Density Matrix Theory and Applications,
Karl Blum, Springer, Berlin, Heidelberg, 2012.ISBN 9783642205606, 9783642205613.http://dx.doi.org/10.1007/978-3-642-20561-3.
[Blum:2012eca]
Geometric and Algebraic Topological Methods in Quantum Mechanics,
G. Giachetta, L. Mangiarotti, G. Sardanashvily,
arXiv:math-ph/0410040, 2004. [math-ph/0410040]
Trapping, manipulating and probing ultracold atoms: a quantum technologies tutorial,
Louise Wolswijk et al.,
arXiv:2510.20790, 2025. [Wolswijk:2025jth]
Quantum Radar: An Engineering Perspective,
Murat Can Karakoc, Ozgun Ersoy, Ahmad Salmanoghli Khiavi, Asaf Behzat Sahin,
arXiv:2510.10699, 2025. [Karakoc:2025pvb]
Critical Quantum Sensing: a tutorial on parameter estimation near quantum phase transitions,
George Mihailescu, Uesli Alushi, Roberto Di Candia, Simone Felicetti, Karol Gietka,
arXiv:2510.02035, 2025. [Mihailescu:2025pgs]
Quantum aspects of the classical Maxwell's equations in free space from the perspective of the correspondence principle,
M. F. Araujo de Resende, Leonardo S. F. Santos, R. Albertini Silva,
arXiv:2509.02620, 2025. [deResende:2025uyx]
Photonic quantum information with time-bins: Principles and applications,
Ashutosh Singh, Anuj Sethia, Leili Esmaeilifar, Raju Valivarthi, Neil Sinclair, Maria Spiropulu, Daniel Oblak,
arXiv:2507.08102, 2025. [Singh:2025vjo]
Is Lindblad for me?,
Martino Stefanini, Aleksandra A. Ziolkowska, Dmitry Budker, Ulrich Poschinger, Ferdinand Schmidt-Kaler, Antoine Browaeys, Atac Imamoglu, Darrick Chang, Jamir Marino,
arXiv:2506.22436, 2025. [Stefanini:2025ijg]
Superoscillations and Physical Applications,
Andrew N. Jordan, John C. Howell, Nicholas Vamivakas, Ebrahim Karimi,
arXiv:2505.22925, 2025. [Jordan:2025bfr]
Quantum Information meets High-Energy Physics: Input to the update of the European Strategy for Particle Physics,
Yoav Afik et al.,
Eur.Phys.J.Plus 140 (2025) 855,arXiv:2504.00086.
[Afik:2025ejh]
Quantum information and quantum simulation of neutrino physics,
A. B. Balantekin, Michael J. Cervia, Amol V. Patwardhan, Ermal Rrapaj, Pooja Siwach,
Eur.Phys.J.A 59 (2023) 186,arXiv:2305.01150.
[Balantekin:2023qvm]
Tests of Fundamental Quantum Mechanics and Dark Interactions with Low Energy Neutrons - Extended Version,
Stephan Sponar, Rene I.P. Sedmik, Mario Pitschmann, Hartmut Abele, Yuji Hasegawa,
arXiv:2012.09048, 2020. [Sponar:2020bhj]
Gravitation and quantum interference experiments with neutrons,
Hartmut Abele, Helmut Leeb,
New J. Phys. 14 (2012) 055010,arXiv:1207.2953.
[Abele:2012dn]
Optics and interferometry with atoms and molecules,
Alexander D. Cronin, Joerg Schmiedmayer, David E. Pritchard,
Rev. Mod. Phys. 81 (2009) 1051-1129,arXiv:0712.3703.
[Cronin:2009zz]
Open Quantum Dynamics: Complete Positivity and Entanglement,
F. Benatti, R. Floreanini,
Int. J. Mod. Phys. B19 (2005) 3063,arXiv:quant-ph/0507271.
[Benatti:2005uq]
Generalizations of Quantum Mechanics,
Philip Pearle, Antony Valentini,
arXiv:quant-ph/0506115, 2005.Encyclopaedia of Mathematical Physics. [Pearle:2005rc]
The neutron interferometer as a device for illustrating the strange behavior of quantum systems,
Daniel M. Greenberger,
Rev. Mod. Phys. 55 (1983) 875-905. [Greenberger:1983zz]
Experimental determinations of the hyperfine structure in the alkali atoms,
E. Arimondo, M. Inguscio, P. Violino,
Rev. Mod. Phys. 49 (1977) 31-75. [Arimondo:1977zz]
Magic moments: A collaboration with John Bell,
R. A. Bertlmann,
arXiv:2302.05777, 2023.Quantum (Un)Speakables: Conference in Commemoration of John S. Bell. [Bertlmann:2000vj]
Non-relativistic Quantum Mechanics versus Quantum Field Theories,
Antonio Pineda,
arXiv:0705.4224, 2007.42nd Rencontres de Moriond on QCD and High-Energy Hadronic Interactions, La Thuile, March 2007. [Pineda:2007vj]
Quantum Mechanics with Neutral Kaons,
A. Bramon, G. Garbarino, B. C. Hiesmayr,
Acta Phys. Polon. B38 (2007) 2763-2776,arXiv:hep-ph/0703152.
Effective Theories of Colour and Flavour: from EURODAPHNE to EURIDICE, Kazimierz (Poland), August 24-27, 2006. [Bramon:2007sy]
Two theorems of Jhon Bell and Communication Complexity,
Guruprasad Kar,
arXiv:quant-ph/0504191, 2005.Quantum Information,computation and Communication (QICC-2005), IIT Kharagpur,India,February 2005. [quant-ph/0504191]
Foundations of Probability and Physics-3: Preface of Proceedings and Round Table on Quantum Foundations and Computing,
Andrei Khrennikov,
arXiv:quant-ph/0504109, 2005.AIP Conference. [quant-ph/0504109]
Quantum thermodynamics: thermodynamics at the nanoscale,
A.E. Allahverdyan, R. Balian, Th.M. Nieuwenhuizen,
arXiv:cond-mat/0402387, 2004.Physics of Quantum Electronics (PQE2004), Snowbird. [cond-mat/0402387]
Quantum Imaging and Metrology,
Hwang Lee, Pieter Kok, Jonathan P. Dowling,
arXiv:quant-ph/0306113, 2003.Sixth International Conference on Quantum Communication, Measurement and Computing. [quant-ph/0306113]
The Discovery of Squeezed States - In 1927,
Michael Martin Nieto,
arXiv:quant-ph/9708012, 1997.5th International Conference on Squeezed States and Uncertainty Relations. [Nieto:1997xf]
An Introduction to QBism with an Application to the Locality of Quantum Mechanics,
Christopher A. Fuchs, N. David Mermin, Ruediger Schack,
American Journal of Physics 82 (2014) 749,arXiv:1311.5253.
[1311.5253]
A Pedestrian Approach to the Measurement Problem in Quantum Mechanics,
Stephen Boughn, Marcel Reginatto,
European Physics Journal H (2013),arXiv:1309.0724.
[Boughn:2013fza]
Quantum-Bayesian Coherence: The No-Nonsense Version,
Christopher A. Fuchs, Ruediger Schack,
Rev.Mod.Phys. 85 (2013) 1693-1715,arXiv:1301.3274.
[1301.3274]
What Connects Different Interpretations of Quantum Mechanics?,
James B. Hartle,
arXiv:quant-ph/0305089, 2003.Quo Vadis Quantum Mechanics, Center for Frontier Sciences, Temple University, Philadelphia, PA, September 24-27, 2002. [Hartle:2003nr]
Bell state measurements in quantum optics: a review of recent progress and open challenges,
Luca Bianchi, Carlo Marconi, Davide Bacco,
arXiv:2509.18756, 2025. [Bianchi:2025uja]
Quantum entanglement and Bell inequality violation at colliders,
Alan J. Barr, Marco Fabbrichesi, Roberto Floreanini, Emidio Gabrielli, Luca Marzola,
Prog.Part.Nucl.Phys. 139 (2024) 104134,arXiv:2402.07972.
[Barr:2024djo]
Essential entanglement for atomic and molecular physics,
Malte C. Tichy, Florian Mintert, Andreas Buchleitner,
Journal of Physics B: Atomic, Molecular and Optical Physics 44 (2011) 192001. [Tichy-Mintert-Buchleitner-2011-JPB-44-192001]
Reference frames, superselection rules, and quantum information,
Stephen D. Bartlett, Terry Rudolph, Robert W. Spekkens,
Rev. Mod. Phys. 79 (2007) 555-609. [Bartlett-Rudolph-Spekkens-2007-RMP-79-555]
A unified picture for quantum Zeno and anti-Zeno effects,
Sacha Greenfield, Archana Kamal, Justin Dressel, Eli Levenson-Falk,
arXiv:2506.12679, 2025. [Greenfield:2025ser]
Perspectives on the quantum Zeno paradox,
W. M. Itano,
arXiv:quant-ph/0612187, 2006.Sudarshan Symposium, Univ. of Texas, November 2006. [quant-ph/0612187]
The Quantum Measurement Problem: A Review of Recent Trends,
Anderson A. Tomaz, Rafael S. Mattos, Mario Barbatti,
arXiv:2502.19278, 2025. [Tomaz:2025eid]
New wine in old bottles: Quantum measurement - direct, indirect, weak - with some applications,
Bengt E. Y. Svensson,
arXiv:1202.5148, 2012. [1202.5148]
Decoherence, the Measurement Problem, and Interpretations of Quantum Mechanics,
Maximilian Schlosshauer,
Rev. Mod. Phys. 76 (2004) 1267,arXiv:quant-ph/0312059.
[Schlosshauer:2003zy]
Entanglement, Bell Inequalities and Decoherence in Particle Physics,
Reinhold A. Bertlmann,
Lect. Notes Phys. 689 (2006) 1,arXiv:quant-ph/0410028.
Quantum Coherence in Matter: from Quarks to Solids, 42. Internationale Universitatswochen fur Theoretische Physik, Schladming, Austria, Feb. 28 - March 6, 2004. [Bertlmann:2004yg]
Variational quantum computing for quantum simulation: principles, implementations, and challenges,
Lucas Q. Galvao, Anna Beatriz M. de Souza, Marcelo A. Moret, Clebson Cruz,
arXiv:2510.25449, 2025. [Galvao:2025rym]
Distributed Quantum Information Processing: A Review of Recent Progress,
Johannes Knorzer, Xiaoyu Liu, Benjamin F. Schiffer, Jordi Tura,
arXiv:2510.15630, 2025. [Knorzer:2025qce]
Quantum machine learning and quantum-inspired methods applied to computational fluid dynamics: a short review,
Cesar A. Amaral, Vinicius L. Oliveira, Juan P. L. C. Salazar, Eduardo I. Duzzioni,
arXiv:2510.14099, 2025. [Amaral:2025mlz]
Understanding Quantum Imaginary Time Evolution and its Variational form,
Anglas-Castillo Andreu, Ion Luca, Pandit Tanmoy, Gomez-Lurbe Rafael, Martinez Rodrigo, Garcia-March Miguel Angel,
arXiv:2510.02015, 2025. [Angles-Castillo:2025lgy]
A Review of Software for Designing and Operating Quantum Networks,
Robert J. Hayek, Joaquin Chung, Rajkumar Kettimuthu,
arXiv:2510.00203, 2025. [2510.00203]
Quantum Computer Benchmarking: An Explorative Systematic Literature Review,
Tobias Rohe, Federico Harjes Ruiloba, Sabrina Egger, Sebastian von Beck, Jonas Stein, Claudia Linnhoff-Popien,
arXiv:2509.03078, 2025. [Rohe:2025hqx]
The Evolution of IBM's Quantum Information Software Kit (Qiskit): A Review of its Applications,
Param Pathak, K. Tarakeshwar, Syed Sufiyan Ali, Shalini Devendrababu, Adarsh Ganesan,
arXiv:2508.12245, 2025. [Pathak:2025opv]
Advances in Machine Learning: Where Can Quantum Techniques Help?,
Samarth Kashyap, Rohit K. Ramakrishnan, Kumari Jyoti, Apoorva D. Patel,
arXiv:2507.08379, 2025. [Kashyap:2025zyt]
The future of secure communications: device independence in quantum key distribution,
Seyed Arash Ghoreishi, Giovanni Scala, Renato Renner, Leticia Lira Tacca, Jan Bouda, Stephen Patrick Walborn, Marcin Pawlowski,
arXiv:2504.06350, 2025. [Ghoreishi:2025hpq]
Quantum simulation of fundamental particles and forces,
Christian W. Bauer, Zohreh Davoudi, Natalie Klco, Martin J. Savage,
Nature Rev. Phys. 5 (2023) 420-432,arXiv:2404.06298.
[Bauer:2023qgm]
An Introduction to Logical Operations on Classical and Quantum Bits,
F.L. Marquezino, R.R. Mello Junior,
Stud.Hist.Philos.Mod.Phys. 36 (2005) 103-112,arXiv:physics/0404134.
[Goldstein:2004bn]
Decoherence, Control, and Symmetry in Quantum Computers,
D. Bacon,
arXiv:quant-ph/0305025, 2003.Ph.D. thesis, University of California, Berkeley, 2001. [quant-ph/0305025]
Mathematical Models of Contemporary Elementary Quantum Computing Devices,
G. Chen, D. A. Church, B.-G. Englert, M. S. Zubairy,
arXiv:quant-ph/0303163, 2003. [quant-ph/0303163]
Illustrating the concept of quantum information,
Richard Jozsa,
arXiv:quant-ph/0305114, 2003.Charles H. Bennett 60th Birthday Symposium. [quant-ph/0305114]
Introduction to Quantum Computers and Quantum Algorithms,
Christof Zalka,
arXiv:quant-ph/0305053, 2003.'IX Seminaire Rhodanien de Physique' on 'Physics of Entangled States' in Dolomieu, France, February 26 - March 2 2001. [quant-ph/0305053]
Colloquium: Quantum optics of intense light-matter interaction,
P. Stammer, J. Rivera-Dean, P. Tzallas, M. F. Ciappina, M. Lewenstein,
arXiv:2510.19045, 2025. [Stammer:2025ekh]
Introduction to Quantum Optics,
V. I. Man'ko,
AIP Conf.Proc. 365 (1996) 337,arXiv:quant-ph/9509018.
