JUNO

(Jiangmen Uunderground Neutrino Observatory)

Other Web pages: INSPIRE, WikipediA

Filter this page

(Note: The process can take some time.)

EXPAND ALL
COMPRESS ALL

References

1 - Proposal

[1-1]
TAO Conceptual Design Report: A Precision Measurement of the Reactor Antineutrino Spectrum with Sub-percent Energy Resolution, A. Abusleme et al. (JUNO), arXiv:2005.08745, 2020.
[JUNO:2020ijm]

2 - Reviews

[2-1]
Sub-percent Precision Measurement of Neutrino Oscillation Parameters with JUNO, Angel Abusleme et al. (JUNO), arXiv:2204.13249, 2022.
[2204.13249]
[2-2]
JUNO Physics and Detector, Angel Abusleme et al. (JUNO), Prog.Part.Nucl.Phys. 123 (2022) 103927, arXiv:2104.02565.
[JUNO:2021vlw]
[2-3]
JUNO Conceptual Design Report, T. Adam et al. (JUNO), arXiv:1508.07166, 2015.
[JUNO:2015sjr]
[2-4]
Neutrino Physics with JUNO, Fengpeng An et al. (JUNO), J. Phys. G43 (2016) 030401, arXiv:1507.05613.
[JUNO:2015zny]

3 - Physics

[3-1]
JUNO sensitivity to $^7$Be, $pep$, and CNO solar neutrinos, Angel Abusleme et al., JCAP 10 (2023) 022, arXiv:2303.03910.
[JUNO:2023zty]
[3-2]
Measurements of the Lifetime of Orthopositronium in the LAB-Based Liquid Scintillator of JUNO, Mario Schwarz et al., Nucl.Instrum.Meth. A922 (2019) 64-70, arXiv:1804.09456.
[Schwarz:2018rxs]

