly Oreshkin, Alexey Shvetsov, Andrey Shevel,
arXiv:2501.13881, 2025. [Naikov:2025mwz]
Feldman-Cousins' ML Cousin: Sterile Neutrino Global Fits using Simulation-Based Inference,
Joshua Villarreal, John M. Hardin, Janet M. Conrad,
arXiv:2501.08988, 2025. [Villarreal:2025mhv]
Machine Learning Neutrino-Nucleus Cross Sections,
Daniel C. Hackett, Joshua Isaacson, Shirley Weishi Li, Karla Tame-Narvaez, Michael L. Wagman,
arXiv:2412.16303, 2024. [Hackett:2024dul]
Uncertainty Propagation within Chained Models for Machine Learning Reconstruction of Neutrino-LAr Interactions,
D. Douglas, A. Mishra, D. Ratner, F. Petersen,
arXiv:2411.09864, 2024. [Douglas:2024tnl]
Enhancing Events in Neutrino Telescopes through Deep Learning-Driven Super-Resolution,
Felix J. Yu, Nicholas Kamp, Carlos A. Arguelles,
Phys.Rev.D 111 (2025) L041301,arXiv:2408.08474.
[Yu:2024ldv]
Improving neutrino energy estimation of charged-current interaction events with recurrent neural networks in MicroBooNE,
P. Abratenko et al.(MicroBooNE),
Phys.Rev.D 110 (2024) 092010,arXiv:2406.10123.
[MicroBooNE:2024zhz]
Comprehensive Machine Learning Model Comparison for Cherenkov and Scintillation Light Separation due to Particle Interactions,
Emrah Tiras, Merve Tas, Dilara Kizilkaya, Muhammet Anil Yagiz, Mustafa Kandemir,
arXiv:2406.09191, 2024. [Tiras:2024yzr]
Transforming a rare event search into a not-so-rare event search in real-time with deep learning-based object detection,
J. Schueler et al.,
Phys.Rev.D 111 (2025) 072004,arXiv:2406.07538.
[MIGDAL:2024alc]
Using Machine Learning to Separate Cherenkov and Scintillation Light in Hybrid Neutrino Detector,
Ayse Bat,
JINST 19 (2024) P04027,arXiv:2403.05184.
[Bat:2024gln]
Deep Learning Based Event Reconstruction for Cyclotron Radiation Emission Spectroscopy,
A. Ashtari Esfahani et al.,
Mach.Learn.Sci.Tech. 5 (2024) 025026,arXiv:2402.13256.
[AshtariEsfahani:2024akk]
Deep-learning-based decomposition of overlapping-sparse images: application at the vertex of neutrino interactions,
Saul Alonso-Monsalve, Davide Sgalaberna, Xingyu Zhao, Adrien Molines, Clark McGrew, Andre Rubbia,
Commun.Phys. 7 (2024) 173,arXiv:2310.19695.
[Alonso-Monsalve:2023xgh]
Unsupervised Domain Transfer for Science: Exploring Deep Learning Methods for Translation between LArTPC Detector Simulations with Differing Response Models,
Yi Huang, Dmitrii Torbunov, Brett Viren, Haiwang Yu, Jin Huang, Meifeng Lin, Yihui Ren,
Mach.Learn.Sci.Tech. 5 (2024) 045021,arXiv:2304.12858.
[Huang:2023kgs]
The DL Advocate: Playing the devil's advocate with hidden systematic uncertainties,
Andrei Golutvin, Aleksandr Iniukhin, Andrea Mauri, Patrick Owen, Nicola Serra, Andrey Ustyuzhanin,
Eur.Phys.J.C 83 (2023) 779,arXiv:2303.15956.
[Golutvin:2023fle]
Trigger-Level Event Reconstruction for Neutrino Telescopes Using Sparse Submanifold Convolutional Neural Networks,
Felix J. Yu, Jeffrey Lazar, Carlos A. Arguelles,
PoS ICRC2023 (2023) 1004,arXiv:2303.08812.