Latin America Scool of Physics 1995. [Manko:1995fm]
Phenomenological Quantum Gravity,
Dagny Kimberly, Joao Magueijo,
Aip Conf. Proc. 782 (2005) 241,arXiv:gr-qc/0502110.
Lectures given at XI BSCG. [Kimberly:2005at]
A Proposed Solution of the Measurement Problem in Quantum Mechanics by a Hidden Variable Theory,
D. Bohm, J. Bub,
Rev. Mod. Phys. 38 (1966) 453-469. [Bohm:1966zz]
Introduction to the Quantum Theory of Elementary Cycles: The Emergence of Space, Time and Quantum,
Donatello Dolce,
arXiv:1707.00677, 2017. [Dolce:2017rat]
Can quantum mechanical description of physical reality be considered complete?,
Albert Einstein, Boris Podolsky, Nathan Rosen,
Phys. Rev. 47 (1935) 777-780. [Einstein:1935rr]
Direct Experimental Constraints on the Spatial Extent of a Neutrino Wavepacket,
Joseph Smolsky et al.,
Nature 638 (2025) 640-644,arXiv:2404.03102.
[Smolsky:2024uby]
Double-slit time diffraction at optical frequencies,
Romain Tirole, Stefano Vezzoli, Emanuele Galiffi, Iain Robertson, Dries Maurice, Benjamin Tilmann, Stefan A. Maier, John B. Pendry, Riccardo Sapienza,
Nature Phys. 19 (2023) 999-1002,arXiv:2206.04362.
[Tirole:2022gpl]
A Search for Spontaneous Radiation from Wavefunction Collapse in the Majorana Demonstrator,
I.J. Arnquist et al.,
arXiv:2202.01343, 2022. [@Article{2202.01343]
Search for Pauli Exclusion Principle Violating Atomic Transitions and Electron Decay with a P-type Point Contact Germanium Detector,
N. Abgrall et al.,
Eur.Phys.J. C76 (2016) 619,arXiv:1610.06141.
[MAJORANA:2016ark]
Experimental Proof of Nonlocal Wavefunction Collapse for a Single Particle Using Homodyne Measurement,
Maria Fuwa, Shuntaro Takeda, Marcin Zwierz, Howard M. Wiseman, Akira Furusawa,
Nature Commun. 6 (2015) 6665,arXiv:1412.7790.
[Fuwa:2014cra]
First observation of quantum interference in the process $ \phi \to K_S K_L \to \pi^+ \pi^- \pi^+ \pi^- $: a test of quantum mechanics and CPT symmetry,
KLOE(KLOE),
Phys. Lett. B642 (2006) 315-321,arXiv:hep-ex/0607027.
[KLOE:2006iuj]
Experimental rejection of observer-independence in the quantum world,
Massimiliano Proietti, Alexander Pickston, Francesco Graffitti, Peter Barrow, Dmytro Kundys, Cyril Branciard, Martin Ringbauer, Alessandro Fedrizzi,
arXiv:1902.05080, 2019. [1902.05080]
A simple approach to test Leggett's model of nonlocal quantum correlations,
Cyril Branciard et al.,
Annals Phys. 323 (2008) 2241-2252,arXiv:0801.2241. From the abstract:We present new inequalities for testing Leggett's model [45-36] of non-local quantum correlations.... The simplest of these inequalities is experimentally violated. [Ho:2008iy]
Experimental test of nonlocal realistic theories without the rotational symmetry assumption,
Tomasz Paterek et al.,
Phys. Rev. Lett. 99 (2007) 210406,arXiv:0708.0813. From the abstract:We analyze the class of nonlocal realistic theories that was originally considered by Leggett [45-36] and tested by us in a recent experiment [25-5].... Using polarization-entangled photon pairs, we exclude this broader class of nonlocal realistic models by experimentally violating a new Leggett-type inequality by 80 standard deviations. [0708.0813]
Experimental Falsification of Leggett's Non-Local Variable Model,
Cyril Branciard et al.,
Phys. Rev. Lett. 99 (2007) 210407,arXiv:0708.0584. From the abstract:Our experimental data falsify Leggett's model and are in agreement with quantum predictions. [0708.0584]
An experimental test of non-local realism,
Simon Groeblacher et al.,
Nature 446 (2007) 871-875,arXiv:0704.2529. From the abstract:In the experiment, we measure previously untested correlations between two entangled photons, and show that these correlations violate an inequality proposed by Leggett for non-local realistic theories. Our result suggests that giving up the concept of locality is not sufficient to be consistent with quantum experiments, unless certain intuitive features of realism are abandoned. [0704.2529]
Measurement of EPR-type flavour entanglement in Upsilon(4S)- > B0 B0bar decays,
A. Go et al.(Belle),
Phys. Rev. Lett. 99 (2007) 131802,arXiv:quant-ph/0702267.
[Santos:2007fj]
Realisation of Hardy's Thought Experiment,
William T.M. Irvine, Juan F. Hodelin, Christoph Simon, Dirk Bouwmeester,
arXiv:quant-ph/0410160, 2004. From the article:We find a violation of the LHV (Local Hidden Variables) inequality by 12 standard deviations. [quant-ph/0410160]
Experimental Bell Inequality Violation with an Atom and a Photon,
D. L. Moehring, M. J. Madsen, B. B. Blinov, C. Monroe,
arXiv:quant-ph/0406048, 2004. [quant-ph/0406048]
Observation of Bell Inequality violation in B mesons,
A. Go(Belle),
J.Mod.Opt. 51 (2004) 991,arXiv:quant-ph/0310192.
Garda Lake Workshop 2003 'Mysteries, Puzzles and Paradoxes in Quantum Mechanics'. [Go:2003tx]
A first experimental test of de Broglie-Bohm theory against standard quantum mechanics,
C. Novero G. Brida, E. Cagliero, G. Falzetta, M.Genovese, M. Gramegna,
J. Phys. B. At. Mol. Opt. Phys. 35 (2002) 4751,arXiv:quant-ph/0206196. From the abstract:Our results confirm Quantum Mechanics contradicting De Broglie - Bohm predictions. [Brida:2002mf]
Quantum Late-Time Decay and Channel Dependence,
Francesco Giacosa, Anna Kolbus, Krzysztof Kyziol, Magdalena Plodowska, Milena Piotrowska, Karol Szary, Arthur Vereijken,
arXiv:2509.17163, 2025. [2509.17163]
Measurement of the 22Na half-life and evidence supporting the exponential-decay law,
S. Pomme, H. Stroh, J. Paepen,
Nucl. Data Sheets 193 (2024) 79-87. [Pomme:2024stg]
No correlation between Solar flares and the decay rate of several $\beta$-decaying isotopes,
J.R. Angevaare et al.,
Astropart.Phys. 103 (2018) 62-66,arXiv:1806.03202.
[Angevaare:2018rto]
A Precision Experiment to Investigate Long-Lived Radioactive Decays,
J. R. Angevaare et al.,
JINST 13 (2018) P07011,arXiv:1804.02765.
[Angevaare:2018aka]
2.7 years of beta-decay-rate ratio measurements in a controlled environment,
E. McKnight, Q. McKnight, S. D. Bergeson, J. Peatross, M. J. Ware,
Appl. Radiat. Isot. 142 (2018) 113-119. [McKnight:2018ykd]
Precise measurement of the $^{222}$Rn half-life: A probe to monitor the stability of radioactivity,
E. Bellotti, C. Broggini, G. Di Carlo, M. Laubenstein, R. Menegazzo,
Phys.Lett. B743 (2015) 526-530,arXiv:1501.07757.
[Bellotti:2015toa]
Disproof of solar influence on the decay rates of $^{90}$Sr/$^{90}$Y,
Karsten Kossert, Ole J. Nahle,
Astropart.Phys. 69 (2015) 18-23,arXiv:1407.2493.
[Kossert:2014wda]
Search for time modulations in the decay rate of $^{40}$K and $^{232}$Th,
E. Bellotti, C. Broggini, G. Di Carlo, M. Laubenstein, R. Menegazzo et al.,
Astropart.Phys. 61 (2015) 82-87,arXiv:1311.7043.
[Bellotti:2013bka]
Search for correlations between solar flares and decay rate of radioactive nuclei,
E. Bellotti, C. Broggini, G. Di Carlo, M. Laubenstein, R. Menegazzo,
Phys.Lett. B720 (2013) 116-119,arXiv:1302.0970.
[Bellotti:2013js]
Search for the time dependence of the 137Cs decay constant,
E. Bellotti, C. Broggini, G. Di Carlo, M. Laubenstein, R. Menegazzo,
Phys.Lett. B710 (2012) 114-117,arXiv:1202.3662.
[Bellotti:2012if]
Experimental test of the time stability of the half-life of alpha-decay Po-214 nuclei,
E.N. Alexeyev, Ju.M. Gavriljuk, A.M. Gangapshev, A.M. Gezhaev, V.V. Kazalov et al.,
Astropart.Phys. 46 (2013) 23-28,arXiv:1112.4362.
[Alexeyev:2011rw]
Searching for modifications to the exponential radioactive decay law with the Cassini spacecraft,
Peter S. Cooper,
Astroparticle Physics 31 (2009) 267-269. [Cooper2009267]
Evidence of correlations between nuclear decay rates and Earth-Sun distance,
Jere H. Jenkins, Ephraim Fischbach, John B. Buncher, John T. Gruenwald, Dennis E. Krause, Joshua J. Mattes,
Astroparticle Physics 32 (2009) 42 - 46. [Jenkins200942]
Evidence against correlations between nuclear decay rates and Earth-Sun distance,
Eric B. Norman, Edgardo Browne, Howard A. Shugart, Tenzing H. Joshi, Richard B. Firestone,
Astroparticle Physics 31 (2009) 135 - 137. [Norman2009135]
Tests of the Exponential Decay Law at Short and Long Times,
Eric B. Norman, Stuart B. Gazes, Stephanie G. Crane, Dianne A. Bennett,
Phys. Rev. Lett. 60 (1988) 2246-2249. [Norman:1988zz]
Experimental Determination of the Disintegration Curve of Mesotrons,
Bruno Rossi, Norris Nereson,
Phys. Rev. 62 (1942) 417-422.http://link.aps.org/doi/10.1103/PhysRev.62.417.
[Rossi-PhysRev.62.417-1942]
Lifetime measurements of nuclei in few-electron ions,
Thomas Faestermann,
Phys. Scripta T166 (2015) 014003,arXiv:1512.00431.
9th International Conference on Nuclear Physics at Storage Rings STORI'14. [Faestermann:2015mdp]
Results of a search for daily and annual variations of the Po-214 half-life at the two year observation period,
E.N. Alexeyev et al.,
Phys.Part.Nucl. 47 (2016) 986-994,arXiv:1505.01752.
International Workshop on Prospects of Particle Physics: 'Neutrino Physics and Astrophysics' February 1 - Ferbuary 8, 2015, Valday, Russia. [Alexeyev:2015ypa]
Experimental demonstration of the quantum Zeno effect in NMR with entanglement-based measurements,
Wenqiang Zheng, D. Z. Xu, Xinhua Peng, Xianyi Zhou, Jiangfeng Du, C. P. Sun,
Phys. Rev. A 87 (2013) 032112,arXiv:1303.2428.
http://link.aps.org/doi/10.1103/PhysRevA.87.032112.
[PhysRevA.87.032112]
Zeno and Anti-Zeno Polarization Control of Spin Ensembles by Induced Dephasing,
Gonzalo A. Alvarez, D. D. Bhaktavatsala Rao, Lucio Frydman, Gershon Kurizki,
Phys. Rev. Lett. 105 (2010) 160401,arXiv:1008.5122.
http://link.aps.org/doi/10.1103/PhysRevLett.105.160401.
[PhysRevLett.105.160401]
Freezing Coherent Field Growth in a Cavity by the Quantum Zeno Effect,
J. Bernu, S. Deleglise, C. Sayrin, S. Kuhr, I. Dotsenko, M. Brune, J. M. Raimond, S. Haroche,
Phys. Rev. Lett. 101 (2008) 180402,arXiv:0809.4388.
http://link.aps.org/doi/10.1103/PhysRevLett.101.180402.
[PhysRevLett.101.180402]
Observation of the Quantum Zeno and Anti-Zeno effects in an unstable system,
M. C. Fischer, B. Gutierrez-Medina, M. G. Raizen,
Phys. Rev. Lett. 87 (2001) 040402,arXiv:quant-ph/0104035.
[quant-ph/0104035]
Observation of a gravitational Aharonov-Bohm effect,
Chris Overstreet, Peter Asenbaum, Joseph Curti, Minjeong Kim, Mark A. Kasevich,
Science 375 (2021) abl7152. [Overstreet:2021hea]
Evidence for Aharonov-Bohm effect with magnetic field completely shielded from electron wave,
Akira Tonomura, Nobuyuki Osakabe, Tsuyoshi Matsuda, Takeshi Kawasaki, Junji Endo, Shinichiro Yano, Hiroji Yamada,
Phys. Rev. Lett. 56 (1986) 792. [Tonomura:1986mds]
Messung der kontinuierlichen Phasenschiebung von Elektronenwellen im kraftfeldfreien Raum durch das magnetische vektorpotential einer Luftspule,
G. Mollenstedt, W. Bayh,
Naturwissenschaften 49 (1962) 81-82.https://doi.org/10.1007/BF00622023.
