(KAMioka Liquid scintillator Anti-Neutrino Detector)

Other Web pages: LBL, Hawaii, Stanford, INSPIRE

Filter this page

(Note: The process can take some time.)



1 - Reviews

Antineutrino Science in KamLAND, Atsuto Suzuki, Eur.Phys.J. C74 (2014) 3094, arXiv:1409.4515.

2 - Habilitation, PhD and Master Theses

Measurement of neutrino oscillation with KamLAND, Jason A. Detwiler, 2005. UMI-31-62394. http://kamland.stanford.edu/TalksAndPublications/DetwilerThesis.pdf.

3 - Neutrino Oscillations

Reactor On-Off Antineutrino Measurement with KamLAND, A. Gando et al. (KamLAND), Phys. Rev. D88 (2013) 033001, arXiv:1303.4667.
Enhanced Constraints on $\theta_{13}$ from A Three-Flavor Oscillation Analysis of Reactor Antineutrinos at KamLAND, A. Gando et al. (KamLAND), Phys. Rev. D83 (2011) 052002, arXiv:1009.4771.
Precision Measurement of Neutrino Oscillation Parameters with KamLAND, S. Abe et al. (KamLAND), Phys. Rev. Lett. 100 (2008) 221803, arXiv:0801.4589.
From the abstract: Combining with solar neutrino data, we obtain $ \Delta m^{2}_{21} = 7.59^{+0.21}_{-0.21} \times 10^{-5} \, \text{eV}^{2} $ and $ \tan^2 \vartheta_{12} = 0.47^{+0.06}_{-0.05} $.
From the article: The spectrum indicates almost two cycles of the periodic feature expected from neutrino oscillation.
Measurement of Neutrino Oscillation with KamLAND: Evidence of Spectral Distortion, T. Araki et al. (KamLAND), Phys. Rev. Lett. 94 (2005) 081801, arXiv:hep-ex/0406035.
First Results from KamLAND: Evidence for Reactor Anti-Neutrino Disappearance, K. Eguchi et al. (KamLAND), Phys. Rev. Lett. 90 (2003) 021802, arXiv:hep-ex/0212021.
From the abstract: In an exposure of 162 ton$\cdot$yr (145.1 days) the ratio of the number of observed inverse $\beta$-decay events to the expected number of events without disappearance is $0.611\pm 0.085 {\rm (stat)} \pm 0.041 {\rm (syst)} $ for $\bar{\nu}_e$ energies $>$ 3.4 MeV. The deficit of events is inconsistent with the expected rate for standard $\bar{\nu}_e$ propagation at the 99.95% confidence level. In the context of two-flavor neutrino oscillations with CPT invariance, these results exclude all oscillation solutions but the 'Large Mixing Angle' solution to the solar neutrino problem using reactor $\bar{\nu}_e$ sources.

4 - Solar Neutrinos

Search for Solar Flare Neutrinos with the KamLAND detector, S. Abe et al. (KamLAND), Astrophys.J. 924 (2022) 103, arXiv:2105.02458.
7Be Solar Neutrino Measurement with KamLAND, A. Gando et al. (KamLAND), Phys.Rev. C92 (2015) 055808, arXiv:1405.6190.
Measurement of the 8B Solar Neutrino Flux with KamLAND, S. Abe et al. (KamLAND), Phys. Rev. C84 (2011) 035804, arXiv:1106.0861.
A High Sensitivity Search for $\bar{\nu}_{e}$'s from the Sun and Other Sources at KamLAND, K. Eguchi et al. (KamLAND), Phys. Rev. Lett. 92 (2004) 071301, arXiv:hep-ex/0310047.
From the abstract: Data corresponding to a KamLAND detector exposure of 0.28 kton-year has been used to search for $\bar{\nu}_e$'s in the energy range $ 8.3 \, \text{MeV} < E_{\bar{\nu}_e} < 14.8 \, \text{MeV}$. No candidates were found for an expected background of $1.1{\pm}0.4$ events. This result can be used to obtain a limit on $\bar{\nu}_{e}$ fluxes of any origin. Assuming that all $\bar{\nu}_e$ flux has its origin in the Sun and has the characteristic $^8\text{B}$ solar $\nu_e$ energy spectrum, we obtain an upper limit of $ 3.7 \times 10^2 \, \text{cm}^{-2} \, \text{s}^{-1} $ (90\% C.L.) on the $\bar{\nu}_e$ flux. We interpret this limit, corresponding to $2.8{\times}10^{-4}$ of the Standard Solar Model $^8\text{B}$ $\nu_e$ flux, in the framework of spin-flavor precession and neutrino decay models.

