(Karlsruhe Tritium Neutrino)

Other Web pages: INSPIRE

Filter this page

(Note: The process can take some time.)



1 - Reviews

KATRIN: Status and Prospects for the Neutrino Mass and Beyond, M. Aker et al., J.Phys.G 49 (2022) 100501, arXiv:2203.08059.
The Design, Construction, and Commissioning of the KATRIN Experiment, M. Aker et al., JINST 16 (2021) T08015, arXiv:2103.04755.

2 - Neutrino Mass

Search for keV-scale Sterile Neutrinos with first KATRIN Data, M. Aker et al., Eur.Phys.J.C 83 (2023) 763, arXiv:2207.06337.
Improved eV-scale Sterile-Neutrino Constraints from the Second KATRIN Measurement Campaign, M. Aker et al. (KATRIN), Phys.Rev.D 105 (2022) 072004, arXiv:2201.11593.
First direct neutrino-mass measurement with sub-eV sensitivity, M. Aker et al. (KATRIN), Nature Phys. 18 (2022) 160-166, arXiv:2105.08533.
Analysis methods for the first KATRIN neutrino-mass measurement, M. Aker et al. (KATRIN), Phys.Rev.D 104 (2021) 012005, arXiv:2101.05253.
Bound on 3+1 active-sterile neutrino mixing from the first four-week science run of KATRIN, M. Aker et al. (KATRIN), Phys.Rev.Lett. 126 (2021) 091803, arXiv:2011.05087.
An improved upper limit on the neutrino mass from a direct kinematic method by KATRIN, M. Aker et al. (KATRIN), Phys.Rev.Lett. 123 (2019) 221802, arXiv:1909.06048.

3 - Relic Neutrinos

New Constraint on the Local Relic Neutrino Background Overdensity with the First KATRIN Data Runs, M. Aker et al. (KATRIN), Phys.Rev.Lett. 129 (2022) 011806, arXiv:2202.04587.

4 - Physics

Search for Lorentz-Invariance Violation with the first KATRIN data, M. Aker et al. (KATRIN), Phys.Rev.D 107 (2023) 082005, arXiv:2207.06326.

5 - Source

Improved treatment of the $T_2$ molecular final-states uncertainties for the KATRIN neutrino-mass measurement, S. Schneidewind, J. Schurmann, A. Lokhov, C. Weinheimer, A. Saenz, arXiv:2310.12634, 2023.
Neutral tritium gas reduction in the KATRIN differential pumping sections, Alexander Marsteller et al., Vacuum 184 (2021) 109979, arXiv:2009.10403.
Time dependent simulation of the flow reduction of D$_2$ and T$_2$ in the KATRIN experiment, F. Friedel et al., Vacuum 159 (2019) 161-172, arXiv:1807.10126.
Modelling of gas dynamical properties of the KATRIN tritium source and implications for the neutrino mass measurement, L. Kuckert et al., Vacuum 158 (2018) 195-205, arXiv:1805.05313.
First transmission of electrons and ions through the KATRIN beamline, M. Arenz et al., JINST 13 (2018) P04020, arXiv:1802.04167.
A pulsed, mono-energetic and angular-selective UV photo-electron source for the commissioning of the KATRIN experiment, J. Behrens et al., Eur.Phys.J. C77 (2017) 410, arXiv:1703.05272.
Deconvolution of the energy loss function of the KATRIN experiment, Volker Hannen, Irina Heese, Anna Sejersen Riis, Kathrin Valerius, Christian Weinheimer, Astropart.Phys. 89 (2017) 30-38, arXiv:1701.08066.
A broad-Band FT-ICR Penning TRap System for KATRIN, M. Ubieto-Diaz et al., Int.J.Mass Spectrometry 288 (2009) 1, arXiv:0907.3458.
Test of potential homogeneity in the KATRIN gaseous tritium source, M. Rysavy, arXiv:hep-ph/0506012, 2005.