[Mollenstedt1962]
Electron Interferometer Studies of Iron Whiskers,
H. A. Fowler, L. Marton, J. Arol Simpson, J. A. Suddeth,
Journal of Applied Physics 32 (1961) 1153-1155.https://doi.org/10.1063/1.1736175.
[10.1063/1.1736175]
Heavy-Ion Storage Rings and Their Use in Precision Experiments with Highly Charged Ions,
Markus Steck, Yuri A. Litvinov,
Prog. Part. Nucl. Phys. 115 (2020) 103811,arXiv:2003.05201.
[Steck:2020hsx]
New test of modulated electron capture decay of hydrogen-like $^{142}$Pm ions: precision measurement of purely exponential decay,
F. C. Ozturk et al.(FRS-ESR, ILIMA, SPARC, TBWD),
Phys. Lett. B 797 (2019) 134800,arXiv:1907.06920.
[FRS-ESR:2019pha]
High-resolution measurement of the time-modulated orbital electron capture and of the $\beta^+$ decay of hydrogen-like $^{142}$Pm$^{60+}$ ions,
P. Kienle et al.(Two-Body-Weak-Decays),
Phys.Lett. B726 (2013) 638-645,arXiv:1309.7294.
[Two-Body-Weak-Decays:2013ygn]
Could the GSI Oscillations be Observed in a Standard Electron Capture Decay Experiment?,
Thomas Faestermann et al.,
Phys. Lett. B672 (2009) 227-229,arXiv:0807.3297.
[Faestermann:2008jt]
Search for Oscillation of the Electron-Capture Decay Probability of $^{142}$Pm,
P. A. Vetter et al.,
Phys. Lett. B670 (2008) 196-199,arXiv:0807.0649. From the abstract:We observed no oscillatory modulation at the proposed frequency at a level 31 times smaller than that reported by Litvinov et al. (Phys. Lett. B 664 (2008) 162; arXiv:0801.2079 [nucl-ex]). [Vetter:2008ne]
Lifetime measurements of nuclei in few-electron ions,
Thomas Faestermann,
Phys. Scripta T166 (2015) 014003,arXiv:1512.00431.
STORI'14. [Faestermann:2015mdp]
Time-modulation of entangled two-body weak decays with massive neutrinos,
P. Kienle,
Prog. Part. Nucl. Phys. 64 (2010) 439-444.10th International Spring Seminar On Nuclear Physics: New Quests In Nuclear Structure, 21-25 May 2010, Vietri sul Mare, Salerno, Italy [J. Phys. Conf. Ser.267,012056(2011)]. [Kienle:2010zz]
Time-modulation of orbital electron capture decays by mixing of massive neutrinos,
P. Kienle,
Nucl. Phys. A827 (2009) 510C-517C.18th International Conference on Particles and Nuclei (PANIC 08), 9-14 Nov 2008, Eilat, Israel. [Kienle:2009zz]
Two-body weak decay studies in an ion storage ring,
Paul Kienle,
J. Phys. Conf. Ser. 171 (2009) 012065.DISCRETE'08: Symposium on Prospects in the Physics of Discrete Symmetries, 11-16 Dec 2008, Valencia, Spain. [Kienle:2009zza]
Observation of Non-Exponential Orbital Electron Capture Decays of Hydrogen-Like $^{140}$Pr and $^{142}$Pm Ions and possible implications for the neutrino masses,
F. Bosch, 2008.Warsaw University, May 14, 2008.http://zsj.fuw.edu.pl/index_seminars_download.php?semid=10.
[Bosch-2008-Warsaw]
Non-Exponential Orbital Electron Capture Decays of Hydrogen-Like 140Pr and 142Pm Ions,
Yu.A. Litvinov, 2008.NO-VE 08, 15-18 April 2008, Venice, Italy.http://neutrino.pd.infn.it/NO-VE2008/Talks/Litvinov.ppt.
[Litvinov-2008-NOVE]
Unconditionally secure quantum key distribution over 50km of standard telecom fibre,
C. Gobby, Z. L. Yuan, A. J. Shields,
arXiv:quant-ph/0412173, 2004. [quant-ph/0412173]
Characterization of Multipartite Entanglement for One Photon Shared Among Four Optical Modes,
Scott B. Papp, Kyung Soo Choi, Hui Deng, Pavel Lougovski, S. J. van Enk, H. J. Kimble,
Science 324 (2009) 764-768. [Papp-Choi-Deng-Lougovski-vanEnk-Kimble-2009-Science-324-764]
Tomographic test of Bell's inequality for a time-delocalized single photon,
Milena D'Angelo, Alessandro Zavatta, Valentina Parigi, Marco Bellini,
Phys. Rev. A 74 (2006) 052114. [DAngelo-Zavatta-Parigi-Bellini-2006-PRA-74-052114]
Homodyne Tomography Characterization and Nonlocality of a Dual-Mode Optical Qubit,
S. A. Babichev, J. Appel, A. I. Lvovsky,
Phys. Rev. Lett. 92 (2004) 193601. [Babichev-Appel-Lvovsky-2004-PRL-92-193601]
Experimental Demonstration of Single Photon Nonlocality,
Bjorn Hessmo, Pavel Usachev, Hoshang Heydari, Gunnar Bjork,
Phys. Rev. Lett. 92 (2004) 180401. [Hessmo-Usachev-Heydari-Bjork-2004-PRL-92-180401]
Teleportation of a Vacuum-One-Photon Qubit,
Egilberto Lombardi, Fabio Sciarrino, Sandu Popescu, Francesco De Martini,
Phys. Rev. Lett. 88 (2002) 070402. [Lombardi-Sciarrino-Popescu-DeMartini-2002-PRL-88-070402]
Old Quantum Mechanics by Bohr and Sommerfeld from a Modern Perspective,
Kamal K. Barley, Andreas Ruffing, Sergei K. Suslov,
arXiv:2506.00408, 2025. [Barley:2025xro]
Superradiant Neutrino Lasers from Radioactive Condensates,
B. J. P. Jones, J. A. Formaggio,
Phys.Rev.Lett. 135 (2025) 111801,arXiv:2412.11765.
[Jones:2024lhf]
Quantum mismatch: a powerful measure of 'quantumness' in neutrino oscillations,
Dibya S. Chattopadhyay, Amol Dighe,
Phys.Rev.D 108 (2023) 112013,arXiv:2304.02475.
[Chattopadhyay:2023xwr]
Probing inequivalent forms of Legget-Garg inequality in subatomic systems,
Javid Naikoo, Swati Kumari, Subhashish Banerjee, A. K. Pan,
Physics 47 (2020) 095004,arXiv:1906.05995.
[Naikoo:2019gme]
Equivalence of wave-particle duality to entropic uncertainty,
Patrick J. Coles, Jedrzej Kaniewski, Stephanie Wehner,
Nature Commun. 5 (2014) 5814,arXiv:1403.4687.
[Coles:2014afc]
Applying quantum mechanics to macroscopic and mesoscopic systems,
N. Poveda T., N. Vera-Villamizar,
Eur.Phys.J. C72 (2012) 1876,arXiv:1202.1876.
[Sharif:2012ca]
Solving the radial Dirac equations: a numerical odyssey,
Richard R. Silbar, T. Goldman,
Eur. J. Phys. 32 (2011) 217-233,arXiv:1001.2514.
[Silbar:2010wx]
Coupled oscillators, entangled oscillators, and Lorentz-covariant harmonic oscillators,
Y. S. Kim, Marilyn E. Noz,
J. Opt. B Quant. Semiclass. Opt. 7 (2007) S458-S467,arXiv:quant-ph/0502096.
[Kim:2005nua]
Note on Possibility of obtaining a non-relativistic proof of the spin-statistics theorem in the Galilean frame,
Gabriel D. Puccini, Hector Vucetich,
arXiv:quant-ph/0502048, 2005. [quant-ph/0502048]
Multi-Instantons and Exact Results II: Specific Cases, Higher-Order Effects, and Numerical Calculations,
Jean Zinn-Justin, Ulrich D. Jentschura,
Annals Phys. 313 (2004) 269,arXiv:quant-ph/0501137.
[Zinn-Justin:2004qzw]
Note on Non-relativistic proof of the spin-statistics connection in the Galilean frame,
E. C. G. Sudarshan, Anil Shaji,
arXiv:quant-ph/0409205, 2004. [Sudarshan:2004ke]
Clebsch-Gordan Coefficients for the Extended Quantum-Mechanical Poincare Group and Angular Correlations of Decay Products,
N.L. Harshman, N. Licata,
Annals Phys. 317 (2005) 182,arXiv:hep-ph/0407299.
[Harshman:2004bw]
Helicity Basis for Spin 1/2 and 1,
Valeri V. Dvoeglazov, J. L. Quintanar Gonzalez,
Lect. Notes Pure Appl. Math. 246 (2005) 137,arXiv:physics/0406033.
[Dvoeglazov:2004cb]
Computing the wavefunction from trajectories: particle and wave pictures in quantum mechanics and their relation,
Peter Holland,
arXiv:quant-ph/0405145, 2004. [quant-ph/0405145]
Comment on 'A mathematical theorem as a basis for the second law: Thomson's formulation applied to equilibruim',
Dan Solomon,
arXiv:quant-ph/0403040, 2004. [Solomon:2004va]
Magneto-electro-optical properties of the quantum vacuum and Lorentz invariance,
C Rizzo, G.L.J.A. Rikken,
arXiv:physics/0403036, 2004. [physics/0403036]
Some Novel Thought Experiments Involving Foundations of Quantum Mechanics and Quantum Information,
Omid Akhavan,
arXiv:quant-ph/0402141, 2004. [Akhavan:2003wz]
Reply to 'Non-relativistic proofs of the spin-statistics connection,' by Shaji and Sudarshan,
Murray Peshkin,
arXiv:quant-ph/0402118, 2004. [quant-ph/0402118]
On Zurek's derivation of the Born rule,
Maximilian Schlosshauer, Arthur Fine,
Class.Quant.Grav. 21 (2004) L11-L16,arXiv:quant-ph/0312058.
[Matsuda:2003vj]
Clock Synchronization based on Second-Order Quantum Coherence of Entangled Photons,
Thomas B. Bahder, William M. Golding,
arXiv:quant-ph/0311162, 2003. [quant-ph/0311162]
Quantum algorithms in group theory,
M. Batty, S. L. Braunstein, A. J. Duncan, S. Rees,
arXiv:quant-ph/0310133, 2003.To appear in 'Interactions Between Logic, Group Theory and Computer Science', AMS Contemporary Math. [quant-ph/0310133]
The Contextual Quantization and the Principle of Complementarity of Probabilities,
A. Khrennikov, S. Kozyrev,
arXiv:quant-ph/0310114, 2003. [quant-ph/0310114]
Everettian Rationality: defending Deutsch's approach to probability in the Everett interpretation,
D. Wallace,
arXiv:quant-ph/0303050, 2003. [quant-ph/0303050]
Relativistic, Causal Description of Quantum Entanglement and Gravity Theory,
J. W. Moffat,
Int. J. Mod. Phys. D13 (2004) 75,arXiv:quant-ph/0302061.
[Moffat:2003dv]
Conditional Density Matrix: Systems and Subsystems in Quantum Mechanics,
V. V. Belokurov, O. A. Khrustalev, V. A. Sadovnichy, O. D. Timofeevskaya,
arXiv:quant-ph/0210149, 2002. [quant-ph/0210149]
Which causality? Differences between the trajectory and Copenhagen analyses of an impulsive perturbation,
E. R. Floyd,
Int. J. Mod. Phys. A14 (1999) 1111,arXiv:quant-ph/9708026.
[Floyd:1997mu]
Measurement of Longitudinal Coherence Lenghts in Particle Beams,
H. J. Bernstein, F. E. Low,
Phys. Rev. Lett. 59 (1987) 951. [Bernstein-Low-PRL59-951-1987]
Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams,
E. C. G. Sudarshan,
Phys. Rev. Lett. 10 (1963) 277-279. [Sudarshan:1963ts]
Critical look at the time-energy uncertainty relations,
K. Urbanowski,
Acta Phys.Polon. B51 (2020) 71,arXiv:1908.05273.
3rd Jagiellonian Symposium on Fundamental and Applied Subatomic Physics, 2019, Krakow, Poland. [Urbanowski:2019ixf]
Feynman and Squeezed States,
Y. S. Kim,
Astrophys.J. 707 (2009) 1578-1587,arXiv:0909.1578.