5 - Geo-Neutrinos

Abundances of uranium and thorium elements in Earth estimated by geoneutrino spectroscopy, S. Abe et al. (KamLAND), arXiv:2205.14934, 2022.
Experimental investigation of geologically produced antineutrinos with KamLAND, T. Araki et al. (KamLAND), Nature 436 (2005) 499-503. http://www.nature.com/nature/journal/v436/n7050/abs/nature03980.html;jsessionid=2B54E1F6E002C96A8C0F0275FB860964.
From the abstract: Assuming a Th/U mass concentration ratio of 3.9, the 90 per cent confidence interval for the total number of geoneutrinos detected is 4.5 to 54.2. This result is consistent with the central value of 19 predicted by geophysical models.
From the article: ... a 'rate only' analysis gives $ 25 {}^{+19}_{-18} $ geoneutrino candidates from the $^{238}\text{U}$ and $^{232}\text{Th}$ decay chains. Dividing by the detection efficiency, live-time, and number of target protons, the total geoneutrino detected rate obtained is $ 5.1 {}^{+3.9}_{-3.6} \times 10^{-31} $ $\bar\nu_e$ per target proton per year.
The 99\% confidence upper limit obtained on the total detected $^{238}\text{U}$ and $^{232}\text{Th}$ geoneutrino rate is $ 1.45 \times 10^{-30} $ $\bar\nu_e$ per target proton per year, corresponding to a flux at KamLAND of $ 1.62 \times 10^7 \, \text{cm}^{-2} \, \text{s}^{-1}$. On the basis of our reference model, this corresponds to an upper limit on the radiogenic power from $^{238}\text{U}$ and $^{232}\text{Th}$ decay of 60 TW.


6 - Astrophysics

Search for supernova neutrinos and constraint on the galactic star formation rate with the KamLAND data, S. Abe et al., arXiv:2204.12065, 2022.
KamLAND's search for correlated low-energy electron antineutrinos with astrophysical neutrinos from IceCube, S. Abe et al. (KamLAND), Astropart.Phys. 143 (2022) 102758, arXiv:2202.07345.
A search for correlated low-energy electron antineutrinos in KamLAND with gamma-ray bursts, S. Abe et al. (KamLAND), Astrophys.J. 927 (2022) 69, arXiv:2112.04918.
Limits on astrophysical antineutrinos with the KamLAND experiment, S. Abe et al. (KamLAND), Astrophys.J. 925 (2022) 14, arXiv:2108.08527.
Search for Low-energy Electron Antineutrinos in KamLAND Associated with Gravitational Wave Events, S. Abe et al. (KamLAND), Astrophys.J. 909 (2021) 116, arXiv:2012.12053.
Search for electron antineutrinos associated with gravitational wave events GW150914 and GW151226 using KamLAND, A. Gando et al. (KamLAND), Astrophys.J. 829 (2016) L34, arXiv:1606.07155.
Study of electron anti-neutrinos associated with gamma-ray bursts using KamLAND, K. Asakura et al. (KamLAND), Astrophys.J. 806 (2015) 87, arXiv:1503.02137.
A study of extraterrestrial antineutrino sources with the KamLAND detector, A. Gando et al. (KamLAND), Astrophys. J. 745 (2012) 193, arXiv:1105.3516.