6 - Detector

Operation Modes of the KATRIN Experiment Tritium Loop System using $^{83\mathrm{m}}$Kr, Alexander Marsteller et al., JINST 17 (2022) P12010, arXiv:2209.13926.
Wideband precision stabilization of the -18.6 kV retarding voltage for the KATRIN spectrometer, C. Rodenbeck, S. Wustling, S. Enomoto, J. Hartmann, O. Rest, T. Thummler, C. Weinheimer, JINST 17 (2022) P06003, arXiv:2203.13153.
Background reduction at the KATRIN experiment by the shifted analysing plane configuration, Alexey Lokhov et al., Eur.Phys.J.C 82 (2022) 258, arXiv:2201.11743.
Fast and precise model calculation for KATRIN using a neural network, Christian Karl, Philipp Eller, Susanne Mertens, Eur.Phys.J.C 82 (2022) 439, arXiv:2201.04523.
Monte Carlo simulations of the electron-gas interactions in the KATRIN experiment, Jonas Kellerer, Felix Spanier, arXiv:2112.15455, 2021.
TRISTAN: A novel detector for searching keV-sterile neutrinos at the KATRIN experiment, Korbinian Urban et al., JINST 17 (2022) C09020, arXiv:2111.14161.
Precision measurement of the electron energy-loss function in tritium and deuterium gas for the KATRIN experiment, M. Aker et al., Eur.Phys.J.C 81 (2021) 579, arXiv:2105.06930.
Forward Beam Monitor for the KATRIN experiment, A. Beglarian, E. Ellinger, N. Hausmann, K. Helbing, S. Hickford, U. Naumann, H.-W. Ortjohann, M. Steidl, J. Wolf, S. Wustling, JINST 17 (2022) T03002, arXiv:2101.11495.
KATRIN background due to surface radioimpurities, F.M. Frankle et al., Astropart.Phys. 138 (2022) 102686, arXiv:2011.05107.
Characterization of Silicon Drift Detectors with Electrons for the TRISTAN Project, T. Brunst et al., J.Phys. G48 (2021) 015008, arXiv:2007.07136.
Suppression of Penning discharges between the KATRIN spectrometers, M. Aker et al., Eur.Phys.J. C80 (2020) 821, arXiv:1911.09633.
First operation of the KATRIN experiment with tritium, M. Aker et al., Eur.Phys.J. C80 (2020) 264, arXiv:1909.06069.
High-resolution spectroscopy of gaseous $^\mathrm{83m}$Kr conversion electrons with the KATRIN experiment, K. Altenmuller et al., J.Phys. G47 (2020) 065002, arXiv:1903.06452.
Gamma-induced background in the KATRIN main spectrometer, K. Altenmuller et al., Eur.Phys.J. C79 (2019) 807, arXiv:1903.00563.
A novel detector system for KATRIN to search for keV-scale sterile neutrinos, Susanne Mertens et al., J.Phys. G46 (2019) 065203, arXiv:1810.06711.
Impact of a cryogenic baffle system on the suppression of radon-induced background in the KATRIN Pre-Spectrometer, S. Goerhardt et al., JINST 13 (2018) T10004, arXiv:1808.09168.
The KATRIN Superconducting Magnets: Overview and First Performance Results, M. Arenz et al., JINST 13 (2018) T08005, arXiv:1806.08312.
$\beta$-Decay Spectrum, Response Function and Statistical Model for Neutrino Mass Measurements with the KATRIN Experiment, M. Kleesiek et al., Eur.Phys.J. C79 (2019) 204, arXiv:1806.00369.