4th Feynman Festival and the 10th International Conference on Squeezed States and Uncertainty Relations (Olomouc, Czech Republic, June 2009). [Kochanek:2009fc]
Can quantum mechanics be an emergent phenomenon?,
Massimo Blasone, Petr Jizba, Fabio Scardigli,
J. Phys. Conf. Ser. 174 (2009) 012034,arXiv:0901.3907.
4th International Workshop DICE2008: From Quantum Mechanics through Complexity to Spacetime: The Role of Emergent Dynamical Structures, Castiglioncello, Italy, 22-26 Sep 2008. [Blasone:2009yp]
Quantum information-flow, concretely, and axiomatically,
Bob Coecke,
arXiv:quant-ph/0506132, 2005.QPLII (2004) and QI-SPIE-2 (2004). [quant-ph/0506132]
Chaos and Quantum Mechanics,
Salman Habib et al.,
arXiv:quant-ph/0505085, 2005.16th Florida Workshop in Nonlinear Astronomy and Physics. [quant-ph/0505085]
Physical Principles and Properties of Unstable States,
Piotr Kielanowski,
arXiv:quant-ph/0312178, 2003.CFIF Workshop on Time Asymmetric Quantum Theory, July 23-26, 2003, Lisbon, Portugal. [quant-ph/0312178]
Time of arrival with resonances: Beyond scattering states,
Lucas Lamata, Juan Leon,
arXiv:quant-ph/0312034, 2003.CFIF Workshop:' Time asymmetric quantum theory: The theory of resonances'. Lisbon, July 2003. [quant-ph/0312034]
Entanglement Criteria - Quantum and Topological,
Louis H. Kauffman, Samuel J. Lomonaco Jr,
arXiv:quant-ph/0304091, 2003.Spie Conference, Orlando, Fla, April 2003. [quant-ph/0304091]
Coherence and the Clock,
L. Stodolsky,
arXiv:quant-ph/0303024, 2003.Time and Matter: An International Colloquium on the Science of Time (TAM 2002), Venice, Italy, 11-17 Aug 2002. [Stodolsky:2003kc]
Lessons of coherence and decoherence: From neutrinos to SQUIDS,
L. Stodolsky,
arXiv:cond-mat/0203017, 2002.22nd International Solvay Conference in Physics: The Physics of Communication, Delphi and Lamia, Greece, 24-30 Nov 2001. [Stodolsky:2002bd]
Dialogue Concerning Two Views on Quantum Coherence: Factist and Fictionist,
Stephen D. Bartlett, Terry Rudolph, Robert W. Spekkens,
arXiv:quant-ph/0507214, 2005. [quant-ph/0507214]
Complementary Descriptions (PART II): A Set of Ideas Regarding the Interpretation of Quantum Mechanics,
Christian de Ronde,
arXiv:quant-ph/0507114, 2005. [quant-ph/0507114]
Complementary Descriptions (PART I): A Set of Ideas Regarding the Interpretation of Quantum Mechanics,
Christian de Ronde,
arXiv:quant-ph/0507105, 2005. [quant-ph/0507105]
There is Neither Classical Bug with a Superluminal Shadow Nor Quantum Absolute Collapse Nor (Subquantum) Superluminal Hidden Variable,
Vladan Pankovic, Milan Predojevic, Miodrag Krmar, Milan Radovanovic,
arXiv:quant-ph/0504071, 2005. [quant-ph/0504071]
On the uncertainty relations and quantum measurements: conventionalities, shortcomings, reconsiderations,
S. Dumitru,
arXiv:quant-ph/0504058, 2005. [quant-ph/0504058]
Preparation and measurement: two independent sources of uncertainty in quantum mechanics,
Willem M. de Muynck,
Found. Phys. 30 (2000) 205-225,arXiv:quant-ph/9901010.
[deMuynck:1999ru]
The uncertainty principle and the statistical interpretation of quantum mechanics,
L.E. Ballentine,
Can.J. Phys. 47 (1969) 2417-2419. [Ballentine:1969ky]
Resonances, Unstable Systems and Irreversibility: Matter Meets Mind,
Robert C. Bishop,
arXiv:quant-ph/0506186, 2005.CFIF Workshop on TimeAsymmetric Quantum Theory: The Theory of Resonances, 23-26 July 2003, Instituto Superior Tecnico, Lisbon, Portugal and Quantum Structures Association Meeting, 7-22 July 2004, University of Denver. [quant-ph/0506186]
The Ithaca interpretation of quantum mechanics,
N. David Mermin,
Pramana 51 (1998) 549-565,arXiv:quant-ph/9609013.
Tata Institute Golden Jubilee Workshop on Foundations of Quantum Theory, Bombay, India, 9-12 Sep 1996. [Mermin:1998cg]
Unknown Quantum States: the Quantum de Finetti Representation,
Carlton M. Caves, Christopher A. Fuchs, Rudiger Schack,
J. Math. Phys. 43 (2002) 4537. [Caves-Fuchs-Schack-JMP43-4537-2002]
Quantum Probabilities as Bayesian Probabilities,
Carlton M. Caves, Christopher A. Fuchs, Rudiger Schack,
Phys. Rev. A65 (2002) 022305. [Caves-Fuchs-Schack-PRA65-022305-2002]
Conditions for compatibility of quantum-state assignments,
Carlton M. Caves, Christopher A. Fuchs, Rudiger Schack,
Phys. Rev. A66 (2002) 062111. [Caves-Fuchs-Schack-PRA66-062111-2002]
Notes on a Paulian Idea: Foundational, Historical, Anecdotal and Forward-Looking Thoughts on the Quantum,
Christopher A. Fuchs,
arXiv:quant-ph/0105039, 2001. [quant-ph/0105039]
Quantum Probability from Decision Theory?,
H. Barnum, C. M. Caves, J. Finkelstein, C. A. Fuchs, R. Schack,
Proc. Roy. Soc. Lond. A456 (2000) 1175-1182,arXiv:quant-ph/9907024.
[Barnum:1999ew]
Analysis of quantum decay law: Is quantum tunneling really exponential?,
M. S. Hosseini-Ghalehni, B. Azadegan, S. A. Alavi,
Eur.Phys.J.Plus 137 (2022) 1326,arXiv:2203.10134.
[Hosseini-Ghalehni:2022iva]
Breit-Wigner approximation for propagators of mixed unstable states,
Elina Fuchs, Georg Weiglein,
JHEP 1709 (2017) 079,arXiv:1610.06193.
[Fuchs:2016swt]
Spectral Content of 22Na/44Ti Decay Data: Implications for a Solar Influence,
Daniel O'Keefe et al.,
Astrophys.Space Sci. 344 (2013) 297-303,arXiv:1212.2198.
[OKeefe:2012ioh]
Non-exponential decay in quantum field theory and in quantum mechanics: the case of two (or more) decay channels,
Francesco Giacosa,
Found.Phys. 42 (2012) 1262-1299,arXiv:1110.5923.
[Giacosa:2011xa]
Deviation from the exponential decay law in relativistic quantum field theory: the example of strongly decaying particles,
Francesco Giacosa, Giuseppe Pagliara,
Mod. Phys. Lett. A26 (2011) 2247-2259,arXiv:1005.4817.
[Giacosa:2010br]
General properties of the evolution of unstable states at long times,
K. Urbanowski,
Eur. Phys. J. D 54 (2009) 25,arXiv:0803.3188.
[Urbanowski-EPJD-54-25-2009]
Hidden evidence of non-exponential nuclear decay,
N. G. Kelkar, M. Nowakowski, K. P. Khemchandani,
Phys. Rev. C70 (2004) 024601,arXiv:nucl-th/0405043.
[Kelkar:2004zz]
Weisskopf-Wigner Decay Theory for the Energy-Driven Stochastic Schrodinger Equation,
Stephen L. Adler,
arXiv:quant-ph/0208123, 2002. [quant-ph/0208123]
Van Hove's '$\lambda^2 t$' limit in nonrelativistic and relativistic field-theoretical models,
P. Facchi, S. Pascazio,
Chaos Solitons Fractals 12 (2001) 2777,arXiv:quant-ph/9910111.
[Facchi:1999ik]
The large time behaviour in quantum field theory and quantum chaos,
I. Ya. Aref'eva, I. V. Volovich,
Canadian Math. Soc. Conf. Proc. 29 (2000) 15-27,arXiv:quant-ph/9910109.
[Arefeva:1999nlz]
Quantum Decoherence and Higher Order Corrections to the Large Time Exponential Behaviour,
I. Ya. Aref'eva, I. V. Volovich,
Inf. Dim. Anal. Quant. Probab. Rel. Top. 3 (2000) 453-482,arXiv:quant-ph/9906022.
[Arefeva:1999gon]
Short time behavior of unstable systems in field theory and proton decay,
C. Bernardini, L. Maiani, M. Testa,
Phys. Rev. Lett. 71 (1993) 2687-2690. [Bernardini:1993qj]
Analytic continuation of quantum systems and their temporal evolution,
E. C. G. Sudarshan, Charles B. Chiu,
Phys. Rev. D47 (1993) 2602-2614. [Sudarshan:1992pd]
Decaying States as Complex Energy Eigenvectors in Generalized Quantum Mechanics,
E. C. G. Sudarshan, C. B. Chiu, Vittorio Gorini,
Phys. Rev. D18 (1978) 2914. [Sudarshan:1977xd]
Pertinence of the Semigroup Law in the Theory of the Decay of an Unstable Elementary Particle,
S. Twareque Ali, L. Fonda, G. C. Ghirardi,
Nuovo Cim. A25 (1975) 134. [TwarequeAli:1974xa]
Addendum to 'Some remarks on the origin of the deviations from the exponential decay law of an unstable particle',
L. Fonda, G. C. Ghirardi,
Nuovo Cim. A10 (1972) 850. [Fonda:1972ep]
Some remarks on the origin of the deviations from the exponential decay law of an unstable particle,
L. Fonda, G. C. Ghirardi,
Nuovo Cim. A7 (1972) 180-184. [Fonda:1972im]
Correspondence between unstable particles and poles in S matrix theory: The Exponential decay law,
G. Calucci, G. C. Ghirardi,
Phys. Rev. 169 (1968) 1339. [Calucci:1968gy]
The Lee model: a tool to study decays,
Francesco Giacosa,
J.Phys.Conf.Ser. 1612 (2020) 012012,arXiv:2001.07781.
Symmetries in Science, 4-9/8/2019, Bregenz, Austria. [Giacosa:2020tha]
Time evolution of an unstable quantum system,
Francesco Giacosa,
Acta Phys.Polon. B48 (2017) 1831,arXiv:1708.02083.
Second Jagiellonian Symposium of Fundamental and Applied Subatomic Physics, 4-9/6/2017, Krakow, Poland. [Giacosa:2017yxh]
Non-exponential decay in Quantum Mechanics and Quantum Field Theory,
Francesco Giacosa,
J. Phys. Conf. Ser. 538 (2014) 012008,arXiv:1312.3315.
Symmetries in Science, 21-26/7/2013, Bregenz (Austria). [Giacosa:2013lza]
(Oscillating) non-exponential decays of unstable states,
Francesco Giacosa, Giuseppe Pagliara,
PoS BORMIO2012 (2012) 028,arXiv:1204.1896.
50th International Winter Meeting on Nuclear Physics, 23-27 January 2012, Bormio, Italy. [Giacosa:2012yd]
Non exponential decays of hadrons,
Giuseppe Pagliara, Francesco Giacosa,
Acta Phys. Polon. Supp. 4 (2011) 753-758,arXiv:1108.2782.
Excited QCD 2011, Les Houches (France), 20-25 February 2011. [Pagliara:2011hh]
Long time deviations from the exponential decay law: possible effects in particle physics and cosmology,
K. Urbanowski,
arXiv:1007.1742, 2010.XXII Recontres de Blois: Particle Physics and Cosmology, Blois, France, 15-20 July 2010. [Urbanowski:2010jw]
Decay Law of Relativistic Particles: Quantum Theory Meets Special Relativity,
K. Urbanowski,
Phys.Lett. B737 (2014) 346,arXiv:1408.6564.
[Urbanowski:2014gza]
Relativistic Quantum Dynamics: A non-traditional perspective on space, time, particles, fields, and action-at-a-distance,
Eugene V. Stefanovich,
arXiv:physics/0504062, 2005. [Stefanovich:2005ai]
Pulsed and continuous measurements of exponentially decaying systems,
Francesco Giacosa, Giuseppe Pagliara,
Phys. Rev. A90 (2014) 052107,arXiv:1405.6882.
[Giacosa:2014joa]
From the Quantum Zeno to the Inverse Quantum Zeno Effect,
P. Facchi, H. Nakazato, S. Pascazio,
Phys. Rev. Lett. 86 (2001) 2699-2703.http://link.aps.org/doi/10.1103/PhysRevLett.86.2699.
[Facchi-Nakazato-Pascazio-2001-PRL-86-2699]
Temporal behavior and quantum Zeno time of an excited state of the hydrogen atom,
P. Facchi, S. Pascazio,
Phys. Lett. A241 (1998) 139-144,arXiv:quant-ph/9905017.
[Facchi:1998abc]
Reflection and transmission in a neutron-spin test of the quantum Zeno effect,
Ken Machida, Hiromichi Nakazato, Saverio Pascazio, Helmut Rauch, Sixia Yu,
Phys. Rev. A60 (1999) 3448,arXiv:quant-ph/9903009.
[Machida:1999id]
Relevance for local realism, macroscopic realism, and non-invasive measurability at the macroscopic level,
D. Home, M. A. B. Whitaker,
Phys. Lett. A 239 (1998) 6-12. [Home-Whitaker-PLA-239-6-1998]
Strange properties of short time evolution of the projection of state vector,
K. Urbanowski,
Found. Phys. Lett. 7 (1994) 285. [Urbanowski-FPL-7-285-1994]
Possible consequences of the Zeno effect on nuclear double beta decay and a bound on $m_{\nu}$,
Jacob Levitan, L. P. Horwitz,
Europhys. Lett. 9 (1989) 761. [Levitan:1989vd]
Small time behavior of quantum nondecay probability and Zeno's paradox in quantum mechanics,
G. C. Ghirardi, C. Omero, A. Rimini, T. Weber,
Nuovo Cim. A52 (1979) 421-442. [Ghirardi:1979dt]
Time Evolution of Unstable Quantum States and a Resolution of Zeno's Paradox,
C. B. Chiu, E. C. G. Sudarshan, B. Misra,
Phys. Rev. D16 (1977) 520-529. [Chiu:1977ds]
Influence of the measurement on the decay law: the bang-bang case,
Francesco Giacosa, Giuseppe Pagliara,
EPJ Web Conf. 95 (2015) 04025,arXiv:1411.2255.