7 - Double Beta Decay

First Search for the Majorana Nature of Neutrinos in the Inverted Mass Ordering Region with KamLAND-Zen, S. Abe et al. (KamLAND-Zen), Phys.Rev.Lett. 130 (2023) 051801, arXiv:2203.02139.
Precision measurement of the $^{136}$Xe two-neutrino $\beta\beta$ spectrum in KamLAND-Zen and its impact on the quenching of nuclear matrix elements, A. Gando et al. (KamLAND-Zen), Phys.Rev.Lett. 122 (2019) 192501, arXiv:1901.03871.
Search for Majorana Neutrinos near the Inverted Mass Hierarchy region with KamLAND-Zen, A. Gando et al. (KamLAND-Zen), Phys. Rev. Lett. 117 (2016) 082503, arXiv:1605.02889.
Limit on Neutrinoless betabeta Decay of Xe-136 from the First Phase of KamLAND-Zen and Comparison with the Positive Claim in Ge-76, A. Gando et al. (KamLAND-Zen), Phys. Rev. Lett. 110 (2013) 062502, arXiv:1211.3863.
Limits on Majoron-Emitting Double-Beta Decays of Xe-136 in KamLAND-Zen, A. Gando et al. (KamLAND-Zen), Phys. Rev. C86 (2012) 021601, arXiv:1205.6372.
Measurement of the Double-Beta Decay Half-life of $^{136}$Xe in KamLAND-Zen, KamLAND-Zen (KamLAND-Zen), Phys. Rev. C85 (2012) 045504, arXiv:1201.4664.

8 - Double Beta Decay - Talks

Results from KamLAND-Zen, K. Asakura et al. (KamLAND-Zen), AIP Conf. Proc. 1666 (2015) 170003, arXiv:1409.0077. XXVI Conference on Neutrino Physics and Astrophysics (Neutrino 2014).
First result from KamLAND-Zen : Double beta decay with 136-Xe, A. Gando (KamLAND-Zen), arXiv:1205.6130, 2012. Moriond 2012 EW session.

9 - Physics

First measurement of the strange axial coupling constant using neutral-current quasi-elastic interactions of atmospheric neutrinos at KamLAND, S. Abe et al. (KamLAND), Phys.Rev.D 107 (2023) 072006, arXiv:2211.13911.
Search for the Proton Decay Mode $p \rightarrow \overline\nu K^{+}$ with KamLAND, K. Asakura et al. (KamLAND-Zen), Phys. Rev. D92 (2015) 052006, arXiv:1505.03612.
Study of the Production of Radioactive Isotopes through Cosmic Muon Spallation in KamLAND, S. Abe et al. (KamLAND), Phys. Rev. C81 (2010) 025807, arXiv:0907.0066.
Search for the invisible decay of neutrons with KamLAND, T. Araki et al. (KamLAND), Phys. Rev. Lett. 96 (2006) 101802, arXiv:hep-ex/0512059.

10 - Neutrino Flux

A simple model of reactor cores for reactor neutrino flux calculations for the KamLAND experiment, K. Nakajima et al., Nucl.Instrum.Meth. A569 (2006) 837-844, arXiv:physics/0607126.

11 - Detector

KamNet: An Integrated Spatiotemporal Deep Neural Network for Rare Event Search in KamLAND-Zen, Aobo Li, Zhenghao Fu, Lindley A. Winslow, Christopher P. Grant, Hasung Song, Hideyoshi Ozaki, Itaru Shimizu, Atsuto Takeuchi, Phys.Rev.C 107 (2023) 014323, arXiv:2203.01870.
The nylon balloon for xenon loaded liquid scintillator in KamLAND-Zen 800 neutrinoless double-beta decay search experiment, Y. Gando et al. (KamLAND-Zen), JINST 16 () P08023, arXiv:2104.10452.
A compact ultra-clean system for deploying radioactive sources inside the KamLAND detector, T.I. Banks et al., Nucl.Instrum.Meth. A769 (2014) 88-96, arXiv:1407.0413.
The KamLAND Full-Volume Calibration System, B.E. Berger et al. (KamLAND), JINST 4 (2009) P04017, arXiv:0903.0441.
A C-13(alpha,n)O-16 calibration source for KamLAND, David W. McKee, Jerome K. Busenitz, Igor Ostrovskiy, Nucl. Instrum. Meth. A587 (2008) 272-276, arXiv:0711.3624.
Online monitoring system and data management for KamLAND, M.Motoki, F.Suekane, K.Tada, Y.Tsuda, Nucl. Instrum. Meth. A534 (2004) 59, arXiv:hep-ex/0405074.