Technical design and commissioning of the sensor net for fine meshed measuring of magnetic field at KATRIN Spectrometer, J. Letnev et al., JINST 13 (2018) T08010, arXiv:1805.10819.
Reduction of stored-particle background by a magnetic pulse method at the KATRIN experiment, M. Arenz et al. (KATRIN), Eur.Phys.J. C78 (2018) 778, arXiv:1805.01163.
Calibration of high voltages at the ppm level by the difference of $^{83\mathrm{m}}$Kr conversion electron lines at the KATRIN experiment, M. Arenz et al., Eur.Phys.J. C78 (2018) 368, arXiv:1802.05227.
Technical design and commissioning of the KATRIN large-volume air coil system, M. Erhard et al., JINST 13 (2018) P02003, arXiv:1712.01078.
Commissioning of the vacuum system of the KATRIN Main Spectrometer, M. Arenz et al., JINST 11 (2016) P04011, arXiv:1603.01014.
An angular-selective electron source for the KATRIN experiment, M. Beck et al., JINST 9 (2014) P11020, arXiv:1411.0138.
Focal-plane detector system for the KATRIN experiment, J. F. Amsbaugh et al., Nucl.Instrum.Meth. A778 (2015) 40-60, arXiv:1404.2925.
Next generation KATRIN high precision voltage divider for voltages up to 65kV, S. Bauer et al., JINST 8 (2013) P10026, arXiv:1309.4955.
Neutrino mass sensitivity by MAC-E-Filter based time-of-flight spectroscopy with the example of KATRIN, Nicholas Steinbrink et al., New J. Phys. 15 (2013) 113020, arXiv:1308.0532.
Electromagnetic design of the KATRIN large-volume air coil system, Ferenc Gluck et al., New J. Phys. 15 (2013) 083025, arXiv:1304.6569.
Ultra-stable implanted 83Rb/83mKr electron sources for the energy scale monitoring in the KATRIN experiment, M. Zboril et al., JINST 8 (2013) P03009, arXiv:1212.5016.
Monitoring of tritium purity during long-term circulation in the KATRIN test experiment LOOPINO using laser Raman spectroscopy, Sebastian Fischer et al., arXiv:1208.1605, 2012.
A mobile Magnetic Sensor Unit for the KATRIN Main Spectrometer, A. Osipowicz et al., JINST 1207 (2012) T06002, arXiv:1207.3926.
Monitoring of the properties of the KATRIN Windowless Gaseous Tritium Source, M. Babutzka et al., New J. Phys. 14 (2012) 103046, arXiv:1205.5421.
Stochastic Heating by ECR as a Novel Means of Background Reduction in the KATRIN Spectrometers, S. Mertens et al., JINST 7 (2012) P08025, arXiv:1205.3729.
Background due to stored electrons following nuclear decays in the KATRIN spectrometers and its impact on the neutrino mass sensitivity, S. Mertens et al., Astropart. Phys. 41 (2013) 52-62, arXiv:1204.6213.
The KATRIN Pre-Spectrometer at reduced Filter Energy, M. Prall et al., New J. Phys. 14 (2012) 073054, arXiv:1203.2444.
Performance of a TiN-coated monolithic silicon pin-diode array under mechanical stress, B. A. VanDevender et al., Nucl.Instrum.Meth. A673 (2012) 46-50, arXiv:1202.0320.