3rd International Conference on New Frontiers in Physics, ICNFP 2014, 31/7/2014-6/8/2014, Crete (Greece). [Giacosa:2014mja]
Probing quantum coherence at a distance and Aharonov-Bohm nonlocality,
Sebastian Horvat, Philippe Allard Guerin, Luca Apadula, Flavio Del Santo,
Phys. Rev. A 102 (2020) 062214,arXiv:2004.13080.
[Horvat:2020mnc]
Aharonov-Bohm Phase is Locally Generated Like All Other Quantum Phases,
Chiara Marletto, Vlatko Vedral,
Phys. Rev. Lett. 125 (2020) 040401.https://link.aps.org/doi/10.1103/PhysRevLett.125.040401.
[PhysRevLett.125.040401]
Force-Free Gravitational Redshift: Proposed Gravitational Aharonov-Bohm experiment,
Michael A. Hohensee, Brian Estey, Paul Hamilton, Anton Zeilinger, Holger Mueller,
Phys. Rev. Lett. 108 (2012) 230404,arXiv:1109.4887.
[Hohensee:2011yt]
The electric Aharonov-Bohm effect,
Ricardo Weder,
Journal of Mathematical Physics 52 (2011) 052109.https://doi.org/10.1063/1.3592150.
[10.1063/1.3592150]
Information (no-energy) waves described by global potentials,
A. G. Chirkov, A. N. Ageev,
Physics of the Solid State 49 (2007) 1275-1280.https://doi.org/10.1134/S106378340707013X.
[Chirkov2007]
Further Discussion of the Role of Electromagnetic Potentials in the Quantum Theory,
Y. Aharonov, D. Bohm,
Phys. Rev. 130 (1963) 1625-1632. [Aharonov:1963zz]
Detection of High-Dimensional Genuine Multipartite Entanglement of Mixed States,
Marcus Huber, Florian Mintert, Andreas Gabriel, Beatrix C. Hiesmayr,
Phys. Rev. Lett. 104 (2010) 210501. [Huber-Mintert-Gabriel-Hiesmayr-2010-PRL-104-210501]
Experimentally friendly geometrical criteria for entanglement,
P. Badziag, C. Brukner, W. Laskowski, T. Paterek, M. Zukowski,
arXiv:0711.4282, 2007. [0711.4282]
Loophole-free Bell's experiment based on two-photon all-versus-nothing violation of local realism,
Adan Cabello,
arXiv:quant-ph/0507260, 2005. [quant-ph/0507260]
Bell's inequality tests: from photons to B-mesons,
A. Bramon, R. Escribano, G. Garbarino,
J. Mod. Opt. 52 (2005) 1681,arXiv:quant-ph/0410122.
[Bramon:2004pp]
Reply to Marinatto's comment on 'Bell's theorem without inequalities and without alignments',
Adan Cabello,
arXiv:quant-ph/0409189, 2004. [quant-ph/0409189]
Counterfactual errors and state reduction in relativistic quantum physics,
Jon Eakins, George Jaroszkiewicz,
arXiv:quant-ph/0406097, 2004. [quant-ph/0406097]
Bell's inequality for conditional probabilities as a test for quantum-like behaviour of mind,
Andrei Khrennikov,
arXiv:quant-ph/0402169, 2004. [quant-ph/0402169]
Extreme quantum entanglement in a superposition of macroscopically distinct states,
N. David Mermin,
Phys. Rev. Lett. 65 (1990) 1838-1840. [Mermin-1990-PRL-65-1838]
Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model,
Reinhard F. Werner,
Phys. Rev. A 40 (1989) 4277-4281. [Werner-1989-PRA-40-4277]
Experiments of the EPR type involving CP violation do not allow faster than light communication between distant observers,
G. C. Ghirardi, R. Grassi, A. Rimini, T. Weber,
Europhys. Lett. 6 (1988) 95. [Ghirardi:1988aj]
Discussion of Experimental Proof for the Paradox of Einstein, Rosen, and Podolsky,
D. Bohm, Y. Aharonov,
Phys. Rev. 108 (1957) 1070-1076. [Bohm:1957zz]
Can quantum mechanical description of physical reality be considered complete?,
Albert Einstein, Boris Podolsky, Nathan Rosen,
Phys. Rev. 47 (1935) 777-780. [Einstein:1935rr]
Quantum information and general relativity,
Asher Peres,
Fortsch. Phys. 52 (2004) 1052,arXiv:quant-ph/0405127.
'Quantum Optics for Quantum Information Processing', Rome, 7-8 May 2004. [Peres:2004fw]
Maximal correlation between flavor entanglement and oscillation damping due to localization effects,
Victor A. S. V. Bittencourt, Celso J. Villas-Boas, Alex E. Bernardini,
Europhys.Lett. 108 (2014) 50005,arXiv:1411.3634.
[Bittencourt:2014pda]
A field-theoretical approach to entanglement in neutrino mixing and oscillations,
M. Blasone, F. Dell'Anno, S. De Siena, F. Illuminati,
Europhys.Lett. 106 (2014) 30002,arXiv:1401.7793.
[Blasone:2014jea]
Entanglement in a QFT Model of Neutrino Oscillations,
M. Blasone, F. Dell'Anno, S. De Siena, F. Illuminati,
Adv. High Energy Phys. 2014 (2014) 359168. [Blasone:2014cub]
Multipartite entangled states in particle mixing,
M. Blasone, F. Dell'Anno, S. De Siena, M. Di Mauro, F. Illuminati,
Phys. Rev. D77 (2008) 096002,arXiv:0711.2268.
[Blasone:2007wp]
Entanglement of Indistinguishable Particles Shared between Two Parties,
H. M. Wiseman, John A. Vaccaro,
Phys. Rev. Lett. 91 (2003) 097902. [Wiseman-Vaccaro-2003-PRL-91-097902]
Nonlocality of a Single Photon?,
D. M. Greenberger, M. A. Horne, A. Zeilinger,
Phys. Rev. Lett. 75 (1995) 2064-2064. [Greenberger-Horne-Zeilinger-1995-PRL-75-2064]
A strong no-go theorem on the Wigner's friend paradox,
Kok-Wei Bong, Anibal Utreras-Alarcon, Farzad Ghafari, Yeong-Cherng Liang, Nora Tischler, Eric G. Cavalcanti, Geoff J. Pryde, Howard M. Wiseman,
Nature Phys. 16 (2020) 1199-1205,arXiv:1907.05607.
[Bong:2019xzv]
The measure problem in no-collapse (many worlds) quantum mechanics,
Stephen D.H. Hsu,
Int.J.Mod.Phys. D26 (2016) 1730008,arXiv:1511.08881.
[Hsu:2015qev]
Interpretations of Quantum Theory in the Light of Modern Cosmology,
Mario Castagnino, Sebastian Fortin, Roberto Laura, Daniel Sudarsky,
Found.Phys. 47 (2017) 1387-1422,arXiv:1412.7576.
[Castagnino:2014cpa]
Are collapse models testable with quantum oscillating systems? The case of neutrinos, kaons, chiral molecules,
M. Bahrami et al.,
Sci.Rep. Nature (2013) Scientific Reports 3,arXiv:1305.6168.
[Bahrami:2013hta]
Are Collapse Models Testable via Flavor Oscillations?,
Sandro Donadi, Angelo Bassi, Catalina Curceanu, Antonio Di Domenico, Beatrix C. Hiesmayr,
Found.Phys. 43 (2013) 813-844,arXiv:1207.6000.
[Donadi:2012nv]
The effect of spontaneous collapses on neutrino oscillations,
S. Donadi, A. Bassi, C. Curceanu, L. Ferialdi,
Foundations of Physics 43, 1066-1089 (2013),arXiv:1207.5997.
[Donadi:2012idr]
Phase transitions and quantum measurements,
Armen E. Allahverdyan, Roger Balian, Theo M. Nieuwenhuizen,
arXiv:quant-ph/0508162, 2005. [quant-ph/0508162]
Decoherence induced by a composite environment,
Fernando C. Lombardo, Paula I. Villar,
Phys. Rev. A72 (2005) 034103,arXiv:quant-ph/0508121.
[Lombardo:2005za]
An Exactly Solvable Model of an Avalanche-Type Measuring Device: Macroscopic Distinctiveness and Wavefunction Collapse,
R. Merlin,
arXiv:quant-ph/0507250, 2005. [quant-ph/0507250]
Algebras of Measurements: the logical structure of Quantum Mechanics,
Daniel Lehmann, Kurt Engesser, Dov M. Gabbay,
arXiv:quant-ph/0507231, 2005. [quant-ph/0507231]
Quantum mechanical description of measurement and the basic properties of state transformation,
Iman Marvian,
arXiv:quant-ph/0507230, 2005. [quant-ph/0507230]
Testing Gravity-Driven Collapse of the Wavefunction via Cosmogenic Neutrinos,
Joy Christian,
Phys. Rev. Lett. 95 (2005) 160403,arXiv:quant-ph/0503001.
[Christian:2005qa]
Probing Quantum Decoherence with High-Energy Neutrinos,
Dan Hooper, Dean Morgan, Elizabeth Winstanley,
Phys. Lett. B609 (2005) 206,arXiv:hep-ph/0410094.
[Hooper:2004xr]
From Quantum To Classical Dynamics: A Landau Continuous Phase Transition With Spontaneous Superposition Breaking,
Vladan Pankovic, Tristan Hubsch, Milan Predojevic, Miodrag Krmar,
arXiv:quant-ph/0409010, 2004. [quant-ph/0409010]
The quantum measurement process in an exactly solvable model,
Armen E. Allahverdyan, Roger Balian, Theo M. Nieuwenhuizen,
arXiv:cond-mat/0408316, 2004. [cond-mat/0408316]
Towards Quantum Superpositions of a Mirror: Stochastic Collapse Analysis,
A. Bassi, E. Ippoliti, Stephen L. Adler,
Phys. Rev. Lett. 94 (2005) 030401,arXiv:quant-ph/0406108.
[Bassi:2004eu]
Quantum Models of Mind: Are They Compatible with Environment Decoherence?,
Jean Faber, Luiz Pinguelli Rosa,
arXiv:quant-ph/0403051, 2004. [quant-ph/0403051]
Active and Passive Quantum Erasers for Neutral Kaons,
A. Bramon, G. Garbarino, B.C. Hiesmayr,
Phys. Rev. A69 (2004) 062111,arXiv:quant-ph/0402212.
[Bramon:2004zp]
Loss of quantum coherence in a system coupled to a zero-temperature environment,
A. Ratchov, F. Faure, F. W. J. Hekking,
arXiv:quant-ph/0402176, 2004. [quant-ph/0402176]
Quantum Superposition of a Mirror and Relative Decoherence (as Spontaneous Superposition Breaking),
V. Pankovic, M. Predojevic, M. Krmar,
arXiv:quant-ph/0312015, 2003. [quant-ph/0312015]
Decoherence, irreversibility and the selection by decoherence of quantum states with definite probabilities,
R. Omnes,
arXiv:quant-ph/0304100, 2003. [quant-ph/0304100]
Towards quantum superpositions of a mirror,
W. Marshall, C. Simon, Roger Penrose, D. Bouwmeester,
Phys. Rev. Lett. 91 (2003) 130401. [Marshall:2002exi]
Curie-Weiss model of the quantum measurement process,
Armen E. Allahverdyan, Roger Balian, Theo M. Nieuwenhuizen,
Europhys. Lett. 61 (2003) 452-458,arXiv:cond-mat/0203460.
[Allahverdyan:2002hk]
Why Decoherence has not Solved the Measurement Problem: A Response to P. W. Anderson,
Stephen L. Adler,
Stud. Hist. Philos. Mod. Phys. 34 (2003) 135,arXiv:quant-ph/0112095.
[Adler:2001us]
Quantum measurement as driven phase transition: An exactly solvable model,
Armen E. Allahverdyan, Roger Balian, Theo M. Nieuwenhuizen,
arXiv:cond-mat/0102428, 2001. [cond-mat/0102428]
A General Argument Against the Universal Validity of the Superposition Principle,
Angelo Bassi, GianCarlo Ghirardi,
Phys. Lett. A275 (2000) 373,arXiv:quant-ph/0009020.
[Bassi:2000fz]
About the Notion of Truth in the Decoherent Histories Approach: a reply to Griffiths,
Angelo Bassi, GianCarlo Ghirardi,
Phys. Lett. A265 (2000) 153,arXiv:quant-ph/9912065.
[Bassi:2000gf]
Consistent histories, quantum truth functionals, and hidden variables,
Robert B. Griffiths,
Phys. Lett. A265 (2000) 12-19,arXiv:quant-ph/9909049.
[quant-ph/9909049]
More about Dynamical Reduction and the Enumeration Principle,
Angelo Bassi, GianCarlo Ghirardi,
Phil.Sci. 50 (1999) 719,arXiv:quant-ph/9907050.
[Bassi:1999py]
Do dynamical reduction models imply that arithmetic does not apply to ordinary macroscopic objects?,
GianCarlo Ghirardi, Angelo Bassi,
Brit.J.Phil.Sci. (1998),arXiv:quant-ph/9810041.
[Ghirardi:1998mr]
Quantum Mechanics is Either Non-Linear Or Non-Introspective,
Tristan Hubsch,
Mod. Phys. Lett. A13 (1998) 2503-2512,arXiv:quant-ph/9712047.