[Yu:2023ehc]
Applications of Machine Learning to Detecting Fast Neutrino Flavor Instabilities in Core-Collapse Supernova and Neutron Star Merger Models,
Sajad Abbar,
Phys.Rev.D 107 (2023) 103006,arXiv:2303.05560.
[Abbar:2023kta]
Restoring the saturation response of a PMT using pulse-shape and artificial-neural-networks,
Hyun-Gi Lee, Jungsic Park, Byeongsu Yang,
PTEP 2023 (2023) 053C01,arXiv:2302.06170.
[Lee:2023jew]
Discovering Sparse Representations of Lie Groups with Machine Learning,
Roy T. Forestano, Konstantin T. Matchev, Katia Matcheva, Alexander Roman, Eyup B. Unlu, Sarunas Verner,
Phys.Lett.B 844 (2023) 138086,arXiv:2302.05383.
[Forestano:2023qcy]
Accelerating Machine Learning Inference with GPUs in ProtoDUNE Data Processing,
Tejin Cai, Kenneth Herner, Tingjun Yang, Michael Wang, Maria Acosta Flechas, Philip Harris, Burt Holzman, Kevin Pedro, Nhan Tran,
Comput.Softw.Big Sci. 7 (2023) 11,arXiv:2301.04633.
[Cai:2023ldc]
Partition Pooling for Convolutional Graph Network Applications in Particle Physics,
M. Bachlechner, T. Birkenfeld, P. Soldin, A. Stahl, C. Wiebusch,
JINST 17 (2022) P10004,arXiv:2208.05952.
[Bachlechner:2022cvf]
Learning new physics efficiently with nonparametric methods,
Marco Letizia, Gianvito Losapio, Marco Rando, Gaia Grosso, Andrea Wulzer, Maurizio Pierini, Marco Zanetti, Lorenzo Rosasco,
Eur.Phys.J.C 82 (2022) 879,arXiv:2204.02317.
[Letizia:2022xbe]
Deep learning applications for quality control in particle detector construction,
N. Akchurin, J. Damgov, S. Dugad, P. G C, S. Gronroos, K. Lamichhane, J. Martinez, T. Quast, S. Undleeb, A. Whitbeck,
arXiv:2203.08969, 2022. [Akchurin:2022apq]
A simple guide from Machine Learning outputs to statistical criteria,
Charanjit K. Khosa, Veronica Sanz, Michael Soughton,
SciPost Phys.Core 5 (2022) 050,arXiv:2203.03669.
[Khosa:2022vxb]
Model selection and signal extraction using Gaussian Process regression,
Abhijith Gandrakota, Amitabh Lath, Alexandre V. Morozov, Sindhu Murthy,
JHEP 02 (2023) 230,arXiv:2202.05856.
[Gandrakota:2022wyl]
Maximum likelihood reconstruction of water Cherenkov events with deep generative neural networks,
Mo Jia, Karan Kumar, Liam S. Mackey, Alexander Putra, Cristovao Vilela, Michael J. Wilking, Junjie Xia, Chiaki Yanagisawa, Karan Yang,
Front.Big Data 5 (2022) 868333,arXiv:2202.01276.
[Jia:2022ulh]
Non-Parametric Data-Driven Background Modelling using Conditional Probabilities,
A. Chisholm, T. Neep, K. Nikolopoulos, R. Owen, E. Reynolds, J. Silva,
JHEP 10 (2022) 001,arXiv:2112.00650.
[Chisholm:2021pdn]
Learning New Physics from an Imperfect Machine,
Raffaele Tito d'Agnolo, Gaia Grosso, Maurizio Pierini, Andrea Wulzer, Marco Zanetti,
Eur.Phys.J.C 82 (2022) 275,arXiv:2111.13633.
[dAgnolo:2021aun]
How to use Machine Learning to improve the discrimination between signal and background at particle colliders,
Xabier Cid Vidal, Lorena Dieste Maronas, Alvaro Dosil Suarez,
Appl.Sciences 11 (2021) 11076,arXiv:2110.15099.
[Vidal:2021oed]
Uncertainty Aware Learning for High Energy Physics,
Aishik Ghosh, Benjamin Nachman, Daniel Whiteson,
Phys.Rev.D 104 (2021) 056026,arXiv:2105.08742.