7 - Proposal

KATRIN design report 2004, J. Angrik et al. (KATRIN), 2005. http://bibliothek.fzk.de/zb/berichte/FZKA7090.pdf.
KATRIN: A next generation tritium beta decay experiment with sub-eV sensitivity for the electron neutrino mass, A. Osipowicz et al. (KATRIN), arXiv:hep-ex/0109033, 2001.

8 - Talks

Hunting keV sterile neutrinos with KATRIN: building the first TRISTAN module, Thibaut Houdy et al., J.Phys.Conf.Ser. 1468 (2020) 012177, arXiv:2004.07693.
Characterization of the Detector Response to Electrons of Silicon Drift Detectors for the TRISTAN Project, Manuel Lebert, Tim Brunst, Thibaut Houdy, Susanne Mertens, Daniel Siegmann, arXiv:2003.04756, 2020. VIII International Pontecorvo Neutrino Physics School.
Status of the KATRIN neutrino mass experiment, Yung-Ruey Yen (KATRIN), arXiv:1906.10168, 2019.
The KATRIN Neutrino Mass Measurement: Experiment, Status, and Outlook, Gregg B. Franklin (KATRIN), arXiv:1809.10603, 2018. CIPANP2018.
Detector Development for a Sterile Neutrino Search with the KATRIN Experiment, Tim Brunst et al. (KATRIN), arXiv:1801.08182, 2018. 7th International Pontecorvo Neutrino Physics School.
KATRIN, G. Drexlin, 2016. NOW 2016, 4-11 September 2016, Otranto, Lecce, Italy. http://www.ba.infn.it/~now/now2016/assets/2_katrin-2016--now-otranto-gd.pdf.
Status of the neutrino mass experiments KATRIN and Project 8, Florian Fraenkle (KATRIN), PoS EPS-HEP2015 (2015) 084. 2015 European Physical Society Conference on High Energy Physics (EPS-HEP 2015).
Absolute neutrino masses, S. Mertens, 2015. TAUP 2015, 7-11 September 2015, Torino, Italy. http://www.taup-conference.to.infn.it/2015/day3/plenary/mertens.pdf.
Status of the KATRIN Experiment and Prospects to Search for keV-mass Sterile Neutrinos in Tritium $\beta$-decay, Susanne Mertens (KATRIN), Phys.Procedia 61 (2015) 267-273.
Status of the Karlsruhe Tritium Neutrino Experiment KATRIN, Kathrin Valerius (KATRIN), 2014.
KATRIN: an experiment to determine the neutrino mass from the beta decay of tritium, R. G. Hamish Robertson (KATRIN), arXiv:1307.5486, 2013. 2013 Snowmass.
The KATRIN Experiment: Status and Outlook, D.S. Parno (KATRIN), arXiv:1307.5289, 2013. Sixth Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, June 17-21, 2013.
$T_{2}$-beta-spectroscopy at KATRIN and the challenge of controlling the electrostatic potentials, Ernst Otten (KATRIN), Nucl. Phys. Proc. Suppl. 237-238 (2013) 57-60. Neutrino Oscillation Workshop (NOW 2012).
Accuracy of the Laser Raman system for KATRIN, M. Schlosser, S. Fischer, M. Hotzel, W. Kafer (KATRIN), arXiv:1203.4099, 2012. International School of Physics 'E. Fermi', Neutrino Physics and Astrophysics, Varenna 2011.
The KATRIN neutrino mass experiment, Joachim Wolf (KATRIN), 2012. NPB 2012, International Symposium on Neutrino Physics and Beyond, 23-26 September 2012, Shenzhen, China. http://indico.ihep.ac.cn/getFile.py/access?contribId=65&sessionId=9&resId=0&materialId=1&confId=2607.
Status of the KATRIN experiment with special emphasis on source-related issues, Michael Sturm (KATRIN), arXiv:1111.4773, 2011. PIC 2011, Vancouver, August/September 2011.
KATRIN: an experiment to determine the neutrino mass, F.M. Fraenkle (KATRIN), arXiv:1110.0087, 2011. DPF-2011 Conference, Providence, RI, August 8-13, 2011.
Introduction to direct neutrino mass measurements and KATRIN, Thomas Thummler (KATRIN), Nucl. Phys. Proc. Suppl. 229-232 (2012) 146-151, arXiv:1012.2282. XXIV International Conference on Neutrino Physics and Astrophysics, Neutrino 2010.
The KATRIN Experiment, Marucs Beck (KATRIN), J. Phys. Conf. Ser. 203 (2010) 012097, arXiv:0910.4862. TAUP 2009.
The KATRIN Neutrino Mass Experiment, J. Wolf, for the KATRIN collaboration (KATRIN), Nucl. Instrum. Meth. A623 (2010) 442-444, arXiv:0810.3281. ICHEP2008.
KATRIN: an experiment to measure the neutrino mass, R. G. H. Robertson (KATRIN), J. Phys. Conf. Ser. 120 (2008) 052028, arXiv:0712.3893. TAUP 2007.
Katrin - Direct Measurement of Neutrino Masses in the Sub-Ev Region, Lutz Bornschein et al. (KATRIN), eConf C030626 (2003) FRAP14, arXiv:hep-ex/0309007. XIII Physics in Collision Conference(PIC03), Zeuthen, Germany, June 2003.
The search for the neutrino mass by direct method in the tritium beta-decay and perspectives of study it in the project KATRIN, V. M. Lobashev (KATRIN), Nucl. Phys. A719 (2003) C153-C160. 17th International Nuclear Physics Divisional Conference: Europhysics Conference on Nuclear Physics in Astrophysics (NPDC 17), Debrecen, Hungary, 30 Sep - 3 Oct 2002.

Search Neutrino Unbound

Cross search NU

It is possible to perform a cross search between the various pages of Neutrino Unbound.
This is useful if you want to show the common elements that appear in the listings of two (or more) different topics or experiments.

Go to the search form.

[Go to ...]

Neutrino Unbound Home

Stefano Gariazzo / gariazzo@to.infn.it
Carlo Giunti / giunti@to.infn.it
Marco Laveder / marco.laveder@pd.infn.it
Last Update: Fri 1 Dec 2023, 15:43:26 CET