4 - Detector

[4-1]
Performance of the Mass Testing Setup for Arrays of Silicon Photomultipliers in the TAO Experiment, A. Rybnikov et al., arXiv:2402.05487, 2024.
[Rybnikov:2024hog]
[4-2]
The Design and Technology Development of the JUNO Central Detector, JUNO, arXiv:2311.17314, 2023.
[JUNO:2023ete]
[4-3]
Pulse shape discrimination technique for diffuse supernova neutrino background search with JUNO, Jie Cheng, Xiao-Jie Luo, Gao-Song Li, Yu-Feng Li, Ze-Peng Li, Hao-Qi Lu, Liang-Jian Wen, Michael Wurm, Yi-Yu Zhang, arXiv:2311.16550, 2023.
[Cheng:2023zds]
[4-4]
Environmental radon control in the 700-m underground laboratory at JUNO, Chenyang Cui et al., Eur.Phys.J.C 84 (2024) 120, arXiv:2309.06039.
[Cui:2023fcd]
[4-5]
Analysis of Light Attenuation Length Measurement of a High Quality Linear Alkylbenzene for the JUNO Experiment, Guojun Yu, Jialiang Zhang, Shuo Li, Zifeng Xu, Lei Zhang, Aizhong Huang, Ming Qi, arXiv:2308.01949, 2023.
[Yu:2023bdp]
[4-6]
Dark Count of 20-inch PMTs Generated by Natural Radioactivity, Yu Zhang, Zhimin Wang, Min Li, Caimei Liu, Narongkiat Rodphai, Yongpeng Zhang, Jilei Xu, Changgen Yang, Yuekun Heng, arXiv:2307.15104, 2023.
[Zhang:2023dha]
[4-7]
The JUNO experiment Top Tracker, A. Abusleme et al. (JUNO), Nucl.Instrum.Meth.A 1057 (2023) 168680, arXiv:2303.05172.
[JUNO:2023cbw]
[4-8]
Implementation and performances of the IPbus protocol for the JUNO Large-PMT readout electronics, Riccardo Triozzi et al., Nucl.Instrum.Meth.A 1053 (2023) 168339, arXiv:2302.10133.
[Triozzi:2023zct]
[4-9]
Study on U/Th residual radioactivity in acrylic from surface treatment, Yuanxia Li et al., JINST 18 (2023) P05023, arXiv:2301.04902.
[Li:2023rae]
[4-10]
Mass testing of the JUNO experiment 20-inch PMTs readout electronics, Alberto Coppi et al., Nucl.Instrum.Meth.A 1052 (2023) 168255, arXiv:2301.04379.
[Coppi:2023nlv]
[4-11]
Developing a highly sensitive $^{222}$Rn concentration measurement system for the water Cherenkov detector of Jiangmen Underground Neutrino Observatory, Y.Liu, Y.P.Zhang, J.C. Liu, C.Guo, C.G.Yang. P.Zhang, Q.Tang, Z.F.Xu, C.Li, T.Y.Guan, S.B.Wang, arXiv:2301.00959, 2023.
[Liu:2023jxl]
[4-12]
Simulation Software of the JUNO Experiment, Tao Lin et al., Eur.Phys.J.C 83 (2023) 382, arXiv:2212.10741.
[Lin:2022htc]
[4-13]
Validation and integration tests of the JUNO 20-inch PMTs readout electronics, Vanessa Cerrone et al., Nucl.Instrum.Meth.A 1053 (2023) 168322, arXiv:2212.08454.
[Cerrone:2022dvp]
[4-14]
Data-driven simultaneous vertex and energy reconstruction for large liquid scintillator detectors, Gui-hong Huang, Wei Jiang, Liang-jian Wen, Yi-fang Wang, Wu-Ming Luo, Nucl.Sci.Tech. 34 (2023) 83, arXiv:2211.16768.
[Huang:2022zum]
[4-15]
Design of the PMT underwater cascade implosion protection system for JUNO, Miao He et al., JINST 18 (2023) P02013, arXiv:2209.08441.