[Hubsch:1997uj]
Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles,
Gian Carlo Ghirardi, Philip M. Pearle, Alberto Rimini,
Phys. Rev. A42 (1990) 78-79. [Ghirardi:1989cn]
Spontaneous localization of a system of identical particles,
G. C. Ghirardi, O. Nicrosini, A. Rimini, T. Weber,
Nuovo Cim. B102 (1988) 383. [Ghirardi:1988xh]
Quantum mechanics with spontaneous localization and the quantum theory of measurement,
F. Benatti, G. C. Ghirardi, A. Rimini, T. Weber,
Nuovo Cim. B100 (1987) 27. [Benatti:1987jh]
On disentanglement of quantum wave functions: answer to a comment on 'unified dynamics for microscopic and macroscopic systems',
G. C. Ghirardi, A. Rimini, T. Weber,
Phys. Rev. D36 (1987) 3287. [Ghirardi:1987ns]
A New Ontological View of the Quantum Measurement Problem,
Xiaolei Zhang,
arXiv:quant-ph/0506100, 2005.Albert Einstein Century conference, Paris, France, July 2005. [quant-ph/0506100]
Statistical Mechanics of Amplifying Apparatus,
Joseph Johnson,
arXiv:quant-ph/0502044, 2005.VIII International Wigner Symposium, NY 2003. [quant-ph/0502044]
The quantum measurement process: an exactly solvable model,
A.E. Allahverdyan, R. Balian, Th.M. Nieuwenhuizen,
arXiv:cond-mat/0309188, 2003.Anomalies and Strange Behavior in Physics: Challenging the conventional, Napels, April, 2003. [cond-mat/0309188]
Feynman's decoherence,
Y. S. Kim, Marilyn E. Noz,
Opt.Spectrosc. 94 (2003) 733,arXiv:quant-ph/0206146.
9th Int'l Conference on Quantum Optics (Raubichi, Belarus, May 2002). [Kim:2002pz]
Many-fingered time in quantum field theory, measurement, and the Bohmian interpretation,
H. Nikolic,
Phys. Lett. A348 (2006) 166,arXiv:hep-th/0501046.
[Nikolic:2005fi]
Pre- and Post-selection paradoxes and contextuality in quantum mechanics,
M. S. Leifer, R. W. Spekkens,
arXiv:quant-ph/0412178, 2004. [quant-ph/0412178]
Proposal of Michelson-Morley experiment via single photon interferometer: Interpretation of Michelson-Morley experimental results using de Broglie-Bohm picture,
Masanori Sato,
JCAP 0502 (2005) 001,arXiv:physics/0411217.
[Greene:2004np]
A relativistically covariant version of Bohm's quantum field theory for the scalar field,
George Horton, C Dewdney,
J. Phys. A37 (2004) 11935,arXiv:quant-ph/0407089.
[Horton:2004mj]
Are All Particles Identical?,
Sheldon Goldstein, James Taylor, Roderich Tumulka, Nino Zanghi,
J. Phys. A38 (2005) 1567,arXiv:quant-ph/0405039.
[Goldstein:2004yx]
On the Role of Density Matrices in Bohmian Mechanics,
Detlef Duerr, Sheldon Goldstein, Roderich Tumulka, Nino Zanghi,
arXiv:quant-ph/0311127, 2003. [quant-ph/0311127]
Reappraisal of the causal interpretation of quantum mechanics and of the quantum potential concept,
R. H. Parmenter, A. L. DiRienzo,
arXiv:quant-ph/0305183, 2003. [quant-ph/0305183]
About entanglement properties of kaons and tests of hidden variables models,
M. Genovese,
Phys. Rev. A69 (2004) 022103,arXiv:quant-ph/0305087.
[Genovese:2003dp]
The Innsbruck EPR Experiment: A Time-Retarded Local Description of Space-like Separated Correlations,
M. Clover,
arXiv:quant-ph/0304115, 2003. [quant-ph/0304115]
A Bohmian Interpretation for Noncommutative Quantum Field Theory and Quantum Mechanics,
G. D. Barbosa,
arXiv:hep-th/0304105, 2003. [DouradoBarbosa:2003wi]
Bohmian Mechanics and Quantum Field Theory,
D. Duerr, S. Goldstein, R. Tumulka, N. Zanghi,
Phys. Rev. Lett. 93 (2004) 090402,arXiv:quant-ph/0303156.
[Duerr:2003erc]
Epistemological and Ontological Paraconsistency in Quantum Mechanics: For and Against Bohrian Philosophy,
Christian de Ronde,
arXiv:1412.6813, 2014. [1412.6813]
Nonlocality without inequalities,
GianCarlo Ghirardi, Luca Marinatto,
arXiv:quant-ph/0509194, 2005.ICSSUR'05, Besancon, France, 2-6 May 2005. [quant-ph/0509194]
Logical Pre- and Post-Selection paradoxes, measurement-disturbance and contextuality,
M. S. Leifer, R. W. Spekkens,
arXiv:quant-ph/0412179, 2004.Quantum Structures 2004. [quant-ph/0412179]
Collective neutrino oscillations on a quantum computer,
Kubra Yeter-Aydeniz, Shikha Bangar, George Siopsis, Raphael C. Pooser,
Quant. Inf. Proc. 21 (2022) 84,arXiv:2104.03273.
[Yeter-Aydeniz:2021olz]
Simulation of collective neutrino oscillations on a quantum computer,
Benjamin Hall, Alessandro Roggero, Alessandro Baroni, Joseph Carlson,
Phys. Rev. D 104 (2021) 063009,arXiv:2102.12556.
[Hall:2021rbv]
Fundamental gravitational limitations to quantum computing,
Rodolfo Gambini, Rafael A. Porto, Jorge Pullin,
arXiv:quant-ph/0507262, 2005. [Gambini:2005pq]
And what if Bohm was right? The fundamental problem of quantum cryptography and a way to circumvent it,
Marek Czachor, Marcin Pawlowski,
arXiv:quant-ph/0412212, 2004. [quant-ph/0412212]
Measurement-Based Quantum Turing Machines and Questions of Universalities,
Simon Perdrix, Philippe Jorrand,
arXiv:quant-ph/0402156, 2004. [quant-ph/0402156]
Towards Linear Optical Quantum Computers,
Jonathan P. Dowling, James D. Franson, Hwang Lee, Gerald J. Milburn,
arXiv:quant-ph/0402090, 2004. [quant-ph/0402090]
The Signals and Systems Approach to Quantum Computation,
H. Gopalkrishna Gadiyar, K. M. Sangeeta Maini, R. Padma, H.S. Sharatchandra,
arXiv:quant-ph/0305073, 2003. [quant-ph/0305073]
Violation of Bell's inequality: criterion for quantum communication complexity advantage,
Caslav Brukner, Marek Zukowski, Jian-Wei Pan, Anton Zeilinger,
arXiv:quant-ph/0210114, 2002. [quant-ph/0210114]
Quantum Computing, Metrology, and Imaging,
Hwang Lee, Pavel Lougovski, Jonathan P. Dowling,
arXiv:quant-ph/0506150, 2005.SPIE: Fluctuations and Noise in Photonics and Quantum Optics III (2005). [quant-ph/0506150]
The Future of Computation,
Apoorva Patel,
arXiv:quant-ph/0503068, 2005.Workshop on Quantum Information, Computation and Communication (QICC-2005), IIT Kharagpur, India, February 2005. [quant-ph/0503068]
Does Quantum Mechanics allow for Infinite Parallelism?,
Martin Ziegler,
arXiv:quant-ph/0410141, 2004.Quantum Structure 2004 (Denver). [quant-ph/0410141]
Physical-resource demands for scalable quantum computation,
Carlton M. Caves, Ivan H. Deutsch, Robin Blume-Kohout,
arXiv:quant-ph/0304083, 2003.SPIE Conference on Fluctuations and Noise in Photonics and Quantum Optics, Santa Fe, New Mexico, June 1-4, 2003. [quant-ph/0304083]
A General Setting for Geometric Phase of Mixed States in Arbitrary Evolution,
A. T. Rezakhani, P. Zanardi,
arXiv:quant-ph/0507280, 2005. [quant-ph/0507280]
Simple examples of position-momentum correlated Gaussian free-particle wavepackets in one-dimension with the general form of the time-dependent spread in position,
R. W. Robinett, M. A. Doncheski, L. C. Bassett,
arXiv:quant-ph/0502097, 2005. [quant-ph/0502097]
Non-classical properties of quantum wave packets propagating in a Kerr-like medium,
C. Sudheesh, S. Lakshmibala, V. Balakrishnan,
arXiv:quant-ph/0502046, 2005. [quant-ph/0502046]
Spontaneous emission of a photon: wave packet structures and atom-photon entanglement,
M.V. Fedorov et al.,
arXiv:quant-ph/0412107, 2004. [quant-ph/0412107]
Initial wave packets and the various power-law decreases of scattered wave packets at long times,
Manabu Miyamoto,
arXiv:quant-ph/0404057, 2004. [quant-ph/0404057]
Enhanced group velocity in metamaterials,
T.G. Mackay, A. Lakhtakia,
Nucl. Phys. Proc. Suppl. 128C (2004) 107-116,arXiv:physics/0402037.
[Kennedy:2004tj]
Classical aspects of ultracold atom wavepacket motion through microstructured waveguide bends,
M. W. J. Bromley, B. D. Esry,
arXiv:physics/0402032, 2004. [physics/0402032]
Signatures of wave packet revival phenomena in the expectation values of observables,
C. Sudheesh, S. Lakshmibala, V. Balakrishnan,
arXiv:quant-ph/0401181, 2004. [quant-ph/0401181]
Applications of the wave packet method to resonant transmission and reflection gratings,
Andrei G. Borisov, Sergei V. Shabanov,
arXiv:physics/0312103, 2003. [Bojowald:2003ws]
Comment on 'Direct Measurement of the Longitudinal Coherence Length of a Thermal Neutron Beam',
G. Comsa,
Phys. Rev. Lett. 51 (1983) 1105. [Comsa-PRL51-1105-1983]
Direct Measurement of the Longitudinal Coherence Length of a Thermal Neutron Beam,
H. Kaiser, S. A. Werner, E. A. George,
Phys. Rev. Lett. 50 (1983) 560. [Kaiser-Werner-George-PRL50-560-1983]
Longitudinal Coherence in neutron Interferometry,
A. G. Klein, G. I. Opat, W. A. Hamilton,
Phys. Rev. Lett. 50 (1983) 563. [Klein-Opat-Hamilton-PRL50-563-1983]
Heisenberg's Introduction of the `Collapse of the Wavepacket' into Quantum Mechanics,
R. Y. Chiao, P. G. Kwiat,
arXiv:quant-ph/0201036, 2002.Heisenberg Centennial Symposium, Bamberg, Germany, Sept. 2001. [quant-ph/0201036]
Visible Energy Alternative to Dark Energy,
Maryam Roushan, Narges Rashidi, Kourosh Nozari,
Chin.J.Phys. 77 (2022) 1827,arXiv:2204.07180.
[Roushan:2022abq]
Towards a unitary, renormalizable and ultraviolet-complete quantum theory of gravity,
Christian F. Steinwachs,
arXiv:2004.07842, 2020. [Steinwachs:2020jkj]
Why we need to quantise everything, including gravity,
Chiara Marletto, Vlatko Vedral,
npj Quantum Inf. 3 (2017) 29,arXiv:1703.04325.
[Marletto:2017pjr]
A lower limit to the scale of an effective theory of gravitation,
Robert R. Caldwell, Daniel Grin,
Phys. Rev. Lett. 100 (2008) 031301,arXiv:astro-ph/0606133.
[Caldwell:2006gu]
General Relativistic Effects of Gravity in Quantum Mechanics - A Case of Ultra-Relativistic, Spin 1/2 Particles -,
Kohkichi Konno, Masumi Kasai,
Prog. Theor. Phys. 100 (1998) 1145,arXiv:gr-qc/0603035.
[Konno:1998kq]
Quantum Nature of the Big Bang,
Abhay Ashtekar, Tomasz Pawlowski, Parampreet Singh,
Phys. Rev. Lett. 96 (2006) 141301,arXiv:gr-qc/0602086.
[Ashtekar:2006rx]
Beyond partial differential equations: A course on linear and quasi-linear abstract hyperbolic evolution equations,
Horst R. Beyer,
arXiv:gr-qc/0510097, 2005. [Beyer:2005ef]
Tommy Gold revisited: Why does not the universe rotate?,
George Chapline, Pawel O. Mazur,
Aip Conf. Proc. 822 (2006) 160,arXiv:astro-ph/0509230.
[Chapline:2005hm]
A freely falling frame at the interface of gravitational and quantum realms,
D. V. Ahluwalia-Khalilova,
Class. Quant. Grav. 22 (2005) 1433-1450,arXiv:hep-th/0503141.
[Ahluwalia:2005jn]
Fundamental physics in space: A quantum-gravity perspective,
Giovanni Amelino-Camelia,
Gen. Rel. Grav. 36 (2004) 539-560,arXiv:astro-ph/0309174.
[Amelino-Camelia:2003ont]
Cosmological Perturbations from a New-Physics Hypersurface,
V. Bozza, M. Giovannini, G. Veneziano,
JCAP 0305 (2003) 001,arXiv:hep-th/0302184.
[Bozza:2003pr]
Lorentz violation as a quantum-gravity signature,
Ralf Lehnert,
Int. J. Mod. Phys. A20 (2005) 1303,arXiv:astro-ph/0508625.
Coral Gables Conference on Launching of Belle Epoque in High-Energy Physics and Cosmology (CG 2003), Ft. Lauderdale, Florida, 17-21 Dec 2003. [Lehnert:2005uh]
Dark Energy Stars,
G. Chapline,
eConf C041213 (2004) 0205,arXiv:astro-ph/0503200.