[Ghosh:2021roe]
Deep Neural Network as an alternative to Boosted Decision Trees for PID,
Denis Stanev, Riccardo Riva, Michele Umassi,
arXiv:2104.14045, 2021. [Stanev:2021mkr]
Segmentation of EM showers for neutrino experiments with deep graph neural networks,
Vladislav Belavin, Ekaterina Trofimova, Andrey Ustyuzhanin,
JINST 16 (2021) P12035,arXiv:2104.02040.
[Belavin:2021bxb]
Quasi Anomalous Knowledge: Searching for new physics with embedded knowledge,
Sang Eon Park, Dylan Rankin, Silviu-Marian Udrescu, Mikaeel Yunus, Philip Harris,
JHEP 2106 (2021) 030,arXiv:2011.03550.
[Park:2020pak]
GPU-accelerated machine learning inference as a service for computing in neutrino experiments,
Michael Wang, Tingjun Yang, Maria Acosta Flechas, Philip Harris, Benjamin Hawks, Burt Holzman, Kyle Knoepfel, Jeffrey Krupa, Kevin Pedro, Nhan Tran,
Front.Big Data 3 (2021) 604083,arXiv:2009.04509.
[Wang:2020fjr]
MLaaS4HEP: Machine Learning as a Service for HEP,
Valentin Kuznetsov, Luca Giommi, Daniele Bonacorsi,
Comput.Softw.Big Sci. 5 (2021) 17,arXiv:2007.14781.
[Kuznetsov:2020mcj]
Efficiency Parameterization with Neural Networks,
C. Badiali, F.A. Di Bello, G. Frattari, E. Gross, V. Ippolito, M. Kado, J. Shlomi,
Comput.Softw.Big Sci. 5 (2021) 14,arXiv:2004.02665.
[DiBello:2020ppq]
Revealing Fundamental Physics from the Daya Bay Neutrino Experiment using Deep Neural Networks,
Evan Racah et al.,
arXiv:1601.07621, 2016. [Racah:2016gnm]
Neural Network Parameterizations of Electromagnetic Nucleon Form Factors,
Krzysztof M. Graczyk, Piotr Plonski, Robert Sulej,
JHEP 09 (2010) 053,arXiv:1006.0342.
[Graczyk:2010gw]
The Bjorken sum rule with Monte Carlo and Neural Network techniques,
Luigi Del Debbio, Alberto Guffanti, Andrea Piccione,
JHEP 11 (2009) 060,arXiv:0907.2506.
[DelDebbio:2009sq]
A determination of parton distributions with faithful uncertainty estimation,
Richard D. Ball et al.(NNPDF),
Nucl. Phys. B809 (2009) 1-63,arXiv:0808.1231.
[Ball:2008by]
Recent progress on NNPDF for LHC,
M. Ubiali et al.(NNPDF),
arXiv:0805.3100, 2008.43rd Rencontres de Moriond on QCD and Hadronic Interactions, La Thuile, Italy, 8-15 Mar 2008. [Ubiali:2008yy]
Progress on neural parton distributions,
J. Rojo et al.(NNPDF),
arXiv:0706.2130, 2007.15th International Workshop on Deep-Inelastic Scattering and Related Subjects (DIS2007), Munich, Germany, 16-20 Apr 2007. [Rojo:2007jb]
Neural network determination of parton distributions: the nonsinglet case,
Luigi Del Debbio, Stefano Forte, Jose I. Latorre, Andrea Piccione, Joan Rojo(NNPDF),
JHEP 03 (2007) 039,arXiv:hep-ph/0701127.
[DelDebbio:2007ee]
Polarized DIS structure functions from neural networks,
L. Del Debbio, Alberto Guffanti, A. Piccione,
AIP Conf. Proc. 915 (2007) 424-427.17th International Spin Physics Symposium (SPIN06), Kyoto, Japan, 2-7 Oct 2006. [DelDebbio:2007zz]
Unbiased determination of the proton structure function F2(p) with faithful uncertainty estimation,
Luigi Del Debbio, Stefano Forte, Jose I. Latorre, Andrea Piccione, Joan Rojo(NNPDF),
JHEP 03 (2005) 080,arXiv:hep-ph/0501067.