[He:2022qzj]
[4-16]
Afterpulse measurement of JUNO 20-inch PMTs, Rong Zhao et al., Nucl.Sci.Tech. 34 (2023) 12, arXiv:2207.04995.
[Zhao:2022gks]
[4-17]
Study of 20-inch PMTs dark count generated large pulses, Yu Zhang, Zhimn Wang, Min Li, Yongpeng Zhang, Yaoguang Wang, Zhaoyuan Peng, Changgen Yang, Yuekun Heng, JINST 17 (2022) P10048, arXiv:2206.07456.
[Zhang:2022uey]
[4-18]
Detector optimization to reduce the cosmogenic neutron backgrounds in the TAO experiment, Ruhui Li, Guofu Cao, Jun Cao, Yichen Li, Yifang Wang, Zhimin Wang, Liang Zhan, JINST 17 (2022) P09024, arXiv:2206.01112.
[Li:2022wqc]
[4-19]
Mass Testing and Characterization of 20-inch PMTs for JUNO, Angel Abusleme et al., Eur.Phys.J.C 82 (2022) 1168, arXiv:2205.08629.
[JUNO:2022hlz]
[4-20]
Calibration Strategy of the JUNO-TAO Experiment, Hangkun Xu et al., Eur.Phys.J.C 82 (2022) 1112, arXiv:2204.03256.
[Xu:2022mdi]
[4-21]
A New Optical Model for Photomultiplier Tubes, Yaoguang Wang, Guofu Cao, Liangjian Wen, Yifang Wang, Eur.Phys.J.C 82 (2022) 329, arXiv:2204.02703.
[Wang:2022tij]
[4-22]
Study of the front-end signal for the 3-inch PMTs instrumentation in JUNO, Diru Wu, Jilei Xu, Miao He, Zhimin Wang, Ziliang Chu, Rad.Det.Tech.Meth. 6 (2022) 349-360, arXiv:2204.02612.
[Wu:2022kke]
[4-23]
Muon shower vertex reconstruction with waveform information in JUNO, Yongpeng Zhang, PoS NuFact2021 (2022) 182, arXiv:2203.00402.
[Zhang:2022vyd]
[4-24]
Reconstruction of Muon Bundle in the JUNO Central Detector, Cheng-Feng Yang, Yong-Bo Huang, Ji-Lei Xu, Di-Ru Wu, Hao-Qi Lu, Yong-Peng Zhang, Wu-Ming Luo, Miao He, Guo-Ming Chen, Si-Yuan Zhang, Nucl.Sci.Tech. 33 (2022) 59, arXiv:2201.11321.
[Yang:2022din]
[4-25]
Design of an Internet of Things - based multi-channel temperature monitoring system, Barbara Clerbaux, Daniel Gomez de Gracia, Pierre-Alexandre Petitjean, Yifan Yang, JINST 17 (2022) C04012, arXiv:2111.03891.
[Clerbaux:2021npt]
[4-26]
Development of water extraction system for liquid scintillatorpurification of JUNO, Jiaxuan Ye et al., Nucl.Instrum.Meth.A 1027 (2022) 166251, arXiv:2109.07317.
[Ye:2021jkp]
[4-27]
Radioactivity control strategy for the JUNO detector, Angel Abusleme et al. (JUNO), JHEP 11 (2021) 102, arXiv:2107.03669.
[JUNO:2021kxb]
[4-28]
The study of active geomagnetic shielding coils system for JUNO, G. Zhang et al., JINST 16 (2021) T10004, arXiv:2106.09998.
[Zhang:2021ikn]
[4-29]
The Design and Sensitivity of JUNO's scintillator radiopurity pre-detector OSIRIS, Angel Abusleme et al. (JUNO), Eur.Phys.J.C 81 (2021) 973, arXiv:2103.16900.
[JUNO:2021wzm]
[4-30]
Muon reconstruction with a convolutional neural network in the JUNO detector, Yan Liu, Weidong Li, Tao Lin, Wenxing Fang, Simon C. Blyth, Jilei Xu, Miao He, Kun Zhang, Rad.Det.Tech.Meth. 5 (2021) 364-372, arXiv:2103.11939.
[Liu:2021okf]
[4-31]