12 - Sterile Neutrinos

IsoDAR@KamLAND:A Conceptual Design Report for the Conventional Facilities, Jose R. Alonso (K. Nakamura for the IsoDAR), arXiv:1710.09325, 2017.
IsoDAR@KamLAND: A Conceptual Design Report for the Technical Facility, M. Abs et al., arXiv:1511.05130, 2015.

13 - Background

Measurement of cosmic-ray muon spallation products in a xenon-loaded liquid scintillator with KamLAND, S. Abe et al. (KamLAND-Zen), Phys.Rev.C 107 (2023) 054612, arXiv:2301.09307.
Muon Simulations for Super-Kamiokande, KamLAND and CHOOZ, Alfred Tang, Glenn Horton-Smith, Vitaly A. Kudryavtsev, Alessandra Tonazzo, Phys. Rev. D74 (2006) 053007, arXiv:hep-ph/0604078.

14 - Proposal

Proposal for US Participation in KamLAND, J. Busenitz et al., 1999. http://kamland.lbl.gov/TalksPaper/Papers/KamLAND.US.Proposal.pdf.

15 - Talks

Recent Results from KamLAND, Koichi Ichimura, for the KamLAND Collaboration (KamLAND), arXiv:0810.3448, 2008. ICHEP08.
High Sensitivity Anti-Neutrino Detection by KamLAND, S. Hatakeyama et al. (KamLAND), arXiv:hep-ex/0405001, 2004. Moriond EW04.
An Overview of the KamLAND 1-kiloton Liquid Scintillator, F. Suekane et al., arXiv:physics/0404071, 2004. 'KEK-RCNP International School and Mini-Workshop for Scintillating Crystals and their Applications in Particle and Nuclear Physics'. (Nov. 17-18, 2003, KEK, Japan).
Results from the KamLAND experiment, G. Gratta (KamLAND), 2004. Neutrino 2004, 13-19 June 2004, Paris, France. http://neutrino2004.in2p3.fr/slides/monday/gratta.pdf.
KamLAND: updated results, K. Inoue, 2004. Neutrino Oscillation Workshop NOW 2004, September 11-17, 2004, Conca Specchiulla (Otranto, Italy). http://www.ba.infn.it/~now2004/talks/12_09_04/plen/KamLAND.pdf.
Recent Results from KamLAND, J. Detwiler (KamLAND), eConf C0307282 (2003) TW04, arXiv:hep-ex/0311007. SLAC Summer Institute, July 2003.
KamLAND results, K. Inoue, arXiv:hep-ex/0307030, 2003. XXXVIII Rencontres de Moriond on Electroweak Interactions and Unified Theories Les Arcs, France, 15-22 March 2003.
KamLAND Results, K. Inoue, 2003. The 4th Workshop on Neutrino Oscillations and their Origin (NOON2003), February 10-14, 2003, Ishikawa Kousei Nenkin Kaikan, Kanazawa, Japan. http://www-sk.icrr.u-tokyo.ac.jp/noon2003/transparencies/10/Inoue-KamLAND.pdf.
First KamLAND Results, Y. Kamyshkov, 2003. IV INTERNATIONAL CONFERENCE on NON-ACCELERATOR NEW PHYSICS - NANP 2003 - Dubna, Russia, June 23-28, 2003. http://nanp.dubna.ru/talks/kamyshkov.pdf.
Comment: Slide n. 41 shows comparison of data (13 bins) with 2-$\nu$ oscillation, best fit $\chi^2 = 2.8$, and with no oscillation - constant flux suppression, $\chi^2 = 5.3$. (M.L.).
An update on progress at KamLAND, S. A. Dazeley (KamLAND), arXiv:hep-ex/0205041, 2002.