Texas Conference on Relativistic Astrophysics, Stanford, CA, December, 2004. [Chapline:2004jfp]
Quantum-gravity phenomenology: Status and prospects,
Giovanni Amelino-Camelia,
Mod. Phys. Lett. A17 (2002) 899-922,arXiv:gr-qc/0204051.
1st IUCAA Workshop on Interface of Gravitational and Quantum Realms, Pune, India, 17-21 Dec 2001. [Amelino-Camelia:2002aqz]
On the physical meaning of the Unruh effect,
Emil T. Akhmedov, Douglas Singleton,
Pisma Zh. Eksp. Teor. Fiz. 86 (2007) 702-706,arXiv:0705.2525.
[Akhmedov:2007xu]
On the relation between Unruh and Sokolov-Ternov effects,
Emil T. Akhmedov, Douglas Singleton,
Int. J. Mod. Phys. A22 (2007) 4797-4823,arXiv:hep-ph/0610391.
[Akhmedov:2006nd]
Classical Physics revisited: Derivation and explanation of the quantum mechanical superposition principle and Born's rule,
Gerhard Groessing,
arXiv:quant-ph/0410236, 2004. [quant-ph/0410236]
The Emergence of Classical Dynamics in a Quantum World,
Tanmoy Bhattacharya, Salman Habib, Kurt Jacobs,
arXiv:quant-ph/0407096, 2004. [quant-ph/0407096]
On the connection between classical and quantum descriptions,
I. D. Mandzhavidze,
Sov. J. Nucl. Phys. 45 (1987) 442,arXiv:hep-ph/0311196.
[Mandzhavidze:1987yv]
From Classical Hamiltonian Flow to Quantum Theory: Derivation of the Schroedinger Equation,
G. Groessing,
arXiv:quant-ph/0311109, 2003. [quant-ph/0311109]
Comparing classical and quantum probability distributions for an asymmetric infinite well,
M. A. Doncheski, R. W. Robinett,
arXiv:quant-ph/0307014, 2003. [quant-ph/0307014]
't Hooft's quantum determinism - path integral viewpoint,
Massimo Blasone, Petr Jizba, Hagen Kleinert,
arXiv:quant-ph/0504047, 2005.Second International Workshop DICE2004, From Decoherence and Emergent Classicality to Emergent Quantum Mechanics Piombino (Tuscany), September 1-4, 2004. [quant-ph/0504047]
On the Origin of Conceptual Difficulties of Quantum Mechanics,
Volodymyr Krasnoholovets,
Commun.Theor.Phys. 42 (2004) 664-668,arXiv:physics/0412122.
[Mirza:2004bnl]
A New Approach to Quantising Space-Time: II. Quantising on a Category of Sets,
C.J. Isham,
Adv. Theor. Math. Phys. 7 (2004) 807,arXiv:gr-qc/0304077.
[Isham:2003kw]
Can Quantum Mechanics be Cleared from Conceptual Difficulties?,
Volodymyr Krasnoholovets,
arXiv:quant-ph/0210050, 2002.13 pages; report written for Wigner Centennial Conference (Pecs, Hungary, July, 2002). [quant-ph/0210050]
Neutrino Telescope Event Classification on Quantum Computers,
Pablo Rodriguez-Grasa, Pavel Zhelnin, Carlos A. Arguelles, Mikel Sanz,
arXiv:2506.16530, 2025. [Rodriguez-Grasa:2025ggh]
Impact of Scalar NSI on Spatial and Temporal Correlations in Neutrino Oscillations,
Bhavna Yadav, Ashutosh Kumar Alok,
arXiv:2411.17503, 2024. [Yadav:2024qav]
Revisiting astrophysical bounds on continuous spontaneous localization models,
Martin Miguel Ocampo, Marcelo M. Miller Bertolami, Gabriel Leon,
JCAP 10 (2024) 018,arXiv:2406.04463.
[Ocampo:2024dhj]
Violation of LGtI inequalities in the light of NO$\nu$A and T2K anomaly,
Lekhashri Konwar, Juhi Vardani, Bhavna Yadav,
Eur.Phys.J.C 84 (2024) 1103,arXiv:2401.02886.
[Konwar:2024nwc]
Evaluation of the Leggett-Garg inequality by means of the neutrino oscillations observed in reactor and accelerator experiments,
Ricardo Zamora Barrios, Mario A. Acero,
arXiv:2401.00240, 2024. [Barrios:2023yub]
New Test of Neutrino Oscillation Coherence with Leggett-Garg Inequality,
Xing-Zhi Wang, Bo-Qiang Ma,
Eur.Phys.J.C 82 (2022) 133,arXiv:2201.10597.
[Wang:2022tnr]
Violation of the Leggett-Garg Inequality in Neutrino Oscillations,
J. A. Formaggio, D. I. Kaiser, M. M. Murskyj, T. E. Weiss,
Phys. Rev. Lett. 117 (2016) 050402,arXiv:1602.00041.
[Formaggio:2016cuh]
Quantitative duality and neutral kaon interferometry in CPLEAR experiments,
A. Bramon, G. Garbarino, B.C. Hiesmayr,
Eur. Phys. J. C32 (2004) 377,arXiv:hep-ph/0307047.
[Bramon:2003xj]
Quantum marking and quantum erasure for neutral kaons,
A. Bramon, G. Garbarino, B. Hiesmayr,
Phys. Rev. Lett. 92 (2004) 020405,arXiv:quant-ph/0306114.
[Bramon:2003bj]
Speed-up through entanglement - many-body effects in neutrino processes,
Nicole F. Bell, Andrew A. Rawlinson, R. F. Sawyer,
Phys. Lett. B573 (2003) 86,arXiv:hep-ph/0304082.
[Bell:2003mg]
Decoherence, fluctuations and Wigner function in neutron optics,
P. Facchi, A. Mariano, S. Pascazio, M. Suda,
arXiv:quant-ph/0210088, 2002. [quant-ph/0210088]
Using Neutrinos to test the Time-Energy Uncertainty Relation in an Extreme Regime,
Ramaswamy S. Raghavan, Djordje Minic, Tatsu Takeuchi, Chia Hsiung Tze,
arXiv:1210.5639, 2012.Virginia Tech Symposium on the Life and Science of Dr. Raju Raghavan. [Raghavan:2012sy]
CPT and Quantum Mechanics Tests with Kaons: Theory,
Nick E. Mavromatos,
Nucl. Phys. Proc. Suppl. 167 (2007) 43-46,arXiv:hep-ph/0607320.
BEACH2006 Conference (Lancaster Univ., UK, July 2-8 2006). [Mavromatos:2006sr]
Is the concept of quantum probability consistent with Lorentz covariance?,
Y. S. Kim, Marilyn E. Noz,
arXiv:quant-ph/0301155, 2003.Second International Conference on Foundations of Probability in Physics (Vaxjo, Sweden, June 2002). [Kim:2003tx]
Neutrino-Flux Variability, Nuclear-Decay Variability, and Their Apparent Relationship,
Peter A. Sturrock,
Space Sci.Rev. 218 (2022) 23,arXiv:2203.05069.
[Sturrock:2022dgy]
Role of ambient humidity underestimated in research on correlation between radioactive decay rates and space weather,
Stefaan Pomme, Krzysztof Pelczar,
Sci. Rep. 12 (2022) 2527,arXiv:2108.00116.
[Pomme:2021xbw]
On the interpretation of annual oscillations in $^{32}$Si and $^{36}$Cl decay rate measurements,
S. Pomme, K. Pelczar, K. Kossert, I. Kajan,
Sci. Rep. 11 (2021) 16002. [Pomme:2021frg]
On the recent claim of correlation between radioactive decay rates and space weather,
S. Pomme, K. Pelczar,
Eur. Phys. J. C 80 (2020) 1093. [Pomme:2020veo]
An Oscillation Evident in Both Solar Neutrino Data and Radon Decay Data,
P.A. Sturrock, E. Fischbach, O. Piatibratova, G. Steinitz, F. Scholkmann,
arXiv:1907.11749, 2019. [Sturrock:2019vzu]
Non-dependence of nuclear decay rates of 123 I and 99 m Tc on Earth-Sun distance,
Joseph A. Borrello, Alan Wuosmaa, Mark Watts,
Appl. Radiat. Isot. 132 (2018) 189-194. [Borrello:2018fky]
On the claim of modulations in radon decay and their association with solar rotation,
S. Pomme, G. Lutter, M. Marouli, K. Kossert, O. Nahle,
Astropart. Phys. 97 (2018) 38-45. [Pomme:2018vve]
Comparative analyses of 90Sr/90Y90 decay measurements at the Physikalisch-Technische Bundesanstalt and 222Rn decay measurements at the Geological Survey of Israel. Evidence of a solar influence,
Peter Sturrock, Gideon Steinitz, Ephraim Fischbach, Alexander Parkhomov, Jeffrey Scargle,
Astropart.Phys. 84 (2016) 8-14,arXiv:1605.03088.
[Sturrock:2016kry]
Comparative Analysis of Brookhaven National Laboratory Nuclear Decay Data and Super-Kamiokande Neutrino Data: Indication of a Solar Connection,
P.A. Sturrock, E. Fischbach,
arXiv:1511.08770, 2015. [Sturrock:2015ivo]
Concerning the variability of beta-decay measurements,
P.A. Sturrock, E. Fischbach, A. Parkhomov, J.D. Scargle, G. Steinitz,
arXiv:1510.05996, 2015. [Sturrock:2015wqa]
Comment on 'Comparative study of beta-decay data for eight nuclides measured at the Physikalisch-Technische Bundesanstalt' [Astropart. Phys. 59 (2014) 47-58],
Ole Nahle, Karsten Kossert,
Astropart.Phys. 66 (2015) 8-10,arXiv:1408.5219.
[Nahle:2014eua]
Analysis of Beta-Decay Rates for $^{108}$Ag, $^{133}$Ba, $^{152}$Eu, $^{154}$Eu, $^{85}$Kr, $^{226}$Ra and $^{90}$Sr, Measured at the Physikalisch-Technische Bundesanstalt from 1990 to 1996,
Peter A. Sturrock, Ephraim Fischbach, Jere Jenkins,
Astrophys.J. 794 (2014) 42,arXiv:1408.3090.
[Sturrock:2014caa]
Comparative study of beta-decay data for eight nuclides measured at the Physikalisch-Technische Bundesanstalt,
P.A. Sturrock, E. Fischbach, D. Javorsek, J.H. Jenkins, R.H. Lee et al.,
Astropart.Phys. 59 (2014) 47-58. [Sturrock:2014oya]
Evidence for Correlations Between Nuclear Decay Rates and Earth-Sun Distance,
Jere H. Jenkins, Ephraim Fischbach, John B. Buncher, John T. Gruenwald, Dennis E. Krause et al.,
Astropart.Phys. 32 (2009) 42-46,arXiv:0808.3283.
[Jenkins:2008vn]
Hidden evidence of non-exponential nuclear decay,
N. G. Kelkar, M. Nowakowski, K. P. Khemchandani,
Phys. Rev. C70 (2004) 024601,arXiv:nucl-th/0405043.
[Kelkar:2004zz]
Testing the Weisskopf-Wigner approximation by using neutral meson anti-meson correlated states,
G. V. Dass, W. Grimus,
Phys. Lett. B521 (2001) 267-272,arXiv:hep-ph/0109049.
[Dass:2001yx]
Is there a signal for Lorentz non-invariance in existing radioactive decay data?,
M. J. Mueterthies, D. E. Krause, A. Longman, V. E. Barnes, E. Fischbach,
arXiv:1607.03541, 2016.Seventh Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, June 20-24, 2016. [Mueterthies:2016hlg]
Evidence for Solar Influences on Nuclear Decay Rates,
Ephraim Fischbach et al.,
arXiv:1007.3318, 2010.Fifth Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, June 28-July 2, 2010. [Fischbach:2010ct]
Non-exponential and oscillatory decays in quantum mechanics,
Murray Peshkin, Alexander Volya, Vladimir Zelevinsky,
EPL 107 (2014) 40001,arXiv:1703.05238.
[Peshkin:2014jdw]
GSI Oscillations as Interference of Neutrino Flavour Mass-Eigenstates and Measuring Process,
A. N. Ivanov, P. Kienle,
arXiv:1406.2450, 2014. [Ivanov:2014dca]
Oscillating Decay Rate in Electron Capture and the Neutrino Mass Difference,
Murray Peshkin,
Phys. Rev. C 91 (2015) 042501,arXiv:1403.4292.
[Peshkin:2014ina]
Oscillations in the decay law: A possible quantum mechanical explanation of the anomaly in the experiment at the GSI facility,
Francesco Giacosa, Giuseppe Pagliara,
Quant. Matt. 2 (2013) 54-59,arXiv:1110.1669.
[Giacosa:2011cg]
Time Modulation of K-Shell Electron Capture Decay Rates of H-Like Heavy Ions and Neutrino Masses,
R. Hoellwieser, A. N. Ivanov, P. Kienle, M. Pitschmann,
arXiv:1102.2519, 2011. [Hollwieser:2011nut]
Is the GSI anomaly due to neutrino oscillations? - A real time perspective -,
Jun Wu, Jimmy Hutasoit, Daniel Boyanovsky, Richard Holman,
Phys. Rev. D82 (2010) 045027,arXiv:1006.5732.
[Wu:2010ke]
Quantum-Mechanics of $\nu$ and GSI oscillations for pedestrians : Relativistic quantum field theory is useless,
Harry J. Lipkin,
arXiv:1003.4023, 2010. [Lipkin:2010qd]
Theoretical Analysis Supports Darmstadt Oscillations Crucial Roles of Wave Function Collapse and Dicke Superradiance,
Harry J. Lipkin,
arXiv:0910.5049, 2009. [Lipkin:2009ge]
Reply on "Comments on 'Time modulation of the K-shell electron capture decay rates of H-like heavy ions at GSI experiments'",
A. N. Ivanov, P. Kienle,
Phys. Rev. Lett. 104 (2010) 159202,arXiv:0909.1285.