A container-based facility for testing 20'000 20-inch PMTs for JUNO, Bjorn Wonsak et al., JINST 16 (2021) T08001, arXiv:2103.10193.
[Wonsak:2021uum]
[4-32]
Construction and Simulation Bias Study of The Guide Tube Calibration System for JUNO, Yuhang Guo, Kangfu Zhu, Qingmin Zhang, Feiyang Zhang, Yue Meng, Jianglai Liu, Eryuan Qu, JINST 16 (2021) T07005, arXiv:2103.04602.
[Guo:2021ugw]
[4-33]
Mass production and characterization of 3-inch PMTs for the JUNO experiment, Chuanya Cao et al., Nucl.Instrum.Meth. A1005 (2021) 165347, arXiv:2102.11538.
[Cao:2021wrq]
[4-34]
Vertex and Energy Reconstruction in JUNO with Machine Learning Methods, Zhen Qian et al., Nucl.Instrum.Meth. A1010 (2021) 165527, arXiv:2101.04839.
[Qian:2021vnh]
[4-35]
Automatic test system of the back-end card for the JUNO experiment, Barbara Clerbaux, Shuang Hang, Pierre-Alexandre Petitjean, Peng Wang, Yifan Yang, IEEE Trans.Nucl.Sci. 68 (2021) 2121-2126, arXiv:2011.06823.
[Clerbaux:2020cmf]
[4-36]
A practical approach of high precision U and Th concentration measurement in acrylic, Chuanya Cao, Nan Li, Xiaoyu Yang, Jie Zhao, Yuanxia Li, Zhiyan Cai, Liangjian Wen, Xiaolan Luo, Yuekun Heng, Yayun Ding, Nucl.Instrum.Meth. A1004 (2021) 165377, arXiv:2011.06817.
[Cao:2020zyr]
[4-37]
Calibration Strategy of the JUNO Experiment, Angel Abusleme et al. (JUNO), JHEP 2103 (2021) 004, arXiv:2011.06405.
[JUNO:2020xtj]
[4-38]
The replacement system of the JUNO liquid scintillator pilot experiment at Daya Bay, Wenqi Yan et al., Nucl.Instrum.Meth. A996 (2021) 165109, arXiv:2011.05655.
[Yan:2020bmc]
[4-39]
Cable Loop Calibration System for Jiangmen Underground Neutrino Observatory, Yuanyuan Zhang, Jiaqi Hui, Jianglai Liu, Mengjiao Xiao, Tao Zhang, Feiyang Zhang, Yue Meng, Donglian Xu, Ziping Ye, Nucl.Instrum.Meth. A988 (2021) 164867, arXiv:2011.02183.
[Zhang:2020grf]
[4-40]
Particle Identification at MeV Energies in JUNO, Livia Ludhova, Henning Rebber, Bjorn Wonsaka, Yu Xu, JINST 16 (2021) P01016, arXiv:2007.02687.
[Rebber:2020xfi]
[4-41]
Optimization of the JUNO liquid scintillator composition using a Daya Bay antineutrino detector, A. Abusleme et al. (JUNO, Daya Bay), arXiv:2007.00314, 2020.
[1804525]
[4-42]
A semi-analytical energy response model for low-energy events in JUNO, Philipp Kampmann, Yaping Cheng, Livia Ludhova, JINST 15 (2020) P10007, arXiv:2006.03461.
[Kampmann:2020hto]
[4-43]
Embedded Readout Electronics R&D for the Large PMTs in the JUNO Experiment, M. Bellato et al., Nucl.Instrum.Meth. A985 (2021) 164600, arXiv:2003.08339.
[Bellato:2020lio]
[4-44]
Simulating the JUNO Neutrino Detectors, Srikanta Sinha, arXiv:2001.10211, 2020.
[Sinha:2020rka]
[4-45]
Capability of detecting low energy events in JUNO Central Detector, X. Fang, Y. Zhang, G.H. Gong, G.F. Cao, T. Lin, C.W. Yang, W.D. Li, JINST 15 (2020) P03020, arXiv:1912.01864.
[Fang:2019lej]