The KamLAND detector and backgrounds for solar neutrino detection, K. Furuno, 2002. IIIrd International Workshop on Low Energy Solar Neutrinos - LOW NU 2002, 22-24 May 2002, Heidelberg, Germany. http://www.mpi-hd.mpg.de/nubis/www_lownu2002/transparency/furuno_lownu_2002.pdf.
First Results from KamLAND: Evidence for $\bar{\nu}_e$ disappearance, G. Gratta (Kamland), 2002. SLAC Colloquium, December 2002. http://hep.stanford.edu/neutrino/KamLAND/TalksAndPublications/KamLAND_FirstResults_SLAC_Colloq.pdf.
Start of Kamland, J. Shirai (Kamland), 2002. TXXth International Conference on Neutrino Physics and Astrophysics May 25 - 30, 2002, Munich, Germany. http://neutrino2002.ph.tum.de/pages/transparencies/suzuki.
Status of KAMLAND Project, F. Suekane (Kamland), 2002. Conference on Physics beyond the Standard Model - BEYOND THE DESERT 02 - Oulu, Finland, 2-7 June 2002. http://cupp.oulu.fi/trans/Suekane.pdf.
KamLAND: Examination of the LMA solution with reactor neutrinos, A. Suzuki (Kamland), 2002. XVI International Conference on Particles and Nuclei, Osaka, Japan, September 30 - October 4, 2002. http://www.rcnp.osaka-u.ac.jp/Divisions/np2/PaNic02/Suzuki.pdf.
Commissioning the KamLAND experiment, N. Tolik, 2002. The April Meeting 2002 of the American Physical Society. http://www.awa.tohoku.ac.jp/KamLAND/APS_April2002.pdf.
Kamland, j. Goldman, 2001. 3rd Workshop on Neutrino Oscillations and their Origin: NOON01. http://www-sk.icrr.u-tokyo.ac.jp/noon2001/transparency/dec05/goldman/goldman.pdf.
Kamland, K. Ishihara, 2001. The Third International Workshop on Neutrino Factories based on Muon Storage Rings (NuFACT'01) May 24th - May 30th, 2001, Tsukuba, Japan. http://www-prism.kek.jp/nufact01/May26/WG1/26wg1_ishihara.pdf.
KamLAND: A reactor neutrino experiment testing the solar neutrino anomaly, A. Piepke (KamLAND), Nucl. Phys. Proc. Suppl. 91 (2001) 99-104.
Neutrino physics with the KamLAND detector, L. De Braeckeleer (KamLAND), Nucl. Phys. Proc. Suppl. 87 (2000) 312-314.
The present status of KamLAND, A. Suzuki (KamLAND), Nucl. Phys. Proc. Suppl. 77 (1999) 171-176.
KamLAND experiment: Exploring low energy neutrino physics, J. Shirai, 1998.
Physics opportunities with the KamLAND experiment, Yi Fang Wang (KamLAND), 1998. Talk given at 29th International Conference on High-Energy Physics (ICHEP 98), Vancouver, Canada, 23-29 Jul 1998.

Search Neutrino Unbound

Cross search NU

It is possible to perform a cross search between the various pages of Neutrino Unbound.
This is useful if you want to show the common elements that appear in the listings of two (or more) different topics or experiments.

Go to the search form.

[Go to ...]

Neutrino Unbound Home

Stefano Gariazzo / gariazzo@to.infn.it
Carlo Giunti / giunti@to.infn.it
Marco Laveder / marco.laveder@pd.infn.it
Last Update: Fri 1 Dec 2023, 15:43:26 CET