[DelDebbio:2004qj]
Transfer Learning Beyond the Standard Model,
Veena Krishnaraj, Adrian E. Bayer, Christian Kragh Jespersen, Peter Melchior,
arXiv:2510.19168, 2025.NeurIPS 2025 Workshop: Machine Learning and the Physical Sciences. [Krishnaraj:2025fye]
The use of Convolutional Neural Networks for signal-background classification in Particle Physics experiments,
Venkitesh Ayyar, Wahid Bhimji, Lisa Gerhardt, Sally Robertson, Zahra Ronaghi,
EPJ Web Conf. 245 (2020) 06003,arXiv:2002.05761.
CHEP 2019, Nov 4-8, Adelaide, Australia. [Ayyar:2020ijy]
Approximating the solution to wave propagation using deep neural networks,
Wilhelm E. Sorteberg, Stef Garasto, Alison S. Pouplin, Chris D. Cantwell, Anil A. Bharath,
arXiv:1812.01609, 2018.NeurIPS 2018 Workshop 'Modeling the Physical World: Perception, Learning, and Control'. [1812.01609]
Update on Neural Network Parton Distributions: NNPDF1.1,
Juan Rojo et al.(NNPDF),
arXiv:0811.2288, 2008.38th International Symposium on Multiparticle Dynamics ISMD08, Hamburg, Germany, 15-20 Sep 2008. [Rojo:2008ke]
Neural network determination of the non-singlet quark distribution,
Andrea Piccione, Luigi Del Debbio, Stefano Forte, Jose I. Latorre, Joan Rojo(NNPDF),
arXiv:hep-ph/0607199, 2006.Tsukuba 2006, Deep inelastic scattering. [Piccione:2006bd]
Neural network approach to parton distributions fitting,
Andrea Piccione, Luigi Del Debbio, Stefano Forte, Jose I. Latorre, Joan Rojo(NNPDF),
Nucl. Instrum. Meth. A559 (2006) 203-206,arXiv:hep-ph/0509067.
10th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 05), Zeuthen, Germany, 22-27 May 2005. [Piccione:2005fe]
The neural network approach to parton distributions,
L. Del Debbio, S. Forte, J. I. Latorre, Andrea Piccione, Joan Rojo(NNPDF),
arXiv:hep-ph/0509059, 2005.HERA and the LHC: A Workshop on the Implications of HERA and LHC Physics (Startup Meeting, CERN, 26-27 March 2004; Midterm Meeting, CERN, 11-13 October 2004), Hamburg, Germany, 21-24 Mar 2005. [DelDebbio:2005ew]
The neural network approach to parton fitting,
Joan Rojo, Luigi Del Debbio, Stefano Forte, Jose I. Latorre, Andrea Piccione(NNPDF),
AIP Conf. Proc. 792 (2005) 376-379,arXiv:hep-ph/0505044.
13th International Workshop on Deep Inelastic Scattering (DIS 05), Madison, Wisconsin, 27 Apr - 1 May 2005. [Rojo:2005fi]
Automatic Classification using Self-Organising Neural Networks in Astrophysical Experiments,
P. Boinee, A. De Angelis, E. Milotti,
arXiv:cs.NE/0307031, 20cs.Science with the New Generation of High Energy Gamma-ray Experiments, Perugia, Italy, May 2003. [Boinee:2003ve]
Data Preservation in High Energy Physics,
David M. South(ICFA DPHEP Study Group),
J. Phys. Conf. Ser. 331 (2011) 012005,arXiv:1101.3186.
18th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010). [South:2011zp]
Visualisation of Cherenkov Radiation and the Fields of a Moving Charge,
Robert N. C. Pfeifer, Timo A. Nieminen,
arXiv:physics/0602061, 2006. [physics/0602061]
It is possible to perform a cross search between the various pages of Neutrino Unbound.
This is useful if you want to show the common elements that appear
in the listings of two (or more) different topics or experiments.