[4-46]
Developing the radium measurement system for JUNO's water Cherenkov detector, Lifei Xie, Jinchang Liu, Shoukang Qiu, Cong Guo, Quan Tang, Yongpeng Zhang, Peng Zhang, Changgen Yang, Nucl.Instrum.Meth. A976 (2020) 164266, arXiv:1906.06895.
[Xie:2019jpl]
[4-47]
Muon reconstruction with a geometrical model in JUNO, Christoph Genster, Michaela Schever, Livia Ludhova, Michael Soiron, Achim Stahl, Christopher Wiebusch, JINST 13 (2018) T03003, arXiv:1906.01912.
[Genster:2018caz]
[4-48]
Comparison on PMT Waveform Reconstructions with JUNO Prototype, H.Q. Zhang et al., JINST 14 (2019) T08002, arXiv:1905.03648.
[Zhang:2019rfl]
[4-49]
Design of Guide Tube Calibration System for JUNO Experiment, Yuhang Guo, Qingmin Zhang, Feiyang Zhang, Mengjiao Xiao, Jianglai Liu, Eryuan Qu, JINST 14 (2019) T09005, arXiv:1905.02077.
[Guo:2019fkf]
[4-50]
PMT choices for large detectors, Liang-Jian Wen, Miao He, Yi-Fang Wang, Jun Cao, Shu-Lin Liu, Yue-Kun Heng, Zhong-Hua Qin, Nucl.Instrum.Meth.A 947 (2019) 162766, arXiv:1903.12595.
[Wen:2019sik]
[4-51]
Distillation and stripping pilot plants for the JUNO neutrino detector: design, operations and reliability, P. Lombardi et al., Nucl.Instrum.Meth. A925 (2019) 6-17, arXiv:1902.05288.
[Lombardi:2019epz]
[4-52]
A method of detector and event visualization with Unity in JUNO, Jiang Zhu, Zhengyun You, Yumei Zhang, Ziyuan Li, Shu Zhang, Tao Lin, Weidong Li, JINST 14 (2019) T01007, arXiv:1812.05304.
[Zhu:2018mzu]
[4-53]
Laser Calibration System in JUNO, Yuanyuan Zhang, Jianglai Liu, Mengjiao Xiao, Feiyang Zhang, Tao Zhang, JINST 14 (2019) P01009, arXiv:1811.00354.
[Zhang:2018yso]
[4-54]
The water system and radon measurement system of Jiangmen Underground Neutrino Observatory, C.Guo, Y.P.Zhang, J.C.Liu, C.G.Yang, P.Zhang, arXiv:1806.11105, 2018.
[Guo:2018gwh]
[4-55]
Design of a common verification board for different back-end electronics options of the JUNO experiment, Yifan Yang, Barbara Clerbaux, arXiv:1806.09698, 2018.
[Yang:2018czo]
[4-56]
Muon Tracking with the fastest light in the JUNO Central Detector, Kun Zhang, Miao He, Weidong Li, Jilei Xu, Radiat.Detect.Technol.Methods 2 (2018) 13, arXiv:1803.10407.
[Zhang:2018kag]
[4-57]
A vertex reconstruction algorithm in the central detector of JUNO, Qin Liu, Miao He, Xuefeng Ding, Liangjian Wen, Weidong Li, Haiping Peng, JINST 13 (2018) T09005, arXiv:1803.09394.
[Liu:2018fpq]
[4-58]
Signal Optimization with HV divider of MCP-PMT for JUNO, Fengjiao Luo, Zhimin Wang, Zhonghua Qin, Yuekun Heng, Springer Proc.Phys. 213 (2018) 309-314, arXiv:1803.03746.
[Luo:2018ooj]
[4-59]
Event Display in the JUNO Experiment, Jiang Zhu, Zhengyun You, Yumei Zhang, J.Phys.Conf.Ser. 1085 (2018) 032038, arXiv:1803.01148.
[Zhu:2018vjj]
[4-60]
Light Absorption Properties of the High Quality Linear Alkylbenzene for the JUNO Experiment, De-Wen Cao et al., Nucl.Instrum.Meth. A927 (2019) 230-235, arXiv:1801.08363.