[Ivanov:2009kt]
Comment on `Time modulation of the K-shell electron capture decay rates of H-like heavy ions at GSI experiments',
V.V. Flambaum,
Phys. Rev. Lett. 104 (2010) 159201,arXiv:0908.2039.
[Flambaum:2009di]
Can Hyperfine Excitation explain the Observed Oscillation- Puzzle of Nuclear Orbital Electron Capture of Hydrogen-like Ions?,
Nicolas Winckler et al.,
Phys. Rev. C84 (2011) 014301,arXiv:0907.2277.
[Winckler:2009jm]
Comment on 'Spin-rotation coupling in non-exponential decay of hydrogenlike heavy ions' by G. Lambiase et al,
Thomas Faestermann,
arXiv:0907.1557, 2009. [Faestermann:2009tj]
On the possible mixing of the electron capture and the positron emission channels in nuclear decay,
V. I. Isakov,
arXiv:0906.4219, 2009. [Isakov:2009yr]
On the influence of the magnetic field of the GSI experimental storage ring on the time-modulation of the EC- decay rates of the H-like mother ions,
M. Faber, A. N. Ivanov, P. Kienle, M. Pitschmann, N. I. Troitskaya,
J. Phys.G 37 (2010) 015102,arXiv:0906.3617.
[Faber:2009mg]
Theory of neutrino oscillations using condensed matter physics Including production process and energy-time uncertainty,
Harry J. Lipkin,
arXiv:0905.1216, 2009. [Lipkin:2009zy]
Can the 'Darmstadt oscillations' be treated as two closely spaced mass-eigenstates of the H-like mother ions ?,
M. Faber et al.,
arXiv:0811.0922, 2008. [Faber:2008yb]
Hyperfine Level Splitting for Hydrogen-Like Ions due to Rotation-Spin Coupling,
Igor M. Pavlichenkov,
Europhys. Lett. 85 (2009) 40008,arXiv:0810.2898.
[Pavlichenkov:2008tm]
Comments on 'Rates of processes with coherent production of different particles and the GSI time anomaly'by C. Giunti, Phys. Lett. B 665, 92 (2008), 0805.0431,
A. N. Ivanov, E. L. Kryshen, M. Pitschmann, P. Kienle,
arXiv:0807.2750, 2008. [Ivanov:2008zn]
Comment on the paper 'Search for oscillation of the electron-capture decay probability of $^{142}$Pm' at arXiv:0807.0649v1,
Yu. A. Litvinov et al.,
arXiv:0807.2308, 2008. [Litvinov:2008hf]
On the Time-Modulation of the $\beta^+$-Decay Rate of H-like ${^{140}}{\rm Pr}^{58+}$ Ion,
A. N. Ivanov, E. L. Kryshen, M. Pitschmann, P. Kienle,
Phys. Rev. Lett. 101 (2008) 182501,arXiv:0806.2543.
[Ivanov:2008ig]
Rates of Processes with Coherent Production of Different Particles and the GSI Time Anomaly,
Carlo Giunti,
Phys.Lett. B665 (2008) 92-94,arXiv:0805.0431.
[Giunti:2008im]
Oscillations in the GSI electron capture experiment,
H. Burkhardt, J. Lowe, G. J. Stephenson, Jr., T. Goldman, Bruce H. J. McKellar,
arXiv:0804.1099, 2008. [Burkhardt:2008ek]
Neutrino-Pulsating Vacuum and Neutrino Mass Difference,
H. Kleinert, P. Kienle,
Electron. J. Theor. Phys. 6 (2009) 107,arXiv:0803.2938.
[Kleinert:2008ps]
Reply on 'Comment on neutrino-mixing interpretation of the GSI time anomaly' by C. Giunti, arXiv:0801.4639 [nucl-th],
A. N. Ivanov, R. Reda, P. Kienle,
arXiv:0803.1289, 2008. [Ivanov:2008xw]
Kinematics and Quantum Field Theory of the Neutrino Oscillations Observed in the Time-modulated Orbital Electron Capture Decay in an Ion Storage Ring,
Manfried Faber,
arXiv:0801.3262, 2008. [Faber:2008tu]
On the time-modulation of the K-shell electron capture decay of H-like ${^{140}}{\rm Pr}^{58+}$ ions produced by neutrino-flavour mixing,
A. N. Ivanov, R. Reda, P. Kienle,
arXiv:0801.2121, 2008. [Ivanov:2008sd]
(Oscillating) non-exponential decays of unstable states,
Francesco Giacosa, Giuseppe Pagliara,
PoS BORMIO2012 (2012) 028,arXiv:1204.1896.
50th International Winter Meeting on Nuclear Physics, 23-27 January 2012, Bormio, Italy. [Giacosa:2012yd]
The GSI oscillation mystery,
Alexander Merle,
Prog. Part. Nucl. Phys. 64 (2010) 445-447,arXiv:1004.2347.
International School of Nuclear Physics, 31st Course, Neutrinos in Cosmology, in Astro-, Particle- and Nuclear Physics, Erice, Italy, 16 - 24 September 2009. [Merle:2010qq]
The GSI Time Anomaly: Facts and Fiction,
Carlo Giunti,
Il Nuovo Cimento 32 (2009) 83-90,arXiv:0905.4620.
La Thuile 2009, 1-7 March 2009, La Thuile, Italy. [Giunti:2009ds]
The GSI Time Anomaly: Facts and Fiction,
Carlo Giunti,
Nucl. Phys. Proc. Suppl. 188 (2009) 43-45,arXiv:0812.1887.
NOW 2008, 6-13 September 2008, Conca Specchiulla, Italy. [Giunti:2008db]
Neutrino Oscillations as a Probe of Macrorealism,
Kathrine Morch Groth, Johann Ioannou-Nikolaides, D. Jason Koskinen, Markus Ahlers,
arXiv:2504.05375, 2025. [Groth:2025gtf]
What KM3-230213A events may tell us about the neutrino mass and dark matter,
Basabendu Barman, Arindam Das, Prantik Sarmah,
Phys.Rev.D 112 (2025) 075014,arXiv:2504.01447.
[Barman:2025hoz]
The EPR paradox and quantum entanglement at sub-nucleonic scales,
Zhoudunming Tu, Dmitri Kharzeev, Thomas Ullrich,
Phys.Rev.Lett. 124 (2020) 062001,arXiv:1904.11974.
[Tu:2019ouv]
Testing Violation of the Leggett-Garg Inequality in Neutrino Oscillations of Daya Bay Experiment,
Qiang Fu, Xurong Chen,
Eur.Phys.J. C77 (2017) 775,arXiv:1705.08601.
[Fu:2017hky]
Testing Bell's Inequality with Cosmic Photons: Closing the Setting-Independence Loophole,
Jason Gallicchio, Andrew S. Friedman, David I. Kaiser,
Phys. Rev. Lett. 112 (2014) 110405,arXiv:1310.3288.
[Gallicchio:2013iva]
Testing the Bell Inequality at Experiments of High Energy Physics,
Xi-Qing Hao, Hong-Wei Ke, Yi-Bing Ding, Peng-Nian Shen, Xue-Qian Li,
Chin. Phys. C (HEP $\text{\&}$ NP) 34 (2010) 311-318,arXiv:0904.1000.
[Hao:2009kj]
Comments on 'An experimental test of non-local realism' by S. Groeblacher, T. Paterek, R. Kaltenbaek, C. Brukner, M. Zukowski, M. Aspelmeyer, and A. Zeilinger, Nature 446 (2007), 871-875,
Stephen Parrott,
arXiv:0707.3296, 2007. [0707.3296]
Bell inequality with an arbitrary number of settings and its applications,
Koji Nagata, Wieslaw Laskowski, Tomasz Paterek,
arXiv:quant-ph/0601107, 2006. [quant-ph/0601107]
70 - Phenomenology - Quantum Gravity and Cosmology
Neutrinos as possible probes for quantum gravity,
Marco Danilo Claudio Torri, Lino Miramonti,
Class.Quant.Grav. 41 (2024) 153001,arXiv:2404.04076.
[Torri:2024jwc]
Quantum Gravity Effects on Fermionic Dark Matter and Gravitational Waves,
Stephen F. King, Rishav Roshan, Xin Wang, Graham White, Masahito Yamazak,
JCAP 05 (2024) 071,arXiv:2311.12487.
[King:2023ztb]
Probing Quantum Gravity with Elastic Interactions of Ultra-High-Energy Neutrinos,
Alfonso Garcia Soto, Diksha Garg, Mary Hall Reno, Carlos A. Arguelles,
Phys.Rev.D 107 (2023) 033009,arXiv:2209.06282.
[GarciaSoto:2022vlw]
An entanglement-based test of quantum gravity using two massive particles,
Chiara Marletto, Vlatko Vedral,
Phys.Rev.Lett. 119 (2017) 240402,arXiv:1707.06036.
[Marletto:2017kzi]
Prospects for constraining quantum gravity dispersion with near term observations,
Giovanni Amelino-Camelia, Lee Smolin,
Phys. Rev. D80 (2009) 084017,arXiv:0906.3731.
[Amelino-Camelia:2009imt]
Exploration of Possible Quantum Gravity Effects with Neutrinos I: Decoherence in Neutrino Oscillations Experiments,
Alexander Sakharov, Nick Mavromatos, Anselmo Meregaglia, Andre Rubbia, Sarben Sarkar,
J. Phys. Conf. Ser. 171 (2009) 012038,arXiv:0903.4985.
DISCRETE'08, Valencia, Spain; December 2008. [Sakharov:2009rn]
Renninger's Thought Experiment: Implications for Quantum Ontology and for Quantum Mechanic's Interpretation,
W. De Baere,
arXiv:quant-ph/0504031, 2005. [quant-ph/0504031]
The conservation laws in the field theoretical representation of Dirac's theory,
Cornelius Lanczos,
Z. Phys. 57 (1929) 474,arXiv:physics/0508013.
[Lanczos:1929okc]
Dirac's wave mechanical theory of the electron and its field theoretical interpretation,
Cornelius Lanczos,
Phys. Z. 31 (1930) 120,arXiv:physics/0508009.
Lecture held at the meeting of the Berlin Physical Society, October 25, 1929. [Lanczos:1930dqj]
Understanding Heisenberg's 'Magical' Paper of July 1925: a New Look at the Calculational Details,
Ian J. R. Aitchison, David A. MacManus, Thomas M. Snyder,
arXiv:quant-ph/0404009, 2004. [quant-ph/0404009]
On the interpretation of quantum theory - from Copenhagen to the present day,
Claus Kiefer,
arXiv:quant-ph/0210152, 2002.Festschrift in honour of C.F. von Weizsaecker's 90th birthday. [quant-ph/0210152]
Bohr's Conception of the Quantum Mechanical State of a System and Its Role in the Framework of Complementarity,
Henry J. Folse,
arXiv:quant-ph/0210075, 2002.'Quantum Theory: Reconsideration of Foundations,' edited by A. Khrennikov. [quant-ph/0210075]
Majorana and the path-integral approach to Quantum Mechanics,
S. Esposito,
arXiv:physics/0603140, 2006.Centenary of the birth of Ettore Majorana. [Esposito:2006wf]
The Role of the Exclusion Principle for Atoms to Stars: A Historical Account,
Norbert Straumann,
arXiv:quant-ph/0403199, 2004.12th Workshop on Nuclear Astrophysics, March 22-27, 2004, Ringberg Castle, Germany. [quant-ph/0403199]
Copenhagen Computation: How I Learned to Stop Worrying and Love Bohr,
N. David Mermin,
arXiv:quant-ph/0305088, 2003.Charles H. Bennett 60th Birthday Symposium, 8-9 May, 2003. [quant-ph/0305088]
Einstein, Wigner, and Feynman: From E = mc^{2} to Feynman's decoherence via Wigner's little groups,
Y. S. Kim,
Acta Phys. Hung. A19 (2004) 317,arXiv:quant-ph/0304097.
Wigner Centennial Conference, Pecs, Hungary (July 2002). [Kim:2003mb]
Developing and evaluating a tutorial on the double-slit experiment,
Ryan Sayer, Alexandru Maries, Chandralekha Singh,
arXiv:1509.07740, 2015. [1509.07740]
The symmetry and simplicity of the laws of physics and the Higgs boson,
Juan Maldacena,
Eur. J. Phys. 37 (2016) 015802,arXiv:1410.6753.
[Maldacena:2014uaa]
Conceptual and Epistemological discussions on Quantum Mechanics in a Virtual Laboratory,
F. Ostermann, S.D. Prado,
Phys.Lett. B638 (2006) 153-159,arXiv:physics/0507064.
[Horowitz:2005zv]
Kindergarten Quantum Mechanics,
Bob Coecke,
arXiv:quant-ph/0510032, 2005.Quantum Information, Computation and Logic (Perimeter Institute), QTRF-III (Vaxjo), and Google (Silicon Valley) and Kestrel Institute (Silicon Valley). [quant-ph/0510032]
100 years of the quantum,
Max Tegmark, John Archibald Wheeler,
Sci. Am. 284 (2001) 68-75,arXiv:quant-ph/0101077.
An abbreviated version of this article, with much better graphic, was published in the February 2001 issue of Scientific American, p.68-75. [Tegmark:2001qh]
It is possible to perform a cross search between the various pages of Neutrino Unbound.
This is useful if you want to show the common elements that appear
in the listings of two (or more) different topics or experiments.