[Cao:2018ewo]
[4-61]
Quenching of fluorescence for linear alkylbenzene, Wentai Luo et al., arXiv:1801.04432, 2018.
[Luo:2018uer]
[4-62]
A ROOT Based Event Display Software for JUNO, Zhengyun You et al., JINST 13 (2018) T02002, arXiv:1712.07603.
[You:2017zfr]
[4-63]
Study on the large area MCP-PMT glass radioactivity reduction, Xuantong Zhang et al., Nucl.Instrum.Meth. A898 (2018) 67-71, arXiv:1710.09965.
[Zhang:2017ocm]
[4-64]
Light Attenuation Length of High Quality Linear Alkyl Benzene as Liquid Scintillator Solvent for the JUNO Experiment, Hai-Bo Yang et al., JINST 12 (2017) T11004, arXiv:1703.01867.
[Yang:2017ybj]
[4-65]
Design and Development of JUNO Event Data Model, Teng Li et al., Chin.Phys. C41 (2017) 066201, arXiv:1702.04100.
[Li:2017zku]
[4-66]
Discrimination in Liquid Scintillator and Its Usage to Suppress $^{8}$He/$^{9}$Li Backgrounds, Ya-Ping Cheng, Liang-Jian Wen, Peng Zhang, Xing-Zhong Cao, Chin.Phys. C41 (2017) 016101, arXiv:1605.00941.
[Cheng:2016ego]
[4-67]
PMT overshoot study for JUNO prototype detector, F. J. Luo et al., Chin.Phys. C40 (2016) 096002, arXiv:1602.06080.
[Luo:2016ddb]
[4-68]
Fast Muon Simulation in the JUNO Central Detector, Tao Lin et al., Chin.Phys. C40 (2016) 086201, arXiv:1602.00056.
[Lin:2016vua]
[4-69]
The efficiency study of different purification methods for liquid scintillator, Wei Hu et al., Chin.Phys. C40 (2016) 096202, arXiv:1601.02780.
[Hu:2016jwc]
[4-70]
Preliminary study of light yield dependence on LAB liquid scintillator composition, Xing-Chen Ye et al., Chin. Phys. C39 (2015) 096003, arXiv:1506.00237.
[Ye:2015ska]
[4-71]
Simulation of natural radioactivity backgrounds in the central detector, Xinying Li et al., Chin.Phys. C40 (2016) 026001, arXiv:1505.03215.
[Li:2015cqa]
[4-72]
Some new progress on the light absorption properties of linear alkyl benzene solvent, Guang-You Yu et al., Chin. Phys. C40 (2016) 016002, arXiv:1504.05444.
[Yu:2015kna]
[4-73]
Performance Research of New Large Area Dynode PMT with High Quantum Efficiency, Xiang-Cui Lei et al., Chin.Phys. C40 (2016) 026002, arXiv:1504.03174.
[Lei:2015lua]
[4-74]
Rayleigh scattering and depolarization ratio in linear alkylbenzene, Qian Liu et al., Nucl.Instrum.Meth. A795 (2015) 284-287, arXiv:1504.01001.
[Liu:2015hwa]
[4-75]
Rayleigh scattering of linear alkylbenzene in large liquid scintillator detectors, Xiang Zhou et al., Rev. Sci. Instrum. 86 (2015) 073310, arXiv:1504.00987.
[Zhou:2015gwa]
[4-76]
Measurement of the depolarization ratio of linear alkylbenzene for liquid scintillator neutrino detectors, Xiang Zhou et al., Eur. Phys. J. C75 (2015) 545, arXiv:1504.00986.
[Zhou:2015fwa]
[4-77]
A new type of RPC for the VETO of JUNO, B. Xie, Y. Wang, B. Guo, W. Zhu, Y. Li et al., JINST 9 (2014) C10005.
[Xie:2014pta]

5 - Background

[5-1]
Ambient Neutron Measurement at Taishan Antineutrino Observatory, Ruhui Li, Yichen Li, Zhimin Wang, Qiang Li, Liang Zhan, Jun Cao, arXiv:2209.02035, 2022.
[Li:2022cjw]
[5-2]
Neutral-current background induced by atmospheric neutrinos at large liquid-scintillator detectors:II. ${\it in}$ ${\it situ}$ measurement, Jie Cheng, Yu-Feng Li, Hao-Qi Lu, Liang-Jian Wen, Phys.Rev. D103 (2021) 053002, arXiv:2009.04085.
[Cheng:2020oko]
[5-3]
Neutral-current background induced by atmospheric neutrinos at large liquid-scintillator detectors: I. model predictions, Jie Cheng, Yu-Feng Li, Liang-Jian Wen, Shun Zhou, Phys.Rev. D103 (2021) 053001, arXiv:2008.04633.
[Cheng:2020aaw]

6 - Phenomenology

[6-1]
Real-time Monitoring for the Next Core-Collapse Supernova in JUNO, Angel Abusleme et al., JCAP 01 (2024) 057, arXiv:2309.07109.
[JUNO:2023dnp]
[6-2]
JUNO sensitivity to the annihilation of MeV dark matter in the galactic halo, Angel Abusleme et al. (JUNO), JCAP 09 (2023) 001, arXiv:2306.09567.
[JUNO:2023vyz]
[6-3]
JUNO Sensitivity on Proton Decay $p\to \bar\nu K^+$ Searches, Angel Abusleme et al. (JUNO), Chin.Phys.C 47 (2023) 113002, arXiv:2212.08502.
[JUNO:2022qgr]
[6-4]
Neutrino lines from MeV dark matter annihilation and decay in JUNO, Kensuke Akita, Gaetano Lambiase, Michiru Niibo, Masahide Yamaguchi, JCAP 10 (2022) 097, arXiv:2206.06755.
[Akita:2022lit]
[6-5]
Prospects for Detecting the Diffuse Supernova Neutrino Background with JUNO, Angel Abusleme et al. (JUNO), JCAP 10 (2022) 033, arXiv:2205.08830.
[JUNO:2022lpc]
[6-6]
Damping signatures at JUNO, a medium-baseline reactor neutrino oscillation experiment, Jun Wang et al. (JUNO), JHEP 06 (2022) 062, arXiv:2112.14450.
[JUNO:2021ydg]
[6-7]
Short-baseline oscillation scenarios at JUNO and TAO, V.S. Basto-Gonzalez, D.V. Forero, C. Giunti, A.A. Quiroga, C.A. Ternes, Phys.Rev.D 105 (2022) 075023, arXiv:2112.00379.
[Basto-Gonzalez:2021aus]
[6-8]
Large Energy Singles at JUNO from Atmospheric Neutrinos and Dark Matter, Bhavesh Chauhan, Basudeb Dasgupta, Amol Dighe, Phys.Rev.D 105 (2022) 095035, arXiv:2111.14586.
[Chauhan:2021fzu]
[6-9]
Combined sensitivity of JUNO and KM3NeT/ORCA to the neutrino mass ordering, S. Aiello et al. (KM3NeT, JUNO), JHEP 03 (2022) 055, arXiv:2108.06293.
[KM3NeT:2021rkn]
[6-10]
Measuring low energy atmospheric neutrino spectra with the JUNO detector, Angel Abusleme et al. (JUNO), arXiv:2103.09908, 2021.
[1852261]
[6-11]
Feasibility and physics potential of detecting $^8$B solar neutrinos at JUNO, Angel Abusleme et al. (JUNO), Chin.Phys. C45 (2021) 023004, arXiv:2006.11760.
[JUNO:2020hqc]
[6-12]
JULOC: A Local 3-D Refined Crust Model for the Geoneutrino Measurement at JUNO, Ruohan Gao, Zhiwei Li, Ran Han, Andong Wang, Yu-Feng Li, Yufei Xi, Jingao Liu, Xin Mao, Yao Sun, Ya Xu, Physics of the Earth and Planetary Interiors 299 (2020) 106409, arXiv:1903.11871.
[Gao:2019pvi]
[6-13]
Explore nuclearites in a large liquid scintillator neutrino detector, Wan-Lei Guo, Cheng-Jun Xia, Tao Lin, Zhi-Min Wang, Phys. Rev. D95 (2017) 015010, arXiv:1611.00166.
[Guo:2016kyj]
[6-14]
Physics potential of searching for $0\nu\beta\beta$ decays in JUNO, Jie Zhao, Liang-Jian Wen, Yi-Fang Wang, Jun Cao, Chin.Phys. C41 (2017) 053001, arXiv:1610.07143.
[Zhao:2016brs]
[6-15]
Detecting electron neutrinos from solar dark matter annihilation by JUNO, Wan-Lei Guo, JCAP 1601 (2016) 039, arXiv:1511.04888.
[Guo:2015hsy]
[6-16]
Potential of Geo-neutrino Measurements at JUNO, Ran Han, Yu-Feng Li, Liang Zhan, William F McDonough, Jun Cao, Chin. Phys. C40 (2016) 033003, arXiv:1510.01523.
[Han:2015roa]

7 - Phenomenology - Talks

[7-1]
Latest results from Daya Bay using the full dataset, Zhiyuan Chen, arXiv:2309.05989, 2023.
[Chen:2023rkb]
[7-2]
Solar, supernova, atmospheric and geo neutrino studies using JUNO detector, Wan-lei Guo, Ran Han, Yufeng Li, Giuseppe Salamanna, PoS ICHEP2016 (2017) 1239, arXiv:1610.09508. ICHEP 2016.
[Salamanna:2016zmq]

8 - Talks

[8-1]
The use of Boosted Decision Trees for Energy Reconstruction in JUNO experiment, Arsenii Gavrikov, Fedor Ratnikov, EPJ Web Conf. 251 (2021) 03014, arXiv:2106.02907. 25th International Conference on Computing in High Energy and Nuclear Physics.
[Gavrikov:2021ktt]
[8-2]
Study of using machine learning for level 1 trigger decision in JUNO experiment, Barbara Clerbaux, Pierre-Alexandre Petitjean, Yu Xu, Yifan Yang, IEEE Trans.Nucl.Sci. 68 (2021) 2187-2193, arXiv:2011.08847.
[Clerbaux:2020ttg]
[8-3]
Design and Status of JUNO, Hans Theodor Josef Steiger (JUNO), J.Phys.Conf.Ser. 1468 (2020) 012187, arXiv:1912.02038.
[Steiger:2019khq]
[8-4]
Atmospheric neutrino spectrum reconstruction with JUNO, G. Settanta, S. M. Mari, C. Martellini, P. Montini, PoS EPS-HEP2019 (2020) 041, arXiv:1910.11172. 2019 EPS-HEP.
[Settanta:2019ecp]
[8-5]
Status of the Jiangmen Underground Neutrino Observatory, Cong Guo (JUNO), arXiv:1910.10343, 2019.
[Guo:2019vuk]
[8-6]
e-\mu Discrimination at High Energy in the JUNO Detector, Giulio Settanta, Stefano Maria Mari, Cristina Martellini, Paolo Montini, EPJ Web Conf. 209 (2019) 01011, arXiv:1901.10340. 7th Roma International Conference on AstroParticle Physics.
[Settanta:2019lxh]
[8-7]
Solar neutrinos with the JUNO experiment, Giuseppe Salamanna, arXiv:1809.03821, 2018. 5th International Solar Neutrino Conference Dresden, Germany, June 11-14, 2018.
[Salamanna:2018mbz]
[8-8]
Status and perspectives of the JUNO experiment, Agnese Giaz, arXiv:1804.03575, 2018. NuPhys2017 (London, 20-22 December 2017).
[Giaz:2018gdd]
[8-9]
Status and physics potential of the JUNO experiment, Giuseppe Salamanna (JUNO), arXiv:1801.05580, 2018. 18th Lomonosov Conference on Elementary Particle Physics, Moscow (Russia), 24-30 August, 2017.
[Salamanna:2018pal]
[8-10]
Status and potentialities of the JUNO experiment, V. Antonelli, L. Miramonti (JUNO), PoS NEUTEL2017 (2018) 056, arXiv:1710.07401. XVII International Workshop on Neutrino Telescopes (Venice, 13-17 March 2017).
[Antonelli:2017uhq]
[8-11]
Parallelized JUNO simulation software based on SNiPER, Tao Lin et al. (JUNO), J.Phys.Conf.Ser. 1085 (2018) 032048, arXiv:1710.07150. 18th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2017).
[Lin:2017yxy]
[8-12]
Double Calorimetry System in JUNO, Miao He et al. (JUNO), arXiv:1706.08761, 2017. TIPP 2017.
[He:2017dhc]
[8-13]
Large photocathode 20-inch PMT testing methods for the JUNO experiment, N. Anfimov, JINST 12 (2017) C06017, arXiv:1705.05012. The International Conference 'Instrumentation for Colliding Beam Physics' (INSTR-17).
[Anfimov:2017bsm]
[8-14]
The Application of SNiPER to the JUNO Simulation, Tao Lin et al. (JUNO), J.Phys.Conf.Ser. 898 (2017) 042029, arXiv:1702.05275. 22nd International Conference on Computing in High Energy and Nuclear Physics (CHEP 2016).
[Lin:2017usg]
[8-15]
The Jiangmen Underground Neutrino Observatory, Marco Grassi, PoS HQL2016 (2017) 073, arXiv:1609.01638. Conference on Heavy Quarks and Leptons 2016.
[Grassi:2016mwj]
[8-16]
Jiangmen Underground Neutrino Observatory: Status and Prospectives, Yu-Feng Li (JUNO), arXiv:1606.04743, 2016. 17th Lomonosov Conference on Elementary Particle Physics.
[Li:2016ozg]
[8-17]
JUNO: a General Purpose Experiment for Neutrino Physics, Marco Grassi (JUNO), PoS LeptonPhoton2015 (2016) 097, arXiv:1605.09118. 27th International Symposium on Lepton Photon Interactions at High Energies.
[Grassi:2016glo]
[8-18]
Neutrino mass hierarchy determination at reactor antineutrino experiments, Guang Yang, arXiv:1509.08747, 2015. CIPANP2015.
[Yang:2015qza]
[8-19]
JUNO: A Next Generation Reactor Antineutrino Experiment, Liang Zhan, Nucl.Part.Phys.Proc. 273-275 (2016) 1825-1829, arXiv:1506.01152. ICHEP 2014.
[Zhan:2015bha]
[8-20]
Jiangmen Underground Neutrino Observatory, Miao He (JUNO), Nucl. Part. Phys. Proc. 265-266 (2015) 111-113, arXiv:1412.4195. NOW 2014.
[He:2014zwa]
[8-21]
Overview of the Jiangmen Underground Neutrino Observatory (JUNO), Yu-Feng Li, Int.J.Mod.Phys.Conf.Ser. 31 (2014) 1460300, arXiv:1402.6143.
[Li:2014qca]
[8-22]
JUNO: A Multi-Purpose LS-based Experiment, Yifang Wang, PoS Neutel2013 (2013) 030.
[Wang:2013yux]

Search Neutrino Unbound

Cross search NU

It is possible to perform a cross search between the various pages of Neutrino Unbound.
This is useful if you want to show the common elements that appear in the listings of two (or more) different topics or experiments.

Go to the search form.

[Go to ...]

Neutrino Unbound Home

Authors:
Stefano Gariazzo / gariazzo@to.infn.it
Carlo Giunti / giunti@to.infn.it
Marco Laveder / marco.laveder@pd.infn.it
Last Update: Wed 21 Feb 2024, 20:22:25 CET